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Abstract

Object six Degrees of Freedom (6DOF) pose estimation is a fundamental

problem in many practical robotic applications, where the target or an

obstacle with a simple or complex shape can move fast in cluttered envi-

ronments. In this thesis, a 6DOF pose estimation algorithm is developed

based on the fused data from a time-of-flight camera and a color cam-

era. The algorithm is divided into two stages, an annealed particle filter

based coarse pose estimation stage and a gradient decent based accurate

pose optimization stage. In the first stage, each particle is evaluated with

sparse representation. In this stage, the large inter-frame motion of the

target can be well handled. In the second stage, the range data based con-

ventional Iterative Closest Point is extended by incorporating the target

appearance information and used for calculating the accurate pose by re-

fining the coarse estimate from the first stage. For dealing with significant

illumination variations during the tracking, spherical harmonic illumina-

tion modeling is investigated and integrated into both stages. The robust-

ness and accuracy of the proposed algorithm are demonstrated through

experiments on various objects in both indoor and outdoor environments.

Moreover, real-time performance can be achieved with graphics processing

unit acceleration.
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Chapter 1

Introduction

This chapter discusses the object position and orientation estimation problem. This

thesis concentrates on rigid objects, for which the position and orientation are often

termed as the six Degrees of Freedom (6DOF) pose. An overview to the approaches

to be presented in this thesis will be given, and an overall algorithm workflow will be

described, which also leads to a brief introduction to the major chapters in this thesis.

Then the sensors used for estimating the object pose are introduced with focus on

the time-of-flight (TOF) camera for range data acquisition and the fusion methods

for combining color information into the range measurements of the TOF camera. In

the end, the structure of this monograph is explained.

1.1 Algorithm Overview

This section provides a general overview for the pose estimation algorithm, including

the clarification of the problems to be solved, the descriptions for the major contri-

butions of this work, and the introduction for the overall workflow of the proposed

algorithm. The detailed information for each aspects of the individual algorithm

components can be found in later chapters.

1.1.1 Problem Statement and Innovations

Robust object pose estimation is a fundamental problem for many robotic applica-

tions. For instance, the information of the relative pose between two robots is es-

sential in mobile robot formation driving. In-plant automatic transportation requires

the object pose information for grasping during robot maneuver. The relative pose of

the robot to the scene in the SLAM (Simultaneous Localization And Mapping) can

1



1. INTRODUCTION

also be interpreted as a variant of the object pose estimation problem. In the outer

space, the accurate pose estimation provides important information for spacecraft

rendezvous and docking even for a cooperative satellite, just to name a few.

In real applications, the target object usually moves in a cluttered environment,

sometimes with large motion between sensor frames. There can be signification illumi-

nation variations, which may cause remarkable appearance changes. Often real-time

performance is of great importance as well. This composes the problems to be solved

in this thesis. In short, this work will develop an efficient algorithm that can robustly

estimate the 6DOF pose for a rigid object with high accuracy. A TOF camera and a

commodity color camera are used for grabbing the object information. The method

for fusing the two sensors will be introduced in Subsection 1.2.2.

The robustness in the above discussion refers to less restrictions. For example,

the target is only required to have appropriate size with good surface reflectivity so

that the TOF sensor can produce reliable measurements. Unlike purely range data

based pose estimation methods, the proposed algorithm can also tackle targets with

geometrically symmetric shapes, e.g. cylindrical or planar objects. The target is al-

lowed to move fast in a cluttered background. The motion blur in the measurements

of both color and TOF cameras can be well handled. The illumination variations

which can significantly change the target appearance are also explicitly taken into

account. The high accuracy means, despite of those harsh conditions, the estimated

pose can always exhibit high quality and is competent for use in many robotic appli-

cations. The highly dynamic nature of a lot of robotic application scenarios requires

a quick response to the changes in the scene, which indicates the estimation should

be performed with real-time efficiency.

These three criteria for the tracking or pose estimation, i.e. robustness, accuracy

and efficiency, may in fact contradict to each other. A method for track a fast

moving object usually needs to search in a large area of the state space, which will

normally reduce the ability to determine the detailed target position, especially for

the high dimensional problems, e.g. 6DOF. Being able to estimate the target pose

both robustly and accurately is expected to raise a lot of computation, which will

decrease the processing frame rate the method can achieve.

In this work, a two-stage algorithm is proposed. The first stage is denoted as

the coarse pose estimation stage, which aims at dealing with the large inter-frame

motions. This stage adopts the particle based search scheme and can be used to

explore a large volume of the state space. The resulting coarse pose estimate will

be further refined by a second stage, the accurate pose estimation stage. This stage

2



1.1. Algorithm Overview

employs a gradient based optimization method and can achieve the optimal pose in an

iterative manner. Under such a configuration, both the robustness and the accuracy

requirements can be fulfilled. For the computational efficiency, the parallelism in both

stages are investigated. Thanks to the development of modern many core Graphics

Processing Units (GPUs), under a careful implementation, the real-time performance

can be achieved with GPU acceleration.

Besides the proposed two-stage framework for the pose estimation and the GPU

implementation, other major innovations includes:

• In the coarse stage, Sparse Representation (SR) is used for evaluating each

particle in Annealed Particle Filter (APF). A new composition and update rules

for the template matrix in SR is proposed, which yields a particle filter with high

distinctive power.The multiresolution strategy is adopted to further harness the

distinctive power. The coarse estimation will be detailed in Chapter 2.

• In the accurate stage, the conventional Iterative Closest Point (ICP) is extended

to incorporate the target texture information into the cost function. The com-

bination of range and texture data brings about several advantages: the ability

for dealing with symmetric geometries; better convergence; higher tolerance to

the noisy range measurements. Chapter 3 will give further information for the

proposed Textured-ICP.

• Target appearance changes caused by illumination variations is handled by in-

corporating Spherical Harmonic (SH) illumination model into both the coarse

and the accurate estimation stages. As shown by the experiments, the proposed

algorithm can work robustly even under severe lighting changes in a video se-

quence. The use of SH modeling will be introduced in Chapter 4.

1.1.2 Algorithm Workflow

The overall workflow for the propose algorithm is depicted in Fig. 1.1. At the very

beginning, the target to track is selected manually and initialized for use in different

algorithm components. The target selection can be done by either drawing a 2D box

containing the target points on the image, or masking out the pixels that belong to

the target. The target information grabbed in the initialization module includes the

Cartesian coordinates, the surface normals, the appearance values (i.e. intensities

in the image), and the surface reflectances (see Chapter 4) for all target points.

The Cartesian coordinate system attached to the color camera (with the principle

3



1. INTRODUCTION

point located at the focus of the color camera lens, the X and Y axes go along

horizontal and vertical axes respectively on image plane, the Z axis approximately

goes along the optical axis of the color camera) as the primary coordinate system used

in the algorithm. This choice is made out of two major considerations: firstly, both

the coarse and the accurate stages need the 2D image for the texture information;

secondly, the color image has higher resolution and better quality compared to current

TOF cameras. Therefore, working primarily in the color camera’s coordinate system

is more convenient as can be observed in Chapter 2 and 3. The initial target pose

uses the mass center of all selected points as the translation component and zero

Euler angle for the rotation. Regarding the choice of the state space, it is referred to

Subsection 2.4.1 for more details.

The initialized target model with S surface points can be expressed as

M ≡ {(uinit1 , v1, N init
1 ), · · · , (uinitS , vS, N init

S )}, (1.1)

where uinits , N init
s are the s-th initial 3D coordinate and surface normal in the color

camera’s coordinate system, and vs is the corresponding intensity value.

Coarse pose 
estimation

Grab sensor data & perform fusion

Z-Buffering,
surface normal estimation,

B-Spline interpolation

Accurate pose 
estimation

Background 
update phase I

Z-Buffering,
down-sampling, 

lighting estimation

Background 
update phase II

Pose?Failure handling

Output pose
Succeed

Fail

+Initialization

Pose prediction, 
hypothesis generation

Figure 1.1: Workflow for the proposed pose estimation algorithm.

After the target is initialized, a new frame will be grabbed from the fused cameras,

then it will come to the coarse pose estimation stage. In a nutshell, the coarse pose

is obtained through comparing the target model data (3D colored point cloud) with

the 2D observation image. Chapter 2 will detail this stage. After a coarse pose is

estimated, all the 3D model points will be transformed with the coarse pose and then

projected onto the image plane to check their visibility with z-buffering. A 2D upright

bounding rectangle is obtained for all projected points, where the target is expected

to reside. To count in the small variation between the coarse and the accurate poses,

4



1.2. Sensor Setup

the bounding box is enlarged a bit, and the surface normal estimation and the B-

Spline coefficient calculation will be carried out for all the points in this rectangle on

the observation image. Then the accurate pose estimation will take place with the

Textured-ICP proposed in Chapter 3.

If an accurate pose can be successfully determined, the model data will be under

a series of updates to accommodate for the changes happened during tracking, e.g.

the illumination variations, the background changes and the visibility changes of the

target surface points. Since one of the major tasks in the coarse estimation stage

is to distinguish the target region from the background, two background update

phases are implemented for modeling and adapting to the background changes. The

Background update phase I (Algorithm 2.3) incorporates some grabbed background

templates for current down-sampled points into the template matrix in the sparse

representation. This step takes into account those background regions that cannot

be well handled by current model. Then after z-buffering to get visible target points

under the predicted pose (the estimated pose for the current frame is used as the

predict pose for next frame) and down-sampling to get the points used for the coarse

estimation in the next frame, the Background update phase II (Algorithm 2.4) is

employed to model the background with the new down-sampled points. Details with

respect to the background update and the down-sampling of the target points can

be found in Chapter 2. Alongside z-buffering, if the target reflectance has been

estimated in the initialization module, the current light condition can be estimated

with spherical harmonic modeling. The reflectance and the lighting estimation are

detailed in Chapter 4. The predicted pose, the updated model and the grabbed new

frame will be fed into the coarse estimation stage for the next frame. To make most of

the current multi-core CPUs, the new frame grabbing and pose estimation algorithm

are running in parallel.

If pose estimation has failed (either weights are too low in the coarse stage or the

matched point pairs are too less in the accurate estimation stage), no updates will be

performed. Instead, some failure handling can be considered. In this work, the error

handling is simplified to keep searching around the last estimated target location.

1.2 Sensor Setup

This section introduces the sensors used for the pose estimation in this thesis, in-

cluding a TOF camera and a color camera. The working principle of TOF cameras

is described, the major error sources and the methods for the measurement enhance-

5



1. INTRODUCTION

ment are discussed, which is followed by a short review for some applications with

TOF cameras. Then the method adopted in this thesis for fusing a TOF camera and

a commodity color camera is introduced in detail, which includes the relative trans-

formation between the two cameras, the derivation for converting the radial range

measurement of the TOF camera to Cartesian coordinate that can be directly used

in fusion, some pre-calculation revealed in this work that can reduce the computation

cost during run time and the z-buffering technique for removing the pixels visible

to one sensor but hidden for another. Since the TOF camera used in this thesis is

based on PMD (Photonic Mixture Device) sensor, where no confusion will arise, the

term TOF camera and PMD camera are used interchangeably, likewise for the RGB

camera and the color camera.

1.2.1 TOF Sensor and Its Applications

Time-of-flight (TOF) sensor provides depth data for each pixel on its image. This is

consistent to the 2D cameras, therefore, it is often denoted as TOF camera. This sub-

section gives a comprehensive introduction to TOF cameras, including some products

appeared in the literature, the TOF principle, the major error sources and the meth-

ods for enhancing the quality of the range measurements, as well as some applications

with current TOF cameras (please refer to [78] for more applications).

Introduction to TOF Sensor and TOF Principle

TOF sensor is a relatively new technology compared to the traditional CCD color

camera. It is still in maturating stage yet having already drawn substantial attention

in many fields. In a nutshell, it provides depth information for the scene by measuring

the time-of-flight of the light emitted from an active light source in addition to the

amplitude information. To be less influenced by the environmental visible lighting, it

usually adopts light, modulated with an internal reference signal, in the near infra-

red spectrum emitted by the LED arrays mounted on the sensor. In this way, it can

achieve resistance or can Suppress Background Illuminations (SBI), and thus has less

restrictions on the application scenarios.1

Some TOF cameras produced by different manufactures are listed in Table 1.1.

Current TOF cameras bear the advantages including reliable 3D measurement at

high frame rate and low power consumption with a compact design, which make it

an ideal sensor for robotic applications. In this paper, most of the works are done

1One exception is the scenario under strong sunshine, where the chip can be dramatically over-
saturated and most of the range measurements will be invalid.
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1.2. Sensor Setup

with a CamCube2.0, which has a lateral resolution 204×204 at the frame rate 25 Hz.

SR4000 FOTONIC C70 CamCube3.0
Manufacturer MESA Imaging AG FOTONIC PMDTec GmbH

Lateral resolution 176× 144 160× 120 200× 200
Depth range 0.1 to 10.0 m 0.1 to 7.0 m 0.3 to 7.0 m
Repeatability (typ.) 4 mm ± 5 mm at 0.1 –1.5 m <3 mm

Frame rate [fps] 50 75 40
Input voltage 12 V (-2%; +10%) 12 –24 V 12 V ±10%

Power (typ.) 9.6 W max 15 W —
SBI Yes Yes Yes

Table 1.1: Some commercial TOF cameras.

Due to the extremely high speed of light, it is impractical to directly measure

the flight time of the light for a near range (e.g. within 10 m). Therefore, current

TOF sensors adopt another strategy of measuring the phase difference between the

received modulated signal and the internal reference signal. The working principle of

the readout circuit [109] on PMD-based TOF sensor can be interpreted as sampling

the autocorrelation function between the received signal and the reference signal. For

calculating the desired phase difference, four samples - each shifted by π/2 - are used.

When sinusoidal signals are assumed, this process can be illustrated in Fig. 1.2, where

Fig. 1.2 (a) shows the four samples (Ai at (i−1)π/2) on the autocorrelation function,

and Fig. 1.2 (b) shows the corresponding schematic circular form for the samples.

Since A1A3 is perpendicular to A2A4, the span A3B13 = A4B24, the calculation for

the phase difference ϕ is then given as:

ϕ = arctan
A1B13

A3B13

= arctan
A1B13

A4B24

= arctan
A1y − A3y

A2y − A4y

, (1.2)

where Aiy is the y value for point Ai in Fig. 1.2 (b).1

1Because of the influence from background illumination, the real sample values on the autocor-
relation function will be attached with a constant bias [93] instead of only Aiy shown in Fig. 1.2 (b).
Therefore, ϕ cannot be simply calculated from two samples A1 and A2 as ϕ = arctan(A1y/A2y)
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Correspondingly the distance can be obtained from [109]:

d =
cϕ

4πfmod
,

where c ≈ 3·108 m/s represents the light speed, fmod is the modulation frequency. The

phase difference ϕ is in range [0, 2π). For a commonly adopted frequency fmod = 20

MHz, the unambiguous distance measurement will be within 7.5 m.1

1A

2A

4A

3A


13B

24B

1Bo
0 100 200 300 400 500

-1

0

1

a

b

1A 2A 4A3A

(a) (b)

Figure 1.2: Autocorrelation function and phase offset for TOF measurement. (a)
shows the sinusoidal form of the autocorrelation function and the four samples used
for calculating the phase difference. (b) is the schematic circular demonstration for
the phase calculation.

Along with a range measurement, the amplitude value of the received signal, which

can be taken as a fidelity measure for the range data, is calculated as:

a =

√
(A1y − A3y)2 + (A2y − A4y)2

2
=

√
(A1B13)2 + (A4B24)2

2
.

And the intensity value, which contains the constant bias from background illumina-

tion, is obtained by:

b =
A1y + A2y + A3y + A4y

4
.

Error Sources and Enhancement for the TOF Sensor

[96] analyzed the major sources for the range measurement error. For example,

the violation to the assumption of the sinusoidal form of the reference signal adopted

1If the TOF camera can be configured to use multiple modulation frequencies, the unambiguous
range limit can be extended with the method presented in [154].
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1.2. Sensor Setup

on current TOF cameras raises the systematic wiggling error. Based on the observa-

tion for distance related errors, [91] proposed to fit the error with a B-Spline curve,

which worked effectively as a dense look-up table. [94], in comparison, empirically

assumed a box-shaped reference signal instead of sinusoidal. Besides, the integration

time plays an important role on data acquisition of a TOF camera [166]. An inap-

propriate setting can result in significant errors. A low received signal intensity value

implies high signal-to-noise ratio and a high intensity can cause oversaturation for

near objects. Such errors can usually be determined by checking the amplitude val-

ues [57]. Pixels with low amplitudes are recommended to be discarded or interpolated

with its surrounding measurements.

Another important error source comes from intensity related errors, which often

occurs on surfaces with too high or too low reflectivity. For instance, dark surfaces will

make the measurement remarkably drifting towards the camera, which can clearly be

visible if the TOF camera is observing a black-and-white paper chessboard pattern,

where the range data for the black blocks can be 4 cm closer than the white blocks.

On the other hand, a high reflectivity can cause oversaturation. For the intensity-

related errors, [92] proposed to incorporate the intensity data into the aforementioned

B-Spline fitting for calibrating the errors. Such a calibration process can be a non-

trivial task, because a large set of measurements on objects with varying intensity at

different distances as well as the ground truth range data are required. Furthermore,

since individual sensor may have different characteristics, the calibration needs to be

carried out for each sensor, and maybe also under different integration time settings.

Making use of the connection between the scene geometry (underlying range data)

and intensity image, [17] presented a framework to model the posterior probabilistic

distribution of the range data with a synthetic intensity image. However, the use

of the maximum likelihood for estimating the true range data was presumably time

consuming and only applicable on offline scene reconstruction. Besides improving the

range measurement, the quality of the intensity data can be standardized by com-

pensating the influence caused by the integration time setting and the distance of the

scene [145]. [132] presented a hardware level method to tackle the reflective surfaces.

They placed infra-red emitters at various places and the improved measurement was

obtained by combining multiple images captured by using one emitter at one time.

The disadvantage of their approach is the loss of the compactness of the TOF camera

and is incompetent for highly dynamic scenarios.

PMD-based TOF cameras take four phase images to produce a range image. If

the relative motion occurs during the integration period, the phase images will be

9
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captured from the same object but at different distances. Calculating the range

data with these inconsistent phase images will cause motion artefacts. Since the

motion artefacts are most severe on geometrical edges of an object, [98] argued that

the edge pixels detected in the fused 2D color image can be used for determining

potential erroneous range measurements. That is, if an edge pixel is considered as

an artefact, it can be replaced by the weighted sum from the range measurements in

its neighborhood. However, this approach is more like an edge preserving filtering.

[93] proposed a motion compensation algorithm for PMD-based TOF camera. They

aligned the four phase images for a dynamic scene with the optical flow. In this way,

the distance of a real world 3D point is calculated with the true phase values.

Current TOF cameras still suffer from lack of color data and limited lateral resolu-

tion, e.g. 200×200 for CamCube3.0. Many approaches were presented to improve the

lateral resolution and refine the range measurement with the a fused high resolution

color image. The fusion can be done with the method proposed in [89], which will also

be detailed in Subsection 1.2.2. The aligned depth and color images can be modeled

into Markov Random Fields (MRF) [40], with a depth measurement potential and a

depth smoothness prior weighted by the color consistency in the neighborhood. The

refinement of the range image with MRF can be optimized through conjugate gradi-

ent. To avoid over smoothing on edges, [60] extended the MRF approach by incor-

porating a depth discontinuity term and the object contour information into depth

measurement potential and depth smoothness prior respectively, so that on object

contour or strong range discontinuities, the related constraints can be switched off.

Bilateral filter [152] is another widely adopted method for range image refinement.

[176] proposed to apply bilateral filter calculated with the color image on each slice

of the cost volume estimated with the range image for smoothing the cost volume

with preserved edges. However, the color consistency does not always correlates with

depth continuities. In comparison, [25] proposed to use joint bilateral upsampling. In

addition to the intensity smoothness from the color image, they also integrated the

smoothness from the intensity image of the TOF camera to guarantee edges being

correctly determined. By GPU acceleration, their method was reported to be capable

of real-time applications. Besides fusion with a single color camera, [8] presented an

approach to refine the TOF depth image with the stereo matching of multiple color

cameras. The stereo color image pairs, the pre-aligned depth data from TOF camera

and the smoothness in the neighborhood were used to calculate the cost function and

optimize the final depth map.

Applications with TOF Sensors
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The high quality depth information, high frame rate data acquisition, low power

consumption and compact design make TOF camera an ideal sensor for a lot of

applications, ranging from 3D map building [127], industrial automation, home en-

tertainment, etc. [117] compared the performance of the PMD camera with the stereo

imaging on mobile robot self-motion estimation. The robust depth measurement of

the PMD camera enables superior estimation in translation than stereo imaging.

However, they also pointed out even better performance can be achieved if the two

sensors were combined, because the limited lateral resolution of current TOF camera

can be compensated with the help of the high resolution stereo images.

A straight forward application with the range image is foreground segmentation.

[34] fused a TOF camera with a high resolution color camera to generate the trimap

(mask image for foreground, background and under-determined pixels) of the scene.

Then the trimap was further processed with a bilateral filter to yield the alpha-matte

(the transparency map for foreground pixels). Instead of bilateral filter, [183] fused

the stereo and the TOF sensors and used MRF for optimizing the alpha-matte. The

output alpha-matte can be applied in film production or at-home interactive gaming.

The 3D range image also provides a new possibility for object tracking and pose

estimation. [77] presented a method for estimating the pose of an articulated human

body with fused TOF and color cameras. ICP was extended by incorporating 2D

matched features into the correspondence pairs. They tested a human body model

with 10 cylinders and 9 joints and achieved robust estimate under frame rate of 20∼25

Hz. Outer space is another potential field for employment of TOF sensors. Motivated

by SIFT [99] and SURF [10] features, [155] developed a new feature descriptor which

was applicable with the data from current TOF cameras. They showed the effective-

ness and the efficiency of such a monocular approach on a test cube covered with

solar panels. For a satellite with planar surfaces, [134] extracted target contours

from the range image for pose estimation. Such an edge detection based method has

very low demand on computing resources, which can be a critical factor in spacecraft

applications, but it is not applicable on targets with more complex shapes.

Object shape reconstruction can also be performed with the range measurement

from the TOF camera. Typically, 3D reconstruction requires high quality range data

as input. The low resolution, the system bias and the high noise level of current

TOF sensor may deteriorate its use on these applications at the first glance. The

work of [35], however, showed that by integrating a number of subsequent depth

images to form a superresolution depth map with motion parameters between scans

found by optical flow, it was realistic to achieve satisfying reconstruction quality
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under a probabilistic framework, despite of the low quality of individual raw inputs.

But their approach should be classified as a post-processing method due to its high

computational cost.

[76] presented another interesting application with the TOF camera on automatic

phenotype evaluation for outdoor plant. Measurements of the plant characteristics,

like the size of the plant, the number of leaves and the leaf orientations, have great

significance on optimizing fertilizer or water supply and controlling plant growth

process. These data are usually collected manually by experts, which is time and

cost consuming. [76] evaluated the TOF camera in plant supervision scenario. Their

concluded, thanks to its ability on suppressing the background illumination, TOF

camera is capable of collecting plant information in the outdoor environment. And

due to the potential low cost if TOF camera is manufactured in mass production, it

can be a promising sensor for field applications.

1.2.2 Fusion of TOF and Color Cameras

This section introduces the details for fusing data of a TOF range camera and a

CCD color camera. This includes deriving the relative transformation between both

cameras, converting a point measured by the TOF camera from pixel and radial range

to Cartesian coordinates, and some pre-calculations for computational consideration.

Since the cameras used in fusion observe the scene from different perspectives, it is

inevitable that some points perceived by one camera are not visible to another. The

technique for removing the hidden surfaces is also addressed. In the end, some trade-

offs between the quality of the fused data and the computational costs are discussed.

The fused sensor setup is illustrated in Fig. 1.3. Besides CamCube2.0, for some

experiments in this work, PMD 19K was also used as the TOF range camera.

Relative Transformation between Two Cameras

The TOF camera provides a radial range measurement for each of its pixels, for

which the corresponding Cartesian coordinates can be obtained. When the relative

transformation between the TOF camera and the RGB camera is available, the 3D

points in TOF’s Cartesian coordinates can be transformed to the color camera’s

coordinates. Such a transformation can be used to assign the range information to

a pixel in the color camera, or to grab the RGB data for a pixel in the TOF image.

Either way, a RGBD image is obtained, where ”D” represents the depth.

For a mechanically fixed camera fusion setup as shown in Fig. 1.3, the relative

transformation only needs to be determined once in a calibration preprocessing step
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1.2. Sensor Setup

Figure 1.3: Setup of the fused cameras. An AXIS color camera is mechanically
mounted on the top of a CamCube2.0. The data from both cameras are fused with
the fusion algorithm.

and will remain unchanged as long as the configurations for both cameras (e.g. the

zoom-in factor) are kept unchanged and the mechanical frame does not deform much.

When using a pin-hole camera model, the relative transformation can be derived

by a purely geometric manipulation with the help of a calibration pattern with known

physical size. A chessboard pattern was used in this work due to its convenience in

the calculation [90]. The schematic view for calculating the relative transformation

is depicted in Fig. 1.4, where the 3 × 4 matrix TA,B transforms a 3D point from

B’s coordinate system to A’s. For example, TPMD,ch transforms a 3D point in the

chessboard coordinates to the PMD camera’s coordinate system.

Suppose Pch = [Px, Py, 0]> is a point on the chessboard expressed in chessboard’s

3D Cartesian coordinates, and Ṗch is the corresponding homogeneous coordinate. De-

noting ṖP and ṖR as the corresponding point of Ṗch in PMD’s and RGB’s coordinates

respectively, the relation {
PP = TPMD,ch Ṗch
PR = TRGB,ch Ṗch

can be converted to

PR = RRR>P PP − RRR>P tP + tR,

where the transformation matrix is decomposed to a rotation matrix and a translation

vector as T = [R , t]. The transformation TPMD,ch = [RP , tP ] and TRGB,ch = [RR, tR]

from the chessboard coordinate to the PMD and RGB coordinates can easily be

obtained with the routine cvFindExtrinsicCameraParams2 () from OpenCV library
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PMDRGB ,T

chRGB,T
chPMD ,T

Figure 1.4: Calculating the relative transformation between two cameras. The chess-
board is used to determine the relative transformation matrix between two cameras.
The cameras are placed apart instead of being stacked for convenient illustration.

[18]. Above equation yields the relative transformation matrix

TRGB,PMD = [RRR>P , tR − RRR>P tP ] = [RRP , tRP ] (1.3)

with RRP = RRR>P and tRP = tR − RRR>P tP representing the rotation matrix and

the translation vector for transforming a point in the PMD camera’s coordinates to

the RGB camera’s coordinates.

[98] proposed another strategy for camera fusion. They placed a beam slitter

behind the lens, by which the reflected light from the scene was then split up into

two parts. The light in the visible spectrum was forwarded to a color sensor and the

light in the infra-red spectrum was fed into the TOF sensor. Since the same beam of

light was used, the two images were inherently aligned. The drawback of this scheme

is the requirement for a dedicated hardware with a careful mechanical calibration.

Convert the Radial Range Measurement to Z in Cartesian

The direct range measurements provided by the TOF camera are radial range

values for all pixels. To apply previously derived relative transformation, the direct

measurements need to be converted to 3D points in the Cartesian coordinates. For

this purpose, the intrinsic parameters of the TOF camera are required. With Zhang’s

method [180], during a calibration procedure the 3 × 3 intrinsic matrix M (MPMD
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for the TOF camera or MRGB for the RGB camera) can be obtained:

M =

 Fx 0 lx

0 Fy ly

0 0 1

 , (1.4)

where Fx = f · sx and Fy = f · sy are the effective focal lengths in horizontal and

vertical directions respectively with f the focal length (unit: mm) and sx and sy the

physical pixel size (unit: pixel/mm). (lx, ly) is the pixel position of the principle point

on the optical axis in the image. M can be directly used to project a 3D Cartesian

point onto the image.

The geometric relation for converting a direct measurement (x, y, qr) from the

TOF camera to its Cartesian coordinate [qx, qy, qz]
> is schematically illustrated in

Fig. 1.5, where Q is a point in space, Q′ is its projected point on the image plane

with its the pixel position [x, y]>, and OQ = qr is the radial range value. As above,

here the pin-hole camera model is assumed, and the optical axis OP of the lens is

assumed perpendicular to the image plane.

zq xq

yqf

Q

OQ’yd
xd

P

rq

rd

Figure 1.5: Converting the radial range to Z in Cartesian.

For the derivation convenience, the position Q′ on the image plane scaled by the

reciprocal of the focal length 1/f is calculated, it can be expressed with the geometric

transformation [89]:

d′x =
1

f
dx =

x− lx
fsx

=
x− lx
Fx

d′y =
1

f
dy =

y − ly
fsy

=
y − ly
Fy

d′r =
1

f
dr =

√
1 + (

dx
f

)2 + (
dy
f

)2 =
√

1 + d′2x + d′2y

.
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Then correspondingly the world coordinates of Q can be obtained as

qx =
dx
f
qz =

d′x
d′r
qr = q′xqr

qy =
dy
f
qz =

d′y
d′r
qr = q′yqr

qz =
f

dr
qr =

1

d′r
qr = q′zqr

. (1.5)

Pre-Calculation for Better Efficiency

Combining the intrinsic matrix MRGB of the RGB camera and the relative trans-

formation matrix TRGB,PMD, the PMD’s Cartesian coordinates from Eq. (1.5) can be

used to obtain its pixel position [uRGB, vRGB]> in the RGB image:

 uRGB · ZwRGB
vRGB · ZwRGB

ZwRGB

 = MRGB TRGB,PMD


qx

qy

qz

1

 ,

where ZwRGB is the Z value in the RGB camera’s Cartesian system. Substituting

Eq. (1.3) and Eq. (1.5) into the above equation, the following formulation can be

obtained uRGB · ZwRGB
vRGB · ZwRGB

ZwRGB

 = MRGB RRP

 q′x

q′y

q′z

 qr + MRGBtRP = qrq′M + t′M , (1.6)

where only qr needs to be determined by the online observation data. The 3 × 1

vectors q′M and t′M for each point can be pre-calculated and stored. When the range

measurements qr for each pixel in the PMD camera are available, the calculation of

its corresponding pixel position [uRGB, vRGB]> in the RGB image can be performed

quite efficiently. Also the calculation can be carried out in parallel, for which hardware

acceleration can be utilized, e.g. with GPU or FPGA [89].

Hidden Surface Removal

The data fusion scheme discussed above projects the 3D data perceived by the

TOF camera onto the image of the color camera, by which sub-pixel level mapping

between the TOF camera and the color camera is established. Such a strategy works

efficiently because most of the required information can be pre-calculated. However,
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it has a major drawback that the mapping for some points in the scene sensed by the

TOF camera but not visible for the color camera due to different viewing angles from

the two cameras will still be established and used in the complete RGBD data set.

This is termed as the hidden surface artefacts [95].

Fig. 1.6 gives a clear schematic illustration for the hidden surface artefacts. Two

boards are placed in front of the fused camera setup. A point P on the far board can

be viewed by the TOF camera but is occluded to the color camera by the near board.

With aforementioned fusion algorithm, P will be transformed from the TOF camera’s

coordinates to the color camera’s Cartesian system, and then projected onto the color

camera’s image plane to build up a pixel level mapping. In this case, the pixel for P

in the TOF image is mapped to the pixel of P ′ in the color image. Therefore, either

the pixel of P in the TOF image will be assigned with a false color from P ′, or the

pixel of P ′ in the color image will be (possibly) assigned with a false depth value from

P , which can also be seen in the real captured RGBD image in Fig. 1.7 (a), where

some points on the far board are assigned with the color from the near board.

Figure 1.6: Schematic illustration for hidden surface artefacts.

One commonly adopted solution for the hidden surface removal is to perform z-

buffering [90]. After the points from the TOF camera are projected onto the image of

the color camera, if multiple range values are available on a pixel in the color image,

only the closest range value will be recorded and the corresponding mapping will

be established. While the other further points will be marked as invalid (no fusion

mapping found). For example, in Fig. 1.6, the pixel in the TOF image corresponding

to P will be marked as invalid by z-buffering. Fig. 1.7 (b) also shows the result of the

hidden surface removal, where the invalid pixels determined by z-buffering on the far

board are marked in blue for demonstration.
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(a) with hidden pixels (b) hidden pixels marked in blue

Figure 1.7: Hidden surface removal. The fused image is captured by placing a plate
in front of a large plane. (a) shows the fused RGBD image without hidden surface
removal. (b) shows the fused image with the hidden surface points determined by
z-buffering marked in blue.

Z-buffering can effectively remove hidden pixels, however, it breaks the parallelism

in the fusion calculation, because the depth value for a pixel in the color image depends

on the comparison result from the currently and the previously projected depth values

on the same point, if any. This means the transformation and the projection for all

points have to be performed in serial and cannot make most of the modern many-core

computing units. For some applications, where the influence of the hidden surface is

not severe and real-time performance is of crucial importance, non-z-buffered fusion

will be applied.

Fusion Result

The fusion result is illustrated in Fig. 1.8. On the left panel, the fused RGBD

data is displayed, the intensity image from CamCube2.0 is on the top right panel,

and the bottom right part shows the color image from the AXIS color camera. In

the scene, a doll dwarf, a wall calendar and a paper box were put on a cupboard.

The fusion error were within 1 pixel, which can clearly be seen on the upper boarder

of the box. No points on the box were projected on the background board, and no

points on the background board were mapped on the box.

There are some points that should be noted. First, if the reflected infra-red light

cannot correctly represent the distance between the camera and the reflection surface,

inaccurate range measurements may be present in the form of floating points. This
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Figure 1.8: Fused RGBD image.

happens mostly on an object boarder as shown in the image area C in Fig. 1.8. This

is because the received infra-red signal is a mixture of light reflected from the object

and the background. Another error source is the less reliable measurements on the

surfaces almost parallel to the optical axis of the PMD camera, e.g. the image region

A in Fig. 1.8. It is obvious from the PMD intensity image on the top right panel

in Fig. 1.8 that the upper surface of the cupboard is almost parallel to the viewing

direction. Thus the strength of the reflected light will be too low to yield good range

measurement. The produced range data are either floating points or simply invalid.

Most of the floating points can be filtered out by checking the angle between the

surface normal on a pixel and the optical axis. If the angle is close to 90◦, the pixel

can be marked as invalid. However, such filtering requires surface normal estimation

for all points in the PMD image, which is a time consuming procedure.

Another commonly encountered artefact comes from multi-reflection. Above dis-

cussed parallel surfaces cannot reflect sufficient infra-red signal for the range data

calculation. However, in some cases, multi-reflection from other surfaces will provide

an extra amount of infra-red light and help producing data on parallel surfaces. For

example, the image region B in Fig. 1.8 lies on the cupboard surface and should not

have dense reliable range measurements. But some lights hit on the picture behind

and are reflected on the cupboard surface then back into the camera lens. Such an
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inter-reflection between multiple objects produces dense range data in region B. Not

only on the parallel surfaces, multi-reflection will also influence other surfaces in the

scene. Due to the fact that the multi-reflected lights used for range calculation travel

longer distance than the true range, these data also should not be used. But the

filtering technique for tackling the errors caused by multi-reflection still remains an

open problem.

