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Abstract

Recently a new state of matter was discovered in which the bulk insulating state in a
material is accompanied by conducting surface or edge states. This new state of matter
can be distinguished from a conventional insulator phase by the topological properties
of its band structure which led to the name "topological insulators". Experimentally,
topological insulator states are mostly found in systems characterized by a band inversion
compared to conventional systems. In most topological insulator systems, this is caused
by a combination of energetically close bands and spin orbit coupling. Such properties are
found in systems with heavy elements like Hg and Bi. And indeed, the first experimental
discovery of a topological insulator succeeded in HgTe quantum wells and later also in
BiSb bulk systems.

Topological insulators are of large interest due to their unique properties: In 2-dimensional
topological insulators one dimensional edge states form without the need of an external
magnetic field (in contrast to the quantum Hall effect). These edge states feature a linear
band dispersion, a so called Dirac dispersion. The quantum spin Hall states are helical
edge states, which means they consist of counterpropagating oppositely spin polarized
edge channels. They are therefore of great potential for spintronic applications as well
as building blocks for new more exotic states like Majorana Fermions. 3-dimensional
topological insulators feature 2-dimensional surface states with only one Dirac band (also
called Dirac cone) on each surface and an interesting spin texture where spin and momen-
tum are locked perpendicular to each other in the surface plane. This unique surface band
structure is predicted to be able to host several exotic states like e.g. Majorana Fermions
(in combination with superconductors) and magnetic monopole like excitations.

This PhD thesis will summarize the discovery of topological insulators and highlights the
developments on their experimental observations. The work focuses on HgTe which is
up to now the only topological insulator material where the expected properties are un-
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ambiguously demonstrated in transport experiments. In HgTe, the topological insulator
properties arise from the inversion of the Γ6 and Γ8 bands. The band inversion in HgTe
is due to a combination of a high spin orbit splitting in Te and large energy corrections
(due to the mass-velocity term) to the energy levels in Hg. Bulk HgTe, however, is a
semimetal, which means for the conversion into a topological insulator a band gap has to
be opened. In two dimensions (HgTe quantum well structures) this is achieved via quan-
tum confinement, which opens a band gap between the quantum well subbands. In three
dimensions, strain is used to lift the degeneracy of the semimetallic Γ8 bands opening up
a band gap.
The thesis is structured as follows:

• The first chapter of this thesis will give a brief overview on discoveries in the field
of topological insulators. It focuses on works relevant to experimental results pre-
sented in the following chapters. This includes a short outline of the early pre-
dictions and a summary of important results concerning 2-dimensional topological
insulators while the final section discusses observations concerning 3-dimensional
topological insulators.

• The discovery of the quantum spin Hall effect in HgTe marked the first experimen-
tal observation of a topological insulator. Chapter 2 will focus on HgTe quantum
wells and the quantum spin Hall effect.
Above a critical thickness, HgTe quantum wells are predicted to host the quantum
spin Hall state, the signature of a 2-dimensional topological insulator. HgTe quan-
tum wells exhibiting low carrier concentrations and at the same time high carrier
mobilities are required to be able to measure the quantum spin Hall effect. The
growth of such high quality HgTe quantum wells was one of the major goals for
this work. Continuous optimization of the substrate preparation and growth condi-
tions resulted in controlled carrier densities down to a few 1010 cm−2. At the same
time, carrier mobilities exceeding 1× 106 cm2 V−1 s−1 have been achieved, which
provides mean free paths of several micrometers in the material. Thus the first
experimental evidence for the existence of the quantum spin Hall edge states suc-
ceeded in transport experiments on microstructures: When the Fermi energy was
located in the bulk band gap a residual quantized resistance of 2e2/h was found.
Further experiments focused on investigating the nature of transport in this regime.
By non-local measurements the edge state character could be established. The mea-
sured non-local resistances corresponded well with predictions from the Landauer-
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Büttiker theory applied to transport in helical edge channels.
In a final set of experiments the spin polarization of the edge channels was investi-
gated. Here, we could make use of the advantage that HgTe quantum well structures
exhibit a large Rashba spin orbit splitting. In systems with a large Rashba spin orbit
splitting a spin accumulation is expected to occur at the edge of the sample perpen-
dicular to a current flow. This so-called spin Hall effect was then used as a spin
injector and detector. Using split gate devices it was possible to bring spin Hall and
quantum spin Hall state into direct contact, which enabled an all electrical detection
of the spin polarization of the quantum spin Hall edge channels.

• HgTe as a 3-dimensional topological insulator will be presented in chapter 3. Strain-
ing the HgTe layer enables the observation of topological insulator behavior. It was
found that strain can be easily implemented during growth by using CdTe sub-
strates. CdTe has a slightly larger lattice constant than HgTe and therefore leads
to tensile strain in the HgTe layer as long as the growth is pseudomorphic. Mag-
netotransport studies showed the emergence of quantum Hall transport with char-
acteristic signatures of a Dirac type bandstructure. Thus, this result marks the first
observation of the quantum Hall effect in the surface states of a 3-dimensional topo-
logical insulator.
Transport experiments on samples fitted with a top gate enabled the identification
of contributions from individual surfaces. Furthermore, the surface state quantum
Hall effect was found to be surprisingly stable, perturbations due to additional bulk
transport could not be found, even at high carrier densities of the system.

• Chapters 4 - 6 serve as in depth overviews of selected works: Chapter 4 presents
a detailed overview on the all electrical detection of the spin Hall effect in HgTe
quantum wells. The detection of the spin polarization of the quantum spin Hall
effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum
Hall effect originating from the topological surface state in strained bulk HgTe.

The investigations discussed in this thesis pioneered the experimental work on the trans-
port properties of topological insulator systems. The understanding of the fundamental
properties of topological insulators enables new experiments in which e.g. the inclusion
of magnetic dopants or the interplay between topological insulator and superconductors
can be investigated in detail.
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Zusammenfassung

Vor kurzem wurde entdeckt, dass Festkörper einen bisher unbekannten Zustand einneh-
men können in welchem das Innere des Körpers isolierend ist während Oberflächen bzw.
Ränder leitend bleiben. Materialien, die diese Eigenschaften aufweisen, werden "topol-
ogische Isolatoren" genannt, da ihre besonderen Eigenschaften auf eine gegenüber von
konventionellen Materialien veränderten Topologie zurückgeführt werden kann. Die gro-
ße Mehrheit an Materialien, in denen topologische Isolatorzustände gefunden wurden, ze-
ichnen sich durch eine veränderte Abfolge der Energiebänder, im Vergleich mit gewöhn-
lichen Isolatoren, aus. Diese veränderte Anordnung der Bänder resultiert in den meisten
Fällen aus einem Zusammenwirken von energetisch nahe zusammenliegenden Bändern
und Spin-Bahn Wechselwirkung. Aus diesem Grund wurden Topologische Isolatoren
bisher vor allem in Materialien gefunden, die schwere Elementen wie Hg und Bi enthal-
ten: Erstmals experimentell nachgewiesen wurde die Existenz von topologischen Isola-
toren an HgTe Quantentrögen und später auch in BiSb Volumensystemen.

Topologische Isolatoren sind aufgrund ihrer besonderen Eigenschaften von großem Inter-
esse: 2-dimensionale topologische Isolatoren sind durch das Auftreten eindimensionaler
Randzustände gekennzeichnet, ohne dass hierfür ein Magnetfeld nötig wäre (im Gegen-
satz zum Quanten-Hall-Effekt). Diese sogenannten helikalen Randzustände sind gegen-
läufige und entgegengesetzt spin-polarisierte Randzustände, wodurch sie besonders für
spintronische Anwendungen interessant sind. Des Weiteren sind sie auch potenzielle
Bausteine zur Verwirklichung weiterer exotischer Zustände wie zum Beispiel Majorana
Fermionen. 3-dimensionale topologische Isolatoren zeichnen sich durch das Auftreten
von 2-dimensionalen Oberflächenzuständen aus. Diese Oberflächenzustände haben eine
Dirac-Bandstruktur mit einer besonderen Spin-Textur in der Spin und Impuls rechtwin-
klig zueinander stehen (beide in der Oberfächenebene). Diese besondere Bandstruktur
sollte es ermöglichen in diesen Materialen exotische Zustände zu entdecken wie zum
Beispiel Majorana Fermionen (im Zusammenspiel mit Supraleitern) oder Anregungen,
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die magnetischen Monopolen gleichen.

Diese Doktorarbeit wird die Entdeckung topologischer Isolatoren sowie Entwicklungen
die im Bereich der experimentellen Untersuchung stattfanden vorstellen. Im Besonderen
wird sich diese Arbeit auf das Materialsystem HgTe konzentrieren, dem einzigen Ma-
terialsystem in dem es bisher gelungen ist topologische Isolatoreigenschaften eindeutig
in Transportstudien nachzuweisen. Die topologischen Isolatoreigenschaften von HgTe
entstehen durch die Inversion der Γ6 und Γ8 Bänder. Diese Inversion wird durch die starke
Spin-Bahn-Wechselwirkung in Te und durch die großen relativistischen Korrekturen der
Energiepositionen der Bänder in Hg erzeugt. Da HgTe im Volumenmaterial allerdings
semimetallisch ist, muss zur Beobachtung von topologischen Isolatoreigenschaften eine
Bandlücke geöffnet werden. Im 2-dimensionalen Zustand (HgTe Quantentröge) geschieht
dies durch das quantenmechanische Confinement, wodurch eine Bandlücke zwischen den
Subbändern des Quantentrogs geöffnet wird. In 3-dimensionalen topologischen Isola-
toren kann eine Bandlücke durch das Verspannen der HgTe Schicht gebildet werden, da
in diesem Fall die Entartung der Γ8 Bänder aufgehoben wird.
Diese Doktorarbeit ist wie folgt gegliedert:

• Im ersten Kapitel wird eine kurze Übersicht über Entdeckungen und Entwicklungen
im Bereich topologischer Isolatoren gegeben mit besonderem Fokus auf Arbeiten
mit Relevanz zu den in den weiteren Kapiteln vorgestellten Ergebnissen. Die Über-
sicht beginnt mit einem kurzen Überblick über die ersten Voraussagen, die zur Ent-
deckung von topologischen Isolatoren und zum Verständnis dieses neuen Zustandes
geführt haben. Im Weiteren wird eine kurze Übersicht über wichtige Ergebnisse im
Bereich der 2- und 3-dimensionalen topologischen Isolatoren gegeben.

• Die Entdeckung des Quanten-Spin-Hall-Effekts in HgTe markiert auch gleichzeitig
den ersten experimentellen Nachweis der Existenz topologischer Isolatoren. Kapi-
tel 2 wird daher Eigenschaften von HgTe Quantentrögen und den Quanten-Spin-
Hall-Effekt behandeln.
Die Existenz des Quanten-Spin-Hall-Effekts, das charakteristische Merkmal 2-di-
mensionaler topologischer Isolatoren, wurde für HgTe Quantentröge oberhalb einer
kritischen Dicke vorausgesagt. Der experimentelle Nachweis dieses Effekts setzt
voraus, dass die zu vermessenden Quantentröge über eine möglichst geringe La-
dungsträgerdichte und gleichzeitig hohe Ladungsträgerbeweglichkeit verfügen. Das
Wachstum von Quantentrögen mit diesen Eigenschaften war eine der Hauptauf-
gaben, die im Rahmen dieser Arbeit durchgeführt wurden. Durch diese Anstren-
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gungen ist es mittlerweile möglich Quantentröge mit intrinsischen Ladungsträger-
dichten weit unterhalb von 1× 1011 cm−2 bis in den mittleren 1012 cm−2 Bereich
herzustellen, während die Ladungsträgerbeweglichkeiten 1× 106 cm2 V−1 s−1 über-
schreiten können. Dies ermöglicht ballistischen Transport über mehrere Mikrome-
ter in solchen Proben.
Es wurden Transportexperimente an solch hoch qualitativen Quantentrögen durchge-
führt um den Quanten-Spin-Hall-Effekt experimentell nachweisen zu können. Dies
führte zur Entdeckung erster experimenteller Beweise für die Existenz des Effekts
bei Transportuntersuchungen an Mikrostrukturen. Befand sich das Fermi-Level in
diesen Strukturen innerhalb der Energielücke zwischen Leitungs- und Valenzband
wurde eine endliche Leitfähigkeit von circa 2e2/h gemessen. Dies entspricht dem
erwarteten Wert für elektrischen Transport in einem System mit zwei Randkanälen.
In einer nachfolgenden Serie von Experimenten wurde nachgewiesen, dass der elek-
trische Transport in der Tat durch Randkanäle stattfindet. Zu diesem Zweck wur-
den nicht-lokale Transportmessungen durchgeführt, in denen erfolgreich untersucht
wurde, ob die Resultate für Transport in verschiedenen nicht-lokalen Probengeome-
trien mit den Ergebnissen übereinstimmen, die im Rahmen des Landauer-Büttiker
Formalismus, angewandt auf helikale Randzustände, erwartet werden. Im Weit-
eren wurde auch die Spinpolarisierung der Randzustände untersucht. Ermöglicht
wurde dies durch die Nutzung des Spin-Hall-Effekts, mit dessen Hilfe Spininjektion
und Spindetektion in die Randkanäle möglich ist. Der Spin-Hall-Effekt beschreibt
das Auftreten von Spinströmen in Systemen mit starker Spin-Bahn-Kopplung, die
sich senkrecht zum elektrischen Strom ausbreiten. In HgTe Quantentrögen kon-
nte dieser Effekt durch ein rein elektrisches Experiment für Transport im metallis-
chen Bereich nachgewiesen werden. Im Weiteren wurde dieser Effekt dann in weit-
eren nicht-lokalen Experimenten genutzt um die Spinpolarisierung der Randkanäle
nachzuweisen.

• Kapitel 3 stellt die 3-dimensionalen topologischen Isolatoreigenschaften von HgTe
vor. Wie bereits erwähnt ermöglicht die Nutzung von verspannten HgTe Schichten
die Beobachtung von 3-dimensionalen topologischen Isolatorverhalten in HgTe Vol-
umenmaterial. Wie sich im Rahmen dieser Arbeit herausstellte, kann Verspan-
nung in diesen Schichten sehr einfach durch das pseudomorphe Wachstum auf
gitter-fehlangepassten CdTe Substraten realisiert werden. CdTe hat eine größere
Gitterkonstante als HgTe und erzeugt daher tensile Verspannung in den gewach-
senen HgTe Schichten. In den so erhaltenen Schichten wurde bei Magnetotrans-
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portmessungen der Quanten-Hall-Effekt beobachtet. Des Weiteren zeigte sich, dass
der Quanten-Hall-Effekt in diesen Schichten charakteristische Merkmale für Dirac-
Bandstrukturen aufweist. Dies bedeutet, dass auf diese Weise zum ersten Mal der
Quanten-Hall-Effekt in den Oberflächenzuständen eines 3-dimensionalen topolo-
gischen Isolators detektiert werden konnte.
In weiteren Transportexperimenten wurde der Einfluss einer über der Struktur ange-
brachten Gateelektrode untersucht. Hierdurch wurde die Identifizierung von Beiträ-
gen der einzelnen Oberflächen zum Transport möglich. Zudem stellte sich her-
aus, dass der Oberflächen-Quanten-Hall-Effekt sehr stabil ist und keine Anzeichen
von einsetzendem Volumentransport sichtbar sind, selbst bei sehr hohen Gesamt-
ladungsträgerdichten der Proben.

• In den Kapiteln 4 - 6 werden einige ausgewählte Arbeiten detailiert dargestellt:
Kapitel 4 behandelt die rein-elektronische Detektion des Spin-Hall-Effekts in HgTe
Quantentrögen genauer, während Kapitel 5 die Messung der Spinpolarization der
Quanten-Spin-Hall-Kanäle detailiert vorstellt. In Kapitel 6 wird der Quanten-Hall-
Effekt in den topologischen Oberflächenzuständen von verspanntem bulk HgTe
beleuchtet.

Die in dieser Arbeit vorgestellten Untersuchungen waren Wegbereiter im Bereich der ex-
perimentellen Arbeiten, die sich mit den Transporteigenschaften topologischer Isolatoren
beschäftigen. Das hierdurch gewonnene Verständnis für die fundamentalen Eigenschaften
von topologischen Isolatoren ermöglicht viele weiterführende Experimente, zum Beispiel
durch die Untersuchung des Einflusses von magnetischer Dotierung in topologischen Iso-
latoren oder deren Zusammenspiel mit Supraleitern.
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Chapter 1

Introduction to the field of topological
insulators

This chapter is an overview and introduction to the field of topological insulators and
summarizes the basic findings concerning 2- and 3-dimensional topological insulators.

With the discovery of the quantum Hall effect in 1980 [1] and the subsequent efforts
to explain the occurrence of the quantized Hall plateaus in 2-dimensional systems, the
concept of topological order was first used to describe a physical system. It was found that
the quantized Hall conductivity in units of e2/h can be explained in terms of a topological
invariant [2, 3]. After the discovery of the fractional quantum Hall effect [4] topology
also became important in its theoretical description [5].

In 2005 Kane and Mele proposed a new topological insulator state in two dimensional
systems, the so called Quantum Spin Hall system [6]. This proposal was based on cal-
culations of the graphene bandstructure. The quantum spin Hall state was proposed to
consist of two counterpropagating edge states with opposite spin polarization and in con-
trast to the quantum Hall state no magnetic field is needed to create these edge states.
Unfortunately, the energy scales on which this effect should be observable in graphene
are so small, that an experimental observation is impossible with today’s experimental
capabilities. However, shortly after that the group of Shoucheng Zhang proposed that the
quantum spin Hall effect should also exist in inverted HgTe quantum wells [7]. During
the early stages of this PhD work in 2007, the first observations of quantum spin Hall
properties in HgTe quantum wells were made and reported in König et al.. [8].
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The generalization and extension of the topological insulator concept to 3-dimensional
systems was first given in proposals by Fu et al. [9], Moore and Balents [10] and as well
by Roy [11]. The first experimental observations followed in 2008 by Dsieh et al.. [12] in
the Bi1−xSbx system. This finding was followed by the prediction [13] and discovery of
the Bi2Se3 [14] and Bi2Te3 [15] based materials as 3-dimensional topological insulators
with relatively large band gaps and single Dirac cones on their surface.

1.1 2-dimensional topological insulators

In 2005 Kane and Mele predicted the existence of a new state of matter which is pro-
tected by topology, the Quantum-Spin-Hall insulator state [6]. In this publication they
analyzed the impact of spin orbit coupling on the band structure of graphene in the vicin-
ity of the Dirac point (graphene is a 2-dimensional system consisting of a single sheet
of carbon atoms in a hexagonal lattice - for reviews on graphene and its band structure
see e.g. [16] and [17]). The introduction of a specific spin orbit interaction term leads
to a gap opening in the otherwise gapless Dirac band structure of graphene. This gaped
state is however quite different from ordinary insulating band gaps in semiconductors.
The introduced spin orbit parameter “produces gaps with opposite signs at [the] K and
K ′” [6] symmetry points in the Brillouin zone of graphene. In other words, the band or-
dering is inverted at the K point with respect to the K ′ point, furthermore the inversion
is different for opposite spins. This inversion gives rise to the emergence of edge states
with opposite directions of movement for opposite spins, the so called quantum spin Hall
edge states. Even though these states are not chiral (one-directional) like in the quantum
Hall effect, the spin polarization protects these states against elastic backscattering. In a
more theoretical language the counterpropagating spin-polarized edge channels form a so
called Kramers doublet that is protected by time reversal symmetry. This means that the
edge states remain protected against backscattering as long as time-reversal symmetry is
preserved. If however this symmetry is broken e.g. by a magnetic field, backscattering
becomes possible and a gap opens in the quantum spin Hall states. Figure 1.1 shows the
quantum spin Hall states emerging in the gap of the graphene band structure calculated
for a strip geometry by Kane and Mele [6]. As Kane and Mele also realized, this quantum
spin Hall-phase is distinct from ordinary insulating phases by its different topological
order. In a similar way as the quantum Hall and fractional quantum Hall states have a
different topology from usual insulators [18]. In a follow up work, Kane and Mele [19]

2



Figure 1.1: Low energy band structure of graphene with the spin orbit term introduced by
Kane and Mele. [6]

also introduced a new topological invariant Z2 similar to the TKNN invariant [3] used
for the description of the quantum Hall effect. The explanation of the quantum spin Hall
effect through topological properties later on gave rise to the use of the name topological
insulator for materials with those properties.

The quantum spin Hall state is of great interest due to its unique properties. The quantum
spin Hall edge states are 1-dimensional channels and following from this their conduc-
tance is quantized. Therefore, the quantum spin Hall effect enables the realization of edge
channel transport without a magnetic field and since these edge channels are additionally
spin-polarized, they could be utilized for spintronic applications, like spin-injection and
-detection.

It turned out however, that an experimental observation of pure edge channel transport in
graphene would be very difficult due to the small size of the predicted bulk band gap. The
band gap was estimated to be in the order of 10−3 meV [20, 21] and therefore the effect
would only be observable at extremely low temperatures (mK temperatures or lower) and
near perfect samples (potential fluctuations in the low µeV region). These prerequisites
are not met neither in today’s experiments nor samples, which prevents the experimental
observation of the quantum spin Hall effect in graphene.

Shortly after Kane and Mele’s work [6, 19] the group of Shou-Cheng Zhang (Stanford
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University) predicted the quantum spin Hall state for other systems [22, 23], including
HgTe quantum wells as a possible candidate [7]. It was found that HgTe quantum wells
above a critical thickness host a topologically non-trivial state, which should give rise to
the quantum spin Hall effect. Figure 1.2 A) shows the calculated energy of the E1 (blue)
and H1 (red) states in HgTe quantum wells depending on quantum well thickness. For
thicknesses below 6.5 nm the E1 band is the conduction band and the H1 band the valence
band while the positions are reversed above this thickness. This inversion of the energy
bands also implies a change of the band topology in the system. Figure 1.2 B) shows the
band dispersion and the predominant band character at selected quantum well thicknesses.
From the left to the right, dispersions for a quantum well thickness of 4.0 nm, 6.5 nm and
7.0 nm are shown, respectively. A dominant E1 character is indicated by blue regions
while the H1 character is shown in red. In thin quantum wells below the critical thickness
one can observe a homogenously E1 dominated conduction band and a H1 dominated va-
lence band. At the critical thickness of 6.5 nm the band gap vanishes, resulting in a Dirac
dispersion where the bands are equally mixed at the Dirac point. However, quantum wells
above the critical thickness exhibit a predominantly E1-like character for the valence band
states and H1 like character for the conduction band states close to the gap while the char-
acter changes back to a dominantly E1 character for higher k. This is a direct result from
the non-trivial topology in the system [7]. These unusual band disperisons originate from

Figure 1.2: A) E1 (blue) and H1 (red) energy depending on the HgTe quantum well thick-
ness. B) Schematic energy dispersion for quantum well thicknesses of 4.0 nm, 6.5 nm and
7.0 nm (from left to right). The colors indicate the predominant state of the system, blue
sections have a dominant E1 character while red sections stand for a predominantly H1
character. [7]
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the unusual bandstructure of HgTe which will be described in more detail in chapter 2.
The size of the band gap in the topologically non-trivial quantum well structures can be
up to 40 meV [24], thus enabling an experimental observation. The first experimental
observation concerning the quantum spin Hall effect in HgTe quantum wells was made
in the early stage of this PhD thesis [8]. This was followed by the experimental verifica-
tion of 1-dimensional and non-local transport [25] in the quantum spin Hall regime and
recently the discovery of experimental evidence for the spin polarization of the quantum
spin Hall edge states [26]. A more detailed overview on these experimental findings will
be reported in chapter 2.

