TY - THES A1 - Queisser, Nina T1 - Oxidative and nitrosative stress induced by the mineralocorticoid aldosterone - Mechanism of induction and role of signal transduction pathways and transcription factors T1 - Oxidativer und nitrosativer Stress induziert durch das Mineralocorticoid Aldosteron - Mechanismen der Induktion und Rolle von Signalwegen und Transkriptionsfaktoren N2 - Several epidemiological studies found that hypertensive patients have an increased risk to develop kidney cancer. Hyperaldosteronism frequently results in arterial hypertension and contributes to the development and progression of kidney injury, with reactive oxygen species (ROS) playing an important role. ROS are thought to be associated with many pathological conditions such as cancer and other disorders, like cardiovascular complications , which often go along with hypertension. The aim of the present work was to investigate whether the effects of elevated aldosterone concentrations might be involved in the increased cancer incidence of hypertensive individuals. First, the potential capacity of aldosterone to induce oxidative stress and DNA damage was investigated in vitro and in vivo. In LLC-PK1 porcine kidney cells and MDCK canine kidney cells the significant formation of ROS, and especially of superoxide (O2˙ˉ) was assessed. With two genotoxicity tests, the comet assay and the micronucleus frequency test, the DNA damaging potential of aldosterone was quantified. In both genotoxicity tests a dose-dependent increase in aldosterone-induced structural DNA damage was observed. Oxidative stress and DNA damage were prevented by antioxidants, suggesting ROS as a major cause of DNA damage. Furthermore, the oxidatively modified DNA lesion 8-oxo-7,8-dihydro-2´-deoxyguanosine (8-oxodG), was found to be significantly elevated. In kidneys of rats with desoxycorticosterone acetate (DOCA)/salt-induced hypertension, which is a model of severe mineralocorticoid-dependent hypertension, elevated levels of ROS and superoxide were found, compared to kidneys of sham rats. Also DNA strand breaks, measured with the comet assay and double strand breaks, visualized with antibodies against the double strand break-marker gamma-H2AX were significantly elevated in kidneys of DOCA/salt-treated rats. In addition, significantly increased amounts of 8-oxodG were detected. Proliferation of kidney cells was found to be increased, which theoretically enables the DNA damage to manifest itself as mutations, since the cells divide. Second, the effects of aldosterone on the activation of transcription factors and signaling pathways were investigated. A significant activation of the potentially protective transcription factor Nrf2 was observed in LLC-PK1 cells. This activation was triggered by an increase of ROS or reactive nitrogen species (RNS). In response to oxidative stress, glutathione synthesis and detoxifying enzymes, such as the subunits of the glutathione-cysteine-ligase or heme oxygenase 1 were rapidly induced after 4 h. Nevertheless, after 24 h a decrease of glutathione levels was observed. Since ROS levels were still high after 24 h, but Nrf2 activation decreased, this adaptive survival response seems to be transient and quickly saturated and overwhelmed by ROS/RNS. Furthermore, Nrf2 activation was not sufficient to protect cells against oxidative DNA damage, because the amounts of double strand breaks and 8-oxodG lesions steadily rose up to 48 h of aldosterone treatment. The second transcription factor that was time- and dose-dependently activated by aldosterone in LLC-PK1 and MDCK cells was NF-kappaB. Furthermore, a significant cytosolic and nuclear activation of ERK was detected. Aldosterone induced the