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Summary 

Burkitt lymphoma (BL) is a highly aggressive B cell malignancy. Rituximab, a humanized antibody 

against CD20, in a combination with chemotherapy is a current treatment of choice for B-cell 

lymphomas including BL. However, certain group of BL patients are resistant to Rituximab therapy. 

Therefore, alternative treatments targeting survival pathways of BL are needed. 

 In BL deregulation of MYC expression, together with additional mutations, inhibits 

differentiation of germinal centre (GC) B cells and drives proliferation of tumor cells. Pro-apoptotic 

properties of MYC are counteracted through the B-cell receptor (BCR) and phosphoinositide-3-

kinase (PI3K) pathway to ensure survival of BL cells. In normal B-cells BCR triggering activates 

both NF-κB and NFAT-dependent survival signals. Since BL cells do not exhibit constitutive NF-κB 

activity, we hypothesized that anti-apoptotic NFATc1A isoform might provide a major survival 

signal for BL cells. 

 We show that NFATc1 is constitutively expressed in nuclei of BL, in BL cell lines and in Eµ-

Myc–induced B cell lymphoma (BCL) cells. Nuclear residence of NFATc1 in these entities depends 

on intracellular Ca2+ levels but is largely insensitive to cyclosporine A (CsA) treatment and therefore 

independent from calcineurine (CN) activity. The protein/protein interaction between the regulatory 

domain of NFATc1 and DNA binding domain of BCL6 likely contributes to sustained nuclear 

residence of NFATc1 and to the regulation of proposed NFATc1-MYC-BCL6-PRDM1 network in 

B-cell lymphomas. 

Our data revealed lack of strict correlation between the expression of six NFATc1 isoforms 

in different BL-related entities suggesting that both NFATc1/ and - isoforms provide survival 

functions and that NFATc1B and -C isoforms either do not possess pro-apoptotic properties 

in BL cells or these properties are counterbalanced. In addition, we show that in BL entities 

expression of NFATc1 protein is largely regulated at post-transcriptional level, including MYC 

dependent increase of protein stability. 

Functionally we show that conditional inactivation of Nfatc1 gene in Eµ-Myc mice prevents 

development of BCL tumors with mature B cell immunophenotype (IgD+). Loss of NFATc1 

expression in BCL cells ex vivo results in apoptosis of tumor cells.  

Together our results identify NFATc1 as an important survival factor in BL cells and, hence, 

as a promising target for alternative therapeutic strategies for BL. 
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Zusammenfassung 

 

Das Burkitt Lymphom (BL) ist eine hoch aggressive B-Zellentartung. Rituximab, ein humanisierter 

Antikörper gegen CD20, in Kombination mit Chemotherapie ist die augenblickliche Behandlung der 

Wahl für B-Zelllymphome inklusive dem BL. Allerdings sind bestimmte Gruppen der BL-Patienten 

resistent gegenüber einer Rituximabtherapie. Deshalb werden alternative 

Behandlungsmöglichkeiten, die das Überleben der BL gezielt beeinflussen, gesucht. 

Die Deregulation der MYC-Expression, zusammen mit weiteren Mutationen, inhibiert die 

Differenzierung der Keimzentrums- (GC-) B-Zellen im BL und treibt die Proliferation der 

Tumorzellen. Die pro-apoptotischen Eigenschaften von MYC sind durch den B-Zellrezeptor (BCR) 

und Phosphoinositid-3-Kinase (PI3K)-Signalwege gegenreguliert, was zum Überleben der BL-

Zellen führt. Da BL-Zellen keine konstitutive NF-κB-Aktivität aufweisen, stellten wir die Hypothese 

auf, dass die anti-apoptotischen Isoformen von NFATc1A ein Hauptüberlebenssignal für BL-Zellen 

bereitstellen könnten. 

Wir zeigen, dass NFATc1 konstitutiv in den Kernen primärer BL-Zellen, der BL-Zelllinien 

und in den Zellen eines Eµ-MYC-induzierten B-Zelllymphoms (BCL) vorliegt. Nukleäre NFATc1-

Präsenz in diesen Entitäten hängt von intrazellulären Ca2+-Mengen ab, ist aber weitestgehend 

unempfindlich gegenüber Cyclosporine A (CsA)-Behandlung und unabhängig von Calcineurin 

(CN)-Aktivität. Stattdessen trägt wahrscheinlich die Protein/Proteininteraktion zwischen der 

regulatorischen Domäne von NFATc1 und der DNA-Bindungsdomäne von BCL6 zur anhaltenden 

nukleären Präsenz von NFATc1 und dem vorgeschlagenen NFATc1-MYC-BCL6-PRDM1-

Netzwerk in B-Zelllymphomen bei. 

Unsere Daten ergaben keine strenge Korrelation zwischen der Expression der sechs NFATc1-

Isoformen in verschiedenen BL-verwandten Entitäten. Dies suggeriert, dass sowohl NFATc1/αA wie 

–βA Überlebenssignale vermitteln und dass NFATc1α/βB und –α/βC-Isoformen in BL-Zellen keine 

pro-apoptotischen Eigenschaften besitzen oder diese Funktionen gegenreguliert werden. Des 

Weiteren zeigen wir, dass in BL-Entitäten die Expression der NFATc1-Proteine auf post-

transkriptioneller Ebene reguliert werden. Dies schließt einen MYC-abhängigen Anstieg der 

Proteinstabilität ein. 

In Bezug auf die Funktion von NFATc1 zeigen wir, dass seine konditionelle Inaktivierung in 

Eµ-MYC-Mäusen die Entwicklung von BCL-Tumoren mit reifem T-Zellimmunphänotyp (IgD+) 

verhindert. Dementsprechend resultiert der Verlust der NFATc1-Expression in BCL-Zellen ex vivo 

in einer Apoptose der Tumorzellen. 
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Zusammengefasst brandmarken unsere Resultate NFATc1 als einen entscheidenden 

Überlebensfaktor in BL-Zellen bzw. identifizieren es als vielversprechendes Ziel alternativer 

therapeutischer Strategien in BL. 
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4. Introduction 

4.1 Lymphomas 

Lymphomas are defined as neoplastic transformations of the lymphoid system. The majority of 

lymphomas (90%) are non-Hodgkin lymphomas (NHLs), and the rest are considered as Hodgkin 

lymphomas (HLs) (Shankland et al., 2012). NHLs show morphologic heterogeneity and close to 90-

95% of them are of B cell origin (Küppers, 2005; Shankland et al., 2012). The most common subtype 

of NHLs is diffuse large B cell lymphoma (DLBCL, around 30.6%), followed by follicular 

lymphoma (FL, around 22.1%) while Burkitt lymphoma (BL) constitutes less than 1% among NHLs 

cases (The Non-Hodgkin’s Lymphoma Classification Project, 1997).  

In the World Health organization (WHO) Classification, DLBCL and BL are considered as 

mature B-cell neoplasms (Swerdlow et al., 2008). BL and LBCL (DLBCL) are categorized as high-

growth fraction lymphomas because they have high proliferation index, the tumor sizes are larger 

and they are clinically more aggressive (Sanchez-Beato et al., 2003).  

 

4.2 Burkitt Lymphoma 

In 1958 Dennis Burkitt first described a malignancy associated with jaw sarcomas among African 

children (Burkitt, 1958). The sarcoma was identified as a form of lymphoma and later identified as 

BL (O’Conor, 1961; Burkitt, 1983). BL is included in highly aggressive B cell malignancies (Hecht 

and Aster, 2000) and is the first B cell malignancy identified related to HIV (Ferry, 2006). It is one 

of lymphoid tumors specified with chromosomal translocation (Zech et al., 1976). MYC translocation 

is the hallmark of BL (Jaffe and Pitaluga, 2011). In addition, BL cells are the fastest growing tumor 

cells (Burkitt, 1983; Kalungi et al., 2012).  

Several studies (Tamaru et al., 1995; Klein et al., 1995) found eBLs and sBLs are most likely 

derived from germinal center (GC) B cells, while another study suggest that sBL might develop from 

memory B cells (Isobe et al., 2002).  

BL cells have a rapid doubling time, i.e. the tumor cells proliferate extremely fast (Burkitt, 

1983; Blum et al., 2004; Kalungi et al., 2012). Therefore, considered treatment for BL is intensive 

and short-cycle chemotherapy, but toxic and side effects emerge (Blum et al., 2004). Rituximab, a 

humanized anti-CD20 monoclonal antibody, either single or in combination therapy contributes to 

the improved survival of NHL including BL patients (Jazirehi et al., 2007; Dunleavy et al., 2013). 

Rituximab is considered as an additional agent because cross-linking of CD20 kills tumor cells 

(Bonavida and Vega, 2005). So far, various modified protocol of combination therapy are existing 

(Blum et al., 2004; Dunleavy et al., 2013; Castillo et al., 2013). A study group applied a low intensity-
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combination chemotherapy protocol consisted of infused etoposide, prednisone, vincristine, 

cyclophosphamide, doxorubicin and Rituximab (EPOCH-R) with better result in patients of adults 

sBL and immunodeficiency-associated BL (Dunleavy et al., 2013). Although improve survival in 

many treated patients, resistant to Rituximab in certain patients is developed (Bonavida and Vega, 

2005; Jazirehi et al., 2007).  

In developed countries where the best medical and infrastructure cares are accessible, 90% of 

survival rate can be achieved (Molyneux et al., 2012). In developing countries, cure rate is lower 

because of limited access to medical care. Early detection and treatment are important for better 

survival of BL (Shankland et al., 2012). Untreated patients typically die within months (Hummel et 

al., 2006). Optimal therapy for BL is still unsatisfied, therefore, attempts to improve and develop 

alternative treatments targeting survival pathways of BL are important. 

 

4.2.1 Epidemiology and risk factors of BL 

Based on epidemiology WHO classifies three clinical variants of BL with different clinical 

presentation, morphology and biology (Leoncini et al., 2008). Endemic variants (eBL) mostly found 

in Africa specifically in “the lymphoma belt” of Africa and Papua New Guinea. In these regions, 

eBL prevails among children (Burkitt, 1958; 1983; van den Bosch, 2004). Sporadic BL type (sBL) 

is distributed all over the world and occurs predominantly in children and adults (Shapira and Peylan-

Ramu, 1998; Ferry, 2006). Immunodeficiency-associated BL is a subtype with main relation to the 

infection of human immunodeficiency virus (HIV), also other immunosuppression conditions such 

as inherited immunodeficiency (Ferry, 2006) and post-transplant recipients (Gong, 2006). BL occurs 

more frequently in AIDS population, than in immunosuppressed transplant recipients (Beral et al., 

1991), indicating that immunosuppression alone is not responsible for BL development (Schulz et 

al., 1996). Epstein Barr Virus (EBV) and malaria infections are considered as co-factors of BL 

(Burkitt, 1983; van den Bosch, 2004). In Africa BL is usually related to EBV, however, in the USA, 

EBV is identified in less than 20% of sBL cases and in around 50% of AIDS related BL cases (Beral 

et al., 1991).  

 

4.2.2 Clinical presentation of BL 

Different geographic locations show a diverse clinical presentation of BL. In Africa, where eBL cases 

are mostly found, the involvement of head and neck encompassing jaw, facial bones, and other extra 

nodal sites occur in majority cases, followed by abdominal involvement. Tumors at these locations 

affect predominantly males (Burkitt, 1958; 1983; Walusansa et al., 2012). The most common sites of 

sBL are abdominal organs, while jaw tumors occur at lower percentage (Shapira and Peylan-Ramu, 
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1998). Similarly, abdominal regions are most common sites in immunodeficiency-related BLs in 

adults (Blum et al., 2004).  

 

4.2.3 Morphology of BL 

Histologically, BL consists of uniformly monomorphic, medium sized cells with round nuclei, 

multiple nucleoli, and moderately abundant basophilic cytoplasm. The tumor cells proliferate fast 

(proliferation index of Ki67 is nearly 100%, Bellan et al., 2003; Blum et al., 2004).  

 

              

 

Fig. 1 The characteristic morphology of BL. A. Histologic features of BL comprising 

monomorphic, medium sized cells with round nuclei, multiple nucleoli, and relatively abundant 

basophilic cytoplasm. The characteristic “starry sky” pattern is formed because of numerous scattered 

macrophages, which have ingested apoptotic tumor cells. Immunohistochemistry reveals typical BL 

immunophenotype CD20+, BCL6+ and Ki67+ in almost 100% tumor cells, including CD10+ and 

BCL2- (not shown). B. The translocation of MYC to immunoglobulin Heavy (IgH) chain genes is 

specified by FISH analysis with probes for 14q32/IgH (green), 8q24/MYC (red) and a chromosome 

8 centromere probe (aqua blue). The fusion products t(8;14)(q24;q32) are in yellow (arrows). 

Modified from Blum et al., 2004; Molyneux et al., 2012 and our own data (A). 

 

Due to the high rate of apoptosis numerous macrophages which have ingested apoptotic tumor 

cells were found in tumors resulting in a characteristic “starry sky” pattern (Fig. 1). BL cells express 

IgM, CD19, CD20, CD22, CD79a, CD10, and BCL6. BL are negative for BCL2, CD5, CD23, CD34 

and TdT (Blum et al., 2004; Ferry, 2006). Molecular cytogenetics, i.e. fluorescence in situ 

hybridization (FISH) and staining with monoclonal antibodies specific to MYC and BCL6 are widely 

used as molecular tools in study of aggressive lymphomas including BL diagnosis (Jaffe and 

Pittaluga, 2011; Molyneux et al., 2012; Ott et al., 2013; G. Ott, Pers. Comm.).  

A B

B 
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4.2.4 Pathogenesis and molecular signature of BL  

BCLs, including BL, originated from different stages of B cell differentiation. Therefore, most BCLs 

represent common stages of B cell differentiation (Fig. 2, Evans and Hancock, 2003; Jaffe et al., 

2008). GC B cells undergo clonal expansion through modifications of their DNA involving somatic 

hypermutation (SHM), class switch recombination (CSR), and receptor editing. If these processes 

unsuccessful resulting in chromosomal translocations thereby lymphomagenesis (Küppers et al., 

1999).   

                              

 

 

Fig. 2 Aberrant B cell development results in malignant transformation of B cells. During 

development, B cells undergo several processes, including SHM and CSR. These processes possess 

the risk of malignant transformation. Most leukemias and B cell lymphomas have 

immunophenotypes resembling the developmental stage of the B cell prior aberrant transformations. 

Based on Jaffe et al., 2008.  

 

In BCLs, chromosomal translocations are the major mechanism of activation and 

deregulation of proto-oncogenes (Evans and Hancock, 2003). Chromosomal translocations in BCLs 

mostly involve the MYC and Ig loci (Küppers, 2005; Nussenzweig and Nussenzweig, 2010). In GCs, 

activation-induced cytidine deaminase (AID) mediates the process of chromosomal breaks in the 
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MYC locus during SHM and CSR (Calado et al., 2012). Since AID and c-Myc proteins are co-

expressed in subsets of c-Myc+ GC B cells, activation of atypical AID during MYC transcription 

could lead to chromosomal translocation in GC B cells (Nussenzweig and Nussenzweig, 2010; 

Dominguez-Sola et al., 2012). Both MYC and transcriptional repressor BCL6 are crucial for the 

formation and maintenance of GC cells (Calado et al., 2012). The translocations lead to juxtaposition 

of transcriptional control elements in the Ig locus to the MYC promoter. Thereby the BCL6 binding 

sites in the MYC 5′ region may be eliminated in some cases (Dominguez-Sola et al., 2012). The strong 

enhancer activity of Ig genes dominates BCL6-mediated repression, thus preventing the suppression 

of MYC transcription by BCL6 in the DZ (Dominguez-Sola et al., 2012).  

MYC overexpression is a common genetic feature of BL because of translocation of MYC to 

Ig H genes (Sánchez-Beato et al., 2003). However, the presence of B cells with MYC translocation 

in the people without lymphomas suggests that MYC alone is not sufficient to generate BL (Janzt et 

al., 2003). Additional mutations, such as TP53, MYC itself, TCF3, ID3 (an inhibitor of TCF3, 

Schmitz et al., 2012), and CCND3 (Sander et al., 2012) were also identified in BL. Increased tonic B 

cell receptor (BCR) signaling via activated TCF3 leads to activation of phosphatidylinositol3-OH 

kinase (PI3K) pathway, thereby maintaining BL survival. TCF3 mutation also activates CCND3 

(Schmizt et al., 2014). Cyclin D3, a cell cycle regulator is more stable due to CCND3 mutations in 

human BL and a mouse model causes progression of cell cycle. Thus, cyclin D3 mutant may 

contribute to BL pathogenesis. Accordingly, the collaboration of MYC and PI3K, is one important 

point for BL pathogenesis (Schmitz et al., 2012; Sander et al., 2012).  

Gene expression profiling studies by Dave et al. (2006) have characterized a specific BL 

signature such as the expression of MYC target genes. GC-B associated genes are identified as highly 

expressed, while the expression of NF-κB target genes and MHC complex class I genes are 

downregulated (Dave et al., 2006; Hummel et al., 2006). Expression of Nfkb1 is blocked in human 

BL and is declined in most Eµ-Myc tumor cells (Keller et al., 2005). By using microRNA profiles, 

Lenze and colleagues demonstrated that BL and DLBCL are discrete lymphoma types (Lenze et al., 

2011). 

 

4.2.4.1 MYC  

The MYC (c-Myc) gene situated on chromosome 8q24 is a member of the proto-oncogenic Myc 

family, consisting of c-Myc, N-Myc, L-Myc, S-Myc, and B-Myc. Each of MYC proteins has specific 

function (Ryan and Birnie, 1996). Basically, c-Myc regulates cell-cycle progression and apoptosis 

and is involved in cellular transformation. N-Myc and L-Myc control cell-cycle progression and 
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cellular transformation. S-Myc and B-Myc have opposite functions i.e. they act as growth suppressor 

inhibit neoplastic transformation (Ryan and Birnie, 1996).  

MYC has an N-terminal transactivation domain and a C terminal basic helix-loop-helix-

leucine zipper (bHLH-LZ) that dimerizes with the MAX protein (Slack et al., 2011). MYC is a 

nuclear phosphoprotein and forms a complex with MAX to bind E-Box DNA motifs, in this manner 

regulating a huge number of target genes (Grandori et al., 1985; Arvanitis and Felsher, 2006). The 

stability and degradation of MYC are regulated by two N-terminal phosphorylation sites, Thr 58 and 

Ser 62, under control of the Ras effector pathways, Raf/ERK and PI-3K/AKT (Sears et al., 2000). 

