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Introduction

Since the beginning of control theory two main questions arose frequently:
Does a system behave "nicely"?

If not, can we make the system do what we want in a "nice" way?
Although these questions essentially remained the same since [Max67], the
class of systems under consideration changed in the course of time. It became
apparent that a simple feedback loop as depicted in Figure[T]is not well suited
for modern challenges in control theory. For example, a modern car can

> Actuator —>{ Plant —» Sensor

Controllerie

Figure 1: A simple feedback system

easily consist of hundreds of sensors, communicating over thousands of meters
of cable with several controllers, which in turn coordinate many actuators.
The sheer number of different devices of such a system already demands for
new tools for analysis, design, and modeling. To this end Figure [2] is more
appropriate to display the structure of a modern car than Figure[l] A system
of the form depicted in Figure |2|is often referred to as a large-scale system.
Although no precise definition can be found in literature, according to [MHO05]
a system is considered to be large-scale, if it has at least one of the following



properties:
Decomposition: The system can be decomposed into smaller systems.
Centrality: There is no central controller.

Complexity: The system is too complex for traditional methods.
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Figure 2: A large-scale system communicating over a digital channel

The somewhat vague definition itself points out that many open problems
exist in the analysis, design and modeling of large-scale systems.

The complexity as well as the centrality aspect of large-scale systems leads to
failure of a holistic approach of modeling, design and analysis. In this regard,
it is often only possible to treat the influence of one subsystem to another as
a disturbance. This approach was followed by e.g., [Vid81l , in which
this influence is modeled by linear functions.

Sontag introduced in [Son89] a certain class of nonlinear systems that carry
particular "nice" features of linear systems. Basically, these systems share
the property that if a disturbance of the system is bounded, the state of
the system will also be bounded. This "nice" behavior is termed input to
state stability (ISS). Within the ISS framework, which plays a prominent role
throughout this thesis, it was possible to generalize the ideas of [Vid&T], m




to a larger class of systems in [DRWQT7| by allowing nonlinear functions to
model the influence of one subsystem to another.

Let us consider the previous example of a modern car again. If there is
a great number of parts within the system which share the same communi-
cation medium, new approaches are needed. To date, control theory often
neglected these communication aspects during the analysis and design pro-
cess of control systems. However, this cannot be done anymore, if parts of the
system are far from each other, or if there is a large number of subsystems.
By taking the communication aspect explicitly into account in the analysis
and design, ideas from signal and information theory become more and more
important in control theory. See, e.g., [NFZQT7].
As the title of this thesis suggests, we develop tools for the stabilization and
stability analysis of large scale systems communicating over digital commu-
nication channels. Before we describe our contribution in detail, we briefly
discuss the impact of digital communication on control systems.

Digital Communication Channels and Control

Since the fifties of the last century the introduction of digital (digitus (lat):
finger) communication channels, respectively, digital devices themselves, rev-
olutionized a vast field of technical disciplines.

A control system that communicates over a digital channel is called a net-
worked control system. The system itself may be large-scale or not. For an
overview of networked control systems up to the year 2007 see [HNXO07].

In this work we are considering large-scale systems that communicate over
digital communication channels. The key property of digital communication
channels is that they only transmit two different symbols (usually named 0
and 1). Besides the mathematically interesting problems raised by the in-
troduction of digital channels, from a engineering point of view the merit of
digital communication lies in its flexibility, robustness, and affordability. As
every coin has two sides, the introduction of digital communication within
the control community gave rise to new problems and challenges. In particu-
lar, the introduction of digital communication channels poses problems that
are typical for networked control systems, such as:

Delay Information sent at some point in time is received at a later point.
Packet Loss Data gets lost.
Quantization Rounding errors occur due to finiteness of the channel.

Arbitration Not every sender gets access to the channel at every time.




Bandwidth The capacity of the channel is limited.

Note that delay and packet loss are closely related as well as quantization
and bandwidth. The former, because packet loss can be modeled as an in-
finite delay. The latter, because there is a trade-off between the available
bandwidth of the channel and the size of the rounding error.

The problem of arbitration demands for more sophisticated methods to coor-
dinate the communication among several senders and receivers. Usually, this
coordination is done by a so called protocol, which prepares the information
and decides, when to send data and how to handle collisions and congestions.
A widely used protocol today is called TCP (Transmission Control Protocol,
see [Ste93] for an introduction). TCP is a packet based transmission proto-
col, i.e., information is gathered in packets of equal size and sent from the
sender to the receiver. A network of senders and receivers that uses TCP or
similar protocols is itself a large-scale system, whose analysis is far away from
being trivial. Early accounts of modeling and analysis of such a system can
be found in [HMTGO1],[Sri04, WSSTL06, Bia00]. Despite the complexity of the
dynamics inherent to such protocols these models deliver astonishing accu-
racy. However, the interaction between the dynamics of the communication
channel with another dynamical system using the channel is not understood
sufficiently.

One particular problem of the mentioned models is that they are mostly in-
terested in the steady state behavior of the communication channel, while
for control purposes the transient is also of vital importance. To the best of
the author’s knowledge, up to now, there is no model well suited for control
applications.

All of the above mentioned effects, i.e., delay, packet loss, quantization, and
bandwidth limitations can severely deteriorate the stability and performance
of a system. To counteract these effects three different approaches are used
frequently. The first is to design a controller for the nominal system, i.e.,
the system without a digital channel and thus without the negative effects of
communication. And then to give conditions for the communication channel
to ensure stability of the system despite the effects of delay, loss, and quan-
tization.

The second approach is the introduction of two new devices into the feedback
loop often called encoder and decoder. The encoder prepares the measured
state in a certain way, better suited for the digital communication channel
and control applications. The decoder on the other side inverts this proce-
dure. Note that the concept of encoder/decoder is also known in information
theory. To avoid confusion, the encoder and decoder are sometimes called
smart sensor and smart actuator in control literature. The first and the sec-




ond method are referred to as model based or emulation approach, as it uses
the system without communication as a model to design a controller.

The third approach is explicitly incorporating knowledge of the communica-
tion channel into the design of the controller. For instance, in
[WCdWGAOQ7] a method is presented to stabilize the system despite the pres-
ence of delay, provided that a model of the communication channel is given,
i.e., there is a model of the communication which gives a forecast of the ex-
pected delay with sufficient accuracy.

In general, the third approach has the potential to yield better results than
the other two, but as mentioned before, up to now no model of the com-
munication channel exists that is well suited for control purposes. The first
approach is followed by, e.g., [HTvdWN10], where ideas are given to handle
the effect of delay, loss, and quantization.

In a similar spirit, [NL0O9| casts the problem into the framework of hybrid
systems, where it is possible to consider the problem of arbitration. [NLO9]
is of interest in this thesis, as we expect that the results of Chapter [2] and
can be combined in a similar manner as in [NL09].

We decided to follow approach number two and to a lesser extent number
one in this thesis. The rest of the introduction is devoted to the explanation
of the details of our methods.

Existing Results and Contribution of the Thesis

In this work we want to derive tools for the stability analysis and stabilization
problem of large-scale systems communicating over digital communication
channels. We have already mentioned typical problems introduced by digi-
tal communication, such as delay, packet loss, quantization, and bandwidth
limitations.

In Chapter [2] we introduce an approach which stabilizes a system despite the
effects of quantization, loss, and delay. As the presented method might be
computationally too complex for high dimensional systems, it is not suited
for large-scale systems. Thus, additional methods to analyze interconnected
systems are needed. In this regard, we present small-gain based ideas for
the analysis of large-scale systems in Chapter [3] which are of independent
interest.

The problem of bandwidth limitation is addressed in Chapter [ where we
present methods to lessen the amount of information we have to send over
the channel, based on event triggering. In Chapter [5| we conclude the thesis
with numerical simulations to show the feasibility of the presented methods.
Before we go into detail on the corresponding contributions, we give a small
overview on the existing literature that inspired this thesis in the particular




topics. In the note and reference section of each chapter additional informa-
tion are given.

Control with Limited Information

The term control with limited information describes the situation in which
the information available to the controller is in some way limited. In this
work, these limitations stem from digital communication.

A subclass of control with limited information is control with encoded feed-
back, in which the signal that is fed back to the controller is quantized. One
of the first contributions that studies the effect of quantization on a control
system was made in [Del90]. In the seminal paper by Delchamps a discrete
time system of the form

z(k+1) = Az(k) + Bu(k)

where A, B are suitable real matrices with (A, B) controllable and A unstable
is considered. The control action is of the form

u(k) = fr(q(2(0)), ¢(x(1)),...,q(x(k))), where ¢ is a static quantizer.
Usually, static quantizers are of the form

with A > 0 the so called resolution. Although the author allows the con-
troller fi to depend on all past measurements, the set of initial states that
converge to zero is thin, according to [Del90].

One key assumption for this result to hold is the restriction to static quantiz-
ers. In a static quantizer the upper bound on the quantization error x — g(x)
is fixed i.e., does not depend on time or x.

In [BLOO] it is shown that considering non static quantizers leads to asymp-
totic stability of the controlled system, despite quantization. This result was
generalized to nonlinear systems in [LHO5|. In particular, Liberzon studies
systems of the form

&= f(z,u). (1)

It is assumed that a sensor measures the state x and transmits a quantized
version of this data over a digital communication channel to a stabilizing
controller g at time instances t;. To overcome the limitations posed by quan-
tization, two dynamical systems called encoder and decoder are introduced
in [LHO5], respectively, [BLO0O]. The quantization is done by the encoder and




its dynamics are given by

Bolt) = fla(t) glac(t) £, (2)
(o(t) =0 EA (3)
£u(t) = M (1) t=1, (4)
y(t) = qla(t) —zo(t),0)  t=1 (5)
re(t) = ze(t7) + (1) t=ty. (6)

The decoder on the other side of the communication channel also has a model
of the plant and follows the same dynamics as the encoder. As it is assumed
that encoder and decoder are initialized to the same values, the states of the
encoder and decoder match for all positive times.

A brief explanation of the equations f@ is in order. The function ¢ in
is a quantizer, which encodes the distance between the state x and the encoder
T, with a time varying resolution ¢.. The variable y caries this quantized
information. At time t; the information y is sent over the communication
channel to the decoder and used to update the encoder, respectively, decoder
state. By combining (5) with (6) we see that if the resolution £. converges
to zero, the encoder x, converges to the state x. Provided that A < 1, the
resolution £, gets smaller at each time instances ¢ = t; as can be seen in
. One problem is that the values of ¢ could get arbitrarily large, if the
difference x — z. gets large in between t; and tx41. When considering digital
communication channels with limited bandwidth, large data transmission(s)
can not, be allowed. This issue is addressed by bounding the difference x — x,
with the help of the Gronwall inequality.

If the difference of x and z. converges to zero, the state of the decoder x4
also converges to the state x, because encoder and decoder agree on their
states. The decoder trajectory is then used to close the loop. Due to the fact
that encoder and decoder are dynamical systems, this approach is known as
dynamic quantization.

Evidently for this dynamic quantization to work, encoder and decoder have
to agree on their states. Moreover, the resolution has to become smaller and
the evolution of the difference x — z, has to be bound.

When there is a channel delay, the encoder and decoder states will generally
not match any longer. As we want to study systems that communicate over
digital channels, yet any real world communication medium introduces a
delay, we cannot use the approach of [LHO3] as it is.

If data is sent from encoder to decoder at time ¢, and there is a delay 6 > 0
present in the channel, the information is received by the decoder at 6 :=
ty + 0. To account for delay, De Persis uses dynamic quantization in [DP10]




to achieve equality of encoder and decoder states by changing the equations
for the encoder. To understand the basic idea, consider the following set of
equations:

e (t) = f(ze(t), g(ze(t — 0))) t# Ok
Te(t) = f(@e(t), 9(Te(t))) t#th
le(t) =0 t #
2e(t) = 2e(t) + qe(@(t —0) — Ze(t —0),Le(t —0)) =16
To(tT) = Zo(t) + qe((t), Ze(t), Le(t)) t =ty
L (tT) = Alo(t) t =t
y(t) = q(z(t) — T(t), Le) t=t.

