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Abstract 

Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea. It is defined as a super 

bacterium by the WHO due to the emergence of gonococci that are resistant to a variety of 

antibiotics and a rapidly increasing infection incidence. Genome-wide investigation of neisserial 

gene essentiality and novel virulence factors is urgently required in order to identify new targets 

for anti-neisserial therapeutics. To identify essential genes and new virulence factors, a 

high-density mutant library in N. gonorrhoeae MS11 was generated by in vitro transposon 

mutagenesis. The transposon library harbors more than 100,000 individual mutants, a density that 

is unprecedented in gonococcal research. Essential genes in N. gonorrhoeae were determined by 

enumerating frequencies of transposon insertion sites (TIS) with Illumina deep sequencing 

(Tn-seq). Tn-seq indicated an average distance between adjacent TIS of 25 bp. Statistical analysis 

unequivocally demonstrated 781 genes that were significantly depleted in TIS and thus are 

essential for Neisseria survival. A subset of the genes was experimentally verified to comprise 

essential genes and thus support the outcome of the study. The hereby identified candidate 

essential genes thus may constitute excellent targets for the development of new antibiotics or 

vaccines.  

In a second study, the transposon mutant library was applied in a genome-scale 

“negative-selection strategy” to identify genes that are involved in low phosphate-dependent 

invasion (LPDI). LPDI is dependent on the Neisseria porin subtype PorBIA which acts as an 

epithelial cell invasin in absence of phosphate and is associated with severe pathogenicity in 

disseminated gonococcal infections (DGI). Tn-seq demonstrated 98 genes, which were involved in 

adherence to host cells and 43 genes involved in host cell invasion. E.g. the hypothetical protein 

NGFG_00506, an ABC transporter ATP-binding protein NGFG_01643, as well as NGFG_04218 

encoding a homolog of mafI in N. gonorrhoeae FA1090 were experimentally verified as new 

invasive factors in LPDI. NGFG_01605, a predicted protease, was identified to be a common 

factor involved in PorBIA, Opa50 and Opa57-mediated neisserial engulfment by the epithelial cells. 

Thus, this first systematic Tn-seq application in N. gonorrhoeae identified a set of previously 

unknown N. gonorrhoeae invasive factors which demonstrate molecular mechanisms of DGI.
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Zusammenfassung 

Neisseria gonorrhoeae ist ein human-spezifisches Pathogen, das die Krankheit Gonorrhoe 

verursacht. Aufgrund der steigenden Anzahl antibiotikaresistenter Gonokokken und der damit 

verbundenen, rapide zunehmenden Anzahl von Infektionen erklärte die WHO Gonokokken 2012 

zum Superbakterium. Daher ist eine genomweite Untersuchung der neisseriellen 

Genessentiatialität und neuer Virulenzfaktoren dringend erforderlich, um neue Ziele für die 

antineisserielle Therapie zu identifizieren. Hierzu wurde eine high-density Mutantenbibliothek in 

N. gonorrhoeae MS11 durch in vitro Transposonmutagenese generiert. Die Transposonbibliothek 

enthält mehr als 100.000 individuelle Mutanten - eine Dichte, die in der Gonokokken-Forschung 

beispiellos ist. Essentielle Gene von N. gonorrhoeae wurden durch die Ermittlung der Häufigkeit 

von Transposon insertion sites (TIS) mit Hilfe von Illumina deep sequencing (Tn-seq) bestimmt. 

Tn-seq ergab eine durchschnittliche Distanz von 25 Basenpaaren zwischen benachbarten TIS. Die 

statistische Analyse zeigte eindeutig 781 Gene, die signifikant weniger TIS aufwiesen und deshalb 

als essentiell für das Überleben der Neisserien verstanden werden können. Für ausgewählte Gene 

wurde experimentell bestätigt, dass sie essentielle Gene beinhalten, wodurch das Ergebnis der 

Tn-seq unterstützt wird. Die hierbei identifizierten essentiellen Gene könnten exzellente Targets 

für die Entwicklung neuer Antibiotika oder Impfstoffe darstellen. 

In einer zweiten Studie wurde die Transposon Mutanten Bibliothek für eine genomweite „negative 

Selektionsstrategie“ bereitgestellt. Es sollten Gene identifiziert werden, die an der phosphatfreien 

Invasion (low phosphate-dependent invasion = LPDI) beteiligt sind. Die LPDI ist vom 

neisseriellen Porin Subtyp PorBIA abhängig, welches bei Epithelzellen in Abwesenheit von 

Phosphat als Invasin fungiert und mit einer schweren Pathogenität in disseminierenden 

Gonokokkeninfektionen (DGI) assoziiert ist. Tn-seq ergab 98 Gene, die an der Adhärenz an die 

Wirtszelle, und 43 Gene, die an der Wirtszellinvasion beteiligt waren. Zum Beispiel wurden das 

hypothetische Protein NGFG_00506, ein ABC Transporter, das ATP-bindende Protein 

NGFG_01643, wie auch NGFG_04218, das für ein Homolog von mafI in N. gonorrhoeae FA1090 

kodiert, experimentell als neue Invasionsfaktoren in der LPDI verifiziert. NGFG_01605, bei dem 

angenommen wird, dass es sich um eine Protease handelt, wurde als ein allgemeiner Faktor 



  Zusammenfassung 

3 

 

identifiziert, der an der PorBIA-, Opa50- and Opa57-vermittelten Einstülpung der Membran von 

Epithelzellen beteiligt ist. Die erste systematische Anwendung von Tn-seq in N. gonorrhoeae 

identifizierte eine Reihe bisher unbekannter Invasionsfaktoren von N. gonorrhoeae, die 

molekulare Mechanismen der DGI zeigen. 
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1 Introduction 

1.1 Neisseria gonorrhoeae 

1.1.1 Pathogenesis of Neisseria gonorrhoeae 

Neisseria gonorrhoeae (also named as gonococcus or GC) is a Gram-negative, aerobic or 

facultative anaerobic diplococcus [1,2]. It is coffee bean-shaped with a diameter of 0.6–1 µm and 

was discovered by German physician Albert Neisser in 1879. The gonococci belong to the big 

genus Neisseria, commensal bacteria that colonize the mucosal surfaces of many animals. Among 

eleven species that colonize humans, two are pathogens, N. gonorrhoeae and N. meningitidis 

which cause bacterial meningitis and meningococcal septicemia.  

The obligate and human-specific pathogenic bacterium N. gonorrhoeae is the causative agent of 

the second most common sexually transmitted disease, gonorrhea, which is colloquially known as 

“the clap”. With more than 106 million of the estimated 498 million new cases of curable sexually 

transmitted infections (STIs) that occur globally every year, the gonococcal infections remain a 

serious threat to world health [3]. The gonococci usually infect the urogenital tract and 

preferentially colonize the mucosal surface of the male urethra and the female cervix, but the 

rectum, pharynx and the conjunctiva of the eye can also be infected. The infection in men mostly 

causes urethritis, epididymitis, and prostatitis. While many infected women are asymptomatic. But, 

occasionally they have symptoms of vaginal and pelvic discomfort of dysuria and these infections 

may develop to ascending gonococcal infection and subsequently pelvic inflammatory disease 

(PID) which increases the risk of infertility and ectopic pregnancy [4,5]. One in ten women suffers 

from PID, of which N. gonorrhoeae contributes to 40% of all reported cases [4]. If the urogenital 

gonococcal infections are undiagnosed or untreated, N. gonorrhoeae will spread in the host body 

and cause disseminated gonococcal infection (DGI) which can lead to some serious conditions 

such as arthritis, endocarditis and meningitis. The gonococci transmit from person to person via 

intimate contact, especially sexual contact, and the most common transmission are sexual 

transmission and mother-to-child transmission during birth which may cause gonococcal 

http://en.wikipedia.org/wiki/Commensal
http://en.wikipedia.org/wiki/Bacteria
http://en.wikipedia.org/wiki/Mucosal
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conjunctivitis of the neonate [6]. In addition, 10–30% of patients with gonorrhea were found with 

a concomitant Chlamydia infection [7]. The gonococcus is also found to be one of the significant 

cofactors for human immunodeficiency virus (HIV) transmission and gonococcal urethritis 

increases the risk of acquiring and transmitting HIV infection about three-fold [8]. 

1.1.2 Diagnosis and therapy 

Urogenital gonococcal infections are usually diagnosed by culture tests, but other tests which are 

less labor-intensive have similar accuracy. For example, the new nonculture technique is the 

nucleic acid amplification test with 92–96% sensitivity and 94–99% specificity when compared 

with culture tests [9]. For the therapy strategy, the uncomplicated local gonococcal infections are 

usually treated by antibiotics, but reinfection is a common occurrence with gonorrhea. It may 

result from a lack of protective immune response to Neisseria enormous variations. The 

experimental infection in male human volunteers confirmed the initial infection would not protect 

against reinfection with the same Neisseria strain [10]. Many studies show that gonococcal 

mucosal infections can result in an immune response although very weak. Serum antibodies 

against different GC antigens are readily detected, decrease with time and disappear several 

months after infection treatment [11]. The sera obtained at the time of mucosal infection or from 

the convalescent-phase were bactericidal but did not prevent infection [12]. There are almost no 

naturally acquired immunity responses to gonococci after uncomplicated infection [13,14]. It was 

suggested that GC might be able to suppress the host immune response by as yet unknown 

mechanisms [14]. GC inhibit human CD4 T cells or B cells by binding to human CEACAM1 

(carcinoembryonic antigen cellular adhesion molecule 1) on lymphocytes with gonococcal 

opacity-associated (Opa) proteins [15-17]. Mucosal infections with gonococci are characterized by 

the abundant influx of polymorphonuclear leukocytes (PMNs) to the inflammation site [18]. GC 

can resist non-oxidative antimicrobial factors secreted by adherent, IL-8-primed PMNs [19], 

suppress oxidative burst of PMNs [20], and also delay apoptosis in PMNs [21]. Furthermore, 

antigenic and phase variation of gonococcal outer membrane structures such as 

lipooligosaccharide (LOS), pili and Opa proteins constitutes an efficient mechanism to escape 

recognition by the host immune system.  



  Introduction 

6 

 

1.1.2.1 Vaccine development 

With no evidence for naturally acquired immunity after infection by the gonococcus, it is difficult 

to develop an effective vaccine for GC. In the 1970s, Greenberg et al. tried a crude whole cell 

vaccine made from killed gonococci in small but well controlled clinical trials. The vaccine gave 

an antibody response in over 90% of vaccine recipients and good tolerance with only mild 

reactions in humans but no efficacy in preventing gonorrhea [22]. The other vaccine which had 

entered into clinical trials was a pilus vaccine. Brinton et al. found that it protected human male 

volunteers against the experimental urethral infection by the homologous strain with parenteral 

immunization of isolated and purified pili [23]. The antibody response was detected in the serum 

and genital secretions, but the pilus vaccine failed to prevent infections with heterologous strains 

expressing antigenically variant pili [24]. Also it did not show resistance in a clinical trial [25] 

which might have been caused by antigenic variation of pili expressed in the gonococcus. 

Intranasal immunization of female mice with a gonococcal outer membrane vesicle (OMV) 

vaccine resulted in reduced colonization on the vaginal surface in infections with the homologous 

N. gonorrhoeae strain MS11 [26]. However, protection was not observed in subsequent infections 

with either MS11 or FA1090 OMV [13]. The individual outer membrane proteins are considered 

as promising vaccine targets, for example PorB (outer membrane porin protein B) [27] and TbpB 

(transferrin receptor protein) [28]. Immunization of BALB/C mice by intramuscular needle 

injection or epidermal gene gun bombardment with a DNA vaccine encoding N. gonorrhoeae 

PorB produced detectable levels of antigen-specific antibodies. The anti-PorB antibody levels are 

significantly increased with a boost of renatured recombinant (rr) PorB from E. coli or PorB 

expressed from viral replicon particles (VRPs) [27]. The resulting antibodies were shown to partly 

recognize the surface of the homologous strain in vitro but further experiments in mouse models 

will be required.  

1.1.2.2 Antibiotic resistance 

In the absence of effective vaccines, timely diagnosis and efficient antibiotic therapy remain the 

principal method to prevent epidemics and cure infections. The history of antibiotic treatment of 
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gonorrhea and evolution of resistance in N. gonorrhoeae in the United States demonstrates that 

Neisseria acquires antibiotic resistances (Fig. 1-1) [29]. For example, penicillin was introduced in 

the treatment of gonorrhea in 1943 [30] when sulfonamide-resistant gonococci became 

widespread. Penicillin was very effective in the treatment in the first 10-15 years after introduction. 

Then doses of penicillin had to be gradually increased due to developing resistance by sequential 

accumulation of chromosomal mutations [31]. In 1976, the plasmids containing β-lactamase were 

first reported in gonococci isolated from patients in Asia and Africa [32]. Alternative antibiotics, 

such as erythromycin, spectinomycin, tetracycline and fluoroquinolones were introduced in the 

treatment regimen, but resistant strains emerged soon due to chromosomal mutations or gene 

acquisitions. Today, the first-line antibiotics for treatment are third-generation cephalosporins 

(cefixime and ceftriaxone). Unfortunately, the first gonococcus with high-level resistance to 

ceftriaxone was identified in 2011 in Japan [33] and another clinical failure with cefixime 

treatment was recently reported in Europe [34]. N. gonorrhoeae thus evolved into a super bug and 

gonorrhea may become untreatable. 

 

Fig. 1-1 History of antibiotic treatment of gonorrhea and evolution of resistance in N. 

gonorrhoeae in the United States. Figure modified from Unemo M and Shafer WM, 2011 [29].  
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1.1.3 Neisseria virulence factors  

Neisseria gonorrhoeae expresses a set of virulence factors required for successful human infection, 

immune evasion, intracellular survival and transmission to a new host. Type IV pili (Tfp) induce 

the initial attachment to mucosal cells and enable the gonococci to form efficient colonization on 

the cell surface. Subsequently different Opa proteins trigger intimate binding and invasion into 

host cells, as well as transcellular transcytosis across polarized epithelial cell monolayers. Further, 

Neisseria Porin subtype PorBIA efficiently mediates bacterial attachment and internalization under 

the low phosphate condition mimicking the bloodstream. Porin is also capable to translocate from 

the bacterial outer membrane into host cell membranes and/or mitochondrial outer membranes of 

infected cells and modulates various cell processes, for example promotion of apoptosis and 

inhibition of phagosome maturation. Additionally, LOS, immunoglobulin A1 (IgA1) protease and 

factor H binding protein are important determinant to support the pathogenic potential of GC. 

1.1.3.1 Type IV Pili 

Pili are long filamentous structures on the surface of Neisseria and many other bacterial species. 

Type IV pili are important Neisseria virulence factors that mediate a set of functions, such as 

initial attachment to host cell, bacterial aggregation, twitching motility, microcolony formation 

and DNA uptake during natural transformation [35]. Neisseria pili are formed by non-covalent 

homopolymerization of major pilus subunit proteins, pilins, which are encoded by the gene pilE. 

Many pilus-associated proteins are involved in pilus assembly, extension and retraction. PilD, a 

bifunctional enzyme with peptidase and transmethylase activity, is responsible for pilus precursor 

maturation [36]. PilF is an ATPase that supplies the energy for pilus formation in the periplasm 

[37]. PilT is required for pilus disassembly and is dependent on ATP hydrolysis [38]. PilC is 

located at the tip of the pili and essential for pilus-mediated epithelial cell adherence and DNA 

transformation [39,40]. In addition, there are some minor pilus proteins, such as PilQ which forms 

a gated channel on the outer membrane for pilus extension [41]; PilV, which is found to be 

essential for adherence to the epithelial cells [42]; PilU and PilX, which are important for bacterial 

aggregation [43]. 
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The antigenic and phase variation of Neisseria pili is one of the most effective strategies to evade 

host immune responses. N. gonorrhoeae possesses one pilin expression locus (pilE) but multiple 

silent pilin loci (pilS) located in the discrete locations in the genome [44]. The nonreciprocal 

homologous recombination between any silent pilS copy and the expressed pilE results in the 

expression of a new variant pilin leading to pilus antigenic variation [45]. The new variants can be 

fully functional, poorly expressed or not expressed and the last two situations exhibit the 

non-piliated colony morphology thus causing the pilus phase variation [46]. The guanine quartet 

(G4) structure on the upstream of pilE locus is required for the recombination [47] and regulated 

by a small non-coding RNA (sRNA) [48] and RecQ DNA helicase [49]. Additionally, the 

recombination is RecA-dependent and utilizes the RecF-like mechanism instead of RecBCD 

[50,51]. Besides the variation of PilE, the pilus adhesin PilC also has effects on pilus phase 

variation. Most gonococcal strains carry two copies of pilC, pilC1 and pilC2. These two genes are 

not identical and thus produce two different forms of PilC. Usually pilC1 is out of frame and pilC2 

is expressed. The expression of pilC is altered by frequent frameshift mutations within a series of 

guanine residues in the signal peptide encoding region. Since PilC is required for pilus assembly, 

the switch in the expression of PilC results in gonococcal pilus phase variation [52,53]. 

Neisserial pili mediate initial attachment of the bacteria to human cells, but the pilus receptor on 

the host cell surface is still controversial. Human CD46 (also termed membrane cofactor protein, 

MCP) is proposed as Neisseria pilus receptor [54]. Piliated, but not non-piliated gonococci bound 

to hamster cells expressing human CD46. The binding of piliated Neisseria to epithelial cells 

further was blocked by CD46 antibodies and a purified recombinant CD46 competitor [54]. 

However, Kirchner et al. found that the different binding efficiencies of piliated gonococci on 

human epithelial cells did not correlate with the level of surface-expressed CD46 and 

pilus-mediated binding was not reduced when CD46 expression was down-regulated by siRNA 

[55]. Alternatively, complement receptor 3 (CR3) was proposed as gonococcal pilus receptor on 

cervical epithelial cells [56] whereas an I-domain-containing integrin was demonstrated as pilus 

receptor on urethral epithelial cells (UECs) [57]. Recent research showed that after attachment, 

Neisseria pili prevented bacterial internalization by forming microcolonies and inducing 

anti-invasive signals trigged by caveolin-1 phosphorylation [58]. The natural loss of piliation 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kirchner%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15845515
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switches gonococcal local infection to a porin/scavenger receptor-triggered invasive infection [59] 

(1.1.3.3). 

1.1.3.2 Opacity-associated (Opa) proteins  

Neisseria encodes a family of phase-variable and antigenically distinct Opa proteins which 

mediate aggregation of gonococci by binding to LOS and bacterial intimate attachment to and 

efficient invasion into host cells during infection. In strain MS11, eleven different opa gene alleles 

have been identified and each of them has its own promoter [60]. Opa genes are constitutively 

transcribed but the expression is regulated by pentameric CTCTT repeat sequences within the 

leader peptide-coding sequences. The number of CTCTT determines if the coding regions are 

either in or out of frame [61,62]. The expression of each opa gene can be independently switched 

on or off, so bacteria derived from a single colony actually represent a mixture with respect to Opa 

proteins expression [60]. 

All Opa proteins are integral outer membrane proteins with different surface-exposed loops which 

show different host cell receptor binding specificities [62,63]. Opa proteins are grouped into two 

classes binding either i) heparan sulfate proteoglycans (HSPGs) or ii) carcinoembryonic 

antigen-related cellular adhesion molecules (CEACAMs; previously CD66). The first class 

represented by Opa30/Opa50 (encoded by opaC gene, for nomenclature of Opa proteins, see [63]) 

mediates invasion into epithelial cells by binding to HSPGs on the cell surface [64], but the 

subsequent host signaling pathway is dependent on cell line [64]. For example, the binding of 

Opa50 to the human conjunctiva epithelial cell line Chang cells stimulates two lipid hydrolysis 

enzymes, phosphatidylcholine-specific phospholipase C (PC-PLC) and acidic sphingomyelinase 

(ASM), which results in cytoskeletal rearrangements and bacterial uptake [65]. However, in other 

epithelial cell lines, like Chinese hamster ovary (CHO) cell, HeLa and Hep-2, the serum-derived 

extracellular matrix proteins vitronectin or fibronectin serve as a molecular bridge between an 

Opa-proteoglycan complex and host cell integrins [66-68].  

The second class including most Opa proteins Opa51-60 interact with CEACAMs [69]. Among 

twelve different human CEACAMs, CEACAM1, 3, 5 and 6 have been described as Opa receptors 
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[70-73]. The interaction triggers various important cellular functions, such as neisserial 

engulfment by the epithelial cells [74], transcellular transcytosis across polarized epithelial cell 

monolayers [75], entry into endothelial cells [76], suppression of lymphocyte response [15] and 

bacterial engulfment and killing by neutrophils [70]. Opa-dependent phagocytosis is mediated by 

CEACAM3, a CEACAM family member exclusively expressed on polymorphonuclear 

granulocytes. Upon bacterial engagement, the cytoplasmic domain of CEACAM3 is 

phosphorylated by Src family kinases and then the phosphorylated cytoplasmic domain recruits 

the small GTPase Rac followed by actin rearrangements [77-80]. However, internalization of N. 

gonorrhoeae in epithelial cells via CEACAMs (CEACAM1, CEACAM5 or CEACAM6) is 

independent of cytoplasmic domain of epithelial CEACAMs but the endocytosis is involvement of 

cholesterol-rich membrane microdomains, phosphatidylinositol-3’ kinase (PI3K) and 

phosphatidylinositol 3, 4, 5-phosphate [PI(3,4,5)P] [79,81,82]. 

1.1.3.3 Pore-forming proteins (Porin) 

Porins are the major outer membrane proteins in Neisseria and account for over than 60% of the 

total proteins on the outer membrane. In N. gonorrhoeae, the dominant outer membrane protein is 

PorB, encoded by a single gene por. PorB has two related serotypes PorBIA and PorBIB encoded 

by alleles of por gene, porA and porB respectively. Most clinical isolates express PorBIB and only 

20% express PorBIA. Among the PorBIA expressing strains, 80% are isolated from disseminated 

infection cases [83-85]. Further, PorBIA but not PorBIB triggers efficient bacterial internalization in 

many different cell lines under low phosphate conditions. This invasion is independent of pili and 

Opa proteins [86]. The study of Zeth K et al. demonstrated that in PorBIA the amino acid at 

position 92 was conserved either as arginine or histidine, whereas PorBIB encoded a serine at the 

same position. Arg/His92 in PorBIA of disseminating gonococci was critical for 

phosphate-sensitive adherence and invasion [87]. Recently, the human heat shock glycoprotein 

Gp96 and the scavenger receptor expressed on endothelial cells I (SREC-I) were found as host 

receptor for Neisseria PorBIA. The study indicated that the binding of PorBIA to Gp96 initiated a 

rapid and massive adherence in a phosphate-sensitive manner but blocked the invasion. The entry 

of gonococci to the host cell is trigged by the interaction of PorBIA with SREC-I [88]. 
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PorBIA-dependent bacterial uptake into epithelial cells requires the formation of membrane rafts 

and caveolin-1 phosphorylation. The underlying signaling cascade involves PI3K and 

phospholipase C ɣ1 (PLC ɣ1) [59].  

PorB forms an anion-selective ion channel that is essential for neisserial viability. In addition, 

porin is able to translocate from the bacterial outer membrane into host cell membranes where it 

modulates the infection process and affects various cell functions. PorB pore formation is 

modulated by cytosolic purine nucleoside triphosphates, especially by ATP/GTP [89]. The 

translocation of neisserial porin causes rapid calcium influx from the extracellular milieu into 

target cells. The increase in cytosolic calcium subsequently induces apoptosis by activation of the 

calcium-dependent protease calpain as well as proteases of the caspase family [90]. Porins share 

similarity with mitochondrial voltage-dependent anion channels (VDAC) with respect to structure, 

function and the mechanism of ion flow across mitochondria membrane [89-92]. Porin can be 

selectively transported to the mitochondrial outer membranes of infected cells causing efflux of 

cytochrome c and loss of the mitochondrial membrane potential thus ultimately resulting in 

apoptosis [91,92]. By contrast, Binnicker MJ et al. demonstrated NF-κB activation by PorBIB and 

increased expression of host anti-apoptotic factors in UEC cells [93]. PorB is further supposed to 

inhibit phagosome maturation as was evidenced by the experimentation that more early endocytic 

markers and less late endocytic markers were detected in isolated phagosomes from macrophages 

incubated with purified PorB [94]. 

1.1.3.4 Other virulence factors 

LOS is one of the important virulence determinants of N. gonorrhoeae. It contains three short 

oligosaccharide chains covalently linked through ketodeoxyoctonoic acid to a lipid A component 

which anchors in the outer membrane [95]. Contrasting lipopolysaccharide (LPS), which is often 

found in Gram-negative bacteria, LOS contains only a short oligosaccharide instead of 

polysaccharide o-chain repeats. LOS plays several key roles in gonococcal infection, immune 

evasion, tissue damage and the stimulation of bactericidal antibodies [96-98]. One Neisseria strain 

usually produces two to six different LOS molecules and the antigenic variation of LOS is mainly 

due to the types and numbers of carbohydrates in their LOS which are modulated by a frameshift 
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on the poly (G) tract of the coding sequence of the gene lsi-2 [99]. 

Pathogenic Neisseria further can express an extracellular serine protease, the so called IgA1 

protease, which specifically cleaves the principal mucosal antibody, immunoglobulin A1 (IgA1) 

[100]. IgA1 protease contains an amino-terminal leader, the protease and a carboxyl-terminal 

“helper” domain. The leader and the “helper” domains are required for the transport through the 

inner and outer membranes [101]. Neisseria IgA1 protease was shown to promote intracellular 

survival within epithelial cells by degradation of LAMP1 (lysosomal-associated membrane protein 

1), a major integral membrane glycoprotein of late endosomes and lysosomes [102,103]. 

1.1.4 Disseminated gonococcal infection (DGI) 

In most cases, Neisseria gonorrhoeae cause uncomplicated gonococcal infections, such as 

cervicitis and urethritis, but rarely, in 1–3% of patients infected with N. gonorrhoeae, the 

gonococci spread from the local infection sites to other organs of the host body and cause 

disseminated gonococcal infection (DGI) which commonly leads to joint pain, skin lesions and 

polyarthritis. If untreated, DGI may develop to some serious conditions, such as bacterial 

endocarditis, meningitis, and pneumonia [104]. 

DGI is three or four times more common in women than men. The higher frequency among 

women may be due to many infected women are asymptomatic which gives the gonococci the 

opportunity for systemic spread. Besides, menstruation, pregnancy or the initial postpartum period 

increases the risk of dissemination from the genitourinary tract. The congenital or acquired 

complement deficiencies of the complement C5-C8 are less common risk factor [105]. The 

complement-dependent bactericidal effect of normal human sera can efficiently prevent the 

dissemination of serum-sensitive gonococci. However, the gonococci develop many strategies to 

evade the killing by host immune responses. Sialylation of gonococcal LOS results in conversion 

of previously serum-sensitive strains to unstable serum resistance allowing the gonococci escape 

from bactericidal activity of the serum [106]. Besides, Neisseria porins play an important role in 

stable serum resistance of nonsialylated gonococci by binding to factor H or C4b-binding protein 

(C4bp) to inhibit complement activity [107,108]. In addition to resist the bactericidal activity of 
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the serum, the gonococci can utilize the component in the serum for invasion into the host cell. 

For example, Neisseria Opa50 mediates internalization in some epithelial cell lines with assistance 

of the serum-derived extracellular matrix proteins vitronectin or fibronectin as a molecular bridge 

of Opa-proteoglycan complex [66-68].  

It is reported most gonococci isolated from patients with DGI are serum-resistant and AHU 

auxotype (Arg-Hyx-Ura auxotype) which means the gonococci require arginine, hypoxanthine, 

and uracil for growth on chemically defined medium [109]. Further, PorBIA expressing gonococci 

are frequently isolated from patients with disseminated infection [83-85]. It is found Neisseria 

PorBIA can trigger efficient invasion under a phosphate-sensitive condition mimicking the 

bloodstream [86]. In this process, the heat shock protein Gp96 and scavenger receptor SREC-1 

serve as the host receptors for PorBIA [88]. The formation of membrane rafts, caveolin-1 

phosphorylation and a series of activation of PI3K, PLCγ1, Rac1 (ras-related C3 botulinum toxin 

substrate) and PKD1 (PKCμ, protein kinase C μ) are involved in the subsequent signal 

transduction pathway which result in cytoskeletal rearrangements for membrane ruffling and then 

uptake of the gonococci [59]. However, little is known about Neisseria factors involved in this 

invasion process so far. It is likely that some other additional gonococcal factors may participate in 

PorBIA-triggered invasion and these factors may be new targets for the development of 

anti-infectives against gonococci. 

