
escartes

The Descartes Modeling Language

Samuel Kounev, Fabian Brosig, Nikolaus Huber

Descartes Research Group
Chair of Software Engineering

Department of Computer Science
University of Würzburg, Germany

{samuel.kounev|fabian.brosig|nikolaus.huber}@uni-wuerzburg.de

October 13, 2014
v1.0

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Design-time vs. Run-Time Models . 8
1.3 The Descartes Modeling Language (DML) . 11

1.3.1 Modeling Language Overview . 11
1.3.2 Summary of Supported Features and Novel Aspects 13
1.3.3 Application Scenarios . 14

1.4 Self-Aware Computing Systems . 17
1.5 Outline . 18

2 Background 19
2.1 Performance Modeling Approaches . 19

2.1.1 Existing Architecture-Level Performance Models 19
2.1.2 Palladio Component Model (PCM) . 20

2.2 Modeling Run-time System Adaptation . 23
2.2.1 Abstraction Levels . 23
2.2.2 Languages for Adaptation Control Flow . 23
2.2.3 Configuration Space . 24

3 Online Performance Prediction Scenario 25
3.1 Setting . 25
3.2 SPECjEnterprise2010 . 26
3.3 Exemplary Environment . 27

4 Architecture-Level Performance Model 29
4.1 Application Architecture Model . 29

4.1.1 Component Model and System Model . 29
4.1.2 Running Example . 32
4.1.3 Service Behavior Abstractions . 32
4.1.4 Parameterization . 38
4.1.5 Probabilistic Parameter Dependencies . 42
4.1.6 Interface to Monitoring Infrastructure . 49

4.2 Resource Landscape Model . 51
4.2.1 Modeling Abstractions . 53
4.2.2 Example . 59

4.3 Deployment Model . 60
4.3.1 Modeling Abstractions . 60
4.3.2 Example . 61

CONTENTS 3

4.4 Usage Profile Model . 62
4.4.1 Modeling Abstractions . 62
4.4.2 Example . 63

5 Model-based System Adaptation 64
5.1 Motivation and Background . 64
5.2 Adaptation Points Model . 66
5.3 Adaptation Process Model . 70

5.3.1 Actions . 72
5.3.2 Tactics . 73
5.3.3 Strategies . 76
5.3.4 QoS Data Repository . 77
5.3.5 Weighting Function . 78

6 Discussion 81
6.1 Differences between DML and PCM . 81
6.2 Ongoing and Future Work . 82

Bibliography 85

List of Acronyms and Abbreviations 93

List of Figures

1.1 Degrees-of-Freedom and performance-influencing factors in a modern IT system. 7
1.2 Relation of the different models of a Descartes Modeling Language (DML) instance . . . 11
1.3 Model-Based System Adaptation Control Loop [22] . 16

2.1 Components providing and requiring interfaces. 21
2.2 Assembly of a composite component. 21
2.3 RD-SEFF of service with signature execute(int number, List array) (cf. [11]). 22

3.1 Online performance prediction scenario. 25
3.2 SPECjEnterprise2010 architecture [48]. 26
3.3 Experimental environment. 27

4.1 Components and Interfaces, cf. [11] . 30
4.2 Component Type Hierarchy, cf. [11] . 30
4.3 Component Composition, cf. [11] . 31
4.4 Example: System Instance as UML Object Diagram . 31
4.5 Example: System Instance . 32
4.6 (a) Composition Tree Schema and (b) Example System Instance as Composition Tree . . 33
4.7 Component Instance Reference . 33
4.8 Running Example: WebShop . 33
4.9 Example: Delivery Component . 34
4.10 Different Service Behavior Abstractions . 36
4.11 (a) Coarse-Grained and (b) Black-Box Behavior Abstractions 36
4.12 Fine-Grained Behavior Abstraction, cf. [11] . 37
4.13 Example: Delivery and ShoppingCartServlet . 37
4.14 Example: Fine-Grained Behavior Abstraction of Service calculateTotalCost Provided by

ShoppingCartServlet . 38
4.15 Example: Coarse-Grained Behavior Abstraction of Service calculateTotalCost Provided

by ShoppingCartServlet . 38
4.16 Example: WebShops for a GameStore and a Supermarket 39
4.17 Model Variables . 40
4.18 Example: CatalogServlet and JPAProvider Components 42
4.19 Example: Cache Miss or Cache Hit in Service getArticlePreviewImage 43
4.20 Example: Behavior of listArticles Service Provided by CatalogServlet 43
4.21 Modeling Parameter Dependencies . 44
4.22 Influenced Variables and Influencing Parameters . 46
4.23 Call Parameter Hierarchy . 46
4.24 Call Parameters . 47

LIST OF FIGURES 5

4.25 Relationships between Influenced Variables and Influencing Parameters 47
4.26 Characterization of Relationships . 48
4.27 Example: Modeling Parameter Dependencies . 49
4.28 Example: Characterizing Parameter Dependencies . 50
4.29 Main types of data center resources. 52
4.30 Different resource layers and their influence on the performance. 53
4.31 The resource landscape meta-model. 54
4.32 Different runtime environment classes. 55
4.33 Types of resource configurations. 56
4.34 Container instances in the MOF modeling hierarchy . 58
4.35 The container templates repository. 58
4.36 Example resource landscape model instance. 59
4.37 The deployment meta-model. 60
4.38 Example: WebShop Deployment . 61
4.39 Usage Profile Model, cf. [11] . 62
4.40 Example: Usage Profile Model Instance . 63

5.1 Interaction of the system, the system models and the S/T/A adaptation language. 65
5.2 Relation of Entity and AdaptableEntity. 66
5.3 Adaptation points meta-model. 68
5.4 Adaptation points meta-model instance. 69
5.5 Concepts of the adaptation process meta-model and their relations. 71
5.6 Adaptation process meta-model. 72
5.7 Example Actions referring to adaptation points. 73
5.8 Different example Tactics using the previously specified Actions. 74
5.9 Example Strategies using Tactics with assigned weights. 77
5.10 The QoS data repository meta-model. 78

Chapter 1

Introduction

This technical report introduces the Descartes Modeling Language (DML), a new architecture-level mod-
eling language for modeling Quality-of-Service (QoS) and resource management related aspects of mod-
ern dynamic IT systems, infrastructures and services. DML is designed to serve as a basis for self-aware
resource management1 [1, 2] during operation ensuring that system quality-of-service requirements are
continuously satisfied while infrastructure resources are utilized as efficiently as possible. The term
Quality-of-Service (QoS) is used to refer to non-functional system properties including performance
(considering classical metrics such as response time, throughput, scalability and efficiency) and depend-
ability (considering in addition: availability, reliability and security aspects). The current version of
DML is focused on performance and availability including capacity, responsiveness and resource ef-
ficiency aspects, however, work is underway to provide support for modeling further QoS properties.
The meta-model itself is designed in a generic fashion and is intended to eventually support the full
spectrum of QoS properties mentioned above. Given that the initial version of DML is focussed on
performance, in the rest of this document, we mostly speak of performance instead of QoS in general.
Information on the latest developments around the Descartes Modeling Language (DML) can be found
at http://www.descartes-research.net.

1.1 Motivation

Modern IT systems have increasingly complex and dynamic architectures composed of loosely-coupled
distributed components and services that operate and evolve independently. Managing system resources
in such environments to ensure acceptable end-to-end application QoS while at the same time optimizing
resource utilization and energy efficiency is a challenge [3, 4, 5]. The adoption of virtualization and
cloud computing technologies, such as Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service (IaaS), comes at the cost of increased system complexity and dynamicity.

The increased complexity is caused by the introduction of virtual resources and the resulting gap
between logical and physical resource allocations. The increased dynamicity is caused by the complex
interactions between the applications and workloads sharing the physical infrastructure. The inability
to predict such interactions and adapt the system accordingly makes it hard to provide QoS guarantees
in terms of availability and responsiveness, as well as resilience to attacks and operational failures [6].
Moreover, the consolidation of workloads translates into higher utilization of physical resources which
makes systems much more vulnerable to threats resulting from unforeseen load fluctuations, hardware
failures and network attacks.

System administrators and service providers are often faced with questions such as:

1The interpretation of the term "self-aware" is described in detail in Sec. 1.4

http://www.descartes-research.net

MOTIVATION 7

◦ What QoS would a new service or application deployed on the virtualized infrastructure exhibit and
how much resources should be allocated to it?
◦ How should the workloads of the new service/application and existing services be partitioned among

the available resources so that QoS requirements are satisfied and resources are utilized efficiently?
◦ What would be the effect of adding a new component or upgrading an existing component as ser-

vices and applications evolve?
◦ If an application experiences a load spike or a change of its workload profile, how would this affect

the system QoS? Which parts of the system architecture would require additional resources?
◦ At what granularity and at what rate should resources be provisioned / released as workloads fluc-

tuate (e.g., CPU time, virtual cores, virtual machines, physical servers, clusters, data centers)?
◦ What would be the effect of migrating a service or an application component from one physical

server to another?
◦ How should the system configuration (e.g., component deployment, resource allocations) be adapted

to avoid inefficient system operation arising from evolving application workloads?
Answering such questions requires the ability to predict at run-time how the QoS of running appli-

cations and services would be affected if application workloads change and/or the system deployment
and configuration is changed. We refer to this as online QoS prediction. Given that the initial version of
DML is focussed on performance, hereafter we will speak of online performance prediction [1, 2].

Service A Service CService B

ComponentComponent

Component Component

Component

Hypervisor

Physical Machine

Virtual

Machine

Guest OS

Java VM

App Server

Components

Virtual

Machine

Guest OS

Java VM

App Server

Components

Java VM

App Server

Components

Hypervisor

Physical Machine

Virtual

Machine

Guest OS

Virtual

Machine

Guest OS

Java VM

App Server

Components Database

Server

S
e

rv
ic

e

W
o

rk
fl

o
w

S
o

ft
w

a
re

A
rc

h
it

e
c

tu
re

E
x

e
c

u
ti

o
n

E
n

v
ir

o
n

m
e

n
t

System workload and usage profile

· Number and type of clients

· Input parameters and input data

· Data formats used

· Service workflow

Software architecture

· Connections between components

· Flow of control and data

· Component resource demands

· Component usage profiles

Execution environment

· Number of component instances

· Server execution threads

· Amount of Java heap memory

· Size of database connection pools

Virtualization layer

· Physical resources allocated to VMs

 - number of physical CPUs

 - amount of physical memory

 - secondary storage devices

Figure 1.1: Degrees-of-Freedom and performance-influencing factors in a modern IT system.

Predicting the performance of a modern IT system, however, even in an offline scenario is a chal-
lenging task. Consider the architecture of a typical modern IT system as depicted in Figure 1.1. For a
given set of hardware and software platforms at each layer of the architecture, Figure 1.1 shows some
examples of the degrees-of-freedom at each layer and the factors that may affect the performance of the
system. Predicting the performance of a service requires taking these factors into account as well as the

8 INTRODUCTION

dependencies among them. For example, the input parameters passed to a service may have direct impact
on the set of software components involved in executing the service, as well as their internal behavior
(e.g., flow of control, number of loop iterations, return parameters) and resource demands (e.g., CPU,
disk and network service times). Consider for instance an online translation service. The time needed
to process a translation request and the specific system components involved would depend on the size
of the document passed as input, the format in which the document is provided, as well as the source
and target languages. Thus, in order to predict the service response time, the effects of input parameters
have to be traced through the complex chain of components and resources involved. Moreover, the con-
figuration parameters at the different layers of the execution environment, as well as resource contention
due to concurrently executed requests, must be taken into account. Therefore, a detailed performance
model capturing the performance-relevant aspects of both the software architecture and the multi-layered
execution environment is needed.

Existing approaches to online performance prediction (e.g., [7, 8, 9, 10]) are based on stochastic per-
formance models such as queueing networks, stochastic petri nets and variants thereof, e.g., layered
queueing networks or queueing petri nets. Such models, often referred to as predictive performance
models, normally abstract the system at a high level without explicitly taking into account its software
architecture (e.g., flow of control and dependencies between software components), its execution envi-
ronment and configuration (e.g., resource allocations at the virtualization layer). Services are typically
modeled as black boxes and many restrictive assumptions are often imposed such as a single workload
class, single-threaded components, homogeneous servers or exponential request inter-arrival times. De-
tailed models that explicitly capture the software architecture, execution environment and configuration
exist in the literature, however, such models are intended for offline use at system design time (e.g.,
[11, 12, 13, 14]). Models in this area are descriptive in nature, e.g., software architecture models based
on UML, annotated with descriptions of the system’s performance-relevant behavior. Such models, of-
ten referred to as architecture-level performance models, are built during system development and are
used at design and/or deployment time to evaluate alternative system designs and/or predict the system
performance for capacity planning purposes.

While architecture-level performance models provide a powerful tool for performance prediction, they
are typically expensive to build and provide limited support for reusability and customization which
renders them impractical for use at run-time. Recent efforts in the area of component-based performance
engineering [15] have contributed a lot to facilitate model reusability, however, there is still much work
to be done on further parameterizing performance models before they can be used for online performance
prediction.

1.2 Design-time vs. Run-Time Models

We argue that there are some fundamental differences between offline and online scenarios for perfor-
mance prediction leading to different requirements on the underlying performance abstractions of the
system architecture and the respective performance prediction techniques suitable for use at design-time
vs. run-time. In the following, we summarize the main differences in terms of goals and underlying
assumptions driving the evolution of design-time vs. run-time models.

Goal: Evaluate Design Alternatives vs. Evaluate Impact of Dynamic Changes At system design-
time, the main goal of performance modeling and prediction is to evaluate and compare different design
alternatives in terms of their performance properties.

DESIGN-TIME VS. RUN-TIME MODELS 9

In contrast, at run-time, the system design (i.e., architecture) is relatively stable and the main goal
of online performance prediction is to predict the impact of dynamic changes in the environment (e.g.,
changing workloads, system deployment, resource allocations, deployment of new services).

Model Structure Aligned with Developer Roles vs. System Layers Given the goal to evaluate and
compare different design alternatives, design-time models are typically structured around the various
developer roles involved in the software development process (e.g., component developer, system archi-
tect, system deployer, domain expert), i.e., a separate sub-meta-model is defined for each role. In line
with the component-based software engineering paradigm, the assumption is that each developer with
a given role can work independently from other developers and does not have to understand the details
of sub-meta-models that are outside of their domain, i.e., there is a clear separation of concerns. Sub-
meta-models are parameterized with explicitly defined interfaces to capture their context dependencies.
Performance prediction is performed by composing the various sub-meta-models involved in a given
system design. To summarize, at design-time, model composition and parameterization is aligned with
the software development processes and developer roles.

At run-time, the complete system now exists and a strict separation and encapsulation of concerns
according to the developer roles is no longer that relevant. However, given the dynamics of modern
systems, it is more relevant to be able to distinguish between static and dynamic parts of the models. The
software architecture is usually stable, however, the system configuration (e.g., deployment, resource
allocations) at the various layers of the execution environment (virtualization, middleware) may change
frequently during operation. Thus, in this setting, it is more important to explicitly distinguish between
the system layers and their dynamic deployment and configuration aspects, as opposed to distinguishing
between the developer roles. Given that performance prediction is typically done to predict the impact
of dynamic system adaptation, models should be structured around the system layers and parameterized
according to their dynamic adaptation aspects.

Type and Amount of Data Available for Model Parameterization and Calibration Performance
models typically have multiple parameters such as workload profile parameters (workload mix and
workload intensity), resource demands, branch probabilities and loop iteration frequencies. The type
and amount of data available as a basis for model parameterization and calibration at design-time vs.
run-time greatly differs.

At design-time, model parameters are often estimated based on analytical models or measurements if
implementations of the system components exist. One the one hand, there is more flexibility since in a
controlled testing environment, one could conduct arbitrary experiments under different settings to eval-
uate parameter dependencies. On the other hand, possibilities for experimentation are limited since often
not all system components are implemented yet, or some of them might only be available as a prototype.
Moreover, even if stable implementations exist, measurements are conducted in a testing environment
that is usually much smaller and may differ significantly from the target production environment. Thus,
while at design-time, one has complete flexibility to run experiments, parameter estimation is limited
by the inavailability of a realistic production-like testing environment and the typical lack of complete
implementations of all system components.

At run-time, all system components are implemented and deployed in the target production environ-
ment. This makes it possible to obtain much more accurate estimates of the various model parameters
taking into account the real execution environment. Moreover, model parameters can be continuously
calibrated to iteratively refine their accuracy. Furthermore, performance-relevant information can be

10 INTRODUCTION

monitored and described at the component instance level, not only at the type level as typical for design-
time models. However, during operation, we don’t have the possibility to run arbitrary experiments since
the system is in production and is used by real customers placing requests. In such a setting, monitor-
ing has to be handled with care, keeping the monitoring overhead within limits (non-intrusive approach)
such that system operation is not disturbed. Thus, at run-time, while theoretically much more accurate
estimates of model parameters can be obtained, one has less control over the system to run experiments
and monitoring must be performed with care in a non-intrusive manner.

Trade-off Between Prediction Accuracy and Overhead Normally, the same model can be analyzed
(solved) using multiple alternative techniques such as exact analytical techniques, numerical approxi-
mation techniques, simulation and bounding techniques. Different techniques offer different trade-offs
between the accuracy of the provided results and the overhead for the analysis in terms of elapsed time
and computational resources.

At design-time, there is normally plenty of time to analyze (solve) the model. Therefore, one can
afford to run detailed time-intensive simulations providing accurate results.

At run-time, depending on the scenario, the model may have to be solved within seconds, minutes,
hours, or days. Therefore, flexibility in trading-off between accuracy and overhead is crucially impor-
tant. The same model is typically used in multiple different scenarios with different requirements for
prediction accuracy and analysis overhead. Thus, run-time models must be designed to support multiple
abstraction levels and different analysis techniques to provide maximum flexibility at run-time.

Degrees-of-Freedom The degrees-of-freedom when considering multiple design alternatives at sys-
tem design-time are much different from the degrees-of-freedom when considering dynamic system
changes at run-time such as changing workloads or resource allocations.

At design-time one virtually has infinite time to vary the system architecture and consider different
designs and configurations. At run-time, the time available for optimization is normally limited and the
concrete scenarios considered are driven by the possible dynamic changes and available reconfiguration
options. Whereas the system designer is free to design an architecture that suits his requirements, at
run-time the boundaries within which the system can be reconfigured are much stricter. For example,
the software architecture defines the extent to which the software components can be reconfigured or the
hardware environment may limit the deployment possibilities for virtual machines or services. Thus, in
addition to the performance influencing factors, run-time models should also capture the available system
reconfiguration options and adaptations strategies.

Design for Use by Humans vs. Machines Design-time models are normally designed to be used
by humans. They also serve as architecture documentation, i.e., they should be easy to understand and
model instances should be valid and meaningful.

In contrast, run-time models are typically used for optimizing the system configuration and deploy-
ment as part of autonomic run-time resource management techniques. In this case, models are used by
programs or agents as opposed to humans. Ideally, models should be composed automatically at run-time
and tailored to the specific prediction scenario taking into account timing constraints and requirements
concerning accuracy. Also, ideally, models will be hidden behind the scenes and no users or adminis-
trators will ever have to deal with them. Although, in many cases the initial sub-meta-models capturing
the performance-relevant aspects of the various system layers would have to be constructed manually,

THE DESCARTES MODELING LANGUAGE (DML) 11

novel automated model inference techniques increasingly enable the extraction of sub-meta-models in
an automatic or semi-automatic manner.

1.3 The Descartes Modeling Language (DML)

The fundamental goal of DML is to provide a holistic model-based approach that can be used to describe
the performance behavior and properties of the system as well as to model the system’s dynamic aspects
like its configuration space and adaptation processes. The intention is that, using the online performance
prediction techniques provided by [16], DML can support system analysis and problem detection as well
as autonomic decision-making. Furthermore, by providing means to specify adaptation processes at the
model level, DML can be used to find suitable system configurations without having to adapt the actual
system. In the following section, we give an overview of the different sub-models of DML before its
features are explained in detail in Chapter 4 to Chapter 5.

1.3.1 Modeling Language Overview

The Descartes Modeling Language (DML) is a novel architecture-level modeling language to describe
Quality of Service (QoS) and resource management related aspects of modern dynamic IT systems,
infrastructures and services. DML explicitly distinguishes different model types that describe the system
and its adaptation processes from a technical and a logical viewpoint. Together, these different model
types form a DML instance (cf. Figure 1.2). The idea of using separate models is to separate knowledge
about the system architecture and its performance behavior (technical aspects) from knowledge about
the system’s adaptation processes (logical aspects).

Adaptation Process

Adaptation Points Model

Architecture-Level Performance Model

Managed System

para-
meterizes

Lo
g

ic
a

l
Te

ch
n

ic
a

l

1 GBit

4 GBit
Gbit

Switch

Database
Server

...

DML Instance System

Adaptation Process Model

Degrees of
Freedom

evaluates adapts

models

describes

Instances of VMx

Instances of VMY

Instances of VMz

Number of vCPUs of VMx

Number of vCPUs of VMy

Number of vCPUs of VMz

Allocation of VMxApplication Architecture Model

B
A

C

Resource Landscape Model

<<Container>>
Node1

<<Container>>
Node3

<<Container>>
Node2

Deployment
Model

Usage
Profile
Model

<<InternalAction>>

ResourceDemandX

TacticsStrategies Actions

Figure 1.2: Relation of the different models of a DML instance and the system.

12 INTRODUCTION

Figure 1.2 depicts an overview of the relation of the different models that are part of a DML instance,
the managed system, and the system’s adaptation process. In the bottom right corner of Figure 1.2, we
see the system that is managed by a given, usually system-specific, adaptation process, depicted in the
top right corner of Figure 1.2. In the bottom left corner, we see the models that reflect the technical
aspects of the system relevant for model-based performance and resource management. These aspects
are the hardware resources and their distribution (resource landscape model), the software components
and their performance-relevant behavior (application architecture model), the deployment of the software
components on the hardware (deployment model), the usage behavior and workload of the users of the
system (usage profile model), and the degrees of freedom of the system that can be employed for run-
time system adaptation (adaptation points model). On top of these models (top left corner of Figure 1.2),
we see the adaptation process model that specifies an adaptation process describing how to adapt the
managed system. The adaptation process leverages online performance prediction techniques to reason
about possible adaptation strategies, tactics, and actions.

In the following paragraphs we give brief overviews of the features of each meta-model.

Application Architecture Model This model is focused on the application architecture of the managed
system. For performance analysis, this model must capture performance-relevant information about the
software services that are executed on the system as well as external services used by the system. In
general, this model is focused on describing the performance behavior of the software services after the
principles of component-based software systems [11]. A software component is defined as a unit of
composition with explicitly defined provided and required interfaces [17]. The performance behavior
of each software component can be described independently and at different levels of granularity. The
supported levels of granularity range from black-box abstractions (a probabilistic representation of the
service response time behavior), over coarse-grained representations (capturing the service behavior as
observed from the outside at the component boundaries, e.g., frequencies of external service calls and
amount of consumed resources), to fine-grained representations (capturing the service’s internal control
flow and internal resource demands). The advantage of the support for multiple abstraction levels is that
the model is usable in different online performance prediction scenarios with different goals and con-
straints, ranging from quick performance bounds analysis to detailed system simulation. Moreover, one
can select an appropriate abstraction level to match the granularity of information that can be obtained
through monitoring tools at run-time, e.g., considering to what extent component-internal information
can be obtained by the available tools.

Resource Landscape Model The purpose of this model is to describe the structure and the properties
of both physical and logical resources of modern distributed IT service infrastructures. Therefore, the
resource landscape model provides modeling abstractions to specify the available physical resources
(CPU, network, HDD, memory) as well as their distribution within data centers (servers, racks, and so
on). To specify the logical resources, the resource landscape model also supports modeling different
layers of resources and specifying the performance influences of the configuration of these layers. In this
context, resource layers denote the software stack on which software is executed, including virtualization,
operating system, middleware, and runtime environments (e.g., JVM). In addition, as we also consider
systems distributed over multiple data centers, the model also captures the distribution of resources
across data centers. Modeling the structure and properties of data center resources at this level of detail
is important for accurate performance predictions and to derive causal relationships of the performance
impact during system adaptation.

THE DESCARTES MODELING LANGUAGE (DML) 13

Deployment Model To analyze the performance of the modeled system, it is necessary to connect the
modeled software components with the system resources described using the resource landscape model.
The deployment model provides this information by mapping the software components modeled in the
application architecture model to physical or logical resources described in the resource landscape model.
With this mapping, resource demands of the modeled software components can be traced through the
layers of the resource landscape model down to the physical resources. Thereby, it is possible to analyze
mutual performance influences when sharing resources.

Usage Profile Model An important aspect that influences the performance of a system is the way the
system is used. For instance, if the amount of user requests that have to be processed by the system
increases, more resources would normally be required to process the increased amount of work. The
usage profile model can be used to describe the types of requests that are processed by the system and
the frequency with which new requests arrive. In fact, the usage profile is a frequently changing property
of the system environment to which we want to adapt the system proactively.

Adaptation Points Model This model provides modeling abstractions to describe the elements of the
resource landscape and the application architecture that can be leveraged for adaptation (i.e., reconfigu-
ration) at run-time. Other model elements that may change at run-time but cannot be directly controlled
(e.g., the usage profile), are not in the focus of this model. Adaptation points on the model level cor-
respond to operations that can be executed on the system at run-time to adapt the system (e.g., adding
virtual Central Processing Units (vCPUs) to VMs, migrating VMs or software components, or load-
balancing requests). Thus, the adaptation points model defines the configuration space of the adapted
system. The model provides constructs to specify the degrees of freedom along which the system’s state
can vary as well as to define boundaries for the valid system states.

Adaptation Process Model This model can be used to describe processes that keep the system in
a state such that its operational goals are continuously fulfilled, i.e., it describes the way the system
adapts to changes in its environment. It is based on the previously introduced architecture-level perfor-
mance model and adaptation points model which are used to describe adaptation processes at the model
level. With this model, we aim at abstracting from technical details such that we can describe adaptation
processes from a logical perspective, independent of system-specific details. It is designed to provide
sufficient flexibility to model a large variety of adaptation processes from event-condition-action rules to
complex algorithms and heuristics. Essentially, it distinguishes high-level goal-oriented objectives, adap-
tation strategies and tactics, from low-level system-specific adaptation actions. The modeling language
also provides concepts to describe the operational goals of the managed system such that the adaptation
process can be driven towards these goals.

