TY - THES A1 - Klett, Michael T1 - Auxiliary particle approach for strongly correlated electrons : How interaction shapes order T1 - Hilfsteilchen-Projektion stark korrelierter Elektronensysteme N2 - Since the genesis of condensed matter physics, strongly correlated fermionic systems have shown a variety of fascinating properties and remain a vital topic in the field. Such systems arise through electronic interaction, and despite decades of intensive research, no holistic approach to solving this problem has been found. During that time, physicists have compiled a wealth of individual experimental and theoretical results, which together give an invaluable insight into these materials, and, in some instances, can explain correlated phenomena. However, there are several systems that stubbornly refuse to fall completely in line with current theoretical descriptions, among them the high-\( T_c{}\) cuprates and heavy fermion compounds. Although the two material classes have been around for the better part of the last 50 years, large portions of their respective phase diagram are still under intensive debate. Recent experiments in several electron-doped cuprates compounds, e.g. neodymium cerium copper oxide (Nd\(_{2x}\)Ce\(_x\)CuO\(_4\)), reveal a charge ordering about an antiferromagnetic ground state. So far, it has not been conclusively clarified how this intertwining of charge and spin polarization comes about and how it can be reconciled with a rigorous theoretical description. The heavy-fermion semimetals, on the other hand, have enjoyed renewed scientific interest with the discovery of topological Kondo insulators, a new material class offering a unique interface of topology, symmetry breaking, and correlated phenomena. In this context, samarium hexaboride (SmB\(_6\)) has emerged as a prototypical system, which may feature a topological ground state. In this thesis, we present a spin rotational invariant auxiliary particle approach to investigate the propensities of interacting electrons towards forming new states of order. In particular, we study the onset of spin and charge order in high-\( T_c{}\) cuprate systems and Kondo lattices, as well as the interplay of magnetism and topology. To that end, we use a sophisticated mean-field approximation of bosonic auxiliary particles augmented by a stability analysis of the saddle point via Gaussian fluctuations. The latter enables the derivation of dynamic susceptibilities, which describe the response of the system under external fields and offer a direct comparison to experiments. Both the mean-field and fluctuation formalisms require a numerical tool that is capable of extremizing the saddle point equations, on the one hand, and reliably solving a loop integral of the susceptibility-type, on the other. A full, from scratch derivation of the formalism tailored towards a software implementation, is provided and pedagogically reviewed. The auxiliary particle method allows for a rigorous description of incommensurate magnetic order and compares well to other established numerical and analytical techniques. Within our analysis, we employ the two-dimensional one-band Hubbard as well as the periodic Anderson model as minimal Hamiltonians for the high-\( T_c{}\) cuprates and Kondo systems, respectively. For the former, we observe a regime of intertwined charge- and spin-order in the electron-doped regime, which matches recent experimental observations in the cuprate material Nd\(_{2x}\)Ce\(_x\)CuO\(_4\). Furthermore, we localize the emergence of a Kondo regime in the periodic Anderson model and establish the magnetic phase diagram of the two-band model for topological Kondo insulators. The emerging antiferromagnetic ground state can be characterized by its topological properties and shows, for a non-trivial phase, topologically protected hinge modes. N2 - Stark korrelierte Fermionen in einem Festkörper-Kristallgitter weisen eine Vielzahl faszinierender kollektiver Eigenschaften auf und stellen damit eines der konzeptionell reichhaltigsten Themenkomplexe auf dem Gebiet der Physik der kondensierten Materie da. Die dazu nötigen Mechanismen lassen sich auf die elektronische Coulomb-Wechsel-wirkung zurückführen und sind trotz jahrzehntelanger intensiver Forschung bis heute nicht geschlossen gelöst worden. Vielmehr wurden - Stück für Stück - experimentelle und theoretische Einzelergebnisse zusammen getragen, die nicht nur einen tiefen Einblick in diese Materialien geben, sondern in einigen Fällen sogar korrelierte Phänomene erklären können. Allerdings gibt es durchaus Strukturen, die sich hartnäckig weigern, mit den bisherigen theoretischen Beschreibungen vollständig übereinzustimmen, darunter die Kuprat-Hochtemperatursupraleiter und die Schwer-Fermionenverbindungen. Obwohl diese beiden Materialklassen seit etwa 50 Jahren erforscht werden, sind große Teile ihrer jeweiligen Phasendiagramme noch nicht abschließend entschlüsselt. Experimente an mehreren elektronendotierten Kuprat-verbindungen, z. B. Neodym-Cerium-Kupferoxid (Nd\(_{2x}\)Ce\(_x\)CuO\(_4\)), zeigen unter anderem eine Ladungsdichtewelle, die auf einem antiferromagnetischen Grundzustand beruht. Bislang ist nicht abschließend geklärt, wie diese Verschränkung von Ladungs- und Spinpolarisation zustande kommt und wie sie mit einer strengen theoretischen Beschreibung in Einklang zu bringen ist. Schwer-Fermionen Halbmetalle erleben mit der Entdeckung der topologischen Kondo-Isolatoren eine Renaissance und bieten eine einzigartige