TY - THES A1 - Jung, Lisa Anna T1 - Targeting MYC Function as a Strategy for Tumor Therapy T1 - Hemmung der MYC-Funktion als Strategie für die zielgerichtete Tumortherapie N2 - A large fraction of human tumors exhibits aberrant expression of the oncoprotein MYC. As a transcription factor regulating various cellular processes, MYC is also crucially involved in normal development. Direct targeting of MYC has been a major challenge for molecular cancer drug discovery. The proof of principle that its inhibition is nevertheless feasible came from in vivo studies using a dominant-negative allele of MYC termed OmoMYC. Systemic expression of OmoMYC triggered long-term tumor regression with mild and fully reversible side effects on normal tissues. In this study, OmoMYC’s mode of action was investigated combining methods of structural biology and functional genomics to elucidate how it is able to preferentially affect oncogenic functions of MYC. The crystal structure of the OmoMYC homodimer, both in the free and the E-box-bound state, was determined, which revealed that OmoMYC forms a stable homodimer, and as such, recognizes DNA via the same base-specific DNA contacts as the MYC/MAX heterodimer. OmoMYC binds DNA with an equally high affinity as MYC/MAX complexes. RNA-sequencing showed that OmoMYC blunts both MYC-dependent transcriptional activation and repression. Genome-wide DNA-binding studies using chromatin immunoprecipitation followed by high-throughput sequencing revealed that OmoMYC competes with MYC/MAX complexes on chromatin, thereby reducing their occupancy at consensus DNA binding sites. The most prominent decrease in MYC binding was seen at low-affinity promoters, which were invaded by MYC at oncogenic levels. Strikingly, gene set enrichment analyses using OmoMYC-regulated genes enabled the identification of tumor subgroups with high MYC levels in multiple tumor entities. Together with a targeted shRNA screen, this identified novel targets for the eradication of MYC-driven tumors, such as ATAD3A, BOP1, and ADRM1. In summary, the findings suggest that OmoMYC specifically inhibits tumor cell growth by attenuating the expression of rate-limiting proteins in cellular processes that respond to elevated levels of MYC protein using a DNA-competitive mechanism. This opens up novel strategies to target oncogenic MYC functions for tumor therapy. N2 - Eine Vielzahl humaner Tumore entsteht durch die aberrante Expression des Onkoproteins MYC. Da MYC als Transkriptionsfaktor viele zelluläre Prozesse reguliert, ist er auch maßgeblich an der Entwicklung von normalem Gewebe beteiligt. Die direkte Hemmung von MYC stellt eine große Herausforderung für die Wirkstoffentwicklung dar. Studien mit dem dominant-negativen MYC-Allel namens OmoMYC belegten, dass MYC ein potenzieller Angriffspunkt für die zielgerichtete Tumortherapie ist. Die systemische Expression dieser MYC-Mutante löste eine dauerhafte Tumorregression aus und zeigte milde sowie vollständig reversible Nebenwirkungen. In der vorliegenden Arbeit wurde der molekulare Wirkmechanismus von OmoMYC untersucht, wobei sowohl Methoden der Strukturbiologie als auch der funktionalen Genomik angewendet wurden. Die Kristallstruktur des OmoMYC Proteins wurde im freien und E-Box-gebundenen Zustand bestimmt. Dadurch konnte gezeigt werden, dass OmoMYC ein stabiles Homodimer bildet. Als solches erkennt es DNA mittels derselben basenspezifischen Interaktionen wie der MYC/MAX-Komplex. Dabei bindet OmoMYC DNA mit einer ähnlichen Affinität wie das MYC/MAX-Heterodimer. Die genomweite Expressionsanalyse mittels RNA-Sequenzierung identifiziert eine Reduktion sowohl der MYC-abhängigen Transkriptionsaktiverung als auch der Transkriptionsrepression durch OmoMYC. Mittels Chromatin-Immunpräzipitation gefolgt von einer Hochdurchsatz-Sequenzierung wird gezeigt, dass OmoMYC mit MYC/MAXKomplexen auf Chromatin konkurriert und so deren Besetzung global an Konsensus-Bindestellen verringert. Die stärkste Reduktion zeigt sich an Promoterregionen mit schwacher Affinität für die MYC-Bindung, welche durch onkogene MYC-Proteinmengen aufgefüllt werden. Gene set enrichment-Analysen unter Berücksichtigung von OmoMYC-regulierten Genen erlaubten die Identifizierung von Tumor-Subgruppen mit hohen MYC-Proteinmengen in zahlreichen Tumorentitäten. Zusammen mit einem fokussierten shRNA-Screen können so neue Zielproteine für die Bekämpfung von MYC-getriebenen Tumoren, wie zum Beispiel ATAD3A, BOP1 und ADRM1, identifiziert werden. Zusammenfassend weisen die Ergebnisse darauf hin, dass OmoMYC spezifisch das Tumorzellwachstum inhibiert, indem es die Expression von zentralen Proteinen limitiert, welche durch erhöhte MYC-Proteinmengen reguliert werden. Somit können neue Strategien zur Tumortherapie identifiziert werden, die auf onkogene Funktionen von MYC zielen. KW - Myc KW - Kristallstruktur KW - Transkription KW - Bauchspeicheldrüsenkrebs KW - DNS-Bindung