TY - JOUR A1 - Koehler, Jonas A1 - Kuenzer, Claudia T1 - Forecasting spatio-temporal dynamics on the land surface using Earth Observation data — a review JF - Remote Sensing N2 - Reliable forecasts on the impacts of global change on the land surface are vital to inform the actions of policy and decision makers to mitigate consequences and secure livelihoods. Geospatial Earth Observation (EO) data from remote sensing satellites has been collected continuously for 40 years and has the potential to facilitate the spatio-temporal forecasting of land surface dynamics. In this review we compiled 143 papers on EO-based forecasting of all aspects of the land surface published in 16 high-ranking remote sensing journals within the past decade. We analyzed the literature regarding research focus, the spatial scope of the study, the forecasting method applied, as well as the temporal and technical properties of the input data. We categorized the identified forecasting methods according to their temporal forecasting mechanism and the type of input data. Time-lagged regressions which are predominantly used for crop yield forecasting and approaches based on Markov Chains for future land use and land cover simulation are the most established methods. The use of external climate projections allows the forecasting of numerical land surface parameters up to one hundred years into the future, while auto-regressive time series modeling can account for intra-annual variances. Machine learning methods have been increasingly used in all categories and multivariate modeling that integrates multiple data sources appears to be more popular than univariate auto-regressive modeling despite the availability of continuously expanding time series data. Regardless of the method, reliable EO-based forecasting requires high-level remote sensing data products and the resulting computational demand appears to be the main reason that most forecasts are conducted only on a local scale. In the upcoming years, however, we expect this to change with further advances in the field of machine learning, the publication of new global datasets, and the further establishment of cloud computing for data processing. KW - forecast KW - Earth Observation KW - land surface KW - land use KW - land cover KW - time series KW - machine learning KW - Markov chains KW - modeling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216285 SN - 2072-4292 VL - 12 IS - 21 ER - TY - JOUR A1 - Remelgado, Ruben A1 - Safi, Kamran A1 - Wegmann, Martin T1 - From ecology to remote sensing: using animals to map land cover JF - Remote Sensing in Ecology and Conservation N2 - Land cover is a key variable in monitoring applications and new processing technologies made deriving this information easier. Yet, classification algorithms remain dependent on samples collected on the field and field campaigns are limited by financial, infrastructural and political boundaries. Here, animal tracking data could be an asset. Looking at the land cover dependencies of animal behaviour, we can obtain land cover samples over places that are difficult to access. Following this premise, we evaluated the potential of animal movement data to map land cover. Specifically, we used 13 White Storks (Cicona cicona) individuals of the same population to map agriculture within three test regions distributed along their migratory track. The White Stork has adapted to foraging over agricultural lands, making it an ideal source of samples to map this land use. We applied a presence-absence modelling approach over a Normalized Difference Vegetation Index (NDVI) time series and validated our classifications, with high-resolution land cover information. Our results suggest White Stork movement is useful to map agriculture, however, we identified some limitations. We achieved high accuracies (F1-scores > 0.8) for two test regions, but observed poor results over one region. This can be explained by differences in land management practices. The animals preferred agriculture in every test region, but our data showed a biased distribution of training samples between irrigated and non-irrigated land. When both options occurred, the animals disregarded non-irrigated land leading to its misclassification as non-agriculture. Additionally, we found difference between the GPS observation dates and the harvest times for non-irrigated crops. Given the White Stork takes advantage of managed land to search for prey, the inactivity of these fields was the likely culprit of their underrepresentation. Including more species attracted to agriculture - with other land-use dependencies and observation times - can contribute to better results in similar applications. KW - Animal Tracking KW - land cover KW - land use KW - movement ecology KW - R KW - remote sensing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225200 VL - 6 IS - 1 ER -