MYC is a critical regulator of a many physiological cell functions, such as cell growth, 

metabolism, apoptosis, proliferation, angiogenesis, migration, invasion, and preservation of 

telomerase  (Evan et al., 2005; Vita and Henriksson, 2006; Wierstra and Alves, 2008; Levens, 2008). 

Therefore, expression of MYC gene is under stringent control mechanism (Wierstra and Alves, 2008; 

Mognol et al., 2012).  

Deregulation of MYC expression alone is not sufficient to generate lymphomas, since the 

t(8;14) translocation has been detected at very low levels in blood of healthy individuals (Janz et al., 

2003). MYC overexpression has been found in close to 70% of all human cancers (Klapproth and 

Wirth, 2010). Basically, high MYC overexpression specifies clinically more aggressive tumors with 

a worse prognosis than tumors with low/not detectable MYC expression (Smith et al., 2010; Ott et 

al., 2013). The majority of BL have MYC translocated to the heavy chain region t(8;14)(q24;q32) 

(Zech et al., 1976) or less commonly to the lambda t(2;8)(p12;q24) or kappa (t(8;22)(q24;q11) light 

chain (Bernheim et al., 1981). After MYC translocation, the silencing of the MYC gene is prevented 

by positive regulatory elements of Ig genes i.e. enhancers (Wierstra and Alves, 2008).        

 

4.2.4.2 BCL6   

Together with deregulated MYC gene, dysfunctional proto-oncogene BCL6 plays a major role in the 

pathogenesis of GC origin lymphomas including BL (Basso et al., 2010). Most GC-derived 

malignancies highly express BCL6 (Bunting and Melnick, 2013). B cell lymphoma 6 (BCL6) is a 

transcriptional repressor and member of the BTB/POZ (bric-a-brac, tram track, broad complex/pox 

virus zinc finger) family of transcription factors consisting of a N terminal-POZ domain and six C-

terminal C2H2 Krüppel-like zinc fingers (Lemercier et al., 2002; Mascle et al., 2003, Basso et al., 

2010). BCL6 represses numerous genes involved in activation and differentiation of lymphoid cells, 

in cell cycle regulation and in immune responses (Sánchez-Beato et al., 2003). These functions are 

performed via binding to promoter sequences thereby affecting their transcriptional activities 

(Pasqualucci et al., 2003) or through recruitment of class I and II histone deacetylase complexes 
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(HDAC, Basso and Dalla-Favera, 2012). BCL6 is degraded by the ubiquitin/proteasome pathway 

following its phosphorylation via mitogen-activated protein kinases (MAPKs, Niu et al., 1998) or via 

p300 mediated acetylation (Bereshchenko et al., 2002) 

BCL6 is an important modulator of differentiation and function of B cell lineage. During 

rearrangement of Ig-L chain genes of pre-B cell in bone marrow (BM), BCL6 protects pre-B cells 

from DNA damage (Duy et al., 2010). BCL6 mediates pre-BCR signaling for exit from cell cycle by 

down-regulation of MYC expression levels (Nahar e t al., 2013).              

During GC formation, both in the DZ and LZ, BCL6 is a crucial factor together with MYC 

(Dominguez-Sola et al., 2012; Calado et al., 2012). The expression of BCL6 was identified in almost 

all lymphomas derived from GC B cells including BL (Sánchez-Beato et al., 2003). Mutations of 

BCL6 were found in around 30% to 50% of BLs (Hecht and Aster, 2000). Many studies have 

analyzed the mechanisms of BCL6 overexpression mostly in DLBCLs, which occur via 

translocations or hypermutations of its promoter (Duan et al., 2012). Although BCL6 overexpression 

and nuclear localization is observed in near all BL cases (G. Ott, personal communication; Sánchez-

Beato et al., 2003), involved molecular mechanisms are less clear.  

 

4.3 B cell development 

As a part of the adaptive immune system, B lymphocytes protect against a large number of pathogens. 

The production of antibodies by B cells is an essential component of humoral immunity. Malignancy 

and other abnormalities may arise from alteration of certain pathways during B-cell development 

(Pieper et al., 2013).  

Human and mouse B cells generated from the fetal liver and BM from hematopoietic stem 

cells (HSC). After serial stages of differentiation through B cell pathways, immature B cells leave 

the BM to peripheral lymphoid organs and complete their differentiation at these sites (Kondo et al., 

2003; Cobaledo et al., 2007; Pieper et al., 2013).  

  

4.3.1 The early B cell development 

The earliest progenitors of B-lineage, pre-pro-B cells do not synthesize Ig since their Ig genes are in 

unrearranged germ line configuration (Hardy et al., 1991; Hardy and Hayakawa, 2001). The 

expression of the recombination activating genes, Rag 1 and 2 is not detected on these cells (Oettinger 

et al., 1990). The formation of pro-B cells is initiated by DH to JH rearrangement followed by VH to 

DHJH rearrangement at IgH locus (Kitamura et al., 1992). The surface expression of B220 and CD19 

together with Igα/Igβ identified the pro-B cell stage identity (Fig. 3, Nagasawa, 2006; Kurosaki et 

al., 2010).  
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Fig. 3 B cell development. B cell sub-populations are defined by the expression of surface markers 

and referred as pre-pro-B cells, pro-B cells, large pre-B cells and small pre-B cells. Immature B cells 

leave the BM and move to the peripheral lymphoid organs. In these sites they complete their 

maturation by forming GC and subsequently generate memory- and plasma B cells. Modified from 

Nagasawa, 2006; Kurosaki et al., 2010. 

 

Upon completion of VHDHJH recombination, pre-B cells transiently express an Ig µH chain 

(Fig. 3), surrogate light chains (SLC); VpreB and λ5 polypeptides and Igα-Igβ (Zhang et al., 2004). 

Following several rounds of cell division, pre-B cells become small pre-B cells. Accordingly, 

increased Rag1 and Rag2 expression is needed to initiate IgL chain rearrangements (Cain et al., 

2009).  This results in expression of IgM (Fig. 3 and 4) on the surface of immature B cells (Nagasawa, 

2006; Pieper et al., 2013). At this stage, external antigens can be identified by these B cells (Hardy 

et al., 1991; Hardy and Hayakawa, 2001). Immature B cells migrate to peripheral sites through blood 

stream and develop into mature B cells (Nagasawa, 2006).  

Transitional B cells (referred as T1 and T2), are temporary stages before B cells becoming 

mature (Cain et al., 2009). During T1 and T2 maturation, tolerance processes continue, as evidenced 

from decreased number of auto-reactive clones (Cain et al., 2009). After receptor-mediated negative 

selection to remove autoreactive clones remaining B cells finally become mature and co-express IgM 

and IgD on their surface (Cain et al., 2009; Kurosaki et al., 2010).  
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Mature B cells consists of three populations i.e. B-1B, follicular (FO) and marginal zone (MZ) 

B cells (Carey et al., 2008). B1-B cells are derived from fetal liver stem cells, most of them express 

CD5 and they are located in serous body cavity including peritoneum (Hardy and Hayakawa, 2001; 

Casola, 2007). FO-B cells or so called B2-B cells develop from BM precursor cells are located in the 

follicles of lymphoid organs and form majority of peripheral B cell (Hardy and Hayakawa, 2001; 

Casola, 2007). As MZ-B cells are situated adjacent to marginal sinus of spleen, they can easily detect 

pathogens from blood stream (Thomas et al., 2006; Carey et al., 2008).  

       

   

 

Fig. 4 Composition of the pre-BCR and BCR. The pre-BCR and BCR consist of transmembrane 

of IgH that is related to Igα and Igβ, and the surrogate light chain (λ5 and VpreB) or IgL, respectively. 

Sarcoma (SRC)-family protein tyrosine kinase (PTK) phosphorylates tyrosine residues (Y) in the 

immunoreceptor tyrosine-based activation motifs (ITAMs) of the Igα and Igβ heterodimers. This 

results in the activation of spleen tyrosine kinase (SYK) which phosphorylate numerous downstream 

targets. Based on Monroe, 2006. 

 

4.3.2 Germinal center reaction 

GC development initiates when B cells migrate into the T-cell area of the peripheral lymphoid tissues 

(spleen, lymph nodes and Peyer’s patches), where they are activated by the interaction with T cells 

(MacLennan, 1994; Klein and Dalla-Favera, 2008). Activated B cells have two fates: they either 

differentiate into short-living plasma cells or form GCs (Tarlinton, 2006). Formation of GCs is 

specified with the progressive up regulation of BCL6 and the concomitant down regulation of c-Myc 

expression (Dominguez-Sola et al., 2012; Calado et al., 2012). The transcriptional co-activator 

BOB.1/OBF.1 (B cell octamer binding protein 1/Octamer binding factor 1 (a lymphocyte specific 

transcriptional coactivator)) seems has an important role in GC formation, as inactivation of this gene 

in a mouse model suppressed GC development (Hess et al., 2001). Interaction of BOB.1/OBF.1 

protein with Oct1 and Oct2 leads to transcriptional activity of octamer motifs (Greiner et al., 2000). 
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Fig. 5 Germinal center reaction. Naïve B cells migrate to the T-cell zone and are activated by T 

cells. Activated B cells may differentiate into short-living plasma cells or enter the DZ, proliferate 

and become centroblasts. Centroblats undergo SHM which introduces high rate mutations and most 

mutations lead to reduced antigen affinity of their BCR, if this occurs they undergo apoptosis. 

Centroblasts enter the LZ and differentiate into centrocytes. Upon activation by T cells and follicular 

dendritic cells (FDCs), centrocytes differentiate into memory B or plasma cells or re-enter the DZ. 

Centrocytes which fail to bind antigens undergo apoptosis. Modified from Küppers, 2005; Tarlinton, 

2006; Victora and Nussenzweig, 2012. 

         

GC development is usually completed but it is still immature within 4 days after 

immunization, becomes mature about 10 days (Calado et al., 2012) and reached maximum size 

around 2 weeks (Klein and Dalla-Favera, 2008). GC is divided into discrete anatomic structure so 

called DZ and LZ (Nieuwenhuis and Opstelten, 1984; MacLennan, 1994). The DZ contains 

centroblasts - cycling B cells, where SHM is initiated. Conversely, the LZ besides follicular dendritic 

cells (FDCs) and follicular T helper cells comprises of centrocytes - non-proliferating B cells, which 

undergo CSR and clonal selection (Fig. 5, MacLennan, 1994; Klein and Dalla-Favera, 2008). In the 

LZ, c-Myc is re-expressed since it expression is required by centrocytes to re-enter the DZ, thereby 

maintaining the GC cells nature (Dominguez-Sola et al., 2012; Calado et al., 2012). In addition, NF-

κB activity and IRF4 expression is upregulated, but BCL6 is down regulated (Calado et al., 2012). 

Centrocytes differentiate into plasma cells and memory B cells or undergo apoptosis if they fail to 

bind antigens (Fig. 5, Tarlinton, 2006). 

Genetic alterations in the GCs are introduced through SHM and CSR of Ig genes. Both 

processes need AID (Muramatsu et al., 2000). SHM modifies the variable region of rearranged Ig 

genes (Bross et al., 2000). CSR facilitates isotype switching of the IgH of activated B cells from IgM 

and IgD to either IgG, IgA or IgE (Klein and Dalla-Favera, 2008).  
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4.4 Burkitt lymphoma models  

Many in vitro and in vivo tumor models were developed to study the pathogenesis of BL. Numerous 

cell lines were derived from BL patients such as Ramos, Namalwa, Raji, Daudi cells etc. One 

limitation of these cell lines is constant MYC expression level. Therefore Tet-system and estrogen 

receptor fusion systems (Felsher and Bishop, 1999; Arvanitis and Felsher, 2006) were used to create 

conditional overexpression of c-Myc to induce tumorigenesis in vivo and to manipulate MYC 

expression in tumors. 

Deregulation of MYC expression has a significant effect on the development of lymphomas. 

In the majority of BL, the MYC gene has been activated by translocation to the IgH-chain locus. It is 

coupled to the lymphoid-specific enhancer (Eµ) of the IgH-chain locus (Willis and Dyer, 2000). 

Based on this concept in vivo models were generated. Adam and colleagues (Adam et al., 1985) 

created transgenic Eµ-Myc mice using transgenic construct which is equivalent to a rearranged MYC 

allele in plasmacytoma ABPC17 (Corcoran et al., 1985). In this model the transcription of the 

transgene is driven by the control elements from the IgH-chain gene. Hence, the MYC transgene is 

transcribed only in the B cell lineage. After several weeks of latency these mice develop clonal pre-

B, mature B cell lymphomas (BCLs), and mixed pre-B/B lymphomas (Adam et al., 1985; Harris et 

al., 1988). This suggests that progression to malignancy in Eµ-Myc mice, like in human BL, depends 

on additional oncogenic events (Harris et al., 1988). In respect to tumor origin, transgenic Eµ-Myc 

mice do not reflect human BL. Therefore, further mouse models were created. The role of BCR 

signalling in MYC-induced lymphomas was also investigated through the generation of transgenic 

model based on Eµ-Myc mice. In this model, B cells express the BCR with the specificity for 

simultaneously expressed transgenic protein antigen. However, instead of clonal development at 

clonal tumors authors observed polyclonal proliferation of all B cells (Refaeli et al., 2008). Finally, 

Sander and colleagues successfully generated a transgenic mouse model which shows close 

similarities to human BL in respect to histology, surface and internal markers and gene expression 

profile (Sander et al., 2012). In this model, the cooperation of MYC and the PI3K pathways in BL 

pathogenesis was established (Sander et al., 2012), similar to conclusion from gene expression 

profiling of human BL (Schmitz et al., 2012).   

 

4.5 Survival factors for BL cells  

Activation of oncogenes and inactivation of tumor suppressor genes in malignant tumors result in an 

uncontrolled cell growth, which destroy the architecture of surrounding tissues and lead to spread of 

tumor cells to other sites (Hanahan and Weinberg, 2000). The rapid growth of BL cells suggests low 

apoptotic but high proliferation rate indicating deregulation of apoptotic pathways (Kalungi et al., 
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2012). However, BLs show a low activity of the pro-survival NF-κB signaling (Dave et al., 2006). 

BL cells are also often negative for Bcl-2 (Molyneoux et al., 2012). Recent evidence from a mouse 

model indicated the cooperation between the MYC and phosphoinositide 3-kinase (PI3K) cascade 

during progression of BL-like tumor cells (Sander et al., 2012). Akt (protein kinase B/PKB) is a 

serine/threonine kinase and activated via phosphorylation by PI3K (Qiao et al., 2013). Mutation and 

amplification of Akt/PKB isoforms are identified in human cancers (Brugge et al., 2007). BL almost 

always shows an activity of the PI3K-dependent mTORC1 complex (Schmitz et al., 2012).  

Besides NF-κB pathway, NFAT family proteins are major regulators of activation-induced 

cell death (AICD) in T- and B-cells. Immunoreceptor triggering results in a massive synthesis of anti-

apoptotic NFATc1/αA isoform in T- (Chuvpilo et al., 2002) and B-cells (Bhattacharyya et al., 2011). 

Therefore we hypothesized that NFATc1 might be important survival factor for BL cells and might 

represent specific therapeutic target. 

 

4.6 Nuclear Factor of Activated T-Cell (NFAT)  

The Nuclear Factor of Activated T Cell (NFAT) proteins were initially discovered as T cell receptor 

induced factors regulating the interleukin-2 (IL-2) promoter (Shaw et al., 1988; Serfling et al., 1989) 

and other lymphokine genes in T cells (Serfling et al., 2006a). Nowadays, the members of NFAT 

family are identified as important regulators that play roles in heart, cardiac valves and septum (de la 

Pompa et al., 1998), in blood vessels, the muscular and nervous systems (Graef et al., 2001), in 

myeloid cells (Fric et al., 2012), in osteoclasts and osteoblast (Winslow et al., 2006), in astrocytes 

(Furman et al., 2012), the skin (Al-Daraji et al., 2009), and control hair growth (Horsley et al., 2008).  

The NFAT family consists of four closely related proteins, the genuine NFATc1 (=NFAT2, 

NFATc), NFATc2 (=NFAT1, NFATp), NFATc3 (NFAT4, NFATx), NFATc4 (=NFAT3) factors 

and a more distant relative, NFAT5 (TonEBP, OREBP, NFATz). NFATc1-c4 are calcium 

(Ca2+)/calcineurin (CN)-dependent, whereas NFAT5 is a distinct family member, which reacts to 

osmotic stress (Fig. 6 and 7, Lopez-Rodriguez et al., 1999; Macian, 2005). All NFATs contain a 

highly conserved DNA binding domain (RSD), which binds to the core DNA motif A/TGGAAA, 

cooperate with other factors, such as AP1 except NFAT5 (Serfling et al., 2004).  
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Fig. 6 Structure of the NFAT family members. NFATc1-c4 are closely related. They contain 

Ca2+/CN dependent regulatory domain, NFAT homology region (NHR), highly conserved DNA 

binding domain (RSD) and a carboxy-terminal domain. The C-terminal domain contains TADs and 

regulatory elements, i.e. sumoylation sites. The NHR consists of transactivating domain, docking 

sites for casein kinase 1 (CK1) and CN and multiple phosphorylation sites targeted by CN. Based on 

Serfling et al., 2006a: Müller and Rao, 2010.  

 

4.6.1 Regulation of NFAT activity 

The activity of NFATc1-c4 proteins is tightly controlled by the Ca2+/calmodulin serine/threonine 

dependent phosphatase CN (Loh et al., 1996a). In resting cells, NFAT transcription factors are 

heavily phosphorylated and localized in cytosol (Rao et al., 1997). Activation of NFAT proteins 

involves three steps: dephosphorylation, nuclear translocation, and increase in DNA binding affinity 

(Rao et al., 1997). This activation is regulated through the stimulation of cell surface receptors 

coupled to Ca2+ mobilization, such as the antigen receptors on T and B cells, the Fcγ receptors on 

macrophages and NK cells, and receptors coupled to certain heterotrimeric G proteins. As a 
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consequence, inositol (1,4,5) trisphosphate (InsP3) and diacylglycerol (DAG) are generated. DAG 

activates the RAS/PKC pathway. InsP3 mediates the release of Ca2+ from internal stores, followed 

by the opening of specific store-operated calcium channels (CRAC), resulting in the influx of 

extracellular Ca2+ and the Ca2+/calmodulin-dependent activation of CN (Rao et al., 1997; Gwack et 

al., 2007). Activated CN dephosphorylates multiple phosphoserine residues on cytosolic NFAT 

proteins and, thereby, enables their nuclear translocation (Luo et al., 1996; Shibasaki et al., 1996; 

Hogan et al., 2003).  

