TY - THES A1 - Geiger, Markus T1 - The Geology of the southern Warmbad Basin Margin - Tephrostratigraphy, Age, Fossil Record and Sedimentary Environment of Carboniferous-Permian Glacigenic Deposits of the Dwyka Group, Zwartbas, southern Namibia N2 - At Zwartbas, about 10 km west of Vioolsdrif, southern Namibia, the Dwyka succession is composed of tillites and distal fossiliferous dropstone-bearing glacio-marine shales. The completely exposed Dwyka succession is interbedded with thin bentonites, altered distal pyroclastic deposits, which were derived from the magmatic arc at the southern rim of Gondwana. Dropstone-bearing and dropstonefree sequences intercalate with four diamictites, of which the two lowest were certainly recognised as tillites. Four events of deglaciation were proven at Zwartbas and thus consist with correlative deposits in southern Africa. Numerous fossilised fishes, trace fossils, and plant fragments appear frequently within the lower half of the Dwyka succession whereas trace fossils were principally found in the complete succession. Although the environmental determination is quite problematic, the fossil assemblage rather implies proximal, shallow water conditions with temporary restricted oxygenation. The hinterland was covered with considerable vegetation, which points to a moderate climate. Water salinity determinations based on shale geochemistry rectify contrary palaeontological results and point to rather brackish or non-marine conditions in comparison to present-day salinites. Geochemical analyses of the bentonites relate the pyroclastic deposits with acid to intermediate source magmas, as they are known from the magmatic arc in present-day Patagonia. Tectono-magmatic comparisons furthermore emphasise a syn-collision or volcanic-arc situation of the magma source. However, significant cyclicity in the production of the pyroclastic deposits was not observed. Radiometric age determinations of two tuff beds clearly date the onset of glacial activity into the Late Carboniferous. KW - Namibia KW - Karbon KW - Permokarbon KW - Vereisung KW - Tuff KW - Oranje KW - Fossil KW - Geochemie KW - Schwermineral KW - Diamiktit KW - Tillit KW - Tonstein KW - Dwyka KW - Carboniferous KW - Permian KW - Glaciation KW - Geochemistry KW - Petrography Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46251 ER - TY - THES A1 - Geiger, Markus T1 - An Explanation of the Geological Map 1:10000 of the Namibian borderland along the Orange River at Zwartbas - Warmbad District - Karas Region - Namibia N2 - The locality of Zwartbas is situated at the border of Namibia and South Africa about 15 km west of Noordoewer. The mapped area is confined by the Tandjieskoppe Mountains in the north and the Orange River in the south. Outcropping rocks are predominantly sediments of the Nama Group and of the Karoo Supergroup. During the compilation of this paper doubts arose about the correct classification of the Nama rocks as it is found in literature. Since no certain clues were found to revise the classification of the Nama rocks, the original classification remains still valid. Thus the Kuibis and Schwarzrand Subgroup constitute the Nama succession and date it to Vendian age. A glacial unconformity represents a hiatus for about 260 Ma. This is covered by sediments of the Karoo Supergroup. Late Carboniferous and early Permian glacial deposits of diamictitic shale of the Dwyka and shales of the Ecca Group overlie the unconformity. The shales of the Dwyka Group contain fossiliferous units and volcanic ash-layers. A sill of the Jurassic Tandjiesberg Dolerite Complex (also Karoo Supergroup) intruded rocks at the Dwyka-Ecca-boundary. Finally fluvial and aeolian deposits and calcretes of the Cretaceous to Tertiary Kalahari Group and recent depositionary events cover the older rocks occasionally. N2 - Die Lokalität Zwartbas liegt an der namibisch-südafrikanischen Grenze, etwa 15 km westlich von Noordoewer. Das Kartiergebiet wird durch die Tandjiesberge im Norden und den Oranje Fluß im Süden begrenzt. Die anstehenden Gesteine bestehen hauptsächlich aus Sedimenten der Nama Gruppe und der Karoo Supergruppe. Während der Erarbeitung dieser Abhandlung entstanden Zweifel an der Klassifikation der Nama Gesteine, so wie sie in der Literatur zu finden ist. Da keine sicheren Hinweise zur Revision der Klassifikation der Nama Gesteine gefunden wurden, bleibt die ursprünglich Klassifikation jedoch gültig. Die Kuibis und Schwarzrand Untergruppe bilden also die Nama Abfolge und datieren sie ins Vendian. Eine glaziale Diskontinuität repräsentiert einen Hiatus von etwa 260 Mio Jahren. Sie wird überlagert von Sedimenten der Karoo Supergruppe. Spät-karbone und früh-permische glaziale Ablagerungen von diamiktitischen Tonsteinen der Dwyka Gruppe und Tonsteine der Ecca Gruppe liegen über dieser Diskontinuität. Die Sedimente der Dwyka Gruppe sind fossilführend und enthalten Tufflagen. Ein Sill des jurassischen Tandjiesberg Dolerit Komplex (auch Karoo Supergruppe) intrudierte in die Gesteine an der Dwyka-Ecca Grenze. Schließlich bedecken lokal fluviatile und äolische Ablagerungen und Kalkkrusten der kretazischen und tertiären Kalahari Gruppe und jüngerer Ablagerungsereignisse die älteren Gesteine. KW - Namibia KW - Karbon KW - Permokarbon KW - Vereisung KW - Tuff KW - Oranje KW - Fossil KW - Geochemie KW - Schwermineral KW - Diamiktit KW - Tillit KW - Tonstein KW - Präkambrium KW - Geologische Kartierung KW - Nama KW - Karoo KW - Dwyka KW - Mapping KW - glaciation Y1 - 1999 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46269 ER - TY - THES A1 - Brätz, Helene T1 - Radiometrische Altersdatierungen und