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Abstract

This thesis aims at a description of the equilibrium dynamics of quantum spin glass systems. To
this end a generic fermionic §B), spin 1/2 spin glass model with infinite-range interactions

is defined in the first part. The model is treated in the framework of imaginary-time Grassmann
field theory along with the replica formalism. A dynamical two-step decoupling procedure,
which retains the full time dependence of the (replica-symmetric) saddle point, is presented. As
a main result, a set of highly coupled self-consistency equations for the spin-spin correlations
can be formulated.

Beyond the so-called spin-static approximation two complementary systematic approxima-
tion schemes are developed in order to render the occurring integration problem feasible. One
of these methods restricts the quantum-spin dynamics to a manageable number of bosonic Mat-
subara frequencies. A sequence of improved approximants to some quantity can be obtained by
gradually extending the set of employed discrete frequencies. Extrapolation of such a sequence
yields an estimate of the full dynamical solution. The other method is based on a perturbative
expansion of the self-consistency equations in terms of the dynamical correlations.

In the second part these techniques are applied to the isotropic Heisenberg spin glass both on
the Fock space (HSE and, exploiting the Popov-Fedotov trick, on the spin space (JSte
critical temperatures of the paramagnet to spin glass phase transitions are determined accurately.
Compared to the spin-static results, the dynamics causes slight incredsdxsy@tbout 3% and
2%, respectively. For the HShe specific heat'(T') is investigated in the paramagnetic phase
and, by way of a perturbative method, below but clos&torhe exactC(T')-curve is shown to
exhibit a pronounced non-analyticity Bt and, contradictory to recent reports by other authors,
there is no indication of maximum abo¥eé.

In the last part of this thesis the spin glass model is augmented with a nearest-neighbor
hopping term on an infinite-dimensional cubic lattice. An extended self-consistency structure
can be derived by combining the decoupling procedure with the dynamical CPA method. For the
itinerant Ising spin glass numerous solutions within the spin-static approximation are presented
both at finite and zero temperature. Systematic dynamical corrections to the spin-static phase
diagram in the plane of temperature and hopping strength are calculated, and the location of the
guantum critical point is determined.



Zusammenfassung

Die vorliegende Arbeit besditigt sich mit der Gleichgewichtsdynamik in Quanten-Spinglas-
systemen. Dazu wird im ersten Teil ein allgemeines fermionische§2)S6pin 1/2
Spinglasmodell mit langreichweitiger Wechselwirkung definiert. Das Modell wird im Rah-
men der Grassmann-Feldtheorie und mithilfe des Replikatricks behandelt. Es wird ein dynami-
sches zweistufiges Entkopplungsverfahren vorgestellt, welches die volle Zeitagkeit des
(replika-symmetrischen) Sattelpunktesimksichtigt. Als ein Hauptergebnis kann ein Satz von
gekoppelten Selbstkonsistenzgleichungamdie Spin-Spin-Korrelationen formuliert werden.

Uber die spin-statische &therung hinaus werden zwei komplenigetsystematische Ap-
proximationsverfahren entwickelt, die das auftretende Integrationsproblem beherrschbar ma-
chen. Eine dieser Methoden besihkt die Quantenspindynamik auf eine handhabbare Anzahl
bosonischer Matsubara Frequenzen. Unter schrittweiser Hinzunahme weiterer diskreter Fre-
guenzen ergibt sich eine Sequenz verfeinert@nédtungen einer beliebigen@&e. Durch Ex-
trapolation kann die voll dynamischeésung bestimmt werden. Die andere Methode ful3t auf
einer Sbrungsentwicklung der Selbskonsistenzgleichungen in den dynamischen Korrelationen.

Im zweiten Teil werden diese Techniken angewandt auf das isotrope Heisenberg-Spinglas
sowohl auf dem Fockraum (HS£g als auch, unter Verwendung des Popov-Fedotov-Tricks, auf
dem Spinraum (HSE). Die kritischen Temperaturen der Spinglas-Phaberginge werden
genau ermittelt. Verglichen mit den spin-statischen Ergebnisgamn die Dynamik zu leichten
Erhdhungen vorl,. um jeweils 3% bzw. 2%. & das HS(@ wird die spezifische \&frme in
der paramagnetischen Phase und dicht unterRalimtersucht. Es wird gezeigt, dal3 die exakte
C(T)-Kurve eine Nicht-Analytizi&it anT,. aufweist. Dagegen finden sich keine Anzeichen eines
Maximums oberhalb vofi,, was im Widerspruch zu Beobachtungen anderer Autoren steht.

Im letzten Teil dieser Arbeit wird das Spinglasmodell um einépfterm auf einem unend-
lich-dimensionalen kubischen Gitter @&rgzt. Durch Kombination des Entkopplungsverfahrens
und der dynamischen CPA-Methode kann eine erweiterte Selbskonsistenzstruktur gewonnen
werden. Eir das itinerante Ising-Spinglas werden innerhalb der spin-statiscaleerdihg zahl-
reiche Losungen bei endlichen Temperaturen als auclfbeiO prasentiert. Es werden syste-
matische dynamische Korrekturen zum spin-statischen Phasendiagram in der Ebene von Tem-
peratur und Hpfstarke berechnet, woraus der quantenkritische Punkt bestimmt wird.



Introduction

During the last three decades, the theory of spin glasses has been attracting much attention.
This may have two reasons. The first is its clear relevance to science. Several classes of disor-
dered magnetic materials which manifestly exhibit spin glass behavior have been discovered by
now, and numerous experiments elucidated the intriguing physical properties of these systems
[31, 5, 13]. Furthermore, an adequate description of the spin glass state required new and un-
usual concepts in statistical mechanics. Applicable to a wide range of complex systems, these
concepts have spread over many other fields of research, for instance optimization theory [29],
information processing [33], or the theory of neural networks [20], to mention only a few of the
most prominent examples.

A second reason for the sustaining interest in spin glass systems certainly is the big chal-
lenge they have been and continue to be offering to us. The phenomenon of non-trivial ergod-
icity breaking encountered in the spin glass state entails very intricate theories already at the
mean field level. This point can be illustrated by the case of the fully connected Ising spin
glass, the famous Sherrington-Kirkpatrick model. Despite it certainly is the most comprehen-
sively studied and best understood genuine spin glass model, a closed exact solution in the low
temperature phase could not be found yet and is still subject of intense research.

Quantum spin glass models provide yet another difficulty which arises from their inher-
ent quantum-spin dynamics. The mean field approach to translationally invariant models of
ferromagnets or antiferromagnets leads to self-consistency equations for suitably defined mag-
netizations, i.e. static quantities. In contrast, in the presence of disorder the corresponding
self-consistency structure involves time (resp. frequency) dependent local spin-spin correla-
tions. The resulting coupling of infinitely many dynamical degrees of freedom obstructs simple
mean field solutions for quantum spin glass models even in their paramagnetic phases. This
technical difficulty initially motivated the work presented in this thesis.

In the first chapter, a mean field theory for quantum spin glasses shall be formulated. Sub-
sequently, the resulting dynamical self-consistency problem shall be tackled both analytically
and numerically within especially developed systematic approximation schemes. Chapter 2 is
concerned with Heisenberg spin glass variants, and the last part is dedicated to an itinerant
fermionic Ising spin glass.



The dynamical self-consistency problem

The aim of this chapter is to establish a technical framework for the description of the equi-
librium dynamics in infinite-range spin/2 quantum spin glass systems. To this end a generic
Hamiltonian for the magnetic part of fermionic spin glass systems allowing for arbitrary global
anisotropy shall be considered. It includes various physically interesting special cases, some of
which will be studied in the course of this work. As the Fock space is effectively reduced to
the spin space by the Popov-Fedotov chemical potential [39], the general fermionic formulation
readily accounts for genuine spin models, too.

The model is treated within imaginary-time Grassmann-field theory along with the replica
formalism to handle the disorder. By means of an exact two-step decoupling procedure, which
retains the full dynamics of the problem, the effective action can be reduced to that of non-
interacting fermions in a self-induced dynamical potential. The applied method is a quantum
version of the basic decoupling scheme originally introduced in the context of the classical Ising
spin glass [47, 26]. In particular, the method is the dynamical generalization of the spin-static
formalism for fermionic spin glass models developed in Ref. [35].

Using a replica-symmetric Ansatz, the general self-consistency problem for the spin glass
order parameter and the dynamical replica-diagonal spin-spin correlations shall be formulated.
The resulting set of highly coupled self-consistency equations constitutes a central issue of this
thesis. Therefore, a rather detailed derivation will be given.

1.1 Model definition

The magnetic part of fermionic spin glass systems can be described quite generally by the basic
grand-canonical Hamiltonian

R le—m~ _ = R R

Ksc= EZSL'JUS]' - hZSL‘ - Mzni (1.1)
i#] 7 i

with a global external magnetic fieldpointing in arbitrary direction and a chemical potential

1. The indices andj label the sites of the system. In terms of the usual fermionic construc-
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tion operatorsljg anda;,, which create and destroy, respectively, a particle atisitgh spin
projections = {1, |}, the number operators read

ﬁi = CLJUCLZ'U. (12)

Using the Pauli matrices, with v = {x,y, z}, the spatial components of the spif2loperators
are given by

& t
SY = ai,08 a0, (1.3)
oo’

where the conventional pre-factéy2 has been dropped for convenience. In this work the
spin-pair interaction matrices are restricted to diagonal shape,

J5 0 0
Jj=| 0 J} 0 [, (1.4)
0 0 J;

i.e. there are no direct interactions between different spin components. The coupling constants
Ji; = J; are defined to be uncorrelated real random numbers drawn from the symmetric Gaus-
sian distribution

1 1/J% 2
P,(JY) = —=exp| —= [ =L ) 1.5
)=, p( Z(J,,)) o)
The assumption of infinitely ranged interactions is expressed by the fact that the disorder dis-
tribution (1.5) is independent of the distance between two interacting spins at @itdg. For
such a model to be sensible it is essential to adapt the disorder variances to the size of the system
according to

']I/: ‘]I/7 (16)

VN
whereN is the total number of spins and thig are fixed model parameters. It will turn out that
the scaling (1.6) ensures the free energy to be an extensive thermodynamic quantity.

Each spatial direction is governed by an individual paramétefThus, the present model
allows for arbitrary global anisotropy. In particular, the choie= 0 entirely removes all
couplings of spin components indirection from the Hamiltonian (1.1). In this sense the
general model includes the Ising and XY cases.

1.2 The Popov-Fedotov-Trick

There exists a strikingly simple fermionic representation of spihsystems. A spin Hamilto-

nian #s, defined on the spin space, can be mapped onto a corresponding Hamiltni@m

the Fock space by expressing the spin operators in terms of the fermionic construction opera-
tors according to eq. (1.3). A problem arises from the different dimensionalities of the vector
spaces the two Hamiltonians act on. There are two possible orientations for each individual
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spin, which amounts to a total of*2states available to a system &fspins. The Fock space
of the corresponding fermionic system, however, is generated'bydny-particle states each
of which is built up from four basic local states. Associated withifsite there are the two
magnetic (physical) states

1)i=a;10); and [1);=a]|0); (17
and, contrary to the spin space, the two non-magnetic (non-physical) states
0), and |11}, =al.a] |0),. (1.8)

It was first shown by Popov and Fedotov in 1988 that this problem can be resolved easily by
introducing the imaginary and temperature dependent chemical potential [39]

s
Following the original proof of this statement one may write
-7A'[F:-7A'[F7m+5’:[F,E7 (1.10)

wherAe}A[F,ﬁ contains all contributions of the spin operators at some arbitrarily chosen, site
andHE ; is the entire remaining part. Hence, the particle number operator can be written

N=> "fi= Nz + fi. (1.11)
7

The trace operation decomposes in a similar fashion:
Tr=TrgTre. =Trz (Trem + Tre nm) - (1.12)

Here the labels “m” and “nm” denote partial traces over the magnetic and non-magnetic local
states (1.7, 1.8), respectively. With these definitions the grand-canonical fermionic partition
function can be manipulated into

Zg=Tr e_ﬁ<ﬂF_”PFN>
— Tre Or ghteelV
= TraTreme PFeteeN 1 Trpe Plrm gieeNe Tr, o €Fpein, (1.13)
In the second and third line the facts
[St.7;] =0 and §/]0);=5/(11);=0 (1.14)
have been used, respectively. Since

Tro,nm €74Ps = (0]e ™ x/2|0) + (1] ™/2|1]) =1-1=0, (1.15)

the second term on the right hand side of eq. (1.13) vanishes. In the magnetic local states (1.7)
site x is occupied by exactly one particle and hence

Ze = —i Ttz Ty m e PHreVs (1.16)



1.3 THE DYNAMICAL SPIN GLASS DECOUPLING SCHEME 7

The same procedure can be repeated now for all remainingrsitd$us, the contributions
of the non-magnetic states to the partition function cancel each other while the action of the
magnetic states introduces a factarfor each site. Altogether, this reasoning leads to

Zg = (=) Trme PF = (=)N Tre s = (—i)N Zs. (1.17)

Up to a unimportant constant factor, the partition function of the spin system is indeed equal to
the grand-canonical partition function of the corresponding fermionic system with the chemical
potential.,. defined by eq. (1.9). All physical properties of the spin system can be derived from
the partition function (including appropriate generating fields as required) and can therefore be
calculated within this fermionic representation.

The Popov-Fedotov trick makes the whole apparatus for fermionic many-particle systems
readily applicable to spin models, and particularly it provides a standard diagram technique. The
chemical potential (1.9) merely causes a shift of the fermionic Matsubara frequencies. Thus,
spin 1/2 systems are characterized by the “semionic” Matsubara frequencies

1
Sp = (Zn + E) 7T (1.18)

The method has been generalized to arbitrary spin quantum numbers [52].

For the time being, the chemical potential in the generic model (1.1) remains unspecified.
Later in this work it will be fixed appropriately to study specific physically relevant model
variants.

1.3 The dynamical spin glass decoupling scheme

Within the formalism of continuous imaginary-time Grassmann field theory [32] the grand-
canonical partition function of a single instance of the system (1.1) with a particular configu-
ration of the random interactionk; (1.4) is expressed in terms of a functional integral over
anti-commuting fields):

20i)= [D6 exp(~ Ao(0) — 4 (6.3,)). (1.19)

The two action parts are given by

Z/ dr WI (9> — p) 12 — ho ) WT (1.20)
7 (1,3i5) = ZZZ / dr S7;. 57, (1.21)

i#j v
whereW = (wT,wl)T is a Grassmann spinor,
5 = Po,w (1.22)

denotes the Grassmann representation of a spin variabler aflda'm,ay,a'z)T is the vector
composed of the three Pauli matrices.
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1.3.1 Disorder average

As the model is assumed to have quenched disorder one needs to average physical quantities
rather than the partition function An important example is the free energy which is related to
the partition function (1.19) of an individual sample by

F(Jij) =-T InZ(Jij). (1.23)

The disorder average of physical quantities can be accomplished by means of the famous replica
trick. In the probably most prominent case of the free energy it relies on the identity

.o —1
Inz = lim )
n—~0 n

(1.24)

Using this representation of the logarithm in eq. (1.23) one obtains (henceforth, the $ygabol
denotes the disorder average)

[F (3ij) ] gis = =T lim |2 (sz)’;]dis -1 (1.25)
The quantity
Z(Jiy)" = H Z(Jij) = /QW eXD(-Z (Ao (¥a) + Ay (%Jij))) (1.26)
a=1 a=1

can be interpreted as the partition function of a super-system comprisrgct copies (repli-
cas) of the original system. These replicas are well separated and there is no direct interaction
between them. However, the replicas are not independent of each other because the disorder
configuration is the very same for all replicas.

The disorder average of eq. (1.26) amounts to an integration over the coupling corgtants
weighted with their Gaussian probability distribution (1.5). Recalling the Hubbard-Stratonovich
integral identity

2 00
exp(%) = %/_m d¢ exp(—a®e? £ €x) (1.27)

one easily finds

ool as = (TITT [ 0P () exp( >0 )

i<j v v

~ exp 4NZJZZZ / / dr ' STuSTuSTSTyn | (1:29)

1#j ab

with an obvious definition ofd; ,,. Here the scaling (1.6) has been taken into account already.

LA detailed discussion of quenched vs. annealed averages can be found in Ref. [13].
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1.3.2 First decoupling step and effective action

In order to facilitate the functional integration over the Grassmann fields the effective four-
spin, or eight-fermion interaction in eq. (1.31) has to be manipulated into a bi-linear form of
the Grassmann fields. This requires a two-step decoupling procedure [35, 3] which shall be
discussed in the following.

First, the site sum of the four-spin products in eq. (1.31) can be rewritten as

2
;o , 1\ 2
> ShiaSTiaSinSin = (Z Slia ;-b> = > (STasT) (1.29)
i#£j 7 7

The second contribution is of ordér(N) smaller than the first one, and is therefore it is neg-
ligible in the limit of a infinitely large system. Now the leading contribution can be decoupled
by means of site-global, time and replica dependent Hubbard-Stratonovich fields according to
eq. (1.27). This operation yields

[exp(—=A1n) | gis= const/Q)Q exp(—Aj.ei (¢,Q)) (1.30)

with the effective action
P 1 N2 1 .
Agen(V,Q) =Y J} Z/O/Odfdff <1N< Z&) — EZ@QG T mb).(l.sl)
14 ab 7

Comparison of the actions (1.21, 1.31), both being of fourth order in the Grassmann fields,
reveals the progress accomplished so far. The disorder average and the subsequent first de-
coupling step result in an effective single-site problem. As a drawback, the method generates
inter-replica couplings.

