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SUMMARY 

 

Malignant melanoma is the most severe form of all skin cancers with a particular poor 

prognosis once metastases have developed. Angiogenesis, the formation of new 

blood vessels, is a prominent feature of human melanoma, which have angiogenic 

activity already early in development. This is at least partly ascribed to the action of 

MAPK- and PI3K pathways which are hyperactivated in most melanoma. Animal 

models which combine in depth in vivo examinations with the opportunity to perform 

small molecular screens are well suited to gain a more detailed insight into how this 

type of cancer modulates its angiogenic program. Here, a first transgenic melanoma 

angiogenesis model was established in the fish species Oryzias latipes (Japanese 

medaka). In this model, tumors are generated by the pigment cell-specific expression 

of the oncogenic receptor tyrosine kinase Xmrk. Xmrk is a mutated version of the fish 

Egfp. Furthermore, to get an angiogenesis model, a medaka line with endothelial cell 

specific GFP expression was used. By using crosses between these Xmrk- and GFP 

transgenic fishes, it was shown that angiogenesis occurs in a reactive oxygen 

species- and NF-κB-dependent manner, but was hypoxia-independent. It was 

observed that blood vessel sprouting and branch point formation was elevated in this 

model and furthermore that sprouting could even be induced by single transformed 

cells. The mouse melanocytes expressing the oncogenic receptor tyrosine kinase 

Xmrk as well human melanoma cells, which display various oncogenic alterations, 

produced pro-angiogenic factors, most prominently angiogenin, via NF-κB signaling. 

Furthermore, inhibiting NF-κB action prevented tumor angiogenesis and even led to 

the regression of existing tumor blood vessels. In summary, the present medaka 

melanoma angiogenesis model displays a high sensitivity for angiogenesis detection 

and is perfectly suited as in vivo model for the testing of anti-angiogenesis inhibitors, 

as exemplified by the NF-B inhibitor.  

Furthermore, results indicate that it might be a promising anti-tumor strategy to target 

signaling pathways such as the NF-κB pathway which are able to induce 

angiogenesis-dependent as well as -independent pro-tumorigenic effects.  

 



 

VII 

ZUSAMMENFASSUNG 

 

Das maligne Melanom ist die schwerste Form aller Hautkrebsarten und hat eine 

besonders schlechte Prognose, sobald sich Metastasen gebildet haben. 

Angiogenese, die Bildung von neuen Blutgefäßen aus bestehenden Gefäßen, ist bei 

humanen Melanomen häufig zu beobachten. Es wurde gezeigt, dass diese Tumore 

eine hohe angiogene Aktivität besitzen. Diese wird zumindest teilweise der Aktivität 

der MAKP und PI3K Signalwege zugeschrieben, welche in den meisten Melanomen 

hyperaktivert sind. Tiermodelle, die sowohl in vivo Untersuchungen als auch „small 

molecular screens“ erlauben, sind gut geeignet, um detaillierte Kenntnisse über pro-

angiogene Programme zu erlangen. In dieser Arbeit wurde ein erstes transgenes 

Melanom-Angiogenese-Model in der Fischspezies Oryzias latipes (Medaka) etabliert. 

In diesem Model werden Tumore durch eine pigmentzell-spezifische Expression der 

onkogenen Tyrosinkinase Xmrk erzeugt. Xmrk ist eine mutierte Version des Egfp im 

Fisch. Weiter gibt es in diesem Modellorganismus eine endothelzell-spezifische GFP-

Linie. Durch Kreuzen der Xmrk- und GFP-transgenen Linien konnte das 

beschriebene Tumorangiogenese-Modell generiert werden. An Hand dieses Models 

konnte gezeigt werden, dass Angiogenese in einer reaktiven Sauerstoffspezies- und 

NF-κB-abhängigen Weise auftrat, jedoch unabhängig von Hypoxie stattfand. Es 

wurde beobachtet, dass die Sprossung- und Verzweigungsvorgänge der Blutgefäße 

sogar durch einzelne transformierte Pigmentzellen induziert wurden. Sowohl 

Mausmelanozyten, die die onkogene Rezeptortyrosinkinase Xmrk expriemieren, als 

auch humane Melanomzellen produzieren pro-angiogene Faktoren, wie zum Beispiel 

Angiogenin, über den NF-κB-Signalweg. Eine Hemmung von NF-κB hatte eine 

Verminderung der Tumorangiogenese zur Folge und führte sogar zur Rückbildung 

von bestehenden tumorösen Blutgefäßen. Zusammenfassend zeigt das Medaka-

Melanom-Angiogenese-Model eine hohe Sensitivität für den Nachweis von 

Angiogeneseprozessen und ist vortrefflich geeignet als in vivo Modell zur 

Durchführung von Angiogenese-Inhibitor-Tests, wie beispielsweise mit dem NF-κB-

Inhibitor gezeigt wurde. Eine pharmakologische Hemmung multi-potenter Signalwege 

mit Angiogenese-abhängigen und –unabhängigen pro-tumorigenen Effekten wie 

beispielsweise den NF-κB-Signalweg könnte eine erfolgsversprechende 

Antitumorstrategie darstellen. 



 

1 

1 INTRODUCTION 

 

1.1 Malignant melanoma 

Malignant melanoma is the most severe form of all skin cancers. It is responsible for 

about 90% of all skin cancer-related deaths. Malignant melanoma arises from 

pigment-producing cells, melanocytes, which transform into malignant cancer cells 

with high metastasizing and proliferative abilities. Melanocytes are located at the 

basal layer of the epidermis. They originate from neural-crest progenitors and their 

homeostasis is regulated by adjacent keratinocytes [1]. 

 

1.1.1 Incidence  

Worldwide the incidence of melanoma is rising annually among Caucasian 

populations[2][3]. In central Europe 10 to 12 new cases, in the U.S. 10 to 25 cases 

and in Australia 50 up to 60 cases per 100000 individuals per year are recorded. The 

incidence is influenced by pigmentation of the population and geographical 

parameters like altitude and latitude [2].  

 

1.1.2 Types of malignant melanoma 

There are at least four distinct types of cutaneous malignant melanoma. The 

superficial spreading malignant melanoma (SSM) accounts for 57.4 percent, the 

nodular melanoma (NM) accounts for 21.4 percent, the lentigo maligna melanoma 

(LMM) accounts for 8.8 percent and acral lentiginous melanoma (ALM) accounts for 

4 percent of all melanomas among the German population (n=30.015) [4]. 

 

1.1.3 Melanoma progression 

Under normal conditions melanocytes are tightly controlled by adjacent keratinocytes 

[5]. Both cell types are located in a cell layer between the dermis and the epidermis 

of the skin. Through mutations in growth regulating genes, production 
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of autocrine growth factors, and loss of adhesion receptors melanocytes are able to 

spread and proliferate. This can lead to the formation of a nevus and is considered 

one of the first steps in melanoma progression although the majority of nevi are of a 

benign phenotype. Still, the appearance of atypical nevus cells, which are able to 

spread in a radial manner, can change the situation. This is considered to be the 

primary malignant stage of melanoma progression and is termed radial growth phase 

(RGP) melanoma. Further progression leads to the vertical growth phase (VGP) 

melanoma. In this stage of melanoma progression the transformed cells show strong 

metastatic and proliferative potential. The transformed cells are able to invade the 

dermis and the subcutaneous tissue. Once they have reached the subcutaneous 

tissue the malignant cells are able to infiltrate the vascular and lymphatic system and 

are thereby able to spread their metastatic potential throughout the body [6][7].  
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Figure 1: Melanoma progression stages.  

(a) Normal skin stage: Here melanocytes are located at the border of dermis and epidermis. (b) 

Naevus stage: Here, benign melanocytic nevi occur with increased numbers of melanocytes. Some 

nevi are dysplastic, with morphologically atypical melanocytes. (c) Radial-growth-phase (RGP) 

melanoma stage is considered to be the primary malignant stage: Here an increased radial distribution 

of atypical melanocytes can be observed. (d) Vertical-growth-phase (VGP) melanoma stage is the first 

stage that is considered to have malignant potential and leads directly to metastatic malignant 

melanoma: Here, infiltration of the vascular and lymphatic systems can occur. 

 

1.1.4 Melanoma pathogenesis 

The pathogenesis of melanoma is influenced by genetic and environmental risk 

factors. The major environmental risk factor is UV light. The current rise in melanoma 

cases per year can be partly explained by increased popularity of sun-tanning or 

sunbed tanning [8]. Beside this melanoma risk has been also associated with somatic 
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or germ cell gene mutations which lead to familial or sporadic forms of the disease. 

Sporadic melanomas represent approximately about 90% of all melanoma cases 

whereas familial melanomas appear to approximately about 10%. Numerous genes 

and pathways have been identified which are involved in melanoma formation.  

  

Among the genes which play a crucial role in melanoma development and 

progression are components of the CDKN2A locus. Mutations in genes of this locus 

were associated with familial melanomas [9], [10]. CDKN2A encodes two distinct 

tumor suppressor genes: inhibitor of cyclin–dependent kinase (INK4A or p16) and 

ARF (p14). INK4A inhibits cyclin dependent kinase (CDK) 4/6 -mediated 

phosphorylation and inactivation of RB (retinoblastoma protein), another tumor 

suppressor protein [11]. ARF inhibits MDM-2, an important negative regulator of the 

p53 tumor suppressor protein. MDM-2-mediated ubiquitination leads to subsequent 

degradation of p53 [12–15]. Therefore, INK4A and ARF negatively regulate the RB 

as well as p53 tumor suppressor pathway which lead to a predisposition to 

melanoma development in case of their loss. 

 

Another pathway which plays an important role in melanoma development is the 

PI3K/AKT pathway. Here PI3K (phosphoinositid-3 kinase) gets activated upon 

binding to an activated RTK (receptor tyrosine kinase) like EGFR or a G-protein 

coupled receptor (GCR) [16]. In response to PI3K activation, PIP2 

(phosphatidylinositol 4, 5-bisphosphate) is phosphorylated to PIP3 

(phosphatidylinositol (3, 4, 5)-triphosphate). In the following, protein kinase B, also 

called AKT, is recruited to the cell membrane and is subsequently phosphorylated by 

adapter kinases such as phosphoinositide-dependent-kinases (PDK-1) [17]. 

Activation of AKT results in the regulation of several cellular processes like glucose 

metabolism, apoptosis, cell proliferation, transcription and cell migration. A 

component which plays an important role in this pathway is the phosphatase and 

tensin homologue PTEN. PTEN is known to negatively regulate the PI3K/AKT 

pathway by dephosphorylating PIP3 to PIP2 and thereby blocking AKT membrane 

localization [18]. It has been described that PTEN deletions or mutations are present 

in 5% up to 20% of human melanomas [19], [20]. 
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The RAS/RAF/MEK mitogen activated protein kinase (MAPK) pathway is one of the 

main pathways which are involved in melanoma initiation, progression and 

maintenance. This pathway is activated in melanocytes by growth factors like stem-

cell factor (SCF), fibroblast growth factor (FGF), hepatocyte growth factor (HGF) and 

epidermal growth factor (EGF) which can bind to their respective RTK [21]. However, 

if they appear individually these growth factors can induce only weak or transient 

MAPK (mitogene activated protein kinase) activation. Only through the combined 

action of several stimuli a strong and sustained MAPK activity in melanocytes is 

achieved [21], [22]. Activated MAPK is able to induce several cellular responses like 

survival, proliferation by activation several transcription factors like MITF 

(microphthalmia- associated transcription factor) [23] or several cell cycle regulators 

like cyclin D1 [24] and also tumor maintenance enzymes like matrix metalloproteases 

[25]. MAPK is hyperactivated in up to 90% of human melanomas [26] indicating that 

this pathway plays a key role in the regulation of melanoma cells. One way by which 

MAPK hyperactivation is achieved is the accumulation of gain-of-function mutations 

in one of the three human RAS genes (NRAS, HRAS and KRAS). NRAS for example 

is mutated in 15% up to 30% of human melanomas [27]. However, the most 

commonly mutated gene in human melanoma is BRAF with 50% up to 70% [28]. 

Thereby the most common mutation is a substitution of a glutamic acid for valine at 

position 600 (V600E) [28]. It has been demonstrated that BRAFV600E is able to 

contribute to angiogenesis by activating vascular endothelial growth factor (VEGF) 

[29].  
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Figure 2: Activation of the RAS/RAF/MEK/MAPK-signaling pathway. 

 

1.2 Fish melanoma models 

1.2.1 The Xiphophorus melanoma model and Xmrk 

 

One of the oldest animal models for cancer research in general and melanoma in 

particular are fishes of the genus Xiphophorus. At the end of the 20`s of the 20th 

century it was elucidated that genetic hybrids of certain strains of Xiphophorus can 

develop spontaneous melanomas. The crossing of platyfish (Xiphophorus maculatus) 

and swordtails (Xiphophorus hellerii) results in melanomas [30–33]. Responsible for 

the melanoma formation is the tumor locus Tu encoding for the oncogene Xmrk 

(Xiphophorus melanoma receptor kinase) which is present in the platyfish 

(Xiphophorus maculatus) but is absent in the swordtail (Xiphophorus helleri) [34]. The 

Tu locus is regulated by a yet unidentified tumor suppressor locus R in Xiphophorus 

maculatus. Vascularisation and growth of transplanted Xiphophorus melanomas in 
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nude mice showed no differences compared with transplanted human melanomas 

[35]. 

