TY - JOUR A1 - Ellsäßer, Florian A1 - Röll, Alexander A1 - Ahongshangbam, Joyson A1 - Waite, Pierre-André A1 - Hendrayanto, A1 - Schuldt, Bernhard A1 - Hölscher, Dirk T1 - Predicting tree sap flux and stomatal conductance from drone-recorded surface temperatures in a mixed agroforestry system — a machine learning approach JF - Remote Sensing N2 - Plant transpiration is a key element in the hydrological cycle. Widely used methods for its assessment comprise sap flux techniques for whole-plant transpiration and porometry for leaf stomatal conductance. Recently emerging approaches based on surface temperatures and a wide range of machine learning techniques offer new possibilities to quantify transpiration. The focus of this study was to predict sap flux and leaf stomatal conductance based on drone-recorded and meteorological data and compare these predictions with in-situ measured transpiration. To build the prediction models, we applied classical statistical approaches and machine learning algorithms. The field work was conducted in an oil palm agroforest in lowland Sumatra. Random forest predictions yielded the highest congruence with measured sap flux (r\(^2\) = 0.87 for trees and r\(^2\) = 0.58 for palms) and confidence intervals for intercept and slope of a Passing-Bablok regression suggest interchangeability of the methods. Differences in model performance are indicated when predicting different tree species. Predictions for stomatal conductance were less congruent for all prediction methods, likely due to spatial and temporal offsets of the measurements. Overall, the applied drone and modelling scheme predicts whole-plant transpiration with high accuracy. We conclude that there is large potential in machine learning approaches for ecological applications such as predicting transpiration. KW - transpiration KW - method comparison KW - UAV KW - oil palm KW - multiple linear regression KW - support vector machine KW - random forest KW - artificial neural network Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220059 SN - 2072-4292 VL - 12 IS - 24 ER - TY - THES A1 - Henninger, Markus T1 - Funktion der zentralen metabolischen Kinase SnRK1 und von ihr abhängiger Transkriptionsfaktoren bei der Mobilisierung von Speicherstoffen während der \(Arabidopsis\) Keimlingsentwicklung T1 - Function of the central metabolic kinase SnRK1 and on it dependent transcription factors in the mobilization of storage compunds during \(Arabidopsis\) seedling development N2 - Pflanzen müssen sich während der Samenkeimung und Keimlingsentwicklung über eingelagerte Speicherstoffe heterotroph versorgen, bis sie, nach Etablierung ihres Photosyntheseapparats, einen autotrophen Lebensstil führen können. Diese Arbeit geht von der Hypothese aus, dass der evolutionär konservierten zentral-metabolischen Kinase Snf1-RELATED PROTEIN KINASE 1 (SnRK1) eine besondere Rolle bei der Mobilisierung von Speicherstoffen während der Keimlingsentwicklung zukommt. Während die Bedeutung von SnRK1 als zentraler Regulator katabolischer Prozesse unter Energiemangel- und Stresssituationen bereits gezeigt wurde, war die Funktion von SnRK1 im Zusammenhang mit der Samenkeimung weitgehend ungeklärt. In dieser Arbeit konnte erstmals gezeigt werden, dass SnRK1 in Arabidopsis die Mobilisierung und Degradation von Speicherstoffen, insbesondere von Triacylglyceride (TAGs), Samenspeicherproteinen und Aminosäuren, steuert. Sowohl Studien zur Lokalisation von SnRK1:GFP-Fusionsproteinen als auch Kinaseaktivitätsassays unterstützen eine mögliche Funktion von SnRK1 während der Keimlingsentwicklung. Eine induzierbare snrk1-knockdown Mutante zeigt neben einem eingeschränkten Wurzel- und Hypokotylwachstum auch keine Ausbildung eines Photosyntheseapparats, was die zentrale Rolle der SnRK1 in diesem frühen Entwicklungsstadium untermauert. Durch Fütterungsexperimente mit Glukose konnte der Phänotyp einer snrk1 -Mutante in Keimlingen gerettet werden. Dies zeigt, dass der metabolische Block durch externe Gabe von Kohlenhydraten umgangen werden kann. Die zentrale Funktion von SnRK1 ist folgich der Abbau von Speicherstoffen und keine allgemeine Deregulation des pflanzlichen Stoffwechsels. Durch massenspektrometrische Untersuchungen von Keimlingen des Wildtyps und der snrk1-Mutante konnte gezeigt werden, dass TAGs in der Mutante in der spä- ten Keimlingsentwicklung ab Tag 4 langsamer abgebaut werden als im Wildtyp. Ebenso werden Samenspeicherproteine in der Mutante langsamer degradiert, wodurch die Verfügbarkeit von freien Aminosäuren in geringer ist. Entgegen der allgemeinen Annahme konnte gezeigt werden, dass während der Keimlingsentwicklung zumindest in Arabidopsis, einer ölhaltigen Pflanze, zunächst Kohlenhydrate in Form von Saccharose abgebaut werden, bevor die Degradation von TAGs und Aminosäuren beginnt. Diese Abbauprodukte können dann der Glukoneogenese zugeführt werden um daraus Glukose herzustellen. Mittels Transkriptom-Analysen konnten zentrale SnRK1-abhängige Gene in der Speicherstoffmobilisierung von TAG, beispielsweise PEROXISOMAL NAD-MALATE DEHYDROGENASE 2 (PMDH2) und ACYL-CoA-OXIDASE 4 (ACX4), und Aminosäuren identifiziert werden. Somit wurde ein Mechanismus der SnRK1-abhängigen Genregulation während der Samenkeimung in Arabidopsis gefunden. Bei der Degradation von Aminosäuren wird die cytosolische PYRUVATE ORTHOPHOSPHATE DIKINASE (cyPPDK), ein Schlüsselenzym beim Abbau bestimmter Aminosäuren und bei der Glukoneogenese, SnRK1-abhängig transkriptionell reguliert. Durch Koregulation konnte der Transkriptionsfaktor bZIP63 (BASIC LEUCINE ZIPPER 63) gefunden werden, dessen Transkription ebenfalls SnRK1-abhängig reguliert wird. Außerdem konnte die Transkription von cyPPDK in bzip63-Mutanten nur noch sehr schwach induziert werden. In Protoplasten konnte der cyPPDK-Promotor durch Aktivierungsexperimente mit bZIP63 und SnRK1α1 induziert werden. Durch Mutationskartierung und Chromatin-Immunopräzipitation (ChIP)PCR konnte mehrfach eine direkte Bindung von bZIP63 an den cyPPDK-Promotor nachgewiesen werden. Zusammenfassend ergibt sich ein mechanistisches Arbeitsmodell, in dem bZIP63 durch SnRK1 phosphoryliert wird und durch Bindung an regulatorische G-Box cis-Elemente im cyPPDK- Promotor dessen Transkription anschaltet. Infolgedessen werden Aminosäuren abgebaut und wird über die Glukoneogenese Glukose aufgebaut. Dieser Mechanismus ist essentiell für die Übergangsphase zwischen heterotropher und autotropher Lebensweise, und trägt dazu bei, die im Samen vorhandenen Ressourcen dem Keimling zum idealen Zeitpunkt zugänglich zu machen. Darüber hinaus werden Gene im Abbau von verzweigtkettigen Aminosäuren ebenfalls durch bZIP63 reguliert. Dabei wird dem Keimling Energie in Form von Adenosin-Triphosphat (ATP) zur Verfügung gestellt. Zusammengefasst zeigen die Ergebnisse dieser Arbeit, dass die Mobilisierung von Speicherstoffen auch während der Keimlingsentwicklung direkt von SnRK1 abhängig ist. Die umfangreichen Datensätze der RNA-Seq-Analysen bieten zudem die Möglichkeit, weitere SnRK1-abhängige Gene der Speichermobilisierung zu identifizieren und somit einem besseren Verständnis der Keimlingsentwicklung beizutragen. Aufgrund der zentralen Bedeutung der SnRK1-Kinase in diesem entscheidenden Entwicklungsschritt ist davon auszugehen, dass diese Erkenntnisse mittelfristig auch für bessere Keimungsraten und somit bessere Erträge in der Landwirtschaft genutzt werden können. N2 - During seed germination and seedling establishment, seedlings must live heterotrophically on the resources stored in the seed. Only after establishing a fully functional photosynthetic apparatus, the young plant can change to an autotrophic lifestyle - one of the key features of plant life and metabolism. This work is based on the hypothesis that the evolutionarily conserved central metabolic kinase Snf1-RELATED PROTEIN KINASE 1 (SnRK1) plays a crucial role in the mobilization of storage compounds during seedling establishment. Whereas the importance of SnRK1 as a central regulator of catabolic processes during energy deprication and stress situations has already been demonstrated, so far, the function of SnRK1 in connection with seed germination had remained largely unresolved. Here, we shown for the first time that SnRK1 in Arabidopsis controls the degradation of storage resources, especially triacylglycerides (TAG), seed storage proteins and amino acids. Studies on the localization of SnRK1:GFP fusion proteins and as well as kinase activity assays support a possible function of SnRK1 during seedling establishment. An inducible snrk1-knockdown mutant is strongly impaired in root and hypocotyl growth and the plant do not develop a photosynthetic apparatus. Feeding experiments with glucose rescued the snrk1-mutant phenotype, showing that the metabolic block can be bypassed by external administration of carbohydrates. Thus, the central function of SnRK1 is concluded to be the degradation of the