          

 

Fig. 7 Calcium signaling and NFAT activation. Receptor tyrosine kinases (RTKs) and immune 

receptors, such as the BCR, activate the phospholipase Cγ (PLCγ) which in turn hydrolyses 

phosphatidylinositol-4,5-biphosphate (Ptdlns (4,5)P2). This releases inositol-1,4,5-triphosphate 

(InsP3) and diacylglycerol (DAG) and results in loss of Ca2+ binding to stromal interaction molecule 

1 (STIM1), due to Ca2+ release from endoplasmic reticulum (ER). The Ca2+ release then activates 

Ca2+ channels (CRAC), leads to opening of CRAC channels and allows sustained extracellular Ca2+ 

influx. Calmodulin binds to Ca2+ and the phosphatase CN resulting in a binding of Ca2+ to the CN 

regulatory B subunit, thus exposing the CAM-binding site on the catalytic A subunit and releasing 

an autoinhibitory sequence in CN from the catalytic pocket. The phosphatase CN dephosphorylates 

NFAT and promotes its nuclear translocation. Based on Mancini and Toker, 2009. 

 

In the nucleus, NFAT proteins bind to specific cis- and trans-elements to control the 

transcription of their target genes either alone or in cooperation with other factors (Loh et al., 1996; 

Chen et al., 1998; Garcia-Cozar et al., 1998). As a major upstream regulator of NFAT proteins, the 

Ca2+/calmodulin-dependent activation of CN is the main target for inhibition by the well-

characterized CN inhibitors cyclosporin A (CsA) and tacrolimus (FK506) (Loh et al., 1996a). The 

nuclear export of NFAT is regulated through the phosphorylation of its serine residues by certain 

kinases, such as by glycogen synthase kinase-3 (GSK), protein kinase A (PKA), casein kinase 1 
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(CK1), p38 MAPK and c-Jun N-terminal kinase 1 (JNK1). The activity of these kinases leads to the 

termination of CN signal (Beals et al., 1997; Sheridan et al., 2002; Okamura et al., 2004; Gomez del 

arco et al., 2000; Liang et al., 2003).  

Based on the close interaction between the phosphatase CN and NFAT, a peptide, namely 

VIVIT was carefully chosen. This peptide inhibits that interaction, thus, preventing activation of 

NFAT (Aramburu et al., 1999).  

4.6.2 NFATc1  

Among the NFAT members, NFATc1 is special, since its short isoform, NFATc1/αA is highly 

induced in activated lymphocytes and is able to autoregulate transcription of Nfatc1 gene via binding 

to the inducible P1 promoter leading to predominant expression of anti-apoptotic NFATc1/αA 

isoform (Serfling et al., 2006, Serfling et al., 2012). Correspondingly, NFATc1 deficiency results in 

reduced proliferation of B-cells and reduction of B1a cell population (Bhattacharyya et al., 2011), as 

well as decreased IL4 and IL6 expression (Ranger et al., 1998; Yoshida et al., 1998). 

The highly conserved murine and human NFATc1 genes span ∼110kb and 140kb DNA, 

respectively and comprises of 11 exons (Serfling et al., 2006). In lymphocytes, Nfatc1 transcription 

is regulated by two promoters, the inducible promoter P1 located upstream of exon 1 and the 

constitutive promoter P2 situated upstream of exon 2 (Chuvpilo et al., 1999). Due to two polyA sites, 

pA1 and pA2, and alternative splicing events six prominent isoforms are generated which differ in 

the length of their C terminal peptide (Fig. 8, Serfling et al., 2006). Depending on the promoter usage, 

the Nfatc1 gene is transcribed into either the α or β isoforms (Park et al., 1996; Chuvpilo et al., 1999; 

Chuvpilo et al., 2002).  

 

    

 

Fig. 8 Structure of the Nfatc1 gene and the generation of six NFATc1 isoforms. P1, P2 promoters 

and two poly A addition sites, pA1 and pA2 are indicated. N-terminal α-and β-peptides are indicated 

as red and green, respectively. Based on Serfling et al., 2006. 
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In resting lymphocytes the transcription of the Nfatc1 gene is controlled by the P2 promoter 

and distal polyA2 site (Chuvpilo et al., 2002). Switching to the P1 promoter and the use of proximal 

polyA site pA1 as a consequence of stimulation of lymphocytes through their immune receptors leads 

to the synthesis of NFATc1/αA mRNA encoding the inducible short NFATc1 isoform (NFATc1/αA). 

This isoform lacks the C-terminal peptide (∼ 250 aa) and hence lacks a second TAD characteristic 

for most of longer NFATc1 isoforms proteins (Avots et al., 1999; Chuvpilo et al., 2002). 

NFATc1/αA, the shortest of six isoforms contains a specific N-terminal peptide, designated as α-

peptide, which differs from NFATc1/β isoforms (Serfling et al., 2006). The longer isoforms 

NFATc1/B and NFATc1/C contain an extra C-terminal peptide of 128 and 246 aa, respectively, and 

are expressed constitutively from the P2 promoter (Serfling et al., 2006). In addition, the expression 

of the NFATc1 gene is also regulated by remote enhancer elements (Hock et al., 2013). 

 The P1 promoter sequences are highly conserved between mouse and human. The P1 and P2 

promoters form DNase I–hypersensitive chromatin sites and encompass a CpG islands. P1 harbors 

multiple DNA motifs for the binding of inducible transcription factors, such as for CREB, Fos, ATF, 

and palindromic NFAT sites (Serfling et al., 2012).  

 

4.6.3 NFATc1 and carcinogenesis 

In addition to their central role in the immune response, NFATc1 proteins regulate the proliferation 

and apoptosis of other normal and tumor cells. Both NFATc1 and NFATc2 proteins were identified 

as regulators of COX-2 expression in colon carcinoma cells (Duque at al., 2005). Nuclear localization 

of NFATc1 was detected in DLBCLs (Pham et al., 2010), in pancreatic cancer cells (Buchholz et al., 

2006), in BL (Marafioti et al., 2005), and in certain T cell lymphomas/leukemias (Medyouf et al., 

2007; Abbott et al., 1998). Activation of NFATc1 induces formation of ovarian and skin tumors in 

vivo (Tripathi et al., 2013). In addition, expression of constitutively active NFATc1 version promotes 

cancer cell invasion via down regulation of E-cadherin expression (Oikawa et al., 2013).  

NFATc1 is one of transcriptional activators of the MYC promoter (Wierstra and Alves, 2008; 

Willis and Dyer, 2000). In pancreatic cancer cells and preadipocyte, NFATc1 stimulated MYC 

mRNA and protein expression (Buchholz et al., 2006; Neal and Clipstone, 2003). In several tumors 

such as in leukemias, lymphomas, pancreatic, colon and breast cancers, both NFAT and MYC are 

over-expressed (Marafioti et al., 2004; Jauliac et al., 2002; Buchholz et al., 2006; Medyouf et al., 

2007; Pham et al., 2010). Together these findings suggest that NFATc1 might contribute to high 

levels of MYC expression in human malignancies. 
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4.7 Objectives of the thesis 

Burkitt lymphoma (BL) is a highly aggressive B cell malignancy driven by high expression levels of 

MYC. Pro-apoptotic properties of MYC in lymphoma cells are counteracted by survival pathways. 

In normal B-cells BCR triggering activates both NFκB- and NFAT-dependent survival signals. Since 

BL cells do not exhibit constitutive NFκB activity, we hypothesized that anti-apoptotic component 

of NFATc1 signaling might provide a major survival signal for BL cells. 

 The aim of the current thesis was to investigate the role of anti- and pro-apoptotic NFATc1 

isoforms in BL and in BCL, with a final goal to evaluate their potential as therapeutic targets. 

We show that CN-independent anti-apoptotic NFATc1A isoforms are constitutively 

expressed and nuclear in all BL-related entities analysed. In the absence of NFATc1 expansion of 

experimental BCL tumors is strictly compromised. Activities of pro-apoptotic NFATc1B/C isoforms 

are counteracted in BL cell lines. Therefore, our results implicate the whole NFATc1 gene and 

NFATc1A/A isoforms as novel therapeutic targets to treat BL and other B cell malignancies 
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5. Materials and Methods 

5.1 Materials 

5.1.1 Chemicals  

Acetic acid  Liquid Nitrogen 

Acrylamide/Bisacrylamide  Magnesium chloride  

Ammonium peroxodisulfate (APS) Methanol 

Agar     Midori green (Nippon genetic Europe GmbH) 

Agarose Natrium azide 

Boric acid Natrium chloride (NaCl) 

Bovine Serum Albumin (BSA) Natrium hydrogenphosphate 

Bradford reagent  Natrium hydroxyde 

Bromophenol blue Natrium pyruvate 

β-Mercapthoethanol Natrium carbonate 

Chlorofom (Trichlormethane)  Paraformaldehyde 

DAPI (4',6-diamidino-2-phenylindole) Phosphate acid 

Disodium hydrogen phosphate Phenylmethylsulphonylfluoride (PMSF) 

Dimethyl-sulfoxide (DMSO)  Ponceau S 

Dithiothreitol (DTT) Power SYBR Green PCR Master Mix 

Distilled water (dH2O) Propidium iodide 

Ethidium bromide (EtBr)  Sodium dodecyl sulfate (SDS) 

Ethylendiamintetraacetatic acid (EDTA)     Sulfuric acid 

Ethylene glycol tetraacetic acid (EGTA) TEMED (Tetramethylenediamine) 

Ethanol Tissue Tec 

Fetal calf serum (FCS)  Tris   

Fluoroshield (+DAPI) Triton-X-100 

Glycerin Trypan Blue Solution 

Glycin Trypsin/EDTA 

Hydrogen chloride (HCL) Tween 20 

Isopropanol (2-propanol) 2x PCR Mix 

Kalium chloride 6x DNA loading dye 

  

 

Unless otherwise indicated, all materials were from Amersham Biosciences, AppliChem, BioRad, 

Calbiochem, Fermentas, Fluka, Gibco, Merck, PeqLab, Roche Diagnostics and Roche Molecular 

Biochemicals, Roth, Serva and Sigma-Aldrich. 

 

5.1.2 Buffers 

All buffers and solutions were diluted with distilled water (dH2O).  

 

Annexin-Binding Buffer 

(1X) 

HEPES (pH 7.4) 

NaCl2  

 10 mM 

 149 mM 

 CaCl2   2.5 mM 
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Buffer-A   HEPES (pH 7.9)    10 mM 

    KCl      10mM 

    EDTA       0.1 mM 

    EGTA       0.1 mM 

  

Buffer-B   HEPES (pH 7.9)    20 mM   

    NaCl       0.4 M 

    EDTA      1 mM 

    EGTA      1 mM 

 

FACS-buffer   Na2HPO4  (pH 7.4)    10 mM 

    NaCl                  137 mM 

    KCl      2.6 mM 

    KH2PO4     1.8 mM 

    BSA      0.1% (w/v) 

    (NaN3)      0.1% (w/v) 
 

Genomic lysis buffer  Tris (pH 8.0)     50 mM 

    NaCl      300 mM 

SDS      0.2% (w/v) 

    EDTA      25 mM 

    Proteinase K      1000 U/ml 
 

Laemmli-buffer (1x)  Tris-HCl (pH 6.8)    125 mM 

    SDS      4% (w/v) 

    Glycerin     20% (w/v) 

    ß-Mercaptoethanol    10% (w/v) 

    Bromphenol Blue    0.004% (w/v) 

 

HBS-Puffer (2x)  HEPES (pH 7.05)    50 mM 

                                                NaCl      280 mM 

                                                KCl                                           10 mM 

                                                Dextrose     12 mM 

Na2HPO4      1.5 mM 

 

MACS-buffer   NaCl (pH 7.4)    137 mM 

Na2HPO4    10 mM 

    KCl     2.6 mM 

    KH2PO4    1.8 mM 

    BSA     0.1% (w/v) 

    EDTA     2 mM 

 

PBS (1x)   NaCl (pH 7.4)    137 mM 

    Na2HPO4    10 mM 

    KCl     2.6 mM 

    KH2PO4    1.8 mM 
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Red blood cell lysis buffer: 

Solution A   Solution B   Solution C   Ready-to-use buffer 

14g NH4Cl   0.42g MgCl2x6H2O  2.25g NaHCO3  10ml solution A 

0.74g KCl   0.14g MgSO4x7H2O     2.5ml solution B 

0.6g Na2HPO4  0.341gCaCl2      2.5ml solution C 

0.048g KH2PO4 

 

RIPA-buffer (1x)  Tris-HCl 1M (pH 7.5)  50 mM 

    NaCl 5M   150 mM 

    TritonX-100   1 % 

    Na-deoxycholat  1 % 

    SDS 20%   0.1 % 

    EDTA 0.5M pH 8  1 mM 

     

SDS-running buffer  Tris-HCl (pH 8.4)  25 mM 

    Glycin    192 mM 

    SDS    0.1% (w/v) 

 

Stripping-buffer  Tris-HCl (pH 6.8)   65 mM 

SDS     2% (w/v) 

β-Mercaptoethanol   100 mM 

 

TAE buffer (50x)  Tris acetate (pH 8.2-8.4) 2 M 

EDTA    0.5 M 

 

TBS (1x)   Tris-HCl (pH 7.5)  25 mM 

    Glycin    150 mM 

    (NaN3)    0.1% (w/v) 

 

TBS-Tween    Tris-HCl (pH 7.5)   25 mM 

Glycin     150 mM 

Tween 20    0.2% (v/v) 

 

Transfer-buffer  Tris-HCl (pH 8.4)  48 mM 

    Glycin    40 mM 

    SDS    14 mM 

    Methanol   20% (v/v) 

 

10% Resolving gel (10 ml) H2O     4.0 ml 

30% Polyacrylamide   3.3 ml 

1.5 M Tris (pH 8.8)   2.5 ml 

10% APS    0.1 ml 

10% SDS    0.1 ml 

TEMED    0.004 ml 
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Stacking gel (3 ml)  H2O     2.1ml 

30% Polyacrylamide   0.5 ml 

1.5 M Tris (pH 6.8)   0.25 ml 

10% APS    0.3 ml 

10% SDS   0.3 ml 

TEMED    0.003 ml 

 

5.1.3 Antibiotics and inhibitors 

Ampicillin       Sigma-Aldrich 

BAPTA AM [1,2-Bis(2-aminophenoxy)ethane  Santa Cruz Biotechnology 

-N,N,N′,N′-tetraacetic acid tetrakis  

(acetoxymethyl ester)]    

Cyclosphorine A (CsA)     Calbiochem 

HALT Protease inhibitor cocktail    Thermo scientific 

Penicillin/Streptomycin     Gibco 

Jak3 inhibitor       Calbiochem 

 

5.1.4 Antibodies and Reagents 

Fluorescence-conjugated antibodies and reagents for FACS analysis (anti-mouse) 

Annexin V APC      BD Pharmingen  

Antibody Diluent      Dako 

B220 Biotin (RA3-6B2)     BD Pharmingen 

CD19 PE (1D3)      BD Pharmingen 

CD16/32/Fc block (93)     BD Pharmingen 

IgD PE (IA6-2)      Jackson Laboratory 

IgM APC (1/41)      eBiosciences 

IgM FITC (B121-15F9)     eBiosciences 

Ki-67 Alexa Fluor 647 (Sol A 15)     eBiosciences 

Strepavidin APC      eBiosciences 

Strepavidin eFluor 450     eBiosciences 

Strepavidin PerCP.Cy5.5     BD Pharmingen 

 

Primary antibodies for Western Blot, immunohistochemistry and immunofluorescence 

analysis 
 

Mouse anti NFATc1 (7A6)     BD Pharmingen 

Mouse anti-ß Actin (C4)     Santa Cruz Biotechnology 

Goat anti CD20 (M-20, polyclonal)    Santa Cruz Biotecnology 

Mouse anti dsRed (polyclonal)    Santa Cruz Biotechnology 

Mouse anti-c-Myc (9E10)     Santa Cruz Biotechnology 

Rabbit anti BCL6 (D65C10)     Cell Signaling  

Mouse anti-CD68 (KP1)     Dako 

 

HRP conjugated secondary antibodies for Western Blot and immunohistochemistry analysis 
 

Goat anti Mouse HRP      Sigma-Aldrich 

Goat anti Rabbit HRP      Sigma-Aldrich 
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Secondary antibodies for immunofluorescence 

Goat- anti-Mouse Alexa Fluor 555    eBiosciences 

Goat- anti-Mouse Alexa Fluor 488    eBiosciences 

Goat- anti-Rabbit Alexa Fluor 555    eBiosciences 

Goat- anti-Rabbit Alexa Fluor 488    eBiosciences 

Strepavidin Alexa Fluor 488     eBiosciences  

Goat-anti-Mouse Alexa Fluor 647    Dianova 

Donkey anti-Goat Alexa Fluor 488    Invitrogen 

 

5.1.5 Oligonucleotides  

All oligonucleotides were synthesized by Eurofins/MWG/operon or Sigma-Aldrich and dissolved in 

dH2O at a final concentration of 100pmol/μl. 

