TY - THES A1 - Zink [geb. Sondergeld], Thomas Gerd T1 - Der Cofilin-Signalweg im Glioblastoma multiforme - Ursachen für den Verlust von Chronophin und Einfluss von LIM-Kinase-Inhibitoren T1 - The cofilin pathway in glioblastoma multiforme - Reasons for chronophin loss and effect of LIM-kinase inhibitors N2 - Das invasive Potential maligner Gliome beeinflusst maßgeblich die schlechte Prognose dieser Tumorentität. Migration und Invasion von Tumorzellen werden entscheidend durch die Cofilin-vermittelte Umstrukturierung des Aktin-Zytoskeletts geprägt, die durch die Aktivität antagonistischer Cofilin-Kinasen und -Phosphatasen reguliert wird. Im Rahmen der vorliegenden Arbeit konnte ein progressiver Expressionsverlust der Cofilin-Phosphatase Chronophin mit ansteigendem Malignitätsgrad astrozytärer Gliome aufgezeigt werden, der mit einer Zunahme der Phosphorylierung von Cofilin einhergeht. In den entsprechenden Gewebeproben gelang gleichzeitig der Nachweis einer gesteigerten Expression der Cofilin-Kinase LIMK-2. Genetische und epigenetische Analysen des Chronophin-Locus konnten eine Hypermethylierung im Bereich der Promotorregion der Phosphatase identifizieren, die möglicherweise dem Verlust von Chronophin in Glioblastom-Gewebeproben zugrunde liegt. In Glioblastom-Zelllinien, die unterschiedliche Expressionsmuster von Chronophin aufwiesen, konnten hingegen keine molekularen Alterationen festgestellt werden. Untersuchungen des Einflusses von ROCK- und LIMK-Inhibitoren auf Glioblastomzellen konnten ausgeprägte Veränderungen der Zellmorphologie dokumentieren, wobei erstmals die Induktion eines stellate cell-Phänotyps unter Einfluss des LIMK-Inhibitors BMS-5 beschrieben wird. Während ROCK- und LIMK-Inhibitoren keinen Einfluss auf die 2D-Motilität der Tumorzellen hatten, wiesen die Glioblastomzellen in Abhängigkeit ihrer basalen Cofilin-Aktivität eine verstärkte bzw. verminderte 3D-Invasivität auf. Die Erkenntnisse dieser Arbeit unterstreichen die Bedeutung des Cofilin-Signalweges für die Migration und Invasion von Gliomzellen, zeigen neue Angriffspunkte in der Therapie maligner Gliome auf und warnen zugleich vor einem unkritischen Einsatz neuer Wirkstoffe. N2 - The invasive potential of malignant gliomas is the main reason for the dismal prognosis of this tumor entity. Migration and invasion of tumor cells is crucially determined by the cofilin dependent reorganization of the actin cytoskeleton regulated by the activity of antagonistic cofilin kinases and phosphatases. This study revealed a progressive loss of expression of the cofilin phosphatase chronophin with increasing malignancy grade of astrocytic glioma, accompanied by an increase of cofilin phosphorylation. Moreover, the analyzed glioma specimens were characterized by a simultaneous increase of expression of the cofilin kinase LIMK-2. Integrated genetic and epigenetic analysis of the chronophin locus identified an aberrant promoter methylation as a possible mechanism leading to chronophin down-regulation in glioblastoma tissue samples. In contrast, molecular alterations of the chronophin locus were undetectable in glioblastoma cell lines characterized by different chronophin expression levels. Analysis of glioblastoma cells demonstrated striking effects of ROCK and LIMK inhibitors on cell morphology, providing first evidence of the induction of a stellate cell-phenotype by the LIMK inhibitor BMS-5. While ROCK and LIMK inhibitors had no detectable effect on the 2D motility of the tumor cells, the inhibitors increased or decreased the 3D-invasiveness of the glioma cells depending on their basal cofilin activity. The findings of this study stress the importance of the cofilin signaling pathway as a key regulator of glioma migration and invasion, indicate novel targets for glioma therapy, but also warn against a