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und Nelly, Eva, Daria, Aniela, Lisa und natürlich Andi bedanken, die stets dafür gesorgt

haben, dass meine Nerven wieder an ihren angedachten Ort wandern.

3



4



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Real Continued Fractions 11

1.1 A Brief Mathematical and Historical Introduction . . . . . . . . . . . . . . . 11

1.2 Some Classical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 The Hurwitz Brothers 19

2.1 The Younger: Adolf Hurwitz . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Excursion: The Personal Hurwitz Estate from the Archive of the ETH Zurich 31

2.2.1 Recreational Mathematics in the Mathematical Diaries . . . . . . . . 34

2.2.2 Adolf Hurwitz Folding and Cutting Paper . . . . . . . . . . . . . . . 44

2.2.3 Relation to his Student David Hilbert . . . . . . . . . . . . . . . . . 53

2.3 The Elder Brother: Julius Hurwitz . . . . . . . . . . . . . . . . . . . . . . . 76

2.4 Excursion: A Letter Exchange Concerning Julius Hurwitz’s PhD Thesis . . 85

3 Hurwitz’s Approach to Complex Continued Fractions 95

3.1 Continued Fractions According to Adolf . . . . . . . . . . . . . . . . . . . . 95

3.2 A Complex Continued Fraction According to Julius . . . . . . . . . . . . . . 106

3.3 Some Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4 Modern Developments of Complex Continued Fractions 117

4.1 J. Hurwitz’s Algorithm = Tanaka’s Algorithm . . . . . . . . . . . . . . . . . 118

5



Contents

4.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.1.3 Some Considerations and Characteristics . . . . . . . . . . . . . . . 124

4.1.4 Geometrical Approach to the Approximation Behaviour . . . . . . . 132

4.1.5 Approximation Quality . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2 Ergodic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2.2 Continued Fraction Transformation . . . . . . . . . . . . . . . . . . . 140

4.2.3 Dual Transformation and Natural Extension for Tanaka’s Algorithm 142
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Introduction

This thesis deals with two branches of mathematics: Number Theory and History of

Mathematics. On the first glimpse this might be unexpected, however, on the second view

this is a very fruitful combination. Doing research in mathematics, it turns out to be very

helpful to be aware of the beginnings and development of the corresponding subject.

In the case of Complex Continued Fractions the origins can easily be traced back to the

end of the 19th century (see [Perron, 1954, vl. 1, Ch. 46]). One of their godfathers had

been the famous mathematician Adolf Hurwitz. During the study of his transformation

from real to complex continued fraction theory [Hurwitz, 1888], our attention was arrested

by the article ’Ueber eine besondere Art der Kettenbruch-Entwicklung complexer Grössen’

[Hurwitz, 1895] from 1895 of an author called J. Hurwitz. We were not only surprised

when we found out that he was the elder unknown brother Julius, furthermore, Julius

Hurwitz introduced a complex continued fraction that also appeared (unmentioned) in an

ergodic theoretical work from 1985 [Tanaka, 1985]. Those observations formed the basis

of our main research questions:

What is the historical background of Adolf and Julius Hurwitz and their mathematical

studies?

and

What modern perspectives are provided by their complex continued fraction expansions?

In this work we examine complex continued fractions from various viewpoints. After a

brief introduction on real continued fractions, we firstly devote ourselves to the lives of

the brothers Adolf and Julius Hurwitz. Two excursions on selected historical aspects in

respect to their work complete this historical chapter. In the sequel we shed light on Hur-

witz’s, Adolf’s as well as Julius’, approaches to complex continued fraction expansions.

Correspondingly, in the following chapter we take a more modern perspective. Highlights

are an ergodic theoretical result, namely a variation on the Döblin-Lenstra Conjecture



[Bosma et al., 1983], as well as a result on transcendental numbers in tradition of Roth’s

theorem [Roth, 1955]. In two subsequent chapters we are concernced with arithmetical

properties of complex continued fractions. Firstly, an analogue to Marshall Hall’s theo-

rem from 1947 [Hall, 1947] on sums of continued fractions is derived. Secondly, a general

approach on new types of continued fractions is presented building on the structural prop-

erties of lattices. Finally, in the last chapter we take up this approach and obtain an upper

bound for the approximation quality of diophantine approximations by quotients of lattice

points in the complex plane generalizing a method of Hermann Minkowski, improved by

Hilde Gintner [Gintner, 1936], based on ideas from geometry of numbers.

In particular in Chapter 2 the reader can find a great number of quotations. Notice

that all translations from German to English have been made by the author to the best

of her knowledge. The original versions can be found in footnotes.

Whenever a result of us or a related version has already been published, the correspond-

ing reference is given in each chapter’s preamble.

At this point, we align ourself to an opinion of the authors of the inspiring book ’Nev-

erending Fractions’ [Borwein et al., 2014, p. i]:

”[D]espite their classical nature, continued fractions are a neverending re-

search area [...]”.





1 Real Continued Fractions

This chapter shall provide a brief mathematical as well as historical introduction to the

theory of real continued fractions. Since there is a great variety of excellent standard

literature, here we avoid to repeat comprehensive proofs. Instead, our aim is to anticipate

some results which will occur in subsequent chapters for the complex relatives of real

continued fractions. To achieve a deeper understanding and an extensive overview of real

continued fraction theory, as well as for references to the original papers, among others

we refer to [Perron, 1913], [Opolka and Scharlau, 1980], [Kraaikamp and Iosifescu, 2002],

[Steuding, 2005], and [Borwein et al., 2014].

1.1 A Brief Mathematical and Historical Introduction

Every real number x can be uniquely expanded as

x = a0 +
1

a1 +
1

a2 + ...
+

1

an + .. .

,

where a0 ∈ Z and ai ∈ N; if x is rational, the expansion is finite and uniqueness follows

from assuming the last an to be strictly larger than one. This often with a twinkling eye

called typographical nightmare represents the regular continued fraction expansion of x.

It is developed by the continued fraction algorithm, which for rational numbers is derived
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1 Real Continued Fractions

from the well known Euclidean Algorithm1. Here in each iteration the input is a real

number, which is divided into an integer and a fractional part, starting with

x = ⌊x⌋+ {x},

where ⌊ · ⌋ denotes the Gaussian floor function. Defining a0 := ⌊x⌋ leads to the first

iteration, the algorithm’s output,

x = a0 +
1
1

{x}
,

provided x 6∈ Z. Since then {x} ∈ (0, 1), a new real number α1 := 1
{x} > 1 arises, which

serves as input for the subsequent iteration. The algorithm’s recursion starts from the

beginning, producing a positive integer a1 and a further remainder α2 and so on.

We mainly distinguish between finite and inifinite outputs producing a finite or infinite

sequence (an)n of so-called partial quotients2. Since in regular continued fractions each

numerator is equal to 1, all relevant information is preserved in this sequence. Hence, it

is sufficient to use the shortened continued fraction notation

x := [a0; a1, a2, . . . an], respectively x := [a0; a1, a2, . . . an, . . .].

Firstly, we give a classical quotation to finite continued fractions refering to one of the

probably first scientific publications concerning continued fractions. In his ’Descriptio

automati planetarii’, published in 1703, the Dutch universal scientist Christiaan Huygens

(1629 - 1695)3 explained a pioneering method to receive good approximations to rational

numbers with large numerators and denominators. His aim was to construct a cogwheel

1see [Borwein et al., 2014, Ch. 1.1].
Remark: In the sequel letters in established expressions like ’euclidean algorithm’ shall only be capi-
talized if they arise because of their mathematical function.

2in modern literature sometimes also ’digits’, written in short form (an)
3
Remark: In the sequel biographical data of mathematicians will only be given in the first three chapters
with respect to their historical background.
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1 Real Continued Fractions

model of our solar system. Here the ratio of the number of gear teeth should represent

the proportion of the times the planets need for their orbits.

”To find smaller numbers, which are as similar as possible to this ratio,

I divide the greater by the smaller, and continue [to divide] the smaller by

what remained from the division, and this again by the remainder. And so on

continuing [...]”.4 [Lüneburg, 2008, p. 558]

Huygens knew the approximate length of Saturn’s revolution around the sun, namely

77708431
2640858 = 29.42544847 . . . years. With the above stated algorithm he was able to calculate

the continued fraction expansion

77708431

2640858
= [29; 2, 2, 1, 5, 1, 4, 1, 1, 2, 1, 6, 1, 10, 2, 2, 3].

According to his remark, the Dutch scientist was obviously not only aware of how to

use the euclidean algorithm to expand a continued fraction, he moreover knew about

its approximation properties.5 Those play a decisive role in several parts of this work, in

particular in Chapter 7. Indeed, from continued fractions one obtains so-called convergents

pn
qn

∈ Q by ’cutting’ them after the first n partial quotients:

p0
q0

= [a0],
p1
q1

= [a0; a1],
p2
q2

= [a0; a1, a2], . . . .

Since only a limited number of gear teeth can be realized, Huygens calculated in the same

manner p0
q0

= 29, p1
q1

= 59
2 ,

p2
q2

= 147
5 ,

p3
q3

= 206
7 ,

p4
q4

= 1177
40 . He concluded,

”Consequently, 7 is to 206 an approximation ratio to the ratio 2640858 to

77708431. Thus, we give Saturn’s wheel 206 gear teeth, however, the driving

4”Um nun kleinere Zahlen zu finden, die diesem Verhältnis möglichst nahe kommen, teile ich die größere
durch die kleinere, und weiter die kleinere durch das, was bei der Division übrig bleibt, und dies
wiederum durch den letzten Rest. Und so weiter fortfahrend [...].”

5Very likely, continued fractions have been used for centuries for the purpose of approximation before
Huygens, however, his studies stand at the beginning of the modern development.
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1 Real Continued Fractions

one 7.”6 [Lüneburg, 2008, p. 559]

Planet by planet Huygens used continued fractions to obtain appropriate convergents and,

finally, succeeded to construct a model of our solar system.

One can easily prove (see e.g. [Steuding, 2005, p. 38]) that the convergents satisfy the

recusion formulae























p−1 = 1, p0 = a0, and pn = anpn−1 + pn−2,

q−1 = 0, q0 = 1, and qn = anqn−1 + qn−2.

Obviously, finitely many convergents arise from a finite continued fraction, whereas there

are infinitely many convergents if the algorithm does not stop. Since the latter infinite case

is not only much more interesting, however, also more complicated there was a certain need

for systematization. ”After many individual results and more or less incidentally found

correlations by former mathematicians this theory is upraised to the rank of a systematic

theory by Euler and especially Lagrange.”7 [Opolka and Scharlau, 1980, p. 54] In an

initial, hereon related, paper ’De fractionibus continuis’ 8 from 1737, Leonhard Euler (1707

- 1783) proved the first part of the following theorem; the second result goes back to a

work of Joseph-Louis Lagrange (1736 - 1813) in 1768.

Theorem 1.1.1 (Euler and Lagrange)

A real number x is irrational if, and only if, its continued fraction expansion is infinite.

If x is quadratic irrational, i. e. x is the irrational solution of a quadratic equation with

rational coefficients, then its continued fraction expansion is periodic.9

6”Folglich ist 7 zu 206 Näherungsverhältnis zum Verhältnis 2640858 zu 77708431. Wir geben also dem
Saturnrad 206 Zähne, dem treibenden aber 7.”

7”Nach vielen Einzelergebnissen und mehr oder weniger zufällig gefundenen Zusammenhängen durch
frühere Mathematiker wird diese Theorie durch Euler und vor allem Lagrange in den Rang einer
systematischen Theorie erhoben”

8for more details we refer to [Brezinski, 1991, pp. 97]
9Here periodic means that after a certain partial quotient, the consecutive sequence of partial quotients
is periodic.
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1 Real Continued Fractions

Moreover, Euler gave a nice example of an infinite continued fraction. He expanded

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, . . .]

where e denotes as usual Euler’s Number10. In the following years many mathematicians,

as Johann Heinrich Lambert (1728 - 1777), Adrien Marie Legendre (1752 - 1833), Evariste

Galois (1811 - 1832), and Carl Friedrich Gauss (1777 - 1855), made significant contributions

to the further development of the theory of continued fractions. Apart from e, one of their

major concerns was to receive more information about the number π. The first continued

fraction for π was found by the English school, namely William Brouncker (1620 - 1684)

gave the semi-regular11 expansion

4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 +
. . .

in response to John Wallis’ (1616 - 1703) infinite product [Dutka, 1982]. In 1844, Joseph

Liouville (1809 - 1882) proved that for any algebraic number x of degree d > 1, there

exists a positive constant c, depending only on x, such that

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

>
c

qd

for all rationals p
q
with q > 0. Consequently, algebraic numbers cannot be approximated

too good by rational numbers; moreover, numbers which allow better rational approx-

imations are transcendental. Taking this observation into account, Liouville gave first

10Many years later, in 1896, also Adolf Hurwitz, one of the central figures of Chapters 2 and 3, published
an article on the continued fraction expansion of e. [Hurwitz, 1896a]

11A general definition of semi-regular continued fractions is given in Section 3.1
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1 Real Continued Fractions

explicit examples of transcendental numbers by the regular continued fraction expansions

x = [0; a1, a2, . . .]
12 with partial quotients an satisfying

lim sup
n→∞

log an+1

log qn
= ∞;

notice that, given a1, . . . , an (and therefore qn), the latter condition can be fulfilled by an

appropriate choice of an+1. Certainly, this mathematical benchmark has paved the way

and was encouraging for a great number of results on transcendental numbers.13

More information about the history of continued fractions can be found in Brezinski’s

work [Brezinski, 1991]. The first classic and yet standard reference for continued

fractions is the treatise ’Die Lehre von den Kettenbrüchen’ [Perron, 1913] by Oskar

Perron (1880 - 1975). For definitions, details, and fundamental facts we refer to this

source. Perron’s wonderful monograph covers both, arithmetic and approximation theory

of continued fractions, and its third edition [Perron, 1954, vl. 1, Ch. 46] includes a

brief introduction to Adolf Hurwitz’s approach to extend the theory of continued frac-

tions from real numbers to complex numbers what is also subject of Chapter 3 in this work.

1.2 Some Classical Results

With respect to Christaan Huygen’s investigations and Joseph Liouville’s result on tran-

scendental numbers, we have already indicated that continued fractions are the method

of choice when a rational approximation for a given (irrational) real number is needed.

Since the approximation properties refer to the arising convergents pn
qn
, we point out some

results concerning their characteristics. A first simple, however, important observation is

12
Remark: Notice that if a0 = 0 appears, sometimes this partial quotient is omitted. In this case there
are only commas, no semicolon in this way of notation.

13The transcendence of e and π were proved by Charles Hermite (1822 - 1901), respectively Ferdinand von
Lindemann. Their original approaches were simplified several times, among others by David Hilbert
and Adolf Hurwitz. These proofs do not rely on continued fractions.
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1 Real Continued Fractions

the following

Lemma 1.2.1 The sequence of denominators (qn)n of convergents pn
qn

from a continued

fraction expansion is strictly increasing for n ≥ 2.

Notice that also the sequence of numerators of the convergents increases strictly. Moreover,

the convergents approximate a number alternating, those with even index from below and

the others from above. These observations, together with Recursion Formulae (1.1), form

the basis for deeper results.

Theorem 1.2.2 (Law of Best Approximation, Lagrange, 1770)

Let x be a real number. If n ≥ 2 and p, q are positive integers satisfying 0 < q < qn with

p
q
6= pn

qn
, then

|qnx− pn| < |qx− p|.

In other words, Lagrange [Lagrange, 1770] showed that the convergents to an irrational

number provide the best possible rational approximations. This result is rather impressive

and elucidates the importance of continued fractions for approximation theory. More

information on the convergent’s approximation quality is contained in another result of

this period, proven by Legendre in [Legendre, 1798, p. 139].

Theorem 1.2.3 (Legendre, 1798)

Every reduced rational p
q
∈ Q satisfying

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

<
1

2q2

is a convergent to x. Among two consecutive convergents p
q

to a given real x, there is at

least one satisfying this inequality.

In fact the approximation quality of convergents also turns out to be extremely helpful

for solving the Pell equation

X2 − dY 2 = 1

17



1 Real Continued Fractions

for x, y ∈ Z, where d ∈ N. If d is a perfect square, there are only finitely many solutions.

Thus, we consider the case
√
d 6∈ Q and assume that x, y is a solution. The left hand-side

can be factored as

(x−
√
dy)(x+

√
dy) = x2 − dy2 = 1,

which implies
∣

∣

∣

∣

√
d− x

y

∣

∣

∣

∣

=
1

y2|
√
d+ x

y
|
<

1

2y2
.

This modification provides obviously the same inequality as in Theorem 1.2.3. Conse-

quently, all solutions of the Pell equation can be found among the convergents of
√
d.14

In fact, they may be precisely determined.

Theorem 1.2.4 Assume
√
d 6∈ Q. The Pell equation X2 − dY 2 = 1 has infinitely many

integer solutions (xk, yk) besides the trivial solution (±1, 0); up to the sign they are all

given by

(pkl−1, qkl−q) if l ≡ 0 mod 2,

(p2kl−1, q2kl−q) if l ≡ 1 mod 2.

Here l denotes the minimal period of the periodic continued fraction expansion of
√
d.

In Chapter 7 we study the complex analogue of this remarkable theorem.

We shall come back to all results stated in this section in later chapters. Of course,

apart from those few classical results mentioned here, there is an enormous number of

publications on real continued fractions that would be worth to discuss. However, since

this work is dedicated to complex continued fractions, here we do not go further and draw

the interested reader’s attention to the above mentioned literature.

14Even all solutions of the more general equation X2 − dY 2 = ±1 can be found among the convergents.
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2 The Hurwitz Brothers

This chapter is dedicated to the lives of the brothers Julius and Adolf Hurwitz, both

gifted with a smart intellect, a keen perception, and great curiosity in science. They were

born in the middle of the nineteenth century in a small town not far from Göttingen.

Already during their schooldays the two of them became acquainted with mathematical

problems and both started studies in mathematics. So far nothing extraordinary. While

the younger brother turned out to be extremely successful in his research, the elder brother

and his work, however, seem to be almost forgotten. Besides their biographies, we fur-

thermore give two excursions connected to their mathematical careers. Regarding Adolf

Hurwitz, we provide an insight into his estate stored in the archive of the polytechnic Eid-

genössische Technische Hochschule in Zurich, whereas in Julius Hurwitz’s case we examine

a letter exchange concerning his doctoral thesis. The majority of the biographical parts is

published in [Oswald and Steuding, 2014], concerning the first excursion some results can

also be found in the articles [Oswald, 2014a] and [Oswald, 2014c], both relying on Adolf

Hurwitz’s mathematical diaries.
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2 The Hurwitz Brothers

2.1 The Younger: Adolf Hurwitz

Figure 2.1: Portrait of Adolf

Hurwitz (1859 - 1919), taken

from Riesz’s register in Acta

Mathematica from 1913

[Riesz, 1913].

Adolf Hurwitz was born into a Jewish family

on March 26, 1859, in Hildesheim near Hanover.

The common Jewish surname Hurwitz1is a ref-

erence to the historically portentous small town

Hořovice in Central Bohemian Region of the

Czech Republic. Already during his schooldays

Adolf Hurwitz must have made an excellent im-

pression in mathematics. His teacher at school

was Hermann Cäsar Hannibal Schubert (1848

- 1911), a doctor of mathematics who invented

the so-called Schubert calculus in enumerative

geometry.

Schubert gave his pupil Adolf private lessons each Sunday afternoon. Obviously, this was

a fruitful investment. Hurwitz’s first paper is a joint work [Hurwitz and Schubert, 1876]

with Schubert on Chasles’ theorem on counting the number of curves satisfying certain

algebraic conditions within a family of conics2; this generalizes Bézout’s theorem and plays

a certain role in algebraic geometry. The team play of Adolf and his teacher was indeed

good luck since Schubert left Hildesheim for Hamburg in 1876 after only five years.3

According to George Pólya (1887 - 1985) [Pólya, 1987, p. 25], ”Hurwitz had great math-

1smilar to Horowitz and Hurewicz
2The famous Apollonian problem about a circle being tangent to three further circles can be seen as
forefather of those geometrical questions. A nice reading [Hellwig, 1856] in this topic was published in
Halle in 1856, where H.C.H. Schubert did his doctorate in 1870, only a couple of years later.

3For more details on Schubert, who is nowadays better know for his mathematician influence in Hamburg,
see [Burau, 1966, Burau and Renschuch, 1993].
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ematical breadth, as much as was possible in his time. He had learned algebra and number

theory from Kummer and Kronecker, complex variables from Klein and Weierstrass.” In-

deed, this great opportunity of having studied both at that time opposing perspectives

on mathematics, the analytical approach of the Berlin school as well as the geometrical

approach of the Göttingen school, helped Adolf Hurwitz during his entire career. At the

age of 18 he started to study at the polytechnic university in Munich attending the lectures

of the eminent Felix Klein (1849 - 1925). Refering to these years of study, Adolf Hurwitz’s

later wife Ida Samuel-Hurwitz (1864 - 1951) wrote:

”From the very first beginnings Klein thought he could demand the highest

requirements on him. [...] Also he made him execute complicated calculations

for his (Klein’s) work and gave him presentations for the seminar about the

most difficult papers [...]. The mental exhaustion had naturally a very un-

favorable effect on his state of health and the existing tendency for migraine

increased immensely.”4 [Samuel-Hurwitz, 1984, p. 5]

At that time Klein was lecturing on number theory, a topic which became Adolf Hurwitz’s

main line of investigation. He, furthermore, supported Adolf to move to Berlin, where

Leopold Kronecker (1823 - 1891) and Karl Weierstrass (1815 - 1897) were his teachers.

After three semesters in the capital, in 1880, Adolf Hurwitz followed Felix Klein to Leipzig

for a continuation of his studies.5 Already one year later, in 1881, Hurwitz obtained

a doctoral degree6 for his work on modular functions [Hurwitz, 1881]; more precisely,

on arithmetic properties of the Fourier coefficients of Eisenstein series and congruence

subgroups. In retrospective, his supervisor, Felix Klein, wrote that when it is about

4”Klein glaubte von vornherein, die höchsten Anforderungen an ihn stellen zu dürfen. [...] Auch liess
er ihn complicierte Rechnungen für seine (Klein’s) eigene Arbeiten ausführen und übertrug ihm für
das Seminar Referate über die schwierigsten Abhandlungen [...]. Die geistige Überanstrengung wirkte
naturgemäss sehr ungünstig auf sein Befinden, und die schon von früh an vorhandene Neigung zu
Migräne nahm bedeutend zu.”

5An excerpt of a letter from Klein to Adolf’s father Salomon Hurwitz explaining the situation and the
perspective for his son can be found in [Rowe, 2007, p. 22].

6According to Ida Samuel-Hurwitz [Samuel-Hurwitz, 1984, p. 6], he had to borrow a tailcoat from a
fellow student for his doctoral viva.
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Riemann’s theory of functions from his school Hurwitz and Dyck made the most important

contributions.7 In fact, Klein was at the peak of his scientific career when Adolf did his

doctorate and Klein’s research definitely benefited a lot from Adolf’s investigations.

Doing further steps in his academic career, Adolf Hurwitz had to face certain difficulties

at the University of Leipzig with respect to his school education at the Realgymnasium An-

dreanum at Hildesheim. This type of school had been introduced in Prussia in the middle

of the nineteenth century for the sake of an advanced education for more than the priviliged

youth. However, there were critical voices8 and some universities did not value these insti-

tutions well. Students with such an educational background, lacking sufficient knowledge

of Greek and Latin, could not obtain higher degrees (cf. [Hilbert, 1921, Rowe, 2007]).

In 1882, Adolf Hurwitz visited again the University of Berlin, where especially Weier-

strass was interested in his function-theoretical efforts and gave him his post-doctoral

subject. ”For his habilitation Kronecker and Klein strongly recommended to him the

at that time full professor in Göttingen H.A. Schwarz, whereas he himself was already

in correspondence with the eldest full professor M.A. Stern.”9[Samuel-Hurwitz, 1984, p.

6] Hurwitz moved in the following year to the more liberal Göttingen University where

he succeeded with his habilitation. In the German system habilition granted the ’venia

legendi’, i.e., the permission to lecture as a Privatdozent which meant to collect course

fees from the students without any payment from the university.10 It seems that both,

Hermann Amandus Schwarz (1843 - 1921) as well as Moritz Abraham Stern (1807 - 1894),

became supporters of Hurwitz. On June 30, 1883 Schwarz reported to Weierstrass about

7”Seitdem ist das Interesse für Riemanns Funktionentheorie in immer weiteren Kreisen, auch des Aus-
landes, erwacht. Von meinen Schülern ist wohl besonders Hurwitz in Zürich und Dyck in München zu
nennen.” [Klein, 1926, p. 276]

8In the article ’Hurwitz erteilt Albert Einstein eine Abfuhr’ of the Hildesheimer Allgemeine Zeitung from
January 24, 2014, a reference to the school chronicle says that they were even designated as ”goodless,
superficial, revolutionary”.

9”Kronecker und Klein empfahlen ihm auf’s eindringlichste den damaligen Göttinger Ordinarius H.A.
Schwarz zur Habilitation daselbst, während er selber schon mit dem ältesten Ordinarius M.A. Stern in
Korrespondenz getreten war.”

10For more details on exploiting workers and the academic ladder in nineteenth century Germany see
[Rowe, 1986].
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the situation of his younger colleague.

”First about the affairs of Dr. H[urwitz]. In the last month he droped

hints several times that lead me to suspect that he has to cope with worries

connected to his economic situation. [...] Dr. H[urwitz] receives from a very

remote relative in America, a friend of his father, the annual sum of 1500M

and this is few for a local private lecturer, when I asked him if he gets along

with this sum, without incuring debts, he was silent.”11 [Confaloniere, 2013,

p. 161]

Some months later, in a letter from December 31, 1883 to Weierstrass, Schwarz wrote about

a positive development. ”Dr. Hurwitz stays for the time being in Göttingen and hopefully

will receive the grant for private lecturers starting Easter.”12 [Confaloniere, 2013, p. 189]

Friends from this highly prolific period in Göttingen were the famous physicist Wilhelm

Weber (1804 - 1891) and the mathematician Stern; while Adolf visited dance events with

the first named,13 the latter one must have played a rather important role in Adolf’s life.

Born in Frankfurt in 1807, Stern was, although being a protégé of Carl Friedrich Gauss,

faced with racist obstacles in his scientific career. Only in 1859, Stern became an ordinary

professor at Göttingen University, being the first unbaptized Jew who was appointed with

an ordinary professorship in the rather anti-Semitic Prussia of the nineteenth century.

Besides, Stern was the granduncle of Anne Frank, another target of racism during the

Nazi-time about one hundred years later.14 A first obvious indication that Adolf Hurwitz’s

career was also affected by the rigidity and anti-Semitic attitude of the Prussian system

11”Zunächst die Angelegenheit des Herrn Dr. H[urwitz]. Dieser hatte in dem letzten Monate zu ver-
schiedenen Malen mir gegenüber Andeutungen fallen lassen, die mich vermuthen ließen, daß er mit
Sorgen zu kämpfen habe, welche mit seiner ökonomischen Lage zusammenhängen. [...] Dr. H[urwitz]
bekomme von einem sehr entfernten Verwandten in Amerika, einem Freund seines Vaters, die Summe
1500 M jährlich und dies ist für einen hiesigen Privatdocenten wenig, als ich ihn fragte, ob er mit diesem
Summe auskommen könne, ohne Schulden machen zu müssen, schwieg er.”

12”Herr Dr. Hurwitz bleibt vorläufig in Göttingen und wird, wie ich hoffe, von Ostern ab das Privatdo-
centenstipendium erhalten.”

13”An der lebhaften Göttinger Geselligkeit nahm H. auch sonst eifrig teil, so schwang er das Tanzbein bei
dem grossen Physiker Wilh. v. Weber, [...]” [Samuel-Hurwitz, 1984, p. 7]

14See [Rowe, 1986, Rowe, 2007] for further details.
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is manifested in another part of Schwarz’s letter to Weierstrass. Here Schwarz refered

to initial difficulties that arised when another pupil of Klein, Ferdinand von Lindemann

(1852 - 1939), tried to offer Hurwitz a position in Königsberg.

”Since Dr. Hurwitz is a former graduate of a Realschule and furthermore

an Israelite; one can not blame him that he does not want to engage himself

with this business, to which also nobody, least Prof. Lindemann advises him.

I talked to G.K. Althoff about it. Prof. Stern and I suggested to send Dr.

Hurwitz as Professor to Königsberg [...]”15 [Confaloniere, 2013, p. 189]

Unfortunately, it is difficult to reconstruct on what Hurwitz did not want to engage himself

and what difficulties actually have arised. However, we notice that a first attempt of Lin-

demann to support Hurwitz’s career failed. Lindemann just had proved the transcendence

of π and thereby the impossibility of squaring the circle and became aware of Hurwitz

because of his new Representations of the proof of Weierstrass for the transcendence of e

and π.16.

However, the year 1884 brought many changes. Stern retired and started to live in Bern,

where his son was a professor of history, and Stern’s chair at Göttingen was filled by Klein.

Furthermore, in his memoirs Lindemann wrote that he still had ”[...] envisaged the private

lecturer Hurwitz from Göttingen. Kronecker agreed with [him], called a coach and drove

with [him] to Althoff to support Hurwitz’s employment. The latter was indeed called to

Königsberg.”17 [von Lindemann, 2071, p. 88]18 In the same year Adolf Hurwitz moved

to the University of Königsberg (nowadays Kaliningrad in Russia). There he obtained an

15”Nun ist Herr Dr. Hurwitz ehemaliger Realschulabiturient und außerdem Israelit; man kann es ihm
daher gewiß nicht verdanken, wenn er sich auf eine so zweifelhafte Sache nicht einlassen will, wozu ihm
auch Niemand, am wenigstens Herr Prof. Lindemann räth. Ich habe mit Herrn G.K. Althoff über die
Sache geredet. Herr Prof. Stern und ich schlugen vor, Herrn Dr. Hurwitz als Professor nach Königsberg
zu schicken [...]”

16Neue Darstellung des Weierstrassschen Beweises für die Transzendenz von e und π, enclosed in Adolf
Hurwitz’s mathematical diaries [Hurwitz, 1919a, No. 3]

17”[...] den Göttinger Privatdozenten Hurwitz ins Auge gefasst [hatte]. Kronecker gab [ihm] darin recht,
liess eine Droschke kommen und fuhr mit [ihm] zu Althoff, um bei ihm die Anstellung Hurwitz’s zu
befürworten. Letzterer wurde in der Tat dann nach Königberg berufen.”

18Lindemann’s memoirs are written in a rather flowery language.
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extraordinary professorship19 comparable to an associate professorship in modern terms.

In a letter from April 1, 1884 to his brother Julius20, his father Salomon Hurwitz wrote,

”It is an extraordinary event, and we cannot thank enough the destiny,

that our Adolf is so gifted, so acclaimed and is already recognized by the most

important mathematicians as excellent person. [...] So your youngest brother is

professor by the age of 25 and after only two years of being private lecturer!”21

Although the working conditions at Königsberg must have been desastrous, the students

were excellent, among them the young Hermann Minkowski (1864 - 1909) and David

Hilbert (1862 - 1943). Adolf became not only their guide to mathematics but also a

lifelong friend of both. At that time ”Adolf Hurwitz was at the height of his powers

and he opened up whole new mathematical vistas to Hilbert who looked up to him with

admiration mixed with a tinge of envy” [Rowe, 2007, p. 25]. (In Subsection 2.2.3 we give

a deeper insight into their relationship.) Besides his mathematical dedication, Adolf was

rooted in the academic social and cultural life of Königsberg. Thereby he established the

contact to professor’s families. After years of restraints because of his changing state of

health, Adolf Hurwitz married Ida Samuel22, a daughter of the professor for pathology

Simon Samuel at the University of Königsberg in summer 1892.

”[After] years of diligent work and nice results. A request from Rostock, if he was

willing to be baptizised when he was appointed as professor, he refused the request. In

the beginning of 1892 he was suggested to be H.A. Schwarz’s successor in Göttingen,

at the same time he was considered as successor of Frobenius who was appointed to

19in German: Extraordinariat
20to whom we refer in Section 2.3
21”Es ist ein ordentliches Ereignis, und wir können der Vorsehung nicht genug danken, daß unser Adolf

so begabt, so beliebt und schon von den bedeutendsten Mathematikern als ein hervorragender Mensch
anerkannt wird. [...] Also Dein jüngster Bruder ist Professor mit 25 Jahren und nachdem er nur 2
Jahren Privatdozent gewesen!” Letter from Salomon to Julius, April 1, 1884, in possession of the ETH
library, HS 583

22Later Ida Samuel-Hurwitz (1864 - 1951); author of the brief and very readable account
[Samuel-Hurwitz, 1984] on the Hurwitz family and her husband in particular
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Berlin.”23 [Samuel-Hurwitz, 1984, p. 8] Those memories of Ida Samuel-Hurwitz reflect

that in nineteenth century Prussian prejudices against Jews and racism were common; in

particular, when the founding of the Reich was followed by a financial crash and the long

depression afterwards the atmosphere became rather unfriendly.24 In fact, Adolf Hurwitz

was never officially considered to be Schwarz’s successor. In a letter to Friedrich Engel

(1861 - 1941), Friedrich Schur (1856 - 1932) described Klein’s disappointment that Hurwitz

was not appointed. Moreover, he wrote, ”it did not really become clear to me whether

H.[urwitz] indeed was proposed by the faculty [...] .”25 26

Adolf Hurwitz accepted the call to Georg Frobenius’ chair at the Eidgenössische Tech-

nische Hochschule Zürich27 (in the sequel ETH for short), a polytechnic, and moved to

Zurich, where he remained for the rest of his life. It was a fortunate coincidence that

Hurwitz’s paternal friend Moritz Stern had meanwhile moved from Bern to Zurich. There

Stern was made a honorary member of the local Society of Natural Scientists and they

could spend some more years together before the elder died in 1894.28 Adolf Hurwitz’s

successor at Königsberg was Hilbert who shortly after moved to Göttingen in 1895 on pro-

motion of Klein. Certainly, Adolf did not want to leave Zurich for Göttingen. According

to the biographical notes of his wife [Samuel-Hurwitz, 1984, p. 11], it was not only the

restless mathematical bustle, but also the lack of social amenities in the smaller German

town, which prevented him to change universities.29

23”[Nach] Jahre[n] fleissiger Arbeit und schöner Erfolge. Eine Anfrage aus Rostock, ob er bereits wäre sich
taufen zu lassen, wenn man ihn als Ordinarius an die dortige Universität beriefe, hatte er abschlägig
beantwortet. Zu Beginn des Jahres 1892 wurde als Nachfolger von H.A. Schwarz vorgeschlagen, gle-
ichzeitig reflektierte man in Zürich auf ihn als Nachfolger des nach Berlin berufenen Frobenius.”

24An excellent reading on this ’Game of Mathematical Chairs’ and the difficulties for Jewish mathemati-
cians at that time is Rowe’s article [Rowe, 2007] as well as the correspondence [Frei, 1985] between
Hilbert and Klein.

25”es ist mir nicht ganz klar geworden, ob H.[urwitz] wirklich von der Fakultät [...] vorgeschlagen wurde.”
26This letter from May 21, 1892 can be found as digital reproduction on http://digibib.ub.uni-giessen.de
27founded in 1855 under the name Polytechnikum, renamed in 1911
28Adolf Hurwitz and his colleague Ferdinand Rudio, a colleague from ETH and former friend from his

study times at Berlin, published the collected letters from Eisenstein to Stern [Eisenstein, 1975]; this
had been a wish of Stern and it affirms his close relation with Adolf.

29”Obgleich sein mangelhafter Gesundheitszustand natürlich bekannt war, trachtete man in Deutsch-
land mehrfach, ihn wieder dorthin zu ziehen. Als gleichwertig mit seinem Züricher Lehrstuhl, den
nacheinander eine Reihe der hervorragendsten Mathematiker bekleidet hatten, konnten freilich nur
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Refering to this difficult situation of appointments and job placings, later Hilbert de-

scribed Hurwitz’s reserved behavior.

”[He] who was so deeply inward modest and at the same time free of all

outward ambitions, that he did not consider it as an affront when a mathe-

matician who was inferior in importance, was preferred to appointments. [...]

Finally, it was his luck that he stayed in Switzerland, since he would not have

been able to stand the physical and mental efforts a life in Germany in wartime

would have brought for him.”30 [Hilbert, 1921, p. 165]31

Indeed, Zurich turned out to be a good choice. Firstly, in Switzerland were less resentments

against Jews than in Prussia. Moreover, there was a rich academic life with a polytechnic

and a university as well as a mathematical society. The ETH was founded in 1855. While

in the beginning it was a stepping stone for young researchers to obtain better positions

at respectable German universities (e.g., Richard Dedekind, Schwarz, Frobenius), the sit-

uation improved quickly thanks to the tight collaboration with the established University

of Zurich. Of course, there was also a certain competition between the two institutions.32

The various activities culminated in the first International Congress for Mathematicians

held at Zurich in 1897. Adolf Hurwitz was not only involved in its organization but, to-

gether with Klein, Guiseppe Peano (1858 - 1932), and Henri Poincaré (1854 - 1912), Adolf

was one of the distinguished invited speakers giving a talk on Georg Cantor’s (1845 - 1918)

Berlin, München und Leipzig in Frage kommen. An die letzte Universität war die Berufung eines Ju-
den ausgeschlossen; für Berlin war er bei einer Vakanz an erster Stelle vorgeschlagen. Von Göttingen
war natürlich öfters die Rede, doch scheute er einerseits den enormen mathematischen Betrieb dort,
während ihm andererseits die Kleinstadt unsympatisch war.” [Samuel-Hurwitz, 1984, p. 11]

30”[Er] der so tief innerlich bescheiden und zugleich frei von allem äußeren Ehrgeiz war, daß er keine
Kränkung darüber empfand, wenn ein Mathematiker, der ihm an Bedeutung nachstand, ihm bei Beru-
fungen vorgezogen wurde. [...] Es ist ihm schließlich zum Glück ausgeschlagen, daß er in der Schweiz
blieb, da er den körperlichen und seelischen Anstrengungen, die das Leben in Deutschland während
des Krieges für ihn mit sich gebracht hätte, nicht gewachsen gewesen wäre.”

31Here we refer to the commemorative speech ’Adolf Hurwitz’ of David Hilbert from May 15, 1919
held in the public meeting of the Royal Society of Science in Göttingen, which was also published
as [Hilbert, 1920].

32for example, when it was about the appointment of Minkowski; see letter 107 from Hilbert to Klein in
[Frei, 1985]
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at that time controversal foundation of set theory and its application to analysis.33

Similar to the situation in Königsberg there were excellent students in Zurich. For in-

stance, around 1900, Albert Einstein (1879 - 1955) applied for assisting Adolf Hurwitz,

however, as Einstein reported, Hurwitz must have been puzzled that a student who was

never ever seen in the mathematical seminar asked for such a position; according to Ein-

stein, for a physicist it suffices to know and apply the elementary mathematical notions.34

About a decade later, both, Adolf and Albert performed some chamber music together35.

Especially in duet with the youngest daughter, Lisi Hurwitz, Einstein performed a long

series of violin playings of Bach and Händel, whereas Hurwitz himself enjoyed playing the

piano with his oldest daughter Eva [Samuel-Hurwitz, 1984, p. 12]. The physicist Max

Born (1882 - 1879) was another student of Adolf around 1902/03 whose memories give a

nice picture of the teacher Adolf Hurwitz.

”Once when I missed a point in a lecture I went to Hurwitz afterwards and

asked for a private explanation. He invited me [...] to his house and gave us a

series of private lectures on some chapters of the theory of functions of complex

variables, in particular on Mittag-Leffler’s theorem, which I still consider as

one of the most impressive experiences of my student life. I carefully worked

out the whole course, including these private appendices, and my notebook

was used by Courant when he, many years later and after Hurwitz’s death,

published his well-known book. [...]” (cf. [Rowe, 2007, p. 29])36

Adolf’s health was never good. Already during his studies in Munich he suffered from

typhus, a reason for Adolf to stay and study in Hildesheim. Actually, his early paper

33Adolf Hurwitz supported the forerunner of the ICM at Chicago’s World’s Columbian Exposition in 1893
by submitting a contribution in absentia; see [Lehto, 1998, p. 5], resp. www.mathunion.org/ICM/.

34”der Herr Professor [mag] darüber ein wenig verwundert gewesen sein, war doch dieser Student niemals
in den mathematischen Seminaren zu sehen gewesen, da er sich mangels an Zeit nicht beteiligen kon-
nte. [...] dass es für einen Physiker genüge, die elementaren mathematischen Begriffe zu kennen und
anzuwenden, der Rest für ihn aus ’unfruchtbaren Subtilitäten’ bestehe.” [Fölsing, 1993, p. 634]

35see [Pólya, 1987, p. 24] as well as its title page for a nice photograph
36The book in question is [Courant and Hurwitz, 1992].
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[Hurwitz, 1882] on the class number of binary quadratic forms, in which he introduced the

so-called Hurwitz zeta-function, has the footer ’Hildesheim, den 10. Oktober 1881’; it plays

an important role in the theory of L-functions associated with number fields. In 1905, one

of Adolf’s kidneys was removed; later also his second kidney gave up working properly. In

the sequel, Hurwitz’s life became more calm and remote than before. Pólya wrote, ”His

health was not too good so when we walked it had to be an level ground, not always easy

in the hilly part of Zürich, and if we went uphill, we walked very slowly.” [Pólya, 1987, p.

25] Pólya at that time was around thirty years old, whereas Adolf was in the mid-fifties.

In May 1919, Adolf Hurwitz finished his last big project, his monograph [Hurwitz, 1919b]

on number theory of quaternions based on his lectures at the Königl. Gesellschaft der

Wissenschaften zu Göttingen in 1896. Still on October 28, he ran a seminar at home

where his family was ”[we,] listening at the door admired the control and clearness, with

which he knew to talk.”37 [Samuel-Hurwitz, 1984, p. 14] He died from kidney malfunction

some days later, November 18, 1919 in Zurich. Life expectancy was just around 54 years

at that time.

Adolf Hurwitz’s collected papers [Hurwitz, 1932] were edited by Pólya and appeared

in 1932. In [Pólya, 1987, p 25] George Pólya wrote: ”My connection with Hurwitz was

deeper and my debt to him greater than to any other colleague.” It was indeed on Adolf’s

invitation that Pólya was offered an appointment as Privatdozent at Zurich. In the next

subsection we present the complete rack of 30 mathematical diaries [Hurwitz, 1919a] of

Adolf Hurwitz ranging from 1882 until 1919, held by the Eidgenössische Hochschule Zürich.

