
Julius-Maximilians-Universität Würzburg

Institut für Mathematik

Lehrstuhl für

Dynamische Systeme und Kontrolltheorie

Stability of Switched
Epidemiological Models

Stabilität geschalteter

epidemiologischer Modelle

Masterarbeit

von

Sebastian Pröll





Julius-Maximilians-Universität Würzburg

Institut für Mathematik

Lehrstuhl für

Dynamische Systeme und Kontrolltheorie

Stability of Switched
Epidemiological Models

Stabilität geschalteter

epidemiologischer Modelle

Masterarbeit

eingereicht

im

Oktober 2013

von

Sebastian Pröll

Matr.-Nr. 1593307

betreut durch

Prof. Dr. Fabian Wirth



Zusammenfassung

In der vorliegenden Arbeit werden Möglichkeiten aufgezeigt, wie man die Aus-
breitung von Infektionskrankheiten mit Hilfe von mathematischen Modellen
beschreiben kann. Anhand solcher Modelle möchte man mehr über die Dy-
namik von Epidemien lernen und vorhersagen, wie sich eine gegebene Infektions-
krankheit innerhalb einer Population ausbreitet.
Zunächst werden gewöhnliche Di�erentialgleichungen verwendet, um grundle-
gende epidemiologische Modelle aufzustellen. Hierbei unterscheidet man soge-
nannte SIR und SIS Modelle, je nachdem ob die betrachtete Krankheit einem
Individuum nach seiner Heilung Immunität verleiht oder nicht. Charakteris-
tisch für Infektionskrankheiten sind Parameter wie die Infektionsrate oder die
Heilungsrate. Sie geben an, wie ansteckend eine Krankheit ist bzw. wie schnell
eine Person nach einer Erkrankung wieder gesund wird. Im Allgemeinen sind
diese Parameter abhängig von bestimmten Bevölkerungsgruppen und verändern
sich mit der Zeit. Daher werden am Ende des zweiten Kapitels Modelle entwi-
ckelt, die die Betrachtung mehrerer Bevölkerungsgruppen zulassen. Zeitvariante
Parameter werden durch die Verwendung geschalteter Systeme berücksichtigt.
Bei der Untersuchung solcher Systeme ist derjenige Zustand von besonderem
Interesse, bei dem innerhalb der Bevölkerung keine In�zierten auftreten, die
gesamte Bevölkerung also von der betrachteten Krankheit frei bleibt. Es stellt
sich die Frage, unter welchen Bedingungen sich dieser Zustand nach einer In-
�zierung der Bevölkerung im Laufe der Zeit von selbst einstellt. Mathematisch
gesehen untersucht man die triviale Ruhelage des Systems, bei der keine In-
�zierten existieren, auf Stabilität.
Für die Stabilitätsanalyse sind einige mathematische Begri�e und Aussagen
notwendig, die im zweiten Kapitel bereitgestellt werden. Grundlegend ist die
Theorie gewöhnlicher Di�erentialgleichungen, einschlieÿlich der Stabilitätstheo-
rie von Lyapunov. Darüberhinaus kommen wichtige Erkenntnisse aus den Ge-
bieten Konvexe und Nichtglatte Analysis, Positive Systeme und Di�erentialin-
klusionen.
Ausgestattet mit diesen Hilfsmitteln werden im vierten Kapitel Sätze bewiesen,
die hinreichende Bedingungen dafür angegeben, dass die triviale Ruhelage in
geschalteten SIS, SIR und SIRS Systemen asymptotisch stabil ist.
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1 Introduction

Infectious diseases seem to be related to mankind ever. In 430 BC, typhoid fever
killed a quarter of the population of Athens within four years. The number of
casualties caused by Black Death during the 14th century is estimated at 20
to 30 million Europeans in six years. Until the 18th century, more than 100
plague epidemics swept across Europe. On the American continent, the Native
people had to su�er from smallpox, measles and in�uenza European conquerors
brought to the New World. Smallpox killed 150 thousand people only in the
Aztec city-state Tenochtitlan, located in today's Mexico, in the 1520s. The
Third Pandemic starting in China in the 19th century killed over 12 million
people in China and India. The Spanish �u in 1918-19 became a worldwide
pandemic which killed some 50 million people.
For a long time the mechanisms of spread of diseases were unknown. In the
middle of the 16th century, a doctor from Verona named Girolamo Fracastero
was �rst to propose a theory about contagion that postulated spread from per-
son to person. It took until the 19th century when Louis Pasteur proved that
certain diseases are caused by infectious agents and Robert Koch formulated
criteria to determine an infectious disease. This new microbiological knowledge
was seminal to control epidemics. After Dr. John Snow � one of the fathers
of modern epidemiology � discovered that cholera was transmitted by the fecal
contamination of water, �rst steps were made to establish hygiene in western
cities. Sewers were built and private bathrooms and �ush toilets became pop-
ular. Vaccination is another important way to defeat communicable diseases.
Several successful vaccines were introduced in the twentieth century, including
those against diphtheria, measles, mumps, and rubella. Major achievements
included the development of the polio vaccine in the 1950s and the eradication
of smallpox during the 1960s and 1970s.
Still, there remain challenging problems for today's civilization. According to
the WHO, more than one fourth of all deaths worldwide were caused by infec-
tious diseases in 2002. To date there are no vaccines available against HIV and
malaria. The growing world population and highly developed infrastructure are
ideal conditions for proliferation of pathogens. Industrial livestock farming, in-
cluding the massive use of antibiotics, induces the generation of drug-resistant
microbes. Some widespread animal diseases in the past two decades were mad
cow disease (BSE), foot-and-mouth disease, bird �u and swine �u.
All this keeps specialists from di�erent �elds busy and they are interested in
di�erent aspects of diseases. Medical doctors and veterinary clinicians primar-
ily wish to know how to treat human patients or animals and are therefore most
concernced about the infection's pathophysiology (i.e. how it a�ects the organ-
ism) or clinical symptoms. Microbiologists, on the other hand, focus on the
natural history of the causative organism and ask about the etiological agent (a
virus, bacterium, protozoan, fungus, or prion) as well as about the optimal con-
ditions for its growth. Finally, epidemiologists are most interested in features
which determine patterns of disease and its transmission.
The main reason for studying infectious diseases is to prevent an outbreak,
respectively to improve control and ultimately to eradicate the infection from
the population. Several forms of control measure exist such as vaccination
or quarantine. The former measure prevents susceptible individuals within a
population from getting infected by a pathogen whereas the latter one tries to
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isolate already infected individuals such that they cannot spread the pathogen
and infect further persons.
However, resources are limited and not all measures are always appropriate or
available. In case of an outbreak of a previously unknown disease, vaccines need
time to be developed, produced and distributed. This could take too much
time to protect the population from being infected. For some diseases vaccines
do not exist. And sometimes, even if they do, side e�ects cause people not to
accept vaccines. Medical isolation of infected persons are a logistical challenge.
It can be established for a small group of patients, but not for large areas. In
consequence, it is of great importance to deploy any measure as e�ciently as
possible and to optimize the use of resources. Detailed knowledge about how
infectious disease agents behave and how diseases spread is needed to support
the decision-making process. Here, mathematical models which describe the
evolution of an epidemic in time can help in two ways. On one hand they
enhance insight to the dynamics of a disease. On the other hand they can predict
its progress, provided that the model is carefully adapted to the respective
circumstances.
The systematic investigation of spread of epidemics using mathematical lan-
guage began around hundred years ago. The models described in the article
[22] of Kermack and McKendrick in 1927 have become standard in mathemati-
cal epidemiology. A landmark is also the book of Bailey [7], published in 1957.
If someone is interested in the �eld, the paper [17] from Hethcote could serve as
a starting point. It contains a comprehensive list of references for further study.
A highlight is the book [21] of Keeling and Rohani, since it deals carefully with
real-world problems and does not regard mathematics isolated but puts it into
a wider context. Some ideas mentioned before and in the following are taken
from this book.
Mathematical models have to ful�ll many requirements that often con�ict with
each other. Models should be transparent to be accessible to analytical and
numerical tools and to bring a better understanding. They should be �exible to
be applied to diverse situations. And �nally, they should be accurate to provide
a reliable prediction. Anyone who starts with a modeling process is advised to
keep the following words by Keeling and Rohani [21, Chapter 1.4] in mind.

By de�nition, all models are �wrong,� in the sense that even the
most complex will make some simplifying assumptions. It is, there-
fore, di�cult to express de�nitely which model is �right,� though
naturally we are interested in developing models that capture the
essential features of a system. Ultimately, we are faced with a rather
subjective measure of the usefulness of any model.

We shall put these thoughts into the context of communicable diseases. There
are numerous elements of chance that in�uence the spread of the disease. It
is unpredictable how many contacts each individual has at each day, which of
these contacts are su�cient to transmit pathogens and how each individual's
immune system reacts to the invasion of pathogens. Some people get sick after
having had contact to an infected person, others don't. Other highly variable
parameters like temperature, wind, climate have an e�ect on the activity of
a pathogen. Thus, we �will never be able to predict the precise course of an
epidemic, or which people will be infected. The best that we can hope for is
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models that provide con�dence intervals on the epidemic behavior and determine
the risk of infection for various groups of hosts.�1

Now, since we are aware of the limitations that arise while modeling infectious
diseases, we shall emphasize the bene�ts that come along with their theoretical
treatment. Nowadays we have access to extensive data related to communicable
diseases. The WHO publishes the World Health Statistics report2 every year
that contains the number of cases of the most relevant diseases in a number of
countries. The national health authorities themselves collect data and cooperate
with the WHO to improve statistics and to specify characteristics of certain
infectious diseases. Mathematical models pro�t from these statistics in two
ways. First, the data helps to determine key numbers like the rate of infectivity
or the rate of recovery that are essential when applying models to a present
disease. Without these parameters, models would remain useless. Secondly,
statistics that trace the progress of a disease are the only way to validate a
model. If the number of infective individuals within a population predicted
by a mathematical model during time coincides with the actual numbers given
by a statistic, then it can be said that the model is reliable (at least for the
speci�c situation). In conclusion, statistical data make mathematical models be
an authentic instrument in the prediction of epidemic spread.
A major advantage of epidemiological models is also the possibility to pass
through an epidemic virtually. With modern computers it is possible to solve
di�erential equations numerically and hence simulate and visualize even high
complex behaviors. By changing the parameters it may be studied how they
e�ect progress of an epidemic. This is highly valuable since such experiments
cannot be conducted in reality and it increases insight to epidemiological phe-
nomena.
The purpose of this thesis is to show how modern mathematical techniques can
be deployed to analyze epidemiological models. In Chapter 2, we introduce
some standard models of mathematical epidemiology and improve them in sev-
eral steps. Thus they hopefully are �exible enough and generate the desired
accuracy to �t practical situations. In Chapter 3, we present the mathemati-
cal background that is needed to investigate the epidemiological models. The
notions and theorems are interesting for themselves and we take our time to
discuss them carefully. In Chapter 4 we present the main result of the thesis
and proof certain stability properties of epidemiological models.

1[21, Chapter 1.6]
2http://www.who.int/gho/publications/world_health_statistics/en/index.html
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2 Epidemiological Models

The progress of an infectious disease is de�ned qualitatively in terms of the level
of pathogen within the host. As a host we denominate an individual that is able
to carry a microparasite, be it a human, an animal or a plant. Initially the host
is free of the pathogen but able to get infected by it, thus the host is susceptible.
At the time of infection the host is exposed to some infectious material, maybe
by direct physical contact with an infectious individual, breathing in infectious
organisms, touching contaminated surfaces, etc. The following stage is full of
uncertainties. Whether the pathogen succeeds in settling within the host or
not depends on the amount of microparasites incorporated and the ability of
the host's immune system to �ght the invader. Assume the pathogen gained a
foothold and grows latently within the host over time but is not yet emitted to
the environment. The host is then in the exposed phase. When the pathogen
has reached a level where it is transmitted, the host is infectious. Finally,
once the individual's immune system has defeated the parasite and is no longer
infectious, the host is referred to as recovered. The di�erent stages of infection
are illustrated in Figure 1 which is taken from the book [21, p. 4].
This fundamental classi�cation as susceptible (S), exposed (E), infectious (I),
or recovered (R) depends only on the host's ability to transmit the pathogen.
It is irrelevant whether the host is showing symptoms. An individual who feels
perfectly healthy can excrete large amounts of pathogen. Conversely, a patient
who feels sick might already have eliminated the parasite. This situation is
re�ected in Figure 1 by the overlapping of incubation and diseased period with
exposed, infectious and recovered period. The incubation period is the time
elapsing between the receipt of infection and the appearance of symptoms. The
subsequent diseased period is the time where the patient is showing symptoms
and feels sick.

Figure 1: A sketch of the progress of infection, showing the dynamics of the pathogen
(gray area) and the host immune response (black line) as well as labeling the various
infection classes. Note that the medical status does not necessarily coincide with the
infection status.
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2.1 An SIR Model

We will now consider a whole population. Each individual belongs at each time
to exactly one of these four categories S, E, I, R, depending on its infection
status. The basic question is, how does the number of infective individuals I(t)
evolve in time?
Let S(t) be the number of susceptibles at time t and N the total population
size, which we assume to be constant over time. We suppose further that infec-
tives and susceptibles are homogeneously mixing. Let β be the average number
of contacts of one person per unit time, which are su�cient for transmission.
β is called contact rate or infection rate. Each person may have many more
contacts, but only those contacts are relevant that distribute the disease. Then
the number of new infectives in a small time interval dt around t is given by

β
I(t)S(t)

N
dt. (2.1)

This relation has proved to be reasonable (see [17, Chapter 2.1]) and can be
justi�ed by the following consideration. If one person meets β other persons in
a certain time interval, maybe one day, then � due to a homogeneous density
of infected individuals within the population � the person meets approximately
β · I(t)/N infectives the day. As the number of infectives changes over time,
the above number will only be valid over short time intervals dt. Since the
number of contacts is supposed to be equal for each susceptible, the number of
contacts of all susceptibles with infectives within a small interval dt is given by

S(t)β I(t)N dt. This gives the above relation.
As shown in Figure 1, each infected person recovers after a certain time. We
assume that the average infectious period of an individual is 1/γ. Thus over a
small time dt,

γI(t)dt (2.2)

infectives recover from the disease. The number γ is called recovery rate. A
combination of (2.1) and (2.2) yields the di�erential equation

İ(t) =
dI(t)

dt
= β

I(t)S(t)

N
− γI(t) (2.3)

which describes the evolution of infectives in our simple model. It will accom-
pany us for the rest of the thesis. At (2.3) we see that the exposed class does not
in�uence the interaction between susceptibles and infectives. We will therefore
omit this class in our model and only consider the remaining compartments S,
I and R. Each individual will be classi�ed inter one of the three categories in
the following. The mechanism shown in Figure 1 tells us that susceptibles that
have been infected are moving to the class I and infectives that are cured from
the disease are moving to the class R and remain there for the rest of the time,
since they have acquired permanent immunity. This �ow pattern is illustrated
in Figure 2. Acronyms for epidemiological models are often based on the �ow
patterns between the compartments they incorporate, such that we will call the
model that characterizes the �ow pattern of Figure 2 an SIR model.
Di�erential equations for S(t) and R(t) are immediately achieved by the one
for I(t) and the �ow pattern. If the number of infectives increases by the value
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S I R

Figure 2: �ow pattern of an SIR model

given in (2.1), then the number of susceptibles has to decrease by the same
value. Hence

Ṡ(t) =
dS(t)

dt
= −β I(t)S(t)

N
.

The same argument holds for R(t). This number increases by γI(t)dt as the
number of infectives decreases over a given interval dt. Thus

Ṙ(t) =
dR(t)

dt
= γI(t).

Our �rst basic epidemiological model is now fully described by the three preced-
ing equations. Such a model is called deterministic, because if we know β, γ and
the initial numbers S(0), I(0), R(0) of susceptible, infective and recovered indi-
viduals at the beginning of an epidemic, then the functions S(·), I(·), R(·) are
determined for every t ≥ 0. Mathematically spoken, the initial value problem
has a unique solution. We will revisit the correspondent result in Section 3.5.1.
Up to now we have made many assumptions to build our model. We assumed
that the parameters β and γ do not change over time, that the population size is
constant and that infectives are homogeneously mixing with other individuals.
In reality, this will not be the case. As already said in the introduction, the
spread will rather be dependent on multiple random events. These stochastic
elements should be considered in a model that claims to be realistic. As Bailey
says in his book [7, Chapter 4]:

Any mathematical picture of the behaviour of an epidemic that at-
tempts to be at all realistic in detail, e. g. specifying the number
of new cases that will occur in a given short interval of time, must
inevitably involve the use of probability concepts.

Nevertheless, we will hold on to deterministic models. For a su�ciently large
population size this is reasonable, since the relative magnitude of stochastic
�uctuations reduces as the number of cases increases. Moreover, we are only at
the beginning of our modeling process. Several improvements will be done in
the following to make models more realistic.

2.2 An SIR Model with Demography

The model just introduced is suitable for diseases that pass through a population
in a rather short period of time. If we are interested in the long-term behavior of
a disease, demographic processes should be respected. We will therefore extend
our equations by a term that considers births and deaths.
The number of children born in our population in a unit time interval is given
by the product µN of a parameter µ and the population size N . All newborns
are susceptible to the disease by assumption, such that they join the susceptible
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S I R
deaths deaths deaths

births

Figure 3: �ow pattern of an SIR model with demography

class in our model, see Figure 3. If N is constant in time, then there have to
be as many deaths as births per time. People die at any stage of the infection
process so that the quantities S, I, R reduce by the numbers µS, µI, µR,
respectively. The parameter µ is called birth/death rate. The inverse 1/µ has
the meaning of an average life span of individuals. Note that the deaths re�ect
individuals reaching their average life span and are not caused by the disease. Up
to now we assumed that there is no mortality risk and everybody gets healthy
again after an infection. However, some infections in real life are not that
harmless and individuals have a signi�cant risk of dying. An SIR model with
mortality has been established in [21, Chapter 2.2]. There, the authors introduce
a probability that re�ects the mortality risk. The problem with mortality is that
infection actively removes individuals from the population. It is therefore no
longer admissible to assume a constant population size. We shall exclude this
di�culty and suppose that no or at most a tiny percentage dies of the disease
so that a constant population size is still reasonable. The SIR model with
demography is now given by the following di�erential equations.

Ṡ(t) = µN − µS(t)− βS(t)I(t)

N
, S(0) = S0,

İ(t) = β
S(t)I(t)

N
− γI(t)− µI(t), I(0) = I0, (2.4)

Ṙ(t) = γI(t)− µR(t), R(0) = R0.

We introduce other types of epidemiological models in the next section. They
all contain terms of demographic dynamics. Whenever the parameter µ appears
in the equations, births and deaths are considered in the model.
Some models in mathematical epidemiology consider another class, denoted by
M, such that they have the �ow pattern M→S→(E)→I→R. This additional
class accomodates the following situation. If a mother has been infected, then
some antibodies are transferred to her unborn infant. The antibodies remain in
the newborn for a certain time such that the infant has temporary immunity
to an infection. The class M contains these infants with passive immunity.
After the maternal antibodies disappear from the body, the infant moves to the
susceptible class S. Infants who do not have any passive immunity, because their
mothers were never infected, enter directly to the class S. We will not pursue
this detailed point of view.
In Section 2.1 we asked how we could describe the evolution of an infectious
disease mathematically. A simple answer has now been given by the di�erential
equations (2.4). The subsequent question is, if we know the parameters β, γ, µ
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and the initial values S0, I0, R0, how will I(t) behave in the long run? The good
news is that the system (2.4) is already well understood and we are able to
present a comprehensive answer to this question.
For this, we modify the above equations a bit. At �rst, note that since R(t) =
N − S(t) − I(t) holds for all t, we can drop the equation for the recovered
individuals and only consider the remaining two equations. Dividing the latter
by N and setting s(t) := S(t)/N and i(t) := I(t)/N , we receive

ds(t)

dt
= µ− µs(t)− βs(t)i(t), s(0) = s0,

di(t)

dt
= βs(t)i(t)− (γ + µ)i(t), i(0) = i0.

(2.5)

By de�nition, the components s(t) and i(t) of the solution to problem (2.5)
should be less or equal than 1 for all times t. In other words, if we consider

Σ := {x ∈ R2 | x1 ≥ 0, x2 ≥ 0 and x1 + x2 ≤ 1}

then any solution with (s0, i0) ∈ Σ should remain in Σ for all t ≥ 0. This is
fortunately the case and therefore (2.5) is a well posed problem, see [17, p. 608]
and references therein. We are now able to give the following theorem which
can be found in [17, Theorem 2.2].

