TY - THES A1 - Prieschl, Dominic T1 - Reaktivitätsstudien zu Diboranen(4) und NHC-stabilisierten µ-Hydridodiboranen(5) T1 - Reactivity studies of diboranes(4) and NHC-stabilised µ-hydrido diboranes(5) N2 - Die vorliegende Arbeit behandelt im ersten Abschnitt die Synthese und Reaktivität neuartiger Diborane(4). Ebenfalls wurde die Reaktivität von Dihalogendiboranen(4) gegenüber Phenylazid untersucht, wobei symmetrische Vertreter unter Beibehalt der B-B-Bindung die fünfgliedrigen B2N3 Heterocyclen 14 und 15 lieferten. Der zweite Abschnitt dieser Arbeit beschäftigt sich mit der unerwarteten Reaktivität der NHC-stabilisierten μ-Hydridodiborane(5) XXIII und XXIV. Der abschließende Teil dieser Arbeit befasst sich mit den ersten Versuchen zur Darstellung eines CAAC-stabilisierten, Diboranyl-substituierten Borylens. N2 - The first part of this thesis focuses on the synthesis and reactivity of novel diboranes(4). Furthermore, the reactivity of dihalodiboranes(4) towards phenyl azide was investigated. Symmetrical derivatives Ia and IIb gave five-membered B2N3 heterocycles 14 and 15 with retention of the B-B bond. The second chapter of this work deals with the unexpected reactivity of NHC-stabilized μ-hydridodiboranes(5) XXIII and XXIV. The final part of this thesis focuses on the first attempts to synthesize a CAAC-stabilised, diboranyl-substituted borylene. KW - Diborane KW - Diborane(4) KW - diboranes(4) KW - Diborane(5) KW - diboranes(5) KW - sp2-sp3 KW - Bor KW - boron Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-210749 ER - TY - THES A1 - Brückner, Tobias Walter T1 - Lewisbasenstabilisierte Bor-Bor-Mehrfachbindungssysteme - Darstellung und Reaktivitätsstudien T1 - Lewis base stabilized boron-boron multiple binding systems - Synthesis and reactivity N2 - Diese Dissertation befasst sich mit der Darstellung und Reaktivität von Lewisbasenstabilisierten Bor-Bor-Mehrfachbindungssystemen. Besonderes Augenmerk lag hierbei auf der Aktivierung von Element-Wasserstoff-Bindungen von Boranen, Aminen, Silanen und Phosphanen durch NHC-stabilisierte Diborine. Des Weiteren wurde die Aktivierung von Bor-Bor-, sowie Phosphor-Phosphor-Einfachbindungen untersucht. Zusätzlich wurde die Reaktivität gegenüber Carbenen und aromatischen Stickstoffbasen näher beleuchtet. N2 - This dissertation deals with the representation and reactivity of Lewis base-stabilized boron-boron multiple bond systems. Special attention was paid to the activation of element-hydrogen bonds of boranes, amines, silanes and phosphanes by NHC-stabilized diborins. Furthermore, the activation of boron-boron and phosphorus-phosphorus single bonds was investigated. In addition, the reactivity towards carbenes and aromatic nitrogen bases was investigated. KW - Diborine KW - Bor KW - boron KW - Diborine KW - Diborene KW - Lewisbasen KW - diborynes KW - diborenes KW - lewis bases KW - Bor KW - Mehrfachbindung KW - Lewis-Base Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213479 ER - TY - THES A1 - Crumbach, Merian T1 - Modifying the Optoelectronic Properties of Polycyclic Aromatic Hydrocarbons and Linear Oligomers by Doping with Boron and Further Heteroatoms T1 - Modifizierung der Optoelektronischen Eigenschaften von Polyzyklischen Aromatischen Kohlenwasserstoffen und Linearen Oligomeren durch Dotierung mit Bor und weiteren Heteroatomen N2 - Der Austausch ausgewählter CC-Einheiten durch ihre isoelektronischen und isosteren BN-Einheiten in π-konjugierten organischen Verbindungen (BN/CC-Isosterie), insbesondere in polyzyklischen aromatischen Kohlenwasserstoffen (PAKs), hat sich als erfolgreiche Strategie zur Herstellung neuartiger organisch-anorganischer Hybridmaterialien erwiesen, die strukturelle Ähnlichkeiten mit ihren reinen Kohlenstoff Analoga aufweisen, aber in vielen Fällen mit veränderten faszinierenden Eigenschaften und Funktionen. In den ersten beiden Kapiteln werden die Synthese und Eigenschaften von neuartigen BNB-dotierten Phenalenylen, Dithienoazadiborepinen und Dithienooxadiborepinen vorgestellt. Die optoelektronischen Eigenschaften dieser neuen Bauelemente können durch Variation der eingebauten Ar- (Mes, Tip, FMes) und R-Gruppen (H, Me, i-Pr, t-Bu, Ph) effektiv eingestellt werden. Theoretische Untersuchungen, einschließlich NICS (Nucleus Independent Chemical Shift) Scans und AICD (Anisotropy of the Induced Current Density)-Berechnungen, wurden durchgeführt und geben Einblick in ihren aromatischen oder antiaromatischen Charakter. Der Einbau von BP-Einheiten, welche mit BN und CC valenz-isoelektronisch sind, in ungesättigte organische Verbindungen ist dagegen bisher kaum untersucht worden, obwohl das Potenzial der resultierenden BCP-Hybridmaterialien für elektronische Anwendungen erst kürzlich erkannt wurde. Konjugierte Hauptkettenpolymere mit BP-Fragmenten im Rückgrat sind bisher unbekannt. Die ersten molekularen Modellverbindungen für ein BP-Analogon des konjugierten Polymers Poly(p-phenylen-vinylen) (PPV) werden in Kapitel 3 vorgestellt. Theoretische Untersuchungen ergaben, dass die Mes*-Gruppe das Phosphor-zentrum vollständig planarisiert, wodurch der B=P-Doppelbindungscharakter verstärkt und eine Konjugation über die BP-Einheit ermöglicht wird. Es wurden verschiedene synthetische Ansätze zu diesen molekularen Modellverbindungen untersucht und eine erfolgreiche synthetische Strategie gefunden. N2 - The substitution of selected CC units by their isoelectronic and isosteric BN units in π−conjugated organic compounds (BN/CC isosterism), especially polycyclic aromatic hydrocarbons (PAHs), has emerged as a viable strategy to produce novel organic–inorganic hybrid materials with structural similarities to their all-carbon congeners, but in many cases with intriguing properties and functions. In the first two chapters the synthesis and properties of novel BNB-doped phenalenyls, dithienoazadiborepins and dithienooxadiborepins are presented. The optoelectronic properties of these new building blocks can be effectively tuned by variation of the incorporated Ar (Mes, Tip, FMes) and R groups (H, Me, i-Pr, t-Bu, Ph). Theoretical investigations, including NICS (Nucleus Independent Chemical Shift) scans and AICD (Anisotropy of the Induced Current Density) calculations, have been performed which provide insight into their aromatic or antiaromatic character, respectively. The incorporation of BP units, on the other hand, which are valence isoelectronic with BN and CC, into unsaturated organic compounds, has been scarcely studied, though the potential of the resulting BCP hybrid materials for electronic applications has been recognized quite recently. Main chain conjugated polymers featuring BP fragments in the backbone are unknown so far. The first molecular model compounds for a BP analogue of the conjugated polymer poly(p-phenylene vinylene) (PPV) are