1.3.2 Summary of Supported Features and Novel Aspects

The Descartes Modeling Language (DML) provides a new architecture-level modeling language for
modeling quality-of-service and resource management related aspects of modern dynamic IT systems,
infrastructures and services. DML models can be used both in offline and online settings spanning the
whole lifecycle of an IT system. In an offline setting the increased flexibility provided by DML can
be exploited for system sizing and capacity planning as well as for evaluating alternative system ar-
chitectures or target deployment platforms. It can also be used to predict the effect of changes in the

14 INTRODUCTION

system architecture, deployment and configuration as services and applications evolve. In an online set-
ting, DML provides the basis for self-aware resource management during operation ensuring that system
quality-of-service requirements are continuously satisfied while infrastructure resources are utilized as
efficiently as possible.

From the scientific perspective, the key features of DML are: i) a domain-specific language designed
for modeling the performance-relevant behavior of services in dynamic environments, ii) a modeling
approach to characterize parameter and context dependencies based on online monitoring statistics, iii) a
domain-specific language to model the distributed and dynamic resource landscape of modern data cen-
ters capturing the properties relevant for performance and resource management, iv) an adaptation points
meta-model for annotating system architecture QoS models to describe the valid configuration space
of the modeled dynamic system. v) a modeling language to describe system adaptation strategies and
heuristics independent of the system-specific details.

1.3.3 Application Scenarios

The developed performance modeling and prediction approach has been designed to be applicable in
different scenarios. As mentioned above, while the major application of DML is to serve as a basis for
engineering self-aware software systems (Sec. 1.4), here in this subsection, we provide an overview of
more fine-grained application areas.

Online Capacity Planning Enterprise software systems should be scalable and provide the flexibility
to handle different workloads. Classical performance analysis would require costly and time-consuming
load testing for evaluating the system performance in different deployments. DML enables performance
engineers and system administrators to evaluate the system performance in heterogeneous hardware envi-
ronments and to compare different deployment sizes in terms of their performance and efficiency. Given
that model parameters are characterized using representative monitoring data collected at run-time, the
prediction results exhibit higher accuracy than predictions obtained through design-time modeling ap-
proaches. The developed techniques help to answer the following questions that arise frequently during
operation:

• What would be the average utilization of system components and the average service response
times for a given workload and deployment scenario?

• How many servers are needed to ensure adequate performance under the expected workload?

• How much would the system performance improve if a given server is upgraded?

Impact Analysis of Workload Changes In general, the workload intensity of enterprise software
systems varies over time. The workload intensity may follow certain trends or patterns, e.g., a weekly
pattern with low intensity over the weekend. In addition, there can be situations where it is foreseeable
that the workload will double within the next month. Using workload forecasting approaches developed
in [18, 19], it is possible to forecast future workload intensity trends. Based on the latter, our approach
allows performance engineers and system administrators to anticipate performance problems. System
behavior and performance can be easily evaluated for different workloads. In contrast to performance
tests, the model-based approach allows evaluating the system without setting up a representative testbed.
The predictions allow both determining the maximal system throughput as well as detecting potential
bottlenecks. The questions that arise in this scenario are:

THE DESCARTES MODELING LANGUAGE (DML) 15

• What maximum load level can the system sustain for a given resource allocation?

• How does the system behave for the anticipated workload behavior?

• Which component or resource is a potential bottleneck for a certain workload scenario?

Impact Analysis of Service Recompositions and Reconfigurations as well as System Adapta-
tions Today’s enterprise software systems running on modern application platforms allow performing
comprehensive online reconfigurations and adaptations, without service disruption. Applications can be
customized, new services can be composed and deployed on-the-fly, service configuration parameters
can be changed. To provide an illustrative example, assume the default setting of the rowsPerPage pa-
rameter of a frequently accessed list view is changed, e.g., doubled from 25 to 50. The impact of such a
reconfiguration may have a severe impact on the database server or application server utilization and/or
a significant influence on the end-to-end service response times. With our approach to capturing proba-
bilistic parameter dependencies, the impact of such a reconfiguration can be assessed in advance without
conducting performance tests in a representative testbed. Questions that can be answered using DML
are:

• How does the system behave if a new service is deployed?

• What is the performance impact of changing a certain configuration parameter?

• Does a service re-composition improve the perceived service response time?

• What would be the performance impact of changing a third party external service provider?

Autonomic Resource Management at Run-time DML provides a basis for developing model-based
autonomic performance and resource management techniques that proactively adapt the system to dy-
namic changes at run-time with the goal to satisfy performance objectives while at the same time ensuring
efficient resource utilization.

State-of-the-art industrial mechanisms for automated performance and resource management gener-
ally follow a trigger-based approach when it comes to enforcing application-level Service Level Agree-
ments (SLAs) concerning availability or responsiveness. Custom triggers can be configured that fire in
a reactive manner when an observed metric reaches a certain threshold (e.g., high server utilization or
long service response times) and execute certain predefined reconfiguration actions until a given stop-
ping criterion is fulfilled (e.g., response times drop) [20, 21]. However, application-level metrics, such as
availability and responsiveness, normally exhibit a highly non-linear behavior on system load and they
typically depend on the behavior of multiple servers across several application tiers. Hence, it is hard
to determine general thresholds of when triggers should be fired given that the appropriate triggering
points are typically highly dependent on the architecture of the hosted services and their workload pro-
files, which can change frequently during operation. The inability to anticipate and predict the effect of
dynamic changes in the environment, as well as to predict the effect of possible adaptation actions, ren-
ders conventional trigger-based approaches unable to reliably enforce SLAs in an efficient and proactive
fashion.

To overcome the mentioned shortcomings of current industrial approaches, [22] developed a frame-
work for autonomic performance-aware resource management. Figure 1.3 shows the control loop that
is central to that framework. It consists of four main phases Monitor, Analyze, Plan and Execute. In

16 INTRODUCTION

PLAN

KNOWLEDGE BASE

Refine/Calibrate
Models

ANALYZEEXECUTE

Anticipate/Detect
Problem

Problem
resolved

Problem
persists

* SLA Violations
* Inefficient Resource
 Usage

Adapt System

MONITOR

Monitor
System and
Workload

* Resource Utilization
* SLAs

Online System Models

Adapt System
Model

Predict Adaptation
Impact

Figure 1.3: Model-Based System Adaptation Control Loop [22]

addition, the figure depicts a Knowledge Base that is used by all mentioned phases. The knowledge
base is realized with DML. DML is used to conduct performance predictions on the model level to
anticipate performance problems and to find suitable adaptation actions. Given that DML supports de-
tailed impact analyses, e.g., workload intensity and usage profile changes, service (re-)compositions or
deployment changes, the adaptation mechanisms can quickly converge to an efficient target system con-
figuration [23]. The tailored prediction process allows the adaptation mechanism to trigger predictions
for multiple different configuration scenarios within a controllable period of time. The prediction results
are sufficiently accurate since the models are maintained up-to-date based on representative monitoring
data obtained at run-time.

[22] evaluates the framework end-to-end in two different representative case studies, demonstrating
that it can provide significant efficiency gains of up to 50% without sacrificing performance guarantees,
and that it is able to trade-off performance requirements of different customers in heterogeneous hard-
ware environments. Furthermore, it is shown that the approach enables proactive system adaptation,
reducing the amount of SLA violations by 60% compared to a trigger-based approach. The results of the
case studies in [22] show that it is possible to apply architecture-level performance models and online
performance prediction to perform autonomic system adaptation on the model level such that the sys-
tem’s operational goals are maintained. Different adaptation possibilities can be assessed without having
to change the actual system.

SELF-AWARE COMPUTING SYSTEMS 17

1.4 Self-Aware Computing Systems

As mentioned above, a major application of the Descartes Modeling Language (DML) is to serve as
a basis for self-aware resource management during operation. Self-aware computing systems are best
understood as a sub-class of autonomic computing systems. In this section, we explain in more detail
what exactly is meant by self-awareness in this context.

DML is a major part of our broader long-term research effort2 aimed at developing novel methods,
techniques and tools for the engineering of self-aware computing systems [1, 2]. The latter are designed
with built-in online QoS prediction and self-adaptation capabilities used to enforce QoS requirements in
a cost- and energy-efficient manner. Self-awareness in this context is defined by the combination of three
properties that a system should possess:

1. Self-reflective: Aware of its software architecture, execution environment, and hardware infrastruc-
ture on which it is running as well as of its operational goals (e.g., QoS requirements, cost- and
energy-efficiency targets),

2. Self-predictive: Able to predict the effect of dynamic changes (e.g., changing service workloads)
as well as predict the effect of possible adaptation actions (e.g., changing system configuration,
adding/removing resources),

3. Self-adaptive: Proactively adapting as the environment evolves in order to ensure that its operational
goals are continuously met.

The Descartes Modeling Language (DML) is designed with the goal to provide modeling abstractions
to capture and express the system architecture aspects whose knowledge is required at run-time to realize
the above three properties. A major goal of these abstractions is to provide a balance between model
expressiveness, flexibility and compactness. Instances of the various parts of the meta-model are intended
to serve as online models integrated into the system components they represent and reflecting all aspects
relevant to managing their QoS and resource efficiency during operation.

In parallel to this, we are working on novel application platforms designed to automatically maintain
online models during operation to reflect the evolving system environment. The online models are in-
tended to serve as a “mind” to the running system controlling its behavior at run-time, i.e., deployment
configurations, resource allocations and scheduling decisions. To facilitate the initial model construc-
tion and continuous maintenance during operation, we are working on techniques for automatic model
extraction based on monitoring data collected at run-time [24, 25, 26].

The online system models make it possible to answer QoS-related queries during operation such as for
example: What would be the effect on the QoS of running applications and on the resource consumption
of the infrastructure if a new service is deployed in the virtualized environment or an existing service
is migrated from one server to another? How much resources need to be allocated to a newly deployed
service to ensure that SLAs are satisfied while maximizing energy efficiency? What QoS would a service
exhibit after a period of time if the workload continues to develop according to the current trends? How
should the system configuration be adapted to avoid QoS problems or inefficient resource usage arising
from changing customer workloads? What operating costs does a service hosted on the infrastructure
incur and how does the service workload and usage profile impact the costs? We refer to such queries as
online QoS queries.

The ability to answer online QoS queries during operation provides the basis for implementing tech-
niques for self-aware QoS and resource management. Such techniques are triggered automatically during
operation in response to observed or forecast changes in the environment (e.g., varying application work-

2http://www.descartes-research.net

http://www.descartes-research.net

18 INTRODUCTION

loads). The goal is to proactively adapt the system to such changes in order to avoid anticipated QoS
problems and/or inefficient resource usage. The adaptation is performed in an autonomic fashion by
considering a set of possible system reconfiguration scenarios (e.g, changing virtual machine placement
and/or changing resource allocations) and exploiting the online QoS query mechanism to predict the ef-
fect of such reconfigurations before making a decision [27]. Each time an online QoS query is executed,
it is processed based on the online system architecture models (DML instances) provided on demand by
the respective system components during operation. Given the wide range of possible contexts in which
the online models can be used, automatic model-to-model transformation techniques (e.g., [28]) are used
to generate tailored prediction models on-the-fly depending on the required accuracy and the time avail-
able for the analysis. Multiple prediction model types and model solution techniques are employed here
in order to provide flexibility in trading-off between prediction accuracy and analysis overhead.

1.5 Outline

The remainder of this technical report is organized as follows. In Chapter 2, we provide an overview
on related work concerning performance modeling on the one hand and run-time system reconfiguration
and adaptation on the other hand. Chapter 3 introduces a representative online prediction scenario we use
throughout the technical report to motivate and evaluate the novel modeling approaches. The application
architecture and resource landscape models, i.e., the system architecture QoS model is described in
Chapter 4. Our approach to modeling system adaptation is presented in Chapter 5. The report concludes
with a discussion of the differences between DML and PCM, and provides an outlook on future work in
Chapter 6.

Chapter 2

Background

In this chapter, we provide a brief overview of the state-of-the-art on performance modeling and predic-
tion (Section 2.1), on the one hand, and the state-of-the-art on run-time system adaptation (Section 2.2),
on the other hand.

2.1 Performance Modeling Approaches

We first present an overview of current performance modeling approaches for IT systems focusing on
architecture-level performance models. We then introduce the Palladio Component Model (PCM) [11],
a meta-model for design-time performance analysis of component-based software architectures, which
has inspired some of the core elements of the Descartes Modeling Language (DML).

A survey of model-based performance prediction techniques was published in [29]. A number of tech-
niques utilizing a range of different performance models have been proposed including product-form
queueing networks (e.g., [7]), layered queueing networks (e.g., [9]), queueing Petri nets (e.g., [30]),
stochastic process algebras [31], statistical regression models (e.g., [32]) and learning-based approaches
(e.g., [33]). Such models capture the temporal system behavior and can be used for performance pre-
diction by means of analytical or simulation techniques. We refer to them as predictive performance
models.

Predictive performance models are normally used as high-level system performance abstractions and
as such they do not explicitly distinguish the degrees-of-freedom and performance-influencing factors
of the system’s software architecture and execution environment. They are high-level in the sense that:
i) complex services are modeled as black boxes without explicitly capturing their internal behavior and
the influences of their deployment context, configuration settings and input parameters, and ii) the ex-
ecution environment is abstracted as a set of logical resources (e.g., CPU, storage, network) without
explicitly distinguishing the performance influences of the various layers (e.g., physical infrastructure,
virtualization and middleware) and their configuration. Finally, predictive performance models typi-
cally impose many restrictive assumptions such as single workload class, single-threaded components,
homogeneous servers or exponential service and request inter-arrival times.

2.1.1 Existing Architecture-Level Performance Models

Architecture-level1 performance models provide means to model the performance-relevant aspects of
system architectures at a more detailed level of abstraction. Such models are descriptive in nature (e.g.,
software architecture models based on UML, annotated with descriptions of the system’s performance-
relevant behavior) and they can normally be transformed automatically into predictive performance

1Architecture-level in this context is meant in a broader sense covering both the system’s software architecture and execution environment.

20 BACKGROUND

models allowing to predict the system performance for a given workload and configuration scenario.
Architecture-level performance models are normally built manually during system development and are
intended for use in an offline setting at design and deployment time to evaluate alternative system designs
and/or to predict the system performance for capacity planning purposes.

Over the past decade, a number of architecture-level performance meta-models have been developed
by the performance engineering community. The most prominent examples are the UML SPT profile [34]
and its successor the UML MARTE profile [14], both of which are extensions of UML as the de facto
standard modeling language for software architectures. Other proposed meta-models include CSM [35],
PCM [11], SPE-MM [13], and KLAPER [12]. A recent survey of model-based performance modeling
techniques for component-based systems was published in [15].

While architecture-level performance models provide a powerful tool for performance prediction, they
are typically expensive to build and provide limited support for reusability, parameterization and cus-
tomization, which renders them impractical for use in online scenarios. Recent efforts in the area of
component-based performance engineering [15] have contributed a lot to facilitate model reusability,
however, given that such models are designed for offline use at system design time, they assume a static
system architecture and do not support modeling dynamic system aspects [36]. In a modern virtualized
system environment dynamic changes are common, e.g., service workloads change over time, new ser-
vices are deployed, or virtual machines are migrated between servers. The amount of effort involved in
maintaining performance models is prohibitive and therefore, in practice, such models are rarely used
after deployment [37].

2.1.2 Palladio Component Model (PCM)

One of the more advanced architecture-level performance modeling languages, in terms of parametriza-
tion and tool support, is the Palladio Component Model (PCM) [11]. PCM is a meta-model designed
to support the analysis of quality attributes (performance, reliability and maintainability) of component-
based software architectures. It is targeted at design-time performance analysis, i.e., enabling perfor-
mance predictions early in the development lifecycle to evaluate different system design alternatives. In
the following, we present a brief overview of PCM since it was used as a basis for some core elements
of DML.

In PCM, the component execution context is parameterized to explicitly capture the influence of the
component’s connections to other components, its allocated hardware and software resources, and its
usage profile including service input parameters. Model artifacts are divided among the developer roles
involved in the component-based software engineering process, i.e., component developers, system ar-
chitects, system deployers and domain experts.

PCM models are divided into five sub-models:
◦ Component models, stored in a component repository, which describe the performance relevant

aspects of software components, i.e., control flow, resource demands, parameter dependencies, etc.
◦ System model which describes how component instances from the repository are assembled to build

a specific system.
◦ Resource environment model which specifies the execution environment in which the system is

deployed.
◦ Allocation model which describes what resources from the resource environment are allocated to

the components defined in the system model.
◦ Usage model which describes the user behavior, i.e., the services that are called, the frequency and

PERFORMANCE MODELING APPROACHES 21

CompA CompB

CompC CompD

InterfaceX InterfaceY InterfaceZ

<<Provides>>

<<Provides>> <<Requires>>

<<Requires>>

<<Provides>> <<Provides>>

<<Interface>>

<<Basic
Component>>

<<Basic
Component>>

<<Basic
Component>>

<<Composite
Component>>

<<Interface>> <<Interface>>

Figure 2.1: Components providing and requiring interfaces.

CompA

Inst_CompC

<<CompositeComponent>>

<<Assembly
Context>>

Inst_CompB

<<Assembly
Context>>

Inst_CompD

<<Assembly
Context>>

Figure 2.2: Assembly of a composite component.

order in which they are invoked, and the input parameters passed to them.

Component Model and System Model In PCM, a component repository contains component and
interface specifications, i.e., interfaces are explicitly modeled. Components and interfaces are connected
using so-called roles: A component specification consists of a list of provided roles (referring to inter-
faces the component provides) and a list of required roles (referring to interfaces the component requires).
An interface is specified as a set of method signatures.

A component may be either a basic component or a composite component. Figure 2.1 shows an exam-
ple illustrating basic components, composite components and interfaces. Composite component CompA
and basic component CompB both provide interface InterfaceX. The interfaces required by component
CompB are provided by CompC and CompD, respectively.

A composite component may contain several child component instances assembled through so-called
assembly connectors connecting required interfaces with provided interfaces. Connectors from the child
component instances to the composite component boundary are modeled using delegation connectors.
Each service the composite component provides and each service it requires has to be linked to a child
component instance using such delegation connectors. A component-based system is modeled as a des-
ignated composite component that provides at least one interface. An example of how a composite
component is assembled is shown in Figure 2.2. Component CompA comprises three instances of basic
components introduced in Figure 2.1 connected according to their provided and required interfaces.

22 BACKGROUND

<<ExternalCallAction>>
requiredService1

<<InternalAction>>
ResourceDemand: 1000 <CPU_Units>

<<BranchAction>>

<<BranchTransition>>
Condition:

number.VALUE >= 0

<<BranchTransition>>
Condition:

number.VALUE < 0

<<LoopAction>>
Loop iteration count:

array.NUMBER_OF_ELEMENTS

<<ExternalCallAction>>
requiredService2

<<ExternalCallAction>>
requiredService3

Figure 2.3: RD-SEFF of service with signature execute(int number, List array) (cf. [11]).

Service Behavior Abstraction For each service a component provides, in PCM the service’s internal
behavior is modeled using a Resource Demanding Service Effect Specification (RDSEFF). An RDSEFF
captures the control flow and resource consumption of the service depending on its input parameters
passed upon invocation. The control flow is abstracted covering only performance-relevant actions.
Calls to required services are modeled using so-called ExternalCallActions, whereas internal computa-
tions within the component are modeled using InternalActions. Control flow actions like LoopAction
or BranchAction are only used when they affect calls to required services, e.g., if a required service is
called within a loop; otherwise, a loop is captured as part of an InternalAction. LoopActions and Bran-
chActions can be characterized with loop iteration numbers and branch probabilities, respectively. An
example of an RDSEFF for the service execute(int number, List array) [11] is shown in Figure 2.3. It
is depicted in a notation similar to UML activity diagrams. First, a required service is invoked using an
ExternalCallAction and then an InternalAction is executed. Following this, there is a BranchAction with
two BranchTransitions. The first BranchTransition contains a LoopAction whose body consists of another
ExternalCallAction. The second BranchTransition contains a further ExternalCallAction.

The performance-relevant behavior of the service is parameterized with service input parameters.
Whether the first or second BranchTransition is called depends on the value of service input parame-
ter number. This parameter dependency is specified explicitly as a branching condition. Similarly, the
loop iteration count of the LoopAction is modeled to be equal to the number of elements of the input pa-
rameter array. PCM also allows to define parameter dependencies stochastically, i.e., the distribution of
the loop iteration count can be described with a probability mass function (PMF): IntPMF[(9;0.2)
(10;0.5) (11;0.3)]. The loop body is executed 9 times with a probability of 20%, 10 times with
a probability of 50%, and 11 times with a probability of 30%. Note that this probabilistic description
remains component type-specific, i.e., it should be valid for all instances of the component.

In PCM, performance behavior abstractions are encapsulated in the component type specifications
enabling performance predictions of component compositions at design-time. However, as we show
in the next section, such design-time abstractions are not suitable for use in online performance models
due to the limited flexibility in expressing and resolving parameter and context dependencies at run-time.
Furthermore, we show that in many practical situations, providing an explicit specification of a parameter

MODELING RUN-TIME SYSTEM ADAPTATION 23

dependency as discussed above is not feasible and an empirical representation based on monitoring data
is more appropriate.

Usage Model A usage model represents the usage profile (also called workload profile) of the modeled
system. It describes which services are called and what input parameters are passed to them. In addition,
the order in which the services are called as well as the workload intensity can be specified. In this way,
the user behavior and the resulting the system workload can be described.

Mapping of Software Component Instances to Resources To complete the performance model,
the modeled software component instances have to be mapped to resources in a so-called allocation
model. The component instances are defined in the system model, whereas the available resources are
defined in the resource environment model. In PCM, a resource environment model consists of resource
containers representing hardware servers. A resource container contains processing resources such as
CPUs and storage devices.

2.2 Modeling Run-time System Adaptation

This section discusses the state-of-the-art related to DML’s adaptation points model and the adaptation
language which are presented in detail in Chapter 5. More specifically, we contrast the abstraction levels
employed in existing approaches to system adaptation and we briefly review other languages for system
adaptation as well as alternative approaches to defining adaptation points in architecture models.

2.2.1 Abstraction Levels

Architectural models provide common means to abstract from the system details and analyze system
properties. Such models have been used for self-adaptive software before, e.g., in [38, 39], however,
existing approaches do not explicitly capture the degrees of freedom of the system configuration as part
of the models. Other approaches use a three-level abstraction of the adaptation processes, e.g., in [40]
to specify policy types for autonomic computing or especially in [41], defining an ontology of tactics,
strategies and operations to describe self-adaptation. However, to the best of our knowledge, none of the
existing approaches separates the specification of the models at the three levels, explicitly distinguishing
between different system developer roles. By separating the knowledge about the adaptation process and
encapsulating it in different sub-models, we can reuse this knowledge in other self-adaptive systems or
reconfiguration processes.

2.2.2 Languages for Adaptation Control Flow

In [42], Cheng introduces Stitch, a programming language-like notation for using strategies and tactics
to adapt a given system. However, strategies refer to tactics in a strictly deterministic, process-oriented
fashion. Therefore, the knowledge about system adaptation specified with Stitch is still application
specific, making it difficult to adapt in situations of uncertainty. Other languages like Service Activity
Schemas (SAS) [43] or the Business Process Execution Language (BPEL) [44]) are very application
specific and also describe adaptation processes with pre-defined control flows. Moreover, because of
their focus on modeling business processes, these approaches are not able to model the full spectrum of
self-adaptive mechanisms from conditional expressions to algorithms and heuristics as presented by [38].

24 BACKGROUND

2.2.3 Configuration Space

In the area of automated software architecture improvement, most existing approaches use a fixed rep-
resentation of the configuration space and thus do not allow to freely model a configuration space. Two
notable exceptions are PETUT-MOO and the Generic Design Space Exploration Framework (GDSE).
The PETUT-MOO approach [45] uses model transformations to describe changes in the configuration of
software architectures. However, this idea has not been followed up in later works of the authors, which
focuses on architecture optimization and does not describe the configuration space in detail.

Saxena et al. [46] have presented a self-adaptation approach using the GDSE framework. The con-
figuration space is represented as an AND-OR-tree describing possible design options and their depen-
dencies. The quality effects of such options are directly encoded in the tree. As a result, the quality
functions to consider are limited to arithmetic expressions on architecture properties (such as “the sum
or component latencies make up the overall latency of an embedded system”) and an arbitrary quality
evaluation of the architecture (e.g., using stochastic models) is not supported.

A closely related approach to modeling the configuration space of a software architecture is PCM’s
Degree-of-Freedom Meta-Model [47] allowing to capture different types of configuration changes—such
as changes to add vCPUs, to add servers, and to exchange software components—in a single configu-
ration model. However, this Degree-of-Freedom Meta-Model describes the configuration possibilities
on the meta-model level, i.e., all instances of this meta-model have the same variability. In contrast, in
the context of DML, we describe configuration possibilities on the model instance level because each
modeled system has its own configuration possibilities.

Chapter 3

Online Performance Prediction Scenario

The scenario presented in this chapter serves as a concrete example to motivate and illustrate the concepts
and goals of the Descartes Modeling Language (DML). Moreover, it gives an overview of the foundations
and technical background this work builds on. An implementation of this scenario serves as a reference
system to evaluate the new modeling concepts.

3.1 Setting

We consider a scenario where a set of customers are running their applications in a virtualized data center
infrastructure. Each customer is assigned one application server cluster. A shared database is deployed
on a centralized server. Each customer can have different performance objectives, i.e., Service Level
Agreements (SLAs), that have to be enforced by the service provider. As part of the customer SLAs, the
expected service workloads for which SLAs are established must be specified.

We assume that each customer has their own independent workload and that the workload intensity
can vary over time. As a first step, we assume that the customer will provide the service provider with
information about expected workload changes in advance (e.g., expected increase in the workload due
to a planned sales promotion). In addition, we are currently working on integrating automatic workload
forecasting mechanisms. The challenge is the how to proactively adapt the system to workload changes
in order to ensure that customer SLAs are continuously satisfied while utilizing system resources effi-
ciently. This includes the anticipation of workload changes and the triggering of corresponding system
reconfigurations. As an example of a realistic and representative enterprise application, we employ the
SPECjEnterprise2010 standard benchmark.

Application

Server

Cluster

Enterprise Application

deployed in a clustered

environment

Workload B

Database ServerCustomer A

Customer B

Workload A

Figure 3.1: Online performance prediction scenario.

26 ONLINE PERFORMANCE PREDICTION SCENARIO

Figure 3.2: SPECjEnterprise2010 architecture [48].

3.2 SPECjEnterprise2010

SPECjEnterprise20101 is a Java EE benchmark developed by SPEC’s Java Subcommittee for evaluating
the performance and scalability of Java EE-based application servers. It implements a business informa-
tion system of a representative size and complexity. The benchmark workload is generated by an applica-
tion that is modeled after an automobile manufacturer. As business scenarios, the application comprises
customer relationship management (CRM), manufacturing, and supply chain management (SCM). The
business logic is divided into three domains: orders domain, manufacturing domain and supplier domain.