During his scientific life he supervised altogether at least 23 doctoral students38. Among

his pupils one can find the later professors Gustave du Pasquier (1876 - 1957) at the

Université de Neuchâtel, Eugène Chatelain (1885 - 1956), Alfred Kienast (1879 - 1969),

Émile Marchand (1890 - 1971), and Ernst Meissner (1883 - 1939), all at ETH Zurich,

37”[wir,] an der Tür Lauschenden bewunderten die Beherrschtheit und Klarheit, mit der er vorzutragen
vermochte.”

38According to the Mathematics Genealogy Project http://genealogy.math, all within the period 1896-1919;
however, in his collected works [Hurwitz, 1932] there are just 21 listed.
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as well as Kerim Erim (1894 - 1952), who obtained his doctorate at the University of

Erlangen-Nuremberg and later became a professor at the University of Istanbul. A good

account on Adolf Hurwitz’s life and work is given by his wife [Samuel-Hurwitz, 1984] and

Frei [Frei, 1995].

In texts about Adolf Hurwitz’s life and work it is often mentioned that he had greatly

benefited from his teacher Felix Klein. It is well-known that Klein himself had a very high

opinion on the triangle Hurwitz, Hilbert, and Minkowski at Königsberg; in his treatise on

the development of mathematics in the nineteenth century [Klein, 1926] Klein attributed

the description ’aphorist’ to Hurwitz and considered him as a ’problem solver’ writing

’complete works’, whereas Minkowski is a theory builder who found new links between

’geometrical view’ and ’number theoretical problems’.39 This is the picture of a frog

and a bird according to Dyson’s classification of mathematicians characters [Dyson, 2009].

Actually, Minkowski had encounters with both, Hurwitz and Hilbert, after their common

time at Königsberg, with the first named during his time from 1896 until 1902 at Zurich

and with the latter until his untimely death in 1909. It seems that Minkowski and Hilbert

were closer than the other vertices of this unequal triangle. Nevertheless, the lifelong

relationship of Hilbert and Hurwitz, on which we shed light in Sebsection 2.2.3, was as

well very fruitful.

39” Und glücklicherweise findet sich um 1885 für fast wieder ein Jahrzehnt, eben auch wieder in Königsberg,
ein Dreibund junger Forscher zusammen, welche diese Tendenz in neuer Weise in die Tat umsetzen und
damit denjenigen Standpunkt schaffen, von dem aus die Neuzeit, wenn sie es vermag, weiterzugehen hat.
Es sind dies Hurwitz, Hilbert und Minkowski. [...] und so möchte ich über Hurwitz und Minkowski hier
vorweg ein paar Worte sagen, welche deren Arbeitsweise charakterisieren sollen. Man hat Hurwitz einen
Aphoristiker genannt. In voller Beherrschung der in Betracht kommenden Disziplinen sucht er sich hier
und dort ein wichtiges Problem heraus, das er jeweils um ein bedeutendes Stück fördert. Jede seiner
Arbeiten steht für sich und ist ein abgeschlossenes Werk. [...] Minkowskis hier in Betracht kommende
Arbeiten beruhen zumeist auf der Verbindung durchsichtiger geometrischer Anschauung mit zahlenthe-
oretischen Problemen. [...] Ich selbst habe mich seinerzeit darauf beschränkt, gewisse schon bekannte
Grundlagen geometrisch klarzustellen, während Minkowski Neues zu finden unternahm. Diese Unter-
suchungen zeigen deutlich, daß Geometrie und Zahlentheorie keineswegs einander ausschließen, sofern
man sich in der Geometrie nur entschließt, diskontinuierliche Objekte zu betrachten.” [Klein, 1926, pp.
326]
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2.2 Excursion: The Personal Hurwitz Estate from the Archive of

the ETH Zurich

In the archive of the polytechnic Eidgenössische Technische Hochschule, short ETH, in

Zurich the estate of Adolf Hurwitz is stored. In the directories HS 582 and HS 583 various

documents concerning Adolf Hurwitz and his family can be found. Apart from a large

number of manuscripts and lecture notes of Hurwitz himself and colleagues, there are also

personal documents. In the previous Section 2.1 we have already stated several quotations

from the biographical dossier of Ida Samuel-Hurwitz [Samuel-Hurwitz, 1984] (HS 583a:2).

Together with a second dossier of Elsbeth Meyer-Neumann (HS 583a:1) those provide an

overview of the family history. Furthermore, some letters of condolence (HS. 583: 15 -

50) and a part of Hurwitz’s correspondence (HS 583pp) are stored.40 In the following we

mainly refer to Adolf Hurwitz’s mathematical diaries (HS 582: 1 - 30).

Some Remarks on the Mathematical Diaries

”Since his habilitation in 1882, Hurwitz took notes of everything he spent

time on with uninterrupted regularity and in this way he left a series of 31

diaries, which provide a true view of his constantly progresssive development

and at the same time they are a rich treasure trove for interesting and further

examination appropriate thoughts and problems.”41 [Hilbert, 1921, p. 166]

40The main part of the Hurwitz correspondence is stored in the ’Niedersächsische Staats- und Univer-

sitätsbibliothek’ in Göttingen.
41”Hurwitz hat seit seiner Habilitation 1882 in ununterbrochenender Regelmäßigkeit von allem, was

ihn wissenschaftlich beschäftigte, Aufzeichnungen gemacht und auf diese Weise eine Serie von 31
Tagebüchern hinterlassen, die ein getreues Bild seiner beständig fortschreitenden Entwicklung geben
und zugleich eine reiche Fundgrube für interessante und zur weiteren Bearbeitung geeignete Gedanken
und Probleme sind.”
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Figure 2.2: Front pages of diary No. 4 and diary No. 5 with mottos ”Durch Nacht zum

Licht.” and ”Rast ich, so rost ich.”.42

With David Hilbert’s description, taken from his commemorative speech, he provided a

good picture of Adolf Hurwitz’s mathematical diaries. Alongside a variety of publications,

the zealous Hurwitz wrote in a meticulous manner mathematical notebooks from March

1882 to September 1919. After his death those were reviewed and registered in an addi-

tional notebook [Hurwitz, 1919a, No. 32] by his confidant and colleague George Pòlya,

who considered Hurwitz as ”colleague who he felt influenced the most.” [Pólya, 1987, p.

25] Mostly with an accurate writing and an impressive precision Adolf Hurwitz worked

on proofs of colleagues, made notes for future dissertation topics and developed his own

approaches to various mathematical problems. However, in a few places in the collected,

in fact, 30 diaries43, we can also find quotations giving an insight into Adolf Hurwitz’s

personal side.

42freely translated ”Through the night to the light.” [Hurwitz, 1919a, No. 4] and ”When I rest, I rust.”
[Hurwitz, 1919a, No. 5]

43Hilbert mentioned 31 diaries. However, the last notebook contains only a collection of articles of col-
leagues and no own ideas of Hurwitz.
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Figure 2.3: ”Where does the uneasiness come from, when you work with pure identities?

Shouldn’t a fortunate idea be able to eliminate the complete lack of planning in the

studies?”44

This nice note is taken from Hurwitz’s first diary [Hurwitz, 1919a, No. 1]. Accordingly,

we give a second example from his last diary [Hurwitz, 1919a, No. 30], a quotation from

Johann Wolfgang von Goethe.

Figure 2.4: ”Here is the case, where we win nothing from thinking; We will only become

more stupid, the deeper we ponder. Goethe ’Die Mitschuldigen’ ”45

44”Woher die Unbehaglichkeit, wenn man mit reinen Identitäten arbeitet? Sollte nicht ein glücklicher
Gedanke hier die vollständige Planlosigkeit der Untersuchungen beseitigen können?”

45”Hier ist der Fall, wo man beim Denken nichts gewinnt; Man wird nur tiefer dumm, je tiefer daß man
sinnt. Goethe ’Die Mitschuldigen’ ”
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2.2.1 Recreational Mathematics in the Mathematical Diaries

There is some evidence that Adolf Hurwitz was of rather serious nature. Colleagues

described him as ”carrying out his duties” [Stern, 1919, p. 859], being ”quiet and consid-

erate” even ”passionless in judging” [Meissner, 1919, p. XXIV] and also to ”devote himself

to calm mental work” [Hilbert, 1921, p. 168]. Furthermore, his wife Ida Samuel-Hurwitz

characterized him as restrained and having a ”certain shyness” [Samuel-Hurwitz, 1984, p.

15] concerning acquaintances. Historically, Adolf Hurwitz belonged to a last generation of

universal mathematicians: He achieved outstanding results in complex anaylsis, algebra,

number theory as well as in geometry [Hurwitz, 1932]. Did this serious mathematician

also spend time on recreational mathematics, a field growing in popularity at that time?

In a few places in his diaries, distributed over the years, sometimes rather unobtrusive

entries with titles like ”Funny riddle (from Landau)”46 [Hurwitz, 1919a, No. 25], ”Trick

with dominoes”47 [Hurwitz, 1919a, No. 28] or ”Most coloured rings”48 [Hurwitz, 1919a,

No. 28] can be found from time to time. A complete list of entries being ordered in the

category ’Recreational Mathematics’ is given in Appendix 9.1.

First, we analyze three examples of these unusual entries with exercise character. The

formulation of those problems is often misleadingly clear, whereas, the complexity of their

solutions can be astonishingly advanced.

Dominoes

Under the titel ”Trick with dominoes” an entry from December 08, 1915 in the 28th diary49

on page 61 is concealed.

46”Scherzaufgabe(von Landau)”
47”Dominokunststück”
48”Bunteste Ringe”
49from 1915 II.16. to 1917 III.22.
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Figure 2.5: ”One places the dominoes with numbers of points 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 one

after the other face down on the table and let somebody shift a number of dominoes from

the beginning to the end.”50

The aim is to be always able to state the number of shifted dominoes. This can be realized

with the trick that ”the number [is] then equal to the number of points which is at the

position where the 10 had been.”

Figure 2.6: ”E.g. when 4 dominoes were shifted, we receive 5, 6, 7, 8, 9, 10, 1, 2, 3, 4 and 4 is

at the position where 10 had been before.”51

Consequently, one only has to keep in mind where 10 was initially placed to be able to

determine the number of shifted dominoes. ”In this order, 10 is placed at the 5th last

position.”

50”Man lege die Steine mit Pointzahl 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 der Reihe nach zugedeckt auf den Tisch und
lasse jemand eine Anzahl Steine vom Anfang ans Ende schieben.”

51”die Anzahl [...] dann der Pointzahl gleich [ist], die sich an der Stelle befindet, wo die 10 lag. Z.B. sind
4 Steine geschoben, so hat man: 5, 6, 7, 8, 9, 10, 1, 2, 3, 4 erhalten und 4 liegt nun an der letzten Stelle,
also an derjenigen, wo 10 früher lag.”
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Figure 2.7: ”Shifting again, for example 3 dominoes, leads to 8, 9, 10, 1, 2, 3, 4, 5, 6, 7. The

number 3 is given by the dominoe, which was shifted at the position of 10. In this way

one can arbitrarily continue.”52

This mathematical pastime certainly belongs to the easier questions in recreational math-

ematics. Related considerations can be designed much more difficult when the dominoe-

specific characteristic of the bivalence is taken into account. In fact, this diary entry is

followed by a far more complicated trick concerning N dominoes, where N ∈ N is arbi-

trary. Here the respective valence is expressed by an integral function. Hurwitz solved the

problem on behalf of a finite series.

Spider meets Fly?

In diary No. 2353 on the first page under the title ”Exercise about the shortest line on

a parallelepiped”54 one can read about a problem, which nowadays can be considered as

classic in recreational mathematics. Adolf Hurwitz wrote: ”Yesterday after the lecture

Dr. Du Pasquier55 told me about a nice exercise (which he himself had received from

Herrn von Mises): In a room of height 12m and of length 36m on opposite walls on the

middle lines a fly F and a spider S are sitting, F is 3m from the ceiling, S is 3m from the

floor. The fly says to the spider: If you come to me, without crawling through a path of

48 or more meters, so I keep sitting and you catch me; however, if it takes you 48 or more

52”In der Ordnung liegt 10 an der 5t-letzten Stelle. Schiebt man aufs Neue, etwa 3 Steine, so entsteht
8, 9, 10, 1, 2, 3, 4, 5, 6, 7. Die Anzahl 3 wird wieder angegeben durch den Stein, der an die Stelle von 10

gerückt ist. Auf diese Weise kann man beliebig fortfahren.”
53from 1908 I. 23. to 1910 II.18.
54”Aufgabe über kürzeste Linie auf einem Parallelepiped”
55Certainly he wrote about his former doctoral student Louis-Gustave Du Pasquier (see Subsection 2.1)

and the Austrian mathematician Richard Edler von Mises (1883 - 1953).
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meters, I fly away before you reach me. How should the spider crawl to reach the fly?”56

Figure 2.8: Sketch of the positions of fly F and spider S.

Obviously the alleged easiest way SABF with SABF = 9 + 36 + 3 = 48 would not be

successful. Adolf Hurwitz reformulated the problem more generally:

Figure 2.9: ”On the surface of a rectangular parallelepiped two points F and S are fixed.

The shortest connecting line along the surface [...] is to be determined.”57

It is provided that on a planar surface the way is geometrically linear. Hurwitz’s idea is

to rotate each two faces f1 and f2 which are passed through and ”which have the edge

CD in common”58, into one plane.

56”Dr. Du Pasquier teilte mir gestern nach dem Colleg folgende hübsche Aufgabe mit (die er selbst von
Herrn von Mises hat): In einem Zimmer von der Höhe 12m der Breite 12m und der Länge 36m sitzen
an gegenüberliegenden Wänden in der Mittellinie derselben eine Fliege F und eine Spinne S, F 3m von
der Decke, S 3m vom Fussboden. Die Fliege sagt zur Spinne: Wenn Du zu mir kommst, ohne einen
Weg von 48 oder gar mehr Metern zu durchkriechen, so bleib ich sitzen und Du fängst mich; wenn Du
aber 48 oder mehr Meter gebrauchst, so fliege ich fort, ehe Du zu mir kommst. Wie muss die Spinne
kriechen, um die Fliege zu erhalten?”

57”Auf der Begrenzung eines rechtwinkligen Parallelepipeds sind 2 Punkte S und F fixiert. Man soll die
kürzeste Verbindungslinie von S und F auf der Begrenzung [...] bestimmen.”

58”welche die Kante CD gemeinsam”
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Figure 2.10: Illustration of f1

and f2 as well as S2, H,J and

K.

”So the continuation of the path on f2 needs

to be on a straight line with the path on f1.

Because if it would continue refracted on f2

(like in the piece S2) the path could be short-

ened, by e.g. letting HJ take the place of

HK +KJ .”59

The diarist continued his considerations to n planar faces fi, i = 1, · · · , n, which are rotated

into one plane on which the path needs to ”merge into one straight line”60. Here it is

excluded that a face is entered twice. ”Since was the way like SS1, S1S2, S2S3, . . . , Sk−1Sk

and were Si−1Si and Sh−1Sh located on the same face, the section of the path Si−1Si . . . Sh

could be replaced by the shorter straightlined Si−1Sh.”
61 Denoting in our special case start

and end faces with f and g and each opposite faces with f1, f2 and g1, g2 (see Fig. 2.8 and

2.11), we receive the opportunities

f, f1, g; f, f2, g; f, g1, g; f, g2, g; f, f1, f2, g ”(and the analogous)”;

f, f1, f2, g1, g ”(and the analogous)”; f, f1, f2, g1, g2, g ”(and the analogous)”.

According to Hurwitz ”[T]he exercise [is] here principally done.” He gives an explicit

calculation for the path fg2g1g, illustrated by a sketch (see Fig. 2.11).

59”Dann muss die Fortsetzung des Weges auf f2 mit dem Weg auf f1 in gerade Linie fallen. Denn würde
er gebrochen auf f2 weitergehen (etwa in dem Stücke S2) so würde man den Weg verkleinern können,
indem man z.B. HJ an die Stelle von HK +KJ treten ließe.”

60”in eine Gerade übergehen”
61”Denn wäre der Weg dieser SS1, S1S2, S2S3, · · · , Sk−1Sk und würden Si−1Si und Sh−1Sh auf der selben

Seitenfläche fi = fh liegen, so würde das Wegstück Si−1Si · · ·Sh durch das kürzere geradlinige Si−1Sh

ersetzt werden können.”
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Figure 2.11: The parallelepiped, in particular the path fg2g1g.

”[...] F in f shall have distance α of the edge B′A′, β of the edge B′B, [...] S in g the

distance α′ of DC and β′ of DD′. Then regarding the axes of coordinates (B′B,B′A′)

(α, β) is the point F and (b+ c+ β′, a+ α′) the point S.”62 Therewith, Hurwitz receives

the straight line equation for FS

x− α

y − β
=
b+ c+ β′ − α

a+ α′ − β
,

with B′B as x- and B′A′ as y-axis. The straight line intersects the line A′D in the point

with coordinates y = a and

x = α− (a− β)
b+ c+ β′ − α

a+ α′ − β
=
αα′ + (a− β)(b+ c+ β′)

a+ α′ − β
.

In our case, the x-coordinate must be located on the edge of g2, in between b and b + c.

Consequently, we have

b(a+ α′ − β) < αα′ + (a− β)(b + c+ β′) < (b+ c)(a + α′ − β),

62”[...] F in f habe die Entfernung α von der Kante B′A′, β von der Kante B′B, [...] S in g die Entfernung
α′ von DC und β′ von DD′. Dann ist bezüglich des Achsenkreuzes (B′B,B′A′) (α, β) der Punkt F
und (b+ c+ β′, a+ α′) der Punkt S.”
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which can be splitted into

α′(b− α) < (a− β)(c+ β′) and (a− β)β′ < α′(b+ c− α).

We determine α1, β1 und α′
1, β

′
1, such that α+α1 = α′ +α′

1 = b and β+β1 = β′ +β′1 = a.

Therewith, we receive the constraints

αα′ < β1(c+ β′) and β1β
′ < α′(c+ α1).

Moreover, for the distance of the points S and F we obtain

SF =
√

(c+ β′ + α1)2 + (α′ + β1)2.

Figure 2.12: ”The distance of SF is SF =
√

(c+ β′ + α1)2 + (α′ + β1)2. In the [initial]

example one has a = b = 12, c = 36, β = β1 = 6 = β′ = β′1, α = 3, α1 = 9 and

α′ = 3, α′
1 = 9 or α = 9, α1 = 3 and α′ = 9, α′

1 = 3 (if we exchange F and S).”63

Hurwitz wrote, ”the condition of inequality is satisfied by SF =
√
512 + 182 resp.

√
452 + 152 = 15.

√
10 < 48 as ist should be.” Indeed, we have 15.

√
10 ∼ 47.4341649 . . . .

Nowadays, the fly-spider-riddle is very well know. In different variations it is mentioned

in a great number of books on recreational mathematics and, in particular, students could

get in touch with it on lessons concerning the Pythagorean Theorem. There are many

63”Die Entfernung SF wird SF =
√

(c+ β′ + α1)2 + (α′ + β1)2. In dem [ursprünglichen] Beispiel ist
a = b = 12, c = 36, β = β1 = 6 = β′ = β′

1, α = 3, α1 = 9 und α′ = 3, α′
1 = 9 oder α = 9, α1 = 3

und α′ = 9, α′
1 = 3 (wenn man F und S austauscht). Die Ungleichheitsbedingung wird erfüllt mit

SF =
√
512 + 182 od.

√
452 + 152 = 15.

√
10 < 48 wie es sein soll.”
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similarly formulated problems concerning shortest connecting lines, so-called geodesics,

on given objects. Those have names like ’Fly-Honey-’ or ’Ants-Problem’. However, when

Adolf Hurwitz wrote his diary entry, the Fly-Spider-Problem was brandnew. According to

the article ’Henry Ernest Dudeney: Englands größter Rätselerfinder’ 64 from Martin Gard-

ner (1914 - 2012) published in his collection [Gardner, 1968, p. 73pp], the nowadays known

formulation of this brain teaser goes back to Henry Ernest Dudeney (1857 - 1930). On

February 01, 1905, he had first published the exercise in the ’Daily Mail’ [Dudeney, 1905a]

followed by the solution [Dudeney, 1905b] one week later, on February 08, 1905 (see also

[Hemme, 2013]). The British puzzle fan published a multitude of collected exercises65 from

recreational mathematics, regularly he sent in puzzles in newspapers under the pseudonym

’Sphinx’. Furthermore, he was in close contact with his probably better known American

colleague Sam Loyd (1841 - 1911) and worked with him ”on a series of articles about

riddles for the English newspaper ’Tit-Bits’.” [Gardner, 1968, p. 70] According to Martin

Gardner, Dundeley was ”of both [...] the better mathematician” and ”his work [was] more

sophisticated (he once described a picture puzzle of which Loyd produced thousands as

”youthful banality, which could only attract the interest of imbeciles”).” Those harsh

words indicate that Dundeley accused Loyd to have published some of his exercises with-

out permisssion. This situation is elucidated in [Newing, 1994, p. 299], where Angela

Newing described that ”Henry Ernest became increasingly more infuriated as he saw his

puzzles passed off in the States as Sam’s own.”

Conundrum

Another rather entertaining exercise with recreational character can be encountered in

diary No. 2566 on page 138. Although the exercise and its solution are certainly short,

Adolf Hurwitz wrote: ”An exercise given by Landau generalized and modified”.

64’Henry Ernest Dudeney: Englands greatest riddle inventor ’
65including similar problems, e.g. ’A Fly’s Journey’ [Dudeney, 1967, p. 110] and ’The Fly and the Honey’

[Dudeney, 1967, p. 11].
66from 1912 XII. 27. to 1914 IV. 30.
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Figure 2.13: Positions of ladies

and gentlemen in the hall.

Figure 2.14: The solution.

”On the wall of a ballroom 7 (n) ladies are

sitting 1′, 2′, 3′, 4′, 5′, 6′, 7′; in the hall the 7

(n) gentlemen 1, 2, 3, 4, 5, 6, 7 (4 on the oppo-

side wall), as indicated in the drawing. Each

gentleman a asks the lady a′ for the dance;

hereby the taken paths from the gentlemen

to their ladies shall not cross.”67

Here the generalizations (n) were inserted

subsequently by Hurwitz. The solution turns

out to be conceivably simple and is solely

given by a sketch (see Fig. 2.14).

We may ask if the shortness of the solution is connected to the note in the table of contents

(see Fig. 2.15).

Figure 2.15: Excerpt from the handwritten table of contents of Adolf Hurwitz

[Hurwitz, 1919a, Nr. 28]: ”Conundrum (Analysis Situs) Landau”68

It should be mentioned that the number theorist Edmund Landau (1877 - 1938) was

not at all famous for his humour. Moreover, he was regarded as ”not easy to han-

67”Eine von Landau gestellte Aufgabe verallgemeinert und modifiziert: An der Wand eines Ballsaales
sitzen 7 (n) Damen 1′, 2′, 3′, 4′, 5′, 6′, 7′; im Saale die 7 (n) Herren 1, 2, 3, 4, 5, 6, 7 (4 an der Wand
gegenüber), wie in der Figur angedeutet. Jeder Herr a fordert die Dame a′ zum Tanz auf; dabei sollen
aber die von den Herren zu ihren Damen zurückgelegten Wege sich gegenseitig nicht treffen.”

68”Scherzaufgabe (Analysis Situs) Landau”
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dle” and was known for ”his personal, severe and the reader completely informing

style”69[Rechenberg, 1982, S. 480]. However, not least because of their common Jewish

religious affiliation, the two mathematicians had a very close friendship. Landau visited

the Hurwitz family many times in Zurich and sent a very worth reading, emotional letter

of condolence to Ida Samuel-Hurwitz on November 28, 1919, only ten days after Adolf

Hurwitz’s death. Landau wrote: ”[...] Now the center of mathematical life in Zurich is

gone and I have no longer a home in this beautiful city. And that this great man was

a Jew, makes me particularly proud.”70. Unfortunately, we may only assume on which

occasion he could have posed this riddle to Adolf Hurwitz.

In fact, the note in the table of contents itself poses another riddle: Why did Hur-

witz describe the exercise by ’Analysis situs’? This term can be translated to ’Geometrie

der Lage’71 going back to Gottfried Wilhelm Leibniz (1646 - 1716), who characterized

therewith a new way of a mathematical model of space72. Later ’Analysis situs’ has been

used synonymously to the term ’topology’, a section of mathematics, in which math-

ematical structures are examined in respect to continuous deformations. Furthermore,

Henri Poincaré published in 1895, some years before Hurwitz’s diary entry, the article

[Poincaré, 1895] entitled ”Analysis Situs”. Combined with five hereon based articles, so-

called Compléments, Poincaré’s work is nowadays considered as foundation of a first alge-

braic approach to topological objects: the so-called ’Algebraic Topology’.

Here various speculative references could be created, however, we may assume that

the exercise was indeed simply considered as humouristic, so to say as ’analysis of the

ballroom-space’.

69”nicht leicht im Ungang”, ”seinen eigenen, strengen und den Leser vollständig informierenden mathe-
matischen Stil”

70”[...] Nun ist der Mittelpunkt des Zürcher mathematischen Lebens fort und ich habe kein Heim mehr in
dieser schönen Stadt. Und dass dieser grosse Mann ein Jude war, macht mich ganz besonders stolz.”,
ETH Archives, Zurich (Hs 583:33)

71’geometry of location’
72A detailed explanation is given in [Loemker, 1969, Ch. 27]
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2.2.2 Adolf Hurwitz Folding and Cutting Paper

In particular in diary No. 2273 a special feature can be discovered. Carefully kept in a

small envelope, there are original pieces of paper, partially coloured with crayons. Some

of them illustrate foldable mathematical objects; others help to illustrate a proof of the

Theorem of Pythagoras.

Pythagoras

Figure 2.16: Cutted out, congruent triangles; drawings by Adolf Hurwitz illustrating a

proof of the Theorem of Pythagoras.

Adolf Hurwitz wrote: ”In class the theorem of Pythagoras can also be verified as follows:

We manufacture 3 boxes of equal height, whose base areas resp. the squares of legs and

the square of the hypotenuse, fill the boxes of legs with sand and pour them out into the

box of hypotenuse. Here those will be filled completely. - We can also take 3 cyclic vessels

of equal height (3 jars), whose base areas have the legs resp. the hypotenuse as diameters,

73from 1906 XIII.8. to 1908 I.22.
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fill the jars of legs with water [...] We can also cut out the squares and verify with a

balance that such a square weights as much as both other squares together.”74

Certainly, many more similar proof ideas can be found and are widely known. However,

what makes this diary entry remarkable is the didactic aspect Adolf Hurwitz pointed out

here. First, it is in general very unusual that this ambitious mathematician is reflecting

on school lessons. Second, he even cut out triangles by hand and coloured them. Why

was he so intrigued by the Pythagorean Theroem?

Initially Hurwitz continued his thoughts by using polygons, however, then he dedicated

himself to ”a more difficult question [is] concerning the minimal number of pairwise con-

gruent pieces, in which two [...] equal areas can be decomposed.”75 Three-dimensionally

this recalls the third of Hilbert’s Problems, which goes back to Gauss76: Can two given

polyhedra of equal volume always be transferred into one another? This question was al-

ready negatively answered by Hilbert’s student Max Dehn (1878 - 1952) in [Dehn, 1901].77

However, for the two-dimensional version of the problem, the corresponding positive

answer was known for a long time. We may only speculate whether Hurwitz could

have been inspired by Hilbert’s problem to deal with this issue concerning the minimal

decomposition.

74”Man kann im Unterricht den Pythagoras auch so bestätigen: Man stellt 3 Kästen in gleicher Höhe
her, deren Grundfläche bez. die Kathetenquadrate und das Hypothenusenquadrat sind, füllt die Ka-
thetenkästen mit Sand und schüttet sie dann in den Hypothenusenkasten aus. Hier wird dieser ganz
gefüllt werden. - Man kann auch 3 cyklische Gefäße von gleicher Höhe (3 Gläser) nehmen, deren
Grundfläche die Katheten bez. die Hypothenuse zu Durchmessern besitzen, die Kathetengefäße mit
Wasser füllen [...] Man kann auch die Quadrate ausschneiden und mit einer Waage bestätigen, daß das
eine Quadrat so viel wiegt wie die beiden anderen zusammen.”

75”einer schwierigeren Frage [ist die] nach der Minimalanzahl von paarweise congruenten Stücken, in welche
zwei [...] gleiche Flächen (od. Systeme) zerlegbar sind.”

76Gauss mentioned this problem in a letter to Christian Ludwig Gerling (1788 - 1864) (see [Kellerhals, 1999,
p. 1]).

77Interestingly in [Piotrowski, 1985] it is explained that Hilbert’s Third Problem was actually already
posed by Wladyslaw Kretkowski (1840 - 1910) in 1882 and furthermore, there existed a, at least
partial, solution due to Ludwik Antoni Birkenmajer (1855 - 1929) since 1883.
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Paper Folding

A second unusual entry is written down in the twenty second mathemat-

ical diary on page 137, obviously inspired by Hurwitz’s nine-year old son

Otto. On December 24, 1907, the mathematician noted under the heading

”Folding construction of the golden section and a regular pentagon”78

Figure 2.17: ”Yesterday I visited teacher Oertli to receive for Otto on christmas enlightment

about paper folding exercises included in Oertli’s scripture. Here I came to the treating

of folding constructions.”

Hurwitz continued: ”A few about this can be found at the end of Ahren’s ”Mathematis-

che Spiele”79. For the golden section I found the following very simple construction: One

folds the centerline AB of the squared paper. Then, fold the diagonal CB, and the halving

line CG of the angle ECB (by placing CE on CB). Then EF is intersected in point G.”

(see Fig. 2.17) In the following, Hurwitz proved the golden section on behalf of elementary

78”Faltconstruktion des goldenen Schnittes und des regulären Fünfecks.
Gestern war ich beim Lehrer Oertli, um mir für Otto zu Weihnachten Aufklärung über die in Oertli’s
Schrift enthaltenen Papierfaltübungen geben zu laßen. Dadurch bin ich auf die Beschäftigung mit Falt-
construktionen gekommen. Weniges darüber findet sich am Schluß von Ahrens ”Mathematische Spiele”.
Für den goldenen Schnitt fand ich folgende sehr einfache Construction: Man falte die Mittellinie AB
des quadratischen Blattes. Falte dann die Diagonale CB, und die Halbierungslinie CG des Winkels
ECB (indem man CE auf CB legt). Dann wird EF im Punkte G geteilt.”

79One might assume that [Ahrens, 1907] was meant, which is an abbreviated version of [Ahrens, 1901].
However, only [Ahrens, 1901] includes a chapter on folding constructions.
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geometrical methods. He stated, ”Equation of CB: y = 1
2x or x−2y√

5
= 0”80. With this

’normalization’ by the factor 2√
5
he provided a straight line on CB of length 1. This equals

the length of the straight line CE with the ”Equation of CE: x = 0”81. By summarizing

those two, he received an equation for CG82 (see Fig. 2.18):

x− 2y√
5

+ x = 0 ⇔ x− 2y +
√
5x = x(

√
5 + 1)− 2y = 0.

Figure 2.18: ”So, when we set EC = 1; x = EG = 2√
5+1

=
√
5−1
2 ;x′ =

GF = 3−
√
5

2 x : x′ =
√
5 − 1 : 3 −

√
5 = 1 : 1

2(
√
5 − 1) = x + x′ : x.

Thus, this leads to the construction of a regular pentagon:”83

This simple paper folding of the golden section is Hurwitz’s basis for the construction

of a regular pentagon. He pointed out that by halving EG in a new point H, he got

EH = 1
2EG =

√
5−1
4 = sin( π10 ), where

π
10 is obviously the central angle of a regular 20-gon.

80”Gleichung von CB: y = 1
2
x oder x−2y√

5
= 0”

81”Gleichung von CE: x = 0”
82In modern words this corresponds with the normalization of vectors and receiving of the angle bisector

by summarizing those.
82In Theorem 11 in the second book of Euclid’s Elements [Euclides, 1996, B. II] there is a very similar

construction of the golden section.
83”Also wenn EC = 1 gesetzt wird; x = EG = 2√

5+1
=

√
5−1
2

;x′ = GF = 3−
√

5
2

x : x′ =
√
5− 1 : 3−

√
5 =

1 : 1
2
(
√
5− 1) = x+ x′ : x. Zur Construktion des regulären Fünfecks gelangt man nun so:”
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Figure 2.19: The idea be-

hind Hurwitz’s pentagon

construction.

Therewith, Hurwitz received ∠HCE = π
10 ,

respectively ∠HCJ = π
2 − π

10 = 2π
5 , which

is the central angle of the regular pentagon.

To fullfill the condition of equilaterality, Hur-

witz folded CJ on CH and received a new

point K, where the length of CJ equals the

length of CK. Consequently, one can con-

struct the pentagon using C as center and

arranging around C five triangles of the type

KCJ .

It seems that Hurwitz became really enthusiastic about paper folding. He continued his

entry with stating a set of rules, which we want to sketch here:

Figure 2.20: Illustration of

rule 4).

”In the practical operation of foldings one

will soon notice that only the following op-

erations can safely be done: 1.) Determina-

tion of the intersection of two folding lines

[...] 2) Determination of the vertical line in

the middle of the line connecting two points

on this connecting line. [...] 3) Halving of a

given angle by placing one adjacent line on

the other. 4.) Placing a boundary point B

on a straight line G until the folding line AF

passes through another boundary point A.”84

84”Bei praktischer Ausführung von Faltungen wird man bald beobachten, daß nur folgende Operationen
mit Sicherheit auszuführen sind: 1.) Bestimmung des Durchschnitts zweier Faltlinien [...] 2) Bestim-
mung der Senkrechten in der Mitte der Verbindungsgeraden zweier Punkte auf dieser Verbindungsger-
aden. [...] 3) Halbierung eines bekannten Winkels durch Auflegen des einen Schenkels auf den anderen.
4.) Auflegen eines Randpunktes B auf eine Gerade G bis die Faltlinie AF durch einen anderen Rand-
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Hurwitz continued with constructions of a regular hexagon and an equilateral triangle

from a rectangular paper and the regular octagon from a squared paper (see Fig. 2.21).

Figure 2.21: The left picture shows a piece of paper that was found loosely in the last pages

of the 22nd diary. It cannot be said for sure that Hurwitz did the folding. In the picture

on the right an illustration of the octagon can be seen. Here we are certain that the pieces

of folded papers are originals: Hurwitz additionaly glued them on his diary page.

Furthermore, he dealt with other paper folding constructions, however, we want to con-

centrate on two more ideas concerning the pentagon. There are many ways of paper folding

constructions of the pentagon. Hurwitz’s first approach left some room for improvement.

And indeed, on the next page of his mathematical diary, there is an additional entry with

a corresponding title.

punkt A geht.”
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Figure 2.22: ”Improvements of the construction of the pentagon: After the construction of

HL, one has to set CM = CE(= 1), so ∠ECM = π
10 , because sinECM = EH =

√
5−1
4 .

∠MCJ = π
2 − π

10 = 2π
5 .”

”Placing (operation 4 pag 174 above) the point J on the straight line HL, so that the

fold CN passes through C, then is ∠NCJ = π
5

Setting tgECB85 = 2, EG = tgECG = tg(12ECB) = α, one has 2 = tgECB = x+x
1−x2 that

is 1 = x2 + x, x =
√
5−1
2 and EF will be divided in G in the golden section.”86

In the end of his diary entry, Hurwitz finally stated as main result a simplification of

the construction of a pentagon from a rectangled paper.

85tg is nowadays tangent
86”Verbesserung der Fünfecksconstruction: Nach Construktion von HL, hat man CM = CE(= 1) zu

machen, so ist ∠ECM = π
10
, weil sinECM = EH =

√
5−1
4

. ∠MCJ = π
2
− π

10
= 2π

5
. Legt man

(Operation 4 pag 174 oben) Punkt J auf die Gerade HL, so daß die Falte CN durch C geht, so ist
∠NCJ = π

5

tgECB = 2, EG = tgECG = tg( 1
2
ECB) = α gesetzt, hat man 2 = tgECB = x+x

1−x2 d. i. 1 = x2 + x,

x =
√

5−1
2

und EF wird also in G im goldenen Schnitt geteilt.”
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Figure 2.23: ”In the rectangular paper (Page 1 : 2) ABCD one firstly folds the lines a1 and

a2. Then the two lines b, the lines c, which halve the angles between a1 and b, the lines d,

then placing point B on d, results in e = OP , analogously occurs OS; placing point O on

S results in q and Q (as intersection of q and d), analogously placed O on R provides R.

Then OPQRS is a regular pentagon with center M . To receive a regular pentagon with

completed sides, one can fold the halving lines of OM , PM , QM , RM , SM .”87

It is remarkable, that Hurwitz obviously took the idea of paper folding and its possi-

bilities very seriously and wanted to give exact instructions for the construction of the

pentagon. This is underlined by the fact that it looks as if Hurwitz had first written with

a pencil and then overwritten his construction with ink. The mathematician also gave a

proof of his final construction: ”As proof of this construction one considers a regular 5-gon

OPQRS and set the diagonal SP = 1. Then ∠POB = π
5 = ∠POQ = ∠QOR = ∠ROS.

Therewith ∠QOM = π
10 and Q lies on the straight line d, which cut off

√
5−1
4 = sin π

10

from EC. Since furthermore Q is vertical on the middle of OS, the correctness of the

87”In dem rechtwinkligen Blatt (Seite 1 : 2) ABCD faltet man zunächst die Linien a1 und aa. Sodann
die beiden Linien b, die Linien c, welche die Winkel zwischen a1 und b halbieren, die Linien d, dann
Punkt B auf d gelegt, giebt Linie e = OP , analog entsteht OS; Punkt O auf S gelegt giebt q und
Q (als Durchschnitt von q und d), analog O auf P gelegt giebt R. Dann ist OPQRS ein reguläres
5-Eck mit dem Mittelpunkt M . Um ein reguläres Fünfeck mit fertigen Seiten zu erhalten, kann man
die Streckenhalbierenden zu OM , PM , QM , RM , SM falten.”
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construction is evident.”88

Figure 2.24: Find from diary No. 24.

That this construction was abso-

lutely not trivial, illustrates a loose

sheet, which we could find two di-

aries later. The handwriting of the

small letters indicate that it was in-

deed Hurwitz who folded this pen-

tagon.

Some remarks on paper folding in the beginning of the 20th century.

Hurwitz’s remark about Otto’s teacher from the beginning already indicates that paper

folding played a certain role in mathematical education of children at that time. In fact,

the pedagogical method of paper folding goes back to the German Friedrich Fröbel (1782

- 1852), founder of the ’kindergarten’ movement and creater of so-called ’Kindergarten

Gifts’89. He ”[...] recognized very early [..] among other things the great utility of

children’s occupation with paper folding and braiding.”90 [Flachsmeyer, 2008, p. 8]91

His far-reaching influence on using paper folding in mathematical education is manifested

in [Sundara Row, 1893], an Indian textbook. Interestingly, in its introduction, Sundara

88”Zum Beweis dieser Construction betrachte man ein reguläres 5-Eck OPQRS und setze die Diagonale
SP = 1. Damit ist ∠POB = π

5
= ∠POQ = ∠QOR = ∠ROS. Daher ∠QOM = π

10
und Q liegt auf der

Geraden d, welche das Stück
√

5−1
4

= sin π
10

von EC abschneidet. Da außerdem Q senkrecht über der
Mitte von OS liegt, so leuchtet die Richtigkeit der Construction ein.”

89a collection of educational ’toys’; a special one will be explained in the following
90” [...] erkannte schon frühzeitig [...] unter anderem die große Nützlichkeit der kindlichen Beschäftigung

mit dem Papierfalten und Flechten.”
91An indication, that Fröbel’s ideas were sustainable can be found in [Timerding, 1914, p. A 135]: ”Of

course, who has the preconceived idea of mathematics [...] will find it disconcerting that it already takes
place in games of small children like placing sticks, paper folding and cutting [...].” (”Wer freilich von
der vorgefaßten Meinung über die Mathematik ausgeht [...] wird es befremdlich finden, daß sie schon
in Spielen des kleinen Kindes wie Stäbchenlegen, Papierfalten und Ausschneiden [...] ihren Ausdruck
findet.”)
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Row92 wrote: ”The idea of this book was suggested to me by Kindergarten Gift No. VIII

- Paper-folding. The gift consists of 200 variously coloured squares of paper, a folder,

and diagrams and instructions for folding.”93 However, the German-Indian exchange

even went on: Row’s work was well known to the German mathematician and expert for

recreational mathematics Wilhelm Ahrens (1872 - 1927). In his two-volume collection

’Mathematische Unterhaltungen und Spiele’ [Ahrens, 1901, Ch. XXIII] from 1901, he

dedicated one chapter to paper folding and remarked: ”In this chapter we intend to

give some extracts of a by the Indian mathematician Mathematiker Sundara Row 1893

published book, in which is shown how to proceed, when one wants to realize the geometric

construction with nothing else then with folding of paper [...]”94. In his chapter Ahrens

continued Row’s purpose ”not only to aid the teaching of Geometry in school and colleges,

but also to afford mathematical recreation to young and old [...]” [Sundara Row, 1893, p.

vi], which was certainly successfull in view of Adolf Hurwitz.

2.2.3 Relation to his Student David Hilbert

Examination of Adolf Hurwitz’s estate furthermore highlights that his lifelong friendship

to his former student and later colleague David Hilbert was not only exceptionally fruitful,

but also rather interesting. It seems that their relation had undergone a certain change

between 1884 and 1919. In this section we try to investigate when the famous Hilbert

became completely emancipated from his teacher Hurwitz.

Hereby, it is important to emphasize that the following analysis is mainly based on the

mentioned Hurwitz estate and its comparison to additional biographical informations and

mathematical details extracted from the ’Gesammelte Abhandlungen’ [Hilbert, 1935] and

92sometimes also refered to as Rao instead of Row
93Probably, Row could know the kindergarten gift because of Pandita Ramabai Sarawati, an Indian activist

for the emancipation of women and pioneer in education. During her time in the USA from 1886 to
1889, she became a follower of Fröbel’s method of education (see [Ramabai, 2003, p. 145]).

94”In diesem Kapitel beabsichtigen wir, einige Proben aus einem von dem indischen Mathematiker Sundara
Row 1893 herausgegebenen Buche zu geben, in dem gezeigt wird, wie man zu verfahren hat, wenn man
die geometrische Konstruktion lediglich durch Falten von Papier ausführen will [...]”
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from the fourth and fifth supplements of the ’Grundzüge einer allgemeinen Theorie der

linearen Integralgleichungen.’ [Hilbert, 1904, Hilbert, 1906] of David Hilbert. This will

not provide a complete overview of the lifelong friendship between Hilbert and Hurwitz

or their extensive interdisciplinary exchange of mathematical ideas. However, since most

of the documents stored in Zurich have not been published yet, their perception should

nevertheless extend the well known facts of their relationship. We will concentrate on the

teacher-student-aspect and tackle the following question. Who was influenced by whom

at which time?

