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Introduction

The study of quantum many-particle physics has lead to the discovery of many new states of
matter over the past decades. Experimental discoveries like superfluidity, the Meissner effect,
the Kondo effect, and the fractional quantum Hall effect, have puzzled physicists for a long time
and did not fit into the earlier physical picture. However, they finally all lead to important new
concepts in many-particle physics.

Landau has shown that phase transitions can be understood in the framework of broken sym-
metries, which can be described in terms of order parameters. Furthermore, he has shown in
his theory of Fermi liquids, that the single-particle concept is still valid for interacting many-
particle systems close to the Fermi surface, if the electrons are replaced by quasiparticles, which
are adiabatically connected to the free non-interacting electronic states.

In a metal, the kinetic energy dominates the physical properties and the quasiparticle states
can be described by delocalized plane waves. On the other hand, if the potential energy dom-
inates, the quasiparticles become localized for a filling of one electron per lattice site. Many
ferromagnets can be perfectly described by localized magnetic moments. In cases, where the
kinetic energy is of the same order of magnitude as the potential energy, or in cases where de-
localized electrons interact with local magnetic moments, like in heavy fermion systems, it is
difficult to find an appropriate starting point.

Instead, collective behavior and emergent properties of matter start to play an important role
[1]. Emergent properties are well known in biology and mean, that at each level of complexity,
entirely new properties of the quantum many-particle system appear. For the fractional quantum
Hall effect, this lead to the concept of fractional statistics and composite fermions.

Recently, the possibility to create Bose-Einstein condensates (BEC’s) with a macroscopic
number of atoms or molecules [2–6] has renewed the interest in the mesoscopic physics, where
the quantum world comes into touch with our everyday world. Many of the new concepts of
quantum many-particle physics have also lead to new developments in other fields of physics,
like cosmology [1]. Furthermore, they also triggered many new possible technical applications
in the field of quantum computing, quantum encryption, sensor devices, and energy technology.

In the following, we concentrate on the phenomenon of superconductivity. For about 100
years, it is known that some metals become superconducting at very low temperatures. These
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2 INTRODUCTION

metals completely loose their resistance for an electric current and expel any applied magnetic
field (Meissner effect). The phenomenology of Ginzburg and Landau, and later the microscopic
theory of Bardeen, Cooper and Schrieffer (BCS), were able to provide a satisfactory explanation
of these conventional low-temperature superconductors in terms of gauge-symmetry breaking
and the macroscopic occupation of an electron-pair (Cooper-pair) wave function, where the
pairing-interaction is mediated by lattice distortions (phonons) [7].

About 20 years ago, high-temperature superconductors were discovered. The common prop-
erty of all high-temperature superconductors are Copper-oxide (CuO2) planes, which are re-
sponsible for their superconducting properties. All high-temperature-superconducting cuprates
are doped Mott insulators with numerous competing orders in their ground state [8–12]. Mott
insulators differ from conventional band insulators in that the strong on-site Coulomb repulsion
makes a double occupancy of two electrons per lattice-site energetically unfavorable. As a re-
sult, the electronic system behaves like an insulator rather than a good conductor at half-filling.
An important signature of doped Mott insulators is the strong correlation among the charge car-
riers and the high sensitivity of their ground state to the doping level. In cuprates, the ground
state of the undoped (half-filled) perovskite oxide is an antiferromagnetic Mott insulator.

More than fifteen years after their discovery, the high-temperature superconductors (HTSC)
and the microscopic mechanism leading to superconductivity is still a central and unsolved
problem in solid-state research, as can be seen from the large amount of controversial papers,
appearing every week on this subject [13–17]. One reason is the not yet achieved connection of
the microscopic interactions at the level of electrons and ions at high energy and high tempera-
ture, with the “emerging phenomena” at lower temperatures, i. e. competing and nearly degen-
erate order, like antiferromagnetism,d-wave superconductivity,d-density-wave order, charge
order, etc.

What one needs to do is to correctly bridge high to low energies and eventually solve the
ground-state problem. Up to now, it is not obvious how one can systematically apply the
renormalization-group idea to integrate out the irrelevant degrees of freedom, due to the dif-
ferent competing orders, which are not separated by distinct energy scales, and which might be
a sign for an unstable fixpoint controlling the phase diagram of the cuprates.

Instead of trying this seemingly impossible task, one could alternatively assume a certain
low-energy order to be realized in the cuprates and explore the consequences of this order. A
detailed comparison between theory and experiment then allows to confirm or rule out this order
in the cuprates. In this thesis, we proceed along this line and use a phenomenological BCS-like
model to discuss the possibility of a phase fluctuation regime in the underdoped cuprates, which
is characterized by local Cooper-pairs without global phase coherence. The fluctuations of the
phase were treated by means of a Monte Carlo simulation of a classicalXY action.
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Phase-fluctuation scenario

A number of different experiments indicate a suppression of low-frequency spectral weight in
the underdoped cuprates below a characteristic temperatureT ∗, that is higher than the supercon-
ducting (SC) transition temperatureTc [18–27]. This striking behavior — termed pseudogap —
initiated a variety of proposals as to its origin [28–36], since the answer to this question may be
a key ingredient for the understanding of high-Tc superconductivity. One of these proposals is
that the pseudogap arises from phase fluctuations of the superconducting gap [32].

Experimental findings

The phase-fluctuation scenario of the pseudogap is motivated by two experimental observations.
Firstly, the pseudogap has the same size as the SC gap and continously evolves out of the SC
gap aboveTc [24, 26]. Secondly, in the underdoped cuprates, the SC transition temperatureTc
does not scale with the SC gap size∆sc(T = 0), as expected from the conventional BCS theory,
but rather scales with the zero-temperature superfluid densityρs(0) [37]. On the other hand, the
onset temperature of the pseudogapT ∗ scales with the SC gap size∆sc(T = 0).

However, the pseudogap temperatureT ∗ is not a sharp transition line. Different experiments
yield different results forT ∗. Therefore, it is rather a smooth crossover line where fluctuations
of different kinds are getting large enough to become experimentally detectable. In fact, there
exist at least two pseudogaps in the underdoped cuprates. Besides the low-energy pseudogap
of size∆sc, also a high-energy pseudogap was observed in photoemission experiments, which
is of the order of the magnetic exchange energyJ and associated with local antiferromagnetic
fluctuations [38].

Phase-fluctuation model of Emery and Kivelson

Many pseudogap phenomena can be understood by the assumption that the low-energy pseu-
dogap is of superconducting origin. Emery and Kivelson [32] pointed out that two ingredi-
ents are necessary for superconductivity: pairing of the electrons into Cooper-pairsand global
phase coherence among the pairs (see Fig. 1.1). The pair-binding temperature can be obtained
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Figure 1.1: Sketch of the cuprate phase diagram. The superconducting dome is a result of two
temperature scales. The pairing temperature TMF

c ∼ ∆sc, below which local pairs form, and the
phase ordering temperature Tϕ ∼ ρs(0)/m∗, below which global phase coherence among the
pairs is established. The pairing strength and accordingly ∆sc decrease with increasing doping,
whereas the superfluid density ρs(0) increases with number of doped charge carriers. In the
doping regime, where Tϕ . TMF

c , phase fluctuations give rise to pseudogap phenomena above
Tc.

from the standard BCS mean-field theory and is proportional to the SC gap size:TMF
c ∼ ∆sc.

On the other hand, the phase ordering temperatureTϕ, below which global phase coherence
among the pairs is established, is determined by the zero temperature superfluid densityρs(0):
Tϕ ∼ ρs(0)/m∗.

In conventional metallic superconductors and in the overdoped cuprates, the density of su-
perconducting electrons is large. There, one hasTMF

c � Tϕ and consequently with pairing
one immediately obtains phase coherence among the pairs (see Fig. 1.1). Therefore, the tran-
sition temperatureTc to the superconducting state is solely determined by the BCS mean-field
pairing-temperature (Tc ' TMF

c ).

On the other hand, the underdoped cuprates are in close proximity to the Mott insulating
state. Accordingly they have a very small charge carrier density. HenceTϕ . TMF

c and the SC
transition temperatureTc is determined by the phase ordering temperatureTϕ. Thus, starting
from high temperatures, local pairs form at a temperatureT ∗ ' TMF

c , well above the actual
SC transition temperatureTc ' Tϕ, where phase coherence among these pairs finally sets in
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(see Fig. 1.1). In the intermediate temperature regime betweenTMF
c ≡ T ∗ andTϕ ≡ Tc, phase

fluctuations give rise to pseudogap phenomena.

BCS, BEC, and phase fluctuations

The phase fluctuation scenario differs from the conventional BCS scenario as well as from the
scenario of a Bose-Einstein condensation (BEC) of tightly bound pairs. In metals, the Cooper-
pair radiusξ0 is much larger than the distanced between the pairs (ξ0� d). Due to the strong
overlap of a vast number of pairs, pair fluctuations are unimportant and the transition to the SC
state can be described by the BCS mean-field theory.

In cases, where the pairing potential is very large, the Cooper pairs are tightly bound and
can approximately be considered as bosons.1 Hence the term Bose-Einstein condensation for
the SC transition. Since in the strong coupling limit, the pair sizeξ0 is much smaller than the
distanced between the pairs (ξ0� d), pair fluctuations start to become very important.

The pair fluctuations are usually treated in a perturbative way by taking into account dia-
grams beyond the BCS mean-field approximation. These are the famous Aslamazov-Larkin
diagrams, describing short-time Cooper-pair fluctuations aboveTc, the Maki-Thompson dia-
grams, describing the Andreev reflection of single-particle excitations by SC fluctuations, and
finally the density of states diagrams, describing the suppression of the density of states of the
normal charge carriers due to Cooper-pair fluctuations.

In the phase fluctuation scenario for the underdoped cuprates, we are in the intermediate
coupling regime withξ0 ∼ d, in between the BCS and BEC limits. Furthermore, due to the
proximity to the Mott insulating state, the superfluid density is strongly suppressed. Hence, the
dominating fluctuation channel is that of the phase of the Cooper pairs. In fact, it is assumed,
that phase fluctuations are the only fluctuations channel up toT ∗. This anomalously large
phase-fluctuation regime cannot be understood within a simple strong-coupling Ansatz. It is
believed (see Sec. 2.3), that bad screening of the charge carriers and competing orders are a
possible reason to stabilize local pairs with fluctuating phases up to highest temperatures. The
justification and consequences of this assumption will be discussed in great detail in Chap. 2.

Analogy to magnetism — local moments

The phase fluctuation scenario has an analogy in the theory of itinerant electron ferromagnetism
[39]. Within the Stoner mean-field description, the ferromagnetic state appears below the Curie
temperatureTC . The magnetic moments leading to the uniform homogeneous magnetism are
absent aboveTC and form exactly atTC , concomitant with the macroscopic ferromagnetic
phase.

However, in band-ferromagnets like Fe, Co and Ni, there is evidence for rather strong local
magnetic moments already in the paramagnetic phase aboveTC . These materials rather resem-
ble a picture, where at a temperatureT > TC , disordered local magnetic moments are formed,
with 〈s2

i 〉 6= 0 and〈si〉 = 0. The Curie temperatureTC is then given by the temperature, where
the local magnetic moments align co-linear and〈si〉 6= 0.

1This analogy is not exact, since Cooper pairs do not satisfy the commutation relation for bosons.
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The formation of local magnetic moments aboveTC is completely analogous to the formation
of local pairs in the phase-fluctuation picture aboveTc. The phase transition to the ferromagnetic
state atTC , where all local moments are getting aligned along the same direction and which is
associated with the spontaneous breaking of spin rotation symmetry, is completely analog to the
transition into the superconducting state atTc within the phase-fluctuation model, where global
phase coherence among the pairs sets in and which is associated with the spontaneous breaking
of gauge symmetry.

Note that the formation of local magnetic moments or the formation of a local pairs with
fluctuating phases is no phase transition, since it is not accompanied by a spontaneous symmetry
breaking. It is rather a crossover temperature, below which the different fluctuations are getting
important. There exist other theories of the pseudogap (see below), which assume a phase
transition.

Further experimental support for phase fluctuations

Besides the already mentioned observation of a pseudogap in the excitation spectrum above
Tc, which has the same size as the SC gap, and the fact thatTc scales with the superfluid
density, there are various other findings strongly supporting a phase-fluctuation scenario for
the pseudogap in the underdoped cuprates. For example, high-frequency conductivity exper-
iments have indicated a SC scaling behavior of the optical conductivity already aboveTc in
underdoped Bi2Sr2CaCu2O8+δ (Bi2212) [40] and photoemission experiments revealed a close
connection between the SC(π,0)-photoemission peak and the superfluid density [41]. The SC
(π,0)-photoemission peak was observed even slightly aboveTc in underdoped Bi2212. These
experiments will be discussed in greater detail in Sec. 4.3 and Sec. 3.2.

Furthermore, a strongly enhanced Nernst signal was measured aboveTc in underdoped sam-
ples of La2−xSrxCuO4 (LSCO), which is usually associated with the presence of vortices in the
superconducting state and therefore implies thatTc corresponds to a loss of phase rigidity rather
than a vanishing of the pairing amplitude [27]. The evolution ofTc with electron irradiation in
underdoped YBa2Cu3O7−δ (YBCO) also emphasizes the importance of phase fluctuations [42].

Finally, detailed measurements of the doping dependence of the low-temperature heat con-
ductivity in LSCO and YBCO clearly show that the quasiparticle excitation gap has a pure
d-wave form throughout the cuprate phase diagram [43]. Moreover, no sign was found of a
possible (quantum) phase transition or a different order parameter being responsible for the
pseudogap [43].

Alternative scenarios

As already said, the pseudogap temperatureT ∗ is not a sharp transition line, but rather a smooth
crossover line where fluctuations of different kinds are getting large enough to become de-
tectable. Alternatively, it could also be a phase transition line, which is strongly broadened by
disorder. A possible order compatible with the experimental observations is ad-density wave
(DDW) order [28]. However, until now, no clear evidence for a quantum critical point or a
phase transition was found [43].
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On the other hand, if the pseudogap is only caused by fluctuations, no clear experimental
identification of the type of fluctuations might be possible due to the near degeneracy of the
various competing orders. Depending on the temperature, doping and material, contributions
from spin fluctuations, SC phase fluctuations, dynamic spin/charge-stripes, DDW fluctuations,
etc., might be observed.

Different theoretical models

On the theoretical side, the phase fluctuation scenario was explored by various different ap-
proaches. Franz and Millis calculated the single-particle spectral weight by a semi-classical
coupling of the supercurrent to the quasiparticles, which leads to a Doppler-shifted excitation
spectrum [34]. A similar perturbative approach was used by Kwon and Dorsey to calculate
several single-particle properties [35].

Franz and Tĕsanovíc exploited a connection between the phase action of a phase fluctuation
model for the cuprates and quantum electrodynamics in(2+ 1) dimensions (QED3) to obtain
the single particle excitation spectrum and quantum critical behavior of their model [44]. Herbut
has shown, using the same approach, that the topological vortex defects in a phase fluctuation
model can lead to an incommensurate spin-density wave [45].

In this thesis, we introduce a phenomenological phase fluctuation model, which allows the
exact calculation of the single-particle excitation spectrum,as well as the calculation of optical
and magnetic properties. The advantage of using asingle model with afixed set of parameters
is that it gives a more coherent picture of the role of phase fluctuations in the pseudogap regime
of the cuprates.



2
Model and techniques

In this chapter we introduce a BCS-like Hamiltonian that accounts for phase fluctuations of the
superconducting order parameter. The fluctuations of the phase have eventually been treated
by means of a Monte Carlo simulation, where the statistical weight of each phase configuration
is given by a classicalXY action. Results of this simulation are shown in chapters 3 to 5.
Before discussing this approach, we first address the more general case and demonstrate, how
one can obtain amicroscopic phase action from the BCS-like Hamiltonian, which includes the
full quantum dynamics of the phase and under which conditions this more generalmicroscopic
action reduces to aXY -like action.

Furthermore, we discuss, how one can — in principle — obtain a quantumXY action for
the phase by coarse graining the microscopic action on the scale of the Cooper-pair coherence
length ξ0. This coarse-grained quantumXY action no longer depends on the microscopic
details of the system and the only parameter left is the superfluid density or phase stiffness.
After a discussion of the general properties of theXY model, we show how to fix the parameters
of our phenomenological phase fluctuation model. Finally, it is explained, how the model is
implemented and solved numerically.

Our general goal is to derive a simple model, that contains only two free parameters (Tc and
T ∗, in units of the energy scalet), but nevertheless captures all the essential physics of the phase-
fluctuation scenario. In particular, we are interested in the coupling between phase fluctuations
and the electronic degrees of freedom. The model will be solved exactly, without any further
approximations or readjustments of parameters. Our idea is to compare the results of this model
with a variety of experiments in the pseudogap region of the underdoped cuprates, in order to
explore the notion, that the pseudogap and related phenomena observed in this region of the
phase diagram, have their origin in phase fluctuations of the superconducting order parameter.

In the following sections we use units such that~ = c = kB = 1 and measure all energies in
units oft, unless otherwise specified.

8



2.1. HAMILTONIAN 9

2.1 Hamiltonian

The Hamiltonian, we want to consider, can be separated into two parts

H =H0 +H1, (2.1)

where the first partH0 is the Hamiltonian of tightly-bound non-interacting electrons on a two-
dimensional (2D) square lattice

H0 =−t ∑
〈i j〉,σ

(c†
iσcjσ+ c†

jσciσ)− t′ ∑
〈〈i j〉〉,σ

(c†
iσcjσ+ c†

jσciσ)−µ∑
i,σ
niσ. (2.2)

Here,c†
iσ (ciσ) creates (annihilates) an electron of spinσ on thei th site of the 2D square lattice

andniσ = c†
iσciσ is the number operator.t andt′ denote effective nearest-neighbor and next-

nearest-neighbor hopping-terms andµ is the chemical potential. The angles〈· · · 〉 and〈〈· · · 〉〉
indicate sums over nearest-neighbor and next-nearest-neighbor sites of the 2D square lattice,
respectively. In what follows, we set in most casest′ = 0.

The second part of the HamiltonianH1 contains a BCS-like interaction, which for thed-wave
case is given by

H1 =−g∑
i δ

(∆i δ〈∆†
i δ〉+∆†

i δ〈∆i δ〉), (2.3)

with

∆†
i δ =

1√
2

(c†
i ↑c

†
i+δ↓− c

†
i ↓c

†
i+δ↑) (2.4)

andδ connecting nearest-neighbor sites. The coupling constantg stands for the strength of the
effective next-neighbordx2−y2-wave pairing-interaction. The origin of this pairing interaction
is unimportant for the further calculation. It can be either of pure electronic origin, like spin
fluctuations, or phonon mediated. The only important thing is, that there exists an effective
pairing interaction, that produces a finite localdx2−y2-wave gap as one goes below a certain
temperatureT ∗. In contrast to conventional BCS theory, we consider the pairing-field amplitude
not as a constant real number, but rather as a complex number

〈∆†
i δ〉=

1√
2
〈c†

i ↑c
†
i+δ↓− c

†
i ↓c

†
i+δ↑〉= ∆eiΦiδ , (2.5)

with a constant magnitude∆ and a fluctuating bond-phase fieldΦiδ. In order to get a description,
where thecenter of mass phases of the Cooper pairs are the only relevant degrees of freedom,
we write thedx2−y2-wave bond-phase field in the following way

Φiδ =
{

(ϕi +ϕi+δ)/2 for δ in x-direction
(ϕi +ϕi+δ)/2+π for δ in y-direction,

(2.6)

whereϕi is thecenter of mass phase of a Cooper pair localized at lattice sitei.
As already said at the beginning, this model has been solved by means of a Monte Carlo

simulation, where the phase configurations are constructed from a classicalXY action (see
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Secs. 2.4 and 2.5). The validity of this approach will be discussed in great detail in Secs. 2.2
and 2.3. There, we derive amicroscopic quantum phase action for our Hamiltonian and discuss,
how acoarse-grained quantumXY phase action can be obtained, which only depends on the
superfluid density. So far, this means that we consider all high-energy degrees of freedom,
including those responsible for the magnitude of the local pairing gap and internaldx2−y2-wave
structure of the Cooper pairs, as effectively being integrated out.

Since it is still not clear, whether the electron doped cuprates ares-wave ord-wave super-
conductors and because phase fluctuations might also be important for these materials, due to
the proximity to the Mott insulating phase, we consider in addition to thed-wave form of the
superconducting gap, also ans-wave on-site pairing interaction of the form

H1 = U∑
i
(ci ↓ci ↑ ∆ eiϕi + c†

i ↑c
†
i ↓ ∆ e−iϕi). (2.7)

This pairing interaction can be viewed as being derived from a negativeU (U < 0) attractive
Hubbard model. Additionally, comparing ourd-wave results with those obtained for thes-wave
gap, allows for a deeper understanding of the general phase fluctuation problem.

All the interaction terms (Eqs. (2.3) and (2.7)) can formally be obtained from a general many-
body Hamiltonian, with the help of a Hubbard-Stratonovich transformation in the pairing field
[46]. After the Hubbard-Stratonovich transformation, one makes a saddle-point (BCS) approx-
imation for the magnitude of the pairing field, but then takes into account phase fluctuations
around this mean-field saddle-point. The magnitude of the superconducting (SC) mean-field
pairing-gap∆sc can be determined by the usual BCS gap-equation. The single-particle exci-
tation gap at the Fermi surface has the maximum valueEmax

gap = 2∆sc. For thed-wave case it
is related to the pairing amplitude, defined in Eq. (2.5), by∆sc = 2

√
2g∆ and for thes-wave

case by∆sc = U ∆, with ∆ defined in Eq. (2.7). The size of the quasi-particle excitation gap
∆sc, again determines the mean-field transition temperatureTMF

c , which we take as pseudogap
temperatureT ∗.

Thus, our Hamiltonian has all ingredients necessary for the phase fluctuation scenario: below
a temperatureT ∗, a finite local SC gap develops, however due to phase fluctuation of the SC
order parameter, the true SC transition is suppressed to a much lower temperatureTc < T ∗,
where phase coherence finally develops. This model Hamiltonian contains, in principle, only
one tunable parameter, i. e. the size of the SC gap∆sc in units oft and thereforeT ∗. The hopping
parametert only defines the overall energy scale of the Hamiltonian. The partition functionZ

is then given by

Z = Tre−βH . (2.8)

Here one has to take the trace over all fermionic statesand the phase variablesϕi . In the
following section we illustrate different ways to carry out this procedure. Eventually, we will
make a quenched average over the phase degrees of freedom, which is done by means of a
Monte Carlo importance sampling procedure of a classicalXY phase action.
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2.2 Derivation of effective phase-action

In this section, we discuss different methods to calculate the partition function (Eq. (2.8)). We
first start with a mixed representation, that explicitly contains the fermionic and phase degrees
of freedom in the partition function and show how the trace over the phase-field could be per-
formed, in principle, with the help of a (quantum) Monte Carlo (MC) simulation. We then
introduce an effective scheme, to construct an approximativemicroscopic phase-only action
from our Hamiltonian, which is based on a cumulant expansion of the partition function. This
effectivemicroscopic action can be expressed in terms of pair-correlation functions. Then we
go one step further and discuss, how acoarse-grained XY phase-only action can be obtained,
which only depends on the superfluid density.

2.2.1 Mixed phase-field and fermionic action

In section 2.1 we have neglected the time dependence of the phase field to get a Hamiltonian
description. In general, one however has to take this time dependence into account, which has
its origin in the Hubbard-Stratonovich transformation on the discrete imaginary time slices [46].
Here one writes the partition function as

Z = Tr
L

∏
l=1

e−∆τH , (2.9)

with β = L∆τ . Now one can write

e−∆τH = e−∆τ(H0+HV ) ' e−∆τH0 e−∆τHV +O(∆τ2), (2.10)

whereHV is thefull interaction term, which in case of thed-wave Hamiltonian is given by

HV =−g∑
i δ

(∆i δ∆†
i δ+∆†

i δ∆i δ), (2.11)

andH0 contains only single-particle operators. The error in doing this is of order∆τ2 and
negligible in the limit∆τ → 0 (L→ ∞). In the next step one uses the Hubbard-Stratonovich
transformation, which is nothing but an operator version of the familiar Gaussian integral, to
bring the interaction term ine−∆τHV into a form that is bilinear in the fermion operators and
where the fermions now “interact” with a complex pairing field∆ij [46]. This yields integrals
over∆ij and its complex conjugate∆∗ij .

So far everything is exact. Now, since we are interested in fluctuations of the SC phase around
the BCS mean-field solution, one can write the integration variable∆ij as∆ij = |∆ij |eiΦij and
fix the magnitude of|∆ij | at the mean-field saddle-point value. In case of the next-neighbor
d-wave interaction, introduced in Sec. 2.1 this means, that one approximates the full interaction
in e−∆τHV by

1
N∆τ

∫ 2π

0
∏
〈i j〉
dΦij (τl)e−∆τH1(τl), (2.12)
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whereH1(τl) is the interaction term defined in Eqs. (2.3) and (2.5) withΦij →Φij (τl) andN∆τ
is a normalization constant. The discrete imaginary time indexτl = l∆τ has been introduced to
emphasize, that this transformation has to be performed at each time step. In the exponent of
Eq. (2.12) we have omitted the term∼ |∆ij |2, that only contributes, when the magnitude of the
gap fluctuates and that has already been used to obtain the magnitude of the BCS mean-field
gap.

By introducing the new creation (annihilation) operatorsψ†
m (ψm), with

ψ†
m = (· · · c†

i ↑ · · · , · · · cj ↓ · · ·), (2.13)

one can simplify the notation and define

Dl = e−∆τH0 e−∆τH1(τl) = e−∆τ ψ†
mTmnψne−∆τ ψ†

mVmn(τl)ψn (2.14)

and

Bl = e−∆τ T e−∆τ V (τl), (2.15)

whereT andV (τl) are the matrices defined in Eq. (2.14). After putting everything together, one
finally gets

Z =
1
N

∫
Tr

L

∏
l=1

∏
〈i j〉
dΦij (τl)Dl, (2.16)

with N = LN∆τ . This is the standard auxiliary field quantum Monte Carlo (QMC) problem
[47–49]. The trace over fermions can be taken explicitly, since there are only bilinear forms of
fermion operators [48, 50, 51]

Tr
L

∏
l=1

Dl = det[1+BLBL−1 · · ·B1]≡ detO{Φij (τl)} (2.17)

and one obtains

Z =
1
N

∫ L

∏
l=1

∏
〈i j〉
dΦij (τl)detO{Φij (τl)} ≡ TrΦ detOΦ. (2.18)

The trace over the phase field can be calculated with standard MC techniques. The determinant
is in general not positive and one has to define

P (Φ) = |detOΦ| (2.19)

as Boltzmann weight for the MC simulation. This is the so called “sign problem”, which can
cause severe problems at low temperatures, where it produces large MC errors that increase the
computing time dramatically [52, 53].

The Green’s functioñGmn(τ1, τ2) ≡ G[Φ] for a fixed phase-field configuration can be ob-
tained by [48]

G̃mn(τ1, τ2) = 〈ψm(τl1)ψ
†
n(τl2)〉= (Bl1Bl1−1 · · ·Bl2+1

1
1+Bl2 · · ·B1BL · · ·Bl2+1

)mn (2.20)
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and thefull Green’s functionGmn(τ1, τ2) by

Gmn(τ1, τ2) = 〈〈ψm(τl1)ψ
†
n(τl2)〉〉=

TrΦG[Φ] detOΦ
Z

. (2.21)

On the other hand, if we treat the phase as a classical field-variable, things look much simpler.
The partition function (Eq. (2.8)) can be written as

Z = TrϕTrF e
−βH({ϕi}), (2.22)

where Trϕ and TrF are traces over the classical phase degrees of freedom denoted by{ϕi}
and the fermion degrees of freedom, respectively, andH({ϕi}) is the Hamiltonian defined in
section 2.1. The trace over the fermion degrees of freedom is easily calculated by diagonalizing
the Hamiltonian matrix for a fixed set of phases{ϕi}

TrF e
−βH({ϕi}) =

Ndim

∏
ν=1

[1+ e−βEν({ϕi})], (2.23)

whereEν({ϕi}) are the eigenvalues of the HamiltonianH({ϕi}) andNdim is the dimension of
the single-particle Hilbert space. After this, the problem can be considered as a classical one,
in which the partition function is given by

Z = Trϕ e
−Seff({ϕi}), (2.24)

with the effective phase action

Seff({ϕi}) =−
Ndim

∑
ν=1

log[1+ e−βEν({ϕi})]. (2.25)

The trace over the phase is effectively calculated by a MC importance sampling with Boltzmann
weighte−Seff({ϕi}) for a given configuration of phases{ϕi}. This procedure is less computing
time intensive then the determinantal QMC algorithm. Furthermore no sign problem occurs,
since the Boltzmann weight isalways positive, so that one can run the MC simulation, in prin-
ciple, at arbitrarily low temperatures.

Moreo, Dagotto and others have applied this method successfully to fermions interacting
with classical spin degrees of freedom [54–56]. However, the disadvantage is that one neglects
the quantum dynamics of the phase-field which is getting more and more important as on re-
duces the temperature. Therefore, one question naturally arises: can one take into account the
quantum dynamics of the phase-field without running into the computing-time intensive sign
problem of the determinantal QMC algorithm, an obstacle that could even defeat the whole
QMC simulation at low temperatures?

Bickers and Scalapino [57] have proposed a general scheme to construct an effectiveτ -
dependent action for fermions coupling to a Hubbard-Stratonovich field. Their method was
first implemented by Monthoux and Scalapino for the Holstein model [58]. There however,
they eventually made a static Ising-like approximation for the effective action. In this work, we
want to follow the original ideas of Bickers and Scalapino and construct an effective phase ac-
tion for our BCS-like Hamiltonian which takes the quantum character of the phase into account.
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Bickers’ and Scalapino’s general scheme allows to create the phase configurations much faster,
in a less computing-time consuming way, than the methods introduced above. It also allows
for a deeper insight into the physics of the phase-fluctuation problem and gives us some control
over the sign problem.

We start again with equation (2.16). In an explicit form, it can be written as

Z =
1
N

∫
Tr

L

∏
l=1

∏
〈i j〉
dΦij (τl)e−∆τH0 e−∆τH1(τl)

=
1
N

∫
Tr ∏
〈i j〉
dΦij (τL) · · ·∏

〈i j〉
dΦij (τ1) e−∆τH1(τL) e−∆τH0 · · · e−∆τH1(τ1) e−∆τH0,

(2.26)

where we have formally labeled the indices in the second line such that we start with the largest
τl from the left. Please note, that we have also interchanged the interacting with the non-
interacting part of the Hamiltonian in the exponents of the second line, which is always allowed
for ∆τ → 0. Now, we introduce a unity operator of the forme−τlH0 · eτlH0 between each time
slicel+1 andl.

Z =
1
N

∫
Tr ∏
〈i j〉
dΦij (τL) · · · (e−τLH0eτLH0)e−∆τH1(τL) e−∆τH0 (e−τL−1H0eτL−1H0)e−∆τH1(τL−1) · · ·

=
1
N

∫
Tr ∏
〈i j〉
dΦij (τL) · · · e−τLH0 (eτLH0e−∆τH1(τL)e−τLH0)(eτL−1H0e−∆τH1(τL−1)e−τL−1H0) · · ·

=
1
N

∫
Tre−βH0 Tl[

L

∏
l=1

∏
〈i j〉

dΦij (τl)(eτlH0e−∆τH1(τl)e−τlH0)],

(2.27)

where in the second line we have used thate−∆τH0 e−τl−1H0 = e−τlH0 and recalling in the third
line thatτL = β. At this point, we are no longer allowed to change theτl-order. Therefore,
we had to introduce thel-ordering operator Tl in the third line, which should indicate that the
product overl inside the brackets[· · · ] starts with the largestl to the left.

Equation (2.27) can now be brought into a more compact form by using the path integral
notation

Z =
∫

∏
〈i j〉

D[Φij (τ)]Tr{eβH0 Tτ [e−
1
~

∫ β~
0 HI

1 (τ)dτ ]}. (2.28)

Here, Tτ is the (imaginary) time-ordering operator which puts the operator at the latest time
farthest to the left andHI

1(τ) is the interaction picture form ofH1(τ), defined as

HI
1(τ) = eτH0H1(τ)e−τH0. (2.29)

Next we expand Tτ [e−
1
~

∫ β~
0 HI

1 (τ)dτ ] in powers of the couplingg to the phase field. Up to second
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order we get

1+
1
~
g∆

∫ β~

0
dτ ∑

i δ
[∆i δ(τ)eiΦiδ(τ)+∆†

i δ(τ)e
−iΦiδ(τ)]

+
1

2~2 g
2∆2

∫ β~

0
dτ1

∫ β~

0
dτ2 ∑

i δ, j δ′
Tτ [(∆i δ(τ1)eiΦiδ(τ1) +∆†

i δ(τ1)e−iΦiδ(τ1))

· (∆j δ′(τ2)eiΦjδ′(τ2) +∆†
j δ′(τ2)e−iΦjδ′(τ2))]+O(g3),

(2.30)

where∆i δ(τ) = eτH0 ∆i δ e
−τH0. Taking the trace over fermions then yields

Z ≈ Z0

∫
∏
〈i j〉

D[Φij (τ)]
[
1+

1
~
g∆

∫ β~

0
dτ ∑

i δ
(〈∆i δ(τ)〉0 eiΦiδ(τ) + 〈∆†

i δ(τ)〉0 e
−iΦiδ(τ))

+
1

2~2 g
2∆2

∫ β~

0
dτ1

∫ β~

0
dτ2 ∑

i δ, j δ′

·{〈T[∆i δ(τ1)∆j δ′(τ2)]〉0 eiΦiδ(τ1) eiΦjδ′(τ2)

+〈T[∆i δ(τ1)∆†
j δ′(τ2)]〉0 eiΦiδ(τ1) e−iΦjδ′(τ2)

+〈T[∆†
i δ(τ1)∆j δ′(τ2)]〉0 e−iΦiδ(τ1) eiΦjδ′(τ2)

+〈T[∆†
i δ(τ1)∆†

j δ′(τ2)]〉0 e−iΦiδ(τ1) e−iΦjδ′(τ2)}
]
,

(2.31)

with the partition function of the free HamiltonianZ0 = TreβH0. Here,〈· · · 〉0 indicate normal
expectation values and〈T[· · · ]〉0 expectation values of the time-ordered operator product with
respect to the free HamiltonianH0.

Next, we want to bring the approximate partition function back into an exponential form by
using the following cumulant expansion

1+gA+
1
2
g2B = eln(1+gA+ 1

2g
2B) ≈ egA+ 1

2g
2B− 1

2g
2A2

, (2.32)

where we have used in the final step ln(1+x)≈ x− x2

2 which is correct toO(g3). We therefore
obtain

Z ≈ Z0

∫
∏
〈i j〉

D[Φij (τ)]e−Seff[Φij (τ)] (2.33)
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with theeffective action

Seff[Φij (τ)] =−
1
~
g∆

∫ β~

0
dτ ∑

i δ
(〈∆i δ(τ)〉0 eiΦiδ(τ) + 〈∆†

i δ(τ)〉0 e
−iΦiδ(τ))

− 1
2~2 g

2∆2
∫ β~

0
dτ1

∫ β~

0
dτ2 ∑

i δ, j δ′

·{〈T[∆i δ(τ1)∆j δ′(τ2)]〉0 eiΦiδ(τ1) eiΦjδ′(τ2)

+〈T[∆i δ(τ1)∆†
j δ′(τ2)]〉0 eiΦiδ(τ1) e−iΦjδ′(τ2)

+〈T[∆†
i δ(τ1)∆j δ′(τ2)]〉0 e−iΦiδ(τ1) eiΦjδ′(τ2)

+〈T[∆†
i δ(τ1)∆†

j δ′(τ2)]〉0 e−iΦiδ(τ1) e−iΦjδ′(τ2)}

+
1

2~2 g
2∆2

∫ β~

0
dτ1

∫ β~

0
dτ2 ∑

i δ, j δ′

(〈∆i δ(τ1)〉0 eiΦiδ(τ1) + 〈∆†
i δ(τ1)〉0 e−iΦiδ(τ1))

· (〈∆j δ′(τ2)〉0 eiΦjδ′(τ2) + 〈∆†
j δ′(τ2)〉0 e−iΦjδ′(τ2)).