Note that the equations follow the same reasoning as the according equations
from [LHO5]. De Persis introduces new equations to account for a change in
the control action between t and ti 1 due to 6. One can think of x. as the
"old" trajectory before y is received by the decoder and Z. as the reference
trajectory, to which the distance to = is measured, as soon as y has arrived.
For this approach to work, the encoder has to know the instant of time at
which the data is received by the decoder. De Persis assumes a constant
delay to achieve this. The assumption of constant delay 6 is too restrictive
for our problem of stabilizing a control system over a digital communication
channel, as usually the delay is time-varying. To address this, we generalize
the ideas from [DP10] to the case of an arbitrary (i.e., time varying and ar-
bitrarily large) delay and apply them to the setup of [LHO5| in Chapter
Furthermore, we present a mechanism to handle the effect of packet loss.
To be more precise, we study systems of the form which are assumed
to be Lipschitz and ISS. We identify the properties needed for the dynamic
quantization to be able to stabilize the system. Namely, encoder and decoder
agree on certain states (information consistency) and the level of uncertainty.
This uncertainty gets exponentially smaller with each transmission of data
(N-contracting and L-expanding), provided that the communication channel
fulfills certain bandwidth conditions. In particular, if the channel can trans-
mit a symbol from a set of N" different symbols where N € N and n is the
dimension of the system, then for the average delay 7* it should hold that

el < N,

with L the Lipschitz constant of the system. The quantity on the left hand
describes the average gain of information the system exhibits and the right
hand side correlates with the bandwidth of the communication channel. In




this regard the condition relates properties of the system to the bandwidth
of the communication channel.

So far we introduced tools to stabilize a system despite the effects of digital
communication. As already mentioned, these tools are not applicable for
large-scale systems. If we want to use this approach to stabilize a large-
scale system, we need conditions to ensure that the interconnection of several
systems are stable. This is often done with the help of so called small-gain
conditions.

Small-gain conditions for the Stability Analysis of Large-Scale Sys-
tems

Early accounts of small-gain conditions for large scale-systems are given by
Siljak [Sil78]. Siljak considers systems of the form

a’ri:gi(t,xi)—khi(t,x), 1=1,...,n.

Here, z; is the state of the ith subsystem, g; describes the dynamics of the
subsystem, and h; represents the interaction between other subsystems and
system 7. It is assumed that each subsystem without interconnection is stable.
A matrix W € R"*" is derived whose entries w;; describe the effect of the
ith subsystem onto the jth subsystem.

Stability of the interconnected system is concluded under the assumption
that W is a M-matrix or equivalently —M is a Metzler matrix. In [BP94] a
list of over 40 properties that are equivalent to the property that W is a M-
matrix can be found. The most lucid property for the presented situation is
that W is a quasidominant diagonal matrix. Without going into details, this
characterization states that the influence of the ith state on its own dynamics
has to be much stronger than the influence of the rest of the subsystems. Or
in other words, the coupling of the subsystems is weak. For our problem of
stabilizing a large-scale system, the modeling of the effect of interconnection
by a linear function, might be too restrictive.

More in the spirit of this work, since it also takes advantage of the ISS
framework is [ITTP94], although it only considers the interconnection of two
systems. In [JTP94] stability of the interconnection of

S.Ul :fl(xl,xg,ul) and

Ty = fo(w2,21,u2)




is guaranteed under the hypothesis that each subsystem is ISS and a small
gain condition holds, i.e.,

21 (O] < B(121(0)]; ) + i (llz2]l) + vur (luall)
22 (0)] < B(|22(0)]; ) + 2 (llz1]]) + Yuz(lluzll)

and
p1oY1 o P20y <id,

with pi, po suitable functions. The ISS assumption allows to quantify the
effect of the interconnection while the small gain condition ensures that the
coupling is weak i.e., the effect one subsystem has on the other is not too
strong.

As the interconnected system is ISS with w1, us as inputs, the presented ap-
proach could be used to analyze large-scale systems by starting to conclude
ISS of two subsystems and adding one subsystem after another subsequently.
The problem though is that the outcome of the stability analysis depends on
the particular order the subsystems are chosen in. Clearly, stability should
be permutation invariant, i.e., relabeling of the subsystems should not change
the stability property.

To address this issue the latter result was generalized to the case of an ar-
bitrary number of subsystems in [DRWO0T7]. The ISS assumption for each
subsystem becomes

jei(8)] < Bzi(0),8) + D iyl ) + viu(llul)
g

The gains +;;, which model the effect of the jth subsystem onto system ¢, are
used to define a nonlinear operator

> i1 M (85)
I(s) = :

mimicking matrix vector multiplication. Stability of the interconnection is
inferred by the no joint increase condition

T #id.

The no joint increase condition states that if I' is applied to a nonnegative
vector s, I'(s) must be strictly smaller than s in at least one component.

10



To summarize, the no joint increase condition is used to infer stability of an
arbitrary number of ISS systems.

As it turns out, there is a class of systems better suited for our purpose of
analyzing the stability properties of large-scale systems communicating over
digital channels. This class of systems is called multichannel input to output
practically stable time delay systems and is introduced in [PMTL09]. The
change to infinite dimensional systems allows to account for the delay present
in the communication channel over which the systems communicate.

The term multichannel describes a system/subsystem in which the inputs
and outputs are divided into separate channels.

Hence, we can assign several functions to each system to model the effect of
interconnection instead of having just one per system. The advantage of the
multichannel approach lies in its additional flexibility to assign the gains. In
[PMTLO9] an example is given, in which a certain small-gain condition holds,
if the multichannel approach is used, yet it does not hold if only one gain for
each subsystem is assigned.

The downside of the results of [PMTL09| are that they are again only ap-
plicable for the case of two subsystems and that the presented small-gain
condition is too conservative.

Moreover, in the framework of multichannel time delay systems we were not
able to use the results of [DRWO07] directly. The concept of an §2-path, intro-
duced in [DRW10] plays an important role in applying the results of [DRWQT]
to our problem. For an 2-path ¢ it holds that

L(o(r)) < o(r). (7)

The no joint increase condition states, that I' should decrease in at least one
component. The path ¢ may be loosely interpreted as a nonlinear change
of coordinates or to be more precise it is a path through the domain of T'.
This path allows to conclude a descent in every component of I'. In order to
benefit from an Q-path we cast the notion into our framework in Section [3.3]
Note that the introduction of the concept of an 2-path into our framework
has also importance to the results of Chapter

All the mentioned small-gain conditions bound the state of the interconnected
system, using bounds for the individual systems. In particular, they all end
up with an inequality of the form

[2(#)vee < B(12(0)]) + T (|x]vec) +v(llul)

with I' modeling the effect of interconnection. To have a useful bound on the
state, the inequality must be "solved" for |x|ye.. While the general idea is
the same for all the presented small-gain approaches, the condition on I' to

11



"invert" the inequality changes. In this regard, the question arises, how to
relate these different conditions and how to introduce new ones. For instance,
in [Riif10b] it was shown that the no joint increase condition is equivalent to
the property that

s(k+1) =D(s(k)) + ~y(w(k))

is ISS with respect to w. Or in other words, the ISS property of an intercon-
nected system is concluded, provided that a comparison system, induced by
the functions modeling the interconnection, is itself ISS. The latter equiva-
lence inspired the research into more small-gain conditions and their relations
in Chapter

In total, the contribution of Chapter [3| may be summarized as follows. First
we give a catalog of properties that are all equivalent to the no joint increase
condition. In this regard we do not only add new conditions to the list of
existing small-gain conditions, but show that most of the known conditions
are equivalent under suitable additional assumptions. For instance, we prove
that the above mentioned inversion property is already equivalent to the no
joint increase condition.

The presented small-gain approach is then used to generalize [DRW07] to the
case of large-scale systems that are interconnected through a digital commu-
nication channel. Or in other words, we use the derived small-gain condition
to apply them to the setup of [PMTL09).

So far, we handled the effects of delay, quantization, and packet loss within
a large-scale setup. In order to address bandwidth limitations, we use tools
from event based control.

Event-Based Control

Usually, in control engineering, a feedback F’ is designed, which stabilizes the
system, if it has full access to the information of the state. For instance,
consider

&(t) = Ax(t) + BFz(t),

with A + BF Hurwitz. Consider a sampled data version of x(¢) i.e.,

, tF
t), t=t.

Z(t)=0

The to be designed instances of time ¢, are called sampling times. The sample
and hold error is e(t) := Z(t) — x(t). Clearly, although @(t) = (A + BF)x(t)
is asymptotically stable, z(t) = Ax(t) + BFZ(t) does not need to have this
property, if the duration between the sampling periods tx11 — t} is too large.

12



Thus conditions for the sampling times are required. Frequently, control
engineers sample the state with a fixed sampling rate, i.e., tx11 = tr +
7, with 7 > 0 chosen heuristically. In general the approach of periodic
sampling might be too conservative. Intuitively, if the error e grows fast,
we have to sample more often than when the error grows slowly. Hence, it
would be more effective to adapt the sampling periods accordingly. Ideas of
non periodic sampling times were around since the fifties of the last century
(e.g., [Ell59, [TB66]). However, it was not until the introduction of the ISS
framework that ideas to stabilize a system using non periodic sampling drew
again more attention.

For instance, in [Tab07] a system

&= f(z,k(z)) = f(z,k(z +€))

is considered. The existence of an ISS-Lyapunov function is used to derive a
triggering condition

v(e) = a(x)
with «,~ from the ISS assumption. In essence, if the error becomes too large
compared to the state, a sample has to be taken, thus resetting the error to
zZero.
In [Tab07] it is shown that the closed-loop system with sampling times im-
plicitly given by the triggering condition is stable.
As [Tab07] considers a single controller for the system. The presented ap-
proach is not directly suited for the large-scale case.
The case of a distributed event-triggered approach is presented in [WL11].
The authors consider a network of systems given by

i; = fi(z,u;)

u; = g;(T)
where Z is a sampled data version of z. It is shown that under a finite £,
gain assumption on the subsystems, the interconnection is stable, provided
that the matrix describing the effect of the interconnection is diagonally dom-
inant. The analysis and design of the interconnections are similar to [Sil78]
as described in the last section. In particular, the effects of the intercon-
nection is modeled by linear functions. As diagonal dominance is stronger
than the quasi dominance property, the small-gain condition of [WL11] is
too demanding. The basic idea of Chapter [4] stems from the observation that
the simple and possibly too restrictive small-gain condition used in [WL11]
can be replaced by ideas presented in [DRW10]. In particular, in [DRWI0]
functions o, p are constructed for which

L(a(r), p(r)) < o(r)

13



holds for all > 0.

I is an augmented version of (7)) used to ensure stability of the interconnec-
tion. The second argument models the effect of the imperfect knowledge of
the states to the local controllers due to the sample and hold error e.

The Q-path o is used to derive a Lyapunov function V for the overall system,
given the Lyapunov functions of the subsystems V;. By the results of Chap-
ter [3] we know that the interconnected system is stable if e = 0. In Chapter []
we derive triggering functions depending on p to ensure that the effect of
imperfect knowledge of the state due to the error e does not interfere with
the stability property of the interconnected system. In essence, the triggering
functions are of the form

Vi(zi) < xileq)

where x; is a scaling function depending on the gains of the effect of the
imperfect knowledge of the states and the path o.