1.3.3 The dynamical saddle point

The further evaluation of eq. (1.30) relies on the elimination of the spin glass ﬁ};jﬁ)sby
means of a saddle point integration which becomes exact in theNimitco. A common way to
proceed would be the assumption of a replica-symmetric and spin-statie/{l-endependent)
saddle point [35, 34]. The main issue of this thesis is, however, the role played by the quantum
dynamics, and hence the full time dependence shall be retained.

General saddle point equations can be derived by imposing the stationarity condition to
the replicated and disorder averaged partition function. Using the syfpdbr the thermal
(quantum-statistical) average, the saddle point values of the spin glass fields can be formally
expressed in terms of the corresponding averaged spin products at some arbitrarily chosen lattice
site, sayi = s:

e N [CAC AN I (G RT A (1322)

sp. {<555a55;a>th} i [< l2a7/538a>th} . (1.32 b)

77!
vaa
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Clearly, the inter-replica correlations (1.32 a) are independent of time because the replicas are
decoupled before the disorder average or, in other words, the fermions can not propagate be-
tween distinct replications of the system. All quantum-dynamical behavior of the model orig-
inates from the replica-diagonal spin-spin correlations. Since the Grassmann representations
of the spin operators in (1.32 b) commute, the dynamical saddle point depends on the absolute
difference of the two time arguments only.

The work presented here is based on the choice of a replica-symmetric saddle point possess-
ing the appropriate time dependence according to egs. (1.32):

T

va#b L Qu, (133 a)

‘s.p. -

77!
vaa

_. A= 1.33b
sp. a (1.33b)

In the following, the theory shall be developed in the discrete frequency space. The Fourier
transformations of the saddle point functio;aﬁTsw | and of the Grassmann fields are used in the
form

W =T Wexp(—izr), (1.34)
=00
cj,‘f_ﬂ = Z . exp(—iwm (1—17")), (1.35)

wherez; andw,, denote the usual fermionic and bosonic Matsubara frequencies, respectively.
The real Fourier coefficientg)” = ¢* (w,,) are the central quantities in the further formulation
of the theory. These parameters obey the symmetry relation

@' =4q", (1.36)
and they are intimately related to the local dynamical spin susceptibility:
X;n =Xv (wm) = [ ((Zln — Qv 5m,0) . (1.37)

Substituting the Fourier decompositions of the time-dependent quantities (1.34, 1.35) into
eg. (1.31) and performing the time integrations one arrives at the effective saddle point action
(the vector notation of the arguments shall symbolize dependence on all parajeteds;”)

ﬂJ,Sp<¢7q7 q) = —nNS (q7 q) -

1 o Sl -
a2 20 | DSOS+ DD A oS (39)

w a#b m=—oo a=1
where the special notation

Sh= " Wime, W, (1.39)

|=—o00
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and the abbreviation

5 ©
S(a,8) = %ZJVZ <q3 - >, (65”)2) (1.40)
v m=—oo

have been introduced. Irrelevant terms of or@e{mz), which do not contribute in the replica
limit, have been ignored.

A general property of the model variant on the spin space can be established by considering
the replica-diagonal spin-spin correlation (1.32 b) at equal timesr’. From the property of
the Pauli matrices2 = 1, and the fact that for the spin model the trace is effectively restricted
to magnetic states (see Sec. 1.2) directly folla}ﬁ?“: 1. By the Fourier transformation
(1.35) one obtains the important sum rule

Y qr=1 (1.41)

m—=—0oo

for all model variants on the spin space.

1.3.4 Second decoupling step: Non-interacting fermions

In order to decouple the static part, i.e. the= 0 part of the saddle point action (1.38) the
inter-replica interactions may be rewritten as

n 2 n
0 e _ —0\2
> SIS0 = (Z%“)) - > (80" (1.42)
a#b a=1 a=1
The first term on the right hand side of eq. (1.42) is decoupled by a replica-global Hubbard-
Stratonovich fieldz,;, whereas the second term is treated together withy $keofitribution to
the action (1.38) using a replica-local fiejgt, o.
The decoupling of the dynamical (i.en # 0) interactions is facilitated by the algebraic
identity
m o ¢—m 1 m —m\2 1. m . s—m)2

$l/ia‘$l/ia = Z_ ($1/ia + “gm'a ) + Z (Z‘gl/ia - Z‘gvia ) : (143)
For the two squares on the right hand side of eq. (1.43) the two individual replica-local decou-
pling fieIdSyjmm andy;m,m are used, where the superscripts correspond to the respective signs
inside the brackets. Making explicit use of the symmetry relation (1.36) the second decoupling
step altogether leads to

GG
exp(—Ay,sp) = exp(nNS(q,Q))//y X

z

eXp(%Z%((@m + \/dﬁ—quym,o).ﬁﬁjo + (1.44)

iav

> @ (yim,m (S0 + S0ia) + Woig m ($0ia — 5;31)) )) .

m>0
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A comment on the employed shorthand notation for the Gaussian integrations is due. The
basic Gaussian integral operator is defined by

/j flx)= \/iz_ﬂ/o:o dx exp(—x;) f(x). (1.45)

Multiple Gaussian integrations over altype (replica-global) ang-type (replica-local) fields,
which occur in the expression to be integrated, shall be denoted by the vector sygrabdig
respectively. In eq. (1.44), for instance, the explicit meaning of these abbreviations is

/ZG N H/G (1.46 a)
G
/ /y ok /y / : (1.46 b)

av via,m via,m

By means of the two-step dynamical decoupling procedure described above the effective
spin glass interaction in eq. (1.28) has been reduced to a bi-linear form of the Grassmann fields
in eq. (1.44). In order to perform the Grassmann path integral it is convenient to slightly reor-
ganize the action by introducing the real effective static magnetic fields

Hg}a 0 =h, +Jy (\/%Zm \/ — qv Yvia, 0) (1.47)

and the complex effective dynamical magnetic fields

1 + T
T 24w (yl/ia,m + ZZ/V’iCLJTL) ;o m> 07

HT70 — (1.48)
(HV_ZZL)* , m < 0.
Using the definition
za Z UV Vza (149)

the disorder averaged partition function of thdold replicated system finally acquires the
compact form

[Z"]gis = /Z G/yG/ﬂ?w exp(—Aef), (1.50)

where the complete effective action reads

At = —nNS (q,8) ZZLIJ ( iz + 1) Tody + Vi )wﬁ’a. (1.51)
ia Il
According to eq. (1.51) the original problem has been mapped onto an ensemble of non-
interacting fermions which are subject to a complex replica and spin dependent effective random
potentialV,,. In the (tensor) product space of the space spanned by the fermionic Matsubara
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frequencies and the two-dimensional spin space, the effective potential is a matrix of block-
Toeplitz structure:

0 ,~-1,-2,-3
Via Via Via Via

1 0 -1,,-2
V> V: V.7 V.
Via _ ta Via Via  Via ‘ (152)

2 1 0 -1
Via Via Via Via

3 2 yl 0
Vie Via Via Via

From the definitions (1.48, 1.49) it follows the relatiof)” = (vg’;)T and hence the hermiticity
of the dynamical effective potential,;, = V;.ra.

Due to the site-global decoupling (1.30), made possible by the assumed infinite-range inter-
actions, there are no couplings between different sites any more. Indeed, the partition function
(1.50) can be expressed as a product of identical site-local contributions, and therefore it repre-
sents a single-site problem. Henceforth, the site indei be dropped (until now it has been
kept anticipating the treatment of the itinerant spin glass model in Chap. 3).

1.3.5 The free energy

The replicas in eq. (1.51) are joined only by the replica-global fie|ds In respect to the
Grassmann integration they are independent of each other, and thus their contributions factorize.
According to a algebraic standard identity the result of the Grassmann integration in eq. (1.50)
is exactly the determinant of the matrix generating the bi-linear form of the Grassmann fields in
the exponent [32]. For each replica this matrix is given by (up to a trivial factar1

' =Gyt + V,, (1.53)
where
(Ggl> = (i) Gy Tz (1.54)

is the inverse of the Green'’s function of the non-magnetic system/{j.e 0 andh, = 0). The
Green's functiorl” defined by eq. (1.53) inherits the non-diagonality in frequency space from
the potential (1.52) and can thus be viewed as an auxiliary object only. It can be interpreted as
an full propagator of the effective ensemble of non-interacting fermions subjected to a particular
configuration of the magnetic fields (1.47, 1.48). Meaningful physical results, however, always
involve properly weighted averages over these effective fields.

For the determinant mentioned above to be finite and sensible a suitable regularization is
necessary. This need is an inherent feature of the continuous-time formalism employed here. In
the present context, regularization means that the partition function is evaluated relatively to an
(preferably exactly solvable) reference system. The simplest choice is the system described by
the trivial Hamilton operator

Hreg= 0, (1.55)
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the partition function

Zreg= Tr e F%es — 4N (1.56)
and the corresponding free Green'’s function

(Greg) ;y = 1216w 2. (1.57)
Finally, the result of the Grassmann integration for any replican be written as

W (0,8,2Ya) = det(T,/Gyep) - (1.58)
Using the definition

®(q,8,2) = GW (9,8,2.Ya) (1.59)

Ya
the partition function takes the form

G
[Z"gis = ZregeXp(nN S (0,d)) /Z ®(q,8,2"". (1.60)

In this expression the replicas do not appear explicitly any more. After analytical continuation
of the integern to non-integer values the replica limit— O can be taken according to eq.
(1.25). This yields the disorder averaged free energy per site

G
6 (q.8)=2In2— 5(q.8) - / In®(q,5.2). (1.61)

Unfortunately, the determinant eq. (1.58) and hence the funct®n@l.59) can be eval-
uated analytically only within the spin-static approximation (see Sec. 2.1.1.1). For a general
dynamical treatment one has to retain the matrix structure of the theory.

1.4 The dynamical self-consistency equations

In this section the general dynamical self-consistency equations shall be derived in two different
ways. Within the first method the free energy (1.61) is extremized with respect to the saddle
point valuesg, andg)". As an alternative to this standard method the spin-spin correlations
(1.32) are constructed explicitly making use of Wick’s theorem.

1.4.1 Extremization of the free energy

For the (formal) integration over the spin glass fields it has been assumed in Sec. 1.3.3 that
there exists a saddle point (1.33) in t@@g/b-dependence of the effective action (1.31). After
Grassmann integration and replica limit, the saddle point can now be determined requiring sta-
tionarity of the free energy (1.61). This leads to conditional equations which involve derivatives
of the functional® (1.59) with respect to the parametegsandg;. It appears convenient to
express these equations in terms of derivatives of the weight funitiqt.58) with respect

to the effective magnetic fields (1.47, 1.48) in a first step. As the replica limit has been taken
already to obtain the expression for the free energy, the replica indices are superfluous and will
be dropped in this section.
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1.4.1.1 Equation forg?

To start with the simplest case of the static replica-diagonal spin-spin correlations, from egs.
(1.61, 1.40) follows

) ! o 2 (Y10
—_B3f=0 = ——O. 1.62
T ~ E=gzp) sup (162
Since the parameterd appear in the static magnetic fiel&& only one can write
d ¢, d
— = » . 1.
=), v o a6
OH, /0,
Integration by parts, i.e. using the identity
G G )
[ asw = [ ot (1.64)
yields

0 ¢, o 0
R W
9y y 2/q9—q, Oyv,00H,

G

J, o 0

= — I /i%—q, ——W. 1.65

e g IV " Grgm0" (169
(9H,9/8y,,7o

The second step is correct becaliselepends om, o via HB only. For the moment one finds
the intermediate result

1 /%1% 0 o
~0
5] o), omom" oo

1.4.1.2 Equation forg,

In the case of the spin glass order parameters the stationarity condition leads to

0 I 2 G190
Tqyﬁf =0 = Qv = _ﬁz—Jl,z/z aa—qycb (1.67)

Again, the componentg, appear in the static magnetic fielf only. Thus, the calculation is
similar to that in the previous section:

G190 G1 Gy, (1 1 5,
——® = — | S5 |—=2——F—=——Wwo| 5775V
z CD@ql, z CD y 2 \/q_y QB_QV (9Hl,

J/

OHY/0qy
:_@qOJF/G T il/GiW
2 ¥ ), 23,05 @), OHO
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G B G
:/ Jv —100 9w
, 2% ®2\dz, ) ), 9HD

¢ G g 2
:_/Z 2\/_J\/q_l,q)2 o) (1.68)
OHY/0q,
One obtains
2
1/G 1 /G 0
== = L w) . 1.69

1.4.1.3 Equation forg,""°

Due to the symmetry relation (1.3@),""andg,, "™ may be understood as a single independent
parameter of the free energy. Hence, the stationarity condition is

1 1 9
——— . 1.70

Without loss of generalityn > 0 is assumed in this section. Each of the paramefgrappears
in the two dynamical magnetic field$]" and H,,™ defined in eq. (1.48):

%) G J o) J
— ® = — (Yo + W,m +
oq" /y(zi\/@,ﬁ(” b )8H;” 2% /g
OH I OH;™ 0"
- [ (o (o ) 5 ()
2 Vi Jy \Oylm \OH" * 0H,™ Oyy.m \OHI"  OH,™
J G
y

3
2V
v [ 6? 0? o 0
= Jun| 5 + +2 +
zﬁ,r—q;n/ ( 2 (8H;”2 oH ;™2 TOHIOH,™
a >

0
+ i
(yy, m Zyz/, m) 8Hym) 44

OHF™ |0y} 1,

T 02 92 )
oy 2

A (aﬂgﬂ T om,m2  SoHp o,
——— v

j:@HVim/ay;m

W(1.71)

In the last line all but the mixed derivative terms cancel. This yields

G1 0
W 1.72
@' 52/ y aH OH,™ (1.72)

which is consistent with expression (1.66) for the zero frequency components.
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1.4.1.4 Final formulation of the self-consistency equations

In order to complete the derivation of the self-consistency equations the required derivatives of
the determinantl” with respect to the effective magnetic fields have to be evaluated. This can
be achieved by means of the matrix identity

detM =exp TrInM. (2.73)

Application of this identity td//, eq. (1.58), yields

0 %)
aH;nW =W OH™

Trin(T™Y/Greg) =W

0
iR Trin(1+GoV). (1.74)
In the second step it has been used Ggbs well asGreg are independent dff;’. The further
treatment of eq. (1.74) relies on the expansion of the In in terms of matrix poweeg\of
according to the series expansion

|n(1+M)—§:(_1)k+lM’f (1.75)
- k=1 b ' |

Exploiting the cyclic invariance of the trace operation one finds

d (—1FH i1 0 k—i
wW: wTry oy (GoV) GoﬁHyv (GoV)

= WTrA™T. (1.76)

The constant auxiliary matriA?" introduced in the second line selects the proper directional
and frequency contributions. Due to the construction of the effective potential rivadiétined

by egs. (1.52, 1.49) the only non-vanishing entrie\gff are o, -blocks along then™ sub-
diagonal:

0 .0
L0

(AD) i = o0 O14m, 1 A= 6o, 0 |, A =ATT (@77
Loy 0
0 --0,---0

Combining egs. (1.69, 1.76) one arrives at the self-consistency equation for the replica-symmetric
spin glass order parameters

1 (1 (¢ 0 ’
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A general calculation of multiple effective field derivativesl@fwill be presented in App.
A.2. At second order the general expression reads

o 0

T v W (TrAZT) (TrA%T) — WTrAZTA” T, (1.79)

This result can be substituted into eq. (1.72) which yields the self-consistency equation for the
dynamical spin-spin correlations

= / / (TrA™T) (TrA,™T) — TrAQTA;mr). (1.80)

Note that this equation includes the zero frequency components (1.66) as a special case.

1.4.2 Explicit construction of the spin-spin correlations

In addition to the variational procedure of the previous section an alternative method to derive
the self-consistency equations (1.78, 1.80) shall be presented, which turns out to be particularly
useful in the context of the itinerant spin glass model discussed in Chap. 3. Here the spin-spin
correlations (1.32) are expressed in terms of the frequency-dependent Grassmann fields and
evaluated by applying Wick’s theorem.

Recalling the Grassmann representation of the spin operators (1.22) and the Fourier trans-
formation (1.34) of the Grassmann fields, one can express the Fourier components of the spin
products in the saddle point condition (1.32) by

7 / / drd7r’ 57,80, exp(itwm +it'w,y) 54Zw o, W W, Wit (1 81)
14

In the following the field-theoretic representation of the auxiliary Green’s function (1.53)
will be employed. An individual matrix element is defined by

1 0
r, ll, = — lf@w waawaa’ exp(_-qeff,a)
Tt = S0kl = D0 exp(—Aen)

where the effective action is given by eq. (1.51) (superfluous site indices have been dropped),
andAef, , denotes the contributions from replicanly.