Theorem 2.1. Let (s(t), i(t)) be a solution to (2.5) in Σ. De�ne σ := β/(γ+µ).

(i) If σ ≤ 1 or i0 = 0, then solution paths starting in Σ approach the so called
disease-free equilibrium given by (s, i) = (1, 0), i. e.

lim
t→∞

(s(t), i(t)) = (1, 0).

(ii) If σ > 1, then all solution paths with i0 > 0 approach the so called endemic
equilibrium given by (se, ie) = (1/σ, µ(σ − 1)/β).

In Figure 4 we see how the progress of an infection could evolve. The plot shows
the fractions S(t)/N , I(t)/N , R(t)/N over a short time period of 30 days where
parameters were chosen to be β = 2, γ = 0.15, µ = 0.000035 and initial values
s0 = 0.9, i0 = 0.1.

2.3 SIS and SIRS Epidemiological Models

S I

Figure 5: SIS �ow pattern

SIR models �t diseases that confer lifelong im-
munity once an infective has been recovered.
Examples that match this condition usually
are measles, mumps, rubella, chicken pox or
poliomyelitis. Others, for instance sexually
transmitted infections like gonorrhea, syphilis
or herpes, do not confer immunity. That is, an
infected person who has been recovered can
again be infected by the same disease. The theoretical consequence of this be-
havior is that there exists no compartment R and infectives that have been
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susceptibles

infectives

recovered

Figure 4: The plot shows the fractions S(t)/N , I(t)/N and R(t)/N as functions of
time.

recovered join again the S compartment, as shown in Figure 5. Di�erential
equations for the SIS model would be

Ṡ = µN − µS − βSI
N

+ γI,

İ = β
SI

N
− γI − µI.

Here and in future equations we omit the argument t. It should be clear now
that S, I and R, if existent, are functions of time.
The SIR and SIS models represent behavioral extremes where immunity is ei-
ther lifelong or does not exist at all. One could imagine that there exists an
intermediate behavior where immunity lasts for a limited period before waning
such that an individual joins again the susceptible class. For this, we would
have to introduce a parameter ω that represents the rate at which immunity
vanishes. The inverse 1/ω would then signify the average period where a once
infected individual stays immune. An SIRS �ow pattern is shown in Figure 6
and the corresponding di�erential equations would be

Ṡ = µN − µS − βSI
N

+ ωR,

İ = β
SI

N
− γI − µI,

Ṙ = γI − µR− ωR.

S I R

Figure 6: SIRS �ow pattern
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2.4 Models with Multiple Subgroups

In the previous epidemiological models we assumed that the rate at which in-
dividuals get infected, recover and die are equal all over the whole population.
Especially for the risk of infection this will not hold in reality. Think of sex-
ually transmitted diseases. The risk for a prostitute to get infected is surely
higher than for some other population groups due to a higher contact rate. It
is therefore desired to separate high and low risk groups. Mathematically this
means that we split the population of size N into several subgroups of size Ni,
i = 1, . . . , n, with N1 + · · ·+Nn = N . We will develop a multigroup model for
the SIR type. It should be clear how to adapt the idea for SIS and SIRS models.
As before we assume subgroups to have constant size, i. e. Ni = Si(t) + Ii(t) +
Ri(t) for all i = 1, . . . , n. Each subgroup obtains now its own parameters γi
and µi, that re�ect individual recovery and birth/death rates. The situation
for the contact rate is a little more intricate. Susceptibles from the subgroup
i can be infected by individuals from the own subgroup as well as from all
other subgroups. Consequently, we have to introduce n2 parameters βij , i, j =
1, . . . , n, where βij is the rate at which susceptibles of group i get infected by
infectives of group j. Hence we receive the di�erential equations

Ṡi = µiNi − µiSi −
n∑
j=1

βij
SiIj
Ni

,

İi =

n∑
j=1

βij
SiIj
Ni
− γiIi − µiIi, (2.6)

Ṙi = γiIi − µiRi.

For the remaining part of the text, γi and µi will always be positive for all
i ∈ {1, . . . , n} and all the βij are nonnegative. Since we have constant population
size in each subgroup, we can describe the susceptibles via the equation Si(t) =
Ni − Ii(t) − Ri(t). This allows us to drop the di�erential equations for the
susceptibles Si and only consider the infectives and recovered in each subgroup.

İi =

n∑
j=1

βij
(Ni − Ii −Ri)Ij

Ni
− (γi + µi)Ii,

Ṙi = γiIi − µiRi.

(2.7)

It is convenient to divide equations (2.7) by Ni and de�ne new state variables

xi :=
Ii(t)

Ni
, xn+i :=

Ri(t)

Ni
, i = 1, . . . , n.

The vector x ∈ R2n consists of the 'infective' components i = 1, . . . , n and the
'recovered' components i = n + 1, . . . , 2n. For an arbitrary vector x ∈ R2n, it
will be very useful to set

x =

(
x1

x2

)
, where x1 :=

x1

...
xn

 , x2 :=

xn+1

...
x2n

 ∈ Rn.
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Moreover, αi := γi + µi and bij := βijNj/Ni. Our model gets 2n-dimensional
and has the shape

ẋi = (1− xi − xn+i)

n∑
j=1

bijxj − αixi,

ẋn+i = γixi − µixn+i.

i = 1, . . . , n. (2.8)

These 2n equations are easier to handle if we formulate them in matrix form.
Therefore we set

Γ :=

γ1 0
. . .

0 γn

 , M :=

µ1 0
. . .

0 µn

 , B :=

b11 · · · b1n
...

...
bn1 · · · bnn


and as a shorthand D := Γ + M . Here and in the following, for an arbitrary
vector z ∈ Rn, we de�ne

diag(z) :=

z1 0
. . .

0 zn

 ∈ Rn×n.

Then the multigroup SIR disease model becomes

ẋ =

(
−D +B 0

Γ −M

)
x +

(
−diag(x1 + x2)Bx1

0

)
=: f(x). (2.9)

2.5 Switched Epidemiological Models

Imagine the parameters which characterize the disease of interest are not tem-
porally constant but change in time. This holds for example for an in�uenza
epidemic. The in�uenza virus is most active during the winter months when
it is cold. In contrast, it is not heat resistant such that it disappears in the
summer months.3 The result would be a lower contact rate in the summer than
in the winter.
We consider di�erent conditions for the spread of a disease by introducing
more than just one of each parameter matrix B,Γ,M . For this, de�ne triples
(Bj ,Γj ,Mj), j = 1, . . . ,m, where Γj and Mj are n × n diagonal matrices with
positive entries along the diagonal, and Bj ∈ Rn×n has nonnegative entries
throughout for all j. For convenience, Dj := Γj + Mj . Now fj : R2n → R2n is
determined by equation (2.9), if we replace B,Γ,M by Bj ,Γj ,Mj , respectively.
Let σ : [0,∞) → {1, . . . ,m} be an arbitrary function. We call σ a switching
signal. The switched version of our SIR model will then be denoted by

ẋ(t) = fσ(t)(x(t)) (2.10)

where

fσ(t)(x) :=

(
−Dσ(t) +Bσ(t) 0

Γσ(t) −Mσ(t)

)
x −

(
diag

(
x1 + x2

)
Bσ(t)x

1

0

)
.

3http://de.wikibooks.org/wiki/Medizinische_Mikrobiologie:_Orthomyxoviridae
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We shall explain switched epidemiological models with our in�uenza example.
Assume we have two maps f1 and f2 which describe di�erent conditions for the
spread of the virus, for instance f1 corresponds to high infection rates (in the
winter) and f2 to low infection rates (in the summer). A model that simulates
the progress of the in�uenza epidemic over a whole year could be built by setting
up a di�erential equation

ẋ(t) =

{
f1(x(t)), 0 ≤ t < t1,

f2(x(t)), t1 ≤ t ≤ t2,
(2.11)

where the interval [0, t1) represents the �rst half of the one-year cycle and [t1, t2]
the second half. The above di�erential equation can also be described in a
concise way if we introduce a switching signal σ : [0, t2] → {1, 2}, σ(t) = 1 if
0 ≤ t < t1 and σ(t) = 2 if t1 ≤ t ≤ t2. Then

ẋ = fσ(t)(x)

is equal to (2.11). The time t1 is the point where the system switches from f1

to f2. This is why we call systems of the form (2.10) switched systems.
In the following we establish switched systems also for SIS and SIRS models.
The SIS system is fully described via the equations for the infectives due to
Si(t) = Ni− Ii(t). We de�ne the state variables yi := Ii(t)/Ni, i = 1, . . . , n and
build the state vector y := (y1, . . . , yn)T . Then the di�erential equations

ẏi(t) = (1− yi(t))
n∑
k=1

bikyk(t) − αiyi(t), i = 1, . . . , n,

give rise to a multigroup SIS model. Keep in mind that 1 − yi(t) = Si(t)/Ni.
In matrix form, the above equations equal

ẏ = (−D +B)y − diag(y)By.

The switched multigroup SIS model is then given by

ẏ = (−Dσ(t) +Bσ(t))y − diag(y)Bσ(t)y. (2.12)

The switched multigroup SIRS model is similar to (2.10), but we have to in-
clude the parameters ω1, . . . , ωn that represent the loss-of-immunity rates in
each subgroup. Therefore, Ω := diag(ω1, . . . , ωn) and in the switched case,
Ωj , j = 1, . . . ,m are n × n diagonal matrices with nonnegative entries on the
diagonal. Now the switched multigroup SIRS model is given by

ẋ =

(
−Dσ(t) +Bσ(t) 0

Γσ(t) −Mσ(t) − Ωσ(t)

)
x −

(
diag

(
x1 + x2

)
Bσ(t)x

1

0

)
. (2.13)

In Theorem 2.1 we saw that under certain conditions the solution (s(t), i(t))
to the simple SIR model (2.5) converges to the disease-free equilibrium (1, 0)
as t → ∞. The aim of the thesis is to indicate conditions which assure an
analogous statement for switched multigroup SIR, SIS and SIRS models. The
question is already answered for switched SIS models in the article [1] and we
will widely use the results presented there to establish conditions for SIR and
SIRS models. Various mathematical notions and instruments are needed to
approach this problem. We shall provide all necessary de�nitions and theorems
in the next chapter.
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3 Mathematical Tools

We will need a wide range of mathematical tools to analyze the epidemiologi-
cal systems (2.10), (2.12) and (2.13). The purpose of the present chapter is to
equip the reader with all these tools. Since it will not always be clear for what
purpose we introduce some new notion or prove some theorem, we shall provide
the reader with a map that shows the connections between the various mathe-
matical terms and how they are used later to prove certain stability properties
of epidemiological models. The reader is invited to look at this map from time
to time for not getting lost.

Carathéodorygtype
OrdinarygDifferentialgEquations

Lipschitzgcontinuity

absolutegcontinuity

SwitchedgSystems

StabilityInvariantgSets

StabilitygofgSwitched
EpidemiologicalgModels

DifferentialgInclusions

set-valuedgfunctions

ConvexgAnalysis

convexgsets

convexgfunctions

tangentgcones

subgradients

extremalgnorms

jointgLyapunovgexponent

Lyapunovgfunctions

DifferentialgInequalities

absolutegnorms

dualgvectors

PositivegSystems

Figure 7: The map shows the interplay of most of the de�nitions that will be intro-
duced.

3.1 Preliminaries

Troughout the text we will use the following notations. The symbols N, R, R+

denote the natural, real, nonnegative real numbers, respectively. The positive
orthant in Rn, that is the subset of vectors x ∈ Rn with xi ≥ 0 for all i =
1, . . . , n, is denoted by Rn+. Let X be a vector space over R. For two subsets
A,B ⊂ X, x ∈ X and λ ∈ R we de�ne,

A±B := {a± b | a ∈ A, b ∈ B},
x+A := {x}+A

and
λA := {λ · a | a ∈ A}.
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If ‖ · ‖ : X → R is a norm, then

B‖·‖ := {x ∈ X | ‖x‖ ≤ 1}

denotes the closed unit ball in X with respect to the norm ‖ · ‖. If the norm
is clear from the context, we will omit the index. The closed ball around an
arbitrary x ∈ X with radius r > 0 would then be expressed by x+rB. On Rn×n
we introduce the operator norm

‖A‖ := sup
x 6=0

‖Ax‖
‖x‖

= sup
‖x‖≤1

‖Ax‖ = sup
‖x‖=1

‖Ax‖, (3.1)

induced by a given vector norm on Rn. For the equalities, see [36, p. 46] for
instance. The supremum is in fact a maximum, i. e. there always exists a
vector x0 ∈ Rn \ {0} with ‖A‖ = ‖Ax0‖/‖x0‖. To see this, consider the right
hand side of (3.1) and mind that since an arbitrary norm ‖ · ‖ : Rn → R is
a continuous function it admits maximum and minimum on the compact set
{x ∈ Rn | ‖x‖ = 1}. An operator norm is always submultiplicative, i. e. for any
A,B ∈ Rn×n the inequality ‖AB‖ ≤ ‖A‖‖B‖ holds.
A matrix A = (aij) ∈ Rn×n is called diagonal, if aij = 0 for all i 6= j. The
standard inner product on Rn is denoted by 〈·, ·〉 : Rn×Rn → R, i. e. for x, y ∈
Rn we have 〈x, y〉 =

∑n
i=1 xiyi. Sometimes we simply write 〈x, y〉 = x · y = xy.

Given a nonempty setM ⊂ X, the terms intM, clM, bdM denote the interior,
the closure, the boundary of M , respectively. A neighborhood of M is a set
N ⊂ X, which contains an open set U with M ⊂ U . The symbol P(X) denotes
the power set of X, that is the set of all subsets of X.
We introduce the distance function d : Rn → R which measures the distance of
an element x ∈ Rn to a nonempty set A ⊂ Rn in a given norm ‖ · ‖.

d(x,A) := inf{‖x− a‖ | a ∈ A}.

If A is closed, then there exist elements a ∈ A for which d(x,A) = ‖x− a‖. In
this case, π(x,A) denotes the set of all those points in A which satisfy the latter
equality.
When we write λk ↘ λ, (λk ↗ λ), we mean a sequence (λk)k∈N ⊂ R, λk > λ,
(λk < λ) for all k ∈ N and limk→∞ λk = λ.
The reader should be familiar with di�erential calculus and ordinary di�erential
equations, including stability theory. We will make use of elementary results in
Lebesgue measure and integration theory. When we speak of a measurable or
integrable function, we always mean that with respect to the Lebesgue measure.

3.2 Continuity Notions

Let f : D → Rm be a function de�ned on an open subset D ⊂ Rn. It is well
known what we mean if we say that f is a continuous or di�erentiable function.
In contrast, the notion of Lipschitz continuity di�ers in the literature, in partic-
ular when the addendum local or global is used. So we give a precise de�nition
of Lipschitz continuity and show the relation between it and di�erentiability,
continuity respectively.
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De�nition 3.1. Let D ⊂ Rn and f : D → Rm. ‖ · ‖ denote arbitrary norms
on Rn,Rm respectively. We say that f is Lipschitz continuous4 if there exists a
constant L > 0 such that

‖f(x)− f(y)‖ ≤ L‖x− y‖ for all x, y ∈ D. (3.2)

f is called Lipschitz continuous on a set M ⊂ D, if the restriction f |M of f to
the set M is Lipschitz continuous.
We say that the map f is locally Lipschitz continuous if for every x ∈ D there
exists a neighborhood U of x such that f is Lipschitz continuous on U ∩D.

Every locally Lipschitz continuous function is continuous: Let x ∈ D be arbi-
trary. There exists a neighborhood U of x and a constant L > 0 such that (3.2)
holds for all y ∈ U ∩D. Given ε > 0, choose 0 < δ ≤ ε/L but at least so small
that x+ δB ⊂ U . Then for all y ∈ (x+ δB) ∩D it holds that

‖f(x)− f(y)‖ ≤ L‖x− y‖ < L · δ ≤ ε.

Examples for Lipschitz continuous functions are linear maps between vector
spaces and norms. As we will see later, the distance function is also Lipschitz
continuous. In contrast, the real function f(x) = x2 is not Lipschitz continuous,
but only locally Lipschitz continuous. Fortunately, the following proposition
holds.

Proposition 3.2. Let D ⊂ Rn and f : D → Rm be locally Lipschitz continuous.
Then f is Lipschitz continuous on every compact set K ⊂ D.

Proof. See [5, Satz 2.4.5].

A practical criterion to verify local Lipschitz continuity of a function states the
following

Proposition 3.3. Let D ⊂ Rn be open. Assume the map f : D → Rm possesses
partial derivatives in every component of x and each of the functions

∂fj
∂xi

(x),
i = 1, . . . , n, j = 1, . . . ,m, is continuous in D. Then f is locally Lipschitz
continuous in D.

Proof. See [5, Satz 2.4.6].

The modulus function f(x) = |x| shows us that (locally) Lipschitz continuous
function do not have to be di�erentiable. Nevertheless, the famous theorem of
Rademacher states that this is �almost� true.

Theorem 3.4 (Rademacher). Let f : D → Rm be a locally Lipschitz continuous
function on an open subset D ⊂ Rn. Then f is almost everywhere di�erentiable,
that is, the set of points x ∈ D where f is not di�erentiable has Lebesgue measure
zero.

Proof. [16, Chapter 3, Theorem 2].

Proposition 3.5. Let A ⊂ Rn be nonempty. Then the distance function d(x,A)
is Lipschitz continuous with constant L = 1, i.e. let x, y ∈ Rn, then

|d(x,A)− d(y,A)| ≤ ‖x− y‖.
4This property is sometimes called global Lipschitz continuity.
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Proof. 5 Fix x, y ∈ Rn and let z ∈ A be arbitrary. By de�nition of the distance
function and the triangle inequality we have

d(x,A) ≤ ‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖.

Since z ∈ A was arbitrary, it holds that

d(x,A)− ‖x− y‖ ≤ inf{‖y − z‖ | z ∈ A} = d(y,A).

Equivalently,
d(x,A)− d(y,A) ≤ ‖x− y‖.

Permuting x and y we get d(y,A)− d(x,A) ≤ ‖x− y‖ and �nally

|d(x,A)− d(y,A)| ≤ ‖x− y‖.

We now introduce the notion of Lipschitz continuity for set-valued functions. A
set-valued function F : Rn → P(Rm) is a map where F (x) is a subset of Rm for
every x ∈ Rn.

De�nition 3.6. Given two norms on Rn,Rm respectively, a set-valued function
F : Rn → P(Rm) is said to be Lipschitz continuous on a set K ⊂ Rn, if there
exists L > 0 such that

F (x) ⊂ F (y) + L‖x− y‖B for all x, y ∈ K. (3.3)

Here, B denotes the closed unit ball on Rm.

For a vector-valued map f : Rn → Rm, the above de�nition of Lipschitz conti-
nuity coincides with the one given in De�nition 3.1. Now we want to present a
simple fact which will be of use in later chapters.

Proposition 3.7. Assume we have a family of Lipschitz continuous functions
fi : D ⊂ Rn → Rm, i = 1, . . . , k. Then the set-valued function F : D → P(Rm),
F (x) := {fi(x) | i = 1, . . . , k}, is Lipschitz continuous in the sense of De�nition
3.6.

Proof. Let li > 0 be the constant that satis�es the Lipschitz condition (3.2) for
fi, i = 1, . . . , k. Set L := max{li | i = 1, . . . , k}, then

‖fi(x)− fi(y)‖ ≤ L‖x− y‖ ∀i = 1, . . . , k.

This is equivalent to fi(x) ∈ fi(y)+L‖x−y‖B or {fi(x)} ⊂ {fi(y)}+L‖x−y‖B
for all i = 1, . . . , k, respectively. Therefore the inclusion

F (x) ⊂ F (y) + L‖x− y‖B

holds for all x, y ∈ D, and thus, F (x) satis�es condition (3.3).

Besides Lipschitz continuity, the notion of absolute continuity plays a crucial
role in the theory of ordinary di�erential equations. Therefore we will introduce
its de�nition and talk about some properties of absolutely continuous functions.

5[5, Anhang C, Hilfssatz C.1]
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De�nition 3.8. Let [a, b] ⊂ R be a compact interval. A function f : [a, b]→ Rn
is said to be absolutely continuous, if for all ε > 0 there exists a δ > 0 such
that for all collections

a ≤ α1 < β1 ≤ α2 < β2 ≤ · · · ≤ αm < βm ≤ b

with

m∑
i=1

(βi − αi) < δ
(3.4)

it holds that
m∑
i=1

‖f(βi)− f(αi)‖ < ε.

Obviously, absolutely continuous functions are continuous (choose m = 1 in the
de�nition). Further, Lipschitz continuous functions are absolutely continuous.