(2.34)

At this point one can see that the additional third term, which is a result of the cumulant expan-
sion, exactly cancels thedisconnected contributions from the second term. Therefore one can
write

Seff[Φij (τ)] =−
1
~
g∆

∫ β~

0
dτ ∑

i δ
(〈∆i δ(τ)〉0 eiΦiδ(τ) + 〈∆†

i δ(τ)〉0 e
−iΦiδ(τ))

− 1
2~2 g

2∆2
∫ β~

0
dτ1

∫ β~

0
dτ2 ∑

i δ, j δ′

·{〈T[∆i δ(τ1)∆j δ′(τ2)]〉conn
0 eiΦiδ(τ1) eiΦjδ′(τ2)

+〈T[∆i δ(τ1)∆†
j δ′(τ2)]〉conn

0 eiΦiδ(τ1) e−iΦjδ′(τ2)

+〈T[∆†
i δ(τ1)∆j δ′(τ2)]〉conn

0 e−iΦiδ(τ1) eiΦjδ′(τ2)

+〈T[∆†
i δ(τ1)∆†

j δ′(τ2)]〉conn
0 e−iΦiδ(τ1) e−iΦjδ′(τ2)},

(2.35)

where〈· · · 〉conn
0 means, that only diagrams connectingi with j andτ1 with τ2 contribute to the

effective action if one uses Wick’s theorem to write the expectation value of the time ordered
product in terms of Green’s functions. This is the so-called linked cluster theorem [46, 59].

By introducing the two-component field operator

Ψ̂(i, τ)≡

[
ci ↑(τ)
c†

i ↓(τ)

]
(2.36)

one can define the 2×2 superconducting (Nambu) Green’s function matrix

G(i, τ ; i′, τ ′) =−〈Tτ [Ψ̂(i, τ)Ψ̂†(i′, τ ′)]〉

=

[
G(i, τ ; i′, τ ′) F (i, τ ; i′, τ ′)
F †(i, τ ; i′, τ ′) G̃(i, τ ; i′, τ ′)

]
(2.37)
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τ

ι+δ

ι
τ

ι+δ

ι

g∆ e Φιδ(τ)
g ∆ e ιδ

(τ)Φi i−

Figure 2.1: Elementary vertices of the cumulant expansion for Seff.

with

G(i, τ ; i′, τ ′) =−〈Tτ [ci ↑(τ)c
†
i′ ↑(τ

′)]〉

F (i, τ ; i′, τ ′) =−〈Tτ [ci ↑(τ)ci′ ↓(τ ′)]〉

F †(i, τ ; i′, τ ′) =−〈Tτ [c†
i ↓(τ)c

†
i′ ↑(τ

′)]〉

G̃(i, τ ; i′, τ ′) =−〈Tτ [c†
i ↓(τ)ci′ ↓(τ ′)]〉

(2.38)

and we finally obtain the effective action in terms of Green’s functions

Seff[Φij (τ)] =−
1
~
g∆

∫ β~

0
dτ ∑

i δ

√
2(F0(i, τ ; i + δ,τ)eiΦiδ(τ) +F †

0 (i, τ ; i + δ,τ)e−iΦiδ(τ))

− 1
2~2 g

2∆2
∫ β~

0
dτ1

∫ β~

0
dτ2 ∑

i δ, j δ′

·{−[F0(i, τ1; j, τ2)F0(i + δ,τ1; j + δ′, τ2)

+F0(i, τ1; j + δ′, τ2)F0(i + δ,τ1; j, τ2)] eiΦiδ(τ1) eiΦjδ′(τ2)

+[G0(i, τ1; j, τ2)G0(i + δ,τ1; j + δ′, τ2)

+G0(i, τ1; j + δ′, τ2)G0(i + δ,τ1; j, τ2)] eiΦiδ(τ1) e−iΦjδ′(τ2)

+[G0(j, τ2; i, τ1)G0(j + δ′, τ2; i + δ,τ1)

+G0(j, τ2; i + δ,τ1)G0(j + δ′, τ2; i, τ1)] e−iΦiδ(τ1) eiΦjδ′(τ2)

−[F †
0 (i, τ1; j, τ2)F

†
0 (i + δ,τ1; j + δ′, τ2)

+F †
0 (i, τ1; j + δ′, τ2)F

†
0 (i + δ,τ1; j, τ2)] e−iΦiδ(τ1) e−iΦjδ′(τ2)}.

(2.39)

Fig. 2.1 shows the elementary vertices of this cumulant expansion and Fig. 2.2 the diagrams
for the second order contribution toSeff. All Green’s functions appearing in Eq. (2.39) are free
Green’s functions. However, one can improve the approximation, as in the usual perturbation
theory, by using Hartree-Fock Green’s functions or starting directly from the symmetry bro-
ken BCS state. Which starting point (Green’s function) one chooses depends on the physics
of the problem. If one wants to consider small deviations from the BCS solution that are
caused by phase fluctuations at low temperatures then one uses BCS-Nambu Green’s functions
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Figure 2.2: Diagrammatic representation of the second-order contribution to Seff. This term
contains the dynamic coupling of the quasi-particles to phase fluctuations. The wavy lines
represent phase fluctuations and the straight lines stand for all allowed combinations of Nambu-
Green’s functions.

in Eq. (2.39). On the other hand, if one wants to study the onset of phase coherence at high
temperatures caused by superconducting phase fluctuations then one rather uses free Green’s
functions.

It is very instructive to consider Eq. (2.39) term by term and discuss the contributions of the
different terms depending on which Ansatz for the Green’s functions one chooses. We start with
the first term containing only single anomalous Green’s functions. For free Green’s functions
this term identically disappears. For BCS-Green’s functions one can show by using the cyclic
property of the trace, that the fermionic contribution is static. Moreover, one can show that this
term is real and couples to the phase field in the form∼ cos(Φiδ(τ)). This is the simplest term
invariant under the transformationΦiδ(τ)→ Φiδ(τ)+2π, however, it breaks gauge symmetry.
This is an artefact of simple BCS-theory which always chooses one fixed phase and therefore
one obtains a term that tries to push the phase back into the BCS gauge-symmetry-broken
state. Also for the most general anomalous Green’s function this term is real, and the fermionic
contribution static, as in the well-known Hartree tadpole-diagram.

Next, we consider the term containing the product of two anomalous Green’s functions. This
term obviously also disappears if one uses only free Green’s functions in the effective action.
If one, however, uses anomalous Green’s functions and if they are symmetric under the inter-
change of coordinatesi↔ j, which for a translational invariant system means symmetric under
space-inversion, then one can show that this term is real by using again the cyclic property of the
trace. Furthermore, in the BCS-case it is proportional to cos(Φiδ(τ1)+Φjδ′(τ2)). Thus, this term
is a higher harmonic contribution to the BCS gauge-symmetry-breaking term∼ cos(Φiδ(τ)).

Finally, we come to the term containing two normal Green’s functions. This is the most
interesting term since it also contributes in the case of free Green’s functions and in addition it is
gauge invariant in all cases. However, it is only real if the system is particle-hole symmetric and
if the normal Green’s functions are symmetric under the interchange of coordinatesi↔ j, which
again implies space-inversion symmetry for a translational invariant system. In fact, particle-
hole symmetry is sufficient to show that the phases couple in anXY -like form∼ cos(Φiδ(τ1)−
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Φjδ′(τ2)) to the fermions.
The inclusion of a magnetic field produces additional phase factors that change the explicit

form of this term. In the following, we want to give an approximate analytical expression for
this case. To simplify the notation, we only consider on-sites-wave pairing, i. e. we neglect for
the moment theδ’s in the effective action. We also assume that the phases are static objects,
that can be treated by a classical ensemble average, i. e.Φi(τ) = Φi .

To get an idea of the effect of a static magnetic field on the effective phase action it is useful
to recall that the Green’s functionG(i, τ1; j, τ2) can be interpreted as the propagator of a system
that contains an additional particle. This additional particle is created at positionj at timeτ2 and
then propagates to positioni at timeτ1 > τ2. If we treat the trajectoryquasi-classical, taking
only the direct path into account and neglect all other effects of the magnetic field on the many-

particle state then the electron propagator acquires a phase factor∼ e2πi e
hc

∫ i
j A(l)dl , wheree is the

electron charge andA(l) the vector potential. Therefore, one could write the Green’s function
in the presence of a static magnetic fieldGA(i, τ1; j, τ2) in terms of the Green’s function without
magnetic field approximately as1

GA(i, τ1; j, τ2)≈ e2πi e
hc

∫ i
j A(l)dlG(i, τ1; j, τ2). (2.40)

Using this expression in Eq. (2.39), we can shift the magnetic field dependence of the effective
action from the Green’s functions to the cosine factor and finally obtain

Seff ≈−β∑
i j
J̃i j cos

(
Φi−Φj +2π 2e

hc

∫ i

j
A(l)dl

)
, (2.41)

whereJ̃i j is a short hand notation for the prefactor in Eq. (2.39). This prefactor is no longer
τ -dependent if we assume the phases to be classical static variables. Please note that we get a
factor of hc2e for the flux quantum in the cosine instead of a factorhc

e in the Green’s functions.
This is due to the fact that we have a product of Green’s functions in the effective action and
exactly corresponds to the phase acquired by a Cooper-pair of charge 2e moving in a magnetic
field from positionj to i.

In the preceding discussion, we made the “ad hoc” assumption, that the phases are static
objects, in order to obtain a simple expression for the phase action in the presence of a magnetic
field (Eq. (2.41)). Any dynamic phase fluctuations will surely increase the total energy of the
system. Therefore, in order to take the time-dependence of the effective action (Eq. (2.39))
to a first approximation into account, one can make a Gaussian approximation and add a term
∼ (Φ̇i(τ))2 to Eq. (2.41) and write

Seff ≈
1
~

∫ β~

0
dτ

[
C̃∑

i
(Φ̇i(τ))2−∑

i j
J̃i j cos

(
Φi(τ)−Φj(τ)+2π 2e

hc

∫ i

j
A(l)dl

)]
. (2.42)

The parameter̃C can, in principle, be obtained from Eq. (2.39) and controls the strength of the
dynamic fluctuations. This is just a very rough picture which should sketch the physics included

1Please note that in a realistic calculation one has to take into account all paths, exchange terms, and also
the effects of the magnetic field on the many-particle wave-function like the breaking of translational invariance.
Hence, this is at best a heuristic way to motivate the physics included in this term.
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Figure 2.3: A typical diagram showing vertex corrections for the effective phase action Seff

which can be obtained by calculating Seff selfconsistently.

in Eq. (2.39). In general the microscopic phase action (Eq. (2.39)) is not only non-local in space
but also non-local in imaginary time. The interesting thing is that also for a pure local on-site
s-wave interaction in the original Hamiltonian we obtain a longe-range phase interaction in the
effective action. Exactly the same happens if one derives an effective Hamiltonian by integrating
out the short-range and high-energy degrees of freedom in a renormalization group study.

We have seen above that whether a sign problem occurs or not depends on the underlying
symmetries of the system (Green’s functions) and can differ from term to term. The advan-
tage of the procedure introduced above lies in the fact that one obtains some control over the
sign problem. One can check for each term in the effective action if it causes a sign problem
and make appropriate approximations, if necessary, since one knows the physical meaning of
each term. Furthermore the dynamical phase configurations are created much faster than with
the determinantal expression (Eq. (2.17)) and the explicit analytical form also allows for other
techniques [60] to circumvent the sign problem.

Up to now we have only discussed different possible choices for the Green’s functions in the
effective actionSeff. We also have the possibility to improve the approximation by calculating
Seff selfconsistently. That means, we start with a certain choice for the Green’s functions inSeff.
In an intermediate step we calculate the pair correlation functions occurring inSeff directly in
the Monte Carlo simulation. Then these correlation functions can be used to construct the new
phase action. The scheme can now be repeated an arbitrary number of times, until convergence.
This selfconsistency procedure introduces vertex corrections and a typical diagram containing
these vertex corrections is shown in Fig. 2.3. Finally, we want to mention that in the following
calculations we only use the gauge invariant term∼ cos(Φi−Φj). This is motivated by the fact
that we are interested in the pseudogap regime aboveTc and also by the fact that we perform our
calculations on a finite lattice where no spontaneous symmetry-breaking is possible. Therefore,
all our results are gauge invariant.

So far, we have used amicroscopic description of the phase action in terms of pair-correlation
functions. In the next section, we discuss how acoarse-grained phase action on the scale of the
superconducting coherence lengthξ0 can be derived. This action has the form of a quantum
XY model and contains only the superfluid density (or phase stiffnessDs) of the Cooper-pairs.
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2.2.2 Coarse-grained phase-only action

The general idea for deriving a coarse-grained phase-only action is motivated by the assump-
tion that all phase fluctuations on the scalel < ξ0 represent internal degrees of freedom of the
Cooper-pair. Thus, they can be considered as high-energy degrees of freedom which can effec-
tively be integrated out, exactly like the fluctuations of the magnitude of the local pairing gap
∆, as long as we are not too close toTMF

c . In the end one obtains a quantumXY action, which
is defined on the length scale of the superconducting coherence lengthξ0 and which contains
only two parameters: one that controls the strength of the Coulomb interaction between Cooper
pairs and the other determining the phase stiffnessDs.

In general, there exists no exact mapping between the microscopic phase action and the
coarse-grained quantumXY action. Only for the case of an attractive Hubbard model atT = 0
and for t

|U | � 1 this mapping is consistently possible [61]. However, in addition, one needs
the characteristic time over which the phases fluctuate to be much larger than the inverse quasi-
particle gap in order to get a cosine term that is local in time. In the following, we want to
briefly outline the derivation of the coarse-grained phase-only action and discuss some impor-
tant points, especially those that are relevant ford-wave superconductors. For more details we
refer to [62] and [63] for thed-wave case and [61] for thes-wave case.

The first problem specific to ad-wave superconductor is that the SC gap has nodes with zero
excitation energy. Therefore already the assumption that we have a fixed magnitude of the local
pairing field is not obvious. In fact it was shown [62] that the spectral weight for fluctuations
of the amplitude of the local pairing field is not gaped for ad-wave superconductor but rather
exhibits a power law down to zero energy. However, the spectral weight associated with these
fluctuations is very small and negligible at small temperaturesT � TMF

c . Note, that we are
talking about thermal fluctuations of the gap parameter∆ and not excitations of nodal quasi-
particles which are important and taken into account in our Hamiltonian (Sec. 2.1).

The second problem is that thed-wave order parameter is defined on the bonds of the 2D
lattice. Thus we have two degrees of freedom for the phase at each lattice site. One is associated
with the internal symmetry of the Cooper-pair and thus describes fluctuations from thed-wave
to the extendeds-wave symmetry. This phase mode shows a power law spectral weight like
the amplitude fluctuations and is also less important than quasi-particles at low temperatures
T � TMF

c [62]. The other mode is the usualcenter of mass Goldstone-mode that couples to the
vector-potential. By fixing the internal phase mode at thed-wave saddle point, one can write
the bond phaseΦiδ in terms of thecenter of mass phaseϕi as in Eq. (2.6)

Φiδ =
{

(ϕi +ϕi+δ)/2 for δ in x-direction
(ϕi +ϕi+δ)/2+π for δ in y-direction.

In going to thecenter of mass phase description one looses the invariance of the phase action
under the transformationϕi → ϕi + 2π in the coupling of the phase to the Hamiltonian. This
causes no problem if the phase difference between neighboring sites is small∆ϕ� 2π and
the worst thing that could happen is a vortex singularity in the middle of a square plaquette.
However, also in this case the phase difference between neighboring sites is only∆ϕ = π

2 and
by defining all phases modulo 2π this causes no serious problem in terms of the bond phase
variables.
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Coarse-grained phase-only action with Coulomb interaction

Up to now, we have completely neglected the Coulomb interaction between the electrons or
Cooper pairs in our effective lattice Hamiltonian. For the phase action, this means that we
describe a neutral superfluid. Now, the question, whether the phase fluctuations in supercon-
ductors (charged superfluids) are of quantum nature (dynamic) or whether they can be treated
classically (static), depends on the strength of the screened Coulomb interaction between the
Cooper pairs. Hence, in order to discuss this topic, one needs to add

Hcoulomb=
1

2N ∑
q
Vqρqρ−q (2.43)

to the pairing Hamiltonian, whereVq is the Fourier transformed Coulomb interaction for a
anisotropic layered system [62] andρq is the Fourier transformed electron density operator.

The derivation of the coarse-grained phase action now proceeds as follows [61, 62]: first
one performs the usual Hubbard-Stratonovich transformation in the pairing-channel, then one
makes a gauge transformation that shifts the phase-dependence from the pairing-amplitude to
the fermionic variables. As a result of this gauge transformation, the pairing interaction contains
no more phase variables. Finally, by considering only slow spatial fluctuations of the phase
(smallq expansion of the kinetic energy term with respect to phase gradients), one obtains an
effective microscopic Gaussian phase-action after integrating out the fermions.

On the other hand, one can write down the most general quantumXY action on a coarse
grained lattice with lattice parameterξ0 that is invariant under the transformationϕi → ϕi +
2π. Due to the cosine term in the quantumXY action there are no constraints on the spatial
gradient of the phase which is important to get vortices on the scaleξ0. In order to compare the
coefficients of the quantumXY action with those of the microscopic Gaussian phase action,
one has to go to the limit of small spatial variations on the scaleξ0. In this way, one arrives at
the effective quantumXY action in the form [62]

Seff =
1

8T ∑′
Q,ωn

ω2
n ξ

2
0 dc

V (Q)
ϕ(Q, ωn)ϕ(−Q,−ωn)+

D0
s dc
4

∫ 1
T

0
dτ ∑
〈R,R′〉

{1−cos[ϕ(R, τ)−ϕ(R′, τ)]},

(2.44)

whereV (Q) is the Fourier transform of the two-dimensional (2D) Coulomb interaction,D0
s the

bare in-plane phase stiffness anddc the distance between two 2D planes. Note that the interplane
distancedc appears in Eq. (2.44), since it describes a three-dimensional system of layered 2D
planes. The prime in the sum denotes a cut-off in the Matsubara sum overωn analogous to the
momentum cut-off.

In principle, in ad-wave superconductor already the bare phase stiffnessD0
s shows a tem-

perature dependence due to the presence of nodal quasi-particles and therefore cannot be taken
as constant in more sophisticated calculations at higher temperatures. We stress again that no
direct derivation of theXY action is possible as a result of the small gradient expansion needed
to obtain the microscopic Gaussian phase action. It is however a well known fact that one needs
to replace the quadratic term in the Gaussian phase action by a cosine term, in order to impose



2.3. SELF-CONSISTENT VS. NON-SELF-CONSISTENT PHASE-ACTION 23

the 2π periodicity of the phase action. This 2π periodicity is required to get vortices, which are
essential for the Kosterlitz-Thouless transition at higher temperatures (see Sec. 2.4.2).

It is important to note that the momentum cut-off is implicitly taken into account in going
to the coarse-grained lattice. This should be stressed by usingR andQ in Eq. (2.44) to denote
position and momentum in order to indicate that all phase variables and spatial fluctuations are
defined on a scaleξ0. Therefore, the small phase gradient used in the derivation of the Gaussian
phase action causes no problem since Eq. (2.44) automatically fulfills the conditionQ< π

ξ0
.

Thus, there is no need for any constraint on the phase-difference between neighboringR-sites.

For an on-sites-wave superconductor the effective phase action can be derived in an alter-
native way, without the need to make the approximation of small phase-gradients to obtain an
effectiveXY phase action [61]. This is done by means of a strong-coupling expansion int

U .
This strong-coupling expansion is only possible for on-sites-wave pairing, sinceξ0→ 0 for
U → ∞. Hence, the Cooper pairs becomehighly localized at asingle lattice site, whereas for
next-neighbord-wave pairing, the Cooper pair size has always a lower bound, which is given
by the lattice spacinga. In any case one has to assume that the time scale of phase fluctua-
tions is larger than the characteristic time scale of quasi-particle processes to finally obtain an
expression that is local in time.

The above-described procedure of first performing a gauge transformation to shift the phase-
dependence from the interaction to the kinetic energy part of the Hamiltonian and then expand-
ing in small gradients of the phase is necessary in order to derive a coarse-grained phase action
that is local in space, i. e. contains only next-nearest-neighbor couplings. Without this proce-
dure one obtains also further distant coupling terms, as can be seen in our cumulant expansion
for the effectivemicroscopic phase action in Sec. 2.2.1, where we made an expansion in powers
of the couplingg, without any restriction on the spatial behavior of the phase.

In order to take into account dissipation effects, which are not included in the BCS-like ap-
proach and which arise from the experimentally observed unexpected large low-frequency con-
ductivity of the high-Tc cuprates belowTc [63], one can add an additional term linear in the
time-derivative and proportional to the conductivityσ to the effective phase action [64].2 This
additional quasi-particle damping-term can reduce the crossover temperature between quantum
and thermal fluctuations of the phase drastically [63]. Finally we want to mention that for a
neutral superfluid one simply has to replace the Coulomb interaction1

V (Q) in Eq. (2.44) by the
density-density correlation function [62].

2.3 Self-consistent vs. non-self-consistent phase-action

The effective phase-only action in Sec. 2.2.2 was derived for low temperatures (T � TMF
c )

wherecenter of mass phase fluctuations and nodal quasi-particles dominate the physics. Thus,

2A heuristic way to see that the dissipation is proportional to the conductivityσ is by realizing that the dissipa-
tive power of an electrical currentI across a potential differenceU is given byP =UI, which can be either written
asP = I2/σ or P = σU2, where the last equation corresponds to our case, since the time derivative of the phase
in theXY action corresponds to the electrostatic energy, whereas the spatial gradient of the phase corresponds to
the supercurrent.
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the phase-only action is an effective theory for a minimal description of the low energy prop-
erties of a superconductor that only takes into account the leading momentum and frequency
dependencies. The long-wavelength phase fluctuations correspond to the kinetic energy of the
superfluid at low temperatures and are spin-wave-like excitations which vary slowly in space
and time. At higher temperatures the couplings of the effective phase-only action renormalize
and additional fluctuation channels open. In case of our BCS-like model these are — besides
vortex excitations of the phase field — amplitude fluctuations of the pairing-field andinternal
phase fluctuations of the Cooper-pairs. In more general models charge and spin fluctuations
start to play an important role.

Within the phase-fluctuation scenario one however assumes that the phase-only action also
holds for finite temperatures even above the phase ordering temperatureTϕ and up toTMF

c . For
this to hold true one needs the vortex energy to be very cheap, so that phase fluctuations remain
the dominating fluctuation channel of the system. In theXY phase action, the vortex energy is
of the orderTϕ. This is contrary to the well-known BCS mean-field theory, where the vortex
energy is of the orderTMF

c [7]. If we would perform a self-consistent calculation within the
BCS-like model introduced in Sec. 2.1 for a fixed size of the superconducting gap,3 then the
phase fluctuations would immediately freeze out due to the large phase stiffness of the BCS-like
model, unless for very high temperatures close toTMF

c , or for a very small electron density.
For phase fluctuations to become important over a large temperature region, one needs the phase
stiffness and vortex energy to become very small. In the BCS-like model of Sec. 2.1 this can
only be done by going to very small fillings (electron numbers) or very high temperatures.
However, then also amplitude fluctuations become very cheap due to the small gap size and we
obtain strong phaseand amplitude fluctuations.4

Therefore, additional ingredients are needed which are not included in the BCS-like approach.
Nevertheless, the BCS viewpoint is useful in order to derive an effective phase action and its
dependency on the electronic properties of the many-particle system. Then, however, one needs
to include information about the Mott insulating state and strong electron correlations by hand.
Since it was found in many experiments that the low-lying excitations of the superconducting
state of the cuprates are perfectly BCS-like, i. e. can be described by Bogoliubov quasiparticles,
this indicates that strong electron correlations may change the coefficients (energy scales) but
not the qualitative form of the phase action. Therefore, we can still work with the BCS phase
action and only have to adjust the parameters to the underdoped cuprates. However, we always
have to keep in mind that the phase-fluctuation scenario of the underdoped cuprates cannot be
understood in terms of a simple BCS-like theory since the vortex core energy must be small
compared to the BCS case. It also cannot be understood in terms of the condensation of real-
space Cooper-pairs as in BEC models, since tightly bound real-space pairs cannot originate from
pure repulsive interactions. For example, if we consider Hubbard-like models as an appropriate
starting point for the high-energy description of the cuprates, then electrons would avoid to
come too close together, due to the HubbardU repulsion. Hence, no tightly bound pairs can

3Selfconsistent means, that by fixing the size of the superconducting gap, we automatically also fix the super-
fluid density, i. e. the phase stiffness is no longer treated as an independent parameter of the model.

4One could consider a limit, where the electron density goes to zero and at the same time the pairing strength
becomes infinite, but this exactly yields to the BEC scenario of tightly bound pairs, which was discussed in Cap. 1.
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form.
Up to now, it is still not clear, whether a small phase stiffness necessarily implies a small

vortex core energy or if these two quantities are independently tuneable. In all known cases the
small vortex core energy directly follows from the small phase stiffness [65]. The mechanisms
leading to the small vortex core energy are, however, quite different and there is still a large
discussion going on as to which of them could be realized in the cuprates. Proposals range
from the more conventional picture of a granular superconductor, where the vortices arrange
themselves to live in the normal conducting (metallic) or insulating regions between the SC
grains, up to the proposal of a competing order that exists inside the magnetic vortex cores.
This competing order, which could be some antiferromagnetic (AF) fluctuations or ad-density
wave (DDW) order parameter, is supposed to be nearly degenerate with the superconducting
state. As soon as the superconducting order parameter is suppressed inside the magnetic vor-
tex core, the system develops the competing order instead of going into a normal conducting
paramagnetic state and thus has a much smaller vortex energy compared to a conventional BCS
superconductor. Recently, it was shown [66], that vortices with staggered-flux core can provide
a way to understand the low vortex energy over a wide temperature range aboveTc.

As a matter of fact, neutron scattering, nuclear magnetic resonance (NMR) and muon spin
rotation (µSR) measurements show an enhancement of AF correlations and the presence of lo-
cal antiferromagnetism in the vortex core region of different optimally and underdoped cuprates
in an applied magnetic field [67–71]. Furthermore, scanning tunneling microscopy (STM) re-
vealed a “checkerboard pattern”-like modulation of the local density of states around vortices
in Bi2212 [72]. On the theoretical side, the negativeU Hubbard model near half-filling also
shows a pseudogap regime aboveTc [36] for weak to intermediate coupling strengths. There,
the competing order to thes-wave superconductivity is a charge density wave (CDW) [73, 74].
This CDW suppresses on the one hand the superfluid density as one approaches half-filling
but produces on the other hand cheap vortices due to its presence inside the cores5. The sce-
nario of cheap vortices is analog to Josephson junctions or coupled Josephson junction arrays.
There, the magnetic field penetrates the insulating regions between the superconducting cir-
cuits. Therfore one can assume that the magnitude of the mesoscopic superconducting wave
function |Ψ| ∼ √ρs inside the SC circuits remains unchanged and a phase-only description is
possible.

On a more general ground one can show [75] that a transition from a well formed mean
field regime with a spontaneous broken O(N) symmetry is always initiated by directional O(N)
fluctuations at a temperature well belowTMF

c and also below the famous Ginzburg temperature
where size fluctuations are getting important. Close toTMF

c , where the density of thermally
excited vortices becomes very large, one can no longer distinguish between amplitude and phase
fluctuations. The extremely large temperature regime where phase fluctuations are supposed to
be important in the underdoped cuprates can then directly be related to the low stiffness of
this phase mode close to the Mott insulating state [75]. In addition, poorly screened Coulomb

5Exactly at half-filling, the repulsiveU Hubbard model can be directly mapped onto the attractiveU Hubbard
model by means of a particle-hole transformation. Thez-spin component maps onto the charge-operator and the
transverse spin components onto the pair creation and annihilation operators. As a result of this mapping the CDW
ands-wave BCS ground states are degenerate at half-filling.
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interactions are able to further enhance the role of (quantum) fluctuations of the phase (see
Sec. 2.4.1). The Coulomb interaction is not included in the simple BCS-like approach and has
to be introduced ad hoc in theXY phase action (Eq. 2.44).

To summarize the preceding discussion: in contrast to the common BCS scenario where the
vortex core energy is of the order of the mean-field condensation energyEcond∼ TMF

c , one
assumes that thermally excited vortices in the underdoped cuprates are cheap and their cost in
energy of orderTϕ� TMF

c . Nevertheless, the qualitative form of the BCS phase action is still
valid, however, with adjusted parameters which account for the proximity to the Mott insulating
state and strong electron correlations. Thus, within our BCS-like phase fluctuation model for
the underdoped cuprates, we have to perform aquenched average over the different phase con-
figurations. This means that we have aphenomenological model for a strongly correlated “Mott
superconductor” and not a selfconsistent microscopic theory. In addition, also the BCS temper-
ature dependence of the magnitude of the local superconducting pairing gap is not clear. In fact,
the experimentally observed gap size is rather constant up to highest temperatures. Therefore,
in most calculations we use a constant gap parameter in our Hamiltonian (Sec. 2.1). In cases
where the results of our calculations are very sensitive to the gap size, we contrast the results
for a constant gap parameter with those for a BCS temperature dependent gap parameter. From
the above is it also obvious that our phenomenological theory must break down close toTMF

c .

2.4 TheXY action

As described in section 2.2.2, after integrating out all high-energy degrees of freedom, including
those responsible for the local pair-formation and pair symmetry, we finally obtain an effective
XY action for the phase of the superconducting order-parameter. The effectiveXY action is
defined on a coarse-grained lattice of length-scaleξ0 — the superconducting coherence length.
In this section, we want to briefly discuss the properties of the quantum and classicalXY model,
the nature of the Kosterlitz-Thouless transition and the applicability of theXY model to other
phenomena besides superconductivity.

2.4.1 Quantum and classicalXY model

The most general starting point is the quantumXY model, however, as we will see below, it is
in many cases sufficient to treat the phaseϕi as a classical static field variable and to neglect the
quantum dynamics completely.

Quantum XY model

The quantumXY action is given by

SXY =
1
~

∫ β~

0
dτ

[
1
2
C∑

i
(ϕ̇i(τ))

2−J∑
〈i j〉

cos
(
ϕi(τ)−ϕj(τ)

)]
. (2.45)

In our case, the coordinatesi andj run over the sites of a 2D square lattice with lattice constant
ξ0. The angles〈· · · 〉 indicate, as in the fermionic Hamiltonian (Eq. (2.2)), sums over nearest
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neighbor sites. The model can also be used to describe granular superconductors. In this case
the coordinatesi andj denote the different superconducting grains.

The second term in Eq. (2.45) represents the Josephson coupling energy∼ J between two
neighboring regions (superconducting grains) with phaseϕi andϕj and the first term∼ C con-
tains the quantum dynamics and is due to the Coulomb repulsion between Cooper pairs occu-
pying the same region (superconducting grain). Without Coulomb interaction,C→ ∞, and the
phases will become static. The properties of the quantumXY model were studied extensively
in literature [64, 76–79]. The model can also be used to simulate capacitively coupled Joseph-
son junction arrays [80–82]. The origin of the first term in Eq. (2.45) and its consequences are
more clearly seen in a Hamiltonian form.

Hamiltonian form

After a Legendre transformation we obtain the effectiveXY Hamiltonian [46, 64, 76, 81]

HXY =
1

2C ∑
i
ρ̂2

i −J∑
〈i j〉

cos
(
ϕ̂i− ϕ̂j

)
, (2.46)

where ˆρi = −i ∂∂ϕi
is the operator of the number of Cooper pairs in a region of sizeξ2

0 (or on a
superconducting grain) and ˆϕi is the operator of the corresponding phase. Here one can clearly
see, that the first term describes the Coulomb interaction between Cooper pairs occupying the
same region on theXY lattice. The Coulomb interaction is however assumed to be renormal-
ized to a pure on-site interaction as a result of the screening by normal electrons.

TheXY Hamiltonian (Eq. (2.46)) is completely equivalent to the Hamiltonian of particles
interacting via a periodic potential:

H =
1

2m ∑
i
p̂2

i +∑
〈i j〉
V

(
x̂i− x̂j

)
, (2.47)

whereV
(
x̂i− x̂j

)
∼ cos

(
x̂i− x̂j

)
. One simply has to make the substitutions

p̂=−i~ ∂

∂x
←→ ρ̂=−i ∂

∂ϕ
, (2.48)

x̂ ←→ ϕ̂, (2.49)

m ←→ C. (2.50)

This analogy can, for example, be used to describe phase-slip experiments in Josephson junc-
tions by solving the Hamiltonian of a particle moving in a “tilted-washboard” potential [7].
Furthermore, we see that, like position and momentum are conjugate variables, also the phase
and the number of Cooper pairs are conjugate variables. This immediately implies an uncer-
tainty relation between the relative phaseϕ of neighboring regions and the total number of
electronsN in a region [7, 32, 64]:

∆N ∆ϕ& 1. (2.51)
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According to this uncertainty relation, phase coherence between neighboring regions implies a
large relative number fluctuation and correspondingly large Coulomb energies, unless there is
sufficient screening.

In taking a closer look to Eqs. (2.46) and (2.47), one can see a remarkable property of the
phase-onlyXY Hamiltonian. The dynamical part, corresponding to the kinetic energy in
Eq. (2.47), stems from the electrostatic Coulomb repulsion of the Cooper pairs, whereas the
static part, that is represented by the Josephson coupling term and which has the form of a po-
tential energy, describes the superflow, and thus, kinetic energy of the Cooper pairs. This means
that somehow the roles of potential and kinetic energy have been interchanged.

ClassicalXY model

At high temperatures, all fluctuations are classical. This can be seen by the fact, that the integral
running over the imaginary time axisτ in the quantumXY action (Eq. (2.45)) extends from
0 to β. When we go to very high temperaturesT ∼ 1

β , β → 0 and any quantum fluctuation
must develop on a very smallτ -interval, so that any variation of the phase along theτ -axis must
either be very small or will have a very high cost of energy and therefore the quantum dynamics
plays no role. In contrast, at very low temperatures,β→ ∞ and quantum fluctuations dominate
the physics, since also for a large parameterC in the quantumXY action (Eq. (2.45)), there
is always enough “space” on theτ -axis for many quantum fluctuations to develop. The exact
crossover temperature between quantum and classical behavior is determined by the strength
of the screening, i. e. byC. For a strongly screened Coulomb interaction, the parameterC in
theXY Hamiltonian (Eq. (2.46)) will be very large, which implies a high cost of energy for
any dynamic fluctuation in the quantumXY action (Eq. (2.45)) and therefore classical static
thermal fluctuations down to very low temperatures.

