TY - JOUR A1 - Trappe, Julian A1 - Kneisel, Christof T1 - Geophysical and sedimentological investigations of Peatlands for the assessment of lithology and subsurface water pathways JF - Geosciences N2 - Peatlands located on slopes (herein called slope bogs) are typical landscape units in the Hunsrueck, a low mountain range in Southwestern Germany. The pathways of the water feeding the slope bogs have not yet been documented and analyzed. The identification of the different mechanisms allowing these peatlands to originate and survive requires a better understanding of the subsurface lithology and hydrogeology. Hence, we applied a multi-method approach to two case study sites in order to characterize the subsurface lithology and to image the variable spatio-temporal hydrological conditions. The combination of Electrical Resistivity Tomography (ERT) and an ERT-Monitoring and Ground Penetrating Radar (GPR), in conjunction with direct methods and data (borehole drilling and meteorological data), allowed us to gain deeper insights into the subsurface characteristics and dynamics of the peatlands and their catchment area. The precipitation influences the hydrology of the peatlands as well as the interflow in the subsurface. Especially, the geoelectrical monitoring data, in combination with the precipitation and temperature data, indicate that there are several forces driving the hydrology and hydrogeology of the peatlands. While the water content of the uppermost layers changes with the weather conditions, the bottom layer seems to be more stable and changes to a lesser extent. At the selected case study sites, small differences in subsurface properties can have a huge impact on the subsurface hydrogeology and the water paths. Based on the collected data, conceptual models have been deduced for the two case study sites. KW - peatland KW - slope bogs KW - geomorphology KW - subsurface hydrology KW - electrical resistivity tomography KW - ground penetrating radar KW - boreholes KW - Hunsrueck Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201699 VL - 9 IS - 3 ER - TY - JOUR A1 - Reinermann, Sophie A1 - Gessner, Ursula A1 - Asam, Sarah A1 - Kuenzer, Claudia A1 - Dech, Stefan T1 - The Effect of Droughts on Vegetation Condition in Germany: An Analysis Based on Two Decades of Satellite Earth Observation Time Series and Crop Yield Statistics JF - Remote Sensing N2 - Central Europe experienced several droughts in the recent past, such as in the year 2018, which was characterized by extremely low rainfall rates and high temperatures, resulting in substantial agricultural yield losses. Time series of satellite earth observation data enable the characterization of past drought events over large temporal and spatial scales. Within this study, Moderate Resolution Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) (MOD13Q1) 250 m time series were investigated for the vegetation periods of 2000 to 2018. The spatial and temporal development of vegetation in 2018 was compared to other dry and hot years in Europe, like the drought year 2003. Temporal and spatial inter- and intra-annual patterns of EVI anomalies were analyzed for all of Germany and for its cropland, forest, and grassland areas individually. While vegetation development in spring 2018 was above average, the summer months of 2018 showed negative anomalies in a similar magnitude as in 2003, which was particularly apparent within grassland and cropland areas in Germany. In contrast, the year 2003 showed negative anomalies during the entire growing season. The spatial pattern of vegetation status in 2018 showed high regional variation, with north-eastern Germany mainly affected in June, north-western parts in July, and western Germany in August. The temporal pattern of satellite-derived EVI deviances within the study period 2000-2018 were in good agreement with crop yield statistics for Germany. The study shows that the EVI deviation of the summer months of 2018 were among the most extreme in the study period compared to other years. The spatial pattern and temporal development of vegetation condition between the drought years differ. KW - drought KW - time series KW - heat wave KW - agriculture KW - climate extremes KW - climate change KW - crop statistics KW - MODIS KW - Germany Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225165 VL - 11 IS - 15 ER - TY - JOUR A1 - Weigand, Matthias A1 - Wurm, Michael A1 - Dech, Stefan A1 - Taubenböck, Hannes T1 - Remote sensing in environmental justice research—a review JF - ISPRS International Journal of Geo-Information N2 - Human health is known to be affected by the physical environment. Various environmental influences have been identified to benefit or challenge people's physical condition. Their heterogeneous distribution in space results in unequal burdens depending on the place of living. In addition, since societal groups tend to also show patterns of segregation, this leads to unequal exposures depending on social status. In this context, environmental justice research examines how certain social groups are more affected by such exposures. Yet, analyses of this per se spatial phenomenon are oftentimes criticized for using “essentially aspatial” data or methods which neglect local spatial patterns by aggregating environmental conditions over large areas. Recent technological and methodological developments in satellite remote sensing have proven to provide highly detailed information on environmental conditions. This narrative review therefore discusses known influences of the urban environment on human health and presents spatial data and applications for analyzing these influences. Furthermore, it is discussed how geographic data are used in general and in the interdisciplinary research field of environmental justice in particular. These considerations include the modifiable areal unit problem and ecological fallacy. In this review we argue that modern earth observation data can represent an important data source for research on environmental justice and health. Especially due to their high level of spatial detail and the provided large-area coverage, they allow for spatially continuous description of environmental characteristics. As a future perspective, ongoing earth observation missions, as well as processing architectures, ensure data availability and applicability of ’big earth data’ for future environmental justice analyses. KW - satellite remote sensing KW - review KW - environmental justice KW - big earth data KW - urban environments Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196950 SN - 2220-9964 VL - 8 IS - 1 ER - TY - JOUR A1 - Khare, Siddhartha A1 - Latifi, Hooman A1 - Rossi, Sergio A1 - Ghosh, Sanjay Kumar T1 - Fractional cover mapping of invasive plant species by combining very high-resolution stereo and multi-sensor multispectral imageries JF - Forests N2 - Invasive plant species are major threats to biodiversity. They can be identified and monitored by means of high spatial resolution remote sensing imagery. This study aimed to test the potential of multiple very high-resolution (VHR) optical multispectral and stereo imageries (VHRSI) at spatial resolutions of 1.5 and 5 m to quantify the presence of the invasive lantana (Lantana camara L.) and predict its distribution at large spatial scale using medium-resolution fractional cover analysis. We created initial training data for fractional cover analysis by classifying smaller extent VHR data (SPOT-6 and RapidEye) along with three dimensional (3D) VHRSI derived digital surface model (DSM) datasets. We modelled the statistical relationship between fractional cover and spectral reflectance for a VHR subset of the study area located in the Himalayan region of India, and finally predicted the fractional cover of lantana based on the spectral reflectance of Landsat-8 imagery of a larger spatial extent. We classified SPOT-6 and RapidEye data and used the outputs as training data to create continuous field layers of Landsat-8 imagery. The area outside the overlapping region was predicted by fractional cover analysis due to the larger extent of Landsat-8 imagery compared with VHR datasets. Results showed clear discrimination of understory lantana from upperstory vegetation with 87.38% (for SPOT-6), and 85.27% (for RapidEye) overall accuracy due to the presence of additional VHRSI derived DSM information. Independent validation for lantana fractional cover estimated root-mean-square errors (RMSE) of 11.8% (for RapidEye) and 7.22% (for SPOT-6), and R\(^2\) values of 0.85 and 0.92 for RapidEye (5 m) and SPOT-6 (1.5 m), respectively. Results suggested an increase in predictive accuracy of lantana within forest areas along with increase in the spatial resolution for the same Landsat-8 imagery. The variance explained at 1.5 m spatial resolution to predict lantana was 64.37%, whereas it decreased by up to 37.96% in the case of 5 m spatial resolution data. This study revealed the high potential of combining small extent VHR and VHRSI- derived 3D optical data with larger extent, freely available satellite data for identification and mapping of invasive species in mountainous forests and remote regions. KW - Lantana camara KW - SPOT-6 KW - RapidEye KW - 3D KW - DSM KW - Fractional cover analysis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197250 SN - 1999-4907 VL - 10 IS - 7 ER - TY - JOUR A1 - Näschen, Kristian A1 - Diekkrüger, Bernd A1 - Evers, Mariele A1 - Höllermann, Britta A1 - Steinbach, Stefanie A1 - Thonfeld, Frank T1 - The impact of land use/land cover change (LULCC) on water resources in a tropical catchment in Tanzania under different climate change scenarios JF - Sustainability N2 - Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development. KW - SWAT model KW - Land Change Modeler KW - Scenario analysis KW - Extreme flows KW - Tanzania KW - Kilombero Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193825 SN - 2071-1050 VL - 11 IS - 24 ER - TY - JOUR A1 - Latifi, Hooman A1 - Valbuena, Ruben T1 - Current trends in forest ecological applications of three-dimensional remote sensing: Transition from experimental to operational solutions? JF - Forests N2 - The alarming increase in the magnitude and spatiotemporal patterns of changes in composition, structure and function of forest ecosystems during recent years calls for enhanced cross-border mitigation and adaption measures, which strongly entail intensified research to understand the underlying processes in the ecosystems as well as their dynamics. Remote sensing data and methods are nowadays the main complementary sources of synoptic, up-to-date and objective information to support field observations in forest ecology. In particular, analysis of three-dimensional (3D) remote sensing data is regarded as an appropriate complement, since they are hypothesized to resemble the 3D character of most forest attributes. Following their use in various small-scale forest structural analyses over the past two decades, these sources of data are now on their way to be integrated in novel applications in fields like citizen science, environmental impact assessment, forest fire analysis, and biodiversity assessment in remote areas. These and a number of other novel applications provide valuable material for the Forests special issue “3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function”, which shows the promising future of these technologies and improves our understanding of the potentials and challenges of 3D remote sensing in practical forest ecology worldwide. KW - 3D remote sensing KW - composition KW - forest ecology KW - function KW - structure Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193282 SN - 1999-4907 VL - 10 IS - 10 ER - TY - JOUR A1 - Latifi, Hooman A1 - Heurich, Marco T1 - Multi-scale remote sensing-assisted forest inventory: a glimpse of the state-of-the-art and future prospects JF - Remote Sensing N2 - Advances in remote inventory and analysis of forest resources during the last decade have reached a level to be now considered as a crucial complement, if not a surrogate, to the long-existing field-based methods. This is mostly reflected in not only the use of multiple-band new active and passive remote sensing data for forest inventory, but also in the methodic and algorithmic developments and/or adoptions that aim at maximizing the predictive or calibration performances, thereby minimizing both random and systematic errors, in particular for multi-scale spatial domains. With this in mind, this editorial note wraps up the recently-published Remote Sensing special issue “Remote Sensing-Based Forest Inventories from Landscape to Global Scale”, which hosted a set of state-of-the-art experiments