TY - THES A1 - Spatz, Kerstin T1 - Mechanische und rheologische Eigenschaften von Calciumphosphat-Zementen T1 - Mechanical and rheological properties of calcium phosphate cements N2 - Zur Erhöhung der mechanischen Stabilität mineralischer Knochenzemente aus Calciumorthophosphaten (CPC) wurde in einem TTCP/DCPA-System das Zementedukt TTCP mit verschiedenen biokompatiblen Oxiden (SiO2, TiO2, ZrO2) während des Herstellungsprozesses dotiert. Dies führte zur Bildung von Calciummetallaten und einer Herabsetzung der Löslichkeit der TTCP-Komponente des Zements. Gegenüber einem oxidfreien Zement konnte die Druckfestigkeit von 65 MPa auf 80 MPa (SiO2) bzw. 100 MPa (TiO2) gesteigert werden. In einem zweiten Ansatz zur Verbesserung der Injizierbarkeit wurden die Wechselwirkungen der Partikeloberflächen mit der flüssigen Zementphase betrachtet. Durch biokompatible Additive sollte eine repulsive elektrostatische Wechselwirkung eingestellt werden, um Partikelagglomerate effektiv zu dispergieren und eine verflüssigende Wirkung zu erreichen. Die Injizierbarkeit eines TTCP/DCPA-Zements durch eine Kanüle mit 800 µm Durchmesser konnte durch die Verwendung von 500 mM tri-Natriumzitrat-Lösung aufgrund einer deutlichen Herabsetzung der Viskosität der Zementpaste signifikant gesteigert werden (>95%, P/L 3,3/1, Kraftaufwand 20 N). Abschließend wurde der Einfluss der Partikelgrößenverteilung auf die Festigkeit und Injizierbarkeit einer auf monomodaler Partikelgrößenverteilung basierten Zementmatrix untersucht. Hierzu wurden einem mechanisch aktivierten a-TCP-System unreaktive, feinkörnige Füllstoffpopulationen (TiO2, CaHPO4, CaCO3) zugesetzt und systematisch deren Effekt in Verbindung mit einer Partikelaufladung durch tri-Natriumzitrat auf die rheologischen und mechanischen Eigenschaften untersucht. Erst die Kombination einer bimodalen Partikelgrößenverteilung mit tri-Natriumzitrat-Lösung führte zu einer starken Erniedrigung der Viskosität, damit zur nahezu vollständigen Injizierbarkeit der Zemente und einer teilweise signifikanten Steigerung der mechanischen Festigkeiten (z.B. 72 MPa reiner a-TCP-Zement auf 142 MPa mit Zusatz von CaHPO4). N2 - An improvement of the mechanical strength of calcium phosphate bone cements in combination with a lower cement paste viscosity for better injectability was investigated. A first approach to improve the mechanical stability consisted in adding several biocompatible oxides (SiO2, TiO2, ZrO2) during the fabrication process of tetracalcium phosphate (TTCP). The formation of calcium metallates led to a decrease of the solubility of the oxide doped tetracalcium phosphates. The cements based on tetracalcium phosphates mixed with SiO2 and TiO2 exhibit a significant increase of the compressive strengths (65 MPa of pure cement up to 80 MPa (SiO2) and 100 MPa (TiO2)). A second approach to decrease the viscosity of CPC pastes considered the interactions between the particle surfaces and the liquid cement phase. To disperse agglomerates and improve the injection properties of CPC, biocompatible components were added to the liquid phase. As a result the injection properties of the TTCP/DCPA cement improved significantly. The use of 500 mM trisodium citrate solution as liquid phase changed the viscosity of the cement paste to a point, where complete injectability (> 95%) through an 800 mm diameter hypodermic needle could be achieved at low loads (20 N). In order to transfer the results of a multi-constituent cement to a single reactive component cement, different fine-particle-sized fillers were added to mechanically activated, monomodal α-tricalcium phosphate (α-TCP) cement. The inert fillers dicalcium phosphate anhydrous (DCPA), titanium dioxide (TiO2) and calcium carbonate (CC) were added to the α-TCP-matrix in different concentrations. For an effective ionic modification a 500 mM trisodium citrate solution was used as liquid phase as in the aforementioned