Applying some dedicated filtering techniques can remove some particular arte-

facts. Meanwhile, after the pixel level mapping between the TOF and the color

images is obtained, the quality and the lateral resolution can be improved by upsam-

pling filter or Markov Random Field [182]. This can help applications like offline 3D

reconstruction as the processing time is of secondary consideration and the accuracy

is the most demanding characteristic. However, in robotic applications, real-time

performance is of great significance. For the algorithm presented in this thesis, as

illustrated in Fig. 1.1, the range data is only required for the accurate estimation

stage in a relatively small image region where the target is expected to reside. Some

filters, e.g. the surface normal filter, are only employed on this region, as presented

in Chapter 3. This scheme improves the fusion data quality without increasing much

computation.

1.3 Outline

The remainder of the thesis is organized as follows. Chapter 2, 3 and 4 describe the

core algorithms proposed in this work. Each chapter contains a problem statement

and a related works part, where the specific problem to be solved in this chapter is

discussed and the corresponding state-of-the-art researches are reviewed. The related

works are introduced in each chapter rather than in a dedicated separate chapter

because the literature researches are more closely related to the topics discussed in the

individual chapter. Besides, each chapter also describes some theoretical background

knowledge that is involved in the description of the algorithm to be presented. Some

of the equations or derivations described in the theoretical background section will

also be used in the derivation of the proposed algorithm in the same chapter. In this

way, the discussions in each chapter are self-contained with a clear boundary drawn

between what is the part done in the literature and what is the contribution of this

work.

More specifically, Chapter 2 presents the coarse pose estimation stage, which aims

at dealing with the large motion between frames and providing a coarse 6DOF pose
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1.3. Outline

estimate which can be efficiently refined by further processing. The choice on the state

vector used for describing the 6DOF pose is also discussed. Some implementation

details regarding the GPU acceleration and the parameter settings are also described.

Chapter 3 describes the accurate pose estimation stage, which takes the coarse

pose estimate as an initial guess and calculates the accurate pose with the gradient

based iterative optimization. The Textured-ICP is proposed which incorporates the

target visual appearance into the range data based ICP framework. The convergence

of the iterative approach is analysed through experiments. Some implementation

issues with respect to the surface normal estimation and the parallelism with GPU

acceleration are discussed.

Chapter 4 introduces the approaches for handling the ambient illumination changes

with Spherical Harmonics (SH). SH modeling requires surface reflectance. Therefore,

the methods for estimating the reflectance are investigated. First, with the idea that

the reflectance estimation in the visible spectrum may benefit from the reflectance

information in the near infra-red spectrum, attempts are made to estimate the near

infra-red reflectance through modeling the LED arrays on the PMD camera. However,

results showed that the real LED arrays on the PMD camera cannot be accurately

approximated by the theoretical LED array models provided in the literature. Then

another method by using a calibration object is experimented and evaluated with a

homogeneous test object. With the estimated reflectance, SH illumination model is in-

tegrated into both coarse and accurate estimation stages. Experiments demonstrated

that the proposed method can work robustly even under severe lighting variations.

Although each algorithmic chapter gives some experimental results, more evalu-

ations are given in Chapter 5. The reference evaluation is performed by comparing

the estimated pose with the pose measured by iSpace, a high precision measurement

system. A calibration method for unifying the estimated pose in the camera system

and the measurement in the iSpace coordinates is introduced. Besides evaluation

with the reference data, tests on various targets in both indoor and outdoor envi-

ronments are presented as well. Moreover, the pose estimation algorithm is applied

on non-cooperative mobile robot leader-follower formation. In the end, the thesis is

summarized in Chapter 6 and some prospective works are suggested.
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Chapter 2

Coarse Estimation with Sparse

Representation

This chapter presents the coarse pose estimation algorithm that is capable of track-

ing an object moving fast in the cluttered background with real-time efficiency. The

coarsely estimated pose will be used as the initial pose for a gradient based accurate

pose estimation algorithm that is to be presented in the next chapter. The coarse

pose estimation algorithm is developed based on the annealed particle filter frame-

work, where each particle is evaluated with sparse representation. The problems to

be solved are defined in the first section, which is followed by a review of the theories

and approaches in the literature that are closely related to the proposed algorithm.

Then details will be given regarding the composition and update rules for the tem-

plate matrix in sparse representation and the use of multiresolution annealed particle

filter for the high dimensional (6DOF) problem. Some implementation issues for the

proposed algorithm will be discussed, and in the end the major points in this chapter

will be summarized.

2.1 Problem Statement and Related Works

The problems to be addressed and the major contributions made in this chapter

are clarified in this section. Meanwhile, the state-of-the-art works that are closely

related to the proposed coarse pose estimation algorithm are discussed, including

some recent developments of sparse representation, some methods for `1-regularized

optimization and some filtering techniques for a high dimensional state space. More

details regarding the theoretical formulation or derivations for the related works will

be introduced in next section.
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2. COARSE ESTIMATION WITH SPARSE REPRESENTATION

2.1.1 Problem Statement and Contributions

Although the visual tracking and pose estimation problems of a rigid object have

been vastly investigated, the 6DOF pose estimation for a fast moving object in the

cluttered background still largely remains unsolved. In this thesis, the problem is

divided into two stages, a coarse pose estimation stage, which aims at locating the

target object and providing a coarse pose estimate, and an accurate pose estimation

stage, which deals with optimizing the accurate pose with the gradient based iterative

method.

This chapter focuses on the coarse pose estimation with the 2D appearance in-

formation. The 2D appearance is adopted instead of the 3D range data, because a

non-floating target usually moves on the ground, or is mounted on another object or

placed on a table, for which the simple range based segmentation cannot be applied.

Moreover, as also pointed out in later chapters, in-plane motion1 can be well handled

by using 2D appearance data, while out-of-plane movement can be efficiently deter-

mined with 3D range data. The coarse pose is more related to in-plane movement.

Therefore, this stage takes the 2D appearance information for the pose estimation.

The main problem to be addressed in this chapter can be briefly stated as tracking

a rigid object with mostly convex but arbitrary shape that can have large inter-frame

motion in the cluttered background (Significant illumination variations can also be

handled as will be addressed in Chapter 4). A coarse 6DOF pose will be provided

from this stage that can be used as an initial pose to be further efficiently refined by

the range data based pose estimation algorithms.

Recent developments of Sparse Representation (SR) have drawn substantial at-

tention in fields like signal processing and computer vision. More specifically, [103]

showed the ability of SR in object visual tracking. Furthermore, [83] demonstrated

the real-time capability of SR in 2D tracking. Inspired by the performance of SR on

tracking, this thesis investigated SR for providing a coarse 6DOF pose estimate. A

new composition of the template matrix is proposed, with which the image patches

grabbed from both target and background regions can be expressed sparsely and dis-

tinguished efficiently. For handling the high dimensional state space of the 6DOF

problem, Annealed Particle Filter (APF) is adopted with multiresolution strategy for

harnessing the distinctive power of SR. The parallelism of the proposed algorithm is

1For Cartesian coordinates with X and Y axes lying horizontally and vertically in the image
plane and Z axis perpendicular to the image plane, the translation along X and Y axes, as well as
the rotation around Z axis are denoted as in-plane motion, with the rest considered as out-of-plane
motion.
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2.1. Problem Statement and Related Works

studied and real-time performance is achieved under GPU acceleration. The major

contributions of this chapter can be summarized as follows:

• A new composition of the template matrix in SR is proposed, with which a

target image patch can be better distinguished from a background patch.

• Multiresolution strategy is adopted in APF, which can further harnessing the

distinctive power of the proposed SR for the 6DOF tracking problem.

• Several rules for updating the model information is discussed, which can ac-

commodate changes in video sequences without accumulating the inaccuracies

during tracking.

• GPU acceleration is investigated and implemented for the proposed algorithm

to achieve real-time performance.

2.1.2 Sparse Representation and the `1 Regularized Opti-

mization

Sparse Representation (SR) or Compressed Sensing (CS) are not new concepts, they

can be dated back to World War II [153], when the syphilis tests for soldiers were

conducted in large groups instead of individually due to high costs. Only the pos-

itive groups will be further investigated. Such a sampling strategy was rest on the

assumption that the infected subjects were sparse in total. Here sparsity refers to the

number of non-zero elements compared to the size of the complete set, which can be

measured by the `0 norm.1

Many real signals exhibit sparse nature or can be cast into a sparse approximation

when expressed under an appropriate basis (so called transform sparsity), for instance,

the correlation between a certain disease and a large number of medical indices [149],

the real number of illumination with respect to the illumination from all possible

directions [104], the number of infected soldiers in an army, the images with bounded

variation in the neighborhood [42], the images or audios that are compressible under

Fourier or wavelet basis,2 just to name a few.

Although we can be aware that some signals are sparse, we are less likely to know

a priori the magnitude and the location of the nonzero elements. And in a lot of

cases, the recovery of these information is required, which is an optimization problem

1The `0 norm of a vector counts the number of nonzero entries in the vector [167].
2Although all transform coefficients can be nonzero, most of them are supposed to have negligible

values
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2. COARSE ESTIMATION WITH SPARSE REPRESENTATION

based on observation. As stated above, the sparsity of a signal is modeled by its `0

norm. Solving problems regularized with `0 norm requires combinatorial optimization

[42] and is NP-hard [167]. SR has been quite dormant until recent decades. As the

researches on the equivalence between `0 and `1
1 minimization [142], the theoretical

analysis regarding the robustness of `1-based recovery or reconstruction [42], and the

advances on `1 constrained convex optimization, SR drew a substantial attention in

information theory, signal processing, image reconstruction fields, etc.[65].

Recent researches on SR raise three important arguments: 1. `1 minimization can

exactly or stably recover the underlying sparse signal, i.e. the equivalence between

`1 and `0 regularizations; 2. the number of measurements (rows in the measurement

matrix) can be significantly less than what Nyquist rate suggests [7];2 3. even a

random matrix can be used as the measurement matrix for obtaining an exact recovery

(nonadaptive sensing [23]). These arguments have significant implications not only

on signal recovery, but also on data acquisition process.

Most data are perceived by sensors through a acquire – compress – transmit –

decompress procedure. The development of modern sensors usually enables massive

data acquisition, e.g. even higher resolution CCD/CMOS chips for digital cameras.

However, most of the data are redundant and are just compressed or dropped, due

to difficulties in storage and transmission, without much human perceptual losses

[42]. The second argument above provides a new way of sensing, which integrates

acquisition and compression into one measurement process, that is how the name

Compressed Sensing came from. Such a process can be interpreted as just sampling

the important information. Less measurements also have significance on the scenarios

where the sensing process is costly (MRI), or hazardous (X-Ray).

In the conventional sensing procedure, the compression is performed with the

processing units on the sensor. The third argument above saves the limited memory

resources because each required element in the measurement matrix can be generated

with pseudo random generator. After it is used, the elements can be discarded rather

than being stored. Moreover, most of the computation will lie in the recovery system,

which usually has more powerful computing resources. Thus Compressed Sensing

(CS) is asymmetrical [47]. Unlike Fourier or wavelet coefficients, CS gives equal

1The `1 norm of a vector x sums the absolute values of all entries in x, i.e. ‖x‖1 =
∑N

i=1 |xi|.
2Given x is a sampled discrete signal of length N as required by Nyquist rate for an analog signal,

if it has a sparse representation θ under an orthonormal basis Ψ, i.e. x = Ψθ where the nonzero
entries in θ is significantly less than N , a M ×N measurement matrix Φ can yield an observation
vector y that contains all the information for recovery x with M < N , i.e. y = Φx. This means the
sampling can be done with a sub-Nyquist rate [46]. See the single pixel camera in [47] for a good
example.
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importance on all measurements. This implies that the recovery can be performed

robustly even when some of the measurements are contaminated.

The advances on optimization, especially the `1 minimization, plays an important

role on the recent burst of SR researches. In the following, some often-mentioned

optimization methods for SR as well as for `1-constrained problems in general are

briefly introduced. This is followed by a short description for some computer vision

applications with SR. More detailed theoretical formulation will be given in the next

section.

Optimization Methods for Sparse Representation

Least Absolute Shrinkage and Selection Operator (LASSO) [148] formulates the

`1 optimization problem as a bounded `1 norm constrained quadratic programming.

Starting from a non-constrained least square solution β0, the signs of the elements in

β0 are gathered and used to construct the inequality constraint. Then a new estimate

βi for the inequality constrained problem is acquired. When βi satisfies the original

bounded `1 norm constraint, it is adopted as the final solution; otherwise collect its

signs and insert into the existing inequality constraints and continue the iteration.

Because the βi in each iteration forms a feasible solution that satisfies Karush-Kuhn-

Tucker (KKT) condition, the final output will be a solution to the original problem.

Although the convergence can be guaranteed, the size of the constraints increases

as the iteration continues, which implies an increasing amount of computation load.

Thus it can be inefficient for the large-scaled problems.

Basis Pursuit (BP) [28] converts the `1 minimization to Linear Programming (LP)

by separating the nonnegative and negative components in the solution vector into

two vectors. Then the simplex method or the interior-point methods [31] for solving

LP can be applied. When the data is corrupted with noise, the problem can be

formulated as a Quadratic Programming (QP) problem (also dubbed as Basis Pursuit

DeNoising (BPDN) in [28]), where similar strategies as BP can be adopted, which

iterates among the feasible solutions and gradually minimizes the cost function.

[74] transforms the `1-regularized optimization to a convex quadratic problem

with linear inequality constraints, which is solved by the interior-point method (mat-

lab code available from http://www.stanford.edu/~boyd/l1_ls/). They customize

the primal barrier method and truncate the Newton system with the Preconditioned

Conjugate Gradient (PCG). Such an approximation yields a memory and computa-

tion efficient `1 optimization solver which can be applied on the large-scale problems,

e.g. ≈ 106 variables in a few minutes. However, there are two iteration levels, one in

the interior-point level, one in the PCG level, which made the implementation and
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2. COARSE ESTIMATION WITH SPARSE REPRESENTATION

the parameter tuning quite complicated.

[54] cast the `1 regularized convex unconstrained optimization problem into the

Bound-Constrained Quadratic Program (BCQP), which is solved by their proposed

gradient projection algorithm (GPSR). In fact, the GPSR method is not restricted

to the sparse problems, rather it can be used for solving general BCQP optimiza-

tion problems. Their algorithm is reported to significantly outperform all the other

`1 solvers compared in [54] with respect to the computational efficiency, especially

when the problem is not very sparse. Another advantage is its simplification for

implementation.

The greedy method, Matching Pursuit (MP) [102], is proposed to solve SR prob-

lem in a different manner compared to `1 minimization. MP selects an atom in the

basis/measurement matrix in each iteration that most correlates with the residual

vector. Each selected basis vector is augmented into a solution matrix. When the

iteration terminates, the final sparse solution vector is obtained by solving the least

squares with the selected solution matrix. Orthogonal Matching Pursuit (OMP)

[153] adds an orthogonalization step during augmenting the solution matrix, so that

it forms an orthonomal basis. OMP runs extremely fast when the problem is very

sparse. However, as the number of non-zero elements increases, aforementioned GPSR

is reported to outperform OMP.

The methods discussed above are generic in that they assume no prior knowledge

on the test signal except for sparsity. [149] worked on problems where the coefficients

were assumed locally constant, i.e. most of the neighboring coefficients were expected

to have the similar magnitudes. LASSO was extended to incorporate another `1 reg-

ularized term into the constraint, which penalized big variations between neighboring

coefficients. The new formulation, dubbed as fussed LASSO, can be efficiently solved

with the Least Angle Regression (LAR) procedure [50].

Local constancy in the coefficient vector can be closely related to the dictionary

design. [136] introduced a training stage. By extending the K-SVD procedure from

[52], a dictionary can be built, with which the test signal can be expressed with

coefficients from only a few column blocks in the dictionary. Besides local constancy

of the coefficients, piecewise smoothness of the sparse signal was studied in [48]. From

the observation, they exploited that the wavelet coefficients of a piecewise smooth

signal bear not only sparsity, but also congregation around a connected subtree. This

knowledge was fused with the reweighted `1 minimization, by which the difference

between the `1 and `0 norms can be mitigated. The wavelet coefficient cluster was

characterized with the Hidden Markov Tree (HMT) model. The magnitude of each
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wavelet coefficient was then estimated by the HMT model, which provided a weighting

scheme for the reweighted `1 minimization. Simulation results showed that under

such schemes, a wavelet piecewise smooth signal can be reconstructed with fewer

measurements than conventional CS methods.

Application with Sparse Representation

As previous stated, Sparse Representation (SR) or Compressive Sensing (CS) has

drawn a substantial attention in many fields. For instance, [21] recently applied CS

on the Matrix Completion (aka Netflix problem) for recovery the entries in a matrix

with only a few measurements; [56] investigated `1 minimization in curve and surface

fitting problems, where conventional least squares solution is known sensitive to the

outliers. [100] proposed a hybrid-CS to improve the throughput in wireless sensor

networks, etc. Despite the promising trials in various realms, the following contents

will only briefly review some vision related applications.

CS has direct implication on the data acquisition process. In CS framework,

much less measurements can fulfill high dimensional signal sensing task. [47] built

a single pixel imaging architecture. In stead of a high resolution photon detector, a

Digital Micromirror Device (DMD) was used to mimic the behavior of the random

measurement matrix. The DMD contained as much micromirrors as the required

resolution. Although the results from the prototype cannot provide an image quality

as good as the CCD camera, it exposed a new way of thinking for the sensor design.

Identity determination with facial appearance in a large database is intrinsically

a sparse problem. With the assumption that the target appearance in question lies in

the subspace spanned by the training set of the same subject, [167] built a template

matrix, which contained the training face templates from many subjects captured

under different illuminations and expressions. After solving the coefficients under

the template matrix for an observation face image, the test image was associated

with the subject whose templates captured the most portion of the non-zero coef-

ficients. Thanks to SR theory, the optimization can be performed in a much lower

down-sampled dimension, which greatly relieved the computation cost of the global

recognition approach. Compare to the local approaches, e.g. the nearest neighbor and

the nearest subspace, the method with SR yielded better or comparable recognition

results.

Since the expressions can significantly influence the appearance of a human face,

[85] proposed to use the 3D features subtracted from human faces to conduct robust

identity recognition. They put the 3D facial features that have passed through an

expression-invariant ranking process into the basis matrix instead of using the pixel
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intensities. However, it involved 3D mesh of human faces in both basis generation

and test stages. If these information are not available, the 2D image based methods

are more intriguing.

SR has been applied on the facial pose estimation as well. [110] collected a set

of features into the basis matrix. These features were selected for their capability on

detecting the head poses and the facial poses. Each atom in the basis matrix corre-

sponded to a pose configuration. Due to the high dimension of the pose estimation

problem, they only worked on the two-degree pose – yaw and pitch. On the other

hand, [101] directly incorporated some modified training images with labeled poses

into the basis matrix. When the test image was correlated to some elementary pose

images in the basis matrix, the pose was determined as the same as those training

images. The pose estimation capability was limited by the pose versatility in the

training set.

Besides the facial pose, the human body pose can also be determined by the

SR framework. [26] recovered the occlusion-free image or the feature image for the

observed corrupted image with SR. Then the human pose was obtained by applying

the recovered image into a mapping function between the feature image and the pose,

which was built by Gaussian process regressor. A similar approach was introduced

in [68]. These methods require a set of training images of the same target labeled

with known poses. The capability and accuracy are determined by the resolution of

training set.

More general object recognition was investigated in [126]. The SR framework

was used in the learning stage to build a mapping between the target pose and its

corresponding appearance. The basis matrix consisted of separable Gaussian bases.

To achieve accurate pose estimation, a large number of densely sampled images from

different viewing perspectives will be gathered. In their setting, only two translation

plus one rotation degrees were considered.

The approaches above are mostly static applications. [103] applied SR on 2D

target tracking in the video sequences. The basis matrix is composed of a trivial

basis (unit matrix) for capturing the noise and the occlusion, and a set of target

templates for expressing the target. A generic particle filter was used to determine

the target position, where each particle was evaluated with SR solved by the interior-

point method from [74]. To deal with the pose and illumination variations, the target

templates were constantly updated during tracking. Inspired by the performance of

this scheme, [83] used OMP for SR optimization and applied a random measurement

matrix to reduce the computational burden. They showed robust 2D tracking with
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real-time efficiency.

SR was applied on multi-view/multi-camera surveillance in [133]. The target

position on the ground of the scene was considered as sparse compared to the com-

plete ground area. On each camera, the silhouette image was subtracted from the

background and compressed with a random matrix before transmitted to a central

computer. Moving target positions were then recovered with the second order cone

programming within SR framework. The use of SR effectively reduced the demanded

transmission load in such a distributed sensor network.

Due to the fact that cast shadows in a scene are illuminated by a small number of

illumination sources, they can be considered as sparse with respect to the illumination

from all possible directions. [104] utilized such a sparsity and applied SR on the

illumination recovery. They generated a discrete set of all possible light directions by

uniformly sampling from the surface of a unit hemisphere. Then some cast shadow

images synthesized from these lighting conditions were put into the basis matrix. The

cast shadows were also separated from the test image and used for lighting recovery

with SR framework. The results were promising despite the requirement for scene

geometry information.

2.1.3 Filtering in the High Dimensional State Space

Visual tracking and visual recognition problems in video sequences typically exhibit

nonlinear (The target as well as the camera movement usually cannot be formu-

lated as a linear transition model; The observation seldom can be expressed as a

linear equation of the latent state variables.), non-Gaussian (The likelihood distri-

bution across the image shows a multi-modal pattern, and the system noise cannot

be considered as white Gaussian, because, for instance, some frames can be more

blurred that the others). Therefore, conventional Kalman filter performs poorly in

these tasks. In comparison, particle filter (PF) is commonly exploited for estimating

and propagating more general probability distributions. PF was introduced in visual

tracking by [70] under the name CONDENSATION (standing for CONditional DEN-

Sity PropagATION). Despite its success on the low dimensional state space problems,

e.g. visual 2D tracking, as the dimension grows, the number of required particles in-

creases dramatically. For example, a realistic articulated human body model can bear

25 degrees of freedom, and thus requires over 40,000 particles [38], which will result

in an inefficient algorithm.

Many schemes can be adopted to reduce the number of particles required. For
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example, it is well known that when the observation and the transition model can be

approximated with linear equations, Extended Kalman Filter (EKF) can be used for

estimating the system state with high efficiency. By combining EKF for generating

different proposal distributions for each particle, the most recent observation infor-

mation can be incorporated before generating samples for the current time step, thus

particles can be moved more effectively towards the high likelihood regions. Similarly,

Unscented Kalman Filter (UKF) can be exploited for generating proposal distribu-

tion with more accurate mean and variance, which yields Unscented Particle Filter

(UPF) [159]. However, the linearization of the observation and transition models in

EKF requires simple and analytic representation of state space model. When, for

instance, the observation process is sufficiently complex or has no analytic form, the

EKF cannot be applied. Likewise, UKF also requires analytic observation model for

propagating the mean and the variance [138], otherwise all sigma points should be

evaluated for all particles, which will generally be a great computational burden. Fur-

thermore, the performance of UKF combined PF and the UPF are case dependent

[84], which should be determined by a careful study of the application in question.

PF has been applied on the 3D point cloud registration [141]. The same metric

as the Iterative Closest Point (ICP) was used as the observer. Due to the high

dimensionality in the 3D registration, the optimum cannot be reached with a small

number of particles. Therefore, they exploited the Bayesian sequential procedure

to combine with the iterative process in the ICP for performing the optimization.

However, their approach only dealt with registration for static scenes instead of for

sequential frames.

Some modifications have been proposed to solve the high dimensional data with

PF. For instance, when the state space has special structures, e.g. the density

distribution in some dimensions can be formulated as linear Gaussian, then Rao-

Blackwellisation can be applied to partition the state space and increase the efficiency

of the Bayesian framework [44]. Or parametric optimization can be combined with

the Monte Carlo sampling scheme used in PF to increase the searching ability of

the individual particle [19], where each particle is not only propagated with the sys-

tem transition model or with random variation, but also is moved with an iterative

optimization in its local region.

A more popular approach for dealing with the high dimensional problem is to split

the processing in one time step into multiple layers, which forms the Annealed Particle

Filter (APF). In APF, different layers are employed with different weighting functions

with increasing distinctive powers, which yields a coarse-to-fine processing scheme.
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This can dramatically reduce the number of particles required in the high dimensional

problem. For example, [38] applied APF on tracking articulated human body. They

demonstrated that with as little as 100 particles, a human model with 29DOF could

be well tackled in high frame rate video sequences (e.g. 60fps). The performance can

be further improved by making most of the state space structure, e.g. partitioning the

state space according to the relation among dimensions. For the case of articulated

human body, some degrees of freedom can move independently from other degrees,

thus encourages independent evaluation [39]. Meanwhile, different body parts should

use different observers, which also implies partitioned processing.

The 3D object tracking can also be categorized into the high dimensional problem

due to the difficulty in searching an optimum point in a 6DOF state space. [3] applied

APF and took the 2D silhouette edges to calculate the likelihood. They showed that

when no background clutter was present, an accurate 6DOF pose of a rigid object

can be achieved with 250 particle in three annealing layers.

Genetic approach is another direction that has been investigated for the high

dimensional problem. [87] proposed to use Particle Swarm Optimization (PSO) for

Mutual Information maximization instead of more commonly adopted Levenberg-

Marquardt on the 3D model registration. On the other hand, genetic operations, e.g.

the crossover and the mutation, can be combined with PF or APF to help overcoming

the particle impoverishment limitations in the conventional PF framework [80, 124].

Besides developing methods that is capable of processing high dimensional data,

[82] employed Gaussian Process Dynamic Model (GPDM) for the dimension reduc-

tion, where the original 29DOF human articulated body was cast into a low dimen-

sional latent space. They showed that by combining with APF, their method can

robustly estimate the human body pose under a relatively low frame rate (30fps or

lower).

2.2 Theoretical Background

Some mathematical formulations for Sparse Representation (SR) are introduced in

this section, which can help the interested readers to better understand what problems

SR is developed to solve. This will be followed by some detailed descriptions with

respect to orthogonal match pursuit and anneal particle filter that are adopted in

the proposed coarse pose estimation algorithm. These derivations or formulations are

provided, because they either are used in the development of the proposed algorithm

or play an important role on the understanding of the problem to be discussed.
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2.2.1 Formulation for Sparse Representation

A signal I (or an image sorted in 1D) can be linearly expressed under an orthonomal

basis A as

I = Ax,

where x is the transformation coefficient vector for I, e.g. the wavelet coefficients if

A contains a wavelet basis. Equivalently, we can interpret x as the underlying signal

and I as the measurements for x under the measurement matrix (or feature extraction

matrix) A. The underlying signal x can be recovered with the observation I and the

basis A. If A is carefully chosen, x will be concentrated on a few elements with the

rest equals or close to zero. However, without a priori knowledge about the number,

the magnitudes and the locations of nonzero or non-negligible elements in x, it seems

exact recovery can only happen when the number of measurements in I equals to the

size of x, when the linear system can be uniquely solved.

Contradiction to the above common sense, recent researches on sparse represen-

tation [24, 42] argued that under mild conditions, a n × m measurement matrix Φ

with much less measurements than the problem dimension, i.e. n � m, will suffice

for exact recovery. Now the linear relation is

Ĩ = Ãx, (2.1)

where Ĩ = ΦI and Ã = ΦA. Such a linear system is underdetermined. To obtain a

sparse x, a `p-regularization term (p ≥ 0) can be applied to the optimization:

min
x
‖x‖p s.t. Ĩ = Ãx

As p gets closer to zero, more sparsity will be enforced, where `2 norm1 (aka ridge

regression) is the most frequently used regulation. However, `2 minimization requires

no sparsity at all [42]. Although `0 norm provides a natural sparsity measure, it often

requires a combinatorial optimization and is NP hard [167]. Therefore, it is often

relaxed to `1 minimization, which can be solved by linear programming.

The measurements are often corrupted with noise as

Ĩ = Ãx + z,

1The `2 norm of a vector x is the Euclidean length of x, i.e. ‖x‖2 =
√∑N

i=1 x
2
i .
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2.2. Theoretical Background

where z denotes the noise. Then above recovery can be formulated as:

min
x
‖x‖1 s.t. ‖Ĩ− Ãx‖22 ≤ ε (2.2)

and can be solved by Second Order Cone Programming (SOCP).

Equivalently, Eq. (2.2) can be reformulated as:

min
x
‖Ĩ− Ãx‖22 s.t. ‖x‖1 ≤ t, (2.3)

which is known as the LASSO formulation and can be solved by Quadratic Program-

ming (QP) [54].

Likewise, the optimization above can be expressed as:

min
x

1

2
‖Ĩ− Ãx‖22 + τ‖x‖1, (2.4)

where the selection of τ depends on the sparsity as well as the noise level [28]. This

is a BPDN (Basis Pursuit DeNoising) formulation and can be efficiently solved by

interior-point methods [74] even for very large scale problems.

The equivalence between `1 and `0 recovery of a S-sparse signal (with at most S

nonzero elements) happens when Ã = ΦA satisfies the Restricted Isometry Property

(RIP) introduced by Candès and Tao [22], who stated if for any S-sparse signal x, a

matrix Ã obeying RIP will satisfy

(1− δS)‖x‖22 ≤ ‖Ãx‖22 ≤ (1 + δS)‖x‖22,

where δS is the isometry constant of Ã and should be less than 0.307 as proved in

[20]. RIP implies that a S-sparse vector x transformed under Ã roughly preserves its

Euclidean length [23], which, otherwise, exact recovery with Ã will make no sense.

[24] demonstrated some methods for generating a matrix obeying RIP, including the

random matrices, the Fourier ensembles and some general orthogonal ensembles. The

measurement matrix generated with different methods will require different number

of measurements (rows of the measurement matrix) for a robust recovery.

A closely related notion to RIP is mutual incoherence [65], which can be used

to measure the similarity between the measurement matrix Φ and the basis matrix

A. When mutual incoherence of Φ and A has a really small value, Ã is expected to

obey RIP. [23] showed that a random measurement matrix Φ is with high probability

incoherent with any fixed basis A. A Gaussian random matrix is considered as one

35



2. COARSE ESTIMATION WITH SPARSE REPRESENTATION

such matrix for Φ, or with a more efficient random number generator – the Hash

kernel proposed in [143].

2.2.2 Orthogonal Matching Pursuit

When a target signal x is extremely sparse (e.g. 50 nonzero elements in a 4096-vector

[54]), Orthogonal Matching Pursuit (OMP) [153] is believed to be a very efficient yet

robust recovery method for solving sparse representation problems.

The sparse problem solved by OMP can be formulated as:

min
x
‖x‖0 s.t. ‖Ĩ− Ãx‖22 ≤ ε. (2.5)

Different from Eq. (2.2), OMP tries to find solution for a `0-regularized problem. In

each iteration, OMP selects the atom in the dictionary that most correlates with the

current residual vector. Then the selected atom is integrated into the most recent

orthogonal solution space. Put aside for now the measurement matrix Φ, the detailed

procedure for OMP is shown in Algorithm 2.1.

Solving least squares in Step 2 (d) equals to projecting I onto a subspace spanned

by all columns from Ψk. Thus the residual rk in Step 2 (e) is orthogonal to the current

solution space Ψk. This guarantees that in each iteration a new atom in A will be

selected instead of some already chosen ones. To be more efficient with respect to

solving least squares in Step 2 (d), the solution subspace Ψk can be maintained with

the QR factorization instead of directly appending the selected column into Ψk−1 as

in Step 2 (c). As suggested by [54], this can be done with the Modified Gram-Schmidt

(MGS) algorithm.

Step 2 (a) of Algorithm 2.1 is the most time consuming step especially for a large

scaled problem. However, when implemented with GPU acceleration, the correlation

can be calculated with marginal costs, which will be detailed in Subsection 2.4.2. Fur-

ther speedup can be achieved by applying the measurement matrix Φ as in Eq. (2.1).

Theoretically, the number of measurements (i.e. rows n of matrix Φ) should satisfy

n ≥ Kηlog(n/δ)) for η-sparse problem with failure probability δ [54]. However, for a

recognition task that does not require exact signal recovery, [83] demonstrated that

the number of measurements can be remarkably less than the theoretical bound.
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Algorithm 2.1 OMP procedure

Inputs:

1. Dictionary A = [a1, ..., an] ∈ Rm×d and data vector I ∈ Rd.

2. Sparsity level η, predefined correlation bound τ .

Procedure:

1. Set the initial residual vector r0 = I, the index set Λ0 = ∅ and set initial
solution space Ψ0 to be an empty matrix.

2. for k = 1→ η do

(a) Calculate absolute correlation for all atoms as ej=1,...,n = |〈rk−1, aj〉|.
(b) Find the p-th atom in A that has largest absolute correlation value ep. If

ep < τ , terminate iteration; else continue.

(c) Append p to end of index set Λk−1 to form Λk = Λk−1 ∪ {p}, expand
solution space to incorporate most recent p-th atom as Ψk = [Ψk−1, ap].

(d) Get an estimate for the sparse solution with least-square

xk = arg minx‖I− Ψkx‖2

(e) Calculate the new residual as rk = I− Ψkxk.
3. end for

Outputs:

1. Nonzero index set Λk and the corresponding solution values in xk.

2. Solution vector with entries specified by indices in Λk set to the values in xk,
and all the rest to be zero.

2.2.3 Annealed Particle Filter

In Bayesian filtering, the posterior distribution p(θ0:t|z0:t) offers all useful information

necessary about the system state up to time t [44], where θt and zt are the system

(hidden) state and the observation respectively at time t. In most cases, more inter-

ested is one of its marginal distributions, or the so called filtering density p(θt|z0:t),
by which we can obtain the point estimate for desired properties. For instance, the

expectation of some function f(θt) defined on θt can be calculated as

E[f ] =

∫
f(θt)p(θt|z0:t)dθt.

When a set of samples θ(l)t (l = 1, . . . , L) can be independently drawn from
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2. COARSE ESTIMATION WITH SPARSE REPRESENTATION

p(θt|z0:t), the integral can be approximated as [14]:

E[f ] ≈ 1

L

L∑
l=1

f(θ(l)t ). (2.6)

However, it is often impractical to sample directly from an arbitrary posterior dis-

tribution. In this case, Bayesian Importance Sampling is usually adopted, where a

proposal distribution q(θt|θ0:t−1, z0:t) is used instead for generating the samples. The

proposal distribution should be sufficiently simple for drawing samples and reason-

ably close to p(θt|z0:t). This leads to the following equation for approximating the

expectation:

E[f ] ≈
L∑
l=1

f(θ(l)t )w
(l)
t , where w

(l)
t =

w
∗(l)
t∑L

j=1w
∗(j)
t

,

and the unnormalized importance weight is calculated recursively [44] as:

w
∗(l)
t = w

∗(l)
t−1

p(zt|θ(l)t )p(θ(l)t |θ
(l)
t−1)

q(θt|θ0:t−1, z0:t)
. (2.7)

Here p(zt|θ(l)t ) and p(θ(l)t |θ
(l)
t−1) represent the observation model and the system transi-

tion model respectively. Eq. (2.7) forms the basis for Sequential Importance Sampling

(SIS) and provides a mechanism for processing the sequential data, e.g. video se-

quences.

