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Introduction

Since the beginning of control theory two main questions arose frequently:
Does a system behave "nicely"?
If not, can we make the system do what we want in a "nice" way?
Although these questions essentially remained the same since [Max67], the
class of systems under consideration changed in the course of time. It became
apparent that a simple feedback loop as depicted in Figure 1 is not well suited
for modern challenges in control theory. For example, a modern car can

Plant SensorActuator

Controller

Figure 1: A simple feedback system

easily consist of hundreds of sensors, communicating over thousands of meters
of cable with several controllers, which in turn coordinate many actuators.
The sheer number of di�erent devices of such a system already demands for
new tools for analysis, design, and modeling. To this end Figure 2 is more
appropriate to display the structure of a modern car than Figure 1. A system
of the form depicted in Figure 2 is often referred to as a large-scale system.
Although no precise de�nition can be found in literature, according to [MH05]
a system is considered to be large-scale, if it has at least one of the following
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properties:

Decomposition: The system can be decomposed into smaller systems.

Centrality: There is no central controller.

Complexity: The system is too complex for traditional methods.

Communication
System

Figure 2: A large-scale system communicating over a digital channel

The somewhat vague de�nition itself points out that many open problems
exist in the analysis, design and modeling of large-scale systems.
The complexity as well as the centrality aspect of large-scale systems leads to
failure of a holistic approach of modeling, design and analysis. In this regard,
it is often only possible to treat the in�uence of one subsystem to another as
a disturbance. This approach was followed by e.g., [Vid81, �il91], in which
this in�uence is modeled by linear functions.
Sontag introduced in [Son89] a certain class of nonlinear systems that carry
particular "nice" features of linear systems. Basically, these systems share
the property that if a disturbance of the system is bounded, the state of
the system will also be bounded. This "nice" behavior is termed input to
state stability (ISS). Within the ISS framework, which plays a prominent role
throughout this thesis, it was possible to generalize the ideas of [Vid81, �il91]
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to a larger class of systems in [DRW07] by allowing nonlinear functions to
model the in�uence of one subsystem to another.

Let us consider the previous example of a modern car again. If there is
a great number of parts within the system which share the same communi-
cation medium, new approaches are needed. To date, control theory often
neglected these communication aspects during the analysis and design pro-
cess of control systems. However, this cannot be done anymore, if parts of the
system are far from each other, or if there is a large number of subsystems.
By taking the communication aspect explicitly into account in the analysis
and design, ideas from signal and information theory become more and more
important in control theory. See, e.g., [NFZ07].
As the title of this thesis suggests, we develop tools for the stabilization and
stability analysis of large scale systems communicating over digital commu-
nication channels. Before we describe our contribution in detail, we brie�y
discuss the impact of digital communication on control systems.

Digital Communication Channels and Control

Since the �fties of the last century the introduction of digital (digitus (lat):
�nger) communication channels, respectively, digital devices themselves, rev-
olutionized a vast �eld of technical disciplines.
A control system that communicates over a digital channel is called a net-
worked control system. The system itself may be large-scale or not. For an
overview of networked control systems up to the year 2007 see [HNX07].
In this work we are considering large-scale systems that communicate over
digital communication channels. The key property of digital communication
channels is that they only transmit two di�erent symbols (usually named 0
and 1). Besides the mathematically interesting problems raised by the in-
troduction of digital channels, from a engineering point of view the merit of
digital communication lies in its �exibility, robustness, and a�ordability. As
every coin has two sides, the introduction of digital communication within
the control community gave rise to new problems and challenges. In particu-
lar, the introduction of digital communication channels poses problems that
are typical for networked control systems, such as:

Delay Information sent at some point in time is received at a later point.

Packet Loss Data gets lost.

Quantization Rounding errors occur due to �niteness of the channel.

Arbitration Not every sender gets access to the channel at every time.
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Bandwidth The capacity of the channel is limited.

Note that delay and packet loss are closely related as well as quantization
and bandwidth. The former, because packet loss can be modeled as an in-
�nite delay. The latter, because there is a trade-o� between the available
bandwidth of the channel and the size of the rounding error.
The problem of arbitration demands for more sophisticated methods to coor-
dinate the communication among several senders and receivers. Usually, this
coordination is done by a so called protocol, which prepares the information
and decides, when to send data and how to handle collisions and congestions.
A widely used protocol today is called TCP (Transmission Control Protocol,
see [Ste93] for an introduction). TCP is a packet based transmission proto-
col, i.e., information is gathered in packets of equal size and sent from the
sender to the receiver. A network of senders and receivers that uses TCP or
similar protocols is itself a large-scale system, whose analysis is far away from
being trivial. Early accounts of modeling and analysis of such a system can
be found in [HMTG01, Sri04, WSSL06, Bia00]. Despite the complexity of the
dynamics inherent to such protocols these models deliver astonishing accu-
racy. However, the interaction between the dynamics of the communication
channel with another dynamical system using the channel is not understood
su�ciently.
One particular problem of the mentioned models is that they are mostly in-
terested in the steady state behavior of the communication channel, while
for control purposes the transient is also of vital importance. To the best of
the author's knowledge, up to now, there is no model well suited for control
applications.
All of the above mentioned e�ects, i.e., delay, packet loss, quantization, and
bandwidth limitations can severely deteriorate the stability and performance
of a system. To counteract these e�ects three di�erent approaches are used
frequently. The �rst is to design a controller for the nominal system, i.e.,
the system without a digital channel and thus without the negative e�ects of
communication. And then to give conditions for the communication channel
to ensure stability of the system despite the e�ects of delay, loss, and quan-
tization.
The second approach is the introduction of two new devices into the feedback
loop often called encoder and decoder. The encoder prepares the measured
state in a certain way, better suited for the digital communication channel
and control applications. The decoder on the other side inverts this proce-
dure. Note that the concept of encoder/decoder is also known in information
theory. To avoid confusion, the encoder and decoder are sometimes called
smart sensor and smart actuator in control literature. The �rst and the sec-
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ond method are referred to as model based or emulation approach, as it uses
the system without communication as a model to design a controller.
The third approach is explicitly incorporating knowledge of the communica-
tion channel into the design of the controller. For instance, in
[WCdWGA07] a method is presented to stabilize the system despite the pres-
ence of delay, provided that a model of the communication channel is given,
i.e., there is a model of the communication which gives a forecast of the ex-
pected delay with su�cient accuracy.
In general, the third approach has the potential to yield better results than
the other two, but as mentioned before, up to now no model of the com-
munication channel exists that is well suited for control purposes. The �rst
approach is followed by, e.g., [HTvdWN10], where ideas are given to handle
the e�ect of delay, loss, and quantization.
In a similar spirit, [NL09] casts the problem into the framework of hybrid
systems, where it is possible to consider the problem of arbitration. [NL09]
is of interest in this thesis, as we expect that the results of Chapter 2 and 4
can be combined in a similar manner as in [NL09].
We decided to follow approach number two and to a lesser extent number
one in this thesis. The rest of the introduction is devoted to the explanation
of the details of our methods.

Existing Results and Contribution of the Thesis

In this work we want to derive tools for the stability analysis and stabilization
problem of large-scale systems communicating over digital communication
channels. We have already mentioned typical problems introduced by digi-
tal communication, such as delay, packet loss, quantization, and bandwidth
limitations.
In Chapter 2 we introduce an approach which stabilizes a system despite the
e�ects of quantization, loss, and delay. As the presented method might be
computationally too complex for high dimensional systems, it is not suited
for large-scale systems. Thus, additional methods to analyze interconnected
systems are needed. In this regard, we present small-gain based ideas for
the analysis of large-scale systems in Chapter 3, which are of independent
interest.
The problem of bandwidth limitation is addressed in Chapter 4, where we
present methods to lessen the amount of information we have to send over
the channel, based on event triggering. In Chapter 5 we conclude the thesis
with numerical simulations to show the feasibility of the presented methods.
Before we go into detail on the corresponding contributions, we give a small
overview on the existing literature that inspired this thesis in the particular
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topics. In the note and reference section of each chapter additional informa-
tion are given.

Control with Limited Information

The term control with limited information describes the situation in which
the information available to the controller is in some way limited. In this
work, these limitations stem from digital communication.
A subclass of control with limited information is control with encoded feed-
back, in which the signal that is fed back to the controller is quantized. One
of the �rst contributions that studies the e�ect of quantization on a control
system was made in [Del90]. In the seminal paper by Delchamps a discrete
time system of the form

x(k + 1) = Ax(k) +Bu(k)

where A, B are suitable real matrices with (A,B) controllable and A unstable
is considered. The control action is of the form
u(k) = fk(q(x(0)), q(x(1)), . . . , q(x(k))), where q is a static quantizer.
Usually, static quantizers are of the form

q(x) = ∆

⌊
x

∆
+

1

2

⌋
,

with ∆ > 0 the so called resolution. Although the author allows the con-
troller fk to depend on all past measurements, the set of initial states that
converge to zero is thin, according to [Del90].
One key assumption for this result to hold is the restriction to static quantiz-
ers. In a static quantizer the upper bound on the quantization error x− q(x)
is �xed i.e., does not depend on time or x.
In [BL00] it is shown that considering non static quantizers leads to asymp-
totic stability of the controlled system, despite quantization. This result was
generalized to nonlinear systems in [LH05]. In particular, Liberzon studies
systems of the form

ẋ = f(x, u) . (1)

It is assumed that a sensor measures the state x and transmits a quantized
version of this data over a digital communication channel to a stabilizing
controller g at time instances tk. To overcome the limitations posed by quan-
tization, two dynamical systems called encoder and decoder are introduced
in [LH05], respectively, [BL00]. The quantization is done by the encoder and
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its dynamics are given by

ẋe(t) = f(xe(t), g(xe(t))) t 6= tk (2)
˙̀
e(t) = 0 t 6= tk (3)

`e(t) = Λ`e(t
−) t = tk (4)

y(t) = q(x(t)− xe(t−), `e) t = tk (5)

xe(t) = xe(t
−) + y(t) t = tk . (6)

The decoder on the other side of the communication channel also has a model
of the plant and follows the same dynamics as the encoder. As it is assumed
that encoder and decoder are initialized to the same values, the states of the
encoder and decoder match for all positive times.
A brief explanation of the equations (2)�(6) is in order. The function q in (5)
is a quantizer, which encodes the distance between the state x and the encoder
xe with a time varying resolution `e. The variable y caries this quantized
information. At time tk the information y is sent over the communication
channel to the decoder and used to update the encoder, respectively, decoder
state. By combining (5) with (6) we see that if the resolution `e converges
to zero, the encoder xe converges to the state x. Provided that Λ < 1, the
resolution `e gets smaller at each time instances t = tk as can be seen in
(4). One problem is that the values of q could get arbitrarily large, if the
di�erence x−xe gets large in between tk and tk+1. When considering digital
communication channels with limited bandwidth, large data transmission(s)
can not be allowed. This issue is addressed by bounding the di�erence x−xe
with the help of the Gronwall inequality.
If the di�erence of x and xe converges to zero, the state of the decoder xd
also converges to the state x, because encoder and decoder agree on their
states. The decoder trajectory is then used to close the loop. Due to the fact
that encoder and decoder are dynamical systems, this approach is known as
dynamic quantization.
Evidently for this dynamic quantization to work, encoder and decoder have
to agree on their states. Moreover, the resolution has to become smaller and
the evolution of the di�erence x− xe has to be bound.
When there is a channel delay, the encoder and decoder states will generally
not match any longer. As we want to study systems that communicate over
digital channels, yet any real world communication medium introduces a
delay, we cannot use the approach of [LH05] as it is.
If data is sent from encoder to decoder at time tk and there is a delay θ > 0
present in the channel, the information is received by the decoder at θk :=
tk + θ. To account for delay, De Persis uses dynamic quantization in [DP10]
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to achieve equality of encoder and decoder states by changing the equations
for the encoder. To understand the basic idea, consider the following set of
equations:

ẋe(t) = f(xe(t), g(xe(t− θ))) t 6= θk
˙̄xe(t) = f(x̄e(t), g(x̄e(t))) t 6= tk

˙̀
e(t) = 0 t 6= tk

xe(t
+) = xe(t) + qe(x(t− θ)− x̄e(t− θ), `e(t− θ)) t = θk

x̄e(t
+) = x̄e(t) + qe(x(t), x̄e(t), `e(t)) t = tk

`e(t
+) = Λ`e(t) t = tk

y(t) = q(x(t)− x̄e(t), `e) t = tk .

Note that the equations follow the same reasoning as the according equations
from [LH05]. De Persis introduces new equations to account for a change in
the control action between tk and tk+1 due to θ. One can think of xe as the
"old" trajectory before y is received by the decoder and x̄e as the reference
trajectory, to which the distance to x is measured, as soon as y has arrived.
For this approach to work, the encoder has to know the instant of time at
which the data is received by the decoder. De Persis assumes a constant
delay to achieve this. The assumption of constant delay θ is too restrictive
for our problem of stabilizing a control system over a digital communication
channel, as usually the delay is time-varying. To address this, we generalize
the ideas from [DP10] to the case of an arbitrary (i.e., time varying and ar-
bitrarily large) delay and apply them to the setup of [LH05] in Chapter 2.
Furthermore, we present a mechanism to handle the e�ect of packet loss.
To be more precise, we study systems of the form (1) which are assumed
to be Lipschitz and ISS. We identify the properties needed for the dynamic
quantization to be able to stabilize the system. Namely, encoder and decoder
agree on certain states (information consistency) and the level of uncertainty.
This uncertainty gets exponentially smaller with each transmission of data
(N -contracting and L-expanding), provided that the communication channel
ful�lls certain bandwidth conditions. In particular, if the channel can trans-
mit a symbol from a set of Nn di�erent symbols where N ∈ N and n is the
dimension of the system, then for the average delay τ∗ it should hold that

eLτ
∗
< N ,

with L the Lipschitz constant of the system. The quantity on the left hand
describes the average gain of information the system exhibits and the right
hand side correlates with the bandwidth of the communication channel. In
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this regard the condition relates properties of the system to the bandwidth
of the communication channel.
So far we introduced tools to stabilize a system despite the e�ects of digital
communication. As already mentioned, these tools are not applicable for
large-scale systems. If we want to use this approach to stabilize a large-
scale system, we need conditions to ensure that the interconnection of several
systems are stable. This is often done with the help of so called small-gain
conditions.

Small-gain conditions for the Stability Analysis of Large-Scale Sys-
tems

Early accounts of small-gain conditions for large scale-systems are given by
Siljak [�il78]. Siljak considers systems of the form

ẋi = gi(t, xi) + hi(t, x) , i = 1, . . . , n .

Here, xi is the state of the ith subsystem, gi describes the dynamics of the
subsystem, and hi represents the interaction between other subsystems and
system i. It is assumed that each subsystem without interconnection is stable.
A matrix W ∈ Rn×n is derived whose entries wij describe the e�ect of the
ith subsystem onto the jth subsystem.
Stability of the interconnected system is concluded under the assumption
that W is a M -matrix or equivalently −M is a Metzler matrix. In [BP94] a
list of over 40 properties that are equivalent to the property that W is a M -
matrix can be found. The most lucid property for the presented situation is
that W is a quasidominant diagonal matrix. Without going into details, this
characterization states that the in�uence of the ith state on its own dynamics
has to be much stronger than the in�uence of the rest of the subsystems. Or
in other words, the coupling of the subsystems is weak. For our problem of
stabilizing a large-scale system, the modeling of the e�ect of interconnection
by a linear function, might be too restrictive.
More in the spirit of this work, since it also takes advantage of the ISS
framework is [JTP94], although it only considers the interconnection of two
systems. In [JTP94] stability of the interconnection of

ẋ1 = f1(x1, x2, u1) and

ẋ2 = f2(x2, x1, u2)
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is guaranteed under the hypothesis that each subsystem is ISS and a small
gain condition holds, i.e.,

|x1(t)| ≤ β(|x1(0)|, t) + γ1(‖x2‖) + γu1(‖u1‖)
|x2(t)| ≤ β(|x2(0)|, t) + γ2(‖x1‖) + γu2(‖u2‖)

and
ρ1 ◦ γ1 ◦ ρ2 ◦ γ2 < id ,

with ρ1, ρ2 suitable functions. The ISS assumption allows to quantify the
e�ect of the interconnection while the small gain condition ensures that the
coupling is weak i.e., the e�ect one subsystem has on the other is not too
strong.
As the interconnected system is ISS with u1, u2 as inputs, the presented ap-
proach could be used to analyze large-scale systems by starting to conclude
ISS of two subsystems and adding one subsystem after another subsequently.
The problem though is that the outcome of the stability analysis depends on
the particular order the subsystems are chosen in. Clearly, stability should
be permutation invariant, i.e., relabeling of the subsystems should not change
the stability property.
To address this issue the latter result was generalized to the case of an ar-
bitrary number of subsystems in [DRW07]. The ISS assumption for each
subsystem becomes

|xi(t)| ≤ β(xi(0), t) +

n∑
j 6=i

γij(‖xj‖) + γiu(‖u‖) .

The gains γij , which model the e�ect of the jth subsystem onto system i, are
used to de�ne a nonlinear operator

Γ(s) =


∑n
j 6=1 γ1j(sj)

...∑n
j 6=n γnj(sj)


mimicking matrix vector multiplication. Stability of the interconnection is
inferred by the no joint increase condition

Γ � id .

The no joint increase condition states that if Γ is applied to a nonnegative
vector s, Γ(s) must be strictly smaller than s in at least one component.
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To summarize, the no joint increase condition is used to infer stability of an
arbitrary number of ISS systems.

As it turns out, there is a class of systems better suited for our purpose of
analyzing the stability properties of large-scale systems communicating over
digital channels. This class of systems is called multichannel input to output
practically stable time delay systems and is introduced in [PMTL09]. The
change to in�nite dimensional systems allows to account for the delay present
in the communication channel over which the systems communicate.
The term multichannel describes a system/subsystem in which the inputs
and outputs are divided into separate channels.
Hence, we can assign several functions to each system to model the e�ect of
interconnection instead of having just one per system. The advantage of the
multichannel approach lies in its additional �exibility to assign the gains. In
[PMTL09] an example is given, in which a certain small-gain condition holds,
if the multichannel approach is used, yet it does not hold if only one gain for
each subsystem is assigned.
The downside of the results of [PMTL09] are that they are again only ap-
plicable for the case of two subsystems and that the presented small-gain
condition is too conservative.
Moreover, in the framework of multichannel time delay systems we were not
able to use the results of [DRW07] directly. The concept of an Ω-path, intro-
duced in [DRW10] plays an important role in applying the results of [DRW07]
to our problem. For an Ω-path σ it holds that

Γ(σ(r)) < σ(r) . (7)

The no joint increase condition states, that Γ should decrease in at least one
component. The path σ may be loosely interpreted as a nonlinear change
of coordinates or to be more precise it is a path through the domain of Γ.
This path allows to conclude a descent in every component of Γ. In order to
bene�t from an Ω-path we cast the notion into our framework in Section 3.3.
Note that the introduction of the concept of an Ω-path into our framework
has also importance to the results of Chapter 4.
All the mentioned small-gain conditions bound the state of the interconnected
system, using bounds for the individual systems. In particular, they all end
up with an inequality of the form

|x(t)|vec ≤ β(|x(0)|) + Γ(|x|vec) + γ(‖u‖) ,

with Γ modeling the e�ect of interconnection. To have a useful bound on the
state, the inequality must be "solved" for |x|vec. While the general idea is
the same for all the presented small-gain approaches, the condition on Γ to
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"invert" the inequality changes. In this regard, the question arises, how to
relate these di�erent conditions and how to introduce new ones. For instance,
in [Rüf10b] it was shown that the no joint increase condition is equivalent to
the property that

s(k + 1) = Γ(s(k)) + γ(w(k))

is ISS with respect to w. Or in other words, the ISS property of an intercon-
nected system is concluded, provided that a comparison system, induced by
the functions modeling the interconnection, is itself ISS. The latter equiva-
lence inspired the research into more small-gain conditions and their relations
in Chapter 3.
In total, the contribution of Chapter 3 may be summarized as follows. First
we give a catalog of properties that are all equivalent to the no joint increase
condition. In this regard we do not only add new conditions to the list of
existing small-gain conditions, but show that most of the known conditions
are equivalent under suitable additional assumptions. For instance, we prove
that the above mentioned inversion property is already equivalent to the no
joint increase condition.
The presented small-gain approach is then used to generalize [DRW07] to the
case of large-scale systems that are interconnected through a digital commu-
nication channel. Or in other words, we use the derived small-gain condition
to apply them to the setup of [PMTL09].
So far, we handled the e�ects of delay, quantization, and packet loss within
a large-scale setup. In order to address bandwidth limitations, we use tools
from event based control.

Event-Based Control

Usually, in control engineering, a feedback F is designed, which stabilizes the
system, if it has full access to the information of the state. For instance,
consider

ẋ(t) = Ax(t) +BFx(t) ,

with A+BF Hurwitz. Consider a sampled data version of x(t) i.e.,

˙̄x(t) = 0 , t 6= tk

x̄(t) = x(t) , t = tk .

The to be designed instances of time tk are called sampling times. The sample
and hold error is e(t) := x̄(t)− x(t). Clearly, although ẋ(t) = (A+BF )x(t)
is asymptotically stable, ẋ(t) = Ax(t) + BFx̄(t) does not need to have this
property, if the duration between the sampling periods tk+1− tk is too large.
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Thus conditions for the sampling times are required. Frequently, control
engineers sample the state with a �xed sampling rate, i.e., tk+1 = tk +
τ , with τ > 0 chosen heuristically. In general the approach of periodic
sampling might be too conservative. Intuitively, if the error e grows fast,
we have to sample more often than when the error grows slowly. Hence, it
would be more e�ective to adapt the sampling periods accordingly. Ideas of
non periodic sampling times were around since the �fties of the last century
(e.g., [Ell59, TB66]). However, it was not until the introduction of the ISS
framework that ideas to stabilize a system using non periodic sampling drew
again more attention.
For instance, in [Tab07] a system

ẋ = f(x, k(x̄)) = f(x, k(x+ e))

is considered. The existence of an ISS-Lyapunov function is used to derive a
triggering condition

γ(e) ≥ α(x)

with α, γ from the ISS assumption. In essence, if the error becomes too large
compared to the state, a sample has to be taken, thus resetting the error to
zero.
In [Tab07] it is shown that the closed-loop system with sampling times im-
plicitly given by the triggering condition is stable.
As [Tab07] considers a single controller for the system. The presented ap-
proach is not directly suited for the large-scale case.
The case of a distributed event-triggered approach is presented in [WL11].
The authors consider a network of systems given by

ẋi = fi(x, ui)

ui = gi(x̄)

where x̄ is a sampled data version of x. It is shown that under a �nite Lp
gain assumption on the subsystems, the interconnection is stable, provided
that the matrix describing the e�ect of the interconnection is diagonally dom-
inant. The analysis and design of the interconnections are similar to [�il78]
as described in the last section. In particular, the e�ects of the intercon-
nection is modeled by linear functions. As diagonal dominance is stronger
than the quasi dominance property, the small-gain condition of [WL11] is
too demanding. The basic idea of Chapter 4 stems from the observation that
the simple and possibly too restrictive small-gain condition used in [WL11]
can be replaced by ideas presented in [DRW10]. In particular, in [DRW10]
functions σ, ρ are constructed for which

Γ̄(σ(r), ρ(r)) < σ(r)

13



holds for all r > 0.
Γ̄ is an augmented version of (7) used to ensure stability of the interconnec-
tion. The second argument models the e�ect of the imperfect knowledge of
the states to the local controllers due to the sample and hold error e.
The Ω-path σ is used to derive a Lyapunov function V for the overall system,
given the Lyapunov functions of the subsystems Vi. By the results of Chap-
ter 3 we know that the interconnected system is stable if e ≡ 0. In Chapter 4
we derive triggering functions depending on ρ to ensure that the e�ect of
imperfect knowledge of the state due to the error e does not interfere with
the stability property of the interconnected system. In essence, the triggering
functions are of the form

Vi(xi) ≤ χi(ei)

where χi is a scaling function depending on the gains of the e�ect of the
imperfect knowledge of the states and the path σ.
The event-triggering approaches mentioned so far share one property: the
corresponding event-triggered closed-loop systems are hybrid system. In hy-
brid systems the so-called Zeno e�ect may occur, i.e., the triggering and hence
information transmission can happen in�nitely often in �nite time. To avoid
this unwanted e�ect, we show that altering the ISS assumption to a practical
notion of ISS rules out Zeno phenomena for the price of a weaker stability
property. It is also shown that triggering conditions of the form

V (x) ≤ χi(ei)

would ensure stability, while ruling out Zeno phenomena. A triggering func-
tion of the latter form demands knowledge of the Lyapunov function for the
overall system to all subsystem. As we are heading for a purely decentral-
ized approach, we need an approximation for the Lyapunov function V using
only local information. We show that the velocity of the subsystems can be
used to approximate V and thus we can derive a triggering condition called
parsimonious triggering, which again asymptotically stabilizes the system
while retaining our decentralized setup. The main tools we use to conclude
stability of the event-triggered systems, besides the above mentioned, are
standard Lyapunov techniques, a discrete Gronwall inequality and results
from non smooth analysis.
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Open Problems

Of course we will not answer the questions posed at the very beginning in their
entirety. But we present tools that we hope to prove helpful in the stabiliza-
tion and stability analysis of large-scale systems communicating over digital
channels. In detail, we present methods to overcome limitations posed by
quantization, delay and packet loss in Chapter 2 by using concepts from in-
formation theory (encoding/decoding, entropy like estimates) together with
tools from signal theory (dynamic quantization).
In Chapter 3 we develop novel small-gain conditions, relate them to the lit-
erature, and apply them to analyze the stability properties of a large scale
system, communicating over digital channels.
We address bandwidth limitations in Chapter 4 by lowering the amount of
information we have to send over the channel. To this end we use the newly
developed tools from Chapter 3 and combine them with known ideas. The
basic idea from Chapter 4 stems also from signal theory and is known as e.g.,
event based sampling.
Besides the countless open, yet interesting, problems within the framework of
large-scale systems communicating over digital channels, we should mention
some that are of particular interest for this thesis.
As already sketched, to apply the tools from Chapter 3 or 4 the subsystems
have to be ISS. As the stabilization method of Chapter 2 yields asymptotic
stability instead of ISS, further research is required. In Chapter 3 we discuss
the equivalence of small-gain conditions. We expect that the notion of an Ω-
path is also equivalent to the presented ones under additional assumptions,
but we were not able to identify these conditions in a satisfactorily manner.
It should also be not unmentioned, that although we introduce methods to
lessen the information we have to sent over the channel, the problem of ar-
bitration is not considered.
Furthermore, we demand the controllers to render the closed-loop systems
ISS, which is in general hard to achieve. In this regard especially in Chap-
ter 3 the ISS assumption might be too demanding. We also expect that the
introduction of a suitable model for the communication channel, regarding
control purposes, would lead to better results by allowing to incorporate the
e�ects of the communication directly into design, modeling, and analysis of
control systems. But we hope that the tools and methods introduced in this
thesis are still a considerably contribution to the �eld of large-scale digital
networks.
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Chapter 1

Preliminaries

In this chapter we introduce the notation we use together with the basic
de�nitions and concepts we want to consider. In particular, in Section 1.1 we
present the basic notation, while the class of systems as well as preliminary
stability de�nitions and results are given in Section 1.2. Finally, in Section 1.3
we give an introduction to the ISS framework, which is a robust notion of
stability.
Of course, this can only be an excerpt of the corresponding topics. Moreover,
the sketchy nature of the presentation does not re�ect the importance of the
mentioned results. However, a thorough discussion would go beyond the
scope of this thesis.

1.1 Notations and De�nitions

Here we want to introduce the basic de�nitions and notations that hold
throughout the thesis. Sometimes we use slight modi�cations of the con-
cepts introduced here. We will mention the exceptions explicitly.
Let R denotes the �eld of real numbers. By R+ we denote the set of non-
negative real numbers. The set Z represents the integers and N = {0, 1, . . . }
the natural numbers. We denote by en ∈ Rn the vector consisting of ones. If
it is clear from the context, we usually omit the subscript n.

1.1.1 Monotonicity

Monotonicity or to be more precise monotone operators play an important
role in this thesis. Before we can de�ne what we mean by monotone operators,
we have to state which order relation we use. Throughout the thesis we use
the order relation "≤n" induced on Rn by the positive orthant.
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CHAPTER 1. PRELIMINARIES

Let x, y ∈ Rn. We de�ne a partial order relation on Rn by

1. x ≤n y if xi ≤ yi for i = 1, . . . , n

2. x <n y if xi < yi for i = 1, . . . , n,

with x ≤ y for x, y ∈ R the usual total order relation. Clearly, for n > 1 the
order relation ≤n is not a total order relation, i.e we cannot say that either
x ≤n y or y <n x and hence we need the negation as well i.e.,

1. x �n y if xi > yi for at least one i ∈ {1, . . . , n}

2. x 6<n y if xi ≥ yi for at least one i ∈ {1, . . . , n}.

We say that a function f : Rn → Rm is monotone, if x ≤n y implies
f(x) ≤m f(y) for all x, y ∈ Rn.
If x ≤n y and x 6= y implies f(x) <m f(y), we say that f is strictly monotone.
A monotone function is also called nondecreasing, while a strictly monotone
function is referred to as strictly increasing. Furthermore, f is called decreas-
ing, if x ≤ y implies f(y) ≤ f(x).
If it is clear from the context, we will omit the subscript of the order relation.
As monotonicity plays an important role in the thesis, we restrict the con-
cept of a norm to monotone norms. Let | · | : Rn → R+ be a norm and
x = (x1, . . . , xn)>, y = (y1, . . . , yn)> ∈ Rn. We say that | · | is a monotone
norm, if 0

...
0

 ≤
x1

...
xn

 ≤
y1

...
yn


implies |x| ≤ |y|. Note that if we restrict | · | to the positive orthant, a
monotone norm is a monotone function.
Let a = (a1, . . . , an)>, b = (b1, . . . , bn)> ∈ Rn. We de�ne the maximum and
supremum of vectors component-wise i.e.,

max{a, b} := sup{a, b} :=

sup{a1, b1}
...

sup{an, bn}

 .

Consider a sequence s : N→ Rn. We de�ne the lim sup also component-wise
i.e.,

lim sup
k→∞

s(k) = lim
k→∞

sup
l≥k

s(l) =

lim supk→∞ s1(k)
...

lim supk→∞ sn(k)

 ∈ (R ∪∞)
n
.

18
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Note that some of the component sequences si(k) may be �nite and others
in�nite.
We often need the following fact that we �nd convenient to state here. For a
monotone function f : Rn → Rn it holds that

f(sup{a, b}) ≥ sup{f(a), f(b)} (1.1)

for all a, b ∈ Rn.

1.1.2 Gain Functions and their Multidimensional Extensions

As we will see in Section 1.3 important generalizations of linear control theory
utilize the notion of gain functions respectively comparison functions. Basi-
cally, gain functions, or gains for short, are used to describe the in�uence of
a disturbance on a dynamical system.
A function γ : R+ → R+ is of class K, if γ is continuous, increasing and
satis�es γ(0) = 0.
If in addition γ is unbounded, we say that γ ∈ K∞. We refer to a function
of class K or K∞ as gain or gain operator.
A particular nice feature of gain functions is the following lemma.

Lemma 1.1.1. Let γ ∈ K∞, then its inverse γ−1 : R+ → R+ exists and is
also of class K∞.

A proof can be found e.g., in [Rüf07].
Note that the class K has a semigroup structure with respect to composition
and the identity (id) as the neutral element. Similarly, K∞ has a group
structure.
Sometimes we have to compare gains. In this regard we say that γ < α for
γ, α ∈ K∞, if γ(r) < α(r) for all r > 0 holds.

Lemma 1.1.2. Let γ, ρ ∈ K∞, then max{γ, ρ} ∈ K∞ and min{γ, ρ} ∈ K∞.
Furthermore, the same holds true with K∞ replaced by K.
Proof. Let γ, ρ ∈ K∞. As the maximum as well as the minimum are contin-
uous functions over R+, max{γ, ρ} and min{γ, ρ} are continuous.
Let r1 < r2. As γ, ρ ∈ K∞, we have γ(r1) < γ(r2) and ρ(r1) < ρ(r2) and thus
max{γ(r1), ρ(r1)} < max{γ(r2), ρ(r2)}, which shows strict monotonicity.
Unboundedness and the property that max{γ, ρ}(0) = 0 respectively
min{γ, ρ}(0) = 0 are obvious and the proof is complete.

We say that β : R+ → R+ is of class L, if β is decreasing and limt→∞ β(t) =
0. A function β : R2

+ → R+ is of class KL, if β(·, t) is of class K for each
�xed t ∈ R+ and β(s, ·) of class L for each �xed s ∈ R+.
The next lemma considers the so called weak triangle inequality.
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Lemma 1.1.3. Let γ ∈ K and ρ ∈ K∞. Then for all a, b ∈ R+ we have

γ(a+ b) ≤ γ ◦ (id +ρ)(a) + γ ◦ (id +ρ−1)(b) .

A proof is given in [JTP94].
We say that γ : R+ → Rn+ with γ = (γ1, . . . , γn)> is of class Kn, if γi ∈ K
for each i = 1, . . . , n. A function γ ∈ Kn∞ is de�ned analogously. The map
Γ : Rn+ → Rn×m+ is said to be of class Kn×m∞ if

Γ(s) =

 γ11(s1) . . . γ1n(sn)
...

...
γm1(s1) . . . γmn(sn)


with γij ∈ K∞ for all i = 1, . . . ,m and j = 1, . . . , n. If we allow some of the
γij = 0, we say that Γ ∈ G := (K∞ ∪ 0)n×m. We will refer to Γ as a gain
matrix.
Similarly to the linear case, we want to use Γ to de�ne a map from Rn+ to
Rm+ . To do so, we need a way to "aggregate" the gains within one row of Γ.
This is done with the help of the so called monotone aggregation functions.

1.1.3 Monotone Aggregation Functions

Let | · | : Rn → R+ denote a monotone norm. To emphasize that a norm is
de�ned on an in�nite dimensional space, we use the symbol ‖ · ‖ for this case.

De�nition 1.1.4. A continuous function µ : Rn+ → R+ is a monotone ag-
gregation function if µ is:

(Positive de�nite:) µ(v) ≥ 0 for all v ∈ Rn+ and µ(v) = 0 i� v = 0;

(Increasing:) µ(v) > µ(z) if v ≥ z, v 6= z;

(Unbounded:) If |v| → ∞ then µ(v)→∞.

The space of monotone aggregation functions (MAFs for short) with domain
Rn+ is denoted byMAFn. Moreover, we say that µ ∈MAFmn if µ : Rn+ → Rm+
and for each i = 1, 2, . . . ,m, µi ∈MAFn.
Furthermore, if additionally µ is

(Subadditive:) µ(v + z) ≤ µ(v) + µ(z) for all v, z ∈ Rn+,

we say µ is subadditive.
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A popular example of a monotone aggregation function is a monotone
norm. In fact, all monotone norms are subadditive monotone aggregation
functions. Of course there exists monotone aggregation functions that are
not norms. For instance, consider µ(v) = log(|v| + 1) with | · | an arbitrary
monotone norm.
Now we want to state some easy to verify facts about monotone aggregation
functions that we need throughout the thesis. There is a strong relation
between monotone aggregation functions and gains, as we will see in the rest
of this section.
The next lemma is a direct consequence of De�nition 1.1.4, but we �nd it
convenient to state it as a lemma nevertheless.

Lemma 1.1.5. If µ : Rn+ → R+ is a monotone aggregation function, then
γ(r) := µ(α(r)) is of class K∞ for any α ∈ Gn \ {0}.

The next two assertions are devoted to the fact that we can always bound
a particular MAF by another MAF by changing the argument.

Lemma 1.1.6. For any µ ∈ MAFn there exists γ1, . . . , γn ∈ K∞ such that
for all a1, . . . , an ∈ R+ it holds

max{a1, . . . , an} ≤ µ(γ1(a1), . . . , γn(an)) .

Proof. De�ne γ−1
1 (s) := µ(s, 0, . . . , 0), γ−1

2 (s) := µ(0, s, 0, . . . , 0) , . . . ,
γ−1
n (s) := µ(0, . . . , 0, s). By Lemma 1.1.5 it holds that γ−1

1 , . . . , γ−1
n ∈ K∞.

Hence we can write

max{a1, . . . , an} = max{γ−1
1 ◦ γ1(a1), . . . , γ−1

n ◦ γn(an)} =

max{µ(γ1(a1), 0, . . . , 0), . . . , µ(0, . . . , 0, γn(an))} ≤
max{µ(γ1(a1), . . . , γn(an)), . . . , µ(γ1(a1), . . . , γn(an))} =

µ(γ1(a1), . . . , γn(an)) ,

where the inequality follows from the monotonicity of µ and the proof is
complete.

Corollary 1.1.7. Given a µ1 ∈ MAFn and a1, . . . , an ∈ R+. Then we can
�nd for any µ2 ∈ MAFn functions γ1, . . . , γn ∈ K∞ such that

µ1(a1, . . . , an) ≤ µ2(γ1(a1), . . . , γn(an)) .

Proof. By monotonicity of µ1 we have

µ1(a1, . . . , an) ≤ max{µ1(a1, . . . , a1), . . . , µ1(an, . . . , an)} .
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By Lemma 1.1.5 we see that

µ1(ai, . . . , ai) =: γ̃i(ai) ∈ K∞

for all i = 1, . . . , n. And therefore

µ1(a1, . . . , an) ≤ max{γ̃1(a1), . . . , γ̃n(an)} .