 

5.1.5.1 Primers for genotyping of mouse tails 

Primers Target Sequences Product size (bp) 

Eµ-myc for 

Eµ-myc rev 

Eµ-myctransgene cagctggcgtaatagcgaagag 

ctgtgactggtgagtactcaacc 

850 

Nfatc1flox for 

Nfatc1flox rev 

5’ NFATc1 flx site cctatttaaacacctccctgcg 

ccatctctctgaccaacagaagccag 

425 (flx) 

320 (wt) 

mb1-cre for 

mb1-cre rev 

mb-1 cre knock-in acctctgatgaagtcaggaagaac 

ggagatgtccttcactctgattct 

500 

mb1-wt for 

mb1-wt rev 

mb-1 wt allele ctgcgggtagaagggggt 

ccttgcgaggtcagggagcc 

400 

M16 

dsRed_seq-L 

NFATc1-dsRed 

knock-in allele 
cctgcctctctcagcctttga 

cctcgaagttcatggagcgc 

893 

  

5.1.5.2 Primers for Reverse Transcriptase (RT) and Real-Time PCR 
 

RT- PCR 

Primers Target Sequences 

qRT mL32 F  

qRT mL32 R  

(Buxade et al., 2012)  

mouse L-32 accagtcagaccgatatgtg 

attgtggaccaggaacttgc 

mNFATc1-Ex3 

mNFATc1-Ex7 

mouse Nfatc1 catgcgccctctgtggccc 

ggagccttctccacgaaaatg 

mNFATc1 P1-U #867 

mNFATc1 P1/P2-L #868 

mNFATc1 P2-U #869 

mouse Nfatc1-P1 and-P2 

promoters 

 

gggagcggagaaactttgc 

gatctcgattctcggactctcc 

cgacttcgatttcctcttcgag 

hL-32-U1 

hL-32-L1 

human L-32 ttgtgaagcccaagatcgtc 

agcacttccagctccttgac  

hNFATc1-1U  

hNFATc1-1L  

human NFATc1 agctgcatggctacttggag 

ctctgcttctccaccagagg 

hNFATc1 P1-U #867  

hNFATc1 P1/P2-L #868 

hNFATc1 P2-U #869  

human NFATc1-P1 and P2 

promoters 

cttcgggagaggagaaactttg 

gaggttatctcgatgcgaggac 

tcgacttcgagttcctcttcg 
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Real-Time PCR 

Primers Target Sequences 

mActin-F  

mActin-R   

mouse β-actin gacggccaggtcatcactattg 

aggaaggctggaaaagagcc 

qRT HPRT for  

qRT HPRT rev 

mouse Hprt agcctaagatgagcgcaagt 

ttactaggcagatggccaca 

qRT mL32 F (Buxade) 

qRT mL32 R  

(Buxade et al., 2012)  

mouse L-32 accagtcagaccgatatgtg 

attgtggaccaggaacttgc 

qRT NFATc1 fwd  

qRT NFATc1 rev 

mouse Nfatc1 gatccgaagctcgtatggac 

agtctctttccccgacatca 

P1 promoter Dir 

P1 promoter rev 

mouse Nfatc1-P1 promoter gggagcggagaaactttgc 

cagggtcgaggtgacactagg 

P2 (Ex2/3-Ex3) Dir 

P2 (Ex2/3-Ex3) rev 

mouse Nfatc1-P2 promoter aggacccggagttcgacttc 

gcagggtcgaggtgacactag 

qRT-hNFATc2-U   

qRT-hNFATc2-L  

human NFATc2 gggcccactatgagacagaa 

aagatctgaagtcccagaggc 

 

5.1.6 Enzymes 

ADVANCE HRP enzyme      Dako    

Peroxidase       Dako 

Proteinase K (822U/ml)     Fermentas 

 

5.1.7 Kits and systems 

anti-mouse B cell-isolation kits     Miltenyi Biotec 

iScript cDNA synthesis kits     BioRad 

PCR Master Mix (2x)      Fermentas 

SuperSignal West Pico ECL Substrate   Pierce/Thermo Scientific 

Trizol reagent       Invitrogen 

First Strand cDNA Synthesis Kit     Fermentas 

ADVANCE HRP LINK      Dako  

Diaminobenzidine (DAB)      Dako 

 

5.1.8 Stimulators 

Ionomycin       Sigma-Aldrich 

TPA (PMA)       Merck 

anti-IgM        Dianova 

anti-CD40       R&D 

 

5.1.9 Size Standard  

DNA-Marker Gene Ruler 1 kb    Thermo Scientific 

DNA-Marker Gene Ruler 100 bp    Thermo Scientific 

PageRuler™ Prestained Protein Ladder   Thermo Scientific   
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5.1.10 Cell lines 

Cell lines Characteristics Growth Medium 

Ramos Human BL cell line RPMI, 10%FCS, 0.1% β mercapthoethanol 

 

Namalwa Human BL cell line RPMI, 10%FCS, 0.1% β mercapthoethanol 

 

P-493-6 Human B cell line 

immortalized with EBV 

RPMI, 15%FCS, 0.1% β mercapthoethanol 

 

 

5.1.11 Experimental animals 

All mice used in a current study were kept and bred in a twelve hour circadian rhythm at 22°C and 

suitable humidity in the animal houses of the Institute of Pathology, the Institute of Microbiology 

and Hygiene and at the Center for Experimental Molecular Medicine (ZEMM) of the University of 

Wuerzburg. The animals were feed with a special animal pelleted diet and water ad libitum. All 

offspring were genotyped at the age of about 4 weeks.  

The experimental animals were 8-20 weeks old gender-matched littermates. For some 

experiments with Eµ-Myc mice age-and gender-matched wild type mice were used as controls. All 

mouse lines were maintained on C57BL/6 background. 

Mouse strains       Origin/Reference 

C57BL/6 Jackson Laboratory/Charles River  

B6.E-myc        Adam et al. (1985) 

B6.NFATc1flx/flx       A. Rao, Harvard University 

B6.mb1-cre  Hobeika et al. (2006) 

B6.NFATc1-dsRed  Rhoda Busch, Institute of Pathology, 

University of Würzburg 

 

5.1.12 Consumables  

Cell culture plates (96 well)      Greiner, Nunc 

Cell culture plates (6, 12, 24, 48 well)    Greiner, Nunc 

Cell culture plates (6cm, 10cm)     Greiner, Nunc 

Cell culture flasks (75cm flask)     Greiner 

Cell separation columns (LS)     Milteny Biotech 

Cell strainer (70μm)       BD Bioscience 

Cover slips        Paul Marienfeld GmbH 

Cryo tube (2ml)       Greiner 

Cuvette (quartz)       Hellma 

Cuvette (plastic)       Braun 

Erlenmeyer flasks (1000ml, 500ml, 100ml)    Schott 

FACS tubes        Greiner 

Falcon tubes 15ml and 50ml      Greiner 

Forceps for animal preparation     Hartenstein 

Freezing container       Nalgene 
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Microcentrifuge tubes (1.5ml, 2ml)     Eppendorf 

Mini surgery kit (animal preparation)     Hartenstein 

Object glass slides       Hartenstein 

Pasteur-pipettes       Hartenstein 

PCR plates, white (96 well)      Thermo Fisher 

Pipette tips (1000μl, 100μl, 10)     Sarstedt 

Serological pipette (25ml, 10ml, 5ml, 2ml)    Greiner 

Sterile filters (0.2μm, 0.45μm)     Sartorius stedim 

Syringe (2ml, 5ml, 10ml)      Braun 

Syringe Needle (23GA, 20GA)     Hartenstein 

Tuberculin syringe (26 GA 3/8")     Braun 

Protran BA 85 Nitrocellulose     GE Healthcare 

Wathman 3MM filter paper      Hartenstein 

X-ray cassette        Hartenstein 

 

5.1.13 Instruments and accessories 

Autoclave       Systec Dx45 

Balance         Hartenstein 

Camera (mounting in light microscope)   Olympus Colorview 

Centrifuge        Eppendorf 

Cold centrifuge       Heraeus 

Confocal microscope TCS SP5 II     Leica Microsystems 

Cuvettes Brand      Hellma 

Gel DocTM XR+       BioRad 

Heating blocks       Hartenstein 

Light microscope (dual head)     Olympus 

Microcentrifuge       Eppendorf 

Microwave       Privileg 

Neubauer counting chamber     Brand 

PCR machine        Primus 96 

pH meter        WTW 

Real-Time RCR machine      ABI Prism 7000 

SDS-PAGE apparatus      Hoefer 

Spectrophotometer GeneQuant Pro    Amersham Bioscience 

Spectrophotometer       Pharmacia 

Spectrophotometer Nanodrop     PeqLab 

Vortexer        Eppendorf 

Waterbath        Heidolph 

Western blot apparatus      Hoefer 

FACS Canto II       BD Bioscience 

CO2 Incubator       Heraeus Instruments 

 

5.1.14 Electronical data processing 

Collection, extraction, analysis and presentation of the data and pictures were performed using 

Lenovo lap top. In addition the following programs were used: 

BD FACS Diva 5.0; FlowJo Software (Tree Star); FusionCapt Advance of Fusion Vilber Lourmat 

program; GraphPad Prism 5; Image Lab Software; Leica Software ImagePro Plus; Microsoft Office 
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Excel 2010; Microsoft Office PowerPoint 2010; Microsoft Office Word 2010; Thomson EndNote 

X7 0.2. 

 

5.2 Methods 

5.2.1 Cellular Technics 

5.2.1.1 Culture of cells 

The cells were maintained in a humidified incubator at 37ºC and 5% CO2. 

Depending of cell types the following media from Gibco were used: 

 

DMEM, supplemented with 10% FCS (v/v); 2mM L-Glutamin; 1mM Natrium-Pyruvat;  

100 U/ml Penicillin/Streptomycin 

 

RPMI supplemented with 10% FCS (v/v); 2 mM L-Glutamin; 1 mM Natrium-Pyruvat 

100 U/ml Penicillin/Streptomycin and 50 μM β-Mercaptoethanol 

 

X-Vivo 15, supplemented with 10% FCS (v/v); 2 mM L-Glutamin; 100 μM NEAA; 1mM Natrium-

Pyruvat; 100 U/ml Penicillin/Streptomycin and 50 μM β-Mercaptoethanol 

 

5.2.1.2 Centrifugation of cells 

The centrifugation of the cells was performed, unless otherwise stated, in a Rotina 420R (Hettich) 

for 5 min at 1400 rpm in 4° C. 

 

5.2.1.3 Counting of cells 

A Neubauer chamber was used to determine the number of cells. The cell suspension was mixed with 

trypan blue solution to stain the dead cells (Viability test). The cells were loaded into the counting 

compartment of the chamber. Four fields were counted and the cell density per ml calculated 

according the chamber dilution factor (1x104) and the used dilution of cell suspension 

 

5.2.1.4 Freezing and thawing of cells 

The cells (approximately 1-4x107) were resuspended in cold freezing medium (FCS 90% (v/v), 

DMSO 10% (v/v)), transferred into the cryo tubes, stored for 24 hrs at -70° C in isopropanol freezing 

container and finally transferred under liquid nitrogen for long-term storage. 

The cells were thawn in a 37°C water bath and transferred into the 50 ml centrifuge tube with 

10 ml of corresponding growth medium. After centrifugation, the cells were resuspended in fresh 

growth medium and placed in incubator. 
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5.2.1.5 Cell isolation and culture 

5.2.1.5.1 Positive selection of human CD19+ B lymphocytes 

PBMCs were labeled with CD19 Microbeads conjugated to monoclonal anti-human CD19 antibody. 

The magnetically labeled cells where retained on the column and  eluted as CD19+ B cells (positively 

selected cell fraction). 

 

5.2.1.5.2 Isolation of mouse B lymphocytes 

Naive B cell isolation was performed with Miltenyi’s B cell isolation kit according to manufacturer’s 

instructions and typically yielded 95-98% purity B cell population. The cells were seeded in X-vivo 

medium.at a density of 5x106/ml. 

 

5.2.1.5.3 Culture of Eµ-Myc tumor cells 

The B cells were cultivated in the concentration of 5-10 x 106 per ml. The medium was refreshed 

daily by replacing 50% of old medium with the fresh one.  

 

5.2.2 Flow cytometry (FACS) 

Principally, FACS analysis is based on sorting of living cells according to the size, structure, surface 

molecules properties, and intracellular protein composition. This application requires markers with 

fluorescent dye-coupled antibodies to stain cells. During measurement in a FACS machine, cells pass 

through laser and are sorted based on the size (forward scatter), granularity (side scatter) and 

fluorescence emission to determine specific cellular parameters. 

 

5.2.2.1 Surface marker staining 

Approximately 1x106 cells used for each FACS staining were washed with cold FACS buffer. The 

cell pellet was resuspended in 100 µl of master mix containing the Fc block (1:300) and 

corresponding antibodies (1:300). After 20 min incubation at RT in the dark the cells were washed 

twice with 1 ml of FACS buffer. Biotinylated antibodies were visualized after further incubation for 

20 min with fluorescence-labeled Streptavidin (1:300), followed by two washes with FACS buffer. 

The cells were transferred into the FACS tubes, analysed immediately on FACS Canto II or fixed 

with formaldehyde (2% final concentration).   

 

5.2.2.2 Intracellular staining for Ki67 

Intracellular staining was performed using the Foxp3 staining kit (eBioscience). After staining of the 

surface markers, cells were washed with FACS buffer, fixed with fixation solution (eBioscience 

Fixation/Permeabilization) and permeabilized (eBioscience Permeabilization Buffer). Cells were 
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incubated with 1:400 dilution of Ki67 in 1X permeabilization buffer at RT for 20 minutes in dark, 

washed for three times with 1X permeabilization buffer, resuspended in 200 µl of 1X 

permeabilization buffer, transferred into FACS tubes and analysed on FACS Canto II. 

 

5.2.2.3 Annexin V/PI-staining 

The cells were washed with FACS-buffer followed with 1x Annexin binding buffer (ABB) before 

resuspended in 100μl of 1x ABB in addition of 1μl of Annexin V. The cells were incubated for 15 

minutes at RT in dark. Additional 100 μl of 1x ABB was added to stop the binding reaction.  The 

samples were measured within one hour after staining and 1 μl of PI (1mg/ml) was added just before 

the measurement. 

 

5.2.3 In vivo experiments  

5.2.3.1 Generation of secondary tumors 

Primary tumor cells (10 x 106) were subcutaneously injected into the left or right buttock of wt 

C57BL/6 mice. The subcutaneous tumor can be detected within one week post injection. The mice 

were sacrified 3 days – 2 weeks later and the tumors were analysed. 

 

5.2.4 Working with proteins 

5.2.4.1. Preparation of protein extracts 

The cells were washed with 1 ml of ice-cold PBS, transferred into the 1.5 ml reaction tube and 

centrifuged (5.000 rpm for 4 min), the supernatant was removed. The whole protein extract was 

prepared by dissolving the cell pellet in three packed-cell-volumes of RIPA buffer supplemented 

with protease inhibitor cocktail. Followed by incubation for 15 min on ice,  frozen in liquid nitrogen 

and stored at -70° C. Final lysis of the cells was carried out by multiply freeze-thaw in liquid nitrogen 

followed by vigorous vortex for 30 min at 40. Extracts were cleared by 15 min centrifugation at 

13.200 rpm. 

To prepare nuclear and cytosolic protein extracts the cells were incubated on ice for 15 min 

in 120 µl of hypotonic buffer A with protease inhibitor. The 10% of NP40 was added (25 µl) followed 

by short vortexing (10 sec). The cytosolic extract was attained after centrifugation of cell suspension 

at 9000 rpm for 5 min. Nuclei were extracted with buffer B. After vigorous vortexing for 30 min  the 

nuclear extracts were cleared by 15 min centrifugation at 13.000 rpm. The extracts were snap-frozen 

in liquid nitrogen and stored at -70oC.  
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5.2.4.2 Protein concentration measurement (Bradford assay) 

The concentration of protein of the samples was determined using the Bradford assay. The 

assessment is a colorimetric protein assay, based on an absorbance shift of the dye Coomassie 

Brilliant Blue G-250 in Bradford reagent. Under acidic conditions, the red form of the dye is 

converted into its bluer form to bind to the measured protein. A ready-made protein assay reagent 

(BioRad) was used with dilution 1:4. The diluted Bradford reagent (1000 μl) was mixed with 1 μl 

protein sample and transferred in a plastic cuvette. The measurement was carried out at absorption 

595 nm. 

 

5.2.4.3 Sample preparation and separation on the SDS-PAGE 

Protein extracts (between 20 and 50 μg of protein per sample) were mixed with 5x Laemmli buffer 

and heated for 10 min at 95° C. The Laemmli buffer contains negatively charged SDS and β-

mercaptoethanol. The SDS denatures the protein structure and binds to their positive charges. The β-

mercaptoethanol reduces the possibly existing disulfide bridges, thereby support the linearization of 

the proteins. After unfolding the three-dimensional structure, the anionic SDS molecules attach to 

proteins and allow a separation in an electric field. Due to the sieving effect of the gel the small 

molecules migrate in the electric field faster than large molecules and protein mixture can thus be 

separated. Samples were loaded on a discontinuous SDS-PAGE (polyacryl amide gel 

electrophoresis) gels consisting of stacking gel (5%, pH6.8) followed by separating gel (10%, pH8.9). 

Electrophoresis was carried out in 1xRunning buffer under 25mA constant current (approx. 90V 

initially). 

 

5.2.4.4 Immunological detection of proteins (Western Blotting)  

Separated proteins were transferred onto nitrocellulose membrane in 1xTransfer Buffer using wet 

transfer chamber. The gel, sponges, nitrocellulose membrane and filter papers were equilibrated in 

transfer buffer. To avoid excessive heat during transfer, the blotting process was performed in the 

cold room for 3.5 hrs under constant current of 300 mA. Extent of  transfer was verified by staining 

the membrane with acidic 1% Ponceau S solution. 

Before detection of proteins the non-specific binding was blocked by incubation of membrane 

for at least one hour in 4-5% non-fat dry milk in 1xTBS/0.05%Tween. The milk proteins occupy free 

binding sites on the membrane and thus prevent unspecific background signal. The membrane was 

briefly washed with 1xTBS/0.05%Tween and subsequently incubated with indicated primary 

antibodies diluted in 1xTBS/0.05%Tween/5% non-fat dry milk. Membranes were incubated 

overnight at 4°C with moderate shaking. After washing  with 1xTBS/0.05%Tween (three times 10 
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min at RT) the membranes were incubated with corresponding anti-rabbit or anti-mouse HRP-

conjugated secondary antibodies for one hour at RT (1:10.000 dilution) and washed five to six times 

for 5 min each in 1xTBS/0.05%Tween.  

For visualization of the desired proteins, the Super Signal West Pico chemiluminescence 

substrates were used. The two solutions from this system were mixed in a 1:1 ratio and added to the 

the membrane. Following two minutes of incubation, the signal was detected with the Fusion SL 

(Vilbert) camera. Multiple exposures were captured. 

 

5.2.4.5 Stripping of membranes  

To detach the antibody from membranes, the membrane was incubated three times for 20 min at 50° 

C with stripping buffer and subsequently washed thoroughly in TBS-Tween. After blocking with 

milk (5% in TBS-Tween) the membranes were reprobed using another primary antibodies. 

 

5.2.5 Working with nucleic acids 

5.2.5.1 Isolation of genomic DNA from cells or mouse tail biopsies  

For genotyping the tip of the mouse tail was cut using a scalpel and placed in a 1.5ml reaction tube. 

