TY - THES A1 - Glogger, Marius T1 - Single-molecule fluorescence microscopy in live \(Trypanosoma\) \(brucei\) and model membranes T1 - Einzelmolekül-Fluoreszenzmikroskopie in lebenden \(Trypanosoma\) \(brucei\) und Modellmembranen N2 - Der eukaryotische Parasit Trypanosoma brucei hat komplexe Strategien entwickelt um der Immunantwort eines Wirtes zu entkommen und eine persistente Infektion innerhalb dessen aufrechtzuerhalten. Ein zentrales Element seiner Verteidigungsstrategie stützt sich auf die Schutzfunktion seines Proteinmantels auf der Zelloberfläche. Dieser Mantel besteht aus einer dichten Schicht aus identischen, Glykosylphosphatidylinositol (GPI)-verankerten variablen Oberflächenglykoproteinen (VSG). Der VSG Mantel verhindert die Erkennung der darunterliegenden, invarianten Epitope durch das Immunsystem. Obwohl es notwendig ist die Funktionsweise des VSG Mantels zu verstehen, vor allem um ihn als mögliches Angriffsziel gegen den Parasiten zu verwenden, sind seine biophysikalischen Eigenschaften bisher nur unzureichend verstanden. Dies ist vor allem der Tatsache geschuldet, dass die hohe Motilität der Parasiten mikroskopische Studien in lebenden Zellen bisher weitestgehend verhinderten. In der vorliegenden Arbeit wird nun hochmoderne Einzelmolekül-Fluoreszenzmikroskopie (EMFM) als Möglichkeit für mikroskopische Untersuchungen im Forschungsbereich der Trypanosomen vorgestellt. Die Arbeit umfasst Untersuchungen der VSG Dynamik unter definierten Bedingungen künstlicher Membransysteme. Es wurde zuerst der Einfluss der lateralen Proteindichte auf die VSG Diffusion untersucht. Experimente mittels Fluoreszenz- Wiederkehr nach irreversiblem Photobleichen und komplementäre Einzelmolekül- Verfolgungs Experimente offenbarten, dass ein molekularer Diffusionsschwellenwert existiert. Über diesem Schwellenwert wurde eine dichteabhänige Reduzierung des Diffusionskoeffizienten gemessen. Eine relative Quantifizierung der rekonstituierten VSGs verdeutlichte, dass der Oberflächenmantel der Trypanosomen sehr nahe an diesem Schwellenwert agiert. Der VSG Mantel ist optimiert um eine hohe Proteindichte bei gleichzeitiger hoher Mobilität der VSGs zu gewährleisten. Des Weiteren wurde der Einfluss der VSG N-Glykosylierung auf die Diffusion des Proteins quantitativ untersucht. Die Messungen ergaben, dass die N-Glykosylierung dazu beiträgt eine hohe Mobilität bei hohen Proteindichten aufrechtzuerhalten. Eine detaillierte Analyse von VSG Trajektorien offenbarte, dass zwei unterschiedliche Populationen frei diffundierender VSGs in der künstlichen Membran vorlagen. Kürzlich wurde entdeckt, dass VSGs zwei strukturell unterschiedliche Konformationen annehmen können. Die Messungen in der Arbeit stimmen mit diesen Beschreibungen überein. Die Ergebnisse der EMFM in künstlichen Membranen wurden durch VSG Einzelmolekül- Verfolgungs Experimente auf lebenden Zellen ergänzt. Es wurde eine hohe Mobilität und Dynamik einzelner VSGs gemessen, was die allgemein dynamische Natur des VSG Mantels verdeutlicht. Dies führte zu der Schlussfolgerung, dass der VSG Mantel auf lebenden Trypanosomen ein dichter und dennoch dynamischer Schutzmantel ist. Die Fähigkeit der VSGs ihre Konformation flexibel anzupassen, unterstützt das Erhalten der Fluidität bei variablen Dichten. Diese Eigenschaften des VSG Mantels sind elementar für die Aufrechterhaltung einer presistenden Infektion eines Wirtes. In dieser Arbeit werden des Weiteren verschiedene, auf Hydrogel basierende Einbettungsmethoden vorgestellt. Diese ermöglichten die Zellimmobilisierung und erlaubten EMFM in lebenden Trypanosomen. Die Hydrogele wiesen eine hohe Zytokompatibilität auf. Die Zellen überlebten in den Gelen für eine Stunde nach Beginn der Immobilisierung. Die Hydrogele erfüllten die Anforderungen der Superresolution Mikroskopie (SRM) da sie eine geringe Autofluoreszenz im Spektralbereich der verwendeten Fluorophore besaßen. Mittels SRM konnte nachgewiesen werden, dass die Hydrogele die Zellen effizient immobilisierten. Als erstes Anwendungsbeispiel der Methode wurde die Organisation der Plasmamembran in lebenden Trypanosomen untersucht. Die Untersuchung eines fluoreszenten Tracers in der inneren Membranschicht ergab, dass dessen Verteilung nicht homogen war. Es wurden spezifische Membrandomänen gefunden, in denen das Molekül entweder vermehrt oder vermindert auftrat. Dies führte zu der Schlussfolgerung, dass diese Verteilung durch eine Interaktion des Tracers mit Proteinen des zellulären Zytoskeletts zustande kam. Die in dieser Arbeit präsentierten Ergebnisse zeigen, dass EMFM erfolgreich für verschiedene