By Lemma 1.1.6 we �nd for any µ2 ∈ MAFn functions γ̄1, . . . , γ̄n ∈ K∞ such
that

max{γ̃1(a1), . . . , γ̃n(an)} ≤ µ2(γ̄1 ◦ γ̃1(a1), . . . , γ̄n ◦ γ̃n(an))

Realizing that γ̄i ◦ γ̃i =: γi ∈ K∞ �nishes the proof.

Sometimes we need a weaker notion than that of a MAF. To this end we
summarize some concepts here that we need in order to compare values from
di�erent spaces.

De�nition 1.1.8. A continuous function ξ : Rn → Rm+ is called positive
de�nite if ξ(0) = 0 and ξ(s) = 0 implies s = 0.

De�nition 1.1.9. We will call a continuous monotone function ζ : Rn →
Rm+ proper if there exists a function α̃ ∈ K∞ such that for all s ∈ Rn+,

α̃(|s|)e ≤ ζ(s). (1.2)

A way to ensure positive de�niteness of a continuous and proper function
ξ is to assume ξ(0) = 0. As we need (1.3) frequently in the thesis, we state
the next Lemma in its present form.

Lemma 1.1.10. A proper function ζ : Rn → Rm+ is positive de�nite if and
only if there exists an α̂ ∈ K∞ such that for all s ∈ Rn+,

|ζ(s)| ≤ α̂(|s|). (1.3)

Proof. Let ζ be proper and so in particular monotone. If ζ is positive de�nite,
then |ζ(s)| is monotone, continuous, and positive de�nite, because of the
properness of ζ and the restriction to monotone norms. By the equivalence
of norms on �nite-dimensional spaces, there exists a v ∈ R+ such that α̂(r) =
|ζ(rve)| for r ≥ 0 can be chosen as the desired class K∞ function.
For the other direction observe that by choosing s = 0 we get

|ζ(0)| ≤ α̂(0) = 0 , (1.4)

22



1.2. DYNAMICAL SYSTEMS

because α̂ ∈ K∞. Considering the properness of ζ for s 6= 0 yields

0 < α̃(|s|)e ≤ ζ(s) .

By applying norms we arrive at

0 < |ζ(s)| , (1.5)

for s 6= 0. Combining (1.4) and (1.5) yields the positive de�niteness and the
proof is complete.

The next lemma relates the concept of a MAF to proper and positive
de�nite functions.

Lemma 1.1.11. If ξ : Rn+ → Rm+ is proper and positive de�nite, then there
exists a µ ∈ MAFm

n such that

ξ(s) ≤ µ(s)

for all s ∈ Rn+.

Proof. Let ρ ∈ MAFn and de�ne µj = ξj + ρ. Fix s, v ∈ Rn+ with s ≤ v and
s 6= v. We have

µj(s) = ξj(s) + ρ(s) < ξj(v) + ρ(v) = µj(v) ,

because ξj is monotone and ρ ∈ MAFn and thus µj has the increasing prop-
erty of a MAF.
It is obvious, that µj is positive de�nite, because the sum of two positive
de�nite functions is again positive de�nite. By properness of ξ there exists
α ∈ K∞ such that

α(|s|) ≤ ξ(s)j ≤ ξ(s)j + ρ(s) = µj(s)

for all j = 1, . . . ,m. Clearly, µj(s) tends to in�nity as |s| tends to in�nity,
because αj ∈ K∞. Hence, µ(s) := (µ1(s), . . . , µm(s))> is in MAFm

n and the
proof is complete.

1.2 Dynamical Systems

If not explicitly mentioned otherwise, the presented material in this section
is borrowed from [HP05]. For the sake of completeness we cite the needed
concepts and results here.
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Dynamical systems are often de�ned by solutions of ordinary di�erential
equations of the form

ẋ(t) = f(t, x(t), u(t)) , (1.6)

with f : R+×Rn×Rm → Rn. Before we can de�ne what a dynamical system
is, we have to de�ne the concept of a solution of an ordinary di�erential
equation. As we want to study di�erential equations with non continuous
right hand sides, we need also the following de�nition.

De�nition 1.2.1. We say a function x : [t0, T ] → Rn is absolutely contin-
uous, if its derivative ẋ(t) exists almost everywhere (i.e., except on a set of
Lebesgue measure zero) for t ∈ [t0, T ] and

x(t) = x(t0) +

∫ t

t0

ẋ(s)ds t ∈ [t0, T ] .

De�nition 1.2.2. A function x(·) : I → X is called a solution of (1.6) on
an interval I ⊂ T if it is absolutely continuous and satis�es (1.6) almost
everywhere on I.

Note that contrary to the usual solution theory (i.e., in the sense of Peano
[HC08, Theorem 2.24]), the trajectory x(t) is only di�erentiable almost ev-
erywhere on I.

According to [HP05] a di�erentiable dynamical system can be described
by the following de�nition.

De�nition 1.2.3. A septuple Σ = (T,U,U , X, Y, ϕ, η) is said to be a di�er-
entiable dynamical system with time domain T , input value space U , state
space X, output space Y , state transition map ϕ and output map η, if the
following conditions are satis�ed.

• T,U,U , X, Y are non void sets.

• U, Y are subsets of Rm and Rp, and X is an open subset of Rn, and
U ⊂ UT .

• There exists a function f : T × X × U → Rn such that for all t0 ∈
T, x0 ∈ X, u(·) ∈ U the initial value problem

ẋ(t) = f(t, x(t), u(t)) , t ≥ t0 t ∈ T
x(t0) = x0

has a unique solution x(·) on a maximal open time interval I satisfying
I = Tt0,x0,u(·). Furthermore, for the state transition map ϕ : T 2×X×U
it holds that x(t) = ϕ(t; t0, x0, u(·)) for all t ∈ I.
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• η : T ×X × U → Y is continuous

As we frequently deal with di�erentiable systems, we call a di�erentiable
system often just a system. The de�nition from [HP05] allows for arbitrary
�nite dimensional �elds for state, input, and output space. Because we con-
sider only real dynamical systems, we stated the de�nition in its present form.
We refer to x0 and t0 as the initial state and initial time, respectively. By
abusing notation, we sometimes denote the trajectory by x(t) and sometimes
we identify x(t) with a single point in the state space for a �xed t. If it is
clear from the context we will omit the argument of x(t). On the other hand,
if we want to emphasize the role of the input, we write for a solution to (1.6)
x(t;u).
Next we cite a remarkable result concerning the existence of solutions. To
this end consider

ẋ = f(t, x) (1.7)

where f : T ×X → Rn , T ⊂ R is an interval and X an open subset of Rn.
We say that f satis�es the Carathéodory conditions if

Car 1 f(·, x) : T → Rn is measurable for each �xed x ∈ X;

Car 2 f(t, ·) : X → Rn is continuous for each �xed t ∈ T ;

Car 3 |f(·, x̃)| is locally integrable on T for some x̃ ∈ X;

Car 4 for each compact set C = I ×K ⊂ T ×X there exists an integrable
function LC(·) : I × R+ such that

|f(t, x)− f(t, y)| ≤ LC(t)|x− y| , (t, x), (t, y) ∈ C .

Theorem 1.2.4. If T is an open interval, X is an open subset of Rn and
f : T × Rn satis�es the Carathéodory conditions on T × X, then for any
(t0, x0) ∈ T ×X there exists a unique solution x(·) = ψ(·; t0, x0) of (1.7).

A proof can be found e.g., in [CL55]. If uniqueness does not play a role,
condition Car 4 can be dropped.
To ensure that a solution of (1.6) exists, one must verify that g(t, x) :=
f(t, x, u(t)) satis�es the Carathéodory conditions for all u(·) ∈ U . The fol-
lowing corollary gives a su�cient condition.

Corollary 1.2.5. Suppose T,U,U , X, Y are sets as in De�nition 1.2.3, η :
T ×X×U → Y is continuous and f : T ×X×U → Rn is jointly measurable
in (t, u) ∈ T × U for every x ∈ X and continuous in x ∈ X for each �xed
(t, u) ∈ T ×U . If U ⊂ UT consists of locally Lp-integrable functions (1 ≤ p <
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∞) on T and for each compact set C = I×K ⊂ T ×X there exists constants
mC , lC such that

|f(t, x, u)| ≤ mC(‖u‖p + 1) , t ∈ I, u ∈ U for some x ∈ X ,

|f(t, x, u)− f(t, y, u)| ≤ lC(‖u‖p + 1)|x− y| , (t, x), (t, y) ∈ C , u ∈ U ,

then (1.6) has a unique solution x(·) = x(·; t0, x0, u(·)) on a maximal interval
of existence Tt0,x0,u(·) for all (t0, x0, u(·)) ∈ T ×X × U .

Another concept we will use frequently in this work is the following.

De�nition 1.2.6. A quintuple Σ = (U,X, Y, ψ, η) where U,X, Y are non
void sets and ψ : X × U → X , η : X × U are maps, is called a discrete
time system with input space U , state space X, output space Y , next state
function ψ, and output function η.

The dynamics of a discrete time system are described by the following
state and output equations

x(k + 1) = ψ(x(k), u(k)) , k ∈ N (1.8)

y(k) = η(x(k), u(k)) .

Often, we are interested in stationary points of the state space.

De�nition 1.2.7. Consider (1.6) respectively (1.8). We say a pair (x∗, u∗) ∈
X × U is an equilibrium pair, if

0 = f(t, x∗, u∗)

for all t ≥ 0 or
x∗ = ψ(x∗, u∗) .

Furthermore x∗ is called an equilibrium state or equilibrium.

Equilibria may be stable or not in the sense that if we start su�ciently
close to the equilibrium the trajectory will stay close to the equilibrium. The
next de�nitions describe these properties.

De�nition 1.2.8. An equilibrium pair (x∗, u∗) of (1.6) is called stable at
time t0, if for each ε > 0 there exists a δ(t0, ε) > 0 such that

|x∗ − x(t0)| ≤ δ(t0, ε)⇒ |x∗ − x(t)| ≤ ε

for all t ≥ t0.
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De�nition 1.2.9. An equilibrium pair (x∗, u∗) of (1.6) is called attractive
at time t0, if there exists a δ(t0) > 0 such that

|x∗ − x(t0)| ≤ δ(t0)⇒ lim
t→∞

|x∗ − x(t)| = 0 .

De�nition 1.2.10. An equilibrium pair (x∗, u∗) of (1.6) is called asymptot-
ically stable at t0, if it is stable and attractive at t0.

If an equilibrium point x∗ is stable and attractive at t0 for all x(t0) ∈ Rn
we say that x∗ is globally asymptotically stable (or GAS for short).
If δ in the above de�nitions does not depend on t0 and the convergence in
De�nition 1.2.9 is uniform in t0, we say that x∗ is uniformly asymptotically
stable.
One concept, which proved helpful in the analysis of the stability properties
of

ẋ = f(x) (1.9)

with f : Rn → Rn, is a Lyapunov function. Informally, a Lyapunov func-
tion is a function from the state space into the positive reals. It is positive
everywhere except at the equilibrium and decreases along every trajectory.

De�nition 1.2.11. A di�erentiable, positive de�nite and proper function
V : Rn → R+ is called a Lyapunov function for system (1.9) if there exist a
positive de�nite α : R+ → R+ such that

∇V (x)f(x) ≤ −α(|x|) (1.10)

for all x ∈ Rn.

Intuitively, the decay condition (1.10) ensures that the "energy" function
V decays along solutions. As the properness and positive de�niteness ensures
that x→ 0 as V (x)→ 0, zero must be attractive and stable. The success of
Lyapunov functions lies in the next theorem.

Theorem 1.2.12. If and only if there exist a Lyapunov function for system
(1.9), then (1.9) is globally asymptotically stable.

The "if" part of the last theorem is known as Lyapunov's direct method
(see e.g., [BR05, Theorem 2.2]). Direct in the sense that in order to proof
stability of a system, no solution has to be calculated. The "only if" part,
on the other hand, is known as a converse Lyapunov result (see e.g., [BR05,
Theorem 2.4]). Pursuing the rich �eld of Lyapunov theory further goes be-
yond the scope of this thesis. The interested reader is referred to e.g., [BR05]
for more details.

27



CHAPTER 1. PRELIMINARIES

So far, we considered what can be regarded as classical systems theory.
The title of this work suggests that we are interested in the stability properties
of large-scale systems. As stated in the introduction, one aspect of large-scale
systems is the decomposability. To be able to distinguish between a system
and one of the smaller parts consider

ẋ1 = f1(x1, x2, . . . , xn, u1)

ẋ2 = f2(x1, x2, . . . , xn, u2)

...

ẋn = fn(x1, x2, . . . , xn, un)

with xi ∈ Rni , ui ∈ Rmi . Let x = (x>1 , . . . , x
>
n )>, u = (u>1 , . . . , u

>
n )> and

f(x, u) :=

f1(x1, x2, . . . , xn, u1)
...

fn(x1, x2, . . . , xn, un)

 .

We call ẋ = f(x, u) an interconnected system and we will refer to ẋi =
fi(x1, x2, . . . , xn, ui) for each i = 1, . . . , n as the ith subsystem of the inter-
connected system.
In Chapter 3 we are dealing with a di�erent class of systems. This type of
system is called a functional di�erential equation (FDE). To be more precise
we are dealing with a subclass of FDE's namely time delay systems. A time
delay system is of the form

ẋ(t) = f(xd, u
1
d, . . . , u

l
d, t)

y1(t) = h1(xd, u
1
d, . . . , u

l
d, t) (1.11)

...

yr(t) = hr(xd, u
1
d, . . . , u

l
d, t) .

In a functional di�erential equation the right-hand-side rather depends on a
piece of trajectory than a single point in the state space, as it is the case for
ordinary di�erential equations.
Denote by Xn = C([−td, 0],Rn) the set of continuous functions with domain
[−td, 0], td ∈ R+ and image Rn. The operators

f : Xn ×Xm1 × · · · × Xml × R+ → Rn

and
hi : Xn ×Xm1 × · · · × Xml × R+ → Rvi
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for i = 1, . . . , r are supposed to be Lipschitz in xd, uniformly continuous in
ud and Lebesgue measurable in t. The state xd lives in Xn and the inputs
are ujd ∈ Xmj for j = 1, . . . , l. The subscript d describes a retarded version
of its variable in the following way: Let td ∈ R+. If a function is de�ned as
g : [−td,∞) → Rk and t ∈ [0, td], then gd(t; ·) represents a function from
[0, td] to Rk by

gd(t; τ) := g(t− τ) .

Therefore xd is a piece of trajectory starting at s = t − td(t) and ending at
s = t. The aforementioned notation is borrowed from [Tee98]. Note that it
di�ers slightly from the classical notation used e.g. in [Hal77] by interchang-
ing the argument of delay and time.
For a retarded function gd : [0, td]× R→ Rk, de�ne
‖gd(t)‖ = supτ∈[0,td] |gd(t; τ)| = sups∈[t−td,t]

|g(s)| as the supremum norm.
Often we describe the in�uence of one subsystem on another either qualita-
tively or quantitatively. To this end, we want to assign one real number to
each subsystem, despite the fact that each subsystem lives in a higher Eu-
clidean space. Here we are heading for a �ner granularity, by assigning one
real number to each of the "channels" given by the uid respectively yi. To
this end, we introduce the following notation.
Given x = (xT1 , . . . , x

T
k )T with xi ∈ Rni for i = 1, . . . , k, the vector of

norms is given by |x|vec = (|x1|, . . . , |xk|)T ∈ Rk+, in a similar manner
de�ne ‖x(·)‖vec = (‖x1(·)‖, . . . , ‖xk(·)‖)T ∈ Rk+. We need another sym-
bol to indicate the stacking of several ‖xi‖vec. To be able to see at �rst
glance, of which elements a symbol consists, we decided to use ‖x(·)‖stc =

(‖x1(·)‖Tvec , . . . ,‖xn(·)‖Tvec)T to indicate a vector which itself consists of vec-
tors of norms (|x|stc is de�ned in an obvious manner).

1.3 Input to State Stability and Related Notions

Linear systems share particular nice features. For instance if a linear sys-
tem is internally stable, then all trajectories are bounded, provided that the
input is bounded. Of course, this does not hold, in general, for nonlinear
systems. Sontag developed a notion of stability, which tries to capture these
nice properties of linear systems. For an introduction in a tutorial fashion
see [Son08]. If not otherwise mentioned, the de�nitions found in this section
are taken from [SW96]. Let U ⊂ Lloc∞ (R+,Rm) with Lloc∞ (R+,Rm) the set of
all locally essentially bounded functions with domain R+ and image Rm. If
u ∈ U , we denote with ‖u‖ := ess supt≥0 |u(t)| the essential supremum of u.
Consider the system

ẋ(t) = f(x, u) (1.12)
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with x ∈ Rn and u ∈ U . We assume that f : Rn × Rm → Rn is locally
Lipschitz and f(0, 0) = 0.
It is also of interest to study discrete time systems

s(k + 1) = g(s(k), w(k)) (1.13)

with s ∈ Rn and w(k) ∈ Rm for all k. We assume that g : Rn × Rm → Rn is
continuous and that g(0, 0) = 0.

De�nition 1.3.1. We say system (1.12) is input-to-state stable (ISS) for
µ ∈ MAF2, if there exists β ∈ KL and γ ∈ K such that

|x(t;u)| ≤ µ(β(|x(0)|, t), γ(‖u‖))

for all t ≥ 0, all x(0) ∈ Rn and all u ∈ U .

De�nition 1.3.2. We say system (1.13) is input-to-state stable (ISS) for
µ ∈ MAF2, if there exists β ∈ KL and γ ∈ K such that

|s(k;w)| ≤ µ(β(|s(0)|, k), γ(‖w‖))

for all k ∈ N, all s(0) ∈ Rn and all w : N→ Rm.

Usually, the de�nition for ISS is given with µ = | · |1 or µ = | · |∞.
We will see later in this section that qualitatively the choice of µ does not
matter i.e., if a certain ISS property holds for a given µ ∈ MAF then it holds
also for any other MAF, albeit with di�erent gains.
The de�nition of ISS states that a trajectory can be bounded by two terms.
The �rst corresponds to the initial condition and the other to the energy that
is put into the system. Moreover, the e�ect of the initial condition vanishes
with time. Thus it describes the transient behavior as well as the asymptotic
characteristics of the trajectory. These two behaviors can also be examined
separately, which we will see next.

De�nition 1.3.3. System (1.12) is said to have the Asymptotic Gain (AG)
property, if there exist γ ∈ K such that

lim sup
t→∞

|x(t;u)| ≤ γ(‖u‖)

for all x(0) ∈ Rn and u ∈ U .

De�nition 1.3.4. System (1.12) is said to have the Global Stability (GS)
property for µ ∈ MAF2 , if there exist β, γ ∈ K such that

sup
t≥0
|x(t;u)| ≤ µ(β(|x(0)|), γ(‖u‖))

for all x(0) ∈ Rn and u ∈ U .
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Of course, there exist the corresponding discrete counterparts, which we
present for reasons of convenience.

De�nition 1.3.5. System (1.13) is said to have the Asymptotic Gain (AG)
property, if there exist γ ∈ K such that

lim sup
k→∞

|s(k;w)| ≤ γ(‖w‖)

for all s(0) ∈ Rn and w : N→ Rm.

De�nition 1.3.6. System (1.13) is said to have the Global Stability (GS)
property for µ ∈ MAF2, if there exist β, γ ∈ K such that

sup
k≥0
|s(k;w)| ≤ µ(β(|s(0)|), γ(‖w‖)

for all s(0) ∈ Rn and w : N→ Rm.

There is a stronger notion of AG where it is assumed that the lim sup in
De�nition 1.3.5 is attained uniformly with respect to initial states and all w.
Before we cite a result that this stronger notion is equivalent to ISS we give
a precise de�nition.

De�nition 1.3.7. System (1.13) is said to have the Uniform Asymptotic
Gain (UAG) property, if there exists a γ ∈ K such that for each ε, ν > 0
there is a T = T (ε, ν) ∈ N such that

sup
k≥T
|s(k;w)| ≤ γ(‖w‖) + ε

for all |s(0)| ≤ ν, all w : N→ Rm, and all k ≥ T .

The next lemma relates the UAG property to the ISS property. It is taken
from [GL00, Theorem 2] where a proof can be found.

Lemma 1.3.8. System (1.13) is ISS if and only if it has the UAG property.

As we can always upper bound a class K function by a class K∞ function,
we can replace γ ∈ K with γ ∈ K∞ in all of the above de�nitions.
Note that the de�nitions from [SW95] are formulated for µ = | · |1. The next
lemma relates this to our de�nitions.

Lemma 1.3.9. If a system or a discrete time system is ISS or has the AG
or GS property for µ1 ∈ MAF, then it shares the same property for any
µ2 ∈ MAF.
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Proof. This is a direct consequence of Corollary 1.1.7.

In general, the gains change by going from one MAF to another. By
Lemma 1.3.9 we see that, qualitatively the choice of µ ∈ MAF does not
play a role. Hence we will say a system is ISS and omit the dependency on
µ ∈ MAF from now on.

Lemma 1.3.10. A system or a discrete time system is ISS if and only if it
is AG and GS.

A proof for continuous time can be found in [SW96] and for the discrete
counter-part in [JW01].
Similar to the case of an uncontrolled system, the notion of Lyapunov func-
tions play an important role within the ISS framework as well.

De�nition 1.3.11. A di�erentiable, positive de�nite, and proper function
V : Rn → R+ is an ISS-Lyapunov function for system (1.12) if there exists
γ ∈ K∞ and positive de�nite α : R+ → R+ such that

V (x) ≥ γ(|u|)

implies
∇V (x)f(x, u) ≤ α(|x|)

for all x ∈ Rn and u ∈ Rm.

The corresponding version for discrete time systems reads as follows.

De�nition 1.3.12. A continuous, positive de�nite, and proper function V :
Rn → R+ is an ISS-Lyapunov function for system (1.13) if there exists γ ∈
K∞ and positive de�nite α : R+ → R+ such that

V (x) ≥ γ(|u|)

implies
V (g(x, u))− V (x) ≤ −α(|x|)

for all x ∈ Rn and u ∈ Rm.

As in the last section there is a strong relation between Lyapunov char-
acterization and stability.

Theorem 1.3.13. There exists an ISS-Lyapunov function for (1.12) or
(1.13), if and only if (1.12) respectively (1.13) is ISS.
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A proof can be found in e.g., [SW95] for continuous time and in [JW01]
for the discrete case.
In Chapter 3 we deal with delay systems. Hence we need another stability
notion, which is taken from [PMTL09].

De�nition 1.3.14. A system of the form (1.11) is input-to-output-practically-
stable (IOpS) at t = t0 with td(t) ≥ 0, β ∈ Kr×1

∞ , IOpS gains Γ ∈ Gr×l, re-
strictions ∆x ∈ R+, ∆u ∈ Rl+ and o�set δ ∈ Rr+ if the conditions ‖xd(t0)‖ ≤
∆x and supt≥t0 u

+
d ≤ ∆u, imply that solutions of (1.11) are well-de�ned for

t ≥ t0 and the following inequalities hold:

sup
t≥t0

|y(t)|stc ≤ µ
(
β(‖xd(t0)‖),Γ(sup

t≥t0
‖ud‖stc), δ

)
and

lim sup
t→∞

|y(t)|stc ≤ µ
(

Γ(lim sup
t→∞

‖ud‖stc), δ

)
.

The �rst inequality resembles the GS property, while the second can be
regarded as an AG type estimate. Note that in the context of in�nite dimen-
sional systems it is unknown yet whether AG together with GS is equivalent
to ISS. So strictly speaking, the terminology IOpS for De�nition 1.3.14 is not
correct. For the sake of simplicity we decided to stick to the name.

1.4 Notes and References

Most of the notations and de�nitions used here are standard with a few ex-
ceptions. In particular the notion of a monotone aggregation function was
introduced in [Rüf07].
We also use the order relation in a slightly di�erent manner. In lattice theory
the symbol x � y is used to denote that xi < yi in every component. And
x < y is used to state that xi ≤ yi in every component and xj < yj for at
least one component. As we do not need these di�erence more than once, we
decided to use the notation that we believe is nearer to the dynamical system
community.
The notation K , K∞ respectively KL was introduced by Hahn in [Hah59,
Hah67]. Hahn did not explain why he chose the particular naming, but ac-
cording to rumors it is in honor of Kamke (see [Grü02]).
Our de�nition of dynamical systems is taken from [HP05]. We changed the
naming to �t more our needs though.
We decided to solely consider Carathèodory solutions, because any usual so-
lution (in the sense of Peano) is a Carathèodory solution and we will deal
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with discontinuous right hand sides in some of the chapters, for which Peano's
Theorem is not applicable.
The de�nitions from Section 1.3 are taken from [SW96] with one exception.
De�nition 1.3.14 is taken from [PMTL09].
Eduardo Sontag introduced the ISS notion in [Son89]. For an excellent start-
ing point into the ISS framework see [Son08].
The de�nition and notation for time delay systems is somewhat a mixture of
[PMTL09, Hal77, Tee98]. The interested reader is referred to [Hal77] for a
detailed introduction to time delay systems.
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Chapter 2

Stabilizing a Single System over a Com-

munication Channel

Before we start considering large-scale systems, it is of interest how to stabi-
lize a single system over communication channels. In this chapter we focus
on digital communication channels. In a digital channel the information we
want to transmit is translated, respectively, encoded into a binary represen-
tation.
We are dealing with communication channels of �nite capacity, i.e. we cannot
transmit an in�nite amount of information in a �nite amount of time.
In general, transmitting a single real number demands for an in�nite amount
of information respectively binary digits. Therefore limiting the capacity of
the communication channel poses some problems due to possible rounding
errors. In the context of networked control systems the e�ect of the presence
of rounding errors is known as quantization.
Moreover, in any physical implementation of a communication channel a de-
lay is present. Delay describes the e�ect that information that was sent at
some time is received some time later on the other side of the communication
channel.
Information can even get lost, which means that information sent by one side
is never received by the other side of the communication channel. This e�ect
is known as packet loss.
In this chapter we discuss certain ways to deal with the limitations posed by
the communication. In detail, we introduce an approach to deal with quan-
tization, delay, and packet loss.
One of the key tools used in this chapter is called dynamic quantization. See
Section 2.2 respectively Remark 2.3.6 for a discussion.
The approach presented in this chapter requires more speci�c assumptions
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on the communication channel than those discussed in the introduction.
We start in the next section by introducing the system setup under consid-
eration.

2.1 System Description and Further Assumptions

This chapter is in two aspects di�erent from the rest of the thesis. First
we only deal with a single system and secondly we are dealing with a more
speci�c situation as far as the communication channel is concerned.

Problem Setup

In Figure 2.1 the setup under consideration is depicted. The devices behind
these boxes will be introduced here. The communication channel, depicted
as a cloud, is introduced later in this section.

The Plant

We consider systems of the form

Plant SensorActuator

EncDec

Figure 2.1: Setup of the closed-loop system

ẋ = f(x, u), x ∈ Rn, u ∈ U ⊂ Rm , (2.1)

where f : Rn ×Rm → Rn is continuous and Lipschitz in the �rst component
uniformly with respect to u, i.e.,

|f(x, u)− f(y, u)| ≤ L|x− y|, ∀x, y ∈ Rn ,∀u ∈ U , (2.2)

where | · | is an arbitrary norm.
Throughout this thesis the ISS framework is the key tool to achieve certain
stability properties. In this regard, we assume the following.
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Assumption 2.1.1. There exists a smooth k : Rn → Rm, x 7→ k(x) with
k(0) = 0 such that

ẋ(t) = f(x(t), k(x(t) + ed(t))) (2.3)

is ISS with respect to a measurement error ed. Note that this is equivalent
(see De�nition 1.3.1) to the existence of functions β ∈ KL and γ ∈ K∞ so
that the solutions of (2.3) satis�es

|x(t)| ≤ β(|x(t0)|, t− t0) + γ

(
sup

s∈[t0,t]

|ed(s)|

)
, ∀t ≥ t0 . (2.4)

Note that Assumption 2.1.1 states that if ed ≡ 0, the controller k globally
asymptotically stabilizes the unique �xed point x∗ = 0.

Sensor

The sensor is a measuring device, capable of measuring the state at arbitrary
time instances. Furthermore, we assume there are no measurement errors.
Although Assumption 2.1.1 allows modeling sensor errors by e.g., ed = em +
eq, where em is the measurement error due to the faulty sensor and eq is
the quantization error, we decided to neglect sensor errors to ease the pre-
sentation. In general we would not be able to conclude asymptotic stability
of the presented approach by considering non-vanishing sensor error. For an
explanation see Section 2.2.

Encoder

The encoder is the device that prepares the information in a suitable way
such that it can be transmitted over the communication channel. To do so
it uses an approximation of the state x̂e ∈ Rn. As the encoder and the
decoder are the heart of this chapter, they are introduced in more detail in
Section 2.3.

Decoder

The decoder sits on the other end of the communication channel and trans-
lates respectively decodes the information that was encoded by the encoder
and transmitted over the communication channel. In this regard, the decoder
inverts the encoding procedure done by the encoder. It has a model of the
plant and the equation is given by

˙̂xd = f(x̂d, ud) , (2.5)
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with x̂d ∈ Rn and ud = k(x̂d). The decoder is initialized to x̂d(0) = 0.
Note that we assume throughout this chapter that the clocks of encoder and
decoder are synchronized.

Actuator

The actuator takes the signal generated by the decoder and closes the loop
with the help of this signal.

Further Assumptions on the Communication Channel

Here we give the speci�c assumptions on the communication channel. In
particular, we consider TCP like packet based transmissions over a noiseless,
error free channel with delay and packet loss. For an introduction on TCP
and similar protocols see [Ste93]. Basically, information will be gathered into
packets and sent through the channel. If a packet is received on the other
side of the channel, the receiving side sends an acknowledgment back to the
sender to signal that the information was received correctly.
The encoder encodes the state and sends a symbol from a �nite alphabet
(here, a �nite alphabet is a �nite set given by S := {s1, s2, . . . , sm}, si ∈ Z
for i = 1, . . . ,m) to the decoder together with the time when the state was
encoded (time stamping). As soon as a packet arrives at the decoder, it
reconstructs the encoded state and sends an acknowledgment (ack) back to
the encoder. This ack is also time stamped. If an ack arrives at the encoder
or a prede�ned time (called τmax) elapses without receiving one, it repeats
the encoding with the actual state. Let tk, t∗k for k ∈ N be series of time
instances. We say that tk, t∗k are encoder-decoder time sequences, if tk is the
kth time instance the encoder received an ack (with one important exception:
The �rst time the encoder sends an information is without receiving an ack at
time t1 = 0) and t∗k is the time when the kth information sent by the encoder
is received by the decoder. Note that we assume that there is no time delay
between the arrival of an information and the sending of the next packet i.e.
tk and t∗k are also the time instances when the encoder sends information and
the decoder sends an ack respectively, provided that no loss occurred.
The aforementioned procedure is summarized in Figure 2.2. The sending of
packets is depicted as solid lines whereas the ack's are given as dotted lines.
Note that the packet sent at t3 is lost and a new packet is sent at t3 + τmax.
To be able to stabilize the system, information sent by the encoder should be
received by the decoder at least sometimes. The next assumption quanti�es
this precisely.
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Figure 2.2: Time instances of encoder and decoder

Assumption 2.1.2. There exists a long time average of the di�erence tk −
tk−1. This average is given by

τ∗ = lim sup
k→∞

1

k

k∑
j=2

(tj − tj−1) = lim sup
k→∞

1

k
tk. (2.6)

Assumption 2.1.2 states that on average on an in�nite time horizon, every
τ∗ units of time a packet will be successfully acknowledged. The last equation
holds, because we conventionally set t1 = 0, as described before. Note that
the existence of such a τ∗ does not hold in general despite τmax, as tk are the
time instances when transmission is successful. In other words: tk − tk−1 >
τmax for some k because of possible packet loss.
The next statement shows that also every τ∗ units of time the decoder receives
a packet on average.

Lemma 2.1.3. If Assumption 2.1.2 holds, we also have

τ∗ = lim sup
k→∞

1

k
t∗k .

Proof. Note that by de�nition we have tk ≤ t∗k ≤ tk+1. Hence by using (2.6)
we get

τ∗ = lim sup
k→∞

1

k
tk ≤ lim sup

k→∞

1

k
t∗k ≤ lim sup

k→∞

1

k
tk+1 .

It remains to show that the right hand side of the inequality also converges
to τ∗. To this end consider

lim sup
k→∞

1

k
tk+1 = lim

k→∞
sup
l≥k

1

l
tl+1 = lim

k→∞

k

k + 1
sup
l≥k

1

l
tl+1 ≤

lim
k→∞

sup
l≥k

l

l + 1

1

l
tl+1 = τ∗ .
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And we have shown the claim.

Next we give a summary of the properties of the communication channel.

Summary 2.1.4. For the communication channel the following should hold:

1. All packets are time stamped with the current time they are sent.

2. Only packets sent from encoder to decoder are lost.

3. There exists a minimal delay from encoder to decoder, given by τmin,
i.e., t∗k − tk ≥ τmin and tk − t∗k−1 ≥ τmin.

4. The channel is able to transmit packets containing a value from a set
of Nn discrete values within τmin units of time.

5. If τmax time elapses without receiving an ack, the packet sent last time
is considered lost and a new packet will be sent.

By Summary 2.1.4 (1) we have to send the actual time together with the
encoded state information. It is not reasonable to transmit the state infor-
mation quantized, while the time information is transmitted with arbitrary
accuracy. For the sake of simplicity we omit details on time quantization, see
[SW09] for a discussion.
Summary 2.1.4 (2) is a major restriction on the channel used. But because
the ack's are much smaller than the state information the decoder could send
many ack's to ensure that at least one arrives at the encoder. Without this
assumption we could not guarantee that the encoder and the decoder agree
on their states by means of a simple time stamping mechanism.
Summary 2.1.4 (3) is in general not a restrictive one. In every real commu-
nication channel such a minimal delay exists.
Summary 2.1.4 (4) states that the bandwidth of the channel B must be large
enough to transmit the state information within τmin units of time. For
instance, if binary encoding is used we require

B ≥ n log2N

τmin
. (2.7)

If this condition is not met, the decoder could introduce an arti�cial delay
by waiting to ensure that τmin is large enough to ful�ll the bandwidth con-
straint.
Because we do not have a mechanism to detect packet loss, we introduce the
design parameter τmax in 2.1.4 (5) to be able to handle the e�ect of packet
loss.
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The design parameters τmin and τmax steer the trade-o� between the per-
formance of the system and the requirement of bandwidth. For instance,
choosing τmax to large can deteriorate the performance of the closed loop
system, while choosing it too small can lead to too many unneeded retrans-
mission of data.
We say that the encoder-decoder time sequences tk, t∗k are admissible for
the encoder-decoder pair, if Assumption 2.1.2 and Summary 2.1.4.3 holds.
After describing the communication channel in detail, we are able to intro-
duce the basic concept that will be used to overcome the limitation posed by
quantization in the next section.

2.2 Quantization

The basic tools used in this chapter are input to state stability and dynamic
quantization. Before we give a de�nition of a quantizer we want to start with
brie�y discussing static quantizers.

De�nition 2.2.1. A map q : Rn → Rn is called a static quantizer , if there
exists M,m ∈ R+ with m < M such that

|q(x)− x| ≤ m

whenever |x| ≤M , x ∈ Rn.
The quantity M is often referred to as range of the quantizer, whereas m

is termed the resolution. If the state x is in a certain region (i.e. the quan-
tization region), we say the state lies within the range of the quantizer. The
de�nition above states that whenever the state lies within the quantization
region, the quantization error q(x) − x is bounded by the resolution of the
quantizer.
In Figure 2.3 an example of a static quantizer is given. Here, the quantization
region is a hypercube of length 2M . It is partitioned into smaller hypercubes
of length 2m each. We will refer to these smaller hypercubes as subregions.
In this regard, the range of the quantizer is M , whereas the resolution is m.
Whenever the state x lies within the range of the quantizer, the quantizer
determines the subregion in which the state lies and gives as a result the
center of this smaller hypercube.
A static quantizer has a �xed resolution and hence a �xed guaranteed error.
As we want to use the quantized value to close the loop, we cannot hope
to achieve asymptotic stability, in general, by using a static quantizer (see
[Del90] for a corresponding statement). Therefore we generalize the concept
to quantizers in which the parameters of the quantizer can change over time,
as can be seen in the next de�nition.
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De�nition 2.2.2. A map q : Rn × Rn × R → Rn is called a quantizer , if
there exist M,m : R+ → R+ with m(t) < M(t) for all t such that

|q(x, x̂, t)− x| ≤ m(t)

whenever |x− x̂| ≤M(t).
Here x is the value to be quantized, x̂ is the center of the quantization region,
M is the size of the quantization region, and m is the resolution.

M

m

x

q(x)

0

Figure 2.3: Example of a �nite quantizer with range M and resolution m

The de�nition above states that whenever the state lies within the range
of the quantizer (|x − x̂| ≤ M(t)) the quantized value di�ers at most m(t)
from the state x. In contrast to the �nite quantizer the center, range, and
the resolution can change over time.
For an example see Figure 2.4. In this particular example the e�ect of the
quantizer is depicted for the parameters of the quantizer at two di�erent
times t1, t2. In both cases the quantization region is given by a box centered
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at x̂ with size 2M . This box is divided into subregions, each of size 2m. The
quantizer determines the subregion in which the state x lies and gives the
center of this subregion as the result of the quantization. Between t1 and t2
the center x̂ and the range M changes. In this example the state at time
t2 still lies within the range of the quantizer. Of course, this does not hold
automatically. We will see in the next section how we can ensure that the
state always lies within the range of the quantizer.