The Beginning of a Friendship.

In 1884, when Hurwitz received his first full professorship in Königsberg, he and David

Hilbert met for the first time. The younger wrote later: ”His friendly and open nature won

him, when he came to Königsberg, quickly the hearts of all who got to know him there

[...]”95 [Hilbert, 1921, p. 167]. Hilbert - born, grown up and studying in Königberg96

- was an extraordinarily inquisitive young mathematician, who craved for progressive

mathematical knowledge. For him and his two-years younger friend Hermann Minkowski,

who was said to be an exceptional talent, it was definitely a very fortunate coincidence

that Adolf Hurwitz became their teacher. Since Hurwitz was not only familiar with the

mathematical school created by Alfred Clebsch (1833 - 1872) and Felix Klein, but also

had learned in Berlin from Leopold Kronecker and especially Karl Weierstrass (see Section

2.1), the contribution of his knowledge was enormous97. In fact, Hilbert himself mentioned

in his obituary about Adolf Hurwitz [Hilbert, 1921, p. 162],

”Here I was, at that time still a student, soon asked for scientific exchange

and had the luck by being together with him to get to know in the easiest and

most interesting way the directions of thinking of the at time opposite however

95”Sein freundliches und offenes Wesen gewann ihm, als er nach Königsberg kam, rasch die Herzen aller,
die ihn dort kennenlernten [...]”

96with the exception of one year, 1881, at the University of Heidelberg (see [Reid, 1970])
97in particular concerning both faces of complex analysis [Blumenthal, 1932, p. 390]
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each other excellently complementing schools, the geometrical school of Klein

and the algebraic-analytical school of Berlin. [...] On numerous, sometimes

day by day undertaken walks at the time for eight years we have browsed

through probably all corners of mathematical knowledge, and Hurwitz with his

as well wide and multifaceted as also established and well-ordered knowledge

was always our leader.”98

Furthermore, in his colourful biography of David Hilbert, Otto Blumenthal99 (1876 -

1944) quoted, ”We, Minkowski and me, were quite overwhelmed with his knowledge and

did not believe that we could ever get that far.”100 [Blumenthal, 1932, p. 390]. How-

ever, Adolf Hurwitz also cared a lot about his students. ”In the lessons he always took

great care by interesting exercises to motivate for participation, and it was characteris-

tic, how often one could find him in his thoughts searching for appropriate exercises and

problems.”101[Hilbert, 1921, p. 166], remembered the former student Hilbert as well as,

”Inspirations were given by the mathematical Colloquium [...] in particular, however, by

the walks with Hurwitz ”in the afternoon precisely at 5 o’clock next to the apple tree”

”102[Blumenthal, 1932, p. 393]. This tradition of mathematical group walks with students

had been continued by Hilbert for all of his academic life. We can conclude that in the

beginning it was naturally Hilbert who benefited a lot from his teacher Hurwitz. In 1892,

he received his first professorship as successor of Hurwitz in Königsberg.

98”Hier wurde ich, damals noch Student, bald von Hurwitz zu wissenschaftlichem Verkehr herangezogen
und hatte das Glück, durch das Zusammensein mit ihm in der mühelosesten und interessantesten Art
die Gedankenrichtungen der beiden sich damals gegenüberstehenden und doch einander so vortrefflich
ergänzenden Schulen, der geometrischen Schule von Klein und der algebraisch-analytischen Berliner
Schule kennenzulernen. [...] Auf zahllosen, zeitweise Tag für Tag unternommenen Spaziergängen haben
wir damals während acht Jahren wohl alle Winkel mathematischen Wissens durchstöbert, und Hurwitz
mit seinen ebenso ausgedehnten und vielseitigen wie festbegründeten und wohlgeordneten Kenntnissen
war uns dabei immer der Führer.”

99Hilbert’s first doctoral student (in 1898)
100”Wir, Minkowski und ich, waren ganz erschlagen von seinem Wissen und glaubten nicht, dass wir es

jemals so weit bringen würden.”
101”In den Übungen war er ständig darauf bedacht, durch anregende Aufgaben zur Mitarbeit heranzuziehen,

und es war charakteristisch, wie oft man ihn in seinen Gedanken auf der Suche nach geeigneten Aufgaben
und Problemstellungen für Schüler antraf.”

102”Anregungen vermittelten das Mathematische Kolloquium [...], vor allem aber die Spaziergänge mit
Hurwitz ”nachmittags präzise 5 Uhr nach dem Apfelbaum” ”
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Two Productive Universal Mathematicians

Both mathematicians, Adolf Hurwitz as well as David Hilbert, belonged to a dying species

in their profession: They can be considered as universal mathematicians having compre-

hensive knowledge and scientific results in various mathematical disciplines.103 Further-

more, both were extremely productive. We can get an impression of their work by noticing

that the ’Gesammelten Abhandlungen I - III’ of Hilbert [Hilbert, 1935] consist of more

than 1350 pages of mostly influential mathematics similar to the ’Mathematisches Werk I

+ II’ of Adolf Hurwitz [Hurwitz, 1932] having more than 1400 pages.

Without claiming to be exhaustive, we want to give a strongly shortened overview of the

mathematical work of David Hilbert following the biographical essay ’Lebensgeschichte’

[Blumenthal, 1932] written by his former doctoral student. The subsequent list sketches

Hilbert’s wide scientific spectrum concerning all main mathematical disciplines, ordered

by modern terms, highlighting some results, publications or speeches, which we want to

analyze in respect to their connection to Hurwitz’s work in the following subsection.

• 1885 - 1892 Algebra: Theory of Invariants

• 1890 ’Ueber die Theorie der algebraischen Formen’ [Hilbert, 1890]

• 1892 ’Ueber die Irrationalität ganzer rationaler Funktionen mit ganzzahligen Koef-

fizienten’ [Hilbert, 1935, vl. II, No. 18] with ’Irreduzibilitätssatz’ [Blumenthal, 1932,

p. 393]

• 1892 - 1899 Number Theory: Theory of Number Fields

• 1893 Simplification of the Hermite-Lindemann proof of the transcendence of e and

π [Hilbert, 1935, vl. I, No. 1]

103In view of the growth of the mathematical community and its insights around the turn to the twentieth
century, Hilbert and Henri Poincaré are said to be the last knowing almost everything about the whole
developments in mathematics.
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• 1894 ’Zwei neue Beweise für die Zerlegbarkeit der Zahlen eines Körpers in Primide-

ale’ [Hilbert, 1935, vl. I, No. 2]

• 1896 ’Die Theorie der algebraischen Zahlkörper’ [Hilbert, 1935, vl. I, No. 7] , also

called ’Zahlbericht’ including ideal theory

• 1891 - 1902 Geometry: Axiomatization of Geometry

• 1895 - 1903 ’Grundlagen der Geometrie’ including complements [Hilbert, 1930]

• 1895 ’Über die gerade Linie als kürzeste Verbindung zweier Punkte’ [Hilbert, 1930,

compl. I]

• 1900 ’Über den Zahlbegriff’ [Hilbert, 1900b]: Axiomatization of Arithmetic

• 1900 Hilbert stated his 23 Mathematical Problems at the International Congress of

Mathematicians in Paris [Hilbert, 1900a]

• 1902 - 1910 Complex Analysis: variation problems, Independence Theorem

• 1904 - 1910 Linear Algebra, Functional Analysis: ’Grundzüge einer allge-

meinen Theorie der linearen Integralgleichungen’ with supplements [Hilbert, 1904,

Hilbert, 1906] including new terminology

• 1907 (published 1910) Analysis meets Geometry: Analytical refounding of

Minkowski’s theory of volumes and surfaces of convex bodies in [Hilbert, 1910]

• 1907 Analysis meets Number Theory: ’Beweis der Darstellbarkeit der

ganzen Zahlen durch eine feste Anzahl nter Potenzen (Waringsches Problem).’

[Hilbert, 1909]

• 1902 - 1918 Axiomatization of Physics and Mechanics: Theory of Relativity

• 1904 - 1934 Mathematical foundation
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• 1904 A first talk in Heidelberg about ’Axiomatisierung der Zahlenlehre’

[Blumenthal, 1932, p. 421]

• 1922 - 1934 Hilbert Program: Formalism and Proof Theory

• 1931 ’Die Grundlegung der elementaren Zahlenlehre.’ [Hilbert, 1931]

Although David Hilbert and Adolf Hurwitz are very similar with respect to their ex-

traordinary productivity, their different characters can be recognized in their academic

behavior. Hilbert was noticed as extroverted and ”became used to be a famous man”104

[Blumenthal, 1932, p. 407], whereas Hurwitz ”avoided any personal being apparent in

academic and public life”105 [Hilbert, 1921, p. 167] and preferred to work contiuously,

however, silently. This is particularly visible in his consequent, nearly peerless way of

taking notes of mathematical ideas in his diaries. In the following we take a glance at

those diaries in view of parallels to the above listed fields of research of David Hilbert.

Mathematical Exchange.

”Already here, anticipating, it shall be reported about the seldom harmonic and fruitful

cooperation of those three mathematicians.”106 [Blumenthal, 1932, p. 390], noted Otto

Blumenthal and refered to the active mathematical exchange between Minkowski, Hilbert

and Hurwitz. In the mathematical diaries [Hurwitz, 1919a] various entries, directly or

indirectly related to publications of Hilbert, can be found - those are listed in Appendix

9.2. Furthermore, some ideas in selected diaries suggest to be inspired by Hilbert.

We already pointed out, that without doubt, in their first years it was essentially David

Hilbert who benefited from his teacher. However, his teacher Hurwitz became very soon

aware of his talented student. In diary No. 6107 [Hurwitz, 1919a, No. 6] on page 44 is a

104”gewöhnte sich daran, ein berühmter Mann zu sein”
105”mied jedes persönliche Hervortreten im akademischen und öffentlichen Leben”
106”Es soll schon hier vorgreifend über das selten harmonische und fruchtbare Zusammenarbeiten dieser

drei Mathematiker berichtet werden.”
107from 1888 IV. to 1889 XI.
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first entry related to Hilbert, entitled ”On Noether’s Theorem (concerning a message of

Hilbert)”108. Here Hurwitz familarized himself with the nowadays called Residual Inter-

section Theorem, sometimes also Fundamental Theorem, of Max Noether (1844 - 1921)

dealing with a linear form associated with two algebraic curves. Interestingly one page

later follows the entry ”Hilbert’s Fundamental Theorem”109 dealing with a linear form of

homogeneous functions.

Figure 2.25: ”Hilbert’s Fundamental Theorem. Let f1, f2, . . . , fr, . . . be an infinite series of

homogeneous functions of x1, x2, . . . xn. We claim that n can be determined in such a way

that

fr = A1f1 +A2f2 + · · ·Anfn

for any r, where A1, A2, . . . , An are entire homogeneous functions of x1, x2, . . . , xn.”
110

On the one hand, this can be considered as continuation and extension of Noether’s the-

orem, on the other hand this is a previous version of Hilbert’s Basic Theorem. Although

Hurwitz was obviously interested perhaps even inspired from Hilbert’s Form and Invariant

Theory, in his work ’Über die Erzeugung der Invarianten durch Integration’ 111 Hurwitz

discovered a ”new generating principle for algebraic invariants which allowed him to apply

108”Der Nöther’sche Satz (nach einer Mitteilung von Hilbert)”
109”Hilberts Fundamentalsatz”
110”Hilbert’s Fundamentalsatz. Es seien f1, f2, . . . , fr, . . . eine unendliche Reihe von homogenen Funktionen

von x1, x2, . . . xn. Dann ist die Behauptung, daß n so bestimmt werden kann, daß fr = A1f1 +A2f2 +
· · ·Anfn für jedes r, wobei A1, A2, . . . , An ganze homogene Functionen von x1, x2, . . . , xn.”

111’On generating invariants by integration.’
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an [by Hilbert] introduced method [...] .”112 [Hilbert, 1921, p. 164]. This nice formulation

comes from Hilbert himself and can be interpreted that Hurwitz kind of improved the use

of one of Hilbert’s methods. At least three more entries in the mathematical diaries (see

Appendix II: No. 8, p. 207; No. 14, p. 204; No. 25, p. 77) are directly dedicated to

Hilbert’s ”Formensatz”, nowadays called Basic Theorem. In the entry of the fourteenth

diary113 [Hurwitz, 1919a, No. 14], Hurwitz’s comments on Hilbert’s theorems have the

tendency to sound like amendments. In the beginning, he wrote

Figure 2.26: ”The proof of Hilbert’s Theorem (Ann 36. p. 485) seems to be the most

easiest understandable in such a way: [...]”114

Here Hurwitz sounds as if Hilbert’s ideas respectively the way Hilbert had put the proof

to language could be simplified. Another example is on the next page:

Figure 2.27: ”Hilbert’s Theorem holds also for forms whose coeff. are integers of a finite

number field.”115

This generalization of the theorem of Hilbert is remarkable, because it obviously paved

the way for one of the later known versions of Hilbert’s Basic Theorem: The ring of

112”neues Erzeugungsprinzip für algebraische Invarianten, das es ihm ermöglicht, ein [von Hilbert]
eingeschlagenes Verfahren [...] anzuwenden.”

113from 1896 I.1. to 1897 II.1.
114”Der Beweis des Hilbert’schen Theorems II (Ann 36. p. 485) ist wohl am leichtesten so aufzufassen:

[...]”
115”Der Hilbert’sche Satz gilt auch noch für Formen, deren Coeff. ganze Zahlen eines endlichen Zahlkörpers

sind.”
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polynomials K[X1, . . . ,Xn] over a field K is Noetherian.116

In 1891, Hurwitz and Hilbert published a first joint note [Hilbert, 1935, vl. II, Nr. 17] in

which they used ”that a certain, a number of parameters including irreducible ternary form

still is irreducible for general integral values of those parameters.”117 [Blumenthal, 1932,

p. 393] Otto Blumenthal considered this as foundation of Hilbert’s famous ’Irreduzi-

bilitätssatz’ [Hilbert, 1935, vl. II, Nr. 18] from 1892. Apparently, there was still a great

influence from Hurwitz on Hilbert.

In his first years being Privatdozent118 in Königsberg, when Hilbert adressed himself

to the theory of number fields, he reported from his and Adolf Hurwitz’s common walks,

discussing theories of Dedekind and Kronecker. ”One considered Kronecker’s proof for

a unique decomposition of prime ideals, the other the one of Dedekind, and we thought

both were awful.”119[Blumenthal, 1932, p. 397]. However, their cooperation turned out to

be successfull: Firstly, Hilbert began a publication from 1894 building on his talk ’Zwei

neue Beweise für die Zerlegbarkeit der Zahlen eines Körpers in Primideale’ 120 from 1893.

Secondly, Hurwitz, also working on algebraic number fields, published another proof one

year later in his paper ’Der Euklidische Divisionssatz in einem endlichen algebraischen

Zahlkörper ’121 . Hilbert considered this work as ”remarkable in view of the analogy with

the Euclidean Algorithm in number theory”122 [Hilbert, 1921, p. 165] and even preferred

Hurwitz’s proof in his famous ’Zahlbericht’ 123. It seems that even after Hurwitz’s moving

to Zurich respectively Hilbert’s full professorship in Königsberg starting from 1892, Hilbert

was still slightly influenced by his former teacher. We investigate this also on behalf of

116We may assume that Hurwitz had meant ’algebraic’ instead of ’finite’.
117”daß eine gewisse, eine Anzahl Parameter enthaltende irreduzible ternäre Form auch für allgemeine

ganzzahlige Werte dieser Parameter irreduzibel bleibt.”
118we explained this old German term in Section 2.1
119”Einer nahm den Kroneckersches Beweis für die eindeutige Zerlegung in Primideale vor, der andere den

Dedekindschen, und beide fanden wir scheußlich.”
120’Two new proofs of the decomposability of numbers of a number field in prime ideals’, spoken in September

1893 at the meeting of the ’Deutsche Mathematiker-Vereinigung in Munich
121’The Euclidean Division Theorem in a finite algebraic number field.’
122”bemerkenswert durch die Analogie mit dem Euklidischen Algorithmus in der elementaren Zahlentheo-

rie”
123actually ’Die Theorie der algebraischen Zahlkörper’, report of algebraic number theory
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two entries from 1898 and 1899 in Hurwitz’s diaries No. 15124 [Hurwitz, 1919a, No. 15]

and No. 16125 [Hurwitz, 1919a, No. 16] directly refering to Hilbert’s ’Zahlbericht’. The

first is listed as ”Concerning Hilbert’s ”Report on Number Fields” ”126.

Figure 2.28: ”Concerning Chapter V of Hilbert’s report the following is to remark.”127

The subsequent entry gives the impression that Hurwitz continued Hilbert’s work using a

result of Hilbert about composing ideals of subfields of number fields. Hereafter, number

fields will be defined by K respectively ki and ideals by ν respectively νi, i = 1, 2, 12.

Figure 2.29: ”According to Hilbert p. 209 we have [...] and the equation νν12 = ν1ν2 would

lead to νk1νk2 = νk12”
128

Then Hurwitz first verified this consequence νk1νk2 = νk12 of Hilbert’s formula, before he

compared it with his conjecture.

124from 1897 II.1. to 1898 III.19.
125from 1898 III.20. to 1899 II.23.
126”Zu Hilbert’s ”Körperbericht” ”
127”Zum Capitel V von Hilberts Bericht ist Folgendes zu bemerken.”
128”Nach Hilbert p. 209 hat man [...] und die Gleichung νν12 = ν1ν2 würde liefern νk1

νk2
= νk12

”
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Figure 2.30: ”I assume that the theorem holds: Is K a composition of k1, k2, moreover

k12 the greatest common divisor of k1 and k2 then ννk12 = νk1νk2 , where ν, ν12, ν1, ν2 are

Grundideale of the number fields K, k12, k1, k2.”
129

Consequently, Hurwitz deduced a general new result on algebraic number fields.

Figure 2.31: ”[...] consequently the general theorem holds: ν = ν1·ν2
ν

, with ν a common

divisor of ν1 und ν2.
130Or also: In the equation ν1ν2 = νν12 · j is ν12 · j a common divisor

of ν1 and ν2.”

Here we may interpret that Hurwitz used the ’Zahlbericht’ as a textbook, however, the

entry in No. 16 [Hurwitz, 1919a, No. 16] emphasizes that the teacher Hurwitz is still one

step ahead.

129The use of the notation ’Grundideal’ is here a bit confusing. According to [Renschuch, 1973] it goes
back to a work of Emmy Noether from 1923. However, this comment is misleading. According to
[Hilbert, 1935, vl. I, p. 90] the term ’Grundideal’ was already used by Dedekind and Hilbert himself
invented the new term ’Differente’ which is still used today. Interestingly, Hurwitz refering to Hilbert
kept Dedekind’s notation.
”Ich vermute, daß der Satz gilt: Ist K aus k1, k2 zusammengesetzt, ferner k12 der größte gemeinsame
Divisor von k1 und k2 so ist ννk12

= νk1
νk2

, wo ν, ν12, ν1, ν2 die Grundideale der Körper K, k12, k1, k2.”
130probably ν12 and ν were interchanged

”[...] folglich besteht allgemein der Satz: ν = ν1·ν2
ν

, wo ν ein gemeinsamer Divisor von ν1 und ν2. Oder
auch: In der Gleichung ν1ν2 = νν12 · j ist ν12 · j ein gemeinsamer Divisor von ν1 und ν2.”
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Figure 2.32: Under the heading ”Concerning Hilbert’s report pag. 287” the symbol
(

n,m
ω

)

,

where ω is a prime number, n and m are abitrary numbers and m is not a square number

is treated.131

It is defined to be equal to +1 or −1, according to the property whether in the field Q(
√
m)

the congruence

n ≡ N(ω) = ω · sω(modωλ)

has for any λ a solution for an integer number ω or not (here s and λ are not defined

precisely)132. Hurwitz stated, ”So we have the theorem

(

n ·N(α),m

ω

)

=
(n,m

ω

)

,

if α is an arbitrary entire number in the number field (
√
m).”133134 and continued ”There-

fore Hilbert lacks a proof.”135 Indeed, we can find the stated equation some pages later

in Hilbert’s work without a sound verification:

131”Zum Hilbert’schen Bericht pag. 287”
132Hilbert characterized with his sympol so-called ’Normenreste’ respectively ’Normennichtreste’

[Hilbert, 1935, vl. I, p. 164] of a number field. Today the symbol is known as ’Hilbert symbol’.
133”Es gilt nun der Satz

(

n ·N(α), m

ω

)

=
(n,m

ω

)

,

wenn α eine beliebige ganze Zahl im Körper (
√
m).”

134We may assume that an algebraic number field K(
√
m) was meant here.

135”Hierfür fehlt Hilbert der Beweis.”
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Figure 2.33: Excerpt of Hilbert’s ’Zahlbericht’, page 289 respectively [Hilbert, 1935, vl. I,

p. 164].

Within one page Hurwitz filled Hilbert’s gap proving this equation by use of a clever case

distinction.

Figure 2.34: ”Thus nn · sn ≡ xn · sx · sn(ωλ−1) and n ≡ x · sx(ωλ−2) q.e.d.”136

Obviously, Hurwitz worked not only with Hilbert’s ’Zahlbericht’, however, he was further-

more able to obtain some improvements.

Another diary entry has to be mentioned because of completeness, any conclusions

are rather speculative: In No. 23 [Hurwitz, 1919a, No. 23] from 1908 Hurwitz dealed

with a short exercise entitled ’Über die kürzeste Linie auf einem Parallelepiped’ (which

is explained in detail in Section 2.2.1). Remarkably one of Hilbert’s papers from 1895

has the very similar title ’Über die gerade Linie als kürzeste Verbindung zweier Punkte’.

However, since these two topics were examined with a distance of 13 years, we will not

take this coincidence into consideration.

Instead, we go on chronologically and take a look at diary No. 19137 [Hurwitz, 1919a,

No. 19] from 1902.

136”Also wird nn · sn ≡ xn · sx · sn(ωλ−1) und n ≡ x · sx(ωλ−2) q.e.d.”
137from 1901 XI.1. to 1904 III.16.
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Figure 2.35: The entry is entitled ”Hilbert’s axiomatic Theory of Quantities”138, where

Hurwitz refered to Hilbert’s talk ’Über den Zahlbegriff’ [Hilbert, 1900b].

After his axiomatization of geometry, Hilbert continued working on developing an ax-

iomatic system for arithmetic. He was demanding for complete freedom from contradic-

tions in mathematics. Therewith, Hilbert became one of the founders of a new philo-

sophical movement in mathematics, the complete establishment of mathematics on an

axiomatic system, being the first advocate of the so-called Formalism.139 His above men-

tioned talk and subsequent publication [Hilbert, 1900b] can be considered as milestone.

What makes Hurwitz’s entry so interesting, is that it contains nothing but a nearly exact

copy of Hilbert’s ideas.

Figure 2.36: Excerpts of Hilbert’s publication [Hilbert, 1900b] and Hurwitz’s diary entry,

”II. Axioms of Calculation. [...]”.

138”Hilbert’s axiomatische Größenlehre”
139Due to inspirations of various mathematicians his attitude was in a steadily evolvement. For more

information we refer to [Tapp, 2013].
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Here Hurwitz followed step by step, axiom by axiom, Hilbert’s rules for operations, calcu-

lations, order and continuity and even his consequences,

Figure 2.37: ”Some remarks on the dependence of axioms were added by Hilbert:”140

as well as Hilbert’s new terminology,

Figure 2.38: ”From them the existence of a ”Verdichtungsstelle” follows (as Hilbert ex-

presses himself.)”.141

It seems that this concept was completely new for Hurwitz and, furthermore, that he was

willing to understand Hilbert’s axiomatization. Here we get a first idea that the status of

their relation was about to change. In any case, David Hilbert and Adolf Hurwitz are on

an equal footing at the turn of the century.

The year 1900 was also the year when Hilbert introduced his famous 23 problems on

the International Conference of Mathematicians in Paris [Hilbert, 1900a]. In the previous

section we already pointed out that at least one entry in diary No. 22 [Hurwitz, 1919a,

No. 22] concerning the proof of the Theorem of Pythagoras could have been inspired by

the third problem.

More obvious, however, is Hilbert’s influence on an entry in diary No. 21142

[Hurwitz, 1919a, No. 21] from August 09, 1906, which is entitled ”D. Hilbert (Integralequ.

140”Einige Bemerkungen über die Abhängigkeit der Axiome hat Hilbert hinzugefügt:”
141”Aus ihnen folgt die Existenz der ”Verdichtungsstelle” (wie Hilbert sich ausdrückt.)”
142from 1906 II.1. to 1906 XII.8.
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V. Gött, Nachr. 1906)”143 and refers to the fifth supplement of Hilbert’s article ’Grundzüge

einer allgemeinen Theorie der linearen Integralgleichungen’ [Hilbert, 1906] from 1906. In

this work Hilbert defined a new terminology and presented an innovative concept of han-

dling linear algebra problems by applying integral equations. His method is based on the

symmetry of the coefficients which is equivalent to the symmetry of the kernel144 of the

integral equation (see [Blumenthal, 1932, p. 411]). The fourth [Hilbert, 1904] and fifth

supplement, to which Hurwitz refered, extend Hilbert’s previous results on bilinear forms

with infinitely many variables. The diary entry begins with the section ”Bezeichungen”,

which means ’notations’. One after the other Hurwitz reproduced Hilbert’s definitions of

the terms ”Abschnitte” and ”Faltung” as well as ”Eigenwerte”, ”Spektrum” and ”Resol-

vente”.145

Figure 2.39: Excerpt of Hurwitz’s diary entry. The important terms are double underlined.

143”D. Hilbert (Integralgl. V. Gött. Nachr. 1906)”
144Hilbert’s term ’Kern’ became internationally used, in English it was transformed to ’kernel’.
145”segments”, ”convolution”, ”eigenvalue”, ”spectrum”, ”resolvent”
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In fact, those terms were introduced by Hilbert himself. On page 459 of the fifth sup-

plement he wrote: ”Values are significantly determined by the kernel(s,t); I named them

Eigenwerte resp. Eigenfunktionen [...].”146 It seems that Hurwitz was not yet familiar

with Hilbert’s concept. One indication is the special highlighting of all those terms by

double underlining, another indication is the placing of certain terms in quotation marks

on the second page, where Hurwitz became acquainted with resulting equations.

Figure 2.40: ”Thus the ”convolution” Kn(x, ·)Kp(λj ·, y) =
∑

KpqxqK
(p)
n (λ/y)” 147

This shows the unfamiliar use of this term. Some days later, in an entry from September

02, 1906, Hurwitz continued his analysis. He wrote,

Figure 2.41: ”In Hilbert’s concept the following continuations are expediently to be used

[...]” 148

Then Hurwitz defined again a variety of new terms. This is followed up through an entry

from September 16, where Hurwitz stated a theorem on quadratic forms.

146”Die Werte [...] sind wesentlich durch den Kern(s,t) bestimmt; ich habe sie Eigenwerte bez. Eigenfunk-
tionen [...] genannt.”

147”Also die ”Faltung” Kn(x, ·)Kp(λj ·, y) =
∑

KpqxqK
(p)
n (λ/y)”

148”In Hilberts Ideenbildung sind folgende Fortsetzungen zweckmäßig zu benutzen [...]”

69



2 The Hurwitz Brothers

Figure 2.42: ”If Q =
∑

apqxpxq for
∑

x2p ≤ 1 is a function, i.e. if for any system of values

(x1, x2, · · · , xp, · · · ), which satisfies
∑

x2p ≤ 1, Limn=∞(p,q=1,2,...n)

∑

apqxpxq exists, then

Q is a limited form. (notification of Hilbert, that students proved this, the proof is to be

considered as very difficult.)”149

Hurwitz examined the theorem as well as the proof and found some reformulations, noted

on diary pages 170 and 171. Two pages later he stated a further theorem.

Figure 2.43: ”Proof either according to Hilbert or with the theorem on pag 170 [...]” 150

The next section continues with the consideration of linear and quadratic forms, which we

do not want to deepen here. However, what we remark is that Hurwitz is not only dealing

with Hilbert’s ideas, he is even adopting a completely new theory from his colleague.

Certainly, Hilbert was on the fast lane.

One year later this overtaking became even more apparent. In 1907, David Hilbert solved

the task of developing an analytical refounding of Minkowski’s theory of volumes and

surfaces of convex bodies in his sixth supplement151 [Hilbert, 1910]. This task had already

149”Wenn Q =
∑

apqxpxq für
∑

x2
p ≤ 1 eine Funktion ist, d.h. wenn für jedes Wertsystem

(x1, x2, · · · , xp, · · · ), das
∑

x2
p ≤ 1 erfüllt, Limn=∞(p,q=1,2,...n)

∑

apqxpxq existiert, so ist Q eine
beschränkte Form. (Mitteilung v. Hilbert, daß Schüler dies bewiesen, den Beweis als sehr schwer
bezeichnen.)”

150”Beweis entweder nach Hilbert oder mit Hilfe des Satzes pag 170 [...]”.
151which was published three years later in 1910
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been tackled by Hurwitz in 1901 and 1902. An entry in diary No. 18152 [Hurwitz, 1919a,

No. 18] about his colloquium talk from January 21, 1901 is entitled:

Figure 2.44: ”Minkowski’s theorems on convex bodies [...]”. 153

Here Hurwitz discussed several questions on convex bodies. However, four pages of calcu-

lations later, he stated,

Figure 2.45: ”It remains doubtful if simple results can be discovered here.”154

Obviously, he was not content with his considerations. One year later, Adolf Hurwitz

published the article [Hurwitz, 1902a] in which he tried a first attempt of an appropriate

refoundation ”using his theory of spherical functions [...], however, he only had a par-

tial success. Hilbert, with his powerful tool on integral equations, replaces the spherical

function by more generalized ones and passes through.”155 [Blumenthal, 1932, p. 414]156.

While Hilbert developed as guidepost and unique mathematician, his scientific supe-

152from 1900 XII. to 1901 X.
153”Minkowski’s Sätze über konvexe Körper [...]”
154”Es bleibt fraglich, ob man hier zu einfachen Resultaten durchdringen kann.”
155”mit seiner Theorie der Kugelfunktionen [...], hatte aber nur einen Teilerfolg erzielt. Hilbert, im Besitze

der mächtigen Hilfsmittel der Integralgleichungen, ersetzt die Kugelfunktionen durch allgemeinere, und
kommt durch.”

156Firstly, it is remarkable that Hurwitz, studying Hilbert’s supplements, did not apply the integral equation
method. Secondly, notice that Hilbert’s dissertation thesis was about spherical functions. Interestingly,
the thesis is dedicated to Hurwitz.
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riority over Hurwitz became more and more clear. At the latest, the year 1907 can be

considered as final turnaround of their teacher-student-relation. A therefore remarkable

situaton is explained in detail by Otto Blumenthal: In a short note [Hurwitz, 1908] from

November 20, 1907, Adolf Hurwitz proved a variation of the so-called Waring problem.

This number theoretical question, named after the English mathematician Edward War-

ing (1736 - 1798) and published in his work ’Meditationes algebraicae’ from 1770, claimed

that for every exponent k ∈ N a natural number n exists such that every natural number

can be expressed as a sum of at least n many k-th powers. Hurwitz showed, ” Is the

nth power of x21 + x22 + x23 + x24 equal to a sum of 2nth powers of a linear rational form

of x1, x2, x3, x4, and does the Waring Conjecture hold for n, it is also valid for 2n.”157

[Blumenthal, 1932, p. 415] According to Otto Blumenthal, ”This theorem gave Hilbert

the inspiration and direction for his examinations. He found an unexpected way to state

an identity of the by Hurwitz demanded kind for arbitrary n.”158 Moreover, Hilbert de-

duced ”from a general principle which was used by Hurwitz in the theory of invariants in

1897, a formula [...]”159 and he managed ”to transfer the by the integration demanded

taking the limits in the coefficients of the sum and finally, on behalf of another trick, to

replace those coefficients by positive rationals. Therewith the foundation for the proof of

Waring’s theorem is laid.”160 [Blumenthal, 1932, p. 415] Finally, Hilbert solved Waring’s

Problem [Hilbert, 1909] and presented a wonderful example for his definite mathematical

emancipation: ”Because he fought together with a master of Hurwitz’s high level and

won with the weapons from Hurwitz’s armor chamber on a point, when [Hurwitz] had no

prospect of success.”161 [Blumenthal, 1932, p. 416]

157”Ist die n-te Potenz von x2
1 + x2

2 + x2
3 + x2

4 identisch gleich einer Summe (2n)-ter Potenzen linearer
rationaler Formen der x1, x2, x3, x4, und gilt die Waringsche Behauptung für n, so gilt sie auch für 2n.”

158”Dieser Satz gab Hilbert die Anregung und Richtung zu seinen Untersuchungen. Er fand nämlich einen
ungeahnten Weg, um für beliebige n eine Identität der von Hurwitz geforderten Art aufzustellen.”

159”aus einem allgemeinen Prinzip, das Hurwitz 1897 in der Invariantentheorie benutzt hatte, eine Formel
[...]”

160”den durch die Integration geforderten Grenzübergang in die Koeffizienten der Summe zu verlegen und
schließlich durch einen weiteren Kunstgriff diese Koeffizienten durch positive rationale zu ersetzen.
Damit ist die Grundlage für den Beweis des Waringschen Satzes gelegt.”

161”Denn er kämpfte zusammen mit einem Meister von dem hohem Range Hurwitz’s und siegte mit den
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With this meaningful characterization we close the analysis of the diary entries related

to the mathematical exchange between those two great mathematicians with some last

significant words from Hilbert, expressing that Hurwitz was ”[...] more than willing to

appreaciate the achievements of others and he was genuinely pleased about any scientific

progress: an idealist in the good old-fashioned meaning of the word.”162 [Hilbert, 1921,

p. 164]

Personal Relation: Lifelong and even Longer.

Besides the mathematical diaries there are some more hints on the multifaceted rela-

tionship between David Hilbert and Adolf Hurwitz to be discovered in the ETH estate

in Zurich. Hurwitz, who suffered during all of his life from an unstable health, was a

very rare guest at conferences outside Zurich. Accordingly several greeting cards163 sent

from mathematical events can be found, from ’Lutetia Parisiorum, le 12 aout 1900’, the

’Landau-Kommers 18. Jan. 1913’ and from the ’Dirichletkommers am 13. Februar 1905’.

Figure 2.46: Greeting cards from the ’Lutetia Parisiorum’ and the ’Landau-Kommers’.

All of those were signed by a great number of mathematicians, the first two show the

handwriting of David Hilbert. On the card from Paris (see left picture in Fig. 2.46) he

Waffen aus Hurwitz’s Rüstkammer an einem Punkte, wo dieser keine Aussicht auf Erfolg gesehen hatte.”
162”[...] gern bereit zur Anerkennung der Leistungen anderer und von aufrichtiger Freude erfüllt über jeden

wissenschaftlichen Fortschritt an sich: ein Idealist im guten altmodischen Sinne des Wortes.”
163under the directory HS 583: 52,53 and 57
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wrote, ”Sending warm greetings, wishing good recovery and hoping for a soon reunion

longer than the last time. Hilbert”164

Furthermore, some documents testify that there had even been a close relationship

between the families Hurwitz and Hilbert. Adolf Hurwitz’s elder brother Julius, who

also studied mathematics in Königsberg, edited several of Hilbert’s lectures. On some

lecture notes165 comments of Hilbert himself can be found and in the extensive collected

correspondence of Adolf Hurwitz166 a letter exchange between Julius Hurwitz and Hilbert

has been discovered167.

In the additional book No. 32168 Georg Pólya completed the mathematical diaries with

a register. Next to this list the notations ”the first 9 volumes and table of contents are for

the purpose of editing temporarily at Prof. Hilbert in Göttingen”169 and

Figure 2.47: ”22. for editing temporarily at Prof. Hilbert in Göttingen”170

are written and later crossed out with a pencil. Obviously, Hilbert had lent the first nine

as well as the twentysecond diary and had returned them after a while. It is difficult to

reconstruct when exactly he borrowed the diaries, however, there are two hints. In the

beginning of this section we already stated Hilbert’s remarks about Hurwitz’s diaries. He

wrote that they ”provide a true view of his constantly progresssive development and at

the same time they are a rich treasure trove for interesting and for further examination

164”Herzliche Grüße sendend, gute Erholung wünschend und baldiges Wiedersehen auf länger, wie das
letzte Mal erhoffend. Hilbert”.

165under the directory HS 582: 154
166which is stored in the archive of Göttingen
167We will leave further details to Section 2.4.
168in HS 582: 32
169”die ersten 9 Bände und Inhaltsverzeichnis sind zwecks Bearbeitung vorderhand bei Prof. Hilbert in

Göttingen”
170”22. zwecks Bearbeitung vorderhand bei Prof. Hilbert in Göttingen”
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appropriate thoughts and problems.” [Hilbert, 1921, p. 166] Since this quotation is taken

from his commemorative speech, Hilbert had viewed the diaries before 1920 and considered

them as a rich source of new mathematical inspirations.

In a letter of condolence to Ida Samuel-Hurwitz171 from December 15, 1919 - only

four weeks after Adolf Hurwitz’s death - Hilbert wrote that for Pólya and him the

”matter of publishing the Hurwitz’s treatises [is] of utmost concern”.172 173 He offered,

”The negotiations could be done verbally with Springer by a local, very skillful, math.

colleague.”174175 It took another few years before Hilbert’s and Pólya’s support of their

mathematical and personal friend finally turned out to be successfull. Adolf Hurwitz’s

’Mathematische Werke’ [Hurwitz, 1932] were published in 1932.

171under the directory HS 583: 28
172”Angelegenheit der Herausgabe der Abhandlungen von Hurwitz [ist] unsere wichtigste Sorge”
173Pólya himself remembered, ”I played a large role in editing his collected works.” [Pólya, 1987, p. 25]
174”Die Verhandlungen könnte ich durch einen hiesigen sehr gewandten math. Kollegen mündlich mit

Springer führen lassen.”
175Probably, Hilbert meant Richard Courant, his former student and at that time professor in Göttingen,

with whom he had created the ’Gelbe Buchreihe’ with publisher Springer.

75



2 The Hurwitz Brothers

2.3 The Elder Brother: Julius Hurwitz

Figure 2.48: Portrait of Julius

Hurwitz (1857 - 1919), taken

from Riesz’s register in Acta

Mathematica from 1913.

[Riesz, 1913]

Compared to his younger brother Adolf, much

less is known about Julius [Jakob] Hurwitz. He

was also born in Hildesheim, two years previous

to Adolf, more precisely on July 14, 1857. There

had been two more children in the Hurwitz fam-

ily, namely sister Jenny who died already in 1855

at age one, and the elder brother Max [Mosche],

born August 22, 1855 who died July 17, 1910 in

Zurich. In the beginning Julius’ education went

pretty parallel to that of his younger brother

Adolf Hurwitz.

Both benefited from their ambitious father Salomon Hurwitz and were sent to the Real-

gymnasium Adreanum. According to their school certificates176 both were rather good

pupils with quite good marks, in particular in music and math, and both received ex-

tra lessons by their teacher Hermann Caesar Hannibal Schubert. However, it seems that

Julius was a little more open for distraction. In one of his school certificates the note

”Julius visited a tavern without permission”177 can be found. Nevertheless, also Julius

spent Sunday afternoon at Schubert’s home learning about geometry and he could have

been an aspirant for an academic career as well. Unfortunately, the father of Adolf and

Julius was sceptical about those plans, and moreover he was not very well off. He, Salomon

176Those certificates can be found in municipal archives of Hildesheim (cf. [Rasche, 2011]).
177”H. hat einmal (unerlaubter Weise ein) Wirtshaus besucht.”
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Eduard Hurwitz was a merchant, and widower after the boys’ mother, Elise Wertheimer,

died178 in 1862 when Julius was five and Adolf three years old. Although the partnership

of Salomon and Elise might have been not the best, the relation of the three Hurwitz

boys with their father must have been very close; Adolf’s wife Ida described the father as

follows, ”Moreover he set a high value that the young boys started smoking since he could

not imagine a proper man without cigar or better a pipe.”179 [Samuel-Hurwitz, 1984, p.

2] When the teacher Schubert came to Salomon Hurwitz ”to convince him to let both sons

choose the studies of mathematics”180 [Samuel-Hurwitz, 1984, p. 4], Salomon consulted a

prosperous childless friend E. Edward181 who offered to finance the studies of one of the

sons. After questioning the teacher Schubert, finally Adolf was elected and Julius had to

follow the profession of his elder brother Max. He did an apprenticeship at Nordhausen

and became a bank clerk. In this or similar professions he worked for many years, prob-

ably first in Hamburg. There are postcards from June 17, 1881 and September 04, 1881

from Salomon to Julius in Hamburg, in the archive of the ETH Zürich and in a letter to

his Italian colleague and friend Luigi Bianchi (1856 - 1928), Adolf Hurwitz reported: ”My

brother Julius is working as an exporter in Hamburg” [Bianchi, 1959]. Later he went to

Hanover, where he and his brother Max took over the banking business of their deceased

uncle Adolf Wertheimer. Despite this disappointing working life Julius must have studied

besides all the time and he never lost his love for mathematics. Thus, in retrospect, his

sister-in-law Ida Samuel-Hurwitz wrote in her biographical scetch,

”Since his uncle Adolph’s death Max and Julius were owning the bank

’Adolph M. Wertheimer’s Nachf.’ in Hanover, however, they felt uncom-

fortable in this business. Hence, first Julius quitted in order to return to

178on liver malfunction according to Adolf’s wife Ida [Samuel-Hurwitz, 1984], resp. kidney malfunction
according to Frei [Frei, 1995]

179” Ebenso legte er auch Wert darauf, dass die Knaben schon sehr frühzeitig zu rauchen begannen, da ihm
ein rechter Mann ohne Cigarre oder besser noch Pfeife kaum denkbar war.”

180”Schubert suchte sogar den Vater auf, um ihn zu bestimmen, beide Söhne das Studium der Mathematik
ergreifen zu lassen.”

181probably the American distant relative of whom Schwarz reported in his letter to Weierstrass, see Section
2.1
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school at the age of 33 years and finish with the school examination for

studying Mathematics afterwards under supervision of his younger brother.”182

[Samuel-Hurwitz, 1984, p. 8]

Julius Hurwitz visited a school in Quakenbrück, a small town in northern Germany (not

far from Bremen). One can still find his school leaving certificate from September 9, 1890

in the archive of the University of Halle183. It is rather impressive to read: He not only had

to complete an exam in mathematics, but also in various subjects like geography, French

and even gymnastics and drawing. Furthermore he was assessed in the category of ’moral

behavior’, which was considered to be excellent in his case. A big motivation for Julius to

take the risk to change his career so drastically could have been the professorship of his

brother in Königsberg in 1884. The thereof informing letter of Salomon Hurwitz to Julius

(see Section 2.1) shows again the very close familial bonds. In another letter of congratu-

lations to Adolf Hurwitz from April 7, 1884, written in Hanover, the mathematician Hans

von Mangoldt (1854 - 1925) mentioned ”[...] your brother [told me] about the news of your

calling” and ”[he] will have informed you about my well-being” 184[von Mangoldt, 1884].