geochemische Untersuchungen von Orthogneisen, Graniten und Granitporphyren aus dem Ruhlaer Kristallin, Mitteldeutsche Kristallinzone T1 - Geochronology and Geochemistry on Granitoides from the Ruhla Crystalline Complex, Mid-German Crystalline Rise N2 - Das Ruhlaer Kristallin (RK) ist Teil der NE-streichenden, variszisch angelegten Mitteldeutschen Kristallinzone. Das RK liegt am Nordwestrand des Thüringer Wald Horstes und wird von der NW-streichenden, variszisch bis rezent aktiven Fränkischen Linie durchschnitten. Die vier strukturell-metamorphen Einheiten (Truse Formation, Ruhla Formation, Brotterode Formation und Zentrales Kristallin) werden von Graniten, Dioriten und subvulkanischen Gängen intrudiert. Zirkondatierungen ergaben, daß das RK vom Silur bis zum Perm von mindestens fünf magmatischen Ereignissen betroffen war. Das älteste magmatische Ereignis um 425 Ma zeigen Zirkone zweier Orthogneise aus der Ruhlaer Formation. Geochemisch ähneln diese Orthogneise Granitoiden, die im Bereich vulkanischer Inselbögen (VAG) intrudieren. Dagegen zeigen die Orthogneise aus dem Zentralen Kristallin ein zweites, deutlich jüngeres magmatisches Ereignis um 405 Ma an. Die spätsilurischen Orthogneise sind I-Typ Granitoide mit Ähnlichkeiten zu VAG, der frühdevonische Orthogneis ist ein A-types Gestein mit Intraplatten-Granit (WPG) Signatur. Nahezu alle Orthogneise haben Zirkone mit deutlich höheren, proterozoischen Alterswerten, die Orthogneis-Protolithe haben demnach bei der Platznahme älteres Krustenmaterial assimiliert und/oder wurden daraus erschmolzen. Das dritte magmatische Ereignis wird mit der kompressiven Phase der Variszischen Gebirgsbildung in Verbindung gebracht und ist durch die Intrusion des Thüringer Hauptgranits um 350 Ma angezeigt. Es handelt sich um einen I-Typ Granit ähnlich denen die an kontinentalen Inselbögen intrudieren. Während der extensionalen Phase der Gebirgsbildung kam es im späten Karbon/ frühen Perm (um 295 Ma) zur Intrusion von zahlreichen Magmatiten. Geochemisch handelt es sich bei den Granitoiden des vierten magmatischen Ereignisses um post-kollisionale A-Typ Granite. Diese werden von Gängen rhyolithischer Zusammensetzung durchschnitten. Die Gänge können dem Spätkarbon/Rotliegend Vulkanismus im Thüringer Wald zugeordnet werden und repräsentieren das fünfte magmatische Ereignis (um 280 Ma) im RK. Die NNE-SSW-streichenden Gänge sind dabei älter als die NW-SE-streichenden Gänge. Eine geochemisch bearbeitete Probe besitzt alkaligranitische Zusammensetzung und zeigt Ähnlichkeit mit WPG. N2 - The Ruhla Crystalline Complex (RCC) is part of the NE-trending Mid-German Crystalline Rise formed during the Variscan Orogeny. It is situated at the northwestern margin of the Thuringian forest horst block and is transected by a late Variscan to recently active NW-trending transcurrent fault system, the Franconian line. The RCC can be subdivided into four structural-metamorphic units (Truse Formation, Ruhla Formation, Brotterode Formation and Central Gneiss Unit) intruded by granitic, dioritic and subvolcanic magmatism. Age determinations on zircons indicate that the RCC was affected by at least five magmatic events between the Silurian and Permian. The first and oldest magmatic event is recorded by zircons from orthogneisses of the Ruhla Formation at about 425 Ma. They belong to the calc-alkaline series and show similarities to volcanic arc granites (VAG). Orthogneisses from the Central Gneiss Unit point to a second, significantly younger magmatic event at about 405 Ma. While late Silurian orthogneisses are I-type granitoides comparable to VAG the early Devonian orthogneiss is an A-type granitoid showing Within-Plate-Granite (WPG) signature. Nearly all orthogneisses contain zircons which yield significantly older, proterozoic ages, indicating assimilation and/or derivation by partial melting of Proterozoic crust. A third magmatic event at about 350 Ma, assumed to be related to the compressive phase of the Variscan Orogeny, is represented by the intrusion of the Thuringian Hauptgranite, an I-type granite similar to continental island arc granites. During the Late Carboniferous to Early Permian at about 295 Ma the RCC was again affected by voluminous magmatism, related to extensional tectonism. The granites are A-type granites and their geochemical pattern display similarities to post-collision granites. Plutonic rocks of the fourth magmatic event are transected by dykes of rhyolitic composition, related to Late Carboniferous and the Rotliegend volcanism in the Thuringian Forest horst block (fifth magmatic event at about 280 Ma). The NNE-SSW-trending dykes are older than the NW-SE-trending dykes. One sample investigated geochemically is alkaligranitic and shows affinities to WPG. KW - Ruhlaer Kristallin KW - Orthogneis KW - Granit KW - Geochemie KW - Geochronologie KW - Mitteldeutsche Kristallinzone KW - Fränkische Linie KW - Ruhlaer Kristallin KW - Einzelzirkonevaporation KW - SHRIMP KW - Mid-German Crystalline Rise KW - Franconian line KW - Ruhla Crystalline Complex KW - Single zircon evaporation KW - SHRIMP Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2320 ER - TY - THES A1 - Djouka-Fonkwé, Merline Laure T1 - Association of S-type and I-type granitoids in the Neoproterozoic Cameroon orogenic belt, Bafoussam area, West Cameroon : geology, geochemistry and petrogenesis T1 - Zusammenhang von S-Typ und I-typ Granitoiden im Neoproterozoic Cameroon orogenic Belt im Bafoussam Region, Westliches Kamerun N2 - The Bafoussam area in west Cameroon is located within the Cameroon Neoproterozoic orogenic belt (north of the Congo craton) which is part of the Central African Fold