There have been various discussions regarding the regime over which a classical phase-action
is appropriate for the cuprates [62–64]. It turns out, that quantum phase fluctuations are dom-
inant in the underdoped cuprates forT � Tc. At higher temperatureT & Tc and with suffi-
ciently strong screening, the phase fluctuations are predominantly classical [32, 83]. The exact
crossover temperature is however still not clear. Since we are only interested in the temperature
region betweenTc andT ∗ (pseudogap regime), we will neglect in the following the quantum
fluctuations, which leads us to the effective classicalXY free energy

FXY [ϕi ] =−J∑
〈i j〉

cos
(
ϕi−ϕj

)
. (2.52)

We call Eq. (2.52) free energy since, as discussed in section 2.2.2, we obtained it by integrat-
ing out all high-energy degrees of freedom, i. e. after the Hubbard-Stratonovich transformation,
all fermions and the magnitude of the pairing field. Thus, equation (2.52) has the form of a
free energy. In order to calculate the partition function from (2.52), we only have to integrate
over the classical field-variablesϕi from 0 to 2π, instead of formally calculating quantum-
mechanical path-integrals over the dynamical field-variablesϕi(τ) from−∞ to +∞. We do this
by performing a Monte Carlo (MC) importance-sampling procedure, which will be discussed
below.
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The 2D classicalXY model is, like the Ising model, a standard model of statistical physics
and its properties have been studied numerically in various publications [83–90]. One of its
major characteristics is a Kosterlitz-Thouless transition to a quasi phase-ordered state below a
critical temperatureTKT , which will be discussed in the next section.

2.4.2 The Kosterlitz-Thouless transition

In high dimensionsD (D→ ∞), phase transitions in many-particle systems are correctly de-
scribed by a set of mean-field equations. When the dimensionality of space is reduced, fluc-
tuations around the mean-field behavior are getting more and more important. Finally these
fluctuations can even prevent the system from developing any long-range order. The dimen-
sion where this first happens is calledlower critical dimension Dc. In 19666 Hohenberg [92]
pointed out, that a rigorous inequality, first proofed by Bogoliubov, can be used to rule out any
conventional superfluid or superconducting ordering in one and two dimensions at finite tem-
peratures. Shortly after, Mermin and Wagner showed in a seminal paper [91] the absence of any
magnetic ordering in one- and two-dimensional isotropic Heisenberg models. Their method
of proof is also capable of excluding other types of ordering in one and two dimensions. The
generalization of the Hohenberg-Mermin-Wagner theorem states, that in systems with discrete
symmetries, like the Ising model, no long range order can develop in one dimension (Dc = 1). In
systems with continuous symmetry, like theXY model, fluctuations are even more severe and
increase the lower critical dimension toDc = 2. This means, that there cannot be a spontaneous
breaking of a continuous symmetry inD ≤ 2 dimensions at any finite temperature.

Berezinskĭı [93, 94] was the first to realize, that these systems however show a remarkable
change in the long-distance asymptotic behavior of the correlation functions at low temper-
atures. Kosterlitz and Thouless [95] proposed a new kind of order, called topological order,
for two-dimensional systems in which no long-range order of the conventional mean-field type
exists. This topological order can cause the system to go through a phase transition at low
temperatures, visible in a change of the long-distance behavior of the correlation functions.

For the 2D classicalXY model, this means the following: At low temperatures, the long-
range behavior of the system is dominated by spin-wave physics. The phase correlations show
a power-law decay, which can be explained by a harmonic spin-wave theory that is modified
by the presence of pairs of tightly bound topological defects of opposite sign (vortices) at small
distances. At high temperatures, these pairs start to “melt” and single vortices can now move
freely throughout the lattice (see Fig. 2.4). This proliferation of free topological defects (vor-
tices) causes the phase correlations to decay exponentially in space. The temperature where this
first happens is called the Kosterlitz-Thouless transition temperatureTKT .

In the following, we want to summerize some properties of the 2D classicalXY model [96–
98]. At high temperaturesT � TKT the phase correlations decay like〈

eiϕi+`e−iϕi
〉
∼ e−

r
ξ , (2.53)

6The paper was actually published in 1967 after the appearance of Mermin and Wagner’s article, but the work
was done earlier, which was also stated by Mermin and Wagner [91].
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Figure 2.4: Below the Kosterlitz-Thouless transition temperature TKT , vortices are closely
bound into pairs of zero total vorticity which exist in a background of spin-wave excitations.
The phase correlations C(`) =

〈
eiϕi+`e−iϕi

〉
show a power-law decay. Above the Kosterlitz-

Thouless transition temperature TKT , one gets a fluid of freely moving unbound vortices which
cause the phase correlations to decay exponentially.

with phase correlation length

ξ ≈ a

ln(TJ )
(2.54)

and lattice constanta. The low temperature spin-wave approximation yields for the long-
distance behavior (ra � 1):〈

eiϕi+`e−iϕi
〉
∼

(a
r

) T
2πJ

. (2.55)

To a first order approximation, the Kosterlitz-Thouless transition temperatureTKT is given by

TKT ≈
π

2
J, (2.56)

where in our case

J ∼ ρs(0), (2.57)

with the zero temperature 2D superfluid densityρs(0). If one defines a renormalized coupling

J̃ ∼ ρs(TKT ), (2.58)

one can show exactly

TKT =
π

2
J̃ , (2.59)

or

TKT =
π~2ρs(TKT )

2m∗ kB
, (2.60)

wherem∗ is the effective mass of the superfluid particles (Cooper pairs). Equation (2.60) di-
rectly implies, that there must be a jump in the superfluid density atTKT from some finite value

to zero.7 The quantityDs(0) = ~2ρs(0)
2m∗ is also calledbare phase-stiffness andDs(T ) = ~2ρs(T )

2m∗

7Sinceρs(T > TKT )≡ 0,TKT only has a finite value, ifρs(TKT )> 0.
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renormalized phase-stiffness or helicity modulus ϒ.
Numerically it is found that [84–86]

TKT ≈ 0.89J. (2.61)

Also the jump in the helicity modulus has very recently been confirmed numerically [90].
For the 2D quantumXY model there is also numerical evidence for a Kosterlitz-Thouless
transition[77–79], however at lower temperatures due to the additional quantum fluctuations.
These dynamic quantum fluctuations can even inhibit any phase ordering if the Coulomb inter-
action is strong enough [64, 81], since a strong Coulomb repulsion (weak screening↔ smallC)
means very cheap quantum fluctuations, as can be seen from Eqs. (2.45) and (2.46). This can
also be seen from the uncertainty relation (Eq. (2.51)): a strong Coulomb repulsion suppresses
any charge (particle-number) fluctuations, which are necessary for phase ordering.

2.4.3 TheXY universality class

As already mentioned, theXY model is a standard model of statistical physics, that not only
serves to describe superconductors with low superfluid density and Josephson junction arrays
but can also account for many other physical phenomena. In the following, we briefly want to
provide some other examples of theXY universality class.

Superfluid helium

In superfluid helium, a fraction of the atoms condense into a macroscopic quantum state with
a complex wave-functionΨ(r). For most purposes it is sufficient to assume that the magnitude
of Ψ(r) is fixed, thus

Ψ(r) = Ψ0 e
iθ(r). (2.62)

The kinetic energy of the superfluid is then given by [7]

H =
~2

2m∗
|Ψ0|2

∫
dr [∇θ(r)]2, (2.63)

where|Ψ0|2 is associated with the superfluid densityρs andvs = ~
m∗∇θ(r) is the superfluid

velocity. Moreover, the short range repulsion of the helium atoms can be modeled by localizing
the coordinates of the phase-field on a discrete latticeθ(r) → θi . After taking the discrete
derivative and changing the integral into a sum we finally obtain

H =
~2

2m∗
ρs∑
〈i j〉

[θi− θj ]2. (2.64)

In this form the Hamiltonian can be mapped to the classicalXY model (Eq. (2.52)), by re-
quiring periodicity of the phase and replacing the discrete squared derivative by the cosine
(1

2[θi − θj ]2→ cos(θi − θj)). Alternatively, we can map coefficients by expanding theXY free
energy (Eq. (2.52)) in powers of the phase difference. Here we assume, that configurations with
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small phase difference between neighboring sites|ϕi −ϕj | � 1 are the most relevant for the
thermodynamic properties, since they can most easily be excited:

FXY ≈−J∑
〈i j〉

[
1−

(ϕi−ϕj)2

2

]
. (2.65)

The constant term can be absorbed into the ground state energy and we get

J =
~2

m∗
ρs, (2.66)

which we have already used in our discussion of the Kosterlitz-Thouless transition in section
2.4.2.

Anisotropic magnets

The simplest way of modeling magnets is to consider spinsSi localized on a lattice with sitesi.
The model Hamiltonian describing these spins is the quantum Heisenberg model:

H =−J∑
〈i j〉

Si ·Sj . (2.67)

The Hamiltonian has full rotational symmetry. At high temperatures, one can treat the spins
classically. Furthermore, in real materials, crystalline fields act on the spins and make them
prefer to lie along certain axis. If the spins are confined along thez-axis, one obtains the Ising
model withsz =±1. Alternatively, the spins may prefer to lie in thexy-plane, so that one has
to consider only two spin components satisfyings2

x+ s2
y = 1. This leads to theXY or O(2)

(planar) rotor model.

2D Coulomb gas

The two-dimensional Coulomb gas model of statistical physics describes particles with equal or
opposite charge, interacting through a Coulomb interaction [99]. In 2D, the Coulomb potential
has a logarithmic form exactly like the short distance interaction between vortices in a super-
conductor [7]. In fact, there is a direct mapping between 2D superfluids and a 2D Coulomb
gas if one replaces vortices by charges [99]. The Kosterlitz-Thouless unbinding transition of
vortices then corresponds to the unbinding of charges with opposite sign. AboveTKT one
gets a 2D plasma of freely moving positive and negative charges. This analogy also indicates
the connection of the QED3 theory (quantum electrodynamics in (2+1) dimensions) to phase
fluctuations.

2.5 Numerical implementation and choice of parameters

In this section, we conclude the preceding discussion, elucidate the appropriate parameters for
our model Hamiltonian and explain its numerical evaluation. In all our calculations we use the
fermionic Hamiltonian introduced in Sec. 2.1 and then perform aquenched average over the
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Figure 2.5: The XY lattice (left) is defined on the scale of the BCS pair coherence length ξ0

whereas the fermionic Hamiltonian (right) has a lattice constant a0 given by the distance of
neighboring copper atoms. With ∆sc = 1.0t we obtain ξ0 ≈ a0, which allows us to directly
couple the XY phases ϕi (dashed squares in the right figure) to the local pairing amplitude ∆i j

(grey shaded area) via ∆i j = ∆ei
1
2(ϕi+ϕj).

different phase configurations with the help of the classicalXY free energy given in Eq. (2.52).
This is done by means of a Monte Carlo importance sampling procedure and will be discussed
in greater detail below, but first we want to determine the model parameters.

LDA calculations and photoemission studies indicate [100] that the total bandwidth of the
energy band crossingEF in the cuprates is about 2eV . For our 2D tight-binding dispersion this
means that the next-neighbor hopping-parametert has a value oft ≈ 250meV . On the other
hand, the maximum size of the superconducting gap∆sc in underdoped Bi2212 is about 40meV
[14, 101], which would mean∆sc ≈ 1

5 t. Now, the superconducting coherence lengthξ0 in the
cuprates is about 15 – 20̊A [7] and with a copper-copper distancea0 of about 4 – 5Å [100] we
obtainξ0 ≈ 3 – 4a0. The exact values of these parameters clearly vary between the different
compounds but we just want to make reasonable assumptions. Thus, theXY lattice has to be
defined on a length scale that is about 4 times larger than the fermionic lattice defined by the
Hamiltonian Eq. (2.1). For a typical 32× 32 fermionic lattice, which is numerical feasible,
we would only have a 8× 8 phase lattice on top of it. This wouldn’t allow for any proper
temperature scaling of the phase correlation lengthξ(T ) and obscure the Kosterlitz-Thouless
transition.

In order to overcome this difficulty, we have chosen to take a larger value of the gap, i. e.∆sc =
1.0t. This yields a pair size coherence lengthξ0∼ vF

∆sc
(vF is the Fermi velocity) ofξ0 . a0 and

allows the Monte Carlo phase simulation to be carried out on the sameL×L lattice that is used
for the diagonalization of the fermionic Hamiltonian. Therefore, we can couple theXY phases
ϕi (Eq. (2.52)) directly to the local fermionic pairing field via Eqs. (2.5) to (2.7). For thed-wave
case this is illustrated in Fig. 2.5. In addition, the choice of∆sc = 1.0t automatically introduces
the important short distance cut-off for the phase fluctuations that is discussed in Sec. 2.2.2.
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With ∆sc fixed, we have also fixed the pseudogap temperatureT ∗ ≡ TMF
c and the coupling

constants (g andU ) in the BCS-like pairing-interaction terms of our Hamiltonian. In case of
thed-wave order parameter (Eq. (2.3)) we obtainTMF

c = 0.42t (g = 1.03t) and for thes-wave
case (Eq. (2.7)) we obtainTMF

c = 0.54t (U = −3.3t) at half-filling, and a slightly reduced
temperature for 10% doping. Thus, we have effectively only one free parameter left. This is the
phase stiffnessJ in the classicalXY free energy (Eq. (2.52)). The phase stiffnessJ determines
the Kosterlitz-Thouless transition temperatureTKT of the classicalXY model as we have seen
in Sec. 2.4.2. BelowTKT the phases are effectively ordered on the finite lattice and we therefore
takeTKT as phase ordering temperatureTϕ which in the phase fluctuation model determines
the transition temperature to the ideal superconducting stateTc.

Typically, one gets a ratio ofT ∗/Tc = 4 – 5 in the underdoped cuprates (see e. g. the scan-
ning tunneling results for Bi2201 [26]). Therefore we have setTKT = 0.1t (J = 0.112t) which
for the d-wave case yieldsT ∗ = 4.2Tc and for thes-wave caseT ∗ = 5.4Tc. As we have al-
ready mentioned, the transition to the superconducting state in the cuprates is not a real 2D
Kosterlitz-Thouless transition but rather a 3DXY transition [83] with true long-range order
due to the coupling between the superconducting copper oxide planes. When the phase cor-
relation lengthξ(T ) diverges close toTc, Josephson coupling terms between the planes cause
the phase to “lock-in”. Away from this (2D→3D) crossover regime, a 2D model is however
certainly suitable.

In addition, on the finite size lattice that we will study, the system becomes effectively ordered
asT approachesTKT and the correlation lengthξ(T ) exceeds the lattice sizeL. This means
that we do not obtain a true Kosterlitz-Thouless transition in our MC simulation, which is very
hard to obtain numerically. Also in experiments, the jump in the superfluid densityρs(T ) at
TKT , which was discussed in Sec. 2.4.2, was not observed. There the superfluid densityρs(T )
continously disappears atTc [83].

The range of validity of our model starts at aboutTc ≡ TKT , since close to a finite tempera-
ture phase transition all fluctuations are (renormalized) classical and reaches up toT ∗ ≡ TMF

c .
However, our model cannot describe the region close toT ∗ since it neglects amplitude fluctu-
ations and it is also not appropriate for low temperatures close toT = 0, where the quantum
dynamics of the phase has to be taken into account.

The evaluation of our phase fluctuation model now proceeds as follows. For a given phase
configuration one can write the Hamiltonian (Eq. (2.1)) in matrix form as

H =
(
· · · c†

i ↑ · · · , · · · ci ↓ · · ·
) ti j ∆∗i j

∆i j −ti j



·
cj ↑
·
c†

j ↓
·

−µN, (2.68)

withN =L×L the number of lattice points. For thed-wave superconductor with next-neighbor
hopping the matrix elements take the values

ti j =


−t for i = j + δ,

−µ for i = j,
0 else

(2.69)
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and

∆i j =
{
−g
√

2∆eiΦiδ for i = j + δ,

0 else,
(2.70)

with δ connecting next-neighbor lattice sites. By using the operatorsψ†
m (ψm) defined in

Eq. (2.13) this can be written in a more compact form as

H = ψ†
mAmnψn [−µN ] (2.71)

with Amn a complex hermitian matrix. Here, we can neglect the last term which is just a
constant number. Next, the matrixAmn is diagonalized using a standard LAPACK8 routine
which gives us all eigenvectors and eigenvalues. Thus, the Hamiltonian now has the form

H = φ†
mBmmφm (2.72)

with

ψm = Umnφn, (2.73)

Bmm′ = U∗nmAnn′Un′m′ (2.74)

and

U†
mn = U∗nm (2.75)

a unitary transformation matrix. The Nambu Green’s functions can now be written in terms of
these eigenvectors and eigenvalues as

Gi j (iωn) = 〈〈ci ↑c
†
j ↑〉〉

= 〈〈ψmψ†
n〉〉

= Umm′U
∗
nn′ 〈〈φm′φ

†
n′〉〉

=
UmlU

∗
nl

iωn−Bll
.

(2.76)

With these Green’s functions one can calculate all expectation values and correlation functions
by applying Wick’s theorem for a given phase configuration. After the calculation of the expec-
tation value of an observableA for a given phase configurationA(T,{ϕi}) = 〈Â〉{ϕi}, further
phase configurations are generated using a Monte Carlo importance sampling procedure and the
average value of the observableA(T ) = 〈Â〉 at a given temperature is determined.

We have used two different algorithms for the importance sampling procedure, a cluster and a
local updating scheme, depending on the temperature, which is detailed in Sec. 2.7. The Monte
Carlo program is written in Fortran90 and almost all the calculations have been performed on
the Hitachi SR8000-F1 at the Leibniz-Rechenzentrum München (LRZ) and on the Cray T3E at
the High Performance Computing Center Stuttgart (HLRS). In order to get reliable results, we
had to typically average over about 2500 independent phase configurations.

8The LAPACK – Linear Algebra PACKage can, for example, be found on http://www.netlib.org/ (6/15/2004).
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2.6 Reducing finite-size effects — Assaad’s method

We have already talked about finite-size effects in the preceding section concerning the critical
properties of theXY model and the coupling of theXY phases to the fermionic Hamiltonian.
However, despite the large SC gap of∆sc ∼ t, we still suffer from the discreteness of the energy
eigenvalues of the fermionic Hamiltonian. The MC simulations for the calculation of expec-
tation values and single-particle response functions are typically carried out on a 32×32 or a
36×36 lattice. The two-particle correlation functions can only be calculated on a 16×16 lattice
due to the limited available computing power. The number of eigenvalues obtained by diago-
nalizing the Hamiltonian (Eq. (2.68)) is 2N = 2L2 for a L×L lattice. Due to spin inversion
and spatial symmetries these eigenvalues are highly degenerate in the BCS ground state. The
degeneracy is somewhat reduced at higher temperatures by phase fluctuations but there are still
many nearly degenerate energy-levels which cause difficulties in the calculation of the response
functions and expectation values.

The idea of Assaad [102] was to introduce a static magnetic fieldB that couples to the hopping
term of the Hamiltonian. The strength of the magnetic field is given by

B =
Φ0

L2 , (2.77)

with Φ0 = hc
|e| . This means that exactly one quantum of flux is running through the whole

lattice. The magnetic field disappears in the thermodynamic limit (L→∞), where we approach
the original Hamiltonian. The advantage of this method is that it completely lifts the degeneracy
of the energy eigenvalues due to spatial symmetries9 and that the calculated quantities approach
the exact results much faster forL→ ∞ than without magnetic field. The disadvantage of this
method is, however, that it breaks translation invariance. Therefore one has to be careful withk-
dependent quantities like the spectral weightA(k,ω), where the magnetic field produces nasty
artifacts. Furthermore, Assaad’s method of reducing finite-size effects could suppress phases
that act very sensitively to an applied magnetic field, like weak superconducting correlations.
Nevertheless, fork-independent quantities Assaad’s method works amazingly well.

Before we show how to implement this method we first briefly discuss alternative procedures
to reduce finite-size effects in expectation values and response functions. However, one always
has to keep in mind that all these procedures just act to smooth the “spiky” features in the
calculated functions. Away from phase transitions this yields results that are very close to those
of the infinite system. But we still do not see real critical behavior close to a phase transition,
i. e. the divergence of the corresponding correlation function as one approaches the critical
point. Instead, these correlation functions still show a maximum rather than a true singularity,
due to the finite lattice size, which is moreover shifted slightly away from the true critical
temperature.10

9The spin inversion symmetry is still intact since the magnetic field does not couple to the spin degrees of
freedom.

10For a finite system with periodic boundary conditions, this maximum is shifted to temperaturesTmax> Tc,
whereas for systems with open boundary conditions one obtainsTmax< Tc due to the enhanced fluctuations [96].
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2.6.1 Alternative methods

From Eq. (2.76) it is obvious that, after the analytic continuation, the physical response func-
tions have a pole structure of the form

1
ω+ iη−En

≡ ω−En
(ω−En)2 +η2 − i

η

(ω−En)2 +η2 , (2.78)

with η→ 0. This yields a first order pole∼ 1
ω−En

in the real part and aδ-function∼ πδ(ω−En)
in the imaginary part. In addition, one has to perform the sum over all energy eigenvalues
En. In an actual numerical calculationη is always finite, which produces a zero in the real
part atω = En and a Lorentzian peak-function in the imaginary part centered atω = En. It
is thus clear that for a limited number of energy eigenstates one always obtains very “spiky”
response functions. One way to reduce finite size effects is to makeη sufficiently large.11

This washes out the sharp pole structure, broadens the peak-function and therefore produces
smooth response functions. However, the disadvantage of this method is that it also washes out
physically relevant sharp features, like coherence peaks, which makes it only of limited use.12

A more sophisticated method to reduce finite size effects is the so-called tetrahedron method
for Brillouin-zone integrations [103–105]. Its general idea is to turn the sum over the finite
number of energy eigenvalues into a continuous integral. One prerequisite of this method is a
well defined mesh, say ink-space, on which the energy eigenvaluesE(k) are given. Instead
of performing the sum over all discretek-points, one divides the (three dimensional) Brillouin-
zone into tetrahedrons with the corners given by the actually calculated eigenvaluesE(k) on
the mesh. The eigenvaluesE(k) and matrix elements are then interpolated linearly in each
tetrahedron which allows the integral over these micro-zones to be calculated analytically. As
a result, one obtains an infinite number of approximated energy levels which contribute to the
response functions. In our case, this method is only applicable in the BCS and free-electron
limit where the states are characterized by momentumk. For an arbitrary phase configuration,
k is no longer a good quantum number due to the destroyed lattice translational symmetry.
Thus, there exists no well defined mesh ink-space on which the energy eigenvalues and matrix
elements can be defined.13 Therefore, the proper weighting and interpolation of energy levels
and matrix elements is no longer possible.

The twisted boundary condition integration technique [106] is a method to reduce finite size
effects which is also applicable to interacting and non-translational invariant systems. The
method is exact for a non-interacting or mean-field Hamiltonian.14 To see how it works, con-
sider a large cluster of̃N = L̃× L̃ lattice points in 2D. Now divide the cluster into smaller
clusters of sizeN =L×L. Each coordinate can now be written asr = i +LR, wherei indicates
the position inside the smaller cluster andR marks the position of the smaller cluster. Simi-
larly, after a Fourier transformation, the momentum can be decomposed intoK = k + Q, with
N = L×L wave vectorsk of the smaller cluster with spacing∆k = 2π

L and ÑN = L̃
L ×

L̃
L super-

cell wave-vectorsQ with spacing∆Q = 2π
L̃

. With the help of a partial Fourier transformation

11This actually meansη & |En+1−En|
12In fact this method is always used in combination with one of the other methods discussed in this section.
13Please note that translational invariance is restoredafter the averaging over all phase configurations.
14Mean-field always includes BCS.
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in the cluster vectorsR one can very easily show that the Hamiltonian is block-diagonal in the
super-cell wave-vectorsQ. This means that instead of solving the largeL̃× L̃ cluster, one can
solve a smallerL×L cluster for eachQ. However, the smallerN -site cluster now has twisted
boundary conditions, with the twist given byci+L∆R,σ → e−iQL∆Rci,σ. The twisted boundary
conditions can be absorbed into a redefinition of the canonical momentum with the help of a
gauge transformation.15 The energiesEQ(k) of the cluster with twisted boundary conditions
are then given in terms of the energiesE(k) of the cluster with periodic boundary conditions
asEQ(k) = E(k + Q). Thus, we can see that the twist introduces a shift in thek-mesh of the
N -site cluster by an amountQ. By summing over all values ofQ one recovers all the energies
and eigenvectors of the originalÑ -site cluster exactly. The advantage of this method is that also
for interacting systems, one obtains a set of approximated energies for a largerÑ -site cluster
out of a smallerN -site cluster with a cost of computing time that increases linearly with the
number of sites (∼ Ñ/N ). However, the disadvantage of this method of reducing finite size
effects is, that one has to run the MC simulation for eachQ independently. In addition, if one
averages only over a few values ofQ, the response functions show artificial oscillation effects
which are related toQ.

As we will see below, the twisted boundary condition integration technique is related to As-
saad’s method of introducing a magnetic field. In fact, whereas the magnetic field in Assaad’s
method is applied perpendicular to the 2D plane, the twist in the boundary condition corre-
sponds to a magnetic fluxΦ threaded through the center of the torus which is formed out of the
2D plane [73, 107]. The magnitude of the fluxΦ is given byΦ/Φ0 = QxL/2π.16 The twisted
boundary condition method was used in [108], however, it is much less effective than Assaad’s
method and even more computing time consuming. In Assaad’s method one just has to apply
a flux of strengthΦ = Φ0 for a given lattice size, whereas for the twisted boundary technique,
one formally would have to integrate the flux over 0≤Φ < Φ0.

2.6.2 Peierls-Factors, Part I — static magnetic field

The standard way of introducing a magnetic field into a second quantized tight-binding lattice
Hamiltonian is by means of the so-called Peierls-Factors [109]. In the following we want to
motivate the Peierls-Factors for a non-interacting electron system. The generalization to an
interacting many-particle system is straightforward.

The single particle propagatorU(i, t; j, t0)≡ 〈i, t| j, t0〉 of an electron can be written as Feyn-
man path integral [46, 110]:

U(i, t; j, t0) =
∫ i

j
D[l(t)]e

i
~

∫ t
t0
L0(l(t),l̇(t))dt, (2.79)

whereL0 is the corresponding single-particle Lagrangian without magnetic field. In the pres-
ence of a static magnetic field one has to make the substitution

L0→ L0 +
e

c
l̇(t)A(l), (2.80)

15The gauge transformation is given byci σ→ e−iQici σ.
16Similarly Φ/Φ0 =QyL/2π, since there are two “centers” through which the flux can be threaded.
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with e < 0 the charge of the electron andA(l) the vector potential. Thus, the single-particle
propagator now has the form

U(i, t; j, t0) =
∫ i

j
D[l(t)] e

i
~

∫ t
t0
L0(l(t),l̇(t))dt · e

i
~

∫ t
t0

e
c l̇(t)A(l)dt

, (2.81)

which means that the electron picks up an additional phase∼ e
i
~

∫ t
t0

e
c l̇(t)A(l)dt for each path

contributing to the propagator in Eq. (2.81). On the other hand, the matrix elements of the time
evolution operator in coordinate space for a tight-binding HamiltonianH0 are given by (i 6= j)

U(i, t; j, t0) = 〈i|e−
i
~H0(t−t0)| j〉

≈
(
− i

~

)
tij (t− t0)+

1
2∑

k

(
− i

~

)2

tik tkj (t− t0)2 + . . . .
(2.82)

Here, the first term can be interpreted as the contribution from the direct path fromj to i, whereas
the second term is the contribution from a path where the electron first moves fromj to k and
then fromk to i and so on. Therefore, it is obvious from comparing Eq. (2.82) with Eq. (2.81)
that the hopping-matrix elementtij in the presence of a static magnetic field has to acquire an

additional phase factor∼ ei
e

~c

∫ t
t0

l̇(t)A(l)dt. Thus, one has to make the substitution

tij → tij e
i e

~c

∫ i
j A(l)dl , (2.83)

where the integral has to be evaluated by taking only the direct path (straight line) fromj to i
into account.17

The vector potential of a static magnetic fieldB in z-direction is given byA(l)= (−1
2By,

1
2Bx, 0)

(A(l) = (0, Bx, 0)) for symmetric (asymmetric) gauge. However, the torus geometry imposes
some additional restrictions onA(l) [102]. Firstly, the Hamiltonian has to look the same after
a translation of the amountLex (Ley). In order to fulfill this constraint, the translation of the
argument of the vector potential has to be absorbed in a gauge transformation [110]

A(l +Lex) = A(l)+∇χx(l),
A(l +Ley) = A(l)+∇χy(l),

(2.84)

which is compensated by choosing the boundary conditions

c†
i+Lex

= e
i 2π

Φ0
χx(i)

c†
i ,

c†
i+Ley

= e
i 2π

Φ0
χy(i)

c†
i .

(2.85)

Secondly, the translation operatorsTLex (TLey ) in the presence of a magnetic field belong to the
magnetic translation group [111]. In order for them to mutually commute, one needs in addition
the requirement of flux quantization

BL2 = nΦ0, (2.86)

17On the tight-binding lattice, one has to limit the paths contributing to the phase factor to straight lines con-
nectingj with i. The consequences of this approach for transport properties like the optical conductivity will be
discussed in Sect. 4.3.
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wheren is an integer.
For Assaad’s method one usesB = Φ0/L

2. Hence, the next-neighbor hopping matrix ele-
ments take the form

tij =−te−i
π
L2 iy for j = i +ex,

tij =−tei
π
L2 ix for j = i +ey,

(2.87)

for symmetric gauge and

tij =−t for j = i +ex,

tij =−tei
2π
L2 ix for j = i +ey,

(2.88)

for asymmetric gauge. The boundary conditions are given by

c†
i+Lex

= ei
π
L iyc†

i ,

c†
i+Ley

= e−i
π
L ixc†

i ,
(2.89)

for symmetric gauge and

c†
i+Lex

= ei
2π
L iyc†

i ,

c†
i+Ley

= c†
i ,

(2.90)

for asymmetric gauge. Using two different gauges (symmetric vs. asymmetric) is a very useful
test for the correctness of the calculations, since the results should not depend on the gauge for
a gauge invariant Hamiltonian. As one can see from Eqs. (2.89) and (2.90), Assaad’s method of
reducing finite size effects introduces many different boundary conditions, all at the same time,
in addition to generating a complex hopping parameter.

2.6.3 Gauge-invariant vs. non-gauge-invariant implementation

The implementation of Assaad’s method for a gauge-invariant Hamiltonian is straight forward.
For a non-gauge-invariant BCS Hamiltonian there are, however, two possible ways to introduce
the magnetic field. The physically correct way would be to first introduce the magnetic field and
then make the BCS mean-field approximation. In that way, the magnetic field couples only to
the hopping terms inH0 (Eq. (2.2)) so that after the BCS approximation, the Hamiltonian is no
longer gauge-invariant due to the pair creation operators∼ c†

i ↑c
†
i+δ↓ occurring in the interaction

term (Eq. (2.3)).
On the other hand, we can start with the BCS Hamiltonian and perform the particle-hole

transformation defined in Eq. (2.13). After the particle-hole transformation, which only effects
the spin-down operators, the pairing term transforms into a next-neighbor spin-flip hopping
term

c†
i ↑c

†
i+δ↓→ ψ†

i ↑ψi+δ↓. (2.91)
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Figure 2.6: Mean particle number per lattice site 〈n〉 as a function of the inverse lattice size
1/L for fixed chemical potential µ. The results have been obtained from the BCS d-wave
Hamiltonian using different methods to reduce finite-size effects. The straight line is the result
for L→ ∞.

If we consider this particle-hole transformed Hamiltonian as the original electronic Hamilto-
nian18, then the magnetic field also couples to the terms∼ ψ†

i ↑ψi+δ↓. These spin-flip hopping-
terms correspond to the pairing terms of the original HamiltonianH1 (Eq. (2.3)). In this way,
the pairing amplitude∆i j inH1 acquires a phase factor similarly to the hopping-matrix elements
tij inH0 (see Eqs. (2.68) – (2.71)). As a result, the coupling to the vector potential is now imple-
mented in a gauge-invariant manner.19 Since the magnetic field is only a means to reduce finite
size effects which disappears in the thermodynamic limit (L→ ∞), it has no physical relevance
and therefore we are free to choose the version that works better in reducing finite-size effects.

Fig. 2.6 shows the mean occupation number〈n〉 for the BCSd-wave Hamiltonian (∆sc = 1.0t)
as a function of lattice sizeL for fixed chemical potentialµ. Without magnetic field, strong
finite-size oscillations are visible as function of 1/L. The inclusion of aphysical magnetic
field into the BCS Hamiltonian strongly attenuates the oscillations, however, the convergence
towards the exact result forL→ ∞ is still fairly slow. Since the results are not gauge-invariant,
one might increase the convergence by choosing a different gauge. However, this would re-
quire an optimization procedure with respect to the gauge field. Finally, the gauge-invariant
implementation of Assaad’s method yields extremely good results already for an 8×8-lattice.
Consequently, in all calculations where it is possible to use Assaad’s method, we have chosen
the gauge-invariant implementation. We stress again, that this magnetic field has no physical
meaning and is just needed to reduce finite size effects.20

18In fact, this treatment corresponds to reversing the charge of the spin-down electrons (e→−e).
19For s-wave pairing (Eq. 2.7), the on-site pair-creation operatorc†

i ↑c
†
i ↓ transforms into an on-site spin-flip

operatorψ†
i ↑ψi ↓ and thus acquires no phase factor. However, also there the charge of the spin down electrons

has to be reversed in order to obtain a gauge-invariant description due toci ↓c
†
j ↓→ ψ†

i ↓ψj ↓.
20A physical magnetic field also has to be included in the effective phase action of our phase-fluctuation model
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Figure 2.7: Static spin susceptibility χspin(qx, qy = 0, ω = 0) calculated from the tight-binding
Hamiltonian H0 at half-filling for different lattice sizes L. The full line is the result for L→ ∞.
Top: χspin(qx) calculated without magnetic field. Bottom: χspin(qx) calculated using Assaad’s
method of including a static magnetic field B = Φ0

L2 . Please note the much smaller scale of the
lower figure.

As was pointed out before, the magnetic field destroys the lattice translation symmetry. There-
fore, Assaad’s method is only useful for correlation functions in the limit ofq→ 0, where one
effectively averages over all lattice points. The only exception is the static spin susceptibility
χspin(q) which is shown in Fig. 2.7 for different lattice sizes as a function ofqx, with qy = 0.
It is a further example of how efficiently this method works in reducing finite-size effects. The
reason as to why we obtain these amazingly good results despite the destruction of translation
symmetry is due to the fact that the charge degrees of freedom directly couple to the vector
potential whereas the spin degrees of freedom couple to the magnetic field.

(see Eq. (2.41)).
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2.7 Optimization of algorithms for high-performance
computing

Many-particle physics tries to link the microscopic quantum-mechanical world to our macro-
scopic everyday world. The bridge between these two worlds is the number of particles. In
order to obtain macroscopic quantities, one needs to describe many-particle systems containing
about 1023 particles. Thus, it is obvious that the limited number of lattice points, or number
of quantum-mechanical states which are taken into account, is the main obstacle in all calcu-
lations. Besides the physical side of this problem, which was discussed before, one also needs
deep insight into the computational side. For a numerical simulation, advanced knowledge of
computer hardware and software is required in order to apply the most appropriate numerical
algorithms and optimization techniques. This side of the problem is called “high performance
computing” and it is still necessary to spend quite some time on the numerics despite the yearly
growing computer power.

In this section we will briefly discuss some aspects of numerical optimization. To “speed
up” our Monte Carlo (MC) simulation one has to mainly concentrate on three issues. Firstly,
to reduce the number of different phase configurations which are effectively needed to obtain
reliable results. Secondly, to use a fast diagonalization procedure. Thirdly, to implement the
calculation of the correlation functions in a fast and effective way. Concerning the second and
third point: an increase in speed always has to be paid with larger memory requirements. In all
cases, the first step must always be to find the most effective numerical algorithm and the last
step to optimize the program code for a given compiler or computer architecture.