on remotely sensed inventory of forest resources conducted by a number of prominent researchers worldwide. KW - remote sensing KW - forest resources inventory KW - spatial scale Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197358 SN - 2072-4292 VL - 11 IS - 11 ER - TY - JOUR A1 - Saddique, Naeem A1 - Usman, Muhammad A1 - Bernhofer, Christian T1 - Simulating the impact of climate change on the hydrological regimes of a sparsely gauged mountainous basin, northern Pakistan JF - Water N2 - Projected climate changes for the 21st century may cause great uncertainties on the hydrology of a river basin. This study explored the impacts of climate change on the water balance and hydrological regime of the Jhelum River Basin using the Soil and Water Assessment Tool (SWAT). Two downscaling methods (SDSM, Statistical Downscaling Model and LARS-WG, Long Ashton Research Station Weather Generator), three Global Circulation Models (GCMs), and two representative concentration pathways (RCP4.5 and RCP8.5) for three future periods (2030s, 2050s, and 2090s) were used to assess the climate change impacts on flow regimes. The results exhibited that both downscaling methods suggested an increase in annual streamflow over the river basin. There is generally an increasing trend of winter and autumn discharge, whereas it is complicated for summer and spring to conclude if the trend is increasing or decreasing depending on the downscaling methods. Therefore, the uncertainty associated with the downscaling of climate simulation needs to consider, for the best estimate, the impact of climate change, with its uncertainty, on a particular basin. The study also resulted that water yield and evapotranspiration in the eastern part of the basin (sub-basins at high elevation) would be most affected by climate change. The outcomes of this study would be useful for providing guidance in water management and planning for the river basin under climate change. KW - water balance KW - hydrological regime KW - evapotranspiration KW - uncertainties KW - climate change KW - SWAT Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193175 SN - 2073-4441 VL - 11 IS - 10 ER - TY - JOUR A1 - Paeth, Heiko A1 - Pollinger, Felix T1 - Changes in mean flow and atmospheric wave activity in the North Atlantic sector JF - Quarterly Journal of the Royal Meteorological Society N2 - In recent years, the midlatitudes are characterized by more intense heatwaves in summer and sometimes severe cold spells in winter that might emanate from changes in atmospheric circulation, including synoptic‐scale and planetary wave activity in the midlatitudes. In this study, we investigate the heat and momentum exchange between the mean flow and atmospheric waves in the North Atlantic sector and adjacent continents by means of the physically consistent Eliassen–Palm flux diagnostics applied to reanalysis and forced climate model data. In the long‐term mean, momentum is transferred from the mean flow to atmospheric waves in the northwest Atlantic region, where cyclogenesis prevails. Further downstream over Europe, eddy fluxes return momentum to the mean flow, sustaining the jet stream against friction. A global climate model is able to reproduce this pattern with high accuracy. Atmospheric variability related to atmospheric wave activity is much more expressed at the intraseasonal rather than the interannual time‐scale. Over the last 40 years, reanalyses reveal a northward shift of the jet stream and a weakening of intraseasonal weather variability related to synoptic‐scale and planetary wave activity. This pertains to the winter and summer seasons, especially over central Europe, and correlates with changes in the North Atlantic Oscillation as well as regional temperature and precipitation. A very similar phenomenon is found in a climate model simulation with business‐as‐usual scenario, suggesting an anthropogenic trigger in the weakening of intraseasonal weather variability in the midlatitudes. KW - atmospheric waves KW - climate change KW - Elissen-Palm flux KW - jet stream Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208079 VL - 145 IS - 725 ER - TY - JOUR A1 - Koehler, Jonas A1 - Kuenzer, Claudia T1 - Forecasting spatio-temporal dynamics on the land surface using Earth Observation data — a review JF - Remote Sensing N2 - Reliable forecasts on the impacts of global change on the land surface are vital to inform the actions of policy and decision makers to mitigate consequences and secure livelihoods. Geospatial Earth Observation (EO) data from remote sensing satellites has been collected continuously for 40 years and has the potential to facilitate the spatio-temporal forecasting of land surface dynamics. In this review we compiled 143 papers on EO-based forecasting of all aspects of the land surface published in 16 high-ranking remote sensing journals within the past decade. We analyzed the literature regarding research focus, the spatial scope of the study, the forecasting method applied, as well as the temporal and technical properties of the input data. We categorized the identified forecasting methods according to their temporal forecasting mechanism and the type of input data. Time-lagged regressions which are predominantly used for crop yield forecasting and approaches based on Markov Chains for future land use and land cover simulation are the most established methods. The use of external climate projections allows the forecasting of numerical land surface parameters up to one hundred years into the future, while auto-regressive time series modeling can account for intra-annual variances. Machine learning methods have been increasingly used in all categories and multivariate modeling that integrates multiple data sources appears to be more popular than univariate auto-regressive modeling despite the availability of continuously expanding time series data. Regardless of the method, reliable EO-based forecasting requires high-level remote sensing data products and the resulting computational demand appears to be the main reason that most forecasts are conducted only on a local scale. In the upcoming years, however, we expect this to change with further advances in the field of machine learning, the publication of new global datasets, and the further establishment of cloud computing for data processing. KW - forecast KW - Earth Observation KW - land surface KW - land use KW - land cover KW - time series KW - machine learning KW - Markov chains KW - modeling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216285 SN - 2072-4292 VL - 12 IS - 21 ER - TY - JOUR A1 - Thonfeld, Frank A1 - Steinbach, Stefanie A1 - Muro, Javier A1 - Kirimi, Fridah T1 - Long-term land use/land cover change assessment of the Kilombero catchment in Tanzania using random forest classification and robust change vector analysis JF - Remote Sensing N2 - Information about land use/land cover (LULC) and their changes is useful for different stakeholders to assess future pathways of sustainable land use for food production as well as for nature conservation. In this study, we assess LULC changes in the Kilombero catchment in Tanzania, an important area of recent development in East Africa. LULC change is assessed in two ways: first, post-classification comparison (PCC) which allows us to directly assess changes from one LULC class to another, and second, spectral change detection. We perform LULC classification by applying random forests (RF) on sets of multitemporal metrics that account for seasonal within-class dynamics. For the spectral change detection, we make use of the robust change vector analysis (RCVA) and determine those changes that do not necessarily lead to another class. The combination of the two approaches enables us to distinguish areas that show (a) only PCC changes, (b) only spectral changes that do not affect the classification of a pixel, (c) both types of change, or (d) no changes at all. Our results reveal that only one-quarter of the catchment has not experienced any change. One-third shows both, spectral changes and LULC conversion. Changes detected with both methods predominantly occur in two major regions, one in the West of the catchment, one in the Kilombero floodplain. Both regions are important areas of food production and economic development in Tanzania. The Kilombero floodplain is a Ramsar protected area, half of which was converted to agricultural land in the past decades. Therefore, LULC monitoring is required to support sustainable land management. Relatively poor classification performances revealed several challenges during the classification process. The combined approach of PCC and RCVA allows us to detect spatial patterns of LULC change at distinct dimensions and intensities. With the assessment of additional classifier output, namely class-specific per-pixel classification probabilities and derived parameters, we account for classification uncertainty across space. We overlay the LULC change results and the spatial assessment of classification reliability to provide a thorough picture of the LULC changes taking place in the Kilombero catchment. KW - land-use/land-cover change KW - robust change vector analysis KW - Kilombero KW - wetland KW - food production KW - random forest KW - multitemporal metrics KW - Landsat KW - post-classification comparison Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203513 SN - 2072-4292 VL - 12 IS - 7 ER - TY - JOUR A1 - Akhundzadah, Noor Ahmad A1 - Soltani, Salim A1 - Aich, Valentin T1 - Impacts of climate change on the water resources of the Kunduz River Basin, Afghanistan JF - Climate N2 - The Kunduz River is one of the main tributaries of the Amu Darya Basin in North Afghanistan. Many communities live in the Kunduz River Basin (KRB), and its water resources have been the basis of their livelihoods for many generations. This study investigates climate change impacts on the KRB catchment. Rare station data are, for the first time, used to analyze systematic trends in temperature, precipitation, and river discharge over the past few decades, while using Mann–Kendall and Theil–Sen trend statistics. The trends show that the hydrology of the basin changed significantly over the last decades. A comparison of landcover data of the river basin from 1992 and 2019 shows significant changes that have additional impact on the basin hydrology, which are used to interpret the trend analysis. There is considerable uncertainty due to the data scarcity and gaps in the data, but all results indicate a strong tendency towards drier conditions. An extreme warming trend, partly above 2 °C since the 1960s in combination with a dramatic precipitation decrease by more than −30% lead to a strong decrease in river discharge. The increasing glacier melt compensates the decreases and leads to an increase in runoff only in the highland parts of the upper catchment. The reduction of water availability and the additional stress on the land leads to a strong increase of barren land and a reduction of vegetation cover. The detected trends and changes in the basin hydrology demand an active management of the already scarce water resources in order to sustain water supply for agriculture and ecosystems in the KRB. KW - climate change KW - Kunduz River Basin KW - trend analysis KW - river discharge KW - landcover changes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213199 SN - 2225-1154 VL - 8 IS - 10 ER - TY - JOUR A1 - Ulloa-Torrealba, Yrneh A1 - Stahlmann, Reinhold A1 - Wegmann, Martin A1 - Koellner, Thomas T1 - Over 150 years of change: object-oriented analysis of historical land cover in the Main river catchment, Bavaria/Germany JF - Remote Sensing N2 - The monitoring of land cover and land use change is critical for assessing the provision of ecosystem services. One of the sources for long-term land cover change quantification is through the classification of historical and/or current maps. Little research has been done on historical maps using Object-Based Image Analysis (OBIA). This study applied an object-based classification using eCognition tool for analyzing the land cover based on historical maps in the Main river catchment, Upper Franconia, Germany. This allowed land use change analysis between the 1850s and 2015, a time span which covers the phase of industrialization of landscapes in central Europe. The results show a strong increase in urban area by 2600%, a severe loss of cropland (−24%), a moderate reduction in meadows (−4%), and a small gain in forests (+4%). The method proved useful for the application on historical maps due to the ability of the software to create semantic objects. The confusion matrix shows an overall accuracy of 82% for the automatic