TY - JOUR A1 - Schüssler, Ulrich A1 - Skinner, D. N. B. A1 - Roland, N. T1 - Basischer bis intermediärer Plutonismus im NW-Teil des Wilson Terrane, Nordvictorialand, Antarktis N2 - no abstract available KW - Wilson Terrane KW - Nordvictorialand KW - Antarktis Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-81850 ER - TY - JOUR A1 - Sponholz, Barbara T1 - Beobachtungen zur Morphodynamik an Koris des südlichen Air-Vorlandes (Niger) N2 - Am Beispiel von vier Koris l) (Téloua, Barghot, Tazolé, Oufaguédout) des südlichen Air-Vorlandes werden Beobachtungen zum aktuellen morphodynamischen Geschehen dieser Region vorgestellt. Durch die regionalen Unterschiede der durchschnittlichen jährlichen Niederschlagshöhen und durch unterschiedliche Charakteristika ihrer Einzugsgebiete können diese vier Koris als typische Vertreter verschiedener fluviatil/äolischer Formungsgruppen angesehen werden. Der Übergang von vorherrschend fluviatiler zu vorherrschend äolischer Formung liegt dabei im Bereich des Kori Oufaguédout, im östlichen Teil des Untersuchungsraumes. Hier konnte durch mehrere Schürfe auch der zeitliche Übergang zwischen beiden Formungskreisen in der jüngeren Reliefgeschichte nachgewiesen werden. N2 - Four koris (Téloua, Barghot, Tazolé, Oufaguédout) in the southern foreland of the Air-Mountains were studied regarding their recent morphological dynamics. Caused by regional differences in mean annual rainfall and the different characteristics of their drainage areas each of these koris represents one group of typical fluvial/eolian influence complex. The transition between fluvial and eolian processes is located in the area of the kori Oufaguédout, in the eastern part of the study area. Also the transition in time between the both processes during younger relief formation periods was proven there. KW - Geographie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53579 ER - TY - JOUR A1 - Paeth, Heiko A1 - Pollinger, Felix T1 - Changes in mean flow and atmospheric wave activity in the North Atlantic sector JF - Quarterly Journal of the Royal Meteorological Society N2 - In recent years, the midlatitudes are characterized by more intense heatwaves in summer and sometimes severe cold spells in winter that might emanate from changes in atmospheric circulation, including synoptic‐scale and planetary wave activity in the midlatitudes. In this study, we investigate the heat and momentum exchange between the mean flow and atmospheric waves in the North Atlantic sector and adjacent continents by means of the physically consistent Eliassen–Palm flux diagnostics applied to reanalysis and forced climate model data. In the long‐term mean, momentum is transferred from the mean flow to atmospheric waves in the northwest Atlantic region, where cyclogenesis prevails. Further downstream over Europe, eddy fluxes return momentum to the mean flow, sustaining the jet stream against friction. A global climate model is able to reproduce this pattern with high accuracy. Atmospheric variability related to atmospheric wave activity is much more expressed at the intraseasonal rather than the interannual time‐scale. Over the last 40 years, reanalyses reveal a northward shift of the jet stream and a weakening of intraseasonal weather variability related to synoptic‐scale and planetary wave activity. This pertains to the winter and summer seasons, especially over central Europe, and correlates with changes in the North Atlantic Oscillation as well as regional temperature and precipitation. A very similar phenomenon is found in a climate model simulation with business‐as‐usual scenario, suggesting an anthropogenic trigger in the weakening of intraseasonal weather variability in the midlatitudes. KW - atmospheric waves KW - climate change KW - Elissen-Palm flux KW - jet stream Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208079 VL - 145 IS - 725 ER - TY - JOUR A1 - Yang, Xuting A1 - Yao, Wanqiang A1 - Li, Pengfei A1 - Hu, Jinfei A1 - Latifi, Hooman A1 - Kang, Li A1 - Wang, Ningjing A1 - Zhang, Dingming T1 - Changes of SOC content in China's Shendong coal mining area during 1990–2020 investigated using remote sensing techniques JF - Sustainability N2 - Coal mining, an important human activity, disturbs soil organic carbon (SOC) accumulation and decomposition, eventually affecting terrestrial carbon cycling and the sustainability of human society. However, changes of SOC content and their relation with influential factors in coal mining areas remained unclear. In the study, predictive models of SOC content were developed based on field sampling and Landsat images for different land-use types (grassland, forest, farmland, and bare land) of the largest coal mining area in China (i.e., Shendong). The established models were employed to estimate SOC content across the Shendong