The event-triggering approaches mentioned so far share one property: the
corresponding event-triggered closed-loop systems are hybrid system. In hy-
brid systems the so-called Zeno effect may occur, i.e., the triggering and hence
information transmission can happen infinitely often in finite time. To avoid
this unwanted effect, we show that altering the ISS assumption to a practical
notion of ISS rules out Zeno phenomena for the price of a weaker stability
property. It is also shown that triggering conditions of the form

V(z) < xile:)

would ensure stability, while ruling out Zeno phenomena. A triggering func-
tion of the latter form demands knowledge of the Lyapunov function for the
overall system to all subsystem. As we are heading for a purely decentral-
ized approach, we need an approximation for the Lyapunov function V using
only local information. We show that the velocity of the subsystems can be
used to approximate V and thus we can derive a triggering condition called
parsimonious triggering, which again asymptotically stabilizes the system
while retaining our decentralized setup. The main tools we use to conclude
stability of the event-triggered systems, besides the above mentioned, are
standard Lyapunov techniques, a discrete Gronwall inequality and results
from non smooth analysis.
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Open Problems

Of course we will not answer the questions posed at the very beginning in their
entirety. But we present tools that we hope to prove helpful in the stabiliza-
tion and stability analysis of large-scale systems communicating over digital
channels. In detail, we present methods to overcome limitations posed by
quantization, delay and packet loss in Chapter [2| by using concepts from in-
formation theory (encoding/decoding, entropy like estimates) together with
tools from signal theory (dynamic quantization).

In Chapter [3] we develop novel small-gain conditions, relate them to the lit-
erature, and apply them to analyze the stability properties of a large scale
system, communicating over digital channels.

We address bandwidth limitations in Chapter [4] by lowering the amount of
information we have to send over the channel. To this end we use the newly
developed tools from Chapter [3] and combine them with known ideas. The
basic idea from Chapter [4]stems also from signal theory and is known as e.g.,
event based sampling.

Besides the countless open, yet interesting, problems within the framework of
large-scale systems communicating over digital channels, we should mention
some that are of particular interest for this thesis.

As already sketched, to apply the tools from Chapter [3] or ] the subsystems
have to be ISS. As the stabilization method of Chapter 2] yields asymptotic
stability instead of ISS, further research is required. In Chapter 3| we discuss
the equivalence of small-gain conditions. We expect that the notion of an €2-
path is also equivalent to the presented ones under additional assumptions,
but we were not able to identify these conditions in a satisfactorily manner.
It should also be not unmentioned, that although we introduce methods to
lessen the information we have to sent over the channel, the problem of ar-
bitration is not considered.

Furthermore, we demand the controllers to render the closed-loop systems
ISS, which is in general hard to achieve. In this regard especially in Chap-
ter [3] the ISS assumption might be too demanding. We also expect that the
introduction of a suitable model for the communication channel, regarding
control purposes, would lead to better results by allowing to incorporate the
effects of the communication directly into design, modeling, and analysis of
control systems. But we hope that the tools and methods introduced in this
thesis are still a considerably contribution to the field of large-scale digital
networks.
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Chapter 1

Preliminaries

In this chapter we introduce the notation we use together with the basic
definitions and concepts we want to consider. In particular, in Section [I.I] we
present the basic notation, while the class of systems as well as preliminary
stability definitions and results are given in Section[I.2] Finally, in Section[I.3
we give an introduction to the ISS framework, which is a robust notion of
stability.

Of course, this can only be an excerpt of the corresponding topics. Moreover,
the sketchy nature of the presentation does not reflect the importance of the
mentioned results. However, a thorough discussion would go beyond the
scope of this thesis.

1.1 Notations and Definitions

Here we want to introduce the basic definitions and notations that hold
throughout the thesis. Sometimes we use slight modifications of the con-
cepts introduced here. We will mention the exceptions explicitly.

Let R denotes the field of real numbers. By R, we denote the set of non-
negative real numbers. The set Z represents the integers and N = {0,1,...}
the natural numbers. We denote by e,, € R™ the vector consisting of ones. If
it is clear from the context, we usually omit the subscript n.

1.1.1 Monotonicity

Monotonicity or to be more precise monotone operators play an important
role in this thesis. Before we can define what we mean by monotone operators,
we have to state which order relation we use. Throughout the thesis we use
the order relation "<,," induced on R™ by the positive orthant.
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CHAPTER 1. PRELIMINARIES

Let z,y € R™. We define a partial order relation on R" by
l.e<,yife; <y, fori=1,...,n
2.z < yifa; <y fori=1,...,n,

with z <y for z,y € R the usual total order relation. Clearly, for n > 1 the
order relation <,, is not a total order relation, i.e we cannot say that either
x <,y ory<, rand hence we need the negation as well i.e.,

1. o &, yif a; > y; for at least one i € {1,...,n}
2. x £, yif x; > y; for at least one i € {1,...,n}.

We say that a function f : R™ — R™ is monotone, if x <, y implies
f(z) <p, f(y) for all z,y € R™

If x <, yand x # y implies f(z) <., f(y), we say that f is strictly monotone.
A monotone function is also called nondecreasing, while a strictly monotone
function is referred to as strictly increasing. Furthermore, f is called decreas-
ing, if x <y implies f(y) < f(z).

If it is clear from the context, we will omit the subscript of the order relation.
As monotonicity plays an important role in the thesis, we restrict the con-

cept of a norm to monotone norms. Let |-| : R™ — R} be a norm and
= (z1,...,2,) ",y = (y1,---,yn) " € R". We say that |- | is a monotone
norm, if
0 T Y1
=
O xn yn
implies |z| < |y|. Note that if we restrict |- | to the positive orthant, a
monotone norm is a monotone function.
Let a = (a1,...,a,)",b = (b1,...,b,)" € R". We define the maximum and
supremum of vectors component-wise i.e.,
sup{ay, b1}
max{a,b} :=sup{a, b} := :
sup{an, b, }

Consider a sequence s : N — R™. We define the lim sup also component-wise
i.e.,
lim supy,_, o, s1(k)
limsup s(k) = lim sups(l) = € (RUoo)".

k—o00 k—o0 1> .
lim sup;,_, o Sn(k)

18



1.1. NOTATIONS AND DEFINITIONS

Note that some of the component sequences s;(k) may be finite and others
infinite.

We often need the following fact that we find convenient to state here. For a
monotone function f : R™ — R"™ it holds that

f(sup{a,b}) > sup{f(a), f(b)} (1.1)
for all a,b € R™.

1.1.2 Gain Functions and their Multidimensional Extensions

As we will see in Section [[-3]important generalizations of linear control theory
utilize the notion of gain functions respectively comparison functions. Basi-
cally, gain functions, or gains for short, are used to describe the influence of
a disturbance on a dynamical system.

A function v : Ry — Ry is of class K, if v is continuous, increasing and
satisfies v(0) = 0.

If in addition ~ is unbounded, we say that v € K. We refer to a function
of class K or K as gain or gain operator.

A particular nice feature of gain functions is the following lemma.

Lemma 1.1.1. Let v € Koo, then its inverse v~1 : Ry — Ry ewists and is
also of class Ko-

A proof can be found e.g., in [Riif07].
Note that the class K has a semigroup structure with respect to composition
and the identity (id) as the neutral element. Similarly, Ko has a group
structure.
Sometimes we have to compare gains. In this regard we say that v < « for
v, € Koo, if v(r) < a(r) for all » > 0 holds.

Lemma 1.1.2. Let v,p € Koo, then max{y, p} € Ko and min{vy, p} € K.
Furthermore, the same holds true with Ko replaced by K.

Proof. Let v,p € Ks. As the maximum as well as the minimum are contin-
uous functions over R, max{v, p} and min{~, p} are continuous.

Let r1 <rg. As~,p € Ku, we have y(r1) < v(rz) and p(r1) < p(rz2) and thus
max{y(r1), p(r1)} < max{vy(r2), p(r2)}, which shows strict monotonicity.
Unboundedness and the property that max{~v, p}(0) = 0 respectively
min{~, p}(0) = 0 are obvious and the proof is complete. O

We say that §: Ry — Ry isof class £, if 3 is decreasing and lim;_, o, 5(t) =
0. A function 8 : RE — Ry is of class KL, if B(-,t) is of class K for each
fixed ¢t € Ry and S(s, ) of class £ for each fixed s € R,.
The next lemma considers the so called weak triangle inequality.
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Lemma 1.1.3. Let v € K and p € K. Then for all a,b € R, we have
Y(a+b) < yo(id+p)(a) +7o (id+p~)(b).

A proof is given in [JTP94].
We say that v : Ry — R? with v = (y1,...,7,)" is of class K", if 4, € K
for each i = 1,...,n. A function v € K2 is defined analogously. The map
I':R% — RY*™ is said to be of class K™ if

711(31) CIEa len(Sn)
= :
with 7;; € Ko forall i =1,...,m and j =1,...,n. If we allow some of the

vij; = 0, we say that I' € G := (Koo U0)"*™. We will refer to I' as a gain
matrix.

Similarly to the linear case, we want to use I' to define a map from R”} to
R?*. To do so, we need a way to "aggregate" the gains within one row of I'.
This is done with the help of the so called monotone aggregation functions.

1.1.3 Monotone Aggregation Functions

Let | -] : R® — R4 denote a monotone norm. To emphasize that a norm is
defined on an infinite dimensional space, we use the symbol || -|| for this case.

Definition 1.1.4. A continuous function p : R} — R, is a monotone ag-
gregation function if p is:

(Positive definite:) p(v) > 0 for all v € R" and p(v) = 0 iff v = 0;
(Increasing:) p(v) > p(z) if v > 2, v # z;
(Unbounded:) If |v| — oo then p(v) — oc.

The space of monotone aggregation functions (MAFs for short) with domain
R? is denoted by M AF,,. Moreover, we say that u € MAF;" if p : R} — R}
and for each i =1,2,...,m, u; € MAF,.

Furthermore, if additionally p is

(Subadditive:) p(v+ z) < p(v) + p(z) for all v, z € RY,

we say pu is subadditive.
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1.1. NOTATIONS AND DEFINITIONS

A popular example of a monotone aggregation function is a monotone
norm. In fact, all monotone norms are subadditive monotone aggregation
functions. Of course there exists monotone aggregation functions that are
not norms. For instance, consider pu(v) = log(|Jv| + 1) with | - | an arbitrary
monotone norm.

Now we want to state some easy to verify facts about monotone aggregation
functions that we need throughout the thesis. There is a strong relation
between monotone aggregation functions and gains, as we will see in the rest
of this section.

The next lemma is a direct consequence of Definition [T.1.4] but we find it
convenient to state it as a lemma nevertheless.

Lemma 1.1.5. If u: R} — Ry is a monotone aggregation function, then
~v(r) == p(a(r)) is of class Koo for any o € G™ \ {0}.

The next two assertions are devoted to the fact that we can always bound
a particular MAF by another MAF by changing the argument.

Lemma 1.1.6. For any u € MAF,, there exists v1,...,v, € Koo such that
for all ay, ... a, € Ry it holds

max{ai, ..., a,} < p(vi(ar),. .., v(an)) -
Proof Define ~; () = (30 ,0), v 1 (s) == (0, 5,0,...,0),...,
i t(s) = u(0, ,s). B Lemma it holds that 4, *,..., 7! € Keo.
Hence we can wrlte
max{ay,...,ap} = max{’yl_l ovi(ay),... ,7;1 ovnlan)} =
maX{/L(’}/]_(G/l), 0) ey 0)7 DRI ,U/(O7 L 707’771(0/1’1))} S

max{/j‘(')/l(al)a cee 77n(an))7 LR ;U’(’Yl(al)v s 7’7n(an))} =
:U’(fyl(al)7 ce 7711(@”)) )

where the inequality follows from the monotonicity of p and the proof is
complete. O

Corollary 1.1.7. Given a p; € MAF,, and ay,...,a, € R.. Then we can
find for any po € MAF,, functions v1,...,vn € Koo Such that

pa(ar, ... an) < pa(yi(a), ..., ynlan)) .