Figure 2.4: Schematic of a dynamic quantizer at two di�erent time instances

2.3 Encoder-Decoder Pair and Description of the Closed-

Loop System

We have learned in the last section that a quantizer is a map that gives an
approximation of the state with a guaranteed bound on the error. However,
the quantized values are still real numbers and hence they cannot be easily
transmitted via a communication channel with �nite capacity.
In Figure 2.3 and 2.4 we have chosen a special quantizer, in which the sub-
regions partition the quantization region. This suggests that we can choose
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a quantizer in such a way that we can assign to each subregion a certain
symbol from our alphabet.
This would require some device that translates the real valued number to a
symbol from our alphabet. If the capacity of the communication channel is
large enough this symbol can be transmitted. On the other side of the com-
munication channel we need also a new device, which inverts the translation
into the �nite alphabet.
The next de�nition, which labels these two devices, is borrowed from [TM04].

De�nition 2.3.1. An encoder is a dynamical system and its output map at
time t is given by

Enc : Rn × R+ × Rp × R+ → S × R+ : Enc(x, ack,Ξe(t), t) 7→ (s, tk) ,

where S is a �nite alphabet. A decoder is a dynamical system and its output
map at time t is given by

Dec : S × R+ × Rp × R→ Rn : Dec(s, tk,Ξd(t), t) 7→ x̂d(t) .

The values Ξe and Ξd are the internal states of the encoder respectively
decoder. The variable ack is the time stamp of the ack.
The values x, ack are the inputs and s, tk the outputs. For the decoder, on
the other hand, s, tk act as an input and x̂d is the output.
Encoder and decoder together are called an encoder-decoder pair.
An encoder-decoder pair should be able to encode the state at time tk in such
a way that the decoder is able to reconstruct at least an approximation of
the state. We will see that to achieve this goal it is important that encoder
and decoder agree on their internal states.

De�nition 2.3.2. If for an encoder-decoder pair

Ξe(tk) = Ξd(t
∗
k)

holds for all k ≥ 0, the encoder-decoder pair is called information consistent.

An information consistent encoder-decoder pair has the property that at
the encoding time tk the internal state of the encoder is the same as the
decoder internal state at time t∗k. If there is no delay in the communica-
tion channel, information consistency is easily achieved by initializing en-
coder and decoder to the same values and let them follow the same dynamics
(see [LH05]). However, if there is delay in the communication channel, in-
formation consistency does not hold automatically. An example how this
consistency property can be achieved despite the presence of delay is given
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in Section 2.5.
Now we are able to give the equations for the closed-loop system:

ẋ(t) = f(x(t), k(x̂d(t))) , t 6= t∗k (2.8)
˙̂xd(t) = f(x̂d(t), k(x̂d(t))) , t 6= t∗k (2.9)

x̂e(t) = Dec

(
Enc

(
x(tk), t∗k−1,Ξe(tk), tk

)
,Ξe(tk), tk

)
, t = tk (2.10)

x̂d(t) = Dec

(
Enc

(
x(tk), t∗k−1,Ξe(tk), tk

)
,Ξd(t

∗
k), t∗k

)
, t = t∗k. (2.11)

The initial values are x(0) = x0 and x̂d(0) = x̂e(0) = 0.
The �rst equation describes the dynamics of the plant. The control action is
calculated using the decoder trajectory, which is given by (2.9). The last two
equations describe the jumps in the encoder respectively decoder trajectories.
To be more precise, at time tk the encoder uses the actual state x to generate
an approximation of it. This approximation is translated to a �nite alphabet
and transmitted over the channel. At time t∗k this information is received by
the decoder and used to approximate the state at that time.
The closed-loop system consists of continuous dynamics and jumps in the
state x̂e and x̂d at time instances tk respectively t∗k. A system consisting of
discrete and continuous dynamics is called a hybrid system. For an introduc-
tion on hybrid systems see [vdSS00, GST09] and the references therein.
Before we formulate the main result of this chapter we need further assump-
tions for encoder and decoder.

Assumption 2.3.3. Encoder and decoder have a priori knowledge of the
initial state x(0) of the system i.e., there exist m0 ∈ R+, known to encoder
and decoder such that

|x(0)| ≤ m0 . (2.12)

The assumption above states that encoder and decoder agree on a certain
region in which the initial state lies. The size of this region can be interpreted
as the level of uncertainty of the encoder where the state lies.
We want the state x to be con�ned within a certain region for all positive
times. Moreover, we want this region to become smaller with each transmis-
sion. This property is given in detail in the next de�nition.

De�nition 2.3.4. Let L be the Lipschitz constant of f and N ∈ N with
N > 1. Consider an arbitrary solution x, x̂e of (2.8)-(2.11). De�ne m(0) :=
m0 and let m(tk) := m(tk−1)eL(tk−tk−1)/N . If

|x̂e(tk−1)− x(tk−1)| ≤ m(tk−1)
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implies
|x̂e(tk)− x(tk)| ≤ m(tk)

for all k ∈ N, the encoder is called N -contracting. Furthermore m(tk) is
called the range of the encoder.

Similar to quantizers, m(t) is the range and x̂e may be regarded as the
center of the quantization region.
De�nition 2.3.4 states that if the state lies within the range of the encoder at
time tk−1 it will stay within the range for all tj for j > k− 1. Moreover, the
range is divided by N at each time instance tk and growth by eL(tk−tk−1).
The di�culty in achieving this is that the actuator signal for the system is
calculated using the decoder trajectory. As the only information the encoder
receives from the decoder is a time stamp, the N -contracting property does
not hold automatically.
Now that we know that the state lies within range for all positive times and
this range is divided by N with each encoding step, we need a way to describe
how the decoder approximation behaves.

De�nition 2.3.5. Let L be the Lipschitz constant of f and tk, t∗k admissible
encoder-decoder time sequences. If for any solution x, x̂e, x̂d of (2.8)-(2.11)

|Dec(Enc(x(tk), t∗k−1,Ξe(tk), tk),Ξe(tk), tk)− x(tk)| ≤
|x̂e(tk−1)− x(tk−1)|eL(tk−tk−1) (2.13)

and

|Dec(Enc(x(tk), t∗k−1,Ξe(tk), tk),Ξe(tk), t∗k)− x(t∗k)| ≤
|Dec(Enc(x(tk), t∗k−1,Ξe(tk), tk),Ξe(tk), tk)− x(tk)|eL(t∗k−tk) , (2.14)

for all k ∈ N hold, the encoder-decoder pair is called L-expanding.

Equation (2.13) states that the encoder approximation can at most grow
by eL(tk−tk−1) in between transmission times.
The second assertion says that if the decoding is done with the same internal
state as the encoding, the decoder approximation can only deviate from the
encoder approximation by a factor of eL(t∗k−tk).
For an intuition see Figure 2.5. If the state at time tk lies within the range
of the encoder (i.e. |x̂e(tk) − x(tk)| ≤ m(tk)), the encoder determines the
subregion in which the state lies and transmits the corresponding symbol
from the �nite alphabet (here s3) together with the time tk to the decoder.
By the jump from x̂e(tk) to the center of the subregion the error gets divided
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x(tk)

x̂e(tk)

x̂e(tk+1)

x(tk+1)

s1 s2 s3

s4 s5 s6

s7 s8 s9

Figure 2.5: Example of a N -contracting encoder

by N (in this particular example N = 3). The N -contracting property states
that if we enlarge the subregion by eL(tk−tk−1) the state at time tk+1 still lies
in a quantization region with x̂e(tk+1) as the new center.

Remark 2.3.6. Inspecting De�nition 2.3.5 reveals that the concatenation of
the output maps of encoder and decoder are closely related to the de�nition of
a quantizer. While a quantizer is time varying, encoder as well as decoder are
dynamical systems. To be more precise, the center and range of a quantizer
can change over time, while the evolution of center and range of encoder resp.
decoder are governed by a dynamical system.
In this regard, an encoder-decoder pair is often referred to as a dynamic
quantizer in the literature.

Before we can state the main result of this chapter, we want to de�ne the
particular notion of stability we are interested in. As our system is a hybrid
system consisting of states that evolves only discrete in time and states that
are governed by ordinary di�erential equations, we need another notion of
stability as the one de�ned in Section 1.

De�nition 2.3.7. Let e = x̂d − x and ee = x̂e − x. We say that a system
of the form (2.8)-(2.11) is semi globally asymptotically stable at t1 = 0 if
(x, e, ee) = 0 is an asymptotically stable equilibrium at t1 = 0 for (2.8)-
(2.11), provided that x̂d(0) = x̂e(0) = 0 and |x(0)| ≤ m0.
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The term semi globally refers to the fact that the initial conditions has to
lie in some compact set (see Assumption 2.3.3). In this regard we have "more"
than local stability but less than global stability. At �rst glance system (2.8)-
(2.11) seems to be time invariant. Because in general the evolution of the tk
and t∗k are time variant, the evolution of (2.8)-(2.11) depends also on t1.

Remark 2.3.8. By the change of coordinatesx
e
ee

 =

 In 0 0
−In In 0
−In 0 In

 x
x̂d
x̂e

 ,

where In is the identity matrix of dimension n, we see that De�nition 2.3.7 is
equivalent to saying that x, x̂e, x̂d are asymptotically stable at t1 = 0, again
provided that xd(0) = xe(0) = 0 and |x(0)| ≤ m0.

Now we are able to state the main result of this chapter.

2.4 Main Result: Stabilization of a Single System over

a Digital Channel

Here, we will see that as long as encoder and decoder agree on certain values
(i.e, information consistency) and the state always lies within the range of
the encoder-decoder pair, the approximation of the state x̂d becomes better
by a factor of N with each information that arrives at the decoder. The next
theorem gives a su�cient condition on the size of the �nite alphabet needed
to ensure that the range will converge to zero. In this regard, the next
theorem relates a system property (the Lipschitz constant) to the capacity of
the communication channel (the size of the alphabet). Basically, the input
consistency together with L-expanding property allows us to bound the error
between the encoder and the state with the help of the Gronwall inequality
and the N -contracting property ensures that the error is divided by N with
each successful transmission.

Theorem 2.4.1. Consider system (2.8)-(2.11) with initial condition as be-
fore, which communicates over a digital channel with the properties given in
Summary 2.1.4. Let tk, t

∗
k be admissible encoder-decoder time sequences as

described in Section 2.1. Let Assumptions 2.1.1, 2.1.2, and 2.3.3 hold. If for
an information consistent, L-expanding, and N -contracting encoder-decoder
pair it holds that N > eLτ

∗
, where L is the Lipschitz constant for system

(2.3), then the closed-loop system (2.8)-(2.11) is semi globally asymptotically
stable at t1 = 0.
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Proof. First we show that the range converges to zero. To this end consider
τ∗ = lim supk→∞

1
k tk. Choose an ε > 0 such that eL(τ∗+ε) < N , which is

possible because eLτ
∗
< N . This choice yields a K ∈ N such that eL

1
k tk <

eL(τ∗+ε) < N for all k > K and hence

lim
k→∞

m0e
L(tk−t1)/Nk = lim

k→∞
m0

eL 1
k tk

N

k

= 0 . (2.15)

By Assumption 2.3.3, the initialization of the encoder, and t1 = 0 we have

|x̂e(t1)− x(t1)| = |0− x(t1)| ≤ m0 = m(t1) .

Hence by (2.13) together with (2.10) we get

|x̂e(tk)− x(tk)| ≤ m(tk) (2.16)

for all k ∈ N.
By information consistency we have Ξe(tk) = Ξe(t

∗
k). Hence we can combine

(2.14) with (2.11) to arrive at

|e(t∗k)| = |x̂d(t∗k)−x(t∗k)| ≤ |x̂e(tk)−x(tk)|eL(t∗k−tk) ≤ m(tk)eL(t∗k−tk) . (2.17)

The evolution of |e(t)| for t ∈ [t∗k−1, t
∗
k) can be bounded with the help of the

Lipschitz property of f and the triangle inequality by

|e(t)| = |x̂d(t)− x(t)| =∣∣∣x̂d(t∗k−1)− x(t∗k−1) +

∫ t

t∗k−1

f(x̂d(s), k(x̂d(s)))− f(x(s), k(x̂d(s)))ds
∣∣∣ ≤

|e(t∗k−1)|+ L

∫ t

tk−1∗
|e(s)|ds .

Application of the Gronwall Lemma yields

|e(t)| ≤ |e(t∗k−1)|eL(t−t∗k−1) , (2.18)

for t ∈ [t∗k−1, t
∗
k). Because of (2.17) the latter results for all t ∈ [t∗k−1, t

∗
k) in

|e(t)| ≤ m(tk−1)eL(t∗k−1−tk−1)eL(t−t∗k−1) = m(tk−1)eL(t−tk−1) = m0e
Lt/Nk.

where we used the de�nition of m(tk) to get the last equality.
By monotonicity of the exponential we have

|e(t)| ≤ m0e
Lt∗k/Nk (2.19)
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for all t ∈ [t∗k−1, t
∗
k). And hence

sup
t≥0
|e(t)| ≤ sup

k∈N
m0e

Lt∗k/Nk .

By Lemma 2.1.3 we have τ∗ = lim supk→∞
1
k t
∗
k. Hence, as before, we have

eLt
∗
k < Nk

for all k > K. This together with (2.19) allow us to conclude

lim
t→∞

|e(t)| = 0 . (2.20)

Moreover, we have

sup
t≥0
|e(t)| ≤ max

k≤K
m0e

Lt∗k/Nk =: W .

Hence by (2.4) we get

|x(t)| ≤ β(|x(0)|, 0) + γ(W ) =: D

for all t ≥ 0. Looking at trajectories starting at t0 gives

|x(t)| ≤ β(D, t− t0) + γ( sup
s∈[t0,t]

|e(s)|)

for all t ≥ t0. If we let t, t0 tend to in�nity in such a way that t− t0 tends to
in�nity, we get

lim
t→∞

|x(t)| ≤ lim
t−t0→∞

β(D, t− t0) + γ(lim sup
t0→∞

|e(t0)|) .

As β ∈ KL and e(t) → 0 by (2.20) we have x(t) → 0. Considering (2.16)
gives

lim
k→∞

|ee(tk)| = lim
k→∞

|x̂e(tk)− x(tk)| ≤ lim
k→∞

m(tk) = 0 .

And we have shown attractivity of (x, e, ee) = 0. To conclude stability let
ε > 0 be arbitrary and de�ne ε′ := γ−1( ε2 ). Choose a k′ ∈ N such that for
all k ≥ k′

eLt
∗
km0

Nk
≤ ε′ , (2.21)

which is possible because of (2.15).
Choose an initial condition such that

|x(0)| ≤ ε′

eLt
∗
k′
. (2.22)
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Note that combining (2.22) and (2.21) yields

|x(0)| ≤ m0

Nk′
. (2.23)

First we consider the case k ≥ k′. By (2.19) and (2.21) we get

|e(t)| ≤ m0e
Lt∗k/Nk ≤ ε′ (2.24)

for all t ∈ [t∗k−1, t
∗
k). And thus

sup
t≥t∗

k′

|e(t)| ≤ ε′ . (2.25)

Now let k < k′. Combining (2.13) and (2.14) yields

|e(t∗k)| = |x̂d(t∗k)− x(t∗k)| ≤
|x̂e(tk)− x(tk)|eL(t∗k−tk) ≤ |x̂e(tk−1)− x(tk−1)|eL(t∗k−tk−1) .

Repetitively applying (2.13) gives

|e(t∗k)| ≤ |xe(t1)− x(t1)|eLt
∗
k = |e(0)|eLt

∗
k

for all k ∈ N. By (2.18) we get

|e(t)| ≤ |e(0)|eLt
∗
keL(t−t∗k) = |e(0)|eLt .

for all t > 0. Using (2.22) we conclude

sup
0≤t<t∗

k′

|e(t)| ≤ sup
0≤t<t∗

k′

|e(0)|eLt = sup
0≤t<t∗

k′

|x(0)|eLt ≤ ε′ . (2.26)

Combining (2.26) with (2.25) yields

sup
t≥0
|e(t)| ≤ ε′ , (2.27)

as long as |e(0)| = |x(0)| ≤ ε′

e
Lt∗
k′
. And we have shown stability of e(t).

Consider again (2.4). Because β ∈ KL we can choose x(0) such that
β(|x(0)|, 0) ≤ ε/2 and |x(0)| ≤ ε′

e
Lt∗
k′
. And hence by (2.4)

|x(t)| ≤ β(|x(0)|, 0) + γ(sup
t≥0
|e(t)|) ≤ ε

2
+ γ(ε′) ≤ ε ,

where we used (2.27) and the de�nition of ε′. And we can conclude stability
of x(t).
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It remains to show that ee is stable. Combining (2.10) with (2.13) repetitively
yields

|ee(tk)| = |x̂e(tk)− x(tk)| ≤ |x̂e(t1)− x(t1)|eLtk = |ee(0)|eLtk

for all k ∈ N. Combining this with the N -contracting property gives

|ee(tk)| ≤ min{|ee(0)|eLtk ,m(tk)} .

Because m(tk) → 0 there exists an index k′ where the minimum changes.
And thus we can make the right hand side arbitrarily small by choosing
ee(0) small. This shows the stability of ee. And in summary we have shown
that (x, e, ee) = 0 is an attractive and stable equilibrium in the sense of
De�nition 2.3.7 and the proof is complete.

We have seen that we can infer stability of the closed-loop system, if the
bandwidth of the communication channel is large enough despite the presence
of delay and packet loss. The main technical assumptions that allow us to
achieve this are N -contracting, L-expanding and information consistency.
Information consistency states that the internal states of encoder and decoder
coincide at certain time instances. The N -contracting property states that if
the state lies in the range of the encoder at time t1, it will remain within range
for all tk and this range converges to zero, if the bandwidth is large enough.
The L-expanding property on the other hand bounds the evolution of the
errors of the encoder and state, respectively, decoder and state, provided
that information consistency holds. While the N -contacting property could
possibly be achieved by an observer, it is not clear how the L-expanding
property should be established for this case, as it relates the error on the
encoder side to the error on the decoder side. Similarly, it is not clear, how
to construct an encoder decoder pair, which is information consistent. In this
regard, it is not clear at this stage whether such encoder-decoder pairs do
exist. The next example gives a positive answer.

2.5 Example of an Encoder-Decoder Pair

Here we give an example of an encoder-decoder pair, which is information
consistent, L-expanding, and N -contracting. The internal states of encoder
respectively decoder are de�ned as

Ξe(tk) = (`e, xe, x̄e, N, tk−1, t
∗
k−1) ,

Ξd(t
∗
k) = (`d, xd, x̄d, N, tk−1, t

∗
k−1)
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with Ξe,Ξd ∈ R+×Rn×Rn×N×R+×R+. The subscript e always indicates
an encoder variable. The subscript d is de�ned in an obvious manner. As
the encoder variables are a direct counter part of the decoder variables, we
only explain the �rst.
The variable `e is the size of the quantization region on the encoder side. To
emphasize that we use two di�erent variables for the size of the region on
encoder resp. decoder side, we decided to use ` instead of the more obvious
m as we used in the rest of this chapter.
The variables xe is the center of the quantization region whereas x̄e is an
auxiliary variable. The value N is a natural number known to encoder an
decoder. The last two are the last time instances the encoder sent data
respectively when the decoder sent data the last time.
The initial states for the encoder and the decoder are:

k = 1, t0 = 0, t∗0 = 0, t1 = 0 t∗1 = 0 and x̄d(0) = x̄e(0) = 0

xe(0
−) = xd(0

−) = 0 and `e(0−) = `d(0
−) = 2m0 .

Following De�nition 2.3.1, an encoder is a dynamical system with Ξe as the
state, x, t∗k−1 as inputs and s, ts as outputs. Its output map at time t is
de�ned by

(s, ts) = Enc(x(t), t∗k−1,Ξe(t), t) .

The variable s carries the encoded state information and ts the corresponding
time stamp.
The state of the encoder Ξe evolves according to the following equations.
The encoder equations read:
(i) Every time an ack arrives at the encoder (t = tk)

ts = t (2.28)

`e(tk) = `e(tk−1)eL(tk−tk−1)/N (2.29)

xe(t
−
k ) = xe(tk−1)+∫ t∗k−1

tk−1

f(xe(s), k(x̄e(s)))ds+ (2.30)∫ tk

t∗k−1

f(xe(s), k(xe(s)))ds

s(ts) = q(xe(t
−
k ), x(tk), `e(tk)) (2.31)

xe(tk) = xe(t
−
k ) + s(ts)

`e(tk)

N
(2.32)

x̄e(tk) = xe(t
−
k ) . (2.33)
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Every time the encoder receives an ack (t = tk) it updates the length of the
quantization region according to the growth of the error on the last interval
(2.29). The center of the quantization region is updated via (2.30). Both
integrals are needed to account for the change in the control action on the
decoder side. The subregion in which the state lies is calculated by (2.31)
with q de�ned in (2.51). This information will be sent to the decoder together
with the actual time (2.28). The jump from the center to the subregion is
done by equation (2.32). The value of the old quantization region is copied
by (2.33).
To be able to cover the case of packet loss we also need:
(ii) If τmax units of time without receipt of an ack elapse (t = tk + τmax)

ts = t (2.34)

`e(t) = `e(tk)eL(t−tk) (2.35)

xe(t
−) = x̄e(t) (2.36)

s(ts) = q(xe(t
−), x(t), `e(t)) (2.37)

xe(t) = xe(t
−) + s(ts)

`e(t)

N
. (2.38)

If τmax units of time elapse without receiving an ack, the packet sent last
time is considered lost and a new one will be sent. Similar to the case of no
loss, the encoder updates the length of the quantization region (2.35). Note
that there is no division by N . Equation (2.36) cancels the jump from the
center to the subregion made in the last encoding step. The equations (2.37)
and (2.38) follow the same reason as in the case of no loss. In both cases ((i)
and (ii)) ts and s(ts) are the output of the encoder, which will be sent from
encoder to decoder.
(iii) Otherwise:

˙̄xe(t) = f(x̄e(t), k(x̄e(t))) (2.39)

We need (2.39) to know the trajectory which will be used to close the loop
on the decoder side as can be seen from Lemma 2.5.6 and Theorem 2.5.7. It
is also needed to treat the case of packet loss (2.36).
The decoder is also a dynamical system. Its internal state is Ξd, the inputs
are s, ts and x̄d the output. Its output map at time t is given by

x̄d(t) = Dec(s, ts,Ξd(t), t) .

The evolution of the states are governed by the following equations.
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The decoder equations read:
(i) Every time a packet arrives at the decoder (t = t∗k)

`d(ts) = `d(tk−1)eL(ts−tk−1)/N (2.40)

xd(t
−
s ) = x̄d(t

∗
k−1) +

∫ ts

t∗k−1

f(xd(s), k(xd(s)))ds (2.41)

xd(ts) = xd(t
−
s ) + s(ts)

`d(ts)

N
(2.42)

x̄d(t
∗
k) = xd(ts) +

∫ t∗k

ts

f(xd(s), k(x̄d(s)))ds (2.43)

(ii) Otherwise
˙̄xd(t) = f(x̄d(t), k(x̄d(t))) . (2.44)

The decoder equation tries to mimic the corresponding equations of the en-
coder. We will see in Lemma 2.5.6 and Theorem 2.5.7 that decoder indeed
succeeds with this goal.
The state x evolves according to

ẋ = f(x, k(x̄d)) . (2.45)

To see that this system is indeed of the form (2.8)-(2.11) consider the following
equations.

ẋ =f(x, k(x̂d)) (2.46)
˙̂xd =f(x̂d, k(x̂d)) (2.47)

x̂e(tk) =xe(tk) (2.48)

x̂d(t
∗
k) =Dec

(
Enc

(
x(tk), t∗k−1,Ξe(tk), tk

)
,Ξd(t

∗
k), t∗k

)
. (2.49)

In contrast to system (2.8)-(2.11) we see that in the equation for x̂e(tk) we
do not need knowledge of the decoder output map on the encoder side. In
general, it would also be su�cient in (2.10) to use the same quantizer as on the
decoder side. For the sake of simplicity, we decided to use the concatenation
of encoder and decoder in (2.10) for x̂e nevertheless.
It remains to show that (2.48) is of the form (2.10).

Lemma 2.5.1. Consider encoder and decoder as above. Let t = tk be the
encoding times and t = t∗k the time instances the decoder receives information.
Then for the concatenation of the output maps at time t = tk it holds that

xe(tk) = Dec

(
Enc

(
x(tk), t∗k−1,Ξe(tk), tk

)
,Ξe(tk), tk

)
. (2.50)
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Proof. Let s, ts be the output of the encoder at time t = tk. Hence we have
by (2.28) that ts = tk. Note that in (2.50) the output map of the decoder is
envoked with the internal state of the encoder at time t = tk. Thus we have
`d = `e, xd(t−s ) = xe(t

−
s ). Following (2.43), the output of the decoder is

x̄d(tk) = xd(tk) +

∫ tk

tk

f(xd(s), k(x̄d(s)))ds = xd(tk) .

Considering (2.42) yields

x̄d(tk) = xd(t
−
k ) + s(tk)

`d(ts)

N
= xe(t

−
s ) + s(tk)

`e(ts)

N
= xe(tk) ,

Realizing that x̄d(tk) is the output of the decoder at time t = tk shows the
claim.

The quantizer used in (2.31) and (2.37) takes the form

q : Rn × Rn × R→ Zn :

q(xe(t
−), x(t), `e(t)) =

⌊
N

`e(t)
(x(t)− xe(t−)) +

1

2
e

⌋
. (2.51)

The �oor function has to be understood component wise. Please note that
e ∈ Rn above is the vector consisting of ones, not to be confused with the
exponential.
An example of a two dimensional q can be seen in Figure 2.6. The center of
the quantization region is xe and its length `e. A vector of integers is assigned
to each subregion. For instance, in Figure 2.6 it holds for the quantizer that
q(xe, x, `e) = (0, 1)>. Although in the rest of this chapter the norms can
be arbitrary, we want to use the max norm in this section. By utilizing the
equivalence of norms on �nite dimensional spaces, the consideration would
still hold true for other norms. To ease the presentation and stick to the idea
of quantization regions as boxes as in e.g. Figure 2.6, we decided to use the
maximum norm.

Lemma 2.5.2. Consider a quantizer q as de�ned in (2.51). Whenever

|x(tk)− xe(t−k )| ≤ `e(tk)
2 we have |x(tk)− xe(tk)| ≤ `e(tk)

2N .

Proof. Considering (2.31), (2.32) and (2.51) for the ith component yields

x(tk)i − xe(tk)i =

x(tk)i − xe(t−k )i −
⌊

N

`e(tk)
(x(tk)i − xe(t−k )i) +

1

2

⌋
`e(tk)

N
≥

x(tk)i − xe(t−k )i −
(

N

`e(tk)
(x(tk)i − xe(t−k )i) +

1

2

)
`e(tk)

N
= −`e(tk)

2N
.
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x1

x2

Figure 2.6: Two dimensional example of ϕ

Using the properties of the �oor function again leads to

x(tk)i − xe(tk)i =

x(tk)i − xe(t−k )i −
⌊

N

`e(tk)
(x(tk)i − xe(t−k )i) +

1

2

⌋
`e(tk)

N
≤

x(tk)i − xe(t−k )i −
(

N

`e(tk)
(x(tk)i − xe(t−k )i) +

1

2
− 1

)
`e(tk)

N
=
`e(tk)

2N
.

Using the maximum norm yields the assertion.

Lemma 2.5.2 states that whenever the state lies within the quantization
region, the size of the quantization region is divided by N at each encoding
step.
We assumed that the communication channel is able to transmit a symbol
from a set of Nn di�erent symbols (cf., Summary 2.1.4 (4)). The question
remains whether the encoded state stays within this bound. The next lemma
gives a positive answer.

Lemma 2.5.3. Consider the encoder-decoder pair given by (2.28)-(2.44).
Assume that |x(tk)− xe(t−k )| ≤ `e(tk)

2 . Then we have for each i = 1, . . . , n

−N + 1

2
≤ s(tk)i ≤

N + 1

2
,
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if N is odd and
−N

2
≤ s(tk)i ≤

N

2
,

if N is an even number.

Proof. Because |x(tk) − xe(t−k )| ≤ `e(tk)
2 we have for each i = 1, . . . n that

−`e(tk)
2 ≤ x(tk)i − xe(t−k )i ≤ `e(tk)

2 and hence⌊
N

`e(tk)
(x(tk)i − xe(tk)i) +

1

2

⌋
≤
⌊

N

`e(tk)

`e(tk)

2
+

1

2

⌋
=

⌊
N + 1

2

⌋
. (2.52)

Similarly we get⌊
N

`e(tk)
(x(tk)i − xe(tk)i) +

1

2

⌋
≥
⌊

N

`e(tk)

−`e(tk)

2
+

1

2

⌋
=

⌊
−N + 1

2

⌋
.

(2.53)
Now assume that N is odd. Hence we get⌊

N + 1

2

⌋
=
N + 1

2
and

⌊
−N + 1

2

⌋
=
−N + 1

2
.

Similarly, we get for N even⌊
N + 1

2

⌋
=
N

2
and

⌊
−N + 1

2

⌋
=
−N

2
.

Combining the latter with (2.52) resp. (2.53) yields the claim.

The lemma states that q(xe, x, `e) = s is in every dimension an integer
between −N+1

2 and N+1
2 if N is odd respectively between −N2 and N

2 if N is
even. In both cases we can encode s from (2.31) in such a way that we need
at most Nn di�erent symbols, provided that the state always stays in range
of the encoder.

Remark 2.5.4. Although our approach does not distinguish between N even
or odd, the intuition that during encoding the encoder jumps from the center
of the quantization region to the center of a subregion is only valid, if N is
an odd number.

Before we show that the equations for encoder and decoder are informa-
tion consistent an important observation is in order.

Remark 2.5.5. Although the equations for the decoder depend on the time tk,
which it is aware of because of the time stamping mechanism, we regard these
as the internal state of the decoder at time t∗k. One has also to distinguish
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between "real" time t and the �ctional time for the encoder and decoder. As
the states of encoder and decoder are most likely calculated by some digital
device, they are no real trajectories. Despite this fact we will treat them in
the proofs as if they actually were given by a "real" dynamical system.

In order to use the results from the last section we have to show that the
encoder-decoder pair given above are information consistent, L-expanding,
and N -contracting.
Before we prove that the encoder and decoder described in this section are
indeed information consistent, we give a preliminary lemma, which shows
that certain signals coincide on certain time intervals. This observation will
be crucial for the rest of this section.

Lemma 2.5.6. For the encoder-decoder pair described in (2.28)-(2.44) it
holds that x̂d(t) = x̄d(t) = x̄e(t) for all t ∈ [tk, t

∗
k) and for all t ∈ [t∗k, tk+1)

we have x̂d(t) = x̄d(t) = xe(t).

Proof. The output of the decoder at time t = t∗k is x̄d(t∗k). And hence by
(2.49) we have x̂d(t∗k) = x̄d(t

∗
k). As both follow the same closed-loop dynamics

((2.47) resp. (2.44)) for t ∈ [t∗k−1, t
∗
k) we have x̄d(t) = x̂d(t) for all t ≥ 0.

As soon as a packet arrives at the decoder, it knows the time when the state
was encoded due to the time stamping. Hence the decoder can use (2.40)
to reconstruct the length of the quantization region used to encode the state
(2.29) respectively (2.35). Hence it holds

`e(ts) = `d(ts). (2.54)

Because of the initial condition of the encoder and the decoder and (2.33) it
holds that x̄d(0) = x̄e(0) = 0. Using t1 = 0 and equations (2.39) and (2.44)
we obtain

x̄d(t) = x̄e(t) ∀t ∈ [t1, t
∗
1). (2.55)

At time t∗1 the value s(ts) as well as the time ts becomes available to the
decoder. Because of the initialization of encoder and decoder and (2.32)
respectively (2.42) and (2.54) it holds that xe(t1) = xd(t1). By (2.43), (2.30)
and (2.55) we have x̄d(t∗1) = xe(t

∗
1).

Since both trajectories follow the same dynamics on the interval [t∗k, tk+1) by
(2.44) and (2.30) we get x̄d(t) = xe(t) , ∀t ∈ [t∗1, t2).
Due to the continuity of x̄d at tk and (2.33) x̄d(t2) = x̄e(t2) holds. From
(2.30), (2.41) and (2.43) as well as (2.55) we can deduce

xd(t
−
2 ) = xe(t

−
2 ).

Now we can use (2.32) respectively (2.42) and (2.54) to get xd(t2) = xe(t2).
To conclude the proof, repeat the arguments inductively.
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Now we use the last lemma to show that not only certain signals are
the same, but also that all internal states are the same at the encoding
respectively decoding times.

Theorem 2.5.7. Equations (2.28)-(2.44) describe an information consistent
encoder-decoder pair i.e., Ξe(tk) = Ξd(t

∗
k) for all k ∈ N.

Proof. First we treat the case of no packet loss. In the case of packet loss
the same considerations hold with just minor modi�cations in the equations
used.
The variable ts is an auxiliary variable, which holds the value of the time
stamp of the packet sent from encoder to decoder. Thus we have in the
corresponding time interval ts = tk. From Lemma 2.5.6 we know already that
`e(tk) = `d(ts) = `d(tk) for the same reasoning we have x̄e(tk) = x̄d(tk). The
parameter N does not change over time. Hence it is su�cient to initialize
encoder and decoder to the same value of N . The last time instances an
packet was sent respectively received must be stored by encoder and decoder.
It remains to show that xe(tk) = xd(tk) for all k ∈ N.
Because of the initialization of encoder and decoder we have xe(t1) = xd(t1).
Now let us assume

xe(tk−1) = xd(tk−1) . (2.56)

Starting from equation (2.43) we get

x̄d(t
∗
k−1) = xd(tk−1) +

∫ t∗k−1

tk−1

f(xd(s), k(x̄d(s)))ds

Using (2.56) and Lemma 2.5.6 yield

x̄d(t
∗
k−1) = xe(tk−1) +

∫ t∗k−1

tk−1

f(xe(s), k(x̄e(s)))ds (2.57)

Substituting the latter in (2.41) gives

xd(t
−
k ) = xe(tk−1) +

∫ t∗k−1

tk−1

f(xe(s), k(x̄e(s)))ds+

∫ tk

t∗k−1

f(xe(s), k(xd(s)))ds

By using Lemma 2.5.6 again we arrive at

xd(t
−
k ) = xe(tk−1) +

∫ t∗k−1

tk−1

f(xe(s), k(x̄e(s)))ds+

∫ tk

t∗k−1

f(xe(s), k(xe(s)))ds
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By inspecting (2.30) we see that

xd(t
−
k ) = xe(t

−
k ) .

Considering equation (2.32) and (2.42) together with `e(tk) = `d(tk) we con-
clude

xe(tk) = xd(tk)

and we have shown that Ξ(tk) = Ξ(t∗k) for all k ∈ N, if no packet loss occurred.
Now let the packet sent at the time tk be lost. The encoder waits τmax units
of time until it sends the next packet. Hence we have ts = tk + τmax.
Note that by de�nition tk is the last time an ack arrived at the encoder,
hence until that time input consistency holds by the considerations above.
Of course, it could happen that consecutive packets get lost. In this case
ts = tk+mτmax, where m is the number of packets lost in a row. To simplify
the presentation we treat the case m = 1, although the considerations still
hold true for larger m.
By inspecting (2.35) and (2.29) we have

`e(ts) = `e(tk)eL(ts−tk) = `e(tk−1)eL(tk−tk−1)/NeL(ts−tk) = `d(ts) ,

where the last equality comes from (2.40). Here, we see that the quantization
region gets only smaller by N if an ack arrives at the encoder.
Now we want to show that xe(tk + τmax) = xd(tk + τmax). To this end take
(2.41) and x̄e(tk−1) = x̄d(tk−1) to get

xd(t
−
s ) = x̄d(t

∗
k−1) +

∫ ts

t∗k−1

f(xd(s), k(xd(s)))ds = x̄d(tk−1)

+

∫ t∗k−1

tk−1

f(xd(s), k(xd(s)))ds+

∫ ts

t∗k−1

f(xd(s), k(xd(s)))ds =

x̄e(tk−1) +

∫ t∗k−1

tk−1

f(xd(s), k(xd(s)))ds+

∫ ts

t∗k−1

f(xd(s), k(xd(s)))ds

= x̄e(ts).

With (2.36) we conclude
xe(t

−
s ) = xd(t

−
s ) .

Similar as in the case of no loss we infer xe(ts) = xd(ts).
It remains to show that x̄e(ts) = x̄d(ts). As in the case of no loss we already
know that x̄e(tk) = x̄d(tk). As x̄e and x̄d follow the same dynamics on [tk, t

∗
k)

we have x̄e(ts) = x̄d(ts) and the proof is �nished.
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So far we have shown that the internal states of encoder and decoder are
the same and that encoder, decoder, and the actual system close their loops
with the same signal. It remains to show that the encoder-decoder pair is
L-expanding.

Theorem 2.5.8. Equations (2.28)-(2.44) describe an L-expanding encoder-
decoder pair.

Proof. Identify `e(tk)
2 = m(tk−1)eL(tk−tk−1) for all k ∈ N. By the initializa-

tion we have
|x̂e(t1)− x(t1)| ≤ m0 = m(t1) .