Obviously Julius Hurwitz maintained active contact with mathematicians from his home

city. Moreover, several remarks in the correspondence between David Hilbert and Her-

mann Minkowski, studying under Adolf Hurwitz in Königsberg, indicate that Julius visited

his brother frequently. On December 22, 1890 Minkowski wrote for example ”Best greet-

ings to Hurwitz the older and Hurwitz the younger [...]” [Minkowski, 1910, p. 42]. Julius

had finally moved to his brother and pursued his interest in mathematics. It is known that

he edited a variety of lecture notes not only from his brother, but also, among others, from

182”Seit dem Tode Onkel Adolphs waren Max u. Julius Inhaber des Bankgeschäfts ’Adolph M. Wertheimer’s
Nachf.’ in Hannover, fühlten sich aber im Kaufmannstande nicht glücklich. So trat zuerst Julius aus,
setzte sich mit 33 Jahren nochmals auf die Schulbank, um das Abiturientenexamen nach zumachen und
dann bei seinem jüngeren Bruder Mathematik zu studieren.”

183Archive of Halle University, Rep. 21 Nr. 162
184”[...] durch Ihren Herrn Bruder die Nachricht von Ihrer Berufung [...] erhalten. [...] Von meinem

Wohlergehen wird Ihnen Ihr Herr Bruder berichtet haben.”
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Viktor Eberhard (1861 - 1927) in 1890/91185 and David Hilbert in 1892186. On the first

page of the second one can find Julius’ handwriting: ”reviewed by Dr. Hilbert a. equipped

with his personal sidenotes”187. Furthermore, there is a letter from Hilbert to Klein with

date March 04, 1891 ending with the sentence: ”(Adolf) Hurwitz send you his regards. At

the moment his eldest brother is staying here for a visit.”188 However, the word ’visit’ does

not explain the situation as it were considered by Adolf’s wife Ida. As a matter of fact,

Julius edited some course notes of his brother Adolf’s lectures at Königsberg University

and, when in 1892 his brother Adolf followed the call of the ETH Zurich, he accompanied

him; Adolf’s wife Ida wrote about that: “[Also] his brother Julius followed him soon to

Zürich, where he wrote his doctoral thesis for which he had received the subject from

his brother.”189 [Samuel-Hurwitz, 1984] However, in Section 2.4 we explain that for his

final doctoral viva Julius Hurwitz actually returned to Germany, more precisely, to the

University of Halle-Wittenberg and provide more details about Julius Hurwitz’s time in

Halle.

Here we shall give an impression of the University of Halle in the second half of the

nineteenth century.190 Of course, Georg Cantor was playing an important role at that

time, succeeding Eduard Heine (1821 - 1881) and H.A. Schwarz. Born in St. Petersburg

in 1845, after studies in Berlin and Göttingen, Cantor wrote both theses, his dissertation

and his habilitation on number theory and was appointed to Halle in 1869 on promotion

of Schwarz; there he obtained an extraordinary professorship in 1872 and became ordinary

185The lecture notes can be found in the archive of the ETH Zurich, HS 582: 157, under the reference
’Eberhard, Victor; Determinantentheorie nach Vorlesungen in Königsberg 1890/1891, ausgearbeitet
von Julius Hurwitz.’

186The lecture notes can be found in the archive of the ETH Zurich, HS 582: 154, under the reference
’Hilbert, David; Die eindeutigen Funktionen mit linearen Transformationen in sich, nach Vorlesungen
in Königsberg 1892, ausgearbeitet von Julius Hurwitz.’

187”von Dr. Hilbert durchgesehen u. mit eigenhändigen Randbemerkungen versehen.”, archive ETH, HS
582: 154

188”(Adolf) Hurwitz lässt Sie bestens grüssen. Augenblicklich ist auch sein ältester Bruder hier bei ihm
zum Besuch.”, letter 63 in [Frei, 1985]; actually, Max is the eldest, and Julius is second.

189“[Auch] sein Bruder Julius folgte ihm bald nach Zürich, wo er an der Doktorarbeit schrieb, deren Thema
er von seinem Bruder erhalten hatte.”

190In Section 2.4 we state some considerations about easrlier years.
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professor in 1879 on Heine’s recommendation. Around these years Cantor published a se-

ries of papers which are nowadays considered as the foundation of set theory; however, the

reception of his arithmetic of the infinite was rather controversal ranging from Kronecker’s

offensive opposition to the tonic support from renown mathematicians as Magnus Gösta

Mittag-Leffler (1846 - 1927), Klein, and, later, Hilbert, Jacques Hadamard (1865 - 1963),

and Adolf Hurwitz. It was not least Cantor who was responsible for the foundation of the

Deutsche Mathematiker Vereinigung (DMV) and their first meeting in 1890; it should be

noticed that as well Klein’s school was taking part in erecting these structures in scientific

mathematics (with the exception of the Hurwitz brothers). Cantor as well as Klein were

also involved in organizing the first International Congress for Mathematicians in Zurich

in 1897 which also brought some kind of approval for his foundations of set theory: ”...

[Adolf] Hurwitz openly expressed his great admiration of Cantor and proclaimed him as

one by whom the theory of functions has been enriched. Jacques Hadamard expressed his

opinion that the notions of the theory of sets were known and indispensable instruments.”

[Johnson, 1972, p. 17] Adolf Hurwitz had his first encounter with Cantor in summer 1888

when both spent some time in a group of mathematicians around Weierstrass in the Harz

Mountains.191 Georg Cantor died in Halle in 1918. In some periods of his life he suffered

from depressions, and lived in a sanatorium; his theory about Francis Bacon being the

author of Shakespeare’s plays had been considered as odd by his contemporaries, never-

theless this rumour continues until today. There is a letter from Minkowski to Hilbert

from 1897 saying ”Hurwitz’s brother [Julius] writes that Cantor of Halle has been offered

a chair in Munich. Seems peculiar. The chair of Shakespearology?”192 This gives a cer-

tain insight how Cantor was recognised at that time (among people who considered his

work as outstanding) and it indicates that there had been more communication among the

191”Im Sommer 1888 verbrachte er [Adolf Hurwitz] auf Anregung von Prof. Mittag-Leffler in Stockholm,
einige Tage in Wernigerode i/H. in interessantem mathematischen Kreisen der sich um den Altmeister
Prof. Weierstrass aus Berlin geschart hatte. Dort lernte er Georg Cantor und Sonja Kowalewski näher
kennen.” [Samuel-Hurwitz, 1984]

192”Hurwitz’s Bruder [Julius] schreibt, dass Cantor aus Halle nach München berufen sei. Die Nachricht
klingt sehr seltsam. Etwa auf einen Lehrstuhl für Shakespearology?”, cf. [Thiele, 2005]
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Königsberg clique than could be found in archives. (For more information about Cantor’s

life and work we refer to Thiele [Thiele, 2005].)

As a professor of the department at Halle, Cantor had to review Julius’ dissertation

and his signature can be found on the relevant document. In 1895, Julius Hurwitz fin-

ished his thesis. Besides Cantor’s signature it bears the dedication ”My dear brother and

distinguished teacher Prof. Dr. A. Hurwitz.”193 Moreover, he expressed his gratitude to

his younger brother for ”many advises with which he had supported this work.”194 Re-

markably, the topic of Julius’ dissertation thesis is not only pretty close to his brother’s

treatment of complex continued fractions, according to the official description of Albert

Wangerin (1844 - 1933), it is even based on a published article of Adolf Hurwitz. He wrote,

”Mister J. Hurwitz examines, following a in Acta Mathematica, vol-

ume XI, published work by his brother, Prof. A. Hurwitz in Zürich,

a certain kind of continued fraction expansion of complex numbers.”195

[Universitätsarchiv, 1895]

In his Jahrbuch über die Fortschritte der Mathematik review [Hurwitz, 1894a], Adolf Hur-

witz himself wrote about his brother Julius’ dissertation:

”The author examines in the present paper a certain kind of a continued

fraction expansion of complex numbers from similar points of view as the ref-

eree took them as a basis to handle certain other continued fraction expansions

of real and complex numbers.”196

193”Meinem lieben Bruder und verehrten Lehrer Herrn Prof. Dr. A. Hurwitz.”
194”Es sei mir gestattet, meinem Lehrer, Herrn Professor A. Hurwitz, für die mannigfachen Ratschläge,

mit welchen er mich bei dieser Arbeit unterstützt hat, auch an dieser Stelle meinen herzlichsten Dank
auszusprechen.”

195”Herr J. Hurwitz untersucht im Anschluß an eine in den Acta mathematica, Band XI, veröffentlichte
Arbeit seines Bruders, des Prof. A. Hurwitz in Zürich, eine besondere Art der Kettenbruchentwickelung
complexer Größen.”

196”Der Verfasser untersucht in der vorliegenden Arbeit eine besondere Art der Kettenbruchentwickelung
complexer Grössen nach ähnlichen Gesichtspunkten, wie sie der Referent der Behandlung gewisser
anderer Kettenbruchentwickelungen reeller und complexer Grössen [...] zu Grunde gelegt hat.”
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This summary may be seen in the light of a rough quotation by Adolf Hurwitz saying that

”A PhD dissertation is a paper of the professor written under aggravating circumstances.”

(cf. [Krantz, 2005, p. 24]). However, Julius’ thesis must have made a good impression. In

the further course of description, Wangerin emphasized that Julius Hurwitz worked dili-

gently, efficiently and in particular independently.197 Besides Wangerin, the examination

committee consisted of the dean Prof. Haym, Prof. Dorn (physics), and Prof. Vaihinger

(philosophy). In the minutes of the examination198 can be read that Julius was not only

questioned about mathematics, but also about Carnot’s theory of heat, the philosophy of

Leibniz and related subjects. In the end all examiners agreed in the grading magna cum

laude.

Shortly after his defence, Julius returned to Switzerland. Already in 1896, Julius became

a member of the ’Naturforschende Gesellschaft’ in Basel199 and in the same year he was

engaged as Privatdocent200 at the University of Basel, the first university in Switzerland,

founded in 1460. One of the contacts the Hurwitz brothers could have had in Basel was

Karl von der Mühll (1841 - 1912) who worked in Leipzig until 1889 before he was appointed

a professorship in Basel. It might be astonishing how fast Julius submitted the necessary

habilitation thesis ’Über die Reduction der binären quadratischen Formen mit complexen

Coeffizienten und Variablen’; it must have been written in the same year 1896 although it

was published only in 1901 as [Hurwitz, 1902b].

In a meeting of the faculty council on June 02, 1896 the examiners decided that ”both

works are properly and well conducted. In the habilitation thesis, new methods were ap-

plied successfully. [...] The petitioner has zealously and skillfully become acquainted with

the field of mathematics in a short time.”201 [Staatsarchiv, 1896, 02.06.1896] Moreover, the

197”Die Durchführung der Untersuchung zeugt nicht nur von Fleiß und tüchtiger mathematischer Schulung,
sondern auch von selbständigem Nachdenken.” Certificate of the dissertation of A. Wangerin, Rep. 21
Nr. 162, University archive Halle-Wittenberg

198Certificate of the dissertation, Rep. 21 Nr. 162, University archive Halle-Wittenberg
199University Library Basel
200Personal file, Dozentenkartei, University archive F 6.2.1, State archive Basel
201”Beide Arbeiten sind sauber und gut durchgeführt. In der Habilitationsschrift werden neue Methoden

mit Erfolg angewendet. [...] Der Petent hat sich in kurzer zeit mit Eifer und Geschick in das Gebiet
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application procedure included a colloquium, which took place on June 17, 1896. We want

to briefly look at the protocols of the examination board: First Julius Hurwitz spoke freely

about the ’Principles and Developments of modern Number Theory’ for twenty minutes

and was questioned afterwards. According to his examiners202, ”The talk left something

[...] to be desired as far as formality is concerned. It lacked clarity and wasn’t very well

presented. However, the academic requirements seem to have been fulfilled completely. It

was decided to submit the proposal to the Senate: The venia docendi203 for the subject

of mathematics is to be given to Dr. J. Hurwitz.”204[Staatsarchiv, 1896, 17.06.1896] Con-

sequently, Julius Hurwitz became a lecturer at the University of Basel and, by the age of

39, for the first time academically independent of his younger brother.

Curiously, it was only in July 1899 that Julius finished the summary of dissertation and

habilitation, and it took even another two years that it was printed as [Hurwitz, 1902b].

In any case, it is remarkable that both, Adolf and Julius realized their habilitation in very

short time.

Figure 2.49: Excerpt from Julius Hurwitz’s personnel file at the University of Basel.205

der Mathematik eingearbeitet.”
202Hermann Kinkelin, Karl von der Mühll and probably Eduard Hagenbach
203the Swiss version of the ’venia legendi’
204”Der Vortrag liess [...] formell manches zu wünschen übrig. Es fehlte an Uebersichtlichkeit und klarer

Beherrschung der Darstellung. Doch scheinen die wissenschaftlichen Anforderungen ganz erfüllt zu
sein. Es wird beschlossen der Regenz den Antrag zu unterbreiten: Es sei dem Herrn Dr. J. Hurwitz
die Venia docendi für das Fach der Mathematik zu erteilen.”

205taken from [Staatsarchiv, 1896]
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Julius Hurwitz did attend the first International Congress of Mathematicians at Zurich in

1897, but he did not attend the next one in Paris nor any other International Congress

(as well as Adolf did not). No further scientific work of Julius Hurwitz is known and we

can assume that he did not lecture a lot at the university. In 1898, he already submitted

a request for leave, ”because he had to spend the winter in Italy on grounds of illness.”206

[Staatsarchiv, 1896, 04.05.1899] In a letter from August 25, 1898 to Adolf Hurwitz, Her-

mann Minkowski wrote: ”I was very sorry, that your brother Julius is not feeling quite well

and I wish him speedy recovery.”207 Three years later, in 1901, Julius Hurwitz stopped

lecturing completely and moved to Lucerne.208 He stayed there until 1916 when he ac-

companied his companion209 Franz Sieckmeyer to Germany. The brief note ”Deutschland,

Krieg” in the file at the municipal archives of Lucerne suggests that this return was not

of his own free will. Refering to their last meeting, Ida Samuel-Hurwitz wrote,

”[..] Julius was visting us after a long break (he had followed his conver-

sionalist Franz Sieckmeyer to Freiburg i/Br., where he rendered service at

a military hospital). Also Julius was suffering for many years (heart dis-

ease and arteriosclerosis), but at this last being-together, which was rather

unexpected for both brothers, Adolf made a far more sickly impression.”210

[Samuel-Hurwitz, 1984, p. 13]

For June 2/3, 1919 Julius’ reentry in Lucerne was registered, where he checked in at the

’Hotel des Alpes’. Already some days later he wanted to leave for Lugano.211 Although

206”da er den Winter krankheitsbedingt in Italien verbringen muss.”
207”Daß Ihr Bruder Julius nicht ganz wohl ist, that mir herzlich leid und ich wünsche ihm baldige Genesung”,

HS 583: 51 ETH Archive
208Municipal archive of Lucerne, Alphabetisches Einwohnerverzeichnis 1904-1907, Bd. H-Q, B3.22

B09: 011; Journal P zu den alphabetischen Einwohnerverzeichnissen, 1905, B 3.22 B10: 016;
Häuserverzeichnis V552 S 11 R-S

209in German: Gesellschafter
210”[...] war Julius nach langer Pause wieder einmal bei uns zu Besuch (er war seinem Gesellschafter Franz

Sieckmeyer nach Freiburg i/Br. gefolgt, wo dieser Lazarettdienst leistete). Auch Julius war seit Jahren
sehr leidend (Herzleiden und Arterienverkalkung), auch machte bei diesem letzten Zusammensein, auf
welches beide Brüder wohl kaum mehr gerechnet hatten, Adolf den weitaus kränklicheren Eindruck.”

211Municipal archive of Lucerne, Alphabetische Ausländerkontrolle, F 8/7: 10
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his notice of departure can be found in the city’s records, it never came that far.

”The 15 June during one of the frequent heart attacks he endured, in Lucerne

Julius closed all of a sudden his eyes forever. [Adolf] H. accepted this news,

which was delivered to him with the greatest caution, with the fullest convic-

tion, praising the destiny of his beloved brother, who had overcome everything

now, and longing for the same for himself.”212 [Samuel-Hurwitz, 1984, p. 13]

2.4 Excursion: A Letter Exchange Concerning Julius Hurwitz’s

PhD Thesis

We may assume that Julius Hurwitz was nicely integrated into the academic circle of

mathematicians in Königsberg, even though there had always been a strong dependence

on his successful brother. As we stated in Section 2.3, Ida Samuel-Hurwitz even reported

that Julius was with them ”for studying mathematics under the supervision of his younger

brother.”[Samuel-Hurwitz, 1984, p. 8] Consequently it is not surprising that when Adolf

Hurwitz was called to the ETH Zurich in 1892, she noted ”[Also] his brother Julius soon

followed him to Zurich [...]”, whereas the continuation of her explanation might be slightly

confusing: ”[to Zurich,] where he wrote his doctoral thesis, for which he had received

the subject from his brother.”[Samuel-Hurwitz, 1984, p. 9] This interesting remark leads

to some considerations: Was it possible for Julius Hurwitz to do his doctorate with his

brother as supervisor in Zurich? Here a definite answer can be given: At that time,

professors of the ETH did not have the permission to award doctorates. Consequently

there was not even an option for Julius Hurwitz to proceed at the polytechnic.213 In a

letter from July 22, 1893 to David Hilbert, Adolf Hurwitz clarified that Julius did not

212”Am 15. Juni schloss Julius in Luzern bei einem der häufigen Herzanfälle, die er erlitt, ganz plötzlich
seine Augen für immer. [Adolf] H. nahm die Nachricht, die ihm mit größter Vorsicht beigebracht wurde,
voll Ergebung auf, das Geschick des Bruders preisend, der nun alles überstanden habe, und für sich
selber das Gleiche ersehnend.”

213The University of Zurich would have been an opportunity, Adolf used to supervise his doctral students
at this institution until 1909; however, the relation between Julius and Adolf might have been to close.
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stay for a long time in Switzerland. ”My brother, warmly greeting you, leaves Zurich

now, to go to Halle and gradually prepare there his doctorate.”214 [Hurwitz, 1895, let.

13] Here another question arises: Why Halle? Some years earlier, such a decision of an

ambitious young mathematician would have been very understandable, since Halle had

the great advantage of a neutral position in the turmoils of the Prussian education policy.

The mathematical institute managed to combine influences of the school of Göttingen, the

school of Berlin as well as the school of Königsberg. Because of ”[...] the excessive number

of lecturers preventing the fruitful education of a beginner [lecturer]215[Göpfert, 2002, p.

22], the Göttingen mathematician Carl Thomae (1840 - 1921) had transferred to Halle

in 1867 and stayed there for seven years. Besides the powerful Eduard Heine, who had

been in Königsberg previously, the nowadays famous Georg Cantor was in Halle at the

same time. During his studies in Berlin, Cantor was strongly influenced by his advisors

Ernst Eduard Kummer (1810 - 1893) and Weierstrass. It was, however, in Halle, where

he developed his infinite set theory and stayed until the end of his life. Cantor’s colleague

Albert Wangerin wrote,

”[...] a work demanding the greatest ingenuity, high mathematical cre-

ativity and a vivid imagination; Cantor possessed all those characteristics.

Thus he became the creator of a completely new branch of mathematics.” 216

[Wangerin, 1918]

In consequence there had been a wide range of courses and a good possibility to learn about

progressive mathematics in the seventies and eighties of the 19th century.217 However,

when Julius Hurwitz went to the University of Halle a couple of years later, the situation

214”Mein Bruder, der Sie herzlich grüßt, verlässt jetzt Zürich, um nach Halle zu gehen und dort allmählich
den Doktor vorzubereiten.”

215”[...] die übergroße Anzahl an Docenten desselben Faches an diesem Platze einer gedeihlichen Ausbildung
eines Anfängers entgegenwirkt [... ]”

216”[...] eine Arbeit die den größten Scharfsinn, hohe mathematische Schöpfergabe und rege Phantasie
erforderte; alle diese Eigenschaften besaß Cantor. Er wurde so der Schöpfer eines ganz neuen Zweiges
der Mathematik.”

217For a detailed listing of lectures we refer to [Göpfert, 1999] and [Richter and Richter, 2002]

86



2 The Hurwitz Brothers

had changed drastically. At least because of the instable mental condition of Cantor, who

suffered greatly from a lack of recognition of his discoveries.

So the question remains: Why did Julius Hurwitz choose Halle? It should be noticed that

also the teacher of the Hurwitz’s brothers, Hermann Schubert, received his doctorate in

1870 from the University of Halle. He wrote his dissertation on enumerative geometry

during his studies in Berlin, however, after the death of his teacher Gustav Magnus,

he decided to finish his doctorate at the University of Halle without official supervisor

(see [Burau and Renschuch, 1993] for further details). Therefore it is not clear whether

Schubert’s experience could have been a reason for Julius to choose Halle for his doctorate.

Another link could have been Viktor Eberhard who was appointed extraordinary professor

at Königsberg in 1894 and became ordinary professor at the University in Halle in the

following year. Eberhard was blind; Hilbert and Klein tried to support his career during

his time at Königsberg. Adolf and Eberhard knew each other218 and, probably, the same

holds true for Julius and Eberhard. However, those considerations are only speculative.

Even for David Hilbert the choice of Halle was astonishing. In a letter of September 05,

1893 to Adolf Hurwitz he wrote:

”I received your brother’s congratulations [...]. Why did he choose Halle

as his place of study? Where, as I imagine, not much is going on right

now, since for Cantor, as he himself declares, mathematics is an atrocity.”219

[Hilbert, 1895, let. 330]

One can see that Hilbert is not only interested in his friend’s brother, but also uses the

opportunity to drop a remark on Georg Cantor’s behavior. This remark is being followed

218as follows from letter 53 from Hilbert to Klein in [Frei, 1985] with date February 15, 1890
219”Ihres Bruders Gückwünsche habe ich erhalten [...]. Warum hat derselbe gerade Halle zu seinem Stu-

dienort gewählt? Wo wie ich denke jetzt sehr wenig los ist, da Cantor wie er selbst eingesteht die
Mathematik ein Gräuel ist.”
The congratulations of Julius probably referred to the birth of his son Franz Hilbert on August 11,
1893. Tragically, Franz suffered all of his life under mental disorder and never had a good relation to
his father, who could hardly accept his lack of cleverness. In 1914, when he was taken to a psychiatry,
Hilbert declared ”From now on, I must consider myself as not having a son.”[Reid, 1970, p. 139]
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by the even more ironical answer of Adolf Hurwitz in a letter from October 10, 1893:

”My brother [...] is feeling very well in Halle. He chose Halle because

of the comfortable location and because of the inspirations that are still to

be expected. Wangerin is a very good lecturer, [Hermann] Wiener at least

quite active [...]. Cantor is lecturing on number theory, is however said to be

preferably working on Shakespearology.”220 [Hurwitz, 1895, let. 15]

This remark refers to the fact we already stated in the previous section that Cantor was

a great believer in the theory of Francis Bacon being Shakespeare and it shows again

the amusement of contemporary mathematicians about it. Adolf Hurwitz explained the

decision for Halle with the ”inspirations that are still to be expected” and with ”the

comfortable location”. The latter already hints at the fact that Julius was not only focused

on studying the most progressive mathematics, but that there were various aspects of Halle

appealing to him.

Another open question arises from Ida’s memories: What topic did he receive? This is

also asked in a later letter of Hilbert from April 20, 1894. He wrote, ”Your brother is said

to approach his doctorate, what topic has he actually?221 [Hilbert, 1895, let. 253] In a

surprising answer from April 26, 1894, Adolf Hurwitz explained,

”Certainly my brother has the intention to do his doctorate in the course of

the next year. However, he is not yet sure, what topic he wants to work on.

Perhaps he continues on my work about the expansion of complex numbers

into continued fractions. But I initially proposed him to ask G. Cantor for a

topic.”222 [Hurwitz, 1895, let. 18]

220”Mein Bruder [...] fühlt sich einstweilen in Halle sehr wohl. Er hat Halle namentlich der angenehmen
Lage und der immerhin zu erwartenden Anregungen wegen gewählt. Wangerin ist ein sehr guter
Docent, Wiener immerhin recht rege [...]. Cantor liest Zahlentheorie, soll allerdings vorzugsweise mit
Shakespeare-Forschung beschäftigt sein.”

221”Ihr Bruder soll sich ja schon zum Doktor vorarbeiten, Was für ein Thema hat er denn?”
222”Mein Bruder hat freilich die Absicht im Laufe des nächsten Jahres zu promovieren. Er ist aber noch

nicht sicher, welches Thema er bearbeiten will. Vielleicht knüpft er an meine Arbeit über die Entwick-
lung complexer Zahlen in Kettenbrüchen an. Ich habe ihm aber zunächst vorgeschlagen, G. Cantor um
ein Thema anzugehen.”
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Obviously, despite his amusement, Adolf Hurwitz still believed in Cantor’s mathematical

expertise. Nevertheless, observing Julius Hurwitz’s final doctoral thesis [Hurwitz, 1895]

shows immediately that he chose the first option. Comparing his work with some notes

in Adolf Hurwitz’s mathematical diaries (Fig. 2.50), it is a justifiable conclusion that

the topic included also quadratic forms, a central theme in mathematical research in the

second half of the 19th century. One possible task could have been to use a new kind of

complex continued fraction expansion for the reduction theory of quadratic forms with

complex coefficients.

Figure 2.50: Excerpt from the mathematical diaries of Adolf Hurwitz: Proof that the root

of a quadratic (irreducible) equation with complex integer coefficients has a periodic con-

tinued fraction expansion [Hurwitz, 1919a, No. 5, p. 52].

For the understanding of the following it is not necessary to go deeper into details of the

topic but we want to keep in mind this task, which would have been a continuation of

investigations of his younger brother (see Fig. 2.50).223 In view of the choice of Halle,

a letter from Julius Hurwitz himself to David Hilbert from June 09, 1894, which was

recovered by coincidence in the collected correspondence of Adolf Hurwitz in the archive

223A good overview of how quadratic forms and continued fractions are connected can be found in
[Halter-Koch, 2013].
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of the University of Göttingen, might reinforce this impression. Julius Hurwitz described

the situation of studying in Halle as follows:

”The number of students [...] increased, including two refugees from

Göttingen, for whom Prof. Klein was too demanding and Prof. Weber was too

complicated. Halle is, concerning mathematical lectures, far behind Göttingen,

but it has the great advantage that lectures are presented clearly and there are

no high demands on students.”224 [Hurwitz, 1894, let. 22]

With his choice of words Julius Hurwitz presented the situation in Göttingen in an inter-

esting light. One gets the impression that the sentiment of students towards the famous

university is rather sceptical. Furthermore, it is amusing and perhaps even a bit revealing

that Julius wrote he prefers ”no high demands on students”. By contrast, he is obviously

an optimist and a zealous student. In a letter to a friend from July 07, 1894, Georg

Cantor thanked his colleague Émile Lemoine (1840 - 1912) ”for the friendly acceptance

of the notes of [my] pupil Hurwitz.”[Décaillot, 2008, p. 152] Based on our current state

of knowledge, we may assume, that Cantor was not talking about Adolf Hurwitz, but his

elder brother being an attentive student.

In a further letter to Adolf Hurwitz from June 13, 1894 David Hilbert refered to Julius’ let-

ter, however, avoiding a direct response on his description of Göttingen and Halle. Hilbert

wrote, ”Some days ago I received a letter of your brother in which he comprehensively

reportet about Halle. I was very pleased to once again hear from him personally.”225

[Hilbert, 1895, let. 255] In a second letter to Hilbert from October 4, 1894 Julius Hurwitz

wrote,

”In these holidays I was working on my dissertation (continued fraction

224”Die Zahl der Studierenden der Mathematik hat sich [...] vermehrt, darunter 2 Flüchtlinge aus Göttingen,
denen Prof. Klein zu hoch und Prof. Weber zu umständlich waren. Halle steht zwar, was die mathe-
matischen Vorlesungen betrifft weit hinter Göttingen zurück, aber es hat den großen Vorzug, dass das,
was gebracht wird, klar vorgetragen wird und dass nicht übergroße Anforderungen an die Studierenden
gestellt werden.”

225”Vor einigen Tagen erhielt ich von Ihrem Bruder einen Brief in welchem er mir ausführlich über Halle
erzählt. Ich habe mich sehr darüber gefreut, wieder einmal etwas von ihm selbst zu hören.”
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expansions in complex areas and applications on the reduction of quadratic

forms) [...]. In the mentioned dissertation there is still a deficiency; once it is

resolved, I will register for the graduation in winter.”226 [Hurwitz, 1894, let.

25]

Later we will come back to the mentioned title of the thesis (in brackets) and we should

keep in mind Julius’ aim to finish his work in the winter of 1894. Concerning the ”defi-

ciency”, we examine an entry in Adolf Hurwitz’s mathematical diary [Hurwitz, 1919a, No.

9, pp. 94] from November 04, 1894, exactly one month after Julius’ letter, authored under

the header ”Concerning Julius’ work”227. We find several pages filled with calculations on

partial quotients from complex continued fractions and a nice result concerning possible

(admissible) sequences of partial quotients (see Fig. 2.51).

Figure 2.51: Excerpt from Adolf Hurwitz’s mathematical diary entry concerning Julius’

work. [Hurwitz, 1919a, No. 9, pp. 94]

When compared to a certain paragraph of Julius Hurwitz’s doctoral thesis (Fig. 2.52), we

recognize a definite similarity which can be taken as an indication that he received direct

help from his brother.

226”Ich habe in diesen Ferien an meiner Dissertation (Kettenbruch-Entwicklung im complexen Gebiete und
Anwendung zur Reduction der quadr. Formen) gearbeitet [...]. Mit der erwähnten Dissertation hapert
es noch an einer Stelle; ist diese überwunden, so werde ich mich im Winter zur Promotion anmelden.”

227”Zu Julius’ Arbeit.”
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Figure 2.52: Excerpt from Julius Hurwitz’s doctoral thesis. [Hurwitz, 1895, p. 12]

This is even underlined by another striking statement from Adolf Hurwitz himself in a

letter to David Hilbert from June 19, 1895:

”Eight days ago the news from my brother came that he passed the doctoral

exam with very good results. The dissertation concerns continued fraction

expansions of complex numbers. I proposed the topic.”228[Hurwitz, 1895, let.

29]

What is so remarkable about it? First of all, winter time became summer time, which

means Julius needed some more months than he had expected; secondly, the announced

title was shortened since Julius’ letter to Hilbert. There is no mention of ”quadratic

forms” anymore. What is most curious, however, Adolf Hurwitz again wrote that he

himself proposed the subject. Although we are aware of his support over the years, this

is rather confusing and leads indirectly to another possible reason for Julius’ decision in

favor of Halle: his official thesis advisor Albert Wangerin. Although his advisor is not

widely known today, in the second half of the 18th century he must have been a rather

influential mathematician. Born 1844 in Greifenberg, Wangerin worked after his studies

228”Von meinem Bruder traf vor acht Tagen die Nachricht ein, daß er in Halle das Doktor-Examen sehr
gut bestanden hat. Die Dissertation betrifft Kettenbruch-Entw. complexer Größen. Das Thema habe
ich gestellt.”
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at Halle under Heine first as a teacher before he became a professor at the University

of Berlin in 1876; there he was responsible for teaching beginners, duties which more

prominent mathematicians as Kronecker, Weierstrass, and Kummer tried to avoid. In

1882 Wangerin became professor at the University of Halle and remained there until his

retirement in 1919. During his life Wangerin advised the remarkable number of 53 students

to their dissertation, Julius Hurwitz being number 28 of them. The supervised topics range

from calculus, in particular, differential equations, via analytic and differential geometry

to topics from mathematical physics; there are only two theses from number theory.229

Wangerin died 1933 in Halle. In his report on Julius’ dissertation Wangerin declared

”J. Hurwitz examines a certain kind of continued fraction expansion of complex numbers

following work by his brother, Prof. A. Hurwitz in Zurich, published in Acta Mathematica,

volume XI.”[Wangerin, 1895] Obviously, Julius’ thesis advisor was very well aware of Adolf

Hurwitz’s position with regard to Julius’ work and one can assume that it was considered

a positive constellation for the three of them.

Concerning Julius Hurwitz’s work, there is one more remark from David Hilbert in a

letter from June 25, 1895 to Adolf Hurwitz. Noticing that Hilbert just followed a call to

Göttingen and having in mind the description of Göttingen that Julius gave in his first

letter, it sounds a bit ironic: ”I am very pleased that your brother did his doctorate, I am

very curious about his thesis. Perhaps he comes to Göttingen in the near future? One can

learn a lot here.”230 [Hilbert, 1895, let. 260] There is no indication that Julius ever visited

Göttingen. From another letter between the families Hurwitz and Hilbert we receive an

insight into Julius’ first activities after his doctoral graduation. This time the women have

their say: Ida Samuel-Hurwitz wrote to Käthe Hilbert (1864 - 1945) on April 07, 1896,

”[...] Julius just visited us for a couple of weeks, from here he traveled to

Upper Italy (right now he is at the Riviera), we expect him back at the end

229see www.mathematikuni-halle.de/history for a list
230”Dass ihr Bruder den Doktor gemacht hat freut mich sehr, ich bin auf seine Dissertation sehr gespannt.

Vielleicht kommt derselbe nächstens nach Göttingen? Man kann hier viel lernen.”
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of April. He has not yet decided about his future.”231 [Samuel-Hurwitz, 1895,

let. 32]

From Section 2.3 we know about Julius Hurwitz later position at the University of Basel.

In addition to his doctoral thesis, Julius Hurwitz handed in his habilitation thesis ti-

tled ’On the reduction of binary quadratic forms with complex coefficients and variables.’

[Hurwitz, 1902b] In the introduction he described that the type of continued fraction ex-

pansion appearing in his doctoral thesis is used in a similar way ”as the continued fraction

expansion of real numbers for the reduction of real quadratic forms [...] is used”. We can

conclude that Julius finally tackled his original task concerning quadratic forms. For his

public habilitation lecture, Julius Hurwitz chose a subject which allowed inferences about

his studies in Halle: ”On Tuesday, the 27 October [1896], Dr. Julius Hurwitz held his

public habilitation lecture [...] on ’The infinite in mathematics’.”232 The proximity to

Georg Cantor’s research field may show the impression his former professor at Halle made

on him.

231”Soeben war [...] Julius einige Wochen unser Gast, von hier ist er nach Oberitalien gereist, (augenblicklich
befindet er sich an der Riviera), Ende April erwarten wir ihn zurück. Ueber seine Zukunft hat er sich
noch nicht schlüßig gemacht.”

232”Dienstags, den 27. Oktober, hielt Herr Dr. Julius Hurwitz seine öffentliche Habilitationsvorlesung [...]
über ’Das Unendliche in der Mathematik’.” [Staatsarchiv, 1896]
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3 Hurwitz’s Approach to Complex

Continued Fractions

This chapter provides an introduction to the expansion of complex numbers into contin-

ued fractions which forms the basis for our subsequent studies. The main characters

of the previous chapter, Adolf and Julius Hurwitz, can be considered as co-founders

of the arithmetical theory of those complex continued fractions. Here we highlight

their different approaches and we outline what arithmetical properties they were inter-

ested in. A less comprehensive version of the following considerations can be found in

[Oswald and Steuding, 2014].

3.1 Continued Fractions According to Adolf

Already in Adolf Hurwitz’s first mathematical diary1 [Hurwitz, 1919a, No. 1] an entry

entitled ”Expansion of 3
√
A = x into a continued fraction”2 is noted. An indication that

his interest in continued fractions outlasted the time of his research life is provided by

taking a glance at the unfortunately incomplete list of related entries made by Georg

Pólya.

1from April 25, 1882 to December 1882
2”Entwicklung von 3

√
A = x in einem Kettenbruch”
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Figure 3.1: Georg Pólya’s list of diary entries related to continued fractions

[Hurwitz, 1919a, No. 33].

In the sequel our main focus is basically on Adolf Hurwitz’s entry ”Continued Fractions for

imaginary Numbers”3 [Hurwitz, 1919a, No. 5] from 1886 and on the entry ”Concerning

Julius’ work”4 [Hurwitz, 1919a, No. 9] from 1894 related to his brother’s dissertation.

Of course, there is much more to say about Adolf Hurwitz’s research interests. For

instance, the detailed obituary [W.H.Y., 1922] published by the London Mathematical

Society makes a good reading. Adolf Hurwitz was an honorary member of this society

since 1913 and it might be worth to notice that he was also an honorary member of the

mathematical societies of Hamburg and Charkov, and a corresponding member of the

3”Kettenbrüche für imaginäre Grössen”
4”Zu Julius’ Arbeit”
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Academia di Lincei at Rome (which is rather different from the image of a couch potato

one could have in view of his absence from International Congresses outside Zurich).

Curiously, the author of the obituary [W.H.Y., 1922] signed with his intitials W.H.Y., so

we may only guess that it was William Henry Young (1863 - 1942), the president of the

London Mathematical Society from 1922 to 1924. However, we shall concentrate on Adolf

Hurwitz’s work on continued fractions. About this topic W.H.Y. wrote,

”His papers on continued fractions and on the approximate representation

of irrational numbers are also very original, as well as curious.”

Yet it is not further explained what is meant by curious. Another evidence highlighting

Adolf Hurwitz’s contribution to the development of continued fraction theory can be found

in David Hilbert’s commemorative speech which we already mentioned in Section 2.2.3.

Here Hilbert remembered,

”A with preference treated subject of [Adolf Hurwitz] was the theory of

arithmetical continued fractions. In his work Über die Entwicklung komplexer

Größen in Kettenbrüche he went beyond the to that point only considered area

of real numbers [...] .”[Hilbert, 1921, p. 163]5

In this quotation Hurwitz’s publication [Hurwitz, 1888] is mentioned which can be consid-

ered as first approach to the complex case. We shall return to this work later, however,

first we give a short preparatory account of Adolf Hurwitz’s work on continued fractions

in general.

Given a real number x ∈ [−1
2 ,

1
2), its continued fraction to the nearest integer is of the

5”Ein mit Vorliebe von [Adolf] Hurwitz behandeltes Thema war die Theorie der arithmetischen Ket-
tenbrüche. In seiner Arbeit Über die Entwicklung komplexer Größen in Kettenbrüche ging er dabei
über den bisher allein berücksichtigten Bereich der reellen Zahlen hinaus [...].”
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form

x =
ǫ1

a1 +
ǫ2

a2 +
ǫ3

a3 + ...

,

where ǫn = ±1, an ∈ N, and ǫn+1 + an ≥ 2. This convergent expansion is obtained by

iterating the mapping6

x 7→ Tx := T (x) :=
ǫ

x
−
⌊ ǫ

x

⌋

for x 6= 0

and T0 = 0, where ⌊z⌋ denotes the integral part of z. Here the subsequent partial quotients

are given by an := ⌊ ǫn
Tn−1x

+ 1
2⌋ and the sign ǫn = ǫ equals the sign of T n−1x. The first

iteration leads to

x =
ǫ1

⌊ ǫ1
x
⌋+ Tx

=
ǫ1

a1 +
ǫ2

a2 + T 2x

,

and so forth. Obviously, a real number x has a finite nearest integer continued frac-

tion if, and only if, x is rational. It seems that Bernhard Minnigerode (1837 - 1896)

[Minnigerode, 1873] was the first who considered continued fractions to the nearest ratio-

nal integer and used them as alternative approach to solve the Pell equation (although his

notation differs from ours). In [Roberts, 1884] a related approach was developed indepen-

dently about a decade later.

Already in an entry in his first diary from 18827 Adolf Hurwitz wrote down his idea to

develop complex numbers into continued fractions.

”In the case of numbers a + bi and a + bρ (i =
√
−1, ρ = −1+i

√
3

2 ) there is

in principle no difficulty in developing a corresponding theory in view of the

6In the previous chapter we will introduce the more modern term ’transformation’ for T .
7Although the entry bears no date, we may assume that it was before April 13, 1883, which is the date
of a later entry.
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possibility of Euclid’s method for determining the greatest common divisor.

Nevertheless, a careful and thorough foundation of such a theory appears to

be of great value, for example, for solving diophantine equations of second

degree for the corresponding number systems. This is a good doctoral thesis

for a young and ambitious mathematician.”8 [Hurwitz, 1919a, No. 1]

In the end, it was not a doctoral student but Adolf Hurwitz himself who tackled the re-

quired foundation. In [Hurwitz, 1888] he extended Minnigerode’s approach by considering

complex numbers z = x + iy instead of real numbers and replacing rational integers by

Gaussian integers; here and in the sequel the imaginary unit i =
√
−1 denotes the square

root of −1 in the upper half-plane. It is not difficult to see that this yields a continued

fraction expansion with partial quotients in the ring Z[i]. In analogy to the real situation

a complex number has a finite continued fraction to the nearest Gaussian integer if, and

only if, it is a rational Gaussian integer. The proof relies on a variation of the euclidean

algorithm in Z[i]. However, Adolf Hurwitz was considering a far more general situation.

Let S be any set of complex numbers such that i) sum, difference and product of any

two elements in S belong to S, ii) any finite domain of the complex plane contains only

finitely many points from S (from which already follows that besides zero there is no point

from the open unit disc inside S), and, finally, iii) 1 ∈ S. Starting from some complex

number z, Adolf built up the following chain of equations:

z = a0 +
1

z1
, z1 = a1 +

1

z2
, . . . , zn = an +

1

zn+1
,

where an ∈ S and none of the zj is assumed to vanish. This leads to a continued fraction

8”Im Falle der Zahlen a + bi und a + bρ (i =
√
−1, ρ = −1+i

√
3

2
) ist, wegen der Möglichkeit des Euklid.

Verfahrens zur Bestimmung des größten gemeins. Theilers, die Entwickl. der betreffenden Theorie ohne
prinzipielle Schwierigkeiten. Nichts desto weniger scheint eine sorgfältige und gründliche Durchführung
derselben von großem Werte, z.B. für die Lösung Diophant. Gleichungen des zweiten Grades für die
betr. Zahlengebiete. Dieses ist eine gute Doctor-Arbeit für einen jüngeren strebsamen Mathematiker.”
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expansion

z = a0 +
1

a1 +
1

a2 +

.. .

an +
1

zn+1

,

which one can continue ad infinitum if all zj 6= 0. Supposing further that the nth con-

vergent pn
qn

:= [a0; a1, a2, . . . , an] is distant to z by a quantity less than a fixed constant

multiple of 1
q2n
, Adolf Hurwitz obtained the following

Theorem 3.1.1 If all zj are non-zero, both, the infinite continued fraction

z = a0 +
1

a1 +
1

a2 +

. . .