storage resources and rather than a general deregulation of the plant metabolism. Mass spectrometric investigations have shown that TAG degradation and seed storage proteins breakdown are partially impaired in the mutant. Thus, the availability of free amino acids in snrk1 mutant seedlings is lower in comparison to wildtype. It could be shown that - despite the fact that Arabidopsis is an oil-seed plant - carbohydrates, especially sucrose, are the primary resource compound for the seedling before the degradation of TAGs and amino acids is initiated. These degradation products can then be used in gluconeogenesis to produce glucose. Transcriptome analyses have identified key SnRK1-dependent genes, that play a key role in the storage resource catabolism, for example ACYL-CoA-OXIDASE 4 (ACX4) and PMDH2 in TAG breakdown. As an example of an enzyme involved in amino acid catabolism, cyPPDK was further investigated in the course of this study. During the degradation of amino acids, cyPPDK, a key enzyme in the degradation of certain amino acids and gluconeogenesis, is transcriptionally regulated in a SnRK1-dependent manner. Furthermore, it was discoverd that the SnRK1-dependent transcription factor bZIP63 (BASIC LEUCINE ZIPPER 63) is involved in the regulation of amino acid breakdown: In qRT-PCR experiments, bzip63-mutants showed no induction of cyPPDK, and co-regulation studies showed that cyPPDK and bZIP63 are subject to the same SnRK1-dependet regulation pattern during early seedling development. Finally, by mutation mapping and chromatin immunoprecipitation (ChIP)PCR, a direct binding of bZIP63 to the promoter could be demonstrated. Based on these results, a mechanistic working model was established, proposing bZIP63 to be phosphorylated by SnRK1 to then activate transcription of the cyPPDK promoter via binding to regulatory G-box cis elements. As a consequence, amino acids are degraded and the metabolites are used to produce glucose via gluconeogenesis. This additional source of energy enables the seedling to make the transition from heterotrophy to autotrophy. Additionally, the degradation of branched-chain amino acids is also regulated by bZIP63. Thereby, ATP is generated to fuel the seedlings energy demands. In summary, this study shows that SnRK1 plays an essential role in the mobilization of storage compounds in seedlings during the transition from heterotrophic to autotrophic life by supplying the seedling with the much-needed additional energy gained from the breakdown of TAGs and amino acids. Mining the extensive RNA-Seq data sets provided by this study will allow the identification of further SnRK1-dependent genes to further unravel this crucial signaling network. Due to the crucial role that these proteins play in early seedling development, these findings will enable future research to increase seedling vigor and finally crop yield. KW - SnRK1 KW - seedling establishment KW - transcription factor KW - Arabidopsis KW - Keimlingsentwicklung KW - bZIP KW - Transkriptionsfaktor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214305 ER - TY - JOUR A1 - Fuchs, Sebastian A1 - Hertel, Dietrich A1 - Schuldt, Bernhard A1 - Leuschner, Christoph T1 - Effects of summer drought on the fine root system of five broadleaf tree species along a precipitation gradient JF - Forests N2 - While much research has addressed the aboveground response of trees to climate warming and related water shortage, not much is known about the drought sensitivity of the fine root system, in particular of mature trees. This study investigates the response of topsoil (0–10 cm) fine root biomass (FRB), necromass (FRN), and fine root morphology of five temperate broadleaf tree species (Acer platanoides L., Carpinus betulus L., Fraxinus excelsior L., Quercus petraea (Matt.) Liebl., Tilia cordata Mill.) to a reduction in water availability, combining a precipitation gradient study (nine study sites; mean annual precipitation (MAP): 920–530 mm year\(^{−1}\)) with the comparison of a moist period (average spring conditions) and an exceptionally dry period in the summer of the subsequent year. The extent of the root necromass/biomass (N/B) ratio increase was used as a measure of the species’ belowground sensitivity to water deficits. We hypothesized that the N/B ratio increases with long-term (precipitation gradient) and short-term reductions (moist vs. dry period) of water availability, while FRB changes only a little. In four of the five species (exception: A. platanoides), FRB did not change with a reduction in MAP, whereas FRN and N/B ratio increased toward the dry sites under ample water supply (exception: Q. petraea). Q. petraea was also the only species not to reduce root tip frequency after summer drought. Different slopes of the N/B ratio-MAP relation similarly point at a lower belowground drought sensitivity of Q. petraea than of the other species. After summer drought, all species lost the MAP dependence of the N/B ratio. Thus, fine root mortality increased more at the moister than the drier sites, suggesting a generally lower belowground drought sensitivity of the drier stands. We conclude that the five species differ in their belowground drought response. Q. petraea follows the most conservative soil exploration strategy with a generally smaller FRB and more drought-tolerant fine roots, as it maintains relatively constant FRB, FRN, and morphology across spatial and temporal dimensions of soil water deficits. KW - Acer platanoides KW - Carpinus betulus KW - fine root biomass KW - fine root necromass KW - Fraxinus excelsior KW - necromass/biomass ratio KW - Quercus petraea KW - root morphology KW - Tilia cordata KW - water availability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203189 SN - 1999-4907 VL - 11 IS - 3 ER - TY - THES A1 - Duan, Xiaodong T1 - Development of new channelrhodopsin versions with enhanced plasma membrane targeting and high calcium/sodium conductance T1 - Entwicklung neuer Channelrhodopsin-Versionen mit verbessertem Plasmamembrantargeting und hoher Na+- und Ca2+-Leitfähigkeit N2 - The technique to manipulate cells or living animals by illumination after gene transfer of light-sensitive proteins is called optogenetics. Successful optogenetics started with the use of the light-gated cation channel channelrhodopsin-2 (ChR2). After early demonstrations of the power of ChR2, further light-sensitive ion channels and ion pumps were recruited to the optogenetic toolbox. Furthermore, mutations and chimera of ChR2 improved its versatility. However, there is still a need for improved optogenetic tools, e.g. with higher permeability for calcium or better expression in the plasma membrane. In this thesis, my work focuses on the design of highly functional channelrhodopsins with enhanced Na+ and Ca2+ conductance. First, I tested different N-terminal signal peptides to improve the plasma membrane targeting of Channelrhodopsins. We found that a N-terminal peptide, named LR, could improve the plasma membrane targeting of many rhodopsins. Modification with LR contributed to three to ten-fold larger photocurrents (than that of the original version) of multiple channelrhodopsins, like ChR2 from C. reinhardtii (CrChR2), PsChR, Chrimson, CheRiff, CeChR, ACRs, and the light-activated pump rhodopsins KR2, Jaw, HR. Second, by introducing point mutation, I could further improve the light sensitivity and photocurrent of different channelrhodopsins. For instance, ChR2-XXM 2.0, ChR2-XXL 2.0 and PsChR D139H 2.0 exhibited hundred times larger photocurrents than wild type ChR2 and they show high light sensitivity. Also, the Ca2+ permeable channelrhodopsins PsCatCh 2.0f and PsCatCh 2.0e show very large photocurrents and fast kinetics. In addition, I also characterized a novel bi-stable CeChR (from the acidophilic green alga Chlamydomonas eustigma) with a much longer closing time. Third, I analysed the ion selectivity of different ChRs, which provides a basis for rational selection of channelrhodopsins for different experimental purposes. I demonstrate that ChR2, Chronos, Chrimson, CheRiff and CeChR are highly proton conductive, compared with wild type PsChR. Interestingly, Chronos has the lowest potassium conductance among these channelrhodopsins. Furthermore, I found that mutation of an aspartate in TM4 of ChR2 (D156) and PsChR (D139) to histidine obviously increased both the sodium and calcium permeability while proton conductance was reduced. PsChR D139H 2.0 has the largest sodium conductance of any published channelrhodopsin variants. Additionally, I generated PsCatCh 2.0e which exhibits a ten-fold larger calcium current than the previously reported Ca2+ transporting CrChR2 mutant CatCh. In summary, my research work 1.) described strategies for improving plasma membrane trafficking efficiency of opsins; 2.) yielded channelrhodopsins with fast kinetics or high light sensitivity; 3.) provided optogenetic tools