classification compared to manual reclassification considering all 17 sample tiles. The minimum overall accuracy was 65% for historical maps of poor quality and the maximum was 91% for very high-quality ones. Although accuracy is between high and moderate, coarse land cover patterns in the past and trends in land cover change can be analyzed. We conclude that such long-term analysis of land cover is a prerequisite for quantifying long-term changes in ecosystem services. KW - historical KW - land cover change KW - object-based classification KW - eCognition Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220029 SN - 2072-4292 VL - 12 IS - 24 ER - TY - JOUR A1 - Dirscherl, Mariel A1 - Dietz, Andreas J. A1 - Kneisel, Christof A1 - Kuenzer, Claudia T1 - Automated mapping of Antarctic supraglacial lakes using a Machine Learning approach JF - Remote Sensing N2 - Supraglacial lakes can have considerable impact on ice sheet mass balance and global sea-level-rise through ice shelf fracturing and subsequent glacier speedup. In Antarctica, the distribution and temporal development of supraglacial lakes as well as their potential contribution to increased ice mass loss remains largely unknown, requiring a detailed mapping of the Antarctic surface hydrological network. In this study, we employ a Machine Learning algorithm trained on Sentinel-2 and auxiliary TanDEM-X topographic data for automated mapping of Antarctic supraglacial lakes. To ensure the spatio-temporal transferability of our method, a Random Forest was trained on 14 training regions and applied over eight spatially independent test regions distributed across the whole Antarctic continent. In addition, we employed our workflow for large-scale application over Amery Ice Shelf where we calculated interannual supraglacial lake dynamics between 2017 and 2020 at full ice shelf coverage. To validate our supraglacial lake detection algorithm, we randomly created point samples over our classification results and compared them to Sentinel-2 imagery. The point comparisons were evaluated using a confusion matrix for calculation of selected accuracy metrics. Our analysis revealed wide-spread supraglacial lake occurrence in all three Antarctic regions. For the first time, we identified supraglacial meltwater features on Abbott, Hull and Cosgrove Ice Shelves in West Antarctica as well as for the entire Amery Ice Shelf for years 2017–2020. Over Amery Ice Shelf, maximum lake extent varied strongly between the years with the 2019 melt season characterized by the largest areal coverage of supraglacial lakes (~763 km\(^2\)). The accuracy assessment over the test regions revealed an average Kappa coefficient of 0.86 where the largest value of Kappa reached 0.98 over George VI Ice Shelf. Future developments will involve the generation of circum-Antarctic supraglacial lake mapping products as well as their use for further methodological developments using Sentinel-1 SAR data in order to characterize intraannual supraglacial meltwater dynamics also during polar night and independent of meteorological conditions. In summary, the implementation of the Random Forest classifier enabled the development of the first automated mapping method applied to Sentinel-2 data distributed across all three Antarctic regions. KW - Antarctica KW - Antarctic ice sheet KW - supraglacial lakes KW - surface melt KW - hydrology KW - ice sheet dynamics KW - sentinel-2 KW - remote sensing KW - random forest KW - machine learning Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203735 SN - 2072-4292 VL - 12 IS - 7 ER - TY - JOUR A1 - Stereńczak, Krzysztof A1 - Laurin, Gaia Vaglio A1 - Chirici, Gherardo A1 - Coomes, David A. A1 - Dalponte, Michele A1 - Latifi, Hooman A1 - Puletti, Nicola T1 - Global Airborne Laser Scanning Data Providers Database (GlobALS) — a new tool for monitoring ecosystems and biodiversity JF - Remote Sensing N2 - Protection and recovery of natural resource and biodiversity requires accurate monitoring at multiple scales. Airborne Laser Scanning (ALS) provides high-resolution imagery that is valuable for monitoring structural changes to vegetation, providing a reliable reference for ecological analyses and comparison purposes, especially if used in conjunction with other remote-sensing and field products. However, the potential of ALS data has not been fully exploited, due to limits in data availability and validation. To bridge this gap, the global network for airborne laser scanner data (GlobALS) has been established as a worldwide network of ALS data providers that aims at linking those interested in research and applications related to natural resources and biodiversity monitoring. The network does not collect data itself but collects metadata and facilitates networking and collaborative research amongst the end-users and data providers. This letter describes this facility, with the aim of broadening participation in GlobALS. KW - LiDAR KW - forest KW - database KW - networking KW - GlobALS Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207819 SN - 2072-4292 VL - 12 IS - 11 ER - TY - JOUR A1 - Huth, Juliane A1 - Gessner, Ursula A1 - Klein, Igor A1 - Yesou, Hervé A1 - Lai, Xijun A1 - Oppelt, Natascha A1 - Kuenzer, Claudia T1 - Analyzing water dynamics based on Sentinel-1 time series — a study for Dongting Lake wetlands in China JF - Remote Sensing N2 - In China, freshwater is an increasingly scarce resource and wetlands are under great pressure. This study focuses on China's second largest freshwater lake in the middle reaches of the Yangtze River — the Dongting Lake — and its surrounding wetlands, which are declared a protected Ramsar site. The Dongting Lake area is also a research region of focus within the Sino-European Dragon Programme, aiming for the international collaboration of Earth Observation researchers. ESA's Copernicus Programme enables comprehensive monitoring with area-wide coverage, which is especially advantageous for large wetlands that are difficult to access during floods. The first year completely covered by Sentinel-1 SAR satellite data was 2016, which is used here to focus on Dongting Lake's wetland dynamics. The well-established, threshold-based approach and the high spatio-temporal resolution of Sentinel-1 imagery enabled the generation of monthly surface water maps and the analysis of the inundation frequency at a 10 m resolution. The maximum extent of the Dongting Lake derived from Sentinel-1 occurred in July 2016, at 2465 km\(^2\), indicating an extreme flood year. The minimum size of the lake was detected in October, at 1331 km\(^2\). Time series analysis reveals detailed inundation patterns and small-scale structures within the lake that were not known from previous studies. Sentinel-1 also proves to be capable of mapping the wetland management practices for Dongting Lake polders and dykes. For validation, the lake extent and inundation duration derived from the Sentinel-1 data were compared with excerpts from the Global WaterPack (frequently derived by the German Aerospace Center, DLR), high-resolution optical data, and in situ water level data, which showed very good agreement for the period studied. The mean monthly extent of the lake in 2016 from Sentinel-1 was 1798 km\(^2\), which is consistent with the Global WaterPack, deviating by only 4%. In summary, the presented analysis of the complete annual time series of the Sentinel-1 data provides information on the monthly behavior of water expansion, which is of interest and relevance to local authorities involved in water resource management tasks in the region, as well as to wetland conservationists concerned with the Ramsar site wetlands of Dongting Lake and to local researchers. KW - Earth observation KW - SAR KW - Sentinel–1 KW - time series KW - Dongting Lake KW - water dynamics KW - floodpath lake KW - Ramsar Convention on Wetlands Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205977 SN - 2072-4292 VL - 12 IS - 11 ER - TY - JOUR A1 - Forkuor, Gerald A1 - Ullmann, Tobias A1 - Griesbeck, Mario T1 - Mapping and monitoring small-scale mining activities in Ghana using Sentinel-1 time series (2015−2019) JF - Remote Sensing N2 - Illegal small-scale mining (galamsey) in South-Western Ghana has grown tremendously in the last decade and caused significant environmental degradation. Excessive cloud cover in the area has limited the use of optical remote sensing data to map and monitor the extent of these activities. This study investigated the use of annual time-series Sentinel-1 data to map and monitor illegal mining activities along major rivers in South-Western Ghana between 2015 and 2019. A change detection approach, based on three time-series features — minimum, mean, maximum — was used to compute a backscatter threshold value suitable to identify/detect mining-induced land cover changes in the study area. Compared to the mean and maximum, the minimum time-series feature (in both VH and VV polarization) was found to be more sensitive to changes in backscattering within the period of investigation. Our approach permitted the detection of new illegal mining areas on an annual basis. A backscatter threshold value of +1.65 dB was found suitable for detecting illegal mining activities in the study area. Application of this threshold revealed illegal mining area extents of 102 km\(^2\), 60 km\(^2\) and 33 km\(^2\) for periods 2015/2016–2016/2017, 2016/2017–2017/2018 and 2017/2018–2018/2019, respectively. The observed decreasing trend in new illegal mining areas suggests that efforts at stopping illegal mining yielded positive results in the period investigated. Despite the advantages of Synthetic Aperture Radar data in monitoring phenomena in cloud-prone areas, our analysis revealed that about 25% of the Sentinel-1 data, mostly acquired in March and October (beginning and end of rainy season respectively), were unusable due to atmospheric effects from high intensity rainfall events. Further investigation in other geographies and climatic regions is needed to ascertain the susceptibility of Sentinel-1 data to atmospheric conditions. KW - Sentine-1 KW - mining KW - image artifacts KW - time-series features KW - galamsey KW - Ghana Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203204 SN - 2072-4292 VL - 12 IS - 6 ER - TY - JOUR A1 - Heinemann, Sascha A1 - Siegmann, Bastian A1 - Thonfeld, Frank A1 - Muro, Javier A1 - Jedmowski, Christoph A1 - Kemna, Andreas A1 - Kraska, Thorsten A1 - Muller, Onno A1 - Schultz, Johannes A1 - Udelhoven, Thomas A1 - Wilke, Norman A1 - Rascher, Uwe T1 - Land surface temperature retrieval for agricultural areas using a novel UAV platform equipped with a thermal infrared and multispectral sensor JF - Remote Sensing N2 - Land surface temperature (LST) is a fundamental parameter within the system of the Earth’s surface and atmosphere, which can be used to describe the inherent physical processes of energy and water exchange. The need for LST has been increasingly recognised in agriculture, as it affects the growth phases of crops and crop yields. However, challenges in overcoming the large discrepancies between the retrieved LST and ground truth data still exist. Precise LST measurement depends mainly on accurately deriving the surface emissivity, which is very dynamic due to changing states of land cover and plant development. In this study, we present an LST retrieval algorithm for the combined use of multispectral optical and thermal UAV images, which has been optimised for operational applications in agriculture to map the heterogeneous and diverse agricultural crop systems of a research campus in Germany (April 2018). We constrain the emissivity using certain NDVI thresholds to distinguish different land surface types. The algorithm includes atmospheric corrections and environmental thermal emissions to minimise the uncertainties. In the analysis, we emphasise that the omission of crucial meteorological parameters and inaccurately determined emissivities can lead to a considerably underestimated LST; however, if the emissivity is underestimated, the LST can be overestimated. The retrieved LST is validated by reference temperatures from nearby ponds and weather stations. The validation of the thermal measurements indicates a mean absolute error of about 0.5 K. The novelty of the dual sensor system is that it simultaneously captures highly spatially resolved optical and thermal images, in order to construct the precise LST ortho-mosaics required to monitor plant diseases and drought stress and validate airborne and satellite data. KW - UAV KW - thermal infrared KW - multispectral VNIR KW - LST KW - emissivity KW - NDVI thresholds KW - atmospheric correction KW - agricultural mapping KW - low-cost