(1.82)

1.4.2.1 Equation forg,

In order to derive the self-consistency equation for the time-independent spin glass order pa-
rametersy, one considers the static case of the spin product (1.81)ni-e.m’ = 0, for distinct

replicas. The dynamical components must average to zere fob. Within the dynamical
decoupling formalism presented here, the sequence of quantum-statistical average and disorder
average, as indicated schematically in eq. (1.32 a), assumes the explicit form

1
vt [ [ S @h @)

' o1---04

/@¢ %az%aﬁbayﬁﬁb;g exp(—ﬂleﬁ) b : (183)
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Note that the usual denominatgf™| 45 becomes trivial in the replica limit and has thus been
dropped. Since the actioflesf (1.51) is diagonal in replica space, the Grassmann path integral
in eq. (1.83) factorizes. The contributions from the special replicasdb are basically given

by the Green’s function (1.82), where the denominator gives rise to a weight factor (1.58).
Using the auxiliary matrix (1.77), the frequency- and spin sums in (1.83) can be brought into
the compact formulation

Z Z UV oo’ 0’0 = Z Z (UV (Fa)ll)o'g'

[=—0 go’ |=—0 O

= TrAdT, = A . (1.84)

Each of the remaining replicas# {a,b} contributes a weight factdé.. Then-fold regu-
larization, which has to be added formally according to eq. (1.58), reduces to unity in the replica
limit. A suitable arrangement of the replica-locattiype) integrations leads together with eq.
(1.59) to

1 G G G G
“= 3 lim / / W, AY, / woAY, | 1] / W,
Ya Yo Ye

c#{a,b} ab
2

1 G G
= WAS| lim o2 (1.85)
2 v
ﬁ z y n—0
2
P

In the second line the replica indices do not appear explicitly any more and thus the Hst
can be taken which correctly reproduces the earlier result eq. (1.78).

1.4.2.2 Equation forg,"

In the case of the replica-diagonal correlations (1.32 b) their special time dependence has to
be taken into account. As a consequence of this symmetry only the Fourier components (1.81)
with m = —m’ can survive the average procedure. The dynamical saddle point components can
thus be expressed by

1 G
~m _ 1
@ = 34 wIzILno//y Z Z ) 010, (Tv) o304 <

' o1---04

/ Dy z/zét,;”z?égl Vom U exp(—Aer).  (1.86)

J

L — J

The four Grassmann fields in eq. (1.86) all carry the same replica index. When Wick’s theorem
is applied, there are hence two different ways to contract the fields, as indicated, contrary to the
situation met in expression (1.83). In the case of the upper contraction the frequency- and spin
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sums yield

I+m,l U—m,l
Z Z (O-V)O']_O'Z (o-l/)0304 (FG)U—;ZE (I‘G)UA,UZL

Il o1---04

|=—00 01 |=—00 03

= (TrA,"T) (TrA'T,) =: A7 AL, (1.87)
while the lower contraction leads to

I+m,l’ I'—m,l
Z Z (0-7/)0'10'2 (o-l/)0'30'4 (]‘_‘a)a'_gag (Fa)0'401

' o104

= Z Z (O‘V (Fa)l+m,l’ )0103 (Gl/ (I‘a)l’fm,l )0301

' o103

-y ¥ (A;mI‘aATI‘a)Zlgl

|[=—00 01

= TrAI'T, A, T, = B, (1.88)

The latter contribution comes with a negative sign according to the Feynman rule for closed
loops. Repeating the arguments of Sec. 1.4.2.1 one finally arrives at

~m 1 H G G m —m m G
g = = lim Wa (AR A =Bl | T W
5 n—0 J; Ya

ba Yo

1 G G
= —2/ / W (AT A,;™ — BT | lim ot (1.89)
ﬁ z y n—0

(_Dfl

In the replica limit this result exactly coincides with eq. (1.80).

1.4.3 Conclusion and summary of the dynamical self-consistency problem

In the first chapter of this thesis a quite genera(3Uspin 1/2 fermionic spin glass model with
infinite-range interactions and arbitrary global anisotropy has been defined by egs. (1.1-1.6).
The model has been treated with standard techniques for disordered many-particle systems. A
replica-symmetric, but rigorous quantum-dynamical decoupling procedure has led to an single-
site problem of non-interacting particles which are subject to an effective frequency dependent
potential. Finally, a set of highly coupled self-consistency equations has been derived which
constitutes the centerpiece of this thesis, and most of the material presented in the following
chapters is based on it. Therefore, this self-consistency structure, including all auxiliary quan-
tities, shall be summarized in this section to provide a quick overview for future reference.
Within the present formulation of the theory, the self-induced poteyitiala Toeplitz matrix
in the space of the fermionic Matsubara frequencies,

(V)ll/ :Vl_l/, (190)
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where the entries,, themselves are 2 2 matrices in spin space and read
Vo= o, HJ (1.92)
v

The effective magnetic fields are constructed from the external field, the saddle point parameters
g, andg;* which have been introduced in egs. (1.33, 1.35), and the corresponding seal
y-type decoupling fields according to

H™ — hy + J, (¢q— + \/a,9—qyyy,o) (1.92)

and

Jor) 3G (Y + 10 m) » m >0,
mA0 _ 2 ( ,m ,m> (1.93)

(H,™)", m < 0.
One straight-forwardly defines the auxiliary Green’s function matrix
r-1— Gal LV (1.94)

which describes the propagation of the effectively non-interacting particles in the space of spin
projection and fermionic frequency. Here

(Ggl> = (i) Gy Tz (1.95)

is the diagonal Green’s function matrix of the free system.

The evaluation of any physical quantity generally involves Gaussian integrations over all de-
coupling fields that occur in egs. (1.92, 1.93). In this final formulation the previously introduced
integral operators aquire the explicit meaning

/ZG N H/G (1.95 a)
G G G G
/y N H/yylo 11 /y+ /ym (1.95 b)

v m>0

where the basic Gaussian integral has been defined by eq. (1.45). For a particular configuration
of these integration variables the determinant

W (0,8,2y) = det(T""/Gp) (1.96)

is found to play the role of a weight factor. A suitable choice for the regularization required for
concrete numerical calculations is

(Greg) ;y = i1 6w Ta. (1.97)

Integrating out ally-type variables one yields

G
(0,6,2) = / W (G,G.2Y) (1.98)
y
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AT T AT A,™
. T

Tr

Figure 1.1: Construction of the integrand in the self-consistency equation (1.99 b)for the pa-
rameters ¢)". Left: The action of the auxiliary matrix A" (1.77) is to move down the elements
of the matrix I' (1.94) by m blocks. Thus, the first contribution to the integrand is a product of
the sums over the m™" sub- and super-diagonals of the matrix T'. Right: The second part is the
trace of the matrix product of two factors I', which are shifted against each other about m blocks
along the diagonal. This term contributes for m # O even in the spin-static approximation (see
Sec. 2.1.2)

which can be viewed as a functional@f = g, (w,).

This set of equations is completed by the self-consistency equations for the spin glass order
parametersg; and the frequency dependent replica-diagonal spin-spin correlatfbnstiwo
different ways of derivation, extremization of the free energy (Sec. 1.4.1) and explicit construc-
tion of the spin-spin correlations (1.4.2), have been presented. Both methods consistently yield
the compact expressions

2

1 (1 (¢ 0
w=—| = WTrAT | | 1.99 a
52/2 = /y (1.99 a)

. 1 (%1 (¢ _ _
g :@/Z 6/y W((TrAV I)(TrA;™T) — TrA'TA, r), (1.99 b)

where the auxiliary matri\’" has been defined in eq. (1.77). Due to the static nature of the
spin glass order parameters merely a sum over the frequency-diagonal elenfeatspeiars in
ed.(1.99 a) The construction of the integrand in €G.99 b) however, involves the frequency
off-diagonal elements, too, as illustrated in Fig. 1.1.

The self-consistency structure defined by egs. (1.90 — 1.99) applies to many different models
of physical interest, on the Fock space as well as on the spin space. These can be specified by
an appropriate choice of the model parametgrandh,, in egs. (1.92, 1.93) and the chemical
potentialy in eq. (1.95).

Any attempt to solve this self-consistency structure faces the fundamental problem of the
infinitely many quantitieg,” each of which effectuates corresponding Gaussian integrations via
egs. (1.92, 1.93). In order to determine the dynamical behavior of quantum spin glass systems
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this integration problem has to be tamed. Suitable approximation schemes are required and
shall be developed and applied in the following chapters.

Studying specific models in the following chapters, the focus shall be mainly on the respec-
tive paramagnetic phases including phase boundaries, where the replica-symmetric approach
(1.33 a) is believed to be correct. In order to investigate the low temperature spin glass phase it
will be necessary to extend the self-consistency structure to allow for Parisi replica symmetry
breaking (RSB). This can be done straight-forwardly. However, the numerical treatment of RSB
problems provides a substantial challenge, already for spin-static models [38], and even much
more so in combination with quantum dynamics.

Another open problem left for future work is to perform the zero temperature limit of the
presented self-consistency equations. With lowering the temperature the Matsubara frequencies
move together, and a sensible frequency-continuous formulation of the matrix strudtuseat
has to be found. A zero temperature theory would be particularly desirable in the context of
model variants which undergo zero temperature phase transitions, such as the Ising spin glass at
a critical transverse field, or the isotropic Heisenberg spin glass on the Fock space at a critical
real chemical potential (see Sec. 2.1.3.2). In the respective (Qquantum) paramagnetic phases RSB
would be of no relevance.



The Heisenberg spin glass

Soon after Sherrington and Kirkpatrick developed their classical mean-field theory for the Ising
spin glass model [47, 26], also the infinite-range Heisenberg spin glass (HSG) model, being
the natural quantum generalization of the SK-model, began to attract increased attention. The
guantum-dynamical self-consistency problem was first formulated by Bray and Moore in 1980
[6], who predicted the existence of a low-temperature spin glass phase for all spin quantum
numbersS. The corresponding generalized TAP-equations were derived by Sommers [48, 49].
Effects of external fields and anisotropy were also investigated [18, 27]. However, in most
of these works explicit calculations relied on the so-called spin-static approximation, which
completely neglects quantum-dynamical correlations.

Later, theorists have been looking at the quantum-dynamical problem posed by the infinite-
range HSG from different angles. Grempel and Rozenberg, for instance, employed a Quantum
Monte Carlo method to solve the effective single site problem numerically for theScase'2.

They examined the paramagnetic phase and confirmed its instability towards spin glass order at
a finite transition temperature [19]. Arrachea and Rozenberg considered fully connected finite
clusters ofS = 1/2 spins and applied a numerical techniqgue combining exact diagonalization
and direct disorder averages. Thus theoretical difficulties due to both the replica as well as the
imaginary-time formalism could be avoided on the expense of strong finite size effects. In a
different analytical approach Sachdev et. al. extended the symmetry group of the spin operators
and investigated the SW)-generalization of the model [46]. The instrumental limit— oo

permits exact solutions in the paramagnetic as well as in the glassy phase, and a rich phase
diagram in thel’ — S plane could be constructed [15, 16].

Despite of almost twenty five years of research on the infinite-range HSG model our current
understanding of this system is far from being complete. Among the many unresolved problems,
two shall be primarily dealt with in this chapter. The first is the question pertaining to the
exact location of the paramagnet to spin glass phase transition. A precise determination of the
critical temperature is not only of theoretical interest, but it would provide an important practical
benchmark for numerical treatments in the future. The second main issue addressed is the shape
of the specific heat curve at and abdve Experiments with real HSG materials exhibit a broad
maximum of the specific heat abo¥g[5, 31]. It will be shown that the present model does not

24
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account for this feature, which is in contradiction to what has been claimed recently by other
authors [1].

In the first section of this chapter the general self-consistency structure summarized in Sec.
1.4.3 shall be re-formulated within the spin-static approximation. The solutions of this simpli-
fied set of equations define a frame of reference for the dynamical calculations presented in the
subsequent sections. In order to capture the effects of the quantum-spin dynamics inherent to the
system two different new approximation schemes are developed, both of which systematically
improve the spin-static results. The basic concept of the so-called dynamical approximation
scheme, introduced in Sec. 2.2.1, is to treat the quantum-dynamical correlations on a restricted
set of discrete bosonic Matsubara frequencies. The complementary approximation technique of
Sec. 2.3 is based on a diagrammatic expansion of the self-consistency equations in powers of
the dynamical correlations themselves.

2.1 The spin-static approximation

In the realm of quantum spin glasses the spin-static approximation is widely used. The term
expresses the idea to disregard the imaginary-time dependence of the saddle point 1.32. Provid-
ing a simple but very instructive special case of the self-consistency structure defined by eqgs.
(1.92-1.99 b), the spin-static approximation is a good starting point for the quantum-dynamical
calculations in the following sections.

2.1.1 Spin-static self-consistency equations

Within the dynamical formalism of Chap. 1 the spin-static approximation can be introduced
most naturally via the effective potential (1.90) employing the decomposition

V = Vgtat+ den- (2-1)
Here the first term denotes the part diagonal in (fermionic) frequency space,

(Vstat)r = Vodur, (2.2)

which is composed of the static magnetic fields (1.92), whevgascomprises all off-diagonal
blocks made up by the complex dynamical fields (1.93). Now the spin-static approximation
consists in neglecting the dynamical contributions to the effective potential, i.e. one presumes
V >~ Vgtar

The matrixVsatis block-diagonal and so is the static auxiliary Green’s function

L= Go " + Vstat (Tstat)yr = v 0w, (2.3)
where the blocks along the diagonal are given by

_ . 121+ p) 1o+ v
IS F AV G AU R (2.4)
(t21+p)" — H§
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2.1.1.1 The spin-static weight function

Due to this simple structure of the matiiXxs:the weight functiori?” as well as the integrands
of the self-consistency equations (1.99) can be evaluated analytically. Indeed, the determinant
(1.96) factorizes into Z 2 determinants for each fermionic Matsubara frequency:

L = 1
Wstat = det(rst;t/ Greé) =11 det(i_zl% l)
[=—00

— H expz Inzzl%x”, (2.5)
=t 1Z]

|=—0

where the abbreviation
T+ =p + Hy (2.6)
has been usedi is the absolute value of the static magnetic field vector,

Ho= [ (HY? 2.7)

v

Recalling the symmetry relation_ ;1 = —z;, the negative frequency terms can be removed
from the sum in eq. (2.5). Care has to be taken, however, because this frequency sum does not
converge absolutely since

In

12] 12]

This problematic contribution may be separated from the rest, and thus one obtains
2+
Wstat= H exp( Zln% + Z %) (2.9)
o=+ 1=0 !

[=—o00
In cosh(35z,)

The first sum in eq. (2.9) can be evaluated elementary by virtue of the residue theorem. The
second sum requires the use of a convergence factor which leads to the standard result [12]

00

iim " explizm) _ 5. (2.10)

n—0 12 2

[=—

Altogether one arrives at the spin-static weight function

1
Wstat= EeXp(ﬁu) C (1, Ho) (2.11)
with the characteristic function
C (1, Ho) = cosh(Bp) + cosh(BHy). (2.12)

Note that inserting this result into eq. (1.60) and taking the limit— O the partition function
of the non-interacting system is reproduced exaktly

1The second series in eq. (2.9) is ambiguous and can be evaluated to zero by suitable rearrangement. Then the
correct result (2.11) can be obtained using a more complicated and partiguidelyendent regularization [35].
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2.1.1.2 The general anisotropic case

One way to proceed would be to extremize the spin-static free energy obtained by substituting
the expression (2.11) into egs. (1.98, 1.61). Nevertheless, here the spin-static self-consistency
equations shall be viewed as a special case of the general equations (1.99). Taking this route,
the two expressions

have to be computed explicitly. At zero (bosonic) frequency, i.enfet 0, these terms evaluate
to

Ag = Z Tr, ouy;

|=—00

d __HOsinh(8H,)

= —2H? Sy el 2.15
Z—Zoo (iz1+ ) —H02 Hy C(p, Hp) (15
and
BS = Z Tr, IO
|[=—
- 1 2 — 1

=2 + 4(H°
2t U X gy

B (Hf,’)2 1 sinh(8H,) e (HB)21+cosl‘(ﬁu) cosh(3H,) (2.16)
BHo \  HE C (1, Ho) H§ C (1, Hy)? -

Here the symbol Tr denotes the trace over the two spin states. The occurring Matsubara sums
can be performed easily either usiki@thematica or by means of the general formula for this
type of sums which will be derived in Sec. A.1. In terms of the expressions (2.11, 2.15, 2.16)
and defining

G
Dstar= / Witat, (2.17)
Yo
the spin-static self-consistency equations read
2
1/G1 ¢ 0
G = — —— Wstat4d,, | 2.19a
v 62 : q)gtat< Vo stat<1, ( )
1
~0 0 0
- “Ww. A —B) 2.19b
qy 52 /z q)stat . stat ( ) ( )

Compared to the general dynamical counterparts (1.99) the spin-static approximation brings
about tremendous simplifications. On one hand the Gaussian integrations extend over the six
static decoupling fields, andy, o only (as indicated by the notatigg). On the other hand the
matrix structure of the integrands has disbanded.
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2.1.1.3 The isotropic special case

The matter further simplifies if global isotropy is given. This means first that the disorder
distribution (1.5) does not depend on the spatial direaticand second that there is no external
magnetic field applied, i.e.

