TY - THES A1 - Bakari Soale, Majeed T1 - Regulation of the Variant Surface Glycoprotein (VSG) Expression and Characterisation of the Nucleolar DExD/H box Protein Hel66 in \(Trypanosoma\) \(brucei\) T1 - Regulation der Expression des variable Oberflächen- Glykoprotein (VSG) und Charakterisierung des nukleolären DExD/H box Protein Hel66 in \(Trypanosoma\) \(brucei\) N2 - The variant surface glycoprotein (VSG) of African trypanosomes plays an essential role in protecting the parasites from host immune factors. These trypanosomes undergo antigenic variation resulting in the expression of a single VSG isoform out of a repertoire of around 2000 genes. The molecular mechanism central to the expression and regulation of the VSG is however not fully understood. Gene expression in trypanosomes is unusual due to the absence of typical RNA polymerase II promoters and the polycistronic transcription of genes. The regulation of gene expression is therefore mainly post-transcriptional. Regulatory sequences, mostly present in the 3´ UTRs, often serve as key elements in the modulation of the levels of individual mRNAs. In T. brucei VSG genes, a 100 % conserved 16mer motif within the 3´ UTR has been shown to modulate the stability of VSG transcripts and hence their expression. As a stability-associated sequence element, the absence of nucleotide substitutions in the motif is however unusual. It was therefore hypothesised that the motif is involved in other essential roles/processes besides stability of the VSG transcripts. In this study, it was demonstrated that the 100 % conservation of the 16mer motif is not essential for cell viability or for the maintenance of functional VSG protein levels. It was further shown that the intact motif in the active VSG 3´ UTR is neither required to promote VSG silencing during switching nor is it needed during differentiation from bloodstream forms to procyclic forms. Crosstalk between the VSG and procyclin genes during differentiation to the insect vector stage is also unaffected in cells with a mutated 16mer motif. Ectopic overexpression of a second VSG however requires the intact motif to trigger silencing and exchange of the active VSG, suggesting a role for the motif in transcriptional VSG switching. The 16mer motif therefore plays a dual role in VSG in situ switching and stability of VSG transcripts. The additional role of the 16mer in the essential process of antigenic variation appears to be the driving force for the 100 % conservation of this RNA motif. A screen aimed at identifying candidate RNA-binding proteins interacting with the 16mer motif, led to the identification of a DExD/H box protein, Hel66. Although the protein did not appear to have a direct link to the 16mer regulation of VSG expression, the DExD/H family of proteins are important players in the process of ribosome biogenesis. This process is relatively understudied in trypanosomes and so this candidate was singled out for detailed characterisation, given that the 16mer story had reached a natural end point. Ribosome biogenesis is a major cellular process in eukaryotes involving ribosomal RNA, ribosomal proteins and several non-ribosomal trans-acting protein factors. The DExD/H box proteins are the most important trans-acting protein factors involved in the biosynthesis of ribosomes. Several DExD/H box proteins have been directly implicated in this process in yeast. In trypanosomes, very few of this family of proteins have been characterised and therefore little is known about the specific roles they play in RNA metabolism. Here, it was shown that Hel66 is involved in rRNA processing during ribosome biogenesis. Hel66 localises to the nucleolus and depleting the protein led to a severe growth defect. Loss of the protein also resulted in a reduced rate of global translation and accumulation of rRNA processing intermediates of both the small and large ribosomal subunits. Hel66 is therefore an essential nucleolar DExD/H protein involved in rRNA processing during ribosome biogenesis. As very few protein factors involved in the processing of rRNAs have been described in trypanosomes, this finding represents an important platform for future investigation of this topic. N2 - Das variable Oberflächen-Glykoprotein (“varaint surface glycoprotein“, VSG) der Afrikanischen Trypanosomen schützt den Parasiten vor Immunfaktoren des Wirtes. Trypanosomen beherrschen die antigene Variation und expremieren nur eine einzige VSG Isoform aus einem Repertoire von ungefähr 2000 Genen. Der molekulare Mechanismus der die Expression dieser VSG Gene reguliert ist nicht komplett bekannt. Die Genexpression ist in Trypanosomen sehr ungewöhnlich. Es gibt keine typischen Promotoren für RNA Polymerase II und Gene werden polycistronisch transkribiert. Daher ist die Regulation der Genexpression hauptsächlich posttranskriptional. Die Expression individueller mRNAs wird durch regulatorische Sequenzen reguliert, die sich häufig in den 3´ UTRs befinden. In den VSG Genen von T. brucei moduliert ein zu 100% konserviertes 16mer Motiv in der 3´ UTR die Stabilität der VSG Transkripte und damit deren Expression. Für eine Sequenz, die die Stabilität der mRNA reguliert, ist das Fehlen von Nukleotid Substitutionen sehr ungewöhnlich. Es wurde deshalb spekuliert, dass das 16mer Motiv neben der Stabilisierung des VSG Transkriptes noch an anderen essentiellen Prozessen beteiligt ist. In dieser Arbeit wurde gezeigt, dass die 100%ige Konservierung des 16mer Motives weder für das Überleben der Zellen, noch für den Erhalt der Expression des VSG Protein in funktioneller Menge notwendig ist. Außerdem wurde gezeigt dass das intakte Motiv in der 3´UTR des aktiven VSGs weder für das „VSG silencing“ während des VSG Austausches („switching“) noch für die Differenzierung von Blutbahnformen zu prozyklischen Formen benötigt wird. Auch die Interaktionen („crosstalk“), die während der Differenzierung zum Insekten Stadium zwischen den VSG und Prozyklin Genen stattfinden, sind in Zellen mit mutiertem 16mer Motiv noch funktionell. Die ektopische Überexpression eines zweiten VSGs benötigt allerdings das intakte Motiv, um das aktive VSG zu inaktivieren und auszutauschen: dies suggeriert eine Rolle des Motivs im transkriptionalen „VSG switching“. Das 16mer Motif spielt daher eine Doppelrolle bei der Regulation der Stabilität der VSG Transkripte und im VSG in situ „switching“. Letzteres, die Rolle im essentiellen Prozess der antigenen Variation, ist dabei offensichtlich die treibende Kraft hinter der 100%igen Konservierung des RNA Motives. Eine Suche nach möglichen RNA bindenden Proteinen, die mit dem 16mer interagieren, führte zur Identifikation des DExD/H box Proteins Hel66. Obwohl das Protein wohl nicht direkt an der Regulation der VSG Expression über das 16mer beteiligt ist, spielen Mitglieder der DexD/H Proteinfamilie eine wichtige Rolle in der Biogenese von Ribosomen. Dieser Prozess ist in Trypanosomen noch nicht komplett verstanden und daher wurde das Protein für eine nähere Analyse ausgewählt, auch weil die 16mer Story ohne weitere Kandidaten zu einem Ende gekommen war. Die Biogenese von Ribosomen ist ein wichtiger zellulärer Prozess in Eukaryoten und benötigt ribosomale RNA, ribosomale Proteine sowie einige nicht-ribosomale, trans-agierende Protein Faktoren. Proteine der DExD/H box Familie sind die wichtigsten trans- agierenden Proteinfaktoren, die an der Biogenese der Ribosomen beteiligt sind. In der Hefe sind mehrere DExD/H box Proteine bekannt, die eine direkte Rolle in diesem Prozess spielen. In Trypanosomen sind erst sehr wenige Proteine aus dieser Familie untersucht worden und es ist daher kaum bekannt, welche spezifische Rollen sie im RNA Metabolismus spielen. In dieser Arbeit wurde gezeigt, dass Hel66 an der rRNA Prozessierung während der Biogenese der Ribosomen beteiligt ist. Hel66 ist im Nukleolus lokalisiert und die Reduktion des Proteins durch RNAi führte zu einem schweren Wachstumsphänotyp. Reduktion von Hel66 führte auch zu einer globalen Reduktion der Translation sowie zur Akkumulation von Synthese- Zwischenstadien der rRNAs sowohl der kleinen und als auch der großen ribosomalen Untereinheit. Hel66 ist daher ein essentielles nukleoläres DExD/H Protein dass an der Prozessierung der rRNA während der Biogenese der Ribosomen beteiligt ist. Da bisher erst wenige Proteine bekannt sind, die in Trypanosomen an diesem Prozess beteiligt sind, sind diese Ergebnisse ein sehr wichtiger Ausgangspunkt für weitere Untersuchungen in der Zukunft. KW - Trypanosoma brucei KW - Genexpression KW - Variant Surface Glycoprotein KW - VSG KW - DExD/H box protein KW - Ribosome biogenesis KW - rRNA processing KW - Ribosome Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258090 ER - TY - THES A1 - König, Sebastian Thomas T1 - Temperature-driven assembly processes of Orthoptera communities: Lessons on diversity, species traits, feeding interactions, and associated faecal microorganisms from elevational gradients in Southern Germany (Berchtesgaden Alps) T1 - Temperaturabhängige Zusammensetzungsprozesse von Heuschreckengemeinschaften: Lektionen über die Diversität, Artmerkmale, Fraßinteraktionen, und Kot-Mikroorganismen von Höhengradienten in Süddeutschland (Berchtesgadener Alpen) N2 - Chapter I: Introduction Temperature is a major driver of biodiversity and abundance patterns on our planet, which becomes particularly relevant facing the entanglement of an imminent biodiversity and climate crisis. Climate shapes the composition of species assemblages either directly via abiotic filtering mechanisms or indirectly through alterations in biotic interactions. Insects - integral elements of Earth’s ecosystems - are affected by climatic variation such as warming, yet responses vary among species. While species’ traits, antagonistic biotic interactions, and even species’ microbial mutualists may determine temperature-dependent assembly processes, the lion’s share of these complex relationships remains poorly understood due to methodological constraints. Mountains, recognized as hotspots of diversity and threatened by rapidly changing climatic conditions, can serve as natural experimental settings to study the response of insect assemblages and their trophic interactions to temperature variation, instrumentalizing the high regional heterogeneity of micro- and macroclimate. With this thesis, we aim to enhance our mechanistic understanding of temperature-driven assembly processes within insect communities, exemplified by Orthoptera, that are significant herbivores in temperate mountain grassland ecosystems. Therefore, we combined field surveys of Orthoptera assemblages on grassland sites with molecular tools for foodweb reconstruction, primarily leveraging the elevational gradients offered by the complex topography within the Berchtesgaden Alpine region (Bavaria, Germany) as surrogate for temperature variation (space-for-time substitution approach). In this framework, we studied the effects of temperature variation on (1) species richness, abundance, community composition, and interspecific as well as intraspecific trait patterns, (2) ecological feeding specialisation, and (3) previously neglected links to microbial associates found in the faeces. Chapter II: Temperature-driven assembly processes Climate varies at multiple scales. Since microclimate is often overlooked, we assessed effects of local temperature deviations on species and trait compositions of insect communities along macroclimatic temperature gradients in Chapter II. Therefore, we employed joint species distribution modelling to explore how traits drive variation in the climatic niches of Orthoptera species at grassland sites characterized by contrasting micro- and macroclimatic conditions. Our findings revealed two key insights: (1) additive effects of micro- and macroclimate on the diversity, but (2) interactive effects on the abundance of several species, resulting in turnover and indicating that species possess narrower climatic niches than their elevational distributions might imply. This chapter suggests positive effects of warming on Orthoptera, but also highlights that the interplay of macro- and microclimate plays a pivotal role in structuring insect communities. Thus, it underscores the importance of considering both elements when predicting the responses of species to climate change. Additionally, this chapter revealed inter- and intraspecific effects of traits on the niches and distribution of species. Chapter III: Dietary specialisation along climatic gradients A crucial trait linked to the position of climatic niches is dietary specialisation. According to the ‘altitudinal niche-breadth hypothesis’, species of high-elevation habitats should be less specialized compared to their low-elevation counterparts. However, empirical evidence on shifts in specialization is scarce for generalist insect herbivores and existing studies often fail to control for the phylogeny and abundance of interaction partners. In Chapter III, we used a combination of field observations and amplicon sequencing to reconstruct dietary relationships between Orthoptera and plants along an extensive temperature gradient. We did not find close but flexible links between individual grasshopper and plant taxa in space. While interaction network specialisation increased with temperature, the corrected dietary specialisation pattern peaked at intermediate elevations on assemblage level. These nuanced findings demonstrate that (1) resource availability, (2) phylogenetic relationships, and (3) climate can affect empirical foodwebs intra- and interspecifically and, hence, the dietary specialisation of herbivorous insects. In this context, we discuss that the underlying mechanisms involved in shaping the specialisation of herbivore assemblages may switch along temperature clines. Chapter IV: Links between faecal microbe communities, feeding habits, and climate Since gut microbes affect the fitness and digestion of insects, studying their diversity could provide novel insights into specialisation patterns. However, their association with insect hosts that differ in feeding habits and specialisation has never been investigated along elevational climatic gradients. In Chapter IV, we utilized the dietary information gathered in Chapter III to characterize links between insects with distinct feeding behaviour and the microbial communities present in their faeces, using amplicon sequencing. Both, feeding and climate affected the bacterial communities. However, the large overlap of microbes at site level suggests that common bacteria are acquired from the shared feeding environment, such as the plants consumed by the insects. These findings emphasize the influence of a broader environmental context on the composition of insect gut microbial communities. Chapter V: Discussion & Conclusions Cumulatively, the sections of this dissertation provide support for the hypothesis that climatic conditions play a role in shaping plant–herbivore systems. The detected variation of taxonomic and functional compositions contributes to our understanding of assembly processes and resulting diversity patterns within Orthoptera communities, shedding light on the mechanisms that structure their trophic interactions in diverse climates. The combined results presented suggest that a warmer climate could foster an increase of Orthoptera species richness in Central European semi-natural grasslands, also because the weak links observed between insect herbivores and plants are unlikely to limit decoupled range shifts. However, the restructuring of Orthoptera communities in response to warmer temperatures depends on species' traits such as moisture preferences or phenology. Notably, we were able to demonstrate a crucial role of microclimate for many species, partly unravelling narrower climatic niches than their elevational ranges suggest. We found evidence that not only Orthoptera community composition, specialisation, and traits varied along elevational gradients, but even microbial communities in the faeces of Orthoptera changed, which is a novel finding. This complex restructuring and reassembly of communities, coupled with the nonlinear specialisation of trophic interactions and a high diversity of associated bacteria, emphasize our currently incomplete comprehension of how ecosystems will develop under future climatic conditions, demanding caution in making simplified predictions for biodiversity change under climate warming. Since these predictions may benefit from including biotic interactions and both, micro- and macroclimate based on our findings, conservation authorities and practitioners must not neglect improving microclimatic conditions to ensure local survival of a diverse set of threatened and demanding species. In this context, mountains can play a pivotal role for biodiversity conservation since these offer heterogeneous microclimatic conditions in proximity that can be utilized by species with distinct niches. N2 - Kapitel I: Einleitung Die Temperatur ist eine wichtige Triebkraft hinter den Artenvielfalts- und Abundanzmustern auf unserem Planeten, was angesichts der Verflechtung der unmittelbar bevorstehenden Biodiversitäts- und Klimakrise besonders relevant ist. Das Klima strukturiert die Artenvielfalt direkt durch abiotische Filtermechanismen oder indirekt durch Veränderungen biotischer Wechselwirkungen. Insekten - wesentliche Bestandteile der Ökosysteme der Erde - sind von klimatischen Veränderungen wie der Erwärmung betroffen, reagieren aber je nach Art unterschiedlich. Während die Merkmale der Arten, antagonistische biotische Interaktionen und sogar die mikrobiellen Partner der Arten temperaturabhängige Zusammensetzungsprozesse bestimmen können, bleibt ein Großteil dieser komplexen Beziehungen aufgrund methodischer Einschränkungen nach wie vor schlecht verstanden. Gebirge, die als Hotspots der Diversität gelten und von sich rasch verändernden klimatischen Bedingungen bedroht sind, können durch Nutzung der großen regionalen Heterogenität der Klein- und Großklimate als natürliche Experimente dienen, um die Reaktion von Insektengemeinschaften und deren trophischen Interaktionen auf Temperaturänderungen zu untersuchen. Mit dieser Arbeit möchten wir einen Beitrag zum mechanistischen Verständnis der temperaturbedingten Zusammensetzungsprozesse von Insektengemeinschaften leisten, am Beispiel von Heuschrecken, die bedeutende Pflanzenfresser in Grünlandökosystemen der gemäßigten Breiten sind. Hierfür kombinierten wir Felduntersuchungen von Heuschreckengemeinschaften in Grünlandstandorten mit molekularen Methoden zur Rekonstruktion von Nahrungsbeziehungen, wobei wir hauptsächlich die Höhengradienten, die die komplexe Topografie der Berchtesgadener Alpenregion (Bayern, Deutschland) bietet, stellvertretend für Temperaturveränderungen verwendeten (Raum-Zeit-Substitutionsansatz). In diesem Rahmen untersuchten wir die Auswirkungen von Temperaturvariation auf (1) den Artenreichtum, die Abundanz, die Zusammensetzung der Gemeinschaft und die inter- und intraspezifischen Merkmalsmuster, (2) die ökologische Nahrungsspezialisierung und (3) die bis dato vernachlässigte Verbindung zu den mikrobiellen Begleitarten im Kot. Kapitel II: Temperaturabhängige Zusammensetzungsprozesse Das Klima variiert auf verschiedenen Ebenen. Da Veränderungen im Kleinklima oft vernachlässigt werden, haben wir in Kapitel II die Auswirkungen der lokalen Temperaturunterschiede auf die Arten- und Merkmalszusammensetzung von Insektengemeinschaften entlang makroklimatischer Temperaturgradienten untersucht. Hierfür haben wir die Methode der gemeinsamen Artenverteilungsmodellierung verwendet, um zu untersuchen, wie Artmerkmale die Unterschiede in klimatischen Nischen von Heuschreckenarten auf Grünlandstandorten mit gegensätzlichen mikro- und makroklimatischen Bedingungen beeinflussen. Unsere Ergebnisse brachten zwei wichtige Erkenntnisse zutage: (1) additive Auswirkungen des Mikro- und Makroklimas auf die Vielfalt, aber (2) interaktive Effekte auf die Häufigkeit mehrerer Arten, die sich in Zusammensetzungsunterschieden niederschlagen und auf engere klimatische Nischen hinweisen, als es die Höhenverbreitung vermuten lässt. Dieses Kapitel deutet auf positive Auswirkungen einer Erwärmung auf Orthoptera hin, zeigt aber auch, dass das Zusammenspiel von Makro- und Mikroklima eine Schlüsselrolle bei der Strukturierung von Insektengemeinschaften spielt und beide Elemente bei der Vorhersage der Reaktionen von Arten auf den Klimawandel berücksichtigt werden sollten. Darüber hinaus wurden in diesem Kapitel die inter- und intraspezifischen Auswirkungen von Merkmalen auf die Nischen und die Verbreitung von Arten aufgezeigt. Kapitel III: Nahrungsspezialisierung entlang von Klimagradienten Ein entscheidendes Merkmal für die Lage der klimatischen Nische einer Art ist die Nahrungsspezialisierung. Nach der "Hypothese der Höhenlagen-abhängigen Nischenbreite" sollten Arten in hoch gelegenen Lebensräumen weniger spezialisiert sein als ihre Pendants in niedrigen Lagen. Empirische Belege für Verschiebungen in der Spezialisierung von generalistischen, herbivoren Insekten sind jedoch rar und es fehlt eine Berücksichtigung der Häufigkeit und Phylogenie von Interaktionspartnern. In Kapitel III haben wir eine Kombination aus Feldbeobachtungen und Amplikonsequenzierung verwendet, um die Nahrungsbeziehungen von Heuschrecken und Pflanzen entlang eines ausgedehnten Temperaturgradienten zu rekonstruieren. Wir konnten keine engen, sondern flexible Beziehungen zwischen einzelnen Herbivoren- und Pflanzentaxa feststellen. Während die Spezialisierung der Interaktionsnetzwerke mit der Temperatur zunahm, erreichte das korrigierte Muster der Nahrungsspezialisierung auf Gemeinschaftsebene seinen Höhepunkt in mittleren Höhenlagen. Diese differenzierten Ergebnisse zeigen, dass (1) die Verfügbarkeit von Ressourcen, (2) phylogenetische Beziehungen und (3) das Klima intra- und interspezifische empirische Nahrungsbeziehungen und damit die Nahrungsspezialisierung pflanzenfressender Insekten beeinflussen können. In diesem Kontext diskutieren wir, dass die zugrundeliegenden Mechanismen hinter der Nahrungsspezialisierung von herbivoren Insekten entlang von Temperaturgradienten wechseln könnten. Kapitel IV: Verbindungen zwischen Kotbakteriengemeinschaften, Ernährungsgewohnheiten und Klima. Da Darmbakterien die Fitness und Verdauung von Insekten beeinflussen, könnte die Untersuchung deren Vielfalt neue Erkenntnisse über Spezialisierungsmuster liefern. Ihre Verbindung mit Insekten, die sich in ihren Ernährungsgewohnheiten und ihrer Spezialisierung unterscheiden, wurde jedoch noch nie entlang klimatischer Höhengradienten untersucht. In Kapitel IV verwendeten wir Nahrungsinformationen aus Kapitel III, um mit Hilfe von Amplikonsequenzierung Verbindungen zwischen Insekten mit unterschiedlichem Ernährungsverhalten und mikrobiellen Gemeinschaften in deren Kot zu charakterisieren. Sowohl die Nahrung als auch das Klima hatten Auswirkungen auf die bakteriellen Gemeinschaften. Die große Überschneidung der Mikrobengemeinschaften auf Standortebene deutet jedoch darauf hin, dass gemeinsame Bakterien aus der geteilten Nahrungsumgebung, wie z.B. den von den Insekten verzehrten Pflanzen, stammen. Diese Ergebnisse unterstreichen den Einfluss eines breiteren Umweltkontextes auf die Zusammensetzung der mikrobiellen Gemeinschaften im Insektendarm. Kapitel V: Diskussion & Schlussfolgerungen Insgesamt stützen die Kapitel dieser Dissertation die Hypothese, dass klimatische Verhältnisse Pflanzen-Pflanzenfresser-Systeme prägen. Die festgestellten Unterschiede in der taxonomischen und funktionellen Zusammensetzung tragen zu unserem Verständnis der Zusammensetzungsprozesse und daraus resultierenden Diversitätsmustern von Heuschreckengemeinschaften sowie der Mechanismen bei, die deren trophische Interaktionen in verschiedenen Klimazonen strukturieren. Die Kombination der Ergebnisse deutet darauf hin, dass wärmeres Klima eine Zunahme des Heuschreckenartenreichtums in naturnahen Grünlandgebieten Mitteleuropas begünstigen könnte, auch weil die schwachen Verbindungen zwischen den herbivoren Insekten und Pflanzen entkoppelte Arealverschiebungen wahrscheinlich nicht limitieren. Jedoch könnten höhere Temperaturen die Zusammensetzung von Heuschreckengemeinschaften je nach den Merkmalen der Arten wie deren Feuchtigkeitsvorlieben oder der Schlupfphänologie verändern. Darüber hinaus konnten wir nachweisen, dass das Mikroklima für viele Arten eine entscheidende Rolle spielt, da es teilweise engere klimatische Nischen aufdeckt, als ihre Höhenverbreitung vermuten lassen. Wir fanden Hinweise darauf, dass sich nicht nur die Zusammensetzung, Spezialisierung und Merkmale der Heuschreckengemeinschaften entlang der Höhengradienten ändern, sondern dass sogar die mikrobiellen Gemeinschaften im Kot variieren, was eine neue Erkenntnis darstellt. Diese komplexe Umstrukturierung und Neuzusammensetzung von Gemeinschaften in Kombination mit der nichtlinearen Spezialisierung von Interaktionen und einer hohen Vielfalt an assoziierten Bakterien unterstreichen unser noch immer begrenztes Verständnis davon, wie sich Ökosysteme unter zukünftigen Klimabedingungen entwickeln werden, und mahnen zur Vorsicht bei vereinfachten Vorhersagen über die Veränderung der biologischen Vielfalt im Zuge der Klimaerwärmung. Da solche Vorhersagen auf Grundlage unserer Ergebnisse vom Einbezug biotischer Wechselwirkungen und des Mikro- und Makroklimas profitieren können, dürfen Naturschutzverantwortliche eine Verbesserung der mikroklimatischen Bedingungen nicht vernachlässigen, um das lokale Überleben einer Vielzahl bedrohter und anspruchsvoller Arten zu sichern. In diesem Zusammenhang können Berge eine entscheidende Rolle für den Erhalt der biologischen Vielfalt spielen, da sie in räumlicher Nähe heterogene mikroklimatische Bedingungen bieten, die von Arten mit unterschiedlichen Nischen genutzt werden können. KW - Heuschrecken KW - Mikroklima KW - Bayerische Alpen KW - Nahrung KW - Mikrobiom KW - biotic interactions KW - plant-herbivore-interactions KW - elevational gradients Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-354608 ER - TY - THES A1 - Englmeier, Jana T1 - Consequences of climate change and land-use intensification for decomposer communities and decomposition processes T1 - Folgen von Klimawandel und intensiver Landnutzung für Zersetzergemeinschaften und Abbauprozesse N2 - The increase in intensively used areas and climate change are direct and indirect consequences of anthropogenic actions, caused by a growing population and increasing greenhouse gas emissions. The number of research studies, investigating the effects of land use and climate change on ecosystems, including flora, fauna, and ecosystem services, is steadily growing. This thesis contributes to this research area by investigating land-use and climate effects on decomposer communities (arthropods and microbes) and the ecosystem service ‘decomposition of dead material’. Chapter II deals with consequences of intensified land use and climate