Proof. By monotonicity of u; we have

pi(ar, ... an) <max{pui(ar,...,a1),...,u1(Gpn,...,an)}.
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By Lemma we see that
,ul(ai, ce ,ai) = ’%(ai) € Koo
forall i =1,...,n. And therefore

pi(at, ... a,) <max{yi(a1),...,ynlan)}.

By Lemma we find for any us € MAF,, functions 71, ...,%, € K such
that

max{y1(a1), ..., n(an)} < p2(1051(a1), ..., ¥ 0 n(an))
Realizing that 74; o 4; =: v; € K finishes the proof. O

Sometimes we need a weaker notion than that of a MAF. To this end we
summarize some concepts here that we need in order to compare values from
different spaces.

Definition 1.1.8. A continuous function { : R® — R is called positive
definite if £(0) = 0 and £(s) = 0 implies s = 0.

Definition 1.1.9. We will call a continuous monotone function ¢ : R® —
R?" proper if there exists a function & € Ko, such that for all s € R7,

a(ls])e < ¢(s). (1.2)

A way to ensure positive definiteness of a continuous and proper function
¢ is to assume £(0) = 0. As we need ([1.3) frequently in the thesis, we state
the next Lemma in its present form.

Lemma 1.1.10. A proper function ¢ : R™ — R is positive definite if and
only if there exists an & € Koo such that for all s € R”},

()] < a([s])- (1.3)

Proof. Let ¢ be proper and so in particular monotone. If ( is positive definite,
then |((s)| is monotone, continuous, and positive definite, because of the
properness of ¢ and the restriction to monotone norms. By the equivalence
of norms on finite-dimensional spaces, there exists a v € R4 such that &(r) =
|¢(rve)| for > 0 can be chosen as the desired class Ko, function.

For the other direction observe that by choosing s = 0 we get

1¢(0)] < &(0) =0, (1.4)
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1.2. DYNAMICAL SYSTEMS

because & € K. Considering the properness of ¢ for s # 0 yields
0 < allsl)e < ¢(s).

By applying norms we arrive at

0 <I¢(s)l, (1.5)
for s # 0. Combining (L.4) and (1.5) yields the positive definiteness and the
proof is complete. O

The next lemma relates the concept of a MAF to proper and positive
definite functions.

Lemma 1.1.11. If £ : R} — R is proper and positive definite, then there
exists a p € MAFY such that

£(s) < p(s)
for all s € R}.

Proof. Let p € MAF,, and define u; = §; + p. Fix s,v € R} with s <v and
s #v. We have

pj(8) = &5(s) + p(s) <&(v) + p(v) = p;(v),

because {; is monotone and p € MAF,, and thus p; has the increasing prop-
erty of a MAF.

It is obvious, that pu; is positive definite, because the sum of two positive
definite functions is again positive definite. By properness of £ there exists
a € Ko such that

a(|s) < &(s); <€(s); + p(s) = n(s)

for all j = 1,...,m. Clearly, 11;(s) tends to infinity as |s| tends to infinity,
because a; € Koo. Hence, pu(s) := (11(8), ..., pm(s)) " is in MAF™ and the
proof is complete. O

1.2 Dynamical Systems

If not explicitly mentioned otherwise, the presented material in this section
is borrowed from [HPO05]. For the sake of completeness we cite the needed
concepts and results here.
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Dynamical systems are often defined by solutions of ordinary differential
equations of the form

o(t) = f(t =(t),u(t)), (1.6)
with f : Ry xR" xR™ — R". Before we can define what a dynamical system
is, we have to define the concept of a solution of an ordinary differential
equation. As we want to study differential equations with non continuous
right hand sides, we need also the following definition.

Definition 1.2.1. We say a function z : [to, 7] — R™ is absolutely contin-
uous, if its derivative (t) exists almost everywhere (i.e., except on a set of
Lebesgue measure zero) for t € [tg, T] and

t

x(t):x(to)+/ i(s)ds ¢ € [to,T].
to

Definition 1.2.2. A function z(-) : I — X is called a solution of (1.6 on

an interval I C T if it is absolutely continuous and satisfies (1.6) almost

everywhere on I.

Note that contrary to the usual solution theory (i.e., in the sense of Peano
[HCO8, Theorem 2.24]), the trajectory x(t) is only differentiable almost ev-
erywhere on 1.

According to [HP05] a differentiable dynamical system can be described
by the following definition.

Definition 1.2.3. A septuple X = (T,U,U, X,Y, ¢, n) is said to be a differ-
entiable dynamical system with time domain 7T, input value space U, state
space X, output space Y, state transition map ¢ and output map 7, if the
following conditions are satisfied.

e T U,U,X,Y are non void sets.

e U,Y are subsets of R™ and RP, and X is an open subset of R", and
ucur.

e There exists a function f : T x X x U — R"™ such that for all ¢y, €
T, zg € X, u(-) € U the initial value problem
z(t) = f(t,z(t),u(t)),t >tg teT
x(to) = o
has a unique solution z(-) on a maximal open time interval I satisfying

I =T}, 1,u(.)- Furthermore, for the state transition map ¢ : T?x X xU
it holds that x(t) = @(t; to, zo, u(:)) for all ¢ € I.
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1.2. DYNAMICAL SYSTEMS

e 1:T x X xU —Y is continuous

As we frequently deal with differentiable systems, we call a differentiable
system often just a system. The definition from [HP05] allows for arbitrary
finite dimensional fields for state, input, and output space. Because we con-
sider only real dynamical systems, we stated the definition in its present form.
We refer to zg and ¢y as the initial state and initial time, respectively. By
abusing notation, we sometimes denote the trajectory by z(t) and sometimes
we identify x(t) with a single point in the state space for a fixed ¢t. If it is
clear from the context we will omit the argument of z(¢). On the other hand,
if we want to emphasize the role of the input, we write for a solution to
x(t;u).

Next we cite a remarkable result concerning the existence of solutions. To
this end consider

&= f(t,x) (1.7)

where f: T x X — R", T C R is an interval and X an open subset of R".
We say that f satisfies the Carathéodory conditions if

Car 1 f(-,x):T — R" is measurable for each fixed z € X;
Car 2 f(t,-) : X — R” is continuous for each fixed ¢t € T
Car 3 |f(-, )| is locally integrable on T for some & € X;

Car 4 for each compact set C =1 x K C T x X there exists an integrable
function Lo(+) : I x R4 such that

|f(t,l‘)ff(t,y)|ch(t)“I*yh (t,:z:),(t,y)EC.

Theorem 1.2.4. If T is an open interval, X is an open subset of R™ and
f T x R™ satisfies the Carathéodory conditions on T x X, then for any
(to,xo) € T X X there exists a unique solution x(-) = ¥ (-;te, zo) of (1.7))-

A proof can be found e.g., in [CL55|. If uniqueness does not play a role,
condition Car 4 can be dropped.

To ensure that a solution of exists, one must verify that g(¢,x) :=
f(t,z,u(t)) satisfies the Carathéodory conditions for all u(-) € U. The fol-
lowing corollary gives a sufficient condition.

Corollary 1.2.5. Suppose T,U,U,X,Y are sets as in Definition n:
TxXxU=Y is continuous and f : T x X x U — R"™ is jointly measurable
in (t,u) € T x U for every x € X and continuous in x € X for each fizved
(t,u) € TxU. If U C UT consists of locally LP-integrable functions (1 < p <
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o0) on T and for each compact set C = I x K C T x X there exists constants
me,lo such that

lf(t, z,u)| <me(||ull,+1), tel, ueU for somex e X,
|f(t,x,u) —f(t7y,u)| < lC(||u||p+ 1)|I_y‘7 (t,x),(t,y) €eC,uel,

then (1.6) has a unique solution x(-) = x(-;tg, o, u(-)) on a maximal interval
of existence Ty, ;o .y for all (to,zo,u(-)) € T x X x U.

Another concept we will use frequently in this work is the following.

Definition 1.2.6. A quintuple ¥ = (U, X,Y,v,n) where U, X,Y are non
void sets and ¥ : X x U — X, n : X x U are maps, is called a discrete
time system with input space U, state space X, output space Y, next state
function v, and output function 7.

The dynamics of a discrete time system are described by the following
state and output equations

x(k+1) =Y(x(k),uk)), keN (1.8)

Often, we are interested in stationary points of the state space.

Definition 1.2.7. Consider (1.6) respectively (1.8). We say a pair (z*,u*) €
X x U is an equilibrium pair, if

O = f(t7 x*7u*)

forall¢ >0 or
' =Pz, u’).

Furthermore z* is called an equilibrium state or equilibrium.

Equilibria may be stable or not in the sense that if we start sufficiently
close to the equilibrium the trajectory will stay close to the equilibrium. The
next definitions describe these properties.

Definition 1.2.8. An equilibrium pair (z*,u*) of (1.6)) is called stable at
time tg, if for each e > 0 there exists a d(¢g, ) > 0 such that

" — a(to)| < 3(to,€) = |o* —(t)] <e

for all ¢ > tg.
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Definition 1.2.9. An equilibrium pair (z*,u*) of (1.6]) is called attractive
at time to, if there exists a d(¢g) > 0 such that

|z* — x(to)| < 0(to) = tllm |z* —z(t)| =0.

Definition 1.2.10. An equilibrium pair (z*, «*) of (1.6) is called asymptot-
ically stable at tg, if it is stable and attractive at tg.

If an equilibrium point x* is stable and attractive at ¢y for all z(tp) € R™
we say that z* is globally asymptotically stable (or GAS for short).
If § in the above definitions does not depend on ¢y and the convergence in
Definition [1.2.9|is uniform in ¢y, we say that «* is uniformly asymptotically
stable.
One concept, which proved helpful in the analysis of the stability properties
of

i= (@) (19)

with f : R™ — R", is a Lyapunov function. Informally, a Lyapunov func-
tion is a function from the state space into the positive reals. It is positive
everywhere except at the equilibrium and decreases along every trajectory.

Definition 1.2.11. A differentiable, positive definite and proper function
V :R™ — Ry is called a Lyapunov function for system (1.9)) if there exist a
positive definite o : Ry — Ry such that

VV(z)f(z) < —a|z]) (1.10)

for all z € R™.

Intuitively, the decay condition ensures that the "energy" function
V' decays along solutions. As the properness and positive definiteness ensures
that x — 0 as V(z) — 0, zero must be attractive and stable. The success of
Lyapunov functions lies in the next theorem.

Theorem 1.2.12. If and only if there exist a Lyapunov function for system
(11.9), then (1.9) is globally asymptotically stable.

The "if" part of the last theorem is known as Lyapunov’s direct method
(see e.g., [BROS, Theorem 2.2]). Direct in the sense that in order to proof
stability of a system, no solution has to be calculated. The "only if" part,
on the other hand, is known as a converse Lyapunov result (see e.g., [BR05,
Theorem 2.4]). Pursuing the rich field of Lyapunov theory further goes be-
yond the scope of this thesis. The interested reader is referred to e.g., [BR03|
for more details.
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So far, we considered what can be regarded as classical systems theory.
The title of this work suggests that we are interested in the stability properties
of large-scale systems. As stated in the introduction, one aspect of large-scale
systems is the decomposability. To be able to distinguish between a system
and one of the smaller parts consider

i‘l :fl(x17x2;"'7xn7u1)
&y = fo(x1,22,...,2n, uz)
Tn = fn(T1, T2, ..., Tp, Up)
with z; € R | w; € R™. Let v = (2 ,...,2,)) ", u=(uf,...,u))" and
fl(x1,$2,...,:1:n,u1)
fx,u) = :
fa(x1, 22,0 Ty, up)

We call & = f(x,u) an interconnected system and we will refer to @; =
filxy,xa, ...,y u;) for each ¢ = 1,...,n as the ith subsystem of the inter-
connected system.

