TY - THES A1 - Ziegler, Katrin T1 - Implementierung von verbesserten Landoberflächenparametern und -prozessen in das hochaufgelöste Klimamodell REMO T1 - Implementation of improved land surface parameters and processes for the high-resolution climate model REMO N2 - Das Ziel dieser Arbeit war neue Eingangsdaten für die Landoberflächenbeschreibung des regionalen Klimamodells REMO zu finden und ins Modell zu integrieren, um die Vorhersagequalität des Modells zu verbessern. Die neuen Daten wurden so in das Modell eingebaut, dass die bisherigen Daten weiterhin als Option verfügbar sind. Dadurch kann überprüft werden, ob und in welchem Umfang sich die von jedem Klimamodell benötigten Rahmendaten auf Modellergebnisse auswirken. Im Zuge der Arbeit wurden viele unterschiedliche Daten und Methoden zur Generierung neuer Parameter miteinander verglichen, denn neben dem Ersetzen der konstanten Eingangswerte für verschiedene Oberflächenparameter und den damit verbundenen Änderungen wurden als zusätzliche Verbesserung auch Veränderungen an der Parametrisierung des Bodens speziell in Hinblick auf die Bodentemperaturen in REMO vorgenommen. Im Rahmen dieser Arbeit wurden die durch die verschiedenen Änderungen ausgelösten Auswirkungen für das CORDEX-Gebiet EUR-44 mit einer Auflösung von ca. 50km und für das in dem darin eingebetteten neu definierten Deutschlandgebiet GER-11 mit einer Auflösung von ca. 12km getestet sowie alle Änderungen anhand von verschiedenen Beobachtungsdatensätzen validiert. Die vorgenommenen Arbeiten gliederten sich in drei Hauptteile. Der erste Teil bestand in dem vom eigentlichen Klimamodell unabhängigen Vergleich der verschiedenen Eingangsdaten auf unterschiedlichen Auflösungen und deren Performanz in allen Teilen der Erde, wobei ein besonderer Fokus auf der Qualität in den späteren Modellgebieten lag. Unter Berücksichtigung der Faktoren, wie einer globalen Verfügbarkeit der Daten, einer verbesserten räumlichen Auflösung und einer kostenlosen Nutzung der Daten sowie verschiedener Validationsergebnissen von anderen Studien, wurden in dieser Arbeit vier neue Topographiedatensätze (SRTM, ALOS, TANDEM und ASTER) und drei neue Bodendatensätze (FAOn, Soilgrid und HWSD) für die Verwendung im Präprozess von REMO aufbereitet und miteinander sowie mit den bisher in REMO verwendeten Daten verglichen. Auf Grundlage dieser Vergleichsstudien schieden bei den Topographiedaten die verwendeten Datensatz-Versionen von SRTM, ALOS und TANDEM für die in dieser Arbeit durchgeführten REMO-Läufe aus. Bei den neuen Bodendatensätzen wurde ausgenutzt, dass diese verschiedenen Bodeneigenschaften für unterschiedliche Tiefen als Karten zur Verfügung stellen. In REMO wurden bisher alle benötigten Bodenparameter abhängig von fünf verschiedenen Bodentexturklassen und einer zusätzlichen Torfklasse ausgewiesen und als konstant über die gesamte Modellbodensäule (bis ca. 10m) angenommen. Im zweiten Teil wurden auf Basis der im ersten Teil ausgewählten neuen Datensätze und den neu verfügbaren Bodenvariablen verschiedene Sensitivitätsstudien über das Beispieljahr 2000 durchgeführt. Dabei wurden verschiedene neue Parametrisierungen für die bisher aus der Textur abgeleiteten Bodenvariablen und die Parametrisierung von weiteren hydrologischen und thermalen Bodeneigenschaften verglichen. Ferner wurde aufgrund der neuen nicht über die Tiefe konstanten Bodeneigenschaften eine neue numerische Methode zur Berechnung der Bodentemperaturen der fünf Schichten in REMO getestet, welche wiederum andere Anpassungen erforderte. Der Test und die Auswahl der verschiedenen Datensatz- und Parametrisierungsversionen auf die Modellperformanz wurde in drei Experimentpläne unterteilt. Im ersten Plan wurden die Auswirkungen der ausgewählten Topographie- und Bodendatensätze überprüft. Der zweite Plan behandelte die Unterschiede der verschiedenen Parametrisierungsarten der Bodenvariablen hinsichtlich der verwendeten Variablen zur Berechnung der Bodeneigenschaften, der über die Tiefe variablen oder konstanten Eigenschaften und der verwendeten Berechnungsmethode der Bodentemperaturänderungen. Durch die Erkenntnisse aus diesen beiden Experimentplänen, die für beide Untersuchungsgebiete durchgeführt wurden, ergaben sich im dritten Plan weitere Parametrisierungsänderungen. Alle Änderungen dieses dritten Experimentplans wurden sukzessiv getestet, sodass der paarweise Vergleich von zwei aufeinanderfolgenden Modellläufen die Auswirkungen der Neuerung im jeweils zweiten Lauf widerspiegelt. Der letzte Teil der Arbeit bestand aus der Analyse von fünf längeren Modellläufen (2000-2018), die zur Überprüfung der Ergebnisse aus den Sensitivitätsstudien sowie zur Einschätzung der Performanz in weiteren teilweise extremen atmosphärischen Bedingungen durchgeführt wurden. Hierfür wurden die bisherige Modellversion von REMO (id01) für die beiden Untersuchungsgebiete EUR-44 und GER-11 als Referenzläufe, zwei aufgrund der Vergleichsergebnisse von Experimentplan 3 selektierte Modellversionen (id06 und id15a für GER-11) sowie die finale Version (id18a für GER-11), die alle vorgenommenen Änderungen dieser Arbeit enthält, ausgewählt. Es stellte sich heraus, dass sowohl die neuen Topographiedaten als auch die neuen Bodendaten große Differenzen zu den bisherigen Daten in REMO haben. Zudem änderten sich die von diesen konstanten Eingangsdaten abgeleiteten Hilfsvariablen je nach verwendeter Parametrisierung sehr deutlich. Dies war besonders gut anhand der Bodenparameter zu erkennen. Sowohl die räumliche Verteilung als auch der Wertebereich der verschiedenen Modellversionen unterschieden sich stark. Eine Einschätzung der Qualität der resultierenden Parameter wurde jedoch dadurch erschwert, dass auch die verschiedenen zur Validierung herangezogenen Bodendatensätze für diese Parameter deutlich voneinander abweichen. Die finale Modellversion id18a ähnelte trotz der umfassenden Änderungen in den meisten Variablen den Ergebnissen der bisherigen REMO-Version. Je nach zeitlicher und räumlicher Aggregation sowie unterschiedlichen Regionen und Jahreszeiten wurden leichte Verbesserungen, aber auch leichte Verschlechterungen im Vergleich zu den klimatologischen Validationsdaten festgestellt. Größere Veränderungen im Vergleich zur bisherigen Modellversion konnten in den tieferen Bodenschichten aufgezeigt werden, welche allerdings aufgrund von fehlenden Validationsdaten nicht beurteilt werden konnten. Für alle 2m-Temperaturen konnte eine tendenzielle leichte Erwärmung im Vergleich zum bisherigen Modelllauf beobachtet werden, was sich einerseits negativ auf die ohnehin durchschnittlich zu hohe Minimumtemperatur, aber andererseits positiv auf die bisher zu niedrige Maximumtemperatur des Modells in den betrachteten Gebieten auswirkte. Im Niederschlagssignal und in den 10m-Windvariablen konnten keine signifikanten Änderungen nachgewiesen werden, obwohl die neue Topographie an manchen Stellen im Modellgebiet deutlich von der bisherigen abweicht. Des Weiteren variierte das Ranking der verschiedenen Modellversionen jeweils nach dem angewendeten Qualitätsindex. Um diese Ergebnisse besser einordnen zu können, muss berücksichtigt werden, dass die neuen Daten für Modellgebiete mit 50 bzw. 12km räumlicher Auflösung und der damit verbundenen hydrostatischen Modellversion getestet wurden. Zudem sind vor allem in Fall der Topographie die bisher enthaltenen GTOPO-Daten (1km Auflösung) für die Aggregation auf diese gröbere Modellauflösung geeignet. Die bisherigen Bodendaten stoßen jedoch mit 50km Auflösung bereits an ihre Grenzen. Zusätzlich ist zu beachten, dass nicht nur die Mittelwerte dieser Daten, sondern auch deren Subgrid-Variabilität als Variablen im Modell für verschiedene Parametrisierungen verwendet werden. Daher ist es essentiell, dass die Eingangsdaten eine deutlich höhere Auflösung bereitstellen als die zur Modellierung definierte Auflösung. Für lokale Klimasimulationen mit Auflösungen im niedrigen Kilometerbereich spielen auch die Vertikalbewegungen (nicht-hydrostatische Modellversion) eine wichtige Rolle, die stark von der Topographie sowie deren horizontaler und vertikaler Änderungsrate beeinflusst werden, was die in dieser Arbeit eingebauten wesentlich höher aufgelösten Daten für die zukünftige Weiterentwicklung von REMO wertvoll machen kann. N2 - The main aim of this work was to find new input data sets for the land surface description of the regional climate model REMO and to integrate them into the model in order to improve the