KW - OmoMYC KW - promoter invasion Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146993 ER - TY - THES A1 - Carstensen, Anne Carola T1 - Identification of novel N-MYC interacting proteins reveals N-MYC interaction with TFIIIC T1 - Identifizierung von neuen N-MYC interagierenden Proteinen offenbart N-MYC's Interaktion mit TFIIIC N2 - N-MYC is a member of the human MYC proto-oncogene family, which comprises three transcription factors (C-, N- and L-MYC) that function in multiple biological processes. Deregulated expression of MYC proteins is linked to tumour initiation, maintenance and progression. For example, a large fraction of neuroblastoma displays high N-MYC levels due to an amplification of the N-MYC encoding gene. MYCN-amplified neuroblastoma depend on high N-MYC protein levels, which are maintained by Aurora-A kinase. Aurora-A interaction with N-MYC interferes with degradation of N-MYC via the E3 ubiquitin ligase SCFFBXW7. However, the underlying mechanism of Aurora-A-mediated stabilisation of N-MYC remains to be elucidated. To identify novel N-MYC interacting proteins, which could be involved in N-MYC stabilisation by Aurora-A, a proteomic analysis of purified N-MYC protein complexes was conducted. Since two alanine mutations in MBI of N-MYC, T58A and S62A (N-MYC mut), disable Aurora-A-mediated stabilisation of N-MYC, N-MYC protein complexes from cells expressing either N-MYC wt or mut were analysed. Proteomic analysis revealed that N-MYC interacts with two deubiquitinating enzymes, USP7 and USP11, which catalyse the removal of ubiquitin chains from target proteins, preventing recognition by the proteasome and subsequent degradation. Although N-MYC interaction with USP7 and USP11 was confirmed in subsequent immunoprecipitation experiments, neither USP7, nor USP11 was shown to be involved in the regulation of N-MYC stability. Besides USP7/11, proteomic analyses identified numerous additional N-MYC interacting proteins that were not described to interact with MYC transcription factors previously. Interestingly, many of the identified N-MYC interaction partners displayed a preference for the interaction with N-MYC wt, suggesting a MBI-dependent interaction. Among these were several proteins, which are involved in three-dimensional organisation of chromatin domains and transcriptional elongation by POL II. Not only the interaction of N-MYC with proteins functioning in elongation, such as the DSIF component SPT5 and the PAF1C components CDC73 and CTR9, was validated in immunoprecipitation experiments, but also with the POL III transcription factor TFIIIC and topoisomerases TOP2A/B. ChIP-sequencing analysis of N-MYC and TFIIIC subunit 5 (TFIIIC5) revealed a large number of joint binding sites in POL II promoters and intergenic regions, which are characterised by the presence of a specific motif that is highly similar to the CTCF motif. Additionally, N-MYC was shown to interact with the ring-shaped cohesin complex that is known to bind to CTCF motifs and to assist the insulator protein CTCF. Importantly, individual ChIP experiments demonstrated that N-MYC, TFIIIC5 and cohesin subunit RAD21 occupy joint binding sites comprising a CTCF motif. Collectively, the results indicate that N-MYC functions in two biological processes that have not been linked to MYC biology previously. Furthermore, the identification of joint binding sites of N-MYC, TFIIIC and cohesin and the confirmation of their interaction with each other suggests a novel function of MYC transcription factors in three-dimensional organisation of chromatin. N2 - N-MYC ist ein Mitglied der humanen MYC proto-Onkogen Familie, welche drei Transkriptionsfaktoren umfasst (C-,N- und L-MYC), die in zahlreichen biologischen Prozessen fun-gieren. Deregulierte Expression der MYC Proteine ist mit Tumorinitiierung, -erhalt und -progression verbunden. Zum Beispiel zeigt ein großer Anteil an Neuroblastomen aufgrund einer Amplifizierung des N-MYC kodierenden Gens hohe N-MYC Level. MYCN-amplifizierte Neuroblastome hängen von den hohen N-MYC Protein Leveln ab, die durch die Aurora-A Kinase erhalten werden. Die Interaktion von Aurora-A mit N-MYC behindert den Abbau von N-MYC durch die E3 Ubiquitin Ligase SCFFBXW7. Allerdings muss der zugrunde liegende Mechanismus der Aurora-A vermittelten Stabilisierung von N-MYC noch aufgedeckt werden. Um neue N-MYC interagierende Proteine zu identifizieren, welche in der N-MYC Stabilisierung durch Aurora-A involviert sind, wurde eine Proteom Analyse der aufgereinigten N-MYC Proteinkomplexe durchgeführt. Da zwei Alanin-Mutationen in MBI von N-MYC, T58A und S62A (N-MYC mut), die Aurora-A vermittelte Stabilisierung von N-MYC verhindern, wurden N-MYC Protein-Komplexe von Zellen, die entweder N-MYC wt oder mut exprimieren analysiert. Die Proteom Analyse offenbarte, dass N-MYC mit zwei Deubiquitinierenden Enzymen, USP7 und USP11, interagiert, welche das Entfernen