mining area during 1990–2020, followed by an investigation into the impacts of climate change and human disturbance on SOC content by a Geo-detector. Results showed that the models produced satisfactory results (R\(^2\) > 0.69, p < 0.05), demonstrating that SOC content over a large coal mining area can be effectively assessed using remote sensing techniques. Results revealed that average SOC content in the study area rose from 5.67 gC·kg\(^{−1}\) in 1990 to 9.23 gC·kg\(^{−1}\) in 2010 and then declined to 5.31 gC·Kg\(^{−1}\) in 2020. This could be attributed to the interaction between the disturbance of soil caused by coal mining and the improvement of eco-environment by land reclamation. Spatially, the SOC content of farmland was the highest, followed by grassland, and that of bare land was the lowest. SOC accumulation was inhibited by coal mining activities, with the effect of high-intensity mining being lower than that of moderate- and low-intensity mining activities. Land use was found to be the strongest individual influencing factor for SOC content changes, while the interaction between vegetation coverage and precipitation exerted the most significant influence on the variability of SOC content. Furthermore, the influence of mining intensity combined with precipitation was 10 times higher than that of mining intensity alone. KW - loess plateau KW - coal mining area KW - SOC content prediction KW - human disturbance KW - vegetation restoration KW - climate change Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-278939 SN - 2071-1050 VL - 14 IS - 12 ER - TY - JOUR A1 - Ibebuchi, Chibuike Chiedozie T1 - Circulation pattern controls of wet days and dry days in Free State, South Africa JF - Meteorology and Atmospheric Physics N2 - Atmospheric circulation is a vital process in the transport of heat, moisture, and pollutants around the globe. The variability of rainfall depends to some extent on the atmospheric circulation. This paper investigates synoptic situations in southern Africa that can be associated with wet days and dry days in Free State, South Africa, in addition to the underlying dynamics. Principal component analysis was applied to the T-mode matrix (variable is time series and observation is grid points at which the field was observed) of daily mean sea level pressure field from 1979 to 2018 in classifying the circulation patterns in southern Africa. 18 circulation types (CTs) were classified in the study region. From the linkage of the CTs to the observed rainfall data, from 11 stations in Free State, it was found that dominant austral winter and late austral autumn CTs have a higher probability of being associated with dry days in Free State. Dominant austral summer and late austral spring CTs were found to have a higher probability of being associated with wet days in Free State. Cyclonic/anti-cyclonic activity over the southwest Indian Ocean, explained to a good extent, the inter-seasonal variability of rainfall in Free State. The synoptic state associated with a stronger anti-cyclonic circulation at the western branch of the South Indian Ocean high-pressure, during austral summer, leading to enhanced low-level moisture transport by southeast winds was found to have the highest probability of being associated with above-average rainfall in most regions in Free State. On the other hand, the synoptic state associated with enhanced transport of cold dry air, by the extratropical westerlies, was found to have the highest probability of being associated with (winter) dryness in Free State. KW - South Africa KW - atmospheric circulation KW - circulation patterns Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268552 SN - 1436-5065 VL - 133 IS - 5 ER - TY - JOUR A1 - Latifi, Hooman A1 - Valbuena, Ruben T1 - Current trends in forest ecological applications of three-dimensional remote sensing: Transition from experimental to operational solutions? JF - Forests N2 - The alarming increase in the magnitude and spatiotemporal patterns of changes in composition, structure and function of forest ecosystems during recent years calls for enhanced cross-border mitigation and adaption measures, which strongly entail intensified research to understand the underlying processes in the ecosystems as well as their dynamics. Remote sensing data and methods are nowadays the main complementary sources of synoptic, up-to-date and objective information to support field observations in forest ecology. In particular, analysis of three-dimensional (3D) remote sensing data is regarded as an appropriate complement, since they are hypothesized to resemble the 3D character of most forest attributes. Following their use in various small-scale forest structural analyses over the past two decades, these sources of data are now on their way to be integrated