1.2 3-dimensional topological insulators

The prediction of a new topologically protected state in 2-dimensional systems was fol-
lowed by a generalization of this concept to 3-dimensions. Publications by Fu, Kane and
Mele [9], Moore and Balents [10] and Roy [11] established the concept of 3-dimensional
topological insulators. Fu et al. focused mainly on the bandstructure properties in these
3D TIs including the unique properties of the resulting surface states. Moore and Balents
as well as Roy on the other hand explored the role of the Z2 topological invariants in
3-dimensional systems in general.

Moore and Balents found that in 3-dimensional systems 4 different topological Z2 invari-
ants can be defined. Fu et al. investigated possible topological phases which are connected
to these invariants. They categorized the different non-trivial topological insulator phases
as weak or strong topological insulators, depending on their robustness against disorder.
The strong TIs were found to host surface states that Fu et al. characterized as “a two-
dimensional topological metal”[9]. These surface states are proposed to have very unique
physical properties related to their topological origin. The surface state in a strong TI con-
sists of an odd number of Dirac cones. In the simplest case this means the band structure
of the surface state can be characterized as a 2-dimensional state with the band dispersion
of a single Dirac cone. This implies, that these surface states are not spin degenerate, in
contrast to for example graphene with 4 degenerate Dirac cones (2 spin degenerate and
2 valley degenerate cones [27, 28]) or a zero gap HgTe quantum well, which exhibits 2
Dirac cones [29]. However, since the surface state extends along the entire surface of the
3-dimensional topological insulator, surfaces with an opposite surface vector host Dirac
cones with opposite spin polarization. In a single Dirac cone the quantum Hall effect
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would be quantized in half integers of e2/h [27, 9]:

σxy =

(
n+

1

2

)
e2

h
. (1.1)

Experimentally, a direct observation of this half integer Hall quantization is however un-
likely to be realized since a measurement will probe all surfaces at once, due to the fact
that they are metallically connected. Another property of the 3D TI surface states is their
distinct spin texture. Spin and momentum k both lie in the surface plane but are always
perpendicular to each other and states at momentum k and -k must have opposite spins,
which means, that the spin rotates with k around the Fermi surface. A schematic sketch
of the band dispersion of a 3D TI surface state is shown in picture 1.3, also indicated is
the typical spin texture of a 3D TI surface state (yellow arrows). This spin texture also

Figure 1.3: Schematic sketch of the single Dirac cone surface state of a 3-dimensional
topological insulator. [30]

has implications for the robustness of the surface states against disorder. It was shown by
Nomura et al. [31] that electrons in the surface state cannot be localized as long as time
reversal symmetry is not broken. This can be understood by the fact that backscattering
by 180◦ degrees is not possible as long as time reversal symmetry is preserved, otherwise
a spin flip would be required. Shortly after the first general proposal by Fu et al. [32] a
more detailed publication appeared, introducing the first proposals for material systems
hosting 3D TI surface states [32], which included Bi1−xSbx, α-Sn and strained HgTe as
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examples of strong 3D TIs.

The first experiment, which showed evidence for a 3D topological insulator state was
reported by Hsieh et al. in 2008 [12]. In this publication the bandstructure on the surface
of Bi1−xSbx was investigated by angle-resolved photoemission spectroscopy (ARPES).
Pure Bi and pure Sb are both semimetallic materials with a finite direct band gap, i.e.
electron and hole pockets are occupied simultaneously. The big difference between these
two materials is the bandordering at the L-point. In Sb the conduction band symmetry
is La and the valence band has a Ls symmetry while in Bi this band ordering is inverted.
Therefore, combining these materials allows for the engineering of the topology in this
system. Band structure calculations predict a semiconducting state with a non-trivial
topology for Bi1−xSbx alloys with Sb contents between 0.07 < x < 0.22 [32, 18]. In the
ARPES scans of Bi0.9Sb0.1 Hsieh et al. found a set of surface states in this material that
cross the Fermi energy 5 times. This odd number of crossings indicates that these states
are indeed topologically protected states.

Another group of topological insulators was proposed by the Zhang group in 2008 [13].
They proposed that the materials Bi2Se3, Bi2Te3 and Bi2Sb3 are 3-dimensional topolog-
ical insulators with comparably large band gaps and single Dirac cone surface states.
Figure 1.4 shows the calculated bandstructures of these materials [13]. The calculations
are done by ab initio density functional theory. The non-trivial topological surface states
are clearly visible for Sb2Te3, Bi2Se3 and Bi2Te3 in panel b to d. The calculated bulk band
gaps range from ≈ 100 meV in the case of Bi2Te3 to ≈ 300 meV for Bi2Se3.

ARPES experiments on Bi2Se3 by Xia et al. [14] and on Bi2Te3 by Chen et al. [15]
confirmed these predictions. Figure 1.5 shows the ARPES results on Bi2Se3. The linear
dispersing surface state can be seen from the Fermi energy downwards to approximately
-0.3 eV. Close to the Fermi energy quadratically dispersing bulk states are visible inside
the surface state down to ≈ -0.1 eV. The extended states from -0.3 eV downwards are
attributed to the onset of the valence bands. Surface and bulk states were identified in
the experiment by using energy dependent scans in which bulk states disperse while the
surface state remains unchanged.

Results from the ARPES experiments of Chen et al. are shown in figure 1.6. Chen et al.

analyzed Bi2Te3 samples with a varying amount of Sn doping. All sample spectra show
a topological surface state connecting the bulk bands through the bulk bandgap (row ii).
Furthermore, the constant energy cuts (in row i) reveal that the surface states have a strong
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Figure 1.4: Bandstructure of Sb2Se3 (a), Sb2Te3 (b), Bi2Se3 (c) and Bi2Te3 calculated
in the framework of ab initio density functional theory. Red denotes occupied bulk and
surface states and blue the bulk band gap. Non-trivial surface states can be seen in Sb2Te3,
Bi2Se3 and Bi2Te3. [13]

Figure 1.5: ARPES measurements on Bi2Se3. Panel a and b show cuts along the M-Γ-M
and K-Γ-K directions. Panel c shows the momentum distribution curves corresponding to
the measurement in panel a. [14]
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Figure 1.6: ARPES measurements on Bi2Te3. A to D shows the results for doping con-
centrations δ of 0%, 0,27%, 0.77% and 0.9%. Each section shows from top to bottom a
constant energy cut at the Fermi energy, the band dispersion along the K-Γ-K direction
and the corresponding momentum distribution curves. The abbreviations stand for SSB -
surface state band, BCB - bulk conduction band, BVB - bulk valence band. [15]
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hexagonal distortion in k, especially for energies far away from the Dirac point. This type
of deviation from a fully linear Dirac state is called hexagonal warping and is caused by
the interaction between bulk and surface states. The Sn-doping was used to compensate
the intrinsic defect-doping which is common for this kind of materials (resulting in a
Fermi energy high in the conduction band). Using different doping concentrations, Chen
et al. were able to shift the Fermi energy in the bulk band gap (figure 1.6 C), showing that
it is possible to reach a surface state dominated regime.

Due to the large band gap, the single Dirac cone surface states and also due to being
easily available, Bi2Se3 and Bi2Te3 based materials are up to today the most researched
3-dimensional topological insulator materials. Unfortunately, as can also be seen from the
results presented above, these materials suffer from a large amount of defect doping and
additionally low carrier mobilities. This prevents unambiguous access to the surface states
for example in transport experiments. An alternative is found in strained bulk HgTe layers.
Even though the bulk band gap is much smaller than that of Bi2Se3 and Bi2Te3 based
materials, this material has very few unwanted bulk carriers and high carrier mobilities.
Furthermore, the rapid degradation of the surface states even under ultra high vacuum
conditions that have been observed in Bi based compounds [33, 34] is not present in
HgTe, thus allowing for easier access to the surface states in transport experiments. These
advantages allowed for the first observation of the quantum Hall effect originating from
the surface states of a 3-dimensional topological insulator in strained bulk HgTe [35]. An
overview on our results concerning transport in these strained bulk HgTe layers will be
given in chapter 3.
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Chapter 2

Quantum spin Hall state in HgTe

This chapter has recently been published in a slightly shortened version in the book Topo-
logical Insulators [36].

The chapter will focus on the experimental properties of the quantum spin Hall effect
in HgTe quantum well structures. HgTe quantum wells above a critical thickness are
2-dimensional topological insulators. The most prominent signature of the non-trivial
topology in these systems is the occurrence of the quantum spin Hall effect when the
Fermi energy is located inside the bulk band gap. We will present the main experimental
results we obtained for transport in the quantum spin Hall regime and discuss how they
confirm the prediction of the quantum spin Hall effect as a helical edge state system
consisting of two counterpropagating oppositely spin polarized edge states.

2.1 HgTe quantum wells

First we focus on the bandstructure of HgTe and HgTe quantum wells, which distinguishes
these systems from most other semiconductors. HgTe is a zincblende II-VI material. The
bonds in the material are formed between the 6s electrons from the Hg atoms and 5p
electrons from Te. Consequently the bands in the crystal which are close to the Fermi
energy will evolve from these energy levels. This combination of s and p states is common
for most conventional zincblende semiconductors. HgTe however is special in terms of
the energetic position of the resulting energy bands. This is because both Hg and Te
are relatively heavy atoms, so that relativistic corrections to the positions of the energy
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Figure 2.1: The evolution of the main energy bands in HgTe and CdTe. The impact
of relativistic corrections onto the band positions is visualized. From left to right the
influence of the Darwin term (HD), the mass velocity correction (HR) and finally the
spin-orbit interaction (HSO) is shown. The very strong mass velocity correction for the
Hg s-states leads to a band inversion in HgTe. Adapted from [37].

levels become very important. Figure 2.1 schematically shows how the positions of the
energy bands develop in HgTe (on the left) compared to those in CdTe (on the right) when
applying these relativistic corrections [37]. The corrections to the unperturbed term H0

are visualized in the following order from left to right: Darwin term HD, the relativistic
mass velocity correction HR and finally the spin orbit coupling correction HSO. While
the Darwin correction is qualitatively similar for both compounds, the relativistic mass
velocity correction is quite different. This is caused by the difference in atomic masses
and core charges in Hg and Cd. The mass velocity correction for HgTe is so strong that
the energy position of the Γ6 state (originating from the Hg s-states) is lowered to nearly
the same level as those of the Te p-states. Finally, the spin orbit interaction will split the
p-states into the Γ8 and Γ7 states. As a result, the Γ8 band is lifted above the Γ6 state
and we end up with the inverted band structure that distinguishes HgTe from most other
materials. The spin orbit splitting in CdTe is similar to that in HgTe, since it occurs in
the Te p-states, which are the same for both materials. But since HR in CdTe is much
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Figure 2.2: Band structure around the Γ-point for HgTe (left) and Cd0.7Hg0.3Te on the
right.

smaller than in HgTe, CdTe exhibits a normal band ordering with the Γ6 state being the
first conduction band state and the Γ8 marking the first valence band state. The inversion
is therefore a result of the interplay between HR and HSO in HgTe.

While the band inversion makes HgTe a topological material, it also has another conse-
quence: Since the Γ8 state consists of the degenerate light- and heavy-hole bands while
the Γ6 state only forms a single band, bulk HgTe has a semimetallic bandstructure, see fig
2.2 on the left [22, 38]. The Γ6 band now is a valence band at an energy ≈ 300 meV be-
low the Γ8 light and heavy-hole bands. Since the filling of the Γ6 states only compensates
one of the Γ8 bands, the heavy-hole band remains occupied and thereby a valence band,
while the light-hole band now becomes the conduction band.

Bulk HgTe thus is a topological semimetal. To turn it into a topological insulator it is
therefore necessary to lift the Γ8 degeneracy and open up a band gap. In general this can
be achieved by lowering the point group symmetry. For thin, 2-dimensional layers, this is
easily realized by growing quantum well structures. In three dimensions, the degeneracy
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Figure 2.3: Subband energy against quantum well thickness for HgTe quantum wells.
Subbands originating from Γ6 states are labeled as Ei (dashed) and those evolving from
the Γ8 bands with Hi (straight lines). The colors indicate regions in which the subbands act
as conduction band (red) and valence band (blue). HgTe quantum wells are so called type
III quantum wells. The inset shows the schematic band edge profile for such a system.

can be lifted by utilizing growth induced strain [32].

For experiments on 2-dimensional topological insulators we use Cd0.7Hg0.3Te/HgTe/-
Cd0.7Hg0.3Te quantum well heterostructures. The band structure for Cd0.7Hg0.3Te and
HgTe at the Γ-point is shown in Figure 2.2. Cd0.7Hg0.3Te exhibits a conventional band
structure with Γ6 above Γ8 and a band gap of ≈ 1 eV. The resulting quantum wells are so
called type III quantum wells with a characteristic band edge profile as shown in the inset
of figure 2.3 [39]. In these quantum wells the band structure can be tuned over a wide
range by changing the confinement strength through the well thickness. In figure 2.3 the
evolution of the subband energy versus the well thickness is shown. Subbands depicted
in red act as conduction bands in the corresponding region while those in blue are valence
bands. For wide quantum wells, the confinement energy is small and the subband order-
ing retains the band inversion of bulk HgTe with the H1 subband (originating from the Γ8
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states) being the first conduction band and the E1 subband (originating from the Γ6 band)
being one of the valence bands. For thin quantum wells however E1 becomes the first con-
duction band and H1 the first valence band [24, 7]. These two regimes correspond to the
topologically trivial case (thin quantum wells) and the topological insulator case (thick
quantum wells). Since the topology changes between these regimes, they have to be con-
nected by a state with a vanishing band gap. For a critical thickness of 6.3 nm the band
gap collapses and a zero-gap state is formed [7, 40, 29]. These characteristics will enable
us to test the 2-dimensional topological insulator regime by comparing its characteristics
with those of the normal regime. This will be the content of the next section.

2.2 The quantum spin Hall effect

The HgTe quantum wells used in the experiments are grown by molecular beam epitaxy
[41]. This enables the fabrication of layers with high crystalline quality while at the same
time granting high control over quantum well thickness, carrier density and structure in-
version asymmetry. To enable experiments in the quantum spin Hall regime, the quantum
wells have to have low carrier densities (to reach the insulating regime) and simultane-
ously high carrier mobilities (to provide large inelastic mean free paths for the transport
experiments). The development and constant improvement of the MBE growth regarding
these properties was a major contribution in making the following experiments possi-
ble. Today carrier densities can be freely tuned from well below 1× 1011 cm−2 up to the
mid 1012 cm−2 regime while carrier mobilities can reach well above 1× 106 cm2 V−1 s−1

implying a mean free path of several micrometers. Figure 2.4 shows a standard magne-
totransport characterization measurement of the quantum well sample Q2369. Here, the
mobility reaches already 1.1× 106 cm2 V−1 s−1 without any applied gate voltage. The
carrier density is relatively low (4.3× 1011 cm−2) which enables shifting the Fermi level
across the bulk band gap to explore the insulating regime.

The quantum spin Hall effect is the signature state of a 2-dimensional topological insulator
and it describes the existence of edge states on the sides of a 2-dimensional topological
insulator system. These edge states are supposed to consist of two counterpropagating
oppositely spin polarized edge channels in the band gap of the material [6, 19, 22]. Figure
2.5 shows a cartoon picture of the quantum spin Hall effect in a HgTe quantum well
system.
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Figure 2.4: Magnetotransport characterization of sample Q2369.

Figure 2.5: Cartoon picture of the quantum spin Hall effect in HgTe quantum wells.
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Figure 2.6: Schematic layer sequence of a Cd0.7Hg0.3Te/HgTe/Cd0.7Hg0.3Te quantum well
structure used in the experiments

To find evidence for these edge states we perform transport measurements on HgTe quan-
tum well devices [8, 42]. The Cd0.7Hg0.3Te/HgTe quantum well structures are fabricated
by molecular beam epitaxy on Cd0.96Zn0.04Te substrates [41]. The quantum well struc-
tures are modulation doped (by Iodine doping of the barriers) such that the initial carrier
densities are in the low 1011 cm−2 regime. Fig 2.6 shows a schematic drawing of the
layer sequence of a symmetric quantum well structure with typical layer thicknesses. The
electron mobilities are typically in the order of 3 × 105 cm2V−1s−1 or higher. The mea-
surements were carried out on 6-terminal Hallbar devices, a device schematic is shown as
inset in figure 2.7. These were patterned with low temperature optical and e-beam lithog-
raphy processes onto the heterostructures. The samples are fitted with top gate structures
consisting of a Ti/Au layer. Since HgTe, like all II-VI semiconductors, exhibits a leaky
Schottky barrier when connected to a metal, the gates are insulated from the quantum
well structure by a SiO2/Si3N4 multilayer insulator film. The gate electrodes can be used
to tune the carrier density continuously from n-conductance through the band gap to p-
conductance and to modify the electric field across the well. Transport measurements
are done at temperatures of 30 mK in a 3He/4He-dilution refrigerator fitted with a 18 T
magnet and at 1.8 K in a 4He cryostat fitted with a 10 T magnet.

To find evidence for the existence of the quantum spin Hall effect we measure the longi-
tudinal resistance of the Hallbar while shifting the Fermi level through the band gap by
using the top gate. In a two-dimensional topological insulator system one expects to detect
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Figure 2.7: Four terminal longitudinal resistance of HgTe quantum well structures in the
inverted and normal regime. The black trace was taken on a sample in the normal regime
while the red blue and green curves correspond to samples in the inverted state. The
dimensions of the Hallbar devices are given by the labels in their corresponding colors.
The inset shows a schematic drawing of a Hallbar structure with the quantum spin Hall
edge states.

a quantized conductance/resistance when the Fermi energy is located inside the band gap.
In a conventional system the conductance should drop to zero/ the resistance should rise
to very large values in this situation. The measurements have been performed on small
sized Hallbars with dimensions of some few µm. This size is chosen to ensure that the
system dimensions are below the inelastic mean free path since inelastic scattering events
could introduce backscattering in the helical edge states [8, 25]. The measurements are
performed in a typical 4-terminal geometry with the current being applied between con-
tacts 1 and 4 and the longitudinal voltage detected between the contacts 2 and 3 or 5 and
6 respectively.

The resulting data is shown in figure 2.7. Curves for the following samples are displayed:
The black curve has been obtained from a Hallbar sample with dimensions of L × W =

18



(1 × 1) µm2 patterned from a 5.5 nm thick quantum well. The results for a 7.3 nm thick
quantum well are shown in green, using a Hallbar with L × W = (1 × 0.5) µm2, and in
red and orange for L × W = (1 × 1) µm2. Finally, the blue curve represents the results
obtained on a sample with a length to width ratio of (2× 1) µm2 fabricated from a 7.5 nm
thick quantum well. In a control experiment, we observe a high resistance for the sample
with conventional band ordering (black). In this sample, the resistance rises above 106 Ω

when the Fermi energy crosses the band gap indicating a conventional insulator behavior.
For samples with an inverted band structure, however, the resistance stays finite in the
band gap with values close to h/2e2. This is the expected value for transport through
a helical edge state system in the measured configuration (a detailed explanation will
follow in the next section). These results thus provide first evidence for the existence of
the quantum spin Hall effect in inverted HgTe quantum wells.

Apart from the observation of a quantized resistance the experiment additionally provides
an indication that the observed effect is caused by edge channel transport. As one can
see from the measurements in figure 2.7, the value of h/2e2 is reached independent of
the sample geometry of the Hallbars. This is typical for edge transport and cannot be
explained by normal diffusive transport behavior. While this result thus provides first
evidence for the existence of edge state transport in inverted HgTe quantum well structures
we so far did not present evidence for the proposed helical nature of these edge channels.
To do so we performed a set of non-local transport experiments in the quantum spin Hall
regime. These experiments will be described in the following section.

2.3 Nonlocal transport in the quantum spin Hall state

The measurements presented in the last section have been performed in a standard 4 ter-
minal geometry and we observe a conductance of 2e2/h when measuring the longitudinal
resistance. At first glance, when compared to similar measurements on quantum Hall
systems this is a somewhat surprising observation. For chiral quantum Hall edge states, a
4 terminal longitudinal measurement will yield a vanishing longitudinal resistance. This
difference can be understood when applying the Landauer-Büttiker quantum transport
formalism [43, 44] to the helical edge state system of the quantum spin Hall effect. In the
the Landauer-Büttiker formalism, the relation between current and voltage is described
as:
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Ii =
e2

h

∑
j

(TjiVi − TijVj). (2.1)

In this equation, Ii denotes the current flowing out of the ith contact into the sample
region, Vi is the voltage on the ith contact and Tij the transmission probability between
contact i and j. To ensure that the total current is conserved, one demands that

∑
i Ii = 0;

the voltage leads can be defined by setting the net current on the corresponding contact to
zero.

Solving this equation for a general two-dimensional sample can be complicated since
the number of conduction channels scales with the sample width, which will lead to a
complex and non-universal transmission matrix Tij . For edge channel transport, however,
the equation is significantly simplified. For example, in the ν = 1 quantum Hall state only
the elements Ti+1,i = 1 remain while all other elements vanish. This is due to the chiral
nature of the quantum hall edge states allowing transport only in one direction along one
edge of the sample. Edge states for electrons moving in opposite direction are located
on opposite sides of the sample. If we now apply this formula to the quantum Hall case
and calculate the expected resistance for a 4 terminal measurement of the longitudinal
resistance on a 6 terminal Hallbar we indeed get R14,23 = 0.