 

 

 

Figure 3: The classical Gordon-Kosswig-Anders cross.  

A female platyfish (X. maculatus) exhibiting the tumor-bearing Tu allele and the tumor suppressor R 

allele is crossed to a swordtail male (X. hellerii) lacking both alleles Tu and R. The F1 offspring is 

heterozygous for Tu and R allele and develops large melanotic pigment spots at the fins which are 

non-malignant. Females of the F1 offspring are then backcrossed again to swordtail males (X. hellerii) 

lacking the Tu and R alleles. In the F2 offspring 25% of the animals develop melanoma due to 

absence of R and presence of Tu, 25% of the animals demonstrate the same genotype as F1 offspring 

and 50% of the animals lack the Tu allele resulting in healthy individuals without any pigmentation 

changes compared to founders. 

 

The Tu locus was isolated by positional cloning and demonstrated a relationship with 

the epidermal growth factor receptor gene (egfr). It was later shown that this 

identified gene originates from a gene duplication of the Xiphophorus egfr gene, 

being the fish ortholog of human EGFR (hEGFR) and the protooncogene of the 

identified gene designated xmrk (Xiphophorus melanoma receptor kinase). The 

oncogenic potential of xmrk resides in two activating mutations in the extracellular 

domain of the growth factor receptor gene. These mutations lead to a constitutive 

signaling of the growth factor receptor which leads in turn to activation of a variety of 

cellular signal pathways. This activation of pathways results in several cellular 
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responses which participate in the formation of the neoplastic phenotype of 

melanoma cells [36]. 

 

The oncogenic protein Xmrk is able to recruit and activate several kinases, 

transcription factors and adapter proteins comparable to its ortholog, the human 

EGFR. Xmrk induces pathways like PI3K and STAT5 [37–39] which are required for 

transformation by suppressing apoptosis in case of STAT5 due to an increase in 

BCL-X, an antiapoptotic protein. Through the binding of adapter protein GRB2 

(growth factor binding protein-2) the induction of the RAS-RAF-MAP kinase pathway 

is initiated, which result at the end in an increased rate of proliferation [40][41]. The 

same is true for the independent STAT5 pathway. But activated (phosphorylated) 

MAPK can additionally lead to the inhibition of differentiation via MITF 

(microphthalmia transcription factor) [42] and to survival of tumor cells at ectopic sites 

by inducing OPN (osteopontin). Osteopontin is secreted and can then bind to 

integrins like αvβ3-integrins to protect the cells from apoptosis [43]. The docking 

protein FYN, a member of the SRC kinase family, is involved in the maintenance of 

phosphorylated MAPK due to blocking of MAP kinase phosphatase 1 (MKP-1) [22], 

[44] and it is, together with the focal adhesion kinase (FAK) involved in Xmrk-

mediated pigment cell migration, which is however MAPK-independent [45]. 

Furthermore, Xmrk was shown to induce the generation of reactive oxygen species 

(ROS), which can mediate the genesis of a melanocytic multinuclear phenotype and 

senescence [46]. 
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Figure 4: Xmrk-mediated cellular processes and corresponding activated molecular pathways. 

 

The Xiphophorus melanoma model system offers the opportunity to understand one 

tumor on different organization levels. Here, molecules and their interactions with 

others as well as tumor mediated changes in tissues and organs can be examined in 

a whole organism. The formation of the tumor is mediated by a single oncogenic 

receptor which sits at the top of several contributing pathways. 

 

1.2.2 Zebrafish melanoma models 

 

In comparison to Xiphophorus, a livebearing fish, Danio rerio (zebrafish) is egg-laying 

and has an extracorporal embryonic development which allows for microinjection of 

transgene DNA which will randomly integrate in the genome. Furthermore the 

embryos are transparent making imaging and observation of embryonic development 

feasible. 
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It has been shown that zebrafish transgenic for activated Braf (V600E) under the 

control of the mitfa promoter lead to patches of ectopic melanocytes, termed fish (f)-

nevi but fail to develop melanoma [47]. Notably, when crossed to a p53- deficient 

(p53M214K) line in these fishes formation of invasive melanomas could be observed 

[47]. 

 

In another transgenic approach zebrafish had been generated, which express human 

NRASQ61K under the control of the mitfa promoter [48]. Fish stably expressing the 

transgene show a hyperpigmentation and an anormal pigmentation pattern but fail to 

promote melanoma formation. Like in zebrafish transgenic for activated Braf, 

crossing to a p53- deficient fish line leads to the genesis of melanoma. 

 

Furthermore it had been demonstrated that the expression of hrasV12 under pigment 

cell specific control of the mitfa [49], or kita promoter [50] or when expressed at low 

levels throughout the fish [51] can promote ectopic melanocyte generation and 

melanoma. 

 

1.2.3 Medaka melanoma models 

 

Medaka, like zebrafish, is egg-laying, exhibits an extracorporal development, 

translucent embryos and a short generation time. Therefore medaka is an excellent 

model to investigate tumor development. Transgenic approaches have been used to 

generate a medaka melanoma model system, like the Xmrk-mediated medaka 

melanoma model [52]. In this system the medaka fishes express the oncogene xmrk 

which was fused to the pigment cell specific promoter mitfa from medaka. It had been 

previously shown that Xmrk is able to transform a variety of other cell types [53], [54]. 

xmrk-transgenic juvenile or adult fishes developed large areas of hyperpigmentation 

or progressively growing pigment cell tumors [55]. In addition to black pigmented 

melanomas, other pigment cell tumors of red and yellow pigment-containing 

xanthophores and erythrophores were observed. As melano-, xantho- and 

erythrophores express the pigment cell marker Mitf-a, Xmrk is expressed in all these 

cell types. The red and yellow tumors were designated xantoerythrophoromas or XE 
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tumors. A highly invasive tumor growth with invasion of internal organs and muscles 

was observed for melanotic tumors (figure 5).  

 

 

 

 

Figure 5: Histology of pigment cell tumors in mitf::xmrk transgenic medaka.  

Display of macroscopic and microscopic appearance of exophytic xanthoerythrophoroma. Left image: 

10-week-old female medaka (Carbio) with exophytically growing xanthoerythrophoroma. Right image: 

Xanthoerythrophoroma growing in the dermal compartment and locally invading the underlying trunk 

musculature (arrows). Images adapted from [55]. 

 

 

Similar to the Xiphophorus model, melanoma penetrance is 100% in the xmrk-

trancgenic medaka model. In this model stable xmrk-transgenics show a very 

stereotype tumor development with an early onset. This makes this system suitable 

for the analysis of chemical compound testing and the examination of tumors from 

early to late stages of development.  

 

1.3 Angiogenesis 

 

The formation of new blood vessels from the pre-existing vasculature, e.g. due to 

wounding or the influence of hypoxia- or cancer-mediated factors, is called 

angiogenesis. Blood vessels are part of the circulatory system which is responsible 

for supplying the body with blood. This is important to supply distant tissues and 

organs with nutrients, electrolytes and oxygen. Furthermore blood vessels serve to 

take away waste products such as carbon dioxide from those regions.  
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Figure 6: Angiogenesis. 

Scheme of a formation of a new blood vessel from the pre-existing vasculature due to wounding or the 

influence of hypoxia- or cancer-mediated factors. 

 

In contrast to angiogenesis, vasculogenesis describes the de novo generation of 

vessels from precursor cells such as angioblasts. An angioblast is an undifferentiated 

endothelial progenitor cell that has yet to integrate into a blood vessel [56]. 

 

Vasculogenesis takes place during embryonic and early development [57]. In both 

processes angiogenic signals play an important role. In the last decades a broad 

variety of pro- and anti-angiogenic factors have been discovered such as heparin 

binding peptide growth factors like VEGF [58], [59], PlGF, FGF-1 or FGF-2 [60]), non-

heparin binding peptide growth factors like TGF-α [61], [62], TGF-β [63], EGF [61], 

[64] or IGF-I [64], [65], inflammatory mediators like TNFα [62], IL-8 [66] or IL-3 [67], 

enzymes like COX-2 [68] or angiogenin [69], hormones like oestrogens [70], 

oligosaccharides like hyaluronan oligosaccharides [71], [72] or gangliosides [73], 

hematopoietic factors like erythropoetin [74], cell adhesions molecules like VCAM-1 

[75] or E-selectin [75], [76] and others like nitric oxide [62] or ANG-1 [77], [78].  

 

1.3.1 Types of angiogenesis 

 

Angiogenesis can be subdivided into two groups: physiological and pathological 

angiogenesis [79].  
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Usually the rate of proliferation of endothelial cells, in the adult, is very low compared 

to other cell types within the body [80]. Processes like wound healing [59], [81], 

endometrial growth during the menstrual cycle or reproduction [79] are an exception 

in which angiogenesis occurs. These processes are reported as physiological 

angiogiogenesis. Physiological angiogenic processes are highly regulated by a 

cascade of pro-angiogenic factors or angiogenesis inducing signals. These factors 

are turned on for a short period of time and then they are completely shut down. 

Furthermore pro-angiogenic factors are balanced by so called anti-angiogenic factors 

which play a counter part to the inducing molecules. An imbalanced or unregulated 

angiogenesis could result in a variety of diseases [79] like rheumatoid arthritis [82], 

diabetic retinopathy [83] or juvenile hemangliomas [84].  

 

Unregulated or imbalanced angiogenesis is named pathological angiogenesis 

resulting in an aberrant growth of blood vessels (i.e. permanent maintained 

neovascularization). Pathological angiogenesis occurs also in tumor development. 

Tumor- or sustained angiogenesis was described by Hanahan and Weinberg as one 

of the hallmarks of a cancer [85]. 

 

Tumor development is usually a multi-step event. The start of uncontrolled growth of 

some tumor is often correlated with a loss of regulated or controlled cell proliferation. 

After the tumor mass has reached a certain size some tumors stop growing and 

reach a steady state due to the fact that the number of proliferating cells 

counterbalances the number of dying cells [80]. The growth stop is often the result of 

a lack of nutrients and oxygen [86]. It has been shown in several transplantation 

studies that an avascular tumor - a tumor that is not associated with or supplied by 

blood vessels - has a size limit of about 0.2 to 2.0 mm in diameter [87]. This 

observation correlates with the tissue oxygen diffusion limit of approximately 100 to 

200 µm [86]. By reaching a size of about two millimeters, cells in the inner mass of a 

tumor suffer from low oxygen tension (hypoxia) and nutrients. This may lead to an 

upregulation and/or secretion of pro-angiogenic factors like FGF-2 or VEGF, 

sometimes together with an inhibition and/or downregulation of anti-angiogenic 

molecules. This event provokes an imbalance between pro- and anti-angogenic 

factors and is called “angiogenic switch“ [63], [88].  
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In physiological and pathological angiogenesis, hypoxia is one of the main forces 

which lead to the onset of the angiogenic process [80]. Hypoxia is usually initiated by 

stabilization of hypoxia inducible factor 1 alpha (HIF-1α). HIF-1α is then able to 

induce several other pro-angiogenic factors like VEGF or FGF’s [89], [90]. 

Furthermore hypoxia is also attracting macrophages [80]. 

 

Finally the neovascularization of a tumor enhances the possibility that tumor cells 

may get into the blood stream leading to a spread of these cells in other organs or 

tissues to form metastases. 

 

1.3.2 Angiogenic mechanisms 

 

Angiogenesis usually occurs through two main mechanisms, known as sprouting 

angiogenesis and intussusceptive angiogenesis (alias non-sprouting or splitting 

angiogenesis). However, beside these, angiogenesis can take place through other 

mechanisms like recruitment of endothelial progenitor cells (EPC’s), vessel co-option, 

vascular mimicry or lymphangiogenesis. 

 

1.3.2.1 Intussuseptive angiogenesis 

 

In intussuseptive angiogenesis the wall of a capillary expands into the lumen of the 

capillary and this in the end results in a split of the capillary in two new vessels. 

Intussusceptive angiogenesis can be separated into four phases. The typical feature 

of phase one is a direct cell contact of endothelial cells located opposite of each 

other in the capillary wall. This contact is achieved by the walls protruding into the 

vessel wall and these walls then establish a zone of contact. Then in phase two, the 

endothelial cell junctions are reorganized and the vessel bilayer is perforated to allow 

growth factors and cells to penetrate into the lumen. Phase three is characterized by 

a core formation between the two new vessels at the zone of contact that is filled with 

pericytes and myofibroblasts. These cells begin laying collagen fibers into the core to 

provide an extracellular matrix for growth of the vessel lumen. Finally in phase four 

the core is enlarged without alterations to the basic structure [91], [92].  
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Intussusception is an important mechanism to reorganize existing cells. Thereby an 

increase in the number of capillaries is not corresponding with an increase in the 

number of endothelial cells. This mechanism of angiogenesis is especially important 

in embryonic development. Here, insufficient resources are available to create a rich 

microvasculature with new cells. 