To give an example of the business logic implemented by the benchmark, consider a car dealer that
places a large order with the automobile manufacturer. The large order is sent to the manufacturing
domain which schedules a work order to manufacture the ordered vehicles. In case some parts needed
for the production of the vehicles are depleted, a request to order new parts is sent to the supplier domain.
The supplier domain then selects a supplier and places a purchase order. When the ordered parts are
delivered, the supplier domain contacts the manufacturing domain and the inventory is updated. Finally,
upon completion of the work order, the orders domain is notified.

Figure 3.2 depicts the architecture of the benchmark as described in the benchmark documentation.
The benchmark application is divided into three domains, aligned to the business logic: orders domain,
manufacturing domain and supplier domain. In the three domains, the application logic is implemented
using Enterprise Java Beans (EJBs) which are deployed on the considered Java EE application server.
The domains interact with a database server via Java Database Connectivity (JDBC) using the Java Per-
sistence API (JPA). The communication between the domains is asynchronous and implemented using
point-to-point messaging provided by the Java Message Service (JMS). The workload of the orders do-
main is triggered by dealerships whereas the workload of the manufacturing domain is triggered by

1http://www.spec.org/jEnterprise2010/

http://www.spec.org/jEnterprise2010/

EXEMPLARY ENVIRONMENT 27

Benchmark
Driver Master

GBit LAN

Cluster A
Application

Server

Cluster

Cluster B

SPECjEnterprise2010

deployed in a clustered

environment

Workload B

Database Server

Customer A

Customer B

Workload A

Benchmark
Driver Agents

... Dell PowerEdge R904
4 x 6-core AMD CPUs,
128 GB main memory

20 Compute Nodes
each node has
2 x 4-core Intel CPUs,
32GB main memory

.

Figure 3.3: Experimental environment.

manufacturing sites. Both, dealerships and manufacturing sites are emulated by the benchmark driver, a
separate supplier emulator is used to emulate external suppliers. The communication with the suppliers
is implemented using Web Services. While the orders domain is accessed through Java Servlets, the
manufacturing domain can be accessed either through Web Services or EJB calls, i.e., Remote Method
Invocation (RMI).

As shown on the diagram, the system under test (SUT) spans both the Java application server and
the database server. The emulator and the benchmark driver have to run outside the system under test
so that they do not affect the benchmark results. The benchmark driver executes five benchmark opera-
tions. A dealer may browse through the catalog of cars, purchase cars, or manage his dealership
inventory, i.e., sell cars or cancel orders. In the manufacturing domain, work orders for manufactur-
ing vehicles are placed, triggered either through WebService or RMI calls (createVehicleWS or
createVehicleEJB).

3.3 Exemplary Environment

We implemented the described scenario in the experimental environment depicted in Figure 3.3. As vir-
tualization layer, we used the Xen Cloud Platform2, an open source infrastructure platform that provides
standard resource management functionality as well as additional features such as high availability or
management facilities based on standardized APIs. It is based on the Xen hypervisor by Citrix which is
one of the major virtualization platforms used in industry. For the deployment of the application server
tier, we used Oracle WebLogic Server (WLS) 10.3.3 instances. Each WLS instance runs on a machine
with 2x4-core Intel CPUs with OpenSuse 11.1. As database server (DBS), we used Oracle Database
11g, running on a 24-core Dell PowerEdge R904. The benchmark driver and the supplier emulator were

2The Xen Cloud Platform, http://www.xen.org/products/cloudxen.html

http://www.xen.org/products/cloudxen.html

28 ONLINE PERFORMANCE PREDICTION SCENARIO

running on virtualized blade servers. The machines are connected by a 1 GBit LAN. The presented
environment can be considered as representative of a modern business information system.

For each customer in our scenario, a separate instance of the benchmark is deployed in one application
server cluster assigned to the respective customer. The customer’s workload is generated by a customized
instance of the benchmark driver. The operations executed by the SPECjEnterprise2010 benchmark are
Browse, Purchase, Manage, CreateVehicleEJB and CreateVehicleWS. As an exam-
ple of an SLA, the customer could require that the response time of Purchase must not exceed 5ms or,
less restrictive, must be below 5ms in 95% of the cases within a given time horizon (e.g., one hour).

Chapter 4

Architecture-Level Performance Model

In this chapter, we present the application architecture and resource landscape sub-meta-models of
Descartes Modeling Language (DML), i.e., collectively used to define a system architecture QoS model.
The current version of DML is focused on performance including capacity, responsiveness and resource
efficiency aspects, however, work is underway to provide support for modeling further QoS properties.
The meta-model itself is designed in a generic fashion and is intended to eventually support the full
spectrum of QoS properties mentioned in Section 1. Given that the initial version of DML is focussed
on performance, in the rest of this chapter, we mostly speak of performance instead of QoS in general.

The remainder of this chapter is organized as follows: Section 4.1 introduces the application archi-
tecture meta-model in detail. Sections 4.2 and 4.3 describe the resource landscape and deployment
meta-model. In Section 4.4, we introduce the usage profile meta-model.

4.1 Application Architecture Model

The application architecture is modeled as a component-based software system. The performance behav-
ior of such a system is a result of the assembled components’ performance behavior. In order to capture
the behavior and resource consumption of a component, its behavior abstractions have to be described.

The application architecture meta-model is described in several subsections. Subsection 4.1.1 de-
scribes the underlying component model. Subsection 4.1.2 introduces a running example that is used to
motivate and illustrate the new modeling concepts. Subsection 4.1.3 introduces novel service behavior
abstractions. In Subsection 4.1.4, we present how the behavior abstractions are parameterized and in
Subsection 4.1.5 we describe how we model probabilistic parameter dependencies specifically for use at
run-time. An interface used to obtain empirical characterizations of model parameters from monitoring
statistics is described in Subsection 4.1.6.

4.1.1 Component Model and System Model

The component model stems from the Palladio Component Model (PCM) [11, 49]. Software build-
ing blocks are modeled as components. In the following, we describe how components are associated
with interfaces they provide or require, and how composite components can be assembled from other
components.

Components and interfaces are modeled as separate model entities, i.e., components as well as inter-
faces are first-class entities that can exist on their own. Consequently, a component does not contain an
interface, but it may provide and/or require some interfaces [17]. The connection between components
and interfaces is specified using so-called roles [11]. A component can take two roles relative to an
interface. It can either provide and implement the functionality specified in the interface or it can require
that functionality. Figure 4.1 shows the corresponding meta-model. An InterfaceProvidingEntity may

30 ARCHITECTURE-LEVEL PERFORMANCE MODEL

InterfaceProvidingEntity InterfaceRequiringEntity

InterfaceProvidingRequiringEntity

InterfaceProvidingRole InterfaceRequiringRoleInterface
0..* 0..*

11

Signature
0..*

Figure 4.1: Components and Interfaces, cf. [11]

InterfaceProvidingRequiringEntity

RepositoryComponent ComposedInterfaceProvidingRequiringEntity

ComposedStructure

BasicComponent
CompositeComponent SystemSubsystem

Figure 4.2: Component Type Hierarchy, cf. [11]

have InterfaceProvidingRoles that refer to an Interface consisting of one or more method Signatures. An
InterfaceRequiringEntity is modeled accordingly with InterfaceRequiringRoles. We refer to each method
provided by a component as a service. We thus refer to the methods of the provided interfaces of a
component as provided services, and refer to the methods of the required interfaces of a component as
required services or external services.

An InterfaceProvidingRequiringEntity is the supertype of different component types that are shown in
Figure 4.2. Basically, two types of components are distinguished. BasicComponents, i.e., atomic compo-
nents, and CompositeComponents both can require and provide interfaces, and are stored in a component
repository. Thus, they are subtypes of InterfaceProvidingRequiringEntity and RepositoryComponent. A
CompositeComponent also inherits from type ComposedStructure, indicating that it is composed of
other components. A Subsystem is similar to a CompositeComponent, but treated differently when
it comes to modeling the deployment of components. While a CompositeComponent is deployed as
a whole, the Subsystem is deployed by deploying all its child components. A System is similar to
a CompositeComponent, the difference is that a System is not part of a component repository but a
unique designated ComposedStructure. A System is the outermost ComposedStructure representing
the system boundary.

Figure 4.3 shows how a ComposedStructure is assembled. A ComposedStructure may contain several
AssemblyContexts which themselves each refer to a RepositoryComponent (referring to a Subsystem is
only allowed if the parent ComposedStructure is of type System or Subsystem). Each AssemblyContext
thus represents a child component instance in the composite. An AssemblyConnector connects two such
child component instances with an InterfaceRequiringRole and an InterfaceProvidingRole, representing a
connection between a providing role of the first component and a requiring role of the second component.
Connectors from a child component instance to the composite component boundary are modeled using
delegation connectors (InterfaceProvidingDelegationConnector and InterfaceRequiringDelegationCon-
nector). The delegation connectors refer to a role of an inner child component instance and to a role of

APPLICATION ARCHITECTURE MODEL 31

AssemblyContext

ComposedStructure

InterfaceRequiringRoleInterfaceProvidingRole

InterfaceProvidingDelegationConnector InterfaceRequiringDelegationConnector

AssemblyConnector

11

0..*

1 1providing requiring

0..*

0..*0..*

11

1

encapsulated
Component

innerouter11 innerouter

RepositoryComponent

Figure 4.3: Component Composition, cf. [11]

sys :System c1 :CompositeComponent c2 :CompositeComponent c3 :BasicComponent

a1c0 :AssemblyContext a1c2 :AssemblyContext a1c3 :AssemblyContext

a1c1 :AssemblyContext

contains encapsulates contains encapsulates

a2c1 :AssemblyContext

contains

c0 :BasicComponent

encapsulates

Figure 4.4: Example: System Instance as UML Object Diagram

the outer ComposedStructure.
Figure 4.4 shows an exemplary instantiation of a ComposedStructure. It shows a System model as

UML object diagram. The system instance sys contains three AssemblyContexts. Two of them refer
to the same CompositeComponent c1, one refers to BasicComponent c0. Component c1 contains an
AssemblyContext a1c2 that refers to another CompositeComponent c2 that itself encapsulates Basic-
Component c3 via AssemblyContext a1c3. Figure 4.5 shows the same instance as component diagram.
The outermost box represents System sys. AssemblyContext a1c0 is connected to AssemblyContexts
a1c1 and a2c1, e.g., it could balance the load between the two instances of CompositeComponent c1.

Although there are only one AssemblyContext for component c2 and only one AssemblyContext for
component c3, the system diagram in Figure 4.5 illustrates that both components must be instantiated
twice, because there are two instances of their surrounding component c1. Thus, an AssemblyContext
is not equivalent to a component instance. An AssemblyContext is only unambiguous within its direct
parent composite structure.

An AssemblyContext refers to a component type. This allows modeling different instances of the same
component type, but in order to uniquely identify such an instance, an AssemblyContext is not sufficient.
However, each component instance can be uniquely identified by a sequence of AssemblyContexts.

To illustrate the composition hierarchy of a ComposedStructure instance, we describe it as a com-
position tree G = (V,E) where V is a set of nodes and E is a set of ordered pairs (v,v′) with v,v′ ∈ V ,
representing the set of links between the nodes.

• Each tree node v ∈V represents a component instance, denoted as instance(v).

• ∀v ∈V :

32 ARCHITECTURE-LEVEL PERFORMANCE MODEL

 sys

a1c1

a1c2

a1c3

a2c1

a1c2

a1c3a1c0

<<System>>
<<Interface
ProvidingRole>>

<<Interface
RequiringRole>>

<<AssemblyConnector>>

<<AssemblyContext>>

<<InterfaceProviding
DelegationConnector>>

Figure 4.5: Example: System Instance

(∃e = (v,v′) ∈ E
⇐⇒
instance(v) has a child AssemblyContext that encapsulates instance(v′))

The inner nodes of G represent instances of ComposedStructures, the leaves of G represent instances of
BasicComponents. Figure 4.6(a) illustrates such a composition tree.

In a ComposedStructure cs, a component instance is uniquely identified by a path from the node
representing cs to the node representing the specific component instance. Figure 4.6(b) shows the ex-
ample of Figure 4.4 as composition tree. The root of the tree is System sys. The two instantiations of
CompositeComponent c1 are highlighted with dashed lines. In the example, the two instances of Basic-
Component c3 can thus be identified by the path {a1c1, a1c2, a1c3} and the path {a2c1, a1c2, a1c3},
respectively.

A ComponentInstanceReference can thus be modeled as a sequence of AssemblyContexts as shown
in Figure 4.7. The difference between a component type and its instances is of relevance in Section 4.1.4
where we distinguish between parameterizations at the component type level and at the component in-
stance level.

4.1.2 Running Example

We introduce a running example to illustrate the novel modeling abstractions we propose in the following
sections. Figure 4.8 shows a simple online shop, consisting of a WebShop composite component, and
an SQLDB component. The WebShop consists of several Java Servlet components, the entity data is
accessed using a Java Persistence API (JPA) provider component (JPAProvider). The CatalogServlet
allows browsing the catalog of available articles. The ShowDetailsServlet implements a view of the
article details. The ShoppingCartServlet provides a shopping cart including payment processing and
requires an external ArticleDelivery service that is implemented by the Delivery component.

4.1.3 Service Behavior Abstractions

This section introduces different service behavior abstraction levels. Section 4.1.3.1 provides the moti-
vation for the new service behavior abstractions, Section 4.1.3.2 describes the modeling approach and

APPLICATION ARCHITECTURE MODEL 33

<<Composed
Structure>>

<<Composed
Structure>>

<<Basic
Component>>

<<AssemblyContext>>

<<Assembly
Context>>

. . .

(a)

sys

c1c0

a1c0

c1

c2c2

c3 c3

a1c1

a2c1

a1c2 a1c2

a1c3 a1c3

(b)

Figure 4.6: (a) Composition Tree Schema and (b) Example System Instance as Composition Tree

AssemblyContext

ComponentInstanceReference

0..* {ordered}

Figure 4.7: Component Instance Reference

WebShop
CatalogServlet

ShowDetails
Servlet

ShoppingCart
Servlet

JPAProvider

SQLDB

BrowseCatalog

ViewArticleDetails

Manage
ShoppingCart

EntityAccess
DataAccess

Delivery
ArticleDelivery

Figure 4.8: Running Example: WebShop

34 ARCHITECTURE-LEVEL PERFORMANCE MODEL

Delivery

ArticleDelivery services:
getExpressDeliveryCost
getStandardDeliveryCost
createOrder

Figure 4.9: Example: Delivery Component

Section 4.1.3.3 describes the corresponding meta-model in detail. In Section 4.1.3.4, we provide an
illustrative example.

4.1.3.1 Motivation

In order to ensure Service Level Agreements (SLAs) while at the same time optimizing resource utiliza-
tion, the service provider needs to be able to predict the system performance under varying workloads
and dynamic system reconfigurations. The underlying performance models enabling online performance
prediction must be parameterized and analyzed on-the-fly. Such models may be used in many different
scenarios with different requirements for accuracy and timing constraints. Depending on the time hori-
zon for which a prediction is made, online models may have to be solved within seconds, minutes, hours,
or days, and the same model should be usable in multiple different scenarios with different requirements
for prediction accuracy and analysis overhead. Hence, in order to provide flexibility at run-time, our
meta-model must be designed to support multiple abstraction levels and different analysis techniques
allowing to trade-off between prediction accuracy and time-to-result.

Explicit support for multiple abstraction levels is also necessary since we cannot expect that the mon-
itoring data needed to parameterize the component models would be available at the same level of gran-
ularity for each system component. For example, even if a fine granular abstraction of a component
behavior is available, depending on the platform on which the component is deployed, some model pa-
rameters might not be resolvable at run-time, e.g., due to the lack of monitoring capabilities allowing to
observe the component’s internal behavior. In such cases, it is inevitable to use a more coarse-grained
abstraction of the component behavior that only requires observing the component’s behavior at the
component boundaries.

In the following, we describe three practical examples where models at different abstraction levels are
needed, based on the WebShop example introduced in Figure 4.8. The Delivery component provides
services to calculate the cost of a delivery and to create a delivery order (see Figure 4.9). Two kinds of
deliveries are supported: a standard delivery and an express delivery.

Assume that the Delivery component is an outsourced service hosted by a different service provider,
the only type of monitoring data that would typically be available for the createOrder service is response
time data. In such a case, information about the component-internal behavior or resource consumption
would not be available and, from the perspective of our system model, the component would be treated
as a “black-box".

If the Delivery component is a third party component hosted locally in our environment, monitoring at
the component boundaries including measurements of the resource consumption as well as external calls
to other components would typically be possible. Such data allows to estimate the resource demands of
each provided component service as well as frequencies of calls to other components. Thus, in this case,
a more detailed model of the component can be built, allowing to predict its response time and resource
utilization for different usage scenarios.

Finally, if the internal behavior of the Delivery component including its control flow and resource
consumption of internal actions can be monitored, more detailed models can be built allowing to obtain

APPLICATION ARCHITECTURE MODEL 35

more accurate performance predictions including response time distributions. Predicting response time
distributions is relevant for example in situations where SLAs with service response time limits defined
in terms of response time percentiles need to be evaluated.

In summary, it is important to support the modeling of service behavior at different levels of abstrac-
tion and detail. The models should be usable in different online performance prediction scenarios with
different goals and constraints, ranging from quick performance bounds analysis to accurate performance
prediction. Furthermore, the modeled abstraction level depends on the information that monitoring tools
can obtain at run-time, e.g., to what extent component-internal information is available.

4.1.3.2 Modeling Approach

To provide maximum flexibility, for each provided service, our proposed meta-model supports having
multiple (possibly co-existing) behavior abstractions at different levels of granularity:

• Black-box behavior abstraction. A “black-box" abstraction is a probabilistic representation of
the service response time behavior. Resource demands are not specified. This representation
captures the view of the service behavior from the perspective of a service consumer without any
additional information about the service’s behavior.

• Coarse-grained behavior abstraction. A “coarse-grained" abstraction captures the service be-
havior when observed from the outside at the component’s boundaries. It consists of a description
of the frequency of external service calls and the overall service resource demands. Information
about the service’s total resource consumption and information about external calls made by the
service is required, however, no information about the service’s internal control flow is assumed.

• Fine-grained behavior abstraction. A “fine-grained" abstraction captures the performance-rele-
vant service control flow which is an abstraction of the actual control flow. Performance-relevant
actions are component-internal computational tasks, the acquisition and release of locks, as well
as external service calls, thus also loops and branches where external services are called. Fur-
thermore, the ordering of external service calls and internal computations may have an influence
on the service performance. The control flow is modeled at the same abstraction level as the Re-
source Demanding Service Effect Specification (RDSEFF) of PCM (cf. [11]), however, there are
significant differences in the way model variables and parameter dependencies are modeled. The
details of these are presented in Section 4.1.4 and Section 4.1.5. In contrast to the coarse-grained
behavior description, a fine-grained behavior description requires information about the internal
performance-relevant service control flow including information about the resource consumption
of internal service actions.

4.1.3.3 Modeling Abstractions

Figure 4.10 shows the meta-model elements describing the three proposed service behavior abstrac-
tions. Type FineGrainedBehavior is attached to the type BasicComponent, a component type that cannot
contain further subcomponents. The CoarseGrainedBehavior is attached to type InterfaceProvidingRe-
quiringEntity that generalizes the types System, Subsystem, CompositeComponent and BasicCompo-
nent. Type BlackBoxBehavior is attached to type InterfaceProvidingEntity, neglecting external service
calls to required services. Thus, in contrast to the fine-grained abstraction level, the coarse-grained and

36 ARCHITECTURE-LEVEL PERFORMANCE MODEL

InterfaceRequiringEntityInterfaceProvidingEntity

InterfaceProvidingRequiringEntity

BasicComponent

BlackBoxBehavior

CoarseGrainedBehavior

FineGrainedBehavior

Signature

ServiceBehaviorAbstraction

1

0..*

0..*

0..*

InterfaceProvidingRole
1

Figure 4.10: Different Service Behavior Abstractions

ResourceDemand

CoarseGrainedBehavior

ExternalCallFrequency

ExternalCall CallFrequency

0..*

1 1

0..1

ProcessingResourceType

1

0..*

(a)

BlackBoxBehavior

ResponseTime
0..1

(b)

Figure 4.11: (a) Coarse-Grained and (b) Black-Box Behavior Abstractions

black-box behavior descriptions can also be attached to service-providing composites, i.e., Composed-
Structures.

The meta-model elements for the CoarseGrainedBehavior and BlackBoxBehavior abstractions are
shown in Figure 4.11. A CoarseGrainedBehavior consists of ExternalCallFrequencies and ResourceDe-
mands. An ExternalCallFrequency characterizes the type and the number of external service calls. Type
ResourceDemand captures the total service time required from a given ProcessingResourceType. A
ProcessingResourceType is, e.g., a CPU, HDD or network. A BlackBoxBehavior, on the other hand,
can be described with a ResponseTime characterization.

Figure 4.12 shows the meta-model elements for the fine-grained behavior abstraction. A Compo-
nentInternalBehavior models the abstract control flow of a service implementation. Calls to required
services are modeled using so-called ExternalCallActions, whereas internal computations within the com-
ponent are modeled using InternalActions, characterized with ResourceDemands. Access to PassiveRe-
sources with semaphore semantics (e.g., thread pools) can be modeled via AcquireAction to obtain the
resource and ReleaseAction to release the resource. Nested control flow actions like LoopAction, Bran-
chAction or ForkAction are only used when they affect calls to required services (e.g., if a required service
is called within a loop, a corresponding LoopAction is modeled; otherwise, the whole loop would be cap-
tured as part of an InternalAction). The nested control flow actions contain further ComponentInternal-
Behavior models, either as loop body, as forks, or as branch transitions. LoopActions and BranchActions
can be characterized with loop iteration counts and branching probabilities, respectively. ForkActions can

APPLICATION ARCHITECTURE MODEL 37

FineGrainedBehavior

AbstractAction

1 0..*

ExternalCallAction InternalAction LoopAction

ResourceDemand LoopIterationCount

synchronizationBarrier : Boolean

ForkAction BranchAction

BranchingProbabilities

ComponentInternalBehavior
{ordered}

forksbody

0..*

110..*

AcquireAction

ReleaseAction

0..*

1

1

0..1

{ordered}

PassiveResource

0..1 1

branch-
transitions

0..1 0..1 0..1

ExternalCall

1

Figure 4.12: Fine-Grained Behavior Abstraction, cf. [11]

ShoppingCart
Servlet

Required services:
getExpressDeliveryCost
getStandardDeliveryCost

Provided service:
calculateTotalCost

Delivery

Figure 4.13: Example: Delivery and ShoppingCartServlet

be modeled either with or without a synchronization barrier. A barrier for the group of the ForkAction’s
forks means that the control flow only proceeds when all forks have reached the barrier.

Note that it is prohibited to model cycles of services, i.e., a service requiring external services that
themselves require that service.

Furthermore, a service can be modeled at different behavior abstraction levels, e.g., a service can be
described using both a coarse-grained abstraction and a black-box abstraction. However, if a service is
described by both a fine-grained behavior and a coarse-grained behavior, the following must hold: The
set of processing resource types of all resource demands of the coarse-grained behavior must be a subset
of the processing resource types of all resource demands of the fine-grained behavior, i.e., all resource
types used by the coarse-grained behavior must also be used by the fine-grained behavior, if both behavior
descriptions exist. Furthermore, the set of called external services of the coarse-grained behavior must
be a subset of the called external services of the fine-grained behavior, i.e., external service calls modeled
in the coarse-grained behavior description must also be modeled in the fine-grained description, if both
behavior descriptions exist.

4.1.3.4 Example

In the WebShop example, the ShoppingCartServlet provides a service called calculateTotalCost that
calculates the cost of all items in the shopping cart including delivery costs (see Figure 4.13). To obtain
the delivery costs depending on the user preferences, the ShoppingCartServlet either calls service getEx-
pressDeliveryCost or service getStandardDeliveryCost. These two services are provided by the Delivery
component. In this example, the probability of standard delivery is 0.8, and 0.2 for express delivery.

A fine-grained model of service calculateTotalCost is depicted in Figure 4.14. The service behavior

38 ARCHITECTURE-LEVEL PERFORMANCE MODEL

<<FineGrainedBehavior>>

<<BranchAction>>

<<ComponentInternalBehavior>>

<<ExternalCallAction>>
getStandardDeliveryCost

<<ComponentInternalBehavior>>

<<ExternalCallAction>>
getExpressDeliveryCost

Branch transitions

BranchingProbabilities =
EnumPMF[(‘Branch1’;0.8)(‘Branch2’;0.2)]

Figure 4.14: Example: Fine-Grained Behavior Abstraction of Service calculateTotalCost Provided by
ShoppingCartServlet

<<CoarseGrainedBehavior>>

<<ExternalCallFrequency>> <<ExternalCallFrequency>>

CallFrequency =
IntPMF[(0;0.2)(1;0.8)]

<<ExternalCall>>
getStandardDeliveryCost

<<ExternalCall>>
getExpressDeliveryCost

CallFrequency =
IntPMF[(0;0.8)(1;0.2)]

Figure 4.15: Example: Coarse-Grained Behavior Abstraction of Service calculateTotalCost Provided by
ShoppingCartServlet

reflects the service’s internal control flow. There is a branch action that either leads to an external service
call to getStandardDeliveryCost or an external service call to getExpressDeliveryCost. The branching
probabilities are annotated accordingly, with 0.8 for the first branch transition, and 0.2 for the second
branch transition. Note that the annotation EnumPMF[(‘Branch1’;0.8)(‘Branch2’;0.2)] is
explained in Section 4.1.4.

A coarse-grained model of service calculateTotalCost is depicted in Figure 4.15. The external service
calls to getStandardDeliveryCost and getExpressDeliveryCost are modeled as they can be observed
from the component boundary of component ShoppingCartServlet. For each call to calculateTotalCost,
a respective external service is either called once or not at all. An external call to getExpressDeliveryCost
has a frequency of 1 with a probability of 0.2, and 0.8 otherwise. For external call getStandardDeliv-
eryCost, the probabilities are vice versa. The annotations of the form IntPMF[(0;0.2)(1;0.8)]
are explained in Section 4.1.4. However, the exclusive relationship between the two external service calls
is not reflected in the coarse-grained model. This leads to deviations when deriving the response time
distribution of service calculateTotalCost.

4.1.4 Parameterization

This section introduces the parameterization concept of the service behavior abstractions described in the
previous section. Section 4.1.4.1 provides the rationale, Section 4.1.4.2 describes the modeling approach

APPLICATION ARCHITECTURE MODEL 39

GameStore Supermarket

WebShop

WebShop
<<AssemblyContext>>

<<Subsystem>>

Figure 4.16: Example: WebShops for a GameStore and a Supermarket

and Section 4.1.4.3 describes the corresponding abstractions in detail. In Section 4.1.4.4, we provide an
illustrative example.