applications Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203557 SN - 2072-4292 VL - 12 IS - 7 ER - TY - JOUR A1 - Holzwarth, Stefanie A1 - Thonfeld, Frank A1 - Abdullahi, Sahra A1 - Asam, Sarah A1 - Da Ponte Canova, Emmanuel A1 - Gessner, Ursula A1 - Huth, Juliane A1 - Kraus, Tanja A1 - Leutner, Benjamin A1 - Kuenzer, Claudia T1 - Earth Observation based monitoring of forests in Germany: a review JF - Remote Sensing N2 - Forests in Germany cover around 11.4 million hectares and, thus, a share of 32% of Germany's surface area. Therefore, forests shape the character of the country's cultural landscape. Germany's forests fulfil a variety of functions for nature and society, and also play an important role in the context of climate levelling. Climate change, manifested via rising temperatures and current weather extremes, has a negative impact on the health and development of forests. Within the last five years, severe storms, extreme drought, and heat waves, and the subsequent mass reproduction of bark beetles have all seriously affected Germany’s forests. Facing the current dramatic extent of forest damage and the emerging long-term consequences, the effort to preserve forests in Germany, along with their diversity and productivity, is an indispensable task for the government. Several German ministries have and plan to initiate measures supporting forest health. Quantitative data is one means for sound decision-making to ensure the monitoring of the forest and to improve the monitoring of forest damage. In addition to existing forest monitoring systems, such as the federal forest inventory, the national crown condition survey, and the national forest soil inventory, systematic surveys of forest condition and vulnerability at the national scale can be expanded with the help of a satellite-based earth observation. In this review, we analysed and categorized all research studies published in the last 20 years that focus on the remote sensing of forests in Germany. For this study, 166 citation indexed research publications have been thoroughly analysed with respect to publication frequency, location of studies undertaken, spatial and temporal scale, coverage of the studies, satellite sensors employed, thematic foci of the studies, and overall outcomes, allowing us to identify major research and geoinformation product gaps. KW - remote sensing KW - earth observation KW - forest KW - forest monitoring KW - forest disturbances KW - Germany KW - review Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216334 SN - 2072-4292 VL - 12 IS - 21 ER - TY - JOUR A1 - Usman, Muhammad A1 - Mahmood, Talha A1 - Conrad, Christopher A1 - Bodla, Habib Ullah T1 - Remote Sensing and modelling based framework for valuing irrigation system efficiency and steering indicators of consumptive water use in an irrigated region JF - Sustainability N2 - Water crises are becoming severe in recent times, further fueled by population increase and climate change. They result in complex and unsustainable water management. Spatial estimation of consumptive water use is vital for performance assessment of the irrigation system using Remote Sensing (RS). For this study, its estimation is done using the Soil Energy Balance Algorithm for Land (SEBAL) approach. Performance indicators including equity, adequacy, and reliability were worked out at various spatiotemporal scales. Moreover, optimization and sustainable use of water resources are not possible without knowing the factors mainly influencing consumptive water use of major crops. For that purpose, random forest regression modelling was employed using various sets of factors for site-specific, proximity, and cropping system. The results show that the system is underperforming both for Kharif (i.e., summer) and Rabi (i.e., winter) seasons. Performance indicators highlight poor water distribution in the system, a shortage of water supply, and unreliability. The results are relatively good for Rabi as compared to Kharif, with an overall poor situation for both seasons. Factors importance varies for different crops. Overall, distance from canal, road density, canal density, and farm approachability are the most important factors for explaining consumptive water use. Auditing of consumptive water use shows the potential for resource optimization through on-farm water management by the targeted approach. The results are based on the present situation without considering future changes in canal water supply and consumptive water use under climate change. KW - consumptive water use KW - performance assessment KW - indicator importance assessment KW - water management KW - Pakistan Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219358 SN - 2071-1050 VL - 12 IS - 22 ER - TY - JOUR A1 - Remelgado, Ruben A1 - Safi, Kamran A1 - Wegmann, Martin T1 - From ecology to remote sensing: using animals to map land cover JF - Remote Sensing in Ecology and Conservation N2 - Land cover is a key variable in monitoring applications and new processing technologies made deriving this information easier. Yet, classification algorithms remain dependent on samples collected on the field and field campaigns are limited by financial, infrastructural and political boundaries. Here, animal tracking data could be an asset. Looking at the land cover dependencies of animal behaviour, we can obtain land cover samples over places that are difficult to access. Following this premise, we evaluated the potential of animal movement data to map land cover. Specifically, we used 13 White Storks (Cicona cicona) individuals of the same population to map agriculture within three test regions distributed along their migratory track. The White Stork has adapted to foraging over agricultural lands, making it an ideal source of samples to map this land use. We applied a presence-absence modelling approach over a Normalized Difference Vegetation Index (NDVI) time series and validated our classifications, with high-resolution land cover information. Our results suggest White Stork movement is useful to map agriculture, however, we identified some limitations. We achieved high accuracies (F1-scores > 0.8) for two test regions, but observed poor results over one region. This can be explained by differences in land management practices. The animals preferred agriculture in every test region, but our data showed a biased distribution of training samples between irrigated and non-irrigated land. When both options occurred, the animals disregarded non-irrigated land leading to its misclassification as non-agriculture. Additionally, we found difference between the GPS observation dates and the harvest times for non-irrigated crops. Given the White Stork takes advantage of managed land to search for prey, the inactivity of these fields was the likely culprit of their underrepresentation. Including more species attracted to agriculture - with other land-use dependencies and observation times - can contribute to better results in similar applications. KW - Animal Tracking KW - land cover KW - land use KW - movement ecology KW - R KW - remote sensing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225200 VL - 6 IS - 1 ER - TY - JOUR A1 - Ziegler, Katrin A1 - Pollinger, Felix A1 - Böll, Susanne A1 - Paeth, Heiko T1 - Statistical modeling of phenology in Bavaria based on past and future meteorological information JF - Theoretical and Applied Climatology N2 - Plant phenology is well known to be affected by meteorology. Observed changes in the occurrence of phenological phases arecommonly considered some of the most obvious effects of climate change. However, current climate models lack a representationof vegetation suitable for studying future changes in phenology itself. This study presents a statistical-dynamical modelingapproach for Bavaria in southern Germany, using over 13,000 paired samples of phenological and meteorological data foranalyses and climate change scenarios provided by a state-of-the-art regional climate model (RCM). Anomalies of severalmeteorological variables were used as predictors and phenological anomalies of the flowering date of the test plantForsythiasuspensaas predictand. Several cross-validated prediction models using various numbers and differently constructed predictorswere developed, compared, and evaluated via bootstrapping. As our approach needs a small set of meteorological observationsper phenological station, it allows for reliable parameter estimation and an easy transfer to other regions. The most robust andsuccessful model comprises predictors based on mean temperature, precipitation, wind velocity, and snow depth. Its averagecoefficient of determination and root mean square error (RMSE) per station are 60% and ± 8.6 days, respectively. However, theprediction error strongly differs among stations. When transferred to other indicator plants, this method achieves a comparablelevel of predictive accuracy. Its application to two climate change scenarios reveals distinct changes for various plants andregions. The flowering date is simulated to occur between 5 and 25 days earlier at the end of the twenty-first century comparedto the phenology of the reference period (1961–1990). KW - statistical modeling KW - phenology KW - Bavaria Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232717 SN - 0177-798X VL - 140 ER - TY - JOUR A1 - Geyer, Gerd A1 - Pais, Miguel Caldeira A1 - Wotte, Thomas T1 - Unexpectedly curved spines in a Cambrian trilobite: considerations on the spinosity in Kingaspidoides spinirecurvatus sp. nov. from the Anti-Atlas, Morocco, and related Cambrian ellipsocephaloids JF - PalZ N2 - The new ellipsocephaloid trilobite species Kingaspidoides spinirecurvatus has a spectacular morphology because of a unique set of two long and anteriorly recurved spines on the occipital ring and the axial ring of thoracic segment 8. Together with the long genal spines this whimsical dorsally directed spine arrangement is thought to act as a non-standard protective device against predators. This is illustrated by the body posture during different stages of enrolment, contrasting with the more sophisticated spinosities seen in later trilobites, which are discussed in brief. Kingaspidoides spinirecurvatus from the lower–middle Cambrian boundary interval of the eastern Anti-Atlas in Morocco has been known for about two decades, with specimens handled as precious objects on the fossil market. Similar, but far less spectacular, spine arrangements on the thoracic axial rings are known from other ellipsocephaloid trilobites from the Anti-Atlas of Morocco and the Franconian Forest region of Germany. This suggests that an experimental phase of spine development took place within the Kingaspi-doides clade during the early–middle Cambrian boundary interval. KW - Cambrian KW - Trilobita KW - Systematics KW - Biostratigraphy KW - West Gondwana KW - Morocco Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231873 SN - 0031-0220 VL - 94 ER - TY - JOUR A1 - Dech, Stefan A1 - Holzwarth, Stefanie A1 - Asam, Sarah A1 - Andresen, Thorsten A1 - Bachmann, Martin A1 - Boettcher, Martin A1 - Dietz, Andreas A1 - Eisfelder, Christina A1 - Frey, Corinne A1 - Gesell, Gerhard A1 - Gessner, Ursula A1 - Hirner, Andreas A1 - Hofmann, Matthias A1 - Kirches, Grit A1 - Klein, Doris A1 - Klein, Igor A1 - Kraus, Tanja A1 - Krause, Detmar A1 - Plank, Simon A1 - Popp, Thomas A1 - Reinermann, Sophie A1 - Reiners, Philipp A1 - Roessler, Sebastian A1 - Ruppert, Thomas A1 - Scherbachenko, Alexander A1 - Vignesh, Ranjitha A1 - Wolfmueller, Meinhard A1 - Zwenzner, Hendrik A1 - Kuenzer, Claudia T1 - Potential and challenges of harmonizing 40 years of AVHRR data: the TIMELINE experience JF - Remote Sensing N2 - Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper. KW - AVHRR KW - Earth Observation KW - harmonization KW - time series analysis KW - climate related trends KW - automatic processing KW - Europe KW - TIMELINE Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246134 SN - 2072-4292 VL - 13 IS - 18 ER - TY - JOUR A1 - Kumar, Navneet A1 - Khamzina, Asia A1 - Knöfel, Patrick A1 - Lamers, John P. A. A1 - Tischbein, Bernhard T1 - Afforestation of degraded croplands as a water-saving option in irrigated region of the Aral Sea Basin JF - Water N2 - Climate change is likely to decrease surface water availability in Central Asia, thereby necessitating land use adaptations in irrigated regions. The introduction of trees to marginally productive croplands with shallow groundwater was suggested for irrigation water-saving and improving the land’s productivity. Considering the possible trade-offs with water availability in large-scale afforestation, our study predicted the impacts on water balance