As demonstrated in [159], SIS bears a serious limitation that the variance of

the importance weights increases over time. This will lead to a degeneracy of the

algorithm as all but one samples will have importance weights quite close to zero. Al-

though it can be solved by using an optimal proposal distribution q(θt|θ0:t−1, z0:t) =

p(θt|θ0:t−1, z0:t), as the case of p(θt|z0:t), drawing samples from p(θt|θ0:t−1, z0:t) is usu-

ally not straight forward. Another widely adopted strategy is, after the prediction

and the observation, to implement a resampling step to enforce a reasonably effec-

tive sample size. The resampling process copies multiple times those samples with

high importance, and drops samples with low weights. After resampling, unlike what

Eq. (2.7) suggests, all survived particles will have same importance. This increases

the number of effective samples at the cost of potentially losing sample diversity re-

sulting in the sample impoverishment [124]. In such cases, genetic approaches, e.g.

mutation and crossover, can help re-supplying the impoverished particles [80].

Above discussion indicates that the selection of the proposal distribution plays

a crucial role on the success of applying the Bayesian Sequential Importance Sam-
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pling. Generic PF usually takes system transition model p(θt|θt−1) as the proposal

distribution [70], which leads to a simple implementation. In last decade, the Ex-

tended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) have been

investigated to provide the proposal distribution for each individual particle, which

yield the Extended Kalman Particle Filter (EKPF) and the Unscented Particle Filter

(UPF) respectively. These methods usually require the observation process to be

simple or to have an analytic form.

When the potential system state spans a high dimensional space, a large num-

ber of samples will be required to represent the posterior distribution or to perform

the stochastic search for the optimum in Bayesian SIS framework. APF is proposed

to tackle such a situation [38]. Although it also adopts the transition model as the

proposal distribution and employs a resampling step, APF does not output the es-

timated posterior mode or the expectation directly after resampling nor propagate

the resampled particles to the next time step. Instead, it further processes the parti-

cles in multiple layers with weighting functions of increasing distinctive powers. The

weighting function wm(z, θ) from layer m has the same form as the initial layer M

and only differs slightly on the sharpness as

wm(z, θ) = w(z, θ)βm (2.8)

with β0 > β1 > · · · > βM .

Under the above setting, layer M will yield a broad distribution indicating the

general large-scale feature in the search space, while layer zero brings about sharp

peaks showing the local features of the distribution function, by which an accurate

estimate of the local mode can be achieved. Besides using the same observer for all

layers, it is also possible to use different observers in different layers as the cascaded

particle filter in [86].

The procedure of APF is as follows [39]:

Start from layer m = M , draw all L particles from p(θt|θt−1).

1. Evaluate all particles to obtain w
∗(l)
m (z, θ), and get the normalized weight w

(l)
m (z, θ).

2. Apply resampling with replacement under normalized weight w
(l)
m (z, θ). Impose

zero mean Gaussian random variable bm to all resampled particles: θ(l)t,m−1 =

θ(l)t,m + bm

3. If m 6= 0, m ← m − 1, go back to step 1; otherwise, terminate iteration and

output desired expectation with Eq. (2.6).
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2. COARSE ESTIMATION WITH SPARSE REPRESENTATION

The multi-layered processing enables most (or even all) particles to converge to

the same point, which helps the mode determination. However, although the initial

particles in APF are also drawn from p(θt|θt−1), different from the generic PF, the

particle convergence from the last time step (or the last frame) reduces the diversity

of the particle distribution. It works practically as initialing all particles from one

single particle located at the predicted mode.

2.3 Coarse 6DOF Tracking

This section introduces the method for the coarse pose estimation. The 6DOF track-

ing algorithm is based on the Annealed Particle Filter (APF) framework, and each

particle is evaluated by the sparse representation. Towards this purpose, first a new

composition of the template matrix for sparse representation is proposed, which has

better distinctive power than those presented in the literature. Then the multi-

resolution strategy is adopted in APF to further harness the distinctive power. The

target is allowed to move fast in a highly cluttered background. Moreover, several

update steps are also discussed to accommodate to the environment changes during

tracking.

2.3.1 Composition of Template Matrix for Sparse Represen-

tation

In the simple linear equation Ax = I , if x has only a small number of elements non-

zero, x can be considered as the Sparse Representation (SR) for the signal I under

the basis A. In computer vision, I can be interpreted as an image patch. [167]

presented an application with SR for the human facial identity recognition, where

the basis matrix was composed of facial images from hundreds of different persons.

They pointed out one major advantage of SR over previous approaches on the identity

recognition, e.g. the nearest neighbour or the nearest subspace, was its distinctiveness.

Namely, the sparse vector x will be quite different for different individuals, by which

their identity can be effectively determined.

To employ SR, as well as to take advantage of its distinctive power, the core is

to cast the problem under question into a sparse representation problem. Or more

specifically, to find a basis that can sparsely express the interested signal. In the

coarse estimation stage, I will be the image patch grabbed by each particle in the

annealed particle filter. The aim is to find a basis or a template matrix A that can
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2.3. Coarse 6DOF Tracking

be used to sparsely express I and effectively distinguish a background image patch

from a target patch. This subsection describes a flexible and extendable composition

of the template matrix for visual tracking, which can effectively distinguish a target

image patch from a background patch.

Wavelet Basis vs. Trivial Basis

SR was investigated for visual tracking in [103] and [83]. They composed the

template matrix with a unit matrix E for capturing noise and background and a set

of grabbed target templates M for modeling the target appearance. The identity of

a grabbed image patch I can be determined by solving the following equation

[E , M ]

[
xE
xM

]
= I , (2.9)

where xE and xM are the subvectors of the coefficient vector x corresponding to the

submatrices E and M in A respectively. After having solved Eq. (2.9), whether the

patch is judged as from target or not is analyzed by calculating the reconstruction

error

ε = ‖MxM − I‖. (2.10)

With such a scheme, when an image patch comes from the target region, it can

be sparsely expressed under such a basis. However, when the image patch is from a

background region, the sparsity cannot be guaranteed. What’s worse, such a basis

will lose the distinctive power that makes it superior over other methods, because

the reconstruction error between the target and the background image patches will

be tiny. This is illustrated in the second row of Fig. 2.1 (in (d), (e) and (f)), where

the target image patch (the image in the 32×64 red box) in Fig. 2.1 (a) is used as

the target template M . It can be observed from the reconstruction coefficients for a

perfect target patch (d), an occluded target patch (e) and a background patch (f),

that under the unit matrix, the variation between different input patches is quite

small. The greatest non-zero element in x always corresponds to the same target

template. This indicates that simply using a unit matrix cannot take advantage of

the distinctive power of SR.

It is well known that the wavelet transform can be used for compressing a lot of

natural signals. Therefore, under a wavelet basis, it is expected that a signal can be

expressed sparsely. By this motivation, the unit matrix E is replaced by a wavelet

basis W , the Symmlet-4 [28]. The resulting reconstruction coefficients are shown in

the third row of Fig. 2.1. It is obvious that the most significant reconstruction coeffi-
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Figure 2.1: Decomposition coefficients under unit matrix (second row) or wavelet basis
(third row). The three images in the top row show the target template in (a) used as
M , the target image patch under occlusion in (b) and the background image patch in
(c) respectively. The rest two rows illustrate the reconstruction coefficients if I is from
its above grabbed image patch. The X axis in the reconstruction coefficient figures
represents the column index in the template matrix with one pure target template
put in the last column, and Y axis expresses the magnitude of the reconstruction
coefficients.

cient for the background image patch is captured by the wavelet basis. This makes a

huge disparity between the reconstruction coefficient for a background (Fig. 2.1 (i))

and for a perfect target patch (Fig. 2.1 (g)), or an occluded patch (Fig. 2.1 (h)).

It will be signal dependent regarding the choice of wave forms. For instance, the

Fourier basis usually performs better on periodic signals. Whereas, for the rectangle

pulse or step signals, Haar wavelet is preferred. After a number of experiments

on DCT (Discrete Cosine Transform), Haar wavelet, Symmlet-4, Daubechies-4 and

Meyer with various image patches grabbed from a variety of natural images, Symmlet-
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4 shows the most reliable performance for a large number of cases. [41] proposed to use

a mixed template matrix by combining different wave forms, e.g. edgelets or wavelets.

However, this will increase the size of the basis and the required computations. During

our experiments, it is observed that the high order half of the wavelet basis seldom

has big impact on the coefficients, which can also be seen in Fig. 2.1 (i). Therefore,

the higher order half of Symmlet-4 is replaced by the lower order half of the Haar

basis, which can increase the versatility of the signal wave forms that the basis can

express sparsely.

Multiresolution Consideration

In a particle filter based high dimensional mode estimate algorithm, it is less likely

that the mode can be located with a limited number of particles. This implies, when

the hypothesis state is close to the optimal state value, it will be desirable to assign

the corresponding particle with high weight. Adopting wavelet basis for composing

the template matrix can increase the distinctive power of SR, which also remarkably

reduces the size of the high likelihood region. When the search space is small, such

reduction of high likelihood region can help accurately locating the mode. However,

for problems like tracking a fast moving object, the search space is large, even the best

particle can be some distance away from the optimum. In this case, the distinctive

power will be harmful to the robustness of the tracking algorithm. For instance, in

top two rows of Fig. 2.2, for a slightly translated target image patch (b), it will be

desirable to judge it as from target region. But the reconstruction coefficients in (e)

are more similar to the background case in (f). Therefore, the distinctive power needs

to be harnessed for use in high dimensional problems with a large search space.

This work employs annealed particle filter for filtering out the desired optimum.

In higher layers, distribution with sharp peak will be more beneficial for accurately

locating the optimum. While in lower layers, smooth distributions will be more

helpful for robustly capturing the general trend of distribution with a small number

of probes. The distinctiveness of SR will yield sharp probability distributions. A

widely adopted strategy in computer vision for harnessing the distinctive power is

multiresolution processing, which means low resolution (smoothed) images will be

used in lower annealing layers and fine images are for higher layers.

The decomposition coefficients for smoothed image are shown in the bottom two

rows of Fig. 2.2. The image patches are still grabbed from the same position as

for the high resolution case in top two rows of Fig. 2.2. In contrast to the result

for high resolution level, the most significant non-zero coefficient in (m) for slightly

translated target image patch (h) is captured by target template. Therefore, it will
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Figure 2.2: Reconstruction coefficients in high and low resolution levels. The template
basis is composed of symmlet-4 and target template (from image in corresponding
resolution level). Images in top two rows are for fine resolution and bottom two
rows are for low resolution level. The X axis in images for reconstruction coefficients
represents column index of template matrix, Y axis is for reconstruction values.

be determined as from target region by Eq. (2.10). Meanwhile, the background patch

(i) is still modeled by wavelet basis. Combining the performance under fine resolution

in Fig. 2.2, an effective particle filtering can be based upon.

Occlusion and Background Templates

Simply using one target template and two low order half wavelet bases cannot work

robustly in complex scenarios, because the target can be occluded, the illumination

can vary significantly and the background can be highly cluttered. The template
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matrix in SR provides a flexible framework for modeling these influences. In principle,

there are infinitely many occlusion possibilities, e.g. occluded by a metal fence, by

some plants, or by a box. If the occlusion type can be predicted, some corresponding

templates can be established and incorporated into the template matrix. Although

occlusion is not the major problem to be solved in this work, some block-like occlusion

templates are built and put into the template matrix. Fig. 2.3 shows the employed

occlusion templates for all resolution levels.

Figure 2.3: Target occlusion templates for the doll dwarf in all resolution levels.
Images from the top row to the bottom row are for the low, the intermediate and the
high resolution levels respectively.

The use of the occlusion templates will bring about the capability of handling

these simple block-like occlusions. In addition, in some cases, the appearance changes

caused by illumination variations can be interpreted as the occlusion, for example,

when some shadows are cast on part of the target, or when the lighting comes from

one side and the target appears half bright and half dark, or when the high light

points occupy a large area of the target surface as can be seen in Sec. 5.3.

Since the intensity of the occlusion appearance usually cannot be known a priori,

several occlusion intensity levels are employed, e.g. three intensity levels in Fig. 2.3.

Moreover, different resolution levels will be used in different layers of the annealed

particle filter. After several layers of processing, the particles should have already

concentrated on the desired optimal state in the highest layer. The task in the

highest layer is to determine which particles are more close to the optimum. When no
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occlusion is present, some background pixels may be captured by the occlusion blocks,

thus an inaccurate alignment may be interpreted as an occluded target. Therefore,

it is recommended to weaken the influence of the occlusion templates in this layer, as

shown in the bottom row of Fig. 2.3. When the target is indeed occluded, a better

alignment can still yield lower reconstruction errors under the weakened occlusion

templates.

One major drawback of using the occlusion templates is, the modeling capability

of the target templates (containing occlusion templates and pure target templates)

will be too strong than the non-target templates (the wavelet bases). This will lead to

the consequence that some of the background patches may be determined as from the

target region. The success of the SR framework relies heavily on the balance between

the target and non-target templates. Therefore, a number of randomly grabbed image

patches from the background region are incorporated into the template matrix and

used as non-target template. With the aforementioned two lower order half wavelet

bases W1 and W2, the final composition for the template matrix is

A = [ W1, W2, B , Tocl, Tpur, Till], (2.11)

where B contains the background templates, Tocl is for the occlusion templates in

one resolution level and Tpur is for the pure target template. In Chapter 4, a group

of illumination target templates Till for modeling the illumination variations are also

employed. Now the target templates used in Eq. (2.10) have the composition of M =

[ Tocl, Tpur, Till], and the rest templates in A are used as the non-target templates.

The composition of the template matrix A is also illustrated in Fig. 2.4.

Due to the use of wavelet bases, the template matrix A must have a dyadic number

of rows. The experiments showed that 1024 or 2048 can be chosen as a good compro-

mise between performance and computational efficiency. In current implementation,

A contains 12 occlusion templates as shown in Fig. 2.3. Besides, 200 background

patches are grabbed from the observation image in the initialization stage and will be

updated during tracking, as will be discussed in Subsection 2.3.3. This work uses only

one pure target template that is grabbed from the initialization frame. But it can be

extended according to the actual application when more information about the tar-

get are available. The generation of the illumination templates will be introduced in

Chapter 4. But some problems regarding the illumination modeling still remain open.

Therefore, for most of the tests conducted in this thesis, the illumination templates

are set to zero.
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Figure 2.4: Illustration for the template matrix composition. This is a schematic
illustration for Ax = I . where x is the sparse representation of I under the dictionary
(or the template matrix) A. The non-zero elements in the representation is marked
in green, which corresponds to the green columns in the dictionary.

Some experimental results for recognition of the occluded Merlin robot under

the above template matrix composition are illustrated in Fig. 2.5. For illustration

convenience, the background templates are placed between the two wavelet bases,

so that the location of the background templates in A is far away from the target

templates and the coefficients on the background templates can easily be recognized.

The upper two rows show the results in the low resolution level, while the lower two

rows are for results in the high resolution level.

In the low resolution level, the background patches (Fig. 2.5 (a) and (b)) are

captured by the randomly grabbed background templates (as shown in Fig. 2.5 (d)

and (e)). As a contrary, the image patch from the target region (Fig. 2.5 (c)), although

rotated and occluded, is still captured by the target templates (Fig. 2.5 (f)). In the

annealed particle filter, this will provide a good basis for wiping out particles on the
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Figure 2.5: Reconstruction coefficients in low and high resolution levels. The compo-
sition for the template matrix in A is as specified in Eq. (2.11), but the background
templates are placed between the two wavelet bases for illustration convenience.

background and propagating the particles on the target region to higher layers.

The particles are expected to have concentrated on the target region in high

resolution levels, only their pose may be not accurate, as the case in Fig. 2.5 (g)

and (h). Therefore, for the high resolution level, only particles on the target region

but with different alignment are tested. The slightly translated and rotated particles

(Fig. 2.5 (g) and (h)) are mostly captured by the wavelet bases and therefore can be

distinguished from the accurately aligned particle (Fig. 2.5 (i)). Such a distinctiveness

is essential for the accuracy of the pose estimation in the coarse stage.
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2.3. Coarse 6DOF Tracking

2.3.2 Multiresolution Annealed Particle Filter

In high dimensional problems, e.g. the 6DOF pose estimation problem, it is difficult

to accurately locate the optimum with a small number of probes, especially when the

actual search space is large. As introduced in the related works in Subsection 2.1.3,

Annealed Particle Filter (APF) can be exploited for searching the optimum point in

a high dimensional space. The core of APF is layered processing, where the evaluated

particles in one layer will be resampled and propagated to the next layer. From lower

to higher layers, the variance of the particles, and correspondingly the actual search

space, should be decreasing and all particles should be gradually concentrating on the

desired optimum. Towards this end, the particle weights in one layer are just slightly

different than the other layers as introduced in Eq. (2.8).

The APF presented in the literature uses the same observation data z for different

layers, by which the exponential weight used in successive layers can exhibit a consis-

tent behaviour. However, the discussion regarding the multiresolution consideration

in the previous subsection indicates the observation images with different resolution

levels can yield different distinctive power of SR. Therefore, besides smoothing the

likelihood distribution, the observation data are also under different smoothing levels

in different annealing layers. Instead of using Eq. (2.8), the weight of l-th particle in

layer m will be given by

w(l)
m ( Im, θ

(l)
m ) = w( Im, θ

(l)
m )βm , (2.12)

where w
(l)
m is the unnormalized weight for the l-th particle in the layer m and I is the

observation image. Consequently, the importance resampling in each layer is carried

out with the normalized particle weight π
(l)
m ∝ w

(l)
m ( Im, θ

(l)
m ), where

∑L
l=1 π

(l)
m = 1.

Determining the Exponent βm

Although each layer still yields a sharper likelihood distribution than its previous

layer, the exponent βm in the multiresolution APF may not obey the relation β0 >

β1 > · · · > βM , where layer 0 is the highest layer. Therefore, the setting of βm will

be essential for effectively choosing a desired number of particles and propagating to

the next layer for further processing. Under a pre-specified particle survival rate αm

in one layer, βm can be estimated with the evaluated particle weights.

The effective number of particles that will be chosen and propagated to the next
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layer can be measured by the survival diagnostic D from [38] as

Dm =

(
L∑
l=1

(π(l)
m )2

)−1
. (2.13)

The particle survival rate αm in layer m can then be calculated as

αm =
Dm

L
.

As introduced in Eq. (2.12), the particle weight w
(l)
m ( Im, θ

(l)
m ) in layer m of APF

is the exponential output of the original weight evaluated with SR, thus Dm is a

function of the exponent βm as Dm = D(βm). When the particle survival rate αm

is pre-specified, the value of βm can be obtained by minimizing the following cost

function

eα(βm) = D(βm)− αmL.

Combining Eq. (2.13) and Eq. (2.12), the cost function can be reformulated as

eα(βm) =

(∑L
l=1(w

(l))βm
)2

∑L
l=1(w

(l))2βm
− αmL,

where w(l) is the particle weight evaluated with SR. Then the optimization problem

can be solved by a gradient based minimizer, e.g. the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm.

The Procedure of the Multiresolution APF

The particles in APF are evaluated with the SR framework presented in Subsec-

tion 2.3.1. Since different layers use observation images under different smoothing

levels, the template matrix in SR should also use the information obtained from the

same resolution levels, e.g. the background templates Br and the target templates

Mr in resolution level r should be used for its corresponding annealing layer m.1 The

procedure of the multiresolution APF is described in Algorithm 2.2.

The input predicted pose θ for Algorithm 2.2 can be calculated by using a system

state transition model. However, due to the complex motion of the hand-held target

for most of the tests, currently, it is simply obtained as the estimated pose from

1Although one resolution level can be used in multiple layers of APF, for simplicity, one resolution
level only corresponds to one layer in this work. That is, the number of resolution levels equals to
the number of the annealing layers, and in this case r = m.
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Algorithm 2.2 Multiresolution APF with SR weighting

Inputs:

1. Predicted pose θ.

2. Observation image for current time step.

3. Background usage count C for all background templates in all resolution levels.

Procedure:

1. Generate all hypothesis poses with N(θ,σ2
F ).

2. for r = R− 1→ 0 do

(a) Smooth input image with Gaussian filter; insert Br and Mr into A

(b) Transform 3D points in Md with hypothesis pose of each particle and
generate I with grabbed image patch.

(c) Evaluate weight for each particle with SR.

(d) Increase background usage count Cr for Br; Store all grabbed image
patches; Store all weights and hypothesis poses.

(e) If r 6= 0, generate samples for next round, i.e. calculate βr, perform
importance resampling, impose δθ ∼ N(0,σ2

r ) with σr = 1
R+1−rσL to each

resampled particle and then perform crossover and mutation operations.

3. end for

Outputs:

1. Optimal pose as weighted sum of best samples.

2. Stored information during tracking process.

last frame. Another input C (a non-negative integer set) contains the usage counts of

the background templates for all resolution levels. More specifically, Cr represents the

usage count for a resolution level r and has the same size as the number of background

templates in the template matrix. It is utilized for analyzing the importance of each

background template. If a background template is seldom used (e.g. Cr[n] = 0 means

the n-th background template in resolution level r is never used), it will be updated

with a new grabbed background patch, which will be detailed in next subsection.

The initial particles are generated with the Gaussian distribution N(θ,σ2
F ) which

is centered on the predicted pose θ. The variance σF of the initial particles should

be set according to the magnitude of motion in a specific application, so that the

particles can effectively cover the search space, where the target pose is expected to

reside.

In each resolution level, the background templates Br and the target templates Mr

are used in the template matrix A of SR. The 3D model points in Md are transformed
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under the hypothesis pose of each particle and projected onto the 2D image to sample

the image intensity values for evaluating the likelihood of each particle. Md contains

the down-sampled model points that have passed the visibility test with the predicted

pose. Details regarding the down-sampling will be introduced in the next section. The

grabbed image patches, the evaluated weights of all particles, as well as the usage

count of background templates are stored for further use in Algorithm 2.3 and 2.4

for updating the SR model.

The importance resampling is performed after the weights of all particles are eval-

uated. The resampled/ survived particles will be imposed with the Gaussian noise

δθ ∼ N(0,σ2
r ) for probing the state space surrounding the hypothesis pose, where

the variance σr = 1
R+1−rσL decreases steadily as the APF proceeds from lower to

higher layers. σL should be set according to the number of layers employed so that

the surrounding state space to probe diminishes reasonably from layer to layer. In

addition, some genetic approaches can be combined with the particle filter [80] to

further prevent sample impoverishment (also as in [124]). In the APF implementa-

tion, the crossover and mutation operations, commonly adopted in particle swarm

optimization, are performed after the addition of Gaussian noise.

The SR problem for each particle in Step 2 (c) of Algorithm 2.2 is solved with OMP

introduced in Subsection 2.2.2. The more sparse, the less computation is required

by OMP. The distinctive power of the SR framework can be further capitalized to

achieve higher computational efficiency. The maximum sparsity could be set very

aggressively to be one in the lower annealing layers. Although this degrades the

SR to a template correlation algorithm, it shows reliable performance, because the

task in the lower layers is to distinguish the target particles from the background

particles. As shown in Fig. 2.5, the most significant reconstruction coefficient suffices

for such a recognition task. In the highest layer, where most of the particles have

already concentrated around the desired optimal pose, more accuracy will be required.

Therefore, a greater sparsity setting should be adopted in the highest layer.

The particle output of all layers in APF can be seen in Fig. 2.6. In this test, as

well as in most other tests in this work, a three-layer (also three resolution levels)

setting is deployed. The top left figure shows the initial generated particles. With

320 particles, a large image area is covered for dealing with the potential fast target

motion. Then as the processing proceeds, the particles gradually concentrate on the

desired pose as shown in Fig. 2.6 (b), (c) and (d). The final pose output of APF

is displayed in Fig. 2.6 (e). Although it is the output pose in the coarse estimation
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stage, it is already quite close to the desired pose.1
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Figure 2.6: Output of each APF layer and the corresponding schematic likelihood
image. The images in the first row from left to right illustrate the original scattering
of all particles, the resampled particles in each layer and the final output of the coarse
estimation stage. The second row shows the 2D schematic likelihood images for their
above APF layers. The colors of each pixel in the likelihood images are encoded with
the color bar at bottom right, where dark blue represents low likelihood. The color
bar also defines the particle weights in figure (b), (c) and (d).

The figures in the second row of Fig. 2.6 illustrate the schematic likelihood maps

for their above observation images under a certain resolution level. Each pixel in the

image represents a hypothesis pose, under which the mass center of the target is pro-

jected onto this point. The likelihood values are encoded with color and calculated

from Eq. (2.12) with A = 100 and B = 10, where 100 means a perfect match be-

tween the target model data and the observation data. Due to image and target pose

variations between the initialization frame and the current frame, the importance

values for a potential target region are typically between 15∼30. In comparison,

the background regions usually have importance values below 0.005 (when no target

templates are used in OMP procedure, w( I , θ) = 100 · exp(−10) = 0.0045). The

distinction between the target and non-target is then quite obvious. Notice that in

the lower resolution levels, more false positive could be produced. For example, the

right edge area in the bottom left image of Fig. 2.6 can indicate potential target in

this region. This is mostly caused by two reasons: first, the white wall and the black

letter basket can exhibit similar overall pattern as the target appearance with a light

body and dark leg when the image is smoothed significantly in the lowest resolution

1The feet of the dwarf is excluded from the target model, because the instep of the feet is almost
parallel to the optical axis of the TOF camera and the color is dark, for which the PMD camera
cannot produce reliable measurements.
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level; second, this region is far away from the current target position. Therefore, the

background information will not be updated nor modeled into the background tem-

plates (details regarding the update rules will be introduced in the next subsection).

Nevertheless, as APF comes to the higher resolution levels, this region is determined

as the background when more detailed texture information become available.

It can be seen that the high likelihood region shrinks from lower to higher lay-

ers. Especially in the highest layer (Fig. 2.6 (h)), almost only the pixel positions

corresponding to the target center have high likelihood values. As pointed out in

[167], when conventional template matching methods are considered, the distinction

between the target and non-target regions in the likelihood image will be tiny, i.e.

nowhere will be in dark blue. In consequence, the particle convergence through layers

can be trapped into the local minimum on some background regions.

On the other hand, the likelihood image in the highest layer also shows the ne-

cessity for adopting the multiresolution strategy. With the proposed SR framework,

only a small target region exhibits salient likelihoods in the highest resolution level.

If only a small number of particles are available and the search space is quite large,

the probability can be very low that some of the particles are correctly positioned on

the small target region that has high likelihoods. In comparison, the likelihood image

for the lowest resolution level (Fig. 2.6 (f)) shows the desired characteristics, where

a large area surrounding the target region yields high likelihoods, while most of the

background regions still gives low likelihoods.

It should be noted that it is impractical to evaluate the likelihood distribution for a

full 6DOF state space, meanwhile it is impossible to visualize the 6DOF space either.

Therefore, only the 2D schematic likelihood images are given, which are obtained by

evaluating a set of image patches grabbed with the translated 3D model points.

2.3.3 Online Update Rules

During tracking, the background can vary dramatically and be significantly differ-

ent from the background templates modeled in the initialization stage. Besides, the

illumination condition for a frame may be quite different than the initial lighting con-

dition, which can bring about remarkable target appearance variations. Furthermore,

the target pose variations will cause the visibility changes of target surface points.

The model points invisible to the camera should not be used for visual tracking.

Therefore, the information used for tracking needs to be updated to accommodate

to these changes for achieving robustness in a dynamic scenario. This subsection
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presents some update rules that can improve the performance of the proposed coarse

estimation algorithm. This part provides the updates due to visibility changes and

focuses on some rules for updating the background model. The update rules for the

illumination model will be introduced in Subsection 4.4.1.

Updating Model Visible Points Set

The model points used for tracking in a frame should be visible to the camera

under the target pose in this frame. However, before the pose has been estimated

with the visible model information, it will not be known a priori. Therefore, the

target pose in current frame t has to be predicted for obtaining a reasonable visible

model point set. In this work, the predicted pose is approximated with the estimated

pose θt−1 from last frame t − 1. And the visible point set Mz is obtained by first

transforming all model points in M with the pose parameter θt−1 then projecting all

transformed points onto the image plane and performing z-buffering for the visibility

test.

Furthermore, as previously discussed, one drawback of adopting the wavelet basis

is the restriction on the dimension of the template matrix, i.e. the rows of which must

be a dyadic number 2p, which implies the number of model points used in SR should

also be 2p. This will require a down-sampling step from Mz to Md. Md contains the

down-sampled model points, and should also be updated, because some of its points

will be invisible under a new target pose. The initial Md is obtained through randomly

(with uniform distribution) taking 2p points from Mz (the initial Mz = M ), and the

selected points are organized in the same order (denoted as the pixel order) as they

will be read from the image, e.g. from bottom left to top right in the image. In this

way, the modeling power of the wavelet bases can be made most of. When in a frame,

some points in Md are not visible any more under the predicted pose, these points will

be replaced by points from Mz. Although it will be better that in any frame, the Md

can be organized (as well as reorganizing the background and target templates in the

template matrix) in pixel order to guarantee the effectiveness of the wavelet bases,

current tests are only performed on the object initialized with the frontal side, for

which the influence of model points’ ordering changes is less remarkable. Therefore,

currently, the invisible points in Md are replaced by points randomly selected from

the points belonging to Mz but not to Md.

Background Update Phase I

The target update scheme in [103] and [83] can take into account the target

appearance variations during tracking. They used the estimated target position to
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grab the target online observation information and incorporated the grabbed data

into the model. However, the estimated pose will never be perfect, sometimes can

even be very inaccurate. The grabbed data will inevitably contain some background

data. Especially when the tracking fails for one frame and the target position is

wrongly estimated to be on a background region, the background will be updated

into the target templates. All these artefacts can gradually contaminate the target

model and lead to tracking failure in a long time run. Thanks to the SR framework

for being able to model the target and the background simultaneously, here another

strategy is presented to update the background model instead of the target model.

Background here is defined as the region which is a certain distance away from the

estimated target position. In this way, inaccuracy in tracking will not influence the

quality of the model. The update procedure is described in Algorithm 2.3.

Algorithm 2.3 Background Update phase I

Inputs:

1. Estimated pose.

2. Hypothesis poses, weights and grabbed image patches for all samples in all
resolution levels.

3. Usage count C for all background templates in all resolution levels.

Procedure:

1. for r = R− 1→ 0 do . run in parallel

(a) Select all nb background templates Br,nb that have usage count = 0

(b) Select all ns image patches Ir,ns from samples that have weight > wτ and
image distance > dτ .

(c) nu = mina(nb, ns), randomly select nu grabbed image patches from Ir,ns
to replace nu background templates from Br,nb.

(d) Decrease all background usage count Cr by h, and set usage counts for all
newly updated background templates to be 5h.

2. end for

Output:

1. Updated background templates Br

2. Usage count Cr for each resolution level.

The Inputs 2 and 3 in Algorithm 2.3 are the outputs from Algorithm 2.2. The

Input 1 is the estimated pose from the accurate estimation stage. Since the updates

for each resolution level are independent, they can be run in parallel to take advantage

of a multi-core CPU.
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After an accurate target pose has been estimated, the background region as well

as the particles on the background region for each resolution level can be determined.

Among these background particles, some are assigned with high weights during the

evaluation in APF, which indicates that these particles, or equivalently the corre-

sponding background regions, cannot be effectively handled by current SR template

matrix. Therefore, the background image patches should be incorporated into the

template matrix. However, only the background templates in a resolution level that

are rarely used (e.g. Cr[n] = 0) will be replaced by the new background patches.

After the background update, the usage count for a newly updated background

template will set to be 5h, and the counts for the remaining background templates

will be decreased by h. This guarantees the new background templates will have a

life time of at least 5 frames. The usage count will be increased by one each time the

OMP selects the corresponding background template as the most correlated atom in

the template matrix to the current residual vector. Therefore, the positive integer h

determines how fast the importance of a background template drops with time.

The effect of the above update scheme is illustrated in Fig. 2.7. The resam-

pled particles for two consecutive frames in the lowest resolution level are shown in

Fig. 2.7(a) and (b). Similar to the likelihood images in Fig. 2.6, Fig. 2.7(c) and (d)

are the 2D schematic likelihood images for their above observation images.

In Fig. 2.7(a), some background particles are resampled, which correspond to the

high likelihood region in the red dashed box in Fig. 2.7(c). These particles are drawn

in light cyan because they are assigned with high weights. Meanwhile, they are far

away from the true target position, thus they will be integrated into the background

templates according to the update rule in Algorithm 2.3. After the update, the high

likelihood area in the same background region has remarkably reduced in the next

frame as shown in Fig. 2.7(d). Correspondingly, no particles are resampled again at

the same spot. On the other hand, some particles slightly above the target are also

resampled. Whether to incorporate these particles into the background templates

will depend on their distance to the estimated target position. Besides, the changes

of the target pose can also bring about image appearance variations. In consequence,

in Fig. 2.7, even if the background remains largely constant between the two frames,

some new salient area appears on the right side of the target due to the change of

target pose.

Background Update Phase II

Each time the target has been successfully tracked, the invisible points in Md under

the estimated pose will be replaced by some new target visible surface points from Mz.
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Figure 2.7: Background update result in the lowest resolution level. The images in
the first row show the resampled particles of two consecutive frames in the lowest
resolution level. The second row shows the schematic likelihood images for their
above observation images. The region in the red dashed box depicts the reduction of
the high likelihood area after background update. The likelihood values for all pixels
in the importance image as well as for the resampled particles are encoded with the
color bar on the left side.

This will result in a slight change of Md from frame to frame. The background update

phase presented in Algorithm 2.3 can only take into account the down-sampled point

set Md up to the most recent processed frame. The accumulated background templates

cannot completely model the new integrated target model points, because they are

image patches grabbed with points from previous Md. Therefore, another update is

proposed, the Background Update Phase II, for incorporating the background patches

with the most recent Md.

It will be ideal, if the background templates can be directly grabbed from the

background region of the frame to process. Unfortunately, before the target pose

has been estimated, the background region cannot be determined. However, the

background usually dose not change much between two consecutive frames. This

implies the background templates grabbed in the last frame can also effectively model

the background in the current frame. Therefore, the Update Phase II is performed

with the most recent Md but on the observation image in the last frame.

As the discussion for Update Phase I, only the background regions that cannot be

well handled should be updated into the background templates, which correspond to
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the particles on the background region and with high likelihood values. The demand

on the likelihood values of particles with new Md will require an evaluation stage.