biologische Untersuchungen im Forschungsfeld der Trypanosomen angewendet werden kann. Dies gilt zum Beispiel für die Untersuchung von der VSG Dynamik in künstlichen Membransystemen, aber auch für Studien in lebenden Zellen unter Verwendung der auf Hydrogelen basierenden Zelleinbettung. N2 - The eukaryotic parasite Trypanosoma brucei has evolved sophisticated strategies to escape the host immune response and maintain a persistent infection inside a host. One central feature of the parasite’s defense mechanism relies on the shielding function of their surface protein coat. This coat is composed of a dense arrangement of one type of glycosylphosphatidylinositol (GPI)-anchored variant surface glycoproteins (VSGs) which impair the identification of epitopes of invariant surface proteins by the immune system. In addition to the importance of understanding the function of the VSG coat and use it as a potential target to efficiently fight the parasite, it is also crucial to study its biophysical properties as it is not yet understood sufficiently. This is due to the fact that microscopic investigations on living trypanosomes are limited to a great extent by the intrinsic motility of the parasite. In the present study, state-of-the-art single-molecule fluorescence microscopy (SMFM) is introduced as a tool for biophysical investigations in the field of trypanosome research. The work encompasses studies of VSG dynamics under the defined conditions of an artificial supported lipid bilayer (SLB). First, the impact of the lateral protein density on VSG diffusion was systematically studied in SLBs. Ensemble fluorescence after photobleaching (FRAP) and complementary single-particle tracking experiments revealed that a molecular crowding threshold (MCT) exists, above which a density dependent decrease of the diffusion coefficient is measured. A relative quantification of reconstituted VSGs illustrated that the VSG coat of living trypanosomes operates very close to its MCT and is optimized for high density while maintaining fluidity. Second, the impact of VSG N-glycosylation on VSG diffusion was quantitatively investigated. N-glycosylation was shown to contribute to preserving protein mobility at high protein concentrations. Third, a detailed analysis of VSG trajectories revealed that two distinct populations of freely diffusing VSGs were present in a SLB, which is in agreement with the recent finding, that VSGs are able to adopt two main structurally distinct conformations. The results from SLBs were further complemented by single-particle tracking experiments of surface VSGs on living trypanosomes. A high mobility and free diffusion were measured on the cell surface, illustrating the overall dynamic nature of the VSG coat. It was concluded that the VSG coat on living trypanosomes is a protective structure that combines density and mobility, which is supported by the conformational flexibility of VSGs. These features are elementary for the persistence of a stable infection in the host. Different hydrogel embedding methods are presented, that facilitated SMFM in immobilized, living trypanosomes. The hydrogels were found to be highly cytocompatible for one hour after cross-linking. They exhibited low autofluorescence properties in the spectral range of the investigations, making them suitable for super-resolution microscopy (SRM). Exemplary SRM on living trypanosomes illustrated that the hydrogels efficiently immobilized the cells on the nanometer lever. Furthermore, the plasma membrane organization was studied in living trypanosomes. A statistical analysis of a tracer molecule inside the inner leaflet of the plasma membrane revealed that specific membrane domains exist, in which the tracer appeared accumulated or diluted. It was suggested that this distribution was caused by the interaction with proteins of the underlying cytoskeleton. In conclusion, SMFM has been successfully introduced as a tool in the field of trypanosome research. Measurements in model membranes facilitated systematic studies of VSG dynamics on the single-molecule level. The implementation of hydrogel immobilization allowed for the study of static structures and dynamic processes with high spatial and temporal resolution in living, embedded trypanosomes for the first time. KW - Single-molecule fluorescence microscopy KW - Trypanosoma brucei KW - Variant surface glycoprotein KW - Trypanosoma brucei KW - Virulenzfaktor KW - Zelloberfläche KW - Glykoproteine KW - Fluoreszenzmikroskopie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169222 ER - TY - THES A1 - Schücker, Katharina