change for the ecosystem service ‘decomposition of dead organic material’ (necromass). Considering the severe decline in insects, we experimentally excluded insects from half of the study objects. The decomposition of both dung and carrion was robust to land-use changes. Dung decomposition, moreover, was unaffected by temperature and the presence/ absence of insects. Along the altitudinal gradient, however, highest dung decomposition was observed at medium elevation between 600 and 700 m above sea level (although insignificant). As a consequence, we assume that at this elevation there is an ideal precipitation:temperature ratio for decomposing organisms, such as earthworms or collembolans. Carrion decomposition was accelerated by increasing elevation and by the presence of insects, indicating that increasing variability in climate and an ongoing decline in insects could modify decomposition processes and consequently natural nutrient cycles. Moreover, we show that different types of dead organic material respond differently to environmental factors and should be treated separately in future studies. In Chapter III, we investigated land-use and climate effects on dung-visiting beetles and their resource specialization. Here, all beetles that are preferentially found on dung, carrion or other rotten material were included. Both α- and γ-diversity were strongly reduced in agricultural and urban areas. High precipitation reduced dung-visiting beetle abundance, whereas γ-diversity was lowest in the warmest regions. Resource specialization decreased with increasing temperatures. The results give evidence that land use as well as climate can alter dung-visiting beetle diversity and resource specialization and may hence influence the natural balance of beetle communities and their contribution to the ecosystem service ‘decomposition of dead material’. The following chapter, Chapter IV, contributes to the findings in Chapter II. Here, carrion decomposition is not only explained by land-use intensity and climate but also by diversity and community composition of two taxonomic groups found on carrion, beetles and bacteria. The results revealed a strong correlation between bacteria diversity and community composition with temperature. Carrion decomposition was to a great extent directed by bacterial community composition and precipitation. The role of beetles was neglectable in carrion decomposition. With this study, I show that microbes, despite their microscopic size, direct carrion decomposition and may not be neglected in future decomposition studies. In Chapter V a third necromass type is investigated, namely deadwood. The aim was to assess climate and land-use effects on deadwood-inhabiting fungi and bacteria. Main driver for microbial richness (measured as number of OTUs) was climate, including temperature and precipitation. Warmer climates promoted the diversity of bacteria, whereas fungi richness was unaffected by temperature. In turn, fungi richness was lower in urban landscapes compared to near-natural landscapes and bacteria richness was higher on meadows than on forest sites. Fungi were extremely specialized on their host tree, independent of land use and climate. Bacteria specialization, however, was strongly directed by land use and climate. These results underpin previous studies showing that fungi are highly specialized in contrast to bacteria and add new insights into the robustness of fungi specialization to climate and land use. I summarize that climate as well as intensive land use influence biodiversity. Temperature and precipitation, however, had positive and negative effects on decomposer diversity, while anthropogenic land use had mostly negative effects on the diversity of decomposers. N2 - Die Zunahme intensiv genutzter Landschaften und der Klimawandel sind direkte und indirekte Folgen menschlichen Handelns, verursacht durch eine wachsende Weltbevölkerung und zunehmende Mengen an Treibhausgasen. Die Zahl der wissenschaftlichen Studien, die sich mit den Veränderungen der Umwelt und den Konsequenzen für Ökosysteme, einschließlich Flora, Fauna und Ökosystemleistungen auseinandersetzen, steigt stetig. Mit dieser Thesis möchte ich meinen Beitrag zu diesem wichtigen und aktuellen Forschungsgebiet leisten. Dazu untersuche ich die Auswirkungen von Landnutzung und Klima auf die Ökosystemleistung „Zersetzung toten organischen Materials“ (Nekromasse) und die Auswirkungen auf die daran beteiligten Arthropoden- und Mikrobengemeinschaften. Kapitel II dieser Thesis setzt sich mit den Konsequenzen von intensiver Landnutzung und Klimawandel für die Ökosystemleistung „Zersetzung toten Materials“ auseinander. Unter Anbetracht des globalen Insektenrückgangs, wurde dieser Aspekt anhand eines Insektenausschluss-Experimentes zusätzlich simuliert. Es stellt sich heraus, dass sowohl der Abbau von Dung als auch von Aas sehr robust gegenüber landschaftlicher Nutzung war. Zudem blieb der Abbau von Dung unberührt von Temperaturänderungen und dem Ausschluss von Insekten. Entlang eines Höhengradienten wurde hingegen ein Trend zu einem unimodalen Muster mit maximaler Zersetzung bei ca. 600-700 m ü.M. beobachtet. Dieser Trend lässt vermuten, dass in dieser Höhe das Verhältnis von Niederschlag und Temperatur ideal für Dung zersetzende Gemeinschaften ist. Aas hingegen wurde in zunehmender Höhe und unter der Beteiligung von Insekten schneller zersetzt, was verdeutlich, dass Klimaänderungen und ein ansteigender Insektenrückgang starke Auswirkungen auf die Zersetzung von Aas und somit auf Nährstoffkreisläufe haben können. Hierbei wurde zudem ersichtlich, dass verschiedene Typen von Nekromasse unterschiedlich auf Umweltparameter reagieren und daher in künftigen Studien und Auswertungen separat betrachtet werden sollten. Kapitel III behandelt die Auswirkungen von Landnutzung und Klima auf die Biodiversität und Spezialisierung von Käfergemeinschaften an Dung. Hierbei wurden sämtliche Käfer berücksichtigt, welche vor allem an Dung, Aas oder sonstigem faulenden Material gefunden werden können. Sowohl α- als auch γ-Diversität von diesen Käfern wurde durch Agrarlandschaften und urbane Gebiete stark reduziert. Hohe Niederschlagsmengen wirkten sich negativ auf die Abundanz von Dungkäfern aus, wohingegen die γ-Diversität in warmen Regionen am niedrigsten war. Der Grad der Spezialisierung von Käfergemeinschaften auf verschiedene Dungressourcen nahm mit abnehmenden Temperaturen zu. Aus den Ergebnissen geht hervor, dass sowohl intensive Landnutzung als auch Klimaveränderungen Auswirkungen auf die Diversität und den Spezialisierungsgrad von Käfergemeinschaften an Dung haben können und somit das ökologische Gleichgewicht der Dungkäfergemeinschaften und ihren Ökosystemfunktionen beeinflussen können. Das darauffolgende Kapitel IV stellt eine Ergänzung zu Kapitel II dar. Hier wird die Zersetzung von Aas nicht nur anhand von Landnutzung und Klima erklärt, sondern auch anhand der α-Diversität und der Artenzusammensetzung von Käfern und Bakterien an Aas diskutiert. Es zeigte sich, dass Abundanz und Artenzusammensetzung der Bakteriengemeinschaft an Aas vor allem von der Temperatur abhingen. Außerdem wurde die Zersetzungsgeschwindigkeit maßgeblich von der Bakteriengemeinschaft und der Niederschlagsmenge bestimmt. Mit dieser Studie konnte ich zeigen, dass Bakterien trotz ihrer mikroskopischen Größe maßgeblich an der Zersetzung von Aas beteiligt sind und diese in Zersetzungsversuchen nicht vernachlässigt werden sollten. Das letzte Kapitel, Kapitel V, befasst sich mit den Konsequenzen von intensiver Landnutzung und Klimawandel auf mikrobielle Gemeinschaften in Totholz. Untersucht wurden hier sowohl Bakterien- als auch Pilzgemeinschaften. Haupttreiber der Artenvielfalt für beide Gruppen (gemessen als Anzahl an OTUs) war das Klima (Niederschlag und Temperatur). Ein wärmeres Klima kam der Vielfalt von Bakterien zugute, wohingegen die Pilzvielfalt nicht tangiert wurde. Außerdem reagierten Pilze negativ auf urbane Landnutzung, Bakterienvielfalt in Totholz war auf Wiesen jedoch höher als im Wald. Vor allem Pilze zeigten eine sehr starke Bindung zu ihrem Wirtsbaum, welche auch von äußeren Einflüssen wie Landnutzung und Klima nicht beeinflusst werden konnte. Die Spezialisierung von Bakterien hingegen wurde stark von Landnutzung und Klima beeinflusst. Diese Ergebnisse untermauern frühere Studien, die besagen, dass Pilze hoch spezialisiert sind und geben neue Erkenntnisse zur Robustheit der Spezialisierung gegenüber Landnutzungsintensität und Klima. Zusammenfassend kann ich sagen, dass sowohl Klima als auch Landnutzung Auswirkungen auf die Biodiversität haben. Während Temperatur und Niederschlag jedoch positive so wie negative Effekte hatten, wirkte sich anthropogene Landnutzung überwiegend negativ auf die Diversität von Zersetzergemeinschaften aus. KW - Mikroorganismus KW - decomposition KW - Klimaänderung KW - Zersetzungsprozess KW - microbes KW - dead organic material KW - Mikroben Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313994 ER - TY - THES A1 - Aroko, Erick Onyango T1 - Trans-regulation of \(Trypanosoma\) \(brucei\) variant surface glycoprotein (VSG) mRNA and structural analysis of a \(Trypanosoma\) \(vivax\) VSG using X-ray crystallography T1 - Trans-regulierung der mRNA des variablen Oberflächenglykoprotein (VSG) von \(Trypanosoma\) \(brucei\) und strukturelle Analyse eines \(Trypanosoma\) \(vivax\) VSG mittels Kristallstrukturanalyse N2 - African trypanosomes are unicellular parasites that cause nagana and sleeping sickness in livestock and man, respectively. The major pathogens for the animal disease include Trypanosoma vivax, T. congolense, and T. brucei brucei, whereas T. b. gambiense and T. b. rhodesiense are responsible for human infections. Given that the bloodstream form (BSF) of African trypanosomes is exclusively extracellular, its cell surface forms a critical boundary with the host environment. The cell surface of the BSF African trypanosomes is covered by a dense coat of immunogenic variant surface glycoproteins (VSGs). This surface protein acts as an impenetrable shield that protects the cells from host immune factors and is also involved in antibody clearance and antigenic variation, which collectively ensure that the parasite stays ahead of the host immune system. Gene expression in T. brucei is markedly different from other eukaryotes: most genes are transcribed as long polycistronic units, processed by trans-splicing a 39-nucleotide mini exon at the 5′ and polyadenylation at the 3′ ends of individual genes to generate the mature mRNA. Therefore, gene expression in T. brucei is regulated post-transcriptionally, mainly by the action of RNA binding proteins (RBPs) and conserved elements in the 3′ untranslated regions (UTR) of transcripts. The expression of VSGs is highly regulated, and only a single VSG gene is expressed at a time from one of the ~15 subtelomeric domains termed bloodstream expression sites (BES). When cells are engineered to simultaneously express two VSGs, the total VSG mRNA do not exceed the wild type amounts. This suggests that a robust VSG mRNA balancing mechanism exists in T. brucei. The present study uses inducible and constitutive expression of ectopic VSG genes to show that the endogenous VSG mRNA is regulated only if the second VSG is properly targeted to the ER. Additionally, the endogenous VSG mRNA response is triggered when high amounts of the GFP reporter with a VSG 3′UTR is targeted to the ER. Further evidence that non-VSG ER import signals can efficiently target VSGs to the ER is presented. This study suggests that a robust trans-regulation of the VSG mRNA is elicited at the ER through a feedback loop to keep the VSG transcripts in check and avoid overshooting the secretory pathway capacity. Further, it was shown that induction of expression of the T. vivax VSG ILDat1.2 in T. brucei causes a dual cell cycle arrest, with concomitant upregulation of the protein associated with differentiation (PAD1) expression. It could be shown that T. vivax VSG ILDat1.2 can only be sufficiently expressed in T. brucei after replacing its native GPI signal peptide with that of a T. brucei VSG. Taken together, these data indicate that inefficient VSG GPI anchoring and expression of low levels of the VSG protein can trigger differentiation from slender BSF to stumpy forms. However, a second T. vivax VSG, ILDat2.1, is not expressed in T. brucei even after similar modifications to its GPI signals. An X-ray crystallography approach was utilized to solve the N-terminal domain (NTD) structure of VSG ILDat1.2. This is first structure of a non-T. brucei VSG, and the first of a surface protein of T. vivax to be solved. VSG ILDat1.2 NTD maintains the three-helical bundle scaffold conserved in T. brucei surface proteins. However, it is likely that there are variations in the architecture of the membrane proximal region of the ILDat1.2 NTD and its CTD from T. brucei VSGs. The tractable T. brucei system is presented as a model that can be used to study surface proteins of related trypanosome species, thus creating avenues for further characterization of trypanosome surface coats. N2 - Afrikanische Trypanosomen sind einzellige Parasiten, die Nagana in Nutzvieh und die Schlafkrankheit im Menschen verursachen. Zu den Hauptverursachern der Tierkrankheit gehören Trypanosoma vivax, T. congolense und T. brucei brucei, während T. b. gambiense und T. b. rhodesiense für Infektionen im Menschen verantwortlich sind. Da die Blutstromform (BSF) der afrikanischen Trypanosomen