TY - JOUR A1 - Hegi, M.E. A1 - Sagelsdorff, P. A1 - Lutz, Werner K. T1 - Detection by \(^{32}\)P-postlabeling of thymidine glycol in gamma-irradiated DNA N2 - No abstract available KW - Toxikologie Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60863 ER - TY - JOUR A1 - Sagelsdorff, P. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - DNA methylation in rat liver by daminozide, 1,1-dimethylhydrazine, and dimethylnitrosamine N2 - DNA Methylation in Rat Li ver by Daminozide, 1, 1-Dimethylhydrazine, and Dimethylnitrosamine. SAGELSDORFF, P., LUTZ, W. K., AND ScHLAITER C. (1988). Fundam. Appl. Toxico/. 11, 723-730. [methyP4C]Daminozide (succinic acid 2',2'-dimethylhydrazide; 37 mgjkg), l,l( 14C]dimethylhydrazine (UDMH; 19 mgtkg), and (14C]dimethylnitrosamine (DMNA; 0.1 mg/ kg) were administered by oral gavage to male Sprague-Dawley rats. After 24 hr, the animals were killed and DNA was purified from the livers to constant specific radioactivity. After enzymatic degradation of the DNA to the 3'-deoxynucleotides the Ievel of DNA methylation was determined by HPLC analysis. Radiolabeled 7-methylguanine (7mG) was identified by cochromatography with unlabeled 7mG added as standard after acidic depurination of DNA and HPLC analysis ofpurines and apurinic acid. All three compounds were found to methylate DNA. The relative potencies were 1:47:4900 for daminozide:UDMH:DMNA. With [methyPH]UDMH, the formation of7mG was investigated as a function of dose administered, at 20, 2, and 0.2 mgj kg. The methylation ofDNA was strictly proportional to the dose. The data were used to compare the Ievel of DNA alkylation derived from residues of daminozide and UDMH in treated apple with the genotoxicity of the intake of N-nitroso compounds in Germany and Japan. It is estimated that these residues could Iead to a DNA methylation in the Ii ver of about 6% of an average exposure to DMNA KW - Toxikologie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60875 ER - TY - JOUR A1 - Baertsch, A. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - Effect of inhalation exposure regimen on DNA binding potency of 1,2-dichloroethane in the rat N2 - 1 ,2-Dichloroethane (DCE) was reported to be carcinogenic in rats in a long-tenn bioassay using gavage in com oil (24 and 48 mg/kg/day), but not by inhalation (up to 150-250 ppm, 7 h/day, 5 days/week). The daily dose metabolized was similar in the two experiments. In order to address this discrepancy, the genotoxicity of DCE was investigated in vivo under different exposure conditions. Fernale F-344 rats (183-188 g) were exposed to [1,2-14C]DCE in a closed inhalation chamber to either a low, constant concentration (0.3 mg/l = 80 ppm for 4 h) or to a peak concentration (up to 18 mg/1 = 4400 ppm) for a few minutes. After 12 h in the chamber, the dose metabolized under the two conditions was 34 mg/kg and 140 mg/k:g. DNA was isolated from liver and lung and was purified to constant specific radioactivity. DNA was enzymaticaBy hydrolyzed to the 3' -nucleotides which were separated by reverse phase HPLC. Most radioactivity eluted without detectable or with little optical density' indicating that the major part of the DNA radioactivity was due to covalent binding of the test compound. The Ievel of DNA adducts was expressed in the dose-nonnalized units ofthe Covalent Binding Index, CBI = f.Lmol adduct per mol DNA nucleotide/ mmol DCE per kg body wt. In liver DNA, the different exposure regimens resulted in markedly different CBI values of 1.8 and 69, for "constant-low" and ''peak" DCE exposure Ievels. In the Jung, the respective values were 0.9 and 31. It is concluded that the DNA darnage by DCE depends upon the concentration-time profile and that the carcinogenic potency determined in the gavage study should not be used for low-Ievel inhalation exposure. KW - Toxikologie KW - 1 KW - 2-Dichloroethane KW - Carcinogens KW - DNA KW - binding KW - Rat KW - Inhalation KW - Dose response Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60743 ER - TY - JOUR A1 - Ohgaki, H. A1 - Ludeke, B. I. A1 - Meier, I. A1 - Kleihues, P. