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Chapter 1

Introduction

Riemann’s existence theorem famously solves the regular inverse Galois problem over C, guaran-

teeing for every finite group G the existence of Galois extensions F |C(t) with Galois group G.

In attempting to solve the regular inverse Galois problem for smaller fields K ⊂ C (particularly

for K = Q), a very important result by Fried and Völklein (cf. Thm. 2.3) reduces the existence

of regular Galois extensions F |K(t) with Galois group G to the existence of K-rational points on

components of certain moduli spaces for families of covers of the projective line, known as Hurwitz

spaces.

In some cases, the existence of rational points on Hurwitz spaces has been proven by theoreti-

cal criteria. A famous example is Matzat’s regular realization of the Mathieu group M24 over Q
([41]).

In general, however, the question whether a given Hurwitz space has any rational point remains a

very difficult problem. In concrete cases, it may be tackled by an explicit computation of a Hurwitz

space and the corresponding family of covers.

This explicit computation of families of covers of the projective line has been of interest in Ga-

lois theory for many years, not only for the sake of theoretical existence results. Notable results

have been achieved by various authors, e.g. Malle, Matzat, Granboulan, Couveignes, Hallouin and

others (cf. e.g. [7], [8], [19], [22], [23] and [35]). The aim of this work is to collect and expand on

the various techniques that may be used to solve such computational problems and apply them

to tackle several families of Galois theoretic interest. In particular, in Chapters 5.1 and 5.3, we

compute explicit curve equations for Hurwitz spaces for certain families of M24 and M23. These

are (to my knowledge) the first examples of explicitly computed Hurwitz spaces of such high genus.

They might be used to realize M23 as a regular Galois group over Q if one manages to find suitable

1



CHAPTER 1. INTRODUCTION 2

points on them.

Apart from the calculation of explicit algebraic equations, we produce complex approximations

for polynomials with genus zero ramification of several different ramification types in M24 and M23.

These may be used as starting points for similar computations.

The main motivation for these computations is the fact that M23 is currently the only remain-

ing sporadic group that is not known to occur as a Galois group over Q (see e.g. [39, Thms. II.9.9

and III.7.12]).

We also compute the first explicit polynomials with Galois groups G = PΓL3(4), PGL3(4), PSL3(4)

and PSL5(2) over Q(t).

Special attention will be given to reality questions. As an application we compute the first examples

of totally real polynomials with Galois groups PGL2(11) and PSL3(3) over Q.

As a suggestion for further research, we describe an explicit algorithmic version of “Algebraic

Patching”, following the theory described e.g. in [27]. This could be used to conquer some problems

regarding families of covers of genus g > 0.

Finally, we present explicit Magma implementations for several of the most important algorithms

involved in our computations.

Acknowledgement:

I would like to thank Prof. Peter Müller for introducing me into many of the subjects of this work

as well as carefully reading earlier versions.

I would also like to thank Ruben Schulze for many interesting talks about Algebraic Patching.

Remark:

The text files referred to at various points throughout this work were originally contained on an

attached CD. They are now available for download under

www.mathematik.uni-wuerzburg.de/∼koenig.



Chapter 2

The regular inverse Galois

problem and Hurwitz spaces

We begin with an outline of theoretical prerequisites for the later computations. In particular,

this chapter explains the definition of Hurwitz spaces and their connection with the inverse Galois

problem.

2.1 The regular inverse Galois problem

The inverse Galois problem (IGP) asks which finite groups occur as Galois groups over Q (or

more generally, over any given base field). In 1892, David Hilbert proved his famous irreducibility

theorem, stating the following (see e.g. [55, Def. 1.9 and Th. 1.23.]):

Theorem 2.1 (Hilbert’s irreducibility theorem). Let f(t,X) be an irreducible polynomial in two

variables over Q, of degree at least one in X. Then there are infinitely many specializations t 7→
t0 ∈ Q such that the specialized polynomial f(t0, X) ∈ Q[X] remains irreducible.

Definition 2.1 (Regular extension of function fields). An extension E | F of function fields is

called regular, if E and F have the same field of constants.

In analogy to the (IGP), the regular inverse Galois problem (RIGP) asks which groups occur as

Galois groups of regular extensions of Q(t).

As an easy corollary of Hilbert’s irreducibility theorem, any group that occurs as a Galois group

over Q(t) will also occur as a Galois group over Q.

A positive answer to the (RIGP) would therefore imply a positive answer to the (IGP). The stronger

(RIGP) might seem even harder to tackle than the (IGP) itself, but it has the advantage that one

3



CHAPTER 2. THE REGULAR INVERSE GALOIS PROBLEM AND HURWITZ SPACES 4

can apply methods from complex analysis and topology. This helps to solve the (RIGP) over C(t).

The main tool herefore is Riemann’s existence theorem.

2.2 Topological prerequisites: Fundamental groups and Rie-

mann’s existence theorem

Here we collect some of the basic topological results needed for the study of ramified coverings of

the projective line. These are well-known. For a detailed explanation cf. [55, Chapter 4], which we

here follow with regard to general notation.

Let r ∈ N, and let P = {p1, ..., pr} be a subset of P1C of cardinality r. Let π1(P1C \ P, p0)

the topological fundamental group of the punctured projective line, with base point p0 ∈ P1C \ P .

This group is generated by the homotopy classes of paths γ1, ..., γr, where γi is any path starting

and ending in p0 and turning counter-clockwise around pi (and around no other pj). We denote

the path and its homotopy class by the same letter, as there is no risk of confusion.

Assume in addition that the paths γ1, ..., γr are ordered counter-clockwise as in Figure 2.1. The

fundamental group generators then satisfy the relation γ1 · · · γr = 1.

Figure 2.1: Standard configuration for fundamental group generators

b

b

b
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p0
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p2

pr

r r r
�
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R

Definition 2.2 (Covering maps of manifolds). Let R,S be topological manifolds. A surjection

f : R→ S is called a covering if for every p ∈ S there exists a connected open neighborhood U such

that every connected component of the preimage f−1(U) is open and mapped homeomorphically

onto U by f .
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If in the above situation S is connected and p0 ∈ S such that |f−1(p0)| = n is finite, then all

other fibers f−1(p) for p ∈ S are of cardinality n as well. In this case, f can therefore be referred

to as an n-fold covering of S.

Definition 2.3 (Lifts of paths). Let f : R → S be a covering and γ a path in S. A lift of γ is a

path γ in R such that f ◦ γ = γ.

Lifting the paths γi to their preimages (numbered by 1, ..., n) then leads to a homomorphism ϕ

of the fundamental group into the symmetric group Sn, with a(γi)ϕ = b if and only if the preimage

of γi beginning in point a(∈ {1, ..., n}) ends in point b (cf. e.g. [55, Th. 4.12]).

The image of the fundamental group under this action is called the monodromy group of the cov-

ering f .

We will refer to the ordered tuple of images of the fundamental group generators γ1, ..., γr under

this action as the branch cycle description (γ1, ..., γr) of the cover. This tuple is then unique up to

simultaneous conjugation in Sn.

Another point of view of monodromy action is via deck transformations:

Definition 2.4 (Deck transformations). A deck transformation of a covering f : R → S is a

homeomorphism α : R→ R such that fα = f .

It is easy to see that the deck transformations of a covering form a group which acts on the

fibers f−1(p) of the cover.

Definition 2.5 (Galois covering). A covering f : R→ S is called a Galois covering if R and S are

connected and the group of deck transformations acts transitively on each fiber f−1(p).

In fact, for Galois coverings, the action of the deck transformation group on a fiber and the

action of the fundamental group via lifting of paths can be identified (technically, they differ by an

anti-isomorphism).

Remark: If the set P = {p1, ..., pr} of a covering f : R → P1C \ P is understood (or not rel-

evant for certain considerations), we simply speak of a covering f of P1C. This is justified by the

fact that every n-fold covering f : R → P1C \ P in the above sense can be uniquely extended to a

branched covering f̂ : R̂ → P1C of algebraic varieties, with fibers f̂−1(p) of cardinality less than n

at most for p ∈ P .

A central and well-known result for n-fold Galois coverings of a punctured projective line P1C \ P
is the topological version of Riemann’s existence theorem (cf. e.g. [55, Th. 4.32]):

Theorem 2.2 (Riemann’s existence theorem, topological version). Let G be a finite group of order

n; C1, ..., Cr be conjugacy classes of G, all 6= {1}, and P = {p1, ..., pr} be an r-subset of P1C.

Then the following are equivalent:
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• There exists an n-fold Galois covering of P1C \P with deck transformation group isomorphic

to G and branch cycle description (γ1, ..., γr) such that σ(γi) ∈ Ci for all i = 1, ..., r (with

some isomorphism σ : 〈γ1, ..., γr〉 → G).

• There exists (g1, ..., gr) ∈ C1 × ...× Cr, with 〈g1, ..., gr〉 = G and g1 · · · gr = 1.

As we want to obtain information about the Galois groups of function fields via topological

methods it is of decisive importance that there is a natural correspondence between finite coverings

f : R→ P1C (with R connected) and finite extensions L | C(t). Here L is the field of meromorphic

functions of (the compact Riemann surface) R.

For Galois coverings and Galois field extensions respectively, this leads to an identification of the

Galois group of a Galois extension L | C(t) with the group of deck transformations (or, equivalently,

the monodromy group) of an appropriate Galois covering f : R→ P1C.

This correspondence is stated e.g. in [55, Theorem 5.14].

In particular, as L = C(t, x) is a function field of one variable, f can be expressed through a

polynomial equation p(t, x) = 0, i.e. R is (the projective closure of) the curve defined by p, and f

is just the projection to the first component.

The lifting property above can then be used to compute the monodromy action of the fundamental

group numerically, by starting at an unramified point t0 ∈ C, moving t0 in small steps along a path

around a branch point, and taking preimages in R via the equation p(t0, x) = 0. This approach,

of course, works for arbitrary (not only Galois) coverings of finite degree of P1C, i.e. for arbitrary

intermediate fields of a finite Galois extension of C(t).

2.3 Moduli spaces for families of covers and the Hurwitz

braid group

Hurwitz spaces are known as a very important tool to study families of covers with given ramifica-

tion. They were studied by various authors.

The following fundamental properties can be found (with slightly different methods of construction)

in several papers and monographs, e.g. in [16], [39, Chapter III], [48], [55] etc.

Define Ur ⊂ (P1)r as Ur := {(x1, ..., xr) ∈ (P1)r | xi 6= xj for i 6= j}, in other words: The

space consisting of all ordered sets of cardinality exactly r, with elements in P1 (the projective line

over C).

Furthermore denote by Ur the quotient of this space modulo the action of Sr (i.e. the space of

unordered r-sets).

These spaces carry a natural structure as topological manifolds (via the structure of P1C).
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Definition 2.6 (Hurwitz braid group). Let r ≥ 4. The Hurwitz braid group Hr can be defined

abstractly as the group generated by elements β1, ..., βr−1, satisfying the relations

βiβi+1βi = βi+1βiβi+1, i = 1, ..., r − 2

βiβj = βjβi, 1 ≤ i < j − 1 ≤ r − 1

β1β2...βr−1βr−1βr−2...β1 = 1

It is well known that this group is isomorphic to the topological fundamental group of the space

Ur defined above, i.e.:

Hr ∼= π1(Ur, p),

where p ∈ Ur is a base point.

As Ur is a quotient of Ur, the fundamental group of Ur is a normal subgroup of Hr.
This subgroup (also referred to as the pure Hurwitz braid group) is generated by the elements

βi,j := (β2
i )β

−1
i+1···β

−1
j−1 , with 1 ≤ i < j ≤ r,

cf. [39, III.1.2].

Braid groups are directly linked to moduli spaces of covers of the projective line:

Let G be a given finite group. Let S be a subset of the projective line P1C of cardinality r, P0 be

any point in P1 \ S and f : π1(P1 \ S, P0)→ G be an epimorphism mapping none of the canonical

generators γ1, ..., γr of the fundamental group to the identity. On the set of such triples (S, P0, f)

one defines an equivalence relation via (S, P0, f) ∼ (S′, P ′0, f
′) :⇔ S = S′ and there exists a path

γ from P0 to P ′0 in P1 \ S such that the induced map γ? : π1(P1 \ S, P0) → π1(P1 \ S, P ′0) on the

fundamental groups fulfills f ′ ◦ γ? = f .

Identifying the group G with the deck transformation group of a Galois cover ϕ : X → P1 \ S,

Riemann’s existence theorem leads to a natural identification of these equivalence classes [S, P0, f ]

with equivalence classes [ϕ, h], where ϕ : X → P1 \ S is a Galois cover that can be extended to a

branched cover of P1 with exactly r branch points, and h is an isomorphism from the group of deck

transformations of ϕ to G. Cf. [16, Section 1.2.] (especially for the precise identification between

the two different sets of equivalence classes) and [55, 10.1].

Denote the set of these equivalence classes by Hinr (G).

Note that the path γ in the definition of the equivalence relation is not unique. In particular, for

P0 = P ′0, γ may be chosen arbitrarily in π1(P1 \ S, P0), so (S, P0, f) ∼ (S, P0, f
′) iff f ′ ◦ γ? = f for

some γ ∈ π1(P1 \ S, P0), i.e. iff a ◦ f ′ = f for some a ∈ Inn(G) (namely conjugation with f ′(γ)).
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This allows a generalization of the definition of Hinr (G), by substituting Inn(G) with other groups

of automorphisms, cf. [55, 10.1.3.1].

Especially, if G is given as a transitive permutation group, we defineHabr (G) as the set of equivalence

classes [S, P0, f ], where the above definition of an equivalence relation is altered to a ◦ f ′ ◦ γ? !
= f ,

where a is an automorphism of G induced by some element of the symmetric normalizer of G.

The sets Habr (G) and Hinr (G) become topological spaces in a natural way if one defines neigh-

borhood bases in the following way (as outlined e.g. in [16], Chapter 1.2.):

First, if S := {P1, ..., Pr} is the set of branch points of a given cover ϕ and P0 /∈ S, choose dis-

joint open discs D1, ..., Dr around the points P1, ..., Pr such that P0 /∈ D1 ∪ ... ∪ Dr. A neigh-

borhood of [S, P0, f ] ∈ Hinr (G) (and analogously for Habr (G)) is then given by the set of all

[S′, P0, f
′]1 with branch point set S′ such that one branch point lies in each of D1, ..., Dr, and

f ′ and f are equal up to composition with the canonical isomorphisms of fundamental groups

π1(P1 \ S′, P0)→ π1(P1 \ (D1 ∪ ... ∪Dr), P0)→ π1(P1 \ S, P0).

If one now defines Ψ : Hab → Ur and Ψ′ : Hin → Ur by mapping the respective equivalence

classes to the sets S (i.e. by mapping the respective equivalence classes of covers to their branch

point sets), one obtains unramified coverings. The fundamental group of Ur therefore acts on the

fibers via lifting of paths. Translating this action into group theory leads to the action in (2.1).

Apart from the topological structure outlined above, the spaces Ur and Ur are also (quasi-projective)

algebraic varieties. A suitable (higher dimensional) version of Riemann’s existence theorem then

assures that the spaces Hin and Hab become (usually reducible) algebraic varieties as well, via the

covering maps Ψ and Ψ′. In other words, Ψ : Hab → Ur and and Ψ′ : Hin → Ur become algebraic

morphisms.

This directly links the inverse Galois problem with the existence of rational points on certain

algebraic varieties.

The main result is the following (cf. [55, Cor. 10.25] and [11, Th. 4.3]):

Theorem 2.3. Let G be a finite group with Z(G) = 1.

There is a universal family of ramified coverings F : Tr(G) → Hinr (G) × P1C , such that for each

h ∈ Hinr (G), the fiber cover F−1(h)→ P1C is a ramified Galois cover with group G.

This cover is defined regularly over a field K ⊆ C if and only if h is a K-rational point.

In particular, the group G occurs regularly as a Galois group over Q if and only if Hinr (G) has a

rational point for some r.

1Note that demanding P ′
0 = P0 for some representative of an equivalence class is not a restriction!
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2.4 Components of moduli spaces and braid orbit genera

The connection of the topological spaces introduced above with group theoretic methods leads to

the definition of Nielsen classes:

Definition 2.7 (Nielsen class). LetG be a finite group, r ≥ 2 and Er(G) := {(σ1, ...σr) ∈ (G\{1})r |
σ1 · ... · σr = 1, 〈σ1, ..., σr〉 = G} the set of all generating r-tuples in G \ {1} with product 1.

Furthermore let E inr (G) be the quotient of Er(G) modulo conjugating the tuples simultaneously

with elements of G; and if G ≤ Sn is given as a transitive permutation group, denote by Eabr (G)

the quotient under the analogous action of the symmetric normalizer of G.

For any r-tuple C := (C1, ..., Cr) of non-trivial conjugacy classes of G the Nielsen class Ni(C) is

defined as the set of all (σ1, ...σr) ∈ Er(G) such that for some permutation π ∈ Sr it holds that

σi ∈ Cπ(i) for all i ∈ {1, ..., r}. The definition of Niin(C) and Niab(C) is then possible in analogy

to the above notation (in the last case, one should factor out the action of SN(C) := {γ ∈ NSn(G) |
∃π ∈ Sr : (Ci)

σ = Cπ(i) for all 1 ≤ i ≤ r}).

The Hurwitz braid group Hr acts naturally on the set Er(G) (with an induced action on E inr (G)

resp. Eabr (G)) via

(σ1, ..., σr)
βi := (σ1, ..., σi−1, σi+1, σ

σi+1

i , ..., σr), for i = 1, ..., r − 1 (2.1)

It is obvious that the sets Niab(C) and Niin(C) are unions of orbits under these actions.

As Hr is the fundamental group of Ur, it acts on the fibers Ψ−1(p) and Ψ′−1(p) respectively (for

p ∈ Ur a base point).

However, the elements of a given fiber are in 1-1 correspondence with elements of Eabr (G) (for Ψ)

and E inr (G) (for Ψ′). Indeed, the above action on equivalence classes of r-tuples of elements on G

is, via this correspondence, essentially the same as the action of the fundamental group on the fiber

via lifting of paths.

Via the above topological construction, each of the orbits of the braid group acting on Niin(C)

corresponds to a connected component of Hinr (G). The union of all connected components corre-

sponding to Niin(C) is what is usually referred to as a Hurwitz space:

Definition 2.8 (Hurwitz spaces). For an r-tuple C of conjugacy classes of a group G with a

non-empty Nielsen class Niin(C), the union of components of Hinr (G) corresponding to Niin(C) is

called the (inner) Hurwitz space of C.



CHAPTER 2. THE REGULAR INVERSE GALOIS PROBLEM AND HURWITZ SPACES 10

Remarks:

1. In the case that the braid group action on Niin(C) is transitive, the corresponding Hurwitz

space Hinr (G) is connected.

2. In analogy to the definition of Habr (G), there is of course also a notion of an absolute Hurwitz

space of a class tuple (cf. [16]).

Rational points on these spaces are also quite important, if one looks for polynomials with

geometric, but not necessarily arithmetic Galois groupG over Q(t). For our purposes, however,

the inner Hurwitz space will usually suffice.

Note that our use of “absolute” always requires a permutation representation of the group G.

If one leaves out the permutation π in the above definition of a Nielsen class, one gets the notion

of a straight Nielsen class:

SNi(C) := {(σ1, ...σr) ∈ Er(G) | σi ∈ C(i) for i = 1, ..., r}

The definition of SNiin(C) is then possible in analogy to Def. 2.7.

As the braid group permutes the components of the class tuple transitively it is clear that as

soon as the Ci are not all the same class, straight Nielsen classes are not unions of orbits under the

braid group action.

It is however very useful to consider the stabilizers of straight Nielsen classes in the braid group.

The appropriate generators of these subgroups enable one to compute braid orbit genera and

therefore, particularly in the case r = 4, to obtain informations about points on Hurwitz spaces.

To do this, assign a partial ordering to the branch points of a cover ϕ : X → P1 via ordering the

conjugacy classes involved in the branch cycle description, as in the above definition of SNi(C).

Now, if the class Ci occurs ki times in C (i = 1, ..., s), denote by

Ũr := Ũr(C) := {(S1, ..., Ss)|Si ⊂ P1C, |Si| = ki; | ∪si=1 Si| = r}

the according space of partially ordered r-sets in P1. Then the map Hin(C) → Ũr, assigning to

each h ∈ Hin(C) the partially ordered branch point set, is well-defined. One obtains a sequence

of topological covers (by first mapping a cover to its partially ordered branch point set, and then

further to the unordered one), which can be completed to morphisms of varieties:

Hin(C)
α−−→ Hab(C)

Ψ0−−→ Ũr
β−−→ Ur
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with β ◦Ψ0 ◦ α = Ψ′|Hin(C), the branch point reference map defined in the previous section.

By Theorem 2.3, it is of Galois theoretic interest whether the variety Hin(C) has a K-rational

point (for some field K ⊂ C). Of course, as a necessary condition, it needs to be defined over

K. This latter question can be answered by purely group theoretic means (cf. [16, Th. 1]), and is

related to the branch cycle argument (see Lemma 3.3 in the next chapter).

Theorem 2.4. Let (C1, ..., Cr) be an r-tuple of classes of a finite group G with trivial center,

n := |G|, K a subfield of C and ζn ∈ C a primitive n-th root of unity.

Hin(C) is defined over K if and only if the following holds:

For all γ ∈ Aut(K|K), if γ−1(ζn) = ζmn (for m ∈ N), then (Cm1 , ..., C
m
r ) is a permutation of

(C1, ..., Cr).

In this case, the class tuple (C1, ..., Cr) is called K-rational.

To compute braid orbit genera, one progresses to certain curves on Hurwitz spaces.

Always assume that Z(G) = {1}, and that the braid group action on SNiin(C) is transitive.2

Following [11, Theorem 4.3], one has the following morphisms between (quasi-projective) varieties:

• F : T → Hin(C)× P1, the universal family of covers in the Nielsen class Niin(C).

• Hin(C)→ Ũr resp. Hin(C)→ Ur, mapping each point of Hin(C) to its (partially ordered or

unordered) set of branch points.

• Proceeding to the pullback (Hin)′(C) := Hin(C) ×Ur Ur, one also obtains a morphism

(Hin)′(C)→ Ur.
This remains true for the pullback over Ũr.

• Via PGL2-action, (Hin)′(C) is birationally equivalent to P1C×P1C×P1C×Hred(C), where

Hred(C) is the image under the above map of the subvariety of (Hin)′(C) consisting of covers

with the first three branch points equal to 0, 1, and ∞ (in this order).

• This restriction gives a morphism of r − 3-dimensional varieties Hred(C)→ Ur−3.

In particular, via the action of PGL2(C), the dimension of the Hurwitz spaces can be reduced by

3. E.g., for the case of covers with r branch points and a total ordering on the conjugacy classes

involved in the branch cycle description, one can assume that the first three branch points are 0, 1

and ∞. Of course, for an arbitrary set of branch points this transformation cannot be defined over

Q. It can be, however, if all the branch points are rational - which in some cases is necessary for a

2This condition assures that the Hurwitz space is an absolutely irreducible variety over its field of definition. But
even in the case of intransitive braid group action, there may still be an absolutely irreducible component, granted
that there is a “rigid” braid orbit, e.g. a unique orbit of a given length.
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cover to be defined over Q - see Lemma 3.3. In those cases, fixing three branch points to 0, 1 and

∞ does not affect the existence of Q-points in the Hurwitz space.

Particularly in the case r = 4, C := Hred(C) is a curve. The existence of Galois covers defined

over a field K is therefore directly linked to the existence of K-points on such curves (often called

reduced Hurwitz spaces). We also refer to these reduced Hurwitz spaces as Hurwitz curves3.

If in addition C is a rational class tuple with transitive braid group action on SNiin(C), then the

Hurwitz curve is an absolutely irreducible curve defined over Q.

The genus of this curve, called (unsymmetrized) braid orbit genus, can be computed combinatori-

ally (cf. [39, III 5.2.]), as Hred(C) → Ur−3 = P1C is a ramified covering of P1C with monodromy

given by the action of the braids βi,4 (i = 1, 2, 3) on the straight Nielsen class SNiin(C).

Therefore the genus of C is given by the Riemann-Hurwitz genus formula (cf. Th. 3.8).

In a similar way, a PGL2-action can be applied for cases with only partially ordered branch point

sets (i.e. the case that the conjugacy classes Ci involved in the Nielsen class are not pairwise dif-

ferent):

E.g., if C = (C1, C1, C2, C3), with C1, C2, C3 pairwise different, consider those covers with partially

ordered branch point set of the form ({−
√
a,
√
a}4 , 1,∞) with a ∈ C \ {0, 1}. As the set S of all

such branch point sets is birationally isomorphic to a projective line via ({−
√
a,
√
a}, 1,∞) 7→ a,

the restriction of the cover Hin(C) → Ũ4 to the preimage of S again yields a morphism of curves

C → P1.

This time, the fundamental group of the space of partially ordered 4-tuples leads to branch cycles

for the cover C → P1, namely the images of the braids β1,4, β1 and β1 · β1,4 (cf. [39, Th. III 7.8]),

and again, the genus of C is given by the Riemann-Hurwitz genus formula.

Also, if C = (C1, C1, C1, C2), with C1 6= C2, consider only those covers with partially ordered branch

point set ({t1, t2, t3},∞), where t1, t2, t3 are the roots of t3 + at+ a for some a ∈ C \ {− 27
4 , 0}

5.

These most important cases for r = 4 can be summarized in the following “Braid orbit theorem”

(cf. [39, Thms. 7.8 and 7.10], as well as [42, Satz 7.2] for the last of the three cases):

Theorem 2.5 (Braid Orbit Theorem). Let G be a finite group with trivial center and C :=

(C1, C2, C3, C4) be a 4-tuple of non-trivial rational conjugacy classes of G.

Let (β̃1, β̃2, β̃3) :=


(β1,4, β2,4, β3,4) if |{C1, ...C4}| = 4,

(β1,4, β1, β1β1,4) if C1 = C2 6= C3

(β1, β1β1,4, β1β2) if C1 = C2 = C3 6= C4.

3Not to be confused with the curves with maximal number of automorphisms, called Hurwitz curves in a different
context.

4i.e. the roots of t2 − a
5An explicit computational example with this approach is [22].
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Furthermore assume that, under the action of the group 〈β̃1, β̃2, β̃3〉 on SNiin(C), B ⊆ SNiin(C)

is an orbit which is unique of its length and let π(β̃i) ∈ Sym(B) be the image under this action. If

(π(β̃1), π(β̃2), π(β̃3)) is a genus zero tuple (in the sense of Th. 3.8) and for some i ∈ {1, 2, 3}, one

of the cycle lengths of π(β̃i) occurs an odd number of times, then G can be realized regularly as a

Galois group over Q.

More generally, one can consider curves on Hurwitz spaces of r-tuples for r ≥ 5 as well. This has

been done by Dettweiler in [12], and will be used for the explicit computations e.g. in Chapter 8.

The key idea is to determine the fundamental groups for rational curves in various configuration

spaces (such as the spaces of partially ordered tuples Ũr), which again are subgroups of the braid

group Hr.
The generators of these fundamental groups act via lifting of paths on the fibers of Hin(C) −−→ Ũr,
and eventually lead to a branch cycle description for a cover C → P1C, where C is a curve onHin(C).

Remark:

Reduced Hurwitz spaces can be introduced more generally than for the cases in Theorem 2.5, by

defining PGL2-equivalence of covers. In many cases (particularly in all the cases that appear in

the computations in this work), Q-points on the reduced Hurwitz space Hred automatically yield

Q-points in the Hurwitz space Hin, and therefore the PGL2-quotient map, leading from Hin to

Hred, can be applied w.l.o.g.

However, in general the problem whether rational points on a reduced Hurwitz space lift to rational

points on Hin is a subtle one and depends e.g. on the precise structure of the configuration spaces

Ũr. See [5] for problems and results in the general case.



Chapter 3

Overview: Computation of covers

of the projective line

3.1 Preliminaries from group theory and function field theory

In addition to the topological interpretation laid out above, we need some results from the theory

of function fields of one variable. These can be found in detail e.g. in [53].

Definition 3.1 (Places of algebraic function fields). Let F |K be an algebraic function field of one

variable. A place of F |K is a maximal ideal P of some valuation ring O of F |K.

If F ′|K ′ is a function field extension of F |K, and P ′ is a place of F ′|K ′ such that P ⊆ P ′, then P ′

is called an extension of P .

An important special case is the case where F = K(x) (for some transcendental x over K) is a

rational function field. In this case, the set of places of F |K can be described in a simple way.

Theorem 3.1 (Places of the rational function field). Let K(x)|K be the rational function field for

some field K, and P be a place of K(x)|K. Then P is either of the form P = Pp(x) := { f(x)
g(x) |

f(x), g(x) ∈ K[x], p|f and p - g} with some irreducible polynomial p(x) ∈ K[x] or of the form

P = P∞ := { f(x)
g(x) | f(x), g(x) ∈ K[x], deg(f) < deg(g)}.

Conversely, all of these sets are indeed places of K(x)|K.

In the special case that K is an algebraically closed field, one therefore obtains a natural correspon-

dence between places of K(x)|K and points of the projective line P1(K).

By the last remark, we can equivalently write P : x 7→ α ∈ K∪{∞} for a place P of the rational

function field over an algebraically closed field.

14
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For any function field F |K, the group of K-automorphisms of F acts naturally on the set of places

of F |K. Especially for a rational function field K(x)|K, it is well known that Aut(K(x)|K) ∼=
PGL2(K), and more precisely every K-automorphism is of the form µ : K(x) → K(x), K(x) 3
f 7→ af+b

cf+d , with ad − bc 6= 0. (In analogy to the terminology for Aut(P1C), we call such an auto-

morphism a Moebius transformation in x.)

As the group of Moebius transformations in x, PGL2(K), is 3-transitive on P1K, one can use them

to map three given (pairwise distinct) degree one places Pi := (x− αi) (where αi ∈ K, i = 1, ..., 3)

to any three (pairwise distinct) degree one places, w.l.o.g. P1 7→ (x), P2 7→ (x− 1), P3 7→ ( 1
x ).

For explicit computations of polynomials with prescribed Galois group, the concepts of inertia

groups and decomposition groups are very important.

Let F ′|F be a Galois extension of algebraic function fields with Galois group G, and P ′ an extension

to F ′ of the place P of F .

Definition 3.2 (Inertia group, decomposition group). The subgroup GZ(P ′|P ) := {σ ∈ G |
σ(P ′) = P ′} is called the decomposition group (Zerlegungsgruppe) of P ′ over P .

The subgroup GT (P ′|P ) := {σ ∈ G | νP ′(σz − z) > 0 for all z ∈ OP ′} of the decomposition group

is called the inertia group (Trägheitsgruppe) of P ′ over P .

Some basic and well-known properties of inertia groups and decomposition groups:

Lemma 3.2.

a) The inertia subgroup is a normal subgroup of the decomposition subgroup.

b) For char(F ) = 0, the inertia subgroup is always cyclic.

c) The inertia groups of places of F ′ extending a given place of F are conjugate in G.

3.1.1 K-Rationality and rigidity

We now return to the case that the field of constants K is a subfield of C.

In this case, the topological viewpoint outlined in Chapter 2.2 can be united with the algebraic one

outlined here (with the help of Riemann surfaces, cf. [55, Chapter 5]).

I.e., if f : R → P1C \ {p1, ..., pr} is a finite Galois covering and F ′|F := C(f) the corresponding

extension of function fields of compact Riemann surfaces, then the group of deck transformations

of the cover is isomorphic to Gal(F ′|F ), such that the conjugacy class of the monodromy image

of γi ∈ π1(P1C \ {p1, ..., pr}, p0) can be identified with the unique conjugacy class of inertia group

generators of any extension of the place f 7→ pi to F ′.

A consequence of the identification of algebraic ramification and topological monodromy is that, in

the case where the field of constants K is an algebraically closed subfield of C - and more generally
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in case that the extension F ′|F is regular - it holds that the Galois group Gal(F ′|F ) is generated by

the set of all inertia subgroups. On the other hand, for arbitrary field of constants K, there are some

necessary conditions on the ramification to yield a regular extension defined over K, originating

from Fried’s branch cycle argument:

Lemma 3.3 ((Special case of) Fried’s branch cycle argument1). Let char(K) = 0 and L|K(t) a

finite regular Galois extension of degree n, with Galois group G. For p ∈ P1K, let Cp ⊂ G be the

class associated to p, i.e. the unique conjugacy class of inertia group generators of places extending

the degree-one place t 7→ p in the extension KL | K(t).

Let ζn be a primitive n-th root of unity, and γ ∈ Aut(K|K), m ∈ N such that γ−1(ζn) = ζmn .

Then the class of inertia group generators associated to γ(p) is equal to (Cp)
m.

In particular, the set of branch points is invariant under Aut(K|K).

Some immediate consequences:

Corollary 3.4. a) If K = Q and p ∈ P1Q, then Cp is a rational class, i.e. Cp = Cmp for all m

coprime to the order of the inertia group.

b) If K = R and p ∈ P1R, then Cp = C−1
p .

Again, let K ⊆ C. If one picks the set of branch points P = {p1, ..., pr}, with pi ∈ P1C and

a class tuple C := (C1, ..., Cr) ⊂ Gr of associated inertia group generators, generating G, so that

the restrictions arising from the branch cycle argument are fulfilled for all γ ∈ Aut(K|K), then the

data (G,P,C) is called a K-rational ramification type. In this case, the Rigidity Criterion (cf. [55,

Th. 3.17.]) gives a sufficient condition for a Galois extension with the given ramification data to

be defined over K.

Theorem 3.5 (Rigidity Criterion). Let G be a finite group with trivial center, and (G,P,C) be a

K-rational ramification type. If |SNiin(C)| = 1, then G occurs regularly as a Galois group over K

(with this ramification type).

Remark: If l := |SNiin(C)| > 1, one still has an upper bound for a minimal field of definition

K̂|K of a regular Galois extension with groupG and the given ramification type, namely [K̂ : K] ≤ l.

3.1.2 Genus zero systems

If an intermediate field E of the Galois extension F |K(t) is a rational function field, E = K(x) -

which is the case of genus zero tuples that we will deal with for large parts - then the orbits of the

inertia subgroups can be easily interpreted in the following way, cf. [44, Lemma 3.1.]:

Lemma 3.6. Let K ⊆ C, K(x)|K(t) be a degree n extension of rational function fields, f(X) −
t · g(X) the minimal polynomial of x over K(t), and F its splitting field. Let P be a place of F

1cf. [55, Lemma 2.8]
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extending the place t 7→ α ∈ K of K(t).2

If G ≤ Sn denotes the Galois group of F |K(t) in its action on the conjugates of x, and the inertia

group generator σ ∈ G of P has cycle lengths m1, ...,mk, then the specialized polynomial f(X) −
αg(X) has roots of multiplicity m1,..., mk.3

Similarly, one has a natural interpretation of the orbits of the decomposition subgroup (which

obviously are unions of orbits of the inertia subgroup):

Lemma 3.7 (Orbits of the decomposition subgroup4). In the situation of lemma 3.6, let GZ ≤
G ≤ Sn be the decomposition group of P, and assume that GZ has orbits O1, ..., Or, each Oi being

a union of ki orbits of 〈σ〉.
Then f(X)− αg(X) ∈ K[X] has factors of degree ki with multiplicity |Oi|ki .

Proof. As 〈σ〉 E GZ , the ki orbits for a given Oi are of the same length. By [39, Ch.I, Th.9.1.],

the place t 7→ α (as a valuation ideal (t − α)) splits in K(x) into a product
∏r
i=1Q

ki
i of places of

degrees |Oi|ki with multiplicity ki.

By the classification of places of rational function fields, each Qi is of the form (qi(x)) for an

irreducible polynomial qi ∈ K[x] of degree |Oi|ki (here we have excluded the infinite place in x, which

can be done w.l.o.g., as in the previous lemma).

Therefore t− α = (
∏r
i=1 qi(x)ki) · r for some r ∈ K(x) with denominator coprime to

∏r
i=1 qi. But

also t− α = f(x)−αg(x)
g(x) . This proves the assertion.

These properties are essential for the explicit computation of polynomials with prescribed ram-

ification type.

Let K ⊆ C and assume now that F |K(t) is a regular function field extension. If the ramifica-

tion of F |K(t) is known, then by the well-known Riemann-Hurwitz genus formula (cf. e.g. [53,

Theorem 3.4.13] or [45, Chapter 4.1.1.]), the genus of F can be computed:

Theorem 3.8 (Riemann-Hurwitz genus formula). Let F |K(t) be a regular function field extension

of degree n, and let G ≤ Sn be the Galois group of the corresponding Galois closure. Let σ1, ..., σr

be the inertia subgroup generators of all the places of K(t) which ramify in F . Then the genus g of

F is equal to

g = −(n− 1) +
1

2

r∑
i=1

ind(σi),

where ind(σi) is defined as n minus the number of cycles of σi.

For a transitive group G ≤ Sn, we therefore call a tuple (σ1, ..., σr) ∈ Gr a genus zero system of

G if σ1 · · ·σr = 1, 〈σ1, ..., σr〉 = G and 0 = −(n− 1) + 1
2

∑r
i=1 ind(σi).

2The infinite place t 7→ ∞ is left out in this notation, but can just be obtained via transformation s := 1
t
.

3Here of course, one needs to think “projectively”: ∞ is a root of multiplicity m if specialization reduces the
degree by m.

4This is a special case of [39, I, Th.9.1.].
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3.2 Computational standard methods

3.2.1 The Groebner basis approach

Let (σ1, ..., σr) ∈ Gr be a genus zero tuple of a transitive group G ≤ Sn. Then, for any choice of

branch points p1, ..., pr ∈ Q∪ {∞} Riemann’s existence theorem, together with descent arguments,

yields the existence of an extension of rational function fields Q(x) | Q(t), and therefore the exis-

tence of a polynomial equation f(x)− tg(x) = 0, with f, g ∈ Q[X], such that f(X)− pi · g(X) (or

g(X), in case pi =∞) becomes inseparable with multiplicities determined by the σi.

For a genus zero system of length r, this leads to a system of (r−2)n equations in (r−2)n variables

over Q in the following way:

The total number of cycles of a genus zero system of length r is = (r − 2)n + 2 by the Riemann-

Hurwitz formula. We get one variable for each cycle, plus one for the leading coefficient of f (g can

be assumed to be monic). Using Moebius transformations, we can fix three places of Q(x) (e.g. to

(x), (x− 1) and ( 1
x )) to drop three variables.

The solution set of this system of (r−2)n equations in (r−2)n variables is then a zero-dimensional

variety, i.e there will be only finitely many solutions (their exact number can be determined by

structure constants). Theoretically, this system can always be solved via Groebner bases, using

Buchberger’s algorithm.

In practice however, increasing the permutation degree and especially the number of branch points

will quickly make the systems very difficult to solve. We will therefore mainly use this approach

for genus zero triples5, i.e. only as a starting point for the computations of families, as outlined in

the following sections.

Note that it is often important to reduce the degrees of the equations to obtain practically com-

putable Groebner bases. This can be done by using derivatives, as was first noted in [1] (also cf.

e.g. the computations in [39, Chapter I.9]).

In the following, we list a few more methods that are useful to ensure a polynomial for a given

ramification type to be defined over as small a field as possible.

Ideally, in the above approach, we would like to fix three given places of K(x), lying over ram-

ified places of K(t) (via Moebius transformations).

Over an algebraically closed base field K, this can be done without problems, as all places of K(x)

have degree one.

However, if one wants to obtain covers over small base fields, this direct approach is not always

5The Groebner basis method is not without alternative in the case of triples either: Recently powerful approaches
using modular functions have been developed, cf. [28].
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optimal, because if there are no extensions of ramified places of small degree, a transformation as

above would increase the degree of the base field too much.

Instead one can use the following easy observation:

Lemma 3.9. Let f, g ∈ K[X] be monic irreducible polynomials of degrees n resp. m over a field K

of characteristic not deviding n. For any non-constant p ∈ K[X], deg(p) = k ∈ N, denote by tr(p)

the quotient of the coefficient of p at Xk−1 by the leading coefficient.

Then there exist a, b ∈ K, a 6= 0, such that tr(f(aX + b)) = 0 and tr(g(aX + b)) = 1, unless

n · tr(g) = m · tr(f).

Proof. Straightforward computation yields b = −tr(f)
n and a = tr(g)− m

n tr(f). The latter is = 0 if

and only if n · tr(g) = m · tr(f).

We can use this in the following way: Among all extensions of ramified places of K(t) to K(x),

choose a place P = (f(x)) of smallest possible degree d (using the action of inertia and decomposi-

tion groups as in Lemmas 3.6, 3.7). Let α ∈ K be a root of f and E := K(α). Then one can map

(x−α) to ( 1
x ) by a Moebius transformation of E (this procedure yields a degree d extension of the

base field). After that, by the previous lemma, one can map the traces of the defining polynomials

of two places of E(x) to 0 and 1 respectively (unless the exception of the lemma occurs) without

further extension of the base field.

In the case of computations of families of covers, as in Chapters 5ff., the field of definition K

is an algebraic function field (the function field of a Hurwitz space, e.g. a Hurwitz curve in a

suitably reduced case). If there is no ramified place of degree one available in K(x), the above

approach, yielding coefficients in a degree-d extension E|K, will usually increase the genus. This

can on the one hand affect the existence of rational points, which by Theorem 2.3 are essential

for Galois realizations, and on the other hand, explicit numerical computations will become more

complicated, as the degrees of algebraic dependencies between the coefficients will increase.

One therefore needs to retrieve the actual Hurwitz space. This can be done by using cross ratios.

Definition 3.3. Let a1, ..., a4 ∈ C ∪ {∞} be four different points on the projective line. The cross

ratio [a1, a2, a3, a4] is defined as

[a1, a2, a3, a4] :=
(a1 − a3)(a2 − a4)

(a1 − a4)(a2 − a3)
.

If one of the ai is ∞, the factors containing it should cancel each other out, e.g.

[a1, a2, a3,∞] :=
(a1 − a3)

(a2 − a3)
.

Cross ratios have the following obvious, but important properties:
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Lemma 3.10. a) Cross ratios are invariant under Moebius transformations.

b) Cross ratios are invariant under the action of the Klein four group V < A4 acting via permu-

tation of the components.

This allows us to regain the actual Hurwitz space of a family, by using symmetric functions

built out of cross ratios.

