TY - THES A1 - Brandenstein-Köth, Bettina T1 - Nichtlinearer Magnetotransport und memristive Funktionen von nanoelektronischen Bauteilen T1 - Nonlinear magneto transport and memristive functions of nanoelectronic devices N2 - Gegenstand dieser Arbeit sind Transportuntersuchungen an nanoelektronischen Bauelementen, wobei der Schwerpunkt in der Analyse von nichtlinearen Transporteigenschaften hybrider Strukturen stand. Zum Einsatz kamen auf GaAs basierende Heterostrukturen mit zum Beispiel kleinen Metallkontakten, die zu Symmetriebrechungen führen. Die Untersuchungen wurden bei tiefen Temperaturen bis hin zu Raumtemperatur durchgeführt. Es kamen zudem magnetische Felder zum Einsatz. So wurden zum einen der asymmetrische Magnetotransport in Nanostrukturen mit asymmetrischer Gateanordnung unter besonderer Berücksichtigung der Phononstreuung analysiert, zum anderen konnte ein memristiver Effekt in InAs basierenden Strukturen studiert werden. Des Weiteren konnte ein beachtlicher Magnetowiderstand in miniaturisierten CrAu-GaAs Bauelementen beobachtet werden, der das Potential besitzt, als Basis für extrem miniaturisierte Sensoren für den Betrieb bei Raumtemperatur eingesetzt zu werden. N2 - In the frame of this thesis transport investigations of nanoelectronic devices were performed with an emphasis on the analysis of nonlinear transport characteristics of hybrid structures with distinct asymmetries. In particular, devices based on GaAs/AlGaAs heterostructures combined with small metal contacts were investigated and pronounced nonlinear transport was found. The transport investigations were conducted at temperatures from 4:2K up to room temperature. Additionally, external magnetic fields were applied, too. An asymmetric magneto transport in nanostructures with asymmetric gate layouts and the role of phonon scattering was analyzed. Also a memristive effect was studied in InAs structures. Furthermore, a considerable magneto resistance in miniaturized structures was observed which has the potential to exploit similar devices as miniaturized sensors for application at room temperature. KW - Magnetowiderstand KW - Quantendraht KW - Niederdimensionales Elektronengas KW - Memristor KW - memristive Funktionen KW - Elektronengas KW - nichtlinearer Magnetotransport KW - Ladungslokalisierung KW - magnetoresistiver Effekt KW - memristive functions KW - nonlinear magnetotransport KW - magnetoresistive effect Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53643 ER - TY - THES A1 - Hartmann, David T1 - Elektrisches und magnetisches Schalten im nichtlinearen mesoskopischen Transport T1 - Electric and magnetic switching in nonlinear mesoscopic transport N2 - Im Rahmen dieser Arbeit wurden Transporteigenschaften von Nanostrukturen basierend auf modulationsdotierten GaAs/AlGaAs Heteroübergängen untersucht. Derartige Heterostrukturen zeichnen sich durch ein hochbewegliches zweidimensionales Elektronengas (2DEG) aus, das sich wenige 10 nm unterhalb der Probenoberfläche ausbildet. Mittels Elektronenstrahl-Lithographie und nasschemischer Ätztechnik wurde dieses Ausgangsmaterial strukturiert. Eindimensionale Leiter mit Kanalweiten von wenigen 10 nm wurden auf diese Weise hergestellt. Die Vorzüge derartiger Strukturen zeigen sich im ballistischen Elektronentransport über mehrere 10 µm und einer hohen Elektronenbeweglichkeit im Bereich von 10^6cm^2/Vs. Als nanoelektronische Basiselemente wurden eingehend eindimensionale Quantendrähte sowie y-förmig verzweigte Strukturen untersucht, deren Kanalleitwert über seitliche Gates kontrolliert werden kann. Dabei wurden die Transportmessungen überwiegend im stark nichtlinearen Transportregime bei Temperaturen zwischen 4,2 K und Raumtemperatur durchgeführt. Der Fokus dieser Arbeit lag insbesondere in der Untersuchung von Verstärkungseigenschaften und kapazitiven Kopplungen zwischen Nanodrähten, der Realisierung von komplexen Logikfunktionen wie Zähler- und Volladdiererstrukturen, dem Einsatz von Quantengates sowie der Analyse von rauschaktiviertem Schalten, stochastischen Resonanzphänomenen und Magnetfeldasymmetrien des nichtlinearen mesoskopischen Leitwertes. N2 - This thesis