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - DNA methylation in the digestive tract of F344 rats during chronic exposure to N-methyl-N-nitrosourea N2 - The formation of \(O^6\)-methyldeoxyguanosine (\(O^6\)-MedGuo) was determined by an immuno-slot-blot assay in DNA of various tissues of F344 rats exposed to N-methyl-N-nitrosourea (MNU) in the drinking waterat 400 ppm for 2 weeks. Although the pyloric region of the glandular stomach is a target organ under these experimental conditions, the extent of DNA methylation was highest in the forestomach (185 \(\mu\)mol \(O^6\)-MedGuojmol guanine). Fundus (91 J.!moljmol guanine) and pylorus (105 J.!moljmol guanine) of the glandular stomach, oesophagus (124 \(\mu\)mol/mol guanine) and duodenum (109 )lmoljmol guanine) showed lower Ievels of \(O^6\) - MedGuo but differed little between each other. Thus, no correlation was observed between target organ specificity and the extent of DNA methylation. This is in contrast to the gastric carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which preferentially alkylates DNA of the pylorus, the main site of induction of gastric carcinomas by this chemical. In contrast to MNU, the nonenzymic decomposition of MNNG is accelerated by thiol compounds (reduced glutathione, L-cysteine), which are present at much higher concentrations in the glandular stomach than in the forestomach and oesophagus. During chronic exposure to MNNG (80 ppm), mucosal cells immunoreactive to 0 6-MedGuo are limited to the luminal surface [Kobori et al. (1988) Carcinogenesis 9:2271-2274]. Although MNU (400 ppm) produced similar Ievels of \(O^6\)-MedGuo in the pylorus, no cells containing methylpurines were detectable by immunohistochemistry, suggesting a more uniform methylation of mucosal cells by MNU than by MNNG. After a single oral dose of MNU (90 mg/kg) cells containing methylpurines were unequivocally identified using antibodies to \(O^6\)-MedGuo and the imidazole-ring-opened product of 7-methyldeoxyguanosine. In the gastric fundus, their distribution was similar to those methylated by exposure to MNNG, whereas the pyloric region contained immunoreactive cells also in the deeper mucosallayers. After a 2-week MNU treatment, the rate of cell proliferation, as determined by bromodeoxyuridine immunoreactivity, was only slightly enhanced in the oesophagus andin the fundus, but markedly in the forestomach and the pyloric region of the glandular stomach. lt is concluded that the overall extent of DNA methylation, the distribution of alkylated cells within the mucosa and the proliferative response all contribute to the organ-specific carcinogenicity of MNU. KW - Toxikologie KW - Gastric carcinogenesis KW - N-methyl-N-nitrosourea KW - DNA methylation Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60759 ER - TY - JOUR A1 - Lutz, Werner K. T1 - Dose-response relationship for chemical carcinogenesis by genotoxic agents N2 - No abstract available KW - Toxikologie Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60766 ER - TY - JOUR A1 - Buss, P. A1 - Caviezel, M. A1 - Lutz, Werner K. T1 - Linear dose-response relationship for DNA adducts in rat liver from chronic exposure to aflatoxin B1 N2 - Male F-344 rats were given eH]aßatoxin B1 (AFB1) in the drinking water at three exposure Ievels (0.02, 0.6, 20 J,Lgll, resulting in average dose Ievels of 2.2, 73, 2110 nglkg per day). After 4, 6 and 8 weeks, DNA was ~ted frorn the livers and analyzed for aßatoxin-DNA adducts. Tbe Ievel of DNA adducts did not increase significantly after 4 weeks, indicating that a steady-state for adduct formation and removal had nearly been reached. At 8 weeks, the adduct Ievels were 0.91, 32 and 850 nucleotide-aßatoxin adducts per to' nucleotides, i.e. clearly proportional to the dose. At the high dose Ievel, a near SO% tumor incidence would be expected in a 2-year bioassay with F -344 rats while the low dose used is within the range of estlmated human dietary exposures to aßatoxin in W estem countries. The proportionality seen between exposure and steady-state DNA adduct Ievel is discussed with respect to a linear extrapolation of the tumor risk to low dose. KW - Toxikologie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60779 ER - TY - JOUR A1 - Lutz, Werner K. T1 - Dose-response relationship and low dose extrapolation in chemical carcinogenesis [commentary] N2 - Data supporting various dose-respome relationships in chemical carcinogenesis are summarized. General principles are derived to explain the relationships between exposure dose, JI>NA adduct Ievel, induction of genetic changes, and tumor incidence. Some mechanistic aspects