TTCP/DCPA cement system. Only the combination of a bimodal particle size distribution and trisodium citrate solution led to a nearly complete injectability and a significantly increase of the mechanical stability of CPC. KW - Biomaterial KW - Knochenzement KW - Calciumphosphate KW - Implantatwerkstoff KW - Rheologie KW - Calciumphosphat KW - calcium phosphate KW - injectability KW - zetapotential KW - mechanical properties KW - tricalcium phosphate KW - Rheologie KW - Zetapotential KW - mechanische Eigenschaften Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124860 ER - TY - THES A1 - Vorndran, Elke T1 - Rapid-Prototyping hydraulisch härtender Calcium- und Magnesiumphosphatzemente mit lokaler Wirkstoffmodifikation T1 - Rapid-prototyping of hydraulic calcium- and magnesium phosphate cements with local drug modification N2 - Ziel dieser Arbeit war die Herstellung individuell formbarer Strukturen mittels des 3D-Pulverdrucks auf Basis von bei Raumtemperatur hydraulisch abbindenden Knochenzementpulvern. Neben der Entwicklung neuartiger Zementformulierungen auf Basis von Magnesiumphosphaten war vor allem die gleichzeitige Ausstattung der Werkstoffe mit temperaturlabilen und bioaktiven Verbindungen ein wichtiger Entwicklungsschritt. Die Lokalisation der Wirkstoffe korreliert dabei mit entsprechenden Farbinformationen im Design der Konstrukte, die durch einen Mehrfarbendrucker physikalisch abgebildet werden. Das auf Calciumphosphat basierende System hat den Nachteil, dass die Abbindereaktion bei stark sauren pH-Werten abläuft, was negative Auswirkungen auf die gleichzeitige Ausstattung mit sensitiven Wirkstoffen hat. Zur Lösung dieser Problematik wurde ein neues Knochenzementpulver auf Magnesiumphosphatbasis entwickelt, welches unter neutralen pH-Bedingungen mit ammoniumhaltigem Binder zu dem Mineral Struvit abbindet. Das Zementpulver aus Trimagnesiumphosphat wurde bezüglich der pulvertechnologischen Eigenschaften, wie Partikelgröße, Partikelgrößenverteilung, Glättungseigenschaften und Schüttdichte sowie hinsichtlich des Abbindeverhaltens charakterisiert und für den Druckprozess optimiert. Die hohe Strukturgenauigkeit ermöglichte die Darstellung von makroporösen Strukturen mit einem minimalen Porendurchmesser von ca. 200 µm. Gute mechanische Kennwerte der gedruckten Strukturen, sowie eine hohe Umsetzungsrate zur gewünschten Phase Struvit wurden durch eine Nachhärtung in Ammoniumphosphatlösung erhalten. Die Druckfestigkeit betrug > 20 MPa und der Phasenanteil von Struvit konnte auf insgesamt 54 % gesteigert werden. Die Darstellung von wirkstoffmodifizierten Calciumphosphat- und Magnesiumphosphatstrukturen durch Verwendung eines Mehrfarbendruckers wurde beginnend vom Design der Strukturen bis hin zur experimentellen Bestimmung der Korrelation von Farbinformation und Binderapplikation etabliert. Zur Sicherstellung einer hohen Druckqualität und der Ortsständigkeit gedruckter Wirkstoffe erwies sich eine zusätzliche Modifikation des Tricalciumphosphatpulvers mit quellfähigen Polymeren (Hydroxypropylmethyl-cellulose (HPMC) bzw. Chitosan) als erfolgreich. Eine maximale Auflösung von ca. 400 µm konnte für eine HPMC/Chitosan/Calciumphosphat-Variante erreicht werden, während das hochreaktive Magnesiumphosphat/Magnesiumoxid-System eine Auflösung von 480 µm aufwies. Die Ortsständigkeit eingebrachter Lösungen war Voraussetzung für die Steuerung der Freisetzungskinetik. Das Freisetzungsverhalten in vitro wurde in Abhängigkeit von der Wirkstofflokalisation (homogen, Depot, Gradient) innerhalb der Matrix und unter Einbringung zusätzlicher polymerer Diffusionsbarrieren für den Wirkstoff Vancomycin untersucht. Dabei zeigte sich, dass die Modifikation der Matrices mit Polymeren zu einer verzögerten Freisetzung führte. Die lokale Wirkstoffmodifikation der Matrices in Form eines Depots oder Gradienten hatte Einfluss auf die Freisetzungskinetik, wobei eine lineare Freisetzung