4.1.4.1 Motivation

The behavior abstractions described in Section 4.1.3 have to be parameterized with resource demands,
response times, frequencies of external calls, loop iteration counts and branching probabilities. In the
context of online performance prediction, these parameters are typically characterized based on moni-
toring data collected at run-time. The measurements are gathered at component instance level. Thus, the
question arises if the measurements, e.g., branching probabilities collected for an instance of a certain
component type, are representative for the corresponding branching behavior at another instance of the
same component type.

Assume the WebShop introduced in Section 4.1.2 is instantiated for different stores. For example, one
instance of the web shop serves as an online supermarket and another instance of the web shop serves
as a game store. See Figure 4.16 for an illustration. Technically, the component implementation is the
same, but the performance behavior may differ among the two instances. One reason is the different
usage behavior. While a supermarket client typically buys many items at once, a client of the game
store typically buys only few items per order. Another reason is the different article database. The game
store may provide video sequences when showing article details, the supermarket may only show static
article images. When parameterizing a performance model, measurements of, e.g., ShowDetailsServlet,
are likely to differ between the two shops. Although the shops use the same component types, the
underlying shop data is different. In enterprise software systems, model parameters depending on the
state of the database are common [50, 51]. However, it is not appropriate to model this data dependency
explicitly, because it depends on internals of the database system.

Whether the characterization of a model parameter is valid across component boundaries thus depends
on the specific considered parameter. For the same component type, there can be parameters that are
different for each component instance, or there might be model parameters that can be treated as identical
across all instances of the component type. This is in contrast to design-time models such as PCM where
representative monitoring data is typically not available to distinguish such cases.

4.1.4.2 Modeling Approach

In order to tackle different characterizations of model parameters, we provide means to specify so-called
scopes of model parameters explicitly. A scope of a model parameter specifies a context where the

40 ARCHITECTURE-LEVEL PERFORMANCE MODEL

ModelVariable

characterization : MVCharacterizationType

ResourceDemand

characterization : MVCharacterizationType

ResponseTime

characterization : MVCharacterizationType

ControlFlowVariable

BranchingProbabilities

LoopIterationCount

CallFrequency

0..1 0..1 0..1

ScopeSet Scope
0..1

InterfaceProvidingRequiringEntity
0..* 1

EMPIRICAL
EXPLICIT

«enumeration»
MVCharacterizationType

description : Expression

ExplicitDescription

Figure 4.17: Model Variables

parameter is unique. This means, on the one hand, that measurements of the parameter can be used
interchangeably among component instances provided that these instances belong to the same scope. On
the other hand, it means that measurements of the parameter are not transferable across scope boundaries.
Thus, if monitoring data for a given parameter is available, it should be clear based on its scope for which
other instances of the component this data can be reused.

If for a given model parameter of a component, the component developer is aware that corresponding
monitoring statistics are not reusable across different instances of the component, the developer can
define a scope for the model parameter to indicate that. Furthermore, the developer of a composite
component can define the composite component’s boundary as scope for a contained model parameter,
thus restricting the usage of monitoring statistics for that model parameter to usage only within that
composite component. Note that the developer of the composite component cannot widen an existing
scope of a model parameter, but can restrict it to the composite’s boundary. In the running example,
for instance, the developer of composite component WebShop knows that different instances of the
component represent different tenants and thus different underlying shop data, and hence can define
composite component WebShop as scope of the involved model variables.

In case a model parameter does not have a specified scope, i.e., in the default case, the model parameter
is globally reusable. Monitoring data from all observed instances of the component can then be used
interchangeably and treated as a whole. Moreover, once a model parameter has been characterized
empirically (e.g., “learned” from monitoring data), it can be used for all instances of the component in
any current or future system.

4.1.4.3 Modeling Abstractions

Figure 4.17 shows the possible ModelVariables of service behavior abstractions that have to be parame-
terized. On the one hand, there are timing parameters such as ResourceDemand (for coarse-grained and
fine-grained service behavior abstractions) and ResponseTime (for black-box service behavior abstrac-
tions). On the other hand, there are control-flow related parameters such as CallFrequency, LoopItera-
tionCount and BranchingProbabilities.

There are two ways to characterize the mentioned model variables. Either EMPIRICAL (default) or
EXPLICIT can be chosen as a characterization type. EMPIRICAL means that the model variable has to
be quantified using monitoring statistics, i.e., it is characterized using empirical data that is accessed
via an interface to the monitoring infrastructure. The interface is presented in Section 4.1.6. EXPLICIT

APPLICATION ARCHITECTURE MODEL 41

means that the model variable is characterized explicitly. In this case, an ExplicitDescription can be
used to specify a random variable by means of the Stochastic Expression (StoEx) language proposed
by [52, 11]. The StoEx language allows characterizing discrete probability distributions with Probability
Mass Functions (PMFs), approximating continuous probability densities with samples, or using com-
mon probability distribution functions such as the exponential distribution or the binomial distribution.
Furthermore, the expression language allows specifying random variables “as a combination of several
other random variables using arithmetic or boolean operations” [52, p.66].

The model variables LoopIterationCount and CallFrequency are discrete random variables defined on
the sample space Ω = N0 = N∪{0}. A typical PMF for a loop is described, e.g., with the expression
IntPMF[(9;0.2)(10;0.5)(11;0.3)]. This PMF expressed as StoEx specifies that the loop
body is executed 9 times with a probability of 0.2, 10 times with a probability of 0.5, and 11 times with a
probability of 0.3. Model parameter BranchingProbabilities is also described with a discrete random vari-
able, however, its sample space Ω is the set of branch transitions of the corresponding BranchAction. The
branch transitions are ordered, thus we can use their indexes as identifiers. A PMF for the branching prob-
abilities of a branch with two branch transitions is, e.g, EnumPMF[(‘Branch1’;0.2)(‘Branch2’;
0.8)], meaning that the transition with index 1 has a probability of 0.2, the transition with index 2 has
a probability of 0.8.

The random variables of the remaining two model variables ResponseTime and ResourceDemand are
typically defined on the sample space Ω =R≥0, where ω ∈Ω is interpreted as timing value. They are de-
scribed by a Probability Density Function (PDF) that is either approximated (see [52, p.67] for an illustra-
tion) or defined using common distributions such as the exponential distribution. An exemplary approxi-
mation f

′
X for a density function fX(x) of a random variable X is DoublePDF[(10.0;0.0)(30.0;

0.04)(32.0;0.1)], meaning

f
′
X(x) =

0.0 x < 10.0,
0.04 10≤ x < 30.0,
0.1 30≤ x < 32,
0.0 32≤ x.

An exponential distribution (with λ = 1) as StoEx is denoted as Exp(1).
As shown in Figure 4.17, a Scope is modeled as a reference to an InterfaceProvidingRequiringEntity. A

ModelVariable may have several scopes, modeled as ScopeSet, because it may be assembled in different
ComposedStructures. In the following, the semantics of such a ScopeSet is defined. Let v be a model
variable, and cv the (composite) component or (sub-)system where the model variable v resides. Let Sv =
{sv

1, . . . ,s
v
n} denote the set of (composite) components or (sub-)systems referenced as Scope of v. Let

Sv
0 = Sv∪{s0}, where s0 represents the system. An instance of cv, as shown in Figure 4.7 in Section 4.1.1,

can be identified as a sequence of AssemblyContexts {a1, . . . ,am}. The container of AssemblyContext
a1 is the system, and encapsulatedComponent(am) = cv meaning that AssemblyContext am encapsulates
cv. We then define

evalscopev({a1, . . . ,am})

=

{a1, . . . ,a j} ,
∃ j ∈ {1, . . . ,m} : (encapsulatedComponent(a j) ∈ Sv

0∧
∀k ∈ { j+1, . . . ,m} : encapsulatedComponent(ak) 6∈ Sv

0)

s0 , otherwise.

Measurements of model variable v at instance {a1, . . . ,am} are then valid within evalscopev({a1, . . . ,am}).
Function evalscopev({a1, . . . ,am}) evaluates to a (composite) component or (sub-)system instance whose

42 ARCHITECTURE-LEVEL PERFORMANCE MODEL

CatalogServlet JPAProvider

Provided service:
listArticles(int pagenumber)

Required/provided service:
getArticlePreviewImage(String articleId)

Required service:
issueNamedQuery_previewImage(String query)

Figure 4.18: Example: CatalogServlet and JPAProvider Components

type is in the set Sv
0, namely the innermost instance when traversing from the instance identified by

{a1, . . . ,am} to the system s0. Note that the scope of a variable is only considered if EMPIRICAL is
chosen as a characterization type.

4.1.4.4 Example

In the WebShop example, a ModelVariable v whose scope is set to the surrounding composite component
WebShop is parameterized differently for each instance of component WebShop. Consequently, in
Figure 4.16, the variable v has different values for the game store and the supermarket instances. If the
scope is omitted, the value of variable v is shared across all component instances.

4.1.5 Probabilistic Parameter Dependencies

This section introduces the modeling concepts for describing probabilistic parameter dependencies. Sec-
tion 4.1.5.1 provides the rationale, Section 4.1.5.2 describes the modeling approach and Section 4.1.5.3
describes the corresponding abstractions in detail. In Section 4.1.5.4, we provide an illustrative example.

4.1.5.1 Motivation

Figure 4.18 shows how the CatalogServlet component in the WebShop example is connected to the
JPAProvider component. The servlet provides a service to list the articles of the shop. The list is
normally composed of multiple pages. By providing the argument pagenumber, the user can choose
which page to view. For each article in the list, the servlet shows a preview image of the article. Preview
images are loaded via the JPA provider. The JPA provider itself issues a query to load a preview image,
but only if the image is not already available in the JPA cache.

We are now interested in the probability of calling issueNamedQuery_previewImage because it re-
sults in a costly database access. As illustrated in the fine-grained service behavior in Figure 4.19, the
probability of calling the database corresponds to a branch probability in the control flow of the getAr-
ticlePreviewImage service. This probability depends on whether the article preview image is in the JPA
cache or not. If the article (identified by parameter articleId) is viewed frequently, the probability of a
database call is low compared to an article that is rarely shown to the users.

As discussed in Section 2.1, some architecture-level performance models for design-time analysis
allow modeling dependencies of the service behavior (including branching probabilities) on input pa-
rameters passed over the service’s interface upon invocation. However, in this case, the only parameter
passed is articleId. Such a parameter does not allow modeling the dependency because the branching

APPLICATION ARCHITECTURE MODEL 43

<<FineGrainedBehavior>>

<<BranchAction>>

<<ComponentInternalBehavior>>

<<InternalAction>>

<<ComponentInternalBehavior>>

<<ExternalCallAction>>
issueNamedQuery_previewImage

<<InternalAction>>

Figure 4.19: Example: Cache Miss or Cache Hit in Service getArticlePreviewImage

<<FineGrainedBehavior>>

<<LoopAction>>

<<InternalAction>>

<<ComponentInternalBehavior>>

<<ExternalCallAction>>
getArticlePreviewImage

<<InternalAction>>

Figure 4.20: Example: Behavior of listArticles Service Provided by CatalogServlet

probabilities depend on the state of the JPA cache. Furthermore, the interface between the component
and the cache is too generic to infer direct parameter dependencies. This state-dependency is typical for
modern business information systems [50, 51]. The behavior of components is often dependent on the
state of data containers such as caches or on persistent data stored in a database. However, modeling the
state of a cache and/or a database is extremely complex and infeasible to consider as part of the perfor-
mance model. Thus, in such a scenario, the approach of providing explicit characterizations of parameter
dependencies is neither applicable nor appropriate.

However, in the example illustrated in Figure 4.19, there is a dependency between the branching prob-
abilities and the service input parameter pagenumber of service listArticles provided by CatalogServlet.
Figure 4.20 shows the fine grained behavior abstraction of the listArticles service. There is a loop where
for each article of the requested page the corresponding preview image is requested. Intuitively, one
would assume the existence of the following dependency: The higher the page number of the article list
to show, the higher the probability that the articles’ preview images are not in the JPA cache. This depen-

44 ARCHITECTURE-LEVEL PERFORMANCE MODEL

CatalogServlet JPAProvider

Provided service:
listArticles(int pagenumber)

Required/provided service:
getArticlePreviewImage(String articleId)

Required service:
issueNamedQuery_previewImage(String query)

DependencyRelationship

DependencyPropagationRelationship

InfluencingParameter2:
pagenumber

InfluencingParameter1:
article access frequency

InfluencedVariable1:
branching probabilities

Figure 4.21: Modeling Parameter Dependencies

dency cannot be modeled using existing approaches such as PCM since, on the one hand, two separate
components are involved, i.e., the pagenumber parameter is external to component JPAProvider, and
on the other hand, an explicit characterization of the dependency by a function is impractical to obtain.
In such a case, provided that the existence of the parameter dependency is known, monitoring statistics
collected at run-time can be used to characterize the dependency probabilistically. At run-time, the de-
pendency between the values of influencing parameter pagenumber and the observed relative frequency
of the issueNamedQuery_previewImage service calls can be monitored. Using this data, the branching
probabilities in Figure 4.19 can be characterized more accurately as conditional probabilities, depending
on values of parameter pagenumber of service listArticles.

The parameter dependency in the example can be considered typical for enterprise software systems.
The behavior of software components is often dependent on parameters that are not available as input
parameters passed upon service invocation [50, 51]. Such parameters are often not traceable directly over
the service interface and tracing them requires looking beyond the component boundaries, e.g., the pa-
rameters might be passed to another component in the call path and/or they might be stored in a database
structure queried by the invoked service. Furthermore, even if a dependency can be traced back to an
input parameter of the called service, in many practical situations, providing an explicit characterization
of the dependency is not feasible (e.g., using PCM’s approach) and a probabilistic representation based
on monitoring data is more appropriate. This situation is common in business information systems and
our modeling abstractions must provide means to deal with it.

4.1.5.2 Modeling Approach

To allow the modeling of the above described parameter dependencies our architecture-level performance
abstractions support the definition of so-called influencing parameters. In order to resolve parameter
dependencies using monitoring data, such influencing parameters need to be mapped to some observable
parameters that would be accessible at run-time.

Figure 4.21 illustrates our modeling approach in the context of the presented example from Fig-

APPLICATION ARCHITECTURE MODEL 45

ure 4.18. The branching probabilities of issuing a database query or not in the getArticlePreviewImage
service are represented as InfluencedVariable1. The component developer is aware of the existence of
the dependency between the branch probability and the frequency of the article to be listed. However,
the developer does not have direct access to the pagenumber parameter of the listArticle service and
does not know where the parameter might be observable and traceable at run-time. Thus, to declare
the existence of the dependency, the component developer first defines an InfluencingParameter1 named
article access frequency, representing a so-called shadow parameter, and provides a textual description
of that parameter’s semantics. Parameter article access frequency characterizes how frequent the ar-
ticle with id articleId is accessed. The developer can then declare a dependency relationship between
InfluencedVariable1 and InfluencingParameter1.

The developer of composite component WebShop is then later able to link InfluencingParameter1
to the respective service input parameter pagenumber of the CatalogServlet component, designated as
InfluencingParameter2. He does not explicitly know how the values of the page number relate to Influ-
encingParameter2, but he assumes that there is a dependency. We refer to such a link as declaration
of a dependency propagation relationship between two influencing parameters. Having specified the in-
fluenced variable and the influencing parameters, as well as the respective dependency and dependency
propagation relationships, the parameter dependency can then be characterized empirically. Our model-
ing approach supports both empirical and explicit characterizations for both dependency and dependency
propagation relationships between model variables.

Note that an influencing parameter does not have to belong to a provided or required interface of the
component. It can also be an auxiliary model entity allowing to model parameter dependencies in a
flexible way. In that case, the influencing parameter is denoted as shadow parameter.

If an influencing parameter cannot be observed at run-time, the component’s execution is obviously
not affected, however, the parameter’s influence cannot be taken into account in online performance
predictions. The only thing that can be done in such a case is to monitor the influenced variable inde-
pendently of any influencing factors and treat it as an invariant. It is important to note that parameter
dependencies are intended to improve the prediction accuracy when considering parameter variations,
however, if they cannot be characterized empirically using monitoring data, a performance prediction
can still be conducted. To provide maximum flexibility, it is also possible to map the same influencing
parameter to multiple other influencing parameters, some of which might not be monitorable in the exe-
cution environment, others could be monitorable with different overhead. Depending on the availability
of monitoring data, some of the defined mappings might not be usable in practice and others could in-
volve different monitoring overhead. Given that the same mapping can be usable in certain situations
and not usable in others, the more mappings are defined, the higher flexibility is provided for resolving
context dependencies at run-time.

In the following, we present the meta-model elements for influenced variables, influencing parameters,
dependencies, and dependency propagations in more detail.

4.1.5.3 Modeling Abstractions

We first describe influenced variables and influencing parameters. Then we present the modeling ab-
stractions to model the different types of relationships between model variables as they are shown in
Figure 4.21. Then we describe how we characterize the introduced relationships.

46 ARCHITECTURE-LEVEL PERFORMANCE MODEL

InfluencingParameter

CallParameter

ServiceBehaviorAbstraction

ResourceDemand ResponseTimeControlFlowVariable

InfluencedVariableReference

0..1 0..1

0..*0..*

0..1

name : String
description : String

ShadowParameter

ModelVariable

referencedModelVariable

Figure 4.22: Influenced Variables and Influencing Parameters

CallParameter

ServiceInputParameter

InterfaceProvidingRole

1

ExternalCallReturnParameter

ExternalCall

1

ExternalCallParameter

ExternalCall

1

Figure 4.23: Call Parameter Hierarchy

Influenced Variables and Influencing Parameters As shown in Figure 4.22, an influenced variable is
indicated by an InfluencedVariableReference, referring to either a ControlFlowVariable, a ResourceDe-
mand, or a ResponseTime.

An InfluencingParameter represents a parameter that has an influence on other model variables. Such
parameters are either CallParameters or ShadowParameters, modeled as subtypes of InfluencingParam-
eter.

A CallParameter, see Figure 4.23, is either a service input parameter, an external call parameter,
or a return parameter of an external call. Given that in performance models, a service call parameter
is only modeled if it is performance-relevant (see Figure 4.24), each modeled service call parameter
can be considered to have a performance influence. Furthermore, the proposed modeling abstractions
support referring not only to a parameter VALUE, but also to other characterizations such as NUM-
BER_OF_ELEMENTS if the referenced data type is a collection (cf. [11]).

A ShadowParameter is an InfluencingParameter with a designated name and description. These
attributes are intended to provide a human-understandable description that could be used by component
developers, system architects, or performance engineers to identify and model relationships between
model variables. A ShadowParameter can be considered as an auxiliary model entity allowing to model
parameter dependencies in a flexible way. In order to resolve parameter dependencies using monitoring
data, ShadowParameters need to be mapped to some observable parameters that are accessible at run-
time.

Furthermore, note that both InfluencingParameters and InfluencedVariableReferences are attached to
the surrounding ServiceBehaviorAbstraction. InfluencingParameter is modeled as a subtype of element
ModelVariable.

APPLICATION ARCHITECTURE MODEL 47

name : String

Parameter

0..1

characterization : ParameterCharacterizationType

CallParameter

Signature

Interface

DataType
returnType

0..1
0..1

1

VALUE
NUMBER_OF_ELEMENTS

«enumeration»
ParameterCharacterizationType

parameters

1

0..*
0..*

Figure 4.24: Call Parameters

Relationship

DependencyRelationship

InfluencedVariableReference

InfluencingParameter

independent dependent

1

1..*
1..*

1

ComponentInstanceReference
1..* 1

InterfaceProvidingRequiringEntity

0..*

DependencyPropagationRelationship

surrounding
Entity

independent

dependent independent dependent

Figure 4.25: Relationships between Influenced Variables and Influencing Parameters

Relationships: Dependency and Dependency Propagation As shown in Figure 4.25, we distin-
guish the two types of relationships DependencyRelationship and DependencyPropagationRelation-
ship between model variables. The former declares one influenced variable to be dependent on one or
more influencing parameters (the independent parameters). The latter connects one or more influenc-
ing parameters (the independent parameters) with one influencing parameter (the dependent parameter))
declaring the existence of a dependency between them. Thus, an influencing parameter can play the role
of a dependent parameter in one relationship, while at the same time being an independent parameter
in another relationship. Both DependencyRelationship and DependencyPropagationRelationship are
non-symmetric, one-directional, transitive relationships. However, note that cycles of relationships are
prohibited.

A Relationship is attached to the innermost InterfaceProvidingRequiringEntity, i.e., (composite) com-
ponent or (sub-)system, that surrounds the relationship. A dependency is defined at the InterfaceProvidin-
gRequiringEntity where the influenced variable resides, and is specified by the corresponding developer.
A dependency propagation is specified for a ComposedStructure that is composed of several assembly
contexts. Thus, both sides of the dependency propagation need to be identified not only by the Influenc-
ingParameters but also by ComponentInstanceReferences indicating the specific component instances
where the influencing parameters reside. As depicted in Figure 4.7 in Section 4.1.1, we require the spec-

48 ARCHITECTURE-LEVEL PERFORMANCE MODEL

characterization : RelationshipCharacterizationType

Relationship

ExplicitDescription

EMPIRICAL
EXPLICIT
IDENTICAL

«enumeration»
RelationshipCharacterizationType

0..1

Figure 4.26: Characterization of Relationships

ification of a path of assembly contexts in order to unambiguously identify a certain component instance
from the perspective of a ComposedStructure.

Characterization of Relationships A dependency or dependency propagation relationship is charac-
terized via the model attribute RelationshipCharacterizationType. The relationship represents a function
that maps the values of the relationship’s independent variable(s) to a characterization of the relation-
ship’s dependent variable. In other words, a relationship with n independent variables mv1, . . . ,mvn

and one dependent variable d is characterized by a function that maps the n values of the independent
variables to a random variable representing the dependent variable d. We distinguish three types of
characterizations: (i) EMPIRICAL, (ii) EXPLICIT, and (iii) IDENTICAL.

EMPIRICAL means that the relationship is characterized using monitoring statistics, i.e., the functional
relation is determined using empirical data. The function is accessed via an interface to the monitoring
infrastructure. The interface is described in Section 4.1.6.

EXPLICIT means that the relationship is characterized explicitly, i.e., with an explicit function speci-
fied using PCM’s StoEx language. Such a characterization is suitable if an expression of the functional
relation between the involved variables is available, the expression is modeled using model entity Explic-
itDescription that corresponds to the PCM model element Expression (cf. [52, p.80]). Note that Scopes
of involved ModelVariables are not considered when evaluating EXPLICIT relationships.

IDENTICAL is a special case of EXPLICIT in order to simplify modeling common delegations. It
means that the independent variable of the relationship directly maps to the dependent variable of the re-
lationship. This characterization type is thus only allowed if the relationship has exactly one independent
variable.

Note that a model variable that is characterized as EXPLICIT can only be the dependent variable
in relationships that are characterized as EXPLICIT, too. The model variable’s explicit description is
then overwritten by the explicit description of the relationship. Furthermore, if a model variable is the
dependent variable in more than one relationship, the following constraints hold. At most one of these
relationships is allowed to be characterized with type EXPLICIT. Otherwise, the explicit description
would be ambiguous. If there is such an EXPLICIT relationship, relationships with characterization type
EMPIRICAL are ignored. Thus, relationships whose characterization type is modeled as EXPLICIT take
precedence over relationships whose characterization type is modeled as EMPIRICAL.

4.1.5.4 Example

As example for parameter dependencies, we use the parameter dependencies as they are illustrated in
Figure 4.21. The service behavior abstraction of service getArticlePreviewImage provided by the JPA-

APPLICATION ARCHITECTURE MODEL 49

:InfluencedVariableReference

:DependencyRelationship

:BranchingProbabilities

:FineGrainedBehaviorAbstraction:FineGrainedBehaviorAbstraction

:DependencyPropagationRelationship

:RelationshipCharacterization

type=EMPIRICAL

:RelationshipCharacterization

type=EMPIRICAL

dependentindependentdependentindependent

refersTo

Behavior abstraction for service
getArticlePreviewImage

Behavior abstraction for service
listArticles

pagenumber:ServiceInputParameter

characterization=VALUE

articleAccessFrequency :ShadowParameter

description=“characterizing how frequent the
article with id articleId is accessed”

Figure 4.27: Example: Modeling Parameter Dependencies

Provider component contains an influenced variable. The influenced variable refers to the branching
probabilities of the branch reflecting whether the requested data is in the cache or needs to be queried
from the database (see Figure 4.19 for the branching behavior).

An excerpt of the object diagram is shown in Figure 4.27. There is a shadow parameter named arti-
cleAccessFrequency, also attached to the service behavior abstraction of service getArticlePreviewIm-
age. The shadow parameter and the influenced variable are linked using a DependencyRelationship. The
type of the RelationshipCharacterization is set to EMPIRICAL. The parameter pagenumber of service
listArticles, provided by component CatalogServlet, is exposed as another InfluencingParameter. Then
there is a DependencyPropagationRelationship with parameter pagenumber as independent parameter
and the articleAccessFrequency parameter as dependent parameter. This DependencyPropagationRe-
lationship is also characterized with type EMPIRICAL.

ShadowParameter articleAccessFrequency cannot be directly monitored. Thus, the DependencyProp-
agationRelationship and the DependencyRelationship cannot be characterized separately. The two re-
lationships rather indicate that there is a dependency between service input parameter pagenumber and
the branching probabilities of cache hit or miss.

Figure 4.28 shows exemplary monitoring statistics showing how values of parameter pagenumber
ranging from 1 to 12 relate to the probability of a cache miss. For instance, for a pagenumber of 4, the
probability of a cache miss is monitored to be 0.23 on average. Thus, for a pagenumber of 4, the Branch-
ingProbabilities can be parameterized with EnumPMF[(‘Branch1’;0.77)(‘Branch2’;0.23)]
as PMF. For a pagenumber of 8, the probability of a cache miss is monitored to be 0.9 on average, and the
BranchingProbabilities can be parameterized with EnumPMF[(‘Branch1’;0.1)(‘Branch2’;0.9)]
as PMF.

4.1.6 Interface to Monitoring Infrastructure

The modeling abstractions for the application architecture level have ModelVariables and Relationships
that need to be parameterized. In case the MVCharacterizationType of a ModelVariable, or the Rela-

50 ARCHITECTURE-LEVEL PERFORMANCE MODEL

●
●

●

●

●

●

●

●

● ● ● ●

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pagenumber

P
("

ca
ch

e
m

is
s"

)

Monitoring Data

Figure 4.28: Example: Characterizing Parameter Dependencies

interface IApplicationLevelMonitor {
RandomVariable getCharacterizationForModelVariable(
ModelVariable modelVariable,
ComponentInstanceReference compInstanceContainingMV);

RandomVariable getCharacterizationForParameterDependency(
List<ModelVariable> independentMVs,
List<ComponentInstanceReference> compInstsContainingIndependentMVs,
List<Literal> independentValues,
ModelVariable dependentMV,
ComponentInstanceReference compInstanceContainingDependentMV);

}

Listing 4.1: Monitoring Interface for the Application Level Model

tionshipCharacterizationType of a Relationship is set to EMPIRICAL, the characterization of the corre-
sponding ModelVariable or Relationship is not specified in the application architecture model instance.
Characterization type EMPIRICAL means that the values need to be obtained from monitoring statistics.
Thus, the monitoring infrastructure of the running system has to be capable of providing appropriate
monitoring statistics to characterize such ModelVariables and Relationships.