Proposition 3.9.

(i) Let f : [a, b] → Rn be locally Lipschitz continuous. Then f is absolutely
continuous.

(ii) Let f : [a, b] → Rn be absolutely continuous and g : Rn → Rp be locally
Lipschitz continuous. Then g ◦ f : [a, b]→ Rp is absolutely continuous.

Proof. By Proposition 3.2, f is in fact Lipschitz continuous on [a, b] with a
constant L > 0. Given ε > 0, set δ = ε/L. Now

m∑
i=1

‖f(βi)− f(αi)‖ ≤ L
m∑
i=1

(βi − αi) < Lδ = ε,

and the claim is true.
For the second statement, note that f([a, b]) = K ⊂ Rn is a compact set, since
[a, b] is compact and f is continuous. Hence for g(·) there exists a constant
L > 0 such that ‖g(x) − g(y)‖ ≤ L‖x − y‖ for all x, y ∈ K. For an arbitrary
ε > 0, set ε̃ = ε/L. Then there exists δ > 0 such that for all collections (3.4)
we have

∑m
i=1 ‖f(βi)− f(αi)‖ < ε̃. Thus,

m∑
i=1

∥∥g(f(βi))− g(f(αi))
∥∥ ≤ L m∑

i=1

∥∥f(βi)− f(αi)
∥∥ < Lε̃ = ε,

which was the assertion.

Absolutely continuous functions emerge to be the main ingredient for the fun-
damental theorem of calculus for Lebesgue measurable functions.

Theorem 3.10. A function f : [a, b]→ Rn is absolutely continuous if and only
if there exists an integrable function ϕ(·) on [a, b] such that

f(t)− f(a) =

∫ t

a

ϕ(s)ds for all t ∈ [a, b].

In this case, f is almost everywhere di�erentiable on (a, b) and its derivative f ′

satis�es f ′(t) = ϕ(t) almost everywhere.

Proof. Follows from [15, Kapitel VII, Satz 4.14].

For simplicity, we will identify f ′(t) ≡ ϕ(t) for all t ∈ (a, b) and therefore use
the notation f ′(t) even if f is not di�erentiable in t.
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3.3 Positive Systems

If we consider the systems of di�erential equations introduced in Chapter 2
we see that solution trajectories to these systems describe the evolution of the
respective quantities susceptibles, infectives, recovered in time. In reality, these
quantites are always nonnegative and we would ask that each component of a
solution trajectory is nonnegative for every t ≥ 0 as well if we claimed that our
epidemiological models make sense. Systems with this property arise in many
practical applications and there exists a mathematical notion adapted to this
situation.
A system is called positive, if given an initial state x(0) ∈ Rn+, the state variables
are nonnegative for any time t > 0. As we will see in Chapter 4, solution
trajectories to our epidemiological systems always remain inside certain subsets
of the positive orthant Rn+. In the following we shall have a closer look at several
notions that are of help when investigating positive systems. We recommend
the book [20] of Horn and Johnson for further information about the di�erent
types of norms we establish below as well as about nonnegative vectors and
matrices.
Let x = (xi) ∈ Rn. We say that the vector x is nonnegative and write

x ≥ 0 :⇔ xi ≥ 0 for all i = 1, . . . , n.

Analogously, a matrix A = (aij) ∈ Rn×n is nonnegative,

A ≥ 0 :⇔ aij ≥ 0 for all i, j = 1, . . . , n.

For two vectors x, y we de�ne x ≥ y ⇔ x − y ≥ 0. For x ∈ Rn, A ∈ Rn×n,
we de�ne |x| via |x|i := |xi| and |A| via |A|ij := |aij | for all i, j = 1, . . . , n.
Some interesting facts about nonnegative vectors and matrices are given in the
following

Lemma 3.11. Let A ∈ Rn×n and x, y ∈ Rn. Then

(i) |x+ y| ≤ |x|+ |y|.

(ii) |Ax| ≤ |A||x|.

(iii) |x| ≤ |y| ⇒ A|x| ≤ A|y| for every A ≥ 0.

(iv) If Ax ≥ 0 for all x ≥ 0, then A ≥ 0.

Proof. (i) This is the triangle equality |xi + yi| ≤ |xi|+ |yi| applied for all i.
(ii) Consider the ith entry of |Ax|,

|Ax|i =
∣∣∣ n∑
j=1

aijxj

∣∣∣ ≤ n∑
j=1

|aij ||xj | = [|A||x|]i.

(iii) The ith component of the di�erence A|y| −A|x| is given by

[A|y|]i − [A|x|]i =

n∑
j=1

aij |yj | −
n∑
j=1

aij |xj | =
n∑
j=1

aij(|yj | − |xj |) ≥ 0.
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(iv) Suppose there exists an index i0j0 such that ai0j0 < 0. Then de�ne the
vector x ∈ Rn by xj = 0 if j 6= j0 and xj0 = 1. Now

[Ax]i0 =

n∑
j=1

ai0jxj = ai0j0 < 0,

which contradicts the assumption.

It will be useful to study norms that are adapted to the nonnegative setting.

De�nition 3.12. A norm ‖ · ‖ on Rn is called

(i) absolute if for any x ∈ Rn the equality ‖x‖ = ‖|x|‖ holds.

(ii) monotone if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x, y ∈ Rn.

These two properties are not unrelated, as the following theorem states which
is taken from [20, Theorem 5.5.10].

Theorem 3.13. A norm ‖ · ‖ on Rn is absolute if and only if it is monotone.

Another type of norm is obtained by the concept of duality. Given a norm ‖ · ‖
on Rn, its dual norm ‖ · ‖∗ is de�ned by

‖y‖∗ := max{〈x, y〉 | ‖x‖ ≤ 1} = max{〈x, y〉 | ‖x‖ = 1}, y ∈ Rn, (3.5)

where 〈·, ·〉 is the standard inner product on Rn. The dual norm is really a norm,
see [20, Section 5.4, p. 275f]. To see the last equality in (3.5), assume ‖y‖∗ > 0
and the maximizing vector x̃, for which ‖y‖∗ = 〈x̃, y〉, has norm 0 < ‖x̃‖ < 1.
Then there exists λ > 1 such that ‖λx̃‖ = 1. This implies 〈λx̃, y〉 > 〈x̃, y〉 > 0,
a contradiction to maximality. It is interesting to know that a norm is absolute
if and only if its dual norm is, see [1, Section 2] and references therein. From
(3.5) we deduce for all x, y ∈ Rn the inequality

〈x, y〉 ≤ ‖x‖‖y‖∗. (3.6)

For x = 0 the inequality is clear. Let x 6= 0, then〈
x

‖x‖
, y

〉
≤ max{〈z, y〉 | ‖z‖ = 1} = ‖y‖∗. (3.7)

Multiplying (3.7) with ‖x‖ gives (3.6). For a given x ∈ Rn we de�ne the set

D(x) := {y ∈ Rn | ‖y‖∗ ≤ 1 ∧ 〈x, y〉 = ‖x‖}. (3.8)

D(x) is called the dual of x with respect to ‖ · ‖ and its elements are the dual
vectors to x. From inequality (3.6) follows that

D(x) :=

{
{y ∈ Rn | ‖y‖∗ = 1 ∧ 〈x, y〉 = ‖x‖} if x 6= 0,

B‖·‖∗ if x = 0.
(3.9)

Sometimes, dual vectors to x are de�ned via the equation

〈x, y〉 = ‖x‖‖y‖∗. (3.10)

By (3.9) we see that every y ∈ D(x) satis�es the latter equation. Conversely,
if a pair (x, y) ∈ Rn × Rn satis�es (3.10) and y 6= 0, then (‖y‖∗)−1 · y is in the
dual of x. The following lemmas show some properties of dual vectors, if the
norm in consideration is absolute.
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Lemma 3.14. Let ‖ · ‖ be an absolute norm on Rn and x ∈ Rn+. If y ∈ Rn
satis�es (3.10) and xi > 0, then yi ≥ 0.

Proof. 6 By (3.10) and the assumption we have

‖x‖‖y‖∗ = 〈x, y〉 =
∑
xi>0

xiyi ≤
∑
xi>0

xi|yi| = 〈x, |y|〉 ≤ ‖x‖‖|y|‖∗.

The last inequality is (3.6). As || · ||∗ is absolute, we have ||y||∗ = || |y| ||∗
and so equality throughout. This implies that all summands in

∑
xi>0 xiyi are

nonnegative, which is the assertion.

Lemma 3.15. Let ‖ · ‖ : Rn → R be an absolute norm and x ∈ Rn+. If y ∈ Rn
satis�es (3.10), then so does |y|.

Proof. Let I ⊆ {1, . . . , n} be the index set such that yi < 0 ⇔ i ∈ I. If I = ∅,
then there is nothing to show, so assume I 6= ∅. By Lemma 3.14 necessarily
xi = 0 for all i ∈ I. We de�ne the diagonal matrix P = (pij) ∈ Rn×n by
pii = −1 if i ∈ I, pii = 1 else. Then |y| = Py and Px = x. Now

‖x‖‖|y|‖∗ = ‖Px‖‖Py‖∗ = ‖x‖‖y‖∗ = 〈x, y〉 = 〈Px, Py〉 = 〈x, |y|〉,

since ‖ · ‖, ‖ · ‖∗ are absolute norms and P is symmetric with P 2 = I. So |y|
satis�es (3.10).

3.4 Convex Analysis

The idea of convexity is outstanding in the theory of optimization. By using
tools of convex analysis it is possible to solve an extremum problem even if
the function related to the problem is not di�erentiable, providing that it is a
convex function. For the latter class of functions a calculus similar to that of
di�erential theory has been established that will be of great help for us, when
we analyze properties of epidemiological models in Chapter 4. The book [31]
of Rockafellar has become standard in convex analysis and the reader will �nd
comprehensive information about the �eld in this book. We start with the basic
notion of a convex set.

De�nition 3.16. A set K ⊂ Rn is called convex if for all x, y ∈ K, λ ∈ [0, 1]
it holds that

λx+ (1− λ)y ∈ K.

For an arbitrary set M ⊂ Rn the convex hull convM is de�ned as the smallest
convex set that contains M , i. e.

convM :=
⋂

M⊂K,
Kconvex

K (3.11)

The de�nition says that for any two points x, y in a convex set, the line segment
between x and y also belongs to the set. Figure 8 presents some convex sets
in the plane R2 as well as some sets which are not convex. Some facts about
convex sets are presented in the following

6See [1, Lemma 2.1].
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Figure 8: Examples of convex sets (left) and nonconvex sets (right).

Proposition 3.17.

(i) An intersection of an arbitrary collection of convex sets is convex.

(ii) If K1 and K2 are convex and λ ∈ R, then K1 + K2 and λK1 are convex
sets.

(iii) If M ⊂ Rn is a compact set, then convM is compact.

Proof. (i) Let x, y ∈
⋂
i∈I Ki where I is an arbitrary index set and each Ki is

convex. Then x, y ∈ Ki for all i ∈ I. For λ ∈ [0, 1], λx + (1 − λ)y belongs to
every Ki due to convexity of Ki. Hence λx+ (1− λ)y ∈

⋂
i∈I Ki.

(ii) can be found in [31, �3], (iii) is [33, Corollary 1.1].

Assertion (i) in the above proposition assures that convM de�ned by (3.11) is
really a convex set.

Example 3.18. For an arbitrary norm ‖ · ‖ on Rn and x ∈ Rn, r > 0, the closed
ball around x with radius r is a convex set. By Proposition 3.17(ii) it su�ces to
show that B‖·‖ is convex. Let x, y ∈ Rn with ‖x‖, ‖y‖ ≤ 1 and λ ∈ [0, 1]. Then

‖λx+ (1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖ ≤ λ · 1 + (1− λ) · 1 = 1,

such that λx+ (1− λ)y ∈ B.
We now introduce the tangent cone. That is, a set related to a convex set
and a given point within it. It may surprise but the tangent cone with its
properties will help us later to characterize the behavior of solution trajectories
of di�erential equations. We �rst explain what a cone is.

De�nition 3.19. A set C ⊂ Rn is called a cone if for all x ∈ K and all λ > 0
it holds that λx ∈ K.

De�nition 3.20. Let K ⊂ Rn be a convex set and x ∈ K. The set

TK(x) := cl

{
y − x
λ

∣∣∣ y ∈ K,λ > 0

}
= cl

⋃
λ>0

K − x
λ

is called the tangent cone to K at x.
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Figure 9: The �gure shows the sets Σ, B‖·‖1 and B‖·‖∞ (dark gray), and the respective
tangent cones at given points x (light gray).

Tangent cones to several sets at given points x are illustrated in Figure 9. The
considered sets are Σ = {x ∈ R2

+ | x1 +x2 ≤ 1}, B‖·‖1 := {x ∈ R2 | |x1|+ |x2| ≤
1} and B‖·‖∞ := {x ∈ R2 | max{|x1|, |x2|} ≤ 1}.
We prove some properties of tangent cones in the following and give an equiva-
lent description for them. Afterwards we determine the tangent cone of several
subsets of Rn that play an important role later on.

Lemma 3.21. Let K ⊂ Rn be a convex set and x ∈ K. Then

K − x
β

⊂ K − x
α

whenever 0 < α < β.

Proof. 7 Let 0 < α < β and y ∈ K be arbitrary. Set z = (1− α/β)x+ (α/β)y.
By convexity of K it holds that z ∈ K. Then

y − x
β

=
1

β

(
β

α
z − β

α
x+ x− x

)
=
z − x
α
∈ K − x

α

7[33, Lemma 1.4]
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and the lemma is proved.

Proposition 3.22. Let K ⊂ Rn be a convex set and x ∈ K. then

TK(x) = {w ∈ Rn | lim
λ↘0

λ−1d(x+ λw,K) = 0}. (3.12)

Proof. 8 �⊂� First of all, consider the following equality.

λ−1d(x+ λw,K) = inf
y∈K

‖x+ λw − y‖
λ

= inf
y∈K

∥∥∥∥w − y − x
λ

∥∥∥∥
= inf

{
‖w − z‖

∣∣∣∣ z ∈ K − x
λ

}
= d

(
w,

K − x
λ

)
, λ > 0.

Now, let w ∈ TK(x) and ε > 0. Then there exist y ∈ K, δ > 0 such that
‖w − δ−1(y − x)‖ < ε or equivalently, d(w, (K − x)/δ) < ε. By the above
equality and Lemma 3.21 we receive

λ−1d(x+ λw,K) = d(w, (K − x)/λ) ≤ d(w, (K − x)/δ) < ε

for all 0 < λ < δ, and therefore

lim
λ↘0

λ−1d(x+ λw,K) = 0. (3.13)

�⊃� If (3.13) holds for a vector w ∈ Rn, then for each ε > 0 there exists λ > 0
such that d(w, (K − x)/λ) < ε. This yields

w ∈ cl
⋃
λ>0

K − x
λ

,

and the claim is true.

Corollary 3.23. Let w ∈ TK(x) and λk ↘ 0. Then there exists a sequence
(uk) ⊂ Rn, uk → 0 such that

x+ λkw + λkuk ∈ K for all k ∈ N.

Proof. Let yk be in the set π(x+ λkw,K) for each k ∈ N. De�ne the vector uk
by the equation yk = x+ λkw + λkuk. Then

lim
k→∞

λ−1
k d(x+ λkw,K) = lim

k→∞
λ−1
k ‖x+ λkw − yk‖

= lim
k→∞

λ−1
k ‖λkuk‖ = lim

k→∞
‖uk‖ = 0

by Proposition 3.22 and therefore uk → 0, which was to show.

Proposition 3.24.

(i) The tangent cone of Rn+ at a point x ∈ Rn+ is

TRn+(x) = {z ∈ Rn | zi ≥ 0 if xi = 0}.

8[33, Proposition 1.3]
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(ii) The tangent cone of Σ := {x ∈ R2n
+ | xi + xn+i ≤ 1 ∀i = 1, . . . , n} at a

point x ∈ Σ is

TΣ(x) = {z ∈ R2n | zi ≥ 0 if xi = 0 and zi + zn+i ≤ 0 if xi + xn+i = 1}.

(iii) The tangent cone of Π := [0, 1]n at a point x ∈ Π is

TΠ(x) = {z ∈ Rn | zi ≥ 0 if xi = 0 and zi ≤ 0 if xi = 1}.

Proof. (i) �⊂� Let x ∈ Rn+ and z ∈ TRn+(x). Then, by de�nition, there exist

sequences (λk)k∈N ⊂ R+ \ {0}, (yk)k∈N ⊂ Rn+ such that

z = lim
k→∞

λ−1
k (yk − x),

and thus,
zi = lim

k→∞
λ−1
k (yki − xi) ∀i = 1, . . . , n.

If xi = 0, then λ−1
k yki ≥ 0 for all k ∈ N and consequently zi ≥ 0. Hence the

inclusion holds.
�⊃� Let x ∈ Rn+ and z ∈ Rn with zi ≥ 0 if xi = 0. We aim to �nd y ∈ Rn+
and λ > 0 such that z = λ−1(y − x). Equivalently, yi = λzi + xi for all
i = 1, . . . , n. Hence, the vector y is completely determined after having set λ.
And by choosing λ > 0 appropriately, we assure that y ∈ Rn+. For this, we set
λ := min{−xizi | zi < 0} if this set is nonempty and λ := 1 else. In each case,
λ is positive. Now, if xi = 0 then by assumption zi ≥ 0 and yi = λzi ≥ 0. If
xi > 0 and zi ≥ 0, then as well yi = λzi + xi ≥ 0. If at last xi > 0 and zi < 0,
then due to our de�nition of λ we have λ ≤ −xizi ⇔ λzi +xi ≥ 0. Hence y ∈ Rn+
and the claim is true.
(ii) �⊂� Let x ∈ Σ and z ∈ TΣ(x). Then, by de�nition, there exist sequences
(λk)k∈N ⊂ R+ \ {0}, (yk)k∈N ⊂ Σ such that

z = lim
k→∞

λ−1
k (yk − x).

Considering each component, we get

zi = lim
k→∞

λ−1
k (yki − xi) ∀i = 1, . . . , 2n,

and therefore,

zi + zn+i = lim
k→∞

λ−1
k

(
yki + ykn+i − (xi + xn+i)

)
.

By assumption, 0 ≤ yki + ykn+i ≤ 1. If xi + xn+i = 1, then

λ−1
k

(
yki + ykn+i − (xi + xn+i)

)
≤ 0

and consequently zi + zn+i ≤ 0. For the other condition we refer to the proof
of (i) �⊂�: If xi = 0, then zi ≥ 0. Hence the inclusion holds.
�⊃� Let x ∈ Σ and z ∈ R2n with zi ≥ 0 if xi = 0 and zi + zn+i ≤ 0 if
xi + xn+i = 1. We aim to �nd y ∈ Σ and λ > 0 such that z = λ−1(y − x) or
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equivalently yi = λzi + xi for all i = 1, . . . , 2n. The vector y has to satisfy the
following requirements:

0 ≤ yi = λzi + xi ∀i = 1, . . . , 2n and

yi + yn+i = λ(zi + zn+i) + xi + xn+i ≤ 1 ∀i = 1, . . . , n.

At �rst � as before in (i) �⊃� � we assure that yi is nonnegative for all i =
1, . . . , 2n by choosing 0 < λ ≤ λ1 where λ1 := min{−xizi | zi < 0} if this set is
nonempty and λ1 := 1 else. In a second step we have to specify λ such that
yi + yn+i ≤ 1 for all i = 1, . . . , n. For this, let

λ2 := min

{
1− xi − xn+i

zi + zn+i
| zi + zn+i > 0

}
,

provided that this set is not empty and λ2 := 1 else. In each case, λ2 is positive.
Now set λ := min{λ1, λ2} and consider the sum yi+yn+i. If xi+xn+i = 1 then
by assumption zi + zn+i ≤ 0, which yields yi + yn+1 ≤ 1. The same holds if
xi + xn+i < 1 and zi + zn+i ≤ 0. At last, consider the case xi + xn+i < 1 and
zi + zn+i > 0. Then

λ ≤ 1− xi − xn+i

zi + zn+i
⇔ λ(zi + zn+i) + xi + xn+i = yi + yn+i ≤ 1

for all i = 1, . . . , n. Hence y ∈ Σ and the claim is true.
(iii) The proof is entirely analogous to (ii). Drop all terms with indices j ≥ n+1
and you receive the claim.

At this point we shall give an inequality that turns out to be crucial for the
stability analysis of epidemiological models.