mit der Zeit (Kinetik 0. Ordnung) erreicht werden konnte. Die applizierten Wirkstoffe umfassten sowohl niedermolekulare Verbindungen, wie etwa das Antibiotikum Vancomycin oder das Polysaccharid Heparin, als auch proteinbasierte Faktoren wie den Knochenwachstumsfaktor rhBMP-2. Beurteilt wurde die pharmakologische Wirksamkeit der Verbindungen nach dem Druck, sowie nach der Freisetzung aus einer Calciumphosphatmatrix für den Wirkstoff Vancomycin. Es konnte belegt werden, dass die biologische Aktivität nach dem Druckprozess zu über 80 % erhalten blieb. Limitierend war der stark saure pH-Wert bei bruschitbasierten Systemen, der zu einer Inaktivierung des Proteins führte. Diesem Problem könnte durch die Nutzung des neutral abbindenden Magnesiumphosphatsystems entgegengewirkt werden. Abschließend erfolgten eine mikrostrukturelle Charakterisierung der Calciumphosphat- und Magnesiumphosphatmatrices mittels µ-CT-Analyse und Heliumpyknometrie, sowie eine quantitative Phasenanalyse nach Rietveld. Experimentell konnte nachgewiesen werden, dass mit Hilfe des 3D-Pulverdruck die Darstellung von Makroporen > 200 µm möglich ist. Die Analyse der Phasenzusammensetzung ergab, dass die Umsetzungsrate von Tricalciumphosphat und Trimagnesiumphosphat zu den gewünschten Phasen Bruschit und Struvit infolge des Nachhärtungsprozesses signifikant gesteigert werden konnte. Im Zuge dessen nahm die Porosität der gedruckten Matrices der Phase Struvit von 58 % auf 26 % und der Phase Bruschit von 47 % auf 38 % ab. N2 - Aim of this study was the room temperature fabrication of individually formed structures via 3D-powder printing based on hydraulic bone cements. In addition to the development of a novel cement formulation composed of magnesium phosphate, the simultaneous modification of matrices during the printing process with temperature sensitive and bioactive drugs was an important part of the work. The drug localization within the matrices is hereby correlated with an analogous colour design of the structures, which is physically reproduced by the multi-colour-printer. The calcium phosphate based system has the disadvantage of a strongly acidic setting reaction, which has negative effects on the simultaneous modification with sensitive bioactive agents. To solve this problem a novel bone cement formulation based on magnesium phosphate was established. This cement reacts with ammonium based binder solution within seconds to form the mineral struvite at neutral pH. The technological properties of the of trimagnesium phosphate cement powder, including particle size, particle size distribution, spreadability, powder density, and the setting behaviour, were characterized and optimized for the printing process. The high structural accuracy enabled the production of macroporous structures with a minimal pore diameter of approximately 200 µm. Proper mechanical characteristics of the printed structures as well as a high degree of conversion to the struvite phase were achieved by post-hardening in ammonium phosphate solution. The compressive strength could be increased to more than 20 MPa and the phase fraction of struvite could be increased to a maximum value of a total of 54 %. The fabrication of drug loaded calcium phosphate and magnesium phosphate scaffolds using a multi-colour-printer was established, beginning with the structure design and following the experimental verification of the correlation between the colour information and the applied binder. To guarantee a high accuracy of printing and the localization of the printed drugs, a supplemental modification of the tricalcium phosphate powder with swellable polymers (hydroxypropylmethylcellulose (HPMC) or chitosan) was successful. A maximum resolution of about 400 µm was achieved by an HPMC/chitosan/calcium phosphate composition, whereas the highly reactive magnesium phosphate/magnesium oxide system showed a resolution of about 480 