 

1.3.2.2 Sprouting angiogenesis 

 

Sprouting angiogenesis is determined as the sprouting of vascular endothelial cells 

from pre-existing capillaries into adjacent tissue. This process involves several steps. 

Sprouting angiogenesis usually starts with an activation of endothelial cells by 

specific growth factors which bind to receptors on the endothelial cell membrane. As 

a result, activated proteases degenerate locally the extracellular matrix and 

basement membrane surrounding the endothelial cells. Then endothelial cells are 

able to invade into and through the surrounding matrix by proliferation and migration 

[93]. Polarization of migrating endothelial cells create a lumen and lead to the 

formation of an immature new blood vessels [94]. Recruitment of mural cells and 

generation of an extracellular matrix lead to a stabilization of these immature vessels 

[95]. This process is usual tightly controlled by pro- and anti-angiogenic regulators, 

which determine the level of ongoing angiogenesis.  

 

1.3.2.3 Recruitment of endothelial progenitor cells (EPC) 

 

Today it is generally accepted the new blood vessel formation can also occur due to 

the recruitment of endothelial progenitor cells. The first in vivo observation of this 

process came from mouse and rabbit bone marrow transplantation models which 

show an incorporation of EPC in blood vessels [96–98]. This EPC recruitment is 

promoted by several growth factors like PLGF and/or VEGF [99], [100] as well as 

several chemokines and cytokines which are produced during processes such as 

physiological stress or tumor growth. 

 

The recruitment and incorporation of EPC is a multistep process, including 

chemoattraction, active arrest and homing within angiogenic vasculature, 
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transmigration to the interstitial space, incorporation into the microvasculature and 

differentiation into mature endothelial cells [93]. Some researchers doubt that EPC 

play a leading role in tumor angiogenesis [101–103], but nonetheless the impact of 

EPC in tumor angiogenesis cannot be disregarded. 

 

1.3.2.4 Vessel co-option 

 

It has been shown that tumors, even in an avascular stage, are able to grow in well-

vascularized tissues like brain or lung [104], [105]. This phenomenon is defined as 

vessel co-option. Here tumor cells can grow alongside existing vasculature without 

causing an angiogenic response. Today vessel co-option has been observed in 

several tumor types like murine Lewis lung carcinoma, murine ovarian cancer, human 

Kaposi sarcoma and human melanoma [106–109]. 

 

1.3.2.5 Vasculogenic mimicry 

 

In another process described as “vasculogenic mimicry” tumor cells are able to 

transdifferentiate into an endothelial like phenotype. These transdifferentiated tumor 

cells provide the tumor with a secondary circulatory system of vasculogenic 

structures and has been observed mainly in aggressive tumors like melanoma [110], 

[111]. But still less is known about the exact mechanism underlying vasculogenic 

mimicry. Recently it was suggested that low levels of oxygen or hypoxia, which are 

known to promote cell invasion, metastases and transformation in melanoma [112], 

[113], can lead to a vasculogenic mimicry, as demonstrated by tube formation in 

matrigel assays [114], [115]. 

 

1.3.2.6 Lymphangiogenesis 

 

The formation of new lymphatic vessels from pre-existing ones is defined as 

lymphangiogenesis. This process is not a direct mechanism of angiogenesis but it is 

assumed that it is triggered in a similar way as angiogenesis. The lymph system is 

part of the vascular circulatory system but in contrast to the blood vascular network it 

is an open ended, one way transport system that drains extravasated fluid, collects 

lymphocytes and returns it to circulation [116]. Factors which play an important role in 
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lymphangiogenesis are VEGFR-3 [117], VEGF-C [118], VEGF-D [119] and also 

bFGF [120]. 

 

1.3.3 Angiogenesis models 

 

To date, a broad variety of in vitro or ex vivo angiogenesis tools and angiogenesis 

assays are available such as endothelial cell proliferation and migration assays (e.g. 

wound healing assay), endothelial cell differentiation assays (e.g. tube formation 

assays, sprouting assays [121], [122] as well as organ culture assays (e.g. rat/mouse 

aortic ring assay [123], [124], chick aortic arch model [125] and vena cava-aorta 

model [126]). 

 

These are useful tools for screening potential inhibitors or inducers of angiogenesis 

and for testing or validating new drugs [127]. However, they can only give limited 

information about the pro- and anti-angiogenic interactions that take place in a 

natural physiologic microenvironment. In addition, dosage issues or side effects of 

new drugs cannot be addressed. Therefore, in vivo models are essential to study 

effects of angiogenesis in a whole organism, especially angiogenic effects of tumors 

in their natural environment.  

 

Several in vivo models encompassing different species exist. In the chick 

chorioallantoic membrane assay (CAM), test substances or cross-species xenografts 

as well as cancer cells are placed on the CAM and angiogenic processes are 

recorded after a few days by microscopy [128], [129]. 

 

The corneal angiogenesis assay uses the cornea of rabbits, guinea pigs, rats or mice 

to investigate neovascularization in the corneal pocket in response to closely 

positioned substances like concentrated conditioned medium, growth factors, 

cytokines or cross-species tissues such as tumor tissues, tumor cells and other cells 

or tissues into the corneal pocket [130], [131]. 

 

The murine dorsal air sac model uses a chamber ring which is made up of 

nitrocellulose filters and is loaded with tumor tissue or tumor cells. This ring is then 
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implanted into the dorsal skin of mice by lifting it with injected air. After 5 days the 

ring is removed and angiogenesis is assessed by counting vessels or vessel density 

using microscopy [132].  

 

The chamber assays, first used in rabbits, later adapted to mice, rats and hamsters, 

use two symmetrical frames which are implanted, in the majority of cases, into the 

dorsal skinfold of the animal [133–135]. The result is a sandwich of two skin layers. 

One of the skin layers is then removed and tumor tissue or tumor cells are placed 

onto the remaining layer. The investigated area is then covered with a glass cover 

slip. Neovascularisation is then studied with trans-illumination technique devices.  

 

Most of these assays require transplantation or xenotransplantation of tumor cells 

and application of substances like growth factors, cytokines or conditioned media. 

However, the use of special imaging and preparation equipment is often necessary to 

monitor tumor angiogenesis. In most assays test animals can only be analyzed at the 

experimental end point, when they are dissected to investigate affected organs or 

tissues.  

 

Transparent animals, like the zebrafish (Danio rerio) or the Japanese ricefish medaka 

(Oryzias latipes) are able to overcome some of these problems. They produce large 

numbers of embryos per day with optical clarity and ex utero development which 

facilitate monitoring. For zebrafish, several xenotransplantation angiogenesis models 

do exist [136–138]. But most of them describe the vascularisation after injection of 

human melanoma or other tumor cells into embryos or larvae. 

 

1.4 Angiogenesis in human melanoma 

 

Formation of new blood vessels is a prominent feature of human melanoma. It has 

been shown that these tumors have angiogenic activity [139]. The first observations 

about the ability of human melanoma cells to induce angiogenesis date back to 1966 

when Warren and Shubick transplanted human melanoma cells into a hamster cheek 

pouch which led to neovascularization. The onset of angiogenesis was shown to 
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occur in the radial growth phase of cutaneous melanomas [140]. An increase in the 

mean vascular density has been shown to correlate with melanoma progression in 

subsequent histochemical studies of melanomas [141] and several studies have 

reported an inverse correlation between tumor microvessel density and disease-free 

and overall survival of melanoma patients [142–145].  

 

1.4.1 NF-κB and cancer 

 

Since its discovery in 1986, the nuclear factor kappa B (NF-κB) became one of the 

most investigated transcription factors [146], [147]. NF-κB plays a major role in 

multiple cellular processes such as inflammatory, innate and adaptive immune 

response, proliferation, apoptosis, development and angiogenesis. It was originally 

found in the nucleus of B cells bound to an enhancer element of the immunoglobulin 

kappa light chain gene and was then the termed NF-κB. It was assumed that it is B 

cell specific but was later shown to be ubiquitously expressed.  

 

The NF-κB complex consists of different subunits which can form a variety of homo- 

as well as heterodimers with different cellular functions. All components of the NF-κB 

complex belong to the reticuloendotheliosis (REL) family. The fact that v-REL is an 

oncoprotein of the REL retrovirus (REV-T) provided one of the first links between NF-

κB and cancer [147], [148]. 

 

Two classes of REL proteins are known to play a decisive role in human NF-κB 

complexes (Table 1). These two classes are distinguishable by their mode of 

synthesis and action. 

 

Class I REL proteins consists of NF-κB1 (p105) and NF-κB2 (p100). P105 and p100 

are large precursor proteins which exhibit an aminoterminal REL homology domain 

(RHD), required for DNA binding and dimerization, as well as a series of ankyryn 

repeats at the C-terminal side. This C-terminal domain is removed in response to 

ubiquitin-dependent proteolytic procession, resulting in the two mature DNA-binding 

proteins p50 (derived from p105) and p52 (derived from p100), which both lack the 

transcription-modulating domains. 
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Class II REL proteins consists of RELA (p65), RELB, and c-REL. These proteins 

exhibit also a RHD at the N-terminal side as well as several transactivation domains 

(TAD) at the carboxyterminus. These proteins are synthesized in their mature forms 

and are not further processed by proteolysis. 

 

Class Protein Aliases 

I 
NFKB1 p105 > p50 

NFKB2 p100 > p52 

II 

RELA p65 

RELB  

c-REL  

 

Table 1: Class I and II of NF-κB complex proteins. 

 

These two classes of REL proteins can form various NF-κB complexes of different 

homo- and heterodimers. 

The activity of these homo – and hetero dimers are regulated by two main pathways, 

a canonical or classical pathway and a non-canonical or alternative pathway (figure 

13). 
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Figure 7: A model depicting the classical and alternative signaling pathway of NF-κB.  

(A) Classical or canonical pathway is mediated by IKKβ and leading to phosphorylation of IκB. (B) The 

alternative or non-canonical pathway involves NIK activation of IKKα and leads to the phosphorylation 

and processing of p100, usually generating p52 (RELB) heterodimers. 

 

In classical or canonical pathway regulation, dimers composed of RELA (p65), c-

REL, and p50 were held captive in the cytoplasm by inhibitors of κB (IκB). There are 

seven IκB family members named IκBα, IκBβ, BCL-3, IκBε, IκBγ, as well as the 

precursor proteins p100 and p105. All these members exibit an N-terminal regulator 

domain and adjacent to this domain a series of five to seven of ankyrin repeats which 

can bind to the dimerization domain of NF-κB dimers [149].  

 

This classical pathway can be induced in response to microbial and viral infections or 

activated by mitogens, growth factors, hormones, exposure to proinflammatory 

cytokines, several stresses (physiological, oxidative, physical), chemical agents, 

environmental toxins and medical drugs. These NF-κB-inducible factors lead to 

activation of the IκB kinase (IKK) complex. This 700-900-kDa IKK complex contain 

two kinase subunits, IKKα (IKK1) and IKKβ (IKK2) [150], and a regulatory subunit 
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termed NEMO (NF-κB essential modifier) or IKKγ. In case of the activation of the 

classical pathway the IKKβ subunit phosphorylates NF-κB-bound IκB’s on two 

conserved serine residues (Ser 32 and Ser 36 of IκBα and Ser 19 and Ser 23 of 

IκBβ), within the N-terminal regulatory domain. Phosphorylated IκB’s are detected by 

the ubiquitin ligase machinery. This leads to polyubiquitination of IκB’s and their 

subsequent degradation by the 26S proteasome [151], or processing in case of p100 

respectively p105 yielding active forms p52 respectively p50 [152]. The alternative 

pathway usually generates p52-RELB heterodimers while the classical pathway 

usually generates p52-RELA heterodimers [151], [153]. 

 

The alternative or non-canonical pathway can be induced by activation of the NF-κB-

inducing kinase (NIK) through different members of the TNF-receptor superfamily, 

like CD40R [154], B-cell activating factor receptor (BAFFR) [155] and lymphohotoxin-

β receptor (LTβR) or tumor necrosis factor receptor-associated factor 3 (TRAF3) . 

NIK then activates IKKα which phosphorylates p100 [156], [157].  

 

After degradation of the IκB’s the released NF-κB dimers are able to translocate to 

the nucleus. Phosphorylation of RELA (p65) by a several kinases during the 

phosphorylation and degeneration process of IκB’s enhances the nuclear 

translocation of p65 [158], [159]. In the nucleus the NF-κB-dimers bind to specific 

sequences of promoter or enhancer regions of target genes. 