The biopsies (about 1-3 mm long) were incubated in 20 µl of genomic lysis buffer containing 

Proteinase K at 56°C overnight. The next day 480 μl of water was added to each sample and incubated 

for 10 min at 95°C. Following centrifugation, 3 μl of DNA sample was used for PCR reaction.  

 

5.2.5.2 Isolation of total RNA  with Trizol reagent 

Total RNA was extracted using Trizol reagent (Invitrogen). At least 1- 2x106 cells were harvested 

and washed with 1 ml of cold PBS and lysed in 1 ml of Trizol. To effectively disrupt the cells, the 

pellet was repeatedly passed through a blue tip, and then incubated for 5 min at RT. Per milliliter of 

Trizol 200 µl of chloroform was added and the sample was vigorously vortexed. After incubation for 

10 min at RT, the tubes were centrifugated for 15 minutes in the cold room at 13000 rpm. This led 

to the separation into three phases: a lower red phenol-chloroform phase, an upper aqueous phase 

and a colorless intermediate interphase. The RNA was present in the aqueous /upper phase which 

was transferred to fresh tubes and precipitated with 500 µl of isopropanol. The RNA was pelleted at 

13000 rpm for 10 min (4° C) and the supernatant carefully removed. RNA pellet was washed once 

with 1 ml of 75% ethanol, dried in air and dissolved in 50 µl of DEPC water and heated at 65° C for 

10 minutes. All RNAs were stored at -70 ° C.  
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5.2.5.3 Isolation of total RNA from frozen section tissues  

Total RNA from human BL speciments was extracted from frozen tissue samples preserved in 

Tissue-Tek using pegGOLD Blood RNA Kit (Peqlab) according to the manufacturer’s protocol. The 

tissues were cut using a cryostat (Leica) in 10 µM slices, placed in eppendorf tubes and lysed with 

600 µl of RNA lysis buffer (Peqlab), completely resuspended by pipetting followed by an addition 

of 600 µl of 70% ethanol before loading on PerfectBind RNA spin cartridge/Column subjected to 

centrifugation. The samples were washed three times with RNA wash buffer I (500 µl) and twice 

with RNA wash buffer II (650 µl). Finally the columns were dried by re-centrifugation and RNA was 

eluted with 30-50 µl of RNase free water. 

 

5.2.5.4 Measurement of RNA  

To determine the amount of total RNA in the extracts, the photometer (Pharmacia) was used. Before 

transferred into a quartz cuvette, RNA was diluted 1:50 in nuclease-free H2O. This is termed as 

dilution factor (DL). The RNA concentration was calculated with the following formula:  

 

          

 

RNA was measured at absorbance (optical density/OD) 260 nm. The purity of RNA is defined by a 

ratio of absorbance at 260 nm and 280 nm (pure RNA theoretically is ~2.0,  thus, significantly lower 

ratio will indicate the presence of contamination).   

 

5.2.5.5 Reverse transcription  

Complementary DNA (cDNA) synthesis was carried out on the template of total RNA using BioRad 

iScript cDNA Synthesis kit or Fermentas First Strand cDNA Synthesis kit according to the 

instructions of manufacturers. Between 300 ng –1μg of total RNA were used for cDNA synthesis 

with random hexamer primers (Fermentas kit) or using ready reagent mix (BioRad). Synthesized 

cDNA was diluted 1:2-1:12 with H2O and directly used for RT- or Real Time PCR or stored at -

20°C.  

 

5.2.5.6 Polymerase chain reaction (PCR)  

Principally, PCR is a method for the enzymatic amplification of DNA segments across three steps of 

cycles: denaturation of DNA template resulting in single-stranded DNA, annealing the primers to the 
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single-stranded DNA template and extension/elongation of primers resulting in an exponential 

amplification of DNA fragment.  

A PCR master mix from Fermentas used in our lab consisting of 0.05U/µl Taq DNA 

Polymerase, 4 mM MgCl2, 0.4 mMdNTPs (dATP, dCTP, dGTP, dTTP) and an optimal reaction 

buffer. The PCR conditions we used were: initial step (for hot start PCR: 1’-9’ 95°C), 2’-3’ 95°C 

(opening denaturation) > (20’’ 95°C (denaturation) > 20’’ x°C (annealing) > y’ 72°C (elongation)) 

37-40x > 5’ 72°C (final elongation). 

 

PCR reaction mix:  DNA         3 μl 

2x PCR Master-Mix    10 μl 

MgCl2       1 μl 

Primer for (100 nM)      0.15 μl 

Primer rev (100 nM)      0.15 μl 

H2O       5.7 μl 

 

 

5.2.5.7 RT-PCR 

Reverse-transcription PCR (RT-PCR) is used to detect gene expression through formation of 

transcripted complementary DNA (cDNA) from RNA.  

 

RT-PCR reaction mix:            cDNA        3 μl 

2x PCR Master-Mix    10 μl 

MgCl2       1 μl 

Primer for (100 nM)      0.15 μl 

Primer rev (100 nM)      0.15 μl 

H2O       5.7 μl 

 

Amplification products were separated on agarose gels and quantified using image analysis software. 

 

5.2.5.8 Real-Time PCR 

The Real-Time PCRs is used to amplify and concomitantly quantify a targeted DNA molecule by 

using fluorescent substances, which intercalate into the DNA. We used SYBR Green as fluorescent 

substance that will emit light upon excitation. The number of cycles at which the fluorescence 

exceeds the threshold is termed as the threshold cycle (Ct).  

Quantification of gene expression is using normalization procedure so called the ΔCt-method. 

This method use the Ct-values to calculate the fold induction of the amplified gene in comparison to 

a house keeping gene as a reference, such as L32. 

      

 

http://en.wikipedia.org/wiki/SYBR_Green
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5.2.5.9 Gel electrophoresis  

The agarose electrophoresis is used to separate the amplified PCR products according to their size 

from negative to positive in a charged electric field with constant voltage 150 V. To visualize DNA 

agarose gel was placed under UV-light excitation at the wavelength of 254 nm in addition of 

Ethidium bromide (EtBr) or Midori Green. The percentage of the agarose gels (in 1xTAE buffer) 

depends on the size of DNA i.e. ≤ 1% for ≥ 1kb fragments and 2.5% for ≤ 500bp fragments. To 

identify the size of separated fragments the 1 kb or 100bp GeneRuler Ladders were used. 

 

5.2.6 Imaging 

5.2.6.1 Confocal fluorescence microscopy 

Proteins can be visualized by immunocyto/histochemistry. Hence, fluorochrome coupled antibodies 

are utilized to stain proteins of interests in fixed and permeabilized cells. The stained cells can be 

analyzed with confocal laser scanning microscopy, which detects the emitted light of fluorochromes 

after excitation with laser light. The confocal laser scanning microscopy employs two pinholes to 

blind out diffused light and provides the possibility to scan through a whole cell thus provides 

significantly higher resolution and to eliminate out-of-focus light in specimens that are thicker than 

the focal plane. The microscope is controlled by a computer coupled with photomultiplier detection 

system.  

 

5.2.6.2 Preparation of histological and immunohistochemical samples 

The tissues for immunohistochemical studies were immediately preserved in fixative (4% of 

formaldehyde) for 24 hours at RT. To remove the water from the tissues, the samples were processed 

on automatic tissue processing machine (Tissue-Tek VIP-Sakura) through ascending alcohol 

concentrations ending with 100% xylene. The anhydrous tissues were loaded into appropriate 

cartridges, soaked in a hot paraffin and prepared for embedding (block paraffin). The slides were 

prepared with a sliding microtome (Leica) with the thickness of about 1 micron. The individual 

section was taken with a brush and transferred in a hot water bath. Subsequently, the sections were 

mounted on slides and dried. Before immunohistochemical analysis the morphology of tumors was 

analyzed by hematoxylin and eosin (H&E) staining which was kindly performed by the staff  

members of hematology and histology laboratory, Institute of Pathology or ZOM (central for 

operation medicine), University of Wuerzburg. To stain the tissue sections for 

immunohistochemistry, the antigen retrieval must be performed which was kindly provided by the 

staff members of immunohistochemical laboratory, Institute of Pathology.  

  

http://en.wikipedia.org/wiki/Focal_plane
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5.2.6.3 Immunocytochemistry 

Initially, 1x104-5 (depending on the cell sizes) cells in a final volume of 80-100 µl were centrifuged 

at 350 rpm for 4 min onto the silanized slides. The cells were circled with a marked diamond stylus, 

dried in the air for 4 hrs at RT or overnight at 4ºC. The cytospinned cells were fixed for 20 min in 

4% FA/PBS at RT and subsequently washed (all washing steps were performed in PBS-/- in a staining 

jar). The slides were stained immediately or incubated at least overnight in PBS/0.1% BSA in the 

fridge. For permeabilization the cells were incubated for 5 min with 0.1% Triton-X100/PBS at RT. 

Following three washing steps the slides were transferred into a wet chamber and incubated with 

blocking buffer (Antibody Diluent) for 20 min at RT to block nonspecific binding. Without washing, 

the slides were incubated for 1hr with the primary antibody (1:100 or 1:50 depending on the 

antibodies) in Antibody Diluent. After three washing steps the slides were incubated with the 

secondary fluorescent-labeled antibody (1:400 in Antibody Diluent) in the wet chamber for 1 hr and 

finally washed in PBS-/- (3x5 min). A drop of mounting medium with DAPI (Fluoroshield) was 

added and covered with a cover slip. Finished objects were stored at 4° C in the dark. 

The pictures were taken with a Leica Confocal Laser Scanning Microscope (TCS SP5 II), 

analyzed with the Leica Software Image Pro Plus. For further demonstration the digital images were 

processed using Adobe Photoshop CS3, Irfanview or Microsoft Office Power Point 2010. 

 

Fixation solution (pH 7.4)   NaCl     137 mM 

Na2HPO4    10 mM 

KCl     2.6 mM 

KH2PO4    1.8 mM 

(Para-)Formaldehyd   4% (v/v) 

 

Permeabilization solution  NaCl     137 mM 

Na2HPO4    10 mM 

KCl     2.6 mM 

KH2PO4    1.8 mM 

Triton X-100    0.2% (v/v) 

 

5.2.6.4 Staining of the immunohistological sections (confocal microscope)  

Following antigen retrieval the tissue sections were rinsed in PBS and subsequently incubated for 5 

min with permeabilization solution 0.1% Triton-X100/PBS at RT. The slides were stained as 

described in section 5.2.7.3 (Immunocytochemistry). 

 

5.2.6.5 Staining of the immunohistological sections (peroxidase based)               

The tissue sections were rinsed in PBS after antigen retrieval procedure and  incubated with 

peroxidase blocking solution for 20 min at RT. After three washing steps in PBS (5 min each) the 
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tissues were incubated with primary antibody (1:400-1:50 in Antibody diluent) for 1-2 hrs at RT, 

washed thrice and incubated with ADVANCE HRP LINK for 20 min at RT. After three more 

washing steps the slides were incubated with ADVANCE HRP enzyme for 20 min at RT and rinsed 

three times in PBS. For visualization the tissue sections were incubated with DAB for 20 min at RT 

followed by with Mayer’s Hematoxylin for 3-5 min at RT. The slides then were rinsed in running tap 

water for 5 min, dehydrated through 95% ethanol for 2 min, cleared in xylene for 2x5 min at RT and 

finally covered with mounting medium and coverslips. Some tissue samples were stained using 

immnunohistochemical stainer (TECAN) kindly provided by the staff members of 

immunohistochemical laboratory, Institute of Pathology, University of Wuerzburg.  

All pictures of H&E and immunohistological stanings (peroxidase based) were captured with 

an Olympus Color view camera mounted on an Olympus BX41 dual-head light microscope. 

 

5.3 Statistical Analysis  

The survival analysis and student t test were employed to assess the experimental data by using 

GrapPad Prism version 5 (GrapPad Software Inc., California). P values ≤ 0.05 were considered 

statistically significant.  
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6. Results 

6.1 NFATc1 in tumorigenesis 

In pancreatic cancer, aberrant activation of NFATc1 upregulates MYC transcription resulting in cell 

proliferation and anchorage-independent growth (Bucholz et al., 2006). Marafioti et al. (2004) 

identified nuclear expression of NFATc1 proteins in more than 70% BLs they analyzed. However, 

the patho-physiological relevance of these findings was not addressed. In our study we focused on 

the role of NFATc1 expression in the survival and progression of Burkitt lymphoma 

 

6.2 NFATc1 expression in Burkitt lymphoma 

Immunohistochemical analysis using the NFATc1 antibody 7A6, which detects all NFATc1 proteins 

revealed two distinct patterns of NFATc1 protein expression in primary BL cases (n=20). The first 

pattern of staining was mixed protein expression with predominant nuclear localization (11 out of 

20) (Fig. 6.1B). The second pattern was mixed protein expression with predominant cytosolic 

localization (9 out of 20) (Fig. 6.1C and D), Using the NFATc1-α-isoform specific antibody (IG-

457), NFATc1 protein showed a predominant nuclear localization (Fig 6.1 F, G and H) in all cases 

(n=16). In Ramos and Namalwa cell lines NFATc1 expression was also predominantly localized in 

nucleus (Fig. 6.6A and B) when stained with both antibodies (7A6 and IG-457).    
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Fig. 6.1 Predominantly nuclear localization of NFATc1 proteins in primary BL and BL cell 

lines. Immunostaining of human primary BL (B, C, D, E, F, G, and H) and BL cell lines, Ramos and 

Namalwa (I and J). A. Human tonsils were stained as control for B, C and D. E. Human tonsils as a 

control for F, G and H. Stainings were performed with the antibody directed against all NFATc1 

isoforms (7A6, A, B, C, D, I and J), or NFATc1α (IG 457) specific antibody (E, F, G, H, I and J). 

In collaboration with H. Fender 
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6.3 Development of B cell lymphomas in Eµ-Myc mouse models 

To investigate the functional role of NFATc1 in development and progression of BL we employed 

an Eμ-Myc transgenic mouse line (Adams et al., 1985). B cell lymphomas (BCLs) developed in this 

mouse model showed clinical and histological appearances similar to human BL (Fig. 6.2). Excessive 

growth of BCLs was detected in the BM, lymph nodes, spleen, blood and other organs, e.g. in liver, 

lungs, soft tissue of lumbal area and head. In all tumors a homogeneous populations of medium-sized 

round lymphocytes accompanied by numerous mitotic and apoptotic cells were detected.  

 

 

         

 

 

 

Fig. 6.2 Excessive growth of Eµ-Myc BCL. Similar to human BL, in the Eµ-Myc mice the 

development of tumors were detected in lymph nodes (A and B), spleen (C), BM (D), liver, lungs, 

and thymus (not shown). 

 

 

Histological examination demonstrated that the tumors consisted of sheets of cells which had 

a ‘‘starry sky’’ appearance. This is a common feature among large B cell lymphomas and prominent 

feature of BL (Blum et al., 2004) resulting from the presence of sheets of monomorphic tumor cells 

interspersed with macrophages that have engulfed apoptotic cells (tingible body macrophages). 

Staining with a specific marker for macrophages (anti-CD68) revealed positivity in entire 

macrophages scattered among tumor cells (Fig. 6.3D). Both primary (Fig. 6.3B) and secondary 

tumors showed similar histologic features (Fig. 6.3C) in Eμ-Myc mouse model. 

     Eµ-Myc      WT 
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Fig.6.3 Histological analysis of MYC-induced tumors. Paraffin sections of human BL (#1060-04) 

(A), primary and secondary Eµ-Myc mouse tumors (B and C respectively) were stained with 

hematoxylin-eosin. Note the presence of homogeneous population of lymphoblast-like cells. The 

sheets of cells had a ‘‘starry sky’’ appearance, a prominent feature of BL. Red arrows indicate 

macrophages. D. IHC staining with antibody directed against CD68 (H13665-05).  

 

 

6.4 Immunophenotype of Eµ-Myc induced tumors  

Human BLs are originating from germinal center B cell or memory B cells (Tamaru et al., 1995; 

Isobe et al., 2000) and therefore express the germinal center markers IgM, CD19, CD20, CD22, 

CD10 and BCL6 (Blum et al., 2004). Immunocharacterization of Eµ-Myc tumors indicated that 

majority of tumors originated in BM, and corresponded to small pre-B cell (CD19+, B220+, IgM-, 2 

tumors), or immature B-cell stages (CD19+, B220+, IgM+, 1 cases). In one case, phenotype of mature 

B cells (IgM+, IgD+, CD19+, B220+) was identified. In six cases a ‘mixed’ phenotype was observed 

(around half of the cells co-expressing CD19, B220 and IgM and the other half co-expressing CD19, 

B220, IgM and IgD [immature – mature, mixed]), suggesting the presence of several tumor clones in 

the same animal (Fig. 6.4B). These findings are in accord with conclusions of Adam and colleagues 

that tumors in Eµ-Myc mice originate at different stages of B cell development but not from germinal 

center B cells (Adam et al., 1985).  
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Fig. 6.4 Eµ-Myc-induced tumors derive at different stages of B cell development. A. Survival of 

Eµ-Myc mice (n=4 of 10). B. Small pre B cell tumors co-expressed CD19 and B220. Immature B-

cell tumors co-expressed CD19, B220 and IgM. The ‘mixed’ phenotype was also detected. Around 

half of the cells co-expressing CD19, B220 and IgM and the other half co-expressing CD19, B220, 

IgM and IgD (immature – mature, mixed). Mature B-cell tumor type was specified by co-expression 

of CD19, B220, IgM and IgD. 

 

6.5 NFATc1 expression in Eµ-Myc mouse tumors  

In resting B cells, NFAT are heavily phosphorylated and cytosolic localization (Rao et al., 1997). 

Upon activation, NFATs translocate into the nucleus and regulate the transcription of their target 

genes (Loh et al., 1996a; Chen et al., 1998; Garcia-Cozar et al., 1998). Immunohistochemical 

stainings indicated nuclear localization of NFATc1α (Fig. 6.5A and B) in Eµ-Myc tumors (Fig. 6.5C)  

and in BCL line which we derived from these tumors (Fig. 6.5E and 6.7A). These suggested that 

NFATc1 might play an important role in the survival and/or progression of MYC induced tumors.      
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Figure 6.5 NFATc1 localizes in the nuclei of Eµ-Myc induced mouse tumors. A. Immunostaining 

of an Eµ-Myc mouse tumor (#1913). B. Spleen from a wild type mouse as a control staining for A. 

Stainings were performed with an antibody directed against the α-peptide (NFATc1α, IG 457). 

Confocal microscopy revealed expression and nuclear localization of NFATc1 in a primary tumor (C) 

and in BCL cell line (E) derived from Eµ-Myc tumor, in comparison with resting splenic B-cells (D). 