2.7.1 Wolff’s cluster algorithm vs. local Metropolis algorithm

It would take a much too long time to create the different phase configurations{ϕ} in the
MC simulation in a random way and then weight each configuration with the Boltzmann fac-
tor e−βFXY [{ϕ}] until one obtains reliable results. Instead, we use the technique of importance
sampling [112]. There, one starts from a phase configuration{ϕ} and then constructs a new
configuration{ϕ′}. Each change{ϕ} → {ϕ′} is associated with a certain transition probabil-
ity P ({ϕ} → {ϕ′}). That means, one draws a uniformly distributed random numberr with
0 < r < 1. If r < P ({ϕ} → {ϕ′}), then the new configuration{ϕ′} is accepted, else, the
old configuration{ϕ} is taken into account for a second time. The transition probabilities
P ({ϕ}→ {ϕ′}) have to be constructed in such a way that they generate the stationary distribu-
tion e−βFXY [{ϕ}]. This requirement ofdetailed balance can be written as

e−βFXY [{ϕ}]P ({ϕ}→ {ϕ′}) = e−βFXY [{ϕ′}]P ({ϕ′}→ {ϕ}). (2.92)

Eq. (2.92) gives us some freedom to defineP ({ϕ} → {ϕ′}) such that it generates the relevant
phase configurations in a very effective and computing time saving way.

One way to defineP ({ϕ} → {ϕ′}) is the so-called Metropolis algorithm. There, a new
configuration is always accepted if it is energetically favorable (∆FXY < 0).21 If ∆FXY > 0,

21∆FXY = FXY [{ϕ′}]−FXY [{ϕ}].
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the acceptance rate is given byP ({ϕ}→{ϕ′}) = e−∆FXY . The updating scheme is purely local.
That is, one starts with a lattice sitei and proposes a changeϕi→ϕ′i .

22 Then, one continues with
the neighboring site, moving along a well defined path through the whole lattice. One complete
pass through of the lattice is called sweep. It is clear that if some form of long-range order
starts to develop, the local updating rate goes to zero, since all the neighboring spins (phases)
tend to be aligned along the same direction. Hence, every change of one single spin (phase)
always increases the energy and is thus very unlikely. Therefore, a system close to a phase
transition gets trapped for a very long time in one statistical configuration. This is the problem
of critical slowing down, where the number of sweeps needed to obtain a statistical independent
configuration increases dramatically due to the domains that start to develop. These domains
tend to oscillate and a complete flip of one domain is rather unlikely.

Swendsen and Wang (SW) [113] proposed an algorithm to overcome the problem of critical
slowing down for Potts spin models, like the Ising model, where the spins take on certain
discrete values. Their idea was to replace the single spin as elementary unit by a cluster of
spins. The clusters are constructed in such a way as to ensure detailed balance. Instead of a
single spin, the whole cluster is flipped in the updating procedure. Wolff [114] proposed an
extension of the SW method to continuous spin models like theXY model. He was able to
show [115] that his algorithm completely eliminates critical slowing down for theXY model.
In Wolff’s method, one starts with a random lattice sitei and then starts growing a cluster around
this site. In addition, one generates a random vector defining a hyperplane. The spin on each
site added to the cluster is reflected with respect to the hyperplane. As in the SW algorithm,
detailed balance is ensured through the way the cluster is constructed [114].

The cluster updating schemes work at arbitrary temperatures. However, for practical pur-
poses it turned out, that the local Metropolis algorithm performs more efficiently on the Hi-
tachi SR8000-F1 at high temperatures than Wolff’s cluster algorithm. This is due to the recur-
sive book-keeping procedure needed for the cluster construction. Therefore, we used the local
Metropolis algorithm at high temperaturesT > 1.5TKT where the phase correlation length is
of order unity (ξ ≈ 1). At lower temperaturesT . 1.5TKT , Wolff’s cluster algorithm was used
with no sign of any critical slowing down at the Kosterlitz-Thouless transitionT = TKT .

2.7.2 Different Monte-Carlo error-estimators

The most important point of the MC simulation is the sampling of uncorrelated phase config-
urations. A measure for the number of MC updating stepstn (Metropolis sweeps or cluster
updates) needed to obtain a statistically independent phase configuration is the auto-correlation
time τ [116]. After τ updating steps, the new phase configuration should be completely uncor-
related to the old one. The auto-correlation timeτ can be obtained from the time correlation
function [116]

c(tn) =
〈
eiϕi(t0) e−iϕi(tn)

〉
, (2.93)

where〈· · · 〉 is the average over phase configurations and lattice sitesi.

22This is implemented numerically by drawing a random numberdϕ between−π
2 and π

2 , and addingdϕ to the
old phase.
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The so-called binning analysis is another method to check the statistical independence of the
n= 1· · ·N different quantum-mechanical expectation valuesA(tn) which were calculated from
N different phase configurations. In this method,M expectation values at a time are combined
into one bin, so that for example the first bin contains{A(t1), · · · ,A(tM )}. For each of the
N/M bins, the standard deviationσbin is calculated. Then, the mean standard deviation ¯σbin

averaged over all bins is computed for different values ofM . As long as the expectation values
contained in each bin are correlated, ¯σbin increases as a function ofM . Finally, σ̄bin starts to
converge oncetM − t1� τ , which is another estimate for the auto-correlation timeτ .

Alternatively, one can calculate the higher statistical moments of the sample{A(t1), · · · ,A(tN )}.
These are the skewness and the kurtosis [117]. The skewness is a measure for the asymmetry
of the distribution around its mean. The kurtosis measures the relative peakedness or flatness
of the sample distribution relative to a normal (Gaussian) distribution. Thus, they both indicate
a possible correlation of the sample values. However, also for an ideal Gaussian distribution,
skewness and kurtosis fluctuate quite strongly for a finite sample, which makes them only of
limited use.

In our MC simulation, we first calculated the auto-correlation timeτ from the time correlation
function (Eq. (2.93)) for a given temperature and lattice size and then usedtn+1− tn & τ . This
is most convenient, sinceτ can be obtained solely from theXY model without the computing
time intensive diagonalization of the fermionic Hamiltonian. After the MC simulation of the
complete phase fluctuation Hamiltonian, we re-checked the statistical independence of the cal-
culated expectation values with the help of a binning analysis and the calculation of the higher
statistical moments. Furthermore, as we always start the MC simulation from a random phase
configuration, we performedO(τ) warm-up sweeps, in order to ensure, that thermal equilibrium
is reached before the measurement of the expectation values{A(t1), · · · ,A(tN )} starts.

After the statistical independence of the sample of expectation values for different phase
configurations{A(t1), · · · ,A(tN )} is guaranteed, one next needs to estimate the statistical MC
error of the mean expectation valuēA= 1

N ∑N
n=1A(tn). Since we are interested in the statistical

MC error of the mean expectation value and not the fluctuation of expectation values around
the mean, which are solely a function of temperature for classical phase fluctuations, we group
as before respectivelyM expectation valuesA(tn) intoNbin = N/M bins. Then, for each bin
the mean expectation valuēAbin(m), withm= 1, · · · ,N/M is calculated.

Next, one needs a measure for the statistical Monte Carlo error which can be estimated from
the statistical fluctuations of̄Abin(m) aroundĀ = M

N ∑N/M
n=1 Ābin(m) for N,M � 1. The stan-

dard procedure would be to calculate the standard error

σs =

[
1

Nbin(Nbin−1)

Nbin

∑
m=1

(Ābin(m)− Ā)2

] 1
2

. (2.94)

However, it turns out that for the uncorrelated but small number of data pointsĀbin(m), this
yields a much too large error. Due to the limited number of bins, one therefore needs a more
robust error estimator. The jackknife and bootstrap estimators are the methods of choice, if
one needs to estimate the standard error of a statistic of independent and identically distributed
variables from a small sample [118].
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The jackknife estimate of the standard error is

σJ =

[
Nbin−1
Nbin

Nbin

∑
i=1

(Ā(i)− Ā(·))
2

] 1
2

, (2.95)

whereĀ(i) = 1
Nbin−1 ∑m6=i Ābin(m) is the sample average with theith bin deleted andĀ(·) =

1
Nbin

∑Nbin
i=1 Ā(i) the average of the deleted averages.

The bootstrap works as follows [118]: (i) draw from the original sample{Ābin(1), · · · , Ābin(Nbin)}
a bootstrap sample{Ā∗bin(1), · · · , Ā∗bin(Nbin)} by Nbin random draws with replacement. (ii)
compute the bootstrap replication̄A∗b = ∑Nbin

m=1 Ā
∗
bin(m). Repeat step (i) and (ii) a large number

B of times. The bootstrap estimate for the standard error is then given by

σB =

[
1

B−1

B

∑
b=1

(Ā∗b− Ā∗·)2

] 1
2

, (2.96)

whereĀ∗· = 1
B ∑B

b=1 Ā
∗b.

In general, the bootstrap is the best method to obtain a reliable standard error of a statistical
distribution from a small random sample. We carefully compared all error estimators by re-
peated MC runs. In our case, jackknife and bootstrap yield nearly identical results. Therefore,
we have chosen the less computing time intensive jackknife method as MC error estimate.23

2.7.3 Vectorization and the avoidance of cache-trashing

Having optimized the computational algorithms and number of MC steps needed to obtain re-
liable results, one finally needs to optimize the program code for a given computer architecture
to “speed up” the MC simulation. Generally, one can always reduce the number of calculations
at the expense of memory. Examples for computing time intensive functions are the sine, co-
sine and exponentional function or the determination of neighboring lattice sites, where modulo
calculations are necessary. Since we are performing our calculations on a lattice, we only need
the function values for a set ofN = L×L discrete points.24 Consequently, we can calculate all
function values at the beginning of the program and save them in a table (vector or matrix). In-
stead of calculating the exponential any time it is needed, one only needs to calculate it once and
thereafter only look it up in the table, which increases the program performance tremendously.

Furthermore, everything has to be removed from the inner loops which does not necessarily
have to be calculated there. Large nested loops should only contain vectors or matrices and no
functions or conditional statements like if-clauses. This procedure is called vectorization and
is facilitated by a special processor architecture with special vector registers for a fast (pseudo)
parallel addition and multiplication of vectors [119].

By replacing all functions by vectors and making the vector sizes larger and larger, one finally
reaches a point where the memory access time sets a limit to a further increase of performance.
All vectors have to be loaded from the main memory into the vector-processor registers which

23In fact, one can show [118] that the jackknife is almost a bootstrap estimate itself.
24An exception is the cosine in theXY free energy, which we have to calculate for continuous values of phases.



2.7. OPTIMIZATION OF ALGORITHMS FOR HIGH-PERFORMANCE COMPUTING 47

becomes the bottleneck of the whole calculation. A memory with a fast access time is expensive
and therefore all computers have two kinds of memory. A large but slow main memory and a
fast but small memory which is called cache. To make sure that the processor does not have
to wait for many cycles until a vector is loaded into the registers, one has to take care that the
vectors which are needed next are already in the fast cache memory.

The cache is divided into different cache lines, where in a direct mapped cache, each cache
line loads data only from a well-defined successive region of main memory [119]. Since the
main memory is much larger than the cache, different regions of main memory map to the same
cache line. For very large vectors with a sizes of large powers of 2 (s= 2l, l� 1), it can happen
that two vectors (A,B) which, for example, should be added, are mapped to the same cache line.
In this case, first vectorA is loaded into the cache but then it is replaced by vectorB, so that
only one vector at a time is in the cache. Therefore, for each vector entry the whole vector
has to be reloaded from main memory into the cache and the memory performance suddenly
completely breaks down.

This effect is called cache-trashing and was a serious problem on the Hitachi SR8000-F1
for large lattice sizes (N & 30× 30). It can be circumvented by avoiding large powers of 2,
which practically means to make the vectors slightly larger (for example:s = 2l + 19, l �
1). This ensures that the vectors are now loaded into different cache lines [119]. Finally, the
repeated throw of one dice can be done in parallel by many dices, as long as the dices are not
manipulated.25 Thus, the MC simulation can most easily be parallelized on a massively parallel
system by using MPI (Message Passing Interface26).

25This, one has to make sure by initializing the “random number” generators properly.
26See, for example: http://www.lam-mpi.org/ and http://www.mpi-forum.org/ (6/15/2004).



3
Single-particle properties

In this chapter we calculate as a first application of our phase-fluctuation model several single-
particle properties and compare them with experiment. We start with the simplest quantity,
which is the tunneling conductance. The tunneling conductance is determined by the density of
statesN(ω) of the many-electron system. Then, we apply our model to angle resolved photoe-
mission spectroscopy (ARPES) experiments, which measure the single-particle spectral weight
A(k,ω). In this way we want to further confirm the principle consistency of our phenomenolog-
ical approach and its usefulness in explaining experimental results. Finally, we discuss to what
extent a possible alternative high-temperature approach based on the coherent potential approx-
imation (CPA) can serve as a useful tool in analyzing the experimental results in the pseudogap
phase of the cuprates.

3.1 Tunneling conductance

The general idea of tunneling experiments is that there is a nonzero probability for electrons to
quantum-mechanically tunnel between two conductors separated by an insulating region. The
tunneling probability falls exponentially with the distance between the two conductors. In a
typical experimental setup, the tunneling currentI(V ) is measured as a function of the applied
potential differenceV across the tunneling junction. The differential conductanceG = dI

dV is
then directly related to the density of states of the two conductors on both sites of the insulating
barrier.

In a scanning tunneling microscopy (STM) experiment, a metallic tip is scanning over the
superconducting copper-oxide plane. Therefore, one has a superconductor-normal tunneling
and the differential conductanceGsn is given by [7]

Gsn(V,T )≡ dIsn(V,T )
dV

∼
∫ +∞

−∞
N(ω)

∂f(ω−V )
∂V

dω, (3.1)

with N(ω) the density of states of the superconductor andf(ω) = [exp(ω/T )+1]−1 the Fermi
function. Here, one assumes that the density of states of the metal is constant over the relevant

48
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energy range of order of the superconducting gap∆sc. Thus, the tunneling conductance in
STM experiments is proportional to the temperature broadened local density of states of the
superconductor.

On the experimental side, numerous controversial papers on the tunneling conductance in the
cuprates were published in recent years. This is a general problem of high-Tc superconduc-
tivity, where many different experiments were carried out on different samples (with varying
chemical composition, doping and sample preparation) using different experimental techniques
and yielding different results. In fact, this could be a sign for the unstable fixpoint discussed in
the introduction. Therefore, we first summarize and clarify the experimental situation and try
to elaborate the universal and intrinsic properties of the CuO2 planes.

3.1.1 Experimental results

In analyzing the experimental tunneling spectra, one always has to keep in mind, that tunneling
and photoemission are surface sensitive probes, where the detected electrons stem — at most
— from the first few CuO2 layers. Thus, one always has to face the general problem as to
what are surface effects and what are true bulk properties. A similar question arises in case of
local inhomogeneities, namely whether they are due to a true phase separation of the electronic
system or just impurity caused.

local inhomogeneities

Various STM experiments on Bi2Sr2CaCu2O8+δ (Bi2212) show a spatial variation of the local
density of states (DOS) and the SC gap [120, 121]. Superconducting domains of size∼ 3nm,
with a well-defined SC gap and coherence peaks, seem to live in underdoped Bi2212 on an elec-
tronically distinct background with a broader pseudogapped-like structure [120, 122]. These
structures first were considered as a consequence of doping a Mott insulator, where the doped
holes concentrate in certain hole-rich superconducting domains [121, 122].

However, after Fourier transforming the spatial STM modulations and comparing their dis-
persion with ARPES experiments, it turned out that the characteristic modulation wavevectors
can be related to elastic quasiparticle scattering vectors between different regions of the Fermi
surface close to the nodal points [123, 124]. On the theoretical side, it was verified, that quan-
tum interference due to weak impurity scattering potentials has a non-neglectable effect on the
observed STM spectra for experimentally relevant impurity concentrations [125, 126]. Thus,
the DOS modulations are predominantly a quasiparticle interference pattern due to elastic scat-
tering from impurity potentials with no other order parameter or competing electronic phase
required.

On the other hand, experiments on thin films of Bi2212 indicate that crystal disorder can in-
deed produce electronic inhomogeneities with small superconducting regions coexisting with
dominating semiconducting areas [127]. This is further confirmed by experiments on heav-
ily Pb-doped Bi2212, where no correlations between the distribution of Pb impurities and the
STM local DOS variations was found [128], but a clear correlation between the excess oxygen
introduced crystal disorder and pseudogap-like STM spectra.
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Thus, without impurity quantum-interference-scattering and (surface) crystal disorder, one
would expect the electronic phase to be truly homogenous. This is further supported by the
analysis of specific heat and NMR data on Bi2212, where no indication for phase segregation
or gross inhomogeneity of bulk Bi2212 was found [129].

peak-dip-hump feature

STM experiments on Bi2Sr2CuO6+δ (Bi2201) and Bi2212 clearly show, that the pseudogap
continously develops out of the SC gap as a function of temperature [24, 26]. The characteristic
SC coherence peaks dissappear aboveTc but the SC gap shows now BCS temperature depen-
dence and does not close atTc. Instead the SC gap continously evolves into a pseudogap with
the same magnitude. This pseudogap “fills in” with increasing temperature but its size remains
constant. It is visible in STM spectra up to a temperatureT ∗, which can be as high as room
temperature in underdoped Bi2212 samples.

On the other hand, intrinsic tunneling spectroscopy in Bi2212 and La-doped Bi2201 samples
rather indicates a coexistence of SC gap and a larger pseudogap belowTc with the superconduct-
ing gap seemingly disappearing atTc [130–132]. This is the so-called peak-dip-hump structure
of intrinsic tunneling spectra, where the hump is supposed to be due to the larger pseudogap and
which was also observed in trilayer Bi2Sr2Ca2Cu3O10+δ (Bi2223) [133]. The general idea of
intrinsic or interlayer tunneling is that each pair of CuO2 planes, respectively, acts as a Joseph-
son tunneling junction for a short current pulse applied along thec-direction, perpendicular to
the planes. Therfore, it is a bulk sensitive probe, which is often claimed to show the true bulk
properties of the density of states in contrast to the rather surface sensitive STM experiments.

Recently, it was however shown [134, 135], that the tunneling characteristics of intrinsic tun-
neling experiments can be reproduced qualitativelyand quantitatively by assuming that the
hump feature is simply due to Joule heating of the sample. This was done by using the ex-
perimental normal state out-of-plane resistanceRc(T ) and applyingNewton’s Law of Cooling
from 1701. It is now experimentally confirmed [136, 137] that local overheating due to the
poor thermal conductivity of the cuprates is a sever problem of intrinsic and perhaps even some
break junction tunneling experiments. Thus, indeed, the hump features of [132] are an artefact
of Joule heating. Unfortunately, no comment on this from other intrinsic tunneling groups is up
to now available.

Nevertheless, STM measurements using Bi2212/vacuum/Bi2212 tunneling junctions, exhibit
two kinds of pseudogap [138]. A small pseudogap comparable to the SC gap appears belowT ∗

and continously evolves into the SC gap atTc; and a large pseudogap of size 3–4 times the SC
gap which remains open also aboveT ∗ and is possibly of spin fluctuation origin. Furthermore,
there are some indications from tunneling spectra acquired for a-axis YBa2Cu3O7−δ (YBCO)
films, that one needs to take into accountk-dependent tunneling matrix elements in order to
explain the variation of the tunneling characteristics with the surface roughness of the sample
[139].
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3.1.2 Thed-wave case

To summarize again, the STM spectra of Ref. [24, 26] are supposed to reflect the true homoge-
nous bulk properties of the cuprates. They show that a pseudogap with the same magnitude as
the SC gap develops below a characteristic temperatureT ∗ and evolves continously into the SC
gap atTc, where finally the characteristic SC coherence peaks appear.

In Fig. 3.1, we show the density of statesN(ω) as a function of temperature, calculated from
our phase fluctuation model withdx2−y2-wave gap. ForT > TMF

c , the gap amplitude vanishes
and the density of states exhibits the usual Van Hove peak atω = 0. ForT < TMF

c , the pres-
ence of a finite gap amplitude gives rise to a pseudogap whose size is set by 2∆sc. Then, asT
approachesTKT and theXY phase correlation lengthξ(T ) rapidly increases, coherence peaks
evolve, the separation of which is determined by 2∆sc. An important point is that the temper-
ature scale over which the evolution of the coherence peaks occurs, is set by some fraction of
TKT (1< T/TKT . 1.5) which means that it appears fast on a scale set byTMF

c � TKT . Fur-
thermore, the gap fills in aboveTKT instead of closing, which is however masked by the van
Hove peak at higher temperatures.

An effective correlation lengthξ(T ), extracted by fitting an exponential form to the phase
correlation function

C(`) =
〈
e−iϕi+`eiϕi

〉
(3.2)

is plotted versusT in Fig. 3.2 for our 32×32 lattice. The rapid onset ofξ(T ) asTKT is ap-
proached is clearly seen. It is this sudden increase ofξ(T ) that is responsible for the appearance
of the coherence peaks asT approachesTKT . This effect is further enhanced by the 2D to 3D
crossover that occurs in the actual materials.

In order to compare these results forN(ω) with scanning tunneling spectra, we have calcu-
lateddI(V )/dV using the standard quasi-particle expression for the tunneling current given in
Eq. (3.1). Results fordI(V )/dV are displayed in Fig. 3.3. The effect of the Fermi factors in
Eq. (3.1) is to provide a thermal smoothing of the quasi-particle density of states over a region of
order 2T . This becomes significant at the higher temperatures, where the prominent pseudogap
dependence ofN(ω) seen in Fig. 3.1 is smoothed out indI(V )/dV .

One sees that the size of the pseudogap scales with the spacing between the coherence peaks
and evolves continuously out of the superconducting state. AboveT ' 1.5TKT , coherence
peaks are no longer visible indI(V )/dV but the pseudogap persists over a large temperature
range measured in units ofTKT , becoming smoothed out by the thermal effects asT approaches
TMF
c and vanishing aboveTMF

c .
Finally, in order to sort out band-structure effects, we have plotted in Fig. 3.4 in accordance

with the experiment [26], the tunneling conductancedI/dVnorm= dI/dV |T
dI/dV |

TMF
c

, normalized to its

(V -dependent) value atT = TMF
c . Fig. 3.4 most clearly shows, that our numerical results for

the tunneling conductancedI(V )/dV are very similar to the scanning tunneling measurements
on Bi2212 and Bi2201 [24, 26], where the superconducting gap forT < Tc(≡ TKT ) evolves
continuously into the pseudogap regime extending up toT = T ∗(≡ TMF

c ). Exactly as in the
STM experiments, the coherence peaks suddenly appear asTc(≡ TKT ) is approached and at
higher temperatures, the pseudogap fills in rather than closing. Furthermore, the temperature



52 CHAPTER 3. SINGLE-PARTICLE PROPERTIES

range associated with the pseudogap regime can be large compared with the size of the su-
perconducting regime. All this gives strong support for the phase-fluctuation scenario of the
pseudogap.

A final remark on inhomogeneities is in place here. The study of the local density of states
variations caused by impurities is a very important second tool in exploring the quasi-particle
states besides ARPES. In fact, quasi-particle interference due to impurity scattering can help to
distinguish and rule out various alternative scenarios for the pseudogap [140]. Impurities can
very easily be included in our Hamiltonian.

Unfortunately, including an impurity no longer allows us to use Assaad’s method of reduc-
ing finite-size effects (see Sec. 2.6). As was pointed out before, the magnetic field destroys
translation invariance. This was no problem without impurities, where local DOS and global
DOS are the same. In averaging the local DOS with magnetic field over all lattice sites, we ob-
tained amazingly good DOS curves displayed in Fig. 3.1. Including impurities no longer allows
for this averaging. Without magnetic field, the finite size effects for our 32×32 lattice are of
the same order of magnitude as the expected impurity-induced local DOS modulations which
makes it very difficult to obtain reliable results.

3.1.3 Thes-wave case — implications for electron-doped cuprates

While there is strong evidence that the hole-doped high-Tc cuprates have adx2−y2-symmetry of
the SC gap, the experimental situation for the electron-doped cuprates is not as clear. The in-
plane penetration depthλab(T ) of the electron-doped cuprate superconductor Nd1.85Ce0.15CuO4−y
has an exponential temperature dependence [141] which is typical for an isotropics-wave SC
gap. Furthermore, there is increasing experimental evidence for a change of the SC order pa-
rameter as a function of electron doping from ad-wave gap in the underdoped samples to a
s-wave gap in overdoped samples. Tunneling experiments in Pr2−xCexCuO4 show a zero-bias
conductance peak, which is typical for Andreev bound states appearing ind-wave SC tunnel-
ing junctions, only in underdoped samples [142]. In addition, a detailed doping and tempera-
ture analysis of the penetration depth in La2−xCexCuO4−y and Pr2−xCexCuO4−y [143] further
supports the picture of a transition fromd- to s-wave pairing near optimal doping. Whereas
quasi-particle tunneling spectra of optimally doped Sr0.9La0.1CuO2 [144] show no zero-bias
conductance peak and deviations from a pured-wave gap. These experiments rather support
an anisotropics-wave gap in the underdoped samples. Only in strong magnetic fields, which
destroy superconductivity, a pseudogap is visible in the electron doped cuprates [145]. It is not
clear whether this pseudogap is caused by a competing order parameter or by the suppression
of phase coherence in the magnetic field.

In view of these experiments, we consider the phase-fluctuation Hamiltonian withs-wave gap
as a possible prototype Hamiltonian for the electron doped cuprates. Fig. 3.5 shows the density
of statesN(ω) as a function of temperature, calculated from our phase-fluctuation model with
s-wave gap. The density of states exhibits the same features as in thed-wave case. The SC
coherence peaks completely dissappear aboveT ' 1.5TKT , whereas the gap is visible up to
TMF
c and gradually fills in, instead of closing. These features and the smooth evolution of the

pseudogap are more clearly visible in the tunneling conductivitydI(V )/dV shown in Fig. 3.6.
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However, there is one important additional aspect for thes-wave case: the shape of the gap
changes. BelowT ' TKT , the gap has the characteristic form of a BCSs-wave gap. But as
soon as the temperature is raised aboveT ' 1.25TKT , the shape of the gap in the density of
states (Fig. 3.5) looks very similar to thed-wave gap in Fig. 3.1. This is exemplified in Fig. 3.7
where the tunneling conductancedI(V )/dV for thedx2−y2-gap atT = TKT is compared with
the tunneling conductance for thes-wave gap atT = 1.25TKT . Both tunneling spectra have
a nearly identical shape. The reason for this similarity is that thes-wave gap starts to close
anisotropically aboveTKT , which will be discussed in great detail in Sec. 3.2.

Thus, a possible alternative scenario to a quantum-critical point close to optimal doping,
where the SC order parameter changes fromdx2−y2-wave (underdoped) tos-wave (overdoped)
could be, that phase fluctuations (possibly of quantum nature) also play an important role in
the electron doped cuprates and make thes-wave gap resemble adx2−y2-wave one. With this
hypothesis, the experimental results can be described consistently by the assumption that the SC
order parameter hass-wave symmetryin the whole doping range. However, in the underdoped
region, close to the AF Mott insulator, (quantum) phase fluctuations start to become relevant due
to the small superfluid density. These (quantum) phase fluctuations than lead to an anisotropic
s-wave gap which looks very similar to ad-wave gap in tunneling experiments as shown in
Fig. 3.7.
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Figure 3.1: Single particle density of states N(ω) for different temperatures T for a 32× 32
lattice with TKT = 0.1t. The dx2−y2-wave gap has the size ∆sc = 1.0t. A pseudogap appears
below TMF

c ' 0.42t and coherence peaks develop below T . 1.5TKT as T approaches TKT .
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Figure 3.2: The effective correlation length ξ(T ) versus T/TKT for the 32×32 lattice. Here
TMF
c /TKT ' 4 – 5 so that the pseudogap regime which extends from T/TKT ' 1 to 5 is large

compared to the superconducting region which extends from 0 to T/TKT = 1. The pronounced
increase of ξ(T ) occurs over a narrow temperature region (1< T/TKT . 1.5), on a scale set by
TMF
c , as TKT is approached.

Figure 3.3: Tunneling conductance dI
dV for the dx2−y2-wave gap, normalized to its value at TMF

c

and V = 0, for different temperatures. Solid curves are for T = {0.75,1.25,1.75,3.00} TKT ,
dashed curves for T = {1.00,1.50,2.00} TKT and TMF

c ( dIdV |V=0 is increasing with T ).
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Figure 3.4: Normalized tunneling conductance dI/dV norm for the dx2−y2-wave gap for different
temperatures. All tunneling spectra have been divided by the T = TMF

c spectrum, in order
to get rid of the band-structure effects (van Hove peak) and for a better comparison with the
experimental data of Ref. [26].
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Figure 3.5: Single particle density of states N(ω) for different temperatures T for a 32× 32
lattice with TKT = 0.1t. The s-wave gap has the size ∆sc = 1.0t. A pseudogap appears below
TMF
c ' 0.54t and coherence peaks develop below T . 1.5TKT as T approaches TKT .
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Figure 3.6: Tunneling conductance dI
dV for the s-wave gap, normalized to its value at TMF

c and
V = 0, for different temperatures. Solid curves are for T = {0.75,1.25,1.75,3.00} TKT , dashed
curves for T = {1.00,1.50,2.00} TKT and TMF

c ( dIdV |V=0 is increasing with T ).

Figure 3.7: Normalized tunneling conductance dI
dV . The solid curve is for the dx2−y2-wave gap

at T = 1.0TKT . The dashed curve for s-wave gap at T = 1.25TKT . Both curves have a nearly
identical shape.
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3.2 Spectral weightA(k,ω)

The quantity which is usually compared with angle resolved photoemission spectroscopy (ARPES)
experiments is the spectral weightA(k,ω). It can be calculated from the retarded single-particle
Green’s functionGRσ (k,ω) as

Aσ(k,ω) =−1
π

ℑ{GRσ (k,ω)}. (3.3)

However, its connection to the photoemission intensitiesI(k,ω) is not straightforward, although
one commonly assumesI(k,ω)∼ A(k,ω).

The photoemission process can be described by the three-step model [100]: (i) photoexci-
tation of an electron, (ii) transport of that electron to the surface without inelastic scattering,
and (iii) escape of the electron into the vacuum. In the first step matrix elements of the electric
dipole operator between the initial and final electronic states have to be considered in addition to
the spectral weight [146, 147]. In the third step surface resonances might play an important role
[147]. The final photocurrentI(k,ω) is then given as a product of the matrixelements from all
three steps. In addition, there is a (large) background from inelasticallyand elastically scattered
electrons which adds to the primary photocurrentI(k,ω).

Thus, due to the various matrix-element effects, only relative and no absolute photoemission
intensities are available. Furthermore, by tuning the polarization and photon energy of the
incoming light, different bands/orbitals contribute to the photocurrent. However, theposition
andshape of the spectral lines in the primary photocurrentI(k,ω) are well defined and can be
compared with the calculated spectral weightA(k,ω). Finally, at finite temperatures the spectral
functions have to be multiplied with the Fermi function, which means that one obtains spectral
weight also from bands above the Fermi energyEF and a reduction of intensity from bands
belowEF .

Most ARPES experiments were carried out on Bi2212, which is a bilayer cuprate supercon-
ductor [14, 101]. Early photoemission experiments indicated a peak-dip-hump structure of the
photoemission peaks which was taken as evidence for the coupling of the quasiparticles to a
collective mode [14]. However, it turned out that this peak-dip-hump structure is mostly due to
bilayer-splitting of the nearest-neighbor copper oxide planes. In changing the energy and po-
larization of the incoming light one is now able to focus on the bonding or anti-bonding bands
respectively [101]. In the following, we are only interested in low energy characteristics of
order∼ ∆sc of the spectral functions.

3.2.1 Quasiparticle dispersion

d-wave gap

Fig. 3.8 shows the spectral weightA(k,ω) in a greyscale plot for thedx2−y2-wave supercon-
ducting gap with phase fluctuations at 10% doping(〈n〉= 0.9) with t′ = 0 along the standard
way ((0,0)→ (π,0)→ (π,π)→ (0,0)) through the 2D Brillouin zone (BZ). One can clearly
see that we obtain the characteristic BCS band structure belowTc ≡ TKT . The BCS band struc-
ture starts to appear, as soon as the effective phase correlation lengthξ on our finite lattice gets
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much larger than the pair-size coherence lengthξ0 (ξ� ξ0). The spectral peaks in the(π,0)-
region are somewhat broadened due to the phase fluctuations already present belowTc. In the
pseudogap state aboveTc, whereξ ∼ ξ0, the dispersion completely changes. The characteristic
BCS bands have disappeared and the spectral weight in the(π,0)-region has become completely
incoherent, whereas the nodal(π2 ,

π
2)-peak is only very slightly broadened and the dispersion

remains unchanged in that region of the BZ. The incoherent spectral weight starts to fill-in the
pseudogap atk = (π,0).

The band structure of the cuprates is usually described very well by including also the next-
nearest-neighbor hopping integralt′ 6= 0 into the non-interacting dispersion. Typical values for
t′ are 0> t′/t > −0.4, depending on the copper-oxide compound [149]. The purpose oft′ is
to produce a very flat dispersion along the(0,0)→ (π,0) direction of the BZ. Fig. 3.9 shows
the spectral weightA(k,ω) for thedx2−y2-wave superconducting gap witht′ =−0.4t and 10%
doping(〈n〉= 0.9). Like in the case wheret′= 0, we obtain a BCS-like bandstructure belowTc,
which completely disappears in the pseudogap state aboveTc. As before, the spectral weight
in the anti-nodal(π,0)-region is getting very incoherent and fills-in the pseudogap aboveTc
whereas the rest of the dispersion remains unchanged and the nodal(π2 ,

π
2)-peak only slightly

broadens with increasing temperature. Thus,t′ is not an important parameter in our model.
On the other hand, since in Bi2212 the SC gap in the(π,0)-region of the BZ opens at a

location where the dispersion is already very steep, which is masked in our calculations with
t′ = −0.4t due to our large SC gap, we use in the following alwayst′ = 0 to compare our
calculations with ARPES experiments. In Fig. 3.10 we show in more detail what actually
happens close tok = (π,0). Fig. 3.10 displays the quasiparticle dispersion calculated from
our phenomenological phase fluctuation model fort′ = 0 and 10% doping(〈n〉= 0.9). The
spectral weight is plotted along the(0,0)→ (π,0)→ (π,π) direction through the Brillouin
zone (BZ). The free dispersion would cross the Fermi surface close to the(π,0)-point. One
can clearly see that the characteristic (back-turning) Bogoliubov quasiparticle band disappears
in the pseudogap state aboveTc. Instead, one obtains a sharp quasiparticle dispersion which
runs straight towards the Fermi energy and than fades out at a distance of the order of the
superconducting (SC) gap∆sc. This is in complete agreement with the experimentally observed
dispersion in underdoped Pb-Bi2212 which is shown in Fig. 3.11.

The angle resolved data for underdoped Pb-Bi2212 presented in Fig. 3.11 provide an insight
into how the pseudogap is actually created nearkF . In the superconducting state a characteristic
BCS-like back-dispersion is easily seen. This clarity is achieved by the careful choice of the
excitation photon energy. Exactly near hν=38 eV the emission probability for the bonding band
is much higher than for the anti-bonding band [150, 151] and bilayer-related complications are
thus avoided. AboveTc in the pseudogap state the characteristic BCS behavior is replaced by
the straight dispersion and strong depletion of the spectral weight towardsEF , which, as will
be shown below, still leaves the energy gap in the spectrum.

Furthermore, Fig. 3.10 shows very clearly that the sharp quasiparticle features close to the
(π,0)-point are getting lost aboveTc within the phase fluctuation model. The sharp coherent
(π,0)-peaks dissappear and broad incoherent weightfills-in the gap. Exactly this behavior was
observed before in photoemission studies of the pseudogap [41, 152–155] and is also responsi-
ble for the characteristic temperature dependence of the scanning tunneling gap in the under-
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doped cuprates [26, 156], where the pseudogap fills-in instead of closing. Interestingly, not only
SC fluctuations [157], but also staggered flux fluctuations [158] can lead to this strong broad-
ening and destruction of the(π,0)-photoemission-peaks with increasing temperature while the
sharp quasiparticle peaks near the nodes of thed-wave gap are preserved.