of epigenetic carcinogens (stimulation of ceU division and maldlfl'erentlation) are analyzed in a similar way. In a bomogeneous pnpulation, non-linearities are frequent. They are due to pbenomena of induction or saturation of enzymatic activities and to the multi-step nature of carcinog~: if a carcinogen acce1erates more than one step, the SUperposition of the dose- response curves for the indJvidual steps can result in an exponential relationship. A fourth power of the dose was the maximum seen in animals (fonnaldehyde). At the lowest dose Ievels, a proportionality between dose and tumor induction is postulated independent of the mechanism of action if the carcinogen aceeierotes the endogenous proass responsible for spootaneous tumor formation. Low-dose thresholds are expected only for situations where the carcinogen acts in a way that has no endogenous counterpart. Epidemiologfcal studies in humans show linear dose- response curves in all but two investigations. The difference from the strongly nonlinear slopes ·seen in animal studies could be due to the heterogeneity of the human population: if the individual sensitivity to a carcinogen is governed by a large number of genetic and Iife-style factors, the non-linea.rities will tend to cancel each other out and the dose- response curve becomes 'quasi-linear'. KW - Toxikologie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60789 ER - TY - JOUR A1 - Hegi, M. E. A1 - Ulrich, D. A1 - Sagelsdorff, P. A1 - Richter, C. A1 - Lutz, Werner K. T1 - No measurable increase in thymidine glycol or 8-hydroxydeoxyguanosine in liver DNA of rats treated with nafenopin or choline-devoid low-methionine diet N2 - Male rats were treated for 2 months with 1000 ppm nafenopin in the diet or for 4 or 7 days with a choline-devoid low-methionine diet. DNA was isolated from the livers and analyzed for the presence of cis-thymidine glycol-3'-phosphate (cis-dTGp) by 32P-postlabeling and for the Ievel of 8-hydroxy-deoxyguanosine (8-0H-dG) by electrochemical detection (ECD). In no DNA sample was the Ievel of cis-dTGp above the Iimit of detection of 1 modified thymidine per 106 nucleotides. With 8-0H-dG, a background Ievel of this modification of 20 8-0H-dG per 106 nucleosides was found in liver DNA of control rats, which was not affected by either treatment. It is postulated for thymidine glycol that a potential increase was below the Iimit of detection or was rapidly repaired in vivo and that the steady-state Ievel of endogenous 8-hydroxydeoxyguanosine appears not tobe influenced by the treatments chosen. KW - Toxikologie KW - Oxygen radical KW - DNA KW - Genotoxicity KW - Rat liver peroxisome KW - Choline deficiency KW - Thymidine glycol KW - 8-Hydroxy-deoxyguanosine Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60790 ER - TY - JOUR A1 - Meier, I. A1 - Shephard, S. E. A1 - Lutz, Werner K. T1 - Nitrosation of aspartic acid, aspartame, and glycine ethylester. Alkylation of 4-(p-nitrobenzyl)pyridine (NBP) in vitro and binding to DNA in the rat N2 - In a colorimetric assay using 4-( p-nitrobenzyl)pyridine (NBP) as a nucleophilic scavenger of alkylating agents, the nitrosation and alkylation reactions were investigated for a number of amino acids and derivatives. The alkylating activity increased with the square of the nitrite concentration. The nitrosation rate constants for aspartic acid, aspartame, and glycine ethylester ( = precursors C) were 0.08, 1.4 and ~ 0.2, respectively, expressed in terms of the pH-dependent \(k_2\) rate constant of the equation dNOCjdt = \(k_2\) • (C]· [nitrite]\(^2\) • The rates correlated inversely with the basicity of the amino group. The stability of the alkylating activity was astonishingly high, both in acid and at neutral pH. Half-lives of 500, 200, and 30 min were determined for aspartic acid (pH 3.5), aspartame (pH 2.5), and glycine ethylester (pH 2.5). Values of 60, 15, and 2 min; respectively, were found at pH 7. It is concluded that rearrangement of the primary N-nitroso product to the ultimate alkylating agent could be rate-limiting. The potential of nitrosated a-amino acids to bind to DN A in vivo was investigated by oral gavage of radiolabelled glycine ethylester to rats, followed irnmediately by sodium nitrite. DNA was isolated from stomach and liver and analysed for radioactivity and modified nucleotides. No indication of DNA adduct