predictive quality of the model. The new data sets have been incorporated into the model in such a way that the previous data are still available as an option for the model run. This allows to check whether and to what extent the boundary data required by each climate model have an impact on the model results. In this study comparisons of many different data sets and methods for generating new parameters are included. In addition to replacing the constant input values for different surface parameters and the associated changes, changes were also made for the parameterization of the soil, especially with regard to the soil temperatures in REMO. The effects of different changes which were made in this study were analysed for the CORDEX region EUR-44 with a resolution of 50km and for a newly defined German area GER-11 with a resolution of 12km. All changes were validated with different observational data sets. The work process was divided into three main parts. The first part was independent of the actual climate model and included the comparison of different input data sets at different resolutions and their performance in all parts of the world. Taking into account factors such as global availability of the data, improved spatial resolution and free use of the data, as well as various validation results from other studies, four new topography data sets (SRTM, ALOS, TANDEM and ASTER) and three new soil data sets (FAOn, Soilgrid and HWSD) were processed for the usage by REMO and compared with each other and with the data sets previously used in REMO. Based on these comparative studies of the topographical data sets the SRTM, ALOS and TANDEM data set versions were excluded from the further usage in REMO in this study. For the new soil data sets the fact that they provide different soil properties for different depths as maps has been taken advantage of. In the previous REMO versions, all required soil parameters so far have been determined depending on five different soil texture classes with an additional peat class and assumed to be constant over the entire model soil column (up to approximately 10m). In the second part, several sensitivity studies were tested for the year 2000 based on the new data sets selected in the first part of the analysis and on the new available soil variables. Different new parameterizations for soil variables previously derived from the soil texture now based on the sand, clay and organic content of the soil as well as new parameterizations of further hydrological and thermal properties of soil were compared. In addition, due to the new non-constant soil properties, a new numerical method for calculating the soil temperatures of the five layers in the model was tested, which in turn necessitated further adjustments. The testing and selection of the different data sets and parameterization versions for the model according to performance was divided into three experimental plans. In the first plan, the effects of the selected topography and soil data sets were examined. The second plan dealt with the differences between the different types of parameterization of the soil variables in terms of the variables used to calculate the properties, the properties variable or constant over depth, and the method used to calculate the changes in soil temperature. The findings of these two experimental plans, which were carried out for both study areas, led to further parameterization changes in the third plan. All changes in this third experimental plan were tested successively, so the pairwise comparison of two consecutive model runs reflects the impact of the innovation in the second run. The final part of the analysis consists of five longer model runs (2000-2018), which were carried out to review the results of the sensitivity studies and to assess the performance under other, sometimes extreme, atmospheric conditions. For this purpose, the previous model version of REMO (id01) for the two study areas (EUR-44 and GER-11) served as reference runs. Two new model versions (GER-11 of id06 and id15a) were selected on the basis of the comparison results of the third experimental plan and the final version (GER-11 of id18a) which contains all changes made in this work was also chosen for a detailed analysis. Taken together the results show that both the new topography data and the new soil data differ crucially from the previous data sets in REMO. In addition, the auxiliary variables derived from these constant input data change significantly depending on the parameterization used, especially for the soil parameters. Both the spatial distribution and the range of values of the different model versions differ greatly. However, a quality assessment of the parameterization is difficult because different soil data sets used for the validation of the parameters also differ significantly. The final model version (id18a) is similar to the results of the previous REMO version in most variables, despite the extensive changes of the input data and parametrizations. Depending on temporal and spatial aggregation as well as different regions and seasons, slight improvements have been observed, but also slight deterioration compared to the climatological validation data. In the deeper soil layers larger changes could be identified compared to the previous model version, which could not be assessed due to a lack of validation data. Overall, there was also a slight warming of all 2m temperatures compared to the previous model run, which on the one hand has a negative effect on the already too high minimum temperature, but on the other hand has a positive effect on the previously too low maximum temperature of the model in the study areas. No significant changes could be detected in the precipitation signal and in the 10m wind variables, although the new topography differs significantly from the previous topography at some points in the test area. Furthermore, the ranking of the different model versions varied according to the quality index applied. To evaluate the results it has to be considered that the new data were tested for model regions with 50 and 12km spatial resolution and the associated hydrostatic model version. The so far already included data are suitable for aggregation to this coarser model resolution, especially in the case of topography (GTOPO with 1km resolution). However, the previous soil data already reach their limits with 50km resolution. In addition, it should be noted that not only the mean values of these data, but also their subgrid variability are used as variables in the model for different parameterizations. Therefore, it is essential that the input data provide a significantly higher resolution than the resolution defined for modeling. Vertical fluxes (non-hydrostatic model version) play an important role in local climate simulations with resolutions in the low kilometre range, which are strongly influenced by the topography and its horizontal and vertical change rate, which may make the much higher resolution data incorporated in this work valuable for the future development of REMO. KW - Klimamodell KW - Datenanalyse KW - Modellierung KW - Topographie KW - Klimamodellierung KW - REMO KW - Vergleich verschiedener Modellparameterisierungen KW - Bodenparameter KW - Topographiedaten KW - parametrizations Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261285 ER - TY - THES A1 - Wilde, Martina T1 - Landslide susceptibility assessment in the Chiconquiaco Mountain Range area, Veracruz (Mexico) T1 - Bewertung der Rutschungssuszeptibilität in der Chiconquiaco Gebirgsregion, Veracruz (Mexiko) N2 - In Mexico, numerous landslides occur each year and Veracruz represents the state with the third highest number of events. Especially the Chiconquiaco Mountain Range, located in the central part of Veracruz, is highly affected by landslides and no detailed information on the spatial distribution of existing landslides or future occurrences is available. This leaves the local population exposed to an unknown threat and unable to react appropriately to this hazard or to consider the potential landslide occurrence in future planning processes. Thus, the overall objective of the present study is to provide a comprehensive assessment of the landslide situation in the Chiconquiaco Mountain Range area. Here, the combination of a site-specific and a regional approach enables to investigate the causes, triggers, and process types