with improved calcium and sodium conductance. We could also improve the performance of channelrhodopsins with distinct action spectra, which will facilitate two-color neural excitation, both in-vitro and in-vivo. N2 - Die Technik, Zellen oder lebende Tiere nach dem Gentransfer lichtempfindlicher Proteine durch Belichtung zu manipulieren, wird als Optogenetik bezeichnet. Erfolgreiche Optogenetik begann mit der Verwendung des lichtgesteuerten Kationenkanals Channelrhodopsin-2 (ChR2). Nach frühen erfolgreichen Versuchen mit ChR2 wurden weitere lichtempfindliche Ionenkanäle und Ionenpumpen als optogenetische Werkzeuge etabliert. Darüber hinaus verbesserten Mutationen und Chimären von ChR2 seine Vielseitigkeit. Es besteht jedoch immer noch ein Bedarf an verbesserten optogenetischen Werkzeugen, z. mit höherer Permeabilität für Calcium oder besserer Expression in der Plasmamembran. In dieser Arbeit beschäftige ich mich mit dem Design hochfunktioneller Channelrhodopsine mit verbesserter Na+- und Ca2+-Leitfähigkeit. Zuerst habe ich verschiedene N-terminale Signalpeptide getestet, um die Anreicherung von Channelrhodopsinen in der Plasmamembran (“Plasmamembran-Targeting”) zu verbessern. Wir fanden heraus, dass ein N-terminales Peptid namens LR das Plasmamembran-Targeting vieler Rhodopsine verbessern kann. Die Modifikation mit LR trug zu drei- bis zehnfach größeren Photoströmen (als die der Originalversion) von mehreren Channelrhodopsinen bei, wie ChR2 von C. reinhardtii (CrChR2), PsChR, Chrimson, CheRiff, CeChR, ACRs und der lichtaktivierten Pump-Rhodopsine KR2, Jaw, HR. Zweitens konnte ich durch Mutagenese die Lichtempfindlichkeit und/oder den Photostrom verschiedener Channelrhodopsine weiter verbessern. Beispielsweise zeigten ChR2-XXM 2.0, ChR2-XXL 2.0 und PsChR D139H 2.0 hundertmal größere Photoströme als Wildtyp-ChR2 und sie zeigen eine hohe Lichtempfindlichkeit. Auch die Ca2+-permeablen Kanalrhodopsine PsCatCh 2.0f und PsCatCh 2.0e zeigen sehr große Photoströme und eine schnelle Kinetik. Außerdem habe ich ein neues bistabiles CeChR (aus der azidophilen Grünalge Chlamydomonas eustigma) mit einer viel längeren Schließzeit charakterisiert. Drittens analysierte ich die Ionenselektivität verschiedener ChRs, die eine Grundlage für die rationale Selektion von Channelrhodopsinen für verschiedene experimentelle Zwecke bietet. Ich zeige, dass ChR2, Chronos, Chrimson, CheRiff und CeChR im Vergleich zu Wildtyp-PsChR eine hohe Protonenleitfähigkeit aufweisen. Interessanterweise weist Chronos die niedrigste Kaliumleitfähigkeit unter diesen Channelrhodopsinen auf. Außerdem fand ich, dass die Mutation eines Aspartats in TM4 von ChR2 (D156) und PsChR (D139) zu Histidin offensichtlich sowohl die Natrium- als auch die Calciumpermeabilität erhöht, während die Protonenleitfähigkeit verringert ist. PsChR D139H 2.0 weist die größte Natriumleitfähigkeit aller veröffentlichten Channelrhodopsin-Varianten auf. Zusätzlich erzeugte ich PsCatCh 2.0e, das einen zehnmal größeren Calciumstrom als die zuvor berichtete Ca2+-transportierende CrChR2-Mutante CatCh aufweist. Zusammenfassend ergab meine Dissertationsarbeit: 1.) Strategien zur Verbesserung der Expression von Opsinen in der Plasmamembran; 2.) Gut exprimierende Channelrhodopsine mit schneller Kinetik oder hoher Lichtempfindlichkeit; 3.) Neue optogenetische Werkzeuge mit verbesserter Calcium- und Natriumleitfähigkeit. Auch konnte ich die Leistung von Channelrhodopsinen mit unterschiedlichen Aktionsspektren verbessern, was die zweifarbige neuronale Anregung sowohl in vitro als auch in vivo erleichtern sollte. KW - Optogenetik KW - Channelrhodopsinen KW - optogenetic KW - channelrhodopsin KW - molecular engineering KW - voltage clamp Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188397 ER - TY - THES A1 - Karimi, Sohail Mehmood T1 - A Comparative Study on Guard Cell Function of the Glycophyte \(Arabidopsis\) \(thaliana\) and the Halophyte \(Thellungiella\) \(salsuginea\) Under Saline Growth Conditions T1 - Eine vergleichende Studie zur Schließzellfunktion des Glycophyten \(Arabidopsis\) \(thaliana\) und des Halophyten \(Thellungiella\) \(salsuginea\) unter salinen Wachstumsbedingungen N2 - The greatest problems faced during the 21st century is climate change which is a big threat to food security due to increasing number of people. The increase in extreme weather events, such as drought and heat, makes it difficult to cultivate conventional crops that are not stress tolerant. As a result, increasing irrigation of arable land leads to additional salinization of soils with plant-toxic sodium and chloride ions. Knowledge about the adaptation strategies of salt-tolerant plants to salt stress as well as detailed knowledge about the control of transpiration water loss of these plants are therefore important to guarantee productive agriculture in the future. In the present study, I have characterized salt sensitive and salt tolerant plant species at physiological, phenotypic and transcriptomic level under short (1x salt) and long-time (3x) saline growth conditions. Two approaches used for long-time saline growth conditions (i.e increasing saline conditions (3x salt) and constant high saline conditions (3x 200 mM salt) were successfully developed in the natural plant growth medium i.e soil. Salt sensitive plants, A. thaliana, were able to survive and successfully set seeds at the toxic concentrations on the increasing saline growth mediums, with minor changes in the phenotype. However, under constant high saline conditions they could not survive. This was due to keeping low potassium, and high salt ions (sodium and chloride) in the photosynthetic tissue i.e leaf. Similarly, high potassium and low salt ions in salt tolerant T. salsuginea on both saline environments were the key for survival of this plant species. Being salt tolerant, T. salsuginea always kept high potassium levels and low sodium (during 1x) and chloride levels (during both 1x and 3x) in the leaf tissue. A strict control over transpirational water loss via stomata (formed by pair of guard cells) is important to maintain plant water balance. Aperture size of the stomata is regulated by the turgidity of the guard cells. More turgid the guard cells, bigger the apertures are and hence more transpiration. Under osmotic stress, the water loss is reduced which was evident in the salt sensitive A. thaliana plants under both short and long-time saline growth conditions. As the osmotic stress was only increased during long time saline growth conditions in T. salsuginea therefore, water loss was also decreased only under these saline conditions. Environmental CO2 assimilation also takes place via stomata in plants which then is used for photosynthesis. Stomatal apertures also influence CO2 assimilation. As the light absorbing photosynthetic pigments were more affected in A. thaliana, therefore photosynthetic activity of the whole plant was also reduced. Similarly, both short and long-time saline growth conditions also reduced the effective quantum yield of A. thaliana guard cells. Growth of the plant is dependent on energy which comes from photosynthesis. Reduced environmental CO2 assimilation would affect photosynthesis and hence growth, which was clearly observed in A. thaliana guard cells under long-time saline growth conditions. Major differences in both guard cells types were observed in their chloride and potassium levels. Energy Dispersive X-Ray Analysis (EDXA) suggested strict control of chloride accumulation in T. salsuginea guard cells as the levels remain unchanged under all conditions. Similarly, use of sodium in place of potassium for osmotic adjustments seems to be dependent on Na+/K+ rations in both guard cell types. Increased salt ions and reduced potassium levels in A. thaliana guard cells posed negative effect on photochemistry which in turn increased ROS metabolism and reduced energy related pathways at transcriptomic level in this plant species. Moreover, photosynthesis was strongly affected in A. thaliana guard cells both at transcriptomic and physiological levels. Similarly, global phytohormones induced changes were more evident in A. thaliana guard cells especially on 3x salt medium. Among all phytohormones, genes under the control of auxin were more differentially expressed in A. thaliana guard cells which suggests wide changes in growth and development in this plant species under salinity. Phytohormone, ABA is vital for closing the stomata under abiotic stress conditions. Increased levels of ABA during saline conditions led to efflux of potassium and counter anions (chloride, malate, nitrate) from the guard cells which caused the outward flow of water and hence reduction in turgor pressure. Reduced turgor pressure led to reduced water loss and CO2 assimilation especially in A. thaliana. Guard cells of both plant species synthesized ABA during saline conditions which was reflected from transcriptomic