
A Meta-Engineering Approach for

Document-Centered Knowledge Acquisition

vorgelegt von

Jochen Reutelshöfer

Würzburg, 2014

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades

der Bayerischen Julius-Maximilians-Universität Würzburg

Eingereicht am 24.02.2014
bei der Fakultät für Mathematik und Informatik

1. Gutachter: Prof. Dr. Frank Puppe

2. Gutachter: PD. Dr. Joachim Baumeister

Tag der mündlichen Prüfung: 11.07.2014

3

Abstract

Today knowledge base authoring for the engineering of intelligent systems is performed mainly
by using tools with graphical user interfaces. An alternative human-computer interaction para-
digm is the maintenance and manipulation of electronic documents, which provides several ad-
vantages with respect to the social aspects of knowledge acquisition. Until today it hardly has
found any attention as a method for knowledge engineering.

This thesis provides a comprehensive discussion of document-centered knowledge acquisition
with knowledge markup languages. There, electronic documents are edited by the knowledge
authors and the executable knowledge base entities are captured by markup language expressions
within the documents. The analysis of this approach reveals significant advantages as well as
new challenges when compared to the use of traditional GUI-based tools.

Some advantages of the approach are the low barriers for domain expert participation, the
simple integration of informal descriptions, and the possibility of incremental knowledge for-
malization. It therefore provides good conditions for building up a knowledge acquisition pro-
cess based on the mixed-initiative strategy, being a flexible combination of direct and indirect
knowledge acquisition. Further it turns out that document-centered knowledge acquisition with
knowledge markup languages provides high potential for creating customized knowledge au-
thoring environments, tailored to the needs of the current knowledge engineering project and
its participants. The thesis derives a process model to optimally exploit this customization po-
tential, evolving a project specific authoring environment by an agile process on the meta level.
This meta-engineering process continuously refines the three aspects of the document space:
The employed markup languages, the scope of the informal knowledge, and the structuring and
organization of the documents. The evolution of the first aspect, the markup languages, plays a
key role, implying the design of project specific markup languages that are easily understood by
the knowledge authors and that are suitable to capture the required formal knowledge precisely.
The goal of the meta-engineering process is to create a knowledge authoring environment, where
structure and presentation of the domain knowledge comply well to the users’ mental model of
the domain. In that way, the approach can help to ease major issues of knowledge-based system
development, such as high initial development costs and long-term maintenance problems.

In practice, the application of the meta-engineering approach for document-centered knowl-
edge acquisition poses several technical challenges that need to be coped with by appropriate
tool support. In this thesis KnowWE, an extensible document-centered knowledge acquisition
environment is presented. The system is designed to support the technical tasks implied by
the meta-engineering approach, as for instance design and implementation of new markup lan-
guages, content refactoring, and authoring support. It is used to evaluate the approach in several
real-world case-studies from different domains, such as medicine or engineering for instance.

We end the thesis by a summary and point out further interesting research questions consid-
ering the document-centered knowledge acquisition approach.

5

Acknowledgements

It has been more than six years now that I started working on a rather vague topic that evolved
towards what is written down in this thesis. I was very lucky to have many nice people around
me during that time, who supported me in various ways.

First of all I want to thank my supervisors. Frank Puppe had an open door and an open mind
for all my ideas and needs at any time. Special thanks go to Joachim Baumeister for the close
mentoring before, during, and after my time as a scientific staff member at the Department of
Applied Informatics and Artificial Intelligence. He introduced me to all aspects of practical
research in the field of knowledge engineering. His friendly but firm critics on my daily work as
well as his inspiring input were like a constant boost for me and my studies on the topic. Thanks
also go to the other doctoral students within the knowledge engineering group, Reinhard Hatko
and Martina Freiberg, as well as to Peter Klügl for the great time in our office room that we
shared for more than four years. I would also like to thank Florian Lemmerich, Marianus Ifland,
Alexander Hörnlein, and all the other members of the department for the fruitful discussions and
the great working atmosphere.

Further, I need to thank my new employer denkbares GmbH. Not only did I receive a warm
welcome in a great team and helpful comments on my work. I was given also the extraordinary
opportunity to finish my work smoothly, by providing me extra time to complete this thesis.

Last but not least I have to thank my lovely wife Stephanie. She always encouraged me during
the hard times and showed understanding during the busy times.

Without the support of all those persons, this work would not have come to this point.

7

Foreword

Knowledge Acquisition is still the bottleneck of developing knowledge-based systems. While
machine learning approaches require large amounts of well documented cases, which are of-
ten not available, the key to success is to reduce the effort as far as possible. A long term
goal of our research is therefore enabling domain experts to develop knowledge bases largely
by themselves without much help of a knowledge engineer. This approach requires adequate
tools being tailored to the task, easy to learn and to use for developing and testing knowledge
bases. The dissertation of Jochen Reutelshöfer presents a new solution based on a ”meta en-
gineering approach”, which allows continuous adaptations of the knowledge acquisition tool
used by the domain experts. The key idea is to support the following process: Domain experts
develop knowledge bases in a distributed manner editing just documents with a mixture of in-
formal and formal knowledge, e.g. semantic wikis. The semantic is defined by special markups
within the documents. The markups are parsed in the background and allow immediate testing
of the knowledge base, either interactively or automatically with test cases defined in another
markup. If a domain expert feels, that a different formalization of existing markups or new
markups would speed the development process, the meta engineering approach allows to add
new markups easily in a systematic manner. In that way, experts get tailored tools adapted to
the domain and also to their individual styles and preferences. Since the wiki approach is based
on text documents, it supports a continuous knowledge formalization process, where the domain
expert is able to copy or enter informal and partly formalized knowledge and transform it later
- or to add special knowledge transformation markups for knowledge formalization of partly
structured data. Several case studies in research and industrial knowledge engineering projects
demonstrate the usefulness of the approach. By increasing the flexibility of the tool support for
domain experts formalizing knowledge, the work of Jochen Reutelshöfer is an important contri-
bution to widen the knowledge acquisition bottleneck.

Prof. Dr. Frank Puppe

9

Contents

Abstract 5

Acknowledgements 7

Foreword 9

1 Introduction 17
1.1 Research in Knowledge Acquisition . 18

1.1.1 An Overview of Knowledge Acquisition History 19
1.1.2 Progress in Knowledge Acquisition Research 21

1.2 Knowledge in a Bottle . 23
1.2.1 The Knowledge Acquisition Bottleneck 23
1.2.2 The Competency Dilemma in Knowledge Engineering 24

1.2.2.1 Direct vs. Indirect Knowledge Acquisition 25
1.2.2.2 A Mixed-Initiative Approach by Active Participation 26

1.2.3 Knowledge Acquisition in a Cognitive Environment for Social Processes 28
1.3 About Knowledge . 31

1.3.1 Systems Levels . 31
1.3.2 The Knowledge Level . 32
1.3.3 Knowledge Acquisition in the Knowledge Level Perspective 34

1.4 Contribution of this Work . 35
1.4.1 Goals . 35

1.4.1.1 The Goals of the Social Process 36
1.4.1.2 The Knowledge Acquisition Process 36
1.4.1.3 Purpose of this Work . 37

1.4.2 Scope . 38
1.5 Structure of this Work . 39

2 Approaches for Knowledge Base Authoring 41
2.1 Form-based Authoring . 41
2.2 Graph-based Authoring . 43
2.3 Table-based Authoring . 45
2.4 Authoring by Domain Specific Languages . 46
2.5 Document-based Authoring . 48
2.6 Approach of this Work . 49

11

Contents

3 Document-Centered Knowledge Acquisition 51
3.1 DCKA in a Nutshell . 51

3.1.1 Documents for Knowledge Base Development 52
3.1.2 Knowledge Markup Languages . 54
3.1.3 Multimodal Knowledge . 55
3.1.4 The Document Space . 58

3.1.4.1 The Document Space as a Graph 58
3.1.4.2 The Document Space and Human Mental Models 58

3.1.5 The Collaborative Social Process of DCKA 62
3.1.5.1 Preconditions . 62
3.1.5.2 Mixed-Initiative KA by Incremental Formalization 64
3.1.5.3 Mutual Exchange of Expertise 65

3.1.6 Authoring of Multimodal Knowledge 68
3.1.6.1 A Human-Computer Interaction Model of Interactive Alignment 69
3.1.6.2 The Levels of Knowledge Communication 69
3.1.6.3 Problems in Markup-based Knowledge Authoring 70
3.1.6.4 Support for Knowledge Authoring 71

3.2 The Advantages and Challenges of DCKA . 73
3.2.1 Advantages . 73

3.2.1.1 Low Barriers for Basic Contributions 73
3.2.1.2 Incremental Formalization 73
3.2.1.3 Freedom of Structuring . 74
3.2.1.4 Example-based Authoring 74
3.2.1.5 Quality Management . 75

3.2.2 Challenges . 75
3.2.2.1 Authoring Assistance . 75
3.2.2.2 Content Refactoring . 76
3.2.2.3 Navigation and Search . 77
3.2.2.4 Redundancy Detection . 78
3.2.2.5 Debugging . 78

3.2.3 Requirements for a Document-Centered Authoring Environment 79
3.3 Semantic Wikis and DCKA . 80

3.3.1 Semantic Wikis . 80
3.3.2 Wikis and DCKA . 80
3.3.3 Semantic Wikis and Knowledge Engineering 81

3.4 Markup-based Knowledge Acquisition Tools 82
3.5 Different Application Scenarios for DCKA 83

3.5.1 Ontologies in RDFS/OWL . 83
3.5.1.1 Markup for RDFS: . 84
3.5.1.2 Markup for OWL . 86

3.5.2 Diagnostic Problem-Solving Knowledge with d3web 86
3.5.2.1 Markups . 88
3.5.2.2 Knowledge Organization 89

3.5.3 Knowledge for Exploratory Data Analysis 90

12

Contents

3.5.4 Training Cases for e-Learning with CaseTrain 92
3.6 CommonKADS . 93

3.6.1 A Brief Overview of CommonKADS 93
3.6.1.1 The CommonKADS Model Suite 93
3.6.1.2 The CommonKADS Process Model 94
3.6.1.3 The CommonKADS Role Model 94

3.6.2 CommonKADS and DCKA . 95
3.6.2.1 Comparison . 95
3.6.2.2 Combining DCKA and CommonKADS 95

4 A Meta-Engineering Approach for DCKA 97
4.1 An Overview of Knowledge Acquisition Tool Customization 98
4.2 Design Time and Use Time: The Systems Design Dilemma 99

4.2.1 Agile Software Development . 100
4.2.2 Meta-Design . 100

4.3 Flexibility and Coordination in DCKA . 101
4.3.1 Flexibility in Document-centered Knowledge Acquisition 101
4.3.2 The Document-Centered Knowledge Acquisition Architecture 102

4.4 The Meta-Engineering Process for DCKA . 103
4.4.1 Exploration . 104
4.4.2 Design . 105

4.4.2.1 Markup Design Principles 106
4.4.2.2 Markup Aspects . 111

4.4.3 Implementation . 114
4.4.3.1 System Level . 114
4.4.3.2 Content Level . 115

4.4.4 Knowledge Acquisition . 115
4.4.5 Conclusion . 116

4.4.5.1 Language Complexity vs. Model Complexity 117
4.4.5.2 Meta-Design: GUI-based Tools vs. DCKA 118

4.5 Extending Semantic Wikis . 118
4.5.1 Dimensions of Semantic Wiki Extensions 119
4.5.2 Decorating Semantic Wikis . 121
4.5.3 Challenges towards an Extensible Semantic Wiki 122

5 Techniques for the Implementation of DCKA 123
5.1 Comparison with Software Engineering . 124
5.2 Overview: Techniques Presented . 126
5.3 Parsing of Multimodal Knowledge . 126

5.3.1 The KDOM Data-Structure . 126
5.3.2 A Top-Down Parsing Algorithm . 127

5.3.2.1 Description . 128
5.3.2.2 Performance . 129
5.3.2.3 Example . 130

13

Contents

5.3.2.4 Discussion . 133
5.3.3 Extension 1: Incremental Top-Down Parsing 134

5.3.3.1 Description . 135
5.3.3.2 Performance . 136
5.3.3.3 Discussion . 136

5.3.4 Extension 2: Cardinality Constraints 137
5.3.4.1 Description . 137
5.3.4.2 Performance . 138
5.3.4.3 Discussion . 138

5.3.5 Extension 3: Backtracking for Top-Down Parsing 139
5.3.5.1 Description . 139
5.3.5.2 Performance . 141
5.3.5.3 Discussion . 141

5.3.6 Implementation Architecture . 141
5.3.7 Tutorial: Implementing Markups as KDOM Schemas 143

5.3.7.1 Introduction by Examples 143
5.3.7.2 Recursive KDOM Schemas 147
5.3.7.3 Limits of KDOM Schema parsing 150

5.4 Terminology Resolution and Knowledge Generation 153
5.4.1 Reference Resolution in Closed-World Authoring 154
5.4.2 An Abstract Model for Knowledge Bases 155
5.4.3 A Formal Model for Knowledge Authoring 156
5.4.4 Closed-World Authoring Reconsidered 157

5.4.4.1 Strict Object Definition . 157
5.4.4.2 Complex Object Definitions 158

5.4.5 The Knowledge Compilation Task Summarized 158
5.4.6 The Resource Delta . 159
5.4.7 The Genericity of the Incremental Knowledge Base Update Task 159
5.4.8 An Incremental Knowledge Base Update Algorithm 161

5.4.8.1 Description . 161
5.4.8.2 Termination . 161
5.4.8.3 Efficiency . 163
5.4.8.4 Proof of correctness . 163

5.4.9 Discussion . 165
5.5 A Meta-Model for the Declarative Implementation of Markups 166

5.5.1 The Levels of Multimodal Knowledge Compilation Revisited 166
5.5.2 The Knowledge Markup Description Language 169
5.5.3 Semantics . 169
5.5.4 Example . 171
5.5.5 Meta-Level Authoring Support . 173
5.5.6 Discussion . 175

14

Contents

6 An Authoring Environment for DCKA 177
6.1 KnowWE: An Overview . 177

6.1.1 History . 177
6.1.2 Architecture . 177

6.2 Knowledge Acquisition with KnowWE . 178
6.2.1 Manual Knowledge Testing and Use 178
6.2.2 Automated Testing by Continuous Integration 181
6.2.3 Debugging . 183

6.2.3.1 The Rule Debugger . 183
6.2.3.2 The Rule Markup Rendering Component 184

6.2.4 Refactoring . 185
6.2.5 Authoring Support . 186

6.2.5.1 Instant Editing . 186
6.2.5.2 Table Editing . 186
6.2.5.3 Code Completion . 187
6.2.5.4 Drag & Drop . 187
6.2.5.5 Term Overview . 189

7 Case Studies 191
7.1 ESAT: Assisting Technologies for Handicapped Persons 191

7.1.1 Introduction . 191
7.1.2 Application Scenario . 191
7.1.3 Knowledge Base Structure . 192
7.1.4 The Meta-Engineering Process . 192

7.1.4.1 Knowledge Acquisition Architecture 192
7.1.4.2 Markups . 193

7.1.5 Discussion . 198
7.1.6 System Use . 198

7.2 WISSASS: Medical Knowledge about Cataract Surgery 200
7.2.1 Introduction . 200
7.2.2 Application Scenario . 200
7.2.3 Knowledge Base Structure . 201
7.2.4 Knowledge Acquisition Process . 201

7.2.4.1 Seeding of an Initial Knowledge Base 201
7.2.4.2 The Meta-Engineering Process 203
7.2.4.3 Outlook . 207

7.2.5 System Use . 208
7.3 Managing Chemical Safety with KnowSEC 209

7.3.1 Introduction . 209
7.3.2 Application Scenario . 209
7.3.3 Knowledge Base Structure . 209
7.3.4 The Meta-Engineering Process . 210
7.3.5 System Use . 212

15

Contents

7.4 Maintenance Knowledge for Special Purpose Machines 213
7.4.1 Introduction . 213
7.4.2 Application Scenario . 213
7.4.3 Knowledge Base Structure . 213
7.4.4 Knowledge Acquisition . 213
7.4.5 System Use . 215

7.5 HermesWiki: E-Learning in Ancient Greek History 216
7.5.1 Introduction . 216
7.5.2 Knowledge Acquisition Architecture 216
7.5.3 The Meta-Engineering Process . 218
7.5.4 System Use . 219

7.5.4.1 Generated Geographic CV 219
7.5.4.2 Automated Quiz Sessions 219

8 Conclusion 221
8.1 Summary . 221

8.1.1 Introduction . 221
8.1.2 Approaches for Knowledge Base Authoring 222
8.1.3 Document-Centered Knowledge Acquisition 222
8.1.4 A Meta-Engineering Approach for DCKA 223
8.1.5 Techniques for the Implementation of DCKA 224
8.1.6 KnowWE - An Authoring Environment for DCKA 224
8.1.7 Case Studies . 225

8.2 Outlook . 225
8.2.1 A Catalogue of Markup Design Guidelines 225
8.2.2 Combination with Heavy-weight Knowledge Acquisition Approaches . 226
8.2.3 Formal Definition of the KAA . 226
8.2.4 User Interface and Deployment . 227
8.2.5 Learning Material . 227

8.3 Discussion . 228

Abbreviations 229

Bibliography 231

16

1 Introduction

The idea of human built more or less intelligent behaving beings has been fascinating people for
ages and is subject of myths and tales of all cultures. For example, ancient Greek mythology
tells that Hephaestus was creating bronze robots to help him in his workshop or to defend the
island. In this kind of ancient myths the life spirit of the artificial creatures was rooted in god
powers or magic. It was only a few centuries ago, that stories began describing the creation
of autonomous artificial beings also as a result of scientific practice. As the first real scientific
attempts in modern times, related to artificial intelligence, one can consider the development
of formal logics and conceptualizations by mathematicians and philosophers beginning in the
late 19th century, as for instance Gottlob Frege’s Begriffsschrift [Fre79]. In those ideas one of
the most important aspects of artificial intelligence is rooted, which we today call knowledge
representation. The actual term artificial intelligence was not coined until the time when the
first digital computers had come up, providing concrete means for intelligent systems to cal-
culate decisions. After artificial intelligence was established as a research discipline in 19561,
its pathway was characterized by both, magnificent achievements and severe setbacks. Also in
the sub-domain of knowledge engineering early successes have been celebrated. Hayes-Roth
predicted a high impact of this technology in the early eighties.

”Over time, the knowledge engineering field will have an impact on all areas of
human activity where knowledge provides the power for solving important prob-
lems. We can foresee two beneficial effects. The first and most obvious will be the
development of knowledge systems that replicate and autonomously apply human
expertise. For these systems, knowledge engineering will provide the technology for
converting human knowledge into industrial power. The second benefit may be less
obvious. As an inevitable side effect, knowledge engineering will catalyze a global
effort to collect, codify, exchange and exploit applicable forms of human knowledge.
In this way, knowledge engineering will accelerate the development, clarification,
and expansion of human knowledge.”

Hayes-Roth et al., 1983, [HRWL83]

Today, about 30 years later, knowledge engineering indeed is applied in industrial context
to create intelligent systems, corresponding to the first effect predicted by Hayes-Roth. Con-
sidering the second category, collection and exchange of human knowledge has been brought
to a new level due to emergence of the world wide web. However, codification and exploita-
tion of applicable knowledge at global scope, which is also the aim of the so-called semantic
web [BLHL01], is in a state of current research. Hence, it is probably exaggerated to state

1Darthmouth Conference, summer 1956 at Darthmouth College

17

1 Introduction

that knowledge engineering by today has an impact on all areas of human activity in a sense
as intended by Hayes-Roth. Indeed, he was wise enough not to bind this forecast to a con-
crete point in time, when this vision will have become true. Consciously or unconsciously, he
avoided that fault famously made by Allen Newell in 1957 saying: ”Within ten years a digital
computer will be the world’s chess champion.” The first defeat of a world chess champion by
a computer was in 1997, achieved by Deep Blue [CJhH02]. It took until about 2006 until it
was commonly agreed, that the computer chess programs clearly out-range even the strongest
human players. Hence, since very recent years we can say that Newells statement has been ful-
filled, while having taken more than 40 years instead of ten. This and other examples from the
history of artificial intelligence teach us that the way from initial (very) promising experiments
and results to the actual break-through in practice of an AI technology often holds much more
difficulties than envisioned even by the most experienced researchers of the field. This progress
in most cases is characterized by minor gradual improvements over time rather than particu-
lar breakthrough events. That pattern of progress also applies to many notable achievements
in AI of recent years, such as the development of autonomously driving cars in the DARPA
autonomous vehicle challenge [TMD+06] or the Jeopardy solver Watson [FBCC+10] by IBM.
These kinds of achievements indicate that it is very often not the one key idea or invention
leading to success, but continuous improvements according to experiences made in practical ap-
plication. Considering the discipline of knowledge-based system development, which focuses
on the creation of intelligent systems for particular problem domains, it appears that this pattern
also holds. Despite all the progress made in that field within the last decades, the challenge of
knowledge acquisition, which aims to accumulate the knowledge of the problem domain in a
computer-interpretable form, is not yet entirely solved. The data-driven approaches for populat-
ing knowledge bases automatically, using machine learning and/or natural language processing
technologies, made significant progress during the last years. However the natural language pro-
cessing problem is still hard and due to a lack of quality or quantity of the required data, many
knowledge acquisition endeavours still need to be addressed by classical knowledge engineering
techniques.

The pathway, that still lies in front of us before reaching the state envisioned by Hayes-Roth,
comprises several challenges, such as the reduction of development costs, the cognitive and so-
cial demands of development, the risks, and the long term maintenance problem. More progress
on these aspects is required to make knowledge-based systems the first choice solution of all
reoccurring knowledge intense tasks of the modern world. Proceeding a few more steps on this
long way is the intention of this work. Before going into detail, a retrospective summary of the
part of the way, that already has been accomplished, is presented in the following section.

1.1 Research in Knowledge Acquisition

In this section, a short overview of the last decades of knowledge acquisition research, including
some aspects of the related domain of software engineering, is provided.

18

1.1 Research in Knowledge Acquisition

1.1.1 An Overview of Knowledge Acquisition History

The early days of artificial intelligence in the sixties and early seventies of the last century
were strongly focused on the development of general problem-solving algorithms. After first
advances on exemplary problems, the application in real-world problems uncovered the fact
that the encoding of the necessary domain knowledge forms an essential task itself. While in-
ference algorithms in general can be reused in various applications, the process of knowledge
formalization showed to be necessary and tedious for each other subject domain anew. This
issue, showing to be demanding and strongly recurring, evolved into a problem of critical im-
portance. It cannot be considered by solely employing methods of computation and the rules
of logics, but inherently involve human factors, as the most important sources of knowledge are
humans. After some successful expert systems applications had come up in the seventies and
early eighties, most prominently MYCIN [BS84], showing the potential of this technology to be
promising, high expectations arised. These early expert systems, called first generation expert
systems, were created in an ad-hoc manner. The way those systems were created even had been
formulated to be a kind of art [LAY87]. While a provisional collection of methods were avail-
able, the choice and application of those was more or less up to the intuition of the developer,
while being strongly determinant for the success. Hence, the research goal of the community
stated then was to develop a well-founded engineering discipline providing clear process mod-
els and decision guidelines to rule out risks and make the development costs predictable. In this
context the term knowledge engineering was coined. One turned away from the prototyping ap-
proaches [BKMZ84, BKKZ92] of the first generation expert systems that had been predominant
for the development of knowledge systems until that time. Progress was anticipated by the in-
troduction of development methodologies with well-structured processes, guiding the activities
including for instance verbose project planning and quality management efforts.

In the eighties knowledge acquisition itself developed into a grown-up research discipline
within artificial intelligence. A large research community has formed, organizing workshops
and conferences on the topic regularly all over the world, most noticeable the KAW2 workshop/-
conference series, which started in Banff, Alberta 1986. Already then, the metaphorical term
of the knowledge acquisition bottleneck had been coined by Feigenbaum [Fei77] and others. It
postulates that the difficult and tedious acquisition of the required knowledge basically prevents
the technology of intelligent systems to be extensively employed in a wide range of knowledge
intensive domains (e.g, industrial manufacturing, medical treatment).

Today, after about 35 years of research about widening the knowledge acquisition bottleneck
many valuable insights have been gained. Intelligent systems have been built and applied suc-
cessfully in numerous practical applications [HBM+04, MNTMQ96]. Nevertheless, the decades
of ongoing research efforts also indicate the wickedness of the problem, as the costs of the re-
quired knowledge acquisition in most cases stayed considerable high with project risks still
being prevalent. This fact questions the economic profitability of the application of an intelli-
gent system for many potential use cases. Thus, while general feasibility of intelligent system
solutions has been proven on numerous case studies in various domains, one has to admit that
the knowledge acquisition bottleneck still has not been solved in principle, when considering
the economic point of view. In the meantime, methods for automated reasoning however have

2http://www.k-cap.org/k-cap/about-k-cap.html

19

1 Introduction

strongly evolved, becoming standard techniques with the computational power still having in-
creased by orders of magnitude. Considering this development, the relevance of a knowledge
acquisition bottleneck may be considered more obvious than ever.

For the establishment of a full-fledged engineering discipline, researchers were able to find
inspiration by the related discipline of general software engineering. There, the situation was
similar in the time of the early attempts to create software artefacts. Already in the sixties com-
puter scientists have become aware that software development in many cases needed much more
resources (budget and time) than expected and had much lower quality than intended. This
phenomenon also is known under the term software crisis enduring for multiple decades. The
term software engineering has been coined in context of the efforts to face the software crisis by
introducing improved process models and quality management mechanisms. Considering these
parallels, knowledge acquisition researchers could examine and adapt the experiences made in
software engineering on introduction of structured development processes. A whole family of
software development process models arose from the idea of the waterfall model. It was first
mentioned by the United States Navy Mathematical Computing Advisory Panel [PoNR56] in
1956, being republished by Herbert Benington [Ben83] in 1983, and proposes a process model
running through several different phases. Each of these phases produces a specification of the
entire project captured by a set of specification documents, which have to comply to well-defined
standards. These specifications start from a very abstract level in the first phase and stepwise
leads to concise and formal specifications, with the last specification being transformed to pro-
gramming code in a (more or less) straight forward way. Important knowledge engineering
methodologies developed in the nineties, e.g. KADS [SWB93] and the refined version Com-
monKADS [SAA+01], have some similarities when compared to the predominant software en-
gineering methodologies of that time. CommonKADS aims to formalize the knowledge as dif-
ferent kinds of models in distinct subsequent phases, each delivering a complete specification at
some level of abstraction resulting at a computer-interpretable knowledge base after the imple-
mentation phase, conducted last. These ’heavy-weight’ methodologies, driving the entire project
specification through multiple phases, have been discussed controversially, especially in the soft-
ware engineering community [Hig01], for many years. One of the major pro arguments is, that
problems discovered at an early phase are much easier to solve than when being discovered at
a late phase, motivating the careful production of comprehensive specification documents and
their validation at any phase. Important counter arguments are the lack of flexibility to change
significant parts at a late phase. This often becomes necessary due to either changes in the re-
quirements specification or design errors that have still not been discovered by then. One of the
earliest proclamations of this problem is given by McCracken et al. in 1982 [MJ82]:

”System requirements cannot ever be stated fully in advance, not even in principle,
because the user doesn’t know them in advance—not even in principle. To assert
otherwise is to ignore the fact that the development process itself changes the user’s
perceptions of what is possible, increases his or her insights into the applications
environment, and indeed often changes that environment itself. We suggest an anal-
ogy with the Heisenberg Uncertainty Principle: any system development activity
inevitable changes the environment out of which the need for the system arose.”

McCracken and Jackson [MJ82]

20

1.1 Research in Knowledge Acquisition

These lines basically claim that it is rather impossible that a deep requirements specification
at project beginning can lead to a product that then satisfies the customer as he is significantly
influenced by the development process.

This problem is addressed by another family of software engineering methodologies, the so-
called agile methodologies which emerged at the beginning of the new millennium mainly out
of open source software development practices. The first representative of this family of ’light-
weight’ approaches was extreme programming proposed by Kent Beck [Bec00], being followed
by others as for example Scrum [SB01], which is very popular today also in commercial soft-
ware development. The general idea is to hunt for quick wins in a feature-by-feature approach,
being suitable especially for small and medium sized projects. Therefore, the entire project
specification is usually formulated as a set of small features. These features are put into a
priority order and then implemented accordingly. The sustainability of the implemented fea-
tures is asserted by ongoing extensive automated testing. These process models are strongly
inspired by the way that early open source software was developed in the late nineties, showing
a workflow completely contrary when compared to the waterfall model but still in many cases
produced high quality software. As the idea of agile development became more and more suc-
cessful and popular in software development, it is no surprise that it was adopted by knowledge
engineering researchers. In the early years of the millennium several methodologies for agile de-
velopment of knowledge-based systems have been developed, e.g., by Baumeister [Bau04] and
Knublauch [Knu02]. While not providing an entire new methodology, the approach presented
in this work is strongly related to the principles of agile knowledge engineering.

1.1.2 Progress in Knowledge Acquisition Research

”Most computer scientists, however, mistakenly view the engineering of intelligent
systems as a solved problem.”

Mark Musen [Mus13]

In this section we provide a brief discussion of the progresses made in knowledge acquisition
research during the past 20 years. Shatbolt stated the most pressing issues in 1991 as follows:

1. Knowledge acquisition is difficult.

2. We have only the beginnings of a KA methodology.

3. There is little reusability of our knowledge in expert systems.

4. Few integrated knowledge acquisition environments exist.

5. There is little synergy between acquisition techniques.

6. It is difficult to translate between the results of different KA tools.

7. It is hard to integrate the results of different acquisition sessions.

8. It is difficult to verify and validate the results of acquisition.

9. The acquisition techniques are sometimes inappropriately applied.

10. Experts and their cognitive processes are poorly understood.

Shatbolt [Sha91]

21

1 Introduction

Two decades have passed since these propositions have been stated. They provide a suitable
basis to discuss the progress within the field of knowledge acquisition. Shatbold described the
KADS methodology [SWB93] as the most comprehensive methodology existing. It has been
consequently been evolved and completed forming the CommonKADS methodology available
as comprehensive handbook [SAA+01]. Another methodology focused on engineering knowl-
edge is MOKA [SC01]. More recently, agile methodologies have emerged [Bau04, Knu02], also
focusing the distributed development [VPST05]. Therefore considering the second proposition,
substantial progress has been made. The question of the a priori decision for an agile or a tradi-
tional methodology however has not been discussed as much as in software engineering [Hig01].
The advances in software engineering practices also had influences on the challenges of knowl-
edge acquisition. The invention of better tools (e.g., IDEs) and methods (e.g., object-oriented
programming) made the creation of knowledge acquisition tools less costly and risky. Technolo-
gies like XML3 (including for example XSLT4) made translation between different KA tools (6)
easier, at least at a syntactical level. As for all computer science areas, the advent of the web had
a major impact also on knowledge acquisition research and practice. Component-based software
engineering, using and sharing open-source libraries on the web, facilitated tool development in
particular in the academic context. With collaborative and distributed knowledge acquisition
over the web [SG96] flexibility significantly improved. The research efforts in the context of
the semantic web [BLHL01], envisioning an all-encompassing knowledge system on the web,
while not yet showing satisfying success, brought many important achievements to knowledge
acquisition. The standardization of particular knowledge representation languages considering
syntax and semantics might be considered as one of the greatest achievements of the semantic
web research efforts (c.f., RDF5, RDFS6 and OWL7). Tools and libraries for the management
of data in these standardized knowledge representation languages followed, forming a notable
progress on knowledge reusability (3), synergy (5), translation between tools (6) and knowledge
integration (7). While this is surely an achievement, one has to admit that these languages are
only suitable for a narrow range of knowledge-based tasks. Hence, the standardization of further
knowledge representation languages is strongly desired.

The verification and validation of knowledge bases (8) was subject of intense research since
that time [VC99, BS06, NL05, Bau11, BR11]. For most common knowledge representation
languages verification methods can be looked up from the literature and applied in a straight
forward way. That might even be considered as the aspect where the most clear advances have
been made.

The problem of understanding the cognitive processes of the experts (10) still have only re-
ceived comparatively little attention [FMPS10, ESA05, WSG92].

Proposition (1) is obviously an issue that cannot be changed. Possibly the intention of the
author was to propose that this fact needs to be accepted. That even more indicates the necessity
to work on the other issues to empower people to cope with that difficult task.

Today, knowledge-based systems are applied successfully in many domains. But despite all

3http://www.w3.org/XML/
4http://www.w3.org/TR/xslt
5http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
6http://www.w3.org/TR/rdf-schema/
7http://www.w3.org/TR/owl2-overview/

22

1.2 Knowledge in a Bottle

the progress made, it has not yet become a real standard technology. Beside all the success sto-
ries, that can be found in literature, many other projects fell victim to the knowledge acquisition
bottleneck or the maintenance trap (while hardly being published in that case). Therefore, the
technology is often still perceived as immature and risky [SS01]. The methods being invented
and experiences being made within the last decades in knowledge acquisition research are avail-
able in papers and books. Nevertheless, the knowledge even more needs to become integral
part of the common education of computer scientists and IT business engineers. Another rea-
son for many potential use cases for knowledge-based systems not being addressed is, that they
are not recognized as such. The border between knowledge-intense and traditional information
processing tasks is fluent. Therefore, the distinction and corresponding decision making is not
easy and requires notable experiences with knowledge-intense information systems. Further-
more, socio-technical problems often not being clearly obvious in (exemplary) research projects
but emerging in large real-world applications hinder a more wide-spread employment. This is
where today’s research on knowledge-based systems needs to set in.

1.2 Knowledge in a Bottle

”A little semantics goes a long way.”

James Hendler

1.2.1 The Knowledge Acquisition Bottleneck

For about twenty-five years, researchers of knowledge acquisition have been confronted the
knowledge acquisition bottleneck. No matter what methods or knowledge sources are employed,
the knowledge acquisition bottleneck always seems to emerge at some point on the pathway
between the knowledge sources and the intelligent system. It leads to the following general
problems for the wide-spread practical application of knowledge-based system solutions:

• High General Development Costs: In practice, a cost-benefit analysis is the basis for
deciding for or against a knowledge-based system solution for a given problem. Today,
the development costs are still quite high, leading to a negative result of the cost-benefit
analysis in many potential application scenarios. Therefore, reduction of the average de-
velopment costs will increase wide-spread application of knowledge-based systems tech-
nologies.

• Long Term Maintenance Problems: Keeping a productive knowledge-based system
alive demands maintenance activities as usually the requirements and the domain change
over time. As the need for these maintenance updates typically occurs after longer time pe-
riods, the developers have to familiarize with the knowledge base again. Even worse, often
the initial developers and experts are not available any more. For this reason, successfully
introduced systems can fail after years of productive use due to strong dependency on
particular persons.

23

1 Introduction

• Risks and Uncertainty: Accurate estimation of development costs a priori is hard. This
problem has also been experienced in software engineering. Estimates always have uncer-
tainties causing unexpected deviations of the development costs. In rare cases unforeseen
problems even cause the project to be rather unfeasible.

Automated knowledge acquisition, for instance from books or other documents, can be con-
sidered the holy grail of knowledge acquisition. Much research efforts have been put into natural
language processing within the last years (e.g., [MS99, Mit03]). However, automated extraction
of expressive semantic relations from natural language text is still hard and not (always) suit-
able for knowledge acquisition for knowledge-based systems development. Therefore, manual
acquisition and modeling of knowledge is still common practice in many application scenarios.
In that case, persons being experienced in the application domain, usually called domain spe-
cialists or experts, play a fundamental role as knowledge source. In practice, the development of
knowledge-based systems usually requires collaboration of a heterogeneous group, involving (at
least) domain specialists and knowledge engineers. It is commonly agreed that the knowledge
acquisition bottleneck more often is rooted in the implied social process than in the technol-
ogy [DSW+00]. Therefore, in this work, we also focus on the social aspects and cognitive
challenges of this kind of collaboration in a knowledge intensive domain.

1.2.2 The Competency Dilemma in Knowledge Engineering

The development of knowledge systems by the help of domain specialists inevitably requires
collaboration of domain specialists and the knowledge-based system developers, i.e., knowledge
engineers. This usually brings together two groups of persons with very different backgrounds.
While the experts are experienced with the application domain, the knowledge engineers are
computer scientists, being skilled at the methods of knowledge-based system development. The
two areas of competency can be considered as orthogonal dimensions, as depicted in Figure 1.1.
The competency dilemma of knowledge engineering emerges from the ignorance of both groups
in the other dimension respectively, typically being prevalent at the beginning of a knowledge
engineering project. It is one major root of the knowledge engineering bottleneck.

The first barrier caused by this dilemma is the problem of miscommunication [Mus89a]. This
problem, however, can be overcome by some efforts, for example by the formation of a system-
atic domain [WF86]. A systematic domain is an explicitely defined terminology of unequivocal,
agreed-on terms of the domain. The establishment of this kind of shared vocabulary however,
can be considered as a first knowledge acquisition step itself.

The next barrier being raised by the competency dilemma emerges at the task of knowledge
modeling, i.e., the knowledge being formalized in a structure, which is suitable to support the
process of automated inference. While knowledge engineers are very competent at this task,
they lack the necessary domain knowledge to be modeled. While the domain specialists have
the domain competency, they however are usually rather clueless in knowledge modeling—
naturally. The question, who should how perform the knowledge modeling task, was and is the
research question, which needs to be solved to ease the knowledge acquisition bottleneck for
classical knowledge system development. Many different approaches addressing that question

24

1.2 Knowledge in a Bottle

Domain
Expertise

Knowledge
Engineering

Expertise

Specialist

Knowledge
Engineer

Figure 1.1: The two orthogonal dimensions of expertise in knowledge engineering.

have been proposed and explored until today. They can be categorized in two major strategies,
direct knowledge acquisition and indirect knowledge acquisition.

1.2.2.1 Direct vs. Indirect Knowledge Acquisition

The two strategies that are distinguished in knowledge engineering—direct knowledge acquisi-
tion and indirect knowledge acquisition—are discussed in detail in the following sections.

Indirect Knowledge Acquisition In indirect knowledge acquisition (indirect KA), knowledge
engineers obtain the domain knowledge from the domain specialists and then implement it in a
computer-interpretable form into the knowledge base [SAA+01, BS84]. In that way, the domain
specialists are not too strongly involved in the ’unfamiliar’ knowledge modeling task. This
method, in general leading to high quality knowledge modeling, however implies for every piece
of knowledge a two-step process. That is, for each modification or extension at least two persons
have to be available, raising considerable high development costs and organizational problems.
This also imposes large challenges for the long term maintenance of the system. While this
method is on the one hand comfortable for the domain specialists, not being involved at the
technical level, this also can cause problems at a later stage of the system life cycle, as they are
not familiar with the knowledge base structure and its possibilities for adaptation or extension. In
indirect knowledge acquisition the competency dilemma basically is bridged by the knowledge
engineers more or less becoming (low level) experts of the domain, as they have to collect and
transform all the required domain knowledge.

Direct Knowledge Acquisition The idea of direct knowledge acquisition (direct KA) aims for
active involvement of domain specialists within the knowledge formalization task [KBD+89,

25

1 Introduction

Mul90, Bau04, Mus89a, PG92]. In direct KA the domain experts are creating (at least signifi-
cant parts of) the knowledge base autonomously. This method proposes high flexibility and cost
efficiency. In particular, a domain specialist in principle is able to extend a knowledge base (in
the ideal case) on his own. This is especially valuable at a later stage of the product life cycle,
when requirements for minor adaptations emerge. However, it demands from the domain spe-
cialists to perform the task of knowledge formalization, which usually turns out to be difficult
and unfamiliar for them. Therefore, in direct knowledge acquisition the design of appropriate
knowledge acquisition tools is important [Mus89a], to ease this task for the domain experts.
In contrast to the indirect knowledge acquisition approach, here the competency dilemma is
bridged to some extent by domain specialists acquiring knowledge engineering skills.

Both methods have been discussed and explored extensively and showing significant strengths
and weaknesses respectively. In the following, possibilities for mixing up the two strategies are
discussed.

1.2.2.2 A Mixed-Initiative Approach by Active Participation

We claim that one conclusion that can be drawn from the experiences in direct and indirect
knowledge acquisition is, that in most cases neither the one nor the other way in its pure form is
optimal. Direct and indirect knowledge acquisition can be considered as the extremes of a scale,
providing a large space for intermediate solutions. One cannot expect that after the decades of
research and experiences in knowledge acquisition, the knowledge acquisition bottleneck can
be resolved abruptly. However, an intermediate solution, also taking advantage of the socio-
technical conditions given today, can provide support for the social processes of knowledge
engineering to significantly ease the knowledge acquisition bottleneck.

Today’s Socio-Technical Conditions The possibilities for flexible collaborative computer-
supported work are better than ever before as domain specialists usually are acquainted to the
use of computers and the internet. While about 15 years ago, the web was used by a narrow
group of technology affine people, the situation significantly has changed. Also people without
professional technical background are used to work with digital devices, ubiquitous interconnec-
tivity on the web provided. Collaboration of distributed groups over the web, using synchronous
or asynchronous communication, is a common practice. The emergence of the Web 2.0 tech-
nologies probably had a stronger influence on our everyday life than any other technology within
the last 15 years. The use of computers and the web for social interaction concerns all aspects
of our lives, leading to a notable prevalence of basic expertise in human-computer interaction.
This provides large potential for direct participation of a wide range of persons in a collaborative
workflow of knowledge acquisition. It also facilitates long term maintenance of systems, as a
person can easily and quickly connect and login, also if his working environment has changed
over time. Building up on existing technologies, special conditions, that are suitable for support-
ing a collaborative knowledge acquisition workflow, can be established easily.

Active Participation A discussion of active participation of domain specialists in knowledge
engineering is given by Schilstra and Spronck [SS01]. Active participation is related to di-

26

1.2 Knowledge in a Bottle

rect knowledge acquisition. While direct knowledge acquisition however focuses on the actual
knowledge formalization task, being carried out by experts autonomously, the focus of active
participation is differently. The primary goal there is to involve the experts into a collabora-
tive social process of development. Beside of the formalization of knowledge, this comprises
a wide range of different activities. While autonomous knowledge formalization should be en-
abled technically, this is not required nor intended initially. For being empowered for active
participation a person needs to be enabled to:

• Comfortably access, browse, and test the knowledge base autonomously

• Trace the changes being made by others

• Comment on the content in a simple way

• Communicate to other participants

• Modify the content (’enabled’ in a technical sense)

Typically, the development of a knowledge base comprises various kinds of tasks, ranging from
simple to highly complex ones. However, telling another participant when having recognized a
(potential) flaw is considered as a (minimal demanding) act of active participation, which nev-
ertheless can be very valuable. Beside solely notifying, inquiring more experienced participants
about the detected issue to extend the own competency in a social process of learning is possible.
Hence, the lower the socio-technical barriers for the prerequisites discussed above are set, the
easier it is to empower more people for active participation. Informally spoken, the strategy of
active participation is to ’bring on board’ as many of the project participants as possible, in par-
ticular also those with non-knowledge engineering backgrounds. This is very much in contrast
to indirect knowledge acquisition, where the experts play a rather passive role, usually being in-
terviewed by the knowledge engineers [WR95]. Unlike in direct knowledge acquisition, active
participation does not determine who performs the knowledge formalization tasks, but rather
describes a socio-technical state of empowerment. It does however not presume knowledge
formalization skills, nor any kind of predefined task assignments.

Mixed-Initiative Knowledge Acquisition We introduce the concept of mixed-initiative knowl-
edge acquisition (MIKA), being an intermediate solution between direct and indirect knowledge
acquisition. There, the formalization process is driven in a collaborative incremental process
involving alternating initiative of various participants with different expertise. The development
of a knowledge base is not a monotonic process where knowledge base entities are created one
by one until the knowledge base is completed. In addition to the task of creating new knowledge
base content, this process implies a wide range of other tasks, which are essential for a successful
result. This includes for example documentation, refactoring, testing/creation of test cases, and
proof reading. These tasks again require different kinds of expertise considering both dimen-
sions of competency. Some tasks like documentation or proof reading require less knowledge
engineering expertise than others, e.g. refactoring. Hence, the assignment of these different
tasks to the participants needs to consider these demands in expertise. The MIKA approach
proposes that:

27

1 Introduction

• Multiple participants with different expertise are empowered for active participation on
the knowledge acquisition process.

• Any task is performed by a participant with suitable expertise considering the task.

• If no single participant is capable of the task, then a suitable collaboration of multiple
participants is initiated dynamically.

Hence, mixed initiative knowledge acquisition not only proposes dynamic assignment of dif-
ferent tasks to participants with different backgrounds. Ideally, it also should support the de-
composition of a task into subtasks, being addressed by different participants alternately in co-
operation.

1.2.3 Knowledge Acquisition in a Cognitive Environment for Social Processes

Learning plays fundamental role in knowledge acquisition [SS01], as a means for bridging the
competency dilemma. As we discussed in Section 1.2.2.1, no matter whether direct or indirect
knowledge acquisition is approached, competency development in the one or other dimension
is necessary. The compromise approach of mixed-initiative knowledge acquisition does not
change that issue in general. However, it can provide some flexibility to resolve the competency
dilemma, exploiting existing capabilities of the participants as good as possible. Nevertheless,
the conditions for learning in a socio-technical context are essentially important for successful
knowledge acquisition. Provide the conditions to allow the exchange of expertise as shown in
Figure 1.2 has to be considered as one important goal itself. To understand the required processes
of learning, understanding, and communicating, Gaines proposes to refer to the corresponding
expertise in the domain of cognitive psychology [WSG92]. This process is conducted within
a cognitive environment as a platform. Gaines claims that the understanding of this cognitive
environment will provide a basis for the development of knowledge engineering tools and meth-
ods that support the cognitive processes. One also needs to incorporate in the project setting that
even if a suitable cognitive environment is given, a process of learning requires a considerable
amount of time and resources. Hence, a knowledge engineering project cannot barely be consid-
ered as the creation of a digital artifact, but to a significant extent is a social process. Forming the
conditions for this social process is an important aspect of the knowledge acquisition approach
discussed in the following.

In the previous sections, mixed-initiative knowledge acquisition and many of its facets have
been introduced. Now, we present a coherent view on all these facets and discuss their causal
relations in context. It serves as a guideline to derive a concrete approach supporting mixed-
initiative knowledge acquisition. Figure 1.3 outlines the structure of the mixed-initiative knowl-
edge acquisition approach. Each level is based on the underlying one in a sense as being sup-
ported or enabled by it.

As this flexible approach of mixed-initiative knowledge acquisition allows every participant
to contribute according to his expertise, the overhead of communication and learning is limited.
Therefore, it has high potential for reducing overall development costs. Domain specialists are
empowered by active participation and trained by the social process and therefore able to some
extent to contribute directly to the knowledge base, which simplifies long term maintenance.

28

1.2 Knowledge in a Bottle

Domain
Expertise

Knowledge
Engineering

Expertise

Exchange
of Expertise

Specialist

Knowledge
Engineer

Figure 1.2: Intended exchange of expertise along the two dimensions of expertise.

The mixed-initiative knowledge acquisition approach heavily relies on specific socio-technical
conditions, which are essential for the effective cooperation of knowledge engineers and domain
specialists. For the task of knowledge formalization a knowledge acquisition tool, custom-
tailored to the needs of the domain experts, should be used. Closely related to the tool is the
structure of the knowledge base content. A content structure, which is intuitively understand-
able by the domain specialists. i.e., allows for simple alignment to their mental models, needs to
be established. A well tailored tool and an intuitive content structure strongly eases the knowl-
edge formalization task for the domain specialists [Mus89a]. On the one hand, the design and
creation of such kind of tools needs to be performed by the knowledge engineers, requiring
deep understanding of the domain context. On the other hand, the domain specialists need to
obtain basic knowledge engineering skills to contribute actively to the knowledge acquisition
process, even with a custom-tailored tool. At his point, the competency dilemma discussed in
Section 1.2.2 needs to be addressed. To make the domain specialists familiar with basic knowl-
edge engineering aspects on the one hand and on the other to provide the knowledge engineers
with the required information about the domain, a social process of learning is conducted. It aims
to exchange competencies along the dimensions domain expertise and knowledge engineering
skills.

This social process relies on multiple preconditions. First of all, a cognitive environment for
learning is required [WSG92], providing an interaction space for communication, studying, and
resource sharing. Further, it is important to lower the technical barriers as far as possible for the
participation of the domain specialists in the social process and the overall knowledge acquisi-
tion process. The knowledge engineers need to familiarize themselves with the domain, which
usually happens in cooperate sessions with the experts. For that purpose, additional domain
descriptions, e.g., illustrating documents, should be provided as lookup resources.

The stack depicted in Figure 1.3 shows the causal dependencies from bottom up, not rep-

29

1 Introduction

resenting any temporal dimension. However, two levels are representing processes, the social
process and the knowledge acquisition process. The knowledge acquisition process relies on
the socio-technical conditions, which can be considered as the output of the social process. The
better the socio-technical conditions become, the more efficient the knowledge acquisition pro-
cess will be. Hence, the two processes are running in parallel, the outcome of the social process
improving the knowledge acquisition. Naturally, at the beginning of a project the focus is on
the social process, while shifting to the knowledge acquisition process over time. The social
process can be considered as a process of continuous improvement of the knowledge acquisition
process, never to be stopped entirely.

KE Trained
Domain

Specialists

Informed
Knowledge
Engineers

Reduced
Development

Costs

Improved Long
Term

Maintenance
General Goals

Mixed-Initiative
Knowledge Acquisition

KA Process

Socio-Technical
Conditions

Mutual Exchange of Expertise along
Knowledge Engineering & Domain Knowledge Dimensions Social Process

Cognitive Environment
for Learning

Low Initial Barriers for Active
ParticipationDomain Descriptions Preconditions

Comprehensible
Content Structure

Customized
KA Tool

Figure 1.3: The structure of the mixed-initiative knowledge acquisition approach.

The next question is, how this stack can be supported in practice, in particular considering the
preconditions at the bottom. We have developed the document-centered knowledge acquisition
approach, which is well suited to conduct a knowledge engineering project according to this
schema. It is the major topic of this work.

Before discussing the contribution of this work in more detail, the meaning of term ’knowl-
edge’ for this work is defined, to obtain a more clear notion of what needs to be ’squeezed’
through the bottleneck.

30

1.3 About Knowledge

1.3 About Knowledge

The notion of ’knowledge’, while being rather important—not only in knowledge engineering
but in AI in general—, is often used in an informal way. For clarity, in this work the term is used
in a sense complying to Newell’s [New82] definition of the nature of ’knowledge’. He was one
of the first to postulate a comprehensive and consistent definition of the term, which also has
been adopted by many AI researchers. It will be used throughout this work as it is—despite of
its radical abstractness—very suitable to demonstrate the purpose and scope of this approach. In
the following, Newell’s notion of knowledge is briefly explained. Elegance and justification of
his definition of the term come from its derivation from the abstraction layer stack of (common)
computer systems, being explained in the following.

1.3.1 Systems Levels

The systems levels stack describes the different technological layers of abstraction of a digital
system. Depicted in Figure 1.4, it starts at the bottom with the device level ranging up until the
program level. Each level can be characterized by a medium, components, composition laws,

Device Level

Circuit Level

Logic Gate Level

Register Transfer Level

Program/Symbol Level

Knowledge Level
A

bs
tra

ct
io

n

Figure 1.4: The layer stack of abstraction levels of computer systems with the knowledge level.

behavior laws, and a system. The components of the device level at the bottom for example are
atoms of different matter typically involving conducting, semi-conducting, and non-conducting
material. Further, the medium of this level is electrons, the behavioral laws are given by the
laws of electrodynamics. The composition laws correspond to the capabilities of technical man-
ufacturing and the system might be described as solid body. All these characteristics can be
defined for each level and provide a perspective on the overall apparatus at the respective level
of abstraction. Climbing up the levels of abstractions of the stack, the medium evolves to voltage
at the circuit level, to bits at the logic gate level, and to bit arrays at the register transfer level.
Above that level the program level resides, dealing with variables and data types. There, the
components might be subroutines, which can be composed. For the case of AI systems Newell

31

1 Introduction

proposed the notion of symbol level instead of program level as these systems usually are built
on physical symbol manipulation mechanisms. In a physical symbol system the knowledge is
represented in some kind of data structures containing physical symbols provided with a com-
putation mechanism drawing the inference by manipulating these symbols [New80]. These data
structure might be theories of formal logics, production (or any other sort of) rules, frames, or
any other kinds of knowledge representation each including an inference mechanism responsible
for the symbol manipulation. Hence, the symbol level describes a special family of architectures
of the program level that is typically present in intelligent systems. All these levels are pretty ob-
vious, well-known, and understood. Each level can be constructed from the level below. Further,
it is notable—and extremely fortunate for systems design—that one can successfully design a
system at a certain level despite of a remarkable lack of understanding of the levels below.

1.3.2 The Knowledge Level

Newell [New82] proposes the existence of another level on top of the symbol level—the knowl-
edge level (c.f. Figure 1.4). The characteristics of the knowledge level are as follows: The
system at the knowledge level is an agent. As commonly agreed, the characteristics of an agent
are that it has a body that is situated in an environment, which he can perceive and manipulate
by actions to achieve his goals as shown in Figure 1.5. Bodies, goals, and actions are forming

Agent

Environment

Sensor Information

Actions

Figure 1.5: An agent perceives sensor information from the environment and can manipulate it
by actions (according to Russel et. al. [RN03]).

the components of this level. The behavioral laws are defined by the principle of rationality as
we expect an agent to act, i.e., selects actions, rational according to his goal preferences. From
this characterization of the knowledge level as an (intelligent) system level, the definition of the
notion ’knowledge’ emerges: Knowledge is the medium at the knowledge level that connects
goals and actions to produce a rational behavior of the agent. This definition of knowledge how-
ever does not specify any structure or organization of these connections between the goals and
actions.

”Knowledge will stay forever abstract and will never be actually at hand.”

Allen Newell [New82]

In fact, this abstractness is one of the key points of Newell’s definition. The actual structure
and inference is only determined at symbol level. Hence, we can not actually build a system

32

1.3 About Knowledge

by only specifying it on the knowledge level. This radical incompleteness characterizes the
knowledge level [New82]. However, the sense and value of this definition of knowledge, which
might appear somehow shallow at first glance, becomes more obvious when considering an
agent from an external perspective. Observing an agent in his environment, the symbol level
is hidden. The agent can still be analyzed at the knowledge level. If the observer knows about
the goal and knowledge of the agent, he can predict the actions of the agent according to the
principle of rational behavior, even though it is completely hidden which kind of symbol level
representation or inference mechanism the agent is using. The knowledge level abstracts from
computer systems to agents. Due to the fact that on each level the details of the underlaying level
can be ignored, on the knowledge level also other kinds of agents, i.e. non-computer systems,
as for example humans can be discussed.

The knowledge level perspective can be illustrated by a simple example of daily life. One
(human) agent A drops his apartment keys while walking through the city. Another (observer)
agent B perceives the human agent A having lost his keys. The event of the loss of the keys is
a piece of knowledge. Those agents, who are perceiving (and understanding) the loss, possess
this knowledge. Depending on whether agent A realized the loss himself, agent B can predict
his action according to the principle of rationality. That is, if agent A realizes, he will pick up
the keys, probably instantly. This prediction, however, requires for Agent B to have some more
background knowledge about the goals of A, which probably are in conflict with being locked
out from home, and about whether A has the knowledge to infer this, but works in principle.
Despite not knowing what kind of symbol level representation the fact of the loss is transformed
to during perception—and in fact we do not know exactly how a human symbol level represen-
tation works (if any)—, we can discuss and even to some extent predict the effect of the piece of
knowledge about the loss. This is true even if agent B is non-human having a completely differ-
ent symbol level representation and inference mechanism compared to agent A. This indicates
that the knowledge has been translated to two different symbol representations during percep-
tion but leading to the same conclusions using different inference mechanisms. The example
illustrates, that knowledge can be discussed at a level abstracting from the symbol level while
still allowing predictability of the system behavior.

Knowledge obviously is something abstract that can in some way be perceived from the
environment. Either symbol expression inside an agent (only) represents a piece of knowl-
edge. Hence, the relation of the notions of knowledge and knowledge representation is de-
scribed [New82] by this informal equation:

Representation = Knowledge+Access (1.1)

This equation indicates that agents need access to (abstract) knowledge to convert it into a
specific (symbol level) representation for making use of it. This access in most cases is a rather
difficult task. While perception is a prerequisite there is still a complex process from sensor
data to a reasonable representation of the knowledge, often requiring considerable background
knowledge already existing. In a computer science perspective, after perception of sensor data a
syntactical analysis is done, followed by a semantic interpretation. Performing actions, that pur-
posely are modifying the environment in a way enabling other agents to access specific knowl-
edge, can be considered as an act of agent communication.

33

1 Introduction

The knowledge level and its distinction from the symbol level is helpful for the discussion of
the knowledge acquisition approach presented in this work.

1.3.3 Knowledge Acquisition in the Knowledge Level Perspective

Newell proposed the existence of a new systems level—the knowledge level—providing a new
perspective on the notion of knowledge and the analysis of intelligent systems [New82]. Being
focused on how the knowledge level allows to predict agents’ actions according to the principle
of rationality considering the prevalent knowledge and goals, little is said about the transfer of
knowledge towards an agent. However, a consistent perspective of knowledge acquisition and
transfer can be derived easily from what Newell declared about the knowledge level. By doing
so, the meaning and interrelations of the terms knowledge and (symbol level) representation,
including the transition from on to the other, will be set clear for the remainder of this work.

For the derivation of a knowledge level-oriented perspective on knowledge acquisition, the
key concepts knowledge, knowledge representation, and situated agents need to be aligned to
the traditional view of knowledge-based systems development. There a knowledge base is cre-
ated by humans manually by using some kind of knowledge acquisition tool. Applying the
knowledge level perspective, this involves two (categories of) agents, the human and the knowl-
edge base. The human user of a knowledge acquisition tool can be considered as an agent. The
knowledge base itself in the first place is bare of sensors and actuators. However, assuming the
knowledge acquisition tool forming the shared environment of the human and the knowledge-
based system agent, sensors and actuators can be defined for knowledge exchange. The agent
representing the knowledge base can perceive knowledge entered into the knowledge acquisi-
tion tool by a human. Further, it can tell its knowledge or derivations when demanded by the
user. This agent-based view on the use of knowledge acquisition tools is depicted in Figure 1.6.
Each of the two agents, according to Newell, has its specific internal (symbol level) knowledge

Knowledge
Base

Knowledge-Based
System Agent

User Agent(s) Environment

KA Tool

Perception:
reads answers/knowledge

Action:
tells knowledge

Perception:
stores formalized

knowledge

Action:
answers query or
shows knowledge

Figure 1.6: An agent-based view on knowledge acquisition for knowledge-based systems.

representation. Although these knowledge representations in this case are substantially different
from each other, transfer of knowledge from the human to the knowledge base (and also vice
versa) is required. In Section 1.3.2 it was already discussed that knowledge can be perceived

34

1.4 Contribution of this Work

from the environment. The role of the environment for knowledge transfer becomes clear when
considering once more equation 1.1, denoting that (abstract) knowledge can be converted into
the agent’s internal representation if access is possible. That is, agents can emit knowledge
into the environment in some way. That knowledge can then be consumed and converted into
the internal representation by another agent iff a suitable access function is available. Hence,
that environment can be used for knowledge communication, but strongly depends on access
capabilities. When considering knowledge acquisition in the knowledge level perspective, this
kind of access functions have a role of particular importance. When considering human and
knowledge-based system agents, the symbol level representation as well as the access functions
strongly differ in general. They have to be realized by the knowledge acquisition tool, which
forms the environment of knowledge transfer in this context.