as well as to model the landslide susceptibility for the entire study area. For the site-specific approach, the focus lies on characterizing the Capulín landslide, which represents one of the largest mass movements in the area. In this context, the task is to develop a multi-methodological concept, which concentrates on cost-effective, flexible and non-invasive methods. This approach shows that the applied methods complement each other very well and their combination allows for a detailed characterization of the landslide. The analyses revealed that the Capulín landslide is a complex mass movement type. It comprises rotational movement in the upper parts and translational movement in the lower areas, as well as flow processes at the flank and foot area and therefore, is classified as a compound slide-flow according to Cruden and Varnes (1996). Furthermore, the investigations show that the Capulín landslide represents a reactivation of a former process. This is an important new information, especially with regard to the other landslides identified in the study area. Both the road reconstructed after the landslide, which runs through the landslide mass, and the stream causing erosion processes at the foot of the landslide severely affect the stability of the landslide, making it highly susceptible to future reactivation processes. This is particularly important as the landslide is located only few hundred meters from the village El Capulín and an extension of the landslide area could cause severe damage. The next step in the landslide assessment consists of integrating the data obtained in the site-specific approach into the regional analysis. Here, the focus lies on transferring the generated data to the entire study area. The developed methodological concept yields applicable results, which is supported by different validation approaches. The susceptibility modeling as well as the landslide inventory reveal that the highest probability of landslides occurrence is related to the areas with moderate slopes covered by slope deposits. These slope deposits comprise material from old mass movements and erosion processes and are highly susceptible to landslides. The results give new insights into the landslide situation in the Chiconquiaco Mountain Range area, since previously landslide occurrence was related to steep slopes of basalt and andesite. The susceptibility map is a contribution to a better assessment of the landslide situation in the study area and simultaneously proves that it is crucial to include specific characteristics of the respective area into the modeling process, otherwise it is possible that the local conditions will not be represented correctly. N2 - In Mexico ereignen sich jedes Jahr zahlreiche Rutschungen und Veracruz ist der Bundesstaat mit der dritthöchsten Anzahl von solchen Ereignissen. Besonders das Chiconquiaco Gebirge, welches im zentralen Bereich von Veracruz liegt, ist stark von Rutschungen betroffen und trotzdem sind keine detaillierten Informationen zur räumlichen Verbreitung existierender Rutschungen oder zu deren erwarteten, zukünftigen Auftreten verfügbar. Dadurch ist die lokale Bevölkerung mit einer nicht einschätzbaren Bedrohungslage konfrontiert und kann weder auf diese angemessen reagieren noch das potentielle Auftreten von Rutschungen in künftigen Planungsprozessen berücksichtigen. Das übergeordnete Ziel der vorliegenden Arbeit besteht daher darin, eine umfassende Beurteilung der Rutschungssituation im Chiconquiaco Gebirge zu erstellen. Hierbei ermöglicht die Kombination eines standortspezifischen und eines regionalen Ansatzes sowohl die Untersuchung der Ursachen, Auslöser und Prozesstypen, als auch die Modellierung der Rutschanfälligkeit für das gesamte Untersuchungsgebiet. Bei dem standortspezifischen Ansatz liegt der Schwerpunkt auf der Charakterisierung der Capulín Rutschung, bei der es sich um eine der größten Massenbewegungen in dieser Region handelt. In diesem Rahmen besteht die Aufgabe darin, ein multi-methodologisches Konzept zu entwickeln, welches sich hauptsächlich auf kostengünstige, flexible und nicht-invasive Methoden konzentriert. Dieser Ansatz zeigt, dass sich die verwendeten Methoden sehr gut ergänzen und ihre Kombination eine detaillierte Charakterisierung der Rutschung ermöglicht. Die Ergebnisse legen dar, dass die Capulín Rutschung eine komplexe Massenbewegung ist. So umfasst sie Rotationsbewegungen im oberen und Translationsbewegungen im unteren Bereich, sowie Fließprozesse an der Flanke und im Fußbereich und kann daher nach Cruden und Varnes (1996) als Kombination aus Gleit- und Fließprozessen (compound slide-flow) klassifiziert werden. Des Weiteren zeigen die Ergebnisse, dass es sich bei der Capulín Rutschung um eine Reaktivierung einer älteren Rutschung handelt. Das ist eine wichtige neue Erkenntnis besonders im Hinblick auf die anderen Rutschungen, die im Untersuchungsgebiet festgestellt wurden. Sowohl die nach der Rutschung wieder aufgebaute Straße, die durch die Rutschmasse verläuft, als auch der Fluss, der Erosionsprozesse am Fuß der Rutschung verursacht, beeinträchtigen die Stabilität der Capulín Rutschung maßgeblich, was sie sehr anfällig für zukünftige Reaktivierungsprozesse macht. Dies ist besonders wichtig, da die Rutschung nur wenige hundert Meter von dem Ort El Capulín entfernt ist und eine Erweiterung des Rutschgebietes erhebliche Schäden verursachen könnte. Im Anschluss werden die durch den lokalen Ansatz erhaltenen Daten in die regionale Analyse integriert. Der Fokus bei diesem Vorgehen liegt dabei auf der Übertragung der generierten Daten auf das gesamte Untersuchungsgebiet. Das hier entwickelte methodische Konzept erzielt verwertbare Ergebnisse, was durch verschiedene Validierungsansätze bekräftigt werden kann. Sowohl die Suszeptibilitätsmodellierung als auch das Rutschungsinventar zeigen, dass die höchste Wahrscheinlichkeit für das Auftreten von Rutschungen vor allem in den Gebieten mit moderater Hangneigung liegt, welche mit Hangschutt bedeckt sind. Diese Hangablagerungen bestehen aus Material von alten Massenbewegungen und Erosionsprozessen und zeigen eine hohe Anfälligkeit für Rutschungen. Die Ergebnisse liefern neue Erkenntnisse über die Rutschungssituation im Chiconquiaco Gebirge, da vorher das Auftreten von Rutschungen mit den steilen Hängen aus Basalt und Andesit in Verbindung gebracht wurde. Auf Grundlage der generierten Suszeptibilitätskarte ist eine bessere Bewertung der Rutschungssituation im Untersuchungsgebiet möglich. Weiterhin zeigt sie, dass es von entscheidender Bedeutung ist, spezifische Eigenschaften der jeweiligen Untersuchungsgebiete in die Modellierung miteinzubeziehen, da sonst die Gefahr besteht, dass die örtlichen Gegebenheiten fehlerhaft eingeschätzt werden. KW - Naturgefahren KW - Landslide susceptibility modeling KW - Geomorphologie KW - Rutschungen KW - Modellierung KW - Veracruz KW - Mexiko KW - UAV KW - Digital Elevation Model KW - Hangstabilitätsmodellierung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276085 ER - TY - JOUR A1 - Hardaker, Sina T1 - More Than Infrastructure Providers – Digital Platforms' Role and Power in Retail Digitalisation in Germany JF - Tijdschrift voor Economische en Sociale Geografie N2 - Digital platforms, such as Amazon, represent the major beneficiaries of the Covid‐19 crisis. This study examines the role of digital platforms and their engagement in digitalisation initiatives targeting (small) brick‐and‐mortar retailers in Germany, thereby contributing to a better understanding of how digital platforms augment, substitute or reorganise physical retail spaces. This study applies a mixed‐method approach based on qualitative interviews, participant observation as well as media analysis. First, the study illustrates the controversial role of digital platforms by positioning themselves as supporting partners of the (offline) retailers, while simultaneously shifting power towards the platforms themselves. Second, digital platforms have established themselves not only as infrastructure providers but also as actors within these infrastructures, framing digital as well as physical retail spaces, inter alia due to their role as publicly legitimised retail advisers. Third, while institutions want to help retailers to survive, they simultaneously enhance retailers' dependency on digital platforms. KW - platform economy KW - digitalisation initiative KW - e‐commerce KW - Covid‐19 KW - two‐sided markets