1.2 Transposon mutagenesis 

1.2.1 Transposons 

A transposable element (TE) or “transposon”, is a DNA sequence that can move from one 

genomic location to another. Transposons first were described as jumping genes in maize by 

Barbara McClintock in 1948 [110,111]. TEs have been identified in almost all the prokaryotic and 

eukaryotic organisms and comprise a large proportion of the genome. For example, TEs make up 

approximately 12% of Caenorhabditis elegans genome [112,113], 37% of the mouse genome 

[114] , 50% of the human genome [115] and up to 90% of the maize genome [116]. Thus they play 

a significant role in changes of genome size during evolution and in genetic plasticity of 
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organisms [117-119]. The mobilization of TEs can cause insertion, excision, duplication or 

translocation at the site of integration and thus may positively or negatively influence gene 

expression and also induce gene deletions and illegitimate recombination. TEs are considered as 

selfish DNA and tend to widely spread throughout the whole genome. Since deleterious effects of 

transposons in essential genes will ultimately lead to a reduction in the fitness of the affected 

organism, most transpositions are identified in the nonessential regions of the genome [120,121]. 

Besides, transpositions are frequently found in the germ line or embryonic cell as the harmful 

mutations can be selected during the development [122,123]. On the other hand, the host have 

evolved several strategies to curtail TEs spread, such as DNA methylation to reduce the 

expression of TEs [124,125], RNA interference (RNAi) [126] or specific proteins mediated 

inhibition mechanism [127]. So the distribution of TEs in the genome is the balance result of host 

cells’ defense against TE’s expansive spread. 

TEs are classified into two major groups. Class I TEs, also known as retrotransposon such as 

retroviruses, propagate through an RNA intermediate via a “copy and paste” mechanism. A 

reverse transcriptase is necessary for the transposition, which is encoded by the class I TE itself. 

Class I TEs produce RNA transcripts and the RNA transcripts can be reverse transcribed to DNA 

which is inserted into a new location of the genome. There are two major types of class I TEs: 

LTR retrotransposons with long terminal repeats (LTRs) and non-LTR TEs lacking these repeats 

such as long-interspersed nuclear elements (LINEs) or short-interspersed nuclear elements 

(SINEs). Classes I TEs occupy nearly 40% of the mammalian genome (reviewed in [117,118]). 

By contrast Class II TEs are DNA transposons. Most class II TEs are excised from one position 

and reintegrated into another position within the genome using a “cut and paste” mechanism. 

Transposition of class II TE is catalyzed by transposase. Class II TEs are further characterized by 

9 to 40 base pairs terminal inverted repeats (TIRs). The transposases recognize these TIRs and cut 

the whole DNA transposon from the excision site. Some transposases recognize and bind to 

specific DNA sequence as target site for insertion of the transposon. For example, the transposase 

of the Tc1/mariner element specifically recognizes TA dinucleotide in the genome and catalyzes a 

random insertion in any TA target site. Other transposases catalyze nonspecific transpositions in 

any target site. Transposases cut their respective target sites and generate sticky ends for the DNA 
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transposon. Subsequently, the two gaps of target site are filled up and closed by DNA polymerase 

and DNA ligase. Target site duplications (TSDs) comprise a unique hallmark of DNA transposons 

containing flanking direct repeats (LTRs in class I or TIRs in class II). After excision, these repeats 

are left behind as “footprint”. Class II TEs are also classified into different families depending on 

their sequences, such as Tc1/mariner, P elements, hAT superfamily (hobo/Ac/Tam3) and so on. 

Only few transposons utilize a replicative transposition mechanism instead of the “cut and paste” 

pattern. These include, for example, Helitron and Maverick transposons (reviewed in [119]). 

Both class I and class II TEs contain autonomous and non-autonomous elements. The autonomous 

transposons encode the proteins required for their transposition and can move on their own. 

Non-autonomous transposons lack genes encoding reverse transcriptase or transposase and thus 

are dependent on autonomous transposons for their mobilization. For example, activator element 

(Ac) is an autonomous TE and dissociation element (Dc) is a non-autonomous TE which requires 

the presence of Ac for transposition [128]. 

Transposons can regulate gene expression and contribute to genome evolution, but they are used 

as a powerful molecular tool for both, single gene analysis and a wide variety of genomic studies 

in microorganism and higher eukaryotes. Transposon-based strategies for microbial functional 

genomics include gene sequencing, gene fusions, signature-tagged mutagenesis, and genetic 

footprinting (reviewed in [129]). Transposons have been rediscovered as efficient genetic tools in 

higher eukaryotes and even in vertebrates and are used, for example, for the generation of 

transgenic cells in tissue culture and transgenic animal models and even for therapy of genetic 

disorders in humans (reviewed in [130]). 

1.2.2 DNA Transposon Tn5 

Tn5 is one of the first identified transposons [131] and today one of the most frequently used 

transposition systems. It was isolated from Gram-negative bacteria and comprises a composite 

transposon which contains three antibiotic resistance genes, kan (kanamycin), ble (bleomycin) and 

str (streptomycin) flanked by two inverted insertion sequence IS50 elements. Each IS50 element is 

defined by two 19 bp end sequences (ES), the outside end (OE) and inside end (IE), which are 

http://en.wikipedia.org/wiki/P_element
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critical binding sites for transposase (Tnp). IE is methylated by deoxyadenosine methylase (Dam) 

in some bacteria, and this methylation strongly inhibits recognition by the transposase [132]. 

Moreover, both OE and IE are suboptimal for transposition. So the hyperactive version of the ES, 

which is called mosaic end (ME, CTGTCTCTTATACACATCT), is usually introduced in 

synthetic Tn5 transposon systems, which drastically increases the transposition efficiency. IS50R 

encodes the functional Tnp and the transposition inhibitor (Inh). Whereas IS50L is almost 

identical to IS50R, it only encodes truncated, inactive versions of Tnp and Inh (Fig. 1-2A, 

reviewed in [133,134]).  

Tn5 utilizes a “cut and paste” mechanism for its transposition during which Tn5 is excised from 

the original site and then inserted into the target site. The whole transposition process requires 

three macromolecules, the donor DNA-containing transposon, the target DNA sequence and the 

476 amino acid residues Tnp. In brief, the transposition process contains three steps: (1) Tnp 

recognizes and binds to the ES of Tn5 and a Tnp-transposon DNA synaptic complex is formed by 

dimerization of Tnp; (2) In the presence of Mg
2+

 or Mn
2+

, the synaptic complex is catalytically 

cleaved off the donor DNA; (3) The released synaptic complex captures the target DNA sequence 

and Tnp catalyzes strand transfer (Fig. 1-2B, reviewed in [133,134]). The strand transfer leaves 

two 9 bp gaps on either end of the inserted Tn5 which are likely filled in and sealed by host. 

However, some details of these three steps are still unclear. The analysis of the target sequence 

from thousands of inserts indicates the preferred target sequence contains 19 bp with a 9 bp core 

sequence surrounded by 5 bp on either side [135]. The consensus 9 bp core sequence is 

A-GNTYWRANC-T (N = A/G/C/T , Y = T/C, W = A/T and R = A/G) [136]. Although there is a 

slight sequence bias of Tn5 insertion sites, almost any sequence can be chosen at some frequency, 

so the randomness is sufficient for most applications and the impact of the bias is negligible.  

Tn5 transposition has been used as a powerful tool for molecular genetics by enclosing cargo 

DNA, such as antibiotic markers, genes for fluorescent proteins or therapeutic genes with ME 

[137]. Wild-type Tnp is low active because frequent transpositions easily lead to lethal genetic 

mutation of the host which will cause the loss of Tn5. Goryshin et al. greatly increased the 

transposition efficiency of Tnp by introducing mutations that render Tnp hyperactive and enable 
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an in vitro Tn5 transposition system [138]. Transposition can be conditionally regulated by the 

providing Tnp for the transposition reaction. 

 

Fig. 1-2 Tn5 structure and transposition mechanism.  

(A) Tn5 structure. Two IS50 elements bracket three antibiotic resistance genes. IS50R encodes 

transposase (Tnp) and transposase inhibitor (Inh). IS50L encodes C-terminal truncated, inactive 

versions of Tnp and Inh. IS50 elements are defined by transposon end sequences (ES), outside 

end sequence (OE) and inside end sequence (IE).  

(B) Tn5 transposition mechanism. Tnp recognizes and binds to ES to form a Tnp-DNA synaptic 

complex which is cleaved from the donor DNA. The released complex captures the target DNA 

and Tn5 is then inserted into target DNA by strand transfer. The 9 bp gaps at both ends of the 

insertion site are repaired by host cell proteins. 
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1.3 Next generation sequencing (NGS) technologies 

Next generation sequencing [NGS; also called second generation sequencing, deep sequencing, or 

massively parallel sequencing (MPS)] became available only a few years ago, but since then the 

technology has been broadly applied in genomics, transcriptomics and epigenomics. 

The first-generation sequencing, known as Sanger sequencing, applies chain-termination method 

for DNA sequencing [139] (Fig. 1-3A). Briefly, during primer elongation, the random insertion of 

fluorophores labeled ddNTPs (dideoxynucleotides) instead of dNTPs terminates the synthesis of 

the chain. The products including all possible lengths of chains are separated on the capillary gel 

where the fluorophores are detected by an imaging system to identify the base and then the 

sequence is analyzed by computer. Compared with Sanger dideoxynucleotide terminator 

sequencing, NGS can perform massively parallel sequencing of millions of DNA fragments in a 

single sequencing run and thus is much cheaper, about one hundred thousandth of the expenses of 

the traditional sequencing technologies, and faster, since hundreds of Gbp can be readily acquired. 

Another advantage of NGS is that the sequencing library can be constructed and amplified in vitro 

rather than in E. coli [140].  

Several NGS platforms have been developed, such as Illumina HiSeq 2500, NextSeq and MiSeq, 

Life Technologies SOLID4 and Ion Torrent Personal Genome Machine (PGM), Roche 454 

GS-FLX and GS Junior [141]. One of the most commonly used platforms is Illumina HiSeq 2000. 

Illumina sequencing is performed by synthesis (Fig. 1-3B). Bridge amplification of DNA 

fragments enclosed by specific adapters generates up to 1,000 identical copies of each single DNA 

template in a very small area (diameter of 1 micron or less) on a flow cell. Sequencing is 

performed by chain synthesis with fluorescently-labeled nucleotides (FI-dNTPs) that contain a 

removable terminator. After FI-dNTP incorporation, the emitted fluorescence from each cluster is 

imaged to identify the incorporated nucleotide. Then the fluorescent dye terminator is 

enzymatically cleaved from the nucleotide exposing a hydroxyl group that enables the 

incorporation of the next labelled nucleotide base and reinitiating the procedure. With additional 

repeats of the sequencing cycles, the base sequence in the DNA amplicon is determinated. 

Subsequently, the image-based raw data is transformed into sequence reads by several 
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computational analysis steps mainly including removing adaptor sequences and low quality reads, 

mapping to the reference sequence and bioinformatics analysis of the compiled sequence [142]. 

 

Fig. 1-3 Schematic diagram of sequencing process.  

(A) Sequencing process of the first generation sequencing Sanger sequencing 

(http://en.wikipedia.org/wiki/File:Sanger-sequencing.svg). 

(B) Sequencing process of Illumina sequencing, an example of the next generation sequencing 

(http://openwetware.org/wiki/BioMicroCenter:Sequencing). 
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1.4 Transposon insertion sequencing (Tn-seq) 

With the advent of NGS, the microbial genomes have flooded the database; however, the 

knowledge of gene function has greatly lagged behind gene discovery. Approximately 30-40% of 

genes are unknown in a new sequenced microorganism [143-145]. In order to reveal 

genotype-phenotype relationships in a high-throughput manner, the techniques combined NGS 

with traditional transposon mutagenesis has been recently developed, such as transposon 

sequencing (Tn-seq), high-throughput insertion tracking by deep sequencing (HITS), insertion 

sequencing (INSeq) and transposon-directed insertion site sequencing (TraDIS) [146-150]. In 

these similar approaches, a high-density transposon mutant library in which nearly all the 

non-essential genes contain insertions is applied to grow in a defined condition, in vitro growth 

conditions or in vivo infection of the host. The contribution of each gene in this condition is 

determined by comparing the relative frequency of each mutant in the population during the 

growth which can be quantified by massively parallel sequencing (MPS) of the transposon 

junctions. Such methods had been used to identify essential genes in different bacteria including 

Salmonella Typhi [147], Salmonella Typhimurium [151], Caulobacter crescentus [152], 

Mycobacterium tuberculosis [153], Porphyromonas gingivalis [154], Streptococcus pneumonia 

[148] and so on. Besides, these approaches were applied to identify virulence genes in some 

pathogens, such as Haemophilus influenza genes required in mouse lung infection model [146] 

and Pseudomonas aeruginosa genes for resistance functions [155]. In addition, the emerging 

applications of this technique are for the identification of sRNAs required for pathogenesis [156] 

and for the elucidation of genetic interactions [157] in Streptococcus pneumonia. Owing to the 

wide activity of the Mariner and Tn5 transposons which were used in the studies mentioned above, 

the transposon insertion sequencing (Tn-seq) has the potential to contribute to the exploration of 

complex pathways across many different species [158]. 
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1.5 Aims of this study 

The human-specific pathogen Neisseria gonorrhoeae might develop to an untreated super 

bacterium in the near future. It is urgent to develop novel strategy to control the infections and 

cure the disease as recently appealed by WHO (World Health Organization) [3]. Therefore, 

identification of essential genes and virulence factors will be an effective approach to find out 

promising targets for vaccine or drug development. 

Genome sequencing and preliminary annotation have been completed for some N. gonorrhoeae 

strains, but little is known about gene essentiality and the contribution of genes to neisserial 

virulence. This is in part due to the lack of straight forward transposon mutagenesis as transposons 

are usually inactive in gonococci. The first aim of this study thus was to construct a high-density 

transposon mutant library in N. gonorrhoeae. Then the distribution of transposon insertion sites 

(TIS) was to be analyzed by deep sequencing (Tn-seq) in order to identify the essential genes 

required for gonococcal survival and growth. Further, the transposon mutant library was to be 

used to screen for virulence factors involved in gonococcal disseminated infection (DGI), a severe 

systemic infection that occurs in about 1-3% of gonococcal infections. 
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2 Material and methods 

2.1 Material 

2.1.1 Bacterial strains 

All the gonococcal strains used and constructed in this study are derived from Neisseria 

gonorrhoeae MS11 and are listed in Table 2.1. Escherichia coli strains XL1 Blue and DH5α were 

used for amplification of plasmids. E. coli strains BL21 and soluBL21 (a gift from Dr. Rosalia 

Deeken, Department of Botany I, University of Wuerzburg) were used for protein expression. 

Table 2.1 N. gonorrhoeae strains used in this study 

 

Stain 

Identifier 

Phenotype Genotype/Plasmid Source 

MS11 PorBIB, P
+
, Opa

-
 porB Our lab 

N2009 PorBIA, P
+
, Opa

-
 MS11, porB::porA [159] 

N219 PorBIB, P
-
 MS11-B1 (P

s
) [160], ptetM25.2 [161] [162] 

N220 N219, pTH10a N219, pTH10a Our lab 

N931 N219, Opa50 N219, pTH6a (Opa50) [63] 

N313 N219, Opa57 N219, pTH6a (Opa57) [63] 

N2020 N2009 Δ01605, Opa50 N2009, NGFG_01605::Kan
R
, 

pTH6a(Opa50) 

[163] 

N2021 N2009 Δ01605, Opa57 N2009, NGFG_01605::Kan
R
, 

pTH6a(Opa57) 

[163] 

N2022 N2009, Opa50 N2009, pTH6a(Opa50) This study 

N2023 N2009, Opa57 N2009, pTH6a(Opa57) This study 

N2024 MS11, Kan-Ptrc-00442 MS11, (promoter of 

NGFG_00442)::(Kan
R
-Ptrc) 

This study 

N2025 MS11, Kan-Ptrc-00442, 

lacI
q
 

MS11, (promoter of 

NGFG_00442)::(Kan
R
-Ptrc), (pTH10a) 

This study 

N2026 MS11, Kan-Ptrc-04144 MS11, (promoter of 

NGFG_04144)::(Kan
R
-Ptrc) 

This study 

N2027 MS11, Kan-Ptrc-04144, 

lacI
q
 

MS11, (promoter of 

NGFG_04144)::(Kan
R
-Ptrc), pTH10a 

This study 
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N2028 MS11, Kan-Ptrc-02103 MS11, (promoter of 

NGFG_02103)::(Kan
R
- Ptrc) 

This study 

N2029 MS11, Kan-Ptrc-02103, 

lacI
q
 

MS11, (promoter of 

NGFG_02103)::(Kan
R
- Ptrc), pTH10a 

This study 

N2030 MS11, Kan-Ptrc-00007 MS11, (promoter of 

NGFG_00007)::(Kan
R
- Ptrc) 

This study 

N2031 MS11, Kan-Ptrc-00007, 

lacI
q
 

MS11, (promoter of 

NGFG_00007)::(Kan
R
- Ptrc), pTH10a 

This study 

N2032 N2009Δ00599 N2009, NGFG_00599::Kan
R
 This study, done 

by Weitner, H 

N2033 N2009Δ00859-00860 N2009, NGFG_00859-00860::Kan
R
 This study, done 

by Weitner, H 

N2034 N2009 Δ01489 N2009, NGFG_01489::Kan
R
 This study 

N2035 N2009 Δ01393 N2009, NGFG_01393::Kan
R
 This study 

N2036 N2009 Δ02032 N2009, NGFG_02032::Kan
R
 This study 

N2037 N2009 Δ00042 N2009, NGFG_00042::Kan
R
 This study 

N2038 N2009 Δ01836 N2009, NGFG_01836::Kan
R
 This study 

N2039 N2009 Δ04218 N2009, NGFG_04218::Kan
R
 This study 

N2040 N2009 Δ01605 N2009, NGFG_01605::Kan
R
 [163] 

N2041 N2009 Δ00072 N2009, NGFG_00072::Kan
R
 [163] 

N2042 N2009 Δ01266 N2009, NGFG_01266::Kan
R
 [163] 

N2043 N2009 Δ01643 N2009, NGFG_01643::Kan
R
 [163] 

N2044 N2009 Δ00506 N2009, NGFG_00506::Kan
R
 [163] 

N2045 N2009 Δ00827 N2009, NGFG_00827::Kan
R
 This study 

2.1.2 Cell lines  

Table 2.2 Cell lines 

Cell line Properties Media Source 

Chang T Human conjunctiva epithelial cells RPMI 1640, 10% FCS ATCC CCL-20.2 

HFF Human Foreskin Fibroblast cells DMEM, 10% FCS ATCC SCRC-1041 

NIH 3T3 Mouse embryonic 

fibroblast cell line 

DMEM, 10% FCS ATCC CRL-1658 

HeLa 229 Human epithelial cervical 

carcinoma cells 

RPMI 1640, 10% FCS ATCC CCL-2.1 

HeLa 

CEA 

Human cervix carcinoma epithelial 

cell expressing CEACAM 1 

RPMI 1640, 10% FCS Our lab 
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2.1.3 Plasmids 

Table 2.3 Plasmids used in this study 

Plasmid Properties Source 

pGEM
®

-T-Easy Cloning vector Promega 

pGEM-T-Ptrc Ptrc promoter cloned in pGEM-T-Easy  This study 

pGEM-T-kan-Ptrc Kanamycin cassette cloned in 

pGEM-T-Ptrc (SpeI/SacI) 

This study 

pCR2.1
®
-Topo Cloning vector Invitrogen 

pCR2.1-Tn5 Tn5 cassette cloned in pCR2.1
®
-Topo This study 

pCR2.1-Tn5-DUS DUS sequence inserted in 

pCR2.1-Tn5 by site-directed 

mutagenesis 

This study 

pET28b Expression vector, mutation in 

244-239 from GGCAGC to GGATCC 

Novagen, Lab of Dr. Rosalia 

Deeken, Department of Botany I, 

University of Wuerzburg 

pET28b-AIF1 ORF of NGFG_01605 cloned in 

pET28b (BamHI/HindIII) 

This study 

pET28b-AIF1185-451aa DNA sequence encoding AIF1185-451aa 

cloned in pET28b (BamHI/HindIII) 

This study 

2.1.4 Oligonucleotides 

Table 2.4 Oligonucleotides for generation and sequencing of the libraries 

Primer name Oligonucleotide Sequence (5’ 3’) Comment 

Adaptor sense p-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG Y-type 

adaptor Adaptor antisense ACACTCTTTCCCTACACGACGCTCTTCCGATC*T 

EZ-Tn5-Kan2-DUS-F TGGCGGATGCCGTCTGAAGATCCTCTAGAGTCGAC

C 

Insert DUS 

in the Tn5 

EZ-Tn5-Kan2-DUS-R GGATCTTCAGACGGCATCCGCCACGGTTGATGAGA

GC 

Ez-Tn5 Amplify 

primer 

CTGTCTCTTATACACATCTCAACC Amplify 

Tn5-DUS 

P5-ME biotin-AATGATACGGCGACCACCGAGATCTACGGTT

GAGATGTGTATAAGAGACAG 

 

Antisense Input CAAGCAGAAGACGGCATACGAGATACACGTCGGT

CTCGGCATTCCTGCTGAACCGCTCTTCCGATC 

Library 1 
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TnSeq-PE-Index-YX1 CAAGCAGAAGACGGCATACGAGATACACGTCGGT

CTCGGCATTCCTGCTGAACCGCTCTTCCGATC 

438_C 

TnSeq-PE-Index-YX2 CAAGCAGAAGACGGCATACGAGATGTACACCGGT

CTCGGCATTCCTGCTGAACCGCTCTTCCGATC 

438_D 

TnSeq-PE-Index-YX3 CAAGCAGAAGACGGCATACGAGATCATGACCGGT

CTCGGCATTCCTGCTGAACCGCTCTTCCGATC 

438_E 

TnSeq-PE-Index1 CAAGCAGAAGACGGCATACGAGATCGTGATCGGT

CTCGGCATTCCTGCTGAACCGCTCTTCCGATC 

438_F 

TnSeq-PE-Index2 CAAGCAGAAGACGGCATACGAGATACATCGCGGT

CTCGGCATTCCTGCTGAACCGCTCTTCCGATC 

Library 2 or 

438_A 

TnSeq-PE-Index3 CAAGCAGAAGACGGCATACGAGATGCCTAACGGT

CTCGGCATTCCTGCTGAACCGCTCTTCCGATC 

Library 3 or 

438_B 

TnSeq Primer ACCGAGATCTACGGTTGAGATGTGTATAAGAGACA

G 

Sequencing 

TIS 

TnSeq Index SP GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGAC

CG 

Sequencing 

barcode 

p: phosphorylation; *: phosphothioate bond; biotin: biotin-TEG modification; the Neisseria DNA 

Uptake Sequence (DUS) is underlined; bold: library specific barcode. 

Table 2.5 Oligonucleotides for conditional knockout assays 

Primer name Oligonucleotide Sequence (5’3’) 

Kan-SpeI-F CGACTAGTATCATCGATGAATTGTGTCTC 

Kan-SacI-R TAGAGCTCCTGAAGCTTGCATGCCTG 

Ptrc-F GCGCCGACATCATAACGGTTCTG 

Ptrc-R CATGGTCTGTTTCCTGTGTGAAATTG 

Kan-cassette-R CTGAAGCTTGCATGCCTGCA 

rib-up-f GTGCGTTTAATCAGTGAGTCAGGC 

rib-up-r TGCAGGCATGCAAGCTTCAGGCAATCGGAGTAAGCGGAAAA 

rib-down-f CACACAGGAAACAGACCATGCCTAAAATGAAAACCAAGTCTAGCG 

rib-down-r CGGCTTTATCGAACACGGCC 

PorB-up-f CTTCGCCGCACTGATTCAAGAAC 

PorB-up-r TGCAGGCATGCAAGCTTCAGGATGTGCATTTTGAAGGACGG 

PorB-down-f CACACAGGAAACAGACCATGAAAAAATCCCTGATTGCCCTGAC 

PorB-down-r GCGTATTGTACGCTGCCGCTG 

01315-up-F ATTGTTTGCCTACGAACCGCCG 

01315-up-R TGCAGGCATGCAAGCTTCAGCGTTACTTCAAACCGGCTTGC 

01315-down-F CACACAGGAAACAGACCATGTTTATCCCTGCCGCCCTGC 

01315-down-R CAGCATATTCCTCAATCCGGCACG 

04144-up-F GAAGCCGTTGACCGGTGGATAC 

04144-up-R TGCAGGCATGCAAGCTTCAGTTAATCTCCTAAACCTGTTTTAACAATG
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CC 

04144-down-F CACACAGGAAACAGACCATGGCATCATATGTTTCCATCAAAGGATGG 

04144-down-R GCCAACCTACGCTTACTGAAAACCA 

02103-up-F GAAGACGAAGCGGGCAAGC 

02103-up-R TGCAGGCATGCAAGCTTCAGCGGATTTGTTCTTTAACCCATTGGG 

02103-down-F CACACAGGAAACAGACCATGAACCCAACCAAACAATCCAAAAAAAG

C 

02103-down-R CATACACCCTTCAGGGAACTCTTATC 

00007-up-F ACCAAACTGTAACTTATCCTGCGACT 

00007-up-R TGCAGGCATGCAAGCTTCAGCGAGCCTGTTTTACTTTTATTCCG 

00007-down-F CACACAGGAAACAGACCATGAACATCGTTAAAAAATACGCTGTAAAA

GC 

00007-down-R GAACAGAATTAGAACCGTCGAACCGA 

00686-up-F CCGTTTCCCATACCGTCTGAATC 

00686-up-R TGCAGGCATGCAAGCTTCAGGATTTAAGAAGGAAGGTCAGCAGC 

00686-down-F CACACAGGAAACAGACCATGTCCGAACAACCCGAAAAACACC 

00686-down-R CGCCGATGTGGATGGGTTCTTTA 

Table 2.6 Oligonucleotides for genetic footprinting assays 

Primer name Oligonucleotide Sequence (5’3’) 

01048-up-f GCCGTCTGAACAGCCGATTCATAGACGAAATGCC 

01052-down-r CTTCGTATGCTTGGCGGTGGC 

1063-up-f GCCGTCTGAACGGCATAAAAGTCAGTGAGTTGGCG 

1068-down-r GAGTGACGAAAGGCGGGAACAAC 

Tn ME sequence GGTTGAGATGTGTATAAGAGACAG 

Neisseria DNA Uptake Sequence (DUS) is underlined. 