As an example, assume that our cover can be defined over a field K and (f(x)) is a degree-4 place

of K(x) extending some ramified place of K(t). Lacking a place of degree one, we do not actually

know f , but only some f ∈ E[X], differing from f by a Moebius transformation, with some exten-

sion E of K. However, if f = (X − a1) · ... · (X − a4) is a factorization over K, the cross ratios

λσ := [aσ(1), aσ(2), aσ(3), a4] (with σ ∈ S3) are the same as those of f , and because of part b) of the

above lemma, the elementary symmetric functions in the λσ lie in the field of coefficients of f , i.e.

in K.

These elementary symmetric functions are also symmetric functions in the ai, and can therefore be

expressed through the coefficients of f .

From the point of view of covering spaces, we are considering two actions on the space U4 =

{(a1, a2, a3, a4) ∈ (P1K)4 | ai 6= aj for all 1 ≤ i < j ≤ 4}. The first one is the action of PGL2(K),

the second one is the natural S4-action corresponding to the cover U4 → U4. We are looking for

rational functions in the variables a1, ..., a4 that remain invariant under both actions. Firstly, all

rational functions in λ := λ(a1, ..., a4) := [a1, a2, a3, a4] are invariant under the first action, and

also under the action of V4 < S4. Consequently, there is an S3-cover J : P1 → P1, λ 7→ J(λ), such

that J(λ) is invariant under both actions. A possible parameterization is given by the well-known

j-invariant J(λ) := 28 · (λ2−λ+1)3

λ2(λ−1)2 . (These considerations can be found e.g. in [9, Section 5].)

In particular, for concrete computations involving f with deg(f) ≤ 4, the following functions in the

coefficients of f can be used to retrieve the field K:

Lemma 3.11. Let E be a field of characteristic zero, and assume always that f ∈ E[X] is a

separable monic polynomial.

a) If f = X4 − e1X
3 + e2X

2 − e3X + e4, with roots a1, ..., a4 in E, then
(3e1e3−e22−12e4)3

disc(f)
is an

S3-invariant rational expression in the cross ratios λσ := [aσ(1), aσ(2), aσ(3), a4], with σ ∈ S3.

b) If f = X3 − e1X
2 + e2X − e3, with roots a1, a2, a3 in E, then

(e21−3e2)3

disc(f)
is an S3-invariant

rational expression in the cross ratios λσ := [aσ(1), aσ(2), aσ(3),∞], with σ ∈ S3.

c) If f = X2 − e1X + e2, with roots a1 and a2 in E, then
e21
e2

is a 〈(1, 2)〉-invariant rational

expression in the cross ratios λσ := [aσ(1), aσ(2), 0,∞], with σ ∈ 〈(1, 2)〉.
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Proof. a) and b): Straightforward computation, using J(λ) as defined above.

c) is designed for calculations involving two degree-2 places over K (one of which is split up into

two degree-1 places (0 and ∞) over a quadratic extension E of K). In this case, the S4-cover

U4 → U4 in the above considerations can be replaced by a (C2 × C2)-cover given by the action of

〈(1, 2), (3, 4)〉 < S4. Therefore, λ + λ(1,2) is already invariant under both considered actions. But

λ+ λ(1,2) + 2 =
e21
e2

.

3.2.2 Hensel lifting

It is often difficult to directly solve large systems of equations over the rationals (or other number

fields).

We therefore need results about when (and how) a solution modulo a prime of such a system can be

lifted to obtain a rational solution. This can be achieved by more-dimensional versions of Newton

approximation resp. Hensel’s lemma.

As these techniques play a role in different contexts (e.g. over p-adic numbers or rings of power

series), we state a sufficiently general version.

Lemma 3.12 (Newton approximation). Let K be a complete field under a discrete valuation, with

valuation ring O and maximal ideal P.

Let n ∈ N, f1, ..., fn ∈ O[x1, ..., xn] be polynomials in n variables, and J =
(
dfi
dxj

)
i,j

be the corre-

sponding Jacobian matrix. Assume that a := (a1, ..., an) ∈ On fulfills

fi(a) ∈ P, for all i ∈ {1, ..., n},

and

det(J(a)) /∈ P.

Then there is b ∈ On, with b ≡ a mod P, such that

fi(b) = 0, for all i ∈ {1, ..., n}

Furthermore, the sequence

a0 := a, ai+1 := ai − J(ai)
−1 · (f1(ai), ..., fn(ai))

t

converges to the solution b.

Proof. Using the fact that the absolute value induced by a discrete valuation is non-archimedean,

the proof can be carried out in analogy to one-dimensional versions, e.g. Proposition 7.6. in [31,

Chapter XII].
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In our context, K = Qp, with the p-adic valuation, is an important case. Under the above as-

sumptions, standard Hensel lifting of a mod-p solution of a system of polynomial equations yields

a solution modulo pk, for arbitrarily large k ∈ N.

This enables one to compute, from “good” solutions modulo a prime, arbitrarily close p-adic ex-

pansions.

Next, the p-adic solutions a ∈ Zp should be recognized as algebraic numbers. Ideally, we would like

rational solutions, but this is not always possible, e.g. by the rigidity criteria or the branch cycle

argument.

If the cover we are looking for is ramified over only three points, then the solution is zero-dimensional

and can directly be obtained by lifting a single mod-p-solution (and, if necessary, look for algebraic

dependencies in the p-adic approximation).

For higher-dimensional systems (i.e. with four or more ramification points) we can lift one mod-p-

solution to arbitrarily many p-adic solutions by moving the ramification points. E.g., if we have

a mod-p-solution f(t,X) = 0, ramified in t = (0, 1,∞, χ) with χ ∈ Fp we separately lift this to

Zp-solutions ramified in t 7→ (0, 1,∞, χ+ kp) with many k ∈ Z.

This corresponds to collecting many points in the Hurwitz space of the family of covers. After that

one can interpolate between these points. This approach has e.g. been used in [35].

3.3 Advanced methods

3.3.1 Deformation of covers via extensions of fields of Laurent series

We now proceed to more advanced techniques for the computation of families of covers.

The goal of this section is to motivate, in a way that allows for explicit algorithms, how to obtain

parameterized families fµ(t,X) of polynomials describing covers of P1C with r branch points from

a degenerate cover f0(t,X) with r − 1 branch points.

An important source for these techniques is Couveigne’s paper on the computation of families of

genus zero covers ([7]). In this work, the special case a) discussed below is outlined with an S7-

example. Also the general case b) can be extracted from the considerations in Chapter 6 of that

paper. The goal of this section is however to make these considerations explicit and applicable for

concrete computations of as many families of covers as possible. See also the Magma implementa-

tion of case a) given in Chapter 11.

Let Ni(C) be a Nielsen class of genus zero 4-tuples generating a group finite G (assume always

Z(G) = {1}). Recall from Chapter 2 that, if SNiin(C) contains a unique orbit of length n un-

der the action of the braid group, then there is a natural degree-n cover from the corresponding

connected component H of the (inner) Hurwitz space to the space Ũ4 of partially ordered 4-sets.

Proceeding to an appropriate pullback of H, one also obtains a degree-n cover H′ → U4, where H′

is birationally equivalent to C × (P1C)3, and a degree-n cover C → P1C of (irreducible projective
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non-singular) curves.

If, via Moebius transformations, one fixes three of the four branch points of the genus zero covers,

say to 0, 1 and ∞, one obtains a family of branched covers T0 → C × P1C. Let t be a parameter

for the projective line on the right side, then this family will have ordered ramification locus in t:

(0, λ, 1,∞), where λ is a function on C. As C is an irreducible curve, its function field is of one

variable (and of degree n over C(λ)), i.e. equal to C(λ, α) for some function α.

Therefore the family T0 → C × P1C can be expressed by a polynomial equation f(X,λ, α, t) = 0,

where f ∈ C(λ, α)[t,X] is linear in t (because of the genus zero condition).

For every specialization t 7→ t0 (e.g. to a ramification point), the coefficients of f(X,λ, α, t0) lie in

the function field C(λ, α).

To determine these coefficients, embed C(λ) into the Laurent series field C((λ)). Then, using the

fact that the finite extensions of C((λ)) are all equal to some C((µ)) with µe = λ, for some e ∈ N
(cf. [55, Chapter 2.1.3]), all of these coefficients have a Puiseux expansion in λ, i.e. can be written

as a Laurent series in µ := λ
1
e with some e ∈ N.

Here the exponent e is nothing but the ramification index in the Hurwitz space of some place

lying over λ 7→ 0. This ramification index can be determined by group theoretical means: it is

the number of equivalence classes of covers, i.e. of equivalence classes of 4-tuples (σ1, σ2, σ3, σ4) in

SNiin(C), that lead to the same degenerate cover, i.e. class triple (σ1σ2, σ3, σ4), upon letting λ

converge to zero.

There are two important cases for practical computations:

• If one knows an explicit polynomial for some degenerate (3-point) cover with monodromy

(σ1σ2, σ3, σ4) as above, one can determine e and then develop Puiseux expansions to regain

a cover with 4 branch points, as described in detail in p. 24ff.

• If one even knows an explicit polynomial for some non-degenerate (4-point) cover of the family

(say, ramified in t 7→ (0, 1,∞, a) for some a ∈ C \ {0, 1}), then by mapping the branch points

of the family to t 7→ (0, 1,∞, a + λ) one can develop from an unramified point, i.e. actually

obtain Laurent series in λ for the above coefficients. As one starts from a non-ramified point

on the Hurwitz space, there is also no concern of getting into the Hurwitz space of a wrong

four-point family by deforming, so computations can be done modulo suitable primes (as one

doesn’t need to double-check the monodromy via numerical methods in C).
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Remarks:

• Of course all this remains true for r-tuples with r ≥ 5 as well. In this case one either has to

increase the transcendence degree to get the full Hurwitz space, or work at first only with a

curve on the Hurwitz space, by fixing r − 1 branch points in t (in the unsymmetrized case).

• So far, all considerations were made over C. However, for suitable choice of the conjugacy

classes in Ni(C), the corresponding Hurwitz space can be defined over Q. The Puiseux

expansion approach may therefore be carried out over an appropriate number field.

• The above condition on the ordered ramification locus in t to be t 7→ (0, λ, 1,∞) corresponds

to the unsymmetrized case; analogously, suitable Moebius transformations lead to different

symmetrized cases; e.g. in the C2-symmetrized case one can w.l.o.g. consider all covers with

ordered ramification locus ({ zeroes of t2 − λ}, 1,∞), etc.

From degenerate to non-degenerate covers

We take a closer look at the deformation process leading from a degenerate cover (with r−1 branch

points) to a non-degenerate one (with r branch points).

We look at two cases. The first one can technically be regarded as a special case of the second

one, but as it is often much more comfortable to deal with in practical computations, we outline it

separately.

a) First case: 〈σ1σ2, σ3, ..., σr〉 is transitive.

The case that the subgroup G0 := 〈σ1σ2, σ3, ..., σr〉 of G ≤ Sn, associated to a degener-

ate cover with r− 1 branch points, is still transitive, is the most comfortable case for explicit

computations, at least assuming that the degenerate cover can be computed explicitly.

So for the moment assume that G0 ≤ G is transitive and the inertia group generators have

the following cycle structures:

(e
ai,1
i,1 , ..., e

ai,ki
i,ki

), for the element σi (i ∈ {1, ..., r})

(f b11 , ..., f bmm ), for the element σ1 · σ2

(Here m ∈ N and ki ∈ N for i = 1, ..., r.)

Of course, (σ1σ2, σ3, ..., σr) is still a genus zero tuple.

By a suitable version of Riemann’s existence theorem there is a degree-n extension C(x)|C(t)

of (rational) function fields, where t and x fulfill an equation p(x)− tq(x) = 0 with p, q ∈ C[x]

such that the following hold:
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• p = pf11 · ... · pfmm , with polynomials pi of degree bi (i = 1, ...,m).

• q = q
er,1
1 · ... · qer,krkr

, with polynomials qi of degree ar,i (i = 1, ..., kr).

• p(x)−t0q(x) is inseparable for exactly r−3 further values t0 ∈ C\{0}, with multiplicities

given by the σi (i = 3, .., r − 1).

(We have therefore w.l.o.g. assumed that the place t 7→ 0 ramifies in C(x)|C(t), with inertia

group generator σ1σ2, and the infinite place of C(t) ramifies with inertia group generator σr).

Now the element σ1 · σ2 ∈ G0 has exactly b1 + ... + bm cycles, and by the Riemann-Hurwitz

genus formula, the orbits of the subgroup 〈σ1, σ2〉 ≤ G are exactly the orbits of σ1σ2 (cf. Cor.

3.14). These orbits, on the other hand, correspond one to one (via monodromy action) to the

distinct complex roots of p(x). Let ζ1, ..., ζm be these roots.

Now assume a genus zero cover branched over r points, with monodromy given by (σ1, ..., σr),

with inertia group generator σ1 at T = 0, σ2 at T = λ, σr at the infinite place in T , and with

r− 3 further branch points. To study the family T0 (as on p. 23), view λ as a transcendental.

Let K(X) | K(T ) be the corresponding (genus zero) function field extension, K ⊃ C(λ) being

the function field of the Hurwitz curve, which we are studying locally around λ 7→ 0. Thus

X and T fulfill a polynomial equation P (X)− T ·Q(X) = 0.

The analytical interpretation of ramification indices (via Puiseux expansions) shows that the

coefficients of P can be developed as Laurent series in µ := λ1/e (where e is the ramification

index in the Hurwitz space, at the point corresponding to the above G0-cover).

More precisely, if ζi is a root of the above polynomial p(x) of multiplicity fi (for i = 1, ...,m),

then

P (X) = α · (X − ζ1 +O(µ
e
f1 )) · ... · (X − ζm +O(µ

e
fm )),

with some leading coefficient α, so that Q(X) can be assumed to be monic w.l.o.g. (It should

be clear that factors of the form (X − ζi +O(µ
e
fi )) occur in P (X) for different O(µ

e
fi )-terms

and also with certain multiplicities, depending on the cycle structures of σ1 and σ1σ2 respec-

tively. We have suppressed these multiplicities here to ease the notation.)

Introduce new coordinates Yi by setting

Yi := µ−e/fi · (X − ζi), for i = 1, ...,m (3.1)

The reason for this is that, for µ → 0, these parameter transformations lead to degenerate

covers with monodromy (σ1, σ2, (σ1σ2)−1), and this monodromy together with the monodromy

of the above cover with group G0 will be sufficient to regain the non-degenerate monodromy

(σ1, ..., σr).
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Namely, for the parameter Y1, we obtain

P (X) = α · (µe/f1)f1 · (Y1 +O(1)) · ... · (Y1 +O(1))︸ ︷︷ ︸
f1 times

·(µe/f1Y1 + (ζ1 − ζ2)) · ...

And therefore for µ→ 0 the function S := µ−eT = µ−e · P (X)
Q(X) tends to

α̃ · ((Y1 +O(1)) · ... · (Y1 +O(1)))︸ ︷︷ ︸
f1 times

(with α̃ = α · (p(x)/(x−ζ1)f1 )(ζ1)
q(ζ1) ).

The extension K(X)|K(T ) is ramified over T = 0, T = µe and r − 2 more points T = ai, i.e.

over S = 0, S = 1 and S = µ−e · ai. For µ→ 0 the points µ−e · ai all tend to infinity (as do

the Y1-places extending them!), and one therefore obtains a cover ramified over S ∈ {0, 1,∞},
given by a polynomial S − P̂1(Y1) = 0.

Repeating this for all the Yi (i = 1, ...,m) leads to a reducible cover defined by (S − P̂1(Y )) ·
... · (S − P̂m(Y )) = 0 . Its monodromy is given, up to simultaneous conjugation in Sn, by

(σ1, σ2, (σ1σ2)−1), and each irreducible component S− P̂i(Y ) = 0 corresponds to one orbit of

the subgroup 〈σ1, σ2〉 ≤ Sn.

These component covers (ramified over three points, with full ramification at infinity!) can

usually be easily computed, especially if the orbits are small (i.e. if σ1σ2 has many short

cycles), which therefore is a desirable situation.

For the explicit computation, it needs to be noted that our assumptions have already de-

termined the leading coefficient of the polynomial P̂i, and also fixed the infinite place in Yi to

lie over the infinite place in S. PGL2-action allows for one more degree of freedom, e.g. fixing

in addition the place Yi 7→ 0 over S 7→ 0. However, the resulting transformation is not unique

in PGL2: Multiplication of Yi with appropriate roots of unity changes neither the leading

coefficients nor the places at zero and infinity! This needs to be taken into account to avoid

ambiguity (cf. Section 3.3.2), and actually reach the correct Hurwitz space via deformation.
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b) Second case: G0 := 〈σ1σ2, σ3, ..., σr〉 is intransitive.

Here one first needs to find equations fi(x)− t · gi(x) = 0 for each orbit of G0.

For each i choose a parameter xi and consider fi(xi)− t · gi(xi) = 0.

Similarly, find equations for each orbit of the group 〈σ1, σ2〉 (with parameters yi). The xi and

yi now need to be related in accordance with the cycle structures in the groups 〈σ1σ2, σ3, ..., σr〉
and 〈σ1, σ2〉.
This can be done by studying trees of projective lines, as outlined in [7, Section 6]:

To every orbit of G0 and of 〈σ1, σ2〉 there corresponds a genus zero function field (i.e. function

field of a projective line) C(xi) resp. C(yi). Define a graph with the set of these orbits as set

of vertices and draw an edge between two orbits if and only if they intersect.

The resulting graph T is obviously connected, with no edges between two orbits of G0 or two

orbits of 〈σ1, σ2〉.
It is even a tree as can be deduced from Lemma 3.13: there are no more edges than cycles of

σ1σ2 (because every such cycle must lie in a non-empty intersection of an orbit of G0 with one

of 〈σ1, σ2〉), and by Lemma 3.13, the latter number equals the number of nodes minus 1. Note

also that this enforces the number of edges to equal the number of cycles of σ1σ2, so every

non-empty intersection of an orbit of G0 with one of 〈σ1, σ2〉 is given by a unique cycle of σ1σ2.

Now begin with some orbit O1 of G0 and calculate an equation f1(x1) − t · g1(x1) = 0.

If (x1 − ζ) is some linear factor of f1 over C (i.e. x1 7→ ζ is some place extending the place

t 7→ 0) the eventual cover ramified over r points (0, µe,∞ and r − 3 more), with e the rami-

fication index in the Hurwitz space, will have a linear factor (x − ζ + O(µe/lζ )). Here, if we

assume e to equal the order of σ1σ2 (which can be achieved by replacing µ with some root
k
√
µ, if necessary), lζ is the multiplicity of (x1−ζ) in f1, i.e. the length of an appropriate cycle

of σ1σ2.

Now, inductively assume some equation fi(xi)− t · gi(xi) = 0 for the orbit Oi of G0 has been

computed.

For all neighbors Qj of Oi in the tree T that haven’t yet been computed, let (xi − ζj) be the

linear factor corresponding, via monodromy action, to the cycle of σ1σ2 that intersects with

the orbit Qj of 〈σ1, σ2〉.
Next, define yj := µ−e/lζj · (xi − ζj), just as in Case a) and compute an equation in yj and

s := µ−e · t for the orbit Qj . This will yield first order approximations for the desired r-point

cover, i.e. for a linear factor (xi − ζj +O(µe/lζj )), the µe/lζj -term will be obtained.

Now, for each orbit Qj visited in the previous step, consider the set of neighbors Ok that have

not yet been visited.

Again, as Qj and Ok intersect in a unique cycle of σ1σ2, let (yi − ηk) be the corresponding

linear factor in the cover for the orbit Qj (note that this corresponds to a place extending the

infinite place in s, as this is the place with inertia group generator conjugate to (σ1σ2)−1).
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Note also that we can always assure that this place in the function field C(yj) is not the infinite

place by choosing the cover for the orbit Qj such that the place over s 7→ ∞ corresponding

to the intersection with the orbit Oi (in the previous step) is the infinite place in yj ! This is

possible via Moebius transformations.

Now we have almost the same situation as in the previous step (except that we are dealing

with places over s 7→ ∞ instead of places over t 7→ 0).

So, define new parameters xj := µ−e/lηk · (yj − ηk) (with the appropriate exponents e
lηk

), and
1
t̃

:= µe · 1
s (i.e. simply t̃ = t).

Next, compute the cover fk(xk)− t · gk(xk) = 0, and move on through the tree T .

As this algorithm moves through T on paths, with a well-defined parameter transforma-

tion for every edge, the parameters xi can all be expressed as functions in x := x1 inductively.

Also, as T is a tree, each orbit will only be reached via a single path, so there will be no

ambiguity in the definition of the xi.

One thus eventually obtains approximations for a polynomial f(x) − tg(x) of degree deg(G)

in x.

To verify that this approach indeed yields the correct degenerate covers for all the orbits,

choose a variable xi and consider the linear factors of f(x) and of g(x) (i.e. the places of the

non-degenerate cover extending t 7→ 0 and t 7→ ∞), written as polynomials in xi. Every such

linear factor corresponds to exactly one orbit of G0, and by the choice of coordinates it is

clear that for all orbits in the set of successors of Oi (in the tree T with direction given by

the above algorithm), each linear factor of f belonging to such an orbit converges towards the

same value as a linear factor of g as µ tends to 0. I.e. these factors cancel each other out. On

the other hand, for every orbit of G0 other than Oi and its successors, all the corresponding

roots of f and of g (as polynomials in xi) tend towards xi 7→ ∞ as µ→ 0. This leaves only the

linear factors belonging to Oi and therefore a degenerate cover with the correct monodromy,

for each orbit Oi.

In the same way, expressing f(x) − tg(x) as a polynomial in the variables s (instead of t)

and yj will leave exactly the linear factors of some orbit Qj of 〈σ1, σ2〉 as µ tends to 0. Note

especially that the corresponding degenerate cover will be ramified over s 7→ 0, 1 and ∞ by

the choice of the coordinate yj .

Finally, this procedure will yield first order approximations for all the places extending the

place t 7→ 0 in the function field of the desired r-pointed cover (and ditto for all the places

extending t 7→ µe). Thus, specialize µ to some small complex number and apply Newton

iteration to obtain better approximations.
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We illustrate this second case with a computational example in Chapter 7. It should be

noted that even though this general case is more complicated in terms of explicit implemen-

tation, it often cannot be avoided, especially for primitive permutation groups G of larger

degree, as it may then be difficult to find a 3-point cover with a transitive subgroup G0 ≤ G
to start with.

3.3.2 Some lemmas about families of covers

In this section, we want to take a closer look at the group-theoretic implications of progressing from

a degenerate to a non-degenerate cover of a certain monodromy. Let (σ1, ..., σr) be the monodromy

of the desired (non-degenerate) cover. As in the previous section, assume that a degenerate cover

with monodromy (σ1σ2, σ3, ..., σr) is known. Also assume that (σ1, ..., σr) is a genus zero tuple

generating the transitive permutation group G ≤ SN .

The first lemma relates the cycles of σ1σ2 with the number of orbits of the subgroups G0 and 〈σ1, σ2〉
of G, i.e. with the number of components of the degenerate covers with monodromy (σ1σ2, σ3, ..., σr)

and (σ1, σ2, (σ1σ2)−1) occurring in the approach outlined in the previous section.

Lemma 3.13. With the above assumptions, the number of cycles of σ1σ2 is equal to n(〈σ1, σ2〉) +

n(G0)− 1, where n(U) denotes the number of orbits of a subgroup U ≤ SN .

Proof. As the element σ1σ2 is contained in both groups 〈σ1, σ2〉 and G0, each of its cycles must be

contained in an intersection Oi∩Qj of an orbit Oi of G0 and an orbit Qj of 〈σ1, σ2〉. The number of

non-empty subsets of {1, ..., N} that are of this form must be at least n(〈σ1, σ2〉)+n(G0)−1, because

the graph T introduced in case b) of Section 3.3.1 is obviously connected, with n(〈σ1, σ2〉) + n(G0)

nodes.

The proof of the opposite inequality reduces to a theorem of Ree (in [47]) stating that for any set

of permutations τ1, ..., τr ∈ SN with product 1, the inequality
∑r
i=1 ind(τi) ≥ 2(N − s) holds, with

s the number of orbits of the group 〈τ1, ..., τr〉 and ind(τi) := N minus the number of cycles of τi.

To prove this statement group-theoretically (as done in [15]), one can obviously look at each orbit

individually, and therefore demand w.l.o.g. that s = 1. Also, as any k-cycle can be written as

a product of k − 1 transpositions, and the sum of indices does not change upon replacing it by

these transpositions, one can w.l.o.g. assume that all the τi are transpositions. Ree’s theorem now

follows quickly from the observation that a minimal subset of the transpositions τ1, ..., τr generating

a transitive group must be of cardinality N − 1 and the product of these N − 1 transpositions will

be an N -cycle.

Now apply Ree’s theorem to each of the tuples (σ1, σ2, (σ1σ2)−1), (σ1σ2, σ3, ..., σr) and (σ1, ..., σr),

and note that of course the number of cycles of σ1σ2 and its inverse are the same.

One obtains 2ind(σ1σ2) +
∑r
i=1 ind(σi) ≥ 2(2N − n(G0) − n(〈σ1, σ2〉)) by adding the first two

inequalities, and subtracting the third one then yields ind(σ1σ2) ≥ N + 1− n(G0)− n(〈σ1, σ2〉).
This proves the opposite inequality.
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Remark: Lemma 3.13 also follows easily via Riemann’s existence theorem (interpreting tuples

of permutations with product 1 as branch cycles for covers of P1C) and application of the Riemann-

Hurwitz genus formula for each orbit of the respective groups. In fact, Ree originally proved his

theorem in this way.

For sake of simplicity assume from now on that G0 := 〈σ1σ2, σ3, ..., σr〉 is still transitive. This

firstly leads to an obvious corollary of the previous lemma:

Corollary 3.14. In addition to the assumptions of Lemma 3.13, assume that G0 is still transitive.

Then the orbits of 〈σ1, σ2〉 are exactly the cycles of σ1σ2.

Next, we look at how many essentially different covers, i.e. how many equivalence classes of

tuples (τ1, τ2, σ3, ..., σr), (with τ1, τ2 ∈ SN , τ1τ2 = σ1σ2 and τi of the same cycle type as σi) can

arise from the given degenerate cover with monodromy (σ1σ2, σ3, ..., σr). This is clarified by the

following lemma.

Lemma 3.15. Let G0 ≤ G ≤ SN be transitive groups and σ1, ..., σr ∈ G be as above.

Let O1, ...Ok be the orbits of 〈σ1, σ2〉 (i.e. the cycles of σ1σ2 in some ordering), and for any x ∈ SN
fixing the orbit Ok setwise, denote by x|k the image of x in Sym(Ok).

Let m ∈ N be the number of equivalence classes of genus zero covers f : R → P1C with ordered

ramification locus (0, λ, p3, ..., pr) ∈ Ur,6 such that the following hold:

• For λ→ 0, f converges to a cover with monodromy (simultaneously conjugate to) (σ1σ2, ..., σr).

• For each orbit Oj, the corresponding parameter transformation introduced in (3.1) leads, for

λ→ 0, to a cover with monodromy (simultaneously conjugate to) (σ1|j , σ2|j , (σ1|j · σ2|j)
−1).

Then m ≤
∏
|Oj |≥3 |Oj |.

Proof. The monodromy of each such cover is, w.l.o.g. (i.e. after suitably conjugating with some

x ∈ SN ) of the form (τ1, τ2, σ3, ..., σr), where τ1 and τ2 fulfill the following:

• τ1τ2 = σ1σ2,

• τi is of the same cycle type as σi and fixes all orbits Oj setwise (i = 1, 2, j = 1, ..., k),

• For each orbit Oj , (σ1|j , σ2|j) = (τ1|j , τ2|j)
x for some x ∈ Sym(Oj).

As τ1τ2 = σ1σ2 is fixed, one has x ∈ CSym(Oj)((σ1σ2)|j) = 〈(σ1σ2)|j〉, as this element is a full cycle.

This leaves only ord(σ1σ2)|j)/|Z(〈σ1|j , σ2|j〉)| different possibilities for (τ1|j , τ2|j).

If the length of the orbit is ≤ 2, this number is obviously = 1, otherwise it is certainly no larger

than |Oj |.
This proves the assertion.

6Here two covers shall be called equivalent, if their monodromies (σ1, ...σr) and (τ1, ..., τr) differ only by conju-
gating simultaneously with some x ∈ SN .
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On the other hand, one can determine the number of equivalence classes of covers fulfilling the

assumptions of Lemma 3.15 that belong to the desired braid orbit with group G. In fact, this

number is just the ramification index of the Hurwitz space cover at the place corresponding to the

(σ1σ2, σ3, ..., σr)-cover.

Lemma 3.15 therefore bounds the ambiguity of the result of the deformation process described

in Section 3.3.1.

3.3.3 Galois group verification via Hurwitz spaces

There is one more important application of the observation of Lemma 3.15 :

The explicit computation of a Hurwitz space for a family of covers with group G (and prescribed

ramification structure) may enable one to confirm the group G as the Galois group of a polynomial

f obtained via this Hurwitz space. The computation of the family itself involves a lot of numerical

procedures and therefore does not immediately suffice to strictly prove Gal(f) ∼= G. Of course,

for complex approximations, there is always the possibility to check the monodromy numerically,

but this also is merely heuristic (unless one makes considerable efforts to obtain constraints for the

precision of the numerical calculations (step sizes for Newton iteration etc.) under which one can

obtain proven results).

Especially for polynomials with Galois group M24 or M23, it is often difficult to prove that the

Galois group is actually not the alternating group. This is because the high transitivity of these

groups makes them hard to distinguish from the alternating and symmetric groups.

If one has computed polynomial equations for the Hurwitz space, one can of course confirm that

the data (genus, ramification indices etc.) fit those predicted by the braid group action, but there

could still be a Hurwitz space for, e.g., an A24-family with the same ramification type and the same

braid group action. The structure constants in A24 will usually be much too large to allow explicit

computation of all braid orbits. One can however avoid this, as we illustrate with an M24-example.

A family of polynomials over Q(t) with Galois group M24 and branch cycles of conjugacy classes

(2A, 2A, 2A, 12B) was explicitly computed in [43] (previously, a single member of this family was

given in [19]). Verification of the Galois group involved numerical approximations to compute the

monodromy.

To avoid this, with the universal family explicitly computed, one can plug in values for the param-

eters that lead to ramified points on the Hurwitz space, i.e. degenerate covers.

E.g. plugging in the value s = 1 in the family f(s,X, t) = (t − As(x))2 + (X2 + 1)Bs(X)2 given

in [43] yields a polynomial with an imprimitive Galois group over Q(t), and parameterizing this

genus-0 extension (with inertia group generators of cycle types (38, 212, 122)) as a composition of

two rational functions over Q makes it easy to retrieve its exact monodromy, without relying on
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numerical approximations.7

By Lemma 3.15, the number of all covers with ramification of the given cycle type, which degenerate

to this 3-point cover is limited. Inertia group generators for all these covers can quickly be com-

puted, by group theoretic means (and in particular, without relying on numerical approximation

methods!). Now, apply the braid group to all the A24-generating tuples among these. It suffices to

show that this yields a braid orbit that does not correspond with the data computed (as one braid

orbit gives rise to one irreducible component of the moduli space of covers), i.e. an orbit that is too

long or one where one of the braid group generators, in the action on the orbit, possesses cycles

that do not occur in the ramification structure of the already computed Hurwitz space.

3.3.4 Using the braid group action: walking through a Hurwitz space

After computing a complex approximation of one cover with a prescribed ramification type, it is

still a difficult computational problem to obtain any results over Q (or number fields in general).

One way to achieve this is to compute (from this one approximation) complex approximations for

covers with all the ramification types in the Nielsen class. This amounts to computing a complete

fiber of the reduced Hurwitz space cover, which in the case of four branch points is a branched

cover of curves C → P1C.

This can be done explicitly, using the actions of the braids on Nielsen classes (see (2.1)).

E.g., assume a given cover with ordered branch point set (p1, ..., pr) and monodromy (σ1, ..., σr).

Also, assume for simplicity that the disc around pi+pi+1

2 with radius |pi−pi+1

2 | contains no other

branch points.

Because of the occurrence of the Hurwitz braid group as a fundamental group of the space Ur,
applying the braid βi (i ∈ {1, ..., r− 1}) to this cover has a topological interpretation via lifting the

corresponding path in Ur to its preimages in the Hurwitz space. This path may, under the above

assumptions for the position of the branch points, be defined by

t 7→ {p1, ..., pi−1, pi, (pi − c) · e
√
−1πt + c, (pi+1 − c) · e

√
−1πt + c, ..., pr}, t ∈ (0, 1),

where c := pi+pi+1

2 . In particular it starts in {p1, ..., pi, pi+1, ..., pr} and ends in {p1, ..., pi+1, pi, ..., pr}
(cf. [55, Lemma 10.9] for an affine version).

When a sufficiently close complex approximation for the cover with monodromy (σ1, ..., σr) is given,

one can translate this braid group action into an analytical procedure, by slowly moving the branch

points pi and pi+1 (counter-clockwise) along a circle, as above and using Newton iteration to obtain

sufficiently close approximations for the new cover with slightly altered ramification locus, until pi

and pi+1 have swapped their initial positions.

7Note that this degenerate cover corresponds to a place of degree one over one of the ramified points in the
Hurwitz space cover, and was also used as a starting point for the calculations in [19]!
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This then yields the monodromy action of the braid βi on the Hurwitz space cover. The result at

the end of the path is therefore a complex approximation for a cover with monodromy (σ1, ..., σr)
βi .

Computing a complete fiber of a reduced Hurwitz space (or of a connected component of it, in case

the braid group acts intransitively) then amounts to finding a sequence of braids which permutes the

corresponding straight inner Nielsen class transitively, and successively perform the corresponding

braiding “turns”.

As this method can take quite some time, especially for long Nielsen classes, it is important to do

as few “braiding” turns as possible, and therefore to check group theoretically which monodromies

have already been found and which braiding actions will lead to new covers, in order to avoid

computing unnecessarily many braiding actions.

Remark:

Practical problems in the computations may occur from the fact that some points in a fiber may

be very close (in terms of complex absolute value) to a different Hurwitz space (especially if one

computes a family with group G /∈ {An, Sn} and there is a very large Nielsen class with the same

ramification cycle types and group An or Sn). In these cases almost all points in a fiber may be

obtained rather comfortably but a few remain hard to approach because Newton approximation is

only possible with very small step sizes. Here it might be possible to symmetrize in a different way:

Specialize a given coefficient (occurring in a model of the family of all covers belonging to a given

braid orbit, as developed in Section 3.3.1) to a rational number and try to find all the points on

the Hurwitz space (of course not all in the same fiber of the original setting) with this specialized

value. This requires Newton approximation in various branches of the Hurwitz curve, but this may

still be easier than finding the remaining, “badly conditioned” branches.

3.3.5 Finding algebraic dependencies

Assume for simplicity that the reduced Hurwitz space (obtained from Hin(C) via PGL2-action) for

a given family of covers with r branch points can be defined over Q.8

As this reduced Hurwitz space is an (r−3)-dimensional algebraic variety, its function field has tran-

scendence degree r− 3. Therefore, any r− 2 elements of this function field must fulfill a non-trivial

algebraic equation over Q. In particular, the coefficients of a model as developed in Section 3.3.1

are such elements. This enables one to obtain explicit equations defining the Hurwitz space over Q.

Again, for sake of simplicity, assume r = 4, then the function field extension corresponding to the

reduced Hurwitz space cover is of the form F := Q(λ, α)|Q(λ), with a function field F of one vari-

able. The Puiseux expansion approach has embedded F into the Laurent series field K((λ1/e)) (for

a suitable number field K). There are now different ways to obtain dependencies between two co-

efficients α1, α2 of the model. Under certain additional conditions, it will be clear that Q(α1, α2) is

8Otherwise one gets the analogous results as in this section, over some number field K.
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already the full function field F and therefore the algebraic dependency between α1 and α2 is actu-

ally a defining equation for the Hurwitz curve. E.g., if the braid group acts primitively on the given

Nielsen class, then there is no intermediate field between F and Q(λ), so α1 := λ and α2 any coeffi-

cient not contained in Q(λ) will suffice. This is usually not the best try, as [F : Q(λ)] = |SNiin(C)|
is often considerably larger than some other degrees [F : Q(αi)] (see the next section for theoretical

results on the gonality of F ).

The following approaches will be used in the following sections to obtain algebraic dependencies:

• If the coefficients αi are actually given as Laurent series in µ := λ1/e, simply solve a system

of linear equations in order to see whether α1, α2 fulfill a polynomial equation of degrees

n1, n2 respectively. As such an equation has N := (n1 + 1)(n2 + 1) unknowns, series need

to be expanded to precision at least µN in order to obtain sufficiently many equations via

comparison of coefficients.

An explicit (and precise!) Laurent series expansion is usually difficult to obtain over Q, as

the coefficients grow quite rapidly. Therefore this approach, at least for dependencies of high

degrees, can often be only obtained modulo some prime.

• Once the degrees for algebraic dependencies are known (or can be conjectured, e.g. after mod-

p reduction), the corresponding systems of linear equations can also be solved numerically for

complex approximations, with many different specialized values for λ, instead of one high-

order Laurent series in λ.

• Instead of solving approximate complex equations numerically, a mod-p solution can be lifted

to many different solutions in Zp. The algebraic dependencies can then be retrieved via

interpolation.

• If the degrees are not too high, algebraic dependencies can be obtained from complex approx-

imations via the LLL-algorithm: suppose that α1, α2 fulfill a rational polynomial equation

of degrees n1 and n2 respectively, specializing α1 to a rational value will leave α2 in a num-

ber field of degree at most n2 over Q. With sufficient precision, we managed to retrieve the

minimal polynomials for these specialized values of α2 for degrees n2 up to 100. Again, re-

peating this for many (at least n1 + 1) different specializations for α1 will allow interpolation

to retrieve the original equation.

3.3.6 Considerations about the gonality of function fields

Usually the algebraic dependencies f(a, b) = 0 will not be ideal with regard to the degrees of the

variables a, b involved. One can therefore use considerations about the gonality of the function field

K(a, b), involving computations of Riemann-Roch spaces9, to find good parameters, i.e. rational

9See [53, Def. 1.4.4.] for a definition.
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function fields with low index in the function field K(a, b).

This is especially useful in function fields of genus 0 or 1, or in hyperelliptic function fields.

Definition 3.4 (Gonality). Let F |K be a function field of one variable. The gonality gon(F |K)

of F |K is defined as the minimum of the degree [F : K(x)] (for x ∈ F ), i.e. the minimal index of a

rational function field in F .

We use the following estimates on the gonality of function fields. The proof (see [27, Lemma

6.6.5]) also yields a method to explicitly find rational function fields K(x) ⊆ F of low index.

Lemma 3.16. Let g be the genus of the function field F |K. Then

a) If g = 0, then gon(F |K) ≤ 2.

b) If g ≥ 2, then gon(F |K) ≤ 2g − 2.

c) If F |K has a prime divisor of degree one, then gon(F |K) ≤ g + 1.

d) If in addition g ≥ 2, then gon(F |K) ≤ g.

See [27, Lemma 6.6.5] for the proof. In each of the cases, the following method produces an

element x ∈ F fulfilling the respective inequality:

• Compute the Riemann-Roch space10 for a certain divisor a of F |K. In cases a) and b) a can

be chosen as −ω resp. ω, where ω is a canonical divisor, in case c) set a = (g + 1) · p with a

divisor p of degree 1, and in case d) set a = ω − (g − 2)p with a degree-one divisor p and a

canonical divisor ω.

• For some non-zero element f of that Riemann-Roch space, compute the divisor â := a+div(f).

This divisor will fulfill â ≥ 0.

• Compute again the Riemann-Roch space of â. This space will then contain an element x,

fulfilling the respective inequality (actually, in many cases equality can be expected).

Note that the second Riemann-Roch space computation can actually be avoided as there is a natural

isomorphism between the Riemann-Roch spaces of linearly equivalent divisors a and a + div(f),

given by x ∈ L(a) 7→ xf−1, cf. [53, Lemma 1.4.6b)].

10The computation of divisors and their Riemann-Roch spaces is implemented e.g. in MAGMA, although for high
gonality the computations can be quite complicated, especially in characteristic zero.



Chapter 4

Reality questions for covers of P1C

The question when a given Galois extension of C(t) can be defined over R can be answered easily

by group theoretic means, if the ramification data are known. This has been investigated e.g. by

Fried and Debes in [10], and is also summarized in [39, I.10.2]. We first develop the main criteria

and then apply them to some cases of Galois theoretic interest.

4.1 Theoretical criteria

LetX → P1C be a ramified cover of compact Riemann surfaces, with ramification type (G,S, (σ1, ...σr))

(i.e., G := Gal(E|C(t)) = 〈σ1, ...σr〉, where E is the Galois closure of the function field of X; and

S = {P1, ..., Pr} ⊂ C is the set of branch points).

Assume that this cover can be defined over R (which forces S to consist only of real points and pairs

of complex conjugate points) and let P0 ∈ R \ S. Then by [10, Lemma 2.1.], complex conjugation

induces an automorphism ρ of the fiber over P0. More precisely, if one labels the points in the fiber

over P0 by 1, ..., n, then ρ ∈ NSn(G) and for every closed path γ in P1C \ S, starting and ending in

P0, the following holds:

ρT (γ)ρ = T (γ),

where T (γ) is the image of γ in Sn, obtained by the action of the fundamental group via lifting of

paths.

From this, one obtains an explicit description of the action of ρ on the generators σ1, ..., σr of

G.

To see this, let π1(P1C \ S, P0) be the fundamental group of the punctured line at the base point

P0 and γi the homotopy class of closed counter-clockwise paths from P0 around the branch point

Pi (and only this one) (i = 1, ..., r).

Assume the following ordering of the branch point set and the γi, cf. Figure 4.1:

36
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Figure 4.1: Example for the choice of branch points and paths in P1 \ S
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• P1, ..., Ps are real, for some 0 ≤ s ≤ r.

• Ps+i is complex conjugate to Pr−(i−1) for i = 1, ..., r−s2 .

• γ1, ..., γr are ordered counter-clockwise in P1C.

Then the above action of ρ on G obviously leads to:

σρ1 = ρT (γ1)ρ = T (γ−1
1 ) = σ−1

1 ,

σρ2 = ρT (γ2)ρ = T (γ1γ
−1
2 γ−1

1 ) = (σ−1
2 )σ

−1
1 ,

and in general

σρi = (σ−1
i )σ

−1
i−1···σ

−1
1 , for all 1 ≤ i ≤ s.