reports on transport features of nanoelectronic devices based on modulation doped GaAs/AlGaAs heterostructures with a two dimensional electron gas (2DEG) a few 10 nm below the sample surface. Using electron beam lithography and wet chemical etching techniques low dimensional conductors were designed with a channel width of a few 10 nm. Such conductors enable ballistic transport up to 10 µm with high electron mobilities in the range of 10^6cm^2/Vs. One dimensional quantum wires as well as y-branched structures were used as nanoelectronic basic elements, which were controlled by lateral side-gates. Transport measurements were mainly performed in the strong nonlinear transport regime at temperatures between 4.2 K and room temperature. Experimental investigations were focused on gain, capacitive couplings between single nanowires, the realisation of complex logic functions like counter and fulladder devices, quantum-gate applications, noise activated switching, stochastic resonance phenomena and magnetic field asymmetries of the nonlinear mesoscopic transport. KW - Niederdimensionales Elektronengas KW - Galliumarsenid-Bauelement KW - Galliumarsenid-Feldeffekttransistor KW - Nanoelektronik KW - Stochastische Resonanz KW - Elektronisches Rauschen KW - Quantendraht KW - Drei-Fünf-Halbleiter KW - Festkörperphysik KW - Y-Schalter KW - Magnetsensor KW - bistabiles Schalten KW - ballistischer Transport KW - Volladdierer KW - nanoelectronic KW - mesoscopic KW - ballistic KW - full adder KW - magnetic sensor KW - bistable switching Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29175 ER - TY - THES A1 - Lutz, Peter T1 - Surface and Interface Electronic Structure in Ferroelectric BaTiO\(_3\) T1 - Die elektronische Struktur an der Grenz- und Oberfläche des Ferroelektrikums BaTiO\(_3\) N2 - Transition metal oxides (TMO) represent a highly interesting material class as they exhibit a variety of different emergent phenomena including multiferroicity and superconductivity. These effects result from a significant interplay of charge, spin and orbital degrees of freedom within the correlated d-electrons. Oxygen vacancies (OV) at the surface of certain d0 TMO release free charge carriers and prompt the formation of a two-dimensional electron gas (2DEG). Barium titanate (BaTiO3) is a prototypical and promising d0 TMO. It displays ferroelectricity at room temperature and features several structural phase transitions, from cubic over tetragonal (at room temperature) and orthorhombic to rhombohedral. The spontaneous electric polarization in BaTiO3 can be used to manipulate the physical properties of adjacent materials, e.g. in thin films. Although the macroscopic properties of BaTiO3 are studied in great detail, the microscopic electronic structure at the surface and interface of BaTiO3 is not sufficiently understood yet due to the complex interplay of correlation within the d states, oxygen vacancies at the surface, ferroelectricity in the bulk and the structural phase transitions in BaTiO3. This thesis investigates the electronic structure of different BaTiO3 systems by means of angle-resolved photoelectron spectroscopy (ARPES). The valence band of BaTiO3 single crystals is systematically characterized and compared to theoretical band structure calculations. A finite p-d hybridization of titanium and oxygen states was inferred at the high binding energy side of the valence band. In BaTiO3 thin films, the occurrence of spectral weight near the Fermi level could be linked to a certain amount of OV at the surface which effectively dopes the host system. By a systematic study of the metallic surface states as a function of temperature and partial oxygen pressure, a model was established which reflects the depletion and accumulation of charge carriers at the surface of BaTiO3. An instability at T ~ 285K assumes a volatile behavior of these surface states. The ferroelectricity in BaTiO3 allows a control of the electronic structure at the interface of BaTiO3-based heterostructures. Therefore, the interface electronic structure of Bi/BaTiO3 was studied with respect to the strongly spin-orit coupled states in Bi by