T1 - The molecular architecture of the meiotic chromosome axis as revealed by super-resolution microscopy T1 - Die molekulare Architektur der meiotischen Chromosomenachse dargestellt mit hochauflösender Mikroskopie N2 - During meiosis proteins of the chromosome axis are important for monitoring chromatin structure and condensation, for pairing and segregation of chromosomes, as well as for accurate recombination. They include HORMA-domain proteins, proteins of the DNA repair system, synaptonemal complex (SC) proteins, condensins and cohesins. To understand more about their function in shaping the meiotic chromosome it is crucial to establish a defined model of their molecular architecture. Up to now their molecular organization was analysed using conventional methods, like confocal scanning microscopy (CLSM) and transmission electron microscopy (TEM). Unfortunately, these techniques are limited either by their resolution power or their localization accuracy. In conclusion, a lot of data on the molecular organization of chromosome axis proteins stays elusive. For this thesis the molecular structure of the murine synaptonemal complex (SC) and the localization of its proteins as well as of three cohesins was analysed with isotropic resolution, providing new insights into their architecture and topography on a nanoscale level. This was done using immunofluorescence labelling in combination with super-resolution microscopy, line profiles and average position determination. The results show that the murine SC has a width of 221.6 nm ± 6.1 nm including a central region (CR) of 148.2 nm ± 2.6 nm. In the CR a multi-layered organization of the central element (CE) proteins was verified by measuring their strand diameters and strand distances and additionally by imaging potential anchoring sites of SYCP1 (synaptonemal complex protein 1) to the lateral elements (LEs). We were able to show that the two LEs proteins SYCP2 and SYCP3 do co-localize alongside their axis and that there is no significant preferential localization towards the inner LE axis of SYCP2. The presented results also predict an orderly organization of murine cohesin complexes (CCs) alongside the chromosome axis in germ cells and support the hypothesis that cohesins in the CR of the SC function independent of CCs. In the end new information on the molecular organization of two main components of the murine chromosome axis were retrieved with nanometer precision and previously unknown details of their molecular architecture and topography were unravelled. N2 - Innerhalb der Meiose sind Proteine der Chromosomenachse wichtig für das Monitoring der Chromatinstruktur und dessen Kondensation, sowie für die Paarung und Trennung der Chromosomen und für eine fehlerfreie Rekombination. Zu diesen Proteinen zählen HORMA-domain Proteine, Proteine des DNA-Reparatur-Systems und des synaptonemalen Komplexes, sowie Kohäsine und Kondesine. Um mehr über ihre Rolle in der Formgebung meiotischer Chromosomen zu erfahren, ist es unabdingbar ein genau definiertes Modell über ihre molekulare Architektur zu erstellen. Bis jetzt wurde ihre molekulare Organisation mit konventionellen Methoden wie dem konfokalen Laser-Scanning-Mikroskop (CLSM) und dem Transmissionselektronenmikroskop (TEM) untersucht. Beide Techniken sind jedoch entweder in ihrer Auflösung oder ihrer Lokalisationsgenauigkeit beschränkt, wodurch viele Daten zur molekularen Organisation der Chromosomenachse noch nicht erfasst werden konnten. Die vorliegende Arbeit untersucht mit isotropischer Auflösung die molekulare Struktur des synaptonemalen Komplexes (SC) der Maus und die Lokalisation seiner Proteine, sowie die Lokalisation von drei Kohäsinen, was neue Einsichten in deren Architektur und Topographie auf der nanomolekularen Ebene erbrachte. Dies gelang durch die Verwendung von Immunfluoreszenzmarkierungen in Kombination mit hochauflösender Mikroskopie, Linienprofilen und durchschnittlicher Positionsbestimmung. Es konnte gezeigt werden, dass der murine SC eine Weite von 221,6 nm ± 6,1 nm besitzt, inklusive einer 148,2 nm ± 2,6 nm weiten zentralen Region (CR). Innerhalb der CR konnte eine mehrschichtige Anordnung der Proteine des zentralen Elements (CE) bestätigt werden. Dies gelang indem ihre Strangdurchmesser und –abstände gemessen worden sind und zusätzlich potentielle Bindestellen von SYCP1 (synaptonemal complex protein 1) an den lateral Elementen des SCs (LEs) abgebildet werden konnten. Zusätzlich konnte gezeigt werden, dass die beiden LE Proteine, SYCP2 und SYCP3, kolokalisieren. Dabei zeigte SYCP2 keine präferentielle Lokalisation