The background image patch can be obtained through generating a particle and eval-

uating the likelihood, until the required number of qualified background patches are

collected. However, this scheme can be time consuming, because the particles have to

be sequentially processed thus no GPU acceleration can be exploited. Furthermore,

in the worst case it can require a huge number of particles to obtain the desired num-

ber of background particles with high likelihood values. Therefore, another scheme is

proposed, where the update is performed after the particles are generated with APF

for the new frame (i.e. the Step 1 of Algorithm 2.2). The generated particles will

be evaluated on the just processed frame, where the background region can be deter-

mined. Then the qualified image patches will be considered for integration into the

background templates. If no background particles yield high likelihoods, it indicates

most probably the background can be well modeled by the current model, and no

update is required. The procedure is detailed in Algorithm 2.4.

Algorithm 2.4 Background Update Phase II

Inputs:

1. Estimated pose and its corresponding observation image.

2. Hypothesis pose for all samples.

3. Usage count for all background templates in the lowest resolution level R− 1.

Procedure: . only in the lowest resolution level

1. Transform 3D points in Md with hypothesis pose of each particle, project onto
2D image and grab image patches I , store the projected 2D pixel sets of all
particles.

2. Evaluate weight for each particle with SR.

3. Decrease usage count by h.

4. Perform the update step 1 to 3 in Algorithm 2.2 but only for the lowest
resolution level.

5. Set usage count to be 5h for newly updated background template atoms.

Outputs:

1. Updated background templates BR−1 and corresponding usage count.

2. Projected 2D pixel sets of all particles.

The Output 2 of the above update can be reused in Step 2 (b) of Algorithm 2.2

for grabbing image patches, because the pixel positions for each particle are obtained
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through projecting the points from new Md and transformed under the hypothesis

pose of each particle in APF for the new frame. Different from the Update Phase I,

the Phase II only updates the background templates in the lowest resolution level.

One reason is for the consideration of the computational cost, because under the

above update scheme, only the outputs in the lowest resolution level can be reused.

Another reason is due to the different tasks different resolution levels aim to solve.

The major task in the lowest resolution level is to identify particles on the target

region from those on the background region, while other resolution levels aim to

achieve a more accurate target pose. This indicates the lowest resolution level will

raise a higher demand on the distinctive power of the template matrix. Therefore,

the second update stage is only applied on the lowest level.

Besides efficiency, another advantage can be obtained with the update strategy in

Phase II. When the background changes mildly between consecutive frames, because

the hypothesis poses of all particles are the same between the lowest level in the new

frame and the Update Phase II with the last frame, and the difficult particles have

already been updated into background templates, in the lowest annealing layer for

the new frame, only the particles on the target region will have high likelihoods. This

implies the template matrix of SR will be more effective on distinguishing between

the target and the background particles.

One possible drawback of such an update rules is that probably only the lowest

resolution level is under active update, while the other levels will keep unchanged

most of the time. This is result from the constraints in Step 1 (b) of Update Phase

I, where a particle will be qualified for update only when it has high likelihood and

meanwhile is a certain distance away from the estimated target position. However,

as can be observed, in most cases, few particles on the background region could pass

the first two layers and still have high likelihoods. Therefore, almost no candidate

particles can be qualified for updating into the model in the higher resolution levels.

One solution could be to use the candidate particles in low resolution levels also for

updating the background model in higher levels, e.g. simply applying the qualified

particles in Step 4 of Update Phase II to all resolution levels.

2.4 Some Implementation Issues

This section describes some details for implementing the algorithm presented in this

chapter. First the choice on the state vector for representing the 6DOF pose will be

discussed, because the pose representation, especially the rotation representation will
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influence the performance of the pose estimation algorithm. Then the parallelism of

the algorithm will be investigated and the computational efficiency under the GPU

acceleration will be given, showing the capability of the algorithm for real-time appli-

cations. In the end, some important parameters in the algorithm are introduced. The

performance of the algorithm can be tuned through configuring these parameters.

2.4.1 Choice on State Space

The pose of a rigid object has 6 degrees of freedom, three for rotation and three for

translation. The rotation part can be represented in many ways, e.g. with rotation

matrix, unit quaternion, axis-angle, Euler angle, etc. When a pose estimation algo-

rithm is developed with a specific representation, the question often arises, why this

representation?

The rotation matrix can be directly applied for rotating a point in the 3D Carte-

sian coordinates or transforming a point in the 4D homogeneous coordinates when

combined with a translation vector. However, it is seldom used as the rotation ex-

pression in the estimation or optimization of the pose due to its high dimensionality.

Quaternion provides a simple representation for a rigid pose and is robust to singu-

larity. With quaternion, the pose is described as q = [q>R,q>T ]> [13], with the 3×1 vec-

tor qT describing the translation and the unit quaternion qR = [q0, q1, q2, q3]
> describ-

ing the rotation, where [q1, q2, q3]
> represents the rotation axis and α = 2arccos(q0) is

the rotation angle. In APF, the particles are propagated from layer to layer with the

predefined covariance. However, when this is performed on the pose represented by

quaternion, the unit constraint ‖q‖2 = 1 requires a normalization after the covariance

are incorporated. This will cause intricate effects on the volume of the desired state

space to probe, which means, the predefined covariance will not be able to effectively

reflect the desired rotation on the state vector due to the normalization.

Another representation, the axis-angle representation (or axis-azimuth as in [144]),

has a similar structure as quaternion, yet requires no normalization because the rota-

tion axis and rotation angle are directly described in angle, and any imposed covari-

ance will have straight forward effects on the state space. However, another problem

appears and prevents the use of the axis-angle like representation in the particle filter

based algorithms. The quaternion or the axis-angle are extremely effective for mod-

eling the motion of a spinning spacecraft. In the gradient descent based optimization

methods, these representations, due to free of singularity, can produce a reliable result

because the pose is obtained through minimization of a cost function. In contrary,
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the particle filter based algorithms generate a number of hypothesis samples, and the

optimal pose is retrieved by evaluating some similarity metric for all samples. When

the object has a large rotation other than simple spinning, the rotation axis will have

to vary between 0◦ and 90◦ in a 2D state space. Not only the span, what’s worse, a

small rotation in yaw or pitch will be reflected by a big change in the axis direction.

In such a case, it is very hard to generate a small set of samples that can effectively

model these motions under the axis-angle representation.

The problems mentioned above can be solved if Euler angle is adopted as the

rotation representation. Contrary to the indirect values in quaternion, it uses angles,

which have no normalization problem. And the Euler angle explicitly introduces rota-

tion around three axes, which provides an efficient mechanism to model the rotation

and thus requires only a small state space for a mild rotation in any manner. One well

known drawback of the Euler angle is the singularity problem, aka the gimbal lock,

which refers to when an angle reaches infinitesimally close to 0◦ or 90◦ (depends on

the rotation convention), the other two degrees of freedom degenerate to one degree.

The optimization problem will be ill-posed around the singularity angle.

Since the singularity only happens on specific angles, one solution is to use an

incremental pose which is expected to avoid the neighborhood of the singular angle

as in [118]. The output of the optimization process will thus be an incremental pose,

which can be fused into the reference pose through the use of the transformation

matrix to get a global pose. We also adopted this strategy in the pose optimization

with the Textured-ICP algorithm proposed in Chapter 3. The same idea can as well

be applied in the annealed particle filter used in this chapter. However, since currently

no full target model with the 3D geometry and texture is available for our tests, the

target will not rotate as much as 90◦ in any direction, because otherwise the known

side of the target will largely disappear and the pose estimation will fail. This implies

by taking an appropriate rotation convention for the Euler angle representation, the

singularity will not happen for our current tests. Meanwhile, the in-plane rotation

(with the rotation axis perpendicular to the image plane) brings about the most

significant image variations than the rotations around other axes. Therefore, the

hypothesis sample generation should take this into account and be able to effectively

model these variations. To this end, the Euler angle with the ZYX convention is

adopted, where the singularity will only happen when the rotation around the Y axis

gets infinitesimally close to 90◦.

The choice on the rotation center will not have impact on the rotation, rather,

it will influence the translation parameters. One widely adopted rotation center is
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the origin of the coordinate system. This leads to a representation of the complete

transformation as one simple matrix multiplication v′ = [R , t]v̇, where R is the 3× 3

rotation matrix and t stands for the 3×1 translation vector. This requires translating

all the original target 3D world points back to the origin of the coordinate system

with the translation vector specified by the mass center of all the original target world

points. In this case, any changes in the translation t reflect the real motion in the

physical world. This will yield a simple implementation for the annealed particle

filter, because a priori assumption of the target speed can be effectively applied, i.e.

by setting the variance of the pose in each layer. In a word, the 3D model points in

Eq. (1.1) are the initial target 3D coordinates translated to the system origin with

the mass center. This concludes the reason for the choice on state space in this thesis.

2.4.2 GPU Acceleration

Many recent researches on General Purpose GPU (GPGPU) computing [2, 53] have

pointed out that when the parallelism of a specific algorithm can be exploited, magni-

tudes of acceleration can be achieved when the parallel calculation is properly imple-

mented on modern many-core GPUs. This subsection investigates the parallelism of

the coarse pose estimation algorithm and provides the running time under a typical

algorithm configuration with the GPU acceleration.

Parallelism of the Coarse Estimation Algorithm

The coarse pose estimation algorithm presented in this chapter is based on the

Annealed Particle Filter (APF) framework. The particle filter [63], as well as the

APF [81] are known as the ideal algorithms for a GPU implementation because of

the independent evaluation of all particles. More specifically, in the proposed algo-

rithm, all particles are evaluated with SR solved by OMP. In one iteration of the

OMP optimization (see Algorithm 2.1), the most correlated atom in the compressed

template matrix ΦA to the current residual vector Φei for the i-th particle can be

obtained through a matrix-vector multiplication (ΦA)>Φei. Furthermore, when the

residual vectors of all particles are compiled into one matrix, the most correlated

atoms of all particles can be calculated through a large scale matrix-matrix multipli-

cation (ΦA)>Φ[e1, · · · , eN ], which can be solved with extremely high efficiency on a

modern many-core GPGPU.

Another time consuming operation is the transformation and the projection of all

down-sampled model points for obtaining the image values under the hypothesis poses

of all particles. The transformation of all 3D points can be expressed as a matrix-

63



2. COARSE ESTIMATION WITH SPARSE REPRESENTATION

matrix multiplication. The down-sampled point set is the same for all particles, only

the transformation matrices are different. Similar to the above processing for OMP,

when the transformation matrices for all particles are compiled into one big matrix,

the transformation of all down-sampled target points for all particles can be done

with one matrix-matrix multiplication
U ′1
...

U ′N

 =


T1

...

TN

 U̇ init
d ,

where U̇ init
d is a 4 × 2p matrix containing the homogeneous coordinates of all down-

sampled points from Md in each of its columns. U ′i is the 3×2p matrix containing all 2p

transformed down-sampled points for the i-th particle. Ti is the 3×4 transformation

matrix formed from the hypothesis pose of the i-th particle. On the other hand, after

the transformation, the projection is a pin-hole camera based perspective non-linear

operation, it has to be implemented with the self-written GPU kernels.

The calculation of the cost function values as well as its derivatives for all particles

required for determining the βm in APF are also implemented with GPU kernels.

However, since only a moderate number of particles are used in the APF (thanks

to the multi-layered processing), the acceleration of these calculations achieved with

GPU is not remarkable.

Overlap between CPU and GPU

If the parallel calculations are simply implemented on the GPU, when the GPU

is busy, the CPU will be idle and waiting for the results from the GPU. Likewise,

when the CPU is doing calculation, the GPU will be idle. This can result in a great

waste of the computing resources the hardware can provide. For example, although

the correlation between the atoms in ΦA and the residuals is performed on GPU, the

operation for maintaining the QR decomposition (see Subsection 2.2.2) will be more

appropriate if run on CPU. Under such the above configuration, in each iteration

of Algorithm 2.1, the CPU needs to wait for the result of the most correlated atom

selection on the GPU and the GPU has to wait for the new residual vectors for

calculating (ΦA)>Φ[e1, · · · , eN ].

By a careful implementation, the above issue can be solved through increasing the

overlap between CPU and GPU operation periods. Still taking the OMP procedure

as an example, if the particles are divided into two groups, when the correlation

calculation is being performed on GPU for one group, the residual calculation and
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the maintenance of the QR decomposition can be conducted on CPU for another

group. In this way, both computing units can be kept occupied by calculations. Thus

the usage of the computing resources are increased. This strategy will be most helpful

when the number of particles or the amount of calculations exceeds the computing

capability of the GPU and dividing the calculations into groups does not decrease

the GPU efficiency.

Running Time with GPU Acceleration

The algorithm is implemented with C++ for the CPU part and CUDA for the

GPU part. The running time is tested on a gaming laptop with a 4-core CPU and a

336-CUDA-core GPU. The result as well as the configurations for the test are listed

in Table 2.1.

Coarse estimate stage
Number of APF layers 3
Smoothing kernel size (3,9,15)
Max. sparsity (15,1,1)
Number of particles 300
Size of Md 2p = 1024
Rows of Φ d0 = 100
Running time 45 ∼ 55 ms

Table 2.1: Running time of the coarse estimate stage.

The APF has three annealing layers, the maximum sparsity in the low and the in-

termediate resolution levels are set aggressively to one, while in the highest resolution

level it is set to 15. With 300 particles, the algorithm can be performed with 45 ∼
55 ms. As previously discussed, some calculations are performed on CPU, some are

on GPU. It is inevitable that the data need to be transferred back and forth between

both computing units. It has been observed that in quite some case, the data transfer

takes more time than the calculation itself. Since the testing GPU has a PCI-E 2.0

interface, when a GPU with PCI-E 3.0 can be used, which doubles the bandwidth of

PCI-E 2.0, a non-negligible amount of data transfer time can be saved. Furthermore,

if more recent GPUs with thousand of CUDA cores can be exploited, the running

time can still be reduced significantly. Therefore, it can be concluded the coarse pose

estimation algorithm is competent for real-time applications.

65



2. COARSE ESTIMATION WITH SPARSE REPRESENTATION

2.4.3 Important Parameters

The proposed coarse estimation algorithm aims at dealing with the fast or mild mo-

tion of various targets. The background can be highly cluttered, the illumination

condition can vary significantly (as will be discussed in Chapter 4). The capability or

versatility of the algorithm is gained at the cost of the requirement for tuning some pa-

rameters for different application scenarios. Although automatic parameter tuning is

more desired, it is not researched in this work. This subsection lists some of the most

important parameters for the algorithm. When the tracking exhibits an unstable per-

formance, these parameters, when appropriately configured, may make a difference.

In the code, the parameters are specified in the header file ”./Src4PoseEst/config.h”.

The threshold for initializing and updating the background templates.

In the proposed sparse representation framework for tracking, the most important

principle is the balance between the non-target and the target templates, so that

the image patches on the target region can be effectively separated from those on the

background region. The threshold likelihood wτ in Step 1 (b) of Algorithm 2.3 controls

which and how many background patches will be integrated into the background

templates. Especially at the initialization stage, if this threshold is set too low, a lot

of image patches that can already be handled by the current template matrix will

be considered as the candidates for integrating into the background templates. This

can reduce the chances for integrating more important image patches. On the other

hand, if it is set too high, not enough background templates can be accumulated and

thus the ability of the non-target templates will be weakened. This threshold is scene

dependent. It should always be checked whether s sufficient but not excessive amount

of the background templates are considered as the valid candidates for update.

The strength of the occlusion blocks. As depicted in Fig. 2.3, in the highest

resolution level, the occlusion blocks are not as strong as in the other resolution levels,

because most of the particles should have already concentrated on the target region

and the diluted occlusion blocks can be more helpful for determining the accurate

pose. Likewise, if it can be expected that the occlusion does not happen much and

most of the particles can converge to the target region after the processing in the

lowest layer, the occlusion blocks in the intermediate resolution level can also be set

diluted. This will bring about an increased distinctive power on the intermediate

level, i.e. the probability will be higher that the background particles survived from

the lowest resolution level can be wiped out in the intermediate level with the diluted

occlusion blocks in the occlusion templates.

The number of particles. The number of particles will influence the capability
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for handling the large inter-frame motion and the computational efficiency. If the

inter-frame motion is expected to be significant, more particles will be required. But

using more particles will also raise higher computation cost. The setting should

consider the computing resources available. For example, if the GPU has 336 CUDA

cores, 200 particles or 300 particles will not cause much difference from the perspective

of the GPU’s computing power. For most tests reported in this thesis, 300 particles

were used.

The input variance for each annealing layer. When dealing with a large

inter-frame motion, besides increasing the number of particles, the volume of the

state space that the particles can effectively cover should also be increased. This

is done by tuning the input variance for each layer in the APF, i.e. σF and σL in

Algorithm 2.2.

The weight threshold for the final output. The weight threshold for the

final pose output determines the fidelity of the coarsely estimated pose. With the

terminology from ROC (Receiver operating characteristic) analysis, a higher threshold

value will bring about a better true positive estimation. However, it can also result

in a higher false negative result. This means, once an estimation result has passed

the threshold, with high probability it is a correct estimation for the target pose.

Meanwhile, it will more easily report target tracking failure. Lower thresholds will

have an opposite effect. The target will less likely be lost, but it can happen that an

incorrect target pose is determined as a valid coarse pose. For robotic applications,

relatively higher values are recommended, because it is better to lose the target than

to track a wrong one. As described in the algorithm overall workflow in Fig. 1.1, when

the coarse pose estimation fails, it will not come to the accurate pose estimation stage,

and some failure handling can be performed.

2.5 Summary

The coarse pose estimation algorithm is presented in this chapter, which takes the

target colored point cloud and the observation color image as the input and outputs

a coarse pose estimation that can be further refined in a gradient-based accurate pose

estimation stage. The proposed algorithm is based on Annealed Particle Filter (APF)

for dealing with the high dimensional state space of the 6DOF problem, and each

particle is evaluated with Sparse Representation (SR). The major innovation towards

state-of-the-art approaches for coarse estimation or tracking can be summarized as

• A new and flexible composition of the template matrix in SR is proposed, which
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can better distinguish the image patches grabbed on the target region from those

on the backgrounds.

• Multiresolution strategy is adopted in APF, which can further harnessing the

distinctive power of the proposed SR for the 6DOF tracking problem.

• Several online update rules are discussed for accommodating the changes during

tracking. Compared to the rules in the literature for updating target informa-

tion, the methods proposed in this chapter update the non-target information

instead. Thus the inaccuracies in tracking will not be accumulated and propa-

gated from frame to frame.

• The major computations in this chapter are implemented with GPU acceleration

and real-time performance is achieved.

The large inter-frame motion of the target is handled in the annealed particle

filter based coarse estimation stage. However, since this stage only employs the 2D

appearance information, it can be very difficult to accurately estimate the complete

six degrees of freedom, especially with a small number of particles. Therefore, another

gradient decent based pose refinement stage is introduced using the fused data from

the range and the color cameras. This is described in the next chapter.
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Chapter 3

Accurate Estimation with

Textured-ICP

This chapter introduces the accurate pose estimation algorithm extended from the

conventional Iterative Closest Point (ICP) algorithm for point clouds alignment. The

conventional range data based ICP cannot deal with geometrically symmetric objects

and can perform poorly when the range data is corrupted. The proposed method is

based upon the ICP framework but also takes the object appearance into account.

The combination of the range and the texture information makes the pose estima-

tion robust to the range artefacts common for current TOF cameras. Meanwhile, it

can also tackle the geometrically symmetric but sufficiently textured objects, thus

improves the capability of ICP. After the problem to be addressed is clarified, the

related works regarding the alignment between the measurement and the model, the

methods for the accurate pose estimation and some major variants of ICP will be

discussed. Then details will be given for the conventional ICP with the projective

data association and point-to-plane error metric. The extension for obtaining the pro-

posed Textured-ICP is then described. Some experiments are conducted to evaluate

the convergence of the proposed algorithm. Some implementation issues regarding

the surface normal estimation and the GPU acceleration will be discussed. In the

end, the major points in this chapter will be summarized.

3.1 Problem Statement and Related Works

This section discusses the accurate pose estimation problem to be solved in this

chapter, where the coarse pose output from the previous chapter will be refined

by the proposed Textured-ICP. Some state-of-the-art researches that are related to
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the range measurements registration and the pose estimation problems will also be

introduced.

3.1.1 Problem Statement and Contributions

Previous chapter presents a 2D data based algorithm that can track a fast moving

rigid object and provide a coarse 6DOF pose estimate. This chapter will propose

a range data based estimation stage that can further refine the coarse pose and

obtain an accurate pose estimate. In this field, ICP is the most prevalent method

for point clouds alignment. However, range data based methods have the limitation

that they cannot be applied on the symmetric geometry due to lack of constraints.

Fig. 3.1 shows a 2D schematic illustration for the conventional ICP with projective

data association on the geometrically symmetric measurements.
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Figure 3.1: Conventional ICP on symmetric geometry. The solid section represents
the geometrically symmetric range data, while the dashed curve stands for the inten-
sity distribution of all points on the section. The model data is in red and the live
observation data is in black. The matched points on the live data found by the pro-
jective data association are marked with small circles, while the none-correspondence
projective rays (in green dash) are ended with crosses. The registration result with
ICP is shown on the right.

The red line section in Fig. 3.1 represents the model range data, while the black

dashed section is the live range measurement. The red and the black curves are the

spatial intensity distributions for all points on the model and the live measurements

respectively. The green dashed lines can be interpreted as the projecting rays coming

from the principle point of the camera lens and passing through each pixel on the

image plane. The projective data association projects each model point onto the

image plane and finds its correspondence point on the live measurement along the

projective ray. When the initial alignment between the model and the live data
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is not close enough or when some of the range measurements are marked invalid,

some of the model points will not be able to find correspondence points, as marked

by crosses in Fig. 3.1. All matched correspondence pairs will be used in the cost

function calculation. Under such a configuration, the output of the final alignment

will look similar to the right image in Fig. 3.1. Obviously, the result fails on some

degrees of freedom. However, from the perspective of the cost function, the alignment

is already optimal, because all matched point pairs are already perfectly aligned.

The misalignment in Fig. 3.1 is caused by two major reasons. First, not all model

points can find correspondence points under projective data association. With other

association techniques, e.g. the nearest point searching scheme for unorganized data

[13], better matching may be achievable with the price of much higher computation

load. However, when another structure appears nearby, the nearest point searching

scheme can run into problem. Another reason for the misalignment is because con-

ventional ICP simply ignores the intensity distribution. As shown in the right image

of Fig. 3.1, when the range data for all matched point pairs are perfectly aligned,

their intensity distributions do not agree with each other.

Besides the restriction on geometrically symmetrical surfaces, conventional ICP

also has problem when the range data is corrupted, which is common for current

TOF cameras. Fig. 3.2 shows an example for the conventional ICP on noisy range

measurements. The images were grabbed with the fused cameras mounted on a mo-

bile robot driving on grassland, where the uneven ground caused remarkable motion

artefacts on the range measurements in some frames. The left tow images in Fig. 3.2

show the observation color image and the estimated target pose when the range data

are in good quality. Whereas the left two images are from the successive frame, where

the range data is corrupted and the pose estimation with ICP fails on some degrees of

freedom. However, although the range data on the robot exhibit quite different qual-

ity between the two consecutive frames, their appearances remain largely unchanged.

This can lead to the implication that when the target appearance is incorporated into

the range data based ICP, the influence of the noisy range data may be mitigated or

compensated.

This chapter aims at solving the accurate 6DOF pose estimation problem when a

coarse pose estimate is available. The input range data are obtained from the PMD

camera and can be corrupted by motion artefacts since the algorithm is desired to

be applied on a fast moving object. Furthermore, the target object may be geomet-

rically symmetric, e.g. a planar object. Based on the above discussions, the target

appearance (texture) information is combined with the range data to achieve a robust
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(a) frame 47 (b) frame 48

(c) frame 47 with ICP (d) frame 48 with ICP

Figure 3.2: Conventional ICP on noisy range data. The images (a) and (b) are the
color images in two consecutive frames captured by the AXIS camera. The images
(c) and (d) depict the corresponding fused RGBD images overlaid with the bounding
boxes for the pose estimated by ICP. The fusion images are rotated for better visual
illustration.

pose estimation algorithm. The major contribution in this chapter is the proposed

Textured-ICP algorithm, which extends the conventional ICP by incorporating the

texture into the ICP framework. The proposed method, as demonstrated in this the-

sis, is capable of dealing with geometrically symmetric objects as well as noisy range

measurements. Meanwhile, the accurate pose estimation algorithm is implemented

with GPU acceleration, by which the real-time performance is achieved.

3.1.2 Methods for 3D Registration and Pose Estimation

In this section, some methods appeared in the literature for point sets registration or

3D pose estimation are discussed. These methods are categorized into two groups:

the methods using 2D visual observation data and the methods using 3D range data.

Since computational efficiency is of significance for real-time applications as in the

work of this thesis, only online approaches are considered and introduced.
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The 2D/3D Registration

Despite the ambiguities in 3D problems using 2D visual information, under mild

assumptions, some approaches have been presented with great success. [122] made

use of the epipolar constraints for matching FAST corner features between frames.

The essential matrix between the current frame and a previous keyframe was cal-

culated for determining the relative pose up to a scalar. Based on the estimated

pose, they also provided an online 3D model reconstruction with an interactive effi-

ciency. Or when multiple cameras can be used, the feature extraction can be used

for online 3D map building [116]. When the target 3D model or a set of registered

keyframes are available, the 2D-3D feature correspondences can be established and

used for determining the pose [158]. Besides corner features, [59] adopted the SIFT

features extracted from a pair of stereo cameras. But since they used the range infor-

mation constructed from the stereo vision, their method falls more into the 3D/3D

registration. [33] also used SIFT feature for estimating poses of multiple targets with

an iterative feature clustering. These features, however, will be problematic for a

textureless object. Furthermore, as stated in [88], the feature correspondence perfor-

mances can be influenced by rotation, scaling and perspective projection variations.

[30] extended the range data based point pair features with the color information to

improve the performance for handling the self-symmetric objects. The colored point

pair features were validated with various daily objects. However, the computational

efficiency can be a drawback for the real-time applications.

The pose estimation methods above are based on matched feature correspondences

between the current frame and the keyframes or a known model. Another prevalent

strategy is to perform pose estimation with a stochastic searching. [128] exploited

annealed particle filter with the target edge junction as the observation. [106] also

relied on matching Canny edge features for calculating the 6DOF pose. Online pro-

cessing at video frame rate was made possible with GPU acceleration. The use of

an edge based observer restricted these methods on objects with strong edges. In

comparison, [3] used silhouette profile to determine the pose. Therefore, it can be

extended to objects with more general shapes. However, the use of silhouette cannot

make most of the 2D appearance information, thus their approach suffers from the

same limitation as the range data based approaches and cannot handle geometrically

symmetric objects.

When the observation image is blurred by motion, the feature extraction process,

the corner features, the edge features, the SIFT features, etc., can be problematic and

the matching can be unreliable. In contrast, the template matching is more robust in
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such cases. For example, Mutual Information (MI) is a frequently adopted method

for evaluating the similarity between two distributions and can provide a robust

metric for the optimization on image registration, e.g. the MRI image reconstruction

[147]. Levenberg-Marquardt (LM) method is usually used for the MI maximization, as

presented in [123] for the rigid object pose estimation. It has been demonstrated that

the similarity metric provided by MI is robust under illumination variation and partial

occlusion. To tackle the local optimum problem often encountered in an iterative

optimization, [87] used Particle Swarm Optimization (PSO) instead for maximizing

the MI in the 3D model registration.

The 3D Point Sets Registration

The 3D point sets registration problem has been vastly studied for over two

decades due to the development of range measuring devices. When the point cor-

respondences are already accurately established, the desired relative transformation

parameters can be optimized through solving an eigensystem for the unit quaternion

expression [66] or through SVD of the data covariance matrix for the rotation ma-

trix expression. When the point correspondences cannot be known a prior, the most

prevalent solution is Iterative Closest Point (ICP) algorithm. In each iteration, the

point correspondences are determined as the closest pairs from the two sets. After

the cost function is minimized either from a point-to-point [13] or a point-to-plane

[173] error metric, the relative transformation parameters are obtained for the current

iteration and the point sets are transformed with the parameters. Then the new point

correspondences will be established. The iteration continues until some termination

criterion is met.

One limitation of the conventional ICP is that only the local minimum can be

reached. This requires the initial point configuration should be sufficiently close to the

true alignment. One way to solve this problem is to adopt a stochastic searching. For

example, [141] used particle filtering for optimizing the relative pose between the two

point sets. The iterative process in ICP was adopted to find the local optimum for each

particle in one sample propagation step. The ICP error metric was used to evaluate

the particle weights. Besides Bayesian sequential filtering, Genetic Algorithm (GA),

due to their capability on a free-form objective function with many local optimum,

can also be used to find the transformation parameters between two point sets as in

[32].

The local optimum limitation can also be solved through combining ICP with an

algorithm that can provide a coarse pre-alignment. [79] employed a Kalman filter for

an online 3D model acquisition for an object hold by a manipulator. In the Kalman
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filter, the inaccurate joint angles from the encoders on the robot were used as the

prediction and the inaccurate ICP registration information as the measurement. By

segmenting the point cloud of the manipulator from a known 3D model, the object

point cloud was subtracted and registered to construct a 3D target model online.

[97] adopted GA to perform a pre-registration, where the correspondence pairs were

established for each sample and the fitness was evaluated with a point-to-point error

metric.

Another limitation of ICP is the computational cost, mostly for the correspon-

dence search procedure. However, when the point set is organized, e.g. the 3D data

perceived by a range camera, ray tracing [125] can be employed to provide a projec-

tive point pair association. [140] exploited such a scheme and proposed a real-time

ICP algorithm for building the 3D model of an object hold in hand with a interactive

performance. A more recent approach presented by [118] took advantage of modern

many-core GPUs, accelerated the ray tracing, and was applied on a real-time large

volume scene modeling. Even higher efficiency can be achieved by using partial image

information, e.g. by using only the edges instead of all image points as in [45].

Besides working on two point sets, it is also possible to register multiple range

data sets simultaneously. Compared to registering point sets pair by pair, aligning

multiple data sets simultaneously can avoid error accumulation that is essential on

building a complete 3D model for an object. [16] reported some multiview (six range

views) range data registration results with the projective data association. However,

no details about the optimization for multiple transformation parameter sets were

given. [164] cast the problem into an optimization of the transformation parameters

between all point sets and a fixed point set. The optimization was done in a two-

step iteration. However, due to the introduction of a fixed point set that has the

same number of points as the individual input point set, their method is limited to

problems with sufficient overlap among all input point sets.

Most point sets registration methods aim at dealing with a rigid transform (in-

cluding articulated point sets). It is also possible to handle points under non-rigid

and non-linear transformations, e.g. the affine transform or elastic deformation. [115]

proposed an algorithm for registering a set of points to another non-rigid transformed

set. Different from ICP, their method used all points in the set for calculating the

energy function instead of only with the matched point pairs. Meanwhile, a coher-

ent motion constraint was imposed with the spatial smoothness determined by a

Gaussian kernel. The registered points were optimized through an EM (Expectation

Maximization) procedure, and therefore can be time consuming.
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3.1.3 Brief Overview on ICP Variants

After ICP was developed, it has been widely modified and extended. [139] classified

these modifications as six stages and analyzed some major variants for each stage.

For a convenient discussion of the Textured-ICP algorithm proposed in this thesis, a

brief overview of some of the ICP variants closely connected to the work in this thesis

are summarized in this subsection.

The point correspondence pairs used in the cost function calculation can be built

either through the closest-point search [13] or by the projective data association [16].

The closest-point scheme finds for each point in one set its correspondence point in

another set with the closest Euclidean distance. Such a scheme can be applied when

one point set is a subset of another. It works most robustly for complex geometries.

However, in each iteration, building a correspondence map between the two sets can

be quite time consuming even with a k-d tree acceleration. In contrast, the projective

data association searches the matching points along the projection rays of the range

sensor. If the point sets are well organized, e.g. obtained from a range camera, it is

remarkably faster than the closest-point scheme. For real-time applications on not

very ”difficult” geometries [139], the projective data association is often preferred.

The cost function of ICP can be calculated from either point-to-point [13] or

point-to-plane [173] error metrics. The point-to-point metric builds least squares

equation with the matched point pairs and has a closed-form solution, e.g. through

SVD, quaternion, etc. A good evaluation for four relevant optimization methods

can be found in [51]. The point-to-plane metric projects the distance of the corre-

spondence point pairs on the local surface normal direction and is reported to be

more effective than the point-to-point metric [140]. The point-to-plane cost func-

tion cannot be solved in a closed-form, and non-linear optimization methods like

Levenberg-Marquarddt algorithm [55] or the stochastic search schemes [141] are usu-

ally adopted.

Some ICP variants aim to deal with the noisy range measurements produced by

current range sensors. Having observed that outliers usually provide large residuals

in the cost function, it is proposed to sort the correspondence pairs by their resid-

uals, and only use some of them for calculating the cost function, e.g. with least

median squares or the trimmed-ICP [29]. The robustness can as well be improved

by incorporating the surface texture information in ICP. [162] presented to use the

texture-closest points in the neighborhood of distance-closest points also into the cor-

respondence pair set. [72] integrated the texture distance with Euclidean distance

for obtaining the matching pairs. Incorporation of the texture can also help handling
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the surface geometrical symmetry. However, existing methods use the texture in a

point-wise level, which will be sensitive to the surface appearance variations.

Besides a rigid surface, ICP can be extended to be applied on more complex

surfaces. For a articulated body, [79] built the transformation parameters of all

links into the ICP cost function, which was minimized with the Leverberg-Marquardt

method. They combined the Kalman filter with the articulated ICP to track an

object hold by a robotic manipulator and construct a 3D model of the object online.

For deformable surfaces, [115] proposed to use all the points instead of only the

matched point pairs for calculating the cost function and output the registered point

set. However, their method differs a lot from the ICP procedure, and may not be

appropriate to be classified as a variant of ICP.

3.2 Theoretical Background

This section details a variant of the conventional range data based ICP, i.e. the

projective point-to-plane ICP, which will be extended in this chapter to incorporate

the object texture (appearance) information. This variant has the advantage of being

very efficient for dealing with organized range data obtained from a range camera,

because the correspondence pairs can be associated by projecting each model point

onto the image plane and reading the required observation range data [118].

The cost function in one iteration step is formulated as:

E(∆θ) =
∑
n=1

g2(uk−1m,n, ∆θ), (3.1)

where uk−1m,n = [ux, uy, uz]
> is the n-th 3D model point on the target surface from

iteration k − 1. ∆θ = [∆θα, ∆θβ, ∆θγ, ∆θx, ∆θy, ∆θz]
> is the state vector for the

incremental pose, which is used for transforming a model point uk−1m,n in iteration

k− 1 to ukm,n in iteration k. As discussed in Subsection 2.4.1, Euler angle [θα, θβ, θγ]
>

in ZYX convention is adopted to model the rotation and [θx, θy, θz]
> in Cartesian

coordinate for the translation.

The point-to-plane distance metric for the n-th point is given by:

g(uk−1m,n, ∆θ) = (∆Tku̇k−1m,n − uk−1l,n )>Nk−1
l,n , (3.2)

where uk−1l,n is the live observation correspondence point for the n-th 3D model point

uk−1m,n found by the projective data-association. Nk−1
l,n is the live surface normal at
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point uk−1l,n , which can be estimated with a set of live points in its neighbourhood.