In the case of the quantum spin Hall effect, however, the result will be different, since
there are two counterpropagating channels on each side of the sample (as schematically
shown in the inset of figure 2.7). The transmission of each edge state is still perfect, as in
the quantum Hall case, since the edge states are protected against backscattering by time
reversal symmetry. But since there is a forward and backward moving edge channel on
each side of the sample, the non-vanishing edge transmission matrix elements are now
given by

Ti+1,i = Ti,i+1 = 1. (2.2)

The result for the 4 terminal resistance in such a system is R14,23 = h/2e2 which cor-
responds to the values measured in the experiments shown in the previous section. This
result also implies that in the quantum spin Hall regime, all contacts to the mesa act as
a source for dissipation. (This is in contrast to the situation in the quantum Hall regime
where contacts downstream from the voltage probes do not influence the potentials at the
voltage probes themselves.)

Contacts are metallic regions with a quasi infinite number of low energy degrees of free-
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Figure 2.8: non-local measurement on a 4-terminal sample. the green line indicates the
expected conductance value of 4e2/h

dom available with which the quantum spin Hall states can interact. This will introduce
irreversibility on the macroscopic level, break the time reversal symmetry and destroys
the phase coherence. This effectively broken time reversal symmetry inside the contacts
lifts the protection against dissipation of the quantum spin Hall states [25].

The expected differences between chiral and helical edge states can be further tested in
non-local transport experiments [25]. These experiments are conducted on samples which
have been specially designed to observe non-local signals (schematically shown in the
insets of figure 2.8 and figure 2.9).

Figure 2.8 shows a measurement in a fully non-local configuration on a device which for
obvious reasons we refer to as an "H-bar". In this experiment the current is applied along
one part of the sample between contacts 1 and 4, while the voltage is measured between
contacts 2 and 3 on the other leg. The measured non-local signal reaches ≈ 6.5 kΩ when
the Fermi energy is located inside the band gap. This result agrees very well with the
expected conductance value of 4e2/h or 6.45 kΩ in resistance from Landauer-Büttiker
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calculations. This data is direct evidence of edge channel transport; neither diffusive nor
ballistic transport will show such a large non-local signal.

A striking difference between chiral (quantum Hall) and helical (quantum spin Hall) edge
states arises when one uses the two measurement configurations shown in Fig 2.9. In the
upper panel a measurement in a typical longitudinal configuration is presented (same data
as the blue trace in figure 2.7). The current is applied between the contacts 1 and 4 while
the voltage is probed between contacts 3 and 4. This measurement yields a conductance
of 2e2/h as expected from the Landauer-Büttiker model. If one now applies the current
between contacts 1 and 3 and measures the voltage between contacts 4 and 5 (bottom
inset) we measure a different value of 3e2/h. This result is consistent with calculations for
helical edge states and distinguishes the quantum spin Hall from the quantum hall system.
For chiral edge channels (as well as in diffusive transport) there is only one longitudinal
resistivity and these two configurations should deliver the same resistance values. From
these insights and observations we can understand the importance of contacts and contact
configurations for resistance measurements in the quantum spin Hall state.

The Landauer-Büttiker picture can also be used to explain why relatively small samples
are needed to observe these effects. For this we can consider the influence of potential
fluctuations on the quantum spin Hall state. In our samples a main source for potential
fluctuations are interface states between the gate oxide and the sample surface. These
interface states screen the gate potential locally and thereby lead to potential fluctuations
in the 2-dimensional electron gas. A large enough potential fluctuation will shift the
conduction (valence) band edge below (above) the Fermi energy locally and a metallic
puddle will form. If this puddle is large enough and has sufficient spin orbit coupling it
can lead to inelastic scattering and loss of spin information thus effectively acting in the
same way as a contact. A cartoon picture showing the influence of a potential fluctuation
on the quantum spin Hall state is shown in figure 2.10.

The 3 panels show the impact of a metallic puddle (grey) - growing in size from top to
bottom - onto the transport properties of the quantum spin Hall state. The upper panel
shows the situation for small metallic puddles. If these puddles are small enough they
will not allow for inelastic scattering and the loss of phase coherence. Thus transport will
only happen in the two edge channels connecting the macroscopic contacts in the direc-
tion of the applied voltage and the transport will be completely phase coherent (denoted
by solid lines). Larger puddles will allow for partial dephasing and backscattering (mid-
dle panel). Incoherent transport is visualized as dotted lines. Even larger metallic puddles
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Figure 2.9: non-local measurements in the quantum spin Hall state. The schematic sample
layout and the measured contact configurations are displayed as insets. The green lines
indicate the expected quantized conductance values.
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Figure 2.10: Cartoon picture showing the impact of potential fluctuations on the quantum
spin Hall effect. For large enough potential fluctuations a metallic puddle is formed (grey).
The 3 panels show the influence of a metallic puddle (growing in size from top to bottom)
onto the edge channels.
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(lower panel) will lead to completely incoherent transport thus leading to a fully dissi-
pative behavior similar to the situation in macroscopic contacts. Further, more in depth
discussion and examples can be found in the supplementary material of reference [25].

2.4 Spin polarization of the quantum spin Hall edge states

So far we obtained evidence for the existence of the quantum spin Hall effect and its edge
state nature. The spin polarization of the edge states however still needs confirmation.
This will be the topic of the present section.

The direct detection of a magnetic field generated by the spin polarized carriers inside
a helical edge state is challenging. The magnetic field generated by a current flowing
through the edge state exceeds the component originating from the spin polarized elec-
trons [45]. This problem can be circumvented by converting the magnetic into an electric
signal. This can be achieved by utilizing the spin Hall effect in a degenerate (metallic)
semiconductor and its counterpart, the inverse spin Hall effect. The spin Hall effect is the
appearance of a spin current flowing perpendicular to a charge current in systems where
spin orbit interaction is present [46, 47]. In the case of the inverse spin Hall effect, the
Onsager counterpart of the spin Hall effect, a spin current is transformed into a charge
current.

HgTe quantum wells feature strong spin orbit interaction effects due to their narrow band
gaps and the large atomic spin orbit coupling. This leads to a large Rashba splitting in
HgTe quantum wells when the Fermi energy is located in the conduction or valence band
and a perpendicular electric field is applied across the structure [48]. Such strong Rashba
effects enable the observation of the ballistic intrinsic spin Hall effect [49, 50, 51]. Com-
bining the spin Hall and the inverse spin Hall effect in a non-local experiment allowed
us to detect the spin Hall effect in an all electrical measurement [52]. The sample design
is similar to the one used in the previous section, a simple H-bar with a single top gate.
To suppress the non-local signal originating from the quantum spin Hall state (which is
much larger than the expected response from the spin Hall effect) we adjust the sample
dimensions and add additional contact leads. The width of the legs and connecting parts
is reduced to approximately 200 nm, this will enable backscattering between the quantum
spin Hall channels of opposite edges [53]. The added contacts and increased gate dimen-
sions will lead to additional backscattering in the quantum spin Hall edge states. The
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Figure 2.11: Non-local measurements of the spin Hall effect in HgTe quantum wells.
The upper panels show electron micrograph of the H-structures used in the experiments.
The experimental results of the non-local measurements are shown in the lower panels.
Dimensions are shown in yellow.

undesired non-local signals originating from the quantum spin Hall effect are also sup-
pressed when using quantum wells below the critical thickness with a conventional band
ordering. This kind of samples yield similar results to the ones discussed below, see [52].
Figure 2.11 shows the electron micrographs of two inverted quantum well samples (upper
panels) and the corresponding non-local measurements (lower panel). The measurement
configurations are depicted in the insets. A current is applied to one leg of the H-bar
and the corresponding non-local resistance is measured on the other leg. The non-local
resistance is then recorded depending on the applied gate voltage. We observe a strong
non-local response in both samples when the Fermi level is tuned into the p-conducting
region while the non-local resistance is comparatively low for the n-conducting case. This
behavior is expected for the spin Hall effect in HgTe quantum wells since the strength of
the intrinsic spin Hall effect depends on the Rashba k-splitting [49]:
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Figure 2.12: Band structure calculations including the Rashba splitting for one of the
samples used in the experiments. a) Fermi level is situated in the conduction band, b)
Fermi energy touches the first valence band. ∆k marks the k-splitting in this case

js,y =
−eEx

16πλm
(pF+ − pF−) ∝ ∆k, (2.3)

with js,y the spin current in y direction, e the electron charge, Ex the electric field applied
in x direction, λ the Rashba coupling constant, the effective electron mass m, pF+ and
pF− the Fermi momenta for the Rashba split bands, respectively and ∆k the k-splitting.
Figure 2.12 shows exemplary band structure calculations for one of the samples used in
the experiments [39, 52]. In figure 2.12 a) the band structure is calculated for the Fermi
level in the conduction band. One can see that the k-splitting between the two Rashba
split subbands contributing to the transport (H1 bands - green) is relatively small in this
situation. However, if the Fermi level touches the first conduction band (E1 - blue), as
shown in figure 2.12 b), the k-splitting can be an order of magnitude larger than in the
conduction bands, matching our experimental observations. A more detailed description
of our work on the spin Hall effect can be found in chapter 4.

For the detection of the spin polarization of the quantum spin Hall states we now utilize
the metallic spin Hall effect [26]. The device design is once again similar to the H-bar
design used to detect non-local signals shown in the previous section (figure 2.9). The
H-bar is now fitted with 2 top gates, one for each leg of the structure, so that we can tune
the carrier density independently in both legs. Figure 2.13 shows an electron micrograph
of the split gate structure used in the experiments, the sample dimensions are displayed in
yellow.
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Figure 2.13: Electron micrograph of a split gate H-structure used in the experiments.
Dimensions of the sample are shown in yellow.

The experiment follows two main approaches: The first approach is to use the quantum
spin Hall channels to detect the spin polarized currents from the spin Hall effect. The mea-
surement configuration for this approach is schematically drawn in figure 2.14. The upper
leg between contacts 1 and 2 will be tuned into the quantum spin Hall state. In the lower
leg the Fermi energy is located in the metallic regime of either the conduction or valence
band. If we now apply a current in the lower leg between contacts 3 and 4, this current
will lead to a spin polarized current flowing perpendicular to the charge current. This spin
current causes a difference in chemical potential for the two spin states and the quantum
spin Hall states will couple selectively to the potential of the matching edge channel. The
potential difference will thereby be transferred to contacts 1 and 2 and should lead to a
non-local voltage signal that can be detected in the experiment. Non-local signals can
only be observed when the metallic regions exhibit a spin Hall effect and the quantum
spin Hall states are spin polarized otherwise the non-local voltage will be zero. Note that
the above experiment is a direct demonstration of the magnetoelectric effect of the topo-
logical surface state in a 2-dimensional system [54]. The detection of non-local signals
is therefore evidence for the spin polarization of the quantum spin Hall states. We can
furthermore test if the spin Hall effect signal strength differs in the n- and p-conducting
regime as one would expect from the different spin orbit splitting strengths. Finally we
can check if we are able to observe a strong non-local signal if we tune the Fermi level
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Figure 2.14: Concept for utilizing the quantum spin Hall state as spin polarization detec-
tor. Here the spin Hall effect, induced by a current flowing in the lower leg, leads to a spin
accumulation on the edges of the leg which can be transformed into a non-local signal by
the spin polarized quantum spin Hall states.

into the gap in both legs of the structure, similar to the experiments we described in the
last section.

During the measurement, the gate voltage on the lower leg is held constant while the
upper gate is swept such that the Fermi level changes from n-type metallic through the
band gap to p-type metallic. This means the spin injection properties from the lower leg
(where the current is applied) remain unchanged while we vary the upper gate voltage to
investigate the spin detection capabilities of the different regimes.

Figure 2.15 shows the resulting non-local resistance signals for this measurement config-
uration. The measurement was performed for three different, fixed, gate voltages on the
lower gate. Panel a) shows the non-local resistance for metallic p-type transport and panel
b) for metallic n-type transport in the lower leg. These measurements show a significant
increase in the non-local signal and the occurrence of a pronounced maximum when the
gate voltage is swept through the quantum spin Hall regime. The maximum non-local
resistance that can be observed is an order of magnitude higher for injection from the
p-conducting regime. This is again in agreement with the difference in spin Hall effect
strength between valance and conduction band as mentioned above. The existence of
these large non-local signals when the detection occurs through quantum spin Hall states
is evidence for the spin polarization of the quantum spin Hall edge states. These signals
can only arise if the metallic region exhibits a spin Hall effect which can be detected by
spin polarized edge states.
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Figure 2.15: Non-local resistance data for measurement configuration 1. Current is ap-
plied on the lower leg while the non-local voltage is measured on the upper leg. Panel
a) shows the signal for a p-type lower leg. In b) the lower leg is n-conducting while c)
corresponds to a Fermi level inside the band gap.
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Figure 2.16: Concept for using the quantum spin Hall state as spin injector. If a current
is injected in the upper leg the spin polarized edge states will induce a spin current in the
lower leg. This spin current will be transformed into a non-local voltage by the inverse
spin Hall effect.

As a further test we can measure the non-local signals that develop when both injection
and detection happen in the quantum spin Hall regime. The result is shown in panel c).
Since this measurement configuration is similar to the non-local resistance measurements
presented in the previous section one would expect to observe a strong non-local resis-
tance in this measurement as a signature of edge channel transport in the whole sample.
As can be seen in panel c) this is indeed the case and the non-local resistance reaches
values of several kiloohms. This value is slightly lower than the value one would expect
for perfect quantization, which is not surprising due to the use of two separate gates in
this experiment. In the region between the two gates (see also 2.13) the gating effect will
be weak and metallic puddles can form. These will act as dephasing centers and lead to
additional backscattering as described in the previous section.

The second experimental approach focuses on using the quantum spin Hall channels to
inject a spin polarized current. A schematic layout for this experiment is shown in figure
2.16. Here the current is applied in the upper leg between the contacts 1 and 2 and the
edge channels will inject a spin polarized current into the lower leg. This spin polarized
current will lead to a different chemical potential for spin up and spin down electrons.
The spin polarized current will lead to a voltage difference between contacts 3 and 4 due
to the inverse spin Hall effect [50]. Due to the Onsager-Casimir symmetry relations for
non-local resistances this setup should yield similar results to the first approach [43, 55].
The Onsager-Casimir symmetry relation for a four-terminal device is
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Figure 2.17: Non-local resistance data for measurement configuration 1. Current is ap-
plied on the upper leg while the non-local voltage is measured on the lower leg. Panel
a) shows the signal for a p-type lower leg. In b) the lower leg is n-conducting while c)
corresponds to a Fermi level inside the band gap.

Rmn,kl(B) = Rkl,mn(−B). (2.4)

Current probes are denoted by mn and voltage probes by kl while B refers to the applied
magnetic field. Since the magnetic field is zero in our experiment we expect R34,12 =

R12,34.

In the experiment we apply the gate voltages in the same way as before. This means
we can now modify the injection properties by scanning the upper gate voltage while the
detection of non-local signals happens with a fixed gate voltage on the lower gate. The
results for this setup are shown in figure 2.17. Panel a) and panel b) show the results for
p-type and n-type detection, respectively. The non-local response for detection using the
quantum spin Hall state is displayed in panel c).

32



As expected we obtain results that resemble the observations in the first experimental
approach. We observe a maximum in the non-local resistance when the upper leg is tuned
into the quantum spin Hall regime while the lower leg remains metallic. This observation
serves as evidence for an injection of spin polarized electrons from the quantum spin Hall
edge states which are detected in the lower leg via the inverse spin Hall effect. We again
observe an order of magnitude larger non-local signal when the lower leg is tuned into the
p-conducting regime compared to the n-conducting case. Additionally, when the lower
leg is tuned into the quantum spin Hall regime we can again observe the largest non-local
resistance signals since we reach the fully edge state dominated transport.

In summary these two experiments show that transport in the quantum spin Hall states
is indeed spin polarized. This provides the last missing experimental evidence that the
picture of the quantum spin Hall state as counterpropagating spin polarized edge channels
is correct.

Further information on the detection of the spin polarization of the quantum spin Hall
state can be found in chapter 5.

2.5 Conclusion

This chapter has focused on the experimental verification of the quantum spin Hall ef-
fect in two dimensional topological insulators and its properties. We use HgTe quantum
wells as a model system for a two dimensional topological insulator. In this system the
band inversion of the Γ6 and Γ8 states leads to a topologically non trivial band struc-
ture. Transport studies on these quantum well structures give experimental evidence for
the existence of the quantum spin Hall effect. Furthermore non-local transport experi-
ments confirm that the quantum spin Hall state consists out of two counterpropagating
oppositely spin polarized edge states.
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Chapter 3

HgTe as a 3-dimensional topological
insulator

3.1 Strained bulk HgTe

Bulk HgTe has a topologically non-trivial bandstructure due to the inversion of the Γ8

and the Γ6 bands but it is a zero gap material with the Γ8 light hole and heavy hole bands
touching at the Γ point and forming the conduction and valence bands, respectively (see
figure 2.2). This degeneracy between the Γ8 bands has to be lifted to observe topological
insulator behavior in HgTe. This can be achieved by lowering the crystals symmetry for
example by applying strain to the lattice [32, 40]. Experimentally this can be accom-
plished by growing a HgTe layer on a lattice mismatched substrate. A band gap will open
if the strain is tensile, while compressive strain leads to an increased overlap of the Γ8

bands. Therefore, our material of choice for the substrate is CdTe since it has a slightly
larger lattice constant than HgTe (aCdTe = 0.6482 nm; aHgTe = 0.6462 nm [56]). This
relatively small difference in lattice constant enables the growth of fully strained HgTe
layers with a critical thickness of approximately 200 nm where relaxation starts to set in.
Thus 3-dimensional topological insulator behavior should be observable in such layers.
However, the band gap is relatively small, theoretical calculations estimate a band gap
size of 22 meV for the HgTe/CdTe system [35].

In order to verify the occurrence of topological surface states in MBE grown bulk HgTe,
angle resolved photo emission spectroscopy studies were carried out on a 1 µm thick HgTe
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Figure 3.1: a) angle resolved photo electron spectroscopy picture of the band structure in
a 1 µm thick bulk HgTe layer. BB denounces the bulk band while SSB and the gray dotted
lines show the position of the surface state bands. The position of the Fermi energy is
marked by the dotted white line. b) reciprocal space map around the [115] reflex of the
measured HgTe layer.

layer [35]. Figure 3.1 a) shows the resulting spectrum. The main visible feature is the bulk
valence band in bright red labeled BB. Overlaying the valence band one can see the linear
dispersing surface state bands merging into the yellow features deep in the valence band
(SSB). Another noteworthy result of these measurements is the position of the Fermi
energy, which appears on top of or directly above the valence band. This means that
these MBE grown HgTe layers feature a very low carrier concentration of bulk carriers in
contrast to the results that are found in the Bi based materials (see chapter 1).

The first investigations on thinner strained bulk HgTe 3-dimensional topological insulator
samples were carried out on a 70 nm thick HgTe layer grown directly on a [001] oriented
CdTe substrate [35]. To establish the strain in this layer it was studied via high resolution
x-ray diffraction. Figure 3.1 b) shows a reciprocal space map of the sample around the
[115] reflex. The [115] reflex of the CdTe substrate is visible in the center of the graph.
The thin vertical line in the upper part of the graph originates from the HgTe layer. Both
features exhibit the same reciprocal lattice vector Qx thus confirming that the HgTe layer
is grown fully strained, retaining the lattice constant of CdTe.

In order to perform transport experiments on this layer, a Hallbar, with a width of 200 µm
and a length between contacts of 600 µm, was patterned using optical lithography. The
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magnetotransport measurements were carried out in a 3He/4He-dilution refrigerator sys-
tem at 50 mK and magnetic fields up to 16 T. The magnetic field was aligned perpendic-
ular to the plane of the Hallbar, consequently top and bottom surface of the Hallbar are
both perpendicular to the magnetic field, while the side surfaces are parallel.

The transport results of a standard Hall measurement on the sample are shown in figure
3.2. From the low field data one can extract the following values for the electron density
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Figure 3.2: Hall measurements of a 70 nm thick strained bulk HgTe layer measured at 50
mK. The longitudinal resistanceRxx is plotted in black and the Hall resistanceRxy in red.

and mobility in the sample: 8.5× 1011 cm−2 and 34 000 cm2 V−1 s−1. This mobility is
significantly higher than the mobilities observed in the Bi-based systems [57, 58]. Inter-
estingly, the longitudinal resistance data show clear Shubnikov-de Haas oscillations while
the Hall measurements exhibit quantum Hall plateaus at higher magnetic fields, a charac-
teristic signature for transport in a 2-dimensional electron gas. This is surprising since the
confinement energies in a 70 nm thick HgTe layer should be small and thus the energetic
distance between subands. This should lead to a suppression of the quantum Hall effect
due to multisubband averaging. Another possible source of the quantum Hall effect in
this system is the 2-dimensional topological surface state. As mentioned above, top and
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bottom surface are perpendicular to the applied magnetic field and thus are expected to
show the quantum Hall effect. Indeed, upon closer inspection, the observed quantum Hall
effect shows an unusual plateau sequence pointing to a linear Dirac like dispersion. At
lower fields one can observe only plateaus with odd filling factors of ν = 9, 7, 5 while at
higher fields odd and even filling factors of 4, 3, 2 are resolved. This behavior can be seen
easier when looking at the Hall conductivity which is plotted in figure 3.3. The quantum
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Figure 3.3: Hall conductivity of the strained bulk HgTe layer.