Lets assume that
|x̂e(tk−1)− x(tk−1)| ≤ m(tk−1) . (2.58)

Similar as before we can use the Gronwall inequality to bound the error
|xe(t)− x(t)| for t ∈ [tk−1, tk) with the help of (2.30)

|xe(t)− x(t)| = |xe(tk−1) +

∫ t∗k−1

tk−1

f(xe(s), k(x̄e(s)))ds+∫ t

t∗k−1

f(xe(s), k(xe(s)))ds− x(tk−1)−
∫ t

tk−1

f(x(s), k(x̂d(s)))ds| .

By Lemma 2.5.6 we know x̄e(t) = x̄d(t) = x̂d(t) for t ∈ [tk, t
∗
k) and xe(t) =

x̄d(t) = x̂d(t) for t ∈ [t∗k, tk+1) and hence

|xe(t)− x(t)| = |xe(tk−1) +

∫ t∗k−1

tk−1

f(xe(s), k(x̄e(s)))ds+∫ t

t∗k−1

f(xe(s), k(xe(s)))ds− x(tk−1)−
∫ t∗k−1

tk−1

f(x(s), k(x̄e(s)))ds−∫ t

t∗k−1

f(xe(s), k(xe(s)))ds| .

And thus using Lipschitz continuity together with the Gronwall inequality
yields

|xe(t−k )− x(tk)| ≤ |xe(tk−1)− x(tk−1)|eL(tk−tk−1) ≤

m(tk−1)eL(tk−tk−1) =
`e(tk)

2
. (2.59)
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By Lemma 2.5.2 we have

|xe(tk)− x(tk)| ≤ `e(tk)

2N
= m(tk) . (2.60)

To prove (2.13) we distinguish two cases. First lets assume that |xe(t−k ) −
x(tk)| ≥ `e(tk)

2N . Using (2.60) we conclude

|xe(tk)− x(tk)| ≤ |xe(t−k )− x(tk)| ,

which together with (2.59) yields

|xe(tk)− x(tk)| ≤ |xe(tk−1)− x(tk−1)|eL(tk−tk−1)

by Lemma 2.5.1 we have established (2.13).
Now let |xe(t−k )−x(tk)| < `e(tk)

2N and consider (2.51) component wise. Similar
as in Lemma 2.5.2 we get for each i = 1 . . . n

0 =
N

`e(tk)

−`e(tk)

2N
+

1

2
<

N

`e(tk)
(x(tk)i − xe(t−k )i) +

1

2
<

N

`e(tk)

`e(tk)

2N
+

1

2
= 1 .

Applying the �oor function and using (2.51) we have q(xe(tk), x(tk), `e(tk)) =
0 and thus s(tk) = 0. Considering (2.32) yields xe(tk) = xe(t

−
k ), which

together with (2.59) readily gives (2.13). Now consider (2.43).

|x̄(t∗k)− x(t∗k)| =

|xd(tk)− x(tk) +

∫ t∗k

tk

f(xd(s), k(x̄d(s)))ds−
∫ t∗k

tk

f(x(s), k(x̄d(s)))ds| .

As before, using Gronwall's inequality together with Lipschitz continuity
gives

|x̄(t∗k)− x(t∗k)| ≤ |xd(tk)− x(tk)|eL(t∗k−tk) .

By information consistency this is equivalent to

|x̄(t∗k)− x(t∗k)| ≤ |xe(tk)− x(tk)|eL(t∗k−tk) .

As x̄(t∗k) is the output of the decoder at time t∗k this is (2.14) and the proof
is complete.

Theorem 2.5.9. Equations (2.28)-(2.44) describe an N -contracting encoder-
decoder pair.
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Proof. This statement was already proven in Theorem 2.5.8. To be more
precise Combine the initialization of encoder together with (2.58) and (2.60).

Now we are able to use the main result from Section 2.4 to conclude.

Corollary 2.5.10. Equations (2.28)-(2.43) describe an encoder-decoder pair,
which semi globally asymptotically stabilizes system (2.45) at t1 = 0, provided
that N > eLτ

∗
and Assumptions 2.1.1, 2.1.2, 2.1.4, and 2.3.3 hold.
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Figure 2.7: Trajectory of the closed-loop system

In Figure 2.7 a one dimensional example using the approach given in this
section is depicted. This example is taken from numerical Section 5.2.
The system x is given in green and the approximation x̄d in red. The shaded
region is the range of the encoder-decoder pair. The vertical dotted lines are
the time instances t∗k when the decoder receives a packet. The small blue
dots at the bottom of the �gure are the time instances tk when the encoder
sends a packet. The encoding starts at t = 0. Until the �rst packet arrives
at the decoder at t∗1 = 0.1 the system runs in open loop. From this time on
the decoder has a better approximation of the state and uses this signal to
close the loop.
The range of the encoder-decoder pair growths until t ≈ 0.15. At this time an
ack arrives at the encoder and the range can be made smaller by a factor of
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N because the encoder knows that the last packet arrived successfully. Note
that this procedures ensures that the system trajectory always stays within
the shaded region. As can be seen at t = 0 this does not have to be true for
the approximation on the decoder side.
The range of the encoder-decoder pair tries to follow the system trajectory.
Although the system trajectory is continuous, the dynamics may have dis-
continuities leading to possible non di�erentiable states, explaining the kink
of the range at time t = 0.1.

2.6 Notes and References

Although the idea of incorporating the e�ects of delay and packet-loss to
the controller design is rather new, the e�ects of quantization was already
addressed by Delchamps [Del90]. However, these early considerations only
dealt with static quantizers.
The term quantizer stems from signal theory. For an introduction of quan-
tizers see [GG92].
The idea of a non static quantizer was introduced within the signal the-
ory community. There, it is known as adaptive quantization [GS67, GG74].
These ideas were adopted to the control theory by Tatikonda in his PhD
thesis [Tat00].
More in the spirit of this chapter is [BL00] for the linear case and [LH05]
for the nonlinear case, which uses also the ISS framework. This chapter is
based on work previously submitted i.e. [SW09] and [SW10c]. Both papers
are a generalization of [LH05] to the case of delay and packet-loss. Ideas how
to handle the e�ects of delay in the framework of dynamic quantization was
given in [DP10]. Although [BL00, LH05] uses the approach we refer to as
dynamic quantization, the term itself cannot be found in these works. The
name is used in later work by Liberzon, though. We could not �nd out, who
was the �rst to introduce the term dynamic quantization to the control com-
munity. It should be noted that in quantum mechanics the term dynamic
quantization also exists and should not be confused with our approach.
Interestingly, Assumption 2.1.2 resembles a property of Markov chains. As
the communication channel is also often modeled as a Markov chain ([Bia00,
WSSL06]) it seems natural to combine these ideas. Early accounts address-
ing this can be found in [SW10c].
As the closed-loop system considered in this chapter is a hybrid system, we
had to de�ne another notion of stability, di�erent from the classical one. This
de�nition is borrowed from [YMH98]. Hybrid systems consists of states that
change continuously in time and states that evolve discrete in time or both.
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In general, there are time dependent as well as state dependent criteria when
a state evolves continuously or discrete. Of course, the analysis of such a
system is more demanding than of an ordinary di�erential equation.
The encoder and decoder from the example are impulsive systems. Impul-
sive systems are a subclass of hybrid system, where the state dynamics follow
an ordinary di�erential equation, but is allowed to "jump" during discrete
time instances. For an introduction on impulsive systems see [Yan01]. The
closed-loop system considered in this chapter is somewhat between impulsive
and hybrid systems, as the time instances when the discrete "jumps" happen
depend only on time and not on the state.
Sometimes hybrid systems exhibits an e�ect called Zeno-e�ect. Basically,
Zeno means that the discrete evolution happens in�nitely often in �nite time.
For a more thorough discussion see Chapter 4. In our case, the discrete evo-
lution happens at the time instances tk. Because of the design parameter
τmin we know that tk− tk−1 ≥ τmin and thus Zeno cannot happen for system
(2.8)-(2.11).
Assumption 2.3.3 is made just to simplify the presentation, as can be seen
in [LH05]. There, the authors start with a �xed range of the quantizer.
Then this range growth fast enough to eventually capture the state. As the
Lipschitz constant is assumed to be known, the growth rate to achieve this
is easily calculated. In [LH05] this is referred to as zooming-out.
Also the ISS assumption is not needed in general. For the price of a higher
bandwidth it can be neglected (see [DPI04]). As the rest of the thesis is based
on the ISS framework, we decided to use it in this chapter nevertheless.
Here, we gave an example how to choose an encoder respectively decoder to
be able to counter the e�ects of a communication channel of �nite capacity.
It is of ongoing research, which information is really needed for an encoder
to achieve this. The information available to the encoder is often termed
information pattern ([TM04]).
Similar to information theory, a measure of information is introduced called
entropy. Research in this very interesting, but more theoretical topic can be
found in [NEMM04, CK09].
As can be seen in Section 2.5, encoder and decoder have both a model of
the plant. Usually, this model does not capture the dynamics of a real plant
precisely. This issue was addressed in [DPN08]. There, it was shown that
beside the modeling error, the approach of dynamic quantization is able to
achieve practical stability.
Looking at the example in Section 2.5, it becomes apparent that the prop-
erty of input consistency is of importance for the presented approach to work.
The N -contracting property can only be guaranteed, if the state always stays
within the quantization region. The input consistency ensures that encoder
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and decoder agree on their approximation of the state. Because of the ex-
ponential convergence, small errors in the calculations could result in states
that are outside the quantization region. Hence, it is of interest to have
a robust version, which possibly could deal with small errors between the
states of encoder and decoder. First research in this direction can be found
in [KN09, GN09].
We also assumed implicitly that the clocks of encoder and decoder are per-
fectly synchronized. In general, this is hard to achieve. For an introduction
respectively an overview on clock synchronization see [Cri89, SBK05, SY04].
Here, we were able to conclude asymptotic stability by assuming an ISS prop-
erty of the system. As the rest of the thesis demands for systems that have
the ISS property, it would be interesting to be able to conclude ISS instead
of asymptotic stability. For the case of no delay and no packet loss, ideas
how to achieve this are presented in [SL12].
As the calculation errors can be modeled as disturbances, ISS results could
also be used to compensate for small errors between encoder and decoder.
Another advantage of having ISS of the closed-loop system lies in the pos-
sibility to relax the computational burden employed by the encoding resp.
decoding. To understand this, consider a system of high dimension. We can
break down this high dimensional system in smaller parts, apply the approach
from this chapter, and conclude stability of the interconnected system with
the help of small-gain conditions as discussed in the next chapter, provided
that the subsystems were ISS.
As Theorem 2.4.1 demands for N > eLτ

∗
, N must be large for reasonable L

and τ∗. The alphabet has to be the size of Nn. At �rst glance it seems that
this approach might be discouraging. Fortunately, a typical TCP-packet is
of the size 1000− 1500 bits, allowing a very large alphabet.
We have seen that for the presented approach to work it is important that
the state is con�ned within a certain region for all times. There is a strong
relation to a particular class of observers called interval observers. See e.g.,
[ARSJ13] and the references therein.
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Chapter 3

Stability Analysis of Large-Scale Systems

via Small-Gain Theorems

In the last chapter we presented a method to stabilize a system communicat-
ing over a digital channel. Here we want to present conditions under which a
large-scale system is stable. Theoretically, the approach from Chapter 2 can
be applied to a large-scale system as well by interpreting the interconnection
as a single system. The problem is that the methods presented in Chapter 2
become computationally unfeasible in larger dimensions. Hence we need dif-
ferent tools, which are well suited for large-scale systems.
We start with a motivating example to familiarize the reader with the prob-
lems that typically arise.
We will see that similar to Chapter 2 the ISS framework will play an im-
portant role. We regard the in�uence of the subsystems on each other as
a disturbance and thus the stability is concluded following small-gain ideas.
These small-gain conditions are a way to ensure that the coupling among the
subsystems is weak. We present generalizations of known small-gain theorems
and show that most of the small-gain conditions known from the literature
are equivalent, if looked upon the "right" way.
After the small excursus concerning di�erent small-gain conditions, we present
a way to ensure that the interconnection of several systems is stable.

3.1 Motivating Example

The ensuing example shows how the small-gain idea comes into play and
which typical problems arise by studying the stability properties of large-
scale systems within the ISS framework.
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To this end consider a system consisting of n subsystems:

ẋ1 = f1(x1, . . . , xn, u)
ẋ2 = f2(x1, . . . , xn, u)

...
ẋn = fn(x1, . . . , xn, u)

 (3.1)

with xi ∈ Rni being the state of the ith subsystem and u ∈ Rm a external
disturbance.
As already discussed in [DRW07] it is no loss of generality to consider a single
u for all subsystems.
Assume that all subsystems are ISS as in De�nition 1.3.1 with µ =

∑
and u

as well as the states of the other subsystems as inputs. To be more precise,
let the next assumption hold.

Assumption 3.1.1. For each subsystem i = 1, . . . , n denote xi(t) the so-
lution to the corresponding subsystem of (3.1). Furthermore, there exists
βi ∈ K∞, γij ∈ K∞, j = 1, . . . , n, i 6= j and γi ∈ K∞ for all i = 1, . . . , n such
that

|xi(t)| ≤ βi(|xi(0)|) +

n∑
i 6=j

γij(‖xj[0,t]‖) + γi(‖u‖), ∀t ≥ 0 (3.2)

and

lim sup
t→∞

|xi(t)| ≤
n∑
i 6=j

γij(lim sup
t→∞

|xj(t)|) + γi(lim sup
t→∞

|u(t)|) , (3.3)

for all initial conditions xi(0) and all essentially bounded inputs u ∈ Rm.

To ease notation let x := (x>1 , . . . , x
>
n )>, β := diag(βi), γ = (γ1, . . . , γn)> ∈

Kn∞, and de�ne Γ : Rn → Rn as

Γ(s) :=


∑n
j 6=1 γ1j(sj)

...∑n
j 6=n γnj(sj)

 .

Now stack all the inequalities from Assumption 3.1.1 in a single inequality
to get

|x(t)|vec ≤ β(|x(0)|vec) + Γ(
∥∥x[0,t]

∥∥
vec

) + γ(‖u‖), (3.4)

for all t ≥ 0, respectively

lim sup
t→∞

|x(t)|vec ≤ Γ(lim sup
t→∞

|x(t)|vec) + γ(lim sup
t→∞

|u(t)|) . (3.5)
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The main problem to conclude the ISS property of the interconnected system
is that in inequality (3.4) and (3.5) the quantity on the left hand side appears
also in the right hand side of the corresponding inequality. Hence we need
some conditions which allows us to "invert" these inequalities.
Before we do so, we want to introduce the map

g : Rn+ × Rn+ → Rn+ , g(s, w) = Γ(s) + w . (3.6)

As Γ consists only of K∞ functions or 0, the map g is continuous and mono-
tone in both of its arguments.
Before we can bene�t from the map g, we have to manipulate (3.4) by apply-
ing the supremum over [0, t] on both sides. Because neither the β-term nor
the γ-term depends on t we get∥∥x[0,t]

∥∥
vec
≤ β(|x(0)|vec) + Γ(

∥∥x[0,t]

∥∥
vec

) + γ(‖u‖) (3.7)

for all t ≥ 0. With the help of g this reads as∥∥x[0,t]

∥∥
vec
≤ g

(∥∥x[0,t]

∥∥
vec

, β(|x(0)|vec) + γ(‖u‖)
)
. (3.8)

Similarly, (3.5) yields

lim sup
t→∞

|x(t)|vec ≤ g(lim sup
t→∞

|x(t)|vec , γ(lim sup
t→∞

|u(t)|)) . (3.9)

In order to get rid of the dependency of x on both sides of the inequalities,
assume the following.

Assumption 3.1.2. Consider g : Rn+ × Rm+ → Rn+. Assume there exists
ρ ∈ K∞ such that whenever

s ≤ g(s, w) for s ∈ Rn+ and w ∈ Rm+ ,

we have
|s| ≤ ρ(|w|) .

If the latter assumption holds true, we can rewrite (3.8) and (3.9) to

|x(t)| ≤ |
∥∥x[0,t]

∥∥
vec
| ≤ ρ

(
|β(|x(0)|vec) + γ(‖u‖)|

)
(3.10)

for all t ≥ 0, respectively

lim sup
t→∞

|x(t)| ≤ | lim sup
t→∞

|x(t)|vec | ≤ ρ(|γ(lim sup
t→∞

|u(t)|)|) . (3.11)

71



CHAPTER 3. STABILITY ANALYSIS VIA SMALL-GAIN THEOREMS

Using the triangle inequality, monotonicity of ρ, and (3.10) yields for all t ≥ 0

|x(t)| ≤ ρ(2|β(|x(0)|vec)|) + ρ(2|γ(‖u‖)|) .

As we are only considering monotone norms and because the class of K∞
functions forms a group the latter inequality is a GS type estimate for the
interconnected system.
The same arguments let us conclude that (3.11) is a AG type estimate, which
together with GS is ISS of the interconnected system by Lemma 1.3.10.
To summarize, starting from an ISS assumption on each subsystem, we can
conclude ISS of the interconnected system, as long as Assumption 3.1.2 holds
true.
In the next section we will see, which conditions are important for the map
g and which conditions ensure that Assumption 3.1.2 holds. At �rst glance,
the introduction of the map g is not of great bene�t, but it will prove helpful
in generalizing the properties that are needed, let us simplify the notations,
and let the results from the next section be applicable for a larger class of
systems.

3.2 Equivalent Small-Gain Conditions

In the last section we have seen that in the ISS framework the analysis of the
interconnection of several subsystems leads in a natural way to a certain map
g. We have also seen that certain properties of the map g help us to conclude
stability of the interconnection. The question remains how we can check if
this inversion property from the motivating example holds. To answer this
question we want to give a catalog of properties that are equivalent to this
"inversion" property.
We will see that properties of an induced system

s(k + 1) = g(s(k), w(k)) , k ∈ N (3.12)

will also play an important role. We assume that g : Rn+ × Rm+ → Rn+ is
continuous and monotone and satis�es g(0, 0) = 0. Note that (3.6) from the
last section ful�lls these assumptions.
If it is clear from the context, we identify the map g with the induced system
(3.12).
Before we can give the afore mentioned catalog in detail, we have to introduce
some notations and technical statements. Throughout this chapter we denote
by | · | the maximum norm. Often we are only interested in bounds for the
map g resp. a trajectory of (3.12). As g is monotone it is often su�cient to
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consider constant inputs. For this case we introduce the following recursively
de�ned notation:

g0
w(s) := s , gkw(s) := g(gk−1

w (s), w) , k ∈ N , w ∈ Rm+ .

Before we formulate the main theorem of this section, we specify the technical
conditions for the map g.

De�nition 3.2.1. A continuous, monotone function g : Rn+ × Rm+ → Rn+
with g(0, 0) = 0 is called weakly increasing if for all s ∈ Rn+ there exists a
k ≥ 1 and w ∈ Rm+ such that

s ≤ gkw(s). (3.13)

Theorem 3.2.2. If g is weakly increasing then the following statements are
equivalent:

(ISS-LF) there exists a monotone ISS Lyapunov-function for (3.12);

(FDBK) there exists a proper and positive de�nite map ζ : Rn+ → Rm+ so
that the origin is globally asymptotically stable with respect to

s(k + 1) = f(s(k)) : = g(s(k), ζ(s(k))) , k ∈ N; (3.14)

(ISS) system (3.12) is input-to-state stable;

(AG) system (3.12) has the asymptotic gain property;

(UOC) (uniform order condition) there exists a proper and positive de�nite
ζ : Rm+ → Rn+ such that

g(s, w) � s for all s � ζ(w); (3.15)

(NP) (Neumann property) there exists a proper and positive de�nite ζ :
Rm+ → Rn+ such that for all s ∈ Rn+, w ∈ Rm+ ,

s ≤ g(s, w) =⇒ s ≤ ζ(w); (3.16)

We postpone the proof to the end of this section. The corresponding
assertions are proved in the lemmas according to Figure 3.1. The star marks
the only point were we need the additional assumption that g is weakly
increasing.
Is is easy to see that (3.6) from the last section is weakly increasing. The
next proposition gives three important examples of function classes that are
also weakly increasing.
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Figure 3.1: Guideline to the proofs of Theorem 3.2.2

Proposition 3.2.3. A continuous, monotone function g : Rn+ × Rm+ → Rn+
with g(0, 0) = 0 is weakly increasing if one of the following conditions is
satis�ed:

1. the map g(s, w) can be decomposed into g(s, w) = g1(s) + g2(s)w with
a continuous, monotone, and positive de�nite g2 : Rn+ → Rn×m+ ;

2. (increasing) for all proper ζ : Rn+ → Rm+ the map f(s) : = g(s, ζ(s)) is
proper.

3. the map g is in MAFn
n+m.

Condition 2 is inspired by the concept of irreducibility for nonnegative
matrices.
In the last section we used Assumption 3.1.2 to conclude ISS of the closed-
loop system. The next remark relates this assumption to the property NP.

Remark 3.2.4. Property NP can equivalently be stated as follows: There
exists a γ ∈ K∞ such that

for all s ∈ Rn+, w ∈ Rm+ , s ≤ g(s, w) =⇒ |s| ≤ γ(|w|). (3.17)

To see that (3.16) implies (3.17) we apply norms to (3.16) in order to get

|s| ≤ |ζ(w)| ≤ |ζ(|w|e)| ≤ max
1≤i≤m

ζi(|w|e) =: γ(|w|),

Because ζ is monotone, continuous, positive de�nite and proper, we have
ζi : R+ → R+ in class K∞. By Lemma 1.1.2 it follows that γ ∈ K∞.
For the other direction de�ne ζ(w) := γ(|w|)e. Then |s| ≤ γ(|w|) implies
s ≤ |s|e ≤ γ(|w|)e = ζ(w).
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Remark 3.2.5. A Lyapunov function for a monotone system of the form

s(k + 1) = f(s(k)) , s ∈ Rn+ , k ∈ N

can always be assumed to be itself a monotone function V : Rn+ → R+. This
follows from converse Lyapunov results like the converse ISS Lyapunov re-
sult [JW01] or the converse Lyapunov result [TP00] for autonomous systems.
Indeed, constructions like [TP00] utilize Sontag's Lemma on KL functions to
de�ne a Lyapunov function U : Rn+ → R+ via

U(s) : = sup
k≥0

α(|fk(s)|)ek

with a locally Lipschitz α ∈ K∞. From this de�nition it is immediate that U
must be monotone and locally Lipschitz in s. In the literature on converse
Lyapunov theorems the candidate function U usually undergoes additional
smoothing steps to obtain a continuously di�erentiable Lyapunov function,
which we do not need here.

Some of the properties in Theorem 3.2.2 use negations of order relations.
Clearly, these negations are not transitive. Thus it is sometimes easier to work
with the corresponding logical negation in proofs. To this end we summarize
the needed statements here.

¬AG: For all γ ∈ K∞ there exists s ∈ Rn+, w ∈ Rm+ such that

lim sup
k→∞

|gkw(s)| > γ(|w|) . (3.18)

¬NP: For all proper and positive de�nite ζ : Rm+ → Rn+ there exists s ∈
Rn+, w ∈ Rm+ such that

s ≤ g(s, w) (3.19)

and
s � ζ(w) . (3.20)

To enhance readability of the proof of Theorem 3.2.2 we split the proof into
the following lemmas.

Lemma 3.2.6. ISS-LF implies FDBK.

Proof. We start with an ISS Lyapunov function V : Rn+ → R+ which satis�es

V (s) ≥ γ(|w|) =⇒ V (g(s, w))− V (s) ≤ −α(V (s)) (3.21)
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for some γ ∈ K and α ∈ K∞. De�ne a proper and positive de�nite map
ζ : Rn+ → Rn+ by ζ(s) := γ−1(V (s))e and consider the input w = ζ(s), i.e.,

s(k + 1) = g(s(k), ζ(s(k))) , k ∈ N . (3.22)

The choice of ζ ensures that the decay condition in (3.21) is always satis�ed,
because

V (s) = γ(γ−1(V (s))) = γ(|γ−1(V (s))e|) = γ(|ζ(s)|) = γ(|w|).

Now that we established that the left-hand side of the implication in (3.21)
is always true, we can conclude by standard Lyapunov arguments (see e.g.,
[Theorem 5.9.2][Aga00]) that (3.22) is globally asymptotically stable and we
have established FDBK.

Clearly, the last lemma does also hold in a more general setting, e.g.,
where g is not monotone and hence it is of interest of its own. For sake of
completeness we state the result here.

Lemma 3.2.7. FDBK implies ISS-LF.

Proof. As (3.14) is globally asymptotically stable there exists a locally
Lipschitz, proper, positive de�nite, and monotone Lyapunov function V :
Rn+ → R+, cf. Remark 3.2.5 and Lemma 1.2.12, such that for some α, α ∈ K∞
we have

α(|s|) ≤ V (s) ≤ α(|s|) . (3.23)

By FDBK there exists a map ζ : Rn → Rm, which is proper and positive
de�nite, hence by De�nition 1.1.9 there exists α̃ ∈ K∞ such that

α̃(|s|)e ≤ ζ(s). (3.24)

De�ne γ := α ◦ α̃−1 ∈ K∞. Now consider the case that V (s) ≥ γ(|w|). This
implies by (3.23) that

α(|s|) ≥ γ(|w|) = α(α̃−1(|w|))

and thus
α̃(|s|)e ≥ |w|e ≥ w.

Application of (3.24) yields

ζ(s) ≥ α̃(|s|)e ≥ w . (3.25)

By monotonicity of V and using (3.25) we get

V (g(s, w)) ≤ V (g(s, ζ(s))) < V (s),

proving that V (s) ≥ γ(|w|) implies V (g(s, w)) < V (s). This shows that V is
an ISS-Lyapunov function for system (3.12).
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For monotone systems attractivity already implies stability (see e.g., [HS06]).
Interestingly, this observation carries over to the ISS framework.

Lemma 3.2.8. The properties ISS and AG are equivalent.

Proof. It is obvious that input-to-state stability implies the asymptotic gain
property. For the other direction consider the AG property (1.3.5). Fix ε > 0
and w ∈ Rm. Then for any s0 ∈ Rn+ we can �nd a T = T (s0, ε) such that

sup
k≥T
|gkw(s0)| ≤ γ(|w|) + ε.

By monotonicity of g we obtain

sup
k≥T
|gkw(s)| ≤ sup

k≥T
|gkw(s0)| ≤ γ(|w|) + ε

for all s ≤ s0. One can verify that this property thus coincides with the
(in general stronger) uniform asymptotic gain (UAG) property (see De�ni-
tion 1.3.7). Considering Lemma 1.3.8 �nishes the proof.

We stress that for the last lemma to hold, the monotonicity of g is instru-
mental.

Lemma 3.2.9. NP implies AG.

Proof. We will show ¬AG implies ¬NP. To this end let ζ : Rm+ → Rn+ be
proper and positive de�nite. Choose γ ∈ K∞ such that

γ(r)e ≥ ζ(re) (3.26)

for all r ∈ R+. By ¬AG, see (3.18), there exist s∗ ∈ Rn+ and w∗ ∈ Rm+ so
that

lim sup
k→∞

|gkw∗(s∗)| > γ(|w∗|) . (3.27)

De�ne s := lim supk→∞ gkw∗(s
∗) ∈ (R+ ∪∞)n.

First we assume that s is �nite. Hence by (3.27) and using monotonicity of
g and the norm we have

|s| = | lim sup
k→∞

gkw∗(s
∗)| ≥ lim sup

k→∞
|gkw∗(s∗)| > γ(|w∗|). (3.28)

Similarly, we deduce

g(s, w∗) = g(lim sup
k→∞

gkw∗(s
∗), w∗) ≥ lim sup

k→∞
gk+1
w∗ (s∗) = s,
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which is (3.19), respectively the �rst part of ¬NP. Because of the restriction
to the maximum norm, (3.28), and (3.26) there exists an index i with

si = |s| > γ(|w∗|) ≥ ζi(|w∗|e) ≥ ζi(w∗),

which is equivalent to (3.20). Equation (3.19) together with (3.20) is ¬NP.
Now assume that at least one of the components of s is in�nite. Thus

lim sup
k→∞

gkw∗(s
∗) ≮∞ . (3.29)

It is easy to see that because g is weakly increasing, there exist k̄ ≥ 1 and
w ≥ w∗ such that

s∗ ≤ gk̄w(s∗) .

Applying gw on both sides repetitively yields, by monotonicity of gw,

gnw(s∗) ≤ gn+k̄
w (s∗) (3.30)

for all n ∈ N. Observe that by monotonicity (3.29) still holds if w∗ is replaced
by w and hence for all monotone, proper, and positive de�nite ζ : Rm+ → Rn+
there exists a K ∈ N such that

s# := sup
K≤l≤K+k̄−1

glw(s∗) � ζ(w),

establishing (3.20). Using monotonicity of g gives

g(s#, w) = g
(

sup
K≤l≤K+k̄−1

glw(s∗), w
)
≥ sup
K≤l≤K+k̄−1

gl+1
w (s∗) =

sup{gK+1
w (s∗), . . . , gK+k̄−1

w (s∗), gK+k̄
w (s∗)} ≥

sup{gK+1
w (s∗), . . . , gK+k̄−1

w (s∗), gKw (s∗)} = s#,

where in the last inequality we have used (3.30) for n = K. This establishes
(3.19) and thus completes the proof.

Lemma 3.2.10. The properties NP and UOC are equivalent.

Proof. First note that UOC can be equivalently rephrased as:
There exists a proper and positive de�nite ζ : Rm+ →
Rn+ such that for all s ∈ Rn+, w ∈ Rm+ , s � ζ(s) implies
g(s, w) � s.

This in turn can be rephrased to: for all s ∈ Rn+, w ∈ Rm+ , s ≤ g(s, w) implies
s ≤ ζ(s) with ζ proper and positive de�nite. From here it is obvious that NP
and UOC are equivalent.
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Lemma 3.2.11. AG implies NP.

Proof. We will show ¬NP implies ¬AG. Let γ ∈ K∞. De�ne ζ(s) := γ(|s|)e.
It is easy to see that ζ is proper and positive de�nite. By ¬NP for this choice
of γ and ζ there exist s ∈ Rn+, w ∈ Rm+ satisfying (3.19) and (3.20). From the
monotonicity of g it follows that

s ≤ g(s, w) ≤ · · · ≤ gkw(s)

for all k ∈ N. And thus by taking norms

|s| ≤ lim sup
k→∞

|gkw(s)|. (3.31)

Due to (3.20) there exists an index i such that ζi(w) < si. Combining the
latter with (3.31) results in

γ(|w|) = ζi(w) < si ≤ |s| ≤ lim sup
k→∞

|gkw(s)|

where the equality follows from the de�nition of ζ. As γ was arbitrary ¬AG
is established, cf. (3.18).

Now that we established the technical details, the proof of the main The-
orem is easily achieved.

Proof of Theorem 3.2.2. The equivalence of ISS-LF and ISS is standard and
can be found for discrete time systems e.g. in [JW01].
Property ISS-LF implies FDBK is established in Lemma 3.2.6, whereas the
other direction is given in Lemma 3.2.7.
That ISS holds if and only if AG holds is stated in Lemma 3.2.8.
Lemma 3.2.10 accomplishes the equivalence of NP and UOC. By Lemma 3.2.9
NP implies AG, which together with Lemma 3.2.11 shows the equivalence and
the proof is complete.

The only instance where we used the condition weakly increasing is in
Lemma 3.2.9. The next example shows that we indeed need a condition in
the spirit of the weak increase property for Lemma 3.2.9 to hold.

Example 3.2.12. Let

g(s) :=

(
1
2s1

2s2

)
.

Because g does not depend on w it is easy to see that g is not weakly increas-
ing. Clearly, g̃(s, w) = g(s) is monotone, continuous and g̃(0, 0) = 0. The
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map g̃ ful�lls the uniform order condition, because g̃(s, w) = g(s) decays in
the �rst component for all s 6= 0 and all w. As the second argument always
increases, the system induced by g̃ cannot be ISS.

It was already pointed out in [Rüf07] that g(s, 0) � s for all s 6= 0 is
not equivalent to the property that s(k + 1) = g(s(k), 0) is GAS. Although
the assertion is true locally. Hence we need a condition that ensures that
at least g(s, w) does explicitly depend on w. We decided to use condition
weakly increasing to ensure this, although we do not know yet whether weakly
increasing is too strong or not.
In [Rüf07] the unboundedness of some region Ω plays a crucial role in altering
the local property to a global one. Furthermore, certain paths σ : R+ →
Rn+ through the region Ω are important for the construction of Lyapunov
functions. The next section is devoted to these paths.
The unboundedness of Ω is ensured in [Rüf07] by an irreducibility assumption
on a matrix modeling the e�ects of the interconnection. See Remark 3.3.6 for
details. This irreducibility rules out examples of the form of Example 3.2.12.
We hope that a condition in the spirit of weakly increasing together with
the fact that UOC is stronger than g(s, 0) � s is su�cient to also ensure the
unboundedness of Ω, but we were not able to prove this yet.

3.3 On ISS-Ω Paths

In [DRW10, Rüf10a], among others, the existence of an so called Ω-path
proved helpful in constructing Lyapunov functions.
Loosely speaking, an Ω-path is an "inverse" Lyapunov function. Basically,
a Lyapunov function decays along trajectories, whereas the trajectory itself
decays "along" the Ω-path. In this regard we want to generalize the concept
of an Ω-path to the following de�nition.

De�nition 3.3.1. If there exists a σ ∈ Kn∞ and a γ ∈ K∞ such that

• for each i, the function σ−1
i is locally Lipschitz on (0,∞);

• for every compact set K ⊂ (0,∞) there are constants 0 < c < C such
that for all points of di�erentiability of σ−1

i

0 < c ≤ (σ−1
i )′(r) ≤ C , ∀r ∈ K , i = 1, . . . , n ;

• For all r > 0

|σ(r)| ≥ γ(|w|)⇒ g(σ(r), w) < σ(r) ,
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g(s, w) � s

g(s, w) < s

γ(|w|)

σ

s1

s20

Figure 3.2: Example of an ISS-Ω-path.

we call σ an ISS-Ω-path.

If we set w = 0 the notion of an Ω-path from [Rüf10a] is recovered. Hence
we will not distinct between Ω-path and ISS-Ω-path for systems without
inputs.
In [Rüf10a] it is shown that the existence of an Ω-path implies that g is
GAS. In this regard, De�nition 3.3.1 tries to carry these properties over to
the ISS framework. An example of an ISS-Ω-path is depicted in Figure 3.2.
The dotted box close to zero has a size of γ(|w|). De�nition 3.3.1 states
that as long we are outside this small box, g decays along the path σ in
every dimension. As g is continuous, this does also hold at least in a small
neighborhood around σ. This region is shaded in grey. The next theorem
states that the existence of an ISS-Ω-path implies ISS.

Theorem 3.3.2. If there exists an ISS-Ω-path for (3.12), then there exists
an ISS-LF for (3.12).

Proof. Let σ ∈ Kn∞ be an ISS-Ω-path for (3.12).
De�ne V (s) := maxi=1,...,n σ

−1
i (si). We will show that this function is an

ISS Lyapunov function for (3.12). As σ ∈ Kn∞ we have σ−1
i ∈ K∞ for all

i = 1, . . . , n. De�ne α := maxi=1,...,n σ
−1
i and α := σ−1

1 . By Lemma 1.1.2
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the maximum of K∞ functions is again in K∞ and we have α ∈ K∞. It
follows that

α(|s|) = σ−1
1 (|s|) = σ−1

1 ( max
i=1,...,n

si) ≤ max
i=1,...,n

σ−1
i (si) = V (s) ≤ α|s|

and properness and positive de�niteness of V is evident.
Fix s ∈ Rn+, w ∈ Rm+ with s 6= 0. Let r := V (s) and γ := α ◦ γ. Note that by
de�nition of V we have

σ(r) = σ(V (s)) = σ( max
i=1,...,n

σ−1
i (si)) ≥ s . (3.32)

Moreover, we can deduce

V (σ(r)) = max
i=1,...,n

σ−1
i (σi(r)) = r = V (s) . (3.33)

Now assume V (s) ≥ γ(|w|). We can rewrite the last statement to

α(|s|) ≥ V (s) ≥ γ(|w|) = α ◦ γ(|w|) .

This implies
|s| ≥ γ(|w|) .

By (3.32) we get
|σ(r)| ≥ γ(|w|) .

Hence the antecedence of the implication of the ISS-Ω-path holds and we
have

g(σ(r), w) < σ(r) . (3.34)

Considering (3.32) together with the monotonicity of g and (3.34) yields

g(s, w) ≤ g(σ(r), w) < σ(r) .

Clearly, V is a monotone function and thus

V (g(s, w)) < V (σ(r)) = V (s) ,

where we have used (3.33) to get the last equality. Hence we have shown that
V is an ISS Lyapunov function for (3.12) and the proof is complete.

In the last section we have seen that ISS-LF is equivalent to UOC for
weakly increasing g. Thus by combining Theorem 3.3.2 with Theorem 3.2.2
we know that ISS-Ω-path implies UOC, as long as g is weakly increasing.
This justi�es g(s, w) � s in Figure 3.2.
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In [DRW10] conditions for the existence of σ ∈ Kn∞ and ρ ∈ Km∞ are given
such that

g(σ(r), ρ(r)) < σ(r)

for all r > 0 holds, albeit under di�erent assumptions on g (see Remark 3.3.6
for details). The next two lemmas show that this is equivalent to the notion
of an ISS-Ω-path, if we neglect the di�erence of the assumptions on g.

Lemma 3.3.3. Let σ be an ISS-Ω-path for g, then there exists ρ ∈ Km∞ such
that

g(σ(r), ρ(r)) < σ(r) (3.35)

for all r > 0.