Lemma 3.25. Let ‖ · ‖ be a norm on Rn and x ∈ Rn \ {0} be arbitrary. TB(x)
denotes the tangent cone to B at x, where B := ‖x‖B‖·‖. Consider a vector y
in the dual of x. Then

〈z, y〉 ≤ 0 ∀z ∈ TB(x). (3.14)

Proof. At �rst we show that 〈w, y〉 ≤ 〈x, y〉 holds for all w ∈ B. For this, choose
w ∈ B arbitrary. By de�nition of B, ‖w‖ ≤ ‖x‖. Recall (3.6) and (3.10), then

〈w, y〉 ≤ ‖w‖‖y‖∗ ≤ ‖x‖‖y‖∗ = 〈x, y〉.

Now consider z = λ−1(w − x) for λ > 0. Then〈
w − x
λ

, y

〉
=

1

λ

(
〈w, y〉 − 〈x, y〉

)
≤ 0.

From here we conclude that the above inequality holds for all z ∈ TB(x) which
is (3.14).

Before we pass over to convex functions we would like to point out that it is
possible to de�ne tangent cones even for nonconvex sets. The di�culty herein
is that there does not exist a unique de�nition for the tangent cone. Instead
a variety of notions have been established for nonconvex sets, see for instance
[32, Chapter 11]. The reader �nds a very illuminating history of tangent cones
in the book [4, Chapter 4] of Aubin and Frankowska. Now we turn to the next
important notion in convex analysis.
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De�nition 3.26. A function f : Rn → R is called convex if for all x, y ∈ Rn,
λ ∈ [0, 1] we have

f(λx+ (1− λy)) ≤ λf(x) + (1− λ)f(y). (3.15)

In the theory of convex functions it is usually allowed that f maps to R∪ {∞}.
Since this is not relevant for us we will omit this detail. Convex functions are
connected to convex sets in the following way. A function f : Rn → R is convex
if and only if its epigraph

epi(f) := {(x, y) ∈ Rn × R | f(x) ≤ y}

is a convex set. Before we discuss further properties of convex functions, we shall
give an important example. Every norm ‖ · ‖ : Rn → R is a convex function.
Let x, y ∈ Rn be arbitrary and λ ∈ [0, 1]. Then

‖λx+ (1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖

which shows convexity.

Proposition 3.27. Every convex function f : Rn → R is locally Lipschitz
continuous.

Proof. The proof is given in [33, Theorem 1.9] or in [32, Corollary 1.4.2].

As we already know by Rademacher's Theorem 3.4, every locally Lipschitz con-
tinuous function is almost everywhere di�erentiable. So are convex functions. It
holds even more: Convex functions possess directional derivatives at each point
x ∈ Rn in every direction z ∈ Rn, see [33, Theorem 1.12]. It is desired to gen-
eralize the concept of di�erentiability for convex functions. For this, consider
a convex function f : Rn → R which is di�erentiable in x ∈ Rn. Then for any
y ∈ Rn,

f(y) ≥ f(x) + 〈∇f(x), y − x〉,

where ∇f(x) denotes the gradient of f in x, see [31, Theorem 25.1]. This
remarkable property motivates the de�nition of the following set.

De�nition 3.28. Let f : Rn → R be a convex function. A vector x∗ is said to
be a subgradient of f at a point x if

f(y) ≥ f(x) + 〈x∗, y − x〉 ∀y ∈ Rn. (3.16)

The set of all subgradients is denoted by ∂f(x) and is called subdi�erential of
f at x. If ∂f(x) is nonempty then f is called subdi�erentiable at x.

The reader can �nd comprehensive information about convex functions and
subdi�erentials in the book [31, �23] of Rockafellar. In fact, a convex function
f : Rn → R is subdi�erentiable everywhere and ∂f(x) is a nonempty compact
convex set for each x ∈ Rn. The notion of subdi�erentiability is consistent with
di�erentiability in the sense that if a subdi�erentiable function is di�erentiable
in x then ∂f(x) = {∇f(x)}. We are now interested in a characterization of the
set ∂f(x) if f is a norm. Here the concept of dual vectors we introduced in
Section 3.2 is of help.
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Proposition 3.29. Let v : Rn → R be a norm and x ∈ Rn. D(x) shall denote
the set of all dual vectors to x. Then

∂v(x) = D(x). (3.17)

Proof. 9 Recall the facts deduced in Section 3.3.
�⊂� Let x∗ be a subgradient of x ∈ Rn. Then by de�nition the inequality (3.16)
holds for all y ∈ Rn. For y = 0 we receive 〈−x, x∗〉 ≤ −v(x) or 〈x, x∗〉 ≥ v(x),
respectively. For y = 2x we get 〈2x − x, x∗〉 ≤ v(2x) − v(x) or equivalently,
〈x, x∗〉 ≤ v(x). The combination of the the two inequalities yields

〈x, x∗〉 = v∗(x).

To see that v(x∗) ≤ 1, let z ∈ Rn be arbitrary. Then

〈z, x∗〉 = 〈z + x− x, x∗〉 ≤ v(z + x)− v(x) ≤ v(z) + v(x)− v(x) = v(z), (3.18)

again by (3.16) and triangle inequality. Let z0 ∈ Bv be a vector for which
v∗(x∗) = 〈z0, x

∗〉 holds. Thus, by (3.18), we have

v∗(x∗) = 〈z0, x
∗〉 ≤ v(z0) ≤ 1

This gives x∗ ∈ D(x).
�⊃� Let x∗ ∈ D(x) and y ∈ Rn be arbitrary. Then

〈y − x, x∗〉 = 〈y, x∗〉 − 〈x, x∗〉 = 〈y, x∗〉 − v(x)

≤ v(y)v∗(x∗)− v(x) ≤ v(y)− v(x),

by considering the de�nition of a dual vector and inequality (3.6).

There exist formulae to compute the subdi�erential of certain convex functions.
For example, if λ > 0 and f, g : Rn → R are convex, then ∂(λf)(x) = λ∂f(x)
and ∂(f + g)(x) = ∂f(x) + ∂g(x). By contrast, we cannot expect a product
rule for subgradients, since a product of two convex functions is not necessarily
convex, consider for instance f(x)g(x) = x · x2.
The desire to develop a useful di�erential calculus even for nonconvex functions
led to a theory which is known nowadays under the keyword nonsmooth analysis.
An approach to this �eld is given by Clarke et al. in the book [11]. The
theory described in this book builds the core for the analysis of our switched
epidemiological models.
Consider a locally Lipschitz continuous function f : Rn → R. We already know
due to Rademacher, Theorem 3.4, that f is di�erentiable almost everywhere.
Moreover if f is Lipschitz continuous on a neighborhood U of x with a constant
L > 0, then ‖∇f(y)‖ ≤ L for every y ∈ U where f is di�erentiable. Consider
the set

∂Cf(x) := conv
{

lim
k→∞

∇f(xk)
∣∣∣ xk → x, ∇f(xk) exists

}
. (3.19)

∂Cf(x) is called the Clarke generalized gradient of f at x. We will call elements
of ∂Cf(x) subgradients, analogously to subgradients of convex functions. It
holds that ∂Cf(x) is a nonempty compact convex set for each x ∈ Rn, see [11,

9See also [32, Proposition 4.6.2].
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Theorem 0.1.5], and that it is related to the subgradient or the usual gradient
in the following way. If f is a convex function, then the Clarke generalized
gradient and the subdi�erential de�ned above coincide, that is ∂Cf(x) = ∂f(x)
for every x, see [11, Proposition 2.4.3]. From the de�nition of the set ∂Cf(x)
it follows directly that ∂Cf(x) = {∇f(x)} if f is continuously di�erentiable
in x. In Chapter 4 we will need to compute the Clarke generalized gradient of
a product of a Lipschitz continuous function and a continuously di�erentiable
function.

Proposition 3.30. Let f : Rn → R be locally Lipschitz continuous and g :
Rn → R be continuously di�erentiable. Then

∂C(fg)(x) ⊂ ∂Cf(x)g(x) + f(x)∇g(x). (3.20)

Proof. Let x ∈ Rn and consider a sequence xk → x where ∇f(xk) exists for
every k ∈ N. Then fg is di�erentiable in xk and

∇(fg)(xk) = ∇f(xk)g(xk) + f(xk)∇g(xk), ∀k ∈ N, (3.21)

by classical di�erential calculus. In the following, suppose g(x) 6= 0. In this
case, the limit limk→∞∇(fg)(xk) exists if and only if limk→∞∇f(xk) exists
due to (3.21). If ∇f(xk) converges we obtain

lim
k→∞

∇(fg)(xk) = lim
k→∞

(
∇f(xk)g(xk) + f(xk)∇g(xk)

)
= lim
k→∞

∇f(xk) · g(x) + f(x)∇g(x).

Therefore,{
lim
k→∞

∇(fg)(xk)
∣∣∣ xk → x,∇(fg)(xk) exists

}
=
{

lim
k→∞

∇f(xk) · g(x) + f(x)∇g(x)
∣∣∣ xk → x, lim

k→∞
∇f(xk) exists

}
=
{

lim
k→∞

∇f(xk)
∣∣∣ xk → x, lim

k→∞
∇f(xk) exists

}
· g(x) + f(x)∇g(x) (3.22)

and hence

∂C(fg)(x) = conv
{

lim
k→∞

∇(fg)(xk)
∣∣∣ xk → x,∇(fg)(xk) exists

}
⊂ ∂Cf(x) · g(x) + f(x)∇g(x). (3.23)

The set inclusion holds due to (3.22) and the fact that the right-hand side in
(3.23) is a convex set, recall Proposition 3.17.
Now suppose g(x) = 0. Since f is Lipschitz continuous, ‖∇f(xk)‖ is locally
bounded around x, i. e. for each k big enough. Thus, limk→∞∇f(xk)g(xk) = 0
and

lim
k→∞

∇(fg)(xk) = lim
k→∞

f(xk)∇g(xk) = f(x)∇g(x).

Therefore,

∂C(fg)(x) = conv
{

lim
k→∞

∇(fg)(xk)
∣∣∣ xk → x,∇(fg)(xk) exists

}
= {f(x)∇g(x)} ⊂ ∂Cf(x)g(x) + f(x)∇g(x),

which proves (3.20).
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We place another statement at this point which will be needed in Chapter 4.

Lemma 3.31. Let f : Rn → Rn be continuous and v : Rn → R be locally
Lipschitz continuous. Then the map ζ : Rn → R de�ned by

ζ(x) := max{〈z, f(x)〉 | z ∈ ∂Cv(x)}

is upper semicontinuous, that is for each x ∈ Rn,

lim sup
xk→x

ζ(xk) ≤ ζ(x),

or equivalently, for each ε > 0 there exists δ > 0 such that

ζ(y) < ζ(x) + ε ∀y ∈ Rn with ‖y − x‖ < δ.

Proof. At �rst, note that ζ is well de�ned since for a �xed x ∈ Rn, ∂Cv(x) is
a nonempty compact set and 〈·, f(x)〉 : Rn → R is continuous, such that the
latter admits its maximum on the set ∂Cv(x). The claim itself is a consequence
of Propositions 1.5(b) and 1.1(b) in [11, Chapter 2].

It is well known that continuous functions Rn → R admit minimum and maxi-
mum on compact sets. Upper semicontinuous functions still admit their maxi-
mum on compact sets.

Lemma 3.32. Let f : Rn → R be upper semicontinuous and K ⊂ Rn a compact
set. Then there exists ξ ∈ K such that f(x) ≤ f(ξ) for all x ∈ K.

Proof. Let y := supx∈K f(x) which could a priori be in�nite. Consider a se-
quence (xn) in K for which limn→∞ f(xn) = y. Since K is compact, there
exists a convergent subsequence (xk) with limk→∞ xk = ξ ∈ K. By upper
semicontinuity of f we have f(ξ) ≥ limk→∞ f(xk) = y. Therefore f(ξ) = y.

3.5 Ordinary Di�erential Equations

3.5.1 Carathéodory-type Di�erential Equations

In the theory of ordinary di�erential equations one considers usually an initial
value problem

ẋ = f(t, x) (3.24)

x(t0) = x0, (3.25)

where f : T × X → Rn is de�ned on an open set T × X ⊂ R × Rn and
(t0, x

0) ∈ T ×X. A solution to (3.24) is a continuously di�erentiable function
ϕ : I → Rn on an interval I ⊂ T for which (t, ϕ(t)) ∈ T ×X, and it holds that
ϕ̇(t) = f(t, ϕ(t)) for all t ∈ I.
It is well known10 that (3.24)�(3.25) has a unique solution if f is continuous and
locally Lipschitz continuous in x, uniformly in t. Consider the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds (3.26)

10[5, Satz 2.4.1]
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which is equivalent to (3.24)�(3.25) in the following sense. If f is continuous and
ϕ : I → Rn is continuously di�erentiable on an interval I containing t0, then ϕ
solves (3.24) and (3.25) if and only if it solves (3.26). However, continuity of f
is not necessary for the integral to exist. One could suppose that there exists a
function that solves (3.26) under milder conditions than those mentioned above.
It was Carathéodory who treated that problem and developed a more general
existence theory. For this, we relax the notion of a solution to (3.24).
An absolutely continuous function ϕ : I → Rn is called a solution of (3.24) in
the extended sense on I if

(i) (t, ϕ(t)) ∈ T ×X for all t ∈ I,

(ii) ϕ̇(t) = f(t, ϕ(t)) almost everywhere on I.

We already stated in Theorem 3.10 that an absolutely continuous function is
almost everywhere di�erentiable, such that (ii) is reasonable. Now we cite the
following theorem given in [19, Theorem 2.1.14].

Theorem 3.33 (Carathéodory). Assume f : T ×X → Rn, where T ⊂ R is an
open interval and X an open subset of Rn. Suppose that f satis�es the following
�Carathéodory conditions�:

(i) f(·, x) is measurable for each �xed x ∈ X,

(ii) f(t, ·) is continuous for each �xed t ∈ T ,

(iii) ‖f(·, x̃)‖ is locally integrable on T for some x̃ ∈ X,

(iv) for each compact set C = I×K ⊂ T×X there exists an integrable function
LC(·) : I → R+ such that

‖f(t, x)− f(t, y)‖ ≤ LC(t)‖x− y‖ ∀(t, x), (t, y) ∈ C.

Then for any (t0, x
0) ∈ T ×X there exists a unique solution x(·) = ϕ(·; t0, x0)

of (3.24) in the extended sense on some maximal open interval T (t0, x
0) ⊂ T

containing t0, such that x(t0) = x0. Moreover,

(i) if t+(t0, x
0) := supT (t0, x

0) < supT then x(t) is unbounded as t ↗
t+(t0, x

0) or the boundary of X is not empty and d(x(t),bdX) → 0 as
t↗ t+(t0, x

0).

(ii) if Dϕ is the domain of de�nition of the general solution ϕ,

Dϕ = {(t, t0, x0) | t ∈ T (t0, x
0), (t0, x

0) ∈ T ×X},

then Dϕ is open in T 2 × Rn and ϕ : Dϕ → Rn is continuous.

Remark 3.34. From (i) in the above theorem we deduce that, if the boundary
of X is empty and x(t) is bounded as t↗ t+(t0, x

0), then t+(t0, x
0) = supT .

For the rest of the text we will always investigate functions that are solutions of
di�erential equations in the extended sense, such that we drop the addendum
'in the extended sense' and just speak of a solution. Continuing from the last
theorem, we state the following two propositions.
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Proposition 3.35. 11 Given the assumptions of Theorem 3.33, let (t0, x
0) ∈

T ×X and t1 ∈ T (t0, x
0). If x1 = ϕ(t1; t0, x

0), then T (t1, x
1) = T (t0, x

0) and

ϕ(t; t1, x
1) = ϕ(t; t0, x

0) ∀t ∈ T (t0, x
0). (3.27)

The identity (3.27) is called cocycle property of the general solution ϕ.

Proposition 3.36. 12 Suppose T ⊂ R is an open interval, X ⊂ Rn is open and
f : T ×X → Rn is a�nely bounded, that is

‖f(t, x)‖ ≤M(t)‖x‖+m(t), (t, x) ∈ T ×X, (3.28)

where M(·), m(·) are locally integrable nonnegative functions on T . Then every
solution of (3.24) is bounded on every �nite interval (t1, t2), t1, t2 ∈ T , t1 < t2
on which it is de�ned. If moreover X = Rn then every solution of (3.24) can
be continued to all of T .

We revisit brie�y some properties of linear di�erential equations. The reader
can �nd these results in [19, Chapter 2.2] or [5, Kapitel 6]. Consider

ẋ(t) = A(t)x(t), (3.29)

x(t0) = x0, (3.30)

where A : I → Rn×n is a measurable matrix function de�ned on an interval
I ⊂ R and (t0, x

0) ∈ I × Rn. Let ϕ(·; t0, x0) denote the solution of (3.29)�
(3.30). Then for each t ∈ I there exists a linear map Φ(t, t0) : Rn → Rn
satisfying

ϕ(t; t0, x
0) = Φ(t, t0)x0. (3.31)

Φ(t, t0) is called the fundamental matrix associated with (3.29). It has the
following properties.

(i) Φ(t0, t0) = I for all t0 ∈ I,

(ii) Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) for all t2 ≥ t1 ≥ t0 ∈ I,

(iii) Φ(t, t0) is invertible for all t0, t ∈ I.

For a linear system

ẋ(t) = A(t)x(t) + g(t), x(t0) = x0, (3.32)

with measurable inhomogeneity g : I → Rn, the solution ϕ can be expressed by
the variation of constants formula

ϕ(t; t0, x
0) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)g(s)ds. (3.33)

Assume that A : R → Rn×n satis�es the conditions of Proposition 3.36. Then
the solution ϕ(t; t0, x

0) of (3.29)�(3.30) exists for every t ∈ R and is bounded on
every �nite interval (t0, τ) with τ > t0. Fix t0 ∈ R and consider ‖ϕ(·; t0, ·)‖ : R×
Rn → Rn as a function of time t and the initial value x0. Then it is continuous

11See [5, Satz 2.6.5].
12See [19, Proposition 2.1.19].
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by Theorem 3.33 and admits its maximum on the compact set [t0, τ ] × {x ∈
Rn | ‖x‖ = 1}. Thus the fundamental matrix Φ(·, t0) : [t0, τ ] → Rn×n is
bounded as well since for the operator norm it holds

‖Φ(t, t0)‖ = max
‖x0‖=1

‖Φ(t, t0)x0‖ = max
‖x0‖=1

‖ϕ(t; t0, x
0)‖, ∀t ∈ [t0, τ ],

such that there exists a constant M > 0 with

‖Φ(t, t0)‖ ≤M ∀t ∈ [t0, τ ]. (3.34)

3.5.2 Di�erential Inequalities

The following theorem will be substantial in Chapter 4. It uncovers an important
relation between trajectories of SIS and SIR systems. Before we start we shall
explain a particular notion. A function f : Rn → R is said to be increasing in
the variable xi, i = 1, . . . , n, if for x, y ∈ Rn with xj = yj , j 6= i, and xi < yi we
have f(x) ≤ f(y).

Theorem 3.37. Given the initial value problem (3.24)�(3.25), assume the right
hand side f satis�es the Carathéodory conditions of Theorem 3.33. Suppose that
the function fi(t, x) is increasing in the variables x1, . . . , xi−1, xi+1, . . . , xn for
every i ∈ {1, . . . , n}. Let ϕ : I → Rn be the unique solution of (3.24)�(3.25) on
an interval I ⊂ R including t0. Then the following proposition is true.
Let ψ : I → Rn be an absolutely continuous function satisfying the initial in-
equality

ψ(t0) ≤ ϕ(t0)

and di�erential inequality
ψ̇(t) ≤ f(t, ψ(t)) (3.35)

almost everywhere on the interval I. Then

ψ(t) ≤ ϕ(t) ∀t ∈ I.

Proof. See [35, Theorem 16.2].

We give a simple corollary of the last theorem which will be needed later.