This section defines an interface named IApplicationLevelMonitor that needs to be implemented by the
monitoring infrastructure in order to parameterize an application architecture model instance. Listing 4.1
shows the monitoring interface in Java syntax. The interface has two method signatures explained in the
following.

The first method getCharacterizationForModelVariable returns the characterization for a given Mod-
elVariable mv and a given component instance where mv resides. The characterization is returned as
a RandomVariable. For example, consider the BranchingProbabilities of the BranchAction that is part
of the fine-grained behavior depicted in Figure 4.14. The behavior describes service calculateTotalCost
that is provided by component ShoppingCartServlet. For one component instance of ShoppingCart-

RESOURCE LANDSCAPE MODEL 51

Servlet, method getCharacterizationForModelVariable might return EnumPMF[(‘Branch1’;0.8)
(‘Branch2’;0.2)], for a different component instance of ShoppingCartServlet, the method might
return EnumPMF[(‘Branch1’;0.6)(‘Branch2’;0.4)]. The implementation of the method
needs to consider the ScopeSet of the given ModelVariable when returning the characterization as a
RandomVariable. Note that a characterization of a model variable mv is assumed to be available via the
method getCharacterizationForModelVariable if mv is a resource demand, a response time or a control
flow variable, characterized as EMPIRICAL. If the characterization is not available for such model vari-
ables, a performance prediction cannot be conducted. If mv is an InfluencingParameter, however, the
method may return NULL and a performance prediction can still be conducted.

The second method getCharacterizationForParameterDependency returns the characterization for a
given list of independent ModelVariables and one dependent ModelVariable. The method is used to obtain
a characterization of a parameter dependency, returned as RandomVariable. A parameter dependency is
determined by the method’s arguments:

• a list of references to ModelVariables mv1, . . . ,mvn that are the independent variables,

• a list of Literals v1, . . . ,vn that are values for the above-mentioned variables,

• a list of ComponentInstanceReferences indicating where mv1, . . . ,mvn reside,

• a reference to a ModelVariable d that is the dependent variable,

• a reference to a component instance indicating in which component instance d resides.

Formally, the method’s arguments specify the signature of a n-ary function to be evaluated at arguments
v1, . . . ,vn. The result of the function, returned as a random variable, characterizes the dependent vari-
able. The implementation of the method needs to consider the ScopeSets of the involved ModelVariables
when deriving a characterization for the dependent variable. If n = 0, then getCharacterizationForPa-
rameterDependency has the same semantics as getCharacterizationForModelVariable.

4.2 Resource Landscape Model

The scenario presented previously in Chapter 3 is only a small example of how today’s (distributed)
data centers look like. They are complex constructs of resources, interacting in different directions. On
the vertical direction, resources are abstracted (e.g. by virtualization, JVM, etc.) to share them among
the guests. At the same time, resources can be scaled horizontally (e.g. by adding further servers or
VMs) or resources can be reassigned (e.g., by migrating virtual machines or services). For an effective
system reconfiguration, it is crucial to take this information into consideration. Therefore, models that
serve as a basis for reconfiguration decisions must cover diverse aspects and concepts. However, current
performance models do usually not provide means to reflect such information. We will now introduce
the aspects which we believe are critical for run-time performance management and effective system
reconfiguration and which are conceptually presented in Section 5.2.

Resource Landscape Architecture Today’s probably most general distinction of data center infras-
tructure on the horizontal level is the categorization of resources into computing, storage and network
infrastructure. Each of this three types has its specific purpose and performance-relevant property. Each

52 ARCHITECTURE-LEVEL PERFORMANCE MODEL

of these types must be taken into consideration when reconfiguring the architecture of the services run-
ning in the data center. Because of their differences, each of these resources should be modeled in its own
specific way. The concepts of this report will present an approach for modeling the performance-relevant
properties of the computing infrastructure; storage and network infrastructure are part of other research
projects (cf. [53, 54, 55, 56, 57]).

Network

Computing Storage

Figure 4.29: Main types of data center resources.

Another important aspect when thinking about the autonomic reconfiguration of data centers is the
physical size of the data center. This has an impact on the scalability of the reconfiguration method,
e.g., how many resource managers must be used. Furthermore, for the migration of services or VMs it
is important to know the landscape of the data center to decide whether a migration operation is possible
or not or to estimate how costly it might be.

Layers of Resources A common reappearing pattern in modern distributed IT service infrastructures
is the nested containment of system entities, e.g., data centers contain servers, servers typically contain
a set of virtual machines (VMs) hosted on a virtualization platform, servers and VMs run an operating
system, which may contain a middleware layer, and so on. This leads to a tree of nested system entities
that may change during runtime because of virtual machine migration, hardware or software failures,
etc. Because of this flexibility, a large variety of different executing environments can be realized that all
consist of similar, reoccurring elements.

Furthermore, the information about how resource containers are stacked (layering) is important for
reconfiguration decisions (e.g., to decide whether an entity can be migrated or not). Another important
fact is the influence of each layer on the performance. Various experiments have shown that layering
the resources has influence on the performance. Therefore, the different layers must be captured in the
models explicitly to predict their impact on the system’s performance.

Reuse of Entities In general, the infrastructure and the software entities used in data centers are not
single and unique entities. For example, a rack usually consists of the same computing infrastructure
which is installed several times, virtual machines of the same type are deployed hundreds or thousands
times. However, at run-time when the system is reconfigured, the configuration of a virtual machine
might change. Then, this virtual machine is still of the same type as before, but with a different configu-
ration.

With the currently available modeling abstractions such as PCM, it is necessary to model each con-
tainer and its configuration explicitly. This can be very cumbersome, especially when modeling clusters
of hundreds of identical machines. The intuitive idea would be to have a meta-model concept like the

RESOURCE LANDSCAPE MODEL 53

Figure 4.30: Different resource layers and their influence on the performance.

multiplicity to specify the amount of instances in the model. However, this prohibits to have individual
configurations for each instance. The desired concept would support a differentiation between container
types and instances of these types. The type would specify the general performance properties relevant
for all instances of these types and the instance would store the performance properties of this container
instance.

4.2.1 Modeling Abstractions

In the following section we present a modeling language to describe the resource landscape of distributed
dynamic data centers. Instances of the resource landscape model reflect the static view of the distributed
data center, i.e., they describe i) the computing infrastructure and its physical resources, and ii) the
different layers within the system which also provide logical resources, e.g., virtual CPUs.

The motivation for our resource landscape meta-model is to provide novel modeling abstractions that
can be used to describe the complex nature of modern distributed IT infrastructures (cf. Section 4.2).
Briefly, these novel constructs support modeling the distribution of resources within and across the
boundaries of data centers, the nested layers of resources, and the performance influences of the dif-
ferent resource layers.

Figure 4.31 depicts an overview of the structure of the resource landscape meta-model as a UML class
diagram. The root entity comprising all other model elements is the DistributedDataCenter, which con-
sists of one or more DataCenters. DataCenters contain HardwareInfrastructures which are either one of

54 ARCHITECTURE-LEVEL PERFORMANCE MODEL

DistributedDataCenter

DataCenter

CompositeHardwareInfrastucture

belongsTo

consistsOf

0..1

1..*

Container

ofClass : RuntimeEnvironmentClasses

RuntimeEnvironment

ComputingInfrastructure

ContainerTemplateConfigurationSpecification

* 0..1templateconfigSpec

1

*

contains

containedIn
HardwareInfrastucture

1..*

1..*

1 contains

partOf

contains

0..1

NetworkInfrastructureStorageInfrastructure

ofContainer

Figure 4.31: The resource landscape meta-model.

the three hardware infrastructure types ComputingInfrastructure, NetworkInfrastructure, and StorageIn-
frastructure, or CompositeHardwareInfrastructure. A CompositeHardwareInfrastructure is a structuring
element to group further HardwareInfrastructures. For example, it can be used to combine servers to
a cluster or to group them in a server rack. Current architecture-level performance models usually ab-
stract from these details and do not provide constructs to model the resource hierarchy and containment
relationships explicitly. However, for resource management at run-time, the description of the resource
landscape and hierarchy of resources is crucial to improve reasoning about suitable adaptation opera-
tions, e.g., to decide if a VM can be migrated and where it should be migrated to. Here, the novel aspect
of our meta-model is that it allows to model the distribution of resources within and across data centers
as well as their individual configuration.

When designing the resource landscape meta-model, we aimed at a generic approach to cover all
types of infrastructure with the focus on ComputingInfrastructure. More details on modeling storage and
network infrastructures (i.e., the StorageInfrastructure and NetworkInfrastructure entities in the meta-
model) can be found in the work of [53, 54, 55] and [56, 57], respectively.

4.2.1.1 Containers and Containment Relationships

A common reappearing pattern in modern distributed IT service infrastructures is the nested containment
of system entities, e.g., data centers contain servers, servers typically contain a set of virtual machines
(VMs) hosted on a virtualization platform, servers and VMs run an operating system, which may contain
a middleware layer, and so on. This leads to a tree of nested system entities that may change during run-
time because of virtual machine migration, hardware or software failures, etc. The central element of our
resource landscape meta-model to model these nested layers of resources is the abstract entity Container,
depicted in Figure 4.31. We distinguish between two major concrete container entities: the Computing-
Infrastructure and the RuntimeEnvironment. The ComputingInfrastructure forms the root element in our
hierarchy of containers and corresponds to a physical machine within a data center. This entity cannot

RESOURCE LANDSCAPE MODEL 55

be contained in another container, but it may have nested containers (RuntimeEnvironments). The Run-
timeEnvironment is the second type of container. It can contain further RuntimeEnvironments. Thereby,
we realize the modeling of nested containers and can create a hierarchy of resources.

Furthermore, each RuntimeEnvironment has the property ofClass to specify the class of the Run-
timeEnvironment. A Container has a property configSpec to specify its ConfigurationSpecification and
a property template referring to a ContainerTemplate. These concepts will be explained in the following
sections.

4.2.1.2 Classes of Runtime Environments

We distinguish several general classes of runtime environments which are listed in Figure 4.32: HY-
PERVISOR for the different hypervisors of virtualization platforms, OS for operating systems, OS_VM
for virtual machines emulating standard hardware, PROCESS_VM for process virtual machines like the
Java VM or the Common Language Runtime (CLR), MIDDLEWARE for middleware environments, and
OTHER for any other type. This list can be extended if new classes are required. The purpose of distin-
guishing different classes of runtime environments is to constrain the possible combinations of runtime
environments within the hierarchy. By setting the ofClass property of the RuntimeEnvironment to one
of these values, we can specify OCL constraints to enforce consistency within the modeled layers. To
prohibit the instantiation of different RuntimeEnvironment classes within the same container, we specify
the following OCL constraint:

context RuntimeEnvironment
inv runtimeEnvironmentLevelCompliance:

self.containedIn.contains
->forAll(r : RuntimeEnvironment | r.ofClass = self.ofClass);

Listing 4.2: OCL invariant checking RuntimeEnvironment compliance.

As a result, a RuntimeEnvironment can only contain containers that are of the same class, e.g., a
hypervisor can only contain virtual machines and not further hypervisors.

«enumeration»
RuntimeEnvironmentClasses

HYPERVISOR
OS
OS_VM
PROCESS_VM
MIDDLEWARE
OTHER

Figure 4.32: Different runtime environment classes.

Another solution would have been to model the different types of runtime environments as explicit
entities. However, we wanted to design a model that is easy to extend. Modeling all classes of runtime
environments as explicit model entities would have required to also explicitly model their relations (e.g.,
OS_VM can only be contained in HYPERVISOR) which makes the meta-model much more complex and
difficult to maintain. By using the ofClass attribute and the RuntimeEnvironmentClasses, new classes
can be introduced by extending the enumeration, which has less impact on the meta-model structure.

56 ARCHITECTURE-LEVEL PERFORMANCE MODEL

This makes it easier to reuse and extend the model instances. Also, we can assume that model instances
can be built automatically or with tool support and that the tool support will automatically enforce such
constraints.

4.2.1.3 Resource Configuration Specification

Each Container has its own specific resource configurations that describe the container’s influence on
the system performance. In our meta-model, we distinguish between three different types of configura-
tion specifications: ActiveResourceSpecification, PassiveResourceSpecification, and CustomConfigu-
rationSpecification, depicted in Figure 4.33.

ConfigurationSpecification

CustomConfigurationSpecificationActiveResourceSpecificationPassiveResourceSpecification
capacity : Integer

PassiveResourceCapacity capacity

1

CustomResourceConfigurationModel

non-functionalProperties

DELAY
FCFS
PROCESSOR_SHARING
RANDOM
N/A

«enumeration»
SchedulingPolicy

schedulingPolicy : SchedulingPolicy
processingRate : Double

ProcessingResourceSpecification

ProcessingResourceType
number : Integer

NumberOfParallelProcessingUnits

bandwidth : Double

LinkingResourceSpecification

CommunicationLinkResourceType

1

0..*

parentResourceSpecification

processingResources

active
ResourceType

processingResourceSpec1

1nrOfParProcUnits
communication

LinkResourceType

0..*

1
parentResourceSpecification

linkingResources

1

1
1

1

Container

1..*

links

Figure 4.33: Types of resource configurations.

The ActiveResourceSpecification can be used to specify the active resources of a Container. Active
resources can actively execute a task. Examples for active resources are CPUs, hard disks, and network
connections. We further distinguish between ProcessingResourceSpecifications and LinkingResource-
Specifications. The ProcessingResourceSpecification can be used to specify what ProcessingResource-
Types the modeled entity offers. The currently supported ProcessingResourceTypes are CPU and HDD.
The ProcessingResourceSpecification is further defined by its properties schedulingPolicy and process-
ingRate. These parameters influence the time the active resource needs to process a task. For example,
a CPU can be specified with PROCESSOR_SHARING as schedulingPolicy and a processingRate of
2.66 GHz. If a ProcessingResourceSpecification has more than one processing units (e.g. a CPU has
four cores), the attribute number of the entity NumberOfParallelProcessingUnits would be set accord-
ingly, whereas two CPUs would be modeled as two separate ProcessingResourceSpecifications. The
LinkingResourceSpecification can be used to describe communication links between containers on a high
level of abstraction. For a more detailed modeling of the performance-relevant aspects of the network
including network interface cards, routers, switches, and so on, we refer to the work of [57]. In this re-
port, a LinkingResourceSpecification abstracts from such details and describes only the communication
links between the source container and the target containers. The source container is the container the
LinkingResourceSpecification belongs to. The links to the target containers are characterized by a shared

RESOURCE LANDSCAPE MODEL 57

bandwidth and a CommunicationLinkResourceType. The currently supported CommunicationLinkRe-
sourceType is LAN.

The PassiveResourceSpecification can be used to specify properties of passive resources such as
semaphores, threads, monitors, etc. Passive resources are not able to process requests. They usually have
a limited capacity which can only be acquired and released. Examples for passive resources are the main
memory size, the number of database connections, the heap size of a JVM, or resources in software like
thread pools, etc. Passive resources refer to a PassiveResourceCapacity, the parameter to specify the
size of the passive resource, e.g., the number of threads or memory size.

If the concepts of ActiveResourceSpecification or PassiveResourceSpecification are not sufficient
to model the resource configurations of more complex resources (e.g., a hypervisor), one can use the
CustomConfigurationSpecification. This model entity refers to the abstract class CustomResourceCon-
figurationModel which severs as a placeholder for any other custom model that can be used to describe
performance-relevant resource configuration properties. Instances of CustomResourceConfiguration-
Models can then be employed during online performance analysis to consider the performance-relevant
properties for this resource. In [26], we presented an example CustomResourceConfigurationModel that
describes the performance-relevant resource configuration for hypervisors with feature models.

4.2.1.4 Container Types

With the modeling abstractions presented so far, it is necessary to model each container and its resource
configuration specification explicitly (cf. left-hand side of Figure 4.34). This can be very time-consuming
when creating large model instances, especially when modeling clusters of several hundred identical
machines. Hence, a concept to specify the multiplicity of model entities can improve model usability
and comprehensiveness. However, while with multiplicities one can specify the number of instances of
a model entity, the different instances are indistinguishable and would all have the same attribute values.
This is a problem since in data centers, there might exist multiple instances of the same container type
but with different resource configurations, i.e., they must be distinguishable. For example, a VM of the
same customer can have a similar default resource configuration specification, i.e., they are of the same
type (cf. Figure 4.34). However, at run-time, we must be able to distinguish the concrete VM instances
because their resource configuration specification might change.

A conceptually elegant solution to address this problem is the multilevel language engineering ap-
proach by Atkinson et al. described in [58]. This approach introduces additional levels in the Meta
Object Facility (MOF) specified in [59]. This way, an instance of a Container can serve as a type for
another instance, i.e., it can be instantiated again (cf. right part of Figure 4.34). With Melanie [60], there
exists a tool based on the Eclipse Modeling Framework (EMF) for multilevel modeling. However, for
us this approach was not practical since there is still a fundamental difference between the three-level
architecture of EMF, which we use to realize our approach, and the multilevel modeling concepts.

Another solution would have been to develop a second meta-model for modeling container types.
This meta-model would act as a “decorator model”, i.e., it would extend a resource landscape model
instance. The drawback of this solution is that this would introduce a further level of meta-modeling,
i.e., an additional meta-model to create instances of container types and thus, container providers (e.g.,
virtualization platform vendors) must be familiar with meta-modeling.

For these reasons, we decided to implement a hybrid approach and use ContainerTemplates to specify
the resource configuration of similar container types. All container instances that are of the same type
refer to their container template. These templates are collected in separate model ContainerRepository

58 ARCHITECTURE-LEVEL PERFORMANCE MODEL

MetaClass

Container

CustomerA_VM_1 CustomerA_VM_n CustomerB_VM_1

CustomerA_VM_1 CustomerA_VM_n CustomerB_VM_1

M3: Meta-
metamodel

M2: Metamodel
(Descartes
Meta-Model)

M1: DMM
Instance

M0: Objects
in Reality

MetaClass

Container

CustomerA_VM CustomerB_VM

CustomerA_VM_1 CustomerA_VM_n CustomerB_VM_1

CustomerA_VM_1 CustomerA_VM_n CustomerB_VM_1

Legend:

<<instanceOf>>

MOF Hierarchy Multilevel Modeling

Figure 4.34: Container instances in the MOF modeling hierarchy (left) and with multilevel modeling
(right).

(see Figure 4.35). Like a Container, the ContainerTemplate also refers to a ConfigurationSpecification
to specify the resource configuration for the ContainerTemplate. A Container instance in the resource
landscape model can then refer to a ContainerTemplate as its resource configuration specification (see
Figure 4.31). We refer to this as a hybrid approach as it supports both ways of modeling containers,
either with templates for a group of container type instances or an individual instance for each container.

ContainerRepository

ContainerTemplate

ConfigurationSpecification

templates

templateConfig

*

0..*

0..1

1

Figure 4.35: The container templates repository.

The advantage of this modeling approach is that the general resource configuration specifications
relevant for all instances of one container type can be stored in the container template. Instance-specific
resource configurations deviating from the used container template can still be stored in the individual
container instance. This way, only differences to the container template must be modeled and not all
individual resource configurations for all different containers. As the container repository is a separate
model instance, it can also be reused in other resource landscape models. More formally, let

R = {r1,r2, . . . ,rn} be the set of resources of a container C.

Furthermore, let RS = I ∪T be the set of resource configuration specifications for the resources of the
container C with

T as the set of template-specific resource configuration specifications and
I as the set of individual resource configuration specifications.

RESOURCE LANDSCAPE MODEL 59

We assume that for each resource r ∈ R, there exists a resource configuration specification.
Then, during model analysis, the semantic of a container template is the following: If a container

has no individual resource configuration specification i j ∈ I for resource r j ∈ R, it inherits the specifi-
cation from its referenced container template resource configuration specifications T , i.e., rs j = t j. If a
container defines its own individual resource configuration specification i j ∈ I, the latter overrides the
resource configuration specification of the template t j ∈ T , i.e., rs j = i j. For example, as a container,
assume a VM with two processing resources and one networking resource. The resource configuration
specification of the container template of this VM is TV M = {t1, t2, t3}. Therefore, the VM inherits the
initial resource configuration specifications of its template, i.e., RSV M = {t1, t2, t3}. If we change the
resource configuration specification of one resource, e.g., because we add a virtual CPU to the second
processing resource, the new set of resource configuration specifications is RSV M = {t1, i2, t3}

4.2.2 Example

To illustrate our meta-model concepts, we use an example model instance of the resource landscape
from our cluster environment which we later use for validation. Figure 4.36 depicts a resource landscape
model instance in a UML-like notation, showing the hierarchy of the different resources as well as their
configuration templates.

<<ComputingInfrastructure>>

ComputeNodeTemplate

<<CompositeHardwareInfrastructure>>

AcamarCluster

<<ComputingInfrastructure>>

ComputeNode20

<<RuntimeEnvironment>>

XenServer20

<<RuntimeEnvironment>>

VMn

<<ComputingInfrastructure>>

ComputeNode20

<<RuntimeEnvironment>>

XenServer20

<<RuntimeEnvironment>>

VMn

<<ComputingInfrastructure>>

ComputeNode20

<<RuntimeEnvironment>>

XenServer20

<<RuntimeEnvironment>>

VMn

<<ComputingInfrastructure>>

ComputeNode20

<<RuntimeEnvironment>>

XenServer20

<<RuntimeEnvironment>>

VMn

<<ComputingInfrastructure>>

ComputeNode1

<<RuntimeEnvironment>>

XenServer1

<<RuntimeEnvironment>>

VM1

<<RuntimeEnvironment>>

VM2

<<DataCenter>>

ComputerScienceDepartmentDataCenter

<<ActiveResourceSpecification>>

processingResourceType = LAN

bandwidth = 1 Gbit

<<ActiveResourceSpecification>>

processingResourceType = CPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 4

<<ContainerRepository>>

ExperimentEnvironmentContainerSpecs

<<RuntimeEnvironment>> XenServer5.5Template

ofClass = HYPERVISOR

<<RuntimeEnvironment>> VMTemplate

ofClass = OS_VM

<<ActiveResourceSpecification>>

processingResourceType = CPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 4

<<template>>

<<CustomConfigurationSpecification>>

non-functionalProperties =

 XenServer5.5ConfigurationModel

<<template>>

<<ActiveResourceSpecification>>

processingResourceType = vCPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 2

<<template>>

<<ComputingInfrastructure>>

DatabaseServer

<<ActiveResourceSpecification>>

processingResourceType = CPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 4

<<ActiveResourceSpecification>>

processingResourceType = CPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 4

<<ActiveResourceSpecification>>

processingResourceType = CPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 4

<<ActiveResourceSpecification>>

processingResourceType = CPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 4

Figure 4.36: Example resource landscape model instance.

The root element is the local DataCenter in our computer science department at KIT, which contains
a CompositeHardwareInfrastructure (a cluster environment called AcamarCluster), and a separate Com-
putingInfrastructure, the DatabaseServer. The cluster in this example consists of five ComputeNodes,
connected by a 1 Gbit Ethernet LAN. Each compute node runs XenServer 5.5 as a hypervisor. On top
of each XenServer, we execute two VMs. The DatabaseServer is a separate machine, connected to
the cluster with four 1 Gbit Ethernet connections. It has four six-core CPUs with 2.66 GHz and PRO-
CESSOR_SHARING as scheduling policy. To ease the resource configuration specification of the other
containers, we use the container template mechanism of the resource landscape meta-model.

The resource configuration specification templates for the different container types are stored in the
ExperimentEnvironmentContainerSpecs container repository. The ComputeNodeTemplate specifies the

60 ARCHITECTURE-LEVEL PERFORMANCE MODEL

hardware resource configuration of the cluster compute nodes. A compute node has two ActiveResource-
Specifications modeling its two CPUs. Each has four cores with 2.66 GHz and PROCESSOR_SHARING
as scheduling policy. The XenServer5.5Template is a template for a RuntimeEnvironment of class HY-
PERVISOR. It refers to a CustomConfigurationSpecification, which refers to a CustomResourceConfig-
urationModel for the XenServer 5.5 hypervisor. Further details of this custom model have been presented
in [26]. Finally, the VMTemplate specifies the configuration of the VMs hosted by the XenServer. This
RuntimeEnvironment is of class OS_VM and has only one ActiveResourceSpecification for its VCPU. It
has two cores with 2.66 GHz and PROCESSOR_SHARING as scheduling policy.

4.3 Deployment Model

To capture the relationship between the resource landscape and the application architecture, one must
model the relation between hardware and software.

4.3.1 Modeling Abstractions

This relation can be described with the deployment meta-model depicted in Figure 4.37. This modeling
language allows to describe the allocation of software component instances of the application architecture
meta-model on container instances of the resource landscape meta-model. The deployment model is
based on the PCM which also models the allocation of software components to resource containers in
a separate allocation context model [61]. However, because of the resource layers and the different
classes of runtime environments, the interpretation of the deployment of services on resource containers
is different from PCM.

Deployment

DeploymentContext DistributedDataCenterSystem

AssemblyContext Container

targetResourceLandscapesystem

deployment

deploymentContexts

1

0..*

assemblyContext 1 resourceContainer1

1 1

Figure 4.37: The deployment meta-model.

A Deployment has a reference to a DistributedDataCenter (the root element of the resource landscape
meta-model) and a System, the root element of the application architecture meta-model. Note that each
element of the application architecture that is deployable (e.g., basic component, composite component,
or a subsystem) is modeled as an AssemblyContext. The instantiation of two different components of the
same type is modeled using two different AssemblyContexts. The actual connection between assembly
context instances of the application architecture and container instances of the resource landscape is
modeled using DeploymentContexts, i.e., a DeploymentContext is a mapping of an AssemblyContext to
a Container.