Schnittstelle zwischen Topologie, Symmetriebrechung und korrelierten Phänomenen. Der wahrscheinlich vielversprechendste Kandidat dieser neuen Materialklasse ist Samariumhexaborid (SmB\(_6\)). In dieser Arbeit nutzen wir einen spinrotationsinvarianten Hilfsteilchenansatz um die Emergenz neuer Ordnungszustände wechselwirkender Elektronen zu untersuchen. Im Besonderen interessiert uns das Zusammenspiel von Spin- und Ladungsdichtewellen in den Hochtemperatur Kupraten und Kondo-systemen, sowie die Interaktion von Magnetismus und Topologie. Dazu verwenden wir eine hoch parametrische Molekular-Feld-Analyse der bosonischen Hilfsteilchen, die anschließend durch eine Stabilitätsanalyse des Sattelpunkts ergänzt wird. Sowohl die Molekular-Feld-Approximation, als auch der Fluktuations-Formalismus erfordern ein numerisches Softwaretool, das in der Lage ist sowohl Sattelpunkt-Gleichungen als auch Loopintegral präzise zu lösen. Wir präsentieren eine pädagogisch aufgearbeitete, von Grund auf entwickelte Herleitung des Formalismus, die auf eine Software-Implementierung zugeschnitten ist. Der Hilfsteilchenansatz erlaubt überdies eine rigorose Beschreibung inkommensurabel magnetischer Ordnungen und reproduziert etablierten numerischen und analytische Ergebnisse in guter Übereinstimmung. Für unsere Analyse verwenden wir sowohl das zweidimensionale Einband-Hubbard- als auch das periodische Anderson-Modell als minimalen Hamitonian für die Hochtemperatur-Kuprate bzw. Kondo-Systeme. Im Falle der Kuprate finden wir eine Phase, die durch eine kombinierte Ladungs- und Spinordnung im elektronendotierten Parameterbereich gekennzeichnet ist und überdies gut mit experimentellen Beobachtungen im Kupratmaterial Nd\(_{2x}\)Ce\(_x\)CuO\(_4\) übereinstimmt. Des Weitern wird das Auftreten des Kondo-Regimes im periodischen Anderson-Modell untersucht und das magnetische Phasendiagramm des Zwei-Band-Hamiltonians eines topologischen Kondo-Isolators kartiert. Der antiferromagnetische Grundzustand kann durch eine topologische Invariante charakterisiert werden und zeigt für eine nicht-triviale Phase eindimensionale topologisch geschützte Kantenmoden. KW - Festkörpertheorie KW - Slave-Boson-Verfahren KW - Hochtemperatursupraleiter KW - Kondo-System KW - Topologische Phase KW - Mean-Field-Methode Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248121 ER - TY - THES A1 - Brehm, Sascha T1 - Two-Particle Excitations in the Hubbard Model for High-Temperature Superconductors: A Quantum Cluster Study T1 - Zwei-Teilchen Anregungen im Hubbard Modell für Hochtemperatur-Supraleiter: Eine Quanten-Cluster Untersuchung N2 - Two-particle excitations, such as spin and charge excitations, play a key role in high-Tc cuprate superconductors (HTSC). Due to the antiferromagnetism of the parent compound the magnetic excitations are supposed to be directly related to the mechanism of superconductivity. In particular, the so-called resonance mode is a promising candidate for the pairing glue, a bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant electrons may be responsible for some of the observed properties of HTSC. Hence, getting to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate materials . To analyze the corresponding two-particle correlation functions we develop in the present thesis a new, non-perturbative and parameter-free technique for T=0 which is based on the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from an isolated cluster and use a fully renormalized bubble susceptibility chi0 including the VCA one-particle propagators.Within our new approach, the magnetic excitations of HTSC are shown to be reproduced for the Hubbard model within the relevant strong-coupling regime. Exceptionally, the famous resonance mode occurring in the underdoped regime within the superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity and hourglass dispersion are in good overall agreement with experiments. Furthermore, characteristic features such as the position in energy of the resonance mode and the difference of the imaginary part of the susceptibility in the superconducting and the normal states are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a strongly-correlated parameter-free calculation revealed these salient magnetic properties supporting the S=1 magnetic exciton scenario for the resonance mode. Besides the INS data on magnetic properties further important new insights were gained recently via ARPES (Angle-Resolved Photoemission-Spectroscopy) and Raman experiments which disclosed a quite different doping dependence of the antinodal compared to the near-nodal gap. This thesis provides an approach to the Raman response similar to the magnetic case for inspecting this gap dichotomy. In agreement with experiments and one-particle data obtained in the VCA, we recover the antinodal gap decreasing and the near-nodal gap increasing as a function of doping. Hence, our results prove the Hubbard model to account for these salient gap features. In summary, we develop a two-particle cluster approach which is appropriate for the strongly-correlated regime and contains no free parameter. Our results obtained with this new approach combined with the phase diagram and the one-particle excitations obtained in the VCA strongly constitute a Hubbard model description of HTSC cuprate materials. N2 - Zwei-Teilchen Anregungen, darunter Spin und Ladungs Anregungen, sind von besonderer Bedeutung in Hoch-Tc Kuprat Supraleitern (HTSL). Aufgrund der antiferromagnetischen Phase bei