Belt (CAFB).The evolution of the CAFB is related to the collision between the convergent West African craton, the São Francisco – Congo cratons and the Sahara Metacraton. The outcrop area stretches over a surface of ~1000 km2 and dominantly consists of granitoids which intruded wall-rocks of gneiss and migmatite during the Pan-African orogeny. The Bafoussam granitoid emplacement was influenced by the N 30 °E strike-slip shear zone in the prolongation of the Cameroon Volcanic Line, but also by the N 70 °E Central Cameroon Shear Zone. In the field, these two shear directions are expressed in the schistosity and foliation trajectories, fault orientation and the alignment of the volcanic cones as well. In the Bafoussam area, four types of granitoids can be distinguished, including: (i) the biotite granitoid, (ii) the deformed biotite granitoid, (iii) the mega feldspar granitoid, and (iv) the two-mica granitoid. These granitoids occur as elongated plutons hosting irregular mafic enclaves (amphibole-bearing, biotite-rich, and metagabbroic types) and are frequently cut by late pegmatites, aplite dykes and quartz veins. Petrographically, they range in composition from syenogranite (major), alkali-feldspar granite, granodiorite, monzogranite, quartz-syenite, quartzmonzonite to quartz-monzodiorite. Potassium feldspar, quartz, plagioclase and biotite are the principal phases, in cases accompanied by amphibole and accessory minerals such as apatite,zircon, monazite, titanite, allanite, ilmenite and magnetite. Sericite, epidote and chlorite are secondary minerals. In addition, the two-mica granitoid contains primary muscovite and sometimes igneous garnet. In the granitoids, potassium feldspar is orthoclase (microcline and orthoclase: Or81–97Ab19–3), and plagioclase is mainly oligoclase with some albite and andesine (An3–35Ab96–64).Biotite is Fe-rich (meroxene and lepidomelane, with some siderophyllite), having high Fe2+/(Fe2+ + Mg) ratios of 0.40–0.80. It is a re-equilibrated primary biotite and suggests calc-alkaline and peraluminous nature of the host granitoids. Amphibole is edenitic and magnesian hastingsitic hornblende, with high Mg/(Mg + Fe2+) ratios of 0.50–0.62. The evolution of the hornblende was dominated by the edenitic, tschermakitic, pargasitic and hastingsitic substitution types. Primary muscovite is iron-rich [Fe2+/(Fe2+ + Mg) = 0.52–0.82] and has experienced celadonite and paragonite substitutions. Igneous garnet is almandine–spessartine (XFe = 0.99 and XMn = 0.46–0.56). The euhedral grain shapes of garnet crystals and the absence of inclusions coupled with the high Mn and Fe2+contents (2.609–3.317 a.p.f.u and 2.646–3.277 a.p.f.u,respectively) and low Mg contents (0.012–0.038 a.p.f.u) clearly point to its plutonic origin. The Mn-depletion crystallization model is suggested for the origin of the analyzed garnet, i.e. initial crystallization of garnet inducing early decrease of Mn in the original melt. Aluminum-in-hornblende and phengite barometric estimates show that the granitoids crystallized at 4.2 ± 1.1 to 6.6 ± 1.0 kbar, corresponding to emplacement depths of 15–24 km.Zircon and apatite saturation temperature calibrations and hornblende–plagioclase thermometry yielded emplacement temperatures between 772 ± 41 and 808 ± 34 °C. Except the two-mica granitoid, the titanite–magnetite–quartz assemblage gives oxygen fugacities ranging from 10–17 to 10–13, suggesting that the granitoids were produced by an oxidized magma. Since the twomica granitoid lacks magnetite, it was originated from a magma under reducing conditions, below the quartz–fayalite–magnetite buffer. Fluid inclusions in quartz from hydrothermal veins are secondary in nature and are found in trails along healed microcracks or in clusters. Two types of fluid inclusion have been recognized, mixed aqueous–non-aqueous volatile fluid inclusions subdivided into aqueous-rich mixed and non-aqueous volatile-rich mixed fluid inclusions, and pure aqueous fluid inclusions.The non-aqueous volatile-rich mixed fluid inclusions are one-, two-, or three-phase inclusions, whereas the aqueous-rich mixed fluid inclusions are exclusively three-phase inclusions. Both have similar low to moderate salinities (1 to 10 equiv. wt. %). The total homogenization temperatures of the aqueous-rich mixed fluid inclusions are slightly lower than those of the nonaqueous volatile-rich mixed fluid inclusions, ranging from 150 to 250 °C and 170 to 300 °C,respectively. They contain nearly pure CO2, or CO2 with addition of 4.1–13.5 mole % CH4 as volatile constituents. Pure aqueous fluid inclusions are two-phase with lower total homogenization temperatures (130–150 °C) and salinities ranging from 3 to 8 equiv. wt. %. They display mixing salt system characteristics, having NaCl as the dominant salt and considerable amounts of other divalent cations. Aqueous-rich mixed fluid inclusions and pure aqueous fluid inclusions exhibit a low geothermal gradient value of 18 °C/km, whereas the non-aqueous volatiles-rich mixed fluid inclusions have a high density which correspond to high geothermal gradient of 68 °C/km. The studied granitoids are intermediate to felsic in compositions (56.9–74.6 wt. % SiO2)and have high contents of alkalis K2O (1.73–7.32 wt. %) and Na2O (1.25–5.13 wt. %) but low abundances in MnO (0.01–0.20 wt. %), MgO (0.10–3.97 wt. %), CaO (0.37–4.85 wt. %), P2O5(up to 0.90 wt. %). They display variable contents in TiO2 (0.07–0.91 wt. %), Fe2O3* (total Fe = 0.96–7.79 wt. %) and Al2O3 (12.0–17.6 wt. %) contents. The granitoids show a wide range of high-field-strength elements (HFSE) and large ion lithophile elements (LILE) contents, with felsic