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Abstract 

Global environmental change leads to the emergence of new human health risks. As a 

consequence, transmission opportunities of environment-related diseases are transformed and 

human infection with new emerging pathogens increase. The main motivation for this study is 

the considerable demand for disease surveillance and monitoring in relation to dynamic 

environmental drivers. Remote sensing (RS) data belong to the key data sources for 

environmental modelling due to their capabilities to deliver spatially continuous information 

repeatedly for large areas with an ecologically adequate spatial resolution. 

A major research gap as identified by this study is the disregard of the spatial mismatch 

inherent in current modelling approaches of profiling disease risk using remote sensing data. 

Typically, epidemiological data are aggregated at school or village level. However, these point 

data do neither represent the spatial distribution of habitats, where disease-related species find 

their suitable environmental conditions, nor the place, where infection has occurred. As a 

consequence, the prevalence data and remotely sensed environmental variables, which aim to 

characterise the habitat of disease-related species, are spatially disjunct. 

The main objective of this study is to improve RS-based disease risk models by incorporating 

the ecological and spatial context of disease transmission. Exemplified by the analysis of the 

human schistosomiasis disease in West Africa, this objective includes the quantification of the 

impact of scales and ecological regions on model performance. 

In this study, the conditions that modify the transmission of schistosomiasis are reviewed in 

detail. A conceptual underpinning of the linkages between geographical RS measures, disease 

transmission ecology, and epidemiological survey data is developed. During a field-based 

analysis, environmental suitability for schistosomiasis transmission was assessed on the ground, 

which is then quantified by a habitat suitability index (HSI) and applied to RS data. This 

conceptual model of environmental suitability is refined by the development of a hierarchical 

model approach that statistically links school-based disease prevalence with the ecologically 

relevant measurements of RS data. The statistical models of schistosomiasis risk are derived 

from two different algorithms; the Random Forest and the partial least squares regression 

(PLSR). Scale impact is analysed based on different spatial resolutions of RS data. Furthermore, 

varying buffer extents are analysed around school-based measurements. Three distinctive sites 

of Burkina Faso and Côte d’Ivoire are specifically modelled to represent a gradient of ecozones 

from dry savannah to tropical rainforest including flat and mountainous regions. 
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The model results reveal the applicability of RS data to spatially delineate and quantitatively 

evaluate environmental suitability for the transmission of schistosomiasis. In specific, the multi-

temporal derivation of water bodies and the assessment of their riparian vegetation coverage 

based on high-resolution RapidEye and Landsat data proofed relevant. In contrast, elevation 

data and water surface temperature are constraint in their ability to characterise habitat 

conditions for disease-related parasites and freshwater snail species. With increasing buffer 

extent observed around the school location, the performance of statistical models increases, 

improving the prediction of transmission risk. The most important RS variables identified to 

model schistosomiasis risk are the measure of distance to water bodies, topographic variables, 

and land surface temperature (LST). However, each ecological region requires a different set of 

RS variables to optimise the modelling of schistosomiasis risk. A key result of the hierarchical 

model approach is its superior performance to explain the spatial risk of schistosomiasis. 

Overall, this study stresses the key importance of considering the ecological and spatial 

context for disease risk profiling and demonstrates the potential of RS data. The methodological 

approach of this study contributes substantially to provide more accurate and relevant 

geoinformation, which supports an efficient planning and decision-making within the public 

health sector. 
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Zusammenfassung 

Globale Umweltveränderungen rufen neue Gesundheitsrisiken hervor. Eine Konsequenz sind 

veränderte Bedingungen für die Übertragung von umweltbezogenen Krankheiten und 

ansteigende Infektionen mit neu auftauchenden Erregern. Die Motivation für diese Arbeit 

basiert auf der steigenden Nachfrage, dynamische Veränderungen der Umwelt und deren 

Beziehung zu Veränderungen von umweltbedingten Krankheiten zu überwachen. 

Fernerkundungsdaten gehören zu den wichtigsten Datenquellen für die Umweltmodellierung, da 

diese es ermöglichen, die Landbedeckung flächendeckend, reproduzierbar und in einer 

adäquaten räumlichen Auflösung zu kartieren. 