rein extrazellulär vorkommt, bildet die Zelloberfläche eine kritische Grenzregion mit der Wirtsumgebung. Die Zelloberoberfläche der BSF afrikanischer Trypanosomen ist mit einem dichten Mantel an immunogenen variablen Oberflächenglykoproteinen (variant surface glycoprotein, VSG) umgeben. Dieses Oberflächenprotein dient als Barriere zum Schutz gegen Faktoren des Wirtsimmunsystems und spielt ebenfalls eine Rolle in Antikörper-Clearance und antigener Variation, welche gemeinsam dafür sorgen, dass der Parasit dem Wirtsimmunsystem stets einen Schritt voraus bleibt. Die Genexpression von T. brucei weist dezidierte Unterschiede im Vergleich zu anderen Eukaryoten auf: Die meisten Gene werden als lange polyzystronische Einheiten transkribiert, die durch trans-Splicing eines Miniexons aus 39 Nukleotiden am 5′ und Polyadenylierung am 3′ Ende der individuellen Gene prozessiert wird. Daher wird die Genexpression in T. brucei posttranskriptionell reguliert, zumeist durch RNA Bindeproteine (RBPs) und konservierte Elemente in der 3′ untranslatierten Region (UTR). Die Expression der VSGs ist stark reguliert, so wird zu einer gegebenen Zeit stets nur ein VSG Gen aus einer von ~15 Subtelomerregionen, die Blutstrom Expressionsorte (bloodstream expression sites, BES) genannt werden, exprimiert. Zellen, die gentechnisch manipuliert wurden um zwei VSGs zu exprimieren, produzieren die gleiche Menge an VSG mRNA wie Wildtyp Zellen. Dies deutet auf die Existenz eines robusten Mechanismus zur Regulierung der Gesamt-VSG mRNA Menge in T. brucei hin. Diese Arbeit verwendet induzierbare sowie konstitutive Expression eines ektopischen VSG Gens um zu zeigen, dass die endogene VSG mRNA nur reguliert wird, wenn das zweite VSG zum ER gelangt. Außerdem wird die endogene VSG mRNA Antwort auch ausgelöst, wenn hohe Mengen eines GFP Reporters, der eine VSG 3′UTR enthält, zum ER geleitet wird. Weiterhin, wird gezeigt, dass ER Importsignale anderer Proteine VSGs effizient zum ER dirigieren können. Das Ergebnis dieser Studie deutet darauf hin, dass eine Rückkopplungsschleife am ER eine robuste trans-Regulation der VSG mRNA auslöst, die die VSG Transkripte limitiert und somit eine Überlastung des sekretorischen Wegs verhindert. Weiterhin konnte gezeigt werden, dass es nach Induktion der Expression des T. vivax VSGs ILDat1.2 in T. brucei zu einem doppelten Zellzyklusarrest mit gleichzeitiger Hochregulation der Expression des protein associated with differentation (PAD1) kam und dass dieses T. vivax VSG nur nach Austausch des GPI Signalpeptids durch das eines T. brucei VSGs effizient exprimiert werden konnte. Zusammengenommen suggerieren diese Daten, dass eine ineffiziente GPI-Verankerung und wenig abundante Expression des VSGs die Differenzierung der sogenannten slender BSF zur sogenannten stumpy Form einleiten kann. Ein zweites T. vivax VSG, ILDat2.1, konnte hingegen auch nach Austausch des GPI Signals nicht in T. brucei exprimiert werden. Mit Hilfe der Röntgenstrukturanalyse wurde die Struktur der N-terminalen Domäne (NTD) des ILDat1.2 VSGs gelöst. Es handelt sich hierbei um die erste Proteinstruktur eines VSGs, welches nicht aus T. brucei stammt und die erste Struktur eines Oberflächenproteins von T. vivax. Das in T. brucei Oberflächenproteinen konservierte drei-Helix Grundgerüst ist auch in der NTD des ILDat1.2 VSGs enthalten. Die Architektur der Membranproximalen Gegend der IlDat1.2 NTD und CTD unterscheiden sich aber vermutlich von der der T. brucei VSGs. Das leicht handhabbare T. brucei System bietet somit ein geeignetes Modell um die Oberflächenproteine anderer afrikanischer Trypanosomen Spezies zu untersuchen und eröffnet neue Wege zur Charakterisierung ihrer Oberflächenmäntel. KW - Trypanosoma vivax KW - Trypanosoma brucei KW - Variant surface glycoprotein KW - messenger RNA KW - Regulation of expression KW - messenger RNA regulation KW - VSG structure Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241773 ER - TY - THES A1 - Schwebs, Marie T1 - Structure and dynamics of the plasma membrane: a single-molecule study in \(Trypanosoma\) \(brucei\) T1 - Die Struktur und Dynamik der Plasmamembran: eine Einzelmolekülstudie in \(Trypanosoma\) \(brucei\) N2 - The unicellular, flagellated parasite Trypanosoma brucei is the causative agent of human African sleeping sickness and nagana in livestock. In the last decades, it has become an established eukaryotic model organism in the field of biology, as well as in the interdisciplinary field of biophysics. For instance, the dense variant surface glycoprotein (VSG) coat offers the possibility to study the dynamics of GPI-anchored proteins in the plasma membrane of living cells. The fluidity of the VSG coat is not only an interesting object of study for its own sake, but is critically important for the survival of the parasite in the mammalian host. In order to maintain the integrity of the coat, the entire VSG coat is recycled within a few minutes. This is surprisingly fast for a purely diffusive process with the flagellar pocket (FP) as the sole site for endo- and exocytosis. Previous studies characterising VSG dynamics using FRAP reported diffusion coefficients that were not sufficient to to enable fast turnover based on passive VSG randomisation on the trypanosome surface. In this thesis, live-cell single-molecule fluorescence microscopy (SMFM) was employed to elucidate whether VSG diffusion coefficients were priorly underestimated or whether directed forces could be involved to bias VSGs towards the entrance of the FP. Embedding the highly motile trypanosomes in thermo-stable hydrogels facilitated the investigation of VSG dynamics on living trypanosomes at the mammalian host's temperature of 37°C. To allow for a spatial correlation of the VSG dynamics to the FP entrance, a cell line was employed harbouring a fluorescently labelled structure as a reference. Sequential two-colour SMFM was then established to allow for recording and registration of the dynamic and static single-molecule information. In order to characterise VSG dynamics, an algorithm to obtain reliable information from short trajectories was adapted (shortTrAn). It allowed for the quantification of the local dynamics in two distinct scenarios: diffusion and directed motion. The adaptation of the algorithm to the VSG data sets required the introduction of an additional projection filter. The algorithm was further extended to take into account the localisation errors inherent to single-particle tracking. The results of the quantification of diffusion and directed motion were presented in maps of the trypanosome surface, including an outline generated from a super-resolved static structure as a reference. Information on diffusion was displayed in one map, an ellipse plot. The colour code represented the local diffusion coefficient, while the shape of the ellipses provided an indication of the diffusion behaviour (aniso- or isotropic diffusion). The eccentricity of the ellipses was used to quantify deviations from isotropic diffusion. Information on directed motion was shown in three maps: A velocity map, representing the amplitude of the local velocities in a colour code. A quiver plot, illustrating the orientation of directed motion, and a third map which indicated the relative standard error of the local velocities colour-coded. Finally, a guideline based on random walk simulations was used to identify which of the two motion scenarios dominated locally. Application of the guideline to the VSG dynamics analysed by shortTrAn yielded supermaps that showed the locally dominant motion mode colour-coded. I found that VSG dynamics are dominated by diffusion, but several times faster than previously determined. The diffusion behaviour was additionally characterised by spatial heterogeneity. Moreover, isolated regions exhibiting the characteristics of round and elongated traps were observed on the cell surface. Additionally, VSG dynamics were studied with respect to the entrance of the FP. VSG dynamics in this region displayed similar characteristics compared to the remainder of the cell surface and forces biasing VSGs into the FP were not found. Furthermore, I investigated a potential interference of the attachment of the cytoskeleton to the plasma membrane with the dynamics of VSGs which are anchored to the outer leaflet of the membrane. Preliminary experiments were conducted on osmotically swollen trypanosomes and trypanosomes depleted for a microtubule-associated protein anchoring the subpellicular microtubule cytoskeleton to the plasma membrane. The measurements revealed a trend that detachment of the cytoskeleton could be associated with a reduction in the VSG diffusion coefficient and a loss of elongated traps. The latter could be an indication that these isolated regions were caused by underlying structures associated with the cytoskeleton. The measurements on cells with an intact cytoskeleton were complemented by random walk simulations of VSG dynamics with the newly determined diffusion coefficient on long time scales not accessible in experiments. Simulations showed that passive VSG randomisation is fast enough to allow for a turnover of the full VSG coat within a few minutes. According to an estimate based on the known rate of endocytosis and the newly determined VSG diffusion coefficient, the majority of exocytosed VSGs could escape from the FP to the cell surface without being immediately re-endocytosed. N2 - Der einzellige, begeißelte Parasit Trypanosoma brucei ist der Erreger der humanen Afrikanischen Schlafkrankheit und Nagana bei Nutztieren. In den vergangenen Jahrzehnten hat er sich sowohl in der Biologie als auch im interdisziplinären Bereich der Biophysik als eukaryotischer Modellorganismus etabliert. So bietet der dichte variant surface glycoprotein (VSG) Mantel beispielsweise die Möglichkeit, die Dynamik von GPI-verankerten Proteinen in der Plasmamembran von lebenden Zellen zu untersuchen. Die Fluidität des VSG-Mantels ist nicht nur um ihrer selbst Willen ein interessantes Studienobjekt, sondern auch von entscheidender Bedeutung für das Überleben des Parasiten im Säugetierwirt. Damit die Integrität des Mantels erhalten bleibt, wird der gesamte VSG Mantel kontinuierlich innerhalb weniger Minuten ausgetauscht. Dies ist erstaunlich schnell für einen rein diffusiven Prozess, bei welchem die Geißeltasche (GT) der einzige Ort für Endo- und Exozytose ist. Bisherige Studien zur Charakterisierung der VSG Dynamik mit FRAP ermittelten Diffusionskoeffizienten, welche nicht ausreichten, um einen schnellen Austausch durch eine passive Randomisierung der VSG auf der Trypanosomenoberfläche zu ermöglichen. In dieser Arbeit wurde die Einzelmolekül-Fluoreszenzmikroskopie (EMFM) an lebenden Zellen eingesetzt, um herauszufinden, ob die VSG Diffusionskoeffizienten zuvor unterschätzt wurden oder ob gerichtete Kräfte beteiligt sein könnten, um VSGs zum Eingang der GT zu leiten. Die Einbettung der hochmotilen Trypanosomen in thermostabilen Hydrogelen erlaubte die Analyse der VSG Dynamik auf lebenden Trypanosomen bei einer Temperatur des Säugetierwirts von 37°C. Um eine räumliche Korrelation der VSG Dynamik mit dem Eingang zur GT zu ermöglichen, wurde eine Zelllinie verwendet, die eine fluoreszenzmarkierte Struktur als Referenz besaß. Anschließend wurde die sequenzielle EMFM in zwei Farben etabliert, um sowohl die Aufzeichnung als auch die Registrierung der dynamischen und statischen Einzelmolekülinformationen zu gewährleisten. Um die VSG Dynamik zu charakterisieren, wurde ein Algorithmus zur Gewinnung von zuverlässigen Informationen aus kurzen Trajektorien adaptiert (shortTrAn). Dieser ließ die Quantifizierung der lokalen Dynamik anhand zweier unterschiedlicher Szenarien zu: Diffusion und gerichtete Bewegung. Die Anpassung des Algorithmus an die VSG Datensätze erforderte die Einführung eines zusätzlichen Projektionsfilters. Darüber hinaus wurde der Algorithmus erweitert, um die Lokalisierungsfehler zu berücksichtigen, die bei der Verfolgung von Einzelpartikeln unvermeidbar auftreten. Anschließend wurden die Ergebnisse der Quantifizierung von Diffusion und gerichteter Bewegung in Karten präsentiert, die die Trypanosomenoberfläche abbildeten, einschließlich eines Umrisses, der als Referenz aus einer hochaufgelösten statischen Struktur generiert wurde. Die Informationen zur Diffusion wurden in einer Karte, einem Ellipsenplot, dargestellt. Dabei repräsentierte eine Farbkodierung die lokalen Diffusionskoeffizienten, während die Form der Ellipsen einen Hinweis auf das Diffusionsverhalten (aniso- oder isotrope Diffusion) gab. Die Exzentrizität der Ellipsen wurde hierbei genutzt, um die Abweichung von isotroper Diffusion zu quantifizieren. Die Informationen zur gerichteten Bewegung wurden in drei Karten wiedergegeben: Eine Karte für die Geschwindigkeit zeigte die Amplitude der lokalen Geschwindigkeiten farbkodiert. Ein Köcherplot veranschaulichte die Richtung der Geschwindigkeit und eine dritte Karte zeigte den relativen Standardfehler der lokalen Geschwindigkeiten farblich kodiert an. Abschließend wurde ein auf Random-Walk-Simulationen basierender Leitfaden herangezogen, um zu entscheiden, welches der beiden Szenarien lokal dominierte. Die Anwendung des Leitfadens auf die mit shortTrAn analysierte VSG Dynamik ergab Übersichtskarten, in denen der lokal dominierende Bewegungsmodus farblich kodiert war. Ich konnte zeigen, dass die VSG Dynamik von der Diffusion dominiert wird. Jedoch war diese um ein Vielfaches schneller als bisher angenommen. Das Diffusionsverhalten war zudem durch