presented in chapter 3. Theoretical investigations revealed that the Mes* group to fully planarizes the phosphorus center, increasing the B=P double bond character and enabling conjugation over the BP unit. Different synthetic approaches to the molecular model compounds have been investigated and a viable synthetic strategy was found. KW - Aromatizität KW - Isoelektronisches Prinzip KW - Polycyclische Aromaten KW - Oligomere KW - Bor KW - BN compounds KW - boron KW - BP compounds KW - polycycles KW - oligomers KW - Bor-Stickstoff-Verbindungen KW - Bor KW - Bor-Phosphor-Verbindungen KW - Polyzyklen KW - Oligomere Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242845 ER - TY - THES A1 - Ritschel, Benedikt Tobias T1 - Lewis-Basen-stabilisierte Bor–Bor-Mehrfachbindungssysteme – Reaktivitätsstudien an Diboracumulenen und Dicyanodiborenen T1 - Lewis base-stabilized boron-boron multiple bonds - reactivity studies on diboracumulenes and dicyanodiborenes N2 - Die vorliegende Arbeit umfasst im Wesentlichen Studien über die Reaktivität von Diboracumulenen sowie Dicyanodiborenen gegenüber diversen Substraten verschiedener Substanzklassen, wie z. B. Acetylenen, Aminen, Aziden, Nitrilen, Isonitrilen und Übergangsmetallen. Auf diese Weise sollen zunächst Einblicke in das unterschiedliche Reaktionsverhalten der niedervalenten Borverbindungen ermöglicht sowie ein Verständnis für die erhaltenen, teils neuartigen, Bindungsmodi und Substanzklassen etabliert werden. Die jeweiligen MecAAC- und CycAAC-stabilisierten Verbindungen wurden hierbei auf den Einfluss des sterischen Anspruchs der Liganden in Bezug auf die Reaktivität untersucht. Die aufgeführten Kapitel beziehen sich daher auf die Reaktivität der Diboracumulene wie auch die der Dicyanodiborene gegenüber Verbindungen jeweils einer bestimmten Substanzklasse. Die erhaltenen Produkte werden, soweit möglich, miteinander verglichen. N2 - The present work mainly comprises studies on the reactivity of diboracumulenes as well as dicyanodiborenes towards diverse substrates of different substance classes, such as acetylenes, amines, azides, nitriles, isonitriles and transition metals. In this way, insights into the different reaction behavior of the low-valent boron compounds of the obtained, partly novel, binding modes and substance classes should be established. In this context, the respective MecAAC- and CycAAC-stabilized compounds were examined towards the influence of the steric requirement of the ligands with respect to the reactivity. Therefore, the chapters refer to the reactivity of the diboroacumulenes as well as that of the dicyanodiborenes towards compounds of a particular substance class in each case. Where possible, the products obtained are compared with each other. KW - Bor KW - Reaktivitätsstudien KW - reacitvity studies KW - Mehrfachbindung KW - Hauptgruppenelementverbindungen KW - Diboren KW - Diboracumulen KW - diborene KW - diboracumulene Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-243306 ER - TY - THES A1 - Englert, Lukas T1 - Synthese und Reaktivität Phosphan-stabilisierter Diborene T1 - Synthesis and Reactivity of Phosphine-stabilised Diborenes N2 - Die vorliegende Arbeit beschäftigt sich mit der Synthese und Reaktivität von Phosphan-stabilisierten Diborenen. Der erste Teil beschreibt die Darstellung von Tetrabromdiboran(4)-Addukten mit zweizähnigen (84a–87c) und einzähnigen Phosphanen (43a–c; 88a–89b), welche ausgehend von B2Br4(SMe2)2 (83) in einer Substitutionsreaktion in sehr guten Ausbeuten erhalten wurden. In fast allen Fällen gelang es mithilfe der Molekülstrukturen im Festkörper die Verbindungen näher zu untersuchen. Dabei konnten erstmalig Phosphan-verbrückte Diboran(6)-Verbindungen 86a–87a strukturell charakterisiert werden. Eine Besonderheit stellt in diesem Zusammenhang der PBBP-Torsionswinkel α dar, der die Abwinklung zwischen den Phosphanliganden angibt und welcher mit steigender Sterik zunimmt, was auf attraktive Dispersionswechselwirkungen zwischen den organischen Resten zurückzuführen ist. Einige Addukte wurden experimentell auf ihr Redoxverhalten hin untersucht. Obwohl bei vielen Reduktionsversuchen Diboren-typische NMR-Signale beobachtet wurden, sind die meisten Produkte so instabil, dass keine weiteren Beweise für die erfolgreiche Darstellung der jeweiligen Diborene erbracht werden konnten. Nur für 88c gelang die zielgerichtete Reduktion zum Diboren 93c zu reduzieren. Die analysenreine Isolierung von 93c gelang jedoch nicht, sodass es in situ zum Diboren-Übergangsmetall-side-on Komplex 94 umgesetzt wurde. Quantenchemische Untersuchungen der Grenzorbitale zeigten, dass sehr wahrscheinlich die energetische Lage der MOs mit Anteilen auf den σ*-Orbitalen der B‒Br-Bindungen ausschlaggebend für eine erfolgreiche Reduktion von Bisphosphanaddukten zum Diboren ist. Allerdings stellt auch der räumliche Anspruch der Phosphane einen entscheidenden Stabilitätsfaktor für das entstehende Phosphan-stabilisierte Diboren dar. Weiterhin wurde das Portfolio an Phosphan-stabilisierten 1,2-Diaryldiborenen mit den Ver-bindungen 97a–98b erweitert und die Synthese derartiger Diborene in einer Eintopfsynthese optimiert. Außerdem gelang die erstmalige Darstellung Phosphan-stabilisierter Diborene mit Durylsubstituenten (98a/b), die sich aber, mitsamt ihren Brom-verbrückten Monoadduktvorstufen 96a/b, als unerwartet labil erwiesen. Die Diborene zeigen für diese Verbindungsklasse typische NMR-spektroskopische und röntgenkristallographische Messdaten. Zusätzlich wurden 97a/b mittels UV/Vis-Spektroskopie und quantenchemischen Methoden näher analysiert. Das Hauptaugenmerk der durchgeführten Forschungsarbeiten lag auf der Untersuchung der Reaktivität des Diborens 48a. Dessen B=B-Bindungsordnung konnte in zwei Reaktionen mit unterschiedlichen Oxidationsmitteln unter Bildung des Radikalkations [100]∙+ herabgesetzt werden. Eine Oxidation der B=B-Bindung gelang auch mit der Umsetzung von 48a mit Chalkogenen und chalkogenhaltigen Reagenzien. Unter anderem gelang mit der Darstellung des 1,2-Dimesityl-1,2-di(phenylseleno)diborans(4) (104) die Synthese eines seltenen Beispiels für ein strukturell aufgeklärtes, selenhaltiges Diboran(4). Dabei konnte außerdem erstmals die vollständige Freisetzung beider Lewis-Basen aus einem Diboren unter gleichzeitiger Reduktion der Bindungsordnung beobachtet werden. Weiterhin wurde 48a mit stickstoffhaltigen Heteroaromaten umgesetzt. Dabei lassen die spektroskopischen und quantenchemischen Daten ein Pyridin-stabilisiertes Diboren 105 vermuten. In weiteren Versuchen wurde 48a mit 2,2'-Bipyridin untersucht und ein Monoboran und das 1,4-Diaza-2,3- diborinin 106 erhalten. 