The disappearance of the characteristic BCS bands aboveTc within the phase fluctuation
picture can be understood by the fact, that the BCS wave-function is a coherent superposition
of wave functions with different number of electron pairs [7]

|ΨBCS〉= ∏
k

(uk+vk c
†
k↑c

†
−k↓)|φ0〉= ∑

N

λN |ΨN 〉, (3.4)

where|ΨN 〉 is a N-particle wavefunction. The quantum mechanical uncertainty in the particle
number is given by:

(∆N)2 = 4∑
k

u2
kv

2
k. (3.5)

Now v2
k = 1−u2

k is the momentum distribution function forT = 0 and the weight of a quasi-
particle peak at momentumk is given byv2

k (u2
k) for E < EF (E > EF ).

In the normal metallic state with∆ = 0, one gets a sharp cut-off inv2
k (u2

k) at the Fermi-
wavevectork = kF so that(∆N)2 ≡ 0. In the BCS-superconducting state, however,v2

k (u2
k)

are finite also beyond the Fermi-wavevectorkF , which means that also fork > kF (k < kF )
one gets spectral weight atE < EF (E > EF ). This produces the characteristic BCS band
structure, with bands approachingEF from below (above) and then turning back to higher
binding (quasiparticle) energies.

Now what happens if one introduces an arbitrary phase factor into the BCS wave function [7]

|Ψϕ〉= ∏
k

(|uk|+ |vk|eiϕ c†
k↑c

†
−k↓)|φ0〉. (3.6)

Integrating over all possible phases yields [7]

|ΨN 〉=
∫ 2π

0
dϕe−iNϕ/2∏

k

(|uk|+ |vk|eiϕ c†
k↑c

†
−k↓)|φ0〉

=
∫ 2π

0
dϕe−iNϕ/2|Ψϕ〉.

(3.7)

This means, that one projects into an exact particle-number eigenstate by making the relative
phase of the Cooper-pairs completely uncertain. Eq. (3.5) is a special case of the general uncer-
tainty relation between phase and particle number

∆N ∆ϕ& 1. (3.8)

The above described behavior corresponds to what is happening in the phase-fluctuation model
as a function of temperature. Starting from a phase coherent state atT = 0 with ∆ϕ = 0, the
particle number is completely uncertain with∆N given by Eq. 3.5. With increasing tempera-
ture, onegradually projects into a state with exact particle number N . In the temperature range,
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where the phases are completely uncorrelated (ξ ∼ ξ0), one then obtains∆N = 0, and the back-
turning BCS-bands must completely dissappear (loose weight fork > kF , as seen in Figs. 3.10
and 3.11). At finite temperatures, this situation corresponds to a classical grand canonical av-
erage over ensembles with different number of particles, where each state has a well defined
particle number and is no longer a coherent quantum-mechanical superposition of states with
different number of particles. Thus, we obtain a crossover from a BCS-like phase-ordered band
structure belowTc, which was also very nicely observed in ARPES experiments on overdoped
Bi2223 [159], to a completely new phase-disorderedpseudo-gapped band structure.

s-wave gap

Fig. 3.12 shows the spectral weightA(k,ω) in a greyscale plot for thes-wave superconduct-
ing gap with phase fluctuations at half-filling(〈n〉= 1.0) with t′ = 0 along the standard way
((0,0)→ (π,0)→ (π,π)→ (0,0)) through the Brillouin zone (BZ). Like in thed-wave case,
the characteristic BCS Bogoliubov quasiparticle bands can be observed only belowTc, whereas
in the pseudogap state aboveTc not only the spectral weight in the(π,0) region is getting very
incoherent, but also the spectral weight at the(π2 ,

π
2) Fermi level crossing. Furthermore, the gap

starts closing at(π2 ,
π
2), while it is still open at(π,0). This can be seen much clearer in Fig. 3.13,

which also shows very nicely the disappearance of BCS bands forT > Tc. The temperature,
where the gap starts closing at(π2 ,

π
2) coincides with the temperature where thes-wave STM

spectra start looking very similar to thed-wave STM spectra (see Fig. 3.7).

The fact that the effects of phase fluctuations on the gap size are stronger near the(π2 ,
π
2)

region than at(π,0) (Fig. 3.13) can be understood in the following way [36, 160]: In our model
we have three important length scales, the phase correlation lengthξ, the Cooper-pair size
(coherence length)ξ0 ∼ vF

∆sc
and the thermal de Broglie wavelengthξth ∼ vF

T . The thermal de
Broglie wavelength is a measure for the size of the quasiparticle wave packets. As soon as the
mean distanced of the quasiparticles becomes of orderd ' ξth, quantum mechanical effects
have to be taken into account, while at very high temperatures withd� ξth a quasi-classical
description is possible .

As discussed in Sec. 2.5, we always haveξ ≥ ξ0 in our model, since we only consider pair
center-of-mass phase fluctuations. Starting from high temperatures, the pseudogap of size∆sc
begins to open as soon asξth > ξ0. The thermal de Broglie wavelength increases as 1/T ,
whereas the phase correlation lengthξ shows hardly any change over wide temperature range
(1.5TKT < T < TMF

c ≡ T ∗) and then suddenly diverges close toTKT ≡ Tc (see Fig. 3.2). As
long asξth > ξ, the behavior of the system is dominated by incoherent quasiparticles of “size”
ξth. As soon asξ > ξth we start seeing the effects of phase ordering in the spectral weight. Due
to the different Fermi velocities — the(π,0)-region is close to a saddle point with relatively
flat dispersion compared to the nodal(π2 ,

π
2)-points — we always haveξth(π2 ,

π
2)> ξth(π,0) for

fixedT . Hence, the phase ordering effect sets in at lower temperatures at(π2 ,
π
2) than at(π,0).

One can put this in a more simple way: the effective phase-fluctuation temperatureTph ∼ vF /ξ
at (π2 ,

π
2) is higher than at(π,0), therefore the gap starts closing first at(π2 ,

π
2).
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3.2.2 Superconducting gap and pseudogap

Next, we want to elucidate in detail the effect of phase fluctuations on thek-dependence of the
quasiparticle pairing gap. Therefore, we have plotted in Fig. 3.14 the quasiparticle dispersion
obtained from MC simulations of the phase fluctuation model withdx2−y2-wave gap along
the Fermi surface of the free dispersionε(k) at half-filling (〈n〉 = 1.0, t′ = 0). This gives
us effectively the gap function∆(k). As can be seen in Fig. 3.14, belowTc one obtains the
characteristicV -shape of a gap withdx2−y2 pairing symmetry. As temperature is raised, the
quasiparticles peaks are getting broader. In the pseudogap state aboveTc, the spectral weight is
getting rather incoherent close the thek = (π,0) as was pointed out before. However, close to
the nodal point of the gap function one still obtains a sharp quasiparticle dispersion. There, one
can clearly see spectral weight shifting to lower binding energies which produces anextended
gapless region in the pseudogap state close tok = (π2 ,

π
2) instead of the nodal point in the

superconducting state belowTc. This behavior is in complete agreement with photoemission
experiments [152, 155, 162, 163] which show that the pseudogap starts closing fromk = (π2 ,

π
2)

where one obtains a finite Fermi-arc but ratherfills in atk = (π,0) exactly as in Fig. 3.14 (top).
Furthermore, the pseudogap∆(k) obtained from phase fluctuations of the localdx2−y2 pairing-

amplitude rather has a U-like shape (see Fig. 3.14, top) than the characteristic V-shape of a
BCSdx2−y2-gap. For comparison, Fig. 3.15 shows the pseudogap experimentally observed in
underdoped Pb-Bi2212 [148]. One can clearly see that the experimental pseudogap has exactly
the U-like form that we have obtained from the phase-fluctuation model. This deviation from
the puredx2−y2-wave form was also observed in the superconducting state of very underdoped
cuprates and interpreted as higher harmonic contributions to the pairing function, which might
be due to a change in the pairing interaction in the proximity of the antiferromagnetic (AF)
insulating phase [161, 164]. On the other hand, our picture suggests that these experimental
results just might indicate the relevance of quantum phase fluctuations in this region of the
phase diagram.

This characteristic temperature dependence of the pseudogap is also confirmed by theoretical
calculations employing a sum-rule approach to ad-wave pairing model [165]. Besides the “low-
energy” leading edge pseudogap1 of size∆sc [166], also a “high-energy” pseudogap is observed
in photoemission experiments of underdoped cuprates which is nearly an order of magnitude
larger than∆sc [167]. This “high-energy” pseudogap is possibly of spin-fluctuation origin [38].

In Fig. 3.16 the gap function∆(k) of the phase fluctuation model withs-wave gap (〈n〉= 1.0,
t′ = 0) is shown. It was obtained in the same way as thed-wave gap function in plotting the dis-
persion along the Fermi surface of the non-interacting system. Unlike in the case of thed-wave
gap, the quasiparticle peaks along the whole Fermi surface are getting very incoherent aboveTc.
This incoherent spectral weight continously fills-in the pseudogap. Moreover, Fig. 3.16 clearly
shows that the pseudogap has an anisotropics-wave form despite the isotropic superconducting
BCS gap. In contrast to thed-wave case, where also the nodal lines of thedx2−y2-wave gap play
an important role, the anisotropy in the size of thes-wave gap with increasing temperature is
solely determined by thek-dependent Fermi-velocityvF (k) of the underlying free quasiparticle

1One way to identify this low-energy pseudogap in ARPES is to analyze the spectral weight suppression near
the Fermi energy in symmetrized ARPES spectra (Asym(k,ω) =A(k,ω)+A(k,−ω)).
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dispersionε(k) (see discussion in Sec. 3.2.1 and Refs. [36, 160]).

The results for thes-wave pairing gap with phase fluctuations could also be of some relevance
for electron doped cuprates [141], where — as discussed in Sec. 3.1 — a possible crossover from
an anisotropics-wave (ordx2−y2-wave) to a pures-wave symmetry of the SC gap as a function
of electron doping was observed [142, 143]. In fact, these experiments could be an indication
for the increasing relevance of (quantum) phase fluctuations in the proximity of the AF Mott
insulating state also in electron doped cuprates.

3.2.3 (π,0)-peak

ARPES experiments on Bi2212 show that the superconducting(π,0)-photoemission-peak is
very sensitive to the superfluid densityρs [41]. The extracted peak weightz tracks the superfluid
density as a function of temperature as well as a function of doping. The superconducting
(π,0)-peak disappears slightly aboveTc, while the leading edge gap (LEG) is visible up to
much higher temperatures, where the gap continously fills-in. Even up to the overdoped regime
a clear correlation between the SC properties and the(π,0)-weight was observed [168].

Contrary to this interpretation of the photoemission data, the authors of Ref. [153] argue,
that the peak-weightz remains nearly constant as a function of temperature whereas the peak
completely looses integrity close toTc due to a “lifetime catastrophe”, where the width of the
superconducting peak at(π,0) is getting very large. However, this effect is masked by the
dip-feature of the ARPES spectra, so that it looks like the peak is loosing weight.

The differing conclusions are due to the problem of how to extract the quasiparticle peak from
a background with broad hump features in the presence of bilayer splitting. The controversy,
however, only concerns the way of how the superconducting(π,0)-photoemission-peak actually
disappears slightly aboveTc and not the other conclusions discussed in this section. Further
evidence for a connection between the low temperature(π,0)-peak weight andTc in Bi2212 is
given in Ref. [169]. There it is shown, thatTc follows in the underdoped regime the increasing
coherent(π,0)-peak-weightz as a function of doping, while in the overdoped regimeTc follows
— rather BCS-like — the decreasing SC gap magnitude∆sc, so thatTc ∼ z∆sc.

In comparing the different high-Tc superconductors of the Bi-family, a clear correlation of
their SC properties at optimal doping with the spectral weight at(π,0) was observed in Bi2201,
Bi2212 and Bi2223 as a function of layers per unit cell [154, 155]. Across these cuprates, the
superconducting(π,0)-peak-weightz at optimal doping as well as the leading edge SC gap∆sc
scale linear withTc,max. This clearly indicates that the critical temperatureTc in all Bi-based
cuprates is determined by two ingredients —phase coherence and pairing strength — as will
be explicated below.

We have already seen, that within our phase fluctuation model the(π,0)-region reacts most
sensitive to phase coherence in case of adx2−y2-wave gap. But before we continue and compare
our results with the experimental data, we first discuss the expected properties of the SC(π,0)-
peak within the BCS mean-field picture. In BCS theory the weightz of the sharp Bogoliubov
quasiparticle peaks depends on the gap size∆(k) and the distance of the free dispersionε(k)
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from the chemical potentialµ:

z = v2
k =

1
2

(
1− ξ(k)

E(k)

)
, (3.9)

with ξ(k) = ε(k)−µ andE(k) =
√
ξ2(k)+∆2(k). If the free dispersion at(π,0) lies above the

chemical potential, then we obtainξ(k)> 0 and the superconducting BCS peak at(π,0) would
dissappearexactly at Tc (see Fig. 3.17) and notslightly above Tc as observed in experiment.

Furthermore, the weightz of the superconducting peak belowTc, which is a result of particle-
hole mixing of the Bogoliubov bands (see Fig. 3.17), would monotonously decrease as a func-
tion of hole-doping, since the distance from the chemical potential continously increases with
hole-doping and at the same time the gap-size decreases. This doping dependence ofz is con-
trary to what is observed in the underdoped region but in accordance with the overdoped region.

To better understand the properties of the superconducting(π,0)-photoemission-peak in the
underdoped region of the cuprate phase diagram we show in Fig. 3.18 the detailed temperature
dependence of the(π,0)-peak for our phase fluctuation model withdx2−y2-wave gap (t′ = 0,
〈n〉 = 0.9). For comparison we also show the BCS(π,0)-peak as a dashed curve in Fig. 3.18,
which again demonstrates how very sensitive thek = (π,0)-region reacts to phase coherence.

Fig. 3.18 clearly shows that the coherent SC(π,0)-peak is also visible aboveTc within the
phase fluctuation model. It continously looses weight with increasing temperature and disap-
pears atT ' 1.5Tc, exactly as observed in the experiments of Ref. [41]. On the other hand, if
we look at thetotal (π,0)-weight below the chemical potential (ω < µ), this weight is reduced
only by approximately 8% betweenT = 0.75Tc andT = 2.0Tc. Furthermore, it looks as if the
coherent SC(π,0)-peak continously transforms into the very broad incoherent spectral weight,
which is visible up to highest temperatures, exactly as argued in Ref. [153]. Thus, the contro-
versy between Ref. [41] and Ref. [153] can be resolved by the fact that the former group extracts
only the coherent(π,0)-weight from the photoemission data, while the latter group extracts the
coherentand incoherent weight. Hence, both experiments are in complete accordance with the
phase fluctuation scenario.

Finally, in Fig. 3.18 is also shown the temperature dependence of the nodal(π2 ,
π
2)-peak. The

nodal peak changes only slightly with increasing temperature compared to the(π,0)-peak. The
strong dependence of the(π,0)-peak on the phase coherence moreover implies an increasing
coherent SC(π,0)-peak weightz with increasing phase stiffness (superfluid densityρs). This
could explain the experimentally observed increase ofz with hole-doping in the underdoped
Bi-based cuprates and also the increase ofz with the number of copper-oxide layers per unit
cell, which — due to the coupling between the layers within a unit cell — can reduce phase
fluctuations at low temperatures, where a 2D to 3D crossover occurs.

For completeness, we show in Fig. 3.19 the detailed temperature dependence of the spectral
peaks atk = (π,0) andk = (π2 ,

π
2) for our phase fluctuation model withs-wave gap at half-

filling. Contrary to thed-wave case, the spectral peaks at(π,0) are visible nearly up toT '
2.0Tc, whereas the(π2 ,

π
2)-peaks are completely washed out already aboveT ' 1.5Tc. The

anisotropic temperature dependence of the spectral peaks for thes-wave gap is solely caused
by the different Fermi velocities, as discussed in Sec. 3.2.1.
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Figure 3.8: Spectral weightA(k,ω) in a greyscale plot for the dx2−y2-wave superconducting gap
with phase fluctuations at finite doping (t′ = 0.0t, 〈n〉 = 0.9). The figures display the spectral
weight in the pseudogap state for T = 2.00Tc (top) and in the superconducting state slightly
below Tc (T = 0.75Tc, middle). For comparison we also show the phase coherent BCS limit
(bottom).
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Figure 3.9: Spectral weight A(k,ω) in a greyscale plot for the dx2−y2-wave superconducting
gap with phase fluctuations and next-nearest neighbor-hopping t′ at finite doping (t′ = −0.4t,
〈n〉= 0.9). The figures display the spectral weight in the pseudogap state for T = 2.00Tc (top)
and in the superconducting state slightly below Tc (T = 0.75Tc, middle). For comparison we
also show the phase coherent BCS limit (bottom).
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Figure 3.10: Spectral weight A(k,ω) in the pseudogap state (T = 2.0Tc, top) and in the super-
conducting state slightly below Tc (T = 0.75Tc) calculated from the phase fluctuation model
with dx2−y2-wave gap. For comparison we also show the spectral weight for the phase coherent
BCS limit (bottom).
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Figure 3.11: Experimental angle resolved photoemission (ARPES) results for the quasiparticle
dispersion in underdoped Pb-Bi2212 (Tc = 77K) from Ref. [148]. a) Superconducting state.
Energy distribution of the photoemission intensity along the direction shown as arrow on the
sketch below. The BCS-like dispersion is clearly observed for the bonding band. b) Pseudogap
state. No more bending back of the dispersion is observed. Instead, spectral weight fades upon
approaching the Fermi level.
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Figure 3.12: Spectral weight A(k,ω) in a greyscale plot for the isotropic s-wave superconduct-
ing gap with phase fluctuations at half-filling (t′ = 0.0t, 〈n〉 = 1.0). The figures display the
spectral weight in the pseudogap state for T = 2.00Tc (top) and T = 1.50Tc (middle) and in
the superconducting state slightly below Tc (T = 0.75Tc, bottom).
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Figure 3.13: Spectral weight A(k,ω) for the isotropic s-wave superconducting gap with phase
fluctuations at half-filling (t′ = 0.0t, 〈n〉 = 1.0). The figures display the spectral weight in the
pseudogap state for T = 2.00Tc (top) and T = 1.50Tc (middle) and in the superconducting
state slightly below Tc (T = 0.75Tc, bottom). One can clearly see that the pseudogap closes
anisotropically.
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Figure 3.14: Gap function ∆(k) in the pseudogap state (T = 2.0Tc, top) and in the supercon-
ducting state slightly below Tc (T = 0.75Tc) calculated from the phase fluctuation model with
dx2−y2-wave gap. For comparison we also show the BCS gap function (bottom).
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Figure 3.15: Experimental values of the leading edge (pseudo-)gap (LEG) as a function of the
Fermi surface angle within the quadrant of the Brillouin zone (see lower panel) given with
respect to the binding energy of the leading edge of a nodal energy distribution curve for un-
derdoped Pb-Bi2212 (Tc = 77K) from Ref. [148]. The curve joining the low-gap extremity of
these data points would represent the k-dependence of the pseudogap. For details see Ref. [161].
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Figure 3.16: Gap function ∆(k) in the pseudogap state (left) for T = 2.0Tc (top) and T = 1.5Tc
(bottom) and in the superconducting state (right) slightly below Tc (T = 0.75Tc) calculated
from the phase-fluctuation model with s-wave gap. For comparison we also show the BCS gap
function (bottom, right).



3.2. SPECTRAL WEIGHTA(k,ω) 75

µ

T>Tc

T<Tc

E<µ

Superconducting (π,0)-Peak

Figure 3.17: Sketch of the superconducting (π,0)-peak. Within BCS mean-field theory, this
quasiparticle peak would be absent in the normal state above Tc in photoemission experiments.
In the superconducting state (T < Tc), however, this peak becomes visible below the chemical
potential µ at an energyE <µ (left side of panel) due to particle-hole mixing of the Bogoliubov
bands.
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Figure 3.18: Temperature dependence of the spectral peaks at k = (π,0) (a) and k = (π2 ,
π
2)

(b) for the dx2−y2-wave gap at finite doping (t′ = 0.0t, 〈n〉 = 0.9). The temperatures are T =
0.75Tc, T = 1.00Tc, T = 1.25Tc, T = 1.50Tc, T = 1.75Tc, T = 2.00Tc and T = 3.00Tc
(from bottom to top). Notice, that the superconducting (π,0)-peak disappears above T ' 1.5Tc,
whereas incoherent weight is visible up to highest temperatures below the chemical potential.
For comparison we also show the BCS (π,0)-peak (dashed curve).
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Figure 3.19: Temperature dependence of the spectral peaks at k = (π,0) (a) and k = (π2 ,
π
2)

(b) for the s-wave gap at half-filling (t′ = 0.0t, 〈n〉 = 1.0). The temperatures are T = 0.75Tc,
T = 1.00Tc, T = 1.25Tc, T = 1.50Tc, T = 1.75Tc, T = 2.00Tc, T = 3.00Tc, T = 4.00Tc
and T = 5.00Tc (from bottom to top). The (π2 ,

π
2)-peaks are completely washed out above

T ' 1.5Tc, whereas the (π,0)-peaks are visible up to T ' 2.0Tc.
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3.3 The CPA as a high-temperature approximation?

In the preceding sections we have seen that over a wide temperature range in the pseudogap
state, we haveξ ∼ ξ0 (see Fig. 3.2). Thus, one might ask whether a less computing time in-
tensive high-temperature approximation is possible, where one treats the phasesϕi as random
numbers instead of performing a MC simulation with theXY free energy and diagonalizing the
whole Hamiltonian for each phase configuration. A standard procedure of treating randomly
disordered crystals is the coherent potential approximation (CPA) [170].

The CPA defines three different Green’s functions. The Green’s function of the free system
without disorder(

iωn1− Ĥ0

)
Ĝ0 = 1, (3.10)

the impurity Green’s function for a single configuration of impurity potentialsV̂ imp,(
iωn1− Ĥ0− V̂ imp

)
Ĝimp = 1, (3.11)

and finally the CPA Green’s function(
iωn1− Ĥ0− Σ̂CPA

)
ĜCPA = 1. (3.12)

The CPA self-energŷΣCPA is defined by the requirement, that the disorder averaged impurity
Green’s function〈Ĝimp〉 is equal to the CPA Green’s function̂GCPA = 〈Ĝimp〉. Hence, the
CPA self-consistency equation forΣ̂CPA takes the form

〈Ĝimp〉 ≡
〈(

1− ĜCPA
(
V̂ imp− Σ̂CPA

))−1
ĜCPA

〉
= ĜCPA, (3.13)

with

(ĜCPA)−1 = (Ĝ0)−1− Σ̂CPA. (3.14)

In our case the impurity potential̂V imp is given by the local BCS-like pairing terms inH1 (see
Sec. 2.1), with fixed amplitude∆ and randomly distributed phasesϕi .

Thus far everything is exact — we have just reformulated the problem. Solving the self-
consistency Eq. (3.13) would be as cumbersome as the repeated diagonalization of our phase
fluctuation Hamiltonian for random phase configurations. However, one can now very easily
exploit the fact, that the system is randomly disordered. Random disorder means, that what
happens at one lattice site is completely uncorrelated to what happens on neighboring lattice
sites. Thus, the electronic properties are solely determined by the local environment and the
disorder caused by random impurity potentials can be taken into account in a mean-field-like
manner.

Usually, the self-consistency Eq. (3.13) is solved for a finite submatrix in real space, like
a single lattice site. This is the single-site or local aspect ofΣ̂CPA. In our case, we solved
the CPA Eq. (3.13) for an on-site 2×2 Nambu Green’s function matrix̂GCPAii with the local
s-wave impurity potential̂Vimp = ∆ eiφ ci ↓ci ↑+ h.c., where the phaseφ can take all random
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values between 0 and 2π. The inversion of the Green’s functions in Eq. (3.14) was done for the
exact Green’s function matrices by means of a Fourier transformation.

Fig. 3.20 shows the result of our CPA calculation for on-sites-wave pairing with∆ = 1.0t
at half-filling (〈n〉 = 1.0). There, the CPA density of states (DOS)N(ω) is compared with the
result of the exactXY -MC calculation at high temperature (T = 3TKT ), whereξ ∼ ξ0. Both
N(ω) curves have a very similar shape. The pseudogap is filled-in somewhat more in the CPA
calculation and the CPA DOS shows additional features atω=±4.0twhich are possibly caused
by the spatial cut-off in the Green’s function matrices. In Fig. 3.21 the CPA spectral weight
A(k,ω) is displayed in a greyscale plot for the same parameters. Again, the spectral weight
looks very similar to the results of the exactXY -MC calculation at very high temperatures
shown in Fig. 3.12. However, we loose thek-selectivity of the exact result, due to the purely
local CPA self-energyΣCPA(ω). This produces pseudogaps of the same size atk = (π,0) and
k = (π2 ,

π
2) in the CPA spectral weight. In addition, we obtain a rather sharp change in the

dispersion at energiesω = ±4.0t, which is responsible for the features in the CPA DOS at the
same energies.

The CPA only yields relatively good results for diagonal disorder. For off-diagonal disorder,
like next-neighbordx2−y2-wave pairing, the spatial cut-off in the Green’s function matrices
causes serious problems. One might, however, improve the results by the consideration of
bigger clusters in the CPA self-consistency Eq. (3.13).

Like all mean-field approximations, the CPA is supposed to become exact in infinite dimen-
sions. Instead of increasing the number of spatial dimensions, we increase in the following the
number of hopping terms. This is done by choosing a free parabolic dispersion∼ k2 on our
2D square lattice with bandwidthW = 2.0t (Fig. 3.22 (a)). In the presence of a locals-wave
pairing potential̂Vimp = ∆ eiφ ci ↓ci ↑+h.c. (Fig. 3.22 (b)), with random phaseφ and magnitude
∆ =W = 2.0t, a well defined quasiparticle gap of width∼ 2∆ opens at the chemical potential
(µ= 0.5t, which is somewhat below half-filling).

The CPA result obtained for theconstant free density of states (parabolic dispersion) shown in
Fig. 3.22 (b) is in complete accordance with the results of Ref. [171]. Thus, one might speculate
that in higher dimensions, also incoherent local pairing can lead to areal gap in the DOS. This
is in contrast to the results for the tight-binding dispersion in 2D, where incoherent local pairing
produces only apseudogap in the DOS, and where the formation of areal gap is accompanied
by the development of global phase coherence. However, please note that in contrast to all
previous calculations, the chosen parameters∆ =W = 2.0t are already in the strong-coupling
Bose-Einstein-pair limit!
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Figure 3.20: Single particle density of states N(ω) calculated with the CPA (straight line) for a
local impurity s-wave pairing-potential V̂ imp∼ ∆eiφ with random phase φ (∆ = 1.0t, for details
see text). For comparison we also show N(ω) calculated from the XY-MC simulation of our
phase-fluctuation model with s-wave gap (dashed line) at T = 3TKT .
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Figure 3.21: Spectral weight A(k,ω) in a greyscale plot calculated with the CPA for a local
impurity s-wave pairing-potential V̂ imp ∼ ∆eiφ with random phase φ (∆ = 1.0t). The overall
features look similar to the results obtained for our phase-fluctuation model with s-wave gap at
very high temperatures (see Fig. 3.12).



80 CHAPTER 3. SINGLE-PARTICLE PROPERTIES

(a)

-2.00

-1.00

0.00

1.00

2.00

3.00

(ω
-µ

)/t

(0,0) (π,0) (π,π) (π/2,π/2) (0,0)
 

(b)

-2.00

-1.00

0.00

1.00

2.00

3.00

(ω
-µ

)/t

(0,0) (π,0) (π,π) (π/2,π/2) (0,0)
 

Figure 3.22: (a) Spectral weight A(k,ω) in a greyscale plot for a free parabolic dispersion
ε(k) ∼ k2 with bandwidth W = 2.0t (µ = 0.5t). (b) A(k,ω) calculated with the CPA for the
same dispersion in the presence of a local impurity s-wave pairing-potential V̂ imp ∼ ∆eiφ with
random phase φ and ∆ =W = 2.0t (µ = 0.5t). One can clearly see that local pairing can lead
to a well defined gap at the chemical potential even without global phase coherence.



4
Optical properties

In this chapter we apply our phenomenological phase-fluctuation model to optical and high-
frequency conductivity experiments in the underdoped cuprates. First, we discuss the coupling
of an electromagnetic field to the Hamiltonian and elaborate the current response of the quantum
many-particle system. Next, we derive the general properties of the current-current correlation
function and the optical conductivity. We point out the important differences between a contin-
uum Hamiltonian and an effective lattice Hamiltonian. Then, we analyze experiments on the
optical sum-rule in terms of our phase fluctuation scenario, which might shed some light on the
temperature dependence of the kinetic energy and in particular its change at the superconduct-
ing transition temperatureTc. Finally, the detailed temperature and frequency dependence of
the optical conductivity is discussed.

4.1 The current-current correlation function

The current response of a many-particle system to an applied electromagnetic field can be ob-
tained from the current-current correlation functionDc(q, ω). Thereby, some important differ-
ences arise between a continuum model and an effective lattice model. Therefore we start with
the continuum description.

4.1.1 Continuum model

Consider the non-interacting continuum Hamiltonian

H0 =
∫
ψ̂†(x)

(
− ~2

2m
∇2

)
ψ̂(x)dx, (4.1)

whereψ̂†(x), ψ̂(x) are the usual field operators [172]. The electromagnetic field is coupled to
the Hamiltonian by means of the substitution

p̂=−i~∇ −→ p̂− e
c

A(x), (4.2)

81
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with e < 0 being the charge of the electron. The new HamiltonianH ′0 in the presence of the
vector potentialA(x) is then given by

H ′0 =
1

2m

∫
ψ̂†(x)

(
−i~∇− e

c
A(x)

)2
ψ̂(x)dx. (4.3)

If the vector potentialA(x) has Coulomb gauge (∇A(x) = 0), then the Hamiltonian can be
decomposed into three terms:

H ′0 =H0 +Hdiamag(A)+Hparamag(A). (4.4)

The diamagnetic term

Hdiamag(A) =
e2

2mc2

∫
A2(x) ρ̂(x)dx (4.5)

is quadratic inA(x). There, the vector potential couples to the particle-density operator ˆρ(x) =
ψ̂†(x)ψ̂(x). Whereas the paramagnetic term

Hparamag(A) =−1
c

∫
A(x) ĵp(x)dx (4.6)

is linear inA(x) and the vector potential couples to the paramagnetic current operatorĵp(x),
which is given by

ĵp(x) =
~e

2mi
[ψ̂†(x)∇ψ̂(x)− (∇ψ̂†(x))ψ̂(x)]. (4.7)

The total current density can be obtained as a functional derivative ofH ′0 with respect to the
vector potentialA(x):

ĵ(x) =−c
δH ′0
δA(x)

= ĵp(x)− e2

mc
A(x)ρ̂(x). (4.8)

Here, the first term is the paramagnetic contribution and the second term the diamagnetic con-
tribution to the total current.

4.1.2 Linear response theory — Kubo formula

For an external perturbation att0 =−∞, the linear current response is given by [172]

δ〈 ĵ(x, t)〉= i

~

∫
dt′ 〈[Ĥex

H (t′), ĵH(x, t)]〉Θ(t− t′), (4.9)

where〈· · · 〉 is the quantum mechanical expectation value with respect to the exact unperturbed
HamiltonianĤ and [· · · , · · · ] is the commutator. In our case, the perturbing Hamiltonian is
Ĥex = Ĥdiamag(A)+ Ĥparamag(A). All operators in Eq. (4.9) have to be in the Heisenberg pic-
ture, which means

Ĥex
H (t) = e

i
~ Ĥt

(
Ĥdiamag(A)+ Ĥparamag(A)

)
e−

i
~ Ĥt (4.10)
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and

ĵH(x, t) = e
i
~ Ĥt

(
ĵp(x)− e2

mc
A(x, t)ρ̂(x)

)
e−

i
~ Ĥt. (4.11)

Since the diamagnetic current is already linear inA(x, t), the linear response formula has to
be applied only to the paramagnetic current. Collecting all terms linear inA(x, t), one finally
obtains

δ〈 ĵ(x, t)〉=− i

~c

∫
dt′ dx′A(x′, t′)〈[ ĵpH(x′, t′), ĵpH(x, t)]〉Θ(t− t′)

− e2

mc
A(x, t)〈ρ̂(x)〉.

(4.12)

For a translational invariant system one has

〈ρ̂(x)〉= ρ0 (4.13)

and hence

δ〈 ĵ(x, t)〉= i

c

∫
dt′ dx′ σ̄(x−x′, t− t′)A(x′, t′)

− e
2ρ0

mc
A(x, t),

(4.14)

where

σ̄(x−x′, t− t′) =
1
~

Θ(t− t′)〈[ ĵpH(x, t), ĵpH(x′, t′)]〉. (4.15)

Fourier transformation of Eq. (4.14) yields

δ〈 ĵ(k,ω)〉= i

c
σ̄(k,ω) A(k,ω)

− e
2ρ0

mc
A(k,ω).

(4.16)

Eq. (4.16) describes the linear response to a vector potential. The conductivity, however, is
defined as the linear response to an applied electric fieldE(x, t). For Coulomb gauge, we have
E(x, t) =−1

c
∂A(x,t)
∂t and thus

E(k,ω) =
i

c
(ω+ iη) A(k,ω), (4.17)

whereη = 0+ is required due to the adiabatic switch-on of the external perturbation att0 =−∞.
With the definition of the electrical conductivity

δ〈 ĵ(k,ω)〉= σ(k,ω) E(k,ω) (4.18)

and

σ(k,ω) = σpara(k,ω)+σdia(k,ω), (4.19)
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we finally obtain

σdia(k,ω) =
ie2ρ0

m(ω+ iη)
(4.20)

and

σpara(k,ω) =
1

ω+ iη

∫
dt dx σ̄(x, t) e−i(kx−ωt). (4.21)

At finite temperatures, the retarded current-current correlation function is defined by [172]

iDc(x t,x′ t′) = Tr{ρ̂G[ ĵpH(x, t), ĵpH(x′, t′)]}Θ(t− t′), (4.22)

where ˆρG = 1
Z eβ(Ĥ−µN̂) is the grand canonical statistical operator. The Matsubara current-

current correlation function is given by

Dc(xτ,x′ τ ′) =−Tr{ρ̂GTτ [ ĵpH(x, τ) ĵpH(x′, τ ′)]}, (4.23)

where Tτ [· · · ] is the imaginary time-ordering operator. For a translational invariant system, we
have

σ̄(x−x′, t− t′) =
i

~
Dc(x t,x′ t′). (4.24)

The paramagnetic conductivity can now be written as

σpara(k,ω) =
i

~(ω+ iη)

∫
dt dx Dc(x t,00) e−i(kx−ωt)

=
i

~(ω+ iη)
Dc(k,ω)

=
i

~(ω+ iη)
Dc(k,ω+ iη),

(4.25)

with Dc(k, iνn) the Fourier transformed Matsubara current-current correlation function

Dc(k, iνn) =
∫
dx

∫ β

0
dτ Dc(xτ,00) e−i(kx−νnτ). (4.26)

Putting everything together, we finally obtain

σ(k,ω) = σdia(k,ω)+σpara(k,ω)

=
ie2ρ0

m(ω+ iη)
+

i

~(ω+ iη)
Dc(k,ω+ iη).