Similarly, for the paths around the non-real branch points, one simply obtains

σρs+i = σ−1
r−(i−1), for all i = 1, ...,

r − s
2

.

This leads to a necessary condition for a cover to be defined over R (cf. again [10]):
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Lemma 4.1. Let X → P1C be a ramified n-fold cover defined over R, with corresponding function

field extension F |R(t), and let E be the Galois closure of F over R(t). Let S = {P1, ..., Pr} be the

set of branch points, P0 ∈ R \ S, with the position of branch points and ordering of paths around

them as above. Let G := Gal(EC|C(t)) (the geometric monodromy group), and (σ1, ..., σr) ∈ Gr

the monodromy corresponding to the above choices of branch points.

Then there is an element ρ ∈ Gal(E|R(t)) ≤ NSn(G), acting on the σi like complex conjugation on

the respective paths in P1, i.e.

(σ1, ..., σs, σs+1, ...σr)
ρ = (σ−1

1 , (σ−1
2 )σ

−1
1 , ..., (σ−1

s )σ
−1
s−1···σ

−1
1 , σ−1

r , ...σ−1
s+1).

Remark:

a) If furthermore Z(G) = {1}, then the element ρ is uniquely determined by the above conditions.

b) Of course, if the function field extension E|R(t) is additionally required to be regular, then

the condition ρ ∈ NSn(G) becomes ρ ∈ G.

Assume from now on Z(G) = {1}.
The s real ramification points divide P1R into s connected components. Now we move the base

point P0 (and thereby also the paths γi corresponding to our monodromy group generators σi)

continuously along a path δ in P1C \ S, into the next of those components. So our new paths γ̃i

are homotopic to δ−1γiδ.

Of course this yields an isomorphism of fundamental groups, and consequently, via lifting of the

path δ, a permutation isomorphism of monodromy groups 〈σ1, ..., σr〉 → 〈σ̃1, ..., σ̃r〉. Namely, num-

ber the elements of the fiber above the initial point P0 from 1 to n, and identify the end points of

the n different liftings of δ with the same numbers.

(If for the “transfer” of the monodromy group we choose a different path δ′ with the same end

points, this identification becomes a different one, but remains unique up to conjugation in G,

with the conjugating element being simply the monodromy image of the path δ′
−1
δ. Therefore

(σ1, ..., σr) = (σ̃1, ..., σ̃r) modulo action of Inn(G)).

However to determine the complex conjugation uniquely (with the conditions of Lemma 4.1), we

need only the equivalence class of (σ1, ..., σr) modulo Inn(G).
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So now we get conditions for a complex conjugation in a new component of P1R \ S.

By repeating this process, we get a unique complex conjugation in each component of P1R \ S.

After computing a complex conjugation ρ1 in a first component of the punctured real line, it can

easily be described how this conjugation changes after jumping over real ramification points:

Lemma 4.2. With the notation of Lemma 4.1, assume that complex conjugation for a base point

P0 in the component of P1R \ S to the left of P1 is described by the involution τ ∈ NSn(G), then

complex conjugation in the sector left of Pi (i = 1, ..., s) is described by τσ1 · · ·σi−1.

Proof. After the translation of the base point described above, in the segment left of Pi (i = 1, ..., s)

the paths σ1, ...σi−1 lie left of the base point, so complex conjugation ρ in this segment acts on the

“real” branch cycles via

(σ1, ...σi−1)ρ = ((σ−1
1 )σ2···σi−1 , ..., σ−1

i−1),

(σi, ...σs)
ρ = (σ−1

i , ..., (σ−1
s )σ

−1
s−1···σ

−1
i ),

and on every pair (σj , σk) corresponding to complex conjugate branch points via

(σj , σk)ρ = ((σ−1
k )σ1···σi−1 , (σ−1

j )σ1···σi−1).

This last action becomes clear if one bears in mind that moving the branch point does not change

the (counter-clockwise) sequence of the σi, so jumping over a real branch point P in the complex

plane will bend the path corresponding to a branch point in the lower half-plane around P (cf. Fig.

4.2).

Now compare these conditions with the conditions in the initial setting (Lemma 4.1), and because

of Z(G) = 1 it follows that τσ1 · · ·σi−1 is the unique element that fulfills these conditions.

As a converse to the necessary condition of Lemma 4.1, the field E can be defined over R (and

then, for a suitable choice of branch points, even over a real number field!) if and only if such a

comlex conjugation exists in one (and then automatically in all!) of the segments of P1R \ S, see

[39, Chapter I, Cor. 10.5].
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Figure 4.2: Branch points and paths in P1 \ S after moving the base point (compare Fig. 4.1)
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So far, the action of ρ on the tuple (σ1, ..., σr) has been described. We now return to the action

of ρ on the fiber over the base point P0, arising from lifting the action on the fundamental group

π(P1C \ S, P0). This action leads naturally to an action on the residue class field F0|R of a given

place of F |R(t) over t 7→ P0 ∈ R.

Lemma 4.3. For an n-fold ramified covering X → P1C, defined over R, let F =: R(t, y)|R(t) be

the corresponding function field extension, and let f(Y ) ∈ R(t)[Y ] be the minimal polynomial of a

primitive element y of F |R(t).

Furthermore, let the ramification data (G,S, (σ1, ..., σr)) be as in Lemma 4.1, and let ρ ∈ NSn(G)

be the element induced by complex conjugation for a base point P0 ∈ R.

Then ρ acts naturally on the zeroes of the specialized polynomial f0(Y ) arising from t 7→ P0, fixing

exactly the real zeroes of f0.

Proof. The zeroes of f0 generate the residue class field of a place P of the Galois closure of F over

t 7→ P0. As the latter place does not ramify, the decomposition group GZ of P is equal to 〈ρ〉, and

is mapped canonically onto the Galois group of the residue class field (cf. [53, Th. 3.8.2]).

Furthermore the permutation representation of 〈ρ〉 on the n zeroes of f can be identified with the

action on the zeroes of the reduced polynomial f0 (cf. [39, Th. I.9.2.]). This proves the assertion.

As a special case, consider the situation that (σ1, ...σr) is a genus-zero system in the transitive

group G, i.e. R(t, y) is a function field of genus zero. Over an algebraically closed constant field
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that would of course automatically force this field to be a rational function field. However, this is

not true for arbitrary fields of constants in characteristic zero (in particular, over the real numbers

there are two isomorphy classes of genus zero function fields: the rational one, and the function

field of the conic x2 + y2 = −1, without real points).

So in addition to the question when the Galois closure E can be defined over a real number field k,

we want to know whether this fixed field still remains rational over the reals.

If this is the case, we have a realization not only of G = Gal(E|k(t)), but also of the point stabilizer

G1, as a Galois group over a real number field (and in some cases over Q).

So we try to see from the cycle structures of the complex conjugations obtained above, whether or

not the fixed field of a point stabilizer is still rational over the field of descent.

Elementary analytic considerations yield the following lemma:

Lemma 4.4. In addition to the assumptions of Lemma 4.3 let f(Y, t) = p(Y ) − tq(Y ), with poly-

nomials p, q defined over a real number field.

Then

a) The complex conjugations ρi, ..., ρr (obtained in the different segments) cannot all be fixed

point free.

b) If ρi, ρi+1 are the complex conjugations in the segments near the real ramification point t0,

and f(Y, t0) has exactly m different real roots (including ∞ if specializing reduces the degree),

then the sum of the number of fixed points of ρi and ρi+1 is 2m.

Proof. The first assertion follows from the simple observation that a genus zero cover which is

rationally defined over a real field automatically has a real point in some fiber.

Also, by Lemma 4.3, the sum of the number of fixed points of ρi and ρi+1 equals the sum of the

number of real roots of f(Y, t0 + ε) and of f(Y, t0 − ε) for sufficiently small ε > 0. By a continuity

argument, this number is just twice the number of real roots of f(Y, t0).

An even more straightforward consequence about rationality in real fields of definition is given

by the observation that a non-rational genus zero curve over R cannot have a real point. In other

words, we have a converse to part a) of the above lemma:

Lemma 4.5. In the setting of Lemma 4.1 assume that (σ1, ...σr) is a genus-zero system and the

involution ρ ∈ NSn(G) fulfilling the requirements for complex conjugation has at least one fixed

point. Let F be the fixed field in E of a point stabilizer of G. Then FR is a rational field over R.

By these observations we have characterizing criteria for rationality over R (of course one should

bear in mind that in many cases rationality over any field of definition can immediately be deduced

from the genus zero property, by using an oddness argument).
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Application to braid group action

An important variant of the above situation deals with the cover f : C → P1C of the (reduced)

Hurwitz space C of a family of covers branched over (e.g.) (0, 1, λ,∞) with some λ ∈ C.

Every cover in this family corresponds to a point on C and the geometric monodromy group H

of the Hurwitz space cover is given by the braid group action, so if C can be defined over a real

field (e.g. in the case of a Nielsen class with transitive braid group action and rational conjugacy

classes), the symmetric normalizer of H will contain an element σ acting as complex conjugation

on a fiber f−1(P0) of the cover, and therefore on the tuples of the corresponding Nielsen class (for

any choice of a base point P0 ∈ R \ {0, 1}).
Still assuming Z(G) = {1} (to assure that every K-point of the Hurwitz space leads to a cover

defined over K), the fixed points under this action are then the covers in the family that can be

defined over a real field.

In this way, instead of just checking definedness over R for each member of the family individ-

ually, one obtains information on how the “real” members are related via the braid group action.

Apart from theoretical considerations, this can be important for concrete computations, as the

search for rational points can be restricted to certain branches of the Hurwitz space by purely

group theoretic arguments. I.e., an algorithmic implementation of the braid group action on covers

as described in Section 3.3.4 may be shortened to perform only the “braiding turns” leading to

“real” members of the family.

4.2 Application to groups of interest

An example with 3 branch points:

M12 has a rational genus-zero class vector (3A, 3A, 6A), where the elements of order 3 have 3 fixed

points, and the element of order 6 consists of two cycles of the same length. Computations, e.g. with

MAGMA, yield that a cover with these data can be defined over the reals1, i.e. complex conjugation

exists; but not with a rational function field, as the complex conjugation is fixed point free in all

sectors.

This last result can also be seen by elementary arguments, considering that M12 has only involu-

tions with zero or four fixed points:

We only need to distinguish between a case with only real branch points, and a case with just one

real branch point. In the latter case, the real line remains connected, so there is only one complex

conjugation ρ, and as the element of order 6 has only two cycles, by Lemma 4.4 b), ρ has at most

two fixed points, i.e. zero fixed points, which is also impossible by Lemma 4.4 a).

1And even over the rationals, because the group Aut(M12) has a rigid rational class vector (2, 3, 12), so by the
Hurwitz genus formula, the fixed field of M12 in a corresponding regular extension over Q(t) is still rational, and the
ramification above this field is given by the above class vector of M12.
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In the case with three real branch points, complex conjugation always maps at least one of the

elements of order 3 to its inverse, which of course is not possible without fixed points. So complex

conjugation has at least 4 fixed points in all segments, but this again contradicts the fact that the

element of order 6 only has two cycles.

Cf. also [45, Section 5.3.4], where the same result is obtained via explicit computation of a polyno-

mial with this ramification type.

Examples for the case with 4 branch points:

For reality questions we only need to distinguish between three different settings:

a) Only real branch points

b) Two real branch points

c) Only pairs of complex conjugate branch points

By the branch cycle argument, complex conjugate branch points over a real constant field must

have inertia group generators of the same cycle type.

Consider for example the genus zero class vector (2A, 2A, 2A, 12B) in M24, consisting of three

involutions with 8 fixed points, and an element of order 12 with two cycles of the same length.

This tuple has enabled the first realization of M24 as a Galois group over the rationals, as the

((12)−symmetrized) Hurwitz space is a rational curve. In [19], a polynomial with this ramification

type was computed, and it turned out that the fixed point field of the point stabilizer M23 was no

longer rational over R.

This can also be seen easier (and in particular for all 144 equivalence classes of tuples of this type!),

using the arguments above. Straightforward computation with Magma shows that, for cases with

four as well as for those with two real branch points, several covers are defined over R; but in all

those cases, complex conjugation is a fixed point free involution, which excludes rationality of the

fixed field in question.

As the above class vector is the only one in M24 that both fulfills the genus zero condition and has

a rational Hurwitz curve, this result means that M23 cannot be realized over Q with this “point

stabilizer” method, unless one finds rational points on Hurwitz curves of higher genus, or on the

two-dimensional Hurwitz space of the only genus zero 5-tuple (of cycle type (4B, 2A, 2A, 2A, 2A))

in M24, see [33] and the computations in Chapter 5.

In the same way, the genus zero four tuples of cycle structure (24.14, 24.14, 24.14, 62) of M12 have

a Hurwitz space of genus zero (which with some effort can be shown to be a rational curve over Q
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- see the table in Appendix A for a polynomial over Q belonging to this family, i.e. corresponding

to a Q-point on this rational curve). However, independently of the choice of the ramification

locus, complex conjugation is always a fixed point free involution for the members of this fam-

ily that are defined over R. Therefore, in the same way as in the previous example, polynomials

f(t,X) ∈ Q(t)[X] with this ramification type do exist, but not of degree 1 in t. (A theoretical

argument for this last tuple is also contained in [45], with the slight restriction that the fiber over

the point with (62)-ramification consists of real points.)

Results about the Mathieu groups, like the above examples, together with classifications obtained

in [45], yield a classification result about monodromy groups of rational functions of a special type.

We have included this result in Chapter 9 (Propositions 9.3 and 9.5).

4.2.1 An overview over reality questions with regard to M24-covers

In the following we discuss the genus zero 4- and 5-tuples in M24, with regard to reality questions.

We clarify which of them give rise to M23-covers defined over the reals (and therefore may be used

to try to realize M23 as a Galois group over the rationals).

This is of course also dependent on the exact choice of the branch points (all real, pairwise complex

conjugate etc.).

Proposition 4.6.

a) M24 has exactly the following generating genus-zero 4-tuples of rational class vectors:2

i) (2A, 2A, 2A, 12B), l = 144, g = 0.

ii) (2A, 2A, 2B, 8), l = 416, g = 11.

iii) (2A, 2A, 3A, 4C), l = 248, g = 12.

iv) (2A, 2A, 3A, 8), l = 1128, g = 48.

v) (2A, 2A, 3B, 4B), l = 696, g = 58.

vi) (2A, 2A, 4A, 4B), l = 464, g = 36.

vii) (2A, 2A, 4B, 5), l = 1970, g = 129.

viii) (2A, 2A, 4B, 6A), l = 5730, g = 432.

ix) (2A, 2B, 3A, 4B), l = 684, g = 136.

2There are a few non-rational class vectors as well, even with genus zero Hurwitz spaces, but because of the
branch cycle argument, these cannot yield realizations over Q (and in fact not even over R, as the elements in the
non-rational classes involved are never conjugate to their inverse).
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(Here l always denotes the length of the Nielsen class SNiin(C), and g the genus of the (C2-

symmetrized, if possible) Hurwitz space.)

All these classes give rise to regular Galois extensions of R(t). The tuples i) and iii) hereby

are the only ones that cannot yield a regular extension of R(t) with the fixed field of M23 still

a rational function field.

b) M24 has exactly one generating genus-zero 5-tuple, namely (2A, 2A, 2A, 2A, 4B). The corre-

sponding Nielsen class has length 72000.

Proof. For the existence, lengths and genera, compute e.g. with Magma (also, cf. [33] for the 5-

tuple).

For the statement about real definedness and rationality of the M23-fixed field, apply complex

conjugations as laid out earlier in this chapter.

As an example, we discuss the possibilities in detail for the 5-tuple:

Consider the 5-tuple of elements of S24

((1, 10)(4, 17)(5, 16)(6, 19)(8, 12)(11, 20)(15, 23)(21, 24),

(2, 9)(4, 24)(6, 15)(7, 17)(8, 18)(13, 20)(14, 21)(16, 23),

(2, 16)(5, 12)(7, 17)(8, 18)(9, 23)(10, 11)(13, 14)(20, 21),

(3, 7)(4, 24)(5, 9)(6, 13)(8, 22)(12, 16)(14, 20)(15, 21),

(1, 10, 20, 11)(2, 15, 13, 23)(3, 7)(4, 17)(6, 24, 21, 19)(8, 22, 12, 9)),

generating M24; choosing all branch points real and ordered with the above monodromy, the action

of complex conjugation obtained when choosing the base point between the first and the second of

these points is given by the identity, i.e. there is a rational function over R with this monodromy,

such that the corresponding cover has real fibers.

Also, if one chooses only one of the five branch points real and the other four pairwise complex

conjugate, then there are several possible monodromies of type (4B, 2A, 2A, 2A, 2A) defined ratio-

nally over a real field (although real fibers are of course impossible in this case). E.g., among the

total of 72000 equivalence classes (modulo simultaneous conjugation) of M24-5-tuples (with product

one) of this cycle type, there are 23 · 232 = 4232 that lead to a 4-tuple of type (23A/B, 2A, 2A, 2A)

when letting the first two branch points converge to the same point. This number arises in the

following way: There are 92 equivalence classes of such 4-tuples (in two orbits of the braid group,

corresponding to the conjugacy class 23A and 23B of M24 respectively). Each 23-cycle can be split

into a product of elements of the classes 4B and 2A in a total of 46 ways, as the resulting triple

(23, 4B, 2A) is an M23-triple with structure constant 2 and can be conjugated by the centralizer of
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the 23-cycle (which is just the subgroup generated by this cycle) in 23 different ways, each of which

leaves the 23-cycle, and therefore the degenerate (23, 2A, 2A, 2A)-4-tuple unchanged, but gives rise

to a new (4B, 2A, 2A, 2A, 2A)-tuple.

Now, computation with MAGMA shows that 4 of the 4232 tuples described above allow a complex

conjugation represented by an involution with eight fixed points (when choosing only one of the

branch points real, as described above), and therefore give rise to a rationally defined cover over a

real field.

On the other hand, for exactly three real branch points, complex conjugation never exists, so there

are no covers defined over R in this case.

Note also that in the cases ii) and iv) above, the cycle structure of the element of order 8 ac-

tually shows that over any field of definition of these covers, the M23-fixed field is still a rational

function field.

We conclude this chapter by emphasizing that all the genus zero M24-families treated in Chapter

5 have members that can be rationally defined over a real field, and are therefore potential candidates

for M23-realizations over Q.



Chapter 5

Computations of Hurwitz spaces

for the large Mathieu groups

We now proceed to explicit computation of Hurwitz spaces and covers with prescribed ramification.

The large Mathieu groups, mainly M24 and M23, are of particular interest for the inverse Galois

problem, and thus also for explicit computation.

The main reason is that M23 is the only sporadic simple group not yet known to occur as a Galois

group over Q (cf. e.g. [39, Th. II.10.3]). However, M24 itself is also of interest. The only known real-

ization of M24 over Q (with a theoretical argument given by Malle and Matzat in [39, Th. III.7.12],

and explicit polynomials by Granboulan ([19]) and Müller ([43])) uses a Nielsen class of 4-tuples

(2A, 2A, 2A, 12B) in M24. Here the definedness over Q is guaranteed by the ((1, 2)-symmetrized)

Hurwitz curve being a rational genus zero curve; however, as remarked in Chapter 4 this family

cannot be used to realize M24 as the monodromy group of a rational function over Q (or even

over R). It is therefore still an open question, whether M24 is the monodromy group of a rational

function over Q, i.e. M24 = Gal(f(X)− tg(X)|Q(t)), with f, g ∈ Q[X].

Apart from theoretical interest, especially Sections 5.1 and 5.3 show different approaches that

should be generally useful to practically tackle problems involving long braid orbits.

5.1 A family of covers ramified over four points with Galois

group M24

There are two obvious approaches to realizing M23 as a regular Galois group over Q:

One can search for rational points on a Hurwitz space for any generating class tuple in M23 itself,

or for points on a Hurwitz space for a genus zero system in M24. In this chapter, we explic-

47
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itly compute the Hurwitz space for a family of the second type, i.e. a family of genus-zero covers

with Galois group M24, ramified over four places with inertia group generators of cycle types

(28.18, 28.18, 212, 82.4.2.12). During the computation, several methods that may be useful for simi-

lar computations are displayed, including complex approximations, p-adic computations, numerical

implementation of the action of the Hurwitz braid group etc. Particular interest lies in the question

about rational points on Hurwitz spaces, as well as considerations about M23. In Chapter 5.3, we

will then give an example of a Hurwitz space for a tuple in M23.

5.1.1 Finding an approximate cover with the desired monodromy via

numerical computations

Let G = M24, C1 = C2 the unique conjugacy class of involutions with eight fixed points in G, C3

the unique class of fixed point free involutions, and C4 the unique class of elements of cycle type

82.4.2.12 in G. Then there are elements σi ∈ Ci such that 〈σ1, ...σ4〉 = G and σ1 · ... · σ4 = 1.

Therefore by Riemann’s existence theorem there are degree-24-covers of P1C with Galois group G

and monodromy given by the σi. Also the Riemann-Hurwitz genus formula shows that these are

genus-zero covers, i.e. they can be parameterized by polynomials f(X)− tg(X), with f, g ∈ C[X],

and C(X) | C(t) a degree 24 extension of rational function fields.

The exact number of these tuples, modulo simultaneous conjugacy by elements of G, is l = 416,

with the braid group acting transitively. The action of the braids given in Theorem 2.5 (cf. [39,

Theorem III 7.8]) yields that the C2-symmetrized braid orbit genus is gC2 = 11. Therefore the

reduced Hurwitz space parameterizing the covers in this Nielsen class is an absolutely irreducible

curve C of genus 11, given through a cover C → P1C of degree 416.

We try to compute the covers in this family by first using complex approximations and later iden-

tifying certain complex numbers as algebraic numbers. This will eventually lead to an explicit

defining equation for the Hurwitz curve over Q.

We start with a cover ramified over three places, with monodromy (44.24, 212, 82.4.2.12). This

corresponds to letting the two places with inertia groups 〈σ1〉 and 〈σ2〉, of cycle structure 28.18,

converge to one and the same place, thereby obtaining a cover with monodromy (σ1σ2, σ3, σ4).

The class triple is not rigid, therefore we cannot expect to get a cover defined over the rationals,

but only over a suitable number field K (in this case of degree 4 over Q). The group generated

by σ1σ2, σ3 and σ4 is Aut(M12) in an imprimitive action on 24 points, so we obtain an inclusion

K(t) ⊂ K(y) ⊂ K(x) of rational function fields, with |K(y) : K(t)| = 2, |K(x) : K(y)| = 12.

Closer examination of the class triple shows that these field extensions will have the structure of

ramified places given in Figure 5.1.
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Figure 5.1: Ramification structure corresponding to the class triple with group Aut(M12)
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Therefore we are left with computing an (M12−) cover ramified over three places, with mon-

odromy (24.14, 8.2.12, 8.4). This can be done easily with the Groebner basis approach. Upon

suitable specializations, we get the equation y = α·f(x)2·g(x)
x4 , where

f(x) := x4 + 1/412 · (72 · ζ3 − 1733 · ζ2 + 15340 · ζ − 5370) · x3 + 1/412 · (−419 · ζ3 + 10015 ·
ζ2 − 87834 · ζ + 24358) · x2 + 1/206 · (1884 · ζ3 − 45055 · ζ2 + 395560 · ζ − 84998) · x+ 1/206 · (1979 ·
ζ3 − 47323 · ζ2 + 415394 · ζ − 90238), g(x) := x4 + 1/206 · (68 · ζ3 − 1631 · ζ2 + 14236 · ζ − 3870) ·
x3 + 1/206 · (−ζ3 + 77 · ζ2 − 276 · ζ + 890) · x2 + 1/103 · (−49 · ζ3 + 1095 · ζ2 − 9816 · ζ + 762) · x+ ζ,

and α := 1/2618256295484181 · (−48201799061 · ζ3 + 1146658040179 · ζ2 − 9966578857818 · ζ +

864486650075),

with ζ ∈ Q a root of the polynomial X4 − 24 ·X3 + 212 ·X2 − 64 ·X + 4. The corresponding cover

is ramified over y = 0, 1 and ∞. Now getting the imprimitive degree-24-cover simply corresponds

to suitable concatenation with a degree-2-cover, e.g. t = y2

4(y−1) .

Setting y = y(x) = α·f(x)2·g(x)
x4 (as above) in this equation, we get the imprimitive degree 24-

cover, ramified over t = 0, 1 and ∞, with the prescribed monodromy.

As we will later be interested in polynomials over the rationals, it is suitable to apply some pa-

rameter transformation to the variable x, e.g. to choose the two degree-one places over t 7→ ∞,

as well as the linear coefficient of the degree-2-polynomial corresponding to the degree-2-place of

ramification degree 8 over t 7→ ∞, to be rational. Denote the equation that is finally obtained this

way by α0·f0(x)−t·g0(x) = 0, with monic polynomials f0, g0 ∈ Q[x] and a leading coefficient α0 ∈ Q.
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Next we want to use Newton approximation to gain a cover with branch cycle description (σ1, σ2, σ3, σ4),

ramified at the four places t 7→ (−χ, χ, 1,∞), where the variable χ will be specialized to some com-

plex number of small absolute value.

Because of the given ramification and the genus zero condition, our cover can be defined by

α · f(X) − tg(X) = 0, with some α ∈ C and monic polynomials f of degree 24 and g(X) =

g1(X)8 · g2(X)2 · g3(X), the gi being polynomials of degrees 2, 1 and 2 respectively (we have

thus assumed that the place of ramification degree 4 over t 7→ ∞ is X 7→ ∞, which can be done

w.l.o.g.). Furthermore, we know αf(X)− g(X) = αf1(X)2, αf(X)− χg(X) = αf2(X)2f3(X) and

αf(X)+χg(X) = αf4(X)2f5(X), where deg(f1) = 12 and deg(fi) = 8 for i = 2, ..., 5. Upon further

suitable transformations (namely fixing g2(X) := X and mapping the coefficient at X1 of g1(X) to

−1), we receive a model with 48 unknown coefficients αi (i = 1, ..., 48), namely:

α1 := α,

g1(X) = X2 −X + α2, g2(X) = X, g3(X) = X2 + α3X + α4,

f1(X) = X12 + α5X
11 + ...+ α16,

fi(X) =

8∏
j=1

(X − α8·i+j), for i ∈ {2, 3, 4, 5}. (5.1)

As the cover will converge to the three pointed cover described above for χ → 0, we know that

the αi can be expanded as power series in a variable µ, where χ = O(µ4), because our three-point

cover corresponds to a ramified place of ramification index 4 in our Hurwitz space, as can easily be

verified by counting the tuples (τ1, τ2, σ3, σ4) ∈ C1 × ...× C4 with τ1τ2 = σ1σ2. In fact, we can set

χ = µ4 without restriction.

We then have αi = α0
i + O(µ) for all the coefficients αi, where the α0

i are the corresponding

coefficients from our three-pointed cover given by α0f0(x)− tg0(x) = 0.

Note that, upon viewing χ (and thus also the αi) as a transcendental over C, the Hurwitz curve

cover C → P1C corresponds naturally to a degree-416 function field extension F |C(χ2). Also, we

know that this function field can be defined over Q, and the transformations that led to our model

(5.1) do not affect definedness over Q.

To obtain first order approximations for all the coefficients in our model, especially for α17, ..., α48,

we need to look at the “opposite” degenerate cover (as described in Chapter 3), i.e. the cover with

ramification (σ1, σ2, σ3σ4). This ramification type yields a group generated by two involutions with

product of order 4, i.e. a dihedral group D4, acting intransitively with four orbits of length 4 and four

of length 2 (in the latter case the image of D4 in the action is of course C2), each orbit corresponding
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to a connected component of the cover. We can easily compute each of these components separately.

Next, introduce parameter changes to link these small covers to the Aut(M12)-cover computed

above.

To do this, let γ1, ..., γ8 be the eight different zeroes of the polynomial f̂0, from the Aut(M12)-cover,

with multiplicities e1 = ... = e4 = 4, e5 = ... = e8 = 2.

Define Xi := X−γi, Yi := µ−4/ei ·ζi ·Xi (i = 1, ..., 8), with an ei-th root of unity ζi, and s := χ−1 ·t.
For each of the eight roots γi we change the parameters, using the equation

αf(X)− tg(X) = αf(µ4/eiζiYi + γi)− χ · s · g(µ4/eiζiYi + γi) = 0

Now the polynomial f(µ4/eiζiYi+γi) contains exactly ei complex linear factors of the form µ4/eiζiYi+

O(µ4/ei), so we get a factor (µ4/eiζi)
ei = χ, i.e.:

α · χ · f̃(Yi) = χ · s · g̃(Yi),

where f̃(Yi) contains exactly ei linear factors of the form (Yi +O(1)).

Because of the parameter transformation, our covers ramify at s = (−1, 1, 1
χ ,∞), so upon canceling

χ and specializing µ 7→ 0, these covers converge to the D4- (resp. C2-) covers we have already

computed. This yields approximations for the coefficients α17, ..., α48.

So far, we have made use of the concrete monodromy of the degenerate covers, as well as the

ramification type (i.e. the cycle structures, but not the concrete cycles!) of the desired 4-point

cover. One should note, however, that all these data could still yield an A24-cover instead of an

M24 one as well. In our case, direct computation shows that only a fraction of 1/12 of the covers

with the above degenerations will have group M24 (cf. Lemma 3.15).

However, as mentioned in Chapter 3.3.1, we can still choose ζi to be any ei-th root of unity in the

above definition of Yi.

This trick will suffice to fix the exact monodromy of the M24-cover: We simply compute the mon-

odromy as described in the next section, compare it with an M24-tuple that we hope to obtain and

then, separately for each cycle that doesn’t match the one of the expected tuple, we change the

corresponding D4-cover and repeat the process.

Now all the necessary preparations have been made, so one can start Newton iteration for the

polynomial of the M24-cover, with the degenerate 3-point cover as a starting point, and a suffi-

ciently small value for µ.

To gain a cover with more stable numerical behaviour we repeat the Newton iteration a couple of

times, in order to further separate the branch points associated to σ1 and σ2 respectively.

Finally, the following is an approximation for the coefficients α1, ..., α16 (determining completely
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the polynomial α · f(X)− tg(X)) of a cover ramified over t 7→ ± 1
2 , t 7→ 1 and t 7→ ∞ (i.e. χ = 1

2 in

model (5.1)):

(α1, ..., α16) :=

(−0.0001395965896612512467469060915932988535497816205997471385123079196993348609472609512195639058494559450,

−0.03571545967419582230359401061692819736320231869763110083591144535530355836823108244865045841702955512,

0.07897196113025267795722615735268343894125128234505253622699550571812382661283883493809662805831039497,

0.004531397626233030812658624938968081130223833019593614327881729608408838965894082136052935036361098550,

−6.519323009460414998102745432723643180859753982473746312371761594367356607971420663994736685248339160,

8.397456810812136190954124338877854741527149603306115734851055641818546264698533323723367238401941492,

83.11720454031705033613552440487845722245046956639385312858569627678514006369554637083620322730605006,

1973.125017083273191064614499209091475154005537870820262775621985423127034681155832226337295522622279,

501.7466100953769596507361088255424179844448408228653504922929100503740036810807112370826929053997252,

78.24829234679345588827277803199627017297562011069747366991165768618749139056922326682835336379783320,

0.7749203524856610156495902629394663080544079160899634326639832619224485266078509740784466347010348717,

0.5066735303268333795600098272927161757835805649336802364528053194065587076516586605461090488360043702,

0.03208458411664660665765254629551493430062150660291330057418576837452781509610397266619349119337545463,

0.002872006870513237540872488876896035306272816052374379428909634022552865249592648293352988124849779682,

−8.730719315135749723927055206617791157659228149710701070818073007477014095618803775263189989594752493E − 7,

6.661416968899303126249771207113264861876341037646897113684360577936394742881922439530283162627008325E − 9).

5.1.2 Verification of the monodromy

To verify that our cover has the desired monodromy (especially, an M24-monodromy, not an A24

one), we choose an unramified specialization t 7→ t0 ∈ C and identify the 24 zeroes of the specialized

polynomial f(t0, X) with the numbers 1, ..., 24. Now we move the base point t0 slowly around each

of the ramification points, always associating a zero of the new polynomial to the closest zero of

the previous polynomial. After a full turn around a ramification point, we find that the zeroes

have been permuted by the inertia group generator σi. Of course this numerical approach requires

a sufficiently small stepsize. With additional considerations, one could find a stepsize that strictly

guarantees the computations to be correct. However, in practical use it may be acceptable to use

heuristic evidence at this point.

For the above approximation, we chose
√
−1 as a base point and drew paths around − 1

2 ,
1
2 and 1

(in this order), obtain the following monodromy:
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σ1 = (4, 14)(6, 8)(7, 9)(10, 12)(16, 17)(18, 22)(19, 21)(20, 24),

σ2 = (1, 12)(2, 4)(3, 9)(5, 7)(10, 11)(13, 17)(14, 15)(16, 23),

σ3 = (1, 9)(2, 13)(3, 4)(5, 8)(6, 7)(10, 11)(12, 17)(14, 15)(16, 22)(18, 19)(20, 21)(23, 24),

σ4 := (σ1 · σ2 · σ3)−1 = (1, 3, 2, 16, 18, 21, 24, 17)(4, 7, 8, 9, 10, 12, 13, 14)(5, 6)(19, 22, 23, 20).

Indeed, 〈σ1, ..., σ4〉 ∼= M24.

5.1.3 Moving through the Hurwitz space

So far, we have obtained complex approximations of the coefficients of a four point cover. Of course,

as the Hurwitz curve is defined over Q, these coefficients will actually be algebraic numbers. How-

ever, they should be expected to lie in a large extension of Q (namely of degree |SNiin(C)| = 416

in the generic case), so it is not suitable to approximate the coefficients sufficiently to gain their

minimal polynomials. Instead, as outlined in Section 3.3.4, we make use of the transitive action of

the braid group on all 416 covers with fixed branch points.

The monodromy group of the degree 416-cover C → P1C is a homomorphic image of the stabi-

lizer of SNiin(C) in the braid group H4, i.e. of 〈β1, β1,4〉 (cf. [39, Th. III. 7.8]). As the braiding

action of this group on our 416 class tuples is transitive, we only need to let two generators of the

group, e.g. β1 and β2
2 , act repeatedly to gain covers for each of the class tuples. The action of β1

corresponds to interchanging the branch points p1 := − 1
2 and p2 := 1

2 (with inertia group generators

in the class C1) by moving them slowly counterclockwise (and again using Newton iteration), say

along a circle around 0 in the complex plane, until they have switched places (meanwhile the other

branchpoints are left unchanged). We can keep track of which braid yet needs to be applied to

which cover by keeping a list of the class tuples that have already been reached (always verifying

the monodromy of a newly reached cover numerically as described above).

This way, we obtained complex approximations for a complete set of 416 covers for a fixed choice

of branch points, i.e. a complete fiber of the Hurwitz curve cover C → P1C. These approximations

are included in the file “m24 (2,2,2,8) approx.txt”.

5.1.4 From numerical approximations to algebraic numbers via symmet-

ric functions

Now, with a complete fiber computed, we can proceed from complex approximations to algebraic

numbers:
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Proposition 5.1. Let α be any of the coefficients α1, ..., α16 of the model (5.1), let χ ∈ C such that

χ2 ∈ Q, and let a1, ..., a416 be all the possible values of α for the (partially ordered) branch point set

({±χ}, 1,∞).

Then the polynomial
∏416
i=1(X − ai) has rational coefficients.

Proof. With our assignment of the (partially ordered) branch point set to ({−χ, χ}, 1,∞), viewing

χ as a transcendental, we obtain a function field extension F |C(χ2) for the morphism C → P1 of the

Hurwitz curve C. Because of the “good” choice of the model for the universal family, this function

field is actually defined over Q, and we refer to the function field over Q as F again. Clearly, for

α ∈ {α1, ..., α16}, the field Q(χ2, α) is an intermediate field of the extension F |Q(χ2), as these α

are coefficients of specializations t 7→ t0 ∈ P1Q of our universal family. The primitive braid group

action shows that F |Q(χ2) has no proper intermediate fields, therefore Q(χ2, α) = F or α ∈ Q(χ2).

In the first case, if f is the minimal polynomial of α over Q(χ2), the ai are exactly the roots of the

reduced polynomial f0 ∈ Q[X], specializing χ2 to a rational value. In the second case, all the ai

would even be rational.

These rational coefficients can now be obtained from our complex approximations with well-

known algorithms. We therefore obtain polynomials in our family which are defined over a number

field (of degree 416 over Q) - although with rather huge coefficients.

5.1.5 Reduction modulo a prime

We now look for a prime p such that the polynomials of degree 416 obtained in the previous step

for several coefficients all have a root in Fp. (In fact, we expect the function field of the Hurwitz

space to be generated by just two of these coefficients, i.e. two of these polynomials having a root

would be enough to enforce the other polynomials to have a root as well.) In our case, the choice

p = 17 leads to the following polynomial:

0 = f(t,X) := (X12 + X11 + 2 ·X9 + 11 ·X8 + 9 ·X7 + 4 ·X6 + 15 ·X5 + 14 ·X4 + 15 ·X3 + 2 ·
X + 15)2 − t · (X2 + 16 ·X + 10)8 · (X + 11)2 · (X2 + 4 ·X + 11),

ramified over t 7→ (0, 2, 6,∞), with the correct cycle types of inertia subgroups.

Dedekind’s criterion

To gain further evidence that we have actually obtained a regular M24-Galois extension over F17(t),

we use Dedekind reduction.

As we have obtained a mod-17 reduced polynomial f(t,X), any value t 7→ t0 ∈ F17 that leaves the

specialized polynomial separable leads to a cycle type contained in Gal(f |F17(t)) by Dedekind’s

criterion (cf. e.g. [39, Th. I.9.2]; note especially that specializing t cannot reduce the degree of f).

For specializations in suitably large extensions of F17, the occurring cycle types are exactly the ones

contained in M24. Furthermore, by a function field version of Chebotarev’s density theorem, every
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cycle type of Gal(f |F17(t)) will occur with positive density. This yields strong evidence (although

not strict proof) that Gal(f |F17(t)) is in fact M24 (and not A24).

(If one wishes to obtain a strict proof, combining these arguments with estimates from the Hasse-

Weil bound - as done in [14] to distinguish M23 from A23 - might succeed, after choosing a sufficiently

large prime for the reduction, instead of a small one as done above.)

5.1.6 Finding algebraic relations between two coefficients of the family

Next, we can lift our Fp-cover, ramified over (0, 2, 6,∞) to arbitrarily many Qp-covers ramified over

(0, 2−kp, 6+kp,∞), with k ∈ Z, via Hensel lifting. After obtaining several hundreds of such covers

we can find algebraic relations between two of the coefficients. These relations will be over the

p-adic integers, but with appropriate assumptions we know that they are in fact over the rationals.

Therefore we can easily obtain the fitting rational numbers from the p-adic ones.

In our case, we obtained a polynomial relation of degrees 32 and 24 respectively, between the

coefficients α2 and α3 (as in the model (5.1)). This is an absolutely irreducible polynomial giving

rise to a curve of genus 11, which is the genus of the Hurwitz curve. We therefore expect this to

already be a defining equation for (the affine part of) the Hurwitz curve as a plane curve. This

can be verified, as the remaining coefficients can be expressed as rational functions in these two

coefficients.

The precise polynomial in two variables, defining the Hurwitz curve, is given, in the form h(t, x)

in the appendix.

Theorem 5.2. The polynomial h(t, x) ∈ Q[t, x] describes an absolutely irreducible curve of genus

11, which is the C2-symmetrized Hurwitz curve of the M24-family considered in this chapter.

Proof. Via Magma, the absolute irreducibility can easily be checked, e.g. for smaller models of

the mod-47 reduction of this curve, as given below on p. 59. Therefore the original curve is also

absolutely irreducible. Furthermore it can be checked that the reduction modulo 47 of this curve

has genus 11 (via computations of suitable divisors, as described above). Therefore the original

curve has genus no less than 11. Monodromy calculations show that some point on this curve

(and therefore, by irreducibility, the entire curve) gives rise to M24-polynomials, with the desired

ramification type. It also follows that the function field Q(t, x) described by this curve is already the

full function field of the Hurwitz curve (and no proper subfield), as the full function field has genus

11 by the braid genus formulas, and therefore by Riemann-Hurwitz, any proper subfield would have

strictly lower genus.

5.1.7 An explicit polynomial equation for the degree-416 cover C → P1

The polynomial h(t, x) is somewhat arbitrary in the sense that it yields function field extensions

with many ramification points. We know however from the action of the braid group that the
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function field F of the Hurwitz curve C has a rational subfield E = Q(χ2) of index 416 such that

only three places (all of degree one) ramify in the extension F |E.

In order to compute a polynomial for this extension, we started from the complete fiber of 416 covers

for a given choice of branch points and for all of them started to move the branch points. For each

full fiber, we obtained a degree 416 minimal polynomial for the coefficient α2 (as in model (5.1)) .

We know already that Q(α2) has index 24 in the function field F , so after gaining sufficiently many

full fibers, we can interpolate the coefficients of the degree 416 polynomials to obtain a polynomial

in two variables, of degrees 24 and 416 respectively, describing the function field extension F |E .

We have included this polynomial in the file “deg416 hurwitz equation.txt”. One can check the

ramification data to coincide with those predicted by the braid group actions.

5.1.8 Totally real specializations

For some members of the family, criteria for complex conjugation show, that if all branch points

are chosen real, then specializing t in the interval between the point with inertia group generator

of cycle structure (212) and the closest (28.18)-point yields totally real polynomials (not necessarily

over Q of course) for M24 (and then also for M23) over some real number field K, i.e. the splitting

field over K of these polynomials is a real field. This completely group theoretic argument can now

be verified by picking an approximate polynomial with the correct monodromy.

In the list of approximations for all 416 covers with branch point set t 7→ ({−1/2, 1/2}, 1,∞), given

in the file “m24 (2,2,2,8) approx.txt”, the covers no. 296, 300, 302, 361, 411, 412, 415 and 416

have real fibers, each in the real interval t ∈ (1/2, 1).

5.1.9 Alternative approaches

The above computations could possibly be shortened by trying to find algebraic dependencies be-

tween the complex approximations of coefficients right away, using some form of least squares

algorithm, i.e. solving numerically certain systems of equations, and then finding the rational num-

bers corresponding to the complex solution of Least Squares. However, it still seems interesting to

use the action of the braid group to proceed from complex approximations to precise rational or

p-adic numbers.