im inneren Bereich der LE. Die Ergebnisse der vorliegenden Arbeit deuten auf eine organisierte Anordnung der murinen Kohäsin Komplexe (CCs) entlang der Chromosomenachse in Keimzellen hin und unterstützen die Hypothese, dass Kohäsine innerhalb der CR des SC eine Funktion unabhängig der von CCs haben. Schlussendlich konnten neue Informationen zur molekularen Anordnung von zwei wichtigen Komponenten der murinen Chromosomenachse mit einer Präzision im Nanometerbereich gewonnen werden und bisher nicht bekannte Details ihrer molekularen Architektur und Topographie aufgedeckt werden. KW - Meiose KW - Super-resolution microscopy KW - Meiosis KW - Synaptonemal complex KW - Cohesin complex Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144199 ER - TY - THES A1 - Kay, Janina T1 - The circadian clock of the carpenter ant \(Camponotus\) \(floridanus\) T1 - Die circadiane Uhr der Rossameise \(Camponotus\) \(floridanus\) N2 - Due to the earth´s rotation around itself and the sun, rhythmic daily and seasonal changes in illumination, temperature and many other environmental factors occur. Adaptation to these environmental rhythms presents a considerable advantage to survival. Thus, almost all living beings have developed a mechanism to time their behavior in accordance. This mechanism is the endogenous clock. If it fulfills the criteria of (1) entraining to zeitgebers (2) free-running behavior with a period of ~ 24 hours (3) temperature compensation, it is also referred to as “circadian clock”. Well-timed behavior is crucial for eusocial insects, which divide their tasks among different behavioral castes and need to respond to changes in the environment quickly and in an orchestrated fashion. Circadian rhythms have thus been studied and observed in many eusocial species, from ants to bees. The underlying mechanism of this clock is a molecular feedback loop that generates rhythmic changes in gene expression and protein levels with a phase length of approximately 24 hours. The properties of this feedback loop are well characterized in many insects, from the fruit fly Drosophila melanogaster, to the honeybee Apis mellifera. Though the basic principles and components of this loop are seem similar at first glance, there are important differences between the Drosophila feedback loop and that of hymenopteran insects, whose loop resembles the mammalian clock loop. The protein PERIOD (PER) is thought to be a part of the negative limb of the hymenopteran clock, partnering with CRYPTOCHROME (CRY). The anatomical location of the clock-related neurons and the PDF-network (a putative in- and output mediator of the clock) is also well characterized in Drosophila, the eusocial honeybee as well as the nocturnal cockroach Leucophea maderae. The circadian behavior, anatomy of the clock and its molecular underpinnings were studied in the carpenter ant Camponotus floridanus, a eusocial insect Locomotor activity recordings in social isolation proved that the majority of ants could entrain to different LD cycles, free-ran in constant darkness and had a temperature-compensated clock with a period slightly shorter than 24 hours. Most individuals proved to be nocturnal, but different types of activity like diurnality, crepuscularity, rhythmic activity during both phases of the LD, or arrhythmicity were also observed. The LD cycle had a slight influence on the distribution of these activities among individuals, with more diurnal ants at shorter light phases. The PDF-network of C. floridanus was revealed with the anti-PDH antibody, and partly resembled that of other eusocial or nocturnal insects. A comparison of minor and major worker brains, only revealed slight differences in the number of somata and fibers crossing the posterior midline. All in all, most PDF-structures that are conserved in other insects where found, with numerous fibers in the optic lobes, a putative accessory medulla, somata located near the proximal medulla and many fibers in the protocerebrum. A putative connection between the mushroom bodies, the optic lobes and the antennal lobes was found, indicating an influence of the clock on olfactory learning. Lastly, the location and intensity of PER-positive cell bodies at different times of a 24 hour day was established with an antibody raised against Apis mellifera PER. Four distinct clusters, which resemble those found in A. mellifera, were detected. The clusters could be grouped in dorsal and lateral neurons, and the PER-levels cycled in all examined clusters with peaks around lights on and lowest levels after lights off. In summary, first data