106 wurde im Festkörper und quantenchemisch näher untersucht. Eine NICS-Analyse bescheinigt dem zentralen B2N2C2-Ring des Diborans(4) ein außer-ordentliches Maß an Aromatizität. Ferner war 48a in der Lage, Element-Wasserstoffbindungen zu aktivieren (E = B, Si, N, S). Während für die Umsetzungen mit diversen Silanen nur über die Reaktionszusammensetzung spekuliert werden konnte, gelang die Strukturaufklärung zweier Produkte der Reaktion mit HBCat (110 und 111) mittels Einkristallröntgenstrukturanalyse. In diesem Zusammenhang gelang die Darstellung der sp2-sp3-Diborane(5) 112–113b in Umsetzungen von 48a mit einem Thiol bzw. mit Anilinderivaten in guten Ausbeuten. Die NMR-spektroskopischen und kristallographischen Daten der Produkte sind miteinander vergleichbar und liegen im erwarteten Bereich derartiger Verbindungen. Zusätzlich konnte in den stickstoffhaltigen Produkten 113a/b die trans-Konfiguration der B=N-Doppelbindung mittels 1H–1H-NOESY-NMR-Experimenten bestätigt werden. Das Diboren 48a zeigt auch ein reichhaltiges Reaktivitätsverhalten gegenüber kleinen Molekülen. Nach dem Austausch der Schutzgasatmosphäre gegen N2O oder CO2 konnte die oxidative Zersetzung von 48a zum literaturbekannten Boroxinderivat 114 festgestellt werden. Gänzlich anders verlief die Reaktion von 48a mit CO, wobei ein interessanter, achtgliedriger Heterocyclus 115 gebildet wurde, der formal aus zwei gespaltenen CO-Molekülen und zwei Diborenen besteht. Die genaue Beschreibung der Bindungssituation innerhalb der BC(P)B-Einheit kann, anhand der Festkörperstruktur von 115 und DFT-Berechnungen, mit literaturbekannten α-borylierten Phosphoryliden verglichen werden. Mit hoher Wahrscheinlichkeit liegt eine Mischform der mesomeren Grenzstrukturen 115-A, 115-B und 115-C vor, da für alle drei Strukturvorschläge experimentelle Hinweise gefunden werden können. Das Diboren 48a reagierte mit H2 ohne Katalysator, unter thermischer Belastung, erhöhtem Druck und langer Reaktionszeit zu unterschiedlichen Produkten. Erste Umsetzungen führten hierbei zum Produkt 118a, das in folgenden Hydrierungen aber nicht mehr reproduziert werden konnte. Stattdessen wurde die selektive Bildung der Monoborane 119a/b beobachtet. Für beide Reaktivitäten wurde je ein Reaktionsmechanismus quantenchemisch untersucht. Das Schlüsselintermediat ist dabei jeweils ein hochreaktives Intermediat Int3, welches vermutlich für eine Vielzahl an Reaktivitäten von 48a verantwortlich ist. Das letzte Kapitel widmete sich unterschiedlichen Cycloadditionen von 48a mit verschiedenen ungesättigten Substraten. Die Reaktivität gegenüber Aziden konnte hierbei nicht vollständig aufgeklärt werden. Allerdings gelang es ein PMe3-stabilisiertes Phosphazen 122 als Nebenprodukt nachzuweisen und gezielt in einer Staudinger-Reaktion darzustellen. Mit Carbodiimiden reagierte das Diboren 48a unter photolytischen Bedingungen zu den 1,2,3-Azadiboretidinen 123a–c, wobei die Reaktionsgeschwindigkeit stark vom sterischen Anspruch des Carbodiimids abhängig war. Das Azadiboretidin 123a konnte im Festkörper näher untersucht werden und stellt ein seltenes Beispiel für einen solchen Heterocyclus dar. Die thermische Umsetzung von 48a mit den Carbodiimiden lieferte hingegen ein noch nicht vollständig aufgeklärtes Produkt. Anhand der spektroskopischen Daten wird die Darstellung eines NHCs mit Diboran(4)-Rückgrat der Art B2Mes2(NiPr)2C: (124a) vermutet. Quantenchemische Untersuchungen sagen für 124a ähnliche Bindungsparameter wie für ein literaturbekanntes π-acides NHC voraus. Die Reaktion von 48a mit terminalen Alkinen führte zielgerichtet zu PMe3-stabilisierten 1,3-Dihydro-1,3-diboreten 126a–d. In Lösung konnten für 126c/d zusätzlich die jeweiligen Konstitutionsisomere 127c/d mit Anteilen von unter 10% NMR-spektroskopisch beobachtet werden. Im Festkörper wird hingegen nicht das Diboret 126d, sondern ausschließlich das Konstitutionsisomer 127d beobachtet. Die Lewis-Formel der Diborete legt nahe, dass ein elektronenarmes, dreifach koordiniertes Kohlenstoffatom in der BCB-Einheit vorliegt, was im 13C{1H}-NMR-Spektrum mit den entsprechenden Signalen bestätigt wird. Eine elektronische Delokalisation wird mit den ermittelten B‒C-Atomabständen innerhalb der BCsp2B-Einheiten von 126a–c und 127d unterstützt. Die P‒Csp2-Bindung in 127d weist zudem einen kurzen P=C-Bindungsabstand auf, was einen sehr hohen π-Anteil vermuten lässt. Die einmalige Beschreibung des C‒H-Aktivierungsprodukts 131 im Festkörper gibt einen Hinweis auf eine anfängliche [2+2]-Cycloaddition zwischen der B=B-Doppelbindung und dem terminalen Alkin, die über eine 1,3-Umlagerung zur Bildung der 1,3-Diborete führt. Ferner gelang unter den identischen Reaktionsbedingungen aus 48a und 1,4‐Diethinylbenzol die Darstellung der Mono‐ und Bis(1,3‐dihydro‐1,3‐diborete) 128 und 129, wobei 129 nur im Festkörper genauer untersucht werden konnte. Die Umsetzung von 48a mit 1,3,5‐Triethinylbenzol ergab ein Produktgemisch der Form (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3−n (130-n; n = 1, 2, 3), welches Hinweise auf die zweifache bzw. dreifache Diboretbildung lieferte. DFT-Berechnungen sagen für das Bisdiboret 129 eine Kommunikation zwischen beiden Heterocyclen über den zentralen Benzolring voraus, was die Ursache für die beobachtete Fluoreszenz sein könnte. Das Diboren 48a reagierte zudem mit Diazabutadienen unter thermischen Bedingungen in inversen Diels-Alder-Reaktionen zu 1,2,3,4-Tetraaryl-1,4-diaza-2,3-diborininen 132a–e. Dies stellt einen neuen Zugang zu dieser Substanzklasse dar. Dabei zeigte sich eine direkte Korrelation zwischen der Reaktionszeit und dem räumlichen Anspruch der Diazabutadiene. Die erfolgreiche Aufarbeitung der 1,4-Diaza-2,3-diborinine ist aufgrund ihrer hohen Löslichkeit in gängigen Lösungsmitteln wesentlich vom Kristallisationsverhalten der Produkte abhängig. Die analoge Umsetzung unter photochemischen Bedingungen gab Hinweise darauf, dass diese Reaktion dem Mechanismus einer inversen [4+2]-Cycloaddition folgt. Bemerkenswert ist die hohe Stabilität der Diborane(4) 132b/c gegenüber Luft und Wasser, die vermutlich auf der kinetischen Stabilisierung durch die ortho- Methylgruppen der Stickstoff-gebundenen Aromaten beruht. Im Gegensatz dazu wurde bei der Reaktion zwischen 48a und dem Diazabutadien (MesN)2C2Mes2 das 1,2,3,4-Tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinin 132e nur in Spuren nachgewiesen. Unter den gewählten Bedingungen wurde stattdessen Verbindung 133 gebildet. Die systematische, experimentelle Untersuchung dieser Reaktivität wurde jedoch im Rahmen dieser Arbeit nicht durchgeführt. Die Schlüsselschritte des Reaktionsmechanismus zur Bildung von 133 führen höchstwahrscheinlich wieder über das Intermediat Int3. Nach einer 1,2-Wanderung eines Mesitylsubstituenten wird das Monophosphan-stabilisierte Zwitterion Int13a gebildet, welches in seiner Grenzstruktur Int13b als Borylen beschrieben werden kann. Eine anschließende intramolekulare C‒H-Aktivierung resultiert