von Ubiquitinketten von Zielproteinen katalysieren und dadurch die Erkennung durch das Proteasom und den darauf folgenden Abbau verhindern. Obwohl die Interaktion von N-MYC mit USP7 und USP11 in darauf folgenden Immunpräzipitationsexperimenten bestätigt wurde, konnnte weder für USP7, noch für USP11 gezeigt werden, dass es in die Regulierung der Stabilität von N-MYC involviert ist. Neben USP7/11 wurden in der Proteom Analyse zusätzlich zahlreiche mit N-MYC interagierende Proteine identifiziert, die zuvor noch nicht beschrieben wurden mit MYC Transkriptionsfaktoren zu interagieren. Interessanterweise zeigten viele der identifizierten N-MYC Interaktionspartner eine Präferenz für die Interaktion mit N-MYC wt, was eine MBI-abhängige Interaktion suggeriert. Unter diesen waren einige Proteine, die in die drei-dimensionale Organisation von Chromatindomänen und transkriptioneller Elongation durch POL II involviert sind. Nicht nur die Interaktion von N-MYC mit Proteinen, die in der Elongation agieren, wie die DSIF Komponente SPT5 und die PAF1C Komponenten CDC73 und CTR9, wurden in Immunpräzipitationsexperimenten bestätigt, sondern auch mit dem POL III Transkriptionsfaktor TFIIIC und den Topoisomerasen TOP2A/B. Analyse von ChIP-Sequenzierungsexperimenten für N-MYC und TFIIIC Untereinheit 5 (TFIIIC5) offenbarte eine große Anzahl von gemeinsamen Bindungsstellen in POL II Promotoren und intergenen Regionen, welche durch das Vorkommen eines speziellen Motivs gekennzeichent waren, das dem CTCF Motiv sehr ähnlich ist. Zusätzlich wurde gezeigt, dass N-MYC mit dem ringförmigen Cohesin Komplex interagiert, der dafür bekannt ist an CTCF Motive zu binden und dem Insulator Protein CTCF zu assistieren. Entscheidender Weise zeigten individuelle ChIP Experimente, dass N-MYC, TFIIIC5 und die Cohesin Untereinheit RAD21 gemeinsame Bindungstellen haben, die ein CTCF Motiv enthalten. Zusammenfassend weisen die Ergebnisse darauf hin, dass N-MYC in zwei biologischen Prozessen fungiert, die zuvor nicht mit der Biologie von MYC verbunden wurden. Zudem suggeriert die Identifizierung von gemeinsamen Bindungstellen von N-MYC, TFIIIC und Cohesin und die Bestätigung der Interaktion untereinander eine neue Funktion von MYC Transkriptionsfaktoren in der drei-dimensionalen Organisation von Chromatin. KW - Biologie KW - Transkriptionsfaktor KW - Onkogen KW - N-MYC KW - neuroblastoma KW - TFIIIC KW - Aurora-A KW - mass spectrometry KW - cohesin Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143658 ER - TY - JOUR A1 - Kilinc, Mehmet Okyay A1 - Ehrig, Klaas A1 - Pessian, Maysam A1 - Minev, Boris R. A1 - Szalay, Aladar A. T1 - Colonization of xenograft tumors by oncolytic vaccinia virus (VACV) results in enhanced tumor killing due to the involvement of myeloid cells JF - Journal of Translational Medicine N2 - Background The mechanisms by which vaccinia virus (VACV) interacts with the innate immune components are complex and involve different mechanisms. iNOS-mediated NO production by myeloid cells is one of the central antiviral mechanisms and this study aims to investigate specifically whether iNOS-mediated NO production by myeloid cells, is involved in tumor eradication following the virus treatment. Methods Human colon adenocarcinoma (HCT-116) xenograft tumors were infected by VACV. Infiltration of iNOS\(^{+}\) myeloid cell population into the tumor, and virus titer was monitored following the treatment. Single-cell suspensions were stained for qualitative and quantitative flow analysis. The effect of different myeloid cell subsets on tumor growth and colonization were investigated by depletion studies. Finally, in vitro culture experiments were carried out to study NO production and tumor cell killing. Student’s t test was used for comparison between groups in all of the experiments. Results Infection of human colon adenocarcinoma (HCT-116) xenograft tumors by VACV has led to recruitment of many CD11b\(^{+}\) ly6G\(^{+}\) myeloid-derived suppressor cells (MDSCs), with enhanced iNOS expression in the tumors, and to an increased intratumoral virus titer between days 7 and 10 post-VACV therapy. In parallel, both single and multiple rounds of iNOS-producing cell depletions caused very rapid tumor growth within the same period after virus injection, indicating that VACV-induced iNOS\(^{+}\) MDSCs could be an important antitumor effector component. A continuous blockade of iNOS by its specific inhibitor, L-NIL, showed similar tumor growth enhancement 7–10 days post-infection. Finally, spleen-derived iNOS+ MDSCs isolated from virus-injected tumor bearing mice produced higher amounts of NO and effectively killed HCT-116 cells in in vitro transwell experiments. Conclusions We initially hypothesized that NO could be one of the factors that limits active spreading of the virus in the cancerous tissue. In contrast to our initial hypothesis, we observed that PMN-MDSCs were the main producer