J,=J and hy, = 0. (2.20)

From these assumptions immediately follows that the spin-spin correlations eqgs. 1.32 are inde-
pendent of direction, too, as expressed by

w=gq and  G'=i,. (2.21)

Due to this global symmetry the Gaussigpintegrations can be carried out analytically, and
the z-integrations can be reduced to a single radial integration. A lengthly but straightforward
calculation yields [35]

2
. 1 G v?cosh(cr) + #sinh(cr) (2.23 a)
r\ cosh(cr <_%>

32 ) + & sinh(cr) + cosh(3u) exp

1/G ) cosh(cr) + 2 sinh(cr) (2.231)
r .
r cosh(er)

qO = A )
3 + %sinh(cr) + cosh(Gu) exp(—b—22>
where the abbreviations

b=8J\/Gg—q and c=RJqg (2.24)

have been used. Solutions of egs. (2.23) are presented in Sec. 2.1.3.

2.1.2 Calculation of dynamical quantities

The general dynamical approach to the quantum spin glass system presented in Chap. 1 facili-
tates an estimation of dynamical quantities even within the spin-static approximation. Although
the dynamical part of the effective potential (2.1) is neglected it appears natural to calculate
the dynamical saddle point components from eq. (1.99 b) using the spin-static weight function
Wistat (2.11) and the auxiliary Green'’s functidhy,: (2.3). Here the trace terms eqs. (2.14) have
to be evaluated fom # O.

As illustrated in Fig. 1.1AZ”7£° vanishes due to the block diagonal structurd’'ef: The
other term, however, yields a finite contribution for amy For the sake of simplicity this
discussion shall be restricted to the isotropic case. One finds

By = 33 B

[oe]

2(iz+p) (iz1m +p) — 5HE
o (G2 1) = BE) ((zem + 1)~ HE)

2 p* BHgsinh(BH,)
"~ 3C(n,Hy) BRHE+72m2’ (2.23)
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Figure 2.1: Some basic results for the isotropic Heisenberg spin glass on the spin space (HSGs)
within spin-static and replica-symmetric approximation. Right: spin-glass order parameter q
and static replica-diagonal spin-spin correlation . Left: zero frequency part of the local sus-
ceptibility x according to eq. (1.37).

and comparison with the zero frequency component (2.19 b) leads to

1 ¢ BH, sinh(8H,)
m §eXp(—ﬁM)/z Dgtat Yo <

Recalling relation (1.37), this spin-static estimate immediately reveals the correct asymptotic
behavior of the local dynamical susceptibility

1

m

The explicit form for the parametets, also permits the analytic continuation of the local
susceptibility to the real frequency axis. Apart from the zero frequency term, the replacement
iwm — w+inin eq. (2.26) yields for the imaginary part describing absorption the low frequency
characteristics

+ 5”50 cosh(ﬁHo)> . (2.26)

Imy(w) ~ WS, w— 0. (2.28)

However, this cubic behavior seems to be an artefact of the spin-static approximation since other
dynamical treatments provide evidence thail{@) ~ w asw — 0[19, 16].

2.1.3 Selected results for the isotropic Heisenberg spin glass
2.1.3.1 The model on the spin space

In order to investigate the isotropic Heisenberg spin glass on the spin space)(tH&&hemical
potential has to be fixed to the Popov-Fedotov potential (1.9). Consequently, the spin-static self-
consistency equations eqs. (2.23) further simplify owing to the identity (@hsh) = 0. The
resulting numerical solutions are presented in Fig. 2.1. In the paramagnetic phase; witere

eq. (2.23 b) reduces to a simple quadratic equation wich has the explicit solution

. —3+3%J%4./9+3052J2 + 54J4
90 = 632.J2

(2.29)
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Figure 2.2: Phase diagram of the isotropic Heisenberg spin glass on the Fock space (HSG)
within spin-static and replica-symmetric approximation. At the tri-critical point {; = 1.0321J,
T =0.2678J} the critical behavior changes from second order (solid line) to first order (dashed
line). Beyond the replica-symmetric theory the first order line is subject to small corrections
due to replica symmetry breaking. Inset: vicinity of the tri-critical point. Along the dotted line,
which terminates at the point {{1 = 1.0355/,T = 0.2746/}, ¢, changes discontinuously in the
paramagnetic phase. The Ising spin glass on the Fock space possesses a very similar phase

diagram [11].

The second order paramagnet to spin glass phase transition occurs at the critical temperature
T. = 1/+/3.J. Dynamical corrections to this spin-static result will be discussed in Sec. 2.2.3.2.
Comparison with the critical temperature for the corresponding classical nmifidel,J [5],
already reveals the significance of quantum effects in this system.

To conclude with, an interesting feature of the spin-static approximation shall be mentioned.
By way of the identity

00

> 1 _coth(3Hy)
62H02+7rzm2 B BH,

m=—0

one easily verifies that the parameters (2.26) exactly obey the sum rule (1.41) for the model
variant on the spin space.

(2.30)

2.1.3.2 The model on the Fock space

The isotropic Heisenberg spin glass on the Fock space gi8@escribed by egs. (2.23) with a
real chemical potential. The influence of the non-magnetic states becomes apparent in the high
temperature limit, wherg,™— 1/2 contrary to the model on the spin space. fet 0, which
corresponds to half filling, the critical temperature reaches its maximum Vakt€0.49440/.
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Away from half filling the number of either empty or doubly occupied sites increases. In such
magnetically diluted systems the spin glass freezing occurs at lower temperatures. The resulting
phase diagram in the— 7" plane is presented in Fig. 2.2.

2.1.4 Some comments on other model variants

The simplest non-trivial special case of the generic model (1.1) certainly is the Ising spin glass as
specified by the model parametets= J andJ, = J, = h, = 0. In this case the spin operators
(1.3) for thez-components commute with the Hamilton operator (1.1), and consequently there
is no quantum dynamics to be taken into account (the Grassmann spinors in the free action
(1.20) nevertheless keep their auxiliary time dependence). Therefore, the spin-static approach
provides an exact solution for the Ising model, and all quantum-dynamical correlqﬁﬁéﬁ’s ~
must vanish. From the fadf? = H, consistently follows that the quantitié%ﬁ’#o all evaluate

to zero (note that in order to obtain the different result (2.25) isotropy was exploited which is
not given in the Ising case). Interestingly, the spin-spin correlations in the transversal directions
v ={x,y} do not vanish and actually exhibit a dynamics caused by the (perpendicular) effective
magnetic field inz-direction. A calculation similar to the one in Sec. 2.1.2 yields

G 1 /GﬁHosinh(ﬁHo)

for ) 2.31
T V7 @30

m — Lol
= 5ol [

Dstat

For the model on the spin space one easily verifies the parameters (2.31) to fulfill the sum rule
(1.41).

model Te/J
spin spacey =y | Fock spacey =0
Ising 1 0.67674
isotropic XY 0.75580 0.58066
isotropic Heisenberg 1/v/3=0.57735 0.49440

Table 2.1: Ciritical temperatures for some spin glass models described by the general self-
consistency equations (2.19). For the Ising case the spin-static approximation is exact. Esti-
mates for T, of the two Heisenberg model variants including dynamical corrections are given in
egs. (2.42, 2.48), respectively.

Non-trivial quantum dynamics can be generated in the Ising model by applying a transverse
magnetic fieldh, = I'. This system displays a quantum phase transition located=atl.52/
[51, 9, 43]. From the spin-static calculation one obtdips- 2.J. This clear overestimate of the
critical field reveals the failure of the spin-static approximation at low temperatures. This issue
shall be further discussed in Sec. 3.3.3 in the context of an itinerant spin glass model.
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Figure 2.3: Within the dynamical approximation of order M the quantum dynamics of the sys-
tem is modeled by only the lowest few bosonic Matsubara frequencies w,,,|<s. Consequently,
the effective potential matrix (1.90) assumes a band-diagonal block-structure (here M = 2).

2.2 The dynamical approximation

2.2.1 A new systematic approximation scheme

In order to study the role played by quantum-dynamical correlations the method of dynamical
approximations shall be introduced in this section. This method generalizes and systematically
improves the spin-static approximation discussed in Sec. 2.1 by successively taking into ac-
count the dynamical contributions to the effective poteniigll.90). Thus, the quantum-spin
dynamics is approximately described in terms of a manageable number of the lowest and most
important bosonic Matsubara frequencies.

More precisely, all Fourier componenj§* of the time dependent saddle point 1.32 with
frequency indices: = {0, ---, M } are retained in the self-consistency structure (recall the sym-
metry relation (1.36)). All higher frequency components are set to zero in the construction of
the effective potential, i.e.

gmM =0, (2.32)

Thus,wy;s = 20 MT plays the role of a cut-off frequency for the dynamical self-interaction.
Henceforth, this scheme will be referred to as the “dynamical approximation of dfder
Technically, at ordernV/ the effective potentiaV/ is approximated by a band-diagonal block
matrix with a band width of 2/ + 1 blocks (see Fig. 2.3). The simplest special céte- 0

leads to the block-diagonal potential matrix (2.2), and the zeroth order dynamical approximation
exactly recovers the spin-static approximation.

As the main benefit of the dynamical approximation scheme all Gaussian integrations in egs.
(1.98, 1.99) associated with frequencigs, ., become trivial since the dynamical decoupling
fields yim>M do not appear in the integrands any more. This reduction of the full integra-
tion problem to a finite-dimensional one makes the numerical solution of the self-consistency
equations feasible as long as the ordéiis sufficiently small. Then, the general strategy is to
calculate a quantity within several dynamical approximations of increasing dfdérovided
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such a sequence of improved solutions reveals sufficient convergence properties the exact full
dynamical result can be inferred by extrapolationfo— co.

The dynamical approximation scheme is applicable and useful if the finite frequency com-
ponentSqZ"”éo are small compared tg"and fall off rapidly with increasingn. This situation
is met at the relatively high temperatures in the paramagnetic phase of the(s&€Fig. 2.5).

This is not the case, however, at very low temperatures. The Matsubara frequencies continu-
ously move together as the temperature decreases, and any finite number of discrete frequencies
will eventually collapse into the origin of the frequency axis. Rather, a finite frequency range
must be taken into account at low temperatures, for instance to investigate the quantum phase
transition in the itinerant Ising spin glass studied in Chap. 3 (see Secs. 3.3.3 and A.5).

In the context of the Ising model in a transverse magnetic field a somewhat similar ap-
proximation method on the discretized imaginary time space was constructed earlier by several
authors [8, 17]. In these works the full dynamical quantities were also estimated from self-
consistent approximants based on a finite number of imaginary time slices. Compared to this
technique it is an advantage of the dynamical approximation scheme introduced here that it
takes into account all fermionic Matsubara frequencies, which corresponds to infinitely many
time slices at lowest ordei{ = 0) already.

2.2.2 Implementation notes and some technical details

The dynamical results presented in this chapter apply to the isotropic HSG , and they are valid
either in the paramagnetic phase, where the spin glass order paranvet@shes, or below
but sufficiently close td,, such that the self-consistency equations can be safely expanded in
of powersg. In both cases the replica-global Gaussian integratiotigde) can be performed
analytically. Hence, the technical discussion in this section shall be restricted to the special case
of the isotropic system in the paramagnetic phase.

In order to actually find solutions within the dynamical approximation scheme the set of self-
consistency equations (1.90 — 1.99 b) can be recast into a form more suitable for the numerical
treatment by way of the substitutions

Zy,0 = BJ\/do Yv,0 and x;m:w,/cjmygfm. (2.33)

Due to the assumed isotropy it is convenient to work in (hyper-)spherical coordinates. Then,
the three-dimensional integration over the static variablassplits into a Gaussian radial part

¢ 2,23 [ 2 6
= (2nq 2 —— 2.34
/xo ( TGo J) /0 dzox§ exp( ZﬁZJZQO) (2.34)
and an angular part
T 2T
/ :/ dfpdypg sindp. (2.35)
Q JoJo

The six-dimensional integrations associated with each Matsubara frequegpaycomprise
Gaussian radial parts

¢ e 5 vh
/a7 = (274,,5°J°) /o dz,, x>, exp(—ﬁ) (2.36)

m 21
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and the five-dimensional angular integrations

TS r2m p2m 2w
/ — / 2/ 2/ / / db,y, dipy, A dip?, dipZ, Sin6,,, COSH,y, SiNyy, COSPy,.  (2.37)
szl 0J0JO 0 0

Within the dynamical approximation of ordéf the functional eq. (1.98) takes the form

@ (Go,--+» G H/x/ W (X0, -, Xar) - (2.38)

By way of the variable change (2.33) thg-dependence was transferred from the weight
function I to the Gaussian factors of the integral operators (2.34, 2.36). Consequently, the
extremization of the free energy with respect to the parameigrsan be performed much
easier than in Sec. 1.4.1. The resulting self-consistency equations for the isotropic model in the
paramagnetic phase read

~ 2 2 12~ . Ifm O
Gm = 3@6”4 ch/x /Qm/(xm 3aB%J%G,) W, a= { . (2.39)

m/=0

In this shape the self-consistency problem can be solved numerically much more efficiently
than using eq. (1.99 b). In particular, the determindnin eq. (2.39) can be evaluated with
considerably less numerical effort than the whole integrand in eq. (1.99 b), which additionally
involves a time consuming matrix inversion. Note, however, that eq. (2.39) allows for the
calculation of the parametersg, =, only. Whenever sensible non-self-consistent estimations
for the parameterg, ™ ,, are needed, e.g. in the context of the specific heat in Sec. 2.2.3.3, one
has to resort to the general formulation (1.99 b).

All integrands that occur in the self-consistency equations are constructed from the matrix
I'~1 given by eq. (1.94). In the dynamical approximation schdmé is band-diagonal and
extends infinitely in the fermionic frequency space. For practical calculations this matrix was
symmetrically truncated at fermionic frequencies;,, and hence the matrix size wa§ 4+
1) x 4(l.+1). Contributions from the outer regions associated with frequengies z;, were
taken into account perturbatively. The “cut-off inddx'was chosen sufficiently large such that
the final results did not depend on this auxiliary parameter. Most calculations discussed in this
chapter were performed with = 50— 100.

Within the dynamical approximation of orders up to and includidg= 2 all integrations
occurring in egs. (2.34 — 2.37) were performed virtually exactly using the highly efficient Gaus-
sian integration method [50]. Starting with order= 3, a Monte Carlo method was employed
for the less important)-type phase integrations in eq. (2.37) to account for the increasingly
high dimensionality of the integration problem.

The computer algorithm for the solution of the self-consistency problem was implemented
in Mathematica, where the computationally costly matrix operations were executed by external
C-routines via thevathLinkinterface. Thus, the analytical abilities and structural advantages
of Mathematica were combined with the much higher performance of compiled C-code in
numerical calculations.
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2.2.3 Dynamical results for the isotropic Heisenberg spin glass on the spin
space

Employing the technical apparatus described in Sec. 2.2.2 and setting the chemical potential
to the Popov-Fedotov potential (1.9), the self-consistency problem for the isotropic Heisenberg
spin glass on the spin space (H§Gould be solved within the dynamical approximations up
to and including orden/ = 4 [4].

An interesting feature of the dynamical approximation scheme is that for the H&Gum
rule (1.41) is exactly fulfilled at any ordéi/, where the parameteus,”,, are calculated in a
non-self-consistent way from eq. (1.99 b). In the spin-static ddse O this fact was revealed
by exact evaluation of the sum in Sec. 2.1.3.1. Ko« {1, 2} the sum rule has been verified to
hold true by means of high precision numerical calculations. In spite of this strong numerical
evidence no rigorous proof of eq. (1.41) for arbitrary (finite) orddrget exists.

2.2.3.1 Solutions in the paramagnetic phase

The first quantity to discuss is the zero frequency part of the local susceptijlitwhich is
related tagy by (see eq. (1.37))

Xo = Bdo- (2.40)

Numerical results obtained in the first three dynamical approximations are presented in Fig.
2.4. The quantum-dynamical correctionsyigrelative to the spin-static approximation result,
which is given by eq. (2.29), are quantitatively remarkably small (note the small vertical scale
in fig. 2.4). This fact was already pointed out in Ref. [19].

At sufficiently high temperatured (> J), quick convergence of this sequence of approxi-
mants is observed. This means that the quantum dynamics of the system is captured virtually
exactly by taking into account only the effects of correlations at very few Matsubara frequen-
cies. Naturally, as the temperature decreases the number of Matsubara frequencies required to
achieve some desired level of accuracy grows, and the spacings between the individual approx-
imants increase.

The curves in Fig. 2.4 exhibit characteristic maxima, the positions of which move to lower
temperatures for highev/. A close look at the sequence of these maxima leaves room for the
interesting speculation that in the limif — o the position of the maximum coincides with the
critical temperature.

Figure 2.5 displays the largest and most relevant among the paramgetatséveral tem-
peratures foil/ < 1. It can be see clearly that, at least in the paramagnetic phase, the dynamical
componentsjn;#o are considerably smaller thag and vanish quickly which justifies the dy-
namical approximation scheme.