Ein Forschungsbedarf, der in dieser Studie identifiziert wird, ist die fehlende Berücksichtigung 

einer räumlichen Diskrepanz innerhalb der bisherigen Vorgehensweise der Modellierung von 

Krankheitsrisiken mit Fernerkundungsdaten. Typischerweise werden epidemiologische Daten als 

Prävalenz einer Krankheit aggregiert erhoben, beispielsweise auf Schul- oder Dorfebene. Jedoch 

repräsentieren diese Punktmessungen weder die räumliche Verteilung von Habitaten, in 

welchen krankheitsrelevante Arten ihre geeigneten Umweltbedingungen vorfinden, noch den 

Ort, an dem sich die Menschen infiziert haben. Die Konsequenz ist, dass Messpunkte der 

Krankheitprävalenz und fernerkundungsbasierte Umweltvariablen, welche das Habitat von 

krankheitsrelevanten Arten charakterisieren sollen, räumlich nicht übereinstimmen. 

Das Hauptziel dieser Studie ist, ein Verfahren für die Anwendung von Fernerkundungsdaten 

bei der Modellierung von Krankheitsrisiken zu entwickeln, welches sowohl den ökologischen als 

auch den räumlichen Kontext der Krankheitsübertragung widerspiegelt. Am Beispiel der 

Krankheit Schistosomiasis werden weitere mögliche Einflussgrößen auf die Modellgüte 

quantitativ bewertet. Dies sind unter anderem die verschiedenen Skalenniveaus und die 

Heterogenität von Ökozonen. 

In dieser Arbeit werden die Bedingungen, die auf die Übertragung von Schistosomiasis einen 

Einfluss haben, aus der bestehenden Literatur im Detail ermittelt. Es wird eine konzeptionelle 

Grundlage entwickelt, die bestehende Zusammenhänge zwischen satellitengestützten 

Messungen, der Ökologie der Krankheitsübertragung sowie zu den Ergebnissen der 

epidemiologischen Studien ermittelt. Während eines Aufenthaltes im Untersuchungsgebiet 

wurde die Eignung der Umwelt für die Übertragung der Schistosomiasis analysiert. Diese 

Umwelteignung wird durch die Entwicklung eines Habitat-Eignungs-Index (habitat suitability 

index, HSI) quantifiziert und mit relevanten Fernerkundungsvariablen verknüpft. Im nächsten 
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Schritt werden Inhalte dieses konzeptionellen Modells gezielt für die Entwicklung eines 

hierarchischen Modellansatzes verwendet, welcher die gemessene Prävalenz in einen 

statistischen Zusammenhang mit ökologisch relevanten Messungen von Fernerkundungsdaten 

bringt. Die statistischen Modelle des Risikos, sich mit Schistosomiasis zu infizieren, basieren auf 

zwei verschiedenen Modellalgorithmen, dem sogenannten Zufalls-Wald Algorithmus (Random 

Forest) und der Regression der partiellen, kleinsten Quadrate (Partial Least Squares Regression, 

PLSR). Der Einfluss von räumlichen Skalen auf die Risikomodellierung wird anhand verschiedener 

räumlicher Auflösungen der Fernerkundungsdaten ermittelt. Darüber hinaus werden 

unterschiedlich große Einzugsgebiete mit Hilfe eines Pufferverfahrens (Buffer) anhand der 

Schulen mit Prävalenzmessungen analysiert. Risikomodelle der Schistosomiasis werden für drei 

ausgewählte Untersuchungsgebiete in Burkina Faso und der Elfenbeinküste erstellt, welche 

einen ökologischen Gradienten von der Trockensavanne zum tropischen Regenwald sowie von 

flachen und bergigen Regionen darstellt. 

Diese Studie zeigt, dass Fernerkundungsdaten für die räumliche Abgrenzung und eine 

quantitative Bewertung der Umwelteignung für die Übertragung der Schistosomiasis geeignet 

sind. Besonders relevante Informationen sind zeitlich dynamische Veränderungen der 

Wasserbedeckung sowie die Erfassung des Grades der Ufervegetationsbedeckung auf Basis von 

hochaufgelösten RapidEye und Landsat Daten. Hingegen sind topographische Daten und die 

satellitengestützten Messungen der Temperatur nur eingeschränkt geeignet um Habitate der 

Parasiten und Frischwasserschnecken als wesentlichen Bestandteil der Krankheitsübertragung zu 

charakterisieren. Bei zunehmender Größe des Einzugsgebietes der Schulen verbessern sich die 

statistischen Modelle und können somit das Übertragungsrisiko besser erfassen. Die wichtigsten 

Fernerkundungsvariablen für die Modellierung des Schistosomiasis Risikos sind die Distanz zum 

nächstgelegenen Gewässer, topographische Variablen sowie die Landoberflächentemperatur 

(land surface temperature, LST). Für jede Ökozone muss jedoch eine geeignete 

Zusammenstellung von Fernerkundungsvariablen getroffen werden. Ein ganz wesentliches 

Ergebnis der hierarchischen statistischen Modellierung ist eine verbesserte Erklärung des 

räumlichen Risikos von Schistosomiasis. 