Proof. Let

ρ(r) =

 γ−1 ◦ σ1(r)
...

γ−1 ◦ σm(r)

 .

Clearly, ρ ∈ Km∞.
Fix an r > 0 and let w = ρ(r). By de�nition of ρ we have

γ(|w|) = γ(|ρ(r)|) = |σ(r)| .

Hence the antecedence of the implication of De�nition 3.3.1 holds and we get

σ(r) > g(σ(r), w) = g(σ(r), ρ(r)) .

And the claim follows.

The other direction is also true, as can be seen in the next lemma.

Lemma 3.3.4. If there exists σ ∈ Kn∞ and ρ ∈ Km∞ such that (3.35) holds
for all r > 0, then there exists an ISS-Ω-path for g.

Proof. De�ne γ := maxi=1,...,n σi ◦maxj=1,...,m ρ
−1
j , �x a r > 0, and assume

|σ(r)| ≥ γ(|w|). Let i be the index where the maximum of σ(r) is attained.
Hence

σi(r) ≥ γ(|w|) ≥ σi( max
j=1,...,m

ρ−1
j (|w|)) ,

where the last inequality follows from the de�nition of γ. By applying ρ on
both sides we get

ρ(r) ≥ ρ( max
j=1,...,m

ρ−1
j (|w|)) ≥ w .

Using the latter together with the monotonicity of g yields

g(σ(r), w) ≤ g(σ(r), ρ(r)) < σ(r) ,

provided that |σ(r)| ≥ γ(|w|) and the proof is complete.
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The last two lemmas justify the small abuse of notation to name the pair
σ, ρ also an ISS-Ω-path.
In the spirit of the last section the question arises, if the existence of an ISS
Lyapunov function implies the existence of an ISS-Ω-path.
For special cases of the map g this question has already been studied in
[DRW10, Theorem 5.2]. Although with a particular application in mind. As
we are heading for a similar application in Chapter 4 we cite the correspond-
ing results. The di�erences are discussed in Remark 3.3.6.

Theorem 3.3.5. Consider a g ∈ MAFnn+m. Assume that one of the follow-
ing conditions is satis�ed

1. g(·, 0) is linear and the spectral radius of g(·, 0) is less than one;

2. g(s, 0) � s for all s 6= 0;

Then there exists an Ω-path σ for g.

Condition 2 resembles the uniform order condition (UOC) from the last
section for w = 0.

Remark 3.3.6. Note that the original theorem is formulated in a di�erent
manner. In particular, another form of g is considered. To be more precise
let Γ : Rn → Rn×n given by

Γ(s) :=

γ11(s1) . . . γ1n(sn)
...

...
γn1(s1) . . . γnn(sn)

 , (3.36)

with γij ∈ K∞. We can associate a graph in a natural way to the gain
matrix Γ. Consider a graph with n vertices. Whenever γij 6= 0 there is an
edge from vertex i to vertex j and no edge, if γij = 0. If this graph is strongly
connected, we say that Γ is irreducible. For an introduction on graph theory
resp. strongly connected graphs see [Die05].
Now let µ ∈ MAFnn and consider Γµ : Rn → Rn given by

g(s, 0) := Γµ(s) :=

µ1(γ11(s1), . . . , γ1n(sn))
...

µn(γn1(s1), . . . , γnn(sn))

 . (3.37)

We say that g respectively Γµ is irreducible if Γ is.
The original version of Theorem 3.3.5 from [DRW10, Theorem 5.2] was not
formulated for g ∈ MAF, but for an operator of the form (3.37). Note that
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if we let γij = id in (3.37) for all i, j = 1, . . . , n, we have Γµ ∈ MAFnn re-
spectively g ∈ MAFnn+m. Clearly, this operator is irreducible. Or in general,
interpreted in this way, any g ∈ MAF is irreducible and of the form (3.37)
with γij = id for all i, j = 1, . . . , n. This observation is crucial, because the
cited results are all formulated for the case of an irreducible operator of the
form (3.37).

Proof of Theorem 3.3.5. A proof of the �rst part can be found in [DRW10,
Theorem 5.2 (i)].
By Remark 3.3.6 g(·, 0) ∈ MAFnn can be written as

g(s, 0) = Γµ(s) =

µ1(s1, . . . , sn)
...

µn(s1, . . . , sn)

 .

Clearly, g(·, 0) is irreducible and [DRW10, Theorem 5.2 (ii)] applies. Realizing
that this shows the second assertion �nishes the proof.

Now that we know some special cases when an Ω-path for g(s, 0) exists, we
devote the rest of this section to construct a function ρ ∈ Km∞ such that (3.35)
holds. This problem was also already discussed in [DRW10], again for very
special cases of g. It is worth mentioning that one of the cases considered in
[DRW10] cannot be expressed in terms of a monotone aggregation function.
To be more speci�c, an ISS-Ω-path is constructed for g(s, w) = g1(s)g2(w)
(see [DRW10, Corollary 5.7]). Clearly, because of the multiplicative structure
g can not be expressed as a MAF. As this case does not play a role in this
thesis, we neglect it.

Lemma 3.3.7. Let g ∈ MAFnn+m be subadditive. If there exists D :=
diag(id+ γ) with γ ∈ K∞ such that

D ◦ g(s, 0) � s

for all s ∈ Rn+ holds, then there exist σ ∈ Kn∞ and ρ ∈ Km∞ such that

g(σ(r), ρ(r)) < σ(r) (3.38)

for all r > 0.

Proof. Let f(s, 0) := g̃(s) := D ◦ g(s, 0). Clearly, f ∈ MAFnn+m and thus
Theorem 3.3.5 applies and we have for all r > 0

g̃(σ(r)) = D ◦ g(σ(r), 0) < σ(r) . (3.39)
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We will use the extra space provided by D to construct an ρ ∈ Km∞ such that
(3.38) holds.
To this end consider for all i = 1, . . . , n

αi(r) := g(0, re)i .

Because g ∈ MAFnn+m, we know that αi ∈ K∞ for all i = 1, . . . , n by
Lemma 1.1.5. Now de�ne

ρ(r) := min
i=1,...,n

α−1
i ◦ γ(g(σ(r), 0)i)e .

Again using Lemma 1.1.5 together with Lemma 1.1.2 yields ρ ∈ Km∞.
For j = 1, . . . n we get by subadditivity of g

g(σ(r), ρ(r))j ≤ g(σ(r), 0)j + g(0, ρ(r))j =

g(σ(r), 0)j + g(0, min
i=1,...,n

α−1
i ◦ γ(g(σ(r), 0)i)e)j ≤

g(σ(r), 0)j + g(0, α−1
j ◦ γ(g(σ(r), 0)j)e)j =

g(σ(r), 0)j + γ(g(σ(r), 0)j) = D ◦ g(σ(r), 0)j = g̃(s)j < σj(r) ,

which is (3.38) and the proof is complete.

After the submission of the thesis the author discovered a slightly more
elegant way, which does not need the slack D as well as the subadditivity
property to ensure the existence of an ISS-Ω-path. It can be found in Ap-
pendix D.
We want to stress that we are only interested in the existence of a function
ρ. Having a particular application in mind, di�erent constructions of ρ could
lead to "better" results, where "better" depends on the particular applica-
tion.
Next we give an example, which will play a prominent role in Chapter 4 as
well as in Section 3.4. To this end consider an operator Γ : Rn+ → Rn×n+

Γ(s) :=

γ11(s1) . . . γ1n(sn)
...

...
γn1(s1) . . . γnn(sn)

 , (3.40)

with γij ∈ G for each i, j = 1, . . . , n.
Now we augment Γ to Γ : Rn+ × Rn×m+ → Rn×n+m

+ given by

Γ(s, w) =

γ11(s1) . . . γ1n(sn) w11 . . . w1m

...
...

...
...

γn1(s1) . . . γnn(sn) wn1 . . . wnm

 ,
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with wij as an input for i = 1, . . . , n , j = 1, . . . ,m.
Let µ ∈ MAFnn+m and consider

Γµ(s, w) := µ ◦ Γ(s, w) = µ1(γ11(s1), . . . , γ1n(sn), w11, . . . , w1m)
...

µn(γn1(s1), . . . , γnn(sn), wn1, . . . , wnm)

 . (3.41)

Because some of the γij might be zero, µ ◦Γ have not to be in MAFnn+m and
thus Theorem 3.3.5 respectively Lemma 3.3.7 is not applicable.
Fortunately, this case was also already discussed in [DRW10].

Lemma 3.3.8. Consider an irreducible Γµ(s, w) as in (3.41) with µ ∈
MAFnn+m subadditive. If there exists D := diag(id + γ) with γ ∈ K∞ such
that D ◦ Γµ(s, 0) � s for all s 6= 0, then there exists σ ∈ Kn∞ and ρ ∈ Km∞
such that

Γµ(σ(r), ρ(r)) < σ(r)

for all r > 0 holds.

Proof. Let Γ̃µ(s) := D ◦ Γµ(s, 0). By [DRW10, Theorem 8.11] we know that
there exists σ ∈ Kn∞ such that

D ◦ Γµ(σ(r), 0) = Γ̃µ(σ(r)) < σ(r)

for all r > 0. From here we can copy the proof of Lemma 3.3.7 after (3.39)
word by word and the proof is complete.

After this small excursus about small-gain conditions and ISS-Ω-paths, we
collected the necessary tools to come back to the original problem as sketched
in Section 3.1, namely the stability analysis of interconnected systems.

3.4 Stability Analysis of Interconnected Systems Com-

municating over Digital Channels

Here we want to use the ideas from the last sections to infer stability of
a multichannel large-scale system as de�ned in Section 1.2. To this end,
consider n systems of FDEs as in (1.11) Σi, i = 1, 2, . . . , n, n ∈ N of the
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form

ẋi = fi(xid, u
1
id, . . . , u

li
id, w

1
id, . . . , w

vi
id , t)

y1
i = h1

i (xid, u
1
id, . . . , u

li
id, w

1
id, . . . , w

vi
id , t) (3.42)

...

yrii = hrii (xid, u
1
id, . . . , u

li
id, w

1
id, . . . , w

vi
id , t).

Here we distinguish between the controlled inputs u and the disturbances
w. The dimensions of the state spaces and the input spaces are as follows
xi ∈ Rni , uji ∈ Rpij , j = 1, .., li and w

j
i ∈ Rqij , j = 1, .., vi.

De�ne uid := (u1>
id , . . . , u

li>
id )>, wid := (w1>

id , . . . , w
vi>
id )> and

yid := (y1>
id , . . . , y

ri>
id )>. The reason for this multichannel approach lies in

its greater �exibility of modeling the in�uence between subsystems. For
instance, in [PMTL09] an example is given in which a particular small-gain
condition is not satis�ed if a traditional approach is used (i.e., one input and
one output per subsystem), but it is satis�ed with the help of the multichannel
approach. In order not to lose this �exibility and still use the small-gain ideas,
we need a way to build vectors consisting of norms rather than using a norm.
To this end we use the |·|vec and |·|stc notation introduced in Section 1.2. For
instance, |yi|vec = (|y1

i |, . . . , |y
ri
i |). As we are considering a di�erent system

class as in Section 3.1 we have to use another stability notion. To be more
speci�c the next assumption should hold.

Assumption 3.4.1. The systems Σi, i = 1, 2, . . . , n are IOpS as in De�-
nition 1.3.14 at t = t0 with tid(t0) ≥ 0, restrictions ∆xi ∈ R, ∆ui ∈ Rli ,
∆wi ∈ Rvi and o�sets δi ∈ Rri . More precisely, there exist βi ∈ Kri×1,
Γiu ∈ Gri×li and Γiw ∈ Gri×vi , such that for each i = 1, 2, . . . , n and
each t0 ∈ R the condition ‖xid(t0)‖ ≤ ∆xi, supt≥t0 ‖uid(t)‖vec ≤ ∆ui and
supt≥t0 ‖wid(t)‖vec ≤ ∆iw imply that the corresponding solution of Σi is
well-de�ned for all t ≥ t0 and the following inequalities hold

sup
t≥t0

|yi(t)|vec ≤

µi

(
β(‖xid(t0)‖),Γiu(sup

t≥t0
‖uid(t)‖vec),Γiw(sup

t≥t0
‖wid(t)‖vec), δi

)
(3.43)

and

lim sup
t→∞

|yi(t)|vec ≤

µi

(
0,Γiu(lim sup

t→∞
‖uid(t)‖vec),Γiw(lim sup

t→∞
‖wid(t)‖vec), δi

)
, (3.44)
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with µi ∈ MAFrili+vi+2.

Following the approach from Section 3.1 we stack the inequalities from
Assumption 3.4.1 into a single inequality. To ease notation, de�ne m :=∑n
i=1 ri, l :=

∑n
i=1 li and v :=

∑n
i=1 vi. Furthermore, let

B(‖xd(t0)‖vec) = (β1(‖x1d(t0)‖)>, . . . , βn(‖xnd(t0)‖)>)>,

ΓU = diag(Γ1u, . . . ,Γnu), ΓW = diag(Γ1w, . . . ,Γnw) , and

δ =
(
δT1 , . . . , δ

T
n

)T
.

Moreover, we need a notation, which allows us to lump several |·|vec together.
To this end, we use the |·|stc notation introduced in Section 1.2. Recall that
‖xd(t0)‖vec ∈ Rn, ‖ud(t0)‖stc ∈ Rl, and ‖wd(t0)‖stc ∈ Rv.
Using this notation, we can follow the path of Section 3.1 and equivalently
rewrite (3.43) and (3.44) to get a single inequality given by

|y(t)|stc ≤

µ

(
B(‖xd(t0)‖vec),ΓU (sup

t≥t0
‖ud(t)‖stc),ΓW (sup

t≥t0
‖wd(t)‖stc), δ

)
(3.45)

for all t ≥ t0, respectively

lim sup
t→∞

|y(t)|stc ≤

µ

(
0,ΓU (lim sup

t→∞
‖ud(t)‖stc),ΓW (lim sup

t→∞
‖wd(t)‖stc), δ

)
(3.46)

with µ ∈ MAFml+v+2 .
In Section 3.1 we have seen that certain properties of a map g was helpful in
proving the ISS property of the overall system. Next we want to derive this
map. To this end let

g̃(s, w1, w2, δ) := µ (B(w1),ΓU (s),ΓW (w2), δ) , (3.47)

where g̃ : Rl+×Rn+×Rv+×Rn+ → Rm+ . Observe that we change the sequence of
the arguments to be compatible with the convention that the �rst argument is
the state of the corresponding comparison system. Note that the introduction
of g̃ eases the notation and brings us into the opportunity to bene�t from
the results of the last sections.
This can now be used to rewrite (3.45) and (3.46) equivalently to

|y(t)|stc ≤ g̃(‖ud(t)‖stc ,‖xd(t0)‖vec ,‖wd(t)‖stc , δ) (3.48)

89



CHAPTER 3. STABILITY ANALYSIS VIA SMALL-GAIN THEOREMS

Figure 3.3: Schematic sketch of the interconnection of two systems commu-
nicating over multiple channels

and

lim sup
t→∞

|y(t)|stc ≤ g̃(lim sup
t→∞

‖ud(t)‖stc , 0, lim sup
t→∞

‖wd(t)‖stc , δ) . (3.49)

So far, we equivalently rewrote the inequalities from Assumption 3.4.1 using
the introduced notation. As we want to study the interconnection of the
subsystem, we need a relation between the outputs y and the inputs ud. Dif-
ferent from Section 3.1 we want to consider systems that communicate over
digital channels.
Hence we need some assumptions, that describe the e�ect of the communi-
cation. Before we can do so, we have to introduce the delayed version of the
output. Thus, de�ne

|ŷi(t)|vec :=
(∣∣y1

i (t− τ1
i )
∣∣ , . . . , |yrii (t− τ rii )|

)
with τ ji : R → R+ , i = 1, . . . , n , j = 1, . . . , ri Lebesgue measurable func-
tions. They describe the delay of the j-th component ot the output of the
i-th subsystem.
As before, we stack all the outputs of the di�erent subsystems into one vector
given by

|ŷ(t)|stc :=
(
|ŷ1(t)|>vec , . . . |ŷn|

>
vec

)>
This can now be used to specify the conditions on the interconnection.

Assumption 3.4.2. The interconnection of the n subsystems is described
by

‖ud(t)‖stc ≡ 0, ∀t < T0 (3.50)
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‖ud(t)‖stc ≤ Ψµ(|ŷ(t)|stc), ∀t ≥ T0 (3.51)

where the operator Ψµ is of the form

Ψµ(|s|stc) :=

 µ1(0,Ψ12(s1), . . . ,Ψ1n(sn))
...

µn(Ψn1(s1), . . . ,Ψnn−1(sn−1), 0)


with Ψij ∈ Gli×rj for all i, j = 1, . . . , n and µi ∈ MAFril .

Remark 3.4.3. Assumption 3.4.2 states that there exists a T0 ∈ R which is
the �rst time instance a connection has been established. Before that time
the input is constant 0. After T0 the operator Ψij describes how the output
of the j-th subsystem in�uences the input of the i-th subsystem. Hence the
overall in�uence of the output of the i-th system to the output of the j-th
system is given by Γju ◦Ψji.
For a schematic �gure of the interconnection of two multichannel systems see
Figure 3.3.
Note that by de�nition we have

|ŷ|stc ≤ ‖yd‖stc . (3.52)

To ensure that communication between the subsystems happens at least
sometimes, we have to make the following assumption on the delays.

Assumption 3.4.4. There exists τ∗ > 0 and a piecewise continuous function
τ∗ : R 7→ R+ with τ∗(t2)− τ∗(t1) ≤ t2 − t1 for all t2 ≥ t1 such that

τ∗ ≤ min
i=1,...,n
j=1,...,ri

{τ ji (t)} ≤ max
i=1,...,n
j=1,...,ri

{τ ji (t)} ≤ τ∗(t), (3.53)

and
t− max

i=1,...,n
j=1,...,ri

{τ ji (t)} → ∞ as t→∞ (3.54)

for all t ≥ 0.

Remark 3.4.5. The inequalities (3.53) say that the delays should be bounded
from above by τ∗(t) and from below by τ∗ > 0. Because of the propagation
delay of any physical system the existence of a lower bound τ∗ is not restric-
tive.
Basically, (3.54) states that the delay should not grow faster than the time
itself. In the literature an assumption of the form τ̇∗(t) < 1 can be found to
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ensure property (3.54). To account for possible information losses we have
to adopt the more general Assumption 3.4.4.
In [PMTL09] a methodology to satisfy Assumption 3.4.4 either by time-
stamping or by sequence numbering can be found. Time-stamping refers to
an approach where in a packet based transmission (e.g., TCP) every packet is
marked with the current time (see Chapter 2 for more details), while sequence
numbering maps an uniquely de�ned number to every packet.

Now we have collected all the necessary steps to de�ne a discrete com-
parison system, which will be used to infer stability of the interconnection.
To this end consider

g(s, w1, w2, δ) := g̃(Ψµ(s), w1, w2, δ) = µ (B(w1),ΓU ◦Ψµ(s),ΓW (w2), δ) ,

with g : Rm+×Rn+×Rv+×Rn+ → Rm+ . The �rst argument s ∈ Rn+ describes the
e�ect of the interconnection by modeling the in�uence from the multichannel
outputs of all subsystems to the multichannel inputs of all other subsystems
via a communication channel. The in�uence of the initial state is given by
w1 ∈ Rn+, while w2 ∈ R+ models the in�uence of external disturbances. The
o�set is given by δ ∈ Rn+.
Finally, this leads to

s(k + 1) = g(s(k), w1(k), w2(k), δ) . (3.55)

Obviously, g is monotone and continuous in all of its arguments. Furthermore,
it holds that g(0, 0, 0, 0) = 0.
Let ∆x := (∆1x, . . . ,∆nx)

>, ∆u :=
(
∆>1u, . . . ,∆

>
nu

)>
and

∆w :=
(
∆>1w, . . . ,∆

>
nw

)>
. The ensuing theorem is the main contribution of

this section. It shows that an interconnection of IOpS subsystem is stable in
the IOpS sense, provided that a discrete comparison system is ISS.

Theorem 3.4.6. Suppose system (3.42) satis�es Assumptions 3.4.1,3.4.2
and 3.4.4. Let the discrete comparison system (3.55) be ISS. Furthermore,
assumes that g(s, 0, 0, 0) is irreducible.
Let ∆∗ ∈ Rm such that ∆∗ ≥ g(∆∗,∆x,∆w, δ) and

Ψµ(∆∗) ≤ ∆u . (3.56)

Then system (3.42) is IOpS as in De�nition 1.3.14 at t = T0 with

td(T0) = max
i=1,...,n

{tid(T0)}+ τ∗(T0) + τ∗(T0 − τ∗(T0)) . (3.57)

and restrictions ∆x,∆w and o�set δ. More precisely, the conditions
‖xd(T0)‖vec ≤ ∆x and supt≥t0 ‖wd(t)‖vec ≤ ∆w imply that there exist µ1 ∈
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MAFmv+2 such that

sup
t≥T0

|y(t)|stc ≤ µ1(‖xd(T0)‖vec ,‖wd(t)‖stc , δ) (3.58)

and there exist µ2 ∈ MAFmv+1 such that

lim sup
t≥T0

|y(t)|vec ≤ µ2(‖wd(t)‖stc , δ) . (3.59)

Proof. Before we show that the interconnection is IOpS we prove that ∆∗

exists. Because g is irreducible, we know by Lemma D.0.18 that there exists
a σ ∈ Km∞ and ρ ∈ Kn+v+n

∞ such that

g(σ(r), ρ(r)) < σ(r)

for all r > 0. Now choose r∗ such that

ρ(r∗) ≥

∆x

∆w

δ

 ,

which is possible because ρ ∈ Kn+v+n
∞ .

This yields

σ(r∗) > g(σ(r∗), ρ(r∗)) ≥ g(σ(r∗),∆x,∆w, δ) .

De�ning ∆∗ := σ(r∗) yields the existence of a ∆∗ for which
∆∗ ≥ g(∆∗,∆x,∆w, δ) holds.
In order to achieve the IOpS property of the overall system, we have to show
that the restrictions are not violated. Because of the relation between the
output and the input of the system (3.51) we have to bound the output by
∆∗ for all positive times. Now assume that

‖xd(T0)‖vec ≤ ∆x and sup
t≥T0

‖wd(t)‖vec ≤ ∆w . (3.60)

Assumption 3.4.1 respectively (3.48) and (3.50) together with causality ar-
guments imply that

|y(T0)|stc ≤ g(0,∆x,∆w, δ) ≤ ∆∗ ,

because of the monotonicity of g and the de�nition of ∆∗.
By using (3.50), (3.51) and Assumption 3.4.4 we get

sup
t∈[T0−td(T0),T0+τ∗]

|u(t)|stc ≤ Ψµ(∆∗) ≤ ∆u ,
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where the last inequality follows from (3.56). The latter chain of inequalities
states that the restriction on the input ∆u is not violated up to time T0.
Because of the minimal delay τ∗, the restrictions are still not violated on the
interval t ∈ [t0 − td(T0), T0 + τ∗].
Hence there exists a Tmax > T0 + τ∗ such that the solutions of (3.42) are
well-de�ned for all t ∈ [T0, Tmax). Now we want to show that the bound on
the output ∆∗ is not violated on the interval t ∈ [T0, Tmax). To be precise,
we want to show that

sup
t∈[T0,Tmax)

‖yd(t)‖stc ≤ ∆∗ . (3.61)

To prove this by contradiction, assume that there exists a T1 ∈ [T0, Tmax−τ∗)
such that

sup
t∈[T0,T1]

‖yd(t)‖stc ≤ ∆∗ and sup
t∈[T0,T1+τ∗]

‖yd(t)‖stc � ∆∗ . (3.62)

Again by using (3.48) we get

sup
t∈[T0,T1+τ∗]

‖yd(t)‖stc ≤ g( sup
t∈[T0,T1]

‖yd(t)‖stc ,∆x,∆w, δ) .

By using the �rst part of (3.62) and the monotonicity of g we arrive at

sup
t∈[T0,T1+τ∗]

‖yd(t)‖stc ≤ g(∆∗,∆x,∆w, δ) ≤ ∆∗ ,

again by monotonicity of g and the de�nition of ∆∗. This contradicts the
second inequality in (3.62). Hence we have

sup
t∈[T0,Tmax)

‖yd(t)‖stc ≤ ∆∗ . (3.63)

Next we want to show that Tmax =∞.
Again we will prove this by contradiction. Due to Assumption 3.4.1 the
inequality Tmax < ∞ implies that at least one of the restrictions must be
violated. By (3.60) we see that

sup
t∈[T0,Tmax)

|u(t)|stc � ∆u .

This in turn implies together with (3.51) and (3.56)

Ψµ( sup
t∈[T0,Tmax)

|ŷ(t)|stc) � Ψµ(∆∗) .
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By monotonicity of Ψµ and the de�nition of yd (see (3.52)) we arrive at

sup
t∈[T0,Tmax]

‖yd(t)‖stc � ∆∗ ,

which contradicts (3.63), and therefore Tmax =∞.
Now we have established that the restrictions hold on t ∈ [T0,∞). Hence we
can use (3.48) together with (3.51) and the monotonicity of g to get

sup
t≥T0

‖yd(t)‖stc ≤ g
(

sup
t≥T0

‖yd(t)‖stc ,‖xd(T0)‖vec ,‖wd(t)‖stc , δ

)
.

Because (3.55) is ISS, we know by Theorem 3.2.2 that there exists a positive
de�nite and proper ξ : Rv+2 → Rm+ such that

sup
t≥T0

‖yd(t)‖stc ≤ ξ(‖xd(T0)‖vec ,‖wd(t)‖stc , δ) .

By Lemma 1.1.11 there exists an µ1 ∈ MAFmv+2 such that

sup
t≥T0

‖yd(t)‖stc ≤ µ1(‖xd(T0)‖vec ,‖wd(t)‖stc , δ) .

Of course, supt≥T0
|y(t)|stc ≤ supt≥T0

‖yd(t)‖stc and we have shown (3.58).
Similarly we get

lim sup
t→∞

‖yd(t)‖stc ≤ ξ(0,‖wd(t)‖stc , δ) ≤

µ1(0,‖wd(t)‖stc , δ) =: µ2(‖wd(t)‖stc , δ) ,

where we used Lemma 1.1.11 again. Realizing that (3.59) is easily deduced
�nishes the proof.

Remark 3.4.7. In the premise of Theorem 3.4.6 we demand g(s, 0, 0, 0) =
µ (0,ΓU ◦Ψµ(s), 0, 0) , to be irreducible. Recall that we can interpret

ΓU ◦Ψ =


0 Γ1u ◦Ψ12 · · · Γ1u ◦Ψ1n

Γ2u ◦Ψ21 0 · · · Γ2u ◦Ψ2n

...
...

. . .
...

Γnu ◦Ψn1 Γnu ◦Ψn2 · · · 0

 .

And we say that ΓU ◦Ψµ is irreducible, if the graph associated to ΓU ◦Ψ is.
The irreducibility states that eventually every input of every subsystem ef-
fects every output. This assumption seems too strong as we know that cas-
cades of ISS systems are ISS (see [ST95]). A way how to relax the irreducibil-
ity assumption can be found in [DRW10]. We expect that similar techniques
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can be used here. Although we lose the multichannel structure inherent to
ΓU ◦Ψ, i.e., each block Γiu ◦Ψij models the e�ect of the di�erent outputs of
the jth subsystem to the inputs of the ith subsystem. Because the presented
technique of [DRW10] uses a transformation of the matrix into upper block
diagonal form by permuting rows and columns, the multichannel structure
may be lost.

3.5 Notes and References

Since the sixties of the last century, small-gain type conditions [Zam66] have
proved to be a valuable tool for analyzing the stability properties of the
interconnection of two systems, where the in�uence from one to the other
system is described by a linear function.
In this context the small-gain theorem was extended to the interconnection
of several Lp-stable subsystems. Early accounts of this approach are [Vid81]
(see also [�il78]) and references therein. For instance, in [Vid81], Theorem
6.12, the in�uence of each subsystem on the others is measured via an Lp-gain,
p ∈ [1,∞] and the Lp-stability of the interconnected system holds provided
that the spectral radius of the matrix of the gains is strictly less than unity.
In other words, the stability of interconnected Lp-stable systems holds under
a condition of weak coupling.
In the nonlinear case a notion of robustness with respect to exogenous inputs
is input-to-state stability (ISS) (see Section 1.3). If in a large-scale system
each subsystem is ISS (or related notions as discussed in Section 1.3), then
the in�uence between the subsystems is typically modeled via nonlinear gain
functions. Small-gain theorems have been developed for ISS systems as well
([JTP94, JMW96, Tee96]) and more recently they have been extended to the
interconnection of several ISS subsystems ([DRW07, DRW10]). For a recent
comprehensive discussion about the literature on ISS small-gain results see
[LJH10].
The notion of weak coupling in the nonlinear case is ensured for instance by
the no joint increase condition as in e.g., [DRW07].
Another approach is followed by [JW08]. The corresponding condition is
called cycle condition, which is known to be equivalent to the no joint increase
condition for the case µ = | · |∞.
Here we are following another approach. Instead of checking some topological
conditions of the gain operator, we demand an ISS property of a comparison
system which is induced by the gain operator.
First steps in this direction can be found in [Rüf07]. There the connection
between the no joint increase condition and the stability property of the
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induced dynamical system was examined.
For the special case of µ = | · |∞ and µ = | · |1 the stability condition as well as
the equivalence between the ISS property and the no joint increase condition
can be found in [Rüf10b].
Our approach has several advantages compared to the above mentioned. It
allows us to use a more general class of comparison functions between the
gains. Which means that we are not limited to | · |∞, | · |1 or even general
MAF.
Also in the literature it is not clear how the e�ects of disturbances of the gains
should be handled. In the ISS context we are following this question has a
natural answer, as we will see in Chapter 4. The motivating example from
Section 3.1 is borrowed from [DRW07]. However, validity of Assumption 3.1.2
is guaranteed in a di�erent way.
To be more precise, in [DRW07] conditions of the type

g(s, 0) � s for all s 6= 0

where studied. This condition resembles the UOC property from Section 3.2
for the case w = 0. The property NP was already discussed in [KJ11], again
for the case w = 0.
In Section 3.3 we discussed ISS-Ω-path, but we only give a way to construct
ρ. An approach to construct the corresponding σ numerically is given in
[GW12]. Remarkably, the presented approach can handle systems of the di-
mension of several hundreds on a typical computer.
The main theorem from Section 3.4 is based on [SW10b, SW10a]. But the
theorem given here is slightly more general. We want to stress that in order
to prove Theorem 3.4.6, we had to use the concept of an ISS-Ω-path to con-
clude the existence of a "decay" point ∆∗. The proofs of the corresponding
results of [SW10b, SW10a] does not need this, as this existence is trivially
ful�lled in [SW10b, SW10a].
The stability notion which we named IOpS was �rst introduced in [PMTL09].
We should mention that it is unknown yet, whether the AG and the GS prop-
erty are equivalent to ISS for the case of in�nite dimensional systems. Hence
it is a abuse of notation to name the stability notion IOpS, but we �nd it
convenient to do so nevertheless.
Also the multichannel system stems from [PMTL09], but only for 2 subsys-
tems.
An extension to the case of an arbitrary number of subsystems is given in
[SW10b, SW10a]. However, the material presented in Section 3.4 is still more
general than the results from [SW10a].
A rather strong small-gain type condition is used in [PMTL09] to conclude
stability. This has been relaxed in [RSW10].
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Some of the relations discussed in Section 3.2 and 3.3 may appear more
familiar for functions g of a very special form. To this end let A ∈ Rn×n+ ,
B ∈ Rn×m+ , and consider g(s, w) := As + Bw. It is clear that the stability
of the time-discrete systems (3.12) is intimately related to the condition that
the spectral radius ρ(A) is less than unity. This in turn allows to compute
s = (I −A)−1Bw, the unique solution to

s ≤ As+Bw .

Perhaps not so well known is that ρ(A) < 1 if and only if As � s holds.
Finally, the paths σ and ρ are closely connected to an eigenvector of A via
the celebrated Perron-Frobenius Theorem, cf. [Rüf10a].

For functions g of a special form, some of the above conditions and their
relations have been investigated in previous works, in particular [Rüf10a] and
[Rüf10b].

It should be stressed that the equivalences here are strongly based on the
monotonicity of g and the resulting forward invariance of Rn+ with respect
to (3.12). In this regard our results are not a mere extension of the impres-
sive list of equivalent notions of input-to-state stability given in [GL00] and
[JW01], as the equivalences in these works also hold without the monotonicity
requirement. Of course, we could use any of these equivalent notions under
the additional assumptions of Theorem 3.2.2 to use them as a small-gain
condition.
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Chapter 4

Event-Triggered Control

In Chapter 2 a way to overcome certain limitations posed by a communication
channel was discussed. In particular, the e�ects of quantization and delay
on a single subsystem was considered. If the number of subsystems grows,
bandwidth limitations may become more severe. In this chapter we will use
ideas from Chapter 3 to deal with this issue. To this end we try to lower the
amount of information transmissions. This is achieved by only transmitting
information whenever certain events happen. In the literature this approach
is known as event-triggered control. An event could be that a certain amount
of time passes or that some state crosses some boundaries. Here the events
will be that the state crosses some error threshold.
In Figure 4.1 a situation known as periodic sampling is depicted. In periodic
sampling the current state is sampled every τ units of time, a control action
is calculated, and this value is held constant until the next sample is taken.
The approach of keeping the control action constant in between sampling
times is named zero order hold in the control engineering community.
In Figure 4.2 an example of event-triggered control, termed δ-sampling (or
deadband sampling resp. send-on-delta) can be seen. Whenever the last
sampled value deviates from the current state by a number of delta, an event
is triggered. In regions where the trajectory does not change much, the
approach of δ-sampling can lead to fewer events than periodic sampling.
In both cases it is not trivial to decide how to choose the sampling period
(τ = tk − tk−1) respectively δ to ensure stability of the closed loop system.
For a discussion on the subject of choosing the sampling period τ for a given
system, see [ÅW84, ZOB90, NTS99].
In this chapter we try to convince the reader that an event based sampling
scheme, which compares the error between the sampled value and the actual
state to a Lyapunov function will result in event times that stabilizes the
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system.
As our general setup is large-scale, we are heading for a purely decentralized
approach. Hence the subsystems should be able to compute the necessary
values by only using local information.

S
ta
te

t

Figure 4.1: Periodic sampling

S
ta
te

t

Figure 4.2: Example of event based sampling

4.1 Triggering Functions

Consider the interconnection of N systems described by equations of the
form:

ẋi = fi(x, ui) , ui = gi(x+ e) , (4.1)

where i ∈ N := {1, 2, . . . , N}, x = (x>1 . . . x
>
N )>, with xi ∈ Rni , is the state

vector and ui ∈ Rmi is the ith control input. The gi is a local controller of
system i.
The vector e, with e = (e>1 . . . e

>
N )> and ei ∈ Rni is an error a�ecting the

state.
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We shall assume that the maps fi satisfy appropriate conditions which guar-
antee existence and uniqueness of solutions for L∞ inputs e. In particular,
the fi are locally Lipschitz in the �rst argument and continuous in the sec-
ond. Also we assume that the gi are locally bounded, i.e. for each compact
set K ⊂ Rn (n :=

∑N
i=1 ni) there exists a constant CK with |gi(x)| ≤ CK

for each x ∈ K. Moreover, we assume that 0 = fi(0, 0) and 0 = gi(0) for all
i ∈ N .
For future use we denote the set of states entering the dynamics of system i
by

Σ(i) = {j ∈ N : fi explicitly depends on xj} .
We say that fi does not depend on xj , if ∂fi/∂xj ≡ 0. Similarly for the
controllers we denote

C(i) = {j ∈ N : gi explicitly depends on xj} .

It is also convenient to de�ne the set of the controllers to which the state of
system i is broadcast:

Z(i) = {j ∈ N : gj depends explicitly on xi} .

As an easy consequence of the above de�nition we have

Lemma 4.1.1. An index i belongs to the set C(j), if and only if j belongs
to Z(i).

The next de�nition may be regarded as the heart of the event-triggering
approach, as it introduces the condition each subsystem has to check to decide
when an event happens.

De�nition 4.1.2. A map T : Rn × Rn × Rn → R is called a triggering
function, if T is jointly continuous and

T (·, 0, ·) < 0 . (4.2)

We sometimes use triggering functions, which only depend on two argu-
ments. In this case we write T (·, ·).
Consider the interconnection of N subsystems as before

ẋi = fi(x, ui) ui = gi(x+ e) (4.3)
˙̂x = 0 e = x̂− x

with condition on the triggering function

Ti(xi, ei, ẋi) ≥ 0 . (4.4)
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Now we are able to describe the evolution of the system (4.3) together with
a triggering condition. For simplicity we set the initial controller error to
e0 = 0 and t0 = 0. Given an initial condition x0 we de�ne

If ∃i ∈ N such that Ti(xi(t), ei(t), ẋi(t)) ≥ 0:

tk =t (4.5)

x̂i(t) =xi(t) ∀i ∈ Ntk := {j ∈ N : Tj(xi(t), ei(t), ẋi(t)) ≥ 0} (4.6)

Otherwise:

ẋi(t) =fi(x(t), gi(x(t) + e(t))) , ∀i ∈ N (4.7)
˙̂xi(t) =0 , ∀i ∈ N (4.8)

ei(t) =x̂i(t)− xi(t) , ∀i ∈ N (4.9)

The set Ntk describes the set of all subsystems i that trigger an event at time
tk.
Solutions to such a triggered feedback are de�ned as follows. By (4.5) to-
gether with the condition for (4.5) and (4.6) we have

tk := inf{t > tk−1 : ∃i ∈ N s.t. Ti(xi(t), ei(t), ẋi(t)) ≥ 0} ,

for all k ≥ 1. Equation (4.6) states that at time instant tk the systems i for
which Ti(xi, ei, ẋi) ≥ 0 broadcast their respective state xi to all controllers
gj with i ∈ C(j). The systems j which use the state xi in the control law
gj(x) update only the state xi while all the other variables are kept equal to
the previously set values.
For obvious reasons the time instances tk are called event times or triggering
times.