noncritical use of new drugs. KW - Cofilin KW - Glioblastom KW - Chronophin KW - Actin KW - Rho-Proteine KW - PDXP KW - LIMK KW - BMS-5 KW - Signalkette KW - Rho-GTPasen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127065 ER - TY - THES A1 - Zink, Christoph T1 - Biochemische und strukturbiologische Charakterisierung der Inhibition der Pyridoxal 5´-Phosphat Phosphatase durch 7,8-Dihydroxyflavon T1 - Biochemical and structural characterization of pyridoxal 5´-phosphate phosphatase inhibitor 7,8-dihydroxyflavone N2 - Die Pyridoxal-5‘-Phosphat Phosphatase (PDXP), auch bekannt als Chronophin (CIN), ist eine HAD-Phosphatase, die beim Menschen ubiquitär exprimiert wird und eine entscheidende Rolle im zellulären Vitamin-B6-Metabolismus einnimmt. PDXP ist in der Lage Pyridoxal-5‘-Phosphat (PLP), die co-enzymatisch aktive Form von Vitamin B6, zu dephosphorylieren. In-vivo Studien mit Mäusen zeigten, dass die Abwesenheit von PDXP mit verbesserten kognitiven Leistungen und einem verringerten Wachstum von Hirntumoren assoziiert ist. Dies begründet die gezielte Suche nach einem pharmakologischen Inhibitor für PDXP. Ein Hochdurchsatz-Screen legte nahe, dass 7,8-Dihydroxyflavon (7,8-DHF) hierfür ein potenzieller Kandidat ist. Zahlreiche Studien beschreiben bereits vielfältige positive neurologische Effekte nach in-vivo Administration von 7,8-DHF, allerdings bleibt der genaue Wirkmechanismus umstritten und wird bis dato nicht mit PDXP in Zusammenhang gebracht. Ziel dieser Arbeit ist es, die Inhibition von PDXP durch 7,8-DHF näher zu charakterisieren und damit einen Beitrag zur Beantwortung der Frage zu leisten, ob PDXP an den 7,8-DHF-induzierten Effekten beteiligt ist. Hierzu wurde der Effekt von 7,8-DHF auf die enzymatische Aktivität von rekombinant hergestelltem, gereinigtem PDXP in in-vitro Phosphatase-Assays charakterisiert. Um die Selektivität von 7,8-DHF gegenüber PDXP zu untersuchen, wurden fünf weitere HAD-Phosphatasen getestet. Unter den analysierten Phosphatasen zeigte einzig die dem PDXP nah verwandte Phosphoglykolat Phosphatase (PGP) eine geringer ausgeprägte Sensitivität gegen 7,8-DHF. Ein Vergleich von 7,8-DHF mit sechs strukturell verwandten, hydroxylierten Flavonen zeigte, dass 7,8-DHF unter den getesteten Substanzen die höchste Potenz und Effektivität aufwies. Außerdem wurde eine Co-Kristallisation von PDXP mit 7,8-DHF durchgeführt, deren Struktur bis zu einer Auflösung von 2,0 Å verfeinert werden konnte. Die in der Kristallstruktur identifizierte Bindungsstelle von 7,8-DHF an PDXP wurde mittels verschiedener, neu generierter PDXP-Mutanten enzymkinetisch bestätigt. Zusammenfassend zeigen die hier beschriebenen Ergebnisse, dass 7,8-DHF ein direkter, selektiver und vorwiegend kompetitiver Inhibitor der PDXP-Aktivität ist, mit einer IC50 im submikromolaren Bereich. Die Ergebnisse dieser in-vitro Untersuchungen motivieren zu weiterer Forschung bezüglich der 7,8-DHF-vermittelten Inhibition der PDXP-Aktivität in Zellen, um die Frage beantworten zu können, ob PDXP auch in-vivo ein relevantes Target für 7,8-DHF darstellt. N2 - Pyridoxal 5'-phosphate phosphatase (PDXP, also known as chronophin, CIN), is a ubiquitously expressed HAD-phosphatase. PDXP is known to dephosphorylate pyridoxal-5'-phosphate (PLP), the biologically active form of vitamin B6 that is one of the most versatile cofactors found in nature. In-vivo studies revealed improved cognition and impaired glial tumor growth with mice absent of PDXP, and caused the search for a pharmacological inhibitor of PDXP. The result of a high-throughput screen suggested that 7,8-dihydroxyflavone (7,8-DHF) is a suitable candidate for this. Interestingly, numerous scientific studies highlighted diverse positive neurological effects after administration of 7,8-DHF to mice, however, the precise mode of action remains