formation was obtained. Based on an estimation of the dose fraction converted from glycine ethylester to the nitroso product under the given experimental conditions, the maximum possible DNA-binding potency of nitroso glycine ethylester is about one order of magnitude below the methylating potency of N-nitrosomethylurea in rat stomach. The apparent discrepancy to the in vitro data could be due to efficient detoxification processes in mammalian cells. KW - Toxikologie KW - Nitrosation KW - Alkylation KW - Amino acids KW - DNA binding Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60804 ER - TY - JOUR A1 - Lutz, Werner K. T1 - Endogenous genotoxic agents and processes as a basis of spontaneous carcinogenesis N2 - A list ofendogenaus DNA·damaging agents and processes is given. Endogenaus e/ectrophiles are found with the cosubstrates of physiological transfer reactions (S-adenosylrnethionine for methylation, A TP for phosphorylation, NAD\(^+\) for ADP-ribosylation, acetyl CoA for acetylation). Aldehyde groups (glyceraldehyde- 3-phosphate, formaldehyde, open forms of reducing sugars, degradation products of peroxidation) or alkylating degradation products derived from endogenaus nitrose compounds represent additional possibilities. Radical-forming reactions include leakage of the superoxide anion radical from terminal cytochromes and redox cycles, hydroxyl radical formation by the Fenton reaction from endogenaus hydrogen peroxide, and the formation of lipid peroxides. Genetic instability by spontaneaus deaminations and depurinations as well as replicative instability by tautomer errors andin the presence of mutagenic metal ions represent a third important dass of endogenaus genotoxic processes. The postulated endogenaus genotoxicity could form the mechanistic basis for what is called 'spontaneous' tumor incidence and explain the possibility of an increased tumor incidence after treatment of animals with non-genotoxic compounds exhibiting tumor-promoting activity only. Individual differences are expected to be seen also with endogenaus DNA damage. The presence of endogenaus DNA darnage implies that exogenaus DNAcarcinogen adducts give rise to an incremental darnage which is expected to be proportional to the carcinogen dose at lowest Ievels. An increased tumor risk due to exposure to exogenaus genotoxic carcinogens could therefore be assessed in terms of the background DNA damage~ for instance in multiples of the mean Ievel or of the interindividual variability in a population. KW - Toxikologie KW - Endogenous genotoxicity KW - Electrophiles KW - Radicals KW - Genetic instability KW - DNA damage KW - Spontaneous tumours KW - Carcinogen risk Individual susceptibili Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60816 ER - TY - JOUR A1 - Jauch, A. A1 - Lutz, Werner K. T1 - In vivo assay for somatic point mutations induced by genotoxic carcinogens: incorporation of [\(^{35}\)S]methionine into a rat liver cytochrome b\(_5\) normally lacking sulphur-containing amino acids N2 - The trypsin fragments of rat liver microsomal cytochron1e b\(_5\) (Tb\(_5\)) lack both methionine (met) and cysteine (cys), i.e., the sulphur-containing antino acids. Tb\(_5\) should therefore contain no 358-radioactivity after isolation from animals treated wHh [\(^{35}\)S]met or [\(^{36}\)S]cys. If, however, the nucleic acids coding for this polypeptide have been damaged by a genotoxic carcinogen, a miscoding could result in an incorporation of met or cys into the polypeptide so that Tb\(_8\) could now be \(^{36}\)S-radiolabelled. Two experiments are descrihed. the first one where a toxic regimen of N -nitrosomorpholine (NNM) to rats resulted in a significant increase of \(^{35}\)S-radioactivity in the Tbs of liver microsomes, and a second experiment with a non-toxic regimen of N,N diethylnitrosamine (DENA), where no increase was observable. KW - Toxikologie KW - MammaJian mutagenicity test KW - Pointmutation KW - Protein coding KW - Cytochrome b5 KW - Amino acid composition KW - Rat Iiver microsomes Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61047 ER - TY - JOUR A1 - Meier-Bratschi, A. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - Methylation of liver DNA of rat and mouse by N-nitrosodimethylamine formed in vivo from dimethylamine and nitrite N2 - The extent of formation of N-nitrosodimethylaminc {NDMA) in the stomachs of rats and mice after sirnultancous oral administration of [\(^{14}\)C]dimethylamine and potassium nitrite was determined by measuring the methylation of liver DNA. With doses of around 1 mg dimethylamine hydrochloride/ kg body weight and 50 mg potassium nitrite/kg body weight. 0,8 % of the amine was nitrosated on average. The individual fluctuations ranged from 0.2 to 1.30% in the rat and from 0.2 to 1.9% in the mouse. Simultaneous administration of 50 mg sodium ascorbate (vitamin Cl/kg body weight inhibited the nitrosation by ahout 80% while 50 mg \(\alpha\)-tocopherol acetate [Vitamin E)/kg body weight reduced the nitrosation by about a half. Assuming similar kinctics and conditions of nitrosation in rats and man. a comparison of the formation of NDMA in vivo from dietary dimethylamine and nitrite with the estimated human uptake of preformed N DMA revealed that in vitro formation in the stomach of man is probably negligible. KW - Toxikologie Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61052 ER - TY - JOUR A1 - Lutz, Werner K. A1 - Jaggi, W. A1 - Schlatter, C. T1 - Covalent binding of diethylstilbestrol to DNA in rat and hamster liver and kidney [Short Communication] N2 - No abstract available KW - Toxikologie KW - Carcinogenesis KW - Covalent binding index - Diethylstilbestrol KW - DNA binching KW - Estrogen KW - Hormone Y1 - 1982 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61066 ER - TY - JOUR A1 - Däniken, A. von A1 - Friederich, U. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - Tests for mutagenicity in Salmonella and covalent binding to DNA and protein in the rat of the riot control agent o-chlorobenzylidene malononitrile (CS) N2 - The aim of this study was to determine whether o-chlorobenzylidene malononitrile ( CS) exhibits any genotoxic activity towards Salmonella or mammalian DNA in vivo. CS was synthesized with a [\(^{14}\)C]-label at the benzylic carbon atom. It was administered i. p. at a dose level of 13 mg/kg (1 mCi/kg) to young adult male rats. Liverand kidney DNA was isolated after 8, 25, and 75 h. The radioactivity was at (liver, 8 and 75 h) or below (all other samples) the limit of detection of 3 dpm. Therefore, a possible binding of CS to DNA is at least 10\(^5\) times lower than that of the strong hepatocarcinogen aflatoxin B1, and 4,000 times lower than that of vinyl chloride. In contrast to this lack of DNA binding, but in agreement with the chemical reactivity of CS, a binding to nuclear proteins could be detected with specific activities ranging between 50 and 121 dpm/mg for liver and between 3 and 41 dpm/mg for kidney. Protein binding could well be responsible for its pronounced cytotoxic effects. Cs was also tested in the Ames Salmonella/microsome assay. Strains TA 1535, TA 1537, TA 1538, TA 98, and TA 100 were used with or without pre-incubation. Only with strain TA 100 and only without pre-incubation, a doubling of the number of revertants was detectable at the highest dose Ievels used, 1,000 and 2,000 !lg CS per plate. With pre-incubation of TA 100 with CS, a slight increase of the number of revertants was seen at 100 and 500 !lg per plate, and a subsequent fall below control values at 1,000 J.tg. A check for the number of surviving bacteria revealed a strong bacteriotoxicity of the higher doses of es so that the calculated mutation frequencies, i.e., the oumber of revertants per number of surviving bacteria, increased with doses up to 500 !J.g. This toxicity could be counteracted in part by the addition of increasing amounts of rat liver microsomes. In the view of these results, and taking into account the rare and low exposure of man, it is concluded that CS will not create a risk for the induction of point mutations or of carcinogenic processes mediated by DNA binding. KW - Toxikologie KW - o-Chlorobenzylidene malononitrile KW - Riot control agents KW - DNA Binding KW - Salmonella/microsome assay KW - Carcinogens KW - Mutagens Y1 - 1981 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61073 ER - TY - JOUR A1 - Däniken, A. von A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - Lack of covalent binding to rat liver DNA of the hypolipidemic drugs clofibrate and fenofibrate N2 - \(^{14}\)C-Labelled clofibric acid and fenofibric acid were administered p.o. to 200 g male and female rats. After 10 h, liver nuclear DNA and protein were