phosphorylation of the transcription factors CREB, STAT1 and STAT3 through ERK. Third, the underlying mechanisms of oxidant production, DNA damage and activation of transcription factors and signaling pathways were studied. Aldosterone exclusively acted via the MR, which was proven by the MR antagonists eplerenone, spironolactone and BR-4628, whereas the glucocorticoid receptor (GR) antagonist mifepristone did not show any effect. Furthermore, aldosterone needed cytosolic calcium to exert its negative effects. Calcium from intracellular stores and the influx of calcium across the plasma membrane was involved in aldosterone signaling. The calcium signal activated on the one hand, the prooxidant enzyme complex NAD(P)H oxidase through PKC, which subsequently caused the generation of O2˙ˉ. On the other hand, nitric oxide synthase (NOS) was activated, which in turn produced NO. NO and O2˙ˉ can react to the highly reactive species ONOO- that can damage the DNA more severely than the less reactive O2˙ˉ. In the short term, the activation of transcription factors and signaling pathways could be a protective response against aldosterone-induced oxidative stress and DNA damage. However, a long-term NF-B and ERK/CREB/STAT activation by persistently high aldosterone levels could unfold the prosurvival activity of NF-kappaB and ERK/CREB/STAT in aldosterone-exposed cells. DNA damage caused by increased ROS might become persistent and could be inherited to daughter cells, probably initiating carcinogenesis. If these events also occur in patients with hyperaldosteronism, these results suggest that aldosterone could be involved in the increased cancer incidence of hypertensive individuals. N2 - Mehrere epidemiologische Studien haben ein erhöhtes Nierenkrebsrisko bei Patienten mit Bluthochdruck aufgedeckt. Hyperaldosteronismus führt oft zu arteriellem Bluthochdruck und trägt zur Entwicklung und zum Fortschreiten von Nierenschäden bei, wobei reaktive Sauerstoffspezies (ROS) eine wichtige Rolle spielen. Immer häufiger werden ROS mit Krankheitsbildern wie Krebs und kardiovaskulären Erkrankungen, die mit Bluthochdruck einhergehen, in Verbindung gebracht. Das Ziel dieser Arbeit war es, zu untersuchen, ob erhöhte Aldosteronkonzentrationen an dem gesteigerten Krebsrisiko von hypertensiven Patienten beteiligt sein könnten. Zunächst wurde die potentielle Kapazität von Aldosteron, oxidativen Stress und DNA-Schaden in vitro und in vivo induzieren zu können, untersucht. In der Schweine-Nierenzelllinie LLC-PK1 und der Hunde-Nierenzelllinie MDCK wurde die Entstehung von ROS und speziell die Bildung von Superoxid (O2˙ˉ) nachgewiesen. Das gentoxische Potential von Aldosteron wurde mit zwei Genotoxizitätstests, dem Comet Assay und dem Mikrokernfrequenztest bestimmt. In beiden Genotoxizitätstests konnte ein dosis-abhängiger Anstieg des strukturellen DNA-Schadens beobachtet werden. Antioxidantien konnten den oxidativen Stress und die DNA-Schäden verringern, was annehmen lässt, dass ROS die Hauptursache für die Entstehung der DNA-Schäden sind. Darüberhinaus wurden signifikant erhöhte Mengen der oxidativ modifizierten DNA Läsion 8-Oxo-7,8-dihydro-2´-deoxyguanosin (8-oxodG) gefunden. In Nieren von Ratten mit Desoxycorticosteron-Acetat (DOCA) und Salz-induziertem Bluthochdruck, ein Modell für massiven Mineralocorticoid-induzierten Bluthochdruck, wurde ebenfalls eine erhöhte Bildung von ROS und O2˙ˉ in Nieren von DOCA/Salz-Ratten im Vergleich zu Sham-Ratten beobachtet. Auch im Comet Assay erfasste DNA-Strangbrüche und Doppelstrangbrüche, die mit Hilfe von Antikörpern gegen den Doppelstrangbruchmarker gamma-H2AX sichtbar gemacht wurden, waren in den Nieren der DOCA/Salz-behandelten Ratten signifikant erhöht. Weiterhin