Consequently in this perspective, KA-tool design means to design and establish appropriate
means of access to knowledge—for the knowledge-based system agent and the human user.
The agent-based perspective for knowledge communication allows to analyze how a knowledge
acquisition tool supposed to be designed to make the perception and the emission of knowledge
as efficient as possible for the involved agents.

While in Section 1.2.1 the need for a cognitive environment for a social process for exchange
of expertise among participants was explained, here the structure of an (agent) environment for
knowledge transfer towards the knowledge base (and vice versa) is discussed. Both aspects taken
together provide a basis for the development of an effective knowledge acquisition environment
for mixed-initiative knowledge acquisition.

1.4 Contribution of this Work

”..KA for systems development is fundamentally an anthropological activity.”

Regoczei and Plantinga, 1987, [RP87]

The significance of this statement has not decreased in the last 25 years. On the contrary, with
all technological advances considering computational power, knowledge engineering practices,
and technical infrastructure, it feels more truthful than ever. The knowledge acquisition bottle-
neck, mainly being rooted in social aspects, as for instance the competency dilemma, still exists.
Therefore, this work discusses a knowledge engineering approach reflecting this statement made
by Regoczei and Plantinga. Besides of the actual knowledge acquisition process it also focuses
on the support of a social process to enable efficient and flexible collaborative knowledge acqui-
sition.

1.4.1 Goals

In Section 1.2.3 two processes, the social process and the knowledge acquisition process (c.f.
Figure 1.3), have been introduced and discussed. In the following, the goals of these two pro-
cesses, as being important topics of this work, are summarized.

35

1 Introduction

1.4.1.1 The Goals of the Social Process

The major goals of the social process are as follows:

1. The knowledge engineers become familiar with the application domain and the socio-
technical conditions of the participating experts. This is not only important for designing
the knowledge base and coordinating the knowledge formalization, but also to be able to
specify suitable project specific knowledge acquisition tools.

2. An important goal is the design of a knowledge acquisition tool, which is custom-tailored
to the conditions and needs of the domain specialists. Due to the competency dilemma,
close and ongoing cooperation of knowledge engineers and domain experts is a prerequi-
site for the specification of an appropriate tool.

3. Domain experts are made familiar with the general principles of knowledge engineering,
such as the need for knowledge formalization. Further, they have to assess and get used to
the customized knowledge acquisition tool.

The precondition is first of all an appropriate cognitive environment for learning and commu-
nication. It is important to enable active participation of the domain specialists within the process
at low socio-technical barriers. The knowledge engineers should be provided with illustrative
information about the application domain as learning material, supplementing the cooperative
sessions.

1.4.1.2 The Knowledge Acquisition Process

Simple things should be simple, complex things should be possible. Alan Kay

In this work, we propose the application of the mixed-initiative knowledge acquisition ap-
proach, which is an intermediate solution between direct and indirect knowledge acquisition.
In knowledge engineering a wide range of different tasks, requiring different competencies,
are required. Mixed-initiative knowledge acquisition proposes, that every participant is socio-
technically enabled to take action. Especially for domain specialists, the following two chal-
lenges of human-computer interaction need to be considered:

1. Reading and Comprehending a Knowledge Base: The passive task of perceiving and
comprehending an existing knowledge base by the use of a knowledge acquisition tool
already is a challenge of human-computer interaction by itself. The perception (access) of
a knowledge base and its alignment to the knowledge in the persons head is a non-trivial
process. It implies presentation of knowledge base entities but also means for selection
and navigation of the knowledge base content. There is only few work published address-
ing this issue [BF10].

2. Modifying a Knowledge Base: Perceiving and understanding (a fragment of) the knowl-
edge base (1) is the precondition for making modifications. An authoring tool needs to
be designed according to the principles of usability, carefully considering the user profile.

36

1.4 Contribution of this Work

The human-computer interaction perspective of tool-supported knowledge base authoring
has hardly been addressed [Jon88, Hen88]. In the context, of the semantic web a helpful
general model of human-computer interaction for tool supported interaction with formal
knowledge has been proposed [HSE11]. It can serve as a general guideline for the design
of a knowledge authoring tool.

The second aspect, the actual editing of the knowledge base, is certainly the more demanding
task. However, the first point is more decisive for the mixed-initiative approach, forming the pre-
requisite for taking any kind of action in a sense of active participation. Additionally, we claim
that once this first stage being achieved, the second stage is not too hard to reach, if a reasonable
editing paradigm and user interface is provided. Therefore, the organization and presentation of
formalized knowledge for the alignment to a person’s mental model is a key challenge for effec-
tive mixed-initiative knowledge acquisition. It should be the major design goal for a knowledge
authoring environment.

The two processes cannot be considered to be separated, but are running in parallel being
tightly interwoven. The social process can be considered as a process of continuous improve-
ment for the actual knowledge acquisition process.

1.4.1.3 Purpose of this Work

”From these examples it is clear that it [active participation] is possible, but there
is a considerable need for support from the tools used to create these systems.”

Schilstra and Spronck [SS01]

The purpose of this work is to provide a comprehensive overview of the document-centered
knowledge acquisition approach and its potentials to support the social process. The idea of
a collaborative knowledge acquisition process [GS97, HJ02], also by active participation of
domain specialists [SS01], is not new. The document-centered approach however introduces a
new category of tools, which is well-suited as an environment to support the social process in
collaborative knowledge acquisition with active participation. In particular it allows for:

• Active participation of specialists at very low socio-technical barriers.

• Smooth and precise tool customization.

• Flexible content structuring according the specialists’ mental model.

• Seamless ongoing improvement of the tool customization and content structuring.

• Mixed-initiative knowledge acquisition including decomposition of modeling tasks.

• Agile & incremental development including instant testing.

• Exchange of expertise in a social process.

• Convenient inclusion of illustrative content describing the domain.

37

1 Introduction

We provide a complete discussion of the general principles of document-centered knowledge
acquisition including its advantages and limitations. Then, guidelines for its project-tailored
application in practice are introduced. Technical principles for implementation of a document-
centered knowledge acquisition environment are presented. Additionally, a mechanism enabling
the cost-efficient implementation of project specific customizations for such kind of tools is in-
troduced. The application of document-centered knowledge acquisition is outlined by reporting
multiple real-world knowledge acquisition projects.

1.4.2 Scope

”Contributions to AI may be either flavor, i.e.,
either to the knowledge level or to the symbol level.”

Allen Newell [New82]

Knowledge-based systems development fundamentally is concerned with the construction of
knowledge bases at the symbol level. In fact, the selection or design of a knowledge represen-
tation at the symbol level is a prerequisite for the implementation of a knowledge base. Nev-
ertheless, in knowledge engineering there are certain problems and phenomena, for instance
considering the challenges in context of the social process, being independent of what kind of
representation is used at the symbol level. According to the knowledge level perspective of
knowledge acquisition, as discussed in Section 1.3.3, this work is concerned with the transfer
of knowledge through the (knowledge acquisition) environment and the analysis and design of
the corresponding access functions. Hence, the contribution of this work has to be attributed to
the knowledge level. The symbol level is only discussed in a general fashion. The document-
centered knowledge acquisition approach can be applied using (almost) any symbol level knowl-
edge representation. In particular, the selection or design of a suitable knowledge representation
at the symbol level for a given application task is not subject of this work. For this task funda-
mental literature is available [SAA+01, vHLP07].

Also the approach is not intended to provide a full-fledged knowledge engineering method-
ology. Organizational aspects, as for instance the detection of demands for knowledge-based
solutions, are not discussed. For the application of the presented knowledge acquisition ap-
proach, we assume that the project context already is known. That context includes a precise
requirement specification of the desired knowledge system, the knowledge sources, and the par-
ticipants. Further, we assume that at least one experienced knowledge engineer is available to
play the leading role in the knowledge engineering process.

This work describes a novel and generic approach for manual knowledge acquisition for
knowledge-based systems by the usage of a specific category of knowledge acquisition tools,
the document-centered knowledge acquisition tools. It can be combined with various knowl-
edge engineering methodologies and is well-suited for rapid prototyping. Due to its agile and
light-weight nature it is reasonable to choose an agile knowledge engineering methodology for
that purpose. Nevertheless, it turns out that CommonKADS [SAA+01], although being a com-
prehensive heavy-weight methodology, can be combined with document-centered knowledge
acquisition if a more structured approach is desired. More details about this combination will be
discussed in Section 3.6.

38

1.5 Structure of this Work

1.5 Structure of this Work

This work is organized in eight chapters. In this first chapter, concluding with this outline, the
required preconditions for the approach have been discussed. The remainder of the this work is
organized as follows:

• Chapter 2 gives an overview of the commonly used state-of-the-art knowledge authoring
techniques. Five categories of techniques are distinguished and for each category exam-
ples from the literature are discussed.

• Chapter 3 introduces a general method of knowledge formalization for knowledge-based
systems development, the document-centered knowledge acquisition. The characteristics
and potentials of documents with multimodal knowledge as a means for knowledge cap-
ture are presented. Its advantages and challenges and the requirements for a corresponding
tool are discussed. To illustrate the approach, we sketch how it can be employed for a se-
lection of exemplary application scenarios.

• Chapter 4 introduces a process how knowledge engineers can systematically improve a
document-centered knowledge acquisition environment during the progress of a project.
This improvement, which is part of the social process, is achieved by meta-level design
of the environment in an evolutionary process, running in parallel to the actual knowledge
acquisition activities.

• Chapter 5 discusses a number of technical challenges implied by the application of the
document-centered knowledge acquisition approach. These technical tasks, together with
solution methods, are discussed with the aim to support the implementation of the basic
components of a generic document-centered knowledge acquisition system.

• Chapter 6 presents an implementation of a document-centered knowledge acquisition
environment. The system KnowWE is based on a (semantic) wiki engine and is designed
according to the requirements as discussed in Chapter 3.

• Chapter 7 provides an overview of several case studies of document-centered knowledge
acquisition using the KnowWE system. The experiences made in these projects, dealing
with different subject domains and different symbol level knowledge representations, are
reported.

• Chapter 8 provides a summary of the present work. Additionally, an outlook is given and
further research questions with respect to document-centered knowledge acquisition and
the meta level process are discussed.

39

2 Approaches for Knowledge Base Authoring

Before the document-centered knowledge acquisition approach is discussed, we provide a brief
overview of the knowledge authoring approaches most commonly used.

For the very first attempts of building expert systems, the knowledge base has been created
directly in the target knowledge representation, as for example LISP [McC78] code. This work-
flow has proven to be inconvenient and basically prevents direct participation of domain experts
within the development process. In the following, we discuss the different approaches that can
be used for knowledge base editing in a more comfortable way. We outline the approaches form-
based authoring, tabular knowledge acquisition, graphical knowledge representation languages,
domain specific languages, and electronic (text) documents. For each category, representative
tools are briefly discussed. The different approaches are not exclusive, i.e., in practice can be
combined. While some tools apply to one category in a strong way, other tools mix up two
or more of the discussed aspects. The three techniques form-based authoring, tabular knowl-
edge acquisition, graphical knowledge representation languages can be summarized to the use
of graphical user interfaces (GUI). One example for combining these different kinds of GUI-
based authoring techniques is the tool CLASSIKA presented by Gappa et al. [GPS93]. It uses
forms, as well as tabular editors and graph-based representations for hierarchies.

At the end of this chapter, existing work on knowledge authoring with electronic documents is
discussed, leading over to the document-centered approach being the main subject of this work.

2.1 Form-based Authoring

Form-based authoring is a method very commonly used in GUI-based editing. Graphical user
interfaces are forming the human-computer interaction paradigm, which is probably most widely
used in general, not only considering knowledge acquisition. It is usually characterized by the
use of windows, menus, tool bars, tabs, and panels, which are used to organize different kinds
of input forms. Since the eighties, this paradigm has been widely used to create knowledge
acquisition tools (e.g., [Jon88, SEA+02, KV03, Bau04, NL05, DSW+00]). Figure 2.1 shows
the OWL editor of Protégé [KFNM04], which is a GUI-based knowledge acquisition tool for
authoring ontologies in OWL. Entities of the ontology, e.g., classes, properties and individuals,
are managed in hierarchies, which are organized in tabs. They can be created and modified using
forms. Another, example for a GUI-based knowledge acquisition tool is KnowME [Bau04],
which allows to create diagnostic knowledge bases in d3web1 as shown in Figure 2.2. It shows
a similar structure managing the inputs and the solutions in hierarchies. Further, form-based
editors for rules and other kinds of knowledge representations are provided.

41

2 Approaches for Knowledge Base Authoring

Figure 2.1: Protégé: A GUI-based knowledge acquisition tool for ontologies [KFNM04].

Figure 2.2: KnowME: A GUI-based tool for diagnostic knowledge bases [Bau04].

42

2.2 Graph-based Authoring

Form-based knowledge authoring tools for knowledge representations of high expressiveness
can become complex, providing a high number of different interaction elements. Especially for
domain specialists without knowledge engineering background, the use of these kind of tools
is highly challenging. For this reason, often custom-tailored knowledge acquisition tools for a
specific domain have been build [Mus88, Mus89b]. Those tools have reduced complexity and
represent the knowledge in a way, which is intuitive to the domain specialists.

In general, form-based interfaces commonly are easy to use, as it is a wide-spread and well-
used interaction paradigm. Further, it prevents the user to a far extent from making errors on the
syntactical level, and visually shows him the possible actions that can be taken in the respective
context. However, it often does not provide means for flexible structuring of the content. In Sec-
tion 3.2 a more detailed comparison between GUI-based authoring and the approach proposed
in this work.

2.2 Graph-based Authoring

Often knowledge can conveniently be represented by graphs. There is a wide range of graph-
based knowledge representation languages known today [CM08]. Semantic networks or on-
tology schemas often are edited as graphs. In particular, for procedural knowledge such as,
workflow, guidelines, or (business) process models, graph-based representations are used for
editing. An example for modeling executable medical guidelines is provided by the DiaFlux
language with by Hatko et al. [HBBP12], shown in Figure 2.3. An interactive graphical editor

Figure 2.3: The DiaFlux editor for executable guidelines: A treatment plan for sepsis [HBBP12].

1http://www.d3web.de

43

2 Approaches for Knowledge Base Authoring

allows to create and modify nodes and edges. The node positions can freely be defined by the
user to allow for a comprehensible layout and presentation of the knowledge. The flowcharts
edited by the user are transformed into an executable representation, which is ready for testing
instantly. Further, the tool provides a debugging view, allowing visual tracing of the flowchart
execution.

Another example is provided by Ferstl et al. [FSA+94], presenting a tool for modeling busi-
ness processes in the SOM (Semantic Object Model) formalism. SOM defines a graphical lan-
guage where objects are defined as nodes that can be interconnected by transactions. Objects
can represent a customer or a department for example, while transactions transfer messages or
results between objects. Further, the SOM meta model allows for the representation of events
and tasks. An example is depicted in Figure 2.4.

Figure 2.4: A tool for modeling business processes in SOM by Ferstl et al. [FSA+94].

Other examples for knowledge modeling by the use of graphical languages are More by Kahn
et al. [KNM85] and MOLE by Eshelman [EEMT87].

44

2.3 Table-based Authoring

2.3 Table-based Authoring

Another method for representing problem-solving knowledge is the use of tables. Tabular knowl-
edge formalization patterns [Pup00], such as decision tables or diagnosis score tables [Pup90],
are widely used in knowledge acquisition. Figure 2.5 for example shows a diagnosis score table
of the tool CLASSIKA [GPS93]. It connects symptom values in the column header with the di-
agnosis denoted in the header row by predefined score values. The table can be used for directly
editing the knowledge base.

Figure 2.5: Diagnosis score table of the tool CLASSIKA [GPS93].

45

2 Approaches for Knowledge Base Authoring

Another method for table-based representation of knowledge is the Extensible Tabular Trees
(XTT) formalism. It is a combination of table-based and graphical knowledge acquisition [NL05],
where the nodes in a hierarchical graph are given by tables. Figure 2.6 shows the tool HQEd,
which supports the definition of knowledge bases in XTTs [NLK11].

Figure 2.6: The HQEd tool for the definition of Extensible Tabular Trees [NLK11].

2.4 Authoring by Domain Specific Languages

The concept of a Domain Specific Language (DSL) received increased attention in software engi-
neering within recent years. One can distinguish two major categories of DSLs, being graphical
and textual languages. Graphical languages have already been discussed in Section 2.2. Hence
for this work, we always refer to textual languages when using the term DSL.

Fowler [Fow10] defines a domain specific language as a language that meets the following
three criteria:

46

2.4 Authoring by Domain Specific Languages

• Computer Language: A DSL is a computer language and thereby has a formal character.
It is or at least could be processed by a computer in some way.

• Domain Focus: A DSL is used in one particular application domain of narrow scope.
This is in contrast to the so-called general purpose programming languages.

• Limited Expressiveness: A DSL has (very) limited expressiveness, that intently allows
not for more complex tasks as its intentional use of the domain focus.

One example for this category, while not having a direct research background, is Drools ex-
pert2 by JBoss, which is a free business rules engine [Bro09]. Figure 3.9 shows a screenshot of
the authoring tool. It allows to define the rules by a domain specific language within different

Figure 2.7: The knowledge authoring environment of drools expert [Bro09].

2http://www.jboss.org/drools/drools-expert

47

2 Approaches for Knowledge Base Authoring

source files. Being integrated within the Java programming language, it however does not really
comply to the criteria of limited expressiveness stated by Fowler.

Similar editors are existing for the rule engine Jess3 [Hil03] and the expert system shell
CLIPS4 [Wyg89]. Just as the Drools Expert example, those tools more resemble programming
environments for software engineers than knowledge acquisition tools. For Jess also a graphical
tool was created [JGD04]. However, using forms and other GUI elements, that tool then belongs
to the category of graphical/form-based interfaces.

Decker [Dec98] was one of the first researches to propose the use of domain specific languages
for knowledge acquisition. However, it has not yet been widely explored in practice by the
research community.

2.5 Document-based Authoring

The use of electronic documents for direct knowledge base modeling has hardly been addressed
by researchers yet. This excludes (semi-) automated generation of knowledge bases by using
natural languages processing methods on preexisting documents. Also, ’common’ specification
documents, describing the knowledge base content and inference mechanisms as proposed for
example by CommonKADS [SAA+01], are excluded from this consideration. Those only serve
as a specification for the actual implementation, being performed by the system developers later
in a distinct step. Hence, no direct knowledge base modifications are possible. Much research
can be found for the concept of active documents [GLR09, HM00, WKJ+01]. When studying
this literature, it appears that there is no unique and consistent notion of the term ’active doc-
ument’, ranging from question answering applications over user adaptive documents to agent-
based architectures of documents. Due to the imprecision of the term and the low relevance of
the corresponding research for this topic, it will not further be used for this work.

Martin [Mar95] proposed the interweaving of text document elements with a knowledge base
consisting of a conceptual graph. The main purpose of this approach was to create an intelligent
retrieval system for the document corpus, which exploits typed relations between document
elements and concepts of the knowledge base. The knowledge base however is developed in
parallel to the documents. Hence, the approach is not very much related to the perspective of
this work, where knowledge bases for problem-solving are (exclusively) created by modifying
electronic documents.

The first approach in this direction was proposed by Gaines and Shaw [GS99]. They present a
document authoring system, that in addition to common content such as text and figures, allows
for embedding of executable knowledge models by the use of a graphical language, similarly
as discussed in Section 2.2. For the graphical language elements an additional graphical editing
component is provided. As an example, a semantic network representing the credit control
policy of a bank is created within a set of documents. Gaines and Shaw were the first to claim
that it is attractive to represent a knowledge base as a set of documents. They outline that it
is advantageous to combine the formal model with content elements intuitively comprehensible

3http://www.jessrules.com
4http://clipsrules.sourceforge.net/

48

2.6 Approach of this Work

for people such as text, images, and movies. In that way, documents are created, which are
understandable by both, humans and computers.

Another approach for creating knowledge models by editing electronic documents is reported
by Molina and Blasco [MB03]. Also they emphasize understandability of the documents by
humans as well as by the computer. Further, they distinguish the document in static, automatic,
and users content elements. For the formation of the knowledge models, they propose a pre-
defined structure of the documents, alternating the content categories mentioned. In that way,
documentation, formal knowledge parts, and parts with information generated by the system
alternate in a particular order. The approach also focuses on intelligent user support by the use
of meta knowledge, which allows the system to inform the user about incompletion or inconsis-
tency of the edited model. Instant processing of the defined knowledge establishes an intelligent
document processor. For the actual formalization task of the knowledge model, for example
deductive tables, mathematical functions, or probabilistic causal relations are proposed.

2.6 Approach of this Work

In this work, we propose a knowledge acquisition approach based on editing electronic doc-
uments, similar to the ones presented by Gaines et al. [GS99] or Molina et al. that just have
been discussed [MB03]. One major difference between the GUI-based knowledge acquisition
interface and the document-based knowledge acquisition lies in the persistence structure. While
some GUI-based tools also allow for the insertion of informal knowledge such as comments and
images, the user has no control of the ’spatial’ structure of all these content elements such as or-
der or distance. In document-based case, the user intuitively creates a reasonable and memorable
structure within a document, as well as relations between documents. GUI-based tools in con-
trast generate these spatial characteristics ’on the fly’ when showing the knowledge base content
being read from a data base. Hence, the spatial structure of the displayed content element there
is a characteristic of the tool and not of the (user created) content.

The focus of this work is to also support the entire social process of knowledge acquisition as
discussed in Section 1.4. This includes a focus on tool customization according to the project’s
and users’ characteristics, similar as addressed by Musen [Mus88, Mus89b] in the context of
GUI-based tools (c.f. Section 2.1).

For the actual formalization of knowledge embedded within the documents, we focus on the
use of (textual) domain specific languages as discussed in Section 2.4. The use of DSLs for
this purpose provides two major advantages: It allows smooth and precise tool customization,
while the actual knowledge base is formed. Further, it is very suitable to support a workflow of
mixed-initiative knowledge acquisition, where single formalization tasks are decomposed and
performed by subsequent action of different participants. In the following chapter, the document-
centered knowledge acquisition approach is introduced in detail.

49

3 Document-Centered Knowledge Acquisition

Within the last couple of years the work with electronic documents found its way into the daily
lives of most people, ranging from the management of a digital photo library to text-documents
for official correspondence or excel charts for managing housekeeping money. The computer-
based interaction with documents has become a banality such as using a car or a phone. Based on
this human-computer interaction paradigm a knowledge acquisition method for intelligent sys-
tem engineering can be derived. It has the potential to support well the requirements discussed in
Section 1.2.1. In this chapter the so called Document-centered Knowledge Acquisition method
(in short DCKA) is introduced. The advantages and challenges of this approach are discussed,
as well as the requirements for a corresponding knowledge acquisition tool are being formu-
lated. Further, scenarios for different exemplary use cases, sketching the document-centered
knowledge acquisition approach for a wide range of knowledge formalisms, are presented.

3.1 DCKA in a Nutshell

Graphical user interfaces are forming the most popular paradigm of human-computer interac-
tion. The most obvious advantage, for example compared to command-line based interaction,
is that all actions available in the current context are visualized to the user and can simply
be selected by a pointing device reducing the risk of syntactical errors. Research and prac-
tice in the domain of knowledge acquisition tools is focused on this human-computer inter-
action paradigm since the eighties (e.g., [Jon88, KFNM04, SEA+02, KV03, Bau04, NL05,
DSW+00]). While providing some obvious advantages, GUI-based tools have their drawbacks,
for instance requiring complex cognition and strongly limit the kind of information that can be
entered [VKBKs07]. Therefore, the GUI-based approach is not necessarily the best approach
for every knowledge engineering scenario.

Foundational literature of human-computer interaction describes various kinds of different
user interface paradigms [SP09]. A classical paradigm being used since the early days of dig-
ital computers, is editing and management of digital documents by interactive editors. There
are a number of characteristics making the exploration of its potentials for knowledge engi-
neering promising. Having evolved within the decades, e.g., WYSIWYG1 editors as well as
web-based document management system being introduced, the interaction paradigm is still
playing a very important role in information management today. One major reason for its broad
acceptance in our daily lives is its clear metaphor, imitating the management of real (paper-)
files and folders. This simple and well-known metaphor helps people with the task of structur-
ing the content in a memorable way, providing quick and simple access to all content elements.

1http://en.wikipedia.org/wiki/WYSIWYG

51

3 Document-Centered Knowledge Acquisition

However, it has hardly [GS99, MB03] been explored yet as a means for knowledge acquisi-
tion for knowledge-based systems. A comprehensive discussion of using electronic documents
combined with knowledge markup languages for knowledge engineering is the purpose of this
chapter. At first however, we briefly summarize the major characteristics of electronic document
authoring in general, that provide the well-known and successful user experience:

• Full Content Control: The user has exclusive control of the document content. She or
he is free to make arbitrary changes. In particular, the content elements can be inserted
in the document in arbitrary order. User modifications are always accepted and stored
persistently. Further, the system does not perform modifications of the documents without
the user being involved.

• New Documents: The user can freely decide to create a new document assigning a name
of his choice.

• State by Content: Only the current content is important to represent the state of the doc-
ument corpus. Usually, many different sequences of editing actions can lead to a specific
document content. However, the order of the actions should not influence the behavior
of the authoring environment or the results in any way. Hence, this can be considered as
commutativity of editing actions.

• Content Presentation: The presentation of the content is strongly determined by how
the content has been formed by the user. Especially for non-WYSIWYG editors it is
important that the compliance of the presentation and editing view of a content element is
obvious and intuitively recognizable by the user.

These are the most fundamental characteristics inherent to most digital document management
systems valid for any kinds of document types or editors. The unconstrained contribution of
content makes life easy for the user but on the other hand leads to a document corpus, being non-
recognizable for machines. This kind of content is meaningful to humans only and therefore in
the first place not practicable for knowledge engineering as natural language processing methods
are not (yet) reliable enough. For this reason, we need to extend the approach to allow for the
definition of structured knowledge with computer interpretable semantics.

3.1.1 Documents for Knowledge Base Development

As discussed, until now most knowledge engineering tools carry out the human-computer inter-
action task of knowledge formalization by employing graphical user interfaces. The document-
centered authoring approach, in contrast, aims to extend the paradigm of editing digital docu-
ments in a seamless way to allow for authoring of computer-interpretable knowledge. The major
goal is to make the knowledge, contained in a set of documents, in the end understandable by
both—humans and machines. This refers to the notion of access to knowledge according to
Newell as discussed in Section 1.3. This extension is a non-trivial step, where the general condi-
tions and human aspects of knowledge engineering, including the cognitive challenges, need to
be incorporated. The goal is to establish a knowledge authoring environment that is suitable to

52

3.1 DCKA in a Nutshell

provide a cognitive environment as discussed in Section 1.2.1 and support the social processes
of knowledge engineering.

The document-centered knowledge authoring environment provides access to a set of docu-
ments, that can be modified and extended by employing some basic text-editing interface, re-
taining all the characteristics of document authoring discussed above. The formalization process
is performed by the use of formal syntax, which is (in the first place) predefined by the author-
ing environment. The basic workflow of creating a knowledge base by document authoring, is
shown in Figure 3.1. After each document modification, statements complying to the syntax au-
tomatically are translated to the knowledge repository, being stored in the computer-interpretable
format according to the employed symbol level knowledge representation formalism. Further,
feedback is given to the user accordingly. In that way, the knowledge repository always contains
the most recent version of the knowledge base corresponding to the current document contents.
Additionally, the knowledge base is instantly ready for testing. The content of the knowledge
repository further will be called compiled knowledge base or symbol level knowledge base in
contrast to the document base, containing the human readable content.

Knowledge
Base

User

CompilationEditing Interface Documents

Figure 3.1: Structure of the document-centered knowledge authoring paradigm.

The documents form a human-oriented layer in between the contributors and the symbol level
knowledge base. It is dedicated to provide human-centered access to and organization of the
knowledge. The use of documents as a basis for knowledge transfer has two important implica-
tions:

• In contrast to the use of graphical user interfaces, an interface layer of documents has a
persistent structure, that can be arranged conveniently in a memorable way. The decou-
pling of the human author and the symbol level knowledge base by this additional layer
provides a large degree of freedom for structuring the content according to the users’
needs.

• As the knowledge engineers are able to control the compilation process on the technical
level, the system capabilities can be extended or modified, without the look and feel being
changed for the user (as the documents do not change). In that way, the customization
towards a project-specific tool can be driven in a smooth incremental process.

These two implications can be exploited to enable an effective mixed-initiative knowledge
acquisition process. Their nature, potentials, and risks are the main subject of this and the next
chapter.

53

3 Document-Centered Knowledge Acquisition

The Document-centered Knowledge Acquisition Environment The knowledge acquisition
scenario envisioned in Section 1.2.1 considers a community of multiple participants being in-
volved within the knowledge engineering process. As mixed-initiative knowledge acquisition
proposes direct manipulation of the knowledge, the access to the documents needs to be coor-
dinated. All participants should be able to access and edit the document easily. A schematic
view of this collaborative working process with documents is shown in Figure 3.2. To beware
of editing conflicts however, one should prevent the case that multiple persons are editing the
same document at the same time. Hence, when one document is edited it should be locked for
others, as known from common collaborative document management systems. Additionally, for
the safe development and progress monitoring, a versioning mechanism, showing all the prior
states of the documents, should be provided. Beside these functions, a trigger mechanism for
the automated compilation of the knowledge base from the documents after changes is required,
completing the extension from a set of accessible documents to a document-centered knowledge
acquisition environment. The design of this kind of authoring tool should stick as close as pos-
sible to the original document editing paradigm to retain the well-known user experience as far
as possible.

Documents Knowledge
Base

CompilationCollaborative

Authoring

Document-centered Authoring Environment

Figure 3.2: Schematic view of the collaborative workflow in DCKA.

3.1.2 Knowledge Markup Languages

Content management as electronic documents is a common approach. Creating an executable
knowledge base using some formal syntax implies some additional technical challenges. The
formal syntax and the way it is translated to the symbol level representation plays a fundamen-
tal role in this document-centered knowledge acquisition approach. This formalization method
can be applied to most common symbol level knowledge representation languages, as for ex-
ample rule-based or logics-based formalisms. In the following, knowledge formalization with
knowledge markup languages is defined in a more technical and formal way.

54

3.1 DCKA in a Nutshell

In formal terms a knowledge base of the knowledge representation language K is a set of
words of K . The set of all possible knowledge bases of K is then given as: 2K To form a
knowledge base using an input syntax L , we define a mapping τ : L 7→K

Now we can define a knowledge markup language (or short markup), forming the formaliza-
tion method of the DCKA approach, as a triple comprising in input syntax, a target knowledge
representation, and a corresponding mapping:

M = {τ,L ,K }

We call a markup language M complete according to K if τ is surjective, as then any knowl-
edge base of 2K can be created by L . We call a markup language M injective if τ is injective,
that is every knowledge base can be created only by one particular set of words of L .

For some concrete examples of markup languages and their use within documents, the inter-
ested reader may refer to the example scenarios in Section 3.5 or to Chapter 7, where real-world
case studies are described.

Knowledge Markups as Domain Specific Languages: Knowledge markups are related to the
concept of domain specific languages (DSL). Fowler [Fow10] distinguishes internal and external
DSLs. Internal DSLs are restrictions of existing (general purpose) programming languages while
external DSLs are defined independently from scratch. External DSLs are usually either used to
generate code or to populate a semantic model. In that sense, a knowledge markup language is
an external DSL that is used for fragments of documents to populate a semantic model that is
established within the knowledge repository.

The term DSL does not have a unique and precise definition and is not always used in a consis-
tent way. In literature for example the term domain in domain specific language is interpreted in
different ways. Sometimes it is used to refer to the target model that is populated by the language
(e.g., production rules, regular expressions, dependency networks). Often however, the term de-
scribes the application domain (e.g., sales management, cardiography, aironautical engineering).
For clarity, we will primarily use the term (knowledge) markup instead of DSL, indicating that
the target model is a fixed characteristic of the language, determined by the knowledge rep-
resentation. A domain specific knowledge markup in consequence denotes a markup that is
specifically tailored towards some application domain.

3.1.3 Multimodal Knowledge

In this section, we discuss the nature of the document content, when markup languages are used
to form a knowledge base. Therefore, the concept of multimodal knowledge, including distinct
content categories, is introduced.

In Section 1.3 the knowledge level view on the knowledge acquisition task has been presented.
There, knowledge acquisition is considered as communication of agents on the knowledge level
via the environment. In the following, we apply this perspective on the document-centered
knowledge acquisition approach. As discussed in Section 1.3.3, we consider the knowledge
base as a (knowledge-based system) agent. Further, there are multiple human agents that aim to
create an (executable) knowledge base. All these agents share an environment, the knowledge

55

3 Document-Centered Knowledge Acquisition

acquisition environment. In the document-centered case the environment—apparently— is con-
sisting of the documents, completed by a testing interface for the knowledge base. Every agent
can perceive the document contents. The knowledge-based system agent only has read access to
the documents, while the human agent(s) can freely modify the environment. They accumulate
the domain knowledge relevant for the executable knowledge base in the documents. Consid-
ering the access functions of agents (c.f. Section 1.3.2) for perceiving the knowledge from the
documents, human agents fundamentally differ from the knowledge-based system agent. The
access function τ of the latter only is able to access the knowledge that is defined using the
markup language, as this access function is implemented as characteristic feature of the DCKA
environment. For human agents, especially domain specialists, access to markup language is
non-trivial. In contrast, access to knowledge defined in natural language or figures is easy if the
content is well illustrated.

Knowledge
Base

Knowledge-Based
System Agent

DCKA Environment

!

Organiz. Information

Modeling Rationale

Markup Expressions

Domain Description

Access

User

Figure 3.3: The four different content categories of multimodal knowledge.

We distinguish four different categories of content that are employed for the description of
some topic of the domain during the knowledge acquisition process.

• Domain Description: This informal description of the respective topic of the domain
should provide a comprehensive view on the treated topic at an adequate level of detail. It
is necessary that a participant can understand the subject topic described and its role for the
knowledge-based system. Therefore, a textbook style including illustrative figures, charts,
or photos is appropriate. Indeed, textbook chapters can be used to create this kind of con-
tent if available in appropriate quality and level of detail. Hyper-links to topically related
content elements (in other documents) should be provided to simplify research. Aspects
considering the formalization of this knowledge into the knowledge base are completely
omitted for this category.

56

3.1 DCKA in a Nutshell

• Modeling Rationale: The description of the domain in many cases can not be converted
to formal knowledge in a straight forward way. The description is dedicated to explain
general domain issues in a human perspective, while the formalized knowledge always
implies aspects of automated problem-solving strategies. This content category therefore
describes in an informal but precise way, how the part of the domain represented in this
document is or should be modeled as formal knowledge using the markup language. This
includes justification of what parts are formalized, as well as why and how this way of
modeling will achieve the desired behavior of the knowledge base.

• Markup Expressions: This category contains markup expressions that create the re-
quired parts of the executable knowledge base. Reasonably, it should be organized next to
the domain description discussing the corresponding subject topic and the corresponding
modeling rationale. It is the only content category actually contributing to the compiled
knowledge base.

• Organizational Information: This category contains information related to the develop-
ment process itself such as:

– Status of this subtopic (e.g., draft, prototype, tested, reviewed)

– Things that still need to be done (e.g., todo lists)

– Names (and contact) of participants that are working on or are experts on that topic

– Discussions about the appropriateness of domain description or modeling

– Information explaining the organization of the document base (e.g., navigation help)

Reconsidering the agent-based view, where the documents are forming the environment per-
ceived by the user and knowledge-based system agent, the roles of these content categories can
be defined more precisely.

Domain description and markup expression both contain domain knowledge about one and the
same topic. However, the former cannot be accessed by the knowledge-based system agent, but
easily by a human agent. The latter, can be accessed by the knowledge-based system agent, but
access often is challenging for human agents. The purpose of the modeling rationale is to help
human users to access the markup expressions. This meta-knowledge describes how the markup
expression content can be accessed by explaining the symbol level semantics and relating it to
the domain description.

The forth category comprising organizational information aims to support the development
process and as such is not directly related to the domain. Therefore, it can be considered as
optional (e.g., for single user projects) but is often helpful for the coordination of a collaborative
development process.

The content elements belonging to these four categories are strongly differing with respect
to multiple aspects, such as the syntactical shape (natural language, figures, tables, markup
language) and the subject (domain knowledge, meta-knowledge, organizational information).
Therefore, we call this inhomogeneous content, being tightly interwoven with each other and
embedded into a document-space, multimodal knowledge.

57

3 Document-Centered Knowledge Acquisition

3.1.4 The Document Space

In the context of multimodal knowledge, the different categories of content have been discussed.
Now, the possibilities for structuring these content elements within documents are explained,
also considering the potential for simplifying knowledge understanding and authoring.

3.1.4.1 The Document Space as a Graph

There are many possibilities of structuring content elements in documents. A document base is
a hierarchical structure, as documents can be associated as groups and subgroups. Also on sin-
gle document level, the content is organized hierarchically using chapters, sections, subsections,
paragraphs, and so on. All these content elements, being aggregated according to the composite
pattern, can be related to each other in different ways. Hierarchical inclusion is only one kind
of relation between content elements. Naturally, a document has a sequential structure relating
each content element logically with its predecessor and successor. Another category of associ-
ating content elements is cross-referencing. It is a valuable method to relate content elements,
which are not associated hierarchically or sequentially. While the hierarchical and sequential re-
lations are emerging naturally from the document structure, cross-references have to be included
explicitly by the author by placing reference targets. A reference target can be a document, but
also a specific content element within a document. An abstract example with four documents,
illustrating the different content element relation types, is depicted in Figure 3.4. The content
elements are forming a graph structure made up of the content element relations hierarchical in-
clusion, (in-document) successor, and cross reference. The graph emerging from the documents
of example Figure 3.4 is shown explicitly in Figure 3.5. Incorporating the possibility of explicit
cross referencing, any graph structure can be created within the document space. We call the
generic graph structure, which emerges from the content elements and their relation types, the
document space. It can freely be organized and modified by project participants to organize the
knowledge conveniently. The edges of this graph give the user the opportunity of topic-related
navigation, be it by following hyper-links or simple scrolling within a document.

3.1.4.2 The Document Space and Human Mental Models

As discussed in Section 1.4.1, the reading and comprehending of knowledge, which is a pre-
requisite for editing, requires an alignment towards the person’s internal mental model of the
corresponding knowledge. To make this alignment as easy as possible, one needs to consider
the nature of the mental model of the participants. For insights about how knowledge is struc-
tured in people’s mind, one should refer the corresponding research from psychology.

A Model of Semantic Memory The organization of knowledge within the human mind is sub-
ject of interest of cognitive psychologists since generations. A theory, that gained wide atten-
tion and acceptance, was first proposed by Quillian [Qui68] proposed a theory about semantic
memory. It was since then adopted,extended, and verified by many other reasearchers of the
field [Tul72, CL75, CQ95, Mcr04, MHM12]. It was also being referred to by Gaines [WSG92]

58

3.1 DCKA in a Nutshell

Document B

Chapter B1

Chapter B2

Document C

Section B1a

Section B1b

Section B2a

Section B2b

Section B2c

Chapter C1
C1

Chapter C2

Section C2a

Section C2b

Document A

Chapter A1

Sub-Document Sub-Document

Cross-Reference

Cross-Reference

Document D

…

Cross-
Reference

Cross-
Reference

Figure 3.4: The hierarchical document space.

to analyze the cognitive challenges of knowledge acquisition. According to Quillian’s theory
of semantic memory the human knowledge is organized as concepts, where each concept cor-
responds to particular senses of words or phrases. The concepts are forming nodes in a graph,
where properties of a concept are represented as labeled relational links to other concept nodes.

These directed links in addition to the relation label also contain a weight value, which is
indicating how essential the corresponding link is for the meaning of the source concept. The
full meaning of a concept is the whole network as entered from the concept node (considering
multiple levels in depth). Figure 3.6 shows an exemplary fragment of a part of a human’s mem-
ory modeled according to the graph structure proposed by Collins [CL75]. It shows nodes for
common sense concepts, as for instance colors, vehicles, flowers, and fruits. Concepts which
are assumed to be related are connected by edges. The edge weights are omitted from this
illustration as the actual weight value is not relevant in this context.

59

3 Document-Centered Knowledge Acquisition

Doc. A

Sec. B1a

Ch. A1 Doc. B

Doc. D

...

Doc. C

Ch. B1 Ch. B2

Sec. B1b

Sec. B2bSec. B2a Sec. B2c

Ch. C1 Ch. C2

Sec. C2bSec. C2a

Hierarchical
Inclusion

Successor

Cross-Reference

Figure 3.5: The abstract document space graph according to the example shown in Figure 3.4.

Today it is commonly agreed that the semantic memory together with the episodic memory
are forming the declarative memory [Tul72], which contains the information that can be ac-
cessed in a conscious way. The episodic memory contains the persons autobiographical events,
while the semantic memory stores factual and general knowledge about the world. Also, in re-
cent years semantic memory networks have been the bases for the majority of theorizing and
empirical investigation [Mcr04, MHM12]. The knowledge, which is relevant in the context of
knowledge engineering, can be assumed to be located in the semantic memory, containing the
general knowledge about the world.

Modeling the Semantic Memory in the Document Space To support the intuitive under-
standing of the knowledge, the alignment of the content towards the user’s mental model should
be made as easy as possible. Therefore, one should aim to resemble the structure of the se-
mantic memory within the structure of the document space. Then, each content element relates
to one or a group of concepts. The document space provides different types of associations to
relate content elements to each other, as discussed in Section 3.1.4. By use of these relations
the connections between the concepts can be modeled. The relations between content elements
in the document space however do not allow for relation labels or weights. This information
can easily be incorporated within the text of the content elements if necessary. Modeling the
semantic memory fragment shown in Figure 3.6 could for instance be performed as follows:

60

3.1 DCKA in a Nutshell

Street

Vehicle

Truck
Bus

Ambulance

Fire
Engine

Fire

House

Red

Orange

Yellow

Green

Violets Roses

Flowers
Sunrises

Sunsets

Clouds

Cherries

Apples

Pears

Car

Figure 3.6: An example fragment of the human memory mind according to Collins et al. [CL75].

61

3 Document-Centered Knowledge Acquisition

There might be a document ’Vehicles’ describing in chapters the concepts Vehicles, Bus, Truck,
Car, Ambulance, and Fire Engine. Further, there could be one document ’Colors’ listing the
colors Orange, Red, Green, and Yellow as chapters. The chapter about Red could have links to
the chapter about Fire Engine in the document ’Vehicles’, and a link to the document ’Fire’, and
so on and so forth. The document space graph for such document base (c.f. Figure 3.5) then to
some extent will replicate the semantic memory graph (c.f. Figure 3.6).

Hence, it should in principle be possible to recreate an (excerpt of a) person’s semantic mem-
ory graph by a document space graph. In contrast to GUI-based tools, a document-centered
authoring environment enables the flexible formation of a structure, which can be adapted to a
semantic memory model of a domain.

While the design of this structure is a notable and non-trivial task itself, we claim that its
careful creation and ongoing refinement will pay off on the long term, significantly improving
understandability of the content. Elicitation of the exact structure of a persons semantic memory
is difficult. For this purpose, Gaines [SG93] proposes the use of a method from construct psy-
chology, which is called repertory grid, first proposed by Kelly [Kel55]. However, one practical
heuristic for approximating the structure is to create documents for the most important concepts
of the domain and continuing by intuitive top-down refinement.

An explicit process for evolving the document space towards a comprehensible structure is
introduced in Chapter 4 in context of the meta-engineering approach.

3.1.5 The Collaborative Social Process of DCKA

In Section 1.4 mixed-initiative knowledge acquisition has been introduced as a promising strat-
egy for effective collaborative knowledge acquisition. Now, we describe how document-centered
knowledge acquisition can support this strategy and the social process it relies on. Figure 3.7
shows the stack already discussed in Section 1.4, now being based on the document-centered
knowledge acquisition environment, which is suitable to provide the required preconditions.

3.1.5.1 Preconditions

At first the way, how the document-centered knowledge acquisition environment supports the
preconditions shown in Figure 3.7, is discussed.

Low Barriers for Active Participation The level of the technical skills of the participating
users typically is rather diverse in knowledge engineering projects, as discussed in the context of
the competency dilemma (c.f., Section 1.2.2). To enable many participants for active participa-
tion (c.f. 1.2.2.2) it is very important to provide low barriers for contributions. Perception, i.e.,
reading and browsing of existing content, is posing the first barrier, also constituting an impor-
tant prerequisite for any other knowledge engineering task. Working through some documents is
not very demanding and most people are already used to read and maintain content as electronic
documents. Hence, the barriers for active participation are rather low for the document-centered
knowledge acquisition approach. If the document space is well-structured and provided with
comprehensible domain descriptions, also unexperienced users can obtain an idea about the

62

3.1 DCKA in a Nutshell

Cognitive Environment
for Learning

KE Trained
Domain

Specialists

Low Initial Barriers for Active
Participation

Mixed-Initiative
Knowledge Acquisition

Mutual Exchange of Expertise along
Knowledge Engineering & Domain Knowledge Dimensions

Domain Descriptions

Informed
Knowledge
Engineers

Reduced
Development

Costs

Improved Long
Term

Maintenance

Document-Centered Knowledge Acquisition Environment

General Goals

KA Process

Socio-Technical
Conditions

Social Process

Preconditions

Tool

Comprehensible
Content Structure

Customized
KA Tool

Figure 3.7: A DCKA environment as a basis for mixed-initiative KA and the social process.

contained topics of the domain. For the next step, to actually contribute content, editing text
documents is a rather simple authoring paradigm. It allows for simple contributions (e.g., on
domain description or organizational information) basically without any training of a new tool
or further expertise.

Domain Descriptions The domain description forms the basis for a common understanding of
the subject domain. A centralized description for example forces the alignment process of mul-
tiple domain specialists, possibly having different opinions about some aspects of the domain.
Further, it serves as an important source of information for getting familiar with the problem
domain. This is important for the knowledge engineers or any persons coming into the project
at a later point. Often previously existing documents and illustrations can be used to create
the domain description. The document-centered approach allows to add or create the domain
description as documents easily.

Cognitive Environment for Learning For effective collaborative knowledge acquisition a
cognitive environment for learning is required, which has to provide an interaction space for
communication, studying, and resource sharing [WSG92]. The documents can form the cen-
ter of such a cognitive environment. The domain descriptions serve as a resource for learning
about the subject domain. Formalized parts of the knowledge can serve as knowledge modeling
tutorials. Therefore, some modeling examples, albeit toy examples, should be included already
at an early stage. Further, the documents can be used for indirect communication, for example

63

3 Document-Centered Knowledge Acquisition

considering the content category organizational information (c.f. Section 3.1.3). However, for
a collaborative cognitive environment of learning with distributed participants additional means
for communication are necessary to allow for discussions and coordinate the development pro-
cess. For this purpose, common communication methods can be used such as email, forums,
messenger, chat room, or voice/video chats. Those communication channels in principle are
independent of the documents and the authoring environment. Nevertheless, often specific doc-
ument content elements are serving as reference point for the domain aspect being discussed.

3.1.5.2 Mixed-Initiative Knowledge Acquisition by Incremental Formalization

The purpose of mixed-initiative knowledge acquisition is to allow every participant to contribute
according to his specific expertise. Incremental formalization is one attempt to overcome the
competency dilemma in knowledge engineering and is well-suited to support mixed-initiative
knowledge acquisition in a DCKA environment.

The process of incremental formalization is based on the domain description (c.f. Section
3.1.3), illustrating the domain knowledge in an informal way using text and figures. From the
informal description the formalization task is driven by multiple small steps. The first step is
the identification of the knowledge fragments within the description, that need to be formal-
ized to form a part of the intended executable knowledge base. These fragments then can be
reformulated, also describing their intended role for the reasoning within the knowledge base.
This knowledge base oriented description still can be created in natural language. After that,
a first try of transforming this knowledge base oriented description into the knowledge markup
language can be made. This initial, potentially erroneous or incomplete modeling can then be
refined gradually in multiple additional steps.

The advantage of incremental formalization is the decomposition of the overall knowledge
formalization task into distinct sub-steps. Each sub-step shows to be significantly easier than
performing the overall task in one step. Especially, considering the heterogeneous distribution
of competencies (c.f., competency dilemma 1.2.2) the step-wise transformation from informal to
formal knowledge provides large advantages. First, the smaller steps are easier to comprehend
one by one. Further, the distinct steps can involve different persons according to the required
expertise. For example, one person, e.g., a domain expert, can start with the initial steps. If
the person notices to have problems with further steps, e.g., with using the markup language,
the current intermediate state is persisted. The person can then inform another participant with
more modeling experience to join the formalization process at this point. The modeling expert
continues the formalization task in coordination with the former person. This mixed-initiative
workflow can either be performed in real-time interaction or in an asynchronous way by making
small modifications and leaving comments at the corresponding content elements.

We claim, that the weakness of many knowledge acquisition tools is, that any knowledge
formalization task has to be performed entirely in one single working step. Those tools then
are very hard to use by single persons, as a formalization task always requires the full range of
expertise on both dimensions, domain knowledge and knowledge engineering/modeling. Hence,
the ability for doing incremental formalization, decomposing the formalization task into distinct
steps, is one of the most important advantages of document-centered knowledge acquisition with
markup languages.

64

3.1 DCKA in a Nutshell

Several socio-technical conditions can support and improve this knowledge acquisition pro-
cess (c.f. Figure 3.7). The overall knowledge acquisition approach aims to exchange and im-
prove expertise of the participants over time, which is discussed in the following section. Addi-
tionally, the tool and content structure can be improved and adapted to the project. This adap-
tation of tool and content is introduced in detail in Chapter 4. Considering these aspects, also
the nature of the mixed-initiative workflow will evolve during the progress of a knowledge en-
gineering project. While requiring very close and frequent interaction of different participants
at the beginning, with improved competency more formalization steps can be performed by sin-
gle persons at a later stage of the project. In that way, also the long term maintenance of the
knowledge system is simplified.

3.1.5.3 Mutual Exchange of Expertise

In Section 1.2.1 we stated the need for a cognitive environment of learning to support the ex-
change of expertise. The exchange is required along two dimensions as depicted in Figure 1.1:
The knowledge engineers need to get familiar with the domain, while the domain specialists need
to acquire some basic understanding of knowledge engineering principles. Before discussing
these processes, some aspects of learning theory, considering formal and informal learning, are
introduced.

Formal and Informal Learning: Learning theory distinguishes two basic types of learning,
formal learning and informal learning. Ainsworth and Eaton [AE10] describe formal learning
as intentional, organized and structured activity. It is characterized by a formal educational
program including prepared and scheduled lessons, grades, and certificates.

Informal learning, first discussed by Knowles [Kno50], in contrast is never organized but can
be considered as spontaneous and experimental [AE10]. In practice, informal learning often is
performed ’on-demand’, that is some skill or knowledge is acquired when needed for the task
currently at hand.

An additional intermediate form is the non-formal learning [AE10]. It is intentional and
loosely organized but without formal credits, such as grades or certificates.

Both, formal and informal learning, play a fundamental role in human skill acquisition today.
While formal learning still provides basic education for example in schools, within recent years
the focus of attention in research of learning theory shifted towards informal learning. The
disadvantage of formal learning is that often one cannot determine a priori, which expertise a
person will need in future. Therefore, it is possible that a person acquires skills, which will never
be employed. Another problem is the aspect of time. Skills acquired by formal learning will be
forgotten to some extent over time, if they are not applied occasionally. This so-called ’curve of
forgetting’ [Fin13], which is assumed to be a negative exponential function, was first analyzed
by Ebbinghaus [Ebb85]. Depending on the detailed personal parameters of the person’s memory
capabilities, it verifiably leads to a loss of about the half of the information within the first week.
That problems is not as relevant for informal learning, happening on demand. Coming up during
the last years, new web technologies and ubiquitous connectivity at the working place allow for
improved support of informal learning activities.

65

3 Document-Centered Knowledge Acquisition

For the exchange of expertise in document-centered knowledge acquisition also both forms of
learning are required. Several basics need to be learned in a formal (or non-formal) way at the
beginning of a knowledge engineering project. Then the focus switches to informal learning for
the acquisition of additional special skills on demand.

Exchange of Domain Expertise The exchange of domain expertise is conducted (to some
extent) indirectly using the document-centered knowledge acquisition environment. A detailed
description of the domain is created within the document space. The illustrative character of
these descriptions should support the knowledge engineers to obtain basic insights about the
domain. It should be evolved cooperatively towards a version, which is understandable for all
project participants. The elements of this content category taken all together can be considered to
form a kind of text book, explaining the domain at a scope which is relevant for the desired appli-
cation task. In that way, new participants coming to the project can easily work into the subject
domain (and the knowledge base subsequently). For the development of the domain description
the domain specialists necessarily play a prominent role. The formation of the corresponding
document corpus takes some effort but does not require advanced knowledge engineering skills.
At the beginning, the basic skills of document editing and structuring should be trained (if nec-
essary) as an act of formal or at least intentional learning, possibly in a workshop-like style using
the document-centered authoring environment.

Many knowledge acquisition projects include a community of multiple specialists as knowl-
edge sources. One reason therefore might be that in complex domains no single person can be
expert at any subtopic. However, the involvement of multiple domain specialists requires coor-
dination as different persons also have differing mental models of the domain, considering their
semantic memory.

Convergence of Knowledge As the documents are forming a shared space in this collabora-
tive scenario, a process of alignment is required to lead to convergence of the document space.
This alignment process however is inherent to any collaborative design task, not only to knowl-
edge engineering.

The process of collaborative knowledge building has been discussed comprehensively by
Cress et al. [CK07] in the context of wikis. The theory can easily be generalized, assuming
each wiki page constituting one document. Cress et al. distinguish internalization, where a user
consumes new knowledge from the wiki content, and externalization, where the user inserts
knowledge units into the wiki. Either activity can be considered as an extension of a knowledge
space, on the one hand the users personal knowledge space and the wiki space (or document
space) on the other hand. Figure 3.8 illustrates internalization and externalization in a wiki
space with two persons A and B.

An extension as a simple insertion of the knowledge without modifying the existing struc-
ture of the knowledge space is called assimilation. An extension in contrast, which is changing
the existing structure is called accommodation. This distinction applies to internalization and
externalization respectively. According to Cress et al., when working with the wiki, the user
is matching his own individual knowledge space to the wiki knowledge space. At that point

66

3.1 DCKA in a Nutshell

Wiki Space

Externalization

Externalization

Internalization

Internalization

A B

Figure 3.8: Externalization and Internalization in a wiki space according to Cress et al. [CK07] .

Piaget’s model of equilibration of cognitive structures [Pia77] can be applied to describe the
alignment process between the different participants and the content. If a person feels the wiki
knowledge space being congruent with his/her own knowledge space, no need for accommo-
dation nor assimilation emerges, neither internally nor externally. Otherwise, if people realize
some difference, they can satisfy the need for equilibration by internal or external assimilation
or accommodation [CK07]. Acts of accommodation can be assumed to change the document
space towards the semantic memory graph structure of the respective person. In that way, by
continuous equilibration a document space, being congruent to and consistent with most partici-
pants personal knowledge space, emerges. This also implies changes within personal knowledge
spaces of these participants. An empirical example for the equilibration process is discussed in
detail by Cress et al. [CK08].

During that process also disagreeing opinions between participants about some aspect of the
domain might occur. The (repeated) reversion of changes in the documents can be an indi-
cator for these kind of disagreement. In Wikipedia this pattern, called ’negotiation’ or ’edit
war’ [VWD04], is frequently observed, often leading to ongoing disturbance. However, in the
closed and cooperative community of a knowledge engineering scenario as envisioned in this
work, these kind of disagreements can be resolved. The document-centered approach allows
to capture an alternative theory about some aspect easily. The result and argumentation of the
resolution can be inserted as organizational content serving as justification for the consensus.
It is desirable to rule out these kind of disagreements before the corresponding knowledge is
formalized to the executable knowledge base. Later the resolution becomes more complicated
as it then also needs to be considered at the symbol level.

This proceeding describes the process of the creating a unified perspective on the domain, ex-
plicitly represented by the documents. While not yet directly affecting the compiled knowledge
base content, this alignment process is an important step in collaborative knowledge engineer-
ing. As the knowledge base itself also has to be an object of mutual consent, the alignment
on the document content level is an important intermediate step. It is necessary, to provide a
common understanding of the domain, which then will be extended to a common understanding
of the knowledge base and the associated knowledge modeling tasks.

The entire domain description and its document space structure cannot be once and for all
created in one working effort. It requires ongoing improvement, extension, and refinement. A
process for the evolution of the document space is presented in Chapter 4.

67

3 Document-Centered Knowledge Acquisition

Exchange of Knowledge Engineering Expertise The other dimension of learning considers
knowledge engineering skills. This includes the task of knowledge modeling, which is usually
challenging for domain experts without computer science background.

It is not intended to broadly train the domain specialists for knowledge engineering skills a
priori. The initial training goal is to make the experts familiar with the idea, that the domain
knowledge is formalized to an executable knowledge base using markup languages. This exper-
tise can be provided by discussing small examples, using the actual subject domain or a related
one. While these basics should be learned in a formal or at least intentional way, further skills
should be developed by informal learning. Knowledge formalization is performed in a mixed-
initiative workflow based on close cooperation of domain specialists and knowledge engineers.
At an early stage of the project, the knowledge engineers perform the knowledge modeling task,
including markup expressions and modeling rationale. A major training goal for domain spe-
cialists at this point is to understand the knowledge modeling.