(4.27)

4.1.3 Lattice model — Peierls-Factors, Part II

For the effective lattice model, we use units such that~ = c= 1 and all length scales are defined
in terms of the lattice constanta = 1. In some important formulas, we give the neglected
constants in brackets[· · · ] at the end of the formula, which allows us to compare our results
quantitatively with experiments later on.
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Now, consider the tight-binding hopping term ofH0 (Eq. (2.2)) with next-neighbor hopping
only

T =−t ∑
〈i j〉,σ

(c†
iσcjσ+ c†

jσciσ). (4.28)

In Sec. 2.6.2 we saw, that in the presence of a static magnetic field, one has to make the substi-
tution

c†
iσcjσ→ eie

∫ i
j A(l)dl c†

iσcjσ, (4.29)

where the integral formulation was very important because of the phase acquired by an electron
moving on a closed path through theB-field, which is proportional to the enclosed magnetic
flux. Here, we are only interested in the linear response to an applied electric fieldE(q,ω)
in the long wavelength limit ofq→ 0, which actually means2π|q| � a. The electric field is
coupled through the vector potential to the Hamiltonian. Thus, the vector potential is nearly
constant over a distance of sizea. For an electric field inx-directionEx =−1

c
∂Ax
∂t , we can thus

approximately make the substitution

c†
l+ex,σ

cl,σ→ eieAx(l) c†
l+ex,σ

cl,σ. (4.30)

The approximation of the vector potential betweenl + ex and l by its value atl is somewhat
arbitrary. The consequences of this choice will be discussed later.

Interestingly, in the limit where the vector potential varies on a scaleΛ, which is much larger
than the extentλ of the tightly bound electronic orbitals, the Peierls factors in the form Eq. (4.30)
can also be motivated in a different way. Starting from the Schrödinger equation

H ψi(x) =
1

2m

(
−i~∇− e

c
A(x)

)2
ψi(x)+V (x) ψi(x) = E ψi(x) (4.31)

with ψi(x) being the wave function of a tightly bound electron at lattice sitei, one can eliminate
A(x) approximately by the gauge transformation

ψi(x)→ ei
e

~c x A(i) ψi(x), (4.32)

whereby the error is of order∼ λ
Λ . In the language of second quantization, this means that the

coupling to a slowly varyingA(x) can be absorbed by the substitution

c†
l σ→ ei

e
~c l A(l) c†

l σ, (4.33)

which is completely equivalent to Eq. (4.30).
Expansion of the exponential up to orderA2

x(l) yields for the next-neighbor hopping terms in
H0:

TA = T −∑
l

[
e jpx(l) Ax(l, t)+

e2 kx(l)
2

A2
x(l, t)

]
, (4.34)

where

jpx(l) = it∑
σ

(c†
l+ex,σ

cl,σ− c†
l,σ cl+ex,σ) · [ 1

~ a‖ a⊥
] (4.35)
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is the paramagnetic current density operator and

kx(l) =−t∑
σ

(c†
l+ex,σ

cl,σ+ c†
l,σ cl+ex,σ) (4.36)

the operator for the local kinetic energy inx-direction. In Eq. (4.35),a‖ anda⊥ stand for the in-
plane and inter-plane lattice-spacing, respectively. As before, the total current density operator
is then given by the derivation of the Hamiltonian with respect toAx(l, t):

jx(l, t) =− δTA
δAx(l, t)

= e jpx(l)+ e2 kx(l) Ax(l, t). (4.37)

Applying the linear response formula gives

δ〈jx(l, t)〉=− ie2
∫
dt′ ∑

l ′
Ax(l ′, t′) 〈[jpx(l ′, t′), jpx(l, t)]〉Θ(t− t′)

+ e2 〈kx〉 Ax(l, t),
(4.38)

wherejpx(l, t) is in the Heisenberg picture with respect to the unperturbed HamiltonianH and
〈kx〉 is the expectation value of the local kinetic energy inx-direction for the unperturbed
HamiltonianH. Hence,〈kx〉 has no time or space dependence. With the definition of the
retarded current-current correlation function

iDc(l t, l ′ t′) = Tr{ρ̂G [jpx(l, t), j
p
x(l
′, t′)]}Θ(t− t′), (4.39)

one obtains for the current response after a Fourier transformation:

δ〈jx(k,ω)〉= {−e2Dc(k,ω)+ e2〈kx〉} Ax(k,ω). (4.40)

Thus, the electrical conductivity has the form

σxx(k,ω) = e2 〈kx〉−Dc(k,ω+ iη)
i(ω+ iη)

· [ 1
~2 a⊥

], (4.41)

with the Matsubara current-current correlation functionDc(k, iνn). The important point here
is, that the electron densityρ0 of the continuum model (see Eq. (4.27)) is replaced by the local
kinetic energy〈kx〉 of the effective lattice Hamiltonian.

In the presence of next-nearest neighbor diagonal hopping terms∼ t′, one has to make the
additional substitution

c†
l+ex±ey,σ

cl,σ→ eieAx(l) c†
l+ex±ey,σ

cl,σ, (4.42)

where the expansion of the hopping terms up to orderA2 now yields

TA = T −∑
l

[
e jpx(l) Ax(l, t)+

e2 k̃x(l)
2

A2
x(l, t)

]
. (4.43)

Here,k̃x(l) is no longer proportional to the local kinetic energy and given by

k̃x(l) =−t∑
σ

(c†
l+ex,σ

cl,σ+ c†
l,σ cl+ex,σ)

−t′∑
σ

(c†
l+ex+ey,σ

cl,σ+ c†
l+ex−ey,σ

cl,σ

+c†
l,σ cl+ex+ey,σ+ c†

l,σ cl+ex−ey,σ).

(4.44)
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The paramagnetic current density operator in the presence oft′,

jpx(l) = it∑
σ

(c†
l+ex,σ

cl,σ− c†
l,σ cl+ex,σ)

+it′∑
σ

(c†
l+ex+ey,σ

cl,σ+ c†
l+ex−ey,σ

cl,σ

−c†
l,σ cl+ex+ey,σ− c

†
l,σ cl+ex−ey,σ),

(4.45)

contains many additional terms, which makes it very cumbersome to calculate the current-
current corelation function.

On the other hand, for a translational invariant system with general dispersionε(k), things
simplify again and one obtains for the diamagnetic current

〈jDx (q)〉=−e2 2
N ∑

k

∂2ε(k)
∂k2

x
nk Ax(q), (4.46)

wherenk is the momentum distribution function, which for a non-interacting system is given by
the Fermi functionnk = f(ε(k)) = 1

eβ(ε(k)−µ)+1
. With the paramagnetic current operator given

by

jpx(q) = e ∑
k,σ

1
2

(
∂ε(k)
∂kx

+
∂ε(k+q)
∂kx

)
c†

k,σck+q,σ, (4.47)

the Matsubara current-current correlation function

Dc(q, τ − τ ′) =− 1
N

Tr{ρ̂GTτ [ ĵpx(q, τ) ĵpx(−q, τ ′)]} (4.48)

can be evaluated exactly for a non-interacting system and one obtains

Dc(q, iνn) =
e2

2N ∑
k

(
∂ε(k)
∂kx

+
∂ε(k+q)
∂kx

)2 f(ε(k))−f(ε(k+q))
iνn+ ε(k)− ε(k+q)

. (4.49)

In deriving Eqs. (4.46) – (4.49), we used a symmetric expression for the current operator
(jpx,sym(l) = 1

2(jpx(l − ex) + jpx(l)), see Eq. (4.35)). The result for the current-current corre-
lation function (Eq. (4.49)) differs from the result obtained for the asymmetricjpx(l) by a factor
of cos(qx/2) for a next neighbor tight-binding dispersion. This is due to the discreteness of the
lattice on the scalea, which can be seen from

cos
(qx

2

)
≡ cos

(qxa
2

)
−−−→
a→0

1, (4.50)

for fixedqx. Since we are considering the long-wavelength limit2π
|q| � a, and since additionally

for all physical relevant quantitiesqx = 0 (see below), we have always used the asymmetric ex-
pression for the current given in Eq. (4.35), from which the current-current correlation function
can be calculated much faster.

This example shows us, that the current obtained from an effective lattice Hamiltonian by
means of a Peierls substitution is not a well-defined quantity. This stands in contrast to the first
principle continuum Hamiltonian (Eq. (4.3)), which always yields a unique expression for the
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Figure 4.1: Superconducting half-plane with a magnetic field B applied perpendicular to the
plane in z-direction. The screening current jx runs parallel to the plane boundary in x-direction.

current. In fact, the correct way to obtain the effective current operator on the lattice would
be to calculate the exact current operator for the original Hamiltonian and then perform the
same unitary transformation and projection to the low energy sector that was done to obtain
the effective lattice Hamiltonian from the first-principle Hamiltonian [173]. In practice, this is
however only possible in an approximative way and always detailed knowledge of the original
Hamiltonian is required [173].

4.1.4 General properties ofDc(q,ω) and σ(ω)

In this section, we discuss different limits of the current-current correlation function, which
determine whether a system is insulating, metallic or superconducting [174]. Furthermore,
we present the conductivity sum rule for our effective lattice Hamiltonian and for a general
continuum Hamiltonian.

London equations, London penetration depth, and superfluid weightDs

One of the most characteristic properties of a superconductor — besides superconductivity —
is, that it acts like a perfect diamagnet. This so-called Meissner effect can be described by the
second London equation [175]

js(x) =−nse
2

mc
A(x), (4.51)

wherens is the density of superfluid electrons. For the supercurrentjs(x) to be conserved,
one must require∇A(x) = 0 (or q ·A(q) = 0), which means thatA(x) must have transverse
(Coulomb) gauge.

Now consider the geometry sketched in Fig. 4.1, with a superconducting half-plane with
plane boundary aty = 0 and a static screening current running inx-direction parallel to the
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plane boundary. The magnitude of the screening current is constant inx-direction and varies
slowly on a scale set by the lattice constanta in y-direction. The Fourier transformed London
equation yields

jx(qy) =− c

4π
1
λ2 Ax(qy), (4.52)

whereAx(qy) produces a magnetic fieldBz(qy) in z-direction:

B(x) = ∇×A(x) ⇒ Bz(qy) =−iqyAx(qy). (4.53)

In the long wavelength limitqy → 0 (λ� a), we obtain the Meissner effect, with the London
penetration depthλ given by [174]

1
λ2 =

4πnse2

mc2 . (4.54)

More general one can show [175], that in the long wavelength limit of the vector potential, the
linear response Kernel can be written as

〈ji(q)〉= f(q) [δij−
qiqj
q2 ] Aj(q). (4.55)

Here, gauge invariance, charge conservation as well as rotation invariance have been taken into
account. For a superconductor one has (~ = c= 1)

−f(q→ 0)
e2 =

(ns
m

)∗
=
Ds

πe2 , (4.56)

with Ds the superfluid weight. Comparing Eqs. (4.55) and (4.56) with our linear response
formula (Eq. (4.40)) for the 2D lattice with next-neighbor hopping, one gets [174]

Ds

πe2 =−〈kx〉+Dc(qx = 0, qy→ 0, iνn = 0) (4.57)

and

0 =−〈kx〉+Dc(qx→ 0, qy = 0, iνn = 0). (4.58)

The last equation holds only if the system is gauge invariant. In the BCS gauge symmetry
broken state also Eq. (4.58) yieldsDs [174]. In our phase fluctuation model, on the other hand,
we sample at each temperature over all possible phase configurations. Thus, all our results are
gauge invariant and Eq. (4.58) should always be satisfied. Even belowTKT , we do not get a
spontaneous gauge symmetry breaking, as discussed in Chap. 2. However, on the finite lattice
we get a quasi long-range phase order and henceDs 6= 0. Therefore, Eqs. (4.57) and (4.58) are
an important check for the consistency of our calculations.
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Drude weightD0

Starting from the Drude conductivity

σ(ω) =
σ0

1− iωτ
, (4.59)

with σ0 = ne2τ
m and taking the limitτ → ∞:

σ(ω) =
ne2

m
i

1

ω+ i 1
τ

−−−→
τ→∞

ne2

m

(
πδ(ω)+ i

1
ω

)
, (4.60)

the real part ofσ(ω) turns into aδ-function

σ1(ω) =D0 δ(ω). (4.61)

Eq. (4.61) defines the Drude weightD0 = πne2

m . In general, one expects that atT = 0, the real
part of the optical conductivityσ1(q = 0,ω) will have the form [174]

σ1(ω) =D0 δ(ω)+σreg1 (ω), (4.62)

with

D0

πe2 =
( n
m

)∗
. (4.63)

Eqs. (4.62) and (4.63) can be generalized to finite temperatures. From the linear response
formula (Eq. 4.41) in the limitη→ 0, one obtains for the 2D lattice with next-neighbor hopping:

σ(ω) =− e2π (〈kx〉−ℜ{Dc(q = 0, ω)}) δ(ω)

− e2 ℑ{Dc(q = 0, ω)} 1
ω

− ie2 (〈kx〉−ℜ{Dc(q = 0, ω)}) 1
ω

[+ iπ ℑ{Dc(q = 0, ω)} δ(ω)].

(4.64)

Here, we separated the retarded current-current correlation function into real (ℜ{· · ·}) and
imaginary (ℑ{· · ·}) part. The term in brackets[· · · ] is zero, since the imaginary part ofDc(q =
0, ω)} is antisymmetric inω. Comparing Eq. (4.62) with Eq. (4.64), one finally gets

D0

πe2 =−〈kx〉+ℜ{Dc(q = 0, ω→ 0)}. (4.65)

To summarize our results:Ds is a measure of the density of superconducting electrons andD0

is a measure of the density and mobility of normal conducting electrons. Thus, atT = 0 an
insulator is defined byDs = 0 andD0 = 0, a metal is defined byDs = 0 andD0 6= 0, and a
superconductor is defined byDs 6= 0 andD0 6= 0. At finite temperature or in the presence of
disorder, one can haveD0 = 0, butσ(ω = 0) remains finite for a metallic system [174].
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Conductivity sum-rule

Integrating Eq. (4.64) over all frequencies, one gets the conductivity sum-rule for the 2D lattice
with next-neighbor hopping∫ +∞

−∞
σ(ω) dω =−e2π 〈kx〉. (4.66)

This result was obtained due to the symmetry ofℜ{Dc(q = 0, ω)}, which is an even function
in ω, and since∫ +∞

−∞

(
π ℜ{Dc(q = 0, ω)} δ(ω)−ℑ{Dc(q = 0, ω)} 1

ω

)
dω = 0, (4.67)

because of the Kramers-Kronig relation

ℜ{Dc(q, ω)}=
1
π

P
∫ +∞

−∞

ℑ{Dc(q, ω′)}
ω′−ω

dω′. (4.68)

For the continuum system, on the other hand, one obtains∫ +∞

−∞
σ(ω) dω =

πne2

m
. (4.69)

The consequences of these results will be discussed in great detail in the next section.

4.2 Optical sum-rule and kinetic energy

In ordinary BCS superconductors the optical conductivity is suppressed at frequencies within
a range of about twice the SC gap. The corresponding low-frequency spectral weightWlow is
transfered to the zero-frequency delta peakWD [7], associated with the dissipationless transport
(and the superfluid weightDs) in the SC state. This is the Glover-Ferrell-Tinkham (GFT) sum
rule. On the other hand, thetotal frequency integral of the optical conductivity is conserved,
when decreasing the temperature across the SC transition, due to the oscillator-strength or f-sum
rule [7], i. e.

W sc
tot =Wn

tot. (4.70)

The full optical integral, when integrated over all frequenciesand energy bands, is proportional
to the carrier densityn over the bare massm

Wtot ≡WD+Wlow+Whigh =
∫ ∞

0
Re σexp(ω) dω =

πne2

2m
, (4.71)

and thus is conserved. This is exactly the result, which one obtains from the first principle
continuum Hamiltonian (Eq. (4.69)). When the optical integral is restricted over a finite (low)
range of frequenciesΩ, in the HTSC typically of the order of eV, one may consider the weight
WD+Wlow as being essentially due to a single band around the Fermi energy, i. e.

WD+Wlow =
∫ Ω

0
Re σexp(ω) dω =

∫ ∞

0
Re σ̃(ω) dω = πe2 1

N ∑
k

∂2ε(k)
∂k2

x
nk, (4.72)
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whereσexp(ω) is the experimentally measured low frequency optical conductivity and ˜σ(ω)
is the theoretical single-band conductivity. The last equality was obtained from Eq. (4.46),
with the Fermi distribution replaced by the momentum distributionnk of the interacting many-
particle system. Thus, the frequency integral of the optical conductivity within the single-band

assumption, is proportional to the the inverse mass tensor∂2ε(k)
∂k2

x
(x̂ being the direction in which

the conductivity is measured) weighted with the momentum distributionnk. It depends upon the
bare single-particle band structureε(k), being proportional to minus the kinetic energyWD +
Wlow = −πe2

4 Ekin for a (nearest-neighbor) tight-binding (TB) model, while for free electrons
it is a constant given by the electron density divided by the effective mass.

In case of our phase-fluctuation model with nearest-neighbor hopping (t′ = 0), we obtain

WD+Wlow =−e2 π

2
〈kx〉, (4.73)

whereas the inclusion of next-nearest neighbor hopping terms (t′ 6= 0) yields

WD+Wlow =−e2 π

2
〈k̃x〉, (4.74)

with kx and k̃x being defined in Eqs. (4.36) and (4.44). Hence, a careful study of the low-
frequency single-band optical sum-rule could show, whether the SC transition in the underdoped
cuprates is BCS-like. Furthermore, it may reflect the detailed temperature dependence of the
kinetic energy, if a nearest-neighbor tight-binding description is appropriate.

Now, recent measurements of the in-plane optical conductivity [176, 177] have indicated avi-
olationof the GFT optical sum rule for frequencies up to 2 eV in underdoped Bi2Sr2CaCu2O8+δ

(Bi2212). By entering the superconducting state, not only spectral weightWlow from the mi-
crowave and far-infrared, but also from the visible optical spectrum i. e. high-frequency spectral
weightWhigh contributes to the superfluid condensateWD. That is, in contrast to ordinary BCS-
superconductors, a “color change” is introduced at the superconducting transition. In addition,
unusually high energy scales involved in forming the superconducting state were also observed
in sum-rule analyses of underdoped YBa2Cu3O6+x (YBCO) [178–180].

The interpretation of these unusual results may require the inclusion of local-field effects
[181] and other (such as excitonic) many-body effects. Local-field effects are caused by local
dipoles, which are induced by an external perturbation with wavevectorq. The induced sec-
ondary fields vary on a atomic scale and produce a response also at wavevectorq+ G, with
G being a reciprocal lattice vector. These effects are known to play a crucial role already
in weakly-correlated systems (such as semiconductors), and introduce a shift of order of the
Coulomb correlation energy between single-particle and two-particle, i. e. optical excitations
[182]. Therefore, they may partly account for the “high-energy” features observed inσ(ω).
On the other hand, within a tight-binding one-band model, the anomalously large energy scale,
which contributes to the superfluid weight, and the correspondingcolor change in Bi2212 can
be attributed to areduction of kinetic energy[183] at the superconducting transition. This is
rather surprising, since one would expect that in a conventional (BCS) pairing process, it is the
potential energy which is reduced at the expense of the kinetic energy, with the latter being
increased due to particle-hole mixing. In contrast, a similar analyses for YBCO rather points to
an increasing kinetic energy in the SC state [180].
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Figure 4.2: Kinetic energy per bond 〈kx〉 as a function of temperature for non-interacting
tightly-bound electrons (TB), the BCS solution (BCS), and our phase-fluctuation model (XY-
MC) at half-filling (〈n〉 = 1). The large vertical arrows indicate the increase in kinetic en-
ergy upon pairing relative to the tight-binding model of non-interacting electrons, and the
small arrows indicate the additional increase due to phase fluctuations. This additional phase-
fluctuation energyrapidly vanishes near Tc ≡ TKT , which causes the significant change in the
optical integral upon entering the superconducting state at TKT . Note that the full line follows
the actual kinetic energy encountered in our model, when going from the pseudogap to the
superconducting regime.

In the following, we show that phase fluctuations can contribute to a significant reduction
of the in-plane kinetic energy upon entering into the SC phase belowTc, with a magnitude
comparable to the experimental results in Bi2212. The physical reason for this kinetic energy
lowering is that, due to phase fluctuations and to the associated incoherent motion of Cooper
pairs (cf. Fig. 4.2), the pseudogap region has a higher kinetic energy than the simple BCS mean-
field state. When long-ranged phase coherence finally develops atTc, the Cooper-pair motion
becomes phasecoherent and the kinetic energy decreases. The onset of the coherent motion can
be seen, for example, from the development of coherence peaks in the tunneling spectrum of
Bi2Sr2CuO6+δ compounds (see e. g. [26, 156] and Fig. 3.1). The initialcost of kinetic energy,
which is needed for pairing, is payed at a mean-field temperatureTMF

c considerably higher
thanTc. Therefore, the reduction of kinetic energy observed experimentally in Bi2212 [176,
177] can be attributed to a transition from a phase-disordered pseudogap to a phase-ordered
superconducting state. We stress that this effect is independent of the particular mechanism
leading to pair formation, as long as the superconductor considered is characterized by a small
phase stiffness [13].

For the calculation of the optical sum-rule and kinetic energy, we assume a BCS temperature
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Figure 4.3: Kinetic energy contribution from phase fluctuations δ〈kx〉 = 〈kx〉XY−MC −
〈kx〉BCS . One can clearly see the sharp decrease of the kinetic energy near the Kosterlitz-
Thouless transition at TKT ≡ Tc. ∆Ek gives an estimate of the kinetic condensation energy at
Tc. For comparison, we also show the results for a constant gap as open circles between TKT
and 2TKT .

dependence of thedx2−y2-wave pairing gap∆(T ). We have therefore set∆(T = 0) = 1.0t corre-
sponding toTMF

c ' 0.42t. The condition thatξ > ξ0 (see Sec. 2.5) is always fulfilled, if we are
not too close toTMF

c . Fig. 4.2 displays the kinetic energy〈kx〉 as a function of temperature for
non-interacting tight-binding electrons, for BCS electrons, and for our phase-fluctuation model,
respectively, at half-filling (〈n〉 = 1) and witht′ = 0. One can clearly see that pairing, as ex-
pected, produces an overall increase of kinetic energy (indicated as vertical arrows) with respect
to the free-electron case. We observe that in the phase-fluctuation model the kinetic energy is
further increased (small vertical arrows) due to the incoherent motion of the paired electrons.
The kinetic energy is a smoothly decreasing function of temperature forT → 0. This is expected
from the fact that, at high temperature, more electrons are transferred to higher kinetic energies,
and is in agreement with the experimental results [176, 177]. What we are especially interested
in, is the rather pronounced change (magnified in Fig. 4.3 by using a different scale for the
kinetic energy) nearTc ≡ TKT , where the kinetic energy of our phase-fluctuation model rather
suddenly reduces to the BCS value. This sudden deviation from theT & Tc behavior is also ob-
tained in experiments, which show a kink in the temperature dependence of the low-frequency
spectral weightWD+Wlow atTc [176].

This pronounced change of in-plane kinetic energy can be better observed in Fig. 4.3, where
we plot the difference between the BCS kinetic energy and the kinetic energy of our phase-
fluctuation modelδ〈kx〉= 〈kx〉XY−MC−〈kx〉BCS . Fig. 4.3 also shows the temperature depen-
dence of the kinetic energy for a constant gap∆. We see, that the change in kinetic energy close
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parameters: 〈n〉= 1.0, t′ = 0 〈n〉= 0.9, t′ = 0

Ekin(0.75TKT ) −1.550713± .000024 −1.541022± .000020
Ekin(2.0TKT ) −1.542952± .000004 −1.533595± .000007
EBCSkin (0.75TKT ) −1.550919 −1.540824
EBCSkin (2.0TKT ) −1.549297 −1.538979
δEkin/10−3 7.761± .024 7.427± .021
δErelkin/10−3 6.139± .024 5.581± .021

〈k̃x〉(0.75TKT ) −0.775357± .000012 −0.770511± .000010
〈k̃x〉(2.0TKT ) −0.771476± .000002 −0.766798± .000004

〈k̃x〉BCS(0.75TKT ) −0.775460 −0.770412
〈k̃x〉BCS(2.0TKT ) −0.774649 −0.769489

δ〈k̃x〉/10−3 3.881± .012 3.714± .011
δ〈k̃x〉rel/10−3 3.070± .012 2.790± .011

Table 4.1: Kinetic energy per lattice site for the phase-fluctuation model (Ekin) and for the BCS
model (EBCSkin ) at different temperatures. δEkin indicates the absolute change in kinetic energy
and δErelkin = δEkin − δEBCSkin the relative change in kinetic energy of the phase-fluctuation
model between 0.75TKT and 2.0TKT . 〈k̃x〉 indicates the corresponding values for the optical
integral. With t′ = 0, we have 〈k̃x〉= Ekin/2.

to Tc is almost the same. For higher temperatures, however, a constant gap produces a further
increasing kinetic energy, especially close toTMF

c .
As discussed above, the reduction of kinetic energy is due to the onset of phase coherence

of the Cooper pairs below the SC transition temperatureTc ≡ TKT . This is signaled by the
appearance of sharp coherence peaks in the single-particle spectral function upon developing
long-range phase coherence [156]. The corresponding result for the density of statesN(ω)
displaying these coherence peaks was already shown in Fig. 3.1. Notice that this argument
for the reduction of kinetic energy atTc due to a phase ordering transition is quite robust.
For example, we expect it to be valid (and actually to be stronger) in a true three-dimensional
system. As a matter of fact, it has been argued [32, 83] that even small interplane couplings
play an important role due to the infinite-order nature of the the KT transition.

In order to get a rough estimate of the kinetic condensation energy, we calculate the reduction
in kinetic energy nearTc, i. e.

∆Ek =− 2
e2π

∫ ∞

0
(Re σ̃sc(ω)−Re σ̃n(ω)) dω, (4.75)

as indicated by the energy change∆Ek in Fig. 4.3 and also displayed in Tab. 4.1. Assuming
that t ' 250 meV, we get a condensation energy estimate of 1.5 meV per Copper site, which
is in order of magnitude agreement with the experimental results (again assuming a one-band
nearest-neighbor TB analysis).

Up to now, to refrain from further approximations, we have set the chemical potentialµ equal
to zero and have only considered nearest-neighbor hopping. We have checked to some extent,
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parameters: 〈n〉= 1.0, t′ =−0.4t 〈n〉= 0.9, t′ =−0.4t

Ekin(0.75TKT ) −1.611590± .000160 −1.515547± .000189
Ekin(2.0TKT ) −1.606282± .000017 −1.506225± .000014
EBCSkin (0.75TKT ) −1.609822 −1.515214
EBCSkin (2.0TKT ) −1.607755 −1.511573
δEkin/10−3 5.308± .161 9.322± .190
δErelkin/10−3 3.241± .161 5.681± .190

〈k̃x〉(0.75TKT ) −0.853573± .000175 −0.776569± .000216
〈k̃x〉(2.0TKT ) −0.855927± .000020 −0.777414± .000019

〈k̃x〉BCS(0.75TKT ) −0.849341 −0.773091
〈k̃x〉BCS(2.0TKT ) −0.849921 −0.773596

δ〈k̃x〉/10−3 −2.354± .176 −0.845± .217
δ〈k̃x〉rel/10−3 −1.775± .176 −0.340± .217

Table 4.2: Kinetic energy per lattice site for the phase-fluctuation model (Ekin) and for the BCS
model (EBCSkin ) at different temperatures. δEkin indicates the absolute change in kinetic energy
and δErelkin = δEkin − δEBCSkin the relative change in kinetic energy of the phase-fluctuation
model between 0.75TKT and 2.0TKT . 〈k̃x〉 indicates the corresponding values for the optical
integral. Note the contrary behavior of Ekin and 〈k̃x〉 for t′ =−0.4t.

how robust these results are with respect to finite doping (〈n〉 ≈ 0.9) and the inclusion of a
next-nearest-neighbor hopping-termt′ in our Hamiltonian Eq. (2.2). The results are displayed
in Tabs. 4.1 and 4.2. Notice that in the case oft′ 6= 0, the optical integral (Eq. (4.72)) is no
longer proportional to the kinetic energy and given by∼ 〈k̃x〉 (see Eqs. (4.44) and (4.74)).

In the cuprates, one typically has 0> t′ >−0.4t (see Sec. 3.2.1). For 0≥ t′ &−0.3t, our re-
sults for the sum ruleviolation are reduced only by about 20%−30%. Fort′ =−0.4t, however,
theviolation of the sum rule changes its sign (see Tab. 4.2). On the other hand, the reduction of
the kinetic energy atTc is always of the same order of magnitude. The strong dependence of the
optical sum-rule on the dispersion might — besides local-field and other many-particle effects
— be a reason for the different temperature dependence of the low-frequency optical sum-rule
in Bi2212 and YBCO [180].

On a more general ground, going back to Eq. (4.72), we see that a change of the optical
integral is always related to a change in the momentum distribution functionnk, for a fixed
bare single-particle dispersionε(k). Starting from a Fermi liquid at low temperature, one gets
a sharp cut-off innk at k = kF . In the BCS ground state, the momentum distribution function
is no longer given by the Fermi function. Instead, we havenk = v2

k (see Sec. 3.2.1), withv2
k

being smeared out over an energy of order 2∆sc due to particle-hole mixing. This occupation
of momentum states withk > kF in the ground state produces, e. g. for a nearest neighbor
tight-binding dispersion, theincrease in kinetic energy in the BCS SC state with respect to the
Fermi-liquid normal state.

Therefore, areduction in kinetic energy in the SC state can only happen, if one has a non-
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Fermi-liquid-like normal state with a momentum distribution which is smeared out on a even
larger scale then the BCS momentum distribution. This can happen, if the normal state spectral
functions are rather incoherent and sharp quasiparticle peaks form only belowTc, as in the
underdoped high-Tc cuprates [184, 185]. In our case, the non-Fermi-liquid behavior aboveTc
is caused by a pseudogap with phase fluctuations which produces very incoherent quasiparticle
peaks especially at the(π,0)-regions of the Brillouin zone (see our results for the spectral weight
in Sec. 3.2).

This non-BCS-like behavior is typical for strongly coupled superconductors with a pure elec-
tronic pairing mechanism [186]. There, the onset of superconductivity has a strong feedback
effect on the electronic structure and can therefore lead to a reduction of kinetic energy [186].
DCA (dynamical cluster approximation) calculations [187] and variational Monte Carlo stud-
ies [188] of the 2D Hubbard model have shown, that one indeed obtains a reduction of kinetic
energy in the SC state for strong coupling (U � 1).

In the preceeding discussion, we always used the term “kinetic energy” for〈kx〉 instead of
the more appropriate term “expectation value of the nearest-neighbor hopping-operator”. This
is usually done to distinguish the hopping (“kinetic”) part of the effective Hamiltonian, which
picks up a Peierls phase in a Gauge transformation, from the interacting part. However, a real
decomposition into kinetic and potential energy is meaningless for an effective Hamiltonian
[189]. This is exactly the same problem that we have encountered in defining a current operator
for an effective lattice Hamiltonian by means of the Peierls phase (see Sec. 4.1.3).

Each effective Hamiltonian can, in principle, be obtained from the exact many-particle Hamil-
tonian by a series of unitary transformations and a subsequent projection into the low energy
sector of the Hilbert space. However, what is “kinetic energy” at one level, is “potential energy”
on the other level [190]. This becomes more clear, when we look at the Hubbard model. For
large Coulomb repulsion (U → ∞), the Hubbard Hamiltonian can be reduced to the effective
t-J Hamiltonian, where the exchange interaction is given byJ = 4t2/U . Hence, the exchange
interaction of thet-J model is nothing but a reflection of the frustrated kinetic energy at the
level of the Hubbard model in theU → ∞ limit.

Thus it only makes sense to ask, which term of the effective Hamiltonian is more important
in forming the SC state, but it is pure semantics to call one term “kinetic energy” and the other
“potential energy” [189]. In fact, even the BCS Hamiltonian is an effective reduced Hamilto-
nian, where thekinetic process of lattice distortion is replaced by an effective electron-electron
potential energy term.

Finally, we want to annotate, that a kinetic energy reduction as driving mechanism for su-
perconductivity has been discussed some years ago in connection with an interlayer tunneling
(ILT) model for the high-Tc cuprates [191]. There, the reduction of kinetic energy is due to
the delocalization of Cooper-pairs between the copper-oxide layers. The Cooper-pairs can tun-
nel much better between layers then normal quasiparticles, especially for momenta close to the
(π,0)-regions of the Brillouin zone. This effect should be visible in thec-axis conductivity
sum-rule [192, 193], in contrast to the in-plane orab-axis sum-rule discussed in this section.

However, the expected release of frustratedc-axis kinetic energy is only compatible with the
experimentalc-axis optical sum-rule for some high-Tc compounds [194]. Thus, ILT is not the
main driving mechanism for superconductivity in the cuprates but may be an important mecha-
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nism to enhanceTc in a mixture with other mechanisms, such as charge imbalance between the
layers [195].

Interestingly, thec-axis conductivity is very sensitive to the(π,0)-properties of the single-
particle spectral function [196, 197]. Which means, that also there, the in-plane(π,0)-scattering
rate and incoherent(π,0)-quasiparticle-peaks play an important role. Only belowTc, coherent
tunneling of the (pre-formed) pairs is possible. On the other hand, thein-plane (ab-axis) infrared
conductivity is most sensitive to the(π2 ,

π
2)-direction of the Fermi surface, andnot k = (π,0),

where the pseudogap opens.

This is due to the different bare quasiparticle velocitiesv(k) = ∂ε(k)
∂kx

[198] and can be seen
from Eq. (4.49), where in the limitq→ 0, the sum over all statesk is weighted with a factor
v2(k).1 Furthermore, for small frequencies and temperatures, only states close to the Fermi sur-
face contribute. For the in-plane optical integral, this had no consequences, since we integrated
the single-band conductivity ˜σ(ω) from ω = 0 up toω = ∞. But this k-selectivity of the in-
plane optical conductivity has important consequences, when one calculates thelow-frequency
conductivity for our phase fluctuation model. This can bee seen, by comparing the results for a
dx2−y2-wave gap with those for as-wave gap with phase fluctuations, as will be shown in the
next section (Sec. 4.3).

4.3 Optical conductivity

In this section we give a thorough discussion of the detailed frequency and temperature depen-
dence of the optical conductivity within our phase fluctuation model. The results for adx2−y2-
wave gap are complemented with results for as-wave gap and analyzed in terms of an extended
Drude model. Finally, we discuss the precursor effects of the superconducting state aboveTc
which are visible in the optical conductivity at finite frequencies. These precursor effects are
calledparaconductivity. We compare our results for adx2−y2-wave gap with phase fluctuations
with microwave conductivity experiments in underdoped Bi2Sr2CaCu2O8+δ (Bi2212) [40].

4.3.1 General properties

The optical conductivityσ(ω) is usually written asσ(ω) = σ1(ω)+ iσ2(ω), with σ1(ω) the real
part ofσ(ω), andσ2(ω) the imaginary part. In an ideal BCS superconductor, like our model
without phase fluctuations, the real part of the conductivityσ1(ω) is given by aδ-peak with
weightDs ∼

(
ns
m

)∗
centered atω = 0. The imaginary part, on the other hand, falls off as1

ω

with prefactorDs ∼
(
ns
m

)∗
[7]. In a real material, the normal conducting electrons already give

a contributionbelow Tc to the real part of the conductivityσ1(ω). In ans-wave superconductor,
this contribution toσ1(ω) becomes visible only at frequenciesω & 2∆sc, but in adx2−y2-wave
superconductor, the presence of nodal quasiparticles gives a visible contribution toσ1(ω) even
belowω ' 2∆sc and at very low temperaturesT . Tc.