disputed, and at this date is unrelated to PDXP. The aim of this work is to characterize the inhibition of PDXP by 7,8-DHF. This approach is a first step to determine whether 7,8-DHF may indeed exert some of its neurological effects via PDXP inhibition. For this purpose, the effect of 7,8-DHF on the enzymatic activity of recombinantly expressed and purified PDXP was characterized in in-vitro phosphatase assays. To investigate the selectivity of 7,8-DHF on PDXP, five additional HAD phosphatases were tested. Among the phosphatases analyzed, only the phosphoglycolate phosphatase (PGP), closely related to PDXP, showed a less pronounced sensitivity to 7,8-DHF. A comparison of 7,8-DHF with six structurally related, hydroxylated flavones showed that 7,8-DHF had the highest potency and effectiveness among the substances tested. In addition, a co-crystallization of PDXP with 7,8-DHF was carried out. The resulting co-crystal structure could be resolved and refined to a resolution of 2.0 Å. The binding site of the ligand to the enzyme identified in the crystal structure was confirmed via activity-based assays using various newly generated PDXP mutants. In summary, the results described here show that 7,8-DHF is a direct, selective, and predominantly competitive inhibitor of PDXP activity with an IC50 in the submicromolar range. The results of these in-vitro studies motivate further research into the 7,8-DHF-mediated inhibition of PDXP activity in cells to be able to answer the question of whether PDXP is also a relevant target for 7,8-DHF in-vivo. KW - Pyridoxalphosphat KW - Pyridoxalphosphat Phosphatase KW - PDXP KW - 7,8-Dihydroxyflavon KW - 7,8-dihydroxyflavone KW - Chronophin KW - Pyridoxal phosphate phosphatase Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251511 ER - TY - THES A1 - Zundler, Matthias T1 - Einfluss der Phosphoglykolat-Phosphatase auf den Metabolismus von Signal-, Membran- und Speicherlipiden in murinen Embryonen und Lymphozyten T1 - Role of phosphoglycolate phosphatase in the metabolism of signaling, membrane and storage lipids in murine embryos and lymphocytes N2 - Die Phosphoglykolat-Phosphatase PGP (früher auch als AUM bezeichnet) wurde in unserem Labor als Mitglied der HAD-Typ-Phosphatasen identifiziert. Die genetische Inaktivierung des Enzyms im gesamten Mausorganismus führt ab E8.5 zu einer Wachstumsverzögerung muriner Embryonen und bis E12.5 schließlich zu deren Tod. Im Gegensatz dazu sind Mäuse mit einer PGP-Inaktivierung in hämatopoetischen Zellen und im Endothel lebensfähig und phänotypisch unauffällig. Neue Erkenntnisse schreiben dem Enzym neben einer Aktivität gegenüber Phosphoglykolat auch Aktivitäten gegenüber Glycerin-3-phosphat (G3P), P-Erythronat und P-Lactat zu. Da diese Phosphatase-Aktivitäten Auswirkungen auf den Lipidstoffwechsel nahelegen, wurde in der vorliegenden Arbeit mittels massenspektrometrischer Methoden der Einfluss der Phosphoglykolat-Phosphatase auf den Metabolismus von Signal-, Membran- und Speicherlipiden in murinen Embryonen und Lymphozyten untersucht. Nach Inaktivierung der PGP im gesamten Organismus wurden in E8.5-Embryonen erhöhte Diacylglycerin (DG)-, Triacylglycerin (TG)- und Sphingomyelin (SM)-Spiegel gemessen, während niedrigere Phosphatidylcholin (PC)-Level vorlagen. In PGP-inaktivierten Lymphozyten waren G3P-, DG-, TG-, PC- und SM-Level nicht verändert. Dafür kam es zu signifikanten Erhöhungen der Phosphatidylglycerol (PG*)- und Cardiolipin (CL)-Spiegel. Zusammenfassend konnte gezeigt werden, dass die PGP in unterschiedlichen Geweben differenzielle Effekte auf die Spiegel verschiedener Lipide hat. Dies deckt neue Funktionen der PGP für die Regulation des Lipidmetabolismus auf. Die vorliegende Arbeit stellt somit die Grundlage für weitere Untersuchungen über die genauen Ursachen und Folgen dieser