niedrigen Dotierungen werden magnetische Anregungen direkt mit dem Mechanismus der Supraleitung in Verbindung gebracht. Gerade die sogenannte Resonanzmode ist ein vielversprechender Kandidat für den pairing glue, eine bosonische Anregung, welche die Paarung von Elektronen induziert. Weiterhin wird deren Wechselwirkung mit itineranten Elektronen verantwortlich gemacht für einige der beobachteten Eigenschaften der HTSL. Für ein tieferes Verständnis der Kuprate ist es daher unerlässlich, der Resonanzmode auf den Grund zu gehen. Um die entsprechenden Zwei-Teilchen Korrelationsfunktionen zu analysieren, entwickeln wir auf Basis des Variational Cluster Approach (VCA, eine Cluster Methode, um Ein-Teilchen Green Funktionen zu berechnen) in der vorliegenden Dissertation eine neue, nicht-perturbative und parameterfreie Technik für T=0. Im Sinne der VCA berechnen wir einen effektiven Elektron-Loch Vertex auf einem einzelnen Cluster und verwenden eine vollkommen renormierte Bubble Suszeptibilität chi0, welche die VCA Ein-Teilchen-Propagatoren beinhaltet. Mit Hilfe unserer neuen Technik können wir die magnetischen Anregungen der HTSL im Rahmen des Hubbard Modells in der stark korrellierten Phase reproduzieren. Als herausragendes Ergebnis erhalten wir die berühmte Resonanzmode im underdotierten Bereich innerhalb des von der Supraleitung induzierten Gaps der Spin-Flip Elektron-Loch Anregungen. Deren Intensität und Sanduhren-förmige Dispersion zeigen eine sehr gute Übereinstimmung mit den Experimenten. Weiterhin sind charakteristische Eigenschaften, wie die Energie der Resonanzmode oder die Differenz des Imaginärteils der Suszeptibilität in der supraleitenden und normalen Phase im Einklang mit Inelastischen Neutronenstreu (INS) Experimenten. Zum ersten Mal bringt eine stark-korrellierte und parameterfreie theoretische Rechnung diese besonderen magnetischen Eigenschaften hervor und bekräftigt damit die Erklärung der Resonanzmode als S=1 magnetisches Exziton. Neben den INS Resultaten zu magnetischen Eigenschaften wurden kürzlich weitere wichtige neue Erkenntnisse mittels ARPES (Winkelaufgelöste Photoemissionen Spektroskopie) und Raman Experimenten erhalten. Beide legten eine deutlich unterschiedliche Dotierungsabhängigkeit des anti-nodalen Gaps verglichen mit dem Gap nahe des nodalen Punktes offen. Im Rahmen dieser Dissertation wird eine der magnetischen Berechnung ähnliche Technik für den Raman Response benutzt, um dieses unterschiedliche Verhalten des Gaps zu untersuchen. Übereinstimmend mit den Experimenten und Ein-Teilchen Ergebnissen aus VCA Rechnungen bekommen wir ein Abfallen des anti-nodalen Gaps und Ansteigen des Gaps nahe dem nodalen Punkt als Funktion der Dotierung. Folglich zeigen unsere Ergebnisse, dass das Hubbard Modell diese besonderen Eigenschaften des Gaps beinhaltet. Zusammenfassend entwickeln wir eine Zwei-Teilchen Cluster Technik, welche für stark korrellierte Systeme geeignet ist und keine freien Parameter enthält. Unsere Ergebnisse mit dieser neuen Technik in Verbindung mit dem Phasendiagramm und Ein-Teilchen Anregungen der VCA Rechnungen bekräftigen mit Nachdruck eine Beschreibung der HTSL Kuprate auf Basis des Hubbard Modells. KW - Hochtemperatursupraleiter KW - Hubbard-Modell KW - Magnetismus KW - Starke Kopplung KW - High-temperature superconductivity KW - Hubbard model KW - magnetism KW - strong correlated electrons Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-38719 ER - TY - THES A1 - Eckl, Thomas T1 - Phenomenological phase-fluctuation model for the underdoped cuprates T1 - Phänomenologisches Phasenfluktuationsmodell für die unterdotierten Kuprate N2 - In this thesis, a phenomenological phase-fluctuation model for the pseudogap regime of the underdoped cuprates was discussed. The key idea of the phase-fluctuation scenario in the high-T_c superconductors is the notion that the pseudogap observed in a wide variety of experiments arises from phase fluctuations of the superconducting gap. In this scenario, below a mean-field temperature scale T_c^{MF}, a d_{x^2-y^2}-wave gap amplitude is assumed to develop. However, the superconducting transition is suppressed to a considerably lower transition temperature T_c by phase fluctuations. In the intermediate temperature regime between T_c^{MF} and T_c, phase fluctuations of the superconducting order parameter give rise to the pseudogap phenomena. The phenomenological phase-fluctuation model discussed in this thesis consists of a two-dimensional BCS-like Hamiltonian where the phase of the pairing-amplitude is free to fluctuate. The fluctuations of the phase were treated by a Monte Carlo simulation of a classical XY model. First, the density of states was calculated. The quasiparticle tunneling conductance (dI/dV) obtained from our phenomenological phase fluctuation model was able to reproduce characteristic and salient features of recent scanning-tunneling studies of Bi2212 and Bi2201 suggesting that the pseudogap behavior observed in these experiments arises from phase fluctuations of the d_{x^2-y^2}-wave pairing gap. In calculating the single-particle spectral weight, we were further able to show how phase fluctuations influence the experimentally observed quasiparticle spectra in detail. In particular the disappearance of the BCS-Bogoliubov quasiparticle band at T_c and the change from a more V-like superconducting gap to a rather U-like pseudogap above T_c can be explained in a consistent way by assuming that the low-energy pseudogap in the underdoped cuprates