Insgesamt unterstreicht diese Studie die Bedeutsamkeit des ökologischen und räumlichen 

Kontexts für die Abschätzung des Krankheitsrisikos und demonstriert das Potential von 

Fernerkundungsdaten. Der methodische Ansatz dieser Arbeit kann wesentlich dazu beitragen, 

genaue und relevante Geoinformationen bereitzustellen. Damit wird eine effizientere Planung 

und Entscheidungsfindung innerhalb des Gesundheitssektors ermöglicht. 
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Résumé 

Le changement environnemental global conduit à l'émergence de nouveaux risques pour la 

santé humaine. En conséquence, les voies de transmission des maladies liées à l'environnement, 

sont modifies de meme que l'infection humaine avec l´accroissement des nouveaux agents 

pathogènes émergents. La motivation principale de cette étude est la demande considérable 

pour la surveillance et le suivi des maladie en relation avec la dynamique des facteurs 

environnementaux. Les données de la télédétection sont les sources principales utilisees pour la 

modélisation de l'environnement en raison de leurs capacités à fournir une information de 

maniere spatiale, repetitive et continue pour les grandes surfaces avec une résolution spatiale 

écologique adéquate. 

L´importante lacune de la recherche scientifique identifiée par cette étude est la non 

considération de la disparité spatiale inhérente dans les approches actuelles de modélisation des 

risques de la maladie en utilisant des données de la télédétection. Généralement, les données 

épidémiologiques sont regrouper à l'école ou au niveau du village. Toutefois, ces données ne 

peuvent pas représenter la distribution spatiale des habitats et definir les conditions 

environnementales favorable a la proliferation des agents pathogenes de la maladie, ni le lieu, 

où l'infection s´est produite. En conséquence, les données sur la prévalence et les variables 

environnementales de la télédétection, qui visent à caractériser l'habitat des agents liés à la 

maladie, sont spatialement disjointes. 

L'objectif principal de cette étude est d'améliorer en utilisant la télédétection les modèles de 

risque de maladie en incorporant l´aspect écologique et spatiale de la transmission de la 

maladie. Illustré par l'étude des personnes infectées de la schistosomiase en Afrique de l'Ouest, 

cet objectif comprend la quantification du niveau d'impact des régions écologiques sur les 

performances du modèle. 

Dans cette étude, les conditions qui modifient la transmission de la schistosomiase sont 

examinées en détail. Une approche conceptuelle reliant les données mesurées issues de la 

télédétection, la transmission de la maladie, l'écologie et des données de l'enquête 

épidémiologique a été développé. A partir d'une étude sur le terrain, les facteurs 

environnementaux à la transmission de la schistosomiase ont été évalués, ensuite quantifiés par 

l´indice de qualité de l'habitat (habitat suitability index, HSI) et combiné aux données de la 

télédétection. Le modèle conceptuel de la pertinence environnemental a été affiné par le 
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développement d'une approche de modèle hiérarchique qui relie statistiquement la prévalence 

de la maladie en milieu scolaire avec les mesures écologiques pertinentes de données de la 

télédétection. Les modèles statistiques de risque de schistosomiase proviennent de deux 

différents algorithmes; la forêt aléatoire (Random Forest) et la régression des moindres carrés 

partiels (Partial Least Squares Regression, PLSR). Le niveau d'impact a été analysé sur la base de 

différentes résolutions spatiales de données de la télédétection. En outre, des divers degrés 

carre des bassin de réception ont été analysés autour de mesures en milieu scolaire. Trois sites 

distinctifs du Burkina Faso et de la Côte d'Ivoire sont spécifiquement modélisés pour représenter 

un gradient de écozones de savane sèche a forêt tropicale y compris les régions plates et 

montagneuses. 