im Diboran(5) 133. Mit dieser Arbeit ist es gelungen, neue Erkenntnisse über die Chemie Phosphan-stabilisierter Diborene zu erhalten. Die labil gebundenen Phosphane eröffnen diesen Diborenen eine einzigartige Reaktivität, die bei den NHC-Vertretern nicht gefunden wird. In der Zukunft könnten neue Konzepte entwickelt werden dieses Reaktionsverhalten weiter zu nutzen. Wünschenswert wäre es die Diboren-Monomere miteinander zu Ketten zu verknüpfen. N2 - The present work deals with the synthesis and reactivity of phosphine-stabilised diborenes. The first section describes the preparation of tetrabromodiborane(4) adducts with bidentate (84a–87c) and monodentate phosphines (43a–c; 88a–89b). These were obtained from B2Br4(SMe2)2 (83) in a substitution reaction in very good yields. In almost all cases, it was possible to investigate the compounds more closely based on their solid-state molecular structures. For the first time, the structures of phosphine-bridged di¬bo¬rane(6) compounds 86a–87a were determined. A special feature in this context is the PBBP torsion angle α, which indicates the angular deflection between the phosphine ligands. Contrary to expectations, the angle α decreases with increasing steric demand, which is probably due to attractive dispersion interactions between the organic residues. The adducts 84a/b, 135a/c, 87a, 88a/c/d and 136a were experimentally investigated for their redox behaviour. Although diborene-type NMR signals were observed in some reduction experiments, most of the products are so unstable that no further evidence for the successful preparation of the respective diborenes was obtained. Therefore, only 88c was successfully reduced to the diborene 93c. However, the isolation of 93c was not successful, thus it was instead reacted in situ with ZnBr2 to form the side-on transition metal diborene complex 94. Quantum-chemical investigations of the frontier orbitals showed that the energy level of the MOs with lobs corresponding to the σ* orbitals of the B‒Br bonds is most likely decisive for the successful reduction of bisphosphine adducts to diborenes. However, the steric demand of the phosphines is also a crucial stabilising factor for the resulting phosphine-stabilised diborene. Furthermore, the portfolio of phosphine-stabilised 1,2-diaryldiborenes was expanded with compounds 97a–98b and the synthesis of these diborenes was optimised in a one-pot synthesis. In addition, phosphine-stabilised diborenes with duryl substituents (98a/b) were synthesised for the first time, which, together with their bromine bridged monoadduct precursors 96a/b, proved to be unexpectedly labile. The prepared diborenes provided NMR spectroscopic and X-ray crystallographic data which are typical for this class of compounds. Moreover, 97a/b was analysed in more detail using UV/vis spectroscopy and quantum-chemical methods. The main focus of this research lies in the investigation of the reactivity of the diborene 48a. Its B=B bond order was reduced in two reactions with different oxidizing agents forming the radical cation [100]∙+. An oxidation of the B=B bond was also achieved with the reaction of 48a with chalcogens and chalcogen-containing reagents. Furthermore, with the preparation of 1,2-dimesityl-1,2-di(phenylseleno)diborane(4) (104), the synthesis of a rare example of a structurally elucidated selenium containing diborane(4) was achieved. In addition, the complete release of both Lewis bases from a diborene with simultaneous reduction of the B=B bond order was observed for the first time. Furthermore, 48a was reacted with nitrogen containing heteroaromatics. The spectroscopic and quantitative chemical data indicate a pyridine-stabilised diborene 105. Further experiments were aimed at exploring the reactivity of 48a towards 2,2'-bipyridine and the monoborane 107d and the 1,4-diaza-2,3-diborinine 106 were obtained. The solid-state structure of 106 and quantum-chemical investigations suggested a bonding situation comparable to that of carbon analogues. In addition, a NICS analysis confirmed that the central B2N2C2 ring of diborane(4) 106 has an extraordinary degree of aromaticity. Compound 48a was also able to activate element-hydrogen bonds (E = B, Si, N, S). While for the reactions with various silanes the reaction composition could only be speculated upon, the structure of two products of the reaction with HBCat (110 and 111) were elucidated by means of single crystal X-ray structure analysis. In this context, the sp2-sp3 diboranes(5) 112–113b were obtained in good yields in reactions of 48a with a thiol and with aniline derivatives, respectively. The NMR spectroscopic and crystallographic data of the products are comparable and lie within the expected range of such compounds. In addition, the trans configuration of the B=N double bond in the nitrogenous products 113a/b was confirmed by 1H‒1H-NOESY NMR experiments. The diborene 48a also shows a rich reactivity towards small molecules. After replacing the inert gas atmosphere with N2O or CO2, the oxidative decomposition of 48a to the literature-known boroxine derivative 114 was detected. The reaction of 48a with CO was completely different, whereby an interesting, eight-membered heterocycle 115 was formed, which formally consists of two cleaved CO molecules and two diborenes. Based on the solid-state structure of 115 and DFT calculations, the exact description of the bonding situation within the BC(P)B unit can be compared with literature-known α-borylated phosphorus ylides. It is highly probable that a mixed form of the mesomeric structures 115-A, 115-B and 115-C is present since experimental evidence can be found for all three proposed structures. The diborene 48a reacted with H2 without the need for a catalyst, with heating, high pressure and long reaction times leading to different products. Initial reactions led to the product 118a, which could not be reproduced in subsequent hydrogenations. Instead, the selective formation of the monoboranes 119a/b was observed. One reaction mechanism was computationally determined for each of the reactivities. The key intermediate in each case is the highly reactive intermediate Int3, which is presumably responsible for a large number of the reactivity patterns of 48a. The last chapter is devoted to different cycloadditions of 48a with different unsaturated substrates. The reactivity towards azides could not be fully elucidated. However, it was possible to detect a PMe3 stabilised phosphazene 122 as a byproduct, which could be independently synthesised via a Staudinger reaction. The diborene 48a reacted with carbodiimides under photolytic conditions to give the 1,2,3 azadiboretidines 123a–c, whereby the reaction rate was strongly dependent on the steric demand of the carbodiimide. The solid-state