The operation u̇ = [u>, 1]> is used to get a homogeneous point. The target model

point in iteration k is calculated as:

ukm,n = Tku̇refm,n = Tk Ṫref u̇initm,n, (3.3)

where the reference 3D model point u̇refm,n for the current frame (or time step) is

obtained by rotating and translating the initial model point u̇initm,n with the target

pose from the last frame. Tk is the 3× 4 transformation matrix in the current time

step up to iteration k, which can be used to update a reference 3D point to the current

iteration. Ṫref is used to transform the initial model point to the reference point in

the current frame. In a video sequence, Ṫref is the composite transformation matrix

up to the last frame. The 4× 4 homogeneous transformation matrix is composed of

a 3× 3 rotation matrix R and a 3× 1 translation vector t as:

Ṫ =

[
R t

0 1

]
.

The ∆Tk in Eq. (3.2) then provides an update between iterations:

Tk = ∆Tk Ṫk−1. (3.4)

The benefit of optimizing a small incremental update in the cost function instead of

estimating a global pose is twofold. First, the singularity of Euler angle can be avoided

because for the ZYX convention the singularity will only happen when the rotation

around Y axis is close to 90◦ but the incremental pose is supposed to be small; Second,

by assuming a small incremental angle between iterations, the rotation matrix can

be linearised and the incremental transformation matrix ∆Tk can be approximated

as (in the case of Euler angle in ZYX convention):

∆T ′k = [R ′k, tk] =

 1 −∆θα ∆θβ ∆θx

∆θα 1 −∆θγ ∆θy

−∆θβ ∆θγ 1 ∆θz

 .

Accordingly, the model points ukm,n used in iteration k are obtained by:

ukm,n = ∆T ′ku̇k−1m,n.
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With the approximated incremental transformation matrix, Eq. (3.2) can alter-

natively be rearranged as:

g(uk−1m,n, ∆θ) = (G(uk−1m,n)∆θ + uk−1m,n − uk−1l,n )>Nk−1
l,n , (3.5)

where

G(u) =

 −uy uz 0 1 0 0

ux 0 −uz 0 1 0

0 −ux uy 0 0 1

 . (3.6)

Setting the derivative of g2(uk−1m,n, ∆θ) with respect to ∆θ to zero and summing

up all associated points leads to a linear equation for the optimal increment pose:∑
n

(A>nAn)∆θ = −
∑
n

g(uk−1m,n, 0)A>n, (3.7)

where A>n = G(uk−1m,n)>Nk−1
l,n .

Notice that the linearised 3 × 3 matrix R ′k in ∆T ′k may not be a valid rotation

matrix. To avoid the error being propagated and accumulated between iterations,

after ∆θ has been estimated, the transformation matrix Tk in Eq. (3.4) will still be

updated with ∆Tk rather than ∆T ′k.

3.3 Incorporating Texture into ICP

This section describes the approach to incorporate texture (target appearance) into

the range data based ICP. Combining the texture with the range data can yield a

registration algorithm that can deal with symmetric geometry that cannot be handled

by conventional ICP. In comparison to the schematic illustration in Fig. 3.1, where

the range data based ICP fails on aligning a line section due to short of constraints,

Fig. 3.3 shows schematically, if the texture distribution is used in addition to the

range data, after some iterations, the desired registration can be achieved.

Previous approaches for combining texture with range data mostly used texture for

determining the correspondence pairs. For instance, [72] added the color consistency

into the range Euclidean distance and matched points were the pairs with the minimal

combined distances. In [162] the matched point set contained both the closest range

pairs and the color consistent pairs. They all used texture in a pairwise level. This

work, in contrast, builds texture information into the optimization stage of ICP, i.e.

into the cost function. The minimization process calculates the spatial derivative
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Figure 3.3: Schematic illustration for the Texutured-ICP on a symmetric object.
The solid section represents the geometrically symmetric model range data, while the
dashed curve stands for the intensity distribution of all points on the section. The
model data is in red and the live observation data is in black. The matched points on
the live data found by the projective data association are marked with small circles,
while the none-correspondence projective rays (the green dashed lines) are ended with
crosses.

for the texture of the matched live points, thus implicitly takes the neighborhood

information into account. In this way, the proposed method performs more robust

than by using the pairwise color consistency.

The pose estimation method proposed in this section is term as Textured-ICP,

because it integrates the texture into the ICP framework. However, after it has been

derived, the close connection to Lukas-Kanade method for solving the optical flow

[6] is revealed. Therefore, the proposed Textured-ICP is also denoted as LKICP. In

following discussions, both terms are used interchangeably.

It should be noted that during the writing of this thesis, a similar approach to

the proposed LKICP/Textured-ICP is published in [73], where the optical flow from

intensity data is combined with the range flow. They applied their method on the

sensor ego-motion estimation in a static scene and also demonstrated the real-time

performance. In comparison, our method combines the optical flow with ICP and

focuses on the pose estimation of a rigid object in the cluttered backgrounds. Besides,

as will be introduced in the following subsections, compared with the optical flow

derivation in [73], the proposed LKICP uses B-Spline interpolation for a subpixel

accuracy on the texture image and adopts a normalization step for formulating the

texture consistency. Therefore, the LKICP is expected to be more accurate and more

robust to illumination variations. The cost coming with these operations is the raised

computation.
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The cost function of the proposed Textured-ICP is expressed as

E(∆θ) =
∑
Ωk(n)

[
g2(uk−1m,n, ∆θ) + ρf 2(uk−1m,n, ∆θ)

]
, (3.8)

where g2(uk−1m,n, ∆θ) and f 2(uk−1m,n, ∆θ) are the distance metrics for the n-th point

under a specified pose for ICP and for the texture respectively. ρ is a constant

that controls the influence of the texture in the optimal pose search. In following

sections, The metrics above are written as g2n(∆θ) and f 2
n(∆θ) instead for notation

simplification. Similar to the discussion in Sec. 3.2, the Textured-ICP also works with

the incremental pose ∆θ, which is similar to the cost function for the point-to-plane

ICP in Eq. (3.1), because the optimization process relies heavily on the linearization

of the transformation matrix under the small angle assumption. For the sake of

derivation convenience, where no confusion would occur, θ is used for expressing the

incremental pose instead of ∆θ in the following subsections.

As in [118], Ωk(n) represents the 3D consistency test. It takes place in each

iteration k on all z-buffered visible points and checks whether the observation 3D

measurements and the surface normals are consistent with its projective-associated

transformed model data. Only those matched point pairs that have passed Ωk(n)

will be summed into the cost function. Details with respect to the proposed texture

distance and the optimization process will be given in the following subsections.

3.3.1 2D Texture Model

Eq. 3.8 will be minimized with a gradient based optimization scheme, which will re-

quire smooth data with a certain order of differentiability. This section parameterizes

the 2D texture image captured by the color camera. The parametric form of the 2D

image is obtained by interpolating the image with the B-Spline interpolation [123]:

v(y1, y2) =
∑
j

∑
i

c[i, j]B(y1 − i)B(y2 − j), (3.9)

where v(y1, y2) is the image value at pixel position (y1, y2). B(x) stands for the

quadratic B-Spline basis function and c[i, j] represents the B-Spline coefficients, which

has the same size as the observation image. One advantage of the B-Spline interpo-

lation compared to e.g. the polynomial interpolation is that the B-Spline coefficients

can be efficiently calculated by an inverse filtering technique as introduced in [146].
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Since the quadratic B-Spline is adopted, which has a compact support of 3 units.

Above summation will be non-zero for only three elements in both i and j directions.

If denoting h,w = −1, 0, 1 (representing the indices for the three non-zero support of

B-Spline) and rj = yj − round(yj), the interpolation in Eq. (3.9) can be rewritten as

v(y) =
∑
h

∑
w

cw,h(awr
2
1 + bwr1 + dw)(ahr

2
2 + bhr2 + dh),

where cw,h = c[round(y1) + w, round(y2) + h]. In addition, a{−1,0,1} = {0.5,−1, 0.5},
b{−1,0,1} = {−0.5, 0, 0.5} and d{−1,0,1} = {0.125, 0.75, 0.125} are the parameters used

for calculating the quadratic B-Spline function values.

The 2×1 gradient vector

∇yv =

[
∂v

∂y1
,
∂v

∂y2

]>
of intensity with respect to y is calculated as

∂v

∂y1
=
∑
h

∑
w

cw,h(2awr1 + bw)(ahr
2
2 + bhr2 + dh)

∂v

∂y2
=
∑
h

∑
w

cw,h(awr
2
1 + bwr1 + dw)(2ahr2 + bh)

.

When required, the 2× 2 Hessian matrix Hv(y) of intensity with respect to y can

also be obtained accordingly. But as will be discussed in Subsection 3.3.3, instead of

Hessian, the Gauss-Newton approximation will be used to calculate the pose update

during optimization, which only requires the first order derivatives. Therefore, the

second order derivatives are not given here.

3.3.2 Perspective Projection Model for 2D Camera

Besides the differentiable observation data derived in the previous subsection, the way

to sample data should also be analytically established with a certain order of smooth-

ness. Since the aim is to compare the appearance value of each model point with the

texture value of its correspondent observation point, and the correspondence is deter-

mined through the projective data association as introduced in Sec. 3.2, the mapping

y = p(uk, θ) = [y1, y2]
> from the 3D model point uk = ∆Tku̇k−1 = [ukx, u

k
y, u

k
z ]
> to the

2D image pixel should also be obtained through the projective model. By assuming
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a pin-hole camera model, the perspective projection model is expressed as

y =

[
Fx
ukx
ukz

+ ly1, Fy
uky
ukz

+ ly2

]>
,

where (Fy1, Fy2) are the focal lengths scaled by the physical pixel sizes for the pin-hole

camera in both x and y directions. (ly1, ly2) is the pixel position for the intersection

of the image plane and the optical axis of the lens. They are the intrinsic parameters

for the pin-hole camera as in Eq. (1.4), which can be obtained through a calibration

process with the method propose in [180]. θ represents the incremental pose.

Similar to the processing from Eq. (3.2) to Eq. (3.5), the incremental transforma-

tion matrix ∆Tk can be linearised under the small angle assumption, and the above

projection model can be approximated as:

y =

[
Fy1

G0θ + uk−1x

G2θ + uk−1z

+ ly1, Fy2
G1θ + uk−1y

G2θ + uk−1z

+ ly2

]>

where the 1 × 6 vector Gj is the j-th row of G(uk−1) in Eq. (3.6). Given a 3D

model point uk−1, the interested thing in a gradient based optimization method is

the gradient of intensity with respect to the incremental pose θ, which can be obtained

from the chain rule:

∇θv =
∂v

∂y1

∂y1
∂θ

+
∂v

∂y2

∂y2
∂θ

= Jy(θ)∇yv. (3.10)

Here Jy(θ) is the 6× 2 Jacobian matrix

Jy(θ) = Jp(uk−1, θ) =

[
∂y1
∂θ

,
∂y2
∂θ

]
, (3.11)

which can be calculated by:
∂y1
∂θ

=
Fy1

(G2θ + uk−1z )2
(D0θ + B0)

∂y2
∂θ

=
Fy2

(G2θ + uk−1z )2
(D1θ + B1)
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with
Dj = G>j G2 − G>2 Gj

B0 = uk−1z G>0 − uk−1x G>2

B1 = uk−1z G>1 − uk−1y G>2

.

Correspondingly, the second order derivatives can also be obtained as
∂2y1
∂θ∂θ>

=
Fy1

(G2θ + uk−1z )2
D0 −

2

G2θ + uk−1z

∂y1
∂θ

G2

∂2y2
∂θ∂θ>

=
Fy2

(G2θ + uk−1z )2
D1 −

2

G2θ + uk−1z

∂y2
∂θ

G2

.

3.3.3 Texture Consistency

Previous two subsections introduced the method for sampling the observed intensity

value for a specified model point under an input (incremental) pose. This subsection

derives the distance metric used for comparing the model intensity and the observation

intensity values, as well as necessary derivatives.

The Normalized Sum of Squared Difference (NSSD) is exploited for formulating

the error metric, for which the normalized intensity difference is:

f(uk−1m,n, ∆θ) =
v(p(uk−1m,n, ∆θ))− µkl

σkl
−
vk−1m,n − µk−1m

σk−1m

, (3.12)

where (µkl , σ
k
l ) and (µk−1m , σk−1m ) are mean and standard deviation of the intensities of

the projective-associated live points and the target model points respectively. Similar

to the Mean Squared Error (MSE), although NSSD may not really reflect the true

perception variation [161], it yields an error metric that can be solved analytically

and is by far the most adopted distance metric in many fields.

The mean and standard deviation of intensity are determined by all matched point

pairs, which are influenced by ∆θ and the consistency test Ωk(n). Thus the model

statistics (µk−1m , σk−1m ) and the live statistics (µkl , σ
k
l ) will vary with respect to ∆θ, i.e.

they are functions of ∆θ. However, similar to the linearisation of the transformation

matrix ∆Tk, ∆θ is expected to change gently between successive iterations. Thus

variation of the statistics is also expected to be small. Therefore, both (µkl , σ
k
l ) and

(µk−1m , σk−1m ) are assumed constant between two iterations. Likewise, (µkl , σ
k
l ) calcu-

lated with the current matched live points can be approximated by (µk−1l , σk−1l ) from

the matched live points in the previous iteration. Under such simplifications, the

6 × 1 gradient vector ∇f 2
n(θ) of f 2

n(uk−1, θ) with respect to θ (instead of writing

84



3.3. Incorporating Texture into ICP

f 2(uk−1m,n, ∆θ) with respect to ∆θ for the sake of notation clarity) can be derived as

∇f 2
n(θ) =

2

σl
f>n (θ)∇θvn,

where as a scalar, f>n (θ) = fn(θ).

And the 6× 6 Hessian matrix Hf2n
(θ) is calculated as:

Hf2n
(θ) =

2

σ2
l

∇θvn(∇θvn)> +
2

σl
fn(θ)Hv(θ). (3.13)

The gradient ∇θv of intensity with respect to θ is obtained with Eq. (3.10), and

the Hessian matrix of intensity with respect to θ is calculated by

Hv(θ) =

[
∂2y1
∂θ∂θ>

,
∂2y2
∂θ∂θ>

]
∇yv + Jy(θ)Hv(y) J>y (θ).

The first term on the right side of the above equation is quite small compared to the

second term, it could simply be neglected when calculating Hv(θ) for a full Hessian

based gradient descent optimization algorithm. However, it has been demonstrated in

[27] and [6] that for an image alignment application, a Gauss-Newton approximation

to the Hessian Hf2n
(θ) in Eq. (3.13) will yield a better convergence when the initial

pose is far from the optimum, i.e. the initial input has large residuals. The Gauss-

Newton approximation to the Hessian is given by:

HGN,f2n
(θ) =

2

σ2
l

∇θvn(∇θvn)>.

Moreover, employing a Gauss-Newton update forms an algorithm that is consis-

tent with the structure of the projective point-to-plane ICP, which will be further

presented with more details in the next subsection. For a better discussion, now ∆θ

is used to express the incremental pose. The Gauss-Newton update δθ to the incre-

mental pose ∆θ for optimizing f 2
n(uk−1, θ) is obtained by solving the linear equation

HGN,f2n
(∆θk−1)δθ = −∇f 2

n(∆θk−1),

where ∆θk−1 is the incremental pose upto the last iteration. However, accord-

ing to Eq. (3.3) and (3.4), the input 3D model points are calculated with uk−1 =

∆Tk−1 Ṫk−2u̇ref . The use of ∆Tk−1 implies that the input model point has already

been transformed by applying the incremental pose ∆θk−1 upto the last iteration, and
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the incremental pose ∆θk−1 should be set to 0 since it is already used in transforming

the model points. In this case, the update δθ is in effect the incremental pose ∆θ for

transforming the model points between iterations. Therefore, above update can be

calculated by

HGN,f2n
(0)∆θ = −∇f 2

n(0). (3.14)

And evaluation of Jy(θ) at θ = 0 will be simplified as:

Jy(0) =

[
Fy1

(uk−1z )2
B0,

Fy2
(uk−1z )2

B1,

]
.

Furthermore, the 3× 6 matrix G(u) is quite sparse, thus only a moderate amount of

calculations are required.

3.3.4 Iterative Optimization for Textured-ICP

The incremental pose solved by the texture consistency in Eq. (3.14) shares the same

form as the one solved with the conventional ICP in Eq. (3.7) (except Eq. (3.7)

is formulated for all matched points). This indicates that the texture and range

distances can be combined for solving the incremental pose by simply summing up

both equations as∑
Ωk(n)

(
A>nAn + ρHGN,f2n

(0)
)
∆θ = −

∑
Ωk(n)

(
gn(0)A>n + ρ∇f 2

n(0)
)
, (3.15)

where as for Eq. (3.7), the summation is performed upon all matched point pairs that

have pass the matching consistency test Ωk(n).

The variable ρ in Eq. (3.15) controls the influence of texture in the pose optimiza-

tion. The texture and the range error values usually have different magnitudes. ρ

should also take this into account. In this work, it is set as

ρ = ρc
‖A>nAn‖2
‖HGN,f2n

(0)‖2
, (3.16)

where ‖ · ‖2 calculates the matrix norm. Thus the fraction part balances the numeric

magnitudes between range and texture consistencies. ρc is a pre-specified constant

that determines the texture influences. It should be set according to the noise level

of the range and the color images. For example, when the motion in the application

is smooth and the range data is reliable or when the ambient light is weak and the

color camera only produces low quality images, ρc = 0.5 could be used. On the other
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hand, if the range data is contaminated, ρc = 2.0 is preferred. In most tests in this

thesis, ρc = 1.0 is used.

The iterative optimization procedure for the proposed Textured-ICP (LKICP)

is described in Algorithm 3.1. It uses the pre-aligned pose from the coarse pose

estimation stage as the initial pose guess. The fused RGBD image is taken as the

input observation data. The model colored point cloud will be tested with z-buffering

under the coarsely estimated pose, as carried out in the first step of Algorithm 3.1.

Later on, the z-buffered point set will be used as the model data for the accurate

pose estimation. Although the visible point set determined by the coarse pose is in

general different with the true visible set, small variations of the set either can be

handled by the matching consistency test Ωk(n) or can be simply neglected without

causing much error.

Algorithm 3.1 Iterative Optimization for LKICP

Inputs:

1. Coarse pose estimate.

2. Live (or observation) fused RGBD image.

Procedure:

1. Get z-buffered transformed target point set Mz,0 and extended target image
region with input pose.

2. Calculate surface normal and B-Spline coefficients in extended target region.

3. for k = 1→ Kmax do

(a) Get matched point pairs with projective data association for all points in
Mz,k−1.

(b) Calculate A>n and g(uk−1m,n, 0) in Eq. (3.7) for all matched point pairs, sort
the match pairs with cost function values g2n(0).

(c) Calculate (µk−1l , σk−1l ), (µk−1m , σk−1m ), HGN,f2n
(0) and ∇f 2

n(0) for 50% point
pairs with smallest values of g2n(0).

(d) Calculate ∆θ with Eq. (3.15) using trimmed points pairs, if ‖∆θ‖ < εθ ,
exit iteration.

(e) Transform point set Mz,k−1 to Mz,k with transformation matrix ∆Tk.

4. end for

5. Get final transformation matrix Test and estimated pose θest.

Output: Final transformation matrix Test and estimated pose θest

The Step 1 also outputs an extended target 2D upright bounding rectangle for all

the projected target points on the image. The bounding rectangle is enlarged a bit to
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account for the small difference between the coarse pose and the final accurate pose.

The computations required for calculating the B-Spline coefficients and the surface

normals in Step 2 are only performed within the extended target region, which avoids

unnecessary calculations on non-target image regions.

Step 3(b) in Algorithm 3.1 calculates the range terms for all matched point pairs.

Step 3(c) calculates the texture terms for 50% of the matched point pairs that have

the smallest ICP cost function values. The proposed LKICP is based on least squares,

which is known to be sensitive to outliers. Therefore, the Trimmed-ICP suggested by

[29] is adopted, where the cost function values from ICP are sorted and only a portion

of the matched pairs with the smallest values will be used for the optimization. Since

the range data from the PMD camera can be quite noisy under motion, the trimmed

version usually yields a more robust pose estimation than using all matched pairs.

The iteration can be terminated either when the incremental pose is too small or

when the pre-specified maximum number of iterations has been reached. The final

transformation matrix can be retrieved by

Test = ∆Tk Ṫk−1 Ṫref .

Then the final accurate pose θest can be obtained accordingly.

3.3.5 Tests on Symmetric Geometry and Noisy Range Data

Incorporating texture into the range data based ICP can improve the estimation per-

formance when dealing with a geometrically symmetric object or noisy range measure-

ments. This subsection shows such improvements by comparing the pose estimation

result from LKICP with the result from ICP.

The test on the symmetric geometry was carried out with a cylindrical bucket.

Some frames from a video sequence are illustrated in Fig. 3.4, where the cylinder was

rotating around its axis for some degrees. For this test, the coarse pose estimation

stage was completely deactivated, and the estimated pose from the previous frame

was taken as the initial pose for the current frame.

The pose estimated with ICP are shown in images in the first row of Fig. 3.4. The

range data based ICP is ill-posed on symmetric geometries. When the cylinder rotates

around its axis, although the rotation is visually perceptible, it cannot be reflected

from range measurements variations. Therefore, poses from ICP remain unchanged

throughout the frames. In contrast, the proposed LKICP can effectively capture the

pose changes as illustrated in the second row of Fig. 3.4.
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Figure 3.4: Test on symmetric geometry. A cylindrical bucket is used as the test
object. The poses estimated with ICP and LKICP are shown in the first and the
second rows respectively.

Although the results in Fig. 3.4 were obtained with the accurate stage only, the

gradient based optimization requires a good initial pose input, due to the use of the

projective data association and the quadratic B-Spline for interpolating 2D image.

When the target has a large motion between frames, the pose from the coarse esti-

mation stage will play a crucial role on the final performance. Since the coarse stage

also uses the texture for determining the pose, it can tackle the symmetric geometry

as well. Thus, with an initial pose from the coarse stage, the performance of ICP can

also be significantly improved. On the other hand, as will be discussed in Sec. 5.2,

the proposed LKICP also outperforms ICP in terms of accuracy.

Moreover, the conventional ICP will run into problems when the range data is

contaminated by motion artefacts, as shown in Fig. 3.2, where the fused sensors

were mounted on a mobile robot driving on grassland. The trimmed version of ICP

yielded a better result but can still fail on estimating the pose on some degrees of

freedom. In comparison, Fig. 3.5 shows the robustness of the LKICP on the noisy

range measurements. This is because the 2D color camera produced reliable texture

images for the target.

Normally, the motion will also decrease the quality of the 2D image. But the

experiment shows that the influences are quite different. Fast motion usually blurs

the 2D image. For a gradient feature (e.g. corner feature) based algorithm, such an

artefact can be detrimental. However, the coarse stage, as well as the LKICP in the

accurate stage, uses a large number of target surface points and works more like a

template matching method. Therefore, the proposed method is robust under the 2D

image blurring. In contrast, the PMD camera takes four shots for calculating one

range image. The influence of motion on the range image will be much severer than
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(a) frame 47 with ICP (b) frame 48 with ICP

(c) frame 47 with LKICP (d) frame 48 with LKICP

Figure 3.5: Test on noisy range measurement. (a) and (b) are two successive frames
with the pose estimated with ICP. The range data are contaminated by the motion
artefacts in the second frame. (c) and (d) show the estimation results with the
proposed LKICP.

on the color image. The four shots are expected to come from the same reflected

signal with a constant amplitude. Under motion, the real reflected signals can vary

dramatically not only due to different range between the target object and the sur-

rounding background surfaces, but also because of the change of the signal amplitude

result from the reflectivity differences between the target and the background. All

in all, it can be much more complicated than the simple aliasing for the case of the

2D image. In some cases, with the corrupted range data, the shape of the target can

barely be recognized. Thus using range data alone will yield poor results when the

PMD range measurements are contaminated by fast motion.

In above test, the constant ρc in Eq. (3.16) for controlling the influence of the

texture in the pose optimization is set to ρc = 1.0. No special preference is placed on

the texture nor the range measurements. Full video of this test can be found in the

supplementary CD and more evaluations will be given in later chapters.
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3.4 Implementation and Convergence Evaluation

This section discusses some implementation issues with respect to the surface normal

estimation and GPU acceleration. The estimated surface normal will be used in

Eq. (3.7) for the pose optimization and for determining the validity of the matched

point pairs. Also, the surface normal estimation plays an important role on the

illumination modeling which will be discussed in the next chapter. The parallelism

of the proposed Textured-ICP is investigated and the running time in this stage with

GPU acceleration is given. Furthermore, the convergence of the Textured-ICP is also

evaluated and compared with the conventional ICP and the texture-only optimization.

It is demonstrated that combining the texture and the range data not only improves

the stability for dealing with the initial pose with large errors, but also reduces the

number of iterations required to reach a pre-specified accuracy.

3.4.1 Surface Normal Estimation

The Surface Normal (SN) vector n = [nx, ny, nz]
> at a target point can be estimated

by grabbing a number of points in its neighbourhood, and fitting the sample points

to a local plane. If the plane function is given by

nxx+ nyy + nzz − d = 0,

the fitting can be achieved by minimizing an objective function [107]

min
n

k∑
i=1

(p>i n− d)2 s.t. ‖n‖2 = 1, (3.17)

where pi represents a sample point in the neighbourhood.

The Traditional Least Squares (TLS) problem in Eq. (3.17) can be solved analyt-

ically by finding the eigenvector corresponding to the smallest eigenvalue of the 3× 3

covariance matrix

M =
1

k

k∑
i=1

(pi − p)(pi − p)>,

where p is the mean of all the 3D sample points. This is denoted as the PlanePCA

method in [75]. Besides PlanePCA, [75] also evaluated other methods for solving

the least squares problem and concluded that for medium-sized neighbourhoods, the

PlanePCA method yields better performance in terms of accuracy and computational

efficiency.

91



3. ACCURATE ESTIMATION WITH TEXTURED-ICP

Although the TLS solution obtains an optimal estimation, it is based on i.i.d.

(identical independent distribution) noise assumption for the three dimensions of all

sample points, which means the noises in X, Y and Z directions are independent.

However, if expressing a sample point in the spherical coordinates as

p =

 x

y

z

 = rv, where v =

 sinθcosφ

sinφ

cosθsinφ

 ,
where r represents the radial distance directly measured by the PMD camera, since

most of the measurement uncertainties from the PMD camera are reflected in r, it is

clear that the noise propagates linearly along different coordinate dimensions. Such

a violation to the i.i.d. assumption can result in the poor performance when the

range data are corrupted. Fig. 3.6 (a) shows the SNs estimated by TLS on a plane

contaminated with Gaussian random noise, where most of the estimated SNs have

large errors.

(a) SN with TLS (b) SN with ULS

Figure 3.6: Surface Normal (SN) estimation on a noisy plane. The resulting SN
estimated with the Traditional Least Squares (TLS) and the Unconstrained Least
Squares (ULS) are shown in (a) and (b) respectively, where the plane is depicted in
green and the SNs are drawn in red.

[4] presented a method that can handle the violation of TLS to the i.i.d. assump-

tion. If the spherical coordinate of a sample point pi = ri[vxi, vyi, vzi]
> is put into the

plane function, the following equation can be obtained:

rivxinx + rivyiny + rivzinz − d = 0,
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which can be reformulated as riki = d with ki = vxinx + vyiny + vzinz. In a small

neighbourhood, ki varies little between points. Therefore, dividing d2 in the objective

function in Eq. (3.17) can be interpreted as an approximation for removing ri from

pi. The new objective function is expressed as

min
ñ

k∑
i=1

(p>i ñ− 1)2.

Notice that after removing d2, the new ñ to optimize is not necessarily a unit

vector. Thus a following normalization step is required. Due to lack of the unit

vector constraint, this method is termed as the Unconstrained Least Squares (ULS)

method in [4]. The SN estimation result for a contaminated plane is illustrated in

Fig. 3.6 (b). Compared to the result with TLS in Fig. 3.6 (a), ULS yields much better

SNs, meanwhile it has a lower computational cost. Therefore, it is adopted in this

thesis for the SN estimation. More evaluations for different SN estimation approaches

can be found in [4, 75, 107].

3.4.2 GPU Acceleration

The computational efficiency is essential in the robotic applications. Taking advan-

tage of the modern many-core GPUs, this section investigates the parallelism in the

proposed accurate pose estimation algorithm, and gives the running time of this es-

timation stage with GPU acceleration under typical configurations. Unfortunately,

no CPU version of implementation is available, thus the detailed speedup cannot be

presented.

The surface normal estimation can be naturally calculated in parallel for all the

image points inside the target bounding rectangle. For the implementation on GPU,

the matrix inversion operation involved in the surface normal estimation will require

double precision, otherwise the result can be quite poor. Therefore, double precision

GPUs should be considered. Further acceleration can be achieved by using the box-

filtering as was suggested in [4], although it is currently not implemented yet in the

code.

The data association process involves the matrix computations for transforming

then projecting the model points onto the image plane, as well as testing the matching

consistency between the transformed model points and the observation points. These

operations can be efficiently calculated on GPU. The terms in the main iteration of

the optimization, e.g. A>nAn and g(uk−1m,n, 0) in Eq. (3.7), HGN,f2n
(0) and ∇f 2

n(0) in
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Eq. (3.14), are computed on GPU in parallel. Since the trimmed version of ICP is

adopted, the matched point pairs will be sorted according to the cost function values

of ICP. Moreover, the summation in Eq. (3.15) will operate on thousands of matrices,

for which the computation time cannot be neglected. Besides, the calculation of

the model and the observation statistics (µk−1l , σk−1l ) and (µk−1m , σk−1m ) in Step 3 (c)

of Algorithm 3.1 also raises a noticeable cost if it will be computed sequentially on

CPU. Above sorting and summation, however, can be solved by the parallel prefix sum

algorithms with high efficiency. This work exploited the Thrust parallel algorithm

library for a quick implementation of the parallel prefix sum algorithms.

The running time of the proposed algorithm is evaluated on a laptop introduced

in Subsection 2.4.2. When the extended target bounding box calculated in Step 2

of Algorithm 3.1 has around 105 pixels in width and 170 pixels in height, and with

around 2,500 matched pairs, this stage takes 15∼20 ms.

accurate estimate stage
Size of M ≈10,000
Size of Mz ≈9,000
Matched pairs ≈2,500
Bounding box size ≈(105,170)
Max. number of iterations 15
Running time 15 ∼ 20 ms

Table 3.1: Running time for the accurate estimate stage

Similar to the discussions in Subsection 2.4.2, some of the computations are run-

ning on CPU. Partly because some calculations will be much more efficient when run-

ning on CPU, e.g. solving the linear equation for the incremental pose in Eq. (3.15);

partly because some source codes are available for the CPU calculation, which can

remarkably ease the implementation and debugging, e.g. the inverse filtering in [146]

for calculating the B-Spline coefficients. Such a hybrid CPU/GPU computation in-

evitably raises costs for the data transfer between the two computing units. When a

GPU with PCI-E 3.0 can be used, the cost for the data transfer can be significantly

reduced. Or when the calculation for the B-Spline coefficient is implemented on the

GPU, it is expected that around 4∼5 ms can be saved in the above test. Or when

more recent GPUs with over one thousand CUDA cores can be employed, the parallel

computation can be remarkably accelerated. Therefore, it can be concluded that the

proposed algorithm is competent for real-time applications.

94



3.4. Implementation and Convergence Evaluation

3.4.3 Convergence Evaluation

The proposed LKICP is a gradient based iterative optimization algorithm. For an

iterative approach, often two questions arise: how fast it can converge to the optimum

and how much error it can tolerate for the initial input. In this subsection, both are

evaluated through experiments on real objects and the results for the Merlin robot

are given in Fig. 3.7 and Fig. 3.8.
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Figure 3.7: Convergence rate evaluation. The top two images illustrate the input
erroneous pose and the desired pose. The middle three are for Euler angle rotation
around the Z, Y and X axes, in radian. The bottom three are for the translation
along X,Y and Z axes, in meter. The number of iterations and the corresponding
residual pose are shown on the X and Y axes respectively.

The convergence rate (or convergence speed) is evaluated by inputting an erro-

neous initial pose and checking the residual errors after each iteration as well as the

number of iterations required to reach a pre-specified acceptable error bound. The

initial pose and desired pose are depicted in the two images on the top of Fig. 3.7.

For demonstrating the advantage of combining the texture with the range data,
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three error metrics are compared, i.e. the texture based NSSD, the range based ICP

and the combined LKICP. Results for all six degrees are illustrated in Fig. 3.7, where

the three images in the middle row are for the rotational degrees and the bottom

three are for the translation.

For the input erroneous pose, within 40 iterations, only ICP fails to converge to the

specified accuracy. This is largely due to the planar shape of the target. Although the

Merlin robot has a complex shape, this work only considers a target model initialized

with one frame due to the lack of a complete CAD model. In this test, only the rear

part of the robot is taken as the target. The wheels are excluded because the dark

texture make them hard to sense with the PMD camera. Therefore, even if the initial

pose is quite close to the desired pose, the ICP iterations cannot correctly converge.

On the other hand, the NSSD converges to the desired accuracy with around

18 iterations. However, it takes a quite zigzag path, which can clearly be seen in

the images for rotation (the middle row in Fig. 3.7). This may result from the use

of the 2D quadratic B-Spline for interpolating the 2D image. In theory, the 3 units

compact support of the quadratic B-Spline can only effectively model pixel intensities

within a 3×3 window. When the initial alignment exceeds this range, it can work

in a complicated manner. In contrast to ICP, when it gets closer to the optimum

especially when within the 3-unit region, NSSD shows a rather fast convergence.

In comparison, the proposed LKICP demonstrates the most stable convergence

rate. It combines the advantages of ICP and NSSD methods and yields fast conver-

gence at both beginning stage of the iteration and near the optimum. Although the

desired accuracy is achieved with 20 iterations, the pose is already quite close the de-

sired one within 10 iterations. A lot more tests indicate that the number of iterations

required to tackle input error poses is usually less than 20. Therefore, a maximum

iteration number of 15∼20 is normally adopted, as the case in Table 3.1. Such a

setting can be further confirmed in the following convergence stability evaluation.

The convergence stability or convergence region refers to how much initial state

error the algorithm can tolerate and achieve the optimal state. The 6DOF pose

estimation is a high dimensional state space problem, for which it is impractical to

evaluate the convergence stability for all six degrees simultaneously. Therefore, each

degree of freedom is evaluated separately by setting the input error for one degree

and the rest to the desired optimal values. The results for all six degrees of freedom

are shown in Fig. 3.8, where the two poses under the positive and negative maximum

input test errors are illustrated above the evaluation images for each degree. As before,

the top row shows the Euler rotations under ZYX convention, and the bottom row
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depicts the translations. As for the convergence rate test, the three error metrics, i.e.

ICP, NSSD and LKICP, are compared.
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Figure 3.8: Convergence stability evaluation. The six figures illustrate the number
of iterations required for handling the input errors for each degree separately. Three
methods - ICP, NSSD and LKICP - are compared. The X and Y axes represent
the initial input error for one freedom and the corresponding required number of
iterations respectively. Above each figure, two target images are given for illustrating
the tested positive and negative extreme input errors.