in novel applications in fields like citizen science, environmental impact assessment, forest fire analysis, and biodiversity assessment in remote areas. These and a number of other novel applications provide valuable material for the Forests special issue “3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function”, which shows the promising future of these technologies and improves our understanding of the potentials and challenges of 3D remote sensing in practical forest ecology worldwide. KW - 3D remote sensing KW - composition KW - forest ecology KW - function KW - structure Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193282 SN - 1999-4907 VL - 10 IS - 10 ER - TY - JOUR A1 - Buchelt, Sebastian A1 - Blöthe, Jan Henrik A1 - Kuenzer, Claudia A1 - Schmitt, Andreas A1 - Ullmann, Tobias A1 - Philipp, Marius A1 - Kneisel, Christof T1 - Deciphering small-scale seasonal surface dynamics of rock glaciers in the Central European Alps using DInSAR time series JF - Remote Sensing N2 - The Essential Climate Variable (ECV) Permafrost is currently undergoing strong changes due to rising ground and air temperatures. Surface movement, forming characteristic landforms such as rock glaciers, is one key indicator for mountain permafrost. Monitoring this movement can indicate ongoing changes in permafrost; therefore, rock glacier velocity (RGV) has recently been added as an ECV product. Despite the increased understanding of rock glacier dynamics in recent years, most observations are either limited in terms of the spatial coverage or temporal resolution. According to recent studies, Sentinel-1 (C-band) Differential SAR Interferometry (DInSAR) has potential for monitoring RGVs at high spatial and temporal resolutions. However, the suitability of DInSAR for the detection of heterogeneous small-scale spatial patterns of rock glacier velocities was never at the center of these studies. We address this shortcoming by generating and analyzing Sentinel-1 DInSAR time series over five years to detect small-scale displacement patterns of five high alpine permafrost environments located in the Central European Alps on a weekly basis at a range of a few millimeters. Our approach is based on a semi-automated procedure using open-source programs (SNAP, pyrate) and provides East-West displacement and elevation change with a ground sampling distance of 5 m. Comparison with annual movement derived from orthophotos and unpiloted aerial vehicle (UAV) data shows that DInSAR covers about one third of the total movement, which represents the proportion of the year suited for DInSAR, and shows good spatial agreement (Pearson R: 0.42–0.74, RMSE: 4.7–11.6 cm/a) except for areas with phase unwrapping errors. Moreover, the DInSAR time series unveils spatio-temporal variations and distinct seasonal movement dynamics related to different drivers and processes as well as internal structures. Combining our approach with in situ observations could help to achieve a more holistic understanding of rock glacier dynamics and to assess the future evolution of permafrost under changing climatic conditions. KW - Sentinel-1 KW - DInSAR KW - rock glaciers KW - seasonal dynamics KW - periglacial KW - feature tracking Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-362939 SN - 2072-4292 VL - 15 IS - 12 ER - TY - JOUR A1 - Kleemann, Janina A1 - Zamora, Camilo A1 - Villacis-Chiluisa, Alexandra Belen A1 - Cuenca, Pablo A1 - Koo, Hongmi A1 - Noh, Jin Kyoung A1 - Fürst, Christine A1 - Thiel, Michael T1 - Deforestation in continental Ecuador with a focus on protected areas JF - Land N2 - Forest conservation is of particular concern in tropical regions where a large refuge of biodiversity is still existing. These areas are threatened by deforestation, forest degradation and fragmentation. Especially, pressures of anthropogenic activities adjacent to these areas significantly influence conservation effectiveness. Ecuador was chosen as study area since it is a globally relevant center of forest ecosystems and biodiversity. We identified hotspots of deforestation on the national level of continental Ecuador between 1990 and 2018, analyzed the most significant drivers of deforestation on national and biome level (the Coast, the Andes, The Amazon) as well as inside protected areas in Ecuador by using multiple regression analysis. We separated the national system of protected areas (SNAP) into higher and lower protection levels. Besides SNAP, we also considered Biosphere Reserves (BRs) and Ramsar sites. In addition, we investigated the rates and spatial patterns of deforestation in protected areas and buffer zones (5 km and 10 km outwards the protected area boundaries) using landscape metrics. Between 1990 and 2018, approximately 4% of the accumulated deforestation occurred within the boundaries of