Hall conductivity in Dirac systems is given by

σxy = m

(
n+

1

2

)
e2

h
, (3.1)

wherem is the number of degenerate Dirac cones in the system, n the Landau level index,
e the electron charge and h Planks constant [32, 59]. Compared to conventional systems,
this shifted Hall sequence originates from the occurrence of a Landau level at zero en-
ergy in Dirac systems [17]. The odd integer sequence observed at low fields therefore
corresponds to the quantum Hall effect of a system of two degenerate Dirac cones. This
is expected in a 3-dimensional topological insulator since only two surfaces (top and bot-
tom) are subjected to a perpendicular magnetic field. The appearance of additional even
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Figure 3.4: Calculated density of states (DOS) compared to the measured Shubnikov-
de Haas oscillations (black curve). The DOS is calculated under the assumption of two
Dirac cones with carrier densities of 3.7× 1011 cm−2 (for the surface at the CdTe substrate
- shown in blue) and 4.8× 1011 cm−2 (surface to vacuum - green curve) The sum of both
DOS is shown in red. The inset shows a schematic of the Landau level ladders for both
surfaces.

integer Hall plateaus at higher magnetic fields, however, does not fit the simple expla-
nation of two completely degenerate systems. This can be understood when the sample
structure is taken into account: Top and bottom surface are not subjected to the same
electrostatic environment. While the lower surface is connected to the CdTe substrate the
upper is connected to vacuum. This difference in electrostatics will also lead to a different
electron density on both surfaces and thereby lift the degeneracy. For the quantum Hall
measurements this lifted degeneracy shows up only at higher magnetic fields when the
energy splitting between adjacent Landau levels becomes large enough to resolve them
individually. This is depicted schematically in the inset of figure 3.4. For a more quanti-
tative assessment of the situation, density of state calculations were performed assuming
two Dirac cones with slightly different densities of 3.7× 1011 cm−2 and 4.8× 1011 cm−2

for the CdTe-HgTe interface and the HgTe-vacuum interface, respectively. The sum of the
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density of states from both surfaces can then be compared with the measured Shubnikov-
de Haas oscillations. The resulting calculated density of states is in good agreement with
the data as can be seen from figure 3.4.

Another interesting aspect in the measured data is the non-vanishing longitudinal resis-
tance at higher magnetic fields. Conventionally quantum Hall plateaus are accompanied
by a longitudinal resistance approaching zero especially at high magnetic fields when the
energetic gap between Landau levels exceeds the cyclotron energy. Here however, e.g. the
well formed i = 2 plateau around 14 T is accompanied only by a high resistive minimum
in the Shubnikov-de Haas oscillations. This indicates the existence of additional channels
contributing to the longitudinal transport. A possible source for these additional channels
can be found in the side surfaces of the system [60]. The side surfaces will not be gapped
by the applied magnetic field since they are aligned in parallel to the field. Thus they can
coexist with the edge states of the top and bottom surface and provide a backscattering
possibility.

A more detailed description of the experimental findings and especially the theoretical
modeling can be found in chapter 6 and Ref. [35].

3.2 Transport in gated samples

In order to further address the aspect of the different electrostatic environments on both
surfaces, a sample with a top gate was fabricated. The sample is again a Hallbar sample
with L × W = 600 µm × 200 µm, the Au top gate is insulated from the Hallbar with a
110 nm SiO2/Si3N4 multilayer structure. A picture of the gated Hallbar structure is shown
in figure 3.5.

The longitudinal and Hall resistances are measured for gate voltages (Vg) between −5 V
and 5 V in steps of 0.5 V. For gate voltages between −1 V and 5 V, the sample is n-
conducting and shows well developed quantum Hall plateaus and corresponding Shub-
nikov-de Haas oscillations. Below −1 V p-conductance starts to set in and the quantum
Hall plateaus weaken. The following analysis therefore focuses on the n-conducting re-
gion. The Hall traces for the different gate voltages are shown in figure 3.6 a) and the
corresponding Shubnikov-de Haas measurements can be found in figure 3.6 b). The mea-
surements for a gate voltage of 5 V are plotted as the lowest dark blue trace. The carrier
density extracted from the low field Hall data varies from 3.5× 1011 cm−2 at Vg = −1 V

40



Figure 3.5: Micrograph of the used gated Hallbar sample.

to 2.0× 1012 cm−2 at Vg = 5 V. Well pronounced quantum Hall plateaus and Shubnikov-
de Hass oscillations are visible over the entire gate voltage range with predominantly odd
quantum Hall plateaus visible at low magnetic fields (similar to the behavior of the un-
gated sample). The robustness of the quantum Hall state even up to such high carrier
densities (for a 2-dimensional electron gas) of 2.0× 1012 cm−2 is a surprising find. Low-
ering the gate voltage leads to a decreased carrier density in the system (visible by the
increased Hall slopes and the expected behavior for an n-conducting system). At 0 V gate
voltage [single trace also shown in figure 3.7 c)] the magnetotransport results are com-
parable with the observations on the ungated sample: At low fields only odd sequenced
quantum Hall plateaus are resolved while the i = 2 plateau is visible at high fields. This
data can again be fitted under the assumption of two slightly degenerate Dirac cones as
presented in the previous section for the ungated sample. The result is shown in figure
3.7 d). For the lowest gate voltages, the Hall resistance reaches the i = 1 quantum Hall
plateau, the i = 2 plateau first weakens at a gate voltage of−0.5 V [figure 3.7 b)] - accom-
panied by a merging of the corresponding Shubnikov-de Haas peaks - and then vanishes
completely for the −1 V measurement [figure 3.7 a)]. This means that we observe an
only odd sequenced quantum Hall effect at this gate voltage, the typical signature of a
Dirac system with two degenerate Dirac cones. This observation further confirms that the
observed quantum Hall effect indeed originates from the topological states in this system.
Furthermore this result shows that it is possible to detune the electrostatic potential on
both surfaces with respect to each other by the use of a top gate.
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Figure 3.6: Gate dependent Hall a) and longitudinal b) resistance for the strained bulk
HgTe layer. The gate voltage is changed from -1 V to 5 V in steps of 0.5 V. The lowest
dark blue traces are for a gate voltage of 5 V.
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Figure 3.7: Detailed plots of the Hall and longitudinal resistance at the gate voltages of
-1, -0.5 and 0 V in panel a), b) and c), respectively. Panel d) shows a fit to the 0 V data
using a calculated density of states under the assumption of two Dirac cones at different
carrier densities.
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Figure 3.8: Landau level fan extracted from the Hall measurements. Circles mark the
position of plateau transitions in the magnetotransport data, the red and blue lines indicate
the positions of Landau levels originating from the top and bottom surface, respectively.
The numbers mark regions in which the plateau i can be observed.

Detailed analysis of the data allows for the identification of contributions from top and
bottom surface. These can be found most prominently by extracting a Landau level fan
chart from the magnetotransport data. The positions where the Landau levels cross the
Fermi energy can be obtained from the positions where the transition between plateaus
occurs (for improved accuracy the readout was performed by numerically differentiating
the Hall traces). The results are displayed in figure 3.8. The circles represent the po-
sitions on which Landau levels are found in the individual magnetic field sweeps using
the method described above. The positions can be assigned to two separate Landau level
fans with a different origin, marked by the red and blue lines in figure 3.8. The regions
in between the levels correspond to the quantum Hall plateau positions, the numbers in-
dicate which plateau i can be observed (e.g at −1 V gate voltage the sequence of only
odd plateau values i = 7, 5, 3, 1 can be found again). The individual fan charts that were
observed have a nearly equidistant spacing at fixed magnetic fields. This rules out an ad-
ditional Zeeman splitting, which is expected to be absent for the Dirac surface states of
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a 3-dimensional topological insulator where each surface hosts only one spin direction.
Furthermore one can observe a different slope of the Landau fans when comparing lines
with the same Landau index. This means the two systems are influenced differently by
the top gate since the change in carrier density per applied gate voltage defines the slope
of the individual Landau levels. This can be well understood in the framework of Dirac
surface states, since top and bottom surface reside at different distances from the top gate.
Thus the upper surface (corresponding to the system responsible for the red fan chart) will
be influenced stronger by the top gate than the lower surface (blue fan chart). Indications
for individual contributions from top and bottom can also be found in the longitudinal
resistance traces of figure 3.7 b) and c). Especially in the high field region one can see
that neighboring Shubnikov-de Haas oscillations are differently broadened which again
indicates that two 2-dimensional electron gasses are responsible for the observed pattern.
The broader oscillations most likely originate from the top surface state. The interface
between the gate insulator and the HgTe is expected to be rougher than the epitaxial in-
terface between CdTe and HgTe, additionally the top surface will be prone to oxidization
and influence from ionized dopants in the insulator. This identification of top and bottom
surface contributions is also consistent with the one found in the Landau level fan chart.
It is interesting to note that different mobilities on the two surfaces indicate that top and
bottom surface state are not strongly coupled since this should lead to equal mobilities in
both systems.

The observed results can be explained solely by transport through the Dirac surface states
on top and bottom surface. This is a surprising find since one would expect the onset of
bulk contributions especially for higher gate voltages/carrier densities due to the relatively
small band gap in the system. The absence of bulk contributions can also be inferred from
figure 3.9, here the deviations from the expected Hall plateau quantization are plotted. As
one can see the deviations are constant over the complete gate voltage range which contra-
dicts increased bulk conductivity. Bulk contributions should lead to parallel conductance
channels which would result in lowered observed plateau values. This unexpected stabil-
ity of the surface state transport is not fully understood and warrants future investigations.

A detailed overview of the data presented in this section is being prepared for publication
[61].
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Figure 3.9: Deviations from the expected quantum Hall plateau value i depending on Vg

3.3 Conclusion

The presented findings establish strained bulk HgTe as a 3-dimensional topological in-
sulator system. The high crystalline quality in HgTe compared to Bi-based materials
allowed for the first observation of the quantum Hall effect originating from the surface
states of a 3-dimensional topological insulator. A characteristic Dirac type quantum Hall
effect is visible in these samples and measurements using a top gate allow for the identifi-
cation of contributions from individual surfaces. Surprisingly, the surface state transport
can be observed even at very high carrier densities unobstructed by bulk contributions.
One possible explanation for this observation is that the gate influence is screened by the
surface states very efficiently such that the Fermi energy in the bulk stays fixed inside
the bulk band gap. Such an enhanced reduced gate influence on the bulk states would be
possible if the dielectric constant ε of the layer would be very high (above 100) for the
zero frequency limit. Another possibility to explain the observed behavior is a reduced in-
teraction between bulk and surface states e.g. due to a large difference in carrier mobility
in the two components (maybe paired with a low scattering possibility between surface
and bulk due to e.g. small wavefunction overlap between the two). If the surface carriers
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are highly mobile compared to bulk carriers, the current in the system could flow almost
exclusively in the surface states and especially for relatively low bulk carrier densities
only the surface states would be probed in transport experiments. In order to address this
questions, future investigations will focus on improved growth of HgTe layers aiming for
even higher carrier mobilities and well defined interface properties. A possible way to
achieve this is to grow HgCdTe layers above and below the HgTe layer such that both
surfaces are connected to a similar, well defined environment. Higher mobilities should
also enable a closer inspection of the transport behavior in the p-conducting regime which
should help to address the validity of the models that are discussed above. The implemen-
tation of a back gate to the structures could help to further strengthen the identification of
contributions from the different surfaces. Similarly investigating the quantum Hall effect
in tilted magnetic fields could answer some of the open questions.
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Chapter 4

Evidence for the ballistic intrinsic spin
Hall effect in HgTe nanostructures

This chapter is based on the publication: C. Brüne, A. Roth, E. G. Novik, M. König, H.

Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova and L.W. Molenkamp; ‘Evidence for

the ballistic intrinsic spin Hall effect in HgTe nanostructures’, Nature Physics 6, 448-454,

2010.

4.1 Abstract

In the spin Hall effect, a current passed through a spin-orbit coupled electron gas induces
a spin accumulation of inverse sign on either side of the sample. A number of possi-
ble mechanisms have been described, extrinsic as well as intrinsic ones, and they may
occur in the ballistic as well as the diffusive transport regime. A central problem for
experimentalists in studying the effect is the very small signals that result from the spin
accumulation. Electrical measurements on metals have yielded reliable signatures of the
spin Hall effect, but in semiconductors the spin accumulation could only be detected by
optical techniques. Here we report experimental evidence for electrical manipulation and
detection of the ballistic intrinsic spin Hall effect (ISHE) in semiconductors. We perform a
non-local electrical measurement in nanoscale H-shaped structures built on high-mobility
HgTe/(Hg,Cd)Te quantum wells. When the samples are tuned into the p-regime, we ob-
serve a large non-local resistance signal due to the ISHE, several orders of magnitude
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larger than in metals. In the n-regime, where the spin-orbit splitting is reduced, the signal
is at least one order of magnitude smaller and vanishes for narrower quantum wells. We
verify our experimental observations by quantum transport calculations.

4.2 Introduction

Control, manipulation, and detection of spin polarized carriers are the focal goals of spin-
tronics [62]. The creation of new technologies based on spin current manipulation re-
quires new methods and materials for generating and controlling spin-based properties
of active devices. Although progress has been made in spin injection from a ferromag-
netic metal into a semiconductor through tunnel barriers, its detection efficiency is still
problematic. Applications of ferromagnetic semiconductors are challenged by their ferro-
magnetic transition temperatures which remain below room temperature. A clear avenue
to circumvent several of these key problems is the direct use of electric fields to manipu-
late electron spins through spin-orbit coupling based effects in paramagnetic systems. Of
this class of effects one of the premier candidates at present is the spin-Hall effect (SHE)
[46, 47, 63, 64, 65, 49] in which a transverse spin accumulation is created when an electric
current is passed through a material with strong spin-orbit coupling, coming either from
the band structure (intrinsic spin-Hall effect, ISHE) or from the scattering of electrons
on heavy impurities (extrinsic spin-Hall effect, ESHE). Although the SHE has been very
actively studied theoretically over the past few years [64], few experimental results have
been reported because of the difficulty of detecting the effect. Early experiments demon-
strating the effect utilized sensitive optical techniques [66, 67, 68]. Electrical detection of
the SHE, although much more desirable from the device point of view, is even more chal-
lenging and has been demonstrated only in metallic nanostructures [69, 70, 71, 72, 73].
The detected signals are weak, to a large extent because are in the diffusive transport
regime. Whereas most of the above experiments appear to result from the ESHE, Refs.
[67] and [73] have attributed their observations the ISHE, involving the actual band struc-
ture spin-orbit coupling effects. A larger effect can be expected in samples where the
transport is ballistic and the effect unequivocally stems then from the ISHE [50, 51].
Such an experiment is the topic of this paper: we provide experimental evidence for the
electrical detection of the ballistic ISHE in high mobility HgTe-based nanostructures.
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4.3 Sample layout and experiment

HgTe is a zero gap semiconductor which forms a type-III QW with Hg0.3Cd0.7Te barriers
that have an inverted band structure when the well width is larger than 6.3 nm [8] and a
normal band structure for narrower widths. The two-dimensional electron gas (2DEG)
in these structures exhibits a high carrier mobility and a large, gate-controllable, Rashba-
type spin-orbit splitting [48, 74].

The three samples studied in this paper were chosen to represent various regimes of
Rashba splitting: we study QWs with an inverted band structure (8.0 nm wide), in which
the spin-orbit splitting is very large as a resultof the extensive mixing of the valence and
conduction bands [39], these are Q2197 and Q2198. In the former, the structure contains
donor-doped barrier layers on both sides of the QW, resulting in a smaller electric field
across the well at zero gate voltage, and thus a smaller Rashba splitting than in Q2198,
where the QW is asymmetrically doped. Additionally, we study a narrow (5.7 nm width,
asymmetrically doped) sample, Q2398, which has a normal band structure, leading to a
much reduced spin-orbit splitting, especially in the conduction band. At zero gate voltage
, we find mean carrier mobilities of µ = 2.5, 1.2, and 1.3 × 105 cm2/Vs), and carrier
densities ns = 1.7, 2.0 , and 5.5 × 1011 cm−2 for samples Q2197, Q2198, and Q2398,
respectively.

To electrically detect the ISHE, we have fabricated H-shaped mesa structures (see Fig.
4.1) using electron beam lithography and dry-etching techniques, following a design pro-
posed previously by some of us in Ref. [50]. A Au/Ti electrode is deposited on top of
a 110-nm-thick SiO/SiN gate insulator layer that covers the entire sample. Ohmic con-
tacts are fabricated by thermal In-bonding. Two additional leads have been added to the
H-structures to allow further characterization measurements. These leads are attached to
a vertical leg either far away from (e.g. sample Q2197, Fig. 4.1 (a)) or in close proximity
to the horizontal leg of the H-bar (e.g. sample Q2198, Fig. 4.1 (b)). The H-structures
consist of legs 1 µm long and 200 nm wide, with the connecting part being 200 nm wide
and 200 nm long. The estimated mean free path in these systems is l ≥ 2.5 µm which
establishes that the samples studied are well within the quasi-ballistic regime.
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Figure 4.1: Sample layout and electron beam micrograph of samples (a) Q2197 and (b)
Q2198.

4.4 Transport experiments on H-bar structures

The idea behind the transport measurements is as follows [50]. When an electric current
flows in one of the legs of the H-bar structure [say between contacts 1 and 2 in 4.1 (a)],
a transverse spin current due to the intrinsic spin-Hall effect is induced in the connecting
part. Subsequently, this spin current produces, owing to the inverse spin-Hall effect [75],
a non-local voltage difference in the opposite leg of the H-bar structure (in our example,
between contacts 3 and 6 in Fig. 4.1 (a)) which can be measured by a voltmeter [47, 50].
Sweeping the gate voltage in the sample now allows us to vary the strength of the Rashba
spin-orbit splitting by a variation of both the electrical field across the QW, as well as
the Fermi level in the QW; this evidently results in a strong modulation of the non-local
voltage, which can be analyzed by comparison with theory. The H-shape of the structure
strongly suppresses any residual voltage between contacts 3 and 6 resulting from spread-
ing of the potential difference applied between contacts 1 and 2. As an upper limit of
the stray signal, we have computed the spreading voltage by solving Poisson’s equation
for the parameters of each sample (note that this implies assuming diffusive transport, as
quasi-ballistic transport spreading effects are much smaller). Below we plot this resid-
ual voltage alongside the experimental non-local voltage to emphasize that the observed
effect is solely due to the SHE. Experimentally, all measurements were performed using
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Figure 4.2: Local resistance data and carrier density of samples Q2197 and Q2198. (a)
Resistance data (in black) in measurement configurations on one leg of the H-bar show
signatures of the QSHE ; the red curves give the current through the samples. (b) Depen-
dence of the carrier density on the applied gate-voltage. The contact configurations used
here are indicated in the insets.

standard AC lock-in techniques under a voltage bias (we apply 100 µV across the sample
and a reference resistor of similar resistance), at a sample temperature of 1.8 K.

Fig. 4.2 (a) shows the gate voltage dependence of the sample current (red traces) and
the longitudinal resistance (black traces) of samples Q2197 and Q2198 ( Rij,kl denotes
a resistance calculated from the voltage measured between ohmic contacts k and l while
passing a current between contacts i and j). For reasons of comparison, we shift the gate
voltage axis such that renormalized gate voltage V ∗g = 0 V corresponds to the situation
where the bulk Fermi level is in the center of the energy gap (the actual voltages where
V ∗g = 0 V are Vg ≈ −1.0 (−0.7) V for Q2197 (Q2198), respectively). Fig. 4.2 (b)
shows the carrier density as a function of the renormalized gate voltage. This data was
obtained through Hall-measurements on large Hall-bars fabricated from the same wafer
and demonstrates that we can vary the carrier concentration enough to tune the sample
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from strongly n-type (n ≈ 8 × 1011 cm−2), through the gap, down to a p-type regime at
V ∗g = −1 V (p ≈ 3 × 1011 cm−2). For V ∗g between -0.5 V and 0.5 V the samples are
insulating.

We recently showed [8] that the inverted band structure in HgTe quantum wells wider than
6.3 nm gives rise to the occurrence of the quantum spin Hall effect (QSHE), a novel type
of quantum Hall effect that occurs at zero magnetic field, when the bulk of the sample is
in the insulating regime. In samples that are smaller than the inelastic scattering length,
the electrical conductance is then quantized at 2e2/h. Both the current and the resistance
data on Q2197 and Q2198 [see Fig. 4.2 (a)] show indeed a resistance of the same order
of magnitude as the conductance quantum when the gate voltage tunes the sample into
the insulating regime (−0.5V < V∗g < 0.5 V). As in the quantum Hall effect, QSHE
quantization is caused by the formation of one-dimensional edge channels. The non-local
character of carrier transport through these edge channels implies that the effect, which
is much stronger than the signal anticipated for the ISHE in the insulating regime of our
samples, should also show up in our H-bar geometry. We have indeed observed very
strong non-local QSHE signals in the course of our experiments on (larger) H-bars, and
an extensive report of these results is published elsewhere [25].

For our present objective of observing the ISHE, however, the QSHE is an unwanted ef-
fect in samples Q2197 and Q2198 as it tends to swamp the ISHE signal - despite the fact
it shows its maximum at a different gate voltage. The experiments shown in Figs. 4.3
represent two different approaches to suppress the non-local QSHE signal. One approach
is to make the devices sufficiently small so as to provoke backscattering of the QSHE
edge channels. Zhou et al. recently showed theoretically [53] that QSHE backscattering
occurs when the wave functions for opposite spin channels overlap, and estimate that this
happens for a device width of around 200-250 nm. This is the reason we report here on
very narrow (lateral) devices as well as (see below) a narrow quantum well device. The
second method to suppress the QSHE is to choose a non-local configuration that implies
edge channel transport over distances (much) longer than the inelastic length (which typi-
cally is a few micrometers [8]). This is why we have fabricated the additional leads in the
Q2198 H-bar: in the QSHE regime, the extra leads to the mesa force the edge channels to
take a detour of some 10 µm to ohmic contacts 3 and 6 [indicated by crosses in the insets
of Fig. 4.3 (b)] before entering the detector contacts. An additional benefit is that the extra
ohmic contacts cause equilibration of QSHE edge channels. Note that the ISHE signal
is not affected by either of these mechanisms - actually, the close proximity of contacts
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Figure 4.3: Non-local resistance signal for (a) Q2197 and (b) Q2198 . The inset indicates
the measurement configuration for current injection (arrows) and voltage probes (V). The
crosses indicate additional ohmic contacts. The blue solid curves indicates the residual
voltage due to current spreading.
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1 and 2 to the horizontal leg of the H-bar increases the ISHE signal in the measurement
configurations of Fig. 4.3 (b), in agreement with the simulations.