Remark 4.1.3. The condition (4.2) will be used to ensure that no event can
be triggered as long as the error e is zero, but in many useful triggering
conditions we have that Ti(0, 0, ẋi) = 0. If the system were to remain at
x = 0 this would lead to a continuum of triggering events, which do not
provide information. To avoid this (academic) problem we propose to add
the condition that information is broadcast once xi reaches the state zero,
but no further transmission by system i occurs as long as it stays at zero.

The next proposition follows directly from the de�nition of tk and conti-
nuity of T .
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Proposition 4.1.4. The event times are a strictly monotonically increasing
sequence, i.e.

tk+1 > tk

for all k ∈ N.

Proof. By convention we have e(0) = 0 and thus by De�nition 4.1.2 we have
Ti(xi(0), 0, ẋi(0)) < 0 for all i ∈ N . Because of the continuity of Ti we
conclude t1 > 0. By combining (4.6) and (4.9) we get ei(t+1 ) = 0 for all
i ∈ Nt1 . Note that we have for all i /∈ Nt1 that ei(t+1 ) = ei(t1) and thus for
all i ∈ N we have Ti(xi(t+1 ), ei(t

+
1 ), ẋi(t

+
1 )) < 0. Repeating this arguments

yields the claim.

System (4.3) consists of a continuous part and a discrete part. Such
systems are often called hybrid systems. For a de�nition of respectively
an introduction to hybrid systems see [vdSS00]. In contrast to ordinary
di�erential equations it might happen that the event times accumulate in
�nite time.

De�nition 4.1.5. The accumulation of triggering times in �nite time is
called Zeno e�ect i.e.

lim
k→∞

tk = t∗ <∞ .

The time instance t∗ is called Zeno time.

De�nition 4.1.6. If for an initial value x0 it holds for the solution of (4.3)
that the Zeno e�ect occurs i.e.,

lim
k→∞

tk <∞ ,

we say that the triggering function causes Zeno.

For a more thorough discussion on Zeno see [vdSS00]. We will use the
terminology Zeno solutions or Zeno behavior synonym for De�nition 4.1.6.
As we heading for reducing the amount of information, Zeno is an unwanted
e�ect.
The Zeno case will be dealt with explicitly in Section 4.4 and 4.5.
The basic idea behind our Lyapunov based event-triggering will be explained
in Section 4.3. Before we do so, we have to describe how the e�ects of the
interconnection and the imperfect knowledge of the states to the controllers
are modeled.
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4.2 Gain Operators

In order to use the ideas from Chapter 3 we have to assume that each sub-
system from (4.3) is ISS. To be precise, we assume the following.

Assumption 4.2.1. For i = 1, 2, . . . , N , there exist a di�erentiable function
Vi : Rni → R+, and class-K∞ functions αi1, αi2 such that

αi1(|xi|) ≤ Vi(xi) ≤ αi2(|xi|) . (4.10)

Moreover there exist functions µi ∈ MAF2N , γij , ηij ∈ G, j = 1, . . . , N , and
αi positive de�nite such that

Vi(xi) ≥ µi(γi1(V1(x1)), . . . , γiN (VN (xN )), ηi1(|e1|), . . . , ηiN (|eN |))
=⇒ ∇Vi(xi)fi(x, gi(x+ e)) ≤ −αi(|xi|) . (4.11)

Loosely speaking, the function γij describes the overall in�uence of system
j on the dynamics of system i, while the function ηij describes the in�uence
of the system j on the system i via the controller gi. In particular, ηij 6= 0
if and only if the controller gi is using information from system j. In this
regard ηij describes the in�uence of the imperfect knowledge of the state of
system j on system i caused by e.g., measurement noise. On the other hand,
if i 6= j and γij 6= 0, then system j in�uences the system i either explicitly
or implicitly. Here, explicit in�uence means that fi depends on xj , whereas
implicit in�uence means that gi depends on xj .
We assume that γii = 0 for any i. In Figure 4.3 the interconnection with
the corresponding gains is depicted. The subsystems are given as Σi and the
controllers as gi. There can either be a direct (physical) connection between
systems or the systems interchange information via the controllers. In the
�rst case the e�ects are modeled by the gains γij whereas in the second case
the e�ect of the interconnection is modeled by γij and ηij .
Observe that if the system i is not in�uenced by any other system j 6= i, and
there is no error ei on the state information xi used by the controller gi, then
the assumption amounts to saying that the system i is globally asymptotically
stable.
In the spirit of Chapter 3 we use the gains γ from Assumption 4.2.1 to de�ne
a gain operator Γµ : RN+ × RN×N+ → RN+

Γµ(s, w) =

 µ1(γ11(s1), . . . , γ1N (sN ), w11, . . . , w1N )
...

µn(γN1(s1), . . . , γNN (sN ), wN1, . . . , wNN )

 ,
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Figure 4.3: Schematic of the interconnection

with w as an arbitrary input. It will become clear later how to relate w to
the gains η from Assumption 4.2.1.
Again, in the framework of the last chapter we assume the following.

Assumption 4.2.2. There exists an ISS-Ω-path for Γµ, i.e. there exist
σ ∈ KN∞ and ϕ ∈ GN×N such that

Γµ(σ(r), ϕ(r)) < σ(r)

for all r > 0.

In Chapter 3 we have seen under which conditions such an ISS-Ω-path
exists. We also know from the last chapter that if wij ≤ ϕij(r) the distur-
bance w does not interfere with the stability properties.
As we want to derive triggering conditions comparing ϕ and the error e there
is no loss in generality if we set ϕij = 0 whenever ηij = 0.

Proposition 4.2.3. For i 6= j the gains γij may be chosen to be 0 if and
only if j /∈ Σ(i) and j /∈ C(i). Analogously, ηij = 0 if and only if j /∈ C(i)
and �nally ϕij = 0 if and only if j /∈ C(i).

Proof. Let i 6= j. By the de�nition of Σ(i) respectively C(i) we know that
j /∈ Σ(i) ∩ C(i), if and only if fi depends not on xj and hence the right
hand side ∇Vi(xi)fi(x, gi(x + e)) ≤ −α(|xi|) from condition (4.11) does not
depend on xj . And thus by monotonicity of a MAF we can equivalently
rewrite (4.11) to a condition with γij = 0.
Index j ∈ C(i) means that the controller gi depends on xj . As all controllers
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use zero order hold, there is an error a�ecting the ith state by imperfect
knowledge of the jth state and hence ηij 6= 0.
The statement for ϕij follows from the convention that ϕij = 0 whenever
ηij = 0.

In Chapter 3 we have seen that the ISS-Ω-path helps us to conclude
that the interconnection is still ISS. In the rest of this chapter we will show
how we have to relate η from Assumption 4.2.1 to ϕ from Assumption 4.2.2
to conclude stability of the interconnected system despite the error e. In
particular, we will see in the next section how the gains will lead to scaling
functions, which allows us to compare the error to the Lyapunov function
in such a way that we are able to conclude stability of the event-triggered
closed-loop system.

4.3 A Triggering Condition Using Small-Gain Ideas

Throughout this chapter we use as a candidate for a Lyapunov function a
scaled version of the maximum of the Lyapunov functions of the subsystems.
Before we show that this function decreases along trajectories, we have the
following proposition.

Proposition 4.3.1. The Lyapunov function candidate V (x) =
maxi∈N σ

−1
i (Vi(xi)) is positive de�nite and proper. Furthermore, V is locally

Lipschitz.

Proof. Observe that the composition of positive de�nite functions is again
positive de�nite. As the maximum of positive de�nite functions is also
positive de�nite, we have the �rst assertion. For the properness, de�ne
α1(|x|) := mini∈N σ

−1
i ◦ αi1(|xi|) and α2(|x|) := maxi∈N σ

−1
i ◦ αi2(|xi|). As

all σi, αi1, αi2 ∈ K∞ the functions α1, α2 belong also to K∞ by Lemma 1.1.2.
A straightforward calculation shows by using (4.10) α1(|x|) ≤ V (x) ≤ α2(|x|)
and the properness follows.
Clearly, the concatenation of locally Lipschitz functions is still locally Lipschitz.
The statement that the maximum of �nitely many locally Lipschitz functions
is again locally Lipschitz can be found in the Appendix (B.0.11) and we have
shown the claim.

The next theorem shows that there exist a set of decentralized conditions
for the error e, which guarantee that V , as de�ned in the last proposition,
decreases along trajectories of the interconnected system (4.5)-(4.9).
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Theorem 4.3.2. Let Assumptions 4.2.1 and 4.2.2 hold. Let V (x) =
maxi∈N σ

−1
i (Vi(xi)) and for each j ∈ N , de�ne:

χj = σj ◦ η̂j , with η̂j = max
i∈Z(j)

ϕ−1
ij ◦ ηij . (4.12)

Then there exists a positive de�nite α : R+ → R+ such that the condition

Vi(xi) ≥ χi(|ei|), ∀ i ∈ N (4.13)

implies
〈p, f(x, g(x+ e))〉 ≤ −α(|x|), ∀p ∈ ∂V (x) ,

where ∂V denotes the Clarke generalized gradient (see Appendix B for details)
and

f(x, g(x+ e)) =

f1(x, g1(x+ e))
...

fn(x, gn(x+ e))

 .

Proof. If x = 0, we have e = 0 by (4.13) and hence 0 = f(x, g(x + e)). In
particular, the consequent of the theorem is true. Now assume x 6= 0.
De�ne N (x) ⊆ N as the set of indices i for which V (x) = σ−1

i (Vi(xi)). Let
i ∈ N (x) and set r = V (x). Then

Vi(xi) = σi(r) > Γµ,i(σ(r), ϕ(r)) =

µi(γi1(σ1(r)), .., γiN (σN (r)), ϕi1(r), .., ϕiN (r)). (4.14)

Observe that by de�nition of V (x), for any i ∈ N (x) and any j ∈ N ,

γij(σj(r)) = γij(σj(V (x))) ≥ γij(σj(σ−1
j (Vj(xj)))) = γij(Vj(xj)) . (4.15)

Note that for j /∈ C(i) we have by Proposition 4.2.3 ϕij = 0 and ηij = 0.
Hence for j /∈ C(i) it holds trivially that

ϕij(r) ≥ ηij(|ej |). (4.16)

We claim this is also true if j ∈ C(i) (or equivalently i ∈ Z(j)). To this end
assume that (4.13) holds:

Vj(xj) ≥ χj(|ej |) , χj = σj ◦ η̂j .

Hence we have, using the de�nition of V , (4.13) and (4.12), that

ϕij(r) = ϕij(V (x)) ≥ ϕij(σ−1
j (Vj(xj))) ≥ ϕij(σ−1

j ◦ σj(η̂j(|ej |)))
≥ ϕij(σ−1

j ◦ σj(ϕ
−1
ij ◦ ηij(|ej |))) = ηij(|ej |) . (4.17)
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Observe that µi(v) ≥ µi(z) for all v ≥ z ∈ R2N
+ since µi ∈ MAF2N and as

a consequence of De�nition 1.1.4 (ii). Since r = V (x) ≥ σ−1
i (Vi(xi)) for all

i ∈ N , by (4.15), (4.16) and (4.17),

µi(γi1(σ1(r)), . . . , γiN (σN (r)), ϕi1(r), . . . , ϕiN (r)) ≥
µi(γi1(V1(x1)), . . . , γiN (VN (xN )), ηi1(|e1|), . . . , ηiN (|eN |)) .

The inequality above and (4.14) yield that for each i ∈ N (x)

Vi(xi) > µi(γi1(σ1(r)), .., γiN (σN (r)), ϕi1(r), .., ϕiN (r))

≥ µi(γi1(V1(x1)), . . . , γiN (VN (xN )), ηi1(|e1|), . . . , ηiN (|eN |)) .

Hence, by (4.11),

∇Vi(xi)fi(x, gi(x+ e)) ≤ −αi(|xi|) (4.18)

for all i ∈ N (x).
We now provide a bound to 〈p, fi(x, gi(x + e))〉 for each p ∈ ∂[σ−1

i ◦ Vi(xi)]
and i ∈ N (x). Observe that σ−1 is only locally Lipschitz and the Clarke
generalized gradient must be used for σ−1

i ◦Vi. By the chain rule for Lipschitz
continuous functions (see Appendix B) we have

∂[σ−1
i ◦ Vi](xi) ⊂ {cξ : c ∈ ∂σ−1

i (y), y = Vi(xi), ξ ∈ ∂Vi(xi)} . (4.19)

By x 6= 0 we have for all i ∈ N (x) that |xi| > 0, because 0 < V (x) =
σ−1
i (Vi(xi)). For each i ∈ N (x) let ρi > 0 be such that |xi| = ρi. De�ne the

compact set Kρ = {Vi(xi) ∈ R+ : ρi/2 ≤ |xi| ≤ 2ρi} and let

cρ,i = min
r∈Kρ

(σ−1
i )′(r) .

Note that by the de�nition of an ISS Ω-path cρ,i is positive.
By (4.19) and (4.18) we get

〈p, fi(x, gi(x+ e))〉 ≤ −cρ,iαi(ρi) (4.20)

for all p ∈ ∂[σ−1
i ◦ Vi(xi)] and i ∈ N (x).

Set α̃i(ρ) := cρ,iαi(ρ) and

α(r) := min{α̃i(|xi|) : r = |x| , i ∈ N (x)} > 0 .

The function α is positive de�nite because the norm is positive de�nite, α̃
is positive de�nite, and the minimum of positive de�nite functions is again
positive de�nite. Hence,

〈pi, fi(x, gi(x+ e))〉 ≤ −α̃i(|xi|) ≤ −α(|x|) (4.21)
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for each pi ∈ ∂[σ−1
i ◦ Vi(xi)] and i ∈ N (x). In particular, the right hand side

depends on x rather than xi.
Because of the maximization structure of V we have (see gain Appendix B)

∂V (x) ⊂ conv

 ⋃
i∈N (x)

∂[σ−1
i ◦ Vi ◦ πi](x)

 , (4.22)

where πi is the projection on the ith component i.e., if x = (x>1 , . . . x
>
n )>,

then πi(x) = xi.
Using (4.19) and (4.22) there exist for each p ∈ ∂V (x) suitable λi ≥ 0 with∑
i∈N (x) λi = 1, ξi ∈ ∂[Vi ◦ πi](x), and ci ∈ ∂σ−1

i (Vi(xi)) such that

p =
∑

i∈N (x)

λiciξi .

Note that because ξi ∈ ∂[Vi ◦ πi](x) we have 〈ξi, a〉 = 〈πi(ξi), πi(a)〉 for
all a ∈ Rn or in other words, we get ξi from πi(ξi) by padding zeros to
the corresponding components, because in the Clarke gradient of Vi ◦ πi the
projection on the ith component is used and hence no change in the other
variables is present. By similar arguments, we have ciπi(ξi) ∈ ∂[σ−1

i ◦Vi](xi).
Now we can use (4.21) to bound

〈p, f(x, g(x+ e))〉 =
∑

i∈N (x)

λi〈ciξi, f(x, g(x+ e))〉 =

∑
i∈N (x)

λi〈ciπi(ξi), fi(x, gi(x+ e))〉 ≤ −
∑

i∈N (x)

λiα(|x|) = −α(|x|)

for all p ∈ ∂V (x) and the proof is �nished.

Now that we have established the existence of a Lyapunov function for
the overall system, we have to state the triggering condition that ensures that
(4.13) holds to conclude stability.

Theorem 4.3.3. Let Assumptions 4.2.1 and 4.2.2 hold. Consider the inter-
connected system

ẋi(t) = fi(x(t), gi(x̂(t))) , i ∈ N , (4.23)

as in (4.3) with triggering conditions given by

Ti(xi, ei) = χi(|ei|)− Vi(xi) ,
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with χi de�ned in (4.12) for all i ∈ N . Assume that no Zeno behavior is
induced. Then the origin is a globally uniformly asymptotically stable equi-
librium for (4.23).

Proof. To analyze the event-based control scheme introduced in (4.5)-(4.9),
we de�ne the time-varying map f̃(t, x) = f(x, g(x + e(t))). Clearly, the
solution starting at x(0) = x0 and e(0) = 0 for

ẋ(t) = f̃(t, x)

with e(tk) = 0 for all k ∈ N, where tk comes from (4.5) is the same as the
solution starting from the same initial condition of system (4.5)-(4.9). The
map f̃(t, x) satis�es the Carathéodory conditions for the existence of solutions
(see Section 1.2) and thus because of the conditions on f (see Section 4.1),
the solution exists and is unique. Along the solutions of ẋ = f̃(t, x), the
locally Lipschitz positive de�nite and proper Lyapunov function V (x) (by
Proposition 4.3.1) introduced in Theorem 4.3.2 satis�es

V (x(t′′))− V (x(t′)) =

∫ t′′

t′

d

dt
V (x(t))dt

for each pair of times t′′ ≥ t′ belonging to the interval of existence of the
solution. Moreover, by a property of the Clarke generalized gradient (see
Appendix, Lemma B.0.10) for almost all t ∈ R+, there exists p ∈ ∂V (x(t))
such that:

d

dt
V (x(t)) = 〈p, f̃(t, x(t))〉 .

Note that the triggering conditions Ti(xi, ei) = χi(|ei|)− Vi(xi) ≥ 0 ensures
that Vi(xi) ≥ χi(|ei|) for all positive times. Hence we can use Theorem 4.3.2
together with the de�nition of f̃(t, x), to infer (see [SGT07], Section IV.B,
for similar arguments)

V (x(t′′))− V (x(t′)) ≤ −
∫ t′′

t′
α(|x(t)|)dt .

We can now apply [BR05], Theorem 3.2, to conclude that the origin of ẋ =
f̃(t, x), and therefore of ẋ = f(x, g(x̂)), is uniformly globally asymptotically
stable.

Theorem 4.3.3 gives a �rst triggering condition, which allows us to con-
clude stability of the closed-loop system. For a typical behavior of the trig-
gering function see Figure 4.4. It is taken from a numerical example, which
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Figure 4.4: Evolution of the Lyapunov function and the error

will be discussed in detail in Section 5.2. Figure 4.4 shows the evolution of
the Lyapunov function of a single subsystem (blue) together with the error
e (red). Whenever the red curve hits the blue line, an event is triggered.
Which means, as long as the red curve stays below the blue line condition
(4.13) holds.
To summarize, the small-gain condition (Assumption 4.2.2) ensures that the
interconnection with e ≡ 0 does not interfere with the stability properties
of the subsystems. Theorem 4.3.2 tells us under which triggering condition
involving the error e and the state allows us to conclude the existence of a
Lyapunov function for the overall system. In the absence of Zeno phenom-
ena the stability of the interconnected system with event-triggered feedback
is then concluded by fairly standard arguments.
As the assumption on the Zeno e�ects might be too demanding, the rest of
this chapter is devoted to show how to handle Zeno in a di�erent manner.

4.4 A Practical Way to Overcome Zeno

In Theorem 4.3.2 we had to rule out the occurrence of Zeno phenomena
explicitly. Here we will see that altering Assumption 4.2.1 to a notion of
practical stability will help to ensure that Zeno solutions cannot occur.

Assumption 4.4.1. For i ∈ N , there exist a di�erentiable function Vi :
Rni → R+, and class-K∞ functions αi1, αi2 such that

αi1(|xi|) ≤ Vi(xi) ≤ αi2(|xi|) .
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Moreover there exist functions µi ∈ MAF2N , γij , ηij ∈ K∞, for j ∈ N ,
positive de�nite functions αi and positive constants ci, for i ∈ N , such that

Vi(xi) ≥ max{µi
(
γi1(V1(x1)), .., γiN (VN (xN )

)
, ηi1(|e1|), .., ηiN (|eN |)), ci}

=⇒ ∇Vi(xi)fi(x, gi(x+ e)) ≤ −αi(|xi|) . (4.24)

Note that the only di�erence to Assumption 4.2.1 are the o�sets ci in
the left hand side of the implication (4.24). Assumption 4.2.1 amounts to
saying that each subsystem is ISS whereas Assumption 4.4.1 states that all
subsystems are practically ISS with o�set ci.
In the same spirit we alter Assumption 4.2.2 to the following.

De�nition 4.4.2. If there exists a σ, ρ ∈ Kn∞ and a δ > 0 such that

• for each i, the function σ−1
i is locally Lipschitz on (δ,∞);

• for every compact set K ⊂ (δ,∞) there are constants 0 < c < C such
that for all points of di�erentiability of σ−1

i

0 < c ≤ (σ−1
i )′(r) ≤ C , ∀r ∈ K , i = 1, . . . , n ;

• For all r > 0
g(σ(r), ρ(r)) < σ(r) ,

we call σ an ISpS-Ω-path.

In the last section we used Assumption 4.2.2 to conclude stability of the
unperturbed system. As we use here practical stability we can weaken As-
sumption 4.2.2 to

Assumption 4.4.3. There exists an ISpS Ω-path as in De�nition 4.4.2 for
the discrete comparison system induced by Γµ, i.e. there exist σ ∈ KN∞ and
ϕ ∈ GN such that

Γµ(σ(r), ϕ(r)) < σ(r)

for all r ≥ c̃ > 0.

Without loss of generality we may assume that c̃ ≤ max{ci}, i ∈ N . The
next theorem is the analogue of Theorem 4.3.2 for the case of practical ISS.

Theorem 4.4.4. Let Assumptions 4.4.1 and 4.4.3 hold. Let V (x) =
maxi∈N σ

−1
i (Vi(xi)). Assume that for each j ∈ N ,

max{σ−1
j (Vj(xj)), cj} ≥ η̂j(|ej |) , with η̂j = max

i∈Z(j)
ϕ−1
ij ◦ ηij . (4.25)
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Then there exists a positive de�nite α : R+ → R+ such that

〈p, f(x, g(x+ e))〉 ≤ −α(|x|), ∀p ∈ ∂V (x) ,

for all x = (x>1 x
>
2 . . . x>N )> ∈ {x : V (x) ≥ ĉ := maxi{ci, σ−1

i (ci)}}, where

f(x, g(x+ e)) =

 f1(x, g1(x+ e))
. . .

fN (x, gN (x+ e))

 .

Proof. Let N (x) ⊆ N be the set of indices i such that V (x) = σ−1
i (Vi(xi)).

Take any pair of indices i, j ∈ N . By de�nition, V (x) ≥ σ−1
j (Vj(xj)) and

γij(σj(V (x))) ≥ γij(Vj(xj)) (4.26)

by monotonicity of γij . Let i ∈ N (x) and assume V (x) ≥ ĉ. Because ĉ ≥ c̃
we have by Assumption 4.4.3

Vi(xi) = σi(V (x)) >

µi(γi1(σ1(V (x))), . . . , γiN (σN (V (x))), ϕi1(V (x)), . . . , ϕiN (V (x))) . (4.27)

Bearing in mind (4.26), we also have

Vi(xi) = σi(V (x)) >

µi(γi1(V1(x1)), . . . , γiN (VN (xN )), ϕi1(V (x)), . . . , ϕiN (V (x))) . (4.28)

Let us partition the set N := P ∪ Q. We say i ∈ P :⇔ σ−1
i (Vi(xi)) ≥ ci;

also Q := N \P. For all j ∈ P we have by (4.25) σ−1
j (Vj(xj)) ≥ η̂j(|ej |) and

hence using (4.25) (the case j /∈ C(i) is trivial because in this case ϕ = η = 0
by Proposition 4.2.3)

ϕij(V (x)) ≥ ϕij ◦ σ−1
j (Vj(xj)) ≥ ϕij ◦ η̂j(|ej |) ≥

ϕij ◦ ϕ−1
ij ◦ ηij(|ej |) = ηij(|ej |) . (4.29)

For all j ∈ Q we have by (4.25) cj ≥ η̂j(|ej |) and so

ϕij(V (x)) ≥ ϕij(ĉ) ≥ ϕij(cj) ≥ ϕij ◦ η̂j(|ej |) ≥ ηij(|ej |). (4.30)

Combining (4.29) and (4.30) we get for all j ∈ N that ϕij(V (x)) ≥ ηij(|ej |),
provided that (4.25) holds and that V (x) ≥ ĉ. Substituting ϕij(V (x)) ≥
ηij(|ej |) in (4.28) yields

Vi(xi) = σi(V (x)) >

µi(γi1(V1(x1)), . . . , γiN (VN (xN )), ηi1(|e1|), . . . , ηiN (|eN |)) . (4.31)
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For all i ∈ N (x) we have if V (x) ≥ ĉ = maxi{ci, σ−1
i (ci)}, that V (x) =

σ−1
i (Vi(xi)) ≥ ĉ ≥ σ−1

i (ci) and �nally as σ−1
i is monotone Vi(xi) ≥ ci .

The latter together with (4.31) implies the left-hand side of the implication
(4.24). Hence, for all i ∈ N (x): ∇Vi(xi)fi(x, gi(x + e)) ≤ −αi(|xi|). Now
we can repeat nearly the same arguments of the last part of the proof of
Theorem 4.4.4, and conclude that for all x such that V (x) ≥ ĉ and for all
p ∈ ∂V (x), 〈p, f(x, g(x + e))〉 ≤ −α(|x|). The only di�erence is that here
we use Assumption 4.4.3 instead of Assumption 4.2.2, which we can because
V (x) ≥ ĉ and the proof is complete.

Now that we established the existence of a Lyapunov function for the
overall system, we show that with a suitable triggering scheme the condi-
tions of Theorem 4.4.4 holds. We stress that the information needed for the
triggering condition is again purely local.

Theorem 4.4.5. Let Assumptions 4.4.1 and 4.4.3 hold. Consider the inter-
connected system

ẋi(t) = fi(x(t), gi(x̂(t))) , i ∈ N , (4.32)

as in (4.3) with triggering conditions given by

Ti(xi, ei) = η̂i(|ei|)−max{σ−1
i ◦ Vi(xi), ĉi} , (4.33)

with η̂i de�ned in (4.25) for all i ∈ N . Then the origin is a globally uniformly
practically stable equilibrium for (4.32). In particular, no Zeno behavior is
induced.

Proof. The triggering condition (4.33) ensures that (4.25) holds. Hence by
Theorem 4.4.4 we have our usual Lyapunov function
V (x) = maxi∈N σ

−1
i (Vi(xi)) for the interconnected system. By fairly stan-

dard arguments (cf. [HP05, Proposition 3.2.32]) practical stability of the
system follows similarly to the proof of Theorem 4.3.3.
It remains to show that no Zeno behavior is induced. In between triggering
events ė(t) = −ẋ(t) for all t ∈ (tk, tk+1) by (4.3).
By Theorem 4.4.4 V (x(t)) is decreasing along the solution x(t) on its domain
of de�nition as long as V (x) ≥ ĉ. Hence, x(t) is bounded on its domain
of de�nition. Since max{σ−1

i ◦ Vi(xi(t)), ĉi(t)} ≥ η̂i(|ei(t)|), then also e(t) is
bounded and so is x̂(t) = x(t)+e(t). Let us assume the jth subsystem induces
Zeno. By the considerations above all the involved quantities are bounded,
hence there exists a C ∈ R+ such that |ėj(t)| = |ẋj(t)| = |fj(x, g(x̂))| ≤ C
for all t. By (4.33) an event is triggered from the jth subsystem if

η̂j(|ej |) ≥ max{σ−1
j (Vj(xj)), ĉj} ≥ ĉj .
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Figure 4.5: Lyapunov function together with the error and the o�set

As η̂j ∈ K∞ and ĉj > 0 we have

0 < η̂−1
j (ĉj) ≤ |ej | .

Because ej(t+k ) = 0 we have for the evolution of e(t) between tk and the next
triggering event

0 < η̂−1
j (ĉj) ≤

∣∣∣∣ej(tk) +

∫ tk+1

tk

fj(x, g(x̂))ds

∣∣∣∣ ≤∫ tk+1

tk

|fj(x, g(x̂))|ds ≤
∫ tk+1

tk

Cds = C(tk+1 − tk)

and hence
0 < η̂−1

j (ĉj)/C ≤ tk+1 − tk . (4.34)

Because the jth subsystem induces Zeno we have limk→∞ tk = t∗ <∞. And
thus tk is a Cauchy sequence. This clearly contradicts (4.34) and hence no
Zeno behavior can occur.

In Figure 4.5 the quantities appearing in the triggering condition (4.25)
are depicted. Compared to Figure 4.4, an event is triggered when the error
hits the blue line or the dotted line, whichever is larger.
Similarly to Section 4.3, condition (4.25) holds as long as the red line stays
below the blue line or the dotted line.
Note that each ISS system is also practically ISS with arbitrary o�set. In
this regard, the results from this section are applicable to a larger class of
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systems than the results from Section 4.3 and Section 4.5.
Although the results presented here are applicable to a larger class of sys-
tems, we are only able to conclude practical stability for the overall system.
Sometimes stronger stability notions than practical stability are desired. An
approach which rules out the occurrence of Zeno solutions, while retaining
asymptotic stability is given in the next section.

4.5 A Parsimonious Way to Overcome Zeno

The aim of this section is to show that it is possible to design distributed
event-triggered control schemes for which the accumulation of the sampling
times in �nite time does not occur. The focus is again on the system (4.1),
namely:

ẋi = fi(x, gi(x+ e)) . (4.35)

In this section we introduce a new triggering condition, which is termed
Parsimonious triggering. This triggering condition not only prevents the
occurrence of Zeno behavior, but it can also lead to fewer events by reducing
unneeded information transmissions.
The main idea behind the new triggering scheme, which will be introduced
in Theorem 4.5.7 is that if the error of the ith subsystem is bigger than its
Lyapunov function but still small compared to the Lyapunov function of the
overall system, no transmission of the ith subsystem is required.
For future use we need also a slight variation of Theorem 4.3.2. Here we
exploit the fact that we can either compare each state to its corresponding
error (as in Theorem 4.3.2) or each error to the Lyapunov function of the
overall system as shown in the next theorem.

Theorem 4.5.1. Let Assumptions 4.2.1 and 4.2.2 hold.
Let V (x) = maxi∈N σ

−1
i (Vi(xi)) and, for each j ∈ N , de�ne:

η̂j = max
i∈Z(j)

ϕ−1
ij ◦ ηij . (4.36)

Then there exists a positive de�nite α : R+ → R+ such that the condition

V (x) ≥ η̂j(|ej |), ∀j ∈ N (4.37)

implies
〈p, f(x, g(x+ e))〉 ≤ −α(|x|), ∀p ∈ ∂V (x) .

Proof. The proof follows by a slight modi�cation of the proof of Theorem 4.3.2.
For each x, let N (x) ⊂ N be set of indices for which V (x) = σ−1

i (Vi(xi)).
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It is su�cient to show that for all i ∈ N (x), j ∈ N we have ϕij(r) ≥ ηij(|ej |),
with r = V (x).
First recall that for j /∈ C(i) the latter inequality trivially holds by Proposi-
tion 4.2.3. So assume that j ∈ C(i). Using (4.36) and (4.37), we have

ϕij(V (x)) ≥ ϕij(η̂j(|ej |)) ≥ ϕij ◦ ϕ−1
ij ◦ ηij(|ej |) = ηij(|ej |) .

i.e. (4.17) in the proof of Theorem 4.3.2. To �nish the proof, we use essentially
the same arguments after (4.17).

A triggering condition for the jth subsystem which yields the validity of
condition (4.37) would make the knowledge of the Lyapunov function V of
the overall system to system j necessary. This would contradict our wish for
a decentralized approach.
The next lemma provides a decentralized way to ensure that condition (4.37)
holds. To this end, we give an approximation of the other states (termed
W ) which will be compared to the error instead of the Lyapunov function
of the overall system. Appropriately scaled, W is a lower bound on the
Lyapunov function of the overall system and hence can be used to check the
validity of (4.37). The important advantage is, that this approximation can
be calculated using only local information.
Before we state the next lemma, de�ne

ξj,xj :=
(
ξ>1 , . . . , ξ

>
j−1, x

>
j , ξ

>
j+1, . . . , ξ

>
N

)>
as the vector ξ ∈ Rn where the jth component is replaced by xj .

Lemma 4.5.2. Let Assumptions 4.2.1 and 4.2.2 hold and let V (x) =
maxi∈N σ

−1
i (Vi(xi)). Assume for all j ∈ N there exist constants κ̃j > 0 such

that for all (x, e) ∈ Rn × Rn there is an approximation dj = dj(xj , ej) of
|fj(x, gj(x + e))| with the property that V (x) ≥ η̂i(|ei|) for all i 6= j implies
|fj(x, gj(x+ e))| − dj | ≤ κ̃j max{|xj |, |ej |}.
Assume furthermore that for all j ∈ N there exist functions Θj : RN+1 → R
such that V (x) ≥ η̂i(|ei|) for all i 6= j implies

Θj(|x1|, . . . , |xN |, |ej |) ≥ |fj(x, gj(x+ e))| . (4.38)

De�ne
W (j, xj , ej , dj) = min{max

i 6=j
|ξi| : ξ ∈ A(j, xj , ej , dj)}

with

A(j, xj , ej , dj) =

{ξj,xj ∈ Rn : Θj(|ξ1|, . . . , |ξN |, |ej |) ≥ dj − κ̃j max{|xj |, |ej |} } . (4.39)
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Then the condition

W (j, xj , ej , dj) ≥ ψ−1 ◦ η̂j(|ej |), (4.40)

with ψ = minj∈N σ
−1
j ◦ αj1 implies

V (x) ≥ η̂j(|ej |) .

Proof. For later use de�ne

A(j, xj , ej , ẋj) = {ξj,xj : ∃ ε ∈ Rn s.t.

fj(ξ
j,xj , gj(ξ

j,xj + εj,ej )) = ẋj and V (ξj,xj ) ≥ η̂i(|εi|) ∀i 6= j} . (4.41)

The set A(j, xj , ej , ẋj) describes the set of all ξj,xj for which a pair (ξj,xj , εj,ej )
exists that satis�es the right hand side of the jth subsystem for a given
ẋj , xj , ej and for which V (ξj,xj ) ≥ η̂j(|εi|) for all i 6= j hold. As the system's
state satis�es the dynamics, it holds that x ∈ A.
Before we proceed, we want to show that A(j, xj , ej , ẋj) ⊂ A(j, xj , ej , dj). To
this end take a ξ ∈ A(j, xj , ej , ẋj). Hence we have fj(ξj,xj , gj(ξj,xj +εj,ej )) =
ẋj . Taking the norm and using (4.38) yields

Θj(|ξ1|, . . . , |ξn|, |ej |) ≥ |fj(ξj,xj , gj(ξj,xj + εj,ej ))| =
|ẋj | ≥ dj − κ̃j max{|xj |, |ej |} ,

where the last inequality follows from the condition on the approximation for
|ẋj |. And we can conclude A(j, xj , ej , ẋj) ⊂ A(j, xj , ej , dj).
From condition (4.40) we deduce

ψ−1 ◦ η̂j(|ej |) ≤W (j, xj , ej , dj) = min{max
i 6=j
|ξi| : ξ ∈ A(j, xj , ej , dj)} ≤

min{max
i 6=j
|ξi| : ξ ∈ A(j, xj , ej , ẋj)} ≤ max

i6=j
|xi| . (4.42)

The second inequality follows from A(j, xj , ej , ẋj) ⊂ A(j, xj , ej , dj) and the
last can be deduced from x ∈ A. Now we rewrite (4.42) to get

η̂j(|ej |) ≤ ψ(max
i 6=j
|xi|) .

With the help of (4.42), the de�nition of ψ, and Assumption 4.2.1 we arrive
at

η̂j(|ej |) ≤ min
k∈N

σ−1
k ◦ α1k(max

i 6=j
|xi|) ≤

max
i 6=j

σ−1
i ◦ α1i(|xi|) ≤ max

i∈N
σ−1
i (Vi(xi)) = V (x) ,

and the proof is complete.
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Before we can state another event-triggering scheme, which does not in-
duce Zeno behavior we have to note that if Zeno behavior occurs, one of the
states has to approach the equilibrium.

Lemma 4.5.3. Consider a large scale system with triggered control of the
form (4.3) satisfying Assumptions 4.2.1 and 4.2.2. Let χi, i ∈ N be given by
(4.12). Consider the triggering conditions

Ti(xi, ei) = χi(|ei|)− Vi(xi) , i ∈ N .

If for a given initial condition x0 the triggering scheme Ti∗ for some i∗ ∈ N
induces Zeno behavior, then the corresponding solution

xi∗(tk)→ 0 .

Proof. Denote t∗ = limk→∞ tk. By de�nition of the triggering condition we
have for each k an index i(k) ∈ N such that

Vi(k)(xi(k)(tk)) = χi(k)(|ei(k)(tk)|) .