of NO through iNOS and NO provided a beneficial antitumor effect, The results strongly support an important novel role for VACV infection in the tumor microenvironment. VACV convert tumor-promoting MDSCs into tumor-killing cells by inducing higher NO production. KW - MDSCs KW - VACV KW - iNOS KW - oncolytic virus therapy KW - NO KW - innate immune system KW - antitumor immune response KW - antiviral immunity Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168914 VL - 14 IS - 340 ER - TY - INPR A1 - Löffler, Mona C. A1 - Mayer, Alexander E. A1 - Trujillo Viera, Jonathan A1 - Loza Valdes, Angel A1 - El-Merahib, Rabih A1 - Ade, Carsten P. A1 - Karwen, Till A1 - Schmitz, Werner A1 - Slotta, Anja A1 - Erk, Manuela A1 - Janaki-Raman, Sudha A1 - Matesanz, Nuria A1 - Torres, Jorge L. A1 - Marcos, Miguel A1 - Sabio, Guadalupe A1 - Eilers, Martin A1 - Schulze, Almut A1 - Sumara, Grzegorz T1 - Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity T2 - The EMBO Journal N2 - Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others, activates G-protein coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the β3-adrenergic receptor (ADRB3) in a CCAAT/enhancerbinding protein (C/EBP)-α and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, loss of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications. KW - AMP-activated protein kinase (AMPK) KW - Beige adipocytes KW - β3 adrenergic receptor (ADRB3) KW - C/EBP KW - Protein kinase D1 (PKD1) Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176093 ER - TY - THES A1 - Fackler, Marc T1 - Biochemical characterization of GAS2L3, a target gene of the DREAM complex T1 - Biochemische Charakterisierung von GAS2L3, ein Zielgen des DREAM Komplex N2 - GAS2L3 was identified recently as a target gene of the DREAM complex (Reichert et al., 2010; Wolter et al., 2012). It was shown that GAS2L3 is expressed in a cell cycle specific manner and that depletion of the protein leads to defects in cytokinesis and genomic instability (Wolter et al., 2012). Major aim of this thesis was, to further characterize the biochemical properties and physiological function of GAS2L3. By in vitro co-sedimentation and bundling assays, GAS2L3 was identified as a cytoskeleton associated protein which bundles, binds and crosslinks F-actin and MTs. GST pulldown assays and co-immunoprecipitation experiments revealed that GAS2L3 interacts in vitro and in vivo with the chromosomal passenger complex (CPC), a very important regulator of mitosis and cytokinesis, and that the interaction is mediated by the GAR domain of GAS2L3 and the C-terminal part of Borealin and the N-terminal part of Survivin. Kinase assays showed that GAS2L3 is not a substrate of the CPC but is strongly phosphorylated by CDK1 in vitro. Depletion of GAS2L3 by shRNA influenced protein stability and activity of the CPC. However pharmacological studies showed that the decreased CPC activity is not responsible for the observed cytokinesis defects upon GAS2L3 depletion. Immunofluorescence experiments revealed that GAS2L3 is localized to the constriction zone by the CPC in a GAR dependent manner and that the GAR domain is important for proper protein function. New interacting proteins of GAS2L3 were identified by stable isotope labelling by amino acids in cell culture (SILAC) in combination with tandem affinity purification and subsequent mass spectrometrical analysis. Co-immunoprecipitation experiments further confirmed the obtained mass spectrometrical data. To address the physiological function of GAS2L3 in vivo, a conditional and a non-conditional knockout mouse strain was established. The non-conditional mouse strain showed a highly increased mortality rate before weaning age probably due to heart failure. The physiological function of GAS2L3 in vivo as well as the exact reason for the observed heart phenotype is not known at the moment. N2 - GAS2L3 wurde vor kurzem als Zielgen des DREAM Komplex identifiziert (Reichert et al., 2010; Wolter et al., 2012). Es konnte gezeigt werden, dass die Expression von GAS2L3 Zellzyklus abhängig reguliert wird und dass Depletion des Proteins zu Fehlern in der Zytokinese und genomischer Instabilität führt (Wolter et al., 2012). Hauptziel dieser Doktorarbeit war es, GAS2L3 hinsichtlich seiner biochemischen Eigenschaften und physiologischer Funktion näher zu charakterisieren. Unter Verwendung verschiedener in vitro Experimente konnte gezeigt werden, dass GAS2L3 sowohl F-Aktin als auch Mikrotubuli binden, bündeln und quervernetzen kann. In vitro und in vivo Protein-Protein Interaktionsexperimente zeigten, dass GAS2L3 mit dem „chromosomal passenger complex“ (CPC), einem wichtigen Mitose- und Zytokineseregulator, interagiert und dass diese Interaktion durch die GAR Domäne von GAS2L3 und den C-Terminus von Borealin beziehungsweise den N-terminus von Survivin vermittelt wird. Phosphorylierungsexperimente zeigten deutlich, dass GAS2L3 kein