Among the three compared methods, the ICP yields the worst performance, espe-

cially for the rotation around Z axis. For some degrees of freedom, the NSSP shows

comparable results as the LKICP. But in general, the proposed LKICP demonstrates

the best convergence rate and convergence stability. In most cases, the input errors

can be effectively tackled within 15 iterations. Therefore, the maximum number of

iterations is set to 15 for most of the tests in this work. The results in this subsection

also imply the necessity of a good initial pose guess, otherwise the algorithm still

cannot converge to the desired pose. The pose output from the coarse estimation

stage can provide the required initial accuracy. Details will be further discussed in

Chapter 5.
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3.5 Summary

This chapter presents the accurate pose estimation stage, which takes the pose from

the coarse estimation stage as the initial pose guess and outputs a refined pose through

a gradient based iterative optimization procedure. The major innovation in this

chapter is the incorporation of the target appearance (texture) information into the

conventional point-to-plane ICP framework with projective data association. The

derivation of the texture consistency in the proposed Textured-ICP is closely con-

nected to the Lukas-Kanade method for solving the optical flow. Therefore, it is also

denoted as the LKICP in short for Lukas-Kanade ICP. The proposed LKICP exhibits

several advantages over the conventional ICP: the ability to deal with geometrically

symmetric object; better performance under range measurements contaminated by

motion artefacts; faster convergence and better tolerance to initial errors. Despite of

the additional computations compared to ICP, the real-time performance can still be

achieved by making use of GPU acceleration.
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Chapter 4

Handling Illumination Variation

The coarse and the accurate pose estimation algorithms proposed in previous chapters

all make use of the target appearance for aligning the model and the observation

data. It is well known that the appearance of an object can vary significantly under

different lighting conditions, which may cause great difficulty for a vision based object

recognition task. Therefore, to achieve robustness under the illumination variations,

such appearance changes must be taken into account. This chapter aims at modeling

the illumination variation into the pose estimation algorithm by using the theoretical

works for illumination modeling with the spherical harmonics. First, the problem will

be discussed in detail and the related works on this topic will be introduced. This is

followed by some theoretical background knowledge used in this chapter, which can

help the description of the algorithm to be proposed. Then some surface reflectance

estimation ideas are evaluated and the estimated reflectance is used in the following

illumination invariant pose estimation algorithm. In the end, the work is summarized.

4.1 Problem Statement and Related Works

This section clarifies the problem to be solved and describes the contributions made

on the illumination invariant pose estimation. Some state-of-the-art works in the

literature are introduced, which are related to the illumination invariant tracking, the

illumination modeling methods and the inverse lighting algorithms. The introduction

to the related works not only provides an overview for the illumination related vision

topics, but also motivates the research done in this chapter, for example, the spherical

harmonic illumination modeling and the vision based reflectance estimation methods.
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4.1.1 Problem Statement

The target appearance plays an important role in the pose estimation algorithms pro-

posed in previous chapters. As described in algorithm workflow in Fig. 1.1, the target

model data is initialized with the information from one captured fused RGBD image.

During tracking, the target appearance model is compared with the live observed

appearance in each frame. However, the object appearance is greatly influenced by

the illumination conditions. As an example, Fig. 4.1 shows four images of the same

person from the same viewing angle but varying lighting conditions. Under this con-

dition, it is even hard for human eyes to identify whether it is the same person or

not. Although this is an extreme case that usually will not be encountered in most

scenarios, it gives an impression regarding how much appearance changes different

lighting can bring about.

Figure 4.1: Images of the same human face obtained from the same viewing angle
but various illuminations. Images courtesy of [130].

In some state-of-the-art researches, the target model data are updated with the

information grabbed from recent frames during tracking [103, 137]. In this way, the

appearance changes can be gradually accumulated. The problem for such a scheme

is that when the target position cannot be accurately estimated, which is the case

for most practical applications, the tracking inaccuracy will also be accumulated

and propagated from frame to frame. Different from the above online target model

updates, the updates described in the workflow in Fig. 1.1 are performed over the

background model in sparse representation. The inaccuracy of the target pose will

not contaminate the target model nor the background model as detailed in Subsec-

tion 2.3.3. The drawback is that it cannot account for the target appearance changes

caused by the illumination.

However, for the coarse pose estimation stage presented in Chapter 2, as specified
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in the template matrix composition for the sparse representation in Fig. 2.4, the

target appearance variation caused by illumination can be built into the target model

if it can be expressed with a fixed low-dimensional subspace. Such a subspace can

be interpreted as the target intrinsic properties, which is irrelevant to the ambient

illuminations. Likewise, in the accurate pose estimation stage using the Textured-

ICP in Chapter 3, some synthetic images constructed with the subspace can be used

for calculating the cost function in the Textured-ICP instead of using the original

appearance values initialized before the tracking.

Based on the above analysis, the problem is formulated as:

• Model determination. Find an appropriate algorithm that can model the

illumination variations with a low-dimensional subspace. The subspace should

represent the intrinsic characteristics of a specific object and can model most

of the illumination conditions.

• Model parameter estimation. Estimate the parameters required for the

illumination model in the initialization stage with as less frames as possible (in

the ideal case, one initialization frame is desired).

• Integration and tests. Integrate the illumination model into the framework

of the pose estimation algorithms presented in previous chapters and test the

improvement of the pose estimation under various lighting conditions.

The contributions of the work in this chapter can be summarized into several

aspects. The state-of-the-art works regarding illumination invariant tracking, illu-

mination modeling and inverse lighting are reviewed in depth, which can help the

interested readers to build the horizon in this field. The idea for estimating the re-

flectance in the visible spectrum with the reflectance in the infra-red spectrum is

briefly discussed and a theoretical LED array model is evaluated for the active infra-

red lighting on the PMD camera. Although results show that due to practical reasons

(e.g. the manufacturing and assembling inaccuracies) the theoretical model cannot

accurately approximate the spatial intensity distribution for the LED arrays on the

PMD camera, this work can give the other researchers some hints with respect to

what is realistic and what is not for the current theory and real hardware. The

performance of the Spherical Harmonic (SH) illumination modeling with the PMD

measurements is investigated, for which the required surface reflectance is estimated

with a calibration object. Then the SH model is incorporated into the pose estima-

tion framework proposed in previous chapters and tested on real objects in the 3D

video tracking scenarios with significant illumination variations.
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4.1.2 Related Works

Focusing on the illumination and object appearance related topics, this section in-

troduces some state-of-the-art works in this realm that are closely connected to the

algorithm to be presented in this chapter. It includes a brief overview of illumi-

nation invariant tracking, theories and methods for modeling the illumination and

reflectance, as well as the approaches for estimating the parameters required in the

theoretical models.

Illumination Invariant Tracking

Tracking has been vastly investigated in computer vision community. Here only

a brief overview of the approaches will be discussed, which are reported or expected

to be robust under illumination variations. They can be categorized into 2D feature

based, 2D template based, and 3D range data based methods.

One of the most prevalent features used for tracking and registration is the SIFT

feature (Scale-Invariant Feature Transform) from [99]. It uses the Difference of Gaus-

sian (DOG) for determining the feature location and scale. Due to the use of a

histogram of gradient directions in the neighborhood as the feature descriptor, it can

largely deal with intensity variations caused by illuminations, therefore achieves ro-

bustness under varying lighting. Similarly, the SURF (Speeded-Up Robust Feature)

feature, developed from SIFT [10], by taking advantage of the integral image and

using Haar wavelet response in the neighborhood as the feature descriptor, also pro-

vides a robust feature under illumination changes. Another widely adopted feature

is the HOG (Histogram of Oriented Gradients) feature from [37], which also builds

histograms for gradients and is expected to be illumination invariant.

Although being efficient in term of computation, feature based methods often bear

the drawback of being sensitive to the image blur, which is frequently encountered in

real video sequences. In contrast, the template based approaches usually yield a more

reliable performance. However, the direct template matching will be influenced by

the intensity variations. To tackle this, Probabilistic Principal Component Analysis

(PPCA) [150] can be used to extract the statistical principal subspace for the target

appearance, thus can be applied on face recognition [108]. PPCA is further extended

to incrementally learn the subspace with the online data for the illumination invariant

target tracking [137]. The online learning strategy was also adopted in [103], where

the grabbed target image patches were accumulated into the template matrix for

the sparse representation, which made the method capable of accommodating to the

gradual changes caused by illumination.
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Derived from Kullback-Leibler divergence, Mutual Information (MI) provides a

metric for evaluating the similarity between two probability distributions by build-

ing the joint distribution [14]. When applied in vision applications, MI can be used

to conduct appearance based 3D registration. For example, [123] used MI to mea-

surement the distance of two intensity histograms from the model and the observa-

tion images. Due to the statistic measurement (in the form of intensity histograms)

adopted in their method, the illumination variations will not change the sparseness

in the joint-histograms matrix. Therefore, the MI based 3D tracking is more robust

under varying lighting conditions compared to the Sum of Squared Difference (SSD)

or the Normalized Cross-Correlation (NCC) metric based approaches.

For a Lambertian object, the spherical harmonics can be used to accurately ap-

proximate the reflected light with as low as nine basis images. [170] integrated the

basis images and the motion effects for 3D tracking. They derived that the appearance

of a moving object lies closely in a bilinear subspace defined by motion variables and

spherical harmonic light coefficients. Their method took some monocular 2D image

sequences and the target 3D model (with reflectance information) as inputs. Through

an iterative or bootstrap procedure, it can output simultaneously the estimated light

coefficients and the 6DOF pose.

Contrary to the appearance based approaches, range data is independent upon

the lighting condition. Especially for the measurement from TOF cameras that use

active illumination and employ Suppression of Background Illumination (SBI), the

range measurements are not influenced by the ambient lighting, therefore can be used

for illumination invariant applications. [155] took advantage of the range measure-

ments for determining the scale parameter and extended the SIFT feature for pose

estimation. For a planar object, edge features can be combined with the 3D plane

fitting to yield a robust and accurate pose estimate [134].

Since its introduction, ICP (Iterative Closest Point) became the dominant method

for registering a set of observation range data to the 3D model points. [118] used ICP

on point clouds in a large volume and applied on the camera pose estimation as well

as on online modeling. ICP can also be extended to track articulated objects as in

[162]. Although invariant to ambient illumination, the range data based ICP cannot

tackle geometrically symmetric objects.

Illumination Modeling Methods

Illumination modeling refers to the methods characterizing the appearance varia-

tion caused by illumination changes. It is a fundamental problem in computer vision

and has been vastly studied for decades. Due to the complexity of lighting conditions,
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object shapes, and material configurations, assumptions are usually made to simplify

the problem. For instance, the incident light is often modeled as from one of or a

combination of several simple source types, e.g. the directional light source, the point

light source, or the area source with/without sharp edges [181]. Meanwhile surface

reflectance properties are modeled as a product of the Bidirectional Reflectance Dis-

tribution Function (BRDF) describing the light scattering property and the texture

addressing the light absorbance ratio of the surface. Some BRDFs commonly used

in the photo-realistic rendering include mirror BRDF, Lambertian BRDF (homoge-

neous for perfect diffuse situation), Phong BRDF (integrating ambient, diffuse and

specular reflection into one model) and Torrance-Sparrow BRDF (using microfacets

for specular component), etc.

Empirical works demonstrated that by decomposing a group of images of a Lam-

bertian object captured under the same pose but varying distant illuminations, the

appearances of an approximate convex Lambertian object can be modeled by a low-

dimensional subspace with high accuracy [178]. Thus a low-dimensional basis suffices

to model the illumination variations. This observation was proved by [12], showing

when shadow is not considered, the set of images of n pixels, although forms a convex

cone (which they dubbed as the illumination subspace) in Rn, in general lies in a

3-Dimensional subspace. By taking the attached shadow into account, they further

introduced the concept of illumination cone, which is a convex polyhedral cone and

can be obtained by setting the negative pixel values to zero in the images from the

illumination subspace. The illumination sphere, as well as the illumination cone of a

convex Lambertian object, can be constructed from as few as three images without

shadow. [58] applied the illumination cone on face recognition under varying lighting.

By assuming a distant lighting, [131] adopted the Spherical Harmonics (SH) to

model the reflectance function for objects with arbitrary but homogeneous BRDF.

They demonstrated that the reflected light can be interpreted as an incident light

convolved with a transfer function (a product of the clamped cosine and the textured

BRDF). Focusing on convex Lambertian surfaces, [9] and [130] gave more detailed

derivation and showed the clamped cosine function works as a low pass filter. By

using as few as nine SH basis images, 98% energy of the incident lighting can be

captured, which means the SH explicitly provides a low-dimensional basis sufficient to

model the illumination variation of a Lambertian object with high accuracy. Analytic

study in [129] linked the empirical low-dimension subspace observation with the SH

illumination modeling theory by applying PCA on a dense (continuous) set of images

constructed from the SH basis functions instead of on a set of sampled real images.
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They showed that under appropriate assumptions, the eigenvectors and eigenvalues

are equivalent to the SH basis images and SH coefficients respectively.

Above SH modeling works in high accuracy on objects with convex Lambertian

surfaces. However, when non-convexity comes to stage, the cast shadow cannot be

neglected and using low order SH basis images will result in large residuals. In the

presence of cast shadows, [119] researched on the wavelet bases that can provide

a better approximation to the real lighting with a small number of wavelet basis

functions. However, the fixed harmonic basis images are calculated with reflectance

and geometry information, whereas the wavelet basis is determined through analyzing

the captured images. When the lighting has changed, the basis will also be altered.

Therefore, it will involve a lot of computation and prevent from real-time applications.

Inverse Rendering - Reflectance and Illumination Estimation

Illumination modeling provides physical schemes for rendering photo realistic im-

ages of an object. Before the model can be deployed, the model parameters need to

be determined, e.g. the lighting condition, the texture and the BRDF. This can be

done by a direct measurement with dedicated instruments. But more adopted in the

computer vision field are methods that can estimate the parameters through a set of

captured photographs of the target or the scene under consideration, which is called

inverse rendering.

Due to the complication of the inverse-rendering problem, e.g. the generalized

bas-relief ambiguity in [11] when the object geometry is unknown, or the ambiguity

between light and BRDF, assumptions or experimental simplifications are usually

made to make the problem tractable, for example, assuming a single directional light

source and homogeneous reflectance as in [69, 168], using a large number of pho-

tographs captured under known poses as in [105, 177], assuming the presence of

specular points [61], incorporating the prior statistic knowledge about the target in

[15], using a calibration object [181], or some other heuristic approaches [184], etc.

As introduced in the previous contents, SH provides a powerful tool for modeling

the reflectance function under the distant lighting assumption, it leads to a natural

way to inverse the procedure and recover the lighting or BRDF when the reflected

light filed is known. [131] used the SH model to factorize the lighting and BRDF in

the frequency space. Their method can estimate the lighting and arbitrary BRDF

simultaneously when the parameters for both are unknown. However, the calculation

requires SH coefficients for the reflected light, which in their paper was acquired by

using 60 densely sampled photographs with known camera poses. This limited its use

to the laboratory experiments.
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Due to the fact that the specular highlights usually result from reflecting the

high frequency part of the incident lighting, they are often used for estimating a

point light source with the assumption that at least one specular point is visible

in the query image. For instance, by assuming a single distant light source and

homogeneous reflectance, [69] estimated the light direction and reflectance parameters

by segmenting the Lambertian and specular components.

The distant light source assumption in SH modeling was removed in [61] by using

both homogeneous diffuse and Torrance-Sparrow specular models. The Lambertian

and specular components were separated by a polarization filter. The light source

distance and the reflection parameters were recovered in an iterative manner. With a

homogeneous specular reflectance assumption, the algorithm can be further extended

for recovering the distances of multiple point light sources by using only the specu-

lar components. A similar approach in [62] also worked on the specular point sets

to estimate the specular reflectance parameters without the single light source as-

sumption. They provided the spherical specular reflection model based on directional

statistics to approximate the original Torrance-Sparrow model. An initial estimate

of the specular reflectance was obtained by using the spherical specular reflection

model. These initial parameters were then refined to get parameters for the original

Torrance-Sparrow model. Although multiple light source directions can be recovered,

they assumed that all light sources had the same properties and only differed from

each other by their directions.

Apart from relighting, specularities can also be applied on recognition tasks. In

[121], the specular or glossy points usually considered as noise were exploited for

the object recognition. They worked on a single light source, for which the direction

should either be roughly known a priori for a purely specular surface or the reflectance

is known for a Lambertian object. When the Lambertian component is also available,

the rough light source direction can be estimated with the help of SH modeling. In

their work, both the light source and the viewing point were assumed distant. They

also provided an approach to recover the Lambertian surface reflectances with two

input images. However, the approach was highly heuristic, and yielded only a coarse

approximation to the underlying reflectance.

Besides searching for the specular points in the scene, it was also reported in

several researches to use the known information in the scene or to use a calibration

object for the inverse lighting. [160] used objects or structures in the scene with a

known geometry and homogeneous Lambertian reflectance and integrated the infor-

mation from shades and shadows for estimating multiple directional light sources.
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[181] used a calibration sphere with both specular and Lambertian components to

perform the inverse lighting. They also proposed a light model, which can incorpo-

rate point light sources, directional light sources, and area light sources. The light

source direction was recovered by the specular component of the calibration sphere

and the light intensity was estimated with the diffuse component.

In some cases, e.g. in the human face recognition, the reflectance estimation

for an individual subject can be performed when the statistic model of the objects in

question are available. [15] and [157] researched on the optimal reflectance estimation

with Wiener filter, by which the prior information and the observation were fused.

[179] proposed to combine the statistical model of human faces with the SH modeling,

where the reflectance for the observed subject was acquired with bootstrap steps.

For the absence of neither prior knowledge nor the calibration objects, some heuris-

tic approaches were proposed to human face reflectance recovery. [67] proposed to

apply PCA on a large number of training images obtained by illuminating faces with

floodlight from different directions and determine the most intrinsic face images and

their corresponding lighting conditions. The lighting conditions were then clustered

to get the basis point light sources for synthesizing a virtual image under arbitrary

illuminations. In [184], the spatial consistency of the reflectance on human faces was

leveraged. Based on spherical harmonics, their approach estimated the reflectance

and the lighting coefficients in an iterative manner with an initial guess of the re-

flectance map. But there was no guarantee for the heuristic methods in general that

the iteration would converge to the underlying true reflectance.

A lot of inverse rendering researches based their methods on the use of SH mod-

eling. However, [119] pointed out that for estimating the high frequency part of the

lighting, a large number of basis functions were required (similar to the Fourier ex-

pansion). They argued that the clamped cosine function for a Lambertian surface

will not be a low pass filter in the cast shadow region and therefore cannot recover the

high frequency part of the lighting. Furthermore, they demonstrated that the wavelet

could be an alternative basis for the light recovery, which yielded a better accuracy

than using SH with respect to estimate the high frequency components. This was

further confirmed by the works in [156]. Upon the observation that the cast shadow

will only appear when the directional light sources are sparse, [104] utilized sparse

representation for lighting recovery from cast shadow regions.

[169] proposed a method to recover the BRDF and multiple light sources simul-

taneously with stereo vision. They recovered the Phong-Blinn BRDF and required

the stereo pair having the same intrinsic parameters. Their method removed the dif-
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fuse component and estimated the lighting and specular reflectance in the first phase.

Then with the estimated lighting location and intensity, the diffuse component was

obtained in a second phase. Although they claimed ”one shot” estimation (only one

viewpoint stereo images were required) and no intervention on the scene, they do need

the number of light sources were known a priori, and restricted the light recovery on

point sources.

Previously introduced inverse rendering researches were all based on homogeneous

BRDF assumption, i.e. one BRDF model was applied on the complete object surface.

However, there are some objects that are composed of different surface materials, thus

cannot be assumed homogeneous. [105] relieved this restriction by segmenting and

classifying the 3D surface voxels into different BRDF types, for which the recovery

was done separately. But the approach required a large number of images captured

with known viewpoints.

4.2 Theoretical Background

In this subsection, the theories related to Light Emitting Diode (LED) array modeling

and illumination modeling with Spherical Harmonics (SH) are introduced. The LED

array model will be used in Subsection 4.3.1 for analyzing the intensity distribution

of the LED array mounted on the PMD camera. The SH illumination model will be

used in Subsection 4.3.2 for the reflectance estimation and in Sec. 4.4 for the pose

estimation.

4.2.1 LED Array Modeling

The spatial intensity distribution of a LED can be very different from a point light

source. If the intensity along the optical axis of a LED at distance r is denoted as

E0(r), the spatial distribution can be approximated as [114]:

E(r, β) = E0(r) cosm(β),

where β is the angle between the optical axis and a space point. Point light source is

usually considered as a Lambertian light with exponent round m = 1, and a typical

LED would have value m > 30. This implies the LED light can be very directional

like Fresnel spotlight used for the opera lighting [43].

The ”inverse square law” is widely adopted to model E0(r) [120], and the exponent

m is determined by the half intensity angle β1/2 (the viewing angle where the LED
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light intensity is half the magnitude at angle 0◦) as [113]:

m =
−ln2

ln(cos β1/2)
. (4.1)

When the interested scene is largely planar and perpendicular to the optical axis of

the LED, Eq. (4.1) can be approximated for computational convenience [174, 175].

In [112], the author provided more detailed formulation for modeling the roughness

of the chip faces, the encapsulating lens, and the reflecting cup also into the LED

model.

In this thesis, it is of greater interest of the overall intensity distribution of a LED

array because the complete spatial intensity distribution from the illumination source

on the PMD camera can be obtained as a superposition of the lights from the two

separate LED arrays on each side of PMD camera lens. [113] studied the influence of

different array patterns, e.g. the linear array, the ring array, the square array, etc.,

on the intensity distributions. However, [111] pointed out when a far-field condition

is met, the spatial intensity distribution can be modeled as a single directional point

source. Here the far-field refers to the distance, over which the measured radiant

intensity (radiant flux per solid angle) is practically independent upon the distance

from the source. The far-field condition can be determined by the array pattern

together with the half intensity angle of the individual LEDs in the array.

In the far field region, where the inverse square law applies [111], the spatial

intensity distribution of the LED arrays on PMD camera can be modeled as a linear

combination of the lights from both illumination units:

L = k
ρI0
π

∑
i=1,2

1

r2i
cos(θi) cosm(βi), (4.2)

where ri is the distance between the center of the i-th illumination unit and the inter-

ested surface point, θi is the angle between the surface normal on the interested point

and the light direction, βi is the angle between optical axis of the i-th illumination

unit and the light direction.

4.2.2 Illumination Modeling with Spherical Harmonics

The Lambert’s cosine law states that the reflected light intensity on a surface point

Pi can be model as:

I i = ρil(ul)max(cos θ′l, 0),
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where ρi is the reflectance on the point, l(ul) is the intensity of the incident light in

direction ul, and θ′l is the angle between the incident light ul and the surface normal

ni on point Pi. By integrating over all possible light directions, the overall reflected

light intensity can be written as [9]:

I i = ρi

∫
S2

l(ul)max(cos θ′l, 0)dul,

where S2 represents the surface of a unit sphere. If define a transfer function k(θ′l) =

max(cos θ′l, 0), the above formulation can be viewed as a convolution defined on a

sphere

I i = ρil ∗ k = ρi

∫
S2

l(ul)max(cos θ′l, 0)dul. (4.3)

Analogous to the Fourier transform applied on circle, spherical harmonics is a

powerful signal processing tool applied on sphere, by which a function f(u) defined

on the unit sphere can be decomposed as:

f(u) =
∞∑
n=0

n∑
m=−n

fn,mYn,m(u),

where fn,m are the spherical harmonic transform coefficients for f(u), and Yn,m(u)

are the basis functions. The coefficients fn,m are obtained by

fn,m =

∫
S2

f(u)Y ∗n,m(u)du.

By separating the azimuth angle φ and the zenith angle θ in u, the basis function can

be factorized into two parts Yn,m(θ, φ) = gn,m(θ)eimφ.

Applying the spherical harmonic transform, the light l(ul) is decomposed by:

l(ul) =
∞∑
n=0

n∑
m=−n

ln,mYn,m(ul). (4.4)

The transfer function k(θ′l) has no dependence on the azimuth angle φ, the coefficients

will vanish as kn,m = 0 for m 6= 0 [130], for which the spherical harmonic transform

is

k(θ′l) =
∞∑
n=0

knYn,0(θ
′
l), (4.5)

where kn are constant real numbers.

Combining Eq. (4.3), (4.4), and (4.5), [130] and [9] used different techniques and
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derived the same formulation for decomposing the intensity of the reflected light

I i =
∞∑
n=0

n∑
m=−n

αnln,mYn,m(ni),

where αn =
√

4π
2n+1

kn. Combining the basis function Yn,m = gn,m(θi)e
imφ and eimφ =

cos(mφ) + i sin(mφ), it yields:

I i = ρi

∞∑
n=0

αn

n∑
m=−n

Ln,mgn,m(θi)(cos(mφ) + i sin(mφ))

= ρi

∞∑
n=0

αn{ln,0gn,0(θi) +
n∑

m=1

ln,mgn,m(θi)[cos(mφ) + i sin(mφ)]

+
−n∑

m=−1

ln,mgn,m(θi)[cos(mφ) + i sin(mφ)]}

= ρi

∞∑
n=0

αn{ln,0gn,0(θi) +
n∑

m=1

(ln,m + ln,−m)gn,m(θi) cos(mφ)

+
n∑

m=1

i(ln,m − ln,−m)gn,m(θi) sin(mφ)}. (4.6)

Here gn,m(θi) is even with respect to m [9]. Analogous to the Fourier transform, by

separating the complex light coefficient ln,m to be the even len,m and the odd lon,m parts

as ln,m = len,m + ilon,m, and combining ln,m + ln,−m = 2len,m and i(ln,m− ln,−m) = −2lon,m

into the above equation, the complex term vanishes and yields:

I i = ρi

∞∑
n=0

n∑
m=−n

Bn,m(ni)Ln,m,

where Bn,m(ni) and Ln,m are real numbers. [130] pointed out that upto an order of

n = 2, the approximated accuracy can be at least 98%. n = 0 ∼ 2 forms 9 basis

images for reconstructing the reflected light

Ip×1 ≈ Dp×p
ρ Bp×9L9×1, (4.7)

where p is the number of pixels, Dp×p
ρ is a diagonal matrix with the reflectance of

all points on its diagonal. Bp×9 contains nine albedo free basis images in each of

its columns, and the vector L contains the coefficients for the corresponding basis
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images. The nine lower order basis images are given by:

B0,0(n) = πY0,0(n) =

√
π

4

B1,0(n) =
2

3
πY1,0(n) =

√
π

3
z

B1,−1(n) =
2

3
πY o

1,1(n) =

√
π

3
y

B1,1(n) =
2

3
πY e

1,1(n) =

√
π

3
x

B2,0(n) =
1

4
πY2,0(n) =

√
5π

256
(3z2 − 1) (4.8)

B2,−1(n) =
1

4
πY o

2,1(n) =

√
15π

64
yz

B2,1(n) =
1

4
πY e

2,1(n) =

√
15π

64
xz

B2,−2(n) =
1

4
πY o

2,2(n) =

√
15π

64
xy

B2,2(n) =
1

4
πY e

2,2(n) =

√
15π

256
(x2 − y2),

where the normal is expressed in Cartesian coordinates n = [x, y, z]>. The image

sensed by the camera will be a scaled version of the reflected light intensity.

By using Eq. (4.7), the image of an object can be reconstructed by a combination

of positive and negative lightings, which are physically unrealistic. [9] proposed an

approach to enforce a nonnegative light constraint by approximating the lighting as

a group of uniformly sampled positive lighting on an unit sphere.

4.3 Reflectance Estimation

Among the three most influential factors on the appearance of an object, i.e. surface

geometry, surface reflectance, and illumination condition, the illumination is the one

that we do not have accurate control in most real lie applications. Surface geometry

can be determined with the help of a range sensor as well as a pose estimation algo-

rithm. When the surface reflectance can be obtained, the accuracy of the synthetic

image generated under some realistic illuminations can be evaluated by comparing

with the real captured image. Such an evaluation can produce useful implications

on object recognition under arbitrary and unknown illuminations. Therefore, the
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reflectance estimation plays an important role in the appearance based illumination

invariant object recognition and tracking.

It is ideal to estimate the surface reflectance without any intervention or prior

knowledge on the scene, i.e. no modification nor control to the illumination, no special

requirements (available shadow or specular points, no particular calibration objects)

on the scene. It is also desirable that the estimation can be done with one shot, i.e.

no needs for multiple training images captured either from different viewing angle but

under the same lighting, or from some different camera view points but with varying

illuminations. With these analysis, the following two tests for reflectance estimation

have been performed.

4.3.1 Trial with LED Array Modeling

This section briefly introduces an attempt work to estimate the surface reflectance

with LED array modeling. The motivation for performing such a research and devel-

oping the method for evaluating the theoretical LED array model on the real LED

array on PMD camera are discussed. Although the verification results showed that the

LED array model is not accurate enough for further investigation on the reflectance

estimation, the work done in this section still provides useful information for inter-

ested readers who might have similar ideas. Or in the future, when the LED array

on the PMD camera can be assembled more precisely or when the theoretical LED

array model has improved, the ideas presented in this section can still be a potential

research direction.

Motivation

PMD cameras take two Near Infra-Red (NIR) LED arrays as its active illumination

unit. The amplitude image is thoroughly determined by the NIR LED arrays and is

not influenced by the ambient lighting, which can be shown in Fig. 4.2. When both

LED arrays are covered, the amplitude image will be completely dark. Although

the ambient light (especially the sun light) comprises the light components in the

NIR spectrum as well, the light emitted from the LED array on the PMD camera is

modulated and the measurement is reported to be invariant to the ambient lighting

due to Suppression of Background Illumination (SBI) function. This means when the

spatial intensity pattern of the LED arrays can be accurately modeled, the lighting

condition for the amplitude image will be known. Furthermore, when the amplitude

image, the lighting condition, and the surface geometry information are all available,

the surface reflectance in the NIR spectrum can be estimated with the spherical
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harmonic illumination model.

(a) (b)

(c) (d)

Figure 4.2: PMD amplitude images with and without LED arrays illumination. The
amplitude images illuminated with and without the mounted infra-red LED arrays
are shown on the bottom left and the bottom right images respectively.

The algorithm proposed in previous chapters uses the image captured with the

color camera, because current color camera is more mature and can provide a high

quality image with a high resolution. More importantly, the object appearance in the

color image will not vary with the distance from the camera to the object, which is

a crucial factor for an appearance-based object recognition in the dynamic scenarios.

The illumination invariant pose estimation algorithm to be presented in this chapter

relies heavily on the reflectance information in the visible spectrum. However, the

aforementioned reflectance is the surface characteristic in the NIR spectrum. A nat-

ural question arises: will the reflectance information from the NIR spectrum help the

reflectance estimation in the visible spectrum?

In Fig. 4.3, two reading lamps were place closely on both sides of the AXIS cam-

era, so that the illumination direction is similar to the LED arrays on PMD camera,

and the amplitude image from PMD camera and intensity image in red channel from

AXIS camera for doll dwarf are displayed. Under this configuration, despite the huge

difference between LED lighting and reading lamp and the slight directional differ-

ence between LED lighting and reading lamp as well as difference between viewing

direction, the similarity between two images implies knowing reflectance under one

spectrum can be helpful for determining reflectance under the other spectrum.

Unfortunately, for an arbitrary object, there is no rule of thumb available for the

relation between reflectances under different spectrums. For example, the spectral
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Figure 4.3: Images from PMD and AXIS Under Similar Lighting Directions. Top
row displays amplitude data from PMD camera; bottom row is for data from AXIS
camera. 2D images are shown on the left, and 1D vector form of 2D image is displayed
on right. The 1D illustration of intensity image captured by AXIS is composed of red
component only.

reflectances for two rocks are displayed in Fig. 4.4. The reflectances in the visi-

ble spectrum are quite similar for both rocks, but they diverges greatly in the NIR

spectrum. For Rock 1, the reflectance between the NIR and red spectrum are quite

similar. Whereas Rock 2 shows rather different NIR and red reflectances. Although

this is an extreme case, it gives us the insight regarding how complex the problem

can be and reflectance under NIR spectrum cannot be directly used as the reflectance

under other spectra. More sophisticated strategies are required and appropriate as-

sumptions need to be made for estimating e.g. red reflectance by taking advantage of

the NIR reflectance. For example, assuming target surface is made of a small number

of materials, the NIR reflectance can help segmenting different material regions as in

[177], or estimating desired reflectance by minimizing the entropy of the reflectance

pattern similar to [1].

Evaluation of LED Array Modeling

Before investigating more into the use of NIR reflectance, it is important to en-

sure that the LED arrays can be accurately modeled and the NIR reflectance can be

estimated. Towards this end, the LED array modeling approach introduced in the

theoretical background Subsection 4.2.1 is evaluated. Particularly, the image syn-
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Figure 4.4: Reflectance spectra of two rocks. X axis is the wavelength of light, Y axis
shows the reflectance. The red and blue curves are for Rock 1 and Rock 2 respectively.
Image courtesy of [151].

thetic method in Eq. (4.2) for modeling the illumination from LED array is verified.

The image reconstruction with the LED array model in Eq. (4.2) requires the

information about the half intensity angle for a single LED, the optical axis of the

LED array, the distance between the light source and the target surface, the surface

reflectance, and the surface normal. The LEDs used on PMD 19K and CamCube2.0

are TSFF5410/TSHF5400 from VISHAY company (http://www.vishay.com/) with

half intensity angle 22◦. According to Eq. (4.1), the exponent valuem used in Eq. (4.2)

is about 9. Moreover, due to assembling inaccuracies, the optical axis of the LED

array cannot be assumed parallel to the optical axis of the PMD lens. Therefore, it

is manually tuned for the following tests.

The model in Eq. (4.2) applies in the far-field region as discussed in Subsec-

tion 4.2.1. The far-field condition is much relaxed for a single LED array than con-

sidering both arrays on the PMD camera as one point source. Therefore, the following

test is performed on one side of the LED array only, and the other side is covered by

a hard paper.

In the test, a white planar board is used which can be assumed to be Lambertian

with constant homogeneous reflectance. Distances between the camera and surface

points are provided by PMD camera measurements and are used to calculate the

distance ri between the center of single LED array and the surface point. The surface

normal for the plane is estimated by using all available points on the board. Com-

bining with the above discussed optical axis, the half intensity angle, etc., all the
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information are available for applying the image reconstruction model in Eq. (4.2).

Results obtained by using PMD 19k with the board placed at different distances, i.e.

100 cm and 150 cm, are shown in Fig. 4.5 and Fig. 4.6.
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Figure 4.5: Synthetic image values for a white board placed at 100 cm. The synthetic
image is obtained with m = 45 and a manually tuned direction of the optical axis of
LED array. The reference image is captured by PMD 19k.