is due to phase fluctuations of a local d_{x^2-y^2}-wave pairing gap with fixed magnitude. Furthermore, phase fluctuations can explain why the pseudogap starts closing from the nodal points, whereas it rather fills in along the anti-nodal directions and they can also account for the characteristic temperature dependence of the superconducting (pi,0)-photoemission-peak. Next, we have shown that the "violation" of the low-frequency optical sum rule recently observed in the SC state of underdoped Bi2212, which is associated with a reduction of kinetic energy, can be related to the role of phase fluctuations. The decrease in kinetic energy is due to the sharpening of the quasiparticle peaks close to the superconducting transition at T_c == T_{KT}, where the phase correlation length xi diverges. A detailed analysis of the temperature and frequency dependence of the optical conductivity sigma(omega)=sigma_1(omega)+i sigma_2(omega) revealed a superconducting scaling of sigma_2(omega), which starts already above T_c, exactly as observed in high-frequency microwave conductivity experiments on Bi2212. On the other hand, our model was only able to account for the characteristic peak, which is observed in sigma_1(omega) close to the superconducting transition, after the inclusion of an additional marginal-Fermi-liquid scattering-rate in the optical conductivity formula. Finally, we calculated the static uniform diamagnetic susceptibility. It turned out that the precursor effects of the fluctuating diamagnetism above T_c are very small and limited to temperatures close to T_c in a phase-fluctuation scenario of the pseudogap. Instead, the temperature dependence of the uniform static magnetic susceptibility is dominated by the Pauli spin susceptibility, which displayed a very characteristic temperature dependence, independent of the details of the gap function used in our model. This temperature dependence is qualitatively very similar to the experimentally observed change of the Knight-shift as a function of temperature in underdoped Bi2212. N2 - In der vorliegenden Arbeit wurde ein phänomenologisches Phasenfluktuationsmodell zur Beschreibung der "Pseudolücken"-Phase in den unterdotierten Hochtemperatur-Supraleitern untersucht. Im Gegensatz zu konventionellen metallischen BCS-Supraleitern skaliert in den unterdotierten Kupraten die kritische Temperatur, unterhalb derer Supraleitung einsetzt, nicht mit der Größe der supraleitenden Energielücke Delta, und damit der Stärke der Paaranziehung, sondern mit der superfluiden Dichte rho_s, d. h. der Dichte der supraleitenden Elektronen. Unterdotierte Kuprate liegen im Phasendiagramm sehr nahe am Mott-isolierenden Zustand und haben daher eine relativ geringe Anzahl an beweglichen Ladungsträgern. Dies hat zur Folge, dass bei einer Temperatur T^* = T_c^{MF} zunächst die Paarung der Ladungsträger einsetzt, diese sich aber erst bei einer sehr viel niedrigeren Temperatur T_c = T_{phi} phasenkohärent bewegen und damit supraleitend werden. Dies ist das so genannte Phasenfluktuationsszenario für die Pseudolücke im Energiespektrum der unterdotierten Kuprate. Die Pseudolücke entwickelt sich oberhalb von T_c kontinuierlich aus der supraleitenden Energielücke heraus und wird bis zu einer Temperatur T^* >> T_c in verschiedenen Experimenten beobachtet. Als Ausgangspunkt der vorliegenden Arbeit diente nun ein BCS-artiger Hamiltonoperator mit fester Paarungsamplitude, bei dem jedoch die Phase der lokalen Paare frei fluktuieren konnte. Alle Rechnungen wurden durchgeführt, indem mittels einer Monte Carlo Simulation des klassischen XY-Modells verschiedene Phasenkonfigurationen erzeugt wurden und für jede dieser Phasenkonfigurationen der BCS-artige Hamiltonoperator exakt diagonalisiert wurde. Die erste Anwendung dieses phänomenologischen Phasenfluktuationsmodells bestand in der Berechnung von Einteilchen-Tunnelspektren. Hierbei konnte eine ausgezeichnete Übereinstimmung mit den Experimenten, insbesondere was die Temperaturentwicklung der supraleitenden Kohärenzpeaks und das charakteristische auffüllen der Pseudolücke mit ansteigenden Temperaturen betrifft, erzielt werden. Durch einen detaillierten Vergleich zwischen Theorie und Experiment konnte gezeigt werden, auf welche Weise Phasenfluktuationen das Quasiteilchenspektrum beeinflussen. Insbesondere das Verschwinden der BCS-Bogoliubov Quasiteilchenbänder oberhalb von T_c und die Veränderung der Energielücke, von einer V-artigen supraleitenden Lücke hin zu einer mehr U-artigen Pseudolücke oberhalb von T_c, konnte in konsistenter Weise durch Phasenfluktuationen des supraleitenden Ordnungsparameters erklärt werden. Darüberhinaus war das Phasenfluktuationsmodell in der Lage zu erklären, warum die Pseudolücke von den Knotenpunkten an der Fermifläche her anfängt sich zu schließen, wohingegen sie an den Anti-Knotenpunkten eher aufgefüllt wird. Auch konnte die charakteristische Temperaturentwicklung des so genannten "supraleitenden" (pi,0)-Photoemissionspeaks sehr gut durch Phasenfluktuationen beschrieben werden. Als nächstes wurden Experimente zur Verletzung der optischen Niederfrequenz-Summenregel in unterdotierten Bi2212-Verbindungen untersucht, welche auf eine Reduktion der kinetischen Energie im supraleitenden Zustand hindeuten. Es konnte gezeigt werden, dass diese Reduktion mit der Rolle von Phasenfluktuationen beim supraleitenden Übergang in Verbindung gebracht werden kann. Die Reduktion der kinetischen Energie erfolgt durch das Entstehen scharfer Quasiteilchenpeaks