Another possibility to avoid computing the full braid group orbit would be to compute (via Newton

iteration) a cover with, e.g. the coefficient α2 from model (5.1) rational, and then hope that this

will lead to the other coefficients lying in more or less small extensions of Q (in our case, we know

in retrospect that specializing α2 to a rational number would lead to the remaining coefficients

α1, ..., α16 lying in an extension of degree (at most) 24. The minimal polynomials of such algebraic

numbers can be regained if one uses complex approximations of precision a few thousand digits).

Still, it can be important to have computed a full fiber, particularly for the search for rational

points.
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5.1.10 Open questions: Points on curves and M23

It would be very interesting to know if the Hurwitz curve given by h(t, x) = 0 has a (non-singular)

rational point. This could then imply that there is a cover with the above monodromy over the

rationals.

However, one would still need to double-check after finding such a point. The important thing

is to obtain an unramified place in the actual Hurwitz curve cover of degree 416. The function

fields generated by our curve and the degree 416 cover are the same, but of course the ramification

is different, therefore a non-singular point in our model could still give a singularity in the other

model, and vice versa. This emphasizes the importance of the explicit equation for the degree-416

cover. (We refer to Chapter 5.3 for numerical arguments that may be used in the case that the

“natural” (|SNiin(C)|-fold, in the case of transitive braid group action) Hurwitz space cover C → P1

is too large to be parameterized explicitly.)

There are a few singular points on our curve (see Th. 5.3), but plugging the values into the original

model always leads to some vanishing of discriminants amongst the coefficients, so these points will

not lead to rational M24-covers.

Note that the existence of “good” points would not only give rise to a new M24-realization over Q,

but as our ramification type is of genus zero, with a place of degree 1 (e.g. over the infinite place of

the base field), the fixed field of a point stabilizer would still be a rational function field. Therefore

one would obtain a regular realization of M23 over the rationals. As mentioned before, it is still

open whether such an extension exists or not. In fact, the family computed here gives rise to the

Hurwitz curve with the smallest genus among all the four-point genus zero families of M24 with

members that can be rationally defined over a real field, cf. Prop. 4.6.

Searching for rational points on the Hurwitz curve, we combined several mod-p reductions of the

polynomial h for small primes p (as the direct search for rational zeroes over Q is quite time-

consuming). E.g., whenever t0 ∈ Q has denominator not divisible by p, and mod-p reduction of

h(t0, x) neither decreases its degree nor leads to any zeroes modulo p, there cannot be any rational

zeroes with t-coordinate t0 either.

We checked all rational values with numerator and denominator of absolute value ≤ 5 · 104, and all

integer values of absolute value ≤ 108 (in t as well as in x; note also that for rational specializations

t 7→ t0, h(t0, x) has real roots if and only if t ∈ (−∞, 1
4 ]. This can be verified easily as the number

of real roots of h(t0, x) can only change at a real branch point.).

At least the following holds:

Theorem 5.3. Every rational solution of h(t, x) = 0 (with h as given in the appendix), with

t ∈ Q \ {0, 1
4} yields a regular Galois realization of M24 and of M23 over Q.
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Proof. The only rational solutions that do not yield such realizations are the ones that correspond

to ramified points of the degree 416 Hurwitz curve cover C → P1. Given the explicit polynomial

equation for this degree 416 cover, it only remains to compute the fibers over −χ2 7→ 0 ,−χ2 7→ −1

and −χ2 7→ ∞. It turns out that the only rational values in these fibers are for t = 0 and t = 1
4 .

The curve C does have a non-singular point modulo all small primes (apart from the few cases

where the defining polynomial becomes reducible). In fact, the polynomial h(t, x) given in the

appendix below remains irreducible as a polynomial in x for all odd primes. Finding non-singular

points modulo p, for small primes p, then automatically yields Qp-points.

By the Hasse-Weil bound (see e.g. [53, Th. 5.2.3.]) this means that there are non-singular points

for all primes for which the reduction remains irreducible.

Namely, by Hasse-Weil, the number N of degree one places in the mod-p reduced function field

fulfills |N − (p+1)| ≤ 2g
√
p, and it is known that the genus g of the mod-p reduced function field is

never larger then the original genus (cf. [13] or [40] for this statement) - granted that the reduction

is still a function field, of course - so we can estimate |N − (p+ 1)| ≤ 22
√
p, which yields N > 0 for

all p ≥ 23.

This leaves the case p = 2. Here, the equation h(t, x) = 0 does not have good reduction, and

indeed, it does not seem obvious whether there are 2-adic points at all, apart from the singular

Q-points (see above).

We therefore end this section with a question:

Question: Is the set C(Q2) of non-singular 2-adic points of this curve empty?

5.1.11 Number field and mod-p results

To generalize the question about rational points, one might look for points over small number fields.

The degrees of the defining polynomial of C are 24 and 32 respectively. Also, by Lemma 3.16, the

gonality of the function field F of C is at most 20. Explicitly computing an element y such that

|F : Q(y)| ≤ 20 (via Riemann-Roch spaces, as described immediately after Lemma 3.16) seems to

be too difficult for current programs.

However, we have been able to compute smaller models for mod-p reductions of C. E.g. for p = 47

(the choice of this prime is motivated by the proof of the following proposition), using the fact that

C has an Fp point, one can compute models f̂(t, x) for C of degrees 12 and 11 respectively (again

cf. Lemma 3.16).
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One such model over F47 is

f̂(t, x) = (x11 +33x10 +27x9 +32x8 +6x7 +28x6 +5x5 +3x4 +43x3 +39x2 +18x+4)t12 +(36x11 +

27x10 + 4x9 + 39x8 + 8x7 + 9x6 + 42x5 + 43x4 + 23x3 + 30x2 + 39x+ 27)t11 + (12x11 + 5x10 + 23x9 +

25x8 + 25x7 + 27x6 + 14x5 + 8x4 + 36x3 + 7x2 + 43x+ 38)t10 + (2x11 + 42x10 + 12x9 + 20x8 + 30x7 +

11x6 + 21x5 + 26x4 + 42x3 + 6x2 + 15x+ 36)t9 + (41x11 + 5x10 + 11x9 + 39x8 + 43x7 + 4x6 + 38x5 +

x4 + 5x3 + 25x2 + 27x+ 25)t8 + (12x11 + 15x10 + 46x9 + 29x8 + 4x7 + 8x6 + 32x5 + 21x4 + 14x3 +

26x2 + 24x+ 46)t7 + (42x11 + 7x10 + 27x9 + 2x8 + 12x7 + 41x6 + 20x5 + 11x4 + 16x3 + 16x2 + 26x+

39)t6 + (32x11 + 43x10 + x9 + 7x8 + 7x7 + 39x6 + 46x5 + 7x4 + 22x3 + 12x2 + 26x+ 23)t5 + (4x11 +

33x10 +26x9 +22x8 +32x7 +36x6 +15x5 +24x4 +11x3 +12x2 +8x+18)t4 +(7x11 +15x10 +30x9 +

42x8 + 38x7 + 27x6 + 21x5 + 31x4 + 5x3 + 33x2 + 44x+ 28)t3 + (30x11 + 29x10 + 8x9 + 19x8 + x7 +

36x6 + 39x5 + 28x4 + 8x3 + 37x2 + 10x+ 20)t2 + (3x11 + 11x10 + 7x9 + 30x8 + 45x7 + 33x6 + 22x5 +

27x4 +x3 +19x2 +6x+17)t+12x10 +43x9 +7x8 +45x7 +37x6 +36x5 +19x4 +15x3 +34x2 +13x+3.

For this reduced curve, it is possible to explicitly compute with Magma invariants such as Weier-

strass places, and automorphisms of the curve.

Non-trivial automorphisms could lead to subfields of the function field of the curve C of small index.

By the Riemann-Hurwitz genus formula such a subfield would have genus at most 6, so it could be

defined by a polynomial of significantly smaller degree. One could then again try to find rational

places, and check whether they extend to rational points on the curve C. This could be done quite

efficiently if the subfield were a small index rational field (e.g. of index 2 if C were hyperelliptic) or

a subfield of genus 1.

It however turns out that there are no non-trivial automorphisms over Fp. Under a few extra

conditions this leads to the conclusion that the original curve C does not possess any non-trivial

automorphisms either, and in particular is not hyperelliptic:

Proposition 5.4. The function field Q(t, x), with t and x fulfilling h(t, x) = 0 (h as in the appendix)

has no non-trivial automorphisms. In particular, Q(t, x) is not hyperelliptic.

Proof. Let p = 47. The mod-p reduced function field, arising from reduction of the coefficients of

h(t, x) mod p, still has genus 11. One therefore has good reduction at ν for some prolongation ν of

the p-adic valuation from Q to Q(t, x). By genus inequalities as in [20, Th. 3.1.], ν is the unique

extension with good reduction of the valuation µ on Q(t), where µ(p(t)q(t) ) is defined as the maximal

p-adic valuation of coefficients of p minus the maximal one of coefficients of q.

Denote reduced objects by a bar.

Assume that σ were a non-trivial automorphism of Q(t, x), and w.l.o.g. of prime order. By (e.g.)

[25, Theorem 6], the maximal possible prime order is 2g+1 = 23. Let E be the fixed field of σ, and

z ∈ E such that [E : Q(z)] is minimal. By Riemann-Hurwitz, combined with gonality arguments as

in Lemma 3.16, we can assume [Q(t, x) : Q(z)] ≤ 2 · (2g+ 1) = 46. As Q(t, x)|Q(t) and Q(t, x)|Q(x)

are both primitive extensions (of degree > 23), this means that Q(t, x) = Q(t, z) = Q(x, z).
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We can assume w.l.o.g. that the reduction z is again transcendental over its constant field (e.g. by

[13, p.645], where it is proven that good reduction of a function field over a constant field k maps

a d-dimensional k-module again onto a d-dimensional k-module).

As the field Fp(z) has index at most [Q(t, x) : Q(z)] ≤ 2 · (2g + 1) = 46 in Q(t, x), z is even w.l.o.g.

a primitive element for Q(t, x) over Q(t).

Again by genus inequalities, ν must also be the unique extension with good reduction of some

valuation on Q(z), and more precisely the unique one with a residue field of genus > 0. Therefore σ

fixes the valuation ring of ν (set-wise), and thus induces an automorphism σ on the reduced function

field Q(t, x), defined via a 7→ σ(a) for all a ∈ R. But by explicit computations with Magma, the

reduced function field has trivial automorphism group, so σ = id.

Let gt be the minimal polynomial of t over E := Fix(σ) ⊃ Q(z), then gt splits completely over

Q(t, x). Let gt be the mod-p reduction of gt (if necessary, after multiplying gt with powers of p).

Then gt(t, z) = 0 and gt splits over Q(t, x), whereas over Q(z), it has a factor of degree greater

than 1 (the minimal polynomial of t, which does not lie in Q(z)). But together with the fact

that Q(t, x)|Q(z) has trivial automorphism group, this enforces gt to be inseparable, which means

deg(gt) ≥ p. But on the other hand deg(gt) ≤ deg(gt) ≤ 2(2g + 1) < p, a contradiction.

Question: Does the function field Q(t, x), with h(t, x) = 0 as in the appendix, have a place of

degree 1?

This does not yet need to yield anM24-realization over Q(t) (only if that place lies over an unramified

place of the index-416 function field corresponding to the Hurwitz space cover). However, even a

ramified degree one place might be used to compute a smaller model for the curve, which could be

useful for the search for rational points on it.

As the action of the braids on the Nielsen class of length 416 does not seem to yield such a place,

we have also computed the ramification structure of the degree-24 and degree-32 extensions of the

function field of h(t, x) over Q(t) and Q(x) respectively.

For the degree-24 extension, we found the following branch cycle structure (which again does not

yield a place of degree one):

• 34 transpositions, yielding a degree-34 place of ramification index 2 over a degree-34 place of

Q(t).

• Two more involutions, of cycle structure (212) and (26.16) respectively.

• One element of order 4, with cycle structure (44.24).

By the Riemann-Hurwitz genus formula, there are no more ramified places.

The ramification structure was found in the following way: firstly, compute the discriminant of

h(t, x), viewed as a polynomial over Q(t). There is a very large factor in this discriminant, which

cannot actually lead to a ramified place, or one would obtain a contradiction to Riemann-Hurwitz.
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Furthermore, there is a factor of degree 34, with multiplicity one, which can at most lead to trans-

positions in the ramification structure.

The remaining factors are of degree one. Compute the monodromy via numerical approximations

to find the above cycle structure. The results can be double-checked by computing with Magma

the ramified places of low degree for the reduction modulo some primes.

The same can of course be done for the degree 416 equation from Section 5.1.7. Unfortunately

this defining equation of the Hurwitz curve does not seem to yield any obvious places of degree one

either.

There are, however, degree-one places over the quadratic number fields Q(
√

2) and Q(
√
−2) (rami-

fied with regard to the degree-416 cover C → P1). Therefore, over these fields, defining equations of

the Hurwitz curve of degree at most 11 must be possible. Such a low-degree parameterization might

ease the search for K-rational points over the respective number field K. In fact, for K = Q(
√

2),

such a parameterization could be especially interesting, as a “good” Q(
√

2)-rational point would

lead to the (to my knowledge) first M23-realization over a real quadratic number field. At least,

all the M23-realizations over quadratic number fields arising from the basic rigidity criteria or the

braid genus criteria cannot be defined over real quadratic fields (by the branch cycle argument or

the reality arguments from Chapter 4).



5.1.12 Appendix: A defining equation for the Hurwitz curve

The following is a defining polynomial for the reduced Hurwitz space of genus 11, corresponding to the M24-family considered

above (in the notation of model (5.1), we have t := α2, x := α3):

h(t, x) := 292 · 52 · 312 · t32

+ 287(10923791x2 + 19543496x+ 8110928)t31

+ 280(3701606885x4 + 12089444672x3 + 10054513600x2 − 1752333696x− 3896239360)t30

+ 277(33553243303x6 + 171351129026x5 + 251937188380x4 + 33571827552x3 − 151227237504x2 − 20274108288x+ 57668772096)t29

+ 271(1205889847973x8 + 9131043180696x7 + 20650683503688x6 + 7930709117360x5 − 22724641020512x4 − 17497305129984x3 + 6835786731520x2 +

1879746165760x− 4637627591680)t28

+267(5634163635340x10+62824782685155x9+205539057067054x8+121785620629056x7−460862137561872x6−645445594912288x5+20816825165760x4+

216596182198784x3 − 110175749152256x2 − 19966775617536x+ 64909362491392)t27

+258(542492237695045x12+7962845315979936x11+35061165420204864x10+25116450098084288x9−164611871849797120x8−326972643594982912x7−

20266207383489536x6 + 271266915079841792x5 + 47328376612468736x4 − 23846594032467968x3 + 89503540818345984x2 + 6490901121466368x −

19038643868663808)t26

+257(138959891913947x14+2265575781086347x13+11344526365867698x12+928488021108360x11−142407531614978460x10−332144630435747504x9+

2610425963273248x8 + 635738575285470464x7 + 344283134465236992x6 − 156195340550142464x5 + 135644672940223488x4 + 44323019483947008x3 −

183218957468401664x2 − 922512577101824x+ 11542884893917184)t25

+252(245793481057999x16+4102453575247108x15+14560601737380600x14−121415022333966976x13−1075453257939229192x12−2315306697746190960x11+

2187011126876104992x10+13236549070552954048x9+9998222582557045056x8−7989709825345036288x7−5060170852419068928x6+2470039106935445504x5−

7973773543535996928x4 − 3027254754591899648x3 + 3904885265785815040x2 − 438949535956467712x+ 33789088967491584)t24

+249(1694660567681x18−154053874639558x17−9094363278263824x16−125772919155425920x15−640195746251471120x14−133250392010383024x13+

10178069624166363904x12 + 32442765405925389152x11 + 17078459727774341120x10 − 64642224823920884608x9 − 77998503741008030720x8 +

8718004591215343616x7−8317149799218224128x6−35554919676146530304x5+42125567454425436160x4+19979211696116826112x3−16595073691498987520x2+

4622262416897212416x− 758706111388319744)t23

+ 244(85154700841x20 − 3135276002184x19 + 557221936886176x18 + 29706711215806464x17 + 716742522699574720x16 + 7885971436505552992x15 +

40545012650310439424x14 + 68214606892794984064x13 − 197810759029367285568x12 − 963551129722082838784x11 − 1037528470868055764992x10 +

631783882570743896576x9 + 1323031306895082974208x8 − 45399736584938182656x7 + 391917859231685603328x6 + 948945950553265397760x5 −

559536357293840232448x4 − 290918257263042232320x3 + 272413320108251545600x2 − 100855272314757971968x+ 12778325275005943808)t22

62



+243(85602721x22−16416761648x21+65418801972x20−40012934144844x19−4834272221296208x18−138867956664857184x17−2235246181553464496x16−

20332359916825924112x15 − 99547245674403279184x14 − 217631410028466277504x13 + 60510045637552644160x12 + 1175373537188460346112x11 +

1737894309313101495296x10 + 115487253588551977984x9 − 995492805245364486144x8 + 64528245038200278016x7 − 312546420559972697088x6 −

862239121627541667840x5+447656793131534557184x4+202104454044130869248x3−265276776494714519552x2+86918842973990420480x−7685172181445115904)t21

+240(390625x24+13011000x23−1263835698x22−122645603716x21+10023768550248x20+1441027888009784x19+69670385139121704x18+1470482368765953296x17+

18805232042083273568x16 +148917373507289042432x15 +692039815721576478976x14 +1665454013102260576576x13 +1033223324543282524032x12−

3810476688892121736448x11−7906132777539704465664x10−3438073569152153296384x9 +1879325232776781753600x8 +334569856566460602368x7 +

1306384946650238164992x6 + 2279450273434835144704x5 − 1650592004940150341632x4 − 676851933236811268096x3 + 839111742006474571776x2 −

197467656677148327936x+ 11182641401814319104)t20

− 239(2640625x24 − 73341090x23 − 12463468049x22 − 742000298620x21 + 75006505554584x20 + 4906706913506836x19 + 151509217243760004x18 +

2558140926548730552x17 + 27883998293079839272x16 + 199590392806375040224x15 + 890573928209509452768x14 + 2257342508097252798592x13 +

2446187344024426252416x12−1481163741878987908864x11−6403131951376971530816x10−5119868986228426048896x9−711790477224378763008x8+

574848795396048693248x7 + 1865526439023164171264x6 + 1697115062440171907072x5 − 1240133559053551656960x4 − 639502015295403032576x3 +

478083122482392563712x2 − 70415307438464434176x+ 1869954685459234816)t19

+236(33236875x24−2566810916x23−155242978300x22−1443354532432x21+894154750710380x20+39331400693165288x19+905591088339530840x18+

12650563604443861760x17 +120527270495813375856x16 +795140475299453472000x15 +3443534691176960398816x14 +9065186351958289163072x13 +

12541333522964254529888x12+3741851492978183390848x11−13056902141979333330432x10−18305154225411979740672x9−10229950911150169373184x8−

986439119118034362880x7 + 6691739518306303953920x6 + 5773743636262571264000x5 − 2153695574624478844928x4 − 1835122146777379307520x3 +

704264072122092617728x2 − 45570583627857920000x− 1315015274213146624)t18

−235(64778025x24−7787518866x23−217872110036x22+11055224092184x21+1599860723351256x20+53605095010422116x19+994211035094315380x18+

11674350808622907152x17 + 97311838740864713920x16 + 593032925013962296384x15 + 2502575927176876293760x14 + 6795796274379747754272x13 +

10914618694159547252384x12+8342388252487979988160x11−1576392565770023453440x10−9786159979165555473152x9−10164687614660080627712x8−

4150937661583757763840x7 + 2924842495911724918016x6 + 3744466361936529485824x5 − 157317048561785692160x4 − 828431928912388374528x3 +

119722696193316454400x2 + 9494422521307201536x− 1103784075663245312)t17

+232(350948181x24−56483517584x23−428057570920x22+124489450303536x21+7963738722850456x20+213582247362990168x19+3340238876216028712x18+

33343870263525543472x17+239820294881657258864x16+1328374307908308453088x15+5423184409774102841760x14+15065941217860806994880x13+

26854002114307424673984x12+28755459072702597927040x11+13958400315793918730880x10−8241588269148969182464x9−21291594558918723737600x8−

15200662338293600648192x7 + 180975223742960488448x6 + 5720846854687766891520x5 + 1404923850788081188864x4 − 728037312074027630592x3 −

97471016815378759680x2 + 30048089287331938304x− 1112498111654592512)t16

−233(87740981x24−17780099891x23+150742161950x22+46287663752628x21+1858384322402524x20+40515970650543847x19+550289682841340345x18+
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4743678999046086910x17 + 28879966442669140102x16 + 139840175367996948852x15 + 537515218811376006284x14 + 1500991030828113912384x13 +

2878111404031698842160x12+3745964272266063499344x11+3146339566553635659568x10+1019988067402782165600x9−1238715886446794253728x8−

1681006443545894411008x7 − 584838514144663057280x6 + 176022753150619114240x5 + 178356587327129780992x4 + 19943776125982998528x3 −

20452437946544090112x2 + 1898847440752984064x− 29225420503941120)t15

+229(536686266x24−133008488580x23+3068709021388x22+381992904537640x21+10901231741400555x20+192153409765917900x19+2306253071936799820x18+

17619238954534053040x17 + 90188661812477277832x16 + 358928605033175760720x15 + 1212572503610224717664x14 + 3243369491083447704512x13 +

6415436188235129999968x12+9517999534882670902976x11+10582119721307598642496x10+7495952344907486498048x9+1466941629273146328704x8−

2241360311249662103552x7 − 2015620645871908623104x6 − 754739013322857506304x5 + 157444621241362799744x4 + 212422644026361991168x3 −

42936437091694485504x2 + 1619788383001903104x+ 4846054525304832)t14

−228(319935666x24−95529608882x23+3643023064571x22+299018700210420x21+6486848761951792x20+90506817328616638x19+961350062249575482x18+

6743129508710451680x17 + 29906813633388511192x16 + 93061085282481007272x15 + 239282954308412296312x14 + 519677908940814629216x13 +

908863001294637074880x12+1413900250435871072544x11+2040120612271709519840x10+2248592993176674542208x9+1572547394528522908928x8+

574711016320838862848x7 − 109392138737904405120x6 − 361694339672036368640x5 − 105389759046904012032x4 + 62812141844545787904x3 −

4784990223045167104x2 − 31102229979365376x+ 2624216744263680)t13

+225(600191029x24−213935307164x23+11925864469982x22+741458932646228x21+12859484945805948x20+137637740317719236x19+1259172125677806908x18+

8381163693155075640x17 + 34585766777569943272x16 + 88886017173752300320x15 + 153088336044124940256x14 + 140440838916122321376x13 −

130917941170953150272x12 − 558344666885419364800x11 − 524542652774214398272x10 + 243856691015409629312x9 + 1147623290793402367616x8 +

1341688391862193138432x7 + 689656593980579665920x6 − 141897170888275433472x5 − 190516395083698955776x4 + 31027373584971825152x3 +

288249674326867968x2 − 73590853265915904x− 194319880519680)t12

−224(221661095x24−93388882952x23+7387036514263x22+372156970890532x21+5422312545178808x20+43409909271157682x19+315493355867231210x18+

2006171865388099460x17 + 8290433291813489708x16 + 20657137855602261920x15 + 32223263820217841536x14 + 14348897545885821184x13 −

106699434585742965568x12 − 364423882657075639712x11 − 613423498154089390784x10 − 595817866033709762176x9 − 238511025718474291264x8 +

132612941180851235200x7 + 221061327418708859136x6 + 55802434391720037376x5 − 29684867097112563712x4 − 189181552277180416x3 +

220458553100144640x2 + 1122668689489920x− 102848556957696)t11

+221(256463057x24−125154112872x23+14345112078528x22+610841542626760x21+7891836091516990x20+48092048800937276x19+236220827200377188x18+

1330149352455454240x17 + 5652824435408570440x16 + 14680806911468649632x15 + 28447726191294230640x14 + 43893376416033183264x13 +

19545434480196939280x12 − 116944893610956920704x11 − 377760034610187351616x10 − 590644359826593484800x9 − 500868765272529055744x8 −

197834429993725577216x7 + 54606829060226213888x6 + 66578647198835236864x5 − 1405201746915778560x4 − 1451713097784950784x3 −

8193120683360256x2 + 2867707724562432x+ 11842938077184)t10

−220(57549063x24−30854306452x23+5522323142920x22+204826241910884x21+2480342055492452x20+12676240751261430x19+35767453029433118x18+
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122138499083279336x17+478649871027866000x16+937601042860757360x15+1610477564689290256x14+6178681093255675824x13+18263071553776031888x12+

33260201429045651200x11+28730546494444734240x10−9688342363658054016x9−45665643436866023680x8−49976524190900693504x7−19127193842014891008x6+

3193091804720496640x5 + 1406967999372509184x4 − 1896758613540864x3 − 8534272056459264x2 − 77883412709376x+ 1196304629760)t9

+217(39746997x24−20032525076x23+6725567618648x22+222118418743512x21+2646883632295268x20+13043226410095300x19+26512586367965756x18+

16520004267636264x17−44841060516993872x16−820805198155063216x15−3718033487204836976x14−7616893434114977632x13−6503652618305866144x12+

10359063738351611264x11+39410219306823067008x10+51609773234069201920x9+34953821792507598336x8+2307896335030136832x7−10486466441381867520x6−

3147094270547214336x5 + 112692497823940608x4 + 55828017883054080x3 + 832632051400704x2 − 33379383508992x− 213175369728)t8

−217x(2649081x23−636914861x22 + 797960876160x21 + 23795430451484x20 + 289272778314556x19 + 1498582705936325x18 + 3430329276204396x17 +

3005191033525228x16+981411156397930x15−49883327086060540x14−335065384539678100x13−1073517570761824272x12−2311311451977704240x11−

3109338104777212640x10−1960946794196734912x9+596048859547119360x8+2558327245285700608x7+2018310883047692288x6+420991642461542400x5−

86949486896726016x4 − 27001057300217856x3 − 550140837396480x2 + 49821047488512x+ 722655903744)t7

+212x2(4432180x22+2227474888x21+2296058436392x20+62047172057136x19+791011970150793x18+4335223164161616x17+11379690555206440x16+

17293608199083872x15+58683493141986608x14+190493083285750464x13+290408928171156096x12−22134424438257024x11−1934833655039632192x10−

6120623692323426304x9−9881352740945589248x8−9715877747496558592x7−4695922162253725696x6+190864348757950464x5+993746767089991680x4+

247280787975831552x3 + 5110510803812352x2 − 1313573442158592x− 32977493950464)t6

− 211x3(363092x21 + 681754500x20 + 299393259251x19 + 7242102205032x18 + 100944513868020x17 + 565796952291496x16 + 1403057162825420x15 +

1036869139107584x14 +3122785240383424x13 +25303990162116480x12 +94028862348131808x11 +265751007958806784x10 +521967789311095680x9 +

618601559501476352x8+331287695771024384x7−246666372542144512x6−560678286893506560x5−352320289596997632x4−77464247028645888x3+

397293149749248x2 + 1291929310199808x+ 50417742643200)t5

+ 28x4(93557x20 + 317054368x19 + 106030579846x18 + 2195575303292x17 + 37719911452384x16 + 213323647652320x15 + 400481202073152x14 −

1050198244904960x13 − 6087078212031984x12 − 13579764419009536x11 − 23923684261583616x10 − 19231175116546560x9 + 57866089753520896x8 +

234025836660080640x7 + 420644080487800832x6 + 424181041879891968x5 + 219089243134623744x4 + 37945221551751168x3 − 8290993950425088x2 −

3071214780678144x− 174946557100032)t4

−27x5(4617x19+16405810x18+5796064747x17+87896185332x16+2724573849752x15+16944587490264x14+30521069525016x13−131460699245696x12−

786495449933952x11−1989847296439808x10−4502103084879616x9−10984105100453888x8−22384423401252864x7−32036360292403200x6−27552284287690752x5−

9659525380964352x4 + 3330121785311232x3 + 3903894735224832x2 + 1063202983575552x+ 83861910061056)t3

+ 24x6(683x18 + 912180x17 + 672117948x16 + 642293312x15 + 658505384464x14 + 4896851991616x13 + 11973155071872x12 − 21060410873856x11 −

174535266827008x10−270224031115264x9+350886477678592x8+1990456865734656x7+3197136619524096x6+1521845817753600x5−2359681776156672x4−

4200506540163072x3 − 2697681750589440x2 − 776054470606848x− 79355701886976)t2

− 23x7(x + 2)2(17x15 − 19626x14 + 6064864x13 − 678223416x12 + 31229956768x11 + 107783297440x10 − 146476766784x9 − 3079271986560x8 −
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11175244911360x7 − 20126745257472x6 − 14836838418432x5 + 14307717076992x4 + 41984344424448x3 + 36894740668416x2 + 14132960870400x +

1886544691200)t

+ x8(x+ 2)2(x2 − 4x− 4)(x6 − 500x5 + 61716x4 + 274464x3 + 731376x2 + 907200x+ 388800)2
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5.2 A family of M24-covers ramified over five points

Another interesting family with regard to M24 and M23 is the family of 5-pointed genus zero

covers with monodromy (28.18, 28.18, 28.18, 28.18, 44.22.14). Here the reduced Hurwitz space is 2-

dimensional, i.e. a surface. The length of the (unique) M24-braid orbit is l = 72000. A rational

point on this Hurwitz space would not necessarily lead to an M23-realization. The problem lies

again in the question whether or not the M23-fixed field of a coresponding cover is a rational func-

tion field. However, the possibility of the M23-fixed field being a rational function field at least

cannot be excluded by reality considerations, cf. Prop. 4.6.

We have tried an approach similar to the one treated above, to obtain covers with this mon-

odromy. Complex approximations of such covers have been obtained, and are given in the file

“M24 (2,2,2,2,4) approx.txt”.

5.2.1 Related four point covers

Various Hurwitz curves for 4-tuples lie on the boundary of the 2-dimensional reduced Hurwitz space.

They can be used as starting points for the computations.

1. Granboulan’s cover with monodromy (2A, 2A, 2A, 12B), cf. [43].

In [19], L. Granboulan gave a polynomial f(X, t) with groupM24 and monodromy (2A, 2A, 2A, 12B).

In [43], P. Müller computed a defining equation for the whole family of M24-polynomials with

this monodromy.

We used a polynomial in this family as a starting point to obtain complex approximations of

a polynomial f(X)− tg(X) (f, g ∈ C[X]) with monodromy (2A, 2A, 2A, 2A, 4B).

In the file “M24 (2,2,2,2,4) approx.txt” we give such an approximation, for a fixed set of

branch points. Again, via numerical braid group action, it is possible to obtain further poly-

nomials, with the same ramification locus, but different monodromy. It seems out of reach,

however, to obtain a complete fiber as in the previous section, as the corresponding inner

Nielsen class is of length 72000, with transitive braid group action.

2. The family with monodromy (2A, 2A, 2A, 23A).

An advantage of taking this family as a starting point for the deformation process is that, due

to the 23-cycle in the monodromy of the degenerate family, the approach of Chapter 3.3.1 will

automatically lead to M24-covers in the (2A, 2A, 2A, 2A, 4B)-family (and not to A24 ones), as

can be seen from Lemma 3.15. One can therefore develop Laurent series modulo some primes

without worrying about monodromy.

Another advantage is that the corresponding Nielsen class is relatively small (of length 46)

and has a Hurwitz curve of genus zero, therefore it is not difficult to compute members of the
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family defined over small number fields (and over suitable finite fields).

We used an approach starting with two covers ramified over three points, related to each other

as described in Section 3.3.1, with monodromy of type (62.32.22.12, 2A, 23A) and (2A, 2A, 62.32.22.12)

respectively. The first class tuple gives rise to an M24-cover, with normalized structure con-

stant l(C) = 5. Together with the fact that the conjugacy class of a 23-cycle in M24 is not

rational (splitting into two classes, as the 23-cycle is not conjugate to its inverse), this leads

to the conjecture that this cover will be defined over a degree-10 number field. This is indeed

the case. We obtained an explicit polynomial by first finding a solution modulo 13, and then

applying p-adic lifting methods.

From this degenerate cover, we first obtain a non-degenerate one, as in the previous sec-

tion. After this, it is not difficult to find an Fp-point on the Hurwitz space (for a suitable

prime p), i.e. a non-degenerate cover over Fp. As before, this can either be done by com-

puting a full fiber of the Hurwitz curve cover, or somewhat quicker by specializing a suitable

coefficient (of low index in the function field of the Hurwitz curve) to a rational value and

retrieving the minimal polynomials for the remaining coefficients.

Next, beginning from this non-degenerate cover, a Laurent series approach over Fp yields a

defining equation for the Hurwitz curve cover of degree 46; as this curve is rational, it can be

parameterized by an equation of the form f(x)− tg(x) = 0, with x a parameter of the genus

zero function field of the Hurwitz curve (modulo p it is not difficult to explicitly find such a

parameter, once a defining equation for the function field has been found).

Finally, lift this genus zero equation to obtain a rational parameterization F (t, x) = 0 of the

Hurwitz curve of degree 46, defined over the field Q(
√
−23). In our case, this parameterization

was of the following form:

Set F (t, x) := f3 · g2 − t · h2, where

f := (x − 65/2) · (x10 + 1/10 · (11 · α − 1677) · x9 + 1/40 · (−6457 · α + 495835) · x8 + 1/20 · (214489 · α −

10537579) · x7 + 1/160 · (−68788225 · α + 2243804947) · x6 + 1/160 · (1858781485 · α − 37799897239) · x5 +

1/14720 · (−3242903406369 ·α+ 34625456045619) ·x4 + 1/3680 · (10677543333853 ·α− 36249941981191) ·x3 +

1/7360 · (−184255352619393 ·α−316677905680077) ·x2 + 1/1840 · (230139068653175 ·α+ 1173546750105867) ·

x+ 1/14720 · (−3960449698542073 · α− 28493939813841093)),

g := x4 + 1/20 · (−33 · α − 829) · x3 + 1/120 · (10351 · α + 30595) · x2 + 1/240 · (−362329 · α + 1570139) ·

x+ 1/240 · (1021493 · α− 20204719),

h := x23 − 368 · x22 + 1/40 · (2783 · α + 2537843) · x21 + 1/40 · (−965701 · α − 271812321) · x20 + 1/4000 ·

(15671292857 · α+ 2020362477573) · x19 + 1/50000 · (−19795532107989 · α− 1377409015370993) · x18
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+ 1/400000 · (11204269027871271 · α+ 454448095942490331) · x17

+ 1/400000 · (−592437399414311451 · α− 14397720097497647295) · x16

+ 1/1600000 · (97837990987163242299 · α+ 1415255334721558518111) · x15

+ 1/400000 · (−815734115126158870521 · α− 6867881768734494803141) · x14

+ 1/6400000 · (361877063741947808286837 · α+ 1798798309667146715584657) · x13

+ 1/6400000 · (−8538185677446010504516411 · α− 29279062835848473101796703) · x12

+ 1/25600000 · (695044942625387216285633155 · α+ 2179471785855115590210329863) · x11

+ 1/12800000 · (−6090979631961094970190235837 · α− 20260543672454024695342581049) · x10

+ 1/102400000 · (722106431429794734025918355349 · α+ 2352973703671853490330898366769) · x9

+ 1/102400000 · (−8750514926878265686208186042293 · α− 20257263117415967085377068857041) · x8

+ 1/51200000 · (41295071625946683693939673603897 · α− 9050063408389035005656984336123) · x7

+ 1/51200000 · (−280987462543326507084263451781741 · α+ 1730568494338410015309018720882391) · x6

+ 1/25600000 · (580389448132173479922433354661673 · α− 13979177893064727529807093552339403) · x5

+ 1/25600000 · (−500979238091387824292778817586133 · α+ 129370771879629895417414557349902223) · x4

+1/51200000 ·(−15427666566355550654521821097880471 ·α−1543596749528918677305588705549819275) ·x3

+ 1/51200000 · (52575315136066966291962456520871113 · α+ 5853503694838041686667354808291445589) · x2

+1/102400000 ·(262126143255071372718149506752914663 ·α−25576735868747362573628621697830358885) ·x

+1/102400000·(−1522336941689901134603506100304112791·α+24262727858426297943210181228224198005).

Here α :=
√
−23.

Note that in spite of the Hurwitz curve having genus zero, this cover cannot be defined

over the rationals because the class 23A is not rational in M24. In fact it cannot even be

defined over a real field, because the 23-cycle would then have to be conjugate to its inverse.

For a suitable Q(α)-rational point on the Hurwitz space, we can find an explicit polynomial

for a (2A, 2A, 2A, 23A)-cover defined over Q(α). Here is one such polynomial:

f(t, x) := (x8+4x7+(−α+7)x6+(6α+30)x5+(26α+82)x4+(16α+272)x3+(44α+252)x2+(80α−240)x+40α+8)2

·(x8−8x7+(2α+34)x6+ 1
2

(−3α−135)x5−(34α+74)x4+(238α+470)x3−(736α+1248)x2+(1082α+1074)x−(920α+184))−t·x.

Once we have found a cover of type (2A, 2A, 2A, 23A), we once again take the “opposite”

degenerate cover into consideration, to proceed to the family of type (2A, 2A, 2A, 2A, 4B).

This has to be a cover ramified over three points, with cycle structure (2A, 4B, 23B), acting

intransitively. The group generated by such a tuple turns out to be M23. In fact such a cover

was given by Elkies in [14].

In this way, we obtain formal Laurent series approximations for the 5-point family.
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5.2.2 Rational translates of function fields

The M24-family with four branch points and ramification structure (2A, 2A, 2B, 8) is also closely

related to this five-point family, although in a different way than the above families. It is not a

degeneration obtained from the five-point family by glueing two branch points together. Instead

representatives of the five-point family arise naturally from the four-point one through rational

translates of the base field, more precisely via quadratic extensions.

Namely, assume that C(x)|C(t) is an extension of genus zero function fields corresponding to a

degree-24 cover with M24-monodromy of type (2A, 2A, 2B, 8).

Assume that the inertia group generator over the infinite place in t is the element of order 8 and

the one over t 7→ 1 is the involution of class 2B (as in the model in Chapter 5.1).

Now define an extension C(s) of C(t) by s2 + 1 = t.

Then ramification in C(s)|C(t) occurs only over t 7→ 1 and t 7→ ∞. Now a version of Abhyankar’s

Lemma (cf. [53, Th. 3.9.1]) clarifies the ramification in C(s, x)|C(s) and C(s, x)|C(x):

Lemma 5.5 (Abhyankar’s Lemma). Let F ′|F be a finite extension of function fields in character-

istic zero, such that F ′ = F1F2 with two intermediate fields F1 and F2 of F ′|F . Let P be a place of

F , P ′ an extension of P to F ′, and Pi := P ′ ∩ Fi (i = 1, 2).

Then the ramification index of P ′ over P is equal to the least common multiple of the ramification

indices of Pi over P (i = 1, 2).

Application to the fields F ′ = C(s, x) and F = C(t) (with intermediate fields F1 = C(s) and

F2 = C(x)) yields that exactly two places of C(x) ramify in C(s, x), namely the only places of

ramification index 1 over the infinite place in t. In particular, C(s, x) is of genus zero by the

Riemann-Hurwitz genus formula, and thus a rational function field, i.e. C(s, x) = C(y) for some

y ∈ C(s, x).

On the other hand, ramification in the degree-24 extension C(y)|C(s) occurs over exactly five places,

namely s 7→ ∞ and the (total of four) places extending the two places of C(t) with inertia group

generator in class 2A. As these places are unramified in C(s)|C(t), the inertia group generators in

C(y)|C(s) are still in class 2A, in all four cases. Similarly, the inertia group generator over s 7→ ∞
is in class 4B (cycle structure (44.22.14)) of M24.

Therefore, C(y)|C(s) is a genus zero function field, with branch cycles in classes (2A, 2A, 2A, 2A, 4B).1

As the above is possible for arbitrary position of the branch points of a (2A, 2A, 2B, 8)-cover,

this means that the Hurwitz space for the (2A, 2A, 2A, 2A, 4B)-5-tuples contains a curve of genus

11 (the genus of the symmetrized reduced Hurwitz space computed in Chapter 5.1).

This can also be verified group-theoretically with the methods developed by Dettweiler in [12].

Namely, the group generated by the braids β1β4 and β2β3β2 acts intransitively on the straight

1Note especially that the Galois group of E|C(s), with E the Galois closure of C(y), must still be M24!
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Nielsen class of length 72000 of generating 5-tuples of the form (2A, 2A, 4B, 2A, 2A), with an orbit

of length 416.

This, together with the results about the four-point family already computed yields results about

existence of points in relatively small number fields for the five-point family, a result that might

otherwise be surprising, considering the huge length of the Nielsen class.

In particular, as we have already computed polynomials over some finite fields with (2A, 2A, 2B, 8)-

ramification, it is now easy to obtain from those polynomials with (2A, 2A, 2A, 2A, 4B)-ramification.

In the appendix we give such a polynomial for the field F17.

In order to look for algebraic dependencies, this polynomial can be used as a starting point. As

the reduced Hurwitz space is a surface here, upon fixing appropriate places via Moebius transfor-

mations as usual, one can expect to find an algebraic dependency between three given coefficients

of the model. However, the degree of such an equation might be huge, and in fact I have not been

able to find one so far. One possible approach is to fix one more coefficient (e.g. one of the triple

that one wants to use to find an algebraic dependency) to a given value c, and then search for a

dependency between the remaining two coefficients (this corresponds to trying to compute a curve

on the two-dimensional Hurwitz space, instead of the whole surface). Once this has been successful,

one may repeat it for many values of c and then interpolate to retrieve an equation for the whole

surface.

I have tried this for equations over F17 up to degree 120 in two variables (cross-ratios of coefficients

of the model), but it seems that these degrees still do not suffice.

5.2.3 From 5 points back to 4 points

The importance of the (2A, 2A, 2A, 2A, 4B)-family lies not only in the possibility of finding rational

points on the corresponding (2-dimensional) reduced Hurwitz space which might lead to M24-

realizations with these branch cycles, but also in the possibility to gain several 4-pointed families

(with group M24 or M23) by inverting the deformation process used so far, i.e. letting two branch

points converge to each other and obtain a cover with monodromy (σ1σ2, σ3, σ4, σ5) from one with

monodromy (σ1, ..., σ5). By purely group theoretical methods, one confirms that the following class

tuples can be obtained in this way:

(2A, 2A, 3B, 4B), (2A, 2A, 4A, 4B), (2A, 2A, 4B, 5A), (2A, 2A, 4B, 6A) (all of these with group M24)

and (2A, 2A, 4A, 4A) (with group M23).