on circadian behavior and the anatomy and workings of the clock of C. floridanus was obtained. Firstly, it´s behavior fulfills all criteria for the presence of a circadian clock. Secondly, the PDF-network is very similar to those of other insects. Lastly, the location of the PER cell bodies seems conserved among hymenoptera. Cycling of PER levels within 24 hours confirms the suspicion of its role in the circadian feedback loop. N2 - Durch die Rotation der Erde um die Sonne, entstehen rhythmische, tägliche und saisonale Änderungen in der Beleuchtung, Temperatur und vielen anderen Umweltfaktoren. Die Anpassung an diese Umweltrhythmen stellt einen großen Überlebensvorteil dar. Deshalb haben fast alle bekannten Lebewesen einen Mechanismus zur Steuerung ihres Verhaltens in Relation zu diesen Änderungen entwickelt. Dieser Mechanismus ist die innere Uhr, die auch als zirkadiane Uhr bezeichnet wird wenn sie die folgenden Kriterien erfüllt: (1) Entrainment auf Zeigeber (2) Freilaufendes Verhalten mit einer Periodenlänge von ungefähr 24 Stunden (3) Temperatur-Kompensation. Den korrekten Zeitpunkt für ein bestimmtes Verhalten einzuhalten ist äußerst wichtig für soziale Insekten. Sie verteilen ihre Aufgaben unter verschiedenen Verhaltens-Kasten und müssen in der Lage sein schnell und organisiert auf Umweltänderungen zu reagieren. Deshalb stellen sie interessante Objekte für das Studium circadianen Verhaltens dar, welches schon in vielen eusozialen Spezies wie Ameisen und Bienen beobachtet wurde. Der der inneren Uhr zugrunde liegende Mechanismus ist eine molekulare Rückkopplungsschleife, die rhythmische Veränderungen in der Expression von Genen und dem Akkumulationsniveau von Proteinen in einem 24 Stunden Zyklus hervorruft. Die Eigenschaften dieser Rückkopplungsschleife sind in vielen Organismen, von der Taufliege Drosophila melanogaster, bis zur Hongbiene Apis mellifera, bereits gut charakterisiert. Obwohl die Gemeinsamkeiten der zugrunde liegenden Prinzipien und Bestandteile stark auffallen, gibt es wichtige Unterschiede zwischen der Rückkopplungsschleife von Drosophila und der eher mammal organisierten Rückkopplungsschleifen hymenopterer Insekten. Das PERIOD (PER) Protein ist vermutlich ein Bestandteil des hemmenden Teils der Schleife und verbindet sich mit CRYPTOCHROME (CRY). Die anatomischen Eigenschaften der Uhrneurone und des PDF-Netzwerks (vermutlich der Ein- und Ausgang für Informationen im Uhrnetzwerk) sind ebenfalls in der Taufliege, eusozialen Honigbiene, sowie in der nachtaktiven Schabe Leucophea maderae sehr gut beschrieben. Die Rossameise Camponotus floridanus wurde hier als Studienobjekt verwendet, um zirkadianes Verhalten, die Anatomie der Uhr sowie die ihr zu Grunde liegenden molekularen Strukturen in einem weiteren eusozialen Organismus zu analysieren. Die Aufzeichnung von Lauf-Verhalten in sozialer Isolation bewies, dass der Großteil der Ameisen in der Lage ist auf verschiedene LD-Zyklen zu entrainen, freilaufendes Verhalten im Dunkeln aufweist und eine temperaturkompensierte Uhr mit einer Periodenlänge von etwa 24 Stunden besitzt. Die meisten Individuen waren nachtaktiv, aber es wurden auch andere Verhaltensmuster wie Tagaktivität, Dämmerungsaktivität, Rhythmische Aktivität während beiden LD Phasen sowie Arrhythmizität beobachtet. Der LD-Zyklus hatte einen leichten Einfluss auf die Verteilungsmuster dieser Aktivitätstypen. Mehr tagaktive Tiere wurden bei kurzen Lichtphasen beobachtet. Das PDF-Netzwerk in C. floridanus konnte mit Hilfe des anti-PDH Antikörpers sichtbar gemacht werden und ähnelte in Teilen dem anderer eusozialer oder nachtaktiver Insekten. Ein Vergleich zwischen den Gehirnen kleiner und großer Arbeiter zeigte nur geringe Unterschiede in der Anzahl von Zellkörpern und Fasern die die posteriore Mitte des Gehirns überschreiten. Im Gesamten konnte die Mehrzahl der zwischen den anderen Insektengehirnen konservierten PDF-Strukturen, wie viele Fasern in den optischen Loben, eine akzessorische Medulla, Zellkörper neben der proximalen Medulla und viele Verzweigungen im Protozerebrum, gefunden werden. Eine mögliche Verbindung zwischen den Pilzkörpern, optischen Loben und den Antennalloben wurde identifiziert und weist auf einen Einfluss der Uhr auf olfaktorisches Lernen hin. Zu guter letzte wurde mit Hilfe eines gegen Bienen-PER gerichteten Antikörpers die Lage und Intensität der PER-Zellkörper während mehrerer Zeitpunkte im Verlauf von 24 Stunden bestimmt. Vier abgegrenzte Gruppen von Zellkörpern, die den Gruppen in A. mellifera ähneln, konnten identifiziert werden. Diese Gruppen teilen sich in dorsale und laterale