eine räumliche Heterogenität charakterisiert. Des Weiteren wurden auf der Zelloberfläche isolierte Regionen beobachtet, die die Eigenschaften von runden und länglichen Fallen aufwiesen. Zusätzlich wurde die VSG Dynamik in Bezug auf den Eingang der GT untersucht. Die VSG Dynamik in dieser Region wies ähnliche Kennwerte auf wie die restliche Zelloberfläche, und es konnten keine Kräfte festgestellt werden, welche die VSGs in die GT dirigieren. Des Weiteren habe ich den potenziellen Einfluss der Verankerung des Zytoskeletts an der Plasmamembran auf die Dynamik der VSGs untersucht, die in der äußeren Membranschicht verankert sind. Hierzu wurden vorläufige Experimente auf osmotisch geschwollenen Trypanosomen und Trypanosomen durchgeführt, denen ein Mikrotubuli assoziiertes Protein fehlte, welches das subpellikuläre Mikrotubuli-Zytoskelett an der Plasmamembran verankert. Bei den Messungen wurde ein Trend festgestellt, wonach die Ablösung des Zytoskeletts mit einer Verringerung des VSG Diffusionskoeffizienten und dem Verlust der länglichen Fallen korrelieren könnte. Letzteres könnte ein Hinweis darauf sein, dass diese isolierten Regionen durch darunter liegende, mit dem Zytoskelett verbundene Strukturen verursacht wurden. Die Messungen auf Zellen mit intaktem Zytoskelett wurden durch Random-Walk-Simulationen von VSG Trajektorien mit dem neu ermittelten Diffusionskoeffizienten auf langen, experimentell nicht zugänglichen Zeitskalen ergänzt. Die Simulationen zeigten, dass die passive Randomisierung der VSGs schnell genug ist, um einen Austausch des gesamten VSG Mantels innerhalb weniger Minuten zu ermöglichen. Einer Schätzung zufolge, die auf der bekannten Endozytoserate und dem neu ermittelten VSG Diffusionskoeffizienten basierte, könnte der Großteil der exozytierten VSGs aus der GT zur Zelloberfläche gelangen, ohne unmittelbar wieder endozytiert zu werden. KW - Trypanosoma brucei KW - Einzelmolekülmikroskopie KW - Membranproteine KW - Diffusionskoeffizient KW - Single-molecule fluorescence microscopy KW - Single-molecule tracking KW - Variant surface glycoprotein KW - GPI-anchored protein KW - Diffusion coefficient KW - Zellskelett KW - Zytoskelett Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275699 ER - TY - THES A1 - Kuklovsky [former Finke], Valerie T1 - Are some bees smarter than others? An examination of consistent individual differences in the cognitive abilities of honey bees T1 - Sind manche Bienen schlauer als andere? Eine Untersuchung von konsistenten individuellen Unterschieden in den kognitiven Fähigkeiten von Honigbienen N2 - Cognition refers to the ability to of animals to acquire, process, store and use vital information from the environment. Cognitive processes are necessary to predict the future and reduce the uncertainty of the ever-changing environment. Classically, research on animal cognition focuses on decisive cognitive tests to determine the capacity of a species by the testing the ability of a few individuals. This approach views variability between these tested key individuals as unwanted noise and is thus often neglected. However, inter-individual variability provides important insights to behavioral plasticity, cognitive specialization and brain modularity. Honey bees Apis mellifera are a robust and traditional model for the study of learning, memory and cognition due to their impressive capabilities and rich behavioral repertoire. In this thesis I have applied a novel view on the learning abilities of honey bees by looking explicitly at individual differences in a variety of learning tasks. Are some individual bees consistently smarter than some of her sisters? If so, will a smart individual always perform good independent of the time, the context and the cognitive requirements or do bees show distinct isolated ‘cognitive modules’? My thesis presents the first comprehensive investigation of consistent individual differences in the cognitive abilities of honey bees. To speak of an individual as behaving consistently, a crucial step is to test the individual multiple times to examine the repeatability of a behavior. I show that free-flying bees remain consistent in a visual discrimination task for three consecutive days. Successively, I explored individual consistency in cognitive proficiency across tasks involving different sensory modalities, contexts and cognitive requirements. I found that free-flying bees show a cognitive specialization between visual and olfactory learning but remained consistent across a simple discrimination task and a complex concept learning task. I wished to further explore individual consistency with respect to tasks of different cognitive complexity, a question that has never been tackled before in an insect. I thus performed a series of four experiments using either visual or olfactory stimuli and a different training context (free-flying and restrained) and tested bees in a discrimination task, reversal learning and negative patterning. Intriguingly, across all these experiments I evidenced the same results: The bees’ performances were consistent across the discrimination task and reversal learning and negative patterning respectively. No association was evidenced between reversal learning and negative patterning. After establishing the existence of consistent individual differences in the cognitive proficiency of honey bees I wished to determine factors which could underlie these differences. Since genetic components are known to underlie inter-individual variability in learning abilities, I studied the effects of genetics on consistency in cognitive proficiency by contrasting bees originating from either from a hive with a single patriline (low genetic diversity) or with multiple patrilines (high genetic diversity). These two groups of bees showed differences in the patterns of individually correlated performances, indicating a genetic component accounts for consistent cognitive individuality. Another major factor underlying variability in learning performances is the individual responsiveness to sucrose solution and to visual stimuli, as evidenced by many studies on restrained bees showing a positive correlation between responsiveness to task relevant stimuli and learning performances. I thus tested whether these relationships between sucrose/visual responsiveness and learning performances are applicable for free-flying bees. Free-flying bees were again subjected to reversal learning and negative patterning and subsequently tested in the laboratory for their responsiveness to sucrose and to light. There was no evidence of a positive relationship between sucrose/visual responsiveness and neither performances of free-flying bees in an elemental discrimination, reversal learning and negative patterning. These findings indicate that relationships established between responsiveness to task relevant stimuli and learning proficiency established in the laboratory with restrained bees might not hold true for a completely different behavioral context i.e. for free-flying bees in their natural environment. These results show that the honey bee is an excellent insect model to study consistency in cognitive proficiency and to identify the underlying factors. I mainly discuss the results with respect to the question of brain modularity in insects and the adaptive significance of individuality in cognitive abilities for honey bee colonies. I also provide a proposition of research questions which tie in this theme of consistent cognitive proficiency and could provide fruitful areas for future research. N2 - Unter Kognition versteht man die Fähigkeit von Tieren, essenzielle Informationen aus der Umwelt zu erfassen, zu verarbeiten, zu speichern und zu nutzen. Kognitive Prozesse sind notwendig, um die Zukunft vorherzusagen und die Unvorhersehbarkeit der sich ständig verändernden Umwelt zu verringern. Die Forschung der Kognition von Tieren konzentriert sich klassischerweise auf entscheidende kognitive Tests, um die Fähigkeit einer Spezies anhand der Leistungen einiger weniger Individuen zu bestimmen. Bei diesem Ansatz wird die Variabilität zwischen Individuen als unerwünschtes Rauschen betrachtet und daher vernachlässigt. Die interindividuelle Variabilität liefert jedoch wichtige Erkenntnisse über die Plastizität des Verhaltens, die kognitive Spezialisierung und die Modularität des Gehirns. Die Honigbiene Apis mellifera ist aufgrund ihrer eindrucksvollen Fähigkeiten und ihres reichen Verhaltensrepertoires ein robuster und traditioneller Modellorganismus für die Untersuchung von Lernen, Gedächtnis und Kognition. In dieser Arbeit habe ich das Lernverhalten von Honigbienen in einem neuen Blickwinkel betrachtet, indem ich explizit die individuellen Unterschiede bei diversen Lernaufgaben untersucht habe. Zeigen manche Bienen durchweg eine erhöhte Lernleistung im Vergleich zu ihren Schwestern? Wenn ja, erbringt ein Individuum unabhängig von der Zeit, dem Kontext und den kognitiven Anforderungen der Lernaufgaben immer gute Leistungen, oder zeigen Bienen ausgeprägte unabhängige "kognitive Module"? Die vorliegende Doktorarbeit stellt die erste umfassende Untersuchung konsistenter individueller Unterschiede in den kognitiven Fähigkeiten von Honigbienen dar. Um von einem konsistenten Verhalten sprechen zu können, ist es entscheidend das Individuum mehrfach zu testen, um die Wiederholbarkeit eines Verhaltens zu untersuchen. Ich konnte zeigen, dass frei fliegende Bienen bei einer visuellen Unterscheidungsaufgabe an drei aufeinanderfolgenden Tagen eine konsistente Lernleistung zeigen. Im Anschluss untersuchte ich die individuelle Konsistenz der kognitiven Fähigkeiten bei Lernaufgaben mit unterschiedlichen sensorischen Modalitäten, Kontexten und kognitiven Anforderungen. Frei fliegende Bienen zeigten eine kognitive Spezialisierung zwischen visuellem und olfaktorischem Lernen, während sie bei einer einfachen Unterscheidungsaufgabe und einer komplexen Konzeptlernaufgabe konsistent im Lernverhalten blieben. Anschließend wollte ich die individuelle Konsistenz im Lernverhalten bei Aufgaben unterschiedlicher kognitiver Komplexität weiter erforschen, eine Frage, die bisher noch nie bei einem Insekt behandelt wurde. Ich führte dazu eine Reihe von vier Experimenten durch, bei denen entweder visuelle oder olfaktorische Stimuli und ein unterschiedlicher Trainingskontext (frei fliegend oder eingespannt) verwendet wurden. Die Bienen wurden in einer Unterscheidungsaufgabe, einer Umlernaufgabe und in Negative Patterning getestet. Erstaunlicherweise wurden bei diesen Experimenten die gleichen Ergebnisse festgestellt: Die Lernleitung der Bienen in der Unterscheidungsaufgabe zeigte eine positive Korrelation mit der Lernleistung im Umlernen und Negative Patterning. Zwischen dem Umkehrlernen und Negative Patterning konnte jedoch kein Zusammenhang festgestellt werden. Nachdem ich festgestellt hatte, dass es konsistente individuelle Unterschiede in den kognitiven Fähigkeiten von Bienen gibt, wollte ich die Faktoren ermitteln, die diesen Unterschieden zugrunde liegen könnten. Es war bereits bekannt, dass genetische Komponenten der interindividuellen Variabilität im Lernverhalten zugrunde liegen. Deshalb untersuchte ich den Einfluss von genetischer Vielfalt auf die Beständigkeit von kognitiven Fähigkeiten, indem ich Bienen gegenüberstellte, die entweder aus einem Bienenstock mit einer einzigen Patriline (geringe genetische Vielfalt) oder mit mehreren Patrilinen (hohe genetische Vielfalt) stammten. Diese beiden Gruppen von Bienen wiesen Unterschiede in den Mustern der individuellen korrelierten Lernleistungen auf, was darauf hindeutet, dass eine genetische Komponente für kognitive Individualität verantwortlich ist. Ein weiterer wichtiger Faktor, welcher der Variabilität im Lernverhalten zugrunde liegt, ist die individuelle Reaktionsfähigkeit auf Saccharose Lösungen und auf visuelle Stimuli. Dies wurde durch viele Studien an eingespannten Bienen gezeigt, die eine positive Korrelation zwischen der Reaktionsfähigkeit auf aufgabenrelevante Reize und den Lernfähigkeiten feststellten. Ich habe daher untersucht, ob diese Beziehungen zwischen der Reaktionsfähigkeit auf Saccharose und visuellen Stimuli und den Lernleistungen auch für frei fliegende Bienen zutreffen. Die individuellen Lernleistungen im Umlernen und Negative patterning von frei fliegenden Bienen wurden erneut ermittelt und anschließend wurde im Labor die Reaktionsfähigkeit auf Saccharose und Licht getestet. Es gab keine Hinweise auf eine positive Korrelation zwischen der Reaktionsfähigkeit auf Saccharose und Licht und den Lernleistungen von frei fliegenden Bienen. Diese Ergebnisse deuten darauf hin, dass Beziehungen zwischen der Reaktionsfähigkeit auf aufgabenrelevante Stimuli und der Lernleistung, die im Labor mit eingespannten Bienen festgestellt wurden, möglicherweise nicht für einen anderen Verhaltenskontext gelten, d. h. für frei fliegende Bienen in ihrer natürlichen Umgebung. Diese Ergebnisse zeigen, dass die Honigbiene ein hervorragendes Insektenmodell ist, um die Konsistenz kognitiver Fähigkeiten zu untersuchen und die zugrunde liegenden Faktoren zu ermitteln. Ich diskutiere die Ergebnisse vor allem im Hinblick auf die Frage der Modularität des Gehirns bei Insekten und die adaptive Bedeutung von individuellen konsistenten kognitiven Fähigkeiten für Honigbienenvölker. Ich schlage auch Forschungsfragen vor, die mit individuellen konsistenten kognitiven Fähigkeiten zusammenhängen und wertvolle Bereiche für künftige Forschungen darstellen könnten. KW - Lernen KW - Biene