granitoids being enriched in HFSE and the intermediate granitoids displaying in contrast high LILE concentrations. They exhibit chemical characteristics of non-alkaline to mid-alkaline, alkali-calcic, calc-alkaline, K-rich to shoshonitic, ferriferous affinities. Chondrite-normalized rare earth element (REE) patterns are characterized by a strong enrichment in light compared to heavy REEs [(La/Sm)N = 3.23–9.65 and (Ga/Lu)N = 1.45–5.54, respectively], with small to significant negative Eu anomalies (Eu/Eu* = 0.28–1.08). Ocean ridge granites (ORG)normalized multi-elements spidergrams display typical collision-related granites pattern, with characteristic negative anomalies of Ba, Nb and Y, and positive anomalies in Rb, Th and Sm. The granitoids under study are genetically I-type granitoids (biotite granitoid, deformed biotite granitoid and mega feldspar granitoid) and one S-type granitoid (two-mica granitoid). The I-type granitoids are metaluminous (ASI: 0.70–1.00) or moderately peraluminous if highly fractionated (ASI: 1.01–1.06). The geochemistry and petrological features of these I-type granitoids argue for close genetic relationships and it is suggest that they originated from a single parent magma. The observed variability in mineralogy and major and trace element compositions in these granitoids are then the reflection of the fractional crystallization that evolved separation of plagioclase, biotite, K-feldspar and accessory minerals at the level of emplacement. The two mica S-type granitoid is exclusively peraluminous (ASI: 1.07–1.25) and classified as a peraluminous leucocratic granitoid or leucogranite. It is marked in its CIPW normative composition by the permanent presence of corundum, ranging between 0.12 and 3.03. The Bafoussam granitoids were emplaced in a syn- to post-collisional tectonic environment. The observed deformational features and the concentrations in Y, less than 40 ppm, confirm that they are related to an orogenesis. Whole-rock Rb–Sr isochrons defines an igneous crystallization ages of 540 ± 27 Ma for the biotite granitoid and 587 ± 41 Ma for the mega feldspar granitoid. These ages fit with the range of Pan-African granitoid ages (650–530 Ma) in West Cameroon and correspond to the Pan-African D2 deformation event in the Neoproterozoic Cameroon orogenic belt. The two-mica granitoid yields an older Rb–Sr isochron age of 663 ± 62 Ma which is considered to be probably a mixing age. The Nd–Sr isotopic compositions indicate that the I-type granitoids have been produced by partial melting of a tonalite–granodiorite source in the lower crust. This is supported by their initial 87Sr/86Sr(600 Ma) ratios (0.705–0.709) and by their WNd(600 Ma) values (0.2 to –6.3, mainly < 0). The two-mica granitoid was generated by partial melting of a greywacke-dominated source involving biotite-limited, biotite dehydration melting. Chemical data of the two-mica granitoid that support this hypothesis are low CaO/Na2O (0.11–0.38) and Sr/Ba (0.20–0.30), the high Rb/Sr (2.26–7.00), the high initial 87Sr/86Sr(600 Ma) ratios ranging from 0.708 to 0.720, the large range in Al2O3/TiO2 (47–204) and the negative WNd(600 Ma) values (–9.9 to –14.0). Moreover,the higher initial 87Sr/86Sr(600 Ma) ratios of the two-mica granitoid are consistent with an upper crust origin. The depleted mantle Nd model ages (TDM) of 1.3–2.3 Ga indicate that the studied granitoids originated by partial melting of Paleoproterozoic and Mesoproterozoic crust, with limited mantle-derived magma contribution. The high initial 87Sr/86Sr(600 Ma) ratios of these granitoids coupled with the wide negative WNd(600 Ma) values strongly suggest a very long residence time in the crust of their protoliths before the melting event. The petrologic signatures of the Bafoussam granitoids are similar to those described in other Pan-African belts of western Gondwanaland such as the neighbouring provinces of Nigeria and the Central African Republic, as well as in the Borborema Province of northeastern Brazil. This supports the previous hypothesis that the Central African fold Belt including Cameroon, Nigeria and the Central African Republic provinces has a continuation in Brazil. N2 - Die Region Bafoussam im westlichen Kamerun ist Teil des "Cameroon Neoproterozoic orogenic belt" (nördlich des Kongo Kratons), welcher zum "Central African Fold Belt" (CAFB)gehört. Die Entstehung des CAFB hängt ursächlich mit der Kollision zwischen dem konvergierenden Westafrikanischen Kraton, dem Sao Francisco – Kongo Kraton und dem Sahara Megakraton zusammen. Die untersuchten Gesteine, im wesentlichen Granitoide, die während der pan-afrikanischen Orogenese in Migmatite und Gneisse intrudierten, sind auf einer Fläche von ca. 1000 km2 aufgeschlossen. Die Platznahme der Bafoussam Granitoide wurde zum einen durch die N 30 °E verlaufende transversale Störungszone entlang der Verlängerung der "Cameroon Volcanic Line" beeinflusst, zum anderen durch die N 70 °E verlaufende "CentralCameroon Shear Zone". Im Gelände finden diese beiden Richtungen Ausdruck in der Schieferung und Foliation der Gesteine, der Orientierung von Störungen, sowie der Anordnung von vulkanischen Kegeln.Das untersuchte Gebiet in der Umgebung von Bafoussam beherbergt vier Typen von Granitoiden: (i) Biotit-Granitoid, (ii) deformierter Biotit-Granitoid, (iii) Mega-Feldspat-Granitoid und (iv) Zwei-Glimmer-Granitoid. Generell sind die Granitoide als ausgelängte Plutone mit eingeschlossenen Enklaven von Mafiten (amphibolführende, biotitreiche und metagabbroide Typen) aufgeschlossen und werden teilweise von jüngeren Quarz-, Pegmatit- und Aplitdykes durchzogen. Petrographisch reichen die