Every relevant sup-topic of the domain is represented in the document space. When it is
completely treated by domain description, markup expressions, and modeling rationale, this
knowledge fragment can be considered as a modeling example. In that way, the example-based
learning approach can be pursued. Learning from worked-out example is known to be a very ef-
fective learning method [ADRW00] and also very convenient for informal learning. This holds
even more when the learner is familiar the with domain of the examples. Therefore, existing
worked-out topics should boost the learning process along the knowledge engineering dimen-
sion. With this process of informal learning the domain specialists improve their knowledge
modeling skills over time. One can not intend or expect that a domain specialist will become a
knowledge modeling expert this way. However, real world knowledge bases usually are made
up of different kind of entities, featuring different complexity and modeling methods. We claim
that for this aspect also the pareto principle, also known as 80/20 rule [LHB03], applies. In this
context that means that 80% of the knowledge base content has comparably low complexity.
In consequence, with low modeling skills (e.g., 20% of knowledge engineering expert) one can
perform 80% of the knowledge modeling tasks. While mixed-initiative knowledge acquisition
encourages direct knowledge acquisition, it does not aim to assign all modeling tasks to domain
specialists. Therefore, the informal learning process does not intend to educate general knowl-
edge engineering, but only the required skills to understand and possibly maintain a significant
part of the current knowledge base at hand. Assuming the pareto principle holds in this context,
this strategy can be quite effective.

3.1.6 Authoring of Multimodal Knowledge

In Section 1.3.3 knowledge formalization was introduced as an act of communication from a
human user agent towards the knowledge-based system agent by environment manipulation. In
this section, the details about this knowledge transfer from the human specialists to the knowl-
edge base is discussed in more detail. At first, a suitable human-computer interaction model
is introduced. Subsequently, the different levels of knowledge communications are discussed.
Then the resulting requirements and possibilities for the authoring of multimodal knowledge are
presented.

68

3.1 DCKA in a Nutshell

3.1.6.1 A Human-Computer Interaction Model of Interactive Alignment

Heim et al. describe the problems occurring when users deal with formal knowledge in the
context of the semantic web [HSE11]. They introduce a general model for human-computer
interaction in that context. It is derived from a human-to-human communication model called
interactive alignment [PG04]. Heim et al. argue that semantic web applications will become
more usable if they try to simulate this kind of communication model being natural to humans.
That assumption can also be transfered to the development of knowledge-based systems as in
either case the challenge is interaction between a human and a computer system, possessing
formalized knowledge about the domain of interest. The key idea is that communication is not
a single step activity, but a multi stage process of interactive alignment. After an initial message
from the speaker, the listener provides feedback information about how she or he perceived the
information of that message, i.e., how it has been aligned to his internal model. For this purpose,
the feedback is enriched with context information illustrating the interpretation. Often no un-
ambiguous interpretation is possible. Then multiple possible interpretations are sent back to the
speaker with the demand for distinguishment. The speaker then tries to clarify the interpretation
that complies to his or her own mental model. In that way, in a multi-stage message exchange
process it is made sure that a shared interpretation of the discussed information is achieved.
Problems not only can arise on the semantic interpretation level, but also may occur already on
the syntactical analysis level. Also in that case feedback has to be given accordingly. While
in human-to-human communication an alignment between mental models of different persons
is formed, in the case of human-to-computer communication an alignment between the mental
model of the user on the one hand and the formal model of the knowledge base on the other
hand is endeavored. As computers do not understand natural language, the speech act has to be
performed using another interaction method, which is less natural to the human. Therefore, it is
even more necessary to have a process asserting the alignment of the respective semantic inter-
pretations. This interaction model is helpful for the design of a knowledge acquisition interface
as the alignment of the mental model of experts and the semantics of a formal knowledge repre-
sentation is a key challenge of knowledge engineering. If a piece of knowledge is entered into
a knowledge acquisition tool, it should provide verbose and instant feedback about its semantic
interpretation. Then the user can verify whether that complies to his intention.

3.1.6.2 The Levels of Knowledge Communication

The communication process of each piece of knowledge passes through multiple stages before
it can successfully be accessed by the knowledge-based system agent and actually play its role
in the desired problem-solving process. In principle, on each of these levels the process of
communicating a piece of knowledge can fail. We introduce the following the four levels of
formal knowledge communication, also discussing detection of problems on each level:

1. Syntax Level: This level describes the first syntactical analysis of the perceived ’sensor
data’. Problems on this level can be detected independently of all the existing knowledge
only referring to the respective input data at hand.

2. Terminology Level: This level describes the matching of the employed term references

69

3 Document-Centered Knowledge Acquisition

to the known terminology of domain concepts. Pieces of knowledge can be considered as
propositions about concepts of the domain of discourse. For the coherence of the knowl-
edge base it is important that the system can unify concepts that are meant to be the
identical concepts across different propositions.

3. Knowledge Representation Level: This level describes the compliance and consistency
with respect to reasoning of the piece of knowledge with the knowledge already present in
the knowledge base. The characteristic of this category is that its verification requires to
know about the symbol level knowledge representation used and its semantics. Detection
of knowledge representation level problems can be rather hard, often requiring a serious
amount of computation efforts, depending on the inference mechanism and knowledge
base size. The violation of consistency is a common example of a failure on this level,
being relevant for many established symbol level knowledge representation formalisms.
For more details, we refer to literature (c.f., [BKS07]).

4. Domain Level: This level describes the actual contribution of the piece of knowledge to
the correct solution of the problem-solving task. The detection of domain level problems
in the end is particular hard. In the first instance, those problems cannot be detected
automatically by the system at all, as basically wrong knowledge had been told. This fact
cannot be realized by the knowledge-based system agent without help. For the detection of
these problems the corresponding (correct) domain knowledge in some form is required.
Typically, these problems are detected by validation efforts, employing extensive manual
testing or inspection by experts or test cases, that also have to be specified by domain
experts. While for the other categories automated and reusable methods can be applied
for detection, the validation task on domain level can only be achieved by bringing in
additional domain competency.

For the forth level, one can argue whether it indeed represents a case of faulty communica-
tion. Basically, knowledge has not been communicated wrong, but wrong knowledge has been
communicated (correctly). Still, assuming the knowledge is present correctly at the information
source, that is the speaker, the error must have arised somewhere on the communication path.
However, for the overall goal of efficient knowledge engineering the issue is of high importance
in either case.

These stages are valid in general for all knowledge acquisition tools. However, different kinds
of tools have different methods to deal with the communication problems on the different levels.
Tools based on graphical user interfaces can be designed to prevent errors at the syntax and
usually also on the terminology level. The document-centered knowledge acquisition approach
needs to deal with these levels in a different way.

3.1.6.3 Problems in Markup-based Knowledge Authoring

In Section 3.1.6.2 we explained that knowledge being communicated between agents has to pass
multiple levels. On each level communication problems can arise and need to be detected. It
shows that the task of detecting these problems increases in complexity on each subsequent

70

3.1 DCKA in a Nutshell

level, while being a prerequisite for an interactive alignment process. Therefore, it is neces-
sary to analyze the flavor of the problems that might arise at the different stages when employ-
ing document-centered knowledge acquisition. The knowledge source text, formulated using
knowledge markup languages, needs to be compiled towards an executable version which is the
application of τ (c.f. Section 3.1.2). This is unproblematic assuming the correct use of M .
However, in a scenario where human users, having more or less experience with the markup
language, edit the content, an incorrect use has to be expected. In the following, we discuss how
the different categories of problems take effect and how they can be treated using interactive
alignment:

• Syntax Level: These kind of errors occur when some statement does not comply to
the formal syntax of the markup language. Helpful error messages should be provided,
possibly providing links to examples using the syntax correctly.

• Terminology Level: If unknown concept identifiers are used or a concept of inappro-
priate type with respect to the context, corresponding error messages can be generated.
Further, known concept identifiers can be proposed according to similarity measures.

• Knowledge Representation & Domain Level: From the knowledge representation stage
on, the detection task as such is independent of the knowledge acquisition tool, i.e., the
markup language in this context. Therefore, only the way of presenting the feedback to
the user can be discussed.

3.1.6.4 Support for Knowledge Authoring

Editing of documents is a pure and simple authoring paradigm. It is well suited for providing
low barriers for participation. However, extending the document-based authoring paradigm by
possibility to create formal knowledge bases by the use of markup languages is a challenging
task. While the intuitive authoring paradigm is retained for informal content parts, additional
help for creating markup expressions should be provided.

Authoring by Interactive Alignment Interactive alignment is a promising communication
strategy also employed in human communication. The immediate feedback allows to detect and
resolve misunderstands or ambiguities quickly. Therefore, knowledge authoring in document-
centered knowledge acquisition also should follow this strategy. For each of the levels of knowl-
edge communication, discussed in Section 3.1.6.2, a check for correctness and verbose feedback
to the author should be provided. For the first three levels the feedback usually consists of error
messages if problems have been detected. These errors, which can be located at a particular
position within markup expressions, the message should prominently highlighted at this point
when the document is displayed. Otherwise, especially considering the knowledge represen-
tation level, the error messages need to be presented to the user in a way easily recognizable.
Interactive alignment on the domain knowledge level implies that the executable knowledge
base is instantly executed with a set of predefined input parameters. If possible considering the
required runtime, the result is instantly presented to the user after modifications. In that way,

71

3 Document-Centered Knowledge Acquisition

the actual operational semantics of the created knowledge can be compared to the intended se-
mantics in a comfortable way. It can also be combined with automated testing using continuous
integration2.

After the detection and presentation of the problems, also possible solutions can be proposed
to the user. In the simplest case, for misspelled concept identifier correction propositions based
on edit distance on the known concept terminology are given. This strategy is also heavily
applied in software engineering (e.g., [MBH+12]) known as IDE recommendations or simply
quick fix options.

Autocompletion Autocompletion support is established in IDEs for software development
(e.g., the Eclipse Java IDE) and has been subject of research in the area of software engineer-
ing for years (c.f. [HR04, HWM09, KM06]). These techniques are today employed in almost
any kind of text input field. Especially in search engines the words, which are very likely in
the respective context, are proposed to the users [Bas06] for autocompletion. These techniques
reduce the typing workload for the users significantly. They are also well-suited to be employed
for editing knowledge markup languages.

Special Editors We advocate the use of knowledge markup languages for the representation
and authoring of knowledge base content as an alternative to the use of graphical user interfaces
and forms. However, the advantages of document-centered knowledge acquisition with markups
are not due to the fact that the knowledge is entered by typing formal syntax instead of using GUI
elements. Typing formal syntax can at some point be considered as awkward and cumbersome.
However, the advantage of markup languages is not rooted in the way it is edited, but in the way
it is perceived. Its strength is its readability and the way it can be integrated with the other doc-
ument content, e.g., the domain description. Further, various markup languages can be designed
for specific purpose, see Chapter 4 for more details. Hence, the use of markup languages sup-
ports well the understandability of the knowledge base. We claim, that much more time is spent
reading and understanding knowledge than actually editing it. Therefore, readability is the prior
goal. Nevertheless, the editing of the markup expressions can be supported by helpful authoring
support. One simple example is code completion as known from programming environments
in software development. Further, the editing of markup expressions can also be augmented by
graphical interaction elements, such as drop-down menus or drag-and-drop functions (e.g., for
terminology objects). There is a wide range of possibilities to support the authoring of particular
markup languages with special editors. We recommend the introduction and use of these kind of
special editors for specific markups. It however should not affect the readability of the content
or somehow distract the reader. That is, interaction elements should not be prominently visible
in the basic view of the content. If this is desired or necessary for efficient editing, we recom-
mend the use of external editors. Then only one link or button is required to open the respective
markup expression in the specific external editor. After editing, the editor is closed and the mod-
ified markup expression is inserted at the corresponding location in the document, replacing the
former expression. With the introduction of special editors, the user is able to choose between
the normal text-based editor and the one or multiple special editors according to his preferences.

2http://martinfowler.com/articles/continuousIntegration.html

72

3.2 The Advantages and Challenges of DCKA

3.2 The Advantages and Challenges of DCKA

We already pointed out that the interaction paradigm most widely used for knowledge acqui-
sition is the use of graphical user interface. DCKA does have quite different characteristics
when compared to this authoring paradigm. Not all of them are obvious at first glance but show
their relevance in practice. In this section, the advantages and challenges of the document-
centered method are compared to the GUI-based approach. Then, the requirements of an effi-
cient document-centered authoring environment are discussed.

3.2.1 Advantages

The following aspects make the DCKA approach attractive for direct participation of domain
specialists within the knowledge acquisition activities.

3.2.1.1 Low Barriers for Basic Contributions

The level of the technical skills of the participating users typically is rather diverse in knowledge
engineering projects. In Section 1.4 the importance of providing low barrier contributions espe-
cially for novice users was discussed. Perception, i.e., reading of browsing of existing content,
is posing the first barrier also constituting an important prerequisite for any other knowledge
engineering task of active participation. Many GUI-based tools, which allow for the creation of
complex knowledge bases, require considerable need of training before use. This also holds for
editing tasks that actually are very simple. In any case, the user has to get used to a completely
new tool environment. Working through some documents in contrast is not very challenging
and most people are already used to read and maintain content as electronic documents. There-
fore, for tasks of low technically complexity, such as proof reading, no training is necessary at
all. Hence, the document-centered approach provides quite low barriers for active participation
(c.f. 1.2.2.2). For the next step, to actually contribute to the content, editing text documents
is a rather simple editing paradigm. Being used to these kind of simple contributions without
difficulty, contributors often feel encouraged to explore more complex tasks.

3.2.1.2 Incremental Formalization

The creation of a knowledge base entity with a GUI-based tool usually requires to perform the
entire formalization task in one step. This involves having the respective domain knowledge
at hand, do the knowledge modeling, and insert the model correctly using the graphical user
interface. This complex task requires expertise in both dimensions, domain knowledge and
knowledge engineering skill. The strategy of incremental formalization, already introduced in
Section 3.1.5.2, proposes to decompose the complex task into multiple steps. That is difficult,
when using a graphical user interface, but simple with the document-centered approach. It starts
with the insertion of informal content describing the domain, such as text and figures. At first,
it serves as a startup for the formalization process and later it forms the documentation and
context of the knowledge base components. The incremental formalization workflow proceeds
with the identification of those content parts, that need to be formalized to form the intended
executable knowledge base. Then a tentative formalization is made, that is, the selected content

73

3 Document-Centered Knowledge Acquisition

is transformed towards the knowledge markup language. This formalization can be gradually
refined. These distinct steps require different degrees of expertise in the domain, in knowledge
engineering, and usage of the respective acquisition tool. It can involve different persons on
different steps in a mixed initiative formalization process, simplifying the accomplishment of
the formalization task. Hence, the incremental formalization workflow allows the participants
to be able to contribute according to their respective expertise.

3.2.1.3 Freedom of Structuring

The structure of the content in the documents, i.e., the document space (c.f. Section 3.1.4), can
freely be designed. Within one document the order of the content elements is free to the user
and can be adapted to his mental model of the domain. Domain description, modeling rationale,
and organizational information can be inserted at any place and in any style. Further, the doc-
uments can freely be interlinked with others making interrelations of content parts explicit and
improve navigation. This freedom of structuring allows the documents to evolve a memorable
and comprehensible structure, becoming familiar to the authors. It is one of the most power-
ful advantages of document-centered knowledge acquisition. These means of structuring the
content are typically not present or strongly limited when using GUI-based tools.

While a good document space structure provides large benefits on comprehensibility of the
knowledge base, it also comes with a burden. The good structure needs to be maintained, that
is, new contributions have to comply to this ’good’ structure, posing a notable responsibility on
the contributor. A detailed discussion of the possibilities to maintain and improve the structure
of the document space is given in Chapter 4 in context of meta-engineering for DCKA. While
the value of this freedom allowing a comprehensible document space structure can hardly be
overestimated, it however also contains a considerable challenge and therefore might also have
been mentioned in the subsequent section discussing the challenges.

3.2.1.4 Example-based Authoring

”...learning from worked examples is of major importance in initial stages of cog-
nitive skills acquisition.”

Atkinson et. al. [ADRW00]

Assuming the case that a user is working on the knowledge base, finding a particular knowl-
edge entity, and wants to create a new one with similar characteristics. In GUI-based tools it is
often not obvious how the entity and its characteristics have been created by the given interface.
Hence, for novice users even the creation of a similar entity can be a considerable challenge in
this scenario. That problem can not occur in document-centered knowledge acquisition. If a
knowledge base entity is found, the user can simply copy/paste&modify the respective markup
expression. Therefore, no peculiarities of the tool have to be known.

Contributing to the compiled knowledge base requires knowledge formalization skills, i.e.,
use the markup languages and the knowledge modeling skill. However, acquisition of both
skills can benefit from example-based learning. On the syntax level, the use of the markup
language can (literally) be copied from the examples by copy/paste&modify. Often only the

74

3.2 The Advantages and Challenges of DCKA

domain object names need to be exchanged to create new valid knowledge. While the attraction
of copy&paste in software engineering is known and proscribed for producing redundant code,
it is unproblematic in this context of declarative code, but allows a smooth introduction to the
formalization task. The modeling skill being much more challenging, however can also be
improved on the basis of simple toy example knowledge bases provided within the document
corpus. To support this method of learning, modeling examples can and should be included in
the document-centered authoring environment. Learning from worked-out examples is typically
a very effective way of cognitive skill acquisition, especially for novices [ADRW00]. At later
stages of the project, already existing knowledge base parts can serve as syntax examples and
modeling examples.

3.2.1.5 Quality Management

Quality management is a crucial and challenging task in the knowledge base development and
maintenance process. Also in the domain of software engineering the aspect of quality manage-
ment has been studied for many years. A very successful set of practices that was established
within the last decade, especially in the context of agile software development [BA04, Mar09],
is called Continuous Integration (CI). According to Fowler3 the main requirements for CI are
the use of a code repository, automated building, automated tests, frequent and timely integra-
tion of changes, and easy access to the latest builds. The main benefits of CI are, that always a
valid version of the system is available for deployment in a productive setting. Further, problems
emerging by changes are recognized very early, making debugging easy and reducing risks of
complex change operations. It continuously guarantees quality and transparency. The knowl-
edge base authoring approach described in this paper allows for straight forward application of
CI. Also GUI-based tools allow for the application of CI. There, an extra strategy for defin-
ing versions of the knowledge base needs to be established and introduced to the user. In the
document-centered case, in contrast CI can be applied in a very natural way putting the docu-
ments into a centralized version control system.

3.2.2 Challenges

Above we discussed the advantages of the document-centered knowledge acquisition approach.
These considerable advantages however come at the cost of additional challenges arising when
using this method. In the following, these issues are briefly described together with possibilities
to overcome them.

3.2.2.1 Authoring Assistance

One important aspect of document authoring is that any input inserted by a user will be ac-
cepted, that is stored at least. Correct communication of formal knowledge is a challenging
task as discussed in Section 3.1.6.2. Graphical user interfaces usually are designed in a way,
that prevent the user from making errors on the syntactical and the terminology level. With re-
spect to this, the situation in DCKA using markup languages is more challenging. The use of

3http://martinfowler.com/articles/continuousIntegration.html

75

3 Document-Centered Knowledge Acquisition

a markup language for this task can be unfamiliar to the user and requires reasonable authoring
assistance. Especially for unexperienced users it is important to provide good support during
and after the typing process. The interaction model based on interactive alignment discussed in
Section 3.1.6.1 provides a guideline principle for creating authoring assistance. In general, it is
important to provide as much feedback as possible about how the user input is perceived by the
system. The challenges and methods on each level of knowledge communication have been dis-
cussed in Section 3.1.6.4. Visual feedback, reflecting the systems understanding of the content
is absolutely essential. One can state that several techniques for user assistance are existing in
software engineering, e.g., autocompletion, are suitable to be applied in the document-centered
knowledge acquisition context. The well-conceived application of these techniques is an impor-
tant prerequisite to allow efficient participation for a wide range of persons on the knowledge
acquisition process.

3.2.2.2 Content Refactoring

Refactoring is defined as changing the structure of something without changing its semantics.
Refactoring has been widely discussed in software engineering [Fow99] as well as in knowl-
edge engineering (e.g., [GT97, BSP04]). In agile knowledge engineering the need for this kind
of restructuring of the knowledge base is a very typical phenomenon. When using GUI-based
tools refactoring in general is easier, as there is no informal content that is organized in a docu-
ment structure, which needs to be maintained. In document-centered knowledge acquisition, we
need to distinguish two distinct levels of refactoring, the document level and the symbol level
refactoring.

Symbol Level Refactoring: This level of refactoring resembles the refactoring operations as
well known in knowledge engineering, independently from the acquisition technique. It implies
to restructure the symbol level knowledge base without changing its semantics. These kind of
refactoring methods usually strongly depend on the employed symbol level knowledge repre-
sentation formalism and its semantics. For example, the rearrangement of proposition logics
formulas (e.g., by applying De Morgan’s law) is semantic retaining refactoring. Refactoring
methods for particular symbol level knowledge representations can be found in literature (e.g.,
[GT97, BSP04]) and are not further discussed in this context. The characteristic difference to
the document level of refactoring is that symbol level refactorings do change the symbol level
knowledge base (while not its semantics).

Document Level Refactoring: Another level of refactoring arises due to the document space
structure that is given in document-centered knowledge acquisition. A knowledge base KB
is created by a compilation step applying τ on the current version of the document base DB:
τ(DB) = KB; Any document base modification m(DB) = DB∗ has to be considered as a docu-
ment level refactoring operation if:

τ(DB) = τ(DB∗) = KB,

While refactoring on the symbol level changes document content (necessarily) and the sym-
bol level knowledge base, the document level refactoring only modifies the document content,

76

3.2 The Advantages and Challenges of DCKA

leaving the symbol level knowledge base identical (and therefore its semantics). Although the
mapping function τ depends on the markup language provided, such modifications in general
exist. One of the positive aspects of document-centered knowledge acquisition is the fact, that
informal knowledge can be entered in an unconstrained way, e.g., domain description. As these
parts are not considered by τ , the requirement above holds when the informal knowledge is
changed. However, there are also refactoring operations that involve the markup statements that
are compiled by τ . As a knowledge base is considered as a set of (unordered) items, ordering
of the knowledge slices in the documents can freely be chosen without modifying the knowl-
edge base. Indentation or comments within markup expressions are further examples, which
formally belong to this category. Often, the markup language is composed of multiple different
sub-languages in a way making τ to be non-injective. That allows to define the same knowl-
edge in different ways. For example, rules can be defined in IF-THEN text markup or in tabular
style resulting in the same rules in the compiled knowledge base. The transformation of rules
from one to the other markup then is a document level refactoring operation. While refactoring
operations always can be carried out manually by editing the documents, it is sometimes con-
venient to provide mechanisms to perform the document changes automatically. These kind of
mechanisms are discussed in more detail in Chapter 5.

In general one can say, that refactoring is a more important issue in document-centered knowl-
edge acquisition then when working with GUI-based tools.

3.2.2.3 Navigation and Search

The possibility of free content organization also requires the need for solutions for navigation
and search. Within the knowledge engineering process many different kinds of tasks have to be
performed. Most of these tasks require the user at first to find the location of action, which is the
document and the position within that document being subject of the task. To find the location
of action, different strategies are possible:

• Navigation: The document space should be organized in a hierarchical structure, with
each document covering a coherent subset of the domain also provided with a meaningful
name. If the hierarchical structure is available as hyper-links the user can easily navi-
gate through the domain knowledge to find the location treating the demanded aspect.
However, this hierarchical structure, including the content partition into (named) docu-
ments, has to be created carefully from the beginning on. Still, it might occur during
project progress that the structure is not appropriate anymore. Then, refactoring to a more
suitable structure is inevitable to allow for efficient navigation. Beyond the hierarchical
structure, cross-linking of related content elements should be maintained.

• (Semantic) Search: A simple and often successful mechanism to find content in a set of
documents is full text search. Still, full text search has its limitations due to the ambiguity
of natural language content. However, in many cases the (already existing part of the)
knowledge base can be abused to support a more efficient search method. A simple way
to find interesting locations about a specific domain concept is to generate a list of the po-
sitions, where the concept occurs in markup expressions using the compiler information.
But also the actual relations in the knowledge base can be exploited to allow for a kind

77

3 Document-Centered Knowledge Acquisition

of semantic search. For example, a medical knowledge base can be used to search for
locations, where some heart disease and some antihypertensive medicament is mentioned,
presumed it contains the knowledge about what concepts are heart diseases and which are
antihypertensive medicaments. Then all content parts containing such concept combina-
tions can be suggested. This corresponds to the so called query expansion method, which
is a wide spread semantic search technique [Voo94].

• Bookmarks: By the use of bookmarks, the responsibility for access to the contents of
interest is left to the user. Each user is able to maintain his own library of bookmarks,
each linking to a precise location within the document base. Today, many bookmark
management systems are available providing categorization and keyword mechanisms.
For the case that a web-based DCKA environment is used, most browsers provide an
integrated system for bookmark management.

3.2.2.4 Redundancy Detection

The freedom provided by DCKA makes it possible that multiple markup expressions, which are
forming the same knowledge base entities, are entered into the documents at different locations.
While this redundancy might not be a problem for the knowledge repository and the reasoning
engine, it poses problems for the maintenance of the knowledge base. Let e1 and e2 be markup
expression where τ(e1) = τ(e2) = r ∈K . As τ({e1,e2}) = τ({e1}) = τ({e2}), the user will
be confused when performing the respective document modification without that the knowledge
base content or behavior changes. To prevent this kind of confusion, redundancy detection
should be provided. For injective markup languages, redundancy detection can be performed on
the expression level, that is comparing e1 and e2. For non-injective markups (the common case
in practice) redundancy detection has to be performed on the knowledge repository level, that is
checking τ(e1) = τ(e2). If for some expression pair this condition holds, a corresponding report
should be provided to the user. In that way, he is able to resolve the redundancy by identifying
and deleting unnecessary statements. However, not every knowledge repository implementation
is able to detect such redundancies off-the-shelf.

3.2.2.5 Debugging

Debugging of knowledge bases is a necessary task in practice. One possibility for enabling this
is extending the knowledge base testing interface to allow for debugging by displaying infer-
ence traces and values. This method of debugging is independent of the documents. Hence, the
habituated view on the human-oriented layer of knowledge including domain description and
modeling rationale then is not available. Still, this content is especially valuable, considering
a complex task such as debugging, as it provides the context, which the knowledge had been
creating in, including the modeling rationale for instance. From a technical point of view this is
the simple method. In particular, any existing debuggers for the employed knowledge repository
implementation can be employed. Nevertheless, in the end after a debugging session any cor-
rections need to be done in the document content. Finding the corresponding markup expression
for the piece of knowledge to be changed can be non-trivial.

78

3.2 The Advantages and Challenges of DCKA

A much better solution, while also implying more technical efforts, is embedding a debugging
layer within the document-centered knowledge acquisition environment. That is, for each piece
of knowledge, the reasoning result should be accessible within the presentation view of the
document, e.g., using color codes or pop-ups. Then a user can inspect the semantics instantly
after writing the markup expression of a piece of knowledge. This can be considered as the
continuation of the interaction model of interactive alignment (c.f. Section 3.1.6.1) towards the
semantic level. This also requires to keep track of a mapping from each markup expression to the
created elements of the symbol level knowledge base (e 7→ τ(e)) to be able to retrieve reasoning
traces. This mapping can easily be generated and stored during the compilation process.

3.2.3 Requirements for a Document-Centered Authoring Environment

Based on this discussion of advantages and challenges, the requirements for a document-centered
authoring environment can be derived:

• Simple Access: Most important is the simple access to the documents. Access should
be possible at low technical barriers and an intuitive interface should allow for a common
way to create informal document content (e.g., text, tables, figures). While sophisticated
features need to be included within the system in principle, the tool should be designed
for keeping the main interface simple. Methods for designing simple to use interfaces are
given by Maeda in the Laws of Simplicity [Mae06]. Hiding of complicated and rarely
used features is one valuable strategy for this purpose.

• Compatibility to Common Document Editing: The system should comply to the char-
acteristics of electronic document editing enumerated in Section 3.1. This also includes
the compilation of the knowledge and the response to the user.

• Markup Language: A set of convenient and well readable markup languages, geared to
the symbol level representation language, needs to be supported, including simple ones to
be usable by non-expert users as well as expressive ones. For each markup, documented
examples should be provided within the system from the beginning.

• Testing Interface: Some kind of testing interface should be included, allowing the users
to instantly test the created/edited knowledge base. Beside a normal interactive interface,
inline-query mechanisms can be helpful. There, an input data set for the knowledge base
(for instance, a query or a problem description) is written into a document. Then every
time the document is displayed, the current knowledge base is executed on that input data
and the result is shown along with or instead of the input data content in the document.
In that way, test input data can be reused over time. This mechanism can also be easily
combined with continuous integration.

• User Assistance: Above, several challenges emerging in document-centered knowledge
authoring have been discussed. An efficient and user friendly document-centered author-
ing environments needs to address these by providing assisting technologies for editing
(syntax check, autocompletion), debugging (interactive debugger), visualization, version-
ing (backup with simple revert function), and refactoring.

79

3 Document-Centered Knowledge Acquisition

3.3 Semantic Wikis and DCKA

Wikis are one of the most successful application classes coming up with the successful emer-
gence of the so called Web 2.0. Since their introduction by Ward Cunningham [LC01] wikis
have been installed as simple but effective knowledge management solutions within almost ev-
ery larger organization to support communities of practice. Hundreds of wiki clone implemen-
tations have been created as commercial or open software. Some of the most important wiki
engines are Media Wiki4 (the wiki engine of wikipedia), FOSWiki5, and Confluence6, which is
a commercial solution. An overview on existing wiki engines is maintained on Wikipedia7.

3.3.1 Semantic Wikis

The key strength of wikis is the simple and unconstrained contribution mechanism. However,
this also implies challenges as the knowledge is usually created entirely in an unstructured way.
Therefore, it cannot be processed by machines (except as plain text) to help querying or refac-
toring of the knowledge. This flaw was addressed by so-called semantic wikis [SBBK09], which
are an extension to the normal wiki concept. In semantic wikis, the content is not only man-
aged as plain text but additionally a structured model of the knowledge is formed. By use of
this model, the system is able to support tasks like search, navigation, queries, and maintenance
much more efficiently. However, the creation and maintenance of the model in parallel to the
normal (unstructured) content also poses additional workload on the users, which needs to be
addressed. The semantic wiki system most widely used is Semantic MediaWiki [KVV06]. One
major goal of the Semantic MediaWiki project was to turn Wikipedia into a semantic wiki that
allows for queries on the content that can be automatically answered by the system [VKV+06].
However, the amount of workload to create the model and the scalability of the required query
engine at the scope of Wikipedia are large challenges for this approach. Other semantic wiki
engines, being rather diverse with respect to the nature of the model and way it is created by
the users, are SweetWiki [BGS+11], AceWiki [Kuh08], KIWI [SEG+09], MOKI [DFGR12], or
SWIM [Lan08].

3.3.2 Wikis and DCKA

An authoring environment requires a centralized repository for document management and com-
pilation of the knowledge base and further a mechanism providing the users access to the docu-
ments. Wikis provide all characteristics of a collaborative document authoring system. In partic-
ular, wikis comply to the expected user experiences of document authoring stated in Section 3.1.
Each wiki page can be considered as a document. (These terms will be used synonymously in
the further.) Users can freely edit the content and the pages will not be modified by the system
without user action. Further, new pages can be created easily provided with a descriptive name.
The web browser as front-end and the simplistic wiki interface have been proven to pose rather

4http://www.mediawiki.org
5http://foswiki.org/
6http://www.atlassian.com/software/confluence/overview
7http://en.wikipedia.org/wiki/List of wiki software

80

3.3 Semantic Wikis and DCKA

low barriers and are widely accepted. Therefore, we claim that wikis are perfectly suited to
provide the basis for a document-centered knowledge acquisition environment.

3.3.3 Semantic Wikis and Knowledge Engineering

As discussed above, the purpose of a semantic wiki is to additionally create a formal model along
with and corresponding to the content. While the use cases of semantic wikis are rather diverse,
according to Krötzsch et al. [KSV07] one can distinguish two major categories of applications:

• Semantic Data for Wikis: In this application scenario the knowledge management as-
pect of the tool is in foreground. A knowledge management solution is desired that could
either be served by a standard wiki or a semantic wiki providing additional functionality
enabled by the semantic model. Here, primarily semantic navigation and search is im-
portant enabling the user to find and manage the actual wiki content (such as texts and
images) more effectively. Hence, the purpose of the semantic model is to improve the
tool’s content management capabilities.

• Wikis for Semantic Data: Contrary, in the Wikis for Semantic Data scenario the se-
mantic model itself is the actual artifact of desire. The wiki here basically is used as a
development environment for the model. The additional wiki content (only) supports the
development process, illustrating and documenting the domain knowledge. Depending of
the application scenario, after development the knowledge model/base is often extracted
from the wiki to be installed in the final productive system, such as a decision-support
system for example.

The boundaries of these two general scenarios are not strict and they may overlap. For exam-
ple, if a knowledge base for a decision support system is created and additionally an information
system for manual research should be provided, both scenarios are present at the same time. This
mixed scenario in principle can also be handled by semantic wikis effectively. While most ap-
plications and systems reported about in literature have to be categorized into the first scenario,
from the view point of classical knowledge engineering the second scenario is predominant.
Therefore in this work the application of semantic wikis is considered in this way, i.e. providing
(a basis for) a development environment for knowledge bases.

Most semantic wiki systems available or described in literature are using a knowledge model
that is based on RDF8. However, in principle arbitrary knowledge representation formalisms
can be employed to capture the model of the knowledge, depending on the application. As
already discussed in Chapter 1, the knowledge engineering approach presented in this work is
not tied to a specific symbol level knowledge representation. It considers knowledge acquisition
in document-centered style using a semantic wiki-based tool for various kinds of knowledge
representations. In the following section, we introduce the approach with respect several kinds
of different knowledge formalisms to demonstrate the wide applicability of the approach.

8http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

81

3 Document-Centered Knowledge Acquisition

3.4 Markup-based Knowledge Acquisition Tools

Beside semantic wikis currently there are not many tools available that follow the principle of
knowledge formalization with markups in documents. One example in this direction is Drools
expert9 by JBoss, which is a free business rules engine [Bro09]. It uses predicate logic style rules
with predicates and variables. The Rete algorithm [For82] is employed for the rule inference.
The encoding of the business processes of an organization as rules, however, is a non-trivial
task of knowledge acquisition. Drools expert comes with an knowledge acquisition tool being
mainly syntax-based. Figure 3.9 shows a screenshot of the tool. It allows to define the rules
by a specific syntax within different source files. However, there are still several important

Figure 3.9: The knowledge acquisition environment of drools expert.

9http://www.jboss.org/drools/drools-expert

82

3.5 Different Application Scenarios for DCKA

characteristics of a document-centered authoring environment missing, when compared to the
specification given in Section 3.1. Most importantly, no informal content can be inserted into the
documents, such as informal text, figures, or charts. Only the formal rule syntax may be used (,
while comments are allowed when using the proper comment escape syntax). Further, the tool
does not allow for collaboration on the source documents10, which is a key aspect of the mixed-
initiative knowledge acquisition strategy, for example allowing for incremental formalization
involving persons of different expertise. Further, the tool, being an extension for the complex and
comprehensive IDE eclipse11, is well-suited for users with programming background. However,
for users without technical background it does not comply to the low barriers principle as the
flood of complex functionalities offered by the user interface may easily frighten novice users.

Nevertheless, knowledge acquisition of business rules knowledge, such as drools, is a scenario
that can be addressed by document-centered knowledge acquisition as introduced in this chapter.
An appropriate authoring environment considering the aspects discussed above easily can be
envisioned. Therefore, a syntax similar to the one shown in Figure 3.9 can be employed. While
the incorporation of Java statements is convenient for programmers, it might not be necessary
in every application scenario. If it is not required probably a more simplistic syntax for the
representation of the rules might be suitable.

3.5 Different Application Scenarios for DCKA

Looking at intelligent systems at a broader scope a whole range of knowledge intensive appli-
cation scenarios from the AI landscape are relevant today. Beyond classical knowledge-based
systems for diagnosis or planning, applications like e-learning or data-mining (business intel-
ligence) can be considered, showing fundamental differences in nature of the required knowl-
edge. The document-centered knowledge acquisition approach, not being specific for a particu-
lar knowledge formalism, can be applied to a wide range of these scenarios. In the following for
a diverse selection of different knowledge intensive scenarios the approach is introduced in an
exemplary way.

3.5.1 Ontologies in RDFS/OWL

RDFS12 and OWL13 are two related languages for formal ontology representation having arisen
from the last decade of semantic web research. Due to their precise standardization and the good
tool availability, they play an important role in ontology engineering today.

For either language different markups can be used to form ontology statements, including for
example the Turtle Syntax14 for RDF and the Manchester Syntax for OWL [HDG+06]. More
details about developing ontologies with document-centered knowledge acquisition can be found
in [RBFP12].

10except when using additional version-control plugins for eclipse, e.g., SVN
11http://www.eclipse.org/
12http://www.w3.org/TR/rdf-schema/
13http://www.w3.org/TR/owl2-overview/
14http://www.w3.org/TeamSubmission/turtle/

83

3 Document-Centered Knowledge Acquisition

3.5.1.1 Markup for RDFS:

The major categories of objects in RDFS are classes, properties and individuals. While some
objects are predefined in the RDF Schema language, the definition of new domain objects to
create the domain terminology is an important task when creating a new ontology. For this
purpose, different kinds of simple markups can be provided. One possibility is the use the object
category keyword (at line beginning) followed be the object term name as shown in the following
markup example:

1 Individual Jochen Reutelshoefer

2 Class Person

3 Class Author

4 Class Writing

5 Property authorOf

6 Property hasTitle

In this example the object Jochen Reutelshoefer, Person, Author, Writing, authorOf, and
hasTitle are defined in a straight forward way. This markup is line-based, i.e. each statement
is terminated by the linebreak. In the following example, additional knowledge about some of
these objects is defined in a concise way:

1 Individual Jochen Reutelshoefer type:: Person

2 Class Person

3 Class Author subclassOf:: Person

4 Class Writing

5 Property authorOf(Person -¿ Writing)

6 Property hasTitle(Writing -¿ PlainLiteral)

In line 1, additional to the introduction of the individual Jochen Reutelshoefer also a class as-
sertion is given. For the class Author a subclass relation is defined in a similar way in line 3.
In line 4 und 5, the properties authorOf and hasTitle are provided with domain15 and range16

definitions that describe to which classes subject or object resources of this property belong to,
respectively.

The example page shown in Figure 3.10 shows the use of the different markups mentioned
within a prototype system of a corresponding document-centered knowledge acquisition envi-
ronment. Declarations of new entities are highlighted in purple while references to existing
ones are rendered in green. Predefined vocabulary (RDFS/OWL) is rendered in bold black font.
Individuals can be introduced by using the ’Individual’ keyword (1), while roles are defined
using the keyword ’Class’ (2), as illustrated above. Object properties can be defined in a similar
way and optionally class references as domain and range can be given in brackets (3). Further,

15http://www.w3.org/2000/01/rdf-schema#domain
16http://www.w3.org/2000/01/rdf-schema#range

84

3.5 Different Application Scenarios for DCKA

Figure 3.10: An example wiki page showing several markups to define ontology components in
view (a) and edit mode (b).

85

3 Document-Centered Knowledge Acquisition

entities can also be defined as triples (4). Simple triple relations (5) can also be asserted by
’>’. Basic RDFS/OWL vocabulary is available from the beginning. For more advanced users a
version of the Turtle Syntax17 is available to create more complex RDF expressions introduced
by ’ttl’. For the quick and simple definition of explicit class hierarchies a dash-tree markup (7)
can be employed. There each class of a tree node is considered as rdfs:subclassOf its dash-tree
father class, i.e., its predecessor having one dash less in its prefix.

3.5.1.2 Markup for OWL

The ontology web language OWL [HPSvH03] has evolved from the former ontology represen-
tation language DAML18 and OIL [FvHH+01, Hor02]. The language was provided with XML-
based and description logics style syntaxes. To improve readability for humans the Manchester
Syntax19 [HDG+06] for OWL has been designed. Beside improved readability of the language,
it also provides a convenient way for editing in the style of document-centered knowledge acqui-
sition. The syntax is frame-based, that is, each ontology entity is defined as a frame describing
the characteristics of the entity. The keywords for the entity definitions (e.g., ’Class:’, ’Individ-
ual:’) indicates the use of a Manchester Syntax statement.

In Figure 3.11 an exemplary document from the pizza domain20 is shown describing Pizza
Margherita. On the lower part, the Manchester Syntax is used to add the definition of a corre-
sponding class to the ontology (a). The right hand part (b) shows the corresponding document
source text.

3.5.2 Diagnostic Problem-Solving Knowledge with d3web

Another problem-solving task prominent in AI is the diagnosis or classification task, being rel-
evant in many domains as for example disease diagnosis in medicine or fault diagnosis on tech-
nical devices. There, for a given problem description the most appropriate solution from a set
of predefined solutions is to be selected. For this inference task various problem-solving mech-
anisms and strategies are available. More details about knowledge representation and inference
for diagnostic systems are given by Puppe et al. [PGPB96].

The d3web21 system is a framework for knowledge representation and inference for diagnostic
knowledge bases implemented in Java. In the following, we briefly illustrate how knowledge
bases for d3web can be created with document-centered knowledge acquisition. Therefore, we
show some markups to capture d3web knowledge and then discuss some patterns of knowledge
organization within the document-space.

17http://www.w3.org/TeamSubmission/turtle/
18http://www.daml.org/
19http://www.w3.org/TR/owl2-manchester-syntax/
20http://www.co-ode.org/ontologies/pizza/
21http://www.d3web.de

86

3.5 Different Application Scenarios for DCKA

Figure 3.11: An example document about Pizza Margherita in view (a) and edit mode (b).

87

3 Document-Centered Knowledge Acquisition

3.5.2.1 Markups

In the following, we show a selection of markups that are suitable for capturing different kinds of
knowledge for the d3web framework. For the illustration the examples are taken from a simple
sports advisor domain.

Terminology and Decision Trees Listing 3.1 shows a dash-tree style markup that allows to
define hierarchical relations of entities. For each element the preceding element with one dash
less in its prefix is the hierarchical predecessor of the element. Elements with zero dashes are
root level elements. An example for the dash-tree markup is illustrated in Listing 3.1. It can
be used to define terminology of the domain, e.g., questions and answer alternatives, but also to
create derivations according to the well known decision tree principle.

1 %% question

2 Naive Sport Advisor

3 - Training goals [oc]

4 -- endurance

5 --- Physical problems [oc]

6 ---- knees

7 ----- Swimming (!)

8 ---- no problems

9 ----- Running (!)

10 -- increase muscles

11 --- Muscle Questions

12 Muscle Questions

13 - Favorite regions of muscles [mc]

14 -- arms

15 ...

16 %

Listing 3.1: A decision tree markup example from a sports advisor domain in dash-tree style.

In line 3 the once choice question Training goals is defined, while its successors endurance in
line 4 and increase muscles in line 10 are forming the answer alternatives. Questions that are
successors of answer alternatives of other questions are follow-up questions in the interview
order as for example Physical problems in line 5. Further, solutions can be established if being
defined as successors of answer alternatives as for example Swimming in line 7 and Running
in line 9. By the use of the indention, knowledge for interview control and derivation can be
defined according to the decision tree principle. By use without indention, only the terminology
objects of the domains are defined in enumeration style.

Rules In Listing 3.2 an intuitive markup for defining condition action rules is shown. The con-
dition part is indicated by the ’IF’ keyword, while the action part is introduced by the ’THEN’
keyword. The condition of a rule can be composed by logical operators over atomic conditions
on terminology objects that have been defined before, e.g., by using the dash-tree markup in-
troduced above. In the action part different kinds of actions provided by d3web can be defined,
such as value assignments or interview control actions.

88

3.5 Different Application Scenarios for DCKA

1 %%rule

2 // Abstraction rule r1

3 IF (Height ¿ 0) AND (Weight ¿ 0)

4 THEN BMI = (Weight / (Height * Height))

5

6

7 // Scoring rule r2

8 IF (Training goals = endurance)

9 AND (BMI ¡ 30)

10 AND NOT(Physical Problems = knees)

11 THEN Running = P4

12 %

Listing 3.2: A rule markup for condition-action rules in d3web.

Set-Covering Knowledge Another method for representing diagnostic knowledge is set-covering
models [Pup93]. There, a solution is described by a set of expected findings, so-called set-
covering relations. For a given problem description, the solution with the best coverage can be
computed. Listing 3.3 shows a simple markup that allows to define set-covering models in a
list-based style.

1 Running –

2 Favorite regions of muscles = legs ,

3 Favorite regions of muscles = bottom ,

4 Training goals = reducing weight ,

5 Training goals = endurance ,

6 Calorie consumption (30min , 75kg) = high ,

7 ...

8 ˝

Listing 3.3: A simple markup for set-covering knowledge in d3web.

After the described solution, a coma-separated list of set-covering relations is defined. Each
relation consists of a valued finding over the defined terminology.

The markup examples discussed above only show a subset of the d3web knowledge repre-
sentation, as they are meant for illustration of capturing diagnostic knowledge with markups.
Further markups for d3web are discussed in [BRP07b].

3.5.2.2 Knowledge Organization

As discussed in Section 3.1 there is a degree of freedom how the content elements can be dis-
tributed within the document space. Diagnostic knowledge bases typically are consisting of the
components solutions, inputs, and problem areas. For the distribution of diagnostic knowledge
in the document space, the following patterns have been identified by experiences in various
projects:

89

3 Document-Centered Knowledge Acquisition

• Solution-oriented Distribution: For each possible system output (or coherent group of
outputs), a document is created. It contains the definitions of the output and formal knowl-
edge to derive this particular output. For larger systems, sub-documents can be defined
that are linked from the main document.

• Problem Area-oriented Distribution: For each problem area (coherent and named
groups of inputs to the system), a document is created. Each document contains the def-
initions of the problem area (e.g., symptoms concerning the problem area) and links to
articles, where derivation knowledge is defined relevant to the particular problem areas.

• Concept-oriented Distribution: For each concept of the application domain, including
solutions and inputs, a document is created. Attributes and relations of this concept are
also defined in this document. Also links to related concepts are included.

More details about deriving knowledge distributions within the document space in general are
discussed in Chapter 4.

3.5.3 Knowledge for Exploratory Data Analysis

Data analysis and data mining aim to aggregate and visualize large data sets and to discover
new interesting patterns within the data [WF99]. The data sets are basically consisting of tuples
of attribute-value pairs. Sophisticated analysis and mining algorithms have been established to
find meaningful patterns with in these tuples. However, these algorithms in many cases require
additional knowledge about the attributes within the tuples. Background knowledge about the
value range of an attribute or the relation between different attributes has to be defined to al-
low effective knowledge discovery. In the following, we will present markups for capturing
background knowledge for Exploratory Data Analysis [Tuk77]. The examples are taken from a
medical domain considering data about traveling diseases.

Default Values Often for particular attributes it is ”normal” to take a certain value, that is, the
default value, and more extraordinary, if other values are taken. The default value is in most
cases, but not always, the most frequent value for that attribute in the data set. However, not for
all attributes a default value exists. For example, consider a data set from the medical domain,
in which the occurrence of any disease is represented as a single boolean attribute. Then it is
usually assumed that a patient does not have a certain disease unless stated otherwise. Hence,
the default value is ’false’ in this case.

A very simple knowledge acquisition pattern to enter information on default values into a
text document could be to use a keyword ”DEFAULT” and then the respective attribute and —
separated by a colon — its default value:

1 DEFAULT Hypertension: false

90

3.5 Different Application Scenarios for DCKA

Discretization Discretization is a basic operation which transforms a numerical attribute into
an ordinal/nominal attribute. It is a standard pre-processing technique to adapt the data set to the
requirements of an analysis algorithm. The discretization boundaries can easily be specified in
a textual markup. They can then simply be adapted to the analyst’s needs ad-hoc. Therefore we
propose the following markup:

1 DISCRETIZATION Age [18;25;50;65]

This markup expression specifies that the expert considers the values of 18, 25, 50 and 65 as suit-
able cutpoints to discretize the numeric attribute age. When the respective knowledge is entered
into the knowledge base, the construction of a new nominal attribute based on the respective
numeric attribute using the specified discretization cutpoints is triggered.

Abnormality Information In many applications, for instance in the medical or engineering do-
main, there is an interval of measured values that is considered as in line with guidelines/spec-
ifications, while measurements beyonds the limits of the interval are considered as either ”too
high” or ”too low”. This combines the concept of discretization and default values: A new
attribute can be constructed that discretizes the base attribute into three parts, ”too low”, ”in
range” and ”too high” and additionally marks the ”in range” interval as the default value. A text
fragment, that specifies, that the Body-Mass-Index should usually be in the range of 20 to 25
could for example be specified by the following markup expression:

1 NORMAL 20 ¡ BMI ¡ 25

Value Categorization Knowledge In many data sets attributes with a wide range of values
exist that could be grouped into several categories, allowing for aggregated evaluations. As
these categories are not necessarily fixed, experts may want to define them ad-hoc. By defining
them, similar to the discretization case, new attributes are created. In case of non-overlapping
categories the category information can be saved in a single new attribute, that has a distinct
value for each category. In contrast, for overlapping attributes it is necessary to create a new
boolean attribute for each category, which is set to true, if the respective category applies.

For formalizing categorization knowledge we propose to use the following markup:

1 CATEGORIZATION disease-type FOR disease DEFAULT other/none

2 Tropical disease: Malaria, Chagas disease, Dengue

3 Childhood disease: Rubella, Chickenpox, Measles

The input of these markup expressions would trigger the construction of a new attribute
disease-type that is based on the existing attribute disease. The new attribute takes the value
Tropical disease, if the disease was either Malaria, Chagas disease, or Dengue and the value
Childhood disease, if the value of disease in the respective case was one of Rubella, Chickenpox,
Measles. If none of these categories does apply, then the case takes the default value given in
the first line of the formalization pattern, in this case other/none.

91

3 Document-Centered Knowledge Acquisition

Ordinality Information Attributes with non-numerical values that still have a natural order
often are represented as nominal attributes in the systems. One example for an inherent ordering
is an attribute with the values low, medium, high, while the order is often not reflected in the
original data set. In that case this different measure of scale can be communicated to the system
using the following markup:

1 ORDINALITY age: child ¡ adolescent ¡ adult ¡ senior

The given information can be used for the ordering of values within evaluations, e.g., in a bar
chart. Another application for this type of knowledge is that a subpopulation for a focused
analysis can be specified using the ordinal scale, e.g., all instance with age >= adolescent.

With the markups shown above, a background knowledge base for the data analysis task
can be created. If the analysis engine and the document-centered authoring environment are
integrated with each other, quick knowledge base refinement cycles can be driven, enabling
instant testing. The required terminology of the domain terms, as for example disease, Dengue,
age, can be imported by the data set. In that way, spell checks and code completion for these
terms can be provided.

3.5.4 Training Cases for e-Learning with CaseTrain

Today, e-Learning provides a novel method for effective knowledge transfer at rather low teach-
ing costs, given an appropriate e-Learning system once established. Depending of the way how
the learner interacts with the system, an e-Learning system requires the subject domain knowl-
edge to be encoded in a computer interpretable format. One e-Learning paradigm, being rather
successful today, is case-based training [RHT+06]. In this section, we want to illustrate the
document-centered knowledge acquisition method for the creation of training cases for the case-
based training system CaseTrain22. There, the learner is first introduced to a problem situation
of the domain and then asked a sequence of questions about this situation each possibly pro-
viding additional information. After processing the sequence of questions the user is instantly
provided with the evaluation of his decisions. He is also able inspect the case including the ex-
planations of the correct answers. From the knowledge acquisition perspective this requires for
each case the computer readable definition of the sequence of questions with answers including
the ratings and illustrative information. Therefore, a markup format has been defined to be able
to define CaseTrain cases as Microsoft Word documents23. These documents can be compiled
to executable CaseTrain cases by an upload to a web-service.

One foundational issue of document-centered knowledge acquisition always is error handling
and authoring support. This aspect can be improved by providing an online authoring envi-
ronment that instantly detects markup or formatting errors while editing and suggests options
for correction. Additionally, the authoring environment can easily provide content versioning
(backup) and collaborative authoring. Figure 3.12 shows a prototype of a corresponding knowl-
edge acquisition environment with an example case (in German language).
22http://www.casetrain.de
23http://casetrain.uni-wuerzburg.de/doku/format case.shtml

92

3.6 CommonKADS

Figure 3.12: Excerpt of an example training case for CaseTrain created with a document-
centered authoring environment (in German language).

3.6 CommonKADS

CommonKADS is a comprehensive methodology for knowledge management and knowledge
engineering [SAA+01]. It has been evolved in the nineties from its predecessor KADS [SWB93],
which has been developed since the late eighties. The approach is based on experiences made on
numerous real-world projects and aims to provide a helpful framework for all kind of knowledge
intense tasks at a broad scope.

3.6.1 A Brief Overview of CommonKADS

In the following, we summarize the most important aspects of the CommonKADS methodology,
as far as being relevant for this work.

3.6.1.1 The CommonKADS Model Suite

The model suite plays a key role in the commonKADS knowledge engineering approach. Each
model describes a particular aspect, while their combination provide a complete view of the
project. The organization, task, and agent models analyze the organizational environment and
the critical success factors for a knowledge system. The knowledge and communication models
form the conceptual description of problem-solving functions and data that need to be included

93

3 Document-Centered Knowledge Acquisition

in the knowledge-based system [SAA+01]. In a further step, a detailed technical specification is
made, leading to the design model, which then serves as a basis for implementation. However,
not all of the models need to be employed in any project. The models are captured and evolved
in the so-called model documents.

3.6.1.2 The CommonKADS Process Model

As a process model for the project management, the commonKADS methodology proposes the
use of a customized version of the spiral model as proposed by Boehm [Boe88]. In every cycle
of the spiral the activities review, risk assessment, planning, and monitoring are performed,
increasing their scope within every cycle according to the progress of the development. The
spiral model aims to combine the advantages of the waterfall model, providing clear project
control, and the agile process model of rapid prototyping in a evolutionary manner, providing
more flexibility to readjustments.

3.6.1.3 The CommonKADS Role Model

CommonKADS distinguishes the following roles within the knowledge engineering process. A
person, however, can act in multiple roles in a project.

• Specialist: The specialist or expert is the owner of the knowledge. Therefore, this role
acts as knowledge source for the project.

• Analyst/Engineer: This activities of this role include knowledge engineering related
tasks as task analysis, knowledge elicitation, knowledge modeling, and inference design.

• System Developer: The task of this role is the implementation of the knowledge system
according to the knowledge models delivered by the analyst.

• User: The knowledge user makes use of the knowledge-based system in the application
scenario stated as the goal of the project.

• Project Manager: The project manager controls the development process. This also
includes project planing, requirements monitoring, and risk assessment.

• Knowledge Manager: The knowledge manager controls the knowledge management
strategies on the business level.

The CommonKADS methodology, which is forming the de-facto standard approach to knowl-
edge engineering, also has a disadvantage when used in its pure form without early prototyping.
The extensive analysis, modeling, design activities driven out at the beginning imply, that any
kind of running functionality will appear at a rather late stage. As the domain specialists are
not capable to understand most of these activities, there is the risk of upcoming frustration on
their side. An involvement of these project participants as far as possible at an early stage is
one major goal of the document-centered knowledge acquisition approach. In the following, we
outline possibilities of a combination of the approaches.

94

3.6 CommonKADS

3.6.2 CommonKADS and DCKA

CommonKADS provides a comprehensive methodology for knowledge engineering for knowl-
edge management and engineering. DCKA in contrast only proposes a tool (category) for knowl-
edge formalization and some strategies for its use. Hence, the two approaches not really can be
put in comparison. Still, we try to summarize the most important aspects in the following. Fur-
ther, possibilities for the combination of both are briefly discussed.

3.6.2.1 Comparison

First of all, CommonKADS and DCKA are following different knowledge formalization strate-
gies. While CommonKADS rather strictly employs indirect knowledge acquisition, DCKA aims
for a different strategy. As discussed in Section 1.2.2.1, DCKA proposes a compromise be-
tween direct and indirect knowledge acquisition, called mixed-initiative knowledge acquisition.
It aims to create the socio-technical conditions that allow to involve the domain specialists in
the knowledge formalization process as far as possible by the principle of active participation.
In CommonKADS in contrast, after elicitation of the knowledge from the domain specialists,
the knowledge is modeled and implemented by knowledge engineers and system developers in a
rather technical multi stage process. This formalization process can guarantee a high quality re-
sult, but is not suited to involve domain specialists. Activities of direct knowledge acquisition are
not intended in CommonKADS. In consequence, CommonKADS is a more structured approach
while DCKA has a stronger focus on agility, useful for but not limited to rapid-prototyping of
knowledge-based systems (c.f., [SBGB88]). In general, the DCKA does not propose the explicit
distinction of the different roles, as described for CommonKADS above, but proposes contri-
bution according to the skills of each participant respectively. However, a strict comparison
of the two approach is not possible anyway as CommonKADS has a much broader scope than
DCKA. Nevertheless, many aspects of CommonKADS can be adopted for DCKA, to form a
combination.

3.6.2.2 Combining DCKA and CommonKADS

Especially in the analysis phase, many methods of CommonKADS are independent of the prin-
ciple of DCKA. The model suite and the guidelines for their creation can be valuable for DCKA.
As these models are described in documents, they can be included into the document base
straight forward. The model documents are developed by the knowledge engineers. In parallel,
an informal description of the relevant knowledge can be created, involving the domain special-
ists. It can then serve as a starting point for incremental formalization (c.f., Section 3.1.5.2).
After the design has been finished, at the level of detail as desired, the implementation phase can
begin. The content of the declarative knowledge base is en-woven into the domain description
documents using in a collaborative effort using suitable markup languages. On this task, the
domain specialists should be included as far as possible. Implementation of new markup lan-
guages, including compilation, and inference engines is driven out in parallel by the knowledge
engineers and system developers and integrated into the document-centered authoring environ-
ment. A more precises description of this parallel process of markup design and implementation

95

3 Document-Centered Knowledge Acquisition

on the one hand, and knowledge acquisition on the other, is described in Chapter 4 called the
meta-engineering approach.

In that way, many advantages of CommonKADS, such as the structured model-driven project
control, can be adopted for DCKA. Considered the other way round, some advantages of DCKA,
such as agility and strong involvement of domain specialists in the whole process, can be added
to the CommonKADS methodology. Hence, a beneficial combination of both approaches is
possible, while not retaining both in their pure form. The principle of strict indirect knowledge
acquisition needs to be loosened for a reasonable combination with DCKA.