The white board is tested at multiple distances. However, with m = 9 as indicated

by the half intensity angle of a single LED, the synthetic image never complies with

the real amplitude image captured by PMD 19k. The real image value decreases

more rapidly from the image center to the boarder than the synthetic image. Only

with increased m values, the synthetic images can be close to the real images. For

example, the synthetic image for the white board at 100 cm in Fig. 4.5 is obtained with

m = 45 for low reconstruction error. However, as the white board is moved further

away, the intensity decays again more rapidly from image center to the boarder than

the synthetic image with m = 45. Meanwhile, at further distances, the region with the

highest intensity values in the captured image apparently shifts from the synthetic

intensity center. Therefore, both m value and the direction of the optical axis of

the LED array should be adjusted. The result for the white board at 150 cm is

demonstrated in Fig. 4.6 with m = 75 with the optical axis manually probed.

Results for Camcube2.0 are much better than PMD 19k, as in the near ranges

(< 1 m), the synthetic image with m = 9 and the optical axis of the LED array set

to be parallel with the optical axis of lens can be quite close to the real amplitude

image. However, it suffers the same problem as PMD 19k that when the white board

is moved far away, both m value and the direction of the optical axis need to be
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Figure 4.6: Synthetic image values for a white board placed at 150 cm. The synthetic
image is obtained with m = 75 and a manually tuned direction for the optical axis of
the LED array. The reference image is captured by PMD 19k.

reconfigured.

On one hand, with manually adjusted parameters, the image synthesized through

modeling the LED array can be quite close to the real image. On the other hand, both

the optical axis direction and the m value are required to be reconfigured. Meanwhile,

results for CamCube2.0, although still problematic, have been significantly improved

compared to PMD 19k. This yields two implications: the LED array model provides

useful information for the real LED arrays on the PMD cameras; Either current model

misses some important components or the assembling of the LED array is not precise

enough as it is practically very difficult to install all LEDs pointing to the same

direction as assumed in Eq. (4.2). More results regarding this topic can be found in

[49]. Since the LED array cannot be accurately modeled, it cannot help much with

the reflectance estimation and other methods should be investigated.

4.3.2 Reflectance Estimation with a Calibration Object

This section describes the reflectance estimation method adopted in this thesis, which

is based on the Spherical Harmonic (SH) illumination modeling introduced in the

theoretical background in Subsection 4.2.2. The related works in Subsection 4.1.2

describe some reflectance or illumination estimation methods. Some required a large

number of images captured under the same lighting condition and varying but known

viewing angles [131], or some assumed the knowledge for the number of light sources
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[169]. These methods restricted their use in the laboratory experiments. Some took

the statistic models of the interested object [15, 157, 179] or required the specular

points [61, 62, 69, 121], which can only be applied on some specific objects. In

contrast, some methods for probing the lighting condition with a calibration object

[160, 181], although also interfering the scene, did not lay much restrictions on the

environment nor on the target. Therefore, the scheme is adopted for the illumination

estimation.

Method for Reflectance Estimation

Object appearance is dependent upon surface geometry, surface reflectance1 and

illumination condition. The object appearance can be captured from a camera image.

The surface geometry can readily be retrieved with the range measurements from a

PMD camera. However, the reflectance and the illumination are coupled. Object

appearance can be an arbitrary combination of the reflectance and the lighting. Once

one is determined, the other can be straight forwardly calculated when combined its

captured appearance information.

An object with known geometry and reflectance can thereof be used to estimate

the illumination. Then under the same illumination, the reflectance of another convex

Lambertion object can be estimated with the SH modeling [9]. To be used in the SH

framework, a desirable calibration object should have sufficiently rich surface normals,

a convex shape, as well as known homogeneous reflectance for computational conve-

nience. A sphere covered with the white paper satisfies all the above requirements

and is therefore adopted as the calibration object. The calibration sphere and the

test scene with multiple light sources are shown in Fig. 4.7. Besides the four labeled

light sources, the background light from the ceiling is also used in the tests.

The reflectance of a white calibration sphere can be assumed to be one, thus

Dp×p
ρ = Ep×p in Eq. (4.7). The basis image matrix Bp×9 can be calculated with

Eq. (4.8) from PMD range measurements. The nine SH basis images are illustrated

in Fig. 4.8, where the first row shows the 0th and the 1st order spherical harmonic

basis images and the second row displays the 2nd order basis images.

After solving Eq. (4.7) with least squares for the calibration sphere, the lighting

condition can be obtained in the form of SH coefficients L9×1. Although it is a filtered

version of the real lighting and can only represent the low frequency components,

for a Lambertian object, the filtered lower order nine components already capture

1Strictly speaking, reflectance refers to the textured BRDF [131]. Since the SH model also builds
BRDF into the model, here the reflectance is only the ratio of the amount of reflected light to the
incident light.
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Figure 4.7: Test scene with a calibration sphere and multiple light sources. The four
labeled light sources together with the lighting from the ceiling are switched on and
off for achieving different lighting conditions.

Figure 4.8: Low order nine SH basis images for the calibration sphere.

99.2% of the reflected light energy [130], and therefore are accurate enough for most

applications.

Then remove the calibration sphere, and place the interested object where the
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calibration sphere was located,1 and the desired reflectance is calculated as

ρi ≈
I i

(BL)i
,

where I i is the image intensity for the i-th point on the target, and (BL)i is the i-th

target point intensity in the synthetic albedo free image.

Evaluation

The accuracy of the above reflectance estimation method is evaluated by taking

another homogeneous object as the interested target. In following test, a white ho-

mogeneous cylinder is used, which is expected to have reflectance one as the white

calibration sphere. Although the cylinder does not have sufficiently rich surface nor-

mal directions to be applied for inverse rendering problems, e.g. for estimating the

lighting condition, the forward rendering derivation of the SH modeling still applies.

The estimated reflectance is shown in Fig. 4.9, where most of the surface points on

the cylinder have reflectance within the range [0.9, 1.1].2
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Figure 4.9: Estimated reflectance for a homogeneous cylinder.

Besides the accuracy evaluation for the reflectance estimation, it is more inter-

ested whether using the estimated reflectance can improve the performance of object

recognition under significant illumination changes. For this purpose, the following

test is performed. The target reflectance is estimated under a frontal lighting, so

that most of the visible target points can be lit. The normalized target image during

initialization is recorded as a 1D vector Ĩ init, and the target illumination model is

1Although SH modeling assumes distant lighting and the object appearance only depends on
the viewing angle, there are also some lights that cannot be considered as distant, e.g. the multi-
reflected light from ground. To be more consistent between the L9×1 estimated with the calibration
sphere and the light used on the target, it is better to place them on the same location.

2The estimated reflectance can exceed one because of the inaccuracy from the surface normal
estimation.
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expressed with the p × 9 matrix Bp×9
ρ = Dp×p

ρ Bp×9 in Eq. (4.7). Then remarkably

change the illumination condition so that there are obvious target appearance varia-

tions. The normalized test image under the new lighting is denoted as I t. Here the

normalization of a vector x refers to

x̃i =
xi − µ
σ

,

where xi is the i-th component of x. µ and σ are the mean and the standard deviation

of all elements in x.

The intensity value Ĩ init is used in the target model in Chapter 2 and Chapter 3 for

evaluating the similarity between the model and a captured image in a video sequence.

This has the setback that when the target appearance has changed significantly due

to illumination variation or target pose changes with respect to the illumination

direction, even the image patch grabbed perfectly from the target can yield a low

likelihood. The aim of this recognition test is to verify whether I t can be well modeled

by the low-dimensional subspace Bp×9
ρ and whether the recognition performance under

the subspace Bp×9
ρ can notably outperform the results from using Ĩ init.

More concretely, the performance of the subspace Bp×9
ρ is evaluated by first cal-

culating the synthetic image Isyn from solving I t ≈ Bp×9
ρ L9×1 to get the estimated

light coefficients L9×1
est for a new illumination condition, then generate and normalize

Isyn = Bp×9
ρ L9×1

est to get Ĩsyn. Both the Normalized Cross-Correlation (NCC) and the

Normalized Sum of Squared Difference (NSSD) are considered as the error metric,

because the procedure of the Orthogonal Matching Pursuit (OMP) in Algorithm 2.1

calculates the cross-correlation in each step, and the texture consistency in Chapter 3

is derived with NSSD. The NSSD is formulated as:

εx = ‖ Ĩx − Ĩ t‖2,

where Ĩx = Ĩ init is used to get εinit and Ĩsyn for obtaining εsyn. NCC is expressed as

the dot product of two normalized vectors

ξx = 〈 Ĩx, Ĩ t〉.

Several illumination conditions are applied to obtain I t for the tests. The recog-

nition results are shown in Table 4.1, where the column for the illumination condition

specifies which light sources are used as in Fig. 4.7 (B refers to the background lighting

from the ceiling). It is clear that under both NSSD and NCC error metrics, the recog-
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nition performance can be remarkably improved when using the synthetic image from

the illumination model. Only under the lighting condition in last row of Table 4.1,

the recognition performance are comparable, because the observation image is quite

similar to the initialization image. This may be because the background illumination

is dominating compared to the light source 4, thus produces a homogeneous image

as in the initialization image.

illumination εinit εsyn ξinit ξsyn
B 0.3606 0.2853 0.8197 0.8573

1,B 0.9438 0.4882 0.5281 0.7559
1,4,B 0.6140 0.3873 0.6930 0.8064
4,B 0.2452 0.2535 0.8732 0.8774

Table 4.1: Recognition results for initialization and synthetic images. The tests are
carried out under four illumination conditions, where the specified light sources as
labeled in Fig. 4.7 are used. B refers to the background illumination from the ceiling.

All above tests were carried out in a spacious room (the robotic hall) when the sun

set. In this way, the influence of the controlled illumination on the target appearance

can be guaranteed to be dominating. The target was placed on a table covered with

black curtains. The great size of the room together with the black curtain can be

helpful for satisfying the distant lighting assumption and reducing the influence of

multi-reflected light from walls and the table surfaces as much as possible.

4.4 Illumination Invariant 6DOF Pose Estimation

This section incorporates the SH illumination model discussed in previous sections in

this Chapter into the framework proposed in Chapter 2 and 3, by which the illumina-

tion invariant 6DOF tracking is achieved. In short, the synthetic images constructed

from SH basis images are put into the template matrix in sparse representation in

the coarse pose estimation stage. Meanwhile, the Textured-ICP algorithm for the ac-

curate pose also uses the synthetic image values instead of the target initial intensity

for pose refinement. These processings provide a simple yet effective mechanism to

model the appearance changes caused by illumination during 3D motion tracking.

4.4.1 Incorporating Illumination Model into SR framework

This subsection incorporates the SH illumination model into the SR framework used

for the coarse pose estimation and analyzes the recognition performance under varying
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illumination conditions. The 20 illumination templates in Fig. 2.4 are the synthetic

images constructed with the estimated lighting in the most recent frames, where the

synthetic images are obtained with the nine basis images in Bp×9
ρ (e.g. the basis

images for the doll dwarf are displayed in Fig. 4.10.

B_0,0 B_1,-1 B_1,0 B_1,1

B_2,-2 B_2,-1 B_2,0 B_2,1 B_2,2

Figure 4.10: Low order nine basis images for the doll dwarf. The positive values are
in the range [125,250], the negative values are between [0,124]. The background is
set to the neutral gray.

Although Subsection 4.3.2 evaluated the recognition performance under the SH

subspace Bp×9
ρ , if the SH basis images are directly applied on the SR framework pro-

posed in Chapter 2, it may not be able to effectively model the illumination variation

due to the use of Orthogonal Matching Pursuit (OMP) introduced in Subsection 2.2.2

as well as due to the influence of other templates in the template matrix.

From Eq. (4.8), it is clear that most probably some of the basis image values will

be positive and some will be negative due to the rich distribution of the surface nor-

mal orientations. On the other hand, the image patches grabbed from the observation

image will be non-negative. This indicates that most of the basis images will be less

correlated with the grabbed image patch. The SR used for the coarse estimation is

solved through OMP. The evaluation tests discussed in Subsection 4.3.2 are carried

out with the illumination subspace Bp×9
ρ solved by least squares only. The funda-

mental difference between the OMP and the least squares used to generate Ĩsyn in

Subsection 4.3.2 is that the OMP selects one atom from the template matrix at one

124



4.4. Illumination Invariant 6DOF Pose Estimation

time that most correlates with the current residual vector, whereas the least squares

simultaneously considers all atoms. With OMP, the atoms selected to reconstruct

Ĩsyn will most probably be a mixture of some of the nine basis images in Fig. 4.10

and some of other target templates or even wavelet atoms. This means the existence

of the other templates will break the theoretical completeness of SH modeling if the

SH basis images are directly incorporate into the template matrix depicted in Fig. 2.4.

Furthermore, for an object image under severe illumination changes, it is less likely

that the first selected atom from the OMP procedure can be from any of the basis

images. Although the basis images calculated from B0,0, B1,0 and B2,0 in Eq. (4.8)

can be guaranteed non-negative, they alone cannot reflect the severe illumination

changes. In consideration of efficiency, the maximum sparsity in Chapter 2 is set

to one for the coarse and the intermediate resolution levels in the annealed particle

filter. In this case, the SH basis images cannot be directly used for capturing the

illumination changes.

The fact that lighting between consecutive frames usually does not change much

has been used in a number of approaches to model the illumination variations. For

example, [103] integrated the target image from the last frame into the model and the

most recent grabbed target image patch can be used to accommodate to any gradual

changes between frames, e.g. lighting, occlusion or viewing perspectives. However,

the tracking is imperfect or even can fail for some frames. Therefore, under such a

simple update scheme, the model will be contaminated by the background pixels and

the inaccuracy can be accumulated. Fig. 4.11 (b) illustrates the grabbed image patch

under the error pose depicted in Fig. 4.11 (a). From one side, it contains a lot of

background pixels; from another, the left part of the target in the patch is grabbed

from the target right part in the observation image due to the erroneous pose. When

such a patch is put into the target templates, it will significantly influence the tracking

performance in the following frames.

This thesis, as a contrary, uses another strategy for updating the target templates.

The template used for update is obtained from the synthetic image from SH basis

images with the estimated lighting. Since the synthetic image is a linear combination

of the basis images, it can be inaccurate but will always purely reflect the target

appearances and will not be corrupted by image values from the background regions.

Fig. 4.11 (c) shows the synthetic target image patch. Although it cannot correctly

reflect the illumination condition due to pose failure, it still provides a meaningful

target appearance, therefore will not have negative impact in future processing.

The balance between the target and non-target templates after the illumination
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(a) (b) (c)

Figure 4.11: Target patch for updating the template matrix under an erroneous pose
estimate. (a) shows a frame with an erroneous estimated pose; (b) depicts the grabbed
image patch with the error pose; (c) is the synthetic image using the erroneous light
coefficients.

templates are incorporated seems to be not critical when using the synthetic images

grabbed from previous 20 frames. Fig. 4.12 and Fig. 4.13 show the reconstruction

coefficients of SR for two frames from a video sequence, where a target is moving in

an illumination varying scene.

The target is illuminated from left in Fig. 4.12 and from right in Fig. 4.13. The

target image patch is grabbed with pose parameters indicated with the 3D bounding

box in the top left image. The sparse solution is obtained with the OMP procedure

under the maximum sparsity 15.

The illumination templates shown in the bottom two rows in Fig. 4.12 are ob-

tained from previous 20 frames. The template pointed by the green dashed arrow

corresponds to the largest coefficient for SR in the top right figure. Although being

rough compared to the observation image due to the noisy surface normal estimates on

the target, the synthetic image template still has the best correlation than the other

target (The target is initialized with the frontal light) and non-target templates, thus

are effective on handling the illumination variations. Fig. 4.13 shows another example

for reconstructing the coefficients under the right lighting.

In comparison, the feature extraction methods will encounter great difficulties un-

der the severe illumination changes. For instance, the well known SURF and SIFT

features are reported to be robust under illumination variations [10, 99]. However,

under severe illumination changes as the case in Fig. 4.13, the correctly matched fea-

ture correspondences can be quite insufficient for a reliable pose estimation. Fig. 4.14

shows the result for the SURF feature extraction and matching, where the correspon-
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Figure 4.12: SR reconstruction coefficients under left illumination. The estimated
pose is shown in the top left image, the reconstruction coefficients for the estimated
pose is displayed in the top right figure. All 20 synthetic image templates are il-
lustrated in the bottom row, where the image template corresponds to the largest
nonzero coefficients is pointed by the green dashed arrow.

dence pairs between the initialization frame and the observation frame are linked with

line segments. It can be seen that a lot of features are incorrectly matched due to

the target appearance changes caused by illumination. Under such conditions, even

the robust M-estimator or RANSAC can run into problems.

The use of the synthetic images from recent frames also works well with the OMP

procedure even under the aggressive settings (sparsity one). The synthetic image

is not influenced by the other templates because they do not require a group of

templates to model a specific illumination. The cost is the restriction on the inter-

frame lighting changes. For most scenarios, this mild inter-frame variation assumption
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Figure 4.13: SR reconstruction coefficients under right illumination. The estimated
pose is shown in the top left image, the reconstruction coefficients for the estimated
pose is displayed in the top right figure. All 20 synthetic image templates are il-
lustrated in the bottom row, where the image template corresponds to the largest
nonzero coefficients is pointed by the green dashed arrow.

can be satisfied.

It should be noted that although the use of the synthetic image reconstructed with

SH basis images improves the tracking performance under varying lighting conditions,

experiments also indicate that it will still run into problems when the light changes

fast between frames, especially when the target is under fast out-of-plane rotation at

the same time. In such cases, it is desirable to have some light prediction mechanism

to incorporate the synthetic images under the predicted lighting condition into the

illumination templates. Meanwhile, as can be implied from the roughness of basis

images in Fig. 4.8, a more accurate surface normal estimation will also improve the
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4.4. Illumination Invariant 6DOF Pose Estimation

Figure 4.14: SURF feature under significant illumination variation for comparison.
The target appearance in the initialization frame is shown in the top left figure. The
right observation image is the same frame as Fig. 4.13. The extracted SURF features
are marked in small circles and the correspondence features between the initialization
frame and the observation frame are linked with line segments.

tracking performance, which will require better range measurements.

4.4.2 Incorporating Illumination Model into Textured-ICP

This subsection incorporates the SH illumination model into the Textured-ICP pro-

posed in Chapter 3 and tests the tracking performance under significant illumination

changes. In Chapter 3, the target texture information I init is obtained in the initial-

ization stage. When the lighting has changed dramatically than the initial lighting

condition, the texture consistency between the model and the live observation data

cannot provide much helpful information for determining the pose.

Similar to the approach presented in the previous subsection, the SH basis im-

ages can be used to cope with the illumination variation, where the target texture

information is provided by a synthetic image Isyn reconstructed from the lighting

condition estimated in the last frame. For instance, Fig. 4.15 gives a comparison

between the initial target image I init in Fig. 4.15 (a), the observation target image

I t in Fig. 4.15 (b) and the synthetic target image Isyn in Fig. 4.15 (c). Despite some

”dirty” speckle on the doll face in the synthetic image caused by the noisy surface

normal, Isyn still well mimics I t.

The incorporation of the synthetic image into Textured-ICP is tested under severe

lighting changes. Fig. 4.16 shows some frames grabbed from two result videos on the
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4. HANDLING ILLUMINATION VARIATION

(a) 

initialization image

(b) 

reference image

(c) 

synthetic image

Figure 4.15: Real and synthetic images for the doll dwarf with SH modeling.

doll dwarf and the Merlin robot. Full videos can be found in the supplementary

materials. To guarantee sufficient lighting variations, the experiments are carried out

in a dark and spacious hall, where the target is lit by one moving illumination source.

The color camera AXIS PTZ 212 cannot produce a color image under a weak ambient

lighting condition, therefore only gray scale images are provided.

Figure 4.16: Pose estimation under significant illumination variations. The 2nd and
the 4th rows show some frames for the estimated pose of the doll dwarf and the Merlin
robot under different lighting conditions. Above them are the synthetic target images
used as the appearance information in the Textured-ICP.
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4.5. Summary

As shown in Fig. 4.16, the targets are under both significant 3D motion and

severe illumination variations. The target model is initialized with multiple light

sources from different orientations so that all visible surface points can be lit. For

testing the performance under extreme lighting conditions, the light source is moved

approximately along a half circle, e.g. some frames are lit from the left, some frames

from the right. Also in a few frames, the light slightly points away from target

region and the target appears dark, as can be seen in the two images on the last

column. The synthetic target image used in the texture consistency calculation for

the Textured-ICP is shown above the corresponding result image. Despite of the

roughly reconstructed appearances caused by the inaccurate surface normals, they

can effectively capture the most important changes due to illumination. The results

are obtained with the setting ρc = 1.0 in Eq. (3.16), where no special preference

is made on the texture nor the range data in the Textured-ICP. As can clearly be

seen in the synthetic images for the Merlin robot, under weak lighting, the image

sensed by the color camera is not as sharp as when the light intensity is sufficient.

With such smoothed images, the texture cannot contribute much for the accurate

pose estimation. If the target motion is mild and the range data are reliable, it is

recommended to set ρc = 0.5 for a fast varying lighting condition.

4.5 Summary

This chapter deals with the influence of the appearance variations caused by illumi-

nation in the object pose estimation problems. First the state-of-the-art methods for

the illumination invariant visual tracking, the illumination modeling, and the inverse

rendering are reviewed. Then the theoretical background knowledge regarding the

LED array modeling and the illumination modeling with Spherical Harmonics (SH)

is introduced. Previous researches on the SH modeling mostly focused on human face

recognition problems. To be applied on more general Lambertian objects, the target

surface reflectance information is required.

With the idea that the surface reflectance in the near infra-red spectrum may help

determining the reflectance in the other spectra, e.g. the red spectrum, the modeling

method for the intensity distribution of the LED array mounted on the PMD camera is

investigated. If the intensity distribution can be accurately approximated, estimating

the near infra-red surface reflectance will be straight forward. However, experiments

show that there is a non-negligible gap between the theoretical LED array model and

the real LED arrays on the PMD camera. The model parameters, which are supposed
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4. HANDLING ILLUMINATION VARIATION

to be constant, need to be determined for measurements at different distances. Since

the aim of modeling the LED array is to help estimating the target surface reflectance,

to avoid too much complication of the problem, instead of investigating more into the

LED modeling, another simple reflectance estimation method is adopted, where a

calibration object is exploited.

Under the SH illumination modeling framework, a Lambertian calibration object

with homogeneous reflectance can be used to determine the lighting condition. Once

the lighting is known, together with the target geometrical information obtained from

the PMD measurement, the target surface reflectance can be estimated. Then the

estimated reflectance is applied on the object recognition under significantly different

lighting conditions, which yields a better recognition performance especially for the

extreme lighting conditions, e.g. sideways illumination.

After the reflectance information is obtained, SH model is incorporated into the

pose estimation algorithm proposed in previous chapters. The major contribution

of this chapter is to put the theoretical research on illumination modeling into pose

estimation problem of real objects. The effectiveness of the illumination modeling

scheme is demonstrated through the target pose estimation results in video sequences

with varying illumination conditions. However, it should be pointed out when the

inter-frame illumination variation is dramatic, the pose estimation algorithm can still

run into problem. Therefore, fast changing lighting can still be an open problem for

future researches.
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Chapter 5

Experiments and Application

This chapter gives a series of experimental results for evaluating the pose estimation

algorithm proposed in previous chapters. The reference evaluation is performed by

comparing the estimated pose with the highly accurate reference measurement from

the iSpace system. A calibration algorithm is proposed for transforming the data

in iSpace coordinates to the camera system. Besides evaluating the accuracy of the

estimated pose, the robustness of the proposed algorithm are demonstrated with tests

on various targets in both indoor and outdoor environments. In addition, a leader-

follower mobile robot formation application is conducted with the estimated pose.

5.1 Unifying Coordinates with the Reference Pose

iSpace measurement system can provide pose information for iSpace sensor frames

with a very high accuracy. In following experiments, one iSpace sensor frame is me-

chanically attached to the fused cameras and another is attached to the target object.

For evaluation, the target pose estimated by the proposed algorithm will be compared

with the pose measured by iSpace, where both poses should be in the same coordi-

nate system. Here AXIS world coordinate system is chosen as the common coordinate

system where evaluations are performed, because the pose estimation algorithms in

previous chapters are derived in this system. Therefore, transformation from iSpace

sensor poses to target and camera poses are required to yield valid reference data

for evaluation. In the following, the formulation for transforming pose measured by

iSpace into camera coordinate system is derived.
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5. EXPERIMENTS AND APPLICATION

5.1.1 Target Pose in iSpace and in Camera Systems

As shown in Fig. 5.1, there are two iSpace frames: the target iSpace frame which is

attached to the target, with origin St,w and pose Tw,St in world coordinate system;

the camera iSpace frame which is attached to the camera with origin SC,w and pose

Tw,SC in world coordinate system. Here the 3 × 4 matrix Tw,St represents the pose

of the target iSpace frame in world coordinate system, or equivalently it can be used

to transform a point in the target iSpace coordinates to the world coordinates.

Ow

Cw/Oc

camera

iSpace bar on camera

target

iSpace bar on target

frame

SC,w

PC/PSt

frame

St,w

Figure 5.1: 2D schematic illustration for camera, target and iSpace configurations.

For conducting the evaluation with iSpace measurements, the target pose TC,t in

the camera coordinates is desired when the iSpace measurements Tw,St and Tw,SC

are available. To this end, the relative transformation matrix TC,SC and Tt,St are

required, by which the target pose in the camera coordinates can be formulated as:

ṪC,t = ṪC,SCṪSC,wṪw,StṪSt,t, (5.1)

where Ṫ is the 4× 4 homogeneous version of T. Under such a notation, the inversion

of the homogeneous transformation matrix can be denoted in a simple way, e.g.

ṪSC,C = Ṫ
−1
C,SC represents the camera pose in the camera iSpace coordinates.

In Eq. (5.1), TC,SC and TSt,t are two unknown relative transformations that are

hard to measure and should be estimated. Assuming the initial orientation of the
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5.1. Unifying Coordinates with the Reference Pose

camera coordinate system is the same as the target coordinate system,1 the rotation

part of TSt,t can be retrieved from TSt,C and the translation part from PSt, where

PSt is the target center in the target iSpace frame coordinates. Observing TSt,C =

TSt,SCṪSC,C , where TSt,SC = TSt,wṪw,SC is readily known, in the following contents,

the estimation methods for TSC,C and PSt are derived.

5.1.2 Transformation between iSpace and Camera Coordi-

nates

In this section, a chess board is used as a calibration object for estimating TSC,C .

The experimental setup is illustrated in Fig. 5.2, where the fused sensors mounted on

a mobile robot are placed in front of the chess board pattern.

Figure 5.2: Experimental setup for determining the relative transformation between
iSpace and camera systems.

When the chess board pose TC,ch in the camera system and the pose Tw,ch in

world coordinates can be acquired, TC,SC can be derived as

ṪC,SC = ṪC,chṪ
−1
w,chṪw,SC .

Tw,ch can be obtained by measuring three or four corner points on the chess

board with the iSpace vector (in Fig. 5.2, the bottom left point on the chess board

is being measured as the origin of the chess board coordinates). iSpace produces

1Actually the initial target pose is defined in the implementation to have the same orientation
as the camera coordinate system.
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5. EXPERIMENTS AND APPLICATION

measurements with a very high accuracy (absolute error<1 mm) in real-time (40

fps). Therefore, Tw,ch is supposed to be quite reliable.

TC,ch is estimated with the routine cvFindExtrinsicCameraParams2 from the

OpenCV library. The input intrinsic and distortion parameters for the color camera

are estimated beforehand. During calibration, it is recommended to place the chess

board as parallel as possible to the image plane of the camera. Because under the

hood of the OpenCV routine, the constraints for solving the rotation matrix are not

complete and there will follow a singular value decomposition step enforcing the com-

puted rotation matrix to be a valid rotation matrix. When the underlying rotation

matrix is close to a unit matrix, the solution matrix will be quite close to the final

output rotation matrix, and thus can yield better result.

Since it is impractical to directly measure the true rotation and translation be-

tween the color camera’s image plane and the camera iSpace frame, we only empiri-

cally evaluated the accuracy of TC,SC by placing the camera and the camera iSpacec

frame as parallel as possible and examining the estimated relative transformation.

Results indicated that the absolute rotation errors are within 2◦ ∼ 3◦ and the abso-

lute translation errors are within (5, 5, 15) millimeters in three directions. The error

will be further discussed in the next subsection.

5.1.3 Estimating Transformation between Target and iSpace

For an arbitrary target with non-planar shape, the mass center will reside inside the

target body and can be infeasible to measure directly. Moreover, when the interested

target is only a part of an object which is determined during the initialization, the

mass center should also be calculated with the points selected for tracking in the

pose estimation program. This means that the relative transformation between the

target coordinate system and the coordinates for the target iSpace frame can only be

determined with the help of the fused TOF and color cameras.

On the other hand, the Iterative Closest Point (ICP) algorithm has been inves-

tigated substantially since its introduction and has been demonstrated to be able to

provide an accurate pose estimation when the range measurement is reliable. Since

under a well-controlled condition, CamCube2.0 is reported to produce range data with

precision better than 3 mm. Therefore, the range measurement provided by Cam-

Cube2.0 along with the pose estimated with ICP could be exploited for estimating

PSt.

In the Fig. 5.3, PC is the target mass center in the camera coordinates during
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5.1. Unifying Coordinates with the Reference Pose

initialization and P ′C is the estimated mass center obtained by applying ICP on the

range data from CamCube2.0. The uncertainty of the range measurement, as well as

of the the ICP algorithm, is mostly reflected in a scalar h representing the Cartesian

depth along Z axis. The mapping from a pixel position [x, y]> to a point in the 3D

coordinate of the camera system is expressed by the pin-hole camera model

PC = hM−1

 x

y

1

 ,
where M is the 3× 3 intrinsic matrix of the color camera.

 

Ow

PSt/PCPSt/P’C

Cw/Oc

St,w
S’t,w

target

iSpace bar on target

frame

camera

iSpace bar on camera

Tt

SC,w

PL

PL

rear wheel

PF

rear wheel

Figure 5.3: Relative transformation between iSpace and target systems.

The target mass center Pw in world coordinates can be obtained by transforming

PC as

Pw = Tw,SCṪSC,C ṖC . (5.2)

Also, Pw can be obtained by transforming PSt as

Pw = Tw,St ṖSt.
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5. EXPERIMENTS AND APPLICATION

Combining above three equations yields:

Tw,St ṖSt = Tw,SCṪSC,CṀ
−1


hx

hy

h

1

 . (5.3)

Every time the target is moved, a new unknown h is introduced, alone with three

functions corresponding to the three rows of Eq. (5.3). For N target positions, there

will be 3N equations and 3+N unknowns (3 for PSt, N for all h). With 3N ≥ 3+N ,

i.e. N ≥ 2 target positions, all unknowns could be solved.

As discussed in the previous subsection, most of the inaccuracies in TC,SC will be

reflected in the range translation along Z axis. This inaccuracy will be propagated to

the right side of Eq. (5.3) in the form of Pw. Since the above linear equation system

can provide more equations than unknowns, the inaccurate range element along Z

axis in TC,SC can also be incorporated as an unknown and be solved with the above

system. In our experiment setup, the range element in TC,SC corresponds to the X

element in TSC,C . When the 3×4 transformation matrix T is expressed as a rotation

matrix and a translation vector as T = [R, t], and when the translation vector for

TSC,C is denoted as tSC,C = [dx, dy, dz]
>, and the rotation term of Tw,C = Tw,SCṪSC,C

as Rw,C = [rwC,1, rwC,2, rwC,3], Eq. (5.3) can be reformulated as:

Rw,StPSt − dxrwC,1 − hRw,SC PC = tw,SC − tw,St + dyrwC,2 + dzrwC,3, (5.4)

which is a linear system with 3N equations and 4 +N unknowns (4 for PSt and dx).

The solution dx will be used as the corrected range element in TSC,C . Experimental

results showed that after such a correction, the absolute error of the range element

for TC,SC and TSt,t can be within 5∼10 mm.1

5.2 Evaluation with Reference Pose Available

The estimated pose is evaluated by comparing with the reference pose obtained from

iSpace, which is transformed into the camera coordinate system with the unification

method presented in the previous section. The experimental setup is illustrated in

Fig. 5.4, where the rear part of the Merlin robot is used as the target object. The

1For instance, the estimated range terms in TC,SC and TSt,t were 315 mm and 335 mm, where
the corresponding values roughly measured by a ruler were 312 mm and 332 mm.
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5.2. Evaluation with Reference Pose Available

fused cameras are mounted on another robot as shown in Fig. 5.2.

Figure 5.4: Experimental setup with iSpace system.

The evaluation result is shown in Fig. 5.5, where the results for the rotational

degrees of freedom are shown in the three figures in the first row. They are measured in

degrees with Euler angle under the ZYX rotation convention (X and Y are horizontal

and vertical axes on the image plane). The second row shows the results for the

translation along X, Y, Z directions in millimeter in Cartesian coordinates. The

comparison is performed for both the coarse pose (SR) in Chapter 2 and the refined

accurate pose (SR+LKICP) in Chapter 3.

The coarse pose complies well with the pose from iSpace for the rotation around

Z axis and the translation along X and Y axes (i.e. the in-plane motion). The pose

changes in these degrees can bring about significant appearance variations in the 2D

image, therefore can be handled by the 2D texture based coarse estimation. The

object appearance is much less sensitive to the rotation around X and Y axes or

the translation along Z axis (i.e. the out-of-plane motion), which can result in large

errors for 2D data based coarse pose. In comparison, by taking the coarse estimate

as the initial pose guess and refining by the LKICP, the accurate pose estimation

yields reliable results for all 6DOF. However, the accurate pose module alone cannot

produce a robust and efficient pose estimation algorithm, partly because the LKICP

is a gradient-based procedure and can be trapped into the local minimum, partly

because it is relatively less effective on the in-plane motions, which can be seen in

the convergence evaluation in Fig. 3.8, where more iterations are required to handle a

similar amount of in-plane motion than the out-of-plane motion. In a word, the coarse

estimation can handle the in-plane motion, while the accurate estimation tackles well
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Figure 5.5: The estimated pose and the reference pose from iSpace. The pose from
iSpace, from the coarse stage, and from the accurate stage are displayed in blue,
green, and red respectively.

the out-of-plane motion and the combination of both yields the reliable performance

on all 6DOF.

It should be noted that the coarse pose in Fig. 5.5 is obtained by completely

deactivating the accurate pose estimation module. If the coarse pose can take the

accurate pose output from the last frame as the initial pose input for the current

frame, which is the case for the real implementation, the coarse estimation result for

the rotation around Y and X axis can be significantly improved.

With the reference data from iSpace, the errors for the pose calculated from three

algorithms - the conventional ICP, the texture based NSSD and the proposed LKICP

- are compared and illustrated in Fig. 5.6. They are the alternative error metrics for

calculating the cost function Eq. (3.8), i.e. ICP for g2n(∆θ), NSSD for f 2
n(∆θ), and

LKICP for g2n(∆θ) + ρf 2
n(∆θ). All three pose refinement algorithms are combined

with the proposed coarse pose estimation.