KW - Kognition KW - Individual differences KW - Cognitive consistency KW - Cognitive profile KW - Learning KW - Honeybee KW - Cognition Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-323012 ER - TY - THES A1 - Diehl, Janina Marie Christin T1 - Ecology and evolution of symbiont management in ambrosia beetles T1 - Ökologie und Evolution des Symbiontenmanagements bei Ambrosiakäfern N2 - The relationship between a farmer and their cultivated crops in agriculture is multifaceted, with pathogens affecting both the farmer and crop, and weeds that take advantage of resources provided by farmers. For my doctoral thesis, I aimed to gain a comprehensive understanding of the ecology and symbiosis of fungus farming ambrosia beetles. Through my research, I discovered that the microbial composition of fungus gardens, particularly the mutualists, is significantly influenced by the presence of both adults and larvae. The recognition of both beneficial and harmful symbionts is crucial for the success of ambrosia beetles, who respond differently depending on their life stage and the microbial species they encounter, which can contribute to the division of labour among family groups. The presence of antagonists and pathogens in the fungus garden depends on habitat and substrate quality, and beetle response to their introduction results in behavioural and developmental changes. Individual and social immunity measures, as well as changes in bacterial and fungal communities, were detected as a result of pathogen introduction. Additionally, the ability of ambrosia beetles to establish two nutritional fungal species depends on several factors. These insects must strike a balance between their essential functions and adapt to the constantly changing ecological and social conditions, which demonstrates their adaptive flexibility. However, interpreting data from laboratory studies should be approached with caution, as the natural environment allows for more flexibility and the potential for other beneficial symbionts to become more prominent if required. To aid in my research, I designed primers that use the ‘fungal large subunit’ (LSU) as genetic marker to identify and differentiate mutualistic and antagonistic fungi in X. saxesenii. The primers were able to distinguish closely related species of the Ophiostomataceae and other fungal symbionts. This allowed me to associate the abundance of key fungal taxa with factors such as the presence of beetles, the nest's age and condition, and the various developmental stages present. My primers are a valuable tool for understanding fungal communities, including their composition and the identification of previously unknown functional symbionts. However, some aspects should be approached with caution due to the exclusion of non-amplified taxa in the relative fungal community compositions. N2 - Die Beziehung zwischen einem Landwirt und der von ihm angebauten Nahrung in der Landwirtschaft ist vielschichtig: Pathogene, die sowohl den Landwirt als auch die Pflanzen befallen, und Unkräuter, die sich die von Landwirten bereitgestellten Ressourcen zunutzen machen. In meiner Doktorarbeit wollte ich ein umfassendes Verständnis der Ökologie und der Symbiose von pilzzüchtenden Ambrosiakäfern erlangen. Im Rahmen meiner Forschung fand ich heraus, dass die mikrobielle Zusammensetzung von Pilzgärten, insbesondere der Mutualisten, durch die Anwesenheit sowohl der erwachsenen Tiere als auch der Larven erheblich beeinflusst wird. Die Erkennung sowohl nützlicher als auch schädlicher Symbionten ist entscheidend für den Erfolg der Ambrosiakäfer, die je nach Lebensstadium und den angetroffenen Mikrobenarten unterschiedlich reagieren, was zur Arbeitsteilung zwischen Familiengruppen beitragen kann. Das Vorhandensein von Antagonisten und Krankheitserregern im Pilzgarten hängt von der Qualität des Lebensraums und des Substrats ab, und die Reaktion der Käfer auf ihre Einschleppung führt zu Veränderungen im Verhalten und in der Entwicklung. Individuelle und soziale Immunitätsmaßnahmen sowie Veränderungen der Bakterien- und Pilzgemeinschaften wurden als Folge der Einführung von Krankheitserregern festgestellt. Darüber hinaus hängt die Fähigkeit von Ambrosiakäfern, zwei Nährpilzarten zu etablieren, von mehreren Faktoren ab. Diese Insekten müssen ein Gleichgewicht zwischen ihren lebenswichtigen Funktionen herstellen und sich an die ständig ändernden ökologischen und sozialen Bedingungen anpassen, was ihre Anpassungsfähigkeit zeigt. Bei der Interpretation von Daten aus Laborstudien ist jedoch Vorsicht geboten, da die natürliche Umgebung mehr Flexibilität zulässt und die Möglichkeit bietet, dass andere nützliche Symbionten bei Bedarf stärker in Erscheinung treten. Um meine Forschung zu unterstützen, habe ich Primer entwickelt, die die ‘fungal large subunit‘ (LSU) als genetischen Marker verwenden, um mutualistische und antagonistische Pilze in X. saxesenii zu identifizieren und zu unterscheiden. Die Primer waren in der Lage, eng verwandte Arten der Ophiostomataceae und andere Pilzsymbionten zu unterscheiden. Auf diese Weise konnte ich die Häufigkeit der wichtigsten Pilztaxa mit Faktoren wie dem Vorhandensein von Käfern, dem Alter und Zustand des Nests und den verschiedenen Entwicklungsstadien in Verbindung bringen. Meine Primer sind ein wertvolles Instrument für das Verständnis von Pilzgemeinschaften, einschließlich ihrer Zusammensetzung und der Identifizierung von bisher unbekannten funktionellen Symbionten. Einige Aspekte sind jedoch mit Vorsicht zu genießen, da nicht amplifizierte Taxa in den relativen Zusammensetzungen der Pilzgemeinschaften nicht berücksichtigt werden. KW - ambrosia beetles KW - symbiont management KW - amplicon sequencing KW - fungus farming KW - microbial communities KW - social behaviour KW - Ökologie KW - Evolution Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-321213 ER - TY - THES A1 - Nguyen, Tu Anh Thi T1 - Neural coding of different visual cues in the monarch butterfly sun compass T1 - Neuronale Kodierung verschiedener visueller Signale im Sonnenkompass des Monarchfalters N2 - Monarch butterflies are famous for their annual long-distance migration. Decreasing temperatures and reduced daylight induce the migratory state in the autumn generation of monarch butterflies. Not only are they in a reproductive diapause, they also produce fat deposits to be prepared for the upcoming journey: Driven by their instinct to migrate, they depart from their eclosion grounds in the northern regions of the North American continent and start their southern journey to their hibernation spots in Central Mexico. The butterflies cover a distance of up to 4000 km across the United States. In the next spring, the same butterflies invert their preferred heading direction due to seasonal changes and start their northward spring migration. The spring migration is continued by three consecutive butterfly generations, until the animals repopulate the northern regions in North America as non-migratory monarch butterflies. The monarch butterflies’ migratory state is genetically and epigenetically regulated, including the directed flight behavior. Therefore, the insect’s internal compass system does not only have to encode the butterflies preferred, but also its current heading direction. However, the butterfly’s internal heading representation has to be matched to external cues, to avoid departing from its initial flight path and increasing its risk of missing its desired destination. During the migratory flight, visual cues provide the butterflies with reliable orientation information. The butterflies refer to the sun as their main orientation cue. In addition to the sun, the butterflies likely use the polarization pattern of the sky for orientation. The sky compass signals are processed within a region in the brain, termed the central complex (CX). Previous research on the CX neural circuitry of the monarch butterflies demonstrated that tangential central complex neurons (TL) carry the visual input information into the CX and respond to a simulated sun and polarized light. However, whether these cells process additional visual cues like the panoramic skyline is still unknown. Furthermore, little is known about how the migratory state affects visual cue processing. In addition to this, most experiments studying the monarch butterfly CX focused on how neurons process single visual cues. However, how combined visual stimuli are processed in the CX is still unknown. This thesis is investigating the following questions: 1) How does the migratory state affect visual cue processing in the TL cells within the monarch butterfly brain? 2) How are multiple visual cues integrated in the TL cells? 3) How is compass information modulated in the CX? To study these questions, TL neurons from both animal groups (migratory and non-migratory) were electrophysiologically characterized using intracellular recordings while presenting different simulated celestial cues and visual sceneries. I showed that the TL neurons of migratory butterflies are more narrowly tuned to the sun, possibly helping them in keeping a directed flight course during migration. Furthermore, I found that TL cells encode a panoramic skyline, suggesting that the CX network combines celestial and terrestrial information. Experiments with combined celestial stimuli revealed that the TL cells combine both cue information linearly. However, if exposing the animals to a simulated visual scenery containing a panoramic skyline and a simulated sun, the single visual cues are weighted differently. These results indicate that the CX’s input region can flexibly adapt to different visual cue conditions. Furthermore, I characterize a previously unknown neuron in the monarch butterfly CX which responds to celestial stimuli and connects the CX with other brain neuropiles. How this cell type affects heading direction encoding has yet to be determined. N2 - Monarchfalter sind berühmt für ihre jährlichen Migrationsflüge. Sinkende Temperaturen und die verkürzte Tageslichtbestrahlung induzieren die Migration in einer Herbstgeneration der Monarchfalter. Sie sind nicht nur in reproduktiver Diapause, sondern produzieren Fettreserven für die bevorstehende Reise: Getrieben von ihrem Migrationsinstinkt verlassen sie ihre Schlüpfstätten in den nördlichen Regionen des Nordamerikanischen Kontinents und starten ihre südliche Wanderung zu ihren Überwinterunsgstätten in Zentralmexiko. Dabei legen die Schmetterlinge Strecken von bis zu 4000 km durch die Vereinigten Staaten zurück. Im nächsten Frühling kehren die gleichen Schmetterlinge ihre Vorzugsrichtung durch die jahreszeitlich bedingten Veränderungen um und die Tiere bewegen sich nordwärts. Die Frühlingsgeneration wird insgesamt über drei Schmetterlingsgeneration durchgeführt, bis die Tiere die nördlichen Regionen in Nordamerika wieder als nicht-migrierende Monarchfalter besiedeln. Der Migrationsstatus der Monarchfalter ist genetisch und epigenetisch reguliert, was auch das gerichtete Flugverhalten einschließt. Demnach muss das interne Kompasssystem der Falter nicht nur die bevorzugte, sondern auch die aktuelle Flugrichtung prozessieren. Die interne Repräsentation der Flugrichtung des Falters muss jedoch mit der Umwelt abgeglichen werden, ansonsten droht das Tier von der ursprünglichen Flugrichtung abzuweichen und erhöht das Risiko den Wunschort nicht zu erreichen. Während des Migrationsfluges bieten visuelle Signale verlässliche Orientierungsinformationen. Dabei ist die Sonne ihre Hauptorientierungsreferenz. Zusätzlich zur Sonne nutzen die Schmetterlinge vermutlich noch das Polarisationsmuster des Himmels zur Orientierung. Diese Himmelskompasssignale werden im Gehirn in einer Gehirnregion, den Zentralkomplex, integriert. Vergangene Forschungsprojekte am Zentralkomplex haben gezeigt, dass tangentiale Zentralkomplex-Neurone (TL) die visuellen Signale in den Zentralkomplex leiten und auf eine simulierte Sonne und polarisiertes Licht sensitiv sind. Ob diese Zellen noch weitere visuelle Signale verarbeiten, wie zum Beispiel den Horizont eines Panoramas, ist nicht bekannt. Auch ist der Einfluss des Migrationsstatus auf die visuelle Signalverarbeitung im Zentralkomplex bisher unerforscht. Des Weiteren haben die meisten Experimente am Zentralkomplex des Monarchfalters den Fokus auf die Verarbeitung einzelner simulierter visueller Reize gelegt. Wie aber Kombinationen aus Stimuli im Zentralkomplex verarbeitet werden, ist nicht bekannt.   Diese Dissertation beschäftigt sich mit folgenden Fragen: 1) Wie beeinflusst der Migrationsstatus die visuelle Reizverarbeitung in TL-Zellen im Monarchfaltergehirn? 2) Wie werden mehrere visuelle Reize in TL-Zellen miteinander kombiniert? 