96

4 A Meta-Engineering Approach for DCKA

.. the question of how to break down the whole task most effectively: the demands
are such that elegance is no longer a dispensable luxury, but decides between suc-
cess and failure. E.W.Dijkstra [Dij86]

The history of software engineering told that the requirements for programming code is not
only that its execution produces the desired behavior but also that it can be easily and quickly be
understood by the programmers. Dijkstra demanded no less than elegance for the way how code
should be structured in component-based software development. Beside improved reusability
a reasonable organization of the code fragments strongly increases code readability and there-
fore maintainability, often finally being decisive for success or failure of the software develop-
ment project. Elegant—in a sense of comprehensive— structuring of the content fragments is
equally important in document-centered knowledge acquisition. The general document-centered
knowledge acquisition approach has been introduced in Chapter 3 as an alternative to the use
of GUI-based knowledge acquisition tools. However, the question of how content and tool sup-
posed to be set up to achieve efficient participation of the different user groups has not yet been
addressed. Providing methods for improving the interaction of domain experts with a DCKA
tool is the main objective of this chapter. A major problem of knowledge acquisition involving
domain experts in general is that these experts need to learn the usage of a tool usually being
new to them. Considering DCKA, we discussed the low barriers for basic contributions by using
a web-browser and the well-known editing paradigm for documents. Still, there are things to be
learnt by novice participants, e.g, the formalization mechanisms (markups). Usability of the tool
is not only determined by its handling when inserting new knowledge, but the comprehensibility
of the presentation of existing contents is at least as important. The user has to match the content
visualization of a tool to his mental model of the knowledge to interpret given knowledge base
content. This problem, also referred to as the semantic gap [Mer04], is known since the early
days of expert system development. The major strategy to close this gap is the customization of
the user interface of the knowledge acquisition tool towards the mental model of the user, also
considering the domain context. The goal of such a customized tool is to present the knowl-
edge in a way that is intuitively comprehensible by the target user group. This tool customiza-
tion strategy already has long tradition for GUI-based knowledge acquisition interfaces. In this
chapter, we examine the customization potentials for document-centered knowledge acquisition
tools. There, customization means to deal with documents that have content, structure and (as
far as possible) markups that are intuitively understandably by the user. The vision of the ideal
situation shows a user that is not or hardly realizing that he is using a new tool or knowledge
formalization mechanism but works with intuitively understandable documents. While this sce-
nario does not appear to be fully realistic, it shows out that there are indeed possibilities to come
a good step closer towards that point at least. The main focus of this chapter is to point out these

97

4 A Meta-Engineering Approach for DCKA

possibilities and to give guidelines for their application in practice. The use of graphical user
interfaces for knowledge acquisition has been been briefly introduced already in Section 2.1.
Before looking closer at customization of document-centered tools a more detailed discussion
of existing work on customized GUI-based knowledge acquisition tools is given.

4.1 An Overview of Knowledge Acquisition Tool Customization

”The conceptual model thus forms the basis of a language with which both the tool
and the tool’s user can describe the contents of a knowledge base.” Musen [Mus88]

The early time of research on customized knowledge acquisition tools was beside others
(c.f. [KBD+89]) substantially influenced by Mark Musen and his research at the Department of
Medical Informatics at Stanford University. Based on the first experiences with customization
of knowledge acquisition tools [MCW+86], he started developing the system family Protégé1

in the late eighties. The original intent of the first generation of this tool was to reduce the
knowledge-acquisition bottleneck by minimizing the role of the knowledge engineer in con-
structing knowledge bases [GMF+03]. Musen claimed that the use of customized knowledge
acquisition tools is a necessary and effective way to achieve this. He describes the need of a
conceptual model of the domain as a basis for a tool that is usable by experts. The resulting
tasks of specification and implementation of such tools have been addressed by establishing a
conceptual model of the domain in advance followed by the actual tool design and correspond-
ing implementation [Mus88, Mus89b]. The (meta) knowledge for the model, being acquired
early in a multi-stage knowledge acquisition process, should be used to generate the custom
knowledge acquisition tools automatically [Mus89c] by applying so-called meta tools. These
meta-level tools are domain independent tools that can generate custom-tailored knowledge ac-
quisition tools from a high level specification of the domain, i.e., the conceptual model. In the
nineties the research done by Musen and Eriksson focused on the development and application
of such meta tools [Eri92, EM93]. Musen [Mus89a] reports about projects where customized
knowledge acquisition tools generated with Protégé are used by experts to acquire skeletal plan-
ning knowledge and treatment plans (for cancer). He emphasizes that this method shows its main
benefit if multiple distinct knowledge bases of similar structure and domain have to be created.
Protégé has been evolved consequently for years [PETM92, GMF+03] incorporating different
problem-solving methods and application tasks. At the time of the millennium Protégé has been
reimplemented in Java with a highly extensible architecture based on a plugin framework. Since
then many plugins, also by third party contributors, have been created, most prominently the
OWL-Plugin [KFNM04].

The process for using meta level tools as described by Eriksson [Eri92] is outlined in Fig-
ure 4.1. At first, a conceptual domain model is established in cooperation of the knowledge
engineer and the domain experts. The specification of the conceptual model is the input for
an existing meta tool that generates a domain specific knowledge acquisition tool. That tool
can then be used by the domain experts to actually create the knowledge base, most widely
autonomously.

1http://protege.stanford.edu

98

4.2 Design Time and Use Time: The Systems Design Dilemma

The weak point about that workflow is the specification task that is carried out at one stroke
in advance. It is questionable whether a conceptual model of the domain serving as specification
of a knowledge acquisition tool is able to anticipate all the socio-technical challenges that will
emerge during the process of the actual knowledge base creation. Fischer [FG06] argues that
despite the best efforts at design time, it is not possible to anticipate all the needs of the user of
a design environment in advance. While system specification in advance is a general challenge
in software engineering [MJ82], it turns out that it is particular hard for knowledge acquisition
interfaces. This issue is outlined in more detail in the following section.

Knowledge
Base

Specialized
KA ToolMeta Tool

Specialized
KA Tool

Knowledge Engineer/
System Developer

Domain
Specialists

Conceptual
Domain Model

Domain
Knowledge

Meta Level
Tool Specification

Figure 4.1: The process of generating customized gui-based knowledge acquisition tools from
meta level specifications with meta tools according to Eriksson [Eri92].

4.2 Design Time and Use Time: The Systems Design Dilemma

Artefacts (especially novel ones) are designed when no experiences about their use are given,
being a general problem about artefact design, not limited to software. This simple problem is
known and discussed since the early days of system design not having lost its wickedness. The
designer at design time usually does not have all information about the context of use the entity is
put in at use time to anticipate all possible situations. For the creation of software systems large
efforts have been put into the improvement of requirements engineering [Zav97] to handle that
problem. Still, creating highly usable user interfaces tailored to the needs of a specific user group
is a large challenge. When it comes to the design of knowledge acquisition interfaces being used
by domain experts the situation is even more complicated. In common software development
projects the user/client at least does have (more or less) precise conception of what he is going
to do with the tool to be build and therefore is able to discuss aspects of the user interface. In
knowledge engineering, domain experts not yet having had experiences with knowledge engi-

99

4 A Meta-Engineering Approach for DCKA

neering can not have a good notion about what they will have to do with the tool to be designed.
As the knowledge engineers on the other hand do not have deep understanding of the domain
context, requirements engineering is particularly hard under these circumstances. Hence, not
only the design of the knowledge base itself but also the design of suitable knowledge acquisi-
tion interfaces is a large challenge in knowledge engineering, deserving explicit consideration.

4.2.1 Agile Software Development

Nevertheless, MacCracken et al. [MJ82] (and others) claimed that the specification of the re-
quirements of some software cannot be stated fully in advance, not even in principle. One
attempt to elude this problem is taking on the attitude to ”embrace change”, famously pos-
tulated by Kent Beck [Bec00]. This attitude proposes to accept the fact that specifications and
requirements will change frequently as special characteristics of the scenario will not become ob-
vious until an advanced stage of the development process has been reached. Agile development
methodologies aim to provide methods to deal with these conditions [Coc02, Mar09, SB01].
The principle idea is to maintain a system that only provides a reduced number features but is
runnable and usable at this scope since an early point of the development process. That system
and the currently existing features any time are ready to be tested. These preliminary experi-
ences can then be incorporated in the further development steps. In that way, feature by feature
can be addressed and improved iteratively. Due to this flexibility, agile software development
became increasingly popular within recent years, not only for open source projects [RSSS09].

4.2.2 Meta-Design

Another approach from the field of human-computer interaction research addresses design en-
vironments considering a collaborative development process of digital artefacts by a user group
of heterogeneous expertise. Therefore, it fits quite well into the context of this work. The con-
ceptual framework called meta-design is proposed by Fischer [FS00] and is inspired by the way
open source software is developed in an agile fashion. It proposes a development process model
for the design environment where design time and use time overlap [Mac11].

Meta-design extends the traditional notion of system development to include users
in an ongoing process as co-designers, not only at design time but throughout the
whole existence of the system.

Fischer [FGY+04]

One important principle in meta-design is the notion of underdesign [FGY+04]. Underdesign
proposes to not create and deliver completed and closed solutions but tries to provide social and
technical instruments for the users to make system adaptations according to their needs at use
time. In that way, it avoids that most of the relevant knowledge is required at the earliest part of
the design process, when everyone knows the least about what is really needed. Further, meta-
design is expected to form a co-adaptive process where the tool is adapted to the user but on the
other hand with time the users adapt to the tool by gaining more experiences. This convergence
from both sides after a certain time leads to significant increase of productivity and autonomy of
the user participation.

100

4.3 Flexibility and Coordination in DCKA

4.3 Flexibility and Coordination in DCKA

To conduct a meta-design process one the one hand underdesign of the system is required at the
beginning. On the other hand the process of coining this under-determinedness according the
experiences at use time has to be steered. These two aspects are discussed for DCKA in the
following sections.

4.3.1 Flexibility in Document-centered Knowledge Acquisition

In Section 3.2.1 the possibilities of free structuring of the content in DCKA have already briefly
been introduced. Now, we will discuss these aspects of flexibility in more detail considering
the context of meta design for knowledge acquisition tools. The actual executable symbol level
knowledge base, being the design artefact of the base level, is excluded from this meta level
design consideration. On the meta level, the flexibility in DCKA provides a wide range of
possibilities of how the content might be organized in different ways, not affecting the executable
knowledge base. We distinguish the following three different aspects of flexibility:

1. Knowledge Syntax: Usually a document-centered authoring environment supports a stan-
dard set of markup languages. However, liberating oneself from a concrete system, provid-
ing specific markups, an important degree of freedom emerges. Various different markup
languages can be envisioned to capture knowledge in a formal way. We assume, that the
tool can be extended for supporting different knowledge markups, if considered beneficial
for the knowledge acquisition process. The nature of a markup language strongly affects
readability, writability, and may incorporate peculiarities of the current project or domain.
Therefore, this aspect plays an important role. In contrast to the following two aspects, it
requires engineering efforts on the system level. This system level design and engineering
will be discussed in more detail later in the context of markup design.

2. Support Knowledge: Any domain specific content that is not compiled into the knowl-
edge base, for instance including the content categories domain description and modeling
rationale (c.f. Section 3.1.3), is called support knowledge. It serves as documentation
putting the compiled markup expressions into context. Especially in the context of in-
cremental formalization (c.f. Section 3.1.5.2) the support knowledge is a particularly
important factor. What kinds of (informal) domain knowledge is contained in the doc-
ument corpus and the way it is organized has a strong influence on the understandability
of the content and therefore on the user’s capabilities to work with the tool. The overall
content should cover all domain knowledge that is relevant for the intended (compiled)
knowledge base. This information needs to be partitioned into documents in a reasonable
and comprehensible way. Usually this is done in a way that each document is treating one
sub-topic of the domain, possibly using hierarchical structuring. In many cases, already
existing material of different shapes (e.g., texts, tables, images) can be imported as sup-
port knowledge. For the domain descriptions, often the structure of existing documents to
some extent can be retained if it is comprehensible and familiar to the domain specialists.
The support knowledge enables the users (especially the domain experts) to find their way

101

4 A Meta-Engineering Approach for DCKA

through the knowledge base. Therefore, the comprehensible organization of the support
knowledge is an important prerequisite for low barrier participation.

3. Arrangement of Knowledge: To actually form a computer interpretable knowledge base
in document-centered knowledge acquisition, the formal knowledge needs to be inserted
using a markup language. While complying to the given markup language there is still a
large degree of freedom how to order and partition the statements within the documents.
For comprehensibility it is reasonable to interweave these parts topically with the support
knowledge. Hence, if the support knowledge is inserted in advance, it provides a kind of
guideline, where formal relations should be placed. The markup expression of a relation
should be placed as near as possible to the part of the support knowledge that describes
the topic. Then the support knowledge serves as justification and documentation of the
formal knowledge.

These aspects strongly determine the presentation of the knowledge base and therefore affects
the user’s capabilities of active participation. Hence, they need to be considered as characteristics
of the knowledge acquisition tool itself. Due to the nature of DCKA the boundaries between
tool characteristics and content blur. Being undetermined at project beginning these aspects
constitute an inherent underdesign being the necessary prerequisite for effective meta design.

4.3.2 The Document-Centered Knowledge Acquisition Architecture

In principle, the aspects of underdesign discussed above on the one hand generate high possibili-
ties for optimization but may on the other hand may also raise difficulties. For every contribution
to the documents decisions about these three aspects have to be made. If these decisions are not
made in a reasonable way the document corpus over time risks to develop into a chaotic and
incomprehensible state. A good design can not be expected as a natural emergent effect of col-
laborative development but needs to be a coordinated effort. To prevent that risk and to support
the user on contributions, a specification of a guideline, determining the variable aspects, is re-
quired. A specification of this kind defining a guideline for each of the three aspects we call a
(document-centered) Knowledge Acquisition Architecture (KAA). The three aspects are consid-
ered to form a kind of state space as shown in Figure 4.2. A KAA then is one specific point

Document Base KAA

Knowledge Syntax

Support Knowledge

Arrangement of Knowledge

Figure 4.2: The document space allowing for customization of the KAA along three dimensions.

102

4.4 The Meta-Engineering Process for DCKA

in this space. It determines the scope and arrangement of the support knowledge (1), the ar-
rangement of the formal knowledge (2) and its syntactical structure (3). To guide the knowledge
acquisition activities, the KAA should be explicitly formulated and written down, accessible
to all involved persons. Maintaining the KAA as an additional document within the document
corpus guarantees simple access for all participants. It determines in what way contributions
should be performed (without being technically enforced). We do not expect that the user is
always able to make his contributions compliant to the KAA specification. The knowledge en-
gineer however has to be capable to rate and if necessary ensure this compliance. This complies
to the idea of mixed-initiative knowledge acquisition: Every participant contributes at the best
of his expertise in a flexible collaborative workflow, based on task decomposition. For instance
an domain expert inserts knowledge about one topic, but in a way that does not comply to the
current KAA. Then a participant more familiar with the KAA specification can restructure this
knowledge accordingly.

The KAA specification can be compared to the editing instructions existing for the Wikipedia2

project. For large categories of pages, template pages exist that describe how a page describing
this kind of entity should be structured and what information needs to be included. The German
wikipedia at the time of writing contains 112 such patterns3 (german: Formatvorlage) for various
categories of entities such as person, movie, or chemical substance. There, a rough outline is
given, including a short description what information should be stated in each section. Often
also an infobox pattern is provided. In DCKA the KAA plays a similar role, i.e. guiding the user
on contributions. Within the KAA many aspects need to be considered, such as where and how
the terminology of the knowledge base is defined, how the derivation knowledge is formalized,
or for which entities distinct pages should be created.

The KAA determines readability, comprehensibility, writability, and navigability of the knowl-
edge acquisition environment and therefore the overall usability and efficiency. Nevertheless, the
specification of a suitable KAA is a hard problem as already discussed in Section 4.2. For this
specification task we introduce a dedicated process in the next Section.

4.4 The Meta-Engineering Process for DCKA

”In many situations a solution to a problem can not be created, but must be revealed
through experimentation and exploration.”

Schilstra and Spronck [SS01]

As the specification of an optimal KAA in advance has to be considered to be rather impos-
sible due to the systems design dilemma, we propose to apply an agile process according to the
principles of meta-design as introduced in Section 4.2.2. We present the meta-engineering pro-
cess that allows to explore, specify, implement, and use an appropriate KAA for a given project.
The evolution of the KAA strives to optimize the criteria understandability, maintainability, and
therefore overall acquisition efficiency of the knowledge. The evolutionary process affects both,
the document base (content level) and the authoring environment itself (system level).

2http://www.wikipedia.org/
3http://de.wikipedia.org/wiki/Kategorie:Wikipedia:Formatvorlage

103

4 A Meta-Engineering Approach for DCKA

Preconditions: We presume, that a suitable document-centered knowledge authoring tool is
initially existing, that provides means of knowledge formalization (markups, testing capabili-
ties). The software requires an extensible architecture that allows for the integration of new
features easily, most importantly markups and corresponding authoring support. Further, the
system should provide methods for the execution of semi-automated or automated refactoring
tasks, e.g. by use of a scripting language. To coordinate the knowledge acquisition process and
the meta process, a knowledge engineer experienced with document-centered knowledge acqui-
sition is required. Also a system developer for the employed DCKA environment is required
throughout the project to address the implementation efforts on system level. Of course, it is
convenient that these two roles are occupied by a single person if possible.

An iterative process: Figure 4.3 shows the meta-engineering process, comprising the main
activities exploration, design, and implementation. After the process has been initialized by the
exploration phase, alternating design and implementation activities are carried out. The actual
knowledge acquisition process building the knowledge base runs in parallel. The process is
driven by iterated cooperative sessions involving the knowledge engineers and the contributors.
In the following, we describe the distinct parts of the process in more detail.

Exploration Design Implementation

Knowledge Acquisition

Figure 4.3: The phases of the document-centered meta-engineering process.

4.4.1 Exploration

At the beginning of the knowledge engineering project the meta-engineering process is started
by the Exploration phase. The main purpose of this phase is to establish an initial version of
a KAA for the project at hand. Therefore, different candidates for KAAs should be designed
and assessed to gain some experiences how document-centered knowledge acquisition for the
required knowledge base and the given domain can be arranged. For this purpose a small (but

104

4.4 The Meta-Engineering Process for DCKA

if possible representative) subset of the domain knowledge has to be selected. Then small pro-
totypes according to some ad-hoc defined KAAs are created for this part of the domain. At
this point, only markups already provided by the tool are used. A secondary goal of the ex-
ploration phase is making the community of participants familiar with the general concept of
document-centered knowledge acquisition. A few small toy knowledge bases for the selected
knowledge subset are created in an exemplary way. That makes the domain experts familiar
with the idea that the subject domain knowledge will be managed as documents with knowledge
markups, that can be modified using the document-centered authoring environment. The activ-
ities of this phase should be carried out in close cooperation of all participants, for instance in
a workshop-like format. When a KAA candidate is assessed by all available participants to be
the most convenient one, it is established as the current KAA for the project and a specification
document is written making it explicit. This indicates the end of the exploration phase and the
actual knowledge acquisition process can be started according to this KAA. On the meta-level
the design and implementation cycle is entered.

4.4.2 Design

”Meta-design is a useful perspective for analyzing projects where ’designing the
design process’ is a first-class activity, i.e., creating the technical and social con-
ditions for broad participation in design activities is as important as creating the
artifact itself.” Wright et al. [WMS02]

The design activities aim to improve the KAA gradually with respect to comprehensibility
and knowledge acquisition efficiency. The initial candidate established in the exploration phase
is the starting point of the evolutionary refinement driven by the agile process. Changes and
extensions are discussed by domain specialists and knowledge engineers in cooperation.

Need for Change: Design activities have to be considered as a first class activity in addition
to the actual knowledge acquisition process. Changes of the design of the current KAA are
indicated by insufficiencies observed during the practical work with the system. Insufficiencies
of this kind could be for example:

• bad interweaving of markup expressions and domain description

• markup expressions hard to read and understand

• missing domain description or modeling rationale

• documents that are overly large or have an inappropriate name

• long-winded navigation ways between strongly related contents

Therefore, all participants should watch out for these kind of deficiencies and report them to the
team. Then a design improvement resolving that issue can be established in a joint discussion.
The first two aspects of the KAA (support knowledge and arrangement of formal knowledge)
can be evolved intuitively by reorganizing or extending the existing content. The third aspect

105

4 A Meta-Engineering Approach for DCKA

(syntactical shape) plays a key role in document-centered meta-engineering: The definition of
a suitable knowledge markup language for the knowledge to be captured. The syntactical form
can significantly contribute to the comprehensibility of the knowledge base. In the following,
the design of new, appropriate markups is discussed in more detail.

4.4.2.1 Markup Design Principles

”I do see the possibility of a fascinating future in which we don’t only agree that
a good notation helps, but in which we actually teach how to design notations that
are geared to the manipulative needs at hand.” E.W.Dijkstra [Dij86]

Unfortunately, it is impossible to provide a precise procedure how an optimal markup can
be constructed, as it is a highly creative task which strongly depends on the specific conditions
at hand. Only general requirements and principles can be given to lead the design process. A
custom knowledge markup needs to satisfy the following (technical) requirements: It has to
allow for the unambiguous translation of the captured knowledge to the executable knowledge
representation, c.f. Section 3.1.2. This includes the segmentation task separating the markup
expressions from the other document contents. The goals of a designed markup are simple:

• Allow for intuitive and simple authoring and comprehending;

• Allow for simple and seamless embedding into the informal content of the documents;

In the following we discuss different markup design principles that are helpful for achieving
these goals. We mention those being most relevant for the context of meta-engineering for
document-centered knowledge acquisition from literature and our own experiences:

• Include the User: The main goal of the meta-engineering approach is to allow for active
participation of domain experts in the knowledge acquisition process more easily. There-
fore the simplest but also most important guideline is to commit to the characteristics of
these users and their working context. Wile [Wil04] describes the necessity of under-
standing the role and background expertise of the people who will be using the designed
language.

• Simplicity: For lowering the barriers it is reasonable and important to keep the designed
markup languages as simple as possible. This naturally restricts expressiveness. However,
a markup specifically designed for one limited purpose does not require high expressive-
ness.

”Limited expressiveness makes it harder to say things wrong.”

M. Fowler, [Fow10, p.33]

Fowler emphasizes that language complexity, is the most notable source of errors when
using DSLs (c.f. Section 3.1.2). Designing DSLs with minimal expressiveness, particu-
larly tailored for a certain purpose avoiding unnecessary generality, will reduce error rates
and therefore improve overall productivity. Wile [Wil04] even describes the benefit of
aspiring for 80% solutions, i.e., DSLs that due to their simplicity only cover 80% of the

106

4.4 The Meta-Engineering Process for DCKA

intended use case. If these 80% can be solved by a highly efficient DSL, there is enough
time saved to deal with the remaining more complicated cases in a different way. This
idea complies well to the idea of mixed-initiative knowledge acquisition.

• Existing Domain Specific Notations: In many subject domains own special terms and
jargons are established. In combination with the jargon often structured or semi-structured
notations are used within the documents shared by the domain experts in their daily
work. For example, list-based or tabular notations can easily adopted or adapted to form a
markup language. In this way a markup, providing minimal difference to what the domain
experts are already used to, is obtained. It is reasonable to inspect the working environ-
ment of the experts, e.g., documents or domain specific software, to find inspirations for
new custom tailored markups. This principle has also been discussed by Wile [Wil04] and
Fowler [Fow10].

• Readability: Readability is a prerequisite to comprehensibility and therefore an important
design goal.

”...clarity isn’t just an aesthetic desire. The easier it is to read ..., the easier it
is to find mistakes and the easier it is to modify the system.”

M. Fowler, [Fow10, p.33]

Compactness requires less typing while verbosity often improves readability. Therefore, a
reasonable trade-off between readability (verbosity) and compactness (little typing work)
has to be drawn (c.f. Karsai et. al guideline 20 [KKP+09]). Software engineering studies
have shown that programmers spend about ten times more time on reading code than on
actually editing [Mar09]. No evaluation has been performed for knowledge acquisition
tasks yet. However, considering all similarities that have been observed between software
development and knowledge system development, it appears reasonable that a similar
ratio holds for knowledge engineering. Therefore, it is reasonable to focus clearly on
readability. Even more, the typing workload can be optimized by authoring support, e.g.,
code-completion techniques.

• Consider Knowledge Maintenance: In today’s rapidly changing world even after com-
pletion of a knowledge base the need for adaptations of the knowledge due to a changing
domain (or specifications) might occur [KFK99, GGM95]. If the nature of these changes
are known in advance markup design can be anticipated in a way that these particular
changes can be performed easily. Assumed that a category of objects exists having a num-
ber of attributes and each object is described on its distinct document. Further assumed,
that one of these attributes has to be modified due to changes in the domain. If the value
for the attributes is defined on the object document, e.g. within a frame aspect markup,
the change of this attribute requires to touch the documents of all the objects. Otherwise,
if the values of the attributes are defined on an own page for all objects, for example using
a list-based markup, only one single page needs to be touched significantly decreasing
editing workload.

• Consistency: Make sure that keywords, operator signs, and delimiter signs are used con-
sistently throughout all markups of the project. Inconsistencies of this kind complicate

107

4 A Meta-Engineering Approach for DCKA

the learning of the markup language for the user. This aspect is also mentioned by Karsai
et. al in the guidelines 3 and 21 [KKP+09].

• Possibilities for Comments: In document-centered knowledge acquisition the markups
are interwoven with the support knowledge. The latter can then be used for documenta-
tion and commenting. However, there are markups of different granularities. Table-based
or list-based markups for example are forming large coherent blocks within the docu-
ments, making neatly attached commenting difficult within language design. Therefore,
in markups of coarse-grained granularity possibilities for comments should be included.
The markup design needs to incorporate a corresponding language construct allowing
the parser to identify the comments as such, e.g., line-end comments (c.f. Karsai et.
al, [KKP+09] guideline 18).

• Simple Delimiters: In many programming languages statements are delimited from each
other by colons. This is a wide-spread practice and convention that every programmer is
used to. However, some modern languages, as for example python4 or Groovy5). are de-
signed to be more pleasant to the human eye. In the so-called compact syntax of Groovy no
colons are necessary if each statement is written in its own line. Many people experience
the resulting code more readable due to reduced syntactic noise [KGK+07]. This aspect is
even more important when designing a language, which is primarily used by people with-
out technical background. A line break has shown to be a simple to use and good looking
delimiter that is well accepted and intuitively understood by users. Also Fowler [Fow10]
rates the use of line terminators as valuable when working with non-programmers. De-
limiters suggesting technical complexity, e.g., dollar or hash signs, should be omitted (if
not beforehand being part of common existing domain notations). If spaces in object
identifiers are excluded, even those can be efficient and good-looking delimiters.

• Segmentation: The ability for segmentation needs to be kept in mind when designing a
markup language. It should be enabled in the least obstructive way possible by keeping
the syntactic noise low. In most cases segmentation is performed by regular expressions
matching the markup expressions within the content, but also other methods like custom
heuristics or NLP technologies can be employed. A simple method is to start and finish
a markup fragment by defined keys. These keys can then easily matched by a regular
expression and the content in between can be passed to be processed as the actual markup
source. More technical details about how segmentation can be performed are given in
Chapter 5.

• Natural Language Style: It is tempting to try making the markup language look like a
natural language as much as possible, e.g., by adding syntactical sugar. Fowler [Fow10]
advises to abandon this endeavor. He indicates that it might put the user in a wrong
context and can lead to misunderstandings. A markup language should be designed for
high simplicity and readability but clearly be recognizable for the user to be a formal
language. Otherwise, the user might think being editing free text. This is especially

4http://www.python.org
5http://groovy.codehaus.org/

108

4.4 The Meta-Engineering Process for DCKA

important in DCKA where DSL content and natural language content is closely intermixed
within a document.

Adhering to these principles forms a good basis for designing highly usable markups for the
DCKA in the given project. However, in practice a designed markup cannot optimally satisfy
each of the principles but trade offs need to be made, for instance considering Simple Delimiters
and Segmentation.

Markup Design and Assessment: The design of the markup should be performed in close
cooperation with the intended users, i.e. the participating domain experts. However, a knowl-
edge engineer with basic knowledge about language design has to play the leading role in that
process. We cannot expect the user to understand how and when a language works for knowl-
edge formalization from a technical point of view [Wil04]. While involvement of the user is
important, it can not be expected that she can come up with reasonable design propositions by
herself. Hence, the knowledge engineer has to design some markup language candidates after
carefully examining existing domain jargons, documents, and notations. When these candidates
have been brought into line with the other markup design principles described, they are discussed
with the user community. After the discussion, promising candidates are exemplarily used on
parts of the current document base. While not yet being recognized by the system the markup
can be inserted into the documents, possibly using a special font or a verbatim environment if
provided. This allows to get an impression of its handling, readability, and integration with the
content. As this specification and assessment process does not imply any implementation efforts
on system level (yet), multiple candidates of different markups can be ’tested’ this way at low
workload costs.

When a markup has been assessed as appropriate by the involved contributors, a cost-benefit
estimate should be made. The costs reflect the implementation workload of the markup poten-
tially including authoring assistance, such as custom editors or code-completion. The benefit
side is measured as how much improvement the markup brings to knowledge acquisition and
comprehensibility compared to the previous formalization possibilities. One should also con-
sider how often the markup will probably be used throughout the overall knowledge acquisition
project. A markup of brilliant elegance will not repay if it there is only a dozen occasions where
it can be employed. Nevertheless, a cost-benefit analysis can be difficult. The implementation
costs usually can be overseen, but it is quite hard to forecast the benefit that the step will bring in
the (far) future. Even if the advantages for the current situation and the subsequent development
steps are quite limited, possible value can emerge considering long-term maintenance of the
knowledge system. Eventually, in a couple of years another person, who is not that familiar with
the knowledge base, might want to update some part. Then an optimized custom markup makes
correct removal or introduction of a knowledge base entity much more intuitive. Also when the
knowledge base might be restructured towards a new KAA design in the future, a concise and
comprehensible markup will make life easier. However, we do not know in advance how many
times the benefit of the discussed design step might arise. Often not even the overall life time of
the system can seriously be predicted. This seems to be a general problem with the cost-benefit
estimations on KAA changes in meta-engineering with document-centered knowledge acquisi-
tion. However, this problem can be considered similar to the question for structure improving

109

4 A Meta-Engineering Approach for DCKA

refactoring operations on the code base in common software engineering. One simple heuristic,
which seems to be applied often in practice, is that structural improvements are considered prof-
itable if their total costs are negligibly small when compared to the overall project expenditure.
One argument for this heuristic is the worst-case consideration: If the improvement is imple-
mented and for some reason one does not benefit from it in the future, the loss is limited to the
implementation costs. On the other hand, if it is not implemented and the suboptimal structure
on day causes major problems for the development process, the loss is potentially unlimited.

After the cost-benefit analysis has been evaluated positively, the markup can be included into
the specification of the project’s KAA. It should be described verbosely in the KAA document
with abstract and concrete examples and for what parts it should be used. This introduction to
the KAA ends this particular design task. The markup design activities are not only focused on
the invention of entirely new markups. Often previously designed markups are just improved or
extended.

”Indeed some people find that trying to describe a domain using a DSL is useful
even if the DSL is never implemented. It can be beneficial just as a platform of
communication.”

M. Fowler, [Fow10, p.35]

A markup can also be helpful if it is not implemented (by now) for some reason. It might
be that the cost-benefit estimate is negative or cannot precisely be rated at the moment due
to missing information. Then the decision about the expense of the implementation task can
be delayed to a later point when the relevant conditions have become clear. That complies to
the general idea of the meta design principle, making important decisions as late as possible
to incorporate all experiences made so far. The specified markup, even if not being processed
by the system, still can be used by domain experts to express themselves. It forces them to
formulate the knowledge in a precise and unambiguous form. That already is very valuable for
a knowledge engineering process as knowledge in this form can quite easily be translated into
available markup by the knowledge engineers. It is then reasonable to retain and maintain both
variants closely together to be able to verify their correspondence easily. Using unimplemented
markups in that way can be considered to form another intermediate step within the workflow
of incremental formalization discussed in Section 3.2.1.

Continuation of the Meta-Design Process We expect that the meta-engineering process grad-
ually improves the structure of the document base towards better comprehensibility. Improve-
ments are triggered by deficiencies detected during work. This process will lead to a point where
all participants feel to get along with the current structure. While this might allow for effective
work at the current point, this in many cases will not suffice on the long run. It can be com-
pared to the code structure and quality in software engineering projects. If code quality is at a
state where the people that developed the code are ’getting along’ with it, it might be still hard
to work into it, especially for new participants. For the same reason why in software develop-
ment a continuous improvement of the code quality is (should be) endeavored, it should also be
pursued in DCKA. Experiences in projects of the past have shown that long-term maintenance
of knowledge bases is a considerable challenge [KFK99, GGM95]. Especially, the step off of

110

4.4 The Meta-Engineering Process for DCKA

a domain expert, which was the major contributor for a knowledge base (c.f. leaving expert
issue [HA08]), can lead into the maintenance trap as it is hard for other experts to familiarize
oneself with the legacy knowledge base structure. Hence, everyone should be aware that con-
tinuous design improvements should be pursued. Therefore, corresponding propositions need
to be generated even if the current design already feels ’quite okay’. That will assert that new
members will be able to enter the project at a late phase seemlessly and in that way guarantee
long-term success of the created knowledge system.

4.4.2.2 Markup Aspects

The range of possible domain specific markups is highly diverse and therefore some categoriza-
tion is desirable. There are several aspects that often reoccur, independently of the domain or
knowledge representation. To establish a terminology to describe markups, we in the following
introduce four basic markup aspects:

1. Relational Aspect: A relational aspect is given if the purpose of a markup is to establish
relations between two or more domain objects. Examples for these kinds of relations are
rules, logical axioms or formulas. Usually a large part of the knowledge base is formed
according to this aspect, typically including the fragments determining the knowledge
base reasoning behavior. Hence, the use of easily comprehensible markup and its embed-
ding with support knowledge and documentation is particularly important. The following
example shows a relational markup expression from the family ontology6:

1 CHAIN: hasUncle = hasParent o hasBrother

The example creates a property chain for the hasUncle property. It is introduced by the
keyword ”CHAIN:”, which also serves for the segmentation in a line-based way. The ac-
tual markup expression after the keyword is a statement about the three entities hasUncle,
hasParent, and hasBrother, forming a kind of ternary relation.

The second example shows a relations markup expression from an exemplary medical
domain:

1 IF temperature ¿ 39

2 THEN callDoctor = true

It contains a simple rule, which can be considered as a special kind of relation between
the entities temperature and callDoctor.

Relational markup not necessarily form one relation by one distinct markup expression.
The following markup example shows a table-based markup for heuristic rules from a
car-fault diagnosis domain. For each cell one rule is generated with the column header
entry as condition and the cell entry as value assignment for the row-header entry as
action. Hence, multiple relations, which are interwoven in the markup, are generated by a

6http://www.cs.man.ac.uk/ stevensr/ontology/family.rdf.owl

111

4 A Meta-Engineering Approach for DCKA

coherent markup fragment. This is one possibility how multiple relations can be defined
in a compact way.

1— —Clogged air filter— Ignition timing

2—Engine start = does not start— P5 — N5

3—Driving = unsteady idle speed— P4 — P1

2. Frame Aspect: A markup has a frame aspect if a coherent block of markup more or less
completely describes an object by enumerating a number of its attributes. This presumes
that the objects described belong to a category providing a common set of such attributes.
These attributes, corresponding to terminals or slots [Min75] of Minsky’s frame theory,
are filled either by data type values (e.g., numbers, strings) or relations to other objects
of the knowledge base. Hence, the role of the markup is to fill these slots for the object
described in this frame. There are two major strategies of doing these assignments, either
by order convention or by explicit slot naming. The latter is basically a list of attribute
value pairs, as for example in a feature description of a technical device. In assignment
by order convention an order of the slots is predefined and the values are defined in a
sequence using a delimiter symbol. An advantage of the order convention method is that
it is rather compact. Further, when typing markup expressions the user does not need to
remember the (exact) names of the slots or their representative keywords or key-signs.
The following example shows a frame markup expression with assignment by convention
style:

1 DESCRIBE JochenR: Person, Jochen Reutelshoefer, 28.06.1981

It describes the entity with the identifier JochenR in a very compact way. Depending on
domain and users in some cases the attributes of the assignments become clear to the
reader by context. However, if the defined order is violated in the definition, senseless
assignments are created by the system, possibly undetected by the compiler. In practice
however, often not all attribute slots are necessary for all objects or at least not known
from beginning. In this case of (multiple) optional slots the order convention method fails
or require some kind of placeholders. Then the other method, explicit slot naming, is
more convenient, being flexible with respect the definition of just a subset of slots and
their ordering. The following example shows a frame markup using explicit assignment
describing the same object as above:

1 DESCRIBE JochenR

2 class: Person

3 name: ’Jochen Reutelshoefer’

4 birth: ’28.06.1981’

5 spouse: Stephanie

6 parent: ...

Here, order of the assignments is irrelevant and the risk of confusion is eliminated by the

112

4.4 The Meta-Engineering Process for DCKA

cost of additional space. Another advantage is, that it allows for dynamic schemas. For the
order convention-based markup the set of attributes are fixed at development time of the
markup. The explicit slot naming method, if implemented accordingly, allows for dynamic
extension of the attribute set, e.g., assume that the attribute spouse (or any other) is just
defined in the document base at runtime. Hence, order convention-based frame markup
can only be recommended to be used for very small and fixed attribute sets and when the
assignments are clear from the context. Frame-based markup for instance is well-suited
when for each of the described entities a distinct document is formed. There the frame
markup and corresponding support knowledge, describing the object in an informal way,
can be inserted.

3. Definitional Aspect: A markup has a definitional aspect if it is used to define new ob-
jects to the knowledge base, e.g., a disease, a symptom, or a technical component. A
reasonable document-centered knowledge acquisition authoring environment should pro-
vide a compilation mechanism, which is able to verify object references for their correct
spelling. In this case, markups that explicitly introduce new objects with a given identi-
fier are required. In most cases the definitional aspect is combined with either a frame or
a relational aspect defining additional knowledge being relevant for the knowledge base.
The following example shows a definitional markup fragment:

1 CLASS Person

2 INDIVIDUAL Jochen

By these expressions the class Person and the individual Jochen are introduced to the
system and can then be used in other markup expressions (e.g., relational ones). Without
the definition the compiler should expect misspellings and report an error accordingly.

The second example shows the definition of a once-choice question with corresponding
range:

1 QUESTION Relationship [oc] ¡unmarried, married, divorced¿

4. Implicit Knowledge Aspect: A markup has an implicit knowledge aspect if part of the
knowledge is encoded in the markup compilation process. This implicit knowledge adds
further information to the knowledge encoded by the markup statement. As it is hard-
coded within the compilation script, this knowledge is hidden from the users of the au-
thoring environment. This aspect conflicts with the major principle of DCKA to have all
knowledge accessible and modifiable at low barriers. Therefore, the aspect of implicit
knowledge should only be used rarely and only for knowledge that is unlikely or rather
impossible to ever change over time, such as basic laws of physics or geometry for in-
stance. While the knowledge becomes invisible and unmodifiable, on the other hand one
can save the effort to provide documents and markups for the implicit knowledge. When
extensively used, this aspect pushes DCKA towards the strategy of indirect knowledge
acquisition (c.f. Section 1.2.2.1).

113

4 A Meta-Engineering Approach for DCKA

One example for a markup with implicit knowledge aspect can be found in the context
of the ESAT project (c.f. Section 7.1.4.2). There, display devices of various sizes are
represented within the knowledge base by stating the screen width and length for each
display. For the knowledge-based system also the area of the screen is relevant. As the
knowledge of calculating the area of a rectangle from width and height is unlikely to
change over time, it has been added as implicit knowledge aspect to the markup. Hence,
for each display device defined by the markup, its area is calculated and attached to the
knowledge object during the markup compilation process.

In most cases a markup does not strictly belong to one of the three categories but embodies
multiple aspects at certain degrees. In particular, the frame and definitional aspect often appear
in combination where an object is newly defined and subsequently its attributes are described in
a frame style manner.

4.4.3 Implementation

The goal of the implementation activities is to put the specifications, added to the KAA during
the design activities, into practice. Therefore, the current document corpus needs to be made
compliant with the updated version of the KAA. In that way a custom-tailored knowledge ac-
quisition tool is evolved. The implementation task can be divided into two distinct categories of
activity: The system level performing changes on the authoring system implementation and the
content level which is changing the structure of the documents.

4.4.3.1 System Level

The system level of the implementation efforts comprises changes, in most cases extensions,
of the authoring environment software itself. Usually it implies the implementation of new
markups, that have been specified during the design activities. This task typically includes pars-
ing, syntax checks, translation, and further authoring assistance. As a reasonable strategy, at first
basic editing assistance, in particular syntax check and highlighting, for new markups should be
addressed to facilitate contributions using it. Then, compilation to the executable knowledge
base should be integrated to enable testability of the knowledge. Finally, additional authoring
assistance like special editors or code-completion can be added. As these kind of implemen-
tation tasks are a substantial part of the meta-engineering process, it is necessary to be able to
perform them cost-effectively. In the customization approach of GUI-based knowledge acquisi-
tion tools, meta tools have been developed to allow for quick and simple generation of graphical
user interfaces as discussed in Section 4.1. In this case of markup-based formalization, meta
tools allowing for the declarative implementation of markup languages should be employed as
far as possible. More details on how this can be achieved is given in Chapter 5.

Software Development Perspective: The structure of the meta-engineering process frequently
demands development efforts for new markup features. Further, it is desirable to have newly
created features available in the authoring environment as soon as possible. Hence, a feature by
feature approach, as proposed by many agile software engineering methodologies (c.f. [BA04,

114

4.4 The Meta-Engineering Process for DCKA

SB01]) including frequent system updates, is appropriate for this customization effort. A cen-
tralized web-based system architecture, as for example given when building up on a wiki-based
system, makes deployment of system updates easy. The server system can be patched with the
new version without the users and their client machines being strongly involved. While modifi-
cations on the authoring environment are being made there is not much need for the contributors
to adapt to a new situation, as the documents remain unchanged by a system update. The modi-
fied system behavior will only take effect if the new markup feature is actually used.

A carefully designed system architecture can be robust against possibly occurring implemen-
tation errors dragged with a system update. As long as the basic view, edit, and save mechanism
is safely provided by the system, the work of the contributors is not significantly disturbed even
if some markup processing routine is erroneous. Having a stable, well-designed, extensible, and
documented DCKA system to build up on strongly facilitates the system level implementation
efforts.

4.4.3.2 Content Level

The content level implementation activities aim to adapt the document contents to comply to
the KAA. Considering Figure 4.2 it is basically a transformation of the content along the three
dimensions from the current state to the point described by the most recent KAA specification.
Changes of the first dimension implies insertion or modification of the support knowledge. The
dimension arrangement of knowledge performs component-based reorganization of the docu-
ment contents according to the document structures defined in the KAA. For dimension knowl-
edge syntax transformations on already existing formalized knowledge to the newly designed
markup have to be performed. The KAA should define for which knowledge base components
some new markup should be used. If parts of these components are already formalized using
markup available previously, they have to be transformed.

For very small amounts of content these refactorings can be performed manually. However,
if the document base has grown larger, refactoring of a major part needs to be supported by
automated or semi-automated mechanisms. If a suitable data structure is used to capture the
multimodal knowledge, methods from the general field of term rewriting [Klo92] can be applied.
In compiler construction different term rewriting techniques have successfully been applied for
code generation [AGT89]. Further, algorithms for effective tree rewritting [GMSZ08] and tree
traversal have been established [vKV03]. Using rule-based rewriting technologies (c.f., XSLT7)
allows to define the transformation process concisely in a declarative way. The content level
refactoring task can be performed using these techniques with minor adaptations. In contrast to
compiler construction, here also the non-formal content elements need to be considered for the
transformation.

4.4.4 Knowledge Acquisition

The actual knowledge acquisition process is run in parallel to the meta-engineering process
and aims to populate the knowledge base model. Except for the KAA specification, the meta-
engineering process does not specify any more details about how the knowledge acquisition

7http://www.w3.org/TR/xslt

115

4 A Meta-Engineering Approach for DCKA

process should be organized. We recommend employ some agile process model (e.g., [Knu02,
Bau04]) and to create modules that can be tested by itself. For any testable module correspond-
ing tests should be created along as known from many software engineering practices [Mar09].
If the employed document-centered knowledge acquisition environment provides a continuous
integration framework, a secure workflow based on regular automated testing can be established.
In that way, regression during the distributed knowledge acquisition process can be prevented.

Document-centered knowledge acquisition with meta-engineering allows for knowledge ac-
quisition activities from the point where the exploration phase is finished and an initial KAA is
established. For early contributions however the tool customization is still in progress. Any time
during the evolutionary refinement of the authoring environment, contributions to the document
base can be made. Any contribution should be performed according to the current version of the
KAA. As this is sometimes not trivial the users will not always be able to do so. Therefore, the
role of the knowledge gardener is required.

Knowledge Gardening: During the knowledge acquisition activities it is the task of the knowl-
edge engineering to supervise the contributions. In particular at an early stage, some users will
have problems to contribute according to the KAA and with knowledge formalization in general.
Hence, for any contribution the knowledge engineer has to check whether corrective action is
needed. While he cannot verify the correctness of the domain knowledge on the subject level, he
is able to rate whether this contribution complies to the contribution guidelines specified by the
KAA. Further, he needs to participate within the incremental formalization workflow, i.e. writing
or correcting markup expressions. This role can be compared to the gardener which is a social
role in the context of general knowledge management often used in wiki systems [LFL05]. A
wiki gardener is expected to fix errors and to rearrange content that is out of place. The extended
gardener role of the knowledge engineer monitors compliance with the KAA and takes action
in case of need. The knowledge acquisition process does not progress in a uniform manner.
The gardening task demands a rather high attention in the early phase of the meta-engineering
process, working with novice users and a not yet fully customized tool. The co-adaptive process
however, leading to more experienced users and an optimized tool, will reduce the amount of
cases where the knowledge gardener needs to take action. In the end, the domain experts are
empowered to make many compliant contributions autonomously.

4.4.5 Conclusion

The meta-engineering approach proposes to run a meta-level process in parallel to the knowledge
acquisition process which aims to customize the knowledge acquisition environment and doc-
ument structure according to the project context. The intent of this customization is to achieve
improved comprehensibility of the knowledge base to:

• allow for active participation of experts within knowledge acquisition more easily.

• enable long-term maintenance easily even if initial contributors are replaced.

The major goal of the meta-engineering approach for document-centered knowledge acquisi-
tion is not to make the knowledge engineer dispensable or to reduce his workload, as initially

116

4.4 The Meta-Engineering Process for DCKA

intended by Musens work [GMF+03]. The meta-engineering process implies a number of con-
ceptually and technically challenging tasks (markup design and implementation, content refac-
toring) to be performed by the knowledge engineer. However, all these tasks, as happening on a
meta-level, do not require domain knowledge. They can be pursued applying computer science
skills and techniques. A reusable tool infrastructure to support these tasks can be build up being
independent of the domain. We claim that taking on the burden of these tasks pays off consid-
ering the two major advantages mentioned above. In principle, the meta-engineering approach
to some extent decouples the constant need of cooperation of knowledge engineering and do-
main expertise. It enables the domain specialists to do some more contributions autonomously,
bought at the cost of additional (information science related) tasks which can be solved by com-
puter scientists without domain knowledge. This (partial) decoupling increases flexibility of the
workflow and the overall productivity of the individual. The costs of the technical tasks imposed
by the meta-engineering process are decisive for its profitability. The existence of mechanisms
allowing for the efficient execution of these tasks are a requirement for rating the value of the
meta-engineering approach. Therefore, the analysis and introduction of corresponding mech-
anisms is a further important aspect of this work. More details on these technical aspects are
discussed in Chapter 5.

4.4.5.1 Language Complexity vs. Model Complexity

We have emphasized that the use of appropriate markups makes the knowledge easier to under-
stand for domain experts. However, the inherent complexity of complex decision systems cannot
be wiped away by that approach. A knowledge base usually contains a large set of components
where each plays a particular role for the overall behavior. Some of these components are more,
some are less hard to understand for the participating persons. The difficult components will
retain their difficulty also being represented in the convenient markup language in documents
with suitable support knowledge. Fowler emphasized the need for differentiation between lan-
guage complexity and semantic model complexity [Fow10]. Language complexity describes
the complexity of the syntax and the comprehensibility of how it is translated to the model, i.e.
knowledge base. The semantic model determines the behavior of a given knowledge base at exe-
cution time, no matter how the knowledge base has been created, be it by DCKA or GUI-based.
Hence, on that level language design cannot help to improve comprehensibility of the knowl-
edge base. Achieving comprehensibility of the semantic model is an important task for further
research but not in the scope of this work. Probably, this problem has to be addressed specifically
for each single knowledge representation formalism, e.g., rule language or ontology representa-
tion language, by developing proper teaching mechanisms. However, appropriate markup helps
to be able to create and maintain the knowledge base or model one tries to build. In practice, it
is not always possible nor necessary that each contributor clearly understands all aspects of how
the semantic model works. It is sufficient if the contributor knows how the knowledge base has
to ”look like” to show the desired behavior while not exactly knowing how the reasoning algo-
rithm performs. Assuming for example a medical expert states that Endocarditis belongs to the
class of heart diseases. He does not have to know exactly how the inheritance mechanism works
or the transitive closure of the class hierarchy is calculated. It is within the responsibility of the
knowledge engineer to deal with these topics when designing the knowledge base architecture.

117

4 A Meta-Engineering Approach for DCKA

For the medical expert in this case it is intuitively clear what this piece of knowledge means for
the knowledge base. In DCKA the less complex knowledge components can be created by sim-
ple markups in a comprehensible way. Components of higher complexity are created by more
expressive markups but without adding complexity to the overall handling of the tool. In sum,
if it is clear what pieces of knowledge have to be created, then a suitable knowledge acquisition
tool can help to achieve it, possibly using customized user interfaces.

4.4.5.2 Meta-Design: GUI-based Tools vs. DCKA

In principle, the iterative customization of a tool during the knowledge acquisition process ac-
cording to the meta-design idea could also be applied for other authoring paradigms as for in-
stance GUI-based knowledge acquisition tools. However, there are a number of aspects making
the customization steps simpler and more smoothly for DCKA. Already at the beginning the
question is with what kind of tool to start off. Either it is a general tool or an initial version of a
customized tool is implemented. The former usually poses barriers even for basic contributions
and afterwards makes smooth adaptation to a (completely) different tool hard. The latter corre-
sponds to the process proposed by Eriksson shown in Figure 4.1 to be followed be a process of
incremental tool redesign and adaptation. It implies expenditure of considerable implementation
costs before experiences from knowledge acquisition can be included, which is bearing a high
risk. In DCKA one can begin with an empty document set at no implementation costs. During
the evolutionary meta design process a GUI-based tool can step-wise be adapted towards a cus-
tomized knowledge acquisition environment. However, for every design change of the interface,
implementation efforts have to be spent and time passes before it can be tried out in practice.
The main advantage of DCKA in that phase is that any design changes can be tried out and
assessed instantly (accepting that new markup is not yet processed). Hence, it allows for design
and assessment sessions in real-time involving the users. In that way, the customization efforts
can be driven more effectively as more design proposals can be rated in much shorter feedback
cycles. To sum up, the DCKA approach is more suitable for an evolutionary meta-design process
as due to its nature the start up is free of risk and the adaptation phase allows for more targeted
customization due to ’real-time assessment’.

4.5 Extending Semantic Wikis

As already mentioned in Section 3.3, wikis, especially semantic wikis, provide a good basis for
document-centered knowledge acquisition. For the intensive customization efforts demanded
by the meta-engineering process a clear view about extending semantic wikis is helpful. In the
following, we briefly discuss the most important aspects about extending semantic wikis, while
more details can be found in [RLHB09].

We briefly outline a conceptual view on semantic wikis in general, followed by the discus-
sion of the possibilities and challenges of extending semantic wikis. Figure 4.4 shows the three
components of what we call the ”knowledge pipeline” in semantic wikis. It shows the flow of
the formalized knowledge from the contributing user to the consuming user through the Knowl-
edge Formalization Component, the Reasoning Component, and the Knowledge Presentation

118

4.5 Extending Semantic Wikis

Component.

Figure 4.4: Sketch of the ”knowledge pipeline” of a semantic wiki.

• Knowledge Formalization Component: The knowledge formalization component al-
lows the user to formalize parts of the (textual) knowledge. This usually is done by
markups, forms, or graph representations. The knowledge is extracted from this input
and transformed into a target representation, which is commonly stored explicitly (e.g., in
RDF) to allow for efficient reasoning. This transformation implicitly defines the semantics
of the formalized knowledge having the target reasoner and the ontology in mind.

• Reasoning Component: A reasoning component uses the formalized knowledge created
by the knowledge formalization component and is able to deduce higher-level information
from it. While many semantic wikis employ an RDF-reasoner, there are several other
reasoning approaches present, that are beneficial in particular application scenarios.

• Knowledge Presentation Component: This component describes the way how the addi-
tional functionality provided by meta-data and reasoner is used to supply the user with the
right (high-level) information in a suitable form. This includes as an important aspect the
visualization of the results. The reasoning capabilities can be used to provide semantic
navigation, querying, rendering fact sheets, meta-data browser, and more.

These components together provide the additional value of a semantic wiki when compared to
a standard wiki. In the following the possibilities of extending each of these components are
discussed in more detail.

4.5.1 Dimensions of Semantic Wiki Extensions

In the following we discuss each of the three components and their potential for extension:

1. Formalization Extension: Given any methods (e.g., markup) to insert atomic formal re-
lations, in a technical point of view any knowledge base can be created. However, the
widespread employment of semantic technology is hindered by the formalization task
being not simple and efficient enough [Wag06]. One way to counteract is lowering the
barriers of knowledge formalization. The development of (domain specific) high-level
markup languages with comfortable editing support can help to make knowledge defi-
nition compact, transparent and efficient. Another possibility for reducing the workload

119

4 A Meta-Engineering Approach for DCKA

of the domain specialists is the integration of (preconfigured) text mining methods, that
propose formalizations based on the informal text content. Thus, the users only have to
decide whether to confirm or dismiss a formalization proposition.

2. Reasoning Extension: Although basic reasoning engines are currently available there are
still challenges with respect to scalability and expressiveness [KSV07] to be addressed.
Further, there is ongoing research to cope with inconsistent knowledge, incompleteness
and uncertainty [HvHtT05, MHL07, Kli08]. For some applications it will be valuable to
replace or enhance the basic reasoning engine by a prototype from research work.

3. Presentation Extension: The challenge of these kind of extensions is to present the user
the right high-level information in the right form at the right time (without overstraining
him). These extensions must be specified according to the use-cases addressed by the
intended application. One frequent application might be precompiled (possibly parame-
terized) use-case specific queries decorated by a GUI component for execution and having
a visualization component attached for result presentation (e.g., table-based, graph-based,
highlighted).

When designing an extensible semantic wiki architecture these three levels of extension need
to be considered as shown in Figure 4.5.

Figure 4.5: Sketch of the ”knowledge pipeline” of a semantic wiki with extensions.

Examining the possibilities of the extensions on each level it becomes evident, that an exten-
sion on one component can extend the entire functionality of a semantic wiki system. Thus, the
three components can be extended separately or combined. This leads to the semantic wiki ex-
tension space sketched in Figure 4.6. Assuming that the core semantic wiki system itself already
provides some functionality in each component/dimension, extensions on the three dimensions
can separately or combined contribute to the total functionality of the semantic wiki. Hence, an
extensible semantic wiki architecture should allow for (independent) extension of these three di-
mensions. If the core functionality of the extensible semantic wiki nearly fits the requirements,
single dimensions can be extended denoting ”refining” extensions. Heavy-weight extensions
along all three dimensions might have their own language, reasoning and presentation function-
ality.

120

4.5 Extending Semantic Wikis

Figure 4.6: The semantic wiki extension space.

4.5.2 Decorating Semantic Wikis

As already mentioned in the context of meta-engineering we claim, that the possibility for ex-
tending semantic wiki systems precisely tailored to a application scenario regarding the domain,
community, and use-cases is important. One can assume that there are many domains where
semantic wiki technology could be employed beneficially in principle. One must not assume
that every possible user is able and willing to get used to concepts like semantic wiki, ontology,
RDF, SPARQL or DL-Reasoning. Nevertheless it is possible to create semantic wikis that allow
for efficient knowledge sharing and use for these user groups at the cost of some customization.
Assumed that an appropriate knowledge repository and reasoning engine implementation has
been selected by the knowledge engineers. Then the customization demands emerging from the
design activities of the meta-engineering process can be assigned to the categories formalization
and presentation. This typical extension pattern that we call decorated semantic wikis is shown
in Figure 4.7.

Figure 4.7: Extension pattern of a ”decorated” semantic wiki application.

121

4 A Meta-Engineering Approach for DCKA

The core functionality for knowledge formalization and knowledge presentation, that is not
customized for the project, should be hidden from the untrained user to reduce confusion.

4.5.3 Challenges towards an Extensible Semantic Wiki

In the following, we discuss the three most important aspects when designing an extensible
semantic wiki:

1. Basic Functionality: In order to allow powerful extensions with advanced features with
little implementation costs, it is necessary to decide what semantic core-functionality
comes along with the basic semantic wiki architecture. Enabling applications that have to
deal with large data sets and high user activity, requires a slim and scalable text-processing
and reasoning engine. Reasoners that focus on processing of more expressive or inconsis-
tent knowledge are often consuming more computational power and need to be included
by an extension if necessary.

2. Usability: One of the most important reasons for the wide acceptance and success of wikis
is their high usability and the low training costs for new users. Semantic wikis are bringing
new possibilities to wikis and thus are inevitably adding some complexity to its usage.
Adding these new functionalities to the wiki interface with the least mental overload is a
critical issue in semantic wiki design. The core strength of the wiki approach being simple
otherwise can easily vanish. In every case it is sensible to enable ’non-semantic’ users to
work like in a ’non-semantic’ wiki with no adaptation, allowing them to discover single
additional functionalities step by step. We propose to hide all of its advanced functionality
at the beginning. Advanced features (e.g., fact sheets, meta-data browsers) can be added
to pages using tags or configuration settings by more experienced users when necessary.

3. Extension Mechanism: Various extension mechanisms on the software engineering level
are applicable to create feature-rich and extensible software. However, there are several
challenges specific to the context of semantic wiki functionality. The mechanism should
be able to support light-weight ”refining” extensions in a very simple way and at the same
time still allow for complex extensions (e.g., with own markup, meta-data representation,
reasoners and result visualization). The use of a flexible plugin-framework is highly rec-
ommended. In general, an unpleasant issue in modular software engineering in general
is the (programming-)language barrier. For technical reasons combinations of software
components written in different programming languages are often insufficiently manage-
able and inefficient. Unfortunately, this poses some kind of barrier for employing various
implementations of semantic technologies to an extensible semantic wiki architecture.

In Chapter 3 we already discussed the value of semantic wikis for the document-centered
knowledge acquisition approach. The meta-engineering approach established the customizabil-
ity and therefore extensibility as a major requirement. In this Section, we discussed the charac-
teristics of semantic wiki extensions on an abstract level. Concrete methods, i.e., data structures
and algorithms, to support the technical task of document-centered knowledge acquisition also
considering the customization demands are discussed in the following in Chapter 5.