isolated and the radioactivity was determined. Binding to protein was clearly measurable whereas no binding to DNA could be detected from any drug. A comparison of the Iimit of detection of such DNA binding with well-known chemical carcinogens revealed that the known hepatocarcinogenicity of clofibrate cannot be based upon an initiating, DNA damaging, mode of action but must be due to other, nongenotoxic, mechanisms such as peroxisome proliferation, hepatomegaly, or cytotoxicity due to protein binding. The risk assessment in man and the interpretation of the carcinogenicity data for rodents are discussed. KW - Toxikologie Y1 - 1981 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61087 ER - TY - JOUR A1 - Lutz, Werner K. A1 - Jaggi, W. A1 - Lüthy, J. A1 - Sagelsdorff, P. A1 - Schlatter, C. T1 - In vivo covalent binding of aflatoxin B\(_1\) and aflatoxin M\(_1\) to liver DNA of rat, mouse and pig N2 - [\(^{14}\)C] Aflatoxin B\(_1\) (AFB\(_1\)) was isolated from cultures of Aspergillus parasiticus grown on [1-\(^{114}\)C] sodium acetate. Covalent binding of AFB1 to liver DNA of rat and mouse was determined 6-8 h afteroral administration. The effectiveness of covalent binding, expressedas DNA binding per dose in the units of a 'Covalent Binding Index' (CBI), (\(\mu\)mol aflatoxin/mol DNA nucleotides)/(mmol aflatoxin/kg animal), was found to be 10 400 for rats and 240 for mice. These CBI partly explain the different susceptibility of the two species for the incidence of hepatic tumors. The corresponding values for pig liver DN A, 24 and 48 h after oral administration, were found to be as high as 19 100 and 13 300. DNA-binding has not so far been reported for this species although it could represent an appropriate animal model for studies where a human-like gastrointestinal tract physiology is desirable. Aflatoxin M \(_1\) ( AFM\(_1\)) is a metabolite found in the milk of cows that have been fed AFB\(_1\)-contaminated diet. [\(^{14}\)C] AFM\(_1\) was also found to be produced by cultures of A. parasiticus giving a yield of about 0.3% of the total aflatoxins. A test for covalent binding to rat liver DN A revealed a CBI of 2100 shoWing that AFM\(_1\) must also be regarded as a strong hepatocarcinogen. It is concluded that AFB\(_1\) contaminations should be avoided in dairy feed. KW - Toxikologie Y1 - 1980 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61097 ER - TY - JOUR A1 - Jaggi, W. A1 - Lutz, Werner K. A1 - Lüthy, J. A1 - Zweifel, U. A1 - Schlatter, C. T1 - In vivo covalent binding of aflatoxin metabolites isolated from animal tissue to rat-liver DNA N2 - Ring-labelled [\(^{14}\)C)aflatoxin B\(_1\) (AFB\(_1\)), prepared by biosynthesis. or generally labelled [\(^3\)H]AFB\(_1\) was administered by oral gavage to young adult male rats. After 6 hr. the liver was removed and two fractions were isolated, namely macromolecules, which contamed about 3 % of the initial dose of AFB\(_1\) radioactivity. and water-soluble, low-molecular aftatoxin conjugates containing about0·2% of the administered radioactivity. These two fractions were administered orally to other rats in order to determine the potential of radioactive aftatoxin residues for covalent binding to DNA. Such binding can be used as an indicator for carcinogenic potency. Liver DNA was isolated 9-12 hr after admmistration of the aflatoxin derivatives and in no case was any radioactivity detected on the DNA. It can be deduced on the basis of the limit of detection of radioactivity on the DNA, that macromolecule bound AFB\(_1\) derivatives are at least 4000 times less active than AFB\(_1\) with respect to covalent binding to rat-liver DNA. and that the water-soluble conjugates are at least 100 times less potent than AFB, itself. It is concluded that the carcinogenic risk for humans who consume liver or meat. containing such aflatoxin residues is negligible when compared with the risk from intake of aftatoxins in other food items. KW - Toxikologie Y1 - 1980 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61101 ER - TY - JOUR A1 - Viviani, A. A1 - Däniken, A. von A1 - Schlatter, C. A1 - Lutz, Werner K. T1 - Effect of selected induction of microsomal and nuclear aryl hydrocarbon monooxygenase and epoxide hydrolase as well as cytoplasmic glutathione S-epoxide transferase on the covalent binding of the carcinogen benzo(a)pyrene to rat liver DNA in vivo N2 - Groups of four adult male rats [ZUR:SIV -Z] were pretreated with corn oil (control; 2 ml/kg/day i. p. for 3 days), trans-stilbene-oxide (SO; 200 mg/kg/day i. p. for 2 days), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 \(\mu\)g/kg i. p. once, 4 days before killing), phenobarbital (PB; 1 gjliter in the drinking water for 8 days), and dieldrin (20 mg/kg/day i. p. for 3 or 9 days). They received an injection of [G-\(^3\)H]benzo(a)pyrene (BaP, 31 \(\mu\)g/kg, 7.4. 