3) Wie wird Kompassinformation im Zentralkomplex moduliert? In diesem Zusammenhang wurden TL-Neurone aus beiden Gruppen (migrierende und nichtmigrierende Monarchfalter) elektrophysiologisch mittels intrazellulärer Aufnahmen charakterisiert, während den Tieren unterschiedliche simulierte Himmelkompasssignale und visuelle Szenerien präsentiert wurden. Hierbei konnte ich zeigen dass die TL-Neuronen in migrierenden Tieren ein engeres Tuning zur Sonne aufwiesen, was den Tieren helfen könnte, eine gerichtete Flugrichtung zu halten. Außerdem antworten die TL-Neurone auf ein Panorama, womit der Zentralkomplex in der Lage wäre, Himmelskompasssignale mit terrestrischer Information zu kombinieren. In Experimenten mit zwei kombinierten simulierten Himmelskompasssignalen konnte ich zeigen, dass die TL-Zellen beide Signalinformationen linear miteinander verrechnen. Wenn die TL-Zellen jedoch mit einer visuellen Szenerie stimuliert werden, welche eine simulierte Sonne und ein Panorama beinhaltet, werden die einzelnen visuellen Signale unterschiedlich gewichtet. Die Ergebnisse sind ein Hinweis darauf, dass die Eingangsregion im Zentralkomplex sich flexibel an die visuellen Signalbedingungen anpassen können. Außerdem habe ich ein bis dahin unbekanntes Neuron während meiner Studien charakterisieren können, welches auf simulierte Himmelskompasssignale antwortet und den Zentralkomplex mit anderen Neuropilen im Gehirn verbindet. Wie dieser Neuronentyp Einfluss auf die Kodierung der Flugrichtung nimmt, muss in der Zukunft weiter erforscht werden. KW - Monarchfalter KW - Danaus plexippus KW - Gehirn KW - Orientierung KW - Visuelle Wahrnehmung KW - monarch butterfly KW - brain KW - orientation KW - visual perception KW - central complex Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303807 ER - TY - THES A1 - Değirmenci [née Pölloth], Laura T1 - Sugar perception and sugar receptor function in the honeybee (\(Apis\) \(mellifera\)) T1 - Zuckerwahrnehmung und Zuckerrezeptorfunktion in der Honigbiene (\(Apis\) \(mellifera\)) N2 - In the eusocial insect honeybee (Apis mellifera), many sterile worker bees live together with a reproductive queen in a colony. All tasks of the colony are performed by the workers, undergoing age-dependent division of labor. Beginning as hive bees, they take on tasks inside the hive such as cleaning or the producing of larval food, later developing into foragers. With that, the perception of sweetness plays a crucial role for all honeybees whether they are sitting on the honey stores in the hive or foraging for food. Their ability to sense sweetness is undoubtedly necessary to develop and evaluate food sources. Many of the behavioral decisions in honeybees are based on sugar perception, either on an individual level for ingestion, or for social behavior such as the impulse to collect or process nectar. In this context, honeybees show a complex spectrum of abilities to perceive sweetness on many levels. They are able to perceive at least seven types of sugars and decide to collect them for the colony. Further, they seem to distinguish between these sugars or at least show clear preferences when collecting them. Additionally, the perception of sugar is not rigid in honeybees. For instance, their responsiveness towards sugar changes during the transition from in-hive bees (e.g. nurses) to foraging and is linked to the division of labor. Other direct or immediate factors changing responsiveness to sugars are stress, starvation or underlying factors, such as genotype. Interestingly, the complexity in their sugar perception is in stark contrast to the fact that honeybees seem to have only three predicted sugar receptors. In this work, we were able to characterize the three known sugar receptors (AmGr1, AmGr2 and AmGr3) of the honeybee fully and comprehensively in oocytes (Manuscript II, Chapter 3 and Manuscript III, Chapter 4). We could show that AmGr1 is a broad sugar receptor reacting to sucrose, glucose, maltose, melezitose and trehalose (which is the honeybees’ main blood sugar), but not fructose. AmGr2 acts as its co-receptor altering AmGr1’s specificity, AmGr3 is a specific fructose receptor and we proved the heterodimerization of all receptors. With my studies, I was able to reproduce and compare the ligand specificity of the sugar receptors in vivo by generating receptor mutants with CRISPR/Cas9. With this thesis, I was able to define AmGr1 and AmGr3 as the honeybees’ basis receptors already capable to detect all sugars of its known taste spectrum. In the expression analysis of my doctoral thesis (Manuscript I, Chapter 2) I demonstrated that both basis receptors are expressed in the antennae and the brain of nurse bees and foragers. This thesis assumes that AmGr3 (like the Drosophila homologue) functions as a sensor for fructose, which might be the satiety signal, while AmGr1 can sense trehalose as the main blood sugar in the brain. Both receptors show a reduced expression in the brain of foragers when compared with nurse bees. These results may reflect the higher concentrated diet of nurse bees in the hive. The higher number of receptors in the brain may allow nurse bees to perceive hunger earlier and to consume the food their sitting on. Forager bees have to be more persistent to hunger, when they are foraging, and food is not so accessible. The findings of reduced expression of the fructose receptor AmGr3 in the antennae of nurse bees are congruent with my other result that nurse bees are also less responsive to fructose at the antennae when compared to foragers (Manuscript I, Chapter 2). This is possible, since nurse bees sit more likely on ripe honey which contains not only higher levels of sugars but also monosaccharides (such as fructose), while foragers have to evaluate less-concentrated nectar. My investigations of the expression of AmGr1 in the antennae of honeybees found no differences between nurse bees and foragers, although foragers are more responsive to the respective sugar sucrose (Manuscript I, Chapter 2). Considering my finding that AmGr2 is the co-receptor of AmGr1, it can be assumed that AmGr1 and the mediated sucrose taste might not be directly controlled by its expression, but indirectly by its co-receptor. My thesis therefore clearly shows that sugar perception is associated with division of labor in honeybees and appears to be directly or indirectly regulated via expression. The comparison with a characterization study using other bee breeds and thus an alternative protein sequence of AmGr1 shows that co-expression of different AmGr1 versions with AmGr2 alters the sugar response differently. Therefore, this thesis provides first important indications that alternative splicing could also represent an important regulatory mechanism for sugar perception in honeybees. Further, I found out that the bitter compound quinine lowers the reward quality in learning experiments for honeybees (Manuscript IV, Chapter 5). So far, no bitter receptor has been found in the genome of honeybees and this thesis strongly assumes that bitter substances such as quinine inhibit sugar receptors in honeybees. With this finding, my work includes other molecules as possible regulatory mechanism in the honeybee sugar perception as well. We showed that the inhibitory effect is lower for fructose compared to sucrose. Considering that sugar signals might be processed as differently attractive in honeybees, this thesis concludes that the sugar receptor inhibition via quinine in honeybees might depend on the receptor (or its co-receptor), is concentration-dependent and based on the salience or attractiveness and concentration of the sugar present. With my thesis, I was able to expand the knowledge on honeybee’s sugar perception and formulate a complex, comprehensive overview. Thereby, I demonstrated the multidimensional mechanism that regulates the sugar receptors and thus the sugar perception of honeybees. With this work, I defined AmGr1 and AmGr3 as the basis of sugar perception and enlarged these components to the co-receptor AmGr2 and the possible splice variants of AmGr1. I further demonstrated how those sugar receptor components function, interact and that they are clearly involved in the division of labor in honeybees. In summary, my thesis describes the mechanisms that enable honeybees to perceive sugar in a complex way, even though they inhere a limited number of sugar receptors. My data strongly suggest that honeybees overall might not only differentiate sugars and their diet by their general sweetness (as expected with only one main sugar receptor). The found sugar receptor mechanisms and their interplay further suggest that honeybees might be able to discriminate directly between monosaccharides and disaccharides or sugar molecules and with that their diet (honey and nectar). N2 - Beim dem eusozialen Insekt Honigbiene (Apis mellifera) leben tausende sterile Arbeitsbienen zusammen mit einer fortpflanzungsfähigen Königin in einem Volk. Alle Aufgaben in der Kolonie werden von diesen Arbeiterinnen erledigt, während sie eine altersabhängige Arbeitsteilung durchlaufen. Als Stockbienen beginnend übernehmen sie Aufgaben im Stock wie die Reinigung oder die Produktion von Larvenfutter und entwickeln sich später zu Sammlerinnen. Das Wahrnehmung von Süße spielt für alle Honigbienen eine entscheidende Rolle, egal ob sie auf den Honigvorräten im Stock sitzen oder nach Nahrung suchen. Ihre Fähigkeit Süße zu wahrzunehmen ist zweifellos notwendig, um Nahrungsquellen zu identifizieren und zu bewerten. Viele der Verhaltensentscheidungen bei Honigbienen basieren auf ihrer Zuckerwahrnehmung, entweder auf individueller Ebene für die Nahrungsaufnahme oder für soziales Verhalten wie beispielsweise das Sammeln oder Verarbeiten von Nektar. Honigbienen zeigen auf vielen Ebenen ein komplexes Spektrum bei der Wahrnehmung von Süße. Sie können mindestens sieben Zuckerarten wahrnehmen und sammeln diese für ihren Stock. Darüber hinaus scheinen sie zwischen diesen Zuckern unterscheiden zu können oder zeigen zumindest klare Präferenzen beim Sammeln. Außerdem ist die Zuckerwahrnehmung bei Honigbienen nicht starr. Ihre Zuckerwahrnehmung ändert sich, wenn sie von einer Stockbiene (z. B. Ammen) zum Nahrungssammeln außerhalb des Stockes übergehen, und ist somit mit ihrer Arbeitsteilung verbunden. Andere direkte oder unmittelbare Faktoren, die die Reaktion auf Zucker verändern, sind Stress, Hunger oder zugrunde liegende Faktoren wie der Genotyp. Interessanterweise steht die Komplexität der Zuckerwahrnehmung in starkem Kontrast zu der Tatsache, dass Honigbienen bisher anscheinend nur drei mögliche Zuckerrezeptoren haben. In dieser Arbeit konnten wir die drei bekannten Honigbienenzuckerrezeptoren (AmGr1, AmGr2 und AmGr3) in Xenopus-Oozyten vollständig und umfassend charakterisieren (Manuscript II, Chapter 3 und Manuscript III, Chapter 4). Wir konnten zeigen, dass AmGr1 ein breitdetektierender Zuckerrezeptor ist, der auf Saccharose, Glukose, Maltose, Melezitose und Trehalose (der Hauptblutzucker bei Honigbienen), aber nicht auf Fruktose reagiert. AmGr2 fungiert als ein Co-Rezeptor, der die Spezifität von AmGr1 verändert. AmGr3 ist ein spezifischer Fruktoserezeptor und wir haben die Heterodimerisierung der Rezeptoren überprüft. Mit meinen Studien konnte ich die gefundene Ligandenspezifität der Zuckerrezeptoren in vivo reproduzieren und vergleichen, indem ich Rezeptormutanten mit CRISPR/Cas9 generierte. Dabei konnte ich AmGr1 und AmGr3 als die Basisrezeptoren von Honigbienen definieren, die bereits alle Zucker ihres bekannten Geschmacksspektrums detektieren können. In der Expressionsanalyse meiner Doktorarbeit (Manuscript I, Chapter 2) konnte ich zeigen, dass beide Basisrezeptoren in den Antennen und im Gehirn von Ammenbienen und Sammlerinnen exprimiert werden. Diese Arbeit geht davon aus, dass AmGr3 (wie das Homologe in Drosophila) als Sensor für Fruktose fungiert, die das Sättigungssignal sein könnte, während AmGr1 Trehalose als Hauptblutzucker im Gehirn wahrnehmen kann. Beide Rezeptoren zeigen eine reduzierte Expression im Gehirn von Sammlerinnen im Vergleich zu Ammenbienen. Diese Ergebnisse könnten die höher konzentrierte Ernährung der Ammenbienen im Stock widerspiegeln. Die höhere Anzahl an Rezeptoren im Gehirn könnte es den Ammenbienen ermöglichen frühzeitiger Hunger wahrzunehmen und die Nahrung, auf der sie sitzen aufzunehmen. Sammelbienen dagegen müssen beim Sammeln und dem reduzierten Nahrungsangebot ausdauernder sein. Die gemessene reduzierte Expression des Fruktoserezeptors AmGr3 in den Antennen von Ammenbienen entsprechen meinen anderen Ergebnissen, wonach Ammenbienen im Vergleich zu Sammelbienen an den Antennen auch weniger empfindlich auf Fruktose reagieren (Manuscript I, Chapter 2). Dies ist möglich, da Ammenbienen eher auf reifem Honig sitzen, der nicht nur einen höheren Zuckergehalt, sondern auch vermehrt Monosaccharide (wie Fructose) enthält, während Sammelbienen weniger konzentrierten Nektar bewerten müssen. Meine Untersuchungen zur Expression von AmGr1 in den Antennen von Honigbienen ergaben keine Unterschiede zwischen Ammenbienen und Sammlerinnen, obwohl Sammlerinnen empfindlicher auf den entsprechenden Zucker Saccharose reagieren. Angesichts unserer Ergebnisse, dass AmGr2 der Co-Rezeptor von AmGr1 ist, kann die Hypothese aufgestellt werden, dass AmGr1 und der vermittelte Saccharose-Geschmack möglicherweise nicht direkt durch seine Expression, sondern indirekt durch seinen Co-Rezeptor reguliert werden. Meine Dissertation zeigt somit deutlich, dass die Zuckerwahrnehmung bei Honigbienen mit Arbeitsteilung verbunden ist und direkt oder indirekt über die Expression geregelt zu werden scheint. Der Vergleich mit einer anderen Charakterisierungsstudie, durchgeführt an anderen Bienenrassen und damit einer alternativen Proteinsequenz von AmGr1, zeigt, dass die Co-Expression verschiedener AmGr1-Varianten mit AmGr2 die Zuckerantwort unterschiedlich verändert. Daher liefert diese Arbeit erste wichtige Hinweise darauf, dass alternatives Spleißen auch bei Honigbienen einen wichtigen Regulationsmechanismus für die Zuckerwahrnehmung darstellen könnte. Des Weiteren habe ich herausgefunden, dass der Bitterstoff Chinin die Qualität der Belohnung in Lernexperimenten für Honigbienen senkt (Manuscript IV, Chapter 5). Bisher wurde kein Bitterrezeptor im Genom von Honigbienen gefunden