Granitoide von dominierendem Syenogranit über Alkali-Feldspat-Granit, Granodiorit, Monzogranit, Quarz-Syenit, Quarz-Monzonit bis zu Quarz-Monzodiorit. Hauptgemengteile sind Kalifeldspat, Quarz, Plagioklas und Biotit, die zusammen mit teilweise vorhandenem Amphibol und Akzessorien wie Apatit, Zirkon, Monazit,Titanit, Allanit, Ilmenit und Magnetit auftreten. Serizit, Epidot und Chlorit sind Sekundärminerale. Der Zwei-Glimmer-Granitoid enthält zusätzlich primären Muskovit und gelegentlich magmatischen Granat. Die Granitoide enthalten als Kalifeldspat generell Orthoklas (Mikroklin und Orthoklas:Or81–97Ab19– 3), Plagioklas ist hauptsächlich Oligoklas mit etwas Albit und Andesin (An3–35Ab96–64). Biotit ist Fe-reich (Meroxene und Lepidomelan mit etwas Siderophyllit) mit hohen Fe2+/(Fe2++ Mg) Verhältnissen zwischen 0.40–0.80. Es handelt sich um reequilibrierten primären Biotit, der ein kalk-alkalines, peraluminöses Ausgangsgestein für die Granitoide anzeigt. Amphibol ist edenitische und magesium-hastingsitische Hornblende mit hohem Mg/(Mg + Fe2+) Verhältnis von 0.50–0.62. Die Entstehung der Hornblende wurde durch edenitische, tschermakitische,pargasitische und hastingsitische Substitutionen bestimmt. Primärer Muskovit ist eisenreich [Fe2+/(Fe2+ + Mg) = 0.52–0.82] und hat Celadonit- und Paragonit-Substitutionen erfahren. Granat ist Almandin-Spessartin (XFe = 0.99 und XMn = 0.46–0.56). Die idiomorphe Ausbildung des Granats und das Fehlen von Einschlüssen in Kombination mit hohen Mn und Fe2+ Gehalten(2.609–3.317 a.p.f.u und 2.646–3.277 a.p.f.u) und niedrigen Mg-Gehalten (0.012–0.038 a.p.f.u)liefern deutliche Hinweise für den plutonischen Ursprung des Granats. Für die Sprossung des Granats wird das Mn-Verarmungsmodell angenommen; danach wächst initialer Granat, was eine frühe Mn-Verarmung der Schmelze zur Folge hat. Aluminium-in-Hornblende- und Phengit-barometrische Abschätzungen zeigen, dass die Granitoide bei 4.2 ± 1.1 bis 6.6 ± 1.0 kbar kristallisierten, was einer Platznahmetiefe von 15–24 km entspricht. Temperaturbestimmungen über die Zirkon- und Apatit-Sättigung und Hornblende-Plagioklas Thermometrie ergeben Platznahmetemperaturen von 772 ± 41 bis 808 ± 34 °C. Mit Ausnahme des Zwei-Glimmer-Granitoids liefert die Paragenese Titanit-Magnetit-Quarz eine Sauerstoff-Fugazität zw. 10-17 und 10-13, was darauf schliessen lässt, dass die Granitoide einem oxidierten Magma entstammen. Da dem Zwei-Glimmer-Granitoid Magnetit fehlt, entstand er aus einem Magma unter reduzierenden Bedingungen unterhalb des Quarz-Fayalit-Magnetit Puffers. Fluideinschlüsse in Quarz aus hydrothermalen Gängen sind sekundärer Natur und als Spuren entlang verheilter Mikrorisse oder als Cluster zu finden. Zwei Sorten von Fluideinschlüssen wurden unterschieden, gemischte wässrige-nicht-wässrige volatile Fluideinschlüsse, die wiederum in wässrige gemischte und nicht-wässrige volatilreiche gemischte Fluideinschlüsse unterteilt werden und zweitens rein wässrige Einschlüsse. Die nichtwässrigen volatilreichen gemischten Fluideinschlüsse sind ein-, zwei-, oder drei-phasige Einschlüsse. Beide Sorten besitzen ähnlich niedrige bis mittlere Salinitäten (1 bis 10 equiv. wt.%). Die Homogenisierungstemperatur der wässrigen gemischten Fluideinschlüsse ist geringfügig niedriger als die der nicht-wässrigen volatilreichen, mit Werten zw. 150 bis 250 °C bzw. 170 bis 300 °C. Sie enthalten nahezu reines CO2, oder CO2 mit 4.1–13.5 mol % CH4 als flüchtigen Bestandteil. Reine wässrige Fluideinschlüsse sind zwei-phasig mit niedrigerer Homogenisierungstemperatur (130–150 °C) und Salinitäten zw. 3 und 8 equiv. wt. %. Sie zeigen Salzmischungscharakteristika mit NaCl als dominantem Salz sowie gewissen Mengen an anderen divalenten Kationen. Wässrige gemischte Fluideinschlüsse und reine wässrige Einschlüsse zeigen einen niedrigen geothermalen Gradienten von 18 °C/km, wohingegen nichtwässrige gemischte Fluideinschlüsse eine hohe Dichte aufweisen, was einem hohen geothermalen Gradienten von 68 °C/km entspricht. Die untersuchten Granitoide besitzen eine intermediäre bis saure Zusammensetzung(56.9–74.6 wt. % SiO2) und zeigen hohe Alkali-Gehalte (K2O = 1.73–7.32 wt. %, Na2O = 1.25–5.13 wt. %), aber niedrige Gehalte an MnO (0.01–0.20 wt. %), MgO (0.10–3.97 wt. %), CaO(0.37–4.85 wt. %) und P2O5 (bis zu 0.90 wt. %), zudem besitzen sie variable Gehalte an TiO2(0.07–0.91 wt. %), Fe2O3* (total Fe = 0.96–7.79 wt. %) und Al2O3 (12.0–17.6 wt. %). Die Granitoide zeigen ein weites Spektrum bezogen auf ihren Gehalt an high-field-strenght elements(HFSE) und large-ion-litophile elements (LILE), wobei saure Granitoide an HFSE angereichert sind und intermediäre Granitoide hohe Konzentrationen von LILE aufweisen. Die Granitoide zeigen chemische Signaturen nicht-alkaliner bis mittel-alkaliner, alkali-kalziumreicher, kalkalkaliner,K-reicher bis shoshonitischer und eisenreicher Magmatite. Chondrit-normalisierte Seltene Erden Element (SEE)-Verteilungsmuster sind durch eine starke Anreicherung der leichten SEE [(La/Sm)N = 3.23–9.65] verglichen mit schweren SEE [(Ga/Lu)N = 1.45–5.54]gekennzeichnet sowie durch geringe bis signifikante negative Eu Anomalien (Eu/Eu* = 0.28–1.08). Auf die Zusammensetzung von Ocean Ridge Granit (ORG) normalisierte Multielement-Spiderdiagramme zeigen Verteilungsmuster, die typisch sind für Granite aus Kollisionsorogenen,mit charakteristischen negativen Anomalien von Ba, Nb und Y sowie positiven Anomalien von Rb, Th, Sm. Die untersuchten Granitoide sind genetisch I-Typ Granitoide (Biotit-Granitoid, deformierter Granitoid und Mega-Feldspat-Granitoid) mit einem S-typ Granitoid (Zwei-Glimmer-Granitoid). Die I-Typ Granitoide sind metaluminös (ASI: 