 

IκBα is found amongst the first genes which are activated by NF-κB. IκBα can 

transport active NF-κB from the nucleus to the cytoplasm - a classic example for a 

negative feedback loop system. In normal cells, NF-κB activation is therefore 

transiently inducible. In tumor cells of different types, impaired regulation of NF-κB 

activation leads to a constitutively activation due to molecular alterations. This can 

result in an abnormal regulation or expression of different NF-κB-target genes. 

Several cellular alterations like evasion of apoptosis, sustained angiogenesis, self-

sufficiency in growth signals, and metastasis may be the result of constitutive NF-κB 

activation in different types of cancers, including melanoma.  
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1.4.2 NF-κB in melanoma 

 

Several in vitro studies have demonstrated that NF-κB binding is constitutively 

increased in human melanoma cell cultures compared to normal melanocytes [160], 

[161]. This correlates with elevated p65 expression levels, enhanced phosphorylation 

and nuclear translocation in human nevi and melanomas compared to normal skin 

p65 levels [161], [162]. 

 

Since melanoma progression is mediated through multiple genetic pathways, 

constitutive NF-κB activation can occur through several steps and in several mutated 

pathways, which are known to promote melanoma progression [163], [164].  

 

1.4.3 Mechanisms of NF-κB activation in melanoma  

 

Many typical mutations, which may occur in melanoma, are able to trigger the NF-κB 

pathway as discussed hereafter (see Figure 8 for an overview).  

 

 

Figure 8: Gene mutations in sporadic melanoma and NF-κB upregulation.  
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These mutations directly/indirectly induce NF-κB upregulation. Red arrow (→) indicates direct positive 

regulation and dotted red arrow indicates indirect positive regulation. The black colored symbol (┴ or 

┬) indicates negative regulation. This diagram was adapted from [165]. 

 

p16 INK4a is known to regulate the activity of the retinoblastoma (RB) protein family 

members and the regulation of cell proliferation [166], [167]. RB family members are 

known as tumor suppressor and proliferation inhibitors. RB or p16 INK4a mutations 

can lead to an enhanced activation of CDK4/6 followed by enhanced proliferation and 

immortalization [168–170]. It has been shown that wild-type p16 INK4a bind to p65 

and inhibits NF-κB transcriptional activity [171], [172]. This suggests that mutated p16 

INK4a leads to a reduced binding and thus to an upregulation of NF-κB [173]. 

 

A mutation which leads to a loss or inactivation of p14 ARF protein could directly 

result in an upregulation of NF-κB. p14 ARF is known as an activator of tumor 

suppressor gene p53 [174], [175] and a loss of p14 ARF results in a reduction of p53 

activation [176], [177]. p53 is known to inhibit IKKα gene transcription due to specific 

p53 binding at the IKKα promoter [178]. Therefore an inhibition of p53 leads to an 

upregulation of IKKα, this in turn results in an activation of NF-κB. 

 

The phosphatase and tensin homolog (PTEN) the regulatory molecule of the 

PI3K/AKT pathway is often mutated in melanoma [179], [180].  

 

This leads to increased activity of AKT, which phosphorylates IKKα, resulting in the 

phosphorylation of p65 [181], [182]. It has also been reported that AKT itself can 

phosphorylate p65, resulting in an increased binding of the NF-κB complex to DNA 

[18].  

 

Furthermore, NF-κB may be indirectly activated by oncogenic RAS and RAF (mainly 

through N-RAS and/or B-RAF mutations) due to constitutive activation of ERK [183]. 

Furthermore various cytokines, like TNF-α or IL-1α/β, as well as chemokines, which 

are regulated in their expression by constitutively activated ERK are known to be 

activators of NF-κB [184], [185]. 
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1.5 Aims of the thesis 

 

For the development of new drugs or treatment strategies it is necessary to 

understand the basic mechanisms and effects of malignancies like cancer, especially 

melanoma. Therefore, it is of great importance to have suitable models e.g. animal 

models to reveal on the one hand new factors which could play a role in the onset, 

development and progression of these malignancies and on the other hand to get 

more insights in the interactions of different malignant factors and their effects on the 

entire organism. 

 

One aim of this thesis was to analyze if the oncogenic protein Xmrk alone - without 

any mutated other genes or exogenous treatments like radiation - is sufficient to 

induce angiogenesis in an organism like medaka or zebrafish. Furthermore, if Xmrk is 

able to induce angiogenesis, the second aim was to reveal the factors which are 

involved in this process due to their direct or indirect induction by Xmrk. Moreover, it 

was the aim to find out if the inhibition of these factors could decrease the potential 

angiogenic effects in vivo. Finaly, an aim was to analyze if there is a similar effect or 

stringent mechanism in human cells especially in melanoma cell lines. 
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2 MATERIALS, METHODS AND FISH MAINTENANCE 

 

2.1 Fish strains 

2.1.1 Zebrafish (Danio rerio) 

 

The zebrafish TU-AB wildtype strain (ZFIN ID: ZDB-GENO- 010924-10) was used for 

injection experiments. This strain has been kept stock in the laboratory aquarium. 

 

2.1.2 Medaka (Oryzias latipes) 

 

Fish from the strain Carbio (outbred strain, mixed genetic background of southern 

medaka) were used. Transgenic fish lines mitf::xmrk [52] and fli::egfp were used to 

generate fli::egfp;mitf::xmrk double transgenic fishes.  

 

2.2 Fish maintenance 

 

Fishes were maintained under standard conditions with an artificial photoperiod (10 

hours of darkness, 14 hours of light). For all assays, fishes were kept in a medium 

containing 17.4 mM NaCl, 210 µM KCl, 180 µM Ca(NO3)2, 120 µM MgSO4, 1.5 mM 

HEPES.  

 

2.2.1 Microinjection of zebrafish embryos 

 

Prior to an injection experiment male and female zebrafishes were put in a spawning 

tank with a seperating insert and a sieve at the bottom. Prior to the start of the light-

phase on the day designated for injection the male and female fishes were joined 

and subsequently spawning began. Laid eggs were transferred into a Petri dish and 

were washed with fresh medium.  
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For injection a dish was formed of 2% agarose in medium with “injection grooves” 

which held the eggs in position for injection. Prior to injection eggs were aligned 

inside the grooves and remaining liquid was almost completely removed with a 1ml 

plastic pipette.  

 

The concentration of injected DNA was determined prior to injection by photometric 

measurements. The injection solution was aspirated into injection needles using 

Eppendorf microloaders. The needles were placed and fixed in a micromanipulator. 

Then the needle tip was carefully opened and for injection about 500 pl of liquid 

solution was injected into the cytoplasm of a one- or two-cell stage zebrafish embryo 

by appliance of a constant injection pressure.  

The injected procedure was observed with a stereomicroscope. Applied injection 

pressure and injection time were adjusted to the size of the needle opening. 

 

Embryos were kept in an incubator at 28°C after injection. A visual control for dead 

embryos and developmental malformations was carried out every day. Medium 

exchange was performed if necessary. 

 

2.2.2 In vivo inhibitor treatment  

 

For the in vivo treatment of transgenic fli::egfp;mitf::xmrk and fli::egfp medakas, 100 

nM NF-κB activation inhibitor (Calbiochem) or 3 mM Tiron (dissolved in DMSO) were 

administered for the indicated timespan. The tank water including inhibitors was 

exchanged every second day. DMSO treatment served as control. Quantification of 

sprouts and branch points per mm inter-fin ray area was performed using 7 to 8 

fishes from each group. 

 

2.2.3 Microscopy of transgenic fli::egfp;mitf::xmrk and fli::egfp medakas 

 

For imaging, fishes were anesthetized with a 1:2000 dilution of pure 2-

phenoxyethanol in medium containing 17.4 mM NaCl, 210 µM KCl, 180 µM 
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Ca(NO3)2, 120 µM MgSO4, 1.5 mM HEPES. Subsequently fishes were fixed with a 

tape stripe at the bottom of a petri dish. Then pictures were taken with a Leica 

DMI6000 B microscope. After pictures were taken fishes were immediately trensferet 

to fresh media to recover from anesthesia. To process the pictures, Leica Application 

Suite (LAS) Microscope Software and ImageJ software were used to analyze the raw 

data.  

 

For confocal microscopy the caudal fins of transgenic fli::egfp;mitf::xmrk medakas 

were cut and fixed in 4% paraformaldehyde in phosphate buffered saline (PBS) over 

night. After three washing steps with PBS fins were gradually dehydrated with 

increasingly concentrated methanol solution (up to 100%) and incubated at room 

temperature overnight. Subsequently, fins were gradually hydrated with PBS and 

were incubated for one hour with the TO-PRO-3 DNA stain (1:1000, Invitrogen). After 

three washing steps with PBS, fins were incubated in PBS over night at room 

temperature. Fins were then transferred to glass slides and were covered with 

Mowiol® 4-88 (Roth). Images were then captured with a Nikon C2 confocal 

microscope. Volocity® 3D Image Analysis software from PerkinElmer (USA) and 

ImageJ software were used to process and analyze the raw data. 

 

2.3 Cell culture 

2.3.1 Murine cells 

 

Mouse melanocytes transfected with HERmrk (Melan-a Hm) were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM), 10% fetal calf serum (FCS) in the 

presence of cholera toxin (12 nmol/L), and TPA (200 nmol/L) supplemented with 

penicillin (400 U/ml) and streptomycin (50 µg/ml). 

For small molecule inhibitor experiments, Hm cells were starved for three days in 

2.5% starving medium containing DMEM supplemented with penicillin (400 U/ml), 

streptomycin (50 µg/ml) and 2.5% dialyzed FCS (Invitrogen, Germany). Inhibitors 

were applied at indicated concentrations. One hour after inhibitor treatment, cells 

were stimulated with 100 nM human EGF (hEGF) from Tebu-bio, Germany. 
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2.3.2 Human cells 

 

Human embryonic kidney cells HEK293 and adenocarcinoma-derived human 

alveolar basal epithelial cells (A549), either transfected with pRK5 or pRK5-xmrk 

[186] were maintained in DMEM supplemented with penicillin (400 U/ml), 

streptomycin (50 µg/ml), and 10% fetal calf serum (FCS, Invitrogen).  

 

Human melanoma cell lines Mel Im, Mel Wei, Mel Ho, UACC-257, SK-MEL-5, RPMI-

7951, MEWO, M14, MALME-3, MDA-MB-435, SK-MEL-3, UACC-62 

and A375 were maintained in DMEM Glutamax supplemented with penicillin (400 

U/ml), streptomycin (50 µg/ml) and 10% FCS (Invitrogen).  

 

2.4 Gene expression analysis  

 

2.4.1 Starvation of cells 

 

Hm cells were starved for three days in 2.5% starving medium and were 

subsequently stimulated with 100 ng/ml hEGF for indicated times. 

 

2.4.2 RNA preparation 

 

RNA extraction from stimulated Hm cells and human cell lines was done using Total 

RNA Isolation Reagent (ABGene) as recommended by the manufacturer.  

 

2.4.3 Preparation of cDNA 

 

cDNA was prepared from total RNA using the RevertAidTM First Strand cDNA 

Synthesis Kit with random hexamer primers (Fermentas). The synthesis was 

performed according to the manufacturer’s manual.  
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2.4.4 Real-time PCR 

 

Real-time-PCR was carried out using the Eppendorf Mastercycler® ep realplex 

thermal cycler. Values for each gene were normalized to expression levels of β-actin. 

Relative expression levels were calculated applying REST software {Pfaffl, 2002 

#33}. The data represent the results from at least two different biological replicates 

that were each analyzed at least by three independent real-time-PCR`s. 

 

Table 2: Primer sequences 

Gene 

name 

Gene 

symbol 
RefSeqID Primer sequences 

ANG ANG NM_001145.4 
Forward 5’AAGGACGCCAACCCCACCTAGA3‘ 

Reverse 5’ACAACAAAACGCCCAGGCCCAT3‘ 

TIMP1 TIMP1 NM_003254.2 
Forward 5’GCAGATCCAGCGCCCAGAGAG3‘ 

Reverse 5’GGTTGACTTCTGGTGTCCCCACG3‘ 

TIMP2 TIMP2 NM_003255.4 
Forward 5’GGCAGTGTGTGGGGTCTCGC3‘ 

Reverse 5’TGGGGCAGCGCGTGATCTTG3‘ 

Ang ANG NM_007447.3 
Forward 5’GGAACGCCCACCCTCCACTC3‘ 

Reverse 5’CCAACAGAGATTCCTGGACCCGG3‘ 

 

PCR primers were designed using Primer-Blast 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

 

Table 3: 1x PCR mix for 5µl template of 5 ng/µl cDNA 

Components Volume [µl] 

ddH2O 14,00 

10x reaction buffer   2,50 

10 mM dNTPs   0,70 

SYBR-Green 1:2000   1,00 

Taq-Polymerase   0,30 

5´Primer 10 pmol/µl   0,75 

3´Primer 10 pmol/µl   0,75 
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template   5,00 

sum 25,00 

 

Table 4: Real time PCR program 

Temperature [°C] Time [min] Repetitions 

95 3:00  

95 0:15 

40x 60 0:10 

60 0:20 

95 0:15  

 

Table 5: 10x Reaction buffer 

Components Amount 

(NH4)2SO4 100 mM 

Tris-HCl pH 8.8 (at 25°C) 200 mM 

KCl 100 mM 

MgSO4 20 mM 

Triton X100 1% 

BSA (nuclease free) 1% 

 

2.5 Protein biochemical methods 

2.5.1 Cell lysis and Western blotting 

 

Cells were harvested and were then rinsed twice with PBS and lysed in lysis buffer 

containing 20mM 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid (pH 7.8), 

500mM NaCl, 5mM MgCl, 2,5mM KCl, 0.1% deoxycholate, 0.5% Nonidet-P40, 

10mg/ml aprotinin, 10mg/ml leupeptin, 200mM Na3VO4, 1mM 

phenylmethanesulphonyl- fluoride and 100mM NaF for at least two hours on ice.  