data and ABA quantification in the guard cells. ABA induced signaling in both plant species varied at the ABA receptor (PYL/PYR) levels where totally contrasting responses were observed. PYL2, PYL8 and PYL9 were specific to A. thaliana, furthermore, PYL2 was found to be differentially expressed only under 3x salt growth conditions thus suggesting its role during long term salt stress in this plant species. Protein phosphatases, which negatively regulate ABA signaling on one hand and act as ABA sensor on the other hand were found to be more differentially expressed in A. thaliana than T. salsuginea guard cells, which suggests their diverse role in both plant species under saline conditions. Differential expression of more ABA signaling players in long time saline conditions was prominent which could be because of darkness, as it is well known that rapid closure of stomata under dark conditions require ABA signaling. Moreover, representation of these components in dark also suggests that plants become more sensitive to dark under saline conditions which is also evident from the transpiration rates. Altogether, increased salt ions in A. thaliana guard cells and leaves led to pigment degradation and ABA induced reduction in transpiration which in turn influenced its growth. In contrast, T. salsuginea is the salt excluder and therefore keeps low levels of salt ions especially the chloride both in leaves and guard cells which mildly affects its growth. Guard cells of A. thaliana encounter severe energy problems at physiological and transcriptomic level. Main differences in the ABA signalling between both plant species were observed at the ABA receptor level. N2 - Das größte Problem des 21. Jahrhunderts ist der Klimawandel, der aufgrund der wachsenden Zahl von Menschen eine große Bedrohung für die Ernährungssicherheit darstellt. Die Zunahme extremer Wetterereignisse wie Dürre und Hitze erschwert den Anbau konventioneller, nicht stressresistenter Pflanzen. Eine zunehmende Bewässerung von Ackerland führt daher zu einer zusätzlichen Versalzung der Böden mit pflanzentoxischen Natrium- und Chloridionen. Kenntnisse über die Anpassungsstrategien salztoleranter Pflanzen an Salzstress sowie detaillierte Kenntnisse über die Kontrolle des Wasserverlusts durch Transpiration dieser Pflanzen sind daher wichtig, um eine produktive Landwirtschaft auch in Zukunft zu gewährleisten. In der vorliegenden Studie habe ich salzempfindliche und salztolerante Pflanzenarten auf physiologischer, phänotypischer und transkriptioneller Ebene unter kurzen (1x Salz) und langen (3x) Salzwachstumsbedingungen charakterisiert. In dem natürlichen Pflanzenwachstumsmedium, dh. dem Boden, wurden zwei Ansätze erfolgreich entwickelt, die für lang anhaltende Salzwachstumsbedingungen (dh zunehmende Salzbedingungen (3x Salz) und konstant hohe Salzbedingungen (3x 200 mM Salz) verwendet wurden. Die Pflanzen waren in der Lage, Samen bei den toxischen Konzentrationen auf den ansteigenden Salzwachstumsmedien zu überleben und erfolgreich zu setzen, wobei geringfügige Änderungen des Phänotyps auftraten. Unter konstant hohen Salzbedingungen konnten sie jedoch nicht überleben. Dies lag daran, dass wenig Kalium und hohe Salzionen vorhanden waren (Natrium und Chlorid) im photosynthetischen Gewebe, dh im Blatt. Ebenso stellten hohe Kalium- und niedrige Salzionen in salztoleranten T. salsuginea in beiden salzhaltigen Umgebungen den Schlüssel zum Überleben dieser Pflanzenart dar. Da T. salsuginea salztolerant war, blieb der Kaliumspiegel stets hoch und der Natrium- (während 1x) und Chloridspiegel (während 1x und 3x) im Blattgewebe niedrig. Eine strikte Kontrolle des transpirationelen Wasserverlusts über Stomata (gebildet von zwei Schließzellen) ist wichtig, um den Wasserhaushalt der Pflanzen aufrechtzuerhalten. Die Öffnungsgröße der Stomata wird durch den Turgor der Schutzzellen reguliert. Je praller die Schließzellen, desto größer die Öffnungen und damit die Transpiration. Unter osmotischem Stress wird der Wasserverlust verringert, was bei den salzempfindlichen A. thaliana-Pflanzen sowohl unter kurz- als auch langfristigen Salzwachstumsbedingungen offensichtlich war. Da der osmotische Stress in T. salsuginea nur über einen langen Zeitraum unter Salzwachstumsbedingungen anstieg, verringerte sich auch der Wasserverlust nur unter diesen Salzbedingungen. Die Aufnahme von CO2 in die Umwelt erfolgt auch über die Stomata und wird dann für die Photosynthese verwendet. Stomata beeinflussen daher auch die CO2-Assimilation. Da die lichtabsorbierenden photosynthetischen Pigmente in A. thaliana stärker betroffen waren, war auch die photosynthetische Aktivität der gesamten Pflanze verringert. In ähnlicher Weise verringerten sowohl kurz- als auch langzeitige Salzwachstumsbedingungen auch die effektive Quantenausbeute von A. thaliana-Schließzellen. Das Wachstum der Pflanze hängt von der Energie ab, die aus der Photosynthese stammt. Eine verringerte CO2-Assimilation aus der Umwelt würde die Photosynthese und damit das Wachstum beeinträchtigen, was bei A. thaliana-Schließzellenn unter lang andauerenden Salzwachstumsbedingungen deutlich zu beobachten war. Wesentliche Unterschiede bei beiden Schließzelltypen wurden in ihren Chlorid- und Kaliumspiegeln beobachtet. Die energiedispersive Röntgenanalyse (EDXA) ergab eine strikte Kontrolle der Chloridakkumulation in T. salsuginea Schließzellen, da die Chloridkonzentrationen unter allen Bedingungen unverändert bleiben. In ähnlicher Weise scheint die Verwendung von Natrium anstelle von Kalium für osmotische Anpassungen von Na + / K + -Verhältnissen in beiden Schließzelltypen abhängig zu sein. Erhöhte Salzionen und verringerte Kaliumspiegel in A. thaliana-Schließzellen wirkten sich negativ auf die Photochemie aus, was wiederum den ROS-Metabolismus erhöhte und die energiebezogenen Wege auf transkriptomischem Niveau bei dieser Pflanzenart verringerte. Darüber hinaus war die Photosynthese in A. thaliana-Schließzellen sowohl auf transkriptioneller als auch auf physiologischer Ebene stark beeinträchtigt. In ähnlicher Weise waren globale Phytohormon-induzierte Veränderungen in A. thaliana-Schließzellen, insbesondere auf 3 × Salzmedium, deutlicher. Unter allen Phytohormonen wurden Gene unter der Kontrolle von Auxin in A. thaliana-Schließzellen differenzierter exprimiert, was auf weitreichende Veränderungen im Wachstum und in der Entwicklung dieser Pflanzenart unter Salzgehalt hindeutet. Das Phytohormon ABA ist für das Schließen der Stomata unter abiotischen Stressbedingungen von entscheidender Bedeutung. Erhöhte ABA-Spiegel unter Salzbedingungen führten zum Austritt von Kalium und Gegenanionen (Chlorid, Malat, Nitrat) aus den Schließzellen, was den Wasserfluss nach außen und damit eine Verringerung des Turgordrucks bewirkte. Reduzierter Turgordruck führte insbesondere bei A. thaliana zu einem geringeren Wasserverlust und einer geringeren CO2-Aufnahme. Die Schließzellen beider Pflanzenarten synthetisierten ABA unter Salzbedingungen, was sich aus den Transkriptomdaten und der ABA-Quantifizierung in den Schließzellen widerspiegelte. Die ABA-induzierte Signalübertragung in beiden Pflanzenarten variierte bei den ABA-Rezeptor- (PYL / PYR-) Spiegeln, bei denen völlig unterschiedliche Reaktionen beobachtet wurden. PYL2, PYL8 und PYL9 waren spezifisch für A. thaliana. Darüber hinaus wurde festgestellt, dass PYL2 nur unter dreifachen Salzwachstumsbedingungen unterschiedlich exprimiert wird, was auf seine Rolle bei langfristigem Salzstress bei dieser Pflanzenart hindeutet. Es wurde gefunden, dass Proteinphosphatasen, die einerseits die ABA-Signalübertragung negativ regulieren und andererseits als ABA-Sensor wirken, in A. thaliana differenzierter exprimiert werden als in T. salsuginea-Schließzellen, was auf ihre vielfältige Rolle in beiden Pflanzenarten unter Salzbedingungen hindeutet. Eine differenzierte Expression von mehr ABA-Signalgebern unter Bedingungen mit langer Salzwasserbewässerung war auffällig, was auf Dunkelheit zurückzuführen sein könnte, da bekanntlich ein schnelles Schließen der Stomata unter dunklen Bedingungen eine ABA-Signalgebung erfordert. Darüber hinaus deutet die Darstellung dieser Komponenten im Dunkeln auch darauf hin, dass Pflanzen unter salzhaltigen Bedingungen empfindlicher gegenüber Dunkelheit werden, was auch aus den Transpirationsraten hervorgeht. Insgesamt führten erhöhte Salzionen in A. thaliana-Schließzzellen und Blättern zu einem Pigmentabbau und einer durch ABA verursachten Reduktion der Transpiration, was deren Wachstum beeinflusste. Im Gegensatz dazu ist T. salsuginea in der Lage Salz auszuschließen und hält daher geringe Mengen an Salzionen, insbesondere das Chlorid sowohl in Blättern als auch in Schließzellen, dass sein Wachstum geringfügig beeinflusst. Schließzellen von A. thaliana stoßen auf physiologischer und transkriptomischer Ebene auf schwerwiegende Energieprobleme. Hauptunterschiede in der