Choose i∗ ∈ N such that i(k) = i∗ for in�nitely many k. Such a i∗ exists
because N is �nite and k ranges over all of N. Let K be the set of indices for
which i(k) = i∗. For ease of notation let K = {s1, s2, . . . }. By Theorem 4.3.2
V is a Lyapunov function for the event triggered system on the interval
[0, t∗). Thus the trajectory x|[0,t∗) is bounded and e|[0,t∗) is bounded because
χi(|ei(t)|) ≤ Vi(xi(t)) for all i ∈ N , t ∈ [0, t∗). It follows that ui|[0,t∗) is
bounded and so ẋi is bounded on [0, t∗) for all i ∈ N .
Then we have by uniform continuity of xi∗ on [0, t∗) that the following limit
exists

lim
k→∞

χi∗(|ei∗(sk)|) = lim
k→∞

Vi∗(xi∗(sk)) = Vi∗(xi∗(t
∗)). (4.43)

By de�nition ei∗(s+
k ) = 0. Considering (4.3) we have that ėi∗ = −ẋi∗ almost

everywhere on (sk, sk+1). Since ẋi∗ is bounded and sk+1 − sk → 0, then
condition ei∗(s+

k ) = 0 implies that

ei∗(sk+1) = ei∗(s
+
k ) +

∫ sk+1

sk

ėi∗(τ)dτ =

∫ sk+1

sk

ėi∗(τ)dτ ,

which tends to 0 for k →∞. Hence by (4.43) we obtain that Vi∗(xi∗(t∗)) = 0.
This shows the assertion.

The next lemma provides an inequality for the state and the corresponding
dynamics. Besides the rather technical nature of Lemma 4.5.4 and 4.5.3 they
are essential to be able to compare the ith state to the rest of the states as
will be seen in Theorem 4.5.7.
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Lemma 4.5.4. Consider system

ẋ = f(x, g(x+ e)) (4.44)

as in (4.3). If there are triggering instances tk → t∗ for k →∞ and an index
i such that xi(tk) → 0, then for all M > 0 there exists a k∗ ∈ N such that
for some k ≥ k∗

|xi(tk+1)− xi(tk)|
tk+1 − tk

> M |xi(tk+1)|.

Proof. The proof will be by contradiction. To this end assume that for some
�xed M > 0 and all k su�ciently large we have

|xi(tk+1)− xi(tk)| ≤M(tk+1 − tk)|xi(tk+1)| . (4.45)

The evolution of xi between tl and tk for k > l can be bounded by using
a telescoping sum, the triangle inequality, applying (4.45), and a judicious
addition of 0:

|xi(tk)− xi(tl)| ≤
k∑

j=l+1

|xi(tj)− xi(tj−1)| ≤
k∑

j=l+1

M(tj − tj−1)|xi(tj)| ≤

k∑
j=l+1

M(tj − tj−1)|xi(tj)− xi(tl)|+
k∑

j=l+1

M(tj − tj−1)|xi(tl)| =

k−1∑
j=l+1

M(tj − tj−1)|xi(tj)− xi(tl)|+

M(tk − tk−1)|xi(tk)− xi(tl)|+M(tk − tl)|xi(tl)| .

If we choose D > 0 and a k′ such that 0 < 1
1−M(tk−tk−1) ≤ D for all k > k′,

we can rewrite the latter to

|xi(tk)− xi(tl)| ≤
1

1−M(tk − tk−1)

k−1∑
j=l+1

M(tj − tj−1)|xi(tj)− xi(tl)|

+
M(tk − tl)

1−M(tk − tk−1)
|xi(tl)| .
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Using the discrete Gronwall inequality (see Appendix C) yields

|xi(tk)− xi(tl)| ≤
M(tk − tl)

1−M(tk − tk−1)
|xi(tl)|+

1

1−M(tk − tk−1)

k−1∑
j=l+1

M(tj − tl)
1−M(tj − tj−1)

|xi(tl)|M(tj − tj−1)×

k−1∏
s=j+1

(
1 +

M(ts − ts−1)

1−M(ts − ts−1)

)
.

Exploiting that tk is a monotone sequence, that 0 ≤ 1
1−M(tk−tk−1) ≤ D and

that 1 + x ≤ ex for all x ∈ R and collapsing the telescoping sum again gives

|xi(tk)− xi(tl)| ≤ (MD(tk − tl) +M2D2(tk−1 − tl)2eMD(tk−1−tl))︸ ︷︷ ︸
:=C

|xi(tl)| .

Because of the �nite accumulation point t∗, C is arbitrary small for large k
and l. Hence there exist an k∗ > k′ such that

|xi(tk)− xi(tl)| ≤ C|xi(tl)|

for all k ≥ l ≥ k∗ with C < 1. As this is true for all large k we can write

lim
k→∞

|xi(tk)− xi(tl)| ≤ C|xi(tl)|

and hence
| lim
k→∞

xi(tk)− xi(tl)| ≤ C|xi(tl)| .

Because C < 1 this contradicts |xi(t∗)| = 0 and the proof is complete.

Before we can state an immediate corollary, we have to recall a conse-
quence of Gronwall's lemma.

Lemma 4.5.5. If we have

|ẋ(t)| ≤ L|x(t)| (4.46)

for almost all t ∈ [t1, t2], t2 > t1 and L ∈ R+, then it holds

|x(t2)| ≥ e−L(t2−t1)|x(t1)| .
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Proof. De�ne z(t) = e2Lt|x(t)|2. For the derivative of z we have

ż(t) = 2Lz(t) + 2e2Lt〈x(t), ẋ(t)〉 .

By using the Cauchy-Schwarz inequality and (4.46) we arrive at

ż(t) ≥ 2L
[
z(t)− e2Lt|x(t)|2

]
= 0 (4.47)

for almost all t ∈ [t1, t2]. Hence

z(t2) = z(t1) +

∫ t2

t1

ż(s)ds ≥ z(t1) .

As the square root is a monotone function we conclude

eL(t2−t1)|x(t2)| ≥ |x(t1)| ,

which is the desired property.

Corollary 4.5.6. Under the conditions of Lemmas 4.5.3 and 4.5.4, assume
that the functions Θj from Lemma 4.5.2 satisfying (4.38) may be chosen to
be Lipschitz and so that Θi(0, . . . , 0) = 0 holds. Furthermore, assume for all
i ∈ N the functions χ−1

i ◦ α2i are Lipschitz. Consider an initial condition
x(0) = x0 6= 0. If there is Zeno behavior at t∗, i.e. if there are triggering
instances tk → t∗, then for the overall state x of (4.44)

x(tk) 6→ 0 as k →∞ . (4.48)

Proof. We �rst exclude that there is a s∗ ∈ [0, t∗) such that x(s∗) = 0.
Otherwise choose Lipschitz constants Li for Θi valid on the compact set
{x(s) ; s ∈ [0, s∗]} and note that we have for each i almost everywhere on
[0, s∗]

|ẋi(t)| = |fi(x(t), gi(x(t) + e(t)))| ≤
Θi(|x1(t)|, . . . , |xN (t)|, |ei(t)|) ≤ Li|x(t)| , (4.49)

where we assumed without loss of generality that Li is larger than the
Lipschitz constant from χ−1

i ◦ α2i. Recall that by Assumption 4.2.1 and
the triggering condition |ei| ≤ χ−1

i ◦ α2i(|xi|).
Note that we can use Θi as a bound for the dynamics as in (4.38), because
the validity of Vi(xi) ≥ χi(|ei|) for all i trivially implies V (x) ≥ η̂i(|ei|).
As (4.49) is true for all i, this implies |ẋ(t)| ≤ L|x(t)| for L su�ciently
large and almost all t ∈ [0, s∗]. From Proposition 4.5.5 it follows that
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|x(s∗)| ≥ e−Ls∗ |x(0)| > 0, so that x(s∗) 6= 0.
If x(tk) → 0, then x(t) → 0 for t ↗ t∗. Hence for each i, and k su�-
ciently large we have that (4.49) holds almost everywhere on (tk, t

∗). As in
the �rst part of the proof it follows from Proposition 4.5.5 that |x(t∗)| ≥
e−L(t∗−tk)|x(tk)| > 0, because by the �rst step of the proof x(tk) 6= 0. This
contradicts the assumption that x(tk)→ 0.

The rest of this section is devoted to constructing an event-triggered con-
trol scheme which ensures that Condition (4.37) holds.
From Lemma 4.5.3 we know that if Zeno behavior occurs, then one of the
subsystems approaches the origin in �nite time. Corollary 4.5.6 shows that
under certain regularity assumptions, a number of subsystems do not con-
verge to 0 as we approach the Zeno point. Hence, from a certain time on,
the Lyapunov function corresponding to the subsystem which tends to the
origin does not contribute to the Lyapunov function for the overall system.
As a consequence no information transfer from this subsystem is necessary
using parsimonious triggering. This observation is made rigorous in the rest
of the section.
In the next theorem we use the triggering condition as in Theorem 4.3.3 but
we add another triggering condition Ti2, which checks whether the ith sub-
system contributes to the Lyapunov function of the overall system. It does
so by comparing the local error of system i with the approximation W of
the other states as described in Lemma 4.5.2. The main idea is that if the
dynamics of the ith system is large compared to its own state, other states
must be large. As the correct value of the dynamics is not known to system
i, an approximation of |ẋi| is used.
As the aim is to use only local information, we will use the di�erence quotients
to approximate the size of the derivative at the triggering points. Further-
more, we do not wish to assume that all subsystems are aware of all triggering
events. Hence in the following we will use the notation tik to denote those
triggering events initiated by system i. We de�ne

di(t) =
|xi(t)− xi(tik−1)|

t− tik−1

(4.50)

as the di�erence quotient approximating |ẋi(t)| after the triggering event
tik−1.
Adding the new triggering condition that uses (4.50) allows us to exclude the
occurrence of Zeno behavior as will be seen in the next theorem.

Theorem 4.5.7. Consider a large scale system with triggered control of the
form (4.3) satisfying Assumptions 4.2.1 and 4.2.2.
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Let V (x) = maxi∈N σ
−1
i (Vi(xi)). De�ne

Ti1(xi, ei) = χi(|ei|)− Vi(xi)

with χi as in Theorem 4.3.3 and

Ti2(xi, ei, di) = ψ−1 ◦ η̂i(|ei|)−W (i, xi, ei, di) ,

where ψ, W (i, xi, ei, di) and η̂i are de�ned as in Lemma 4.5.2. Furthermore,
assume that for all i ∈ N the Θi from Lemma 4.5.2 and ψ−1◦ η̂i are Lipschitz
with Lipschitz constant Li respectively Ki and that Θi(0, . . . , 0) = 0 holds.
Consider the interconnected system

ẋi(t) = fi(x(t), gi(x̂(t))) , i ∈ N , (4.51)

as in (4.3) with triggering conditions given by

Ti(xi, ei, di) = min{Ti1(xi, ei), Ti2(xi, ei, di)} , (4.52)

for all i ∈ N . Then the origin is a globally uniformly asymptotically stable
equilibrium for (4.51), if there are constants κj > 0, j ∈ N such that at
the triggering times tk, which are implicitly de�ned by (4.51) and (4.52) as
described in Section 4.1, the following condition is satis�ed:

||ẋj(tjk)| − dj(tjk)| ≤ κj |xj(tjk)| (4.53)

where dj(t
j
kj

) is de�ned by (4.50). In particular, no Zeno behavior occurs.

Proof. Before we can use Theorem 4.3.3 respectively Theorem 4.5.1 to con-
clude stability, we have to exclude the occurrence of Zeno behavior. First
note that condition (4.52) triggers an event if and only if Ti1 ≥ 0 and Ti2 ≥ 0
respectively condition (4.13) and (4.37) are violated. Now assume that the
jth subsystem induces Zeno behavior. For simplicity, we omit the index
j of the triggering times tjk. Hence, let tk be the triggering times of the
jth subsystem and t∗ = limk→∞ tk the �nite accumulation point. From
Lemma 4.5.3 we know that the jth subsystem has to approach the equilib-
rium, i.e. limtk→t∗ xj(tk) = 0. Lemma 4.5.4 tells us that for all M there
exists a k∗ such that for some k ≥ k∗

|xj(tk)− xj(tk−1)|
tk − tk−1

> M |xj(tk)| . (4.54)

As discussed in the proof of Lemma 4.5.2, the full state x ∈ A ⊂ A. But the
knowledge of x is not available to a single subsystem. Hence, we take ξ(tk) ∈
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A(j, xj(tk), ej(tk), dj(tk)) as in the de�nition of W as an approximation for
the states of the other subsystems. For this ξ we can deduce together with
the Lipschitz continuity of Θj , (4.54) and the fact that ej(tk) = 0

Lj max
i 6=j
{|ξi(tk)|, |xj(tk)|} ≥ Θj(|ξ1|, . . . , |xj |, . . . , |ξN |, 0) ≥

|xj(tk)− xj(tk−1)|
tk − tk−1

− κj |xj(tk)| > (M − κj)|xj(tk)| . (4.55)

And hence for the k given in (4.54)

max
i6=j
{|ξi(tk)|, |xj(tk)|} > M − κj

Lj
|xj(tk)| . (4.56)

Now choose
M > max{κj + Lj , κj + LjKj} , (4.57)

where Kj is the Lipschitz constant of ψ−1 ◦ η̂j . From Lemma 4.5.4 we know
that this choice of M yields a k∗ such that we can conclude together with
(4.56) maxi 6=j{|ξi(tk)|, |xj(tk)|} = maxi 6=j |ξi(tk)| for some k ≥ k∗. For this
k we want to show that the corresponding tk is not a triggering time.
To this end we use (4.55) and (4.54) to get

max
i 6=j
|ξi(tk)| ≥ 1

Lj
(1− κj

M
)
|xj(tk)− xj(tk−1)|

tk − tk−1
. (4.58)

Note that for the jth subsystem (4.58) is true for all ξ ∈ A and therefore by
the de�nition of W

W (j, xj , ej , dj) ≥
1

Lj
(1− κj

M
)
|xj(tk)− xj(tk−1)|

tk − tk−1
.

Using the latter inequality and the Lipschitz constant for ψ−1 ◦ η̂j we can
bound Tj2 by

Tj2 ≤ Kj |ej(tk)| − 1

Lj
(1− κj

M
)
|xj(tk)− xj(tk−1)|

tk − tk−1
.

From the de�nition of ej(tk) = xj(tk−1)− xj(tk) we arrive at

Tj2 ≤ Kj |xj(tk)− xj(tk−1)| − 1

Lj
(1− κj

M
)
|xj(tk)− xj(tk−1)|

tk − tk−1
.

We may assume that k∗ is su�ciently large so that tk − tk−1 < M−1 for all
k ≥ k∗. Together with (4.57) we obtain

Kj <
1

Lj(tk − tk−1)
(1− κj

M
)
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and hence Tj2 < 0 in contradiction to the assumption that tk is a triggering
time. Because the only further assumption on the solution of (4.51) and
(4.52) is the occurrence of Zeno behavior, the aforementioned contradiction
shows that Zeno behavior cannot occur.
To conclude stability de�ne

I(x, e) := {j ∈ N : Vj(xj) ≥ χj(|ej |)} ,

J(x, e) := {j ∈ N : V (x) ≥ η̂j(|ej |)} ,

and
J (x, e) := {j ∈ N : ψ(W (j, xj , ej , dj)) ≥ η̂j(|ej |)} .

Note that the triggering condition Tj ensures that j ∈ I ∪ J . For j ∈ I we
can use exactly the same reasoning as in Theorem 4.3.3.
Lemma 4.5.2 tells us that from j ∈ J we can deduce j ∈ J . For the case
j ∈ J we can adopt nearly the same reasoning as in Theorem 4.3.3. Only
the reasoning for the existence of a Lyapunov function for the overall sys-
tem changes. In Theorem 4.3.3 this can be deduced from Theorem 4.3.2
whereas here we have to use Theorem 4.5.1 to conclude the existence of a
Lyapunov function. The rest of the proof can be copied word by word from
Theorem 4.3.3. This ends the proof.

Figure 4.6: Lyapunov function together with the error and the approxima-
tion of the Lyapunov function of another subsystem

Figure 4.6 shows the Lyapunov function of two subsystems (for system
one in blue and for system two in black) together with the error of the �rst
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subsystem (in red) and the approximation of the Lyapunov function of the
second subsystem calculated by the �rst subsystem (in green).
Similarly, as in Figure 4.4 respectively Figure 4.5 an event is triggered when-
ever the red curve hits the blue line or the green line, whichever is larger.
In the situation depicted in this �gure, using only the triggering condition
Ti1 would lead to Zeno solutions.
Lemma 4.5.3 tells us that if an event-triggering scheme like (4.13) would lead
to Zeno solutions, the corresponding state and hence the Lyapunov function
has to go to zero in �nite time. At around t ≈ 0.08 in Figure 4.6 exactly this
happens.
By the de�nition of the approximation W it can be seen that W is a lower
bound on the state (or the Lyapunov function, depending on the scaling).
We can interpret (4.56) together with (4.54) and Corollary 4.5.6 in such a
way that as we approach the Zeno point, the approximation gets larger. In
Figure 4.6 the approximation (green) grows until it nearly hits the black line,
con�rming the aforementioned interpretation. Interestingly, the approxima-
tion is only nonzero around the Zeno point.

4.6 Notes and References

The material from Section 4.4 appears in the proceedings of the MTNS con-
ference 2012 in Melbourne [DPSW12]. The basic idea (Section 4.3) appeared
in the proceedings of the IFAC world congress 2011 ([DPSW11] ).
Section 4.5 is based on work appeared in Automatica ([DPSW13b]).
As in Chapter 2 the basic idea of event-triggering stems from signal theory.
Usually, it is referred to as δ-sampling. The signal space is partitioned in
equally spaced regions, δ apart. A new sample is taken whenever the signal
crosses one of the boundaries. Ideas of non periodic sampling where already
presented as early as in [Ell59, TB66].
An approach similar to the presented framework is [MT11, Tab07].
The approach of [MT11] builds upon [Tab07] in that it requires a centralized
controller u = g(x) to make the closed-loop system ẋ = f(x, g(x + e)) ISS
with respect to the measurement errors e. Assuming that the comparison
functions appearing in the ISS inequality are locally Lipschitz and that semi-
global asymptotic stability is of interest, the triggering function of [MT11]
takes the form |e(t)|2 ≤ σ|x(t)|2 for some positive constant σ depending on
the set of initial conditions of the system. In [MT11], this triggering condi-
tion is replaced by the triggering functions |ei(t)|2 ≤ σ|xi(t)|2 +θi, for i ∈ N ,
where the θi's are time-varying scalar parameters satisfying

∑
i∈N θi = 0 and

adjusted on-line via a heuristic. Whenever one of the N triggering conditions
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is ful�lled, then the entire controller u = g(x) is updated. This centralized
update of the control law also allows the authors to avoid the Zeno phe-
nomenon.
Compared with [MT11], the approach presented here is fully decentralized
not only because the sensors sample in a decentralized fashion (and in a way
very di�erent from [MT11] ) but also as far as the control design is concerned.
Indeed: (i) for each subsystem a controller is designed which guarantees ISS
of the subsystem (cf. Assumption 4.2.1); (ii) these controllers depend on lo-
cal measurements only (cf. Assumption 4.2.1); (iii) if the measurement xi
is sampled, only the controllers which use xi are updated (cf. Section 4.1).
For truly large-scale systems, it can be much more convenient to design the
decentralized controllers proposed in this paper than a single centralized con-
troller.
An approach to event-triggered control of large-scale systems closer to the
one proposed in this chapter is presented in [WL11]. A number of impor-
tant di�erences, however, must be emphasized. First of all, we remark that
the standing Assumption 4.1 in [WL11] implies but it is not implied by our
Assumption 4.2.1. In fact, recall that [WL11], Assumption 4.1 requires

∇Vi(xi)fi(x, gi(x+ e)) ≤

− αi|xi|p +
∑

j∈Σ(i)∪C(i),j 6=i

βj |xj |p +
∑
j∈C(i)

δj |ej |p , (4.59)

where Vi is as before. This is the dissipative formulation of the ISS property
of system i with respect to the other systems and the error variables. It is
well known that dissipative ISS formulations are equivalent to the implica-
tion formulation we used in Assumption 4.2.1. In particular, (4.59) can be
transformed to (4.11). On the other hand, because of the speci�c form of the
comparison functions in (4.59), the assumption used in this chapter is more
general.
This has a considerable impact in the analysis presented in [WL11], Theo-
rem 4.3, where it is enough to assume a small gain condition involving the
constant gains αi, βi (see [WL11], condition (6)). To be more precise, con-
dition (6) in [WL11], which is formulated for a dissipative ISS condition,
ensures that the coupling matrix is diagonally dominant and thus Hurwitz
and Metzler. We note that this condition is restrictive when compared to
ISS small-gain theorems for the dissipative case, cp. [DIW11, Section 3]. For
a discussion on the di�erence of small-gain theorems see also the notes and
reference section of Chapter 3.
Although in [WL11], Remark 4.5, the authors observe that the gain functions
in (4.59) can be replaced by other K Lipschitz functions, for Theorem 4.3 to
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continue to hold it is very likely that such functions will be much less general
then the ones considered here.
In our case, the use of general nonlinear heterogeneous gain functions and a
small gain condition expressed in terms of nonlinear functions rather than
constants enlarges considerably the class of systems to which our approach
applies. Furthermore, our generalization requires a di�erent analysis than
the one in [WL11].
The proof of Theorem 4.3.2 is inspired by [DRW10]. In fact, letting e ≡ 0
recovers the proof of [DRW10, Theorem 5.3]. With the di�erence that in
[DRW10] a somewhat di�erent small-gain condition was used. See notes and
references of Chapter 3 for details.
One major drawback of event-triggered control is the need for constantly
measuring the state. One approach trying to overcome this issue is termed
self-triggered control [MJAT10, AT10].
In self-triggered control a mechanism to predict the next event-time is intro-
duced. Although it is no longer necessary to monitor the state constantly,
the robustness immanent to event-triggered control is lost.
In the hybrid system community the approach to deal with Zeno e�ects with
the help of practical stability as in Section 4.4 is termed temporal regular-
ization (c.f. [GST09] ). For a more general discussion on solution theory for
Zeno phenomena see [AZGS06].
In Section 4.5 a new way to deal with Zeno was introduced. With the help
of the dynamics of a subsystem an approximation on the other states was
derived. It would be of interest to pursue this idea further in such a way that
the approximation is generated by di�erent means. In particular, it could
be possible to construct an observer, which gives su�cient good knowledge
of the other states to follow the same ideas as in Section 4.5. This is also
of interest, because the computation of the approximation involves solving
a possibly non convex optimization and hence is possibly computationally
unfeasible. Another direction for further research could be to investigate
whether this optimization can be carried out o�ine instead of solving it on
the �y.
It is also of interest to investigate how to handle the e�ects of delay and
packet loss. We have seen in the last chapter that the small-gain theorems
used here are also applicable for the case of delay di�erential equations. Hence
we hope that by a more conservative triggering condition we could still use
the approach from this chapter.
In [WL11] ideas how to handle packet loss are given. We expect that similar
ideas can also be used here.
Another issue is collision avoidance on the communication channel. In re-
alistic media, two subsystems cannot communicate at the same time. Ideas
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how to address this problem can be found in [NT07]. In this paper a large
class of medium access protocols are treated as dynamical systems and the
stability analysis in the presence of communication constraints is carried out
by including the protocols in the closed-loop system.
In Chapter 2 we dealt with the e�ects of quantization. As we already model
the e�ects of the imperfect knowledge of the states to the controllers, we could
handle the e�ect of quantization with just minor modi�cations. In particular,
interpreting e = max{e1, e2}, where e1 is the zero order hold error and e2

is the quantization error would help us to handle the e�ects of quantization
within our event-triggering approach.
In this chapter we assumed out of convenience that ˙̂x ≡ 0. It could lead to
fewer events if we would use more sophisticated approaches than zero order
hold. For instance, if all sensors have models of all other subsystems (sim-
ilarly to Chapter 2), the evolution of the error would be less conservative,
leading to fewer events at the cost of higher computational complexity.
Carefully inspecting the proofs show, that in this case all our considerations
still hold true for the case ˙̂x 6≡ 0 with only minor modi�cations.
Although we presented triggering conditions that avoid Zeno phenomena, it
would be of interest for applications to have a bound on the minimal inter
event times. First ideas addressing this problem within our setup is given in
[DPSW13a].
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Chapter 5

Numerical Simulations

The simulations presented here already appeared in [SW14a] and [SW14b].
The corresponding Matlab code is given in Appendix A.

5.1 Dynamic Quantization

Here we give a numerical example, which shows the behavior of our approach
from Chapter 2. To be more precise we implement the example given in
Section 2.5. We use as a showcase the celebrated pendulum on a cart. For a
derivation of the linearized model see [HP05].
The equation of the pendulum on a cart is given by

d

dt


x1

x2

x3

x4

 =


0 0 1 0
0 0 0 1
0 mg

M 0 0

0 − g(m+M)
lM 0 0



x1

x2

x3

x4

+


0
0
1
M
− 1
lM

u
where x2, x4 are angle and angular velocity of the pendulum and x1 resp. x3

denote the position and velocity of the cart.
In the simulations the values m = 0.329,M = 3.2, l = 0.44, g = 9.81 have

been used.
As described in Chapter 2 the encoder and decoder use a copy of the dynam-
ics. We denote the states of the decoder with x̂1, . . . , x̂4.

The control action, which stabilizes the upright position is given by

u(t) = Fx(t) ,

where F ∈ R1×4 is calculated via standard pole placement techniques.
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0

r(t)u(t)

l

ϕ(t)

m

M

Figure 5.1: An inverted pendulum on a cart. (x2 = ϕ, x4 = ϕ̇, x1 = r,
x3 = ṙ)

Simulation results for the initial state x(0) = (3, 7,−4, 2)> can be found
in Figure 5.2 for the position of the pendulum respectively the cart and Fig-
ure 5.3 for the corresponding velocities.
In Figure 5.2 the angle of the pendulum is depicted in blue and the position
of the cart in green.
The control action is calculated via the turquoise and red trajectory respec-
tively.
The angular velocity of the pendulum is given in blue in Figure 5.3, while the
velocity of the cart is the green trajectory. The control action is calculated
via the red line for the cart and in turquoise for the pendulum.

The corresponding Matlab code is given in Section A. The physical pa-
rameters are taken from [fAuPRUB].
The blue dots at the bottom of the �gures denote the time instances the en-
coder sends information while the vertical dotted lines are the time instances
the decoder receives information.
In Figure 5.5 a zoom into the transient of x1 is depicted together with the
quantization region and the value x̂1, which is used to close the loop. In
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Figure 5.2: Position of cart and pendulum (x1 green, x2 blue, x̂1 red, x̂2

turquoise)
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Figure 5.3: Speed of cart and pendulum (x3 green, x4 blue, x̂3 red, x̂4

turquoise)
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Figure 5.6 the same for x3 respectively x̂3 can be seen. In both �gures the
shaded region depicts the quantization region. Every time, the decoder re-
ceives information, the quantization region shrinks. Between these events the
quantization region grows exponentially, as the theory predicts. Up to the
�rst time the decoder receives data, the system runs in open loop. Every
time the decoder receives information, the center of the quantization region
jumps. This leads to a jump in the trajectory used to close the loop. At this
time instances the trajectory of the pendulum are not di�erentiable explain-
ing the kinks in the trajectory.
As predicted by the theory, the state always stays within the quantization
region. Note that this does not hold in general for the decoder trajectory,
as can be seen for instance at t = 0. Consistently to the theory, at the time
instances the decoder receives information (e.g., t ≈ 0.1) the decoder trajec-
tory and the center of the quantization region coincides.
We choose a large initial size of the quantization region as well as a small
N in order to enhance the visibility of the quantization region. Because of
the exponential decay it would be hard to distinguish the trajectory and the
quantization region otherwise.
The choice of a small N demands for rather small delays in order to satisfy
condition eLτ

∗
< N . The delays are drawn randomly from a normal distri-

bution with mean 0.15 and variance 0.002. The distribution of the delays is
plotted in Figure 5.4.

The evolution of the error e1 = |x1 − x̂1| can be found in Figure 5.7 and
for e3 = |x3 − x̂3| in Figure 5.8. Theory predicts that eLτ

∗
/N < 1 can be

uses as an exponentially decaying bound on the error. The red line is this
upper bound on the error and the green line denotes the bound on the error
if the actual mean delay is used.
The error itself is given in black. Please note that the �gures are logarithmi-
cally scaled.
We want to stress that we have chosen a large initial size of the quantiza-
tion region as well as a small N in order to have a slow convergence of the
quantization region. To showcase a more realistic situation, we simulated
the non-linear inverse pendulum with larger delays. The size of the delays
demands for a larger N . The dynamics are

ẋ1 = x2

ẋ2 = sinx1 − u cosx1

with u = k(x) a simple controller for the linearized model. The results are
given in Figure 5.9. After the �rst time the decoder receives information
around t ≈ 0.3 the trajectory of the system and the trajectory used to close
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Figure 5.4: Distribution of the delays

the loop cannot be distinguished anymore. The simple controller used does
not render the closed loop system ISS. In Theorem 2.4.1 we see that the
error dynamics are asymptotically stable without the ISS assumption. This
is demonstrated in Figure 5.10. If we choose the initial condition outside the
basin of attraction of the simple controller used, the closed-loop system is
unstable. But for the presented approach it still holds that the di�erence of
the state and the trajectory used to close the loop converges. After t ≈ 1.7
no di�erence between the trajectories of system and decoder can be seen.

5.2 Event Triggered Control

Here we want to give an example which shows the feasibility of our event
based approach. The Matlab code for the presented simulations can be found
in Appendix A.
The following interconnection of N = 2 subsystems

ẋ1 = x1x2 + x2
1u1

ẋ2 = x2
1 + u2
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Figure 5.5: Position of the cart
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Figure 5.6: Velocity of the cart
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Figure 5.7: Di�erence between x1 and x̂1

is considered under the assumption that each controller can only access the
state of the system it controls. The control laws are chosen accordingly as

u1 = −(x1 + e1) , u2 = −k(x2 + e2) , k > 0 .

Let Vi(xi) = 1
2x

2
i for i = 1, 2. Then

V̇1(x1) := ∇V1(x1)(−x3
1 + x1x2 − x2

1e1) ≤ x2
1(−1

2
x2

1 + |x2|+
1

2
e2

1) (5.1)

from which we can deduce

1

4
x2

1 ≥ |x2|+
1

2
e2

1 ⇒ V̇1(x1) ≤ −1

4
x4

1 .

Since the left-hand side of the implication is in turn implied by V1(x1) ≥
max{

√
32V2(x2), 2e2

1}, this shows that the �rst subsystem ful�lls Assump-
tion 4.2.1 with

µ1 = max , γ11(r) = 0 , γ12(r) =
√

32r , η11(r) = 2r2 , η12(r) = 0 . (5.2)

Similarly

V̇2(x2) := ∇V2(x2)(x2
1 − kx2 − ke2) ≤ |x2|(−k|x2|+ x2

1 + k|e2|)
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Figure 5.8: Di�erence between x3 and x̂3

and therefore

V2(x2) ≥ max{32

k2
V 2

1 (x1), 8e2
2} ⇒ V̇2(x2) ≤ −k

2
x2

2 ,

i.e. the second subsystem satis�es Assumption 4.2.1 with

µ2 = max , γ21(r) =
32

k2
r2 , γ22(r) = 0 , η21(r) = 0 , η22(r) = 8r2 . (5.3)

For the case N = 2 the conditions for an Ω-path are

γ12 ◦ σ2 < σ1 , γ21 ◦ σ1 < σ2 .

It is easy to see that if we choose σ1 = id, the latter is equivalent to γ21 < σ2 <
γ−1

12 . Provided that k > 32, one can set σ2(r) = σ2r2, with σ2 ∈ ( 32
k2 ,

1
32 ). If

ϕ ∈ GN×N is additionally chosen as

ϕ11(r) =
√

32σr , ϕ12 ≡ ϕ21 ≡ 0 , ϕ22(r) =
32

k2
r2 ,

then Assumption 4.2.2 is satis�ed. In view of the choice of σ, µ and ϕ, the
requirement Γµ(σ(r), ϕ(r)) < σ(r) boils down to the condition Γµ(σ(r)) <
σ(r) which is equivalent to the small-gain condition γ12 ◦ γ21 < Id. This
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Figure 5.9: Trajectories of the pendulum

small-gain condition is ful�lled by the choice of k, since γ12 ◦ γ21(r) = 32
k r.

Hence Theorem 4.3.2 applies and provides an expression for the functions χi
used in the event-triggered implementation of the control laws. The functions
are given explicitly by

χ1(r) :=
1√
8σ
r2, χ2(r) :=

σ2k2

4
r2 .

Hence the triggering function introduced in Theorem 4.3.3 is explicitly given
by

Ti(xi, ei) = χi(|ei|)− Vi(xi) . (5.4)

Simulation results for the initial condition x1(0) = −4, x2(0) = 3, x̂1(0) = −4
and x̂2(0) = 3 can be found for t ∈ [0, 2] in Fig. 5.11 and 5.12. The trajectory
of the �rst system is given in blue and for the second system in green. The
input is calculated using the red and turquoise values accordingly. Figure 5.11
shows the event triggering scheme from Theorem 4.3.3 as presented in (5.4).
Between t = 0 and t = 2, 39 events are triggered.
In Fig. 5.12 a periodic sampling scheme was used with a sampling period
equal to the shortest time between events from Fig. 5.11 resulting in 286
samples. No major di�erence in the behavior can be seen despite of the fact
that more than 7 times the amount of information was transmitted. Using a
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Figure 5.10: Trajectories of the pendulum

periodic sampling scheme with 39 samples between t = 0 and t = 2 results in
instability of the system. Numerical simulations suggests that the smallest
period, which stabilizes the system results in 66 events between t = 0 and
t = 2 (see Figure 5.13). In Figs. 5.14 and 5.15 the Lyapunov function and
the evolution of the error can be seen. Whenever the red curve (the error)
hits the blue line (the Lyapunov function) an event is triggered.

5.2.1 Practical Stabilization

If we change the initial condition from our example to x1(0) = 4, x2(0) = −3
the event triggering scheme introduced in Theorem 4.3.3 exhibits Zeno be-
havior and hence the Theorem is not applicable.
One possible way to deal with the Zeno phenomenon is to alter the assump-
tion of ISS-Lyapunov functions to a notion of practical stability. See Sec-
tion 4.4 for details.
In particular, a new design parameter ci > 0 is introduced in Assump-
tion 4.4.1 which allows us a trade-o� between the size of the region we are
converging to and the minimal time between events. Of course, if we can
bound the minimal time between events away from zero, Zeno cannot occur.
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Figure 5.11: Trajectories of the system with event triggered control

In this case, the triggering condition is

T 2
i (x, ei) = η̂i(‖ei‖)−max{σ−1

i (Vi(xi)), ci} ≥ 0 . (5.5)

The only di�erence to the triggering function from Theorem 4.3.3 is that here
after the error is reset to zero it must evolve at least until the norm of the
error is larger than ci before a new event is triggered.
In the triggering condition (5.4) or (5.5), each system compares its local error
to its local Lyapunov function. Hence each system can decide based purely
on local information when to trigger an event.
In Fig. 5.16 the trajectories of the system using (5.5) is depicted for c1 = 35
and c2 = 1.86 resulting in 10 events between t = 0 and t = 80. The system
enters a stable limit cycle, the size of which depends on c1 and c2.

In Fig. 5.17 the Lyapunov function of the second subsystem together
with the error e2 is given. Whenever the red line (the error) hits the blue
line (the Lyapunov function) or the threshold c2 (the dashed line), whichever
is greater, an event is triggered.
For the short time evolution of the system for t ∈ [0, 0.5] (cf. Fig. 5.18 and
for the corresponding Lyapunov function in Fig. 5.19).

An interesting question is how the threshold c2 a�ects the number of
triggered events. In Fig. 5.22 the threshold is plotted against the resulting
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Figure 5.12: Trajectories of the system with periodic sampling

number of events triggered by the second subsystem. It can be seen that
there is no heuristic that larger c2 leads to fewer events. The reason becomes
apparent by inspecting Figs. 5.20 and 5.21, where we used c2 = 0.16 resulting
in 339 events. Compared to Fig. 5.18 or Fig. 5.19, respectively, the trajectory
oscillates faster within the limit cycle while triggering more events.

5.2.2 Parsimonious Triggering and Asymptotic Stabilization

Although in many applications a notion of practical stability is enough, some-
times it is desired to have asymptotic stability. To achieve this we introduce
a further mechanism for reducing the number of triggering times. See Sec-
tion 4.5 for a detailed discussion.

The approach is based on the observation that besides comparing each
state to the corresponding error, it would be su�cient to compare each error
to the largest Lyapunov function among the subsystems.

Intuitively, if the errors of all subsystems are smaller than the largest
Lyapunov function, then these errors cannot a�ect the stability of the system.
In particular, implication (4.11) suggests that one can either compare each
error to each state as in (5.4) and (5.5) or compare all the errors to the largest
Lyapunov function to ensure that the maximum in (4.11) is attained by one
of the states (the γ part) instead of the error.
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Figure 5.13: Smallest period that stabilizes the system

A triggering condition following these ideas is of the form

Ti(xi, ei) = η̂i(‖ei‖)−max
j
{σ−1

j (Vj(xj))} ≥ 0 . (5.6)

The drawback of this approach is that it requires the knowledge of all states,
contradicting our wish for a decentralized setup.