wurden erhöhte 8-oxodG-Spiegel in DOCA/Salz-Ratten beobachtet. Auch eine erhöhte Proliferationsrate in DOCA/Salz-behandelten Ratten konnte festgestellt werden, was theoretisch dazu führen könnte, dass sich die DNA-Schäden als Mutationen manifestieren, da sich die Zellen teilen. Im zweiten Teil der Arbeit wurde der Einfluss von Aldosteron auf die Aktivierung von Transkriptionsfaktoren und Signalwegen untersucht. Zunächst konnte die Aktivierung des potentiell schützenden Transkriptionsfaktors Nrf2 in LLC-PK1 Zellen mittels electrophoretic mobility shift assay (EMSA) beobachtet werden. Diese Aktivierung wurde durch den Anstieg an ROS und reaktiven Stickstoffspezies (RNS) ausgelöst. Als Antwort auf den oxidativen Stress, wurde die Glutathion-Synthese und detoxifizierende Enzyme, wie die Untereinheiten der Glutathion-Cystein-Ligase oder Hämoxygenase 1, nach 4 Stunden rasch hochreguliert. Nichtsdestotrotz konnte nach 24 Stunden eine Abnahme des Glutathionspiegels festgestellt werden. Da die Konzentration an ROS nach 24 Stunden immer noch signifikant erhöht war, die Aktivierung von Nrf2 allerdings stark zurückgegangen ist, scheint diese adaptive Überlebensstrategie nur kurzfristig, und somit schnell durch ROS/RNS gesättigt zu sein. Weiterhin war die Aktivierung von Nrf2 nicht ausreichend, um die Zellen vor dem durch Aldosteron-induzierten DNA-Schaden zu schützen, da Doppelstrangbrüche, sowie 8-oxodG-Läsionen bei bis zu 48-stündiger Inkubation mit Aldosteron stetig anstiegen. Der zweite Transkriptionsfaktor, der zeit- und dosisabhängig durch Aldosteron aktiviert wurde, war NF-kappaB. Ausserdem wurde die cytosolische und nukleäre Aktivierung von ERK nachgewiesen. Aldosteron induzierte weiterhin die Phosphorylierung der Transkriptionsfaktoren CREB, STAT1 und STAT3 durch ERK. Im dritten Teil dieser Arbeit wurden die zugrundeliegenden Mechanismen der Entstehung von ROS/RNS, des DNA-Schadens und der Aktivierung von Transkriptionsfaktoren untersucht. Aldosteron wirkte ausschließlich über den MR, bewiesen durch Einsatz der MR-Antagonisten Eplerenon, Spironolakton und BR-4628. Der Glucocorticoid-Rezeptor-Antagonist Mifepriston zeigte dagegen keinen Effekt. Weiterhin benötigte Aldosteron cytosolisches Calcium, um seine negativen Effekte auszuüben. Es waren intrazelluäres Calcium, sowie ein Calciuminflux über die Plasmamembran am Aldosteronsignal beteiligt. Einerseits wurde der prooxidative Enzymkomplex NAD(P)H-Oxidase von Calcium durch die Proteinkinase C (PKC) aktiviert, was wiederum zur Bildung von O2˙ˉ führte. Andererseits kam es durch erhöhtes cytosolisches Calcium zur Aktivierung der NO-Synthase (NOS), welche daraufhin Stickoxid (NO) produzierte. NO und O2˙ˉ können zu dem hochreaktiven Peroxynitrit (ONOO-) reagieren, welches die DNA mehr schädigen kann als das etwas weniger reaktive O2˙ˉ. Kurzfristig könnte die Aktivierung der Transkriptionsfaktoren und Signalwege eine schützende Wirkung gegen den durch Aldosteron-induzierten oxidativen Stress und DNA-Schaden in den Zellen haben. Allerdings kann eine länger anhaltende Aktivierung von NF-kappaB und ERK/CREB/STAT durch permanent hohe Aldosteronspiegel zur Induktion einer Überlebensstrategie durch NF-kappaB und ERK/CREB/STAT in Aldosteron-exponierten Zellen führen. Der DNA-Schaden, der durch erhöhte ROS-Spiegel entsteht, könnte persistent und somit an Tochterzellen weitervererbt werden, was eventuell zur Entstehung von Krebs beitragen könnte. Falls diese Effekte auch in Patienten mit Hyperaldosteronismus gefunden werden können, dann könnte Aldosteron an der erhöhten Krebsinzidenz bei Bluthochdruck beteiligt sein. KW - Aldosteron KW - Oxidativer Stress KW - DNS-Schädigung KW - NADPH-Oxidase KW - Stickstoffoxidsynthase KW - Aldosteron KW - Oxidativer Stress KW - Nitrosativer Stress KW - DNA-Schaden KW - Transkriptionsfaktoren KW - aldosterone KW - oxidative stress KW - nitrosative stress KW - DNA damage KW - transcription factors Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53566 ER - TY - THES A1 - Duraphe, Prashant T1 - Identification and characterization of AUM, a novel human tyrosine phosphatase T1 - Identifizierung und Charakterisierung von AUM, einer neuen humanen Tyrosin-Phosphatase N2 - Protein Phosphatasen werden aufgrund der Aminosäuresequenzen ihrer aktiven Zentren in drei große Familien unterteilt. In einer neu entdeckten Familie von Phosphatasen ist das aktive Zentrum durch die Sequenz DXDX(T/V) charakterisiert. Diese Aspartat-abhängigen Phosphatasen gehören zu der Superfamilie der Hydrolasen vom Haloazid Dehalogenase(HAD)-Typ, einer evolutionär konservierten und ubiquitär verbreiteten Enzymfamilie. Bislang konnten 58 menschliche HAD Enzyme durch Datenbankanalysen identifiziert werden. Ihre Funktionen sind jedoch nach wie vor nur rudimentär verstanden. Im Rahmen dieser Arbeit wurde zunächst das Komplement aller menschlichen HAD Phosphatasen durch Datenbank-Recherchen erfasst. Zusammen mit phylogenetischen Analysen gelang es, eine zum damaligen Zeitpunkt unbekannte, putative Phosphatase zu identifizieren, die eine vergleichsweise hohe Sequenz-Homologie zu der Zytoskelettregulierenden HAD Phosphatase Chronophin aufweist. Dieses neuartige Enzym wurde kloniert und mit biochemischen und zellbiologischen Methoden charakterisiert. Auf der Basis dieser Befunde bezeichnen wir dieses neuartige Protein als AUM (actin remodeling, ubiquitously expressed, magnesium-dependent HAD phosphatase).Mittels Northern blot, real-time PCR und Western blot Analysen konnte gezeigt werden, dass AUM in allen untersuchten menschlichen und murinen Geweben exprimiert wird. Die höchste Expression konnte in Hodengewebe nachgewiesen werden. Durch immunohistochemische Untersuchungen konnte gezeigt werden, dass AUM spezifisch in reifenden Keimzellen mit einem Expressionsmaximum zum Zeitpunkt der Spermiogenese exprimiert wird. Um die Substratpräferenz von AUM zu charakterisieren, wurde zunächst ein peptidbasierter in vitro Phosphatase-Substrat-Screen durchgeführt. Hierbei wurden 720 aus menschlichen Phosphoproteinen abgeleitete Phosphopeptide untersucht. Interessanterweise dephosphorylierte AUM ausschließlich Phosphotyrosin (pTyr)-enthaltende Peptide. Nur 17 pTyr-Peptide (~2% aller untersuchten Peptide) fungierten als AUM-Substrate. Diese Daten legen eine hohe Substratspezifität von AUM nahe. Zu den putativen AUM Substraten gehören Proteine, die in die Dynamik der Zytoskelett-Reorganisation sowie in Tyrosin Kinasevermittelte Signalwege eingebunden sind. In Übereinstimmung mit den Ergebnissen dieses Phosphopeptid-Screens konnte mittels Phosphatase overlay assays sowie in Zellextrakten aus Pervanadat-behandelten HeLa Zellen demonstriert werden, dass AUM eine begrenzte Anzahl Tyrosin-phosphorylierter Proteinen dephosphorylieren kann.In zellulären Untersuchungen wurde die mögliche Rolle von AUM im Rahmen der durch den epidermalen Wachstumsfaktor (EGF) ausgelösten Tyrosin-Phosphorylierung in einer Spermatogonien Zelllinie (GC-1 spg-Zellen) analysiert. So konnte nachgewiesen werden, dass die Überexpression von AUM zu einer moderaten Abnahme Tyrosin phosphorylierter Proteine nach EGF-Stimulation führte. Im Gegensatz dazu löste jedoch die durch RNAInterferenz vermittelte Depletion von endogenem AUM einen robusten Anstieg Tyrosinphosphorylierter Proteine aus, zu denen auch der EGF-Rezeptor selbst zählt. Zusätzlich zu dem EGF-Rezeptor wurde die Src-Kinase im Zuge des Phosphopeptid- Screens als mögliches AUM