Figs. 4.3 (a) and (b) show the non-local resistance in a configuration suitable for picking
up the ISHE signal as a function of applied gate voltage for samples Q2197 and Q2198.
The upper and lower panels show the results for an interchange of current and voltage
contacts. One observes that for both samples the non-local signal strongly increases with
gate voltage in the p-regime. The non-local resistance is of the order of several 100 Ω for
sample Q2197 and larger than a kΩ for sample Q2198. This is the signal we attribute to the
ISHE: on making the gate voltage more negative, we scan the Fermi level of the devices
deeper and deeper into the valence band, leading to a strong increase in spin-orbit splitting
[39]. The electrical signal of the H-bar is roughly quadratic [50] in the strength of the spin-
orbit coupling. The relevant number here is the difference in population of the two spin-
orbit split subbands, which evidently increases sharply from zero when the Fermi level
leaves the gap. This explains the behavior observed for the p-regime. In the n-regime,
the subband population asymmetry in the HgTe well is an order of magnitude smaller
than in the p-regime and one hardly expects to observe a strong ISHE signal. Indeed,
the experimental signal for positive gate voltages is small, does not show an appreciable
dependence on gate voltage and cannot with confidence be attributed to the ISHE. Thus
the phenomenology of our observations agrees well with what we expect for the ISHE.
Moreover, for sample Q2197, any non-local contribution of the QSHE edge channels is
totally suppressed, therefore, we attribute the observed signal to the ISHE. The finite non-
local resistance around V ∗g = 0 for sample Q2198 is an indication that in this experiment
we have some residual non-local QSHE signal, possibly owing the slightly larger width
of the horizontal bar. However, the significant increase of the non-local resistance signal
in the p-type metallic regime can only be induced by the ISHE. For both samples, the
strong non-local signal in the p-regime remains almost unchanged even if the current and
voltage contacts are exchanged. The traces thus obey the Onsager symmetry relations for
linear response, which evidences the robustness of the experiment. We have incorporated
in Fig. 4.3 (blue traces) the calculated residual voltages owing to current spreading at the
applied bias voltage, to illustrate clearly that the observed signal is solely because of the
ISHE. Note that these traces, calculated for diffusive transport, represent an upper limit
for the actual spreading signal, as the transport in the devices is in fact quasi-ballistic,
which strongly reduces the spreading effects.
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Figure 4.4: Non-local resistance signal for the non-inverted sample Q2398. Again, the
insets indicate the measurement configurations, and the blue solid curves plot the residual
voltage due to current spreading.

4.5 Non-inverted control sample

As a control experiment, we have performed similar experiments on sample Q2398, which
has a narrower (5.7 nm) QW and a non-inverted band structure (its layout is similar to
that of Q2197). Because of the much reduced Rashba spin-orbit splitting in this sample,
one expects a much smaller non-local ISHE signal than for the experiments on Q2197 and
Q2198. At the same time, the QSHE does not occur in wells with a normal band structure,
so that in Q2398 any contributions from QSHE edge channels can be excluded. Fig. 4.4 a
and b shows the results of these experiments. Fig. 4.4 a is comparable to Fig. 4.2 in that
the top panel displays the device resistance and the bottom panel gives the dependence
of the carrier concentration on the gate-voltage. Note that the resistance of the sample
in the insulating regime is now much larger than for the inverted samples in Fig. 4.2.
This is because the insulating regime in Q2398, owing to the absence of the QSHE edge
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channels, is truly insulating. In the non-local resistance data of Fig. 4.4 b, we again
observe a non-local voltage when the well is in the p-regime, but now reduced to a few
hundred ohms, considerably smaller than in samples Q2198 and Q2197. We will show
below that this signal is in line with theoretical expectations. In the insulating region and
the n-regime the signal is virtually zero, which allows for a calibration of our estimate of
the diffusive spreading signal (blue curve). Although in these experiments the spreading
signal is no longer negligible in the p-regime, the different gate-voltage dependence of
the spreading signal and actual data leaves no doubt that the observed signal is due to the
ISHE.

4.6 Modelling by tight-binding calculations

For further confirmation of this interpretation of our experimental results, we now proceed
with a numerical modelling of the experiments. Transport in the ballistic regime can
be modelled theoretically within the well-established Landauer-Büttiker (LB) formalism.
We first extract the effective masses and spin-orbit parameters from a series of 8× 8 k · p
band structure calculations [39], where the influence of the top gate voltage is included in
a self-consistent manner. We evaluate these parameters in the vicinity of the Fermi energy,
since at low temperatures, the quantum transport can be described by propagating modes
at the Fermi energy. Figs. 4.5 (a) and (b) show the calculated inverted band structures for
two representative carrier densities n = 4.42 × 1011 cm−2 and p = 3.26 × 1011 cm−2.
In inverted HgTe/HgCdTe quantum wells, the conduction band (conventionally labeled
H1 [39]) has, in the vicinity of k = 0, a heavy-hole character while the valence band
(E1) is electron-like. However, hybridization of the energy states starts to play a role for
k 6= 0 and the spin-orbit splitting of both heavy hole- and electron-like bands must be
considered in the form of a combination of linear and cubic terms. This is clearly relevant
in samples Q2197 and Q2198, because we find that the Fermi level passes through the H1
band around k = 0.15 nm−1 in the n-regime and through the E1 band around k = 0.35

nm−1 in the p-regime (see Fig. 4.5). We find that the following Hamiltonian matches all
important features emerging from the band structure calculations close to the Fermi level:

Ĥ =
p̂2

2m∗
+
λ1

~
(σ̂xpy − σ̂ypx)

+
iλ2

2~3
(p̂3
−σ̂+ − p̂3

+σ̂−) +Hdis (4.1)
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Figure 4.5: Band structure calculation for sample Q2198. 8 × 8 k · p band structure
calculation for (a) n-type carrier density n = 4.42 × 1011 cm−2 and (b) p-type carrier
density of p = 3.26× 1011 cm−2. The dashed-dotted line indicates Fermi level. The band
structure calculations for sample Q2197 look similar.

where m∗ = 0.305 me for the p-regime and m∗ = 0.03 me for n-type samples. λ1 > 0

and λ2 < 0 are the spin-orbit coupling parameters and in the p-regime |λ2/λ1| = 2.9,
|λ2/λ1| = 2.5 and 1.1 for samples Q2197, Q2198, and Q2398, respectively, while in the
n-regime we have |λ2/λ1| = 3.8, |λ2/λ1| = 4.5, and 10.1 (again referring to samples
Q2197, Q2198, and Q2398 ). Hdis is the disorder potential. The size of the structures
used for the theoretical model is chosen in accordance with the actual dimensions of the
experimental devices. In the experiments, the gate voltage causes changes in the spin-
orbit splitting as well as in the carrier density and, as a consequence, in the Fermi energy.
We include this effect in the simulations by changing the carrier density with gate voltage
according to the experimental data of Figs. 4.2 (b) and 4.4 a. The Fermi energies depend
on the strength of the spin-orbit interaction and the carrier densities. To perform real-
space LB calculations we rewrite the continuum effective mass Hamiltonian in a tight-
binding form (shown in detail in the online appendix), using the model structure shown
in Fig. 4.6 (d). In the tight-binding calculations, the disorder is calculated by randomly
selecting the on-site energies in the range [−W/2,W/2], where W = ~/τ , and τ is
the transport scattering time calculated from the effective masses and the experimental
mobility values. From the experimental mobility data, we find corresponding disorder
strengthsW between 0.155 and 0.3 meV. For such values ofW , ten averages over disorder
configurations are sufficient to obtain convergent results. The weak dependence of the
observed effect on disorder in these materials is not surprising given that the disorder
induced by short range scattering gives rise to vanishing vertex corrections [76].
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We work in the linear response regime and the voltages on different probes are found
within the LB formalism using boundary conditions where a charge current of 10 nA, for
the setup of structure Q2197, is driven between contacts 1 and 2, while between contacts
3 and 4 the electric current is zero. In this configuration the non-local resistance signal is
R12,43 = V43/I12. Details of the calculations can be found in the online Supplementary
Information and in Ref. [50].

Fig. 4.6 (a), (b) and (c) show the theoretical predictions for the non-local resistance signal
as a function of gate voltage for samples Q2197, Q2198, and Q2398, respectively, which
can be directly compared with the experimental plots of Figs. 4.3 and 4.4. Clearly, the
theoretical results not only show a very similar behavior to the experimental resistance sig-
nal, but even have semi-quantitative agreement. Furthermore, again in agreement with the
experiment, the theoretically predicted signals are at least an order of magnitude stronger
for the p- than for the n-regime, as a result of the much stronger difference in population
of the valence band spin-orbit subbands. As in the experiment, we also find in the calcu-
lations that Q2198 exhibits a larger signal than Q2197. Analysis of the simulation results
shows that this effect stems from the very close proximity of voltage leads 1 and 2 in sam-
ple Q2198 to the horizontal part of the H-bar. In addition, we calculate that both Q2197
and Q2198 yield larger signals than sample Q2398, where the spin-orbit interaction is
smaller. The oscillating character of both experimental and theoretical non-local resis-
tance data stems from the fact that the ratio of the Fermi energy to the spin-orbit splitting
changes over the range of the gate voltage. We conclude that the numerical calculations
are in good agreement with the experimental results and confirm that the observed effect
is indeed the ballistic ISHE.

4.7 Supplementary Information for ‘Evidence for the bal-
listic intrinsic spin-Hall effect in HgTe nanostructures’

In this section, we provide details about the model which has been used for our numerical
calculations. In addition, we present experimental magnetoresistance data on our H-bar
structures, which are fully consistent with an interpretation of the zero field non-local
resistance data presented in the paper as being due to the ballistic intrinsic spin Hall
effect.
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Figure 4.6: Theoretical predictions of the resistance signal induced by ISHE as a function
of gate voltage for samples (a) Q2197 (b) Q2198 and (c) Q2398. For all samples, experi-
mental values of the mobility and carrier densities were an input to the calculations. The
effective mass and strengths of spin-orbit coupling were extracted from the band struc-
ture calculations (see text for details). (d) shows the tight-binding network used in the
modeling.
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4.7.1 Theoretical Appendix

For the high mobility HgTe-nanostructures studied experimentally an estimate of the
mean free path yields l ≥ 2.5 µm, which assures that the samples are in a quasi-ballistic
regime and that the Landauer-Büttiker formalism is applicable. Thus, we need to build an
appropriate effective mass Hamiltonian which can be discretized in real space through a
tight-binding Hamiltonian. As a first step, we build an effective model which describes
the transport properties of HgTe-nanostructures in the linear response regime in the vicin-
ity of the Fermi energy. By analyzing the band structure, which is obtained from 8×8 k·p
band structure calculations [39], it is found that the appropriate model contains linear and
cubic Rashba contributions to the spin-orbit splitting. Therefore, the continuum effective
mass model for inverted and normal band structure HgTe quantum wells has the form:

Ĥ =
p̂2

2m∗
+
λ1

~
(σ̂xpy − σ̂ypx) +

iλ2

2~3
(p̂3
−σ̂+ − p̂3

+σ̂−) +Hdis, (4.2)

where p̂ is the momentum operator, σx, σy are Pauli matrices, λ1, λ2 are the strengths
of the spin-orbit interaction, m∗ is the effective mass, and Hdis is the disorder potential.
The spin-orbit coupling parameters as well as the effective mass are extracted from the
band dispersions at the Fermi energy (values given above). In a tight binding model the
momentum operator is substituted by: p̂x/y = − i~

2ax/y
(ĉ†j ĉj+ax/y − ĉ

†
j ĉj−ax/y). This substi-

tution leads to the transformation of the continuum effective mass Hamiltonian (Eq. 4.2)
into the following (discrete) tight-binding form:

H =
∑
j,σ

εjc
†
j,σcj,σ − t[

∑
〈i,j〉,σ

c†i,σcj,σ + h.c.]

+ tSO[
∑
j

−i(c†j,↑cj+ay ,↓ + c†j,↓cj+ay ,↑) +
∑
j

(c†j,↑cj+ax,↓ − c
†
j,↓cj+ax,↑) + h.c.]

+ tSO−k3 [
∑
j

c†j,↑cj+2ax,↓ − c
†
j,↑cj−2ax,↓ + i

∑
j

c†j,↑cj+2ay ,↓ − c
†
j,↑cj−2ay ,↓

+ 3(1− i)
∑
j

c†j,↑cj−ax+ay ,↓ − c
†
j,↑cj+ax−ay ,↓ + 3(1 + i)

∑
j

c†j,↑cj−ax−ay ,↓ − c
†
j,↑cj+ax+ay ,↓

+ 4i
∑
j

c†j,↑cj+ay ,↓ − c
†
j,↑cj−ay ,↓ + 4

∑
j

c†j,↑cj+ax,↓ − c
†
j,↑cj−ax,↓ + h.c.], (4.3)
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where t = ~2/(2m∗a2
0) is a hopping parameter, tSO = λ1/(2a0) and tSO−k3 = −λ2/(2a

3
0)

are spin-dependent hopping parameters originating from the spin-orbit interaction terms,
ax,ay are the mesh lattice parameters in x and y directions and a0 is the mesh lattice
spacing. The first term on the right hand side of Eq. 4.3 represents a quenched disorder
potential. Disorder is introduced by randomly selecting the on-site energy εj in the range
[-W/2,W/2]. Within the leads the SO coupling is zero and therefore each lead should be
considered as having two independent spin-channels. Thus, there is no ambiguity with the
definition of spin currents which is based on measurements in leads where the spin is con-
served. These leads are modeled as electron reservoirs of chemical potentials µ1, . . . , µN ,
where N is the number of leads under consideration. Within the Landauer-Büttiker for-
malism [77, 50] the particle current which is passed through a particular channel is given
in the low temperature limit, kBT << EF , and for low bias voltages by:

Ip,σ = (e2/h)
∑
qσ′

Tp,σ;q,σ′ [Vp − Vq], (4.4)

where p labels the lead and Tp,σ;q,σ′ is the transmission coefficient at the Fermi energy
EF between the (p, σ) channel and the (q, σ′) channel. This transmission coefficient is
obtained from Tp,σ;q,σ′ = Tr[Γp,σG

RΓp,σG
A] where Γp,σ is given by

Γp,σ(i, j) = i[ΣR
p,σ(i, j)− ΣA

p,σ(i, j)], (4.5)

and
GR/A(i, j) = [Eδi,j −Hi,j −

∑
p,σ

ΣR/A
p,σ (i, j)]−1 (4.6)

are the retarded adwanced Green’s function of the sample GR/A. The leads are taken
into account through the self energy Σ

R/A
p,σ (i, j). Here, the position representation of the

matrices Γp,σ, GR, and ΣR is in the subspace of the sample, i.e. it only includes sites
within the sample and the self energy describes the fact that there is a finite probability that
an electron will escape from the sample back into the leads. Within the above formalism
we can define the spin current through each channel as Isp,σ = (e/4π)

∑
qσ′ Tp,σ;q,σ′ [Vp −

Vq]. Defining lead i = 1 as source, lead i = 2 as drain, and leads i = 3 and 4 as
voltage probes, all voltages are obtained considering the following boundary conditions:
Ii,↑+Ii↓ = 0 for i = 3 to 4, I1,↑+I1↓ = 1 and I2,↑+I2↓ = −1. These are later compared to
measured voltages by setting the current value between leads 1 and 2 to a typical value of
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I1→2 = I1 = 10 nA. The arbitrary zero of the electric potential is fixed by setting V2 = 0.
Correspondingly, the non-local resistance is defined asR12,34 = (V3−V4)/I1, if current is
driven between contacts 1 and 2, and the voltage difference is measured between contacts
3 and 4.

4.7.2 Additional Experimental Material

In this document, we discuss the magnetoresistive behavior of the nanostructures dis-
cussed in the paper. Specifically, we present experimental results on a gated H-bar struc-
ture with slightly larger dimensions, i.e. a nominal channel width of 0.7 µm. This sample
serves as an intermediate between samples with 1 µm wide channels, where the QSHE
edge channels are free from backscattering (Ref. [25]), and the narrow samples described
in the manuscript, in which the QSHE is almost fully suppressed. The schematic layout
of this sample, Q2345, is given in Fig. 4.7.

0.7 mm

0.7

5

1 2

34

mm

mm

Figure 4.7: Schematic H-bar sample layout. The nominal sample (grey) width is 0.7
µm. The covering top gate is 5 µm long (light yellow). The numbers indicate the ohmic
contacts.

The sample has been fabricated from a n-doped wafer with an inverted type-III QW of 11
nm width. The un-gated sample’s carrier density and mobility are 3.9 × 1011 cm−2 and
286000 cm2/(Vs), respectively. The gate dependent non-local resistanceR14,23 (where the
driving current is passed between contacts 1 and 4 and the resulting voltage is measured
between contacts 2 and 3) is shown in Fig. 4.8. On lowering the gate voltage, the carrier
density is reduced, passes through an insulating regime between −2 and −3.5 V and
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reaches the p-regime for gate-voltages more negative than −4 V. In the insulating regime,
the non-local resistance shows a distinct maximum which is related to the quantum spin
Hall effect (QSHE). For a four terminal device the expected quantized conductance value
is 6.5 kΩ. The slightly higher value indicates that additional backscattering mechanisms
are present in the QSHE regime. These effects are discussed in detail in Ref. 20 of the
manuscript. Note that the QSHE signal presented here is obtained for the same current
and voltage probes configuration as in Fig. 4.3 a) and b). In the somewhat wider sample
Q2345 shown here, a very strong non-local signal is observed for the insulating (QSHE)
regime. As discussed in the paper, the wider connection between the two legs of the H-
structure reduces backscattering between counter-propagating channels on opposite edges
and the QSHE survives the non-local experiment - in contrast to the results presented in
the paper for narrower samples.
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Figure 4.8: Gate voltage dependent non-local resistance R14,23.

Additionally, Fig. 4.8 confirms the observations of the narrow channel device structures
as to the ballistic intrinsic spin Hall effect (ISHE): the non-local signal in the metallic
n-regime (Vgate > -1 V) is vanishingly small, while it is of the order of a few kΩ in the
p-regime.

Fig. 4.9 shows the behavior of the non-local ISHE signal deep into the p-regime as a func-
tion of magnetic field, both for in-plane and perpendicular-to-plane configurations. We
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observe that R14,23 drops to approximately 50% for a magnetic field of 3 T for perpen-
dicular magnetic field, while the ISHE signal remains almost unaffected when magnetic
field is parallel to the quantum well. This magnetic field-induced suppression is markedly
smaller than known from the QSHE (which depends on time-reversal-symmetry), and it
is exactly the behavior that is expected for the ballistic ISHE, as we will now discuss in
detail.
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Figure 4.9: Magnetic field dependence of the non-local resistanceR14,23 for a gate voltage
of −4.5 V. The magnetic field was oriented parallel (||) and perpendicular ⊥ to the plane
of the 2DEG.

In the simplest possible picture [49], the spin-Hall conductivity originates from the pre-
cession of electron spins around Rashba-type k-dependent magnetic field which gives rise
to the effective spin-torque and spin-Hall current. An external magnetic field (perpendic-
ular or parallel to 2DEG) causes a pinning of the carrier spins and hence, the spin-Hall
effect decreases with increasing magnetic field strength (B). However, the strength of the
external magnetic field which is required to destroy the spin-Hall effect depends on the
angle between the Rashba- and the magnetic field. In the ballistic transport regime [78],
the spin-Hall conductivity drops as α2k2

F/(α
2k2
F + ~2ω2

0) in a perpendicular magnetic
field, where α is the strength of spin-orbit interactions, kF is the wave vector at the Fermi
level, ~ is Planck’s constant and ω0 is the Larmor frequency. In the parallel magnetic
field configuration, if one assumes that magnetic and Rashba fields to point in the same
direction, one expects that the signal will be less sensitive to the strength of the magnetic
field. Even for αkF = ~ω0 there will be a large effective spin-current and, hence, the

66



magnetization and the non-local resistance signal will decrease much slower. This is ex-
actly what is observed experimentally: for a magnetic field perpendicular to the plane of
2DEG, the non-local resistance signal drops to one half of its value in a magnetic field of
3 T where the magnitudes of the spin-orbit splitting (calculated using our 8× 8 k · p band
structure model) and the Zeeman energy are identical and equal to 3 meV. For a magnetic
field applied in the plane of the 2DEG a much larger magnetic field strength is required
to destroy the ISHE signal (thus, the signal remains constant up to 3 T).
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Chapter 5

Spin polarization of the quantum spin
Hall edge states

This chapter is based on the publication: Christoph Brüne, Andreas Roth, Hartmut Buh-

mann, Ewelina M. Hankiewicz, Laurens W. Molenkamp, Joseph Maciejko, Xiao-Liang Qi

and Shou-Cheng Zhang; ‘Spin polarization of the quantum spin Hall edge states’, Nature

Physics 8, 485-490, 2012.

5.1 Abstract

The prediction and experimental verification of the quantum spin Hall state marked the
first discovery of a new state of matter now known as topological insulators. The quan-
tum spin Hall effect is characterized by gapless spin polarized counterpropagating edge
channels in two-dimensional topological insulators. While the helical character of these
edge channels is by now well established, an experimental confirmation that the trans-
port in the edge channels is spin-polarized is still outstanding. We report experiments on
nanostructures fabricated from HgTe quantum wells with an inverted band structure, in
which a split gate technique allows us to combine both quantum spin Hall and metallic
spin Hall transport in a single device. In these devices, the quantum spin Hall effect can
be used as a spin current injector and detector for the metallic spin Hall effect, and vice
versa, allowing for an all-electrical detection of spin polarization.
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5.2 Introduction

The discovery that HgTe quantum wells (QWs) with an inverted band structure are 2-
dimensional topological insulators has generated a great interest in this novel state of
quantum matter [7, 8, 42]. When the thickness d of the HgTe QW is increased beyond a
critical value dc, a quantum phase transition turns a conventional insulator into its topo-
logically non-trivial counterpart. In this so-called quantum spin Hall (QSH) phase [6, 22],
current-carrying states are confined at the edge of the sample, while the bulk is insulat-
ing. These edge states are protected against backscattering from non-magnetic impurities
[79, 80, 81] and their propagation direction is helical, i.e. that opposite spin states counter-
propagate along a given edge of the sample. When the applied gate voltage places the
Fermi level inside the bulk gap, two-terminal transport experiments measure a quantized
conductance of 2e2/hwith e the electron charge and h the Planck constant, independent of
the sample width, which constitutes strong evidence for edge state conduction [8]. More
recent nonlocal transport measurements in the QSH regime unambiguously establish that
transport occurs through topologically protected edge channels [25, 82]. While edge state
conduction in the QSH regime is thus experimentally well established, there exists so far
no direct experimental evidence that the transport in the helical edge states of 2D topo-
logical insulators is spin-polarized, which is a fundamental characteristic of this new state
of matter.