µm. The localization of the applied solutions was a prerequisite to control the release kinetics of the drugs. The release kinetic of vancomycin was investigated in vitro depending on the drug localization (homogeneous, depot, gradient-like) within the matrix and by adding additional polymeric diffusion barriers. It could be shown that the polymeric modification of the matrices resulted in a delayed drug release. By discrete and depot-like or graded drug distributions within the matrices the release kinetic could be controlled, achieving a linear release with time (zero order release). The administered agents involved both low molecular compounds like the antibiotic vancomycin or the polysaccharide heparin and protein based factors like bone morphogenic factor rhBMP-2. Evaluation of pharmacological activity of the agents after printing as well as after release of vancomycin from a calcium phosphate matrix was determined, indicating that the bulk biological activity of more than 80 % was retained during the printing process. The limiting factor of the brushite based system was the strong acidic pH, which resulted in an inactivation of protein-based bioactives. This problem may be solved by using neutrally setting magnesium phosphate systems. Finally a microstructural characterization of calcium phosphate and magnesium phosphate matrices by µ-CT analysis and helium pycnometry as well as a quantitative phase analysis by Rietveld was performed. It was demonstrated, that 3D-printing allows the manufacturing of macro pores > 200 µm. The analysis of phase composition showed a significant increase of the degree of conversion from tricalcium phosphate or trimagnesium phosphate to the phases brushite or struvite due to the post hardening process. Hence the porosity of the printed matrices decreased from 58 % to 26 % for struvite and from 47 % to 38 % for brushite. KW - 3D-Druck KW - Calciumphosphate KW - 3D Pulverdruck KW - Calciumphosphat KW - Magnesiumphosphat KW - 3D powder printing KW - calcium phosphate KW - magnesium phosphate KW - Magnesiumphosphate KW - Rapid Prototyping KW - Kontrollierte Wirkstofffreisetzung Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70245 ER - TY - THES A1 - Weichhold, Jan Lukas T1 - Injectable calcium phosphate-based bone replacement cements T1 - Injizierbare calciumphosphat-basierte Knochenersatzzemente N2 - The human body has very good self-healing capabilities for numerous different injuries to a variety of different tissues. This includes the main human mechanical framework, the skeleton. The skeleton is limited in its healing without additional aid by medicine mostly by the defect size. When the defect reaches a size above 2.5 cm the regeneration of the defect ends up faulty. Here is where implants, defect fillers and other support approaches developed in medicine can help the body to heal the big defect still successfully. Usually sturdy implants (auto-/allo-/xenogenic) are implanted in the defect to bridge the distance, but for auto- and allogenic implants a suitable donor site must be found and for all sources the implant needs to be shaped into the defect specific site to ensure a perfect fit, the best support and good healing. This shaping is very time consuming and prone to error, already in the planning phase. The use of a material that is moldable and sets in the desired shape shortly after applying negates these disadvantages. Cementitious materials offer exactly this property by being in a pasty stage after the powder and liquid components have been mixed and the subsequently hardening to a solid implant. These properties also enable the extrusion, and therefore may also enable the injection, of the cement via a syringe in a minimal invasive approach. To enable a good injection of the cement modifications are necessary. This work aimed to modify commonly used calcium phosphate-based cement systems based on α-TCP (apatitic) and β-TCP (brushitic). These have been modified with sodium phytate and phytic acid, respectively. Additionally, the α-TCP system has been modified with sodium pyrophosphate, in a second study, to create a storable aqueous paste that can be activated once needed with a highly concentrated sodium orthophosphate solution. The powder phase of the α-TCP cement system consisted of nine parts α-TCP and one part CDHA. These were prepared to have different particle sizes and therefore enable a better powder flowability through the bimodal size distribution. α-TCP had a main particle size of 20 μm and CDHA of 2.6 μm. The modification with sodium phytate led to an adsorption of phytate ions on the surface of the α-TCP particles, where they started to form complexes with the Ca2+ ions in the solution. This adsorption had two effects. The first was to make the calcium ions unavailable, preventing supersaturation and ultimately the precipitation of CDHA what would lead to the cement hardening. The second was the increase of the absolute value of the surface charge, zeta potential, of the powder in the cement paste. Here a decrease from +3 mV to -40 mV could be measured. A strong value for the zeta potential leads to a higher repulsion of similarly charged particles and therefore prevents powder agglomeration and clogging on the nozzle during injection. These two modifications (bimodal particles size distribution and phytic acid) lead to a significant increase in the paste injectability. The unmodified paste was injectable for 30 % only, where all modified pastes were practically fully injectable ~90 % (the residual paste remained in the nozzle, while the syringe plunger already reached the end of the syringe). A very similar observation could be made for the β-TCP system. This system was modified with phytic acid. The zeta potential was decreased even stronger from -10 ± 1.5 mV to -71.5 ± 12 mV. The adsorption of the phytate ions and subsequent formation of chelate complexes with the newly dissolved Ca2+ ions also showed a retarding effect in the cements setting reaction. Where the unmodified cement was not measurable in the rheometer, as the reaction was faster than the measurement setup (~1.5 min), the modified cements showed a transition through the gel point between 3-6 min. This means the pastes stayed between 2 and 4 times longer viscous than without the modification. Like with the first cement system also here the effects of the phytate addition showed its beneficial influence in the injectability measurement. The unmodified cement was not injectable at all, due to the same issue already encountered at the rheology measurements, but all modified pastes were fully injectable for at least 5 min (lowest phytate concentration) and at least 10 min (all other concentrations) after the mixing of powder and liquid. The main goal of the last modification with sodium pyrophosphate was to create a paste that was stable in aqueous environment without setting until the activation takes place, but it should still show good injectability as this was the desired way of application after activation. Like before also the zeta potential changed after the addition of pyrophosphate. It could be lowered from -22 ± 2mV down to -61 to -68 ± 4mV (depending on the pyrophosphate concentration). The pastes were stored in airtight containers at room temperature and checked for their phase composition over 14 days. The unmodified paste showed a beginning phase conversion to hydroxyapatite between 7 and 14 days. All other pastes were still stable and unreacted. The pastes were activated with a high concentrated (30 wt%) sodium orthophosphate solution. After the activation the pastes were checked for their injectability and showed an increase from -57 ± 11% for the unmodified paste to -89 ± 3% (practically fully injectable as described earlier) for the best modified paste (PP005). It can be concluded that the goal of enabling full injection of conventional calcium phosphate bone cement systems was reached. Additional work produced a storage stable paste that still ensures full injectability. Subsequent work already used the storable paste and modified it with hyaluronic acid to create an ink for 3D extrusion printing. The first two cement systems have also already been investigated in cell culture for their influence on osteoblasts and osteoclasts. The next steps would have to go more into the direction of translation. Figuring out what properties still need to be checked and where the modification needs adjustment to enable a clinical use of the presented systems. N2 - Der menschliche Körper verfügt über sehr gute Selbstheilungsfähigkeiten für zahlreiche verschiedene Verletzungen in unterschiedlichen Geweben. Dazu gehört auch das wichtigste mechanische Gerüst des Menschen, das Skelett. Das Skelett ist in seiner Heilung ohne zusätzliche Hilfe durch die Medizin vor allem durch die Defektgröße begrenzt. Erreicht der Defekt eine Größe von mehr als 2,5 cm, ist die Regeneration des Defekts nicht mehr gewährleistet. Hier können Implantate, Defektfüller und andere in der Medizin entwickelte Unterstützungsansätze dem Körper helfen, den großen Defekt noch erfolgreich zu heilen. In der Regel werden stabile Implantate (auto-/allo-/xenogen) in den Defekt eingesetzt, um den Abstand zu überbrücken. Für auto- und allogene Implantate muss jedoch eine geeignete Spenderstelle gefunden werden, und für alle Quellen muss das Implantat in die defektspezifische Stelle geformt werden, um eine perfekte Passform, den besten Halt und eine gute Heilung zu gewährleisten. Diese Formgebung ist sehr zeitaufwendig und fehleranfällig, schon in der Planungsphase. Die Verwendung eines Materials, das formbar ist und kurz nach dem Auftragen in der gewünschten Form aushärtet, negiert diese Nachteile. Zementartige Materialien bieten genau diese Eigenschaft, indem sie sich nach dem Vermischen von Pulver und flüssigen Komponenten in einem pastösen Stadium befinden und anschließend zu einem festen Implantat aushärten. Diese Eigenschaften ermöglichen auch die Extrusion und damit möglicherweise auch die Injektion des Zements über eine Spritze in einem minimalinvasiven Verfahren. Um eine gute Injektion des Zements zu ermöglichen, sind Modifikationen erforderlich. Ziel dieser Arbeit war es, die gängigen Zementsysteme auf Kalziumphosphatbasis zu modifizieren, die auf α-TCP (apatitisch) und β-TCP (brushitisch) basieren. Diese wurden mit Natriumphytat bzw. Phytinsäure modifiziert. Zusätzlich wurde das α-TCP-System in einer zweiten Studie mit Natriumpyrophosphat modifiziert, um eine lagerfähige wasserbasierte Paste zu schaffen, die bei Bedarf mit einer hochkonzentrierten Natriumorthophosphatlösung aktiviert werden kann. Die Pulverphase des α-TCP-Zementsystems bestand aus neun Teilen α-TCP und einem Teil CDHA. Diese wurden so aufbereitet, dass sie unterschiedliche Partikelgrößen aufweisen und somit eine bessere Fließfähigkeit des Pulvers durch die bimodale Größenverteilung ermöglichen. α-TCP hatte eine Hauptpartikelgröße von 20 μm und CDHA von 2,6 μm. Die Modifizierung mit Natriumphytat führte zu einer Adsorption von Phytat-Ionen an der Oberfläche der α-TCP-Partikel, wo sie Komplexe mit den Ca2+-Ionen in der Lösung zu bilden begannen. Diese Adsorption hatte zwei Auswirkungen. Die erste bestand darin, dass die Calciumionen nicht mehr verfügbar waren, wodurch die Übersättigung und letztlich die Ausfällung von CDHA verhindert wurde, was zur Erhärtung des Zements geführt hätte. Der zweite Effekt war die Erhöhung des Betrags der Oberflächenladung, des Zetapotenzials, des Pulvers in der Zementpaste. Hier konnte eine Abnahme von +3 mV auf -40 mV gemessen werden. Ein hoher Wert für das Zetapotenzial führt zu einer stärkeren Abstoßung ähnlich geladener Teilchen und verhindert somit die