Shortly, 50 µg of each protein lysate was separated by SDS–polyacrylamide gel 

electrophoresis and analysed by immunoblotting according to standard protocols 

[187].  
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2.5.2 Antibodies 

 

Polyclonal anti-mrk recognizing the C- terminal part of Xmrk (‘pep-mrk’) was 

generated by Biogenes (Berlin, Germany). Anti-β-actin antibody was purchased from 

Santa Cruz Biotechnology (Heidelberg, Germany).  

Anti-β-actin (C-4) and Anti-ANG-I (C-1) antibodies were purchased from Santa Cruz 

Biotechnology. Anti-P-NF-κB-p65 (Ser536) (93H1) antibody was purchased from Cell 

Signaling Technology (New England Biolabs). Secondary antibodies were 

conjugated to horseradish peroxidase and were directed against mouse (Pierce, 

Rockford, IL) and rabbit (Bio-Rad). Images were acquired with KODAK image station. 

 

2.6 Pathway analysis  

 

For the identification of pathways which regulate the expression of candidate genes 

in vitro, the following small molecule inhibitors in the indicated concentration were 

added to the cell culture media: AG1478 (inhibitor of EGFR and Xmrk), Tiron (4,5-

dihydroxy-1,3-benzenedisulfonic acid disodium salt monohydrate; scavenger of 

reactive oxygen species), N-acetyl-L-cysteine, NF-κB activation inhibitor and Vitamin 

E (α-tocopherol), respectively. Cells without small molecule inhibitor treatment 

received the equivalent amount of solvent.  

 

2.7 Immunofluorescence 

 

Hm cells (2x105) were seeded on glass cover slips, starved for 3 days in DMEM with 

2.5% dialyzed FCS (starving medium). Cells were then stimulated with 100ng/ml 

EGF for 24 h or remained unstimulated. Immunofluorescence was performed as 

described before by Meierjohann et al. [45]. The cells were fixed for 5 minutes in 

methanol (-20°C) and permeabilized for 2 minutes in acetone (-20°C). Subsequently 

the samples were blocked for 20 minutes with PBS/1% BSA and incubated with anti-
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NF-κB p65 (E498) antibody (1:100; Cell Signalling) for 1 hour. After three washing 

steps with PBS, the coverslips were incubated with the second antibody Alexa Fluor 

488 goat anti-rabbit IgG (1:1000; Invitrogen) for 1 hour in the dark. After at least three 

washing steps with PBS nuclear staining with 1 µg/ml of Hoechst 34580 (Invitrogen) 

was performed for 1 h in the dark. After at least three washing steps with PBS and 

H2O, the cover slips were embedded with Mowiol® 4-88 (Roth) on object slides. The 

object slides were then kept in the dark at room temperature until microscopy was 

performed. 

 

2.8 Angiogenesis array 

 

Mouse and human angiogenesis arrays were purchased from RayBio®. All cell lines 

were seeded at a density of 1x106 cells per 10 cm dish and were incubated in a total 

volume of 7 ml DMEM media with or without 10 µM of NF-κB activation inhibitor 

(Invitrogen). After 24 h, 2 ml of non-concentrated supernatant of each conditioned 

medium was used for the assay. Assays were done as recommended by the 

manufacturer`s protocol. Images of the provided probed membranes were acquired 

with KODAK image station. Statistical analysis of the raw data was performed with 

Microsoft Excel and Origin 8 software. 

 

2.9 Microbacterial culture and Plasmid preparation  

2.9.1 Bacterial culture media 

 

Table 6: Luria-Bertani-medium (LB) (pH 7,5) 

Components weight [g] 

trypton 10 

yeast extract 5 

sodium chloride 10 

ddH2O ad 1l 

Medium was sterilized by autoclaving. 
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Table 7: LB- Agar-medium (pH 7,5) 

components weight [g] 

trypton 10 

yeast extract 5 

sodium chloride 10 

agar 15 

ddH2O ad 1l 

 

Medium was sterilized by autoclaving and then distributed into petri dishes being still 

in hot condition.  

 

2.9.2 Bacterial storage 

 

For long term storage of bacteria suspension at –80°C, 700 μl of a freshly prepared 

bacteria suspension was mixed with 300 μl sterile glycerol in a vial and subsequently 

frozen in liquid nitrogen until being stored at -80°C. 

 

2.9.3 Plasmid preparation 

 

Plasmid preparation for transfection or injection was performed with PureYield™ 

Plasmid Mini/Midi/Maxiprep System form Promega (Mannheim, Germany) according 

to the manufacturer`s protocol. 
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3 RESULTS 

3.1 Generation of a zebrafish Xmrk-melanoma model 

 

The oncogene xmrk was used to generate a tool which allows in vivo investigations 

and observations of melanoma development in zebrafish like it was described 

previously for medaka. For zebrafish, a lot of mutant fish lines are available, therefore 

permitting investigations of different aspects of melanoma development such as 

metastasis, angiogenesis or senescence.  

 

To generate the zebrafish Xmrk melanoma model a vector construct, which was 

kindly provided by Reinhard Köster (Prof. Dr. Reinhard Köster, Zoological Institute, 

TU Braunschweig, Braunschweig, Germany) was used (figure 9). Here, a Gal 4 PV16 

element is driven by the pigment cell specific promotor mitfa. The translated Gal 4 

protein can bind to a 14 fold upstream activating sequence (UAS) which results in the 

coexpression of two other genes with the help of an E1b promotor. The E1b promotor 

is only active when Gal 4 is bound to the UAS. The genes which are regulated upon 

Gal 4 binding are the oncogene xmrk and, in order to follow oncogene expression, 

GFP. 

 

 
 

Figure 9: Zebrafish injection construct.  

A Gal 4 PV16 element is driven by the pigment cell specific promoter mitfa. Gal 4 binds then to a 

series of upstream activator sequences (UAS) which allow bidirectional transcription of GFP and xmrk 

by the E1b promotor. 

 

For the embryonic injections the injection plasmid was purified with a purification kit 

to get rid of bacterial toxins which could harm the development of the embryo. A 

concentration of 100nM plasmid was used for injection. 24h post injection GFP-

positive pigment cells were observed in some embryos (figure 10).  
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Figure 10: Green fluorescent pigment cells at different sites of the body of injected embryos.  

 

Interestingly, eumelanin containing melanocytes showed no GFP-fluorescence 

(figure 11), probably due to quenching of the GFP-signals by eumelanin. Since 

mature pigment cells are of neural crest origin and nacre/mitfa mutants have fewer 

xanthophores and somewhat more iridophores, suggesting an overlap in genetic 

dependencies between melanophores and xanthophores and perhaps tradeoffs in 

allocation between these lineages and iridophores [188], it is assumed that GFP-

fluorescence positive cells are either precursor pigment cell (chromoblasts, 

chromatophores) or precursor of melanocytes (melanoblasts, melanophores). 

 

 

 

Figure 11: Eumelanin containing pigment cells and adjacent GFP-positive non-melanin 

containing pigment cells.  

Left: bright field image including scheme (inset) to identify the position of the imaged cells. Middle: 

corresponding GFP fluorescence, Right: merge of bright field and GFP. Green fluorescence dot is 

unspecific fluorescence e.g. dead cell. 

 

Surprisingly, some embryos showed abnormal features in early development. 

Several animals injected with the above mentioned construct developed an 

outgrowth of cells, most often at the dorsal side of the trunk of the animals 
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approximately 24 hpi (figure 12). Furthermore these cells were GFP-positive, 

suggesting the presence of the oncogene xmrk. Interestingly some of the injected 

animals displayed an even worse phenotype exhibiting a neoplasm at the dorsal 

trunk side at 24 – 48 hpi (figure 13). Here again GFP-positive cells can be clearly 

identified in the area of the malformation.  

 

 

 

Figure 12: Representative images of a zebrafish embryo 24 hours post injection.  

(A) A binocular image series of a whole zebrafish embryo 24 hours post injection (hpi) exhibiting 

cellular outgrowth at the dorsal body side indicated by a white arrow. The bars represent 500 µm. (B) 

and (C): magnification image series of lateral left (B) and lateral right (C) side of the cellular outgrowth 

structure of the embryo represented in column A. The bars represent 100 µm. Images are displayed 

from top row to bottom row in bright field (BF), corresponding GFP fluorescence (GFP) as well as a 

merge of BF/GFP. 
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Figure 13: Representative images of a zebrafish embryo 24 and 48 hours post injection.  

(A) A binocular image series of a whole zebrafish embryo exhibiting a neoplasm at the dorsal trunk 

side at 24hpi. The bars represent 500 µm. (B) series of magnified images of the neoplasm of the 

embryo represented in column A at 24 hpi. The bars represent 100 µm. (C) series of magnified images 

of the neoplasm of the embryo represented in column A at 48 hpi. The bars represent 100 µm. Images 

are displayed from top row to bottom row in bright field (BF), corresponding GFP fluorescence (GFP) 

as well as a merge of BF/GFP. 

 

The injected embryos (approx. 1000) were separated in GFP-positive and GFP-

negative individuals after 3 days post injection. Surprisingly all injected animals of the 

GFP-positive cohort died approximately within one to four weeks after injection. In 

contrast, GFP-negative animals survived to adulthood and were confirmed to be 

xmrk-negative by PCR. 

 

3.2 Medaka Melanoma Angiogenesis Model 

3.2.1 fli::egfp medaka 

 

The fli::egfp medaka, generated and kindly provided by Joachim Wittbrodt’s Lab. 

(Prof. Dr. Joachim Wittbrodt, Centre for Organismal Studies, University of Heidelberg, 

Heidelberg, Germany), expresses egfp under the control of the hemiangioblast 

specific promotor fli [189]. To elucidate if the fli::egfp transgenic medaka is suited for 

imaging of blood vessels and for small molecule administration, a regeneration 
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experiment involving the caudal fin was performed. The fishes exhibit an outstanding 

regeneration capacity after wounding, tissue damage or fin amputation. Caudal fins 

of fli::egfp transgenic medaka were amputated, treated with a specific angiogenesis 

inhibitor and regeneration as well as the vascular pattern of the fin was observed 

over a period of 9 days. The VEGFR2-inhibitor ZM322881 was used to inhibit wound 

healing associated angiogenesis in the fin. This inhibitor was previously tested in 

zebrafish to investigate hypoxia mediated angiogenic effects in the fish retina [190]. 

Adult fli::egfp transgenic medaka fishes were separated into two groups with 10 

animals each. Approximately two thirds of the caudal fin of each fish was amputated. 

Pictures were taken before and after amputation. One group was then treated with 

ZM322881 inhibitor, while the other group received a comparable volume of solvent. 

After nine days of continuous treatment the fins of the control group had reached 

almost the original size before amputation. However a growth delay was observed for 

the ZM322881 inhibitor treated group (figure 21, Δd).  

 

 

 

Figure 14: Representative images of the regeneration of the caudal fin of fli::egfp transgenic 

medakas treated with either an angiogenesis inhibitor or DMSO. 

 

To quantify changes in the regenerative ability of ZM 323881-treated and control-

treated fli::egfp transgenic medakas, the length of each fin was measured at 

amputation day and after 9 days. The result is displayed in figure 14. The fin 

regrowth of the control group was set to 100 %. As shown in figure 15 the 

regenerative capacity in presence of VEGFR2 inhibitor was about one third less 
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compared to the controls. This suggests that VEGFR2-inhibition leads to a delay in 

regeneration and that the medaka caudal fin is suitable for the administration of small 

molecular inhibitors. 

 

 

Figure 15: Regrowth in percentage of the caudal fin of a fli::egfp transgenic medakas treated 

either with VEGFR2-inhibitor ZM 323881 or an equivalent volume of solvent.  

Statistical analysis was carried out with the Mann-Whiney U test (n=9 each).  

 

3.2.2 Development of the fli::egfp;mitf::xmrk transgenic medaka as 

angiogenesis model 

 

One of the hallmarks of cancer is the induction of angiogenesis. A main issue of this 

thesis was to find out if Xmrk is capable to induce angiogenesis in vivo. To elucidate 

this question, the medaka mitf::xmrk melanoma fish model was chosen. It expresses 

the oncogene xmrk under control of the pigment cell specific promotor mitf and was 

crossed with fli::egfp transgenic medaka.  