In this work, we construct novel devices (Figs. 5.1 and 5.2 a) that enable us to study the
spin polarization of the QSH edge states by purely electrical means. First of all, these
devices allow us to detect the spin polarization of the QSH edge states (Fig. 5.1 b) via
the inverse spin Hall effect [50, 69, 52] (SHE−1). Second, our devices enable us to show
that because of their helical nature, the QSH edge states can be used as a detector of spin
current (Fig. 5.1 a). In our devices, the spin current is generated by the intrinsic ballistic
spin Hall effect [50, 83] (SHE) exhibited by a HgTe QW in the metallic regime [52].
These two experiments establish for the first time spin polarization of the helical edge
states in topological insulators, and also demonstrate potential applications of the QSH
effect for spintronic devices.
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5.3 Detecting the spin polarization in non-local transport
experiments

Before presenting our results, we first describe the principle of our experiment in more
detail. Since the magnetic field originating from spin polarized carriers in helical edge
channels is too small to be detected directly, we have designed an experiment that con-
verts magnetic information into an electrical signal. Figure 5.1 illustrates the idea of the
experiments, which are performed on an H-shaped mesa structure (which we call ‘H-bar’)
in which the carrier concentration in the two legs of the ‘H’ can be adjusted separately.
Consider the situation illustrated in Fig. 5.1, where the bottom leg is metallic (indicated
by the green color, and either n- or p-type) and the top leg is tuned into the QSH regime
(indicated by the yellow color), with the counter-propagating helical edge channels de-
picted as blue and red trajectories. We perform two separate complementary experiments.

In Fig. 5.1 a, the current is injected into the metallic part of the structure (contacts 3 and 4)
while a voltage signal is detected across the top leg (contacts 1 and 2), which is gated into
the QSH insulator state. The inverted band structure in HgTe results in a large spin-orbit
coupling [39, 83], which has previously enabled us to observe a ballistic intrinsic SHE in
a small H-bar structure with a homogeneous carrier profile [52]. Similarly, when in the
experiment of Fig. 5.1 a a charge current is injected into the metallic leg, the intrinsic
SHE will induce a separation of carriers with opposite spin polarizations toward opposite
edges of this leg. This leads to a difference in chemical potential for opposite spin states
in the area where the metallic part of the structures borders on the QSH region. The spin
polarized helical edge channels coming from the QSH region couple selectively to the
chemical potential of the matching spin species in the metallic region and transfer this
difference in potential to voltage contacts 1 and 2. For non-spin-selective edge channels
the voltage signal is expected to be zero, while for the spin polarized QSH edge channels
we expect a nonzero signal. Thus the observation of a nonlocal signal in this configuration
is evidence that the metallic leg develops an intrinsic SHE, as well as that the helical edge
channels are spin polarized in the QSH insulator regime.

In the reverse configuration of Fig. 5.1 b, the current is injected (contacts 1 and 2) into
the area of the sample that is gated into the QSH regime, while a nonlocal voltage drop
is measured across the metallic leg (contacts 3 and 4). In this configuration, the spin po-
larized helical edge channels inject a spin polarized current into the metallic leg, causing
a local imbalance in the chemical potential of spin-up and spin-down polarized carriers.
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Figure 5.1: Schematic layout of the two experiments on split-gated H-bar devices dis-
cussed in this paper. The dimensions indicated are those of the actual devices used in
the experiments. a) shows the configuration where the current is injected into a metallic
region (green, contacts 3 and 4). The spin-orbit interaction leads, through the spin Hall
effect (SHE), to spin accumulation at the edges of the leg, as indicated schematically.
The upper part of the structure (yellow) is in the QSH regime; the difference in chemical
potential between the two spin states in the interface region is transferred by the helical
edge channels to voltage contacts 1 and 2. In b) the injector and detector regions are in-
terchanged: the current is injected into the (spin-polarized) helical edge channels of the
upper leg, causing a spin accumulation in the lower metallic region. The inverse spin Hall
effect (SHE−1) converts the spin accumulation into a voltage signal.
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Due to the SHE−1 (see Refs. [50, 69, 52]), the spin current in the metallic region induces
a voltage between contacts 3 and 4. Again, this voltage can only develop provided the
helical edge channels are spin polarized, and the metallic leg exhibits the SHE−1.

A possible complication in both of the above experiments is the detection of a stray
spreading voltage. In the configuration of Fig. 5.1 a, this could result from a voltage
drop in the metallic leg along the interface with the area in the QSH insulator regime,
while in Fig. 5.1 b, the finite distance between in- and outgoing edge channels at this
interface could produce a similar effect. However, in practice such stray voltages are
strongly reduced by the exact layout of the experiment, the quasi-ballistic nature of the
transport in the metallic leg and the finite width of the edge channels.

5.4 Fabrication and transport characterization of two-
dimensional topological insulators

Our H-bar structures are fabricated from inverted symmetrically doped HgTe/HgCdTe
type-III QWs with a nominal well width of 9 nm, located 74 nm below the surface. At a
temperature of 4 K (and for a grounded gate), the carrier density is n ≈ 4 × 1011 cm−2 .
The carrier mobility is then µ ≈ 1.1× 105 cm2/(V·s), yielding an elastic mean free path
larger than 2 µm. The devices are patterned using optical and electron beam lithography,
with dimensions as indicated in Fig. 5.1. In order to control the carrier density, the device
is gated by Au gate electrodes separated from the sample surface by a 110 nm thick
insulating Si3N4/SiO2 multi-layer stack. By applying a voltage Vgate to the top gates, the
electron carrier density of the QW can be adjusted, going from an n-type behavior for
Vgate > 0 through the bulk insulator state into a p-type regime for Vgate < 0. For reasons
of comparison, the experimental data in Fig. 5.2, 5.3 and 5.4 are plotted as a function of a
normalized gate voltage V ∗gate ≡ Vgate−Vthr, where the threshold voltage Vthr is defined as
the voltage for which the resistance is largest in a particular fixed reference measurement.
As is evident from the characterization data in Fig. 5.2 b and c, which were obtained from
a Hall bar fabricated from the same wafer material as the H-bar nanostructures, we find
that for gate voltages V ∗gate & 0.5 V the QW is n-type metallic, and for V ∗gate . −0.5 V it is
p-type metallic. The split-gate design (gates 1 and 2) of Fig. 5.1 provides an independent
control of the carrier density for each leg of the H-bar structure, enabling us to gate one
part of the sample into the QSH insulator regime and the other part into either n- or p-type
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Figure 5.2: Characterization of devices. (a) An electron micrograph of the actual device
structure (rotated by 90 degrees compared to Fig. 5.1). (b) and (c) Gate voltage depen-
dence of the longitudinal resistance Rxx (black) and Hall resistance Rxy (red) at B = 1 T,
and the inferred carrier density, n, of a macroscopic Hall bar, 600 µm x 200 µm in size,
fabricated from the same HgTe wafer as the nanostructures used in the experiments of
Figs. 5.3 and 5.4.

metallic regimes. An electron microscope picture of the actual device structure is shown
in Fig. 5.2 a. The transport measurements are done at a constant temperature of 1.8 K
employing quasi-dc low frequency (13 Hz) lock-in techniques using a voltage bias below
100 µV.

5.5 Nonlocal signals as evidence for the spin polarization
of the quantum spin Hall state

While experiments have been performed on a variety of different devices and yield similar
results, for reasons of consistency we will discuss here a single device with dimensions
as indicated in Fig. 5.1. The results of the experiments are shown in Figs. 5.3 and 5.4,
corresponding to the measurement configurations of Figs.5.1 a and b, respectively. In the
upper three panels of the figures, the nonlocal resistance is plotted as a function of gate 1,
while in the lower panel, gate 2 is swept.
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Figure 5.3: Experimental nonlocal resistance data corresponding to the measurement con-
figuration of Fig. 5.1 a). In the bottom (green) panel, the gate on the current injection leg
is swept, varying the area from p- to n-metallic conductance, while the detector (top) leg
is kept in the middle of the QSH insulator regime. The red, blue and green arrows de-
note gate voltages where the injector region is p-type metallic, QSH insulating and n-type
metallic, respectively. In the top panel, the gate in the detector area is varied at exactly
these injector settings.
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Figure 5.3 corresponds to the layout of Fig. 5.1 a, and the detected nonlocal signal can
consequently be denoted as R34,12, i.e. the voltage measured between contacts 1 and 2
divided by the current passed between contacts 3 and 4. When we sweep the gate on the
injector area (gate 2) while the detector is tuned into the QSH regime (V ∗gate1 = 0), we
observe (lower panel in Fig. 5.3 a pronounced maximum around V ∗gate1 = 0, and smaller
but finite values on both sides. The signal around V ∗gate1 = 0 reaches approximately
the quantized value (h/4e2) observed in our previous experiments on nonlocal transport
in the QSH regime [25]. We attribute the slight deviation from perfect quantization to
imperfect gating in the not gate-covered region between gates 1 and 2. Imperfectly gated
regions in the sample can act as dephasing centers for edge electrons, which can lead to a
deviation from the expected quantized nonlocal resistance [25, 81]. In addition, in HgTe
QW devices subsequent gate voltage sweeps can charge interface trap states in a different
way [74], leading to different dephasing effects and a different magnitude of the deviation
from quantized resistance for each gate voltage sweep.

Apart from the large signal in the QSH regime, the measurements also exhibit a non-
vanishing nonlocal signal when the area underneath gate 2 is metallic, either n- or p-type,
and thus corresponds to the injector region depicted in Fig. 5.1 a. The origin of this finite
signal becomes more evident when the injector gate voltage is set at a fixed value either in
the p-type (V ∗gate2 = −0.75 V < 0) or in the n-type metallic regime (V ∗gate2 = 1.0 V > 0)
while the voltage on gate 1 is swept (top panel of Fig. 5.3). Evidently, a significant
increase in the nonlocal signal is observed, with a peak when the detector is exactly in
the QSH insulator regime. This is the observation anticipated above: one may expect a
nonlocal signal of this amplitude only when the metallic leg exhibits a SHE and the edge
channels in the QSH leg are spin polarized. Our data also show that the nonlocal signal
for the p-type injector (V ∗gate2 = −0.75 V) is more than ten times larger than that for the
n-type injector (V ∗gate2 = 1.0 V). This is consistent with our experimental observations
on the SHE signal in all-metallic HgTe QW [52], where the nonlocal signal is about an
order of magnitude larger in the p-regime than in the n-regime and results from enhanced
spin-orbit splitting in the valence band [39].

Our data for the reverse configuration of Fig. 5.1 b are shown in Fig. 5.4. The sweep of
gate 2 in the bottom panel now corresponds to the detection leg, and one can directly see
that also in this configuration we observe a finite nonlocal signal (in this caseR12,34), even
when the detector is metallic (red and green arrows). The upper panel shows the effect
of sweeping the injector leg (gate 1), and indicates that the nonlocal signal peaks when
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Figure 5.4: Experimental nonlocal resistance data corresponding to the measurement con-
figuration of Fig. 5.1 b). In the bottom (yellow) panel, the gate on the detection leg is
swept, varying the area from p- to n-metallic conductance, while the injector (bottom) leg
is kept in the middle of the QSH insulator regime. The red, blue and green arrows denote
gate voltages where the detector region is p-type metallic, QSH insulating and n-type
metallic, respectively. In the top panel, the gate in the injector area is varied at exactly
these detector settings.
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the injector is in the QSH state. As in the previous configuration of Fig. 5.3, we observe
an order of magnitude increase in the nonlocal signal when the metallic detector is p-type
(V ∗gate2 = −0.82 V) as compared with an n-type detector (V ∗gate2 = 1.2 V). As noted
above, our observation of the nonlocal signal is evidence that the helical edge channels
generate a spin accumulation at the interface between the QSH injector and the metallic
detector, which responds by the SHE−1.

The results in Figs. 5.3 and 5.4 look very similar and, in fact, are expected to do so on
account of the Onsager-Casimir symmetry relations for the nonlocal resistances Rmn,kl in
a four-probe device [43, 55],

Rmn,kl(B) = Rkl,mn(−B), (5.1)

where the first pair of indices refers to the current probes, the second pair refers to the
voltage probes, and B is the magnetic field. In the present setup, the magnetic field is zero
and we expect R34,12 = R12,34. One possible explanation for the small deviations from
exact Onsager-Casimir symmetry observed in Fig. 5.3 and 5.4 is the random charging
effects of pinned inhomogeneities (or ‘trap states’) mentioned earlier. Two subsequent
gate voltage sweeps can result in a different interface potential due to these charging
effects [74], which changes the internal state of the conductor. Note however that the
symmetry between Fig. 5.3 and 5.4 is more accurate in the doped regimes away from
the nominally insulating regime, which is expected since a higher carrier density can
more effectively screen the interface trap potentials and thus make the internal state of the
conductor less sensitive to trap charging effects.

5.6 Modelling and additional discussion of the experiment

In order to better understand the experimental results, we have performed semi-classical
Monte Carlo calculations to obtain a theoretical estimate of the nonlocal resistance based
on the sample geometry (Fig. 5.1). We focus on the setup illustrated in Fig. 5.1 b, where
the QSH insulator acts as a spin injector and the metallic region detects the spin polar-
ization of edge channels through the SHE−1. We calculate the nonlocal resistance R12,34

when the current is driven between contacts 1 and 2 and the voltage is measured between
contacts 3 and 4. R12,34 can be expressed in terms of the transmission coefficients [43, 55]
Tij for the metallic region only (Eq. S1 of the supplementary online material). The Tij are
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calculated within the semiclassical Monte Carlo method [84], which is a reasonable ap-
proximation for Fermi wavelengths λF � L where L ∼ 1 µm is the characteristic linear
size of the device (Fig. 5.1 and 5.2 a). Electrons are injected at the QSH-SHE−1 interface
(yellow-green interface in Fig. 5.1 b), and propagate quasi-ballistically into the metallic T-
structure (green region in Fig. 5.1 b) according to semiclassical equations of motion [85].
These equations are derived using an effective 4-band model for HgTe QW [7] which
explicitly contains the effects of intrinsic spin-orbit coupling due to atomic coupling be-
tween bands [83]. This intrinsic spin-orbit coupling can be visualized as resulting from a
Rashba field due to the edges of the typical mesa structure used in experiments [83]. The
samples were symmetrically doped and therefore designed the way so the Rashba term
originating from the applied gate was minimal. Therefore we omitted this contribution
in the simulations. Details of the calculation are included in the supplementary online
material.

We find that the conversion of the spin signal to the electrical signal through the SHE−1 is
dominated by the intrinsic spin-orbit interaction, while stray contributions due to voltage
spreading are negligible (see Fig. S3 in the supplementary online material). Fig. 5.5
shows the theoretical prediction of the nonlocal resistance signal as a function of the car-
rier concentration in the metallic detector. (Note that the semiclassical simulation breaks
down when the chemical potential is too close to the insulating gap.) The scattering in-
duced by the intrinsic spin-orbit interaction is more effective when carriers have smaller
kinetic energy, and therefore smaller wave vectors at the Fermi level. Since the effective
mass in the p-regime is larger than that in the n-regime [52], for comparable densities the
kinetic energy will be smaller in the p-regime. This can explain the larger nonlocal resis-
tance signal for the p-regime in comparison with the n-regime, as well as the decrease of
the signal upon increase in carrier concentration.

In order to further validate the above interpretation, we have performed a number of con-
trol experiments: Firstly, varying the injector size (from 200 nm to 400 nm) hardly in-
fluences the observed resistance signals. This rules out that the signal has a contribution
due to (diffusive) voltage spreading and confirms that our samples are indeed in the quasi
ballistic regime. Moreover, we have measured the dependence of the nonlocal resistance
signals on perpendicular and in-plane magnetic fields. While the in-plane magnetic field
does not influence the signal strength in the perpendicular case a decrease of the nonlocal
signal can be observed. This shows that the effect indeed depends on the spin polarization
of the electrons. A more detailed information about these additional experiments can be
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Figure 5.5: Semiclassical Monte Carlo simulation of the nonlocal resistance. Nonlocal
resistance signal calculated in the setup of Fig. 5.1 b, as a function of carrier concentration
in the metallic detector.

found in the supplementary online material.

The experiments presented in this paper are a first example of how helical edge states can
be implemented to quantum transport studies, including semiconductor spintronics and
one can envision many further experiments utilizing the concepts presented here.

5.7 Supplementary information for ‘Spin polarization of
the quantum spin Hall edge states’

In this supplementary information, we present further theoretical results and details of
our semiclassical Monte Carlo calculations, additional experimental data for the nonlocal
resistance signals in magnetic fields as well as data for structures with different injector
sizes. Our supplementary information provides an additional evidence that the quantum
spin Hall edge states are spin polarized.
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5.7.1 Introduction

This document provides the details of our theoretical approach for the description of the
hybrid quantum spin Hall – metallic spin Hall (QSH-SHE) ‘H-bar’ structures illustrated
in Fig. 5.1. More specifically, we calculate the nonlocal four-terminal resistance R12,34

in the configuration illustrated in Fig. 5.1 b and Fig. 5.6, where the quantum spin Hall
(QSH) insulator state acts as a spin current injector, and the metallic region as a spin
current detector through the inverse spin Hall effect (SHE−1). The nonlocal resistance
R34,12 in the reverse geometry (Fig. 5.1 a), with voltage and current probes exchanged, is
the same as R12,34 by virtue of the Onsager-Casimir symmetry relations in the absence of
a magnetic field (Refs. [43], [55] and Eq. (5.1)). We find a good qualitative agreement
between the experimental and theoretical values (Fig. 5.4 and 5.5).

Figure 5.6: Transmission coefficients for Landauer-Büttiker calculation of nonlocal resis-
tanceR12,34, in the geometry corresponding to the QSH state as spin current injector, with
the metallic state exhibiting the SHE−1 as a spin current detector (similar to Fig. 5.1 b).

The main idea of our approach is the following. We consider the H-bar geometry illus-
trated in Fig. 5.6. The yellow region on the left is in the QSH regime, while the green
region on the right is in the metallic regime, either n-type or p-type. Figure 5.6 represents
the same setup as in Fig. 5.1 b, where L1 corresponds to the length of the part of the
structure in the metallic regime.

We calculate the four-terminal nonlocal resistance R12,34 ≡ (V3 − V4)/I where I ≡ I1 =
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−I2 is the current injected into lead 1 and collected in lead 2, and V3 − V4 is the voltage
difference between leads 3 and 4. An expression for R12,34 in terms of the transmission
coefficients Tij from lead j to lead i, i, j = 1, . . . , 4, can be derived from the multiprobe
Landauer-Büttiker formula [43, 55], with Tij = Tji from time-reversal symmetry [77]
(TRS). The coefficients T12 = T21 = 1 in the QSH region are universal and are obtained
simply by counting the number of edge states leading from one contact to the other [25].
In the same spirit, the coefficients T34 = T43 can be approximated by counting the number
of channels [86] Nc ' kFW/π (per spin) in the vertical arm of width W ≡ W2 in the
metallic T-structure (Fig. 5.6), with kF the Fermi wave vector in the metallic region. The
nontrivial part of the calculation is to determine the coefficients T13, T14, T23 and T24 for
the transmission between the contacts attached to the QSH region and those attached to
the metallic region. Since the right T-structure is metallic, for high enough densities the
Fermi wavelength λF � W is much smaller than the dimensions W of the T-structure
and a semiclassical approach becomes justified. In other words, there is a large number
of channels Nc � 1 in the metallic region and we can neglect the quantization of motion
in the transverse direction.

Our approach for the calculation of T13, T14, T23, T24 is based on the Monte Carlo method
for the simulation of semiclassical electron transport in semiconductors [87]. This ap-
proach has been used successfully for the study of magnetotransport in multiprobe con-
ductors [84, 88, 89, 90], and in particular for the study of quasiballistic transport in HgTe
quantum wells [91]. The procedure consists in injecting electrons with well-defined po-
sitions and momenta at the left of the metallic T-structure; the QSH edge states then act
as ‘injectors’ of electrons into the metallic region. The electrons then propagate into the
ballistic region according to semiclassical equations of motion [85], which include elastic
scattering on the geometric boundaries of the T-structure, elastic scattering on nonmag-
netic impurities through the inclusion of a phenomenological momentum relaxation time,
and more importantly, the effect of spin-orbit coupling through the inclusion of a Berry
phase term [85] which acts as a magnetic field in momentum space [85, 65, 92]. This last
term is responsible for the SHE and SHE−1. One then simply counts the fraction of elec-
trons which reach contacts 3 and 4, from which the classical transmission probabilities
T13, T14, T23, T24 can be extracted [84].

This document is structured as follows. In Sec. 5.7.2, we apply the multiprobe Landauer-
Büttiker formula [43] to the geometry of Fig. 5.6, and give an explicit expression for
the nonlocal resistance R12,34 in terms of calculable quantities. In Sec. 5.7.3, we apply
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the formalism of Ref. [85] to derive the form of the equations of motion describing
carrier propagation in the metallic region, including the important Berry phase term. In
Sec. 5.7.4, we give the details of the Monte Carlo algorithm. In Sec. 5.7.5, we present and
discuss our numerical results. Finally, in Sec. 5.7.6 we present additional experimental
and theoretical results which provide strong evidence that the observed nonlocal signal is
a direct consequence of spin-orbit coupling in our samples.

5.7.2 Multiprobe Landauer-Büttiker formalism and nonlocal resis-
tance

For a four-probe phase-coherent device, the nonlocal resistance R12,34 is one of several
possible four-terminal resistances, whose expressions in terms of transmission coeffi-
cients were all worked out long ago by Büttiker [43]. He obtained

R12,34 ≡
V3 − V4

I
=

h

e2

T31T42 − T32T41

D
, (S1)

at zero temperature, where I ≡ I1 = −I2 is the current injected at contact 1 and collected
at contact 2 (Fig. 5.6), and

D ≡ det

 T12 + T13 + T14 −T12 −T13

−T31 −T32 T31 + T32 + T34

−T41 −T42 −T43

 ,

where Tij ≡ Ti←j is the transmission probability from lead j to lead i at the Fermi level,
and Tij = Tji by TRS in the absence of a magnetic field [77].

From Fig. 5.6, one can read off T12 = 1 + T ′12, where 1 is universal and comes from
the edge state propagating directly from contact 1 to contact 2 along the left edge of the
QSH T-structure, while T ′12 is nonuniversal and is the probability of an electron trav-
elling from contact 1 along the top-right edge state of the QSH T-structure, entering
the metallic region, propagating inside the metallic region, returning inside the QSH T-
structure and propagating to contact 2 via the bottom-right edge state. In fact, T ′12 cor-
responds to the probability of interedge tunneling [53], which is negligibly small for a
wide enough device. Indeed, Ref. [53] finds that for a device width W1 ∼ 1µm (we
have W1 = 0.77µm, see Fig. 5.1), the gap ∆ opened in the edge state dispersion by
interedge tunneling is negligibly small, ∆ ∼ 10−7 meV. Also, nonlocal resistance mea-
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surements (similar to those of Ref. [25]) performed on the actual devices when they are
entirely gated into the QSH regime yield the values expected from unperturbed nonlocal
edge state transport (see Ref. [25] and Fig. 5.2 b), suggesting that interedge tunneling
is negligible. Finally, we have performed fully quantum-mechanical, numerical calcula-
tions of the S-matrix of a QSH/metal interface in a strip geometry using the tight-binding
version of the four-band effective model for the QSH state in HgTe quantum wells [42],
and confirm that T ′12 is negligible for the sample widths considered here. Therefore we
take T ′12 = 0 and T12 = 1.