structure of azadiboretidine 123a was determined and represents a rare example of such a heterocycle. The thermal reaction of 48a with carbodiimides, on the other hand, yielded a product that has not yet been fully elucidated. Based on the spectroscopic data, the preparation of a NHC with a diborane(4) backbone of the type B2Mes2(NiPr)2C: (124a) is suspected. Quantum-chemical investigations predicted similar bonding parameters for 124a as for a literature known π-acidic NHC. The reaction of 48a with terminal alkynes led to PMe3-stabilised 1,3-dihydro-1,3-diboretes 126a–d. For 126c/d the respective constitutional isomers 127c/d with proportions of less than 10% could additionally be observed via solution NMR spectroscopy. In the solid state, on the other hand, not the diborete 126d but exclusively the constitutional isomer 127d was observed. The Lewis formulas of the diboretes suggest that an electron-deficient, tricoordinate carbon atom is present in the BCB unit, which is confirmed by its 13C{1H} NMR spectrum, which contains corresponding signals. The electronic delocalisation is supported by the experimentally derived B‒C atomic distances within the BCsp2B units of 126a–c and 127d. The P‒Csp2 bond in 127d is short, suggesting a high degree of π-character. The unique description of the C‒H activation product 131 in the solid state suggests an initial [2+2] cycloaddition between the B=B double bond and the terminal alkyne, which leads to the formation of the 1,3-diboretes via a 1,3 rearrangement. Using the identical reaction conditions as the reaction between 48a and 1,4-diethylbenzene, the preparation of the mono- and bis(1,3-dihydro-1,3-diboretes) 128 and 129 was achieved, whereby 129 could only be structurally authenticated. The reaction of 48a with 1,3,5-triethynylbenzene gave a mixture of products of the type (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3-n (130-n; n = 1, 2, 3), which provided evidence for the two- and threefold diborete formation, respectively. DFT calculations predict some degree of communication between the two heterocycles via the central benzene ring in the bisdiborete 129, which could be the cause of the observed fluorescence. The diborene 48a also reacted with diazabutadienes under thermal conditions in inverse Diels-Alder reactions to give 1,2,3,4-tetraaryl-1,4-diaza-2,3-diborinines 132a–e. This represents a new approach to this substance class. Thereby, a direct correlation between the reaction time and the steric demand of the diazabutadienes was observed. The successful work-up of the 1,4-diaza-2,3-diborinines is essentially dependent on the crystallisation behaviour of the products due to their high solubility in common solvents. The analogous conversion under photochemical conditions indicated that this reaction follows the mechanism of an inverse electron demand [4+2] cycloaddition. The high stability of the diborane(4) 132b/c against air and water is remarkable, which is probably due to the kinetic stabilisation by the ortho-methyl groups of the nitrogen-bound aryl groups. In contrast, the reaction between 48a and the diazabutadiene (MesN)2C2Mes2 gave the 1,2,3,4-tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinine 132e, but only in small amounts. Instead, compound 133 was formed under the chosen conditions. However, the systematic, experimental investigation of this reactivity was not carried out within the scope of this work. The key intermadiate of the reaction mechanism for the formation of 133 is most probably again the intermediate Int3. After a 1,2-migration of a mesityl substituent, the monophosphine-stabilised zwitterion Int13a is formed, which can be described as a borylene in its mesomeric structure Int13b. A subsequent intramolecular C‒H activation results in the diborane(5) 133. This work provides new insights into the chemistry of phosphine-stabilised diborenes. The labile phosphine groups provide a unique reactivity to the diborenes that is not found in the NHC-bound derivatives. In the future, new concepts could be developed to further exploit this reaction behaviour. Along these lines, it would be desirable to link diborenes with each other to create chains. KW - Bor KW - Synthese KW - Doppelbindung KW - Phosphin KW - Reaktivität KW - Diboren KW - Phosphan-stabilisiert KW - Diborene KW - Phosphine-stabilised Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241365 ER - TY - THES A1 - Hagspiel, Stephan Alexander T1 - Synthesis and Reactivity of Pseudohalide-substituted Boranes and Borylenes T1 - Synthese und Reaktivität Pseudohalogenid-substituierter Borane und Borylene N2 - This work involves the synthesis and reactivity of pseudohalide-substituted boranes and borylenes. A series of compounds of the type (CAAC)BR2Y (CAAC = cyclic alkyl(amino)carbene; R = H, Br; Y = CN, NCS, PCO) were prepared first. The two-electron reduction of (CAAC)BBr2Y (Y = CN, NCS) in the presence of a second Lewis base L (L = N-heterocyclic carbene) resulted in the formation of the corresponding doubly Lewis base-stabilized pseudohaloborylenes (CAAC)(L)BY. These borylenes show versatile reactivity patterns, including their oxidation to the corresponding radical cations, coordination via the respective pseudohalide substituent to group 6 metal carbonyl complexes, as well as a boron-centered protonation with Brønsted acids to boronium cations. Reduction of (CAAC)BBr2(NCS) in the absence of a second donor ligand, led to the formation of boron-doped thiazolothiazoles via reductive dimerization of two isothiocyanatoborylenes. These B,N,S-heterocycles possess a low degree of aromaticity as well as interesting photophysical properties and can furthermore be protonated as well as hydroborated. Additionally, CAAC adducts of the parent boraphosphaketene (CAAC)BH2(PCO) could be prepared, which readily reacted with boroles [Ph4BR'] (R' = aryl) via decarbonylation in a ring expansion reaction. The obtained 1,2-phosphaborinines represent B,P-isosteres of benzene and consequently could be coordinated to metal carbonyl complexes of the chromium triade via η6-coordination, resulting in new half-sandwich complexes thereof. N2 - Diese Arbeit beinhaltet die Synthese und Reaktivität von Pseudohalogenid-substituierten Boranen und Borylenen. Dabei wurde zunächst eine Reihe an Verbindungen des Typs (CAAC)BR2Y (CAAC = cyclisches Alkyl(amino)carben; R = H, Br; Y = CN, NCS, PCO) dargestellt. Die Zweielektronenreduktion von (CAAC)BBr2Y (Y = CN, NCS) in der Gegenwart einer weiteren Lewis-Base L (L = N-heterocyclisches Carben) resultierte in der Bildung der entsprechenden zweifach Lewis-Basen-stabilisierten Pseudohalogenborylene (CAAC)(L)BY. Diese Borylene zeigen eine vielseitige Folgechemie, wobei sie zu den korrespondierenden Radikalkationen oxidiert, über den jeweiligen