also including a thickness dependent characterization. The ARPES results, indeed, confirm the presence of Rashba spin-split electronic states in the bulk band gap of the ferroelectric substrate. By varying the film thickness in Bi/BaTiO3, it was able to modify the energy position and the Fermi vector of the spin-split states. This observation is associated with the appearance of an interface state which was observed for very low film thickness. Both spectral findings suggest a significant coupling between the Bi films and BaTiO3. N2 - Übergangsmetalloxide stellen eine hochinteressante Materialklasse dar, da sie eine Vielzahl neuartiger Phänomene, wie z.B. multiferroische Eigenschaften und Supraleitung, aufweisen. Diese Effekte sind die Folge eines komplexen Zusammen- spiels zwischen den Freiheitsgraden von Ladung, Spin und der orbitalen Komponente innerhalb eines korrelierten d-Elektronensystems. Sauerstoffstörstellen an der Ober- fläche von einigen dieser Systeme führen zu der Ausbildung freier Ladungsträger und der damit verbundenen Erzeugung eines 2-dimensionalen Elektronengases (2DEG). Das in dieser Arbeit untersuchte Bariumtitanat (BaTiO3) ist ein typisches und sehr vielversprechendes d0-Übergangsmetalloxid. Zum einen ist es ferroelektrisch bei Raumtemperatur und zum anderen weist es mehrere strukturelle Phasenübergänge auf, von kubisch über tetragonal (bei Raumtemperatur) und orthorhombisch zu rhom- boedrisch. Die spontane elektrische Polarisation in BaTiO3 kann dazu verwendet werden um physikalische Eigenschaften angrenzender Materialsysteme, z.B. von Dünnfilmen, zu beeinflussen. Obwohl vor allem die makroskopischen ferroelektrischen Eigenschaften von BaTiO3 bereits detailliert untersucht wurden, ist die mikrosko- pische elektronische Struktur in BaTiO3 und in BaTiO3-Grenzflächen noch nicht voll- ständig verstanden. Der Grund hierfür ist ein komplexes Wechselspiel zwischen elek- tronischen Korrelationseffekten, Sauerstoffstörstellen, Ferroelektrizität und struk- turellen Aspekten. Diese Dissertation befasst sich mit der elektronischen Struktur von verschiede- nen BaTiO3-Systemen, unter Verwendung der winkelaufgelösten Photoelektronen- spektroskopie (PES). Zum einen wurde das Valenzband von BaTiO3-Einkristallen systematisch untersucht und mit theoretischen Rechnungen verglichen. Dabei konnte eine endliche p-d-Hybridisierung von Titan- mit Sauerstoff-Zuständen im Valenzband festgestellt werden. Weiterhin wurde in BaTiO3-Dünnfilmen das Auftreten von spek- tralem Gewicht nahe des Ferminiveaus beobachtet. Diese metallischen Zustände sind auf eine erhöhte Dichte von Sauerstoffstörstellen an der Oberfläche zurückzuführen, wodurch das System effektiv dotiert wird. Die systematische Untersuchung der elek- tronischen Struktur in Abhängigkeit von Temperatur und Sauerstoff-Partialdruck wurde erfolgreich durch ein Modell beschrieben, das eine Instabilität der metallischen Zustände bei T ≈ 285K aufzeigt. Die ferroelektrische Eigenschaft von BaTiO3 kann in Heterostrukturen dazu verwendet werden, um die elektronische Struktur an der Grenzfläche zu kontrol- lieren. Zu diesem Zweck wurde in dieser Arbeit die mikroskopische elektronische Struktur an der Grenzfläche von Bi/BaTiO3 bedeckungsabhängig charakterisiert und im Hinblick auf die spin-polarisierten Zustände in Bi untersucht. So konnten Rashba-spinaufgespaltene elektronische Zustände in der Volumenbandlücke des fer- roelektrischen Substrates nachgewiesen werden. Eine Variation der Filmdicke in Bi/BaTiO3 führte zu einer energetischen Verschiebung und zu einer Änderung des Fermivektors der spinaufgespaltenen Zustände. Diese Beobachtung hängt stark mit dem Ausbilden eines Grenzflächenzustandes zusammen, der für sehr niedrige Be- deckungen beobachtet wurde. Beide Effekte weisen zudem auf eine Wechselwirkung zwischen den Bi-Filmen und BaTiO3 KW - Bariumtitanat KW - Photoelektronenspektroskopie KW - Ferroelektrikum KW - Spintronik KW - Niederdimensionales Elektronengas KW - barium titanate KW - photoelectron spectroscopy KW - ferroelectricity KW - spintronic KW - two-dimensional electron gas Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159057 ER -