In Chapter |3| we are dealing with a different class of systems. This type of
system is called a functional differential equation (FDE). To be more precise
we are dealing with a subclass of FDE’s namely time delay systems. A time
delay system is of the form

i(t) = fzg,ud, ..., ul,t)

yt(t) = 1(xd,ué,...,ué,t) (1.11)

Yy (t) = hr(xd,u}i, .. ,ué, t).

In a functional differential equation the right-hand-side rather depends on a
piece of trajectory than a single point in the state space, as it is the case for
ordinary differential equations.

Denote by X™ = C([—t4,0],R™) the set of continuous functions with domain
[—t4,0], tq € Ry and image R™. The operators

FrATXX™ x-- x X™ xRy - R"”

and ‘
R XX XM x o x AT x Ry — RY
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for i = 1,...,r are supposed to be Lipschitz in x4, uniformly continuous in
uq and Lebesgue measurable in ¢. The state x4 lives in X" and the inputs
are uj € X™ for j =1,...,l. The subscript d describes a retarded version
of its variable in the following way: Let tqg € R,. If a function is defined as
g: [~ta,00) — RF and t € [0,tq4], then ga(t;-) represents a function from
[0,t4] to RF by

ga(t;7) =gt —7).

Therefore x4 is a piece of trajectory starting at s = ¢ — t4(¢) and ending at
s = t. The aforementioned notation is borrowed from [Tee98]. Note that it
differs slightly from the classical notation used e.g. in [Hal77| by interchang-
ing the argument of delay and time.

For a retarded function gq : [0,t4] x R — R¥, define

lga(t)]] = $up ey 190t )| = SuPucip_y, 4 l9(s)] as the supremum norm.
Often we describe the influence of one subsystem on another either qualita-
tively or quantitatively. To this end, we want to assign one real number to
each subsystem, despite the fact that each subsystem lives in a higher Eu-
clidean space. Here we are heading for a finer granularity, by assigning one
real number to each of the "channels" given by the u} respectively y*. To
this end, we introduce the following notation.

Given z = (z],...,2])" with z; € R™ for i = 1,...,k, the vector of
norms is given by |z|,.. = (|21],...,|zx[)T € R%, in a similar manner
define [|2(")]lyee = (lzi()];---, [lze()[)T € RE. We need another sym-

bol to indicate the stacking of several ||z;|| ... To be able to see at first

glance, of which elements a symbol consists, we decided to use ||z(-)|/s. =

(Jlz1 () ||3ec yeeos lzn(e) ||‘T,EC)T to indicate a vector which itself consists of vec-

tors of norms (||, is defined in an obvious manner).

1.3 Input to State Stability and Related Notions

Linear systems share particular nice features. For instance if a linear sys-
tem is internally stable, then all trajectories are bounded, provided that the
input is bounded. Of course, this does not hold, in general, for nonlinear
systems. Sontag developed a notion of stability, which tries to capture these
nice properties of linear systems. For an introduction in a tutorial fashion
see [Son08|. If not otherwise mentioned, the definitions found in this section
are taken from [SW96]. Let & C L£L2°(R,,R™) with £/2°(R,,R™) the set of
all locally essentially bounded functions with domain R, and image R™. If
u € U, we denote with |Ju|| := esssup,~ |u(t)| the essential supremum of w.
Consider the system -

i(t) = f(,u) (1.12)
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with z € R™ and v € Y. We assume that f : R™ x R™ — R" is locally
Lipschitz and f(0,0) = 0.
It is also of interest to study discrete time systems

s(k+1) = g(s(k), w(k)) (1.13)
with s € R™ and w(k) € R™ for all k. We assume that g : R® x R™ — R" is
continuous and that g(0,0) = 0.

Definition 1.3.1. We say system ((1.12) is input-to-state stable (ISS) for
1 € MAF,, if there exists 8 € KL and v € K such that

[z (t;u)| < p(B(2(0)],8), v([lul])
for all t > 0, all 2(0) € R™ and all u € U.

Definition 1.3.2. We say system (1.13) is input-to-state stable (ISS) for
1 € MAF,, if there exists § € KL and v € K such that

[s(k;w)| < u(B(ls(0)], k), v([[wl]]))
for all k € N, all s(0) € R™ and all w : N — R™.

Usually, the definition for ISS is given with pp=| |1 or gt = | |-

We will see later in this section that qualitatively the choice of p does not
matter i.e., if a certain ISS property holds for a given p € MAF then it holds
also for any other MAF, albeit with different gains.

The definition of ISS states that a trajectory can be bounded by two terms.
The first corresponds to the initial condition and the other to the energy that
is put into the system. Moreover, the effect of the initial condition vanishes
with time. Thus it describes the transient behavior as well as the asymptotic
characteristics of the trajectory. These two behaviors can also be examined
separately, which we will see next.

Definition 1.3.3. System ([1.12) is said to have the Asymptotic Gain (AG)
property, if there exist v € IC such that

limsup |2z (t;w)| < v([Jul])

t—o00 o

for all (0) € R™ and u € Y.

Definition 1.3.4. System ((1.12) is said to have the Global Stability (GS)
property for u € MAF, | if there exist 3,7 € K such that

sup [2(t; w)| < p(B(1z(0)]), 7(f[ull))

for all (0) € R™ and u € Y.
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Of course, there exist the corresponding discrete counterparts, which we
present for reasons of convenience.

Definition 1.3.5. System (1.13) is said to have the Asymptotic Gain (AG)
property, if there exist v € K such that

limsup |s(k; w)| < y(||w]|)

k—o0 o

for all s(0) € R™ and w : N — R™,

Definition 1.3.6. System (|1.13) is said to have the Global Stability (GS)
property for y € MAF,, if there exist 3, € K such that

sup [s(k; w)| < p(B(|s(0)]),v([lwl)
k>0

for all s(0) € R” and w : N — R™,

There is a stronger notion of AG where it is assumed that the lim sup in
Definition [T.3.5]is attained uniformly with respect to initial states and all w.
Before we cite a result that this stronger notion is equivalent to ISS we give
a precise definition.

Definition 1.3.7. System (1.13) is said to have the Uniform Asymptotic
Gain (UAG) property, if there exists a v € K such that for each e,v > 0
there is a T'= T'(e,v) € N such that

sup |s(k; w)| < y([lwl]) +¢
k>T

for all [s(0)] <wv,allw : N— R™ and all k > T.

The next lemma relates the UAG property to the ISS property. It is taken
from [GLO0, Theorem 2] where a proof can be found.

Lemma 1.3.8. System (1.13) is ISS if and only if it has the UAG property.

As we can always upper bound a class K function by a class K., function,
we can replace 7 € K with v € K in all of the above definitions.
Note that the definitions from [SW95] are formulated for ;1 = |- |;. The next
lemma relates this to our definitions.

Lemma 1.3.9. If a system or a discrete time system is ISS or has the AG
or GS property for py € MAF, then it shares the same property for any
2 € MAF.

31



CHAPTER 1. PRELIMINARIES

Proof. This is a direct consequence of Corollary O

In general, the gains change by going from one MAF to another. By
Lemma we see that, qualitatively the choice of p € MAF does not
play a role. Hence we will say a system is ISS and omit the dependency on
1 € MAF from now on.

Lemma 1.3.10. A system or a discrete time system is ISS if and only if it

is AG and GS.

A proof for continuous time can be found in [SW96] and for the discrete
counter-part in [JWOI].
Similar to the case of an uncontrolled system, the notion of Lyapunov func-
tions play an important role within the ISS framework as well.

Definition 1.3.11. A differentiable, positive definite, and proper function
V : R™ — R, is an ISS-Lyapunov function for system (1.12)) if there exists
v € Koo and positive definite o : Ry — R4 such that

V() > y(|ul)
implies
VV (z)f(z,u) < a|z])
for all z € R™ and uv € R™.

The corresponding version for discrete time systems reads as follows.

Definition 1.3.12. A continuous, positive definite, and proper function V :
R™ — Ry is an ISS-Lyapunov function for system (1.13)) if there exists v €
Koo and positive definite o : Ry — R4 such that

V(x) > (lul)
implies
V(g(z,u) = V(z) < —a(|z|)
for all z € R™ and u € R™.

As in the last section there is a strong relation between Lyapunov char-
acterization and stability.

Theorem 1.3.13. There exists an ISS-Lyapunov function for (1.12) or
(1.13), if and only if (1.12) respectively (1.13) is ISS.
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A proof can be found in e.g., [SW95| for continuous time and in [TW01]
for the discrete case.
In Chapter |3| we deal with delay systems. Hence we need another stability
notion, which is taken from [PMTL09].

Definition 1.3.14. A system of the form is input-to-output-practically-
stable (IOpS) at t = to with t4(t) > 0, 3 € KX, I0pS gains T' € g™, re-
strictions A, € Ry, A, € R, and offset § € R’ if the conditions ||za(t)| <
A, and sups,, uf < A, imply that solutions of are well-defined for

t >ty and the following inequalities hold:

sup [y(t)]gee < 4 (B(led(to)ll),F(sup IIUdllsth)

t>to t>t

and

limsup |y(t)|ge < 1 (F(thUP lluallste)s 6) :
t—00 t—o0

The first inequality resembles the GS property, while the second can be
regarded as an AG type estimate. Note that in the context of infinite dimen-
sional systems it is unknown yet whether AG together with GS is equivalent
to ISS. So strictly speaking, the terminology IOpS for Definition [1.3.14]is not
correct. For the sake of simplicity we decided to stick to the name.

1.4 Notes and References

Most of the notations and definitions used here are standard with a few ex-
ceptions. In particular the notion of a monotone aggregation function was
introduced in [Rif07].

We also use the order relation in a slightly different manner. In lattice theory
the symbol z < y is used to denote that z; < y; in every component. And
x < y is used to state that x; < y; in every component and x; < y; for at
least one component. As we do not need these difference more than once, we
decided to use the notation that we believe is nearer to the dynamical system
community.

The notation K, Ko respectively KL was introduced by Hahn in [Hah59|
Hah67]. Hahn did not explain why he chose the particular naming, but ac-
cording to rumors it is in honor of Kamke (see [Grii02]).

Our definition of dynamical systems is taken from [HP05]. We changed the
naming to fit more our needs though.

We decided to solely consider Carathéodory solutions, because any usual so-
lution (in the sense of Peano) is a Carathéodory solution and we will deal
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with discontinuous right hand sides in some of the chapters, for which Peano’s
Theorem is not applicable.

The definitions from Section [I.3are taken from [SW96] with one exception.
Definition is taken from [PMTL09].

Eduardo Sontag introduced the ISS notion in [Son&9|. For an excellent start-
ing point into the ISS framework see [Son08].

The definition and notation for time delay systems is somewhat a mixture of

[Hal77, [Tee98]. The interested reader is referred to [Hal77] for a

detailed introduction to time delay systems.

34



Chapter 2

Stabilizing a Single System over a Com-
munication Channel

Before we start considering large-scale systems, it is of interest how to stabi-
lize a single system over communication channels. In this chapter we focus
on digital communication channels. In a digital channel the information we
want to transmit is translated, respectively, encoded into a binary represen-
tation.

We are dealing with communication channels of finite capacity, i.e. we cannot
transmit an infinite amount of information in a finite amount of time.

In general, transmitting a single real number demands for an infinite amount
of information respectively binary digits. Therefore limiting the capacity of
the communication channel poses some problems due to possible rounding
errors. In the context of networked control systems the effect of the presence
of rounding errors is known as quantization.