Pseudohalogenidsubstituenten an Metallcarbonylkomplexe der Gruppe 6 koordiniert sowie mit Brønsted-Säuren Bor-zentriert zu Boroniumkationen protoniert werden können. Die Reduktion von (CAAC)BBr2(NCS) in Abwesenheit eines weiteren Donorliganden führte über die reduktive Dimerisierung zweier Isothiocyanatoborylene zur Bildung Bor-dotierter Thiazolothiazole. Diese B,N,S-Heterocyclen verfügen über ein geringes Ausmaß an Aromatizität sowie interessante photophysikalische Eigenschaften, und können darüber hinaus protoniert wie auch hydroboriert werden. Des Weiteren konnten CAAC-Addukte des Stammboraphosphaketens (CAAC)BH2(PCO) dargestellt werden, die bereitwillig unter Decarbonylierung in einer Ringerweiterungsreaktion mit Borolen [Ph4BR‘] (R‘ = Aryl) reagieren. Die erhaltenen 1,2-Phosphaborinine stellen B,P-Isostere des Benzols dar und konnten folglich über eine η6-Koordination an Metallcarbonylkomplexe der Chromtriade koordiniert werden, woraus neue Halbsandwichkomplexe dieser resultierten. KW - Borylene KW - Pseudohalogenide KW - Heteroaromaten KW - boron KW - pseudohalides KW - heterocycles KW - aromaticity KW - DFT KW - Bor KW - Pseudohalogenide KW - Heterocyclen KW - Aromatizität KW - DFT Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249459 ER - TY - THES A1 - Rempel, Anna T1 - Synthese und Reaktivität von Boryldiazenidokomplexen T1 - Synthesis and Reactivity of Boryldiazenido Complexes N2 - Die vorliegende Arbeit befasst sich mit der Synthese, Charakterisierung und Reaktivität von Boryldiazenidokomplexen. Im ersten Abschnitt wird die Synthese von neuartigen Boryldiazenidokomplexen behandelt. Im zweiten Teil werden Studien zu den Reaktivitäten dieser Verbindungen gegenüber Elektrophilen, Lewis-Basen sowie Reaktionen an den Element-Halogen-Bindungen vorgestellt. N2 - The present work deals with the synthesis, characterization and reactivity of boryldiazenido complexes. In the first section, the synthesis of novel boryldiazenido complexes is discussed. In the second part, studies on the reactivities of these compounds toward electrophiles, Lewis bases, and reactions at the element-halogen bonds are presented. KW - Übergangsmetallkomplexe KW - Diazenidokomplexe KW - Bor KW - Distickstoffkomplexe KW - Boryldiazenidokomplexe KW - Boryldiazenido Complexes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247415 ER - TY - THES A1 - Stoy, Andreas T1 - Darstellung, Charakterisierung und Reaktivität von NHC-stabilisierten 1,2-Dihalogendiborenen T1 - Preparation, characterization and reactivity of NHC-stabilized 1,2-dihalodiborenes N2 - Im Rahmen der vorliegenden Arbeit konnte eine Reihe symmetrischer und asymmetrischer Tetrahalogendiboran(4)-Addukte realisiert werden. Die symmetrischen Brom-substituierten Vertreter 19 und 102–107 waren durch quantitativen Ligandenaustausch der schwach gebundenen Lewis-Base SMe2 von 101 zugänglich. Im Falle der IDip-stabilisierten Addukte 108 bzw. 109a/b gelang die Darstellung in sehr guten Ausbeuten durch direkte Umsetzung von freiem Carben mit den Tetrahalogendiboran(4)-Vorstufen 1 (X = Cl) bzw. 2 (X = I). Die asymme¬trischen Vertreter 113a–116b konnten durch sukzessive Adduktbildung ausgehend von 1 bzw. 6 mit cAAC und dem jeweiligen NHC bei tiefen Temperaturen (−78 °C) in moderaten bis guten Ausbeuten dargestellt werden. Nachfolgende Reduktionsversuche der asymmetrischen Addukte 113a/b und 114b–116b waren von mäßigem Erfolg geprägt. Als Reduktionsmittel wurden Alkali- bzw. Erdalkalimetalle, Interkallationsverbindungen und Übergangsmetallkomplexe eingesetzt. Zwar war in allen Fällen eine deutliche Farbänderung beobachtbar, die, zusammen mit den beobachteten Resonanzen in den 11B-NMR-Spektren, die Synthese von asymmetrischen Diborenen nahelegten, jedoch gelang die Isolierung der Diborene nicht. Hierbei gestaltete sich die Abtrennung der gebildeten Nebenprodukte als problematisch. Deutlich selektiver verliefen hingegen die Reduktionen der symmetrischen Tetrahalogen-diboran(4)-Bis(Addukte) mit NaNaph bei tiefen Temperaturen (−78 °C). Hierbei gelang es, das Portfolio der bereits bekannten Vertreter dieser Substanzklasse zu erweitern. So konnten die Brom-substituierten Diborene 126–128 erstmals vollständig charakterisiert werden. Der Einfluss der Halogenatome auf die chemischen und physikalischen Eigenschaften der Diborene wurde ferner an zwei Beispielen der IDip-stabilisierten Diborene 129 und 130 untersucht. Bei identischem NHC, aber unterschiedlichen Halogenen, konnten die Eigenschaften der Diborene 21, 129 und 130 näher untersucht und miteinander verglichen werden. Besonders deutlich werden die Redoxeigenschaften der Diborene von der Art des gebundenen Halogens beeinflusst, wie cyclovoltammetrische Untersuchungen belegen. Alle NHC-stabilisierten 1,2 Dihal¬ogen¬diborene konnten ferner anhand ihrer physikalischen Eigenschaften eingeordnet und miteinander verglichen werden. Neben der Synthese und Charakterisierung neuartiger Diborene wurden auch verschiedene Reaktivitätsstudien durchgeführt. So konnten die Diborene 21, 123, 126 und 129 mit CO2 unter milden Bedingungen umgesetzt werden, wobei verschiedene Reaktionsprodukte nachgewiesen wurden. Der initiale Schritt umfasste in allen Fällen eine [2+2]-Cycloaddition die zu den Dibora-β-Lactonen 131a–134a führte, von denen 131a und 132a vollständig charakterisiert werden konnten. Im weiteren Reaktionsverlauf wurden jedoch Isomerisierungsreaktionen von 132a–134a bei Raum¬temperatur beobachtet, wobei die 2,4 Diboraoxetan 3 one 132b–134b isoliert wurden. Bedingt durch die verhältnismäßig langsame Umsetzung von 21 zu 132a konnte die [2+2] Cyclo¬addition mittels 1H-VT-NMR-Spektroskopie verfolgt werden, wobei die Rückgrat¬protonen der NHCs als selektive Sonde dienten. Eine bemerkenswert hohe Stabilität konnte für 131a bei Raumtemperatur beobachtet werden, bei der keine Anzeichen einer Umlagerung nachweisbar waren. Die angefertigten quantenchemischen Untersuchungen zum Reaktions¬mechanismus legen eine höhere Energiebarriere des Schlüsselschrittes der Umlagerungs¬reaktion für 131a als für 132a nahe, womit die Stabilität von 131a erklärbar ist. Ferner konnten beim Erhitzen von 131a für 16 Stunden auf 60 °C kurzlebige Intermediate in Form eines Oxoborans und Borylens, die im Laufe der Isomerisierungsreaktion der Dibora-β-Lactonen zu den 2,4 Diboraoxetan 3 onen auftreten, 11B NMR-spektroskopisch nachgewiesen werden. Hierdurch wurde ein weiteres Indiz gewonnen, dass die Richtigkeit des postulierten Reaktionsmechanimus verdeutlicht. Die reduzierende Wirkung der Diborene konnte mit der Darstellung von Radikalkationen demonstriert werden. Hierbei erfolgte die Umsetzung der Diborene 21, 123–126 und 128 mit [C7H7][BArF4] zu 138–143 in guten bis sehr guten Ausbeuten. Die gebildeten Radikale konnten vollständig charakterisiert werden und sind wegen ihrer