KW - framing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287297 VL - 113 IS - 3 SP - 310 EP - 328 ER - TY - THES A1 - Üreyen, Soner T1 - Multivariate Time Series for the Analysis of Land Surface Dynamics - Evaluating Trends and Drivers of Land Surface Variables for the Indo-Gangetic River Basins T1 - Multivariate Zeitreihen zur Analyse von Landoberflächendynamiken - Auswertung von Trends und Treibern von Landoberflächenvariablen für Flusseinzugsgebiete der Indus-Ganges Ebene N2 - The investigation of the Earth system and interplays between its components is of utmost importance to enhance the understanding of the impacts of global climate change on the Earth's land surface. In this context, Earth observation (EO) provides valuable long-term records covering an abundance of land surface variables and, thus, allowing for large-scale analyses to quantify and analyze land surface dynamics across various Earth system components. In view of this, the geographical entity of river basins was identified as particularly suitable for multivariate time series analyses of the land surface, as they naturally cover diverse spheres of the Earth. Many remote sensing missions with different characteristics are available to monitor and characterize the land surface. Yet, only a few spaceborne remote sensing missions enable the generation of spatio-temporally consistent time series with equidistant observations over large areas, such as the MODIS instrument. In order to summarize available remote sensing-based analyses of land surface dynamics in large river basins, a detailed literature review of 287 studies was performed and several research gaps were identified. In this regard, it was found that studies rarely analyzed an entire river basin, but rather focused on study areas at subbasin or regional scale. In addition, it was found that transboundary river basins remained understudied and that studies largely focused on selected riparian countries. Moreover, the analysis of environmental change was generally conducted using a single EO-based land surface variable, whereas a joint exploration of multivariate land surface variables across spheres was found to be rarely performed. To address these research gaps, a methodological framework enabling (1) the preprocessing and harmonization of multi-source time series as well as (2) the statistical analysis of a multivariate feature space was required. For development and testing of a methodological framework that is transferable in space and time, the transboundary river basins Indus, Ganges, Brahmaputra, and Meghna (IGBM) in South Asia were selected as study area, having a size equivalent to around eight times the size of Germany. These basins largely depend on water resources from monsoon rainfall and High Mountain Asia which holds the largest ice mass outside the polar regions. In total, over 1.1 billion people live in this region and in parts largely depend on these water resources which are indispensable for the world's largest connected irrigated croplands and further domestic needs as well. With highly heterogeneous geographical settings, these river basins allow for a detailed analysis of the interplays between multiple spheres, including the anthroposphere, biosphere, cryosphere, hydrosphere, lithosphere, and atmosphere. In this thesis, land surface dynamics over the last two decades (December 2002 - November 2020) were analyzed using EO time series on vegetation condition, surface water area, and snow cover area being based on MODIS imagery, the DLR Global WaterPack and JRC Global Surface Water Layer, as well as the DLR Global SnowPack, respectively. These data were evaluated in combination with further climatic, hydrological, and anthropogenic variables to estimate their influence on the three EO land surface variables. The preprocessing and harmonization of the time series was conducted using the implemented framework. The resulting harmonized feature space was used to quantify and analyze land surface dynamics by means of several statistical time series analysis techniques which were integrated into the framework. In detail, these methods involved (1) the calculation of trends using the Mann-Kendall test in association with the Theil-Sen slope estimator, (2) the estimation of changes in phenological metrics using the Timesat tool, (3) the evaluation of driving variables using the causal discovery approach Peter and Clark Momentary Conditional Independence (PCMCI), and (4) additional correlation tests to analyze the human influence on vegetation condition and surface water area. These analyses were performed at annual and seasonal temporal scale and for diverse spatial units, including grids, river basins and subbasins, land cover and land use classes, as well as elevation-dependent zones. The trend analyses of vegetation condition mostly revealed significant positive trends. Irrigated and rainfed croplands were found to contribute most to these trends. The trend magnitudes were particularly high in arid and semi-arid regions. Considering surface water area, significant positive trends were obtained at annual scale. At grid scale, regional and seasonal clusters with significant negative trends were found as well. Trends for snow cover area mostly remained stable at annual scale, but significant negative trends were observed in parts of the river basins during distinct seasons. Negative trends were also found for the elevation-dependent zones, particularly at high altitudes. Also, retreats in the seasonal duration of snow cover area were found in parts of the river basins. Furthermore, for the first time, the application of the causal discovery algorithm on a multivariate feature space at seasonal temporal scale revealed direct and indirect links between EO land surface variables and respective drivers. In general, vegetation was constrained by water availability, surface water area was largely influenced by river discharge and indirectly by precipitation, and snow cover area was largely controlled by precipitation and temperature with spatial and temporal variations. Additional analyses pointed towards positive human influences on increasing trends in vegetation greenness. The investigation of trends and interplays across spheres provided new and valuable insights into the past state and the evolution of the land surface as well as on relevant climatic and hydrological driving variables. Besides the investigated river basins in South Asia, these findings are of great value also for other river basins and geographical regions. N2 - Die Untersuchung von Erdsystemkomponenten und deren Wechselwirkungen ist von großer Relevanz, um das Prozessverständnis sowie die Auswirkungen des globalen Klimawandels auf die Landoberfläche zu verbessern. In diesem Zusammenhang liefert die Erdbeobachtung (EO) wertvolle Langzeitaufnahmen zu einer Vielzahl an Landoberflächenvariablen. Diese können als Indikator für die Erdsystemkomponenten genutzt werden und sind essenziell für großflächige Analysen. Flusseinzugsgebiete sind besonders geeignet um Landoberflächendynamiken mit multivariaten Zeitreihen zu analysieren, da diese verschiedene Sphären des Erdsystems umfassen. Zur Charakterisierung der Landoberfläche stehen zahlreiche EO-Missionen mit unterschiedlichen Eigenschaften zur Verfügung. Nur einige wenige Missionen gewährleisten jedoch die Erstellung von räumlich und zeitlich konsistenten Zeitreihen mit äquidistanten Beobachtungen über großräumige Untersuchungsgebiete, wie z.B. die MODIS Sensoren. Um bisherige EO-Analysen zu Landoberflächendynamiken in großen Flusseinzugsgebieten zu untersuchen, wurde eine Literaturrecherche durchgeführt, wobei mehrere Forschungslücken identifiziert wurden. Studien untersuchten nur selten ein ganzes Einzugsgebiet, sondern konzentrierten sich lediglich auf Teilgebietsgebiete oder regionale Untersuchungsgebiete. Darüber hinaus wurden transnationale Einzugsgebiete nur unzureichend analysiert, wobei sich die Studien größtenteils auf ausgewählte Anrainerstaaten beschränkten. Auch wurde die Analyse von Umweltveränderungen meistens anhand einer einzigen EO-Landoberflächenvariable durchgeführt, während eine synergetische Untersuchung von sphärenübergreifenden Landoberflächenvariablen kaum unternommen wurde. Um diese Forschungslücken zu adressieren, ist ein methodischer Ansatz notwendig, der (1) die Vorverarbeitung und Harmonisierung von Zeitreihen aus mehreren Quellen und (2) die