Corollary 3.38. Suppose an absolutely continuous function ψ : [0, T ] → R
satis�es

ψ̇(t) ≤ c · ψ(t) (3.36)

for some c ∈ R almost everywhere on [0, T ]. Then

ψ(t) ≤ ectψ(0) ∀t ∈ [0, T ]. (3.37)

Proof. Consider f : R → R, f(x) = cx and the corresponding initial value
problem ẋ = f(x), x(0) = ψ(0). The unique solution to it is given by ϕ(t) =
ectψ(0). We are now in the situation of Theorem 3.37. Inequalities (3.35) and
(3.36) are equivalent and, by construction, ψ(0) = ϕ(0). Application of Theorem
3.37 yields (3.37).
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3.5.3 Switched Systems and Di�erential Inclusions

In the theory of Dynamical Systems, one distinguishes usually between systems
with continuous and those with discrete dynamics. However, there are a lot
of applications � mainly in physics and engineering � where the two concepts
appear in combination. Think of an electric circuit where current �ows contin-
uously whereas we can in�uence its behaviour by discrete events like turning
on and o� switches. You can also imagine a continuous data �ow in a com-
puter network or an industrial plant working continuously which is controlled
by discrete-time inputs. These use cases led researchers from di�erent �elds,
like computer scientists, mathematicians and engineers, to work on those prob-
lems and develop a new theory, which is now known under the keyword hybrid
systems or switched systems. D. Liberzon gives an overview to the �eld in his
book [27]. There exists a variety of possibilities for modeling switched systems.
We concentrate in the following on those with time-dependent switching, which
we want to specify now.
Suppose we have a family of functions fj : D ⊂ Rn → Rn, j ∈ I, where I is an
arbitrary index set. This gives rise to a family of systems

ẋ = fj(x), j ∈ I, (3.38)

evolving on Rn. The above family becomes a switched system, if we add a
switching signal. This is simply a map σ : R+ → I. In the following we restrict
us to the case I = {1, . . . ,m} for some m ∈ N. In general, we will require that
σ(·) is measurable and de�ne

S := {σ : R+ → {1, . . . ,m} | σ is measurable}.

If this is too abstract for you, you can also think of a piecewise constant function
σ : R+ → {1, . . . ,m} being continuous from the right. That is, there exists some
τ > 0 such that |t − s| ≥ τ for each two points t, s of discontinuity of σ and it
holds that limt↘t0 σ(t) = t0 for each t0 ∈ R+.

13 The points of discontinuity are
called switching times or switching instants.
A switched system is now described by the equation

ẋ(t) = fσ(t)(x(t)). (3.39)

An immediate question is whether there exist solutions to the above system.
The answer is positive, if all the fj 's are locally Lipschitz continuous! We
brie�y demonstrate that in the following lemma.

Lemma 3.39. Let fj : D → Rn, j ∈ {1, . . . ,m}, be a �nite family of locally
Lipschitz continuous maps, de�ned on an open subset D ⊂ Rn. Further, let
σ : R+ → {1, . . . ,m} be measurable. Then the function f(t, x) := fσ(t)(x)
satis�es the Carathéodory conditions of Theorem 3.33 and therefore the switched
system (3.39) has a unique solution for each (t0, x

0) ∈ R+ ×D.

Proof. Fix x ∈ D. Then, f(·, x) : R+ → Rn is measurable since σ(·) : R+ →
{1, . . . ,m} is measurable.

13This point of view is justi�ed by the fact that a measurable function σ : R+ → {1, . . . ,m}
can be approximated, on any compact interval, arbitrarily well by piecewise constant, right-
continuous maps. See [1, p. 4].
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Fix t ∈ R+. Then f(t, ·) = fj(·) for a certain j ∈ {1, . . . ,m} and is hence
continuous, since each fj is locally Lipschitz continuous.
Let x ∈ D and consider an arbitrary bounded interval I ⊂ R+. Then the integral∫
I
‖f(t, x)‖dt <∞, since f(·, x) is a measurable function and takes �nite values

for each t ∈ R+. Hence, ‖f(·, x)‖ is locally integrable for each x ∈ D.
Finally, let C = I×K ⊂ R+×D be an arbitrary compact set. From Proposition
3.2 we know that each fj(·) is Lipschitz continuous on K with a constant Lj > 0.
Set L := max{Lj | j = 1, . . . ,m}. Then

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ for all (t, x), (t, y) ∈ C.

The constant map LC(·) : I → R+, LC(t) ≡ L, is obviously integrable, such
that all Carathéodory conditions are satis�ed. Thus, for each initial condition
(t0, x

0) ∈ R+ ×D, there exists a unique solution of (3.39).

With the above lemma we have veri�ed that each of the epidemiological models
introduced in Chapter 2 has a unique solution.

The �eld of Switched Systems is contained in the more general theory of Dif-
ferential Inclusions. There, one no longer considers a di�erential equation
ẋ = f(t, x), but an inclusion of the form

ẋ(t) ∈ F (t, x(t)),

where F : Rn+1 → P(Rn) is a set-valued map, i.e. for every x ∈ Rn, the image
F (x) is a subset of Rn. An introduction to the �eld is given by Smirnov [33].
In the following we restrain to the case of time-invariant inclusions ẋ ∈ F (x).

De�nition 3.40. Consider a di�erential inclusion

ẋ(t) ∈ F (x(t)), (3.40)

where F : Rn → P(Rn) is a set-valued map and let x0 ∈ Rn. If there exist T > 0
and an absolutely continuous function x : [0, T ] → Rn such that x(0) = x0 and
the inclusion (3.40) holds almost everywhere on the interval [0, T ], then x(·) is
called a solution to di�erential inclusion (3.40) with initial condition x0.

As for ordinary di�erential equations, there has been developed an existence
theory of solutions to di�erential inclusions. The following theorem speci�es
conditions under which di�erential inclusions possess solutions and how the
latter depend on initial conditions. For this, we would like to introduce the
normed vector space C([0, T ],Rn) of continuous functions from the interval [0, T ]
to Rn. The space shall be endowed with the norm

‖x(·)‖C := max{‖x(t)‖ | t ∈ [0, T ]}.

The set of solutions to (3.40) with initial condition x0 ∈ Rn is a subset of
C([0, T ],Rn) and will be denoted by S[0,T ](F, x

0). Finally, for a nonempty subset
C ⊂ Rn,

S[0,T ](F,C) :=
⋃
x0∈C

S[0,T ](F, x
0).

34



Theorem 3.41. Let F : Rn → P(Rn) be a set-valued map with closed convex
values for all x ∈ Rn and assume that F is Lipschitz continuous on every
compact set K ⊂ Rn. Then for every x0 ∈ Rn there exist solutions to di�erential
inclusion (3.40) with x(0) = x0.
If C ⊂ Rn is a compact set, then S[0,T ](F,C) is a compact subset of the space
C([0, T ],Rn). In particular there exists a constantM > 0 such that the inequality

‖x(·)‖C ≤M (3.41)

holds for all x(·) ∈ S[0,T ](F,C).

Proof. The proof can be found in [33]. The �rst part is Corollary 4.1 there, the
second part follows from Corollary 4.5. See also the proof of Theorem 4.11.

The connection between switched systems and di�erential inclusions is the fol-
lowing. Assume we have given a switched system ẋ = fσ(t)(x), built by a family
of locally Lipschitz continuous functions fj : Rn → Rn, j = 1, . . . ,m, and
a switching signal σ ∈ S. If x(·;x0, σ) is a solution to the switched system
with initial condition x0 ∈ Rn, then it is a solution to the di�erential inclusion
ẋ ∈ F (x) where F (x) := {fj(x) | j = 1, . . . ,m}. We aim to apply Theorem
3.41 to switched systems. Therefore a Lipschitz continuous set-valued function
with closed convex values is needed. We already know that F as de�ned above
is Lipschitz continuous on every compact set due to Proposition 3.7. But F (x)
is not a convex set. To get rid of this di�culty, we de�ne F̂ (x) := convF (x)
for each x ∈ Rn. This function has obviously convex values and they are closed
due to Proposition 3.17(iii). It is also Lipschitz continuous on compact sets as
we will see now. Let K ⊂ Rn be compact and L > 0 the constant such that

F (x) ⊂ F (y) + L‖x− y‖B

for all x, y ∈ K. Then

F (x) ⊂ convF (y) + L‖x− y‖B,

which is equivalent to

convF (x) ⊂ convF (y) + L‖x− y‖B. (3.42)

This follows from Proposition 3.17 and Example 3.18: L‖x − y‖B is a convex
set and therefore the sum on the right hand side of (3.42) is convex, too. Since
convF (x) is the smallest convex set containing F (x), it has to be a subset of
convF (y) + L‖x − y‖B. Therefore, F̂ (x) ⊂ F̂ (y) + L‖x − y‖B. This shows
Lipschitz continuity of F̂ .
Consider a family of matricesM = {Aj ∈ Rn×n | j = 1, . . . ,m} and a related
linear switched system

ẋ = Aσ(t)x, σ ∈ S.
From Proposition 3.36 we know that a solution ϕ(·;x0, σ) with an initial condi-
tion x0 ∈ Rn exists for every t ≥ 0. If we set

A(x) := conv{Ajx | j = 1, . . . ,m},

then ϕ(·;x0, σ) is also a solution to the di�erential inclusion

ẋ ∈ A(x).
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Let T > 0 be arbitrary and C = {x ∈ Rn | ‖x‖ = 1}. Then Theorem 3.41 tells
us that there exists a constant M > 0 such that

∀t ∈ [0, T ], x0 ∈ C, σ ∈ S : ‖ϕ(t;x0, σ)‖ ≤M,

and therefore,
∀t ∈ [0, T ], σ ∈ S : ‖Φσ(t, 0)‖ ≤M. (3.43)

That is, the fundamental matrix Φσ(·, 0) is uniformly bounded over all σ ∈ S
on bounded intervals [0, T ].
If we are interested in the behavior of solutions to switched systems or di�erential
inclusions, then it would be useful to know that there exist subsets in Rn, such
that solutions which enter one of those sets never leave it again. This property
is re�ected by the term invariance.

De�nition 3.42. A set C ⊂ Rn is called invariant by di�erential inclusion
(3.40), if any solution of (3.40) with initial value x0 ∈ C remains in C for
every time t, i.e. x(0) = x0 ∈ C ⇒ x(t) ∈ C for all t ≥ 0.

Remark 3.43. We have shown above how a di�erential inclusion ẋ ∈ F (x) is
related to a switched system ẋ = fσ(t)(x). We will therefore call a set C ∈ Rn
invariant by a given switched system, if it is invariant by the related di�erential
inclusion.

Theorem 3.44. Let F : Rn → P(Rn) be a set-valued map with nonempty
compact values for each x ∈ Rn and C ⊂ Rn a closed convex set. Assume that
F is Lipschitz continuous on every compact subset K ⊂ Rn. Then the following
conditions are equivalent.

(i) The set C is invariant by di�erential inclusion (3.40).

(ii) For any point x ∈ C the following inclusion holds:

F (x) ⊂ TC(x). (3.44)

Proof. �(i)⇒(ii)� Let x ∈ C be arbitrary. By assumption, every solution x(·)
of (3.40) remains in C for every time t ≥ 0, i. e. d(x(t), C) ≡ 0. Pick any
w ∈ F (x). Then there exists a solution to (3.40) which is di�erentiable in
t = 0 with x(0) = x and ẋ(0) = w, see the proof of Theorem (4.4) in [10] and
references therein. Remember from basic analysis that if x(t) is di�erentiable
in t, then x(t+ λ) = x(t) + λẋ(t) + r(λ) where r(·) is a function which satis�es
r(λ)/λ→ 0 if λ→ 0. Thus

lim
λ↘0

1

λ
d(x+ λw,C) = lim

λ↘0

1

λ
d(x(0) + λẋ(0), C)

= lim
λ↘0

1

λ
d(x(0) + λẋ(0) + r(λ), C)

= lim
λ↘0

1

λ
d(x(λ), C) = 0.

Hence w ∈ TC(x) according to Proposition 3.22.
�(ii)⇒(i)�14 Let x ∈ C. Consider a solution of (3.40) with x(0) = x. By
de�nition, x(·) is absolutely continuous. The function g(t) := d(x(t), C) is

14[33, Theorem 5.6]
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absolutely continuous as well by Propositions 3.5 and 3.9. Our goal is to show
that g(t) = 0 for all t ≥ 0. This implies that x(t) ∈ C for all t ≥ 0.
The derivatives ẋ(t) and ġ(x(t), C) exist for almost every t > 0. Choose one of
these t. Let y ∈ π(x(t), C) and w ∈ TC(y). For an arbitrary sequence αk ↘ 0
there exists a sequence uk → 0 such that y + αkw + αkuk ∈ C for all k ∈ N by
Corollary 3.23. If x(t) is di�erentiable in t, then x(t+ α) = x(t) + αẋ(t) + r(α)
where r(·) satis�es r(α)/α→ 0 if α→ 0. Now,

ġ(t) = lim
α→0

1

α

[
d(x(t+ α), C)− d(x(t), C)

]
= lim
α→0

1

α

[
d(x(t) + αẋ(t) + r(α), C)− d(x(t), C)

]
Consider a sequence αk ↘ 0. For each k ∈ N we have

1

αk

[
d(x(t) + αkẋ(t) + r(αk), C)− d(x(t), C)

]
≤ 1

αk

[∥∥x(t) + αkẋ(t) + r(αk)− (y + αkw + αkuk)
∥∥− ∥∥x(t)− y

∥∥]
Taking the limit, we conclude

lim
k→∞

1

αk

[∥∥x(t) + αkẋ(t) + r(αk)− (y + αkw + αkuk)
∥∥− ∥∥x(t)− y

∥∥]
= lim
k→∞

1

αk

[∥∥x(t) + αkẋ(t)− (y + αkw)
∥∥− ∥∥x(t)− y

∥∥]
≤ lim
k→∞

1

αk

[∥∥x(t)− y
∥∥+ αk

∥∥ẋ(t)− w
∥∥− ∥∥x(t)− y

∥∥]
=
∥∥ẋ(t)− w

∥∥.
Since w ∈ TC(y) was arbitrary and with the assumption (3.44), we obtain

ġ(t) ≤ d(ẋ(t), TC(y)) ≤ d(ẋ(t), F (y)).

Choose a compact set K ⊂ Rn which contains both x(t) and y. By assumption,
F (·) is Lipschitz continuous on K with a constant L > 0 and it holds that
F (x(t)) ⊂ F (y) + L‖x(t) − y‖B. Since ẋ(t) ∈ F (x(t)), we can continue our
inequality by

d(ẋ(t), F (y)) ≤ L‖x(t)− y‖ = Ld(x(t), C) = Lg(t).

We started with x(0) ∈ C, so g(0) = 0. By applying Corollary 3.38, we arrive
at g(t) ≡ 0 and hence x(t) ∈ C for all t ≥ 0.

We will extensively use the above theorem in Chapter 4 to establish invariance
of sets that are of interest when investigating epidemiological models. At this
point we would like to consider linear switched systems. Assume we have given
a �nite family of matricesM = {Aj ∈ Rn×n | j = 1, . . . ,m}, whose o�-diagonal
entries are nonnegative. That is, for Aj = (ajik) ∈M we have ajik ≥ 0 for every
i 6= k. Such matrices are called Metzler. Now the related switched system

ẋ = Aσ(t)x, σ ∈ S, (3.45)
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gives rise to a di�erential inclusion

ẋ ∈ A(x), (3.46)

where A(x) := {Ajx | j = 1, . . . ,m}. We aim to show that (3.45) is a positive
system. The strategy to do this is to prove that the positive orthant Rn+ is an
invariant set by di�erential inclusion (3.46). Remember that the tangent cone
of the positive orthant is given by

TRn+(x) = {z ∈ Rn | zi ≥ 0 if xi = 0},

see Proposition 3.24. The set-valued map A : Rn → P(Rn) surely satis�es the
conditions of Theorem 3.44. Hence all we have to do is to verify that for all
x ∈ Rn+ the inclusion A(x) ⊂ TRn+(x) holds. This is evident since for every x ≥ 0
with xi = 0 and every j = 1, . . . ,m we have

(Ajx)i =

n∑
k=1

ajikxk =
∑
k 6=i

ajikxk ≥ 0

by the de�nition of Aj . We conclude by the above theorem that the system
(3.45) is positive.

Remark 3.45. Positive switched linear systems have a remarkable property.
Since

ϕ(t;x0, σ) = Φσ(t, 0)x0 ≥ 0 ∀t > 0, x ∈ Rn+, σ ∈ S,
we can deduce from Lemma 3.11(iv) that Φσ(t, 0) ≥ 0 for all t > 0. It holds
even more. Let t1 > 0 and σ ∈ S be arbitrary. De�ne the switching signal ω by
ω(t) := σ(t+ t1). If ϕ(t; t1, x

1) denotes the solution to

ẋ = Aσ(t)x, x(t1) = x1,

and ψ(t; 0, x1) denotes the solution to

ẋ = Aω(t)x, x(0) = x1,

then ψ(t−t1; 0, x1) = ϕ(t; t1, x
1) for all t ≥ t1 and all x1 ∈ Rn. Hence we receive

Φω(t− t1, 0)x1 = ψ(t− t1; 0, x1) = ϕ(t; t1, x
1) = Φσ(t, t1)x1

and therefore Φω(t− t1, 0) = Φσ(t, t1). From above we know that Φω(t− t1, 0)
is a nonnegative matrix and so

Φσ(t, t1) ≥ 0 ∀t ≥ t1 ≥ 0. (3.47)

3.5.4 Stability of Switched Systems

Our goal in the analysis of epidemiological models is the investigation of stability
properties. For this, we recapitulate the standard notions of Lyapunov stability
and introduce the specialties concerned with switched systems.
Let

ẋ = f(x) (3.48)

be a time-invariant di�erential equation with locally Lipschitz continuous right-
hand side f : D → Rn, where D ⊂ Rn is open. With x(t;x0) we denote the
solution to (3.48) with initial condition x(0;x0) = x0. Assume x̄ ∈ D is an
equilibrium point, i.e. f(x̄) = 0.
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De�nition 3.46. We say that x̄ is

(i) stable, if for every ε > 0 there exists a δ > 0 such that

‖x0 − x̄‖ < δ ⇒ ‖x(t;x0)− x̄‖ < ε ∀t ≥ 0.

(ii) attractive, if there exists an R > 0 such that

‖x0 − x̄‖ < R ⇒ lim
t→∞

x(t;x0) = x̄.

(iii) asymptotically stable, if it is stable and attractive.

(iv) globally asymptotically stable, if it is asymptotically stable and the region
of attraction

A(x̄) := {x0 ∈ D | lim
t→∞

x(t;x0) = x̄}

is the whole domain D.

Note that the above de�nitions could also be applied to a nonempty compact
set M ⊂ D instead of a single point x̄. For this, simply replace the norm ‖ · ‖
by the distance function d(·,M) and �=� by �∈� in (ii) and (iv).15

Now we attend to stability notions for switched systems. Recall the setting of
Section 3.5.3. For a given σ ∈ S and x0 ∈ D, x(·;x0, σ) denotes the unique
solution of ẋ(t) = fσ(t)(x(t)) satisfying x(0;x0, σ) = x0.

De�nition 3.47. A nonempty compact set M ⊂ D is called

(i) uniformly stable, if for each ε > 0 there exists a δ > 0 such that for every
σ ∈ S,

d(x0,M) < δ ⇒ d(x(t;x0, σ),M) < ε ∀t ≥ 0.

(ii) uniformly attractive, if for each η > 0 there exist an R > 0 and a time
T > 0 such that for each σ ∈ S,

d(x0,M) < R ⇒ d(x(t;x0, σ),M) < η ∀t ≥ T.

(iii) globally uniformly attractive, if it is uniformly attractive and the region of
attraction

A(M) := {x0 ∈ D | lim
t→∞

x(t;x0, σ) ∈M ∀σ ∈ S}

is the whole domain D.

(iv) (globally) uniformly asymptotically stable, if it is uniformly stable and
(globally) uniformly attractive.

The main extension of De�nition 3.47 compared to De�nition 3.46 is that all
constants in the latter de�nition are independent of the choice of σ ∈ S. This
property is re�ected by the notion uniform.
The immediate question now is, how can we verify whether a given set or an
equilibrium point satis�es one of the stability notions above? We will study this

15Stability notions of compact sets are properly de�ned in the book [9] of Bhatia and Szeg®,
Chapter V.
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problem for linear systems �rst and attend to nonlinear systems afterwards.
From stability theory of linear time-invariant systems we know, that x̄ = 0
is an asymptotically stable equilibrium for the system ẋ = Ax, A ∈ Rn×n, if
and only if all eigenvalues of A have negative real part.16 Such matrices are
called Hurwitz. Note that in the following we use to speak about stability of a
linear system instead of a particular solution to it. This is justi�ed by the fact
that for linear systems, an arbitrary solution has one of the stability properties
mentioned above if and only if the trivial solution x̄ ≡ 0 has it.17

Assume we have given a set of matricesM = {Aj ∈ Rn×n | j = 1, . . . ,m}, and
an arbitrary σ ∈ S. One could suppose now, that the switched linear system

ẋ = Aσ(t)x (3.49)

is uniformly asymptotically stable if all matrices Aj are Hurwitz. Actually
this is not the case. There exist switched systems, where all subsystems are
asymptotically stable, but where appropriate switching leads to an unstable
switched system. This is illustrated in [27, Chapter 2]. However, there are
several criteria which assure that arbitrary switching does not change stability
characteristics of a system. We cite one of these, that will be of use later.