bei T_c. Dort beginnt die Korrelationslänge der fluktuierenden Phasen zu divergieren, und es stellt sich eine quasi-langreichweitige Ordnung ein. Eine detailliert Analyse der Frequenz und Temperaturabhängigkeit der optischen Leitfähigkeit ergab eine supraleitende Skalierung des Imaginärteils der optischen Leitfähigkeit schon oberhalb von T_c, genau wie in Mikrowellen-Hochfrequenzleitfähigkeitsexperimenten beobachtet. Das experimentell beobachtete Maximum im Realteil der optischen Leitfähigkeit bei T_c konnte unser phänomenologisches Phasenfluktuationsmodell jedoch nur durch den Einbau einer zusätzlichen marginalen Fermiflüssigkeits-Streurate in die Formel für die optische Leitfähigkeit beschreiben. Als letztes wurde die homogene statische diamagnetische Suszeptibilität berechnet. Es stellte sich heraus, dass Vorläufereffekte des idealen diamagnetischen Zustands oberhalb von T_c in der statischen diamagnetische Suszeptibilität äußerst gering sind und sich auf Temperaturen in der Nähe von T_c beschränken. Stattdessen wird die Temperaturabhängigkeit der statischen homogenen magnetischen Suszeptibilität von der Pauli-Spinsuszeptibilität bestimmt. Diese zeigt für das Phasenfluktuationsmodell einen charakteristischen Verlauf, der erstaunlich gut mit der Temperaturabhängigkeit des Magnetresonanz Knight-shift in unterdotierten Bi2212-Verbindungen übereinstimmt. KW - Hochtemperatursupraleiter KW - Cuprate KW - Cooper-Paar KW - Schwingungsphase KW - Fluktuation KW - Hochtemperatursupraleitung KW - unterdotierte Kuprate KW - stark korrelierte Elektronensysteme KW - Phasenfluktuationen KW - BCS-Theorie KW - high-temperature superconductivity KW - underdoped cuprates KW - strongly correlated electron systems KW - phase-fluctuations KW - BCS-theory Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12115 ER - TY - THES A1 - Dahnken, Christopher T1 - Spectral properties of strongly correlated electron systems T1 - Spektral Eigenschaften stark korrelierter Elektronensysteme N2 - We investigate the single particle static and dynamic properties at zero temperature within the Hubbard an three-band-Hubbard model for the superconducting copper oxides. Based on the recently proposed self-energy functional approach (SFA) [M.Potthoff, Eur. Phys. J. B 32 429 (2003)], we present an extension of the cluster-perturbation theory (CPT) to systems with spontaneous broken symmetry. Our method accounts for both short-range correlations and long-range order. Short-range correlations are accurately taken into account via the exact diagonalization of finite clusters. Long-range order is described by variational optimization of a ficticious symmetry-breaking field. In comparison with related cluster methods, our approach is more flexible and, for a given cluster size, less demanding numerically, especially at zero temperature. An application of the method to the antiferromagnetic phase of the Hubbard model at half-filling shows good agreement with results from quantum Monte-Carlo calculations. We demonstrate that the variational extension of the cluster-perturbation theory is crucial to reproduce salient features of the single-particle spectrum of the insulating cuprates. Comparison of the dispersion of the low-energy excitations with recent experimental results of angular resolved photoemission spectroscopy (ARPES) allows us to fix a consistent parameter set for the one-band Hubbard model with an additional hopping parameter t' along the lattice diagonal. The doping dependence of the single-particle excitations is studied within the t-t-U Hubbard model with special emphasis on the electron doped compounds. We show, that the ARPES results on the band structure and the Fermi surface of Nd{2-x}Ce_xCuOCl_{4-\delta} are naturally obtained within the t-t-U Hubbard model without further need for readjustment or fitting of parameters, as proposed in recent theoretical considerations. We present a theory for the photon energy and polarization dependence of ARPES intensities from the CuO2 plane in the framework of strong correlation models. The importance of surface states for the observed experimental facts is considered. We show that for electric field vector in the CuO_2 plane the ‘radiation characteristics’ of the O 2p_{\sigma} and Cu 3d_{x^2-y^2} orbitals are strongly peaked along the CuO_2 plane, i.e. most photoelectrons are emitted at grazing angles. This suggests that surface states play an important role in the observed ARPES spectra, consistent with recent data from Sr_2CuCl_2O_2. We show that a combination of surface state dispersion and Fano resonance between surface state and the continuum of LEED-states may produce a precipitous drop in the observed photoelectron current as a function of in-plane momentum, which may well mimic a Fermi-surface crossing. This effect may explain the simultaneous ‘observation’ of a hole-like and an electron-like Fermi surfaces in Bi_2Sr_2CaCu_2O_{8+\delta} at different photon energies. N2 - Statische und dynamische Eigenschaften des Einband- und Dreiband-Hubbard-Modelles für die supraleitenden Kuprate werden untersucht. Basierend auf dem kürzlich vorgschlagenen "Self-energy Functional Approach" (SFA) [M.Potthoff, Eur. Phys. J. B 32 429 (2003)] wird eine Erweiterung der "Cluster-Perturbation Theory" (CPT) für Systeme mit spontant gebrochener Symmetrie vorgeschlagen, die auf aktuelle Probleme stark korrelierter Elektronensysteme, im besonderen der Hochtemperatur-Supraleiter, angewandt wird. KW - Hochtemperatursupraleiter KW - Elektronenkorrelation KW - Starke Kopplung KW - Hubbard-Modell KW - starke Korrelationen KW - Hochtemperatur-Supraleiter KW - Hubbard-Modell KW - strong corrleations KW - high-temperature Superconductors KW - Hubbard model Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12238 ER - TY - THES A1 - Hochkeppel, Stephan T1 - One- and Two-Particle Correlation Functions in the Dynamical Quantum Cluster Approach T1 - Ein- und Zwei-Teilchen Korrelationsfunktionen in der Dynamischen Quanten Cluster Näherung N2 - This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA) which systematically restores non-local corrections to the Dynamical Mean Field approximation (DMFA). The DCA is formulated in momentum space and is characterised by a patching of the Brillouin zone where momentum conservation is only recovered between two patches. The approximation works well if k-space correlation functions show a weak momentum dependence. In order to study the temperature and doping dependence of the spin- and charge excitation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin and/or charge excitations. The effective vertex is calculated by using the Quantum Monte Carlo method on the finite cluster whereas the analytical continuation of dynamical quantities is performed by a stochastic version of the maximum entropy method. A comparison with high temperature auxiliary field quantum Monte Carlo data serves as a benchmark for our approach to two-particle correlation functions. Our method can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations: a collective spin mode emerges at optimal doping and sufficiently low temperatures in the spin response spectrum and exhibits the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy single-particle excitations are characterised by a coherent quasiparticle with bandwidth J. The origin of the quasiparticle can be quite well understood in a picture of a more or less antiferromagnetic ordered background in which holes are dressed by spin-excitations to allow for a coherent motion. By increasing doping, all features which are linked to the spin-polaron vanish in the single-particle as well as two-particle spin response spectrum. In the second part of the thesis an analysis of superconductivity in the Hubbard model is presented. The superconducting instability is implemented within the Dynamical Cluster Approximation by essentially allowing U(1) symmetry breaking baths in the QMC calculations for the cluster. The superconducting transition temperature T_c is derived from the d-wave order parameter which is directly estimated on the Monte Carlo cluster. The critical temperature T_c is in astonishing agreement with the temperature scale estimated by the divergence of the pair-field susceptibility in the paramagnetic phase. A detailed study of the pseudo and superconducting gap is continued by the investigation of the local and angle-resolved spectral function. N2 - In der vorliegenden Arbeit wird das zwei-dimensionale Hubbard Modell im Bereich stark wechselwirkender Elektronen mit Hilfe der Dynamischen Cluster Approximation (DCA) untersucht. Im Rahmen der DCA wird das gegebene Gitter-Problem auf einen Cluster, der selbst-konsistent in einem effektiven Medium eingebettet ist, abgebildet. Somit stellt die DCA eine Erweiterung zur Dynamischen Molekularfeld-Theorie dar, indem nicht-lokale Korrelationen berücksichtigt werden. Ein Ziel dieser Arbeit stellt die Untersuchung von dynamischen Korrelationsfunktionen für das Hubbard Modell dar. Dazu wird die Dynamische Cluster Approximation auf die Untersuchung von Zwei-Teilchen Korrelationsfunktionen erweitert. Der volle irreduzible Zweiteilchen-Vertex mit drei Impulsen und Frequenzen wird durch einen effektiven Vertex, dessen Impuls und Frequenzabhängigkeit durch das Spin- bzw. Ladungs-Anregungsspektrum gegeben ist, approximiert. Der effektive Vertex wird mit Hilfe der Quanten Monte Carlo Technik auf einem endlichen Cluster bestimmt, wobei die dynamischen Grössen durch eine stochastische Version der Maximum Entropie Methode auf die reelle Frequenz-Achse analytisch fortgesetzt werden. Ein Vergleich mit dem gewöhnlichen BSS Quanten Monte Carlo Verfahren dient als Maßstab für unsere Näherung der Zwei-Teilchen Korrelationsfunktionen. Der Vergleich zeigt auf, dass unsere Methode grundlegende Eigenschaften des Spin- und Ladungs-Anregungsspektrums reproduzieren kann. Für optimale bzw. höhere Dotierungen erhalten wir ein übereinstimmendes Gesamtbild zwischen Ladungs-, Spin-, und Ein-Teilchen-Anregungsspektrum: bei optimaler Dotierung und hinreichend niedriger Temperatur tritt eine kollektive Spin-Mode im Spin-Anregungsspektrum auf und zeigt einen Energiezweig mit der Energieskala J, wobei J die magnetische Austauschenergie beschreibt. Gleichzeitig werden die Niederenergie-Anregungen im Ein-Teilchen-Spektrum durch ein Quasiteilchenband mit Bandbreite J beschrieben. Der Ursprung des Quasiteilchens lässt sich durch das Bild eines mehr oder weniger geordneten antiferromagnetischen Hintergrundes erklären, in dem sich Löcher umgeben von einer Wolke von Spin-Anregungen kohärent durch das Gitter bewegen. Bei zunehmender Dotierung verschwinden sowohl im Ein-Teilchen, als auch im Zwei-Teilchen Spin-Spektrum alle Anzeichen, die im Zusammenhang mit der Niederenergie-Skala J und dem oben beschriebenen Spin-Polaron stehen. Die Änderung der Dotierung führt des weiteren zu einem Transfer von spektralem Gewicht im Ein-Teilchen Spektrum, der sich ebenfalls im Ladungs-Anregungsspektrum