The rotational errors are shown in the three figures in the first row of Fig. 5.6. The

texture data based NSSD produces large errors on the rotation around Y axis and

the range data based ICP yields non-negligible errors on the rotation around Z axis.
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Figure 5.6: Error comparison for ICP, NSSD and LKICP. The pose from iSpace is
used as the reference. The pose estimation from ICP, NSSD and LKICP are displayed
in blue, green and red respectively.

In comparison, the LKICP performs the best estimation. For most of the frames, the

errors are within 3◦, which is sufficient for most mobile robot applications. All three

algorithms have similar performance on the three translational degrees of freedom as

shown in the figures in the second row of Fig. 5.6. The errors in most of the frames

are within 1.5 cm.

However, there are also some frames, the translational error can be as large as 2.0

cm. By checking the result video, there are no frames having such large errors (2.0

cm errors on the translation along X or Y axes are supposed to be visibly salient).

Although the variation of the measurement produced by iSpace is reported to be

around 0.25 mm for the typical environment [64], during our test, we seldom reached

such a level. The variation was always around 3∼6 mm. The camera measurements

are also an error source, including the target appearance variation from the color

camera, or the range measurement uncertainties from the PMD camera. Both will

result in errors for the relative transformation between camera/target and the iSpace

coordinate systems. Such an error can better be observed from the translational error

along Y axis in the middle figure of the second row of Fig. 5.5, where for a lot frames
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5. EXPERIMENTS AND APPLICATION

the pose measured by the iSpace is clearly shifted from the estimated pose. Therefore,

the error is a composite of the errors from the pose estimation, from the iSpace

measurement, from the coordinates unification between iSpace and the camera, from

the imperfect synchronization for data acquisition between iSpace and the camera,

and also from the inaccurate sensor measurements (range data inaccuracies from the

CamCube2.0 and the intensity variations from the color camera).

Practically it is very difficult to synchronize the camera and the iSpace measure-

ments. Even if the capturing of both sensors can be triggered by some complicated

hardware, the integration time of the two cameras cannot be completely controlled.

For the experiments discussed above, the target was first placed still. When it started

to move, the time stamps for the data from both iSpace and camera were manually

determined. Then the measurement from one source (camera or iSpace) was trans-

lated by the time stamp difference, so that the time in both systems can be aligned.

On the other hand, the iSpace runs at 20 Hz or 40 Hz, but the frame rate for the fused

camera system is usually lower than 20 Hz (including the capturing time, the data

recording time, etc.). Therefore, to perform a valid comparison, after the overall time

translation for the measurement alignment, the final iSpace data used for the com-

parison are the interpolated data by using the time stamps recorded for both iSpace

and camera systems. Since these synchronization and interpolation operations can-

not achieve perfect time alignment, it should also be considered as an error source in

terms of comparison. The comparison error caused by synchronization can be clearly

observed from the spikes in the second row of Fig. 5.6. The translation error indicated

by these spikes can be as large as 15∼20 mm. But the result video shows there is

seldom a frame with error larger than 10 mm. The synchronization error can also

be seen in Fig. 5.7, which shows the detailed data between frame 380 and 388 in the

middle image of the second row in Fig. 5.5 (only results for iSpace and the proposed

algorithm are displayed). At around frame 384, the estimated pose goes one frame

later than the measured pose from iSpace, which brings about an absolute difference

of around 18 mm at frame 384. The work in [135] provides a method for determining

the time delay between the measurement system and the estimation algorithm. For

our system, the iSpace data are transmitted via Ethernet. More importantly, the

iSpace API is running in Windows and the pose estimation algorithm is in Linux.

Therefore, two computers are used, which makes the synchronization problem more

complicated.

Based on the above discussions, the error from iSpace measurement, from coor-

dinates unification process, especially the large differences caused by synchronization
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Figure 5.7: Error from synchronization between the iSpace and the camera systems.
This figures shows the detailed pose comparison from the iSpace and the proposed
algorithm between frame 380 and 388 for the translation along Y axis. It is a scaled
figure for the middle image in the second row of Fig. 5.5.

between iSpace and camera systems, should not be deemed as real errors for the es-

timated pose. Therefore, the proposed algorithm can be expected to yield pose with

absolute translation error within 1.0 cm and absolute rotation error within 3◦.

5.3 Tests on Various Targets

The proposed algorithm is also tested on various targets in both indoor and outdoor

environments. Although no reference data are available for these target objects, the

quality of the estimated pose can be shown in the result videos. Fig. 5.8 illustrates

some of the result frames performed in the indoor environment. Full result videos

can be found in the attached CD. The test objects include a pottery cock, a small

testing satellite, a cylinder bucket, the outdoor Merlin robot, and a doll dwarf. A

desired target should have appropriate size, because a big object do not fit the small

field of view of CamCube2.0, whereas a small object cannot be covered by sufficient

image pixels. The object should have a Lambertian surfaces with good reflectivity,

because current TOF cameras cannot produce reliable measurements on glossy or

dark surfaces due to the insufficiency of the modulated near infra-red light reflected

back into the camera.

For testing the performance under fast motion, both the target and the fused
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5. EXPERIMENTS AND APPLICATION

Figure 5.8: Tests on various targets in indoor environment.

cameras were moving in all 6DOF (except the bottom row in Fig.5.8, where the

robot drove on a flat floor). The inter-frame motion can be as large as approximately

10∼15 cm in translation and 15∼20◦ in rotation. In this tests, 400 particles were

used in the coarse pose estimation stage for robustly handling the large inter-frame

motions. Even faster movement will require more particles for effectively covering a

larger volume in the state space. However, this will also raise higher demand on both

CPU and GPU. On the other hand, the increased particles will reduce the processing

frame rate, which will make the inter-frame motion even severer. Nevertheless, when

the target moves too fast, the color image will be blurred and the range image can

be quite noisy. Therefore, the upper boundary for the restriction on the target speed

will be drawn by the capability of the cameras and processors.

The targets shown in Fig. 5.8 have various shapes and textures. The proposed

algorithm works robustly on all these shapes. Among them, the small satellite and

the cylinder bucket are of particular interest for their geometrically symmetric shapes.

The range data based conventional ICP is ill-posed for such objects due to short of

constraints. The proposed LKICP, on the other hand, can well handle the symmetric

targets because of the incorporation of the texture information.

Although diffuse surfaces are assumed, practically no objects have perfect Lam-
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5.3. Tests on Various Targets

bertian surfaces. In some cases, the diffuse component can have strong influence on

the target appearance. For instance, during the test on the small satellite, some parts

of the target surface were highlighted in some frames, one of which is shown in the

left image of Fig. 5.9 with the upper right corner of the satellite highlighted. De-

spite of these unexpected appearances, the pose of the small satellite can always be

correctly estimated. To be clearly on how such a situation is handled, the reconstruc-

tion coefficients for sparse representation is investigated in greater depth. A particle

is manually placed on the final optimized pose, with which an observation image

patch in the finest resolution level is grabbed. The reconstruction coefficients for the

grabbed image patch are solved by orthogonal matching pursuit and are illustrated in

the middle image of Fig. 5.9. It can be seen that the most significant reconstruction

coefficient corresponds to an occlusion template depicted in the right bottom image.
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Figure 5.9: Reconstruction coefficients for the partially highlighted satellite. The left
image shows the partially highlighted satellite overlaid with the estimated pose box.
The middle image depicts the reconstruction coefficients for sparse representation
for the estimated pose in the highest resolution level, where the most significant
coefficient and its corresponding template are illustrated in the right images.

It should be pointed out that there are a lot of occlusion types, e.g. occluded

by hand, by grass or by metal fences. If a certain occlusion type in an application

can be foreseen, the corresponding occlusion templates can be built and incorporated

into the template matrix in sparse representation. In this thesis, only the block type

occlusion templates are implemented as shown in Fig. 2.3. The occlusion templates

are meant for dealing with occlusions. However, even if the coarse pose module could

handle occlusion, the proposed LKICP will perform poorly if the occlusion is close

to the target.1 Some results for the pose estimation under occlusion are given in

1The consistency test Ωk(n) in Eq. (3.8) cannot exclude occlusion points which are close to the
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5. EXPERIMENTS AND APPLICATION

Fig. 5.10, where the occlusion objects are about 30 cm closer to the cameras than

the target. The occlusion templates shown in Fig. 2.3 can be used to model the

block-wise occlusion. Therefore, most of the occlusion situations in Fig. 5.10 can be

handled. However, when the middle part of the target is occluded, no corresponding

occlusion templates are available, the pose estimation can fail, as shown in the middle

image of Fig. 5.10. This also indicates that if the occlusion is often encountered in

an application, more occlusion templates should be incorporated.

Figure 5.10: The estimated pose under occlusion. The pose estimation is performed
with the occlusion objects about 30 cm closer to the cameras than the target.

The pose estimation algorithm is also tested in the outdoor environment, where

the strong near infra-red component from the sunshine can have remarkable negative

influence on the range measurements. Despite of the corrupted range data, the pro-

posed algorithm can robustly track the 3D motion as in the indoor case. Fig. 5.11

shows some of the result frames for various targets in the outdoor test.

Figure 5.11: Tests on various targets in the outdoor environment.

The estimated pose of the doll dwarf is as accurate as the indoor test. Because the

target from being calculated into the cost function for LKICP.
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5.3. Tests on Various Targets

dwarf is made of paper with rich texture, and has a convex and asymmetric shape,

which means the proposed LKICP can have sufficient constraints from both range and

texture information. The test on the outdoor Merlin robot was carried out by mount-

ing the fused cameras on another robot and both robots were driving on the uneven

grassland. The rough terrain causes additional motion artefacts besides the noise

cause by sunshine. The conventional ICP fails on some rotational degrees of freedom

as is also shown in Fig. 3.5 due to the contaminated range measurements. Whereas

the LKICP yields robust estimates that can be used in real outdoor leader-follower

formation applications. The most difficult object, as revealed by the experiment, is

the cock. Its pottery material raises more problems on the range measurements un-

der sunshine. Its small size (less than 20 cm in both height and width) decreases the

number of points that can be used for estimating the pose. Its largely homogeneous

texture cannot provide enough constraints for the texture information in LKICP. Al-

though the target could still be located thanks to the coarse pose estimation stage,

the final estimated pose exhibits some jumping behaviour for a lot of frames.

Since keypoints (SIFT, SURF, etc.) are often adopted for pose estimation, as a

comparison, the SURF feature matching is applied for all above objects with some

of the video sequences. The SURF feature extraction and correspondence are imple-

mented with OpenCV routines. As mentioned in [33], usually 8 - 10 correct corre-

spondences are necessary for a reliable pose estimation. Meanwhile, the ratio of the

number of outlier correspondences to the inliers should be less than 1.0 even with the

robust estimators. Therefore, the results for these two criteria are given in Table 5.1.1

The proposed algorithm yields a robust pose estimation for these video sequences. In

comparison, the SURF feature matching has problems with large numbers of frames

for all test sequences.

dwarf satellite cock robot bucket
# model SURF features 39 102 28 27 68

# f. inliers<10/# f. 460/1098 6/761 100/298 415/466 24/762
# f. inliers<50%/# f. 827/1098 327/761 152/298 425/466 309/762

Table 5.1: SURF feature correspondences for various targets. The second row lists
the number of SURF features extracted on target region from the initial frame. The
third row gives the number of frames with less than 10 correct correspondences and
the number of frames in the sequence. The fourth row shows the number of frames
with less than 50% inlier correspondences.

1When the distance between a matched keypoint and the projected pixel position of the keypoint
transformed with true pose is more than 5 pixels, it will be determined as an outlier correspondence.
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5. EXPERIMENTS AND APPLICATION

The SURF feature matching is carried out with the exhaustive search through-

out the complete image. The left image in Fig. 5.12 shows the number of correct

correspondences for Merlin robot in the indoor video sequence, and the right image

illustrates the correspondences for one frame. It can be seen that when the target

has a noticeable out-of-plane rotation, only a small number of correspondences are

correct, which is insufficient for the pose estimation. Although one big advantage

of the keypoint based methods is the ability to perform pose estimation without a

predicted pose, it seems a good prediction is still required to narrow down the search

area for improving the correct matching rates. Another method is to apply some

rectifications to decrease the image distortions caused by perspective projection or

rotation for achieving better correct correspondence rates [88].
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Figure 5.12: SURF feature matching for Merlin robot. Correspondences with error
more than 5 pixels are considered as mismatches.

The presented algorithm is a frame-to-frame pose estimation approach, which

means it can only deal with a restricted amount of inter-frame motions. Therefore,

the maximum allowed inter-frame motions for various objects are also evaluated.

As before, it is impractical to evaluate the full 6DOF simultaneously. Thus the

evaluation is performed for each degree of freedom separately. More specifically, the

target is moved/rotated approximately in one degree with all model updates in the

algorithm disabled. The maximum allowed inter-frame motion will be recorded at

the point when the pose estimation becomes very unstable or even fails. The tests

are conducted under typical parameter settings, e.g. 300 particles with an initial

rotational variance 10◦ (0.17 in radian) and translational variance 8 cm, i.e. σF =

[0.17, 0.17, 0.17, 8.0, 8.0, 8.0] in Algorithm 2.2. The results are shown in Table 5.2.
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5.4. Application on Non-Cooperative Leader Follower Formation

It can be seen that in general the results indicate very fast inter-frame motions.

However, in practice, the real motion will be a combination of movements in several

degrees of freedom. Furthermore, the motion artefacts should also be considered.

Therefore, the results in Table 5.2 should serve as the upper bound for the maximum

allowed inter-frame motion for these objects.

target θα θβ θγ θx θy θz
dwarf 26◦ 23◦ 31◦ 18 cm 16 cm 34 cm

satellite 17◦ 21◦ 25◦ 20 cm 19 cm 41 cm
cock 22◦ 29◦ 24◦ 19 cm 18 cm 25 cm
robot 21◦ 21◦ 28◦ 13 cm 17 cm 23 cm
bucket 38◦ 23◦ 32◦ 20 cm 21 cm 28 cm

Table 5.2: Maximum allowed inter-frame motion for different targets. The results
were obtained under a typical setting for the proposed algorithm, e.g. 300 particles,
with initial rotation variance 10◦ (0.17 in radian) and translation variance 8 cm, i.e.
σF = [0.17, 0.17, 0.17, 8.0, 8.0, 8.0] in Algorithm 2.2.

5.4 Application on Non-Cooperative Leader Fol-

lower Formation

The pose estimation algorithm is applied on a non-cooperative leader-follower forma-

tion scenario. Two car-like mobile robots - the outdoor Merlin robot - are used in

this application, for which the kinematic model can be expressed asẋ(t)

ẏ(t)

θ̇(t)

 =

 cos θ(t)

sin θ(t)

(tan β(t))/l

 v(t),

where v is the translational speed of the robot, β is the steering angle of the front

wheels, [x(t), y(t)]> is the position of the mid-point on the rear-wheel axle in the

global world coordinate system at time t, θ represents the orientation, and l is the

length between frontal and rear wheel axles.

The geometric configuration of the two robots in formation is illustrated in Fig. 5.13.

The leader robot is tele-operated while the follower robot is controlled with the for-

mation scheme in [172], where the objective is to maintain a pre-specified constant

distance ρ and a relative angle α between the two robots.

The estimated pose of the leader robot in the camera system will be transformed
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Figure 5.13: Model of the leader-follower formation for two car-like vehicles. Pa-
rameters for the Leader and the Follower robots are marked with suffix L and F
respectively. Image courtesy of [171].

into the follower’s coordinate system and used as the input information for the leader.

The required information for the follower can be obtained from the mounted sensors,

e.g. the incremental sensor, gyroscope, etc. The control input uF = [vF , βF ]> contains

the translational speed vF and the steering angle βF of the follower.

Some snapshots for the formation test are shown in Fig. 5.14. In this test, the

relative distance and angle to be maintained are set to be ρ = 1.2 m and α = 0◦.

The leader is tele-operated to drive in an approximate circular path. Therefore, for

most of the frames, the leader robot appears more on the right side of the follower’s

observation image, which can be seen from the images in the second row of Fig. 5.14.

Figure 5.14: Snapshots from a complete formation sequence. The first row shows
some frames grabbed from the formation test sequence. The second row gives the
estimated leader pose for its above frame.
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5.5. Summary

The left frame in Fig. 5.14 is of special interest, where the leader made a sharp

turn towards right and almost moved out of the field of view of the fused cameras on

the follower. Although in the subsequent frames the follower effectively steered and

successfully maintained the formation, it can happen that the leader moves out of the

observation of the follower robot and the formation will fail in such a condition. The

2D camera AXIS PTZ 212 used in this work is a fish eye color camera, which can have

a quite large field of view. Currently, the target will be judged as successfully located

when the pose estimation succeeds in both coarse and accurate stages. Under this

configuration, when the output pose of the coarse stage lies out of the PMD camera’s

field of view, the accurate stage will report estimation failure. Consequently, the

formation will be paused. Therefore, the proposed algorithm can be implemented to

report pose results from both stages and some control schemes can be developed to

maintain the formation even if the accurate stage is determined as failed.

In the above test, the poses of both leader and follower robots are measured with

iSpace system and the results are shown in Fig. 5.15. The top view in Fig. 5.15 (a)

illustrates the overall paths the formation robots drove along.

The robots started from a left middle point on the path and went upwards. The

leader traveled an outer circle than the follower, because the objective of the formation

scheme was to maintain the leader in the middle of the follower’s lateral observation

range and keep a pre-specified distance rather than following the path of the leader.

The X and Y positions for both robots at all time steps are shown in Fig. 5.15 (b) and

(c) respectively. When the fused cameras are mounted on a mobile robot, the abrupt

motion of the robot, especially at start and stop, can cause significant motion artefacts

on the camera measurements. The above formation test, together with the outdoor

tests presented in Sec. 5.3, demonstrated the robustness (i.e. the reliable performance

under significant background changes and under noisy range measurements caused

by driving on grassland) of the proposed algorithm.

5.5 Summary

A series of experiments are performed in this chapter, including the reference eval-

uation with iSpace measurements, the tests on various targets in both indoor and

outdoor environments. For the reference comparison, a calibration method is pro-

posed for unifying the estimated pose and the iSpace measurement into one coordi-

nate system. Despite of the error sources from the camera measurements, from the

iSpace measurements, from the unification process, as well the time synchronization
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Figure 5.15: iSpace measurements for the formation scenario. (a) shows the top view
of the paths for both robots. (b) and (c) depict the translational positions along X
and Y axes with respect to time for both robots. The leader and follower data are
drawn in red and blue respectively.

between the two systems, the translational and rotational errors are within 15 mm

and 3◦ respectively.

The robustness of the pose estimation algorithm is demonstrated through experi-

ments on a variety of targets. The proposed algorithm can handle symmetric objects,

which will be ill-posed for the range data based conventional ICP. In both indoor

and outdoor environments, the target pose can be robustly estimated under a ar-

bitrary cluttered background. Furthermore, the proposed algorithm is applied on a

non-cooperative leader-follower mobile robot formation scenario. The result shows

that the pose estimation algorithm can provide a reliable input for such applications.
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Chapter 6

Conclusion and Future Works

In this monograph, the 6DOF object pose estimation problem is discussed, where

the target with a complex or symmetric shape can move fast in a cluttered back-

ground. Many practical robotic applications can benefit from a reliable pose estima-

tion algorithm that can deal with such conditions with real-time efficiency, e.g. the

leader-follower formation driving, the in-plant transportation, the self-localization for

mobile robots, the rendezvous and docking for spacecrafts, etc. Recent advances on

the TOF sensor for producing a high quality range image in a scene provides new

possibilities for achieving this goal. This work is developed upon the use of a TOF

sensor - PMD camera - for the pose estimation. To overcome some deficiencies of

the current TOF cameras, i.e. lack of color information for each pixel and sensitive

to motion, a commodity color camera is fused with the PMD camera to produce the

RGBD data for all pixels.

The pose estimation in this work is divided into two stages, a coarse estimation

stage and an accurate estimation stage. The major task in the first stage is to

separate the target from the background and provide a coarse pose estimate that

can be effectively refined in the gradient based accurate estimation stage. Due to

the high dimensionality of the 6DOF problem, the Annealed Particle Filter (APF)

is employed to estimate the probability distribution of the pose. Each particle in

APF is evaluated with Sparse Representation (SR) solved by orthogonal matching

pursuit. A new flexible composition of the template matrix in SR is introduced, which

can better distinguish an image patch grabbed on the target region from a patch on

the background. The distinctive power is further harnessed with a multiresolution

strategy. Thus in the lower layers of APF, a small number of particles suffice to

approximately locate the target; and in the higher layers, minor differences between

the closely positioned particles can be detected, which increases the accuracy of the
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estimated pose. Some rules for updating the template matrix is proposed to adapt to

the changes during tracking, e.g. the background variations, or the target appearance

changes.

The accurate estimation stage refines the output from the coarse stage. Since the

coarse pose estimate usually is quite close to the desired pose, the accurate stage

adopts a gradient based optimization method - the point-to-plane ICP with a projec-

tive data association. For dealing with the symmetric geometry as well as the noisy

range measurements from the PMD camera, the conventional ICP is extended to in-

corporate the target texture information, yielding the Textured-ICP or LKICP in this

thesis. Compared to the range data based conventional ICP, the LKICP converges

faster to the optimum, meanwhile it can better tolerate the initial pose errors.

Since both coarse and accurate estimation stages use the target appearance infor-

mation, which can be significantly influenced by the illumination conditions, Spherical

Harmonics (SH) illumination modeling is exploited to cope with the illumination vari-

ations. The required surface normal is calculated with the PMD range measurements,

the target reflectance is estimated with the help of a calibration object. After incor-

porating the online synthetic images from the SH model into both estimation stages,

even the extreme lighting conditions (e.g. illuminated from one side) can be tackled.

The proposed algorithm is evaluated with a set of experiments. The reference eval-

uation is conducted by comparing the estimated pose with the iSpace measurements.

A calibration algorithm for converting the iSpace data into the camera coordinate

system is introduced. Despite the error sources from the iSpace data, from the cam-

era measurements, and from the coordinate unification process, the errors for the

estimated pose are within 15 mm in translation and 3◦ in rotation. The robustness

of the algorithm can be demonstrated through the tests on various targets in both

indoor and outdoor environments, where the fast inter-frame movements, the motion

artefacts, and the symmetric geometries can be well handled. The parallelism in-

side the algorithm is investigated for improving the computational efficiency and the

real-time performance can be achieved with GPU acceleration.

The major innovations and contributions in this work can be briefly summarized

as:

• In the coarse estimation stage, a flexible composition of the template matrix

in SR is presented. Compared to the state-of-the-art methods, it can better

distinguish a target image patch from a background one. Several online update

rules are proposed to effectively incorporate the changes into the model, which

do not accumulate and propagate the estimation errors from frame to frame.
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• In the accurate estimation stage, a gradient based pose optimization algorithm

is proposed, which integrates texture into the conventional range data based

ICP. Compared to conventional ICP, the resulting Textured-ICP can handle

not only geometrically symmetric objects, but also noisy range measurements.

• By investigating the parallelism of both coarse and accurate stages, it is demon-

strated that real-time performance can be achieved with GPU acceleration.

• SH illumination model is incorporated into the proposed pose estimation frame-

work. Compared to some prevalent approaches (e.g. the SURF keypoints based

methods), the target pose estimation can be reliably performed under a varying

lighting condition by using online SH synthetic images.

• A calibration method is presented which can unify the pose estimated in the

camera coordinates with the pose measured with iSpace system for a reference

evaluation.

The work in this thesis can be extended in several aspects. Currently, the target

surface reflectance required in the SH modeling is estimated by using a calibration

object. In most practical robotic applications, such an intervention to the scene is not

desired. Therefore, an automatic estimation method with no intervention and less

camera shots to the target can be a future research direction. Also the multi-target

pose estimation as demonstrated in [33] can be a good research direction.

The proposed algorithm is tested on various targets but only for the side that is

visible during initialization. When a complete 3D model of the target with all the

required information is available, the pose estimation algorithm can be adopted and

evaluated for a complete rotation. The rules for updating the visible points set Md in

Subsection 2.3.3 should be further modified, because after several updates, the visible

points in Md will be in a random sequence in the current configuration. Whereas the

wavelet basis will be most useful for modeling natural signals, the randomness of the

points in Md will make the wavelet basis much less useful. One possible improvement

can be made that each time Md is updated, it should be reorganized according to the

pixel reading sequence of all points in the observation image. Meanwhile, the back-

ground templates should also be rearranged to be consistent with the arrangement of

the visible points in Md.

For an arbitrary object, a 3D model with all required information will not be

available. This can be solved by a 3D online modeling approach with the estimated

pose. This will involve a series of research topics. [71] proposed an online method for
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building the 3D geometric model of the scene. However, the question regarding how

to incorporate the required color information is still left open. Besides, their method

only constructs a 3D model for the complete scene. For modeling a single object, a

efficient separation of the object and the backgrounds also needs to be investigated.

Other problems, like the error accumulation [165] and the loop closure [163], the

choice on the model expression, e.g. voxel model [36], polynomial model [5] or surfel

model [163], also deserve an in-depth research.

The SR framework in the coarse stage is capable of dealing with the occlusion

types that can be approximately predicted a priori. However, the Textured-ICP in

the accurate stage does not consider the occlusion conditions. Since the Textured-

ICP uses the range measurements, if combining the information that can be conveyed

from the usage of the occlusion templates in the SR modeling, the Textured-ICP

can be extended for handling the occlusion. Furthermore, the proposed 6DOF pose

estimation algorithm is for the 3D tracking of a single target. How multi-target

tracking can be realized is still an open question.
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[56] Simon Flöry and Michael Hofer. Surface fitting and registration of point clouds

using approximations of the unsigned distance function. Computer Aided Geo-

metric Design, 27(1):60–77, 2010. 29

[57] Stefan Fuchs and Stefan May. Calibration and Registration for Precise Surface

Reconstruction with Time-of-Flight Cameras. International Journal of Intelli-

gent Systems Technologies and Applications, 5(3):274–284, 2008. 9

162



BIBLIOGRAPHY

[58] Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Kriegman.

From Few to Many: Illumination Cone Models for Face Recognition under Vari-

able Lighting and Pose. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 23(6):643–660, 2001. 104

[59] Thilo Grundmann, Robert Eidenberger, Martin Schneider, Michael Fiegert, and

Georg v Wichert. Robust High Precision 6D Pose Determination in Complex

Environments for Robotic Manipulation. In Proc. Workshop Best Practice in

3D Perception and Modeling for Mobile Manipulation at the Int. Conf. Robotics

and Automation, pages 1–6, 2010. 73

[60] W Hannemann, A Linarth, B Liu, and G Kokai. Increasing depth lateral res-

olution based on sensor fusion. International Journal of Intelligent Systems

Technologies and Applications, 5(3):393–401, 2008. 10

[61] K. Hara, K. Nishino, and K. Ikeuchi. Determining Reflectance and Light Posi-

tion from a Single Image without Distant Illumination Assumption. In Inter-

national Conference on Computer Vision (ICCV), pages 560–567. IEEE, 2003.

105, 106, 119

[62] K. Hara, K. Nishino, and K. Ikeuchi. Mixture of Spherical Distributions for

Single-View Relighting. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 30(1):25–35, 2008. 106, 119

[63] Gustaf Hendeby, Jeroen D Hol, Rickard Karlsson, and Fredrik Gustafsson. A

Graphics Processing Unit Implementation of the Particle Filter. In Proceedings

of European Signal Processing Conference, Poznan, Poland, 2007. 63

[64] Robin Heß and Klaus Schilling. GPS/Galileo testbed using a high precision

optical positioning system. In Simulation, Modeling, and Programming for

Autonomous Robots, pages 87–96. Springer, 2010. 141

[65] Olga Holtz. Compressive sensing: a paradigm shift in signal processing. arXiv

preprint arXiv:0812.3137, 2008. 26, 35

[66] Berthold KP Horn. Closed-form solution of absolute orientation using unit

quaternions. Journal of Optical Sociery of America A, 4(4):629–642, 1987. 74

[67] Yuan-Kui HU and Zeng-Fu WANG. A Low-dimensional Illumination Space

Representation of Human Faces for Arbitrary Lighting Conditions. Acta Auto-

matica Sinica, 33(1):9–14, 2007. 107

163



BIBLIOGRAPHY

[68] Jia-Bin Huang and Ming-Hsuan Yang. Estimating Human Pose from Occluded

Images. Computer Vision–ACCV, pages 48–60, 2010. 30

[69] K. Ikeuchi and K. Sato. Determining Reflectance Properties of an Object Using

Range and Brightness Images. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 13(11):1139–1153, 1991. 105, 106, 119

[70] Michael Isard and Andrew Blake. CONDENSATION—Conditional Density

Propagation for Visual Tracking. International Journal of Computer Vision

(IJCV), 29(1):5–28, 1998. 31, 39

[71] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard New-

combe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, An-

drew Davison, et al. KinectFusion: Real-time 3D Reconstruction and Interac-

tion Using a Moving Depth Camera. In Proceedings of the 24th annual ACM

symposium on User interface software and technology, pages 559–568. ACM,

2011. 155

[72] Andrew Edie Johnson and Sing Bing Kang. Registration and integration of

textured 3D data. Image and vision computing, 17(2):135–147, 1999. 76, 79

[73] Graeme A Jones. Combining Optical Flow and Range Flow to Recover RGBD

Sensor Ego-Motion. In RGB-D workshop at Robotics Science and Systems

(RSS) Conference, Berlin, Germany, June 2013. 80

[74] Seung-Jean Kim, Kwangmoo Koh, Michael Lustig, Stephen Boyd, and Dimitry

Gorinevsky. An Interior-Point Method for Large-Scale `1-Regularized Least

Squares. IEEE Journal of Selected Topics in Signal Processing, 1(4):606–617,

2007. 27, 30, 35

[75] Klaas Klasing, Daniel Althoff, Dirk Wollherr, and Martin Buss. Comparison

of Surface Normal Estimation Methods for Range Sensing Applications. In

IEEE International Conference on Robotics and Automation (ICRA), pages

3206–3211. IEEE, 2009. 91, 93

[76] Ralph Klose, Jaime Penlington, and Arno Ruckelshausen. Usability study of 3D

Time-of-Flight cameras for automatic plant phenotyping. Bornimer Agrartech-

nische Berichte, 69:93–105, 2009. 12

164



BIBLIOGRAPHY

[77] S. Knoop, S. Vacek, and R. Dillmann. Fusion of 2D and 3D sensor data for

articulated body tracking. Robotics and Autonomous Systems, 57(3):321–329,

2009. 11

[78] Andreas Kolb, Erhardt Barth, Reinhard Koch, and Rasmus Larsen. Time-of-

Flight Sensors in Computer Graphics. In Proc. Eurographics (State-of-the-Art

Report), 2009. 6

[79] Michael Krainin, Peter Henry, Xiaofeng Ren, and Dieter Fox. Manipulator and

Object Tracking for In-hand 3D Object Modeling. The International Journal

of Robotics Research (IJRR), 30(11):1311–1327, 2011. 74, 77

[80] NM Kwok, Gu Fang, and Weizhen Zhou. Evolutionary Particle Filter: Re-

sampling from the Genetic Algorithm Perspective. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 2935–2940. IEEE,

2005. 33, 38, 52

[81] Nicolas H Lehment, Dejan Arsic, Moritz Kaiser, and Gerhard Rigoll. Auto-

mated Pose Estimation in 3D Point Clouds Applying Annealing Particle Filters

and Inverse Kinematics on a GPU. In IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), pages 87–92.

IEEE, 2010. 63

[82] Raskin Leonid, Rivlin Ehud, and Rudzsky Michael. Using Gaussian Process

Annealing Particle Filter for 3D Human Tracking. EURASIP Journal on Ad-

vances in Signal Processing, 2008:1–13, 2008. 33

[83] Hanxi Li, Chunhua Shen, and Qinfeng Shi. Real-time visual tracking using

compressive sensing. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1305–1312. IEEE, 2011. 24, 30, 36, 41, 55

[84] Peihua Li, Tianwen Zhang, and Arthur EC Pece. Visual Contour Tracking

Based on Particle Filters. Image and Vision Computing, 21(1):111–123, 2003.

32

[85] Xiaoxing Li, Tao Jia, and Hao Zhang. Expression-insensitive 3d face recognition

using sparse representation. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2575–2582. IEEE, 2009. 29

165



BIBLIOGRAPHY

[86] Yuan Li, Haizhou Ai, Takayoshi Yamashita, Shihong Lao, and Masato Kawade.

Tracking in Low Frame Rate Video: A Cascade Particle Filter with Discrimina-

tive Observers of Different Life Spans. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 30(10):1728–1740, 2008. 39

[87] Joerg Liebelt and Klaus Schertler. Precise Registration of 3D Models to Images

by Swarming Particles. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1–8. IEEE, 2007. 33, 74

[88] João Paulo Lima, Veronica Teichrieb, Hideaki Uchiyama, Eric Marchand, et al.

Object Detection and Pose Estimation from Natural Features Using Consumer

RGB-D Sensors: Applications in Augmented Reality. In IEEE Int. Symp. on

Mixed and Augmented Reality (doctoral symposium), ISMAR’12, Atlanta, USA,

November 2012. 73, 148

[89] AG Linarth, J. Penne, B. Liu, O. Jesorsky, and R. Kompe. Fast fusion of range

and video sensor data. In Advanced Microsystems for Automotive Applications,

volume 16, pages 119–134. Springer, 2007. 10, 15, 16

[90] M. Lindner, A. Kolb, and K. Hartmann. Data-fusion of PMD-based distance-

information and high-resolution RGB-images. In International Symposium on

Signals, Circuits and Systems (ISSCS), volume 1, pages 1–4. IEEE, 2007. 13,

17

[91] Marvin Lindner and Andreas Kolb. Lateral and Depth Calibration of PMD-

Distance Sensors. In Advances in Visual Computing, pages 524–533. Springer,

2006. 9

[92] Marvin Lindner and Andreas Kolb. Calibration of the Intensity-Related Dis-

tance Error of the PMD ToF-Camera. In Optics East, pages 67640W–67640W.

International Society for Optics and Photonics, 2007. 9

[93] Marvin Lindner and Andreas Kolb. Compensation of Motion Artifacts for Time-

of-Flight Cameras. In Dynamic 3D Imaging, pages 16–27. Springer, 2009. 7,

10

[94] Marvin Lindner, Andreas Kolb, and Thorsten Ringbeck. New Insights into

the Calibration of ToF-Sensors. In IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1–5.

IEEE, 2008. 9

166



BIBLIOGRAPHY

[95] Marvin Lindner, Martin Lambers, and Andreas Kolb. Sub-Pixel Data Fusion

and Edge-Enhanced Distance Refinement for 2D/3D Images. International

Journal of Intelligent Systems Technologies and Applications, 5(3):344–354,

2008. 17

[96] Marvin Lindner, Ingo Schiller, Andreas Kolb, and Reinhard Koch. Time-of-

flight sensor calibration for accurate range sensing. Computer Vision and Image

Understanding, 114(12):1318–1328, 2010. 8

[97] Evgeny Lomonosov, Dmitry Chetverikov, and Anikó Ekárt. Pre-Registration of
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