ABA-Signalgebung zwischen beiden Pflanzenarten wurden auf der ABA-Rezeptorebene beobachtet. KW - Glycophyten KW - Halophyten KW - salinen Wachstumsbedingungen KW - Schließzellfunktion KW - Transkriptomik anlyze KW - Halophytes KW - glycophytes KW - salt stress KW - guard cells KW - transcriptomic analysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190942 ER - TY - JOUR A1 - Thonfeld, Frank A1 - Gessner, Ursula A1 - Holzwarth, Stefanie A1 - Kriese, Jennifer A1 - da Ponte, Emmanuel A1 - Huth, Juliane A1 - Kuenzer, Claudia T1 - A first assessment of canopy cover loss in Germany's forests after the 2018–2020 drought years JF - Remote Sensing N2 - Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time. KW - forest KW - canopy cover loss KW - drought KW - Sentinel-2 KW - Landsat-8 KW - disturbance index KW - time series Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-255306 SN - 2072-4292 VL - 14 IS - 3 ER - TY - JOUR A1 - Abdelhafez, Omnia Hesham A1 - Fawzy, Michael Atef A1 - Fahim, John Refaat A1 - Desoukey, Samar Yehia A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Abdelmohsen, Usama Ramadan T1 - Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats JF - PLoS ONE N2 - Malvaviscus arboreus Cav. is a medicinal plant belonging to family Malvaceae with both ethnomedical and culinary value; however, its phytochemical and biological profiles have been scarcely studied. Accordingly, this work was designed to explore the chemical composition and the hepatoprotective potential of M. arboreus against carbon tetrachloride (CCl\(_4\))-induced hepatotoxicity. The total extract of the aerial parts and its derived fractions (petroleum ether, dichloromethane, ethyl acetate, and aqueous) were orally administered to rats for six consecutive days, followed by injection of CCl\(_4\) (1:1 v/v, in olive oil, 1.5 ml/kg, i.p.) on the next day. Results showed that the ethyl acetate and dichloromethane fractions significantly alleviated liver injury in rats as indicated by the reduced levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bilirubin (TB), and malondialdehyde (MDA), along with enhancement of the total antioxidant capacities of their livers, with the maximum effects were recorded by the ethyl acetate fraction. Moreover, the protective actions of both fractions were comparable to those of silymarin (100 mg/kg), and have been also substantiated by histopathological evaluations. On the other hand, liquid chromatography-high resolution electrospray ionization mass spectrometry (LC‒HR‒ESI‒MS) metabolomic profiling of the crude extract of M. arboreus aerial parts showed the presence of a variety of phytochemicals, mostly phenolics, whereas the detailed chemical analysis of the most active fraction (i.e. ethyl acetate) resulted in the isolation and identification of six compounds for the first time in the genus, comprising four phenolic acids; β-resorcylic, caffeic, protocatechuic, and 4-hydroxyphenylacetic acids, in addition to two flavonoids; trifolin and astragalin. Such phenolic principles, together with their probable synergistic antioxidant and liver-protecting properties, seem to contribute to the observed hepatoprotective potential of M. arboreus. KW - high performance liquid chromatography KW - phenols KW - phytochemicals KW - antioxidants KW - metabolomics KW - medicinal plants KW - Egypt KW - xenobiotic metabolism KW - Malvaviscus arboreus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177243 VL - 13 IS - 8 ER - TY - THES A1 - Kunz, Marcel T1 - Diffusion kinetics of organic compounds and water in plant cuticular model wax under the influence of diffusing barrier-modifying adjuvants T1 - Diffusionskinetiken organischer Verbindungen und Wasser in pflanzlichem kutikulärem Modellwachs unter dem Einfluss von diffundierenden, barriere-modifizierenden Adjuvantien N2 - To reach their target site, systemic pesticides must enter the plant from a spray droplet applied in the field. The uptake of an active ingredient (AI) takes place via the barrier-forming cuticular membrane, which is the outermost layer of the plant, separating it from the surrounding environment. Formulations are usually used which, in addition to the AI, also contain stabilizers and adjuvants. Adjuvants can either have surface-active properties or they act directly as barrier-modifying agents. The latter are grouped in the class of accelerating adjuvants, whereby individual variants may also have surface-active properties. The uptake of a pesticide from a spray droplet depends essentially on its permeability through the cuticular barrier. Permeability defines a combined parameter, which is the product of AI mobility and AI solubility within the cuticle. In recent decades, several tools have been developed that allowed the determination of individual parameters of organic compound penetration across the cuticular membrane. Nevertheless, earlier studies showed that mainly cuticular waxes are the barrier-determining component of the cuticular membrane and additionally, it was shown that mainly the very-long-chain aliphatic compounds (VLCAs) are responsible for establishing an effective barrier. However, the barrier-determining role of the individual VLCAs, being classified according to their respective functional groups, is still unknown. Therefore, the following objectives were pursued and achieved in this work: (1) A new ATR-FTIR-based approach was developed to measure the temperature-dependent real-time diffusion kinetics of organic models for active ingredients (AIs) in paraffin wax, exclusively consisting of very-long chain alkanes. (2) The developed ATR-FTIR approach was applied to determine the diffusion kinetics of self-accelerating adjuvants in cuticular model waxes of different VLCA composition. At the same time, wax-specific changes were recorded in the respective IR spectra, which provided information about the respective wax modification. (3) The ATR-FTIR method was used to characterize the diffusion kinetics, as well as to determine the wax-specific sorption capacities for an AI-modeling organic compound and water in cuticular model waxes after adjuvant treatment. Regarding the individual chemical compositions and structures, conclusions were drawn about the adjuvant-specific modes of action (MoA). In the first chapter, the ATR-FTIR based approach to determine organic compound diffusion kinetics in paraffin wax was successfully established. The diffusion kinetics of the AI modelling organic compounds heptyl parabene (HPB) and 4-cyanophenol (CNP) were recorded, comprising different lipophilicities and molecular volumes typical for AIs used in pesticide formulations. Derived diffusion coefficients ranged within 10-15 m2 s-1, thus being thoroughly higher than those obtained from previous experiments using an approach solely investigating desorption kinetics in reconstituted cuticular waxes. An ln-linear dependence between the diffusion coefficients and the applied diffusion temperature was demonstrated for the first time in cuticular model wax, from which activation energies were derived. The determined activation energies were 66.2 ± 7.4 kJ mol-1 and 56.4 ± 9.8 kJ mol-1, being in the expected range of already well-founded activation energies required for organic compound diffusion across cuticular membranes, which again confirmed the significant contribution of waxes to the cuticular barrier. Deviations from the assumed Fickian diffusion were attributed to co-occurring water diffusion and apparatus-specific properties. In the second and third chapter, mainly the diffusion kinetics of accelerating adjuvants in the cuticular model waxes candelilla wax and carnauba wax were investigated, and simultaneously recorded changes in the wax-specific portion of the IR spectrum were interpreted as indications of plasticization. For this purpose, the oil derivative methyl oleate, as well as the organophosphate ester TEHP and three non-ionic monodisperse alcohol ethoxylates (AEs) C12E2, C12E4 and C12E6 were selected. Strong dependence of diffusion on the respective principal components of the mainly aliphatic waxes was demonstrated. The diffusion kinetics of the investigated adjuvants were faster in the n-alkane dominated candelilla wax than in the alkyl ester dominated carnauba wax. Furthermore, the equilibrium absorptions, indicating equilibrium concentrations, were also higher in candelilla wax than in carnauba wax. It was concluded that alkyl ester dominated waxes feature higher resistance to diffusion of accelerating adjuvants than alkane dominated waxes with shorter average chain lengths due to their structural integrity. This was also found either concerning candelilla/policosanol (n-alcohol) or candelilla/rice bran wax (alkyl-esters) blends: with increasing alcohol concentration, the barrier function was decreased, whereas it was increased with increasing alkyl ester concentration. However, due to the high variability