bemerkbar macht. Im zweiten Teil der Arbeit wird eine Analyse über die supraleitenden Eigenschaften des Hubbard Modells präsentiert. Die supraleitende Instabilität wird im Rahmen der Dynamischen Cluster Approximation durch die Implementierung eines U(1)-Symmetrie brechenden Mediums in der Monte Carlo Rechnung für den Cluster berücksichtigt. Die supraleitende Übergangstemperatur T_c wird von dem Wert des auf dem Cluster bestimmten d-Wellen Ordnungsparameters abgeleitet. Die kritische Temperatur T_c ist in überraschend guter Übereinstimmung mit der Energieskala, die durch eine Divergenz der Paarfeld-Suszeptibilität in der paramagnetischen Phase bestimmt worden ist. Die Temperaturabhängigkeit der Pseudo- und supraleitenden Lücke wird mit der Bestimmung der Zustandsdichte und der Impuls-aufgelösten Spektralfunktion untersucht. Im Gegensatz zur der Herausbildung einer supraleitenden Lücke unterhalb der Sprungtemperatur, kann die Bildung einer Pseudo-Lücke in der Impuls-abhängigen Spektraldichte nicht aufgelöst werden. KW - Festkörpertheorie KW - Hubbard-Modell KW - Magnetismus KW - Cuprate KW - Hochtemperatursupraleiter KW - Dynamische Cluster Approximation KW - Maximum Entropie Methode KW - Korrelationsfunktionen KW - Dynamical Cluster Approximation KW - Maximum Entropy Method KW - Correlation Functions Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28705 ER - TY - THES A1 - Riegler, David T1 - Emergent phenomena in strongly correlated electron systems: Auxiliary particle approach to the many-body problem T1 - Emergente Phänomene in stark korrelierten Elektronensystemen: Hilfsteilchenansatz für das Vielteilchenproblem N2 - Emergent phenomena in condensed matter physics like, e.g., magnetism, superconductivity, or non-trivial topology often come along with a surprise and exert great fascination to researchers up to this day. Within this thesis, we are concerned with the analysis of associated types of order that arise due to strong electronic interactions and focus on the high-\(T_c\) cuprates and Kondo systems as two prime candidates. The underlying many-body problem cannot be solved analytically and has given rise to the development of various approximation techniques to tackle the problem. In concrete terms, we apply the auxiliary particle approach to investigate tight-binding Hamiltonians subject to a Hubbard interaction term to account for the screened Coulomb repulsion. Thereby, we adopt the so-called Kotliar-Ruckenstein slave-boson representation that reduces the problem to non-interacting quasiparticles within a mean-field approximation. Part I provides a pedagogical review of the theory and generalizes the established formalism to encompass Gaussian fluctuations around magnetic ground states as a crucial step to obtaining novel results. Part II addresses the two-dimensional one-band Hubbard model, which is known to approximately describe the physics of the high-\(T_c\) cuprates that feature high-temperature superconductivity and various other exotic quantum phases that are not yet fully understood. First, we provide a comprehensive slave-boson analysis of the model, including the discussion of incommensurate magnetic phases, collective modes, and a comparison to other theoretical methods that shows that our results can be massively improved through the newly implemented fluctuation corrections. Afterward, we focus on the underdoped regime and find an intertwining of spin and charge order signaled by divergences of the static charge susceptibility within the antiferromagnetic domain. There is experimental evidence for such inhomogeneous phases in various cuprate materials, which has recently aroused interest because such correlations are believed to impact the formation of Cooper pairs. Our analysis identifies two distinct charge-ordering vectors, one of which can be attributed to a Fermi-surface nesting effect and quantitatively fits experimental data in \(\mathrm{Nd}_{2-\mathrm{x}}\mathrm{Ce}_\mathrm{x}\mathrm{CuO}_4\) (NCCO), an electron-doped cuprate compound. The other resembles the so-called Yamada relation implying the formation of periodic, double-occupied domain walls with a crossover to phase separation for small dopings. Part III investigates Kondo systems by analyzing the periodic Anderson model and its generalizations. First, we consider Kondo metals and detect weakly magnetized ferromagnetic order in qualitative agreement with experimental observations, which hinders the formation of heavy fermions. Nevertheless, we suggest two different parameter regimes that could host a possible Kondo regime in the context of one or two conduction bands. The part is concluded with the study of topological order in Kondo insulators based on a three-dimensional model with centrosymmetric spin-orbit coupling. Thereby, we classify topologically distinct phases through appropriate \(\mathbb{Z}_2\) invariants and consider paramagnetic and antiferromagnetic mean-field ground states. Our model parameters are chosen to specifically describe samarium hexaboride (\(\mbox{SmB}_6\)), which is widely believed to be a topological Kondo insulator, and we identify topologically protected surface states in agreement with experimental evidence in that material. Moreover, our theory predicts the emergence of an antiferromagnetic topological insulator featuring one-dimensional hinge-states as the signature of higher-order topology in the strong coupling regime. While the nature of the true ground state is still under debate, corresponding