+
1

an +
. . .

as well as the sequence of convergents pn
qn

converge with limit z (which cannot be an element

of S). Moreover, if z is the solution of a quadratic equation with coefficients from S, then

the sequence of the zn takes only finitely many values.

If the numbers an are taken according a certain rule, e.g., as nearest Gaussian integer,

then the sequence of zn and, henceforth, the sequence of partial quotients an is eventually

periodic. For regular continued fractions of real numbers this is the celebrated Theorem

1.1.1 of Euler and Lagrange [Lagrange, 1770]; the same reasoning holds for continued

fractions to the nearest integer, and even in the case of complex numbers z when the

partial quotients are taken to be the nearest Gaussian integers.

Concerning Adolf Hurwitz’s assumptions on the ’system’ S (that is how he called a set
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of numbers satisfying conditions i)-iii)), it should be mentioned that S is neither a ring nor

a module nor a lattice but shares similar properties. The notion of a ring came only in the

1890s with Hilbert’s work on his ’Zahlbericht’ although the concepts of ideal and module

have been used since Dedekind’s pathbreaking work on the arithmetic of number fields

(cf. [Dieudonné and Guérindon, 1985]). Already in 1894, Adolf Hurwitz [Hurwitz, 1894c]

published a note on principle ideals. In Section 2.2.3 we pointed out that Hurwitz used

Hilbert’s ’Zahlbericht’ as a textbook and here we may assume that this influence became

visible. Outside algebraic number theory rings and their substructures became widely

accepted only with Emmy Noether’s (1882 - 1935) modern algebra. The notion of a

lattice, however, has been accomplished by the important work of Hermann Minkowski

in the 1890s. His Geometry of Numbers is based on lattices; there had previously been

relevant work on lattices by Gotthold Eisenstein (1823 - 1852), Liouville, Carl Gustav

Jacob Jacobi (1804 - 1851), and Weierstrass dealing with elliptic functions. In Chapter 7

we follow up Minkowski’s work and, in particular, we give an application concerning an

approximation quality result of diophantine approximations formed from lattice points in

the complex plane.

As already mentioned, in [Hurwitz, 1888] Adolf Hurwitz applied his general theorem to

the case of S being the ring of Gaussian integers Z[i]. He furthermore wrote,

”Apart from the here considered continued fraction expansion in the range

of complex numbersm+ni there exist more for which the above theorem holds,

however, I do not want to go on with this here.”9

Another continued fraction expansion with partial quotients from the set of Gaussian inte-

gers was indeed studied by Adolf’s brother Julius Hurwitz as main topic of his dissertation;

we shall investigate this in detail in the following section. Moreover, Adolf Hurwitz men-

tioned that his approach could be used to build up a complex theory of the Pell equation

9”Ausser der hier betrachteten giebt es übrigens noch andere Kettenbruchentwicklungen im Gebiete der
complexen Zahlen m+ ni, für welche der obige Satz ebenfalls gilt, worauf ich indessen an dieser Stelle
nicht eingehen will.”
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t2 −Du2 = 1 where D is a given number and solutions t and u shall be complex integers.

This topic as well had later been considered by his elder brother Julius. Furthermore, in

Section 7.4 we transfer a classical theorem concerning Pell equations in the real case to

the complex case. Finally, in [Hurwitz, 1888] Adolf Hurwitz studied the ring of Eisenstein

integers Z[ρ] associated with a primitive third root of unity ρ = 1
2 (−1+ i

√
3). He pointed

out that his continued fraction expansion to the nearest Eisenstein integer is different

from that what one would obtain from Paul Gustav Heinrich Bachmann’s (1837 - 1920)

euclidean algorithm for Q(ρ) in [Bachmann, 1872]. Further applications are possible and

were considered by his contemporaries. We indicate some of them in Section 3.3. Gener-

alizing from Hurwitz’s system S, in Chapter 6 we imagine to start with a discrete infinite

set of complex numbers and consider their Voronöı cells as suitable tiling of the complex

plane in order to obtain further complex continued fraction expansions.

Klein’s influence is apparent in much of Adolf Hurwitz’s work, however, the research

on continued fractions and related topics from diophantine approximation seems to have

independent roots. Both of Hurwitz’s teachers, Schubert and Klein have included con-

tinued fractions in some of their writings, namely the textbooks [Schubert, 1902] and

[Klein, 1932], but these sources are addressed to beginners in mathematics and do not

indicate any deeper relation to this topic. We may ask what might have been the mo-

tivation for Adolf Hurwitz to start a new direction of research and investigate continued

fractions? A possible answer could lead to his friend from Göttingen, Moritz Stern, who

had received a doctorate on the theory of continued fractions [Stern, 1829]. He was the

first candidate examined by Gauss (cf. [Rowe, 1986]). For some period, the time after the

work of Euler and Lambert and the investigations of the French school around Lagrange

and Legendre, Stern had been the leading expert in this subject; he published quite a

few papers on continued fractions in Crelle’s journal and his Lehrbuch der Algebraischen

Analysis [Stern, 1860] contains a whole chapter on this topic.

Actually, continued fractions were a major line of investigation in the eighteenth and
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nineteenth century. The well-known contributions of Euler, Lagrange and others had

a focus on arithmetical questions as, for example, solving the Pell equation or periodic

expansions, and Gauss’ research marks the beginning of the metrical theory of contin-

ued fractions. First results in the nineteenth century highlight analytic questions about

convergence and divergence, e.g. the Seidel-Stern convergence theorem due to Philipp

Ludwig von Seidel (1821 - 1896) [Seidel, 1847] and (independently) Stern [Stern, 1848].

Building on previous work of Stern [Stern, 1860], Otto Stolz (1842 - 1905) [Stolz, 1885]

investigated periodic continued fractions with complex entries with respect to conver-

gence; this is now known as the Stern-Stolz divergence theorem (for details we refer to

[Lorentzen and Waadeland, 1992]). The very first complex continued fractions can be

found implicitly in the general approach of Jacobi [Jacobi, 1868] from 1868, published

seventeen years after his death.

Starting in Königsberg with his research on continued fractions around 1886/87,10 Adolf

Hurwitz was breaking into a new market, independent of Klein’s business. Hurwitz’s

contribution [Hurwitz, 1888] on complex continued fractions was submitted 29 November

1887 to the renown journal Acta Mathematica and published there in March 1888. It seems

that this paper is the first to study complex continued fractions in a systematic way. At

this time there was another study of this topic by the Italian mathematician Michelangeli

[Michelangeli, 1887], and in a letter [Bianchi, 1959, p. 99] to his friend Bianchi from

January 12, 1891 Adolf Hurwitz asked about Michelangeli’s work [Michelangeli, 1887] on

continued fractions. However, Hurwitz’s results seem to go far beyond Michelangeli.11

We cannot be sure whether he was aware of previous results as those of Jacobi or Stolz

mentioned above. We may only speculate that he could have gotten a severe introduction

to real continued fractions by his friend Stern; any research on complex continued fractions

might have been unknown to him. During his studies in Munich, Adolf attended courses

10according to his [Hurwitz, 1919a, No. 5] from February 1886 to March 1888
11At least if the summery of Vivanti in the Jahrbuch über die Fortschritte der Mathematik [Vivanti, 2005]

provides an appropriate picture of [Michelangeli, 1887]. Unfortunately, the author was not able to find
a copy of Michelangeli’s work.
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by Seydel and Alfred Pringsheim (1859 - 1941), both well-known for their contributions

to the theory of continued fractions; however, their research went in a different direction

at that time, which does not exclude the possibility that continued fractions were a topic

of their courses and interests.12

Summing up, Hurwitz’s point of view is rather different from Jacobi or Stolz – namely,

arithmetical, not analytical – , and it led to a revival of the arithmetical theory of continued

fractions. His approach generalizes Minnigerode’s approach from real to complex numbers

and it indicates certain phenomena occuring with complex continued fractions that do not

appear in the real case.

We shall briefly mention further work of Adolf Hurwitz on continued fractions. In

[Hurwitz, 1889] he introduced a new type of semi-regular continued fractions and studied

those with respect to equivalent numbers and quadratic forms. These so-called singular

continued fractions are a mixture of the regular continued fraction and the continued

fraction to the nearest integer. To explain that we recall Hitoshi Nakada’s α-continued

fraction from [Nakada, 1981]. Given a fixed real number α ∈ [12 , 1], the α-continued

fraction of a real number x ∈ Iα := [α− 1, α) is a convergent finite or infinite semi-regular

continued fraction of the form

x =
ǫ1

a1 +
ǫ2

a2 +
.. . +

ǫn

an +
.. .

,

where the partial quotients an are positive integers and the ǫn = ±1 are signs determined

12”Neben Klein, dessen Vorlesungen über seine Forschungen im Gebiet der Modulfunktionen ihn in hohem

Masse fesselten, hörte er bei Gustav Bauer, Seydel, Pringsheim, Brill und Beetz. Bauer u. Pringsheim

trat er persönlich näher . . .” [Samuel-Hurwitz, 1984, p. 6] We assume that Seydel is misspelled here.
Indeed, Philipp Ludwig von Seidel (1821 - 1896), at that time professor in Munich, was working on
continued fractions.
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by iterations of the mapping Tα on [α− 1, α) given by Tα(0) = 0 and

Tα(x) :=
1

|x| −
⌊

1

|x| + 1− α

⌋

otherwise. For α = 1 Nakada’s α-continued fraction expansion is nothing but the regular

continued fraction, for α = 1
2 one obtains the continued fraction to the nearest integer, and

for α =
√
5−1
2 it is the singular continued fraction due to Adolf Hurwitz [Hurwitz, 1889].

In [Hurwitz, 1891], Adolf showed that for any irrational real number x there exists an

infinite sequence of rational numbers p
q
such that their distance to x is strictly less than

1√
5q2

and that this bound is best possible; this improves upon a previous result due to

Charles Hermite in [Hermite, 1885] and is the starting point for all investigations on the

Markov spectrum. Hurwitz’s method of proof is based on the regular continued fraction

expansion and the result can be found in diophantine textbooks under the keyword ’Hur-

witz’s Approximation Theorem’ (although often with a proof using the Farey sequence,

avoiding continued fractions). There are some refinements of this result, e.g., Borel’s work

[Borel, 1903]. Adolf Hurwitz’s paper [Hurwitz, 1894b] provides a link between the Farey

sequence and continued fractions of irrationals with an application to the Pell equation.

In Section 7.3 we give an application of this flavor. Finally, in [Hurwitz, 1896b], Hurwitz

generalized some classical results due to Euler and Lambert on e and related values to more

general continued fractions with partial quotients which form an arithmetic progression.

This impressive list of publications may be seen as proof of our assumption from the

beginning that continued fractions played a central role in Adolf Hurwitz’s investigations.
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3.2 A Complex Continued Fraction According to Julius

In Section 2.4 we have already stated some quotations of Ida Samuel-Hurwitz which indi-

cate how closely the mathematical work of the elder Julius Hurwitz was dependening on of

his younger brother. In fact, the support from Adolf is emphasized on the very first page of

Julius’ dissertation where he wrote that ”the thesis follows in aim and method two publica-

tions due to Mr. A. Hurwitz to whom I owe the encouragement for this investigation.”13

The two mentioned publications are [Hurwitz, 1888, Hurwitz, 1889]. Interestingly, it is

his brother Adolf who wrote a review in Zentralblatt [Hurwitz, 1894a] about his brother’s

doctorate starting as follows:

”The complex plane may be tiled by straight lines x+ y = v, x− y = v, where

v ranges through all positive and negative odd integers, into infinitely many

squares. The centers of the squares are complex integers divisible by 1+ i. For

an arbitrary complex number x, one may develop the chain of equations

(1) x = a− 1

x1
, x1 = a1 −

1

x2
, . . . , xn = an −

1

xn+1
, . . .

following the rule that in general ai is the center of the square which contains

xi. In the case when xi is lying on the boundary of a square, some further rule

has to be applied which we ignore here for the sake of brevity. For x the chain of

equations (1) leads to a continued fraction expansion x = (a, a1, . . . , an, xn+1)

which further investigation is the topic of this work.”14

13”Die Arbeit schliesst sich, nach Ziel und Methode, eng an die nachstehend genannten zwei Abhandlungen

des Herrn A. Hurwitz an, dem ich auch die Anregung zu dieser Untersuchung verdanke.”
14”Die complexe Zahlenebene werde durch die Geraden x+y = v, x−y = v, wo alle positiven und negativen

ungeraden ganzen Zahlen durchläuft, in unendlich viele Quadrate eingeteilt. Die Mittelpunkte dieser
Quadrate werden durch die durch 1+i teilbaren ganzen complexen Zahlen besetzt. Wenn nun x eine
beliebige complexe Zahl ist, so bilde man die Gleichungskette:

(1) x = a− 1

x1
, x1 = a1 −

1

x2
, . . . , xn = an − 1

xn+1
, . . .

nach der Massgabe, dass allgemein ai den Mittelpunkt desjenigen Quadrates bezeichnet, in welches der
Punkt xi hineinfällt. Dabei sind noch bezüglich des Falles, wo xi auf den Rand eines Quadrates fällt,
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On the first view Julius’ expansion could be mistaken as a specification of the general

complex continued fraction investigated by his younger brother. The key difference is

a modification of the set of possible partial quotients. While Adolf Hurwitz allowed all

Gaussian integers, Julius restricted this set to the ideal generated by α := 1+ i. It shall be

noticed that 1 is not an element of this ideal, hence condition iii) of Adolf’s setting for his

’system’ S of partial quotients is not fulfilled. Julius’ approach results in a thinner lattice

in C. This leads to a tiling of the complex plane and enables consequently the definition

of a ’nearest’ partial quotient an ∈ (α) = (1+ i)Z[i] to each complex number z ∈ C. What

turns up is an expansion of a complex continued fraction

z = a0 −
1

a1 −
1

a2 −
1

a3 + T 3z

,

where each iteration is determined by a mapping T . In Chapter 4 we specify the definition

of T in modern language, slightly different from what can be found in Julius’ dissertation

[Hurwitz, 1895].

A natural question is which complex numbers have a finite continued fraction expansion?

Of course, the answer may depend on the type of continued fraction expansion, and, indeed,

there are differences between the continued fraction proposed by Adolf Hurwitz and the

one investigated by his brother Julius. For Adolf’s continued fractions the expansion for

a complex number z terminates if, and only if, z ∈ Q(i), as follows from the analogue of

the euclidean algorithm for the ring of integers Z[i]. However, the situation in the case of

besondere Festsetzungen getroffen, die wir der Kürze halber übergehen. Durch die Gleichungskette
(1) wird nun für x eine bestimmte Kettenbruchentwickelung x = (a, a1, . . . , an, xn+1) gegeben, deren
nähere Untersuchung der Gegenstand der Arbeit ist.”
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3 Hurwitz’s Approach to Complex Continued Fractions

Julius Hurwitz-continued fractions is different:

1 + 8i

5 + 7i
= [1− i,−2i,−4],

18

95
= [6,−2, 2,−2,−2, 2],

whereas

1 + 7i

5 + 7i
= [1− i,−2i, 3 + i, 0, . . .] 6= [1− i,−2i, 3 + i],

17

95
= [6,−2,−2,−2, 0, . . .] 6= [6,−2,−2,−2].

The latter examples are related to the case of iterates of z coming from the complementary

set 1 + (1 + i)Z[i] of partial quotients; we observe

i =
1

−i =
1

1− i− 1
=

1

1− i+ 1
−i

= . . . = [1− i, 0, 0, . . .] 6= [1− i] =
1

1− i
=

1 + i

2
,

here [1 − i, 0, 0, . . .] is not convergent, which shows that there is no convergence in such

cases. Generalizing from these examples one can find the following

Theorem 3.2.1 The Julius Hurwitz-continued fraction for a complex number z is finite

if, and only if, z = a
b

with coprime a, b ∈ Z[i] satisfying either a ≡ 1, b ≡ 0 mod α or

a ≡ 0, b ≡ 1 mod α.

This result is due to Julius Hurwitz’s thesis [Hurwitz, 1895]15; we give a short algebraic

proof in place of Julius’ lengthy geometric reasoning.

Proof. First of all, recall that any partial quotient aj is a multiple of α = 1+i. Thus, each

partial quotient is an element of the ideal generated by α, that is the set (α) = (1+ i)Z[i].

The set of Gaussian integers is a disjoint union of (α) and 1 + (1 + i)Z[i]; this follows

15”Die Kettenbruch-Entwicklung erster Art einer complexen rationalen Zahl endigt dann und nur dann

mit einem nicht durch 1+ i teilbaren Teilnenner, wenn, nach Forthebung gemeinsamer Faktoren, weder

der Zähler noch der Nenner der Zahl durch 1 + i teilbar sind.”
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3 Hurwitz’s Approach to Complex Continued Fractions

immediately from the fact that x+ iy ∈ (α) if, and only if, x ≡ y mod 2 (as explained in

Subsection 4.1.1). Denoting the Julius Hurwitz-continued fraction of a complex number

by z = [a0; a1, . . . , an, . . .], the numerators pn and denominators qn of its convergents

pn
qn

= [a0; a1, . . . , an] satisfy the following recursion formulae:























p−1 = α, p0 = a0, and pn = anpn−1 + pn−2,

q−1 = 0, q0 = α, and qn = anqn−1 + qn−2.

The proof is analogous to the one for regular continued fractions, only the initial values

differ. Without loss of generality we may assume that a0 = 0. As for real continued

fractions we may rewrite the recursion formulae in terms of 2× 2-matrices as







pn pn−1

qn qn−1






=







0 α

α 0













a1 1

1 0






· . . . ·







an 1

1 0






(n ∈ N0).

In view of

p1
q1

=
α

a1α
=

1

a1
,

p2
q2

=
a2α

a2a1α+ α
=

a2 · α
(a2a1 + 1) · α =

a2
a2a1 + 1

,

we find, after reducing the convergents pn
qn

with respect to common powers of α in the

numerator and denominator, that







p2 p1

q2 q1






≡







0 1

1 0






mod α,
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where the congruence is with respect to each entry. It thus follows from the recurrence

formulae by a simple induction on n that







pn+1 pn

qn+1 qn






≡







0 1

1 0







n

mod α,

Hence, comparing the first columns on both sides, we have shown that each finite Julius

Hurwitz-continued fraction is of the form predicted by the theorem.

The converse can be verified by use of Fermat’s descend method (see proof of Lemma

4.1.4). q.e.d.

As often the complex viewpoint provides new insights about the real case. Julius Hur-

witz’s continued fraction applied to real numbers leads to partial quotients from 2Z, and

indeed, these continued fraction expansions coincide with the continued fraction with even

partial quotients which has been studied first by Schweiger [Schweiger, 1982].16

In order to have always a convergent expansion one may allow a last partial quotient

from Z[i]; then all rational Gaussian integers have a finite Julius Hurwitz-continued frac-

tion. A related question is what kind of partial quotients can occur. For instance, if a

partial quotient equals an = 1 + i, then a simple geometric analysis shows that the next

partial quotient an+1 is different from 2, 1− i,−2i. A similar problem was already consid-

ered by Adolf Hurwitz for his continued fractions to the nearest Gaussian integers. Julius’

doctorate as well contains results about those admissible sequences. Therefore, he sepa-

rated partial quotients into those of type ±1± i and those of type ±2 respectively ±i2. In

the following course of his studies, Julius Hurwitz stated a table listing all impossible, not

admissible, sequences. To explain this table, we first need to analyze his notation. Partial

quotients are said to be of type 1 + i if they are of the form k(1 + i); k = +1,+2, . . ., they

16In [Perron, 1954, vl. 1, p. 186] Perron wrote, ”Eine andere Vorschrift für die Wahl der bν [Teilnenner]
stammt von J. Hurwitz [1]; sie bildet das Analogon zu den halbregelmäßigen Kettenbrüchen mit ger-
aden Teilnennern.” Actually, Julius Hurwitz-continued fractions of real numbers are exactly continued
fractions with even partial quotients.
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3 Hurwitz’s Approach to Complex Continued Fractions

are of type 1− i if they are of the form k(1− i); k = +1,+2, . . ., they are of type −1 + i if

they are of the form k(1− i); k = −1,−2, . . . and the are of type −1− i if they are of the

form k(1 + i); k = −1,−2, . . .. Furthermore, partial quotients are of type 2 when they are

located in between the angle bisector of the first and the fourth quadrant, −2 when they

are located between second and third quandrant and so on.

Figure 3.2: Illustration of the types of partial quotients and the associated complete tiling

of the complex plane.

Notice that this typification provides a complete tiling of the complex plane (see Fig 3.2).

On page 12 in [Hurwitz, 1895] Julius Hurwitz proved

Lemma 3.2.2 (J. Hurwitz, 1895)

The following rules for consecutive partial quotients hold:

If ar is of the type 1 + i,then ar+1 is not of type 2, 1 − i or −2i.

If ar is of the type −1 + i,then ar+1 is not of type −2i,−1− i or −2.

If ar is of the type −1− i,then ar+1 is not of type −2,−1 + i or 2i.

If ar is of the type 1− i,then ar+1 is not of type 2i, 1 + i or 2.
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Remark: This is exactly the part in Adolf Hurwitz’s diary entry entitled ”Concerning

Julius’ work” (see Fig. 2.51) to which we already refered in Section 2.4.

Adolf described in his Jahrbuch über die Fortschritte der Mathematik review

[Hurwitz, 1894a] that if the partial quotients

”[...] a0, a1, . . . , an, xn+1 fulfill certain constraints. [...] Then it is proved that

the expansion of any complex quantity converges, that it is finite, resp. peri-

odic, if the quantity is a rational complex number, resp. satisfies a quadratic

equation with complex integer coefficients. There is a relation of the inves-

tigated continued fraction expansion with another in which the tiling of the

complex plane in the above mentioned squares is replaced by domains bounded

by circular arcs. For this second expansion analoguous results are proved as

for the first.”17

These continued fractions of the second kind are the singular continued fractions developed

by Adolf Hurwitz in [Hurwitz, 1889].

Building on his continued fraction expansion to the nearest Gaussian integer in (1+i)Z[i]

from his dissertation, in his habilitation thesis Julius Hurwitz developed a method for

reduction of quadratic forms with complex coefficients and variables; this was published as

[Hurwitz, 1902b] in the same renown journal Acta Mathematica as his younger brother’s

initial paper [Hurwitz, 1888]. Already during the preparation of his dissertation Julius

had this very application in mind. Actually, Wangerin wrote in his report about Julius

Hurwitz’s dissertation that

”The author believes that the investigated continued fraction expansion may

17”[...] a, a1, . . . , an, xn+1 gewisse Bedingungen erfüllen. [...] Sodann wird der Nachweis geführt, dass die
Entwickelung jeder complexen Grösse convergirt, dass sie abbricht, resp. periodisch wird, wenn die
Grösse eine complexe rationale Zahl ist, resp. einer quadratischen Gleichung mit ganzzahlig complexen
Coefficienten genügt. Mit der untersuchten Kettenbruchentwickelung steht nun ferner eine andere in
genauestem Zusammenhange, bei welcher an Stelle der Einteilung der complexen Zahlenebene in die
oben genannten Quadrate eine solche in Gebiete tritt, die von Kreisstücken begrenzt sind. Für diese
zweite Entwickelung werden die analogen Sätze wie für die erste bewiesen.”
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serve as basis for a theory of quadratic forms with complex variables and

complex coefficients.”18 [Universitätsarchiv, 1895]

Julius’ approach is quite similar to the one for real quadratic forms with positive dis-

criminant. He solved the problem of determining whether two given forms with equal

discriminant are equivalent, and to find all substitutions which transform one form to

any of its equivalent forms. Both questions were already solved by Peter Gustav Lejeune

Dirichlet (1805 - 1859) [Dirichlet, 1842] by a different method.

3.3 Some Historical Notes

Continued fractions are always linked with the name Perron. Oskar Perron was born

May 7, 1880 in Frankenthal, and died in Munich February 22, 1975. Perron studied in

Munich and obtained there a doctorate in 1902; his dissertation was about the rotation

of a rigid body and was supervised by Lindemann (who was already responsible for Adolf

Hurwitz’s appointment to Königsberg). In his post-doctoral research, however, Perron be-

came interested in the work of Pringsheim, another professor at Munich with an expertise

in complex analysis (and father of Katharina Pringsheim the later Katia Mann, wife of

Thomas Mann). At that time Pringsheim [Pringsheim, 1900] investigated the Stern-Stolz

criterion [Stolz, 1885] for convergence of periodic complex continued fractions. Perron did

his habilitation [Perron, 1907] in 1907 on a related question, namely Jacobi’s general con-

tinued fraction algorithm [Jacobi, 1868]; this topic led Perron and later Frobenius to the

discovery of the famous Perron-Frobenius theorem for matrices with non-negative entries

(see [Hawkins, 2008]).

The standard reference in the theory of continued fractions is Perron’s monograph

[Perron, 1913] but neither the first edition from 1913 nor the second edition from 1929

mention Adolf or Julius Hurwitz’s work on complex continued fractions. However, the

18”Der Verfasser glaubt, dass die von ihm genauer erforschte Art der Kettenbruchentwicklung als Grund-
lage für die Theorie der quadratischen Formen mit complexen Variablen und complexen Koeffizienten
dienen könne.”
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third edition [Perron, 1954, vl. 1] from 1954 contains a whole section on continued frac-

tions in imaginary quadratic number fields (§46). Here Perron gives a brief introduction

to Adolf Hurwitz’s work [Hurwitz, 1888]. A proof is given that this expansion is finite

if, and only if, the number in question is a Gaussian rational. Much of attention is also

paid to approximation properties as well as to admissible sequences, and periodic complex

continued fractions. It is a natural question to ask for what other fields than Q(i) one can

obtain similar results. It seems that Leonard Eugene Dickson (1874 - 1954) was the first

to investigate in which quadratic fields Q(
√
D) an analogue of the euclidean algorithm

is possible [Dickson, 1927]. He proved that for imaginary quadratic fields there exists a

euclidean algorithm if, and only if, D = −1,−2,−3,−7,−11; however, his proof for real

quadratic fields turned out to be false, and was corrected by Perron [Perron, 1932]. With

regard to this, Paul Lunz (1909 - ?) [Lunz, 1937] considered in his dissertation (super-

vised by Perron) the field Q(
√
−2). Already in this case fundamental questions as, e.g.,

the growth of the denominators of the convergents in absolute value, seem to be more

difficult to answer than in the Gaussian number field. Further studies were made by Axel

Arwin (1879 - 1935) [Arwin, 1926, Arwin, 1928] for several other imaginary quadratic

fields. Hilde Gintner proved in her PhD thesis [Gintner, 1936] at the University of Vienna

in 1936 that in non-euclidean imaginary quadratic number fields one can find examples

where the corresponding continued fraction expansion does not converge, e.g.,

z = 1
2

√
−d if d 6≡ 3 mod 4, z = 2d+1

2d

√
−d if d ≡ 3 mod 4.

Summing up, it follows that a continued fraction expansion to the nearest integer is possible

if, and only if, the order of the imaginary quadratic field is euclidean. Moreover, she

studied diophantine approximation in imaginary quadratic fields not only with continued

fractions but using Minkowski’s geometry of numbers in a rather general setting. Further

results along these lines were found by her thesis advisor Nikolaus Hofreiter (1904 - 1990)

[Hofreiter, 1938] and several more mathematicians. Hereon, an overview will be outlined in
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Chapter 7 where we state some new results arising from application of Gintner’s approach.

It seems that Julius Hurwitz’s work had not found many readers. In 1918, Ford

[Ford, 1918] wrote in a footnote: ”The continued fractions involving complex integers

have been little studied. Only one of such fraction has, so far as I know, appeared in the

literature. See [Adolf] Hurwitz, Acta Mathematica, vol. 11 (1887), pp. 187-220; Auric,

Journal de mathématiques, 5th ser., vol. 8 (1902), pp. 387-431.” Ford is mostly interested

in extending Hermite’s approach for rational approximations to complex numbers rather

than in Adolf Hurwitz’s treatise of complex continued fractions. Auric [Auric, 1902] gave

further applications of Adolf Hurwitz’s continued fractions.

In 1912, George Ballard Mathews (1861 - 1922) considered binary quadratic forms

with complex coefficients in [Mathews, 1912]; he stressed that his approach differs from

Julius Hurwitz’s method in his habilitation thesis, published as [Hurwitz, 1902b]. Mathews

avoided to consider points of condensation; his reasoning showed immediately that the

number of reduced froms is finite. Moreover, ”the roots of a reduced form are expressible

as pure recurrent chain-fractions19 appears as a corollary, instead of being a definition”

(see [Mathews, 1912]).

In 1927, Anna Stein (1894 - ?) [Stein, 1927] used in her dissertation Julius Hurwitz-

continued fractions in order to compute units in quadratic extensions of number fields.

This line of investigation was proposed by her supervisor Helmut Hasse (1898 - 1979).

The divisibility of the denominators of the convergents by 1 + i is here an essential tool.

19Here ’chain-fraction’ is the word-for-word translation of the German term for continued fraction: ’Ket-
tenbruch’.
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Continued Fractions

In the twentieth century continued fractions were studied for many different reasons.

Whereas in the nineteenth century much attention was given to convergence criteria and

diophantine approximation new lines of investigation were the ergodic theory of continued

fractions and the consideration of a continued fraction expansion as a product of linear

fractional transformations. The latter approach is related to the modular group while the

former has roots in an old problem on the statistics of the partial quotients of the regular

continued fraction expansion posed by Gauss.

The first sentence of [Ito and Tanaka, 1981] illustrates the different approaches for re-

search on continued fractions: ”The simple continued-fraction expansion of real numbers

is an important concept in the theory of numbers. And the continued-fraction expansion

defined by Hurwitz is also important because it is the expansion by the nearest integers.

These two continued-fraction expansions give rise to many interesting problems not only

in the theory of numbers but also in ergodic theory.” Here Adolf Hurwitz’s continued

fraction is meant. Later we stress that there is previous work by Kaneiwa, Shiokawa and

Tamura [Kaneiwa and Shiokawa, 1975, Kaneiwa and Shiokawa, 1976] which already con-

tains a certain similarity to Julius’ continued fraction. Their intention was likewise: admis-

sible sequences are discussed and diophantine properties investigated, and a Lagrange-type

theorem for general quadratic extensions is included in [Kaneiwa and Shiokawa, 1976]. In

a subsequent paper [Shiokawa, 1976], Shiokawa introduced tools from ergodic theory in
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order to deduce several metrical results about this complex continued fraction expansion.

In none of these papers Julius’ work is mentioned, it seemed that his insights were fallen

into oblivion.

In 1985, about one century after Julius’ doctorate, Shigeru Tanaka published the iden-

tical continued fraction transformation a second time [Tanaka, 1985]. Although he refers

to the work of Adolf Hurwitz, it is rather unlikely that he was familiar with the thesis

of Julius which was only published in German and is hardly accessible (if one does not

know that a short version is contained as first part in [Hurwitz, 1902b]).1 Furthermore,

his approach is very different. While Julius’ point of view is quite geometrical, Tanaka’s

motivation was to investigate ergodic properties of the continued fraction. In the following

we outline how he succeeded to determine a natural extension of the transformation T and

therewith to construct an invariant measure with respect to whom the continued fraction

map T is ergodic. With this property Tanaka was able to transfer results from Shiokawa’s

ergodic theoretical approach to Adolf’s continued fraction to the theory of Julius’ complex

continued fraction. In that sense Tanaka’s work is building on Shiokawa’s in a similar way

as Julius was continuing Adolf’s approach.

4.1 J. Hurwitz’s Algorithm = Tanaka’s Algorithm

On the first glance, with its modern terminology, Shigeru Tanaka’s algorithm seems to

provide a typical recent, innovative approach to complex continued fractions. However,

on the second glance, it turns out that Tanaka’s continued fraction expansion equals

Julius Hurwitz’s complex continued fractions. In this section we adopt Tanaka’s approach

to receive new tools for handling characteristics of this complex continued fraction.

1Perron’s monograph [Perron, 1913] is not yet translated into English!
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4.1.1 Basics

Tanaka’s approach is based on the following representation of complex numbers z,

z = xα+ yα,

with x, y ∈ R and α = 1+ i respectively α = 1− i. Obviously, all complex numbers z have

therewith a representation

z = x(1 + i) + y(1− i) = (x+ y) + i(x− y), (4.1)

where x and y are uniquely determined by solving the system of linear equations Re z =

x+ y and Im z = x− y.

Figure 4.1: Illustration of Tanaka’s change of coordinates {1, i} → {α,α} along the angle

bisectors of the first and third quadrant.

To facilitate the following calculations, we illustrate this representation of complex num-
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bers. We have

z = a+ ib =

(

1

2
(a+ b)

)

α+

(

1

2
(a− b)

)

α,

which leads to






x

y






=

1

2







1 1

1 −1













a

b






.

Accordingly, the sets

I0 := {nα+mα : n,m ∈ Z},

respectively

I := I0 \ {0}

describe subsets of the set of Gaussian integers Z[i]. Since

n+m ≡ n−m mod 2 (4.2)

with n,m ∈ Z, I0 contains exactly those numbers z, whose real part and imaginary part

have even distance. Writing I0 in the form

I0 = {a+ ib ∈ Z[i] : a ≡ b mod 2} = (1 + i)Z[i] = (α),

it occurs that I0 is the principal ideal in the ring of integers Z[i] generated by α. In fact,

this ideal is identical to the set of possible partial quotients in Julius Hurwitz’s case.

To construct a corresponding continued fraction expansion, firstly a complex analogue

to the Gaussian brackets is required. To identify the nearest integer to z from I0, we define

[ . ]T : C → I0,

[z]T =

⌊

x+
1

2

⌋

α+

⌊

y +
1

2

⌋

α.
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Furthermore, we specify a fundamental domain

X =

{

z = xα+ yα :
−1

2
≤ x, y <

1

2

}

,

and define a map T : X → X by T0 = 0 and

Tz =
1

z
−
[

1

z

]

T

for z 6= 0.

By iteration, we obtain the expansion

z =
1

a1 + Tz
=

1

a1 +
1

a2 + T 2z

= · · · = 1

a1 +
1

a2 +
.. . +

1

an + T nz

,

with partial quotients an := an(z) =
[

1
Tn−1z

]

T
. As in the real case, convergents pn

qn
to z

are defined by ’cutting’ the continued fraction after the nth partial quotient. Setting

p−1 = α, p0 = 0, and pn+1 = an+1pn + pn−1 for n ≥ 1, (4.3)

as well as

q−1 = 0, q0 = α, and qn+1 = an+1qn + qn−1 for n ≥ 1, (4.4)

by the same reasoning as for regular continued fractions for real numbers, z can be ex-

pressed as

z =
pn + T nzpn−1

qn + T nzqn−1
. (4.5)

Remark: In the beginning of this chapter we mentioned that there is a certain simi-

larity between Julius Hurwitz’s continued fraction and work of Kaneiwa, Shiokawa and
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Tamura in 1975/6 [Kaneiwa and Shiokawa, 1975, Kaneiwa and Shiokawa, 1976]. In fact,

if ρ denotes the third root of unity in the upper half-plane, they defined a bracket by

[z] := ⌊u⌋ρ+ ⌊v⌋ρ for z = uρ+ vρ

with real u and v. Given a complex number z, iterations of the transform z 7→ 1
z
− [1

z
]

yield a continued fraction in a similar way as for Julius’ expansion.

4.1.2 Example

As illustrating example we choose x = 1
8 , y = 3

8 and receive

z =
1

2
(1 + i)− 1

4
(1− i) =

1

8
+ i

3

8
=

1

8
(1− 3i).

For the first transformation Tz, we calculate 1
z
and

[

1
z

]

T
:

1

z
=

8

1− 3i
=

8(1 + 3i)

(1− 3i)(1 + 3i)
=

8

10
(1 + 3i) =

4

5
(1 + 3i).

Following Tanaka, we obtain







x

y






=

1

2







1 1

1 −1






·







4
5

12
5







respectively x = 8
5 , y = −4

5 . Thus, we have

a1 =

[

1

z

]

T

=

⌊

8

5
+

1

2

⌋

α+

⌊

−4

5
+

1

2

⌋

α = 2α− α = 1 + 3i.

Consequently, we receive the continued fraction expansion with first partial quotient

z =
1

8
(1− 3i) =

1
1
z

=
1

4
5(2α− α)

=
1

2α− α+ 4
5(2α − α)− (2α− α)

=
1

a1 + Tz
.
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For the second partial quotient, we calculate

Tz =
4

5
(2α − α)− (2α − α) = −2

5
α+

1

5
α = −1

5
− 3

5
i = −1

5
(1 + 3i),

1

Tz
=

−5(1− 3i)

(1 + 3i)(1 − 3i)
=

−5(1− 3i)

10
= −1

2
(1− 3i) =

1

2
(α− 2α)

and

a2 =

[

1

Tz

]

T

=

⌊

1

2
+

1

2

⌋

α+

⌊

−1 +
1

2

⌋

α = α− α = 2i.

For the third partial quotient, we calculate

T 2z = −1

2
(1 + i),

1

T 2z
=

−2(1− i)

(1 + i)(1 − i)
= −1 + i = −α

and

a3 =

[

1

T 2z

]

T

=

⌊

−1 +
1

2

⌋

α = −1 + i.

Since

T 3z =
1

T 2z
−
[

1

T 2z

]

T

= 0,

it follows that the algorithm terminates and that the finite continued fraction is given by

1− 3i

8
=

1

1 + 3i+
1

2i+
1

−1 + i

.
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4.1.3 Some Considerations and Characteristics

To deepen the understanding of the behaviour of T we examine some of its characteristcs

generating the complex continued fraction expansion. First of all, we verify that T indeed

maps X to X and determine the region in which 1
z
is located.

Lemma 4.1.1 For z ∈ X we have Tz ∈ X.

Proof. Considering 0 6= z = a+ ib = 1
2(a+ b)α+ 1

2(a− b)α ∈ X, it follows

1

z
=

(a− b)

2(a2 + b2)
α+

(a+ b)

2(a2 + b2)
α

and
[

1

z

]

T

=

⌊

a2 + a− b+ b2

2(a2 + b2)

⌋

α+

⌊

a2 + a+ b+ b2

2(a2 + b2)

⌋

α.

To show that Tz = 1
z
−
[

1
z

]

T
lies in X one takes the difference of the respective x or

y-values. We receive

−1

2
≤ (a± b)

2(a2 + b2)
−
⌊

a2 + a± b+ b2

2(a2 + b2)

⌋

≤ 1

2
,

because leaving off the Gaussian brackets in the middle leads to −1
2 . q.e.d.

In view of Lemma 4.1.1 the continued fraction expansion follows from iterating T over

and over again. Since Tz ∈ X, we can localize 1
z
by inverting the minimal and maximal

possible value of |z|.
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Figure 4.2: Taking the geometry of X into account, an easy computation shows that 1
z
is

always located in the infinite region outside the four semicircles centered at ±1
2 ± i12 with

radius 1√
2
(see Subsection 4.1.4 for more details).

A natural question we have already answered in Section 3.2 by Theorem 3.2.1 is: When

does the algorithm terminate? In this section we give a more detailed proof of this the-

orem without using of matrices, that provides slightly more information. Therefore, we

introduce a certain tiling of the set of Gaussian integers on behalf of

J := 1 + (α) = {c+ id ∈ Z[i] : c 6≡ d mod 2},

which leads to the disjoint decomposition

Z[i] = I0 ∪̇ J

with I0 as defined in Subsection 4.1.1.
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Theorem 4.1.2 The algorithm terminates if, and only if,

z ∈ Q =
{

z =
u

v
: either u ∈ I, v ∈ J or v ∈ I, u ∈ J

}

.

In the sequel the set

M := {z ∈ C : T nz = 0 for some n ∈ N} ⊂ Q[i]

will be examined. Since the algorithm terminates if, and only if, z is equal to a convergent

pn
qn
, M can also be written as

M :=

{

z =
pn
qn

for some n ∈ N

}

.

The proof of the theorem will be seperated into two parts. After showing M ⊂ Q, we

verify the inverse inclusion Q ⊂ M . However, first some preliminary work needs to be

done.

By definition I0 = {nα +mα : m,n ∈ Z} = (1 + i)Z[i] = (α). Hence, for z ∈ M , we

have

an =

[

1

T n−1z

]

T

= αbn with bn ∈ Z[i].

In accordance with (4.3) and (4.4) the first convergents are of the form

p1
q1

=
α

a1α
=

α

α2b1
,
p2
q2

=
a2α

(a2a1 + 1)α
=
α2b2
αb′2

, · · ·

with b′2 ∈ Z[i] and so on. We observe that the parity of the α-parts of numerator and

denominator alternate in their exponents.

Lemma 4.1.3 We have

pn
α

∈ (α) ⇔ 2|n ⇔ qn
α

/∈ (α),
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respectively

pn
α

/∈ (α) ⇔ 2 ∤ n ⇔ qn
α

∈ (α).

Proof. It is sufficient to consider the sequence of nominators (pn), since (qn) can be

treated analogously. According to the recursion formula (4.3) we may write

pn
α

= an
pn−1

α
+
pn−2

α
,

what leads to a simple proof by induction. We begin with

• n = −1 : p−1

α
= α

α
= 1 /∈ (α), and

• n = 0 : p0
α

= 0 ∈ (α),

which satisfy the assertion. In the induction step we distinguish the two cases of n being

even or odd.

1. case: 2|n

Since n− 2 is even as well, the induction hypothesis provides pn−2

α
∈ (α). Moreover,

we know an ∈ (α) and respectively an
pn−1

α
∈ (α). On behalf of the recursion formula

follows pn
α

∈ (α). Here we have used that (α) is an ideal.

2. case: 2 ∤ n

This case can be treated similarly: pn−2

α
/∈ (α), an ∈ (α) implies pn

α
/∈ (α).

q.e.d.

Thus, we have verified M ⊂ Q and for the proof of Theorem 4.1.2 it remains to prove

the inverse inclusion.

Lemma 4.1.4 We have

Q ⊂M.

In particular, all z = u
v

∈ Q(i) with either u ∈ I, v ∈ J or v ∈ I, u ∈ J lead to a

terminating algorithm.
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Proof. We assume that O := Q \M is not an empty set. Then there exists a number

z ∈ O of the form z = u
v
∈ I

J
(respectively ∈ J

I
) with T n u

v
6= 0, for which |u|2 + |v|2 is

minimal. Without loss of generality we may assume u ∈ I and v ∈ J .

We have

z =
u

v
=

1

a1 +
1

a2 +
1

.. . +
1

an + T n u
v

.

Furthermore, we put

z′ =
x

y
=

1

a2 +
1

a3 +
1

. . . +
1

an + T n u
v

.