Moreover, in any physical implementation of a communication channel a de-
lay is present. Delay describes the effect that information that was sent at
some time is received some time later on the other side of the communication
channel.

Information can even get lost, which means that information sent by one side
is never received by the other side of the communication channel. This effect
is known as packet loss.

In this chapter we discuss certain ways to deal with the limitations posed by
the communication. In detail, we introduce an approach to deal with quan-
tization, delay, and packet loss.

One of the key tools used in this chapter is called dynamic quantization. See
Section [2.2] respectively Remark for a discussion.

The approach presented in this chapter requires more specific assumptions
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on the communication channel than those discussed in the introduction.
We start in the next section by introducing the system setup under consid-
eration.

2.1 System Description and Further Assumptions

This chapter is in two aspects different from the rest of the thesis. First
we only deal with a single system and secondly we are dealing with a more
specific situation as far as the communication channel is concerned.

Problem Setup

In Figure 2.1] the setup under consideration is depicted. The devices behind
these boxes will be introduced here. The communication channel, depicted
as a cloud, is introduced later in this section.

The Plant

We consider systems of the form

Actuator Plant Sensor

Dec {j} Enc

Figure 2.1: Setup of the closed-loop system

&= f(z,u), z€R" welUcCR™, (2.1)

where f : R™ x R™ — R" is continuous and Lipschitz in the first component
uniformly with respect to u, i.e.,

|f(z,u)ff(y,u)|§L|:cfy|, V:L’,yER”,VuGU, (22)

where | - | is an arbitrary norm.
Throughout this thesis the ISS framework is the key tool to achieve certain
stability properties. In this regard, we assume the following.
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Assumption 2.1.1. There exists a smooth & : R — R™, x — k(z) with
k(0) = 0 such that

a(t) = f(x(t), k(x(t) + ea(t))) (2:3)

is ISS with respect to a measurement error eg. Note that this is equivalent
(see Definition [1.3.1)) to the existence of functions 8 € KL and v € Ko so
that the solutions of (2.3)) satisfies

|z (t)] < B(|x(to)|, t — to) + ( sup |ed(5)|> , Vt>tg. (2.4)

seltot]

Note that Assumption states that if e; = 0, the controller k globally
asymptotically stabilizes the unique fixed point z* = 0.

Sensor

The sensor is a measuring device, capable of measuring the state at arbitrary
time instances. Furthermore, we assume there are no measurement errors.
Although Assumption [2.1.1] allows modeling sensor errors by e.g., eq = €y, +
eq, where e,, is the measurement error due to the faulty sensor and e, is
the quantization error, we decided to neglect sensor errors to ease the pre-
sentation. In general we would not be able to conclude asymptotic stability
of the presented approach by considering non-vanishing sensor error. For an
explanation see Section [2.2]

Encoder

The encoder is the device that prepares the information in a suitable way
such that it can be transmitted over the communication channel. To do so
it uses an approximation of the state . € R™. As the encoder and the
decoder are the heart of this chapter, they are introduced in more detail in
Section 2.3]

Decoder

The decoder sits on the other end of the communication channel and trans-
lates respectively decodes the information that was encoded by the encoder
and transmitted over the communication channel. In this regard, the decoder
inverts the encoding procedure done by the encoder. It has a model of the
plant and the equation is given by

Za = (&4, uq), (2.5)
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with Z4 € R™ and ug = k(Z4). The decoder is initialized to Z4(0) = 0.
Note that we assume throughout this chapter that the clocks of encoder and
decoder are synchronized.

Actuator

The actuator takes the signal generated by the decoder and closes the loop
with the help of this signal.

Further Assumptions on the Communication Channel

Here we give the specific assumptions on the communication channel. In
particular, we consider TCP like packet based transmissions over a noiseless,
error free channel with delay and packet loss. For an introduction on TCP
and similar protocols see [Ste93|. Basically, information will be gathered into
packets and sent through the channel. If a packet is received on the other
side of the channel, the receiving side sends an acknowledgment back to the
sender to signal that the information was received correctly.
The encoder encodes the state and sends a symbol from a finite alphabet
(here, a finite alphabet is a finite set given by S := {s1,52,...,8m}, si € Z
for i = 1,...,m) to the decoder together with the time when the state was
encoded (time stamping). As soon as a packet arrives at the decoder, it
reconstructs the encoded state and sends an acknowledgment (ack) back to
the encoder. This ack is also time stamped. If an ack arrives at the encoder
or a predefined time (called 7,,,,) elapses without receiving one, it repeats
the encoding with the actual state. Let ¢y, t; for & € N be series of time
instances. We say that ¢, ¢; are encoder-decoder time sequences, if ¢, is the
kth time instance the encoder received an ack (with one important exception:
The first time the encoder sends an information is without receiving an ack at
time ¢; = 0) and ¢} is the time when the kth information sent by the encoder
is received by the decoder. Note that we assume that there is no time delay
between the arrival of an information and the sending of the next packet i.e.
t;, and ¢t} are also the time instances when the encoder sends information and
the decoder sends an ack respectively, provided that no loss occurred.
The aforementioned procedure is summarized in Figure 2.2l The sending of
packets is depicted as solid lines whereas the ack’s are given as dotted lines.
Note that the packet sent at t3 is lost and a new packet is sent at t3 + Tyqz-
To be able to stabilize the system, information sent by the encoder should be
received by the decoder at least sometimes. The next assumption quantifies
this precisely.
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[N

t) = 0 t3 + Tmaa

Figure 2.2: Time instances of encoder and decoder

Assumption 2.1.2. There exists a long time average of the difference ¢ —
tx—1. This average is given by

k
1 1
T = limsupE E t; —tj—1) = limsup ktk (2.6)

k—o0 k—o0

Assumption [2.1.2] states that on average on an infinite time horizon, every
T7* units of time a packet will be successfully acknowledged. The last equation
holds, because we conventionally set t; = 0, as described before. Note that
the existence of such a 7* does not hold in general despite 7,44, as ty are the
time instances when transmission is successful. In other words: ¢ — tp_1 >
Tmaz fOr some k because of possible packet loss.
The next statement shows that also every 7* units of time the decoder receives
a packet on average.

Lemma 2.1.3. If Assumption [2.1.2 holds, we also have

7" = limsup —1;, .
k—o0

Proof. Note that by definition we have ¢, <7 < t;4;. Hence by using ([2.6)
we get

w1 1 . 1., . 1

7 =limsup —t; < limsup —t; < limsup —tx41 .
k—o0 k k— o0 k k—o0 k

It remains to show that the right hand side of the inequality also converges
to 7*. To this end consider

1 1 k 1
lim sup —¢ = hm sup -t lim sup -t <
k—)oop BT ke z>g I T S k1 z>g [

1 *
lim sup ———t;41 =7".

k—o00 > [+11
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And we have shown the claim. O
Next we give a summary of the properties of the communication channel.
Summary 2.1.4. For the communication channel the following should hold:
1. All packets are time stamped with the current time they are sent.
2. Only packets sent from encoder to decoder are lost.

3. There exists a minimal delay from encoder to decoder, given by Tmin,
e, tf —tk > Tmin and tp — 5 _; > Thin.

4. The channel is able to transmit packets containing a value from a set
of N™ discrete values within 7,,;, units of time.

5. If T4z time elapses without receiving an ack, the packet sent last time
is considered lost and a new packet will be sent.

By Summary (1) we have to send the actual time together with the
encoded state information. It is not reasonable to transmit the state infor-
mation quantized, while the time information is transmitted with arbitrary
accuracy. For the sake of simplicity we omit details on time quantization, see
[SW09] for a discussion.

Summary (2) is a major restriction on the channel used. But because
the ack’s are much smaller than the state information the decoder could send
many ack’s to ensure that at least one arrives at the encoder. Without this
assumption we could not guarantee that the encoder and the decoder agree
on their states by means of a simple time stamping mechanism.

Summary (3) is in general not a restrictive one. In every real commu-
nication channel such a minimal delay exists.

Summary (4) states that the bandwidth of the channel B must be large
enough to transmit the state information within 7,,;, units of time. For
instance, if binary encoding is used we require

B> nlogQN.

(2.7)
Tmin

If this condition is not met, the decoder could introduce an artificial delay
by waiting to ensure that 7,4, is large enough to fulfill the bandwidth con-
straint.

Because we do not have a mechanism to detect packet loss, we introduce the
design parameter T,,q, in[2.1.4] (5) to be able to handle the effect of packet
loss.
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The design parameters T, and Tq. steer the trade-off between the per-
formance of the system and the requirement of bandwidth. For instance,
choosing 7,4, to large can deteriorate the performance of the closed loop
system, while choosing it too small can lead to too many unneeded retrans-
mission of data.

We say that the encoder-decoder time sequences tj, t; are admissible for
the encoder-decoder pair, if Assumption and Summary [2.1.4]3 holds.
After describing the communication channel in detail, we are able to intro-
duce the basic concept that will be used to overcome the limitation posed by
quantization in the next section.

2.2 Quantization

The basic tools used in this chapter are input to state stability and dynamic
quantization. Before we give a definition of a quantizer we want to start with
briefly discussing static quantizers.

Definition 2.2.1. A map ¢ : R® — R" is called a static quantizer, if there
exists M, m € Ry with m < M such that

lg(x) — x| <m
whenever |z| < M, x € R™.

The quantity M is often referred to as range of the quantizer, whereas m
is termed the resolution. If the state x is in a certain region (i.e. the quan-
tization region), we say the state lies within the range of the quantizer. The
definition above states that whenever the state lies within the quantization
region, the quantization error ¢(z) — x is bounded by the resolution of the
quantizer.

In Figure[2.3]an example of a static quantizer is given. Here, the quantization
region is a hypercube of length 2M. It is partitioned into smaller hypercubes
of length 2m each. We will refer to these smaller hypercubes as subregions.
In this regard, the range of the quantizer is M, whereas the resolution is m.
Whenever the state x lies within the range of the quantizer, the quantizer
determines the subregion in which the state lies and gives as a result the
center of this smaller hypercube.

A static quantizer has a fixed resolution and hence a fixed guaranteed error.
As we want to use the quantized value to close the loop, we cannot hope
to achieve asymptotic stability, in general, by using a static quantizer (see
[Del90)] for a corresponding statement). Therefore we generalize the concept
to quantizers in which the parameters of the quantizer can change over time,
as can be seen in the next definition.
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Definition 2.2.2. A map ¢ : R" x R” x R — R" is called a quantizer, if
there exist M, m : Ry — Ry with m(t) < M (t) for all ¢ such that

whenever |z — 2| < M(t).
Here z is the value to be quantized, Z is the center of the quantization region,
M is the size of the quantization region, and m is the resolution.

Figure 2.3: Example of a finite quantizer with range M and resolution m

The definition above states that whenever the state lies within the range
of the quantizer (Jz — &| < M(t)) the quantized value differs at most m(t)
from the state x. In contrast to the finite quantizer the center, range, and
the resolution can change over time.
For an example see Figure In this particular example the effect of the
quantizer is depicted for the parameters of the quantizer at two different
times ¢1,%2. In both cases the quantization region is given by a box centered
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at & with size 2M. This box is divided into subregions, each of size 2m. The
quantizer determines the subregion in which the state x lies and gives the
center of this subregion as the result of the quantization. Between ¢; and to
the center  and the range M changes. In this example the state at time
to still lies within the range of the quantizer. Of course, this does not hold
automatically. We will see in the next section how we can ensure that the
state always lies within the range of the quantizer.