(All these tuples consist of rational conjugacy classes, and are genus zero tuples that allow a

rational function field realization over a real field by reality arguments as in Chapter 4, i.e. are

potential candidates for a regular M23-realization over Q.)
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Complex approximations for a cover in each of these 4-point families are given in five separate

plain-text files.

We obtained these by starting with the cover in the file “M24 (2,2,2,2,4) approx.txt”, applying the

braid group action (with as few braiding turns as possible) to obtain a cover with monodromy

(σ1, ..., σ5), such that (σ1σ2, σ3, σ4, σ5) is the desired 4-point monodromy, and then letting the first

and second branch point converge towards each other.

Even though for all these families, the braid orbit length as well as the genus of the Hurwitz

curve are larger than for the one computed in Chapter 5.1, the methods exhibited there may be

used to proceed from complex approximations to algebraic equations for these families as well, and

then try to find rational points.

5.3 A family of covers with Galois group M23

Here we examine a family of covers with Galois group G := M23, and ramification of type

(2A, 2A, 3A, 5A) (there is a unique class of elements of order k in M23 for k ∈ {2, 3, 5}).

The Nielsen class SNiin(C) := {(σ1, ..., σ4) ∈ G4 | σ1, σ2 ∈ 2A, σ3 ∈ 3A, σ4 ∈ 5A, σ1 · · ·σ4 =

1, 〈σ1, ..., σ4〉 = G}/Inn(G) is of length 980 (the shortest Nielsen class amongst all genus zero

4-tuples of rational classes in M23), and becomes a single orbit under braid group action, with

C2-symmetrized braid orbit genus g = 43.

The aim of this chapter is to explicitly compute a defining equation for the Hurwitz curve of genus 43.

We start with a degenerate cover with inertia group generators of orders 2, 15 and 5, with the

generated group still the full group M23. Such a cover can be found by exhaustive search modulo a

prime (with help of the Dedekind criterion, in order to recheck one has indeed an M23-polynomial

and not one for A23).

Here is an equation for this three-point cover, reduced modulo p = 17:

f̂(t, x) := (x4 + 10x3 + 6x2 + 9x+ 10)5 · (x3 + 14x2 + 12x+ 4)− t · x5 · (x− 1)3.

Next, we lift it to get a cover over a certain number field. In this case, the number field has degree

10 over Q, which is to be expected as the (2, 15, 5)-tuples generating M23 have normalized structure

constant 5 and in addition the classes of elements of order 15 in M23 are not rational; more precisely

those elements split into two classes.

With the above notation, this degenerate cover has monodromy (σ1, σ2σ3, σ4) for a suitable 4-

tuple in the Nielsen class SNi(C).
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Now, looking again at the “opposite” degenerate cover, with monodromy (σ2, σ3, (σ2σ3)−1) we

obtain an intransitive group with orbits of length 3, 5 and 15 (the cycle lengths of the conjugacy

class 15A/B). The images of 〈σ2, σ3〉 in the actions on the respective orbits are C3, A5 and and

C3 × A5 in an imprimitive action on 5 blocks of length 3. Covers with monodromy corresponding

to each orbit can therefore easily be computed, as in particular a function for the latter orbit can

be composed of rational functions of degrees 5 and 3.

Furthermore, the ramification index in the Hurwitz space at the point corresponding to the 3-

point ramified cover with monodromy (σ1, σ2σ3, σ4) computed above is e = 5.

Therefore, as before, parameter transformations and computation of the component covers corre-

sponding to the three cycles of σ2σ3 enable one to obtain a cover ramified over four points via

Newton approximation. Once such a cover is approximated with sufficient precision (ramified in

t over 0, µ5, 1 and ∞, with some small complex number µ, where C(x)|C(t) is the correspond-

ing function field extension), the ramifiation locus can be slowly moved, to eventually satisfy the

following conditions:

• The infinite place in t is ramified with inertia group generator of order 5.

• The inertia group generators of order 2 correspond to (t−
√
a) · (t+

√
a) = t2 − a = 0, with

some a ∈ Q.

• One more place t 7→ b, with fixed b ∈ Q is ramified with inertia group generator of order 3.

We did this for a = 1
4 and b = − 1

4 , i.e. branch point set ({− 1
2 ,

1
2},−

1
4 ,∞).

Next, via braid group action, we computed complex approximations for all 980 equivalence classes

of covers with these ramification data.

These then form a complete fiber of the cover f : C → P1C, with C the reduced Hurwitz curve.

More precisely, if F |Q(a) is the corresponding function field extension of this cover (note that it is

defined over Q!), we obtain the complete fiber f−1( 1
4 ).

The complete fiber is given in the file “m23 (2,2,3,5) approx.txt”. Again one can verify cer-

tain invariants that already followed from theoretical criteria. As an example, the monodromy

image of the braid group (isomorphic to A980) contains an element representing complex conjuga-

tion on the equivalence classes of covers with our fixed choice of branch points. This element, in

its action on the 980 elements of the straight Nielsen class, has exactly 26 fixed points, and indeed

there are exactly 26 real points in our fiber.

With a full fiber computed, one can now proceed as in Chapter 5.1 to find an Fp-point for some

p ∈ P. We did this for p = 19 to obtain the polynomial f(t,X) = X3 · (X5 +X4 −X3 −X2 + 7)3 ·
(X5 + 6X4 +X3 + 4X2 + 12X + 1)− t · (X3 + 2X2 + 13X + 5)5 · (X3 +X2 + 2X + 6) with Galois

group M23 over F19(t), cf. the table in Appendix A.



CHAPTER 5. HURWITZ SPACES FOR THE LARGE MATHIEU GROUPS 74

Now again, lifting this Fp-point to many different Qp-points enables one to find a polynomial

equation defining the function field of the Hurwitz curve. We found a polynomial of degrees 97 and

98 in two variables, vanishing for two coefficients α and β of the following model for the universal

family:

t− 1

4
= C · f1(X)3 · f2(X)

g1(X)5 · g2(X)
,

t− 1

2
− λ = C · f3(X)2 · f4(X)

g1(X)5 · g2(X)
,

t− 1

2
+ λ = C · f5(X)2 · f6(X)

g1(X)5 · g2(X)
. (5.2)

Here the polynomials f1, ..., f6 are monic of degrees 6, 5, 8, 7, 8 and 7 respectively, and g1, g2 are both

monic of degree 3 (which is justified by the fact that one of the four places (over C) of ramification

index 5 can without restriction be mapped to infinity because the corresponding cycle is an isolated

orbit under the action of the decomposition group).

The coefficients of f1, f2, g1 and g2, as well as the leading coefficient C can be assumed to lie in a

degree 980 extension of Q(λ2) (and the ones of f3, ..., f6 in a further degree-2 extension).

Furthermore, in our computations, we fixed the coefficient of g1 at X2 to 1
3 and the one of g2 at

X2 to − 1
2 .

Then, denoting by α the coefficient of f2 at X4 and by β the one of f1 at X5, we found the afore-

mentioned algebraic dependency over Q, of relative degrees 97 resp. 98.

This polynomial, defining the Hurwitz curve of genus 43, is given in the file

“(2,2,3,5) hurwitzcurve parametrization.txt”.

To find the p-adic dependency and retrieve the corresponding rational numbers, we developed series

with a precision p100000.

Verification of the genus of this curve is more difficult than in the previous section, because of

the high degrees, which even make computations modulo some p ∈ P very difficult. We therefore

used numerical methods to confirm (heuristically) that this curve actually has genus 43.

Proposition 5.6.

The polynomial h(t, x) given in the file “(2,2,3,5) hurwitzcurve parametrization.txt” defines

an absolutely irreducible curve of genus 43 over Q.

Proof. Let Q(t, x)|Q(t) be the extension of degree 98 given by the equation h(t, x) = 0.

The irreducibility is obvious, and indeed the Dedekind reduction criterion easily yields that

Gal(Q(t, x)|Q(t)) ∼= S98.

The absolute irreducibility now follows e.g. from the fact that the Newton polytope of this polyno-

mial has vertices (0, 0), (97, 0), (96, 2), (0, 98); and as the greatest common divisor of these coordi-

nates is 1, [6, Lemma 1.3.] yields absolute irreducibility.
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(Alternatively, the existence of simple rational points, as given in the next proposition, also yields

absolute irreducibility immediately.)

By numerical methods, one verifies that ramification occurs only above the following places of Q(t):

• One place of degree 263, with all inertia group generators acting as transpositions in S98.

• One degree two place (namely corresponding to the polynomial t2−145/9 · t+12850/81) with

a transposition as inertia group generator.

• Two degree one places (namely t 7→ 35/9 and t 7→ 295/288) with transpositions as inertia

group generators.

• One degree one place (namely the infinite place of Q(t)) with inertia group generator of cycle

type (42.32.23.178).

By Riemann-Hurwitz, this yields genus 43 for the function field Q(t, x).

Looking for rational points on this curve, one indeed finds several with “small” coordinate values

(in terms of height), and there are even non-singular points. Magma computation for all rational

values with numerator and denominator of absolute value at most 10000 yields:

Proposition 5.7. Let t0, x0 ∈ Q such that either t0 or x0 has numerator and denominator of

absolute value at most 10000. Then exactly the following values for (t0, x0) annihilate the polynomial

h given in the file “(2,2,3,5) hurwitzcurve parametrization.txt”:

(
31

18
, 0), (

5

9
,

2

3
), (

35

9
,

2

3
), (

410

9
,

2

3
), (

295

288
,−11

96
)

Here the points ( 31
18 , 0), ( 5

9 ,
2
3 ) and (410

9 , 2
3 ) are non-singular points on the curve.

However, this does not guarantee an M23-realization over Q, as the actual question is whether these

correspond to unramified points on the original Hurwitz curve cover (980-fold covering of P1C). We

found it too hard to explicitly compute a polynomial describing the degree-980 covering, although

in theory this could be done by computing many fibers and then interpolating, as in Chapter 5.1

(this polynomial would have to be of degree 980 in one variable, and possibly degree close to 100 in

the other one). There are several ways to check whether the non-singular points actually correspond

to covers with 4 branch points.

Firstly, for the mod-p reduction of the family, we managed to express the parameter a, as well as

all the coefficients of the polynomials f1, f2, g1 and g2 in model (5.2), as a polynomial in the two

coefficients α and β (which should of course be possible if these two actually generate the whole

function field of the Hurwitz curve). Plugging in the values of the Q-rational points, one can check

whether the value of a leads to a degenerate or a non-degenerate cover modulo p. In our cases, all
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points lead to degenerate cases2.

In addition, one can try to find the points on the Hurwitz space, using again the complex approx-

imations, moving through the various branches of the Hurwitz space. As there are quite a lot of

branches, and some of them show rather bad numerical behaviour, it is useful to use reality argu-

ments as in Chapter 4 to find out the branches defined over R (these are considerably less) and

only move through them.

Taking into account the results of the numerical monodromy computations, there are at least five

degree one places (namely three corresponding to non-singular points and two of ramification index

2 over degree one places of Q(t), as given above). Moving through the branches of the Hurwitz

spaces (combined with mod-p calculations) seems to yield evidence that all these places correspond

to degenerate covers, with λ 7→ 1/4 in the notation of model (5.2). As these degenerate covers are

in 1-1 correspondence with the cycles of the braid group generator β1,2 in its action on the Nielsen

class of length 980, we can express them more concretely:

Let the 980 equivalence classes of covers in our Nielsen class be ordered as in the file

“m23 (2,2,3,5) approx.txt”. Then the following orbits of β1,2 in its action on this ordered set

correspond to the five rational points:

• {84, 143, 237} to the point ( 410
9 , 2

3 ),

• {106, 177, 291, 447} to the point ( 35
9 ,

2
3 ),

• {332, 497} to the point ( 5
9 ,

2
3 ),

• {137, 228, 370} to the point ( 295
288 ,−

11
96 ), and

• {538, 733, 870, 961} to the point ( 31
18 , 0).

I.e., starting with any cover in one of these orbits and moving through the Hurwitz space by letting

the parameter λ converge to 1/4, the coefficients of α and β will converge towards the respective

rational values. Also, the Galois group of the 3-point cover arising in this way is a proper subgroup

of M23 in all cases.

Even though none of our rational points led to M23-realizations over Q, the existence of non-

singular points in the above model nevertheless yields some useful information about the function

field of the Hurwitz curve. Namely, as there exist places of degree one, gonality arguments as in

Lemma 3.16 show that this curve has an affine model of degree 43 (in at least one of the two

variables).

2Note however that this is only heuristic as a non-degenerate point over Q may very well become degenerate
modulo some primes.
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As in Chapter 5.1, it would be interesting to explicitly obtain such a model, as it might con-

siderably reduce the height of possible rational points.

We did manage to compute such a model over the finite field F19 (although the computations are

very lengthy; computing the model and verifying that the genus of the function field over F19 is 43

took several days with Magma).

This model then may be used to look for possible automorphisms, Weierstrass places etc. of the

Hurwitz curve.

E.g. for the mod-19 reduced function field, extensive computations yielded 59 degree-1 places, four

of which are Weierstrass, however all of weight 1. In particular, these computations yielded no

evidence for the function field to be hyperelliptic.

5.4 A five point family in M23

Just as M24, the group M23 has exactly one Nielsen class of generating genus-zero 5-tuples, namely

of classes (2A, 2A, 2A, 2A, 3A). One computes that |SNiin(C)| = 21456, with transitive braid group

action. To obtain an approximation for a cover in this family, a 4-tuple of classes (5A, 2A, 2A, 3A)

may be taken as a starting point for the usual deformation process.

We include one complex approximation for a cover in the five point family in the file

“M23 (2,2,2,2,3) approx.txt”. For the function field extension C(X)|C(t) corresponding to this

cover, we made the following assumptions:

• The inertia group generator belonging to the infinite place in t is of class 3A.

• The unique place over t 7→ ∞ which is fixed by the normalizer in M23 of this inertia group is

X 7→ ∞.

• Normalization of the ramification locus: the finite ramification locus is the set of zeroes of a

polynomial x4 + a1x
2 + a2x+ a2, with some a1, a2 ∈ C.

By varying the parameters a1 and a2, one can therefore study a surface on the Hurwitz space.

Note that the above assumptions about ramified places can be made without affecting the field of

definition of the covers belonging to this surface.
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5.5 Summary

We have applied various methods outlined in the previous chapters to obtain algebraic models of

Hurwitz curves for class tuples with groups M24 and M23. Although it could not be decided whether

these curves may lead to regular M23-realizations over Q (and although stronger number-theoretic

tools may be necessary to decide this question), they do provide concrete data for further study.

We have furthermore provided complex approximations of covers for the majority of rational class

4- and 5-tuples of genus zero in M24 and M23. These approximations can be used to obtain further

algebraic models for Hurwitz spaces, by applying the same methods as before.



Chapter 6

A family of polynomials with

Galois group PSL5(2) over Q(t)

We compute a family of coverings with four ramification points, defined over Q, with regular Galois

group PSL5(2).

This is (to my knowledge) the first explicit polynomial with group PSL5(2) over Q(t).

6.1 A theoretical existence argument

The group PSL5(2) does not have any rigid triples of rational conjugacy classes, and among the

genus zero systems of rational class 4-tuples, there is only one with a Hurwitz curve of genus zero.

This curve will turn out to be rational in the course of the explicit computations, but this does not

seem to be immediately clear by the standard braid orbit criteria (see below). So in order to obtain

PSL5(2) as a monodromy group of a rational function t = f(x)
g(x) ∈ Q(x) (or even as a Galois group

over Q(t) at all) via theoretical arguments, one may have to look at class 5-tuples.

Indeed one can show, by arguments as developed by Dettweiler in [12], that there is a rational

curve on the Hurwitz space for the 5-tuple (2A, 2A, 2B, 2B, 3B) of PSL5(2) (which also is a genus

zero tuple). The “natural” explanation for the existence of this rational curve is the fact that this

5-tuple of classes arises as a rational translate of a 4-tuple of classes in Aut(PSL5(2)). This 4-tuple

(of classes (2A, 2B, 2C, 6)) has a single braid orbit of length 46; its Hurwitz curve is of genus zero,

and the images of the braids in the action on this orbit fulfill an oddness condition to guarantee

the rationality of this genus zero curve.

This realizes Aut(PSL5(2)) regularly over Q, and as the PSL5(2)-fixed field of such a realization

is a rational function field (of degree 2 over the base field), one also obtains PSL5(2).1

1I have not seen this (or any) theoretical argument for the occurrence of PSL5(2) as a regular Galois group over
Q in the literature, although the necessary criteria are well known.

79
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6.2 Explicit computations

Let G = PSL5(2), and denote by 2A the class of involutions of cycle type (28.115), by 3B the class

of elements of order 3 with cycle type (310.1) in G, and by 8A the unique class of elements of order

8 in G (of cycle type (82.43.2.1)).

We consider the straight Nielsen class SNi(C) of class tuples of length 4, of type (2A, 2A, 3B, 8A)

in G = PSL(5, 2), generating G and having product 1, i.e.

SNi(C) := {(σ1, ..., σ4) ∈ G | σ1, σ2 ∈ 2A, σ3 ∈ 3B, σ4 ∈ 8A, 〈σ1, ..., σ4〉 = G, σ1 · · ·σ4 = 1}

The action of the braid group on SNiin(C) yields the following:

There is a family of covers T 7→ C × P1C, where C (the C2-symmetrized reduced Hurwitz space) is

an absolutely irreducible curve of genus zero and for every h ∈ C the corresponding fiber cover is a

Galois cover of P1C with Galois group PSL5(2).

Although the usual braid genus criteria yield that the C2-symmetrized Hurwitz space for this

family is a genus-zero curve, it does not seem clear via standard theoretical considerations (e.g. odd

cycle argument for the braid group generators, as in [39, Chapter III. 7.4.]) whether it can also be

defined as a rational curve over Q.

In particular, the cycle structure of the braid orbit generators acting on the Nielsen class does not

yield any places of odd degree. More precisely, the image of the braid group is imprimitive on then

24 points, with 12 blocks of length 2 (i.e. if F |Q(t) is the corresponding function field extension,

of degree 24, we have an inclusion Q(t) ⊂ E ⊂ F , with [E : Q(t)] = 12 and [F : E] = 2). As

the images in the action on the blocks of the three braids defining the ramification structure of

these fields have cycle structure (42.3.1), (7.3.2) and (25.12) respectively, it is clear that E is still a

rational function field; however the cycle structure of the latter involution in the action on 24 points

is (212), so it is possible that a degree-2 place of E ramifies in F , in which case the rationality of F

is not guaranteed.2

We therefore clarify the rationality of this curve by explicit computation. We start with a degener-

ate cover with ramification structure (2A, 21A, 8), with group PSL5(2). We solve the corresponding

system of equations for the three-point cover modulo a suitable prime, and then lift and retrieve

algebraic numbers from the p-adic expansions.

The triple is rigid, but as the conjugacy class of the element of order 21 is not rational, we obtain

2Closer group theoretic examination yields some evidence for prime divisors of odd degree: namely, the two 3-cycles
of the braid group generator of cycle structure (72.32.22) correspond to degenerate covers with three ramification
points, generating two isomorphic, but non-conjugate (in PSL5(2)) subgroups. The same holds for the two 2-cycles
of this braid group generator. The explicit computations show, that the corresponding prime divisors of ramification
index 3 and 2 respectively are indeed of degree 1.
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a solution over a quadratic number field, namely

0 = x21 · (x− 1)7 · (x− a1)3 − t · (x2 − 2 · x+ a2)8 · (x3 − 2 · x2 + a3 · x+ a4)4 · (x− a5),

where (a1, ..., a5) := (1
8 (−
√
−7+11), 1

16 (−
√
−7+11), 1

16 (
√
−7+21), 1

128 (−3
√
−7−31), 1

8 (−
√
−7+3)).

From this degenerate cover, we develop complex approximations for a cover branched in four points,

using Puiseux expansions as in the previous chapters.

Let C(x)|C(t) be the corresponding field extension of rational function fields for the cover with

four branch points. Via Moebius transformations (in x and in t) it is possible to assume a defining

polynomial

f := f0(x)3 · (x− 3)− t · g0(x)8 · g1(x)4 · x,

where deg(f0) = 10, deg(g0) = 2 and deg(g1) = 3.

(So we have e.g. assumed the element of order 8 to be the inertia group generator over infinity, and

the element of order 3 the one over zero).

Also, assume that for some λ ∈ C the polynomials

fa := f0(x)3 · (x− 3)− a · g0(x)8 · g1(x)4 · x

and

fb := f0(x)3 · (x− 3)− b · g0(x)8 · g1(x)4 · x

(where a and b shall denote the complex zeroes of x2 + x + λ) become inseparable in accordance

with the elements in the conjugacy class 2A .

Once we have obtained a complex approximation of such a polynomial f , we now slowly move

the coefficient at x2 of the above polynomial g1 to a fixed rational value, and apply Newton iter-

ation to expand the other coefficients with sufficient precision to then retrieve them as algebraic

numbers (using the LLL-algorithm). One finds that all the remaining coefficients come to lie in a

cubic number field. This already indicates that there is a rational function field of index 3 in the

(genus-zero) function field of the Hurwitz space, which would enforce the latter function field to be

rational over Q as well. This will be confirmed by the remaining computations.

We now choose a prime p such that the above solution, found over a cubic number field, reduces to

an Fp-point. Then we lift this point to sufficiently many p-adic solutions (all coalescing modulo p),

in order to obtain algebraic dependencies between the coefficients3. These dependencies are all of

3Alternatively, one could just repeat the process of rational specialization and Newton iteration, as above, suffi-
ciently often, obtaining cubic minimal polynomials for the other coefficients in each case, and then interpolate.
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genus zero, and luckily some of them are of very small degree, e.g. if c2 and c1 are the coefficients

at x2 resp. x of the polynomial g1, one obtains an equation of degrees 2 and 3 respectively.

One can easily find a parameter α for the rational function field defined by this equation, using

Riemann-Roch spaces.

Now, we can express all coefficients as rational functions in α, and obtain the following result:

Theorem 6.1. Let α, t be algebraically independent transcendentals over Q.

Define elements a1, ..., a14 as follows:

a1 :=
2α4 − 37α3 − 6α2 − 109α+ 182

(α− 2) · (α+ 1)2
,

a2 := −12 ·
(α2 − 5/2 · α− 8) · (α3 + 10 · α2 + 17 · α+ 44)

(α− 2) · (α+ 1) · (α+ 4)
,

a3 :=
−8α6 + 372α5 + 1044α4 + 5372α3 + 2028α2 + 7704α− 24608

(α− 2) · (α+ 1) · (α+ 4)
,

a4 :=
62α9 + 318α8 − 2820α7 − 7668α6 − 61194α5 − 105810α4 − 144960α3 − 100392α2 + 512448α− 112768

(α− 2)2 · (α+ 1) · (α+ 4)2
,

a5 :=
−36α9 − 1446α8 − 2712α7 − 6252α6 − 17796α5 + 115914α4 + 154464α3 + 698232α2 + 616128α− 371328

(α− 2)2 · (α+ 4)2
,

a6 :=
(α+ 1)2 · (−92α7 + 1348α6 + 948α5 + 8300α4 + 30896α3 − 8664α2 + 142960α− 176192)

(α− 2)2 · (α+ 4)
,

a7 :=
(α+ 1)3 · (152α7 + 20α6 − 1956α5 − 1628α4 − 17468α3 − 30144α2 − 23056α− 185536)

(α− 2)2 · (α+ 4)
,

a8 :=
(α+ 1)4 · (−87α6 − 288α5 − 198α4 − 1596α3 + 9α2 − 900α− 14172)

(α− 2)2
,

a9 :=
(α+ 1)6 · (18α5 + 159α4 + 420α3 + 999α2 + 2256α+ 564)

(α− 2)2
,

a10 := −6 ·
(α+ 1)9 · (α+ 4)

α− 2
,

a11 := −(α+ 1)2,

a12 :=
(α+ 1) · (α2 − 16 · α− 8)

(α− 2) · (α+ 4)
,

a13 := −3(α+ 1)2,

a14 :=
(α+ 1)3 · (α+ 4)

α− 2
.

and set

f0 := x10 + a1x
9 + ...+ a10,

g0 := x2 − 6x+ a11,

g1 := x3 + a12x
2 + a13x+ a14.
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Then the polynomial f(x, α, t) := f3
0 · (x − 3) − t · g8

0 · g4
1 · x, of degree 31 in x, has Galois group

PSL5(2) over Q(α, t).

Proof. Dedekind reduction, together with the list of primitive groups of degree 31, shows that

PSL5(2) must be a subgroup of the Galois group. It therefore suffices to exclude the possibilities

A31 and S31.

Multiplying t appropriately, we can assume the covers to be ramified in t = 0, t =∞ and the zeroes

of t2 + t+ λ, with some parameter λ. Interpolating through sufficiently many values of α one finds

the degree-24 rational function λ = h1(α)
h2(α) parameterizing the Hurwitz curve. As e.g. α = 0 and

α = 1/2 yield the same value for λ, we set t = C · ( f
3
0 ·(x−3)

g80 ·g41 ·x
)(s, 0) (evaluating x to a parameter s

of a rational function field, as well as α to 0, and multiplying with a suitable constant C to obtain

the above condition on the branch points). Then one can check that over Q(s), the polynomial

f(x, 1/2, C2 · t) (again for suitable constant C2 to obtain the branch point conditions) splits into

two factors of degrees 15 and 16. This means that for this particular point of the family, there is an

index-31 subgroup of the Galois group that acts intransitively on the roots. As PSL5(2) has such

a subgroup and A31 and S31 don’t, the Galois group for this particular specialization is PSL5(2).

This specialization corresponds to an unramified point on the (irreducible) Hurwitz space, therefore

the entire family must belong to the same Hurwitz space and therefore have Galois group PSL5(2)

over Q(α, t).

We can now specialize α to any value that does not let two or more ramification points coalesce,

to obtain polynomials with nice coefficients with group PSL5(2) over Q(t).

e.g. α 7→ 0 leads to

f̃(x, t) := (x5−95 ·x4−110 ·x3−150 ·x2−75 ·x−3)3 ·(x5 +4 ·x4−38 ·x3 +56 ·x2 +53 ·x−4)3 ·(x−3)

−t · (x2 − 6x− 1)8 · (x2 − x− 1)4 · (x+ 2)4 · x.

In fact it can be seen from λ = h1(α)
h2(α) (as in the proof above) that the only specialized rational values

for α that lead to degenerate covers (with two branch points coalescing) are α 7→ −4, α 7→ −1 and

α 7→ 2.

Remarks:

a) The above proof essentially uses the fact that PSL5(2) has two non-conjugate actions on 31

points inducing the same permutation character. This can of course be applied to other linear

groups, and has e.g. been used in [35] to verify PSL2(11) (and others) as the Galois group of

a family of polynomials. Cf. also the Galois group verifications in the following chapters.

b) In fact, the polynomials f0 and g1 given above are still reducible (compare the specialized

polynomial f̃(x, t)!). This is because of the action of the decomposition groups. E.g., the
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normalizer in PSL5(2) of a subgroup generated by an element of cycle structure (310.1) does

not permute the 10 orbits of lengths 3 transitively.

Therefore f(x, α, t) can be decomposed in the following way:

f = (x− 3) · (x5 − 2
(α+ 1)(α+ 4)

α− 2
x4 − 2

(α+ 1)(α3 − 15α2 − 6α− 152)

(α− 2)(α+ 4)
x3

+8(α+ 1)(α2 − α+ 7)x2 − 7
(α+ 1)2(α3 + 12/7 · α2 + 3/7 · α+ 106/7)

α− 2
x+ 2

(α+ 1)5(α+ 4)

α− 2
)3

·(x5 + 4
(α− 5)(α2 + 5/4 · α+ 19/4)

(α+ 1)2
x4 − 2

α3 + 42α2 + 45α+ 220

α+ 4
x3

−12
(α+ 1)(α4 − 5/2 · α3 − 27/2 · α2 − 29α− 100)

(α− 2)(α+ 4)
x2 + 9

(α+ 1)2(α3 + 8/3 · α2 + 19/3 · α+ 50/3)

α− 2
x− 3(α+ 1)4)3

−t · (x2 − 6x− (α+ 1)2)8 · (x−
(α+ 1)(α+ 4)

α− 2
)4 · (x2 − 2

(α− 2)(α+ 1)

α+ 4
x− (α+ 1)2)4 · x



Chapter 7

Polynomials with Galois group

PSL3(4) ≤ G ≤ PΓL3(4) over Q(t)

We compute the Hurwitz space of a family of covers with Galois group PΓL3(4), ramified over

four places with monodromy (28.15, 27.17, 35.16, 62.32.2.1). This Hurwitz space is a rational curve

and therefore has many rational points. This will lead to polynomials with regular Galois group

G for all PSL3(4) ≤ G ≤ PΓL3(4). For the groups PSL3(4), PGL3(4) and PΓL3(4), these are,

to my knowledge, the first explicit polynomials over Q(t). Malle gave a polynomial for PSL3(4).2

in ([36]), but this does not yield a PSL3(4)-polynomial, as the PSL3(4)-fixed field does not have

genus 0 (see however [57] for a way to obtain from Malle’s polynomial a PSL3(4)-polynomial over

Q (not Q(t)).

Theoretical arguments for all PSL3(4) ≤ G ≤ PΓL3(4) to be a regular Galois group over Q(t) have

however been known for a long time (cf. [39], Example 4.2. in Chapter IV.4).

7.1 A theoretical existence argument

Let G = PΓL3(4), acting on 21 = 43−1
4−1 points, C1 be the unique class of involutions in G with

5 fixed points, C2 the unique class of involutions with 7 fixed points, C3 the class of elements of

order 3 with 6 fixed points and C4 the class of elements of order 6, with cycle structure (62.32.2.1).

Then there are, modulo simultaneous conjugacy in G, 54 tuples (σ1, ..., σ4) ∈ C1 × ... × C4 with

product σ1 · ... ·σ4 = 1 and 〈σ1, ...σ4〉 = G. They form a single orbit under the action of the Hurwitz

braid group, and the braids β1i have the cycle structures (312.28.12), (54.38.25) and (410.27) (for

i = 2, 3, 4 respectively).

Therefore the braid orbit genus is zero, and indeed the corresponding Hurwitz curve is a rational

curve because the corresponding function field has places of odd degree over two of the ramified

places. So there are many rational points on this curve, yielding many polynomials f(X, t) ∈

85
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Q(t)[X] with (regular) Galois group PΓL3(4).

Let E ⊃ Q(t) be the fixed field of PSL3(4) /G for such a polynomial. Then the extension E | Q(t)

is ramified over at most four places (all of which are of degree 1), with ramification structure given

by the cycle structure of the σi in the coset action on G/PSL3(4).

The image of σ1 is the identity (as σ1 lies in PSL3(4)), the other elements have images of cycle

structure (23), (32) and (23) respectively.

This means that the genus of E is zero, and E is a rational function field, as there are places of

odd degree over two of the ramified places.

So there is s ∈ E such that E = Q(s), and therefore the splitting field of f(X, t) is a regular Galois

extension of Q(s) with group PSL3(4).

7.2 A reducible three point cover

We start with a cover ramified over three points, with ramification structure of cycle type

(44.2.13, 35.16, 62.32.2.1). More precisely, let

σ1 := (1, 16)(4, 20)(5, 17)(6, 13)(7, 8)(9, 19)(10, 11)(12, 18),

σ2 := (2, 12)(3, 18)(4, 14)(5, 17)(7, 16)(11, 19)(20, 21),

τ := σ1 · σ2 = (σ3 · σ4)−1 = (1, 7, 8, 16)(2, 12, 3, 18)(4, 21, 20, 14)(6, 13)(9, 11, 10, 19),

σ3 := (1, 17, 11)(4, 16, 10)(6, 8, 18)(12, 19, 13)(14, 21, 15),

σ4 := (1, 9, 19, 2, 18, 7)(3, 12, 6)(4, 11, 17, 16, 14, 15)(8, 13, 10)(20, 21).

The group generated by σ3 and σ4 acts intransitively, with orbits of length 20 and 1, therefore the

corresponding cover will be reducible with components of degree 20 and 1. Moreover the action on

the orbit of length 20 is imprimitive, with five blocks of length 4. Observe also that the genus zero

condition is fullfilled by the tuple (τ, σ3, σ4), restricted to this orbit. Therefore this component is

given by an equation t = p(y)
q(y) , where y = r(x)

s(x) , with polynomials p, q, r, s ∈ Q[X]. Thus we are left

with computing rational covers of degrees 4 and 5, given by the ramification structure depicted in

Fig. 7.1.

The degree-5 cover corresponds to a (non-rigid) triple in S5 and can be easily computed over a

quadratic number field.

The degree-4 cover with four branch points (whose position is determined by the degree-5 cover)

belongs to a family of S4-covers of length 6. This still can be easily computed with the standard

Groebner basis approach. One can then compute the monodromy numerically for each of the six

covers, to find out which one belongs to the monodromy we are looking for.

Next, after applying suitable Moebius transformations in x (to fix three points via PGL2(C)-action),
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Figure 7.1: Ramification structure corresponding to the orbit of length 20
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develop a polynomial equation f(X)− tg(X) = 0 for a cover ramified over four points.

The cycle structure of the inertia group generators and the orbits of their normalizers in PΓL3(4)

tell us that we can w.l.o.g. set

f(X) = α · f1(X)2 · f2(X),

with a leading coefficient α and monic polynomials f1, f2 of degree 7, as well as

g(X) = (X + a1)6 · (X + a2)6 · (X + a3)3 · (X − 1)3 ·X,

with coefficients a1, a2, a3.

Furthermore, as the ramification index in the Hurwitz space (at the degenerate cover we started

with) is e = 4, assume that

f(X)− µ4g(X) = α · h1(X)2 · h2(X) · h3

and

f(X)− g(X) = α · h4(X)3 · h5(X) · h6(X)

with monic polynomials hi of degrees 8, 4, 1, 5, 5 and 1 respectively (again, compare the orbit

lengths of the normalizers NPΓL3(4)(〈σi〉)!).
Now, observe the cycle structure more closely:

The group 〈σ1, σ2〉 has four orbits of length 4, two of length 2, and one fixed point.
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All but one of these orbits (namely the orbit {5, 17}) are contained in the length 20 orbit of the

group 〈σ1σ2, σ3, σ4〉.
For these orbits, we can introduce parameter transformations, i.e. introduce coordinates

Yi := µ−4/fi · (X − ζi)

where x 7→ ζi is a place of ramification index fi over t 7→ 0 of the degenerate cover computed above,

just as in Section 3.3.1.

This yields approximations for all but one of the roots of f(X) (and of f(X) − µ4g(X)). We are

left with the last orbit {5, 17}. As 5 is a fixed point of σ1σ2, the corresponding place x 7→ ζ0 of the

degenerate cover is unramified, so the corresponding root ζ (of multiplicity 2) of the polynomial

f(X) for the non-degenerate cover should be expected to be developed as a power series in µ4, i.e.

in particular:

ζ = ζ0 +O(µ4),

and analogously for the corresponding root of f(X)− µ4g(X).

Therefore, introduce a coordinate Y0 := µ−4 · (X − ζ0). By the cycle structures of σ1 and σ2, we

know that for µ→ 0, the function s := µ−4t = µ−4 f(X)
g(X) , seen as a function in Y0, converges w.l.o.g.

to a function s0 of the form s0 = α (Y0−β)2

Y0
(with some α, β ∈ C).

This yields the missing component for the cover with group 〈σ1σ2, σ3, σ4〉. Namely set

X̃ := µ−4Y0 = µ−8(X − ζ0)

Then t = f(X)
g(X) , seen as a function in X̃, should converge to a fractional linear function as µ tends

to zero.

Therefore, the missing root of the polynomial g(X) (of multiplicity 1, corresponding to the orbit

{5} of 〈σ3, σ4〉) must be of the form (X − ζ0 +O(µ8)), and analogously for the missing root of the

polynomial f(X)− g(X).

Now we have approximated the four point cover with sufficient precision to again start Newton

iteration.

7.3 Hurwitz space and braid group action

Once we have obtained a complex approximation of a four point cover, we look for algebraic re-

lations: By letting one of the branch points move, we move the above coefficient −a1 (6-fold root

of the polynomial g(X)) to a rational value, and develop the remaining coefficients with sufficient

precision to recognize them as algebraic numbers with the help of the LLL-algorithm.

In this case we obtain polynomials of degree 5 (which suggests that the function field K|Q corre-
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sponding to the Hurwitz curve has degree 5 over the field generated by a1). Now we look for a

prime p such that all these polynomials have a root modulo p, and ideally only one root, so that

there is no need to guess how to combine the roots of the different polynomials. This worked in

our case for p = 17, and we hence obtained an F17-cover ramified over 4 points with the prescribed

ramification structure.

Lifting this cover (ramified over, say t ∈ {0, 1,∞, a} with a ∈ F17) to many different 17-adic

approximations (e.g. ramified over t ∈ {0, 1,∞, a+ k · 17} for many k ∈ Z) allows us to obtain al-

gebraic dependencies between pairs of coefficients of the above model. As all of these dependencies

define a rational curve, there exists a parameter α such that all of these coefficients are rational

functions in α.

We find α e.g. by first finding an equation F (a1, a2) = 0 over Q for the coefficients a1 and a2 (this

works with relative degrees 5 and 7), and then computing elements in Riemann-Roch spaces as in

Lemma 3.16.

Once the parameter α is found, we can express all the coefficients of the model as rational functions

in α to obtain a family of polynomials fα(X)− t · gα(X), with fα, gα ∈ Q(α)[X].

As the polynomials fα and gα are not very nice (particularly because large degrees in α occur), we

only include them in plain text format, in the file “pgammal34 family.txt”.

In particular, the value of the fourth (moving) branch point can be expressed as a rational function

of degree 54 in α. The ramification behaviour of this function is given by the braid group action,

so one can double-check with the group theoretical information already known.

7.4 Rational points

While it seems that the whole family fα − t · gα can only be parameterized with rather large

coefficients, certain specializations of small values of α lead to relatively small coefficients, and

also allow for a nice verification that the Galois group is indeed PΓL3(4), without computing

monodromy.

E.g. in our model, the values − 1
7 and − 5

3 for α lead to the same branch points (i.e. they lie in the

same fiber of the cover C → P1 of the Hurwitz curve).

Theorem 7.1. The polynomial Fα(X, t) := fα(X)−t·gα(X) given in the file “pgammal34 family.txt”

has regular Galois group PΓL3(4) over Q(α, t).

Proof. Specializing in appropriate finite fields, one sees that the Galois group is either PΓL3(4) or

S21.

Now PΓL3(4) has two non-conjugate subgroups U and V of index 21. If one considers the action of

PΓL3(4) on the right cosets of U , then V is intransitive with orbits of length 5 and 16. The images

of the desired inertia subgroup generators σ1, ..., σ4 in the action on the cosets of V are still of the
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same cycle type, and therefore belong to the same family of covers, but not to the same cover. We

use this to show that the group belonging to our polynomial is indeed PΓL3(4):

Let

F̂ (X, s) := − 258241787693137894278578176

2301418413249434806133056640625
·(s5+

889225

17248
·s4−5839592406875

1969626736
·s3+

1005374606421875

96511710064
·s2

−14538493015527734375

747193659315488
·s+2558247783203125

2364536896568
)3·(s5+

1448962213075

4616461696
·s4+

8598644802030578125

383399661922816
·s3

−4538461492895816100734375

13225754737689460736
·s2+

690616754535170982225390625

648061982146783576064
·s−6917526628129010166015625

6612877368844730368
)

·(s+
3950

343
) · (x+

433

392
)6(x− 866

2891
)6(x− 433

1225
)3(x− 1)3 · x+

1261480906940392369068457984

3682269461199095689812890625

·(x5 +
31775

20384
· x4− 1661535745

2327740688
· x3 +

44439580225

114059293712
· x2− 354236407848965

659490836242784
· x+

386673376331

2794452695944
)3

·(x5 +
2346471805

5690968192
· x4 − 3494659178827295

2599509068805376
· x3 − 4851810841101758405

16304120879547318272
· x2

+
383644206340815244975

798901923097818595328
·x− 708354726720410641

8152060439773659136
)·(x−118

343
)·(s+1675

392
)6(s−16750

3871
)6(s+

8375

49
)3(s−1)3·s.

(As mentioned above, this essentially corresponds to considering the algebraic dependencies

F−5/3(X, t) = 0 and F−1/7(s, t) = 0.)

Then F̂ is reducible with factors of degrees 5 and 16. This shows that there is an index-21 subgroup

in Gal(F−5/3|Q(t)), acting intransitively. As S21 does not have such a subgroup, the Galois group

must be PΓL3(4). This is therefore the Galois group of Fα over Q(α, t) as well.

So we know Fα has arithmetic monodromy group PΓL3(4), and the geometric monodromy group

is a normal subgroup of it. However, the ramification type (28.15, 27.17, 35.16, 62.32.2.1) is not

possible for any proper normal subgroups, so PΓL3(4) is also the geometric monodromy group, and

therefore regular.

Upon some further Moebius transformations in X and t, the above polynomial F−5/3(X, t) can

be simplified somewhat more to obtain

F̃ (X, t) := (X5 +
5131

320
·X4 − 38139

500
·X3 +

18762

3125
·X2 − 216664

15625
·X +

27136

15625
)3·

(X5 +
12301781

622080
·X4 +

326413663

3779136
·X3 − 285841817

2460375
·X2 − 68955968

12301875
·X − 11505664

36905625
) · (X +

424

9
)

−t ·X6 · (X + 8)6 · (X − 1)3 · (X − 192

625
)2 · (X +

24

25
)

with Galois group PΓL3(4) over Q(t).
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7.5 Descent to proper normal subgroups of PΓL3(4)

As the ramification structure shows, the fixed fields of the above polynomial F̃ (and more generally,

of the entire family of polynomials) under action of PSL3(4) is still a rational function field over

Q. If s is a parameter of this field, t can be expressed as a rational function in s, and plugging this

into the equation F̃ (X, t(s)) = 0 then yields a polynomial with (regular) Galois group PSL3(4)

over Q(s).

Analogously one also obtains a polynomial with group PGL3(4).