Les résultats du modèle révèlent l'applicabilité des données de la télédétection pour la 

délimitation spatiale et l’évaluation quantitative de la pertinence de l'environnement pour la 

transmission de la schistosomiase. Precisement, la dérivation multi-temporelle des course d'eau 

et l'évaluation de leur couverture riveraine de végétation a partir des images à haute résolution 

RapidEye et Landsat jugées adequate. En revanche, les données d'altitude et de température de 

la surface de l'eau ont montré certaines limites dans leur capacité à caractériser les conditions 

de l'habitat des parasites et des escargots en tant que composantes essentielles de la 

transmission de la maladie. Avec l'augmentation des degrés carres des bassins de réception 

observés autour de l'emplacement de l'école, la performance des modèles statistiques 

augmente, améliorant ainsi la prédiction du risque de transmission. Les plus importantes 

variables des données de la télédétection identifiées pour modéliser le risque de schistosomiase 

sont la mesure de la distance des plans d'eau, les variables topographiques, et la température de 

surface de la terre (land surface temperature, LST). Cependant, chaque région écologique 

nécessite une serie différente de variables de données de télédétection afin d´optimiser la 

modélisation du risque de schistosomiase. Le résultat primordial de l'approche du modèle 

hiérarchique est sa supérieure performance à expliquer le risque spatiale de la schistosomiase. 

Dans l'ensemble, cette étude souligne l'importance cruciale de tenir compte du contexte 

écologique et spatiale pour le profilage du risque de maladie et démontre le potentiel des 

données de télédétection. L'approche méthodologique de cette étude contribue de manière 

substantielle à fournir avec plus de précision et de pertinence l'information géographique, 

prenant en charge une planification efficace et la prise de décision dans le secteur de la santé 

publique. 
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1 Introduction 

1.1 Human health and the environment 
Population health is central to the three dimensions of sustainable development - society, 

economy and the environment (UN, 2012a: 27). The connection of human well-being to social 

capabilities, economic output and environmental resources is both that of a beneficiary and a 

contributor, which points out the key role of health for sustainable development (Confalonieri et 

al., 2007: 393; UN, 2012a: 27). Three of the eight Millennium Development Goals (MDGs) focus 

on health concerning child health (MDG 4), maternal health (MDG 5) and the control of 

communicable diseases (MDG 6). The remaining goals are key determinants of health, such as 

poverty reduction, education and environmental sustainability (Dye et al., 2013: IV). 

The environment has a fundamental impact on human health (Guernier et al., 2004: 740; 

Confalonieri and McMichael, 2006: 6) and is estimated to account for 24% of the global disease 

burden and 23% of all deaths (Prüss-Üstün and Corvalan, 2006: 9). In a medical sense, the 

environment integrates all factors that are external to human hosts and “can be divided into 

physical, biological, social, cultural, etc., any or all of which can influence the health status of 

populations” (IEA, 1995: 53). Thereof, biophysical environments are essential to human health 

due to the basic need of the human organism for food, water, clean air, shelter and suitable 

climatic conditions (Corvalan et al., 2005: 12). The relation between the environment and human 

health is investigated by the scientific discipline of spatial epidemiology, which describes and 

analyses geographic variations in diseases with respect to environmental, demographic, 

behavioural, socioeconomic, genetic and infectious risk factors (Elliott and Wartenberg, 2004: 

998). The earliest milestone for this spatial linkage between human health and the environment 

has been recognised already twenty-four centuries ago, when the ancient Greek physician 

Hippocrates (460-377 BC) articulated the doctrine of “Airs, Waters, Places”, pointing out the 

relationship between climatic elements, water quality and diseases (Bashford and Tracy, 2012: 

513). His observation of regional differences in conditions of living and corresponding 

differences in prevalent diseases, led him to proclaim the importance of interactions between 

place and person in determining health and disease (Rosenberg, 2012: 661). In 1849, Snow 

(1855: 45-48) successfully identified the source of the London cholera epidemic by mapping 

cholera cases in geographic space. This led to the discovery of a contaminated water pump as 

the source of the disease. In the mid-19th century the Russian parasitologist, Pavlovsky, 

formulated the concept of landscape epidemiology based on his observations that: (i) some 
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diseases are limited geographically; (ii) the spatial variation of diseases can be explained by an 

underlying variation in physical and/or biological conditions that support pathogen, vectors and 

their reservoirs; and (iii) if abiotic and biotic conditions can be delimited on maps then both 

contemporaneous risk and future change in risk should be predictable (Pavlovsky, 1966: 155-

195; Ostfeld et al., 2005: 328). Nowadays, The acquisition and analysis of the spatial components 

of disease epidemiology relies on tools such as geographic information systems (GIS), remote 

sensing (RS) data, and spatial statistics, which enable epidemiological research, disease 

surveillance and control (Kitron, 1998: 435). Based on these tools, spatial epidemiology offers a 

variety of ways to identify and map the habitat of disease vectors, to relate it to social-ecological 

factors and eventually predict the potential risk of disease transmission (Kitron, 1998: 437). 