Theorem 3.48. Let {Aj ∈ Rn×n | j = 1, . . . ,m} be a �nite family of Hurwitz
matrices. Assume that all matrices commute pairwise, i.e. AjAk = AkAj for
all j, k ∈ {1. . . . ,m}. Then the switched linear system ẋ = Aσ(t)x is globally
uniformly exponentially stable.18 That is, there exist constants c, λ > 0 such
that

‖x(t;x0, σ)‖ ≤ ce−λt‖x0‖ (3.50)

for all t ≥ 0, x0 ∈ Rn, σ ∈ S.

Remark 3.49. Uniform exponential stability can also be expressed using the
fundamental matrix. If (3.49) is globally uniformly exponentially stable, then
there exist c, λ > 0 such that

‖Φσ(t, s)‖ ≤ ce−λ(t−s) ∀t ≥ s ≥ 0, σ ∈ S. (3.51)

To see this, choose the operator norm on Rn×n

‖Φσ(t, s)‖ = max
x 6=0

‖Φσ(t, s)x‖
‖x‖

and let x0 6= 0 be a vector for which the right hand side achieves its maximum.
Then

‖Φσ(t, 0)‖ =
‖Φσ(t, 0)x0‖
‖x0‖

=
‖x(t;x0, σ)‖
‖x0‖

≤ ce−λt (3.52)

by (3.50).
Now de�ne ω(t) := σ(t + s) for an arbitrary s > 0. Obviously, ω ∈ S. Let
ψ(·) := ψ(·;x(s;x0, σ), ω) be the solution of ẋ(t) = Aω(t)x(t). Then, on one

hand, ‖ψ(t)‖ ≤ ce−λt‖ψ(0)‖ for all t ≥ 0 by (3.50). On the other hand, ψ(t) =

16See for instance [5, Satz 7.5.5].
17See [5, Satz 7.5.1].
18See [27, Theorem 2.5]. Note that exponential stability is a stronger property than asymp-

totic stability and implies the latter one, cf. Chapter 2.1.1 in the book.

40



x(t + s;x0, σ) for all t ≥ 0. Thus, ‖x(t + s;x0, σ)‖ ≤ ce−λt‖x(s;x0, σ)‖ and by
substituting τ := t+ s we get

‖x(τ ;x0, σ)‖ ≤ ce−λ(τ−s)‖x(s;x0, σ)‖ (3.53)

for all τ ≥ s. A combination of (3.52) and (3.53) yields (3.51).

There exists another quantity to characterize uniform exponential stability of a
switched linear system, the joint Lyapunov exponent. For this, consider the set
of time t fundamental matrices associated to (3.49) which is given by

Ht := {Φσ(t, 0) | σ ∈ S} ∀t > 0, H0 := {I},

and the set H :=
⋃
t∈R+

Ht. H is a semigroup, i. e. for two matrices S, T ∈ H
it holds that TS ∈ H. To see this, take t1, t2 > 0 and σ1, σ2 ∈ S. Then
Φσ1

(t1, 0) ∈ Ht1 and Φσ2
(t2, 0) ∈ Ht2 . De�ne σ : R+ →M by

σ(t) =

{
σ1(t) 0 ≤ t ≤ t1,
σ2(t− t1) t1 < t.

Then σ ∈ S and

Φσ(t1 + t2, 0) = Φσ2
(t2, 0)Φσ1

(t1, 0) ∈ Ht1+t2 ⊂ H. (3.54)

We de�ne the growth at time t by

ρt(M) := sup
σ∈S

1

t
log ‖Φσ(t, 0)‖.

Then the joint Lyapunov exponent is given by

ρ(M) := lim
t→∞

ρt(M).

Note that due to equivalence of norms on Rn×n the joint Lyapunov exponent is
independent of the chosen operator norm. Now the following proposition holds.

Proposition 3.50. If the switched linear system (3.49) is uniformly stable,
then ρ(M) ≤ 0. The system is uniformly exponentially stable if and only if
ρ(M) < 0.

Proof. If the system (3.49) is uniformly stable, then for a �xed ε > 0 there exists
δ > 0 such that for all σ ∈ S the following implication holds:

‖x0‖ < δ ⇒ ‖x(t;x0, σ)‖ = ‖Φσ(t, 0)x0‖ < ε ∀t ≥ 0.

Take the operator norm on Rn×n. For each σ ∈ S and each t ≥ 0 there exists a
vector x ∈ Rn with ‖x‖ = 1 and

‖Φσ(t, 0)‖ =
‖Φσ(t, 0)x‖
‖x‖

. (3.55)

This equality still holds for x̃ := (δ/2)x. Together with the stability assumption
we obtain

‖x(t; x̃, σ)‖ = ‖Φσ(t, 0)x̃‖ = ‖Φσ(t, 0)‖‖x̃‖ = ‖Φσ(t, 0)‖δ
2
< ε,
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or equivalently,

‖Φσ(t, 0)‖ < 2ε

δ
=: M ∀σ ∈ S, t ≥ 0.

This yields ρt(M) ≤ 1
t logM and therefore ρ(M) ≤ 0.

Let us turn to the second statement. If the system (3.49) is uniformly exponen-
tially stable, then there exist constants M > 0, β < 0 such that

‖Φσ(t, 0)‖ ≤Meβt ∀t ≥ 0, σ ∈ S.

Therefore the following inequality holds for all t ≥ 0.

ρt(M) = sup
σ∈S

1

t
log ‖Φσ(t)‖

≤ 1

t
log(Meβt) =

1

t
log(M) +

1

t
log(eβt) =

1

t
log(M) + β

Taking the limit t→∞ we receive ρ(M) ≤ β which was supposed to be negative.
Conversely, assume that ρ(M) < 0. Then for every ρ(M) < β < 0 there exists
a time T > 0 such that

∀t ≥ T : ρt(M) = sup
σ∈S

1

t
log ‖Φσ(t, 0)‖ < β.

Equivalenty,

∀t ≥ T,Φ(t, 0) ∈ Ht :
1

t
log ‖Φσ(t, 0)‖ < β,

and thus,
∀t ≥ T,Φ(t, 0) ∈ Ht : ‖Φσ(t, 0)‖ < eβt.

By (3.43) we know that there exists a constant M̃ > 0 such that ‖Φσ(t, 0)‖ ≤ M̃
for all 0 ≤ t ≤ T and all σ ∈ S. Set M = M̃e−βT . Then

∀t ≥ 0, σ ∈ S : ‖Φσ(t, 0)‖ ≤Meβt,

which shows uniform exponential stability.

Note that ρ(M) ≤ 0 is not su�cient to verify uniform stability of a linear
switched system. Consider the example

ẋ =

(
0 1
0 0

)
x. (3.56)

The fundamental matrix as well as the solution to the above di�erential equation
are given by

Φ(t, 0) =

(
1 t
0 1

)
, ϕ(t;x0) = Φ(t, 0)x0 =

(
x0

1 + tx0
2

x0
2

)
.

The column sum norm of the fundamental matrix is ‖Φ(t, 0)‖1 = 1 + t for all
t > 0. This gives ρ(M) = 0. But the solution ϕ(·;x0) is obviously unbounded
for t→∞ if x0

2 6= 0 and therefore the system (3.56) is not stable.
In the analysis of switched linear systems a special type of norm plays a funda-
mental role as we will see in Chapter 4.
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De�nition 3.51. Let M⊂ Rn×n be a �nite set of matrices. A norm v on Rn
is called extremal for the associated semigroup H, if for all x ∈ Rn and all t ≥ 0
we have

v(Sx) ≤ eρ(M)tv(x) ∀S ∈ Ht. (3.57)

Extremal norms have the following notable property. Assume the linear switched
system (3.49) is stable and therefore ρ(M) ≤ 0 by Proposition 3.50. Thus any
solution ϕ(·;x0, σ) of (3.49) is decreasing in the sense that

v(ϕ(t;x0, σ)) ≤ v(x0) ∀t ≥ 0. (3.58)

Since extremal norms are useful for the stability analysis of linear systems (and
even nonlinear systems, as we will see later), it is essential to know conditions
under which they exist. For later use it will be useful to claim that such a norm
is additionally absolute.

Proposition 3.52. LetM be a �nite set of Metzler matrices. If the associated
switched linear system (3.49) is uniformly stable and ρ(M) = 0, then there
exists an absolute extremal norm for this system.

Proof. Let ‖ · ‖ be an absolute norm on Rn. Then de�ne

v(x) := sup
S∈H
‖Sx‖ ∀x ∈ Rn+, (3.59)

and set v(x) := v(|x|) for x ∈ Rn. It follows directly from the de�nition that if
v is a norm, then it is absolute. At �rst we have to show that v : Rn → R, i. e.
v(x) <∞ for all x ∈ Rn. Since the system is uniformly stable, it holds that

∀ε > 0 ∃δ > 0 : ‖x‖ < δ ⇒ ‖Sx‖ < ε ∀S ∈ H.

Let x ∈ Rn be arbitrary and choose η > 0 such that ‖ηx‖ < δ. Then ‖S(ηx)‖ <
ε ⇔ ‖Sx‖ < ε/η for all S ∈ H. This shows that v(x) < ∞ for every x ∈ Rn.
We continue to verify the norm axioms. (i) Since I ∈ H we have v(x) =
supS∈H ‖S|x|‖ ≥ ‖x‖ and v(0) = 0. Hence v is positive de�nite. (ii) For α ∈ R
it holds that

v(αx) = sup
S∈H
‖S|αx|‖ = |α| sup

S∈H
‖S|x|‖ = |α|v(x),

thus v is absolutely homogeneous. (iii) The triangle inequality holds due to

v(x+ y) = sup
S∈H
‖S|x+ y|‖ ≤ sup

S∈H
‖S|x|+ S|y|‖

≤ sup
S∈H
‖S|x|‖+ sup

S∈H
‖S|y|‖ = v(x) + v(y),

where the �rst inequality follows from Lemma 3.11 and the fact that an absolute
norm is monotone. Note that every S ∈ H is nonnegative, see Remark 3.45.
Finally, v is extremal since

v(Sx) = v(|Sx|) ≤ v(S|x|) = sup
T∈H
‖TS|x|‖ ≤ sup

R∈H
‖R|x|‖ = v(x).

Here, the �rst inequality follows due to Lemma 3.11(ii) and monotonicity of ‖·‖.
The second inequality is true since H is a semigroup and TS ∈ H for any two
matrices S, T ∈ H.
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The condition ρ(M) = 0 is necessary in the above proposition. If a switched
linear system is uniformly exponentially stable and therefore ρ(M) < 0, an
extremal norm need not exist. Consider the example

ẋ =

(
−1 1
0 −1

)
x.

The fundamental matrix to this system is given by

Φ(t, 0) = e−t
(

1 t
0 1

)
.

The column sum norm of it is ‖Φ(t, 0)‖1 = e−t(1+t) and ρt = 1
t log(e−t(1+t)) =

−1 + 1
t log(1 + t) such that ρ = −1. Let t > 0 be arbitrary and set

P =

(
1 t
0 1

)
, then Pn =

(
1 nt
0 1

)
.

If there existed an extremal norm v for the above system, then for all x ∈ Rn,

v(Φ(t, 0)x) ≤ e−tv(x) ⇔ v(Φ(t, 0)) ≤ e−t

would hold for the induced operator norm. Consequently, v(P ) ≤ 1. But
this inequality is wrong for every operator norm on Rn×n. To see this, take
the column sum norm: ‖Pn‖1 = 1 + nt such that limn→∞ ‖Pn‖1 = ∞. Since
norms on Rn×n are equivalent, the limit holds for an arbitrary operator norm.
Operator norms are submultiplicative such that v(Pn) ≤ v(P )n holds for all
n ∈ N and hence ∞ = limn→∞ v(Pn) ≤ limn→∞ v(P )n which implies v(P ) > 1.
Therefore an extremal norm cannot exist for the above system.
If ρ(M) < 0 for a switched linear system, then we can construct an absolute
norm which is �almost extremal�.

Proposition 3.53. Let M be a �nite set of Metzler matrices. If ρ(M) < 0,
then for all β ∈ R satisfying ρ(M) < β < 0 there exists an absolute norm
v : Rn → R such that for all x ∈ Rn and all t ≥ 0 we have

v(Sx) ≤ eβtv(x) ∀S ∈ Ht. (3.60)

Proof. Let ‖ · ‖ be an absolute norm on Rn. Then de�ne

v(x) := sup
t≥0,S∈Ht

‖e−βtSx‖ ∀x ∈ Rn+,

and set v(x) := v(|x|) for x ∈ Rn. At �rst we have to show that v(x) < ∞ for
all x ∈ Rn. From Proposition 3.50 we know that the switched linear system
associated to M is uniformly exponentially stable and for any ρ(M) < β < 0
there exists an M > 0 such that

‖Sx‖ ≤Meβt‖x‖ ∀x ∈ Rn, t ≥ 0, S ∈ Ht.

With that we receive

v(x) = sup
t≥0,S∈Ht

‖e−βtS|x|‖ = sup
t≥0,S∈Ht

e−βt‖S|x|‖

≤ sup
t≥0

e−βtMeβt‖|x|‖ = M‖|x|‖ <∞ ∀x ∈ Rn.
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Veri�cation of norm axioms goes analogously to that of the norm given in the
proof of Proposition 3.52. By construction, v is absolute. Finally let τ ≥ 0 be
arbitrary and S ∈ Hτ . Then for all x ∈ Rn,

v(Sx) = sup
t≥0,T∈Ht

‖e−βtT |Sx|‖ ≤ sup
t≥0,T∈Ht

‖e−βtTS|x|‖

≤ sup
t≥0,R∈Ht+τ

‖e−βtR|x|‖ = eβτ sup
t≥0,R∈Ht+τ

‖e−β(t+τ)R|x|‖

≤ eβτ sup
t≥0,R∈Ht

‖e−βtR|x|‖ = eβτv(x).

Here the �rst inequality follows from Lemma 3.11 and monotonicity of ‖·‖. The
second inequality holds since H is a semigroup. If S ∈ Hτ and T ∈ Ht then
TS ∈ Ht+τ , see (3.54).

We shall now study stability properties of nonlinear systems. The main tool
for stability analysis of nonlinear systems are Lyapunov functions. Assume
f : D → Rn, de�ned on an open subset D ⊂ Rn, is locally Lipschitz continuous
and consider the nonlinear time-invariant di�erential equation

ẋ = f(x). (3.61)

De�nition 3.54. Let x(·;x0) be the solution to (3.61) with initial condition
x(0;x0) = x0 ∈ D and M ⊂ D be a nonempty compact set. A continuous map
V : D → R is called a Lyapunov function for the di�erential equation (3.61) at
M on D if

(i) x ∈M ⇒ V (x) = 0 and x /∈M ⇒ V (x) > 0, (positive de�niteness)

(ii) V (x(t;x0)) < V (x0) for x0 /∈M , t > 0. (decrease condition)

If the inequality in (ii) is not strict, then V is called a weak Lyapunov function.
A (weak) Lyapunov function is called uniformly unbounded on D, if for any
α > 0 there exists a compact set K ⊂ D, K 6= D, such that V (x) ≥ α for each
x /∈ K.

A function V that satis�es the �rst property is called positive de�nite away from
M . IfM = {0} then V is simply called positive de�nite. The next theorem shows
the relation between Lyapunov functions and stability.

Theorem 3.55. Given the assumptions of De�nition 3.54, the following propo-
sitions hold.

(i) If there exists a weak Lyapunov function for (3.61) at M on D, then M
is stable.

(ii) If there exists a Lyapunov function for (3.61) at M on D, then M is
asymptotically stable.

(iii) If there exists a uniformly unbounded Lyapunov function for (3.61) at M
on D, then M is globally asymptotically stable.

Proof. All assertions are proved in [9, Chapter V]. (i),(ii),(ii) are Theorems 4.5,
2.2, 2.13 there, respectively.
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The great challenge in stability theory is to �nd a function that �ts as a
Lyapunov function for a given system. If we have constructed a candidate
V : D ⊂ Rn → R, we have to verify whether the function satis�es properties (i)
and (ii) of De�nition 3.54. But how could we verify the second property if we
didn't know the solutions to our system? The good news is, if V is continuously
di�erentiable, then veri�cation of the decrease condition becomes rather simple.
Assume we have given system (3.61) and a continuously di�erentiable solution
x(·) = x(·;x0) with x(0;x0) = x0, further a continuously di�erentiable function
V : D → R. Consider V (x(·)) : R→ R. Its derivative is given by

d

dt
V (x(t)) = ∇V (x(t)) · ẋ(t) = ∇V (x(t)) · f(x(t)). (3.62)

On the other side, ∫ t

0

d

dτ
V (x(τ))dτ = V (x(t))− V (x0). (3.63)

Hence if we can assure

∇V (x)f(x) < 0 ∀x /∈M, (3.64)

then V (x(t))−V (x0) < 0 for all x0 /∈M, t > 0 and therefore V satis�es property
(ii) of De�nition 3.54. The same argument holds if �<� is replaced by �≤� in both
the de�nition and (3.64). Thus for di�erentiable functions we have a practical
method at hand to verify the decrease condition. But it means a limitation
only to take di�erentiable functions into account when looking for a Lyapunov
function. Assume the set M we want to test for stability is the point x̄ = 0.
Now look at the �rst requirement in De�nition 3.54. Any norm on Rn is positive
de�nite and would therefore perfectly �t this condition! So we would have a
large class of functions at our disposal to build Lyapunov functions. But norms
are not di�erentiable, so the decrease condition is hard to verify. Fortunately
there exists a theory to solve this problem which uses the concept of generalized
gradients we introduced at the end of Section 3.4.
Assume V is locally Lipschitz continuous. Then the Clarke generalized gradient
∂CV (x) exists for every x ∈ D. Assume further an absolutely continuous func-
tion ϕ : R → D with ϕ(0) = x0 ∈ D. Then the composition V ◦ ϕ : R → R is
absolutely continuous by Proposition 3.9 and thus (3.63) holds for every t ∈ R
by Theorem 3.10. An interesting question is whether there exists a formula to
compute d

dtV (ϕ(t)) similar to (3.62). The following proposition, which is stated
in the paper [6], answers this question under a certain assumption to which we
attend subsequently.

Proposition 3.56. Let V : D ⊂ Rn → R be locally Lipschitz continuous and
nonpathological, and ϕ : R→ D be absolutely continuous. Then for almost every
t ∈ R we have

{〈p, ϕ̇(t)〉 | p ∈ ∂CV (x)} =
{
d
dtV (ϕ(t))

}
. (3.65)

With this �chain rule� we are able to formulate an analogous criterion to (3.64)
to establish (asymptotic) stability of a nonlinear system. Assume ϕ is a solution
to (3.61) with ϕ(0) = x0, then for almost every t ∈ R we have ϕ̇(t) = f(ϕ(t))
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and d
dtV (ϕ(t)) = 〈p, f(ϕ(t))〉 for all p ∈ ∂CV (ϕ(t)) due to (3.65). Hence if we

assure 〈
p, f(x)

〉
< 0 ∀p ∈ ∂CV (x), x 6= 0, (3.66)

then the left-hand side in (3.63) is negative and thus V satis�es the decrease
condition (ii) in De�nition 3.54. The same holds if �<� is replaced by �≤� in
both the de�nition and (3.66). Lyapunov functions where the approach (3.66)
is used to verify the decrease condition are sometimes referred to as nonsmooth
Lyapunov functions. Now what are nonpathological functions? Baciotti and
Ceragioli give a de�nition of this property in their paper [6], but we shall not
impose this notion on the reader. It su�ces to know that convex functions and
di�erentiable functions are nonpathological as well as products of the two.
The concept of Lyapunov functions is also suitable to prove stability properties
of switched systems. Consider a family of locally Lipschitz continuous functions
fj : D → Rn, j ∈ {1, . . . ,m} on a common open domain D ⊂ Rn and the
associated systems

ẋ = fj(x), j ∈ {1, . . . ,m}. (3.67)

Given a switching signal σ ∈ S, the related switched system would be

ẋ(t) = fσ(t)(x(t)). (3.68)

Theorem 3.57. Assume that M is a nonempty compact set in the common
domain D of all maps fj, j = 1, . . . ,m.

(i) If there exists a function V : D → R which is a common weak Lyapunov
function for all systems of family (3.67) at M on D, then M is uniformly
stable.

(ii) If there exists a function V : D → R which is a common Lyapunov func-
tion for all systems of family (3.67) at M on D, then M is uniformly
asymptotically stable. If moreover V is uniformly unbounded, then M is
globally uniformly asymptotically stable.