1Note, that also the density of energy states close tok = (π,0) is increased, the prefactor ofv2(k) strongly
suppresses any contribution.
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Above Tc, the finite electronic scattering rate strongly suppresses the imaginary partσ2(ω) at
low frequencies, so that it can be completely neglected in thenormal state of a real material. In
our model, however, we obtain without pairing interaction (∆ = 0) a nearest-neighbor-hopping
tight-binding metal. This is anideal metal without electron scattering. Hence, also there, the
real part of the conductivity is given by aδ-peak atω = 0 and the imaginary part falls of as
1
ω (see Sec. 4.1.4). However, in the metallic state the superfluid weightDs is replaced by the
Drude weightD0. In the phase coherent BCS-limit, one hasDs =D0 [174]. Thus, the optical
conductivity calculated from our phase fluctuation model solely represents the finite-frequency
paraconductivity due to phase fluctuations and has to be added to the regular finite-frequency
conductivity of the normal electrons in the cuprates.

The optical conductivity is generally analyzed in terms of the extended Drude model (EDM)
[199]. This model is defined by

σ(ω) =
ne2

mb

1
1/τ(ω)− iωmeff(ω)/mb

, (4.76)

wheremb is the bare electron band mass. From this model one can extract the frequency de-
pendent effective scattering rate as

1
τeff(ω)

=
ne2

mb
ℜ

{
1

σ(ω)

}
, (4.77)

and the frequency dependent effective mass as

meff(ω)
mb

=−ne
2

mb

1
ω

ℑ
{

1
σ(ω)

}
. (4.78)

For our lattice Hamiltonian with nearest-neighbor hopping one has instead

1
τeff(ω)

=−〈kx〉ℜ
{

1
σ(ω)

}
(4.79)

and

meff(ω)
mb

= 〈kx〉
1
ω

ℑ
{

1
σ(ω)

}
. (4.80)

Optical conductivity curves acquired from infrared spectroscopy on different high-Tc com-
pounds for various doping levels can be found in Refs. [200–203]. They all show, that the real
part of theab-(in-plane) optical conductivityσ1(ω) is suppressed in the superconducting state
for frequenciesω . 2∆sc. This change in the optical properties is much clearer observable in
the scattering rate 1/τ . The nearlyω-linear scattering rate is suddenly strongly suppressed for
frequenciesω . 2∆sc. This suppression of 1/τ is recovered in the overdoped cupratesexactly
at the superconducting critical temperatureTc, as expected in a BCS scenario.

In the underdoped cuprates, on the other hand, the scattering rate forω . 2∆sc smoothly
increases for temperaturesT > Tc, but theω-linear behavior is not resumed until a tempera-
tureT ∗� Tc [201]. Furthermore, even belowTc, an additional dissipation was observed in the
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infrared conductivity of Bi2212, which cannot be explained by a normal fluid of nodal quasipar-
ticles alone and might be an indication for the presence of (quantum) phase fluctuations below
Tc [204].

Before we discuss our results, a few words on the terminology are in place here. We are only
interested in the properties of thelow-frequency optical conductivity with frequenciesω. 2∆sc.
These frequencies correspond to the microwave and infrared part of the electromagnetic spec-
trum. Whereas thehigh-frequency optical conductivity corresponds to frequencies of the order
of the total bandwidth and is usually in the visible and ultraviolet range of the electromagnetic
spectrum. However, from the point of view of astandard “50 Hz” AC circuit, all these are
“high-frequency” conductivity experiments.

All calculations were done for 10% doping (〈n〉 = 0.9) and without next-nearest neighbor-
hopping (t′ = 0). Fig. 4.4 displays the real part of the optical conductivityσ1(ω) for thedx2−y2-
wave gap with phase fluctuations. One can clearly see an increase of the finite-frequency
conductivity as a function of temperature already belowTc ≡ TKT for frequenciesω . ∆sc.
This increase is due to the presence of nodal quasiparticles with vanishing excitation energy.
Moreover,σ1(ω) shows a very smooth development as a function of temperature. This smooth
temperature dependence can be explained by thek-selectivity of the in-plane optical conduc-
tivity, which was discussed at the end of Sec. 4.2. There, we have shown that quasiparticles
with k-vectors in the nodal direction of the Brillouin zone (BZ) dominate the in-plane conduc-
tivity. Now, the (π2 ,

π
2)-quasiparticle-peaks only change very slightly with rising temperature

(see Figs. 3.14 and 3.18) compared to the dramatic changes of the(π,0)-quasiparticle-peaks.
The quasiparticles close tok = (π,0), where thedx2−y2-wave gap is its maximum, however,
do not contribute to the in-plane conductivity, which can also be seen from the absence of any
paraconductivity in the frequency range 1.5∆sc . ω < 2∆sc.

In contrast to thedx2−y2-wave gap, our results for thes-wave gap with phase fluctuations dis-
played in Fig. 4.5, show a relatively sharp peak atω = 0 in σ1(ω), also at higher temperatures.
The main difference to thedx2−y2-wave case is that the optical conductivity has a small maxi-
mum atω= 2∆sc belowTc ≡ TKT , whereas in the frequency range 0.5∆sc . ω. 1.5∆sc almost
no enhanced conductivity is observable in the SC state. Only forω . 0.5∆sc one gets a contri-
bution to the finite frequency conductivity from the slightly broadenedδ-peak atω = 0, which
is caused by the Lorentzian representation of theδ-function. But as soon as the temperature
is raised aboveT & 1.25TKT , one gets a sudden massive increase ofσ1(ω) for all frequencies
ω . 2∆sc.

Again, this reflects the behavior of the quasiparticle peaks at the(π2 ,
π
2)-regions of the BZ

(see Figs. 3.13 and 3.19). In contrast to thed-wave case, belowTc ≡ TKT the quasiparticle
spectrum is gapped atk = (π2 ,

π
2). Thus one obtains a finite conductivity only for frequencies

ω ≈ 2∆sc. On the other hand, forT & 1.25TKT , thes-wave gap closes atk = (π2 ,
π
2) and the

(π2 ,
π
2)-quasiparticle peaks are completely wiped out. This produces the strong increase of the

real part of the finite-frequency conductivity.
The imaginary part of the optical conductivityσ2(ω) is displayed in Figs. 4.6 and 4.7 for

thedx2−y2-wave gap and thes-wave gap, respectively. In the superconducting state (T < Tc ≡
TKT ) one obtains the expected1ω dependence. For temperaturesT > Tc ≡ TKT , deviations
from this dependence become observable. In case of thedx2−y2-wave gap, these deviations
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are limited to frequenciesω . 0.5∆sc. Once more, this exactly reflects the properties of the
nodal quasiparticles, which are only slightly scattered by phase fluctuations, as can be seen
by the very small increase of the width of the(π2 ,

π
2)-quasiparticle peaks aboveTc compared

to the anti-nodal(π,0)-peaks (see Fig. 3.18). In contrast to thes-wave case, where also the
quasiparticles at the(π2 ,

π
2)-regions of the BZ are strongly scattered by phase fluctuations and

which, in combination with the finite SC gap atk = (π2 ,
π
2), leads to the very strong reduction

of σ2(ω) for frequenciesω . 1.5∆sc shown in Fig. 4.7.
A further important quantity to characterize the metallic or superconducting properties of a

material is the temperature dependence of the DC resistivityρ(T ) = 1/σ1(ω = 0,T ). Because
of severe finite-size effects, especially close toω = 0, it cannot be obtained directly from the
optical conductivity. In order to discuss the resistivityρ(T ), we have therefore calculated the
Drude weightD0, which is a measure of the spectral weight atω = 0 (see Sec. 4.1.4), and the
effective charge carrier massmeff. Also in calculating the Drude weight with Eq. (4.65), one has
to take care of finite-size effects, which become visible forω . 0.03t. However, a controlled
extrapolation toω = 0 is possible.2

Figs. 4.8 and 4.9 display the Drude weightD0(T ) as a function of temperature for thedx2−y2-
wave and thes-wave gap, respectively. AboveTc ≡ TKT , the Drude weight is strongly reduced
as soon as the phases become completely uncorrelated (T & 1.5TKT ). This reduction of the
Drude weightD0 in the phase-uncorrelated pseudogap state is even stronger for thes-wave gap
with phase fluctuations, as expected from the discussion of the optical conductivity. Whereas
belowTc, the Drude weightD0 converges to the superfluid weightDs, which is somewhat larger
for thes-wave gap.

Figs. 4.10 and 4.11 display the corresponding effective (renormalized) electron massmeff

as a function of frequency for different temperatures. Over nearly the complete bandwidth
W = 8t, the bare band massmb is only weakly renormalized. Only close toω = 0, the effective
mass is strongly enhanced forT & 1.5TKT . Interestingly, for thes-wave gap, the closing of
the quasiparticle gap atk = (π2 ,

π
2) becomes clearly observable in the qualitative change of

themeff(ω) curves aboveTc (see Fig. 4.11). The strong enhancement of the zero-frequency
effective mass in addition to the very small Drude weightD0, compared to the tight-binding
metal, implies a bad metallic behavior of the resistivityρ(T ) in the pseudogap state.

Finally, the finite-frequency optical scattering rate is shown in Figs. 4.12 and 4.13 for the
dx2−y2-wave and thes-wave gap, respectively. For thedx2−y2-wave gap, 1/τeff(ω) smoothly
increases as a function of temperature with the maximal scattering rate belowω = 2∆sc. The
continuous increase of 1/τeff(ω) in the pseudogap state for frequenciesω . 2∆sc is in accor-
dance with experiment [201]. Using, as before,t = 250meV, we obtain a phase fluctuation
contribution to the low-frequency (ω . 2∆sc) optical scattering rate, which is about half the ex-
perimentally observed value. If we express the scattering rate in units of the SC gap size (∆sc),
it is however only 1/8 of the observed value. Hence, phase fluctuations can only partially con-
tribute to the low-frequency in-plane scattering rate in the pseudogap state of the underdoped
cuprates.

2Aboveω ≈ 0.03t, finite-size effects are suppressed by using Assaad’s technique. But belowω ≈ 0.03t, the
different limits of the current-current correlation functionDc(q,ω) (see Sec. 4.1.4) cause an uncontrolled behavior
of Dc(q = 0,ω) close toω = 0.
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On the other hand, for thes-wave gap with phase fluctuations, the low-frequency optical
scattering rate in the pseudogap state is about 3 times larger. This is closely connected to the
disappearance of the(π2 ,

π
2)-quasiparticle-peaks in the single-particle spectral weight. Below

Tc ≡ TKT , where one still has a well-defineds-wave quasiparticle gap in the(π2 ,
π
2)-region of

the Brillouin zone, the scattering rate is strongly reduced for frequenciesω . 2∆sc. In contrast
to thedx2−y2-wave case, where the presence of nodal quasiparticles produces a finite phase
fluctuation induced scattering rate even in the superconducting state for frequenciesω . 2∆sc,
in qualitative agreement with the experiments of Ref. [204].
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Figure 4.4: Real part of the low-frequency optical conductivity σ1(ω), for a dx2−y2-wave gap
with phase fluctuations at different temperatures (∆sc = 1.0t). The conductivity is measured in
units of e2 (~ = c= a= 1).
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Figure 4.5: Real part of the low-frequency optical conductivity σ1(ω), for a s-wave gap with
phase fluctuations at different temperatures (∆sc = 1.0t). The conductivity is measured in units
of e2 (~ = c= a= 1).
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Figure 4.6: Imaginary part of the low-frequency optical conductivity σ2(ω), for a dx2−y2-wave
gap with phase fluctuations at different temperatures (∆sc = 1.0t). The conductivity is measured
in units of e2 (~ = c= a= 1).
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Figure 4.7: Imaginary part of the low-frequency optical conductivity σ2(ω), for a s-wave gap
with phase fluctuations at different temperatures (∆sc = 1.0t). The conductivity is measured in
units of e2 (~ = c= a= 1).
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Figure 4.8: Drude weight D0 in units of πe2 as a function of temperature for a dx2−y2-wave gap
with phase fluctuations. The dotted vertical line indicates Tc ≡ TKT .

0 1.0 2.0 3.0 4.0 5.0
T/TKT

0

0.1

0.2

0.3

0.4

0.5

0.6

D
0 / 

t

Figure 4.9: Drude weight D0 in units of πe2 as a function of temperature for a s-wave gap with
phase fluctuations. The dotted vertical line indicates Tc ≡ TKT .
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Figure 4.10: Effective electron mass meff in units of the bare band mass mb as a function of
frequency for a dx2−y2-wave gap with phase fluctuations at different temperatures (∆sc = 1.0t).
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Figure 4.11: Effective electron mass meff in units of the bare band mass mb as a function of
frequency for a s-wave gap with phase fluctuations at different temperatures (∆sc = 1.0t).
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Figure 4.12: Effective optical scattering rate 1/τeff, in units of t as a function of frequency for a
dx2−y2-wave gap with phase fluctuations at different temperatures (∆sc = 1.0t).
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Figure 4.13: Effective optical scattering rate 1/τeff, in units of t as a function of frequency for a
s-wave gap with phase fluctuations at different temperatures (∆sc = 1.0t).
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4.3.2 Paraconductivity

In a conventional BCS superconductor, superconducting (SC) fluctuations with short-range
phase coherence survive no more than 1K aboveTc. Within a phase fluctuation scenario for
the underdoped cuprates, one would expect that pairing remains over a wide temperature range
aboveTc, together with phase correlations which are of finite range in space and time. Hence,
although the system is in the normal state, signatures of the ideal SC state should still be ob-
servable considerably aboveTc, if the experiments probe short enough time scales. A likely
candidate to observe these effects are high-frequency conductivity experiments.

Microwave conductivity experiments on underdoped Bi2212 [40] indeed were able to track
the phase-correlation time in the normal state up to 25K aboveTc. These experiments show,
that the SC transition is “smeared out” over a considerable temperature range, when viewed at
high-enough frequencies (short-enough time scales). The imaginary part of the conductivity fi-
nally disappears more than 25K aboveTc ' 74K and shows a superconducting scaling behavior
already aboveTc. The real part of the conductivity displays a characteristic peak nearTc at finite
frequencies, on top of a background of normal conducting electrons. This peak was interpreted
by the authors of Ref. [40] as signature of the partially phase coherent electrons.

All experiments were carried out with frequencies of a few hundred GHz, which corresponds
to ω . 0.01t. In order to compare these experiments with our phase fluctuation model, some
compromise had to be made, since finite-size effects become important belowωlow ' 0.03t.
Therefore, we have chosen a set of frequenciesω = {0.1t,0.2t,0.3t,0.4t}, which are, on the
one hand, much larger thanωlow, and on the other hand much smaller than the SC gap size
in our model (∆sc = 1.0t). Thus, in the following, one always should keep in mind that the
frequency closest to experiment isω = 0.1t.

Fig. 4.14 displays the real part of the optical conductivityσ1(ω,T ) as a function of temper-
ature for different frequenciesω < ∆sc. One can clearly see that the finite frequency paracon-
ductivity increases aboveTc ≡ TKT and remains nearly constant over a wide temperature range
T & 1.5TKT up to the pseudogap temperatureT ∗. This sudden increase ofσ1(ω,T ) above
Tc ≡ TKT becomes less pronounced at higher frequencies. The strong finite frequency para-
conductivity over almost the whole pseudogap phase up toT ∗� Tc stands in contradiction to
the experimental observations [40].

This contradiction can be solved by recalling that our model consists of “ideal” electrons,
which are only scattered by phase fluctuations. To get into closer touch with experiment, we
have therefore replaced the infinitesimal damping factorη = 0+ in the response formulas by
a finite marginal-Fermi-liquid-like damping-factorη = λ

√
ω2 +π2T 2, with λ a free parame-

ter, which can be obtained from experiment. The marginal Fermi liquid (MFL) theory is a
phenomenological theory which accounts for many experimental features of the underdoped
cuprates and simply relies on assuming a special form of the single-particle self-energyΣ(k,ω),
with a damping factorη = 1/τ ∼max(|ω|,T ) [205, 206].

We have already seen in the previous section (Sec. 4.3.1), that phase fluctuations can only
partially contribute to the low-frequency scattering rate observed in optical experiments. Hence,
it is quite natural to include the additional scattering rate “by hand” into the theoretical response
formulas for the optical conductivity. Fig. 4.15 shows the result of this procedure. The finite-
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frequency paraconductivity now is suppressed at higher temperatures. In addition, allσ1(ω,T )
curves display a maximum at a temperatureT ≥ Tc. This maximum is getting more pronounced
and moves closer toTc, the lower the frequency.

Hence, our explanation for the high-frequency conductivity experiments of Ref. [40] is that
as soon as phase coherence gets lost atTc ≡ TKT , spectral weight from the superfluidδ-peak
at ω = 0 is transfered to finite frequencies. This transfer of spectral weight causes the finite-
frequency paraconductivity effects inσ1(ω,T ), which set in more rapidly aboveTc, the lower
the frequencies. At higher temperatures, the finite frequency paraconductivity is suppressed by
normal quasiparticle-scattering in the pseudogap state. This produces a peak in the real-part of
the optical conductivity nearTc, which is more distinct at smaller frequencies.

Please note, that in order to obtain the results shown in Fig. 4.15, we usedλ= 0.2. This dif-
fers from the value derived from optical experiments in underdoped Bi2212, which isλ≈ 0.85
[201]. A larger value forλ, however, would have completely wiped out all phase-fluctuation
features in the optical conductivity. This discrepancy is not surprising, since we used a larger
bandwidth to gap ratio in our calculations and also higher frequencies, for which the MFL
scattering-rate is stronger. The important point is, that we can qualitatively explain the charac-
teristic peak-feature in the real part of the optical conductivity as being due to phase fluctuations.

Fig. 4.16 displays the imaginary part of the optical conductivityσ2(ω,T ) as a function of
temperature for different frequenciesω < ∆sc. Exactly as in the experiments of Ref. [40], the
superconductivity induced change in the imaginary part of the optical conductivity extends over
a large temperature intervalTc . T . 2Tc into the normal state, with the strongest increase
belowT ' 1.5Tc. The change ofσ2(ω,T ) is more pronounced at lower frequencies. However,
in our model the imaginary part does not go to zero in the normal state but rather converges
towards a finite value. Again this is due to the missing quasiparticle scattering in the normal
states besides phase fluctuation caused scattering. Here, the inclusion of a MFL scattering-
rate would further reduceσ2(ω,T ) aboveT ' 2Tc, without changing its properties at the SC
transition (T . 2Tc) qualitatively.

In Fig. 4.17 we plot the re-scaled imaginary part of the optical conductivityωσ2(ω,T ) as a
function of temperature for the same frequenciesω < ∆sc as before. In the superconducting
state, all re-scaled curves should collapse onto a single curve (see Sec. 4.3.1). One can clearly
see that this collapse already begins in the normal state aboveTc ≡ TKT , starting with the
highest frequencies, exactly as in Ref. [40]. Also here, the inclusion of an additional MFL
scattering-rate would reduce the optical conductivity curves aboveT ' 2Tc, but it does not
change the SC high-frequency scaling-behavior belowT . 1.5Tc significantly.
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Figure 4.14: Real part of the low-frequency optical conductivity σ1(ω,T ), as a function of
temperature for different frequencies ω < ∆sc (∆sc = 1.0t). The dotted vertical line indicates
Tc ≡ TKT . Note, that the sharp transition at Tc ≡ TKT is washed out at higher frequencies.
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Figure 4.15: Real part of the low-frequency optical conductivity σ1(ω,T ) with a finite marginal-
Fermi-liquid (MFL) damping-factor η= λ

√
ω2 +π2T 2 (λ= 0.2, for details see text), as a func-

tion of temperature for different frequencies ω < ∆sc (∆sc = 1.0t). The dotted vertical line
indicates Tc ≡ TKT . Note, that a clear maximum develops close to Tc ≡ TKT for low frequen-
cies.
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Figure 4.16: Imaginary part of the low-frequency optical conductivity σ2(ω,T ), as a function
of temperature for different frequencies ω < ∆sc (∆sc = 1.0t). The dotted vertical line indi-
cates Tc ≡ TKT . Note, that the change of σ2(ω,T ) at the superconducting transition Tc ≡ TKT
becomes less pronounced at higher frequencies and is smeared out over a finite range of tem-
peratures T > Tc ≡ TKT .
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Figure 4.17: Scaling behavior of the imaginary part of the optical conductivity σ2(ω,T ). In the
superconducting state σ2(ω,T )∼ 1/ω, thus all ω σ2(ω,T ) curves should collapse onto a single
curve. Note, that the higher the frequency, the earlier this collapse starts in the normal state for
temperatures T > Tc ≡ TKT . The logarithmic scale was chosen for a better comparison with
the experimental data of Ref. [40].



5
Magnetic properties

A superconductor is not only a perfect conductor, it isin addition a perfect diamagnet which
becomes visible in the Meissner effect. Since, in the phase fluctuation scenario, the pseudogap
is due to phase fluctuations of the SC order parameter, one might ask, how much of the char-
acteristic magnetic properties of a superconductor are still observable in the pseudogap state of
the underdoped cuprates.

These magnetic precursor effects of the ideal superconducting state are twofold. Firstly, one
would expect a form of fluctuating diamagnetism which partially screens an applied magnetic
field already aboveTc. The diamagnetic activities in the pseudogap state are most probably
closely connected to the phase coherence among the pairs. Secondly, one would also expect
that the paramagnetic spin (or Pauli) susceptibility is reduced in a characteristic way below
T ∗ due to the formation of incoherent singlet-pairs, accompanied by the reduction of spectral
weight at the Fermi surface.

The magnetic susceptibility is usually obtained directly from magnetization experiments or
indirectly from the characteristicKnight shift of the resonance lines in nuclear magnetic reso-
nance (NMR) experiments. All these experiments give anet magnetic susceptibility which is
the sum of all diamagnetic and paramagnetic contributions.1 The different magnetic contribu-
tions to the total susceptibility can only be disentangled, if one form of magnetism dominates a
special region of the phase diagram.

5.1 Diamagnetic susceptibility

The diamagnetic susceptibility can be obtained from the following consideration [207]. An
externally applied magnetic fieldH0, generated by the external current densityj0, with

∇×H0 =
4π
c
〈 j0〉, (5.1)

1We neglect for the moment anti-ferromagnetic fluctuations, which are surely also present in the underdoped
cuprates.

112
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produces a total magnetic fieldH in the sample, which is given by

∇×H =
4π
c
〈 j0 + j〉. (5.2)

Here,j is the diamagnetic screening-current density. The total fieldH is the sum of the external
field H0 and the magnetizationM of the sample:2

H = H0 +4πM . (5.3)

The magnetization is proportional to the externally applied field,

M = χDia H0, (5.4)

which defines the diamagnetic susceptibilityχDia.
With H = ∇×A and〈 j〉= c ∇×M , one obtains after a Fourier transformation

χDia(q) =− 1
4π

〈 j(q)〉
〈 j(q)〉− cq2

4π A(q)
, (5.5)

whereA has to be given in a transverse gauge (∇ ·A = 0). Using the linear response formula for
the current derived in Sec. 4.1.2, one finally gets

χDia(q) =− 1
4π

e2ρ0
mc + 1

~cDc(q)
e2ρ0
mc + 1

~cDc(q)+ cq2

4π

. (5.6)

The static uniform diamagnetic susceptibility is defined by

χDia = χDia(qx = 0, qy→ 0, ω = 0), (5.7)

where the geometry is the same as in the discussion of the London penetration depth in Sec. 4.1.4.
For our lattice model with nearest-neighbor hopping (~ = c= a= 1), Eq. (5.6) changes to

χDia(q) =− 1
4π

〈kx〉−Dc(q)
〈kx〉−Dc(q)− 1

4πe2 q2
, (5.8)

with e2 = α≈ 1
137. A series expansion forqx = 0 andqy� 1 yields

〈kx〉−Dc(q) =〈kx〉−Dc(qx = 0, qy→ 0)

− 1
2
q2
y D

′′
c (qx = 0, qy→ 0)

+O(q4
y),

(5.9)

where,D′′c (q)≡ ∂2Dc(q)
∂q2

y
. In Eq. (5.9) no odd terms inqy appear, due to space-inversion symme-

try. Using Eq. (4.57), one can finally write

〈kx〉−Dc(q)≈−Ds

πe2 −
1
2
q2
y D

′′
c (qx = 0, qy→ 0). (5.10)

2The total magnetic fieldH is generally also called magnetic inductionB.
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In a superconductor one hasDs 6= 0, thus

χDia =− 1
4π
, (5.11)

whereas in a normal conductor withDs ≡ 0 one obtains

χDia =− 1
4π

D′′c (qx = 0, qy→ 0)
D′′c (qx = 0, qy→ 0)+ 1

2πe2

. (5.12)

This can be further simplified to

χDia ≈−
e2

2
D′′c (qx = 0, qy→ 0) · [

a2
‖

~2 c2 a⊥
] (5.13)

for D′′c (qx = 0, qy→ 0)� 1
2πe2 ≈ 137

2π ≈ 22, which is usually the case.
Alternatively to directly calculating the derivativeDc(q), one can start from the current-

current correlation function in coordinate spaceDc(i, j) and write

Dc(q) =
1
N ∑

i, j
e−iq(i−j)Dc(i, j). (5.14)

Expanding the exponential in powers ofqy for qx = 0, qy→ 0, one gets

D′′c (qx = 0, qy→ 0) =− 1
N ∑

i, j
(iy− jy)2 Dc(i, j). (5.15)

Eq. (5.15) saves the computing time needed for a Fourier transformation, since the MC simula-
tion always gives at firstDc(i, j).

The problem now is the calculation of the curvatureD′′c (qx = 0, qy → 0) on our 16× 16
lattice. Already the correlation functionDc(q) shows strong finite size effects, especially close
to q = 0. In contrast to the optical (q = 0) conductivity calculation, we cannot use Assaad’s
technique to reduce finite size effects. The situation is even worse, because of the different
limits of the current-current correlation function, which depend upon the path in(q,ω)-space
on which the(qx = 0, qy = 0, ω = 0)-point is approached (see Sec. 4.1.4). Therefore, we have
tested different methods to extract the curvatureD′′c (qx = 0, qy→ 0) from our data.

First we have calculated the diamagnetic susceptibility for the non-interacting 2D tight-binding
model with nearest-neighbor hopping at half-filling (〈n〉= 1). The susceptibility diverges loga-
rithmically atT = 0 as a result of the van-Hove-peak in the density of states. For this case, the
diamagnetic susceptibility can be calculated to any accuracy. Fig. 5.1 displays the result of this
calculation. The first point worth noting is the well-known fact that the magnetic response of
the current actually is paramagnetic. Therefore we call the result of Eq. (5.13) in the following
magnetic susceptibility χmag.

For a free electron dispersion, the magnetic response of the current is always diamagnetic. In
tight-binding lattices, there is a crossover from diamagnetism to paramagnetism as a function
of doping [208]. At very small filling (〈n〉 � 1), the response is diamagnetic. In general, the
outcome of Eq. (5.13) depends in a complicated way on the electronic band structure.
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Figure 5.1: Magnetic susceptibility χmag in units of te2 (~ = c = a = 1) calculated from the
current response of the 2D tight-binding model at half-filling (〈n〉= 1). The full line shows the
exact result for the infinite lattice as a function of temperature (exact). The broken lines display
the results of different approximative schemes for the calculation of χmag on a 16×16 lattice:
9-point-fit including qy = 0 (fit 9), 8-point-fit without qy = 0 (fit 8, drop 0), using the sum of
Eq. (5.15) (sum), and finally a 3-point-fit including qy = 0 (fit 3). (For details see text.)

Next, we tried to reproduce the exact result as good as possible on our finite 16×16 lattice.
We started with the expression of the magnetic susceptibility given in Eq. (5.15). In Fig. 5.1
one can see that this expression reproduces excellently the exact result for high temperatures
but then suddenly strongly diverges belowT ' 0.4t. Using a parabolic 3-point fit to obtain
the curvatureD′′c (qx = 0, qy → 0), with the smallestqy-values to the left and right ofqy = 0,
includingqy = 0, nearly gives the same result (see Fig. 5.1).3

In order to stabilize the fit procedure for small temperatures, we have also performed a
parabolic fit ofDc(q) using the 9 smallestqy-points between−π2 ≤ qy ≤

π
2 , includingqy = 0.

Fig. 5.1 shows that this procedure yields a systematic deviation at high temperatures, but on
the other hand closely follows the exact result down toT ' 0.2t, where it suddenly diverges to
negative values.

In our phase-fluctuation simulation we are interested in the temperature range 0.1t.T . 0.4t.
Especially belowT ' 0.2t, we expect many interesting things to happen. Since the finite-size
effects inDc(q) are strongest atq = 0, we dropped theqy = 0 point and finally performed a
parabolic 8-point fit with the 4 smallestqy-points to the left and right ofqy = 0. As can be
seen in Fig. 5.1, this procedure yields the best agreement with the exact result over the whole

3Actually for 3 pointsqy = ±π
8 and qy = 0 this procedure is exact. We call it however fit because of the

finite-lattice approximation.
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temperature range. Hence, in the following the magnetic susceptibility is always obtained from
the parabolic 8-point fit toDc(q).4

We have seen in the preceeding discussion of the diamagnetic susceptibility, that the curva-
tureD′′c (qx = 0, qy → 0) is a meaningful quantity, only if the superfluid weightDs vanishes.
Therefore, we first have to calculateDs on our finite lattice. Fig. 5.2 displays−〈kx〉+Dc(qx =
0, qy, iνn = 0) as a function ofqy, for our phase fluctuation model with adx2−y2-wave gap at
different temperatures (〈n〉= 0.9). In the limit ofqy→ 0 one obtains the superfluid weight (see
Eq. (4.57)).

As can be seen from Fig. 5.2, this limit alway yields a finite positive value forDs. This is due
to the fact that the single-particle expectation value〈kx〉 converges much faster with increasing
lattice size than the two-particle correlation functionDc(qx = 0, qy, iνn = 0). To get an estimate
for this finite-size error, we plot in Fig. 5.3 the correspondingqx-limit: −〈kx〉+ Dc(qx, qy =
0, iνn = 0) as a function ofqx. For qx→ 0,−〈kx〉 andDc(qx, qy = 0, iνn = 0) should cancel
each other exactly (see Eq. (4.58)).

Comparing Fig. 5.2 with Fig. 5.3, one can see thatDs is of the order of the finite-size error for
temperaturesT & 1.5TKT . Furthermore,Dc(qx = 0, qy, iνn = 0) displays an upward curvature
for temperaturesT . 1.25TKT (see Fig. 5.2), whereas at higher temperatures, it changes to
downward curvature that looks qualitatively very similar to the results obtained for the nearest-
neighbor tight-binding model. Hence, we expect reliable results for the diamagnetic suscepti-
bility for temperaturesT & 1.5TKT .

Fig. 5.4 now displays the results for the magnetic susceptibilityχmag as a function of tem-
perature for our phase-fluctuation model with a constantdx2−y2-wave gap at finite doping
(〈n〉 = 0.9). For comparison we also show the magnetic susceptibilityχmag for the nearest-
neighbor tight-binding model. Over a wide temperature range 2.0TKT . T . 4.0TKT , both
susceptibilities are nearly identical. A small phase fluctuation induced reduction ofχmag be-
comes visible only forT . 2.0TKT . BelowT ' 1.5TKT , we see an unphysical sudden increase
of χmag in the phase fluctuation model because of the aforementioned strong finite size effects.

The phase-fluctuation-induced diamagnetic susceptibility can be defined by the difference
of the magnetic susceptibilities of phase fluctuation (XY-MC) and tight-binding (TB) model
χDia = χXY−MC

mag −χTBmag. Fig. 5.5 showsχDia as a function of temperature. The fluctuating
diamagnetism is a small effect compared to the lattice paramagnetism, which is more than one
order of magnitude larger. It is only important belowT ' 1.5TKT , where one expectsχDia
to strongly increase close toTc, but it does not play any role over most part of the pseudogap
phase. Fig. 5.5 also shows the fluctuating diamagnetismχDia for a BCS-temperature-dependent
gap with phase fluctuations (∆ = ∆BCS(T )). At low temperatures this gives us an estimate for
the MC error, and at high temperatures it exhibits the influence of a temperature-dependent gap
that smoothly goes to zero atTMF

c ≡ T ∗. Fig. 5.5 clearly shows that both effects are small and
of the order of the symbol size.

On the experimental side, the c-axis5 magnetic susceptibility ofoptimally doped YBa2Cu3O7−δ

4Although we tested this technique only for the tight-binding model at half-filling, we expect it to work equally
well in the pseudogap state of the phase fluctuation model, where the current-current correlation function qualita-
tively looks very similar.

5B⊥ copper-oxide planes.
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(YBCO) is nearly constant aboveTc, without the slightest sign of any fluctuating diamagnetism
[209]. In underdoped YBCO, a clear diamagnetic response was observed up to 15K aboveTc
(T ≈ 1.2Tc) for chain-disordered YBCO [210, 211]. Inchain-ordered YBCO, the diamagnetic
response is even stronger and increases rather linearly with decreasing temperature aboveTc
[210, 211], whereas inchain-disordered YBCO, where only the copper-oxide planes are sup-
posed to contribute to the diamagnetic susceptibility, it can be perfectly fitted by an exponential
temperature dependence [212]. Interestingly, magnetization measurements on YBCOpowders
indicate a form of fluctuating diamagnetism aboveTc also inoverdoped YBCO, which could
be caused by charge inhomogeneities and the formation of superconducting droplets [213]. Re-
cently, precursor diamagnetism was observed in underdoped La1.9Sr0.1CuO4 (LSCO) up to 2K
aboveTc (T ≈ 1.1Tc) [214]. All these experimental observations are in complete agreement
with our theoretical results, indicating a limitation of the diamagnetic precursor effects above
Tc to temperatures of a small fraction ofTc.

In the following, we want to obtain some quantitative numbers for the susceptibility. From
Fig. 5.5 we getχDia(T = 1.5TKT )≈−0.003te2 in units where~ = c= a= 1. Using Eq. (5.13)
with the typical parameters for YBCO (a‖ = 3.86·10−8cm,a⊥ = 5.88·10−8cm) and as before
t= 250meV, one obtains the cgs diamagnetic-susceptibilityχDia(T = 1.5TKT )≈ 7·10−9. The
diamagnetic susceptibility in SI units can be obtained by multiplying the cgs susceptibility with
4π. Experimental susceptibilities are often measured in units of emu/mol.6 The diamagnetic
susceptibility in units of emu/mol can be obtained by multiplying the cgs susceptibility with
the molar volume of YBCO. For our phase fluctuation model, we getχDia(T = 1.5TKT ) ≈
−10−6emu/mol. This value for the fluctuating diamagnetism is tiny and experimentally not
observable. Thus, our results are consistent with experiments, which measure a paramagnetic
susceptibility of∼ 10−4emu/mol at the same temperature [209, 211], with no sign of any fluc-
tuating diamagnetism in the static magnetic susceptibility.

Finally, we want to annotate, that also the precursor effects of the ideal diamagnetism are lim-
ited for the static uniform susceptibility to temperatures close toTc, evidence for diamagnetic
precursor activities up toT ∗ was found when looking on small length scales and high frequen-
cies.7 Scanning SQUID microscopy experiments on thin films of underdoped LSCO show,
that the vortex pattern belowTc = 18K develops out of diamagnetic precursor domains which
are observable up toT = 80K [216]. AC susceptibility measurements on slightly underdoped
LSCO have shown a diamagnetic response up toT ∗ for frequencies of 0.1–10 kHz [217].