Substrat des CPC ist, jedoch von CDK1 phosphoryliert wird. Zellbiologische Experimente belegten, dass Depletion von GAS2L3 mittels shRNA die Proteinstabilität und Aktivität des CPC beeinflusst. Experimente mit einem chemischen Aurora B Inhibitor dokumentierten, dass die verringerte CPC Aktivität nicht die Ursache der beobachteten Zytokinesefehler nach GAS2L3 Depletion ist. Immunfluoreszenzexperimente machten deutlich, dass GAS2L3 mit Hilfe des CPC an der Abschnürungszone lokalisiert wird und dass die Lokalisation abhängig von der GAR Domäne erfolgt. Mit Hilfe von SILAC in Kombination mit Tandem-Affinitätsaufreinigung und anschließender massenspektrometrischer Auswertung wurden neue Proteininteraktoren von GAS2L3 identifiziert. Protein-Protein Interaktionsexperimente bestätigten die massenspektrometrisch ermittelten Daten. Um die physiologische Funktion von GAS2L3 in vivo näher analysieren zu können, wurden verschiedene Knockout Mauslinien etabliert. Die nicht-konditionelle Mauslinie zeigte erhöhte Sterblichkeit vor dem Absetzalter wahrscheinlich verursacht durch Herzversagen. Die genaue physiologische Funktion von GAS2L3 und der Grund für den beobachteten Herzphänotyp sind momentan noch unbekannt. KW - Zellzyklus KW - Zellteilung KW - Cytoskeleton Chromosomal Passenger Complex Interaction GAR Domain KW - Regulation KW - Molekulargenetik KW - GAS2L3 KW - Chromosomal Passenger Complex Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-103394 ER - TY - THES A1 - Stoll, Georg T1 - Identification of the mRNA-associated TOP3β- TDRD3-FMRP (TTF) -complex and its implication for neurological disorders T1 - Identifikation des mRNA-assoziierten TOP3β-TDRD3-FMRP (TTF) -Komplex und seine Bedeutung für neurologische Störungen N2 - The propagation of the genetic information into proteins is mediated by messenger- RNA (mRNA) intermediates. In eukaryotes mRNAs are synthesized by RNA- Polymerase II and subjected to translation after various processing steps. Earlier it was suspected that the regulation of gene expression occurs primarily on the level of transcription. In the meantime it became evident that the contribution of post- transcriptional events is at least equally important. Apart from non-coding RNAs and metabolites, this process is in particular controlled by RNA-binding proteins, which assemble on mRNAs in various combinations to establish the so-called “mRNP- code”. In this thesis a so far unknown component of the mRNP-code was identified and characterized. It constitutes a hetero-trimeric complex composed of the Tudor domain-containing protein 3 (TDRD3), the fragile X mental retardation protein (FMRP) and the Topoisomerase III beta (TOP3β) and was termed TTF (TOP3β-TDRD3-FMRP) -complex according to its composition. The presented results also demonstrate that all components of the TTF-complex shuttle between the nucleus and the cytoplasm, but are predominantly located in the latter compartment under steady state conditions. Apart from that, an association of the TTF-complex with fully processed mRNAs, not yet engaged in productive translation, was detected. Hence, the TTF-complex is a component of „early“ mRNPs. The defined recruitment of the TTF-complex to these mRNPs is not based on binding to distinct mRNA sequence-elements in cis, but rather on an interaction with the so-called exon junction complex (EJC), which is loaded onto the mRNA during the process of pre-mRNA splicing. In this context TDRD3 functions as an adapter, linking EJC, FMRP and TOP3β on the mRNP. Moreover, preliminary results suggest that epigenetic marks within gene promoter regions predetermine the transfer of the TTF-complex onto its target mRNAs. Besides, the observation that TOP3β is able to catalytically convert RNA-substrates disclosed potential activities of the TTF-complex in mRNA metabolism. In combination with the already known functions of FMRP, this finding primarily suggests that the TTF-complex controls the translation of bound mRNAs. In addition to its role in mRNA metabolism, the TTF-complex is interesting from a human genetics perspective as well. It was demonstrated in collaboration with researchers from Finland and the US that apart from FMRP, which was previously linked to neurocognitive diseases, also TOP3β is associated with neurodevelopmental disorders. Understanding the function of the TTF-complex in mRNA metabolism might hence provide important insight into the etiology of these diseases. N2 - Die Umwandlung der genetischen Information in Proteine erfolgt über Boten-RNA (mRNA) -Intermediate. Diese werden in Eukaryonten durch die RNA-Polymerase II gebildet und nach diversen Prozessierungs-Schritten der Translationsmaschinerie zugänglich gemacht. Während man früher davon ausging, dass die Genexpression primär auf der Ebene der Transkription reguliert wird, ist heute klar, dass post- transkriptionelle Prozesse einen ebenso wichtigen Beitrag hierzu