Eigen¬schaften gut mit bereits literaturbekannten Vertretern dieser Substanzklasse vergleichbar. Versuche die Radikalkationen durch Umsetzung der Diborene mit [C7H7][BF4] darzustellen scheiterten an der Zersetzung während der Aufarbeitung, wodurch die Wichtigkeit des schwach koordinierenden Anions verdeutlich wird. Entgegen der Erwartungen wurden beim Vergleich der ESR-Spektren der dargestellten Radikalkationen mit bekannten Analoga deutlich unterschiedliche giso-Werte ermittelt, die auf den starken Einfluss der Bromatome zurückzuführen sind. Des Weiteren war es möglich, eine Korrelation zwischen den Strukturparametern in der Festphase und den UV/Vis-Absorptionsmaxima in Lösung nachzuweisen, wonach für diejenigen Radikale die stärkste Blauverschiebung beobachtet wurde, die den größten Diederwinkel α, zwischen den B2Br2-Ebenen und den CN2C2-Carben-ebenen, aufwiesen. In weiteren Studien wurden die Redoxeigenschaften der Diborene durch Umsetzung von 21 und 123–125 mit elementaren Chalkogenen unter milden Reaktionsbedingungen untersucht. So konnten durch Umsetzung der Diborene mit elementarem Schwefel die Diborathiirane 144–147 in moderaten bis guten Ausbeuten erhalten werden. Trotz eines großen Überschusses an Schwefel wurde aber keine vollständige BB-Bindungsspaltung beobachtet. Auf analoge Weise wurden die Diboraselenirane 148, 150 und 151 durch Umsetzung mit rotem Selen in moderaten bis guten Ausbeuten synthetisiert. Deutliche Unterschiede zeigten sich aber beim IDep-stabilisierten Diboren 123, das ein radikalisches Seleniran ausbildete. Überschüs¬siges Selen begünstigt vermutlich eine Folgeoxidation des in situ gebildeten Diboraselenirans, die jedoch für die anderen Verbindungen dieser Substanzklasse nicht beobachtbar war. Interessanterweise wurde bei allen Dipp-substituierten Verbindungen (Diborathiirane 144 und 146 sowie Dibora¬selenirane 148 und 151) das Fehlen einer Dipp-Gruppe der stabilisierten NHC-Basen im 1H NMR-Spektrum nachgewiesen. Dieser Umstand konnte durch eine eingeschränkte Rotation um die BC-Bindungsachse mittels 1H-VT-NMR-Spektrum aufgeklärt werden, wobei die Rotationsbarriere exemplarisch für 144 13.9 ± 1 kcal/mol beträgt. Eine bemerkenswerte Reaktivität der 1,2-Dibromdiborene 21 und 123–126 wurde gegenüber hetero¬aroma¬tischer Stickstoffbasen beobachtet. Mit einem großen Überschuss an Pyridin konnte ein Bromidanion aus den Diborenen verdrängt werden, wodurch die Diborenkationen 154–158 in moderaten bis guten Ausbeuten erhalten wurden. Die Abtrennung der dabei unvermeidlich gebildeten NHC-Salze gestaltete sich als schwierig, allerdings gelang es, nach einer in situ Deprotonierung mit NaHMDS die freien NHCs zu entfernen. Versuche der Deri-vatisierung mit anderen aromatischen Basen wie 2- bzw. 4-Picolin, Chinolin oder 2,2’-und 4,4’-Bipyridin scheiterten. Erfolgreich konnte DMAP eingesetzt werden, wodurch es möglich war, die Diborenkationen 160–162 in guten bis sehr guten Ausbeuten zu erhalten. Interessanterweise zeigen 154–158 teils deutliche solvatochrome Absorptions¬eigenschaften in den UV/Vis-Spektren. Im Laufe der Umsetzung von 125 mit Pyridin konnte durch angepasste Reaktions¬bedingungen das Dikation 159 in moderaten Ausbeuten isoliert werden. Dessen bemerkenswerte Stabilität zeigte sich durch eine ausgeprägte Widerstands¬fähigkeit gegenüber Sauerstoff und Luftfeuchtigkeit über mehrere Wochen. Weiterführende Unter¬suchungen der Festkörperstruktur von 159 zeigen Bindungsparameter, die trotz der ionischen Natur der Verbindung, nur geringfügig von denen des neutralen Diborens 125 abweichen. Mittels Raman-Spektroskopie konnten des Weiteren die BB-Bindungsstärke in 159 näher bestimmt werden, die mit einer Kraftkonstante von 470 N/m nahezu identisch zu der des neutralen Dibores (465 N/m) ist, was Rückschlüsse auf die Lokalisierung der positiven Ladungen auf den Pyridinringen zulässt. Aus diesem Grund kann Verbindung 159 als bis dato einziges Beispiel eines luft- und feuchtigkeitsstabilen Diborens bezeichnet werden. N2 - Within the scope of this work, a series of symmetrical and unsymmetrical tetrahalodiborane(4) adducts were synthesized. The symmetrical, bromine-substituted compounds 19 and 102–107 were accessible by quantitative ligand exchange of the weakly-bound Lewis base SMe2 in 101. The IDip-stabilized adducts 108 and 109a/b, were prepared in excellent yields by direct addition of free carbene to the tetrahalodiborane(4) precursors 1 (X = Cl), and 2 (X = I), and respectively, the unsymmetrical adducts 113a–116b could be prepared in moderate to good yields by stepwise addition of cAAC and the corresponding NHC to 1 or 6 at low temperatures (−78 °C). Subsequent attempts to reduce the asymmetric adducts 113a/b and 114b–116b with reagents such as alkali, or alkaline earth metals, intercalation compounds, and transition metal complexes were moderately successful. Although a change in colour was observed in all cases, which, together with the observed resonances in the 11B-NMR spectra, suggested the synthesis of unsymmetrical diborenes, their isolation was unsuccessful. Here, the separation of the byproducts proved to be problematic. In contrast, the reductions of the symmetrical tetrahalodiborane(4) bis(adducts) with NaNaph at low temperatures (−78 °C) were much more selective. Here, we succeeded in expanding the scope of known representatives of this substance class. Thus, the bromine-substituted diborenes 126–128 could be fully characterized for the first time. The influence of the halides on the chemical and physical properties of the diborenes were further investigated using two examples of IDip-stabilized diborenes 129 and 130. The properties of 21, 129 and 130, which represent diborenes with identical NHCs but different halides, were studied in more detail and compared with each other. The redox properties of the diborenes are particularly influenced by the nature of the halide, as emphasized by cyclo¬voltammetric studies. All NHC-stabilized 1,2-dihalodiborenes were also classified and compared with each other based on their physical properties. In addition to the synthesis and characterization of novel diborenes, a range of reactivity studies were also performed. For example, when diborenes 21, 123, 126, and 129 were reacted with CO2 under mild conditions, a variety of products were obtained. In all cases the initial step involved a [2+2] cycloaddition leading to the dibora-β-lactones 131a–134a, of which 131a and 132a were fully characterized. However, in the further course of the reaction, isomerization of 132a–134a took place, leading to the formation of the 2,4-diboraoxetane-3-ones 132b–134b. Thanks to the relatively slow conversion of 21 to 132a, the [2+2] cycloaddition could be monitored by variable-temperature 1H-NMR spectroscopy, with the backbone protons of the NHCs