statistische Analyse eines multivariaten Merkmalsraums ermöglicht. Für die Entwicklung und Anwendung eines methodischen Frameworks, das raum-zeitlich übertragbar ist, wurden die transnationalen Einzugsgebiete Indus, Ganges, Brahmaputra und Meghna (IGBM) in Südasien, deren Größe etwa der achtfachen Fläche von Deutschland entspricht, ausgewählt. Diese Einzugsgebiete hängen weitgehend von den Wasserressourcen des Monsunregens und des Hochgebirges Asiens ab. Insgesamt leben über 1,1 Milliarden Menschen in dieser Region und sind zum Teil in hohem Maße von diesen Wasserressourcen abhängig, die auch für die größten zusammenhängenden bewässerten Anbauflächen der Welt und auch für weitere inländische Bedarfe unerlässlich sind. Aufgrund ihrer sehr heterogenen geographischen Gegebenheiten ermöglichen diese Einzugsgebiete eine detaillierte sphärenübergreifende Analyse der Wechselwirkungen, einschließlich der Anthroposphäre, Biosphäre, Kryosphäre, Hydrosphäre, Lithosphäre und Atmosphäre. In dieser Dissertation wurden Landoberflächendynamiken der letzten zwei Jahrzehnte anhand von EO-Zeitreihen zum Vegetationszustand, zu Oberflächengewässern und zur Schneebedeckung analysiert. Diese basieren auf MODIS-Aufnahmen, dem DLR Global WaterPack und dem JRC Global Surface Water Layer sowie dem DLR Global SnowPack. Diese Zeitreihen wurden in Kombination mit weiteren klimatischen, hydrologischen und anthropogenen Variablen ausgewertet. Die Harmonisierung des multivariaten Merkmalsraumes ermöglichte die Analyse von Landoberflächendynamiken unter Nutzung von statistischen Methoden. Diese Methoden umfassen (1) die Berechnung von Trends mittels des Mann-Kendall und des Theil-Sen Tests, (2) die Berechnung von phänologischen Metriken anhand des Timesat-Tools, (3) die Bewertung von treibenden Variablen unter Nutzung des PCMCI Algorithmus und (4) zusätzliche Korrelationstests zur Analyse des menschlichen Einflusses auf den Vegetationszustand und die Wasseroberfläche. Diese Analysen wurden auf jährlichen und saisonalen Zeitskalen und für verschiedene räumliche Einheiten durchgeführt. Für den Vegetationszustand wurden weitgehend signifikant positive Trends ermittelt. Analysen haben gezeigt, dass landwirtschaftliche Nutzflächen am meisten zu diesen Trends beitragen haben. Besonders hoch waren die Trends in ariden Regionen. Bei Oberflächengewässern wurden auf jährlicher Ebene signifikant positive Trends festgestellt. Auf Pixelebene wurden jedoch sowohl regional als auch saisonal Cluster mit signifikant negativen Trends identifiziert. Die Trends für die Schneebedeckung blieben auf jährlicher Ebene weitgehend stabil, jedoch wurden in Teilen der Einzugsgebiete zu bestimmten Jahreszeiten signifikant negative Trends beobachtet. Die negativen Trends wurden auch für höhenabhängige Zonen festgestellt, insbesondere in hohen Lagen. Außerdem wurden in Teilen der Einzugsgebiete Rückgänge bei der saisonalen Dauer der Schneebedeckung ermittelt. Darüber hinaus ergab die Untersuchung des multivariaten Merkmalsraums auf kausale Zusammenhänge auf saisonaler Ebene erstmals Aufschluss über direkte und indirekte Relationen zwischen EO-Landoberflächenvariablen und den entsprechenden Einflussfaktoren. Zusammengefasst wurde die Vegetation durch die Wasserverfügbarkeit, die Oberflächengewässer durch den Abfluss und indirekt durch den Niederschlag sowie die Schneebedeckung durch Niederschlag und Temperatur mit räumlichen und saisonalen Unterschieden kontrolliert. Zusätzliche Analysen wiesen auf einen positiven Zusammenhang zwischen dem menschlichen Einfluss und den zunehmenden Trends in der Vegetationsfläche hin. Diese sphärenübergreifenden Untersuchungen zu Trends und Wechselwirkungen liefern neue und wertvolle Einblicke in den vergangenen Zustand von Landoberflächendynamiken sowie in die relevanten klimatischen und hydrologischen Einflussfaktoren. Neben den untersuchten Einzugsgebieten in Südasien sind diese Erkenntnisse auch für weitere Einzugsgebiete und geographische Regionen von großer Bedeutung. KW - Multivariate Analyse KW - Zeitreihe KW - Fernerkundung KW - Geographie KW - Multivariate Time Series KW - River Basins KW - Earth Observation KW - Remote Sensing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291941 ER - TY - THES A1 - Dirscherl, Mariel Christina T1 - Remote Sensing of Supraglacial Lake Dynamics in Antarctica - Exploiting Methods from Artificial Intelligence for Derivation of Antarctic Supraglacial Lake Extents in Multi-Sensor Remote Sensing Data T1 - Fernerkundung der Dynamik supraglazialer Seen in der Antarktis - Analyse von supraglazialen Seen in Multi-Sensor Fernerkundungsdaten mittels Methoden der Künstlichen Intelligenz N2 - With accelerating global climate change, the Antarctic Ice Sheet is exposed to increasing ice dynamic change. During 1992 and 2017, Antarctica contributed ~7.6 mm to global sea-level-rise mainly due to ocean thermal forcing along West Antarctica and atmospheric warming along the Antarctic Peninsula (API). Together, these processes caused the progressive retreat of glaciers and ice shelves and weakened their efficient buttressing force causing widespread ice flow accelerations. Holding ~91% of the global ice mass and 57.3 m of sea-level-equivalent, the Antarctic Ice Sheet is by far the largest potential contributor to future sea-level-rise. Despite the improved understanding of Antarctic ice dynamics, the future of Antarctica remains difficult to predict with its contribution to global sea-level-rise representing the largest uncertainty in current projections. Given that recent studies point towards atmospheric warming and melt intensification to become a dominant driver for future Antarctic ice mass loss, the monitoring of supraglacial lakes and their impacts on ice dynamics is of utmost importance. In this regard, recent progress in Earth Observation provides an abundance of high-resolution optical and Synthetic Aperture Radar (SAR) satellite data at unprecedented spatial and temporal coverage and greatly supports the monitoring of the Antarctic continent where ground-based mapping efforts are difficult to perform. As an automated mapping technique for supraglacial lake extent delineation in optical and SAR satellite imagery as well as a pan-Antarctic inventory of Antarctic supraglacial lakes at high spatial and temporal resolution is entirely missing, this thesis aims to advance the understanding of Antarctic surface hydrology through exploitation of spaceborne remote sensing. In particular, a detailed literature review on spaceborne remote sensing of Antarctic supraglacial lakes identified several research gaps including the lack of (1) an automated mapping technique for optical or SAR satellite data that is transferable in space and time, (2) high-resolution supraglacial lake extent mappings at intra-annual and inter-annual temporal resolution and (3) large-scale mapping efforts across the entire Antarctic continent. In addition, past method developments were found to be restricted to purely visual, manual or semi-automated mapping techniques hindering their application to multi-temporal satellite imagery at large-scale. In this context, the development of automated mapping techniques was mainly limited by sensor-specific characteristics including the similar appearance of supraglacial lakes and other ice sheet surface features in optical or SAR data, the varying temporal signature of supraglacial lakes throughout the year as well as effects such as speckle noise and wind roughening in SAR data or cloud coverage in optical data. To overcome these limitations, this thesis exploits methods from artificial intelligence and big data processing for development of an automated processing chain for supraglacial lake extent delineation in Sentinel-1 SAR and optical Sentinel-2 satellite imagery. The combination of both sensor types enabled to capture both surface and subsurface lakes as well as to acquire data during cloud cover or wind roughening of lakes. For Sentinel-1, a deep convolutional neural network based on residual U-Net was trained on the basis of 21,200 labeled Sentinel-1 SAR image patches covering 13 Antarctic regions. Similarly, optical Sentinel-2 data were collected over 14 Antarctic regions and used for training of a Random Forest classifier. Optical and SAR classification products were combined through decision-level fusion at bi-weekly temporal scale and unprecedented 10 m spatial resolution. Finally, the method was implemented as