However, under suitable regularity assumptions on the involved gains,
respectively scaling functions, we can give an approximation on the size of
the other Lyapunov functions, which can be used for a triggering condition;
based only on local information. For details see Lemma 4.5.2.
The intuition behind this approximation is that a subsystem can decide based
on its local dynamics (i. e., ‖ẋi‖) whether there must be other states that
are larger than the state of the i-th system. It is then reasonable to include
this information in an augmented triggering condition. This can be used to
obtain asymptotic stability but still rule out the occurrence of Zeno behavior,
as can be seen in Theorem 4.5.7.
We know that if Zeno occurs, the corresponding state must approach zero at
the Zeno time (Lemma 4.5.3). On the other hand, at least one other subsys-
tem is bounded away from zero at the Zeno point, because the "strength" to
force a Lipschitz continuous system to zero in �nite time cannot result from
its own state (Corollary 4.5.6). Hence we know that at some point the largest
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Figure 5.14: Lyapunov function of the second subsystem together with the
error

Lyapunov function in (5.6) is not the Lyapunov function of the system that
induces Zeno behavior. Moreover, this Lyapunov function is bounded away
from zero. Therefore, no Zeno behavior can occur, because the time until
the error evolves until it reaches the level of this larger Lyapunov function is
bounded away from zero.

Theorem 4.3.2 shows that if the small-gain condition holds, a Lyapunov
function for the interconnected system is given by the maximum of the in-
dividual Lyapunov functions (properly scaled). In Fig. 5.23 the Lyapunov
function of the �rst subsystem is given in dark green and for the second in
blue. The Lyapunov function of the interconnected system is depicted in
black. At approximately t ≈ 0.03 the maximum of the Lyapunov functions
changes. Before that time the Lyapunov function of the second subsystem
is equal to the overall Lyapunov function. After the maximum changed, the
Lyapunov function is equal to the Lyapunov function of the �rst subsystem.

in Fig. 5.23 the error of the �rst subsystem is given in red. Again, when-
ever the red line hits the green line, an event is triggered.

Please note that the Lyapunov functions in Figs. 5.23 and 5.25 are the
same. The only di�erence is that in Fig. 5.23 the error of the �rst subsystem
is given, whereas the error of the second subsystem is depicted in Fig. 5.25.
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Figure 5.15: Lyapunov function of the �rst subsystem together with the error

We know that if Zeno occurs, the corresponding state must approach zero at
the Zeno time. In Fig. 5.25 it can be seen that the blue line (the Lyapunov
function of the second subsystem) hits 0 at t ≈ 0.08. On the other hand,
at least one other subsystem is bounded away from zero at the Zeno point,
because the "strength" to force a Lipschitz continuous system to zero in �nite
time cannot result from its own state. Hence we know that at some point the
largest Lyapunov function in (5.6) is not the Lyapunov function of the system
that induces Zeno behavior. Moreover, this Lyapunov function is bounded
away from zero.

In theory, it would be su�cient to trigger an event whenever the red line
(the error) hits the black line (Lyapunov function of the overall system), rul-
ing out the occurrence of Zeno behavior. But the knowledge of the Lyapunov
function of the overall system would make the knowledge of all states to all
systems necessary, contradicting our decentralized approach.

With the help of an approximation of the dynamics of the subsystems, we
can give lower bounds of the Lyapunov functions of the other states (given in
light green). Using this bound also rules out the occurrence of Zeno behavior.
Basically, the theory predicts that the bound becomes tighter around the
Zeno point (t∗ ≈ 0.8). Hence with the above considerations, we know that
it is su�cient to trigger an event, if the red line hits the light green line to
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Figure 5.16: Trajectories with event triggering (5.5), c2 = 1.86

infer asymptotic stability of the system and ruling out Zeno behavior.

5.2.3 Comparison of the Di�erent Approaches

Both approaches that have been presented in the preceding sections have ad-
vantages and drawbacks, which will be discussed in this section. Both The-
orem 4.4.5 and 4.5.7 can be regarded as generalizations of Theorem 4.3.3.
The major drawback of Theorem 4.3.3 is that Zeno behavior may occur. The
advantage of Theorem 4.4.5 lies in its simplicity. There is no di�erence in
implementation and numerical complexity compared to Theorem 4.3.3. Note
that the class of systems that are practical ISS is larger than the class of sys-
tems that are only ISS. Hence Theorem 4.4.5 is applicable to a larger number
of systems than Theorems 4.3.3 and 4.5.7. On the other hand, the result is
limited to practical stability of the interconnected system.
The advantage of Theorem 4.5.7 is that it rules out the Zeno phenomenon,
while retaining asymptotic stability. The price to pay lies in a higher compu-
tational complexity and some regularity assumptions on the involved trigger-
ing functions. As event-triggering tries to reduce the amount of information
transmissions, the question which of the approaches results in the fewest
events is of interest.
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Figure 5.17: Lyapunov function of the second subsystem together with the
error and the threshold c2

In our example Theorem 4.3.3 behaves exactly like Theorem 4.5.7, if no Zeno
behavior occurs. For the Zeno case, Theorem 4.4.5 can lead to fewer events,
although it is not a priori clear how to choose the o�set to achieve this. The
wrong choice of the o�set leads to an increase in the number of events be-
yond the number of events resulting from Theorem 4.5.7. See Figure 5.22
for a plot of the o�set against the resulting number of events. Further in-
vestigations that analyze the impact of the choice of the o�set are required
here. The resulting number of events of the di�erent approaches for di�erent
parameters are given in Table 5.1. The o�set for the triggering condition of
Theorem 4.4.5 are chosen as c1 = 35 and c2 = 1.86, 1, 0.16 corresponding to
the �rst, second, and third number in the rows for Theorem 4.4.5.

End x1(0) = −4 and x2(0) = 3 x1(0) = 4 and x2(0) = −3
Time T 4.3.3 T 4.4.5 T 4.5.7 T 4.3.3 T 4.4.5 T 4.5.7
t=2 35 6, 35, 40 35 Zeno 6, 37, 42 38
t=20 142 8, 303, 337 142 Zeno 6, 307, 339 150
t=40 300 8,591,667 300 Zeno 6,594,668 312

Table 5.1: Number of events for di�erent triggering conditions
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Figure 5.18: Zoom into t ∈ [0, 0.5] of Fig. 5.16
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Figure 5.19: Zoom into the Lyapunov function
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Figure 5.20: Trajectories with event triggering (5.5), c2 = 0.16
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Figure 5.21: Lyapunov function for c2 = 0.16
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Figure 5.22: Plot of the threshold c2 against the number of triggered events
for t ≤ 20
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Figure 5.23: Lyapunov function of both subsystems together with e2 and the
lower bound on V1.
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Figure 5.24: Trajectories with event triggering from (4.52)

t

e2

Figure 5.25: Lyapunov function of both subsystems together with e2 and the
lower bound on V1.
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Figure 5.26: Trajectories with event triggering from (4.52)
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Conclusion

In the presented work we have discussed several approaches to tackle the
problem of digital control of large-scale systems.
In particular, we presented in Chapter 2 methods to use a tool known as
dynamic quantization to asymptotically stabilize a single system despite the
e�ects of quantization, delay, and packet loss.
As these tools are computationally expensive, they are not well-suited for
large-scale systems.
Therefore we developed small-gain conditions to analyze the stability prop-
erty of interconnected systems in Chapter 3.
In addition, we have shown that many of the known small-gain conditions
are equivalent, if looked upon the right way.
Moreover, we have shown the feasibility of the presented methods with the
help of a multichannel time delay system.
One aspect of digital control of large-scale systems is the need for more band-
width, as the number of subsystems grows. In this regard, we presented
methods to lower the amount of information needed to stabilize a system in
Chapter 4.
The work is concluded by numerical examples showing the feasibility of the
presented methods in Chapter 5.
As already sketched in the introduction, there are still many interesting open
problems worth to pursue.
For instance, in Chapter 2 it would be wishful to conclude ISS instead of
asymptotic stability, as all the other approaches presented in this work de-
mand for an ISS property (or similar concepts).
Furthermore, we do not know yet whether the additional property of weakly
increasing is the appropriate condition. Although we conjecture that it is the
needed condition to prove that the existence of an ISS-Ω-path is equivalent
to the ISS property of the corresponding system, but we were not able to
prove this for the general case.
In Chapter 4 we presented ways to lower the amount of information needed
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to stabilize a system, but we did not consider the problem of arbitration,
which, of course, would be of interest in this context.
Similar to [NL09] it would be nice to cast the material from this work into a
uni�ed framework, which is part of further research.
As already stated in the introduction, we assume that a model for the com-
munication channel, which is better suited for control purposes, could lead
to more sophisticated ways to handle the negative e�ects of communication.
As these models do not yet exist, further research is required.
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Appendix A

Matlab Listings

Dynamic Quantization

Listing A.1: Main Programm
global L ; %Lip s ch i t z constant known to a l l subrout ines
L=8;
ende=80; %How long should the s imulat ion run
global h ; %d i s c r e t i z a t i o n s i z e known to a l l subrout ines
h=0.001;
global N; %Number of subreg ions per dimension
N=6;
global l 0 ; %I n i t i a l s i z e of quant i sa t ion region
l 0 =20;
global opt ions ; %Options for the ode so l v e r
opt ions=odeset ( ' RelTol ' ,2 .22045 e−14, ' AbsTol ' ,2 .22045 e−14);
mindelay=10;
maxdelay=200;
xges = [ ] ;
Tges = [ ] ;
t s t a r=mindelay+randi (maxdelay−mindelay)+mindelay ;
tk=ende/h ;
tko ld=0;
x=[.7125464654645764 ;− .334545774764747] ;%i n i t i a l va lue
xdhat =[0; 0 ] ; %i n i t i a l i z i n g of the decoder
s=enc ( tkold , tkold , x ) ; %Fir s t encoding at t=0
Talt=0;
exp (L∗(maxdelay )∗h)/N %Test i f smal l er than one
for t=0: ende/h

i f ( t==t s t a r )
[T yh]=ode113 ( ' pendel4 ' , [ 0 ( t s ta r−tko ld )∗h ] , [ x ; xdhat ] , opt ions ) ;
Tges=[Tges ;T+Talt ] ;
Talt=Tges (end ) ;
x=yh(end , 1 : 2 ) ' ;
xdhat=dec ( t s ta r , tkold , s ) ; %Decoding g i v e s approx . o f the s t a t e
xges ( : , length ( xges )+1: length ( xges)+numel (T))=yh ' ;
%tk=t s t a r+averagede lay+dev ia t ∗randn (1 ) ;
tk=t s t a r+randi (maxdelay−mindelay)+mindelay ; %ca l c u l a t e next t_k
tko ld=tk ;
t s=t s t a r ;

end

i f ( t==tk )
[T yh]=ode113 ( ' pendel4 ' , [ 0 ( tk−t s t a r )∗h ] , [ x ; xdhat ] , opt ions ) ;
Tges=[Tges ;T+Talt ] ;
Talt=Tges (end ) ;
x=yh(end , 1 : 2 ) ' ;
xdhat=yh(end , 3 : 4 ) ' ;
xges ( : , length ( xges )+1: length ( xges)+numel (T))=yh ' ;

s=enc ( tk , ts , x ) ; %ca l c u l a t e s va lue to transmit
t s=tk ;
t s t a r=tk+randi (maxdelay−mindelay)+mindelay ; %ca l c u l a t e next t^∗

end
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end

plot (Tges , xges ' ) %t r a j e c t o r i e s

Listing A.2: Encoder Subroutine
function s=enc ( tk , ts , x )
global h ;
global N;
global l 0 ;
global L ;
global opt ions ;
p e r s i s t e n t tko ld ; %Encoder needs to remember the l a s t time
i f isempty ( tko ld )

tko ld=0;
end

p e r s i s t e n t xehat ; %Also the o ld s t a t e
i f isempty ( xehat )

xehat=zeros ( 2 , 1 ) ;
end

p e r s i s t e n t l ;
i f isempty ( l )

l=l0 ;
end

p e r s i s t e n t xe ; %And i t s current s t a t e
i f isempty ( xe )

xe=zeros ( 2 , 1 ) ;
end

l=l ∗exp (L∗( tk−tko ld )∗h)/N; %Reduce the s i z e of the quant i za t ion region
i f ( tk>0)

[ t3 yh]=ode113 ( ' pendel4 ' , [ 0 ( ts−tko ld )∗h ] , [ xe ; xehat ] , opt ions ) ;
xe=yh(end , 1 : 2 ) ' ;
[ t3 yh]=ode113 ( ' pendel4 ' , [ 0 ( tk−t s )∗h ] , [ xe ; xe ] , opt ions ) ;
xe=yh(end , 1 : 2 ) ' ;

end

s=f loor (N/ l ∗(x−xe )+0 .5 ) ; %Calcu la te in which box the s t a t e i s
xehat=xe ;
xe=xe+s∗ l /N; %Set the next center of the quant . region
tko ld=tk ;

Listing A.3: Decoder Subroutine
function y=dec ( t s ta r , ts , s )
global h ;
global N;
global l 0 ;
global L ;
global opt ions ;
p e r s i s t e n t t s t a r o l d ; %Decoder needs to remember the l a s t time
i f isempty ( t s t a r o l d )

t s t a r o l d =0;
end

p e r s i s t e n t xdhat ; %Also the va lue which c l o s e s the loop
i f isempty ( xdhat )

xdhat=zeros ( 2 , 1 ) ;
end

p e r s i s t e n t l ; %Lenght of quant i sa t ion region
i f isempty ( l )

l=l0 ;
end

p e r s i s t e n t xd ; %And the in t e rna l s t a t e of the decoder
i f isempty ( xd )

xd=zeros ( 2 , 1 ) ;
end

p e r s i s t e n t t s o l d ; %The l a s t timestamp
i f isempty ( t s o l d )

t s o l d =0;
end

l=l ∗exp (L∗( ts−t s o l d )∗h)/N; %Reduce the s i z e of the quant . region
i f ( ts>t s t a r o l d ) %Test i f i t i s the f i r s t time

[T yh]=ode113 ( ' pendel4 ' , [ 0 ( ts−t s t a r o l d )∗h ] , [ xdhat ; xdhat ] , opt ions ) ;
xd=yh(end , 1 : 2 ) '+ s∗ l /N; %Calcu la te the center of the box
xdhat=yh(end , 1 : 2 ) ' ; %Approximation of the s t a t e

else

xd=s∗ l /N;
end
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[T yh]=ode113 ( ' pendel4 ' , [ 0 ( t s ta r−t s )∗h ] , [ xd ; xdhat ] , opt ions ) ;
xdhat=yh(end , 1 : 2 ) ' ;
y=xdhat ;
t s t a r o l d=t s t a r ;
t s o l d=ts ;

Listing A.4: Dynamics of the Pendulum
function y=pendel4 ( t , x )

u=k ( [ x (3) x ( 4 ) ] ) ;
y=zeros ( 4 , 1 ) ;
y(3)=x ( 4 ) ;
y(4)= sin (x(3))−cos (x (3) )∗u ;
y(1)=x ( 2 ) ;
y(2)= sin (x(1))−cos (x (1) )∗u ;

Event Triggered Control

Listing A.5: Event triggered control
sigma=0.172; % choose sigma^2 in (32/k^2 ,1/32)
k1=1;
k2=33;
ch i1=k1 /( sqrt (8)∗ sigma ) ; % ∗ r^2
ch i2=sigma^2∗k2^2/4; % ∗ r^2
ps i1=sqrt (2)∗ sigma∗ ch i1 ; % ∗ r^2
ps i2=sqrt ( k2 ) ; % ∗ s q r t ( r )
%
%I n i t i a l i z i t i o n :
x0=[4;−3;4;−3] ; %I n i t i a l va lue tha t causes Zeno
x=x0 ;
i =0;
yges = [ ] ; %Overa l l t r a j e c t o r y
Tges = [ ] ; %Corrsponding time
Talt=0;
kappa1=16; %sma l l e s t kappa1 , kappa2 for conserva t i ve parameters
kappa2=6;
tkminus1=0; %Last time f i r s t system t r i g g e r ed
tkminus2=0; %%Last time second system t r i g g e r ed
p1 = [ ] ;
p2 = [ ] ;
% Set opt ions for the so l v e r
opt ions=odeset ( ' RelTol ' ,2 .22045 e−14, ' AbsTol ' ,2 .22045 e−14);
while ( Talt<2 && i <8000) %Run simulat iuon un t i l t=2 or 8000 events

i=i +1;
[T, y]=ode23 ( @fsys , [ Talt , Talt +0.001] , x , opt ions ) ; %Integ ra t i on
x=y(end , : ) ' ; %Last va lue of i n t e g ra t i on w i l l be the f i r s t f o r the next
ys=y ;
V1=0.5∗ ys ( : , 1 ) . ^ 2 ; %Calcu la te V1
ch ie1=chi1 ∗( ys (: ,3)− ys ( : , 1 ) ) . ^ 2 ; %Calcu la te \chi_1 (e_1)
V2=0.5∗ ys ( : , 2 ) . ^ 2 ; %Calcu la te V2
ch ie2=chi2 ∗( ys (: ,4)− ys ( : , 2 ) ) . ^ 2 ; %Calcu la te \chi_2 (e_2)
c1= find ( chie1>=V1 , 1 ) ; %Does the f i r s t system t r i g g e r s ?
c2= find ( chie2>=V2 , 1 ) ; %Does the second system t r i g g e r s ?

%
% Calcu la te W1 and W2:
a1=abs ( ys ( 1 : end ,1)− ys ( 1 : end , 3 ) ) . / (T( 1 : end)−tkminus1)−

kappa1∗max(abs ( ys ( 1 : end , 1 ) ) , abs ( ys ( 1 : end ,1)− ys ( 1 : end , 3 ) ) ) ;
a2=abs ( ys ( 1 : end ,2)− ys ( 1 : end , 4 ) ) . / (T( 1 : end)−tkminus2)−

kappa2∗max(abs ( ys ( 1 : end , 2 ) ) , abs ( ys ( 1 : end ,2)− ys ( 1 : end , 4 ) ) ) ;
%W1:
h i l f e 1=max( a1 . / abs ( ys ( : , 1 ) ) −0 .5∗ ( ys (: ,3)− ys ( : ,1 ) ) .^2 −0 .5∗ abs ( ys ( : , 1 ) ) . ^ 2 , 0 ) ;
%W_2:
h i l f e 2=max( a2−k2∗abs ( ys ( : ,2))− k2∗abs ( ys (: ,4)− ys ( : , 2 ) ) , 0 ) ;
i f (~ isempty ( c1 ) | | ~isempty ( c2 ) ) % Did T1 t r i g g e r ?
%eta_1( e1 ) \geq ps i ( w1 ) :
p1= find ( ch i1∗abs ( ( ys ( c1 : end ,3)− ys ( c1 : end ,1)).^2) >=
min(0 .5∗ h i l f e 1 ( c1 : end ) .^2 ,1/ ( sqrt (2)∗ sigma )∗ h i l f e 1 ( c1 : end ) ) , 1 ) ;
%eta_2( e2 ) \geq ps i ( w2 ) :
p2=find (1/ sigma∗sqrt ( ch i2∗abs ( ys ( c2 : end ,4)− ys ( c2 : end ,2)).^2) >=
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min(0 .5∗ sqrt ( h i l f e 2 ( c2 : end ) ) .^2 , 1/ ( sqrt (2)∗ sigma )∗ sqrt ( h i l f e 2 ( c2 : end ) ) ) , 1 ) ;
end

%Boolean : System 1 t r i g g e r :
system1=(~isempty ( c1 ) && V1( c1)>=1e−12) && ~isempty ( p1 ) ;
%Boolean : System 2 t r i g g e r :
system2=(~isempty ( c2 ) && V2( c2)>=1e−12) && ~isempty ( p2 ) ;
i f ( system1 | | system2 ) %Did an event happen?

r=min ( [ p1 p2 ])−1; %When did T2 t r i g g e r ?
s=min ( [ c1 c2 ])−1; %When did T1 t r i
counter=counter+1;
r=r+s ; %Time when T1 and T2 t r i g g e r
x=y( r , : ) ' ; %Continue s imulat ion from t h i s time
i f ( system1 ) %I f system 1 t r i g g e r ed :

x(3)=x ( 1 ) ; %Transmit the s t a t e
tkminus1=T( r ) ;%Save the time

end

i f ( system2 ) %I f system 1 t r i g g e r ed :
x(4)=x ( 2 ) ; %Transmit the s t a t e ;
tkminus2=T( r ) ;%Save the time

end

yges=[ yges y ( 1 : r , : ) ' ] ;%Concatenate the t r a j e c t o r y
Tges=[Tges ;T( 1 : r ) ] ; %And the time
Talt=T( r ) ; %Save ac tua l time

else %I f no event happened continue s imulat ion
yges=[ yges y ' ] ;
Tges=[Tges ;T ] ;
Talt=T(end ) ;

end

end

plot1=plot ( Tges ( 1 : end ) , yges ( : , 1 : numel ( Tges ) ) ) ; %Display t r a j e c t o r i e s

Listing A.6: Dynamics of the system
function y=f s y s ( t , x )

k1=1;
k2=33;
y=zeros ( 4 , 1 ) ;
y(1)=x (1)∗x(2)−k1∗x(1)^2∗x ( 3 ) ;
y(2)=x(1)^2−k2∗x ( 4 ) ;
y (3)=0;
y (4)=0;
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Appendix B

Non Smooth Analysis

In Chapter 4 we deal with Lyapunov functions that are Lipschitz instead
of di�erentiable. Hence we need some tools from the �eld of non-smooth
analysis. The tools needed for Chapter 4 are summarized here. Moreover,
to familiarize the reader with these concepts we recall a few de�nitions and
quote some results about generalized gradients. The material is taken from
[CLSW98]. Note that in Chapter 4 we combine ideas from Lyapunov con-
structions for large-scale systems with the concept of event based sampling.
The construction of Lyapunov functions was already discussed in [Rüf07].
See notes and references of the corresponding chapter for more details. Thus
the appendix here appeared already in similar form in [Rüf07].
Let X be a real Banach space. For x ∈ X and ε > 0 by B(x, ε) we denote
the set {y ∈ X : ‖x− y‖ < ε}. On the dual space X∗ of X we use the norm

‖ζ‖∗ := sup{〈ζ, v〉 : v ∈ V, ‖v‖ = 1},

where 〈ζ, v〉 is the pairing of ζ and v.
A function f : X → R is Lipschitz of rank K near x ∈ X, if there exists

an ε > 0 and a K ≥ 0, such that for all y, z ∈ B(x, ε) we have

|f(y)− f(z)| ≤ K‖y − z‖.

The function f is locally Lipschitz , if for every x ∈ X it is Lipschitz of some
rank K = K(x). The generalized directional derivative of f at x in the
direction v, denoted by f◦(x; v), is de�ned by

f◦(x; v) := lim sup
y→x
t↘0

f(y + tv)− f(y)

t
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A multivalued function F : X → 2X is upper semicontinuous at x, if for all
ε > 0 there exists a δ > 0 such that

‖x− y‖ < δ =⇒ F (y) ⊂ F (x) +B(0, ε).

A function g : X → R is positively homogeneous if g(λx) = λg(x) for all λ ≥ 0
and all x ∈ X, and subadditive if g(v + w) ≤ g(v) + g(w) for all v, w ∈ X.

Proposition B.0.1. Let f : X → R be Lipschitz of rank K near x ∈ X.
Then

1. the function v 7→ f◦(x; v) is �nite, positively homogeneous, subadditive
on X, and satis�es

|f◦(x; v)| ≤ K‖v‖;

2. f◦(x; v) is upper semicontinuous as a function of (x, v) and, as a func-
tion of v alone, it is Lipschitz of rank K on X;

3. f◦(x;−v) = (−f)◦(x; v).

For a proof see [CLSW98, Prop. 2.1.1, p.70]. We de�ne the generalized
gradient ∂f of the function f : X → R by

∂f(x) := {ζ ∈ X∗ : f◦(x; v) ≥ 〈ζ, v〉 ∀v ∈ X}.

We state a couple of properties of generalized gradients. The �rst one is
stated as an exercise in [CLSW98, p.73]. For the convenience of the reader
we give a proof.

Proposition B.0.2. Let f : Rn → R be C1. Then f◦(x; v) = 〈f ′(x), v〉 and
∂f(x) = {f ′(x)}.

Proof. Since f is continuously di�erentiable, we have f◦(x; v) = Df(x; v) the
directional derivative of f . But Df(x; v) is just equal to 〈f ′(x), v〉.

We have f ′(x) = ζ if and only if 〈f ′(x), v〉 = 〈ζ, v〉 for all v ∈ Rn,
which is equivalent to f◦(x; v) ≥ 〈ζ, v〉 for all v ∈ Rn, and this in turn to
ζ ∈ ∂f(x).

The following result is also taken from [CLSW98].

Proposition B.0.3. Let f : X → R be Lipschitz of rank K near x ∈ X.
Then

1. ∂f(x) is a nonempty, convex, weak∗-compact subset of X∗, and ‖ζ‖∗ <
K for every ζ ∈ ∂f(x);
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2. for every v ∈ X we have

f◦(x; v) = max{〈ζ, v〉 : ζ ∈ ∂f(x)};

3. ζ ∈ ∂f(x) if and only if f◦(x; v) ≥ 〈ζ, v〉 for all v ∈ X;

4. if {xi} and {ζi} are sequences in X and X∗ such that ζi ∈ ∂f(xi) for
each i, and if xi converges to x and ζi is a weak∗ cluster point of the
sequence {ζi}, then we have ζ ∈ ∂f(x);

5. if X is �nite dimensional, then ∂f is upper semicontinuous at x.

This result has been proved in [CLSW98, Proposition 2.1.5, p.73]. Next
we gather facts relating nonsmooth calculus to standard calculus:

Theorem B.0.4. 1. Let fi : X → R, i = 1, . . . , n, be Lipschitz near
x ∈ X and let λi be scalars, i = 1, . . . , n. Then f :=

∑
i λifi is

Lipschitz near x and

∂

(∑
i

λifi

)
(x) ⊂

∑
i

λi∂fi(x).

2. (Lebourg's Mean Value Theorem) Let x, y ∈ X and let f : X → R
be Lipschitz on an open set containing the line segment [x, y]. Then
there exists a point u in (x, y) such that

f(y)− f(x) ∈ 〈∂f(u), y − x〉.

3. (The Chain Rule) Let F : X → Rn be Lipschitz near x, and let g :
Rn → R be Lipschitz near F (x). Then the function f(x′) := g(F (x′))
is Lipschitz near x, and we have

∂f(x) ⊂ conv∗{∂〈γ, F (·)〉(x) : γ ∈ ∂g(F (x))},

where conv∗ denotes the w∗-closed convex hull.

Proof. From [CLSW98, Proposition 2.2.1, p. 75] we have for scalars λ and
functions f that Lipschitz near x:

∂(λf)(x) = λ∂f(x).

Also on [CLSW98, p. 75] it has been proved that ∂(f+g)(x) ⊂ ∂f(x)+∂g(x).
Both results put together give the �rst claim. The second and third claim
are [CLSW98, Proposition 2.2.4, p. 75] and [CLSW98, Proposition 2.2.5, p.
76], respectively.
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The following result relates Lipschitz continuity to di�erentiability almost
everywhere. A property is said to hold almost everywhere, if the set where
it fails to hold has Lebesgue measure zero.

Theorem B.0.5 (Rademacher's Theorem). Let U ⊂ Rn be open. Let f :
U → R be locally Lipschitz. Then f is di�erentiable almost everywhere on
U .

See, e.g., [Eva98, Theorem 5.8.6, p.281].

Corollary B.0.6. Let U ⊂ Rn be open. Let f : U → Rm be locally Lipschitz.
Then f is di�erentiable almost everywhere on U .

Proof. This is a direct consequence of Theorem B.0.5, by noting that a func-
tion f : U → Rm is locally Lipschitz if and only if every component function
fi : U → R is locally Lipschitz.

Theorem B.0.7 (Generalized Gradient Formula). Let x ∈ Rn, f : Rn → R
locally Lipschitz at x. Let U ⊂ Rn have Lebesgue measure zero. Denote by
Uf the set of points in Rn where f fails to be di�erentiable. Then we have

∂f(x) = conv
{

lim
i→∞

∇f(xi) : xi → x, xi 6∈ U, xi 6∈ Uf
}
.

For a proof see [CLSW98, Theorem 2.8.1, p.93]. The next result is an im-
mediate consequence of Theorem B.0.7, but has not been stated explicitly
in [CLSW98].

Corollary B.0.8 (Chain Rule 2). Let f : Rn → R and g : Rm → Rn
be locally Lipschitz, denote by Uf and Ug the sets of points where f and,
respectively, g fail to be di�erentiable. Suppose g−1[Uf ] has zero Lebesgue
measure. Then for all x ∈ Rm we have

∂(f ◦g)(x) = conv
{

lim
i→∞

∇f(g(xi)) ·Dg(xi) : xi → x, xi 6∈ Ug, g(xi) 6∈ Uf
}
.

In other words

∂(f ◦ g)(x) = ∇f(g(x)) ·Dg(x)

for almost every x ∈ X.

Example B.0.9. Let f, g ∈ K∞ be locally Lipschitz, denote by Uf and Ug the
sets of points where f and, respectively, g fail to be di�erentiable. Note that
also g−1 ∈ K∞ and (g−1)′ = 1/(g′ ◦ g−1) exists almost everywhere. From
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Rademacher's Theorem we know that Uf and Ug have Lebesgue measure 0.
Then the Lebesgue measure of g−1[Uf ] is given by

λ(g−1[Uf ]) =

∫
R+

1g−1[Uf ](y)dλ(y)

=

∫
R+

1g−1[Uf ](g
−1(x)) · 1

g′ ◦ g−1(x)
dλ(x)

=

∫
R+

1Uf (x)
1

g′ ◦ g−1(x)
dλ(x) =

∫
Uf

1

g′ ◦ g−1(x)
dλ(x) = 0

because Uf is a null set. Hence (f ◦ g)′ = (f ′ ◦ g) · g′ almost everywhere.

We need also the following chain rule. A proof can be found in [MV87].

Lemma B.0.10. If V : Rn → R is locally Lipschitz continuous and ψ :
R → Rn is absolutely continuous, then for almost all t ∈ R there exists
p0 ∈ ∂V (ψ(t)) such that

d

dt
V (ψ(t)) = 〈p0, ψ̇(t)〉 .

Corollary B.0.8 together with the following result on the generalized gradi-
ent of the maximum of n functions will be an essential argument in Chapter 4.
The next result is taken from [CLSW98, p.83].

Proposition B.0.11. For i = 1, . . . , n let fi : X → R be Lipschitz near
x ∈ X. Set f(x) = max1≤i≤n fi(x). Then f is Lipschitz near x and

∂f(x) ⊂ conv

 ⋃
i∈M(x)

∂fi(x)

 ,

where M(x) = {i ∈ {1, . . . , n} : fi(x) = f(x)}.

A survey on nonsmooth analysis in control theory can be found in [Cla01].
All de�nitions and results in this section are stated in [CLSW98], with the
exception of Corollary B.0.6 and Corollary B.0.8, Lemma B.0.10, Exam-
ple B.0.9. Rademacher's Theorem has been taken from [Eva98].
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Appendix C

Gronwall Type Inequalities

One of the main tools used in Chapter 2 is the Gronwall inequality or Gron-
wall Lemma. There exists many di�erent versions of inequalities known as
Gronwall inequality. Although the technical assumption change, all these
inequalities share the same spirit: To give an explicit bound on a function,
using implicit bounds involving the function itself and its derivate or integral.
The original version of the Gronwall inequality was proven in [Gro19] and
was formulated as follows.

Lemma C.0.12 (Gronwall: Original). Let ξ : [a, a+h]→ R be a continuous
function that satis�es the inequality

0 ≤ ξ(t) ≤
∫ x

a

A+Mξ(s)ds

for all a ≤ x ≤ a+ h, where A,M ≥ 0 are constants. Then

0 ≤ ξ(t) ≤ AheMh

for all a ≤ t ≤ a+ h.

For the sake of completeness, we cite a few other versions of the latter
lemma.

Lemma C.0.13 (Gronwall: Integral Form). Suppose that T is an interval,
a ∈ T , α ∈ R , β(·) is a locally integrable non-negative function on T and
ξ(·) is a continuous function on T satisfying

ξ(t) ≤ α+

∫ t

a

β(r)ξ(r)dr , t ∈ T , t ≥ a .
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Then

ξ(t) ≤ α exp

(∫ t

a

β(s)ds

)
, t ∈ T t ≥ a .

Lemma C.0.14 (Gronwall: Di�erential Form). Suppose that T is an inter-
val, a ∈ T , β(·) is a di�erentiable function on T and ξ(·) is a continuous
function on T satisfying

ξ̇(t) ≤ β(t)ξ(t) , t ∈ T , t ≥ a .

Then

ξ(t) ≤ ξ(a) exp

(∫ t

a

β(s)ds

)
, t ∈ T t ≥ a .

The proofs are standard and can be found e.g., in [Zab92].
The next may be regarded as an "inverse" version of the Gronwall inequality.
It was �rst proven by Langenhop [Lan60]. The version we present here is
taken from [TM10].

Lemma C.0.15 (Langenhop). Let x : T → Rn be a solution of ẋ = f(x, t)
and let |x(t)| > 0 for some t ∈ T . Pick a t0 ∈ T with t0 < t. Assume that
there exists L > 0 such that

|f(x(τ), τ)| ≤ L|x(τ)|

for almost all τ ∈ [t0, t]. Then

|x(t)| ≥ |x(t0)|e−L(t−t0)

One maybe not so well known version for discrete time systems is taken
from [Aga00, Theorem 4.1.1]. It is of particular interest in Chapter 4.

Theorem C.0.16 (Gronwall: discrete). Consider u, p, q, f : N → R+. Let
for all k ∈ N(a) := {a, a+ 1, . . . }, a ∈ N the following inequality be satis�ed

u(k) ≤ p(k) + q(k)

k−1∑
`=a

f(`)u(`) . (C.1)

Then, for all k ∈ N(a)

u(k) ≤ p(k) + q(k)

k−1∑
`=a

p(`)f(`)

k−1∏
τ=`+1

(1 + q(τ)f(τ)) . (C.2)

Note that (C.2) is the best possible in the sense that equality in (C.1)
implies equality in (C.2). Furthermore, the assertion still holds, if p, u : N→
R.
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On ISS-Ω-path

After the submission of the thesis, we discovered a slightly more elegant
way to ensure the existence of an ISS-Ω-path than the way we presented in
Chapter 3. As the new results were not part of the reviewing process, we
decided to present them in the appendix.

Theorem D.0.17. Let g ∈ MAFnn+m. If the induced dynamical system

s(k + 1) = g(s(k), w(k)) k ∈ N

is ISS, then there exists an ISS-Ω-path i.e., there exist σ ∈ Kn∞ and ρ ∈ Km∞
such that

g(σ(r), ρ(r)) < σ(r)

for all r > 0.

Proof. By Theorem 3.2.2 we know that the ISS property implies the existence
of a proper and positive de�nite ζ : Rn+ → Rm+ such that

s(k + 1) = g(s(k), ζ(s(k)))

is GAS. This in turn implies that

g(s, ζ(s)) � s

for all s 6= 0. To see this assume the opposite. Fix s 6= 0. Clearly, if
g(s, ζ(s)) ≥ s 6= 0, the induced system cannot be GAS.
Note that f(s) := g(s, ζ(s)) ∈ MAFnn. Therefore we can use Theorem 3.3.5
to conclude the existence of σ ∈ Kn∞ such that

g(σ(r), ζ(σ(r))) < σ(r) (D.1)
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for all r > 0. By the properness of ζ, there exists an α ∈ K∞, such that

α(|s|)e ≤ ζ(s) (D.2)

for all s ∈ Rn+. Now de�ne ρ(r) := α(|σ(r)|)e. It is easy to see that ρ ∈ Km∞.
Combining (D.1) and (D.2) yields

g(σ(r), ρ(r)) ≤ g(σ(r), ζ(σ(r))) < σ(r) ,

which is the desired property and the proof is complete.

In Theorem 3.4.6 we need the existence of an ISS-Ω-path for a di�erent
g. For the sake of completeness we state the corresponding theorem here. To
this end de�ne an operator Γ : Rn+ → Rn×n+

Γ(s) :=

γ11(s1) . . . γ1n(sn)
...

...
γn1(s1) . . . γnn(sn)

 , (D.3)

with γij ∈ G for each i, j = 1, . . . , n.
Now we augment Γ to Γ : Rn+ × Rm+ → Rn×n+m

+ given by

Γ(s, w) =

γ11(s1) . . . γ1n(sn) w1 . . . wm
...

...
...

...
γn1(s1) . . . γnn(sn) w1 . . . wm

 ,

with wj as an input for j = 1, . . . ,m. Let µ ∈ MAFnn+m and consider

Γµ(s, w) :=

µ ◦ Γ(s, w) =

µ1(γ11(s1), . . . , γ1n(sn), w1, . . . , wm)
...

µn(γn1(s1), . . . , γnn(sn), w1, . . . , wm)

 . (D.4)

Theorem D.0.18. Let Γ ∈ Gn×n be irreducible and Γµ as in (D.4). If the
induced system

s(k + 1) = Γµ(s(k), w(k))

is ISS, then there exists an ISS-Ω-path i.e., there exist σ ∈ Kn∞ and ρ ∈ Km∞
such that

Γµ(σ(r), ρ(r)) < σ(r)

for all r > 0.
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Proof. Similar as in the proof of Theorem D.0.17 we use the ISS property
to conclude that there exists a proper and positive de�nite ζ : Rn+ → Rm+
such that Γµ(s, ζ(s)) � s for all s 6= 0. As Γ is irreducible we can interpret
Γµ(s, ζ(s)) also as irreducible and [DRW10, Theorem 5.2 (ii)] applies. Hence
there exists σ ∈ Kn∞ such that

Γµ(σ(r), ζ(σ(r))) < σ(r)

for all r > 0. Now we can use similar arguments as in the proof of Theo-
rem D.0.17 after (D.1) to �nish the proof.
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