components in the lower reaches of the Amudarya River to facilitate afforestation planning using the Soil and Water Assessment Tool (SWAT). The land-use scenarios used for modeling analysis considered the afforestation of 62% and 100% of marginally productive croplands under average and low irrigation water supply identified from historical land-use maps. The results indicate a dramatic decrease in the examined water balance components in all afforestation scenarios based largely on the reduced irrigation demand of trees compared to the main crops. Specifically, replacing current crops (mostly cotton) with trees on all marginal land (approximately 663 km\(^2\)) in the study region with an average water availability would save 1037 mln m\(^3\) of gross irrigation input within the study region and lower the annual drainage discharge by 504 mln m\(^3\). These effects have a considerable potential to support irrigation water management and enhance drainage functions in adapting to future water supply limitations. KW - drainage ratio KW - irrigation KW - spatial water balance KW - Soil and Water Assessment Tool (SWAT) KW - scenario analysis KW - stream flow KW - water yield Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239626 SN - 2073-4441 VL - 13 IS - 10 ER - TY - JOUR A1 - Riyas, Moidu Jameela A1 - Syed, Tajdarul Hassan A1 - Kumar, Hrishikesh A1 - Kuenzer, Claudia T1 - Detecting and analyzing the evolution of subsidence due to coal fires in Jharia coalfield, India using Sentinel-1 SAR data JF - Remote Sensing N2 - Public safety and socio-economic development of the Jharia coalfield (JCF) in India is critically dependent on precise monitoring and comprehensive understanding of coal fires, which have been burning underneath for more than a century. This study utilizes New-Small BAseline Subset (N-SBAS) technique to compute surface deformation time series for 2017–2020 to characterize the spatiotemporal dynamics of coal fires in JCF. The line-of-sight (LOS) surface deformation estimated from ascending and descending Sentinel-1 SAR data are subsequently decomposed to derive precise vertical subsidence estimates. The most prominent subsidence (~22 cm) is observed in Kusunda colliery. The subsidence regions also correspond well with the Landsat-8 based thermal anomaly map and field evidence. Subsequently, the vertical surface deformation time-series is analyzed to characterize temporal variations within the 9.5 km\(^2\) area of coal fires. Results reveal that nearly 10% of the coal fire area is newly formed, while 73% persisted throughout the study period. Vulnerability analyses performed in terms of the susceptibility of the population to land surface collapse demonstrate that Tisra, Chhatatanr, and Sijua are the most vulnerable towns. Our results provide critical information for developing early warning systems and remediation strategies. KW - coal fire KW - InSAR KW - subsidence KW - remote sensing KW - coal KW - interferometry KW - SBAS Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236703 SN - 2072-4292 VL - 13 IS - 8 ER - TY - JOUR A1 - Ghazaryan, Gohar A1 - Rienow, Andreas A1 - Oldenburg, Carsten A1 - Thonfeld, Frank A1 - Trampnau, Birte A1 - Sticksel, Sarah A1 - Jürgens, Carsten T1 - Monitoring of urban sprawl and densification processes in Western Germany in the light of SDG indicator 11.3.1 based on an automated retrospective classification approach JF - Remote Sensing N2 - By 2050, two-third of the world’s population will live in cities. In this study, we develop a framework for analyzing urban growth-related imperviousness in North Rhine-Westphalia (NRW) from the 1980s to date using Landsat data. For the baseline 2017-time step, official geodata was extracted to generate labelled data for ten classes, including three classes representing low, middle, and high level of imperviousness. We used the output of the 2017 classification and information based on radiometric bi-temporal change detection for retrospective classification. Besides spectral bands, we calculated several indices and various temporal composites, which were used as an input for Random Forest classification. The results provide information on three imperviousness classes with accuracies exceeding 75%. According to our results, the imperviousness areas grew continuously from 1985 to 2017, with a high imperviousness area growth of more than 167,000 ha, comprising around 30% increase. The information on the expansion of urban areas was integrated with population dynamics data to estimate the progress towards SDG 11. With the intensity analysis and the integration of population data, the spatial heterogeneity of urban expansion and population growth was analysed, showing that the urban expansion rates considerably excelled population growth rates in some regions in NRW. The study highlights the applicability of earth observation data for accurately quantifying spatio-temporal urban dynamics for sustainable urbanization and targeted planning. KW - impervious surface KW - Landsat time series KW - change detection KW - SDG 11.3.1 KW - population change Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236671 SN - 2072-4292 VL - 13 IS - 9 ER - TY - JOUR A1 - Fekri, Erfan A1 - Latifi, Hooman A1 - Amani, Meisam A1 - Zobeidinezhad, Abdolkarim T1 - A training sample migration method for wetland mapping and monitoring using Sentinel data in Google Earth Engine JF - Remote Sensing N2 - Wetlands are one of the most important ecosystems due to their critical services to both humans and the environment. Therefore, wetland mapping and monitoring are essential for their conservation. In this regard, remote sensing offers efficient solutions due to the availability of cost-efficient archived images over different spatial scales. However, a lack of sufficient consistent training samples at different times is a significant limitation of multi-temporal wetland monitoring. In this study, a new training sample migration method was developed to identify unchanged training samples to be used in wetland classification and change analyses over the International Shadegan Wetland (ISW) areas of southwestern Iran. To this end, we first produced the wetland map of a reference year (2020), for which we had training samples, by combining Sentinel-1 and Sentinel-2 images and the Random Forest (RF) classifier in Google Earth Engine (GEE). The Overall Accuracy (OA) and Kappa coefficient (KC) of this reference map were 97.93% and 0.97, respectively. Then, an automatic change detection method was developed to migrate unchanged training samples from the reference year to the target years of 2018, 2019, and 2021. Within the proposed method, three indices of the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and the mean Standard Deviation (SD) of the spectral bands, along with two similarity measures of the Euclidean Distance (ED) and Spectral Angle Distance (SAD), were computed for each pair of reference–target years. The optimum threshold for unchanged samples was also derived using a histogram thresholding approach, which led to selecting the samples that were most likely unchanged based on the highest OA and KC for classifying the test dataset. The proposed migration sample method resulted in high OAs of 95.89%, 96.83%, and 97.06% and KCs of 0.95, 0.96, and 0.96 for the target years of 2018, 2019, and 2021, respectively. Finally, the migrated samples were used to generate the wetland map for the target years. Overall, our proposed method showed high potential for wetland mapping and monitoring when no training samples existed for a target year. KW - wetland KW - Google Earth Engine (GEE) KW - training sample migration KW - sentinel Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248542 SN - 2072-4292 VL - 13 IS - 20 ER - TY - JOUR A1 - Mayr, Stefan A1 - Klein, Igor A1 - Rutzinger, Martin A1 - Kuenzer, Claudia T1 - Systematic water fraction estimation for a global and daily surface water time-series JF - Remote Sensing N2 - Fresh water is a vital natural resource. Earth observation time-series are well suited to monitor corresponding surface dynamics. The DLR-DFD Global WaterPack (GWP) provides daily information on globally distributed inland surface water based on MODIS (Moderate Resolution Imaging Spectroradiometer) images at 250 m spatial resolution. Operating on this spatiotemporal level comes with the drawback of moderate spatial resolution; only coarse pixel-based surface water quantification is possible. To enhance the quantitative capabilities of this dataset, we systematically access subpixel information on fractional water coverage. For this, a linear mixture model is employed, using classification probability and pure pixel reference information. Classification probability is derived from relative datapoint (pixel) locations in feature space. Pure water and non-water reference pixels are located by combining spatial and temporal information inherent to the time-series. Subsequently, the model is evaluated for different input sets to determine the optimal configuration for global processing and pixel coverage types. The performance of resulting water fraction estimates is evaluated on the pixel level in 32 regions of interest across the globe, by comparison to higher resolution reference data (Sentinel-2, Landsat 8). Results show that water fraction information is able to improve the product's performance regarding mixed water/non-water pixels by an average of 11.6% (RMSE). With a Nash-Sutcliffe efficiency of 0.61, the model shows good overall performance. The approach enables the systematic provision of water fraction estimates on a global and daily scale, using only the reflectance and temporal information contained in the input time-series. KW - earth observation KW - landsat KW - MODIS KW - remote sensing KW - probability KW - Sentinel-2 KW - subpixel KW - water Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242586 SN - 2072-4292 VL - 13 IS - 14 ER - TY - JOUR A1 - Dirscherl, Mariel A1 - Dietz, Andreas J. A1 - Kneisel, Christof A1 - Kuenzer, Claudia T1 - A novel method for automated supraglacial lake mapping in Antarctica using Sentinel-1 SAR imagery and deep learning JF - Remote Sensing N2 - Supraglacial meltwater accumulation on ice sheets can be a main driver for accelerated ice discharge, mass loss, and global sea-level-rise. With further increasing surface air temperatures, meltwater-induced hydrofracturing, basal sliding, or surface thinning will cumulate and most likely trigger unprecedented ice mass loss on the Greenland and Antarctic ice sheets. While the Greenland surface hydrological network as well as its impacts on ice dynamics and mass balance has been studied in much detail, Antarctic supraglacial lakes remain understudied with a circum-Antarctic record of their spatio-temporal development entirely lacking. This study provides the first automated supraglacial lake extent mapping method using Sentinel-1 synthetic aperture radar (SAR) imagery over Antarctica and complements the developed optical Sentinel-2 supraglacial lake detection algorithm presented in our companion paper. In detail, we propose the use of a modified U-Net for semantic segmentation of supraglacial lakes in single-polarized Sentinel-1 imagery. The convolutional neural network (CNN) is implemented with residual connections for optimized performance as well as an Atrous Spatial Pyramid Pooling (ASPP) module for multiscale feature extraction. The algorithm is trained on 21,200 Sentinel-1 image patches and evaluated in ten spatially or temporally independent test acquisitions. In addition, George VI Ice Shelf is analyzed for intra-annual lake dynamics throughout austral summer 2019/2020 and a decision-level fused Sentinel-1 and Sentinel-2 maximum lake extent mapping product is presented for January 2020 revealing a more complete supraglacial lake coverage (~770 km\(^2\)) than the individual single-sensor products. Classification results confirm the reliability of the proposed workflow with an average Kappa coefficient of 0.925 and a F\(_1\)-score of 93.0% for the supraglacial water class across all test regions. Furthermore, the algorithm is applied in an additional test region covering supraglacial lakes on the Greenland ice sheet which further highlights the potential for spatio-temporal transferability. Future work involves the integration of more training data as well as intra-annual analyses of supraglacial lake occurrence across the whole continent and with focus on supraglacial lake development throughout a summer melt season and into Antarctic winter. KW - Antarctica KW - Antarctic ice sheet KW - supraglacial lakes KW - ice sheet hydrology KW - Sentinel-1 KW - remote sensing KW - machine