Neuronen und der Proteingehalt an PER oszilliert in allen untersuchten Gruppen, mit dem Höhepunkt bei Licht-an und dem Tiefpunkt kurz nach Licht-aus. Zusammenfassend ist zu sagen, dass erste Erkenntnisse über zirkadianes Verhalten, die Anatomie und die Grundlagen der inneren Uhr von C. floridanus gewonnen werden konnten. Erstens, erfüllt das Verhalten alle Kriterien für die Präsenz einer inneren Uhr. Zweitens, ist das PDF-Netzwerk ähnlich dem anderer Insekten. Letztens, scheint die Lage der PER-positiven Neurone innerhalb der Hymenopteren konserviert. Die Oszillation von PER bestätigt den Verdacht seiner Beteiligung an der Rückkopplungsschleife der inneren Uhr. KW - Chronobiologie KW - Tagesrhythmus KW - Camponotus floridanus KW - Protein KW - Innere Uhr KW - Endogenous clock KW - Circadiane Uhr KW - Circadian Clock KW - Ant KW - Ameise KW - Insect KW - Insekt KW - Protein KW - Circadianer Rhythmus KW - Tagesrhythmik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158061 ER - TY - THES A1 - Kropf, Jan T1 - The Dual Olfactory Pathway in the Honeybee Brain: Sensory Supply and Electrophysiological Properties T1 - Der duale olfaktorische Weg im Gehirn der Honigbiene: Sensorischer Eingang und elektrophysiologische Eigenschaften N2 - The olfactory sense is of utmost importance for honeybees, Apis mellifera. Honeybees use olfaction for communication within the hive, for the identification of nest mates and non-nest mates, the localization of food sources, and in case of drones (males), for the detection of the queen and mating. Honeybees, therefore, can serve as excellent model systems for an integrative analysis of an elaborated olfactory system. To efficiently filter odorants out of the air with their antennae, honeybees possess a multitude of sensilla that contain the olfactory sensory neurons (OSN). Three types of olfactory sensilla are known from honeybee worker antennae: Sensilla trichoidea, Sensilla basiconica and Sensilla placodea. In the sensilla, odorant receptors that are located in the dendritic arborizations of the OSNs transduce the odorant information into electrical information. Approximately 60.000 OSN axons project in two parallel bundles along the antenna into the brain. Before they enter the primary olfactory brain center, the antennal lobe (AL), they diverge into four distinct tracts (T1-T4). OSNs relay onto ~3.000-4.000 local interneurons (LN) and ~900 projection neurons (PN), the output neurons of the AL. The axons of the OSNs together with neurites from LNs and PNs form spheroidal neuropil units, the so-called glomeruli. OSN axons from the four AL input tracts (T1-T4) project into four glomerular clusters. LNs interconnect the AL glomeruli, whereas PNs relay the information to the next brain centers, the mushroom body (MB) - associated with sensory integration, learning and memory - and the lateral horn (LH). In honeybees, PNs project to the MBs and the LH via two separate tracts, the medial and the lateral antennal-lobe tract (m/lALT) which run in parallel in opposing directions. The mALT runs first to the MB and then to the LH, the lALT runs first to the LH and then to the MB. This dual olfactory pathway represents a feature unique to Hymenoptera. Interestingly, both tracts were shown to process information about similar sets of odorants by extracting different features. Individual mALT PNs are more odor specific than lALT PNs. On the other hand, lALT PNs have higher spontaneous and higher odor response action potential (AP) frequencies than mALT PNs. In the MBs, PNs form synapses with ~184.000 Kenyon cells (KC), which are the MB intrinsic neurons. KCs, in contrast to PNs, show almost no spontaneous activity and employ a spatially and temporally sparse code for odor coding. In manuscript I of my thesis, I investigated whether the differences in specificity of odor responses between m- and lALT are due to differences in the synaptic input. Therefore, I investigated the axonal projection patterns of OSNs housed in S. basiconica in honeybee workers and compared them with S. trichoidea and S. placodea using selective anterograde labeling with fluorescent tracers and confocal- microscopy analyses of axonal projections in AL glomeruli. Axons of S. basiconica-associated OSNs preferentially projected into the T3 input-tract cluster in the AL, whereas the two other types of sensilla did not show a preference for a specific glomerular cluster. T3- associated glomeruli had previously been shown to be innervated by mALT PNs. Interestingly, S. basiconica as well as a number of T3 glomeruli lack in drones. Therefore I