A

m(t2)

m(ty)

.(l(fz)

o z(t2)

M(ty)

(1)

M(ty)

Figure 2.4: Schematic of a dynamic quantizer at two different time instances

2.3 Encoder-Decoder Pair and Description of the Closed-
Loop System

We have learned in the last section that a quantizer is a map that gives an
approximation of the state with a guaranteed bound on the error. However,
the quantized values are still real numbers and hence they cannot be easily
transmitted via a communication channel with finite capacity.

In Figure and we have chosen a special quantizer, in which the sub-
regions partition the quantization region. This suggests that we can choose

43



CHAPTER 2. STABILIZING A SINGLE SYSTEM

a quantizer in such a way that we can assign to each subregion a certain
symbol from our alphabet.

This would require some device that translates the real valued number to a
symbol from our alphabet. If the capacity of the communication channel is
large enough this symbol can be transmitted. On the other side of the com-
munication channel we need also a new device, which inverts the translation
into the finite alphabet.

The next definition, which labels these two devices, is borrowed from [TMO04].

Definition 2.3.1. An encoder is a dynamical system and its output map at
time ¢ is given by

Enc : R" xRy xRP xRy — S xRy : Enc(x,ack,Z.(t),t) — (s, tx),

where S is a finite alphabet. A decoder is a dynamical system and its output
map at time ¢ is given by

Dec : S xRy xRP x R = R"™ : Dec(s, tg, Zq(t),t) — Zq4(t) .

The values =, and =, are the internal states of the encoder respectively
decoder. The variable ack is the time stamp of the ack.
The values x, ack are the inputs and s, t; the outputs. For the decoder, on
the other hand, s,t; act as an input and z4 is the output.
Encoder and decoder together are called an encoder-decoder pair.
An encoder-decoder pair should be able to encode the state at time ¢, in such
a way that the decoder is able to reconstruct at least an approximation of
the state. We will see that to achieve this goal it is important that encoder
and decoder agree on their internal states.

Definition 2.3.2. If for an encoder-decoder pair
Ee(tr) = Ealty)
holds for all £ > 0, the encoder-decoder pair is called information consistent.

An information consistent encoder-decoder pair has the property that at
the encoding time ?j the internal state of the encoder is the same as the
decoder internal state at time t;. If there is no delay in the communica-
tion channel, information consistency is easily achieved by initializing en-
coder and decoder to the same values and let them follow the same dynamics
(see [LHO5]). However, if there is delay in the communication channel, in-
formation consistency does not hold automatically. An example how this
consistency property can be achieved despite the presence of delay is given
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in Section 2.5
Now we are able to give the equations for the closed-loop system:

i(t) = f(a(t). k(za(t))), LA (28)
Falt) = F(a(t), k(Ea(t)). LA (29)

ﬁ;e(t):Dec(Enc(a:(tk),t,’;_l,Ee(tk),tk),Ee(tk),tk), t =t (2.10)
@d(t)zDec(Enc(x(tk),t;l,Ee(tk),tk),Ed(t;),t;), t=t;.  (2.11)

The initial values are z(0) = xg and £4(0) = Z.(0) = 0.

The first equation describes the dynamics of the plant. The control action is
calculated using the decoder trajectory, which is given by . The last two
equations describe the jumps in the encoder respectively decoder trajectories.
To be more precise, at time t; the encoder uses the actual state x to generate
an approximation of it. This approximation is translated to a finite alphabet
and transmitted over the channel. At time ¢ this information is received by
the decoder and used to approximate the state at that time.

The closed-loop system consists of continuous dynamics and jumps in the
state Z. and &4 at time instances tj respectively ¢;. A system consisting of
discrete and continuous dynamics is called a hybrid system. For an introduc-
tion on hybrid systems see [vdSS00, [GST09] and the references therein.
Before we formulate the main result of this chapter we need further assump-
tions for encoder and decoder.

Assumption 2.3.3. Encoder and decoder have a priori knowledge of the
initial state x(0) of the system i.e., there exist mg € Ry, known to encoder
and decoder such that

2(0)] < o (2.12)

The assumption above states that encoder and decoder agree on a certain
region in which the initial state lies. The size of this region can be interpreted
as the level of uncertainty of the encoder where the state lies.

We want the state z to be confined within a certain region for all positive
times. Moreover, we want this region to become smaller with each transmis-
sion. This property is given in detail in the next definition.

Definition 2.3.4. Let L be the Lipschitz constant of f and N € N with
N > 1. Consider an arbitrary solution x,Z. of (2.8)-(2.11). Define m(0) :=
mo and let m(ty,) == m(tp_1)e =1 /N, If

(e (th1) — 2(te_1)| < mlte_1)
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implies
|Ze(t) — 2 (te)| < m(tk)

for all £ € N, the encoder is called N-contracting. Furthermore m(ty) is
called the range of the encoder.

Similar to quantizers, m(t) is the range and Z. may be regarded as the
center of the quantization region.
Definition 2.3.4] states that if the state lies within the range of the encoder at
time ¢, it will stay within the range for all ¢; for j > k — 1. Moreover, the
range is divided by N at each time instance t;, and growth by el(tx—tk—1)
The difficulty in achieving this is that the actuator signal for the system is
calculated using the decoder trajectory. As the only information the encoder
receives from the decoder is a time stamp, the N-contracting property does
not hold automatically.
Now that we know that the state lies within range for all positive times and
this range is divided by N with each encoding step, we need a way to describe
how the decoder approximation behaves.

Definition 2.3.5. Let L be the Lipschitz constant of f and ¢, t; admissible
encoder-decoder time sequences. If for any solution x, Z., &4 of (2.8)-(2.11)

\Dec(Enc(x(tk), t;;,l, Ee(tk), tk), Ee<tk)7 tk> — CL'(tk)| <
|Ze(tr1) — x(tp_y)|elCete=1) (213)

and

| Dec(Enc(x(tr), th 1, Ze(tr), t), Ee(tr), th) — x(t)] <
|Dec(Enc(x(ty), i1, Ze(tr), te): Be(tr), tr) — z(te)|eXHe =) | (2.14)

for all k¥ € N hold, the encoder-decoder pair is called L-expanding.

Equation states that the encoder approximation can at most grow
by el(ts—tk-1) in between transmission times.
The second assertion says that if the decoding is done with the same internal
state as the encoding, the decoder approximation can only deviate from the
encoder approximation by a factor of el (tk—tx),
For an intuition see Figure 2.5 If the state at time ¢; lies within the range
of the encoder (i.e. |Z.(tx) — x(tx)| < m(tx)), the encoder determines the
subregion in which the state lies and transmits the corresponding symbol
from the finite alphabet (here s3) together with the time ¢ to the decoder.
By the jump from &.(t) to the center of the subregion the error gets divided
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w(tk)\\ T(tr+1)
|
S1 So S3 L

54 S5 56

87 58 89

Figure 2.5: Example of a N-contracting encoder

by N (in this particular example N = 3). The N-contracting property states
that if we enlarge the subregion by eZ(*»=*x-1) the state at time t;; still lies
in a quantization region with #.(tx41) as the new center.

Remark 2.3.6. Inspecting Definition [2.3.5| reveals that the concatenation of
the output maps of encoder and decoder are closely related to the definition of
a quantizer. While a quantizer is time varying, encoder as well as decoder are
dynamical systems. To be more precise, the center and range of a quantizer
can change over time, while the evolution of center and range of encoder resp.
decoder are governed by a dynamical system.

In this regard, an encoder-decoder pair is often referred to as a dynamic
quantizer in the literature.

Before we can state the main result of this chapter, we want to define the
particular notion of stability we are interested in. As our system is a hybrid
system consisting of states that evolves only discrete in time and states that
are governed by ordinary differential equations, we need another notion of
stability as the one defined in Section [f}

Definition 2.3.7. Let e = 4 — = and e, = &, — . We say that a system
of the form (2.8)-(2.11) is semi globally asymptotically stable at t; = 0 if
(z,e,e.) = 0 is an asymptotically stable equilibrium at ¢; = 0 for (2.8)-
([2.11)), provided that 4(0) = 2.(0) = 0 and |z(0)| < mo.
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The term semi globally refers to the fact that the initial conditions has to
lie in some compact set (see Assumption[2.3.3). In this regard we have "more"
than local stability but less than global stability. At first glance system —
seems to be time invariant. Because in general the evolution of the ¢
and ¢}, are time variant, the evolution of — depends also on t;.

Remark 2.3.8. By the change of coordinates

T I, 0 O x
el=-1, 1, o] 2],
€e _In 0 In j:e

where I, is the identity matrix of dimension n, we see that Definition [2.3.7]is
equivalent to saying that x, Z., T4 are asymptotically stable at ¢t; = 0, again
provided that z4(0) = x.(0) = 0 and |z(0)| < my.

Now we are able to state the main result of this chapter.

2.4 Main Result: Stabilization of a Single System over
a Digital Channel

Here, we will see that as long as encoder and decoder agree on certain values
(i-e, information consistency) and the state always lies within the range of
the encoder-decoder pair, the approximation of the state &5 becomes better
by a factor of N with each information that arrives at the decoder. The next
theorem gives a sufficient condition on the size of the finite alphabet needed
to ensure that the range will converge to zero. In this regard, the next
theorem relates a system property (the Lipschitz constant) to the capacity of
the communication channel (the size of the alphabet). Basically, the input
consistency together with L-expanding property allows us to bound the error
between the encoder and the state with the help of the Gronwall inequality
and the N-contracting property ensures that the error is divided by N with
each successful transmission.

Theorem 2.4.1. Consider system — with initial condition as be-
fore, which communicates over a digital channel with the properties given in
Summary . Let tr, t}, be admissible encoder-decoder time sequences as
described in Section[2-1l Let Assumptions[2.1.1],[2.1.3, and[2-3-3 hold. If for
an information consistent, L-expanding, and N -contracting encoder-decoder
pair it holds that N > e, where L is the Lipschitz constant for system

(2.3), then the closed-loop system (2.8)-(2.11)) is semi globally asymptotically
stable at t; = 0.
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Proof. First we show that the range converges to zero. To this end consider
7" = limsup;_,, +tx. Choose an e > 0 such that ("' *9) < N, which is

N 1
possible because e < N. This choice yields a K € N such that et <
eF(7"+e) < N for all k > K and hence

1
eLEtk

N

lim meeX® 1) /N* = lim myq =0. (2.15)
k—o0 k—oo

By Assumption the initialization of the encoder, and t; = 0 we have
|Ze(t1) — 2(t)| = |0 — 2(t1)| < mo = m(t1).
Hence by together with we get
|Ze(tr) — x(tr)] < m(ty) (2.16)

for all k£ € N.
By information consistency we have Z.(t;) = Zc(t}). Hence we can combine

(2.14) with (2.11) to arrive at
le(tR)] = [2a(th) —e(t)] < |Ze(te) = (te)|e"F =) < m(ty)e 0. (2.17)

The evolution of |e(t)| for t € [t;_,,t;) can be bounded with the help of the
Lipschitz property of f and the triangle inequality by

Za(tp—r) = x(th_1) + F(&a(s), k(za(s))) = f(2(s), k(id(S)))dé" <
t
elti DI+ L[ Jets)lds.
tr_1%
Application of the Gronwall Lemma yields
le(6)] < le(tp_y)le" ) (2.18)
for t € [t;_,,t5). Because of (2.17) the latter results for all ¢ € [t} _,,¢}) in

le(t)] < m(tp—r)e" it Pt = (it e 1) = mget! INT

where we used the definition of m(¢x) to get the last equality.
By monotonicity of the exponential we have

le(t)| < moelts /N* (2.19)
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for all t € [ty _,,t;). And hence

sup |e(t)| < supmoelts /N* .
>0 keN

By Lemma we have 7* = limsup,,_, ., 1¢;- Hence, as before, we have
el < NF
for all k£ > K. This together with (2.19) allow us to conclude
tli)rgo le(t)] =0. (2.20)
Moreover, we have

t)] < Lt INF =W
2121%)|€()|_}cn§a§m06 /

Hence by (2.4) we get
|z(8)] < B(|=(0)],0) +~(W) =: D
for all t > 0. Looking at trajectories starting at to gives

|z(t)] < B(D,t —to) +~( sup le(s)])
s€[to,t]
for all t > tg. If we let ¢, ¢y tend to infinity in such a way that ¢ — tg tends to
infinity, we get
. < 1 B . .
Jim [2()] < lim 5D, ¢ —to) +(limsup [e(to)])

to—00

As f € KL and e(t) — 0 by (2.20) we have x(t) — 0. Considering (2.16))
gives

lim |e.(tg)] = lim |Ze(tx) — z(tx)] < lim m(tx) =0.