of the individual diffusion curves, only a trend could be assumed here, but significant differences were not shown. The variability itself was described in terms of fluctuating crystalline arrangements and partial phase separation of the respective wax mixtures, which had inevitable effects on the adjuvant diffusion. However, diffusion kinetics also strongly depended on the studied adjuvants. Significantly slower methyl oleate diffusion accompanied by a less pronounced reduction in orthorhombic crystallinity was found in carnauba wax than in candelilla wax, whereas TEHP diffusion was significantly less dependent on the respective wax structure and therefore induced considerable plasticization in both waxes. Of particular interest was the AE diffusion into both waxes. Differences in diffusion kinetics were also found here between candelilla blends and carnauba wax. However, these depended equally on the degree of ethoxylation of the respective AEs. The lipophilic C12E2 showed approximately Fickian diffusion kinetics in both waxes, accompanied by a drastic reduction in orthorhombic crystallinity, especially in candelilla wax, whereas the more hydrophilic C12E6 showed significantly retarded diffusion kinetics associated with a smaller effect on orthorhombic crystallinity. The individual diffusion kinetics of the investigated adjuvants sometimes showed drastic deviations from the Fickian diffusion model, indicating a self-accelerating effect. Hence, adjuvant diffusion kinetics were accompanied by a distinct initial lag phase, indicating a critical concentration in the wax necessary for effective penetration, leading to sigmoidal rather than to exponential diffusion kinetics. The last chapter dealt with the adjuvant-affected diffusion of the AI modelling CNP in candelilla and carnauba wax. Using ATR-FTIR, diffusion kinetics were recorded after adjuvant treatment, all of which were fully explicable based on the Fickian model, with high diffusion coefficients ranging from 10-14 to 10-13 m2 s-1. It is obvious that the diffusion coefficients presented in this work consistently demonstrated plasticization induced accelerated CNP mobilities. Furthermore, CNP equilibrium concentrations were derived, from which partition- and permeability coefficients could be determined. Significant differences between diffusion coefficients (mobility) and partition coefficients (solubility) were found on the one hand depending on the respective waxes, and on the other hand depending on treatment with respective adjuvants. Mobility was higher in candelilla wax than in carnauba wax only after methyl oleate treatment. Treatment with TEHP and AEs resulted in higher CNP mobility in the more polar alkyl ester dominated carnauba wax. The partition coefficients, on the other hand, were significantly lower after methyl oleate treatment in both candelilla and carnauba wax as followed by TEHP or AE treatment. Models were designed for the CNP penetration mode considering the respective adjuvants in both investigated waxes. Co-penetrating water, which is the main ingredient of spray formulations applied in the field, was likely the reason for the drastic differences in adjuvant efficacy. Especially the investigated AEs favored an enormous water uptake in both waxes with increasing ethoxylation level. Surprisingly, this effect was also found for the lipophilic TEHP in both waxes. This led to the assumption that the AI permeability is not exclusively determined by adjuvant induced plasticization, but also depends on a “secondary plasticization”, induced by adjuvant-attracted co-penetrating water, consequently leading to swelling and drastic destabilization of the crystalline wax structure. The successful establishment of the presented ATR-FTIR method represents a milestone for the study of adjuvant and AI diffusion kinetics in cuticular waxes. In particular, the simultaneously detectable wax modification and, moreover, the determinable water uptake form a perfect basis to establish the ATR-FTIR system as a universal screening tool for wax-adjuvants-AI-water interaction in crop protection science. N2 - Um ihren Zielort zu erreichen, müssen systemische Pestizide aus einem auf dem Feld ausgebrachten Sprühtropfen in die Pflanze gelangen. Die Aufnahme eines Wirkstoffs (AI) erfolgt über die barrierebildende Kutikularmembran, die äußerste Schicht der Pflanze, die sie von der Umgebung trennt. In der Regel werden Formulierungen verwendet, die neben dem AI auch Stabilisatoren und Adjuvantien enthalten. Adjuvantien können entweder oberflächenaktive Eigenschaften haben oder sie wirken direkt als barrieremodifizierende Substanzen. Letztere werden in der Klasse der beschleunigenden Adjuvantien zusammengefasst, wobei einzelne Varianten auch oberflächenaktive Eigenschaften haben können. Die Aufnahme eines Pestizids aus einem Sprühtropfen hängt im Wesentlichen von seiner Durchlässigkeit durch die kutikuläre Barriere ab. Die Permeabilität ist ein kombinierter Parameter, der sich aus der Mobilität und der Löslichkeit des Wirkstoffs in der Kutikula ergibt. In den letzten Jahrzehnten wurden mehrere Methoden entwickelt, die die Bestimmung einzelner Parameter der Permeation organischer Verbindungen durch die Kutikularmembran ermöglichen. Frühere Studien zeigten jedoch, dass hauptsächlich kutikuläre Wachse die barrierebestimmende Komponente der Kutikula darstellen, und darüber hinaus wurde gezeigt, dass hauptsächlich die sehr langkettigen aliphatischen Verbindungen (VLCAs) für die Errichtung einer wirksamen Barriere verantwortlich sind. Die Rolle der einzelnen VLCAs, die nach ihren jeweiligen funktionellen Gruppen klassifiziert werden, ist jedoch in Bezug auf die Bestimmung der Barriereeigenschaften noch unbekannt. Daher wurde in dieser Arbeit folgende Ziele verfolgt und erreicht: (1) Ein neuer ATR-FTIR-basierter Ansatz wurde entwickelt, um die temperaturabhängige Echtzeit-Diffusionskinetik von organischen Modellen für Wirkstoffe (AI) in ausschließlich aus Alkanen bestehendem Paraffinwachs zu messen. (2) Der entwickelte ATR-FTIR-Ansatz wurde zur Bestimmung der Diffusionskinetik von selbstbeschleunigenden Adjuvantien in kutikulären Modellwachsen unterschiedlicher VLCA-Zusammensetzung angewendet. Gleichzeitig wurden wachsspezifische Veränderungen in den jeweiligen IR-Spektren aufgezeichnet, welche Informationen über die jeweilige Wachsmodifikation lieferten. (3) Die ATR-FTIR-Methode wurde zur Charakterisierung der Diffusionskinetik, sowie zur Bestimmung der wachsspezifischen Sorptionskapazitäten für eine AI-modellierende organische Verbindung und von Wasser in kutikulären Modellwachsen nach Adjuvans-Behandlung verwendet. Im Hinblick auf die einzelnen chemischen Zusammensetzungen und Strukturen wurden Rückschlüsse auf die adjuvansspezifischen Wirkweisen (MoA) gezogen. Im ersten Kapitel wurde der ATR-FTIR-basierte Ansatz zur Bestimmung der Diffusionskinetik organischer Verbindungen in Paraffinwachs erfolgreich etabliert. Es wurde die Diffusionskinetik der organischen AI-Modellverbindungen Heptylparaben (HPB) und 4-Cyanophenol (CNP) aufgezeichnet, die unterschiedliche Lipophilitäten und Molekülvolumina aufweisen, wie sie für AIs in Pestizidformulierungen typisch sind. Die abgeleiteten Diffusionskoeffizienten lagen im Bereich von 10-15 m2 s-1 und waren damit höher als die zuvor in rekonstituierten kutikulären Wachsen beobachteten Diffusionskoeffizienten. Zum ersten Mal wurde eine ln-lineare Abhängigkeit zwischen den Diffusionskoeffizienten und der angewandten Diffusionstemperatur in kutikulärem Modellwachs nachgewiesen, aus der schließlich Aktivierungsenergien abgeleitet wurden. Die ermittelten Aktivierungsenergien betrugen 66.2 ± 7.4 kJ mol-1 und 56.4 ± 9,8 kJ mol-1 und lagen damit im erwarteten Bereich der bereits gut begründeten Aktivierungsenergien, die für die Diffusion organischer Verbindungen durch kutikuläre Membranen erforderlich sind. Dies bestätigte abermals den signifikanten Beitrag der Wachse zur kutikulären Barriere. Abweichungen von der angenommenen Fick'schen Diffusion wurden auf die gleichzeitig stattfindende Wasserdiffusion und gerätespezifische Artefakte zurückgeführt. Im zweiten und dritten Kapitel wurde vor allem die Diffusionskinetik von beschleunigenden Adjuvantien in den kutikulären Modellwachsen Candelillawachs und Carnaubawachs untersucht und gleichzeitig aufgezeichnete Veränderungen im wachspezifischen Teil des IR-Spektrums als Hinweise auf eine Plastifizierung interpretiert. Zu diesem Zweck wurden das Ölderivat Methyloleat, sowie der Organophosphatester TEHP und drei nichtionische monodisperse Alkoholethoxylate (AEs) C12E2, C12E4 und C12E6 ausgewählt. Es wurde eine starke Abhängigkeit der Adjuvansdiffusion von den jeweiligen Hauptkomponenten der hauptsächlich aliphatisch strukturierten Wachse nachgewiesen. So war die Diffusionskinetik der untersuchten Adjuvantien in dem hauptsächlich aus n-Alkanen bestehenden Candelillawachs