Table 2.7 Oligonucleotides for construction of genes knockout mutants 

Primer name Oligonucleotide Sequence (5’3’) 

00599-up-forward GCCGTCTGAATTTGGGCGCAAACCGTTTC 

00599-up-reverse TGAGACACAATTCATCGATGATGTTTCATGGCGGTGGTGTTC 

00599-down-forward TGCAGGCATGCAAGCTTCAGAATCAGGACAAGGCGACGAA 

00599-down-reverse GGATTTGGCGAGGTGGGAGAG 

01674-up-forward GCCGTCTGAAACTTGAACGACAAAACCCGC 

01674-up-reverse TGAGACACAATTCATCGATGATCTCATGATAACCTCGCTGTTGG 

01674-down-forward TGCAGGCATGCAAGCTTCAGTGATTCCGCAAAGCCGC 

01674-down-reverse TGACGACGGGTTGGACGAACA 

01912-up-forward GCCGTCTGAAGCGAAGCCGAAGTAGATGCT 

01912-up-reverse TGAGACACAATTCATCGATGATCTGTGTCATGGGATACCTTGC 

01912-down-forward TGCAGGCATGCAAGCTTCAGGATGATTGACCATAGGGTCGG 

01912-down-reverse CGCGAGAGTGCAGGGGCATTAA 
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01489-up-forward GCCGTCTGAATTCCTCAACGGCTACCGTTT 

01489-up-reverse TGAGACACAATTCATCGATGATGAGCGAGTTCATGTAGCCGT 

01489-down-forward TGCAGGCATGCAAGCTTCAGAACCATGCCGTCTGAAAAATACC

TG 

01489-down- reverse GGTGTGGCAGCGTAGGTAATGCTG 

01393-up-forward GCCGTCTGAAACCTCCAGCTTCCCTATGTC 

01393-up-reverse TGAGACACAATTCATCGATGATGTATAAGGCGGGTTTCAGCC 

01393-down-forward TGCAGGCATGCAAGCTTCAGTAATCGGCTCGCGATGCC 

01393-down-reverse GACGGTATCCAGCCCGCAC 

02032-up-forward GCCGTCTGAAGGGAAACGGAAGAAGCCAT 

02032-up-reverse TGAGACACAATTCATCGATGATCTTCGCTGTCGATAAAGTCGG 

02032-down-forward TGCAGGCATGCAAGCTTCAGCCGAATCCATGCCCGAAA 

02032-down-reverse AATCGGGCCGCAATCCAGCT 

00042-up-forward GCCGTCTGAATTCCAAGCGTTTGACGACGA 

00042-up-reverse TGAGACACAATTCATCGATGATCGTCCTTTTGAGTGTATGAAGG

G 

00042-down-forward TGCAGGCATGCAAGCTTCAGAACGCACATCCCGAAAAAATGC 

00042-down-reverse CCGATGATGATGAGCTGCGGC 

01836-up-forward GCCGTCTGAAAAACGCTCTCCAAACCTTCG 

01836-up-reverse TGAGACACAATTCATCGATGATAAAAAGATGGTTTCGGGCGG 

01836-down-forward TGCAGGCATGCAAGCTTCAGAACCGGCAAAACAATGCCG 

01836-down-reverse TGTCGAACGCAGGCGGTATGTG 

00860-00859-up- 

forward 

GCCGTCTGAACCCGTCTCTTCAGGATAAGC 

00860-00859-up- 

reverse 

TGAGACACAATTCATCGATGATGGGTTGGTTGATACTACTCAGA

GA 

00860-00859-down- 

forward 

TGCAGGCATGCAAGCTTCAGTCTAATCGCGGCGATATGCC 

00860-00859-down- 

reverse 

GGCACGAAGCGCGCGATGAT 

04218-up-forward GCCGTCTGAACTACGCCGGTCTGCAAAAAC 

04218-up-reverse TGAGACACAATTCATCGATGATCCGTTTGAAGTGGCGTTCAG 

04218-down-forward TGCAGGCATGCAAGCTTCAGATCCTAGTTGTCCAGGACGG 

04218-down-reverse CGATAATCCCCCATCCCGCC 

00072-up-forward GCCGTCTGAAGTGTTGGCGGCGATTCTGTTTG 

00072-up-reverse TGAGACACAATTCATCGATGATTCCTTGAATATCCGATGTTCCGC 

00072-down-forward TGCAGGCATGCAAGCTTCAGAGCCGCAGAATAAACATACACAT

CC 
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00072-down-reverse GCGGTACACGGTAACCAGGCTC 

01605-up-forward GCCGTCTGAACGCCATCATGTCCCTGAC 

01605-up-reverse TGAGACACAATTCATCGATGATGGCGGGCAATAAGAGTTCGG 

01605-down-forward TGCAGGCATGCAAGCTTCAGGAACCCCTGAGCCACAATG 

01605-down-reverse TGCCAAAGTAGCTGTGGAAGCCG 

01266-up-forward GCCGTCTGAACAACCTCAGCAAACAAAGCACG 

01266-up-reverse TGAGACACAATTCATCGATGATCTTGATGGTTGCGTACTCGGTT 

01266-down-forward TGCAGGCATGCAAGCTTCAGCGGACGGTATTTCCACAACAG 

01266-down-reverse GGCCCGCCAATTCTTTTGACAGG 

01643-up-forward GCCGTCTGAATTATTTGGTTTTGCCACTGCGGA 

01643-up-reverse TGAGACACAATTCATCGATGATCGGGACTCGAACCAGGAAAAT

A 

01643-down-forward TGCAGGCATGCAAGCTTCAGCTCAGCGAACACGTCGAGT 

01643-down-reverse GATTTGCCCATACCGCTTTGTCCG 

00506-up-forward GCCGTCTGAAGATGCGGGCGACAAGATTTTC 

00506-up-reverse TGAGACACAATTCATCGATGATGTTACGCCCGACATTATAAAAT

CCC 

00506-down-forward TGCAGGCATGCAAGCTTCAGCCAAAAATGTTTGCTCTTGCCGC 

00506-down-reverse TAATGCCCTGCCAGCGGTCG 

00827-up-forward GCCGTCTGAATGATGTTTCAAGTCGCTTTCG 

00827-up-reverse TGAGACACAATTCATCGATGATTGAAATGAAGCATCATAATCTA

AAGG 

00827-down-forward TGCAGGCATGCAAGCTTCAGGAAATGCCGTCTGAAACACCT 

00827-down-reverse GGCTTCAGACGGCATTTTGCC 

op_kan_s ATCATCGATGAATTGTGTCTCAAAATCTCTGAT 

op_kan_hfq-mut_as CTGAAGCTTGCATGCCTGCA 

01393-seq2 GGTTCGCTGATTCTGACCGC 

02032-seq2 GCAACTGCCGCTCTTTGAAACC 

01836-seq2 ACGGGAATAAGGTACAGCAGCC 

00042-seq2 GCCCAAGGTTACGCGCAC 

00860-00859-seq2 TCTCTTCCTGCGTCCACTGA 

00599-seq2 CCGGCTTCAAACTCAGCC 

01674-seq2 CGTATCATCGCGTCGATGCC 

01912-seq2 AGGCAACTTCGACAAAGCCG 

01489-seq2 GTCCGCTGAAGGCAAACAGC 

seq2-04218-f GGCGAGGCGATGATGGCATTC 

seq-01605-sense TCAAGCCTTCCCGTTCCACA 
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seq-01266-sense TTCTTTCCCTTTTCGCCTCC 

seq-00072-sense ATCCTTCGGCAGTATCACGCTG 

seq-01643-sense CGAAATCGTCAAAAACGGACAGGA 

seq-00506-sense GACCTGATTCCGACTGCCAA 

seq-00827-f ATCTGGTCGAATACGCTTCGTGG 

Neisseria DNA Uptake Sequence (DUS) is underlined. 

Table 2.8 Oligonucleotides for RT-PCR 

Primer name Oligonucleotide Sequence (5’3’) 

RNase P-F CGGAAAGTGGAACAGAAAGC 

RNase P-R GTTTGGTCTTGCTCCGAATG 

Rt-00506-forwards AGAAAAGTTACGAAGTGCCCA 

Rt-00506-reverse GTTTCGTTGCTCTCGTTCCTC 

Rt-01605-forwards TTCGTTGCCGACATGGAGCC 

Rt-01605-reverse TTTGAGGCTGTCCACACCG 

Rt-00072-forwards CGGTTGCCTTTCTCGCTTTC 

Rt-00072-reverse CCCTCAGCGTTTTTCTCGGC 

Rt-01266-forwards CACCGATACAAACGGGCTGC 

Rt-01266-reverse GATGTCCCACGGCATTTCGG 

Rt-01643-forwards TGGGCAAAATCGTAGAGTGGC 

Rt-01643-reverse GACTGCTTGGCATAGACGG 

Table 2.9 Oligonucleotides for NGFG_01605 

Primer name Oligonucleotide Sequence (5’3’) 

01605-BclI-F CGTGATCAATGAAAGCACCCGAACTCTTATTGC 

01605-HindIII-R CCCAAGCTTTCAGGGGTTCAACACGCG 

01605-HindIII-flag-R CCCAAGCTTTTACTTATCGTCGTCATCCTTGTAATCGGGGTTCA

ACACGCGTGC 

01605-BamHI-185-F CGGGATCCAACCACCGCGATCCCAAC 

L-01605-rt CCGATCCATCTGTCCGTACA 

R-01605-rt ATCGCGGTGGTTGAAATAGC 

Bold: restriction enzyme cutting sites 

Table 2.10 siRNA Oligonucleotides 

Primer name Sequence source 

siLuciferase ON-TARGETplus Non-targeting Pool, D-001810-10-05, Thermo Fisher 

Scientific
TM

 Dharmacon
TM

 

siGp96 ON-TARGETplus HSP90B1 siRNA, LU-006417-00-0002, Thermo 

Fisher ScientificTM DharmaconTM 
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2.1.5 Buffers, solutions and media 

Table 2.11 Media and solutions for cell culture  

Medium/Chemical  Source  

RPMI 1640  GIBCO  

DMEM  Sigma Aldrich  

Opti-MEM
®
 I Reduced Serum Medium GIBCO  

DPBS  GIBCO or Sigma Aldrich  

Tryple
TM

 Express  GIBCO  

Fetal calf serum (FCS)  PAA  

Table 2.12 Bacterial culture media and buffers 

Medium/Buffer  Ingredients  

Cell Stocking Medium 70% FCS, 10% DMSO, 20% cell medium (DMEM or RPMI 1640) 

LB Medium (1L)  10 g tryptone, 5 g yeast extract, 10 g NaCl  

LB Agar (1L) 10 g tryptone, 5 g yeast extract, 10 g NaCl, 15 g agar  

SOC medium 2% (w/v) bacto-tryptone, 0.5% (w/v) yeast extract, 10 mM NaCl, 2.5 

mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose 

GC Agar (1L) 36.23 g GC agar base, after autoclaving add 1% vitamin mix  

PPM Medium (1L) 15 g proteose peptone, 5 g NaCl, 0.5 g soluble starch, 1 g KH2PO4, 4 

g KH2PO4. Adjust to pH 7.2. Sterilize by sterile filtration  

Vitamin Mix combine Vitamin Mix Solution I and II (add dH2O up to 2 L) 

Vitamin Mix Solution I  200 g D(+)-glucose, 20 g L-glutamine, 0.026 g 4-aminobenzoic acid, 

0.2 g cocarboxylase, 0.04 g iron(III) nitrate nonahydrate, 0.006 g 

thiamine hydrochloride (vitamin B1), 0.5 g NAD, 0.02 g vitamin 

B12, 52 g L-cysteine hydrochloride monohydrate; add 1 L dH2O  

Vitamin Mix Solution II  2.2 g L-cystine, 0.3 g L-arginine monohydrochloride, 1 g uracil, 0.06 

g guanine-hydrochloride, 2 g adenine hemisulfate, add 600 mL dH2O, 

30 mL 32% HCl 

Neisseria Growth or 

Conjugation Medium 

PPM medium supplemented with 1% vitamin mix and 0.5% NaHCO3 

Neisseria Transformation 

Medium 

PPM medium supplemented with 1% vitamin mix, 0.5% NaHCO3, 10 

mM MgCl2 

HEPES Medium 

(phosphate free medium)  

50 ml solution I, 10 ml solution II, 200 μl solution III, 3 ml solution 

IV/V, 5 ml solution VI, 50 ml solution VII, 50 ml solution VIII 

Up to 500 ml H2O, regulate pH 7.3, filter sterilization 

HEPES -Solution I 0.1% L-Alanine, 0.15% L-Arginine, 0.025% L-Asparagine, 0.025% 

Glycine, 0.018% L-Histidine, 0.05% L-Lysine, 0.015% 



  Material and methods 

32 

 

L-Methionine, 0.05% Proline, 0.05% L-Serine, 0.05%L-Threonin, 

0.061% L-Cysteine, 0.036% L-Cysteine, 0.05% L-Glutamine, 

0.046% reduced Glutathione (GSH), 0.0032% Hypoxanthine, 0.008% 

Uracil, 0.004% D-Biotin, add 18% 1 N NaOH and 82% H2O 

HEPES -Solution II 375 g/L Glucose 

HEPES -Solution III 10 g/L Fe(NO3)3·9H2O 

HEPES -Solution IV/V 

 

0.33% Nicotinamide adenine dinucleotide (NAD), 0.33% 

Carboxylase, 0.33% Thiamin, 0.33% Ca-Pantothenate, 0.188% 

CaCl2·2H2O, 4.17% Na-Lactate, 15.33% Glycerin, 3.33% 

Oxaloacetate 

HEPES -Solution VI 50 g/L MgCl2·7H2O 

HEPES -Solution VII 50 g NaCl, 34 g Na-Acetat in 1 L H2O 

HEPES -Solution VIII 23.8 g/L Hepes 

Table 2.13 Buffers for agarose gel electrophoresis, SDS-PAGE, western blotting, 

Immunofluorescence 

Buffers Ingredients/Source 

10x TAE (1L) 48.5 g Tris, 11.4 mL glacial acetic acid, 20 ml 0.5 M EDTA (pH 

8.0) 

10x TBE (1L) 54 g Tris, 27.5 g Boric acid, 20 ml 0.5 M EDTA (pH 8.0) 

4x SDS upper buffer (1 L)  0.5 M Tris/HCl (pH 6.8), 0.4% (w/v) SDS  

4x SDS lower buffer (1 L)  1.5 M Tris/HCl (pH 8.8), 0.4% (w/v) SDS  

8% SDS lower gel solution for 10 mL: 2.7 mL 30% acrylamide, 2.5 mL 4x lower buffer, 4.8 mL 

H2O, 100 μL 10% (w/v) APS, 10 μL TEMED 

10% SDS lower gel 

solution  

for 10 mL: 3.3 mL 30% acrylamide, 2.5 mL 4x lower buffer, 4.1 mL 

H2O, 100 µL 10% (w/v) APS, 10 µL TEMED  

12% SDS lower gel 

solution  

for 10 mL: 4 mL 30% acrylamide, 2.5 mL 4x lower buffer, 3.6 mL 

H2O, 100µL 10% (w/v) APS, 10 µL TEMED  

3% SDS upper gel solution  for 3.3 mL: 330 µL 30% acrylamide, 825 µL 4x upper buffer, 2.1 

mL H2O, 40 µL APS, 4 µL TEMED  

2x Laemmli buffer 4% (w/v) SDS, 20% (v/v) glycerol, 120 mM Tris/HCl (pH 6.8), 0.2 

mg/mL bromophenol blue, 0.1 M DTT 

10x SDS Electrophoresis 

buffer (1 L)  

30.25 g Tris, 144 g glycine, 10 g SDS 

Coomassie Staining 

solution 

44% methanol, 11% acetic acid, 0.2% Coomassie blue R250 

Coomassie Destaining 

solution  

20% methanol, 7% acetic acid 
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10x semi dry buffer (1 L) 24 g Tris, 113 g glycine, 2 g SDS 

Semi dry transfer buffer  1x semi dry buffer, 20% (v/v) methanol 

10x TBS-T (1 L)  48.5 g Tris, 175 g NaCl, 10 mL Tween-20, adjust to pH 7.5 with 

HCl  

Blocking solution for WB 1x TBS-T, 3% (w/v) BSA  

Restore
TM

 Plus Western 

Blot Stripping Buffer 

Thermo Fisher Scientific 

4% paraformaldehyde 

(PFA, 400 mL) 

40 ml 10x PBS, 16 g PFA, 80 µL 10 N NaOH, 320 mL H2O, 

regulate pH to 7.4 

Blocking solution for IF 1x PBS, 1% (w/v) BSA 

Permeabilization solution 1x PBS, 0.1% (v/v) Triton X-100 

Mowiol mounting medium 2.4 g Mowiol 4-88, 6 g glycerol, 6 mL H2O, 12 mL 0.2 M Tris/HCl 

(pH 8.5) 

Table 2.14 Buffers for neisserial RNA and DNA isolation 

Buffers Ingredients/Source 

GTE buffer  50 mM glucose, 25 mM Tris/HCl (pH 8.0), 10 mM EDTA (pH 8.0)  

TE buffer 10 mM Tris/HCl (pH 8.0), 1 mM EDTA (pH 8.0) 

Lysis buffer for RNA 

isolation 

TE buffer + 1 µL/10 mL Ready Lyse 

3M Sodium acetat solution 

pH 5.2 

Sigma 

Table 2.15 Buffers for protein purification, antibody purification and inclusion bodies’ 

isolation 

Buffers Ingredients 

Binding buffer 50 mM NaH2PO4, 300 mM NaCl, pH 8.0 

Lysis buffer Binding buffer, 10 mM imidazol, 1% Triton X-100, 1% NP40 

Washing buffer Binding buffer, 20 mM imidazol 

Elution buffer for protein 

purification 

Binding buffer, 250 mM imidazol 

0.2 M Carbonate buffer 

pH8.9 

10 mL 0.1 M Na2CO3, 90 mL 0.1 M NaHCO3 

Elution buffer for antibody 

purification 

0.2 M acetic acid (pH 2.7), 500 mM NaCl 

Lysis buffer for isolation 

of inclusion bodies 

10% saccharose, 50 mM Tris/HCl (pH 8.0), 1 mM EDTA (pH 8.0) 

NTE buffer 50 mM NaCl, 50 mM Tris/HCl (pH 8.0), 1 mM EDTA (pH 8.0) 
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Table 2.16 Annealing buffer for adaptor oligonucleotides 

Buffers Ingredients 

10x Annealing buffer 100 mM Tris/HCl (pH 7.5), 1 M NaCl, 10 mM EDTA (pH8.0) 

2.1.6 Antibodies 

Table 2.17 Primary antibodies for western blotting (WB) and immunofluorescence staining 

(IF) 

Antibody Origin Application/Dilution Source 

N. gonorrhoeae polyclonal rabbit IF 1:100 US Biological N0600-02 

PorB1A polyclonal mouse WB 1:500 Our lab  

AIF1 

(NGFG_01605) 

polyclonal rabbit WB 1:500 This study, ImmunoGlobe 

Hsp60 monoclonal mouse WB 1:500 Santa Cruz sc-57840 

Table 2.18 Secondary antibodies 

Antibody  Origin Application/Dilution  Source  

ECL
TM

 anti-mouse IgG HRP linked  Goat  WB 1:3000  Santa Cruz sc2005  

ECL
TM

 anti-rabbit IgG HRP-linked  Goat  WB 1:3000  Santa Cruz sc2004  

Anti-rabbit IgG Cy2-linked  Goat  IF 1:100  Dianova  

Anti-rabbit IgG Cy3-linked  Goat  IF 1:100  Dianova  

2.1.7 Kits 

Table 2.19 Kits 

Kit  Manufacturer  

Agilent High Sensitivity DNA Kit Agilent Technologies 

AxyPrep
TM 

Plasmid Miniprep Kit  Axygen  

EZ-Tn5
TM

 <kan> insertion Kit Epicentre Biotechnologies 

GeneJet
TM

 Gel Extraction Kit  Fermentas  

NEBNext
®

 dA-Tailing Module New England BioLabs 

NEBNext
®

 End Repair Module New England BioLabs 

NucleoSpin Tissue Kit Machery-Nagel 

QIAquick Gel Extraction Kit Qiagen 

RevertAid
TM

 First Strand cDNA Synthesis Kit  Fermentas  
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2.1.8 Chemicals 

2.1.8.1 Antibiotics 

Table 2.20 Final antibiotic concentrations used in this study 

Antibiotics E. coli (μg/mL) N. gonorrhoeae (μg/mL) 

Ampicillin 100 ---- 

Chloramphenicol 30 15 

Gentamicin ---- 50 

Kanamycin 50 40 

Erythromycin 250 7 

Tetracycline ---- 10 

Ampicillin and kanamycin were dissolved in H2O and sterile-filtered. Chloramphenicol, 

erythromycin and tetracycline were dissolved in 100% ethanol. 

2.1.8.2 Markers 

Table 2.21 DNA and protein markers used in this study 

Size standard Application  Manufacturer 

GeneRuler
TM

 100 bp plus DNA ladder DNA agarose gels Fermentas 

GeneRuler
TM

 1 kb DNA ladder DNA agarose gels Fermentas 

GeneRuler
TM

 50 bp DNA ladder DNA agarose gels Fermentas 

O’GeneRuler
TM

 100 bp DNA ladder DNA agarose gels Fermentas 

PageRuler™ Prestained Protein Ladder Protein PAGE Thermo Fisher Scientific 

2.1.8.3 Enzymes 

Table 2.22 Enzymes 

Enzyme Manufacturer 

DNase I Fermentas 

Klenow Fragment Fermentas 

Phusion Polymerase Thermo Fisher Scientific 

Restriction enzymes Fermentas 

RNase A Fermentas 

T4 DNA ligase Fermentas 

T4 DNA Polymerase Fermentas 

Taq Polymerase Genaxxon 
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2.1.8.4 Fine chemicals 

Table 2.23 Fine chemicals 

Chemicals Supplier 

Acrylamid Rotiphorese Gel 30 (37.5:1) Roth 

Ammonium persulfate (APS) Merck 

Bacto
TM

 Proteose Peptone No. 3 BD 

Bovine serum albumin (BSA) Roth 

Coomassie R250 Roth 

GC Agar base Oxoid 

GlycoBlue Ambion 

Lipofectamine
TM

 2000 Invitrogen 

PerfeCTa
TM

 SYBR
®

 Green FastMix
TM

, ROX Quanta Bioscience 

Phalloidin 555 Invitrogen 

Ready Lyse Epicentre® Biozym 

Roti
®
Aqua Phenol (pH 4.5-5) Roth 

Roti
®
Phenol/Chloroform/Isoamylalcohol (pH 7.5-8) Roth 

Saponin Sigma 

Sodium deoxycholate (DOC) Merck 

Soluble starch Riedel-deHaen 

Tetramethylethylenediamine (TEMED) Fluka Analytical 

Trichloroacetic acid (TCA) Roth 

All other chemicals were purchased from Roth, Sigma Aldrich, Serva or Merck Chemicals if 

not stated otherwise. 

2.1.9 Technical equipment 

Table 2.24 Technical equipment used in this study 

Equipment Supplier 

Agilent 2100 Bioanalyzer Agilent Technologies 

Automated Colony Counter New Brunswick Scientific 

Avanti
TM

 J-25T centrifuge Beckman Coulter 

Balance ABS-80-4  Kern 

Balance EW 1500-2M Kern 

Binocular SMZ-168 Motic 

C6 Flow Cytometer  Accuri 

Centrifuge CT15RE VWR 
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Chemiluminescence camera system  Intas 

DMIL light microscope Leica 

Hera Cell 240i incubator Thermo 

Hera Safe sterile bench Thermo 

Magnetic stirrer RMO Gerhardt 

Megafuge 1.0R centrifuge Heraeus 

MicroPulser
TM

 Electroporation Apparatus Biorad 

NanoDrop 1000 spectrophotometer Peqlab Biotechnology 

Optima Max-xp Ultra centrifuger Beckman Coulter 

PerfectBlue Semi-Dry Elektroblotter Peqlab Biotechnology 

Plate reader infinite 200  TECAN 

Scanjet G4010 HP 

SenTix pH Electrode WTW 

Shaker TR125 Infors HT 

Sonifier 250 Branson 

Sonorex RK 255S Bandelin 

Step One Plus real-time PCR system Applied Biosystems 

TCS SPE confocal microscope Leica 

Thermal cycler 2720  Applied Biosystems 

Thermal cycler GS1 G-STORM 

Thermo mixer comfort Eppendorf 

Ultrospec 3100 pro Spectrophotometer Amersham Bioscience 

Vortex shaker Reax 2000 Heidolph 

2.1.10 Software 

Office 2010 (Microsoft), NCBI blast (http://blast.ncbi.nlm.nih.gov), ClustalX2 [164], CorelDraw 

X6 (Corel Corporation), ABI StepOne v2.3 (Applied Biosystems), DNAMAN 6.0 (Lynnon 

Corporation), LAS AF confocal microscopy software (Leica), ChemoStar Imager software (Intas), 

ImageJ (http://imagej.nih.gov), Notepad++ (http://notepad-plus-plus.org/), ApE v2.0 (A plasmid 

Editor by M. Wayne Davis), Artemis 14.0 (Wellcome Trust Sanger Institute), Integrated Genome 

Browser (IGB) v7.0.4 (BioViz), Vector NTI (Life Technologies), Agilent 2100 Bioanalyzer Expert 

Software (Agilent Technologies) and Primer3web (http://primer3.ut.ee/) and EndNote X7 

(Thomson Reuters). 
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2.2 Methods 

2.2.1 Bacterial culture methods 

2.2.1.1 Cultivation of Neisseria gonorrhoeae 

Neisseria gonorrhoeae MS11 derivatives and transposon mutant library used in this study were 

grown on GC agar base plates supplemented with 1% vitamin mix at 37 °C in 5% CO2 in a 

humidified incubator. Neisseria were grown on GC agar plates for no longer than 16–18 h to avoid 

Neisseria autolysis. The appropriate antibiotic (Table 2.20) was added to the GC agar plates for 

selection of antibiotic resistant Neisseria mutants. The piliation and opacity phenotypes were 

distinguished and selected by colony morphology under a stereo microscope [165]. 

2.2.1.2 Determination of Neisseria gonorrhoeae growth curves 

Neisseria grown on GC agar plates for 16–18 h were inoculate in 10 ml pre-warmed (37 °C) 

Neisseria growth medium at an optical density (OD550) of 0.15. For equalization of the growth 

stages of different strains, the primary culture was grown at 190 rpm at 37 °C to an OD550 of 0.4–

0.5. Then the pre-culture was inoculated in 20 ml Neisseria growth medium at an OD550 of 0.1. 

Neisseria were then shaken at 190 rpm at 37 °C and the OD550 was measured every 30 min for a 

total of 180 min. 

2.2.1.3 Cultivation of Escherichia coli 

Escherichia coli strains were cultured overnight on LB agar plates supplemented with appropriate 

antibiotics (Table 2.20) at 37 °C and 5% CO2 in a humidified incubator. For plasmid DNA 

preparation or recombinant protein expression, E. coli strains were grown overnight in LB 

medium containing appropriate antibiotics under agitation on a rotary shaker (190 rpm) at 37 °C. 
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2.2.1.4 Bacterial stocks 

Neisseria strains grown on GC agar plate for 16–18 h were suspended in 1 mL PPM medium in a 

2 mL cryo tube whereas for E. coli stocks, 1 ml of overnight culture was transferred to cryo tubes. 

The bacterial cultures were then mixed with 350 µL 100% glycerol to a final concentration of 25% 

(v/v) and stored at −80 °C. 

2.2.2 Transformation of bacteria 

2.2.2.1 Neisseria transformation 

Piliated gonococci are naturally competent and readily take up DNA fragments containing 

Neisseria DNA uptake sequence (DUS) [166,167]. For transformation, piliated gonococci were 

selected and grown on GC agar plate for 16–18 h. Bacteria were collected in pre-warmed 

Neisseria transformation medium. OD550 was determined. 5×10
6 
bacteria were suspended in 50 µL 

Neisseria transformation medium and mixed with 10 ng PCR product by gentle pipetting. The 

mixture was dropped on a GC agar plate and incubated at 37 °C and 5% CO2 for 24 h. The 

resulting colony was resuspended in PPM medium and plated on antibiotics-supplemented GC 

agar plates for selection (Table 2.20). 

2.2.2.2 Neisseria conjugation 

Neisseria strains were grown on GC plates for 16–18 h and collected in pre-warmed Nesseria 

growth medium. 10
7
 donor and recipient Neisseria were mixed in 50 µL Nesseria growth medium 

and dropped on GC agar plate for incubation at 37 °C for 6–8 h until forming a visible colony. 

Colonies were collected in 1 mL PPM medium, and then serial dilutions were plated on selective 

GC plates and incubate for 24 h at 37 °C. 
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2.2.2.3 Transformation of E. coli 

Preparation of chemically competent E. coli DH5α 

E. coli DH5α was inoculated in 4 mL LB medium and cultured at 37 °C, 190 rpm overnight. The 

E. coli overnight culture was diluted 1:100 in 120 mL of LB medium and grown at 37 °C and 250 

rpm to an OD600 of 0.4. Bacteria were incubated on ice for 15 min and split into pre-cooled 50 ml 

Polypropylene tubes (Greiner) and collected by centrifugation at 4000 rpm and 4 °C for 10 min. 

The bacterial pellet was washed with 10 mL of ice-cold 0.1 M CaCl2 twice, and resuspended in 10 

mL of ice-cold 0.1 M CaCl2 and incubated on ice for 30 min. Subsequently, the bacteria were 

centrifuged at 4 °C at 4000 rpm for 5 min. The pellet was resuspended in 2 mL ice-cold 0.1 M 

CaCl2 containing 20% (v/v) glycerol. 100 µL aliquots were stored at −80 °C. 