serving as viable probes. A remarkably high stability at room temperature was observed for 131a with no evidence of rearrangement. Quantum chemical studies of the reaction mechanism suggested a higher energy barrier for the key step of the rearrangement reaction for 131a relative to that of 132a. Furthermore, heating of 131a to 60 °C for 16 h led to the formation of short-lived intermediates in the form of an oxoborane and borylene, which occur in the course of the isomerization reaction of the dibora-β-lactones to the 2,4-diboraoxetane-3-one, and were detected by 11B-NMR spectroscopy. This provided a further indication that the postulated reaction mechanism is correct. The reducing properties of the diborenes were demonstrated by the preparation of the radical cations. Here, diborenes 21, 123–126, and 128 reacted with [C7H7][BArF4] to form 138–143 in good to excellent yields. The isolated radicals were fully characterized, and their properties are readily comparable with previously-reported representatives of this substance class. Attempts to prepare the radical cations by reacting diborenes with [C7H7][BF4] were accompanied by decomposition during workup, thus highlighting the importance of the weakly coordinating anion. Contrary to expectations, significantly different giso values were obtained when comparing the EPR spectra of the presented radical cations with known analogues, which could be attributed to the strong influence of the bromide atoms. Furthermore, it was possible to find a correlation between the structural parameters in the solid state and the UV/Vis absorption maxima in solution. The strongest blue shift was observed for those radicals that exhibited the largest dihedral angle α between the B2Br2 plane and the CN2C2-carbene planes. In further studies, the redox properties of diborenes were investigated by reacting 21 and 123–125 with elemental chalcogens under mild reaction conditions. This way, reaction of diborenes with elemental sulphur led to the formation of diborathiiranes 144–147 in moderate to good yields. Despite a large excess of sulphur, complete BB bond cleavage was not observed for any of these products. Analogously, diboraseleniranes 148, 150, and 151 were synthesized by reaction with red selenium in moderate to good yields. However, apparent differences were seen for the IDep-stabilized diborene 123, which in contrast to 21, 124 and 125 formed a radical diboraselenirane. Excess selenium presumably favors a subsequent oxidation of the in-situ-formed diboraselenirane, which however, was not observed for the other compounds of this substance class. Interestingly, one Dipp-group of the stabilizing NHC bases was not detected in the proton NMR spectrum for all Dipp-substituted compounds (diborathiiranes 144 and 146, and also diboraseleniranes 148 and 151). This circumstance could be explained by an inhibited rotation around the BC axis as verified by means of variable-temperature 1H-NMR spectroscopy, the rotation barrier exemplified by that of 144, which was found to be 13.9 ± 1 kcal/mol. A remarkable reactivity of 1,2-dibromodiborenes 21 and 123–126 was observed towards hetero¬aromatic nitrogen bases. With a large excess of pyridine, a bromide anion could be displaced, giving the diborene cations 154–158 in moderate to good yields. Separation of the NHC salts inevitably formed during this process proved to be difficult, but after in situ deprotonation with NaHMDS, it was possible to remove the free NHCs due to their substantially different solubilities. Attempts at derivatization with other aromatic bases such as 2- or 4-picoline, quinolone, or 2,2'-and 4,4'-bipyridine failed. However, addition of DMAP le to a successful halide substitution, making it possible to obtain the diborene cations 160–162 in good to excellent yields. Interestingly, 154–158 furthermore show partly distinct solvatochromic absorption properties in their UV/Vis spectra. In the course of the reaction of 125 with pyridine, the dication 159 was isolated in moderate yields by employing adjusted reaction conditions. Its remarkable stability was demonstrated by a pronounced resistance to oxygen and atmospheric humidity over a period of several weeks. Further studies of the solid-state structure of 159 show binding parameters that deviate only slightly from those of the neutral diborene 125, despite the ionic nature of the compound. Furthermore, by use of Raman spectroscopy, it was possible to determine the BB bond strength in 159 in more detail, which, with a force constant of 470 N/m, is almost identical to that of the neutral diborene (465 N/m). This result allows us to draw conclusions about the localization of the positive charges on the pyridine rings. For this reason, compound 159 represents a rare example of an air- and moisture-stable diborene. KW - Bor KW - Mehrfachbindung KW - Synthese KW - Eigenschaften KW - Reaktivität KW - Diboren KW - Carben Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237818 ER - TY - THES A1 - Rang, Maximilian T1 - Metallähnliche Reaktivität \(in\) \(situ\) erzeugter Borylene T1 - Metallomimetic reactivity of transiently generated borylenes N2 - Einfach Lewis-Basen stabilisierte Borylene wurden durch Reduktion in situ hergestellt und in Gegenwart von Kohlenstoffmonoxid oder Distickstoff umgesetzt. Die entstandenen Verbindungen wurden mittels NMR-, ESR-, UV/Vis- und IR-Spektroskopie sowie Einkristallröntgenstrukturanalyse charakterisiert. Im Zuge dessen konnten für die erhaltenen Spezies Eigenschaften ermittelt werden, die denen analoger Übergangsmetallkomplexe ähneln. Ferner konnten die zugrundeliegenden mechanistischen Vorgänge der Reaktionen durch gezielte Variation der Reaktionsparameter aufgeklärt werden. Zudem wurden Redoxverhalten und Reaktivitäten der isolierten Produkte in weiterführenden Studien näher untersucht. N2 - Mono(Lewis base)-stabilized borylenes were transiently generated by reduction and converted in the presence of carbon monoxide or dinitrogen. The resulting compounds were characterized by means of NMR, EPR, UV-vis and IR spectroscopy as well as X-ray diffraction analysis. The properties determined for the isolated species in the course of these investigations closely resemble those of analogous transition metal complexes. Furthermore, it was possible to elucidate the mechanistic processes underlying the reactions through systematic alteration of the reaction parameters. Additionally, the redox behaviour and reactivities of the isolated products were examined more closely. KW - Bor KW - Distickstoff KW - Kohlenstoffmonoxid KW - Borylene KW - niedervalente Borverbindungen KW - Distickstoff Aktivierung KW - Distickstoff Spaltung KW - Borylencarbonyle KW - Kohlenmonoxid KW - cAAC Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240465 ER -