The coefficient T34 for transmission from contact 3 to contact 4 through the metallic region
(Fig. 5.6) is obtained from the semiclassical Monte Carlo calculation as follows. We first
calculate T̃ σ34 and R̃σ

3 defined as the fraction of electrons of spin σ =↑, ↓ injected from
contact 3 that reach contact 4, or that are reflected back into contact 3, respectively. They
satisfy R̃σ

3 + T̃ σ34 = 1 since the metal/QSH interface is modeled as a perfectly reflecting
interface and the z component of the spin is conserved in our model (the electron spin is
discussed in Sec. 5.7.3 and 5.7.4). However, these coefficients assume only one transport
channel (since they sum up to one [55]), and furthermore neglect the probability of being
transmitted into the QSH region T31 + T32. The metallic leads have Nc channels per spin
at the Fermi level [86] with Nc ' kFW/π and W ≡ W2 the width of the lead (Fig.
5.6). Taking this into account as well as the probabilities T31, T32, the actual transmission
and reflection coefficients T σ34, Rσ

3 should satisfy [86] (T σ31 + T σ32) + T σ34 + Rσ
3 = Nc.

We can thus construct transmission and reflection coefficients satisfying this constraint
by defining

Rσ
3 = R̃σ

3 [Nc − (T σ31 + T σ32)], (S2)

T σ34 = T̃ σ34[Nc − (T σ31 + T σ32)]. (S3)

The total transmission coefficient is then given by T34 =
∑

σ=↑,↓ T
σ
34.

In the Monte Carlo procedure (to be detailed in Sec. 5.7.4), the semiclassical equations of
motion, which are first order in time, are integrated numerically, starting from the initial
positions and momenta of the charge carriers. In order to obtain the transmission coef-
ficients, we need to perform two separate Monte Carlo calculations. A first calculation,
where Fermi surface electrons are injected at the QSH/metal interface and collected at
the contacts 3 and 4, yields T13, T14, T23 and T24. The problem of the interface between a
QSH insulator and a normal metal is nontrivial and has been studied in Ref. [93] using
quantum-mechanical scattering theory. In the present work, we use a simpler semiclas-
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sical approach. We take for initial conditions at the left of the metallic region a spatially
uniform distribution, a fixed wave vector amplitude kF = |k| equal to the Fermi wave
vector, and an angular distribution given by [84, 86]

P (θ) = 1
2

cos θ, −π
2
≤ θ ≤ π

2
,

where θ is the angle between the carrier wave vector k and the the positive x axis (Fig.
5.6), and

∫ π/2
−π/2 dθ P (θ) = 1. The reason we choose a spatially uniform distribution is that

although the electrons are injected from the QSH side with wave functions localized along
the edge, as soon as they enter the metallic region their wave functions merge into the
bulk and their localization length diverges [42]. A second calculation consists in injecting
electrons from contact 3 and collecting them at contacts 4 or 3, and yields T34 according
to Eq. (S3). The angular distribution is again given by P (θ) = 1

2
cos θ, −π

2
≤ θ ≤ π

2
, but

now θ is the angle between the carrier wave vector k and the the negative y axis (Fig. 5.6).
Positionwise, the carriers are again injected uniformly across the width W2 of contact 3

(Fig. 5.6).

5.7.3 Semiclassical equations of motion and Berry phase

In this section we derive the equations of motion which contain the reciprocal magnetic
field in momentum space, or Berry phase term [85]. We neglect the bulk inversion asym-
metry terms which are a small perturbation [42]. We also neglect interband transitions
and study separately the semiclassical dynamics of Kramers partners at the Fermi level in
the metallic regime. For either of the n- or p-type regimes we have two degenerate bands
that are related by TRS, which means that in our simulation we track the position and
momentum of two species of particles denoted by ↑ and ↓. The energy of the degenerate
conduction bands (n-type) is E+ and that of the degenerate valence bands (p-type) is E−.

As before, we use the convention of Ref. [53] for the Hamiltonian. The spectrum consists
of two energy eigenvalues,

E±(k2) = ε(k2)± d(k2), (S4)

where ε(k2) = −Dk2, d(k2) =
√
A2k2 +M2(k2), and M2(k2) = M − Bk2. Each
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eigenvalue is two-fold degenerate, with eigenstates

|u±↑ (k)〉 =
(
u±↑ (k)

)
1
|1
2
〉+

(
u±↑ (k)

)
2
|3
2
〉,

|u±↓ (k)〉 = T̂ |u±↑ (k)〉 =
(
u±↑ (k)

)∗
1
| − 1

2
〉+

(
u±↑ (k)

)∗
2
| − 3

2
〉.

The eigenspinors are given by

u±↑ (k) ≡

( (
u±↑ (k)

)
1(

u±↑ (k)
)

2

)
=

1√
A2k2 + g2

±(k2)

(
±A(kx − iky)

g±(k2)

)
,

and are orthonormal, where g±(k2) ≡ d(k2) ∓M(k2). We can now calculate the Berry
curvatures for each band [85],

Ω±,σαβ (k) = −2 Im

〈
∂u±σ (k)

∂kα

∣∣∣∣∂u±σ (k)

∂kβ

〉
, (S5)

with σ =↑, ↓ and α, β = x, y. We however immediately observe that due to TRS, we have

Ω±,↓αβ (k) = −Ω±,↑αβ (k),

therefore we only need to calculate the Berry curvature for spin ↑. Furthermore, Ωβα =

−Ωαβ is antisymmetric from the definition Eq. (S5). In two dimensions, this antisymmet-
ric tensor has a single component Ωxy and we can define a pseudoscalar

Ω±(k) ≡ 1
2
εαβγΩ±,↑βγ (k) = Ω±,↑xy (k),

where εαβγ is the Levi-Cività symbol and α = z necessarily. We obtain

Ω±(k) = Ω±(k2) = −A
2

2

M +Bk2

d(k2)

A2k2 ∓ 2g±(k2)M(k2)

[A2k2 ∓ g±(k2)M(k2)]2
.

Note that the physical units of the quantities A, k,Ω are given by [A] = eV·Å and
[k] =Å−1, hence [Ω] =Å2. The anomalous or Hall velocities are given by [85]

~δẋ±σ = −~Ω±,σxy k̇
±
y,σ = −σ~Ω±k̇±y,σ,

~δẏ±σ = −~Ω±,σyx k̇
±
x,σ = σ~Ω±k̇±x,σ,

with σ = ±1. Since the bands are doubly degenerate, the normal velocity is independent
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of spin and is simply given by

~v± ≡ α±(k2)k with α±(k2) ≡ −2D ± A2 − 2BM(k2)

d(k2)
,

where [α] = eV·Å2. The semiclassical equations of motion finally take the form

~ẋ±σ = α±((k±σ )2)k±x,σ − σ~Ω±((k±σ )2)k̇±y,σ, (S6)

~ẏ±σ = α±((k±σ )2)k±y,σ + σ~Ω±((k±σ )2)k̇±x,σ, (S7)

~k̇±x,σ = F coll
x (r±σ ,k

±
σ , t), (S8)

~k̇±y,σ = F coll
y (r±σ ,k

±
σ , t), (S9)

where [~ṙ] = eV·Å, and Fcoll is the force exerted on the particles due to collisions with
the geometric boundaries of the sample and with impurities in the sample. The specific
form of this term is detailed in Sec. 5.7.4.

5.7.4 Semiclassical Monte Carlo algorithm

For simplicity, we assume that the probability of reflecting into a state with opposite spin
is very small, so that we are effectively simulating the semiclassical dynamics of a two-
component gas, with the two components evolving in a perfectly independent manner.

The collision force is given by Fcoll = F∂S + Fimp where F∂S is the force due to colli-
sion on the sample boundary (denoted by ∂S), and Fimp is the force due to collisions on
impurities. The effect of F∂S on a particle is implemented into the simulation as follows:
by energy and momentum conservation, when a particle hits a boundary we simply flip
the sign of the component of its momentum normal to the boundary (specular reflection).
On the other hand, to take the effect of Fimp into account we proceed as follows. We first
generate a random free flight time [87] tfree from an exponential distribution

P (tfree) =
1

τ
e−tfree/τ ,

where τ is a phenomenological collision time. We expect the metallic region to be in the
quasi-ballistic regime [52] and thus consider that collisions are dominated by boundary
scattering. Therefore, we choose τ > τ∂S where τ∂S ∼ L/vF is the boundary scattering
time with L the characteristic linear size of the device and vF the Fermi velocity. The
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impurity-free equations of motion, i.e. Eqs (S6)-(S9) with Fimp = 0, are then solved nu-
merically for a time tfree. At the end of the free flight time, we randomize the momentum
of the particle (only the direction k̂ = k/|k| as the magnitude |k| = kF is fixed by en-
ergy conservation) according to an uniform angular distribution between 0 and 2π. This
is meant to simulate isotropic scattering from rotationally invariant impurities. Finally, a
new random free flight time is generated, and the procedure starts again until all particles
have exited the device through either contact 3 or 4.

Since ~k̇±σ = 0 apart from boundary and impurity scattering, the Berry phase term van-
ishes for free propagation inside the boundaries and the semiclassical trajectories between
collisions are simply straight lines. The Berry phase term generates a shift of position
upon scattering on boundaries and impurities, an effect similar to the side-jump effect
[94] in the anomalous Hall effect, with the exception that here the spin-orbit coupling
is intrinsic (arising from the bandstructure) and not the spin-orbit coupling arising from
impurity potentials. A scattering event resulting in a change of momentum ∆k produces
a position shift ∆r given by

∆x±σ = −σΩ±((k±σ )2)∆k±y,σ,

∆y±σ = σΩ±((k±σ )2)∆k±x,σ,

which can also be written

∆r±σ = −σΩ±((k±σ )2)×∆k±σ , (S10)

where Ω± ≡ Ω±ẑ and ∆k±σ depends on the boundary. Equation (S10) makes explicit the
interpretation of the Berry curvature Ω± as a magnetic field in momentum space. Since
∆k±σ is normal to the boundary for specular reflection, the position shift ∆r±σ will be
along the tangent to the boundary. For free propagation inside the boundaries, we have

∆r±σ = α±((k±σ )2)k±σ
∆t

~
,

where [∆t
~ ] = eV−1, and ∆t is the time between two collision events (impurity or bound-

ary). Furthermore, since we are doing a Monte Carlo simulation we need to average over
a large number of particles. We find that we get reasonably good statistics (error bars not
too large) for ∼ 106 particles.
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5.7.5 Numerical results

We have performed the calculations for HgTe/HgCdTe quantum wells [42] of thickness
d = 89.9 Å and device size (see Fig. 5.6) L1 = 0.2 µm, W1 = 0.77 µm, W2 =

0.8 µm and L2 = 1.665 Å (such that the distance between contacts 3 and 4 is 4.1 µm).
These dimensions correspond to those of the device discussed above (Fig. 5.1). Note that
although the length of the middle segment of the H-bar is 0.7 µm (Fig. 5.1), the actual
length L1 of the QSH injector region (yellow region in Fig. 5.1) is estimated as 0.2 µm.
To avoid unphysical geometric resonances [84, 89], we consider that the corners of the
T-structure are rounded, with radius of curvature R = 100 Å. For the devices studied in
this work, the Dirac mass M (see Sec. 5.7.3) is estimated as |M | = −6 meV due to the
small gap between the H1 and H2 subbands which are the lowest energy subbands for
the quantum well thicknesses considered.

The results are plotted in Fig. 5.5. The calculated nonlocal signal is in good qualitative
agreement with the experimental results of Fig. 5.3 and 5.4, with R12,34 ∼ 102 Ω in the
p-type regime and R12,34 ∼ 10 Ω in the n-type regime. Since we are performing a semi-
classical simulation for the detector region, we cannot simulate the transition through the
insulating gap, since as the Fermi level approaches the gap, the density reaches a point
where our semiclassical approximation kFW/π � 1 breaks down. Although the qualita-
tive agreement with experiment is good, we observe that the experimental signal is larger.
We expect that the discrepancy is due to the additional contribution from Rashba spin-
orbit coupling [83], which is not taken into account in the simple semiclassical approach
with Sz conservation used in this work.

The increase of the nonlocal resistance signal with decreasing density (Fig. 5.5) is ev-
idence that the signal is generated by the spin-orbit interaction, i.e. the Berry curvature
term (Sec. 5.7.3). This can be understood if one remembers that the Berry curvature can be
treated approximately as the magnetic field in reciprocal space of a magnetic monopole
[65, 92] centered at k = 0. As the density is reduced (decreasing k), the particles are
closer to the monopole and feel a stronger Berry magnetic field. Furthermore, due to the
larger effective mass for holes (p-type) than for electrons (n-type) in our structures [52],
for comparable densities the Fermi wave vector will be smaller for holes than for elec-
trons, yielding a larger Berry phase effect in the p-regime as compared to the n-regime.
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Figure 5.7: Nonlocal resistance signal for injector in the p-type regime, as a function
of gate voltage in the detector and injector length: a) short p-type injector (200 nm); b)
long p-type injector (400 nm). By Onsager-Casimir reciprocity, for the detector in the
QSH insulating regime (V ∗gate ∼ 0) this is equivalent to the configuration of Fig. 5.6 with
L1 = 200 nm in a) and L1 = 400 nm in b).

5.7.6 Additional experimental and theoretical evidence for spin-orbit
origin of observed effects

We now present additional experimental and theoretical evidence that the observed nonlo-
cal resistance signal is due to the spin-orbit interaction and not by some spurious effects.
In Fig. 5.7, we plot the nonlocal resistance as a function of gate voltage for shorter (Fig.
5.7a, 200 nm) and longer (Fig. 5.7b, 400 nm) injector sizes. The sample parameters are
the same as above. Although the data in Fig. 5.7 corresponds to a metallic (p-type) injec-
tor, for V ∗gate ∼ 0 in the detector (QSH insulating regime) the configuration is equivalent to
that illustrated in Fig. 5.6, by Onsager-Casimir reciprocity (see Eq. (5.1)). In our calcu-
lation, therefore, we can compare theoretical results for L1 = 200 nm and L1 = 400 nm
with the data in Fig. 5.7a) and b), respectively.

One can see in Fig. 5.7 that the nonlocal resistance is essentially independent of the
injector length. The maximum signal is obtained when the detector is in the QSH insulator
regime, as expected from previous nonlocal transport measurements in the QSH regime
[25]. In the diffusive regime, we expect that a nonlocal resistance signal originating from
spin effects would depend strongly on the system size. By a solution of the Poisson
equation in the metallic T-structure we estimate that the stray diffusive signal for an Ohmic
conductor doubles when the metallic leg of the injector is reduced by half. Therefore,
a very weak dependence of the experimental nonlocal resistance on the injector length
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excludes the possibility that our result is a diffusive stray signal and constitutes evidence
that our samples are in the quasi-ballistic regime.
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Figure 5.8: Effect of the detector size L1 (geometry of Fig. 5.6, equivalent by Onsager-
Casimir reciprocity to Fig. 5.7) and Berry phase term on the nonlocal resistance. The
dotted gray line denotes zero. The signal is essentially independent of L1, in agreement
with experiment (Fig. 5.7). Furthermore, the signal is essentially zero in absence of the
Berry phase term.

We now provide further theoretical evidence that our signal originates solely from the
presence of strong spin-orbit interaction effects, i.e. the Berry phase term (Sec. 5.7.3).
Fig. 5.8 shows the theoretically predicted nonlocal signal in the geometry of Fig. 5.6.
As mentioned previously, this configuration is equivalent to that of Fig. 5.7 by Onsager-
Casimir reciprocity. First, the nonlocal resistance exhibits almost no size dependence as
observed experimentally (Fig. 5.7). Since we have chosen the bulk impurity scattering
time τ to be larger than the boundary scattering time τ∂S , the agreement between the
theoretical and experimental results constitutes strong evidence that our samples are in the
quasi-ballistic regime. Second, the nonlocal resistance signal is negligible in the absence
of the Berry phase effect. Since the Berry phase term is a direct consequence of the
intrinsic spin-orbit interaction (Sec. 5.7.3), we conclude that the observed signal is chiefly
due to the intrinsic SHE. The samples were symmetrically doped and therefore designed
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the way so the Rashba term originating from the applied gate was minimal. However, as
mentioned previously, we expect the Rashba spin-orbit interaction [83] could also play
some role for a non-zero external gate potential, which might account for the discrepancy
between our simple theory and the experiment in the magnitude of the signal. We believe
that our supplementary experimental and theoretical results provide strong evidence that
we have detected the helical nature of the QSH edge states via the SHE−1, and used the
QSH helical edge states to convert the SHE into a charge signal.

Figure 5.9: Non-local resistance signals in perpendicular (a) and parallel (b) magnetic
fields. Black (blue) traces correspond to the injection of a spin current via the SHE ( the
QSH state) and detection of the signal by the QSH (the SHE−1), respectively. Red traces
correspond to a control experiment where both gated regions are in the n-conducting
metallic state (the SHE acts as an injector while the SHE−1 as a detector).

5.7.7 Non-local resistance signals in magnetic fields

We have performed additional measurements to observe the evolution of the non-local
resistance signals in magnetic fields. These measurements have been carried out in a
similar manner as the two configurations presented above: In configuration 1 the injection
of a spin current is realized via the SHE and detected by the QSH insulator (see Fig. 5.1 a)
while in configuration 2 the injection is performed through the QSH state and the detection
by the inverse spin Hall effect, SHE−1 (see Fig. 5.1 b). As described above, the Fermi
level in the relevant parts of the sample is fixed by adjusting the relevant gate voltage.
Additionally, as a control experiment, we have measured the magnetic field dependence
of a non-local signal in a configuration where both regions are in the n-type conducting
metallic state. Fig. 5.9a shows the obtained traces for magnetic fields perpendicular to
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the 2DEG. The non local signals for the SHE injection (black) and the QSH injection
(blue) show a clear decrease between 0 and 1 T, followed by an increase above 1 T. The
constant shift between QSH/SHE−1 and SHE/QSH curves in the magnetic field is caused
by a slight difference in the initial carrier densities under the two gated regions due to a
random hysteresis in the gate voltage behavior. The control measurement where all parts
of the sample are n-type conducting and the SHE is detected by the SHE−1 is presented
in red. When both regions are n-type conducting, the detected spin signal is small and
hardly depends on magnetic field up to 1 T. Therefore we interpret the decrease of the
signal in magnetic fields in the QSH/SHE−1 and SHE/QSH configurations as resulting
from the decay of the spin polarization of the helical edge states. Indeed, the degree of
spin polarization of the helical edge states can be significantly reduced in a transverse
field by spin-orbit effects, bulk inversion terms, and the presence of metallic puddles in
the mesa due to inhomogeneous gating [25, 95, 96]. As discussed by us previously [95],
a strong perpendicular magnetic field (strong compared with the band gap) renders the
dispersion of the edge states nonlinear and the group velocity of one of the helical edge
states tends to zero. Roughly speaking, such a slowly moving helical edge state will
interact more effectively with the electron puddles, leading to significant decay of spin
polarization, even in the quasi-ballistic regime relevant to the present experiments. At
perpendicular magnetic fields above 1 T, the non-local resistance signal increases for all
three configurations. We attribute this increase to the onset of the quantum Hall edge
channel transport which is superimposed on the spin-related signal from the SHE−1 and
the QSH state.

Fig. 5.9b shows the behavior of the non-local resistance signals in parallel magnetic
fields. In this configuration, the non-local resistance signals are independent of magnetic
field strength. Because of the selection rules for zincblende-type systems, an in-plane
magnetic field induces only a small (second order) Zeeman coupling and is much less
effective in reducing the spin-polarization of the edge states than a perpendicular field of
similar strength.

We conclude that the observed behavior of the device in magnetic fields is consistent with
and yields additional independent evidence of the spin polarization of the helical edge
states in our experiments.

93



94



Chapter 6

Quantum Hall Effect from the
Topological Surface States of Strained
Bulk HgTe

This chapter is based on the publication: C. Brüne, C.X. Liu, E.G. Novik, E.M. Han-

kiewicz, H. Buhmann, Y.L. Chen, X.L. Qi, Z.X. Shen, S.C. Zhang and L.W. Molenkamp,

‘Quantum Hall Effect from the Topological Surface States of Strained Bulk HgTe’, Physi-

cal Review Letters 106, 126803, 2011.

6.1 Abstract

We report transport studies on a three dimensional, 70 nm thick HgTe layer, which is
strained by epitaxial growth on a CdTe substrate. The strain induces a band gap in the
otherwise semi-metallic HgTe, which thus becomes a three dimensional topological insu-
lator. Contributions from residual bulk carriers to the transport properties of the gapped
HgTe layer are negligible at mK temperatures. As a result, the sample exhibits a quantized
Hall effect that results from the 2D single cone Dirac-like topological surface states.
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6.2 Introduction

The discovery of two (2D) and three dimensional (3D) topological insulators (TI) [7, 6,
8, 32, 9, 10, 12, 97, 14, 15] has generated strong activity in the condensed matter physics
community [18, 98]. Current research on 3D TIs is mostly focused on Bi2Te3, Bi2Se3 and
Sb2Te3 compounds [97, 14, 15] due to their simple Dirac-like surface states, which have
been observed by angle resolved photoemission spectroscopy (ARPES) and scanning tun-
neling microscopy [18]. However, these compounds show strong defect doping and low
carrier mobility, and the observation of surface charge transport is obscured by the bulk
conductivity. Many of the predicted novel properties of a 3D TI, such as the quantized
magneto-electric effect [59, 54] and the surface Majorana fermions [99], can only be ob-
served when bulk carriers are negligible compared to the surface states. Experimentally
reaching the intrinsic TI regime, where bulk carriers are absent, is now the central focus
of the field.