Stainings were performed with the antibody directed against the α-peptide (NFATc1α, IG 457), 

NFATc1 (7A6) and Ki67, as indicated.  

  

In collaboration with H. Fender 
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6.6 Nuclear residence of NFATc1 in BL and Eµ-Myc tumor cell lines is only partially dependent 

on calcineurine. 

 

Nuclear localization of NFAT factors is sensitive to the commonly used CN inhibitors cyclosporine 

A (CsA) and FK506 (Loh et al., 1996). To determine whether CsA treatment would influence the 

nuclear residence of NFATc1 in BL cell lines, we treated Ramos and Namalwa cells with various 

concentrations of CsA (Fig. 6.6A and B). The nuclear localization of NFATc1 in normal lymphocytes 

was already prevented with 0.1µg/ml of CsA. However, in Ramos and Namalwa cells this treatment 

relocated only around 10% of NFATc1 protein to cytosol (Fig. 6.6C and D). Importantly, increased 

CsA concentrations (up to 10-fold) did not increase cytosolic relocation of NFATc1 protein. These 

data indicated that only a part of NFATc1 nuclear pool was sensitive to CsA treatment. Decreased 

electrophoretic mobility of NFATc1A, -B, and –C isoforms after CsA treatment suggested that even 

at the lowest CsA concentration, the nuclear fraction of NFATc1 protein was completely 

phosphorylated (Fig. 6.6A and B). Treatment with CN inhibitors completely inhibits proliferation of 

stimulated normal B cells in vitro. Since CsA-treated Ramos and Namalwa cells were still 

proliferating (Fig. 6.6E and F) and the majority NFATc1 proteins remained nuclear, these data 

suggested that nuclear fraction of NFATc1 is still transcriptionally active.  
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Fig. 6.6 CsA treatment relocated only a part of NFATc1 to the cytosol in BL cell lines.  BL cell 

lines, A. Ramos cells and B. Namalwa cells were cultivated in the presence of indicated 

concentrations of CsA or DMSO (D, as a control) for 5 days. Western blot analyses of nuclear (N) 

and cytosolic (C) fractions were performed with antibodies directed against NFATc1 (7A6), 

NFATc1α (IG-457) and c-Myc (9E10). C and D. Quantification of NFATc1 protein expression. E 

and F. Proliferation of Ramos and Namalwa cells in the presence of CsA. 

 

  

 

 

C D 

E F 

B A 
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Likewise, CN inhibitor had also a partial effect on NFATc1 nuclear residence in Eµ-Myc 

tumor cell line, #1542B (Fig. 6.7A). Similar to human BL cell lines, mouse tumor cells were still 

proliferating until ca 0.5 µg/ml of CsA treatment. Very high concentrations of CsA inhibited the 

proliferation of 1542B cells (Fig. 6.7B), likely because of non-specific, CN-independent effect. 

 

Fig. 6.7 CsA treatment resulted only in a partial cytosolic relocation of NFATc1 in Eµ-Myc 
BCL cells. A. Western blot analyses of nuclear (N) and cytosolic (C) protein fractions with antibodies 

directed against NFATc1 (7A6). B. Proliferation of #1542B cells in the presence of increasing 

concentrations of CsA. 

 

To verify whether treatment with CsA inhibited CN activity in BL cells, we treated Ramos 

cells with the lowest CsA concentration (0.1µg/ml) overnight. Quantitative relocation of RELA (NF-

κB p65) protein was observed (Fig. 6.8A and B) suggesting that CsA/FK506 efficiently inhibited CN 

activity in BL cells. In normal lymphocytes, nuclear export of NFATc1 is also prevented with 

0.1µg/ml of CsA.  

                       
 

 

Fig. 6.8 CsA treatment completely relocates RELA protein in BL cells. Ramos cells were either 

left untreated (A) or treated with CsA (0.1 µg/ml) overnight (B).  The next day the cells were 

harvested, stained with antibody directed against the RELA protein and analyzed by confocal 

microscopy. 

A B 
#1542 

In collaboration with H. Fender  
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6.7 Nuclear residence of NFATc1 in BL cell lines depends on intracellular Ca2+ level 

 

NAFTc1 activation in lymphocytes is regulated by Ca2+ mobilization (Rao et al., 1997). In addition, 

MYC overexpression results in persistent intracellular Ca2+ and enhances NFAT translocation (Habib 

et al., 2007). Treatment of Namalwa BL cells with the cell-permeable Ca2+ chelator Bapta AM 

resulted in a concentration dependent relocation of NFATc1 in cytosol (Fig. 6.9) indicating that 

nuclear localization of NFATc1 protein in BL cells depends on intracellular Ca2+ levels.  

 

     
  

 

Fig. 6.9 Depletion of intracellular Ca2+ resulted in cytosolic relocation of NFATc1 in Namalwa 

cells. Namalwa cells (1x106) were either left without treatment (A) or treated with 20 µM Bapta AM 

(B). After 3.5 hours the cells were harvested, stained with NFATc1 (7A6) antibody and analyzed by 

confocal microscopy. C. Statistical analysis was performed by using unpaired t-test. Total cell 

numbers were plotted as 100%. D. Namalwa cells (10x106) were either left without treatment or 

treated with indicated concentration of Bapta AM for 3.5 hours. Nuclear protein extracts were 

prepared and western blot analysis was performed with NFATc1 (7A6) antibody. Protein levels were 

quantified using FusionCapt Advance of Fusion Vilber Lourmat program (E). 
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Combined Annexin V/PI staining confirmed that depletion of intracellular Ca2+ levels did not 

significantly influence viability of Namalwa cells (Fig.6.10) within the time frame of experiment.  

 

 

Fig. 6.10 Viability of cultures under different concentration of Bapta AM. Namalwa cells (1x106) 

were treated with Bapta AM at the indicated concentrations for 3.5 hours. The cells were stained with 

annexin V (for apoptotic cells) and propidium iodine (PI, for dead cells) and analyzed by flow 

cytometry.  

  

To elucidate if the nuclear localization of NFATc1 in BL and d Eµ-Myc cell lines depends on 

Janus activating kinase3 (Jak3) pathways (Patra, et al., 2013), we treated BL and Eµ-Myc cell lines 

overnight with WHI-P131, a specific inhibitor of Jak3. Western blot analyses indicated that inhibition 

of Jak3 activity does not affect nuclear localization of NFATc1 in BL cell lines and in Eµ-Myc BCL 

line (Fig. 6.11). Interestingly, the same concentrations of WHI-P131 (IC50=50M) blocked 

proliferation of #1542B BCL cells indicating the presence of Jak3-dependent but NFATc1 

independent proliferation pathway (H. Fender, unpublished results). 

 

       

 

Fig. 6.11 Nuclear residence of NFATc1 in BL cell lines and Eµ-Myc BCL is independent on 

Jak3 activity. Ramos and Namalwa cells (1x107) were either left without treatment or treated with 

100 µM Jak3 inhibitor (WHI-P131) overnight. Nuclear and cytosolic extracts were prepared, and 

Western blot analysis performed with NFATc1 (7A6) antibody.  
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6.8 Prolonged NFATc1 protein half-life mediated by MYC  

The half-life of MYC protein is significantly prolonged in several BL cell lines (Gregory and Hann, 

2000, Fig.6.12). To investigate stability of NFATc1 proteins we treated Ramos and Namalwa cells 

with the protein synthesis inhibitor cycloheximide (CHX, 100 µg/ml). Western blot analyses 

indicated significantly increased stability of MYC protein BL cells (Fig. 6.12A and B). The half-life 

of MYC in BL cells was around two hours in both cell lines, while half-life of MYC in normal 

proliferating cells is very short (circa 15-30 minutes, Dang, 2012; Schuhmacher and Eick, 2013). The 

half-life of NFATc1 protein in Ramos cells was around 6.66 hours, and even more than 6.66 hours 

in Namalwa cells, significantly longer than in normal B cells (4±0.5 hours). To investigate if the high 

expression level of MYC is linked to observed increase of NFATc1 protein stability, we employed 

P493-6 cell line. These cells are derived from human peripheral B cells after immortalization with 

EBV nuclear antigen-estrogen receptor fusion protein (EBNA2-ER) and in addition contain a 

tetracycline-repressible MYC transgene (Pajic et al., 2000).  Therefore, proliferation of P493-6 cells 

depends on high levels of MYC expression in normal medium. Addition of Doxycylin represses 

MYC transgene and results in reversible growth arrest. In the presence of high MYC expression 

levels the half-life of NFATc1 protein was significantly increased (7.14hrs against 5hrs in the absence 

of MYC). These data indicated that high levels of MYC expression stabilize NFATc1 protein. (Fig. 

6.12C and D) 
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Fig 6.12 High expression levels of MYC increase stability of NFATc1 protein.  A and B. BL cell 

lines were left untreated or treated with CHX (100 µg/ml). Quantitation of Western blot analysis. 

Whole-cell protein extracts were collected at indicated time-points after CHX-treatment and analysed 

with antibodies directed against NFATc1 (7A6), MYC (9E10) and ß-actin. C. P493-6 cells were left 

untreated (MYC ‘ON’), and treated with doxycycline (MYC ‘OFF’) for three days followed by CHX 

(treatment 250 µg/ml) for indicated time. Western blot analysis was performed with antibodies 

directed against NFATc1 (7A6). Protein expression levels were quantified using FusionCapt 

Advance of Fusion Vilber Lourmat program. D. CHX treatment does not significantly affect viability 

of P493-6 cells. The cells were treated with CHX at the indicated concentrations for 6 hours, stained 

with annexin V and analyzed by flow cytometry. 
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6.9 NFATc1 expression is regulated at the post-transcriptional level in BL and Eµ-Myc BCLs 

Available data on BL transcriptome does not indicate that NFATc1 expression is increased in BL in 

comparison with normal peripheral B cells (Dave et al., 2006). We compared the expression levels 

of NFATc1 mRNA in BL patients (n=5) and BL cell lines (n=2) with those in human resting CD19+ 

B cells. The levels of NFATc1 transcripts were not significantly upregulated in BL and BL cell lines 

(Fig. 6.13A). However, in Eµ-Myc tumor cells (n=4) and secondary tumors (n=2) the expression 

levels of Nfatc1 mRNA appeared to be decreased in comparison with normal mouse resting splenic 

B-cells (Fig. 6.13B). These data showed that NFATc1 protein expression in human BL and in Eµ-

Myc induced tumors does not correlate with mRNA levels. Together these findings indicated that 

NFATc1 expression is regulated by MYC-dependent post-transcriptional or post-translational 

mechanisms. 

 

      
    

 

Fig. 6.13 NFATc1 and Nfatc1 mRNA levels in human BL cells and Eµ-Myc tumors. A. RNA was 

extracted from resting human B cells isolated using Ficoll gradient and CD19+ micro beads, frozen 

tissue sections of human BL and the BL cell lines Ramos and Namalwa. The total levels of NFATc1 

transcripts were analyzed using RT-PCR. B. RNA was isolated from resting wt B cells and from Eµ-

Myc induced tumors. The total levels of Nfatc1 transcripts were analyzed using Real-time PCR. 

  

A B 
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6.10 Expression of NFATc1 isoforms BL, BL cell lines and Eµ-Myc induced tumors  

 

NFATc1 is transcriptionally regulated by two promoters, an inducible P1 promoter and a constitutive 

P2 promoter (Chuvpilo et al., 2002). Due to two polyA sites, pA1 and pA2, and alternative splicing 

events six prominent isoforms are generated (see Introduction Fig. 4.8). Depending on the promoter 

usage, the Nfatc1 gene is transcribed into either the α or β isoforms (Park et al., 1996; Chuvpilo et 

al., 1999; Chuvpilo et al., 2002).  

We analyzed RNAs isolated from human primary BL, BL cell lines, Eµ-Myc primary and 

secondary BCL tumors and cell lines derived from these tumors. In primary BL (n=4) we observed 

around 8-fold higher level of P1 transcripts in comparison to P2 transcripts (Fig. 6.14A). Similar 

trend was observed in BL cell lines (Ramos and Namalwa cells, Fig 6.13B). These data indicated that 

in human BL NFATc1-P1 promoter is responsible for the expression of NFATc1α-proteins which we 

detected using  immunohistochemistry and confocal staining (Fig. 6.1E, F, G, H, I and J). 

In contrast to these data, the RT-PCR analysis of Eµ-Myc BCL primary tumors (Fig. 6.14D), 

secondary tumors (Fig. 6.14E) and cell lines (Fig. 6.14F) indicated around (8)-fold higher expression 

of P2-promoter transcripts compared to P1 transcripts. This suggested that in Eµ-Myc BCL cells, the 

increased relative activity of P2 promoter is responsible for predominant expression of NFATc1β 

proteins, in contrast to normal activated B-lymphocytes where the anti-apoptotic NFATc1/αA 

isoform is predominantly expressed under control of P1 promoter (Fig. 6.13C, Chuvpilo et al., 2002; 

Serfling et al., 2012; Hock et al., 2012).  
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Fig. 6.14 NFATc1α transcripts were predominant in human BL and BL cell lines, while Nfatc1ß 

transcripts were predominant in Eµ-Myc induced tumor cells. RT-PCR analysis of human 

primary BL (A), Ramos and Namalwa cells (B), normal naïve B cells without and with anti-IgM 

stimulation for 24 hrs (C), Eµ-Myc-BCL primary tumors (D), secondary tumors, #1542B-s and 

#1913-s (E) and BCL cell lines, #1542B and #1913 (F). Real time PCR analyses of Eµ-Myc-BCL 

primary tumors and secondary tumors (G). 

G 
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To verify the correlation between the relative activities of P1/P2 promoters and expression of 

NFATc1isoforms we crossed Eµ-Myc mice with a reporter mouse in which the Nfatc1-dsRed 

knock-in allele was introduced (Busch et al., 2014, manuscript, submitted). This system allowed us 

to detect and directly quantify expression of NFATc1α and NFATc1β protein. Western blot analysis 

of Eµ-Myc induced tumors in these mice indicated predominant expression of NFATc1β-isoforms in 

Eµ-Myc induced tumors (Fig. 6. 15).  

 

    
 

Fig. 6.15 Isoform composition of NFATc1 in Eµ-Myc/Nfatc1-dsRed tumor cells. Resting splenic 

B cells from a dsRed mouse (1), B cell tumors from a Eµ-Myc/Nfatc1-dsRed mouse (2) and a Eµ-

Myc mouse (3) were extracted. Whole cell extract proteins were separated on a SDS-PAGE. Western 

blot analysis was performed with antibodies directed against NFATc1 (7A6, A), NFATc1α (IG-457, 

B) and dsRed (C). The ratio between the NFATc1α- and NFATc1β-isoforms can be identified with 

an antibody directed against dsRed (C), In resting splenocytes B cells of dsRed mouse (1) the ratio 

is almost 1, while in Eµ-Myc/Nfatc1-dsRed tumor cells we observed predominant expression of 

NFATc1β -isoform (2). 

 

 

6.11 Tumorigenesis in Eµ-Myc /Nfatc1flx/flx/mb1-cre mice 

To address the functional role of NFATc1 in Eµ-Myc induced tumorogenesis we crossed Eµ-Myc 

mice with mb1-cre and Nfatc1flx/flx mice for the conditional inactivation of Nfatc1 gene in B cells (Eµ-

Myc/Nfatc1flx/fl x/mb1-cre) starting from pre-B stage in BM. Tumors generated in these mice (n=3) 

were histologically indistinguishable from other Eµ-Myc tumors, as they also showed “starry sky” 

pattern as shown by H&E staining (Fig. 6.16). 
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Fig. 6.16 Morphological characterization including the “starry sky” pattern were maintained 

in BCL cells of Eµ-Myc/Nfatc1flx/flx mb1-cre+ mice. BCL cells of four different Eµ-Myc/Nfatc1flx/flx/ 

mb1-cre+ mice A. Mouse #0794, B #1783, C primary tumor of mouse #2054 (#2054P), and D. 

Secondary tumor of mouse #2054 (#2054S) were fixed in 10% formalin and embedded in paraffin. 

Tissues sections (2µm), stained with hematoxylin-eosin. All images were obtained with a 40X 

original magnification.  

 

 Tumorigenesis of NFATc1 ‘deficient’ and intact Nfatc1 alleles reveal no differences between 

two groups. All mice from these two groups were kept within the same time period and under the 

same condition (Fig 6.17). All of mice developed tumors between 11 – 16 weeks of ages  

            

            

Fig. 6.17 No differences in the tumorigenesis of Eµ-Myc/Nfatc1flx/flx/mb1-cre and intact Nfatc1 

alleles mice. A. All of mice developed tumors between 11 – 16 weeks of ages. B. All Eµ-

Myc/Nfatc1flx/flx/mb1-cre (#1783, #0794, and #2054) showed immature immunophenotype. 

 



   

58 

 

6.12 NFATc1 expression is not abolished in BCL cells of Eµ-Myc/Nfatc1flx/flx/mb1-cre mice 

Confocal microscopy analyses indicated that Ki67+ proliferating B-cells from Eµ-

Myc/Nfatc1flx/flx/mb1-cre+ mice still expressed some NFATc1 (Fig. 6.18C). These data were 

confirmed by Western blot analysis using protein from freshly isolated (in vivo) primary (#2054P) 

and secondary (#2054S) tumors of Eµ-Myc/Nfatc1flx/flx/mb1-cre+ mice (Fig. 6.19A). Although a 

relatively high efficiency of mb1-cre mediated deletion of floxed sequences was reported (>90%, 

Hobeika et al., 2006), according to our current model, lymphomas developed only from a sub-

population of B-cells in which Nfatc1 gene remained intact. PCR analyses confirmed various 

incomplete deletion of Nfatc1flx/flx allele in the tumor cells of Eµ-Myc/Nfatc1flx/flx/mb1-cre+ mice (Fig. 

6.18D and Fig 6.21 A). 

    

 

                                        

Fig. 6.18 NFATc1 protein was still expressed in BCL cells from Eµ-Myc/Nfatc1flx/flx/mb1-cre 

mice. Confocal microscopy analyses of B-cells isolated from wild-type mice (A), the tumors of Eµ-

Myc with intact Nfatc1 allele (#1913, B), and Eµ-Myc/Nfatc1flx/flx/mb1-cre (#0794, C) and stained 

with antibodies against NFATc1 (7A6), CD20 and Ki67. D. PCR analyses indicated the presence of 

an intact Nfatc1 gene (line 2) in B cell tumor of Nfatc1flx/flx/mb1-cre+ mouse (#0794) which showed 

a weaker expression in comparison to Nfatc1flx/flx/mb1-cre- (line 3). 