Transformation of chemically competent E. coli  

An aliquot of chemo-competent E. coli strain was thawed on ice followed by addition of 0.68 µL 

β-mercaptoethanol and additional 10 min incubation on ice. DNA was added and incubated for 30 

min on ice. The cells were heat-shocked for 90 s at 42 °C, and incubated for 2 min on ice. 

Immediately 800 µL of pre-warmed SOC medium was added to the mixture and the bacteria were 

incubated for 1 h at 37 °C and 150 rpm. Bacteria were plated on selective LB agar plates 

supplemented with appropriate antibiotics (Table 2.20). 

Preparation of electro-competent E. coli BL21 

200 mL LB medium was inoculated with 1/100 volume of a fresh overnight E. coli culture and 

grown at 37 °C and 250 rpm to an OD600 of 0.5. The bacteria were chilled on ice for 20 min and 

harvested by centrifugation at 4000 g for 15 min at 4 °C. Afterwards, the bacterial pellet was 

washed with 200 mL ice-cold 10% glycerol, followed by 80 mL ice-cold 10% glycerol and 20 mL 

ice-cold 10% glycerol. Finally, the bacterial pellet was resuspended in 2 mL ice-cold 10% glycerol 

and stored at −80 °C in aliquots of 100 µL. 
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Electroporation of electro-competent E. coli  

An aliquot of electro-competent E. coli strain was thawed on ice, mixed with 5 µL DNA and 

incubated on ice for 1 min. The mixture was transferred to the bottom of the pre-cooled 0.2 cm 

electroporation cuvette. The electroporation setting “Ec2” of the MicroPulser™ Electroporation 

Apparatus was used. Immediately, 1 mL pre-warmed SOC medium (37 °C) was added to the 

cuvette, the cells were gently resuspended, transferred to a sterile tube and incubated at 37 °C at 

225 rpm for 1 h. Afterwards, the bacteria were plated on selective LB agar plates supplemented 

with appropriate antibiotics (Table 2.20).  

2.2.3 Cell culture methods 

2.2.3.1 Cultivation of cells 

All cell lines used in this study were cultured in 75 cm² cell culture flasks at 37 °C and 5% CO2, 

and passaged every two to three days before reaching 100% confluency. For passaging, the cells 

were washed with DPBS and incubated with 1 mL trypsin to detach the cells. After ~5 min 

incubation at 37 °C, pre-warmed complete cell culture medium was added to the flask to stop 

trypsin digestion. The cell suspension was either seeded in multi-well plates for experiments or 

transferred to a new 75 cm² cell culture flask for further cultivation.  

2.2.3.2 Cell stocks 

Cells were grown in 75 cm² cell culture flasks to 80–90% confluency. The cells were washed with 

DPBS once and then detached by incubation in 1 mL trypsin at 37 °C for ~5 min. After that, 4 mL 

of complete cell culture medium was added and the cell suspension was transferred to 15 mL 

falcon tubes. The cells were pelleted by centrifugation at 600 g for 5 min at room temperature. The 

cell pellet was resuspended in 5 mL pre-cooled cell stocking medium and transferred into cryo 

tubes in 1 mL aliquots. Immediately the cryo tubes were stored at −80 °C in a cell freezing 

container to cool down gradually with rate of −1 °C/min. For longer storage, the tubes were 

subsequently transferred to a liquid nitrogen tank. 
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2.2.4 DNA techniques 

2.2.4.1 Isolation of Neisseria genomic DNA 

Pelleted Neisseria was resuspended in 500 µL GTE buffer containing 200 µg/mL RNase A and 0.1% 

SDS and was incubated at 42 °C for 10 min until the solution was clear. The lysates were 

transferred to a Phase Lock Gel™ tube (5 PRIME GmbH) and mixed with one volume of 

phenol-chloroform (1:1). After shaking vigorously for 30 s, the mixture was centrifuged at 15,000 

rpm for 5 min. The aqueous phase was transferred to a new Phase Lock Gel™ tube and 

phenol-chloroform extraction was repeated. The upper phase was then transferred to a new tube 

and DNA was precipitated by adding 2.5 volumes of cold 100% ethanol and 0.1 volumes of 3 M 

NaAc (pH 5.2) followed by 1 h incubation at −20 °C. The DNA was pelleted by centrifugation at 

15,000 rpm and 4 °C for 15 min and washed with 2 volumes of ice-cold 75% ethanol. After 

centrifugation (15,000 rpm, 4 °C, 5 min) the pellet was air dried and dissolved in 100 µL distilled 

H2O. 

2.2.4.2 Construction of recombinant vector  

To construct a recombinant vector in E. coli, the inserted DNA fragment was amplified from 

recombinant plasmid or Neisseria genomic DNA with PCR (2.2.4.3) and purified with an 

appropriate method (2.2.4.5). The amplified DNA fragments and the target vector were digested 

with appropriate restriction enzymes (2.2.4.6). After purification, the inserts and the vector were 

ligated at a suitable ratio at 16 °C overnight (2.2.4.6). Subsequently, the ligation reaction was 

transformed into competent E. coli DH5α or XL1-blue (2.2.2.3) and plated on appropriate 

selective agar plates. Bacterial colonies were verified by cPCR to contain the recombinant DNA 

(2.2.4.7). Afterwards, plasmids from cPCR-positive colonies were isolated (2.2.4.8) and the 

inserted DNA fragment was confirmed by sequencing (2.2.4.9). 
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2.2.4.3 Polymerase Chain Reaction (PCR) 

A standard PCR reaction was performed in a 0.5 mL PCR tube with 50–100 ng template DNA, 10 

nmol dNTP, 10 pmol forward and reverse primers and 1 U Taq polymerase or 1 U Phusion 

polymerase in a total volume of 50 µL and using the following temperature profile: 30 s at 98 °C 

for Phusion or at 95 °C for Taq, 30 cycles of 10 s at 98 °C for Phusion or at 95 °C for Taq, 20 s at 

56–62 °C (depending on the melting temperature of the primer pairs) and at 72 °C for the time 

based on the length of the template [30 s/1 kb (Phusion); 1 min/1 kb (Taq)], and then 10 min at 

72 °C. PCR products were analyzed on agarose gels and, if required, purified using a PCR 

purification kit.  

2.2.4.4 Agarose gel electrophoresis 

DNA samples were mixed with 6× loading dye (Fermentas) and separated on agarose gels (in 1× 

TAE buffer or 0.5× TBE buffer) containing ethidium bromide (Roth) or Intas HD Green (Intas) by 

applying an electric field of 12 V/cm for about 45 min. DNA fragments shorter than 500 bp were 

separated on 2% agarose gels, longer fragments (500-3000 bp) on 1% agarose gels. DNA bands 

were visualized under UV light. 

2.2.4.5 DNA purification 

DNA fragments from PCR or DNA restriction enzymes digestion were separated on agarose gels, 

were excised with a scalpel under UV light and the DNA was recovered using the GeneJet
TM

 Gel 

Extraction Kit (Fermentas) according to the manufacture’s protocol. The DNA was eluted with 30 

µL dH2O and stored at −20 °C. The concentration of recovered DNA was quantified by a 

NanoDrop 1000 Spectrophotometer (Peqlab Biotechnology). 

2.2.4.6 Restriction and Ligation 

Amplified DNA and target vector were digested with appropriate Type II restriction enzymes 

(Fermentas). If there was no optimal buffer or working temperature for two restriction enzymes, 
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digestions were conducted serially. Generally 1 µg DNA was digested with 1 U of the respective 

restriction enzyme in the buffer system suggested by the supplier for 2–4 h at 37 °C. The digested 

DNA fragments and the linearized vectors were purified using GeneJet
TM

 Gel Extraction Kit 

(Fermentas). The DNA fragments and linearized vectors were quantified by a NanoDrop 1000 

Spectrophotometer (Peqlab Biotechnology) for ligation. 

In the ligation reaction mix, the optimal molar ratio of DNA fragments to linearized vectors was 

from 3:1 to 8:1 in a total volume of 20−30 µL. The ligation reaction was performed by T4 DNA 

ligase (Fermentas) at 16 °C overnight. 

2.2.4.7 Colony Polymerase Chain Reaction (cPCR) 

Colony PCR is a convenient high-throughput method for verifying recombinant plasmids directly 

from E. coli colonies or gene knockout mutants from Neisseria colonies. Each single colony was 

numbered and picked into 20 µL dH2O. Then the bacteria cells were lysed by heating to 95 °C for 

10 min followed by 5 min incubation on ice. The solution was spun down and 2 µL of the 

supernatant was used as the cPCR template. Following the schematic for a standard PCR reaction 

80 µL reaction mixture was aliquoted into ten PCR tubes (8 µL/tube) and 2 µL templates was 

added. The program for cPCR was the same as the standard PCR program. cPCR products were 

analyzed by agarose gel electrophoresis. 

2.2.4.8 Plasmid extraction from E. coli 

Plasmids were isolated from bacterial overnight cultures using AxyPrep
TM

 Plasmid Miniprep Kit 

(Axygen) or NucleoBond® PC 100 plasmid midiprep Kit (Macherey-Nagel) following the 

instructions of the manufacturer. 

2.2.4.9 DNA sequencing and analysis 

All sequencing reactions based on the dideoxy chain termination method according to Sanger [139] 

were performed by Seqlab Biotech. 15 µL sequencing sample containing either 1.2 µg plasmid or 
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22.5 ng/100 bp of PCR products was supplemented with 30 pmol sequencing primer. Sequencing 

data was analyzed by DNAMAN Version 6 (Lynnon Corporation). 

2.2.4.10 DNA analysis by Agilent 2100 Bioanalyzer 

To test the size range of DNA fragments and the amount of DNA fragments in each range, DNA 

fragments were measured on the Agilent 2100 Bioanalyzer using Agilent High Sensitivity DNA 

chip, suitable for separation and detection of DNA segments with size range of 50–7000 bp and 

quantitative range of 5–500 pg/µL. DNA concentrations were first measured with a NanoDrop 

1000 Spectrophotometer (Peqlab Biotechnology) and then diluted to a concentration of 5–500 

pg/µL before measurement on the Bioanalyzer. The Agilent High Sensitivity DNA chip then was 

loaded with DNA gel matrix containing DNA dye. 5 µL of marker and 1 µL of DNA sample were 

added into each well, followed by electrophoresis and measurement according to the 

manufacturer’s instructions. 

2.2.4.11 Site-directed mutagenesis 

In order to introduce the Neisseria DNA uptake sequence (DUS, 5’-atgccgtctgaa-3’) into the Tn5 

transposon, the Tn5 transposon was first inserted into pCR2.1-Topo (Invitrogen). The Tn5 

transposon from EZ-Tn5
TM

 <kan> insertion kit (Epicentre Biotechnologies) was dA-tailed by 

NEB’s dA-tailing module and subsequently cloned into pCR2.1-Topo (Invitrogen) according to 

the manufacturer’s instructions. The DUS was introduced to BamHI site of Tn5 transposon by 

site-directed mutagenesis with the primers EZ-Tn5-Kan2-DUS-F and EZ-Tn5-Kan2-DUS-R. 

Briefly, 25 µL PCR reactions with single primer EZ-Tn5-Kan2-DUS-F or EZ-Tn5-Kan2-DUS-R 

was performed with Phusion Polymerase using the following temperature profile: 30 s at 98 °C, 

followed by 5 cycles of 10 s at 98 °C, 20 s at 50 °C and 2 min at 72 °C, and 5 min at 72 °C. Both 

reactions were combined and a second PCR was performed: 30 s at 98 °C, followed by 18 cycles 

of 10 s at 98 °C, 20 s at 60 °C and 2 min at 72 °C, followed by 10 min at 72 °C. The methylated 

and non-mutated parental DNA templates in the PCR products were digested with 20 U DpnI for 3 

h at 37 °C followed by 20 min at 80 °C for DpnI denaturation. 5 µL of the resulting preparation 
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was transformed to chemically competent E. coli DH5α and the successful mutagenesis was 

checked by sequencing. 

2.2.5 RNA techniques 

2.2.5.1 Isolation of Neisseria total RNA 

Pelleted bacteria (1 mL of OD550 = 1.5) were resuspended in 800 µL lysis buffer containing 1 

µL/10 mL Ready Lyse. 80 µL 10% SDS was added to a final concentration of 1% (w/v) and was 

incubated at 64 °C for 2 min. The samples were supplemented with 88 µL (0.1 volumes) of 1 M 

NaAc (pH 5.2) and 1 mL (one volume) Roti
®
Aqua Phenol (pH 4.5–5) and were incubated at 64 °C 

for 6 min while inverting every 40 s. After chilling on ice for 2 min, samples were centrifuged at 

21,000 g and 4 °C for 5 min. The aqueous layer was transferred to a 2 mL Phase Lock Gel™ tube 

and mixed with 1 mL (one volume) of chloroform and centrifuged at 21,000 g and 4 °C for 5 min. 

The aqueous phase was then transferred to two new 2 mL tubes and mixed with 1 µL GlycoBlue 

(Ambion), 40 µL (0.1 volumes) of 1 M NaAc (pH 5.2) and 1 mL (2.5 volumes) of 100% ice cold 

ethanol and incubated at −80 °C overnight. The RNA was pelleted by centrifugation at 21,000 g 

and 4 °C for 25 min and washed with 1 mL (2.5 volumes) of ice cold 80% ethanol. The RNA 

pellets were air-dried and resuspended in 15.5 µL RNase-free H2O and treated with 2 µL (2 U) 

DNase I (Fermentas), 0.5 µL (20 U) RiboLock RNase Inhibitor (Thermo Fisher Scientific) and 2 

µL 10× DNase I buffer for 30 min at 37 °C. The solution was filled up with 100 µL H2O and 120 

µL (one volume) Roti
®
Phenol Chloroform Isoamylalcohol, mixed extensively and centrifuged at 

13,000 g for 20 min at 4 °C. The aqueous phase was transferred to a new 1.5 mL tube, mixed with 

12 µL (0.1 volumes) of NaAc (pH 5.2) and 300 µL (2.5 volumes) of 100% ice cold ethanol and 

incubated for 2 h at −80 °C, and then centrifuged at 13000 g and 4°C for 30 min. The pellet was 

washed with 70% ice cold ethanol, air dried and resuspended in 50 µL RNase-free H2O followed 

by incubation for 2 min at 56 °C. The RNA quantity and quality was checked by measurements at 

the NanoDrop 1000 Spectrophotometer (Peqlab Biotechnology) or 1% agarose gel, respectively. 

The total RNA was directly used for first-strand cDNA synthesis or stored at −80 °C. 
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2.2.5.2 First strand cDNA (complementary DNA) synthesis  

First strand cDNA synthesis was performed according to the manufacturer’s instructions from 

RevertAid First Strand cDNA synthesis Kit (Thermo Fisher Scientific). Briefly, 2 µg isolated 

RNA was added to 12 µL reaction mix containing 1 µL Random Hexamer primer, incubated at 

65 °C for 5 min and chilled on ice. Then 20 U RiboLock RNase Inhibitor, 1 mM dNTP and 200 U 

RevertAid M-MuLV Reverse Transcriptase were added to the mixture and were incubated in a 

thermocycler with the following temperature profile: 5 min at 25 °C, 60 min at 45 °C and 5 min 

at 70 °C. Controls without the enzyme RevertAid M-MuLV Reverse Transcriptase were prepared 

simultaneously. The cDNA was diluted 1꞉10 and was used as template in RT-PCR (2.2.5.3) or 

qRT-PCR (2.2.5.4). 

2.2.5.3 Reverse transcription PCR (RT-PCR) 

To check the expression of the associated gene in the knockout strains, RT-PCR was 

performed. 1 µl of a 1:10 dilution of the synthesized cDNA (2.2.5.2) was added to the 50 µL 

PCR mixture containing 10 nmol dNTPs, 10 pmol of gene specific forward and reverse primers, 

and 1 U Phusion polymerase. PCR reactions were performed with an initial denaturation step at 

98 °C for 30 s followed by 25 cycles of 98 °C for 20 s, 55 °C for 20 s and 72 °C for 15 s and a 

final incubation for 10 min at 72 °C. The constitutively expressed RNase P gene was used as 

positive control. To check for contaminating genomic DNA within the cDNA sample, the reaction 

was repeated using the Reverse Transcriptase-mock treated control sample (2.2.5.2). PCR 

products were checked on 1.5% agarose gel supplemented with 5% HD Green DNA dye. 

2.2.5.4 Quantitative real-time PCR (qRT-PCR) 

To test transcription levels of some genes, qRT-PCR was performed according to the 

manufacturer’s protocol using PerfeCTa
®
 SYBR

®
 Green FastMix

®
, Rox. Briefly, the synthesized 

cDNA (2.2.4.2) was diluted 1:10, of which 2 µL was used for 20 samples mixed with 98 µL dH2O 

and 200 µL PerfeCTa
®
 SYBR

®
 Green FastMix

®
, Rox. Primers designed by Primer3web were 

diluted to a final concentration of 1 µM. 5 µL primers mix and 15 µL cDNA mix constitute final 
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amplification mix and were added in one well of 96 well PCR plate. Each sample was measured in 

triplicates. PCR reactions were performed in a Step ONE Plus real-time PCR apparatus with 

holding phase of 95 °C for 30 s and 40 cycles of 95 °C for 10 s and 60 °C for 1 min. This was 

followed by determination of melt curves by incubating at 95 °C for 15 s, 60 °C for 1 min, and a 

gradual temperature increase to 95.3 °C with a rate of 0.3 °C/s followed by an incubation at 

95.3 °C for 15 s. In order to normalize the amount of input cDNA for different samples, the 

constitutively expressed 5sRNA was determined in each sample as internal standard. Resulting 

data were analyzed by StepOne v2.3. 

2.2.6 Protein techniques 

2.2.6.1 Expression of recombinant proteins in E. coli 

The full length of NGFG_01605 with stop codon was amplified from N. gonorrhoeae MS11 

genomic DNA with primers 01605-BclI-F and 01605-HindIII-R (Table 2.9) and cloned into 

pET28b at BamHI and HindIII restriction enzymes sites to express His-tag N-terminal fusion 

protein. The recombinant plasmid was transformed to E. coli SoluBL21strain and selected on LB 

agar plates with kanamycin. Single colonies were picked into 5 mL LB medium containing 

kanamycin and incubated overnight (200 rpm, 37 °C). Overnight bacterial cultures were used to 

inoculate fresh kanamycin-containing LB medium at a dilution of 1:20 dilution and were 

incubated at 250 rpm at 37 °C until on OD600 of 0.4–0.6 was reached. Then the cultures were 

induced by addition of a final concentration of 0.25 mM IPTG and were incubated at 25 °C and 

200 rpm for 4 h. Afterwards, the bacterial pellet was collected by centrifugation at 4,000 rpm and 

4 °C for 15 min. The pellet was either used directly for purification or stored at −20 °C. 

2.2.6.2 Ni-NTA purification of recombinant proteins from E. coli 

The bacteria pellets (2.2.6.1) were resuspended in 5.4 mL pre-cooled lysis buffer containing 1 

mg/mL lysozyme and incubated on ice for 30 min. The bacterial suspension was sonicated on ice 

for 10 min (Branson Sonifier 250; 50% duty cycle, output 4), the lysate was transferred in 12 ml 

polypropylene tubes (Greiner bio-one) and centrifuged at 10,000 g and 4 °C for 25 min. The pellet 
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was suspended in Laemmli buffer, whereas the supernatant was used for Ni-NTA His•Bind Resin 

purification. 500 µL Ni-NTA beads were equilibrated with 5 mL lysis buffer and incubated with 

the supernatant at 4 °C for 1 h on a rotary mixer. A purification column was equilibrated once with 

lysis buffer, the Ni-NTA beads were loaded on the column and the residual liquid was drained by 

gravity flow. The flow through was collected. Then the column was washed three times with 5 mL 

washing buffer. Afterwards, 1 mL elution buffer was added to the column to elute the protein. 

Elution was repeated five times. The purified protein was mixed with 100% glycerol to a final 

concentration of 20% and was stored at −20 °C. 

2.2.6.3 Bradford assay 

Concentration of proteins in solution was determined with the Bradford assay. A calibration curve 

was established by a series of BSA samples (0, 1.25, 2.5, 5.0 and 7.5 µg/mL respectively) in a 

final volume of 80 µL in a 96 well plate. 1 µL of the unknown protein samples were mixed with 

79 µL H2O. Every sample was prepared in duplicates. Then 20 µL of Bradford reagent was added 

to each well and mixed gently by pipetting without introducing air bubbles. The plate was 

incubated in the dark for 15 min and then analyzed by measuring the absorption at 595 nm in a 

plate reader (Tecan).  

2.2.6.4 SDS-PAGE and Western blotting 

Protein samples were resuspended in 2× Laemmli buffer and incubated at 95 °C for 5 min to 

denature the proteins. Then the samples were spun down and supernatants were loaded on the 10% 

SDS-polyacrylamide gels and electrophoresed at 12V/cm for 2 h.  

For Coomassie staining, gels were incubated in Coomassie brilliant blue staining buffer at room 

temperature for 45 min and subsequently washed with destaining buffer until the protein bands 

appeared without background.  

For Western blotting, gels were transfered on PVDF membranes using a semi-dry blotting 

chamber (Peqlab Biotechnology). Each PVDF membrane was activated by incubation in 100% 

methanol for 15 s. Then the transfer sandwich was assembled air bubble-free and contained (from 
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cathode to anode) 1 sheet of Whatman paper, the PVDF membrane, the polyacrylamide gel 

followed by 2 sheets of Whatman paper. Proteins were transferred at 0.8 mA/cm
2
 for 2 h. 

Subsequently, the membrane was blocked for 1 h at room temperature in 1× TBST with 3% BSA. 

Blocking buffer was discarded and the membrane was then incubated overnight with diluted 

primary antibody in 3% BSA/ 1× TBST at 4°C, followed by three 10 min washing steps. The 

membrane was then treated with secondary antibody (usually diluted 1:3000 in 1× TBST 

containing 5% non-fat dry milk) at room temperature for 1 h. The membrane was washed three 

times with 1 x TBST for 10 min., Equal volumes of ECL solutions 1 and 2 (Thermo Fisher 

Scientific) were mixed and added to the membrane. Chemiluminescence was detected by an 

INTAS Imager digital system and proteins were quantified by ImageJ (http://imagej.nih.gov). 

To reutilize the membranes for subsequent detections, the PVDF membrane was reactivated by 

incubation in 100% methanol for 5–10 s and washed with 1× TBST for 10 min for 3 times 

followed by incubation in stripping buffer (Thermo Fisher Scientific) for 15 min at room 

temperature. Afterwards, the membrane was washed three times with 1× TBST for 10 min and 

then blocked in 3% BSA in 1× TBST as described above.at room temperature for 1 h. The 

membrane was incubated with the new primary antibody. 

2.2.6.5 Protein precipitation 

In order to precipitate proteins from the supernatant, 1/100 volumes of 2% sodium deoxycholate 

(DOC) was added to the supernatant and the sample was incubated on ice for 30 min. Afterwards, 

1/5 volumes of 72% trichloroacetic acid (TCA) was added to a final concentration of 14.4% and 

the sample was incubated at 4 °C overnight. Then, the sample was centrifuged at 15,000 g at 4 °C 

for 30 min and the resulting protein pellet was washed twice with one volume of ice-cold 100% 

acetone, and re-pelleted for 10 min by centrifugation at 15,000 g and 4 °C. The pellet was 

air-dried and resuspended in a small volume of 2× Laemmli buffer for SDS-PAGE. If sample 

acidification by TCA resulted in a yellow color of the Laemmli buffer, 1 N NaOH or 1 M Tris/HCl 

pH 8.5 was used to neutralize the sample. Before SDS-PAGE analysis, the samples were mixed 

for 15 min at 65°C and 650 rpm and spun down. 
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2.2.6.6 Isolation of bacterial inclusion bodies for immunization 

To isolate inclusion bodies from E. coli protein expression strains, bacteria were harvested by 

centrifugation, the pellet was resuspended in 10 volumes of lysis buffer containing a final 

concentration of 0.5 mg/mL lysozyme and incubated on ice for 30 min. A final concentration of 

0.2% Triton X-100 was added to the sample and again incubated on ice for 30 min. Afterwards, 

the bacterial suspension was lysed by sonication on ice with 3 pulses of 30 s (BRANSON 

SONIFIER 250; 50% duty cycle, output 5) and pelleted by centrifugation at 17,000 rpm at 4 °C 

for 30 min. The pellet was resuspended in 1 M urea in NTE buffer and the sonication and 

centrifugation was repeated. Then, the pellet was resuspended in 7 M urea in NTE buffer. After an 

additional sonication step, the suspension was centrifuged in an ultracentrifuge (Optima Max-xp 

Ultra centrifuger, MLA-80-Rotor, 16×64 mm centrifuge tube) at 80,000 rpm and 4 °C for 15 min. 

The supernatant contained the inclusion bodies. The concentration of proteins within purified 

inclusion bodies was measured by Bradford assay (2.2.6.3). Electro-elution of the purified 

inclusion bodies was performed to remove residual urea. Briefly, 3 mg of the purified inclusion 

bodies was separated in 8% SDS-PAGE and stained with Coomassie brilliant blue for 10 min 

followed by rinsing in destaining buffer for 20 s and three 10 min washes in 1 M Tris/HCl pH 7.5. 

The band was cut out of the gel with a clean scalpel. Immunization of rabbits was performed by 

ImmunoGlobe. Residual amounts of purified inclusion bodies were stored as aliquots at −20 °C.  

2.2.6.7 Antibody purification 

Antibody was purified from rabbit serum by binding to and elution from immobilized antigen. 

First, an immobilized antigen column was generated by coupling of the recombinant protein 

(2.2.6.6) to cyanogen bromide-activated sepharose (CNBr; Sigma). 0.4 mg of recombinant protein 

used for immunization was re-buffered in 2 mL 0.2 M carbonate buffer pH 8.9 by a Vivaspin 6 

column (10,000 MWCO, Sartorius Stedim Biotech GmbH) according to the manufacturer’s 

instructions. 50 mg of CNBr beads (Sigma) were swelled in 10 mL of 1 mM HCl for 20 min, 

washed once with 0.2 M carbonate buffer and then immediately incubated with the recombinant 

protein at room temperature for 1 h and at 4°C overnight. The beads were washed twice with 0.2 

M carbonate buffer and then incubated in 100 mM ethanolamine for 1 h at room temperature to 
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block all the remaining coupling sites. Then the beads were washed three times with 0.2 M 

carbonate buffer and equilibrated with 500 mM NaCl in PBS. Next, the beads were incubated with 

10 mL serum and 15 mL PBS in a 50 mL polypropylene tube (Falcon) at 4°C overnight with slow 

rotation. The beads were harvested by centrifugation at 4,000 g and 4°C for 10 min and washed 

two times with 30 mL 500 mM NaCl in PBS. Then the beads were transferred to a column and 

washed with 500 mM NaCl in PBS continuously until no protein was detected in the flow through. 

For that purpose 1 µL of the wash was spotted onto a piece of nitrocellulose membrane and was 

stained with 0.1% Ponceau red in acetic acid. Subsequently, 1 mL elution buffer (0.2 M acetic acid, 

pH 2.7, 500 mM NaCl) was applied to the column and the eluted antibody was collected in tubes 

containing 200 µL 1 M Tris/Base to neutralize the pH. The presence of eluted antibody was 

checked by Ponceau red staining of 1 µl elute. Eluted antibody was re-buffered in PBS and 

concentrated with a Vivaspin 6 column to a volume of 100 µL. Purified antibody was mixed with 

87% glycerol to a final concentration of 45% and stored in aliquots at −80°C. 

2.2.7 Transposon library construction 

N. gonorrhoeae N2009 genomic DNA (gDNA) was extracted using the NucleoSpin Tissue Kit 

(Machery-Nagel). 0.5 µg gDNA was mutagenized in vitro with 0.12 pmol Tn5 transposon 

(EZ-Tn5
TM

 <KAN-2> Insertion Kit, Epicentre Biotechnologies) and purified by phenol extraction 

and ethanol precipitation. Gaps within the DNA were closed by 20 min incubation with 1 U T4 

DNA polymerase (Fermentas) and 2 nmol dNTPs at 11 °C for 20 min followed by heat 

inactivation at 75 °C for 10 min. After phenol-chloroform extraction and ethanol precipitation, 

nicks in the mutagenized DNA were ligated by treatment with 5 U T4 DNA ligase (Fermentas) at 

16 °C overnight. After precipitation, 0.1 µg mutagenized DNA was mixed with 50 µL N. 

gonorrhoeae N2009 suspension (OD550 = 0.32) and incubated for 24 h on GC agar plates. 