Agglomeration des Pulvers und das Verstopfen der Kanüle während der Injektion. Diese beiden Modifikationen (bimodale Partikelgrößenverteilung und Phytinsäure) führen zu einer deutlichen Verbesserung der Injektionsfähigkeit der Paste. Die unmodifizierte Paste war nur zu 30 % injizierbar, während alle modifizierten Pasten praktisch vollständig injizierbar waren ~90 %(die Restpaste blieb in der Kanüle, während der Spritzenkolben bereits das Ende der Spritze erreichte). Eine sehr ähnliche Beobachtung konnte für das β-TCP-System gemacht werden. Dieses System wurde mit Phytinsäure modifiziert. Das Zetapotenzial sank noch stärker von -10 ± 1,5 mV auf -71,5 ± 12mV. Die Adsorption der Phytat-Ionen und die anschließende Bildung von Chelatkomplexen mit den neu gelösten Ca2+-Ionen zeigten ebenfalls eine verzögernde Wirkung bei der Abbindereaktion des Zements. Während der unmodifizierte Zement im Rheometer nicht messbar war, da die Reaktion schneller verlief als der Messaufbau (~1,5 min), zeigten die modifizierten Zemente einen Übergang durch den Gelpunkt zwischen 3-6 min. Dies bedeutet, dass die Pasten zwischen 2 und 4 mal länger viskos blieben als ohne die Modifikation. Wie beim ersten Zementsystem zeigte sich auch hier der positive Einfluss des Phytatzusatzes bei der Messung der Injektionsfähigkeit. Der unmodifizierte Zement war überhaupt nicht injizierbar, was auf das gleiche Problem zurückzuführen ist, das bereits bei den rheologischen Messungen aufgetreten ist, aber alle modifizierten Pasten waren mindestens 5 min (niedrigste Phytatkonzentration) und mindestens 10 min (alle anderen Konzentrationen) nach dem Mischen von Pulver und Flüssigkeit vollständig injizierbar. Das Hauptziel der letzten Modifikation mit Natriumpyrophosphat bestand darin, eine Paste zu schaffen, die in wässriger Umgebung stabil ist und bis zur Aktivierung nicht aushärtet, die aber dennoch eine gute Injektionsfähigkeit aufweisen sollte, da dies die gewünschte Art der Anwendung nach der Aktivierung war. Wie zuvor änderte sich auch das Zetapotenzial nach der Zugabe von Pyrophosphat. Es konnte von -22 ± 2mV auf -61 bis -68 ± 4mV (abhängig von der Pyrophosphatkonzentration) gesenkt werden. Die Pasten wurden in luftdichten Behältern bei Raumtemperatur gelagert und über 14 Tage auf ihre Phasenzusammensetzung untersucht. Die unmodifizierte Paste zeigte zwischen 7 und 14 Tagen eine beginnende Phasenumwandlung in Hydroxyapatit. Alle anderen Pasten waren noch stabil und nicht umgewandelt. Die Pasten wurden mit einer hochkonzentrierten (30 Gew.-%) Natriumorthophosphatlösung aktiviert. Nach der Aktivierung wurden die Pasten auf ihre Injektionsfähigkeit geprüft und zeigten einen Anstieg von -57 ± 11 % für die unmodifizierte Paste auf -89 ± 3 % (praktisch vollständig injizierbar, wie zuvor beschrieben) für die beste modifizierte Paste (PP005). Daraus lässt sich schließen, dass das Ziel, die vollständige Injektion herkömmlicher Kalziumphosphat-Knochenzementsysteme zu ermöglichen, erreicht wurde. Weitere Arbeiten führten zu einer lagerstabilen Paste, die dennoch eine vollständige Injektionsfähigkeit gewährleistet. In nachfolgenden Arbeiten wurde die lagerfähige Paste bereits verwendet und mit Hyaluronsäure modifiziert, um eine Tinte für den 3D-Extrusionsdruck herzustellen. Die ersten beiden Zementsysteme wurden auch bereits in Zellkulturen auf ihren Einfluss auf Osteoblasten und Osteoklasten untersucht. Die nächsten Schritte müssten mehr in Richtung Translation gehen. Es gilt herauszufinden, welche Eigenschaften noch überprüft werden müssen und wo die Modifikation angepasst werden muss, um einen klinischen Einsatz der vorgestellten Systeme zu ermöglichen. KW - Calciumphosphat KW - Cement KW - Knochenersatz KW - Zement KW - Injectability KW - Bone-replacement KW - IP6 KW - Modification KW - Rheology KW - Setting Control KW - Calcium Phosphate Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-326616 ER -