leisten. Neben nicht-kodierenden RNAs und Metaboliten tragen insbesondere RNA- Bindungsproteine zur Kontrolle dieses Vorgangs bei. Diese finden sich in unterschiedlichen Kombinationen auf den mRNAs zusammen und bilden dadurch den sog. „mRNP-Code“ aus. Im Rahmen dieser Dissertation wurde eine bislang unbekannte Komponente des mRNP-Codes identifiziert und charakterisiert. Es handelt es sich dabei um einen hetero-trimeren Komplex, welcher aus dem Tudor Domänen Protein 3 (TDRD3) dem Fragilen X Mentalen Retardations-Protein (FMRP) sowie der Topoisomerase III beta (TOP3β) besteht. Aufgrund seiner Zusammensetzung wurde dieser TTF (TOP3β-TDRD3-FMRP) -Komplex genannt. In der vorliegenden Arbeit konnte der Nachweis geführt werden, dass sämtliche Komponenten des TTF-Komplexes zwischen Zellkern und Cytoplasma pendeln, unter Normalbedingungen jedoch vornehmlich im Cytoplasma lokalisiert sind. Des Weiteren ließ sich eine Assoziation des TTF-Komplexes mit mRNAs nachweisen, die zwar vollständig prozessiert, jedoch noch nicht Teil der produktiven Phase der Translation sind. Der TTF-Komplex ist somit eine Komponente „früher“ mRNPs. Die Rekrutierung des TTF-Komplexes an definierte mRNPs wird nicht durch Bindung an spezifische mRNA-Sequenzelemente bedingt, sondern basiert auf einer Interaktion mit dem sog. Exon Junction Complex (EJC), welcher im Kontext des pre-mRNA Spleißens auf die mRNA geladen wird. Hierbei spielt TDRD3 als Adapter zwischen dem EJC, FMRP und TOP3β die entscheidende Rolle. Präliminäre Experimente legen darüber hinaus den Schluss nahe, dass epigenetische Markierungen im Promotor-Bereich distinkter Gene von entscheidender Bedeutung für den Transfer des TTF-Komplexes auf dessen Ziel-mRNAs sind. Einen wichtigen ersten Hinweis auf die potentielle Funktion des TTF-Komplexes im Kontext des mRNA Metabolismus erbrachte die Beobachtung, dass TOP3β in der Lage ist RNA katalytisch umzusetzen. Dieser Befund lässt in Verbindung mit den bereits beschriebenen Aktivitäten von FMRP vermuten, dass der TTF-Komplex die Translation gebundener mRNAs kontrolliert. Zusätzlich zu seiner Rolle im mRNA Metabolismus ist der TTF-Komplex auch aus humangenetischer Sicht hoch interessant. So konnte in Zusammenarbeit mit finnischen und US-amerikanischen Forschern gezeigt werden, dass neben FMRP, einem bekannten Krankheitsfaktor neurokognitiver Syndrome, auch TOP3β mit neurologischen Entwicklungsstörungen assoziiert ist. Das Verständnis der Funktion des TTF-Komplexes im mRNA Metabolismus könnte daher wichtige Einblicke in die Etiologie dieser Krankheiten liefern. KW - Messenger-RNS KW - Messenger-RNP KW - RNA binding proteins KW - mRNA metabolism KW - eukaryotic gene expression Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111440 ER - TY - JOUR A1 - Salat, Daniela A1 - Winkler, Anja A1 - Urlaub, Henning A1 - Gessler, Manfred T1 - Hey bHLH Proteins Interact with a FBXO45 Containing SCF Ubiquitin Ligase Complex and Induce Its Translocation into the Nucleus JF - PLoS One N2 - The Hey protein family, comprising Hey1, Hey2 and HeyL in mammals, conveys Notch signals in many cell types. The helix-loop-helix (HLH) domain as well as the Orange domain, mediate homo- and heterodimerization of these transcription factors. Although distinct interaction partners have been identified so far, their physiological relevance for Hey functions is still largely unclear. Using a tandem affinity purification approach and mass spectrometry analysis we identified members of an ubiquitin E3-ligase complex consisting of FBXO45, PAM and SKP1 as novel Hey1 associated proteins. There is a direct interaction between Hey1 and FBXO45, whereas FBXO45 is needed to mediate indirect Hey1 binding to SKP1. Expression of Hey1 induces translocation of FBXO45 and PAM into the nucleus. Hey1 is a short-lived protein that is degraded by the proteasome, but there is no evidence for FBXO45-dependent ubiquitination of Hey1. On the contrary, Hey1 mediated nuclear translocation of FBXO45 and its associated ubiquitin ligase complex may extend its spectrum to additional nuclear targets triggering their ubiquitination. This suggests a novel mechanism of action for Hey bHLH factors. KW - ubiquitination KW - glycerol KW - transcription factors KW - DNA-binding proteins KW - immunoprecipitation KW - protein interactions KW - protein domains Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125769 VL - 10 IS - 6 ER - TY - JOUR A1 - Naseem, Muhammad A1 - Kunz, Meik A1 - Dandekar, Thomas T1 - Probing the unknowns in cytokinin-mediated immune defense in Arabidopsis with systems biology approaches JF - Bioinformatics and Biology Insights N2 - Plant hormones involving salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and auxin, gibberellins, and abscisic acid (ABA) are known to regulate host immune responses. However, plant hormone cytokinin has the potential to modulate defense signaling including SA and JA. It promotes plant