Applying a suitable Moebius transformation to the parameter t, we can shift the ramification

locus such that the PSL3(4)-fixed field E | Q(t) is ramified over (0, 1,∞). In our concrete example,

this can be done by replacing F̃ with F̃ (X, (−12930877668957043849/3249918613389312) · (t− 1)).

So we only need to find the defining equation t = a(s)
b(s) for the PSL3(4)-fixed field E = Q(s). It

holds that Gal(E | Q(t)) = S3, acting regularly (and therefore imprimitively) on six points. After

the above shift of the ramification locus, the branch cycles of E | Q(t) over t 7→ 0, t 7→ 1 and t 7→ ∞
are of cycle type (23), (32) and (23) respectively.

Again by choosing suitable parameters, we can w.l.o.g. assume that t = − 1
27

(as2−9)2·as2
(as2−1)2 , with some

a ∈ Q. To find the correct a, we look at the decomposition group of a place of E over t 7→ ∞. This

group contains the inertia group as a normal subgroup. However the inertia subgroup is generated

by an involution in S3 and is therefore self-normalizing, so the decomposition group is equal to it.

Therefore, all three places of E over the infinite place must be of degree one, i.e. they correspond

to rational values s 7→ si ∈ Q. In particular, a must be a rational square, and in fact (again by a

suitable Moebius transformation) it may be chosen as any rational non-zero square, so we can set

a = 1, and finally obtain the following polynomial, having regular Galois group PSL3(4) over Q(s):

g(X, s) := F̃ (X, (−12930877668957043849/3249918613389312) · (t(s)− 1)),

with t(s) = − 1
27

(s2−9)2·s2
(s2−1)2 .

Similarly the fixed field of PGL3(4) is a rational extension of degree 2 over Q(t), ramified only

over 0 and ∞. By the previous definition of the parameter s for the PSL-fixed field, s̃ := 1
9

(s2−9)·s
s2−1

is a parameter for the PGL-fixed field, and t := t(s̃) := −3s̃2. We thus obtain the Galois group

PGL3(4) over Q(s̃).

7.6 Totally real specializations

Reality arguments show that some of the members of the above family of polynomials have totally

real fibers. Suitable specialization of the parameters α and t yields totally real polynomials with

Galois group PΓL(3, 4) over Q. Rational translates as above then lead to totally real polynomials
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for PSL3(4) and PGL3(4) as well.

The polynomial F− 1
4
(X, t) ( as defined in the file “pgammal34 family.txt”) is one possible example

for a PΓL(3, 4)-polynomial with real fibers; these fibers occur in the interval (−360318.9...,−267577.8...),

the interval between the only two negative real branch points. By a suitable version of Hilbert’s

irreducibility theorem, the set of specializations t 7→ t0 ∈ Q that preserve the Galois group is dense,

yielding many totally real PΓL3(4)-polynomials f(X, t0) over Q.

Similarly, suitable rational functions t(s) lead to polynomials F− 1
4
(X, t(s)) with groups PGL3(4)

resp. PSL3(4) over Q(s), and real fibers in appropriate open intervals (namely in any connected

component of the preimage of (−360318.9...,−267577.8...) under s 7→ t(s), which is automatically

real as Q(s) is contained in the Galois closure of F− 1
4

over Q(t)).



Chapter 8

Totally real extensions with groups

PGL2(11) and PSL3(3)

Here we compute explicit totally real polynomials with Galois groups PGL2(11) and PGL3(3) over

Q.1

As these groups are the smallest (with respect to minimal faithful permutation degree) that have

not been previously realized as the Galois group of a totally real extension of Q, this means that

explicit totally real polynomials are now known for every transitive permutation group of degree at

most 13 (cf. [30]).

8.1 The case G = PGL2(11)

The problem for the group PGL2(11) is that, on the one hand, to obtain totally real fibers (i.e. a

complex conjugation acting as the identity) one needs to compute polynomials with at least four

branch points. On the other hand PGL2(11) in its natural action has no generating genus zero

tuples of length r ≥ 4.

There are however genus zero tuples in the imprimitive action on 22 points, which stems from the

exceptional action of PSL2(11) on 11 points.

Below are explicit computations for two such class tuples:

a) Let C = (2A, 2B, 2B, 3A) the quadruple of classes of PGL2(11), where 3A is the unique class

of elements of order 3, 2A is the class of involutions inside PSL2(11), and 2B the class of

involutions outside PSL2(11). This is a genus zero tuple in the imprimitive action on 22

points, so for a degree-22 cover of P1(C) with this ramification type, we get the following

1I am indebted to J. Klüners who mentioned these open cases to me.
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inclusion of function fields: C(t) ⊆ C(s) ⊆ C(x), where exactly two places of C(t) ramify in

C(s) (namely the ones with inertia group generator not contained in PSL2(11)), and exactly

four places of C(s) ramify in C(x) (namely two places lying over the ramified place of C(t)

with inertia group generator in 2A, and two lying over the place of C(t) with inertia group

generator 3A).

The essential task is therefore to compute the extension C(x)|C(s) , i.e. to compute polynomi-

als with PSL2(11)-monodromy, defined over Q if possible, and ramification type (2A, 2A, 3A, 3A).

The straight inner Nielsen class of these tuples in PSL2(11) is of length |SNiin| = 54, with

transitive braid group action and symmetrized braid orbit genus g12 = 1.2

Via Moebius transformations, we therefore assume that the two places of C(s) with inertia

group generator of order 3 are s 7→ 0 and s 7→ ∞, and also fix the sum of the other two branch

points.

As the cycle structure of an element σ in the class 3A of PSL2(11) in the action on 11 points

is (33.12), and one of the 3-cycles remains fixed under conjugation with NPSL2(11)(〈σ〉) (and

therefore under the action of the decomposition subgroup), one can assume w.l.o.g. for a

model over Q that the place x 7→ 0 lies over s 7→ 0 (with ramification index 3), and the same

for x 7→ ∞ and s 7→ ∞.

I.e. we may w.l.o.g. look for polynomial equations x3 · f1(x)3 · f2(x) − s · g1(x)3 · g2(x) = 0,

with quadratic polynomials fi, gi.

Now we searched for a mod-p reduced polynomial with the above restrictions on places and

the correct ramification: there is a solution over F7. (Alternatively, start with a three point

cover, as in previous sections.)

Now lift this solution to many approximate Q7-solutions, with the set of zeroes of s·(s2+4s+λ)

as the finite ramification locus (for many different values of λ).

Interpolation then yields an algebraic dependency between the coefficients at x1 of the above

polynomials g1 and g2, namely:

(88/19 · β2− 112/19 · β + 32/19) ·α4 + (178/19 · β3− 524/19 · β2 + 446/19 · β − 112/19) ·α3 +

(287/38 · β4 − 650/19 · β3 + 2051/38 · β2 − 662/19 · β + 295/38) · α2 + (59/19 · β5 − 687/38 ·
β4 + 773/19 · β3 − 1675/38 · β2 + 435/19 · β − 173/38) · α + 10/19 · β6 − 70/19 · β5 + 21/2 ·
β4 − 595/38 · β3 + 491/38 · β2 − 213/38 · β + 1 = 0,

(with α the coefficient of g1 and β the one of g2).

Computation with Magma confirms that this defines (the affine part of) an elliptic curve

of rank 1, which therefore has infinitely many points. Furthermore all other coefficients of the

2Additional symmetrization of the branch points 3 and 4 does not decrease this genus.
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model can be expressed as polynomials in α and β, therefore this curve is already a model of

the reduced Hurwitz curve of the PSL2(11)-family. So there are infinitely many equivalence

classes of covers defined over Q with this monodromy.

However, as we are interested in totally real polynomials, we need to choose a point on

the curve in such a way, that complex conjugation on a fiber of the corresponding PSL2(11)-

cover is trivial in at least one segment of the punctured projective line.

Monodromy computations show that α = − 3
121 and β = 41

55 yields such a point.

This leads to the polynomial

f(s, x) := x3 · (x2 + x− 413

4114
)3 · (x2 − 23

726
x+

63

181016
)

−s · (x2 − 3

121
x+

567

1131350
)3 · (x2 +

41

55
x− 413

102850
),

(8.1)

where specializations of s in the real interval [−0.623..,−0.619..] (between the two algebraically

conjugate branch points) lead to totally real fibers.

Now all that is left is to parameterize the above extension C(s)|C(t) over Q to fit the po-

sitions of the branch points. This is fulfilled by

t := (s2 +
27280791476537

21954955473000
s+

766309482990625

1985274409206528
)/s

Plugging this into the above representation of s as a rational function in x, one obtains a

degree 22 polynomial with regular Galois group PGL2(11).

Again, suitable specialization of t allows for totally real fibers: specialize t ∈ R larger than

the largest real branch point; we did this for t = 218, and then used the routine “GaloisSub-

group” in Magma (and some linear transformations) to obtain a polynomial of degree 12,

corresponding to the fixed field of the point stabilizer in the natural action of PGL2(11):

f0(x) := x12 + 216250195584 · x11 + 21291817873540566002688 · x10 + 1262778206854960806932246495923934 · x9+

50268664952573858629713482778423482951953488 · x8 + 1415634612352514779876789551323009883253639347560868864 · x7+

28930440059668616621092488467714110337841840975066915742747362505 · x6+

432463499487244750087709846142904361549647160003627991051838740695470469544 · x5+

4694620331855344345697091125213620342007841178231718510259463495172530644610804866432 · x4+

144414375914674665850818303317771415765854765270144727335507532785335507793456483417088521151159/4 · x3+

186760350241708855747507113602327125632668246408881045492092681347492984320340391570231157016944534249662 · x2+

583610553971532074637919858762791632050935970469123629320074075277206737826393018985878957918138702221579477288704 · x+

11150929421926344628282210656174738743774808172811362367187099388952171216782841343130052732488366064124105178461056929 · 314/64
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b) The family computed above led to polynomials with rather large coefficients. This is because

it seemed that all points on the Hurwitz curve allowing for totally real fibers give rise to covers

with two branch points very close to each other.

We consider another family, namely (in analogy to the above notation) the one associated to

the class quadruple (2A, 2A, 2B, 4A) in PGL2(11).

Again, looking at the imprimitive action of PGL2(11) on 22 points, this monodromy leads to

function fields C(t) ⊆ C(s) ⊆ C(x). This time, the PSL2(11)-part C(x)|C(s) is ramified over

5 points, with monodromy of type (2A, 2A, 2A, 2A, 2A).

We therefore look for points on a reduced Hurwitz space of dimension 2. However, we do not

need to parameterize the whole surface.

Suitable choice of the branch points in C(t) and C(s) leads to a model for a one-dimensional

family, corresponding to a curve on the Hurwitz space.

Firstly, we can map the branch points of C(t) to 0,∞ and −1±α, with α2 ∈ Q (for a rational

model) and only the places at zero and infinity ramifying in C(s). Therefore, by setting t = s2,

we may assume that the ramification locus is ±
√
−1− α, ±

√
−1 + α, and therefore the set

of zeroes of the polynomial s4 + 2s2 + (1− α2) =: s4 + 2s2 + λ.

We can use the braid criteria exhibited in [12] to confirm the existence of a cover C → P1,

where C is a curve of genus one, parameterizing the polynomials with the above monodromy

and restrictions on branch points.

(Alternatively, observe that the 4-tuple in PGL2(11) with which we started to obtain the

restrictions on the branch points has a Hurwitz curve of genus 1.)

As a starting point for the computations, we used a polynomial with 4 branch points and

PSL2(11) monodromy, computed by Malle in [35].

Develop this into a cover with 5 branch points (as done in the previous examples), and observe

that the normalizer of an involution in PSL2(11) fixes one of the 2-cycles, therefore we can

assume a polynomial equation f(x)− s · g1(x)2 · g2(x) = 0, with deg(f) = 11 and deg(gi) = 3

(i.e. the infinite place of C(x) lies over the infinite place of C(s), with ramification index 2).

Specializing the coefficients of g1 and g2 at x2 to sufficiently many rational values again

allowed an interpolation polynomial (of degree 4 in both variables), and Magma computation

again yields that this polynomial defines an elliptic curve of rank 1.

Now the procedure is the same as for the previous family: find a point on this curve that
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allows for a totally real fiber cover (one such point yields the polynomial

g(s, x) := (x− 1

4
) · (x5 +

9

4
x4 +

11

16
x3 − 65

64
x2 − 11

16
x− 323

2816
)

·(x5 +
7

2
x4 − 17

32
x3 − 9

32
x2 +

1

512
x+

5

11264
)

−s · (x3 +
1

16
x− 7

352
)2 · (x3 + x2 +

5

16
x+

9

352
).

(8.2)

with Galois group PSL2(11)) , and compose the resulting parameterization of s as a rational

function in x with t = s2.

In this case, we also computed a degree-12 polynomial defining the stem field of a stabi-

lizer in PGL2(11) in its natural action on 12 points. This is the polynomial g̃ in Theorem 8.1

below.

It was found in the following way: Let E be the splitting field of the above polynomial g over

Q(s). A primitive element of a subfield of E of degree 12 over Q(s) (corresponding to the

stabilizer in PSL2(11) in its action on 12 points) can be computed with Magma. From this,

one obtains a primitive element of the corresponding degree-12 extension of Q(s2) as well.

By the Riemann-Hurwitz genus formula, this field is of genus 2. Therefore its gonality is

2. Via computation of Riemann-Roch spaces a rational subfield of index 2 can explicitly be

parameterized. A few linear transformations then yielded the polynomial g̃ in Theorem 8.1.

We summarize the results of the above computations:

Theorem 8.1. The polynomials

f̃ := x3 · (x2 −
3

121
· x+

567

1131350
)3 · (x2 + x−

413

4114
)3 · (x2 −

23

726
· x+

63

181016
) · (x2 +

41

55
· x−

413

102850
)

−t · (x2 −
166

5445
· x+

413

2036430
)2·

(x6 +
577

605
· x5 +

1325977

4525400
· x4 +

3899419

124448500
· x3 +

2472141

4654373900
· x2 −

20364939

511981129000
· x+

132774957

382961884492000
)2

·(x6+
22271

5445
·x5+

3418045129

672021900
·x4+

119086687367

67762208250
·x3+

113798082363

2815896209500
·x2−

21318225327

7743714576125
·x+

462189625317

23169194011766000
)

(of degree 22), and

g̃ = ((x3 + x2 +
1

4
x+

1

22
)4 · (t+ 1249)− 364 · (x2 +

5

7
x−

1

44
)

·(x4 −
137

110
x2 −

3

5
x−

623

9680
) · (x6 +

36

143
x5 −

323

143
x4 −

6381

3146
x3 −

9671

25168
x2 +

5715

138424
x−

7035

553696
)) · t

−
33 · 52 · 7 · 11

4
· (x5 + 2x4 +

321

550
x3 −

427

550
x2 −

2771

9680
x+

401

5324
)2 · (x2 +

632

693
x−

6914

22869
)

(of degree 12), have regular Galois group PGL2(11) over Q(t) and possess totally real specializa-

tions.
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Proof. As mentioned above, f̃ is gained from the polynomial f in (8.1) by setting

t := (s2 +
27280791476537

21954955473000
s+

766309482990625

1985274409206528
)/s.

We therefore first prove that f has Galois group PSL2(11).

As in Chapter 7, we compute an explicit algebraic dependency for the natural (degree 54) cover of

the reduced Hurwitz space over P1. We use this to find a second cover with the same ramification

locus as the one given by f , and then make use of the fact that PSL2(11) has two non-conjugate

subgroups of index 11. Set

s̃ = −(
295

726
)3 · s3 · (s2 + s+ 693/850)3 · (s2 + 1107/295 · s− 5103/50150)

(s2 + 297/1475 · s− 5103/1253750)3 · (s2 + 46/25 · s+ 12474/10625)
.

Then f(s̃, x) splits over Q(s) into polynomials of degree 5 and 6. This shows that Gal(f |Q(s)) has

an intransitive index-11 subgroup, and so it cannot be equal to A11 or S11. Dedekind reduction

then leaves only PSL2(11). So f has Galois group PSL2(11) over Q(s), and regularity is obvi-

ous. Therefore Gal(f̃ |Q(t)) is a transitive subgroup of the wreath product PSL2(11) o C2 < S22.

Now one can check immediately that the only transitive subgroup of this wreath product with a

generating 4-tuple (with product 1) of the necessary cycle structure is PGL2(11). So PGL2(11) is

the geometric Galois group of f̃ , and regularity follows because PGL2(11) is self-normalizing in S22.

The same could be done for the polynomial g in (8.2).

Alternatively, one could start with the polynomial g̃ and retrieve a polynomial for the degree-22

extension of Q(t) corresponding to the point stabilizer in the imprimitive action on 22 points (i.e.

invert the process that led to the polynomial g̃ in the first place), by taking the polynomial

(x− 1

4
)2 · (x5 +

9

4
x4 +

11

16
x3 − 65

64
x2 − 11

16
x− 323

2816
)2

·(x5 +
7

2
x4 − 17

32
x3 − 9

32
x2 +

1

512
x+

5

11264
)2 − t · (x3 +

1

16
x− 7

352
)4 · (x3 + x2 +

5

16
x+

9

352
)2

arising from (8.2) after setting t = s2, transforming its ramification locus (in t) to the one of g̃, and

then, using Magma methods, confirming that the transformed polynomial has a root in the Galois

closure of g̃.

The existence of this second permutation action on 22 points then also proves that the Galois group

cannot be A12 or S12.

Finally, the assertion about real specializations is easy to verify.
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Remark:

For the polynomial g̃ in Theorem 8.1, a nice totally real specialization can be obtained by special-

izing t 7→ 1. Linear transformations yield the polynomial

g0(x) := x12 − 4x11 − 1364x10 + 3168x9 + 663982x8 − 182072x7 − 152003984x6 − 288945448x5

+16597479041x4 + 67674606956x3 − 657948054412x2 − 4341773859112x− 5636722853708,

with Galois group PGL2(11) over Q and splitting field contained in R.

Elliptic curves of positive rank

Theorem 8.1 provides, for both Hurwitz spaces, a single rational point. As mentioned above,

Magma computation suggests that there are actually infinitely many rational points, as the curves

are elliptic of rank rk > 0.

We give a proof for this that does not rely on deep calculations; instead it makes use of the Nagell-

Lutz theorem (cf. [51, Chapter II.5]):

Theorem 8.2 (Nagell-Lutz Theorem). Let Y 2 = f(X) := X3 + aX2 + bX + c (a, b, c ∈ Z) be a

non-singular cubic curve with integer coefficients and D the discriminant of f . Let P = (x, y) be a

rational point of finite order (in the Mordell-Weil group of the elliptic curve). Then x, y ∈ Z and

either y = 0 or y|D.

The obvious application of this theorem is to verify rk > 0 for an elliptic curve by first finding

a cubic equation as in the theorem, and then finding a rational point that cannot have finite order.

The Mordell-Weil group must therefore be infinite, i.e. the rank of the curve is > 0.

We do this for the genus one curve on the Hurwitz space for the (2A, 2A, 2A, 2A, 2A)-family in

PSL2(11).

Beginning with the polynomial g(s, x) in (8.2), we can easily develop a model for the whole family

of covers ramified over s 7→ ∞ and over the zeroes of s4 + 2s2 + λ, e.g. by interpolating through

sufficiently many p-adic lifts.

We can then calculate algebraic dependencies between any two coefficients of this model, and con-

firm that they lie in the function field generated by two appropriate coefficients α and β.

After some some linear transformations in the variables, to obtain nicer coefficients, we find the

following model:

Fα,β(s, x) := f0 · f1 · f2 − s · r2
1 · r2,

where

0 = α2 + (−1

2
β2 − 9β − 11

2
) · α− β · (β + 4) · (β + 22),

and
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f0 := x+ α,

f1 := x5 + (β2 + 4β) · x4 + ((− 13
4 β

2 − 5β + 11
4 ) · α− 17

2 β
3 − 23β2 + 44β) · x3

+ ((−2β4 + 31
4 β

3 − 3β2 − 257
4 β − 11) · α− 4β5 − 7

2β
4 − 9β3 − 280β2 − 176β) · x2

+ (( 13
16β

6 + 89
4 β

5 + 2125
16 β4 + 983

2 β3 + 12371
16 β2 + 1177

4 β + 363
16 ) ·α+ ( 13

8 β
7 + 51β6 + 1615

4 β5 + 6677
4 β4 +

30669
8 β3 + 12661

4 β2 + 363β)) · x
+ ( 7

16β
8 + 147

16 β
7− 129

2 β6− 11729
16 β5− 18127

8 β4− 46243
16 β3− 2691

2 β2− 3047
16 β− 121

16 ) ·α+ 7
8β

9 + 175
8 β8−

633
8 β7 − 3909

2 β6 − 69569
8 β5 − 129797

8 β4 − 99217
8 β3 − 10131

4 β2 − 121β,

f2 := x5 + (−α+ 18β) · x4 + ((− 5
2β

2 − 21β + 11
2 ) · α− 8β3 + 71β2 + 88β) · x3

+ (( 1
4β

4 − 17β3 + 63β2 + 34β − 77
4 ) · α+ ( 1

2β
5 − 68β4 + 405

2 β3 + 1853β2 − 308β)) · x2

+((β6 + 79
2 β

5 +214β4 +261β3 +1301β2 + 4103
2 β+242) ·α+(2β7 +87β6 +546β5 +877β4 +3678β3 +

16368β2 + 3872β)) · x
+ ( 1

4β
8 + 33

2 β
7 + 1065

4 β6 − 425β5 − 29973
4 β4 − 38851

2 β3 − 71277
4 β2 − 4158β − 242) · α+ 1

2β
9 + 35β8 +

651β7 + 494β6 − 42303
2 β5 − 87407β4 − 124728β3 − 50072β2 − 3872β,

r1 := x3 + ((− 3
2β

2 + 3
2 ) · α− 3β3 − 6β2 + 24β) · x

+ (− 1
2β

4 − 13
2 β

3 − 45
2 β

2 − 37
2 β − 2) · α− β5 − 17β4 − 90β3 − 160β2 − 32β,

r2 := x3 + 9β · x2 + ((− 3
2β

2 − 9β + 3
2 ) · α− 3β3 − 6β2 + 24β) · x

+ (− 1
2β

4 − 31
2 β

3 − 63β2 − 181
2 β − 31

2 ) · α− β5 − 35β4 − 207β3 − 394β2 − 248β.

Now it is not difficult to compute (with the help of some rational point) that the elliptic curve

given by α and β can be defined by a (non-singular) cubic equation in the form Y 2 = X3 + 59X2−
77X + 121.

This curve has a point at (X,Y ) = (−21, 136), and 136 = 8 · 17 does not divide the discriminant

disc(X3 + 59X2 − 77X + 121) = −216 · 113.

Therefore, by Nagell-Lutz, this point is of infinite order, and the rank of the curve must be positive.

Furthermore, the existence of infinitely many rational points on the Hurwitz curve can be sharp-

ened to obtain an infiniteness result for covers with real fibers. The main ingredient is the following

theorem, known as the Poincaré-Hurwitz theorem (cf. [26, Satz 13]):

Theorem 8.3. Let E be a non-singular cubic curve, defined over Q, with infinitely many rational

points. Let P ∈ E(Q) be any rational point, and U 3 P any real neighbourhood of P (in the topology

of P2R), then there are infinitely many points Pi ∈ E(Q) such that Pi ∈ U .

As a corollary, the Hurwitz curves of both families computed above contain infinitely many

points with real fibers. This is because the property to possess real fibers is purely group theoretic

(see Chapter 4) and invariant in a given connected component of the punctured real projective line

(P1R minus the set of branch points).
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8.2 The case G = PSL3(3)

Computing totally real PSL3(3)-extensions might be possible via covers with four branch points;

however, there are no genus zero 4-tuples with a Hurwitz curve of genus zero in PSL3(3). We

therefore solve the problem via a family of covers with five branch points, with branch cycle structure

(24.15, 24.15, 24.15, 33.14, 33.14). The reason is that theoretical arguments show that there is a

rational curve on the corresponding Hurwitz space.

This can be seen in different ways:

• The group generated by the braids B0 := β2β3β2 and B1 := β2
1β

2
4 acts intransitively on the 120

PSL3(3)-generating elements of the straight inner Nielsen class SNiin((C1, C2, C1, C2, C1)),

where C1 is the class of involutions of cycle type 24.15 and C2 is the class of elements of cycle

type 33.14.

This braiding action corresponds to curve no. (26) given on p.51 in Dettweiler’s list of curves

on Hurwitz spaces in [12]. The orbits under this action are of lengths 12, 48 and 60; and the

cycle structure of the braids in the action of the orbit of length 12 yields a (rational) genus

zero curve on the Hurwitz space.

• Alternatively, observe that the 4-tuple of classes in Aut(PSL3(3)) (as an imprimitive permu-

tation group on 26 points) with cycle structures (28.110, 213, 36.18, 44.25) has braid orbit genus

g = 0. Our PSL3(3)-5-tuple becomes a rational translate of this 4-tuple in a natural way,

via ascending to the PSL3(3)-fixed field. Therefore every rational point on the genus zero

Hurwitz curve for the 4-tuple also yields a regular realization of PSL3(3) with the desired

monodromy.

As a starting point for the computations, we used a 4-point cover with group PSL3(3), as computed

by Malle in [35].

From this, the usual deformation process led to a 5-point cover with the above cycle structure.

We now consider those covers ramified over t 7→ −1, 1,∞ (each with an involution as inertia group

generator), and the roots of t2−λ (each with an element of order 3 as inertia group generator). For

given λ ∈ C \ {0, 1}, there are still 120 equivalence classes of such covers (as |SNiin(C)| = 120),

so the next step is to obtain, by applying appropriate braids (as outlined in Section 3.3.4), a cover

with monodromy belonging to the orbit of length 12 under the action of the braid group 〈B0, B1〉
as defined above.

Once such a cover is obtained, it is not difficult anymore to find algebraic dependencies between

two coefficients. As these algebraic dependencies are expected to define a rational function field

(assuming “good” choice of a model), find a parameter a for this function field, and subsequently

develop all coefficients in the model as rational functions in a. This leads (after suitable linear

transformations of the variables) to the following polynomial:

fα(x, t) := f1(x) · f2(x) · f3(x)− t · g1(x)2 · g2(x), with
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f1 := x3 +(− 29821
62424 ·a

2 + 419
2601 ·a−

8
867 ) ·x2 +(− 34873085

3896755776 ·a
3− 533

9020268 ·a
2 + 1625

2255067 ·a−
104

2255067 ) ·a ·x

+( 2373356737921
243251082561024 ·a

5− 77148169501
10135461773376 ·a

4+ 13855907
6210454518 ·a

3− 5320666
17596287801 ·a

2+ 6448
345025251 ·a−

832
1955143089 )·a,

f2 := x4 + (a2 − 890
2601 · a+ 16

867 ) · x3 + ( 8411611
38203488 · a

3 − 2349737
27060804 · a

2 + 20228
2255067 · a−

208
751689 ) · a · x2

+ (− 21042796489
950199541254 · a

4 + 8744166457
563081209632 · a

3− 187946941
52788863403 · a

2 + 5221658
17596287801 · a−

47632
5865429267 ) · a · (a− 24

229 ) ·x

+ ( 7432196318289301
15184705577789362176 · a

6 − 144913019054401
316348032870611712 · a

5 + 1111328385245
6590584018137744 · a

4 − 4187601652
137303833711203 · a

3 +

127801349
45767944570401 · a

2 − 1892800
15255981523467 · a+ 10816

5085327174489 ) · a2,

f3 := x6 + ( 28235
41616 · a

2 − 72
289 · a+ 4

289 ) · x5

+ (− 1448052449
7793511552 · a

4 + 787249
19101744 · a

3 + 248
44217 · a

2 − 2572
2255067 · a+ 32

751689 ) · x4

+ (− 38143481476139
243251082561024 · a

5 + 523172167843
5067730886688 · a

4 − 2650094785
105577726806 · a

3 + 49731227
17596287801 · a

2 − 874120
5865429267 · a +

5824
1955143089 ) · a · x3

+ (− 10066362783339473
1898088197223670272 · a

7 + 3371688276738535
632696065741223424 · a

6 − 19857185160995
8787445357516992 · a

5 + 34140023593
64613568805272 · a

4 −

3335319689
45767944570401 · a

3 + 29234920
5085327174489 · a

2 − 1203904
5085327174489 · a+ 6656

1695109058163 ) · a · x2

+( 43944033385895261671
37172159254428358606848 ·a

8− 30966451222875342317
19747709603915065509888 ·a

7+ 2830703634223390757
3291284933985844251648 ·a

6− 5765876939279587
22856145374901696192 ·

a5 + 245579679980323
5714036343725424048 · a

4 − 517738531076
119042423827613001 · a

3 + 377464880
1469659553427321 · a

2 − 107997760
13226935980845889 · a +

475904
4408978660281963 ) · a2 · x

+ (− 4496729050797973071158401
118342178334220228741367857152 · a

10 + 20457661279785206660755
1643641365753058732518998016 · a

9 + 1683526244309651070017
102727585359566170782437376 ·

a8− 12913716360871766323
951181345921908988726272 ·a

7+ 816227378397985697
178346502360357935386176 ·a

6− 12928448962175591
14862208530029827948848 ·a

5+ 20979020447047
206419562917080943734 ·

a4− 768779250512
103209781458540471867 ·a

3 + 676210912
2023721205069421017 ·a

2− 96262400
11467753495393385763 ·a+ 346112

3822584498464461921 )·a2,

g1 := x4 + ( 10784735
649459296 · a

2 − 38701
6765201 · a+ 676

2255067 ) · a2 · x2

+ ( 61351108559
30406385320128 · a

2 − 806490139
1266932721672 · a+ 3521791

105577726806 ) · a3 · (a− 24
229 ) · x

+(− 9025766663839939
15184705577789362176 ·a

6+ 90237380155
172302850147392 ·a

5− 198120745069
1098430669689624 ·a

4+ 497656159
16153392201318 ·a

3− 1550237
565036352721 ·

a2 + 619216
5085327174489 · a−

10816
5085327174489 ) · a2,
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g2 := x4 + (a2 − 890
2601 · a+ 16

867 ) · x3

+( 172433164037
446178536352 ·a

5− 1144124578
4647693087 ·a

4+ 93064996
1549231029 ·a

3− 3710744
516410343 ·a

2+ 70784
172136781 ·a−

512
57378927 )/(a− 24

229 )·x2

+ (− 17010954592385
217595694947166 ·a

6 + 278722741765
4015606827168 ·a

5− 96448763320
4029549906429 ·a

4 + 16378199006
4029549906429 ·a

3− 480248080
1343183302143 ·a

2 +

2329600
149242589127 · a−

13312
49747529709 ) · a/(a− 24

229 ) · x

+(− 34769884385426337719
3477297577313763938304 ·a

8+ 1626950136997162081
144887399054740164096 ·a

7− 332432058136321
62885155839730974 ·a

6+ 341481778769807
251540623358923896 ·a

5−

2173533434761
10480859306621829 · a

4 + 3961349704
205507045227879 · a

3− 138072064
129393324773109 · a

2 + 4179968
129393324773109 · a−

53248
129393324773109 ) ·

a/(a− 24
229 ).

One can show in a similar way as in the previous cases (using the fact that PSL3(3) has two non-

conjugate subgroups of index 13), that Gal(f |Q(a, t)) ∼= PSL3(3).

Furthermore, suitable specializations of a and t lead to totally real PSL3(3)-extensions. One

possible way to reach this is a 7→ − 24
473 , t 7→ 73008

3803393 . With the help of Magma, one then obtains

the following nice representation:

f̂(x) := x13−6x12−4368x11 +224320x10−5117352x9 +65111472x8−497820672x7 +2356418304x6

−6896458080x5 + 11993480256x4 − 11036102400x3 + 3485514240x2 + 1133736960x− 458496000,

with all real roots and Gal(f̂ |Q) ∼= PSL3(3).

A two-dimensional family

In the above computations, we used theoretical criteria to find a rational curve on the Hurwitz space

H of the (2A, 2A, 2A, 3A, 3A)-family in PSL3(3), and thus a one-parameter family of polynomials

over Q(t). It is even possible to find a two-parameter family over Q(t) for the same Hurwitz

space. More precisely, explicit computations show that the surface on H, consisting of equivalence

classes of covers with partially ordered branch point set ({ zeroes of t3 + t2 + at + b}, 0,∞) (with

parameters a, b) is a rational surface. We found suitable parameters α and β, such that Q(α, β) is

the corresponding rational function field of two variables.

An explicit (and very nice, compared with the above one-dimensional version) parameterization of

the two-dimensional family is given by

fα,β(t, x) := f3
0 · f1 · x− t · g3

0 · g1, with

f0 := x3 + β · x2 + (β − 3) · x− 1

9
αβ2 +

4

9
αβ − 4

3
α,

f1 := x3 +
αβ2 − 4αβ + 12α− 3β2 − 9

(β − 3)2
· x2 +

αβ2 − 4αβ + 12α− 9β − 9

3(β − 3)
· x− 1,
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g0 := x3 + α · x2 +
1

3
αβ · x+

1

9
αβ − 1

3
α,

g1 := α · x3 +
4αβ − 3α+ 9

3
· x2 +

4αβ2 − 6αβ + 9α+ 9β − 27

9
· x− α.

In particular, suitable specializations yield further totally real PSL3(3)-extensions.

It is worth noting that fα,β (as a polynomial in x) also defines a genus zero extension with re-

spect to α (not just with respect to t!), although not in rational parameterization. The branch

cycle structure with respect to α consists of six involutions (all of cycle structure (24.15)).

Remark:

The next open cases with regard to totally real Galois extensions occur for the permutation de-

gree n = 14: there are no explicitly known totally real Galois extensions of Q with Galois group

PSL2(13) or PGL2(13).

For these groups, the genus zero approach will no longer work. This is obvious for PGL2(13), as

this group does not possess any generating genus zero tuples of length ≥ 4. For PSL2(13), there is

just one rational genus zero 4-tuple (of cycle type (2A, 2A, 2A, 3A)), with a Hurwitz curve of genus

g = 1.

One might therefore hope for an elliptic curve of rank ≥ 1, as in the above PGL2(11)-cases. How-

ever, explicit computation showed that this is an elliptic curve of rank zero (and more precisely,

can be defined by y2 = x3− 25x2 + 136x− 180), with no rational points leading to covers with real

fibers.



Chapter 9

Survey of almost simple groups as

monodromy groups of rational

functions over Q

By the Guralnick-Thompson conjecture, as phrased in [21] and answered positively in [17], there

are only finitely many non-abelian, non-alternating simple groups occurring as composition factors

of monodromy groups of f(X)− tg(X) with f, g ∈ C[X].

The question which of these groups are also monodromy groups of rational functions over Q cannot

be definitely answered unless one finds methods to decide the existence of rational points on arbi-

trary curves (and varieties of higher dimensions!). Nevertheless, it is useful to summarize partial

existence results.

Proposition 9.1. Let G be an almost simple, primitive permutation group of degree at most 120,

with a generating genus zero system of length at least 4 which gives rise to a rational function

t = f(X)
g(X) defined over Q, i.e. G = Gal(f(X)− tg(X) | Q(t)).1 Assume also that the socle soc(G) is

non-abelian, non-alternating.

Then soc(G) is isomorphic to one of the following:

• PSLn(q), for (n, q) ∈ {(2, 7), (2, 8), (2, 11), (2, 13), (3, 3), (3, 4), (4, 3), (5, 2), (6, 2)}.

• PSp4(3) or PSp6(2).

• PSU3(3) or PSU3(5).

• One of the five Mathieu groups M11,M12,M22,M23,M24.

1The primitivity of G therefore means that the rational function t is functionally indecomposable over Q.

105
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Proof. Extensive computation yields the genus zero systems of length ≥ 4 generating an almost

simple primitive permutation group of degree at most 120, with a socle not isomorphic to a cyclic

or alternating group.

The list is somewhat lengthy. We therefore only give the permutation groups that occur. In

the Magma database of primitive groups these are exactly PrimitiveGroup(n,k), with (n, k) ∈
{(7, 5), (8, 5), (9, 9), (11, 5), (11, 6), (12, 3), (12, 4), (13, 7), (14, 1), (21, 1), (21, 4), (21, 5), (21, 6), (21, 7),

(22, 1), (22, 2), (23, 5), (24, 3), (27, 12), (27, 13), (28, 1), (28, 2), (28, 6), (28, 12), (31, 9), (31, 10), (36, 16),

(36, 17), (36, 20), (40, 3), (40, 4), (40, 5), (40, 6), (45, 5), (50, 7), (52, 1), (56, 3), (57, 2), (63, 5), (63, 6), (66, 3)}.

The only isomorphism types of socles that occur in this list but can be excluded to yield a rational

function with four or more branch points defined over Q are PSL3(5) (there are only non-rational

4-tuples of permutation degree 31 in this group, and as PSL3(5) is self-normalizing in S31, it cannot

be the geometric monodromy group of a rational function over Q either) and PSL3(7) (there is

exactly one family of generating genus zero 4-tuples in PSL3(7) in its action on 57 points, namely

the class tuple (2A, 2A, 2A, 4A). However, regardless of the choice of branch points, there never

exists a complex conjugation in NS57
(PSL3(7)) for any of those tuples. Thus, R is not a field of

definition).

Furthermore, the complete list of primitive genus zero systems of length ≥ 5 is given in [33]. This

yields only composition factors contained in the statement of the proposition.

Remark: The above proposition does not cover all primitive genus zero systems in groups of the

described type. Namely, as we are interested in realizations over Q, tuples that violate rationality

conditions are neglected. Also, some genus zero systems can be excluded as they cannot yield a

rational function over Q by a reality argument.

Still, the remaining cases do not automatically yield a rational function defined over Q - they only

do if the corresponding Hurwitz space2 has a rational point.

We therefore summarize the cases that are certain to occur over Q, and describe the open cases

somewhat closer.

Proposition 9.2. The following non-abelian, non-alternating simple groups occur as the socle of

an almost simple primitive monodromy group G = Gal(f(X)− tg(X) | Q(t)) of a rational function

t = f(X)
g(X) over Q:

• Groups that occur as a composition factor of a group with an r-tuple of branch cycles, r ≥ 4:

soc(G) ∈ {PSL2(7), PSL2(8), PSL2(11), PSL2(13), PSL3(3), PSL3(4), PSL4(3), PSL5(2),

PSp4(3), PSp6(2),

M11,M12,M22}.
2Note that, unlike in the previous chapters, we do not require regular Galois extensions here, so the Hurwitz

spaces in question are the absolute Hurwitz spaces, for given permutation degrees.
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• Groups that are not included in the first case, but occur as a composition factor of a group

with a triple of branch cycles:

soc(G) ∈ {PSL2(16), PSL2(25), PSU3(3), PSU3(5), PSp4(4), HS}.

Proof. The following groups have a genus-zero 4-tuple satisfying a rationality condition, with a

rational Hurwitz curve:

PGL4(3) (the 4-tuple of classes (2A, 2A, 2C, 12A) has a single braid orbit of length 8, with a ratio-

nal Hurwitz curve; it is also a rational genus zero tuple in the action on 40 points, as the elements

of class 12A have three 12-cycles),

PSL5(2) (as shown in Chapter 6), PΓL3(4) (cf. Chapter 7), PSL3(3) and PSL2(11) (see [35] for

both groups; compare also Chapter 8), PSL2(8) (the class tuple (2A, 2A, 2A, 3A) has a rational

Hurwitz curve, and the corresponding family of degree-9 polynomials with group PSL2(8) was ex-

plicitly computed in [22]. This class tuple has genus 1 in the action on 9 points; note however that it

is a rational genus zero tuple in the action on 28 points!), PSL3(2) (e.g. [35]), Aut(M22) (e.g. with

the class tuple (2A, 2A, 2B, 11A), which has a rational Hurwitz curve even in the unsymmetrized

case, and the class 2A has an odd number of transpositions), M12 (once again, cf. [35]), M11 (see

the table in Appendix A), PSp4(3).2 and PSp6(2) (in the actions on 27 and 28 points respectively,

the tuples (2A, 2A, 4B, 6A) and (2A, 3A, 3B, 4A) in the respective groups are actually rigid genus

zero tuples!).

The only remaining group for the case of four branch points is PSL2(13). There is only one

genus zero 4-tuple in PSL2(13), namely the class tuple (2A, 2A, 2A, 3A), with a Hurwitz curve of

genus 1. Explicit computations show that this curve is of rank zero (cf. Chapter 8). There are,

however, rational points on this curve, which means that there is a regular PSL2(13)-extension

over Q in this family; and it can even be defined via a rational function as the normalizer of an

involution in PSL2(13) acts intransitively on its six transpositions, with two orbits of length 3.

An explicit example is t = f(x)
g(x) , with

f(x) = 71621 · x14 + 72813748 · x13 +
5838562093

2
· x12 +

52600723539

2
· x11 +

8439608322509

16
· x10

+
29564258518249

8
· x9 +

173259713244345

4
· x8 +

3732178629141755

16
· x7 +

123705336708929885

64
· x6

+
117292753322586205

16
· x5 +

1534815319893954371

32
· x4 +

1808975171989429353

16
· x3

+
39840349425506009289

64
· x2 +

10959850289285242821

16
· x+

52911123442028866197

16
,

g(x) = (x2 + 27) · (x2 + 23 · x− 27)3 · (x2 + 1/4 · x+ 239/8)3.

For the case of only three branch points, we only included socles of groups that have a rigid class

triple of conjugacy classes which are rational at least in the symmetric normalizer. Note especially
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the Higman-Sims group HS. Its automorphism group Aut(HS) is generated in two different ways

by rational rigid genus zero triples (satisfying also an oddness condition for rationality of the

stabilizer stem field) in the primitive action on 100 points, therefore it is the monodromy group of

rational functions over Q. This case is missing in the classification of sporadic monodromy groups

in [34].

Remarks:

• It should be noted that several of the above composition factors occur in different permutation

degrees.

A notable example is the group M12. It occurs as the monodromy group of a rational function

over Q with four branch points in permutation degree 12 (e.g. [35]), but it can also be shown

to occur in permutation degree 66, in the following way:

The generating 4-tuples of conjugacy classes (2A, 2B, 2B, 3B) in M12 yield a single braid orbit

of length 32. The corresponding (C2-symmetrized) Hurwitz curve has genus 1, and explicit

computations of the corresponding family of degree-12 covers yield that this is an elliptic

curve of positive rank, and more precisely can be defined by y2 = x3 − 48x2 + 525x+ 9998.

This yields infinitely many equivalence classes of M12-Galois extensions of Q(t); these cannot

be the Galois closure of rational functions of degree 12 over Q, as reality arguments show.