Regulation dar und lässt auf eine wichtige Rolle der PGP als metabolische Phosphatase im Organismus schließen. N2 - Our laboratory has previously identified the mammalian phosphoglycolate phosphatase PGP (also referred to as AUM) as a member of the HAD-type superfamily of hydrolases. Whole-body PGP inactivation led to an intrauterine growth defect with developmental delay after E8.5, resulting in a gradual deterioration and death of PgpD34N/D34N embryos until E12.5. In contrast, mice with a deficiency of PGP activity in endothelial and hematopoietic cells were viable and phenotypically normal. Recent findings demonstrate catalytic activities of the PGP towards phosphoglycolate, glycerol-3-phosphate (G3P), P-erythronate and P-lactate. Since these catalytic activities suggest implications for the lipid metabolism, this thesis examined the PGP-dependent formation of signal-, membrane- and storage lipids in E8.5 embryos and adult lymphocytes of mice by means of mass spectrometry. Following whole-body inactivation of PGP increased diacylglycerol (DG)-, triacylglycerol (TG)- and sphingomyeline (SM)-levels were detected in E8.5 embryos, whereas lower phosphatidylcholine (PC)-levels were present. In PGP-deficient lymphocytes G3P-, DG-, TG-, PC- and SM-level were unaltered. However, levels of phosphatidylglycerol (PG*) and cardiolipine (CL) were significantly increased. Taken together this thesis reveals new and tissue-dependent functions of PGP in the regulation of the lipid metabolism and indicates an important role of PGP as a metabolic phosphatase. It constitutes the basis for further studies on the exact roots and the physiological effects of the metabolic regulation by PGP. KW - Phosphoglykolatphosphatase KW - Glycerinphosphate KW - Lipidomics KW - Flugzeitmassenspektrometrie KW - Phosphoglykolat KW - Phosphatase KW - Glycerin-3-phosphat KW - Lipidom KW - Time-of-flight Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168442 ER - TY - THES A1 - Zürn, Alexander T1 - Spezifische Markierungsverfahren von Rezeptoren mit kleinen Fluorophoren zur Analyse der Rezeptoraktivierung mittels FRET T1 - Specific labelling techniques with small fluorophores for visualzing ligandselective conformations on receptors with FRET N2 - Es gibt viele Hinweise, dass G-Protein-gekoppelte Rezeptoren bei ihrer Aktivierung durch einen Agonisten ligandenselektive Konformationen eingehen. Ein tatsächlichen Beleg hierfür konnte bisher in lebenden Zellen noch nicht erbracht werden. Zu diesem Zweck wurde in dieser Arbeit ein Fluoreszenz-Resonanz-Energie-Transfer (FRET)-basierter Ansatz gewählt, um ligandenselektive Konformationen in der dritten intrazellulären Schleife des α2a-adrenergen Rezeptors (α2a-AR) in lebenden Zellen darzustellen. Dazu wurden Rezeptorsensoren erstellt, welche jeweils ein CFP am Ende des C-Terminus trugen und in der dritten intrazellulären Schleife an verschiedenen Stellen mit einem Tetracysteinmotiv versehen wurden. Drei Konstrukte wurden verglichen, die das Tetracysteinmotiv N-terminal in der Nähe der Transmembrandomäne V (I3-N), in der Mitte der dritten intrazellulären Schleife (I3-M) beziehungsweise C-terminal in der Nähe der Transmembrandomäne VI (I3-C) trugen. Die drei Rezeptorsensoren unterschieden sich hinsichtlich ihrer Ligandenbindung sowie ihrer G-Proteinaktivierung nicht vom Wildtyp α2a-AR. Durch das Tetracysteinmotiv ist es möglich, den Rezeptor spezifisch mit dem niedermolekularen Fluorophor FlAsH (fluorescein arsenical hairpin binder) zu markieren, welcher als Akzeptor für den Donor CFP in FRET-Experimenten dient. Die Änderung des FRET-Signals zwischen den beiden Fluorophoren, das durch den vollen Agonist Norepinephrin ausgelöst wurde, war bei allen drei Rezeptorsensoren vergleichbar. Der starke partielle Agonist Clonidin war ebenfalls in der Lage, in allen