 

The result of this crossing was a melanoma-prone medaka fish line with GFP-positive 

blood vessels. For the analysis of angiogenesis, the caudal fins were selected, as 

they display a well-structured vascular pattern (Figure 16, box magnification). 

Furthermore, the transparency of these fins is well-suited for imaging. The scheme 

(box magnification) of figure 16 shows a common vascular pattern of a caudal fin of a 
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medaka fish. The fin rays are formed by consecutive opposing hemispheres which 

create a tube like structure. Here blood, vessels are located in the center, pumping 

blood from the anterior to the posterior end of the fin rays. Once reaching the tip of 

the fin ray, the centered blood vessel subdivides into two new vessels, which then 

transport the blood from the fin ray tip back to the body of the fish, in a posterior to 

anterior manner. The subdivided two new blood vessels are located adjacent to the 

hemispheres. In addition, blood vessel sprouts and anastomoses, which are derived 

from the subdivided blood vessels, appear occasionally in the area between two fin 

rays (intra-fin ray area) (cf. figure 16 box magnification) in fli::egfp fishes 

 

 

 

Figure 16: Phenotype of an adult mitf::xmrk transgenic medaka.  

Lateral view of the transgenic mitf::xmrk medaka and scheme (box magnification) of the caudal fin 

vascular pattern.  

 

Similar to mitf::xmrk fishes, the melanoma-bearing fli::egfp;mitf::xmrk animals display 

transformed pigment cells, visible as black (melanophore) and yellow or red-orange 

(xantho- or erythrophore) spots from which tumors can develop. These cells are not 

present in fli::egfp fishes (figure 17 and 18, images A and C). Interestingly, blood 

vessel density and enhanced angiogenic sprouting were strongly increased in 

fli::egfp;mitf::xmrk fishes pattern compared to fli::egfp animals (figure 17 and figure 

18, images B and D). 
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Figure 17: Comparison of patterns of pigment cells and blood vessel architecture between 

transgenic fli::egfp- and fli::egfp;mitf::xmrk medaka caudal fins at 50-fold magnification.  

(A-B) Vessel architecture in caudal fins of fli::egfp transgenic medaka. (A) Bright field image and (B) 

corresponding GFP fluorescence image. (C-D) Vessel architecture in caudal fins of fli::egfp;mitf::xmrk 

medaka. (C) Bright field image and (D) corresponding GFP fluorescence image. All images were 

taken at 50-fold magnification. Bars represent 500 μm. 
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Figure 18: Comparison of patterns of pigment cells and blood vessel architecture between 

transgenic fli::egfp- and fli::egfp;mitf::xmrk medaka caudal fins at 100-fold magnification.  

(A-B) Vessel architecture in caudal fins of fli::egfp transgenic medaka. (A) Bright field image and (B) 

corresponding GFP fluorescence image. (C-D) Vessel architecture in caudal fins of fli::egfp;mitf::xmrk 

medaka. (C) Bright field image and (D) corresponding GFP fluorescence image. All images were 

taken at 100-fold magnification. Bars represent 200 μm. 

 

However, unfortunately the pigmented cells interfere with GFP-fluorescence. In some 

cases GFP-fluorescence was quenched (mainly in melanophores) or weakened 

(primarily in xantho- or erythrophores) (figure 19). 

 

In order to minimize the quenching effect, only those fishes which displayed a 

moderate pigmentation pattern in the caudal fin were selected for analysis. As a 

consequence, experimental fishes were selected for age as well as pigment pattern.  
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Figure 19: Interplay of pigments from melanophores and xantho- and erythrophores with GFP 

fluorescence signals of the blood vessels in the caudal fin of an adult fli::egfp;mitf::xmrk 

medaka.  

The three columns represent from left to right: BF (Bright field), GFP and an overlay. The middle 

image panel represents the original image with an upper area containing melanophores and a lower 

area containing xantho- and erythrophores. The upper image panel is a box magnification of the upper 

area of the original images. Here GFP fluorescence is quenched by pigments of the melanophores 

indicated by white arrowheads. The lower image panel is a box magnification of the lower area of the 

original images. Here GFP fluorescence is interfered by pigments of the xantho- and erythrophores 

marked by the white arrowheads. Scale bar represents 200 µm. 

 

To quantify the changes in vascular patterning among adult fli::egfp;mitf::xmrk and 

fli::egfp transgenic medaka fishes, the average number of sprouts and branch points 

appearing in intra-fin ray areas were examined and statistically analyzed using the 

Mann-Whitney U test (figures 20 and 21). Accordingly to figure 20 it is recognizable 

that the average number of sprouts in intra fin ray areas of fli::egfp;mitf::xmrk 

transgenic animals is strongly and significantly increased compared to control fli::egfp 
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transgenic animals. The same is true for the average number of branch points shown 

in figure 21. 

 

 

Figure 20: Average sprouts per mm.  

Average number of inter-fin ray sprouts per mm caudal fin in fli::egfp and fli::egfp;mitf::xmrk transgenic 

medakas (n= 8 each). Statistical analysis was carried out with the Mann–Whitney U test. 

 

 

 

Figure 21: Average branch points per mm.  

Average number of inter-fin ray vessel branch points per mm caudal fin in fli::egfp and 

fli::egfp;mitf::xmrk transgenic medakas (n=8 each). Statistical analysis was carried out with the Mann–

Whitney U test. 

 

Interestingly, in some medaka fishes transgenic for fli::egfp;mitf::xmrk a direct 

correlation between the number of transformed cells and the extent of vascular 

density was observed. Figure 22 displays an intra-fin ray area of a medaka 

transgenic for fli::egfp;mitf::xmrk, in which the area can be subdivided in two parts 

where one part contains many (indicated by an asterisk) and the other part contains 
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few pigmented xmrk-transgenic cells. The white dashed line in figure 22 indicates the 

border of the two areas. The area with the large amount of pigmented cells shows a 

higher vascular density compared to the other area. 

 

 

 

Figure 22: Caudal fin pigmentation and vascular pattern in fli::egfp;mitf::xmrk transgenic 

medaka.  

(A) Bright field image. (B) Corresponding GFP fluorescence image. (C) Overlay. Bars represent 200 

µm. White dashed line separates strongly pigmented area of inter fin ray tissue (asterisk), containing 

many xmrk-transgenic cells, from the less pigmented area, containing few xmrk-transgenic cells. 

Sprout density is much higher in areas containing a larger number of xmrk-transgenic pigments cells.  

 

Furthermore, it was observed that even single pigmented xmrk-transgenic cells 

(figure 23, asterisks) are able to recruit endothelial sprouts or vessels.  

 

 

 

Figure 23: Sprout recruiting to transgenic pigment cells. 

Representative image of an area containing few xmrk-transgenic cells, showing that sprouts are 

recruited to single transgenic pigment cells (asterisks). (A) Bright field image, (B) Corresponding GFP 

fluorescence image. (C) Overlay. Bars represent 200 µm. 

 

To exclude that this angiogenic phenomenon was driven by hypoxia due to oxygen 

diffusion limitation of the tissue, a determination of the lateral thickness of the caudal 

fin was conducted. A caudal fin confocal microscopy of a representative fli::egfp; 

mitf::xmrk medaka was performed. Subsequently the received image stacks were 

calculated into 3D reconstruction. According to the figure 24, the lateral thickness of 
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the caudal fin across the fin rays (the thickest part of the fin), was determined to be 

approximately 100 µm. The intra fin ray areas, containing the pigment cells, are even 

less thick (figure 31A, B). As the oxygen tissue diffusion limit is approximately 1 mm 

[191][192] and hypoxia does not occur below this limit, it is concluded that lack of 

oxygen supply in the fin cannot be the driving force of the observed increased 

angiogenesis. 

 

 

 

Figure 24: Confocal image of the caudal fin of a representative fli::egfp;mitf::xmrk medaka.  

The GFP-positive blood vessels are shown in green, nuclei are depicted in gray (TO-PRO-3 staining). 

(A) 3D reconstruction of the central part of the caudal fin. (B) 2D xz plane image, scale bar represents 

100 µm. 

 

3.3 NF-κB is activated by Xmrk 

 

To get insight into the mechanism of Xmrk-dependent angiogenesis induction, I 

aimed at identifying angiogenic factors induced by Xmrk. For this purpose, I took 

advantage of various well-established and characterized in vitro systems. 
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In the HERmrk cell culture system, the extracellular part of human EGFR (HER) is 

fused to the intracellular part of Xmrk (mrk), giving rise to the chimeric protein 

HERmrk. HERmrk (or shortly “Hm”) was introduced into murine melanocytes (melan-

a cells), which do not contain endogenous EGFR. In comparison to Xmrk, HERmrk is 

not constitutively active, but can be stimulated using human EGF [193]. The 

supernatants of unstimulated as well as EGF-treated HERmrk cells were examined in 

an ELISA-based angiogenesis array overview displayed in figure 25. 

 

 

 

Figure 25: Mouse angiogenesis array (overview).  

ELISA-based mouse angiogenesis array of the supernatant from unstimulated (grey bars) and EGF-

stimulated (black bars) Hm transgenic melan-a cells. 
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No differences in expression of well-established angiogenesis inducers like bFGF 

and VEGF were observed. However, TNF-α and IL-6 were slightly induced and 

TIMP-1 was considerably induced after HERmrk stimulation (figure 26). All three 

factors are able to induce pro-angiogenic effects [194], [195]. Interestingly, they are 

known targets of NF-κB [196], [197]. 

 

 

 

 

Figure 26: Mouse angiogenesis array (selected detail of figure 32).  

ELISA-based mouse angiogenesis array of the supernatant from unstimulated (grey bars) and EGF-

stimulated (black bars) Hm transgenic melan-a cells. In addition to the well-established angiogenesis 

inducers bFGF and VEGF, only those proteins that showed an induction after stimulation are 

displayed. 

 

To elucidate if NF-κB is activated upon stimulation of HERmrk, the protein levels of 

the phosphorylated NF-κB subunit p65 (Ser536) in Hm cells at different time points 

upon EGF stimulation was analyzed. Phosphorylation of serine 536 in the 

transactivation domain 1 of p65 directly indicates DNA binding and transcriptional 

activity of the NF-κB complex [198]. After 3 and 4h of EGF stimulation a clear 

increase of phospho-NF-κB (Ser536) levels was detectable, as shown in figure 27. 

 

 

 

Figure 27: p65 P-NF-κB induction upon EGF-stimulation (Western blot).  

Western blot of p65 P-NF-κB (Ser536) levels at indicated timepoints of Hm stimulation. β-Actin served 

as loading control. 
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Furthermore, an immunofluorescence performed with a NF-κB p65 antibody in Hm 

cells which were stimulated with EGF for 24 h or remained unstimulated showed a 

translocation of total p65 upon EGF stimulation (figure 28) 

 

 

 

Figure 28: p65 NF-κB induction upon EGF-stimulation.  

Immunofluorescence images illustrating nuclear translocation of NF-κB (p65) after Hm stimulation 

(shown in green). Second antibody is Alexa Fluor 488 goat anti-rabbit IgG. The nucleus is displayed in 

blue and nuclear staining was performed with Hoechst 34580.  

 

As it was previously shown by Leikam et. al. [46] HERmrk can induce the generation 

of reactive oxygen species (ROS). ROS are known as potent activators of NF-B 

[199]. 

 

To test the induction of NF-κB and angiogenic factors in a second, independent cell 

system, human HEK293 cells stably expressing the native oncogenic receptor Xmrk 

(HEK293-xmrk cells) were used. The human-specific angiogenesis array did not 

entirely overlap with the above used murine array, but instead it was able to detect 

additional factors such as VEGF-D, PDGF-BB and angiogenin.  

 

Similarly to the murine angiogenesis assay results, no differences between HEK293 

control cells and HEK293-xmrk cells were visible with respect to the well-established 

angiogenesis inducers bFGF, VEGF, VEGF-D, or PDGF-BB (figure 29, 30). In 

contrast to the Hm cell line (figure 25) an induction of TNF-α or IL-6 was not 

detectable in HEK293 cells.  

 



RESULTS  51 

 

 
Figure 29: Human angiogenesis array (overview).  

ELISA-based human angiogenesis array of 293T-pRK5 (grey bars) and 293T-pRK5-xmrk supernatant 

(black bars). In addition to the well-established angiogenesis inducers bFGF, PDBF-BB, VEGF-D and 

VEGF, only those proteins that showed an induction in response to Xmrk are displayed.  
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The only proteins which displayed an Xmrk-dependent induction were TIMP1, TIMP2 

and, most prominently, angiogenin (figure 30). Like the TIMP proteins, angiogenin is 

also regulated by NF-κB [200]. 

 

 

 

Figure 30: Human angiogenesis array (selected detail of figure 37).  