schneller als in dem von Alkylestern dominierten Carnaubawachs. Darüber hinaus waren die Gleichgewichtsabsorptionen, die auf Gleichgewichtskonzentrationen hinweisen, in Candelillawachs ebenfalls höher als in Carnaubawachs. Daraus wurde gefolgert, dass Wachse mit hohen Alkylesteranteilen aufgrund ihrer strukturellen Integrität einen höheren Widerstand gegen die Diffusion von beschleunigenden Adjuvantien aufweisen als Wachse mit kürzeren durchschnittlichen Kettenlängen. Dies wurde auch bei Candelilla/Policosanol- (n-Alkohol) oder Candelilla/Reiskleiewachs-Mischungen (Alkylester) festgestellt: Mit steigender Alkoholkonzentration nahm die Barrierefunktion ab, während sie mit steigender Alkylesterkonzentration zunahm. Aufgrund der hohen Variabilität der einzelnen Diffusionskurven konnte hier jedoch nur ein Trend vermutet werden, signifikante Unterschiede zeigten sich jedoch nicht. Die Variabilität selbst wurde mit schwankenden kristallinen Anordnungen und teilweiser Phasentrennung der jeweiligen Wachsmischungen erklärt, die sich zwangsläufig auf die Diffusion der Adjuvantien auswirkten. Die Diffusionskinetik hing jedoch auch stark von den untersuchten Adjuvantien ab. In Carnaubawachs wurde eine deutlich langsamere Methyloleat-Diffusion festgestellt, die mit einer weniger ausgeprägten Verringerung der orthorhombischen Kristallinität einherging als in Candelillawachs, während die TEHP-Diffusion deutlich weniger von der jeweiligen Wachsstruktur abhängig war und in beiden Wachsen eine erhebliche Plastifizierung bewirkte. Von besonderem Interesse war die AE-Diffusion in den untersuchten Wachsen. Auch hier wurden Unterschiede in der Diffusionskinetik zwischen Candelillamischungen und Carnaubawachs festgestellt. Diese hingen jedoch gleichermaßen vom Ethoxylierungsgrad der jeweiligen AEs ab. Das lipophile C12E2 zeigte in beiden Wachsen eine annähernd Fick‘sche Diffusionskinetik, die mit einer drastischen Verringerung der orthorhombischen Kristallinität einherging, insbesondere im Candelillawachs, während das hydrophilere C12E6 eine deutlich verzögerte Diffusionskinetik zeigte, die mit einer geringeren Auswirkung auf die orthorhombische Kristallinität einherging. Die individuellen Diffusionskinetiken der untersuchten Adjuvantien zeigten teilweise drastische Abweichungen vom Fick‘schen Diffusionsmodell, was auf einen selbstbeschleunigenden Effekt hindeutet. Die Diffusionskinetik der Adjuvantien wurde von einer ausgeprägten anfänglichen Verzögerungsphase begleitet, die auf das Erreichen einer kritischen Konzentration im Wachs hindeutet. Es wird angenommen, dass aufgrund der initialen Verzögerungsphase letztlich sigmoidale, statt Fick’sche Diffusionskinetiken vorlagen. Das letzte Kapitel befasste sich mit der adjuvansbeeinflussten Diffusion der für Wirkstoffe modellhaften organischen Substanz CNP in Candelilla- und Carnaubawachs. Mittels ATR-FTIR wurden Diffusionskinetiken nach Adjuvans-Behandlung aufgezeichnet, die alle auf der Grundlage des Fick‘schen Modells vollständig erklärbar waren, einhergehend mit hohen Diffusionskoeffizienten von 10-14 bis 10-13 m2 s-1. Es ist offensichtlich, dass die in dieser Arbeit vorgestellten Diffusionskoeffizienten durchweg eine durch die Plastifizierung bedingte erhöhte CNP-Mobilität belegen. Darüber hinaus wurden CNP-Gleichgewichtskonzentrationen abgeleitet, aus denen Verteilungs- und Permeabilitätskoeffizienten bestimmt werden konnten. Signifikante Unterschiede zwischen Diffusionskoeffizienten (Mobilität) und Verteilungskoeffizienten (Löslichkeit) wurden zum einen in Abhängigkeit von den jeweiligen Wachsen und zum anderen in Abhängigkeit von den jeweiligen Adjuvantien festgestellt. Die CNP-Mobilität war in Candelillawachs nur nach Behandlung mit Methyloleat höher als in Carnaubawachs. Die Behandlung mit TEHP und AEs führte zu einer höheren CNP-Mobilität in dem polaren, von Alkylestern dominierten Carnaubawachs. Die Verteilungskoeffizienten hingegen waren nach der Behandlung mit Methyloleat sowohl in Candelilla- als auch in Carnaubawachs deutlich niedriger als nach der Behandlung mit TEHP oder AE. Es wurden Modelle für den CNP-Penetrationsmodus unter Berücksichtigung der jeweiligen Adjuvantien in den beiden untersuchten Wachsen entwickelt. Der Grund für die drastischen Unterschiede in der Wirksamkeit der Adjuvantien liegt wahrscheinlich im Ko-Penetrieren von Wasser, dem Hauptbestandteil der auf dem Feld angewandten Spritzformulierungen. Insbesondere die untersuchten AEs begünstigten eine enorme Wasseraufnahme in beiden Wachsen mit zunehmendem Ethoxylierungsgrad. Überraschenderweise wurde dieser Effekt auch für das lipophile TEHP in beiden Wachsen gefunden. Dies führte zu der Vermutung, dass die AI-Permeabilität nicht ausschließlich durch die adjuvansinduzierte Plastifizierung bestimmt wird, sondern auch von einer "sekundären Plastifizierung" abhängt, die durch die Ko-Penetration von Wasser induziert wird und so zur Quellung und drastischen Destabilisierung der kristallinen Wachsstruktur führt. Die erfolgreiche Etablierung der vorgestellten ATR-FTIR-Methode stellt einen Meilenstein für die Untersuchung der Diffusionskinetik von Adjuvantien und AIs in kutikulären Wachsen dar. Insbesondere die gleichzeitig nachweisbare Wachsmodifikation und darüber hinaus die bestimmbare Wasseraufnahme bilden eine perfekte Grundlage, um das ATR-FTIR-System als universelles Screening-Tool für Wachs-Adjuvans-AI-Wasser-Interaktionen in der Pflanzenschutzwissenschaft zu etablieren. KW - Pflanzen KW - Kutikula KW - Adjuvans KW - Aktivierungsenergie KW - ATR-FTIR KW - Diffusion coefficient KW - Pesticide KW - wax Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-274874 ER - TY - THES A1 - Voß, Lena Johanna T1 - Änderungen der Membranspannung und der Osmolarität als Auslöser für Calciumsignale in Pflanzen – Studien an Schließzellen von Nicotiana tabacum und Polypodium vulgare T1 - Induction of Calcium Signals by Changes in Membrane Potential and Osmolarity – Studies on Guard Cells of Nicotiana tabacum and Polypodium vulgare N2 - Stomata sind kleine Poren in der Blattoberfläche, die Pflanzen eine Anpassung ihres Wasserhaushalts an sich ändernde Umweltbedingungen ermöglichen. Die Öffnungsweite der Stomata wird durch den Turgordruck der Schließzellen bestimmt, der wiederum durch Ionenflüsse über die Membranen der Zelle reguliert wird. Ein Netzwerk von Signaltransduktionswegen sorgt dafür, dass Pflanzen die Stomabewegungen an die Umgebungsbedingungen anpassen können. Viele molekulare Komponenten dieser Signaltransduktionketten in Schließzellen von Angiospermen sind inzwischen bekannt und Calcium spielt darin als Signalmolekül eine wichtige Rolle. Weitgehend unbekannt sind dagegen die Mechanismen, die zur Erzeugung von transienten Erhöhungen der Calciumkonzentration führen. Auch die molekularen Grundlagen der Regulierung der Stomaweite in Nicht-Angiospermen-Arten sind bisher nur wenig verstanden. Um zur Aufklärung dieser Fragestellungen beizutragen, wurden in dieser Arbeit Mechanismen zur Erhöhungen der cytosolischen Calciumkonzentration sowie elektrophysiologische Eigenschaften von Schließzellen untersucht. Der Fokus lag hierbei insbesondere auf der Visualisierung cytosolischer Calciumsignale in Schließzellen. Im ersten Teil der Arbeit wurde durch die Applikation hyperpolarisierender Spannungspulse mittels TEVC (Two Electrode Voltage Clamp) gezielt eine Erhöhung der cytosolischen Calciumkonzentration in einzelnen Schließzellen von Nicotiana tabacum ausgelöst. Um die Dynamik der cytosolischen Calciumkonzentration dabei zeitlich und räumlich hoch aufgelöst zu visualisieren, wurde simultan zu den elektrophysiologischen Messungen ein Spinning-Disc-System für konfokale Aufnahmen eingesetzt. Während der Applikation hyperpolarisierender Spannungspulse wurde eine transiente Vergrößerung des cytosolischen Volumens beobachtet. Diese lässt sich durch einen osmotisch getriebenen Wasserfluss erklären, der durch die Veränderung der Ionenkonzentration im Cytosol verursacht wird. Diese wiederum wird durch die spannungsabhängige Aktivierung einwärtsgleichrichtender Kaliumkanäle in der Plasmamembran der Schließzellen und durch den Kompensationsstrom der eingestochenen Mikroelektrode hervorgerufen. Mit Hilfe des calciumsensitiven Farbstoffs Fura-2 konnte gezeigt werden, dass die Erhöhung der freien cytosolischen Calciumkonzentration während der Applikation hyperpolarisierender Spannungspulse durch zwei Mechanismen verursacht wird. Der erste Mechanismus ist die Aktivierung hyperpolarisationsaktivierter, calciumpermeabler Kanäle (HACCs) in der Plasmamembran, die schon 1998 von Grabov & Blatt beschrieben wurde. Zusätzlich zu diesem Mechanismus der Calciumfreisetzung, konnte ein zweiter bislang unbekannter Mechanismus aufgedeckt werden, bei dem Calcium aus intrazellulären Speichern in das Cytosol freigesetzt wird. Dieser Mechanismus hängt mit der oben beschriebenen Vergrößerung des cytosolischen Volumens zusammen und