drei Konstrukten ein ähnliches FRET-Signal hervorzurufen. Dagegen zeigte der partielle Agonist Dopamin an dem Konstrukt I3-N ein signifikant schwächeres Signal, als an I3-C. Die schwachen partiellen Agonisten Octopamin und Norphenephrin konnten an den Konstrukten I3-N und I3-M keine Änderung des FRET-Signals bewirken, wobei an I3-C eine deutliche Signaländerung detektiert wurde. Dies legt nahe, dass die Transmembrandomäne V bei der Aktivierung des Rezeptors eine kleinere Bewegung eingeht als die Transmembrandomäne VI, und bestätigt damit ein auf Röntgenstrukturanlysen basierendes Modell der Rezeptorbewegung. Außerdem wurden die Aktivierungskinetiken für die Agonisten Norepinephrin und Dopamin verglichen. Hierbei konnte gezeigt werden, dass die durch Norepinephrin ausgelöste Bewegung an allen beobachteten Punkten gleich schnell war. Im Gegensatz dazu aktivierte Dopamin I3-C und I3-M ca. 1,5-mal langsamer, als Norepinephrin. Für das I3-N Konstrukt wurde sogar eine 3-mal langsamere Aktivierung gemessen. Diese Daten zeigen, dass unterschiedliche Agonisten in der dritten intrazellulären Schleife spezifische Konformationen auslösen können. Die Untersuchungen zur Rezeptorbewegung im ersten Teil dieser Arbeit wurde mit dem kleinen Fluorophor FlAsH in Kombination mit einer großen GFP-Variante durchgeführt. Im zweiten Teil dieser Arbeit wurde eine Methode entwickelt, bei der es möglich ist Proteine spezifisch mit beiden kleinen Fluorophoren FlAsH und ReAsH in einer lebenden Zelle zu markieren. Hierfür wurden zwei Tetracysteinmotive, CCPGCC und FLNCCPGCCMEP, gewählt, an die beide kleine Fluorophore kovalent binden. Durch Verdrängungsexperimente mit BAL konnte gezeigt werden, dass FlAsH für beide Motive eine dreifach höhere Affinität besitzt, als ReAsH. Dabei besitzt das FLNCCPGCCMEP-Motiv jedoch eine dreifach höhere Affinität zu dem jeweiligen Fluorophor besitzt als CCPGCC. Durch Ausnutzung dieser Affinitätsunterschiede konnte ein Protokoll entwickelt werden, mit dem es möglich ist, beide Motive in einer Zelle zu markieren. Dabei werden zunächst beide Motive mit ReAsH markiert. Durch anschließendes Waschen mit einer geeigneten Konzentration von BAL wird das ReAsH ausschließlich von der CCPGCC-Sequenz verdrängt, wohingegen die FLNCCPGCCMEP-Sequenz mit ReAsH markiert bleibt. Die nun unbesetzte CCPGCC-Sequenz kann dann anschließend mit FlAsH markiert werden, ohne dabei die Bindung des ReAsH an die FLNCCPGCCMEP-Sequenz zu beeinflussen. Um die Funktionalität dieses Protokolls zu überprüfen, sollten zwei verschiedene Proteine mit unterschiedlicher subzellulärer Lokalisation in einer lebenden Zelle spezifisch mit jeweils einem kleinen Fluorophor markiert werden. Hierzu wurden ein PTH-Rezeptor, in dem im C-Terminus die FLNCCPGCCMEP-Sequenz eingebracht wurde, mit ReAsH und ein β-Arrestin-2, dem die CCPGCC-Sequenz eingebracht wurde, in Zellen co-exprimiert und gemäß dem Protokoll mit FlAsH und ReAsH markiert. Beide Proteine konnten spezifisch markiert werden, wobei der mit ReAsH markierte PTH-Rezeptor eine deutliche Lokalisation in der Zellmembran zeigte. Durch sequentielle Exzitation konnte in der gleichen Zelle das zytosolisch lokalisierte, mit FlAsH markierte β-Arrestin-2 detektiert werden. Wurden die so markierten Zellen mir 1 µM PTH stimuliert, wurde das FlAsH-markierte β-Arrestin-2 an die Zellmembran rekrutiert. Somit konnte durch die Entwicklung dieses Protokolls eine duale spezifische Markierung von Proteinen mit zwei kleinen Fluorophoren zu innerhalb einer Zelle erreicht werden. N2 - Several lines of evidence suggest that G-protein-coupled receptors can adopt different active conformations, but their direct demonstration in intact cells is still missing. Using a fluorescence resonance energy transfer (FRET)-based approach we studied conformational changes in 2A-adrenergic