Substrat identifiziert. Daher wurden in vitro Kinase/Phosphatase-Assays mit gereinigtem Src und AUM durchgeführt. Mit diesem Ansatz konnte erstmals gezeigt werden, dass AUM in der Lage ist, die Src-Kinase zu aktivieren, während Src AUM phosphoryliert und die AUM Phosphatase-Aktivität blockiert. Diese Ergebnisse deuten auf eine gekoppelte, wechselseitige Regulation von AUM und Src hin. Obwohl die Details dieser Regulation derzeit noch unklar sind, zeigen unsere initialen Ergebnisse, dass AUM die Src-Aktivität unabhängig von seiner Phosphatase Aktivität steigert, während Src die AUM Phosphatase-Aktivität Kinase-abhängig vermindert. Auf zellulärer Ebene sind AUM-depletierte Zellen durch Veränderungen der Aktin- Zytoskelett-Dynamik und der Zelladhäsion charakterisiert. So weisen AUM-defiziente Zellen stabilisierte Aktin Streßfasern und vergrößerte fokale Adhäsionen auf. Weiterhin sind AUMdepletierte Zellen durch ein beschleunigtes spreading auf Fibronektin gekennzeichnet. Wir haben mit AUM ein bisher nicht beschriebenes Mitglied der Familie Aspartat-abhängiger Phosphatasen entdeckt. In dieser Arbeit ist es gelungen, AUM phylogenetisch, biochemisch und zellbiologisch zu charakterisieren. Unsere Ergebnisse legen nahe, dass AUM einen wichtigen, neuartigen Regulator der Src-vermittelten Zytoskelett-Dynamik im Rahmen der Zelladhäsion und Migration darstellt. N2 - Protein phosphatases can be classified into at least three major families based on amino acid sequences at their active sites. A newly emerging phosphatase family contains the active site sequence DXDX(T/V), and belongs to the haloacid dehalogenase (HAD) superfamily of hydrolases, a ubiquitous and evolutionarily conserved enzyme family. Although the existence of 58 human HAD enzymes has been predicted by database analysis, our understanding of their biological functions remains rudimentary.By database mining amd phylogenetic analysis of human HAD phosphatases, we have found a marked increase in cell area of spreading cells, as well as accelerated cell spreading onfibronectin. Taken together, we have identified and characterized AUM as a novel member of the emerging family of aspartate-dependent protein tyrosine phosphatases. Our findings implicate AUM as an important regulator of Src-dependent cytoskeletal dynamics during cell adhesion and migration. a previously unidentified enzyme with homology to Chronophin, a cytoskeletal regulatory HAD phosphatase. We have cloned and characterized this novel enzyme and named it AUM,for actin remodeling, ubiquitously expressed, magnesium-dependent HAD phosphatase. By Northern blot, real-time PCR and Western blot analysis, we show that AUM is broadly expressed in all major human and mouse tissues with highest levels found in testis. Using immunohistochemistry, we can show that AUM is specifically expressed in maturing germ cells and that its expression peaks during spermiogenesis. To characterize the substrate preference of AUM, we have conducted an in vitro phosphatase substrate screen with 720 phosphopeptides derived from human phosphorylation sites. AUM exclusively dephosphorylates phosphotyrosine (pTyr)-containing peptides. Furthermore, only 17 pTyr peptides (~2% of all pTyr peptides investigated) acted as AUM substrates, indicating a high degree of substrate specificity. Putative AUM substrates include proteins involved in cytoskeletal dynamics and tyrosine kinase signaling.In accordance with the phosphopeptide screen, phosphatase overlay assays employing whole-cell extracts of pervanadate-treated HeLa cells show that AUM dephosphorylates only a limited number of tyrosyl-phosphorylated proteins.The role of AUM for cellular signaling was investigated in response to epidermal