10\(^9\) dpm/kg; i. v.) 16 h before killing. In the liver of each rat, five enzymatic activities and the covalent binding of BaP to DNA have been determined. The rnicrosomal aryl hydrocarbon monooxygenase activity (AHM) ranged frorn 75% of control (SO) to 356% (TCDD), the nuclear AHM from 63% (SO) to 333% (TCDD). Microsomal epoxide hydrolase activity (EH) was induced up to 238% (PB), nuclear EH ranged from 86% (TCDD) to 218% (PB). A different extent of induction was observed in the two compartments. Highest induction of glutathione S-epoxide transferase activity (GST) was found with PB (202%). The DNA binding of BaP was modulated within 79% (dieldrin, 9 days) and 238% of control (TCDD). An enzyme digest of control DNA was analysed by Sephadex LH-20 chromatography. Multiple linear regression analysis with all data expressedas o/o of control yielded the following equation: DNA Binding = 1.49 · Microsomal AHM- 1.07 · Nuclear AHM+ 0.33 · Microsomal EH- 0.52 · N uclear EH+ 0.11 · Cytoplasmic GST + 58.2. From this analysis it is concluded that (1) AHM located in the endoplasmic reticulum is most important in the formation of DNA-binding metabolites, (2) EH in the same compar.tment is not determinative in thls respect nor has it a protective effect, (3) both membrane-bound enzyme activities located in the nucleus may inactivate potential ultimate carcinogens, and ( 4) cytoplasmic GST probably cannot reduce DNA binding due to its subcellular localization. KW - Toxikologie KW - Carcinogen KW - Benzo(a)pyrene-DNA binding KW - Enzyme induction KW - Aryl hydrocarbon rnonooxygenase KW - Epoxide hydrolase KW - Glutathione Stransferase Y1 - 1980 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61114 ER - TY - JOUR A1 - Lutz, Werner K. T1 - In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis N2 - The covalent binding of chemical carcinogens to DNA of mammalian organs is expressed per unit dose, and a 'Covalent-Binding Index', CBI, is defined. CBI for various carcinogens span over 6 orders of magnitude. A similar range is observed for the carcinogenic potency in long-term bioassays on carcinogenicity. For the assessment of a risk from exposure to a carcinogen, the total DN A darnage can be estimated if the actual dose is also accounted for. A detailed description is given for planning and performing a DNA-binding assay. A complete literature survey on DNA binding in vivo (83 compounds) is given with a calculation of CBI, where possible, 153 compounds are listed where a covalent binding to any biological macromolecule has been shown in vivo or in vitro. Recent, so far unpublished findings with aflatoxin Mh macromolecule- bound aflatoxin Bh ·diethylstilbestrol, and 1,2-epithiobutyronitrile are included. A comparison of CBI for rat-liver DNA with hepatocarcinogenic potency reveals a surprisingly good quantitative correlation. Refinements for a DN A-binding assay are proposed. Possibilities and Iimitations in the use of D NA binding in chemical carcinogenesis are discussed extensively. KW - Toxikologie Y1 - 1979 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61122 ER - TY - JOUR A1 - Jaggi, W. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - Comparative studies on the covalent binding of the carcinogen benzo(a)pyrene to DNA in various model systems N2 - The covalent binding of tritiated benzo(a)pyrene (BP) to DNA has been determined in rat liver in vivo, in rat liver perfused in situ, after incubation of BP with liver single cells, with liver homogenate, with liver microsomes and DNA, with fibroblasts from a rat granulorna pouch, and with · 2 cell lines. Li ver single cells were found to be a valuable compromise between the rnost sensitive system (microsomal incubation of BP with DNA) and the biologically most relevant system (in vivo ). KW - Toxikologie Y1 - 1979 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61131 ER -