ELISA-based human angiogenesis array of 293T-pRK5 (grey bars) and 293T-pRK5-xmrk supernatant 

(black bars). In addition to the well-established angiogenesis inducers bFGF, PDBF-BB, VEGF-D and 

VEGF, only those proteins that showed an induction in response to Xmrk are displayed.  

 

By performing western-blot analysis it was found out that protein levels of both 

phospho-NF-κB (Ser536) and angiogenin were increased in Xmrk-expressing 

HEK293T cells in comparison to empty vector transfected control cells (figure 31). 

 

.  

 

Figure 31: P-NF-κB and angiogenin protein level.  

Western blot showing protein levels of Xmrk, P-NF-κB (Ser536), and angiogenin in 293T-pRK5 and 

293T-pRK5-xmrk cells. β-Actin served as loading control. 
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Since angiogenin was not present in the murine angiogenesis assay, separate 

analyses were performed to investigate angiogenin regulation in the murine Hm cell 

system. Similarly to HEK293 system mRNA and protein (figure 32) expression levels 

of angiogenin were induced in response to HERmrk stimulation in the murine Hm cell 

system. 

 

 

Figure 32: Angiogenin expression upon EGF-stimulation. 

Realtime analysis showing angiogenin mRNA expression levels of untreated and EGF-stimulated 

Hmme cells after 4h and 24h of stimulation. Actin served as reference control. Western blot showing 

protein expression of angiogenin in Hmme cells left untreated or stimulated with EGF for 24 h. β-Actin 

served as loading control 

 

3.4 NF-κB and ROS mediate angiogenesis in vivo 

 

To address the question if NF-κB and ROS play a role in hypoxia-independent tumor 

angiogenesis in vivo, the fli::egfp;mitf::xmrk fish model was used.  

 

Age-matched adult fli::egfp;mitf::xmrk medakas were separated into groups of 11-12 

fishes. Groups were either treated with DMSO (control group), NF-κB inhibitor or 

Tiron for one week. Each fish was monitored before and after treatment. In many 

cases a decline in sprouts as well as branch points in the intra fin ray areas was 

observed after one week of continuously treatment with either NF-κB inhibitor or 

Tiron compared to controls (figure 33). Such a decline of sprouts is shown in figure 

33 (arrowheads indicating pre- and post-treatment sprouts) for all experimental 

treatments including DMSO control. 
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Figure 33: NF-κB and ROS mediate Xmrk-dependent angiogenesis in vivo.  

Panels show caudal fins of transgenic fli::egfp;mitf::xmrk medaka fishes before treatment and after 1 

week of continuous treatment with DMSO, NF-κB inhibitor (100nM) or Tiron (3mM). Left panel: bright 
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field images (BF); middle panel: corresponding GFP images (GFP); right panel: magnified view of the 

box indicated in the middle panel (box magnification). Scale bars represent 500 µm. 

 

In single cases degeneration of established anastomoses upon NF-κB inhibitor 

treatment was observed (figure 34). Here after one week of continuous treatment 

with NF-κB inhibitor a disruption of pre-existing anastomoses was occasionally 

observed (figure 34, box magnification, indication by asterisks). However, this 

phenomenon has to be carefully interpreted due to the rare number of these 

observations which might be too low to be statistical relevant. Nevertheless, these 

observations show that the remodeling of the vascular pattern inside the intra fin ray 

area in this experimental setup is not only limited to the decrease of sprouts (figure 

34 arrowhead) or branch points. In addition, a degeneration of pre-existing 

anastomosis or vessels can occur. 

 

 

Figure 34: Degeneration of an anastomosis upon NF-κB inhibitor treatment.  

GFP-positive blood vessel pattern of an adult fli::egfp;mitf::xmrk medaka before and after one week of 

treatment with 100nM of NF-κB activation inhibitor. Upper image panel shows GFP-channel at 50-fold 
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magnification. Lower image panel shows box magnification of the upper images. Degeneration of a 

sprout is marked by an arrowhead. Degeneration of an anastomosis is marked by an asterisk. Scale 

bars represent 500 µm. 

 

To measure the statistical impact of changes in vascular patterning among adult 

fli::egfp;mitf::xmrk transgenic medaka fishes treated with DMSO (control group), NF-

κB inhibitor or Tiron for one week, the average difference in the number of sprouts 

and branch points appearing in intra-fin ray areas were examined and analysed using 

the Mann-Whitney U test (figures 35 A, B). As shown in figure 35 A, DMSO-treated 

control fish displayed a slight increase in the number of blood vessel sprouts during 

one week, but almost no change of branch points during this time. The NF-κB 

inhibitor, however, led to a degeneration of preformed sprouts, resulting in a 

significant decrease of sprouts (figure 35 A) as well as a significant decrease in 

branch points (figure 35 B). The same trend was observed for Tiron treatment, but 

here only the decrease of the number of sprouts was found to be significant (figures 

35 A, B). 

A 

 

B 

 

 

Figure 35: Average difference in the number of sprouts and average difference in the number 

of branch points.  
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Average difference in the number of sprouts (A) and average difference in the number of branch 

points  (B) per mm caudal fin area after 1 week NF-κB inhibitor or Tiron treatment of transgenic 

fli::egfp;mitf::xmrk medaka fishes (n=12 each). DMSO treated control fish served as reference (n=12). 

Statistical analysis was carried out with the Mann–Whitney U test. 

 

3.5 Role of NF-κB in human melanoma cells 

 

Since NF-κB is often activated in human melanoma, where it facilitates tumor 

invasion and proliferation, prevents apoptosis and induces angiogenesis [201], [202], 

[203], [204]. To investigate a possible connection between NF-B and the production 

of the angiogenesis inducer angiogenin in human melanoma cells, we treated the 

human melanoma cell line Mel Im with NF-B inhibitor and performed a western blot 

analysis. Mel Im cells were chosen because of their high intrinsic NF-B activity 

[203]. Pretreatment of Mel Im cells with NF-B inhibitor strongly decreased phospho-

NF-B (Ser536) levels, which went along with a reduction of angiogenin protein 

(figure 36). 

 

 

 

Figure 36: Angiogenin is induced upon NF-κB activation in human melanoma cell line Mel Im. 

Western blot of NF-κB-P-Ser536 and angiogenin protein levels of untreated or NF-κB inhibitor (10µM) 

treated Mel Im cells. -actin served as reference. 

 

Additionally, an ELISA-based human angiogenesis array was performed to detect the 

modulation of angiogenesis regulators in response to NF-B inhibition. Interestingly, 

only angiogenin, TIMP1, TIMP2 and GRO were downregulated upon NF-B inhibitor 

treatment, indicating that these factors are regulated by NF-B in Mel Im cells (figure 

37 for overview and figure 38 for specific factors in detail). 
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Figure 37: Human angiogenesis array of the supernatant from Mel Im cells (overview).  

ELISA-based human angiogenesis array of the supernatant from Mel Im cells pretreated with DMSO 

(gray bars) or 10 µM of NF-κB inhibitor (black bars). 

 



RESULTS  59 

 

 

 

 

Figure 38: Human angiogenesis array of the supernatant from Mel Im cells (detail).  

ELISA-based human angiogenesis array of the supernatant from Mel Im cells pretreated with DMSO 

(gray bars) or 10 µM of NF-κB inhibitor (black bars). The four most strongly regulated proteins are 

shown. 

 

Realtime analysis of angiogenin, TIMP-1 and TIMP-2 mRNA expression levels of 

either DMSO or NF-κB inhibitor treated human melanoma cell lines Mel Im and Mel 

suggest that NF-κB inhibitor may reduce the mRNA amount of the genes (displayed 

in figure 39).  

 

 

 

Figure 39: Angiogenin, TIMP-1 and TIMP-2 expression upon NF-κB inhibition in Mel Im and Mel 

Wei cells.  

Realtime analysis showing angiogenin, TIMP-1 and TIMP-2 mRNA expression levels of DMSO treated 

and of NF-κB inhibitor (10 µM) cells after 24h of treatment. Actin served as reference control.  
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Altogether, angiogenin was consistently detected among all cell systems used for the 

described experiments. To test the dependence of angiogenin expression on NF-B 

signaling in human melanoma cells, inhibitor experiments were performed. 

Pretreatment of melanoma cell lines Mel Wei, Mel Ho and A375 cells with NF-B 

inhibitor strongly decreased phospho-NF-B (Ser536) levels, which went along with a 

reduction of angiogenin protein shown in figure 40. 

 

 

 

Figure 40: NF-κB-P-Ser536 and angiogenin protein levels upon NF-κB inhibition in human 

melanoma cell lines Mel Wei, Mel Ho and A375.  

Western blot of NF-κB-P-Ser536 and angiogenin protein levels of untreated or NF-κB inhibitor (10µM) 

treated Mel Wei, Mel Ho and A375 cells, β-Actin served as loading control. 

 

By performing NF-B inhibitor experiments the following human melanoma cell lines 

were analyzed, if a dependence of angiogenin expression on NF-B exists: UACC-

257, SK-MEL-5, RPMI-7951, MEWO, M14, MALME-3, MDA-MB-435, SK-MEL-3 and 

UACC-62. The cell lines were then sorted in two groups thereby one group 

comprising cell lines where angiogenin protein responding to NF-κB inhibition are 

shown in figure 41 and the other group comprising cell lines which did not respond to 

NF-κB inhibition are shown in figure 42. 

 

 

 

Figure 41: NF-κB-P-Ser536 and angiogenin protein levels of human melanoma cell lines 

responding to NF-κB inhibition.  

β-Actin
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NF-κB inhibitor

A375Mel HoMel Wei

+ + +- - -



RESULTS  61 

 

Western blot of NF-κB-P-Ser536 and angiogenin protein levels of untreated or NF-κB inhibitor (10µM) 

treated human melanoma cell lines UACC-257, SK-MEL-5, RPMI-7951 and MEWO, β-Actin served as 

loading control. 

 

 

 

 

Figure 42: NF-κB-P-Ser536 and angiogenin protein levels of human melanoma cell lines not 

responding to NF-κB inhibition.  

Western blot of NF-κB-P-Ser536 and angiogenin protein levels of untreated or NF-κB inhibitor (10µM) 

treated human melanoma cell lines M14, MALME-3, MDA-MB-435, SK-MEL-3 and UACC-62, β-Actin 

served as loading control. 

 

It was previously described that angiogenin is upregulated by hypoxia in some 

melanoma cell lines [205]. To test if hypoxia, NF-B, or both are relevant for 

angiogenin production in the melanoma cell lines used here, Mel Im, Mel Wei and 

A375 were kept for 24h under normoxic (20% O2) or hypoxic (5% O2) conditions and 

in absence or presence of NF-B inhibitor. Subsequently, the protein levels of 

angiogenin were analyzed. Surprisingly, hypoxia did not lead to an increase, but 

rather a decrease of angiogenin levels, whereas NF-B was required for angiogenin 

expression in all cases except in hypoxia-treated A375 cells (figure 43).  

 

 

 

Figure 43: Angiogenin protein levels of Mel Im, Mel Wei and A375 cells in presence or absence 

of NF-κB inhibitor and under normoxia and hypoxia.  

Normoxic condition = N and hypoxic condition = H. For hypoxia, cells were kept in an atmosphere with 

5% O2, β-Actin served as loading control. Amount of NF-κB inhibitor: 10µM.  
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The same experiment was then performed in Xmrk expressing HEK293 cells (figure 

44). Here, hypoxia had no effect on angiogenin expression at all, whereas NF-B 

inhibition reduced angiogenin levels. 

 

 

Figure 44: Protein levels of angiogenin in 293T-pRK5 or 293T-pRK5-xmrk cells in presence or 

absence of NF-κB inhibitor and under normoxia and hypoxia.  

Normoxic condition = N and hypoxic condition = H. For hypoxia, cells were kept in an atmosphere with 

5% O2, β-Actin served as loading control. Amount of NF-κB inhibitor: 10µM.  

 

In summary, all results demonstrated that in an experimental melanoma model 

angiogenesis can efficiently occur even in absence of hypoxia. It is instead regulated 

by ROS-driven NF-B activation. Similar processes may occur in human melanoma 

cells, where strong angiogenesis inducers like angiogenin are upregulated by high 

intrinsic NF-B activity. 
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4 DISCUSSION 

 

4.1 Generation of a zebrafish Xmrk-melanoma model 

 

Among other animal model systems, fishes are well suited for investigating tumor 

development, vascular development and angiogenesis due to their short reproduction 

cycle, their high transparency during early development and the ability to perform 

drug testing by simply applying a drug to the water (if soluble) and the ability to 

observe different developmental or tumorigenic processes in their natural tissue 

environment with high- resolution bioimaging techniques.  