k— o0 k—s o0 k— o0
And we have shown attractivity of (z,e,e.) = 0. To conclude stability let

e > 0 be arbitrary and define &’ := y~!(5). Choose a k¥’ € N such that for
all k >k

eLtimg
e (2.21)
which is possible because of (2.15)).
Choose an initial condition such that
E.I
0)] < —. 2.22
2(0)] < - (222)
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Note that combining (2.22) and (2.21)) yields

l2(0)] < % (2.23)
First we consider the case k > k’. By and we get
le(t)] < moe™'s INF < &' (2.24)
for all ¢ € [t;_,,t}). And thus
sup le(t)| <€’ (2.25)
t>tr

Now let k < k. Combining (2.13) and (2.14) yields
le(tr)| = |Za(ty) — z(t)| <
(e (tr) — w(tr) | ) < Jdo(ty1) — w(tp)|e ).
Repetitively applying (2.13)) gives
le(ti)] < [ae(tr) — x(tr)|e"E = |e(0)|e""
for all k£ € N. By ([2.18) we get
le()] < le(0)|e" ke ) = |e(0) ] .

for all ¢t > 0. Using (12.22) we conclude

sup le(t)] < sup [e(0)|e" = sup |x(0)e™t <& (2.26)
0<t<tr, 0<t<tr, 0<t<tr,
Combining ([2.26]) with - 2.25)) yields
sup le(t)| < €, (2.27)
>0

as long as |e(0)| = |x( )| < LL* . And we have shown stability of e(t).
e
Consider again (2.4)). Because B € KL we can choose z(0) such that

B(|z(0)],0) < /2 and |z(0)| < e+ And hence by 24)

[z(8)] < B(|2(0)],0) + 7(31;18 le(t)]) < % +7(e) <e,

where we used (2.27)) and the definition of /. And we can conclude stability
of x(t).

o1



CHAPTER 2. STABILIZING A SINGLE SYSTEM

It remains to show that e, is stable. Combining (2.10)) with (2.13]) repetitively
yields

lec(t)] = |2e(te) — @ (th)| < |2e(t1) — z(t1)|e™™ = |ec(0)|e""™
for all k£ € N. Combining this with the N-contracting property gives
lec(te)] < minflec(0)|e"", m(ty)} .

Because m(tr) — 0 there exists an index k' where the minimum changes.
And thus we can make the right hand side arbitrarily small by choosing
€c(0) small. This shows the stability of e.. And in summary we have shown
that (z,e,e.) = 0 is an attractive and stable equilibrium in the sense of
Definition and the proof is complete. O

We have seen that we can infer stability of the closed-loop system, if the
bandwidth of the communication channel is large enough despite the presence
of delay and packet loss. The main technical assumptions that allow us to
achieve this are N-contracting, L-expanding and information consistency.
Information consistency states that the internal states of encoder and decoder
coincide at certain time instances. The N-contracting property states that if
the state lies in the range of the encoder at time ¢1, it will remain within range
for all ¢; and this range converges to zero, if the bandwidth is large enough.
The L-expanding property on the other hand bounds the evolution of the
errors of the encoder and state, respectively, decoder and state, provided
that information consistency holds. While the N-contacting property could
possibly be achieved by an observer, it is not clear how the L-expanding
property should be established for this case, as it relates the error on the
encoder side to the error on the decoder side. Similarly, it is not clear, how
to construct an encoder decoder pair, which is information consistent. In this
regard, it is not clear at this stage whether such encoder-decoder pairs do
exist. The next example gives a positive answer.

2.5 Example of an Encoder-Decoder Pair

Here we give an example of an encoder-decoder pair, which is information
consistent, L-expanding, and N-contracting. The internal states of encoder
respectively decoder are defined as

(1]

e(tk) = (fe,xe,.fe,N, tkflvtzfl) )
Ed(tZ) = (Zd,l’d,fd,N, tk—lﬂtz—l)

52



2.5. EXAMPLE OF AN ENCODER-DECODER PAIR

with Z.,24 € Ry xR" xR" x Nx R, xR, . The subscript e always indicates
an encoder variable. The subscript d is defined in an obvious manner. As
the encoder variables are a direct counter part of the decoder variables, we
only explain the first.

The variable £, is the size of the quantization region on the encoder side. To
emphasize that we use two different variables for the size of the region on
encoder resp. decoder side, we decided to use £ instead of the more obvious
m as we used in the rest of this chapter.

The variables x. is the center of the quantization region whereas Z. is an
auxiliary variable. The value N is a natural number known to encoder an
decoder. The last two are the last time instances the encoder sent data
respectively when the decoder sent data the last time.

The initial states for the encoder and the decoder are:

kil, lf():o7 tézO, tlz()t*{:Oandfd(O):ie(O):O
2e(07) =24(07) =0 and £.(07) = £4(07) = 2my .

Following Definition [2.3.1} an encoder is a dynamical system with =, as the
state, x,t;_; as inputs and s,t, as outputs. Its output map at time ¢ is
defined by

(5,ts) = Enc(e(t), t}_y, E.(0), ).

The variable s carries the encoded state information and ¢, the corresponding
time stamp.

The state of the encoder =, evolves according to the following equations.
The encoder equations read:

(i) Every time an ack arrives at the encoder (t = ty)

(ta) = (et ), alte) Lo(t)) (231)
Te(ty) = ze(ty ) + (té)éex.’“) (2.32)
fe(tk) - xe(t;) (2 33)
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Every time the encoder receives an ack (¢t = t) it updates the length of the
quantization region according to the growth of the error on the last interval
(2.29). The center of the quantization region is updated via . Both
integrals are needed to account for the change in the control action on the
decoder side. The subregion in which the state lies is calculated by
with ¢ defined in (2.51). This information will be sent to the decoder together

with the actual time (2.28)). The jump from the center to the subregion is
done by equation (2.32). The value of the old quantization region is copied

by (Z39).

To be able to cover the case of packet loss we also need:
(ii) If Tynae units of time without receipt of an ack elapse (¢ = tx + Tinaz)

t =t (2.34)
Co(t) = Le(ty)e =) (2.35)
we(t™) = T.(t) (2.36)
s(ts) = q(ze(t™), x(t), Le(t)) (2.37)
ro(t) = o) + s(t) A (2.38)

If 742 units of time elapse without receiving an ack, the packet sent last
time is considered lost and a new one will be sent. Similar to the case of no
loss, the encoder updates the length of the quantization region . Note
that there is no division by N. Equation cancels the jump from the
center to the subregion made in the last encoding step. The equations
and follow the same reason as in the case of no loss. In both cases ((i)
and (ii)) ¢s and s(ts) are the output of the encoder, which will be sent from
encoder to decoder.

(iii) Otherwise:

Folt) = F(@e(t), W7 (1) (2.39)

We need to know the trajectory which will be used to close the loop
on the decoder side as can be seen from Lemma 2.5.6l and Theorem It
is also needed to treat the case of packet loss (2.36).

The decoder is also a dynamical system. Its internal state is =4, the inputs
are s,ts and 4 the output. Its output map at time ¢ is given by

Zq(t) = Dec(s,ts, Zq(t),1).

The evolution of the states are governed by the following equations.
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The decoder equations read:
(i) Every time a packet arrives at the decoder (¢t = ¢})

Calts) = Laltp—r)e" 1) /N (2.40)
ralt) = Faltiod) [ Slwals), bra(s)ds (2.41)
xaq(ts) = xq(ty) + s(ts)%Ns) (2.42)
Zalth) = zalt / F(@a(s), k(@a(s)))ds (2.43)

(ii) Otherwise
Falt) = F(Fa(t), k(Za(t)) (2.44)

The decoder equation tries to mimic the corresponding equations of the en-
coder. We will see in Lemma 2.5.6] and Theorem that decoder indeed
succeeds with this goal.

The state x evolves according to

& = f(z, k(Zq)). (2.45)

To see that this system is indeed of the form (2.8)-(2.11]) consider the following
equations.

& =f(x, k(Zq)) (2.46)
Tq =f(Za, k(24)) (2.47)
Te(ty) =we(tr) (2.48)
Za(th) :Dec<Enc(x(tk),t;;1,Ee(tk),tk),5d(t;),t;) : (2.49)

In contrast to system (2.8)-(2.11)) we see that in the equation for Z.(t) we
do not need knowledge of the decoder output map on the encoder side. In
general, it would also be sufficient in to use the same quantizer as on the
decoder side. For the sake of simplicity, we decided to use the concatenation

of encoder and decoder in (2.10)) for &, nevertheless.
It remains to show that (2.48)) is of the form (2.10).

Lemma 2.5.1. Consider encoder and decoder as above. Let t = t be the
encoding times and t = t}, the time instances the decoder receives information.
Then for the concatenation of the output maps at time t = ti it holds that

Te(ty) = Dec(Enc(x(tk)7t;I,Ee(tk)7tk),56(tk),tk> . (2.50)
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Proof. Let s,ts be the output of the encoder at time ¢ = t;. Hence we have
by that t; = t;. Note that in the output map of the decoder is
envoked with the internal state of the encoder at time ¢t = ¢;. Thus we have
by =Lle, zq(t]) = zc(t;). Following (2:43), the output of the decoder is

.’Z‘d(tk) = l‘d(tk) + ' f(l'd(S), k(i‘d(s)))ds = .Z'd(fk) .

ti
Considering (2.42)) yields

_ Lq(ts _ Lo(ts
za(te) = wat;) + s(t0) ) — o, 17) 4 s ) — ),
N N
Realizing that Z4(tx) is the output of the decoder at time ¢ = ¢, shows the
claim. O

The quantizer used in (2.31)) and (2.37) takes the form
¢:R"XR" xR —Z" :

Qe (), 2(0), (1)) = wt)u(t) () + ;J C (251)

The floor function has to be understood component wise. Please note that
e € R™ above is the vector consisting of ones, not to be confused with the
exponential.

An example of a two dimensional ¢ can be seen in Figure The center of
the quantization region is x, and its length /.. A vector of integers is assigned
to each subregion. For instance, in Figure [2.6]it holds for the quantizer that
q(we,x,0.) = (0,1)T. Although in the rest of this chapter the norms can
be arbitrary, we want to use the max norm in this section. By utilizing the
equivalence of norms on finite dimensional spaces, the consideration would
still hold true for other norms. To ease the presentation and stick to the idea
of quantization regions as boxes as in e.g. Figure 2.6] we decided to use the
maximum norm.

Lemma 2.5.2. Consider a quantizer q as defined in . Whenever

|z (ty) — ze(t),)] < Ze(zi) we have |x(t) — xc(ty)| < %.

Proof. Considering (2.31), (2.32)) and (2.51) for the ith component yields

x(ty)i — ze(tr)i =

(t)i — ze(ty )i — be](\t]k) (z(tn)i — ze(ty, )i) + ;J 561(\7;1@) >
o(tn)i — we(ty, )i — (Ee](\;k)(m(tk)i — oz (t5)) + ;) eej(\t]k) _ Ez(jt\?)
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