2.2.3.2 Determination of the critical temperature

There exists a strikingly simple criterion for the location of the equilibrium paramagnet to spin
glass phase transition, which shall be re-derived within the general formalism of Chap. 1 in
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Figure 2.4: Zero frequency local susceptibility x, = 3§ for the isotropic HSGs obtained within
the dynamical approximations of orders up to and including M = 3. Due to the smallness of the
quantum-dynamical corrections only deviations from the spin-static approximation result given
by eq. (2.29) are shown. The error bars indicate the statistical errors that arise from the Monte
Carlo integration method employed for M > 3 (see Sec. 2.2.2). The dashed line represents
1-J that. According to eq. (2.41), the intersection points mark the respective approximation
to the critical temperature. To the right of the dashed line the shown paramagnetic solutions are
unstable against spin glass order.

Figure 2.5: Fourier components of the replica-diagonal saddle point (1.33 b) for the isotropic
HSGs at three temperatures in the paramagnetic phase within the spin-static (dashed line) and
the first order dynamical approximation (tull line). Higher orders would not be distinguishable
at the chosen scale and are therefore not shown. The parameters marked by the circles are taken
into account self-consistently while the others were calculated from egs. (2.26, 1.99 b).
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Figure 2.6: Sequence of critical temperatures for the isotropic HSGs obtained within dynamical
approximations of orders M = {0, --,4}. The open diamond and the dashed line represent the
spin-static and the extrapolated full quantum-dynamical result, respectively. Inset: Estimation
of the full dynamical critical temperature (open star) by extrapolation of the sequence of ap-
proximants to M = oo having regard to the presumed 1/M 3_like convergence. The two thin
lines indicate the estimate for the statistical error.

App. A.4.1. In the present isotropic case this criterion for the critical temperature reads
Ixo(Te) =1 (2.41)

which holds true within the dynamical approximation of any order. In particular, relation (2.41)
was used to determine the continous transition line in the spin-static phase diagram Fig. 2.2.

The solutions of eq. (2.41) fa¥/ = {0, ---, 4} are presented in Fig. 2.6. From the struc-
ture of the self-consistency problem one expectd a-like convergence of this sequence of
T.-approximants (this presumption will be justified in the context of the perturbq,;‘,il\;g%-~
expansion in Sec. 2.3.2.1). Taking into account this asymptotic behavior, the data can be unam-
biguously extrapolated td/ — o (see Fig. 2.6). Thus, one obtains the full quatum-dynamical
critical temperature

T, = (0.58912+ 0.00015.J. (2.42)

This result means an increase relative to the spin-static résgiat= 1/+/3J by about 2%.

The value (2.42) can be compared to estimation$.abbtained by other methods. Quantum
Monte Carlo simulations [19] yielded. ~ 0.568.J, while exact diagonalization of finite sys-
tems [1] led tdT,. ~ 0.52.7 2. However, these calculations were less accurate than the procedure

2The values foff, found in Refs. [19, 1] have to be scaled by a factor 4 due to a slightly different definition of
the spin operators (1.3)
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described here, and in both cases the deviation from (2.42) can be convincingly explained by
the respective statistical errors. To the authors knowledge, (2.42) is the most accurate result
presently known.

2.2.3.3 The specific heat

Starting from the free energy (1.61) and using standard thermodynamic relations, a useful ex-
pression for the internal energy per site shall be derived in App. A.3. For the isotropic case, and
exploiting the symmetry relation (1.36), eq. (A.24) can be cast into the form

3 2 2 ~2 £ ~2
U=387 <q — G - 22_:1 2 (2.43)
The specific heat is given by
dUu
CM) =47 (2.44)

and can be calculated by numerical evaluation of the temperature derivative. As discussed in
Sec. 2.2.1, within the dynamical approximation of ord€only the quantitieg ~ _, are part of

the self-consistency problem. This opens two ways to define the approximate internal energy:
on one hand, the frequency sum in eq. (2.43) can be simply restriciectd//, on the other

hand, contributions with: > M can be included and calculated non-self-consistently from eq.
(2.99 b), or, forM = 0, from eq. (2.26). At finite orded! there is quite a difference between
both definitions as illustrated below for the extreme cése- 0. Although the latter method is
numerically more involved it will be adopted here since it provides better convergence of the
specific heat approximants as the ordéiis increased.

Of particular interest is the behavior of the specific heat at the spin glass phase transition.
Therefore, one is in need of solutions to the self-consistency problem in the spin glass phase.
Unfortunately, a solution over the whole temperature range can be found easily only within the
spin-static (and replica-symmetric) approximation from egs. (2.23) (see Fig. 2.1)J EoD,
however, the full integration problem is hardly feasible due to the additiehgle integrations
that occur in the spin glass phase. Therefore, the calculations were restricted to temperatures
below but sufficiently close td@,. where the self-consistency equations can well be approxi-
mated by expansions in powers Bf — 7" which in turn allows to perform the-integrations
analytically. A detailed derivation of the following equations will be given in App. A.4. By
expansion of eq. (1.99 a) one obtains for the spin glass order parameter the linear expression
(see App. A.4.1)

q=a(Tc-T), TIST. (2.45)
with the slope

1 d .
a = j — d_TqO _— . (246)
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Figure 2.7: Specific heat of the isotropic HSGs obtained from numerical differentiation of the
internal energy within the dynamical approximations of orders M < 2 (full lines). Contributions
to eq. (2.43) with m > M are taken into account non-self-consistently. The cusp of the curves
indicates the respective critical temperature .. . In the spin glass phase the order parameter
q is taken into account perturbatively, and thus the solutions are correct close to 1. s only (see
text). For comparison the “conventional” spin-static approximation, where the frequency sum
in eq. (2.43) is restricted to the m = O term, is also shown (dashed line).

Expansion of eq. (1.99 b) in powers @fyields the simplified self-consistency equation (see
App. A.4.2)

Gm = Flgo + cmd®, T ST, (2.47)

where F;,, symbolizes the right hand side of eq. (1.99 b). The constiagntare well defined
expansion coefficients that can be calculated numerically-at7,.. Substituting the solutions
of egs. (2.45, 2.47) into the formula for the internal energy, eq. (2.43), one ends up with curves
for the specific heat in the ordered phase that are correct at linear orfieraf.

Instead of expanding the self-consistency equation (1.99 a), relation (2.45) can be obtained
as well from an expansion of the free energy (1.61) in powerg @b to orderO (q3). It is
known that to this order the replica-symmetric solution is correct [13]. Effects of Parisi replica
symmetry breaking first occur when the free energy is considered to quartic orgeamal
therefore they will change the results f0(7") only in higher than linear orders @f. — 7.

The resulting specific heat approximants fdr= {0, ---,2} are shown in Fig. 2.7. Due to
the apparent quick convergence of this sequence of solutions one may safely draw qualitative
conclusions for the limitM/ — o. In the paramagnetic phase the full dynami€dll’)-curve
most probably monotonically increases as the temperature is lowered, d@pdk @&xhibits a
pronounced cusp.
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Experiments with Heisenberg spin glass systems, such as CuMn with various Mn-concen-
trations [54, 7] and many more [5], have shown that in these real systems the magnetic part of the
specific heat exhibits a rather broad maximum well abivieut has virtually no fingerprints of
the spin glass phase transition. Recently, such a behavior of the specific heat has been reported
by other authors for the spin/2 infinite-range Heisenberg spin glass, too [1]. These results
were obtained by way of exact diagonalization of finite clusters together with explicit disorder
averages. However, due to the small cluster sizes (clusters of up to 12 spins could be dealt with)
the numerical data were afflicted with strong finite size effects and poor convergence properties.
Consequently, these results can not be trusted.

Contrary to the findings published in Ref. [1], in the results presented here there is no indi-
cation of a broad maximum in the full dynamiaal7")-curve abovel.. Merely the “conven-
tional” spin-static approximation, which neglects the quantum-spin dynamics altogether and
omits allm # 0 terms in the internal energy formula (2.43), generates such a (artificial) maxi-
mum. Interestingly, both features of the specific heat, the absence of a broad maximum above
T. as well as the non-analytic behaviorat have been observed also in a@Ugeneralization
of the quantum Heisenberg spin glass in the lifit— c and for larger spin quantum number
[15, 16].

2.2.4 Dynamical results for the isotropic Heisenberg spin glass on the
Fock space

This brief section temporarily departs from the HSGSome basic results for the isotropic
Heisenberg spin glass on the Fock space (HS& half fermion filling (i.e. . = 0) shall be
presented for comparison. Solutions of the self-consistency problem within the dynamical ap-
proximation scheme were obtained with about the same numerical effort as for the model variant
on the spin space.
The deviations of thg -approximants from the spin-static approximation are shown in Fig.
2.8. While the curves exhibit the same characteristic features as the ones for teerHSG
2.4, the absolute magnitude of these quantum-dynamical corrections is about twice as big.
Figure 2.9 displays the critical temperatures as obtained from relation (2.41) within the
dynamical approximation scheme fof = {0, - -,4}. Extrapolation of this sequence ¢ = o
(see Sec. 2.2.3.2) yields the full dynamical value

T, = (0.50852 0.00013 J. (2.48)

Compared to the spin-static value (see Tab. 2.1.4) the quantum-dynamical corrections again
cause a slight increase of by about 3%.

2.3 The perturbative g,,_.,-expansion

In order to consolidate the achievements of the dynamical approximation scheme discussed in
the preceeding sections, and particularly to support the results for the isotropig iIHS8c.
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Figure 2.8: Zero frequency local susceptibility for the isotropic HSGg obtained within the
dynamical approximations of orders up to and including M = 3. Again, only deviations from
the spin-static approximation result are shown. Compare to Fig. 2.4.
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Figure 2.9: Sequence of critical temperatures for the isotropic HSGg obtained within dynam-
ical approximations of orders M = {0,---,4}. Inset: Estimation of the full dynamical T, by
extrapolation of the sequence. Compare to Fig. 2.6.
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Figure 2.10: Diagrams contributing to the first (top) and second (bottom row) dynamical order
of the perturbative expansion of the functional ® defined by egs. (1.98, 2.49) in powers of
the dynamical saddle point components G, 70 (in the text referred to as the q,, ?éo—expansion).
Straight lines represent 2 x 2-blocks of the frequency-diagonal spin-static propagator matrix
I'stat (2.3), and wavy lines symbolize contractions of the dynamical effective magnetic fields
HI0 (1.93) according to (2.50).

2.2.3, a completely different approximation technique was developed and applied to the self-
consistency problem posed in Sec. 1.4.3. The basic idea of this method is to perturbatively
expand the functionab (1.98) in powers of the dynamical saddle point compong,fﬁ‘f’éo.~ The
associated dynamical decoupling fiegﬁﬁ’n can then be integrated out analytically. Here, the
spin-static theory of Sec. 2.1 again serves as a non-trivial starting point. Such an expansion is
certainly justified at high temperatures thf%#o < %<1,

Substituting the]rj#o-expansion ofb into eq. (1.61) one yields an approximate expression
for the free energy which can be subjected to a stationarity condition similar to the procedure in
Sec. 1.4.1. The resulting simplified self-consistency equations for the saddle point parameters
q, and g’ involve integrations over the static decoupling fields only and are therefore easily

solved numerically.

2.3.1 Diagrammatic expansion ofb

As a direct consequence of the decomposition (2.1) of the effective potential (1.90), the weight
function (1.96) may be cast into the form

W = WstareXp Tr |n(1 + I‘stat\/dyn) ) (2.49)

where the spin-static quantitid&a; and Wsiat have been defined by eqgs. (2.3, 2.11), respec-
tively. In the high temperature limit, the dynamical saddle point components vanisqlﬁﬁff&J
1/T? (this asymptotic behavior can be read off already from eq. (2.26) for the spin-static and
isotropic special case), whereas the zero frequency components reach ity Hence, at
least at high temperatures it is justified to expand the logarithm in eq. (2.49) in powers of the
matrix V gyn.

Such an expansion generates powers of the dynamical effective magnetic fields (1.93), and
thus it permits the Gaussian integrations over the dynamical decoupling g@ggo in eq.
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(1.98) to be performed exactly. With the help of a suitably defined generating functional one
easily verifies the useful identity

G /
/ (ng)k (Hu_’m)k = JI/Zk ((ﬂn)k K Ok 0y (250)
y

This contraction relation on one hand, and the trace operation in eq. (2.49) on the other, suggest
to organize the expansion of the functiorlin terms of closed diagrams. At the second
dynamical order this yields the representation

P = Dot + Py + Pz + 0770770 7). (2.51)

where®gi4t is given by eqs. (2.17, 2.11). All diagrams contributingdtp and ®, are shown
in Fig. 2.10. They can be evaluated straightforwardly exploiting formula (A.9) to perform the
occurring Matsubara sums.

2.3.2 Results for the isotropic Heisenberg spin glass on the spin space

As a concrete example the case of the isotropic EISKall be made explicit in this section.

As the q:n#o-expansion is expected to be useful at high temperatures the discussion will be
restricted to the paramagnetic phase (j.e= 0). In the evaluation of the diagrams in Fig. 2.10

the Popov-Fedotov chemical potential (1.9) is employed again, and exploiting some symmetries
the dynamical contributions to eq. (2.51) can be cast into the form (the comstest been
defined in (2.24))

br sinh( br)
2 72 E 2
q)l = ﬁ J / b2 2+7T (252)

and
Dy = 64J4Z > Gl / r? x

m=1m/>m
(w (br, (7rm)2> Omm! + U <br, (Wm)z, (7rm')2> ) (2.53)

with the functions

w(z.s) = sechr (_ 3sz? — 5202 + 253 sinh(2z) +
T (@2+5)2\ (22+5) (a8 +4s7)
2_g544 1122 —3s—4
wcosh(zt) TR (2.54)
) 8
and
sinhx x?
t) = - tanhe

542 t t

isx N ztx _x(x —I—S—l-z)(s-l- ) . (255)
re+s o+t (22+s5+1)"—4dst

Expressions (2.52 — 2.55) correctly reproduce the high temperature expansions of all considered

quantities up to and including order(34).
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2.3.2.1 Asymptotics of the dynamical approximation scheme at large orders/

In the context of the dynamical approximation scheme discussed in Sec. 2.2, particularly for
the extrapolation to the full dynamical result of some quantity, it is important to know how this
guantity varies with the ordek/ for M — . This asymptotic behavior is governed by the
convergence properties of the basic functioialvhich can be extracted by applying the idea

of the dynamical approximation scheme to the analytical expansion (2.51). First the simplest
contribution®, shall be considered. One writes

Oy =Dy 3 + Dy, (2.56)

where for®, ;s the sum in eq. (2.52) is restricted to = {1,.., M}, andCTDLM contains the
remaining high-frequency terms with indices> M. The asymptoticl/-dependence of the
latter part, which is neglected within the dynamical approximation of okdecan be readily
evaluated. Since™ ~ m~2 for largem (see, for instance, eq. (2.26)) one has the asymptotic
sum

00

. 1
Sy~ Y ~ME M>1 (2.57)

m=M+1
The second order contributioh, (2.53) can be treated similarly. Here the neglected high-
frequency parﬁbgM comprises all sum terms with/ > M. The functions (2.54, 2.55) vanish
like w ~ 1/s andv ~ 1/t. Thus, all sum terms fall off asymptotically liken')~* or faster, and
hence&)z,M ~ M3 for large M. The same arguments also apply to all higher order contri-
butions&)ij. Therefore, the full high-frequency part of the functiodglwhich is formally
given by thek-resummation of all contribution&)k,M, should also vanish likd/—3. Conse-
guently, any quantity that is derived fro#n e.g. the critical temperature (see Figs. 2.6 and 2.9),
converges accordingly.

2.3.2.2 The static susceptibility

Simplified self-consistency equations in the paramagnetic phase were derived by combining
egs. (1.61) and (2.51 — 2.55) and requiring stationarity of the free energy with respect to varia-
tions of the parameters,,~ These equations were solved iteratively at the first two non-trivial
orders of they, ?éo-expansion. The respective zero frequency parts of the local susceptibility are
presented in Fig. 2.11. At temperatufles- .J the previous results of the dynamical approxima-
tion are reproduced very accurately (see Fig. 2.4). From this fact one can infer that the two series
of approximants obtained from both approximation schemes, the dynamical approximation on
one hand and th@m;o-expansion on the other, are well converged in this temperature region.
Going to lower temperatures, however, the perturbative solutions apparently underestimate the
full dynamical curve, and higher orders of tdj;g#})-expansion become more important.

The criterion (2.41) yields the approximate critical temperattfgs= 0.58557/ and
T. = 0.58673/ in orderso(cjm#o) and O(qu#O(jm,;éo), respectively. Due to the small num-
ber of available orders one can not reliably extrapolate these data to a full dynamical esti-
mate. Nevertheless, these numbers are in good quantitative agreement Witivéthee (2.42).
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Figure 2.11: Zero frequency part of the local susceptibility x, = (3G, for the isotropic HSGs
calculated within the first two non-trivial orders of the q,, ?éo-expansion (see text) and within the
third order dynamical approximation for comparison (plot symbols). Only deviations from the
spin-static approximation result (2.29) are shown. Compare to Fig. 2.4.

In particular, the interesting observation that the quantum-dynamical correlations increase the
critical temperature compared to the spin-static approximation is strongly supported by the
perturbative;,,, o-expansion.