set out to determine whether this was associated with the reduction of glomeruli innervated by mALT PNs. Retrograde tracing of mALT PNs in drones and counting of innervated glomeruli showed that the number of mALT-associated glomeruli was strongly reduced in drones compared to workers. The preferential projections of S. basiconica-associated OSNs into T3 glomeruli in female workers together with the reduction of mALT-associated glomeruli in drones support the presence of a female-specific olfactory subsystem that is partly innervated by OSNs from S. basiconica and is associated with mALT projection neurons. As mALT PNs were shown to be more odor specific, I suppose that already the OSNs in this subsystem are more odor specific than lALT associated OSNs. I conclude that this female-specific subsystem allows the worker honeybees to respond adequately to the enormous variety of odorants they experience during their lifetime. In manuscript II, I investigated the ion channel composition of mALT and lALT PNs and KCs in situ. This approach represents the first study dealing with the honeybee PN and KC ion channel composition under standard conditions in an intact brain preparation. With these recordings I set out to investigate the potential impact of intrinsic neuronal properties on the differences between m- and lALT PNs and on the sparse odor coding properties of KCs. In PNs, I identified a set of Na+ currents and diverse K+ currents depending on voltage and Na+ or Ca2+ that support relatively high spontaneous and odor response AP frequencies. This set of currents did not significantly differ between mALT and lALT PNs, but targets for potential modulation of currents leading to differences in AP frequencies were found between both types of PNs. In contrast to PNs, KCs have very prominent K+ currents, which are likely to contribute to the sparse response fashion observed in KCs. Furthermore, Ca2+ dependent K+ currents were found, which may be of importance for coincidence detection, learning and memory formation. Finally, I conclude that the differences in odor specificity between m- and lALT PNs are due to their synaptic input from different sets of OSNs and potential processing by LNs. The differences in spontaneous activity between the two tracts may be caused by different neuronal modulation or, in addition, also by interaction with LNs. The temporally sparse representation of odors in KCs is very likely based on the intrinsic KC properties, whereas general excitability and spatial sparseness are likely to be regulated through GABAergic feedback neurons. N2 - Der Geruchssinn ist für die Honigbiene, Apis mellifera, von größter Bedeutung. Honigbienen kommunizieren olfaktorisch, sie können Nestgenossinnen und koloniefremde Honigbienen aufgrund des Geruchs unterscheiden, sie suchen und erkennen Nahrungsquellen olfaktorisch, und Drohnen (männliche Honigbienen) finden die Königin mit Hilfe des Geruchssinns. Deshalb dient die Honigbiene als exzellentes Modell für die Untersuchung hochentwickelter olfaktorischer Systeme. Honigbienen filtern Duftmoleküle mit ihren Antennen aus der Luft. Auf diesen Antennen sitzen Sensillen, die die olfaktorischen sensorischen Neurone (OSN) beinhalten. Drei verschiedene olfaktorische Sensillen existieren bei Arbeiterinnen: Sensilla trichoidea, Sensilla basiconica und Sensilla placodea. In diesen Sensillen sind olfaktorische Rezeptorproteine auf den Dendriten der OSN lokalisiert. Diese Duftrezeptoren wandeln die Duftinformationen in elektrische Informationen um. Die Axone von ca. 60.000 OSN ziehen in zwei Bündeln entlang der Antenne in das Gehirn. Bevor sie das erste olfaktorische Gehirnzentrum, den Antennallobus (AL), erreichen, spalten sie sich in vier distinkte Trakte (T1-T4) auf. Im AL verschalten sie auf 3.000-4.000 lokale Interneurone (LN) und auf etwa 900 Ausgangsneurone des AL, die Projektionsneurone (PN). Die axonalen Endigungen der OSN bilden mit Neuriten der PN und LN kugelförmige Strukturen, die so genannten Glomeruli. Die OSN aus den vier Trakten T1-T4 ziehen in vier zugehörige glomeruläre Cluster. LN verschalten die Information unter den AL Glomeruli, PN leiten olfaktorische Informationen zu den nächsten Gehirnstrukturen, den Pilzkörpern und dem lateralen Horn, weiter. Die Pilzkörper werden als Zentrum für sensorische Integration, Lernen und Gedächtnis gesehen. Die PN, die den AL mit dem Pilzkörper und dem lateralen Horn verbinden, verlaufen in Honigbienen parallel über zwei Bahnen, den medialen und den lateralen Antennallobustrakt (mALT/lALT), aber in entgegengesetzter Richtung. Dieser duale