Proof. The second part can be found in the book [27] of Liberzon. Clarke et
al. treat the subject in [11, Chapter 4] in a very general setting, considering
di�erential inclusions and nonsmooth Lyapunov functions. In addition the au-
thors consider stability from a control theoretic point of view. In this context,
stability is known under the keyword strong invariance.

At the end of this section we would like to point to a small detail concerning
Lyapunov functions. In many books, the requirement (3.64) is replaced by the
following. There shall exist a positive de�nite function W : D → R away from
M such that for all x /∈M ,

∇V (x)f(x) ≤ −W (x).

For certain switched systems, this slightly stronger assumption compared to
(3.64) is essential. Consider the following example which is taken from the book
[27, Example 2.1].

Example 3.58. Let j ∈ I := (0, 1] and de�ne fj(x) = −jx. This gives a family
of systems ẋ = fj(x). The equilibrium x̄ = 0 is asymptotically stable and

47



V (x) = x2/2 is a suitable Lyapunov function for each of these systems. The
related switched system

ẋ = −σ(t)x

has the solutions
x(t) = e−

∫ t
0
σ(τ)dτx(0).

Hence every every switching signal σ ∈ L1([0,∞), I), that is a function for
which

∫∞
0
|σ(t)|dt < ∞, produces a trajectory that does not converge to zero.

This happens because the rate of decay of V along the jth constituent system

∇V (x)fj(x) = −jx2

gets smaller for small values of j. If σ(·) goes to zero too fast, we do not have
asymptotic stability. Accordingly there does not exist a positive de�nite function
W : R→ R, only depending on x and not on j, such that ∇V (x)fj(x) < −W (x)
for all j ∈ I. Condition (3.64) is not su�cient in this situation to establish
asymptotic stability. However, if we are concerned with only �nitely many
constituent systems, then (3.64) is adequate. In this case we could de�ne W by
W (x) := −max{∇V (x)fj(x) | j = 1, . . . ,m}.
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4 Analysis of Switched Epidemiological Models

Now all mathematical instruments are available to investigate the switched epi-
demiological models we introduced in Section 2.5. The question we want to
study is, can we indicate conditions under which an epidemic dies out, indepen-
dent of the initial number of infectives in a population? That is, the number
of infectives converges to zero as t goes to in�nity. In reality we are faced with
several di�culties when modeling infectious diseases. For example the infectiv-
ity of a disease will change during time. This is why we introduced time-variant
switched models. Although we are aware of this fact, it is in general not possi-
ble to determine exact infectivity rates and the instants at which they change.
Instead, we might have several estimates for infectivity rates but don't know
at which time they apply. Despite these uncertainties we would like to know if
an epidemic vanishes. The mathematical concept to describe such a behavior
is that of uniform asymptotic stability. Assume we have given di�erent sce-
narios of spread of a disease, as considered in Section 2.5. If the state x̄ = 0,
where no infectives occur, is globally uniformly asymptotically stable, then the
number of infectives will decrease to zero, no matter how many infectives were
initially present and no matter when each of the di�erent scenarios exactly ap-
plies. Before we get in the analysis of the di�erent epidemiological models, we
shall recapitulate the general framework.
Let n,m ∈ N. For j = 1, . . . ,m, the matrices Bj ∈ Rn×n are nonnegative.
Γj ,Mj ,Ωj ∈ Rn×n and Dj := Γj + Mj are diagonal matrices with positive
entries on the diagonal. For a �xed index j and i ∈ {1, . . . , n}, the diagonal
entry of Γj ,Mj ,Ωj , Dj with index ii is described by γi, µi, ωi, αi, respectively,
and Bj = (bik), i, k = 1, . . . , n. The set of all Lebesgue measurable functions
mapping from the interval [0,∞) to the index set {1, . . . ,m} is de�ned by S :=
{σ : R+ → {1, . . . ,m} | σ is measurable}. We begin our investigation with the
SIS model, since it builds the basis for the analysis of SIR and SIRS models.

4.1 The SIS Model

In this section, the state vector x = (x1, . . . , xn)T is n-dimensional. Given
multiple triples of matrices (Bj ,Γj ,Mj), j = 1, . . . ,m, as de�ned above, each of
these triples constitutes an SIS epidemiological model

ẋ = (−Dj +Bj)x− diag(x)Bjx =: gj(x). (4.1)

If we add a switching signal σ ∈ S, the system

ẋ = (−Dσ(t) +Bσ(t))x− diag(x)Bσ(t)x =: gσ(t)(x) (4.2)

gives rise to a switched SIS epidemiological model. Its linearization is then given
by

ẋ = (−Dσ(t) +Bσ(t))x. (4.3)

First of all we would like to show that the switched multigroup SIS model (4.2)
is well de�ned in the following way. The state variables xi(t) in this model
represent the fractions Ii(t)/Ni of infectives within a population and should
therefore take values in the interval [0, 1] for all t > 0 if we assume x(0) ∈ [0, 1]n.
With the vocabulary we developed in Chapter 3 we have to show that the set
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Π = [0, 1]n is invariant by the system (4.2). It holds even more. The switched
SIS system is a positive system, that is the solution x(t) to (4.2) is nonnegative
for all times t > 0 if we start in the positive orthant, i. e. x(0) ≥ 0.

Proposition 4.1.

(i) The positive orthant Rn+ is an invariant set by the system (4.2) for any
σ ∈ S.

(ii) The set Π = [0, 1]n is invariant by the system (4.2) for any σ ∈ S.

Proof. We pro�t from the intensive preliminary work done in Chapter 3. Thus
we will exploit Proposition 3.24 and apply Theorem 3.44. Given a family of
functions gj : Rn → Rn describing an SIS model, we de�ne the set-valued map
G(x) := {gj(x) | j = 1, . . . ,m}. G is Lipschitz continuous on every compact set
K ⊂ Rn by Propositions 3.2 and 3.7. Both Rn+ and Π are closed convex sets.
Hence the assumptions of Theorem 3.44 are satis�ed.
(i) Let x ∈ Rn+. If xi = 0 for an index 1 ≤ i ≤ n, then the ith component of gj
is given by

gj,i(x) = −αixi + (1− xi)
n∑
k=1

bikxk =

n∑
k=1

bikxk ≥ 0.

Thus, considering Proposition 3.24, G(x) ⊂ TRn+(x) and Theorem 3.44 yields
invariance of Rn+.
(ii) Let x ∈ Π. If xi = 1 for 1 ≤ i ≤ n, then

gj,i(x) = −αixi + (1− xi)
n∑
k=1

bikxk = −αi ≤ 0.

Considering part (i) and Proposition 3.24, G(x) ⊂ TΠ(x), and Theorem 3.44
yields invariance of Π.

At the end of Section 3.5.3 we explained that linear switched systems like (4.3)
are positive systems. The next lemma tells us, that the solution of the nonlinear
system (4.2) is being majorized by the solution of the linearization (4.3).

Lemma 4.2. Consider system (4.2) and its linearization (4.3). Let x0 ∈ Rn+
and ϕ(t;x0, σ), Φσ(t, 0)x0 be the solutions of (4.2) and (4.3), respectively. Then

ϕ(t;x0, σ) ≤ Φσ(t, 0)x0 ∀t ≥ 0. (4.4)

Proof. The claim follows from the variation-of-constants formula. De�ne ϕ(t) :=
ϕ(t;x0, σ), then the solution to the system

ẋ(t) = (−Dσ(t) +Bσ(t))x(t)− diag(ϕ(t))Bσ(t)ϕ(t), x(0) = x0,

is given by

ϕ(t;x0, σ) = Φσ(t, 0)x0 −
∫ t

0

Φσ(t, s) diag(ϕ(s))Bσ(s)ϕ(s)ds.

Consider the integral. Since the linear system (4.3) is positive, we deduce from
Remark 3.45 that Φσ(t, s) ≥ 0 for all s ∈ [0, t]. By de�nition, Bσ(s) ≥ 0. From
Proposition 4.1 we know that ϕ(s) ≥ 0 for all s ≥ 0. Hence the integral is
nonnegative and therefore inequality (4.4) holds.
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The following theorem about stability of SIS models was proved in [1]. We will
exploit it to establish similar results on stability for switched SIR and SIRS
models.

Theorem 4.3. Assume that the linear switched system (4.3) is uniformly stable.
Then the disease free equilibrium x̄ = 0 ∈ Rn of the nonlinear system (4.2) is
globally19 uniformly asymptotically stable.

Proof. LetM := {−Dj+Bj | j = 1, . . . ,m}, then uniform stability of the linear
switched system (4.3) implies that the joint Lyapunov exponent ρ(M) ≤ 0 by
Proposition 3.50. We will treat the cases ρ(M) < 0 and ρ(M) = 0 separately.
(i) Assume ρ(M) < 0, then the linear switched system (4.3) is uniformly expo-
nentially stable and there exists β < 0 and an absolute norm v : Rn → R such
that for all x0 ∈ Rn+ and all σ ∈ S we have

v(Φσ(t, 0)x0) ≤ eβtv(x0) ∀t ≥ 0.

From Lemma 4.2 we know that for the solution ϕ(·;x0, σ) of the nonlinear
system (4.2) the inequality 0 ≤ ϕ(t;x0, σ) ≤ Φσ(t, 0)x0 holds for all t ≥ 0. If we
combine the two inequalities we receive

v(ϕ(t;x0, σ)) ≤ v(Φσ(t, 0)x0) ≤ eβtv(x0) ∀x0 ∈ Rn+, σ ∈ S, t ≥ 0,

since v is monotone. This proves that the equilibrium x̄ = 0 is globally uniformly
asymptotically stable for the switched SIS system (4.2).
(ii) Assume ρ(M) = 0. Then there exists an absolute extremal norm v for the
linear system (4.3), that is, for all x0 ∈ Rn+ and all σ ∈ S we have

v(Φσ(t, 0)x0) ≤ v(x0) ∀t ≥ 0. (4.5)

At �rst we show that v is a weak Lyapunov function for each of the systems
(4.1). Consider an initial value x ∈ Rn+, x 6= 0. Inequality (4.5) tells us that the
closed ball v(x)B with respect to the norm v is an invariant set by the linear
system (4.3). If we consider the related di�erential inclusion ẋ ∈ A(x) with
A(x) := {(−Dj + Bj)x | j = 1, . . . ,m}, then we deduce from Theorem 3.44
that A(x) ⊂ Tv(x)B(x). Consider a subgradient vector y ∈ ∂v(x). We have seen
in Proposition 3.29 that y is a dual vector to x. Hence we use Lemma 3.25 to
conclude that 〈y, z〉 ≤ 0 for all z ∈ Tv(x)B(x). This implies

〈y, (−Dj +Bj)x〉 ≤ 0 (4.6)

for all j ∈ {1, . . . ,m}. Further, as xi > 0 implies yi ≥ 0 by Lemma 3.14 it
follows that

〈y,−diag(x)Bjx〉 ≤ 0, (4.7)

so that we get

〈y, gj(x)〉 = 〈y, (−Dj +Bj)x〉+ 〈y,−diag(x)Bjx〉 ≤ 0. (4.8)

This shows that v is a weak Lyapunov function for each of the systems (4.1)
and therefore x̄ = 0 is uniformly stable for (4.2) by Theorem 3.57.

19Since we are dealing with a positive system, globally means that the region of attraction
of the equilibrium x̄ = 0 is A(x̄) = Rn

+.

51



The idea is now to construct a Lyapunov function out of the extremal norm v
such that for all subgradients of this new function, inequality (4.8) is always
strict. For this we have to investigate under which condition (4.8) may fail to
be strict. Due to (4.6) and (4.7) this can only be the case if in both of these
equality holds. Assuming equality in (4.7) we get

0 = −〈y,diag(x)Bjx〉 = −
n∑
i=1

yixi(Bjx)i = −
∑

xi,yi 6=0

yixi(Bjx)i

Since xi > 0 implies yi ≥ 0 we deduce that all summands in the latter sum have
to be nonnegative and if the equality holds, then all summands have to vanish.
Thus, for each i ∈ {1, . . . , n}, either yi = 0 or (Bjx)i = 0. Plugging this into
(4.6) we obtain

0 = 〈y, (−Dj +Bj)x〉 = −
∑
xi>0

yixiαi +
∑
xi=0

yi(Bjx)i.

Consider the �rst sum. We know that yi ≥ 0 if xi > 0, and the αi are positive
throughout. Thus all summands are nonnegative. y is a dual vector to x, i. e.
〈x, y〉 = ‖x‖ 6= 0 by assumption. Consequently there has to be an index i such
that xi > 0 and yi > 0. Therefore the �rst sum together with the minus sign
in front is negative. The second sum has to be positive to compensate this. So
there exists an index k ∈ {1, . . . , n} with xk = 0 and (Bjx)k > 0.
Now we want to exploit this property and therefore modify the weak Lyapunov
function v. To this end let ψ : R→ R be a C∞ function with support contained
in (−∞, 1] and so that

ψ(z) > 0, ψ′(z) < 0, ψ′′(z) ≥ 0, z ∈ [0, 1).

One might ask if such a function exists. For example ψ(z) = exp( 2
z−1 ), if z < 1,

and ψ(z) = 0 else, satis�es the above requirements.
For ε ∈ (0, 1) we de�ne ψε(z) := ψ(z+ (1− ε)) and note that the support of ψε
and all of its derivatives is contained in (−∞, ε]. Moreover, η(ε) := |ψ′ε(0)| =
maxz∈[0,ε] |ψ′ε(z)| > 0 since ψ′′ε is nonnegative on (0, ε), and η(ε)→ 0 if ε→ 0.
Fix 0 < l < L. We aim to show that for 0 < ε = ε(l, L) < 1 small enough the
function

Vε(x) := v(x)

(
1 +

n∑
i=1

ψε(xi)

)
= v(x)

(
1 +

∑
xi<ε

ψε(xi)

)
(4.9)

is a Lyapunov function for each of the systems (4.1) on the set

L := {x ∈ Rn+ | l ≤ v(x) ≤ L}.

As l > 0 may be chosen arbitrarily small and L > 0 arbitrarily large, this shows
global asymptotic stability of x̄ = 0 for each of the systems (4.1).
We proceed to verify the properties of a Lyapunov function. Obviously, Vε is
locally Lipschitz continuous, positive de�nite and uniformly unbounded on Rn+.
It remains to show that there exists an ε > 0 such that

∀j ∈ {1, . . . ,m}, x ∈ L, p ∈ ∂CVε(x) : 〈p, gj(x)〉 < 0. (4.10)
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We will do this in several steps. As we know from Proposition 3.30, each p ∈
∂CVε(x) is of the form

p = y

(
1 +

∑
xi<ε

ψε(xi)

)
+ v(x)

∑
xi<ε

ψ′ε(xi)ei, (4.11)

where ei denotes the ith unit vector and y ∈ ∂v(x), i. e. y is dual to x. For the
sake of estimation, set dmax := max{(Dj)ii | i = 1, . . . , n, j = 1, . . . ,m}. In the
following we assume a �xed j ∈ {1, . . . ,m}. De�ne the function ζ : Rn → R by

ζ(x) := max{〈y, gj(x)〉 | y ∈ ∂v(x)}.

Since ∂v(x) is a nonempty compact set for each x, the function is well de�ned.
From Lemma 3.31 we deduce that ζ is upper semicontinuous and from (4.8)
that ζ(x) ≤ 0 for x ∈ Rn+. Fix x ∈ L. We now distinguish two cases. First,
assume ζ(x) < 0. Then it is possible to choose 0 < ε < 1 so that

Lndmaxη(ε)ε < |ζ(x)| (4.12)

and this inequality is still true if we replace ε by any 0 < ε̃ < ε. In fact, since
ζ(·) is upper semicontinuous there exists a neighborhood U around x and τ > 0
such that ζ(x̃) < ζ(x) + τ < 0 for every x̃ ∈ U . Thus we can choose ε such that
(4.12) holds for all x̃ on this neighborhood. We will need this observation later.
Now we obtain for p ∈ ∂CVε(x), given by (4.11), that

〈p, gj(x)〉 =

(
1 +

∑
xi<ε

ψε(xi)

)
〈y, gj(x)〉+ v(x)

∑
xi<ε

ψ′ε(xi)〈ei, gj(x)〉 (4.13)

≤ 〈y, gj(x)〉+ v(x)
∑
xi<ε

ψ′ε(xi)(−αixi + (1− xi)(Bjx)i)

≤ ζ(x) + L
∑
xi<ε

ψ′ε(xi)
(
− αixi + (1− xi)(Bjx)i

)
= ζ(x) + L

∑
xi<ε

|ψ′ε(xi)|
(
αixi − (1− xi)(Bjx)i

)
, (4.14)

where the last equality holds since ψ′ε(z) ≤ 0 for all z ≥ 0. Further, |ψ′ε(z)| ≤
η(ε) for all z ∈ [0, ε] by de�nition of η. The matrix Bj is nonnegative such that
ψ′ε(xi)(1−xi)(Bjx)i ≤ 0 for all i and we can drop these terms in the estimation.
We continue with

≤ ζ(x) + L
∑
xi<ε

|ψ′ε(xi)|αixi ≤ ζ(x) + L
∑
xi<ε

η(ε)dmaxxi

≤ ζ(x) + Lndmaxη(ε)ε < 0

by (4.12). Secondly, consider the case ζ(x) = 0. Then we have seen that there
exists an index k such that xk = 0 and (Bjx)k > 0. Hence we can choose
0 < ε < 1 such that

ndmaxε < (Bjx)k, (4.15)

and this inequality is still true if we replace ε by any 0 < ε̃ < ε. At this point
we remark the same thing as we did in the �rst case. Since x 7→ Bjx is a
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continuous map, there exists a neighborhood U around x and τ > 0 such that
(Bj x̃)k > τ > 0 for every x̃ ∈ U . Thus we can choose ε such that (4.15) holds
for all x̃ on this neighborhood.
Continuing from (4.13) we obtain

〈p, gj(x)〉 ≤ v(x)
∑
xi<ε

|ψ′ε(xi)|
(
αixi − (1− xi)(Bjx)i

)
= v(x)

(
ψ′ε(0)(Bjx)k +

∑
xi<ε,i6=k

|ψ′ε(xi)|
(
αixi − (1− xi)(Bjx)i

))
≤ v(x)

(
ψ′ε(0)(Bjx)k +

∑
xi<ε,i6=k

η(ε)dmaxε
)

and using that ψ′ε(0) = −η(ε)

≤ −v(x)η(ε)
(
(Bjx)k − ndmaxε

)
≤ −lη(ε)

(
(Bjx)k − ndmaxε

)
< 0

by (4.15). What we have shown up to now is that for �xed j ∈ {1, . . . ,m}
and x ∈ L there exists 0 < ε < 1 such that for all p ∈ ∂CVε(x) the decrease
condition 〈p, gj(x)〉 < 0 is satis�ed. In both cases we argued that there exists
a neighborhood Ux around each x ∈ L and an appropriate ε(Ux) > 0 such that
the strict inequality still holds on this neighborhood. All these neighborhoods
give an open cover of L and since L is compact we can select a �nite cover of it.
If we now de�ne εj as the minimum of all ε(Ux) belonging to this �nite cover,
then 〈p, gj(x)〉 < 0 holds for all x ∈ L and all p ∈ ∂CVεj (x). In other words, Vεj
is a Lyapunov function for the jth constituent system on the set L. Since we
have �nitely many constituent systems, we set ε := min{εj | j = 1, . . . ,m} > 0
and Vε �nally serves as a common Lyapunov function for all m systems on the
set L and (4.10) is satis�ed for this choice of ε.
Analogously to ζ(·) we de�ne Zj(x) := max{〈p, gj(x)〉 | p ∈ ∂CVε(x)} and
observe that this function is upper semicontinuous as well. We argued that
Zj(x) < 0 for all x ∈ L and since upper semicontinuous functions admit their
maximum on compact sets by Lemma 3.32, there exists a constant cj < 0
such that maxx∈L Zj(x) = cj . This holds for every j such that if we set c :=
max{cj | j = 1, . . . ,m} < 0, then

∀j ∈ {1, . . . ,m}, x ∈ L, p ∈ ∂CVε(x) : 〈p, gj(x)〉 ≤ c < 0. (4.16)

Since we do not have a Lyapunov function for the switched system on the whole
positive orthant, we cannot directly apply Theorem 3.57 to establish global
uniform asymptotic stability. Anyhow, uniform attractivity may be seen as
follows. Let δ < 0 be arbitrary. For any x0 ∈ Rn+ we can choose L > 0
such that v(x0) ≤ L and ε = ε(δ, L) such that Vε is a Lyapunov function on
L = {x ∈ Rn+ | δ ≤ v(x) ≤ L}. Let c < 0 be the constant for which (4.16)
is satis�ed. Let σ ∈ S and ϕ(t) := ϕ(t;x0, σ) be the solution of (4.2) with
initial condition x0. From Proposition 3.9(ii) we deduce that Vε ◦ ϕ : R→ R is
absolutely continuous and therefore

Vε(ϕ(t))− Vε(x0) =

∫ t

0

d

dτ
Vε(ϕ(τ))dτ (4.17)
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for every t > 0 by Theorem 3.10. Proposition 3.56 says that the equality

d

dt
Vε(ϕ(t)) = 〈p, ϕ̇(t)〉, p ∈ ∂CVε(ϕ(t)),

holds almost everywhere on R+. From above we know

〈p, gσ(t)(ϕ(t))〉 ≤ c < 0,

and thus we obtain

Vε(ϕ(t))− Vε(x0) ≤
∫ t

0

c dτ ⇔ Vε(ϕ(t)) ≤ Vε(x0)− ct

as long as Vε(ϕ(t)) ≥ δ. From the de�nition of Vε follows that v(ϕ(t)) ≤ Vε(ϕ(t))
such that we have

v(ϕ(t;x0, σ) ≤ δ ∀t ≥ (Vε(x
0)− δ)/c, σ ∈ S.