The two dimensional TI state was first predicted and observed in 2D HgTe quantum wells
(QW) [7, 8], and non-local transport measurements demonstrate edge state transport with-
out any contributions from 2D bulk carriers. [25] 3D HgTe is a semi-metal which is
charge-neutral when the Fermi energy is at the touching point between the light-hole and
heavy-hole Γ8 bands at the Brillouin zone center. A unique property of the band structure
of HgTe is the energetic inversion of the Γ6 and Γ8 band ordering, which is the origin
of the quantum spin Hall effect in 2D HgTe/CdTe QWs [8]. Due to the band inversion,
3D HgTe is also expected to have Dirac-like surface states [100, 101], but since the ma-
terial is semi-metallic, this state is always coupled to metallic bulk states. With applied
strain, a gap opens up between the light-hole and heavy-hole bands, so that strained 3D
HgTe is expected to be a 3D TI [40, 32]. In this paper we demonstrate experimentally
that a gap opens up in in-plane strained 3D HgTe bulk layers grown by molecular beam
epitaxy (MBE), and we reach the much sought after intrinsic TI regime in a material with
negligible bulk carriers. In this regime, the Hall effect of the 3D HgTe bulk layer is quan-
tized, due to the contributions from the surface states only. Theoretical considerations are
in agreement with the experimental results and confirm the transport through 2D surface
states with Dirac type dispersion.
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Figure 6.1: Supporting characterization experiments. (a) ARPES measurements on a
relaxed, 1 µm thick HgTe sample. The dispersion of the surface state (SSB) and bulk
bands (BB) are indicated by the arrows; (b) Reciprocal space map in the region of the
[115] reflex of the 70 nm thick HgTe sample demonstrating that the epilayer is coherently
strained; (c) Hall resistance as a function of magnetic field of the semi-metallic 1 µm thick
sample ; (d) Schematic picture of the coexistence of the chiral edge states from the upper
and lower surfaces and the non-chiral metallic modes at the side surfaces. The magnetic
field is perpendicular to the upper and lower surfaces, but parallel to the four side surfaces.
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6.3 Existence of the surface states and band gap in 3D
HgTe.

HgTe bulk samples have been grown by MBE on CdTe subtrates, which have a lattice
constant that is 0.3 % larger than that of bulk HgTe (0.646 nm). At this mismatch, the
critical thickness for lattice relaxation is around 200 nm, implying that for thinner HgTe
the epilayer adopts the lateral lattice constant of the substrate, while in thicker layers the
strain is relaxed by the formation of dislocations.

To provide evidence for the occurrence of the topological surface state, we first show an
ARPES measurement on a 1 µm thick HgTe layer in [Fig. 6.1 a)]. In this layer, the lattice
strain is fully relaxed, and the surface has the lattice constant of unstrained bulk material.
The figure clearly shows the presence of the predominantly linearly dispersing surface
state band (SSB), coexisting with bulk bands (BBs) (more data on these assignments can
be found in the supplementary material). According to the theoretical analysis in Ref.
[40], the surface states originate from the inversion between the Γ8 light-hole and Γ6

electron bands, while the bulk bands, which appear nearly at the same energy range with
the surface states, correspond to the Γ8 heavy-hole band.

Since the relaxed sample is a semi-metal and thus not a TI in the strict sense, we have
grown a thinner sample, which is only 70 nm thick, thin enough for the epitaxial strain
due to the lattice mismatch with the substrate to coherently strain the sample, thus opening
up a bulk insulating gap. Fig. 6.1 b) shows a high resolution X-ray diffraction map of the
[115] reflex of this sample in units of reciprocal lattice space vectors. The bright spot in
the center of this graph is the reflex from the substrate, while the thin vertical line stems
from the HgTe epilayer. The absence of any relaxation of the reciprocal lattice vector Qx

for the epilayer is direct evidence that this sample is fully strained. [102] The deformation
potentials of (Hg,Cd)Te have been reported in the literature [103]; using these values and
the 0.3 % lattice mismatch we calculate an energy gap of the order of ∼ 22 meV for
fully strained HgTe on CdTe, using an eight band k·p model [39]. We believe this energy
gap to be the optimal gap value that can be obtained in HgTe. In principle substrates
with a larger lattice mismatch would induce a larger gap, however, these are not readily
available. In addition larger strain would also reduce the maximum thickness the HgTe
layer can sustain without strain relaxation.

For transport experiments, we have subsequently patterned parts of both wafers into Hall-
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Figure 6.2: Transport data on the strain-gapped 70 nm thick HgTe sample. The Hall
conductivity of the 70 nm thick HgTe sample measured at 50 mK shows plateaus at the
quantized values. The inset shows the Hall resistance Rxy, together with the longitudinal
resistance Rxx.
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geometry devices with a mesa of 200 µm width and 600 µm length, using argon ion
etching. The magneto transport of the samples has been investigated at a base temperature
of 50 mK, in magnetic fields up to 16 T. In the 1 µm thick sample, the Hall data indicates
that bulk conductance dominates the transport. Fig. 6.1 c) shows that for this sample
we observe a non-monotonic dependence of the Hall voltage, which is characteristic for
the multi-carrier transport expected from a semi-metal. Much more interesting behavior
is observed for the 70 nm-thick sample, of which the longitudinal and Hall resistance
are shown in the inset of Fig. 6.2. From the low field data, the electron mobility can
be extracted, and estimated as 34000 cm2/(V·s), which is significantly higher than that
observed in Bi2Se3 and Bi2Te3 [57, 58]. At high magnetic fields, the longitudinal and
Hall resistance exhibit distinct features which are characteristic for a 2D electron system
(2DES): the Hall resistance Rxy shows plateaus at the same magnetic fields where the
longitudinal resistanceRxx develops a minimum (inset of Fig. 6.2). Additionally, the Hall
resistance Rxy shows the expected 2D quantized plateau values, which become clearer in
a conductivity plot (Fig. 6.2).

Compared with the quantum Hall effect of an ordinary 2DES, two unusual observations
should be emphasized, which indicate that the observed quantum Hall plateaus indeed
result from the Dirac-type dispersion of the topological surface states. First, at low mag-
netic fields, a sequence of Hall plateaus develops with odd filling factors, ν = 9, 7, and 5,
before at higher field the sequence is continued with ν = 4, 3, and 2. The occurrence of
odd-number filling factors at low magnetic field indicates the presence of a zero mode (a
Landau level at zero energy) due to the linear dispersion of Dirac fermions, as has also
been found in graphene [17] and in HgTe/CdTe QWs with a critical thickness of 6.3 nm
[29]. A 70 nm thick layer can safely be regarded as a 3D material; the confinement ener-
gies of bulk carriers are sufficiently small that Hall quantization effects would be washed
out by multi-subband averaging. We thus assume that the Hall plateaus result from the
topological surface states, and use a model with two Dirac cones, one on the top (vacuum)
and one on the bottom (CdTe interface) to describe the system (see additional online ma-
terial for details). Because massless Dirac fermions in a magnetic field always exhibit a
zero mode, the Hall conductance of a single Dirac cone is given by σxy = (n + 1

2
)e2/h,

where n = nt or n = nb (for the top and bottom surfaces, respectively) is always an
integer [32, 59]. The fractional factor of 1

2
in the Hall conductance σxy is a consequence

of the quantized bulk topological term in the electromagnetic action [59], and is indepen-
dent of the microscopic details. When top and the bottom surface have the same filling
factor, i.e. n = nt = nb, the total Hall conductance is given by σTxy = (2n + 1)e2/h.
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Figure 6.3: Comparison between the calculated density of states (DOS) and the measured
Shubnikov- de Haas oscillations. The DOS are calculated for a two Dirac cones model
for the surface states with one Dirac cone (at the CdTe interface) having a carrier den-
sity 3.7 × 1011cm−2 (blue dashed-dotted line) and the other (the surface facing vacuum)
4.8 × 1011cm−2 (green dashed line). The sum of the DOS for the two Dirac cones (red
line) compares well with the measured longitudinal resistance Rxx (black line). The inset
shows the Landau ladders of the Dirac fermions on both surfaces.

Therefore, within the two Dirac cone model, the odd filling factor at low magnetic fields
can be naturally explained assuming both surfaces have the same density. The appearance
of an even filling factor at high magnetic field indicates that the degeneracy is removed.
In an ordinary 2D electron gas, such a lift of degeneracy usually occurs due to Zeeman
coupling. However, Zeeman coupling cannot lift the degeneracy in inversion symmetric
Dirac cones on the top and bottom surface of a topological insulator. As we explain in
the supplementary material, this is because the inversion symmetry is preserved by the
magnetic field. The Landau levels from the top and bottom surface states will remain
degenerate as long as the hybridization between the two surface states is negligible. For a
thickness of 70 nm, hybridization between the top and bottom surfaces can be neglected
since the surface state width is around 2∼3 nm. Thus we conclude that the inversion sym-
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metry breaking is necessary for the explanation of the Landau level splitting. In practice,
the different electrostatic environments of both surfaces break the inversion symmetry
and lead to different densities at both surfaces. This then leads to different Landau filling
factors for the top and bottom surfaces at high magnetic fields, and the visibility of even
filling factors at high fields results from the increased energy splitting between adjacent
Landau levels at lower filling factors in a Dirac system, as schematically indicated in the
inset of Fig. 6.3. A calculation of the density of states in a magnetic field from a two
Dirac cones model with an inversion breaking term indeed agrees well with the minima
of the Shubnikov-de Haas oscillation, as shown in Fig. 6.3 (see additional online material
for details). From the fit, we obtain very reasonable carrier densities of 3.7 × 1011cm−2

for the bottom (CdTe interface) and 4.8× 1011cm−2 for the top surfaces, respectively. We
note that the carrier densities found here also imply we can neglect any effects from bulk
carriers - if the amount carriers found here would be evenly distributed over the 70 nm
slab this would result in an overall 2D density of ∼ 1010cm−2, yielding a very different
quantum Hall behavior.

The second observation is that the minima in Rxx do not approach zero even at the high-
est magnetic fields although the Hall resistance is quantized and the plateaus have the
expected resistance value. This indicates that besides the chiral edge modes from the
quantum Hall effect, there are other modes contributing to the longitudinal, but not the
Hall transport. A plausible candidate are the metallic states at the side surfaces [60].
While the above two Dirac cone model only takes the top and bottom surfaces explicitly
into account, the topological surface states also occur on the four side surfaces, which see
a parallel, rather than perpendicular, magnetic field. Consequently, at the side surfaces
the Dirac points are not gapped, but only shifted by the applied magnetic field. Thus, the
surface states at the side surfaces will remain metallic in magnetic field and coexist with
the chiral edge states, as shown schematically in Fig. 6.1 d). This provides a backscatter-
ing mechanism when the transport on the top and bottom surfaces is in the quantum Hall
regime [60]. A more systematic study of the influence of the residual bulk conductivity
and side surface states is required to fully understand the quantitative behavior of Rxx and
Rxy, which is beyond the scope of the present letter.
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6.4 Conclusion.

In summary, we have experimentally reached the much sought after regime of the intrinsic
3D topological insulator with negligible bulk carriers, in an epitaxially strained 3D HgTe
sample. Our observation of a quantized Hall conductance in a 3D sample conclusively
demonstrates a key feature of 3D topological insulators. A simple model with two Dirac
cones is proposed to understand the most salient features of the transport measurement
qualitatively. The quality of our sample should be sufficient to observe the quantized
topological magneto-electric effect [59], and directly determine the 3D topological in-
variant experimentally.

6.5 Supplementary material for “Quantum Hall Effect
from the Topological Surface States of Strained Bulk
HgTe”

6.5.1 Details of the ARPES Experiment

Angle resolved photoemission spectroscopy (ARPES) experiments on 1µm thick HgTe
thin film (grown on CdTe substrate) were performed at Beamline 10.0.1 of the Advanced
Light Source (ALS). During the experiments, the measurement chamber pressure was
kept < 4 × 10−11 Torr, and data were recorded by a Scienta R4000 analyzers at 15 K
sample temperature. The photon energy used was 65 eV and the total convolved energy
and angle resolutions were 20 meV and 0.2 degree, respectively. The fresh surface for
ARPES measurement was obtained by gently sputtering the HgTe (001) surface with Ar
ion-beam, and no observable surface degradation was noticed during typical experimental
period (12 hrs). We also measured the photon energy dependent (65-70eV) band disper-
sion of HgTe, as shown in Fig. 6.4. For all measurements at different energies, the surface
state band can clearly be observed, superimposed on a blurry background of bulk bands.
The shape and dispersion of the band do not vary with photon energy, while its intensity
may vary. This is direct evidence that the feature does not have kz dispersion, as expected
from a two dimensional (surface) state. We note that at the vicinity of the Gamma point,
the surface state has gained finite curvature, similar to that observed[14, 104] in Bi2Se3.
The difference between the HgTe and the Bi2Se3 cases is that for the latter, both the up-
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Figure 6.4: Energy dependent band structure along M-Γ-M direction from 65-70eV exci-
tation photons, with the EF , surface state band (SSB) and the bulk band (BB) marked.

per and lower Dirac cone can be seen, while for the former case, the Dirac point resides
close to the Fermi energy and thus only the lower Dirac cone can be seen in the ARPES
measurements of Fig. 6.4.

6.5.2 k·p calculation of the band structure of strained HgTe

To understand the transport properties of the 70nm sample, we first calculate the band
dispersion of the structure using the k · p type approach. HgTe can be well described
by the eight-band Kane model, where the electron Γ6 band and hole Γ7, Γ8 bands are
taken into account explicitly. The detailed form of the Kane model, as well as the re-
lated band parameters, can be found in Ref [39]. As is evident from the reciprocal lat-
tice map of Fig. 6.1, the 70 nm thick HgTe epilayer is fully strained due to the lattice
mismatch between CdTe substrate and HgTe. Although this lattice mismatch is small
(ε = (aCdTe − aHgTe)/aHgTe ≈ 0.003 with aCdTe and aHgTe lattice constants of CdTe
and HgTe, respectively), the resulting strain is sufficient to open a bandgap between the
heavy- and light-hole bands. The CdTe substrate is oriented along (001), and for this
orientation the strain tensor components are given by εxx = εyy = ε, εzz = −2εC12/C11
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and εi 6=j = 0 for i, j = x, y, z. Here, C11 and C12 are elastic stiffness constants. Because
the off-diagonal components of the strain tensor (the shear components) are zero, there
are no internal electric fields generated in the HgTe layer due to piezoelectric effects. The
strain tensor components for an arbitrary growth direction can be determined using the
model of De Caro et al [105]. The effects of the strain tensor can be incorporated in the
Kane model through the Bir-Pikus Hamiltonian[106], which can be easily obtained from
the Kane Hamiltonian with the substitution kikj → εij . For the present case, one finds
that lattice strain shifts the light-hole and heavy-hole band-edges at the Γ-point and leads
to the opening of a gap between them which is given by Eg = −b(εxx+εyy−2εzz), where
b is the uniaxial deformation potential, which amounts to -1.5 eV for HgTe [103]. For
C12/C11 = 0.68 [107] we obtain Eg ≈ 22 meV.

Using the above model, we have calculated the band structure of a 0.3 % strained 70nm
thick HgTe slab, yielding the dispersion shown in Fig. 6.5. At Γ point, the conduction
band edge is around 11meV while the valence band edge around -11meV, and the direct
gap at Γ point amounts to 22meV. Within the bulk gap, we find two special states (shown
in blue in Fig. 6.5) which touch the valence band states at the Γ point, but merge with
the conduction band for large k. In the present system, the Dirac point of the surface
state is buried deep within the heavy hole valence band, about 70meV below the valence
band edge for the HgTe-CdTe interface and 100meV for the HgTe-Vacuum surface, as
shown schematically by the red guiding lines in Fig. 6.5. Therefore, these special states
(shown in blue in Fig. 6.5) consist of the surface states originating from the Dirac type
dispersion between Γ6 electron and Γ8 light-hole bands hybridized with the Γ8 heavy hole
bands[40, 60].

In actual devices, positions of the Dirac points can vary from ones shown here. This is
due to band bending from the Hartree potential, which has not been taken into account in
the present calculations. Obviously, the existence of the surface states is not sensitive to
the Hartree potential due to their topological nature.

6.5.3 Two Dirac cones model

In this section, we will introduce an effective model with two Dirac cones to describe the
surface states of a slab of a topological insulator and investigate the Landau level structure
evolving from such a system when a perpendicular magnetic field is applied (this defines
the z-direction). On the surface of a strong topological insulator, the low-energy physics
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Figure 6.5: Band structure of a 70nm thick 0.3 % strained HgTe slab. The Dirac-like states
in the gap are plotted in blue. The dashed red line schematically shows the dispersion of
the Dirac surface states at the two opposite surfaces before their hybridization with the Γ8

heavy hole bands.
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of the surface states can be described by the Dirac Hamiltonian, with two components
related to each other by time reversal, which we refer to as spin for simplicity. In our slab,
we need to take two surfaces, which are perpendicular to the magnetic field and related
to each other by inversion, into account, and consequently, there are in total two Dirac
cones and the four basis states can be written as |α, σ〉, where α = ± denotes the upper
and lower surface and σ =↑, ↓ denotes spin. Within this four state basis, the effective
Hamiltonian is written as

Ĥ2D = ~vf

(
kxσy − kyσx 0

0 −(kxσy − kyσx)

)
= ~vf (kxσy − kyσx)⊗ τz, (6.1)

where the Pauli matrix σ describes spin and τ the opposite surfaces; the Hamiltonian
is invariant under the inversion operation P = 1 ⊗ τx and the time reversal operation
T = −iσy ⊗ 1K where K indicates complex conjugation. We note that for zero gap
HgTe/CdTe quantum wells [29], the effective Hamiltonian can also be described by two
Dirac cones. However in that case, the two Dirac cones are related to each other by time
reversal, while here the two Dirac cones are related by inversion. Besides the effective
Hamiltonian Ĥ2D, we also take into account two more terms that may be active in the
sample: an inversion breaking term[108]

Ĥib =

(
∆i 0

0 −∆i

)
= ∆i1⊗ τz, (6.2)

and a hybridization term between the two surface states, which should become important
in very thin slabs:

Ĥh =

(
0 ∆h

∆h 0

)
= ∆h1⊗ τx. (6.3)

To study the effect of a magnetic field along the z-direction, we first need to make a
Peierls substitution, i.e. we replace k in the Hamiltonian Ĥ2D with π = k + e

~A , where
A = (0, B0x, 0) for a magnetic field B = B0ẑ. Additionally, we need to consider a
Zeeman type term, given by

ĤZ =

(
g∗µBB0σz 0

0 g∗µBB0σz

)
= g∗µBB0σz ⊗ 1 (6.4)

where g∗ is an effective g factor that takes orbital effects of nearby bands into account.
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First let us have a look at the Landau levels of the Hamiltonian Ĥ2D, which can be solved
as

Eαt(n) = t
√

2ne~v2
fB0 n = 1, 2, · · · (6.5)

and Eα(n = 0) = 0 for zero modes, where t = ± denotes the electron and hole levels
and α = ± denotes the upper and lower surfaces. Obviously, each Landau level is doubly
degenerate since the the upper and lower surfaces are identical and related by inversion.
The zero modes will be half filled at charge neutrality, and, thus due to the double degen-
eracy, the Hall plateaus should appear only at odd number filling factors n = 1, 3, 5, · · · ,
which, as described above, is what we observe in low magnetic fields.

In high magnetic fields, Hall plateaus at even number filling factors are also observed,
which indicates a splitting of the Landau level degeneracy. In zero gap HgTe/CdTe quan-
tum wells (QWs) case[29], we have found that the even number filling factors observed in
that system are caused by Zeeman splitting. It is thus natural to first investigate the same
mechanism for the present experiment. This implies solving the Landau level problem for
the Hamiltonian Ĥ2D + Ĥh + ĤZ . One easily finds that in this case the Landau levels are
given by

Eβt(n) = t
√

2ne~v2
fB0 + (|µBg∗B0|+ β|∆h|)2 (6.6)

for n = 1, 2, 3, · · · and Eβ(0) = −g∗µBB0 + β|∆h| for n = 0. β = ± From these
expressions, we conclude that the double degeneracy remains when only the Zeeman
term is important but hybridization between the two surface states is negligible(∆h = 0).
Therefore considerable hybridization between the two surface states (i.e. the slab has to
be very thin) is required in order to make this mechanism work. In HgTe, the decay length
of the surface states is estimated to be of order 2 ∼ 3nm[60], which is much smaller than
the sample thickness of 70 nm. It is thus unlikely that a Zeeman mechanism is responsible
for the degeneracy lifting in the present experiment.

The other possible mechanism for Landau level splitting is the breaking of the inversion
symmetry - which in practice occurs by the presence of the substrate. To see this, we solve
the Landau level problem of the Hamiltonian Ĥ2D + Ĥib and obtain the eigen-energies as

Eαt = t
√

2ne~v2
fB0 + α∆i (6.7)
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for n = 1, 2, 3, · · · and Eα(0) = α∆i for n = 0. From this expression, it is obvious
that the degeneracy of the Landau levels is removed for any nonzero ∆i. This makes
inversion-symmetry breaking mechanism the most likely explanation for our observation
of even filling factors at high magnetic fields. Since the spacing between the Landau
levels increases with magnetic field and one can assume that the disorder broadening of
the Landau levels stays constant (as a first approximation), the degeneracy lifting will
only be visible in strong magnetic fields.

For a comparison with the experimentally obtained Shubnikov-de Haas oscillations, we
calculate the density of states for the energy dispersion (6.7) for two Dirac cones with
an inversion-symmetry breaking term. Taking ~vf = 280meV · nm and ∆i = 4.2meV ,
we find that the positions of the experimental Shubnikov-de Haas minima can be fitted
well with the densities of n1 = 3.7 × 1011cm−2 and n2 = 4.8 × 1011cm−2 for the two
Dirac cones, which are the traces shown in Fig. 6.3. Further evidence that this is the
correct model for our observations comes from the odd filling factor (ν = 9, 7, 5) quantum
Hall plateaus we observe at low magnetic fields. A clear discrimination between the
Landau level structure of a Dirac system and that of a conventional 2D electron gas can
be obtained from plotting of the Landau level index as a function of 1/B[109, 110]. For
a Dirac system with multiple Dirac cones, the filling factor is related to the Landau level
index N by ν = m(N + 1/2), where m is the number of the Dirac cones and equals to 2
here. Taking the magnetic field values corresponding to the Hall plateaus ν = 9, 7, 5 from
the σxy curve in Fig. 6.2, and plotting N as a function of 1/B yields Fig. 6.6. The intercept
of this plot for infinite magnetic field gives -1/2, which provides additional evidence that
the main physics of our system can be well described by the two Dirac cones model.
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1/B (1/T)

N

Figure 6.6: Landau level index for the data of Fig. 6.2 plotted as a function of inverse
magnetic field.
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