olfaktorische Signalweg wurde in dieser Ausprägung bisher nur in Hymenopteren gefunden. Interessanterweise prozessieren beide Trakte Informationen über die gleichen Düfte. Dabei sind mALT PN duftspezifischer und lALT PN haben höhere spontane Aktionspotentialfrequenzen sowie höhere Aktionspotentialfrequenzen in Antwort auf einen Duftreiz. Im Pilzkörper verschalten PN auf Kenyon Zellen (KC), die intrinsischen Neurone des Pilzkörpers. KC sind im Gegensatz zu PN fast nicht spontan aktiv und kodieren Informationen auf räumlicher und zeitlicher Ebene mit geringer Aktivität. Man spricht von einem so genannten "sparse code". Im ersten Manuskript meiner Doktorarbeit habe ich untersucht, ob die Unterschiede in der Spezifität der Duftantworten zwischen mALT und lALT PN zumindest zum Teil auf Unterschieden im sensorischen Eingang beruhen. Ich habe die axonalen Projektionen der OSN der S. basiconica in Honigbienen untersucht und mit den Projektionen von OSN in S. trichoidea und S. placodea verglichen. Dazu wurden die OSN in den S. basiconica anterograd mit Fluoreszenzmarkern gefärbt und mit mittels konfokaler Mikroskopie untersucht und quantifiziert. Die Axone von OSN aus S. basiconica ziehen präferentiell in das T3 Glomerulus Cluster, die Axone der anderen beiden Sensillentypen zeigen keine Präferenz für ein spezielles Cluster. Es wurde bereits gezeigt, dass die Glomeruli des T3 Clusters von mALT PN innerviert werden. Interessanterweise fehlen S. basiconica und Teile der T3 Glomeruli in Drohnen. Deshalb habe ich untersucht, ob die T3 Reduzierung in Drohnen mit einer Reduzierung der mALT Glomeruli einhergeht. Retrograde Färbungen der mALT PN in Drohnen zeigten, daß die Zahl der mALT Glomeruli in Drohnen gegenüber Arbeiterinnen deutlich reduziert ist. Die Präferenz der OSN der S. basiconica für das T3 Cluster und die reduzierte Anzahl von mALT Glomeruli in Drohnen weisen auf ein arbeiterinnenspezifisches olfaktorisches Subsystem hin, welches aus S. basiconica, T3 Glomeruli und einer Gruppe von mALT PN besteht. Da die mALT PN duftspezifischer als lALT PN sind, vermute ich, dass auch die OSN, die auf mALT PN verschalten, duftspezifischer antworten als OSN die auf lALT PN verschalten. Daraus schließe ich, daß dieses Subsystem den Arbeiterinnen ermöglicht, passend auf die enorme Breite an Duftstoffen zu reagieren, die diese im Laufe ihres arbeitsteiligen Lebens wahrnehmen müssen. Im zweiten Manuskript meiner Doktorarbeit habe ich die Ionenkanalzusammensetzung der mALT PN, der lALT PN und der KC in situ untersucht. Mein Ansatz stellt die erste Studie dar, die die Ionenkanäle von Neuronen in der Honigbiene unter Standardbedingungen an einer intakten Gehirnpräparation untersucht. Mit diesen Messungen versuche ich die potentiellen bioelektrischen Grundlagen für Unterschiede in der Informationskodierung in mALT PN, lALT PN und Kenyon Zellen zu ergründen. In PN konnte ich eine Gruppe von Na+ Ionenkanälen und Na+ abhängigen, Ca2+ abhängigen sowie spannungsabhängigen K+ Ionenkanälen identifizieren, die die Grundlagen für hohe, spontane Aktionspotentialfrequenzen und hohe Duftantwortfrequenzen schaffen. Diese Ströme unterschieden sich nicht grundsätzlich zwischen m- und lALT PN. Jedoch wurden potentielle Ziele für neuronale Modulation gefunden, welche zu unterschiedlichen Aktionspotentialfrequenzen zwischen PN der beiden Trakte führen könnten. Im Gegensatz zu den PN wurden in Kenyon Zellen in der Relation sehr starke K+ Ionenströme gemessen. Diese dienen sehr wahrscheinlich der schnellen Terminierung von Duftantworten, also dem Erzeugen des zeitlichen "sparse code". Außerdem wurden Ca2+ abhängige K+ Kanäle gefunden, die für Koinzidenzdetektion, Lernen und Gedächtnis von Bedeutung sein können. In der Gesamtsicht folgere ich aus meinen Ergebnissen, dass die Unterschiede in der Duftspezifizität zwischen m- und lALT PN überwiegend auf deren sensorischen Eingängen von unterschiedlichen Populationen von OSN und der Verarbeitung über lokale Interneuronen im AL beruht. Die Unterschiede in der Spontanaktivität zwischen mALT und lALT basieren sehr wahrscheinlich auf neuronaler Modulation und/oder Interaktion mit LN. Die zeitliche Komponente des "sparse code" in KC entsteht höchstwahrscheinlich durch die intrinsischen elektrischen Eigenschaften der KC, wohingegen die generelle Erregbarkeit und der räumliche "sparse code" mit großer Wahrscheinlichkeit auf der Regulation durch GABAerge Neurone beruht. KW - Voltage-Clamp-Methode KW - Biene KW - Neuroanatomie KW - Neurobiology KW - Olfaction KW - Geruchssinn Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108369 ER -