However, the class tuple (2A, 2B, 2B, 3B) is also a genus zero tuple in the action of M12 on

66 points, and this time the fixed field of a point stabilizer is necessarily a rational field, over

any field of definition. This is because the class 2A has cycle type 230.16 in this action, and

the centralizer in M12 of this involution acts intransitively on the 30 2-cycles, with two orbits

of length 15. By Lemma 3.7, this yields a place of odd degree in the fixed field of a point

stabilizer, thereby forcing this field to be a rational function field.

Similarly, M11 is the monodromy group of rational functions over Q of degree 11 as well

as 12. For degree 12, this can be seen immediately by the standard braid genus criterion, as

the class four tuple with cycle structures (24.14, 33.13, 33.13, 33.13) yields a single braid orbit

of length 63, and the (S3-symmetrized) Hurwitz curve is a rational genus zero curve.

For degree 11 however, there are no genus zero four tuples with a Hurwitz curve of genus

zero. Instead, the tuple of classes with cycle structures (24.13, 24.13, 33.12, 42.13) has a Hur-

witz curve of genus 2. Explicit computations of this curve yielded a “good” rational point,

allowing a non-degenerate cover of this family defined over Q. A possible parameterization is

given in Appendix A.

• In addition to the above results on almost simple groups, compare also the list of genus zero

tuples in groups of affine type given in [56]. This list yields only a few genus zero tuples of

length > 3 with a non-abelian, non-alternating composition factor.
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• Among the open cases (groups with rational genus zero 4-tuples, but no obvious rational

points on the corresponding Hurwitz space), the group PSL6(2) might be of special interest.

It has one (and only one) rational genus zero 4-tuple, of elements of orders (2, 2, 3, 3), with

a single braid orbit of length 48. The corresponding Hurwitz curve has genus 3, and the

imprimitive action of the braid group on the Nielsen class shows that this is a hyperelliptic

curve. It would be interesting to find out whether this curve has a “good” rational point,

leading to a PSL6(2)-realization over Q(t). The only way to find out seems to be explicit

computation.

Furthermore, a major reason for the degree restrictions in the previous propositions is the

group PSL7(2).

Question: Are there any rational genus zero 4-tuples generating PSL7(2)?

• The only other open cases (with our degree restriction) for the existence of rational func-

tions over Q with ≥ 4 branch points are for the socles PSU3(3), PSU3(5), M23 and M24.

For the first two socles, there is just one 4-point genus zero family each (in PSU3(3).2 resp.

PSU3(5).2). The corresponding Hurwitz curves are of genus 0 resp. 5. The first curve is

even a rational curve, i.e. leads to genus zero covers defined over Q, but it is not clear by

the standard arguments whether these covers can be defined by rational functions over Q.

However, rational functions over Q with three branch points do exist for both groups.

For M23 and M24, existence of rational functions defined over Q is still open for any number

of branch points, cf. Chapter 5.

As one more special application, we classify the monodromy groups of rational functions, defined

over Q, with exactly two places over infinity, i.e. either of the form t = f(X)
Xk

, 0 ≤ k ≤ deg(f) (i.e.

Laurent polynomials), or of the form t = f(X)
(X2−a)k

with a ∈ Q \ {0}.
This uses Müller’s classification of genus zero systems in primitive groups involving an element with

two cycles (in [45]), as well as results about complex conjugation (cf. Chapter 4) and about minimal

fields of definition of some 3-point covers (as in [38]).

Proposition 9.3. Let the primitive group G of degree 2k be the arithmetic monodromy group of a

rational function p(X) ∈ Q(X). Furthermore assume that p has denominator (X2−a)k, a ∈ Q\{0}.
Then one of the following holds

1. G is also the monodromy group of a rational Siegel function, in particular the poles of p can

be chosen real and algebraically conjugate.3 More precisely, one of the following holds:

• G = An or Sn in the natural action.

3Note that this does not mean that we can choose the poles real and conjugate for any ramification type fulfilling
the assumptions, but just for at least one.
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• G = PGL2(5), acting on 6 points

• G = AGL3(2), acting on 8 points

• An ≤ G ≤ Aut(An), for n ∈ {5, 6}, in the action on 10 points

• G = S4 o C2 in the (diagonal) action on 16 points

• G = C4
2 o S5, acting on 16 points.

2. G ∈ {PGL2(7), Aut(M22)}.

Proof. [45, Th. 4.8.] classifies the genus zero systems, in primitive groups of degree 2n, containing

and element with two n-cycles.

Theorem 5.2 of [45] then deals with the case of Siegel functions. There remains a finite list of cases.

Aut(M22) has been realized by Malle in [36] with a polynomial of the above form, so exclude this

group, as well as the groups that occur in the Siegel case. This leaves only two groups with 4-tuples,

namely M12 and M24, with the 4-tuples discussed in Chapter 4.

In PGL2(7), the class tuple (6.12, 23.12, 42) can easily be confirmed to give rise to a rational function

over Q with denominator (X2 + 7)4. For the remaining triples, in most cases the degree is small

enough to confirm via the Groebner basis approach that Q is not a field of definition.

The only groups of “larger” degrees are M24 (degree 24), PSL4(3), and PGL4(3) (both of degree

40).

M24 has three genus zero triples with an element with two 12-cycles, with element orders (2, 5, 12),

(2, 6, 12) and (3, 3, 12) respectively. In all cases, direct computation shows that complex conjugation

is always a fixed point free involution in M24.

For the degree-40 cases, it suffices to note that the elements of order 20 do not form a rational class

in PGL4(3), so Q cannot be a field of definition by the branch cycle argument.

Corollary 9.4. The non-abelian, non-alternating composition factors of monodromy groups of

rational functions p(X) ∈ Q(X) of even degree 2k with denominator (X2−a)k are exactly PSL2(7)

and M22.

Proposition 9.5. Let the primitive group G of degree n be the arithmetic monodromy group of a

Laurent polynomial t = f(X)
Xk
∈ Q(X), i.e. G = Gal(f(X)− t ·Xk|Q(t)). Assume furthermore that

G has a non-abelian, non-alternating composition factor. Then one of the following holds:

1. k ∈ {0, deg(f)}, and G = PΓL2(8), of permutation degree 9.

2. 0 < k < deg(f), and

• either G almost-simple, G ∈ {PGL2(7),M12, PGL2(13)}, of permutation degree 8, 12

and 14 respectively.

• or G = AGL3(2), acting as an affine group of degree 8.
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Proof. In the first case, k = 0 can be assumed w.l.o.g., so G is the monodromy group of a polynomial

over Q. These were classified in [46]. PΓL2(8) is the only group that fulfills all the requirements.

In the second case, G must contain a genus zero system involving an element with two cycles; also,

there must be an involution in G, representing complex conjugation in a connected component of

the punctured P1R next to the point with the two-cycle inertia group generator (without restriction

the point at infinity), and this element must not switch the two cycles (otherwise the two places

over t 7→ ∞ would be complex conjugate, contradicting the representation t = f(X)
Xk

).

In the affine case, the list in [46], together with the condition of a non-abelian non-alternating

composition factor, only leaves the cases G = AGL3(2) and AGL5(2); however, in the latter case,

the two-orbit element always belongs to a non-rational conjugacy class and therefore, as AGL5(2)

is self-normalizing in S32, by the branch cycle argument the corresponding rational function cannot

be defined over Q (and in fact, not even over R).

All other groups fulfilling the conditions of the propositions are almost simple, and more precisely

one of PSL2(7), PGL2(7),M11,M12, PGL2(13), PΣL3(4), PΓL3(4), Aut(M22),M24 and PGL4(3).

However, the branch cycle argument already excludes many possible class tuples, in particular

all for the groups M11, PΣL3(4), PΓL3(4) and PGL4(3). In M24, the only candidate left for a

two-orbit element is an element consisting of two 12-cycles; this case has already been dealt with

in Prop. 9.3.

Furthermore, regardless of the choice of branch points, none of the cases with (arithmetic) mon-

odromy group Aut(M22) has a complex conjugation fixing both cycles of the two-orbit element,

which is always an element of order 11. Similarly, in PSL2(7), the only rational genus zero class

tuple with a two-orbit element (classes (3A, 3A, 4A)) cannot be realized with a complex conjugation

inside PSL2(7) fixing both cycles of the element of order 4.

Remark: All the groups G in the above proposition do indeed occur as the Galois group of a

Laurent polynomial over Q; indeed all these groups have a rigid triple of rational conjugacy classes

fulfilling the conditions of the proposition, and explicit polynomials were computed long ago.



Chapter 10

An algorithm for algebraic patching

over complete valued fields

In the previous chapters we have only considered computational methods for genus zero covers.

The goal of the following chapter is to give an algorithm for computing covers of higher genus from

very simple starting covers, using the method of algebraic patching, as described e.g. in [27]. Cf.

also [55, Chapter 11]. We should note that this algorithm may be applied for non-Galois covers,

which is important for practical computations.

10.1 Theoretical background

Definition 10.1 (Patching Data). Let I be a finite set of cardinality at least two.

A patching data is a tuple (E,Fi, Pi, Q;Gi, G)i∈I , where E ⊆ Fi, Pi ⊆ Q are fields and Gi ≤ G are

subgroups of a finite group G, such that the following hold:

• Fi|E is a Galois extension with Galois group Gi, for all i ∈ I.

• Fi ⊆ P ′i := ∩j 6=iPj , for all i ∈ I.

• ∩i∈IPi = E.

• G is generated by the union of the subgroups Gi.

• Set n := |G|. Then, for all i ∈ I and all m ≤ n, every B ∈ GLm(Q) can be written as a

product B = B1B2 with B1 ∈ GLm(Pi) and B2 ∈ GLm(P ′i )

(This is called a Cartan decomposition.1)

1Cf. [27, Def. 1.1.1]. We demand Cartan decomposition for all m ≤ n (not just for n, as in [27]) in order to
proceed to intermediate fields of Galois extensions as in Lemma 10.2.

112
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The underlying idea is the following. Suppose the subgroups Gi have been realized as Galois

groups over E according to the above setting. The goal is to “patch” from these subgroups the full

group G as a Galois group over E. This will be achieved by constructing certain algebras over the

fields Pi.

Of course the last condition in the above definition is quite restrictive and doesn’t hold over arbi-

trary fields.

The method works over complete valued fields (and a descent argument can be used to generalize

it to ample fields), so two typical situations would be fields of Laurent series or p-adic fields.

One can however combine the methods exhibited here with the investigation of Hurwitz spaces

to proceed e.g. from p-adic integers to algebraic (or ideally rational) numbers, cf. Sections 10.2 and

10.3.

In our algorithm, for the sake of simplicity, we will always set |I| = 2. This somewhat simpli-

fies the situation in the above definition and also shortens the computations.

So assume that the group G is generated by the two subgroups G1 and G2. As we want easy Galois

extensions to start with, the groups Gi should be small and/or easy to handle. Ideally G1 and G2

are cyclic groups. If one works with simple groups G, this is not a strong restriction, as every finite

simple group is generated by two elements, i.e. by two cyclic groups.

[27, Chapter 1.1] gives a construction to obtain from a patching data a field F with Gal(F |E) =

G. The proof of this result also contains an explicit way2 to obtain a vector space basis of F over

E (we again restrict to the case I = {1, 2}):

Lemma 10.1. Let (E,Fi, Pi, Q;Gi, G)i∈{1,2} be a patching data. Let N := {
∑
ζ∈G aζζ | aζ ∈ Q},

regarded as a |G|-dimensional Q-vector space, and turn N into a Q-algebra via componentwise

multiplication.

Set Qi := PiFi and

Ni := {
∑
ζ∈G

aζζ ∈ N | aζ ∈ Qi, aηζ = aζη for all ζ ∈ G, η ∈ Gi}, for i ∈ {1, 2}.

Then the intersection F := N1 ∩N2 is a field which is Galois over E with group G.

A Q-basis of N which is contained in N1 ∩N2 can be obtained in the following way:

• Firstly, choose {λ1, ..., λm} as a set of coset representatives of G/G1 as well as (η1, ..., ηr) as

some ordering of the elements of G1, Then the following is a Q-basis of N inside N1:

v := (

n∑
ν=1

(zj−1)ην · λkην | j = 1, ..., r; k = 1, ...,m)

2(at least as far as Cartan decomposition can be done explicitly)
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with z a primitive element of Q1|P1.

• In the same way, obtain a basis u of N contained in N2.

• Let B ∈ GLn(Q) be the transition matrix of these bases, i.e. u = vB. Use Cartan decomposi-

tion to write B = B1B2, with B1 ∈ GLn(P1), B2 ∈ GLn(P2). Then uB−1
2 = vB1 is a Q-basis

of N inside N1 ∩N2.

Proof. See [27, Lemmas 1.1.2 and 1.1.3, as well as Remark 1.1.8].

As I learned from unpublished work of R. Schulze ([49]), this result can be generalized to

arbitrary intermediate fields of F |E. To do this, one needs to define an appropriate subalgebra of

the above algebra Q: Let U ≤ G be a subgroup and NU the set of fixed points in N under the

action of U given by

(
∑
ζ∈G

aζζ)u :=
∑
ζ∈G

auζζ.

This is again a Q-vector space, of dimension [G : U ].

Analogously, define NU
i , for the sub-algebras Ni defined in Lemma 10.1.

Lemma 10.2 (Generalization of Lemma 10.1 to arbitrary intermediate fields of F |E).

Let (E,Fi, Pi, Q;Gi, G)i∈{1,2} be a patching data. Let U ≤ G be any subgroup; F , N , N1 and N2

as above, and denote by FU the fixed field of U inside F and by NU the set of fixed points under

the action of U on N .

Then there is a Q-basis of NU contained in NU
1 ∩NU

2 = FU .

Proof. First, one constructs a basis of NU contained in NU
1 .

Let S := {g(1), ..., g(l)} be a complete system of (U,G1)-double coset representatives, i.e. the sets

Ug(i)G1 form a partition of G. For each g ∈ S, fix a primitive element z := zg of the extension

Fix(Ug ∩G1)|E, with Fix(Ug ∩G1) ⊆ F1 the fixed field, of degree [G1 : (Ug ∩G1)] over E. Then z

is also a primitive element of the corresponding fixed field inside Q1 := P1F1|P1. As P1 and F1 are

linearly disjoint, the degree of the latter field extension is still [G1 : (Ug ∩G1)]. Denote this degree

by r(= rg).

Now for each k = 0, ..., r − 1, define an element

ak := ak(g) :=
∑

ζ∈UgG1

aζ · ζ,

with augg1 := (zkg )g1 for u ∈ U and g1 ∈ G1.

Then ak ∈ N1 and ak ∈ NU , as one easily verifies. Therefore ak ∈ NU
1 .

Doing this for all g ∈ S, one obtains a total of [G : U ] = dimQN
U elements ak(g). It remains to

show that these are linearly independent over Q.

Let {ζ1, ..., ζm} be a right transversal of U in G; then s := (
∑
σ∈U 1 ·σζk | k = 1, ...,m) is a Q-basis
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of NU . We need to show that the transformation matrix B such that sB = (ak(g) | g ∈ S, k =

0, ..., rg − 1) is non-singular.

But upon permuting the basis s appropriately, this matrix becomes a block diagonal matrix, con-

sisting of Vandermonde blocks of the form


1 z · · · zr−1

1 zg1 · · · (zg1)r−1

...
...

...
...

1 zgr−1 · · · (zgr−1)r−1

, with {id, g1, ..., gr−1}

a right transversal of Ug ∩G1 in G1.

As z is a primitive element of Fix(Ug ∩ G1)|E, the elements z, zg1 , ..., zgr are pairwise different,

so the Vandermonde block is invertible.

This proves that B is invertible as well, so (ak(g) | g ∈ S, k = 0, ..., rg − 1) is a Q-basis of NU .

In the same way, obtain a basis contained in NU
2 . A basis contained in the intersection NU

1 ∩NU
2

is now obtained just as in the previous lemma, by applying Cartan decomposition.

This result is quite important for explicit computations, as the degree of a faithful action of G

is often dramatically smaller than the group order and therefore the size of the matrices involved

in the computation will decrease correspondingly.

In particular, in the case that G is a primitive permutation group (with point stabilizer U), each

of the basis vectors obtained via Lemma 10.2 is either contained in the base field E or already a

primitive element of FU |E.

We now turn to the explicit computation of extensions with given ramification.

Let G be a transitive permutation group of degree n and U ≤ G a point stabilizer. Let K be a

complete valued field with ultrametric absolute value | · |, e.g. a p-adic field or a Laurent series field,

and K(t) the rational function field.

Define two functions w1 := r
t−c1 and w2 := r

t−c2 , where |r| ≤ |c1 − c2|, r, c1, c2 ∈ K and r 6= 0.

Following [27, Chapter 3], we consider the rings of convergent power series K{wi} := {f =∑∞
n=0 ai,nw

n
i | ai,n ∈ K, ai,n → 0 for n→∞} (i = 1, 2), and their quotient fields.

The starting point of the computations will be the realization of the groups Gi (with prescribed

ramification) within these fields.

To do this, choose the groups Gi and the inertia group generators for the Gi-extensions such

that these extensions can easily be computed. Typically, |Gi| will be prime to char(K) (to ensure

tame ramification), and generating systems (σ1,i, ..., σri,i) of Gi will be chosen such that the image

on each orbit of Gi is a genus zero system. A standard example would be to choose G1 = 〈σ1〉
and G2 = 〈σ2〉 to be cyclic groups with order prime to char(K), and the generating systems to be

(σ1, σ
−1
1 ) and (σ2, σ

−1
2 ).
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Algorithmic patching of Galois groups from cyclic subgroups

So assume from now on that G1 and G2 are cyclic and G = 〈G1, G2〉 (note however, that the

following algorithm can be adapted to non-cyclic Gi as well).

Assuming that K contains the |G1|-th roots of unity, and the characteristic is prime to k1 := |G1|,
a genus zero G1-extension of K(t) is simply given by K(x)|K(t) with xk1 = t. However, for

the patching algorithm one needs to construct a Galois extension of K(t) with group G1 within

Quot(K{w1}). To ensure this, points of K(t) ramifying in K(x) should be “close” to each other

(in the ultrametric absolute value of K, extended to K[t] via setting ||t|| := 1).

For K = Qp, one can e.g. choose w1 7→ ∞ and w1 7→ 1
p as the ramified points; one possibility to

obtain this would be to choose x such that xk1(pw1 − 1) = −1.

For K = K0((z)), for a base field K0, one can similarly choose the points w1 7→ ∞ and w1 7→ 1
z .

The element x can then be expanded as a power series in pw1 (or zw1 respectively), i.e. we can

demand x ∈ K{w1}.

Also, changing to t-coordinates, the branch points P1 and P2 fulfill |P1 − P2| = |rp| resp. |rz|,
i.e. |P1 − P2| < |r| in all cases.

Repeat this for a G2-extension within K{w2} (by choosing two branch points with “large” w2-

coordinates this time). In t-coordinates, one again gets |P3 − P4| < |r|, and apart from this,

mini∈{1,2},j∈{3,4} |Pi − Pj | = |c1 − c2| ≥ |r|, by the definition of w1 and w2.

This choice of branch points will help to control the ramification behaviour of the eventual Galois

extension with group G.

Now, define K{w1, w2} = {z1 + z2 | zi ∈ K{wi}} (this is a ring, and upon setting ||a0 +∑
n∈N a1nw

n
1 +

∑
n∈N a2nw

n
2 || := max({|a0|} ∪ {|a1n| | n ∈ N} ∪ {|a2n| | n ∈ N}) for a0, ain ∈ K,

K{w1, w2} becomes the completion of K[w1, w2] with respect to the norm || · ||, cf. [27, Chapter 3]).

Then the following yields a patching data (E,Fi, Pi, Q;Gi, G)i∈{1,2}, as proven in [27, Prop. 4.4.2]:

E := K(t), P1 := Quot(K{w2}), P2 := Quot(K{w1}), Q := Quot(K{w1, w2}),

and F1 ⊆ P2 and F2 ⊆ P1 the two Galois extensions of E with groups Gal(F1|E) = G1 and

Gal(F2|E) = G2.

With the above choices of defining equations for the Gi-extensions, it is easy, following the proof of

Lemma 10.2, to obtain a basis of NU contained in NU
1 , and more precisely a coordinate matrix (with

regard to the standard basis s introduced in the proof of Lemma 10.2) with entries in Quot(K{w1});
and analogously for NU

2 and Quot(K{w2}).
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Note that these matrices are of a special form, as the proof of Lemma 10.2 shows: they arise

from block matrices with Vandermonde blocks after suitable permutations of rows, depending on

the ordering of the standard basis s in the proof of Lemma 10.2. Therefore, their determinants,

adjoint matrices etc. can be computed with comparatively little effort (cf. e.g. [54]).

To obtain from this a basis of the degree-n field extension FU |K(t) (U being a point stabilizer

in G), and in particular a primitive element of this extension, we need an explicit realization of

Cartan decomposition in GLn(Q). We do this by following the proof of [27, Lemma 3.4.3], adapted

to our specific patching data.

Begin with matrices A1 and A2 parameterizing bases of NU contained in NU
2 and NU

1 respec-

tively. The proof of Lemma 10.2 outlined the construction of these matrices Ai. We give a more

detailed description of this construction for the case of cyclic subgroups Gi:

Let (a1,1, ..., a1,r1) · · · (al,1, ..., al,rl) be a cycle decomposition of σ1 (the generator of G1). As U is a

point stabilizer of G, the (U,Gi)-double coset representatives can be identified naturally with the

orbits of G1, i.e. the cycles of σ1. Furthermore, for each double coset representative g, one needs a

right transversal of Ug ∩ G1 in G1 to fill up Vandermonde blocks as in the proof of Lemma 10.2.

The elements of this right transversal can be identified naturally with the elements of the respective

orbit of G1. Choosing such a right transversal for each double coset representative eventually yields

a right transversal of U in G, to be identified with the tuple t := (a1,1, ..., a1,r1 , ..., al,1, ..., al,rl).

Each element of this right transversal yields a row of a representation matrix, and because of the

ordering of this transversal, the resulting matrix will be a Vandermonde block matrix.

Now, the standard basis s in the proof of Lemma 10.2 also corresponds to a right transversal of U in

G. However, this basis needs to be in a fixed order (not depending on G1, G2). We therefore choose

the right transversal for the basis s such that it can be identified with the tuple (1, ..., [G : U ]).

The matrices Ai are coordinate matrices with regard to this standard basis. To proceed from the

Vandermonde block matrix to the correct coordinate matrix Ai, one needs to observe that the first

row of the block matrix should actually be row number a1,1, the second one should be number a1,2

etc.

Thus, permute the rows of the block matrix via the permutation τ : i 7→ ti (for i = 1, ..., [G : U ]),

with the above tuple t.

Now we have obtained the matrices A1 and A2. Furthermore, by the special choice of primi-

tive elements described above, the entries of A1 are elements of K{w2} ⊆ P1, and those of A2 are

in K{w1} ⊆ P2.

By the Weierstrass preparation theorem (e.g. [27, Cor. 2.2.5]), the determinants of A1 and A2

can be decomposed as detAi = hi · u−1
i , with units ui ∈ K{wj}× and polynomials hi ∈ K[wj ],

j ∈ {1, 2} \ {i} (and this decomposition can be explicitly obtained by a simple algorithm).
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LetBi be the adjoint matrix ofAi (i.e.AiBi = det(Ai)·I), and set C1 := u1B1A2 and C2 := u2B2A1.

Now, approximate the matrix C2 in the norm ||·|| of K{w1, w2} induced by the ultrametric absolute

value of the field K. More precisely, using the Weierstrass division theorem, for each entry (C2)i,j

of C2 write

(C2)i,j = ci,j · h1h2 + bi,j ,

with ci,j ∈ K{w1, w2} and polynomials bi,j ∈ K[w1, w2] of degree less than the pseudo-degree of

h1h2 (which is defined as the highest degree of a monomial with the maximal norm among all

the monomials of the unique Mittag-Leffler expansion (K{w1, w2} 3)h1h2 = a0 +
∑
n∈N a1nw

n
1 +∑

n∈N a2nw
n
2 ). Again the ci,j and bi,j can be explicitly determined by a simple algorithm.

Now for each ci,j , find (c0)i,j ∈ K[w1, w2], such that ||ci,j − (c0)i,j || < 1
||C1|| . For K a p-adic

or a Laurent series field, this is simply achieved by truncating the expansion of ci,j .

Then let M ∈Mn(K[w1, w2]) ⊂Mn(K(t)) be the matrix consisting of the entries h1h2(c0)i,j + bi,j .

Furthermore, set M̃ := I − C1M0, where M0 is the matrix consisting of the entries ci,j − (c0)i,j .

Then ||I − M̃ || = ||C1M0|| < 1 by the definition of M0, and this allows a Cartan decomposition for

the matrix M̃ (cf. [27, Lemma 3.4.2]), i.e. M̃ = M̃1 · M̃2 with M̃i ∈ GLn(Pi).

The columns of the matrix V := A2 ·M · M̃−1
2 then yield a basis of NU contained in NU

1 ∩NU
2 .

Here the matrix M̃−1
2 is determined by an explicit implementation of Cartan decomposition (see

Chapter 11 for a Magma implementation, and cf. again [27, Lemma 3.4.2] or [55, Lemma 11.14]).

Note especially that the whole algorithm works without explicit inversion of the occurring matrices

over complete valued fields, which is important as in practice, p-adic or Laurent series expansions

will only be given up to a fixed precision.

Once a vector space basis (and in particular a primitive element x for the extension FU |K(t))

is found, one needs to retrieve the minimal polynomial of x over K(t).

This is done by looking for algebraic dependencies between series expansions of sufficient precision

for x and t, similarly as in previous chapters.

We know the x-degree of the dependency, as this is simply the permutation degree [G : U ]; for the

degree in t however, we have to guess.

(We noticed, however, that with our implementation, and with cyclic subgroups G1 = 〈σ1〉 and

G2 = 〈σ2〉 such that (σ1, σ
−1
1 , σ2, σ

−1
2 ) is a genus-g tuple of G, the t-degree [G : U ] + (g − 1) works

in many examples.)
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10.2 Connection with Hurwitz spaces

Under suitable normalization of the Gi-extensions, as outlined above, the set of places of K(t) that

ramify in F |K(t) will be the union of the sets of places that ramify in Fi|K(t). Furthermore, the

inertia subgroups of places in Fi|K(t) can be mapped isomorphically onto the corresponding inertia

subgroups in F |K(t) (e.g. [55, Remark 11.24]).

If char(K) = 0 and the extension F |K(t) can be defined over K̃(t) with some field K̃ ⊆ K ∩ C,

this observation can be made even more precise by means of the theory of covering spaces: If one

begins with the above realizations of cyclic groups G1, G2 ≤ G, the extension F̃ |K̃(t) arising via

descent of the base field will have a branch cycle description of the form (σ1, σ
−1
1 , σ2, σ

−1
2 ).

Especially for K = Qp with a “good” prime p, this may be used to obtain information about

the Hurwitz curve corresponding to a family with this branch cycle description.

I.e., the above algorithm will yield p-adic approximations of polynomials for function field ex-

tensions F |Qp(t) with given ramification. It may not be immediately obvious that the extension

F |Qp(t) will in fact lead to a function field extension defined over a number field. However, for

suitable choice of the prime p and the ramification locus, descent arguments yield that the corre-

sponding Galois cover can be defined over Qp ∩Q, and therefore in fact over some number field, cf.

[24, Th. 2.10 with Cor. 2.11].

If the Hurwitz space belonging to the ramification data has a rational point, then sometimes one can

choose the branch points accordingly, in order to obtain rational polynomials (or polynomials over

small number fields, which usually would not be the case for arbitrary choice of the ramification

locus). Note however that there are restrictions arising from the conditions on the ramification loci

in w1 and w2.

E.g., when working over a Laurent series field K((z)), with K ⊆ C, the ramification locus t 7→
(0, z, 1, z + 1) (corresponding to inertia group generators (σ1, σ

−1
1 , σ2, σ

−1
2 )) fulfills the conditions

on distance of branch points given in the previous section. PGL2-action can map this ramification

locus to (0, z2, 1,∞). Set λ := z2, then the reduced Hurwitz curve can be defined by some polyno-

mial equation h(λ, α) = 0.

Again by an algebraization theorem such as [24, Cor. 2.11], our Galois cover can in fact be defined

over the field of algebraic Laurent series K((z))∩K(z), i.e. even over some function field extension

of K(z). However, the field of definition will certainly contain K(λ, α).

Therefore, in order to obtain, via specialization of z into K, a cover defined over K with the pre-

scribed ramification type, it is necessary to find a K-rational point in K(z, α), which will usually

be a degree 2 extension of the function field K(λ, α) of the Hurwitz curve. Compare the second

computational example in the following section.
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Another possibility is to repeat the algorithm several times with different sets of branch points

and thereby obtain data for interpolation in the Hurwitz space. This has been done in the first

computational example in the next section. In that concrete example, we were able to determine al-

gebraic dependencies over Q for all coefficients in the model, and therefore obtain an explicit family

of polynomials over Q(t). Although this may not always be possible, even an algebraic dependency

between two coefficients may yield a defining equation for the Hurwitz curve, which then may be

used to search for rational points.

10.3 Computational examples

We illustrate the algorithm with a simple computational example: we patch Galois extensions with

group S3, with four ramification points and branch cycles of cycle type (3, 3, 2.1, 2.1). This is a

genus-one tuple in the action on 3 points. The corresponding Nielsen class is especially short,

namely of length 2, with transitive braid group action, and braid orbit genus zero (even in the

unsymmetrized case).

We start with two cyclic genus zero Galois extensions over Qp(t) with p = 73 (here the prime can be

chosen arbitrarily, as long as the base field contains the sixth roots of unity), with groups 〈(1, 2, 3)〉 ∼=
C3 and 〈(1, 2)〉 ∼= C2 respectively. We parameterized these with the following polynomials:

• f1 := x3 · (k · p · w2 − 1) + 1 for the group C3,

• f2 := p · w1 · (−(p+ 2) + (p− 2) · x2)− (x2 − 1) for the group C2.

Here w1 := 1
t−1 , w2 := 1

t , and k ∈ N some integer (as we will later iterate over k).

This leads to the following ramification points:

• w2 7→ 1
kp and w2 7→ ∞ for a root field of the polynomial f1,

• w1 7→ 1
p(p−2) and w1 7→ 1

p(p+2) for a root field of the polynomial f2.

In particular, the ramification loci fulfill the conditions described in the preceding section.

In the variable t, this will yield the ramification locus {0, kp, p(p − 2) + 1, p(p + 2) + 1} for the

“patched” S3-extension.

We develop the occurring p-adic integers to a precision of p100 and apply the algorithm described

above to obtain a basis (in the form of columns of a matrix) of a degree-3 extension of Qp(t) with

the above ramification structure. The first column vector turns out to be constant (i.e. an element

of the base field), so we choose the second column vector as a primitive element x and search for

minimal algebraic dependencies between x and w1. We know that the degree in x must be 3; the

degree in w1 turns out to be 3 as well.
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We repeat this procedure sufficiently often by moving one of the branch points (i.e. varying k in

the above definition of f1). So we obtain polynomial dependencies pi(w1(i), x(i)) = 0, all of degree

3 in each of the variables, and with coefficients in Qp. Now interpolate the values of coefficients of

any two fixed monomials w
mj
1 xnj (j = 1, 2) to obtain algebraic dependencies describing the Hur-

witz space. In our case, all the coefficients occurring in the model could be expressed as rational

functions in one particular coefficient a (namely the coefficient at x · w1), which is not particular

surprising, as the braid orbit is very short and the Hurwitz curve is rational.

The algebraic dependencies obtained in this way are still a priori over Qp, but by good choice

of the model, we can expect their coefficients to actually be rational numbers.

This led to the following polynomial f(a,w1, x) ∈ Q(a,w1)[x] (with independent transcendentals

a,w1):

f(a,w1, x) := 1+a1w1+a2w
2
1 +a3w

3
1 +73axw1+a4xw

2
1 +a5xw

3
1 +1/8x3+a6x

3w1+a7x
3w2

1 +a8x
3w3

1,

with

a1 := −8/27 · a3 − 5401,

a2 := 64/3 · a3 − 10731,

a3 := 584/27 · a3 − 5329,

a4 :=
−584/27 · a6 − 388944a3 − 10503459/8

a2
,

a5 :=
−584/27 · a6 − 389017a3 − 10503459/8

a2
,

a6 :=
−2/27 · a6 − 15841/8 · a3 − 143883/32

a3
,

a7 :=
8/729 · a12 + 2336/3 · a9 + 83649313/8 · a6 + 94531131/2 · a3 + 20702317689/512

a6
,

a8 :=
−41464/729 · a12 − 55240414/27 · a9 − 147243323517/8 · a6 − 3974078243781/32 · a3 − 107300112582087/512

a6
.

Furthermore, after replacing x by x/a (with the above coefficient a), it actually turns out that all

the coefficients in the model become rational functions in s := a3. I.e., f(a,w1, x/a) =: g(s, w1, x) ∈
Q(s, w1)[x]. Now the model can be somewhat simplified by applying some more fractional linear

transformations in the variables s, w1 and x. In particular, the places of Q(s)(w1) ramifying in

Q(s, w1)(x) can be transformed to w1 7→ 0, w1 7→ 1, w1 7→ ∞ and w1 7→ s2.



CHAPTER 10. AN ALGORITHM FOR ALGEBRAIC PATCHING 122

This leads to the following, somewhat nicer polynomial:

g̃(s, w1, x) := w1·(w1−s2)2·x3−3(w1−
372

362
)(w1−1)(w1−s2)x−2(w1−1)(w2

1+(−25

12
s+

37

432
)w1+

372 · 71

26 · 36
s− 373

26 · 36
).

Compare the computations in [8], which feature the same class tuple as a computational example,

although with a different approach.

We include another example to demonstrate some techniques over fields of Laurent series: We

try to patch an A4-extension with the (genus one) class tuple (3A, 3A, 3B, 3B) as ramification type

from two cyclic extensions with Galois group C3, e.g. G1 = 〈(1, 2, 3)〉 and G2 = 〈(1, 2, 4)〉. As the

base field we choose F13((z))(t) (note again that the prime field contains the third roots of unity).

We set r := 5, w1 := r
t−1 and w2 := r

t and chose polynomials f1(x,w2) := x3 · (zw2 − r) + r

and f2(x,w1) = zw1 · (3 + 2x3)− (x3 − 1) for the C3-extensions. In w1-coordinates, this will yield

the ramification locus ( 5
z−1 ,−5, 7

z ,
4
z ). Applying the above patching algorithm, we obtain (a z-adic

approximation of) an algebraic dependency between w1 and a primitive element x of the desired

degree-4 extension (of degree 4 in both variables):

f(x,w1) :=

4∑
i,j=0

αi,j · wi1 · xj = 0.

In our case, α0,0 = 0 and α1,0 = z.3 Next, we try to find algebraic dependencies between all the

power series αi,j . It turns out that α1,0(= z) and α0,1 fulfill a polynomial equation of relative

degrees 2 and 6. This equation generates a function field of genus zero, and all the other αi,j lie

in this field. To find the connection of this function field with the Hurwitz curve, observe that

the above ramification locus can be mapped to (1, 0,∞, 5 (z+3)(z+6)
z2 ) via PGL2. So after setting

λ := 5 (z+3)(z+6)
z2 , the Hurwitz curve, reduced modulo 13, should yield a degree 3 extension of F13(λ),

as the corresponding braid orbit is of length 3. Indeed, one obtains a tower of genus zero function

fields, as given in Fig. 10.1.

Here the extension F13(a)|F13(λ) is ramified over λ = 0, 1 and ∞, with inertia group generators of

cycle structure (2.1), (3) and (2.1). This corresponds exactly to the ramification given by the braid

group action on the braid orbit of length 3.

All the other coefficients of our model lie in a degree-4 extension of F13(a). It can therefore be

expected that appropriate parameter changes will lead to a model with all the coefficients inside

F13(a).

Still, as the function field containing all our coefficients is of genus zero, specialization to appropriate

3The concrete coefficients, as well as the precise implementation in Magma, are included in a plain-text file.



CHAPTER 10. AN ALGORITHM FOR ALGEBRAIC PATCHING 123

Figure 10.1: Tower of function fields inside F13((z)) containing the coefficients of f(x,w1)
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values in F13 leads to polynomials over F13(t) with the desired inertia groups, such as the following:

f̃(x,w1) := (3w4
1 + w3

1 + 11w1 + 12) · x4 + (7w4
1 + 11w3

1 + 4w1 + 2) · x3

+(12w4
1 + 8w3

1 + 8w2
1 + 4w1 + 3) · x2 + (5w4

1 + 7w3
1 + 4w2

1 + 10w1 + 8) · x+ w4
1 + 2w3

1 + w2
1 + 2w1.

10.4 Proposals for further research

The above algorithm is very expensive because of the Cartan Decomposition of matrices with very

big entries. It would be quite desirable to have an efficient algorithm for this decomposition. At

the moment I cannot use it to compute covers of “interestingly” large degree.

With a faster algorithm, the following families, amongst others, deserve attention:

• PSL2(16), (2A, 2A, 3A, 3A).

PSL2(16) is the group of smallest permutation degree that has not yet been proven to be a

regular Galois group over Q (for a non-regular realization, cf. [4]). The tuple proposed here

is a genus-2 tuple in the action on 17 points, with a braid orbit of length 252. The reduced

Hurwitz space is a curve of genus gsym = 31.

• M24, (2B, 2B, 3A, 3A). This is a genus-1 tuple in the action on 24 points, with a braid orbit

of length l = 290 and a reduced Hurwitz space of genus gsym = 14.
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If the Hurwitz space has a rational point, and in addition the genus-1-curve defined by the

degree-24 polynomial at this point has suitable points, one would obtain M23, not over Q(t),

but at least over Q.

The usual reality arguments at least assure the existence of real points for both the Hurwitz

space and the genus-1 curve corresponding to the M23-stem field.



Chapter 11

MAGMA programs

We give Magma implementations for the most important algorithms involved in the computations

in the previous chapters.

11.1 Monodromy verification

The first algorithm computes the monodromy (in the form of a tuple of permutations) corresponding

to a function field extension C(X, t)|C(t).

monodromy:=function(f,ram,base, contr, sectors)

/*f in C[X][t]: a complex polynomial in 2 variables,

ram: the list of finite ramification points (in t!),

base (in C, not a ramification point): the base point

Note that for this implementation the base point should NOT be collinear

(or too close to it) with any two finite ramification points

contr: A contraction constant defining the stepsizes when moving from the

base point towards a branch point.

sectors: An integer defining the number of steps for a 360-degree turn

around a branch point

*/

local f0, r0, r1, r, r_before, perm, mx, min, index, mindist_ram, m, t0;

/*Compute the roots of the specialized (by sending t to base) polynomial

*/

f0:=Evaluate(f,base);

r0:=[root[1]: root in Roots(f0)];

125
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/* A (somewhat arbitrary) constant to specify how close one should walk towards

a branch point before circling around it

*/

mindist_ram:=1/4*Min([Abs(ram[i]-ram[j]): i,j in [1..#ram]| i ne j]);

/*perm will contain a sequence of permutations describing the monodromy

*/

perm:=[];

for i:=1 to #ram do

r:=r0;

t0:=base;

/*

walking on the line from the base point to the i-th ramification point,

until sufficiently close, and sort the roots of the new specialized polynomials

in accordance with the "old" roots

*/

while Abs(t0-ram[i]) gt mindist_ram do

t0+:=(ram[i]-t0)*contr;

f0:=Evaluate(f,t0);

r1:=[root[1]: root in Roots(f0)];

m:=[];

for j:=1 to #r0 do

min,index:=Min([Abs(r[j]-r1[j2]): j2 in [1..#r0]]);

m:=Append(m,r1[index]);

end for;

r:=m;

end while;

r_before:=r; //The roots before turning around the ramification point

/*

circling around the ramification point (counter-clockwise)

*/

for k:=1 to sectors do

t0:=(t0-ram[i])*ComplexField()!(-1)^(2/sectors)+ram[i];
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f0:=Evaluate(f,t0);

r1:=[root[1]: root in Roots(f0)];

m:=[];

for j:=1 to #r0 do

min,index:=Min([Abs(r[j]-r1[j2]): j2 in [1..#r0]]);

m:=Append(m,r1[index]);

end for;

r:=m;

end for;

/*

creating the permutation induced by the monodromy action by comparing

the roots before and after the turn

*/

mx:=[];

for j:=1 to #r0 do

min,index:=Min([Abs(r[j]-r_before[j2]): j2 in [1..#r]]);

mx:=Append(mx,index);

end for;

Append(~perm, Sym(#r0)!mx);

end for;

return perm;

end function;

11.2 p-adic lifting of solutions and algebraic dependencies

/*

For a mod-p-reduction of a non-singular point on a Hurwitz space,

produce a sequence of lifts, with different ramification loci.

Special cases: a) For cover with 3 ramification points: apply just one lift.

b) Works over a LaurentSeries-Ring K[[mu]] (instead of p-adic ring Z_p) as well.