DEPLOYMENT MODEL 61

<<ComputingInfrastructure>>
DatabaseServer

<<ComputingInfrastructure>>
ApplicationServer

<<ActiveResourceSpecification>>

<<ProcessingResourceSpecification>>

processingResourceType=CPU
processingRate=2.66 GHz
schedulingPolicy=PROCESSOR_SHARING
numberOfParallelProcessingUnits=2

<<ActiveResourceSpecification>>

<<ProcessingResourceSpecification>>

processingResourceType=CPU
processingRate=2.8 GHz
schedulingPolicy=PROCESSOR_SHARING
numberOfParallelProcessingUnits=8

<<AssemblyContext>>
WebShop

<<AssemblyContext>>
SQLDB

<<DeploymentContext>>

Figure 4.38: Example: WebShop Deployment

Services require different types of resources to fulfill their purpose. Hence, a constraint when deploy-
ing services to containers is that the resource types required to execute the service are actually provided
by the container the service is deployed on. For example, for performance prediction, the resource de-
mands of a service would be mapped to the resource provided by the container executing the service.
In case this container is a nested container and the parent container provides a resource of the same
type, the resource demand is always mapped to the subjacent resources. In each mapping step the re-
source demand might be adjusted according to the modeled properties of that layer or it is identically
mapped in case no relevant properties are given. For example, when mapping the resource demand in a
virtual machine to the hardware, the virtualization overhead can be added according to the hypervisor’s
performance model.

An alternative to this direct mapping of resource demands to the resources provided by the layer
below is to use the more complex concept of introducing resource interfaces and controllers [62]. In this
approach the resource demands can be mapped to interfaces provided by the resources. Controllers in
the layers providing these interfaces take care of mapping the resource demands, e.g., adding overheads
occurring in this layer.

4.3.2 Example

Figure 4.38 shows an exemplary deployment of the running example introduced in Section 4.1.2 to a
simple resource landscape model instance.

There is a datacenter that consists of two ComputingInfrastructures, namely an ApplicationServer and
a DatabaseServer. The servers’ CPUs are modeled as active resources. The CPU of the Application-
Server consists of two processing units at a processing rate of 2.66 GHz. The DatabaseServer CPU
has eight processing units at a processing rate of 2.8 GHz. The WebShop instance is deployed on the
ApplicationServer node, a SQLDB instance is deployed on to the DatabaseServer node.

62 ARCHITECTURE-LEVEL PERFORMANCE MODEL

UsageProfileModel

UsageScenario ScenarioBehavior

WorkloadType

interarrivalTime : RandomVariable

OpenWorkloadType

population : Integer
thinkTime : RandomVariable

ClosedWorkloadType

AbstractUserAction

loopIterationCount : RandomVariable

LoopUserAction

delay : RandomVariable

DelayUserAction

branchingProbabilities : RandomVariable

BranchUserAction
SystemCallUserAction

name : String
characterization : ParameterCharacterizationType
value : RandomVariable

CallParameterSetting

0..*

{ordered}
0..*

1

body branch-
transitions

0..* {ordered}

0..1

0..1

0..1

1

0..*

System

0..1

InterfaceProvidingRole

Signature

1

1

Figure 4.39: Usage Profile Model, cf. [11]

4.4 Usage Profile Model

Using the application architecture meta-model (Section 4.1) and the resource landscape and deployment
meta-models (Section 4.2), an architecture-level performance model can be described. In order to con-
duct a performance prediction for a certain workload, the workload needs to be specified. This is done
using the usage profile meta-model, also part of DML. The usage profile meta-model is based on PCM’s
usage model [11] and allows modeling user interactions with the system.

4.4.1 Modeling Abstractions

The modeling abstractions are shown in Figure 4.39. A UsageProfileModel consists of one or more
UsageScenarios and references a System. A UsageScenario refers to a description of a WorkloadType
(either an open workload or a closed workload [63]) and a ScenarioBehavior.

An open workload is characterized with an inter-arrival time specified as RandomVariable. A closed
workload is characterized with a client population and a client think time also specified as RandomVari-
able.

A ScenarioBehavior allows describing which services of the referenced System are called by the
user using so-called SystemCallUserActions. Such a SystemCallUserAction refers to a service signature
of an interface that is provided by the system. The input parameters of the service signature can (but
do not have to) be set using CallParameterSettings. A CallParameterSetting consists of the name of
the parameter, a parameter characterization type (see Figure 4.24) and the value of the parameter as a
random variable. The SystemCallUserActions can be arranged in a control flow with delays, branches
and loops. Delays, as well as branching probabilities and loop iteration counts are described with a
RandomVariable.

Note that a RandomVariable is an atom of a stochastic expression (see Section 4.1.4.3). It allows
characterizing discrete probability distributions with PMFs, approximating continuous probability den-
sities with samples, or parameterizing common PDFs such as the exponential distribution or binomial
distribution.

USAGE PROFILE MODEL 63

<<UsageProfileModel>>

<<UsageScenario>>

<<ScenarioBehavior>>

<<SystemCallUserAction>>

listArticles

<<CallParameterSetting>>
name=pagenumber
characterization=VALUE
value=IntPMF[(1;0.5)(2;0.5)]

<<DelayUserAction>>
delay=1000

<<SystemCallUserAction>>
viewArticleDetails

<<OpenWorkloadType>>
interarrivalTime=Exp(1.0)

Figure 4.40: Example: Usage Profile Model Instance

4.4.2 Example

An example of a usage profile model is illustrated in Figure 4.40. It is a usage profile for the WebShop
system presented in Section 4.1.2. It consists of one UsageScenario with an open workload. The users
have an inter-arrival time of Exp(1.0), i.e., an exponentially distributed inter-arrival time with mean
1.0. The user behavior starts with a call of the listArticles service, followed by a delay of 1000 and a
service call to viewArticleDetails. The value of the pagenumber parameter of the listArticles service is
parameterized using a PMF. With a probability of 0.5 each, either the first page or the second page is
requested.

Chapter 5

Model-based System Adaptation

In this chapter, we introduce the parts of the DML relevant to i) describe the dynamic aspects of modern
IT systems, infrastructures and services and to ii) model autonomic resource management at run-time.
Section 5.1 explains the background and the motivation for these concepts before Section 5.2 presents
the implementation.

5.1 Motivation and Background

Modern virtualized system environments are increasingly dynamic and offer high flexibility for reconfig-
uring systems at run-time. They usually host diverse applications of different parties and aim at utilizing
resources efficiently while ensuring that Quality of Service (QoS) requirements are continuously sat-
isfied. In such scenarios, complex adaptations to changes in the system environment are still largely
performed manually by humans. Over the past decade, autonomic self-adaptation techniques aiming to
minimize human intervention have become increasingly popular. However, given that adaptation pro-
cesses are usually highly system specific, it is a challenge to abstract from system details enabling the
reuse of adaptation strategies.

In addition to the architecture-level performance model introduced in the previous chapter, DML con-
tains meta-models to address this flexibility and variability of modern virtualized system environments.
Since current system adaptation approaches are usually based on the system-specific reconfiguration pos-
sibilities, the DML should also contain means to describe these system adaptation processes and heuris-
tics, abstracting from the system specific details. In summary, DML provides possibilities to model
system adaptation end-to-end, i.e., modeling the managed system and its adaptation possibilities up to
the processes or heuristics that actually adapt the system.

To better understand how DML can be used for model-based system adaptation, we explicitly separate
the DML into three parts as depicted in Figure 5.1.

System Architecture QoS Model The system architecture QoS model reflects the managed system
from the architectural point of view. This model corresponds to the architecture-level performance model
of DML introduced in Chapter 4. Thus, it comprises the same parts, such as application architecture
and resource landscape (see Figure 1.2) and can be used to give a detailed description of the system
architecture in a component-oriented fashion, parameterized to explicitly capture the influences of the
component execution context, e.g., the workload and the hardware environment.

In this section, we use the term system architecture QoS model instead of architecture-level perfor-
mance model because in general, other architecture-level performance models could be used, too (e.g.,
PCM) or even other architectural models describing other QoS attributes.

MOTIVATION AND BACKGROUND 65

Managed System

Adaptation Language

models

para-
meterizes

Lo
g

ic
a

l
V

ie
w

Te
ch

n
ic

a
l V

ie
w

Adaptation Points Model

1 GBit

... ...

4 GBit

Gbit
Switch

Application Servers

Database Server

reconfiguresevaluates

...

Strategies Tactics Actions

System Architecture QoS Model

<<BranchAction>>

CompA CompB

CompC CompD

InterfaceX InterfaceY InterfaceZ

<<Provides>>

<<Provides>> <<Requires>>

<<Requires>>

<<Provides>> <<Provides>>

<<Interface>>

<<Basic
Component>>

<<Basic
Component>>

<<Basic
Component>>

<<Composite
Component>>

<<Interface>> <<Interface>>
<<BranchTransition>>

Condition:
number.VALUE >= 0

<<BranchTransition>>
Condition:

number.VALUE < 0

CompA

Inst_CompC

<<CompositeComponent>>

<<AssemblyConte
xt>>

Inst_CompB

<<AssemblyConte
xt>>

Inst_CompD

<<AssemblyConte
xt>>

<<LoopAction>>
Loop iteration count:

array.NUMBER_OF_ELEMENTS

<<ExternalCallAction>>
requiredService2

<<ExternalCallAction>>
requiredService3

Figure 5.1: Interaction of the system, the system models and the S/T/A adaptation language.

Adaptation Points Model This model shall describe the degrees of freedom of the system architecture
in the context of the system architecture QoS model, i.e., the points where the system architecture can
be adapted at system run-time. Thereby, this model has to reflect the boundaries of the configuration
state space, defining the possible valid configurations the system architecture can have at run-time. For
example, the introduction of the resource abstraction layers like virtualization have the advantage of
increased flexibility. Resources can be added/removed from VMs at run-time, VMs can be migrated
while they are executed and so on. This flexibility must be reflected by the modeling abstractions. The
modeling concept introduced in Chapter 4 are focused on the static aspects of the system. The adaptation
points meta-model shall be used to annotate the static parts of the system architecture QoS model with
their variable and hence configurable aspects. We decided to introduce these concepts in a separate
model as including adaptation points within the static models has the disadvantage that the adaptation
points have to be specified for each instance of the static model, too. Having a separate annotation model
has the advantage that it can be used for, e.g., container types or component types. More practically,
the system architecture QoS model instances exist at run-time and are then changed online according
to the annotating adaptation points model. This is a difference to the approach in [47] which focuses
on the meta-model level to describe which variants of model instances can be created at design time,
i.e., it describes all possible variations of the component-based performance model instance. A further
advantage of an annotation model is that the static and dynamic elements can be managed independently.

The adaptation points described by the adaptation points model correspond to the operations exe-
cutable on the real system at run-time, e.g., adding virtual CPUs to VMs, migrating VMs or software
components, or load-balancing requests. Having explicit adaptation points models is essential to de-
couple the knowledge of the logical aspects of the system adaptation from technical aspects. System
designers can specify adaptation options based on their knowledge of the system architecture and the
adaptation actions they have implemented in a manner independent of the high-level adaptation pro-
cesses and plans. Furthermore, by using an explicit adaptation points model, system administrators are
forced to stay within the boundaries specified by the model.

The concepts of the adaptation points model as part of the DML will be introduced in Section 5.2.

66 MODEL-BASED SYSTEM ADAPTATION

Adaptation Language To model system adaptation end-to-end, we also need a concept to describe
different types of system adaptation processes. This could be deterministic and system-specific adap-
tation processes, e.g., rule-based system reconfiguration, or complex heuristics which adapt the system
according to user-specific strategies [38]. Accordingly, the meta-model to describe system adaptation
should provide enough flexibility to also model generic optimization algorithms or heuristics.

The use of an explicit adaptation points model is an important distinction of our approach from other
(self-)adaptive approaches based on architecture models [39, 38]. Such approaches typically integrate
the knowledge about the adaptation options and hence, the possible system states, in the operations and
tactics. Also important to mention is that the system architecture QoS model is capable of reflecting much
more details of the data center environment and software architecture than classical system architecture
models (e.g., as used in [39]). The main resulting benefit is that we have more information about the
system, thus being able to make better adaptation decisions and having more flexibility for reconfiguring
the model and real system, respectively.

The concepts of this part of the DML are explained in Section 5.3.

5.2 Adaptation Points Model

Today’s distributed IT systems are increasingly dynamic and offer various degrees of freedom for adapt-
ing the system at run-time. However, to realize model-based system adaptation, these properties must be
reflected on the model-level. In this section, we introduce the adaptation points meta-model as part of
the DML. The aim of the adaptation points meta-model is to annotate system architecture QoS models
to describe the degrees of freedom of the resource landscape and the application architecture, i.e., the
points where the system can be adapted at run-time. In other words, adaptation points at the model level
correspond to adaptation operations executable on the system at run-time. Other model elements that
may change at run-time but cannot be influenced directly (e.g., the usage profile) are not in the focus
of this meta-model. For example, changing the number of virtual Central Processing Units assigned
to Virtual Machines (VMs), migrating VMs or software components, or load-balancing requests, are
adaptation points of an adaptive system that can be modeled with our adaptation points meta-model. In
contrast, changes in the usage profile cannot be controlled. Thus, we do not consider them as adaptation
points. From a high-level perspective, the adaptation points meta-model provides possibilities to specify
the boundaries of the system’s configuration space, i.e., it defines the possible valid states of the system
architecture. However, it is not intended to specify how the actual change has to be performed on the
model or the system. This is part of the adaptation process meta-model which builds on the adaptation
points meta-model and will be introduced in Section 5.3.

name : String

NamedElement

id : String

Identifier

Entity

AdaptableEntity

Figure 5.2: Relation of Entity and AdaptableEntity.

ADAPTATION POINTS MODEL 67

The core question we face when designing an adaptation points meta-model is how to denote the en-
tities in the resource landscape or application architecture meta-models that can be adapted at run-time.
On the one hand, having an explicit type like AdaptableEntity (cf. Figure 5.2) in the meta-models makes
it easier to specify adaptation points for a given model instance (e.g., a resource landscape) since the
adaptable entities are already determined by their type (it is a sub-type of AdaptationEntity). Thus, the
advantage is that it is not necessary to know all details of the resource landscape model instance to specify
adaptation points. However, using AdaptableEntities as a type in the meta-model has the disadvantage
that all adaptable entities must be specified already at meta-model design time, i.e., further entities cannot
be added or removed without changing the meta-model. It is not always possible to distinguish adaptable
entities from non-adaptable entities when designing the meta-model. For example, imagine the Run-
timeEnvironment being of type AdaptableEntity. Then, any RuntimeEnvironment instance (hypervisors,
VMs, JVMs) would be an adaptable entity, too. The problem is that adaptation points are usually system
specific. For example, some systems support VM migration, whereas others do not. For these reasons,
we also would like to be able to describe adaptation points for meta-model instances, not only at the
meta-model level. This is a difference compared to the approach of [64] that focuses on the meta-model
level to describe which variants of model instances can be created at design time.

The question of how to denote adaptable entities and on which abstraction level of the Meta Ob-
ject Facility (MOF) standard [59] is also related to the question where to introduce them, i.e., in which
meta-model(s). Since the application architecture can be adapted as well, it is insufficient to introduce
adaptation point modeling constructs only in the resource landscape meta-model. Hence, to avoid having
such constructs in both meta-models, we decided to introduce our adaptation points concepts in a sepa-
rate meta-model. This has the advantage that aspects related to the static system architecture (resource
landscape and application architecture) are decoupled from aspects related to system adaptation. This
separates knowledge about what can be adapted from how to execute the adaptation. Furthermore, using
a separate adaptation points meta-model also has the advantage that resource allocation algorithms or
system adaptation processes can refer to adaptation points instead of operating on the model instance
directly. Thereby, information about where to change the model instance is not disclosed directly to the
person or program adapting the model. Instead, such information is considered as an explicit entity of the
model-based system adaptation process. Furthermore, the explicit definition of adaptation points helps
to specify valid system configurations. By using specified adaptation points within system adaptation
processes, inconsistent system states can be avoided. Another benefit of this separation is the support
of reuse and improved maintainability. For example, the adaptation point descriptions in our example
might be reused for other model instances, or for different adaptation processes.

Figure 5.3 depicts the structure of the adaptation points meta-model. The root element Adaptation-
PointDescriptions collects all adaptation point annotations for adaptable elements of system architecture
QoS models. We distinguish between two types of adaptations we can perform on the system architecture
QoS model: a) changing attribute values of model entities, e.g., the value of a PassiveResourceCapac-
ity and b) changing the number of instances of a model entity, e.g., a RuntimeEnvironment. These two
types of AdaptationPoints are modeled as ModelVariableConfigurationRange and ModelEntityConfigura-
tionRange, respectively. Note that in our approach, we consider only those parts of a model to be adapt-
able that are actually annotated by an AdaptationPoint. The reason is that even if a system technically
supports certain ways to be adapted, there might exist an instance of the system where it is prohibited to
change its configuration. An illustrating example is given by virtualized systems where in general, the
number of virtual resources assigned to virtual machines can be changed at run-time. However, in some
systems, this feature might be deactivated for reliability reasons.

68 MODEL-BASED SYSTEM ADAPTATION

AdaptationPointDescriptions AdaptationPoint AdaptableEntity

VariationType ModelEntityConfigurationRange

minValueConstraint : OclConstraint
maxValueConstraint : OclConstraint

PropertyRange

possibleValues : OclConstraint

SetOfConfigurations

Entity

minValue : EDouble
maxValue : EDouble

ModelVariableConfigurationRange

0..*

adaptationPoints

1adaptableEntity
variationPossibility

1

1

adaptableEntity

0..*

variants

Figure 5.3: Adaptation points meta-model.

A ModelVariableConfigurationRange refers to an AdaptableEntity and specifies the range in which the
attribute value of this AdaptableEntity can be altered, restricted by minValue and maxValue attributes.
An AdaptableEntity is a specialization of the abstract class Entity (cf. Figure 5.2). The type Entity is just a
convenience class and almost all classes of DML are sub-classes of this abstract class to inherit the name
and id attributes. The difference of AdaptableEntity compared to Entity is the following. If a meta-model
class extends AdaptableEntity, this denotes that the attribute values of this particular meta-model class are
explicitly adaptable. It is the responsibility of the AdaptableEntity to indicate which attribute of its child
is adaptable. All types with an attribute that is explicitly adaptable at run-time are modeled as a sub-type
of AdaptableEntity. An example for such an AdaptableEntity is the NumberOfParallelProcessingUnits
of a configuration specification (cf. Figure 4.33).

The ModelEntityConfigurationRange can be used to annotate other system architecture QoS model
instance entities that are not a sub-type of AdaptableEntity, e.g., the instances of a specific RuntimeEn-
vironment. The ModelEntityConfigurationRange refers to an Entity, denoting that this referred Entity
can be adapted. An Entity can be any entity of an system architecture QoS model instance, e.g., a Con-
tainer. The VariationType of the ModelEntityConfigurationRange specifies in more detail how this model
entity can vary. Currently, we distinguish two variation types: PropertyRange and SetOfConfigura-
tions. In contrast to the ModelVariableConfigurationRange where we specify an attribute value range,
the idea of the PropertyRange is to specify a range for the referred Entity. We use Object Constraint Lan-
guage (OCL) constraints (minValueConstraint and maxValueConstraint) to check whether the variation
is within the valid value range or not. For example, think of a constraint to set a minimum and maximum
amount of VM instances on a server. The SetOfConfigurations can be used to model any other kind of
variability that has no order or range, e.g., the deployment of a VM (Container) on a set of target hosts
(also Containers). In this case, possible target model instances are collected in the SetOfConfigurations,
which is a list of other Entities. In the example of the VM deployment, this set can contain the references
to different Container instances, i.e., a list of target hosts where the VM can be deployed on.

In summary, the adaptation points meta-model describes the degrees of freedom and the configura-
tion space of modern IT systems, specifying adaptation points in system architecture QoS models. The
AdaptableEntity can be used to denote adaptable entities on the meta-model level, whereas ModelEnti-
tyConfigurationRange provides the means for denoting an adaptable entity on the model instance level.
These concepts are not intended to describe all possible instance variants a system might have but to spec-
ify a boundary within which system adaptation processes can operate. How to model these adaptation
processes based on the adaptation points meta-model will be explained in Section 5.3.

ADAPTATION POINTS MODEL 69

Example The following example illustrates how to use the adaptation points meta-model to specify the
adaptable parts of the example resource landscape model instance introduced in Section 4.2.2. Figure 5.4
depicts the example model instance. The variable resources and model entities we consider here are the
number of virtual Central Processing Units (vCPUs) of a VM (NrOfVcpus), the number of VM instances
(VmInstances), and the location of a VM (VmHost).

<<ComputingInfrastructure>>

ComputeNode20

<<RuntimeEnvironment>>

XenServer20

<<RuntimeEnvironment>>

VMn

<<ComputingInfrastructure>>

ComputeNode20

<<RuntimeEnvironment>>

XenServer20

<<RuntimeEnvironment>>

VMn

<<ComputingInfrastructure>>

ComputeNode20

<<RuntimeEnvironment>>

XenServer20

<<RuntimeEnvironment>>

VMn

<<ComputingInfrastructure>>

ComputeNode20

<<RuntimeEnvironment>>

XenServer20

<<RuntimeEnvironment>>

VMn

<<RuntimeEnvironment>>

XenServer1

<<RuntimeEnvironment>>

VM1

<<RuntimeEnvironment>>

VM2

<<RuntimeEnvironment>> XenServer5.5Template

ofClass = HYPERVISOR

<<RuntimeEnvironment>> VmTemplate

ofClass = OS_VM

<<CustomConfigurationSpecification>>

non-functionalProperties =

 XenServer5.5ConfigurationModel

<<ActiveResourceSpecification>>

processingResourceType = vCPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 2

<<template>>

<<ComputingInfrastructure>>

DatabaseServer

<<ActiveResourceSpecification>>

processingResourceType = CPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 4

<<ActiveResourceSpecification>>

processingResourceType = CPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 4

<<ActiveResourceSpecification>>

processingResourceType = CPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 4

<<ActiveResourceSpecification>>

processingResourceType = CPU

processingRate = 2.66 GHz

schedulingPolicy = PROCESSOR_SHARING

numberOfCores = 4

<<ModelVariableConfigurationRange>> NrOfVcpus

minValue = 2

maxValue = 4

<<ModelEntityConfigurationRange>> VmInstances

variationType = PropertyRange

minValueConstraint = "minVmInstances"

maxValueConstraint = "maxVmInstances"

<<ModelEntityConfigurationRange>> VmHost

variationType = SetOfConfigurations

possibleValues = "XenServer1, XenServer2, ..."

Figure 5.4: Adaptation points meta-model instance annotating the resource landscape model example in
Figure 4.36.

Corresponding to these variable elements, the adaptation points model instance contains three differ-
ent adaptation points, one ModelVariableConfigurationRange and two ModelEntityConfigurationRange.
NrOfVcpus is of type ModelVariableConfigurationRange and specifies a configuration range in which
the number of virtual Central Processing Units of VmTemplate can be varied, limited by minValue = 2
and maxValue = 4. Also important to note is that the adaptation point refers to a ContainerTemplate.
This way, we can express that all virtual Central Processing Units (vCPUs) of all VMs referring to this
template can be varied in this range. Referring directly to a Container means that only the attribute value
of this specific container is adaptable.

The second adaptation point we annotate in our example resource landscape model instance is called
VmInstances and is an example for the variation type PropertyRange. It refers to the RuntimeEnviron-
ment template VmTemplate and specifies a PropertyRange using OCL constraints (cf. Listing 5.1).

context ModelEntityConfigurationRange
inv minVmInstances:

let similarContainers : Set(Container) = Container.allInstances()
-> select(c | c.template = self.adaptableEntity)

in similarContainers -> size() > 1;

context ModelEntityConfigurationRange
inv maxVmInstances:

let similarContainers : Set(Container) = Container.allInstances()
-> select(c | c.template = self.adaptableEntity)

in similarContainers -> size() < 4;

Listing 5.1: OCL constraints of VmInstances.

Both OCL constraints query for all Container instances and select those which refer to the same tem-

70 MODEL-BASED SYSTEM ADAPTATION

plate as the ModelEntityConfigurationRange. The resulting number must be above one and below four,
respectively. The OCL constraints ensure that each XenServer contains at least one VM and not more
than four. Note that for the correct evaluation of the OCL constraints the context of the OCL constraint
must be set to the ModelEntityConfigurationRange instance which actually refers to the model instance
entity to be evaluated. This is important because the context also limits the scope of the adaptation
possibilities.

The third adaptation point VmHost is an example of the variation type SetOfConfigurations. Its pur-
pose is to specify a changeable location of a VM which can be used for modeling a VM migration.
Therefore, it refers to the RuntimeEnvironment template VmTemplate as the adaptable model entity. Fur-
thermore, its attribute list possibleValues refers to a set of target hosts (XenServer1, . . . , XenServerN).
This list denotes the possible target hosts for the referred entity VmTemplate.

5.3 Adaptation Process Model

Any self-adaptive system follows a certain kind of process with the purpose to adapt itself to changes
in its environment such that operational goals are continuously fulfilled. In this context, operational
goals are either system-wide defined QoS properties the system has to fulfill or user-specific SLAs.
The adaptation process meta-model we present in the following is a modeling language to specify such
adaptation processes. In our meta-model, we define three main elements—Strategy, Tactic, and Action—
to describe the adaptation process at three different levels of abstraction (cf. Figure 5.5). We also refer
to this meta-model as Strategies/Tactics/Actions (S/T/A) adaptation language. At the highest abstraction
level are the strategies. Strategies aim at achieving a given high-level objective by applying one or more
tactics that are defined for this strategy. Tactics are more system-specific and pursue a short-term goal
by executing one or more adaptation actions. Actions implement the actual adaptation operations on
the system model or on the real system, respectively. Thus, they are the technical part of the adaptation
process, encapsulating system-specific details.

The novelty and important advantage of this modeling approach is that it distinguishes high-level goal-
oriented objectives (strategies) from low-level system-specific details (adaptation tactics and actions) and
explicitly separates platform specific adaptation operations from system-independent adaptation plans.

Before we explain the modeling abstractions of S/T/A in detail, we want to emphasize the conceptual
difference between strategies, tactics, and actions. A strategy captures the logical goal-oriented aspect of
an adaptation process. It defines the objective that needs to be accomplished and describes the possible
ways to achieve this objective. A strategy can be a complex, multi-layered plan for accomplishing the
objective. However, which step is taken next will depend on the current state of the system. Thus,
in the beginning, the sequence of tactics applied by the strategy is unknown. Which tactic is applied
next depends on the impact of the tactic, which is evaluated using the online performance prediction
capabilities of DML. This gives us the flexibility to react in unforeseen situations and switch to different
tactics. To give some examples, a defensive strategy for resolving a resource bottleneck could be “add
as few resources as possible stepwise until response time violations are resolved," whereas an aggressive
strategy would be “add a large amount of resources in one step so that response time violations are
eliminated, ignoring resource efficiency."