learning KW - deep learning KW - semantic segmentation KW - convolutional neural network Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222998 SN - 2072-4292 VL - 13 IS - 2 ER - TY - JOUR A1 - Ottinger, Marco A1 - Bachofer, Felix A1 - Huth, Juliane A1 - Kuenzer, Claudia T1 - Mapping aquaculture ponds for the coastal zone of Asia with Sentinel-1 and Sentinel-2 time series JF - Remote Sensing N2 - Asia dominates the world's aquaculture sector, generating almost 90 percent of its total annual global production. Fish, shrimp, and mollusks are mainly farmed in land-based pond aquaculture systems and serve as a primary protein source for millions of people. The total production and area occupied for pond aquaculture has expanded rapidly in coastal regions in Asia since the early 1990s. The growth of aquaculture was mainly boosted by an increasing demand for fish and seafood from a growing world population. The aquaculture sector generates income and employment, contributes to food security, and has become a billion-dollar industry with high socio-economic value, but has also led to severe environmental degradation. In this regard, geospatial information on aquaculture can support the management of this growing food sector for the sustainable development of coastal ecosystems, resources, and human health. With free and open access to the rapidly growing volume of data from the Copernicus Sentinel missions as well as machine learning algorithms and cloud computing services, we extracted coastal aquaculture at a continental scale. We present a multi-sensor approach that utilizes Earth observation time series data for the mapping of pond aquaculture within the entire Asian coastal zone, defined as the onshore area up to 200 km from the coastline. In this research, we developed an object-based framework to detect and extract aquaculture at a single-pond level based on temporal features derived from high-spatial-resolution SAR and optical satellite data acquired from the Sentinel-1 and Sentinel-2 satellites. In a second step, we performed spatial and statistical data analyses of the Earth-observation-derived aquaculture dataset to investigate spatial distribution and identify production hotspots at various administrative units at regional, national, and sub-national scale. KW - aquaculture KW - Asia KW - Earth observation KW - ponds KW - coastal zone KW - Sentinel-1 KW - SAR KW - time series Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252207 SN - 2072-4292 VL - 14 IS - 1 ER - TY - JOUR A1 - Rößler, Sebastian A1 - Witt, Marius S. A1 - Ikonen, Jaakko A1 - Brown, Ian A. A1 - Dietz, Andreas J. T1 - Remote sensing of snow cover variability and its influence on the runoff of Sápmi's rivers JF - Geosciences N2 - The boreal winter 2019/2020 was very irregular in Europe. While there was very little snow in Central Europe, the opposite was the case in northern Fenno-Scandia, particularly in the Arctic. The snow cover was more persistent here and its rapid melting led to flooding in many places. Since the last severe spring floods occurred in the region in 2018, this raises the question of whether more frequent occurrences can be expected in the future. To assess the variability of snowmelt related flooding we used snow cover maps (derived from the DLR's Global SnowPack MODIS snow product) and freely available data on runoff, precipitation, and air temperature in eight unregulated river catchment areas. A trend analysis (Mann-Kendall test) was carried out to assess the development of the parameters, and the interdependencies of the parameters were examined with a correlation analysis. Finally, a simple snowmelt runoff model was tested for its applicability to this region. We noticed an extraordinary variability in the duration of snow cover. If this extends well into spring, rapid air temperature increases leads to enhanced thawing. According to the last flood years 2005, 2010, 2018, and 2020, we were able to differentiate between four synoptic flood types based on their special hydrometeorological and snow situation and simulate them with the snowmelt runoff model (SRM). KW - remote sensing KW - snow parameters KW - snow variability KW - MODIS KW - snow hydrology KW - spring flood KW - Sápmi KW - Mann-Kendall test KW - snowmelt runoff model Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234261 SN - 2076-3263 VL - 11 IS - 3 ER - TY - JOUR A1 - Dobiński, Wojciech A1 - Kneisel, Christof T1 - Permafrost and glaciers: perspectives for the Earth and planetary sciences — another step forward JF - Geosciences N2 - No abstract available KW - permafrost KW - glaciers Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228766 SN - 2076-3263 VL - 11 IS - 2 ER - TY - JOUR A1 - Arendt, Robert A1 - Reinhardt-Imjela, Christian A1 - Schulte, Achim A1 - Faulstich, Leona A1 - Ullmann, Tobias A1 - Beck, Lorenz A1 - Martinis, Sandro A1 - Johannes, Petrina A1 - Lengricht, Joachim T1 - Natural pans as an important surface water resource in the Cuvelai Basin — Metrics for storage volume calculations and identification of potential augmentation sites JF - Water N2 - Numerous ephemeral rivers and thousands of natural pans characterize the transboundary Iishana-System of the Cuvelai Basin between Namibia and Angola. After the rainy season, surface water stored in pans is often the only affordable water source for many people in rural areas. High inter- and intra-annual rainfall variations in this semiarid environment provoke years of extreme flood events and long periods of droughts. Thus, the issue of water availability is playing an increasingly important role in one of the most densely populated and fastest growing regions in southwestern Africa. Currently, there is no transnational approach to quantifying the potential storage and supply functions of the Iishana-System. To bridge these knowledge gaps and to increase the resilience of the local people's livelihood, suitable pans for expansion as intermediate storage were identified and their metrics determined. Therefore, a modified Blue Spot Analysis was performed, based on the high-resolution TanDEM-X digital elevation model. Further, surface area–volume ratio calculations were accomplished for finding suitable augmentation sites in a first step. The potential water storage volume of more than 190,000 pans was calculated at 1.9 km\(^3\). Over 2200 pans were identified for potential expansion to facilitate increased water supply and flood protection in the future. KW - Namibia KW - Angola KW - Oshana KW - flood KW - drought KW - water retention KW - storage volume KW - Blue Spot Analysis KW - TanDEM-X KW - pan Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223019 SN - 2073-4441 VL - 13 IS - 2 ER - TY - JOUR A1 - Meister, Julia A1 - Garbe, Philipp A1 - Trappe, Julian A1 - Ullmann, Tobias A1 - Es-Senussi, Ashraf A1 - Baumhauer, Roland A1 - Lange-Athinodorou, Eva A1 - El-Raouf, Amr Abd T1 - The Sacred Waterscape of the Temple of Bastet at Ancient Bubastis, Nile Delta (Egypt) JF - Geosciences N2 - Sacred water canals or lakes, which provided water for all kinds of purification rites and other activities, were very specific and important features of temples in ancient Egypt. In addition to the longer-known textual record, preliminary geoarchaeological surveys have recently provided evidence of a sacred canal at the Temple of Bastet at Bubastis. In order to further explore the location, shape, and course of this canal and to find evidence of the existence of a second waterway, also described by Herodotus, 34 drillings and five 2D geoelectrical measurements were carried out in 2019 and 2020 near the temple. The drillings and 2D ERT surveying revealed loamy to clayey deposits with a thickness of up to five meters, most likely deposited in a very low energy fluvial system (i.e., a canal), allowing the reconstruction of two separate sacred canals both north and south of the Temple of Bastet. In addition to the course of the canals, the width of about 30 m fits Herodotus’ description of the sacred waterways. The presence of numerous artefacts proved the anthropogenic use of the ancient canals, which were presumably connected to the Nile via a tributary or canal located west or northwest of Bubastis. KW - ancient Egypt KW - Tell Basta KW - sacred lakes KW - Herodotus KW - ERT KW - drilling KW - Isheru Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246129 SN - 2076-3263 VL - 11 IS - 9 ER - TY - JOUR A1 - Ibebuchi, Chibuike Chiedozie A1 - Paeth, Heiko T1 - The Imprint of the Southern Annular Mode on Black Carbon AOD in the Western Cape Province JF - Atmosphere N2 - This study examines the relationship between variations of the Southern Annular Mode (SAM) and black carbon (BC) at 550 nm aerosol optical depth (AOD) in the Western Cape province (WC). Variations of the positive (negative) phase of the SAM are found to be related to regional circulation types (CTs) in southern Africa, associated with suppressed (enhanced) westerly wind over the WC through the southward (northward) migration of Southern Hemisphere mid-latitude cyclones. The CTs related to positive (negative) SAM anomalies induce stable (unstable) atmospheric conditions over the southwestern regions of the WC, especially during the austral winter and autumn seasons. Through the control of CTs, positive (negative) SAM phases tend to contribute to the build-up (dispersion and dilution) of BC in the study region because they imply dry (wet) conditions which favor the build-up (washing out) of pollutant particles in the atmosphere. Indeed, recent years with an above-average frequency of CTs related to positive (negative) SAM anomalies are associated with a high (low) BC AOD over southwesternmost Africa. KW - black carbon AOD KW - Western Cape KW - southern annular mode KW - circulation type KW - air quality Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248387 SN - 2073-4433 VL - 12 IS - 10 ER - TY - JOUR A1 - Mayr, Stefan A1 - Klein, Igor A1 - Rutzinger, Martin A1 - Kuenzer, Claudia T1 - Determining temporal uncertainty of a global inland surface water time series JF - Remote Sensing N2 - Earth observation time series are well suited to monitor global surface dynamics. However, data products that are aimed at assessing large-area dynamics with a high temporal resolution often face various error sources (e.g., retrieval errors, sampling errors) in their acquisition chain. Addressing uncertainties in a spatiotemporal consistent manner is challenging, as extensive high-quality validation data is typically scarce. Here we propose a new method that utilizes time series inherent information to assess the temporal interpolation uncertainty of time series datasets. For this, we utilized data from the DLR-DFD Global WaterPack (GWP), which provides daily information on global inland surface water. As the time series is primarily based on optical MODIS (Moderate Resolution Imaging Spectroradiometer) images, the requirement of data gap interpolation due to clouds constitutes the main uncertainty source of the product. With a focus on different temporal and spatial characteristics of surface water dynamics, seven auxiliary layers were derived. Each layer provides probability and reliability estimates regarding water observations at pixel-level. This enables the quantification of uncertainty corresponding to the full spatiotemporal range of the product. Furthermore, the ability of temporal layers to approximate unknown pixel states was evaluated for stratified artificial gaps, which were introduced into the original time series of four climatologic diverse test regions. Results show that uncertainty is quantified accurately (>90%), consequently enhancing the product's quality with respect to its use for modeling and the geoscientific community. KW - Earth observation KW - interpolation KW - MODIS KW - optical remote sensing KW - probability KW - reliability KW - validation KW - variability Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245234 SN - 2072-4292 VL - 13 IS - 17 ER - TY - JOUR A1 - Emmert, Adrian A1 - Kneisel, Christof T1 - Internal structure and palsa development at Orravatnsrústir Palsa Site (Central Iceland), investigated by means of integrated resistivity and ground‐penetrating radar methods JF - Permafrost and Periglacial Processes N2 - The natural cyclical development of palsas makes it difficult to use visible signs of decay as reference points for environmental change. Thus, to determine the actual development stage of a palsa, investigations of the internal structure are crucial. Our study presents 2‐D and 3‐D electrical resistivity imaging (ERI) and 2‐D ground‐penetrating radar (GPR) results, measurements of surface and subsurface temperatures, and