Because of T n u
v
= T n−1 x

y
, it follows that z′ is as well an element of the set Q and satisfies

the condition

T n
x

y
6= 0.

Moreover, we have

u

v
=

1

a1 +
x
y

=
y

a1y + x
(4.6)

and therewith u = y ∈ I (respectively ∈ J) and v = a1y+x ∈ J (respectively ∈ I). To go

on, we observe the multiplicative and additive structure of I and J by noting

J · I = I · J = I , J · J = J , I · I = I,

and

J + I = I + J = J , J + J = I , J + J = J.
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Of course, this is meant in the sense of Minkowski’s multiplication and addition of sets,

respectively, and can easily be shown on behalf of complex calculation.

With the constraint a1 ∈ I, the structure of x
y
occurs:

1. For u = y ∈ I and v = a1y + x ∈ J we have that a1y + x is an element of I · I + x,

which is a subset of J , if, and only if, x ∈ J.

2. For u = y ∈ J and v = a1y + x ∈ I we have that a1y + x is an element of I · J + x,

which is a subset of I, if, and only if, x ∈ I.

Obviously, the structure of z = u
v
changes for z′ = x

y
in an alternating way. The property

of non-terminating as well as the observed structure above do also hold if z = x
y
is replaced

by x
−y . With (4.6) we additionally obtain

|u| = |y| and |v| = |a1y + x|

what leads to

|u|2 + |v|2 = |y|2 + |a1y + x|2.

Since |u|2 + |v|2 was assumed to be minimal, the inequality

|a1y + x|2 ≤ |x|2 (4.7)

follows. Since setting z′ = x
y
or z′ = x

−y will not change anything of our previous observa-

tions, it is guaranteed that the case of real part and imaginary part of a1y being positive

can always be achieved. With x = a+ ib, the inequality

|a1y + x|2 = (Re (a1y) + a)2 + (Im (a1y) + b)2 > a2 + b2 = |x|2

holds. This is a contradiction to (4.7), i.e., to the minimality of z = u
v
, which proves that

there is no number satisfying the assumption. Consequently, O is an empty set. q.e.d
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Concluding Lemma 4.1.4 and Lemma 4.1.3, it follows that complex numbers z ∈ C,

having a finite continued fraction, are either of the form z ∈ I
J
or z ∈ J

I
.

Remark: In Julius Hurwitz’s doctoral thesis a whole chapter is dedicated to the question

which complex numbers have a finite continued fraction expansion. There it is described

that the continued fraction is finite in any case of rational complex numbers. This is

because Hurwitz allowed a last partial quotient from Z[i] in those cases when irregularities

occur from rational complex numbers with numerator and denominator divisible by (1+i).

That Shigeru Tanaka did not refer to those difficulties is certainly due to the fact that

under an ergodic theoretical point of view those few irregularities are insignificant. The

set Q(i) is countable and thus negligible with respect to applications from ergodic theory.

However, this also indicates that Julius Hurwitz’s thesis was probably unknown to Tanaka.

Next we examine some characteristics of the algorithm concerning its approximation

property.

Lemma 4.1.5 Let an+1 6= 0. For kn := qn+1

qn
we have |kn| > 1.

Notice that for an+1 = 0 the recursion formula leads to qn+1 = qn−1 and that the continued

fraction is finite.

Proof. We suppose that all previous k1, . . . , kn−1 are of absolute value > 1, here certainly

|k1| ≥
√
2 (because |aj | ≥

√
2 for every aj ∈ I). Thus,

kn = an+1 +
1

kn−1
∈ {z ∈ C : |z − an| < 1}.

We assume |kn| < 1, hence,

|an+1| =
∣

∣

∣

∣

kn −
1

kn−1

∣

∣

∣

∣

≤ |kn|+
1

|kn−1|
< 2
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and consequently an+1 = ±1± i. Without loss of generality we consider an+1 = 1+ i. By

a backwards calculation we determine

an−2k = −2 + 2i and an−2k−1 = 2 + 2i

for all k ∈ N0 with 2k < n. The following considerations are by induction:

For n = 1 we have k1 = a2 = 1 + i which leads to |k1| =
√
2 > 1.

For n = 2 we have k2 = a3 +
1

−2+2i =
3
4 (1 + i) which leads to |k1| = 3

4

√
2 > 1.

For n ≥ 3 we have k1 = ±2 + 2i which leads to |k1| =
√
8 and k2 = ±2 + 2i + 1

k1
which

leads to |k2| ≥
√
8− 1

|k1| .

Therefore, we observe kj = ±2 + 2i + 1
kj−i

as well as |kj | ≥
√
8 − 1

|kj−1| =: yj ∈ R. We

consider the recursion yj =
√
8− 1

yj−1
with

y1 =
√
8, y2 =

√
8− 1√

8
=

7

4

√
2 <

√
2 + 1.

Under the assumption yj < yj−1 < . . . it follows by induction that

yj+1 =
√
8− 1

yj
<

√
8− 1

yj−1
= yj

as well as

yj+1 =
√
8− 1

yj
>

√
8− 1√

2 + 1
=

√
2 + 1.

Hence, for all j < n the inequality

kj ≥ yj >
√
2 + 1

holds. Consequently, with kn = an +
1

kn−1
this leads to

|kn| =
∣

∣

∣

∣

1 + i+
1

kn−1

∣

∣

∣

∣

>
√
2− 1√

2 + 1
= 1.
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q.e.d.

In the following, we shall use the previous lemma in order to show that the continued

fraction expansion actually converges.

4.1.4 Geometrical Approach to the Approximation Behaviour

We have already indicated that, following Tanaka’s line of argumentation, the approxima-

tion properties of his algorithm can be illustrated geometrically. This happens essentially

on behalf of two tilings.

Firstly, the fundamental domain X is split into disjoint so-called T -cells. This is done

with respect to the first n partial quotients as follows. We define the set A(n) of sequences

of partial quotients by

A(n) = {a1(z), a2(z), . . . , an(z) : z ∈ X}.

Such sequences are called T -admissible. One should notice that certain sequences of num-

bers from (1 + i)Z[i] cannot appear as sequence of partial quotients, which was examined

by Julius Hurwitz (see Lemma 3.2.2).

Corresponding to each admissible sequence a1, a2, . . . , an ∈ A(n) the subset

X(a1, a2 . . . , an) of X arises as

X(a1, a2 . . . , an) = {z ∈ X : ak(z) = ak for 1 ≤ k ≤ n};

each such set is called a T -cell. We have

X =
⋃

a1,a2...,an∈A(n)
X(a1, a2 . . . , an).

In other words, T -cells describe a ’close’ neighborhood of a certain z ∈ X.
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The second tiling is corresponding to the set of reciprocals

X−1 =

{

1

z
: z ∈ X, z 6= 0

}

.

In each iteration of the continued fraction algorithm a complex number

T nz =
1

T n−1z
−
[

1

T n−1t

]

T

arises, which is split into an integral partial quotient and a remainder. The latter is going

to be iterated again. We thus receive a sequence of elements of X−1. By taking the

reciprocals, the edges of X are transformed to arcs of discs. We define

U1 :=

{

z ∈ X :
∣

∣

∣z +
α

2

∣

∣

∣ ≥ 1√
2

}

.

Writing z = xα+ yα, we have

∣

∣

∣
z +

α

2

∣

∣

∣
=

∣

∣

∣

∣

(

x+ y +
1

2

)

+ i

(

x− y +
1

2

)∣

∣

∣

∣

=

√

(

Re (z) +
1

2

)2

+

(

Im (z) +
1

2

)2

≥ 1√
2

including elements z ∈ X, while excluding numbers which lie inside the disc of radius 1√
2

and center −1
2(1 + i) = −1

2α (see Fig. 4.2). Analogously, we definde

U2 := −i× U1, U3 := −i× U2 and U4 := −i× U3.

Setting

U(α) := U1, U(α) := U2, U(−α) := U3, U(−α) := U4

and

U(a) := X, if a 6= α,α,−α,−α,

we attach to each Gaussian integer a ∈ I an area. With (4.2) there is always an even
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integer distance between real part Re a and imaginary part Im a.

Figure 4.3: Thus, the numbers a ∈ I are located on the angle bisectors of the quadrants or

on parallel lines shifted by a multiple of 2 excluding the origin.

Thus, the set of reciprocals X−1 can be composed from translates of the sets U(a) shifted

by a, i.e.,

X−1 =
⋃

a∈I
(a+ U(a)).

These geometrical observations are related to one another on behalf of the defined trans-

formation T . We have

T nX(a1, . . . , an) = U(an).

This implies that the nth iteration of the transformation applied to the remainder of the

n first partial quotients maps to the domain U , which is located around the nth partial

quotient. This is interesting in view of Equation (4.5), from which the uniqueness of the
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inverse map T n follows. We define φa1···an := (T n)−1 by

φa1···an : U(an) → X(a1, . . . , an)

with

φa1···an(z) =
pn + zpn−1

qn + zqn−1
.

The ’forward’ mapping to the non-integer remainder of 1
Tn−1z

becomes a unique inverse

mapping ’backwards’ in the algorithm. Since in each set U(an) = X,U1, . . . , U4 the origin

is included, for all admissible sequences of partial quotients a1, . . . , an ∈ A(n) the nth

convergent is located in the corresponding T -cell, that is

pn
qn

= φa1···an(0) ∈ X(a1 · · · an).

Consequently, the algorithm indeed produces convergents approximating the initial values

better and better. The more partial quotients are chosen as fixed, the smaller the T -cell

becomes in X and therewith the closer the corresponding convergent is located.

4.1.5 Approximation Quality

In view of Lemma 4.1.5 we have |qn−1| < |qn|, hence, the factor 1
|qn| becomes smaller with

increasing n ∈ N. To consider further questions concerning the approximation behaviour,

we examine

θ′n := |qn|2
∣

∣

∣

∣

z − pn
qn

∣

∣

∣

∣

,

an analogue of the so-called approximation coefficients from real theory.

In [Tanaka, 1985] the equation

∣

∣

∣

∣

z − pn
qn

∣

∣

∣

∣

=
|2i(−1)nT nz|

|qn(qn + qn−1T nz)|
(4.8)
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is given. The proof is by induction based on recursion formulae (4.3) and (4.4). Hence,

θ′n =
2|T nz|

∣

∣

∣
1 + qn−1

qn
T nz

∣

∣

∣

≤ 2
(

1−
∣

∣

∣

qn−1

qn
T nz

∣

∣

∣

) . (4.9)

This upper bound implies that there exists a constant κ such that

∣

∣

∣

∣

z − pn
qn

∣

∣

∣

∣

<
κ

|qn|2

for all z and all its convergents pn
qn
. To specify this constant further we perform an approach

to bound it from below. Therefore, we first prove

Lemma 4.1.6 We have

min{|p2 + pq + q2| : p, q ∈ (1 + i)Z[i] \ {0}} = 2.

Proof. The set of values taken by the quadratic form

p2 + pq + q2 for (p, q) ∈ ((1 + i)Z[i])2 \ {(0, 0)}

is contained in (1+ i)Z[i]\{0}. Hence, the smallest possible absolute values of p2+pq+ q2

are
√
2 related to possible solutions of p2+pq+q2 = ±1± i, and 2 related to p2+pq+q2 =

±2i,±2. We assume

p2 + pq + q2 = ±1± i. (4.10)

Setting p = a+ ib, q = c+ id with a ≡ b, c ≡ d mod 2 leads to

p2 = a2 − b2 + 2iab and q2 = c2 − d2 + 2icd.
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This transforms (4.10) to

(a2 − b2) + (c2 − d2) + (ac− bd) + i (2ab+ 2cd+ (ad+ bc)) = ±1± i.

Separating real and imaginary part, we end up with

(I) a2 − b2 + c2 − d2 + ac− bd = ±1

and

(II) 2ab+ 2cd + (ad+ bc) = ±1.

Since

ad+ bc ≡ bd+ bd = 2bd ≡ 0 mod 2,

we have 2ab+ 2cd+ (ad+ bc) ≡ 0 mod 2 showing that (II) is not solvable. Consequently,

min{|p2 + pq + q2| : p, q ∈ (1 + i)Z[i] \ {0}} > |1 + i| =
√
2,

respectively

|p2 + pq + q2| ≥ 2,

since the next ’larger’ elements of (1 + i)Z[i] \ {0} are ±2,±2i. Because p = 1 + i, q = 0

leads to p2 + pq + q2 = (1 + i)2 = 2i the proposition is proven. q.e.d

The previous lemma allows to estimate a lower bound c ≤ κ as follows. For z 6∈ Q(i)

we assume

z =
1

2
(−1 + i

√
3) =

p

q
+
c′

q2

with p, q ∈ (1 + i)Z[i] and q 6= 0 as well as c′ 6= 0, since p
q
+ c′

q2
6∈ Q(i). Multiplying with q

i
√
3

2
q − c′

q
= p+

q

2
,
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and squaring,

−3

4
q2 − i

√
3c′ +

c′ 2

q2
= p2 + pq +

q2

4

provides

c′ 2

q2
− i

√
3c′ = p2 + pq + q2.

From Lemma 4.1.6 we have |p2 + pq + q2| ≥ 2 and thus, we can estimate

|c′|2
|q|2 +

√
3|c′| ≥ 2.

For |c′| < c, with a constant c <
√
3
2 , this would lead to

c2

|q|2 + c
√
3 > 2,

respectively

|q|2 < c2

2− c
√
3
,

which can be satisfied by only finitely many numbers q.

Consequently, we have

Lemma 4.1.7 The best possible constant κ is greater than or equal to c =
√
3
2 .

Remark: In fact, we expect c from the reasoning above to be best possible, which is

equivalent to κ =
√
3
2 . From a geometrical point of view, this assumption is rather natural.

In [Ford, 1925] Leister R. Ford proved that for the Adolf Hurwitz continued fraction, where

p, q ∈ Z[i], the best possible constant for the approximation bound is
√
3. In Subsection

7.2.4 we examine that the upper bounds for the approximation quality obtained by a

geometrical method depend on the area of the fundamental domains. In our case, these

areas differ by a factor 2, which matches exactly to the corresponding difference of Ford’s

approximation bound 1√
3
and the here expected bound 2√

3
(for more details see Subsection

7.2.4). Following [Ford, 1925] would shed light on this question, however, here we do not
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study this topic any further.

4.2 Ergodic Theory

In ergodic theory one examines so-called measure preserving dynamical systems. In general

such a dynamical system describes a mathematical concept which models a certain time-

process in a certain space on behalf of fixed mathematical regularities.

4.2.1 Transformations

We consider a probablility space (X,Σ, µ) with non-empty set X, a σ-algebra Σ on the

set X, a probability measure µ on (X,Σ) and a measure preserving transformation

T : X → X.

The above mentioned time-process is explained by assuming T as ’shift into the future’,

whereas its inverse T−1 can be considered as ’shift into the past’. Here T is said to be

measure preserving, if, and only if, for E ∈ Σ,

µ(T−1E) = µ(E),

which means that the measure of E is preserved under T . Furthermore, a measurable set

E is called T -invariant when

T−1E = E.

The corresponding dynamical system is written as the quadrupel (X,Σ, µ, T ).

In addition, T is called ergodic when for each µ-measurable, T -invariant set E either

µ(E) = 0 or µ(E) = 1.
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A very powerful result dealing with ergodic transformations was realized by Georg David

Birkhoff [Birkhoff, 1931] and in the general form below by Aleksandr Jakovlevich Khin-

chine [Khintchine, 1933]2.

Theorem 4.2.1 (Pointwise Ergodic Theorem, Birkhoff, 1931)

Let T be a measure preserving, ergodic transformation on a probablitiy space (X,Σ, µ). If

f is integrable, then

lim
N→∞

1

N

∑

0≤n≤N
f(T nx) =

∫

X

fdµ

for almost all x ∈ X.

The nth transformation T n is defined recursively as follows

T 0 = id, T 1 = T and T n = T 0 ◦ T n−1.

4.2.2 Continued Fraction Transformation

In this subsection we shortly introduce an ergodic approach to continued fractions. Hereby,

we follow a classical method3 firstly explained for the real case.

We define a transformation T : [0, 1) → [0, 1) which serves as operator in the well known

regular continued fraction algorithm (similar to the map T introduced in Tanaka’s complex

approach in Subsection 4.1.1). Choosing the unit interval as fundamental set X, we define

T0 = 0 and, for x ∈ X,

Tx = T (x) :=
1

x
−
⌊

1

x

⌋

if x 6= 0.

For an irrational number x ∈ R \Q and a0 := ⌊x⌋ ∈ Z we obviously have x− a0 ∈ [0, 1).

Setting

T 0x := x− a0, T 1x := T (x− a0), T 2x := T (T 1x), . . . ,

2for a comprehensive version see [Dajani and Kraaikamp, 2002]
3once more we refer to [Dajani and Kraaikamp, 2002, p. 20]
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the definition above provides

T nx ∈ [0, 1) \Q for all n ≥ 0.

With

an = an(x) :=

⌊

1

T n−1x

⌋

for n ≥ 1

one receives the well-known regular continued fraction expansion

x = a0 +
1

a1 + T 1x
= a0

1

a1 +
1

a2 + T 2x

= · · · = a0 +
1

a1 +
1

a2 +
.. . +

1

an + T nx

= [a0; a1, a2, · · · , an + T nx].

The existence of the limit

x = [a0; a1, a2 · · · , an, · · · ] = lim
n→∞

[a0; a1, a2 · · · , an + T nx]

follows on behalf of the representation related to the nth convergent pn
qn

∈ Q to x. In fact,

we have

x =
pn + T nxpn−1

qn + T nxqn−1

and pn−1qn − pnqn−1 = (−1)n for n ≥ 1. In view of T nx ∈ [0, 1) the inequality

∣

∣

∣

∣

x− pn
qn

∣

∣

∣

∣

<
1

an+1q2n

can be derived. Here (qn)n≥0 is a strictly increasing sequence (see Chapter 1 respectively

Lemma 4.1.5 for the complex case) of positive integers.

In the complex case, the fundamental set is naturally two-dimensional corresponding to
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real and imaginary parts of the expanded complex number. Hence, in Shigeru Tanaka’s,

respectively Julius Hurwitz’s algorithm the transformation T : X → X is defined on the

fundamental domain X = {z = xα+ yα : −1
2 ≤ x, y < 1

2} with α = 1+ i (and α = 1− i)

by

Tz :=
1

z
−
[

1

z

]

T

for z 6= 0 and T0 = 0,

where

[z]T :=

⌊

x+
1

2

⌋

(1 + i) +

⌊

y +
1

2

⌋

(1− i).

The analogy between the real and complex approach is obvious. However, for the complex

continued fractions some adjustments need to be done. In order to apply ergodic methods

a main challenge is to define an invariant measure for a given transformation. In the real

case, there is the so-called Gauss-measure4, defined by

µ(A) =
1

log 2

∫

A

1

1 + x
dx,

for all Lebesgue sets A ⊂ [0, 1). For complex algorithms some difficulties may appear.

Here a so-called natural extension of the underlying transformation can be helpful.

4.2.3 Dual Transformation and Natural Extension for Tanaka’s Algorithm

In Section 4.1 it was shown that Tanaka’s transformation T provides a complex continued

fraction expansion. Here we sketch another related transformation S : Y → Y , introduced

by Tanaka, where

Y = {w ∈ C : |w| ≤ 1}

is the unit disc centered at the origin in the complex plane. We define subsets Vj of Y by

V1 := {w ∈ Y : |w + α| ≥ 1},

4discovered by Carl Friedrich Gauß
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V2 = −i× V1, V3 = −i× V2, V4 = −i× V3, V5 = V1 ∩ V2,

V6 = −i× V5, V7 = −i× V6, V8 = −i× V7

and a partition of I0 = {nα+mα : n,m ∈ Z}, respectively I = I0 \ {0} by

J1 = {nα : n > 0}, J2 = −i× J1, J3 = −i× J2, J4 = −i× J3,

J5 = {nα+mα : m > 0}, J6 = −i× J5, J7 = −i× J6, J8 = −i× J7.

Setting

V (a) :=











Y, if a = 0,

Vj , if a ∈ Jj ,

for 1 ≤ j ≤ 8, we obtain a complete tiling of the complex plane

C =
⋃

a∈I0
(a+ V (a)).
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Figure 4.4: Illustration of the tiling of the complex plane with respect to S.

Furthermore, we define S0 = 0 and

Sw =
1

w
−
[

1

w

]

S

for w 6= 0

with [w]S = a if w ∈ a+ V (a). As above partial quotients arise through

bn = bn(w) =

[

1

Sn−1w

]

S

∈ I0.

This leads to an expansion of w ∈ Y as

w = [b1, b2, · · · , bn + Snw]

with convergents Vn =: [b1, b2, · · · , bn]. Tanaka proved that the transfomation S satisfies

a certain duality.

Lemma 4.2.2 (Duality)
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Let a1, . . . , an be a sequence of numbers in I. Then a1, . . . , an is T -admissible if, and only

if, the inverse sequence of partial quotients an, . . . , a1 is S-admissible.

The proof is based on geometrical constraints concerning a finely tiling of Y respectively

Y −1 and can be found in [Tanaka, 1985, p. 200].

By Lemma 4.2.2, we know that for each T -admissible sequence there exists an associated

sequence of convergents of a given w ∈ Y , namely

qn−1

qn
= [an, an−1, . . . , a1] = Vn ∈ Y.

This provides another proof of Lemma 4.1.5 that the sequence (qn)n∈N increases

monotonously in absolute value. Given this dual transformation S, one can construct

the so-called natural extension T containing information of T as well as information of S,

which are considered as ’future’ and ’past’ of the sequence of partial quotients. On behalf

of Lemma 4.2.2, we define T : X × Y → X × Y by5

T(z, w) =

(

Tz,
1

a1(z) +w

)

, (4.11)

where a1 =
[

1
z

]

T
. On pages 202 and 210 in [Tanaka, 1985] Tanaka proved

Theorem 4.2.3 (Natural Extension)

The transformation T is a natural extension; in particular T and S are ergodic and the

function h : X × Y → R defined by

h(z, w) =
1

|1 + zw|4

is the density function of an absolutely continuous T-invariant measure.

5In [Tanaka, 1985] a more exact, more finely, tiling of X resp. Y was given on behalf of sets U and V .
For our needs, it is sufficient to consider the whole sets X and Y .
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4.2.4 Variation on the Döblin-Lenstra Conjecture

In this section we give a proof of an analogue of the so-called Döblin-Lenstra Conjecture

for the complex case of Tanaka’s continued fraction algorithm. Therefore, we first state

the original conjecture for the regular continued fraction algorithm for real numbers.

Theorem 4.2.4 (Döblin-Lenstra Conjecture)

Let x be any irrational number with continued fraction convergents pn
qn

. Define the approx-

imation coefficients by θn := qn|qnx− pn|. Then for almost all x we have

lim
n→∞

1

n
|{j : j ≤ n, θj(x) ≤ c}| =











c
log 2 , for 0 ≤ c ≤ 1

2 ,

−c+log 2c+1
log 2 , for 1

2 ≤ c ≤ 1.
(4.12)

Notice that θj(x) ≤ 1 for all j and all x.

Indeed, the conjecture has been proven in [Bosma et al., 1983] by ergodic methods, in

particular by using the natural extension T of the continued fraction transformation T

as main tool. To transfer their approach to Tanaka’s and, respectively, Julius Hurwitz’s

complex continued fraction, some preparatory work needs to be done. Our first aim is to

find an analogous expression for θn.

Subsequently to Lemma ?? in Subsection 4.1.5, we define normalized approximation

coefficients ϕn := θ′n
2 satisfying

ϕn ≤ 2 +
√
2 for n ∈ N.

Analogously to the real case, we point out that for almost all z, in the Lebesgue sense, the

arithmetical function n 7→ ϕn(z) has a limiting distribution function. Since this function

will be constant for values greater than a certain upper bound κ
2 (see also Subsection 4.1.5,

where we have shown
√
3
2 ≤ κ ≤ 4 + 2

√
2), we consider only the corresponding interval.
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Following the line of argumentation of [Bosma et al., 1983], we define, for 0 ≤ g ≤ κ
2 ,

l(g) := lim
n→∞

1

n
|{j : j ≤ n,ϕj(z) ≤ g}| .

From the dual transformation we know Vn = qn−1

qn
= [0; an, an−1, . . . , a2, a1] and thus from

(4.9) we deduce the equivalence

ϕj(z) ≤ g ⇔
∣

∣

∣

∣

T jz

1 + VjT jz

∣

∣

∣

∣

≤ g, (4.13)

which will play a decisive role in the following steps. Recall definition (4.11) of the natural

extension T : X × Y → X × Y ,

T(z, y) =

(

Tz,
1

a1 + y

)

,

where a1 := [1
z
]T is the first partial quotient of z. We have

Ti(z, y) =
(

T iz, [0; ai, ai−1, . . . , a2, a1 + y]
)

,

and in particular

Ti(z, 0) =
(

T iz, Vi
)

.

Because of (4.13), this show that ϕi(z) ≤ g if, and only if,

Ti(z, 0) ∈ Ag := {(u, v) ∈ X × Y :

∣

∣

∣

∣

u

1 + uv

∣

∣

∣

∣

≤ g},

respectively

Ti(z, 0) ∈ Ag = {(u, v) ∈ X × Y :

∣

∣

∣

∣

1

u
+ v

∣

∣

∣

∣

≥ 1

g
}.

Comparing

Tn(z, y) = (T nz, [0; an, an−1, . . . , a1 + y])
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and

Tn(z, 0) = (T nz, [0; an, an−1, . . . , a1]),

it follows that for every ǫ > 0 there exists n0(ǫ) such that, for all n ≥ n0(ǫ) and all y ∈ Y ,

we have

Tn(z, y) ∈ Ag+ǫ ⇒ Tn(z, 0) ∈ Ag,

as well as

Tn(z, 0) ∈ Ag ⇒ Tn(z, y) ∈ Ag−ǫ.

We define Aig := {i : i ≤ n,Ti(z, y) ∈ Ag}. Since T is ergodic, the following limits exist

and the inequalities in between hold:

lim
n→∞

1

n
|Aig+ǫ| ≤ lim inf

n→∞
1

n
|Aig| ≤ lim sup

n→∞

1

n
|Aig| ≤ lim

n→∞
1

n
|Aig−ǫ|.

As shown by Tanaka, there exists a probability measure µ with density function h(z, y) =

1
|1+zy|4 , such that the quadrupel (X × Y,Σ, µ,T) forms an ergodic system with Aig ∈ Σ.

Applying the Ergodic Theorem 4.2.1 of Birkhoff [Birkhoff, 1931] leads to

Theorem 4.2.5 For almost all z the distribution function exists and is given by

l(g) = lim
n→∞

1

n

∑

i≤n
1Ag(T

i(z, 0)) = µ(Ag) =
1

G

∫ ∫

Ag

dλ(u, v)

|1 + uv|4 , (4.14)

where G :=
∫ ∫

X×Y
dλ(u,v)
|1+uv|4 .

We notice that Ag describes that part of X × Y which lies above
∣

∣

1
u
+ v
∣

∣ = 1
g
. This leads

to

l(g) =
1

G

∫ ∫

Ag

dλ(u, v)

|1 + uv|4 =

(∫ ∫

X×Y

dλ(u, v)

|1 + uv|4
)−1 ∫ ∫

| 1
u
+v|≥ 1

g

dλ(u, v)

|1 + uv|4 .
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For tackling the explicit calculation of the normalizing factor G, we keep in mind the

formula

1

(1− x)2
=
∑

m≥1

mxm−1, (4.15)

valid for |x| < 1. To prevent difficulties that could arise from singularitiesof h on the

boundaries of X and Y , for 0 < r < 1 we define subdomains

Xr := {z = x+ iy :
−r
2

≤ x, y ≤ r

2
}

and

Yr := {w ∈ C : |w| ≤ r},

which inherit the symmetrical properties of X and Y . In view of |1+uv|2 = (1+uv)(1+uv)

and applying (4.15), which converges for x = uv ∈ Xr × Yr uniformly, we have

Gr =

∫ ∫

Xr×Yr

dλ(u, v)

|1 + uv|4 =
∑

m,n≥1

mn(−1)m+n

∫

Xr

um−1un−1dλ(u)

∫

Yr

vm−1vn−1dλ(v).

Without loss of generality we assume m ≥ n and receive

∫

Yr

vm−1vn−1dλ(v) =

∫

Yr

|v|n−1vm−ndλ(v) =
∫ 2π

0

∫ r

0
amaeiϕ(m−n)dadϕ

=

∫ 2π

0
eiϕ(m−n)dϕ

∫ r

0
amda =











π 1
n
, if m = n,

0, otherwise.

Applying (4.15) once more, leads to

Gr = π
∑

n≥1

n

∫

Xr

|u|2(n−1)dλ(u) = π

∫

Xr

∑

n≥1

n|u|2(n−1)dλ(u) = π

∫

Xr

dλ(u)

1− |u|2 .
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Now we let r tend to 1, respectively Gr → G1 =: G, which is possible by Lebesgue’s

theorem on monotone convergence applied to

f(r) := π

∫

Xr

dλ(u)

1− |u|2 .

Furthermore, we use the symmetry of the fundamental domain and split it along the axes

into four parts of equal sizes. We consider the part located in the first quadrant

△ := {a+ ib : 0 ≤ a, b ≤ 1; b − 1 < a}

and receive

G = 4π

∫ ∫

△

dadb

1− |a+ ib|2 = 4π

∫ 1

0

(
∫ 1−a

0

db

1− (a2 + b2)

)

da,

where

∫ 1−a

0

db

1− a2 − b2
=

∫ 1−a

0

(

1√
1− a2 − b

+
1√

1− a2 + b

)

db
1

2
√
1− a2

=
[

− log |b−
√

1− a2|+ log(b+
√

1− a2)
]1−a

b=0
· 1

2
√
1− a2

=
1

2
√
1− a2

log

√
1− a2 + 1− a√
1− a2 − 1 + a

.

Altogether this gives

G = 2π

∫ 1

0
log

√
1− a2 + 1− a√
1− a2 − 1 + a

da√
1− a2

= 2π

[

A−B + i

∞
∑

k=1

(− exp(i arcsin(a)))k

k2
− i

∞
∑

k=1

(exp(i arcsin(a)))k

k2

]1

a=0
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with A = arcsin(a) log(1 − exp(i arcsin(a))) and B = arcsin(a) log(1 + exp(i arcsin(a))).

This leads to

G = 4π
∞
∑

n=0

(−1)n

(2n+ 1)2

Thus, we can state

Theorem 4.2.6 The normalizing constant G is given by

G = 4π
∞
∑

n=0

(−1)n

(2n + 1)2
.

Notice that the appearing infinite series
∑∞

n=0
(−1)n

(2n+1)2
is Catalan’s constant. Interest-

ingly, Catalan’s constant appears in various ergodic theory results, see for example

[Nakada, 1990], [Kasteleyn, 1961, p. 1217] or [Felker and Russell, 2003, p. 2].

Remark: In view of this representation of the normalization constant G as infinite se-

ries we observe a certain phenomenon that appears in applications of ergodic theory to

complex continued fractions frequently. In contrast to the real case, analogous expressions

seem to be far more complicated and usually cannot easily be made explicit. A similar

example is given in [Tanaka, 1985, p. 212]. Here Shigeru Tanaka gave a non-explicit re-

spresentation of the entropy of T and S. Therefore, we do not attempt further to find an

explicit expression for the distribution function l.

4.3 Transcendental Numbers

In this section we transfer a method to construct transcendental numbers from real theory

to the complex case.
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4.3.1 Roth’s Theorem

We shall use an extension of Roth’s theorem [Schmidt, 1980, p. 278]6 on algebraic numbers

respectively a number field version thereof.

Theorem 4.3.1 For any algebraic number α ∈ C, integer d ≥ 1 and ǫ > 0, there exist

only finitely many algebraic numbers ξ ∈ C of degree d, such that the inequality

|α− ξ| < 1

H(ξ)d+1+ǫ
(4.16)

holds. Here, H(ξ) is the so-called height of ξ, the maximum of the absolut values of the

coefficients of the minimal polynomial of ξ.

In other words: For any algebraic α there exists a positive constant c(α) ∈ C with

|α− ξ| ≥ c(α)

H(ξ)d+1
.

Thus, in order to show the transcendence of a number α, infinitely many ξ need to be

found for which (4.16) holds.

In real theory we can perform an approach on behalf of continued fraction theory (see

Section 1.2). The convergents pn
qn

to an irrational α = [a0; a1, a2 . . .] provide an estimate

from above
∣

∣

∣

∣

α− pn
qn

∣

∣

∣

∣

≤ 1

an+1q2n
.

If we suppose α to be algebraic we may conclude the inequality

c(α)

q2+ǫn

<

∣

∣

∣

∣

α− pn
qn

∣

∣

∣

∣

≤ 1

an+1q2n
(4.17)

which leads to the condition

c(α)an+1 < qǫn.

6which can be considered as successor of Liousville’s result on transcendental numbers, see Section 1.1
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This implies that if we find a continued fraction in which the sequence of partial quotients

increases sufficiently fast with respect to the sequence of the convergent’s denominators it

is a transcendental number. In other words, if

lim sup
n→∞

an+1

qǫn
= ∞,

then, for any positive ǫ, there exist infinitely many convergents to α satisfying an+1 ≥ qǫn,

which implies the transcendence of α.

4.3.2 Transfer to Tanaka’s Continued Fraction

Concerning the complex continued fraction algorithm of Tanaka, a corresponding inequal-

ity to (4.17) shall be stated. First, we consider an upper bound. We have

z − pn
qn

=
pn + T nzpn−1

qn + T nzqn+1
− pn
qn

=
(pn + T nzpn−1)qn − (qn + T nzqn+1)pn

qn(qn + T nzqn+1)

=
T nz(pn−1qn − pnqn−1)

qn(qn + T nzqn+1)
=

2i(−1)n

q2n(T
nz)−1 + qnqn−1

,

what also proves Formula (4.8) from Subsection 4.1.5. Following the definition Tz :=

1
z
−
[

1
z

]

T
, we receive

(T nz)−1 = an+1 + T n+1z,

with ’small’ T n+1z ∈ X and partial quotients an+1 = an+1(z) =
[

1
Tnz

]

T
∈ (1− i)Z[i]. This

leads to

z − pn
qn

=
2i(−1)n

q2n(an+1 + T n+1z) + qnqn−1
.

It follows from Lemma 4.1.5 that |an+1| ≥
√
2 is bigger than | qn−1

qn
| < 1 and furthermore,

T n+1z ∈ X. Consequently, the estimate

∣

∣

∣

∣

z − pn
qn

∣

∣

∣

∣

=
2

|qn|2|an+1 + T n+1z + qn−1

qn
| <

c1(z)

|qn|2|an+1|
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holds with a constant c1(z) dependending only on z. Concerning an estimation from below,

we follow Roth and consider the inequality

|z − ξ| ≥ c(z)

H(ξ)d+1

with another positive constant c(z) depending only on z.

The general case ξ = a+ib
n

with n ∈ N, a+ ib ∈ Z[i] shall be observed first. The minimal

polynomial of ξ is given by

P := n2X2 − 2anX + a2 + b2.

On behalf of its coefficients the general height

H

(

a+ ib

n

)

= max{n2, 2|a|n, |a + ib|2}

arises. Next we consider the specific case of Gaussian rationals, that is,

ξ =
pn
qn

=
pnqn
|qn|2

with elements pn, qn ∈ Z[i] from the sequences of numerators and denominators of the com-

plex continued fraction expansion of z. Following our approach from above, we compute

their height as

H (ξ) = max{|qn|4, 2|Re{pnqn}||qn|2, |pnqn|2}

= |qn|2 ·max{|qn|2, 2|Re{pnqn}|, |pn|2}

≤ |qn|2 · (|qn|+ |pn|)2 .
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Taking into account |z| ≤ 1, we have |qn| ≤ |pn| and deduce

c′(z)
|q4n|3

≤
∣

∣

∣

∣

z − pn
qn

∣

∣

∣

∣

with another positive constant c′(z) only depending on z. Hence,

c′(z)
|qn|12

≤
∣

∣

∣

∣

z − pn
qn

∣

∣

∣

∣

<
c1(z)

|an+1||qn|2
.

Consequently, if |an+1|
|q|10 exceeds any positive quantity, the underlying complex number z is

transcendental.

Theorem 4.3.2 If

lim sup
n→∞

∣

∣

∣

∣

an+1

q10n

∣

∣

∣

∣

= ∞,

then the complex number z = [a0, a1, . . .] is transcendental.

4.3.3 Example of a Transcendental Number

An example shall illustrate the previous result. We are looking for a number with par-

tial quotients and denominators of convergents corresponding satisfying the consition of

Theorem 4.3.2. Considering

z = [0; i101!, i2102!, i3103!, . . .],

with partial quotients an = in10n!, we first need to verify

Lemma 4.3.3 The sequence of partial quotients an = (in10n!)
n∈N is T -admissible.

Remark: In Julius Hurwitz’s work [Hurwitz, 1895, p. 12] a list of impossible consecutive

partial quotients is given, see Lemma 3.2.2. According to [Hensley, 2006, p. 74], here ”it

was apparently possible to ferret out the details of which sequences of (an) can occur”,

and we may deduce this list to be complete.
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Proof. According to Julius only for partial quotients of the form ±1±i certain restrictions

need to be taken into account. In our sequence (an) only numbers of the form

an = 10n! if n ≡ 0 mod 4,

an = i10n! if n ≡ 1 mod 4,

an = −10n! if n ≡ 2 mod 4,

and

an = −i10n! if n ≡ 3 mod 4

occur. Those are all of type ±2 respectively ±i2 according to Julius Hurwitz’s notation

explained in Section 3.2 and, consequently, they form an admissible sequence. q.e.d.

In view of Recursion Formula (4.4) the denominators of the sequence of convergents

need to be determined. We have

q1 = a1α+ 0 = 10i(1 + i) = −10 + 10i ∼ 101,

q2 = −102 · (−10 + 10i) + 1 + i = 1001 − 999i ∼ 103,

q3 = −i106(1001 − 999i) − 10 + 10i ∼ 109,

and, by induction,

qn ∼ 10
∑n

m=1m!.

Concerning Theorem 4.3.2, we observe

∣

∣

∣

∣

an+1

q10n

∣

∣

∣

∣

∼ 10(n+1)!−10
∑n

m=1m!.
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Since

(n+ 1)! − 10
n
∑

m=1

m! = (n+ 1− 10)n!− 10
n−1
∑

m=1

m!

> (n− 9)n!− 10(n − 1)(n − 1)!

= (n(n− 9)− 10(n − 1)) (n− 1)!

= (n2 − 19n+ 10)(n − 1)!,

we find

lim
n→∞

∣

∣

∣

∣

an+1

q10n

∣

∣

∣

∣

= ∞

which proves that the number in question is transcendental.
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5 Representation of Real Numbers as Sum

of Continued Fractions

In this chapter we outline a result that has already been published in

[Oswald and Steuding, 2013] and our presentation follows this article closely. Firstly, we

prove that every real number can be written as a sum of an integer and at most ⌊ b+1
2 ⌋

continued fractions to the nearest integer each of which having partial quotients at least

b, where b is a positive integer. Secondly, we give an application to complex numbers and

their representation by complex continued fractions.

5.1 Introduction and Main Result

In 1947, Marshall Hall [Hall, 1947] showed that every real number can be written as a sum

of an integer and two regular continued fractions each of which having partial quotients

less than or equal to four. We denote by F(b) the set of those real numbers x having a

regular continued fraction expansion x = [a0; a1, a2, . . . , an, . . .] with arbitrary a0 ∈ Z and

partial quotients an ≤ b for n ∈ N, where b is a positive integer. Hall’s theorem can be

stated as

F(4) + F(4) = R.

Here the sumset A + B is defined as the set of all pairwise sums a + b with a ∈ A and

b ∈ B (we already used this ’Minkowski Sum’ in Section 4.1.3). There have been several

generalizations of Hall’s remarkable result. For example, Cusick [Cusick, 1973] and Divǐs
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5 Representation of Real Numbers as Sum of Continued Fractions

[Divǐs, 1973] showed independently that F(3) + F(3) 6= R; Hlavka [Hlavka, 1975] obtained

F(3) + F(4) = R as well as F(2) + F(4) 6= R; Astels [Astels, 2001] proved among other

things that F(5) ± F(2) = R and, quite surprisingly, F(3)− F(3) = R.

On the contrary, one may ask what one can get by adding continued fractions where all

partial quotients are larger than a given quantity. For this purpose Cusick [Cusick, 1971]

defined for b ≥ 2 the set S(b) consisting of all x = [0; a1, a2, . . . , an, . . .] ≤ b−1 containing

no partial quotient less than b and proved

S(2) + S(2) = [0, 1].

In [Cusick and Lee, 1971], Cusick and Lee extended this result by proving

bS(b) = [0, 1] for any integer b ≥ 2, (5.1)

where the left hand-side is defined as the sumset of b copies of S(b). The result of Cusick

and Lee is best possible as the following example illustrates:

( 7
12 ,

3
5) 6⊂ 2S(3) ⊂ [0, 23 ].

Here we are concerned about an analogue of this result for continued fractions to the

nearest integer which has been explained in Section 3.1.

Notice that for all those continued fractions

an + ǫn+1 ≥ 2 (5.2)

for n ∈ N. For further details we refer to Perron’s monograph [Perron, 1913].

We denote by L(b) the set of all real numbers x ∈ [−1
2 ,

1
2 ) having a continued fraction

to the nearest integer with all partial quotients an being larger than or equal to b, where

b is a positive integer. Following Cusick [Cusick, 1971] it is not difficult to show that L(b)
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5 Representation of Real Numbers as Sum of Continued Fractions

is a Cantor set and, in particular, of Lebesgue measure zero (see also Rockett and Szüsz

[Rockett and Szüsz, 1992, Ch. V]). The following theorem extends the theorem of Cusick

and Lee (5.1) to continued fractions to the nearest integer:

Theorem 5.1.1 Let b be a positive integer. Every real number can be written as sum

of an integer and at most ⌊ b+1
2 ⌋ continued fractions to the nearest integer each of which

having partial quotients at least b, more precisely,

⌊

b+ 1

2

⌋

L(b) =
[

−
⌊

b+ 1

2

⌋

β,

⌊

b+ 1

2

⌋

β

]

,

with β = 1
2(b−

√
b2 − 4), and the interval on the right hand-side has length larger than one.

The result is best possible in the following sense: if m < ⌊ b+1
2 ⌋, then mL(b) = [−mβ,mβ]

and the interval on the right has length less than one.

5.2 Some Preliminaries

In the sequel we sometimes denote the nth partial quotient and the nth sign in the con-

tinued fraction expansion to the nearest integer of x by an(x) and ǫn(x), respectively.

Lemma 5.2.1 Given j, n ∈ N, we have ǫn(x)an(x) = ±j if, and only if,

T n−1(x) ∈
{[

−1

j − 1
2

,
−1

j + 1
2

)

∪
(

1

j + 1
2

,
1

j − 1
2

]}

∩ [−1
2 ,

1
2 ).