Next, we discuss our results for thes-wave gap with phase fluctuations. Due to the fully
gaped quasiparticle excitations belowTc, we expect a qualitatively different diamagnetic current

6Emu is not a real unit, in fact one hasχcgs = χcgs[cm3/cm3] = χcgs[emu/cm3]. In experiments one often
measures the total magnetic moment of a sample in place of the magnetization. The magnetic moment is then
divided by the applied magnetic field and the sample quantity (either in units ofmol or gram) in order to obtain
a generalized material dependent susceptibilityχcgs[emu/mol] or χcgs[emu/gram]. These material dependent
susceptibilities can be obtained from the usual cgs susceptibility in dividing the dimensionless cgs susceptibility
by the molar density or mass density of the sample. Typical values of diamagnetic susceptibilities inemu/mol

can be found in [215]. Please note, that the unit for magnetic moment is also calledemu. For magnetic moments
one hasemu= erg/gauss, but for magnetic susceptibilities one hasemu= cm3, which should not be confused!
In SI units there is no comparable confusion, but the units are less familiar to many scientists.

7Note that also paraconductivity was observed only at finite frequencies (see Sec. 4.3).
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response of the quasiparticles. Fig. 5.6 displays−〈kx〉+Dc(qx = 0, qy, iνn = 0) as a function
of qy, for thes-wave gap at different temperatures (〈n〉= 0.9). As before, the superfluid weight
can be obtained in the limit ofqy→ 0.

We see two completely different regimes in Fig. 5.6. ForT . 1.0TKT , we get an upward
curvature of the current correlation function and the superfluid weightDs has a rather large
positive value compared to thedx2−y2-wave case. ForT & 2.0TKT the current correlation func-
tion shows the characteristic tight-binding-like downward curvature and the superfluid weight
Ds approaches zero. Between these to regimes, we obtain a very strong downward curvature
of Dc(qx = 0, qy, iνn = 0) close toqy = 0, in particular forT = 1.25TKT andT = 1.5TKT . It
is not clear whether this is a finite-size effect or the indication of a true lattice diamagnetism.
Surely it is related to the anisotropic closing of thes-wave gap aboveTc (see Sec. 3.2).

To get an estimate of the finite-size error, Fig. 5.7 shows−〈kx〉+ Dc(qx, qy = 0, iνn = 0)
as a function ofqx. For qx→ 0, this function should approach zero for all temperatures. One
can clearly see in Fig. 5.7 that the finite-size errors are much larger than in case of thedx2−y2-
wave gap (cf. Fig. 5.3), especially for temperaturesT . 1.75TKT . Putting everything together,
we conclude that we get reliable results for the magnetic susceptibility only for temperatures
T & 2.0TKT .

Fig. 5.8 displays the magnetic susceptibilityχmag as a function of temperature for a constant
s-wave gap with phase fluctuations at finite doping (〈n〉= 0.9). For comparison, we also show
the magnetic susceptibilityχmag for the nearest-neighbor tight-binding model. In contrast to
thedx2−y2-wave gap, we have a phase fluctuation induced reduction ofχmag up to highest tem-
peratures. In Fig. 5.9 the corresponding fluctuating diamagnetismχDia = χXY−MC

mag −χTBmag is
displayed as a function of temperature. It has a finite value at all temperatures in the pseudogap
phase and does not show the characteristic on-set behavior observed for thedx2−y2-wave gap
(cf. Fig. 5.5).

Using a BCS-temperature-dependent gap does not change the properties ofχDia significantly
(see Fig. 5.9). It only causesχDia to diminish smoothly as one approachesT ∗ ≡ TMF

c . Hence,
a locals-wave gap with phase fluctuations leads to diamagnetic precursor effects over the whole
temperature rangeTc < T < T ∗, but the fluctuating diamagnetism is only about 1/3 of the tight-
binding lattice paramagnetism and still one order of magnitude smaller than the experimentally
observed values for the paramagnetic susceptibility in the pseudogap state of the cuprates.
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Figure 5.2: −〈kx〉+Dc(qx = 0, qy, iνn = 0) as a function of qy, calculated for the dx2−y2-wave
gap with phase fluctuations at different temperatures (〈n〉 = 0.9). The limit qy → 0 yields the
superfluid weight Ds in units of πe2. (For details see text.)
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Figure 5.3: −〈kx〉+Dc(qx, qy = 0, iνn = 0) as a function of qx, calculated for the dx2−y2-wave
gap with phase fluctuations at different temperatures (〈n〉= 0.9). The limit qx→ 0 yields Dtest

in units of πe2. For a Gauge invariant Hamiltonian one has Dtest ≡ 0. (For details see text.)
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Figure 5.4: Magnetic susceptibility χmag in units of te2 (~ = c = a = 1) as a function of tem-
perature, calculated from the current response of our phase-fluctuation model with a constant
dx2−y2-wave gap (〈n〉 = 0.9). For comparison we also show the magnetic susceptibility χmag
for the tight-binding model (∆ = 0). The dotted vertical line indicates the temperature above
which we expect reliable results for χmag in our phase-fluctuation model. Below this temper-
ature, we obtain an unphysical sudden increase of χmag in the phase-fluctuation model due to
strong finite-size effects.
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Figure 5.5: Diamagnetic susceptibility χDia = χXY−MC
mag −χTBmag in units of te2 (~ = c= a= 1)

as a function of temperature for a constant dx2−y2-wave gap with phase fluctuations (〈n〉 =
0.9). For comparison we also show the diamagnetic susceptibility χDia for a BCS-temperature-
dependent gap with phase fluctuations (∆ = ∆BCS(T )). The dotted vertical line indicates the
temperature above which we expect reliable results for χDia. Below this temperature, we obtain
an unphysical sudden increase of χmag due to strong finite-size effects. (For details see text.)
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Figure 5.6: −〈kx〉+ Dc(qx = 0, qy, iνn = 0) as a function of qy, calculated for the s-wave
gap with phase fluctuations at different temperatures (〈n〉 = 0.9). The limit qy → 0 yields the
superfluid weight Ds in units of πe2. (For details see text.)
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Figure 5.7: −〈kx〉+Dc(qx, qy = 0, iνn = 0) as a function of qx, calculated for the s-wave gap
with phase fluctuations at different temperatures (〈n〉 = 0.9). The limit qx→ 0 yields Dtest in
units of πe2. For a Gauge invariant Hamiltonian one has Dtest ≡ 0. (For details see text.)
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Figure 5.8: Magnetic susceptibility χmag in units of te2 (~ = c = a = 1) as a function of tem-
perature, calculated from the current response of our phase-fluctuation model with a constant
s-wave gap (〈n〉= 0.9). For comparison we also show the magnetic susceptibility χmag for the
tight-binding model (∆ = 0). The dotted vertical line indicates the temperature above which
we expect reliable results for χmag in our phase-fluctuation model. Below this temperature,
we obtain an unphysical sudden increase of χmag in the phase-fluctuation model due to strong
finite-size effects.
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Figure 5.9: Diamagnetic susceptibility χDia = χXY−MC
mag −χTBmag in units of te2 (~ = c= a= 1)

as a function of temperature for a constant s-wave gap with phase fluctuations (〈n〉= 0.9). For
comparison we also show the diamagnetic susceptibility χDia for a BCS-temperature-dependent
gap with phase fluctuations (∆ = ∆BCS(T )). The dotted vertical line indicates the temperature
above which we expect reliable results for χDia. Below this temperature, we obtain an unphys-
ical sudden increase of χmag due to strong finite-size effects. (For details see text.)
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5.2 Spin susceptibility

The spin (or Pauli) susceptibility can be obtained from the coupling of the magnetic fieldB to
the spin degrees of freedom. For a field perpendicular to the 2D planes (B ‖ ẑ), one gets

Ĥex
H (t) =

∫
dx′ g

µB
~
sz(x′, t)B(x′, t), (5.16)

with µB Bohr’s magneton andg ≈ 2 the electronicg-factor. The magnetization fieldM(x, t) is
given by

M(x, t) =−N
V
g
µB
~
〈sz(x, t)〉

=
∫
dx′ dt′ χspin(x, t, x′, t′)H(x′, t′),

(5.17)

where the last line defines the spin susceptibility as response to the externally applied magnetic
fieldH(x′, t′). The expectation value of the spin inz-direction can be decomposed into

〈sz(x, t)〉= 〈s0
z(x, t)〉+ δ〈sz(x, t)〉. (5.18)

Here〈s0
z(x, t)〉 is the expectation value without magnetic field. For a diamagnet or paramagnet

one has〈s0
z(x, t)〉 = 0. The magnetic field caused spin polarizationδ〈sz(x, t)〉 can be obtained

by means of

δ〈sz(x, t)〉= g
µB
~

i

~

∫
dt′ dx′B(x′, t′) Tr{ρ̂G[sz(x′, t′), sz(x, t)]}Θ(t− t′), (5.19)

which is the usual linear response formula that was already used for the current in the preceding
paragraphs. Using

B(x, t) =H(x, t)+4πM(x, t)≈H(x, t), (5.20)

one finally gets

χspin(x, t, x′, t′) =−N
V
g2 µ

2
B

~2

1
~
Dzz(x, t, x′, t′), (5.21)

with

Dzz(x, t, x′, t′) =−i Tr{ρ̂G[sz(x, t), sz(x′, t′)]}Θ(t− t′) (5.22)

the spin correlation function.
Note, that we replacedB(x, t) by H(x, t) in the linear response formula, since we are only

interested in the lowest order perturbation andχspin� 1. A Fourier transformation yields

χspin(q,ω) =−N
V
g2 µ

2
B

~2

1
~
Dzz(q,ω). (5.23)

The static uniform susceptibility is defined byχspin=χspin(q→0,ω= 0). For a non-interacting
system with a general dispersionε(k), the static uniform spin (or Pauli) susceptibility is given
by

χspin(q→ 0,ω = 0) =− 1
V

1
2
g2 µ2

B ∑
k

∂f(ε(k)−µ)
∂ε(k)

, (5.24)



126 CHAPTER 5. MAGNETIC PROPERTIES

with f(ε(k)−µ) the Fermi function. ForT → 0, the static uniform susceptibility is proportional
to the density of states at the Fermi surface.

Fig. 5.10 displays the spin susceptibilityχspin as a function of temperature for a constant
dx2−y2-wave gap with phase fluctuations at finite doping (〈n〉= 0.9). In Sec. 5.1, we have seen
that the fluctuation-induced diamagnetism is only important belowT ' 1.5Tc and that, at higher
temperatures,χDia is at least two orders of magnitude smaller than the paramagnetic current
response of the tight-binding electrons. Furthermore, expressing the susceptibilities in cgs-units
and using the typical lattice parameters of YBCO (see Sec. 5.1), one obtains that the paramag-
netic spin response is 5 times larger than the paramagnetic current response of the tight-binding
electrons. In addition, the magnetic current response is only weakly temperature dependent.
Moreover, the experimentally observed diamagnetic susceptibility close toTc can be perfectly
fitted by an exponential function, which also indicates that the fluctuating diamagnetism is ex-
ponentially suppressed at higher temperatures [212]. Hence, we expect that the temperature
dependence of the experimentally observed paramagnetic susceptibility is dominated by the
spin susceptibilityχspin over almost the the entire pseudogap phase.8

In Fig. 5.10 we have also plottedχspin for the nearest-neighbor tight-binding model and for
the BCS-model with a constant superconducting gap. The phase-fluctuation model exhibits
a characteristic temperature dependence of the spin susceptibility, which differs qualitatively
from the tight-binding model as well as from the BCS-model. This becomes even more clear
for a BCS-temperature-dependent gap, as shown in Fig. 5.11. From Fig. 5.11 we can also infer,
that a temperature dependent pairing-gap only slightly modifies the temperature dependence
of χspin in our phase fluctuation model.χspin always slightly decreases nearly linear below
T ∗ ≡ TMF

c and then displays a characteristic downward bending atT ' 2TKT .

These results are very similar to the experimentally observed temperature dependence of the
NMR Knight-shift and the magnetic susceptibility in the pseudogap state of various underdoped
high-Tc compounds [218–221]. In the pseudogap state, the temperature variation of the NMR
Knight-shift scales linearly with the macroscopic magnetic susceptibility [222]. In underdoped
Bi2Sr2CaCu2O8+δ (Bi2212) single-crystals, two characteristic temperature scales can be identi-
fied in the temperature dependence of the Knight-shift [218]. A higher temperatureTmK , where
the Knight-shift starts to decrease from the nearly constant high-temperature value, and a lower
temperatureT ∗K >Tc, where it starts to decrease very steeply [218]. These two temperatures are
however difficult to define exactly. This can be seen from the scaled Knight-shift date of YBCO
shown in Ref. [223] and also from our numerical results displayed in Fig. 5.10 and Fig. 5.11,
since the change as a function of temperature is continuous.

For completeness, we report in Fig. 5.12 and Fig. 5.13, respectively, results on the temperature
dependence of the spin susceptibilityχspin for a constant and a BCS-temperature-dependents-
wave gap with phase fluctuations at finite doping (〈n〉= 0.9). Our results for thes-wave gap are
very similar to the results for thedx2−y2-wave gap, indicating that the temperature dependence
of χspin has a characteristic unique fingerprint in the presence of phase fluctuations. The only
difference is the much stronger reduction ofχspin at T = TKT . Interestingly, a comparable
temperature dependence of the uniform spin susceptibility was obtained in QMC simulations of

8Again, we neglect in our discussion the influence of antiferromagnetic spin fluctuations.
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the attractive Hubbard model [224].
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Figure 5.10: Spin susceptibility χspin in units of g2µ2
B/t (~ = c= a= 1) as a function of tem-

perature for a constant dx2−y2-wave gap with phase fluctuations (〈n〉= 0.9). For comparison we
also show the temperature dependence of the spin susceptibility χspin for a BCS-superconductor
with a constant gap and for the tight-binding model (∆ = 0).
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Figure 5.11: Spin susceptibility χspin in units of g2µ2
B/t (~ = c = a = 1) as a function of

temperature for a BCS-temperature-dependent dx2−y2-wave gap with phase fluctuations (〈n〉=
0.9). For comparison we also show the temperature dependence of the spin susceptibility χspin
for a BCS-superconductor and for the tight-binding model (∆ = 0).
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Figure 5.12: Spin susceptibility χspin in units of g2µ2
B/t (~ = c = a = 1) as a function of

temperature for a constant s-wave gap with phase fluctuations (〈n〉= 0.9). For comparison we
also show the temperature dependence of the spin susceptibility χspin for a BCS-superconductor
with a constant gap and for the tight-binding model (∆ = 0).
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Figure 5.13: Spin susceptibility χspin in units of g2µ2
B/t (~ = c = a = 1) as a function of

temperature for a BCS-temperature-dependent s-wave gap with phase fluctuations (〈n〉= 0.9).
For comparison we also show the temperature dependence of the spin susceptibility χspin for a
BCS-superconductor and for the tight-binding model (∆ = 0).



6
Conclusion

In conclusion, we have elaborated the important role that phase fluctuation effects might play in
the underdoped cuprates. Our phenomenological model was given by a BCS-like Hamiltonian
with a constant local pairing-amplitude and phase fluctuations. The pair-phase fluctuations
on the scale of the Cooper-pair sizeξ0 were determined from a classical 2DXY action by
means of a Monte Carlo simulation. The quasiparticle tunneling conductance (dI/dV ) obtained
from this model was able to reproduce characteristic and salient features of recent scanning-
tunneling studies of Bi2212 and Bi2201 suggesting that the pseudogap behavior observed in
these experiments arises from phase fluctuations of thedx2−y2-wave pairing gap.

We were further able to show, how phase fluctuations influence the experimentally observed
quasiparticle spectra in detail. In particular the disappearance of the BCS-Bogoliubov quasi-
particle band atTc and the change from a more V-like superconducting gap to a rather U-like
pseudogap aboveTc can be explained in a consistent way by assuming that the low-energy
pseudogap in the underdoped cuprates is due to phase fluctuations of a localdx2−y2-wave pair-
ing gap with fixed magnitude. Furthermore, phase fluctuations can explain why the pseudogap
starts closing from the nodal points, whereas it rather fills in along the anti-nodal directions
and they can also account for the characteristic temperature dependence of the superconducting
(π,0)-photoemission-peak.

For ans-wave gap, phase fluctuations lead to an anisotropic pseudogap, which starts closing
atk = (π2 ,

π
2), but remains open atk = (π,0). This gap-asymmetry can be related to the different

Fermi velocities and might be of some relevance in electron-doped cuprates, where a possible
transition from as-wave symmetry to an anisotropics-wave (ordx2−y2-wave) symmetry of the
superconducting order parameter was observed as a function of doping and temperature.

Next, we have shown that the recently observedviolation of the low-frequency optical sum
rule in the SC state of underdoped Bi2212, which is associated with a reduction of kinetic
energy, can be related to the role of phase fluctuations. The decrease in kinetic energy is due to
the sharpening of the quasiparticle peaks close to the superconducting transition atTc ≡ TKT ,
where the phase correlation lengthξ diverges. We suggest that this sum-rule violation should
also appear in other superconductors with low charge carrier density (phase stiffness) such as
the organic superconductors.

130



131

A detailed analysis of the temperature and frequency dependence of the optical conductivity
revealed a superconducting scaling ofσ2(ω), which starts already aboveTc, exactly as observed
in high-frequency microwave conductivity experiments on Bi2212. On the other hand, our
model was only able to account for the characteristic peak, which is observed inσ1(ω) close
to the superconducting transition, after the inclusion of an additional marginal-Fermi-liquid
scattering-rate in the optical conductivity formula. This manifests a general shortcoming of our
phenomenological model for finite-frequency two-particle properties. It is due to the fact that
within our model, quasiparticles are only scattered by phase fluctuations.

Finally, we calculated the static uniform diamagnetic susceptibility. It turned out that the
precursor effects of the fluctuating diamagnetism aboveTc are very small and limited to tem-
peratures close toTc in a phase-fluctuation scenario of the pseudogap. Instead, the tempera-
ture dependence of the uniform static magnetic susceptibility is dominated by the Pauli spin-
susceptibility, which displayed a very characteristic temperature dependence, independent of
the details of the gap function used in our model. This temperature dependence is qualita-
tively very similar to the experimentally observed change of the Knight-shift as a function of
temperature in underdoped Bi2212.

Hence, all these results strongly support a phase fluctuation scenario of the pseudogap in the
underdoped cuprates. In a next step, however, additional fluctuations of other competing order
parameters and especially antiferromagnetic spin-fluctuations have to be included for a more
realistic modeling of the cuprates. It will be very interesting to see, whether these additional
fluctuations resolve the shortcomings of our simplified model or whether they suppress phase
fluctuations and limit them to temperatures close toTc. Additionally, the parameters used in
our phenomenological model have to be derived from the true microscopic Hamiltonian of
the cuprates. The phase-fluctuation picture would be further strengthened by the inclusion of
quantum phase-fluctuations and the continuation of our calculations belowTc and down to
lowest temperatures in the superconducting state.





Summary

In this thesis, a phenomenological phase-fluctuation model for the pseudogap regime of the
underdoped cuprates was discussed. The key idea of the phase-fluctuation scenario in the high-
Tc superconductors is the notion that the pseudogap observed in a wide variety of experiments
arises from phase fluctuations of the superconducting gap. In this scenario, below a mean-
field temperature scaleTMF

c , a dx2−y2-wave gap amplitude is assumed to develop. However,
the superconducting transition is suppressed to a considerably lower transition temperatureTc
by phase fluctuations. In the intermediate temperature regime betweenTMF

c andTc, phase
fluctuations of the superconducting order parameter give rise to the pseudogap phenomena.

Basically, in order to have condensation into the superconducting state, one needs, in addition
to the binding of charge carriers into Cooper pairs, long-range phase coherence among the pairs.
Since the underdoped cuprates have a relatively low charge carrier density due to the proximity
to the Mott insulating state, they are also characterized by a relatively small phasestiffness. This
implies a significantly larger role for phase fluctuations, than in conventional superconductors.
As a consequence, in these materials the transition to the superconducting state does not display
a typical mean-field (BCS) behavior, and phase fluctuations may have a significant influence on
low-temperature properties. When coherence is lost due to thermal fluctuations of the phase
at and above the transition temperatureTc, pairing remains, together with short-range phase
correlations, which can cause the observed pseudogap phenomena in the underdoped cuprates.

The phenomenological phase-fluctuation model discussed in this thesis consists of a two-
dimensional BCS-like Hamiltonian where the phase of the pairing-amplitude is free to fluctuate.
The fluctuations of the phase were treated by a Monte Carlo simulation of a classicalXY model.
First, however, we derived an effective quantum phase action from our Hamiltonian by means of
a cumulant expansion. This allowed us to identify different terms in the quantum phase action
with respect to their physical meaning and in concern of a possible “minus-sign” problem which
could arise in a quantum Monte Carlo simulation of the phase degrees of freedom. We then
argued, that a classicalXY action is sufficient for the temperature range of interest aboveTc.
All further calculations were then performed by means of a Monte Carlo importance-sampling
procedure, in which the probability of a given phase configuration was given by the classical
XY model. For each phase configuration, the BCS-like Hamiltonian was diagonalized. Finally,
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all results were averaged over the different phase configurations.
A severe problem in all calculations are finite-size effects. By means of various numerical op-

timization techniques and using Wolff’s cluster algorithm for the creation of the relevant phase
configurations, we were able to reach up to 36×36 lattice sites for single particle properties
and up to 16×16 lattice sites for correlation functions. Additionally, we employed a recently
proposed technique, consisting of applying a small magnetic field to the lattice Hamiltonian, in
order to further reduce size-effects.

First, the density of states was calculated. The quasiparticle tunneling conductance (dI/dV )
obtained from our phenomenological phase fluctuation model was able to reproduce character-
istic and salient features of recent scanning-tunneling studies of Bi2212 and Bi2201 suggesting
that the pseudogap behavior observed in these experiments arises from phase fluctuations of the
dx2−y2-wave pairing gap.

In calculating the single-particle spectral weight, we were further able to show how phase
fluctuations influence the experimentally observed quasiparticle spectra in detail. In particu-
lar the disappearance of the BCS-Bogoliubov quasiparticle band atTc and the change from a
more V-like superconducting gap to a rather U-like pseudogap aboveTc can be explained in a
consistent way by assuming that the low-energy pseudogap in the underdoped cuprates is due
to phase fluctuations of a localdx2−y2-wave pairing gap with fixed magnitude. Furthermore,
phase fluctuations can explain why the pseudogap starts closing from the nodal points, whereas
it rather fills in along the anti-nodal directions and they can also account for the characteristic
temperature dependence of the superconducting(π,0)-photoemission-peak.

For ans-wave gap, phase fluctuations lead to an anisotropic pseudogap, which starts closing
atk = (π2 ,

π
2), but remains open atk = (π,0). This gap-asymmetry can be related to the different

Fermi velocities and might be of some relevance in electron-doped cuprates, where a possible
transition from as-wave symmetry to an anisotropics-wave (ordx2−y2-wave) symmetry of the
superconducting order parameter was observed as a function of doping and temperature.

Motivated by the success of our phenomenological phase fluctuation model, we succeeded
in obtaining a high-temperature approximation for the single-particle properties by means of a
coherent potential approximation (CPA). The local CPA self-energy yielded qualitatively sur-
prisingly good results in the temperature range, where the phases are completely uncorrelated.

Next, we have shown that theviolation of the low-frequency optical sum rule recently ob-
served in the SC state of underdoped Bi2212, which is associated with a reduction of kinetic
energy, can be related to the role of phase fluctuations. The decrease in kinetic energy is due to
the sharpening of the quasiparticle peaks close to the superconducting transition atTc ≡ TKT ,
where the phase correlation lengthξ diverges. We suggest that this sum-rule violation should
also appear in other superconductors with low charge carrier density (phase stiffness) such as
the organic superconductors.

A detailed analysis of the temperature and frequency dependence of the optical conductivity
σ(ω) = σ1(ω)+iσ2(ω) revealed a superconducting scaling ofσ2(ω), which starts already above
Tc, exactly as observed in high-frequency microwave conductivity experiments on Bi2212. On
the other hand, our model was only able to account for the characteristic peak, which is ob-
served inσ1(ω) close to the superconducting transition, after the inclusion of an additional
marginal-Fermi-liquid scattering-rate in the optical conductivity formula. This manifests a gen-
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eral shortcoming of our phenomenological model for finite frequency two-particle properties. It
is due to the fact that within our model, quasiparticles are only scattered by phase fluctuations.

Finally, we calculated the static uniform diamagnetic susceptibility. There, we first had to
solve the numerically challenging problem of calculating the curvature of the current correlation
function in the limitqy → 0. We found a numerical stable solution for the finite lattice, which
qualitatively matched very well the exact solution of the tight-binding model.

It turned out that the precursor effects of the fluctuating diamagnetism aboveTc are very
small and limited to temperatures close toTc in a phase-fluctuation scenario of the pseudogap.
Instead, the temperature dependence of the uniform static magnetic susceptibility is dominated
by the Pauli spin susceptibility, which displayed a very characteristic temperature dependence,
independent of the details of the gap function used in our model. This temperature dependence
is qualitatively very similar to the experimentally observed change of the Knight-shift as a
function of temperature in underdoped Bi2212.

Hence, all these results strongly support a phase-fluctuation scenario of the pseudogap in the
underdoped cuprates. In a next step, however, additional fluctuations of other competing order
parameters and especially antiferromagnetic spin fluctuations have to be included for a more
realistic modeling of the cuprates. It will be very interesting to see, whether these additional
fluctuations resolve the shortcomings of our simplified model or whether they suppress phase
fluctuations and limit them to temperatures close toTc.
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Zusammenfassung

In der vorliegenden Arbeit wurde ein phänomenologisches Phasenfluktuationsmodell zur Be-
schreibung der

”
Pseudol̈ucken“-Phase in den unterdotierten Hochtemperatur-Supraleitern un-

tersucht. Bei den meisten Hochtemperatur-Supraleitern handelt es sich um keramische Ver-
bindungen. Ihr gemeinsames Merkmal sind zweidimensionale Kupferoxidebenen, welche die
elektronischen Eigenschaften der Kuprate bestimmen. Im Gegensatz zu konventionellen me-
tallischen BCS-Supraleitern skaliert in den unterdotierten Kupraten die kritische Temperatur,
unterhalb derer Supraleitung einsetzt, nicht mit der Größe der supraleitenden Energielücke∆,
und damit der Sẗarke der Paaranziehung, sondern mit der superfluiden Dichteρs, d. h. der Dichte
der supraleitenden Elektronen.

Eine Erkl̈arung hierf̈ur liegt in der Tatsache begründet, dass alle Kuprate dotierte Mott-Iso-
latoren sind. F̈ur den supraleitenden Zustand ist nun einerseits die Paarung der Elektronen zu
Cooper-Paaren notwendig, andererseits aber auch eine globale Phasenkohärenz zwischen den
Cooper-Paaren. Die Temperatur unterhalb derer Paarung einsetzt wird durch die konventionelle
BCS-Molekularfeldtheorie beschrieben und ist proportional zur supraleitenden Energielücke
TMF
c ∼ ∆. Auf der anderen Seite entsteht die globale Phasenkohärenz zwischen den Cooper-

Paaren erst unterhalb einer TemperaturTϕ, die von der so genannten Phasensteifheit bestimmt
wird. Diese ist proportional zur superfluiden Dichte, d. h.Tϕ ∼ ρs.

In konventionellen Supraleitern und in denüberdotierten Kupraten istTϕ� TMF
c . Somit setzt

mit der Paarung auch augenblicklich die Phasenkohärenz ein und die supraleitende Sprungtem-
peratur wird alleine durchTMF

c bestimmt. Unterdotierte Kuprate liegen im Phasendiagramm
jedoch sehr nahe am Mott-isolierenden Zustand und haben daher eine relativ geringe Anzahl
an beweglichen Ladungsträgern. Dies hat zur Folge, dass bei einer TemperaturT ∗ = TMF

c

zun̈achst die Paarung der Ladungsträger einsetzt, diese sich aber erst bei einer sehr viel nied-
rigeren TemperaturTc = Tϕ phasenkoḧarent bewegen und damit supraleitend werden. Dies ist
das so genannte Phasenfluktuationsszenario für die Pseudolücke im Energiespektrum der un-
terdotierten Kuprate. Die Pseudolücke entwickelt sich oberhalb vonTc kontinuierlich aus der
supraleitenden Energielücke heraus und wird bis zu einer TemperaturT ∗� Tc in verschiedenen
Experimenten beobachtet.

Als Ausgangspunkt der vorliegenden Arbeit diente nun ein BCS-artiger Hamiltonoperator mit
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fester Paarungsamplitude, bei dem jedoch die Phase der lokalen Paare frei fluktuieren konnte.
Für diesen Hamiltonoperator wurde zunächst eine effektive Phasenwirkung mittels Kumulan-
tenentwicklung abgeleitet. Dies erlaubte es, verschiedene Terme zu unterscheiden und in Be-
zug auf ihre physikalischen Eigenschaften und im Hinblick auf ein mögliches Minuszeichen-
problem bei einer sp̈ateren Monte Carlo Simulation der Phasenfreiheitsgrade zu untersuchen.
Es stellte sich dabei heraus, dass eine klassischeXY -Wirkung zur Beschreibung der Phasen-
fluktuationen oberhalb vonTc vollkommen ausreicht. Alle weiteren Rechnungen wurden nun
durchgef̈uhrt, indem mittels einer Monte Carlo Simulation des klassischenXY -Modells ver-
schiedene Phasenkonfigurationen erzeugt wurden und für jede dieser Phasenkonfigurationen
der BCS-artige Hamiltonoperator exakt diagonalisiert wurde. Am Ende fand dann eine Mitte-
lung über s̈amtliche Phasenkonfigurationen statt.

Wie bei allen Monte Carlo Simulationen, so stellte auch hier die, von der zur Verfügung ste-
henden Computerleistung begrenzte, relativ kleine Gittergröße das gr̈oßte Hindernis dar. Mittels
numerischer Optimierung und der Verwendung des Wolff-Cluster-Algorithmus zur Erzeugung
der Phasenkonfigurationen konnten Systeme mit bis zu 36×36 Gitterpl̈atzen f̈ur Einteilchen-
größen und 16× 16 Gitterpl̈atzen f̈ur Korrelationsfunktionen auf dem Hitachi SR-8000 Bun-
desḧochstleistungsrechner in M̈unchen berechnet werden. Des weiteren wurde eine kürzlich
vorgeschlagene Methode zur Reduzierung von

”
finite-size“ Effekten, welche auf der Einführung

eines
”
virtuellen“ Magnetfeldes beruht, erfolgreich implementiert und getestet.

Die erste Anwendung dieses phänomenologischen Phasenfluktuationsmodells bestand in der
Berechnung von Einteilchen-Tunnelspektren. Hierbei konnte eine ausgezeichneteÜbereinstim-
mung mit den Experimenten, insbesondere was die Temperaturentwicklung der supraleitenden
Kohärenzpeaks und das charakteristische auffüllen der Pseudolücke mit ansteigenden Tempe-
raturen betrifft, erzielt werden.

Durch einen detaillierten Vergleich zwischen Theorie und Experiment konnte gezeigt wer-
den, auf welche Weise Phasenfluktuationen das Quasiteilchenspektrum beeinflussen. Insbe-
sondere das Verschwinden der BCS-Bogoliubov Quasiteilchenbänder oberhalb vonTc und die
Veränderung der Energielücke, von einer V-artigen supraleitenden Lücke hin zu einer mehr U-
artigen Pseudolücke oberhalb vonTc, konnte in konsistenter Weise durch Phasenfluktuationen
des supraleitenden Ordnungsparameters erklärt werden. Dar̈uberhinaus war das Phasenfluktua-
tionsmodell in der Lage zu erklären, warum die Pseudolücke von den Knotenpunkten an der
Fermifläche her anf̈angt sich zu schließen, wohingegen sie an den Anti-Knotenpunkten eher
aufgef̈ullt wird. Auch konnte die charakteristische Temperaturentwicklung des so genannten

”
supraleitenden“(π,0)-Photoemissionspeaks sehr gut durch Phasenfluktuationen beschrieben

werden.
Durch den Erfolg des Phasenfluktuationsmodells motiviert, wurde eine Hochtemperatur-Nähe-

rung für die Pseudolücke untersucht. Diese so genannte kohärente Potentialn̈aherung (CPA)
beruht auf einem Legierungsanalogon für Unordnungsprobleme. In unserem Fall wurde die
Unordnung durch die fluktuierende Phase der lokalen Paare repräsentiert. Es konnte gezeigt
werden, dass die lokale CPA Selbstenergie erstaunlich gut die charakteristischen Einteilchen-
Eigenschaften bei hohen Temperaturen wiedergeben kann.

Als nächstes wurden Experimente zur Verletzung der optischen Niederfrequenz-Summenregel
in unterdotierten Bi2212-Verbindungen untersucht, welche auf eine Reduktion der kinetischen
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Energie im supraleitenden Zustand hindeuten. Es konnte gezeigt werden, dass diese Reduktion
mit der Rolle von Phasenfluktuationen beim supraleitendenÜbergang in Verbindung gebracht
werden kann. Die Reduktion der kinetischen Energie erfolgt durch das Entstehen scharfer Qua-
siteilchenpeaks beiTc. Dort beginnt die Korrelationslänge der fluktuierenden Phasen zu diver-
gieren, und es stellt sich eine quasi-langreichweitige Ordnung ein.

Eine detailliert Analyse der Frequenz und Temperaturabhängigkeit der optischen Leitfähig-
keit ergab eine supraleitende Skalierung des Imaginärteils der optischen Leitfähigkeit schon
oberhalb vonTc, genau wie in Mikrowellen-Hochfrequenzleitfähigkeitsexperimenten beobach-
tet. Das experimentell beobachtete Maximum im Realteil der optischen Leitfähigkeit beiTc
konnte unser pḧanomenologisches Phasenfluktuationsmodell jedoch nur durch den Einbau einer
zus̈atzlichen marginalen Fermiflüssigkeits-Streurate in die Formel für die optische Leitf̈ahigkeit
beschreiben.

Als letztes wurde die homogene statische diamagnetische Suszeptibilität berechnet. Hierbei
musste zun̈achst das anspruchsvolle numerische Problem der Berechnung der Krümmung der
Strom-Strom Korrelationsfunktion für den Limesqy → 0 auf einem 16×16 Gitter gel̈ost wer-
den. Nachdem eine numerisch stabile Lösung f̈ur das endliche Gitter gefunden wurde, die qua-
litativ gut mit der exakten L̈osung des freien Systemsübereinstimmt, stellte sich heraus, dass
Vorläufereffekte des idealen diamagnetischen Zustands oberhalb vonTc in der statischen dia-
magnetische Suszeptibilität äußerst gering sind und sich auf Temperaturen in der Nähe von
Tc beschr̈anken. Stattdessen wird die Temperaturabhängigkeit der statischen homogenen mag-
netischen Suszeptibilität von der Pauli-Spinsuszeptibilität bestimmt. Diese zeigt für das Pha-
senfluktuationsmodell einen charakteristischen Verlauf, der erstaunlich gut mit der Temperatur-
abḧangigkeit des Magnetresonanz Knight-shift in unterdotierten Bi2212-Verbindungenüber-
einstimmt.

Insgesamt konnte in der vorliegenden Arbeit gezeigt werden, dass das phänomenologische
Phasenfluktuationsmodell eine erstaunlich gute und in sich konsistente Beschreibung vieler Er-
scheinungen in der

”
Pseudol̈ucken“-Phase der unterdotierten Kuprate liefert. Auf der anderen

Seite treten jedoch auch M̈angel klar zu Tage, so bei dynamischen Zweiteilchengrößen wie der
optischen Leitf̈ahigkeit. Diese m̈ussen, z. B. durch den Einbau von antiferromagnetischen Fluk-
tuationen beseitigt werden, um eine realistischere Beschreibung der unterdotierten Kuprate zu
ermöglichen und Phasenfluktuationen als Ursache für die niederenergetische Pseudolücke zu
besẗatigen.
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Arbeitsklima.

Meinen Eltern danke ich für die bedingungslose Unterstützung meiner Arbeit und meinen
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