2.3.2.3 The specific heat

The specific heat obtained from t%;o-expansion is presented in Fig. 2.12. Again,fog, J

the approximants of order@(@m#o) and o(gm#oqm,?éo) differ only slightly from each other,

and they are in good gquantitative agreement with the results of Sec. 2.2.3.3. At lower tempera-
tures the curves clearly separate which indicates poor convergence of the sequence of solutions
at the highest order considered here. Consequently, it is not possible to estimate the exact
C(T)-curve from these data. Nevertheless, the data allow for qualitative conclusions. The max-
imum obtained in the “conventional” spin-static approximation (see Fig. 2.7) representing the
zeroth order of the, #O-expansion is already very weak at orqum 7,éo), and it is not present

any more at ordeO(qu?éocjm,#o). Hence, consistently with the findings of Sec. 2.2.3.3, no
maximum can be expected in the full dynami€4ll")-curve above.

2.3.2.4 Fulfillment of the sum rule (1.41)

From the numerical data presented in Figs. 2.11 and 2.12 it is not obvious that the two se-
guences of approximations, the dynamical approximation with increddirogn one hand and
the increasing orders of ttq%;o-expansion on the other hand, will finally converge to the same



2.3 THE PERTURBATIVE(,, ,o-EXPANSION

46

03471

0.32 -
0.30 -

C 028
0.26 -
0.24

0221

O(qm;«éo qm’#O)

Figure 2.12: Specific heat of the isotropic HSGs according to eqgs. (2.44, 2.43) calculated within

the first two non-trivial orders of the q 7é0—expans1'0n. The zeroth order of this sequence of

approximants is the “conventional” spin-static solution which is displayed in Fig. 2.7. For com-
parison the result within the second order dynamical approximation (see Fig. 2.7) is indicated
(dashed line). The curves are shown in the paramagnetic phase only.

Figure 2.13: Fulfillment of the exact sum rule (1.41) for the HSGs at the two lowest dynamical
orders of the ¢, ¢O-expansion providing a check of the quality of these approximations. The
curves are shown down to T,.. Note that the higher order O((jm £0 Qyy 7éo) clearly does better for

all temperatures.
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full dynamical solution as required for the whole theory to be consistent and meaningful. In
particular, the convergence properties of the latter perturbative series are not known. To pre-
vent from miss-interpretations, it is illuminating to check how accurately the sum rule (1.41) is
obeyed by they #,-expansion at the two lowest dynamical orders. The results are shown in
Fig. 2.13.

At high temperatures, down t&' = J, the sum rule is fulfilled almost exactly at order
O(dm #Ogm, 7é0) which reflects the good quality of the approximation. However, a substantial
violation of the sum rule is observed for< .J, providing clear evidence that in this temperature
regime the sequence of solutions obtained frorrqmgo-”expansion is not well converged yet at
the second dynamical order. As discussed in Sec. 2.3.2.2, the quaygiaeslT. nevertheless
give strong support to the results of the dynamical approximation scheme. The specific heat,
however, directly depends on the dynamical paramejeend is therefore more sensible to the
failure of the approximation to fulfill the sum rule. Hence, B J the C'(T")-curves in Fig.

2.12 must be interpreted with care.

2.4 Summary and conclusion

In the present chapter the &), spin 1/2 Heisenberg spin glass has been studied with the
main focus being on the model variant on the spin space. Beyond the spin-static approximation
two different systematic approximation schemes have been developed in order to solve the
dynamical self-consistency problem posed in Chap. 1.

The dynamical approximation of ordér, on one hand, describes the quantum-spin dy-
namics with a limited number of bosonic Matsubara frequencies, but the corresponding saddle
point componentg”~" are dealt with exactly (Sec. 2.2). The perturbatjxgg-expansion,
on the other hand, takes into account all frequencies but only a few powers of the parameters
G709 (Sec. 2.3). In this sense the two approximation schemes are complementary to each other.

For the HS(g both approaches yield a consistent picture for the zero frequency local spin
susceptibilityx, in the paramagnetic phase (see Figs. 2.4 and 2.11). By extrapolation of the
results from the dynamical approximation schemé#fo— « (see Fig. 2.6) the full dynamical
critical temperature has been estimate@te- (0.58912+ 0.00015 .J which is about 2% higher
than the value in the spin-static approximation. For the model on the Fock space (Sec. 2.2.4) an
increase of 3% is observed.

Results for the specific heat(T") of the HSG have been presented in Figs. 2.7 and 2.12.

In the framework of the dynamical approximation scheme the calculations could be extended
to the spin glass phase perturbatively. The observation of a broad maximunitftheurve
aboveT,., which has been reported recently by other authors [1], can not be confirmed. Instead,
a pronounced non-analyticity ¢f(7") at 7. is found. The numerical method used in Ref. [1]
apparently is not capable to resolve this feature, presumably due to the principal lack of sharp
phase transitions in the finite size systems considered there.

The methods discussed in this chapter proved useful to qualitatively and quantitatively de-
scribe the high temperature phases of quantum spin glasses. There are many open issues that
can thus be addressed in the future, e.g. the behavior in a magnetic field, questions concerning
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anisotropy, or real-frequency response functions which can possibly be constructed by analyti-
cal continuation of the numerical data. For the HSd@ynamical corrections to the spin-static
phase diagram shown in Fig. 2.2 can be studied.

While the work presented here has been mainly concerned with the paramagnetic phase, it
will be of high interest in the future, however, to extend the calculations to the spin glass phase
and eventually td" = 0. As a first step it seems promising to apply the techniques developed
for the Ising spin glass to analytically perform the zero-temperature limit of the self-consistency
equations (2.19) (which have to be suitable generalized to allow for replica symmetry breaking).
Beyond the spin-static approximation it will be a crucial question whether or not suitable new
approximation schemes can be constructed which are applicable to the guantum-dynamical self-
consistency problem at low temperatures.



The itinerant fermionic spin glass

When fermionic lattice models are investigated it appears natural to allow for mobile carriers
and transport mechanisms. Therefore, the formalism developed in Chap. 1 shall be extended
suitably to apply to itinerant spin glass systems.

In earlier work a metallic infinite-range Ising spin glass model was studied. Within the spin-
static approximation a systematic low temperature expansion was constructed and the quantum
phase transition was located [34]. Later, a more general quantum-dynamical Ginzburg-Landau
theory [45] was applied to study the critical behavior. It was found that on the mean field level
the effect of the dynamical spin-spin correlations changed the critical exponents obtained within
the spin-static approximation (see App. A.5).

In order to account for itinerant models, the self-consistency structure summarized in Sec.
1.4.3 shall be combined with a suitable adapted coherent potential approximation (CPA) tech-
nigue. Originally this powerful non-perturbative method was developed to describe non-inter-
acting disordered electron systems [10], and in this context the CPA can be shown to become
exact in the limit of infinite spatial dimensiong-{ ) [53]. Later, the CPA formalism was gen-
eralized to deal with interacting electron systems [21, 22] leading to highly non-trivial couplings
of the quantum degrees of freedom. Finally, the CPA method can also be applied to dynami-
cal disorder. Like in the present work, this situation for instance results from the dynamical
decoupling of interaction terms [23, 24]. Recently, this dynamical CPA has been shown to be
intimately related to the dynamical mean field theory (DMFT) [25].

After a brief introduction of the method for the general spin glass interaction (1.1), the focus
shall be on the itinerant Ising system. To provide an overview of the systems’ behavior the spin-
static approximation will be discussed both at finite and zero temperature. In the last part the
dynamical approximation scheme, which has been introduced in Sec. 2.2.1, will be applied. A
sequence of dynamical approximants of the paramagnet to spin glass phase boundary in the
plane of temperature and hopping strength will be presented, from which the location of the full
dynamical quantum critical point can be estimated.

49
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3.1 Model definition

In the present work a particularly simple metallic spin glass model shall be considered, which
employs only on single sort of particles to provide for both local magnetic moments and mobile
carriers. To this end the spin glass Hamiltonian (1.1) is augmented with a hopping term,

K =Ksc + fzza;raaja, (3.1)

where the sum inde%j) denotes summation over nearest-neighbor lattice sites. In distinction
to previous work [35, 34, 42] there is no randomness in the kinetic term. In order to facilitate
an exact treatment of the model the hopping is assumed to take place on a underlying simple
cubic lattice in the limit of infinite spatial dimensioas— . Here the scaling of the hopping
parameter according to

1
Vd
similar to the scaling of the magnetic interaction eq. (1.6), is essential to obtain physically
meaningful results [55, 28].

The kinetic term in the Hamiltonian (3.1) does not interfere with the dynamical spin glass
decoupling formalism as developed in Sec. 1.3. Hence the replicated and disorder averaged
partition function of the itinerant model is given by eq. (1.50). The effective action (1.51) is
merely modified by the hopping term and reads

t=-—"=t, (3.2)

/qeff - —TLNS (q7 q)
522”’ ( P21+ 1) D26 63 + Vi 655 — Tl26y0 6 >)w§-’a, (3.3)

ija U

where the effective dynamical potential is defined by eq. (1.49), and the sympalenotes
the connectivity matrix of the assumed hopping model, i.e. its matrix elements are unity for
nearest neighbor sit€s, j} and zero else.

It will be the task of the following section to properly incorporate the hopping and to for-
mulate the generalized self-consistency problem.

3.2 The dynamical CPA approach

The effective action (3.3) describes an ensemble of non-interacting fermions moving in a com-
plex replica- and spin-dependent effective random medium. Such a system immediately calls
for the well known Coherent Potential Approximation (CPA). In the present case, the frequency

dependence of the random medium requires a dynamical version of the CPA [23, 24, 25]. Fol-
lowing the prescription of this method the random medium is replaced exactly by a yet unknown

self-energy3.. For the present model this self-energy is frequency-diagonal,

(B = X0, (3.4)
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where the diagonal elementy are in general Z 2 matrices in spin space. The full disorder
averaged Green’s function is then given by

(G _1)Z~ = (((izl+ﬂ) o —33)d; — 51125@]-))51% (3.5)

In the chosen limit of infinite dimensions spatial fluctuations are suppressed, and the prob-
lem simplifies to a single site problem which justifies the assumption of a site-diagonal (or
k-independent) self-energy [53, 14].

The effective action (3.3) is not diagonal in the frequency indices thus allowing for virtual
absorption and emission of dynamical field quaHT}ﬁM. However, the full fermion Green’s
function of the original interacting problem (3.1) with_any particular realization of the quenched
disorder is certainly energy conserving and so is the full disorder averaged Green’s function
(3.5). Hence its off-diagonal elements in frequency space must vanish due to the average over
the effective random medium which was explicitly checked numerically in the context of the
itinerant Ising model. This fact justifies the Ansatz (3.4) of a frequency-diagonal self-energy.

Nearest-neighbor hopping of non-interacting particles on a hyper-cubic lattice in the limit
of infinite spatial dimensions is described by the function (recall the scaling (3.2))

To(z,t) = Z—\Cexp( :;2)( ZS|gn<Im )+erfl—) (3.6)

Among others, one instructive way to derive this function is to expand the local Green’s function
in powers of the hopping parameteaind to re-sum the arising series using Borel's method [2].
Evaluation of eq. (3.6) slightly above the real energy axis, i.e.-at: +i0", yields the well-
known Gaussian density of states [55, 30].

The averaged Green's functi@can readily be expressed by

1
(G)ij =Tdi; +0 (ﬁ) ) (3.7)

whereT is a site independent block-diagonal matrix in frequency and spin space given by
(T = To((iz1+ p) 12 — Xy, t) oy (3.8)

The remaining task is to determine the self-ene¥yy To this end; is removed and the
original random medium is re-introduced at one special lattice site; say. The resulting
effective action can be cast into the form

4SPA = _nNS(q,8) — —ZZLIJ ( oM <Eléll/+vsa )@sajs)wg’a. (3.9)
ija 1’

For the formulation of the self-consistency equations it is useful to define as an auxiliary quan-
tity the un-averaged local propagator at the special lattices sitel on replica in the presence
of the local effective potential,

(T = 5 <wm W > AP (3.10)
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In the limit d — o one obtains from egs. (3.7, 3.9) (dropping the site ingex
CH 1 =T1+2+V, (3.11)

with the effective potential matri¥, defined in eq. (1.52). Comparison with eq. (1.53) reveals
that the only difference caused by the hopping term is the replace@ent T~ + X. The
subscriptt shall remind of this modification for the itinerant model. Since

To(z,t — 0) — 1/z, (3.12)

eg. (1.53) is exactly reproduced in the non-itinerant limit.

Within the CPA method the self-enerdy is determined by the demand that the local part
of the full disorder averaged homogeneous Green’s funciigmoincides with the explicit
properly weighted average of the local propagdtpover the dynamical random medium. The
elements of the latter are evaluated in a way similar to the calculations in Sec. 1.4.2. One finds

M L im | / / D bl L ex0(~AGA)
n— dIS

1
lim // (T)77 /Q)z/; exp(—aSHh
n—0 [Zn]dis zJy t ll ( )
GG , ¢
_ 1 n a a\oo [¢]
= lim ¢ // we@hi 11| W

n—
Z JYa a'#a” Ya!

where the weight functiofl’; is given by eq. (1.96). The unimportant constahin the third
line comprise§Z™]4is as well as all contributions from lattice sités~ s. Taking the replica
limit, one obtains the conditional CPA equation for the self-energy

y (G 1 ¢
T':/ —/ Wi Iy, (3.13)
z cbt y

The quantum-dynamical nature of the model causes non-trivial couplings of the fermionic
Matsubara frequencies. Althoudhis frequency-diagonal and the off-diagonal elements on the
right hand side of eq. (3.13) vanish exactly by integration, the self-energy can not be determined
for one frequency at a time but only for all frequencies at once.

By explicit construction of the spin-spin correlations (1.32) at the special lattice e
saddle point equations (1.99) can be derived analogous to the calculation for the non-itinerant
model in Sec. 1.4.2. The resulting two-fold self-consistency structure for the spin glass order
parametersg, and the dynamical saddle point componefjtsoh one hand and the dynamical
self-energy?:; on the other hand, is illustrated in Fig. 3.1.

3.3 The itinerant fermionic Ising spin glass

The CPA method formulated in Sec. 3.2 shall now be applied to the itinerant fermionic Ising spin
glass (ISG ) at half filling and in zero external magnetic field, as described by the Hamiltonian

I CTTEN) B) SN (3.14)

i#j (ij) o
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Figure 3.1: Structure of the two-fold self-consistency problem for the itinerant spin glass model
(inspired by Ref. [22]). In (a) the effective dynamical random medium (1.52) is shown which
depends on the spin glass order parameters q,, and the dynamical saddle point components q,)".
In (b) the random medium is replaced by the homogeneous dynamical self-energy ¥J; (3.4). Part
(c) illustrates the determination of 3; by means of the CPA construction at the special lattice
site © = s. The angular brackets in (c) indicate the weighted average over the random medium
that occurs in the CPA equation (3.13). From the self-consistency equations (1.99) with the
local propagator matrix I'y (3.10), the physical quantities q,, and q,* are constructed, which in
turn generate the self-induced random medium in (a).

where the one-component spin operators are defined by (see eq. (1.3))

57 = ag}am - ajlau. (3.15)
Equation (3.14) represents the simplest interesting special case of the generic Hamiltonian (3.1)
and corresponds to the general model with the model paramégters/ andJ, = J, = h, =
1= 0. Consequently, spin glass order can occut-gtirection only. The transversal replica-
diagonal spin-spin correlationg’/ are finite (see Sec. 2.1.4), but they do not influence the
correlations inz-direction, and thus they are irrelevant in the present context. Therefore the
direction index can be drooped in this section, ¢£= ¢ andq}* = g,,,.

The restrictions of the model (3.14) implicate a simplified structure of the CPA self-energy.
Since there is no external field considered the self-energy is independent of the spin projection,
and one can write

Y=o 1o. (3.16)

In addition, the quantities; are purely imaginary at half filling(= 0) and obey the symmetry
relation

o] =—0_]_1. (3.17)
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3.3.1 General solution strategies

In order to explore the quantum-dynamical behavior of the present itinerant spin glass model the
dynamical approximation scheme, which has been introduced in the context of the Heisenberg
spin glass in Sec. 2.2.1, was applied to the two-fold self-consistency problem sketched in Fig.
3.1. In essence, within the dynamical approximation of ofdethe effective potential (1.90)
is constructed from the dynamical saddle point componentsvith frequency indicesn =
{0,---, M} only. Contributions associated with higher bosonic Matsubara frequengies,,
are neglected (see Fig. 2.3).