0.70–1.00) oder schwach peraluminös bei starker Fraktionierung (ASI: 1.01–1.06). Die geochemischen und petrologischen Merkmale dieser I-Typ Granitoide sprechen für eine enge genetische Verwandtschaft der Gesteine untereinander und lassen somit eine einzige Quelle als Ausgangsmagma vermuten. Die beobachteten Unterschiede in der Mineralogie und in Haupt- und Spurenelementzusammensetzung spiegeln somit die fraktionierte Kristallisation wieder, welche für die Trennung von Plagioklas, Biotit, K-Feldspat und Akzessorien während der Platznahme verantwortlich ist. Der S-Typ Zwei-Glimmer-Granitoid ist ausschliesslich peraluminös (ASI:1.07–1.25) und wird als peraluminöser leukokrater Granitoid oder Leukogranit klassifiziert. In der normativen CIPW Zusammensetzung ist er durch die durchgehende Präsenz von Korund gekennzeichnet, mit Werten zw. 0.12 und 3.03. Die Platznahme der Bafoussam Granitoide fand in einem tektonischen syn- bis post-Kollisions-Umfeld statt. Die beobachteten Deformationsmerkmale und die Konzentration an Y mit Werten meist unter 40 ppm bestätigen, dass die Granitoide mit einer Orogenese verbunden sind. Rb–Sr Gesamtgesteins-Isochronen ergeben ein Kristallisationsalter von 540 ± 27 Ma für den Biotit-Granitoid und 587 ± 41 Ma für den Mega-Feldspat-Granitoid. Diese Alter entsprechen denen anderer pan-afrikanischer Granitoide (650–530 Ma) in West-Kamerun und stimmen mit dem pan-afrikanischen D2 Deformationereignis im "Cameroon Neoproterozoic Orogenic Belt" überein. Der Zwei-Glimmer Granitoid liefert ein Rb–Sr Isochronenalter von 663 ± 62 Ma, was wahrscheinlich als Mischungsalter zu deuten ist. Die Zusammensetzung der Nd–Sr Isotope zeigt an, dass die I-Typ Granitoide durch partielles Schmelzen einer tonalitisch-granodioritischen Quelle entstanden sind. Dies wird gestützt durch ihr initiales 87Sr/86Sr Verhältnis (0.705–0.709) sowie durch ihre WNd(600 Ma) Werte(0.2 bis –6.3, meist <0). Der Zwei-Glimmer-Granitoid entstand durch partielles Aufschmelzen einer Grauwacken-dominierten Quelle mit Biotit-Entwässerungs-Schmelzen. Chemische Daten des Zwei-Glimmer-Granitoids, die diese Hypothese bestätigen, sind niedrige CaO/Na2O (0.11–0.38) und Sr/Ba (0.20–0.30) Gehalte, hohe Rb/Sr (2.26–7.00) Gehalte, sowie die grosse Spanne im Al2O3/TiO2 Verhältnis (47–204) und negative WNd(600 Ma) Werte (–9.9 bis –14.0). Desweiteren sprechen die höheren initialen 87Sr/86Sr(600 Ma) Verhältnissse des Zwei-Glimmer-Granitoids für einen Urspung aus der oberen Kruste. Die Nd-Modellalter eines verarmten Mantels (TDM) von 1.3–2.3 Ga geben Hinweise auf die Entstehung der untersuchten Granitoide durch partielles Aufschmelzen paläozoischer und mesoproterozoischer Kruste, mit eingeschränkter Zufuhr von Mantelmagma. Die hohen initialen 87Sr/86Sr(600 Ma) Werte der Granitoide, verbunden mit negativen WNd(600 Ma) Werten sprechen stark dafür, dass der Protolith dieser Granitoide eine sehr lange Zeit in der Kruste verbrachte, bevor es zum Schmelzereignis kam. Die petrologischen Signaturen der Bafoussam Granitoide ähneln denen von bereits beschriebenen Granitoiden des pan-afrikanischen Gürtels in West-Gondwana, z. B. aus den angrenzenden Provinzen von Nigeria und der Zentral Afrikanischen Republik sowie der Borborema Provinz im nordöstlichen Brasilien. Dies unterstützt die Hypothese, dass der "Central African Fold Belt" von Kamerun, Nigeria und der Zentral Afrikanischen Provinz seine Fortsetzung in Brasilien findet. KW - Kamerun KW - Granitoid KW - Geologie KW - Geochemie KW - Gesteinsbildung KW - Panafrikan KW - Granitoiden KW - Geochemie KW - Petrogenesis KW - Kamerun KW - Pan-African KW - S- and I-type granitoids KW - geochemistry KW - petrogenesis KW - Cameroon Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14526 ER - TY - THES A1 - Bangert, Berthold T1 - Tephrostratigraphy, petrography, geochemistry, age and fossil record of the Ganigobis Shale Member and associated glaciomarine deposits of the Dwyka Group, Late Carboniferous, southern Africa T1 - Tephrostratigraphie, Petrographie, Geochemie, Alter und Fossilinhalt des "Ganigobis Shale Members" und assozierte, glaziomarine Ablagerungen der Dwyka Gruppe, Oberkarbon, südliches Afrika N2 - Thin, pyroclastic marker beds are preserved in argillaceous units of the Dwyka Group in southern Nambia and South Africa which are the earliest witnesses of volcanism in Karoo-equivalent strata of southern Africa. The aim of this study is to present the field appearance of these marker beds, to characterise their mineralogy, geochemistry and heavy mineral contents and to present new radiometric age data from their juvenile zircons. Carboniferous-Permian Karoo deposits in the Aranos Basin of southern Namibia include the glacially dominated, Carboniferous Dwyka Group and the shelf sediments of the overlying Permian Ecca Group. The Dwyka Group can be subdivided into four upward-fining deglaciation sequences, each capped by relatively fine-grained glaciolacustrine or glaciomarine deposits. The uppermost part of the second deglaciation sequence comprises a thick fossiliferous mudstone unit, referred to as the ”Ganigobis Shale Member”. An abundance of marine macro- and ichnofossils as well as extrabasinally derived ashfall tuff beds characterise the more than 40 m thick mudstones and provide the basis for an integrated high-resolution biostratigraphic and tephrostratigraphic framework. The Ganigobis Shale Member contains remains of paleoniscoid fishes, bivalves, gastropods, scyphozoa, crinoid stalks, sponges and sponge spicules, radiolaria, coprolites and permineralised wood. These mostly marine body and trace fossils record the extent of the first of a series of marine incursions