D 

A 

B 

C 
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6.13 Development of secondary Eµ-Myc/Nfatc1flx/flx/mb1-cre tumors  

We next assessed the capacity of Eµ-Myc/Nfatc1flx/flx/mb1-cre tumor cells to promote tumor growth. 

The tumor cells were injected s.c. into six (6) wild type mice. During observation period (9 weeks) 

the secondary tumors developed in four mice and were readily detectable on day 8, week 2, 3 and 

and 4 post injection respectively. Two of these mice were sacrified at day 21 and day 35, respectively. 

In these mice, the growth of secondary tumors was not only limited to the site of injection but also 

spread to inguinal, axilla, mesenteric and neck lymhpnodes, as well as to BM, spleen and thymus 

(Table 1). As control, we injected s.c. #1913 tumor cells (with intact Nfatc1 allele) three wild type 

mice. In this group, the growth of secondary tumors was detected at the beginning of 2nd week in all 

three mice. All mice were sacrificed at day 17. In one of these mice distinct spread of tumors was 

evident (Table 1). We concluded that both groups exhibited similar tendency of tumor spread. 

 

Table 1. Comparison of the secondary tumors in Eµ-Myc/Nfatc1flx/flx/ mb1-cre+ and Eµ-

Myc/Nfatc1-dsRed mice 

 

Mice 

 

#2054 

Eµ-Myc/Nfatc1flx/flx/mb1-cre+ 

 

#1913 

Eµ-Myc/Nfatc1-dsRed 

 

NFATc1 status NAFTc1 “deficient” Nfatc1+/- 

Tumor develop in 66.7% (4 out of 6) 100% (3 out of 3) 

Sacrificed of mice  Day 21 and 35 post injection Day 17 post injection 

Tumor spread 2 out of 2 

Lymphnodes, spleen, BM and 

thymus  

1 out of 3 

Lymphnodes, spleen, BM and 

thymus 

 

Western blot analysis of tumor cells (in vivo) from primary (#2054P, Fig 6.19A, no. 1) and 

secondary tumors (#2054S, Fig 6.19A no. 2) showed that NFATc1 proteins were still expressed. The 

expression level of NFATc1 in these two tumors (#2054P and #2054S) was similar to that of control 

cells (resting B cells). A Western blot analysis of ex vivo propagated tumor cells of #2054S and #0435 

showed a reduced expression of NFATc1 in #2054S tumor cells in comparison to that of #0435 (Fig. 

6.19B). PCR analysis revealed incomplete deletion of Nfatc1flx/flx allele in these tumor cells in vivo 

(Fig. 6.21A) and during limited propagation ex vivo (Fig. 6.21B and C). These data indicated that in 

both mice (#2054P and #2054S) tumorigenesis is supported in B cells in which NFATc1 protein is 

still expressed.  
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Fig. 6.19. NFATc1 is still expressed in primary and secondary tumors from NFATc1-‘deficient’ 

tumor cells. A. Western blot analyses of proteins from tumors of primary and secondary Eµ-

Myc/Nfatc1flx/flx/mb1-cre+ tumors (#2054S, #2054P, lanes 1 and 2, respectively), resting and anti-

IgM stimulated naïve B-cells (lanes 5 and 4, respectively). B. Western blot analyses of proteins from 

ex vivo propagated tumors #2054S (1) and #0435 (2). Analyses were performed with antibodies 

directed against NFATc1 (7A6).  

 

6.14 NFATc1 is required for survival of Eµ-Myc-induced BCL cells 

Tumorigenesis in Eµ-myc mice with intact Nfatc1 allele and in Eµ-Myc/Nfatc1flx/flx/mb1-cre in vivo 

(Fig. 6.17) did not reveal significant differences between these two groups. It is well established that 

the relatively low efficiency of cre-mediated deletion in vivo is significantly increased after 

cultivation of cells ex vivo (Aliprantis et al., 2008). Therefore, we cultivated Eµ-Myc/Nfatc1flx/flx/mb1-

cre+ BCL cells  (#0794P and #1783P) and from control Eµ-Myc tumor (#1913P) and other tumors 

with at least one intact Nfatc1 gene allele (n=10). All BCL tumors from the control group (n=10) 

started to grow vigorously ex vivo after a short lag phase, while all BCL cells from NFATc1-deficient 

mice (#0794P and #1783P) died within 3 days (see Fig. 6.20A as an example).  

Both primary and secondary tumors of Eµ-Myc/Nfatc1flx/flx/mb1-cre mice (#2054P-#2054S) 

showed different trend ex vivo. These cells proliferated in vitro, albeit at a significantly lower rate. 

Initial PCR analysis of these cells indicated an incomplete deletion of Nfatc1 gene (Fig. 6.21A). 

However, around day 8 complete absence of Nfatc1 allele was detected, culture seized to proliferate 

and started to die (Fig. 6.20B and C). Cytological examination and FACS analysis of these cells 

confirmed an increased apoptosis and cell death compared to those with one intact Nfatc1 allele (Fig. 

6.20D and E). Together these data indicated that inactivation of the Nfatc1 gene results in decreased 

survival of BCL cells, at least ex vivo.  

  



   

61 

 

      

 

        

             

                    
 

  

   Fig. 6.20 Reduced expansion and survival of NFATc1-deficient tumor cells upon prolonged 

culture ex vivo. A. Primary tumor cells from Nfatc1flx/flx/mb1-cre+ (#1783 and #0794), Eµ-

Myc/Nfatc1-dsRed (#1913) and resting splenic wild type B cells (B). B. and C. Primary and secondary 

tumors of #2054 (#2054P and #2054S) and primary tumor from a mouse with intact Nfatc1 alleles 

(#0435P). The all tumor cells and resting splenic wild type B cells were cultured and enumerated daily 

at indicated time. D. Primary and secondary tumors of NFATc1-deficient at day 6 of culture (on panel 

C above) showed decreased proliferation and increased cell death compared to tumor cells with intact 

Nfatc1 allele (#0435P). E. Haematoxilin-eosin staining of  #2054P, #2054S and #0435P cultures at 

day 6 of cultivation. 

 

 

 

D 

 

   E 
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Fig. 6.21 Nfatc1 is completely inactivated during prolonged cultivation ex vivo. PCR analysis 

confirmed incomplete inactivation of Nfatc1flx/flx allele in the cells of #2054P and #2054S tumors in 

vivo (A) and complete inactivation ex vivo (B and C). 

 

6.15 Caspase-3 and -7 are activated in Eµ-Myc/Nfatc1flx/flx/mb1-cre tumor cells 

We asked whether apoptosis is induced in tumor cells from Eµ-Myc/Nfatc1flx/flx/mb1-cre mice via the 

caspase pathways, in particular by inducing caspase-3 and caspase-7. Western blot analysis indicated 

that in NFATc1-deficient tumor cells (from Eµ-Myc/Nfatc1flx/flx/mb1-cre, #2054P and #2054S) both 

caspases were activated as shown by their cleavage products which are not observed in tumor cells 

from mice with intact Nfatc1 alleles (#0435, Fig. 6.22A and B).  

 

 

                        

 

 Fig. 6.22 Caspase-3 and -7 are activated in Eµ-Myc/Nfatc1flx/flx/mb1-cre tumor cells. Tumors 

cells of Eµ-Myc/Nfatc1flx/flx/mb1-cre (#2054P and #2054S) mice and Eµ-Myc/Nfatc1flx/wt-/mb1-cre 

(#0435P) were isolated. Whole cell protein extract were separated by SDS-PAGE. Western blot 

analysis was performed with antibodies directed against Cleaved caspase-3 (A) and Caspase-7 

antibodies (B). 

 

 

  

   A B C
C 
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6.16 Interaction of CD40-CD40L induced apoptosis of Eµ-Myc induced BCL cells 

Activation of NF-κB signals was postulated to be incompatible with the survival of BL cells with 

high MYC expression levels (Keller et al., 2005; Schmitz et al., 2012). To verify if the interaction 

between CD40 and CD40-ligand (CD40L) can induce apoptosis in Eµ-Myc tumor cells we co-

cultured #0435 tumor cells with 40LB feeder cells which expresses the CD40-ligand (and BAFF, 

Nojima et al., 2011), in the presence and absence of IL-4. In co-cultures Eµ-Myc BCL cells started 

to die after day 2. The controls, tumor cells of #0435 alone i.e. without feeder cells did not die and at 

day 4 they accumulated almost 50 times (Fig. 6.23A). FACS analysis at day 3 confirmed that under 

co-culture conditions more than 90% of Eµ-Myc induced tumor cells underwent apoptosis 

(Fig.6.23B). These data suggested that interaction between CD40 and CD40L induces apoptosis in 

Eµ-Myc BCL cells after more than 2 days co-culture. 

      

Fig. 6.23 CD40-CD40L interaction induced apoptosis in Eµ-Myc tumor cells. A. Eµ-Myc tumor 

cells (#0435) were cultivated with or without irradiated 40LB feeder cells. B. Co-cultured and control 

cells were stained with antibodies against B220, Annexin V and PI. FACS analyses were gated on 

B220+ cell populations (below). 

 

6.17 Interaction between NFATc1 and BCL6 in maintenance of BL  

We were interested to elucidate which factors might influence the sustained residence of NFATc1 in 

the nucleus of BL cells. NFATc1 and BCL6 are co-expressed in nucleus of GC-B cells and GC 

derived-lymphomas including BL (Saito et al., 2007; Kim et al., 2012, and G. Ott, personal 
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communication). Indeed, NFATc1 and BCL6 were co-expressed in BL cell lines, Ramos, Namalwa 

(Fig. 6.24A and B, Fig. 6.25D).  

BCL6 is degraded by the ubiquitin/proteasome pathway following its phosphorylation via 

mitogen-activated protein kinases (MAPKs) or via p300 mediated acetylation (Niu et al., 1998; 

Bereshchenko et al., 2002). CsA treatment of Ramos cells did not affect nuclear levels of BCL6 

protein (Fig. 6.24A and B). However, treatment of Namalwa cells with increasing concentrations of 

Ca2+ chelator, Bapta AM, led to concentration dependent decrease of nuclear BCL6 protein, 

concomitant with cytosolic relocation of NFATc1 protein (Fig. 6.24B) suggesting that interaction 

with BCL6 might be at least partially contributing to sustained CN-independent nuclear residence of 

NFATc1 in BL cells. 

 

 

 

 

 

              

 

 

 

Fig. 6.24 Nuclear expression of BCL6 is affected by the intracellular Ca2+ levels. A. Ramos cells 

were treated with CsA at the indicated concentrations.  B. Namalwa cells were treated with BAPTA 

AM for 3.5 hours at indicated concentrations. Cytoplasmic and nuclear protein extracts were analysed 

by Western blotting using antibodies directed against BCL6. 

 

To determine putative interactions among MYC, NFATc1 and BCL6 we employed P493-6 

cells. Upon treatment with doxycycline, the expression of MYC is abolished (Table 2) resulting in 

reversible G1 arrest (Fig. 6.25D). RT-PCR analysis indicated that MYC expression level in P493-6 

cells did not affect neither total level of NFATc1 transcripts nor modulated activities of P1 or P2 

promoters (Fig. 6.25A). The expression levels of NFATc2 transcripts also remained unaffected by 

MYC. 

  

  Bapta AM   60      40      20     10      5        -  

        (µM) 

90kD 

Nuclear Cytosolic 

ns   

Namalwa  

α-BCL6 

  DMSO     +        -          -         -         -         

  CsA          -        1       0.5      0.1       -     

90k

D 

Ramos Nuclear 

α-BCL6 
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      Table 2. P493-6 cells, indicated treatments and effects 

 

P493-6 

 

Treatment 

 

Effects 

 

Cell condition 
 

#1 (-) MYC-ON Proliferation 

#2 Doxycycline MYC-OFF G1-arrest 

#3 Estrogen 

 

MYC-ON 

EBNA-ON 

Proliferation 

#4 Estrogen and Doxycycline 

 

MYC-OFF 

EBNA-ON 

Proliferation 

      

       

 

 

                     

 

Fig 6.25 Putative interaction between NFATc1 and BCL6. A. B. and C. The activities of NFATc1 

P1 and P2 promoters (A), the total levels of NFATc1 (B) and NFATc2 (C) transcripts were analyzed 

by RT-PCR. D. P493-6 cells were left untreated (#1), and treated with doxycycline (#2), estrogen 

(#3), or doxycycline and estrogen (#4) for three days. Nuclear and cytoplasmic protein extracts were 

analysed. Western blot analysis with indicated antibodies directed against NFATc1 (7A6), BCL6 

(D65C10) and c-Myc (9E10). E. FACS analysis of Annexin V stained P493-6 cells after 4 days of 

indicated treatments.  

 

MYC regulates intracellular level of Ca2+. Therefore, a high expression level of MYC 

sustained Ca2+ influx (Habib et al., 2007) in BL. Both BCL6 and NFATc1 are regulated by the Ca2+ 

signaling pathway (Fig. 6.6A and B, Fig. 6.24A and B, Kim et al., 2012). Downregulation of MYC 

protein expression results in increased nuclear expression of BCL6 and NFATc2 in growth arrested 

D 

E 

(Together with H. Fender) 
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as well as proliferating of P493-6 cells (Fig. 6.24C). Concomitantly, a partial cytosolic translocation 

of NFATc1 is evident.  

 

      
 

 

Fig. 6.26 Model of NFATc1-MYC-BCL6-PRDM1 regulatory network. Increased MYC 

expression increases intracellular of Ca2+ levels leading to sustained exclusively nuclear localization 

of NFATc1. NFATc1 might be recruited to DNA-bound BCL6 and affect autoregulatory loop of 

BCL6 expression and, in turn, BCL6-mediated repression of PRDM1 gene. Thus, NFAT proteins are 

important modulators of well-established MYC-BCL6-PRDM1 regulatory network. Established 

connections are shown in black. Our proposed pathways are shown in red and blue. Solid lines specify 

protein/DNA interactions, interrupted lines represent protein/protein interactions. 

 

Evidence from our group revealed that the regulatory domain of NFATs directly interacted 

with the DNA binding domain of BCL6 (Busch et al., 2014, manuscript, submission), and that such 

interaction might be responsible for the partial cytosolic retention of BCL6 and NFAT proteins and/or 

recruitment of NFATs to BCL6 DNA binding sites. Therefore, we speculate that this interaction 

might affect a negative autoregulatory loop of BCL6 expression and BCL6 mediated repression of 

PRDM1 gene. Therefore, our data suggest that NFAT proteins are important modulators of well-

established MYC-BCL6-PRDM1 regulatory network (Fig. 6.26). 
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7. Discussion 

7.1 NAFTc1 expression in Burkitt lymphoma 

The expression of NFATc1 in lymphomagenesis/leukemogenesis has been addressed (Marafioti et al, 

2004; Pham et al., 2010; Akimzhanov et al., 2008; Le Roy et al., 2012). Interestingly, although most 

aggressive BCLs including Burkitt lymphoma express NFATc1 (Marafioti et al, 2004; Pham et al., 

2010), the role of these observations in generation and/or maintenance of tumors was never addressed 

before. 

We identified several NFATc1 localization patterns in BL cases assessed by 

immunohistochemistry using an antibody which detects all NFATc1 protein isoforms (7A6) and an 

NFATc1-α-isoform specific antibody (IG-457) (Fig. 6.1A-H). The major expression pattern was 

predominantly nuclear localization, also found by Marafioti et al. (2004). Additional expression 

patterns were characterized by near equal staining of nuclear and cytosolic compartments or 

preferentially cytosolic staining. Therefore, in all cases at least part of NFATc1 was localized in 

nucleus suggesting transcriptional activity of NFATc1. Preferentially nuclear expression pattern was 

observed in all BL cell lines analysed (H. Fender, unpublished). As example, in Ramos and Namalwa 

cells NFATc1 was exclusively nuclear (Fig. 6.1I-J). Western blot analysis confirmed specificity of 

immunohistochemical and immunofluorescence stainings (Fig. 6.6A and B).   

Increased expression of NFATc1 was linked with MYC protein overexpression (Pham et al., 

2010), however, there is no direct correlation between patterns of NFATc1 immunostaining and MYC 

translocation (Marafioti et al., 2004). It might be interesting to correlate different NFATc1 

immunostaining patterns to clinical aspects of BL, i.e. patient survival or management options. 

Unfortunately, for BL cases analyzed in a current study the data of patient survival and therapeutic 

management are not available. Stainings of BL cases with NAFTc1 antibody might be considered as 

a prognostic tool in the future.   

In line with transcriptome analysis of BL (Dave et al., 2006), our data revealed lack of 

significant upregulation of NFATc1 transcripts in primary BL and BL cell lines (Fig. 6.13A) 

suggesting that in tumor cells NFATc1 protein expression is mainly affected by post transcriptional 

or post-translational mechanisms.  

 

7.2 B cell lymphomas in Eµ-Myc mice 

To verify the role of NFATc1 in BCL survival and progression, we utilized Eµ-Myc mouse (Adam 

et al., 1985). B cell lymphomas (BCLs) which developed in Eµ-Myc mice are similar to human BL 

in respect to clinical and histologic appearances (Adam et al., 1985). BLs in human are derived from 

GC B or memory B cells (Tamaru et al., 1995; Klein et al., 1995; Isobe et al., 2000). Hence, BL 
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tumor cells basically express surface markers of their origin i.e. CD20, CD10, BCL6, (Blum et al., 

2004). Tumors from Eµ-Myc mice derive from different B cell stages i.e. small pre-B, immature, and 

mature B cells but not from GC B cells (Fig.6.4B). These results are in agreement with Adam and 

colleagues (Adam et al., 1985). Therefore, in respect to tumor origin Eµ-Myc model does not reflect 

human BL. In 70% cases (n=10) of our Eµ-Myc mice tumors develop from mature stages of B cell 

development, as evident from the presence of tumors with mixed (IgD- and IgD+, n=6) and mature 

(IgD+, n=1) immunophenotypes. 