In this case, also apply just one lift, with branch locus depending on mu

pols: List of r monic polynomials f_1,...,f_r over a (r-2)*deg-dimensional polynomial ring

(with deg as defined below). Each f_i is the specialization of f(X)-tg(X) at
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t-> ramified point. Here we demand that the last ramified point is infinity, i.e. f_r=g

NOTE: f_r should be monic, while the other f_i should come with the correct leading

coefficients!

ram_loci: a list of lists! Each element is a list of r-1 finite ramification points,

corresponding to f_1,...,f_{r-1}

(the r-th ramification point is demanded to be t -> infinity)

To allow p-adic lifting, all branch point tuples need to coincide modulo p!

v: Sequence of length (r-2)*deg; a mod-p-solution of the system of equations

deg: Degree of the polynomial f(X)-tg(X) in X.

steps: Number of Newton iterations that should be applied

*/

padiclifts:=function(pols, ram_loci, v, deg, steps)

local lift, eqns, m, j, v1, v2;

lift:=[];

for k:=1 to #ram_loci do

/*A set of equations that the lifted coefficients have to fulfill:*/

eqns:=[];

for i:=2 to #pols-1 do

Append(~eqns, pols[1]-(ram_loci[k][i]-ram_loci[k][1])*pols[#pols]-pols[i]);

end for;

m:=[];

for i:=1 to #eqns do for j:=0 to deg-1 do Append(~m,Coefficient(eqns[i],j));

end for; end for;

j:=JacobianMatrix(m);

v1:=v;

for i:=1 to steps do

v2:=NewtonStep(v1,m,j); //to be defined: Newton step should return v1-j^-1(v1)*m
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v2[1]-v1[1]; //output for convenience/control

v1:=v2;

end for;

Append(~lift,v2);

end for;

return lift;

end function;

/*

Function looking for algebraic dependencies of fixed degree between two coefficients

of a model, by interpolating through a sequence of p-adic lifts

a,b: Two sequences of the same length providing interpolation points

(should have length at least (deg_a+1)*(deg_b+1) in order to produce meaningful result)

deg_a,deg_b: intended relative degrees of the algebraic dependencies

(The goal is usually to find a dependency of minimal degree, i.e. d=1 below)

*/

algdep:=function(a,b, deg_a,deg_b)

local m, mat, ker, d, v, p, f;

m:=[];

for i:=0 to deg_a do

for j:=0 to deg_b do

for k:=1 to #a do

Append(~m,a[k]^i*b[k]^j);

end for; end for; end for;

mat:=Matrix(Parent(a[1]),(deg_a+1)*(deg_b+1),#a,m);

ker:=Kernel(mat);

d:=Dimension(ker);

/*Case that no dependency is found:

*/

if d eq 0 then return d;

end if;
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v:=Basis(ker)[1];

p<t,x>:=PolynomialRing(Parent(a[1]),2);

f:=p!0;

for i:=1 to (deg_a+1)*(deg_b+1) do

f+:=v[i]*x^((i-1) mod (deg_b+1))*t^((i-1) div (deg_b+1));

end for;

return d,f;

end function;

/*

Analogon of algdep for Laurent-series-lifts

*/

algdep_laurent:=function(a,b, deg_a,deg_b, limit)

local m, mat, ker, d, v, p, f, z;

m:=[];

for i:=0 to deg_a do z:=a^i;

for j:=0 to deg_b do

if j ne 0 then z*:=b; end if;

for k:=0 to limit-1 do

Append(~m,Coefficient(z,k));

end for; end for; end for;

mat:=Matrix(CoefficientRing(Parent(a)),(deg_a+1)*(deg_b+1),limit,m);

ker:=Kernel(mat);

d:=Dimension(ker);

if d eq 0 then return d;

end if;

v:=Basis(ker)[1];

p<t,x>:=PolynomialRing(CoefficientRing(Parent(a)),2);

f:=p!0;

for i:=1 to (deg_a+1)*(deg_b+1) do

f+:=v[i]*x^((i-1) mod (deg_b+1))*t^((i-1) div (deg_b+1));

end for;
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return d,f;

end function;

/*

Function retrieving a rational number (with denominator not divisible by p)

from its (sufficiently precise) development as a p-adic integer.

Typically, u is a p-adic integer computed to precision m (some power of p)

*/

padicToRational:=function(m,u)

local a1, a2, v1, v2, q, temp;

a1:=m;

a2:=Integers()!u; v1:=0; v2:=1;

for i:=1 to m do // Return will in fact be reached after much less than m steps

if v2 ge (m/2)^(1/2) then return []; end if;

/*No rational number can be retrieved

*/

if Abs(a2) lt (m/2)^(1/2) then return [a2,v2]; break i;

else q:=Floor(a1/a2);

a1:=a1-q*a2;

v1:=v1-q*v2;

temp:=a2;

a2:=a1; a1:=temp;

temp:=v2;

v2:=v1; v1:=temp;

end if;

end for;

end function;
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11.3 Braid group action

/*

function checking whether two r-tuples of group elements are simultaneously

conjugate via an element in a prescribed group

*/

isAllConjugate:=function(tup1,tup2,group)

local a, b, tup1_neu;

if #tup1 eq 0 then return true;

end if;

if not IsConjugate(group, tup1[1], tup2[1]) then return false;

end if;

a,b:=IsConjugate(group, tup1[1], tup2[1]);

tup1_neu:=[x^b: x in tup1];

return $$(Exclude(tup1_neu, tup1_neu[1]),Exclude(tup2, tup2[1]),

Centralizer(group, tup2[1]));

end function;

/*

function receiving a tuple of elements of a finite group, applying to it

the action of the braid beta_i.

If i is negative, the inverse of the |i|-th braid is applied

*/

braid:=function(m,i)

local a;

if i gt 0 then

a:=m[i+1]; m[i+1]:=m[i+1]^-1*m[i]*m[i+1];

m[i]:=a;

else

a:=m[-i]; m[-i]:=m[-i]*m[-i+1]*m[-i]^-1;

m[-i+1]:=a;

end if;

return m; end function;
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/*

A function finding a minimal (i.e. of cardinality one less than the length of the

braid orbit) sequence of braids which, when applied (in the given order) to a given

starting tuple, produce the whole braid orbit.

The length of the braid orbit is assumed to be known, in order to allow quicker

termination.

br is a list of the braids that should be applied.

Each braid is given as a sequence of non-zero integers i representing the product of the

respective braids beta_i.

*/

minimal_braidset:=function(tuple, length, group, br)

local m, braids, checked, new_tuple, is_contained;

m:=[tuple];

braids:=[];

/*

For every braid in br, keeping a list to which elements of m this braid has already

been applied.

*/

checked:=[];

for i:=1 to #br do Append(~checked,0); end for;

while #m lt length do

for i:=1 to #checked do

checked[i]+:=1;

/* Apply br[i]

*/

new_tuple:=m[checked[i]];

for j:=1 to #br[i] do

new_tuple:=braid(new_tuple,br[i][j]);

end for;

is_contained:=false;

for tup in m do

if isAllConjugate(tup, new_tuple, group) then is_contained:=true; break tup; end if;
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end for;

if not is_contained then

Append(~braids, [checked[i],i]);

Append(~m,new_tuple);

end if;

end for;

end while;

return braids;

end function;

11.4 An algorithm to deform covers ramified over three points

to such ramified over four points

We give an explicit algorithm to deform degenerate covers to non-degenerate ones, as described in

Section 3.3.1. Here, we restrict to the case of gaining four point covers from three point covers, and

also assume for simplicity that the starting cover belongs to a transitive subgroup of G.

Note that the aim of this algorithm is mainly to demonstrate an explicit implementation of the

considerations in Section 3.3.1 that can be reused in similar situations, but not an implementation

that covers all possible cases. In particular, this implementation uses only complex approximations.

Therefore in some cases, problems with convergence will arise. One can deal with this by first de-

velopping formal Laurent series up to a certain precision, and only then specializing to complex

values. However, this would complicate the implementation considerably.

/*

zeroes1: List of length 3, each element is a list of zeroes of the

specialized (in t) polynomial belonging to the 3-point cover.

The ramification points of the 3-point cover are required to be 0,1 and infinity.

mult1: List of length 3, as above. Each element is a list of

multiplicities of the above zeroes (in the correct order!)

LeadCoeff: Leading Coefficient of the polynomial corresponding

to the above 3-point cover, specialized at 0.
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ramifications: A LIST of lists of length 3: ramification[i] contains,

for each cycle of the inertia group generator over zero

(i.e. for each entries of mult1[1]!) the ramification structure of the

"opposite" degenerate cover

zeroes2: A LIST of lists of length 2. Each element contains a list of roots

over s->0 and one of roots over s->1 for one "opposite" degenerate cover.

The ordering of this lists needs to to corresponds to the ordering

of the list "ramifications"

**NOTE: In this implementation, we demand all the leading coefficients of the

** polynomials parameterizing the "opposite" covers to be 1. I.e., one should multiply

** the zeroes with approprate constants to norm these polynomials

** before running the algorithm!

mu: Complex number of small absolute value

(corresponding to a specialized Laurent series parameter)

ram_index: Ramification index in the Hurwitz space

degree: The permutation degree of the group, i.e. the degree

of the polynomial to be computed

precision: Expected precision of approximation of the solution

infty: true or false, depending on whether the place x->infty should extend

the place t->infty or not.

** NOTE: We do not allow x->infty to extend any finite ramified place in t.

fixplaces: List determining which coefficients should be fixed (via PGL_2) to their

start values. If "infty=true", this list should be of length 2, otherwise of length 3.

An element of fixplaces should be a list [i,j,k], meaning the coefficient at x^k of

element number j of the list pols"i" (see below) should be fixed; 0<= k<= deg(pols"i"[j])-1.

*/

complexlaurent:=function(zeroes1, mult1, ramifications, LeadCoeff,

mu, ram_index, zeroes2, degree, precision, infty, fixplaces)

local C, multa, multb, multc, multd, polsa, polsb, polsc, polsd,

index1, index2,cf,p,q,x,v,ff_a,ff_b,ff_c,ff_d,ff1,ff2,mm,j,v2,prec0;

cf:=Parent(zeroes1[1][1]);

p:=PolynomialRing(cf,2*degree);
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q<x>:=PolynomialRing(cf);

/*

C is a list of leading coefficients that arise for the "opposite" degenerate covers

upon the respective specializations

*/

C:=[];

v:=[];

multa:={}; multb:={};

polsa:=[];

polsb:=[];

for i:=1 to #ramifications do

multa:=multa join SequenceToSet(ramifications[i][1]);

multb:=multb join SequenceToSet(ramifications[i][2]);

c:=LeadCoeff;

for j:=1 to #zeroes1[1] do if j ne i then

c*:=(zeroes1[1][i]-zeroes1[1][j])^mult1[1][j];

end if; end for;

for j:=1 to #zeroes1[3] do

c/:=(zeroes1[1][i]-zeroes1[3][j])^mult1[3][j];

end for;

C:=Append(C,c);

end for;

multa:=SetToIndexedSet(multa);

multb:=SetToIndexedSet(multb);

for i:=1 to #multa do polsa:=Append(polsa,q!1);end for;

for i:=1 to #multb do polsb:=Append(polsb,q!1);end for;

for i:=1 to #ramifications do

for j:=1 to #ramifications[i][1] do

index1:=ramifications[i][1][j];

for k:=1 to #multa do if multa[k] eq index1 then

polsa[k]*:=(x-(zeroes1[1][i]+mu^(ram_index/mult1[1][i])

*zeroes2[i][1][j]/(C[i]^(1/mult1[1][i]))));

break k; end if; end for;
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end for;

end for;

for i:=1 to #ramifications do

for j:=1 to #ramifications[i][2] do

index2:=ramifications[i][2][j];

for k:=1 to #multb do if multb[k] eq index2 then

polsb[k]*:=(x-(zeroes1[1][i]+mu^(ram_index/mult1[1][i])

*zeroes2[i][2][j]/(C[i]^(1/mult1[1][i]))));

break k; end if; end for;

end for;

end for;

polsc:=[];

multc:=SequenceToSet(mult1[2]);

multc:=SetToIndexedSet(multc);

for i:=1 to #multc do polsc:=Append(polsc,q!1);end for;

for i:=1 to #zeroes1[2] do

index1:=mult1[2][i];

for k:=1 to #multc do if multc[k] eq index1 then

polsc[k]*:=(x-zeroes1[2][i]); break k; end if; end for;

end for;

polsd:=[];

multd:= SequenceToSet(mult1[3]);

multd:=SetToIndexedSet(multd);

for i:=1 to #multd do polsd:=Append(polsd,q!1);end for;

for i:=1 to #zeroes1[3] do

index1:=mult1[3][i];

for k:=1 to #multd do if multd[k] eq index1 then

polsd[k]*:=(x-zeroes1[3][i]); break k; end if; end for;
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end for;

q<x>:=PolynomialRing(p);

varcount:=0;

pols1:=[];

for i:=1 to #polsa do

pols1:=Append(pols1,x^(Degree(polsa[i])));

for j:=1 to Degree(polsa[i]) do

if not ([1,i,Degree(polsa[i])-j] in fixplaces) then

varcount+:=1;

pols1[i]+:=x^(Degree(polsa[i])-j)*Name(p,varcount);

v:=Append(v,Coefficient(polsa[i],Degree(polsa[i])-j));

else pols1[i]+:=x^(Degree(polsa[i])-j)*Coefficient(polsa[i],Degree(polsa[i])-j);

end if;

end for;

end for;

pols2:=[];

for i:=1 to #polsb do

pols2:=Append(pols2,x^(Degree(polsb[i])));

for j:=1 to Degree(polsb[i]) do

if not ([2,i,Degree(polsb[i])-j] in fixplaces) then

varcount+:=1;

pols2[i]+:=x^(Degree(polsb[i])-j)*Name(p,varcount);

v:=Append(v,Coefficient(polsb[i],Degree(polsb[i])-j));

else pols2[i]+:=x^(Degree(polsb[i])-j)*Coefficient(polsb[i],Degree(polsb[i])-j);

end if;

end for;

end for;

pols3:=[];

for i:=1 to #polsc do

pols3:=Append(pols3,x^(Degree(polsc[i])));

for j:=1 to Degree(polsc[i]) do

if not ([3,i,Degree(polsc[i])-j] in fixplaces) then

varcount+:=1;
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pols3[i]+:=x^(Degree(polsc[i])-j)*Name(p,varcount);

v:=Append(v,Coefficient(polsc[i],Degree(polsc[i])-j));

else pols3[i]+:=x^(Degree(polsc[i])-j)*Coefficient(polsc[i],Degree(polsc[i])-j);

end if;

end for;

end for;

pols4:=[];

for i:=1 to #polsd do

pols4:=Append(pols4,x^(Degree(polsd[i])));

for j:=1 to Degree(polsd[i]) do

if not ([4,i,Degree(polsd[i])-j] in fixplaces) then

varcount+:=1;

pols4[i]+:=x^(Degree(polsd[i])-j)*Name(p,varcount);

v:=Append(v,Coefficient(polsd[i],Degree(polsd[i])-j));

else pols4[i]+:=x^(Degree(polsd[i])-j)*Coefficient(polsd[i],Degree(polsd[i])-j);

end if;

end for;

end for;

v:=Append(v,LeadCoeff);

ff_a:=q!1;

ff_b:=q!1;

ff_c:=q!1;

ff_d:=q!1;

for i:=1 to #pols1 do ff_a*:=pols1[i]^multa[i]; end for;

for i:=1 to #pols2 do ff_b*:=pols2[i]^multb[i]; end for;

for i:=1 to #pols3 do ff_c*:=pols3[i]^multc[i]; end for;

for i:=1 to #pols4 do ff_d*:=pols4[i]^multd[i]; end for;

if infty eq false then

ff1:=Name(p,2*degree)*ff_a-mu^ram_index*ff_d-(Name(p,2*degree)-mu^ram_index)*ff_b;

ff2:=Name(p,2*degree)*ff_a-ff_d-(Name(p,2*degree)-1)*ff_c;

else

ff1:=Name(p,2*degree)*ff_a-mu^ram_index*ff_d-(Name(p,2*degree))*ff_b;

ff2:=Name(p,2*degree)*ff_a-ff_d-(Name(p,2*degree))*ff_c;
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end if;

mm:=Coefficients(ff1) cat Coefficients(ff2);

j:=JacobianMatrix(mm);

prec0:=Infinity();

while prec0 gt precision do

v2:=NewtonStep(v,mm,j);

prec0:=Max([Abs(v2[i]-v[i]): i in [1..2*degree]]); prec0;

v:=v2;

end while;

return v2, <ff_a,ff_b,ff_c,ff_d>;

end function;

11.5 Moving through the Hurwitz space via braid group ac-

tion

/*

function receiving as an argument a complex approximation of a genus zero cover

(including a list v of values and a list of polynomial equations for all ramified places),

its r branch points and an integer ii with 1 <= |ii| <=r-1, representing the |ii|-th

braid group generator.

The output is the (approximate) cover obtained after applying the action of the braid

to the original cover. If ii<0, the inverse of the respective braid is applied.

As the braiding action is performed by moving two branch points along a circle,

the remaining branch points need to be outside this circle to obtain the correct

braiding action!

The variable stepsize indicates how far the branch points should be moved in each step.

If this step was too big it is continually diminished in the process.

The variable bound gives an abort condition if the stepsize is getting too small.

precision gives the necessary precision of approximation in each Newton step

*/

cover_braid:=function(v,f,ram,ii, stepsize, bound, precision)

local mid, ram_neu, angle, test, eqns, j, v1, v2, v_neu, maxx, N, cf, i;
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i:=Abs(ii);

cf:=Parent(ram[1]); //Complex field with given precision

mid:=(ram[i]+ram[i+1])/2; //center of the turn, between i-th and (i+1)-th branch point

ram_neu:=ram;

v_neu:=v; //variable for the last successful approximation vector

angle:=0; // variable for the angle of the braiding turn

while angle lt 2 and stepsize gt bound do

angle+:=stepsize;

angle;

test:=true; //controls whether the Newton iteration below converges

if ii gt 0 then

ram_neu[i]:=((ram[i]-mid)*cf!(-1)^(angle))+mid;

ram_neu[i+1]:=((ram[i+1]-mid)*cf!(-1)^(angle))+mid;

else

ram_neu[i]:=((ram[i]-mid)/cf!(-1)^(angle))+mid;

ram_neu[i+1]:=((ram[i+1]-mid)/cf!(-1)^(angle))+mid;

end if;

/*Set of equations to be fulfilled approximately after each Newton iteration step*/

eqns:=[];

for i:=1 to #f do eqns:=eqns cat Coefficients(Evaluate(f[i],ram_neu)); end for;

j:=JacobianMatrix(eqns);

maxx:=Infinity(); /*Max-Norm of the difference to the last approximation vector;

loop aborts if this becomes too large*/

N:=0; //counts the number of iteration step; loop aborts if N is too high

v1:=v_neu;

while maxx gt precision and test eq true do

N+:=1;

v2:=NewtonStep(v1,eqns,j);

maxx:=Max({@ Abs(v2[i]-v1[i]): i in [1..#eqns]@});
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if maxx gt 10^50 or N gt 20 then test:=false;

end if; //(somewhat arbitrary) abort conditions

v1:=v2;

end while;

if test eq true then

v_neu:=v2; //update the approximation vector, if iteration was successful

else

angle-:=stepsize; stepsize:=stepsize/2; //try again with smaller step size

end if;

end while;

if test eq true then

/*after complete 360-degree turn, set ramification locus back to original

and do one more iteration to double-check*/

ram_neu[i]:=ram[i];

ram_neu[i+1]:=ram[i+1];

eqns:=[];

for i:=1 to #f do eqns:=eqns cat Coefficients(Evaluate(f[i],ram_neu)); end for;

j:=JacobianMatrix(eqns);

v1:=v_neu;

maxx:=Infinity();

N:=0;

while maxx gt precision and test eq true do

N+:=1;

v2:=NewtonStep(v1,eqns,j);

maxx:=Max({@ Abs(v2[1]-v1[1]): i in [1..#eqns]@});

if maxx gt 10^50 or N gt 20 then test:=false;end if;

v1:=v2;

end while;
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else false; return []; //no result if the approximation went wrong

end if;

if test eq true then

v_neu:=v2;

return v_neu;

else false; return []; end if;

end function;

11.6 Algebraic Patching

Firstly we give several auxiliary functions (such as Weierstrass decomposition for series in one as

well as in two variables, and Cartan decomposition for matrices) that are needed for the computa-

tions.

Note that one can often force these decompositions to become trivial by choice of a good model for

the G1- and G2-extensions (see Chapter 10 for notation)!

/*

The pseudo-degree of a power series over a complete valued field (with valuation Norm())

*/

pseudodeg:=function(f)

local m, max_norm, index;

m:=[Norm(a): a in Reverse(Coefficients(f))];

//Norms of the Coefficients (with monomials in descending order)

max_norm, index:=Max(m); //finds the highest monomial with maximal norm

return #m-index;

end function;

/*

A two-dimensional analogon of the above.

For f in a ring A{w_1, w_2} (A a complete normed ring) as described in the chapter on

"Algebraic patching", this returns:

a) an i in {1, 2} such that the maximal norm of the coefficients of f is attained

for a monomial in w_i;

b) the exponent of the highest monomial attaining this maximal norm
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*/

pseudodeg_2dim:=function(f)

local max,c;

max:=Max([Norm(a): a in Coefficients(f)]);

for i:=0 to Degree(f,2)-1 do

c:=Coefficient(f,2,Degree(f,2)-i);

for j:=0 to Degree(c) do

if Norm(Coefficient(UnivariatePolynomial(c),j)) eq max then

return 2, Degree(f,2)-i;

end if;

end for;

end for;

return 1, pseudodeg(UnivariatePolynomial(Coefficient(f,2,0)));

end function;

/*

Weierstrass division for a (expansion to fixed precision of a ) convergent

power series f in A{x} and a polynomial g in A[x].

The return values q0 in A{x}, r0 in A[x] fulfill f = q0*g + r0 and deg(r0)<deg(g)

*/

weierstrasspol:=function(f,g)

local pp,phi;

if f eq 0 then

return Parent(f)!0,Parent(f)!0;

end if;

pp:=PolynomialRing(CoefficientRing(Parent(f)));

phi:=hom<pp->Parent(f)|Name(Parent(f),1)>;

return phi(pp!f div pp!g), phi(pp!f mod pp!g);

end function;

/*

Weierstrass division for two convergent power series f,g in A{x}

(generalization of the function weierstrasspol)

*/

weierstrass:=function(f,g)

local f0,g0,r0,q0,i,q1,r1;

g0:=0;
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for i:=0 to pseudodeg(g) do

g0:=g0+Coefficient(g,i)*Monomials(g)[i+1];

end for;

q0,r0:=weierstrasspol(f,g0);

f0:=-q0*(g-g0);

while f0 ne 0 do

q1,r1:=weierstrasspol(f0,g0);

q0:=q0+q1;

r0:=r0+r1;

f0:=-q1*(g-g0);

end while;

return q0,r0;

end function;

/*

Series decomposition via Weierstrass preparation theorem

For a convergent power series f in A{x}, this returns a normed polynomial p in A[x]

(of degree pseudodeg(f)), and a unit q in A{x} such that f=p*q^-1

*/

series_decompose:=function(f)

local d,q,r;

d:=pseudodeg(f);

q,r:=weierstrass(Name(Parent(f),1)^d, f);

return Name(Parent(f),1)^d-r, q;

end function;

/*

Two-dimensional series decomposition

For f in K{w1, w2}, this returns a unit u in K{w1, w2} and a polynomial p in one

variable w_i, such that f=p*u^-1. (cf. Lemma 3.2.6 in Jarden, "Algebraic Patching")

*/

series_decompose_2dim:=function(f)

local i,d,p,f0,pp,qq,u1,u2,v,u,phi,wi,wj,p0,u0;

i,d:=pseudodeg_2dim(f);

if d eq 0 then

p:=Evaluate(f,[0,0]);

f0:=Invert(1/p*f); // Norm(1 - 1/p*f) < 1, as pseudodeg(f) = 0
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/* requires function Invert() for such 1/p*f!

e.g.

Invert:=function(f)

local a,finv;

a:=1-f;

finv:=1;

while a ne 0 do

finv:=finv+a;

a:=a*(1-f);

end while;

return finv;

end function;

*/

return Parent(f)!p, Parent(f)!f0;

// In this case the polynomial p is actually a constant

else

pp:=PolynomialRing(CoefficientRing(Parent(f)));

qq<v>:=PolynomialRing(pp);

wi:=Name(Parent(f),i);

wj:=Name(Parent(f),(i mod 2)+1);

gen:=Generators(DivisorIdeal(Parent(f)))[1];

/* This generator should be of the form (c1-c2)*w1*w2-r*(w1-w2); cf. the chapter

on "Algebraic Patching"*/

if i eq 1 then

f0:=Evaluate(f,[v,Name(pp,1)]);

else

f0:=Evaluate(f,[Name(pp,1),v]);

end if;

p,u:=series_decompose(f0);

qq2,phi:=ChangeRing(qq,Parent(f),hom<pp->Parent(f)|wj>);

phi2:=hom<qq2 -> Parent(f)|wi>;

p:=phi2(phi(p));

u:=phi2(phi(u));
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p:=(1-(-1)^i*(Coefficients(gen)[1]/Coefficients(gen)[2])*wj)^d*p;

u:=(1-(-1)^i*(Coefficients(gen)[1]/Coefficients(gen)[2])*wj)^d*u;

i,d:=pseudodeg_2dim(p);

if d eq 0 then

p0:=Evaluate(p,[0,0]);

f0:=Invert(1/p0*p);

return Parent(f)!p0, Parent(f)!f0*u;

else

if i eq 1 then

f0:=Evaluate(p,[v,Name(pp,1)]);

else

f0:=Evaluate(p,[Name(pp,1),v]);

end if;

p,u0:=series_decompose(f0);

wi:=Name(Parent(f),i);

wj:=Name(Parent(f),(i mod 2)+1);

qq2,phi:=ChangeRing(qq,Parent(f),hom<pp->Parent(f)|wj>);

phi2:=hom<qq2 -> Parent(f)|wi>;

p:=phi2(phi(p));

u:=u*phi2(phi(u0));

return Parent(f)!p, Parent(f)!u;

end if;

end if;

end function;

/*

Two-dimensional analogue of weierstrasspol (cf. Cor.3.2.8 in Jarden, "Algebraic Patching")

For f in A{w1, w2} and g in A[w1, w2], this returns q0 and r0 such that f = q0*g + r0

*/

weierstrass_2dim:=function(f,g)

local w1,w2,gen, h,u, h1,u1,h2,u2, pp, phi1,phi2, f1,f2, q1,r1,q2,r2;

w1:=Name(Parent(g),1);

w2:=Name(Parent(g),2);

gen:=Generators(DivisorIdeal(Parent(g)))[1];
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/* This generator should be of the form (c1-c2)*w1*w2-r*(w1-w2);

cf. the chapter on "Algebraic Patching"*/

h,u:=series_decompose_2dim(g);

h1:=(1-(Coefficients(gen)[1]/Coefficients(gen)[2])*w2)^Degree(h,2)*h;

u1:=(1-(Coefficients(gen)[1]/Coefficients(gen)[2])*w2)^Degree(h,2)*u;

h2:=(1+(Coefficients(gen)[1]/Coefficients(gen)[2])*w2)^Degree(h,1)*h;

u2:=(1+(Coefficients(gen)[1]/Coefficients(gen)[2])*w2)^Degree(h,1)*u;

//one of Degree(h,2) and Degree(h,1) is =0

pp:=PolynomialRing(CoefficientRing(Parent(g)));

phi1:=hom<pp->Parent(f)|Name(Parent(f),1)>;

phi2:=hom<pp->Parent(f)|Name(Parent(f),2)>;

f1:=Coefficient(f,2,0);

f2:=Coefficient(f,1,0)-Evaluate(f,[0,0]);

q1,r1:=weierstrasspol(pp!UnivariatePolynomial(f1),pp!UnivariatePolynomial(h1));

q2,r2:=weierstrasspol(pp!UnivariatePolynomial(f2),pp!UnivariatePolynomial(h2));

return phi1(q1)*u1+

phi2(q2)*u2 ,

phi1(r1)+phi2(r2);

end function;

/*

Cartan decomposition for matrices over a ring A{w1, w2} of convergent power series

in two variables.

For a non-singular square matrix f over the ring A{w1, w2}, compute square matrices a1b

(over A{w1}) and a2b (over A{w2}) such that f = a1b^{-1}*a2b^{-1}.

This function only returns a2b, as this is sufficient for the patching process

*/

CartanDecompose:=function(f)

local a,a1,a2,a2b;

a:=f-1;

a1:=Parent(f)![Coefficient(a[i][j],2,0):

j in [1..Degree(Parent(f))], i in [1..Degree(Parent(f))]];

a2:=Parent(f)![Coefficient(a[i][j],1,0)-Evaluate(a[i][j],[0,0]):

j in [1..Degree(Parent(f))], i in [1..Degree(Parent(f))]];
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a2b:=Parent(f)!(1-a2);

while a ne 0 do

a:=(1-a1)*(1+a)*(1-a2)-1;

a1:=Parent(f)![Coefficient(a[i][j],2,0):

j in [1..Degree(Parent(f))], i in [1..Degree(Parent(f))]];

a2:=Parent(f)![Coefficient(a[i][j],1,0)-Evaluate(a[i][j],[0,0]):

j in [1..Degree(Parent(f))], i in [1..Degree(Parent(f))]];

a2b:=a2b*(1-a2);

end while;

return a2b;

end function;

Next, an algorithm realizing algebraic patching over Qp(t) (the function field over a p-adic field), i.e.

constructing (a p-adic expansion of) a vector space basis as in Lemma 10.2. The implementation

only considers the case G = 〈G1, G2〉, where G1 and G2 are cyclic, and begins with genus zero

realizations with Galois groups G1 and G2 respectively.

/* Auxiliary function.

Computes the adjoint matrix of a given Vandermonde matrix.

(Cf. Turner, "Inverse of the Vandermonde matrix and applications").

*/

Adjugate_Vandermonde:=function(A)

local L,U;

L:=Parent(A)!0;

U:=Parent(A)!0;

for i:=1 to Degree(Parent(A)) do

for j:=1 to Degree(Parent(A)) do

if i ge j then

L[i][j]:=(-1)^(i+j);

for k1:=1 to Degree(Parent(A)) do

for k2:=k1+1 to Degree(Parent(A)) do

if not ((k1 eq j or k2 eq j) and k2 le i) then

L[i][j]:=L[i][j]*(A[k2][2]-A[k1][2]);

end if;

end for;

end for;

end if;

end for;

end for;
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for i:=1 to Degree(Parent(A)) do

for j:=1 to Degree(Parent(A)) do

if i eq j then

U[i][j]:=1;

else

if j ge 2 then

U[i][j]:=-U[i][j-1]*A[j-1][2];

if i ge 2 then

U[i][j]:=U[i][j]+U[i-1][j-1];

end if;

end if;

end if;

end for;

end for;

return U*L;

end function;

/*

Choose a permutation group g, elements alpha1 and alpha 2 of g

(generating cyclic subgroups g1 resp. g2)

and parameters prime (=1 mod Lcm(#g1,#g2)), limit for precision of p-adic expansions

and r,c1,c2 (for the rings of Mittag-Leffler series; with r,c1,c2 fulfilling

conditions as described in the chapter "An algorithm for algebraic patching")

Also choose two ramified places for g1- and g2-extension respectively.

(Conditions on ramification locus need to be observed!)

The elements of ram_places"i" should be linear polynomials over Q of the form t-a;

or =1 if the infinite place should ramify.

Polynomials for primitive elements x of (subfields of) g1- and g2-extensions

will then be created via the following conventions (which are not mandatory!):

(i) The places x->0 and x->infty will extend the ramified places.

(ii) x->1 will be an extension of the place at w1->0 resp. w2->0

(which has to be unramified!).

*/

cyclic_patching:=function(

g,alpha1,alpha2, prime, limit, r,c1,c2, ram_places1, ram_places2)
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local orb, s1,s2, ss1,ss2, p,w1,w2, ls, t, p_ls, x, pp,t0, phi1,phi2,

U, AdjU, V, AdjV, detU, detV,

zp, p0, zeta, f1, t1, xx, mat1, f2,t2,yy, mat2, cyc1,cyc2,

h1,u1,h2,u2, C1,C2, m, m_tilde, c,b,c0, test, M, M_tilde, cd, V_neu;

/* Finding and sorting

double coset representatives for g1,g2

(here only for cyclic g1, g2!)

*/

orb:=Orbits(sub<g|alpha1>);

s1:=[IndexedSetToSequence(orb[i]): i in [1..#orb]];

orb:=Orbits(sub<g|alpha2>);

s2:=[IndexedSetToSequence(orb[i]): i in [1..#orb]];

ss1:=[];

for i:=1 to #s1 do for j:=1 to #s1[i] do ss1:=Append(ss1,s1[i][j]); end for; end for;

ss2:=[];

for i:=1 to #s2 do for j:=1 to #s2[i] do ss2:=Append(ss2,s2[i][j]); end for; end for;

p<w1,w2>:=PolynomialRing(Integers(prime^limit),2);

p<w1,w2>:=p/ideal<p|(c1-c2)*w1*w2-r*(w1-w2)>;

ls<t>:=LaurentSeriesRing(Rationals(),limit);

p_ls<x>:=PolynomialRing(ls);

pp<t0>:=PolynomialRing(Rationals());

phi1:=hom<pp->p | w1>;

phi2:=hom<pp->p | w2>;

U:=Matrix(p,0,0,[]);

AdjU:=Matrix(p,0,0,[]);

V:=Matrix(p,0,0,[]);

AdjV:=Matrix(p,0,0,[]);

detU:=1;

detV:=1;

zp:=pAdicRing(prime, limit);
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p0:=PolynomialRing(zp);

/* Choosing polynomials f(x,t) for the extensions with groups g1,g2

and developping x as a power series

*/

for a in s1 do

zeta:=Roots(p0!CyclotomicPolynomial(#a))[1][1];

zeta:=Integers(prime^limit)!(Integers()!(zeta));

f1:=Coefficient(ram_places1[1],0)/Coefficient(ram_places1[2],0)

*x^#a*ls!(ram_places1[2]) - ls!(ram_places1[1]);

/*

Polynomials f1, f2 may be altered as long as constraints

e.g. on ramification are observed.*/

for root in Roots(f1) do if Evaluate(root[1],0) eq 1 then

t1:=Evaluate(root[1],t0); break root;

end if; end for;

xx:=phi2(t1);

/* Filling up the representation matrices for the g_i-extensions

(as described in the chapter "An algorithm for algebraic patching")

*/

mat1:=[];

for i:=0 to #a-1 do

for j:=0 to #a-1 do

mat1:=Append(mat1, (zeta^i*xx)^j);

end for;

end for;

U:=DiagonalJoin(U,Matrix(p,#a,#a,mat1));

AdjU:=DiagonalJoin(Determinant(Matrix(p,#a,#a,mat1))*AdjU,

detU*Adjugate_Vandermonde(Matrix(p,#a,#a,mat1)));

detU:=detU*Determinant(Matrix(p,#a,#a,mat1));

end for;

for a in s2 do

zeta:=Roots(p0!CyclotomicPolynomial(#a))[1][1];

zeta:=Integers(prime^limit)!(Integers()!(zeta));

f2:=Coefficient(ram_places2[1],0)/Coefficient(ram_places2[2],0)
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*x^#a*ls!(ram_places2[2]) - ls!(ram_places2[1]);

for root in Roots(f2) do if Evaluate(root[1],0) eq 1 then

t2:=Evaluate(root[1],t0); break root;

end if; end for;

yy:=phi1(t2);

mat2:=[];

for i:=0 to #a-1 do

for j:=0 to #a-1 do

mat2:=Append(mat2, (zeta^i*yy)^j);

end for;

end for;

V:=DiagonalJoin(V,Matrix(p,#a,#a,mat2));

AdjV:=DiagonalJoin(Determinant(Matrix(p,#a,#a,mat2))*AdjV,

detV*Adjugate_Vandermonde(Matrix(p,#a,#a,mat2)));

detV:=detV*Determinant(Matrix(p,#a,#a,mat2));

end for;

/*

Resorting the matrices appropriately, according to the sequence of double coset

representatives. Determinants and adjoint matrices are manipulated accordingly.

*/

cyc1:=CycleDecomposition(Sym(Degree(g))!ss1);

cyc2:=CycleDecomposition(Sym(Degree(g))!ss2);

for i:=1 to #cyc1 do

for j:=2 to #cyc1[i] do

U:=SwapRows(U,cyc1[i][1], cyc1[i][j]);

AdjU:=-SwapColumns(AdjU,cyc1[i][1], cyc1[i][j]);

detU:=-detU;

end for;

end for;

for i:=1 to #cyc2 do

for j:=2 to #cyc2[i] do

V:=SwapRows(V,cyc2[i][1], cyc2[i][j]);

AdjV:=-SwapColumns(AdjV,cyc2[i][1], cyc2[i][j]);

detV:=-detV;
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end for;

end for;

/*

The actual patching step, obtaining from two vector space bases, contained in

different algebras, a base contained in the intersection (which is the

fixed field of a point stabilizer of G in a Galois extension with group G).

*/

h1, u1:=series_decompose_2dim(detU);

h2, u2:=series_decompose_2dim(detV);

C1:=u1*AdjU*V;

C2:=u2*AdjV*U;

m:=[];

m_tilde:=[];

for i:=1 to Degree(Parent(C2)) do

for j:=1 to Degree(Parent(C2)) do

c,b:=weierstrass_2dim(p!(C2[i][j]),p!(h1*h2));

c0:=Evaluate(c,[0,0]);

test:=1;

while c ne c0 and Norm(c-c0) ge 1/Max([Norm(C1[i0][j0]):

i0 in [1..Degree(Parent(C1))], j0 in [1..Degree(Parent(C1))]]) do

c0+:=Coefficient(c,1,test)*w1^test+Coefficient(c,2,test)*w2^test;

test:=test+1;

end while;

c0;

Append(~m_tilde,c-c0);

Append(~m,h1*h2*c0+b);

end for;

end for;

M:=Parent(C1)!m;

M_tilde:=1-C1*Parent(C1)!m_tilde;

cd:=CartanDecompose(M_tilde);

V_neu:=V*M*cd; //The matrix containing the desired vector space basis

return V_neu;

end function;



Appendix A

New Mathieu group polynomials

with r ≥ 4 branch points

As many of our computations have been dealing with the Mathieu groups, it should be appropriate

to summarize the polynomials obtained through these computations over various fields. These

include new polynomials over Q (for the small Mathieu groups), over certain number fields, over

certain finite fields as well as complex approximations for polynomials with 4 or 5 branch points.

The complex approximations cover the majority of genus zero tuples of rational classes in M24 and

M23. As they are usually too lengthy to fit comfortably into a table, see the following plain-text

files:

• “M24 (2,2,2,8) approx.txt” (for the family with inertia group generators of classes (2A, 2A, 2B, 8A)

in M24),

• “M24 (2,2,2,8) approx.txt” (for the family with classes (2A, 2A, 2B, 8A) in M24),

• “M24 (2,2,4a,4b).txt” (for the (2A, 2A, 4A, 4B)-family in M24),

• “M24 (2,2,4b,6).txt” (for the (2A, 2A, 4B, 6A)-family in M24),

• “M24 (2,2,4b,5).txt” (for the (2A, 2A, 4B, 5A)-family in M24),

• “M24 (2,2,3,4).txt” (for the (2A, 2A, 3B, 4B)-family in M24),

• “M24 (2,2,2,2,4) approx.txt” (for the (2A, 2A, 2A, 2A, 4B)-family in M24),

• “M23 (2,2,3,5) approx.txt” (for the (2A, 2A, 3A, 5A)-family in M23),

• “M23 (2,2,4,4).txt” (for the (2A, 2A, 4A, 4A)-family in M23),

• “M23 (2,2,2,2,3) approx.txt” (for the (2A, 2A, 2A, 2A, 3A)-family in M23).

In the following table we collect the other cases (polynomials over number fields or finite fields)

with at least four branch points1.

1Of course during the computations, polynomials with 3 branch points over certain number fields were obtained
as well, see Chapters 5.1 and 5.3.
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Group Branch cycle structure Field of definition Polynomial

M11 (24.13, 24.13, 33.12, 42.13) Q (77x3 + 10989x2 + 129816x+ 496368)3 · (77x2 + 2376x+ 15472)− t · (11x2 −
1296)4 · (11x2 + 143x+ 621).

M12 (24.14, 24.14, 24.14, 62)
Q

(1 + x2)B2 + (t−A)2, with

A := − 37040901254696641
17161933084398000x

6 + 33418800162487519439
1121246294847336000 x

5 − 64383835127591800227217
468830450752166092800 x4 +

8150616957819275768427495172979527
31833556434098003730499089039360 x3 −

150622166349305680133957002772237706163702151309
768532040995657748567302296663008952818073600 x2 −

10210914290037206294359468710913153396901435630470828367263
144953540235644427154530313893803793135770931415744512000 x−

26443741814006144866850946008927409983676203435745752996416961
113643575544745230889151766092742173818444410229943697408000 , and

B := 161170153687309
321504313934720x

4 + 12742379532083792383
567133609780846080 x3 −

340397859783855225607653198324901
1369185222971957149698885550080 x2+ 3820352031643203752971385358973419956797107

5738739852118113415227765058714224558080 x−
136434610568339832204548867431757323254812075457094621

371104813711327258460139052467495630147903050219520 .

M12 (24.14, 24.14, 26, 52.12) Q (x6 + 1/3 · x4 − 175/1728 · x3 + 689/9216 · x2 − 4333/165888 · x+
15731/5971968)2−237/3125 ·t ·(x7−26/237 ·x6−443/3792 ·x5 +30605/273024 ·
x4 − 1735175/19657728 · x3 + 58925/1638144 · x2 − 2367125/314523648 · x+
6687625/11322851328) + 9/6250 · t2 · (x2 − 7/24 · x+ 533/10368)

M23 (28.17, 28.17, 36.15, 54.13) F19 x3 · (x5 + x4 − x3 − x2 + 7)3 · (x5 + 6x4 + x3 + 4x2 + 12x+ 1)− t · (x3 + 2x2 +
13x+ 5)5 · (x3 + x2 + 2x+ 6)

M24 (28.18, 28.18, 28.18, 23.1) Q(
√
−23) (x8 + 4x7 + (−α+ 7)x6 + (6α+ 30)x5 + (26α+ 82)x4 + (16α+ 272)x3 +

(44α+ 252)x2 + (80α− 240)x+ 40α+ 8)2 · (x8 − 8x7 + (2α+ 34)x6 +
1/2(−3α− 135)x5 − (34α+ 74)x4 + (238α+ 470)x3 − (736α+ 1248)x2 +
(1082α+ 1074)x− (920α+ 184))− t · x, with α :=

√
−23.

M24 (28.18, 28.18, 212, 82.4.2.12) F17 (x12 + x11 + 2 · x9 + 11 · x8 + 9 · x7 + 4 · x6 + 15 · x5 + 14 · x4 + 15 · x3 + 2 · x+
15)2 − t · (x2 + 16 · x+ 10)8 · (x+ 11)2 · (x2 + 4 · x+ 11)

M24 (28.18, 28.18, 28.18, 28.18, 44.22.14) F17 (16x24 + 10x23 + 12x21 + 10x20 + 15x19 + 6x18 + 3x17 + 4x16 + 8x14 + 14x13 +
12x12 + 16x11 + 16x10 + 16x8 + 4x7 + 14x6 + 6x5 + 7x4 + 13x3 + 16x+ 4)− t ·
(x4 + 3x3 + 13x2 + x+ 2)4 · x2 · (x4 + 15x3 + 12x+ 15)

Table A.1: New Mathieu group polynomials
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