growth factor (EGF) stimulation in a spermatogonial cell line (GC-1 spg). The overexpression of AUM reduces, whereas the RNAi-mediated depletion of endogenous AUM increases EGF inducedtyrosine phosphorylation, including changes in the phosphorylation of the EGF receptor itself. Interestingly, in vitro kinase/phosphatase assays with purified Src and AUM indicate that AUM can activate Src, which in turn phosphorylates and inactivates AUM. Although it is at present unclear how Src and AUM regulate each other, our initial findings suggests that AUM enhances Src kinase activity independently of its phosphatase activity, whereas Src diminishes AUM phosphatase activity in a kinase dependent manner. On a cellular level, AUM-depleted cells are characterized by altered actin cytoskeletal dynamics and adhesion, as indicated by stabilized actin filaments, enlarged focal adhesions,a marked increase in cell area of spreading cells, as well as accelerated cell spreading on fibronectin. Taken together, we have identified and characterized AUM as a novel member of the emerging family of aspartate-dependent protein tyrosine phosphatases. Our findings implicate AUM as an important regulator of Src-dependent cytoskeletal dynamics during cell adhesion and migration. KW - Tyrosin KW - Phosphatase KW - Signal transduction KW - Cell adhesion KW - Actin cytoskeleton KW - Src KW - Spermatogenesis Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44256 ER - TY - THES A1 - von Hayn, Kathrin T1 - Untersuchungen zur Ca2+-abhängigen Regulation von cAMP in intakten vaskulären Myocyten T1 - Analysis of the Ca2+-dependent regulation of cAMP in intact vascular smooth muscle cells N2 - Die Regulation des Tonus glatter Muskelzellen wird entscheidend von den beiden antagonistisch wirkenden second messengern cAMP und Ca2+ beeinflusst. Ein Ziel dieser Arbeit war herauszufinden, ob diese beiden Botenstoffe auch direkten Einfluss aufeinander haben können und welche Enzyme in diesem Fall an den Prozessen beteiligt sind. cAMP-Signale in intakten Zellen konnten wir in Echtzeit mit Hilfe des FRET-basierten cAMP-Sensors Epac1-camps beobachten; Ca2+-Signale durch Markieren der Zellen mit Fura-2. Anstiege der intrazellulären Ca2+-Konzentration in VSMCs wurden durch Aktivierung von endogen exprimierten, Gq-gekoppelten P2Y6-Rezeptoren mit Uridindiphosphat (UDP) ausgelöst. Durch eine zusätzliche in-vitro Kalibrierung des Epac1-camps konnten darüber hinaus absolute cAMP-Konzentrationen in einzelnen lebenden Zellen berechnet werden. Während ein Anstieg der Ca2+-Konzentration auf nicht vorstimulierte VSMCs keinen signifikante Einfluss auf die intrazellulären cAMP-Konzentrationen hatte, bewirkte die Aktivierung der purinergen Rezeptoren einen deutlichen Rückgang der intrazellulären cAMP-Konzentration in mit Isoproterenol vorstimulierten VSMCs. Dieser Effekt konnte sowohl durch die Komplexierung von Ca2+ mit BAPTA-AM als auch durch die Überexpression der Ca2+-insensitiven AC4 antagonisiert werden. Adenylatcyclase-Aktivitäts-Assays in VSMC-Membranen zeigten ebenfalls einen Rückgang der Cyclaseaktivität nach Zugabe von 2 und 5 μM freiem Ca2+. Die Hemmung der einzigen Ca2+-regulierbaren PDE1 mit dem selektiven PDE1-Inhibitor 8-Methoxymethyl-IBMX (8-MM-IBMX) hatte im Gegensatz dazu keinen Einfluss auf die durch UDP verursachte Änderung der cAMP-Konzentration in vorstimulierten VSMCs. Schließlich bewirkte die Herunterregulation der Ca2+-inhibierbaren AC5 und 6 mit siRNA einen signifikante Hemmung des durch UDP verursachten Effekts. Fasst man alle diese Ergebnisse zusammen, so lässt sich folgende Schlussfolgerung ziehen: Der durch purinerge Stimulation verursachte Rückgang der cAMP-Konzentration in mit Isoproterenol