 

7.3 NFATc1 expression in Eµ-Myc mouse tumors  

In peripheral lymphocytes, upon activation NFATc1 translocates into the nucleus and controls the 

transcription of target genes (Loh et al, 1996a; Chen et al, 1998; Garcia-Cozar et al, 1998). Similar 

to BL, in Eµ-Myc induced primary and secondary tumors and in all BCL lines which we have derived 

from these tumors (Fig. 6.5E and 6.7A) NFATc1 was predominantly expressed in nuclei (Fig. 6.5A 

and C). This suggested that NFATc1 plays an important role in the survival and progression of Eµ-

Myc induced tumors. Interestingly, we found that the expression levels of Nfatc1 mRNA in Eµ-Myc 

tumor cells was rather decreased in comparison with normal resting splenic B-cells (Fig. 6.13B) 

indicating that NFATc1 protein expression in Eµ-Myc induced tumors is significantly affected by 

post transcriptional and/or post-translational mechanisms.  

 

7.4 Comparative analysis of NFATc1 isoform expression in BL, BL cell lines and Eµ-Myc 

induced tumor  

 

Different properties and functions of NFATc1α and NFATc1β proteins in lymphocytes and 

macrophages are well established (Chuvpilo et al., 2002; Serfling et al., 2012; Busch et al., 2014 

manusript, submitted). To differentiate between expression of NFATc1/α and –β isoforms in BL and 

Eµ-Myc BCL tumors we analyzed the relative amounts of P1- and P2-promoter directed transcripts. 

In human BL, P1-directed NFATc1 transcripts were expressed at around 8-fold higher levels than P2-

directed transcripts (Fig. 6.14A and B). In MYC-overexpressing human P493-6 cells (Fig. 6.24A) 

about 8-fold higher level of P2-directed transcripts compared to P1-directed NFATc1 transcripts was 

observed. Neither total amount of Nfatc1 transcripts nor relative activities of promoters were affected 

by the MYC expression levels in these cells. In Eµ-Myc BCL tumors we observed around 8-fold 

higher expression of P2-directed Nfatc1 transcripts in comparison to P1-directed Nfatc1 transcripts 

(Fig. 6.14D-G). We confirmed these findings with analysis of the Eµ-Myc/Nfatc1-dsRed tumor where 

NAFTc1/β isoforms were expressed at around 4-fold higher levels than NFATc1α suggested 

NAFTc1β isoform was predominant in Eµ-Myc tumor (Fig. 6.15). Therefore our data revealed lack 
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of strict correlation between the expression of six NFATc1 isoforms in different BL-related entities 

suggesting that both NFATc1/ and -/ isoforms provide survival functions and that 

NFATc1B and -C isoforms either do not possess pro-apoptotic properties in BL cells or these 

properties are counterbalanced.  

 

7.5 Stability NFATc1 protein in MYC induced tumors 

MYC protein is degradated through the ubiquitin-proteasome pathway (Wierstra and Alves, 2008). 

In BL cell lines (Ramos and Namalwa) the half-life of MYC protein is prolonged (till around 2 hrs, 

Fig. 6.12A and B), compared to 15-30 minutes in normal proliferating cells (Dang, 2012; Schumacher 

and Eick, 2013). We observed that stability of NFATc1 protein is also increased in Ramos and 

Namalwa cells. To investigate expected link between high expression of MYC and stabilization of 

NFATc1 protein we employed P493-6 cell line. In the presence of high MYC expression levels the 

half-life of both NFATc1 and – isoforms was significantly increased (7.14hrs against 5hrs in the 

absence of MYC). These data indicated that high levels of MYC expression stabilize NFATc1 protein 

independently from N-terminal -peptides, which themselves have different protein half-lifes 

(Hock et al., 2013).  

 

7.6 Nuclear residence of NFATc1 in MYC induced tumors is largely insensitive to calcineurine 

inhibitors. 

 

Increased intracellular Ca2+ in peripheral lymphocytes elicits the activation of CN which 

dephosphorylates NFATc1, exposing a nuclear localization sequence which then leads to NFATc1 

translocation into the nucleus. Nuclear localization of NFAT factors is sensitive to the CN inhibitors 

cyclosporine A (CsA) and FK506 (Loh et al., 1996a). We demonstrated that upon treatment with 

various concentration of CsA (0.1-11µg/ml) there was only about 10% of NFATc1 protein were 

exported to cytosol in Ramos and Namalwa cells (Fig. 6.6A and C). Nuclear localization of NFATc1 

in normal lymphocytes is completely prevented with 0.1µg/ml of CsA. Importantly, increased CsA 

concentrations (up to 10-fold) did not result in an increased cytosolic relocation of NFATc1. Even the 

lowest concentrations of CsA resulted in a complete relocation of nuclear RELA (p65) protein in 

Ramos cells indicating that in BL cells the major part of NFATc1 nuclear pool is independent from 

CN activity. 

In addition, our data indicated that nuclear residence of NFATc1 is not affected by inhibition 

of Jak3 activity, which is responsible for NFATc1 nuclear translocation in double-negative 

thymocytes (Patra et al., 2013). Interestingly, even moderate (IC50) concentrations of Jak3 inhibitor 
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blocked proliferation of Ramos and BCL (#1542B) cells indicating the presence of Jak3-

dependent/NFATc1-independent proliferation pathway in BL cells. 

Decreased electrophoretic mobility of NFATc1A, -B, and –C isoforms after CsA treatment 

suggested that even at the lowest CsA concentration the nuclear fraction of NFATc1 protein is 

becoming highly phosphorylated (Fig. 6.6A-D). NFATc1 nuclear export is regulated via the 

phosphorylation of its serine residues by certain kinases i.e. Glycogen synthase kinase-3 (GSK), 

protein kinase A (PKA), Casein kinase 1 (CK1), p38 MAPK and c-Jun N-terminal kinase 1 (JNK1) 

(Beals et al., 1997; Sheridan et al., 2002; Okamura et al., 2004; Gomez del arco et al., 2000; Liang et 

al., 2003). Our results does not exclude the possibility that phosphorylation pattern of NFATc1 under 

CsA treatment of BL cells is different from that required for nuclear export. Because portion (10%) 

of nuclear NFATc1 is relocated to cytosol after CsA treatment we believe that 

regulation/requirements for nuclear export are similar in BL and normal B-lymphocytes. 

The closest explanation for the constitutive NFATc1 nuclear residence is MYC–dependent 

reduction of Ca2+ efflux due to decreased expression of plasma membrane Ca2+–adenosine 

triphosphatase (PMCA) efflux pump (Habib et al., 2007). This leads to a sustained increase in 

intracellular Ca2+ level and results in constitutive nuclear localization of NFATc1 (Habib et al., 2007). 

Therefore, MYC activation together with constitutive NFATc1 signals promotes B cell activation, 

proliferation and ultimately tumorigenesis. Once they become malignant, the survival of lymphoma 

cells is maintained via Ca2+/NFATc1 pathways.  

Functional characterization of phosphorylated nuclear NFATc1 (under CsA regimen) 

requires further analysis. Phosphorylated NFATc1 might bind (albeit with lower affinity) to 

regulatory elements of NFAT target genes. Some fraction of nuclear phosphorylated NFATc1 might 

be dephosphorylated by intranuclear phosphatases and retained in the nucleus with full transcriptional 

activity. Indeed, CsA treatment does not affect proliferation of Ramos, Namalwa or BCL cells (Fig. 

6.6E and F and 6.7B). 

 

7.7 Tumorigenesis in Eµ-myc/Nfatc1flx/flx/mb1-cre mice 

Our experiments revealed that BCL tumors develop in Eµ-Myc/Nfatc1flx/flx/mb1-cre+ (n=3) mice with 

conditional NFATc1 deficiency. However, none of these mice showed the presence of tumor clones 

with mature B-cell immunophenotype, which was predominant (70%) in mice with intact Nfatc1 

alleles. This indicates that NFATc1 expression is required for generation/survival of BCL. 

We observed different behavior of the tumor cells from Eµ-Myc/Nfatc1flx/flx/mb1-cre+ mice 

during cultivation ex vivo compared to cells with intact Nfatc1 alleles. The tumor cells of two mice 

(#0794 and #1783) did not proliferate upon cultivation, after 2 days of lag-phase they died (Fig. 
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6.20A). While the tumor cells from other Eµ-Myc/Nfatc1flx/flx//mb1-cre+ mice (#2054 primary and 

secondary) still survive during cultivation. The reason for this might be related to lower initial levels 

of ‘residual’ Nfatc1 gene in tumors cells of these two mice (#0794 and #1783) compared to that of 

#2054 primary and secondary tumors. Therefore, complete inactivation of Nfatc1 gene in vitro was 

achieved in a few days. While in the tumor cells of mouse #2054 primary and secondary, complete 

inactivation of Nfatc1 gene was achieved after more than four weeks of cultivation. These indicated 

in our mouse model BCL developed only from a sub-population of B-cells in which Nfatc1 gene 

remained intact, and this was confirmed by PCR analyses showed incomplete inactivation of 

Nfatc1flx/flx allele in these cells (Fig. 6.18E and 6.21A). Together these observations indicated the 

variability of cutting efficiency of cre-mediated deletion, although high efficiency of mb-1 cre 

mediated deletion in non-tumor cells (Hobeika et al., 2006). The mb1-cre mediated deletion might 

be of limited value to study the conditional alleles in certain tumor types, including in Eµ-Myc mouse 

models.  

BL cells typically show low activity of the pro-survival factor NF-κB (Dave et al., 2006) and 

activation of NF-κB signals is not compatible with survival of BL cells with high MYC expression 

level (Keller et al., 2005; Schmitz et al., 2014). CD40 is expressed at all stages of B cell development 

(van Kooten and Banchereau, 2000) and in human and murine MYC-induced lymphoma cell lines 

(Klapproth et al., 2009). Cross-linking of CD40 leading to activation of NF-κB (van Kooten and 

Banchereau, 2000). In BL cell lines, increased cell death related to NF-κB, caspase-8 dependent and 

Fas expression were observed (Klapproth et al, 2009; Klapproth and Wirth, 2010), thus, activation 

of NF-κB induced cell death in certain BL cell lines (Klapproth et al, 2009). We showed induction 

of apoptosis in Eµ-Myc tumor cells upon co-cultured after day 2 with 40LB feeder cells expressing 

CD40L (and BAFF, Fig. 6.23A and B). These data suggested interaction of CD40-CD40-ligand 

might activate NF-κB signaling leading to the induction of apoptosis of Eµ-Myc tumor cells after day 

2 co-cultured. 

 

7.8 Interaction of NFATc1 and BCL6 in maintenance of BL survival 

In BL, high expression of MYC leads to sustains Ca2+ influx (Habib et al., 2007) and to constitutive 

nuclear residence of NFATc1 (Fig. 6.6A-B and 6.7A) and most likely affects BCL6 expression (Fig. 

6.24A and B, Kim et al., 2012). Indeed, BCL6 is expressed in nuclei of BL cells and is one of key 

features in BL diagnosis (G. Ott, personal communication). In GC environment, NF-κB activation 

related to up-regulation of IRF4 is followed by down regulation of BCL6 (Saito et al., 2007). This is 

not the case in BL, where suppression of BCL6 is blocked. One reason for this might be affected 
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negative autoregulatory loop of BCL6 expression due to direct interaction of regulatory domain of 

NFATs with the DNA binding domain of BCL6 (Busch et al., 2014, manuscript, submitted).  

In BL tumors high rate of apoptosis of some cells is competed by increased proliferation of 

other tumor cells (Bellan et al., 2003; Blum et al., 2004; Ferry 2006; Shankland et al., 2012). We 

believe that fluctuations of NFATc1 expression levels and/or nuclear localization might be one of 

the reason(s) for these observations. The cells, which undergo apoptosis might have reduced or 

missing NFATc1 expression, the cells which proliferate might still have adequate levels of NFATc1. 

In BL cells NFATc1 protein is stabilized, hence, BL cells are basically more prone to proliferation. 

This is in line with our observations that in human BL and in P493-6 cells MYC stabilizes NFATc1 

protein therefore NFATc1 is constitutively nuclear and ensures survival of tumor cells.  

Our studies revealed an important role of NFATc1 in survival of BCL cells, suggesting that 

components of the CN-independent Ca2+/NFAT signalling pathway are promising targets for cancer 

therapy of B cell lymphomas, in particular BLs. Further studies with large cohort might be needed to 

validate the predictive significance of levels and patterns of NFATc1 protein expression in BL 

assessed by immunohistochemistry, probably in a combination with other markers such as BCL6.  

To summarize, we show that NFATc1 is constitutively expressed in nuclei of BL, BL cell 

lines and in Eµ-Myc induced BCL cells (1). Nuclear residence of NFATc1 is independent from CN, 

but depends on intracellular Ca2+ (2). NFATc1 is important for survival of tumor cells, thus NFATc1 

ablation has strongly correlates to increased apoptosis of tumor cells (3). In MYC induced tumors, 

NFATc1 protein expression is regulated at post transcriptional and post translational levels (4). 

NAFTc1 α/β isoforms play redundant functions in survival of BL and MYC-induced tumor cells (5). 

Pro-apoptotic activity of NFATc1/B and –C isoforms is counterbalanced in BL cells. 
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9. Appendix 

9.1. Attended Conferences 

 

1. 17th Joint meeting of the Signal Transduction Society (STS) ‘Signal transduction receptors,    

mediators and genes’ (6th November 2013) in Weimar, Germany 
 

2. 8th Network Meeting of DFG research training groups GK1660, GK520 and SFB685 (21th – 23rd 

July 2013) in Obertrubach, Germany 
 

3. 16th Joint meeting of the Signal Transduction Society (STS) ‘Signal transduction receptors, 

mediators and genes’ (5th – 7th November 2012) in Weimar, Germany 
 

4. 7th International symposium the graduate school of life sciences (16th – 17th October 2012) in 

Wuerzburg, Germany 
 

5. 6th International symposium the graduate school of life sciences (19th - 20th October 2011) in 

Wuerzburg, Germany 
 

6. 6th Network Meeting of the DFG graduate programs from Würzburg, Tübingen, and Erlangen (6th 

– 8th June 2011) in Neresheim, Germany 
 

7. 7th Annual Meeting of Immunology Training Network of Tübingen, Erlangen and Würzburg (15th 

– 17th July 2012) in Schöntal, Germany. 
 

8. International Workshop of the DFG-Transregional Research Center TR52: Transcriptional 

Programming in the Immune System in Würzburg, Germany. (17th -20th  

November 2010) 
 

9. 5th Network Meeting of DFG graduate schools GK1160, GK520 and GK794 (7th – 9th November 

2010) Schöntal, Germany 
 

10. 5th International Symposium (Chiasma-GSLS student symposium), Würzburg, (13th - 14th 

October 2010) in Wuerzburg, Germany. 

 

9.2 Poster and oral presentations at conferences and symposia 

1. Krisna Murti, Hendrik Fender, Rhoda Busch, Vannesa Wild, Martin Winterberg, Edgar Serfling 

and Andris Avots (2013). The role of NFATc1 isoforms in development and progression of c-Myc 

induced B cell lymphomas. 8th Network Meeting of DFG research training groups GK1660, GK520 

and SFB685 (21th – 23rd July 2013) in Obertrubach, Germany. 

 

2. Krisna Murti, Hendrik Fender, Rhoda Busch, Vannesa Wild, Martin Winterberg, Edgar Serfling 

and Andris Avots (2012). Nuclear NFATc1α is a hallmark of Burkitt lymphoma and c-Myc induced 

B-cell tumors in mice. 16th Joint meeting of Signal Transduction Society (STS) ‘Signal transduction 

receptors, mediators and genes’ (5th – 7th November 2012) in Weimar, Germany.  

 

3. Krisna Murti, Hendrik Fender, Rhoda Busch, Edgar Serfling and Andris Avots (2012). Nuclear 

NFATc1α is a hallmark of Burkitt lymphoma and c-Myc induced B-cell tumors in mice. 7th 

International symposium the graduate school of life sciences (16th – 17th October 2012) in Würzburg, 

Germany. 
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4. Krisna Murti (2012). The role of NFATc1 isoforms in development and progression of  

c-myc induced B cell lymphomas. 7th Annual Meeting: Immunology Training Network of Tübingen, 

Erlangen and Würzburg (15th – 17th July 2012) in Kloster Schöntal, Germany (oral presentation). 

 

5. Krisna Murti and Andris Avots (2011). Rotenone and CAPE as inhibitors of inducible NFATc1/αA 

isoform expression in lymphoid cells. 6th International Symposium (BioBang-GSLS students 

symposium) (19th - 20th October 2011) in Wuerzburg, Germany. 

 

6. Krisna Murti and Andris Avots (2011). Rotenone and CAPE as inhibitors of inducible NFATc1/αA 

isoform expression in lymphoid cells (2011). 6th Network Meeting of DFG graduate schools GK1160, 

GK520 and GK794 (6th – 8th June 2011) in Kloster Neresheim, Germany. 

 

9.3 Attended Workshops 
 

1. Statistic course part I (16th – 18th June 2011) in Würzburg, Germany 

2. Statistic course part II (11th – 13th July 2011) in Würzburg, Germany 

3. Grundkurs Tierschutz und Versuchstierkunde (10th – 14th October 2011) in Würzburg, Germany 

4. Poster design and presentation workshop, Würzburg (8th October 2012) in Würzburg, Germany 
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11. Abbreviation 

α     Anti, Alpha 

      A     Ampère 

BL/6    Black six, standardized mouse strain 

°C     Grade Celcius 

CD    Cluster of differentiation 

Cre    Causes/circular recombination 

      d     Day 

DMEM    Dulbeco’s modified eagle medium 

DMSO    Dimethyl sulfoxide  

DNA    Desoxyribonucleid acid 

et al.    Et aliter 

EtOH    Ethanol 

FITC    Fluorescence Isothiocyanat 

      g     Gramm 

      h (hrs)   Hours 

HRP    Horseradish peroxidase 

IL     Interleukin 

      k     Kilo (103) 

      kD     Kilo Dalton 

      L     Liter 

      M     Molar (mol per liter) 

      min    Minutes 

      mol    12g carbon particles (Isotop 12C)  

      m     Milli (10-3) 

      µ     Micro (10-6) 

      n     Nano (10-9) 

NF-κB    Nuclear Factor κappaB 

OD    Optical Density 

o.n    Over night 

PAGE    Polyacrylamid-Gel electrophorese 

PI     Propidium iodide 

PBS    Phosphate-buffered saline 

PE     Phycoerythrin 

PFA    Paraformaldehyde 

RPMI    Roswell Park Memorial Institute, a cell culture medium 

rpm    Rotations per minutes 

RT    Room temperature (~20°C) 

TBS    Tris-buffered saline 

Tris    THAM (hydroxymethyl)aminomethan 

U     Enzyme unit (unit) 

      V     Vol 

wt     Wild type 
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