 

The present study revealed that injection of a Gal4 UAS-xmrk construct in zebrafish 

embryos lead to severe phenotypical effects. The fact that GFP-fluorescence is 

present in pigment cells or precursors of pigment cells proves that the pigment cell 

specific promotor mitfa, which is used to drive GFP expression in the injected 

plasmid, is functional. Further it was observed that injected embryos develop 

neoplasms or outgrowth of cells at different body sites. This suggests that the 

construct promotor mitfa is capable to drive xmrk expression too. Unfortunately none 

of the injected embryos which were visually sorted upon positive GFP-fluorescence 

survived the following weeks. This together with the observed severe phenotypic 

effects leads to the suggestion that enhanced xmrk expression in consequence of a 

14-mer of UAS Gal4-binding site and subsequent protein production seems to be an 

invincible oncogenic burden for the embryos. It has been demonstrated that in a 

system with a lower number of UAS Gal4-binding sites (5-mer) it was possible to 

established a transgenic zebrafish line specifically expressing oncogenic human 

HRAS in the melanocytic lineage [50]. It is worthwhile noting that the oncogene 

HRAS is also less potent that xmrk. HRAS is not able to directly stimulate pathways 

in a way Xmrk is able to do. Xmrk can stimulate ROS production, migration, anti-

apoptosis effects and even proliferation independent of RAS activation [37], [38], 

[39], [45], [46]. 

In conclusion, it is suggested that the high expression status of xmrk in this particular 
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case has a negative effect on early embryonic development and thus has led to the 

death of these embryos.  

 

4.2 Xmrk mediated angiogenesis in an animal melanoma model 

system 

 

With reference to the previous results, here it was demonstrated for the first time that 

melanoma angiogenesis in a transgenic in vivo melanoma model occurs at very early 

stages of tumor development.  

 

In the present study it has been shown that xmrk-transgenic medaka developed a 

mesh of capillaries in the intra-fin ray areas of their fins. Interestingly, transformed 

cells which have not yet developed to three-dimensional tumors such as melanomas 

or xantoerythrophoromas can trigger angiogenesis. It is known that tumors, when 

reaching a certain volume which is above the oxygen diffusion limit of a certain 

tissue, are able to secrete hypoxia-induced pro angiogenesis factors such as VEGF 

or IL-8 [206]. This process is often mediated by hypoxia-inducible factor 1 and 2 (HIF-

1/-2) [89]. According to the present observations in the medaka model, we can 

exclude that hypoxia is the main driving force of this angiogenetic phenomenon due 

to the following reasons: first, it was observed that even a few xmrk-transgenic cells 

can provoke an angiogenic sprouting towards these transformed cells; second: cross 

section of an adult medaka fin revealed that the lateral thickness of the caudal fin 

does not go beyond the oxygen tissue diffusion limit of approximately 1 mm [191], 

[192], third: the hypoxia indicator pimonidazole revealed that the respective fin tissue 

is not hypoxic [207].  

 

Several experiments have brought to light that under different circumstances, 

melanoma cells similar to other tumor cells can express a broad spectrum of 

angiogenic factors like VEGF, bFGF, PlGF, IL-6, IL-8 [206]. Among these factors, 

VEGF, bFGF, and IL-8 have a special standing as they are strongly correlated with 

poor clinical outcome and are independent predictive factors for overall survival in 
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melanoma patients [208]. Surprisingly, prominent factors like VEGF or bFGF have 

not been detected in the previously described angiogenesis arrays of different cell 

systems in the current study. However, VEGF-signaling is still required for 

angiogenesis, as e.g. shown in the context of wound healing in fin amputation 

experiments in presence and absence of VEGFR2-inhibitor treatment. 

 

Furthermore it his known that integrin signaling as well as certain metalloproteinases 

(MMPs) can contribute to melanoma tumor progression and angiogenesis [206]. It 

has been shown that several avβ3 integrin ligands such as osteopontin are able to 

modulate VEGF- as well as bFGF- induced tumor angiogenesis in animal models 

[209]. It has been demonstrated that MMPs are expressed by several melanoma and 

tumor stromal cells [210], [211]. MMPs are actively involved in matrix degeneration 

and can facilitate angiogenesis, metastasis and tumor growth [212], [213]. 

Interestingly, both classes of components are also regulated by Xmrk signaling [41], 

[43]. Several cell line or animal model studies showed that the balance between 

MMPs and their inhibitors (TIMPs) finally determines melanoma progression [206]. 

However, the role of TIMPs in melanoma tumor development is currently under 

controversial discussion. Overexpression experiments of TIMP-1, -2 and -3 on one 

hand resulted in a reduction of melanoma tumor cell invasion, migration, tumor 

growth, metastasis and neovascularization [214]. On the other hand other studies 

demonstrate a significantly enhanced tumor cell proliferation in human melanoma 

cells expressing TIMP-1 [215]. Furthermore transgenic mice overexpressing TIMP-1 

in the peripheral blood showed a significant angiogenic response induced by B16 

melanoma cells after intradermal injection [194]. In the present study it was observed 

that TIMPs were induced or upgregulated by Xmrk, which acts strongly angiogenic. 

Interestingly, it was also shown by our collaborators that a TIMP1 knockdown in 

human melanoma cells reduced pro-angiogenic HUVEC sprouting [207]. These data 

indicate that TIMPs can clearly act pro-angiogenic in melanoma. However, whether 

this is MMP-dependent or –independent still has to be examined. 

Further it was observed that IL-6 was induced upon Xmrk stimulation in HERmrk 

cells, but this was not observed for the 293T-pRK5-xmrk cell line. However, it has 

been shown that IL-6 can induce angiogenesis in a rat cornea micropocket [216]. 
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And it had been demonstrated that IL-6 is also a target of NF-κB [196]. Furthermore it 

has been shown that in melanoma cells overexpressing ILK (Integrin-linked kinase) 

altered activity and subcellular localization of NF-κB subunit p65 occurred and this 

promotes enhanced binding of p65 to the IL-6 promotor [217]. It is suggested that in 

case of the HERmrk cell line IL-6 induction is mediated by Xmrk-induced NF-κB. 

 

4.3 Xmrk mediated NF-κB expression 

 

The data described in this thesis revealed that Xmrk mediates NF-κB actvation, 

which itself is involved in melanoma angiogenesis in medaka. There are several 

theories on how Xmrk can influence NF-κB signaling. It has been demonstrated that 

Xmrk can activate RAS/RAF signaling which in turn can indirectly activate NF-κB 

through constitutive action of ERK and the up-regulation of inflammatory cytokines 

[218]. 

 

Additionally, several recent studies demonstrate that MAP-kinases such as NF-κB 

inducing kinase (NIK) and MAP kinase kinase 1 (MEKK1) can participate in the 

activation of NF-κB in the cytoplasm as well as in the modulation of its transcriptional 

potential in the nucleus. It is suggested that NIK preferentially phosphorylates and 

activates IKKα, while MEKK1 preferentially phosphorylates and activates IKKβ [219]. 

 

It has also been shown that Xmrk activates PI3K signaling with a resulting AKT 

activation [36], [37]. It was described by Li and Stark 2002 [181], that AKT can lead to 

IKKα phosphorylation which leads than to phosphorylation of the NF-κB subunit p65. 

Furthermore, it was also shown that AKT alone is able to phosphorylate p65 which 

increases the binding of NF-κB complex to DNA [220]. 

 

As it was previously shown by Leikam et al. [46] high levels of Xmrk can lead to the 

generation of reactive oxygen species (ROS). It is suggested that Xmrk can mediate 

ROS induction by activation of NADPH oxidases which is similar to its human 

orthologue EGFR [221]. ROS are known as potent activators of NF-κB [197]. It was 
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demonstrated for human melanoma that ROS levels and NF-κB activity were linked 

together [203]. In the present study the influence of Xmrk-mediated ROS on 

angiogenesis were tested by applying a ROS scavenger (Tiron) in vivo. The in vivo 

data revealed that inhibiting ROS had indeed an influence on the angiogenic 

phenomenon as it leads to a significantly decreased number of sprouts. Furthermore, 

it was also shown by in vitro experiments that ROS scavengers like vitamin E and 

Tiron can reduce NF-κB protein levels in an Xmrk-mediated ROS caused system 

[207]. This together suggests that ROS have an influence on NF-κB signaling and 

angiogenesis in a xmrk-based cell system or xmrk-transgenic animal model. 

 

In conclusion, there are several possible ways in which NF-κB might be activated by 

Xmrk, of which we consider ROS production to be the dominant one. However, it is 

likely that melanoma cells or Xmrk-transformed cells use different combinations of 

the mentioned pathways or specific pathways at different developmental stages to 

activate NF-κB.  

 

4.4 NF-κB, angiogenin and human melanoma 

 

It had been demonstrated that NF-κB is constitutively activated in several cancer 

types [146] where it modulates metastasis, chemoresistance and apoptosis 

prevention [222]. Most melanomas and melanoma derived cell lines show constitutive 

NF-κB signaling [173], [223].  

 

In the present study, angiogenin has been found to be upregulated by using  

angiogenesis arrays and immunohistochemistry assays. Several reports have shown 

that angiogenin is a tumor-associated angiogenic factor [224–226]. It is a basic 

protein of about 14.1 kDa and belongs to the superfamily of pancreatic ribonucleases 

[227]. Angiogenin is able to bind specifically to the cellsurface of endothelial cells via 

endothelial cell surface smooth muscle-type α-actin (or α-actin-like protein) or an 

endothelial cell-surface 170 kDa polypeptide [227–231]. Angiogenin activity mediated 

by 170 kDa receptor is still not clearly understood and is under current investigation. 
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Interestingly the 170 kDa protein is not similar to receptors of known growth factors 

and cytokines which are able to induce cell proliferation and differentiation [232]. It 

has been demonstrated that angiogenin is able to increase levels of DNA synthesis 

as well as proliferation of endothelial cells but mainly in sparse cell cultures. Further 

after binding angiogenin is internalized by receptor-mediated endocytosis and is then 

localized in the nucleus of proliferating (subconfluent) endothelial cells [229]. It had 

been shown that enhancement of ribosomal RNA transcription is a nuclear function of 

angiogenin [233] and this serves as a crossroad in the process of angiogenesis 

induced by other angiogenic factors such as FGF and VEGF [234], [235]. 

 

Cell surface actin is assumed to have an impact on the degeneration of basement-

membrane and extracellular matrix. Binding of angiogenin to cell surface actin lead to 

formation of angiogenin-actin-complexes which can dissociate from the cell surface. 

These complexes then can accelerate tissue-type plasminogen activator (tPA)-

catalyzed generation of plasmin from plasminogen [236]. This in turn allows 

endothelial or other cells to penetrate and migrate into perivascular tissue [237]. In 

summary angiogenin contributes to angiogenesis by stimulating endothelial cell 

migration and invasion and is also able to promote cell proliferation and 

differentiation. It also mediates cell adhesion and activates cell-associated proteases 

[238–240].  

 

Like the TIMPs, angiogenin is also regulated by NF-κB [200]. This is in line with the 

fact that the human angiogenin promotor exhibits NF-κB binding sites. Further it has 

been demonstrated that angiogenin could be induced by hypoxia [205]. As already 

mentioned some melanomas or melanoma-derived cell lines exhibit an intrinsic 

constitutive NF-κB activity. Due to this fact, it was tested in a couple of melanoma cell 

lines whether angiogenin induction is NF-κB and/or hypoxia dependent. I could 

demonstrate that angiogenin was induced by NF-κB activity, but not by hypoxia. 

 

In summary, angiogenin induced by NF-κB was identified as an important and potent 

angiogenic factor in human melanoma cells and in melanoma models such as 

medaka. Importantly, I could reveal that highly efficient tumor angiogenesis can be 
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induced in a hypoxia-independent, but NF-B-dependent manner by single cells 

already. Thus, the NF-B pathway contributes to the early metastasic events which 

are observed for small melanoma lesions and which are a hallmark for melanoma 

progression [165], [85], [241]. 

 

4.5 Perspectives 

 

The present medaka melanoma angiogenesis model is well suited for detection of 

angiogenesis at high resolution and is perfectly qualified as an in vivo model for the 

testing of new anti-angiogenesis inhibitors or new combinations of already known 

inhibiting components. This model system has the advantage of testing the inhibitor 

of interest by simple administration into the living media (freshwater) of the fishes 

instead of giving every animal an injection dose of the inhibitor. Furthermore it is able 

to observe putative angiogenesis effects without killing the animal at the end of the 

experiment. This benefits observation experiments over several days or weeks.  

 

In this present study it has been shown that Xmrk is able to cause angiogenesis in 

vivo. It has been also demonstrated that Xmrk is able to lead to in vitro angiogenesis 

in a HUVEC system [207]. It was shown for the first time that Xmrk can activate NF-

κB. As mentioned above there are a brought spectra of factor and pathways by which 

Xmrk can lead to NF-κB activation. Further it has been demonstrated that due to 

Xmrk-mediated activation of NF-κB secretion of pro-angiogenic factors like 

angiogenin, il-6 or TIMPs were induced. In conclusion, this study shows that targeting 

NF-κB pathway with its angiogenesis-dependent and –independent effects of tumor 

development might be a promising anti-tumor strategy and this is not limited to Xmrk-

mediated tumors it might be also transferable to human melanoma as partially shown 

with NF-κB-inhibitor experiments in the human melanoma cell lines. 
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