More precisely, for positive T n−1(x), we have ǫn(x) = +1 and

an(x) = j ≥ 3 ⇐⇒ T n−1(x) ∈
(

1

j + 1
2

,
1

j − 1
2

]

,

an(x) = 2 ⇐⇒ T n−1(x) ∈
(

2
5 ,

1
2

)

.
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while, for negative T n−1(x), we have ǫn(x) = −1 and

an(x) = j ≥ 3 ⇐⇒ T n−1(x) ∈
(

−1

j − 1
2

,
−1

j + 1
2

]

,

an(x) = 2 ⇐⇒ T n−1(x) ∈
[

−1
2 ,−2

5

)

.

A partial quotient equal to 1 is impossible.

This lemma indicates a symmetry in the distribution of partial quotients with respect to

zero for the interior of the intervals. Furthermore, the lemma implies Condition (5.2).

Another trivial consequence is L(2) = [−1
2 ,

1
2); hence, every real number has a continued

fraction expansion to the nearest integer with all partial quotients being larger than or

equal to two which is an assertion of the theorem for b = 2.

Figure 5.1: Illustration of all partial quotients being larger than or equal to two.

Proof. Writing

x =
ǫ1(x)

1
|x|

=
ǫ1(x)

⌊ 1
|x| +

1
2⌋+ 1

|x| − ⌊ 1
|x| +

1
2⌋

=
ǫ1(x)

a1(x) + T (x)
,
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we find a1(x) = j if, and only if,

|x| ∈
(

1

j + 1
2

,
1

j − 1
2

]

∩ [−1
2 ,

1
2),

where the intersection on the right is with respect to the condition x ∈ [−1
2 ,

1
2). The

corresponding intervals may or may not lie completely inside [−1
2 ,

1
2). In order to obtain

precise intervals for the partial quotients we observe that on the positive real axis

(

1

j + 1
2

,
1

j − 1
2

]

⊂ [−1
2 ,

1
2),

provided j ≥ 3; the partial quotient 2 is assigned to the interval (25 ,
1
2 ), and a partial

quotient 1 is impossible. The case of negative x follows from symmetry by switching the

sign ǫ1. Replacing x in the previous lemma by some iterate T n−1(x), the formulae of the

lemma follow. q.e.d.

The following lemma is about a certain continued fraction to the nearest integer which

is involved in the statement of Theorem 5.1.1 and in many estimates needed for its proof.

Lemma 5.2.2 For 3 ≤ b ∈ N, denote by

β := [0;+1/b,−1/b] := [0;+1/b,−1/b,−1/b, . . .]

the infinite eventually periodic continued fraction to the nearest integer with all partial

quotients an = b and signs ǫ1 = +1 = −ǫn+1 for n ∈ N. Then,

β = 1
2(b−

√

b2 − 4) ∼ 1

b
.

For b = 2 the formula yields β = 1, however, the expansion is not the continued fraction

expansion for 1 since Condition (5.2) is not fulfilled; fortunately, this case of the theorem

is already proved by the previous lemma. For b ≥ 3, however, Condition (5.2) is satisfied
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and β is represented by the above continued fraction expansion to the nearest integer; in

all these cases β is an irrational number inside [−1
2 ,

1
2).

Proof. In view of the definition of β,

β = [0;+1/b,−1/b,−1/b] =
1

b− β
;

hence, β is the positive root of the quadratic equation β2 − bβ + 1 = 0. The asymptotic

formula for β follows easily from the Taylor expansion

β =
b

2

(

1−
√

1− 4

b2

)

=
1

b
+

1

b3
+

2

b5
+O

(

1

b7

)

.

The lemma is proved. q.e.d.

The next and final preparatory lemma is due to Cusick and Lee [Cusick and Lee, 1971].

It is a generalization of Hall’s interval arithmetic for the addition of Cantor sets which is

the core of his method. We denote the length of an interval I by |I|.

Lemma 5.2.3 Let I0, I1, . . . , In be disjoint bounded closed intervals of real numbers. Sup-

pose that an open interval G is removed from the middle of I0, leaving two closed intervals

L and R on the left and right, respectively. If

|G| ≤ (m− 1)min{|L|, |R|, |I1|, . . . , |In|} (5.3)

for some positive integer m, then

m



L ∪R ∪
n
⋃

j=1

Ij



 = m

n
⋃

j=0

Ij.

Hence, if a sufficiently small interval is removed from the middle of some interval in a

certain disjoint union, still the m-folded sum of the shrinked union adds up to the m-

folded sum of the complete union. For the straightforward proof we refer to Cusick and
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Lee [Cusick and Lee, 1971].

5.3 A Cusick and Lee-type theorem

The method of proof is along the lines of Hall’s original paper [Hall, 1947] and Cusick and

Lee [Cusick and Lee, 1971] as well. Since the case b = 2 has already been solved in the

previous section, we may suppose b ≥ 3.

Assume x = [0; ǫ1/a1, ǫ2/a2, . . . , ǫn/an, . . .] ∈ L(b), then, by Lemma 5.2.1, the condition

a1 ≥ b on the first partial quotient implies

− 1

b− 1
2

≤ x ≤ 1

b− 1
2

.

In view of the second partial quotient a2 ≥ b we further find by a simple calculation

[0;−1/b,−1/b,−1/2] ≤ x ≤ [0;+1/b,−1/b,−1/2].

Going on, we find via an ≥ b the inequality

−β ≤ x ≤ β (5.4)

with β = [0;+1/b,−1/b,−1/b, . . .] = 1
2 (b −

√
b2 − 4) as in Lemma 5.2.2. Hence, L(b) ⊂

[−β, β] and a necessary condition to find a representation of an arbitrary real number as

a sum of an integer and m continued fractions to the nearest integer each of which having

no partial quotient less than b is that mL(b) covers an interval of length at least one. We

thus obtain the necessary inequality

λ ([−mβ,mβ]) = 2mβ ≥ 1

where λ is the Lebesgue measure. In view of β ∼ b−1 by Lemma 5.2.2 we thus may expect
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m to be about b
2 . However, m = ⌊ b−1

2 ⌋ will not suffice since

m =

⌊

b− 1

2

⌋

<
1

2β
=
b+

√
b2 − 4

4
<
b

2
,

as a simple computation shows.

For a start we remove from the complete interval [−1
2 ,

1
2 ) the intervals [−1

2 ,−β) and

(β, 12) according to Condition (5.4); obviously, the two signs ǫ1 = ±1 are responsible for

removing intervals on both sides. Notice that 0 < β ≤ 1
2 (3−

√
5) < 1

2 for any b ≥ 3. In the

remaining closed interval J0 := [−β, β] all real numbers x = [0; ǫ1/a1, ǫ2/a2, . . . , ǫn/an, . . .]

have a first partial quotient a1 ≥ b as already explained above. Now consider all such x

having sign ǫ1 = ǫ for some fixed ǫ ∈ {±1} and partial quotient a1 = a for some a ≥ b.

Clearly, the set of those x forms an interval I1(ǫ/a), say. Since each element of I1(ǫ/a) is

of the form

x = [0; ǫ/a + T (x)] =
ǫ

a+ T (x)

with T (x) ∈ [−1
2 ,

1
2 ), we have either

I1(−1/a) = {x = [0;−1/a + t] : t ∈ [−1
2 ,

1
2 )} =

[

[0;−1/a − 1
2 ], [0;−1/a + 1

2 ]
)

or

I1(+1/a) = {x = [0;+1/a + t] : t ∈ [−1
2 ,

1
2 )} =

(

[0;+1/a + 1
2 ], [0;+1/a − 1

2 ]
]

according to the sign ǫ = ±1. In view of the condition a2 ≥ b we remove from any such

I1(ǫ/a) in the next step two semi-open intervals with boundary points [0,±1/a ± 1
2 ] and

[0,±1/a ± β] on both sides. Consequently, the remaining intervals are

J1(−1/a) := [[0;−1/a − β], [0;−1/a + β]]
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and

J1(+1/a) := [[0;+1/a + β], [0;+1/a − β]] .

In general, we consider an interval Jn(a) consisting of those real numbers x having a

prescribed continued fraction expansion to the nearest integer. Denoting by a an arbi-

trary admissible sequence of signs and partial quotients ǫ1/a1, . . . , ǫn/an, namely positive

integers aj ≥ b and ǫj ∈ {±1}, then Jn(a) is the closed interval

Jn(a) := [[0; ǫ1/a1, . . . , ǫn/an − β], [0; ǫ1/a1, . . . , ǫn/an + β]] .

Here and in the sequel it may happen that in an interval [A,B] or (A,B) we have the

relation A > B for the boundary points in which case the interval is meant to be equal

to [B,A], resp. (B,A). From such an interval Jn(a) we remove the open intervals of the

form

Gn+1(a
′) := ([0; ǫ1/a1, . . . , ǫn/an, ǫ/a+ 1− β], [0; ǫ1/a1, . . . , ǫn/an, ǫ/a+ β])

for any a ≥ b and ǫ = ±1, where

a
′ := a, ǫ/a := ǫ1/a1, . . . , ǫn/an, ǫ/a

(by adding ǫ/a to a at the end). This leads to further intervals of the form Jn+1(a
′). Fol-

lowing Cusick and Lee [Cusick and Lee, 1971], we call this the Cantor dissection process.
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Figure 5.2: Illustration of the further intervalls.

The main idea now is applying Lemma 5.2.3 to this dissection process over and over

again. In the beginning (when n = 0) we have J0 = [−β, β] and we remove step by step

all open intervals of the form G1(+1/a) = ([0;+1/a + 1 − β], (0;+1/a + β]) for all a ≥ b

and their counterparts on the negative real axis. In fact, these are two closed intervals

L := [−β, [0;+1/a + β]] and R := [[0;+1/a − β], β] on the left and right of G1(+1/a).

Lemma 5.2.3 implies

m(L ∪R) = m(L ∪G1(+1/a) ∪R) = mJ0,

provided Condition (5.3) for the lengths of the intervals of type G1 and L,R is fulfilled.

It is an easy computation to prove that the start of the Cantor dissection process gives no

obstruction to the general case which we shall consider below. In view of the symmetry

the situation on the left is similar.

In the general case, we have to find the least positive integer m satisfying

|Gn+1(a,±1/an+1)| ≤ (m− 1) min
an+1≥b

|Jn+1(a,±1/an+1)| (5.5)

with arbitrary an+1 ≥ b. If this quantity m is found, then it follows from Lemma 5.2.3
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in combination with J0 = [−β, β] that mL(b) = [−mβ,mβ] and we are done, provided

2mβ ≥ 1 in order to cover an interval of length at least one.

For this aim we compute the lengths of the corresponding intervals by the standard

continued fraction machinery as follows. Firstly, any continued fraction to the nearest

integer can be written as a convergent

x = [0; ǫ1/a1, . . . , ǫn/an] =
pn
qn

with coprime pn and qn > 0. The numerators and denominators pn, qn satisfy certain

recursion formulae (as in the case of regular continued fractions, see the Formulae (4.3)

and (4.4)), which leads to

[0; ǫ1/a1, . . . , ǫn/an ± β] = [0; ǫ1/a1, . . . , ǫn/an,±1/b− β] =
(b− β)pn ± pn−1

(b− β)qn ± qn−1
,

as well as

[0; ǫ1/a1, . . . , ǫn/an,±1/an+1 + 1− β] =
(an+1 + 1− β)pn ± pn−1

(an+1 + 1− β)qn ± qn−1
,

and

[0; ǫ1/a1, . . . , ǫn/an,±1/an+1 + β] =
(an+1 + β)pn ± pn−1

(an+1 + β)qn ± qn−1
.

Using this in combination with

pn+1qn − pnqn+1 = (−1)n
n+1
∏

j=1

ǫj = ±1,

yields

|Gn+1(a
′)| = 1− 2β

((an+1 + β)qn ± qn−1)((an+1 + 1− β)qn ± qn−1)
,
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as well as

|Jn+1(a
′)| = an+1 + 2β − b

((b− β)qn ± qn−1)((an+1 + β)qn ± qn−1)
,

and

|Jn+1(a
′)| = an+1 + 1− b

((an+1 + 1− β)qn ± qn−1)((b− β)qn ± qn−1)
,

depending on Jn+1(a
′) lying on the left or on the right of Gn+1(a

′). Plugging this into

(5.5), leads to

m− 1 ≥ max

{

1− 2β

an+1 + 2β − b
· (b− β)qn ± qn−1

(an+1 + 1− β)qn ± qn−1
,

1− 2β

an+1 + 1− b
· (b− β)qn ± qn−1

(an+1 + β)qn ± qn−1

}

.

In view of an+1 ≥ b we deduce the condition

m ≥ 1 +
1− 2β

2β
=

1

2β
=
b+

√
b2 − 4

4

Hence, we may choose m = ⌊ b+1
2 ⌋ as another short computation shows. This proves

Theorem 5.1.1.

5.4 Transfer to the Complex Case

We conclude with some observations for complex continued fractions. Given a complex

number z = x + iy, with i =
√
−1, we may apply results for real continued fractions to

both, the real- and the imaginary part of z seperately. A short computation shows

i

(

a0 +
1

a1 +

1

α2

)

= ia0 +
1

−ia1 +
1

iα2
,

where a0, a1 are integers and α2 is real (such that the expression on the left makes sense).

Hence, the theorem of Cusick and Lee (5.1) immediately implies that every complex number
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z can be written as the sum of a Gaussian integer and 2b regular continued fractions, where

b of them have real partial quotients an ≥ b while the others have partial quotients of the

form ±ian with integral an ≥ b. Here the set of partial quotients Z is replaced by the

set of Gaussian integers Z[i]. Using Theorem 5.1.1 we may deduce in the same way a

comparable result for continued fractions to the nearest integer in the complex case:

Corollary 5.4.1 Every complex number z can be written as the sum of a Gaussian integer

and 2⌊ b+1
2 ⌋ continued fractions to the nearest Gaussian integer, where half of them have

real partial quotients an ≥ b while the other half have partial quotients of the form ±ian
with integral an ≥ b.

Remark: It might be interesting to apply complex methods for continued fractions to

the nearest Gaussian integer as introduced by Adolf Hurwitz [Hurwitz, 1888]. We expect

that a careful analysis of the complex case will allow representations with less complex

continued fractions. Of course, the partial quotients will not carry as much structure as

in the above application; they just will be ’random’ Gaussian integers of absolute value at

least b.
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6 A New Type of Continued Fractions with

Partial Quotients from a Lattice

The contents of this chapter were established in the course of the ’Fifth International

Conference on Analytic Number Theory and Spatial Tessellations’ 1 and will appear in

the conference proceedings [Oswald et al., 2013]. Although Hurwitz’s approach to a con-

tinued fraction expansion for complex numbers cannot be applied directly to the ring of

integers of a non-quadratic cyclotomic field, we show that with a certain modification in

the explicit example Q(exp(2πi8 )) an analogue of such a continued fraction expansion is

derived following an idea of Hans Höngesberg from his Bachelor thesis. Moreover, using

the geometry of Voronöı diagrams, we give far-reaching further generalizations of complex

continued fractions associated with lattices.

6.1 Cyclotomic Fields: Union of Lattices

Let n ≥ 3 be an integer. Given a primitive nth root of unity ζn (e.g., ζn = exp(2πi
n
)),

the associated cyclotomic field Q(ζn) is an algebraic extension of Q of degree ϕ(n), where

ϕ(n) is Euler’s totient, i.e., the number of prime residue classes modulo n, and its ring

of integers is given by Z[ζn]
2. In Section 3.1 we stated Hurwitz’s restriction ii) that his

system S shall be discrete, respectively that there shall be only finitely many elements in

1which took place in the Institute of Physics and Mathematics of the National Pedagogical Dragomanov
University in Kiev, Ukraine, on September 16 - 20, 2013

2see [Neukirch, 1992, Ch. 1] for this and other details about cyclotomic fields
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any finite region of the complex plane. This is not valid until n = 3, 4, 6, which are exactly

the values for which ϕ(n) = 2 and Q(ζn) is an imaginary quadratic number field. In fact,

for all other values n ≥ 3, there exist algebraic integers inside the unit circle: if n ≥ 7,

then

0 6= |1− ζn|2 = 2− 2 cos 2π
n
< 1,

giving a contradiction to ii) by taking powers of 1−ζn; for n = 5 one finds, by the geometry

of the regular pentagon,

0 6= |1 + ζ35 |2 = 1
2(
√
5− 1) < 1.

It should be mentioned that Z[ζ8] is norm-euclidean as already shown by Eisenstein

[Eisenstein, 1975, v. II, pp. 585]. Here the notion ’norm-euclidean’ means that the

ring in question is euclidean with the canonical norm. Lenstra [Lenstra, 1975] proved that

Z[ζn] is norm-euclidean if n 6= 16, 24 is a positive integer with ϕ(n) ≤ 10.

Although Hurwitz’s approach does not apply to cyclotomic fields of degree strictly

larger than two we shall introduce a modified continued fraction expansion. For the sake

of simplicity we consider the explicit example of Q(ζ8) with the primitive eighth root of

unity ζ8 = exp(2πi8 ) having degree four over the rationals.

Recall that a two-dimensional lattice Ω in C is a discrete additive subgroup. Any such

lattice has a representation as Ω = ω1Z + ω2Z with complex numbers ω1 and ω2 being

linearly independent over R; this representation is not unique. Defining a fundamental

parallelogram by FΩ = {0 ≤ λ1, λ2 < 1 : λ1ω1 + λ2ω2}, the set of its translates

FΩ(ω) := ω + 1
2(ω1 + ω2) + FΩ

with lattice points ω yields a tiling of the complex plane by parallelograms of equal size

each of which having exactly one lattice point in the interior which appears to be at

its center. We shall call this the lattice tiling of Ω (with respect to the representation

Ω = ω1Z+ ω2Z) consisting of lattice parallelograms FΩ(ω).
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The numbers ζj8 with 0 ≤ j < 4 = ϕ(8) form an integral basis for Z[ζ8]; obviously, we

may also choose {1, i, ζ8, ζ8} as integral basis. Note that Q(ζ8 + ζ8) is the maximal real

subfield of Q(ζ8). We shall associate two lattices. The first lattice is given by

Λ1 := Z+ Zi ( = Z[i]).

For a complex number z we have z ∈ FΛ1(a+ ib) with some lattice point a+ ib ∈ Λ1 by

construction, and we write [z]1 = a+ ib for the lattice point associated with z in this way.

Notice that [z]1 is the closest lattice point to z, however, for general lattices this is not true.

In fact, for any element from a parallelogram FΩ(ω) the interior lattice point is the nearest

lattice point (in euclidean distance) if, and only if, the diagonals of the parallelogram are

of equal length, i.e., FΩ(ω) is rectangular. This holds true for Λ1 as well as for the second

lattice we shall consider, namely the one defined by

Λ2 := Zζ8 + Zζ8.
Here we shall write [z]2 = cζ8 + dζ8 for the lattice point cζ8 + dζ8 such that z ∈ FΛ2(cζ8 +

dζ8). Notice that also Λ2 is rectangular; actually both, Λ1 and Λ2 are even quadratic

as follows from the geometry of the eighth roots of unity. In order to have a unique

assignment on the boundary of our lattices we may assume that in such cases the larger

coefficient shall be chosen. Finally, let

[z] := 1
2([z]1 + [z]2) =

1
2(a+ bi+ cζ8 + dζ8) =: (a, b, c, d)1,2 (6.1)

denote the arithmetical mean of the associated lattice points. It follows that [z] is half an

algebraic integer, i.e., an element of 1
2Z[ζ8]. The union of the lattices, Λ1 ∪ Λ2, is again

a discrete set of complex numbers but is neither a lattice nor a system S in the sense of

Hurwitz [Hurwitz, 1888]. The lattice tilings of Λ1 and Λ2 provide a tiling of the complex
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plane in polygons by subdividing the parallelograms of the respective lattices into smaller

polygons which we shall denoted by Z((a, b, c, d)1,2) according to the unique assignment

of the half algebraic integer (a, b, c, d)1,2 = 1
2(a+ bi+ cζ8 + dζ8).

Figure 6.1: Illustration of the union of the lattices Λ1 and Λ2.

Following Adolf Hurwitz we consider the sequence of equations

z = a0 +
1

z1
, z1 = a1 +

1

z2
, . . . , zn = an +

1

zn+1
(6.2)

with an = [zn] = (a, b, c, d)1,2; here the zn are assumed not to vanish. This leads to a

continued fraction expansion

z =: [a0, a1, . . . , an, zn+1] (6.3)

having partial quotients in the set 1
2Z[ζ8]. Similarly to Hurwitz’s continued fraction this

expansion can be described by z 7→ T (z) = 1
z
−[1

z
], where the Gauss bracket ⌊ · ⌋ is replaced
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6 A New Type of Continued Fractions with Partial Quotients from a Lattice

by [ · ] defined in (6.1). Obviously, a vanishing zn would imply a finite expansion going

along with z ∈ Q(ζ8). In the sequel we shall assume z 6∈ Q(ζ8) in order to have an infinite

continued fraction.

As in the case of Hurwitz’s complex continued fraction certain sequences of partial

quotients are impossible. By construction, zn − an lies inside a 24-sided polygon P with

center at the origin, which is determined by the straight lines x = ±1
2 , y = ±1

2 , x =

±(14 + 1
4

√
2), y = ±(14 + 1

4

√
2), y ± x = ±(12 + 1

4

√
2) and x ± y = ±1

2

√
2 defining the

boundary in the x+ iy-plane (see Fig 6.1). Hence,

zn+1 =
1

zn − an
∈ R := P−1;

here we have used the notation M−1 := {m−1 : m ∈ M} for any set M not containing

zero. In the sequel we shall also use the notation Dr(m) (resp. Dr(m)) for the open

(closed) disc of radius r with center m. Therefore, the following half algebraic integers

cannot occur as partial quotients:

(0, 0, 0, 0)1,2 ,

(±1, 0, 0, 0)1,2, (0,±1, 0, 0)1,2 , (0, 0,±1, 0)1,2 , (0, 0, 0,±1)1,2 ,

(±1, 0, 0,±1)1,2, (±1, 0,±1, 0)1,2 , (0,±1,±1, 0)1,2 , (0,±1, 0,∓1)1,2 ,

(±1, 0,±1,±1)1,2, (±1,±1,±1, 0)1,2, (0,±1,±1,∓1)1,2 , (±1,∓1,±0,±1)1,2,

(±1,±1,±1,±1)1,2, (±1,±1,±1,∓1)1,2, (∓1,±1,±1,∓1)1,2, (±1,∓1,±1,±1)1,2,

(±2,±1,±1,±1)1,2, (±1,±1,±2,±1)1,2, (±1,±1,±2,∓1)1,2, (±1,±2,±1,∓1)1,2,

(∓1,±2,±1,∓1)1,2, (∓1,±1,±1,∓2)1,2, (∓1,±1,∓1,∓2)1,2, (∓2,±1,∓1,∓1)1,2.

Next we investigate the sequence of partial quotients an with respect to convergence.

Suppose that an = (2, 0, 1, 1)1,2 , then zn+1 ∈ Z((2, 0, 1, 1)1,2). In view of (6.2) we

have zn − an ∈ Z−1((2, 0, 1, 1)1,2). The latter set is bounded by D 2
6
(16
√
2 + 1

6

√
2i),
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D 2
6
(16

√
2 − 1

6

√
2i), x ± y = 1

2

√
2, and x = 1

4 + 1
4

√
2. Hence, the set Z−1((2, 0, 1, 1)1,2)

intersects with the real axis at x = 1
3

√
2. However, the polygons Z((−2, 0,−1,−1)1,2),

Z((−2, 1, 0,−2)1,2), Z((−2,−1,−2, 0)1,2), Z((−1, 1, 0,−2)1,2), and Z((−1,−1,−2, 0)1,2)

have all in common that their respective lattice points have distance at least 1
3

√
2 in

x-direction from the boundary. A similar reasoning provides restrictions for their prede-

cessors of an = (−2,−1,−2,−1)1,2. This leads to a list of pairs which do not occur as

consecutive partial quotients. In order to prove the convergence of this continued fraction

an an+1

(−2, 0,−1,−1)1,2, (−2, 1, 0,−2)1,2 ,
(−2,−1,−2, 0)1,2, (−1, 1, 0,−2)1,2 ,
(−1,−1,−2, 0)1,2

(2, 0, 1, 1)1,2

(2, 0, 1, 1)1,2 ,
(2,−1, 0, 2)1,2 ,
(1,−1, 0, 2)1,2 (−2,−1,−2,−1)1,2

Table 6.1: Impossible pairs of consecutive partial quotients

expansion we shall show

|kn| > 1 with kn :=
qn
qn−1

(6.4)

by induction on n, which is an analogue of Lemma 4.1.5. This implies convergence by the

standard reasoning. One has

z − pn
qn

=
(−1)n

q2n(zn+1 + k−1
n )

and z − pn−1

qn−1
=

(−1)n−1

q2n−1(z
−1
n+1 + kn)

.

Here pj and qj denote the numerator and denominator to the convergents of the continued

fraction expansion defined in the same way as in previous sections. Moreover, as in

Subsection 4.1.3, we shall use the recursive formula kn = an +
1

kn−1
.

For k1 = a1 assertion (6.4) obviously holds since an ∈ R. Now assume |kj | > 1 for

1 ≤ j < n and |kn| ≤ 1 with some positive integer n. Since kn = an +
1

kn−1
∈ D1(an) and,
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by assumption, |kn| ≤ 1, it follows that an has to be one of the following numbers:

(±2, 0,±1,±1)1,2, (±1,±1,±2, 0)1,2 , (0,±2,±1,∓1)1,2,

(∓1,±1, 0,∓2)1,2.

By symmetry, we may assume without loss of generality that

an = (2, 0, 1, 1)1,2 = 1 + 1
2

√
2.

Hence, kn = an + 1
kn−1

is located in the intersection of the unit disc and

D1((2, 0, 1, 1)1,2). Consequently, 1
kn−1

= kn − an lies in the intersection of the unit disc

and D1((−2, 0,−1,−1)1,2). Hence,

kn−1 =
1

kn − an
= an−1 +

1

kn−2

is located outside the unit disc but in the interior of D 1
7
(−2+4

√
2)(

1
7 (−2 − 3

√
2)) (the set

in 6.1 coloured in green). Since |kn−2| > 1, it follows that kn−1 lies as well in D1(an−1).

Hence, an−1 can take only one of the following values:

(−2, 0,−1,−1)1,2 , (−2,−1,−2, 0)1,2, (−2, 1, 0,−2)1,2 , (−1, 1, 0,−2)1,2 ,

(−1,−1,−2, 0)1,2 , (−2,−1,−2,−1)1,2, (−2, 1,−1,−2)1,2.

In view of our list of non-admissible partial quotients (see the table above) the value for

an−1 can be found amongst

(−2,−1,−2,−1)1,2, (−2, 1,−1,−2)1,2 .

Again, by symmetry, we may suppose without loss of generality that an−1 =

(−2,−1,−2,−1)1,2. It follows that kn−1 = an−1 + 1
kn−2

lies in the intersection of the
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discs D 1
7
(−2+4

√
2)(

1
7(−2 − 3

√
2)) and D1((−2,−1,−2,−1)1,2). Hence, 1

kn−2
= kn−1 − an−1

is in the intersection of the unit disc and

D 1
7
(−2+4

√
2)(

1
7 (5 +

9
4

√
2) + 1

2 (1 +
1
2

√
2)i) ⊆ D0.53(1.17 + 0.85i).

Thus, we find kn−2 outside the unit disc and inside D0.3(0.65 + 0.47i). Since kn−2 =

an−2 +
1

kn−3
lies inside D1(bn−2), we conclude that an−2 has to be one of the following

numbers:

(1,−1, 0, 2)1,2 , (2,−1, 0, 2)1,2 , (2, 0, 1, 1)1,2 .

However, all these values appear in the list of impossible partial quotients (see the table

on the previous page), giving the desired contradiction. Thus we have proved

Theorem 6.1.1 The continued fraction expansion (6.3) with partial quotients (6.1) from

1
2Z[ζ8] converges.

Remark: Our line of argumentation runs similar to Julius’, as well as Adolf Hurwitz’s,

original proofs for |kn| < 1, see [Hurwitz, 1895, p. 31] and [Hurwitz, 1888, p. 195].

To overcome the minor flaw that the partial quotients might be not algebraic integers one

may exchange Λ1 and Λ2 by taking their sublattices 2Λ1 = 2Z+2iZ and 2Λ2 = 2ζ8Z+2ζ8Z

and follow the above analysis of the corresponding continued fraction expansion.

There are several aspects which could be studied further. Firstly, what are the arith-

metical properties of this new continued fraction expansion? Can one prove a similar result

on bounded expansions and quadratic equations as Hurwitz did for his complex continued

fractions? Moreover, what are the limits of the construction for Q(ζ8) sketched above?

Does this lead to continued fraction expansions for other cyclotomic fields as well? We

do not answer these questions here but provide another generalization of Adolf Hurwitz’s

approach to complex continued fractions.
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6.2 Generalization: Voronöı Diagrams

There is a lot of literature about Voronöı diagrams and Voronöı cells; the monographies of

Gruber [Gruber, 2007] and Matousek [Matoušek, 2002] provide excellent readings on this

topic. In the sequel we shall concentrate on the two-dimensional situation.

Given a discrete set S of points in the complex plane, the Voronöı cell for a point p ∈ S

is defined by

VS(p) = {z ∈ C : |z − p| ≤ |z − q| ∀q ∈ S},

i.e., the set of all z that are closer to p than to any other element of S (in euclidean

distance). Any Voronöı cell VS(p) is a convex polygon and their union over all p ∈ S is

called Voronöı diagram and yields a tiling of the complex plane. The earliest appearance

of Voronöı cells is in a picture in Descartes’ solar system in his Principia Philosophiae from

1644 (cf. [Matoušek, 2002], p. 120). A rigour mathematical definition was first given by

Dirichlet [Dirichlet, 1850] and Voronöı [Voronöı, 9089] in the setting of quadratic forms.

The Voronöı diagram of the lattice Z[i] of Gaussian integers coincides with the lattice

tiling by squares FZ[i](a+ ib) introduced in the previous section.

Figure 6.2: On the left a random Voronöı diagram. On the right the one for the lattice

generated by 1 and 1
4 (1 + 3i); here the cells are of honeycomb shape.

We have already noticed there, although in different language, that this is a rare event,
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namely, that a lattice tiling is a Voronöı diagram if, and only if, the lattice is rectangular.

Otherwise the Voronöı cells are hexagonal.3 In the sequel we shall consider lattices of the

form Λ = δZ+ τZ with a real number δ > 0 and τ = x+ iy ∈ C from the upper half-plane

(i.e., y > 0). This is not a severe restriction since we are concerned with approximations

by fractions p
q
built from our lattice, p, q ∈ Λ, and

p

q
=

ω1
δ
p

ω1
δ
q
=
P

Q
(6.5)

with P = ω1
δ
p,Q = ω1

δ
q ∈ Ω, where

Ω := ω1Z+ ω2Z =
ω1

δ
(δZ+ τZ) =

ω1

δ
Λ

by setting τ = δω2
ω1

(which is not real by the linear independence of ω1 and ω2 over R

and, hence, can be chosen as an element from the upper half-plane). Therefore, any

approximation by a quotient from Λ corresponds to an approximation by a quotient of the

equivalent lattice Ω and vice versa. Lattices Ω1 and Ω2 are said to be equivalent if there

exists a complex number ω 6= 0 such that Ω1 = ωΩ2.

Similarly to Adolf Hurwitz, (6.2) and (6.3), respectively, we consider a sequence of

equations,

z = a0 +
1

z1
, z1 = a1 +

1

z2
, . . . , zn = an +

1

zn+1

with an ∈ Λ chosen such that zn is from the Voronöı cell VΛ(an) around an; of course, the

appearing zj are assumed not to vanish. This leads to a continued fraction expansion

z = [a0; a1, . . . , an, zn+1] (6.6)

with partial quotients in the lattice Λ. Obviously, a vanishing zn would imply that z has

a finite expansion and, thus, z would have a representation as a quotient of two lattice

3see also [Gruber, 2007]
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points. In the sequel we shall assume that z is not of this type, that is z ∈ C\Q(Λ), where

Q(Λ) := {p
q
: p, q ∈ Λ}, and the continued fraction expansion for z is infinite.

In order to prove the convergence of this continued fraction expansion we define once

again kn = qn
qn−1

and show the analogue of (6.4), i.e., |kn| > 1; here qn again denotes the

denominator of the nth convergent to the just defined new continued fraction for z. It is

not too difficult to deduce the desired convergence in just the same way as for (6.4) in the

previous section.

In this general setting our reasoning, however, can be less detailed than in the explicit

example of the previous section. By definition, we find for the Voronöı cell VΛ(0) ⊂ Dρ(0)

with

ρ := 1
2 max{δ, |τ |, |τ ± δ|}; (6.7)

this follows by considering the neighbouring lattice points ±δ,±τ,±τ ± δ of the origin. Of

course, here one could be more precise by exploiting the geometry and using the knowledge

that the volume of each cell equals the determinant of the lattice. Since an − zn ∈ VΛ(0)

it follows that

zn+1 ∈ Dρ(0)
−1 = C \ Dρ−1(0).

Hence, zn+1 lies outside the disc of radius ρ−1 with center at the origin. In order to

prevent that zn+1 is located inside the Voronöı cell VΛ(0) (which would cause difficulties

for convergence) we need to put a restriction on ρ. In view of zn+1 ∈ VΛ(an+1) and

|an+1 − zn+1| ≤ ρ we obtain |an+1| ≥ ρ−1 − ρ. To conclude with the proof by induction

we assume |kn| > 1 and deduce via kn+1 = an+1 +
1
kn

the inequality

|kn+1| = |an+1| −
1

|kn|
> ρ−1 − ρ− 1

which is greater than or equal to one for ρ ≤
√
2− 1. Hence,

Theorem 6.2.1 The continued fraction expansion (6.6) with partial quotients in the lat-
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tice Λ = δZ+ τZ converges provided ρ ≤
√
2− 1, where ρ is given by (6.7).

The bound on ρ is not completely satisfying. Indeed, the statement of the theorem does

not imply the cases of the Gaussian lattice Z[i] and the Eisenstein lattice Z[12(1 +
√
−3)]

considered by Hurwitz [Hurwitz, 1888]. A more sophisticated analysis would lead to an

extension of the above theorem covering these cases. Another, more simple solution,

relies on the observation (6.5) that for approximation by quotients from a lattice one may

exchange the lattice in question by an equivalent lattice. Hence, by using an appropriate

scaling, one can obtain a continued fraction expansion with partial quotients from any

given lattice.

Figure 6.3: The restrictions for ρ are indicated by the black circle (|τ | ≤ 2(
√
2 − 1)) and

the green circles (|τ ± δ| ≤ 2(
√
2− 1)) with the special value δ = 1

2 . The set of admissible

τ is given by the non-empty intersection of all three circles.

Remark: In a similar way one could also consider arbitrary discrete point sets S in the

complex plane in place of a lattice provided the corresponding Voronöı diagram would

share the essential property of having sufficiently small Voronöı cells. This would lead to

another continued fraction expansion with partial quotients from S, however, for practical

purposes discrete sets S with structure seem to be more useful than others.
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7 Approximation Quality

Since the continued fraction expansion of a real or complex number x provides a sequence

of convergents, it is a natural question to ask about the approximation quality of those.

In the real case, we know some very strong results, starting with the work of Legendre.

Already in Chapter 1 we mentioned that every fraction p
q
∈ Q satisfying

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

<
1

2q2

can be found in the sequence of convergents; furthermore, among two consecutive conver-

gents at least one satisfies this inequality. This result was improved, inter alia, by Emil

Borel [Borel, 1903] and Adolf Hurwitz [Hurwitz, 1891].

In this chapter, building on [Oswald, 2014b], we prove upper bounds for the approxi-

mation quality of diophantine approximations formed from lattice points in the complex

plane. These upper bounds depend on a certain lattice invariant. In particular, we gener-

alize a method based on geometrical ideas of Hermann Minkowski and improved by Hilde

Gintner. Subsequently, we examine the spectrum arising from the infimum of the con-

stants occuring in the upper bound and give a proof of the existence of infinitely many

solutions of generalized Pell equations in the complex case.
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7.1 Previous Results

In the real case, the quality of diophantine approximation is ruled by A. Hurwitz’s famous

result [Hurwitz, 1891] that for every irrational number z there are infinitely many rationals

p
q
∈ Q such that

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<
1√
5q2

, (7.1)

and if the constant 1√
5
is replaced by any smaller quantity there are only finitely many

p
q
∈ Q approximating 1

2(
√
5 + 1) and all equivalent numbers1 z with the corresponding

quality. Referring to this best possible result, there were various attempts in the complex

case. A first approach by Hermann Minkowski [Minkowski, 1910] (cf. [Hofreiter, 1935]),

using geometry of numbers, led to the upper bound
√
6

π|q|2 in the case of p
q
∈ Q(i).

In 1925, Lester R. Ford finally found the sharp complex analogue [Ford, 1925]: If z ∈

C \Q(i) is any complex irrational number, then there exist infinitely many p, q ∈ Z[i] such

that
∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<
1√
3|q|2

.

This upper bound is as well best possible.2 Around fifty years later, Richard B. Lakein

[Lakein, 1975] gave a constructive proof using continued fractions in the tradition of A.

Hurwitz. In 1933, Oskar Perron [Perron, 1933] extended Ford’s examinations to other

imaginary quadratic number rings. If z ∈ C \ Q(i
√
2) is any complex irrational number,

then there exist infinitely many p, q ∈ Z[i
√
2] such that

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<
1√
2|q|2

;

if the constant 1√
2

is replaced by any smaller quantity in general there are only finitely

1Two irrational numbers β, γ are called equivalent if there exist a, b, c, d ∈ Z with ad − bc = ±1 and
γ = aβ+b

cβ+d
.

2In 1930, Oskar Perron published the same result, since he had forgotten that he even refereed Ford’s
work. Enbedded in a ’historical correction’, Perron expressly apologized for his failure in a second
version of 1931 [Perron, 1931].
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many p
q
, where p, q ∈ Z[i

√
2]. Interestingly, Perron used, among other tools, again

geometrical methods of Minkowski, in particular his lattice point theorem. In 1936,

Hilde Gintner3 [Gintner, 1936], generalizing results of her thesis advisor Nikolaus Hofreiter

[Hofreiter, 1935], continued this approach, applying additionally Minkowski’s theorem on

linear forms [Minkowski, 1910]. She proved that in any ring O√
−D of integers associated

with an imaginary quadratic number field Q(
√
−D) there exist infinitely many integers p, q

such that for any arbitrary complex number z ∈ C, one has

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<

√
6D

π|q|2 if D 6≡ 3 mod 4,

respectively
∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<

√
6D

2π|q|2 if D ≡ 3 mod 4.

Notice that only in the few examples of euclidean rings of integers of imaginary quadratic

fields (for D = 1, 2, 3, 7, 11) an analogue of A. Hurwitz’s continued fraction can be realized

in a straightforward manner (see Section 6). Although Gintner’s result provides better,

probably not best possible, upper bounds for arbitrary imaginary quadratic number fields

than known before, all considerations are still restricted to certain imaginary quadratic

number rings.

7.2 Minkowski and Gintner

In the following, we generalize the method of Hilde Gintner. First, we apply her approach

to the generalized Julius Hurwitz-lattice (1 + i
√
m)Z[

√
m] where m ∈ N is squarefree and

subsequently to arbitrary lattices.

3In Section 3.3 we have already stated results of her.
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7.2.1 Preliminaries

Main tools in [Gintner, 1936] are two theorems arising from Minkowksi’s famous ’Geometry

of Numbers’ [Minkowski, 1910]. Those theorems are also stated in [Cassels, 1959], where

John William Scott Cassels so to say translated them to a more modern language of

lattices. He considered these structures as ”the most important concept in geometry of

numbers” [Cassels, 1959, p. 9]. Here we stay close to the original version of Minkowski.

Theorem 7.2.1 (Lattice Point Theorem, Minkowski, 1889/91)

Let Λ be a full lattice in Rn and C ∈ Rn be a convex and symmetric body with bounded

volume vol(C) ≥ 2n det(Λ). Then C contains at least one lattice point of Λ different from

the origin.

Theorem 7.2.2 (Linear Forms Theorem, Minkowski, 1896)

Let Y1, Y2, · · · , Y2s−1, Y2s be s pairs of linear forms with complex conjugated coefficients

zjk and another r = n− 2s linear forms Y2s+1, . . . Yn with real coefficients zjk. Then there

exist integers x1, . . . , xn, not all zero, such that

|Yj(x1, · · · , xn)| ≤
(

2

π

) s
n

|det(zjk)|
1
n

for j = 1, · · · n.

Gintner considered integers of an arbitrary imaginary quadratic number ring O√
−D,D ∈

N, as lattice points in the complex plane. Using Theorem 7.2.2, she showed that there exist

infinitely many numbers p, q ∈ O√
−D such that p

q
approximates a given arbitrary complex

number z ∈ C \ Q(
√
−D) with a certain accuracy. This upper bound was subsequently

improved by Theorem 7.2.1.

Remark: The restriction to integer rings in former studies providing a unique factorisation

of the approximants p
q
can generally be overcome. Since for algebraic uj their norm satisfies

|N(uj)| ∈ N0, there can only be finitely many factorisations q = u1 · ... · ur for q ∈ O√
−D.
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This eventual finite ambiguity of |q| does not change the fact that there exist infinitely

many approximations. Of course, this remark also applies to quadratic number fields with

slightly different rings of integers.

One significant advantage of the method of Minkowski and Gintner is that they are not

limited to quadratic number fields with euclidean algorithms.

7.2.2 Application of Linear Forms

We define pairs of complex conjugated linear forms in variables X1, . . . ,X4 by

Y1 =
(1 + i

√
m)√

2

(

(X1 + i
√
mX2)− (β + iγ)(X3 − i

√
mX4)

)

, Y2 = Y1

and

Y3 =
(1 + i

√
m)√

2t2
(X3 + i

√
mX4), Y4 = Y3,

where m ∈ N is squarefree and t ∈ R. We compute the determinant of the coefficient

matrix as

det(zjk) =
(1 +m)2

(
√
2)4

det



















1 i
√
m −(β + iγ) (β + iγ)i

√
m

1 −i√m −(β − iγ) −(β − iγ)i
√
m

0 0 t−2 t−2i
√
m

0 0 t−2 −t−2i
√
m



















=

(

1 +m

2t2

)2

det







1 i
√
m

1 −i√m







2

= (1 +m)2
(−2i

√
m)2

4t4

= (1 +m)2
−m
t4

.