Today, it is clear that population growth and economic development induce high pressure on 

the global environment and contribute to the human-induced global environmental change 

(Confalonieri and McMichael, 2006: 6). At the same time, this biophysical environment provides 

the fundamental elements (environmental media) for the transmission of environment-related 

diseases (Figure 1-1), which can be categorised as vector-borne diseases (e.g. malaria), water-

based diseases (e.g. schistosomiasis), aerosol-borne diseases (e.g. avian influenza - H5N1 virus), 

soil-borne diseases (e.g. hookworm infection) or food-borne diseases (e.g. salmonellosis) (Bright 

et al., 2013: 5). Thus, the escalating human pressure on the environment with the consequences 

of severe changes and degradation of ecosystems have resulted in multiple, mostly negative 

health impacts (Corvalan et al., 2005: 1; Confalonieri and McMichael, 2006: 8; McMichael, 2013: 

1335). Extensive alteration of the natural environment such as large-scale deforestation, 

expansion of settlements, infrastructure and agricultural land use or human intervention in 

watersheds, lakes, and river systems triggered widespread changes in the distribution of 

organisms and biodiversity (Chapin III et al., 2000: 234) and has been accompanied by global 

increases in morbidity and mortality from a number of environment-related diseases (Patz et al., 

2000: 1396). Each environmental change influences the ecological balance and the context 

within which disease vectors, intermediate hosts or parasites breed, develop, and transmit a 

disease (Patz et al., 2000: 1395). Degradation of ecosystems may lead to the emergence of new 

human pathogens, the resurgence of old ones or change the transmission opportunities of 

established vector-borne pathogens (Kitron, 1998: 442; Patz et al., 2000: 1395; Foley et al., 2005: 

571-572). The expected population growth from 7.2 billion in mid-2013 is projected to reach 9.6 

billion by 2050 with the largest growth in developing regions, especially in Africa (UN, 2013). 

Thus, the high pressure on the environment and poor husbanding of natural resources will be 

further aggravated and might severely influence the habitat conditions and abundance of 

parasites, vectors, and hosts. 

Besides direct anthropogenic degradation of natural environments, climate change is 

increasingly driving human health impacts. The predicted greenhouse gas concentrations in the 

atmosphere are expected to increase the global average temperature until the end of this 

century by between 0.3 and 4.8°C and influence the patterns and amounts of precipitation 

(IPCC, 2013: 18). Already during the last decades of the 20th century, anthropogenic-induced 

climate change has claimed an estimated 150,000 lives annually resulting for example from 

increased exposure to thermal extremes, more frequent weather disasters, changing dynamics 

of disease vectors, seasonality and incidence of food-related and water-borne infections, and 

crop failures (WHO, 2002b: 72; Patz et al., 2005: 310). Observations of sudden changes in 
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temperature or rainfall have been related to explosions of vector populations causing epidemics 

of malaria (Gagnon et al., 2002), Rift Valley fever (Linthicum et al., 1999) or dengue fever 

(Descloux et al., 2012) in disease-endemic areas (Githeko et al., 2000: 1137). Moreover, climate 

warming and alterations of rainfall patterns are expected to modify the spatial distribution of 

climate sensitive diseases resulting either in emerging disease transmission in previously 

unaffected areas or the disappearance of a disease due to the establishment of unsuitable 

conditions (Githeko et al., 2000). 

Given the dramatic global environmental change, it is a growing concern worldwide that 

environmental drivers increasingly influence unacquainted exposure to disease agents and 

pathways of disease transmission with the consequence of new emergence, resurgence, and 

sudden epidemic outbreaks of environment-related diseases (Gratz, 1999: 51; Weiss and 

McMichael, 2004: 70; Bright et al., 2013: 4). Thus, there is considerable demand for disease 

surveillance and monitoring in relation to dynamic environmental drivers (Patz et al., 2000: 

1402; Kerr and Ostrovsky, 2003: 299). The key aspects herein lay within the spatially explicit 

quantification of disease risk, upon which any supplementary step depends. The current 

challenges in spatial epidemiology must be: (i) to gain a better understanding of the 

environmental impact on disease ecology; (ii) to identify immediately required action for health 

authorities and environmental managers; and (iii) to improve spatially explicit predictive models 

(Patz et al., 2000: 1402). 

The crucial basis for predicting disease risk is spatially explicit environmental information. 