Resulting colonies were transferred to GC agar plates supplemented with kanamycin and were 

incubated for 48 h at 37 °C. The colonies were harvested in PPM medium and stored at −80 °C. 
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2.2.8 DNA sequencing sample preparation and Illumina 

sequencing 

Recombinant Neisseria gDNA was isolated as described (2.2.4.1) and sheared by sonication 

(Bandelin Sonorex RK 255S) with 10 pulses of 60 seconds duration followed by pauses of 30 s. 

Sheared DNA was blunted and A-tailed by NEB’s end repair and dA-tailing modules according to 

the manufacturer’s instructions. Custom adapters were produced by annealing a final 

concentration of 90 µM “Adaptor sense” and “Adaptor antisense” oligonucleotides (Table 2.4) in 

1x Oligo annealing buffer. The mixture was heated for 5 min at 94 °C and was allowed to cool to 

room temperature over 1 h. 0.4 nmol of adaptors were ligated to 0.5 µg A-tailed DNA with T4 

DNA ligase (Fermentas) at 16 °C overnight. The ligation products in a range of 250–400 bp were 

size-selected by gel extraction using QIAquick Gel Extraction Kit (Qiagen). 

Enrichment of DNA fragments containing parts of the transposon was performed by PCR with 

primers complementary to the adaptor and to the transposon mosaic end sequence (“Antisense 

Input” and “P5-ME”; Table 2.4). First, a PCR was performed with 4 nmol dNTPs, 0.05 µg DNA, 

4 pmol P5-ME primer, 2% DMSO, 0.4 U Phusion polymerase (Thermo Fisher Scientific) in a total 

volume of 20 µL and using the following temperature profile: 30 s at 98 °C, followed by 10 cycles 

of 10 s at 98 °C, 20 s at 45 °C and 30 s at 72 °C, and 10 min at 72 °C. In a second PCR, the 30 µL 

reaction volume contained 10 pmol of each primer “P5-ME” and “Antisense Input”, 6 nmol 

dNTPs, 2% DMSO, and 0.6 U Phusion. The following temperature profile was used: 30 s at 98 °C, 

followed by 10 cycles of 10 s at 98 °C, 20 s at 50 °C and 30 s at 72 °C and then 10 min at 72 °C, 

followed by 30 s at 98 °C, 18 cycles of 10 s at 98 °C, 20 s at 55 °C and 30 s at 72 °C and a final 

incubation of 10 min at 72 °C. PCR products of 250–300 bp were size-selected and gel purified 

prior to sequencing. 

Illumina sequencing was performed at the Max Planck Genome Centre Köln by Dr. Bruno Huettel 

and Dr. Richard Reinhardt. DNA was sequenced on an Illumina HiSeq 2000 sequencer using 101 

bp sequence cycles with a sequence primer that binds to the transposon mosaic end (TnSeq; Table 

2.4). The library specific barcode was sequenced by “TnSeq index SP”, which binds to the adaptor 

sequence next to barcode (Table 2.4). 
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2.2.9 Conditional knockout analysis 

Conditional knockout assays [168-170] were performed to validate a subset of candidate essential 

genes. For that purpose we exchanged the promoter of each candidate gene with the 

isopropyl-D-thiogalactopyranoside (IPTG)-inducible Ptrc promoter [171] flanked by a kanamycin 

cassette. Ptrc originated from a Hermes-10 vector [171], was PCR-amplified with primers Ptrc-F 

and Ptrc-R and was subsequently cloned into pGEM-T (Promega) thereby yielding pGEM-T-Ptrc. 

The kanamycin cassette containing a Neisseria DNA uptake sequence (DUS; 5’-atgccgtctgaa-3’) 

[166,167] was amplified from pCR2.1-Tn5-DUS (DUS was introduced in a BamHI site of the Tn5 

kanamycin cassette by site-directed mutagenesis; see section 2.2.4.11) using oligonucleotides 

kan-SpeI-F and kan-SacI-R. The PCR fragment was restricted with the endonucleases SpeI and 

SacI and was inserted in the accordingly restricted pGEM-T-Ptrc resulting in pGEM-T-kan-Ptrc. 

The kan-Ptrc cassette was amplified from pGEM-T-kan-Ptrc by the primers Ptrc-R and 

kan-cassette-R. Approximately 500 bp long regions upstream and downstream of the targeted 

promoter were combined with the kan-Ptrc cassette via fusion PCR. The oligonucleotides rib-up-f 

and rib-up-r as well as rib-down-f and rib-down-r were used for amplification of the upstream and 

downstream region, respectively (Table 2.5). The resulting PCR fragment was purified and used in 

transformation of N. gonorrhoeae MS11. Bacteria were plated on selective GC-plates containing 

with 40 µg/mL kanamycin. Successful promoter replacement was checked by amplifying the 

genomic region via PCR and sequencing of the respective PCR products. Subsequently, the 

mutants were conjugated with N. gonorrhoeae N220, a strain which encodes lac
q
 on the plasmid 

pTH10a (our unpublished results). Conjugants were selected on the GC-plates containing 40 

µg/mL kanamycin, 7 µg/mL erythromycin and 0.5 mM IPTG. Essentiality of the gene was tested 

by comparing bacterial growth in presence and absence of IPTG in GC-plates. 

2.2.10 Genetic footprinting 

Genetic footprinting on Neisseria transposed DNA fragments from in vitro and in vivo libraries 

was performed to validate a subset of the candidate identified essential genes as described before 

[146,172-174]. First, the predicted essential gene regions were amplified from chromosomal DNA 
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of N. gonorrhoeae N2009 by PCR. Purified PCR products were transposed in vitro with the 

EZ-Tn5 transposon and the gaps in transposed products were repaired as described above (chapter 

2.2.7). An aliquot of in vitro transposed DNA was used as control for PCR-based footprinting. 

Then, transposed DNA was transformed into N. gonorrhoeae N2009 and the mutants were 

selected on GC agar plates supplemented with kanamycin (GC-kan). The mutants were collected 

in PPM medium supplemented with 2.5 mM MgCl2 and 0.1 mM CaCl2, and incubate with 1 U/mL 

DNase I (Fermentas) at 37 °C for 30 min to remove remaining extracellular DNA. Subsequently, 

the mutants were passaged to a new GC-kan plate. After several passages on these selective plates, 

genomic DNA of the mutant pool was isolated by phenol-chloroform extraction and ethanol 

precipitation as described above (chapter 2.2.4.1). PCR-based genetic footprinting was carried out 

as described [146,172-174] by using a transposon-specific primer (Tn ME sequence; Table 2.6) 

and primers specific to each chromosomal region (Table 2.6). PCR reactions consisted of 200 ng 

transposed DNA fragments from in vitro or in vivo, 50 pmol of each primer, 10 nmol dNTPs, 2.5 

U Taq DNA polymerase (Genaxxon), and 0.4 U Phusion DNA polymerase in 1× buffer S in a 50 

µL reaction. The PCR program was as follows: 30 sec at 95 °C; 30 cycles of 94 °C for 30 sec, 

58 °C for 30 sec and 68 °C for 30 sec + 10 sec per cycle. PCR products were analyzed by gel 

electrophoresis on 1% agarose gel. 

2.2.11 Screening for virulence factors 

Glycerol stocks of the mutant library were recovered by growth on GC agar plates for 16–18 hours. 

4×10
7 
Chang cell were seeded in 6-well cell culture plates and grown to a confluency of 80–90% 

for infection. Chang cells were washed with HEPES medium twice and incubated in HEPES 

medium for 30 min before infection. Bacteria were collected in warm HEPES medium and added 

to the cells at an MOI of 100. After centrifugation for 3 min at 600 g, the infected cells were 

incubated for 1 h. To select for adherent and invasive cells (“output I library”), infected host cells 

were washed with HEPES medium three times and were lysed by treatment with 1% saponin for 

15 min and subsequent plating on GC agar plates. To select for invasive bacteria (“output II 

library”), infected host cells were incubated with 100 µg/mL gentamicin for 2 h prior to saponin 

lysis and plating. After 16–20 h, the selected mutants were collected from the agar plates, 
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resuspended in PPM medium and aliquots were prepared as glycerol stocks. Another aliquot of 

each library was washed with HEPES medium and used in another round of infection. In total, 

three subsequent infections were performed with each library. 

2.2.12 Quantification of total cell-associated and intracellular 

colony forming units 

Chang cells were grown in 24-well cell culture plates to 80–90% confluency and infected with 

gonococcal strains at an MOI of 50 in HEPES medium for 30 min. For quantification of total 

cell-associated colony forming units (CFU), the monolayers were washed with HEPES medium to 

remove the non-adherent bacteria and then lysed by incubated with 1% saponin for 7 min. Serial 

dilution of the lysates were plated on GC agar plates and the CFU were determined after 24 h 

incubation at 37 °C and 5% CO2. To quantify the intracellular viable bacteria, the infected 

monolayers were incubated with 50 µg/mL gentamicin for 2 hours prior to lysing in 1% saponin 

and plating. Gentamicin protection assay were performed at least three times in duplicate. 

2.2.13 Construction of gene knockout mutants in Neisseria 

Approximately 500 bp long regions upstream and downstream of the targeted gene were 

PCR-amplified from Neisseria genomic DNA (primers are listed in Table 2.7) and combined with 

a kanamycin cassette via overlap PCR (Fig. 2-1). The kanamycin cassette was amplified from Tn5 

transposon (EZ-Tn5
TM

 <kan> insertion kit, Epicentre Biotechnologies) with the primers op_kan_s 

and op_kan_hfq-mut_as (Table 2.7). The overlap PCR fragment was purified and transformed into 

the wild type strain N. gonorrhoeae N2009. After homologous recombination, bacteria were 

selected for successful homologous recombination events on GC plates containing 40 µg/mL 

kanamycin. The gene deletion was verified by amplifying the genomic region via PCR and by 

sequencing of the respective PCR products. 
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Fig. 2-1 Overview of the overlap PCR procedure for targeted gene knock-out in N. gonorrhoeae. 

PCR-amplified upstream and downstream homology regions of the interested gene are combined 

with a kanamycin cassette. The combined fragments are assembled and amplified via overlap 

PCR. 

As shown in Fig 2-1, the upstream and downstream regions and the kanamycin resistance cassette 

were amplified separately. 50 µL reaction mixture contained 10 nmol dNTP, 10 pmol forward and 

reverse primers, 50–200 ng Neisseria genomic DNA or Tn5 transposon and 1 U Phusion 

Polymerase. The program started with an initial step at 98 °C for 30 sec, followed by 30 cycles of 

10 sec at 98 °C, 15 sec at 55–65 °C (depends on the melting temperature of each paired primers) 

and 20 sec at 72 °C, and ended with an final step at 72 °C for 10 min. The PCR products were 

purified prior to fusion PCR. The upstream or downstream region was assembled with the 

kanamycin cassette by 10 PCR cycles without primers. The reaction mix of 20 µL was composed 

of 4 nmol dNTP, 25–100 ng upstream or downstream region, an equal molarity of kanamycin 

cassette, 0.4 U Phusion Polymerase and 0.5 U Taq Polymerase. The program had an initial step at 

98 °C for 30 s, 10 cycles at 98 °C for 10 s, 50 °C for 20 s and 72 °C for 20 s and a final step at 

72 °C for 10 min. Then the two reactions were mixed, aliquoted into two PCR vials and the PCR 

program was repeated. Then the assembled whole fragment was amplified by PCR by adding 30 

µL reaction mixture containing 10 pmol “upstream forward” primer and “downstream reverse” 

primer, 6 nmol dNTP, 0.6 U Phusion Polymerase and 0.5 U Taq Polymerase. PCR reactions were 

performed with an initial denaturation step at 98 °C for 30 s, 20 cycles at 98 °C for 20 s, 60 °C for 
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20 s and 72 °C for 1 min and a final elongation step at 72 °C for 10 min. The fusion PCR products 

were separated on 1% agarose gel and gel purified. The products were verified by sequencing 

(with “upstream forward” and “downstream reverse” primers, respectively) and the fusion 

fragments were transformed into Neisseria.  

2.2.14 Differential immunofluorescence staining 

Chang cells were grown on round glass coverslips (12 mm diameter, VWR) in 12 well cell culture 

plates to 60–70% confluency and infected with Neisseria strains in HEPES medium at an MOI of 

10 for 30 min. After several washes with HEPES medium, the cells were fixed with 4% 

Paraformaldehyd (PFA) for 15 min at room temperature. After washing with phosphate-buffered 

saline (PBS) unspecific antibody-binding sites were blocked with 1% bovine serum albumin (BSA) 

in PBS for 1 h. To stain the extracellular bacteria, the coverslips were incubated with a polyclonal 

rabbit anti-N. gonorrhoeae antibody (1:100 in 1% BSA, US Biological NO600-02) for 1 h, 

washed with PBS and incubated with a Cy2 conjugated goat anti-rabbit immunoglobulin G (1:100 

in 1% BSA, Dianova) for 1 h. After extensive washing with PBS, the cells were permeabilized 

with 0.1% Triton X-100 in PBS for 15 min. Detection of extra- and intracellular bacteria was 

performed as described above, with the exception that a Cy5-conjugated goat anti-rabbit 

immunoglobulin G (1:100 in 1% BSA, Dianova) was used for labeling. To stain host cell actin, 

cells were incubated with Alexa 555-conjugated phalloidin (1:70 in PBS; Invitrogen) for 20 min. 

Subsequently, the coverslips were washed with PBS, mounted on glass slides with Mowiol (Roth) 

and analyzed by confocal fluorescence microscopy on a Leica TCS SPE (Leica) using a 63x oil 

immersion objective (numerical aperture 1.4). Lasers used for detection of Cy2, Cy5 and Alexa 

555 were with the excitation wavelengths of 488 nm, 532 nm and 635 nm. Band-pass filters were 

set 520-550 nm, 570-600 nm and 660-710 nm respectively.  

2.2.15 GP96 knock-down in Chang by RNAi 

Chang cells were grown to 60–70% confluency in 12 well cell culture plates. Before transfection, 

the medium was changed to Opti-MEM
®
 media. The transfection mix was prepared with 100 µL 

Opti-MEM
®
 media, 25 nM siRNA (siluci or siGP96) and 3 µL HiPerFect transfection reagent 
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(Qiagen) in a sterile Eppendorf tube. The sample was mixed by vortexing and incubated at room 

temperature for 5–10 min to allow the formation of transfection complexes. The transfection 

complexes were added to cells dropwise and were distributed by gently swirling the plates. The 

transfected cells were sub-cultured after 24 h and transfection efficiency was analyzed by 

collecting cells at 24 h, 48 h and 72 h post transfection in order to determine the appropriate time 

of gene silencing. 
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3 Results 

3.1 Construction and sequencing of a transposon mutant 

library in Neisseria gonorrhoeae 

3.1.1 Construction of a high-density transposon mutant 

library in N. gonorrhoeae 

With completion of the gonococcal genome sequence (Supplementary Table 6.1) [175,176], the 

study of Neisseria gonorrhoeae has entered the post genomic era. Many of the sequenced and 

predicted genes are still of unknown function and thus genome wide strategies are required to aid 

in annotation of the genome to identify novel drug and vaccine targets as well as virulence factors 

in the pathogen. In this study, a genome-wide high-density random transposon mutagenesis library 

was successfully established in N. gonorrhoeae strain MS11 with Tn5 transposon containing a 

kanamycin resistance marker (Fig. 3-1A). 

Two steps, transposition and transformation, are critical for construction of a high density 

transposon mutant library. Since efficient transformation of N. gonorrhoeae depends on the 

presence of a DNA uptake sequence (DUS), an attempt was undertaken to introduce a synthetic 

DUS into a modified Tn5 transposon (chapter 2.2.4.11). However, usage of the so-called 

Tn5-DUS did not significantly increase the frequency of insertion events (data not shown). Further 

it was observed that DNA isolation by phenol extraction (chapter 2.2.4.1) strongly inhibited the in 

vitro transposition. In order to obtain high-quality chromosomal DNA without phenol 

contamination, Neisseria chromosomal DNA was isolated from MS11 derivative strain N2009 by 

a silica column-based method (chapter 2.2.7). Subsequently Neisseria genomic DNA was 

subjected in vitro to Tn5 transposon mutagenesis.  

Since in vitro transposition of Tn5 leaves 9 bp gaps flanking each side of the inserted transposon, 

the gaps were filled and covalently closed by treatment with T4 DNA polymerase and T4 DNA 

ligase, respectively. Mutagenized DNA was transformed into N. gonorrhoeae N2009 and 
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recombinant bacteria were selected by kanamycin. A single reaction thereby produced about 

20,000 kanamycin-resistant colonies. After a total of six independent repetitions, more than 

100,000 individual colonies were obtained and subsequently pooled.  

 

Fig. 3-1 Generation and sequencing of a transposon mutant library.  

(A) Construction of a genome-wide random transposon mutant library. Neisseria genomic DNA 

is mutagenized in vitro by Tn5 transposon containing a kanamycin resistance marker, and then 

transformed naturally into a Neisseria population. The bacteria are selected on GC agar plates 

with kanamycin and subsequently pooled. 

(B) Preparation of Illumina sequencing sample. Genomic DNA from the pool is extracted, 

fragmented and ligated to Illumina PE adaptors. Transposon junctions are amplified with the 

primers complementary to transposon mosaic ends (ME) and adaptors. The DNA fragments 

carrying terminuses (orange, blue) compatible to the Illumina flow-cell are amplified on a cluster 

station and then sequenced specifically with the sequencing primer (TnSeq Primer) that binds to 

transposon mosaic ends and the library specific barcodes are sequenced by TnSeq index SP. 

3.1.2 Sequencing the transposon mutant library 

To identify transposon insertion sites (TIS) in the mutant library, the DNA sequences adjacent to 

TIS were amplified and sequenced by Illumina sequencing (Fig. 3-1B). Neisseria genomic DNA 

from the mutant pool (chapter 2.2.4.1) was extracted and sheared by a water bath sonication to 

achieve a fragment size distribution of 300–500 bp. The electrophoresis of fragmented Neisseria 

genomic DNA is depicted in Fig. 3-2A (Lane 2, 4 and 6). The results were further confirmed by 
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measurement with an Agilent 2100 Bioanalyzer (Fig. 3-3A). The sheared DNA was blunted and 

A-overhangs were added prior to the ligation of Illumina PE adaptors (chapter 2.2.8). The 

adaptors contained a T-overhang and non-complementary regions resulting in a Y-shaped 

conformation to avoid self-ligation of the adaptors. Selective amplification of the DNA sequences 

adjacent to transposon insertion sites was performed by PCR with primers complementary to the 

adaptor and to the transposon mosaic end sequence (P5-ME and Antisense input, Table 2.4). In 

order to test the specificity of the amplification, control reactions were performed containing 

either only the adaptor-specific primer or only the transposon-specific primer. However, 

non-specific amplification products were not observed (Fig. 3-2B). Further, PCR products were 

cloned into pCR2.1-TOPO vector by TA cloning. The resulting plasmids were verified by EcoRI 

digestion and subsequently the inserts from the recombinant plasmids were sequenced by Sanger 

sequencing (SeqLab). The sequencing results indicated that the inserts were indeed Neisseria 

genomic DNA sequence containing a transposon mosaic end sequence on one end (data not 

shown). PCR products were further analyzed by agarose gel electrophoresis (Fig. 3-2B) and on an 

Agilent 2100 Bioanalyzer (Fig. 3-3B). The gels and electropherograms demonstrated that most 

DNA fragments were in the size range from 200 to 400 bp. The PCR products were size-selected 

by gel extraction and the fragments between 250 and 300 bp were purified and sent for sequencing 

on an Illumina HiSeq 2000 next-generation sequencing platform (Max Planck genome Centre, 

Cologne) using a custom sequencing primer that binds to the transposon mosaic end. Illumina 

sequencing cluster generation was enabled by addition of sequences to the PCR primers that were 

complementary to two specific capture oligonucleotides on the Illumina flow cell. The library 

specific barcodes were sequenced by TnSeq index SP thus enabling multiplexing of the libraries.
1
 

                                                        
1 Dr. Richard Reinhardt and his colleagues (Max Planck Genome Centre, Köln) performed the Illumina 

sequencing and preliminary quality control of the sequencing reads (Fig. 3-4). 
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Fig. 3-2 Quality of DNA fragments obtained in the process of sequencing sample preparation was 

tested by agarose gel electrophoresis.  

(A) Electropherogram of isolated Neisseria genomic DNA before and after sonication. Lane 1, 3 

and 5 indicate complete Neisseria genomic DNA. Lane 2, 4 and 6 indicate the results of 

fragmentation of Neisseria genomic DNA after sonication.  

(B) Enrichment of transposon-chromosomal junctions was performed by PCR amplification with 

primers complementary to transposon mosaic ends (ME) sequence and adaptors sequence (Lane 

1). Lane 2 indicates the PCR amplification products only with transposon-specific primer. Lane 3 

indicates the PCR amplification products only with adaptor-specific primer. M: 100 bp DNA 

ladder. 

 

Fig. 3-3 Size range and the amount of the DNA fragments measured by Agilent 2100 Bioanalyzer. 

The X-axis represents the product size in bp and the Y-axis is the arbitrary fluorescence intensity 

in fluorescence unit (FU). The DNA markers present are the lower marker at 35 bp (left peak) 

and the upper marker at 10,380 bp (right peak). (A) DNA fragmentation. (B) PCR enrichment of 

transposon-chromosomal junctions. 
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3.2 Analysis of sequencing data 

A single sequencing run yielded more than 30 million raw sequencing reads. Firstly, the quality of 

the sequencing reads was checked by the software Fast QC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The evaluation report indicated the 

library was random and diverse (Fig. 3-4). For example, 101 bases sequencing reads were obtained 

with 94 bases high quality and the last 7 bases good quality (Fig. 3-4A). It indicated the quality of 

each base in the sequencing reads was credible. The percent of G, A, T and C appeared in each 

base of the reads should be nearly 25%. The report of Per Base Sequence Content (Fig. 3-4B) 

indicated the percent of G, A, T and C appeared in most bases of the reads except the first 9 bases 

was nearly the same, about 25%. The first 9 bases were the duplication sequences caused by 

transposition, which indicated the position of a transposon insertion site. The analysis report 

showed there may be insertion preference of Tn5 or bad sequencing quality at the beginning of the 

sequencing. Another evaluation index is the GC distribution over all sequences. The GC count per 

read in red nearly coincided with the theoretical distribution shown in Fig. 3-4C. 
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Fig. 3-4 Quality control of the sequencing reads made by Fast QC
2
.  

(A) Quality scores across all bases. The X-axis represents the position of the base in the 

sequencing read. The Y-axis represents the quality of the base in −10*lg (p), p: measuring error 

probability. The green background corresponds to high quality reads, the yellow background to 

intermediate quality reads and the red background to poor quality reads. Most bases in the reads 

(93%) were in high quality. 

(B) Sequence content across all bases. The X-axis represents the position of the base in the 

sequencing read. The Y-axis represents the percent of G, A, T and C appeared.  

(C) GC distribution over all sequence. The red line is GC count per read and the blue is the 

theoretical distribution. 

                                                        
2 Quality of the sequencing reads was analyzed by Dr. Richard Reinhardt and his colleagues. 
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All these indexes indicated the sequencing were of high quality and thus were used for mapping to 

the Neisseria genome
3
. For mapping, the primer and adaptor sequences were firstly trimmed from 

the original sequencing reads and all remaining sequences longer than 12 bp (more than 97%) 

were mapped on the ring chromosome (2,233,640 bp) and the plasmid (4,153 bp) of N. 

gonorrhoeae MS11 version 4 (Neisseria gonorrhoeae group Sequencing Project, Broad Institute 

of Harvard and MIT, http://www.broadinstitute.org/) using Bowtie 2.0.2 [177]. The mapping 

demonstrated 87,812 unique transposon insertion sites distributed across the whole genome (Table 

3.1, Fig. 3-5A). This indicated that almost all the genome sequence contained a very high density 

of transposon insertions with an average of one insertion every 25 bp. There was no difference in 

TIS percentages between coding sequences (CDS) and intergenic regions, demonstrating that the 

TIS distribution was random without a bias for either coding or intergenic regions (Fig. 3-5B). 

Also there was no bias in the TIS positions within the CDS (Fig. 3-5C). In order to validate the 

reproducibility of sequencing, genomic DNA was isolated from the same library and two 

additional sequencing samples were prepared. The subsequent two sequence runs yielded 84,335 

(Library 2 or 438_A) and 86,327 (Library 3 or 438_B) transposon insertion sites which were 

identified on the N. gonorrhoeae MS11 ring chromosome. Since reproducibility among the 

technical replicates was very high (Pearson correlation coefficient p=0.994; p-value < 2.2e-16), 

library 2 was chosen for further analysis.  

Table 3.1 Overview of sequencing results 

 
Library 1 Library 2 (438_A) Library 3 (438_B) 

Sequencing reads 31,771,224 
a
 54,346,653 30,541,365 

Processed 
b
 30,888,325 (97%) 40,538,502 (75%) 19,480,906 (64%) 

Mapped 
c
 11,293,160 (37%) 37,835,517 (93%) 17,708,811 (91%) 

Unique TIS 
d
 87,812 125,666 129,055 

Intragenic TIS 66,509 100,791 102,566 

a 
Including internal control sequences from Enterobacteria phage φX174 

b
 Passing primer/adaptor trimming (length ≥ 12 bp) 

c
 Mapping to new assembly of MS 11 genome sequence and its cryptic plasmid 

d
 Unique transposon insertion site (TIS) on the Neisseria chromosome and plasmid 

                                                        
3 Christian Remmele performed raw data processing and mapping. 
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Fig. 3-5 Tn-seq mapping results show that the distribution of Tn5 insertions is random, unbiased, 

and of high density
4
. 

(A) Distribution of transposon insertion sites (TIS) across the whole genome of MS11. The X-axis 

represents the whole genome of MS11 and the Y-axis represents the number of mapped 

sequencing reads in log2 scale.  

(B) Proportion of the counts of the sequencing reads and the TIS demonstrate that there is no 

insertional bias between the coding regions or intergenic regions in the Neisseria genome.  

(C) Positional distribution of TIS in CDS normalized by gene length demonstrates that there is 

no bias in the position of TIS within coding regions. The full gene length is regarded as 100% 

(X-axis) whereas the Y-axis represents the number of TIS identified at the relative position 

within the gene. 

3.3 Identification of Neisseria essential genes 

For the 2526 genes encoded by the N. gonorrhoeae MS11 genome (including 350 newly annotated 

genes)
5
, the counts of the sequencing reads and the number of separate transposon insertion sites 

(TIS) per gene are shown in Table S1. The number of TIS per gene varied between 0 and 506, 

with a median of 31. Up to 81.9% (2069 genes) of the genes have less than 50 TIS and very few 

                                                        
4 Tn-seq mapping was done by Christian Remmele. 
5 The preliminary annotation of the N. gonorrhoeae MS11 genome (version 4) consists of 2185 CDS (2176 CDS 

on the chromosome and 9 CDS on the plasmid) (Neisseria gonorrhoeae group Sequencing Project, Broad Institute 

of Harvard and MIT). Christian W. Remmele et al augmented the MS11 genome annotation. 350 CDS on the 

chromosome and 5 CDS on the plasmid were new annotated (Table S1). 
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genes contain more than 150 TIS (Fig. 3-6A). The mutants with TIS in essential gene are not 

viable and missing in transposon mutant libraries, so these TIS located in the essential genes 

cannot be detected from Tn-seq data. Theoretically, genes without TIS or with strongly depleted 

TIS were considered to be essential for Neisseria survival and growth. However, TIS were 

detected in nearly all the genes with different frequencies which can be evaluated only with the 

statistical analysis. P-value was assigned to assess gene essentiality which assume uniform 

transposon insertion rates across the whole genome and neutral fitness costs of each mutant [152]. 