of the soil matric potential from Orravatnsrústir Palsa Site in Central Iceland. By a joint interpretation of the results, we deduce the internal structure (i.e., thickness of thaw zone and permafrost, ice/water content) of five palsas of different size and shape. The results differentiate between initial and mature development stages and show that palsas of different development stages can exist in close proximity. While internal characteristics indicate undisturbed development of four palsas, one palsa shows indications of environmental change. Our study shows the value of the multimethod geophysical approach and introduces measurements of the soil matric potential as a promising method to assess the current state of the subsurface. KW - 3‐D electrical resistivity imaging KW - ground‐penetrating radar KW - palsa development KW - soil matric potential Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238933 VL - 32 IS - 3 SP - 503 EP - 519 ER - TY - JOUR A1 - Geyer, Gerd A1 - Landing, Ed T1 - The Souss lagerstatte of the Anti-Atlas, Morocco: discovery of the first Cambrian fossil lagerstatte from Africa JF - Scientific Reports N2 - Episodic low oxygenated conditions on the sea-floor are likely responsible for exceptional preservation of animal remains in the upper Amouslek Formation (lower Cambrian, Stage 3) on the northern slope of the western Anti-Atlas, Morocco. This stratigraphic interval has yielded trilobite, brachiopod, and hyolith fossils with preserved soft parts, including some of the oldest known trilobite guts. The "Souss fossil lagerstatte" (newly proposed designation) represents the first Cambrian fossil lagerstatte in Cambrian strata known from Africa and is one of the oldest trilobite-bearing fossil lagerstatten on Earth. Inter-regional correlation of the Souss fossil lagerstatte in West Gondwana suggests its development during an interval of high eustatic levels recorded by dark shales that occur in informal upper Cambrian Series 2 in Siberia, South China, and East Gondwana. KW - biodiversity KW - palaeontology KW - sedimentology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259236 VL - 11 IS - 1 ER - TY - JOUR A1 - Stanley, Jean-Daniel A1 - Ullmann, Tobias A1 - Lange-Athinodorou, Eva T1 - Holocene aridity-induced interruptions of human activity along a fluvial channel in Egypt's northern delta JF - Quaternary N2 - Geoarchaeological information presented here pertains to a subsidiary Nile channel that once flowed west of the main Sebennitic distributary and discharged its water and sediments at Egypt’s then north-central deltaic coast. Periodical paleoclimatic episodes during the later Middle and Upper Holocene included decreased rainfall and increased aridity that reduced the Nile’s flow levels and thus likely disrupted nautical transport and anthropogenic activity along this channel. Such changes in this deltaic sector, positioned adjacent to the Levantine Basin in the Eastern Mediterranean, can be attributed to climatic shifts triggered as far as the North Atlantic to the west, and African highland source areas of the Egyptian Nile to the south. Of special interest in a study core recovered along the channel are several sediment sequences without anthropogenic material that are interbedded between strata comprising numerous potsherds. The former are interpreted here as markers of increased regional aridity and reduced Nile flow which could have periodically disrupted the regional distribution of goods and nautical activities. Such times occurred ~5000 years B.P., ~4200–4000 years B.P., ~3200–2800 years B.P., ~2300–2200 years B.P., and more recently. Periods comparable to these are also identified by altered proportions of pollen, isotopic and compositional components in different radiocarbon-dated Holocene cores recovered elsewhere in the Nile delta, the Levantine region to the east and north of Egypt, and in the Faiyum depression south of the delta. KW - Nile delta KW - Sebennitic KW - paleoenvironment KW - paleoclimate KW - Nile flow KW - geoarchaeology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250285 SN - 2571-550X VL - 4 IS - 4 ER - TY - JOUR A1 - Höhn, Stefan A1 - Frimmel, Hartwig E. A1 - Debaille, Vinciane A1 - Price, Westley T1 - Pre‐Klondikean oxidation prepared the ground for Broken Hill‐type mineralization in South Africa JF - Terra Nova N2 - New Cu isotope data obtained on chalcopyrite from the Black Mountain and the Broken Hill deposits in the medium‐ to high‐grade metamorphic Aggeneys‐Gamsberg ore district (South Africa) require a revision of our understanding of the genesis of metamorphic Broken Hill‐type massive sulphide deposits. Chalcopyrite from both deposits revealed unusually wide ranges in δ\(^{65}\)Cu (−2.41 to 2.84‰ NIST 976 standard) in combination with distinctly positive mean values (0.27 and 0.94‰, respectively). This is interpreted to reflect derivation from various silicate and oxide precursor minerals in which Cu occurred in higher oxidation states. Together with the observation of a typical supergene base metal distribution within the deposits and their spatial association with an unconformity only meters above the ore horizon, our new data are best explained by supergene oxidation of originally possibly SEDEX deposits prior to metamorphic sulphide formation, between the Okiepian (1,210–1,180 Ma) and Klondikean (1,040–1,020 Ma) orogenic events. KW - South Africa KW - mineralization KW - Broken Hill Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218545 VL - 33 IS - 2 SP - 168 EP - 173 ER - TY - JOUR A1 - Ibebuchi, Chibuike Chiedozie T1 - Revisiting the 1992 severe drought episode in South Africa: the role of El Niño in the anomalies of atmospheric circulation types in Africa south of the equator JF - Theoretical and Applied Climatology N2 - During strong El Niño events, below-average rainfall is expected in large parts of southern Africa. The 1992 El Niño season was associated with one of the worst drought episodes in large parts of South Africa. Using reanalysis data set from NCEP-NCAR, this study examined circulation types (CTs) in Africa south of the equator that are statistically related to the El Niño signal in the southwest Indian Ocean and the implication of this relationship during the 1992 drought episode in South Africa. A statistically significant correlation was found between the above-average Nino 3.4 index and a CT that features widespread cyclonic activity in the tropical southwest Indian Ocean, coupled with a weaker state of the south Indian Ocean high-pressure. During the analysis period, it was found that the El Niño signal enhanced the amplitude of the aforementioned CT. The impacts of the El Niño signal on CTs in southern Africa, which could have contributed to the 1992 severe drought episode in South Africa, were reflected in (i) robust decrease in the frequency of occurrence of the austral summer climatology pattern of atmospheric circulation that favors southeasterly moisture fluxes, advected by the South Indian Ocean high-pressure; (ii) modulation of easterly moisture fluxes, advected by the South Atlantic Ocean high-pressure, ridging south of South Africa; (iii) and enhancement of the amplitude of CTs that both enhances subsidence over South Africa, and associated with the dominance of westerlies across the Agulhas current. Under the ssp585 scenario, the analyzed climate models suggested that the impact of radiative heating on the CT significantly related to El Niño might result in an anomalous increase in surface pressure at the eastern parts of South Africa. KW - South Africa KW - drought KW - El Niño Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268569 SN - 1434-4483 VL - 146 IS - 1-2 ER - TY - JOUR A1 - Höhn, Stefan A1 - Frimmel, Hartwig E. A1 - Prince, Westley T1 - Syn-metamorphic sulfidation of the Gamsberg zinc deposit, South Africa JF - Mineralogy and Petrology N2 - The Mesoproterozoic Aggeneys-Gamsberg ore district, South Africa, is one of the world´s largest sulfidic base metal concentrations and well-known as a prime example of Broken Hill-type base metal deposits, traditionally interpreted as metamorphosed SEDEX deposits. Within this district, the Gamsberg deposit stands out for its huge size and strongly Zn-dominated ore ( >14 Mt contained Zn). New electron microprobe analyses and element abundance maps of sulfides and silicates point to fluid-driven sulfidation during retrograde metamorphism. Differences in the chemistry of sulfide inclusions within zoned garnet grains reflect different degrees of interaction of sulfides with high metal/sulfur-ratio with a sulfur-rich metamorphic fluid. Independent evidence of sulfidation during retrograde metamorphism comes from graphic-textured sulfide aggregates that previously have been interpreted as quenched sulfidic melts, replacement of pyrrhotite by pyrite along micro-fractures, and sulfides in phyllic alteration zones. Limited availability of fluid under retrograde conditions caused locally different degrees of segregation of Fe-rich sphalerite into Zn-rich sphalerite and pyrite, and thus considerable heterogeneity in sphalerite chemistry. The invoked sulfur-rich metamorphic fluids would have been able to sulfidize base metal-rich zones in the whole deposit and thus camouflage a potential pre-metamorphic oxidation. These findings support the recently established hypothesis of a pre-Klondikean weathering-induced oxidation event and challenge the traditional explanation of Broken Hill-type deposits as merely metamorphosed SEDEX deposits. Instead, we suggest that the massive sulfide deposits experienced a complex history, starting with initial SEDEX-type mineralization, followed by near-surface oxidation with spatial metal separation, and then sulfidation of this oxidized ore during medium- to high-grade metamorphism. KW - Gamsberg KW - metamorphic sulfidation KW - sulfide inclusions KW - base metal deposit KW - Aggeneys Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268574 SN - 1438-1168 VL - 115 IS - 6 ER - TY - JOUR A1 - Ibebuchi, Chibuike Chiedozie T1 - Circulation pattern controls of wet days and dry days in Free State, South Africa JF - Meteorology and Atmospheric Physics N2 - Atmospheric circulation is a vital process in the transport of heat, moisture, and pollutants around the globe. The variability of rainfall depends to some extent on the atmospheric circulation. This paper investigates synoptic situations in southern Africa that can be associated with wet days and dry days in Free State, South Africa, in addition to the underlying dynamics. Principal component analysis was applied to the T-mode matrix (variable is time series and observation is grid points at which the field was observed) of daily mean sea level pressure field from 1979 to 2018 in classifying the circulation patterns in southern Africa. 18 circulation types (CTs) were classified in the study region. From the linkage of the CTs to the observed rainfall data, from 11 stations in Free State, it was found that dominant austral winter and late austral autumn CTs have a higher probability of being associated with dry days in Free State. Dominant austral summer and late austral spring CTs were found to have a higher probability of being associated with wet days in Free State. Cyclonic/anti-cyclonic activity over the southwest Indian Ocean, explained to a good extent, the inter-seasonal variability of rainfall in Free State. The synoptic state associated with a stronger anti-cyclonic circulation at the western branch of the South Indian Ocean high-pressure, during austral summer, leading to enhanced low-level moisture transport by southeast winds was found to have the highest probability of being associated with above-average rainfall in most regions in Free State. On the other hand, the synoptic state associated with enhanced transport of cold dry air, by the extratropical westerlies, was found to have the highest probability of being associated with (winter) dryness in Free State. KW - South Africa KW - atmospheric circulation KW - circulation patterns Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268552 SN - 1436-5065 VL - 133 IS - 5 ER - TY - JOUR A1 - Fleuchaus, Paul A1 - Blum, Philipp A1 - Wilde, Martina A1 - Terhorst, Birgit A1 - Butscher, Christoph T1 - Retrospective evaluation of landslide susceptibility maps and review of validation practice JF - Environmental Earth Sciences N2 - Despite the widespread application of landslide susceptibility analyses, there is hardly any information about whether or not the occurrence of recent landslide events was correctly predicted by the relevant susceptibility maps. Hence, the objective of this study is to evaluate four landslide susceptibility maps retrospectively in a landslide-prone area of the Swabian Alb (Germany). The predictive performance of each susceptibility map is evaluated based on a landslide event triggered by heavy rainfalls in the year 2013. The retrospective evaluation revealed significant variations in the predictive accuracy of the analyzed studies. Both completely erroneous as well as very precise predictions were observed. These differences are less attributed to the applied statistical method and more to the quality and comprehensiveness of the used input data. Furthermore, a literature review of 50 peer-reviewed articles showed that most landslide susceptibility analyses achieve very high validation scores. 