As δ > 0 and x0 ∈ Rn+ are arbitrary, this shows global uniform attractivity of
the equilibrium x̄ = 0 for the switched SIS system (4.2).

4.2 The SIR and SIRS Model

From now on, the state vector x is again 2n-dimensional. Given multiple matri-
ces Bj ,Γj ,Mj ,Ωj , j = 1, . . . ,m, as de�ned at the beginning of the chapter, and
setting Dj = Γj +Mj , then for each j an SIR epidemiological model is given by
the di�erential equation

ẋ =

(
−Dj +Bj 0

Γj −Mj

)
x −

(
diag

(
x1 + x2

)
Bjx

1

0

)
=: fj(x). (4.18)

If we add a switching signal σ ∈ S, the system

ẋ(t) = fσ(t)(x(t)) (4.19)

with right-hand side

fσ(t)(x) :=

(
−Dσ(t) +Bσ(t) 0

Γσ(t) −Mσ(t)

)
x −

(
diag

(
x1 + x2

)
Bσ(t)x

1

0

)
gives rise to a switched SIR epidemiological model. The according equations for
an SIRS epidemiological model are

ẋ =

(
−Dj +Bj 0

Γj −Mj − Ωj

)
x −

(
diag

(
x1 + x2

)
Bjx

1

0

)
=: hj(x) (4.20)

and
ẋ(t) = hσ(t)(x(t)) (4.21)

with right-hand side

hσ(t)(x) :=

(
−Dσ(t) +Bσ(t) 0

Γσ(t) −Mσ(t) − Ωσ(t)

)
x −

(
diag

(
x1 + x2

)
Bσ(t)x

1

0

)
.
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As we did earlier for the switched SIS system, we would like to verify that
our SIR and SIRS systems are well de�ned. The �rst n components of the
state variable x(t) ∈ R2n represent the infective fractions Ii(t)/Ni(t), whereas
the second n components decribe the recovered fractions Ri(t)/Ni(t). So x(t)
should be a nonnegative vector for t ≥ 0. Moreover, since for every time we
have

(
Si(t) + Ii(t) +Ri(t)

)
/Ni = 1, we would claim that for each 1 ≤ i ≤ n the

inequality xi(t) + xn+i(t) ≤ 1 holds for every t ≥ 0.

Proposition 4.4. The set

Σ := {x ∈ R2n
+ | xi + xn+i ≤ 1 ∀i = 1, . . . , n}

is invariant by systems (4.19) and (4.21) for any σ ∈ S.

Proof. The proof is analogous to the one of Theorem 4.1. Given functions
fj : R2n → R2n which describe an SIR system, we de�ne the set-valued map
F (x) := {fj(x) | j = 1, . . . ,m}. F is Lipschitz continuous on every compact set
K ∈ R2n by Propositions 3.2. This holds equally for functions hj representing
an SIRS system and setting H(x) := {hj(x) | j = 1, . . . ,m}. Moreover Σ is a
closed convex set. Hence the assumptions of Theorem 3.44 are satis�ed.
Let x ∈ Σ and �x j ∈ {1, . . . ,m}. If xi = 0 for an index 1 ≤ i ≤ n, then the ith
component of fj is given by

fj,i(x) = −αixi + (1− xi − xn+i)

n∑
k=1

bikxk = (1− xn+i)

n∑
k=1

bikxk ≥ 0.

If xn+i = 0 for 1 ≤ i ≤ n, then

fj,n+i(x) = γixi − µixn+i = γixi ≥ 0.

If xi + xn+i = 1 for 1 ≤ i ≤ n, then

fj,i(x) + fj,n+i(x) = (1− xi − xn+i)

n∑
k=1

bikxk − αixi + γixi − µixn+i

= −γixi − µixi + γixi − µixn+i = −µi ≤ 0.

Considering Proposition 3.24 we conclude that F (x) ⊂ TΣ(x), and Theorem 3.44
yields invariance of Σ by the SIR system (4.19). Now consider the right-hand
side hj(x) of an SIRS system. For 1 ≤ i ≤ n the equality hj,i(x) = fj,i(x) holds
and therefore hj,i(x) ≥ 0 if xi = 0. Further, hj,n+i(x) = fj,n+i(x) − ωixn+i

such that hj,n+i(x) = γixi ≥ 0 if xn+i = 0. Finally, hj,i(x) + hj,n+i(x) =
−µi − ωixn+i ≤ 0 if xi + xn+i = 1. We conclude that H(x) ⊂ TΣ(x) which
shows invariance of Σ by the system (4.21).

We will now come to the end of the thesis and present the main result, which
continues the work done in the article [1]. There a su�cient criterion has been
given to establish global uniform asymptotic stability of the disease free equilib-
rium of a switched multigroup SIS epidemiological model. We carried out the
full proof in Theorem 4.3. It is remarkable that the same criterion su�ces to es-
tablish a similar result for switched multigroup SIR and SIRS models. The main
idea is that the infective components of the SIR(S) state vector are majorized
at any time by the state variables of the according SIS system.
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Theorem 4.5. Assume that the linear switched system

ẋ1 = (−Dσ(t) +Bσ(t))x
1 (4.22)

is uniformly stable in x̄1 = 0 ∈ Rn. Then the disease free equilibrium x̄ =
0 ∈ R2n of the nonlinear SIR system (4.19), SIRS system (4.21) respectively, is
uniformly asymptotically stable and the region of attraction includes Σ.

Proof. We give the proof for the SIR system. The proof for the SIRS system
goes analogous. Let ξ ∈ Σ, σ ∈ S be arbitrary and ϕ(·) = ϕ(·; ξ, σ) be the
solution of (4.2) with initial condition ξ. We already know by Proposition 4.4
that Σ is invariant and hence ϕ(t) exists for all t > 0 and never leaves Σ.
(Consider Remark 3.34.) We aim to show that ϕ1(t) will be majorized by the
solution ψ(·) = ψ(·; ξ1, σ), ψ(0) = ξ1, of the according switched SIS system

ẋ1 = (−Dσ(t) +Bσ(t))x
1 − diag(x1)Bσ(t)x

1 =: gσ(t)(x
1) ∈ Rn, (4.23)

i.e. for all t > 0 it holds that ϕ1(t) ≤ ψ(t). We want to make use of Theorem 3.37
about di�erential inequalities and show in the following that the assumptions of
the theorem are satis�ed. Fix j ∈ {1, . . . ,m} and consider the ith component
function of gj(x

1), which will be denoted by gj,i(x
1). Let l ∈ {1, . . . , n}, l 6= i,

and choose two vectors x, y ∈ [0, 1]n with xk = yk for k 6= l and yl > xl. Then

gj,i(y)− gj,i(x) = (1− yi)
n∑
k=1

bikyk − αiyi − (1− xi)
n∑
k=1

bikxk + αixi

= (1− xi)bil(yl − xl) ≥ 0.

Hence, the function gj,i(x
1) is increasing as claimed in Theorem 3.37 for every j

and every i on the set [0, 1]n. Switching does not change anything at this prop-
erty, such that gσ(t)(x

1) is increasing as well. Further, the following di�erential
inequality holds almost everywhere on [0,+∞).

ϕ̇1(t) = (−Dσ(t) +Bσ(t))ϕ
1(t)− diag(ϕ1(t) + ϕ2(t))Bσ(t)ϕ

1(t)

≤ (−Dσ(t) +Bσ(t))ϕ
1(t)− diag(ϕ1(t))Bσ(t)ϕ

1(t)

= gσ(t)(ϕ
1(t)).

We conclude by Theorem 3.37 that

ϕ1(t) ≤ ψ(t) ∀t ∈ [0,+∞). (4.24)

Now, as already mentioned, x̄1 = 0 is globally asymptotically stable for system
(4.23), uniformly across all switching signals σ ∈ S. This yields that the compact
set X̂ := Σ ∩ {x ∈ R2n | x1 = 0} is uniformly asymptotically stable to system
(4.19) for all trajectories starting in Σ. It remains to show that x̄2 = 0 is
uniformly asymptotically stable for the system

ẋ2(t) = −Mσ(t)x
2(t) + Γσ(t)x

1(t). (4.25)

Let ‖ · ‖ : Rn → R be an arbitrary norm and use the induced operator norm on
Rn×n. For every j ∈ {1, . . . ,m}, −Mj is Hurwitz and because of diagonal struc-
ture, all the Mj 's are commuting. Then, by Theorem 3.48 the linear switched
system

ẋ2 = −Mσ(t)x
2 (4.26)
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is globally uniformly exponentially stable. That is, there exist c, λ > 0 such
that for the fundamental matrix of (4.26) it holds that

‖Φσ(t, s)‖ ≤ ce−λ(t−s) ∀t, s ≥ 0, σ ∈ S. (4.27)

First, we show uniform stability of x̄2 = 0. Let ε > 0. De�ne γ := max{‖Γj‖ | j =
1, . . . ,m}. It is possible to choose ξ such that

‖ξ2‖ < ε

2c
and ‖ϕ1(t; ξ, σ)‖ < λε

2γc
for all t ≥ 0, σ ∈ S

by the �rst part of the proof. Now the variation of constants formula (3.33)
yields

‖ϕ2(t; ξ, σ)‖ ≤ ‖Φσ(t, 0)‖‖ξ2‖+

∫ t

0

‖Φσ(t, s)‖‖Γσ(s)‖‖ϕ1(s)‖ds

≤ ce−λt‖ξ2‖+

∫ t

0

ce−λ(t−s)γ‖ϕ1(s)‖ds

< ce−λt
ε

2c
+ cγ

λε

2γc

∫ t

0

e−λ(t−s)ds

≤ ε

2
+
ε

2
λ

1

λ
(1− e−λt) ≤ ε

2
+
ε

2
= ε

for an arbitrary σ ∈ S and all t ≥ 0. Hence x̄2 = 0 is uniformly stable. For uni-
form attractivity, let η > 0 and ξ ∈ Σ be arbitrary. De�ne α := maxt≥0 ‖ϕ1(t)‖.
Again,

‖ϕ2(t; ξ, σ)‖ ≤ ‖Φσ(t, 0)‖‖ξ2‖+

∫ t

0

‖Φσ(t, s)‖‖Γσ(s)‖‖ϕ1(s)‖ds

≤ ce−λt‖ξ2‖+

∫ T

0

ce−λ(t−s)γαds+

∫ t

T

ce−λ(t−s)γ‖ϕ1(s)‖ds

for any t > T > 0. Since ϕ1(·) converges uniformly to 0, we can choose T such
that

‖ϕ1(t)‖ < λε

2cγ
∀t ≥ T, σ ∈ S.

With that, we continue

‖ϕ2(t; ξ, σ)‖ < ce−λt‖ξ2‖+ cγα
1

λ
(eλT − 1)e−λt +

λε

2cγ
cγ

1

λ
(1− e−λ(t−T ))

≤
(
c‖ξ2‖+ cγα

1

λ
(eλT − 1)

)
︸ ︷︷ ︸

=: C

e−λt +
ε

2
.

Finally, choose T0 > T such that Ce−λT0 < ε/2. Then

‖ϕ2(t; ξ, σ)‖ < ε

2
+
ε

2
= ε

for all t ≥ T0 and all σ ∈ S. This shows uniform attractivity of x̄2 = 0 and we
are done.
To see that x̄ = 0 is also uniformly asymptotically stable for the SIRS system
(4.21), note that hj,i(x) = fj,i(x) for 1 ≤ i ≤ n. So the �rst part of the proof
remains unchanged. For the second part, replace Mσ(t) by Mσ(t) + Ωσ(t) in
(4.25) and (4.26). The ensuing argumentation stays the same.
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5 Conclusion

In the preceding work we saw how modern mathematics may be used to model
the spread of epidemics as well as to analyze these models in order to gain
deeper insight to the dynamics of infectious diseases.
We began with two standard models in mathematical epidemiology, the SIR and
SIS model, and also considered a hybrid of both, the SIRS model. These basic
models are already well understood and Theorem 2.1 gives a comprehensive an-
swer to the question how an SIR system behaves depending on its characteristic
parameters. There exist two equilibria, the disease-free equilibrium where no
infectives occur, and the endemic equilibrium where a constant positive fraction
of infectives appears. Each solution either approaches the disease-free or the
endemic equilibrium, only depending on infection, recovery and mortality rates
and not on the speci�c initial numbers of infectives and susceptibles.
These simplistic models ignore important aspects of an epidemic. In reality
someone is faced with individual infection rates for di�erent groups within a
population and in general these rates will not be constant but change over
time. This is the reason why epidemiological models with multiple subgroups
were introduced and time-variant parameters were considered by using switched
systems.
The more realistic, the more complex a model gets, and it is a challenging task
to analyze the behavior of solutions of a switched multigroup epidemiological
model. We established many mathematical tools to approach this problem in
Chapter 3. The seminal notions and theorems arise from convex and nonsmooth
analysis as well as from the theory of di�erential inclusions. They made it
possible to proof Theorem 4.3 where a su�cient condition � uniform stability
of the linearized system � was stated to establish global uniform asymptotic
stability of the disease-free equilibrium of a switched multigroup SIS model.
Based on this result which originates from the article [1] we continued to proof
analogous statements for switched multigroup SIR and SIRS models.
Several questions emerge from this point. We only considered stability proper-
ties of the disease-free equilibrium. In another scenario persistence could occur,
where the numbers of infectives do not converge to zero. It is interesting to
know whether there exists an endemic equilibrium and, if this is the case, what
stability properties it possesses. Another aspect arises from a control theoretic
point of view. Even if the disease-free equilibrium is not uniformly asymptoti-
cally stable, is it possible to indicate a switching law that forces trajectories to
converge to zero? In real life this would be helpful since it is desired to have
measures available that erase an infectious disease from the population. Some
of these problems for switched SIS models are treated in [1], but they are still
open for switched SIR(S) models.

59



References

[1] Mustapha Ait Rami, Vahid Bokharaie, Oliver Mason, and Fabian R. Wirth.
Stability Criteria for SIS Epidemiological Models under Switching Policies.
2013. http://arxiv.org/abs/1306.0135.

[2] Jürgen Appell. Analysis in examples and counterexamples. An introduction
to the theory of real functions. (Analysis in Beispielen und Gegenbeispielen.
Eine Einführung in die Theorie reeller Funktionen.). Berlin: Springer,
2009.

[3] Jean-Pierre Aubin. Viability theory. Boston, MA etc.: Birkhäuser, 1991.

[4] Jean-Pierre Aubin and Hélène Frankowska. Set-valued analysis. Boston
etc.: Birkhäuser, 1990.

[5] Bernd Aulbach. Ordinary di�erential equations. (Gewöhnliche Di�erenzial-
gleichungen.) 2nd ed. Heidelberg: Elsevier/Spektrum Akademischer Verlag,
2004.

[6] Andrea Bacciotti and Francesca Ceragioli. Nonpathological Lyapunov func-
tions and discontinuous Carathéodory systems. Automatica, 42(3):453�458,
2006.

[7] Norman T.J. Bailey. The mathematical theory of infectious diseases and
its applications. 2nd ed. Hafner, New York, 1975.

[8] Abraham Berman and Robert J. Plemmons. Nonnegative matrices in the
mathematical sciences. Philadelphia, PA: SIAM, 1994.

[9] N.P. Bhatia and G.P. Szeg®. Stability theory of dynamical systems. Reprint
of the 1970 edition. Berlin: Springer, 2002.

[10] F. H. Clarke. Generalized gradients and applications. Trans. Am. Math.
Soc., 205:247�262, 1975.

[11] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nonsmooth
analysis and control theory. New York, NY: Springer, 1998.

[12] Earl A. Coddington and Norman Levinson. Theory of ordinary di�erential
equations. McGraw-Hill, 1955.

[13] D.J. Daley and J. Gani. Epidemic modelling: an introduction. Cambridge:
Cambridge University Press, 1999.

[14] O. Diekmann and J.A.P. Heesterbeek. Mathematical epidemiology of in-
fectious diseases. Model building, analysis and interpretation. Chichester:
Wiley, 1999.

[15] Jürgen Elstrodt. Measure and integration theory. (Maÿ- und Integrations-
theorie.) 6th corrected ed. Berlin: Springer, 2009.

[16] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and �ne prop-
erties of functions. Boca Raton: CRC Press, 1992.

60



[17] Herbert W. Hethcote. The mathematics of infectious diseases. SIAM Rev.,
42(4):599�653, 2000.

[18] Adrian T. Hill and Achim Ilchmann. Exponential stability of time-varying
linear systems. IMA J. Numer. Anal., 31(3):865�885, 2011.

[19] Diederich Hinrichsen and Anthony J. Pritchard. Mathematical systems
theory. I. Modelling, state space analysis, stability and robustness. 1st ed.,
corrected printing. Berlin: Springer, 2010.

[20] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, Cambridge, 1990.

[21] Matt J. Keeling and Pejman Rohani. Modeling infectious diseases in hu-
mans and animals. Princeton, NJ: Princeton University Press, 2008.

[22] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical
theory of epidemics. Proceedings Royal Soc. London (A), 115:700�721, 1927.

[23] Konrad Königsberger. Analysis 1. 6., durchgesehene Au�. Berlin: Springer,
2004.

[24] Konrad Königsberger. Analysis 2. 5., korrigierte Au�. Berlin: Springer,
2004.

[25] A. Krämer and R. Reintjes. Infektionsepidemiologie. Springer, Berlin, 2003.

[26] V. Lakshmikantham and S. Leela. Di�erential and integral inequalities.
Theory and applications. Vol. I: Ordinary di�erential equations (Mathe-
matics in Science and Engineering. Vol. 55). Academic Press, Inc., New
York, 1969.

[27] Daniel Liberzon. Switching in systems and control. Boston, MA:
Birkhäuser, 2003.

[28] Daniel Liberzon. Switched systems. In D. Hristu-Varsakelis and W.S.
Levine, editors, Handbook of Networked and Embedded Control Systems,
pages 559�574. Birkhäuser, Boston, 2005.

[29] James D. Murray. Mathematical biology. Vol. 1: An introduction. 3rd ed.
New York, NY: Springer, 2002.

[30] Martin L. Puterman. Markov decision processes: discrete stochastic dy-
namic programming. Reprint of the 1994 hardback ed. Hoboken, NJ: John
Wiley & Sons, reprint of the 1994 hardback ed. edition, 2005.

[31] R.Tyrrell Rockafellar. Convex analysis. Princeton, NJ: Princeton Univer-
sity Press, 1997.

[32] Winfried Schirotzek. Nonsmooth analysis. Berlin: Springer, 2007.

[33] Georgi V. Smirnov. Introduction to the theory of di�erential inclusions.
Providence, RI: AMS, American Mathematical Society, 2002.

[34] Eduardo D. Sontag. Mathematical control theory. Deterministic �nite di-
mensional systems. 2nd ed. New York, NY: Springer, 1998.

61



[35] J. Szarski. Di�erential inequalities. 2nd ed., revised. PWN, Warszawa,
1967.

[36] Dirk Werner. Functional analysis. (Funktionalanalysis.) 6th corrected ed.
Berlin: Springer, 2007.

[37] Fabian Wirth. The generalized spectral radius and extremal norms. Linear
Algebra Appl., 342(1-3):17�40, 2002.

62



Ich versichere hiermit, dass ich die Masterarbeit selbstständig verfasst und nur
die in Text und Literaturverzeichnis angeführten Quellen und Hilfsmittel be-
nutzt habe. Ich habe die Arbeit bis zu diesem Zeitpunkt keiner anderen Prü-
fungsbehörde vorgelegt.

..................................., den ................................... ..........................................
Ort Datum Unterschrift des Verfassers

63