In contrast to strategies, tactics and actions realize the technical aspect that follows the planning of
an adaptation. While strategies are focused on how to act, i.e., on deciding which tactic might be most
effective w.r.t. the strategy’s objective given the current system state, tactics specify precisely which
actions to take without explicitly considering the effect. Therefore, tactics define a specific sequence

ADAPTATION PROCESS MODEL 71

StrategyX

TacticA

Action1

reconfigure

execute

use

trigger / guide

Events / Objectives

System Model /
Real System

StrategyY

TacticB TacticC

Action2

Action3

Action4

Actionn

System-
Specific

(Technical)

Goal-
Oriented
(Logical)

Figure 5.5: Main concepts of the adaptation process meta-model and their relations, bridging different
abstraction levels.

of actions and initiate the execution of these actions. Furthermore, we define tactics with the following
intrinsic semantics, inspired by the semantics of transactions in database systems: i) atomicity, i.e., either
the whole tactic with all its contained actions is executed or the tactic must be rolled back, ii) consistency,
i.e., the model’s state must be consistent after applying a tactic, and iii) determinism, i.e., tactics have
the same output when applied on the same model state. The motivation for the above definition of tactics
is to group and execute multiple actions in an atomic manner leaving the system model in a consistent
state. This is important because after applying a tactic, the effect of a tactic is evaluated leveraging
DML’s online performance prediction capabilities to analyze the tactic’s impact. This impact influences
how the strategy continues to adapt the system. After applying the tactic on the model, we evaluate
the impact of the tactic using online performance prediction techniques. If the application of a tactic is
predicted to contribute towards achieving the pursued adaptation goal, the tactic is maintained as part of
the constructed concrete adaptation plan to be executed on the real system later. Otherwise, the tactic is
rolled back and another tactic is applied. The configuration of the real system is only changed once we
have found a model state that is predicted to satisfy the adaptation goal.

The idea of distinguishing three abstraction levels is a valid concept and can be found in other ap-
proaches, too (e.g., [40, 65]. However, these approaches either do not consider an end-to-end model-
based approach or have limited expressiveness. In contrast to existing approaches, we propose a generic
meta-model explicitly defining the relation of strategies, tactics and actions to describe adaptation pro-
cesses at the architecture-level in an intuitive and easily maintainable manner while still providing the
flexibility to react in situations of uncertainty. In the following, we describe the concepts of our adapta-
tion process meta-model bottom-up, beginning with the actions (cf. Figure 5.5).

72 MODEL-BASED SYSTEM ADAPTATION

threshold : Double

relOperator : String

Specification Event

Strategy

OverallGoal

Objective

weight : Double

WeightedTactic

1..*objectives triggeringEvent

1objective

1

tactics

1..*

strategies

1..*

Strategy
WeightingFunction

1

AdaptationProcess Tactic AdaptationPlan

name : String

type : Type

Parameter

AbstractControlFlowElement

Action ActionReference

Start Stop

iterationCount : Integer

Loop

condition : OclExpr

context : Entity

Branch

usedTactic1

implemented

Plan

1tactics

1..*

steps

0..*

successor0..1

predecessor0..1

parameters

0..*

actions
1..*

outputParam0..1

inputParams0..*

outputParam0..1

inputParams0..*

referredAction

1

branches1..2

body1

Action

Tactic

MetricType

weight : Double

WeightedMetric

Impact
1

lastImpact

weightedMetrics

from meta-model

QosDataRepository

affected

Metrics

1

1..*1

metricType

1

cause

1

goal

weightingFunction

*

*

*

*

direction : AdaptationOperationDirection

scope : AdaptationOperationScope

AdaptationActionOperation

adaptationAction

Operation1

AdaptationPoint

1
adaptation

Point
INCREASE

DECREASE

MIGRATE

NOT_SET

«enumeration»

AdaptationOperationDirection

THIS

LEAST_UTIL_FIRST

MOST_UTIL_FIRST

ALL

NOT_SET

«enumeration»

AdaptationOperationScope

specifications

1..*

Figure 5.6: Adaptation process meta-model.

5.3.1 Actions

In Figure 5.6, we depict the meta-model of our adaptation language. Actions are the atomic elements on
the lowest level of the adaptation process’ hierarchy (cf. Figure 5.5). They represent the execution of an
adaptation operation on the model or the real system, respectively. Actions can refer to Parameters to
specify a set of input and output parameters. A parameter is specified by its name and type. Parameters
can be used to customize the action, e.g., to specify the source and target of a migration action or to use
return values (output parameters) of executed actions as input parameters for subsequent actions.

To model an adaptation operation, actions refer to adaptation points that have been specified with the
adaptation points meta-model. However, they do not specify how the operation is actually implemented,
neither at the model nor at the system level. The interpretation of the modeled action and the implemen-
tation of the actual adaptation operation is the responsibility of the adaptation framework interpreting the
adaptation process model instance. This is important to separate technical system-specific details from
logical aspects. To provide further semantics about how to interpret and perform the adaptation oper-
ation, an Action contains an AdaptationActionOperation. The AdaptationActionOperation describes the
direction and scope of the adaptation operation. The AdaptationOperationDirection specifies in which
“direction” to execute the adaptation. Currently, we support four different modes: INCREASE, DE-
CREASE, MIGRATE, and NOT_SET. For example, INCREASE indicates to increase the attribute value
of an AdaptableEntity or to scale up the number of instances of a model entity, whereas MIGRATE

ADAPTATION PROCESS MODEL 73

indicates to move an Entity. The AdaptationOperationScope specifies where to apply the adaptation
operation. This is important in case the adaptation operation can be applied to multiple model entities.
For example, if the adaptation point refers to a ContainerTemplate, the scope indicates if the adaptation
operation has to be applied to, e.g., ALL instances or the least utilized LEAST_UTIL_FIRST instance of
the set of Containers referring to this ContainerTemplate. The mode THIS can be used to indicate that
exactly this entity has to be changed. The list of modes is extensible, however, one must also extend the
adaptation framework to support newly introduced modes.

<<Action>>
AddVM

<<Action>>
AddVCPU

<<Action>>
RemoveVM

<<Action>>
RemoveVCPU

adaptationPoint = NrOfVcpus
direction = INCREASE
scope = MOST_UTIL_FIRST

adaptationPoint = VmInstances
direction = INCREASE
scope = MOST_UTIL_FIRST

adaptationPoint = NrOfVcpus
direction = DECREASE
scope = LEAST_UTIL_FIRST

adaptationPoint = VmInstances
direction = DECREASE
scope = LEAST_UTIL_FIRST

<<Action>>
MigrateVM

adaptationPoint = VmHost
direction = MIGRATE
scope = LEAST_UTIL_FIRST

Figure 5.7: Example Actions referring to adaptation points.

Example: Figure 5.7 shows five example actions. The type of actions that can be modeled depends on
the types of adaptation points that have been defined for the respective system architecture QoS model,
depicted in Figure 5.4. The actions AddVCPU and AddVM can be used to increase the amount of al-
located resources in a system, either by adding vCPUs to a VM (AddVCPU) or by adding new VMs
(AddVM). Similarly, RemoveVCPU and RemoveVM can be used to remove resources. MigrateVM can
be used to move VMs between hosts. To provide the adaptation framework with more details about how
to execute the respective modeled action, these actions also specify an AdaptationOperationDirection and
AdaptationOperationScope. In our example, the directions are either INCREASE or DECREASE, indi-
cating to increase or decrease the vCPUs parameter or the number of VM instances. The scopes indicate
that either the least or most utilized container instance referring to the container template VmTemplate
are the candidate to execute the adaptation operation. For the action MigrateVM, we specified the Adap-
tationOperationDirection MIGRATE to indicate that the adaptation framework should move the model
entity the adaptation point VmHost refers to. The scope LEAST_UTIL_FIRST specifies that the target
host for the migration is the least utilized host from the SetOfConfigurations specified by the adaptation
point.

5.3.2 Tactics

When modeling adaptation processes, each Tactic has a certain purpose (e.g., to scale-up resources) ex-
pressed by its specific AdaptationPlan. The AdaptationPlan describes a process of how the tactic pursues
its purpose, i.e., in which order to apply actions to adapt the system. Therefore, each AdaptationPlan con-
tains a set of AbstractControlFlowElements. The order of these control flow elements is determined by
their predecessor and successor relations. Concrete types of the AbstractControlFlowElement are Start
and Stop as well as Loop and Branch. They describe the control flow of the adaptation plan. Start and
Stop denote the beginning and end of the adaptation plan. The Loop element can be used to specify that
the adaptation plan in the body of the loop will be executed n times, whereas n is given by the attribute
iterationCount. A Branch has the semantic of conditional statement. Its intention is to influence the
control flow of the adaptation plan depending on the current model state. Therefore, it has two attributes,

74 MODEL-BASED SYSTEM ADAPTATION

condition and context. In this report, a condition is an OCL expression (invariants) which evaluates to
true or false depending on the current state of the model. The context for evaluating the OCL invariant
is given by the attribute context of the Branch. Furthermore, tactics can refer to Parameters to specify
input or output parameters. These parameters can be evaluated to influence the control flow, e.g., by
specifying iteration counts. Actions are integrated into the control flow by the ActionReference entity.

The advantage of the tactic’s AdaptationPlan concept is that AdaptationPlans specify a complex but
deterministic part of the adaptation process. This ensures that the previously mentioned requirement, that
Tactics are deterministic, is fulfilled. Furthermore, the execution of an AdaptationPlan is only complete
if all of its sub-steps have been completed. If any adaptation action on the model fails, the model can be
reset to the state before starting the AdaptationPlan. This ensures the atomicity property. After executing
an AdaptationPlan, we can also check if the adapted model is valid to ensure the consistency property
of Tactics. Given that our model-based system adaptation process relies on model analysis to guide
the adaptation process, it is important to regularly check the impact of adaptation actions on the system
performance. However, model analysis can be costly, which is why we decided to conduct model analysis
only after applying a tactic. Thus, the AdaptationPlan is also a way to bundle several model adaptation
actions to save costly analysis steps.

Example: In Figure 5.8, we show three example tactics using the previously presented actions Ad-
dResources, RemoveResources, and MigrateVM. The purpose of these tactics is to increase system
resources, e.g., to maintain SLAs, or to consolidate the system resources to increase efficiency.

<<Tactic>>
AddResources

<<Adaptation Plan>>

<<Loop>>
iterationCount = iterations

<<Action>>
AddVM

FALSE

TRUE

<<Action>>
AddVCPU

allServersAtMaxCap

<<InputParameter>>
name = "iterations"
type = Integer

<<Tactic>>
MigrateVM

<<Adaptation Plan>>

<<Action>>
MigrateVM

<<Tactic>>
RemoveResources

<<Adaptation Plan>> <<Action>>
RemoveVCPU

FALSE

TRUEserverAtMinCapExists
<<Action>>
RemoveVM

Figure 5.8: Different example Tactics using the previously specified Actions.

The adaptation plan of the tactic AddResources implements a Loop action executed as many times
as specified in iterations, which is an input parameter to this tactic. With this parameter one can specify
how many resources to add by executing the tactic. The body of the Loop action implements two actions,
AddVCPU and AddVM. Which action is executed depends on the current state of the underlying system
architecture QoS model. In this example, a Branch with the condition allServersAtMaxCap ensures
that the NumberOfParallelProcessingUnits is below the maximum value of four. The OCL constraint for

ADAPTATION PROCESS MODEL 75

the condition allServersAtMaxCap is given in Listing 5.2. If this constraint evaluates to true, the
AddVCPU action is executed to add an additional vCPU to a VM. Else, the AddVM action adds a new
VM. The adaptation plan of this tactic is also a good example to illustrate the separation of technical and
logical details because the tactic specifies that resources should be added but it does not specify how to
implement this as it is an implementation- and/or system-specific detail.

context RuntimeEnvironment
inv allServersAtMaxCap:

RuntimeEnvironment.allInstances()
-> select(re | re.template = self.template)

-> exists(re | re.configSpec.oclAsType(
resourceconfiguration::ActiveResourceSpecification)
.processingResourceSpecifications

-> forAll(nrOfParProcUnits.number < 4)
and
RuntimeEnvironment.allInstances()
-> select(re | re.template = self.template)

-> forAll(re | re.template.templateConfig.oclAsType(
resourceconfiguration::ActiveResourceSpecification)
.processingResourceSpecifications

-> forAll(nrOfParProcUnits.number < 4)

Listing 5.2: OCL invariant allServersAtMaxCap of the AddResources tactic.

The adaptation plan of the tactic RemoveResources either removes a VM if there is a runtime en-
vironment running at minimum capacity or removes a vCPUs from a VM, otherwise. The VM to be
removed is determined by the OCL constraint identifying the VM running at minimum capacity (List-
ing 5.3). This tactic can be considered as a conservative tactic, as it removes no more than one resource
unit at a time. To remove further resources, the tactic must be executed again. The advantage of this
conservative tactic is that it reduces the resources stepwise and after each step (i.e., after applying one
tactic), the impact of the tactic is evaluated.

context RuntimeEnvironment
inv serverAtMinCapExists:

RuntimeEnvironment.allInstances()
-> select(re | re.template = self.template

and not re.configSpec -> isEmpty())
->exists(re | re.configSpec.oclAsType(

resourceconfiguration::ActiveResourceSpecification)
.processingResourceSpecifications

-> forAll(nrOfParProcUnits.number > 1))

Listing 5.3: OCL invariant serverAtMinCapExists of the RemoveResources tactic.

Tactic MigrateVM contains an adaptation plan with only one action, MigrateVM. This tactic’s purpose
is to increase resource efficiency by migrating VMs.

76 MODEL-BASED SYSTEM ADAPTATION

5.3.3 Strategies

Any modeled adaptation process pursues an overall goal consisting of one or more different Objectives.
The purpose of a Strategy is to achieve an Objective. An objective contains one or more Specifications
to express the objective in a machine processable way (e.g., avg. response time of service x < τ). A
Specification refers to a MetricType and defines a threshold τ for this metric type. The specification also
contains a relational operator relOperator (like >,≤,=) that determines how to compare the metric type
with the threshold. The specifications will be used later when evaluating the impact of the tactics used by
the strategy. Note that other, more complex Specifications like goal policies or utility functions referring
to multiple metric types (e.g., resource usage vs. utilization) can be added here, too. All objectives
are collected within the OverallGoal. The OverallGoal has no explicitly defined semantics. It serves
as a human-readable description of the overall goal of the adaptation process. Note that it is explicitly
allowed to have multiple alternative strategies for the same objective because strategies might differ in
their implementation but pursue the same objective.

The execution of a strategy is triggered by a specific Event that occurs during system operation, e.g.,
an event emitted periodically to maintain system resource efficiency or an event caused when a given
Objective is violated. Such events trigger the execution of the strategy they are associated with to ensure
that the objective of the strategy is achieved. In our approach, we assume that events occur sequentially
and that they trigger only one strategy. This avoids inconsistencies through multiple strategies operating
at the same time with possibly conflicting objectives. However, this does not limit our approach to
scenarios without conflicting objectives. In our approach, we can handle such situations by designing
strategies that express the conflicting objectives as utility functions like in the example by [66]. The
respective strategy in such a situation must contain suitable tactics and apply them such that the trade-off
expressed by the utility function is achieved.

To achieve its objective, a strategy can choose from a set of WeightedTactics. Which tactic it uses
depends on the current weight of the tactics, which is determined by the impact the tactic achieved when
executed. These weights are calculated according to the strategy’s WeightingFunction, which is explained
in Section 5.3.5. The reason why we use weighted tactics is that this concept introduces a certain amount
of indeterminism at a higher abstraction level. Having this indeterminism at the strategy level provides
flexibility to find new solutions if a tactic turns out to be inappropriate for the current system state.

Example: Figure 5.9 depicts two example strategies. The first strategy is the ResolveBottleneck strat-
egy with the objective to improve response times to maintain SLAs (90% quantile of response time rtx <
500 ms), and a ReduceResources strategy with the objective to optimize resource efficiency (Over-
allUtilization > 60%). To specify these objectives on the model level, their specification refer to the
respective MetricTypes. The ResolveBottleneck strategy uses only one tactic, namely AddResources,
and is triggered by the SlaViolated event. After the tactic has been successfully applied at the model
level, the system architecture QoS model is analyzed to predict the impact on the metric type referred by
the objective. If the prediction results still reveal SLA violations, the strategy executes the tactic again
until all SLA violations are resolved and the strategy has reached its objective.

The ReduceResources strategy is triggered with the objective OptimizeResourceEfficiency. The trig-
ger of the related event could be, e.g., a predefined schedule. The ReduceResources strategy refers to
two tactics. RemoveResources reduces the amount of resources used by the system whereas Migrat-
eVM aims at increasing resource efficiency by consolidating VMs. After the execution of the tactic, the
underlying system architecture QoS model is analyzed to predict the effect of the tactic on the system
performance. If no SLA violation is detected, the strategy can continue removing or consolidating re-
sources. In case an SLA violation occurs, the application of the last tactic must be reverted, i.e., the

ADAPTATION PROCESS MODEL 77

<<Strategy>>
ReduceResources

<<Strategy>>
ResolveBottleneck

<<Event>>
SlaViolated

<<Objective>>
MaintainSLAs

<<Event>>
Scheduled

Optimization

<<Objective>>
OptimizeResourceEfficiency

<<OverallGoal>>
"Maintain SLAs of all

services using resources
efficiently"

objective objective

hasObjectives hasObjectives

<<MetricType>>
90%_Quantile_of_rtx

<<MetricType>>
OverallUtilization

<<Specification>>

< 500ms
<<Specification>>

> 60%

<<WeightedTactic>>
AddResources
weight = 1.0

<<Adaptation Plan>>

<<Loop>>
iterationCount = iterations

<<Action>>
AddVM

FALSE

TRUE

<<Action>>
AddVCPU

allServersAtMaxCap

<<InputParameter>>
name = "iterations"
type = Integer

<<uses>>

<<uses>>

<<WeightedTactic>>
RemoveResources
weight = 1.0

<<Adaptation Plan>> <<Action>>
RemoveVCPU

FALSE

TRUEserverAtMinCapExists
<<Action>>
RemoveVM

<<WeightedTactic>>
MigrateVM
weight = 0.5

<<Adaptation Plan>>

<<Action>>
MigrateVM

<<uses>>

Figure 5.9: Example Strategies using Tactics with assigned weights.

adaptation framework must undo the adaptation actions of the tactic’s adaptation plan. Which of these
two tactics is chosen depends on their current weights. In our example, the initial values are 1.0 for Re-
moveResources and 0.5 for MigrateVM. The concepts of the weighting function will be presented with
more details in Section 5.3.5.

5.3.4 QoS Data Repository

To evaluate the effect of executed tactics, we use QoS-related metrics that can be measured at the model
and system level, respectively. We collect and store such measurements in a repository that can be
queried later, e.g., to quantify the effect of tactics on metrics that are relevant for the strategy’s objective.

This repository is called QoSDataRepository (cf. Figure 5.10). It contains a set of MetricTypes that
can be obtained from the model or system, respectively. The MetricTypes are identified by their name.
Examples for such MetricTypes are the average response time of servicex, the 90% quantile of response
time of servicey, or the average utilization of resourcen.

The repository also contains a history of Results. A Result is a set of MetricValues collected at a given
point in time (timestamp). A MetricValue contains the actual value of a MetricType at this time point.
Based on this information we can describe the achieved Impact of a tactic as the difference between two
Results that have been obtained before and after the application of a tactic. For example, if the value of a
metric was 500 ms and is 200 ms after the execution, the impact would be -300 ms, i.e., an improvement
of the response time metric.

Our intention was not to define a new meta-model for QoS metrics and values but rather a quick and
easy way to query QoS-relevant data. Thus, we kept this meta-model very basic to adapt and re-use

78 MODEL-BASED SYSTEM ADAPTATION

timestamp : Date

Result

QosDataRepository
name : String

MetricType
metricList

Impact

before

after

value : Double

MetricValue
1..*

1

1

1

resultHistory

1..*

1..*

impact

List

1..*

*

value

type

Figure 5.10: The QoS data repository meta-model.

it in other scenarios. For example, this meta-model can serve as a decorator model for the Structured
Metrics Metamodel (SMM), developed by the Architecture-Driven Modernization Task Force of the [67].
Thereby, it is easier to reuse other existing tools based on SMM, e.g., the MAMBA Execution Engine and
Query Language of [68]. When decorating SMM, the class MetricType refers to the ObservedMeasure
of the SMM, a MetricValue corresponds to the Measurement of the SMM, and Result corresponds to
Observation. In this way, we can use data that has already been collected and stored in a repository by
measurement tools like Kieker [69]. Additionally, for this meta-model we can easily provide a connector
for the Query Engine [70, 71]. Then, one can use the Descartes Query Language (DQL) [70] to formulate
SQL-like statements to easily query relevant performance data from our repository.

5.3.5 Weighting Function

To decide which tactic to apply next, a strategy chooses the tactic that has the highest weight. The weight
is calculated and assigned directly after executing the tactic, so the strategy might choose a different tactic
in the next adaptation step. The actual value of the weight of a tactic depends on the impact the tactic
achieved in the adaptation process, i.e., if metrics of interest have been improved or degraded. How to
calculate such weights can be specified with a WeightingFunction. In our context, a weighting function
is formally specified as follows. Let

T = {t1, t2, . . . , tl} be the set of tactics,

M = {m1,m2, . . . ,mm} be the set of metric types,

S = {1,2, . . . ,n} denote the adaptation iterations of the system adaptation process, and

Vs = {vs(m1),vs(m2), . . . ,vs(mm)} be the set of metric values at adaptation step s ∈ S.

Then, we define a weighting function as

f : T ×S→ R,

i.e., function that assigns a real number (the weight) to the given tactic t at a given adaptation step s.
The idea is that any existing optimization algorithms or meta-heuristics like Tabu Search or Simulated

ADAPTATION PROCESS MODEL 79

Annealing (cf. [72]) can be used here to determine the weights depending on the current state of the
system. As future work, it is also possible do define weighting functions that also consider a certain
number of previous system states.

Currently, we specify weighting functions that are based on performance metrics. However, our ap-
proach can be easily extended with other more complex weighting functions and weighting functions
for other QoS properties. Our WeightingFunction uses one or more WeightedMetrics (cf. Figure 5.6) to
calculate the weight for a tactic. A WeightedMetric assigns a specific weight to the referred MetricType.
More formally, we define a weighting function w : M→ R that assigns a real number to any metric type
m ∈ M. The weight of a metric type can be used to express the importance of this metric type to the
overall result of the weighting function. In contrast to the weights of tactics, this weight assigned to
metrics is specified when designing the adaptation process and is fixed during the adaptation process. In
a weighting function, the weights for metrics are used as follows. To determine the weight for an applied
tactic t, we calculate the achieved Impact of t on each metric m ∈ Mt and multiply it with the weight
that is assigned to m, where Mt ⊆M, containing only the metric types affected by t. More formally, the
weight for a tactic t is calculated as

f (t,s) = ∑
m∈Mt

is(m) ·w(m)

where is(m) is the impact of tactic t on metric type m ∈Mt and w(m) is the weight assigned to metric
type m ∈Mt . To quantify this impact, we calculate the delta of the values of the relevant metric types at
the timestamps before and after the application of a tactic

is(m) = vs(m)− vs−1(m).

In other words, the weights of the set of metric types multiplied with the impact of the applied tactic on
these metric types determines the weight that is assigned to the tactic. The reason why we use weights
is that they are machine-processable and they relate directly to our specification of Objectives, which
also refer to the same MetricTypes. The specification of the WeightingFunction can be based on or even
derived from the strategy’s objective. However, this (automatic) derivation is part of future work.

Example: To illustrate our WeightingFunction concept, we give two example weighting functions for
our example strategies depicted in Figure 5.9. Imagine that the ResolveBottleneck strategy’s objective is
to maintain SLAs, but it should prioritize tactics that have a beneficial impact on the services of the more
important customers. Therefore, assume that we have two different services, one of a gold customer
(servicegold) and one of a silver customer (servicesilver). For each of these services, we observe the
metric types 90% quantile of the response time, i.e., M = {rtgold ,rtsilver}. To prioritize the impact on
the response time of the gold customer’s service over the one of the silver customer, we set the weighted
metrics to w(rtgold) =−2.0 and w(rtsilver) =−1.0. Note that the weights are negative because improving
the response time results in a negative impact. To assure that a tactic which is beneficial for the gold
service gets a higher weight, we can specify a weighting function

∀s ∈ S : fResolveBottleneck(t,s) := ∑
m∈M

w(m)is(m)

that assigns weights depending on the impact on the response times of the gold and silver customer,
respectively.

80 MODEL-BASED SYSTEM ADAPTATION

Another example is the weighting function we specified for the ReduceResources strategy to assign
new weights to the tactic RemoveResources and MigrateVM.

∀s ∈ S : fReduceResources(t,s) :=

{
1, if rtgold < τ ∧ rtsilver < τ

0, else.

This function assigns a weight of one to the given tactic t as long as the response time metrics M are
below the given threshold τ , i.e., the SLAs are not violated. Only if an SLA is violated, the weight of the
given tactic is changed to zero to yield precedence to other tactics. Hence, our example strategy depicted
in Figure 5.9 first applies tactic RemoveResources because it has a weight of one and continues to apply
this tactic until the strategy’s objective is fulfilled or the weighting function assigns a weight of zero.
Then, the strategy would continue with the MigrateVM tactic since it has a weight of 0.5.

Chapter 6

Discussion

This report presented Descartes Modeling Language (DML), a new architecture-level modeling language
for modeling Quality-of-Service (QoS) and resource management related aspects of modern dynamic
IT systems, infrastructures and services. After providing a brief overview on related work concerning
performance modeling and run-time system adaptation in Chapter 2, we introduced an exemplary online
prediction scenario for DML in Chapter 3. The modeling abstractions are presented as meta-models in
Chapter 4 and Chapter 5, including illustrative modeling examples.

To conclude this report, we provide a discussion of the differences between DML and Palladio Com-
ponent Model (PCM) [11], with PCM being one of the most advanced architecture-level performance
modeling languages in terms of parameterization [15]. Afterwards, we provide an outlook on future
work.

6.1 Differences between DML and PCM

The differences between the two architecture-level performance modeling languages DML and PCM
stem from their different scopes. While PCM is focussed on modeling design-time Quality of Service
(QoS) properties of component-based software systems, DML focusses on the run-time aspects. As al-
ready pointed out in Section 1.2, these two different goals lead to different requirements on the modeling
abstractions. In the following, we list concrete modeling aspects where PCM and DML differ:

• PCM supports and advocates the explicit specification of dependencies between model parameters,
i.e., as explicit mathematical function. While this is valid in design-time scenarios, DML supports
and advocates the probabilistic characterization of parameter dependencies based on monitoring
data that is collected at run-time. In Section 4.1.5.1, we explained why this is more practical in
run-time scenarios, and showed that explicit specifications often cannot be provided.

• DML supports to model parameter characterizations that are dependent on the component as-
sembly, i.e., flexible characterizations for different component instances of the same component
type. In PCM, parameter characterizations are fixed for the surrounding component type. Dif-
ferences between component instances are intended to be captured by explicit parameterizations.
Thus, in run-time scenarios where representative monitoring data is available, only DML offers
a convenient approach to make use of such monitoring data for parameter characterization (see
Section 4.1.4).