73% of the analyzed studies achieved an area under curve (AUC) value of at least 80%. These high validation scores, however, do not reflect the high uncertainty in statistical susceptibility analysis. Thus, the quality assessment of landslide susceptibility maps should not only comprise an index-based, quantitative validation, but also an additional qualitative plausibility check considering local geomorphological characteristics and local landslide mechanisms. Finally, the proposed retrospective evaluation approach cannot only help to assess the quality of susceptibility maps and demonstrate the reliability of such statistical methods, but also identify issues that will enable the susceptibility maps to be improved in the future. KW - landslides KW - hazard maps KW - predictive performance KW - review KW - Swabian Alb Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-308911 SN - 1866-6280 SN - 1866-6299 VL - 80 ER - TY - JOUR A1 - Uereyen, Soner A1 - Bachofer, Felix A1 - Kuenzer, Claudia T1 - A framework for multivariate analysis of land surface dynamics and driving variables — a case study for Indo-Gangetic river basins JF - Remote Sensing N2 - The analysis of the Earth system and interactions among its spheres is increasingly important to improve the understanding of global environmental change. In this regard, Earth observation (EO) is a valuable tool for monitoring of long term changes over the land surface and its features. Although investigations commonly study environmental change by means of a single EO-based land surface variable, a joint exploitation of multivariate land surface variables covering several spheres is still rarely performed. In this regard, we present a novel methodological framework for both, the automated processing of multisource time series to generate a unified multivariate feature space, as well as the application of statistical time series analysis techniques to quantify land surface change and driving variables. In particular, we unify multivariate time series over the last two decades including vegetation greenness, surface water area, snow cover area, and climatic, as well as hydrological variables. Furthermore, the statistical time series analyses include quantification of trends, changes in seasonality, and evaluation of drivers using the recently proposed causal discovery algorithm Peter and Clark Momentary Conditional Independence (PCMCI). We demonstrate the functionality of our methodological framework using Indo-Gangetic river basins in South Asia as a case study. The time series analyses reveal increasing trends in vegetation greenness being largely dependent on water availability, decreasing trends in snow cover area being mostly negatively coupled to temperature, and trends of surface water area to be spatially heterogeneous and linked to various driving variables. Overall, the obtained results highlight the value and suitability of this methodological framework with respect to global climate change research, enabling multivariate time series preparation, derivation of detailed information on significant trends and seasonality, as well as detection of causal links with minimal user intervention. This study is the first to use multivariate time series including several EO-based variables to analyze land surface dynamics over the last two decades using the causal discovery algorithm PCMCI. KW - time series analysis KW - trends KW - seasonality KW - partial correlation KW - causal networks KW - NDVI KW - snow cover area KW - surface water area KW - Indus-Ganges-Brahmaputra-Meghna KW - Himalaya Karakoram Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-255295 SN - 2072-4292 VL - 14 IS - 1 ER - TY - JOUR A1 - Appel, Alexandra A1 - Hardaker, Sina T1 - Einzelhandel als Katalysator für nachhaltige urbane Radlogistik? – WüLivery, ein Fallbeispiel aus Würzburg JF - Standort N2 - Die Covid-19-Pandemie gilt in vielen gesellschaftlichen Teilbereichen als Beschleuniger für Transformationsprozesse. Auch im Bereich der Organisation urbaner Logistik und Einzelhandelslandschaften etablieren sich neue Akteur*innen und Funktionen. Logistiker*innen integrieren lokale Onlinemarktplätze in ihre Profile und der stationäre Einzelhandel generiert Wettbewerbsfähigkeit gegenüber großen Onlinehändler*innen über die Nutzung lokaler Radlogistiknetzwerke, mittels derer Lieferungen noch am Tag der Bestellung (Same-Day-Delivery) verteilt werden können. Damit leisten die involvierten Akteur*innen potenziell auch einen Beitrag zur Nachhaltigkeitstransformation im Bereich urbaner Logistiksysteme. Im Fokus steht das Fallbeispiel WüLivery, ein Kooperationsprojekt des Stadtmarketingvereins, der Wirtschaftsförderung, Radlogistiker*innen sowie Einzelhändler*innen in Würzburg, welches während des zweiten coronabedingten Lockdowns im November 2020 umgesetzt wurde. Die entstehenden Dynamiken und Organisationsformen werden auf Basis von 11 Expert*inneninterviews dargestellt und analysiert. Es kann gezeigt werden, dass städtische Akteur*innen grundlegende Mediator*innen für Transformationsprozesse darstellen und Einzelhändler*innen und lokale Onlinemarktplätze als Katalysator*innen fungieren können. Das ist auch vor dem Hintergrund planerischer und politischer Kommunikationsprozesse zur Legitimation neuer Verkehrsinfrastrukturen nutzbar, da die einzelnen Akteur*innengruppen in Austausch kommen und ein gesteigertes Bewusstsein für die jeweiligen Bedarfe entsteht. KW - lokaler Onlinemarktplatz KW - urbane Logistik KW - Nachhaltigkeitstransformation KW - letzte Meile KW - Einzelhandel Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268437 SN - 1432-220X VL - 46 IS - 1 ER - TY - JOUR A1 - Kleemann, Janina A1 - Zamora, Camilo A1 - Villacis-Chiluisa, Alexandra Belen A1 - Cuenca, Pablo A1 - Koo, Hongmi A1 - Noh, Jin Kyoung A1 - Fürst, Christine A1 - Thiel, Michael T1 - Deforestation in continental Ecuador with a focus on protected areas JF - Land N2 - Forest conservation is of particular concern in tropical regions where a large refuge of biodiversity is still existing. These areas are threatened by deforestation, forest degradation and fragmentation. Especially, pressures of anthropogenic activities adjacent to these areas significantly influence conservation effectiveness. Ecuador was chosen as study area since it is a globally relevant center of forest ecosystems and biodiversity. We identified hotspots of deforestation on the national level of continental Ecuador between 1990 and 2018, analyzed the most significant drivers of deforestation on national and biome level (the Coast, the Andes, The Amazon) as well as inside protected areas in Ecuador by using multiple regression analysis. We separated the national system of protected areas (SNAP) into higher and lower protection levels. Besides SNAP, we also considered Biosphere Reserves (BRs) and Ramsar sites. In addition, we investigated the rates and spatial patterns of deforestation in protected areas and buffer zones (5 km and 10 km outwards the protected area boundaries) using landscape metrics. Between 1990 and 2018, approximately 4% of the accumulated deforestation occurred within the boundaries of SNAP, and up to 25.5% in buffer zones. The highest rates of deforestation have been found in the 5 km buffer zone around the protected areas with the highest protection level. Protected areas and their buffer zones with higher protection status were identified as the most deforested areas among SNAP. BRs had the highest deforestation rates among all protected areas but most of these areas just became BRs after the year 2000. The most important driver of deforestation is agriculture. Other relevant drivers differ between the biomes. The results suggest that the SNAP is generally effective to prevent deforestation within their protection boundaries. However, deforestation around protected areas can undermine conservation strategies to sustain biodiversity. Actions to address such dynamics and patterns of deforestation and forest fragmentation, and developing conservation strategies of their landscape context are urgently needed especially in the buffer zones of areas with the highest protection status. KW - conservation KW - driving forces KW - forest KW - loss KW - human pressure KW - land use change KW - landscape metrics KW - protection status KW - spatial analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262078 SN - 2073-445X VL - 11 IS - 2 ER - TY - JOUR A1 - Rösch, Moritz A1 - Plank, Simon T1 - Detailed mapping of lava and ash deposits at Indonesian volcanoes by means of VHR PlanetScope change detection JF - Remote Sensing N2 - Mapping of lava flows in unvegetated areas of active volcanoes using optical satellite data is challenging due to spectral similarities of volcanic deposits and the surrounding background. Using very high-resolution PlanetScope data, this study introduces a novel object-oriented classification approach for mapping lava flows in both vegetated and unvegetated areas during several eruptive phases of three Indonesian volcanoes (Karangetang 2018/2019, Agung 2017, Krakatau 2018/2019). For this, change detection analysis based on PlanetScope imagery for mapping loss of vegetation due to volcanic activity (e.g., lava flows) is combined with the analysis of changes in texture and brightness, with hydrological runoff modelling and with analysis of thermal anomalies derived from Sentinel-2 or Landsat-8. Qualitative comparison of the mapped lava flows showed good agreement with multispectral false color time series (Sentinel-2 and Landsat-8). Reports of the Global Volcanism Program support the findings, indicating the developed lava mapping approach produces valuable results for monitoring volcanic hazards. Despite the lack of bands in infrared wavelengths, PlanetScope proves beneficial for the assessment of risk and near-real-time monitoring of active volcanoes due to its high spatial (3 m) and temporal resolution (mapping of all subaerial volcanoes on a daily basis). KW - lava KW - volcanoes KW - PlanetScope KW - change detection KW - object-based image analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262232 SN - 2072-4292 VL - 14 IS - 5 ER - TY - JOUR A1 - Sogno, Patrick A1 - Klein, Igor A1 - Kuenzer, Claudia T1 - Remote sensing of surface water dynamics in the context of global change — a review JF - Remote Sensing N2 - Inland surface water is often the most accessible freshwater source. As opposed to groundwater, surface water is replenished in a comparatively quick cycle, which makes this vital resource — if not overexploited — sustainable. From a global perspective, freshwater is plentiful. Still, depending on the region, surface water availability is severely limited. Additionally, climate change and human interventions act as large-scale drivers and cause dramatic changes in established surface water dynamics. Actions have to be taken to secure sustainable water availability and usage. This requires informed decision making based on reliable environmental data. Monitoring inland surface water dynamics is therefore more important than ever. Remote sensing is able to delineate surface water in a number of ways by using optical as well as active and passive microwave sensors. In this review, we look at the proceedings within this discipline by reviewing 233 scientific works. We provide an extensive overview of used sensors, the spatial and temporal resolution of studies, their thematic foci, and their spatial distribution. We observe that a wide array of available sensors and datasets, along with increasing computing capacities, have shaped the field over the last years. Multiple global analysis-ready products are available for investigating surface water area dynamics, but so far none offer high spatial and temporal resolution. KW - remote sensing KW - surface water KW - dynamics KW - global change KW - earth observation KW - hydrology KW - biosphere KW - anthroposphere KW - review Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275274 SN - 2072-4292 VL - 14 IS - 10 ER -