ist wahrscheinlich durch die Änderungen der mechanischen Spannung der Membran bzw. der Osmolarität innerhalb der Zelle bedingt. Diese könnten zu einer Aktivierung mechanosensitiver, calciumpermeabler Kanäle führen. Der zweite Teil der Arbeit beschäftigt sich mit den molekularen Grundlagen der Regulierung von Stomata in Nicht-Angiospermen. In Schließzellen von Polypodium vulgare konnten durch die Anwendung der TEVC-Technik ähnliche spannungsabhängige Ströme über die Plasmamembran gemessen werden wie in Angiospermen. Ebenso wurden durch die Applikation hyperpolarisierender Spannungspulse an Schließzellen von Polypodium und Asplenium Erhöhungen der cytosolischen Calciumkonzentration ausgelöst, die auf die Existenz spannungsabhängiger, calciumpermeabler Kanäle in der Plasmamembran hinweisen. Die Diffusion von Fluoreszenzfarbstoffen in die Nachbarschließzellen nach der iontophoretischen Beladung in Polypodium, Asplenium, Ceratopteris und Selaginella zeigte, dass in diesen Arten eine symplastische Verbindung zwischen benachbarten Schließzellen besteht, die an Schließzellen von Angiospermen bisher nicht beobachtet werden konnte. Anhand elektronenmikroskopischer Aufnahmen von Polypodium glycyrrhiza Schließzellen konnte gezeigt werden, dass diese Verbindung wahrscheinlich durch Plasmodesmata zwischen benachbarten Schließzellen gebildet wird. Durch die Analyse der Calciumdynamik in benachbarten Schließzellen nach hyperpolarisierenden Spannungspulsen stellte sich heraus, dass die Calciumhomöostase trotz symplastischer Verbindung in beiden Schließzellen unabhängig voneinander reguliert zu werden scheint. Im Rahmen der Untersuchungen an Farnschließzellen wurde desweiteren eine Methode zur Applikation von ABA etabliert, die es erlaubt mithilfe von Mikroelektroden das Phytohormon iontophoretisch in den Apoplasten zu laden. Im Gegensatz zu den Schließzellen von Nicotiana tabacum, die auf eine so durchgeführte ABA-Applikation mit dem Stomaschluss reagierten, wurde in Polypodium vulgare auf diese Weise kein Stomaschluss ausgelöst. Da die ABA-Antwort der Farnstomata aber auch von anderen Faktoren wie Wachstumsbedingungen abhängig ist (Hõrak et al., 2017), kann eine ABA-Responsivität in dieser Farnart trotzdem nicht vollkommen ausgeschlossen werden. Die Freisetzung von Calcium aus intrazellulären Speichern, wie sie in dieser Arbeit gezeigt wurde, könnte eine wichtige Rolle bei der Regulierung der Stomaweite spielen. Zur Aufklärung dieser Fragestellung wäre die Identifizierung der Kanäle, die an der osmotisch/mechanisch induzierten Calciumfreisetzung aus internen Speichern beteiligt sind, von großem Interesse. Weiterführende Studien an Schließzellen von Farnen könnten die physiologische Bedeutung der aus Angiospermen bekannten Ionenkanäle für die Stomabewegungen in evolutionär älteren Landpflanzen aufklären und so maßgeblich zum Verständnis der Evolution der Regulierunsgmechanismen von Stomata beitragen. Außerdem stellt sich die Frage, welche Rolle die hier gezeigte symplastische Verbindung der Nachbarschließzellen durch Plasmodesmata für die Funktion der Stomata spielt. N2 - Stomata are small pores in the leaf surface that allow plants to adapt their water balance to changing environmental conditions. The turgor pressure of the guard cells determines the width of the stomatal aperture and is regulated by ion fluxes in or out of the guard cell. A network of different signal transduction pathways is necessary for the adaption of stomatal movements to ambient conditions. Many of these transduction pathways have been described in detail and many of their components have been identified. It is a well known fact that calcium acts as a second messenger in pathways regulating stomatal movements. However, the mechanisms that lead to transient elevations of the cytosolic calcium concentration are largely unknown. The molecular basis of the regulation of stomatal aperture in non-angiosperm species is also poorly understood. In order to gain new insights into these topics, mechanisms of calcium elevation and electrophysiological properties of guard cells were studied, focussing especially on the visualization of the cytosolic calcium concentration in guard cells. In the first part of this study, the application of hyperpolarizing voltage pulses by means of TEVC (Two Electrode Voltage Clamp) was used to specifically trigger an increase in the cytosolic calcium concentration in individual guard cells in the angiosperm model plant Nicotiana tabacum. To visualize the dynamics of the cytosolic calcium concentration with high temporal and spatial resolution, a spinning disc system for confocal imaging was used simultaneously with the electrophysiological recordings. During the application of hyperpolarizing voltage pulses a transient increase in cytosolic volume was observed. This increase can be explained by an osmotically driven water flux caused by changes of the cytosolic ion concentration. These in turn are caused by the voltage-dependent activation of inward rectifying potassium channels in the guard cell plasma membrane and by the compensating current from the impaled microelectrode. Using the calcium-sensitive dye Fura-2, it could be shown that two mechanisms lead to the elevation of the cytosolic calcium concentration during the application of hyperpolarizing voltage pulses. The first mechanism is the activation of hyperpolarization-activated calcium permeable channels (HACCs) in the plasma membrane, which has already been described in 1998 by Grabov & Blatt. In addition to this mechanism of calcium release, a second previously unknown mechanism was discovered in which calcium is released into the cytosol from intracellular stores. This mechanism is related to the increase in cytosolic volume we described above and is probably caused by changes in membrane tension or osmolarity within the cell. These changes could lead to an activation of mechanosensitive calciumpermeable channels. The second part of this thesis deals with the molecular basis of the regulation of stomata in non-angiosperms. In guard cells of Polypodium vulgare voltage-dependent currents across the plasma membrane similar to those described in angiosperm model plants could be measured using TEVC. Furthermore, the application of hyperpolarizing voltage pulses induced increases in cytosolic calcium concentration in guard cells of Polypodium and Asplenium indicating the existence of voltage-dependent calcium permeable channels in the plasma membrane. The diffusion of iontophoretically injected fluorescent dyes into the neighboring guard cells in Polypodium, Asplenium, Ceratopteris and Selaginella showed that in these species a symplastic connection between neighboring guard cells exists, which could not be observed in guard cells of angiosperms. Electron microscopic images of Polypodium glycyrrhiza guard cells showed that this connection is probably formed by plasmodesmata between adjacent guard cells. Analysis of the calcium dynamics in neighboring guard cells after hyperpolarizing voltage pulses revealed that calcium homeostasis seems to be regulated independently in both guard cells despite their symplastic connection. As part of the investigations on guard cells of ferns, a new method for the application of ABA was established, which allows the phytohormone to be charged iontophoretically into the apoplast with the aid of microelectrodes. In contrast to the guard cells of Nicotiana tabacum, which reacted with loss of turgor and subsequential stomatal closure to this method of ABA-application, no closure of the stomata could be induced in Polypodium vulgare in this way. However, since the ABA response of fern stomata is also dependent on other factors such as growth conditions (Hõrak et al., 2017), an ABA-responsiveness in this fern species can still not be completely excluded. The release of calcium from intracellular stores, as shown in this work, could play an important role for the regulation of stomatal aperture. To clarify this question, the identification of the channels involved in osmotically/mechanically induced calcium release from internal stores would be of great interest. Further studies on fern guard cells could clarify the physiological significance of ion channels known from angiosperms for the stomatal movements in early land plants, and thus contribute significantly to the understanding of the evolution of stomatal regulation. In addition, the question arises as to what role the symplastic connection of the neighboring guard cells through plasmodesmata plays for the function of stomata. KW - Schließzelle KW - Nicotiana tabacum KW - Polypodium vulgare KW - Calcium Imaging KW - Elektrophysiologie KW - Schließzellen KW - Farne KW - Abscisinsäure KW - Oregon Green-BAPTA KW - Fura-2 KW - Hyperpolarisierung KW - guard cells KW - ferns KW - abscisic acid KW - hyperpolarisation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219639 ER -