122

5 Techniques for the Implementation of DCKA

In Chapter 2 the general principles of document-centered knowledge acquisition have been dis-
cussed including the requirements of a corresponding authoring environment. Further, with the
meta-engineering approach a refined development process model was introduced in Chapter 3
In practice, for the implementation and use of a document-centered authoring environment, es-
pecially when employing the meta-engineering approach, several technical issues need to be
addressed. Some of them have already been pointed out in Section 3.2.2 and Section 4.4.3. In
this chapter, these issues are discussed in more detail and solutions are proposed. While many
problems can be solved using standard techniques, for some aspects custom-tailored techniques
proved to be practicable. At first, we want to once more summarize the topics where technical
tasks arise:

• Parsing: The source text, i.e., multimodal knowledge, within the documents needs to be
processed. In a first step, the segmentation separates the markup expressions from the
informal content elements. The markup expressions need to be parsed into a structured
representation, which is the basis for further processing steps. In case of errors, helpful
error messages should be generated.

• Knowledge Base Population: After parsing, the markup expressions need to be trans-
formed and inserted into the knowledge base repository. As well as the parsing, this com-
pilation step has to be performed after each document modification to keep the knowledge
base up to date and ready for testing.

• Refactoring: The need for document-level refactoring can emerge in document-knowledge
acquisition quite often. It can imply the reordering of content elements within documents
but also transformation or merging of content element, for example transformation into
another markup language. While this can be performed by manipulating the documents
manually, automated mechanisms are strongly advised to keep the workload low.

• Authoring Assistance: As the use of markup languages for knowledge formalization
is challenging for many users, suitable authoring assistance is important. This primarily
considers autocompletion on typing, but also recommendation for corrections after typing.
Sometimes advanced editing components for a markup are suitable using further user
interaction methods, such as drop-down menus or drag-and-drop mechanisms.

• Debugging: A debugging mechanism is necessary for the development of complex knowl-
edge bases. This aspect has already been discussed in Section 3.2.2.5. The challenge is to
make the debug information for each piece of knowledge available in the document view,
where it is defined.

123

5 Techniques for the Implementation of DCKA

In this Chapter, the focus is set on the first two topics, parsing and knowledge base popula-
tion. This basis being set, the other activities can be implemented rather straight forward using
standard techniques. At first, however, we compare the situation to the one given in standard
software engineering.

5.1 Comparison with Software Engineering

All these technical challenges are not new in principle and well-studied in the domain of software
engineering, e.g., compiler construction [ALSU06]. However, the basic conditions in DCKA
show important differences when compared to those from software engineering. In the follow-
ing, we discuss the most important differences to allow for a further valuation of the use of
existing technologies known from software engineering:

• Frequent Introduction of new Markup Languages: General purpose programming lan-
guages are carefully designed independently of a concrete application project context. The
implementation is a process that due to its complexity is often taking years of development
before the first practically usable version becomes available. The widespread employment
of these languages by software developers worldwide in various domains makes the high
initial effort worthwhile. Further, once established programming languages usually do
not change often, except for minor (backwards compatible) extensions. In the context of
meta-engineering for document-centered knowledge acquisition the general setup is quite
different. The process model actively encourages the introduction of new markup lan-
guages or the modification of existing ones while the project is running. Further, those
languages are often project specific and therefore employed in a narrow context. The
agility of the approach also requires the development to happen in short periods of time.

• Simplicity of Markup Languages: The markup languages have a much lower complex-
ity when compared to general purpose programming languages. Only because of this, the
recurring development of project specific languages in short time frames is possible. This
is reasonable, as the simplicity is one of the major design objectives of custom-tailored
project specific markup languages. Hence, a major difference to the challenges in classical
compiler construction is to implement simple languages quickly.

• Set Characteristic of Knowledge Bases: A fundamental difference within the computa-
tional model of common (imperative) computer programs and knowledge-based systems
is that in knowledge-based systems the control flow in general is separated from the ’pro-
gram content’ (knowledge base). Due to this declarative nature of knowledge, a knowl-
edge base can be assumed as a set of (order-) independent knowledge slices. Therefore,
dependency resolution is much simpler than in common imperative programs of sequential
nature.

• Incomplete Knowledge Bases: If a software program discovers a compile error no exe-
cutable version is generated. This is reasonable as it is not reasonable to execute a pro-
gram that does not even compile. Similarly, a knowledge base that contains errors or

124

5.1 Comparison with Software Engineering

has missing fragments will not entirely fulfill its purpose. However, especially in an in-
cremental evolutionary development workflow, it is often reasonable to compile and also
execute a knowledge base even if parts are erroneous or missing [SS01]. In general, the
performance of a knowledge base is rated by competency (to answer certain questions).
Further, development usually extends the competence of the knowledge base. However,
a correct subset of a large knowledge base can still provide enough competency for an-
swering certain questions. Hence, it is reasonable to compile all non-erroneous parts to an
executable knowledge base even if there are errors on some parts (possible areas of new
development). That is possible due to the set characteristic of a knowledge base as dis-
cussed above. Therefore, one further requirement of knowledge compilation is to identify
erroneous parts and then to continue compiling the remainder.

• Multimodal Knowledge: In document-centered knowledge acquisition the non-formal
content elements within the source documents, while being compiled to the executable
knowledge base, play a fundamental role for the development process. The document-
centered authoring approach proposes strong inter-mixture of formal and informal content,
such as plain text, figures, and charts (c.f. Section 3.1.3). While in programming the
informal content, i.e. the comments, are marked by comment escape signs, it is important
for the knowledge engineering approach that informal content does not need to be marked
up in any way. This strategic requirement arises from the goal to provide low barriers for
novice users and allow for incremental formalization (possibly using startup documents
for seeding). Hence, formal content parts need to be identified in a first segmentation
step, whereas in programming usually comments are detected (and extracted) in a first
analysis step. This raises the segmentation task that separates the formal content, which
needs to be compiled to the knowledge base, from the informal content. This task is
not too challenging but necessary, as a good comprehensible structure of a document
knowledge base usually implies a close inter-mixture of the formal knowledge parts with
documentation. Segmentation has to be the first step in the knowledge compilation process
chain.

• Semi-Formal Languages: Sometimes it is helpful to support processing of semi- or un-
structured content, that cannot be described by a formal language. Then heuristic parsers
and information extraction methods including natural language processing technologies
can be employed. They are used to formalize the knowledge or to generate formalization
propositions driving a semi-automated formalization workflow with user interaction. In
these cases, the methods from classical compiler construction are not applicable.

Considering all these aspects, it is clear that the task of processing knowledge documents for
document-centered knowledge acquisition significantly differs from the compilation of general
purpose programming languages as known from standard software engineering. It therefore
demands for the use of adapted techniques accordingly. The nature of the knowledge compila-
tion problem allows for many markups to build knowledge compilers at rather low development
costs. Therefore, in the following suitable parsing and compilation techniques are discussed.

125

5 Techniques for the Implementation of DCKA

5.2 Overview: Techniques Presented

The technical tasks for supporting document-centered knowledge acquisition, especially consid-
ering the meta-engineering approach, are quite diverse. In this chapter we introduce in detail a
collection of non-standard methods that are well suited to support several of these tasks:

• The KDOM Data Structure: KDOM (Knowledge Document Object Model) is a data
structure that is well-suited to capture multimodal knowledge. The capture of document-
contents as KDOM is helpful for knowledge base population, refactoring, and debugging.

• A Top-Down-Parsing Algorithm: This parsing algorithm is able to create the KDOM
data structure efficiently. Beside its capability to handle multimodal knowledge, it also
provides the flexibility to handle frequent introduction of new markups, also at run-time
by using of a plugin mechanism. For the algorithm multiple extensions are provided either
improving runtime or simplifying parser implementations.

• An Algorithm for Incremental Knowledge Markup Compilation: The algorithm pro-
vides the check for terminology level errors and the knowledge base population in an
incremental way. It is generic and therefore suitable for all kinds of knowledge markups
and symbol level target knowledge representations.

• A Meta-Model for Efficient Markup Implementation: The previous techniques can
be combined to a holistic approach of multimodal knowledge processing. We provide a
method for the cost-efficient implementation of (new) knowledge markups in a declarative
way by the introduction of a meta-model. It makes use of the KDOM data structure, the
top-down parsing algorithm, and the incremental compilation algorithm.

5.3 Parsing of Multimodal Knowledge

Parsing is an important step in the analyses of source text as it allows to create a structured
representation of the input string sequence. This structured representation can serve as a basis
for a wide range of operations that are important in DCKA, including for example population of
the knowledge repository, refactoring, authoring assistance, and debugging. The most common
form of structured representation used in compiler construction is the abstract syntax tree (AST).
Corresponding techniques and algorithms, i.e., syntax directed translation, have been studied
thoroughly in the area of compiler design [ALSU06]. These techniques can not be applied in
a straight forward way for parsing of multimodal knowledge, as the input source is not entirely
written in one formal input language. A segmentation step, separating the markup expressions
from the informal content, is required. In the following, we introduce a parsing mechanism that
allows to perform the creation of a structured representation meeting all the requirements of
document-centered knowledge acquisition.

5.3.1 The KDOM Data-Structure

As a core representation of the document contents we propose to use a data-structure called the
Knowledge Document Object Model (KDOM). KDOM is a hierarchical breakdown of the docu-

126

5.3 Parsing of Multimodal Knowledge

ment as a double-linked typed tree, which is well-suited to support population of the knowledge
repository, refactoring, authoring assistance, and debugging.

Definition 1 (KDOM) A KDOM is defined as set of nodes, where a node n∈KDOM is defined
as a tuple

n = (id, content, type, parent, children).

Thus, each node stores a unique id, some textual content segment of the input, a type (describing
the role of the content), one parent node (with exception of the root node having no parent), and
an (ordered) list of children nodes. A valid KDOM of a document is given if:

1. The text content of the root node equals the text content of the document.

2. The following constraints are true:

a) textConcatenation(n.children) = n.text for all n ∈ {KDOM \LEAFS},

LEAFS being the subset of KDOM with an empty children set.

b) n.text complies to n.type for all n ∈ {KDOM},

i.e., the text part of the node n can be mapped to the corresponding type. 2

Having the document content as a KDOM data-structure, compilation and refactoring tasks
can be performed by navigating the KDOM tree. Instead of analyzing the content string, the
types can serve as an orientation by providing the context. In the following, we describe an al-
gorithm that creates this KDOM data-structure for an input document using a given type system
(KDOM schema), with a parser function attached to each type.

5.3.2 A Top-Down Parsing Algorithm

In this section, we introduce a top-down parsing technique that is not based on grammars and
tokenization as known from standard syntax directed translation techniques. It is rather per-
forming recursive top-down segmentation of the source text based on a schema of types. This
KDOM schema is a tree of types defining the markup languages accepted by the system. Each
type features a meaningful unique name, describing the role of the content element, and a parser
function that is able to detect the syntactical element within a chunk of input source. The algo-
rithm sketched in Listing 5.1 can be used to create a KDOM tree for a given input text according
to a predefined KDOM schema tree.

127

5 Techniques for the Implementation of DCKA

1 p a r s e (pa ren tNode) :
2

3 f o r a l l (c h i l d T y p e : pa ren tNode . t y p e . g e t C h i l d r e n T y p e s ())
4 f o r a l l (s t r i n g : g e t U n a l l o c a t e d F r a g e m e n t s (pa ren tNode))
5 c h i l d r e n N o d e s = c h i l d T y p e . f i n d O c c u r r e n c e s (s t r i n g)
6

7 f o r a l l (ch i l dNode : c h i l d r e n N o d e s)
8 a t t a c h T o P a r e n t (ch i ldNode , pa ren tNode)
9 c h i l d T y p e . g e t P a r s e r () . p a r s e (ch i l dNode)

10

11 f o r a l l (s t r i n g : g e t U n a l l o c a t e d F r a g m e n t s (pa ren tNode))
12 c r e a t e P l a i n t e x t N o d e (s t r i n g , pa ren tNode)

Listing 5.1: A recursive algorithm to build up a KDOM syntax tree.

5.3.2.1 Description

The parse function is initially called with a root node containing the entire the document con-
tent. Then all children types are searched for using the parser component provided by this type
(findOccurrences in line 5). In case of detection corresponding children nodes are attached to the
parent in line 8, allocating the respective text segment. For these children nodes the algorithm
is called recursively to parse the next level of nodes underneath these children nodes by using
the the parser provided by the respective types. For all unallocated fragments of the source text
nodes of the type PlainText are created to make the content tree complete. Then the recursion
terminates. The resulting syntax tree complies with the definition of the KDOM data-structure
as specified above in Definition 1.

The KDOM schema plays a very important role in this process. A KDOM schema tree always
has the type ’root’ as root node. All available top level markups are child nodes of this root node
in the schema, determining which kind of markups are recognized by the system. In that way, the
first recursion level of the algorithm performs the segmentation task separating markup segments
from informal segments, while creating plain-text nodes for the latter. For the further, the parsing
process continues using the parser specified by the respective type.

The auxiliary functions used within the algorithm are explicitly described in the following:

• getChildrenTypes: This function provided by types returns all its children types accord-
ing to the KDOM schema in the order as defined.

• attachToParent: This function attaches a newly created node to a parent node. The first
argument is the new node and the second one is the parent node. The new node is inserted
in to the children list of the parent. The order of the children in the list is important for
obtaining a valid KDOM structure. As the nodes are not detected in the order the appear
in the text of the parent, a child needs to be registered at the correct position in the list.
This position can be found out easily iterating on the existing children and inserting before
the first child, which represents a fragment coming after the one to insert.

• createPlaintextNode: This function creates a node of the type PlainText. The first argu-
ment is the parent node of the plain-text node and the second one is the text fragment.

128

5.3 Parsing of Multimodal Knowledge

After its creation the plain-text node should be attached to the parent by using the attach-
ToParent function.

• findOccurrences: A type provides this function to call the parser component on the passed
text sequence. For each detected occurrence a new node of this type is created. These
nodes are then returned as a list.

• getUnallocatedFragments: During the parsing process of a node children nodes of vari-
ous types are detected one by one in some order. For each child type that is available, it
is necessary to find the text fragments of the parent nodes, which are not yet consumed
already by existing children nodes. The function getUnallocatedFragments collects these
string sub-sequences of the parent node by iterating on the list of current children and
collecting the gaps in between.

5.3.2.2 Performance

A strict theoretical analysis of the algorithm determines its complexity being in O([t ∗ f ∗ c]d),
with t as the average number of children-types, f as the average number of unallocated text
fragments, c as the average number of detected nodes for a type and d as the depth of the
schema/content tree indicating the recursion depth. This defines a complexity class appearing
rather unfavorable and requires further consideration with respect to scalability. The average
number of children-types t is constant and depends on the markup languages, i.e., the KDOM
schema. In practice it turns out to be lower than ten in most cases. The number of unallocated
text fragments f and number of detected nodes c do scale up with the size of the overall length
of the source input but only for the first level of the recursion. After the segmentation of the fist
level, small segments are processed independently of the overall size of the document. The depth
of the schema d is again depending on the markup language often being in a magnitude of ten
in practice. The actual computation workload is caused by the calls of the parser components
(findOccurrences). The algorithm does not make any constraints how this function has to be
implemented for a certain type, as for example using a regular expression or a hand coded
function. However, the runtime of a parsing function, no matter which way it is implemented,
necessarily depends on the length of the text input. Assuming an average branching factor of b
in the resulting tree, this implies that the average size of the node contents decreases by 1/b for
each level, c.f. Constraint 2a of Definition 1. The parent node content size can be considered
as an upper bound for the length of the input string for the findOccurrences function. In sum,
while the count of parser function calls in worst case grows exponential with the depth, the input
argument string length decreases logarithmic with b. However, a performance valuation of this
algorithm based on theoretical analyses is insufficient, as the actual runtime strongly depends on
the KDOM schema determining d and t and the structure of the input, determining f and c.

An empirical examination of the parsing process of the ESAT Wiki (c.f. Section 7.1) con-
taining a knowledge base of 576 rules and a large number of test-cases distributed on 74 pages/-
documents shows the following characteristics: the average number of found children nodes c is
1.60; the average number of findOccurrence calls (f ∗t) for one parse call is 1.46 (excluding root
level); the average leaf depth d is 12 while the maximum depth found was 35. (The KDOM tree
has a higher depth as the schema as a recursive schema has been used, c.f. Section 5.3.7.2.) The

129

5 Techniques for the Implementation of DCKA

average parsing time (using a standard laptop) is 18 ms per page while we found a maximum of
319 ms on a very large page (>1000 lines of syntax). This runtime results are practicable for use
in real-world projects. With the computational power available today, this parsing approach does
not cause performance problems presuming reasonable implementations of the parser functions
within the types. Documents of exceeding size should, for the users’ sake, be partitioned into
multiple documents anyway .

Nevertheless, the speed of this algorithm can be significantly improved. In the next section
an incremental version of this parsing algorithm is introduced. It is reusing the old KDOM tree,
making the approach faster in case of the old version of KDOM tree being available.

5.3.2.3 Example

For clarity, in the following a comprehensive example is given, showing how a KDOM tree is
created for a document using the algorithm of Listing 5.1 with a specific KDOM schema. Fig-
ure 5.1 shows an exemplary KDOM schema allowing for simple rules, comments, and relation
tables to be processed explicitly. We assume that to each type the parsing function is attached,
which is able to detect the occurrence of the relevant expressions within an input source se-
quence. Assume this KDOM schema is applied on the document shown in Figure 5.2, which is
an excerpt from a knowledge base for car-fault diagnosis. The resulting KDOM tree is sketched
in Figure 5.3. The numbers are indicating what parts of the document are included in the KDOM
nodes. At root level eight segments have been created, including two comment segments, two
rule segments, one table segment, and three plain-text segments. While the plain-text segments
are leafs in the tree, the other segments are broken down further, according to their respective
sub-type-hierarchy in the KDOM schema.

Document

Rule Comment Relation Table

Condition
Keyword

Rule
Condition

Action
Keyword Rule Action

FindingConjunction
Operator

Question Comparator Value

Line
Header Cell

Column
Header Cell Value Cell

Table Line

Figure 5.1: An example for a KDOM schema.

130

5.3 Parsing of Multimodal Knowledge

Figure 5.2: An example document from a car-fault diagnosis knowledge base.

131

5 Techniques for the Implementation of DCKA

G
en

er
al

 …
 b

ac
k

on
.

D
oc

um
en

t

G
en

er
al

 …
 fu

m
es

.

Pl
ai

nT
ex

t

C
om

m
en

t …
 e

ls
e

C
om

m
en

t

IF
 …

 =
 S

ug
ge

st
ed

R
ul

e

A
ty

pi
ca

l …
 m

ile
ag

e.

Pl
ai

nT
ex

t

<T
ab
le
-C
on
te
nt
>

Ta
bl

e

C
om

m
en

t …
 v

er
ifi

ca
tio

n

C
om

m
en

t

IF
 …

 =
 S

ug
ge

st
ed

R
ul

e

R
ep

ai
r …

 b
ac

k
on

.

Pl
ai

nT
ex

t

IF

C
on

di
tio

n
K

ey
w

or
d

Ex
h…

ga
so

lin
e

R
ul

e
C

on
di

tio
n

TH
EN

A
ct

io
n

K
ey

w
or

d

C
l…

Su

gg
es

te
d

R
ul

e
A

ct
io

n

<b
la
nk
>

Li
ne

 H
ea

de
r C

el
l

D
riv

in
g

…
 s

pe
ed

C
ol

um
n

H
ea

de
r C

el
l

C
lo

gg
…

Fi
lte

r

Li
ne

 H
ea

de
r C

el
l

+

Va
lu

e
C

el
l

IF

C
on

di
tio

n
K

ey
w

or
d

D
riv

in
g…

ac
ce

le
ra

tio
n

R
ul

e
C

on
di

tio
n

TH
EN

A
ct

io
n

K
ey

w
or

d

C
l…

Su
gg

es
te

d

R
ul

e
A

ct
io

n

Ex
h…

bl
ac

k

Fi
nd

in
g

AN
D

C
on

ju
nc

tio
n

K
ey

Fu
el

…
ga

so
lin

e

Fi
nd

in
g

Ex
ha

us
t

Fu
m

es

Q
ue

st
io

n

=

C
om

pa
ra

to
r

Ex
ha

us
t

Fu
m

es

Va
lu

e

(..
.)

(..
.)

(..
.)

(..
.)

(1
)

(3
)

(2
)

(4
)

(5
)

(6
)

(7
)

(8
)

(3
.1
)

(3
.2
)

(3
.3
)

(3
.4
)

(5
.1
)

(5
.2
)

(5
.3
)

(..
.)

(7
.1
)

(7
.2
)

(7
.3
)

(7
.4
)

(7
.2
.x
)

(3
.2
.1
)

(3
.2
.2
)

(3
.2
.3
)

(3
.4
.x
)

(..
.)

(7
.4
.x
)

(3
.2
.3
.x
)

(3
.2
.1
.1
)

(3
.2
.1
.2
)

(3
.2
.1
.3
)

Figure 5.3: A KDOM tree for the document shown in Figure 5.2.132

5.3 Parsing of Multimodal Knowledge

5.3.2.4 Discussion

The presented top-down parsing mechanism is valuable for the document-centered knowledge
engineering approach as it compiles to the special requirements discussed in Section 5.1.

• Segmentation: Due to the nature of the knowledge documents containing multimodal
knowledge, the task of segmentation is necessary to distinguish informal parts from parts
demanding further processing (e.g., compilation into a knowledge base). For grammar-
based parsers, fragments of informal content need to be treated in a special way during
lexical analysis, if it is not explicitly marked up as comments. The top-down parsing algo-
rithm performs the segmentation implicitly in the first recursion step. For contents that do
not match any specific predefined types, the algorithm creates nodes of the type PlainText
not affecting the further parsing process. For each kind of markup to be available at top
level, its main type is registered in the KDOM schema tree as child of the root as shown
in Figure 5.1. Then the algorithm will automatically include the markup for the segmen-
tation.

• Extensibility: The KDOM schema completely defines the available markup language in
the system. As the requirements for the markup languages often differ from project to
project, the ability for flexible modifications is desired. With the presented approach sub-
schema trees can be introduced to the system flexibly, even at runtime if necessary. With
a suitable plugin mechanism new children types can be hooked up into the initial schema
tree at any level. Grammar-based parser generators in contrast usually require the code
generation of the parsers at compile-time. Modifying the markup language of a given sys-
tem build using a standard plugin mechanism is not possible then.

• Flexibility: In document-centered knowledge acquisition contents of very different na-
ture have to be processed. This potentially includes ’informal’ markup languages with
best-guess or semi-automated formalization. The necessary natural language processing
or information extraction algorithms can easily be embedded due to the generality of the
parser component of types. The findOccurrences function easily can call some NLP-
component to create a corresponding syntax tree.

• Compatibility: The parsing approach can easily be combined with traditional grammar-
based parsers to handle certain (sub-) markup languages. Therefore, a type is required
that allocates a source segment complying to the sub-language. When the parse-function
is called for a new node, the type determines the kind of parser that is used. While this
can be the same top-down-parser again, also a grammar-based parser complying to the in-
terface can be called, creating the syntax sub-tree for this node. In this way, the top-down
parsing approach and the grammar-based parsing approach can easily be combined, pos-
sibly the first performing primarily the segmentation task and the latter parsing complex
formal markup language parts.

133

5 Techniques for the Implementation of DCKA

• Practicability: As discussed above, performance is not a critical issue of this parsing ap-
proach. However, for the practical application, especially in the meta-engineering context,
the development effort, which is necessary to implement a parser for a markup language
as a KDOM scheme, is relevant. Experiences show that simple markup languages can be
implemented as KDOM schema very easily raising only low development costs. Markup
languages of increased complexity require more experiences within KDOM schema de-
velopment and a good understanding of the parsing algorithm which is interpreting the
schema. The limits of KDOM schemas are further discussed in Section 5.3.7.3. For
languages of high complexity the development of a grammar-based parser should be con-
sidered alternatively. In Section 5.5, we present a language to enable developers to design
KDOM schemas in a declarative manner to speed up and simplify the development pro-
cess.

These aspects make the top-down-parsing algorithm introduced in Listing 5.1 a very valuable
document-centered knowledge acquisition and the meta-engineering approach. To this basic
algorithm still several improvements can be made, discussed in the following. Each extension
leads to a minor modification of the basic algorithm. For clarity, always the entire modified
algorithm is shown and the modifications compared to the original version are discussed.

5.3.3 Extension 1: Incremental Top-Down Parsing

In the agile knowledge engineering approach described in this work often small changes to
the documents are made, for example in the collaborative incremental formalization scenario
discussed in Section 3.2.1. When aiming at fast processing of these small changes an incremental
approach for the parsing task appears beneficial, as most parts of the syntax tree will again appear
in the new version. The basic idea of incremental parsing is to make use of the old syntax tree
to create the new one by minimal efforts. Performance is not the only advantage of incremental
parsing. After the parsing, in document-centered knowledge acquisition, the knowledge has to
be inserted into the knowledge base repository. Instead of building up the entire knowledge base
newly after each change, also an incremental knowledge base update is possible. Then a minimal
change set of the content is required as a starting point of the knowledge base update algorithm.
This information can easily be generated within the incremental parsing process. More details
about incremental knowledge base update are given in Section 5.4.

In Listing 5.2, we present the incremental version of the algorithm discussed in Section 5.5.4,
which reuses entire KDOM sub-trees of the old version of the document and additionally creates
the resource-delta, that is required for the incremental knowledge base updating:

134

5.3 Parsing of Multimodal Knowledge

1 p a r s e (pa ren tNode) :
2

3 f o r a l l (c h i l d T y p e : pa ren tNode . t y p e . g e t C h i l d r e n T y p e s ())
4

5 f o r a l l (s t r i n g : g e t U n a l l o c a t e d F r a g m e n t s (pa ren tNode))
6 c h i l d r e n N o d e s = c h i l d T y p e . f i n d O c c u r r e n c e s (s t r i n g)
7

8 f o r a l l (ch i l dNode : c h i l d r e n N o d e s)
9 s u b t r e e N o d e = lookUpInOldKDOMTree (c h i l d n o d e)

10 i f (s u b t r e e N o d e != n u l l)
11 mark (subTreeNode , REUSED)
12 a t t a c h T o P a r e n t N o d e (subTreeNode , pa ren tNode)
13 e l s e
14 mark (ch i ldNode , NEW)
15 c h i l d T y p e . g e t P a r s e r () . p a r s e (ch i l dNode)
16

17 f o r a l l (s t r i n g : g e t U n a l l o c a t e d F r a g m e n t s (pa ren tNode))
18 c r e a t e P l a i n t e x t N o d e (s t r i n g , pa ren tNode)

Listing 5.2: The incremental version of the parsing algorithm for creation a KDOM syntax tree.

5.3.3.1 Description

The algorithm is identical to the original one except for the inner loop starting in line 9. There,
sub-trees are looked up in the old syntax tree and inserted into the new one if found in line 12.
If no corresponding sub-tree can be found, the parsing algorithm is called recursively with the
particular text section continuing the normal top-down parsing process. The information for
resource-delta is created in the lines 11 and 14. Any section from the old syntax tree that is not
marked as reused ’REUSED’ is considered to be deleted.

Figure 5.4 illustrates this principle. The overall input sequence of the document is represented
by the bar on the top. The part in white has been modified with respect to the previous version
of the document, while the rest is identically retained. Further, the splitting operations, creating
the nodes for the next level, are indicated by arrows. KDOM nodes created by the algorithm are
symbolized by rectangles. The triangles represent sub-trees for the respective source that can be
adopted from the KDOM tree of the previous version of the document.

The additional auxiliary functions of the modified algorithm are described in the following:

• lookUpInOldKDOMTree: This function searches the KDOM tree of the previous version
for a node, which contains exactly the same text sequence. If such node is found, it is
returned, null otherwise.

• mark: The function marks the passed node with a flag, in this case ’REUSED’ or ’NEW’.
These flags are not relevant for the parsing process at all and therefore could be omitted
for the parsing task. The flags together are forming the resource delta indicating a minimal
set of changes compared to the previous version of the document. This resource delta can
be used by an incremental knowledge base update mechanism after parsing, discussed in
Section 5.4.

135

5 Techniques for the Implementation of DCKA

Figure 5.4: Illustration of the reuse of KDOM subtrees in the incremental parsing algorithm.

5.3.3.2 Performance

The reuse of whole subtrees makes this algorithm efficient, especially for small single changes
of the document. For a rough complexity estimation, we assume the branching factor b of the
syntax tree to be constant. When having n nodes in the tree the non-incremental algorithm (that
is line 10 returns always null) requires n parsing steps P. Assuming a small single modification
in the document the incremental process on any level performs only one parsing step and b−1
look ups L. Figure 5.4 illustrates the case with b = 3. For a tree depth of log(n) that is an overall
complexity of: log(n)×P+ log(n)(b− 1)× L. The lookup in a typed parse-tree can be per-
formed in logarithmic time with respect to the node count using path search or even in constant
time if a hash table is maintained. Therefore, the result of this approximation is in logarithmic
time in contrast to linear to the non-incremental process with respect to P. However, the parsing
steps do not all require equal computation time. The first recursion step of the algorithm per-
forming the segmentation on the root level of the document has a higher complexity. Then for
b− 1 of the created nodes at each parsing step, the subtrees can be reused from the old syntax
tree, providing significant speed up.

5.3.3.3 Discussion

This version of the algorithm will lead to exactly the same output KDOM tree as the original
one. It guarantees to be at least as fast as the basic algorithm described in Section 5.5.4. If the
document is modified completely, the algorithm will perform exactly as the original one. For
small modifications in large documents it provides significant performance improvements by
the reuse of sub-trees. Additionally, it delivers the resource delta for a incremental knowledge
base update algorithm. No matter whether incremental knowledge base update is intended, this
version of the algorithm can be recommended in general for its better performance.

136

5.3 Parsing of Multimodal Knowledge

5.3.4 Extension 2: Cardinality Constraints

The KDOM schema hierarchy basically declares which syntax fragments may occur as child
elements of some expression, but not how many times. The basic algorithm the findOccurrences
might detect an arbitrary number of occurrences for the respective type, e.g., all matches when
using a regular expression. However, depending on the specification of the markup language
to be implemented, often particular language elements are expected to appear exactly once (or
in some other cardinality). This cannot be considered by the basic algorithm. However, these
kind of cardinality constraints allow to define markups more simply and precisely, also helping
to generate meaningful errors messages. For this reason, we propose to extend the algorithm for
cardinality constraints.

• Min-Cardinality-Constraints The parsing algorithm is designed to build up a syntax tree
for the input in any case, and does not generate syntactical errors so far. As no cardinality
is given the implicit cardinality is zero to infinite, which in fact makes the expressions
optional. Usually a markup language contains important expressions which are required
for the overall markup expression to make sense and for reasonable processing of the input
source. To overcome this issue and generate helpful error messages, types of non-optional
elements may be provided with a min-cardinality constraint. It describes how many times
this element represented by this type needs to be present in the source code at least. This
can easily be checked after the call of the findOccurrences function. If a constraint is
violated an error message can be generated and attached to the parent node.

• Max-Cardinality-Constraints In principle, max-cardinality constraints can be treated
analogously to the min-cardinality constraint described above. However, in contrast to the
min-cardinality-constraints, the max-cardinality constraints could also be handled by the
parser function. It could recognize (and prevent) these violations, i.e. to many occurrences
of the particular syntax element, in advance. Therefore, the max-cardinality-constraints
are not strictly necessary, but can simplify the implementation of the parser function.
It can be convenient to check the max-cardinality constraints within the general parsing
algorithm instead of in every parsing function.

5.3.4.1 Description

Listing 5.3 shows the modified algorithm. In line 12 the max-cardinality constraint is checked.
In case of a violation, an error message is attached to the respective node and the recursive
parsing process is not continued. Otherwise, the parsing process is continued normally. In line
17 the min-cardinality constraint is checked and an error message is attached to the parent node
accordingly. In the following the additional auxiliary functions are described:

• violatesMinConstraint: This function checks whether min-constraints have been vio-
lated. The min-constraints need to be accessible from the respective type as an integer
value.

137

5 Techniques for the Implementation of DCKA

1 p a r s e (pa ren tNode) :
2

3 f o r a l l (c h i l d T y p e : pa ren tNode . t y p e . g e t C h i l d r e n T y p e s ())
4 L i s t t y p e N o d e s T o t a l ;
5

6 f o r a l l (s t r i n g : pa ren tNode . g e t U n a l l o c a t e d F r a g e m e n t s ())
7 c h i l d r e n N o d e s = c h i l d T y p e . f i n d O c c u r r e n c e s (s t r i n g)
8 t y p e N o d e s T o t a l . append (c h i l d r e n N o d e s)
9

10 f o r a l l (ch i l dNode : c h i l d r e n N o d e s)
11 a t t a c h T o P a r e n t (ch i ldNode , pa ren tNode)
12 i f (v i o l a t e s M a x C o n s t r a i n t (ch i ldNode , c h i l d r e n N o d e s))
13 a t t a c h E r r o r V i o l a t e s M a x C o n s t r a i n t (ch i ldNode , t y p e)
14 e l s e
15 c h i l d T y p e . g e t P a r s e r () . p a r s e (ch i l dNode)
16

17 i f (v i o l a t e s M i n C o n s t r a i n t (ch i ldType , c h i l d r e n N o d e s))
18 a t t a c h E r r o r V i o l a t e s M i n C o n s t r a i n t (paren tNode , t y p e)
19

20 f o r a l l (s t r i n g : pa ren tNode . g e t U n a l l o c a t e d F r a g e m e n t s ())
21 c r e a t e P l a i n t e x t N o d e (s t r i n g , pa ren tNode)

Listing 5.3: The KDOM top-down parsing algorithm with cardinality constraints.

• attachErrorViolatesMinConstraint: This function attaches an error message to the passed
node indicating, that required elements of the corresponding type are missing. This mes-
sage can be looked up and displayed by document rendering engine of the system.

• violatesMaxConstraint: This function checks whether max-constraints have been vio-
lated. The max-constraints need to be accessible from the respective type as an integer
value.

• attachErrorViolatesMaxConstraint: This function attaches an error message to the
passed node, indicating that to many elements of the corresponding type have been found.
The message can be looked up and displayed by document rendering engine of the system.

5.3.4.2 Performance

The evaluation of the cardinality constraints does not require any significant amount of compu-
tation time. Therefore, the overall performance is not affected by this extension.

5.3.4.3 Discussion

This extension allows to generate syntactical errors during the parsing process. However, to pro-
vide sufficient user support, further error handling needs to be considered during the compilation
process. Further, this extension is important for the extension discussed in the next section.

138

5.3 Parsing of Multimodal Knowledge

5.3.5 Extension 3: Backtracking for Top-Down Parsing

The task of the parser function findOccurrences is to determine whether (a part of) some content
belongs the respective type. The basic parsing algorithm 5.5.4 works deterministic as a taken
step cannot be retracted. Therefore, a decision at a particular step may become a difficult task
for non-trivial markup languages. It might require a more detailed analysis of the source before
the decision, whether the source content complies to this type, can be made. This analysis often
includes parsing-like analysis activities in advance, before the actual deep parsing is performed
in the subtree. It implies that the parser functions on higher level have increased complexity also
doing tasks which are intended to be performed by the types on the lower levels. This problem
can make the implementation of markup languages as KDOM schemas awkward as the parser
functions on different levels may become somehow redundant. A strategy to solve this problem
is backtracking. Applying this strategy to KDOM parsing releases the parser functions on the
higher levels from the duty of taking final decisions. Rather, the higher level type allocates the
source content causing the continuation of recursive top-down parsing of the successor types
and defines a mark for backtracking. Then it is the task of the successor types to decide, whether
the source content really complies to the language element. For that purpose, the constraint
mechanism introduced in Section 5.3.4 can be employed. Types which are mandatory for the
respective languages element can be provided with a min-cardinality constraint. A violation of
the this constraint will trigger the backtracking mechanism up to the backtracking point defined
previously. On that level the node allocation is then removed and the content is passed to the next
registered type continuing the normal parsing process. Therefore, the parser function is turned
into a boolean function that returns false only in that cases, when a min-constraint is violated.

5.3.5.1 Description

Listing 5.4 shows the modified algorithm. To implement the backtracking mechanism, the pars-
ing function is designed to return a boolean value. That value tells whether the analyzed text
segment complies to the expected pattern of the KDOM-schema subtree. If the value node-
Matches is true in line 15, the algorithm behaves exactly as the basic version discussed earlier.
If constraint violations have been found in the subtree and nodeMatches is false, then the cur-
rent type is checked, whether it is a backtracking point in line 19. Types which are designed to
make use of the backtracking mechanism need to be marked as such on implementation, that is
isBacktrackPoint() has to deliver true then. If it is a backtracking point, the node is not attached
to the parent, but stored for potential later use. Then the next type will be tried out for this source
fragment. If it is not a backtracking point, the backtracking will continue. Therefore, the node
is attached to the parent and backtrack is set to true in line 23. This will lead to termination of
the current call with false in line 40. The min-cardinality constraints are checked in line 26. In
case of violation false will be returned, initiating the backtracking process.

Within the different variants of the top-down-parsing algorithms several auxiliary functions
are used. They are described in the following:

• getNextUnallocatedFragment: This function works similar to getUnallocatedFragments
used by Listing 5.1, but only returns the first unallocated sub-sequence detected.

139

5 Techniques for the Implementation of DCKA

1 b o o l e a n p a r s e (pa ren tNode) :
2

3 tmpNodes
4 b a c k t r a c k = f a l s e
5

6 f o r a l l (c h i l d T y p e : pa ren tNode . t y p e . g e t C h i l d r e n T y p e s ())
7 c h i l d r e n N o d e s T o t a l
8

9 f o r a l l (s t r i n g : g e t U n a l l o c a t e d F r a g e m e n t s (pa ren tNode))
10

11 c h i l d r e n N o d e s = c h i l d T y p e . f i n d O c c u r r e n c e s (s t r i n g)
12 c h i l d r e n N o d e s T o t a l . a dd Al l (c h i l d r e n N o d e s)
13

14 f o r a l l (ch i l dNode : c h i l d r e n N o d e s)
15 nodeMatches = c h i l d T y p e . g e t P a r s e r () . p a r s e (ch i l dNode)
16 i f (nodeMatches)
17 a t t a c h T o P a r e n t (ch i ldNode , pa ren tNode)
18 e l s e
19 i f (t y p e . i s B a c k t r a c k P o i n t ())
20 tmpNodes . add (ch i l dNode)
21 e l s e
22 a t t a c h T o P a r e n t (ch i ldNode , pa ren tNode)
23 b a c k t r a c k = t r u e
24

25

26 i f (v i o l a t e s M i n C o n s t r a i n t (c h i l d r e n N o d e s T o t a l))
27 a t t a c h E r r o r V i o l a t e s M i n C o n s t r a i n t (paren tNode , t y p e)
28 c r e a t e P l a i n t e x t N o d e (paren tNode , pa ren tNode . t e x t ())
29 r e t u r n f a l s e
30

31

32 f r a g m e n t = g e t N e x t U n a l l o c a t e d F r a g m e n t (pa ren tNode)
33 w h i l e (f r a g m e n t != n u l l)
34 tmpNode = getTmpNodeForFragment (tmpNodes , f r a g m e n t)
35 i f (tmpNode != n u l l)
36 a t t a c h T o P a r e n t (tmpNode , pa ren tNode)
37 e l s e
38 c r e a t e P l a i n t e x t N o d e (f ragmen t , pa ren tNode)
39 f r a g m e n t = g e t N e x t U n a l l o c a t e d F r a g m e n t (pa ren tNode)
40

41 i f (b a c k t r a c k) r e t u r n f a l s e
42 r e t u r n t r u e

Listing 5.4: The KDOM parsing algorithm with backtracking.

140

5.3 Parsing of Multimodal Knowledge

• isBacktrackPoint: This function determines whether a certain type has been declared to
be a backtracking point by its developer.

• text: This function returns the text of a node.

• getTmpNodeForFragment: Looks up whether a section had been created and temporar-
ily been dismissed during the backtracking process. As no valid match has been found
for the fragment, the latest candidate can be used and provided with meaningful error
messages accordingly.

5.3.5.2 Performance

The backtracking mechanism adds additional complexity to the algorithm, as any type can be
tried out whether the content matching the sub-schema or not. In practice, the runtime strongly
depends on the concrete implementation of the markups. Runtime can become an issue when
many markups, which use the backtrack mechanism with the min-cardinality constraints at con-
siderable depth, are competing. This situation, however, can be avoided by design. For example,
the mechanism should not or only sparsely be used on the top level (segmentation level). In prac-
tice, the number of competing types/markups is often low (<4), even one in many reasonable
cases. The backtracking dept, which is the depth where the min-constraints are located, often
is about two to four. In these cases, despite of an exponential complexity class, the additional
computation load is insignificant.

5.3.5.3 Discussion

The trade-off provided by this strategy is, that the KDOM schema parsers become easier to im-
plement at the cost of additional runtime. It was already pointed out that parsing runtime usually
is not a critical issue in this context. Therefore, in principle one can benefit from this strategy,
reducing the complexity of the parsing functions. However, when handled careless the com-
plexity of the algorithm can cause serious runtime problems. Hence, a good trade-off position
needs to be taken. A reasonable strategy is to use it in combination with the incremental parsing
mechanism and then to have no backtracking types on the segmentation level. Competing types
at lower levels in general are rather rare, so escalating backtracking is prevented. Further, in
practice it is important to check that for each min-cardinality constraint defined a corresponding
backtracking type has been defined. Otherwise the algorithm will backtrack back until to the
root node creating no reasonable KDOM tree.

5.3.6 Implementation Architecture

In the following a possible architecture for the implementation of a top-down parsing mechanism
for a document-centered authoring system is outlined. Figure 5.5 shows a class diagram that
describes the structure of the required components. The class Node allows to represent the
nodes of the final KDOM tree. Each node is provided with a unique id for identification. A node
can have multiple children nodes to form the tree. To each node also its father node is associated,

141

5 Techniques for the Implementation of DCKA

+attachToParent(Node n)
+getUnallocatedFragments()
+getText()

TextFragment fragment
String id

Node

+getName()
+getParser()

Type

+parse(Node n)
Parser

+getFinder(Type t)
TopDownParser

*

1

1

father

children

1

*

Figure 5.5: Class diagram for the necessary components for top-down parsing.

except for the root node (c.f. Definition 1). The TextFragment at least needs to store the offset of
the text with respect to the father node and its length. This allows for the implementation of the
method getText() returning the actual text sequence represented by this node. Also, for each node
exactly one type, represented by the class Type, is attached. To distinguish between different
types, each type has a name return by the method getName. It is also possible to create a new
subclass for each new type. Then the class name can be returned by getName. Also hierarchies
of types can be created, allowing for similar types to be treated in a similar way by use of
polymorphism. The type of a node provides an instance of the interface Parser by the getParser()
method. That parser will be used to parse the node content to create the KDOM subtree as
discussed previously. The TopDownParser is one implementation of the Parser interface, which
performs top-down parsing based on KDOM schemas as illustrated in Listing 5.1. For markups
that are parsed in a different way, e.g., using syntax-directed parsers, additional implementations
of the Parser interface can be created and attached to the second level type of the respective
markup. The other methods have already been discussed in Section 5.3.2.

The doubly linked tree of Node objects plays a fundamental role in a system of this kind. It
forms the basis for various kinds of important activities such as knowledge repository population,

142

5.3 Parsing of Multimodal Knowledge

refactoring, content rendering, debugging, or the support for special editors. Therefore it is
reasonable to provide a small API of methods for navigation and search in this tree, which can
be used by the implementations of all these activities. Typical tasks are the retrieval of a node
by id, the search of all nodes of a certain type in a sub-tree, or for a given node the retrieval of
the nearest ancestor of a given type.

For the activities, which are actually modifying the document content, being typically refac-
toring and special editors, it is important that the modifications are not performed directly on the
nodes structure. Even if the changes are performed in a way that keeps the KDOM tree consis-
tent (c.f. Definition 1), it is difficult to guarantee that the tree structure after modification is the
one that would have resulted from parsing the new document content. Therefore, it is strongly
recommended to assemble the entire document content string including the modification and
then generate a new KDOM tree by applying the parsing algorithm on the full document con-
tent. Especially when using the incremental parsing algorithm introduced in Section 5.3.3, the
computation workload by parsing should be limited.

5.3.7 Tutorial: Implementing Markups as KDOM Schemas

In Section 5.3.2 the top-down parsing algorithm has been introduced. The comprehensive dis-
cussion of its different versions aimed to support the development of a document-centered au-
thoring environment core as outlined in Section 5.3.6. This core then is reusable for any kind of
knowledge acquisition projects in any domain. Therefore, the implementation of such kind of
core is rather seldom. A technical task appearing much more frequently, especially considering
the strategy of the meta-engineering approach discussed in Chapter 3, is the implementation of
new markup languages for an existing document-centered authoring environment core.

As already mentioned, the KDOM schema and the top-down parsing algorithm not only
provides a convenient way for the segmentation, but also allows to implement actual markup
parsers. While it needs some practice, the implementation of markup as KDOM schemas is
quite easy for simple markups. However, some basic computer science techniques are required,
for example the use of regular expressions [Fri02]. The implementation of a markup should
be done by a knowledge engineer with computer science background. It is not intended nor
necessary that a domain expert without technical background performs this task. While domain
experts have to be involved closely within the design of the markup, its implementation can be
performed by technically experienced project participants in a secluded way.

In the following, a small tutorial is given by showing several examples of markup imple-
mentations as KDOM schemas. Then recursive KDOM schemas are introduced, allowing the
implementation of more expressive markups. Finally, the limits of KDOM schema parsing are
discussed.

5.3.7.1 Introduction by Examples

Example 1 For the first example, we assume that we want to implement a simple markup
allowing to define classes, as for example in ontology engineering. A new class could be intro-
duced by the keyword ’CLASS’. For the segmentation we assume that this class declaration is
written at the beginning of a line and that it is terminated by the next line break.

143

5 Techniques for the Implementation of DCKA

Solution A A possible KDOM schema implementation of this markup could look like in Fig-
ure 5.6. For each type within the schema a ’Finder’ is attached, defining the parser function
detecting the occurrence in the text. The Root type is aways present as a starting point of the
schema. It has a predefined finder attached called ’ALL’ indicating that this finder captures all
available source text into one node. The actual implementation of the example markup starts
with the type ClassMarkup being a child type of ROOT. It is provided with a finder based on
a regular expression, which detects the expressions as defined above within the text. The type
ClassKeyWord is defined as a child type of ClassMarkup, provided with a regular expression
finder matching the keyword including the subsequent space characters. The seconds child type
(order matters!) of ClassMarkup is the type ClassTermName. It makes use of the ’ALL’ finder
again, as anything that is left after the keyword is supposed to belong the term name of the
defined class.

Root
Finder: ALL

ClassMarkup
Finder: REGEX: ^CLASS\s+.*?$

ClassKeyWord
Finder: REGEX: ^CLASS\s+

ClassTermName
Finder: ALL

Figure 5.6: A KDOM schema implementation for the exemplary class markup.

To illustrate the result of the markup implementation, it is applied to the following exemplary
document. It defines the classes Person (line 2) and Disease (line 4) and in between arbitrary
documentation content has been stated.

1 Lorem ipsum dolor

2 CLASS Person

3 consetetur sadipscing

4 CLASS Disease

5 sed diam nonumy

Applying the algorithm from Listing 5.1 (or either of its derivates) with the KDOM schema
of Figure 5.6 will result in the KDOM tree shown in Figure 5.7. For every node its type is shown
in the gray box, while the text content is shown in the white box underneath. Line breaks are
indicated by ’\n’ and (invisible) space characters by underscores. This structured representation

144

5.3 Parsing of Multimodal Knowledge

of the document is helpful for example for the population of the knowledge base, for highlighted
rendering of the document, or for refactoring.

Root

PlainText

PlainText

PlainText

CLASS Person
ClassMarkup ClassMarkup

ClassKeyword ClassKeyword ClassTermName ClassTermName

Lorem ip…diam nonumy

Lorem ipsum dolor\n

\nconsetetur sadipscing\n

\nsed diam nonumy

CLASS Disease

CLASS_ CLASS_ Person Disease

Figure 5.7: The resulting KDOM tree for the example input document with solution A.

Solution B There are usually many solutions for coming up with a KDOM schema to parse
some markup. One flaw about solution A is, that the keyword ’CLASS’ appears multiple times,
once in the finder of the ClassMarkup type and once in the one of the ClassKeyword type. This
is undesirable redundancy imagining the keyword has to be changed one day. However, this
problem tends to appear often in KDOM schema parsing as often syntactical patterns need to
be reused in the sub-types. To overcome this issue we propose the strategy of sharing regular
expressions. It makes use of the possibility, that regular expressions deliver different capturing
groups [Fri02].

In this way, another solution can be created shown in Figure 5.8. On the right, the regular
expression is explicitly defined with the name ClassRegex. It is used with the type ClassMarkup
with the capturing group 0, which refers to the entire match. Further, it is also used by the
type ClassTermName with the capturing group 1, referring to the first group defined by round
brackets. In this case, no explicit type for the keyword is required.

The output KDOM tree is of solution B is shown in Figure 5.9. It is almost identical with
the KDOM tree produced by solution A. The only difference is, that the nodes containing the
keyword ’CLASS’ now are nodes of the type PlainText. Another difference is the order in which
the nodes have been created. While this is not important for the outcome, this aspect is impor-
tant to understand the overall KDOM schema parsing process. In solution A, first the nodes
containing the keyword are created, followed by the node for the term name. During the execu-
tion of solution B in contrast, first the nodes for the class term name are detected and created,
before the remaining keyword is put into a plain-text node. This should not make a difference

145

5 Techniques for the Implementation of DCKA

Root
Finder: ALL

ClassMarkup
Finder: ClassRegex GROUP: 0

Regex: ClassRegex
^CLASS:\s+(.*?)$

ClassMarkup
Finder: ClassRegex GROUP: 1

Figure 5.8: Solution B: An alternative KDOM schema implementation for the class markup.

Root

PlainText

PlainText

PlainText

ClassMarkup ClassMarkup

PlainText PlainText ClassTermName ClassTermName

Lorem ip…diam nonumy

Lorem ipsum dolor\n

\nconsetetur sadipscing\n

\nsed diam nonumy

CLASS Person CLASS Disease

CLASS_ CLASS_ Person Disease

Figure 5.9: The resulting KDOM tree for the example input document with solution B.

for the further processing. It is only important that there are typed nodes for ClassMarkup and
ClassTermName.

Example 2 In the second example the parsing of a simple comma-separated list is illustrated.
We assume that we aim to define a list of abstract terms, using the keyword ’Abstract:’. This
can be implemented by the KDOM schema shown in Figure 5.10.

The KDOM schema applied on the following exemplary document results in the KDOM tree
shown in Figure 5.11. The parsing of lists of arbitrary length works with the rather simple
KDOM schema because the algorithm always detects all occurrence of a type and creates the
corresponding nodes. Hence, at first the nodes for all separators are created, then for all the
remaining text sequences nodes of the type TermName are created.

146

5.3 Parsing of Multimodal Knowledge

Root
Finder: ALL

AbstractTermListMarkup
Finder: CSLRegex GROUP: 0

ListContent
Finder: CSLRegex GROUP: 1

Separator
Finder: REGEX \s*,\s*

<Regex>
CSLRegex

^Abstract:\s+(.*?)$

TermName
Finder: ALL

Figure 5.10: A KDOM schema for parsing a comma-separated list of abstract terms.

1 Lorem ipsum dolor

2 Abstract: term 1, term 2,term 3

3 consetetur sadipscing

4 Abstract: term 4

5 sed diam nonumy

The two examples just discussed illustrate the basic elements of markup implementation as
KDOM schemas. While the examples work as illustrated, in practice one has to take care of
several more issues to achieve reasonable robustness. For example, trailing white spaces follow-
ing a term name before the line break need to be trimmed away explicitly as causing potential
problems with the compilation process otherwise. If separators, as the comma in example 2,
occur in term names, the given implementation will fail. Usually, this is treated by quoting the
term name, which again needs special extension of the schema. These issues however, can be
handled by providing some auxiliary functions for trimming and quote scanning.

5.3.7.2 Recursive KDOM Schemas

The examples shown so far address very simple markup languages. According to Section 5.3.2
the depth of the resulting KDOM syntax tree is predefined by the depth of the schema tree. This
obviously poses strong restrictions on the complexity of languages that can be represented. In
particular, languages defined by recursive grammar rules, e.g., a grammar rule where the non-
terminal symbol from the left side also occurs on the right hand side of the rule, cannot be
represented so far. These kind of languages, however, often play an important role in knowledge

147

5 Techniques for the Implementation of DCKA

Lorem ip…diam nonumy

Root

\nconsetetur sadipscing\n

PlainText

Lorem ipsum dolor\n

PlainText

\nsed diam nonumy

PlainText

Abstract: term1, term 2,term 3

TermListExpression

Abstract: term4

TermListExpression

Abstract:_

PlainText

term1, term 2,term 3

TermListContent

term1

TermName

term 2

TermName

term 3

TermName

,_

PT

,

PT

Abstract:_

PlainText

term 4

TermListContent

term 4

TermName

Figure 5.11: The resulting KDOM tree for the example input document with parsing comma-
separated lists of abstract terms.

engineering, for example for building complex logical conditions by combining boolean opera-
tors. Applying a minor extension the the KDOM schema representation, these kind of languages
can also be represented. Up to now a KDOM schema has been denoted to be a directed tree. By
relaxing this claim by allowing directed graphs extends the expressiveness of KDOM schema to
recursive schemas. There, existing types are registered as child type of one of its ancestors. In
this way recursive grammar rules can be represented, allowing for the definition of languages of
infinite depth. The algorithm proposed in Section 5.5.4 is capable to process recursive KDOM
schemas without modifications. Nevertheless, additional expressiveness requires some more at-
tention on schema modeling. While the parsing of tree schemas always terminates creating a
valid KDOM tree structure, for recursive schemas termination of the algorithm is not guaran-
teed. When assuming that for each descending parsing step the segment text length decreases,
termination is guaranteed obviously. Du to modeling errors, e.g., extensive use of the ALL finder,
this assumption not necessarily holds and can lead to infinite loops. However, when applied cor-
rectly this modeling pattern allows for straight forward implementation of many kinds of helpful
markup languages.

148

5.3 Parsing of Multimodal Knowledge

Example 1 Figure 5.12 shows a recursive KDOM schema for parsing complex formulas of
propositional logics using negation, conjunction, disjunction and brackets for arbitrary structur-
ing.

Regex: FormulaRegex
^Formula:\s+(.*?)$

Root
Finder: ALL

FormulaMarkup
Finder: FormulaRegex GROUP: 0

FormulaContent
Finder: FormulaRegex GROUP: 1

CompositeExpression
Finder: ALL

BracedExpression
Finder: custom

Terminal
Finder: ALL

BracedExpressionContent
Finder: custom

<exclusive>
Disjunct

Finder: custom

<exclusive>
Conjunct

Finder: custom

<exclusive>
Negation

Finder: custom

Figure 5.12: The KDOM schema to parse proposition logics expressions of arbitrary depth.

The types BracedExpressionContent, Disjunct, Conjunct, and Negation have back-links to
CompositeExpression, that is CompositeExpression is a child type for each of them. The type
Terminal is provided with the ’ALL’ finder and terminates the recursion when none of the other
types are detected. The types Disjunct, Conjunct, and Negation are provided with an exclusive
flag, indicating that for remaining sibling fragments the parsing process is not continued. In this
case the flag prevents the keywords (’AND’, ’OR’, ’NOT’) to be detected by the Terminal type.
If this exclusive flag is not supported by the parsing engine, the corresponding keywords have to
be modeled explicitly as types.

Several parser components cannot be defined straight forward as a regular expression as also
regular expressions have limited expressiveness. In this case it is necessary to count (brackets)
which is not possible with regular expressions. However, due to the flexibility of the parsing

149

5 Techniques for the Implementation of DCKA

mechanism it is possible to define custom finder functions in a couple of lines of code. For the
formula (NOT (A) AND (B OR C)) the resulting KDOM tree is shown in Figure 5.13. The type
names are abbreviated and the top nodes of the types Root, FormulaMarkup, and FormulaCon-
tent have been omitted. One can see that a full depth parse tree has been generated. It can easily
be used to create the corresponding formula in a knowledge base repository by a recursive tree
traversing algorithm.

Example 2 Another example for a recursive KDOM schema is the parsing of so-called dash-
tree structures. With dash-tree-based markups one can express hierarchical structures as already
mentioned in Section 3.5.2.1. A dash-tree markup can be used for example to define a hierarchy
of classes. The following example shows a small exemplary class hierarchy from the domain of
history:

1 HistoryConcept

2 - Group of Persons

3 -- Dynasty

4 -- Social Stratum

5 -- Ethnic Group

6 - Geographic Object

7 -- City

8 -- Landscape

9 --- Island

10 --- Lake

The recursive KDOM schema to parse dash-trees of arbitrary depth is sketched in Figure 5.14.
The finder functions in this case need to be implemented additionally. The SubTree type obtains
an arbitrary dash-tree part and detects its current root(s). For each root a SubTree node, including
all lines underneath the root, is created. Then in the next parsing step for each SubTree node the
root line is consumed by the DashTreeElement type. The remainder, i.e., the sub-tree without
the root line, is then again passed the SubTree type, which again analyses all sub-trees (of the
next level). The result is a KDOM tree having the hierarchical structure explicitly represented
in the tree structure.

5.3.7.3 Limits of KDOM Schema parsing

Most markups of low and medium complexity can be implemented as KDOM schemas. As
shown in Section 5.3.7.1, simple markups can be implemented by very simple schemas. The
extensions for cardinality constraints (c.f. Section 5.3.4) and backtracking (c.f. Section 5.3.5
simplifies the implementation of non-trivial markups as KDOM schemas. Nevertheless, with
raising complexity of the language to be implemented the complexity of a KDOM schema im-
plementation strongly increases. Not only the size (number of types) increases, but also the

150

5.3 Parsing of Multimodal Knowledge

CE

BE

(
PT

)
PT BEC

CE

Conj Conj PT

CE

BE

BEC

T

PT PT

CE

PT Disj

T

Disj

T

Neg PT

BE

BEC PT PT

(B OR C)

B OR C

A

()

B OR C

OR B

B

C

C

A ()

NOT(A) AND (B OR C)

AND NOT(A)

(B OR C) (A) NOT

(B OR C) (A)

(NOT(A) AND (B OR C))

(NOT(A) AND (B OR C))

NOT (A) AND (B OR C)

Figure 5.13: The resulting KDOM (sub-)tree for the input formula (NOT (A) AND (B OR C)).