part of DLR’s High-Performance Computing infrastructure allowing for an automated processing of large amounts of data including all required pre- and postprocessing steps. The results of an accuracy assessment over independent test scenes highlighted the functionality of the classifiers returning accuracies of 93% and 95% for supraglacial lakes in Sentinel-1 and Sentinel-2 satellite imagery, respectively. Exploiting the full archive of Sentinel-1 and Sentinel-2, the developed framework for the first time enabled the monitoring of seasonal characteristics of Antarctic supraglacial lakes over six major ice shelves in 2015-2021. In particular, the results for API ice shelves revealed low lake coverage during 2015-2018 and particularly high lake coverage during the 2019-2020 and 2020-2021 melting seasons. On the contrary, East Antarctic ice shelves were characterized by high lake coverage during 2016-2019 and extremely low lake coverage during the 2020-2021 melting season. Over all six investigated ice shelves, the development of drainage systems was revealed highlighting an increased risk for ice shelf instability. Through statistical correlation analysis with climate data at varying time lags as well as annual data on Southern Hemisphere atmospheric modes, environmental drivers for meltwater ponding were revealed. In addition, the influence of the local glaciological setting was investigated through computation of annual recurrence times of lakes. Over both ice sheet regions, the complex interplay between local, regional and large-scale environmental drivers was found to control supraglacial lake formation despite local to regional discrepancies, as revealed through pixel-based correlation analysis. Local control factors included the ice surface topography, the ice shelf geometry, the presence of low-albedo features as well as a reduced firn air content and were found to exert strong control on lake distribution. On the other hand, regional controls on lake evolution were revealed to be the amount of incoming solar radiation, air temperature and wind occurrence. While foehn winds were found to dictate lake evolution over the API, katabatic winds influenced lake ponding in East Antarctica. Furthermore, the regional near-surface climate was shown to be driven by large-scale atmospheric modes and teleconnections with the tropics. Overall, the results highlight that similar driving factors control supraglacial lake formation on the API and EAIS pointing towards their transferability to other Antarctic regions. N2 - Der antarktische Eisschild erfährt angesichts der globalen Erderwärmung zunehmende eisdynamische Veränderungen. Zwischen 1992 und 2017 trug die Antarktis mit ~7.6 mm zum globalen Meeresspiegelanstieg bei, was vor allem auf die Erwärmung des Ozeans entlang der Westantarktis und die Erwärmung der Atmosphäre entlang der Antarktischen Halbinsel zurückzuführen ist. Zusammen verursachten diese Prozesse den fortschreitenden Rückgang von Gletschern und Schelfeis und schwächten ihren Rückhalteeffekt. Mit einem Anteil von ~91% an der globalen Eismasse und einem Meeresspiegeläquivalent von 57.3 m ist der antarktische Eisschild der größte potentielle Verursacher eines zukünftigen Meeresspiegelanstiegs. Trotz des verbesserten Verständnisses der antarktischen Eisdynamik kann die Zukunft der Antarktis nur schwer vorhergesagt werden. In Anbetracht der Tatsache, dass die Erwärmung der Atmosphäre und die damit einhergehende Oberflächenschmelze eine der Hauptursachen für künftige Massenverluste der Antarktis sein werden, ist die Kartierung von supraglazialen Seen von größter Bedeutung und Wichtigkeit. In dieser Hinsicht liefert die Erdbeobachtung eine Vielzahl von räumlich und zeitlich hochaufgelösten Satellitendaten für das Monitoring der Antarktis. Da eine automatisierte Methode zur Kartierung von supraglazialen Seen in Satellitendaten sowie ein großräumiges Inventar gänzlich fehlen, ist das Ziel dieser Arbeit zu einem besseren Verständnis der antarktischen Oberflächenhydrologie beizutragen. Zu diesem Zweck wurde ein neuartiges Prozessierungsverfahren für die automatisierte Kartierung von supraglazialen Seen in Sentinel-1 und Sentinel-2 Satellitenbilddaten entwickelt. Basierend auf einer umfassenden Literaturrecherche in Bezug auf die satellitengestützte Fernerkundung von antarktischen supraglazialen Seen wurden mehrere Forschungslücken identifiziert, darunter das Fehlen von (1) einem automatisierten Klassifikationsalgorithmus für optische und Radar Satellitendaten, der in Raum und Zeit übertragbar ist, (2) hochaufgelösten Kartierungen von supraglazialen Seen mit jährlicher sowie saisonaler zeitlicher Auflösung und (3) großräumigen Kartierungen über der gesamten Antarktis. Darüber hinaus wurde festgestellt, dass sich vergangene Methodenentwicklungen auf eine rein visuelle, manuelle oder halbautomatisierte Kartierungstechnik stützten, was ihre Anwendung auf multitemporale Satellitenbilder über dem gesamten Kontinent verhinderte. Die Entwicklung einer automatisierten Kartierungsmethode wurde hierbei vor allem durch sensorspezifische Merkmale eingeschränkt, darunter das ähnliche Erscheinungsbild von supraglazialen Seen und anderen Landbedeckungsklassen in optischen oder Radar Daten, die variierende zeitliche Signatur von supraglazialen Seen sowie Effekte wie SpeckleRauschen oder die Windaufrauhung von Seen in Radar Daten. Um diese Limitierungen zu überwinden, basiert der entwickelte Algorithmus zur automatisierten Kartierung von supraglazialen Seen in optischen and Radar Satellitendaten auf Methoden der künstlichen Intelligenz und der Big-Data-Analytik. Die Kombination von beiden Sensortypen ermöglicht es, sowohl supraglaziale als auch mit Schnee bedeckte Seen zu erfassen. Für Sentinel-1 wurde ein neuronales Netzwerk basierend auf „residual U-Net“ mittels 21,200 Radaraufnahmen über 13 antarktischen Regionen trainiert. In ähnlicher Weise wurden optische Sentinel-2 Daten über 14 antarktischen Regionen gesammelt und zum Trainieren eines „Random Forest“ Klassifikators verwendet. Die beiden Methoden wurden durch die Fusion von optischen und Radar Klassifikationsergebnissen kombiniert und als Teil der DLR-internen Prozessierungs-Infrastruktur auf Hochleistungsrechnern implementiert, die eine vollautomatische Verarbeitung großer Datenmengen einschließlich aller erforderlichen Vor- und Nachverarbeitungsschritte ermöglichen. Eine Fehleranalyse über unabhängigen Testszenen zeigte die Funktionalität der Algorithmen, die Genauigkeiten von 93% bzw. 95% für supraglaziale Seen in Sentinel-1 und Sentinel-2 Daten erreichten. Unter Nutzung des gesamten Archivs an Sentinel-1 und Sentinel-2 Daten im Zeitraum 2015-2021 ermöglichte die entwickelte Prozessierungs-Kette erstmals die Erfassung von saisonalen Merkmalen supraglazialer Seen über sechs großen SchelfeisRegionen. Die Ergebnisse für die Antarktische Halbinsel zeigten ein geringes Auftreten von supraglazialen Seen im Zeitraum 2015-2018 und ein stark erhöhtes Auftreten von supraglazialen Seen während der Schmelzsaison 2019-2020 und 2020-2021. Im Gegensatz dazu war die Ostantarktis durch ein stark erhöhtes Auftreten von supraglazialen Seen in den Jahren 2016-2019 sowie ein stark reduziertes Auftreten von supraglazialen Seen während der Schmelzsaison 2020-2021 gekennzeichnet. Über beiden Regionen entwickelten sich ausgeprägte Seen-Netzwerke, die ein erhöhtes Risiko für die Stabilität von Schelfeis darstellen. Durch statistische Korrelationsanalysen mit saisonalen Klimadaten sowie jährlichen Daten zu atmosphärischen Modi wurden Umwelteinflüsse auf die Entstehung von Seen analysiert. In beiden antarktischen Regionen wurde festgestellt, dass das komplexe Zusammenspiel von lokalen, regionalen und großräumigen Umweltfaktoren die Entstehung von supraglazialen Seen begünstigt. Zu den lokalen Einflussfaktoren gehören die Topographie, die Schelfeisgeometrie, das Vorhandensein von Oberflächen mit geringer Albedo sowie ein reduzierter Luftgehalt im Firn. Andererseits wurde festgestellt, dass die Sonneneinstrahlung, die Lufttemperatur und Wind die Entstehung von Seen regional beeinflussen. Während Föhnwinde über der Antarktischen Halbinsel auftreten, dominieren katabatische Winde in der Ostantarktis. Darüber hinaus wurde verdeutlicht, dass das regionale Klima von atmosphärischen Modi beeinflusst wird. Insgesamt deuten die Ergebnisse darauf hin, dass ähnliche Umweltfaktoren die Entstehung von supraglazialen Seen über beiden