• PCM supports to model service behavior depending on service input parameters passed upon ser-
vice invocation. However, as explained in Section 4.1.5.1, the behavior of software components
is often dependent on parameters that are not available as direct service input parameters. DML

82 DISCUSSION

provides means to pass such influencing parameters to the service models whose behavior is influ-
enced (see Section 4.1.5.2).

• In contrast to PCM, DML supports modeling multiple service behavior abstractions of different
granularity for the same service. This allows for flexible performance predictions, ranging from
quick bounds analysis to detailed model simulations (see Section 4.1.3).

• DML supports the modeling of complex multi-layered resource landscapes. Furthermore, it pro-
vides a template modeling mechanism that eases the re-use of resource specifications among sev-
eral resource containers. This is particularly useful to model virtualization layers, to specify Virtual
Machines (VMs) that stem from the same VM image (see Section 4.2).

• Furthermore, as described in Chapter 5, DML provides means to specify adaptation points as well
as adaptation processes. This is out of scope for PCM.

6.2 Ongoing and Future Work

Further details on DML, e.g., on model parameterization and model solving, or on the integration of
DML into an autonomic performance-aware resource management process can be found in the two phd
theses [16] and [22], respectively. DML provides a basis for several areas of future work. In the following
overview, we provide several pointers for research extending our work.

Load-Dependent Resource Demands In classical performance engineering, resource demands are
typically assumed to be load-independent. However, modern processors implement Dynamic Voltage
and Frequency Scaling (DVFS) mechanisms that adapt the processor speed depending on the current
load. Thus, resource demands may appear to be load-dependent. To further increase the prediction
accuracy, this load-dependency should be considered. Current versions of established model solvers are
lacking support for solving performance models with load-dependent resource demands [29]. Hence, in
order to support load-dependent resource demands, one should first extend the existing model solvers and
then integrate the notion of a load-dependent resource demand in the model abstractions and resource
demand estimation approaches.

Event-Based Systems The work in [73] describes how event-based interactions in component-based
architectures can be modeled. It furthermore provides a generic approach how the developed model-
ing abstractions can be integrated into an architecture-level performance model. This approach can be
applied to extend DML in order to add support for modeling event-based interactions such as point-to-
point connections or decoupled publish/subscribe interactions. Platform-specific details about the event
processing within the communication middleware are encapsulated.

Integration of Specialized Resource Modeling Approaches As part of ongoing research projects,
suitable modeling abstractions for network infrastructures [56, 57, 74] and storage systems [55, 75] are
under development. Given that these modeling approaches focus on network models respectively stor-
age models, they aim to support: (i) more accurate performance analysis than what is possible with
coarse-grained resource models, and (ii) further degrees-of-freedom when evaluating fine-granular con-
figuration options of network infrastructures or storage systems. To obtain performance predictions,

ONGOING AND FUTURE WORK 83

these specialized performance models require detailed workload profiles as input. Using DML, such
workload profiles can be derived from the modeled application layer and the corresponding usage pro-
file. These specialized modeling approaches should be integrated in DML, on the one hand, to increase
the modeling capabilities of DML, on the other hand, to simplify the applicability of the specialized
models.

QoS Properties Beyond Performance The presented DML approach is focused on performance pre-
diction, however, the general modeling approach is not limited to performance. In future work, DML
could be extended to support the analysis of further QoS properties. For instance, architecture-based
reliability analysis [76] could be integrated in DML in order to support evaluations of trade-offs between
performance and reliability. For example, database transactions failed due to optimistic locking can be
retried multiple times. This may increase reliability at the cost of performance. Other system properties
such as power consumption and operating costs are gaining in importance. In particular, adding cost
estimates to DML would allow multi-criteria optimizations trading-off between performance and costs
(cf. [77]).

Explicit Consideration of Adaptation Costs During an adaptation process, different adaptation ac-
tions might exhibit different costs in terms of execution time or impact on the performance and efficiency
of the running system. For example, a VM migration takes more time than adding virtual resources and
has a significant impact on the network performance. On the other hand, the performance gain of VM
migrating could be higher than adding virtual resources. Thus, it is of interest to investigate methods to
quantify the adaptation cost of different adaptation actions and to extend the modeling abstractions to
express such costs explicitly. Then, the expressed costs can be considered in the adaptation process to
trade-off adaptation costs with their achieved impact on system performance and efficiency.

Self-Aware Computing Systems The long-term vision of the Descartes Research Project — the re-
search project behind DML — is to develop new methods for the engineering of self-aware computing
systems. The latter are designed with built-in online QoS prediction and self-adaptation capabilities used
to enforce QoS requirements in a cost- and energy-efficient manner. For the definition of self-awareness
in this context, see Section 1.4. DML lays the foundation for this vision. In the future, self-aware com-
puting systems should be designed from the ground up with built-in self-reflective, self-predictive, and
self-adaptive capabilities. Furthermore, the overall approach should be applied in industrial coopera-
tions to showcase the applicability of our approach and thereby establish the vision of the self-aware
computing paradigm.

Bibliography

[1] Samuel Kounev, Fabian Brosig, Nikolaus Huber, and Ralf Reussner, “Towards self-aware perfor-
mance and resource management in modern service-oriented systems”, in Proceedings of the 7th
IEEE International Conference on Services Computing (SCC 2010), July 5-10, Miami, Florida,
USA. 2010, IEEE Computer Society.

[2] Samuel Kounev, “Self-Aware Software and Systems Engineering: A Vision and Research
Roadmap”, in GI Softwaretechnik-Trends, 31(4), November 2011, ISSN 0720-8928, Karlsruhe,
Germany, 2011.

[3] Dave Durkee, “Why cloud computing will never be free”, Commun. ACM, vol. 53, no. 5, pp.
62–69, May 2010.

[4] Steve Lohr, “Amazon’s trouble raises cloud computing doubts”, The New York Times, April 2011,
http://www.nytimes.com/2011/04/23/technology/23cloud.html?_r=1.

[5] Carl Brooks, “Cloud slas the next bugbear for enterprise it”, Online, June
2011, http://searchcloudcomputing.techtarget.com/news/2240036361/
Cloud-SLAs-the-next-bugbear-for-enterprise-IT.

[6] Samuel Kounev, Philipp Reinecke, Kaustubh Joshi, Jeremy Bradley, Fabian Brosig, Vlastimil
Babka, S. Gilmore, and A. Stefanek, Resilience Assessment and Evaluation of Computing Sys-
tems, chapter Providing Dependability and Resilience in the Cloud: Challenges and Opportunities,
Dagstuhl Seminar 10292. Springer Verlag, 2011.

[7] D. Menascé and V. Almeida, Scaling for E-Business˜- Technologies, Models, Performance and
Capacity Planning, Prentice Hall, Upper Saddle River, NJ, 2000.

[8] R. Nou, S. Kounev, F. Julia, and J. Torres, “Autonomic QoS control in enterprise Grid environments
using online simulation”, Journal of Systems and Software, vol. 82, no. 3, 2009.

[9] Jim Li, John Chinneck, Murray Woodside, Marin Litoiu, and Gabriel Iszlai, “Performance model
driven QoS guarantees and optimization in clouds”, in CLOUD ’09: Proceedings of the 2009 ICSE
Workshop on Software Engineering Challenges of Cloud Computing, Washington, DC, USA, 2009,
pp. 15–22, IEEE Computer Society.

[10] Gueyoung Jung, M.A. Hiltunen, K.R. Joshi, R.D. Schlichting, and C. Pu, “Mistral: Dynamically
managing power, performance, and adaptation cost in cloud infrastructures”, in Distributed Com-
puting Systems (ICDCS), 2010 IEEE 30th International Conference on, june 2010, pp. 62 –73.

[11] Steffen Becker, Heiko Koziolek, and Ralf Reussner, “The palladio component model for model-
driven performance prediction”, Journal of Systems and Software, vol. 82, no. 1, pp. 3 – 22, 2009.

http://www.nytimes.com/2011/04/23/technology/23cloud.html?_r=1
http://searchcloudcomputing.techtarget.com/news/2240036361/Cloud-SLAs-the-next-bugbear-for-enterprise-IT
http://searchcloudcomputing.techtarget.com/news/2240036361/Cloud-SLAs-the-next-bugbear-for-enterprise-IT

86 BIBLIOGRAPHY

[12] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta, “Filling the gap between design and
performance/reliability models of component-based systems: A model-driven approach”, Journal
of Systems and Software, vol. 80, no. 4, pp. 528–558, April 2007.

[13] Connie U. Smith, Catalina M. Lladó, Vittorio Cortellessa, Antinisca Di Marco, and Lloyd G.
Williams, “From UML models to software performance results: an SPE process based on XML
interchange formats”, in WOSP ’05: Proceedings of the 5th international Workshop on Software
and Performance, New York, NY, USA, 2005, pp. 87–98, ACM Press.

[14] Object Management Group (OMG), “UML Profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE)”, May 2006.

[15] H. Koziolek, “Performance evaluation of component-based software systems: A survey”, Perfor-
mance Evaluation, 2009.

[16] Fabian Brosig, Architecture-Level Software Performance Models for Online Performance Predic-
tion, PhD thesis, Karlsruhe Institute of Technology (KIT), 2014.

[17] Clemens Szyperski, Dominik Gruntz, and Stephan Murer, Component Software: Beyond Object-
Oriented Programming, ACM Press and Addison-Wesley, New York, NY, 2 edition, 2002.

[18] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich Amrehn, “Self-Adaptive Work-
load Classification and Forecasting for Proactive Resource Provisioning”, Concurrency and Com-
putation - Practice and Experience, Special Issue with extended versions of the best papers from
ICPE 2013, John Wiley and Sons, Ltd., 2014.

[19] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich Amrehn, “Self-Adaptive Work-
load Classification and Forecasting for Proactive Resource Provisioning”, in Proceedings of the 4th
ACM/SPEC International Conference on Performance Engineering (ICPE 2013), New York, NY,
USA, April 2013, pp. 187–198, ACM.

[20] VMware, “Resource Management with VMware DRS”, http://www.vmware.com/pdf/
vmware_drs_wp.pdf, 2006, Version 2006-06-05. Last visit: 2014-04-30.

[21] Amazon Web Services, “Amazon auto scaling”, http://aws.amazon.com/
documentation/autoscaling/, 2010, Last visit: 2014-03-22.

[22] Nikolaus Huber, Autonomic Performance-Aware Resource Management in Dynamic IT Service
Infrastructures, PhD thesis, Karlsruhe Institute of Technology (KIT), 2014.

[23] Nikolaus Huber, André van Hoorn, Anne Koziolek, Fabian Brosig, and Samuel Kounev, “Model-
ing Run-Time Adaptation at the System Architecture Level in Dynamic Service-Oriented Environ-
ments”, Service Oriented Computing and Applications Journal (SOCA), 2013.

[24] Fabian Brosig, Nikolaus Huber, and Samuel Kounev, “Automated Extraction of Architecture-Level
Performance Models of Distributed Component-Based Systems”, in 26th IEEE/ACM International
Conference On Automated Software Engineering (ASE 2011), Oread, Lawrence, Kansas, November
2011.

http://www.vmware.com/pdf/vmware_drs_wp.pdf
http://www.vmware.com/pdf/vmware_drs_wp.pdf
http://aws.amazon.com/documentation/autoscaling/
http://aws.amazon.com/documentation/autoscaling/

BIBLIOGRAPHY 87

[25] Samuel Kounev, Konstantin Bender, Fabian Brosig, Nikolaus Huber, and Russell Okamoto, “Au-
tomated simulation-based capacity planning for enterprise data fabrics”, in 4th International ICST
Conference on Simulation Tools and Techniques (SIMUtools 2011), March 21–25, 2011, Barcelona,
Spain, 2011, Acceptance Rate (Full Paper): 29.8% (23/77), ICSTBest Paper Award.

[26] Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel Kounev, “Evaluating and Mod-
eling Virtualization Performance Overhead for Cloud Environments”, in Proceedings of the 1st
International Conference on Cloud Computing and Services Science (CLOSER 2011), Noordwijk-
erhout, The Netherlands. May 7-9 2011, pp. 563 – 573, SciTePress.

[27] Nikolaus Huber, Fabian Brosig, and Samuel Kounev, “Model-based Self-Adaptive Resource Allo-
cation in Virtualized Environments”, in SEAMS’11, 2011.

[28] Philipp Meier, Samuel Kounev, and Heiko Koziolek, “Automated Transformation of Palladio Com-
ponent Models to Queueing Petri Nets”, in In 19th IEEE/ACM International Symposium on Mod-
eling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 2011),
Singapore, July 25–27, 2011, July 2011.

[29] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni, “Model-Based
Performance Prediction in Software Development: A Survey”, IEEE Transactions on Software
Engineering, vol. 30, no. 5, May 2004.

[30] Samuel Kounev, “Performance Modeling and Evaluation of Distributed Component-Based Systems
Using Queueing Petri Nets”, IEEE Transactions on Software Engineering, vol. 32, no. 7, pp. 486–
502, July 2006.

[31] S. Gilmore, V. Haenel, L. Kloul, and M. Maidl, “Choreographing Security and Performance Anal-
ysis for Web Services”, in EPEW and WS-FM, 2005, LNCS.

[32] E. Eskenazi, A. Fioukov, and D. Hammer, “Performance Prediction for Component Compositions”,
in Proceedings of the 7th International Symposium on Component-based Software Engineering
(CBSE7), 2004.

[33] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek, “Fusion: a framework for engineering self-
tuning self-adaptive software systems”, in Proc. of FSE’10. 2010, ACM.

[34] Object Management Group (OMG), “UML-SPT: UML Profile for Schedulability, Performance,
and Time, v1.1”, January 2005.

[35] Dorina Petriu and Murray Woodside, “An intermediate metamodel with scenarios and resources
for generating performance models from uml designs”, Software and Systems Modeling (SoSyM),
vol. 6, no. 2, pp. 163–184, June 2007.

[36] S. Kounev, F. Brosig, N. Huber, and R. Reussner, “Towards self-aware performance and resource
management in modern service-oriented systems”, in Proc. of IEEE Intl Conf. on Services Com-
puting, 2010.

[37] Joseph L. Hellerstein, “Engineering autonomic systems”, in Proceedings of the International
Conference on Autonomic Computing, 2009.

88 BIBLIOGRAPHY

[38] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory Johnson,
Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L. Wolf, “An architecture-
based approach to self-adaptive software”, IEEE Intelligent Systems, vol. 14, no. 3, pp. 54–62, May
1999.

[39] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow: Architecture-based
self-adaptation with reusable infrastructure”, Computer, vol. 37, no. 10, pp. 46–54, 2004.

[40] J.O. Kephart and W.E. Walsh, “An artificial intelligence perspective on autonomic computing
policies”, in IEEE Int’l Workshop on Policies for Distributed Systems and Networks, 2004.

[41] Shang-Wen Cheng, David Garlan, and Bradley Schmerl, “Architecture-based self-adaptation in
the presence of multiple objectives”, in Proceedings of the Workshop on Software Engineering for
Adaptive and Self-Managing Systems. 2006, ACM.

[42] Shang-Wen Cheng, Rainbow: cost-effective software architecture-based self-adaptation, PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2008, AAI3305807.

[43] N. Esfahani, S. Malek, J. Sousa, H. Gomaa, and D. Menascé, “A modeling language for activity-
oriented composition of service-oriented software systems”, Model Driven Engin. Languages and
Systems, 2009.

[44] OASIS, “Web Services Business Process Execution Language Version 2.0”, 2007.

[45] Ferdi Maswar, Michel R. V. Chaudron, Igor Radovanovic, and Egor Bondarev, “Improving archi-
tectural quality properties through model transformations”, in Software Engineering Research and
Practice, 2007, pp. 687–693.

[46] T. Saxena, A. Dubey, D. Balasubramanian, and G. Karsai, “Enabling self-management by using
model-based design space exploration”, in IEEE EASe, 2010.

[47] Anne Koziolek and Ralf Reussner, “Towards a generic quality optimisation framework for
component-based system models”, in Proceedings of the 14th international ACM Sigsoft sym-
posium on Component based software engineering, New York, NY, USA, June 2011, CBSE ’11,
pp. 103–108, ACM, New York, NY, USA.

[48] SPECjEnterprise2010 Design Document, ”, http://www.spec.org/jEnterprise2010/
docs/DesignDocumentation.html. 2011.

[49] Ralf Reussner, Steffen Becker, Erik Burger, Jens Happe, Michael Hauck, Anne Koziolek, Heiko
Koziolek, Klaus Krogmann, and Michael Kuperberg, “The Palladio Component Model”, Tech.
Rep., Karlsruhe Institute of Technology (KIT), Fakultät für Informatik, Karlsruhe, 2011.

[50] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002.

[51] Jerome Rolia and Vidar Vetland, “Parameter estimation for performance models of distributed
application systems”, in Proceedings of the 1995 Conference of the Centre for Advanced Studies
on Collaborative Research. 1995, CASCON ’95, IBM Press.

http://www.spec.org/jEnterprise2010/docs/DesignDocumentation.html
http://www.spec.org/jEnterprise2010/docs/DesignDocumentation.html

BIBLIOGRAPHY 89

[52] Heiko Koziolek, Parameter Dependencies for Reusable Performance Specifications of Software
Components, PhD thesis, University of Oldenburg, Germany, March 2008.

[53] Qais Noorshams, Dominik Bruhn, Samuel Kounev, and Ralf Reussner, “Predictive Performance
Modeling of Virtualized Storage Systems using Optimized Statistical Regression Techniques”, in
Proceedings of the ACM/SPEC International Conference on Performance Engineering, New York,
NY, USA, 2013, ICPE’13, pp. 283–294, ACM.

[54] Qais Noorshams, Andreas Rentschler, Samuel Kounev, and Ralf Reussner, “A Generic Approach
for Architecture-level Performance Modeling and Prediction of Virtualized Storage Systems”, in
Proceedings of the ACM/SPEC International Conference on Performance Engineering, New York,
NY, USA, 2013, ICPE’13, pp. 339–342, ACM.

[55] Qais Noorshams, Kiana Rostami, Samuel Kounev, Petr Tůma, and Ralf Reussner, “I/O Perfor-
mance Modeling of Virtualized Storage Systems”, in Proceedings of the IEEE 21st International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems.
2013, MASCOTS’13, IEEE.

[56] Piotr Rygielski, Samuel Kounev, and Steffen Zschaler, “Model-Based Throughput Prediction in
Data Center Networks”, in Proceedings of the 2nd IEEE International Workshop on Measurements
and Networking (M&N 2013). October 2013, IEEE.

[57] Piotr Rygielski, Steffen Zschaler, and Samuel Kounev, “A Meta-Model for Performance Modeling
of Dynamic Virtualized Network Infrastructures”, in International Conference on Performance
Engineering (ICPE), 2013.

[58] C. Atkinson, M. Gutheil, and B. Kennel, “A flexible infrastructure for multilevel language engi-
neering”, IEEE Transactions on Software Engineering, vol. 35, no. 6, pp. 742–755, 2009.

[59] Object Management Group (OMG), “Meta Object Facility (MOF) Core”, http://www.omg.
org/spec/MOF/2.4.1/, 2011.

[60] Colin Atkinson and Ralph Gerbig, “Melanie: multi-level modeling and ontology engineering en-
vironment”, in Proceedings of the 2nd International Master Class on Model-Driven Engineering:
Modeling Wizards, New York, NY, USA, 2012, MW ’12, pp. 7:1–7:2, ACM.

[61] Steffen Becker, Jens Happe, and Heiko Koziolek, “Putting Components into Context - Supporting
QoS-Predictions with an explicit Context Model”, in Proceedings of the Eleventh International
Workshop on Component-Oriented Programming, July 2006.

[62] Michael Hauck, Michael Kuperberg, Klaus Krogmann, and Ralf Reussner, “Modelling Layered
Component Execution Environments for Performance Prediction”, in Proceedings of the 12th In-
ternational Symposium on Component Based Software Engineering (CBSE 2009). 2009, number
5582 in LNCS, pp. 191–208, Springer.

[63] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter, “Open versus closed: a cautionary
tale”, in Proceedings of the 3rd conference on Networked Systems Design & Implementation -
Volume 3, Berkeley, CA, USA, 2006, NSDI’06, USENIX Association.

http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/MOF/2.4.1/

90 BIBLIOGRAPHY

[64] Anne Koziolek and Ralf Reussner, “Towards a generic quality optimisation framework for
component-based system models”, in Proceedings of the 14th International ACM Sigsoft Sym-
posium on Component-Based Software Engineering, New York, NY, USA, 2011, CBSE ’11, pp.
103–108, ACM.

[65] Yuriy Brun, Giovanna Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle, Marin
Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw, “Engineering self-adaptive systems through
feedback loops”, in Software Engineering for Self-Adaptive Systems, Betty H. Cheng, Rogério
Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, Eds., pp. 48–70. Springer-Verlag, Berlin,
Heidelberg, 2009.

[66] J.O. Kephart and W.E. Walsh, “An artificial intelligence perspective on autonomic computing
policies”, in International Workshop on Policies for Distributed Systems and Networks. 2004, pp.
3–12, IEEE.

[67] Object Management Group (OMG), “Structured Metrics Meta-Model (SMM)”, http://www.
omg.org/spec/SMM/1.0/, 2012.

[68] Sören Frey, Andre van Hoorn, Reiner Jung, Benjamin Kiel, and Wilhelm Hasselbring, “MAMBA:
Model-Based Software Analysis Utilizing OMG’s SMM”, in Proceedings of the 14. Workshop
Software-Reengineering (WSR ’12), 2012, pp. 37–38, Also appeared in Softwaretechnik-Trends
32(2) (May 2012) 49-50.

[69] André van Hoorn, Jan Waller, and Wilhelm Hasselbring, “Kieker: A framework for application
performance monitoring and dynamic software analysis”, in Proceedings of the 3rd ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE 2012). Apr. 2012, pp. 247–248, ACM.

[70] Fabian Gorsler, Fabian Brosig, and Samuel Kounev, “Performance queries for architecture-level
performance models”, in Proceedings of the 5th ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE 2014), New York, NY, USA, 2014, ACM.

[71] Fabian Gorsler, “Online Performance Queries for Architecture-Level Performance Models”, Mas-
ter’s thesis, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Ger-
many, July 2013.

[72] Christian Blum and Andrea Roli, “Metaheuristics in combinatorial optimization: Overview and
conceptual comparison”, ACM Computing Surveys, vol. 35, no. 3, pp. 268–308, Sept. 2003.

[73] Christoph Rathfelder, Modelling Event-Based Interactions in Component-Based Architectures for
Quantitative System Evaluation, vol. 10 of The Karlsruhe Series on Software Design and Quality,
KIT Scientific Publishing, Karlsruhe, Germany, 2013.

[74] Piotr Rygielski and Samuel Kounev, “Data Center Network Throughput Analysis using Queueing
Petri Nets”, in 34th IEEE International Conference on Distributed Computing Systems Workshops
(ICDCS 2014 Wokrshops). 4th International Workshop on Data Center Performance, (DCPerf
2014), 2014.

http://www.omg.org/spec/SMM/1.0/
http://www.omg.org/spec/SMM/1.0/

BIBLIOGRAPHY 91

[75] Qais Noorshams, Roland Reeb, Andreas Rentschler, Samuel Kounev, and Ralf Reussner, “En-
riching Software Architecture Models with Statistical Models for Performance Prediction in Mod-
ern Storage Environments”, in Proceedings of the 17th International ACM Sigsoft Symposium on
Component-Based Software Engineering, 2014, CBSE ’14.

[76] Franz Brosch, Heiko Koziolek, Barbora Buhnova, and Ralf Reussner, “Architecture-based reliabil-
ity prediction with the palladio component model”, Transactions on Software Engineering, vol. 38,
no. 6, 2011.

[77] Anne Koziolek, Danilo Ardagna, and Raffaela Mirandola, “Hybrid multi-attribute QoS optimiza-
tion in component based software systems”, Journal of Systems and Software, vol. 86, no. 10,
2013.

List of Acronyms and Abbreviations

CPU Central Processing Unit.
DML Descartes Modeling Language.
DQL Descartes Query Language.
DVFS Dynamic Voltage and Frequency Scaling.
HDD Hard Disk Drive.
JPA Java Persistence API.
JVM Java Virtual Machine.
MOF Meta Object Facility.
OCL Object Constraint Language.
PCM Palladio Component Model.
PDF Probability Density Function.
PMF Probability Mass Function.
QoS Quality of Service.
RDSEFF Resource Demanding Service Effect Specification.
S/T/A Strategies/Tactics/Actions.
SLA Service Level Agreement.
SMM Structured Metrics Metamodel.
StoEx Stochastic Expression.
UML Unified Modeling Language.
vCPU virtual Central Processing Unit.
VM Virtual Machine.

	1 Introduction
	1.1 Motivation
	1.2 Design-time vs. Run-Time Models
	1.3 The Descartes Modeling Language (DML)
	1.3.1 Modeling Language Overview
	1.3.2 Summary of Supported Features and Novel Aspects
	1.3.3 Application Scenarios

	1.4 Self-Aware Computing Systems
	1.5 Outline

	2 Background
	2.1 Performance Modeling Approaches
	2.1.1 Existing Architecture-Level Performance Models
	2.1.2 Palladio Component Model (PCM)

	2.2 Modeling Run-time System Adaptation
	2.2.1 Abstraction Levels
	2.2.2 Languages for Adaptation Control Flow
	2.2.3 Configuration Space

	3 Online Performance Prediction Scenario
	3.1 Setting
	3.2 SPECjEnterprise2010
	3.3 Exemplary Environment

	4 Architecture-Level Performance Model
	4.1 Application Architecture Model
	4.1.1 Component Model and System Model
	4.1.2 Running Example
	4.1.3 Service Behavior Abstractions
	4.1.4 Parameterization
	4.1.5 Probabilistic Parameter Dependencies
	4.1.6 Interface to Monitoring Infrastructure

	4.2 Resource Landscape Model
	4.2.1 Modeling Abstractions
	4.2.2 Example

	4.3 Deployment Model
	4.3.1 Modeling Abstractions
	4.3.2 Example

	4.4 Usage Profile Model
	4.4.1 Modeling Abstractions
	4.4.2 Example

	5 Model-based System Adaptation
	5.1 Motivation and Background
	5.2 Adaptation Points Model
	5.3 Adaptation Process Model
	5.3.1 Actions
	5.3.2 Tactics
	5.3.3 Strategies
	5.3.4 QoS Data Repository
	5.3.5 Weighting Function

	6 Discussion
	6.1 Differences between DML and PCM
	6.2 Ongoing and Future Work

	Bibliography
	List of Acronyms and Abbreviations