Within this dynamical approximation scheme the quantum-spin dynamics is treated on en-
ergy scales ranging fromg = 0 tow,; = 277" M. To estimate the quality of this approximation
one may compare the energy scales that are neglected to the hopping stiEigththe model
parameter that generates the dynamics. Thus one is led to

t<<wyi1=2rT (M +1) (3.18)

as a simple criterion for validity of th&/™ order dynamical approximation. Hence, although
it is neither a high temperature expansion nor an expansion in sntaé method works well
especially for smalk/T. In those regions in parameter space the approximation already at
manageable low order® excellently captures the effects of the quantum-spin dynamics.
Another difficulty arises from the infinite extension of the matriged..90),T (3.8), andl};
(3.10) in the space of the fermionic Matsubara frequencies. Naturally, a numerical analysis re-
quires these matrices to be constructed in a limited frequency range, ;sayto z;,. However,
there are also important contributions from higher frequentigs; that can not be neglected.
They were rather treated perturbatively in order to permit a minimum choice for the “cut-off
index” .. Particularly in the vicinity of the quantum critical point, i.e. at very low temperatures
where the energetic spacings between the Matsubara frequencies are small, it was essential to
take these high-frequency contributions into account as accurately as péssible
To this end systematic asymptotic expansions of the self-consistency equations in terms of
1/~ were performed up to some feasible orma(r(l/zl)K), using the high-frequency asymp-
totics of the self-energy

K
a —(2
o = > — g + 05 #Y) (3.19)

[t]—eo 1 (izl)
which can be derived from the CPA equation (3.13). Here the expansion coefficieats
easy to calculate averages of polynomials of the effective magnetic fields (1.92, 1.93). The
Matsubara summations which occur in the evaluation of the self-consistency equations can
always be split up into a low-frequency main part and a high-frequency part separated by the
cut-off indexl.. While the matrix-structured main part has to be treated numerically, the high-
frequency contributions can be formulated in terms of asymptotic series expansions of docile
structure that permits analytical summation.

1This point has been less important in Sec. 2.2 because there only solutions around of abave been
presented.
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initial values construct VT, I'; (egs. (1.90, 3.8, 3.10))
Ganmotlear | 4 | evaluate Wy, @y (egs. (1.96, 1.98))
i A
oy, Gk evaluate g, g,
(eq. (3.13)) | (egs. (1.99))
A
.V check
adjust [, fe + result
convergence

Figure 3.2: Schematic of the iterative procedure employed to solve the two-fold self-consistency
problem (see Fig. 3.1) for the itinerant ISGg defined by (3.14). The basic algorithm was imple-
mented in the Mathematica language, while all computationally expensive matrix operations
were passed to external C routines making use of the MathLink interface.

The restriction of the fermionic frequency space by the numerical method introduces some
error. The cut-off indexX. has to be chosen such that this error falls below some given thresh-
old of insignificance. In practical calculations different methods were used to detekmife
simple way is to make trial variations of the matrix sizes at each iteration cycle and to adjust
(increase or decreask)according to the corresponding variations of all relevant intermediate
guantities. A more direct method is to evaluate the contributions of the first neglected asymp-
totic order, i.e.0((1/z)%*1), as a function of. and to apply some suitable smallness crite-
rion. The latter method turned out to be un-practical ¥6r> 0 because of the complexity of
the occurring analytical expressions for the asymptotic Matsubara sums.

The final criterion for the choice df is always that the physical quantities must be indepen-
dent of this auxiliary parameter at some desired level of precision. The proged thereupon
the computational expenses for solving the self-consistency problem strongly depend on the
temperature as well as on the ord€rup to which the asymptotic series expansions of the
equations can be driven. Parts of the low temperature data discussed below were obtained with
cut-off indices up td. ~ 400.

All solutions of the self-consistency equations presented in this article were obtained by
means of the principal iterative algorithm sketched in Fig. 3.2. This procedure proved to be
insensitive to the initial values and also showed quite satisfying convergence properties in all
regions of the parameter space explored so far.
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3.3.2 Spin-static approximation

This section is devoted to a discussion of the dynamical self-consistency equations within the
spin-static approximation being the first and simplest instance of the dynamical approximation
scheme. The spin-static solution is not only very instructive but it also provides a reference for
guantum-dynamical corrections.

The spin-static approximation has already been discussed at length in the context of the
Heisenberg spin glass in Sec. 2.1. It consists in neglecting the time dependence of the saddle
point (1.33 b) or, equivalently, in taking all Fourier componepswith m > 0 to be zero in
the construction of the dynamical potential (1.90). This restriction to the static compgnent ~
brings about tremendous simplifications of the self-consistency problem.

3.3.2.1 Results at finite temperature

Because the dynamical effective fields (1.93) vanish, the Gaussian integrations over the fields
y,fm which are part of the integral operator (1.95 b) can be performed trivially. In the present
Ising case one is left with only two Gaussian integrations over the static fjelgls- yo and

z, = z. In addition, within this approximation the occurring matrices become diagonal and thus
the matrix structure of the self-consistency problem disappears. The determinant in eq. (1.96)
reduces to an easily manageable Matsubara product, and hence the spin-static weight function
can be evaluated to

ot — %(1+ cosh(3Hy)) exp(BR (Hoy) ). (3.20)

Here the exponent function in the last factor is given by

2 0 |Ul’2+772
R(p) =25 in T (3.21)
6 ; 212+772
with Hy = J (/g2 + /Gy — q¥o), andy; is defined by
1
== . 22
“ To(iz; — oy,t) +o (3.22)

In the present itinerant model the effect of the hopping becomes noticeable in the difference
betweeny; andiz; and hence in the deviation of the functi&(HO) from zero. Note that with
property (3.12) in the non-itinerant limit eq. (2.11) is reproduced exactly (recallitkaD).
Since there is no explicit expression for the self-energgand hencey;), thel-product in eq.
(3.20) can not be performed analytically but has to be evaluated numerically.

Due to the diagonality of the effective potentialthe matrix inversion in eq. (3.11) effec-
tively turns into simple scalar inversion. Consequently, within the spin-static approximation
the dynamical CPA equation (3.13) decouples into a set of scalar equations for each Matsubara
frequency,

Toli t) = /G L /Gwsta‘ 1 (3.23)
121 —op,t) = — E— .
0 l l ; q)?tat o t U1+HO
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which can be solved independently one at a time.
The trace terms (2.14), evaluated for the- = direction and at zero frequeney = 0, are
given by

00

U
A(n) =4y —5F—, (3.24 a)
;!ul\ernz
d 2 P42
By (n) = d_UAt (=4 % (3.24 b)
=0 (’ul\ +772)

Again, the Matsubara sums can not be done analytically unlike the corresponding sums in egs.
(2.15, 2.16) for the non-itinerant case. Finally, the spin-static special case of the self-consistency
equations (1.99) can be written in terms of the functiongland B;:

1 (1 (6 . ?
4= @/ pstat WA (Ho) | (3.25a)
z t Yo
5 1 ¢ 1 ¢ stat 2
do = @/Z q)tstat/yo Wi (At (Ho)” — Bt(Ho)). (3.25b)

Numerical solutions of the spin-static self-consistency problem given by egs. (3.25, 3.24,
3.23) were obtained for a broad range of hopping parametdraving regard to what was
discussed in Sec. 3.3.1. The results are presented in Fig. 3.3. In the non-itinerantmix (
the paramagnet to spin glass transition occuts at J/ (1+exp(—1/(27,/J))) ~0.6767J. A
finite hopping hampers the local freezing of the spins and thus lowers the critical temperature.
The phase transition remains continuous down to zero temperaturé. -Aso all available
many particle states become equally populated, and conseqygntlyl72 since two of the
four local states are magnetic.

3.3.2.2 The limit of zero temperature

In the context of the non-itinerant IS®& was noted that the zero temperature limit brings along
substantial simplifications of the self-consistency equations [37]. This is true for the itinerant
case, too, and in the following the generalization to the model (3.14) shall be discussed briefly.

It is obvious from Fig. 3.3 that the spin-static solutions feature the low temperature behavior
(Go—q) ~T. In order to perform the zero-temperature limit it is therefore advisable to eliminate
o and to formulate the self-consistency problem in termg ahd the static part of the local
susceptibilityy, = 3(gy — ¢) (see eq. (1.37)) which remains finite’As— 0.

In the zero-temperature limit the discrete fermionic Matsubara frequegcmsrge into a
continuous variable, say, and the Matsubara sums have to be replaced by frequency integra-
tions according to

TS fa) — o [ o). (3.26)

T—0 27'(' 0
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Figure 3.3: Numerical results for the itinerant |ISGg defined by (3.14) within the replica-
symmetric and spin-static approximation for hopping parameters t = {0,---,1.1J} in steps of
0.1J. All energies are measured in units of the average magnetic coupling J. The upper plot
shows the spin glass order parameter g (full lines) and the zero frequency component of the
replica-diagonal spin-spin correlation G, (dashed lines). Both lines merge at T' = 0. The (-
curves approach 1/2 as T' — . A continuous spin glass to paramagnet phase transition occurs
for all t < 1.406J (see Sec. 3.3.2.2). The lower plot shows the corresponding local static sus-
ceptibility xy = 3(go — q) which remains finite as T'— O and always reaches unity at the phase
transition.
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In particular, the sums (3.24) turn into

— 2 [® n

A = — dl ——— 3.2
t(n) 7T/O C‘U(C)‘Z—I—ﬁz, ( 7a)
— d _ [ —|u 2 2

Bi(n) = d_nAt(n)Zg/o d¢ (O +n (3.27 b)

(u©P+2)"

Herew (¢) denotes the continuous version of the definition (3.22).

Saddle point integration of yo. In order to demonstrate the procedure the quadi§(2)
shall be evaluated explicitly for low temperature. To this end one may write

ore) = [ Wy
Yo
_ [Cexp(B(R+Hy))  [Cexp(8(R—Hy)) [ exp(3R)
_/y : +/yo A +/yo 2 (3.28)

J/ N J/ N J/

stat stat stat
th, a th, b q)t, c

0
~

whereR (ﬁo) has been defined in eq. (3.21). These three contributions arise from the expo-
nential representation of the cosh and the remaining constant part in eq. (3.20). Employing the
variable transformation

1 —
yo—m;:ﬁyo, Hq— Ho=J (vaz +\/Jxoz) (3.29)

the first term can be expressed by

O(z) =/ ?167? exp <6J (\/az—l— %) ) / dz exp(—BJ g(z,2)), (3.30)

where the dimensionless exponent function is given by

g(x,z):%(x—\/{]xo)z — %R(ﬁo). (3.31)

Further progress is based on the observationfﬂ*(d?o) remains finite a§” — 0. This allows
the z-integration in eq. (3.30) to be performed by means of the saddle point method which
yields

sta 1 J

Herexsp(z) denotes the-dependent saddle point, i.e. the minimuny¢f, 2) at fixed z, that
has to be determined numerically. Note that the saddle point integration becomes exact in the
zero-temperature limit. The second contribution to eq. (3.28) is related to the first by symmetry,

OPE(2) = DR —2), (3.33)
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while q>§}gt can be shown to be exponentially small compared to the other terms and can there-
fore be neglected safely (away from half filling, i.e. fot£ O, this is not true any more).

The otheryg-integrations that occur in egs. (3.23, 3.25) can be done in the same fashion as
demonstrated above for the simplest case. Without further going into detail, this saddle point
method results in the simplified self-consistency problem posed below.

Self-consistency equations. The effective magnetic field is given by

Hosp(2) = J (Vaz + /Txowsp(2)) (3.34)
wherezgp is subject to the saddle point condition
Tsp(2) = VI Xo Ay (ﬁo,sp(z)) ) (3.35)

and A; has been defined in eq. (3.27 a). The CPA-equation which determines the continuous
self-energyr (¢) aquires the form

¢ —Uu
To (i€ — 1(C), 1) :/Z \u(<)|2+%z,sp(z)2' (3.36)

Finally, the self-consistency equations for the spin glass order parameter and the static local
susceptibility evaluate to

G _ _
qzéoz/ At(Ho,sp(\z!))z, (3.38 a)
V4
2 o= ¢ Bi(Hosl|2])
= [ — A (Ho,sp(0" / 2F 3.38D
X0 = gz HoslO) + =0 B (Hosl D) 2350
respectively.

Results at zero temperature. Numerical solutions of the set of self-consistency equations
(3.35 — 3.38) are presented in Fig. 3.4. In the non-itinerant litait Q) the well known results
q=1,Jxp= \/2/_7r are reproduced correctly. A finite hopping delocalizes the particles and
reduces the local spin-spin correlations. Thus, with increasing hopping strtethgtbpin glass
order parameter decreases monotonically. Within the spin-static approximation the spin glass
to paramagnet quantum phase transition occurs at the critical hopping strength

tc’stat: ﬁ:] ~ 1406J (339)
m
The constant is given by
o 1 2
N = / d¢ exp(262) T (E,gz) : (3.40)
0
wherel” denotes the incomplete Gamma function defined by

M(a,&) = /;0 ds s 1e®. (3.412)
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Figure 3.4: Zero-temperature results for the itinerant ISGg within the replica-symmetric and
spin-static approximation. The spin glass order is depressed Left: An increasing hopping
strength t continuously depletes the spin glass order and eventually drives a zero tempera-
ture spin glass to paramagnet phase transition at t. stat™~ 1.406J (see eq. (3.39)). Right: The
static part of the local susceptibility (full line) reaches the value 1/.J at t. star and in the dis-
ordered phase it vanishes asymptotically like xy ~ 1/t (see eq. (3.42). For comparison the
non-interacting limit J — O (dashed line) is also shown.

The critical value (3.39) very well agrees with the corresponding result obtained in [34] for a
similar model with a semi-elliptic (instead of a Gaussian) free density of states. The static local
susceptibility reaches the valug¢.Latt. stat In the zero-temperature disordered phase, i.e. for

t > t. stay ONe finds

7t —/T2t2 — 472J2

2v.J2 ’

X0 = U > 1¢ stat (3.42)
Its deviation from the corresponding quantity in the non-magnetic ligit;—o = v/ (7t) (see
Fig. 3.4), signalizes the vicinity of the spin glass phase.

3.3.3 Dynamical solutions

While exact in the non-itinerant limit, the spin-static approximation discussed in Sec. 3.3.2
turns out to provide a very good description of the model (3.14) for weak hopping according to
the rough criterion (3.18). In the opposite limit> J the kinetic term dominates the behavior

of the system and the quantum-spin dynamics looses importance, too, as can be seen from
Fig. 3.4. For intermediate hopping, however, the spin-static approximation becomes inaccurate
and particularly fails in the vicinity of the quantum critical point (QCP). In the present section
systematically improved dynamical solutions of the self-consistency problem shall be discussed.

3.3.3.1 The phase diagram in thg'— plane

By means of the iterative scheme of Fig. 3.2 and the general condition for the phase transition,
eg. (2.41), the phase diagram in the plane of temperdtared hopping strengthwas evaluated
within the dynamical approximation of orders up to and includidg= 3. Since at criticality
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Tem/J

Figure 3.5: The critical line of the second order spin glass (SG) to paramagnet (PM) phase
transition in the itinerant |SGg within the spin-static approximation (dashed line, see Sec. 3.3.2)
and within the dynamical approximations (full lines) of first (1. 1, uppermost) to third (1 3,
undermost) order M as discussed in Sec. 3.3.1. The dotted line indicates the expected course of
the full dynamical phase boundary in the limit M — oo; the light-dotted part displays the leading
critical behavior (3.43) with exponent ¢ = 2/3. The presumed location of the QCP, t, ~ 1.30J,
will be estimated in Sec. 3.3.3.2.

there is no issue of replica symmetry breaking the choice of the replica-symmetric saddle point
(1.33 a) isjustified in these calculations. In solving the conditional equation (2.41) itis sufficient
to fix the spin glass order parameter¢oe= 0 thus rendering the-integrations in the CPA
equation (3.13) and in the self-consistency equation (1.99 b) trivial.

The sequence of dynamical approximants to the criticallifé) is shown in Fig. 3.5. With
increasing hopping strengthrand decreasing temperature the growing influence of the discrete
dynamic saddle point components ., is getting more and more apparent. It can be seen
clearly from Figs. 3.5 and 3.6 that with increasing ordérof the dynamical approximation
two successive solutions start to separate at largéne observes a rapid convergence of this
sequence of solutions except for the region where the QCP is expecteld.-A®D all curves
collapse into the static critical point &t statgiven by eq. (3.39).

It is important to note that the self-consistent inclusion of any finite number aof, theaf
not affect neither the position of the QCP nor the critical exponents. In order to capture the
guantum-dynamical character of the problem it is rather necessary to take into account the pa-
rametersy,, over a finite range of Matsubara frequencigs aroundwg = 0 (see App. A.5).

In the disordered phase the parametgrs/anish linearly with temperature, i.e. the dynamical
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susceptibilityy,, = ¢,,,/T has a finite zero-temperature limit. Consequently, the effective po-
tential matrix (1.90) is proportional t¢/7, and hence the leading quadratic term in a formal
expansion of the un-averaged local propagdtof3.11) in powers ol/ also falls off linearly
with temperature (odd terms generally vanish by the Gaugsiategrations in all equatiors,
appears in). However, matrix powers ¥éfinvolve internal frequency summations. Thus, the
linear temperature decrease of the parameters exactly compensated by their increasing
number within a fixed frequency range. As a consequence, the location of the zero temperature
critical point is shifted towards smaller hopping strength compared to the result obtained within
the spin-static approximation.