151

5 Techniques for the Implementation of DCKA

DashTree

SubTree

DashTreeElement

Figure 5.14: The recursive KDOM schema to parse dash-trees of arbitrary depth.

complexity of the customized finders that are required can become challenging. The result-
ing schemas for markups of higher complexity can become difficult to create and to maintain.
Hence, for these kind of languages one should consider to go for a syntax-directed parsing ap-
proach [ALSU06]. Therefore, so-called parser-generator tools are available, as for example
ANTLR [Par07] or yacc [Joh75]. For the use of these kind of tools the language is defined
as grammar rules in a dialect of BNF [Knu64]. From this declarative language specification the
source code of a parser is generated. While loosing some flexibility compared to KDOM schema
parsing, as for example the ability to extend a (sub-)language at runtime by plugins, this method
for parsing formal languages has been proven very reliable for decades. Even for languages of
high complexity the declarative specification as a grammar is understandable and maintainable
due to its clear semantics. The integration within the top-down parsing process, while costing
some efforts, is possible as discussed in Section 5.3.2.4.

There is not only a practical limit for KDOM schema parsing as schemas and finder functions
become complicated. There is also the theoretical limit, as some languages can never be recog-
nized by KDOM parsers. The main reason for this is, that KDOM schema parsing works without
tokenization of the input sequence as an initial step before the actual parsing process as known
from grammar-based parsing. Figure 5.15 shows an example where KDOM schema parsing
cannot be applied conveniently. While arithmetical expressions can be handled in general by a
recursive KDOM schema, similar to the proposition logics example discussed in Section 5.3.7.2,
the use of minus as a unary sign causes problems. On the left hand side of Figure 5.15 the minus
is a binary operator and needs to be handled superior to the division in the parse tree due to
the order of operation rule. For the parser functions dealing with subtraction it is not possible
to decide in a straight forward way which of the cases is at hand. A thorough analysis of the
context would be required. The grounding of the problem is, that minus is used in two different
roles, a binary operator on the one hand and a unary sign on the other.

A workaround at the expense of the user would be to establish the convention that the unary
use of minus as a sign requires to be put in brackets, i.e., 2/(−5). That case can be handled by

152

5.4 Terminology Resolution and Knowledge Generation

KDOM schema parsing easily.

(2 / 3 – 5) (2 / – 5)

-

/

2 3

5

/

2 -5

Figure 5.15: Example for an expression causing problems for KDOM schema parsing.

In sum, the implementation of parsers for languages of higher complexity is a non-trivial
task in general. The choice of technology at some point also depends on the experiences of
the developer in the respective technology. In case of doubt or if the language is likely to be
extended to higher complexity later, the established syntax-directed parsing technology should
be chosen. The implementation costs for complex languages is by magnitudes higher than for
simple languages. Therefore, the efforts for the integration of the syntax-directed parser within
the top-down segmentation mechanism can be estimated low in comparison.

The meta-engineering approach discussed in Chapter 3 proposes the frequent and timely in-
troduction of new markups. These markups are designed for a special purpose showing limited
expressiveness as discussed in 4.4.2.1. Further, they are created with simplicity as a primary
design goal. Therefore, the markups designed within the meta-engineering process are typically
characterized by a particularly low complexity. Hence, these markups most likely can easily be
implemented as a KDOM schema.

5.4 Terminology Resolution and Knowledge Generation

The aspect of compilation considers the population of the knowledge repository after a structured
representation of the input has been created by a parsing mechanism. This needs to include the
detection and handling of errors. The different levels of errors that can occur within the process
of knowledge markup compilation have been discussed in Section 3.1.6.2. In the previous sec-
tion a parsing mechanism has been discussed, including some means for the detection of syntax
level errors. In this Section, also the terminology error level is considered for error detection.
Before introducing a compilation mechanism, we state more precisely the requirements for the
compilation of multimodal knowledge in document-centered knowledge acquisition:

1. Compatibility with Common Document Editing: In Section 3.1 the characteristics of
editing electronic documents have been discussed. The DCKA approach aims for a seam-
less extension of that wide-spread authoring paradigm to keep barriers low and there-
fore needs to comply to these characteristics. For the compilation mechanism especially

153

5 Techniques for the Implementation of DCKA

the State by content characteristic is relevant, saying that the overall behavior (including
knowledge base behavior) only depends on the current state of the documents, not how
this state has been reached. Additionally, it is important that the partition of the content
elements into documents, as well as the order of elements within a document does not
affect the resulting knowledge base.

2. No Insertion of Invalid Knowledge: Pieces of knowledge that are known to be invalid,
e.g., due to misspelled term names, are not inserted into the knowledge repository.

3. Instant Response: The user expects instant and complete feedback after document mod-
ifications. A feedback about how the knowledge repository has been changed due to the
modification is desired. Further, it is important that the knowledge base is instantly ready
for testing [SS01]. Therefore, the compilation process should be performed in an im-
perceptible amount of time. Ideally, this should also hold for large document/knowledge
bases.

In this section, we present an algorithm that complies to these requirements, by also detecting
and resolving terminology level errors. The algorithm performs incremental knowledge base
updates after each document modification. It uses the change delta with respect to the previous
document version to make minimal changes to the previous version of the knowledge base. In
this way, the complexity of the compilation of the knowledge base content for a document modi-
fication is uncoupled from the overall knowledge base-/document size. This allows to guarantee
instant response also for large knowledge bases considering requirement 3, also providing a diff
for the knowledge base change to be presented to the user. The second requirements basically
says, that the current state of the document completely determines the content of the knowledge
base. For the incremental algorithm this implies that in any case it needs to create the same com-
pilation result as a standard compilation algorithm creating the knowledge base from the current
document base from scratch. Based on this claim, the correctness of the incremental update
algorithm can be rated. However, calculating the correct change operations on the knowledge
base for arbitrary document changes at any state is challenging. To verify the correctness of
the proposed algorithm, we decided to provide a formal proof of correctness. Therefore, in the
next sections we introduce a formal description of the knowledge compilation problem that is
suitable to support the conduction of a formal proof. It extends the descriptions of knowledge
representation and markup languages given in Section 3.1.2.

Requirement 2 demands that invalid knowledge is not inserted into the knowledge reposi-
tory. Therefore, the terminology level errors need to be analyzed. In the following we discuss
reference resolution in the context of closed-world authoring.

5.4.1 Reference Resolution in Closed-World Authoring

For most third generation programming languages variable names are checked for being cor-
rectly defined and an error is shown if the check fails. In some untyped languages (e.g., javascript)
these checks are not performed. Then the programmer runs danger to misspell a variable which
leads to a lazy initialization of a new one carrying a default value. That will cause unintended

154

5.4 Terminology Resolution and Knowledge Generation

behavior at runtime with the reasons often no easy to detect. Also in document-centered knowl-
edge acquisition these kind of problems, called terminology level errors, can occur and can be
ruled out in a similar way. There, objects are identified by an unique term name within the
markup. We say, an authoring environment provides open world authoring if arbitrary object
identifiers can be used ad-hoc, i.e. the world of object terms is unrestricted. However, with
respect to user assistance it is advantageous to add terminology checks to assert that the objects
have been referenced correctly, i.e., were not mistyped. An authoring environment provides
closed-world authoring if the set of referenced objects is restricted to an (extensible) set of ex-
plicitly defined objects. In these environments, a markup expression can be invalid if referring
to non-existing objects. In this case a compilation error is returned to the user. This requires a
set of declared objects, which should be extensible easily. Therefore, it is reasonable to define
the object declarations in a similar way as the rest of the knowledge in the document base using
markup language. This is similar to compilation of programming code, where in many third-
generation-languages the compiler requires a variable to be correctly declared before usage.

5.4.2 An Abstract Model for Knowledge Bases

The diversity of possible symbol level knowledge representations briefly has been discussed
in Chapter 1, together with the statement that this work is independent of the representation
at hand. However, for the discussion and proof of an algorithm for incremental compilation a
precise description of the nature of the parts of a knowledge base is necessary. In the following,
we define a formal model which on a very general level, summarizing the characteristics of most
kinds of symbol level knowledge representations, as far as relevant for the compilation process.
The compilation mechanism can be applied to any symbol level knowledge representation that
can be mapped unambiguously to this formal model. One fundamental claim at this point is,
that a knowledge base consists of an (unordered) set of words, as already briefly discussed in
Section 3.1.2. These ”small pieces” of knowledge, which are further called knowledge slices,
associate domain objects and data type values to form some kind of propositions.

We formally define O as the universal set of all possible domain objects and D as the uni-
verse of all data type values. R is considered as the universe of all association types. A knowl-
edge representation K is defined by a set of allowed association types RK ⊂ R. All tuples
(r,o1, . . . ,on,d1, . . .dk) with n ≥ 1 and k ≥ 0 are forming the possible knowledge slices of K .
A knowledge slice captures an association of type r ∈ RK between the objects o1, . . . ,on and
the values d1, . . .dk. A knowledge base A⊂K is then given by a set of such tuples/knowledge
slices.

This rather general knowledge model of representing a knowledge base includes a wide
range of declarative knowledge representations, e.g., logic-based formalisms or production rules.
However, structures containing implicit orderings, such as lists, are difficult to represent as mul-
tiple knowledge slices in a straight forward way. In particular, the abstract knowledge base
model is unsuited to cover sequences of commands as it is known from various imperative pro-
gramming languages. To map knowledge representations with smaller order sensitive structures
to this model, a workaround is possible: The entire order-sensitive list/sequence can be modeled
one large knowledge slice. In that way, all the following methods can be applied, possibly at the
expense of performance, depending of the size of these structures.

155

5 Techniques for the Implementation of DCKA

Additionally, we define the reference function for knowledge slices

Re f : K 7→ 2O

that maps the knowledge slices to the set objects, that are associated with this slice. It can be
considered as a projection on a tuple returning the sub-tuple (o1, . . . ,on). This auxiliary function
will be required for terminology reference resolution by the knowledge base update algorithm.

Examples: We provide some examples how existing knowledge representations can be mapped
to this formal model. A simple RDF-based knowledge representation contains (at least) two as-
sociation types to form triples: KRDF = {T R3,0,T R2,1}

T R3,0 allows to associate three URIs to form one triple and T R2,1 two URIs and one data-type
value. The following RDF triples can then be described as knowledge slice tuples as discussed
above (namespaces omitted for brevity):

Jochen livesIn:: Wuerzburg⇔ (T R3,0, Jochen, livesIn, Wuerzburg)
Wuerzburg hasZipCode:: 97070⇔ (T R2,1, Wuerzburg, hasZipCode, 97070)
Jochen, livesIn,Wuerzburg, hasZipCode ∈ O; 97070 ∈D
As another example, a simple condition-action rule knowledge representation KRule is mapped.

We consider the following rule:

1IF A AND B THEN C

This way to associate terms, which might be called AND2,1, should be contained in KRule:
AND2,1 ∈KRule Then the rule above can be written as tuple as follows:

(AND2,1, A, B , C) , A, B, C ∈ O
It is necessary, that the mapping is unambiguously. This might require to extend the relation

set R accordingly, possible to an infinite set.

5.4.3 A Formal Model for Knowledge Authoring

Let E be the set of all possible text segments on a document base DB. MK R is a markup
language, that is suited to capture knowledge slices of K unambiguously as text expressions.
We then define the segmentation parser function

PK R : DBM 7→ 2E

that is able to create a set of minimal text segments (identified by the position in the source)
from DB according to MK , where each segment is a syntactically independent expression that
represents one or multiple knowledge slices. As the range of this function is a set, the knowledge
slices can freely be organized in the source text according to modeling conventions established
for the current project by a knowledge engineer (c.f., KAA 4.3.2).

Further, we define a compilation function which implements λ , i.e., creates a set of knowledge
slices of K for a text expression of MK to :

CMK
K : E 7→ 2K

156

5.4 Terminology Resolution and Knowledge Generation

While in many cases only one knowledge slice is compiled from one text segment, depending
on the markup structure and the target knowledge representation, it is possible and sometimes
convenient to create multiple knowledge slices from one expression. Then however, all these
knowledge slices are excluded from the knowledge base in the case that the expression contains
one or multiple errors.

We can then define a document-centered knowledge authoring-system for a knowledge repre-
sentation K as a triple:

TK = {MK ,PK ,CMK
K }

5.4.4 Closed-World Authoring Reconsidered

Being introduced In Section 5.4.1, the concept of closed-world authoring can be defined more
precisely by applying the presented formal model of knowledge authoring. An authoring en-
vironment provides closed-world authoring if the set of referenced objects is restricted to an
(extensible) set of explicitly defined objects O⊂ O . Analogously, we say an authoring environ-
ment provides open-world authoring if arbitrary object identifiers can be used ad-hoc, that is
O is unrestricted. In this case, all text expressions for knowledge slices, that are syntactically
correct, are considered valid and are compiled into the knowledge base. To provide optimal user
assistance in the following the problem of terminology resolution for closed-world authoring
environments are analyzed. There, a text expression e can be invalid if referring to non-existing
objects (Re f (C(e))* O). For the authoring environment this implies that the markup language
and the parsing function are extended to support object definitions. Additionally, we introduce
the object compilation function Co that creates objects from object definition expressions:

Co : E 7→ O

Based on these definitions, the current set of defined objects in a document base is given by:

O = {o ∈ O : o ∈Co(e),e ∈ E}

Since in closed-world authoring not only knowledge slices are compiled, but also object defi-
nitions, the compilation process is two-layered. The explicit definition of domain objects in the
source text introduces two additional issues, especially considering, that object definitions might
be arbitrary located in the document base.

5.4.4.1 Strict Object Definition

An object could possibly be defined at multiple locations in the document base, which may have
unintuitive implications for the behavior of the authoring environment towards the user, e.g., the
deletion of an object definition will not remove the object from the set of defined objects. Even
worse, by overwriting one object definition the user will generate an additional object without
being aware. Therefore, we postulate strict object definitions, that is, we consider all definitions
of an object as invalid if more than one exist.

157

5 Techniques for the Implementation of DCKA

5.4.4.2 Complex Object Definitions

Sometimes an object heavily relies on other objects only making sense if these other objects
are (validly) defined (see example below). We denote the set of objects, which is required for
a meaningful definition of o as Re fo(o). We call object definitions relying on other objects
complex definitions. In that case, an important service for the user is to give feedback whether
one of the dependent objects is missing and to propagate the invalidity chain. This leads to an
extension of the validity concept for object definitions: An object is valid, iff it has a unique
definition e and all objects referenced by e are also valid.

In the following, we present a small markup example demonstrating the definition of simple
and complex objects and knowledge slices from an excerpt of an exemplary knowledge base
calculating the body-mass-index:

1 def weight

2 def height

3

4 def BMI = weight / (height * heigt)

5

6 def underweight

7 IF BMI ¡ 18.5 THEN underweight

This document excerpt defines four objects (lines 1,2,4,6) and two knowledge slices (lines 4,7).
Please note, that in line 4 both, a complex object definition (defining BMI with dependencies
on weight and height) and a knowledge slice (associating the objects BMI, weight and height)
are implied. We consider the typing error in the right-hand-side of the expression in line 4: Of
course, an error will be displayed in line 4. But as BMI is not added to O because one of the
referenced terms is not in O, the knowledge slice in line 7 will also not be compiled to the knowl-
edge base but shows a message telling the user, that BMI is not correctly defined. In general,
the expressions should be structured in a comprehensible natural order. However, according to
the above definitions, the ordering/location of the expressions is completely irrelevant for the
compilation result.

5.4.5 The Knowledge Compilation Task Summarized

The goal of the compilation task is to generate a valid version of the knowledge base (compila-
tion) with respect to the current document base. We call a knowledge base a valid compilation
with respect to a set of source text documents if it contains exactly all valid knowledge slices
defined by the document base. However, the validity of knowledge slices and complex object
definitions is defined with respect to O, which itself is compiled from the document base. This
two stage compilation process is a non-trivial task: Even if only one document is modified
slightly the modification can affect entities, which are defined in other documents. For example,
the deletion of an object definition can cause other (complex) object definitions or knowledge
slices to become invalid. The addition of an object definition can cause the object to become

158

5.4 Terminology Resolution and Knowledge Generation

invalid (if it is a duplicate) or can cause knowledge slices to become valid (because the defini-
tion was missing before). Any expression in another document might be affected in the worst
case. If an algorithm always creates valid compilations from source documents we call it sound.
A sound compilation algorithm processing the whole document base and building up O and
A can be defined in a straight forward way. However, document-centered authoring systems
are designed for agile development allowing for frequent changes and immediate feedback and
testing capabilities. It is obvious that the runtime of such an algorithm scales linear with the
absolute size of the knowledge and document base, leading to insufficient performance on large
knowledge bases. In the next section, we show how to create sound compilations of modified
document bases (substantially) more efficiently using the incremental approach.

5.4.6 The Resource Delta

Incremental compilation describes the translation of text sources based on the small changes of
the document base instead of a complete rebuild. In order to perform an incremental compi-
lation of a document-set using closed-world authoring, a parser component and an incremental
knowledge base update algorithm resolving terminology dependencies are required. The task of
parsing multimodal knowledge documents has been discussed in Section 5.3. While the parsing
mechanism introduced in Section 5.3.3 provides a convenient solution, in principle it is not rele-
vant which parsing technology is employed. The only requirement is, that the information about
the changes with respect to the previous version, the so-called resource delta, is available. Also
for syntax-directed parsing incremental algorithms are available, e.g., as proposed by Wagner
et al.[WG98]. However, also a non-incremental parsing mechanism can be employed if the re-
source delta can efficiently be calculated, for example using tree comparison techniques. Using
a non-incremental parser not even poses a drawback with respect to scalability as only the one
document, that has just been modified, is parsed before each compilation step. We assume that
documents have a bounded size, i.e., the number of documents scales with the project size but
not the sizes of the documents themselves. Even for reasons of comprehensibility documents of
exceeding sizes should be partitioned.

For a document base DBold that is modified to a document base DB the resource delta is
formally defined as:

∆(DBold ,DB) = {N,D},

where N is the set of new expressions defined by N = P(DB) \ P(DBold) and D is the set
of deleted expressions D = P(DBold) \ P(DB). By distinguishing D and N with respect to
object definitions (Do, No) and knowledge slices (Da, Na), we also denote ∆(DBold ,DB) =
{No,Na,Do,Da}.

5.4.7 The Genericity of the Incremental Knowledge Base Update Task

The value of the algorithm introduced in the following comes from its general applicability: It
is independent of the markup language and the target representation. That means, once imple-
mented into a document-centered authoring system, it can be used to compile any markup to any
kind of knowledge repository.

This independence is possible for two reasons:

159

5 Techniques for the Implementation of DCKA

1. Due to the set characteristic of a knowledge base (cf. Section 5.4.2) a knowledge slice can
be translated to the target representation independently from others, i.e., without regarding
the context.

2. Referenced domain objects in closed-world authoring form (possibly complex) dependen-
cies to arbitrary other parts of the code. However, this single dependency class is inherent
to all knowledge representations and markups and therefore can be treated in a general
way.

The independence of the markup language in fact is achieved by the the definition of the gen-
eral reference functions the reference functions (Re f , Re fo). Those obtain the object references
from the syntax tree, without knowing all details of the markup language. The parsing function
PK R depends on the markup language as it obviously needs to know the syntax for parsing. The
knowledge slice compile function CMK

K depends on both, the knowledge representation and the
markup language. However, the compile function CMK

K can be used like an abstract interface
function by the incremental update algorithm, independently of what or how knowledge slices
are created. This is illustrated in Figure 5.16. The left hand side deals with parsing and de-
livering the resource delta based on parsed markup expressions to the incremental compilation
algorithm located in the center. The algorithm the computes for which expressions knowledge
slices need to be inserted into the knowledge repository and calls the compile function CMK

K ac-
cordingly. Further, it computes for which expressions the knowledge slices need to be removed
from the knowledge repository. On the right hand side, the actual insert and remove operations
are performed, according to the knowledge repository employed.

1

Incremental

Compilation

Algorithm

Parsing/Segmentation
Knowledge

Instantiation

Resource

Delta

Create-

Function

Delete-

Function

Valid Objects

(closed-world)

Figure 5.16: The workflow of the generic incremental compilation algorithm.

160

5.4 Terminology Resolution and Knowledge Generation

5.4.8 An Incremental Knowledge Base Update Algorithm

In the following listing, we present an algorithm, that updates a valid compilation of the old
document base to a valid compilation of the new version, given the corresponding resource
delta. A basic version of this algorithm is also published in [RSLP11]. Beside the resource
delta ∆ = {No,Na,Do,Da}, the input of the algorithm is a set of objects Oold and knowledge
slices Aold of the prior compilation and the Reference Manager (RM). The Reference Manager
is an auxiliary data structure, that provides the information which objects are referenced by
other objects or knowledge slices in the source text (i.e., the dependency graph). The output of
the algorithm is a set of objects O and knowledge slices A, forming a valid compilation of the
new document base. Additionally, whenever an invalid object definition or knowledge slice is
detected in the algorithm, the error messages for the respective text segments can be generated.

5.4.8.1 Description

The algorithm presented in Listing 5.5 aims to identify a minimal subset of entities that needs to
be removed or created in order to form a valid compilation of the new document base with respect
to O and A. The general strategy of this update function is to resolve the object dependencies
for updating O. While doing so it identifies not directly modified knowledge slices that have to
be reconsidered. Afterwards, the actual knowledge base is updated. First the reference manager
gets updated with the new resource delta in line 2. Then in line 4, we iterate on the deleted object
definition expressions Do and either call recursive removal or resolution on this object definition,
depending on the validity of the respective object. Further, this is applied in a similar fashion
to the set the new object expressions No in line 7. Please note, that both, adding or deleting an
object definition can result in some object becoming valid. The functions resolveRecursively
and removeRecursively traverse the object dependency graph from the passed object on, and
create and remove respectively the (complex) object definitions and mark the affected knowledge
slices (by inserting elements into Da and Na). The hazard-filter (line 14) removes expression
pairs, that would lead to deletion and subsequently insertion of an identical knowledge slice:
C(ea) = C(e′a),ea ∈ Na,e′a ∈ Da. Finally, we remove the deleted knowledge slices in Da and
insert the new knowledge slices Na if all referenced objects are valid at that time in line 17 and
20 respectively.

5.4.8.2 Termination

Cyclic object definition dependencies using complex definitions may occur within the text. How-
ever, all object definitions involved in a dependency cycle are invalid: Before a cycle can be
closed, it is invalid because of the missing part. When the missing part is added it will not be-
come valid, as its dependency was invalid in the prior version (that is line 48 will evaluate to
false). Therefore, the function resolveRecursively terminates as validity is checked in line 31 and
no valid cycles can exist (and the dependency graph is finite). The function removeRecursively
terminates for similar reason: In line 44 we assert that recursion only proceeds if the object is in
Oold . As Oold only contained valid objects and no valid cycles can exist, the function terminates.

161

5 Techniques for the Implementation of DCKA

1 f u n c t i o n updateKB (∆,Oold ,Aold ,RM,)
2 u p d a t e R e f e r e n c e M a n a g e r (∆,RM)
3 O := Oold ; A := Aold
4 f o r each eo ∈ Do do
5 c h e c k O b j e c t (eo)
6

7 f o r each eo ∈ No do
8 c h e c k O b j e c t (eo)
9

10 f o r each ea ∈ Na do
11 i f (n o t Re f (C(ea))⊆ O) / / check f o r v a l i d i t y
12 remove ea from Na
13

14 h a z a r d F i l t e r (Da,Na)
15

16 f o r each ea ∈ Da do :
17 d e l e t e C(ea) from A / / remove from KB
18

19 f o r each ea ∈ Na do
20 add C(ea) t o A / / i n s e r t i n t o KB
21

22 / / a u x i l l i a r y f u n c t i o n s
23 f u n c t i o n c h e c k O b j e c t (eo)
24 i f (h a s V a l i d D e f i n i t i o n (Co(eo)))
25 r e s o l v e R e c u r s i v e l y (eo)
26 e l s e
27 r e m o v e R e c u r s i v e l y (eo)
28

29 f u n c t i o n r e s o l v e R e c u r s i v e l y (eo)
30 i f (h a s V a l i d D e f i n i t i o n (Co(eo)))
31 i f (Co(eo) /∈ Oold)
32 add Co(eo) t o O
33 f o r each ea ∈ RM. g e t R e f e r e n c i n g S l i c e s (eo)
34 add ea t o Na
35 f o r each e′o ∈ RM. g e t R e f e r e n c i n g D e f s (eo)
36 r e s o l v e R e c u r s i v e l y (e′o)
37

38 f u n c t i o n r e m o v e R e c u r s i v e l y (eo)
39 i f (Co(eo) ∈ Oold)
40 remove Co(eo) from O
41 f o r each e′o ∈ RM. g e t R e f e r e n c i n g D e f s (eo)
42 r e m o v e R e c u r s i v e l y (eo)
43 f o r each ea ∈ RM. g e t R e f e r e n c i n g S l i c e s (eo)
44 add ea t o Da
45

46 f u n c t i o n h a s V a l i d D e f i n i t i o n (o)
47 d e f s = RM. g e t D e f i n i t i o n s (o)
48 r e t u r n # d e f s == 1 & Re fo(o) ⊆ O\o
49

50 f u n c t i o n u p d a t e R e f e r e n c e M a n a g e r (∆,RM)
51 f o r each e ∈ No ∪Na
52 RM. r e g i s t e r R e f e r e n c e s (e)
53 f o r each e ∈ Do ∪Da
54 RM. d e r e g i s t e r R e f e r e n c e s (e)

Listing 5.5: The incremental knowledge base update algorithm.

162

5.4 Terminology Resolution and Knowledge Generation

5.4.8.3 Efficiency

The potentially most expensive operations are the remove- and insert operations of knowledge
slices, depending on the employed knowledge repository and its performance characteristics.
The algorithm inserts or removes any knowledge slice only once at most. Given the correctness
of the algorithm (i.e., exactly all valid knowledge slices are contained in the knowledge base),
it follows that the algorithm is optimal with respect to knowledge slice insertion/removal. As
the graph structure of the dependencies can be stored in the reference manager RM using hash
tables, the lookup operations on RM during dependency resolution can be performed in constant
time. The update of that information (updateReferences) only takes linear time to the size of
the resource delta. The runtime in practice is strongly determined by the amount of change
operations on the knowledge base (cf. evaluation in Section 7). If dependency resolution can be
considered as small compared to change operations, the complexity of the algorithm is linear to
the knowledge base change set. This is a significant improvement when compared to the naive
full-compile approach which is linear to the size of the document base and knowledge base.

5.4.8.4 Proof of correctness

We prove the correctness of the algorithm by showing that A and O, as the result of the update
algorithm applied to Aold and Oold and ∆, contains exactly the same entities as a valid compila-
tion O∗ and A∗. O− and A− are the sets of objects respectively knowledge slices from the old
compilation that are still valid and therefore are retained in the compilation: O− = O∩Oold ;
A− = A∩Aold . O+ and A+ are the sets of objects respectively knowledge slices added by the
update algorithm: O+ = O\O− ; A+ = A\A−.

We introduce the following auxiliary theorems:

O− ⊆O∗ A− ⊆ A∗
O+ ⊆O∗ A+ ⊆ A∗
O∗ ⊆O A∗ ⊆ A

Using these auxiliary theorems, it is easy to infer:

O = O+∪O− ⊆O∗ A = A+∪A− ⊆ A∗
O⊆O∗ and O⊇O∗ A⊆ A∗ and A⊇ A∗

=⇒ O = O∗ =⇒ A = A∗

We proved the soundness of the algorithm, given that the auxiliary theorems hold. They are
proven as follows:
O− ⊆O∗: assume ∃o,o ∈O−∧o /∈O∗: o must have had a valid definition e′o ∈ P(DBold), as by
definition of O−: O− ⊆Oold . As it is not in O∗, there is no valid definition in the current version.
Some text modification must have been made yielding in the definition of o to become invalid,
and only two cases for this to happen are possible: (1) Its text expression has been modified
directly (towards another object definition or completely removed). (2) The definition itself

163

5 Techniques for the Implementation of DCKA

was not modified but became invalid due to a competing definition added. (3) The definition
itself was not modified but became invalid because a dependency object became invalid by the
modification..

(1) By the definition of ∆, eo is in Do. Line 24 checks whether there currently exists a valid
definition of Co(eo). As o /∈ O∗, this is not the case. Because of e′o ∈ P(DBold) line 39 will
evaluate to true and the object will be removed (recursively) and thus o cannot be in O− =⇒

(2) A concurring definition of the object has been added to the document base. If any object
definition e′o is added to the document: e′o ∈ No. Line 24 checks whether there currently exists
a valid definition of Co(eo), which is not the case due to the competing definition. Because of
e′o ∈ P(DBold), line 39 will evaluate to true and the object will be removed (recursively) and thus
o cannot be in O∗− =⇒

(3) At least one of the objects, the (complex) definition of o is based on, has become invalid.
Thus e′′o exists, being responsible for that (directly or indirectly) and e′′o ∈ ∆. As o is in Oold ,
o′′ = Co(e′′o) must have been valid in P(DBold). Therefore, line 39 will evaluate to true and
e′′o will be deleted recursively. This recursive deletion will also delete o, as it references o′′,
potentially indirectly. Thus, o cannot be in O− =⇒

As o ∈ O−∧o /∈ O∗ leads to a contradiction in any case, O− ⊆O∗ holds.

A− ⊆ A∗: assume ∃a,a ∈ A− ∧ a /∈ A∗: a must have had a valid definition ea ∈ P(DBold), as
A− ⊆ Aold . As a /∈ A∗, there is no valid expression ea ∈ P(DB). Some text modification must
have been made so that a became invalid and was not compiled to A∗. There are two possibilities
for this:

(1) The expression was changed from ea to e′a with a =C(ea) 6=C(e′a) = a′. By the definition
of ∆, the expression would be in Da. The deletion step in line 17 removes all knowledge slices a
from A where ea ∈ Da (see line 16) and thus a cannot be in A− =⇒

(2) The modification caused a definition of some object o to become invalid, which leads to a
becoming invalid. Thus e′o exists, being responsible for that (directly or indirectly), and e′o ∈ ∆.
As o is invalid, removeRecursively will be called. Because a was in Aold , Co(e′o) must have
been valid in P(DBold) and line 39 will evaluate to true and e′o will be deleted recursively. This
recursive deletion also adds a to Na, as it references o′ (indirectly). Then a will be deleted in line
17 and thus cannot be in A− =⇒

As a ∈ A−∧a /∈ A∗ is contradictory in any case, A− ⊆ A∗ holds.

O+ ⊆O∗: Objects in O+ are only added in line 32. For those a valid definition is asserted
in line 30. Hence, they are also contained in O∗: =⇒ O+ ⊆O∗

A+ ⊆ A∗: Knowledge slices in A+ are only added in line 20. For those a valid definition is
asserted in line 11. Hence, they are also contained in A∗. =⇒ A+ ⊆ A∗

O∗ ⊆O: For each o ∈ O∗: It either had a valid definition in P(DBold) (1), or it has become

164

5.4 Terminology Resolution and Knowledge Generation

valid by the modification of DBold (2).
(1) o ∈ Oold as it was a valid compilation. As o ∈ O∗, o has a valid definition eo ∈ P(DB). o

will not be deleted directly by line 27, as it has a valid definition (condition in line 24). For any
object being called in line 38 an invalid referenced object exists (entails by induction). If so for
o, o would not be a valid definition. Therefore, o is not removed and thus is (still) in O.

(2) o /∈ Oold as o did not have a valid definition in P(DBold), and as o ∈ O∗, o has a valid
definition eo ∈ P(DB). Therefore, some modification e′o ∈ ∆ exists, that caused the definition of
o becoming valid. Only objects becoming valid can cause other objects to become valid (i.e., an
object becoming invalid can never make other objects become valid). Thus, resolveRecursively
will be called on this e′o and line 30 will return true (even if e′o ∈ Do). Co(e′o) will be added in
line 32 and in line 36 all referencing objects are recursively checked for validity. As e′o caused o
to become valid, some reference chain to o exists and thus o will be checked and created as all
objects in the reference chain have been added to O. =⇒ O∗ ⊆O

A∗ ⊆ A: For each a ∈ A∗: It either had a valid definition in P(DBold) (1), or it has become
valid by the modification (2).

(1) a ∈ Aold as it was a valid compilation. As a ∈ A∗, a has a valid definition ea in P(DB).
If ea /∈ ∆ and all objects oa ∈ Re f (C(ea)) are validly defined, ea cannot be added to Da in line
44, as removeRecursively is only called on invalid objects (entails by induction). Therefore, it
cannot be deleted in line 17 and thus is contained in A. If ea ∈ ∆, the only reason for this can
be the removal of the definition in one location and its addition in another (move expression
operation). Then ea ∈ Na and ea ∈ Da. In this case ea will be removed by the hazard-filter (and
if not, it will be removed and inserted again) and is thus contained in A.

(2) a /∈ Aold as a did not have a valid definition in P(DBold). As a∈ A∗, a has a valid definition
ea in P(DB). Therefore, some modification e′ ∈∆ exists, that caused the definition of a becoming
valid. If the knowledge slice expression was modified directly, e′ ∈ Na and a will be added to
A in line 20. If the modification of some object definition eo caused a to become valid, then
eo is in ∆. Thus, resolveRecursively will be called on this e′o and line 30 will evaluate to true
(even if e′o ∈ Do). Co(e′o) will be added to O in line 32 and in line 36 all referencing objects are
recursively checked for validity. As e′o caused a to become valid, some valid reference chain to
a exists and thus ea will be added to Na. During the recursive processing of this chain all objects
in the chain are added to O. Therefore, a will be inserted into A in line 20, as Re f (ea) ⊆ O
(checked in line 11) holds. =⇒ A∗ ⊆ A �

5.4.9 Discussion

Incremental source compilation in the context of software engineering is a quite hard task. It
needs to be solved specifically for each programming language anew. While looking similar at
first glance, the compilation of multimodal knowledge documents shows rather different char-
acteristics. There, one generic algorithm can be employed for terminology resolution for any
markup languages to any knowledge repository (that can be mapped to the abstract knowledge
model described at Section 5.4.2). This is possible because the problem is less complex than
the compilation of general purpose programming languages, considering the interdependencies

165

5 Techniques for the Implementation of DCKA

of the source parts and the target structure. In contrast to software engineering, the formation
(of the valid part) of the knowledge base should be completed even if compile errors are de-
tected. The detection and handling of terminology level errors for closed-world authoring is the
main task of the presented algorithm, forming the middle-part of the overall compilation process
as illustrated in Figure 5.16. For open-world authoring, this part collapses and a correspond-
ing algorithm would become trivial, only iterating over the new and deleted knowledge slice
expressions of the resource delta and calling the create or delete function accordingly.

A considerable risk of incremental compilation in general is its vulnerability to (implemen-
tation) errors. If there are cases which are not processed entirely correct, serious problems
occur and persist in the authoring environment. If for example the closed-world object set is
not correctly updated one time, the system continuously shows to the user a completely in-
comprehensible behavior with respect to error messages and knowledge base content. It makes
further authoring quite impossible. Therefore, the soundness of the implementation of such kind
of algorithm is a critical point. Nevertheless, once a sound implementation is achieved it will
serve well for any kind of document-centered knowledge acquisition project due to its generic-
ity. Then, only parsers and compile scripts actually instantiating the knowledge slices need to
created be for new configurations. Further, the incremental approach performs excellent with re-
spect to response time of the system as the complexity of a knowledge base update is decoupled
from the overall size of the knowledge base. Additionally, the algorithm provides a knowledge
base diff with respect to the prior version for free. It can be presented to the author as feed-
back or used for building a ”semantic time machine” that allows for long term analysis of the
knowledge base development process.

5.5 A Meta-Model for the Declarative Implementation of Markups

For the meta-engineering approach the introduction and implementation of new custom markups
is a key task. The implementation at limited development time is critical for the effectiveness of
the overall approach. By now two important aspects of the technical task of knowledge document
processing, parsing and knowledge base population, have been discussed. In this section, we
discuss how new markups can be implemented quickly and easily. Therefore, we make use of the
meta-modeling principle by creating a meta-model, which allows for the declarative modeling
of a markup language. We also discuss the architecture of a system, which is able to interpret
these kind of models, i.e. compile the respective markup within a document-centered authoring
environment. Therefore, we employ the techniques introduced in Section 5.3 and Section 5.4.
At first however, the problem is summarized once more in its entirety.

5.5.1 The Levels of Multimodal Knowledge Compilation Revisited

In Section 3.1.6.2 we discussed the four levels of knowledge communication. The compilation of
multimodal knowledge documents, being a form of communication, also passes through these
levels. Figure 5.17 shows the compilations process running through those levels. Each layer
represents one level with its name indicated on the right. In the second column the result created
by the activities of this layer is stated, together with the kinds of errors that are detected in

166

5.5 A Meta-Model for the Declarative Implementation of Markups

this level. The main column on the left describes what kinds of information are created by the
activities on this layer and are passed to the next layer.

KB
Level

Syntax
Level

Terminology
Level

KR
Level

Syntax
Tree

Terminology
of valid Terms

Valid
Knowledge Slices

Syntax Errors

Reference Errors

KR Errors

KB Errors

Modified expressions of term
definitions and knowledge slices

Set of knowledge slice expressions
for potential insertion Set of

knowledge
slices to be
removed

Inserts knowledge slices

Segmentation and Parsing

Terminology Update and Resolution

KS Verification and Creation

Executable Knowledge Base

Figure 5.17: A technical view on the different levels of knowledge communication within com-
pilation of multimodal knowledge documents.

From the technical perspective, different software components are relevant at the different
stages. In the following those components are briefly introduced:

• Markup (M): The markup language including the syntax parser and the instructions to
convert the knowledge to the repository.

• Knowledge Representation Repository (KR): An implementation of the employed
knowledge representation, including a knowledge base repository and the reasoning mech-
anism. The reasoning mechanism allows for the detection of knowledge representation
errors, such as inconsistencies.

• Knowledge Base (KB): The knowledge base, i.e. as the content of the knowledge base
repository.

• Terminology (T): The entire terminology of the domain objects used for forming the
knowledge base. This refers to the closed-world set of objects discussed in Section 5.4.

167

5 Techniques for the Implementation of DCKA

• Document Base (DB): The entire content of the document base.

• Syntax Tree (ST): The structured representation resulting from the parsing of the docu-
ment base.

• Knowledge Base Behavior Tests (KBT): Tests that test the competency of the knowl-
edge base.

The knowledge representation repository, for example can be reused in arbitrary projects, also
being non-document-centered. The knowledge base in contrast is specific to the current project
and its application goals. A markup in principle can be reused in different document-centered
knowledge acquisition projects, but often also is very project specific.

Table 5.5.1 summarizes the characteristics and dependencies of the different levels. Consid-
ering these (in-) dependencies, we discuss the activities of the multi-stage process illustrated in
Figure 5.17 in more detail.

At the beginning, the structured representation (syntax tree) of the document(s) is created. For
this task it is required to know the markup language and the document base. At that point, it is
for example not necessary to know which knowledge representation (repository) or terminology
is used.

On the terminology level, the syntax tree created by the syntax level is required. Further, for
the incremental terminology resolution and knowledge base update discussed in Section 5.4 ac-
cess to the terminology is required. For this activity, the information for the reference functions
(Re f , Re fo) are required. Those can easily be obtained by the syntax tree using simple markers
on the respective nodes. Then, this level is independent of the detailed nature of the markup
language.

The knowledge representation level actually creates the knowledge slices and inserts them into
the knowledge base repository, that is, the compile functions CMK

K introduced in Section 5.4.3
are called on the syntax tree. Therefore, these compile functions need to know about the markup
language to make their way through the syntax tree. If knowledge representation level errors,
such as inconsistencies, should be detected, this level also needs access to the existing knowledge
base content, as inconsistencies in most cases can only be determined considering the entire
knowledge base.

The knowledge base level finally aims to detect errors within the knowledge base behavior.
That is, the behavior is compared to the intended behavior by the use of test cases or manual test-
ing. It shows that the knowledge base level is independent of the syntax tree, markup language,
and document base. As the activities on this level are independent of those DCKA specific
components, the implementation workload for introducing a new markup is zero on this level.

Now, the required efforts on the distinct levels for the implementation of a new markup can
be analyzed. It only affects the syntax and knowledge representation level, as depicted in Ta-
ble 5.5.1. In consequence, for the implementation of a new markup language, reasonable im-
plementation efforts are required only considering the these two level, if the reference functions
can be provided conveniently.

168

5.5 A Meta-Model for the Declarative Implementation of Markups

Syntax Level Terminology Level KR. Level KB Level

Depending on ML, DB T, ST KR, ML, ST , (KB) KR, KB, KBT

Independent of ML -
√

-
√

Table 5.1: The dependencies at different levels of multimodal knowledge document processing.

5.5.2 The Knowledge Markup Description Language

In Section 5.3 a method for the implementation of the syntax level activities has been discussed
comprehensively: The KDOM schema. The KDOM schema also forms the basis of the declar-
ative language for markup implementation introduced in this section. We extend the graphical
language used for the examples for KDOM schema parsing in Section 5.3.7 by several language
components to support the compilation process at a wider range.

The following definition of the knowledge markup description language is based on the MOF
(Meta Facility Object) model, which is a standard method for the definition of visual languages
provided by OMG (Object Management Group) [OMG02]. It is a meta-meta model to specify
meta-models, which then define visual languages. The main concepts of the meta-meta model
are classes, attributes and associations. Further, additional constraints can be added describing
the possible relations between those concepts more precisely.

The UML diagram 5.18 illustrates the structure of the knowledge markup description lan-
guage. The class Type plays a central role. The list of sub-types indicates that a hierarchical
structure of types is built as already shown in the KDOM schema examples in Section 5.3.7.1.
Each instance of the class Type is associated with exactly one instance of the class Finder. Finder
is an abstract class providing the operation findOccurrences() implementing the parser function.
As one generic implementation, the class RegexFinder is added. This kind of finder can easily
be instantiated in a declarative way by attaching a regular expression as a string. For the descrip-
tion of new markups predefined Type and Finder instances should be provided in reusable and
extensible libraries. The finder library should for example include the ’ALL’ finder employed in
Section 5.3.7.1. Reusable Type instances could be provided for syntactical elements of frequent
use, for instance lines, line end comments, or table cells. To a Type instance optionally a Com-
pileScript instance can be attached. This class also being abstract, requires implementation of
the behavior of the operation insertIntoRepository. Hence, the knowledge markup description
language does not have a entirely declarative nature considering this point.

5.5.3 Semantics

As discussed in Section 5.5.1, for the implementation of a new markup, the activities on the
syntax, terminology (marginally), and the knowledge representation level need to be considered.

The semantics of the syntax level has already been discussed in detail in context of KDOM

169

5 Techniques for the Implementation of DCKA

String name
List<Type> subtypes
boolean termDefinition
boolean termReference
int minConstraint
boolean backtrackPoint

Type

findOccurrences()
Finder

1

String regularExpression
int capturingGroup

RegexFinder

InsertIntoRepository(Node)
CompileScript

0..1

Library of
predefined types

Library of
predefined

Finders

Figure 5.18: The meta-model for the Knowledge Markup Description Language.

schema parsing. Hence, the language elements Finder, subtypes, minCardinality, backtracking,
as well as the libraries of types and finders deal with the syntax level and are already described
in Section 5.3.2.

The terminology level can be handled to a far extent independently of the markup language.
The only requirement is the presence of the reference functions (Re f , Re fo), denoting which
nodes define or reference objects. When the nodes for object references and definitions within
a markup expression for a knowledge slice are flagged as such, a generic implementation be-
comes possible. These reference functions then collect all nodes with types possessing the flag
objectReference or objectDefinition, respectively.

The knowledge representation level is addressed by the concept of the CompileScript. A Com-
pileScript implements the compile function CMK

K for a knowledge slice expression, i.e. inserts
the corresponding knowledge into the knowledge base repository. This is done by analyzing
the KDOM tree and creating the corresponding elements of the knowledge representation data-
structure. The specification of this task can easily be performed by the use of the imperative
programming paradigm. Therefore, these scripts should to be defined in a non-declarative way
using a common imperative programming language, preferably the one used for the authoring
environment core.

170

5.5 A Meta-Model for the Declarative Implementation of Markups

5.5.4 Example

In the following, we present a comprehensive example for the use of the knowledge markup
description language. It is taken from the domain of (Ancient) History and aims to implement
a markup for the formalization of historical time events. The following markup expression
shows an example for a time event to be formalized, capturing informations such as name, date,
description, and sources. A more detailed description of the markup is given in Section 7.5. The
implementation of that markup using the markup description language is shown in Figure 5.19.

1 ¡¡ Lamian War

2 323b-322b

3 =¿ War

4

5 After Alexander’s death Greeks

6 revolted against Macedonian rule

7 under the lead of the Athenians...

8

9 SOURCE: Paus:1,25,3-6

10 SOURCE: Diod:18,8-18

11 ¿¿

12

After the main type, which is responsible for the segmentation, the Title type is defined. It is
marked as ObjectDefinition indicating for the terminology resolution algorithm that here a new
terminology object is defined. It uses the ’LINEFINDER’, which we assume is available from
the library of predefined finders and splits the content according to line breaks. As there is a min
and max cardinality constraint with 1 defined in the subsequent line, at most one line will be al-
located be the Title type. The Date type is implemented in a very similar way. As the first line of
the overall markup block is already allocated by the Title, the next line will be captured as Date.
Then the class of the event is handled by the type EventClass, which also has a subtype Class-
Reference actually holding the object reference flag. As EventClass only has a max constraint,
it is defined as optional. The Description type is provided with the ’ALL’ finder, which is also
assumed to be available from the library of finders. At this point, it is important to note the order
of the subtypes of TimeEventMarkup. While the Description appears in the markup before the
source information, it has the number 5, therefore being handled after the sources. In that way,
the source content is processed and afterwards all the remaining text is allocated as description.
The type Source does not have any cardinality constraints. Therefore, any number (including
0) of sources are allowed. The last component is the compile script TimeEventScript which is
associated to the TimeEventMarkup type. An exemplary implementation of that compile script
is shown in Listing 5.6 as pseudo-code:

171

5 Techniques for the Implementation of DCKA

Root
Finder: ALL

<CompileScript>
TimeEventScript

TimeEventMarkup
Finder: Regex: <<(.*?)>> GROUP: 1

CompileScript: TimeEventScript

Title
<ObjectDefinition>

Finder: LINEFINDER
Min: 1, Max: 1

Date
Finder: LINEFINDER

Min: 1, Max: 1

EventClass
Finder: EventClassRegex GROUP: 0

Max: 1

ClassReference
<ObjectReference>

Finder: EventClassRegex GROUP: 1

<RegexFinder>
EventClassRegex

^=>\s*(.*?)\r?\n

Description
Finder: ALL

Min: 1, Max: 1

Source
Finder: SourceRegex GROUP: 0

SourceContent
Finder: SourceRegex GROUP: 1

<RegexFinder>
SourceRegex

^SOURCE:(.*?)\r?\n

1

1

2

3 4 5

11

Figure 5.19: Implementation of a markup for formalizing time events in the domain of history.

172

5.5 A Meta-Model for the Declarative Implementation of Markups

1 T i m e E v e n t S c r i p t :
2

3 i n s e r t (Node<TimeEventMarkup> node)
4 TimeEvent e v e n t = new TimeEvent ()
5 e v e n t . setName (node . f i n d S u c c e s s o r O f T y p e (” T i t l e ”) . t e x t ())
6 e v e n t . s e t D a t e (node . f i n d S u c c e s s o r O f T y p e (” Date ”) . t e x t ())
7 Node<C l a s s R e f e r e n c e> c l a s s N o d e = node . f i n d S u c c e s s o r O f T y p e (” C l a s s R e f e r e n c e ”)
8 i f (c l a s s N o d e)
9 e v e n t . s e t C l a s s (c l a s s N o d e . t e x t ())

10

11 L i s t<Node<SourceCon ten t>> s o u r c e s = node . f i n d A l l S u c c e s s o r s O f T y p e (” S o u r c e C o n t e n t ”)
12 f o r (Node<SourceCon ten t> sourceNode : s o u r c e s)
13 e v e n t . addSource (sourceNode . t e x t ())
14

15 KnowledgeBase . addTimeEvent (even t , node)

Listing 5.6: An exemplary pseudo code implementation of the TimeEventMarkup compile script.

The insert function will be called by the incremental compilation algorithm. It assembles
a TimeEvent instance by retrieving the data by navigating the KDOM tree. The function find-
SuccessorOfType is assumed to be provided by the API of the authoring environment core as
discussed in Section 5.3.6 to search the corresponding KDOM subtree for nodes of the particu-
lar type. When all data has been collected, finally the created event is added to the knowledge
base.

The schema shown in Figure 5.19 together with the script of Listing 5.6 forms a complete
implementation of the time event markup. Therefore, of course the existence of a correspond-
ing authoring environment core is presumed, which is able to interpret the knowledge markup
implementation language using the techniques introduced in this chapter.

5.5.5 Meta-Level Authoring Support

The benefit of the knowledge markup description language can only be taken advantage of in
practice if a suitable authoring tool for the language exists. In addition to the editing, the tool
also needs to transform the created language constructs into a form which is executable by the
target system, i.e., the document-centered authoring environment to be used for the markup. To
help the system developer with the non-trivial task of markup implementation, a tool with good
usability should be designed. In this section, we briefly discuss the requirements for such kind of
tool. After that, a prototype demonstrating the suitability of the language for the implementation
of knowledge markups is outlined.

Meta Tool Requirements: An authoring tool for the knowledge markup description language
should provide a graphical editor for the visual language. Therefore, the types should be repre-
sented as nodes with the edges representing the sub-type hierarchy modeled as a list attribute in
the diagram shown in Figure 5.18. The tool should provide convenient support for the definition
of regular-expression-based finder components. Also the explicit declaration of those finders
with support for their referencing by name and capture groups, as shown in the previous exam-
ples, are very helpful. A suitable way to make use of the predefined libraries for types and finders
is drag-and-drop. Finders can be attached to types by dragging them from the library onto an
existing type node. Predefined types can be dragged into the working area forming new nodes.

173

5 Techniques for the Implementation of DCKA

For effective markup implementation, a quick-test functionality should be provided. Therefore,
the user is able to define one or multiple markup expressions as test objects. By triggering the
quick-test function, the current version of the markup schema is applied on the example expres-
sions. In that way, quick development and test cycles can be supported. This however, requires
the engine of the target authoring environment to be available within the meta tool.

A Prototype Meta Tool for KnowWE: In the following, we briefly discuss a prototype editor
for the document-centered authoring environment KnowWE, which is described in more detail
in Chapter 6. The KnowWE meta tool editor allows to define new markup by the use of the
knowledge markup implementation language in a similar way as discussed in Section 5.5.2.
Figure 5.20 shows the implementation time event markup example from Section 5.5.4 within the
KnowWE meta tool. Most parts from the example can be found on that screenshot. The compile
script, actually inserting the knowledge into the knowledge base repository (RDF-triples in this
example), is not visible in this view.

Figure 5.20: The time event markup of the HermesWiki defined in the KnowWE meta tool.

The meta tool, while still being an early prototype, compiles these markup definitions to a
KnowWE plugin forming a full-fledged implementation of the markup, which only needs to be
copied to the plugin-folder of a KnowWE installation. It can then be used on any document/page
in any number or order to populate the knowledge base.

174

5.5 A Meta-Model for the Declarative Implementation of Markups

The meta tool is implemented as a plugin of the eclipse framework1. The tool provides ad-
ditional support for the user on the non-trivial task of knowledge markup implementation. To
allow for quick feedback cycles within the markup development process, a quick test mecha-
nism is included. The developer can specify a test document/wiki page containing examples of
the target markup to be implemented. After triggering the quick test mechanism, the current
version of the markup definition is compiled and an embedded KnowWE engine is launched,
processing the specified test page. The result of the processing is instantly visualized using col-
ors and mouse-overs for the types of the created nodes. Figure 5.21 shows a test page with above
markup schema specification launched. The red underline at War indicates that the compilation

Figure 5.21: The time event markup in the quick test view.

algorithm has not found a proper definition of the term ’War’ in the current document base
(only consisting of these few lines in this quick-test example). This indicates, that the reference
resolution on terminology level also has been performed by the system.

5.5.6 Discussion

In this section, we presented a language, which allows for the implementation of simple knowl-
edge markups at very low implementation costs. That of course requires an authoring environ-
ment implementation which is able to interpret the language. The implementation of such a
system, incorporating the algorithms and data-structures presented in Section 5.3 and 5.4, is
a difficult and tedious task. That task, however, only needs to be conducted once, forming a
generic core system that can be used for any kind of document-centered knowledge acquisition
project. The (project dependent) definition of markups is then rather simple. This result is an
important achievement for supporting the meta-engineering approach introduced in Chapter 4.
As this approach proposes the frequent introduction and extension of new markups, a method
for the cost efficient implementation of this technical task is essential. The use of the introduced
knowledge markup description language for markup implementation is a non-trivial task. It re-
quires some training to get used to the semantics. However, this task is performed by technically
skilled knowledge engineers or system developers. Further, this expertise is independent of the

1http://www.eclipse.org

175

5 Techniques for the Implementation of DCKA

project and domain. Hence, this skill, once acquired, can be employed in every new project alike.
Therefore, this activity is not affected by the competency dilemma, which has been introduced
as on of the major problems in knowledge engineering in Section 1.2.2.

From the software engineering perspective, a proceeding of this kind is called the adaptive
model pattern. According to Fowler [Fow10], this pattern is helpful if an alternative compu-
tational model is desired. Once the computational model is implemented, it usually is used to
interpret instructions in a custom language. This custom language allows to define the intentions
more clearly and concise than possible in some existing language. A production rule system is
one example for an adaptive model. The rule engine forms a alternative computational model
and contains the general rule evaluation mechanism, including the checking of conditions and
firing of actions. For an actual rule-based system, the application specific rules are added, often
using a DSL for the definition of the rules. In the case of knowledge markup implementation
at hand, the computational model is the parsing and (incremental) compilation of knowledge
markups. The knowledge markup implementation language allows to write ’programs’, which
are interpreted by this custom computational model. The main benefit of this strategy is, that
all recurring processes are implemented in the computational model, while context-specific in-
formation and processes are defined in the input language. In that way, on the one hand the
maximum of reuse can be achieved and on the other hand a language that fits to the problem is
given.

In the context of the existing work on customized knowledge acquisition tools, an editor for
this kind of language can be considered as a meta tool for knowledge acquisition, i.e., a tool that
allows to create knowledge acquisition tools [Eri92]. A categorization for knowledge acquisition
meta-tools is given by Eriksson et al. [EPG+95], distinguishing method-oriented, architecture-
oriented, and ontology-oriented meta tools. According to that categorization, the presented tool
is an architecture-oriented meta tool.

176

6 An Authoring Environment for DCKA

In this chapter the document-centered authoring environment KnowWE [BRB+12] is introduced.
At first, a brief historical overview of the system is given. After that, the software architecture is
outlined. Further, a summary of the features, that KnowWE provides to support the knowledge
engineering process, is given.

6.1 KnowWE: An Overview

In this section a brief overview of the history and the architecture of the system is given. Several
techniques discussed in Chapter 5 are implemented KnowWE. For a complete description of the
software architecture we refer to the documentation section of the system website.

6.1.1 History

The development of the KnowWE system has been started in late 2007 at the department of
Artificial Intelligence and Applied Informatics at the University of Würzburg. It was a reim-
plementation based on the experiences made with a prototype system [BRP07a] that previously
was developed since 2006. The first and major purpose of KnowWE was to provide document-
centered development of knowledge systems in d3web1, which is a framework and reasoning
engine for diagnostic problem-solving. In late 2009 the denkbares GmbH2 started with develop-
ment activities on the system, considering feature extensions and quality management. The first
quality-assured open source version of KnowWE was release by denkbares GmbH in September
2010 under the name Hancook. Since then, twice a year new releases with novel features and
improvements are provided by denkbares GmbH.

Today beside research projects, KnowWE also is used in several industrial projects, as for
example by Dräger Medical3 [HSM+12]. Further applications of KnowWE illustrating the
document-centered knowledge acquisition approach are discussed in Chapter 7. Currently,
KnowWE is extended to support the development of ontologies in RDFS4.

6.1.2 Architecture

In Section 3.3 the advantages of a wiki system as a basis for collaborative document-centered
knowledge acquisition have been discussed. Therefore, KnowWE has been built up on an exist-

1http://www.d3web.de
2http://www.denkbares.com
3http://www.draeger.de
4http://www.w3.org/TR/rdf-schema/

177

6 An Authoring Environment for DCKA

ing wiki engine, the JSPWiki5. JSPWiki is an open-source wiki engine implementation written
in Java6 using the Java Server Pages technology7. KnowWE connects to an extension point pro-
vided by the JSPWiki architecture in a non-invasive way, allowing for special content processing
and rendering. In that way, KnowWE is able to use many important functionalities of the reliable
and still improving JSPWiki implementation, such as user management, persistence, versioning,
and the basic web interface.

For the management of the document content, i.e., wiki content, the KDOM data-structure
introduced in Section 5.3 is employed. Further, the top-down parsing algorithm discussed in
Section 5.3.2 has been implemented. It is used for segmentation and parsing of almost all ex-
isting markups. Further, the algorithm for incremental compilation presented in Section 5.4 has
been implemented for the system.

KnowWE is provided with a plugin framework (JPF8), which allows for the simple integration
of new features as plugins. In that way, the meta-engineering approach introduced in Chapter
4, which is proposing the introduction of new custom extensions such as markups, can be sup-
ported.

6.2 Knowledge Acquisition with KnowWE

Following the document-centered knowledge acquisition paradigm as discussed in Chapter 3, in
KnowWE knowledge is formalized by using knowledge markup languages. The markup lan-
guages can be used at any place in the wiki articles to create elements of the knowledge base,
allowing for interweaving formal and informal knowledge in arbitrary way. Figure 6.1 shows
an article taken from an exemplary car fault diagnosis wiki describing the concept Clogged air
filter. The article contains informal content such as plain text and images (e.g., in the top half of
the article) as well as formalized knowledge (rules at the bottom part of the article). The article
can easily be edited by use of the general wiki editing interface or by other authoring assistance,
which is further discussed in Section 6.2.5. KnowWE provides markup languages for the cre-
ation knowledge bases in d3web9 and ontologies in RDFS. For the d3web reasoner, markups for
decision trees, set-covering models, decision tables, and rules are provided as discussed in Sec-
tion 3.5.2 and in [BRP07b]. For a comprehensive and up-to-date documentation of all available
markups including examples, we refer to the website www.d3web.de.

6.2.1 Manual Knowledge Testing and Use

For instant manual testing of the created knowledge base KnowWE provides an embedded inter-
view component, which can be embedded into any wiki article. Figure 6.2 shows the interview
interface, which is dynamically generated from the connected knowledge base. It allows the
user to answer the input questions and instantly gives feedback of the derived solution concepts.

5http://www.jspwiki.org
6http://www.java.com/
7http://www.oracle.com/technetwork/java/javaee/jsp/index.html
8http://jpf.sourceforge.net/
9http://d3web.sourceforge.net

178

6.2 Knowledge Acquisition with KnowWE

Figure 6.1: A wiki page from a car fault diagnosis knowledge base in KnowWE.