pathogen and herbivore resistance; underlying mechanisms are still unknown. Using systems biology approaches, we unravel hub points of immune interaction mediated by cytokinin signaling in Arabidopsis. High-confidence Arabidopsis protein-protein interactions (PPI) are coupled to changes in cytokinin-mediated gene expression. Nodes of the cellular interactome that are enriched in immune functions also reconstitute sub-networks. Topological analyses and their specific immunological relevance lead to the identification of functional hubs in cellular interactome. We discuss our identified immune hubs in light of an emerging model of cytokinin-mediated immune defense against pathogen infection in plants. KW - plant hormones KW - systems biology KW - interaction networks KW - gene expression KW - cytokinin Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120199 SN - 1177-9322 VL - 8 ER - TY - JOUR A1 - Benz, Roland A1 - Maier, Elke A1 - Bauer, Susanne A1 - Ludwig, Albrecht T1 - The Deletion of Several Amino Acid Stretches of Escherichia coli Alpha-Hemolysin (HlyA) Suggests That the Channel-Forming Domain Contains Beta-Strands JF - PLOS ONE N2 - Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures. KW - membrane potential KW - molecular mass KW - cations KW - membrane structures KW - membrane proteins KW - lipid bilayer KW - red blood cells KW - toxins Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118115 SN - 1932-6203 VL - 9 IS - 12 ER - TY - THES A1 - Sibilski, Claudia T1 - Identification and characterization of the novel mKSR1 phosphorylation site Tyr728 and its role in MAPK signaling T1 - Identifizierung und Charakterisierung der neuartigen mKSR1-Phosphorylierungsstelle Tyr728 und deren Rolle in der MAPK-Signalkaskade N2 - In mammals, KSR1 functions as an essential scaffold that coordinates the assembly of RAF/MEK/ERK complexes and regulates intracellular signal transduction upon extracellular stimulation. Aberrant activation of the equivalent MAPK signaling pathway has been implicated in multiple human cancers and some developmental disorders. The mechanism of KSR1 regulation is highly complex and involves several phosphorylation/dephosphorylation steps. In the present study, a number of novel in vivo phosphorylation sites were detected in mKSR1 by use of mass spectrometry analysis. Among others, Tyr728 was identified as a unique regulatory residue phosphorylated by LCK, a Src kinase family member. To understand how phosphorylation of Tyr728 may regulate the function of KSR1 in signal transduction and cellular processes, structural modeling and biochemical studies were integrated in this work. Computational modeling of the mKSR1(KD) protein structure revealed strong hydrogen bonding between phospho-Tyr728 and the residues surrounding Arg649. Remarkably, this pattern was altered when Tyr728 was non-phosphorylated or substituted. As confirmed by biochemical analysis, Arg649 may serve as a major anchor point for phospho-Tyr728 in order to stabilize internal structures of KSR1. In line with the protein modeling results, mutational studies revealed that substitution of Tyr728 by phenylalanine leads to a less compact interaction between KSR1 and MEK, a facilitated KSR1/B-RAF binding and an increased phosphorylation of MEK in complex with KSR1. From these findings it can be concluded that phospho-Tyr728 is involved in tightening the KSR1/MEK interaction interface and in regulating the phosphorylation of KSR1-bound MEK by either RAF or KSR1 kinases. Beside the Tyr728, Ser722 was identified as a novel regulatory phosphorylation site. Amino acid exchanges at the relevant position demonstrated that Ser722 regulates KSR1-bound MEK phosphorylation without affecting KSR1/MEK binding per se. Due to its localization, Ser722 might consequently control the catalytic activity of KSR1 by interfering with the access of substrate (possibly MEK) to the active site of KSR1 kinase. Together with Ser722, phosphorylated Tyr728 may further positively affect the kinase activity of KSR1 as a consequence of its vicinity to the activation and catalytic loop in the KSR1(KD). As revealed by structural modeling, phospho-Tyr728 builds a hydrogen bond with the highly conserved Lys685. Consequently, phospho-Tyr728 has a stabilizing effect on internal structures involved in the catalytic reaction and possibly enhances the phosphate transfer within the catalytic cleft in KSR1. Considering these facts, it seems very likely that the LCK-dependent phosphorylation of Tyr728 plays a crucial role in the regulation of KSR1 catalytic activity. Results of fractionation and morphology analyses revealed that KSR1 recruits LCK to cytoskeleton for its phosphorylation at Tyr728 suggesting that this residue may regulate cytoskeleton dynamics and, consequently, cell motility. Beside that, phosphorylation of Tyr728 is involved in the regulation of cell proliferation, as shown by a