Close to zero temperature the critical line behaves like

T.~ (te—t)®, t<t., (3.43)

where the critical exponent changes frora: 1 in the spin-static approximation o= 2/3 [45]

due to the quantum-spin dynamics (see App. A.5). Figure 3.5 gives an impression of how this
non-analytical behavior emerges from the sequence of the (analytical) approximate solutions in
the limit M — oo,

3.3.3.2 Location of the quantum critical point

In order to estimate the location of the QCP one may consider the differences between the
T.-curves within two successive dynamical approximations, defined by

1

Ay =5 (Tenr-1=Ten) (3.44)

As can be seenin Fig. 3.6, the functidig (¢) exhibit pronounced maxima. While the positions
of these maxima vary only very little, they become lower in height but sharper with increasing
order M. The critical linesT,. p; are monotonically decreasing functions tof Hence, the
distance betweel,. 5, and the full dynamical critical line, defined by

1

Ay = i (Te,nr — Teyoo) (3.45)

possesses a non-analytical maximum exactty &ir any M. Since
A= Y Dy, (3.46)

this non-analyticity must coincide with the position of the maxima of&hgeasM — oo. This

simply means that the sequence of the critical lifeg; converges slowest in the very proxim-

ity of the QCP. Based on this scenario the critical hopping strength can be estimated by plotting
the maxima’s positions vs. their heights (see Fig. 3.6) and extrapolation of these points to zero
height. This simple procedure yields the final result

te~1.30J. (3.47)
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Figure 3.6: Differences between the critical lines within two successive orders of the dynamical
approximation, A1 (uppermost) to Az (undermost), as defined in eq. (3.44). As explained in the
text, the location of the dynamical QCP is expected to coincide with the maxima positions in
the limit M — oo. Inset: plot of the positions vs. heights of the maxima. The error in the M = 3
data is due to numerical problems at low temperatures.

3.3.4 Summary and conclusion

In the last part of this thesis the technical framework of Chap. 1 has been generalized to account
for itinerant spin glass models. By means of a dynamical CPA method an effective single-
site problem could be constructed, and the corresponding extended two-fold self-consistency
structure has been formulated (see Fig. 3.1).

As the simplest example the 1$®ith nearest-neighbor hopping ih— oo at half fermion
filling has been studied. Beyond the spin-static approximation, the dynamical approximation
scheme, introduced in Sec. 2.2, has led to an estimation of the second order SG to PM phase
boundary in thel'—t plane including the location of the QCP. The obtained sequence of im-
proved dynamical solutions nicely illustrates the emergence of quantum critical behavior (see
Figs. 3.5 and 3.6).

This work has concentrated on the spin sector of the model and left out the properties in the
charge sector, such as the fermionic density of states. In the future it will be of high interest
to investigate the effect of the hopping on the band structure of the system, particularly on the
spin glass gap at zero temperature [36]. In this context an extension of the solutions to non-zero
chemical potentigl: [41] is also desirable.



Appendix

A.1 Derivation of a general formula for a class of
Matsubara frequency sums

In Chap. 2 there occur several Matsubara sums of expressions of rational form, e.g. in egs.
(2.16, 2.25). This physically important type of sums can easily be evaluated by virtue of a
general formula which shall be derived in this appendix.

Consider the polynomial

ﬁ (z—c)™, (A.1)

where them,; are positive integers and the complex zerpare non-integers and pairwise dif-
ferent, i.e.c; # ¢; for i # j. One further require® () to be of degree two at least. With these
assumptions the series

_Z Pi (A.2)

is well defined and convergeS.can be represented by

Z
S = Res— A.3
:Zm Res 513 (A3)
In this expressiom (z) is an arbitrary function which is analytic for all non-integer arguments
and has the property
Resr(z) =1 forintegerl. (A.4)
z=1

Possible choices are

r(z) = {%, —mtan(m (z+1/2)),m cot(nz) 7etc} . (A.5)
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The functionr (z) / P (z) hasn additional poles at the zeros According to the residue theorem
the sum of all residua in the whole complex plane is exactly zero. As polynomials of degree
one have been excluded there is no residue at infinity. Consequgmnglgiven by

- r(z)
S=-— : A.6
ZZ_; Res b (A-6)
By means of the well known relation
9(2) 1t
_ A7
ReS ol ~ -1 der ¥ ) A1)
and employing the auxiliary polynomial
Pi(z)=]](z—c))™ = (z—c:)™ P(2). (A.8)
gy
one finally finds the formula
- 1 dmi—t 1 (2)
5=- ZX_; (m; —1)! dzmi~1 P (z) e, ' (A-9)

A.2 Derivatives of the weight functionV

The aim of this appendix is to establish formulae which are useful for the evaluation of arbitrary
multiple derivatives of the weight function (1.96) with respect to the effective magnetic fields
(1.92, 1.93). The basic idea has been sketched already in Sec. 1.4.1.4.

To condense the notation, the magnetic fields shall be given a collective index for frequency
and direction, i.e.

H'" — H,. (A.10)
According to egs. (1.96, 1.94, 1.73) the weight function can be written as

W= det(Ggl/G;eg) exp(©), (A.11)
where the exponent is given by

O=Trin(1+GpV). (A.12)

A sequence of magnetic field derivatives applietif@an be expressed in a first step by deriva-
tives of © only. It takes a little combinatorics to arrive at the expression

d 0 1,1\ 9
T a_HkW = det(G0 /Greg) 5 a_erxp(G))
partitions subsets D) P
=W ) 11 (6H81.-.6HST@). (A.13)

{1k} {{sa, st}
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Given a set of indices the sum in eq. (A.13) extends over all set partitions representing the ways
to group these distinct elements into subsetsor each partition the product runs over all of
these subsets, where a sequence of field derivatives is app@addoording to the indices in
the respective subset.

The remaining task is to evaluate the multiple field derivative®ofA single derivative
yields (compare to eq. (1.76))

0
A.14
OH, (A.14)
In a similar fashion one calculates a single field derivative of the mAtrix
d = d
o, " = 2V g, (GoV)" G
o n—1 9
=3 > (=)™ (GoV)* (Go 7 v) (GoV)" 1+ Gy
n=1k=0 Nl
Ar
=33 G i1 (=1)" (GoV)F GoA (GoV)" 1 Gg
n= lk: Om 0
= ZZ 1)Fm 1 (GoV)F GoA, (GoV)™ Go
k=0m=0
= —(1+GoV) 1GoA, (1+GoV) Gy
= -I'AT (A.15)
This result immediately leads to
5 & ko fi-1 k
o, H(/\SZI‘) = —Z H (As,T) | As,TA,T H (AT) ], (A.16)
i=1 i=1 \j=1 j=itl

where the products on the right hand side are understood to be gre if— 1. Relation
(A.16) expresses the fact that, according to the product rule of differentiation, the derivative
with respect taf, has to be applied to each of the factdsI strictly keeping their order. By
repeated use of eq. (A.16) one finally constructs the compact formula

non-cyclic

8 a permutations
— . —O=(-1)F1 Tr[[(A,T). A.17

Here the sum extends over all non-cyclic permutations of the set of indices, i.e. cyclic permuta-
tions contribute only once. The product arranges the matrix factors according to the respective
permutatiorp.

Equation (A.17) is used in combination with eq. (A.13). It can be shown thkafiodd field
derivative of the weight functiohl” generates exactl! terms.

1The correspondiniylathematica function is SetPartitions[].
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A.3 Derivation of an expression for the internal energy

In Secs. 2.2.3.3 and 2.3.2.3 the specific heat of a Heisenberg spin glass model was investigated
by numerically evaluating the temperature derivative of the internal energy. In this appendix a
useful expression for the latter shall be derived.

According to the basics of statistical physics [40] the internal energy pel/ sgeelated to
the free energy by

= a8 (ﬁf) (A.18)

In the present context the total rather than the pastidérivative is appropriate. This is because

the saddle point valueg, andg]" appearing in the expression for the free energy are not fixed
model parameters, but they are functions of the temperature themselves. Thus, starting from eq.
(1.61) one finds

U:——ﬁS - —/ Ino®, (A.19)

where the quadratic forrfi has been defined in eq. (1.40). The firstterm in eq. (A.19) is readily
evaluated to

d o 2, B
For the sake of simplicity the discussion shall be restricted to the case where there is neither
an external magnetic field nor a finite real chemical potential applied. With these assumptions
the inverse temperature enters the functiehéq. (1.98)) through the combinatiofigf]" only
or, if the factors is pulled under the square roots in egs. (1.92, 1.93), through

n, = 3%q, and "= 32", (A.21)

Exploiting this fact the totab-derivative of® can be expressed in terms of derivatives with
respect to the saddle point parameigreindq,”. Having regard to the symmetry relation eq.
(1.36) one finds

dnu d77
CD v . A.22
Z dg 377 ; n;) d3 37] ( )
B720%/0q, 37200 /0G™

Now the second contribution in eq. (A.19) can be evaluated making use of the saddle point
conditions (1.62, 1.67, 1.70):

d [¢ d
— InCD:/ —— o
dﬁ/z ; ®dj
QZJZQV

2 Gl )
:¥<(E ) | s
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(1—30m,0) 52120
2 d G1 9
*Z(W%qy) . @0 )
:__s__zj ( _ Z g dﬁqy>. (A.23)

m=—oo

Comparison of egs. (A.20, A.23) reveals that all remaining terms invo|vidgrivatives cancel
each other. Thus, one is left with the simple relatior- 25/ or

U= %ﬁ;ff (gf - m;w@mZ) . (A.24)

As mentioned before, this simple formula is valid for the HZ@&d for the HSG at half filling,
both without an external magnetic field.

A.4 Expansions of the self-consistency equations in powers
of small ¢,

The purpose of this appendix is to derive the condition (2.41) for the critical temperature and to
justify the expansions (2.45, 2.47) which led to the specific heat curves in the spin glass phase
shown in Fig. 2.7. To this end systematic expansions of the general self-consistency equations
(2.99) in powers of small spin glass order paramejgishall be presented briefly.

In order to improve readability the short hand notation

q)m17 M /G Y 0 W (A.25)
e T o gH

shall be employed throughout this appendix.

A.4.1 Theg,-equation and critical temperatures

Using the definition (A.25) the self-consistency equation (1.69) can be written as

0\ 2
1 /G (@9) 1
Qv = "5 =! — Ry. (A.26)
52 . P2 52

In the general anisotropic case there exist individual critical points for each spatial direction.
Immediately belowl, the order parametey, is very small, while they,,, in the other two
directions could be exactly zero still or finite already. One is interested in the series expansion
of eg. (A.26) in powers of the corresponding small paramgtenly:

32
W+ R a7 + 0(qd). (A.27)

0
ﬁzqu =—Rh, 9
q,=0 Qv q,=0

dqy
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The first order term can be manipulated into

G _ — —
iRy — JUZ/ (_i (qu)ziqg + iq;oiq)lg)
z Oqy Qv

oq, ®3 P2 V)
— 2
o[ @078 (@)t (o8)
= J? /z B e e | (A.28)

In the second line the,-derivatives have been expressed in terms of derivatives with respect
to the respective static magnetic field by taking the same steps as in Sec. Iy4g.2r{d
z,-integration by parts).

Next the quantityl_)g must be considered a little closer. For the physically interesting choices
for the chemical potential, i.eu = 1. (€. (1.9)) and Im = O the weight functiori}’ obeys
the symmetry relation

W(=V) = W(V)* (A.29)

which follows from its definition (1.96). As a direct consequence of eq. (A.29) one may easily
verify the statement
o

V|quzo =0 (A.30)
which can be generalized to any odd number of identical direction indices. Using this result in

eg. (A.28) leads to

—n 0\ 2
G (GJS;(,,))
= J?2
14 / q)z

q=0 z

——

5%,

Having regard to the saddle point condition §g¥ifi the shape of eq. (1.66) the integral on the

right hand side can be identified wit#G°. The same arguments also apply to the second order
term in eq. (A.27). A tedious but straightforward calculation finally yields the expansion

0
—R,
dqy

(A.31)

qv=0

2 3
ar =22 (20, o) @ — 28°92 (30, o) a2 + O(ad). (A.32)
By comparison of the) (¢, ) terms one immediately reads off the simple condition

Ty @) (T¢) =T¢

C

(A.33)

for the equilibrium critical point in,-direction. The solution of eq. (A.32) reveals that the spin

glass order parameter emerges linearly with decreasing temperatureeémeording to
@w=a, (T -T), TISTY, (A.34)

[

where the coefficient is given by

ay = — — — : (A.35)
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A.4.2 Theg/"-equation

In terms of the abbreviation (A.25) the self-consistency equation (1.72) which includes the static
special case eq. (1.66) reads

3 1 (G, 1
qL”I@/Z o Z-@F;”. (A.36)

In the expansion of the right hand sid&" all directions have to be taken into account. Making
use of eq. (A.30) one obtains at second order

324 = F'go + (A.37)

— 2 —
0,0 m,—m —
1 4 G (¢M7N’> q)I/,I/ q)277 R 2 3
EZJM/Z P3 - P2 n + O(q )
I

4=0

Here the Gaussiaz-integration is trivial since the integrand of the second term has no
z-dependence any more.

Exploiting the saddle point condition (1.72) and assuming the isotropic special case, for
which this expansion has been applied in Sec. 2.2.3.3, eq. (A.37) simplifies to

- 1 o e
Gm = Fmly—o + 554J4qo (3GoTm — dm)l 40 7+ 0%, (A.38)

~
Cm

where the coefficients,, are given by

q)o7 O,WZ7 —m

l ks v, V
Ay = 3542 CD . (A.39)
Qv q=0

These coefficients can be calculated numerically, for instance with the help of the formulas
derived in Sec. A.2.

A.5 Computation of the critical exponent (3.43)

In Sec. 3.3.3.1 the phase diagram of the itinerant Ising spin glass (3.1) has been presented (Fig.
3.5). In this appendix the critical exponent of the phase boundary, as defined by eq. (3.43), shall
be calculated.

Starting point is an expansion of the self-consistency equation (1.99 b) in powers of the
effective potential matrix (1.90) in the paramagnetic phase (this expansion is similar to the
q,, ?éo-expansion of Sec. 2.3, but in the present context the separation of static and dynamical
components would be senseless). The Gaussian integrations oydieddls can be performed
according to eq. (2.50), and the internal summations due to the occurring matrix multiplications
compensate the linear temperature decrease of the dynamical saddle point comppnénts ~
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tedious but straightforward calculation yields the following self-consistency equation for the
dynamical susceptibility,,, = 5¢,,:

[ee]

Qmm”/Xm/

3
T x| 0 (x%)- (A.40)

Xm = Pm (1+X§1) - (1_Pme)T

m/=—o0

Using the abbreviatioX; = 1/v; (see eq. (3.22)) the coefficients read

Pp=Pwn) = -2T Y XiXim, (A.42 a)

|=—00

Qm,m’ = Q (wm,wm/) =T Z Xle+le+m’ (2Xl + Xl+m+m’)a (A42 b)

l:—OO

and the self-energy is given explicitly by

2 X Xi+m
_ —Xl T Z T B (A.43)
The set of equations (A.40 — A.43) can be solved easily in the limit of zero temperature, and
one determines the critical hopping strengtk 1.372J, which lies well between the spin-static
result (3.39) and the expected full dynamical value (3.47).
Important now is the behavior of the coefficient functiqAs42) at low temperature and
low frequencies. A closer study reveals the leading terms

Py, = Py + alwm| +bT? + ---. (A.44)

The linear frequency dependenceff is characteristic for metallic spin glasses [44]. Having
regard to eq. (A.44), the solution of the quadratic equation (A.40) for low frequencies can be
written as

Xom = Xne — V|wm| + 7, T). (A.45)

Here xpw denotes the uninteresting non-critical part ariel 7) comprises the remaining con-
tributions to eq. (A.40) including the)’-sum. The condition for criticality is

r(t,T) =0, (A.46)

and the shape of the critical line can be obtained by expandfhg’) in both the hopping
parameter and temperature around the quantum critical point. Here the hopping function (3.6)
varies linearly witht, and consequently so doe&,T"). The temperature dependence is a much
more delicate question. It turns out that the leading contribution arises from the frequency sum.
Back-substitution of the solution into eq. (A.40) yields at lowest order the essential terms

r(t,T)=a1+ agt +a3S(T) + - -, (A.47)

where they; are constants and

=T Y Vlwmlf (@n). (A.48)

m=—0o
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An aucxiliary soft cut-off functionf (w) has been introduced to guarantee convergence in explicit
calculations. Taking the difference of expression (A.47) at finite and zero temperature together
with the criterion (A.46) define

to(T) = 1(0) ~ S(T) - 5(0) (A.49)

as the condition for the phase boundary.
The remaining task is to evaluate the frequency sums. For the cut-off function one may
choose, for instance,

N

flw)= o 2 (A.50)

Sincef (w) has no poles for Inx > 0 the first sum can be transformed into a contour integral
enclosing the upper half plane by standard techniques. Further manipulation leads to

(1449) fl—iw) (=)  f(iw)
/ a f( V2 explo) -1 s exp(—ﬁw)—1>' (A.51)

The second sum &t = 0 is understood as an integration analogous to the prescription (3.26).
For the difference one finds

S(T)—5(0) = \;_—ztr/()wdw#;_l((l-l—i)f(—w)—f—(1—i)f(—z‘w))
_ _\/%C G’) 732 4 o<T5/2), (A.52)

where( (x) is the Riemanr(-function. Substitution into eq. (A.49) finally yields the result
¢ =2/31in(3.43).
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