179

6 An Authoring Environment for DCKA

In the shown example, the entered combination of inputs derived the solution concept Bad igni-
tion timing as established. The solutions Clogged air filter, Flat battery, and Leaking air intake
system are also suggested as potential solutions, while Damaged idle speed system is marked as
an excluded solution.

The terminology knowledge forming the basis for this generated interview component for
instance can be defined using the dash-tree markup, which already has been discussed in Sec-
tion 3.5.2.1. An excerpt of the knowledge generating die interview displayed in Figure 6.2 is
shown in Listing 6.1.

Figure 6.2: The interview component for manual knowledge base testing.

180

6.2 Knowledge Acquisition with KnowWE

1 − ” Rea l m i l e a g e /100km” [num]
2 − Engine n o i s e s [oc]
3 −− knock ing
4 −− r i n g i n g
5 −− ” no / e l s e ”
6 − Engine s t a r t [oc]
7 −− e n g i n e b a r e l y s t a r t s
8 −− e n g i n e s t a r t s
9 −− does n o t s t a r t

10 − S t a r t e r [oc]
11 −− does n o t t u r n ove r
12 −− t u r n s ove r
13 . . .

Listing 6.1: Terminology definition for the Car Diagnosis example using dash-tree markup.

For developed ontologies KnowWE provides an inline-query mechanism to summarize the
knowledge of the ontology as a dynamic content element. Using a markup, which is based
on the SPARQL10 language, queries can be defined within the wiki pages. Those queries are
evaluated on page load on the current version of the developed ontology. The result of the query
is displayed in the view of the wiki article at the position of the query.

6.2.2 Automated Testing by Continuous Integration

As a modern knowledge engineering environment, KnowWE supports an agile knowledge en-
gineering approach. Here, knowledge bases are developed in an evolutionary manner, always
maintaining an executable and correct version at a certain level of competency. In this context,
(automated) testing is very important to ensure successful development cycles in the evolution-
ary process. We adopted the continuous integration practice known from software engineering
into the knowledge engineering tool KnowWE. A continuous integration dashboard in the wiki
is used to define a collection of quality tests (for validation and verification). As a special knowl-
edge markup, the dashboard can be configured easily to support tailored quality management for
the respective project. Registered automated tests are performed on the current version of the
wiki knowledge base and give verbose feedback to the knowledge engineers by status messages
on the dashboard, as shown in Figure 6.3.

At any time, the dashboard displays the current state of the wiki knowledge base with respect
to quality at one glance. Also the history of builds is listed on the left panel of the dashboard.
Older builds can be inspected by clicking on the build number. For the selected build the applied
tests are shown in the center of the dashboard. In case of errors, the tests give detailed reports
on the errors as well as links for further investigation and debugging of the issue. In Figure 6.3,
the top two tests have been passed successfully, while the lower two tests have failed showing
more details explaining the actual problem. The tests can be activated by three trigger-modes
onChange, onSchedule, and onDemand. In the mode onChange, the tests are executed after
each modification of a wiki article, that changed the knowledge base. This mode provides the
most immediate feedback possible. However, for very time consuming tests this mode can
yield inconvenient delays. The mode onSchedule executes the tests on a regular basis according

10http://www.w3.org/TR/sparql11-query/

181

6 An Authoring Environment for DCKA

Figure 6.3: The continuous integration dashboard of KnowWE showing messages of the current
test runs and the history of the previous development stages.

to a specified schedule, for instance every night. This mode is preferable also for tests with
considerable high execution time. Further, in the mode onDemand all responsibility for test
execution is left to the user, since the user has to explicitly start a continuous integration run.
The user has to decide, when the execution is reasonable, which often is an option for tests with
high runtime (considering sufficiently experienced users). It is important to note, that the user
can define different dashboards, for instance, one for quick tests running onChange and another
one for executing larger/time-consuming tests onSchedule.

Additionally to the dashboard, located on a specific wiki page, KnowWE provides a CI-
Daemon (daemon for continuous integration), which can be connected to a dashboard. The
CI-Daemon is always visible in the KnowWE user interface, basically only showing a colored
bubble (green, red, or gray) representing the current state of the connected dashboard. In Fig-
ure 6.1 the CI-Daemon is visible as a green bubble on the left of the page below the navigation
menu. In this way, the users are always aware of the current quality state not requiring to reg-
ularly visit the dashboard article. A very important category of tests for knowledge bases are
the competency tests, which can be implemented by (sequential) test cases [Bau11]. Figure 6.4
shows a markup for the definition of sequential test cases in KnowWE. During execution, the
test case is performed line-by-line. Equal signs express assignments of input data, added to the
current testing session. Expressions containing brackets are expected derivations. The test fails,
if the expected derivations do not match the actual ones. That way, input-output behavior of
a knowledge base can be covered by automated competency tests, which can be attached to a
continuous integration dashboard easily.

182

6.2 Knowledge Acquisition with KnowWE

Figure 6.4: Markup for the definition of sequential test cases for competency tests.

6.2.3 Debugging

For rule-based knowledge bases in d3web, KnowWE provides a comfortable debugging mode.
The debugging mode for rules consists of two components. The first component is a debugging
panel, which allows for each term to review all rules setting a value for this term. Also, the
current value of the term and the current state of the rules are displayed. This kind of debugging
component is also known from other rule-based systems development tools. It however has no
direct relation to the document contents actually containing the knowledge. For this purpose a
special rendering component for the rule markup is included. To visualize the reasoning mech-
anism, it highlights the rules markup according the execution state of the rule condition using
color codes.

6.2.3.1 The Rule Debugger

The rule debugger component is shown in Figure 6.5 using the car fault diagnosis example again.
The surface consists of four components, being strongly interrelated. The debugger is designed
to start with the output concepts of the knowledge base, being the solutions. The top line (1)
shows the concept, that is currently tracked, is shown as using the breadcrumb pattern [MR02].
Currently, the solution Clogged Air Filter is selected, allowing to analyze all rules, which are
(potentially) assigning a value to this concept.

In second component (2) all concepts are listed, which appear in a condition of a rule that can
assign a value to the selected target concept. Therefore, all these concepts are relevant when

183

6 An Authoring Environment for DCKA

Figure 6.5: The debugging panel for the debugging of rule traces.

debugging this concept. One click on a concept of the list selects it as the active element in
the breadcrumb. In that way, the user can recursively navigate through the network of concepts,
which is formed by the rule set in the knowledge base.

The next component (3) represents the rules relevant for the target concept. Within the header
line of the area the current value of the target concept is shown. Underneath, each rule is repre-
sented by a rectangle displaying the value assignment of the respective rule action. The border
of the rectangles indicate the state of the rule, being fired (green), cannot fire (red), and cannot
be evaluated (gray). The rules can be filtered according the relevant elements for clarity. The
default filter setting is ’all’, showing all rules.

When clicking on one of these rule heads, the condition of the rule is displayed on the bot-
tom area (4) of the debugger. It uses the similar color coding mechanism as the rule markup
component described in the following.

6.2.3.2 The Rule Markup Rendering Component

Figure 6.6 shows an excerpt of the wiki page from Figure 6.1 with the debug rendering mode
enabled. Green bars on top and bottom indicate at first glance which rules have been fired. Fur-
ther, the color coding of the conditions shows the evaluation state in more detail. It is applied
recursively on the sub-conditions if the condition is a complex logical expression composed us-
ing boolean operators. Operators and comparators are painted in red or green if the condition
evaluated false or true respectively. Additionally, the markup expression fragments are high-
lighted by the respective background color. This color coding allows the user to find out at one
glance why some rule is or is not firing.

For interactive debugging, the rendering component additionally provides the possibilities to

184

6.2 Knowledge Acquisition with KnowWE

manually change (by force) the value of each occurring concept. As shown in Figure 6.6 for
concept Fuel, which currently has the value unleaded gasoline, the user can instantly change or
unset the current value of a concept. With this interview component included in the markup pre-
sentation, the behavior of the rules on different value configurations can be tried out efficiently.

Figure 6.6: The debugging rendering component for the rule markup.

6.2.4 Refactoring

The refactoring of the document base is a fundamental task, necessarily emerging during ag-
ile knowledge system development using document-centered knowledge acquisition, especially
when employing the meta-engineering approach. In Section 3.2.2.2 we discussed the two cate-
gories of refactoring, being document level and knowledge base level refactoring. The technical
task for both categories however is quite similar: The structured reorganization of the docu-
ment contents towards a specific target structure. The KDOM data structure (c.f. Section 5.3)
employed in KnowWE is a very helpful basis for this task [RBP09].

For knowledge bases of considerable size automated solutions are needed. KnowWE provides
three methods for performing automated refactoring:

185

6 An Authoring Environment for DCKA

• Term Renaming: One rather specific refactoring task often required is the renaming of an
existing term consistently across the entire document base. A corresponding refactoring
tool is integrated in KnowWE shown in Figure 6.8. It allows for each term to specify a
new term name and to start the wiki wide replacement of the term name. The renaming
mechanism sets up onto the KDOM data structure in the same way as the compilation
mechanism creating the knowledge base. In that way, consistent renaming without change
of the knowledge base semantics is guaranteed.

• Replacement Tool: For general text replacements a corresponding tool exists, which
is based on regular expressions. It works in a similar way as known from many text
processing tools. The matches for all wiki pages are presented to the user for further
selection.

• Custom Scripts: Not all kinds of refactorings can be performed by the replacement
tool discussed above. For instance, the transformation of existing knowledge into a new
markup language can be a complex transformation task. In that case dedicated refactoring
scripts, working on the KDOM tree structure and generating the new document contents,
need to be written. A script of this kind can be hooked up into the system as a plugin
using an extension point of the plugin framework. For the development of the script, the
knowledge engineer can use a copy of the document base for testing, before executing the
script on the actual head version of the document base.

Refactoring of knowledge bases in general is a complex and challenging task. Except for
rather trivial actions, such as the renaming of a term, it usually needs to be performed by a
skilled knowledge engineer.

6.2.5 Authoring Support

In addition to the basic wiki editing interface, KnowWE provides different kinds of editing
support. Some of them are again implemented as extensible frameworks that allow for the
integration of support for new markups.

6.2.5.1 Instant Editing

The system provides instant edit functionality that allows in-place editing of a section, i.e. a
coherent part of an article, within the view of the wiki page as shown in Figure 6.7. Based
on this functionality an edit mode is provided that allows to in-place edit any contents by single
clicks. In that way, the switch to the normal source editing interface, which is often inconvenient
for larger pages, is obsolete.

6.2.5.2 Table Editing

Typically, the editing of tables is difficult when using the standard text markup for tables. There-
fore, KnowWE provides instant editing capabilities for tables in a WYSIWYG style allowing

186

6.2 Knowledge Acquisition with KnowWE

Figure 6.7: Authoring parts of an article using the instant edit feature.

each cell to be edited by one click as shown in Figure 6.9. The table content is stored within the
wiki page source in standard wiki markup.

6.2.5.3 Code Completion

Additionally, a code completion mechanism supports the user to create markup sections in the
text editing panel. The code completion performs suffix completion of all knowledge base ob-
jects that are known to the system. It also support reasonable completion for the assignment of
values to valued objects, such as choice questions in d3web.

6.2.5.4 Drag & Drop

In Section 3.1.6.4 we emphasized the importance of authoring assistance for creating textual
markups. Beside code completion, drag-and-drop editing was mentioned as a convenient method
to prevent exceeding typing workload. In KnowWE a small framework for drag-and-drop editing
was integrated. In works in combination with the term browser, which is shown in Figure 7.6.
There, the frequently used terms are listed or additional terms can be added by a auto-completed
search slot. For any markup, an insertion script can be added as a plugin via a extension point.
The insertion script defines, how a drop term triggers an edit operation on the content. For
editing, any term can then be dragged into any section, that is provided with an insertion script,
triggering the corresponding editing operation.

187

6 An Authoring Environment for DCKA

Figure 6.8: The generated object-info page for every concept allows for the renaming of the
concept and it shows the use of the concept across the wiki articles.

Figure 6.9: Inline editing of tables by the WYSIWYG interface of the wiki.

188

6.2 Knowledge Acquisition with KnowWE

6.2.5.5 Term Overview

Often, it becomes necessary to obtain an overview of the occurrences and uses of a particular
domain concept. Figure 6.8 shows an overview page for the concept Leaking air intake system,
that is dynamically generated when requested by clicking on the concept name in the wiki.
Besides the pure information about the concept, also small refactoring capabilities are available:
In the bottom part of the info page, the user can see an overview of the wiki articles, where the
concept is used (links yield to the particular occurrences in the wiki). In that way, the user can
easily get an overview of the role of a concept within the knowledge base and is then able to
navigate quickly to the next document location of interest.

189

7 Case Studies

In this chapter we describe different case studies of knowledge engineering projects where
document-centered knowledge acquisition with meta-engineering has been employed. The projects
show quite heterogeneous settings considering domain, number of participants, project duration
and knowledge representation. They cover the domains of medicine, history, chemical substance
management, and computer device assistance for handicapped people. For each project a brief
introduction to the scenario and a short summary of the meta-engineering process is given.

7.1 ESAT: Assisting Technologies for Handicapped Persons

ESAT (Expertensystem für Assistierende Technologien [german]) is an expert system designed
to determine an appropriate set of human-computer interaction devices for a person with specific
physical handicaps.

7.1.1 Introduction

Interaction with computers has become a natural part of most people’s daily live, not only
for professional but also private activities like communications, entertainment, or shopping.
Human-computer interaction is highly standardized, in general presuming a person’s full physi-
cal and sensorial capabilities. Many handicapped people are not able to use the common human-
computer interaction devices, such as standard keyboard, mouse, and visual screen. Neverthe-
less, the use of computers for those people is at least as important and beneficial. Therefore,
numerous alternative human-computer interaction devices have been designed, which make use
of different aspects of physical capabilities available. The determination, which (combination
of) devices are suitable for a specific person, however is not trivial. As many devices require a
considerable amount of training for efficient use, an approach of extensive evaluation of all po-
tential devices is very time consuming, demanding, and annoying for the target person. For this
reason, an extensive study has been made to collect the knowledge about which devices should
be recommended for what kind of capabilities being available. By the help of this knowledge
for a profile of a person’s capabilities a set of suitable devices can be determined.

7.1.2 Application Scenario

Manual application of that knowledge for the determination of suitable devices is still tedious.
Therefore, an executable knowledge base is desired to perform this task. With a knowledge-
based system of this kind, a detailed profile of the physical capabilities (e.g., visual or motor
abilities) for a person is entered and a combination of input and output devices, which together

191

7 Case Studies

provide optimal computer interaction, shall be proposed instantly. More details about the appli-
cation scenario are given by Kreutzer [Kre12].

7.1.3 Knowledge Base Structure

ESAT is a rule-based expert system. For the capabilities of the person a comprehensive set of
input attributes with qualified ranges are defined. Every human-computer interaction device can
be derived to be part of the solution, which consists of one (or multiple) input devices and one
(or multiple) output devices. For the derivation of the solutions several heuristics, that have been
established within the theoretical study, are transformed into the rule-based knowledge base.

7.1.4 The Meta-Engineering Process

The actual implementation of a corresponding executable knowledge system has started in spring
2011. Currently, the ESAT knowledge base just has been completed and the system will be
launched for a testing phase at the project’s initiator (FAB1). The knowledge base has been
implemented mainly by a single person using the document-centered knowledge acquisition ap-
proach with the system KnowWE. For knowledge representation on the symbol level production
rules in d3web are used. In total, the ESAT knowledge base currently contains 654 rules, dis-
tributed topically on numerous wiki documents. Also in this single-user context the possibility
of free structuring allows for reasonable and clear distribution of the knowledge to facilitate
long-term maintenance.

7.1.4.1 Knowledge Acquisition Architecture

The knowledge acquisition architecture of the ESAT document base can be illustrated by show-
ing the start-up page. All the documents containing ESAT knowledge are available from this
starting page, which is shown in Figure 7.1. The documents are organized by categories, start-
ing with the document providing the testing interface for manual knowledge base testing. Un-
derneath, the input attributes, which allow to verbosely describe a clients physical capabilities,
are defined. They are partitioned in documents dealing with the sub-categories vision, hear-
ing, motor and haptic abilities, and general skills (e.g., braille). Then the largest category is
given, dealing with the assisting devices. Overall, there are about 50 different types of input and
output devices, organized in the sub-categories character input devices (e.g., various kinds of
keyboards), sensor devices, pointing devices, visual output devices, audio output devices, and
haptic output devices. Each device is described on a distinct document, also containing the rules
relevant for the derivation of the particular device. The next category refers to the five major
heuristics, that have been established within a theoretical study, describing solutions for major
categories of handicaps. For each heuristic a description and a set of rules is defined on a distinct
document, forming the core of the derivation knowledge. The testing framework for continu-
ous integration discussed in Section 6.2.2 is extensively used to guarantee the safe development
process by uncovering undesired side-effects of modifications. That includes the definition of at

1http://www.vo-fab.at/

192

7.1 ESAT: Assisting Technologies for Handicapped Persons

least one sequential test case for each device and heuristic. The documents containing the test
cases and a link to the testing control dashboard are stated at the bottom category.

The documents describing a device all have similar structure, consisting of three parts:

• General: A general description (in German ”Allgemein”) of the device is given, illus-
trated by images. It discusses the way it is used, including the advantages and disadvan-
tages.

• Specification: The technical specification (in German ”Spezifikation”) is provided pre-
senting detailed technical attributes of the concrete device series, such as scale, weights,
or ranges. Further, the contact data for ordering and the pricing information is included.

• Code: The third category (in German ”Codeblock”) contains the formal knowledge that
is compiled to the expert system. Usually, it contains the definition of the knowledge base
object representing this device along with the derivation knowledge, determining when
this device will be part of the solution.

Figure 7.2 shows the document describing a device called head/chin button (in German ”Kopf-
und Kinntaster”). On the figure the categories General (A) and Code (B) are illustrated.

7.1.4.2 Markups

During the development, the meta-engineering process established a few new markups that sim-
plified the definition of the knowledge within the documents, improving conciseness and under-
standability. In the following, two examples of markups, being introduced for this project, are
outlined.

Multi-Rule Markup: The markups created within the design activities of the meta-engineering
process aim to simplify the knowledge authoring. Often the invented markups are very specific
to the current project. However, it may happen that markups or markup extensions become
helpful, which are not domain or project specific but nevertheless not yet existing. That was the
case with the multi-rule markup introduced in the context of the ESAT project. It is an extension
to the existing rule markup for d3web rules in KnowWE, which is illustrated in Section 6.2.3.
The extension allows to define multiple rules with same condition in one expression. While
before, for each action a distinct rule expression repeating the condition had to be written, now
in a rule markup expression a list of actions, separated by semicolons, can be defined. With
the introduction of the markup, existing rules with identical conditions have been aggregated
when being located on the same document. This (content level) refactoring left the executable
knowledge base unchanged as the compiler in the background creates one d3web rule for each
action. Hence, there is no risk to change the operational semantics by this restructuring. The
step significantly reduced the amount of rule markup expressions within the overall document
base. In Figure 7.13 the page ESAT Heuristik H04 is shown, containing two multi-action rules
providing 11 and 15 actions, respectively. The implementation of the markup extension has been
contributed to the main KnowWE code base and now is also used in other projects.

193

7 Case Studies

Testing Interface

Client Attributes (Inputs)

Devices

Character Input Devices

Sensor Devices

Pointing Devices

Visual Output Devices

Audio Output Devices

Haptic Output Devices

Derivation Heuristics

Knowledge Base Testing

Figure 7.1: The ESAT starting page with links to all other documents structured as categories.

194

7.1 ESAT: Assisting Technologies for Handicapped Persons

(A)

(B)

Figure 7.2: A document of ESAT describing a device called head/chin button (”Kopf- und Kin-
ntaster”). The general description (A) and the formal knowledge (B) is shown.

195

7 Case Studies

Figure 7.3: The document describing heuristic H04 about central visual field loss (zentraler
Gesichtsfeldausfall) using the multi-rule markup.

196

7.1 ESAT: Assisting Technologies for Handicapped Persons

Monitor Markup: In ESAT a large number of different monitors are available as display so-
lutions for particular visual capabilities, for instance considering a limited visual field. In the
reasoning process for each monitor multiple attributes are required, such as width or area. As
d3web only provides limited support for the modeling of complex objects, i.e, objects with
multiple slots, these objects are modeled by creating multiple values connected by a naming
convention. By using the standard markup for creating d3web knowledge bases the definition of
a monitor reads like follows:

1 %%question

2 monitor15˙a2 [num] ¡abstract¿

3 monitor15˙q [num] ¡abstract¿

4 monitor15˙width [num] ¡abstract¿

5 monitor15˙height [num] ¡abstract¿

6 %

7

8 %%property

9 monitor15˙width.init = 305

10 monitor15˙height.init = 228

11 monitor15.link = Wiki.jsp?page=ESAT˙Monitor

12 %

13

14 %%rule

15 IF KNOWN[monitor15˙width] AND KNOWN[monitor15˙height]

16 THEN monitor15˙a2 = eval(mult(monitor15˙width,monitor15˙height));

17 %

18

19 %%Solution monitor15 ˜ Monitordiagonale 15 Zoll

This definition comprises more than a dozen lines, including multiple different keywords, to
define one monitor. In principle five d3web valued objects are defined in the lines 2-5 and 19.
To allow for a more concise definition of a monitor object a custom markup has been designed
and implemented. The definition of the same knowledge object as above using the introduced
custom markup reads like follows:

1 %%monitor

2 monitor15

3 @name: Monitordiagonale 15 Zoll

4 @link: Wiki.jsp?page=ESAT˙Monitor

5 @width: 305

6 @height: 228

7 %

197

7 Case Studies

Here, the same knowledge can be expressed in a couple of lines reducing redundancy and
the amount of keywords used. The five d3web objects (monitor15 a2, monitor15 q, moni-
tor15 width, monitor15 height, monitor15) are created by the compiler according to the naming
convention previously used within the standard markup shown above. The corresponding ob-
jects are not only created within the knowledge base but are also introduced to the compiler in a
way that they are recognized when being used in other markup expressions. The area calculation
also automatically is performed internally. In contrast to the multi-rule markup, this markup is
strongly project specific, making it unlikely to be used in any other context.

Considering the markup aspects discussed in Section 4.4.2.2, this markup has a strong frame
aspect defining the entire information about one complex object in one expression. Additionally,
the markup has a very strong definitional aspect, as it in fact defines multiple variables, which
then can be used in markup expressions of other parts of the document base. The calculation of
the area is a typical case of an implicit knowledge aspect as the knowledge for the calculation,
i.e. formula, is unaccessible from a document author’s perspective.

7.1.5 Discussion

The knowledge acquisition activities were carried out during a time of more than two years. The
meta-engineering was run in parallel basically emerging during occasional meetings between the
main author and the system developer. In these workshops flaws and shortcomings of the current
KAA have been analyzed and discussed. For possible improvements cost-benefit estimates have
been worked out. With respect to the content level changes caused by modifications of the KAA,
in most cases the manual restructuring of the contents has been found practicable, instead of
writing refactoring scripts. This includes the introduction of the two markups discussed above.
The multi-rule markup was introduced at a very early stage, where only a manageable number
of rules of that kind had been inserted. One experience from the introduction of the monitor
markup is that a cost-benefit estimation for a markup of this kind is quite difficult, as discussed
in Section 4.4.2.1. While the total benefit is hard to be estimated, the implementation was
decided as the workload was relatively low.

7.1.6 System Use

For the actual use of the knowledge system, the ESAT wiki is installed at the respective applica-
tion site. The start the automated assessment process the system provides an interview compo-
nent similar to the one discussed in Section 6.2.1. There the characteristics of the handicapped
person are entered into the system by a care worker. An excerpt of this generated interview
dialog is shown in Figure 7.4. Underneath the interview, the results of the consultation process
are shown. Each derived solution device is provided with a link to the corresponding wiki page,
where the device is described as shown in Figure 7.2. In that way, the care worker can catch up
on the proposed device and if appropriate start the procurement process.

198

7.1 ESAT: Assisting Technologies for Handicapped Persons

Figure 7.4: The interview component for device assessment generated by ESAT.

199

7 Case Studies

7.2 WISSASS: Medical Knowledge about Cataract Surgery

The WISSASS project considers the development of an intelligent information system in the
medical domain of cataract surgery. The research project is a cooperation of the Karlsruhe
Institute of Technology, Germany (KIT) and the denkbares GmbH. It is funded as a ZIM-KOOP2

project by the German Federal Ministry of Economics and Technology (BMWI).

7.2.1 Introduction

A cataract is a turbidity of the eye’s lens which is appearing quite frequently especially affecting
older people. In former days, a significant proportion of the older part of the population was
suffering from reduced eyesight due to cataracts. Normally, a cataract can only be treated oper-
atively. While operational treatments were known since the middle ages, these kind of surgeries
were unreliable and very risky that time. The modern medical methods applied today however
have very high success rates while being rather efficient in general. With about 20 million surgi-
cal intrusions per year, cataract surgery is the most widely applied type of operation applied on
humans worldwide.

7.2.2 Application Scenario

There are still research efforts going on to improve the existing methods, optimizing success
rates and cost effectiveness. Practical experiences have shown that about 90% of the cases can
be regarded as ordinary cases, where a standardized treatment is applied, providing an extremely
high success rate at relatively low costs. The remaining cases however, show a considerable high
complexity, making the treatment process much more demanding. A suitable treatment has to
be determined by choosing from a number of surgery methods, incorporating many boundary
conditions. These cases, which are demanding even for experienced ophthalmologists, often
benefit from new methods evolved recently in the field. The goal of the WISSASS project is to
provide an intelligent information system, that assists the physicians, especially in the treatment
of these difficult cases. Therefore, a knowledge system is designed that serves the following two
use cases:

• Second Opinion System: A traditional knowledge-based system is employed routinely to
run in parallel with the treatment process of each patient. The anamnesis and examination
data of each patient is entered into the knowledge-based system, which checks whether
there are deviations from the standard case that need to be considered. If so, the system
provides the ophthalmologist hints about special issues that need to be considered for the
treatment of the current patient. It further proposes a suitable surgery method if appropri-
ate. The intelligent system also demands additional examination data for the patient, if it
is required to exclude the risk of particular complications.

• Tutoring System: In an easily accessible intelligent information system, ophthalmolo-
gists can look up and study a comprehensive up-to-date body of knowledge about the

2http://www.zim-bmwi.de/

200

7.2 WISSASS: Medical Knowledge about Cataract Surgery

domain of cataract surgery. The tutoring system provides intelligent interactive naviga-
tion and is illustrated with multi-media content. It also shall provide means to further
research about the hints or propositions made by the second opinion system as this only
provides a very scarce explanation.

While the latter application scenario allows surgeons to look up particular aspects they are
currently interested in, the second opinion system automatically runs in background providing
hints on complicated cases.

When a basic version is established, the knowledge system needs to be adapted to the practical
requirements of the respective clinic. Therefore, one challenge of the project is to provide a
knowledge acquisition concept that allows for simple adaptation and maintenance. The clinic
personnel should be enabled to perform minor adaptations on their own. The entire knowledge
system is created in German language. Further reading about the project is provided in [RB13].

7.2.3 Knowledge Base Structure

The most important component of the knowledge base is formed by a semantic network. It
comprises all important domain concepts of cataract surgery, as for example different kinds of
examinations, surgery methods, or potential complications. The network contains about 380
concepts that are organized in a hierarchy. Additionally, they are interconnected by different
types of relations, indicating special dependencies (e.g., causal dependencies) during the treat-
ment of a patient.

The material for the tutoring system is organized around these concepts. For each concept
illustrative content is presented on a distinct document. The edges of the semantic network
provide semantic navigation between related topics of the domain.

A subset of the concepts are modeled as input attributes that allow to represent a patient’s
profile including the symptoms and examination findings. That profile provides the basis for the
inferences of the second opinion system. The recommendations of the second opinion system
are derived by a set of rules encoding expert knowledge about cataract treatment.

7.2.4 Knowledge Acquisition Process

The project is run by a small team including a couple of knowledge engineers and two ophthal-
mologists. While the one ophthalmologist is a young physician at the beginning of his career,
the other one is an experienced expert in the field.

7.2.4.1 Seeding of an Initial Knowledge Base

The first knowledge acquisition activities have been conducted by indirect knowledge acquisi-
tion. In an initial step the domain concept hierarchies have been defined. For the subsequent
step an analogue technique has been employed. The concept hierarchies have been plotted on a
large poster. The poster allowed the ophthalmologist to inspect and verify the concept hierarchy
in a comfortable visual way. Additionally, the expert defined cross-relations between concepts
within the poster using colored pens. Figure 7.5 shows the poster with the drawn relations.

201

7 Case Studies

Figure 7.5: The semantic network of the WISSASS project printed on a paper poster.

202

7.2 WISSASS: Medical Knowledge about Cataract Surgery

As an initial version of the illustrative content a text book about cataract surgery has been
digitalized. For each domain concept a document has been created, also defining the relations
to other concepts. The related contents of the text book are attached to the respective concept
documents. In that way, a document base of multimodal knowledge was created, using the
system KnowWE introduced in Chapter 5.

7.2.4.2 The Meta-Engineering Process

In the meta-engineering process an adapted version of a KnowWE-based document-centered
knowledge acquisition environment is evolved by developing numerous custom extensions. Be-
side special markups this includes components for navigation, search, visualization, and author-
ing support. These extensions are designed in close cooperation with the medical experts in joint
sessions of discussion and assessment.

Knowledge Acquisition Architecture: In the WISSASS project, the designed knowledge ac-
quisition architecture at the time of writing is a follows: There are two categories of content
documents. The first category comprises documents that describe exactly one concept of the se-
mantic network representing the respective aspect of domain knowledge. The second category
represents further narrative content that can not be assigned to the description of a particular con-
cept document. These pages should be linked (bidirectionally) to all concepts that are relevant
to the topic described.

The structure, which any domain concept of the ontology is/should be described in, and that
is illustrated by Figure 7.6, is as follows:

1. A custom concept definition markup defines a new concept of the ontology . (A)

2. The concept label is defined using the custom markup for concept labels. (optional) (B)

3. A list of the sub-concepts of the local concept defines the hierarchical structure of the
ontology. Introduced by ’Unterkonzepte:’, the comma-separated list markup specifies
which concepts are sub-concepts of the local concept of this document. (optional) (C)

4. Then, further relations of the local concept within the semantic network can be defined.
Therefore, the comma-separated list-based markup with the respective keyword are used.
(optional) (D)

5. Finally, the informal description of the concept is defined using normal wiki syntax. (E)

For the elements 1 to 4 involving formal markups informal comments and/or illustrations are
allowed and recommended.

Markup: The markup currently used to define and edit the semantic network is based on
comma-separated lists. As illustrated in the document excerpt of Figure 7.6 each concept is
described on a distinct page. Figure 7.7 shows the corresponding document source content with

203

7 Case Studies

Figure 7.6: The document about the concept Augenuntersuchung Befund (in German language).

204

7.2 WISSASS: Medical Knowledge about Cataract Surgery

Figure 7.7: The raw text view of the document about the concept Augenuntersuchung Befund.

the list-based markup expressions. In line 1 the concept Augenuntersuchung Befund is defined
using the keyword ’Begriff:’, forming a definitional markup (c.f. Section 4.4.2.2). In the lines
5 to 7 the sub-concepts for that concept are listed. For the predefined relation types of the se-
mantic network corresponding keywords have been designed, such as ’Kann:’ and ’Muss:’, as
shown in the markup example in line 11. There two kann-relations of the local concept Augen-
untersuchung Befund to the concepts Kat. extr UND Glaukomeingriff and Kat. extr und perfor.
Keroplastik respectively are defined. This list-based markup is a good example for a purely
relational markup.

The markup expressions from the lines 1, 3, 5 to 7, and 11 are independent, self-contained ex-
pressions, considering segmentation and compilation, i.e., there can be other document content
in-between. This provides high flexibility as the comma-separated lists can be written anywhere
within the document, while always referring to the concept defined on the local page. If none
or multiple concepts are defined within the document, an error is shown to the user accord-
ingly. Strictly speaking this markup design violates one of the principle of document-centered
knowledge acquisition, which is that reorganization/reordering of the content elements does not
change the (semantics of the) knowledge base. In other words, moving any markup expression
to another place in any document will result in the identical compiled knowledge base. Moving
one of these comma-separated lists to another document will violate this assumption. However
while happening rarely anyway, moving a list to another concept resulting in the list referring to
the respective local concept still is quite intuitive for the user. Hence, during the design of the
markup, we decided to accept this minor flaw in favor of simplicity and conciseness.

205

7 Case Studies

Authoring Support: In Figure 7.6 the list-based markup for defining ontology relations is
shown (D). The concept browser in the left menu (H) can be used for drag-and-drop editing of
the markup lists. Any concept term can be dragged into the main panel of the page and dropped
onto a relation list. The concept will automatically be appended to the list, also including the
list element separator. The elements of the lists can also be deleted in a very simple way. When
the mouse cursor moves over a concept in the list, a little delete icon with an ’x’ appears next to
the concept name. A click will remove the respective concept from the list (including separator
if required). In that way, the lists can be edited in a quick and simple way without the need of
typing concept names (assuming they can be found in the concept browser).

The actual creation of new lists still requires typing (or copy-pasting), while not being too
demanding. The corresponding keyword for the relation type, e.g., ’kann:’ or ’muss:’, has to be
typed in a new line somewhere within the corresponding document page.

Misspellings within the lists cannot occur using the list editing mechanism described above.
Still, as common in document-centered authoring in principle, any content of the documents can
also edited manually using the standard text editing interface. In that way, misspellings can be
included within the lists. To prevent problems, the concept identifiers are checked against the
set of defined concepts. If no concept with the respective name is found, an error message is
displayed and correction recommendations for the concept names with the smallest edit distance
are proposed. The correct concept can be chosen from the list and the erroneous element is
replaced accordingly by one click.

Navigation & Search There are multiple elements included in the interface shown in Fig-
ure 7.6 that help to support the navigation task. For each page that represents a concept of the
semantic network, the parent concept is shown at the top of the page (A). The link will lead
directly to the page of the parent concept. Further, underneath the document content, an excerpt
of the semantic network is shown in a graph-based visualization (F). It contains the concept of
the local page at its center and all of its neighbors in the network. All the nodes also serve as
direct links to the corresponding page. At the bottom of the left menu (G), the trail is displayed,
showing all the pages, that the user has visited recently. The concept browser (H) also plays
an important role for the navigation within the document space. Collecting all domain concepts
that have been used recently, it provides a comprehensive overview of the related aspects of the
domain in a hierarchical style. The search slot (I) combines semantic search within the network
and full text search within the document content. The execution of a search leads to a search
result page, that displays the network concepts related to the query as well as the full text search
results.

Refactoring Due to the design decisions within the meta-engineering process multiple refac-
toring activities have become necessary. Several of these refactoring tasks are explained in the
following. Minor or trivial refactorings, such as the renaming of concepts for example, are
omitted in this consideration.

• Relations to List Markup: At the beginning of the project the relations between concepts
have been defined by a general predefined markup provided by the system. With that

206

7.2 WISSASS: Medical Knowledge about Cataract Surgery

markup, the knowledge defined in line 11 of the above markup example would read as
follows:

1 ¿ Augenuntersuchung Befund Kann:: Kat. extr UND Glaukomeingriff

2 ¿ Augenuntersuchung Befund Kann:: Kat. extr und perf. Keroplastik

The markup expressions of this kind had to be transformed to the introduced list markup.
As the relevant relation expressions already were located on the document representing
the subject concept (Augenuntersuchung Befund), this refactoring operation can be con-
sidered a local refactoring, only depending on the content of the local page. This task
had been performed by a special refactoring script that operated on the KnowWE KDOM
structure and that was iteratively applied on all documents.

• Hierarchy Decentralization: Initially the concept hierarchy has been defined as one large
structure on a separate document using a dash-tree markup (c.f. Section 3.5.2.1). With
several hundred concepts the hierarchy appeared hard to read and edit. Further, it was
completely separated of all the other knowledge existing about the concepts. Therefore,
the decision was made to maintain the concept hierarchy in a distributed way. For each
concept the list of child concepts simply is enumerated as a comma-separated list on the
document describing that concept. In that way, the hierarchy knowledge for a concept is
conveniently interwoven with the rest of the knowledge for the respective concept. The
corresponding refactoring task also has been implemented by a custom refactoring script
traversing the KDOM structure of the centralized hierarchy and creating the respective list
expressions on each concept description document. The centralized dash-tree hierarchy
has then been deleted.

• Concept Description Order: Initially, the structure of the pages describing a concept
showed the informal description of the concept on top, followed by the formal knowledge
expressions, such as relation lists for instance. This content order proved to be inconve-
nient when larger descriptions, also including images, were created. As a consequence,
in many cases it became necessary to scroll down in the document view to see the formal
knowledge expressions. As it was important for the users to have them in sight quickly, a
change of the content order was decided: The descriptions have been placed at the bottom
by employing a scripted refactoring operation. In that way, the content ordering discussed
above has been obtained.

7.2.4.3 Outlook

Above, the current state of the knowledge acquisition architecture and the custom knowledge
acquisition tool was described. Up to now experts have been actively involved within the meta-
design process. The basic parts of the intial knowledge mostly have been formalized by indirect
knowledge acquisition. In the current project phase, a flexible distributed workflow using an
online version of the customized authoring environment is conducted. The ophthalmologist
reviews the knowledge autonomously and notifies the knowledge engineer by mail when a defi-
ciency was detected. The knowledge engineer then corrects the knowledge base according to the

207

7 Case Studies

expert’s demands. This workflow resembles the strategy of mixed-initiative knowledge acquisi-
tion. Within the next project phase we expect the expert to also edit knowledge directly using
the customized tool. Based on those experiences, further optimizations of the tool and the KAA
will be made, carrying on the meta-engineering process.

7.2.5 System Use

For the actual use of the system, it will be installed at the surgical center. As discussed in Sec-
tion 7.2.2 the use of the knowledge is twofold. For the tutoring component the system provides
access via a web application providing a simplified version of the interface shown in Figure 7.6.
It can be accessed by young physicians for manual research in case of need any time.

For the sue of the automated decision-support system, the knowledge base needs to be inte-
grated into the workflow of the clinical information system. That is, when the patient data are
entered into that clinical information system it is also pushed to the wissass installation. There
it is entered into the knowledge base generating the treatment hints which are returned to the
clinical information system. When the surgery preparation sheet, which is always read by the
surgeon before the surgery, is printed, those hint are added in a special section. In that way, oph-
thalmologists can benefit from the knowledge base without additional need of actively ineracting
with a computer system.

208

7.3 Managing Chemical Safety with KnowSEC

7.3 Managing Chemical Safety with KnowSEC

: In the following, the project KnowSEC is briefly introduced. It is a knowledge management
project at the German Federal Environmental Agency (Umweltbundesamt) supported by the
denkbares GmbH. For the management of knowledge about chemical substances an adapted
document-centered knowledge management process has been established by the use of a cus-
tomized version of the system KnowWE.

7.3.1 Introduction

The German Federal Environmental Agency has the difficult task to evaluate the dangerousness
of chemical substances newly invented by industry. Due to the large number of novel substances,
ranging in thousands every years, it is not possible to perform extensive laboratory examinations
for each one. A pre-selection of potentially dangerous substances has to be made based on ex-
isting or simple obtainable knowledge. This knowledge needs to be aggregated and reviewed
by different domain experts to rate the dangerousness of a substance according to different cate-
gories (e.g., toxicity, water persistence). On this basis, a priority list for critical substances, that
urgently need to be extensively examined in laboratory test series, is established.

7.3.2 Application Scenario

The decision process sketched above involves many staff members from different departments.
The KnowSEC system has been designed to support the complex task of knowledge aggregation
and decision making of the distributed team. As a basis for decisions different categories of
knowledge are employed. Parts of the domain, that are suitable for formalization, are modeled
to executable knowledge bases to perform particular sub-decisions. Other sub-decisions are
performed by experts manually by establishing the decision as a decision memo, including a
verbose justification, in the KnowSEC system. That system does not only capture knowledge
about substances but also focuses on process documentation. For this purpose, the system also
supports verbose documentation of the distinct steps in the episodic and collaborative decision
making process (c.f. [BSBN13]). Figure 7.8 shows the page about the (fictional) substance
kryptonite summarizing the information about the decision making process about this substance
so far.

This application scenario differs from classical knowledge engineering projects, for instance
creating a diagnostic knowledge base. The decision process is not fully automated but requires
collaboration of a team of experts. Therefore, in addition to the knowledge acquisition task the
same system also requires to support the second major task of decision making. This poses
significantly higher challenges for the system customization driven by the meta-engineering
process.

7.3.3 Knowledge Base Structure

The executable part of the knowledge base consists of 214 questions (user inputs to characterize
the investigated substance) grouped by 46 questionnaires, 146 solutions (assessments of the

209

7 Case Studies

Figure 7.8: The user interface of the KnowSEC system showing a document about the (exem-
plary) substance kryptonite.

investigated substance), and scoring rules to derive the assessments. At the time of writing the
system stores information about more than 11000 substances.

7.3.4 The Meta-Engineering Process

At beginning of the project, knowledge was aggregated using normal (office) documents. While
support knowledge was defined in Word documents and mind maps, decision tables have been
defined as Excel sheets. That project stage can be considered as the exploration phase of the
meta-engineering process (c.f. 4.4). As a reasonable amount of knowledge had been estab-
lished in well-structured (office) documents, the content was transfered into a document-centered
knowledge acquisition environment to support convenient collaborative editing and automated
compilation of an executable knowledge base. For this seeding task each office document was
converted into an equivalent wiki document. Since the seeding activity, the knowledge was ex-
clusively edited online within the KnowWE-based authoring environment. After the conversion,
the development of a compiler for the decision-tables, actually creating executable d3web rules,
was one of the first tasks of the implementation activities in the meta-engineering process. Fig-
ure 7.9 shows a wiki page with a table of that kind. In the column-header solution predicates
about the substance of interest are defined. Question-answer pairs, that are relevant for these
solution predicates, are listed in the first row of the table. Each cell entry defines a scoring rule,
which is adding the corresponding score to the score account of the solution predicate if the

210

7.3 Managing Chemical Safety with KnowSEC

question-answer pair is fulfilled considering the input data. Up to now, there are more than 1000

Figure 7.9: A score table generating decision rules for the automated rating of substances.

rules defined in KnowSEC using that table representation. Beside that markup for tables, also a
custom markup for the representation of decision memos has been designed. During the knowl-
edge engineering activities the demand for specialized authoring components for the table-based
representation of rules and also for the editing of memos emerged. In consequence, form-based
editors have been introduced as an alternative to the textual editing interface. The custom exten-
sions have been developed during a time period of more than 2 years. They have been designed
during the meetings of the project leaders and experts from Federal Environmental Agency and

211

7 Case Studies

a knowledge engineer and a system developer from the denkbares GmbH, which took place on
a regular basis.

7.3.5 System Use

In Section 4.4 we described the meta-engineering process as a second process running in parallel
to the actual knowledge acquisition process. Within the application scenario of KnowSEC in
addition to these two processes the decision making can be considered as a third process. This
third process starts some time after the knowledge acquisition process, as a certain amount of
knowledge is required to support the decision making. For the decision making the experts
create memos within the system which represent and document a decision. Beside the decision
fact itself, e.g., whether the substance is bio-accumulating or not, it also contains the following
information: Who made this decision; when this decision was made; on what information the
decision is grounded.

During the practical use of the KnowSEC system, knowledge acquisition and decision mak-
ing runs in parallel as new knowledge (possibly about newly invented substances) needs to be
integrated continuously. After about 2 years of knowledge acquisition and meta-design, recently
the decision making on the system has begun as a pilot phase. To make previous work avail-
able within the system, existing information on substance assessment has been imported into
the system. With this data decision memos have been generated but also the formalized knowl-
edge bases have been executed by filling the input questions from existing data bases. Together,
the system currently contains more than 42,000 module decisions. More information about the
KnowSEC project are presented by Baumeister et al. [BSBN13].

212

7.4 Maintenance Knowledge for Special Purpose Machines

7.4 Maintenance Knowledge for Special Purpose Machines

7.4.1 Introduction

Today’s modern agricultural vehicles are machines of very high technical complexity. Despite of
a high quality manufacturing process, technical defects can occur due to the intensive use of the
harvesting machines in practice. A breakdown is very costly and disturbing, especially during
the harvest time. Therefore, providing timely and effective maintenance service and support is
an important issue. The precise capturing and reporting of the problem symptoms forms the
first step within the maintenance chain. For manufacturers operating internationally, this is even
more challenging as the communication between the machine operator or technician on site and
the service center at the manufacturer’s facility often has to cross a language barrier.

7.4.2 Application Scenario

In this section, we report about a knowledge engineering project, carried out by a world-wide
operating manufacturer of harvesting machines, developing a structured representation of the
symptoms as a formal ontology. Operational problems reported from machine owners, often
located in foreign countries, in natural language are in many cases hard to comprehend by the
experts at the service center. The aim of the described project is to allow for the precise and
unambiguous description of observed symptoms for all products in a language independent
and uniform manner. Therefore, an ontology is defined that provides the required terms for
symptoms, functions and parts in a structured and language independent way. Additionally, the
ontology connects symptoms with repair actions, helping to give hints for solutions instantly.

In the end, the ontology enables to provide the customers and technicians a tool which sup-
ports the creation of unambiguous failure reports, which can then automatically be transformed
to different languages.

7.4.3 Knowledge Base Structure

The content of the developed ontology can be summarized as follows: The model of a machine
basically is described by a component hierarchy, a function hierarchy, and a catalogue of parts.
Furthermore, the ontology defines the two different categories of symptoms: the malfunctions
and the damages. A malfunction is a symptom that is associated to a function, which is observed
to be not working properly under certain conditions. There, the faulty component potentially is
unknown. For damages on the other hand the problem can be clearly localized to a faulty com-
ponent of the machine. The ontology also comprises a catalogue of repair actions. A symptom
can be associated to one or more repair actions, that are likely to solve the problem.

7.4.4 Knowledge Acquisition

For the development of the ontology the document-centered knowledge acquisition approach
has been chosen. As authoring environment the system KnowWE, introduced in Chapter 6, is
employed. The major part of the knowledge has been imported from information sources, that
already had been created by the domain experts. Many markup expressions could be generated

213

7 Case Studies

automatically from knowledge already existing in structured formats. Currently, the knowledge
base is consisting of 20 wiki pages, containing 94 malfunctions, 104 damages, and 33 repair
actions with labels for three languages for each knowledge base object. Figure ?? shows the
entry page of the wiki containing the abstract classes Damage and Malfunction.

Initially, a standard markup, that is provided by the system, was used to define the ontology
concepts and their interrelations. The following markup expression defines the symptom ah045
and its relations. In line 1 the concept itself is defined as an instance of the class Damage (symp-
tom). Subsequently, a set of relations for this symptom is stated in the lines 2 to 8, including a
label and a comment. Furthermore, the damage is connected with a failure code in line 6 and a
component identifier in line 7.

1 %%Individual ah045 @type: Damage

2 %%Relation

3 ah045 rdfs:label ’Verschmutzung des Filters in der Harnstoffpumpe.’@de

4 ah045 rdfs:comment ’ah045’

5 ah045 hasLocation B˙1165320

6 ah045 hasFailureCode T0003

7 ah045 hasFailurePart P˙0019403910

8 %

For all of the damage symptoms, similar expressions are defined within the wiki pages. In this
example only a German label for the concept is defined. Additional labels for other languages
can easily be added to support the automated translation later-on. Applying the meta-engineering
approach as proposed in Chapter 4, a new markup has been defined to simplify reading and
editing of knowledge. Using the new custom markup, the knowledge describing the damage
ah045 reads as follows:

1 %%Damage

2 ah045: ’Verschmutzung des Filters in der Harnstoffpumpe.’@de

3 @location: B˙1165320

4 @part: P˙0019403910

5 @code: T0003

6 %

This domain specific markup combines the definitional aspect and the relational aspect, i.e.
it defines a new concept and its relations in one coherent markup expression. In that way, the
knowledge is expressed more concise, improving readability. The comment, which is missing
in this new markup, is generated automatically in background, containing the same term as the
concept identifier, which is intended in the project.

The introduction of the new markup leads to a significant improvement of the content com-
prehensibility. For instance, the total amount of markup expression lines was reduced by more
than 200 lines.

214

7.4 Maintenance Knowledge for Special Purpose Machines

7.4.5 System Use

The developed ontology is used to create a web-based service support system which is available
world wide to machine operators. When a system fault is observed the operator instantly can
access the web application to report the problem. For this purpose the page provides a single
input field which provides semantic autocompletion using the operators native language. The
intelligent search slot assists the user to select a system component and a damage for instance.
During the selection process, the operator can see short descriptions of the respective concepts in
his language. When this encoded problem report is submitted, the professional service personnel
can translate the problem report automatically and unambiguously into a language of choice. In
that way, effective service support actions can be taken instantly.

215

7 Case Studies

7.5 HermesWiki: E-Learning in Ancient Greek History

7.5.1 Introduction

The HermesWiki [RLB+10] is an e-Learning platform in the domain of Ancient Greek History.
It is developed in cooperation with the Department of Ancient History of the University of
Würzburg. The aim of the project is to support students in exam preparation by providing a web-
based learning platform with quality assured, relevant material. The entire project is created in
German language. Basically, there are four different types of content entities contained in the
system:

1. Medium sized essays, each describing an important topic of the domain as plain text.

2. Important events with date information, a brief plain text description and (historical)
source references.

3. Descriptions of important domain concepts (e.g,. persons, cities, islands).

4. Historical sources (German translations).

The goal of the knowledge engineering process was the enhancement from a standard content
management system (allowing for reading, browsing and plain text search) to a semantically
enriched platform providing augmented visualization of the content, interactive features, and
semantic navigation and search methods, based on a formalized model of the knowledge.

7.5.2 Knowledge Acquisition Architecture

At first, we introduce the current KAA of the HermesWiki platform before the different phases
of the project’s meta-engineering process are discussed:

• Support Knowledge: The HermesWiki gives an overview of all the important concepts
of the domain, such as persons, cities and peoples. Each so called glossary concept is
briefly described on a distinct page. However, the most important content parts are the
essays, each covering some important aspect of ancient history by a coherent description.

• Arrangement of Formal Knowledge: The HermesWiki ontology is entirely defined
within the document base. General terms and relations of classes and properties, e.g., the
class hierarchies, are defined on a few centralized pages containing the vocabulary defi-
nitions. Instances and their interrelations however, are widely distributed over the wiki,
being strongly interwoven with the support knowledge according to the domain context.
Considering the glossary concepts, the general attributes, such as birth and death dates of
persons or coordinates for locations, are defined on the corresponding wiki page. The time
events, forming the most important entities of the formal knowledge base, technically can
be defined on distinct documents or inline anywhere within the source text of some docu-
ment (e.g., essay). While it is reasonable to have own pages for very important events, we
also perceived the inline definition in context as practical for further events. However, an
event defined inline can be easily extracted to a new page by a refactoring operation later.

216

7.5 HermesWiki: E-Learning in Ancient Greek History

Figure 7.10: Screenshots from the HermesWiki system.

• Syntactical Structure: The syntactical shape of the class hierarchy discussed above is a
dash-tree (c.f. Section3.5.2.1), that proved to be practical for concise representation and
quick editing abilities. Any term being a dash-tree child, i.e., follows with an incremented
number of dashes, is defined as a subclass of its parent. Another important (customized)
formalization aspect of the HermesWiki KAA is the markup for the inline definition of
time events. Figure 7.11 shows a markup example for the time event Lamian War. The
markup is translated and added to the ontology repository. As first information entity
the title of the event (Lamian War) is given, followed by the importance rating defining
its relevance for student exams. In the next line, the time-stamp of the event is notated,
also including annotations for different degrees of uncertainty. Then, introduced by “=>”
an optional class membership definition can be added. Further, the body of the markup
follows, consisting of a (free-text) description of the actual event. The markup concludes
with an (optional) list of historical sources where the event is mentioned, explicitly marked
by the keyword “SOURCE:” as the first word of a new line (from Diodor and Pausanias in
this example). Considering the markup aspects discussed in Section 4.4.2.2, this markup
has a strong frame aspect defining the entire information about one complex in one ex-
pression. With respect to the slot identification, it is a mixture of order convention (title,

217

7 Case Studies

Figure 7.11: The markup to formalize time events ’inline’ in HermesWiki

importance, date) and explicit slot naming (assignment of class and sources). Any content
in between is considered as the description of the event, which also follows the convention
style.

7.5.3 The Meta-Engineering Process

In the following, we sketch the progress of the phases of the meta-engineering process:

• Exploration: At the beginning of the project different ways of structuring the content
entities (essays, events, concept-descriptions, sources) were discussed. It became obvious,
that the domain concepts (e.g., cities) should be described independently of the essays
referring to them. Describing the concepts in a very general way on distinct articles allows
references from different contexts/essays. As opposed to this, specific events should not
necessarily require an own page, but flexible definition ’inline’ within a document (i.e.,
essay) proved to be appropriate.

• Design: In the design phase, at first a simple markup for defining time events, similar to
the one shown in Figure 7.11, was specified in a workshop together with the historians.
The ability to specify a class membership was not contained in the first version of the
markup, used for months. As these class memberships then showed to be necessary and
otherwise needed to be inserted using the general rdf-turtle-syntax3 separately, the time
event markup was extended accordingly.

For efficient navigation and search a taxonomy of domain concepts was required. To
allow for simple and quick modification of the class hierarchy for the domain experts, we
decided for a dash-tree markup for defining classes and subclass relations.

• Implementation: In general, the web application is frequently updated when features
are added or improved. The time event markup was implemented in multiple stages.
First, the events only have been recognized and highlighted in the page view. In the next
step its translation to the RDF-store was carried out to make the knowledge available for
automated processing. Later, the extension for defining the class membership has been
introduced.

3http://www.w3.org/TeamSubmission/turtle/

218

7.5 HermesWiki: E-Learning in Ancient Greek History

• Knowledge Acquisition: One advantage of the meta-engineering process is the possi-
bility to start knowledge acquisition at an intermediate stage when the development of
the tool is not yet finished. Large parts of the content (i.e., essays, concept descriptions)
could be evolved independently of the current implementation state. While the design of
the KAA is developed in close cooperation of knowledge engineers and domain experts,
large parts of the knowledge acquisition and formalization in this project is in general
performed by the domain experts autonomously. However, axioms and entities describing
the terminology of the ontology are developed in close cooperation.

7.5.4 System Use

It is not a single major use case that the created domain ontology is employed for. The possi-
bilities how the knowledge can serve the e-Learning scenario are manifold. For instance, the
ontology can be used to improve search and navigation within the content. Two interesting use
cases, valuable for learning activities, are introduced in the following. More details about the
HermesWiki ontology use cases can be found in [RLB+10].

7.5.4.1 Generated Geographic CV

The ontology contains lots of information about events and persons, also including information
about what person has been involved in some event. Further, the events are provided with date
information and a geographic location. All this information can be put together to generate a
life story of a particular person. Therefore, the important events, that the person was involved
with, are selected. For these events the geographic locations can be obtained from the ontology.
With this information a map can be generated showing the different events by markers, providing
more information on demand. Figure 7.12 shows the life story of Alexander the Great. This map,
automatically generated by the ontology content, aggregates lots of related domain information,
making it easily accessible to students.

7.5.4.2 Automated Quiz Sessions

Another use case to support learning activities are generated quiz sessions. Each fact in the
ontology can be used to generate a question. For one part of the fact (person, location, date)
multiple distractors, i.e., wrong but quite plausible answer options, need to be generated. In
this way, a multiple choice quiz can be created, which is able to provide instant feedback to the
learner. Figure 7.12 shows the HermesWiki quiz asking dates for time events.

219

7 Case Studies

Figure 7.12: The ”life story” of Alexander the Great on a map, generated from the ontology data.

Figure 7.13: A quiz, generated from the time event data in the ontology, is asking dates of his-
torical events. The students get instant feedback about his choices and scores.

220

8 Conclusion

This chapter provides a conclusion of the presented work. At first, a summary of the distinct
chapters is given. Then, an outlook of interesting research questions considering this approach
is presented. The work closes with a discussion about the role of this work within the landscape
of knowledge acquisition research.

8.1 Summary

8.1.1 Introduction

As an introduction to the topic of this work, a short summary of the past 30 years of knowledge
acquisition research was given. Beside a chronological overview, the most pressing research
questions of the last decades, and the progresses made with respect to those, have been discussed.

Then, the general problem of knowledge engineering, the so-called ’knowledge acquisition
bottleneck’ was introduced, describing the problematic nature of formalizing domain knowl-
edge for building intelligent systems. In manual knowledge acquisition the problem is strongly
related to the ’competency dilemma’, describing the unbalanced distribution of competency be-
tween domain specialists and knowledge engineers, considering domain expertise and knowl-
edge engineering expertise. There are two major strategies of (manual) knowledge acquisition,
the direct and the indirect knowledge acquisition, each having its strengths and shortcomings.
The ’mixed-initiative knowledge acquisition’, based on active participation, is a flexible combi-
nation of both strategies. To create the required socio-technical conditions for effective mixed-
initiative knowledge acquisition, we propose to adequately support the social aspect that is in-
herent to knowledge engineering. We propose to establish a social process that allows for the
exchange of expertise along the two dimensions domain knowledge and knowledge engineer-
ing skills on the one hand. On the other hand the process shall lead to the specification of a
project-specific custom-tailored knowledge acquisition tool environment. To support the social
process, a suitable cognitive environment for learning is required, providing domain descriptions
and allowing for participation at low technical barriers.

Further, the knowledge level perspective for intelligent systems was introduced, which is lo-
cated on top of the symbol level at the computer systems stack. It provides an additional layer
of abstraction allowing for the discussion of knowledge engineering issues independently of
the symbol level. In that way, the knowledge acquisition task can be considered as an act of
communication between a human agent and a knowledge-based system agent in a particular en-
vironment, i.e. the employed knowledge acquisition environment. This communication is based
on the possibilities of access to the knowledge in the (knowledge acquisition) environment. Al-
lowing effective knowledge transfer in a knowledge acquisition environment therefore requires
designing suitable means of access—for human and computer agents. The use of documents

221

8 Conclusion

for knowledge acquisition provides a wide range of possibilities for knowledge transfer as well
as for supporting the social process of knowledge acquisition. The contribution of this work is
a comprehensive discussion about taking advantage of these possibilities for enabling effective
knowledge engineering.

8.1.2 Approaches for Knowledge Base Authoring

In Chapter 2 the different existing knowledge formalization approaches are discussed. The most
important family of user interfaces is the graphical user interfaces, also being predominant in
knowledge acquisition until today. There the major categories are tools with form-based inter-
faces, graphical representation languages, and tabular knowledge acquisition. Also, domain spe-
cific languages and electronic documents are possible means for knowledge acquisition. Those
two elements play a fundamental role for the knowledge engineering approach presented in this
work. One important aspect of distinction between graphical user interfaces and the use of doc-
ument is the persistence structure of the content. Graphical user interfaces generate the content
view ”on-the-fly” from the formal knowledge base content, entirely determining the presentation
of the content elements, e.g. their order or positions. In document-centered knowledge acqui-
sition these structural characteristics of the content elements are defined by the user by creating
the document structure in a reasonable and memorable way.