significantly reduced population doubling time of KSR1-Y728F cells compared to cells expressing wild type KSR1. Taken together, tyrosine phosphorylation in KSR1 uncovers a new link between Src family kinases and MAPK signaling. Tyr728, the novel regulatory phosphorylation site in murine KSR1, may coordinate the transition between the scaffolding and the catalytic function of KSR1 serving as a control point used to fine-tune cellular responses. N2 - KSR1 fungiert bei Säugetieren als zentrales Gerüstprotein, welches die Anordnung von RAF/MEK/ERK-Komplexen koordiniert und die intrazelluläre Signalweiterleitung nach extrazellulärer Stimulation reguliert. Eine abweichende Aktivierung des entsprechenden MAPK-Signalwegs wurde mit vielen humanen Krebsformen und einigen Entwicklungsstörungen in Verbindung gebracht. Der Mechanismus der KSR1-Regulierung ist hochgradig komplex und involviert mehrfach Schritte der Phosphorylierung/Dephosphorylierung. In der vorliegenden Studie wurden etliche neue in-vivo-Phosphorylierungsstellen in mKSR1 mittels massenspektrometrischer Analyse entdeckt. Neben anderen wurde Tyr728 als besonderer regulatorischer Rest identifiziert, welcher durch LCK, einem Mitglied der Src-Kinase-Familie, phosphoryliert wird. Um zu verstehen wie die Phosphorylierung von Tyr728 die Funktion von KSR1 innerhalb der Signalweiterleitung und zellulärer Prozesse regulieren könnte, wurden strukturelle Modellierungen und biochemische Untersuchungen in diese Arbeit integriert. Die Computermodellierung der mKSR1(KD)-Proteinstruktur zeigte starke Wasserstoff- brückenbindungen zwischen Phospho-Tyr728 und den Resten in der Umgebung von Arg649 auf. Dieses Muster war auffällig verändert, wenn Tyr728 nicht phosphoryliert oder substituiert war. Wie anhand biochemischer Analyse untermauert wurde, könnte Arg649 für phospho-Tyr728 als Hauptankerpunkt dienen, um interne Strukturen in KSR1 zu stabilisieren. In Übereinstimmung mit den Ergebnissen der Proteinmodellierung enthüllten die Mutationsstudien, dass die Substitution von Tyr728 mit Phenylalanin zu einer weniger kompakten Interaktion zwischen KSR1 und MEK, einer erleichterten KSR1/B-RAF-Bindung und einer ansteigenden Phosphorylierung von MEK im Komplex mit KSR1 führt. Anhand dieser Erkenntnisse kann man rückschließen, dass Phospho-Tyr728 in die Verstärkung der Interaktionen innerhalb der KSR1/MEK-Grenzfläche und in die Regulierung der Phosphorylierung von KSR1-gebundenem MEK durch entweder RAF- oder KSR1-Kinasen involviert ist. Neben Tyr728 wurde Ser722 als eine neuartige regulatorische Phosphorylierungsstelle identifiziert. Aminosäureaustausche an der betreffenden Position demonstrierten, dass Ser722 die Phosphorylierung von KSR1-gebundenem MEK reguliert ohne die KSR1/MEK-Bindung selbst zu beeinträchtigen. Bedingt durch seine Lokalisierung könnte Ser722 folglich die katalytische Aktivität von KSR1 kontrollieren, indem es den Zugang des Substrates (möglicherweise MEK) zur aktiven Seite der KSR1-Kinase behindert. Zusammen mit Ser722 könnte phosphoryliertes Tyr728 ferner die Kinaseaktivität von KSR1 positiv beeinflussen, infolge von dessen Nähe zur Aktivierungs- und katalytischen Schleife in der KSR1(KD). Wie mittels Strukturmodellierung offengelegt wurde, bildet Phospho-Tyr728 eine Wasserstoffbrücke mit dem hochgradig konservierten Lys685 aus. Folglich hat Phospho-Tyr728 einen stabilisierenden Effekt auf interne Strukturen, welche in die katalytische Reaktion involviert sind, und erleichtert möglicherweise den Phosphattransfer innerhalb der katalytischen Spalte in KSR1. In Anbetracht dieser Fakten scheint es sehr wahrscheinlich, dass die LCK-abhängige Phosphorylierung von Tyr728 eine äußerst wichtige Rolle in der Regulierung der katalytischen Aktivität von KSR1 spielt. Die Ergebnisse der Fraktionierungs- und Morphologieanalysen enthüllten, dass KSR1 für die Phosphorylierung an Tyr728 LCK zum Zytoskelett rekrutiert, was darauf hindeutet, dass dieser Rest die Dynamik des Zytoskeletts und folglich Zellmotilität regulieren könnte. Darüber hinaus ist die Phosphorylierung von Tyr728 in die Regulierung der Zellproliferation involviert, wie anhand einer bedeutend reduzierten Populationsverdopplungszeit von KSR1-Y728F-Zellen im Vergleich zu Zellen, welche wildtypisches KSR1 exprimieren, gezeigt wurde. Zusammenfassend lässt sich sagen, dass die Tyrosin-Phosphorylierung in KSR1 eine neue Verknüpfung zwischen Kinasen der Src-Familie und der MAPK-Signalwirkung enthüllt. Tyr728, die neuartige regulatorische Phosphorylierungsstelle in Maus-KSR1, könnte den Übergang zwischen der Gerüst- und der katalytischen Funktion von KSR1 koordinieren und damit als Kontrollpunkt dienen, um zelluläre Reaktionen fein abzustimmen. KW - MAP-Kinase KW - Signaltransduktion KW - Regulation KW - tyrosine phosphorylation KW - KSR1 KW - LCK KW - MAPK KW - phosphorylation KW - signaling Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114672 ER -