vorstimulierten VSMCs wird durch eine Hemmung der Ca2+-hemmbaren AC5 und 6 vermittelt. Dadurch sind zwei für die Regulation des Tonus wichtige Signalwege in VSMCs miteinander verbunden, die sich somit gegenseitig entscheidend beeinflussen können. Ein weiterer Bestandteil dieser Arbeit war die Entwicklung eines transgenen Mausmodells, das glattmuskelspezifisch den cAMP-Sensor Epac1-camps exprimiert. Mit Hilfe eines solchen Tiermodells könnten in Zukunft cAMP-Änderungen in intakten Geweben und vielleicht sogar in lebenden Tieren beobachtet werden. Durch Anwendung des Cre-loxP-Rekombinationssystems gelang es eine glatt¬muskelspezifische, für den Epac1-camps transgene Mauslinie zu generieren. Mit isolierten VSMCs dieser Tiere konnten bereits erste FRET-Messungen durchgeführt und agonistinduzierte cAMP-Änderungen beobachtet werden. N2 - Regulation of smooth muscle tone is crucially determined by the antangonistic second messengers cAMP and Ca2+. One aim of this work was to investigate, if these two mediators can also affect each other directly and which enzymes take part in these processes. For observing cAMP signals in living cells with a temporally high resolution, we used the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps. For monitoring changes in intracellular Ca2+, cells were labeled with Fura-2. Rises in intracellular Ca2+ were achieved by activation of on vascular smooth muscle cells (VSMCs) endogenously expressed Gq-coupled P2Y6 receptors with uridine diphosphate (UDP). Additional, in-vitro calibration of the Epac1-camps allowed the calculation of absolute cAMP concentrations in single living cells. An increase of Ca2+ concentrations in non-prestimulated VSMCs did not significantly influence intracellular cAMP concentrations. Activation of purinergic receptors of isoproterenol-prestimulated cells with UDP provoked a clear decrease of intracellular cAMP concentrations. This effect was blocked by the complexation of Ca2+ with BAPTA-AM as well as by overexpression of Ca2+-insensitive AC4. Furthermore, adenylyl cyclase activity assays in the presence of 2 and 5 μM free Ca2+ in VSMC membranes showed a decline in cyclase activity. Inhibition of PDE1, the only Ca2+-dependent phosphodiesterase (PDE), with the selective PDE1 inhibitor 8-methoxymethy-IBMX, in contrast, had no effect on UDP-evoked changes in cAMP concentrations in isoproterenol-prestimulated VSMCs. Finally, knockdown of Ca2+-inhibitable AC5 and 6 with siRNA significantly inhibited the UDP-evoked decrease in cAMP concentrations in isoproterenol-prestimulated VSMCs. To merge all these results, one can draw the following conclusion: The purinergically evoked decrease in cAMP concentrations in isoproterenol-prestimulated VSMCs is caused by an inhibition of AC5 and 6 which is mediated by Ca2+. This mechanism interlinks two essential antagonistic signaling pathways for the regulation of smooth muscle tone. An additional part of this work was to develop a transgenic mouse model, which expresses smooth-muscle-specifically Epac1-camps. In the future, these animals could provide the possibility to observe cAMP signals in intact tissues or even in living animals. With the help of the Cre-loxP recombination system, we achieved to generate such a smooth-muscle-specific transgene. Afterwards FRET measurements in isolated vascular smooth muscle cells of these animals were possible and we were also able to observe agonist-induced cAMP changes in these isolated cells. KW - Glatte Muskulatur KW - Cyclo-AMP KW - Calcium KW - Calcium KW - cAMP KW - vaskuläre glatte Muskelzellen KW - FRET KW - calcium KW - cAMP KW - vascular smooth muscle cells KW - FRET Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47709 ER -