Due to the systematic and consistent view of the Earth at regular time intervals and 

comparatively low cost, satellite RS data belong to the key data sources for environmental 

modelling and have proven to be very useful in the assessment of biophysical characteristics of 

the landscape (Gillespie et al., 2008: 204), the detection of suitable habitat conditions of species 

(Goetz et al., 2000: 290), and the discovery of environmental changes (Kerr and Ostrovsky, 2003: 

299). In combination with GIS, RS data are thought to “revolutionise the discipline of 

epidemiology and its application in human health” (Hay, 2000: 2). The current approaches and 

remaining challenges of RS for epidemiological applications are described in the following 

section. 

Figure 1-1: Conceptual framework of environment-related diseases. The environment provides disease 
drivers and enables disease transmission through various media and exposure pathways. Environment-
related diseases result of released or transmitted contaminants or pathogens as disease agents (adjusted 
from Bright et al., 2013: 4) 



Introduction 

4 

1.2 Remote sensing for modelling disease risk:  

approaches and challenges 
 

“Whatever the epidemiological question, if there is an element of environmental input, 

satellites of one sort or another offer the potential for developing surveillance and early-warning 

systems to address it on a global scale” (Hay et al., 2000a: xii) 

 

The prerequisite for RS to contribute to epidemiological research and application is any distinct 

relation between the physical-natural environment that can be characterised by RS data and the 

ecology of disease transmission (Hugh-Jones, 1989). Cline (1970) highlighted the opportunity to 

measure environmental characteristics relevant for disease occurrence by means of RS and 

record them in a regular fashion. Pavlovsky´s term “landscape epidemiology” (Pavlovsky, 1966: 

155) seemed particularly well adapted to highlight the essential benefit of RS that yields relevant 

information about the disease influencing environment in space and time on a landscape level, 

which can hardly be acquired with field-based investigations (Cline, 1970: 87). In 1985, the Life 

Science Division of the National Aeronautics and Space Administration (NASA) initiated the 

Global Monitoring and Human Health (GMHH) programme and investigated the capability of RS 

data to predict the spatial and temporal variability in malaria vector population dynamics to 

assess risk of disease transmission (NASA, 1998). Specific landscape elements such as swamps 

and unmanaged pasture could significantly explain disease vector abundance, allowing the 

identification of villages with high human-vector contact (Beck et al., 1994).  

Over the past 30 years, the use of RS data and techniques in mapping human and veterinary 

diseases has increased substantially (Kalluri et al., 2007: 1362). The wealth of scientific literature 

contains a set of explorative case studies that investigate the informative value of various 

satellite data and variables with their spatial and temporal properties for selected geographical 

regions and in relation to specific diseases or disease agents such as vectors, parasites or 

intermediate hosts (Hay et al., 1997; Beck et al., 2000; Hay et al., 2000b; Yang et al., 2005c; 

Kalluri et al., 2007; Simoonga et al., 2009; Tran et al., 2010). Since those agents have specific 

requirements regarding climate, vegetation, soil, and other edaphic factors and are sensitive to 

changes therein, RS can be used to determine their living conditions and predict potential 

distributions (Rinaldi et al., 2006: 36). The general idea behind the linkage between RS and 

disease data is: (i) to identify and map parasite, vector, and host habitats and thereby better 

understand complex mechanisms of disease transmission; (ii) to monitor changes in those 

habitats; (iii) to predict changes in vector or host populations based on habitat modification; and 

(iv) to generate efficient risk maps and early warning systems that can be used to design control 

programmes (Hugh-Jones, 1989: 244-245; Kitron, 1998: 438; Beck et al., 2000: 225; Myers et al., 

2000a). However, the ampleness of case studies show that there is not one single best suited 

methodological approach for RS of diseases (Curran et al., 2000: 44). On the contrary, the choice 

of methodology is highly specific to a disease, due to the distinct ecological requirements of 

disease transmission (Beck et al., 2000: 223). 
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Figure 1-2: Conceptual framework linking remotely sensed images with diseases. The bold solid arrow 
indicates a physical process between the steps linking remotely sensed image reflectance and human 
disease, whereas the dotted and dashed arrays reflect the modelling of these processes. The dotted array 
represents the preferred predictive model approach due to its integration of all relevant steps of 
information, and the dashed array indicates a predictive model, which is feasible and often applied in 
practice due to data constraints. Source: modified after Curran et al. (2000: 39);  
Picture sources: 1. "Dengue virus" by CDC and University of South Carolina - http://commons.wikimedia.org; 2. “Gelbfiebermücke 
(Stegomyia aegypti)” by US Department of Agriculture Carolina - http://commons.wikimedia.org 
 