The P-value of each gene is shown in Table S1. Occasionally, transposon insertions in a 

non-essential gene might disrupt the expression of an essential gene downstream in the same 

operon. This kind of mutants could not survive which might result in false-positive essentiality 

calls. Therefore, the predicted essential genes were divided into two groups, 480 genes of which 

are not contained within operon, whereas 301 genes are within an operon structure (Fig. 3-6B). 

This information is also included in Table S1. Since an unequivocal assignment of sequence reads 

to duplicated genes is not possible, P-values for duplicated genes were adjusted (Table S1).
6
  

 

Fig. 3-6 Distribution of TIS in one gene indicated the essentiality of the related gene. 

(A) Number of transposon insertion site (TIS) per gene. 19 genes have no TIS, 2069 genes (81.9% 

of the total genes) have less than 50 TIS, 102 genes (4% of the total genes) have more than 100 

TIS, and the average TIS per gene is 31. 

(B) Number of the predicted essential genes or non-essential genes belonged to the group of genes 

in operon or genes not in operon. 480 essential genes are not within operon, whereas 301 essential 

genes are within an operon structure. 1204 genes are non-essential and not within operon, while 

541 non-essential genes are within operon structure. 

                                                        
6 Bioinformatics analysis of the data was done by Christian Remmele. 
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In summary, 781 genes with P<0.05 were designated as essential for Neisseria survival and 

growth (Table S2). The list contains some well-known essential genes involved in fundamental 

biological processes, such as DNA replication, DNA recombination, DNA repair, transcription, 

ribosomal structure and biogenesis, as well as translation and energy production. For example, all 

aminoacyl-tRNA synthetase genes and the genes encoding subunits of ATP synthase were 

identified as essential in this study. In addition, seven out of the eight subunits of the multimeric 

DNA polymerase III were identified as essential. The remaining gene NGFG_00714, which is 

annotated as exonuclease and epsilon subunit of DNA polymerase III was unlikely to be essential 

(P=1), whereas NGFG_00762 (P=0.00073) also encodes an epsilon subunit and thus might 

functionally replace NGFG_00714. 

Exemplary, triosephosphate isomerase (TIM, NGFG_00153) was identified as an essential gene. 

TIM plays an important role in glycolysis and is essential for efficient energy production [178]. 

Fig. 3-7 showed the distribution of mapped sequencing reads (black and green lines) in the 

according chromosomal region. Only very few transposon insertions were detected in the coding 

region and also in the promoter region of the gene NGFG_00153 encoded TIM (P=0.00073). By 

contrast, the genes upstream and downstream of TIM, NGFG_00152 and NGFG_00154, displayed 

high insertion density which resulted in P-values of 0.30367 and 0.99151 respectively, thereby 

defining NGFG_00152 and NGFG_00154 as non-essential genes (Fig. 3-7). However, 

NGFG_00152 (encoded preprotein translocase SecG subunit) only shows a lot of reads at the 

C-terminus and the majority of the ORF is not targeted by Tn5. It is possible that the C-terminal 

domain of SecG might not be important for the function and the protein without C-terminal 

domain is still functional, therefore the gene might still be essential. 

The putative essential genes list includes 215 of the 307 essential genes in E. coli MG1655 [179] 

that have orthologs in Neisseria gonorrhoeae MS11 (70%), suggesting that a high percentage of 

essential E. coli genes have orthologs in N. gonorrhoeae that are also essential (Table S3). The rest 

566 genes contain genes involved in fundamental cellular processes, such as ribosomal proteins, 

subunits of ATP synthase and enzymes for DNA metabolism which might be essential in other 

bacteria just not in E. coli. Besides, it shows some species specific essential genes including 

conjugal transfer pilus assembly proteins, irons binding and transport proteins, ABC transporters 

http://en.wikipedia.org/wiki/Glycolysis
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and also 112 hypothetical proteins and 29 phage proteins. Some of them have been previously 

identified as essential: Omp85 (NGFG_01715, P=0.00073) [180], PorB (NGFG_01725, 

P=0.00073) [181,182] and the alternative sigma factor RpoH (NGFG_00430, P=0.00073) [169]. 

The predicted essential genes especially Neisseria specific essential genes could be putative 

targets for vaccine and antibacterial drug development. 

 

Fig. 3-7 Triosephosphate isomerase (TIM) is an essential gene. Distribution of mapped 

sequencing reads (black and green lines, merger of three libraries) shows transposon insertion 

sites on a segment of the Neisseria gonorrhoeae MS11 genome encoding TIM. The non-essential 

genes NGFG_00152 and NGFG_00154 (grey; P=0.30367 and 0.99151, respectively) have a lot of 

sequencing reads, while TIM encoded by NGFG_00153 (green) does not display such a read 

density and thus constitutes an essential gene (P=0.00073). The predicted promoter region of 

TIM (white box upstream of NGFG_00153) is also essential. 

3.4 Validation of gene essentiality 

Many of the predicted essential genes are required for fundamental biological processes, however, 

more than 15.4% (120 genes) of the putative essential N. gonorrhoeae genes were annotated as 

hypothetical proteins. To test the essentiality of a subset of these candidate drug and vaccine 

targets, mutagenesis of the genes, conditional knockout assays and genetic footprinting studies 

were performed.  

3.4.1 Conditional knockout assay 

Conditional knockout assay was established to test the essentiality of some candidate essential 

genes [168-170] which were listed in Table 3.2. The native promoter sequences of the candidate 

essential genes might be recognized by RpoD (σ70) which represents GC house-keeping sigma 
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factor, so the promoter sequence were predicted by BPROM (a bacterial sigma 70 promoter 

recognition program) [183]. Exemplary, in order to test the essentiality of the putative essential 

genes NGFG_00442 and NGFG_00443 (50S ribosomal protein L35 and L20, with P-values of 

0.00073 and 0.00914, respectively), the predicted native promoter was detected 117 bp upstream 

of the operon. The native promoter was replaced with a kanamycin-Ptrc cassette containing the 

IPTG-inducible promoter Ptrc amplified from Hermes-10 vector [171]. Afterwards, the mutants 

were conjugated with N. gonorrhoeae MS11 N220, a strain containing pTH10a [171] which 

constitutively expresses the repressor lacI
q
. By replacement of the promoter region, the expression 

of the candidate gene was conditional inhibited by omitting IPTG. Accordingly, the conditional 

knockout of NGFG_00442–00443 grew on GC-plates supplemented with 0.5 mM IPTG but did 

not survive on GC plates without IPTG. These data indicated that the ribosomal proteins encoded 

by NGFG_00442 and NGFG_00443 are essential for N. gonorrhoeae growth and that the assay 

was functional. By contrast, for NGFG_01725, NGFG_01315 and NGFG_00686, the 

Ptrc-promoter mutants were not obtained after several attempts of transformations (Table 3.3). It 

may be due to that these genes are so important for Neisseria survival and it is not allowed to 

change their expression pattern. Furthermore, the conditional mutants of NGFG_02103, 

NGFG_04144 and NGFG_00007 grew even in absence of IPTG (Table 3.3). It is possible that 

these gene products still exist in the cells even after several passage growths without IPTG. In 

order to remove the remaining products, the concentration of IPTG was reduced to 0.1 mM to 

maintain the growth of mutants, and then more subsequent passages (about ten passages) of the 

mutants on the plates without IPTG were performed. However, no obvious growth defect was 

found (Fig. 3-8). Further, the expression of these genes in the conditional knockout mutants were 

tested by RT-PCR using RNA isolated from bacteria grown on the plates with or without IPTG. 

Fig. 3-9 shows the expression of NGFG_00007 was strongly reduced in the absence of IPTG 

compared with its expression in the presence of 0.1 mM IPTG, but the detectable expression 

might be sufficient to support Neisseria survival and growth (Lane 1–4 in Fig. 3-9). The same 

situation was found in conditional mutants of NGFG_04144 (data not shown). This suggested that 

the Ptrc promoter is leaky and that a minute amount of protein expression driven by Ptrc even in 

absence of IPTG produces enough gene products to support Neisseria growth. In conclusion, the 

conditional knockout assay based on the leaky IPTG-inducible Ptrc promoter might be suitable for 
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testing essentiality of the candidate essential genes that require a large amount of protein to sustain 

Neisseria growth such as ribosomal proteins. 

Table 3.2 Conditional knockout constructs of candidate essential genes 

Gene ID Annotation Essentiality 

(P-value) 

CDS_ 

Start 

CDS_ 

Stop 

CDS_ 

Strand 

Promoter 

region 

(upstream 

of ATG) 

NGFG_01725 Outer membrane 

protein P.IB 

0.00073 1860158 1861210 + 158 bp 

[184,185] 

NGFG_00442 50S ribosomal 

protein L35 

0.00073 2149030 2151195 + 117 bp 

NGFG_00443 50S ribosomal 

protein L20 

0.00914 2151701 2151991 + within 

operon of 

NGFG_00

442 

NGFG_02103 Hypothetical 

protein 

0.01442 1681299 1681475 - 120 bp 

NGFG_01315 Hypothetical 

protein 

0.00699 1662515 1662916 - 100 bp 

NGFG_04144 Hypothetical 

protein 

0.00073 1421651 1422010 - 2 bp 
a
 

NGFG_00007 Hypothetical 

protein 

0.00177 2119773 2120003 - 210 bp 

NGFG_00686 Hypothetical 

protein 

0.05433 1078088 1078249 + 57 bp 

a
 Ptrc promoter was inserted into the 2 bp region in front of ATG of the gene NGFG_04144  

Table 3.3 Growth phenotypes of conditional knockout constructs 

Gene ID  Annotation 
Mutant 

(available)  

Growth phenotype 

With IPTG Without IPTG 

NGFG_01725 Outer membrane protein P.IB no ND ND 

NGFG_00442 50S ribosomal protein L35 yes Growth Growth defect 

NGFG_00443 50S ribosomal protein L20 yes Growth Growth defect 

NGFG_02103 Hypothetical protein yes Growth Growth 

NGFG_01315 Hypothetical protein no ND ND 

NGFG_04144 Hypothetical protein yes Growth Growth 

NGFG_00007 Hypothetical protein yes Growth Growth 

NGFG_00686 Hypothetical protein no ND ND 

ND: not determined 
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Fig. 3-8 Growth phenotypes of N. gonorrhoeae MS11 wild type N220 and conditional knockout 

mutants on the GC agar plates in the presence (right) or absence (left) of 0.1 mM IPTG. The 

gonococci were grown on GC agar plate containing 0.1 mM IPTG for 16–20 h at 37 °C in 5% 

CO2 in a humidified atmosphere and then collected in PPM medium. Approximately 10
7
 

gonococci were streaked on the GC agar plates with or without IPTG and the phenotypes were 

recorded after 24 h incubation at 37 °C in 5% CO2. Only NGFG_00442 mutants were not able to 

grow on the plates without IPTG, which indicated NGFG_00442 is an essential gene.  

 

Fig. 3-9 Conditional Ptrc-driven expression of NGFG_00007. RNA isolated from NGFG_00007 

conditional knockout mutants grown on GC agar plates with or without 0.1 mM IPTG (as 

indicated) was reverse transcribed using random primers. The subsequent PCR was performed 

with primers specific for NGFG_00007 and RNase P as indicated. Two clones were analyzed. 

Lanes 1, 2, 5, 6, 9 and 10 are derived from clone 1 whereas the other lanes were from clone 2. The 

amplification of RNase P from the cDNA samples without Reverse transcriptase (-RT, lanes 9–12) 

show there are no contaminated genomic DNA in the isolated RNA samples. The amplification 

with H2O (lanes 13 and 14) show there are no contamination in primers mix. M: DNA ladder. 

Results shown are representative of three independent determinations. 

3.4.2 Genetic footprinting assay 

Gene essentiality was further tested by a genetic footprinting assay [146,172-174]. Here the region 

of interest containing the putative essential gene as well as upstream and downstream of the open 

reading frame was amplified by PCR. Subsequently the PCR products were mutagenized in vitro 
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with Tn5 and were transformed in N. gonorrhoeae N2009. Resulting mutants were selected on GC 

agar plates supplemented with kanamycin and were pooled. Afterwards, the bacteria were 

incubated with DNase I to digest the remaining extracellular transposed DNA. gDNA was 

re-isolated and footprinting was performed using a chromosome-specific and a transposon-specific 

primer. As a reference, the PCR was conducted with the mutagenized DNA that had been used for 

transformation. The size of PCR products indicated where the Tn5 insertions occurred within the 

region of interest and thereby allows determination of the transposon insertion sites within the 

locus. Since bacterial mutants with insertions in essential genes are not viable, the Tn5 insertions 

within the essential genes will be lost during cultivation of the bacteria. Essentiality thus can be 

determined by comparing the control samples illustrating all Tn5 insertions after in vitro 

mutagenesis with a selective loss of insertions within in vivo selected mutants. PCR specificity 

was assured by carrying out the PCR with chromosome-specific primers derived from both, the 5’ 

and 3’ direction of the region. As shown in Fig. 3-10, genetic footprinting was performed in the 

genomic regions of NGFG_01063-1068 (722834-725537) and NGFG_01048-01053 

(736587-732215). The functionally uncharacterized genes NGFG_01066, NGFG_01049 as well 

as NGFG_01051 encoding ferredoxin-NADP
+
 reductase were predicted essential genes 

(P=0.04238, 0.00073 and 0.00129, respectively). In vitro transposition of the 4373 bp region 

NGFG_01048-01053 yielded 226 individual mutants, whereas for the 2704 bp region 

NGFG_01063-1068, 495 clones were obtained. PCR products corresponding to an insertion in 

these genes in vivo were rarely detected on an agarose gel when compared to the PCR products 

observed from the in vitro template. By contrast, PCR products corresponding to an insertion in 

the surrounding non-essential genes were detected (Fig. 3-10A). These data are in agreement with 

the insertion patterns detected in the Tn-seq libraries (Fig. 3-10B) and illustrate that the candidate 

genes NGFG_01066, NGFG_01049 and NGFG_01051 are indeed essential. Simultaneously these 

data prove that NGFG_01068, NGFG_01064, NGFG_01063, NGFG_01053, NGFG_01052 and 

NGFG_01048 are non-essential in N. gonorrhoeae under the tested conditions. 

In addition to conditional knockouts and genetic footprinting assays, several putative essential 

genes were validated by inability to produce deletion mutants of whose mutants show strong 

growth phenotypes. Bacteria with disruption of NGFG_01725, NGFG_01315 and NGFG_00686 
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(see also conditional knockout assay; Table 3.3), as well as beta-ketoacyl-acyl-carrier-protein 

synthase II (NGFG_01674, P=0.00385) and uridylate kinase (NGFG_01912, P=0.00177) were not 

viable (Table 3.4). Similarly, gonococci with knockout in the ABC transporter substrate-binding 

protein virulence factor Mce (NGFG_00072, P=0.03377), a phospholipase D family protein 

(NGFG_00827, P=0.00262) and a hypothetical protein (NGFG_01266, P=0.05006) were obtained 

on GC agar plates, but demonstrated a strong growth defect (Table 3.4). By contrast, gene deletion 

experiments were performed with several predicted non-essential genes (Table 3.4) and these gene 

deletions did not influence gonococci survival and growth under the tested conditions. 

 

Fig. 3-10 Genetic footprinting and TIS distribution in Tn-seq libraries indicated gene essentiality. 

(A) Genetic footprinting demonstrates gene essentiality in N. gonorrhoeae. Neisseria PCR 

products are mutagenized with Tn5 in vitro and transformed into bacteria. gDNA is recovered 

from recombinant bacteria and the distribution of Tn5 insertions of in vivo-selected mutants is 

compared to the in vitro template by PCR using a transposon-specific primer (Tn ME sequence) 

and a chromosome-specific primer placed either 5’ (left panel) or 3’ (right panel) from the locus 

NGFG_01048-01053 or NGFG_01063-1068. M: DNA ladder. 

(B) Distribution of TIS in this region in Tn-seq libraries. The mapped sequencing reads from 

library 1 (blue line), library 2 (red line) and library 3 (green line) indicate the insertion patterns 

in this region surrounding the predicted essential genes NGFG_01049, NGFG_01051 and 

NGFG_01066. Grey bar represents non-essential genes and green bar represents putative 

essential genes. 
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Table 3.4 Growth phenotypes of gene knockout mutants in Neisseria gonorrhoeae 

Gene ID Gene function Gene 

name 

P-value Mutant growth 
a
 

NGFG_00042 TonB dependent siderophore receptor  0.12712 Normal 

NGFG_00506 Hypothetical protein  0.07867 Normal 

NGFG_00599 Sulfate ABC transporter  cysW 1 Normal 

NGFG_00859 DedA family membrane protein  0.58067 Normal 

NGFG_00860 Outer membrane protein opcA 1 Normal 

NGFG_01393 Hypothetical protein  0.99247 Normal 

NGFG_01489 TonB-dependent receptor  1 Normal 

NGFG_01605 Predicted protease aif1
b
 1 Normal  

NGFG_01643 ABC transporter 

ATP-binding/permease protein 

 1 Normal 

NGFG_01836 Membrane-bound lytic murein 

transglycosylase A 

mltA 1 Normal 

NGFG_02032 FKBP-type peptidyl-prolyl cis-trans 

isomerase  

fkpA 1 Normal 

NGFG_00072 ABC transporter substrate binding 

protein 

mce 0.03377 Growth defect 

NGFG_00827 Phospholipase D family protein pld 0.00262 Growth defect 

NGFG_01266 Hypothetical protein  0.05006 Growth defect 

NGFG_01674 Beta-ketoacyl-acyl-carrier-protein 

synthase II 

fabH 0.00385 Could not 

obtainable 

NGFG_01912 Uridylate kinase pyrH 0.00177 Could not 

obtainable 

a
 Growth curve was performed in Neisseria growth medium 

b
 aif1 was first named after “Adherence and Invasion-associated Factor 1” in this study 
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3.5 Use of Tn-seq to identify N. gonorrhoeae virulence 

factors in DGI 

The virulence mechanisms involved in disseminated gonococcal infection (DGI) are not well 

understood. Therefore the transposon mutant library in N. gonorrhoeae strain N2009, an MS11 

derivative expressing PorB1A (chapter 3.1) was used to infect the human conjunctiva epithelial cell 

line Chang (ATCC CCL-20.2) due to the high bacterial invasion efficiency of 0.6 invasive 

non-piliated bacteria and 0.015 piliated Neisseria per host cell after 1h infection at a MOI of 100 

(data not shown). Because the library contained about 100,000 mutants and a 100-fold 

representation of the library was used for screening, approximately 10
7
 bacteria from the library 

were recovered on GC agar plates and were used to infect 4 × 10
7
 Chang cells under low 

phosphate conditions. After infection for 1h, the cell-associated or invasive bacteria were selected 

by gentamicin treatment and recovered on agar plates. The recovered bacteria were used in two 

additional infection rounds. Each time the recovered bacteria were pooled thus yielding three 

separate “output” libraries. As control, the mutant library was incubated for the same time in 

infection medium in the absence of host cells and thus constituted the “input” library (Fig. 3-11). 
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Fig. 3-11 Infection and screening for virulence factors involved in DGI. A high-density Tn5 

mutant library was used to infect Chang cells with an MOI 100 for 1 h under low phosphate 

conditions (HEPES medium). After infection, the unattached bacteria were washed away and the 

cells were lysed by incubation with 1% saponin for 15 min. The cell-associated bacteria (adherent 

and invasive bacteria) were recovered on the agar plates for the next round of infection. In order 

to select for invasive bacteria, 100 µg/mL gentamicin was added after the infection to kill all the 

extracellular bacteria. Intracellular bacteria were recovered on agar plates as described above. 

Recovered bacteria were used for two additional subsequent infections thereby increasing 

stringency of the assay. The mutants without infection constitute input library. Chromosomal 

DNA from input and output libraries was isolated and TIS were identified as described. A 

depletion of TIS in the recovered output libraries thus will indicate the factors required for 

adherence or invasion under the low phosphate conditions.  

Chromosomal DNA from input and output libraries was isolated and the sequencing samples were 

prepared for Tn-seq as described (chapter 3.2)
7
.The introduction of different barcodes enabled 

multiplexing of Tn-seq as well as identification of the source of the sequenced DNA. The 

                                                        
7 Dr. Richard Reinhardt and his colleagues performed the Illumina sequencing and preliminary quality control of 

the sequencing reads. Christian Remmele performed raw data processing and bioinformatics analysis. 
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sequencing reads were separated based on the barcodes and then mapped to MS11 genome 

(version 4, Neisseria gonorrhoeae group Sequencing Project, Broad Institute of Harvard and MIT). 

More than 50 million raw sequencing reads were obtained for the output I library and nearly 60% 

were specifically mapped to the genome which indicated 88,625 unique TIS in the annotated CDS 

regions. For the output II libraries, the samples from the second and the third infection round were 

sequenced and the results showed 32,198 and 34,147 intragenic TIS, respectively (Table 3.5). The 

complete data, the distribution of the reads and TIS counts per gene is shown in Table S4. Few 

sequencing reads were acquired from the input library. It might be due to poor-quality sequencing 

sample or technical problems during sequencing which can be ruled out by repeating the 

sequencing of a new prepared sequencing sample of this library. Because the wild-type strain 

N2009 cannot grow in HEPES medium, it is more likely that most mutants cannot survive or grow 

in the incubation of HEPES medium which lead to very few mutants in the input library. 

Table 3.5 Overview of sequencing results of input and output libraries. 

 Input library 

(438_C) 
a
 

Output I library 

(438_D) 
b
 

Output II library 

(438_E) 
c
 

Output II library 

(438_F) 
d
 

Sequenced reads 101,178 50,666,104 14,160,012 19,231,784 

Mapped reads 69,183 

(68.38%) 

30,722,996 

(60.64%) 

8,679,833 

(61.30%) 

10,593,688 

(55.08%) 

Uniquely mapped reads 68,302 

(67.51%) 

30,315,271 

(59.83%) 

8,569,794 

(60.52%) 

10,375,019 

(53.95%) 

Unique TIS 5,980 112,887 42,123 45,321 

Intragenic TIS 4,548 88,625 32,198 34,147 

a
 non-infection library, sample from the second round selection 

b
 output I library, sample from the second round selection 

c 
output II library, sample from the second round selection 

d
 output II library, sample from the third round selection 

3.6 Identification of virulence factors required for DGI 

In order to identify the virulence factors required for Neisseria adherence or invasion during 

phosphate sensitive infection, the P-values of each gene in these three different output libraries 

were calculated based on the TIS counts (Table S4). The depletion of TIS in specific genes during 

the selection indicated the requirement of the corresponding gene products for Neisseria 
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attachment to or invasion into the host cells. The recovered bacteria resulting in the output I 

library adhered to or invaded into the host cells. This illustrates that the genes in which 

significantly reduced numbers of TIS are required for adherence. Conversely, mutants lost in the 

output II library demonstrated factors required for adherence or invasion. By comparing the data 

between libraries DGI invasion factors can be identified. Exemplary, the uncharacterized gene 

NGFG_00506 was predicted as an invasive factor due to a loss of Tn5 insertions lost in the output 

II library when compared with reads originating from either “input” or “output I” library (Fig. 

3-12). In summary, 431 genes with P< 0.05 in the output I library (438_D) indicated that the 

respective mutants were unable to attach to the host cells or were not viable (Table S5). Further 

analysis showed that the list of candidate genes for Neisseria adherence factors contained 333 

predicted essential genes (chapter 3.3; Table S5) and 98 non-essential genes (Table 3.6). In this list 

the genes for the known adhesin type IV pilus as well as its assembly proteins PilP and PilW are 

found. To analyze gonococcal DGI invasion factors, the two output II libraries 438_E and 438_F 

were merged and genes with P< 0.05 in either library were chosen. Table S6 harbors 184 predicted 

essential genes and 43 non-essential genes (Table 3.7). The overlap in both libraries consisted of 

117 genes, 102 of which comprising essential and 15 non-essential genes (Table 3.7). A subset of 

candidate genes was chosen for validation and closer characterization in order to learn more about 

the mechanism of Neisseria phosphate sensitive infection. 
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Fig. 3-12 Distribution of mapped sequencing reads on the DNA segment of NGFG_00506 

indicates involvement of the ORF in DGI invasion. The different coloration indicates the 

different libraries from which the sequencing reads were obtained: red reads originate from the 

“input” library (438_A), green reads from the “output I” library (438_D) and blue reads from 

the “output II” library (438_E).  