Now the direct application of the theorem above leads to the existence of integers
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x1, x2, x3, x4, not all equal zero, satisfying

|Yj(x1, ..., x4)| <
√

2(1 +m)

π

4
√
m

t
(7.2)

for 1 ≤ j ≤ 4. In particular, we have

0 ≤ |Y1| · |Y3| =
|1 + i

√
m|2

2t2
|(x1 + i

√
mx2)− (β + iγ)(x3 − i

√
mx4)| · |x3 + i

√
mx4|

<
2(1 +m)

π

√
m

t2
. (7.3)

Remark: If Y3 = 0, in view of (7.2), then x3 = x4 = 0 and |Y1| = (1+i
√
m)√

2
|x1 + i

√
mx2|

tends to zero as t → ∞. Since the case x1 = x2 = 0 = x3 = x4 is excluded, it follows

that Y3 6= 0. On the other hand, if we have Y1 = 0, then (1 + i
√
m)(x1 + i

√
mx2) =

(β + iγ)(1 + i
√
m)(x3 + i

√
mx4) and it follows that (β + iγ) ∈ (1 + i

√
m)Q(i

√
m) is a

rational complex number. Consequently, we may suppose Y1, Y3 6= 0. Thus, we can divide

(7.3) by |1 + i
√
m||x3 + i

√
mx4| and receive

0 < |1 + i
√
m||(x1 + i

√
mx2)− (β + iγ)(x3 − i

√
mx4)| <

4(1 +m)
√
m

π|x3 + i
√
mx4||1 + i

√
m| .

Setting p = (1 + i
√
m)(x1 + i

√
mx2), q = (1 + i

√
m)(x3 + i

√
mx4) and z = β + iγ, then

for each arbitrary z ∈ C, there exist complex numbers p, q ∈ (1 + i
√
m)Z[i

√
m] with

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<
4(1 +m)

√
m

π|q|2 .

Furthermore, we may conclude that there are infinitely many p, q ∈ (1 + i
√
m)Z[i

√
m]

fulfilling this inequality. Since, for arbitrary t > 0, (7.2) holds for certain x1, ..., x4 ∈ Z,

not all equal to zero, increasing the parameter t leads to an infinitude of such integer solu-

tions. Therewith, we receive infinitely many p
q
satisfying the corresponding approximation

quality.
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Given m ∈ N and z ∈ C, there exist infinitely many p, q ∈ (1 + i
√
m)Z[i

√
m] with

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<
4(1 +m)

√
m

π|q|2 .

Example:

For m = 1, the Julius Hurwitz case, we have infinitely many p, q ∈ (1 + i)Z[i] satisfying

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<
8

π|q|2 .

7.2.3 Improvement by the Lattice Point Theorem

However, those approximations are certainly not best possible. By using the Lattice Point

Theorem the result can be improved significantly. Based on the same definition of linear

forms Y1, ..., Y4 from above, we define a symmetric convex body by

C := {x ∈ R4 : |Y1|+ |Y3| ≤M, |Y2|+ |Y4| ≤M}.

For calculating the volume

vol(C) =

∫ ∫ ∫ ∫ 1CdY1dY2dY3dY4,
where 1C is the indicator function associated with C, we divide those linear forms into

real and imaginary parts as

Y1 = Y2 =
1√
2
(ϕ1 + iψ1) and Y3 = Y4 =

1√
2
(ϕ2 + iψ2).

The functional determinant of this transformation is

det(Df(ϕ1, ψ1) ·Df(ϕ2, ψ2)) =

(

1√
2

)4

det







1 1

i −i







2

=
1

4
(−2i)2 = −1.
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In view of the transformation formula we deduce

vol(C) = |det(Df)|
∫ ∫ ∫ ∫ 1√

φ21+ψ
2
1+

√
ϕ2
2+ψ

2
2≤

√
2M
dϕ1dϕ2dψ1dψ2.

Using polar coordinates ϕj =Mrj cosαj, ψj =Mrj sinαj , we find

vol(C) =M4

∫∫

[0,2π)2
dα1dα2

∫∫

r1+r2≤
√
2,rj≥0

r1r2dr1dr2 =
2π2

3
M4.

On the other hand, the Lattice Point Theorem implies that there exists a point x =

(x1, · · · , x4) ∈ Z4 \ {0} in C whenever

vol(C) ≥ 24|det(αjk)| = 24(1 +m)2
|m|
t4
.

Therewith, we get the estimate

M4 ≥ 3 · 23 · (1 +m)2
|m|
t4π2

, respectively M ≥
√

2(1 +m)
4
√

6|m|√
πt

.

Choosing M such that we receive an equality, leads to the existence of x ∈ Z4 \ {0} with

|Y1|+ |Y3| ≤
√

2(1 +m)
4
√

6|m|√
πt

,

respectively

|Y1| · |Y3| ≤ (
1

2
(|Y1|+ |Y3|))2 ≤ 1 +m

2
·
√

6|m|
πt2

.

Since |Y1|, |Y3| 6= 0 we continue as before and have

0 <
|1 + i

√
m|2

2t2
|(x1 + i

√
mx2)− (β + iγ)(x3 − i

√
mx4)| · |x3 + i

√
mx4| <

1 +m

2
·
√

6|m|
πt2

,
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respectively

0 <

∣

∣

∣

∣

(x1 + i
√
mx2)(1 + i

√
m)

(x3 + i
√
mx4)(1 + i

√
m)

− (β + iγ)

∣

∣

∣

∣

< (1 +m)

√

6|m|
π|x3 + i

√
mx4|2|1 + i|2 .

Setting p = (x1 + i
√
mx2)(1 + i

√
m), q = (x3 + i

√
mx4)(1 + i

√
m) and z = β + iγ, we

obtain

0 <

∣

∣

∣

∣

p

q
− z

∣

∣

∣

∣

< (1 +m)

√

6|m|
π|q|2 ,

and by the same argument (7.2) as before concerning an unlimited possible increase of t,

there arise infinitely many such numbers p and q.

Theorem 7.2.3 Let m ∈ N and z ∈ C \Q(i
√
m) be arbitrarily, then there exist infinitely

many p, q ∈ (1 + i
√
m)Z[i

√
m] with

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

< (1 +m)

√

6|m|
π|q|2 .

Examples:

For m = 1, the Julius Hurwitz case, we have infinitely many p, q ∈ (1 + i)Z[i] satisfying

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<
2
√
6

π|q|2 .

For m = 2 we have infinitely many p, q ∈ (1 + i
√
2)Z[i

√
2] satisfying

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<
3
√
12

π|q|2 =
6
√
3

π|q|2 .

7.2.4 Geometrical Interpretation

Considering the set of partial quotients as lattice, we define so-called fundamental domains

in a similar manner as, for example, in Sections 3.2 or 4.2.2. Those domains shall be located

around the origin and they provide a complete tiling of the Gaussian Complex Plane by

shifting them along the lattice. It is natural to expect that the above stated results on
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approximation quality are connected with the size of those domains: An increase of the

area should lower the approximations quality and vice versa.

For a generalized lattice in tradition of Julius Hurwitz we define its fundamental domain

by

X(m) :=

{

(1 + i
√
m)x+ (1 + i

√
m)y : −1

2
< y, x ≤ 1

2

}

.

This implies that the domain is generated by 1+ i
√
m and its complex conjugated. Notice

that λ := (1 + i
√
m)Z[i

√
m] is a sublattice of Λ := Z[i

√
m] = Z + i

√
mZ. It is easy to

calculate the corresponding areas of the fundamental domains

det(Λ) = det







1 0

0
√
m






=

√
m

and

det(λ) = det((1 + i
√
m)Z+ (−m+ i

√
m)Z) = det







1 −m
√
m

√
m






=

√
m(1 +m).

The quanitity 1 +m, appearing in Theorem 7.2.3, is exactly the stretching factor of the

corresponding fundamental domains of λ and Λ.

Remark: The fundamental domains loose there symmetry with respect to the real and

imaginary axes, however, they are still parallelograms.

7.2.5 Generalization of the Result

Considering the more general lattice (n+ ik
√
m)Z[i

√
m] with n, k ∈ Q and m ∈ N square-

free, provides a respective straightforward generalization of the result. Let m ∈ N be and

natural number and z ∈ C \ Q(i
√
m) be an arbitrary not-lattice-point complex number,
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then there exist infinetly many p, q ∈ (n+ ik
√
m)Z[i

√
m] with

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

< (n2 + k2m)

√

6|m|
π|q|2 .

However, more interesting is that we can generalize our result to arbitrary lattices in the

complex plane as follows. Considering a lattice λ generated by two arbitrary R-linearly

independent vectors ω1 = a+ ib, ω2 = c+ id, where a, b, c, d ∈ R, we compute for

λ = (a+ ib)Z+ (c+ id)Z = ω1Z+ ω2Z

the lattice determinant by

∆(λ) =

∣

∣

∣

∣

∣

∣

∣

det







a c

b d







∣

∣

∣

∣

∣

∣

∣

= |ad− bc| > 0.

We define pairs of linear forms

Y1 =
1√
2
((ω1X1 + ω2X2)− (β + iγ)(ω1X3 + ω2X4)), Y2 = Y1

and

Y3 =
1√
2t2

(ω1X3 + ω2X4), Y4 = Y3,
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where t is a positive real parameter. The determinant of the coefficient matrix is computed

as follows

det(zij) =
1

4t4
det



















ω1 ω2 ⋆ ⋆

ω1 ω2 ⋆ ⋆

0 0 ω1 ω2

0 0 ω1 ω2



















=
1

4t4
det







ω1 ω2

ω1 ω2







2

=
1

4t4
((a+ ib)(c − id)− (c+ id)(a− ib))2

=
1

4t4
(2i(bc − ad))2 = − 1

t4
(ad− bc)2.

Application of Theorem 7.2.2 provides the simultaneous estimate

|Yj(x1, · · · , x4)| ≤
√

2

π
4

√

| 1
t4
(ad− bc)2| =

√
2
√

|ad− bc|√
πt

with a certain lattice point (x1, ..., x4) ∈ Z4 \ {0}. Therefore, for the product of two linear

forms we get

|Y1| · |Y3| =
1

2t2
|(ω1x1 + ω2x2)− (β + iγ)(ω1x3 + ω2x4)||ω1x3 + ω2x4| ≤

2|ad− bc|
πt2

.

Setting p = (ω1x1+ω2x2), q = (ω1x3+ω2x4) and z = β+ iγ, there exist complex numbers

p, q ∈ ω1Z+ ω2Z such that
∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

≤ 4|ad − bc|
π|q|2 . (⋆ ⋆)

Since t > 0 can increase arbitrarily in Y3, we may conclude once more: If z ∈ C\Q(λ) is an

arbitrary non-lattice-point complex number, there exist infinitely many p, q ∈ λ satisfying

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

≤ 4∆(λ)

π|q|2 .
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Here Q(λ) is defined as the set of rational numbers with numerator and denominator being

lattice points, as in Chapter 6.

On the one hand, this result shows again the influence of the lattice structure on the

bound of the approximation quality by this method; on the other hand we notice that the

obtained bound on the right hand-side is invariant under any basis change of the lattice.

To improve the approximation quality, we shall apply Theorem 7.2.1. Hence, we define

the symmetric convex body

C := {x = (x1, · · · , x4) ∈ R4 : |Y1|+ |Y3| ≤M, |Y2|+ |Y4| ≤M},

with the same linear forms Yj from above. We calculate the volume as in Subsection 7.2.3

and obtain once again

vol(C) =M4

∫∫

[0,2π)2
dz1dz2

∫∫

r1+r2≤
√
2,rj≥0

r1r2dr1dr2 =
2π2

3
M4.

Following Theorem 7.2.2, there exists a lattice point x = (x1, ..., x4) ∈ Z4 \ {0} in C

whenever

vol(C) ≥ 24
∣

∣

∣

∣

1

t4
(ad− bc)2

∣

∣

∣

∣

.

This leads to the restriction

M ≥
√
2

t
√
π

4
√

6|ad− bc|2,

giving

|Y1|+ |Y3| ≤
√
2

t
√
π

4
√

6|ad − bc|2

and

|Y1| · |Y3| ≤ (
1

2
(|Y1|+ |Y3|))2 ≤

√
6|ad− bc|
2t2π

.
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Applying the same argument as above this proves

Theorem 7.2.4 Let λ be a lattice in C of full rank. For any z ∈ C \ Q(λ) there exist

infinitely many lattice points p, q ∈ λ such that

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<

√
6 ·∆(λ)

π|q|2 ,

where ∆(λ) denotes the determinant of the lattice λ.

Remarks: Whereas in Hilde Gintner’s arithmetical approach it was necessary to distin-

guish the cases D 6≡ 3 mod 4 and D ≡ 3 mod 4, in our geometrical approach those are

already combined.

7.3 Modular Group

We consider the arising modular form classifying the upper bound depending on the lattice.

It is a natural question to ask how good an approximation of a complex number z by

quotients of lattice points in the sense of Theorem 7.2.4 can be. In the following we prove

some characteristics of the subsequently defined quantity.

Corollary 7.3.1 The function

µ(τ) := µ(λ) := sup  L(τ) = inf{c > 0 : ∀z ∈ C ∃∞p, q ∈ λ :

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<
c

|q|2 },

where λ := Z+ τZ, is

1. automorphic,

2. continuous,

3. non-constant and always satisfies µ(τ) ≥ 1√
5
.
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Here we call a function automorphic when it is invariant under the action of SL2(Z).

Proof.

1. The existence of the automorphic function is a direct consequence of Theorem 7.2.4

where we found an explicit, probably not optimal, upper bound. For

M =







a b

c d






∈ SL2(Z),

we have

Mτ =
aτ + b

cτ + d
=

(aτ + b)(cτ + d)

|cτ + d|2 .

Since τ = x+ iy, y > 0 and detM = ad− bc = +1, it follows that

Mτ =
x(ad+ bc) + iy(ad − bc)

|cτ + d|2 ∈ H,

where H is the upper half plane. A short computation shows

p

q
=
p1τ + p2
q1τ + q2

=
P1Mτ + P2

Q1Mτ +Q2
=
P

Q

with






p1 p2

q1 q2






=







P1 P2

Q1 Q2













a b

c d






.

Consequently, the best approximations to a given z ∈ C by lattice points from

λ = Z+ τZ and from Z+MτZ equal one another. Hence,

µ(τ) = µ(Mτ)

for any M ∈ SL2(Z), which proves that µ is an automorphic function.

2. In order to prove continuity we consider a second lattice λ′ := Z+ τ ′Z for which we
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have

|τ − τ ′| < δ

with an arbitrary small δ > 0. According to p = a + bτ and q = c + dτ , we define

lattice points

p′ = a+ bτ ′ = a+ bτ + b(τ ′ − τ) = p+ bδ

and

q′ = c+ dτ ′ = c+ dτ + d(τ ′ − τ) = q + dδ

with δ = τ − τ ′. It follows that

∣

∣

∣

∣

z − p′

q′

∣

∣

∣

∣

=

∣

∣

∣

∣

z − p

q
+
p

q
− p′

q′

∣

∣

∣

∣

≤
∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

+
|pq′ − p′q|

|qq′| <
c+ ǫ

|q|2 +
|p(q + dδ) − (p+ bδ)q|

|q(q + dδ)|

=
c+ ǫ

|q|2 +
|(a+ bτ)d− (c+ dτ)b||δ|

|q|2|1 + dδ
q
|

.

We simplify the numerator by

|ad+ bdτ − bc− bdτ | = |(ad− bc)||δ| = |δ|,

since we may assume p and q to be coprime (respectively ad − bc = ±1). For the

denominator we get, by geometrical series expanion,

1

|q|2|1 + dδ
q
|
=

1

|q|2
(

1 +O

( |δ|
|q|

))

.

Hence, we obtain
∣

∣

∣

∣

z − p′

q′

∣

∣

∣

∣

<
c+ ǫ∗ + |δ|

|q|2 ,

where ǫ∗ can be made arbitrarily small depending only on ǫ. If δ is sufficiently small,
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this leads to
∣

∣

∣

∣

z − p′

q′

∣

∣

∣

∣

<
c+ ǫ′

|q|2

with ǫ′ as small as we please, which implies the continuity.

3. That µ is non-constant is a direct consequence of existing results (see Section 7.1).

We know for example that for τ = i, the bounding constant is µ(λ) = 1√
3
, whereas

for τ = i
√
2, we have µ(λ) = 1√

2
. Furthermore, Hurwitz’s approximation result (7.1)

provides a lower bound for c. We have

∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

<
c+ ǫ

|q|2

and since
∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

≥
∣

∣

∣

∣

Re z − Re
p

q

∣

∣

∣

∣

,

it follows that c ≥ 1√
5
.

Remark: Unfortunately, µ is not analytic since µ(τ) ∈ R for all τ ∈ H.

7.4 Arithmetical Application

A nice arithmetical application of Hilde Gintner’s result and Theorem 7.2.4 is given by

considering the complex analogue of the classical Pell equation (see Theorem 1.2.4 in

Section 1.2).

Corollary 7.4.1 Let d ∈ Z[i
√
D] with squarefree D ∈ N and

√
d 6∈ Q(i

√
D). Then the

Pell equation

X2 − dY 2 = 1

has infinitely many non-trivial solutions in numbers x, y ∈ Z[i
√
D].

This corollary can be proved easily by the classical application of complex continued frac-

tions whenever Z[i
√
D] forms a euclidean ring. However, this constraint is not necessary.
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According to Theorem 7.2.4 there are infinitely many x, y ∈ Z[i
√
D] satisfying

∣

∣

∣

∣

√
d− x

y

∣

∣

∣

∣

<
c(D)

|y|2

with a certain positive constant c(D) := µ(i
√
D), depending on Z[i

√
D]. In view of Ford’s

result [Ford, 1918], we have

c(D) =

√
6D

π
≥ c(1) =

1√
3
.

Due to
∣

∣

∣

∣

√
d+

x

y

∣

∣

∣

∣

=

∣

∣

∣

∣

x

y
−

√
d+ 2

√
d

∣

∣

∣

∣

<
c(D)

|y|2 + 2
√

|d|,

it follows that

|x2 − y2d| = |x− y
√
d| · |x+ y

√
d|

<
c(D)

|y|

(

c(D)

|y| + 2|y|
√

|d|
)

=

(

c(D)

|y|

)2

+ 2c(D)
√

|d|.

Consequently, for all forms X2 − dY 2 there exists a k ∈ Z[i
√
D] satisfying

−
(

(

c(D)

|y|

)2

+ 2c(D)
√

|d|
)

< k <

(

(

c(D)

|y|

)2

+ 2c(D)
√

|d|
)

such that, for infinitely many x, y ∈ Z[i
√
D],

x2 − dy2 = k.

Since
√
d 6∈ Q(i

√
D) this yields k 6= 0. If k = 1 we are finished.

Otherwise, if k 6= 1, we define equivalence classes in the set of such pairs x, y as follows.

Let N(k) denote the norm of the ideal generated by k in the ring Z[i
√
D]/kZ[i

√
D]. Two
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pairs x1, y1 and x2, y2 belong to the same class if, and only if,

x1 ≡ x2 mod k and y1 ≡ y2 mod k.

Since there are only N(k)2 < ∞ classes but infinitely many pairs, some class contains at

least two of such pairs where x1 6= ±x2 and y1 6= ±y2 6= 0. Furthermore, we define

x0 =
x1x2 − y1y2d

k
and y0 =

x1y2 − x2y1
k

.

Obviously, the numerators of x0 and y0 are ≡ 0 mod k and x0, y0 ∈ Z[i
√
D]. Moreover, we

observe

x20 − y20d =
1

k2
(x21 − y21d)(x

2
2 − y22d) = 1,

which shows that there is always a solution x0, y0 ∈ Z[i
√
D] of the Pell equation. Next we

shall exclude the trivial case y0 = 0. In view of

k = x21 − y21d =

(

x2y1
y2

)2

− y21d =

(

y21
y22

)

(x22 − y22d) =

(

y21
y22

)

k,

it follows that y21 = y22, however, since y1 6= ±y2 this is a contradiction to the assumption

of the chosen pairs.

Additionally, we can show that there are even infinitely many solutions. Starting with

two (not necessarily distinct) non-trivial solutions xj + yj
√
d to X2 − dY 2 = 1, we find

further solutions by

(x1 + y1
√
d)(x2 + y2

√
d) = (a+ b

√
d).

Since a = x1x2 + y1dy2 and b = x1y2 + x2y1, we have a, b ∈ Z[i
√
D] and

a2 − b2d = (x21 − y21d)(x
2
2 − y22d) = 1.
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This proves that the product of two solutions provides again a solution and furthermore,

we obtain infinitely many solutions by raising them to the nth power of a non-trivial one:

(x0 + y0
√
d)n = an + bn

√
d.

Corollary 7.4.1 can be illustrated by a concrete example. Therefore, we apply a real

case method of Arturas Dubickas and Jörn Steuding [Dubickas and Steuding, 2004] giv-

ing a generalization of Melvyn B. Nathanson’s result [Nathanson, 1976] on families of

polynomial solutions for Pell equations. They showed that for the polynomial equation

P (X)2 − (X2 + 1)Q(X)2 = 1

a family of solutions can be generated by the sequence of polynomials

Pn(X) := (2X2 + 1)Pn−1(X) + 2X(X2 + 1)Qn−1(X)

and

Qn(X) := 2XPn−1(X) + (2X2 + 1)Qn−1(X),

where P0(X) = 1 and Q0(X) = 0. We easily calculate P1 = 2X2+1, Q1 = 2X and receive

the (since Euclid known) equation

(2X2 + 1)2 − (X2 + 1)(2X)2 = 1.

Now we can chose an arbitrary X. For x = 1 + i
√
5 respectively x2 = −4 + 2i

√
5, we get

(4i
√
5− 7)2 − (2i

√
5− 3)(2 + 2i

√
5)2 = 1,

which provides an example for d = 2i
√
5− 3.
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7.5 Law of Best Approximation

A fundamental problem of diophantine approximation is to find ’good’ rational approxi-

mations p
q
to a given z (∈ R or C) - finitely or infinitely many. In the real case the situation

was clarified by Lagrange’s Law of Best Approximation (see Section 1.2). He stated that

for any z ∈ R there are no better rational approximantions than the convergents to z

arising from the regular continued fraction expansion.

In 1991, Cor Kraaikamp proved the following equivalence: The sequence of convergents

of a semi-regular continued fraction forms a subsequence of the sequence of convergents

arising from the regular continued fraction if, and only if, ǫn+1 + an > 2 − an − ǫn for

n ≥ 1. [Kraaikamp, 1991, p. 11] (Here we use the same notation as in Section 3.1.)

In Chapter 5 we stated for continued fractions to the nearest integer4 Condition (5.2),

namely ǫn+1 + an ≥ 2. Furthermore, since their partial quotients satisfy an ≥ 2, the

inequality 2− an − ǫn ≤ 1 holds. Noticing that continued fractions to the nearest integer

are a special type of semi-regular continued fractions, the Law of Best Approximation

consequently also holds for continued fractions to the nearest integer. Since those can

be considered as precursors to Adolf Hurwitz’ complex continued fractions, this might

indicate that the latter also provide best convergents. However, in fact, the law is no

longer true for complex numbers.

Following [Lakein, 1973, p. 400] we consider the example

z = [0;−2 + 2i, 1 + i]

(

=
−1

3
(1 + i)

)

.

Notice that this continued fraction could arise from Adolf Hurwitz’s algorithm as well as

from Julius Hurwitz’s algorithm. Here the convergent

p1
q1

= [0;−2 + 2i] =
1

−2 + 2i

(

=
−1

4
(1 + i)

)

4which were also introduced in Section 3.1
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is not a best approximation to z, since p
q
= 1

−1+i

(

= −1
2 (1 + i)

)

satisfies

|q| = | − 1 + i| =
√
2 <

√
8 = | − 2 + 2i| = |q1|

and

|qz − p| = |q|
∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

=
√
2|1 + i|

∣

∣

∣

∣

−1

3
+

1

2

∣

∣

∣

∣

=
1

3
= |q1|

∣

∣

∣

∣

z − p1
q1

∣

∣

∣

∣

= |q1z − p1|.

However, in view of
∣

∣

∣

∣

z − p

q

∣

∣

∣

∣

=
1

3
√
2
>

1

3
√
8
=

∣

∣

∣

∣

z − p1
q1

∣

∣

∣

∣

,

the notation of ’best approximation’ seems to loose its meaning by stepping from R to C.

Remark: In the above mentioned work [Lakein, 1973] Richard B. Lakein proved that

nevertheless for almost all z the convergents are best approximations in Adolf Hurwitz’s

continued fraction.

206



8 Last words

Recently, complex continued fractions have been studied in a rather different context.

Nearly nothing is known about the regular continued fraction expansion of real algebraic

irrationals of degree strictly larger than two. For instance, it is an open question whether

the sequence of partial quotients of such a real algebraic irrational is bounded or not;

the same problem is also unanswered for other real continued fractions. As follows from

Adolf Hurwitz’s work already the situation for complex algebraic irrationals is pretty

different: complex irrationals satisfying an irreducible quadratic equation with coefficients

from Z[i] have a periodic, henceforth bounded sequence of partial quotients (extending

Lagrange’s celebrated theorem). However, Hensley [Hensley, 2006] discovered a far more

surprising phenomenon: there exist complex algebraic irrationals having a bounded but not

eventually periodic sequence of partial quotients in Adolf’s continued fraction expansion;

an example is z =
√
2 − 1 + i(

√
5 − 2) which is a solution of the irreducible biquadratic

equation

Z4 + (4 + 8i)Z3 − (12 − 24i)Z2 − (32 − 16i)Z + 24 = 0.

Bosma and Gruenewald [Bosma and Gruenewald, 2011] proved the existence of complex

algebraic numbers of arbitrary even degree having a continued fraction expansion with

bounded partial quotients (being non-periodic for degree larger than two over the Gaussian

number field).

What makes continued fraction algorithms for complex numbers interesting for current

research in number theory is that there are quite many open questions concerning algebraic
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and ergodic features of complex continued fraction expansions. The same could be applied

to another approach to diophantine approximation of complex numbers via continued

fractions due to A.L. Schmidt [Schmidt, 1975, Schmidt, 1982]; his papers include references

to the work of both, Adolf and Julius Hurwitz. Schmidt’s type of continued fraction is

superior if the quality of approximation is paramount, and it allows the use of tools from

ergodic theory too at the expense that his continued fraction lacks the simplicity of the

continued fraction expansions found by the Hurwitz brothers.

In view of our historical investigations, we agree with David Hilbert’s opinion (see Sub-

section 2.2.3): The mathematical diaries of Adolf Hurwitz can be considered as treasure

trove of mathematical ideas. We believe that they, furthermore, provide a good picture

of the mathematical community at that time. The turn of the 19th to the 20th century

was certainly also a turn in mathematics. In [Gray, 2008] Jeremy Gray describes this as

mathematical modernism. In the second half of the 19th century the community of math-

ematicians was very manageable and we believe it is worth to investigate the role of Adolf

Hurwitz being considered as focal point of mathematical exchange (see also Section 2.1).

As Jewish mathematician he certainly had not had the best prospects, see [Rowe, 2007].

Nevertheless, he managed with his unobtrusive professional attitude to reach a highly re-

garded expert’s position. In subsequent investigations we plan to continue to examine his

exchange with David Hilbert as well as with other mathematicians; here the focus shall be

on the development and exchange of mathematical ideas. The diaries promise to provide

a basis for this examination of Adolf Hurwitz’s position in the scientific community.
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9 Appendix

The appendix contains three parts: a list of entries related to recreational mathematics

in the mathematical diaries [Hurwitz, 1919a] of Adolf Hurwitz, a list of direct or indirect

references to David Hilbert in Hurwitz’s ETH estate in Zurich and a table of figures of

this work.

9.1 Appendix I: Recreational Mathematics in the Mathematical

Diaries

In the directory HS 582: 1 - 30 at the archive of the ETH Zurich the thirty diaries

[Hurwitz, 1919a] of Adolf Hurwitz are stored. Here we give a list of diary entries dealing

with recreational mathematics (see Subsection 2.2.1) in addition of one philosophical entry

in [Hurwitz, 1919a, No. 26].

• No. 4: 1885 I. - ,

p. 140 ”Kartenkunststück”

• No. 22: 1906 XII.18. - 1908 I.22.,

p. 173 ”Konstruktionen u. Beweise durch Papierfalten”

p. 184 ”Beweis des Pythagoras”

• No. 23 1908 I.23. - 1910 II.18.,

p. 1 ”Aufgabe über kürzeste Linie auf einem Parallelepiped”
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• No. 24: 1910 II.19. - 1911 X.26.,

loose sheet of paper, a folded pentagon

• No. 25: 1911 X.27. - 1912 XII.27.,

p. 138 ”Scherzaufgabe (Analysis situs) von Landau”

• No. 26: 1912 XII.27. - 1914 IV.30.,

p. 138 ”Über den mathematischen Beweis”

• No. 28: 1915 II.16. - 1917 III.22.,

p. 61 ”Domino-Kunststücke”

p. 188 ”Bunteste Ringe”

9.2 Appendix II: Links to Hilbert in the ETH Estate of Hurwitz

In Subsection 2.2.3 we consider the teacher-student-relation of Adolf Hurwitz and David

Hilbert. Here we give a list of documents of Adolf Hurwitz’s ETH estate (in the directories

HS 582 and HS 583) directly or indirectly connected to David Hilbert including a great

number of diary entries [Hurwitz, 1919a] (HS 582 : 1 - 30) with remarks related to Hilbert.

• Lectures of David Hilbert edited by Julius Hurwitz

HS 582: 154, ’Die eindeutigen Funktionen mit linearen Transformationen

in sich’ (Königsberg 1892 SS) with handwritten remarks of Hilbert

(e.g. on pages -1, 34, 69, 80, 81, ...)

HS 582: 158, ’Geometrie der Lage’ (Königsberg 1891 SS)

• No. 6: 1888 IV. - 1889 XI.,

p. 44 ”Der Nöther’sche Satz (nach einer Mitteilung von Hilbert)”

p. 45 ”Hilberts Fundamentalsatz”

p. 93 ”Hilbert beweist die obigen Sätze so” (study on convergent series)
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• No. 7: 1890 IV.9. - 1891 XI.,

p. 94 ”[...] die Hilbert’schen Figuren” (’Lines on square’-figures)

• No. 8: 1891 XI.3. - 1894 III.,

p. 207 ”Zweiter Hilbert’scher Formensatz”(Hilbert’s Basic Theorem)

• No. 9: 1894 IV.4. - 1895 I.6.,

loose sheet concerning ”[...] von Hilbert, betreffend die Anzahl von

Covarianten”

• No. 13: 1895 VI.19. - XII.31.,

p. 19 letter to Hilbert in stenography

• No. 14: 1896 I.1. - 1897 II.1.,

p. 204 ”Hilberts 2tes Theorem” (related to [Hilbert, 1890, p. 485])

• No. 15: 1897 II.1. - 1898 III.19.,

p. 175 ”Zu Hilberts ”Körperbericht”” (related to Hilbert’s ’Zahlbericht’ )

• No. 16: 1898 III.20. - 1899 II.23.,

p. 129 ”Zum Hilbertschen Bericht pag. 287” (related to Hilbert’s

’Zahlbericht’ )

• No. 19: 1901 XI.1. - 1904 III.16.,

p. 29 ”Hilberts axiomatische Größenlehre” (related to [Hilbert, 1900b])

p. 114 ”Abbildung einer Strecke auf ein Quadrat”, ”[..] die Hilbert’schen

geometrisch erklärten Funktionen sollen arithmetisch

charakterisiert werden.” (’Lines on square’-figures)

• No. 20: 1904 III.16. - 1906 II.1.,

p. 163 ”Hilberts Beweis von Hadamards Determinantensatz”
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• No. 21: 1906 II.1. - 1906 XII.8.,

p. 166 ”Hilberts Vte Mitteilung über Integralgleichungen”

(related to [Hilbert, 1906])

• No. 22: 1906 XII.18. - 1908 I.22.,

p. 36 ”Convergenzsätze von Landau + Hilbert”

• No. 25: 1911 X.27. - 1912 XII.27.,

p. 77 ”Zu Hilberts Formenarbeit (Charakt. Funktion eines Moduls)”

• In the directory HS 582: 32 done by Georg Pòlya on page 4 and 6 there are remarks

”die ersten 9 Bände und Inhaltsverzeichnis sind zwecks Bearbeitung verderhand bei

Prof. Hilbert in Göttingen” and ”22. zwecks Bearbeitung vorderhand bei Prof.

Hilbert in Göttingen”, crossed out with pencil

• HS 582: 28, Letter of condolences from David Hilbert to Ida Samuel-Hurwitz (De-

cember 15, 1919)

• HS 583: 52, Greeting cards from conferences with Hilbert’s handwritting: ’Lutetia

Parisiorum, le 12 aout 1900’ and the ’Landau-Kommers 18. Jan. 1913’

• Remarks in the biographical dossier written by Ida Samuel-Hurwitz (HS 583a: 2)

9.3 Appendix III: Table of Figures

• Fig. 2.1: Portrait of Adolf Hurwitz, taken from Riesz’s register in Acta Mathematica

from 1913 [Riesz, 1913].

• Fig. 2.2: Front pages of [Hurwitz, 1919a, No. 4] and [Hurwitz, 1919a, No. 5], ETH

Zurich University Archives, Hs 582:4 and Hs 582:5, DOI: 10.7891/e-manuscripta-

12813 and -12823.
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• Fig. 2.3: Excerpt of [Hurwitz, 1919a, No. 1, p. 75], ETH Zurich University Archives,

Hs 582:1, DOI: 10.7891/e-manuscripta-12817.

• Fig. 2.4: Excerpt of the back of the front page in [Hurwitz, 1919a, No. 30], ETH

Zurich University Archives, Hs 582:30, DOI: 10.7891/e-manuscripta-12830.

• Fig. 2.5, 2.6 and 2.7: Excerpts of [Hurwitz, 1919a, No. 28, p. 61], ETH Zurich

University Archives, Hs 582:28, DOI: 10.7891/e-manuscripta-12837.

• Fig. 2.8, 2.9 and 2.10: Excerpts of [Hurwitz, 1919a, No. 23, p. 1], ETH Zurich

University Archives, Hs 582:23, DOI: 10.7891/e-manuscripta-12818.

• Fig. 2.11 and 2.12: Excerpts of [Hurwitz, 1919a, No. 23, p. 2], ETH Zurich Univer-

sity Archives, Hs 582:23, DOI: 10.7891/e-manuscripta-12818.

• Fig. 2.13 and 2.14: Excerpts of [Hurwitz, 1919a, No. 25, p. 138], ETH Zurich

University Archives, Hs 582:25, DOI: 10.7891/e-manuscripta-12820.

• Fig. 2.15: Excerpt of the index in [Hurwitz, 1919a, No. 25], ETH Zurich University

Archives, Hs 582:25, DOI: 10.7891/e-manuscripta-12820.

• Fig. 2.16: Excerpt of [Hurwitz, 1919a, No. 22, p. 184 and p. 185] and a loose

envelope with colored cutted out triangles also in [Hurwitz, 1919a, No. 22], ETH

Zurich University Archives, Hs 582:22, made by the author.

• Fig. 2.17, 2.18 and 2.19: Excerpts of [Hurwitz, 1919a, No. 22, p. 173], ETH Zurich

University Archives, Hs 582:22, DOI: 10.7891/e-manuscripta-12811.

• Fig. 2.20 and 2.21: Excerpts of [Hurwitz, 1919a, No. 22, p. 174] and picture of

a loose sheet found in the same diary, ETH Zurich University Archives, Hs 582:22,

made by the author.

• Fig. 2.22: Excerpt of [Hurwitz, 1919a, No. 22, p. 175], ETH Zurich University

Archives, Hs 582:22, DOI: 10.7891/e-manuscripta-12811.
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• Fig. 2.23: Excerpt of [Hurwitz, 1919a, No. 22, p. 176], ETH Zurich University

Archives, Hs 582:22, DOI: 10.7891/e-manuscripta-12811.

• Fig. 2.24: Loose folded sheet in [Hurwitz, 1919a, No. 24], ETH Zurich University

Archives, Hs 582:24, made by the author.

• Fig. 2.25: Excerpt of [Hurwitz, 1919a, No. 6, p. 45], ETH Zurich University

Archives, Hs 582:6, DOI: 10.7891/e-manuscripta-12821.

• Fig. 2.26 and 2.27: Excerpts of [Hurwitz, 1919a, No. 14] on pages 204 and 205,

ETH Zurich University Archives, Hs 582:14, DOI: 10.7891/e-manuscripta-12840.

• Fig. 2.28: Excerpt of [Hurwitz, 1919a, No. 15, p. 175], ETH Zurich University

Archives, Hs 582:15, DOI: 10.7891/e-manuscripta-12831.

• Fig. 2.29 and 2.30: Excerpts of [Hurwitz, 1919a, No. 15, p. 177], ETH Zurich

University Archives, Hs 582:15, DOI: 10.7891/e-manuscripta-12831.

• Fig. 2.31: Excerpt of [Hurwitz, 1919a, No. 15, p. 178], ETH Zurich University

Archives, Hs 582:15, DOI: 10.7891/e-manuscripta-12831.

• Fig. 2.32 and 2.34: Excerpts of [Hurwitz, 1919a, No. 16] on pages 129 and 130,

ETH Zurich University Archives, Hs 582:16, DOI: 10.7891/e-manuscripta-12830.

• Fig. 2.33: Excerpt of Hilbert’s ’Zahlbericht’, page 289 respectively [Hilbert, 1935,

vl. I, p. 164].

• Fig. 2.35: Excerpt of [Hurwitz, 1919a, No. 19, p. 29], ETH Zurich University

Archives, Hs 582:19, DOI: 10.7891/e-manuscripta-12819.

• Fig. 2.36: Excerpt of [Hilbert, 1900b, p. 182] and [Hurwitz, 1919a, No. 19, p. 29],

ETH Zurich University Archives, Hs 582:19, DOI: 10.7891/e-manuscripta-12819.

• Fig. 2.37 and 2.38: Excerpts of [Hurwitz, 1919a, No. 19, p. 30], ETH Zurich

University Archives, Hs 582:19, DOI: 10.7891/e-manuscripta-12819.
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• Fig. 2.39, 2.40, 2.41, 2.42 and 2.43: Excerpts from [Hurwitz, 1919a, No. 21] on

pages 166, 167, 168, 169 and 172, ETH Zurich University Archives, Hs 582:21, DOI:

10.7891/e-manuscripta-12836.

• Fig. 2.44 and 2.45: Excerpts of [Hurwitz, 1919a, No. 18, p. 75, p. 81], ETH Zurich

University Archives, Hs 582:18, DOI: 10.7891/e-manuscripta-12810.

• Fig. 2.46: Greeting cards from ’Lutetia Parisiorum, le 12 aout 1900’ and the

’Landau-Kommers 18. Jan. 1913’, in Hs 583:53 and 57, ETH Zurich University

Archives.

• Fig. 2.47: Excerpt of Georg Pòlya’s list [Hurwitz, 1919a, No. 32, p. 6], ETH Zurich

University Archives, Hs 582:32, DOI: 10.7891/e-manuscripta-16074.

• Fig. 2.48: Portrait of Julius Hurwitz, taken from Riesz’s register in Acta Mathemat-

ica from 1913 [Riesz, 1913].

• Fig. 2.49: Excerpt of Julius Hurwitz’s personnel file at the University of Basel

[Staatsarchiv, 1896], State Archive Basel.

• Fig. 2.50: Excerpt of [Hurwitz, 1919a, No. 5, p. 52], ETH Zurich University

Archives, Hs 582:5, DOI: 10.7891/e-manuscripta-12823.

• Fig. 2.51: Excerpt of [Hurwitz, 1919a, No. 9, p. 100], ETH Zurich University

Archives, Hs 582:9, DOI: 10.7891/e-manuscripta-12816.

• Fig. 2.52: Excerpt of [Hurwitz, 1895, p. 12].

• Fig. 3.1: Excerpt of [Hurwitz, 1919a, No. 33, p. 195], ETH Zurich University

Archives, Hs 582:32, DOI: 10.7891/e-manuscripta-16074.

• Fig. 3.2: Illustration of Julius Hurwitz’s types of partial quotients, made by the

author.
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• Fig. 4.1: Illustration of Tanaka’s change of coordinates {1, i} → {α,α}, made by

the author.

• Fig. 4.2: Illustration of the set of reciprocals X−1, made by the author.

• Fig. 4.3: Illustration of the numbers a ∈ I, made by the author.

• Fig. 4.4: Illustration of the tiling of the complex plane in respect to the dual

transformation, made by the author.

• Fig. 5.1: Illustration of all partial quotients being larger than or equal to two, made

by the author.

• Fig. 5.2: Illustration of certain further intervalls, made by the author.

• Fig. 6.1: Illustration of a union of lattices, made by the author.

• Fig. 6.2: Illustration of a random Voronöı diagram and a honeycomb shaped lattice,

made by the author.

• Fig. 6.3: Illustration of the set of admissible lattice constants τ , given by the non-

empty intersection of three circles, made by the author.
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[Göpfert, 2002] Göpfert, H. (2002). Die Mathematiker an der Universität Halle in der

Zeit von 1867 bis 1874. Reports on Didactics and History of Mathematics, Martin-

Luther-Universität Halle Wittenberg, 19:21–34. available at http://did.mathematik.uni-

halle.de/history/reports/index.html.

[Gray, 2008] Gray, J. (2008). Plato’s ghost: The modernist transformation of mathematics.

Princeton University Press.

[Gruber, 2007] Gruber, P. (2007). Convex and Discrete Geometry. Springer.

[Hall, 1947] Hall, M. J. (1947). On the sum and product of continued fractions. Ann.

Math., 28:966–993.

[Halter-Koch, 2013] Halter-Koch, F. (2013). Quadratic Irrationals. CRC Press.

[Hawkins, 2008] Hawkins, T. (2008). Continued fractions and the origins of the Perron-

Frobenius theorem. Arch. Hist. Exact Sci., 62:655–717.

222



Bibliography

[Hellwig, 1856] Hellwig, C. (1856). Problem des Apollonius. H.W. Schmidt - Halle.

[Hemme, 2013] Hemme, H. (2013). Das Ei der Kolumbus und weitere hinterhältige Kno-
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Entwickelung reeller Grössen. Acta Math., XII:367–405.
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−2 angehören, Dissertation in Munich. printed by A. Ebner - München.

[Mathews, 1912] Mathews, G. (1912). A theory of binary quadratic arithmetical forms

with complex integral coefficients. Lond. Math. Soc. Proc., 11:329–350.
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ber 1919 im Krematorium Zürich. Vierteljahrsschrift der Naturforschenden Gesellschaft
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und Universitätsbibliothek Göttingen.

[Hurwitz, 1919] Hurwitz, A. (1882-1919). Mathematische Tagebücher, in: Hurwitz, A.,
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