into the disintegrating Gondwanan interior as early as the Carboniferous. Within the Ganigobis Shale Member 21 bentonitic tuff beds displaying a thickness of 0.1 and 2.0 cm were determined which in part can be traced laterally over tens of kilometres indicating an ashfall derivation. Further bentonitic tuff beds of the Dwyka Group were detected in cut banks of the Orange River near Zwartbas in the Karasburg Basin (southern Namibia). The 65 tuff beds vary between 0.1 and 4.0 cm in thickness. Due to a similar fossil content and age of the background deposits, the tuff beds are thought to have originated from the same source area as those from the Aranos Basin. Thin-sections reveal the derivation of the tuff beds as distal fallout ashes produced by explosive volcanic eruptions. The matrix consists of a micro- to cryptocrystalline clay mineral-quartz mixture. Rare fragments of splinter quartz, completely recrystallized ash-sized particles of former volcanic glass and few apatite and zircon grains are the only juvenile components. The tuff beds contain as non-opaque, juvenile heavy minerals mostly zircon, apatite, monazite and sphene but also biotite, garnet, hornblende and tourmaline. Geochemical analyses point to an original, intermediate to acid composition of the tuff samples. LREE enrichment and Eu-anomalies show that the parent magma of the tuff beds was a highly evolved calc-alkaline magma. Tectonomagmatic discrimination diagrams point to a volcanic arc setting. Bedding characteristics and the lack of any Carboniferous-Permian volcanic successions onshore Namibia makes an aeolian transport of the ash particles over larger distances likely. Siliceous ashes could thus have been transported by prevailing south-westerly winds from arc-related vents in South America to southern Africa. A second, more local source area could have been located in an intracontinental rift zone along the western margin of southern Africa which is indicated by north-south directed ice-flow directions in the Late Carboniferous. SHRIMP-based age determinations of juvenile magmatic zircons separated from the tuff beds allow a new time calibration of Dwyka Group deglaciation sequences II - IV and the Dwyka/Ecca boundary. Zircons of the Ganigobis Shale Member yield SHRIMP-ages of 302-300 Ma. This dates the uppermost part of the second deglaciation sequence in southern Namibia to the Late Carboniferous (Gzelian) and provides a minimum age for the onset of Karoo-equivalent marine deposition. The age of the uppermost argillaceous part of the third deglaciation sequence (297 Ma) was determined from zircons of a tuffaceous bed sampled in a roadcut in the Western Cape Province, South Africa. The deposits correlate with the Hardap Shale Member in the Aranos Basin of southern Namibia which are part of much more widespread Eurydesma transgression. The age of the Dwyka/Ecca boundary was determined by SHRIMP-measurements of juvenile zircons from two tuff beds of the basal Prince Albert Formation sampled in the Western Cape Province (South Africa). The zircons revealed ages of 289 - 288 Ma which date the Dwyka/Ecca boundary at about 290 Ma. According to these ages, deglaciation sequences II-IV lasted for 5 Ma on average. N2 - Geringmächtige, bentonitische Tuffe treten in Tonsteinabschnitten der karbonen Dwyka Gruppe im südlichen Namibia und Südafrika auf. Sie repräsentieren die ersten Hinweise auf eine vulkanische Tätigkeit innerhalb der Karoosedimente im südlichen Afrika. Die vorliegende Dissertation faßt die Geländebeschreibung der Tuffe, ihre Petrographie, Mineralogie und Geochemie zusammen. Juvenile Zirkone der Tuffe erlaubten eine radiometrisches Altersermittlung mittels SHRIMP-Analyse. Sie stellen somit die ersten radiometrisch exakt ermittelten Altersdaten innerhalb der Dwyka Gruppe dar. Permokarbone Karoosedimente des Aranos Beckens in Südnamibia setzen sich aus der glazigenen Dwyka Gruppe des Karbons und den Schelfsedimenten der folgenden Ecca Gruppe des Perms zusammen. Die Dwyka-Gruppe kann dabei in vier Entgletscherungssequenzen unterteilt werden. Der oberste Bereich jeder Entgletscherungssequenz ist meist durch glaziomarine Ablagerungen gekenn-zeichnet. Im Fall der zweiten Entgletscherungssequenz handelt es sich um einen mehr als 40 m mäch-tigen, fossilführenden Tonsteinabschnitt, der als ‘Ganigobis Shale Member’ bekannt ist. Eine Vielzahl von meist marinen Makro- und Spurenfossilien (palaeoniskoide Fischen, Bivalven, Gastropoden, Scyphozoen, Crinoideenstielglieder, Radiolarien) sowie distale Aschentuffe bilden die Grundlage für eine hochauflösende, biostratigraphische und tephrostratigraphische Gliederung des ‘Ganigobis Shale Members’. 21 bentonitische, lateral verfolgbare Aschentuffe mit einer Mächtigkeit zwischen 0.1 und 2.0 cm wurden innerhalb des ‘Ganigobis Shale Member’ bestimmt. 