8.1.3 Document-Centered Knowledge Acquisition

The document-centered knowledge acquisition approach proposes the use of a particular user
interaction paradigm—the authoring of (electronic) documents with knowledge formalization
by the use of (knowledge) markup languages. Knowledge documents containing markup ex-
pressions are forming ’multimodal knowledge’ containing content elements of the following
categories: ’Domain Description’, ’Modeling Rationale’, ’Markup Expressions’, and ’Organi-
zational Information’. Documents containing these kinds of content elements are forming the
’Document Space’, which is a graph of content elements connected by relations with in the doc-
uments, e.g. successor, inclusion, or links. The document space provides many possibilities to
structure the content according to the users’ mental model of the domain. According to insights
from cognitive psychology the relevant knowledge is situated in the so-called semantic memory.
The semantic memory is a graph where domain concepts are forming the nodes while weighted
edges define the semantic relatedness of two connected concepts. To simplify the alignment of
a knowledge system’s content to the expert’s mental model, the document space provides means
to adapt the content structure towards (a subset of) the semantic memory graph.

The document-centered approach also supports the social process of knowledge acquisition,
requiring exchange of expertise along the dimensions knowledge engineering and domain knowl-
edge. Considering the dimension of domain expertise, cycles of externalization and internaliza-
tion of knowledge by the participants can lead to knowledge convergence, considering the docu-
ment base and the participants’ knowledge. On the knowledge engineering dimension, informal
learning can be performed during the knowledge acquisition activities, supported by training
examples. For the authoring of multimodal knowledge, a human-computer interaction model
based on interactive alignment is proposed, supported by techniques like autocompletion and

222

8.1 Summary

special purpose editors.
When compared to GUI-based interfaces, the document-centered approach has several advan-

tages. It allows for basic contributions at very low technical barriers for the user and provides
large freedom of structuring. Additionally, the approach allows for incremental formalization
and example-based authoring. Also, the documents allow for a convenient quality manage-
ment process by versioning and continuous integration. There are however also considerable
challenges to be overcome for successful document-centered knowledge acquisition, such as au-
thoring assistance and solutions for navigation and search within the documents. Further, the
tasks of content refactoring, redundancy detection, and knowledge base debugging need to be
addressed.

A category of tools which is related to DCKA is semantic wikis. As a semantic wiki allows
for simple editing of documents (wiki pages) in a collaborative way, they provide a reasonable
basis for creating a document-centered knowledge acquisition environment.

The document-centered knowledge acquisition approach can be applied for a wide-range of
knowledge acquisition scenarios, as for instance the creation of ontologies, diagnostic knowl-
edge systems, data analysis background knowledge, or case-based e-Learning systems.

DCKA in several aspects strongly differs from the heavy-weight methodology CommonKADS,
which is strictly applying indirect knowledge acquisition. Nevertheless, the approaches can be
combined in a reasonable way, for instance by using DCKA in the implementation phase of
CommonKADS.

8.1.4 A Meta-Engineering Approach for DCKA

One major aspect for lowering the barriers for widespread participation on the knowledge ac-
quisition process is the use of customized knowledge acquisition tools. The systems design
dilemma, describes the problem to anticipate all use-time aspects of a system at design-time.
That problem is in particular relevant for knowledge acquisition tools, considering the com-
petency dilemma complicating the specification process even more. Therefore, instead of the
design of a custom tool apriori, we propose to drive an ongoing customization process in paral-
lel to the actual knowledge acquisition process, the ’meta-engineering process’. This continuous
design process aims to adapt the content representation towards the specialists’ mental model
of the domain and allows for comprehensible representation of the domain knowledge. The
’knowledge acquisition architecture’ (KAA) describes the currently aspired document-space
structure. Beside the possibilities for structuring the document space, the choice of the em-
ployed markup language constitutes a degree of freedom with high potential for customization.
The meta-engineering process coordinates the design and implementation of project specific
custom-tailored markups that capture the required knowledge in a simple and comprehensive
way. For this purpose, there are a number of guidelines for markup design that can be referred to.
A markup design prototype can easily be assessed by using it for a small part of the knowledge
base (, while not being processed by the system). In that way, the design process allows for the
quick and cheap evaluation of all candidate designs for determining the best solution. During
the implementation process of the new markup, it can already be employed within the docu-
ments. The corresponding markup expressions will be recognized by the system after the next
software update, when the corresponding implementation work has been finished. The adapta-

223

8 Conclusion

tion of the document space towards the specialist’s mental model and the increasing experiences
with document-centered knowledge acquisition are forming a co-adaptive process, leading to
increased knowledge engineering capabilities of the specialists over time. The major technical
challenges arising from the meta-engineering process are the frequent need for refactoring of
the document content and the implementation of new markups or the extension of existing ones.
Hence, effective technical support of these tasks is important.

8.1.5 Techniques for the Implementation of DCKA

The task of compiling knowledge markups within documents into an executable knowledge base
repository at first glance resembles the compilation task of general purpose programming lan-
guages in classical software engineering. A thorough analysis of the task (c.f. Section 5.1)
however reveals that the requirements at several points show significant differences, as for ex-
ample the frequent introduction of new languages or language components and the simplicity of
the markup languages. It turns out that standard techniques in some cases are either not appli-
cable or not practicable. Therefore, we present methods, that are adapted to the conditions of
document-centered knowledge acquisition.

The ’KDOM data-structure’ is proposed for the management of multimodal knowledge. It
is well suited to support refactoring on the document and knowledge base level. To build up
the KDOM data-structure for the documents, a top-down parsing mechanism with multiple ex-
tensions can be employed. The process of translating the markup expressions to the executable
knowledge base repository should perform reference resolution for objects in markup expres-
sions to prevent misspelling or miss-use of terminology objects by the user. We introduce an
algorithm that performs reference resolution and knowledge base update in an incremental way.
That algorithm makes the computation time for knowledge compilation independent of the over-
all knowledge/document base size.

A major contribution of Chapter 4 is a holistic approach for the timely and cost-effective im-
plementation of new markups as demanded by the meta-engineering approach. For this purpose,
a language is designed, which allows for the (semi-) declarative implementation of knowledge
markups. The mechanism, which interprets this language is based on the top-down parsing and
reference resolution algorithms introduced before. The chapter can serve as a guideline for the
implementation of a document-centered authoring system core, which meets the requirements
posed by the meta-engineering approach.

8.1.6 KnowWE - An Authoring Environment for DCKA

The KnowWE system is an implementation of a document-centered authoring environment,
which is designed to support the meta-engineering approach. It is based on an open source wiki
engine, i.e., each wiki page is considered as one document. KnowWE uses the KDOM data-
structure and parsing algorithm discussed in Chapter 5. In that way, a good basis for refactoring
and for the integration of new markups is provided. The highly extensible architecture pro-
vides optimal conditions for project specific customizations. It provides frameworks for syntax
checking including reference resolution, code-completion, drag-and-drop editing, continuous
integration testing, and refactoring.

224

8.2 Outlook

The system has proven to be suitable for document-centered knowledge acquisition with meta-
engineering in a number of academic and industrial knowledge engineering projects. The tool,
being written in Java, is distributed as open source and maintained by the denkbares GmbH.

8.1.7 Case Studies

The meta-engineering approach for document-centered knowledge acquisition has been ap-
plied to five real-world case studies from different domains: 7.1: A rule-based expert system
for the determination of suitable computer-interaction devices for handicapped people; 7.2: A
decision-support and information system to support ophthalmologists in cataract surgery. 7.3: A
decision-support and documentation system for the assessment of potentially dangerous chem-
ical substances. 7.4: An intelligent system to support the precise, multi-lingual, and computer-
interpretable acquisition of malfunction problems in the technical service support and mainte-
nance. 7.5: An interactive ontology-based e-Learning platform for students in the domain of
Ancient History.

A wide range of different knowledge representations have been employed in these different
projects. In each project, the meta-engineering process has lead to beneficial improvements
for the overall knowledge engineering project. Therefore, the case studies show that the meta-
engineering approach is applicable and helpful in a wide range of project scenarios, independent
of the domain and employed knowledge representation.

8.2 Outlook

This work provides a comprehensive introduction of the basics of the novel approach—document-
centered knowledge acquisition with markup languages. However, considering the broadness of
the approach, there are still interesting research questions to be explored. Also, some new ideas
are just being arising recently during the application of the approach in practice. In the follow-
ing, some of these ideas for improving and extending the approach in the future are outlined.

8.2.1 A Catalogue of Markup Design Guidelines

The design of markups that facilitate the capture of the knowledge in the current project is one
of the most important tasks within the meta-engineering approach. The design of markups is
a creative activity and decisions can have major implications on the long term. Hence, reliable
guidelines for that task have great value. In Section 4.4.2.1 we presented a collection of markup
design principles, which have either been taken from DSL literature or that have been derived
from our experiences from the cases studies. However, extensive long term experiences with
meta-engineering projects could not be made yet. One important task for the future would be
to collect more experiences from as many projects as possible and evolve a catalogue of design
principles. An example set of designed markups, discussing their advantages and disadvantages,
should be included.

225

8 Conclusion

8.2.2 Combination with Heavy-weight Knowledge Acquisition Approaches

In Section 3.6 the CommonKADS methodology is briefly introduced. The correlation and dif-
ferences of CommonKADS and DCKA are discussed. While the heavy weight methodology
CommonKADS proposes comprehensive top-down specification and indirect knowledge acqui-
sition, the document-centered approach employs direct (mixed-initiative) knowledge acquisi-
tion, embedded in an agile development process. Despite the differences in the methodological
orientation of the approaches, promising possibilities for the combination are outlined. This is
in accordance to the recent trends that can be observed in software development. Often, neither
traditional nor agile development is performed in its pure form, but combinations, mixing up
the respective methods, are pursued. However, the combination of DCKA and CommonKADS
has not yet been explored in practice. The application of the combined approach in real-world
knowledge engineering projects could provide interesting and valuable results.

8.2.3 Formal Definition of the KAA

In Section 4.3.2 the knowledge acquisition architecture is introduced. It specifies how the docu-
ment space should be developed and in that way serves as a guideline for the user on contribu-
tions. It is only a weak guideline, still allowing full freedom for contributions of arbitrary kinds.
This however implies, that the contributions need to be reviewed with respect to their compliance
with the KAA. These reviews constitute tedious manual work to be performed by experienced
participants. An approach to alleviate this problem is to establish a mechanism that (at least to
some extent) is able check the compliance of documents with the current KAA automatically.

One requirement for this task is, that the KAA is somehow defined in a formal way to be
recognized and processed by the system. The structure of particular documents needs to be
specified as precisely as possible. This implies to define what kinds of content elements, i.e.
the elements of which category in what order, are expected. For this formal specification, a
kind of constraint language could be employed, defining for particular categories of documents
particular orders of content categories, possibly including the expected size of the respective
content elements.

Beside the KAA, also the structure of the actual documents needs to be recognized by the
system in the required level of detail. A priori, a document-centered authoring environment as
discussed in this work only distinguishes the content category markup expression from the rest
of the content. It however can not distinguish modeling description from domain description
or organizational knowledge. Enabling this distinction would be an important step towards
checking compliance to a formal KAA specification. This can be achieved by markup languages,
similar as for example Markdown1.

Assumed the specified KAA constraints can be checked automatically, violations can and
should be used to create hints and todo messages to indicate the (temporary) insufficiency. While
becoming possible then, we strongly recommend not to strictly force for contributions the com-
pliance to the KAA as this contradicts and destroys the principle of free and easy contributions
at low barriers. These notification messages should be displayed on a centralized dashboard
or/and be sent by mail to the responsible knowledge gardener (c.f. Section 4.4.4). In that way,

1http://daringfireball.net/projects/markdown/

226

8.2 Outlook

adherence to the KAA could be ensured at lower manual efforts and degeneration of the content
can be prevented more easily. Establishing a reasonable constraint or description language to
formalize the KAA in the first place constitutes a considerable research question.

8.2.4 User Interface and Deployment

In this work an approach for the development of knowledge bases for intelligent systems is
introduced. It focuses on the formation of the knowledge base by an agile knowledge acquisition
process, however not regarding its deployment into the intended productive setting. In classical
knowledge-based systems the user interface for the end user also plays an important role and
needs to be incorporated within the deployment task. The design and implementation of this
user interface has not been discussed in this work. Its inclusion into the overall knowledge
engineering process however could be quite beneficial and poses an aspect for further research.
Then not only the correct behavior of the knowledge system, but also its practicability and
usability from a end user perspective can be tested in short cycles. Some work in this direction
is provided by Freiberg et al. [FSP12].

8.2.5 Learning Material

One central aspect of the approach is the social process of learning. The development of basic
knowledge engineering expertise by the domain specialists is assumed to be divided in activities
of formal and informal learning.

In the first place, the basic usage of the document-centered authoring environment, e.g., con-
sidering contribution to the domain descriptions, is trained in a formal style at the beginning
of the project. For that purpose, learning material, possibly for conducting a kind of interactive
workshop, could be provided. With an established best practice for this kind of beginners lesson,
the starting phase of the project could be performed very efficiently.

Second, even more important, is the support of the informal learning activities, that are per-
formed throughout the entire project progression. These learning activities arise spontaneously
during work typically without a knowledge engineer being present (in the first place). Hence,
learning material is required, which is suited to support as far as possible independent learning.
The provision of fully functional and consistent examples was proposed to be a valuable strategy
in this context (c.f. example-based learning, Section 3.1.5.3). On the other hand, the material
should also indicate when the domain specialists should contact a knowledge engineer to support
the current learning task. Informal learning does not necessarily imply to be performed by the
learner alone in a completely independent way.

A collection of suitable learning material, considering both aspects, would be of great value
for the document-centered knowledge acquisition approach. The content and style of the ma-
terial needs to be derived from experiences of projects in various domains with participants of
different backgrounds. Its didactic preparation should primarily be oriented to the perspective
of the indented target audience, being domain specialists without knowledge engineering exper-
tise. Therefore, the material should probably not (entirely) be created by a knowledge engineer,
but be established by participation of domain specialists, which are just gaining experiences in
DCKA.

227

8 Conclusion

8.3 Discussion

We can look back today to a long history of knowledge acquisition research. Despite constant
progress in foundational methods, the development of a knowledge system is still far from being
a routine activity. While the nature of the challenge of knowledge acquisition remained un-
changed, the world has changed greatly within the last twenty years. The way, how information
technology plays a continuously increasing role in all kinds of private and professional activities,
provides significantly different conditions considering the socio-technical aspects of knowledge
acquisition.

Collaborative knowledge acquisition by a distributed team has been studied for several years
now as its potential has been recognized [SG96] already before the necessary technology spread
out. At the time of the millennium, Schilstra and Spronck [SS01] for instance proposed a col-
laborative knowledge acquisition approach. While the term at that time not yet had been widely
established, one clearly can classify it as an agile knowledge engineering methodology, that had
been proposed. Many of the general ideas of that approach, including for example the active
participation of domain specialists, very much comply to the way the problem is addressed in
this work. We claim however, that the use of documents provides the best way to support that
kind of collaboration. Remarkably, the use of documents as a basis for collaborative knowledge
engineering has not been explored systematically and extensively by now. The possibilities for
flexible adaptation towards the involved persons and the subject domain, which is focus of this
work, provides advantages that can hardly be achieved by other methods. The results, that we
could observe until now in our projects, indicate that the approach is well suited to exploit the
potential provided by a group of professionals to successfully conduct a knowledge engineering
project.

As a part of mixed-initiative knowledge acquisition, the approach incorporates the strategy of
direct knowledge acquisition, which is discussed controversially within the research community.
The key question for this topic is, whether direct knowledge acquisition activities performed by
domain experts can achieve a quantity and quality making it in the end worthwhile for the over-
all project. Skeptics argue that domain specialists usually never are capable to fully understand
the semantics of a complex knowledge representation language and therefore cannot perform
the knowledge modeling task properly. To provide our opinion for this questioning, we would
like to employ an analogy from software development as discussed by Decker [Dec98]: How
many programmers (be it C++, Java, Prolog, or any other) fully understand the semantics of
their language in its entirety? Well, when being honest, one has to confirm that many do not.
Nevertheless, they successfully create many useful things with these languages. We claim that
this also can hold for direct—or rather mixed-initiative—knowledge acquisition. If the condi-
tions are adapted towards the persons needs, ruling out unnecessary difficulties for cognitively
accessing the knowledge, effective contributions become possible. According to the experiences
made, we are confident that the document-centered knowledge acquisition approach with meta-
engineering can help to create these conditions.

228

Abbreviations

BNF Backus Naur Form
CI Continuous Integration
DB Document Base
DCKA Document-Centered Knowledge Acquisition
DSL Domain Specific Language
GUI Graphical User Interface
IDE Integrated Development Environment
KA Knowledge Acquisition
KAA Knowledge Acquisition Architecture
KB Knowledge Base
KDOM Knowledge Document Object Model
KE Knowledge Engineering
MIKA Mixed-Initiative Knowledge Acquisition
OWL Web Ontology Language
RDF Resource Description Framework
RDFS Resource Description Framework Schema

229

Bibliography

[ADRW00] Robert K. Atkinson, Sharon J. Derry, Alexander Renkl, and Donald Wortham.
Learning from examples: Instructional principles from the worked examples re-
search. Review of Educational Research, 70:181–214, 2000.

[AE10] Heather L. Ainsworth and Sarah E. Eaton. Formal, Non-Formal and Informal
Learning in the Sciences. Onate Press, 2010.

[AGT89] Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code Generation
Using Tree Matching and Dynamic Programming. ACM Trans. Program. Lang.
Syst., 11(4):491–516, October 1989.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison Wesley, 2006.

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley, Boston, 2004.

[Bas06] H. Bast. Type Less, Find More: Fast Autocompletion Search with a Succinct
Index. In 29th conference on research and development in informtion retrieval
(SIGIR’06), pages 364–371, 2006.

[Bau04] Joachim Baumeister. Agile Development of Diagnostic Knowledge Systems. IOS
Press, AKA, DISKI 284, 2004.

[Bau11] Joachim Baumeister. Advanced empirical testing. Knowledge-Based Systems,
24(1):83–94, 2011.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 2000.

[Ben83] Herbert D. Benington. Production of large computer programs. IEEE Ann. Hist.
Comput., 5(4):350–361, October 1983.

[BF10] Joachim Baumeister and Martina Freiberg. Knowledge visualization for evalua-
tion tasks. Knowledge and Information Systems, submitted Jan 15, 2010.

[BGS+11] Michel Buffa, Fabien Gandon, Peter Sander, Catherine Faron, and Guillaume
Ereteo. SweetWiki: A semantic wiki. Web Semantics: Science, Services and
Agents on the World Wide Web, 6(1), 2011.

231

BIBLIOGRAPHY

[BKKZ92] Reinhard Budde, Karlheinz Kautz, Karin Kuhlenkamp, and Heinz Züllinghoven.
Prototyping: An Approach to Evolutionary System Development. Springer,
Berlin, 1992.

[BKMZ84] Reinhard Budde, Karin Kuhlenkamp, Lars Mathiassen, and Heinz Zullighoven.
Approaches to Prototyping. Springer, Berlin, 1984.

[BKS07] Joachim Baumeister, Thomas Kleemann, and Dietmar Seipel. Towards the Ver-
ification of Ontologies with Rules. In FLAIRS’07: Proceedings of the 20th In-
ternational Florida Artificial Intelligence Research Society Conference, pages
524–529. AAAI Press, 2007.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, May 2001.

[Boe88] Barry W. Boehm. A Spiral Model of Software Development and Enhancement.
Computer, 21(5):61–72, May 1988.

[BR11] Joachim Baumeister and Jochen Reutelshoefer. Developing Knowledge Systems
with Continuous Integration. In i-KNOW 2011: 11th International Conference
on Knowledge Management and Knowledge Technologies, Graz, Austria, 2011.
ACM ICPS.

[BRB+12] Joachim Baumeister, Jochen Reutelshoefer, Volker Belli, Albrecht Striffler, Rein-
hard Hatko, and Markus Friedrich. KnowWE - A Wiki for Knowledge Base
Development. In The 8th Workshop on Knowledge Engineering and Software
Engineering (KESE2012), 2012.

[Bro09] Paul Browne. JBoss Drools Business Rules. Packt Publishing, 2009.

[BRP07a] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe. KnowWE:
Community-based Knowledge Capture with Knowledge Wikis. In K-CAP ’07:
Proceedings of the 4th international conference on Knowledge capture, pages
189–190, New York, NY, USA, 2007. ACM.

[BRP07b] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe. Markups for
Knowledge Wikis. In SAAKM’07: Proceedings of the Semantic Authoring, Anno-
tation and Knowledge Markup Workshop, pages 7–14, Whistler, Canada, 2007.

[BS84] B.G. Buchanan and E.H. Shortliffe. Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project. Addison-Wesley,
1984.

[BS06] Joachim Baumeister and Dietmar Seipel. Verification and Refactoring of Ontolo-
gies With Rules. In EKAW’06: Proceedings of the 15th International Conference
on Knowledge Engineering and Knowledge Management, pages 82–95, Berlin,
2006. Springer.

232

BIBLIOGRAPHY

[BSBN13] Joachim Baumeister, Albrecht Striffler, Marc Brandt, and Michael Neumann. To-
wards Continuous Knowledge Representations in Episodic and Collaborative De-
cision Making. In KESE9: 9th Workshop on Knowledge Engineering and Soft-
ware Engineering, 2013.

[BSP04] Joachim Baumeister, Dietmar Seipel, and Frank Puppe. Refactoring methods for
knowledge bases. In EKAW’04: Engineering Knowledge in the Age of the Se-
mantic Web: 14th International Conference, LNAI 3257, pages 157–171, Berlin,
2004. Springer.

[CJhH02] Murray Campbell, A. Joseph Hoane Jr., and Feng hsiung Hsu. Deep Blue. Arti-
ficial Intelligence, 134(1-2):57–83, 2002.

[CK07] Ulrike Cress and Joachim Kimmerle. A theoretical framework of collaborative
knowledge building with wikis: a systemic and cognitive perspective. In Pro-
ceedings of the 8th iternational conference on Computer supported collaborative
learning, CSCL’07, pages 156–164. International Society of the Learning Sci-
ences, 2007.

[CK08] Ulrike Cress and Joachim Kimmerle. A systemic and cognitive view on col-
laborative knowledge building with wikis. International Journal of Computer-
Supported Collaborative Learning, 3(2):105–122, June 2008.

[CL75] Allan M. Collins and Elizabeth F. Loftus. A Spreading-Activation Theory of
Semantic Processing. Psychological Review, 82(6):407 – 428, 1975.

[CM08] Michel Chein and Marie-Laure Mugnier. Graph-based Knowledge Represen-
tation: Computational Foundations of Conceptual Graphs. Springer, London,
2008.

[Coc02] Alistair Cockburn. Agile Software Development. Addison-Wesley, 2002.

[CQ95] Allan M. Collins and M. Ross Quillian. Computation & Intelligence. chapter
Retrieval Time from Semantic Memory, pages 191–201. American Association
for Artificial Intelligence, Menlo Park, CA, USA, 1995.

[Dec98] Stefan Decker. On Domain-Specific Declarative Knowledge Representation and
Database Languages. In Alexander Borgida, Vinay K. Chaudhri, and Martin
Staudt, editors, KRDB, volume 10 of CEUR Workshop Proceedings, pages 9.1–
9.7. CEUR-WS.org, 1998.

[DFGR12] Chiara Di Francescomarino, Chiara Ghidini, and Marco Rospocher. Evaluat-
ing wiki-enhanced ontology authoring. In Proceedings of the 18th international
conference on Knowledge Engineering and Knowledge Management, EKAW’12,
pages 292–301, Berlin, Heidelberg, 2012. Springer-Verlag.

[Dij86] Edsger W. Dijkstra. On a cultural gap. The Mathematical Intelligencer, 8(1):48
– 52, 1986.

233

BIBLIOGRAPHY

[DSW+00] A. J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa, and V. R. Benjamins. Won-
dertools? a comparative study of ontological engineering tools. International
Journal of Human-Computer Studies, 52(6):1111–1133(23), June 2000.

[Ebb85] H. Ebbinghaus. Über das Gedächtnis: Untersuchungen zur experimentellen Psy-
chologie. Duncker & Humblot, 1885.

[EEMT87] Larry J. Eshelman, Damien Ehret, John P. McDermott, and Ming Tan. MOLE: A
Tenacious Knowledge-Acquisition Tool. International Journal of Man-Machine
Studies, 26(1):41–54, 1987.

[EM93] Henrik Eriksson and Mark Musen. Metatools for Knowledge Acquisition. IEEE
Softw., 10:23–29, May 1993.

[EPG+95] Henrik Eriksson, Angel R. Puerta, John H. Gennari, Thomas E. Rothenuh, Sam-
son W. Tu, and Mark A. Musen. Custom-Tailored Development Tools for
Knowledge-Based Systems. Technical report, Stanford University School of
Medicine, 1995.

[Eri92] Henrik Eriksson. Metatool support for custom-tailored, domain-oriented knowl-
edge acquisition. Knowledge Acquisition, 4(4):445 – 476, 1992.

[ESA05] N. Ernst, M. A. Storey, and P. Allen. Cognitive support for ontology modeling.
International Journal of Human-Computer Studies, May 2005.

[FBCC+10] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,
Aditya A. Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg, John
Prager, Nico Schlaefer, and Chris Welty. Building Watson: An Overview of
the DeepQA Project. AI Magazine, 31(3), 2010.

[Fei77] E. A. Feigenbaum. The Art of Artificial Intelligence: Themes and Case Studies
of Knowledge Engineering. In Proc. of the 5th IJCAI, pages 1014–1029, Cam-
bridge, MA, 1977.

[FG06] Gerhard Fischer and Elisa Giaccardi. Meta-design: A Framework for the Fu-
ture of End-User Development. In Henry Lieberman, Fabio Paternò, and Volker
Wulf, editors, End User Development, volume 9 of Human-Computer Interaction
Series, chapter 19, pages 427–457. Springer Netherlands, Dordrecht, 2006.

[FGY+04] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev. Meta-Design:
A Manifesto for End-User Development. Commun. ACM, 47(9):33–37, Septem-
ber 2004.

[Fin13] E. O. Finkenbinder. The Curve of Forgetting. The American Journal of Psychol-
ogy, 24(1):pp. 8–32, 1913.

[FMPS10] Alexander Felfernig, Monika Mandl, Anton Pum, and Monika Schubert. Em-
pirical Knowledge Engineering: Cognitive Aspects in the Development of

234

BIBLIOGRAPHY

Constraint-Based Recommenders. In Nicolas Garcia-Pedrajas, Francisco Her-
rera, Colin Fyfe, JoseManuel Benitez, and Moonis Ali, editors, Trends in Applied
Intelligent Systems, volume 6096 of Lecture Notes in Computer Science, pages
631–640. Springer Berlin Heidelberg, 2010.

[For82] Charles Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligences, 19(1):17–37, 1982.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA, 1999.

[Fow10] Martin Fowler. Domain-Specific Languages. Addison-Wesley Professional,
2010.

[Fre79] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Verlag von Louis Nebert, Halle, 1879.

[Fri02] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2 edition, 2002.

[FS00] Gerhard Fischer and Eric Scharff. Meta-Design: Design for Designers. In Pro-
ceedings of the 3rd conference on Designing interactive systems: processes,
practices, methods, and techniques, DIS ’00, pages 396–405, New York, NY,
USA, 2000. ACM.

[FSA+94] Otto K. Ferstl, Elmar J. Sinz, Michael Amberg, Udo Hagemann, and Carsten
Malischewski. Tool-Based Business Process Modeling Using the SOM Ap-
proach. In GI Jahrestagung 1994, pages 430–436, 1994.

[FSP12] Martina Freiberg, Albrecht Striffler, and Frank Puppe. Extensible Prototyping
for Pragmatic Engineering of Knowledge-based Systems. Expert Syst. Appl.,
39(11):10177–10190, September 2012.

[FvHH+01] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-
Schneider. OIL: An Ontology Infrastructure for the Semantic Web. IEEE In-
telligent Systems, 16(2):38–45, 2001.

[GGM95] D. A. Giuse, N. B. Giuse, and R. A. Miller. Evaluation of long-term maintenance
of a large medical knowledge base. American Medical Informatics Association,
2(5):297–306, 1995.

[GLR09] Jana Giceva, Christoph Lange, and Florian Rabe. Integrating Web Services into
Active Mathematical Documents. In Jacques Carette, Lucas Dixon, Claudio S.
Coen, and Stephen M. Watt, editors, Intelligent Computer Mathematics, volume
5625 of Lecture Notes in Computer Science, pages 279–293. Springer Berlin
Heidelberg, 2009.

235

BIBLIOGRAPHY

[GMF+03] John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E. Grosso, Monica
Crubezy, Henrik Eriksson, Natalya F. Noy, and Samson W. Tu. The Evolution
of Protégé: An Environment for Knowledge-based Systems Development. Int. J.
Hum.-Comput. Stud., 58(1):89–123, 2003.

[GMSZ08] Blaise Genest, Anca Muscholl, Olivier Serre, and Marc Zeitoun. Tree Pattern
Rewriting Systems. In Sung-Deok Cha, Jin-Young Choi, Moonzoo Kim, Insup
Lee, and Mahesh Viswanathan, editors, ATVA, volume 5311 of Lecture Notes in
Computer Science, pages 332–346. Springer, 2008.

[GPS93] Ute Gappa, Frank Puppe, and Stefan Schewe. Graphical knowledge acquisi-
tion for medical diagnostic expert systems. Artificial Intelligence in Medicine,
5(3):185 – 211, 1993.

[GS97] Brian R. Gaines and Mildred L. G. Shaw. Knowledge acquisition, modelling and
inference through the World Wide Web. Int. J. Hum.-Comput. Stud., 46(6):729–
759, June 1997.

[GS99] Brian R. Gaines and Mildred L. G. Shaw. Embedding formal knowledge models
in active documents. Commun. ACM, 42(1):57–64, January 1999.

[GT97] Yolanda Gil and Marcelo Tallis. A Script-Based Approach to Modifying Knowl-
edge Bases. In AAAI/IAAI’97: Proceedings of the 14th National Conference on
Artificial Intelligence and 9th Innovative Applications of Artificial Intelligence
Conference, pages 377–383, 1997.

[HA08] Josef Hofer-Alfeis. Knowledge management solutions for the leaving expert is-
sue. J. Knowledge Management, 12(4):44–54, 2008.

[HBBP12] Reinhard Hatko, Joachim Baumeister, Volker Belli, and Frank Puppe. Diaflux:
A Graphical Language for Computer-Interpretable Guidelines. In David Riano,
Annette ten Teije, and Silvia Miksch, editors, Knowledge Representation for
Health-Care, volume 6924 of Lecture Notes in Computer Science, pages 94–107.
Springer, 2012.

[HBM+04] Matthias Hüttig, Georg Buscher, Thomas Menzel, Wolfgang Scheppach, Frank
Puppe, and Hans-Peter Buscher. A Diagnostic Expert System for Structured Re-
ports, Quality Assessment, and Training of Residents in Sonography. Medizinis-
che Klinik, 3:117–22, 2004.

[HDG+06] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector, Robert
Stevens, and Hai H Wang. The Manchester OWL Syntax. In Bernardo Cuenca
Grau, Pascal Hitzler, Connor Shankey, and Evan Wallace, editors, Proceedings of
OWL: Experiences and Directions (OWLED’06), Athens, Georgia, USA, 2006.

[Hen88] James Hendler. Expert Systems: The User Interface. Human/Computer Interac-
tion. Ablex Publishing, Norwood, NJ, 1988.

236

BIBLIOGRAPHY

[Hig01] Jim Highsmith. The Great Methodologies Debate: Part 1. Cutter IT Journal,
2001.

[Hil03] Ernest Friedman Hill. Jess in Action: Java Rule-Based Systems. Manning Publi-
cations Co., Greenwich, CT, USA, 2003.

[HJ02] Clyde W. Holsapple and K. D. Joshi. A collaborative approach to ontology de-
sign. Commun. ACM, 45(2):42–47, February 2002.

[HM00] Eva Heinrich and Hermann A. Maurer. Active Documents: Concept, Implemen-
tation and Applications. J. UCS, 6(12):1197–1202, 2000.

[Hor02] Ian Horrocks. DAML+OIL: a description logic for the semantic web. Bull. of the
IEEE Computer Society Technical Committee on Data Engineering, 25(1):4–9,
March 2002.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
S H I Q and RDF to OWL: The making of a web ontology language. J. of
Web Semantics, 1(1):7–26, 2003.

[HR04] Rosco Hill and Joe Rideout. Automatic Method Completion. Automated Software
Engineering, International Conference on, 0:228–235, 2004.

[HRWL83] Frederick Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat. Building
expert systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1983.

[HSE11] Philipp Heim, Thomas Schlegel, and Thomas Ertl. A Model for Human-
Computer Interaction in the Semantic Web. In Proceedings of the 7th Interna-
tional Conference on Semantic Systems, I-Semantics ’11, pages 150–158, New
York, NY, USA, 2011. ACM.

[HSM+12] Reinhard Hatko, Dirk Schädler, Stefan Mersmann, Joachim Baumeister, Norbert
Weiler, and Frank Puppe. Implementing an Automated Ventilation Guideline Us-
ing the Semantic Wiki KnowWE. In Annette ten Teije, Johanna Völker, Siegfried
Handschuh, Heiner Stuckenschmidt, Mathieu d’Aquin, Andriy Nikolov, Nathalie
Aussenac-Gilles, and Nathalie Hernandez, editors, EKAW, volume 7603 of Lec-
ture Notes in Computer Science, pages 363–372. Springer, 2012.

[HvHtT05] Zhisheng Huang, Frank van Harmelen, and Annette ten Teije. Reasoning with In-
consistent Ontologies. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors,
IJCAI, pages 454–459. Professional Book Center, 2005.

[HWM09] Sangmok Han, David R. Wallace, and Robert C. Miller. Code Completion from
Abbreviated Input. In Proceedings of the 2009 IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE ’09, pages 332–343, Washington,
DC, USA, 2009. IEEE Computer Society.

237

BIBLIOGRAPHY

[JGD04] Jelena Jovanović, Dragan Gašević, and Vladan Devedić. A GUI for Jess. Expert
Syst. Appl., 26(4):625–637, May 2004.

[Joh75] S. C. Johnson. YACC—yet another compiler-compiler. Technical Report CS-32,
AT & T Bell Laboratories, Murray Hill, N.J., 1975.

[Jon88] Sara Jones. Graphical interfaces for knowledge engineering: an overview of
relevant literature. The Knowledge Engineering Review, 3(03):221–247, 1988.

[KBD+89] G. Klinker, C. Boyd, D. Dong, J. Maiman, J. McDermott, and R. Schnelbach.
Building expert systems with KNACK. Knowledge Acquisition, 1(3):299–320,
1989.

[Kel55] G.A. Kelly. The Psychology of Personal Constructs. Number Bd. 2 in The Psy-
chology of Personal Constructs. Norton, 1955.

[KFK99] G. J. Kuperman, J. M. Fiskio, and A. Karson. A process to maintain the quality
of a computerized knowledge base. Proc AMIA Symp, pages 87–91, 1999.

[KFNM04] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen.
The Protégé OWL Plugin: An Open Development Environment for Semantic
Web Applications. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van
Harmelen, editors, The Semantic Web – ISWC 2004, volume 3298 of Lecture
Notes in Computer Science, pages 229–243. Springer Berlin / Heidelberg, 2004.

[KGK+07] Dierk Koenig, Andrew Glover, Paul King, Guillaume Laforge, and Jon Skeet.
Groovy in Action. Manning Publications Co., Greenwich, CT, USA, 2007.

[KKP+09] Gabor Karsai, Holger Krahn, Class Pinkernell, Bernhard Rumpe, Martin Schnei-
der, and Steven Völkel. Design Guidelines for Domain Specific Languages.
In Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling
(DSM09), 2009.

[Kli08] Pavel Klinov. Pronto: A Non-monotonic Probabilistic Description Logic Rea-
soner. In Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and Manolis
Koubarakis, editors, The Semantic Web: Research and Applications, 5th Euro-
pean Semantic Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain,
June 1-5, 2008, Proceedings, volume 5021 of Lecture Notes in Computer Sci-
ence, pages 822–826. Springer, 2008.

[Klo92] J. W. Klop. Handbook of Logic in Computer Science (vol. 2). chapter Term
Rewriting Systems, pages 1–116. Oxford University Press, Inc., New York, NY,
USA, 1992.

[KM06] Mik Kersten and Gail C. Murphy. Using Task Context to Improve Programmer
Productivity. In Proceedings of the 14th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, SIGSOFT ’06/FSE-14, pages 1–
11, New York, NY, USA, 2006. ACM.

238

BIBLIOGRAPHY

[KNM85] Gary S. Kahn, Steven J. Nowlan, and John P. McDermott. MORE: An Intelligent
Knowledge Acquisition Tool. In Aravind K. Joshi, editor, IJCAI, pages 581–584.
Morgan Kaufmann, 1985.

[Kno50] M.S. Knowles. Informal Adult Education: A Guide for Administrators, Leaders,
and Teachers. Association Press, 1950.

[Knu64] Donald E. Knuth. backus normal form vs. Backus Naur form. Communications
of the ACM, 7(12):735–736, 1964.

[Knu02] Holger Knublauch. An Agile Development Methodology for Knowledge-Based
Systems Including a Java Framework for Knowledge Modeling and Appropriate
Tool Support. PhD thesis, University of Ulm, 2002.

[Kre12] S. Kreutzer. Ein Expertensystem zur Unterstützung körperbehinderter Menschen.
Diplomica, 2012.

[KSV07] Markus Krötzsch, Sebastian Schaffert, and Denny Vrandecic. Reasoning in Se-
mantic Wikis. In Grigoris Antoniou, Uwe Aßmann, Cristina Baroglio, Stefan
Decker, Nicola Henze, Paula-Lavinia Patranjan, and Robert Tolksdorf, editors,
Reasoning Web, volume 4636 of Lecture Notes in Computer Science, pages 310–
329. Springer, 2007.

[Kuh08] Tobias Kuhn. AceWiki: Collaborative Ontology Management in Controlled Nat-
ural Language. In Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli, and
Max Völkel, editors, Proceedings of the 3rd Semantic Wiki Workshop, volume
360. CEUR Workshop Proceedings, 2008.

[KV03] K. Kotis and G. Vouros. Human Centered Ontology Management with HCONE.
In ODS 2003 Workshop on Ontologies and Distributed Systems, Int. Joint Conf.
in Artificial Intelligence (IJCAI-03). CEUR Workshop Proc.(CEUR-WS.org),
08/2003 2003.

[KVV06] Markus Krötzsch, Denny Vrandecic, and Max Völkel. Semantic MediaWiki. In
Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe,
Peter Mika, Michael Uschold, and Lora Aroyo, editors, International Semantic
Web Conference, volume 4273 of Lecture Notes in Computer Science, pages 935–
942. Springer, 2006.

[Lan08] Christoph Lange. SWiM - A Semantic Wiki for Mathematical Knowledge Man-
agement. In Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and Manolis
Koubarakis, editors, ESWC, volume 5021 of Lecture Notes in Computer Science,
pages 832–837. Springer, 2008.

[LAY87] R. LAYTON. Expert Systems Technology: Just a Flash in the Pan? In Proceed-
ings of the twentieth Internation Symposium on the Application of Computers and
Mathematics in the Mineral Industries, page 189. SAIMM, 1987.

239

BIBLIOGRAPHY

[LC01] Bo Leuf and Ward Cunningham. The Wiki Way: Quick Collaboration on the Web.
Addison-Wesley, New York, 2001.

[LFL05] Elizabeth Da Lio, Lucia Fraboni, and Tommaso Leo. Twiki-based facilitation in
a newly formed academic community of practice. In Proceedings of the 2005
international symposium on Wikis, WikiSym ’05, pages 85–111, New York, NY,
USA, 2005. ACM.

[LHB03] William Lidwell, Kritina Holden, and Jill Butler. Universal Principles of Design.
Rockport Publishers, October 2003.

[Mac11] Monica G. Maceli. Bridging the design time – use time divide: towards a future
of designing in use. In Proceedings of the 8th ACM conference on Creativity and
Cognition, C&C ’11, pages 461–462, New York, NY, USA, 2011. ACM.

[Mae06] John Maeda. The Laws of Simplicity (Simplicity: Design, Technology, Business,
Life). The MIT Press, August 2006.

[Mar95] Phillip Martin. Knowledge Acquisition Using Documents, Conceptual Graphs
and a Semantically Structured Dictionary. In KAW 1995, Proceedings of the
9th Internation Knowledge Acquisition for Knowledge-Based Systems Workshop,
pages 1–19, 1995.

[Mar09] R. Martin. Clean Code: Handbook of agile software craftsmanship. Prent. Hall,
2009.

[MB03] Martin Molina and Gemma Blasco. Using Electronic Documents for Knowledge
Acquisition and Model Maintenance. In Vasile Palade, RobertJ. Howlett, and
Lakhmi Jain, editors, Knowledge-Based Intelligent Information and Engineering
Systems, volume 2774 of Lecture Notes in Computer Science, pages 1357–1364.
Springer Berlin Heidelberg, 2003.

[MBH+12] Kivanc Muslu, Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin.
Improving IDE recommendations by considering global implications of existing
recommendations. In Proceedings of the 2012 International Conference on Soft-
ware Engineering, ICSE 2012, pages 1349–1352, Piscataway, NJ, USA, 2012.
IEEE Press.

[McC78] John McCarthy. History of LISP. SIGPLAN Not., 13(8):217–223, August 1978.

[Mcr04] K. Mcrae. Semantic memory: Some insights from feature-based connectionist
attractor networks, volume 45, pages 41–82. Elsevier, January 2004.

[MCW+86] Mark A. Musen, David M. Combs, Joan D. Walton, Edward H. Shortliffe, and
Lawrence M. Fagan. OPAL: Toward the Computer-Aided Design of Oncology
Advice Systems. In Computer Application in Medical Care, pages 43–52, 1986.

[Mer04] D Merrit. Best Practices for Rule-Based Application Development. Microsoft
Architects JOURNAL, 1, 2004.

240

BIBLIOGRAPHY

[MHL07] Yue Ma, Pascal Hitzler, and Zuoquan Lin. Algorithms for Paraconsistent Reason-
ing with OWL. In Proceedings of the 4th European conference on The Semantic
Web: Research and Applications, ESWC ’07, pages 399–413, Berlin, Heidelberg,
2007. Springer-Verlag.

[MHM12] Gregory L. Murphy, James A. Hampton, and Goran S. Milovanovic. Seman-
tic memory redux: An experimental test of hierarchical category representation.
Journal of Memory and Language, September 2012.

[Min75] Marvin Minsky. Minsky’s frame system theory. In Proceedings of the 1975 work-
shop on Theoretical issues in natural language processing, TINLAP ’75, pages
104–116, Stroudsburg, PA, USA, 1975. Association for Computational Linguis-
tics.

[Mit03] Ruslan Mitkov. The Oxford Handbook of Computational Linguistics (Oxford
Handbooks in Linguistics S.). Oxford University Press, 2003.

[MJ82] D. D. McCracken and M. A. Jackson. Life cycle concept considered harmful.
Software Engineering Notes, 7(2):29–32, 1982.

[MNTMQ96] Robert Milne, Charlie Nicol, Louise Trave-Massuyès, and Joseba Quevedo.
TIGER: Knowledge Based Gas Turbine Condition Monitoring. AI Communi-
cations, 9(3):92–108, 1996.

[MR02] Carlos A. Maldonado and Marc L. Resnick. Do Common User Interface De-
sign Patterns Improve Navigation? Proceedings of the Human Factors and Er-
gonomics Society Annual Meeting, 46(14):1315–1319, 2002.

[MS99] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. The MIT Press, Cambridge, Massachusetts, 1999.

[Mul90] Peter W. Mullarkey. An Experiment in Direct Knowledge Acquisition. In Pro-
ceedings of the eighth National conference on Artificial intelligence - Volume 1,
AAAI’90, pages 498–504. AAAI Press, 1990.

[Mus88] M. A. Musen. Conceptual Models of Interactive Knowledge-Acquisition Tools.
In J. Boose, B. Gaines, and M. Linster, editors, Proc. of the European Knowl-
edge Acquisition Workshop (EKAW’88), pages 26–1 – 26–15. Gesellschaft für
Mathematik und Datenverarbeitung mbH, Sankt Augustin, Germany, 1988.

[Mus89a] M. A. Musen. Automated Generation of Model-Based Knowledge-Acquisition
Tools. Pitman Publishing London, 1989.

[Mus89b] M. A. Musen. An editor for the conceptual models of interactive knowledge-
acquisition tools. Int. J. Man-Mach. Stud., 31:673–698, December 1989.

[Mus89c] Mark A. Musen. Automated Support for Building and Extending Expert Models.
Mach. Learn., 4(3-4):347–375, December 1989.

241

BIBLIOGRAPHY

[Mus13] Mark A. Musen. The knowledge acquisition workshops: A remarkable conver-
gence of ideas. Int. J. Hum.-Comput. Stud., 71(2):195–199, 2013.

[New80] Allen Newell. Physical Symbol Systems. Cognitive Science, 4:135–183, 1980.

[New82] A. Newell. The Knowledge Level. Artificial Intelligence, 28(2), 1982.

[NL05] Grzegorz J. Nalepa and Antoni Ligeza. A graphical tabular model for rule-based
logic programming and verification. Systems Science, 31(2):89–95, 2005.

[NLK11] Grzegorz J. Nalepa, Antoni Ligeza, and Krzysztof Kaczor. Formalization and
modeling of rules using the xtt2 method. International Journal on Artificial In-
telligence Tools, 20(06):1107–1125, 2011.

[OMG02] OMG. Meta Object Facility Specification. Specification Version 1.4, Object
Management Group, 2002.

[Par07] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Lan-
guages. Pragmatic Programmers. Pragmatic Bookshelf, first edition, May 2007.

[PETM92] Angel R. Puerta, John W. Egar, Samson W. Tu, and Mark A. Musen. A
Multiple-Method Knowledge-Acquisition Shell for the Automatic Generation of
Knowledge-Acquisition Tools. Knowledge Acquisition, 4(2):171 – 196, 1992.

[PG92] Frank Puppe and Ute Gappa. Towards Knowledge Acquisition by Experts. In
Fevzi Belli and Franz Radermacher, editors, Industrial and Engineering Ap-
plications of Artificial Intelligence and Expert Systems, volume 604 of Lecture
Notes in Computer Science, pages 546–555. Springer Berlin / Heidelberg, 1992.
10.1007/BFb0025008.

[PG04] Martin J. Pickering and Simon Garrod. Toward a mechanistic psychology of
dialogue. Behavioral and Brain Sciences, 27:169–225, 2004.

[PGPB96] Frank Puppe, Ute Gappa, Karsten Poeck, and Stefan Bamberger. Wissens-
basierte Diagnose– und Informationssysteme. Mit Anwendung des Experten–
Shell–Baukasten D3. Springer, Berlin, 1996.

[Pia77] Jean Piaget. The Development of Thought: Equilibration of Cognitive Structures.
Viking Press, 1st edition, November 1977.

[PoNR56] United States. Navy Mathematical Computing Advisory Panel and United
States. Office of Naval Research. Symposium on Advanced Programming Meth-
ods for Digital Computers: Washington, D.C., June 28, 29, 1956. ONR sympo-
sium report. Office of Naval Research, Department of the Navy, 1956.

[Pup90] Frank Puppe. Problemlösungsmethoden in Expertensystemen. Springer Verlag,
1990.

242

BIBLIOGRAPHY

[Pup93] Frank Puppe. Set-Covering Classification. In Systematic Introduction to Expert
Systems, pages 156–169. Springer Berlin Heidelberg, 1993.

[Pup00] Frank Puppe. Knowledge Formalization Patterns. In PKAW 2000: Proceedings
of the Pacific Rim Knowledge Acquisition Workshop, Sydney, Australia, 2000.

[Qui68] Ross Quillian. Semantic Memory. In Semantic Information Processing, pages
216–270. MIT Press, 1968.

[RB13] Jochen Reutelshoefer and Joachim Baumeister. Supporting Direct Knowledge
Acquisition by Customized Tools: A Case Study in the Domain of Cataract
Surgery. In Proceedings of the LWA-2013 (Special Track on Knowledge Man-
agement), 2013.

[RBFP12] Jochen Reutelshoefer, Joachim Baumeister, Georg Fette, and Frank Puppe.
A Document-centered Authoring Approach for Ontology Engineering. In
FGWM’12: Proceedings of German Workshop of Knowledge and Experience
Management (at LWA’12), 2012.

[RBP09] Jochen Reutelshoefer, Joachim Baumeister, and Frank Puppe. A Data Struc-
ture for the Refactoring of Multimodal Knowledge. In KESE’09: 5th Workshop
on Knowledge Engineering and Software Engineering (CEUR proceedings 486),
Paderborn, 2009.

[RHT+06] Stanislaus Reimer, Alexander Hörnlein, Hans-Peter Tony, Doris Kraemer,
Stephan Oberück, Christian Betz, Frank Puppe, and Christian Kneitz. As-
sessment of a Case-Based Training System (d3web.Train) in Rheumatology.
Rheumatol Int, 26(10):942–8, 2006.

[RLB+10] Jochen Reutelshoefer, Florian Lemmerich, Joachim Baumeister, Jorit Wintjes,
and Lorenz Haas. Taking OWL to Athens – Semantic Web Technology takes An-
cient Greek History to Students. In ESWC’10: Proceedings of the 7th Extended
Semantic Web Conference. Springer, 2010.

[RLHB09] Jochen Reutelshoefer, Florian Lemmerich, Fabian Haupt, and Joachim Baumeis-
ter. An Extensible Semantic Wiki Architecture. In SemWiki’09: Fourth Workshop
on Semantic Wikis – The Semantic Wiki Web (CEUR proceedings 464), 2009.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2 edition, 2003.

[RP87] Stephen Regoczei and Edwin P. O. Plantinga. Creating the Domain of Dis-
course: Ontology and Inventory. International Journal of Man-Machine Studies,
27(3):235–250, 1987.

[RSLP11] Jochen Reutelshoefer, Albrecht Striffler, Florian Lemmerich, and Frank Puppe.
Incremental Compilation of Knowledge Documents for Markup-based Closed-
World Authoring. In K-CAP ’11: Proceedings of the sixth international confer-
ence on Knowledge Capture. ACM, 2011.

243

BIBLIOGRAPHY

[RSSS09] Barbara Russo, Marco Scotto, Alberto Sillitti, and Giancarlo Succi. Agile Tech-
nologies in Open Source Development. Information Science Reference - Imprint
of: IGI Publishing, Hershey, PA, 2009.

[SAA+01] Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Robert de Hoog, Nigel
Shadbolt, Walter Van de Velde, and Bob Wielinga. Knowledge Engineering and
Management - The CommonKADS Methodology. MIT Press, 2 edition, 2001.

[SB01] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2001.

[SBBK09] Sebastian Schaffert, Francois Bry, Joachim Baumeister, and Malte Kiesel. Se-
mantische Wikis, pages 245–258. Springer, 2009.

[SBGB88] M. L. G. Shaw, J. M. Bradshaw, B. R. Gaines, and J. H. Boose. Rapid Proto-
typing Techniques for Expert Systems. In Conference on Artificial Intelligence
Applications, 1988.

[SC01] M. Stokes and MOKA Consortium. Managing Engineering Knowledge: MOKA:
Methodology for Knowledge Based Engineering Applications. Professional En-
gineering Publishing, 2001.

[SEA+02] York Sure, Michael Erdmann, Jürgen Angele, Steffen Staab, Rudi Studer, and
Dirk Wenke. OntoEdit: Collaborative ontology development for the Semantic
Web. In ISWC’02: International Semantic Web Conference, pages 221–235,
2002.

[SEG+09] Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz, and Mihai Rad-
ulescu. KiWi – a platform for semantic social software (demonstration). In
ESWC’09: Proceedings of the 6th European Semantic Web Conference, The Se-
mantic Web: Research and Applications, pages 888–892, Heraklion, Greece,
June 2009. Springer.

[SG93] Mildred L. G. Shaw and Brian R. Gaines. Personal Construct Psychology Foun-
dations for Knowledge Acquisition and Representation. In Nathalie Aussenac-
Gilles, Guy A. Boy, Brian R. Gaines, Jean-Gabriel Ganascia, Yves Kodratoff, and
Marc Linster, editors, EKAW, volume 723 of Lecture Notes in Computer Science,
pages 256–276. Springer, 1993.

[SG96] Mildred L. G. Shaw and Brian R. Gaines. WebGrid: Knowledge elicitation and
modeling on the Web. In WebNet. AACE, 1996.

[Sha91] Nigel Shadbolt. Facts, Fantasies and Frameworks: The Design of a Knowledge
Acquisition Workbench. In Franz Schmalhofer, Gerhard Strube, and Thomas
Wetter, editors, Contemporary Knowledge Engineering and Cognition, volume
622 of Lecture Notes in Computer Science, pages 39–58. Springer, 1991.

244

BIBLIOGRAPHY

[SP09] Ben Shneiderman and Catherine Plaisant. Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction. Pearson Addison-Wesley, 5.
edition, 2009.

[SS01] Klaas Schilstra and Pieter Spronck. Towards Continuous Knowledge Engineer-
ing. In Ann Macintosh, Mike Moulton, and Frans Coenen, editors, Applications
and Innovations in Intelligent Systems VIII, pages 49–62. Springer London, 2001.

[SWB93] Guus Schreiber, Bob Wielinga, and Joost Breuker. KADS - A Principled Ap-
proach to Knowledge-Based System Development. Academic Press, 1993.

[TMD+06] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, An-
drei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel
Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal
Stang, Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koelen,
Charles Markey, Carlo Rummel, Joe van Niekerk, Eric Jensen, Philippe Alessan-
drini, Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler, Ara Nefian, and
Pamela Mahoney. Stanley: The robot that won the DARPA Grand Challenge:
Research Articles. J. Robot. Syst., 23(9):661–692, September 2006.

[Tuk77] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[Tul72] Endel Tulving. Episodic and Semantic Memory. In Endel Tulving and W Don-
aldson, editors, Organization of memory, pages 381–403. Academic Press, New
York, 1972.

[VC99] Anca I. Vermesan and Frans Coenen, editors. Validation and Verification of
Knowledge Based Systems - Theory, Tools and Practice, Collected papers from
EUROVAV ’99, 5th European Symposium on Validation and Verification of
Knowledge Based Systems, June 9-11, 199, Oslo, Norway. Kluwer, 1999.

[vHLP07] Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter. Handbook of Knowl-
edge Representation. Elsevier Science, San Diego, USA, 2007.

[VKBKs07] Max Van Kleek, Michael Bernstein, David R. Karger, and mc schraefel. GUI
— Phooey!: The Case for Text Input. In Proceedings of the 20th Annual ACM
Symposium on User Interface Software and Technology, UIST ’07, pages 193–
202, New York, NY, USA, 2007. ACM.

[vKV03] Mark van den Brand, Paul Klint, and Jurgen Vinju. Term rewriting with Traversal
functions. ACM Trans. Software Engineering and Methodology, 12:152–190,
2003.

[VKV+06] Max Völkel, Markus Krötzsch, Denny Vrandecic, Heiko Haller, and Rudi Studer.
Semantic Wikipedia. In WWW ’06: Proceedings of the 15th international con-
ference on World Wide Web, pages 585–594, New York, NY, USA, 2006. ACM
Press.

245

BIBLIOGRAPHY

[Voo94] Ellen M. Voorhees. Query Expansion using Lexical-Semantic Relations. In Pro-
ceedings of the 17th annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’94, pages 61–69, New York,
NY, USA, 1994. Springer-Verlag New York, Inc.

[VPST05] Denny Vrandecić, H. Sofia Pinto, York Sure, and Christoph Tempich. The DILI-
GENT Knowledge Processes. Journal of Knowledge Management, 9(5):85–96,
October 2005.

[VWD04] Fernanda B. Viégas, Martin Wattenberg, and Kushal Dave. Studying Cooperation
and Conflict between Authors with history flow Visualizations. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04,
pages 575–582, New York, NY, USA, 2004. ACM.

[Wag06] Christian Wagner. Breaking the Knowledge Acquisition Bottleneck through Con-
versational Knowledge Management. Information Resources Management Jour-
nal, 19(1):70–83, 2006.

[WF86] T. Winograd and F. Flores. Understanding Computers and Cognition: A New
Foundation for Design. Language and Being. Ablex Publishing Corporation,
1986.

[WF99] Ian H. Witten and Eibe Frank. Data Mining. Morgan Kaufmann Publisher, 1999.

[WG98] Tim A. Wagner and Susan L. Graham. Efficient and Flexible Incremental Pars-
ing. ACM Transactions on Programming Languages and Systems, 20:980–1013,
1998.

[Wil04] David Wile. Lessons learned from real DSL experiments. Sci. Comput. Program.,
51(3):265–290, 2004.

[WKJ+01] Patrik Werle, Fredrik Kilander, Martin Jonsson, Peter Lönnqvist, and Carl Gustaf
Jansson. A Ubiquitous Service Environment with Active Documents for Team-
work Support. In Gregory D. Abowd, Barry Brumitt, and Steven Shafer, editors,
Ubicomp 2001: Ubiquitous Computing, volume 2201 of Lecture Notes in Com-
puter Science, pages 139–155. Springer Berlin Heidelberg, 2001.

[WMS02] Michael Wright, Mary Marlino, and Tamara Sumner. Meta-Design of a Commu-
nity Digital Library. D-Lib Magazine, 8(5), 2002.

[WR95] Thomas C. Wooten and Thomas H. Rowley. Using anthropological interview
strategies to enhance knowledge acquisition. Expert Systems with Applications,
9(4):469 – 482, 1995. Expert systems in accounting, auditing, and finance.

[WSG92] J.Brian Woodward, M.L.G. Shaw, and B.R. Gaines. The Cognitive Basis of
Knowledge Engineering. In Franz Schmalhofer, Gerhard Strube, and Thomas
Wetter, editors, Contemporary Knowledge Engineering and Cognition, volume
622 of Lecture Notes in Computer Science, pages 194–221. Springer Berlin Hei-
delberg, 1992.

246

BIBLIOGRAPHY

[Wyg89] Robert M. Wygant. CLIPS — A powerful development and delivery expert sys-
tem tool. Computers & Industrial Engineering, 17(1-4):546 – 549, 1989.

[Zav97] Pamela Zave. Classification of Research Efforts in Requirements Engineering.
ACM Comput. Surv., 29(4):315–321, December 1997.

247