RS of human diseases requires interdisciplinary research approaches combining disease-

related epidemiological and ecological information with environmental characteristics. The 

point, where this diverse information is combined, is its geographical location. Thus, an 

integrative, geographical perspective is required to establish the process chain from integrating 

specific measurements of each discipline into a spatial database, applying the appropriate 

methodological approach to combine data, and interpreting added value and the resulting 

information. A conceptual framework of the linkage between remote sensing and disease-

related data (Figure 1-2) illustrates how land cover and surface properties at specific locations 

bridge the gap between RS measurements and disease occurrence (Curran et al., 2000: 40-41). It 

varies from physical and well-understood links between surface properties, electromagnetic 

radiation and image reflectance to mainly empirical links between a vector or intermediate host 

in the field and a patient in a hospital, the latter being the least understood (Curran et al., 2000: 

44). The disease itself, hence the measure of human infection provides a distal relation to 

specific surface properties, whereas species involved in the disease transmission cycle have a 

direct relation to the biophysical environment, which is explained by their specific ecological 

1 

2 
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requirements and environmental habitat (Hirzel et al., 2002: 2028). The preferred model 

approach to enhance the contextual understanding of disease transmission ecology and predict 

disease risk based on RS data (Figure 1-2), consists of a preliminary linkage between RS data and 

disease-related species in its environment and additional information on resulting disease 

prevalence in humans (Roberts et al., 1991: 273-274). However, due to scarcity of data on 

disease-related vector or host species, a feasible, but pragmatic predictive model approach 

(Figure 1-2) is to link RS data directly to human disease prevalence (Hugh-Jones, 1991: 202-203). 

In this PhD thesis, the linkage between RS data and vector or host specific characteristics results 

in the information of environmental suitability for disease transmission, whereas the linkage 

between human disease prevalence and RS data result in the measure of disease risk. To model 

environmental suitability or disease risk using RS data two approaches may be used, individually 

or combined. These are: (i) biology-based, mechanistic models; (ii) statistical, correlative models 

(Malone, 2005; Kearney, 2006). The first approach integrates biological requirements of a 

species and mechanistic analyses of its fitness known from laboratory or field studies to model 

environmental preferences, limits of tolerance, and behaviour of the organism (Malone, 2005: 

28; Kearney, 2006: 186). The latter approach models a statistical relationship between survey 

records of observed species or diseases and the corresponding environmental conditions 

measured at the survey location to predict the established relationship into space and time 

(Malone, 2005: 27). The aim of both model approaches is to measure the suitability of an 

environment to establish the niche of a disease as zone, where the pathogen, the 

vector/intermediate host, and the infected human converge and form a biocenosis in space and 

time (Malone, 2005: 28). 

However, from a geographical point of view, one of the remaining challenges of this defined 

association between RS data and environment-related diseases is an inherent spatial mismatch 

between locations of vector or host habitats and human disease prevalence, which again varies 

in dependence of the disease-specific transmission ecology and the sampling location of 

respective data. For the case of schistosomiasis, which is the target disease in this thesis to 

demonstrate this phenomenon, the transmission cycle from human to human requires the 

parasite to meet specific snails as intermediate host within an aquatic environment. While 

human infection must happen within aquatic habitats, where parasite and freshwater snails 

occur, survey measurements of disease prevalence are mainly located at schools where the most 

vulnerable group is identified. The fact that these disease-related components are not spatially 

super-imposed has already been mentioned by Curran et al. (2000: 44). At the time of writing 

this thesis no schistosomiasis risk model based on RS data has recognised this phenomenon, 

which however, increases uncertainties inherent to the data and modelling approaches – an 

aspect that must be addressed for improved risk profiling (Brooker, 2007: 1). 

Although a large variety of RS data are available and expected to provide useful information 

for epidemiological studies (Hay et al., 2006), mainly freely available, pre-processed RS products 

with coarse spatial resolution have been utilised. Most studies use pre-processed, readily 

available calculations of the normalized difference vegetation Index (NDVI), “while other existing 

vegetation indices, not directly accessible due to their complex nature, are used rarely but can 

be helpful for health studies” (Herbreteau et al., 2007: 401). At the same time high spatial 

resolution RS data have been explored only rarely, whereas these data are expected to be highly 

advantageous to specifically address the above-mentioned spatial mismatch between disease-
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related components, and for the detection of heterogeneous habitat conditions of various 

disease vectors on a local scale (Goetz et al., 2000: 303; Herbreteau et al., 2007: 402). The 

current application of RS data results in a limited adaptability of environmental information to 

address disease-related biological questions at ecologically relevant scales (Herbreteau et al., 

2007: 400-401) and points the need to further explore the potential of RS data to target the 

disease-specific ecology. 