Regionen steuern, was Rückschlüsse auf ihre Übertragbarkeit in andere antarktische Regionen zulässt. KW - Optische Fernerkundung KW - Radarfernerkundung KW - Antarktis KW - Gletscher KW - Fernerkundung KW - Supraglaziale Seen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-279505 ER - TY - JOUR A1 - Sogno, Patrick A1 - Klein, Igor A1 - Kuenzer, Claudia T1 - Remote sensing of surface water dynamics in the context of global change — a review JF - Remote Sensing N2 - Inland surface water is often the most accessible freshwater source. As opposed to groundwater, surface water is replenished in a comparatively quick cycle, which makes this vital resource — if not overexploited — sustainable. From a global perspective, freshwater is plentiful. Still, depending on the region, surface water availability is severely limited. Additionally, climate change and human interventions act as large-scale drivers and cause dramatic changes in established surface water dynamics. Actions have to be taken to secure sustainable water availability and usage. This requires informed decision making based on reliable environmental data. Monitoring inland surface water dynamics is therefore more important than ever. Remote sensing is able to delineate surface water in a number of ways by using optical as well as active and passive microwave sensors. In this review, we look at the proceedings within this discipline by reviewing 233 scientific works. We provide an extensive overview of used sensors, the spatial and temporal resolution of studies, their thematic foci, and their spatial distribution. We observe that a wide array of available sensors and datasets, along with increasing computing capacities, have shaped the field over the last years. Multiple global analysis-ready products are available for investigating surface water area dynamics, but so far none offer high spatial and temporal resolution. KW - remote sensing KW - surface water KW - dynamics KW - global change KW - earth observation KW - hydrology KW - biosphere KW - anthroposphere KW - review Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275274 SN - 2072-4292 VL - 14 IS - 10 ER - TY - JOUR A1 - Dong, Ruirui A1 - Wurm, Michael A1 - Taubenböck, Hannes T1 - Seasonal and diurnal variation of land surface temperature distribution and its relation to land use/land cover patterns JF - International Journal of Environmental Research and Public Health N2 - The surface urban heat island (SUHI) affects the quality of urban life. Because varying urban structures have varying impacts on SUHI, it is crucial to understand the impact of land use/land cover characteristics for improving the quality of life in cities and urban health. Satellite-based data on land surface temperatures (LST) and derived land use/cover pattern (LUCP) indicators provide an efficient opportunity to derive the required data at a large scale. This study explores the seasonal and diurnal variation of spatial associations from LUCP and LST employing Pearson correlation and ordinary least squares regression analysis. Specifically, Landsat-8 images were utilized to derive LSTs in four seasons, taking Berlin as a case study. The results indicate that: (1) in terms of land cover, hot spots are mainly distributed over transportation, commercial and industrial land in the daytime, while wetlands were identified as hot spots during nighttime; (2) from the land composition indicators, the normalized difference built-up index (NDBI) showed the strongest influence in summer, while the normalized difference vegetation index (NDVI) exhibited the biggest impact in winter; (3) from urban morphological parameters, the building density showed an especially significant positive association with LST and the strongest effect during daytime. KW - surface urban heat island (SUHI) KW - land use/cover pattern (LUCP) KW - land surface temperature (LST) KW - seasonal KW - diurnal Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290393 SN - 1660-4601 VL - 19 IS - 19 ER - TY - JOUR A1 - Lappe, Ronja A1 - Ullmann, Tobias A1 - Bachofer, Felix T1 - State of the Vietnamese coast — assessing three decades (1986 to 2021) of coastline dynamics using the Landsat archive JF - Remote Sensing N2 - Vietnam's 3260 km coastline is densely populated, experiences rapid urban and economic growth, and faces at the same time a high risk of coastal hazards. Satellite archives provide a free and powerful opportunity for long-term area-wide monitoring of the coastal zone. This paper presents an automated analysis of coastline dynamics from 1986 to 2021 for Vietnam's entire coastal zone using the Landsat archive. The proposed method is implemented within the cloud-computing platform Google Earth Engine to only involve publicly and globally available datasets and tools. We generated annual coastline composites representing the mean-high water level and extracted sub-pixel coastlines. We further quantified coastline change rates along shore-perpendicular transects, revealing that half of Vietnam's coast did not experience significant change, while the remaining half is classified as erosional (27.7%) and accretional (27.1%). A hotspot analysis shows that coastal segments with the highest change rates are concentrated in the low-lying deltas of the Mekong River in the south and the Red River in the north. Hotspots with the highest accretion rates of up to +47 m/year are mainly associated with the construction of artificial coastlines, while hotspots with the highest erosion rates of −28 m/year may be related to natural sediment redistribution and human activity. KW - coastline dynamics KW - Landsat archive KW - sub-pixel coastline extraction KW - time series KW - hotspot analysis KW - Google Earth Engine Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275281 SN - 2072-4292 VL - 14 IS - 10 ER - TY - THES A1 - Kawohl, Alexander T1 - The Petrology and Geochemistry of Igneous Dykes above the Temagami Anomaly (Ontario, Canada) and their Relationship to the 1.85 Ga Sudbury Impact T1 - Die Petrologie und Geochemie magmatischer Gänge über der Temagami Anomaly (Ontario, Kanada) und ihre Beziehung zum 1,85 Ga Sudbury Impakt N2 - The area northeast of Sudbury, Ontario, is known for one of the largest unexplained geophysical anomalies on the Canadian Shield, the 1,200 km2 Temagami Anomaly. The geological cause of this regional magnetic, conductive and gravity feature has previously been modelled to be a mafic-ultramafic body at relatively great depth (2–15 km) of unknown age and origin, which may or may not be related to the meteorite impact-generated Sudbury Igneous Complex in its immediate vicinity. However, with a profound lack of outcrops and drill holes, the geological cause of the anomaly remains elusive, a genetic link to the 1.85 Ga Sudbury impact event purely speculative. In search for any potential surface expression of the deep-seated cause of the Temagami Anomaly, this study provides a first, yet comprehensive petrological and geochemical assessment of exotic igneous dykes recently discovered in outcrops above, and drill cores into, the Temagami Anomaly. Based on cross-cutting field relations, petrographic studies, lithogeochemistry, whole-rock Nd-Sr-Pb isotope systematics, and U-Pb geochronology, it was possible to identify, and distinguish between, at least six different groups of igneous dykes: (i) Calc-alkaline quartz diorite dykes related to the 1.85 Ga Sudbury Igneous Complex (locally termed Offset Dykes); (ii) tholeiitic quartz diabase of the regional 2.22 Ga Nipissing Suite/Senneterre Dyke Swarm; (iii) calc-alkaline quartz diabase of the regional 2.17 Ga Biscotasing Dyke Swarm; (iv) alkaline ultrabasic dykes correlated with the 1.88–1.86 Ga Circum-Superior Large Igneous Province (LIP); and (v) aplitic dykes as well as (vi) a hornblende syenite, the latter two of more ambiguous age and stratigraphic position. The findings presented in this study – the discovery of three new Offset Dykes in particular – offer some unexpected insights into the geology and economic potential of one of the least explored areas of the world-class Sudbury Mining Camp as well as into the nature and distribution of both allochthonous and autochthonous impactites within one of the oldest and largest impact structures known on Earth. Not only do the geometric patterns of dyke (and breccia) distribution reaffirm previous notions of the existence of discrete ring structures in the sense of a ~200-km