receptors (2A-AR) in intact cells. The receptors were C-terminally labeled with cyan fluorescent protein (CFP) and with fluorescein arsenical hairpin binder (FlAsH) bound at a tetracysteine-motif at different sites in the third intracellular loop: N-terminally close to transmembrane domain V (I3-N), in the middle of the loop (I3-M), or C-terminally close to transmembrane domain VI (I3-C). All constructs retained normal ligand binding and signaling properties compared to the wildtype-2A-AR. Changes in FRET between the labels were determined in intact cells in response to different agonists. The full agonist norepinephrine evoked similar FRET-changes for all three constructs. The strong partial agonist clonidine induced partial FRET-changes for all constructs. The partial agonist dopamine envoked a significantly weaker FRET-signal in I3-N than in I3-C. However, the weak partial agonists octopamine and norphenephrine only induced detectable changes in the construct I3-C, but no change in I3-M and I3-N. This agrees with X-ray receptor structures indicating larger agonist-induced movements at the cytoplasmic ends of transmembrane domain VI than V and suggests that partial agonism is linked to distinct conformational changes within a G-protein-coupled receptor. The kinetics of the receptor activation was compared between dopamine and norepinephrine. The kinetics for norepinephrine were similar for all three constructs. Dopamine-induced FRET-signals were ≈1.5-fold slower than those for norepinephrine in I3-C and I3-M, but >3-fold slower in I3-N. Our data indicate that the different ligands induced conformational changes in the receptor that were sensed differently in different positions of the third intracellular loop. Specific labeling of proteins in living cells with two different molecular probes would be an important further development for multiparameter imaging of cellular functions. Here we report a strategy to selectively label two different proteins in living cells with two different fluorophores, FlAsH and ReAsH. Recently improved tetracysteine binding motifs have been described to selectively bind FlAsH or ReAsH. We compared the six amino acid motif CCPGCC and the twelve amino acid motif FLNCCPGCCMEP with respect to their affinity for FlAsH and ReAsH. For both fluorophores, we observed a 3-fold higher affinity for the FLNCCPGCCMEP motif compared to CCPGCC, when washed off with BAL (british anit lewisite; 2,3-Dimercaptopropanol). For both target sequences, FlAsH showed more stable interactions than ReAsH. Based on these observations, we developed a protocol to demonstrate selective labeling of different proteins in the same cell. We used two target proteins that are localized in different cellular compartments. As model proteins we chose a plasmamembrane localized G protein-coupled receptor for PTH (PTH-receptor) which was C-terminally modified with the FLNCCPGCCMEP motif for labeling with ReAsH, and the cytosolic -arrestin-2 protein which was C-terminally modified with the CCPGCC motif for labeling with FlAsH. Both proteins were specifically labelled with the respective Fluorophores and -arrestin-2 will translocate to the plasmamembrane upon agonist stimulation of the PTH receptor. Taken together our data demonstrate that FlAsH and ReAsH can be used for orthogonal labeling to different binding motifs fused to different target proteins in living cells. KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Fluoreszenz KW - Fluoreszenz KW - Wirkstoff-Rezeptor-Bindung KW - GPCR KW - Konformationsänderung KW - ligandenselektive Konformationen KW - Mikroskopie KW - FlAsH KW - ReAsH KW - Tetracystein-Motivee KW - GPCR KW - lignaselective conformations KW - FlAsH KW - ReAsH KW - Tetracystein-Motive Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35961 ER -