und diese Arbeit deutet darauf hin, dass Bitterstoffe wie Chinin Zuckerrezeptoren in Honigbienen hemmen. Mit dieser Erkenntnis schließt meine Dissertation auch andere Moleküle als mögliche Regulationsmechanismen in die Zuckerwahrnehmung der Honigbiene ein. Wir haben gezeigt, dass die hemmende Wirkung bei Fruktose im Vergleich zu Saccharose geringer ist. Unter der Berücksichtigung, dass Zuckersignale bei Honigbienen möglicherweise unterschiedlich attraktiv verarbeitet werden, kommt meine Arbeit zu dem Schluss, dass die Hemmung der Zuckerrezeptoren durch Chinin bei Honigbienen abhängig ist von der verwendeten Konzentration, der Bedeutung bzw. Attraktivität des Zuckers und seiner Konzentration. Mit meiner Doktorarbeit konnte ich das Wissen über die Zuckerwahrnehmung der Honigbiene insgesamt erweitern und einen komplexen, umfassenden Überblick formulieren. Ich konnte den mehrdimensionalen Mechanismus aufzeigen, der die Zuckerrezeptoren und damit die Zuckerwahrnehmung von Honigbienen reguliert. Ich konnte AmGr1 und AmGr3 als Basis der Zuckerwahrnehmung definieren und diese Komponenten auf den Co-Rezeptor AmGr2 und die möglichen Spleißvarianten von AmGr1 erweitern. Ich habe außerdem gezeigt, wie diese Zuckerrezeptorkomponenten funktionieren, interagieren, und dass sie eindeutig an der Arbeitsteilung bei Honigbienen beteiligt sind. Zusammenfassend beschreibt meine Dissertation die Mechanismen, die es Honigbienen ermöglichen, Zucker auf komplexe Weise wahrzunehmen, selbst wenn sie eine begrenzte Anzahl von Zuckerrezeptoren besitzen. Meine Daten deuten stark darauf hin, dass Honigbienen Zucker und ihre Nahrung nicht nur aufgrund ihrer generellen Süße unterscheiden können (wie dies mit nur einem Hauptzuckerrezeptor zu erwarten wäre). Die gefundenen Zuckerrezeptormechanismen und deren Zusammenspiel legen nahe, dass Honigbienen möglicherweise direkt zwischen Monosacchariden und Disacchariden bzw. Zuckermolekülen und damit zwischen ihrer Nahrung (Honig und Nektar) unterscheiden können. KW - Biene KW - Apis mellifera KW - responsiveness KW - honeybee KW - sugar receptor KW - sugar perception (fructose, sucrose) KW - AmGr1, AmGr2, AmGr3 KW - PER KW - division of labor KW - CRISPR/Cas9 KW - bitter taste Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-321873 ER - TY - THES A1 - Schilcher, Felix T1 - Regulation of the nurse-forager transition in honeybees (\(Apis\) \(mellifera\)) T1 - Regulation des Ammen–Sammlerinnen-Übergangs in Honigbienen (\(Apis\) \(mellifera\)) N2 - Honeybees are among the few animals that rely on eusociality to survive. While the task of queen and drones is only reproduction, all other tasks are accomplished by sterile female worker bees. Different tasks are mostly divided by worker bees of different ages (temporal polyethism). Young honeybees perform tasks inside the hive like cleaning and nursing. Older honeybees work at the periphery of the nest and fulfill tasks like guarding the hive entrance. The oldest honeybees eventually leave the hive to forage for resources until they die. However, uncontrollable circumstances might force the colony to adapt or perish. For example, the introduced Varroa destructor mite or the deformed wing virus might erase a lot of in-hive bees. On the other hand, environmental events might kill a lot of foragers, leaving the colony with no new food intake. Therefore, adaptability of task allocation must be a priority for a honeybee colony. In my dissertation, I employed a wide range of behavioral, molecular biological and analytical techniques to unravel the underlying molecular and physiological mechanisms of the honeybee division of labor, especially in conjunction with honeybee malnourishment. The genes AmOARα1, AmTAR1, Amfor and vitellogenin have long been implied to be important for the transition from in-hive tasks to foraging. I have studied in detail expression of all of these genes during the transition from nursing to foraging to understand how their expression patterns change during this important phase of life. My focus lay on gene expression in the honeybee brain and fat body. I found an increase in the AmOARα1 and the Amforα mRNA expression with the transition from in-hive tasks to foraging and a decrease in expression of the other genes in both tissues. Interestingly, I found the opposite pattern of the AmOARα1 and AmTAR1 mRNA expression in the honeybee fat body during orientation flights. Furthermore, I closely observed juvenile hormone titers and triglyceride levels during this crucial time. Juvenile hormone titers increased with the transition from in-hive tasks to foraging and triglyceride levels decreased. Furthermore, in-hive bees and foragers also differ on a behavioral and physiological level. For example, foragers are more responsive towards light and sucrose. I proposed that modulation via biogenic amines, especially via octopamine and tyramine, can increase or decrease the responsiveness of honeybees. For that purpose, in-hive bees and foragers were injected with both biogenic amines and the receptor response was quantified 1 using electroretinography. In addition, I studied the behavioral response of the bees to light using a phototaxis assay. Injecting octopamine increased the receptor response and tyramine decreased it. Also, both groups of honeybees showed an increased phototactic response when injected with octopamine and a decreased response when injected with tyramine, independent of locomotion. Additionally, nutrition has long been implied to be a driver for division of labor. Undernourished honeybees are known to speed up their transition to foragers, possibly to cope with the missing resources. Furthermore, larval undernourishment has also been implied to speed up the transition from in-hive bees to foragers, due to increasing levels of juvenile hormone titers in adult honeybees after larval starvation. Therefore, I reared honeybees in-vitro to compare the hatched adult bees of starved and overfed larvae to bees reared under the standard in-vitro rearing diet. However, first I had to investigate whether the in-vitro rearing method affects adult honeybees. I showed effects of in-vitro rearing on behavior, with in-vitro reared honeybees foraging earlier and for a shorter time than hive reared honeybees. Yet, nursing behavior was unaffected. Afterwards, I investigated the effects of different larval diets on adult honeybee workers. I found no effects of malnourishment on behavioral or physiological factors besides a difference in weight. Honeybee weight increased with increasing amounts of larval food, but the effect seemed to vanish after a week. These results show the complexity and adaptability of the honeybee division of labor. They show the importance of the biogenic amines octopamine and tyramine and of the corresponding receptors AmOARα1 and AmTAR1 in modulating the transition from inhive bees to foragers. Furthermore, they show that in-vitro rearing has no effects on nursing behavior, but that it speeds up the transition from nursing to foraging, showing strong similarities to effects of larval pollen undernourishment. However, larval malnourishment showed almost no effects on honeybee task allocation or physiology. It seems that larval malnourishment can be easily compensated during the early lifetime of adult honeybees. N2 - Honigbienen gehören zu den wenigen Spezies, die in eusozialen Gemeinschaften leben. Die eierlegende Königin und die männlichen Drohnen dienen nur der Fortpflanzung. Alle anderen Arbeiten von den sterilen Arbeiterinnen ausgeführt werden. Die Arbeitsteilung wird meistens anhand des Alters der Bienen organisiert. Junge Arbeiterinnen bleiben im Inneren der Kolonie und führen beispielsweise Putzarbeiten und Ammentätigkeiten aus. Mit zunehmendem Alter verlagern sich ihre Tätigkeiten immer mehr in Richtung des Nestausgangs wo sie, unteranderem als Wächterbienen, den Stockeingang bewachen. Die ältesten Honigbienen verlassen das Nest, um Honig, Pollen, Wasser oder Propolis zu sammeln, bis sie am Ende sterben. Allerdings können unvorhersehbare Ereignisse dazu führen, dass sich die Kolonie anpassen muss, um nicht unterzugehen. Krankheiten wie der Flügeldeformationsvirus oder die, durch den Menschen eingeführte, Varroa destructor Milbe können auf einen Schlag eine große Zahl an Bienen auslöschen. Des Weiteren können beispielsweise starke Unwetter dafür sorgen, dass etliche Sammlerinnen auf ihrem Sammelflug sterben und die Kolonie ohne neuen Nektar oder Pollen zurückgelassen wird. Es liegt auf der Hand, dass eine starre Arbeitsverteilung nicht ausreicht, um solchen Umständen entgegenzuwirken und, dass eine gewisse Flexibilität notwendig ist. In meiner Dissertation habe ich eine weitreichende Anzahl an verhaltensbiologischen und molekularbiologischen Techniken verwendet, um die molekularen und physiologischen Mechanismen der Arbeitsteilung bei Honigbienen aufzuklären, vor allem im Bezug auf den Übergang von Ammenbienen zu Sammlerinnen. Es ist seit langer Zeit bekannt, dass die Gene AmOARα1, AmTAR1, Amfor und Vitellogenin beim Übergang von Ammenbienen zu Sammlerinnen von zentraler Bedeutung sind. Deshalb habe ich die Expression dieser Gene, sowohl im Gehirn als auch im Fettkörper, in genau diesem Zusammenhang betrachtet und die unterschiedlichen Veränderungen der Expressionsmuster während dieser wichtigen Phase im Leben einer Honigbiene analysiert. Ich konnte zeigen, dass sowohl die mRNA Expression des AmOARα1 und des Amforα beim Übergang von Ammenbienen zu Sammlerinnen anstieg, während die Expression der anderen Kandidatengene im gleichen Zeitraum sowohl im Gehirn als auch im Fettkörper abfiel. Interessanterweise zeigten die Expressionsmuster des AmOARα1 und des Am3 TAR1, während der Orientierungsflüge, genau in die entgegengesetzte Richtung. Zusätzlich habe ich mir bei denselben Bienen auch den Juvenilhormongehalt in der Hämolymphe und die Menge an Triglyceriden im Fettkörper angeschaut. Der Juvenilhormongehalt nahm schlagartig zu, als die Bienen mit dem Sammeln begannen. Die Menge an Triglyceriden nahm allerdings von Ammenbienen, über Bienen während des Orientierungsfluges zu Sammlerinnen konstant ab. Des Weiteren war bereits bekannt, dass sich Ammenbienen und Sammlerinnen nicht nur auf genetischer, sondern auch auf verhaltensbiologischer und physiologischer Ebene voneinander unterscheiden. Zum Beispiel sind Sammlerinnen empfindlicher für Licht und Saccharose. Ich stellte die Hypothese auf, dass die Empfindlichkeit von Honigbienen für solche Schwellen durch biogene Amine, insbesondere Oktopamin und Tyramin, moduliert werden kann. Oktopamin sollte die Empfindlichkeit von Bienen erhöhen, wohingegen Tyramin diese verringern sollte. Hierfür injizierte ich Stockbienen und Sammlerinnen beide biogenen Amine und analysierte die Rezeptorantwort mit einem Elektroretinogramm (ERG) und die Lichtempfindlichkeit in einer Phototaxisarena. Oktopamininjektion führte dazu, dass die Rezeptorantwort im ERG erhöht wurde und dass beide Gruppen eine erhöhte Lichtempfindlichkeit aufwiesen. Tyramin hatte in beiden Experimenten genau den gegenteiligen Effekt. Allerdings kann der Ammen-Sammlerinnen-Übergang nicht nur durch biogene Amine moduliert werden, auch die Ernährung hat einen großen Einfluss. Zum Beispiel fangen unterernährte Honigbienen eher an zu sammeln als satte Honigbienen. Des Weiteren sollte auch die larvale Unterernährung bereits einen Einfluss auf die spätere Arbeitsteilung haben, da man bei Arbeiterinnen, die im Larvenstadium bereits unterernährt waren, eine erhöhte Menge an Juvenilhormon festgestellt hatte. Dies sieht man auch beim Übergang von Ammenbienen zu Sammlerinnen. Deshalb nutzte ich eine Methode zur artifiziellen Aufzucht von Honigbienen, um die Standarddiät, die diese normalerweise erhalten, zu variieren. Allerdings musste ich zuerst den Effekt der in-vitro Aufzucht auf im Stock aufgezogene Honigbienen untersuchen. Ich konnte zeigen, dass die artifizielle Aufzucht das Sammelverhalten erwachsener Honigbienen signifikant beeinflusste, während das Ammenverhalten der in-vitro aufgezogenen Bienen nicht beeinflusst wurde. Artifiziell aufgezogene Honigbienen begannen, im Vergleich zu normalen Bienen, früher zu sammeln und sammelten für eine kürzere Zeit. Danach zog ich unterernährte, normal ernährte und überfütterte Honigbienen in-vitro 4 auf. Ich fand Unterschiede im Gewicht zwischen den Behandlungsgruppen. Unterernährte Bienen waren die leichtesten und überfütterte Bienen wogen am meisten. Dieser Unterschied verschwand aber über die Zeit. Des Weiteren konnte ich keinen Einfluss der Ernährung auf das Ammenverhalten oder das Sammelverhalten zeigen. Dieser Ergebnisse zeigen sowohl die Komplexität als auch das Anpassungsvermögen der Arbeitsteilung von Honigbienen. Sie zeigen, dass sowohl die beiden biogenen Amine Oktopamin und Tyramin, als auch die dazugehörigen Rezeptoren AmOARα1 und AmTAR1 bei der Modulation des Ammen-Sammlerinnen-Übergangs eine große Rolle spielen. Des Weiteren zeigen die Ergebnisse des Vergleichs von artifiziell und im Stock aufgezogenen Bienen, starke Gemeinsamkeiten zu einer larvalen Unterernährung mit Pollen. Jedoch scheint eine allgemeine larvale Unterernährung kaum einen Effekt auf den AmmenSammlerinnen-Übergang zu haben. Diese scheint während der ersten Lebenstage von Honigbienen relativ leicht kompensiert werden zu können. KW - Biene KW - juvenile hormone KW - nurse bee KW - forager KW - division of labor KW - malnourishment KW - diet KW - bee KW - honeybee Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289352 ER -