65 weitere, bis 4.0 cm mächtige Aschentuffe der Dwyka Gruppe wurden in Uferbänken des Orange Rivers in der Nähe von Zwartbas im Karasburg Becken Südnamibias entdeckt. Aufgrund eines ähnlichen Fossilinhaltes der Hinter-grundsedimente und eines ähnlichen Alters der Tuffe kann von dem gleichen Herkunftsgebiet der Aschen ausgegangen werden. Dünnschliffe der Tuffe zeigen, daß es sich bei den Horizonten um distale Aschenfallablagerungen handelt, die durch explosiven Vulkanismus gefördert wurden. Die Matrix besteht aus einer mikro- bis kryptokristallinem Tonmineral-Quarz- Mischung. Idiomorpher, hexagonaler Quarz, Splitterquarze und Quarzfragmente, vollständig rekristallisierte Aschenkörner und vereinzelt Schwerminerale wie Apatit und Zirkon sind weitere juvenile Komponenten. Folgende transparente, juvenile Schwerminerale treten auf: Zirkon, Apatit, Monazit, Titanit, Biotit, Granat, Hornblende und Turmalin. Geochemische Analysen weisen auf eine intermediäre bis saure Ausgangszusammensetzung der Tuffe hin. Die Anreicherung der LREE und die Eu-Anomalien zeigen, daß die Zusammensetzung des Ausgangsmagma der Tuffe kalkalkalisch und sehr differenziert war. Tektonomagmatische Diskrimi-nationsdiagramme deuten eine Subduktionszone als Herkunftsgebiet der Tuffe an. Die Korngröße der Tuffe und das Fehlen jeglicher permokarboner, vulkanischer Abfolgen in Namibia läßt auf einen Transport der Aschen über größere Distanzen schließen. Saure Aschen könnten bei vorherrschenden südwestlichen Windrichtungen von Südamerika, wo saurer Inselbogenmagmatismus im Permokarbon bekannt ist, nach Südafrika und Namibia transportiert worden sein. Ein zweites, lokaleres Herkunfts-gebiet der Aschentuffe könnte innerhalb einer kontinentalen Riftzone am Westrand des südlichen Afrikas gelegen haben. Sie ist im Oberkarbon durch allgemein nord-südgerichtete Eisstromrichtungen im Aranos und Karasburg Becken (Südnamibia) und im Perm durch die marinen Ablagerungen der Whitehill Formation (Ecca Gruppe) angedeutet. Altersbestimmungen an den juvenilen Zirkonen ermöglichten sowohl eine neue Zeiteinschätzung der Entgletscherungssequenzen II - IV innerhalb der Dwyka Gruppe als auch eine zeitliche Neukali-brierung der Dwyka-/Ecca Grenze. Datierte Zirkone aus Tuffen des Ganigobis Shale Members ergaben SHRIMP-Alter von 302 - 300 Ma. Damit fallen der oberste Bereich der zweiten Entgletscherungssequenz und die in den marinen enthaltenen Fossilien in das Oberkarbon (Gzelian). Das Alter des Topbereichs der dritten Entgletscherungssequenz (297 Ma) wurde an Zirkonen einer tuffitischen Schicht aus der Provinz Westkap in Südafrika bestimmt. Die dort aufgeschlossenen Ablagerungen korrelieren mit dem Hardap Shale Member im Aranos Becken Süd-namibias und sind Teil der weltweit bekannten Eurydesma - Transgression. Das Alter der Dwyka / Ecca-Grenze wurde an juvenilen Zirkonen von Tuffen der basalen Prince Albert Formation (Ecca Gruppe) in der Provinz Westkap (Südafrika) bestimmt. Die U-Pb - Messungen an den Zirkonen ergaben Alter von 289 - 288 Ma, die die Dwyka / Ecca-Grenze bei circa 290 Ma festlegen. KW - Südafrika KW - Namibia KW - Mariental KW - Tuff KW - Oberkarbon KW - Tephrostratigraphie KW - Gesteinskunde KW - Geochemie KW - Glaziomarines Sediment KW - Gondwana KW - Karoo KW - South Africa KW - Namibia KW - Dwyka Group KW - tuff KW - bentonite KW - glaciomarine KW - tephrostratigraphy KW - Gondwana KW - Karoo KW - Südafrika KW - Namibia KW - Dwyka Gruppe KW - Tuff KW - Bentonit KW - glaziomarin KW - Tephrostratigraphie Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2233 ER - TY - CHAP A1 - Kreuzer, Hans A1 - Vejnar, Zdenek A1 - Schüssler, Ulrich A1 - Okrusch, Martin A1 - Seidel, Eberhard T1 - K-Ar dating of the last metamorphic events in different tectonic units of the western margin of the Bohemian Massif N2 - K-Ar dating on hornblendes and micas from the TepläDomazlice zone revealed a pattern of dates which significantly deviates from the mid-Carboniferous to early Permian one that is found in the adjacent low-pressure metamorphic Moldanubian and Saxothuringian. Especially for the Mariänske Läzne metabasic complex, confirming early Czech determinations, the dates resemble the early Devonian pattern determined for the Münchberg Gneiss Massif and the Erbendorf-Vohenstrauß zone of northeastern Bavaria. This supports the idea that all three units are remnants of a huge complex which suffered a metamorphic overprint under medium-pressure conditions, probably in the early Devonian. Streng rejuvenation is found in the southern part of the Teplä-Domailice zone by which micas and even two hornblendes were reset to mid-Carboniferous ages. According to the geological setting, part of the apparently preDevonian dates may be explained by inherited argon from earlier metamorphic and magmatic events, e.g. the high-pressure metamorphism documented in eclogitic relics. However, excess argon, caused by the mid-Carboniferous overprint cannot be excluded. KW - Geochemie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87527 ER - TY - CHAP A1 - Schüssler, Ulrich A1 - Vejnar, Z. A1 - Okrusch, M. A1 - Rose, S. A1 - Seidel, E. T1 - Geochemistry of Metabasites and gabbroic rocks from the Tepla-Domazlice zone N2 - Various amphibolites, metagabbros and eclogitic relics of the Mariänske Läzne complex, and amphibolites from the Cernä Hora Massif exhibit an uniform geochemical character which compares weil with modern mid-ocean ridge basalts. Geochemically these metabasites are similar to the amphibolites of the Myto area and to schistose, partly striped amphibolites of the neighbouring Tirschenreuth-Mähring Zone and the Erbendorf-Vohenstrauss Zone (Bavaria). Greenschists and amphibolites from the Domazlice metamorphic complex show an alkaline-basaltic tendency conforming to modern within-plate basalts or basalts from anomalaus midocean ridge segments. In their chemical character, these metabasites compare weil with the flaseramphibolites of the Erbendorf-Vohenstrauss Zone. Fine-grained amphibolites in the Warzenrieth area and (gabbro-) amphibolites in the Blätterberg-Hoher Bogen area show normal MORB character. The metamorphosed gabbroic rocks in the southern part of the Neukirchen-Kdyne (meta-) igneous complex are subalkaline - tholeiitic and exhibit a magmatic differentiation trend. They differ from the neighbouring amphibolites by generally lower contents of incompatible elements. KW - Geochemie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87511 ER -