long-range magnetic order has been observed in pressurized or alloyed \(\mbox{SmB}_6\), and recent experimental findings point towards non-trivial topology under these circumstances. The ability to understand and control topological systems brings forth promising applications in the context of spintronics and quantum computing. N2 - Emergente Phänomene in der Physik der kondensierten Materie, wie z. B. Magnetismus, Supraleitung oder nicht-triviale Topologie gehen oft mit Überraschungen einher und faszinieren Wissenschaftler bis heute. Innerhalb dieser Arbeit befassen wir uns mit der Analyse damit assoziierter Art von Ordnung, die durch starke elektronische Wechselwirkungen entsteht und konzentrieren uns auf die Kuprat-Hochtemperatursupraleiter und Kondo-Systeme als zwei prominente Kandidaten. Das zugrunde liegende Vielteilchenproblem kann nicht analytisch gelöst werden und hat zur Entwicklung vielfältiger Näherungsverfahren geführt, um das Problem anzugehen. Konkret wenden wir den Hilfsteilchenansatz an, um tight-binding Hamiltonoperatoren zu untersuchen, die einen Hubbard-Wechselwirkungsterm aufweisen, um die abgeschirmte Coulomb-Abstoßung zu berücksichtigen. Dabei benutzen wir die sogenannte Kotliar-Ruckenstein-Slave-Boson-Darstellung, die das Problem im Rahmen einer Molekularfeldnäherung auf nicht-wechselwirkende Quasiteilchen zurückführt. Teil I beinhaltet eine pädagogisch aufgearbeitete Zusammenfassung der Theorie und verallgemeinert durch die Berücksichtigung Gaußscher Fluktuationen um magnetische Grundzustände den etablierten Formalismus, was sich als entscheidender Schritt herausstellt, um neuartige Ergebnisse erzielen zu können. Teil II befasst sich mit dem zweidimensionalen Einband-Hubbard-Modell, von dem bekannt ist, dass es näherungsweise die Physik der Kuprat-Hochtemperatursupraleiter beschreibt, welche Hochtemperatursupraleitung und verschiedene andere exotische Quantenphasen aufweisen, die noch nicht vollständig verstanden sind. Zunächst machen wir eine ausführliche Slave-Boson-Analyse des Modells, einschließlich der Diskussion inkommensurabler magnetischer Phasen, kollektiver Moden und eines Vergleichs mit anderen theoretischen Methoden, der zeigt, dass unsere Ergebnisse durch die neu implementierten Fluktuationskorrekturen massiv verbessert werden können. Danach konzentrieren wir uns auf den unterdotierten Bereich und finden eine Verflechtung von Spin- und Ladungsordnung, die durch Divergenzen der statischen Ladungssuszeptibilität innerhalb der antiferromagnetischen Domäne signalisiert wird. Es gibt experimentelle Hinweise auf derartige inhomogene Phasen in verschiedenen Kuprat-Materialien, was in letzter Zeit vermehrt Interesse geweckt hat, da angenommen wird, dass entsprechende Korrelationen die Bildung von Cooper-Paaren beeinflussen. Unsere Analyse identifiziert zwei unterschiedliche Ladungsordnungsvektoren, von denen einer einem Fermi-Flächeneffekt zugeschrieben werden kann und quantitativ zu experimentellen Daten von \(\mathrm{Nd}_{2-\mathrm{x}}\mathrm{Ce}_\mathrm{x}\mathrm{CuO}_4\) (NCCO), einer elektronendotierten Kupratverbindung, passt. Der andere erinnert an die sogenannte Yamada-Beziehung und impliziert die Bildung von periodischen, doppelt besetzten Domänenwänden und einem Übergang zu Phasenseperation für kleine Dotierungen. Teil III untersucht Kondo-Systeme durch Analyse des periodischen Anderson-Modells und seiner Verallgemeinerungen. Zunächst betrachten wir Kondo-Metalle und finden schwach magnetisierte ferromagnetische Ordnung in qualitativer Übereinstimmung mit experimentellen Beobachtungen, welche die Bildung von schweren Fermionen hemmt. Dennoch identifizieren wir zwei verschiedene Parameterbereiche, die ein mögliches Kondo-Regime im Kontext von einem oder zwei Leitungsbändern beherbergen könnten. Der Teil wird mit der Untersuchung topologischer Ordnung in Kondo-Isolatoren basierend auf einem dreidimensionalen Modell mit zentrosymmetrischer Spin-Bahn-Kopplung abgeschlossen. Dabei klassifizieren wir topologisch unterscheidbare Phasen durch geeignete \(\mathbb{Z}_2\)-Invarianten und betrachten paramagnetische und antiferromagnetische Molekularfeld-Grundzustände. Unsere Modellparameter wurden gewählt, um insbesondere Samariumhexaborid (\(\mbox{SmB}_6\)) zu beschreiben, von dem allgemein angenommen wird, dass es sich um einen topologischen Kondo-Isolator handelt, und wir identifizieren topologisch geschützte Oberflächenzustände in Übereinstimmung mit experimentellen Befunden in diesem Material. Darüber hinaus sagt unsere Theorie die Emergenz eines antiferromagnetischen topologischen Isolators mit eindimensionalen Randzuständen als Merkmal von Topologie höherer Ordnung im Parameterbereich starker Korrelationen voraus. Während das Wesen des korrekten Grundzustands noch umstritten ist, wurde eine entsprechende langreichweitige magnetische Ordnung in unter Druck stehendem oder legiertem \(\mbox{SmB}_6\) beobachtet und kürzliche experimentelle Befunde weisen unter diesen Umständen auf nicht-triviale Topologie hin. Die Fähigkeit, topologische Systeme zu verstehen und zu kontrollieren, bringt vielversprechende Anwendungen im Kontext von Spintronik und Quantencomputing hervor. KW - Elektronenkorrelation KW - Mean-Field-Theorie KW - Hochtemperatursupraleiter KW - Kondo-System KW - Topologischer Isolator KW - Slave-boson method KW - Hubbard model KW - Cuprate superconductor KW - Heavy fermion KW - Topological Kondo insulators Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-274737 ER -