Table 3.6 Non-essential candidate genes for Neisseria adherence 

Gene ID Gene function Gene name P-value 

(438_D) 

Adhesion 

NGFG_00608 type IV pilus assembly protein  pilW 0.00795  

NGFG_00233 type IV pilus assembly protein  pilP 0.00643  

NGFG_01202 type IV pilus biogenesis/stability protein  pilW 

(silent 

copy) 

0.02190  



  Results 

82 

 

Transporters 

NGFG_00598 sulfate/thiosulfate import ATP-binding protein  cysA 0.00302  

NGFG_00071 ABC transporter permease   0.04406  

NGFG_02085 histidine-binding protein hisJ 0.02218  

NGFG_04085 cell division ABC transporter ATP-binding protein ftsE 0.00207  

Nucleic acid metabolism  

NGFG_01045 protein RecA recA 0.00384  

NGFG_00705 single-stranded DNA-binding protein ssb 0.04562  

NGFG_01851 DNA recombination protein RmuC rmuC 0.04681  

NGFG_01096 recombination factor protein R   0.04056  

NGFG_01641 Holliday junction ATP-dependent DNA helicase  ruvA 0.03411  

NGFG_01413 Rrf2 family protein   0.02336  

NGFG_02201 transposase   0.00384  

NGFG_04232 transposase   0.01588  

NGFG_01885 transferase   0.01863  

NGFG_02198 replication initiation factor   0.03540  

NGFG_00391 transcription antitermination factor  nusB 0.02038  

Protein metabolism 

NGFG_01644 ribosome small subunit-dependent GTPase A   0.02190  

NGFG_00413 ribosomal RNA small subunit methyltransferase A rsmA 0.02190  

NGFG_01129 ribosomal RNA small subunit methyltransferase B rsmB 0.01985  

NGFG_00566 ribosome-associated protein   0.00207  

NGFG_01786 methionyl-tRNA formyltransferase   0.04416  

NGFG_00172 (Dimethylallyl) adenosine tRNA methylthiotransferase miaB 0.00207  

NGFG_00439 queuine tRNA-ribosyltransferase   0.00207  

NGFG_02117 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate 

N-succinyltransferase 

  0.00384  

NGFG_01618 deoxyribodipyrimidine photo-lyase phrB 0.03823  

NGFG_01692 dihydrodipicolinate reductase   0.01079  

NGFG_02065 2,3-bisphosphoglycerate-dependent phosphoglycerate 

mutase 

gpmA 0.00207  

NGFG_01787 peptide deformylase   0.00207  

NGFG_02048 Imidazole glycerol-phosphate dehydratase   0.00570  

Metabolic enzymes 

NGFG_02228 lacto-N-neotetraose biosynthesis glycosyltransferase  lgtE 0.03091  

NGFG_00164 orotate phosphoribosyltransferase, OPRTase   0.01531  

NGFG_00193 4-hydroxyphenylacetate 3-monooxygenase, reductase 

component 

  0.00207  

NGFG_00187 carbamoyl-phosphate synthase small chain   0.01014  

NGFG_00654 isocitrate dehydrogenase, NADP-dependent   0.00207  

NGFG_00713 2-nitropropane dioxygenase   0.00207  

NGFG_00758 acetate kinase 1 ackA1 0.00570  
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NGFG_00764 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase ispF 0.02218  

NGFG_00888 HAD hydrolase, family IB   0.00643  

NGFG_00895 short chain dehydrogenase   0.02564  

NGFG_00918 dihydroxy-acid dehydratase   0.00207  

NGFG_01074 glucokinase   0.01985  

NGFG_00247 oxidoreductase   0.02872  

NGFG_00338 phosphoglycolate phosphatase   0.02816  

NGFG_00350 phosphate acetyltransferase   0.00207  

NGFG_00390 dihydroorotase   0.03055  

NGFG_01648 NADH-quinone oxidoreductase subunit N nuoN 0.03152  

NGFG_01654 NADH-quinone oxidoreductase subunit J nuoJ 0.04222  

NGFG_01656 NADH-quinone oxidoreductase subunit H nuoH 0.00486  

NGFG_01663 NADH-quinone oxidoreductase subunit B nuoB 0.00725  

NGFG_01329 3-deoxy-D-manno-octulosonate 8-phosphate 

phosphatase, YrbI family 

yrbI 0.03270  

NGFG_01335 shikimate dehydrogenase   0.04790  

NGFG_01499 thiamine biosynthesis lipoprotein apbE 0.01478  

NGFG_01501 Na(+)-translocating NADH-quinone reductase subunit 

F 

nqrF 0.00643  

NGFG_01505 Na(+)-translocating NADH-quinone reductase subunit 

B 

nqrB 0.04633  

NGFG_01542 biopolymer transporter exbD 0.04710  

NGFG_01574 3-octaprenyl-4-hydroxybenzoate carboxy-lyase ubiD 0.02614  

NGFG_01605 protease   0.00795  

NGFG_02134 NADPH-dependent 7-cyano-7-deazaguanine reductase   0.02162  

NGFG_01608 guanylate kinase   0.00384  

NGFG_01791 aspartate carbamoyltransferase regulatory chain pyrl 0.00930  

Others 

NGFG_00049 lipoprotein   0.04847  

NGFG_00141 Lipoprotein Mlp mlp 0.02218  

NGFG_01832 UPF0409 lipoprotein   0.04255  

NGFG_00197 GTP-binding protein  ychF 0.00302  

NGFG_00448 restriction endonuclease   0.04633  

NGFG_00560 type I restriction enzyme, S subunit   0.02237  

NGFG_00901 [2Fe-2S] ferredoxin, ISC system protein   0.04807  

NGFG_04139 bacteriocin resistance protein   0.00795  

NGFG_01630 integral membrane protein, virulence factor MviN mviN 0.00302  

NGFG_01826 mechanosensitive ion channel protein   0.04178  

NGFG_02173 UPF0210 protein   0.00207  

NGFG_00461 UPF0042 nucleotide-binding protein   0.00384  

Phage proteins 

NGFG_00623 phage protein   0.03951  
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NGFG_00632 phage protein   0.02663  

NGFG_00642 phage protein   0.04178  

NGFG_01054 phage protein   0.03750  

NGFG_01283 phage protein   0.02190  

NGFG_01285 phage protein   0.01820  

NGFG_02190 phage protein   0.02283  

Hypothetical proteins 

NGFG_00183 hypothetical protein   0.01768  

NGFG_01157 hypothetical protein   0.00486  

NGFG_04145 hypothetical protein   0.03540  

NGFG_04198 hypothetical protein   0.01820  

NGFG_04225 hypothetical protein   0.03906  

NGFG_01266 hypothetical protein   0.04663  

NGFG_00979 hypothetical protein   0.02564  

NGFG_01031 hypothetical protein   0.03712  

NGFG_01650 hypothetical protein   0.03152  

NGFG_00264 hypothetical protein   0.04489  

NGFG_00591 hypothetical protein   0.03500  

NGFG_00295 hypothetical protein   0.04681  

NGFG_04237 hypothetical protein   0.04790  

NGFG_02177 hypothetical protein   0.00207  

NGFG_02058 hypothetical protein   0.01223  

NGFG_02204 hypothetical protein   0.02190  

NGFG_02108 hypothetical protein   0.02336  

Table 3.7 Non-essential candidate genes for Neisseria adherence or invasion 

Gene ID Gene function Gene 

name 

P value  

(438_E)  

P value  

(438_F) 

Transporters 

NGFG_01643 ABC transporter ATP-binding/permease 

protein 

 0.02700 0.04892 

NGFG_00598 sulfate/thiosulfate import ATP-binding 

protein CysA 

cysA 0.02377 0.04892 

NGFG_04085 cell division ABC transporter ATP-binding 

protein 

ftsE 0.01419 0.08746 

NGFG_00159 iron chelate ABC transporter, periplasmic 

iron chelate-binding protein 

afeA 0.01508 0.09711 

NGFG_00152 preprotein translocase, SecG subunit secG 0.01943 0.35033 

Protein metabolism 

NGFG_01787 peptide deformylase  0.00544 0.03385 
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NGFG_00439 queuine tRNA-ribosyltransferase  0.00544 0.01451 

NGFG_00172 (Dimethylallyl) adenosine tRNA 

methylthiotransferase  

miaB 0.00738 0.02543 

NGFG_01692 dihydrodipicolinate reductase  0.01508 0.01978 

NGFG_02117 2,3,4,5-tetrahydropyridine-2,6-dicarboxylat

e N-succinyltransferase 

 0.03229 0.04067 

NGFG_02065 2,3-bisphosphoglycerate-dependent 

phosphoglycerate mutase 

gpmA 0.01508 0.01036 

NGFG_00566 ribosome-associated protein  0.04197 0.07569 

NGFG_01129 ribosomal RNA small subunit 

methyltransferase B 

rsmB 0.02798 0.08402 

NGFG_02048 Imidazole glycerol-phosphate dehydratase  0.0570595

56 

0.01036 

Metabolic enzymes 

NGFG_00350 phosphate acetyltransferase  0.00738 0.01036 

NGFG_00654 isocitrate dehydrogenase, NADP-dependent  0.00544 0.03072 

NGFG_00913 UDP-N-acetylmuramate:L-alanyl-gamma-D

-glutamyl-meso-diaminopimelate ligase 

 0.03563 0.04314 

NGFG_01568 3-oxoacyl-[acyl-carrier-protein] reductase fabG 0.02100 0.04983 

NGFG_01605 protease  0.01327 0.01813 

NGFG_01656 NADH-quinone oxidoreductase subunit H nuoH 0.01145 0.13267 

NGFG_01648 NADH-quinone oxidoreductase subunit N nuoN 0.03229 0.18745 

NGFG_01501 Na(+)-translocating NADH-quinone 

reductase subunit F 

nqrF 0.0141913

04 

0.10362 

NGFG_00193 4-hydroxyphenylacetate 3-monooxygenase, 

reductase component 

 0.04172 0.10362 

NGFG_01574 3-octaprenyl-4-hydroxybenzoate 

carboxy-lyase 

ubiD 0.08188 0.04387 

Phage proteins 

NGFG_04194 phage protein  0.04904 0.05973 

NGFG_00623 phage protein  0.03563 0.09597 

NGFG_00642 phage protein  0.02477 0.09711 

Hypothetical proteins 

NGFG_00506 hypothetical protein  0.00544 0.03510 

NGFG_00574 hypothetical protein  0.03563 0.02919 

NGFG_01157 hypothetical protein  0.01419 0.08063 

NGFG_02058 hypothetical protein  0.03709 0.11198 

NGFG_01266 hypothetical protein  0.00544 0.10312 
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NGFG_00295 hypothetical protein  0.01145 0.18208 

Others 

NGFG_00062 hemoglobin-haptoglobin utilization protein 

B 

hpuB 0.04870 0.13321 

NGFG_01045 protein RecA recA 0.00544 0.06963 

NGFG_01893 Ngo I restriction endonuclease  0.04904 0.10090 

NGFG_00682 5'-nucleotidase surE surE 0.01419 0.12138 

NGFG_02198 replication initiation factor  0.03563 0.19394 

NGFG_04172 cell-surface protein  0.04730 0.25084 

NGFG_00822 toxin component of toxin-antitoxin system  0.03285 0.31050 

NGFG_01630 integral membrane virulence factor MviN mviN 0.06695 0.01978 

P-values < 0.05 in bold. 

3.7 Validation of candidate invasive genes 

In order to validate the involvement of identified candidate genes in Neisseria disseminated 

infection, the respective genes knockout mutants were generated and analyzed for their ability to 

adhere to and invade into the host cells under low phosphate condition. To construct gene 

knockout mutants, about 500 bp upstream and downstream of the target gene were amplified from 

Neisseria gDNA and combined with a kanamycin cassette (chapter 2.2.13). The resulting PCR 

fragments were transformed into N. gonorrhoeae N2009 and the recombinant bacteria were 

selected on GC plates supplemented with kanamycin. The mutants were checked by colony PCR 

and subsequently the correct location of the kanamycin cassette within the genome was confirmed 

by sequencing the PCR-amplified region from 1000 bp upstream to 500 bp downstream of the 

target gene. Furthermore, the lack of expression of the target gene in the gene knockout mutants 

was checked by reverse transcription-PCR (RT-PCR) with cDNA derived from mutants. 

Here, three candidate genes were tested, the hypothetical protein NGFG_00506, NGFG_01605, a 

predicted protease, and NGFG_01643, an ABC transporter ATP-binding/permease protein. The 

gene knockout mutants for each gene were prepared in triplicate. Growth curves of the mutants in 

rich medium showed that the mutants grew similar to the wild type which indicated the loss of the 

genes did not influence the viability of the mutants (Fig. 3-13). However, the mutants within 

NGFG_01605 or NGFG_01643 showed a significantly decreased adherence and invasion in 
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infections under low phosphate conditions (Fig. 3-13B and C) and suggested a function in 

gonococcal adherence and invasion. Mutants within NGFG_00506 showed similar adherence 

when compared to the wild type, but were significantly decreased in their invasion rates (Fig. 

3-13A) which indicated that NGFG_00506 might be an invasion factor rather than an adhesin in 

this process. It is in agreement with TIS patterns described in Tn-seq data (Fig. 3-12). To confirm 

this result, a differential immunofluorescence assay was performed with mutants lacking either 

NGFG_01605 or NGFG_00506. Invasive bacteria in 50 randomly selected cells were counted. 

Whereas in the wild-type about one invasive bacterium per cell was detected, the mutants’ 

infection rates decreased to less than 0.5 bacteria per cell (Fig. 3-15, [163]). This confirmed that a 

loss of either NGFG_01605 or NGFG_00506 was required for efficient host cell invasion.  

With this technique other genes were tested. For example, mutants within the phospholipase D 

family protein NGFG_00827 were defective in adherence and invasion but also showed growth 

defects in rich medium. This was not surprising since NGFG_00827 was predicted to be essential 

in the input library (P=0.00262 in 438_A library, Table S1; Fig. 3-14B). Mutants lacking 

NGFG_01266 (hypothetical protein; P=0.05007 in 438_A library, Table S1) grew very slowly in 

PPM medium and the adherence as well as invasion of the recombinant bacteria were strongly 

reduced when compared to the wild-type (Fig. 3-14A).  

In the MS11 genome there are several duplicated genes. One of the repeated genes, the 

hypothetical protein NGFG_004218 was analyzed since a sequence alignment demonstrates that, 

NGFG_004218 has identical sequences as mafI gene of N. gonorrhoeae strain FA1090. The 

respective gene knockout mutants grew very well under the tested condition but adherence to and 

invasion into the host cells were decreased (Fig. 3-14C).  

In addition, some genes with P > 0.05 in the output libraries (Poutput) were tested as described 

above (Table 3.8). The mutants within these genes grew normally in rich medium and did not 

show any defect in adherence and invasion when compared to the wild type (data not shown).  
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Fig. 3-13 Growth, adherence and invasion phenotypes of mutants within NGFG_00506 (A), 

NGFG_01605 (B) and NGFG_01643 (C).  

Left, growth curves were performed in PPM using strains that were non-piliated and 

Opa-negative. The experiments were repeated two or three times independently with similar 

results and one representative data was shown.  

Right, adherence and invasion of the bacteria were determined by gentamicin protection assays 

under low phosphate conditions with a MOI of 50 for 30 min. The numbers of adherent or 

invasive bacteria were determined with rates of the wild type strain set to 100%. Data represent 

the mean ± SD of three independent experiments. ns: not significant, * p < 0.05, ** p < 0.01 and 

*** p < 0.001. 
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Fig. 3-14 Growth, adherence and invasion phenotypes of mutants within NGFG_01266 (A), 

NGFG_00827 (B) and NGFG_04218 (C). 

Left images show growth curves of the mutants performed in PPM medium using strains with 

colony morphology of non-pili and non-Opa expression. The experiments were repeated two or 

three times independently with similar results and one representative data was shown.  

Right images show adherent and invasive bacteria were determined by gentamicin assays under 

low phosphate conditions with a MOI of 50 for 30 min. The number of adherent or invasive 

bacteria with infecting of wild type strain was set as 100%. Data represent the mean ± SD of 

three independent experiments. ** p < 0.01. The experiment of NGFG_01266 mutants were 

repeated twice and one representative data was shown. 
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Fig. 3-15 Differential immunostaining demonstrates invasion deficiency of mutants within 

NGFG_00506 (A) and NGFG_01605 (B). Number of invasive bacteria was counted from 50 

randomly chosen cells using differential immunostaining and confocal microscopy [163]. 

Table 3.8 Genes tested for adherence or invasion defects, which are not in the candidate list 

Gene ID Gene function P-value 

(438_D)
a
 

P-value 

(438_E)
b
 

Growth 
c
 Adherence 

and invasion 

phenotype 
d
 

NGFG_00042 TonB dependent siderophore 

receptor 

0.68657 0.76619 Normal ns 

NGFG_01393 Hypothetical protein 0.83074 0.56661 Normal ns 

NGFG_01489 TonB-dependent receptor 0.96054 0.95802 Normal ns 

NGFG_01836 Membrane-bound lytic 

murein transglycosylase A 

0.13808 0.40787 Normal ns 

NGFG_02032 FKBP-type peptidyl-prolyl 

cis-trans isomerase FkpA 

0.94414 0.93860 Normal ns 

a 
438_D, output I library 

b 
438_E, output II library

 

c
 Growth curves were determined in PPM medium 

d 
Gentamicin assays were performed to test N. gonorrhoeae adherence and invasion 

ns: not significant, means the mutants did not show significantly defects in the adherence to or invasion 

into the host cells compared to the wild type strain 

3.8 NGFG_01605 is required for gonococcal internalization 

The growth in PPM medium of NGFG_01605 knockout mutants was similar to the wild type 

strain (Fig. 3-13B), however, under low phosphate conditions, the mutants showed a significant 

decrease in the adherence to and invasion into human epithelial cells as evidenced by gentamicin 

assays (Fig. 3-13B). Further, the ratio of invasive to adhesive bacteria was determined which was 
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smaller for the mutants when compared with the wild-type (Fig. 3-16A). This indicated that 

NGFG_01605 not only influences N. gonorrhoeae adhesion but also invasion into the host cells. 

This was further confirmed by differential immunofluorescence assay (Fig. 3-15B; [163]). In order 

to test if NGFG_01605 was required for the initial attachment to host cell, gentamicin assays were 

performed with piliated mutants. Compared to the wild type strain N2009, the mutants showed 

similar number of adherent bacteria, which demonstrated that NGFG_01605 did not affect 

pili-mediated initial attachment of N. gonorrhoeae to the host cells (Fig. 3-16B). 

 

Fig. 3-16 Ratio of invasive/adherent bacteria demonstrates involvement of NGFG_01605 in 

neisserial host cell invasion under low phosphate conditions but is dispensable for pili-mediated 

attachment. 

(A) Ratio of invasive/adherent bacteria was determined by a gentamicin assay. The ratio of wild 

type strain N2009 was normalized to 100%. 

(B) Chang cells were infected with piliated NGFG_01605 knockout mutants and the wild type 

strain N2009 at a MOI 10 for 1 h in HEPES medium.  

The adherent bacteria were quantified by gentamicin assay. The number of adherent wild type 

was set to 100%. The data depict the mean values ± SD of three independent experiments. ns: not 

significant. *** p < 0.001. 

Aside from PorBIA-mediated internalization, N. gonorrhoeae efficiently enters host cells through 

Opa proteins [64,65,69,74,76]. Two distinct Opa groups recognize different receptors on the 

surface of host cells. Opa50 binds to HSPGs and Opa51-60 interacts with CEACAMs (chapter 1.1.3). 

In order to test the involvement of NGFG_01605 in Opa-triggered invasion NGFG_01605 

deletion mutants were constructed that stably expressed Opa proteins. NGFG_01605 knockout 

mutants were conjugated with either N931 harboring pTH6a with an opa50 expression cassette or 

N313 containing an opa57 expression cassette on pTH6a, yielding strains N2020 and N2021, 

respectively (Table 2.1). To test the Opa50-triggered pathway, Chang cells were infected with 

Opa50 expressing NGFG_01605 mutants (N2020) or wild type strain. The numbers of adherent 
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and invasive bacteria were greatly decreased for N2020 (Fig. 3-17A). A similar result was found 

when CEACAM1-expressing HeLa cells were infected with Opa57-expressing N2021 (Fig. 3-17B). 

These results demonstrated that NGFG_01605 is also involved in Opa-triggered neisserial 

invasion of host cells. 

 

Fig. 3-17 NGFG_01605 functions in Opa-triggered N. gonorrhoeae internalization.  

(A) Chang cells were infected with Opa50-expressing strains in the 1640 medium at MOI 5 for 2 h 

for adherence and MOI 50 for 4 h for invasion.  

(B) HeLa CEA cells were infected with Opa57-expressing strains at an MOI of 5 for 2 h for 

adherence and MOI 50 for 2 h for invasion.  

The number of adherent or invasive wild type bacteria was set to 100%. The mean ± SD of three 

independent experiments is shown. ** p < 0.01, *** p < 0.001. 

NGFG_01605 encodes a protein of 451 aa (amino acid), here named AIF1 (Adherence and 

Invasion-associated Factor 1). Further research on the function of the AIF1 necessitated the 

generation of a specific antibody. An antigenicity prediction of AIF1 was performed 

(ImmunoGlobe GmbH) and showed that the C-terminal part of the protein staring from aa185 

(AIF1185-451aa) was optimal for protein expression and subsequent immunization of rabbits. The 

corresponding DNA sequence was cloned into the vector pET28b at BamHI and HindIII 

restriction sites, which fused an N-terminal His-tag to the protein. The vector was transformed in 
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E. coli soluBL21, however, the recombinantly expressed protein was insoluble even after mild 

induction by 0.25 mM IPTG at 16 °C overnight. So the inclusion bodies of recombinant protein 

were purified (chapter 2.2.6.6, Fig. 3-18A) and dissolved in 7 M urea, which was removed prior to 

immunization by electro-elution. The resulting anti-AIF1 serum specifically detected the 

NGFG_01605 protein in the wild type strain N2009 and no protein was detected in the gene 

knockout mutant (Fig. 3-18C). In order to improve the specificity, anti-AIF1 serum was affinity 

purified (Fig. 3-18D). Besides, the whole AIF1 protein fused with His-tag on the N-terminus was 

successfully purified for further study (Fig. 3-18B). 

 

Fig. 3-18 Purification of AIF1185-451aa inclusion bodies (A), recombinant AIF1 protein (B) and 

specificity of anti-AIF1 antibody before (C) and after (D) affinity purification. 

(A) Isolation and purification of AIF1185-451aa inclusion bodies. After induction with 0.25 mM 

IPTG at 16°C overnight, the recombinant E. coli were lysed by sonication. Most of the protein 

was detected in inclusion bodies in the pellet (P1). P1 was suspended in buffer containing 1 M 

urea, sonicated and centrifuged. A fraction of the protein was soluble in the supernatant (S2), 

whereas the majority was still unsoluble (P2). P2 was resuspended in buffer containing 7 M urea. 

After sonication and centrifugation, most of protein was found in the supernatant (S3). All the 

samples were separated by10% SDS-PAGE and stained with Coomassie blue. S: supernatant; P: 

pellet.  
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(B) Purification of recombinant AIF1 protein from E. coli soluBL21. The samples were separated 

by 10% SDS-PAGE and stained with Coomassie blue. S1: supernatant after sonication; P1: pellet 

after sonication; T: flow-through; W1-3: washing samples; E1-3: elution samples.  

(C and D) Specificity of anti-AIF1 antibody before (C) and after (D) affinity purification. 

Bacterial lysates of N2009 (wt) and N2009 ΔNGFG_01605 were separated by 10% SDS-PAGE 

and analyzed by western blotting using anti-AIF1 antibody (C: 1:500; D: 1:1000 dilutions).  

AIF1 functions in gonococcal adherence to and invasion into host cells (chapter 3.8), hence the 

expression dynamics of AIF1 during the infection was analyzed. The wild type strain N2009 was 

used to infect Chang cells at an MOI of 100. After 15, 30, 60 and 120 min, the cell-associated 

bacteria were collected and AIF1 expression was analyzed by Western blotting using 

affinity-purified anti-AIF1 antibody. With increasing infection time, AIF1 expression increased 

about three-fold (Fig. 3-19A). The transcription of NGFG_01605 during the infection was 

analyzed by real-time PCR with NGFG_01605-specific primers (L-01605-rt and R-01605-rt, 

Table 2.9). Contrasting the protein data, the qPCR demonstrated that the transcription of 

NGFG_01605 was nearly unaltered during the course of infection (Fig. 3-19B).  

 

Fig. 3-19 AIF1 expression increases at protein level during the course of infection, whereas 

transcript levels are unaltered.  

(A) Chang cells were infected with N2009 at a MOI of 100 and samples were collected at different 

time points. AIF1 expression was detected by anti-AIF1 antibody and quantified by ImageJ. The 

expression of PorBIA was used as loading control.  

(B) NGFG_01605 transcription during infection was analyzed by real-time PCR. N2009 was used 

to infect Chang cells at MOI 100. Total RNA from the samples was isolated and cDNA was 

synthesized and qPCR was used to determine transcript abundance. 5sRNA was used as internal 

standard. Experiments were repeated twice. 

The sequence analysis indicates no signal peptides in AIF1 (predicted by SignalP 4.1 Server, 

http://www.cbs.dtu.dk/services/SignalP/) [186] and the putative localization predicted by PSORTb 

(http://www.psort.org/psortb/) [187] is cytoplasmic. The amino acid sequence alignment indicated 

NGFG_01605 encoded protein AIF1 is highly conserved in Neisseria spp. and more than 96 % 
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sequence identity are found in most homologues (Fig. 3-20). The database searching using AIF1 

sequence shows its homologues occur in other bacteria of the family Neisseriaceae besides the 

genus Neisseria, such as the genera Kingella (e.g. U32 family peptidase in Kingella kingae ATCC 

23330 with 86%/93% sequence identity/similarity), Simonsiella (e.g. HMPREF9021_00333 in 

Simonsiella muelleri ATCC 29453 with 86%/93%) and Eikenella (e.g. HMPREF1177_00155 in 

Eikenella corrodens CC92I with 86%/92%). Besides the family Neisseriaceae, AIF1 homologues 

are identified in the bacteria belonged to other family in the order Neisseriales, even in other order 

of the class βproteobacteria the identity sequence up to 60%-80% [188,189]. It seems AIF1 is 

highly conserved in the evolution and may have important roles besides of virulence factor in 

gonococcal engulfment into host cells. 

 

Fig. 3-20 Multiple alignments of amino acid sequence of AIF1 with its homologues in Neisseria 

spp by ClustalX2 (Accession numbers of these sequences are in Supplementary Table 6.2).
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4 Discussion 

4.1 Transposon mutagenesis in N. gonorrhoeae 

DNA transposons are mobile DNA sequences in the genome and frequently found in many 

organisms including Neisseria. In Neisseria gonorrhoeae and Neisseria meningitidis, a small 

repetitive element, often called “Correia elements”, has transposon-like properties of 25 bp 

inverted repeats, a TA duplication at the target site and a functional integration host factor binding 

site [190-192]. DNA transposons take up a high percentage in their host genome and are 

considered to play important roles in genetic plasticity during evolution. Besides, the transposition 

achieves the translocation of linear DNA fragment to a new position by recombination process 

which is independent of homologous sequence or any other host factors. These properties enable 

DNA transposons to serve as useful and powerful genetic tool which have been successfully used 

for transgenesis and insertion mutagenesis in a wide variety of organisms in order to identify 

associated genes in pathogenesis of pathogens, analyze the functional and regulatory genome and 

even be suggested novel methods for gene therapy. 

The conjugative transposons Tn916 [193,194] and Tn1545 [195] from Gram-positive bacteria 

were adapted for mutagenesis in N. meningitidis. One study indicated that the conjugative 

transposon Tn916 can be introduced into different sites on the chromosome of recipient 

meningococci [193], but further research showed that in some cases only the tetM determinant 

was inserted [194]. Moreover, Thomas et al. constructed a Tn5 derivative containing a functional 

kanamycin resistance marker to perform in vivo transposon mutagenesis of N. gonorrhoeae [196]. 

The modified Tn5 is successfully integrated into the chromosome randomly but most insertions 

contained only incomplete transposons. Further it was found that the transposition is independent 

of transposase but requires RecA instead. This event was suggested to represent the outcome of 

some type of illegitimate recombination system in Neisseria rather than of transposition [196]. 

Another transposition system is shuttle mutagenesis with mini-transposon (mTn), mini-Tn3 [197]. 

There, neisserial chromosomal DNA is partially digested and cloned into plasmids which 

constitute a gene bank of Neisseria in E. coli. In E. coli, the neisserial DNA is mutated by 

mini-transposons containing an antibiotic marker for selection. Subsequently, the transposed 
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plasmids are isolated from E. coli and transformed into Neisseria where it inactivates the 

corresponding genes via allelic exchange [198]. This technique has been broadly applied in 

Neisseria with construction of a series of mini-transposons derivatives for different purposes, such 

as the creation of lacZ transcriptional fusions [199] in order to understand gene regulation 

mechanisms, or the production of phoA fusions [200] for identification of exported pathogenicity 

factors [201].  

Although complete genome sequences for several gonococcal strains are available [175,176], our 

understanding of gene function remains limited. The lack of a suitable method for saturation 

mutagenesis remains a major obstacle to the unraveling of the pathogenicity of N. gonorrhoeae. 

The methods described above are not suitable, because i) transposition by conjugative transposons 

is not perfectly stable [194] and displays only low transposition frequency, ii) transposition of GC 

with a Tn5 derivative in vivo does not work properly [196], and iii) although shuttle mutagenesis 

can be used for generation of a large pool of mutants, some neisserial genes are difficult to clone 

in or are even lethal for E. coli. 

In vitro transposition systems using DNA transposons like Tn7, Tn5 and Himar1 mariner have 

been successfully applied for the mutagenesis of naturally competent bacteria, such as 

Haemophilus influenza [174,202], Streptococcus pneumoniae [174] and also Neisseria 

meningitidis [203,204]. Thereby a PCR-amplified DNA segment or isolated chromosomal DNA is 

mutated in vitro by transposons and a purified transposase. After mutagenesis, the DNA is 

transformed back to the target bacteria. In the bacteria genes are inactivated via allelic exchange 

with their mutagenized counterpart. This technique makes the transposition stable due to the 

omission of transposase in vivo and does not require the cloning of target DNA in E. coli. 

Therefore it has developed into a standard for the generation of genome-wide mutagenesis 

libraries in many microorganisms [174,202-204]. Combined with PCR-based amplification 

methods and microarrays, such as transposon site hybridization (TraSH) [204] and 

transposon-based genetic footprinting [174,205], or using the NGS-based technologies, such as 

Tn-seq [148] or TraDIS [147], high-through transposon mutant libraries were applied to rapidly 

identify mutants with fitness deficits in various conditions to predict gene function and genetic 

interaction. 
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In this study, Tn5 was used to create a saturated transposon insertion library in N. gonorrhoeae. 