multi-ring basin, but they provide critical constraints as to the pre-erosional thickness and extent of the impact melt sheet, thus helping to identity new areas for Ni-Cu-PGE exploration. Furthermore, this study provides important insights into the pre-impact stratigraphy and the magmatic evolution of the region in general, which reveals to be much more complex, compositionally divers, and protracted than initially assumed. Of note is the discovery of rocks related to the 2.17 Ga Biscotasing and the 1.88–1.86 Ga Circum-Superior magmatic events, as these were not previously known to occur on the southeast margin of the Superior Craton. Shortly predating the Sudbury impact and being contemporaneous with ore-forming events at Thompson (Manitoba) and Raglan (Cape Smith), these magmatic rocks could provide the missing link between unusual mafic, pre-enriched, crustal target rocks, and the unique metal endowment of the Sudbury Impact Structure. The actual geological cause of the Temagami Anomaly remains open to debate and requires the downward extension of existing bore holes as well as more detailed geophysical investigations. The hypothesis of a genetic relationship between Sudbury impact event and Temagami Anomaly is neither borne out by any evidence nor particularly realistic, even in case of an oblique impact, and should thus be abandoned. It is instead proposed, based on circumstantial evidence, that the anomaly might be explained by an ultramafic complex of the 1.88–1.86 Ga Circum-Superior LIP. N2 - Das Gebiet nordöstlich von Sudbury, Ontario, ist bekannt für eine der größten unerklärten geophysikalischen Anomalien auf dem Kanadischen Schild, die 1.200 km2 große Temagami Anomalie. Die geologische Ursache dieser regionalen magnetischen, konduktiven und Schwere-Anomalie wurde bisweilen als ein mafisch-ultramafischer Körper in relativ großer Tiefe (2–15 km) unbekannten Alters und Ursprungs modelliert, der womöglich mit dem durch einen Impakt entstandenen Sudbury Igneous Complex in dessen unmittelbarer Nachbarschaft verwandt sein könnte. Da es jedoch an Aufschlüssen und Tiefbohrungen grundlegend mangelt, bleibt die geologische Ursache dieser Anomalie unklar, eine genetische Beziehung zum 1,85 Ga Sudbury Impaktereignis rein spekulativ. Auf der Suche nach einer potenziellen Oberflächenmanifestation der tiefliegenden Ursache der Temagami Anomalie liefert diese Studie eine erste und dennoch umfassende petrologische und geochemische Charakterisierung magmatischer Ganggesteine, die erst kürzlich in Aufschlüssen über der Temagami Anomalie, als auch in Bohrkernen, entdeckt wurden. Auf Grundlage von relativen geologischen Altersbeziehungen, petrographischen Untersuchungen, Lithogeochemie, Nd-Sr-Pb Isotopensystematiken sowie U-Pb Geochronologie war es möglich, mindestens sechs Gruppen von magmatischen Gesteinsgängen zu identifizieren und zu unterscheiden: (i) kalk-alkaline Quarz Diorit Gänge, die mit dem 1,85 Ga Sudbury Igneous Complex genetisch verwandt sind (lokal als Offset Dykes bezeichnet); (ii) tholeiitischer Quarz Dolerit der regionalen 2,22 Ga Nipissing Suite/Senneterre Gangschar (iii) kalk-alkaliner Quarz Dolerit der regionalen 2,17 Ga Biscotasing Gangschar; (iv) alkaline ultrabasische Gänge, die sich mit der 1,88–1,86 Ga Circum-Superior Large Igneous Province (LIP) korrelieren lassen; und (v) aplitische Gänge sowie ein (vi) Hornblende Syenit, beide von nach wie vor unklarem Alter und unklarer Zugehörigkeit. Die in dieser Studie vorgestellten Ergebnisse – insbesondere die Entdeckung drei neuer Offset Dykes – bieten einige unerwartete Einblicke in die Geologie und das wirtschaftliche Potenzial eines der am wenigsten erforschten Gebiete des Sudbury Bergbaudistriktes sowie in die Beschaffenheit und Verteilung sowohl allochthoner als auch autochthoner Impaktgesteine innerhalb einer der größten und ältesten bekannten terrestrischen Impaktstrukturen. Die geometrischen Muster der Gang (und Brekzien-) Verteilung bestätigen nicht nur frühere Vorstellungen von der Existenz diskreter Ringstrukturen im Sinne eines ~200 km großen Multiringbeckens, sondern liefern auch Erkenntnisse über die ursprüngliche Mächtigkeit und Ausbreitung der Impaktschmelze, was unter anderem zur Identifizierung neuer potenzieller Gebiete für die Ni-Cu-PGE Exploration beiträgt. Darüber hinaus liefert diese Studie wichtige Einblicke in die Stratigraphie des Einschlagsgebietes und die magmatische Entwicklung der Region im Allgemeinen, welche sich als viel komplexer, in der Zusammensetzung vielfältiger, und zeitlich ausgedehnter erweist als ursprünglich angenommen. Hervorzuheben ist hierbei die Entdeckung von Gesteinen, die mit dem 2,17 Ga Biscotasing und dem 1,88–1,86 Circum-Superior Magmatismus in Verbindung stehen, da solche Gesteine bisher nicht am südöstlichen Rand des Superior Kratons bekannt waren. Diese Ereignisse, die kurz vor dem Sudbury Impakt und zeitgleich mit Erz-bildendem Magmatismus nahe Thompson (Manitoba) und Raglan (Cape Smith, Quebec) stattfanden, könnten das fehlende Bindeglied zwischen ungewöhnlich mafischen, vorangereicherten krustalen Zielgesteinen einerseits, und der einzigartigen Metallausstattung der Sudbury Impaktstruktur andererseits, darstellen. Die tatsächliche geologische Ursache der Temagami Anomalie bleibt nach wie vor ungeklärt und erfordert letztlich die Erweiterung bestehender Bohrlöcher sowie detailliertere geophysikalische Untersuchungen. Die Hypothese eines genetischen Zusammenhangs zwischen Sudbury Impakt und Temagami Anomalie kann weder durch Beweise gestützt werden noch gilt sie als besonders realistisch, selbst im Falle eines obliquen Einschlags, und sollte daher verworfen werden. Stattdessen wird auf der Grundlage von Indizienbeweisen vorgeschlagen, dass die Temagami Anomalie durch einen ultramafischen Komplex der 1,88–1,86 Ga Circum-Superior LIP verursacht wird. KW - Impaktstruktur KW - Magmatismus KW - Altproterozoikum KW - Lake Timagami KW - Greater Sudbury KW - Palaeoproterozoic KW - Southern Province KW - Huronian Basin KW - Sudbury Igneous Complex KW - Offset Dykes KW - Impact melts KW - Geophysical anomaly KW - PGE-Cu-Ni KW - District of Sudbury Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-279617 ER - TY - JOUR A1 - Koehler, Jonas A1 - Bauer, André A1 - Dietz, Andreas J. A1 - Kuenzer, Claudia T1 - Towards forecasting future snow cover dynamics in the European Alps — the potential of long optical remote-sensing time series JF - Remote Sensing N2 - Snow is a vital environmental parameter and dynamically responsive to climate change, particularly in mountainous regions. Snow cover can be monitored at variable spatial scales using Earth Observation (EO) data. Long-lasting remote sensing missions enable the generation of multi-decadal time series and thus the detection of long-term trends. However, there have been few attempts to use these to model future snow cover dynamics. In this study, we, therefore, explore the potential of such time series to forecast the Snow Line Elevation (SLE) in the European Alps. We generate monthly SLE time series from the entire Landsat archive (1985–2021) in 43 Alpine catchments. Positive long-term SLE change rates are detected, with the highest rates (5–8 m/y) in the Western and Central Alps. We utilize this SLE dataset to implement and evaluate seven uni-variate time series modeling and forecasting approaches. The best results were achieved by Random Forests, with a Nash–Sutcliffe efficiency (NSE) of 0.79 and a Mean Absolute Error (MAE) of 258 m, Telescope (0.76, 268 m), and seasonal ARIMA (0.75, 270 m). Since the model performance varies strongly with the input data, we developed a combined forecast based on the best-performing methods in each catchment. This approach was then used to forecast the SLE for the years 2022–2029. In the majority of the catchments, the shift of the forecast median SLE level retained the sign of the long-term trend. In cases where a deviating SLE dynamic is forecast, a discussion based on the unique properties of the catchment and past SLE dynamics is required. In the future, we expect major improvements in our SLE forecasting efforts by including external predictor variables in a multi-variate modeling approach. KW - forecast KW - Earth Observation KW - time series KW - Snow Line Elevation KW - Alps KW - mountains KW - environmental modeling KW - machine learning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288338 SN - 2072-4292 VL - 14 IS - 18 ER -