SNAP, and up to 25.5% in buffer zones. The highest rates of deforestation have been found in the 5 km buffer zone around the protected areas with the highest protection level. Protected areas and their buffer zones with higher protection status were identified as the most deforested areas among SNAP. BRs had the highest deforestation rates among all protected areas but most of these areas just became BRs after the year 2000. The most important driver of deforestation is agriculture. Other relevant drivers differ between the biomes. The results suggest that the SNAP is generally effective to prevent deforestation within their protection boundaries. However, deforestation around protected areas can undermine conservation strategies to sustain biodiversity. Actions to address such dynamics and patterns of deforestation and forest fragmentation, and developing conservation strategies of their landscape context are urgently needed especially in the buffer zones of areas with the highest protection status. KW - conservation KW - driving forces KW - forest KW - loss KW - human pressure KW - land use change KW - landscape metrics KW - protection status KW - spatial analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262078 SN - 2073-445X VL - 11 IS - 2 ER - TY - JOUR A1 - Rösch, Moritz A1 - Plank, Simon T1 - Detailed mapping of lava and ash deposits at Indonesian volcanoes by means of VHR PlanetScope change detection JF - Remote Sensing N2 - Mapping of lava flows in unvegetated areas of active volcanoes using optical satellite data is challenging due to spectral similarities of volcanic deposits and the surrounding background. Using very high-resolution PlanetScope data, this study introduces a novel object-oriented classification approach for mapping lava flows in both vegetated and unvegetated areas during several eruptive phases of three Indonesian volcanoes (Karangetang 2018/2019, Agung 2017, Krakatau 2018/2019). For this, change detection analysis based on PlanetScope imagery for mapping loss of vegetation due to volcanic activity (e.g., lava flows) is combined with the analysis of changes in texture and brightness, with hydrological runoff modelling and with analysis of thermal anomalies derived from Sentinel-2 or Landsat-8. Qualitative comparison of the mapped lava flows showed good agreement with multispectral false color time series (Sentinel-2 and Landsat-8). Reports of the Global Volcanism Program support the findings, indicating the developed lava mapping approach produces valuable results for monitoring volcanic hazards. Despite the lack of bands in infrared wavelengths, PlanetScope proves beneficial for the assessment of risk and near-real-time monitoring of active volcanoes due to its high spatial (3 m) and temporal resolution (mapping of all subaerial volcanoes on a daily basis). KW - lava KW - volcanoes KW - PlanetScope KW - change detection KW - object-based image analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262232 SN - 2072-4292 VL - 14 IS - 5 ER - TY - JOUR A1 - Riyas, Moidu Jameela A1 - Syed, Tajdarul Hassan A1 - Kumar, Hrishikesh A1 - Kuenzer, Claudia T1 - Detecting and analyzing the evolution of subsidence due to coal fires in Jharia coalfield, India using Sentinel-1 SAR data JF - Remote Sensing N2 - Public safety and socio-economic development of the Jharia coalfield (JCF) in India is critically dependent on precise monitoring and comprehensive understanding of coal fires, which have been burning underneath for more than a century. This study utilizes New-Small BAseline Subset (N-SBAS) technique to compute surface deformation time series for 2017–2020 to characterize the spatiotemporal dynamics of coal fires in JCF. The line-of-sight (LOS) surface deformation estimated from ascending and descending Sentinel-1 SAR data are subsequently decomposed to derive precise vertical subsidence estimates. The most prominent subsidence (~22 cm) is observed in Kusunda colliery. The subsidence regions also correspond well with the Landsat-8 based thermal anomaly map and field evidence. Subsequently, the vertical surface deformation time-series is analyzed to characterize temporal variations within the 9.5 km\(^2\) area of coal fires. Results reveal that nearly 10% of the coal fire area is newly formed, while 73% persisted throughout the study period. Vulnerability analyses performed in terms of the susceptibility of the population to land surface collapse demonstrate that Tisra, Chhatatanr, and Sijua are the most vulnerable towns. Our results provide critical information for developing early warning systems and remediation strategies. KW - coal fire KW - InSAR KW - subsidence KW - remote sensing KW - coal KW - interferometry KW - SBAS Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236703 SN - 2072-4292 VL - 13 IS - 8 ER -