Neisseria chromosomal DNA was isolated and incubated with purified transposase and equal 

molarity of a Tn5 derivative containing a kanamycin resistance selection marker. Transposons 

were randomly inserted into chromosomal DNA. Subsequently, the transposed DNA was 

reintroduced into N. gonorrhoeae by natural transformation and the bacteria were selected for 

kanamycin resistance (Fig. 3-1A). In order to increase the efficiency of mutagenesis in Neisseria, 

the in vitro transposition and natural transformation to Neisseria are critical steps. Attempts with 

fragmentation of genomic DNA for in vitro transposition and/or introduction of Neisseria DNA 

uptake sequence (DUS) in Tn5 element did not improve the efficiency of mutagenesis in Neisseria 

(data not shown). Further it was found that the quality and purity of isolated genomic DNA is 

critical for the efficiency of mutagenesis since purification of genomic DNA with affinity columns 

led to a higher insertion frequency when compared to phenol-chloroform-based DNA extraction 

most likely because of the inhibition of transposition by remaining phenol or ethanol. Another 

important factor is the recover efficiency of the mutated DNA in the steps after transposition in 

vitro as well as after gaps filling up steps. Here, we adopt phenol-chloroform extraction and 

ethanol precipitation instead of column-based method in order to increase the recover efficiency 

(chapter 2.2.7). One round transformation of mutated DNA into N. gonorrhoeae yielded about 

20,000 kanamycin-resistant transformants. By pooling of mutants from six independent 

mutagenesis rounds the final library comprising about 100,000 colonies was obtained. Southern 

blot analysis confirmed that Tn5 transposition in N. gonorrhoeae is random and only one insertion 

site occurs in each bacterial colony [159]. Transposon insertion sites were then identified by 

Illumina sequencing (Fig. 3-5 and Table 3.1) and the data demonstrate that the library is the result 

of saturated mutagenesis in N. gonorrhoeae. Compared with the previous similar works in N. 

meningitidis, 14,000 Tn5 insertional knockouts [204] or 10,000 single colonies with Himar1 

mutagenesis [203] was obtained across the whole genome. In N. gonorrhoeae, Kline, K. A et al 

performed transposon mutagenesis on upstream of pilE gene to identify DNA sequences that 

facilitate pilin antigenic variation [206]. Chen, A et al performed in vitro saturating mutagenesis 

on porB gene to identify essential versus mutable residues in gonococcal porin [207]. However, 

this study is the first time to perform a genomic-scale mutational analysis of this important human 

pathogen N. gonorrhoeae. 
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Further, quality control of the sequencing reads made by Fast QC indicated that the sequence 

quality was sufficient for further analysis (Fig. 3-4). Then the bias of transposon insertions was 

tested by analysis of the distribution of TIS, for example, the distribution across the whole genome 

of MS11 (Fig. 3-5A), on the non-coding region and coding region (Fig. 3-5B), and the distribution 

in the single gene (Fig. 3-5C). All the indexes showed there was no bias of transposon insertions 

in our Neisseria genome library. Therefore, this saturate mutagenesis library combined with 

high-throughput sequencing system will be a powerful tool for the system-level understanding of 

gonococcal physiology and pathogenesis. 

4.2 781 essential genes in N. gonorrhoeae 

The emergence and spread of multidrug-resistant gonococci became a major public health 

challenge as the loss of treatment options will significantly increase morbidity and mortality in the 

future (chapter 1.1.2). A straight forward approach for the identification of potential new drug 

targets is the identification of essential gonococcal proteins. In order to screen the genes which are 

critical to survival of N. gonorrhoeae, the genome-wide transposon mutagenesis library in N. 

gonorrhoeae strain MS11 was screened for genes which demonstrated a relative depletion of TIS 

indicative of important functions for bacterial growth.  

As is shown in Fig. 3-7, almost no insertions were detected in the CDS and promoter of gene 

NGFG_00153, but in contrast the adjacent genes NGFG_00152 and NGFG_00154 displayed high 

insertion density. NGFG_00153 encodes triosephosphate isomerase, which is required for 

glycolysis, the main pathway of energy production [178]. The absence of TIS is the direct result of 

the inability of mutants within the locus to grow on selective agar plates. Hence these mutants are 

lost from the library leading to the absence of Tn-seq reads in this genomic region, and therefore 

demonstrate that NGFG_00153 is essential for Neisseria viability. Genes with strongly reduced 

TIS thus might be necessary for Neisseria growth or survival and therefore comprise candidate 

essential genes. Due to a very high coverage of TIS in most genes, a statistical analysis can clearly 

assess the essentiality of genes, by calculation of a P-value [152]. The algorithm, developed by 

Christian Remmele (Bioinformatics, University of Würzburg) assumes that the transposon is 

randomly and uniformly inserted across the whole genome and every mutant has the same fitness 
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under the selective condition. However, this evaluation does not consider polar effects of the 

transposon insertion on downstream essential genes in operons. Because the transcriptional 

terminator of Tn5 might terminate transcription of the downstream gene, the mutagenized gene 

might be false-positively identified as essential, although the absence of the gene product of the 

essential downstream gene led to the phenotype. To avoid this misclassification, the location of the 

genes in operons was taken into account. Only genes with P < 0.05 not within operon structures 

were analyzed which resulted in a candidate list of 480 genes (Fig. 3-6B; Table S1). Besides, the 

sequencing reads of duplicated genes are randomly and equally mapped to repeated DNA 

sequences on the genome, so the original and true insertion sites on single gene cannot be 

identified by this technology and individual validation is needed.  

Besides of the well-known essential genes required for bacterial fundamental biological processes, 

Neisseria-specific genes which have been previously identified as essential also were identified in 

our dataset, such as outer membrane proteins PorB [181,182], Omp85 [180], and the alternative σ 

factor RpoH [169]. Notably, 120 predicted essential genes are of as of yet unknown function, 

which might be candidates for targets of anti-gonococcal drugs. For testing the essentiality of 

these genes, conditional knockouts were performed. The native promoter of essential gene was 

exchanged with the IPTG-inducible promoter Ptrc and gene expression was conditionally inhibited 

by omission of IPTG in the growth medium. The assay confirmed essentiality of the ribosomal 

protein encoded by NGFG_00442-00443 for Neisseria survival (Fig. 3-8). By contrast, promoter 

replacement failed for the genes NGFG_01725 (PorB), NGFG_01315 and NGFG_00686. Possibly 

the promoter regions themselves could be essential or fulfill other important functions and thus do 

not allow to be exchanged (Table 3.3). Moreover, the mutants in the hypothetical proteins 

NGFG_02103, NGFG_04144 and NGFG_00007 still grew on agar plates lacking IPTG (Fig. 3-8). 

The gene expression of the mutants with or without IPTG induction was determined by RT-PCR 

(Fig. 3-9). The results indicate that the Ptrc promoter is leaky leading to a base level transcription 

of the Ptrc-controlled gene even in absence of IPTG, which in turn might provide be enough gene 

product to support Neisseria survival and growth. In other studies, the conditional knockout of 

Neisseria relA [168] and rpoH [169], employed two tandem lac operator sequences in order to 

enhance the repression of an uninduced promoter [208], but the leakage problem still existed. 
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Thus conditional knockouts can only be used for validation of essential genes whose products are 

needed in a large amount for bacteria survival, such as ribosomal proteins. Since the limitation of 

conditional knockout assay, genetic footprinting (Fig. 3-10) as well as gene knockout trials (Table 

3.4) were performed to experimentally verify essentiality of candidates genes identified by the 

Tn-seq screen. The experimental data were highly coincident with statistic predictions based on 

p-value of the genes for 11 essential genes and 17 non-essential genes with the exception of a 

single non-essential gene, NGFG_01266 (hypothetical protein; P=0.05007). NGFG_01266 

knockout mutants grew well on agar plates. However the growth curve measured in PPM medium 

indicated that the mutants are deficient in growing in liquid medium (Fig. 3-14A). Interestingly, 

this difference was reflected in the p-value, the calculation of which is based on the mutants’ 

growth on agar rather than growth in liquid medium.  

Some predicted essential genes might not only affect gonococcal fitness, but may lead to direct 

killing of the mutagenized bacteria. One example is the antitoxin gene NGFG_00971 (P=0.0011). 

The co-transcribed genes NGFG_00971 (hypothetical protein) and NGFG_00972 (hypothetical 

protein, P=0.13597) were identified as a toxin-antitoxin (TA) pair with the RASTA-Bacteria 

prediction tool (Rapid Automated Scan for Toxins and Antitoxins in Bacteria, 

http://genoweb1.irisa.fr/duals/RASTA-Bacteria) [209]. Inactivation of antitoxin gene 

NGFG_00971 may release the toxic activity of NGFG_00972 which will cause the death of 

NGFG_00971 mutants whereas mutants within the toxin gene NGFG_00972 will grow well. 

Other interesting examples are the predicted essential phage associated proteins, NGFG_00630 

(homologous to NGO0479 located on the prophage island NgoΦ1 of strain FA1090 [210]) and 

NGFG_02188 (homologous to NGO1116 on the prophage island of NgoΦ2 in strain FA1090 

[210]). NGO0479 and NGO1116 are homologues of the lambda repressor cI which reactivates a 

lysogenic phage. When NGO0479 and NGO1116 were expressed in E. coli, the expression 

inhibited the growth of E. coli and the propagation of phage lambda [210]. Besides, it was 

reported that phage repressors can be regulate host genes expression in the lysogenic cells [211]. It 

was found that NGO1116 was able to inhibit transcription of N. gonorrhoeae genes and 

Haemophilus influenzae HP1 phage promoters [210]. NGFG_01287 (homologous to NGO0509 of 

NgoΦ1 in FA1090 [210]) and NGFG_02185 (homologous to NGO1119 of NgoΦ2 in FA1090 
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[210]) belong to the transcriptional regulator family which is critical in the lysogenic stage of 

neisserial phages. Therefore these phage associated genes might regulate lysogenic phages or 

other neisserial genes which lead to death of mutants. 

4.3 Screening for DGI virulence factors 

To screen for N. gonorrhoeae adhesins and invasins involved in gonococcal internalization into 

human epithelial cell during low phosphate-dependent invasion (LPDI), a genome-scale ‘‘negative 

selection’’ technology was applied [146] (Fig. 3-11). A saturated Tn5 mutagenesis library was 

successfully established in N. gonorrhoeae N2009, a MS11 derivative strain expressing PorBIA, 

the hitherto only confirmed factor required for N. gonorrhoeae LPDI. A 100-fold representation of 

each mutant within the library was used for infection of Chang cells at an MOI 100 for 1 h. 

Adherent or invasive bacteria were recovered on agar and the recovered bacteria were used in 

subsequent repetitions of the infection assays in order to deplete mutants from the library that 

were unable to adhere to or invade into Chang cells. The chromosome-transposon junctions from 

these libraries were PCR-enriched, barcoded and sequenced by massively parallel sequencing. The 

sequencing reads were separated according to the barcode and mapped to the genome to identify 

the TIS (Table 3.4). Again, P-values were determined for each gene to evaluate the gene’s 

fitness/essentiality in the adherence or invasion process. Genes with P < 0.05 were hypothesized to 

be functional in LPDI. Among these the candidate essential genes (chapter 3.3) are excluded from 

further analysis, because the essentiality would cause depletion in the output libraries obtained in 

the LPDI invasion screen. Of the remaining 1745 non-essential genes 98 may function in 

gonococcal attachment to host cell under low phosphate condition (Table 3.6). These include type 

IV pilus-associated proteins, lipoproteins, integral membrane protein, diverse enzymes, 8 phage 

proteins and 15 hypothetical proteins. The 43 candidate invasion factors include various enzymes, 

6 unknown proteins, 3 phage proteins and 3 ABC transporter associated proteins (Table 3.7). LPDI 

is a complicated process starting with bacterial attachment to the host cell surface, engulfment by 

the cells and intracellular survival. The identified factors may participate in one of these three 

steps. This hypothesis was confirmed by validating a selection of candidates. Therein the 

candidate gene was deleted via allelic exchange and the resulting mutants were used within 
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gentamicin protection assay to test their adherence and their host cell invasion rates. The results 

indicated the hypothetical protein encoded by NGFG_00506 functions in the invasive process not 

adherent stage or intracellular survival. By contrast another hypothetical protein NGFG_01266 

suggests a more important role in gonococcal survival rather than in infection, whereas genes 

NGFG_01605, a predicted protease, and NGFG_01643, an ABC transporter ATP-binding 

protein/permease, participate in both adherence and invasion (Fig. 3-13 and 3-14).  

It is interesting that phospholipase D (PLD, encoded by gene NGFG_00827) mutants were 

impaired in their ability to adhere to and invade into epithelial cells in LPDI (Fig. 3-14B). A 

previous study showed that N. gonorrhoeae secretes PLD to augment complement receptor 3 

(CR3)-mediated endocytosis of primary cervical epithelial cells [212] by interacting with Akt 

kinase in a PI3 kinase-independent manner [213]. It remains to be elucidated, however, if PLD 

functions in gonococcal LPDI with a similar signaling pathway.  

Another interesting finding is that infection of the host cells with mutants in NGFG_04218 

(hypothetical protein) showed significant decrease in the number of the cell-associated bacteria 

(adherent and invasive bacteria, Fig. 3-14C). NGFG_04218 is a newly annotated gene (our 

unpublished observations) that has many copies in the MS11 genome. Notably, the 

reverse-complementary sequence of NGFG_04218 is homologous to mafI (NGO1066) in FA1090 

and the upstream region of NGFG_04218 is the coding regions of NGFG_04217 (MafA adhesin, 

homologous to NGO1067 in FA1090) and NGFG_00672 (MafB family adhesion protein, 

homologous to NGO1068 in FA1090). The deletion of NGFG_04218 may influence the 

expression of NGFG_04217 and NGFG_00672, but it is difficult to quantify the transcription of 

NGFG_04217 and NGFG_00672 within NGFG_04218 mutants because both genes have many 

copies in the MS11 genome. Multiple sequences homologous to both, mafB and the adjacent gene 

mafA, are present in the pathogenic species N. gonorrhoeae and N. meningitidis, and also in the 

commensal species N. lactamica. A previous study indicates that gonococci bind to 

gangliotetraosylceramide [GgO4, Gal(β1-3) GalNAc (β1-4) Gal(β1-4) Glc(β1-1)Cer], 

isoglobotriaosylceramide [Gal(α1-3) Gal(β1-4) Glc(β1-1) Cer], gangliotriaosylceramide [GgO3, 

GalNAc (β1-4) Gal(β1-4) Glc(β1-1) Cer] and lactosylceramide [LacCer, Gal(β1-4) Glc(β1-1) Cer]. 

The latter two glycolipids are found in glycolipid preparations from ME180 cells, an epithelial cell 
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line derived from a human cervical carcinoma and the glycolipid-binding proteins on the surface 

of GC are distinct from pili and Opa proteins [214,215]. The glycolipids, LacCer, GgO3 and 

GgO4 share lactose as the core sugar moiety. The GC gene encoding the GgO4-binding adhesin is 

identified with a size of 36 kDa [216] which might be MafA according to the molecular weight. 

Research within the laboratory of Thomas F Meyer revealed that the glycolipid adhesin is part of a 

multiple adhesin family (Maf) exhibiting different binding specificities [217]. Further, mafB2 

(NGO1587) was found up-regulated upon adherence to the endocervix-derived cell line A431 

which suggests requirement of mafB2 for infection [169]. A recent study further showed 

repression of MafA1 and MafA2 (encoded by NMB0375 and NMB0652 in MC58) by the 

regulator NadR in N. meningitidis was in response to signals present in human saliva thus enabled 

N. meningitidis to adapt to the relevant host niche [218].  

4.4 Characterization of NGFG_01605 

NGFG_01605 mutants showed strongly diminished adherence to and invasion into human 

epithelial cells in the PorBIA-triggered pathway under low phosphate conditions (Fig. 3-13B) as 

well as in Opa-dependent pathways (Fig. 3-17). In order to check whether the decreased number 

of recovered bacteria in infections was due to a decreased fitness of the mutants, the bacterial 

growth was monitored under different conditions. However, NGFG_01605 mutants did not show a 

growth phenotype in rich media such as GC agar plates (P=1 in the input library; Table S1) or 

PPM liquid medium (Fig. 3-13B). Further, the differential immunostaining assay confirmed that 

the decrease of recovered bacteria was indeed due to the deficiency in invasion rather than 

intracellular survival (Fig. 3-15B). Furthermore, the ratio of invasive to adherent bacteria as 

determined by gentamicin assays was less than half of the wild type strain, which demonstrated 

that NGFG_01605 was involved in gonococcal invasion as well as adherence (Fig. 3-16A). 

Pili-dependent initial attachment to host cells was not disturbed in NGFG_01605 mutants (Fig. 

3-16B), so that the influence of the knockout on neisserial adherence was due to other unknown 

reasons. Further, the transcription of NGFG_01605 at 15, 30, 60 and 120 min post infection was 

analyzed by real-time PCR and was found to remain unaltered at a similar level during the course 

of infection (Fig. 3-19B). By contrast the amount of AIF1 protein encoded by NGFG_01605 was 
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detectably increased (Fig. 3-19A) which suggested an involvement of AIF1 in gonococcal 

infection. The regulation of AIF1 is more likely at post-transcription level. 

AIF1 is annotated as a putative protease or U32 family peptidase with a hitherto unknown 

catalytic type. It is characterized by the consensus sequence 

E-x-F-x(2)-G-[SA]-[LIVM]-C-x(4)-G-x-C-x-[LIVM]-S containing two active site cysteine 

residues [219]. The prototype of this family is PrtC from Porphyromonas gingivalis. It has been 

characterized biochemically as a Ca
2+

-dependent collagenase and degrades type I collagen leading 

to periodontal tissue destruction [220]. Another interesting member of this group is a secreted 

collagenase, encoded by hp0169 in Helicobacter pylori. It has been identified and functionally 

verified as a new essential virulence factor for H. pylori stomach colonization. However, the 

alignment between these two proteins and AIF1 reveals only moderate sequence identity and 

similarity with PrtC (25%, 45%) and with HP0169 (37%, 54%). The predicted protease or 

collagenase activity of AIF1 should be confirmed by experimental verification. The known 

virulence factor with protease activity in Neisseria is IgA1 protease which is a secreted serine 

protease found in all pathogenic Neisseriae. IgA1 protease specifically cleaves mucosal 

immunoglobulin A1 to escape host immune response [100] and degrades LAMP1 to promote 

neisserial intracellular survival within epithelial cells [102,103]. However, a detailed sequence 

analysis indicates the absence of signal peptides in AIF1 and the putative localization predicted by 

PSORTb is cytoplasmic. Therefore, AIF1 is likely involved in gonococcal infection via regulation 

of bacterial intracellular factors.  

4.5 Prospects 

The identified essential genes from this work provide a large list of potential targets for the 

development of vaccines or anti-gonococcal drugs. For example, the candidate essential genes 

with enzymatic functions could be used to develop new drugs to inhibit their activity. Further, it 

will significantly reduce the occurrence of new resistance if the new drugs can target more than 

one essential gene products. In addition, the list of essential genes contains 120 genes with 

hitherto unknown function. Because these genes as of yet have no homologous genes in any 

organisms, their functions can not be predicted from homologues but it can be speculated via 

https://en.wikipedia.org/wiki/Collagen
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structural analysis of purified protein products and also the structural analysis might give some 

hits for new drug design. 

The data sets obtained within the present study revealed gonococcal factors involved in adherence 

to and invasion into host epithelial cells in a phosphate sensitive condition. The candidate genes 

have been validated and NGFG_01605 encoding a predicted protease was confirmed to participate 

in gonococcal engulfment to host epithelia cells not only in PorBIA-triggered pathway, but also in 

Opa50 and Opa57 mediated Neisseria internalization. Therefore, it might be a common and 

important factor involved in various routes of neisserial infections. The putative protease activity 

of AIF1, the NGFG_01605 gene product, should be tested with protease activity assays, such as 

azocasein assays, and gelatin or casein zymography. The localization of AIF1 can be investigated 

through immunofluorescence staining of reporter gene fusion protein or testing AIF1 expression in 

separated cell components. The interaction partner of AIF1 could provide critical information to 

elucidate the molecular mechanism works in the infection process, which may be investigated by 

co-immunoprecipitation. 

Further, the established method of Tn-seq in N. gonorrhoeae can be easily applied to identify 

other novel gonococcal factors in a variety of environments, such as different growth conditions, 

host cell death or some available infection models. The disadvantage of Tn-seq is supposed to be 

the PCR amplification step in template preparation which may introduce amplification bias or 

create mutations. Newly developed sequencing technologies, so called “third generation 

sequencing”, can perform single molecule sequencing to circumvent any amplification step [221]. 

Additionally, a set of improvements to the standard Illumina protocols may reduce bias and 

reliably obtain high yields of data [222]. Finally, the Tn5 transposon and in vitro transposition can 

be used in many other microorganisms, which are refractory to in vivo mutagenesis.
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6 Appendix 

6.1 Abbreviations 

A ampere 

aa amino acid 

Ac activator element 

AHU Arg-Hyx-Ura 

AIF1 adherence and invasion-associated factor 1 

APS ammonium persulfate 

Arg Arginine 

ASM acidic sphingomyelinase 

ATP adenosine triphosphate 

ble bleomycin 

bp base pair 

BSA bovine serum albumin 

C4bp C4b-binding protein 

cDNA complementary DNA 

CDS coding sequence 

CEACAM carcinoembryonic antigen cellular adhesion molecule 

CFU colony forming unit 

CHO Chinese hamster ovary cell 

CNBr cyanogen bromide 

cPCR colony polymerase chain reaction 

CR3 complement receptor 3 

C-terminal carboxy-terminal 

dA deoxyadenosine 

Dam deoxyadenosine methylase 

Dc dissociation element 

ddNTPs dideoxynucleotides 

DGI disseminated gonococcal infections 

dH2O distilled water 

DMEM Dulbecco's modified Eagle medium 

DMSO dimethyl sulfoxide 

DNA desoxyribonucleic acid 

dNTPs deoxynucleotides 

DOC sodium deoxycholate 

DTT dithiothreitol 

DUS Neisseria DNA Uptake Sequence 

E. coli Escherichia coli 

e.g. Example gratia, for example 
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ECL enhanced chemiluminescence 

EDTA ethylenediaminetetraacetic acid 

ES end sequences 

FCS fetal calf serum 

FI-dNTPs fluorescently-labeled nucleotides 

FU fluorescence unit 

GC Neisseria gonorrhoeae, gonococcus 

GC-kan GC agar plates supplemented with kanamycin 

gDNA genomic DNA 

Gp96 glycoprotein 96 

h hour 

H. pylori Helicobacter pylori 

Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HFF human foreskin fibroblast cells 

His histone 

HIV human immunodeficiency virus 

HRP horseradish peroxidase 

HSP heat shock protein 

HSPG heparan sulfate proteoglycan 

IE inside end sequences 

IF immunofluorescence staining 

IgA1 immunoglobulin A1 

IGB Integrated Genome Browser 

Inh transposition inhibitor 

IP immunoprecipitation 

IPTG isopropyl-D-thiogalactopyranoside  

kan kanamycin 

kb kilobase 

kDa kilodalton 

L liter 

LAMP1 lysosomal-associated membrane protein 1 

LB lysogeny broth 

LINEs long-interspersed nuclear elements 

LOS lipooligosaccharide 

LPDI Low phosphate-dependent invasion 

LPS lipopolysaccharide 

LTRs long terminal repeats 

M mol/L 

maf multiple adhesin family 

ME mosaic end sequences 

min minute(s) 

MOI multiplicity of infection 

MPS massively parallel sequencing 



  Appendix 

122 

 

mTn mini-transposon 

MWCO molecular weight cut-off 

N. gonorrhoeae Neisseria gonorrhoeae 

N. meningitidis Neisseria meningitidis 

N.lactamica Neisseria lactamica 

NADH nicotinamide adenine dinucleotide 

NGS next generation sequencing 

NIH 3T3 mouse embryonic fibroblast cells 

N-terminal amino-terminal 

OD optical density 

OE outside end sequences 

Omp85 outer membrane protein 85 

OMV outer membrane vesicle 

Opa opacity-associated proteins 

P
-
 non-piliated phenotype 

P
+
 piliated phenotype 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate-buffered saline 

PC-PLC phosphatidylcholine-specific phospholipase C 

PFA paraformaldehyd 

PI(3,4,5)P phosphatidylinositol 3, 4, 5-phosphate 

PI3K phosphatidylinositol-3’ kinase 

PID pelvic inflammatory disease 

pilE pilin expression locus 

pilS silent pilin loci 

PKD1 PKCμ, protein kinase C μ 

PLC ɣ1 phospholipase Cɣ1 

PLD phospholipase D 

PMN polymorphonuclear leukocyte 

PorB outer membrane porin protein B 

PorBIA PorB serotype A 

PorBIB PorB serotype B 

Porin pore-forming proteins 

PPM proteose peptone medium 

P
s
 S-pilin, a soluble form of pilin 

PVDF Polyvinylidene difluoride 

qRT-PCR quantitative real-time PCR 

Rac1 ras-related C3 botulinum toxin substrate 

RNA ribonucleic acid 

rpm revolutions per minute 

RT-PCR reverse transcription PCR 

s second 

SD standard deviation 
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SDS sodium dodecyl sulphate 

SINEs short-interspersed nuclear elements 

siRNA small interfering RNA 

SREC-I scavenger receptor expressed on endothelial cells I 

sRNA small non-coding RNA 

STI sexually transmitted infection 

str streptomycin 

TbpB transferrin receptor protein 

TCA trichloroacetic acid 

TE transposable element or transposon 

TEMED tetramethylethylenediamine 

Tfp type IV pili 

TIM triosephosphate isomerase 

TIRs terminal inverted repeats 

TIS transposon insertion site 

Tn transposon 

Tnp transposase 

Tn-seq transposon sequencing 

TraDIS transposon directed insertion-site sequencing 

TraSH transposon site hybridization 

TSD target site duplication 

U enzyme unit 

UEC urethral epithelial cell 

UV ultra violet 

V volt 

v/v volume per volume 

VDAC mitochondrial voltage-dependent anion channels 

VRPs viral replicon particle 

w/v weight per volume 

WB western blotting 

WHO World Health Organization 
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6.2 Supplementary materials 

Table 6.1 Available N. gonorrhoeae genome sequences 

Strain GenBank ID 

N. gonorrhoeae FA1090 AE004969.1 
a
 

N. gonorrhoeae NCCP11945 CP001050.1 [175] 

N. gonorrhoeae NCCP11945 plasmid pNGK CP001051.1 

N. gonorrhoeae TCDC-NG08107 CP002440.1 [176] 

N. gonorrhoeae TCDC-NG08107 plasmid pNGTCDC08107 CP002441.1 

N. gonorrhoeae MS11 CP003909.1 
b
 

N. gonorrhoeae MS11 plasmid pMS11 CP003910.1 

a
 submitted by University of Oklahoma, unpublished. 

b
 submitted by Broad Institute, release date 10/19/2012. 

Table 6.2 AIF1 homologues from different Neisseria spp used for multiple alignments 

Strain Accession number 

Neisseria mucosa WP_003748589.1 

Neisseria subflava WP_004519683.1 

Neisseria flavescens WP_003684307.1 

Neisseria lactamica WP_004048244.1 

Neisseria meningitidis WP_0022236041.1 

Neisseria cinerea WP_003677710.1 

Neisseria polysaccharea WP_003753715.1 

Neisseria gonorrhoeae  EEZ48438.1 

Neisseria macacae WP_003777098.1 

Neisseria sicca WP_003768744.1 

Neisseria elongata WP_003771571.1 

Neisseria bacilliformis WP_007342950.1 

 

  

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AE004969
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6.3 Publications and presentations 

Publications 

Christian W. Remmele*, Yibo Xian*, Marco Albrecht*, Michaela Faulstich, Martin Fraunholz, 

Elisabeth Heinrichs, Marcus T Dittrich, Tobias Muller, Richard Reinhardt and Thomas Rudel 

(2014). Transcriptional landscape and essential genes of Neisseria gonorrhoeae. * authors 

contributed equally, Nucleic Acids Research, in revision 

Michaela Faulstich, Franziska Hagen, Elita Avota, Ann-Cathrin Winkler, Yibo Xian, Sibylle 

Schneider-Schaulies and Thomas Rudel (2014). Neutral sphingomyelinase 2 is a key factor for 

invasion of N. gonorrhoeae associated with disseminated infection. Cellular Microbiology, in 

revision 

Patent applications 

Yibo Xian, Christian W. Remmele, Marco Albrecht, Michaela Faulstich, Martin Fraunholz and 

Thomas Rudel (2014). Essential genes of Neisseria gonorrhoeae as candidates for drug or vaccine 

development. patent pending 

Poster Presentations 

Yibo Xian, Christian Remmele, Michaela Faulstich, Martin Fraunholz, Richard Reinhardt and 

Thomas Rudel. A high density transposon library identifies essential genes in Neisseria 

gonorrhoeae. 3rd Mol Micro Meeting 2014, Wuerzburg 
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Thomas Rudel. Pool screen of a gonococcal high density transposon library to identify novel 

virulence factors. XVIII
th

 International Pathogenic Neisseria Conference (IPNC) 2012, Wuerzburg 

Yibo Xian, Michaela Faulstich, Marco Albrecht, Christian Remmele, Martin Fraunholz and 

Thomas Rudel. Pool screen of a gonococcal high density transposon library to identify novel 
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