Issues of scale and extent are fundamental to spatial statistical analysis, because ecological 

and epidemiological processes operate differently dependent on scale and area of observation 

(Robinson, 2000: 92). Disease epidemiology has to deal with an inherent complexity of biological 

systems, spanning the range of phenomena from those so fine that they operate at the level of 

the molecule to those so extensive that they can only be studied for large areas (Hay et al., 

2000a: xi). With the objective to detect, analyse and explain the spatial heterogeneity of a 

disease, one has to refer to the variables that describe the data (e.g. vector density, disease 

cases, micro-habitat conditions), but also to the nature of the spatial units themselves, their size, 

shape and configuration (Kitron, 1998: 436). In this sense, the application of RS data to profile 

disease risk needs to consider the appropriate spatial resolution regarding the ecological process 

under investigation. Environmental suitability and schistosomiasis risk have been modelled from 

local (Clennon et al., 2004; Raso et al., 2005) to national and continental scales of observation 

(Clements et al., 2006b; Brooker, 2007; Schur et al., 2013; Stensgaard et al., 2013), most 

probably resulting in different predictions for the overlapping area. The phenomenon that 

model results are expected to vary considering different spatial scales (Openshaw, 1984) has not 

yet been investigated and its impact on model performance never quantified for the case of 

schistosomiasis risk profiling. 

1.3 Objectives and outline 
As outlined above, previous RS applications for profiling disease risk have not sufficiently 

addressed the ecological and spatial context of this interdisciplinary research approach. Against 

this background and based on the specified need for close collaboration between 

epidemiologists and geographers to fully exploit the potential of RS data and adapt the 

information to the needs of public health concerns (Mayer, 1983: 1220; Herbreteau et al., 2007: 

402-403), this is specifically addressed in this thesis. The aim is to bridge the disciplines of 

geographical RS, disease ecology, and epidemiology through a conceptual underpinning of their 

linkages and an explicit spatial analysis of the respective data, illustrated by case studies 

pertaining to schistosomiasis in West Africa. 

 

The overall objective of this research is to investigate the potential and optimised application 

of RS data for modelling environmental suitability and disease risk for schistosomiasis 

transmission. 

 

Considering the impact of global environmental change on population health, the 

establishment of robust RS methods to monitor disease risk under changing environmental 

conditions is of increasingly high interest. The allocation of up-to-date, accurate, and relevant 
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geoinformation for planning can essentially contribute to informed decision-making within the 

public health sector and support the efficient allocation of the sector´s limited ressources. In 

contrast to existing schistosomiasis risk predictions that have used RS data, this study focusses 

on the necessity to challenge the diversity of influencing factors on the accuracy of RS based 

disease risk models such as the selection of appropriate variables, the impact of different scales, 

or ecological regions. These research gaps are directly addressed in this thesis by investigating 

multi-scale RS data from RapidEye, Landsat 5 Thematic Mapper (TM), and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) on the Terra platform with spatial resolutions 

ranging from 6.5m to 1km. Its individual pre-processing allows the derivation of a series of RS 

variables tailored to the specific disease ecology. With the geographical focus of this thesis being 

West Africa, where both schistosomiasis burden and the need for control remain greatest 

(Brooker, 2007: 2), the environmental gradient ranging from near desert to tropical rainforest 

and including flat and mountainous regions provides a useful basis to systematically investigate 

the impact of different ecological regions. This has most often been neglected by selective case 

studies but has been shown by Brooker et al. (2001: 1001) to have significant impacts on model 

accuracy. 

 

To meet the overall objectives of this research, this thesis addresses specifically the following 

research questions: 

 (1) Which RS data and variables are most useful to model environmental 

 suitability and disease risk? 

 (2) How can the spatial discrepancy between environmental suitability for 

 schistosomiasis transmission and the measure of disease risk be resolved? 

 (3) Which scale is most appropriate for spatial modelling of schistosomiasis risk? 

 (4) How do different ecozones impact the performance of schistosomiasis risk models in 

 West Africa? 

 

Figure 1-3 outlines the structure of contents and methods employed in this thesis. The 

geography and disease epidemiology of the study area in West Africa are described, with focus 

on the specifically investigated local study sites, in Chapter 2. Given the interdisciplinary 

character of this thesis, ecological details relevant for disease transmission, its linkage to RS 

measurements of environmental conditions and a conceptual framework for modelling these 

data are elaborated for the case study of schistosomiasis in Chapter 3. The procedures of pre-

processing epidemiological and RS data and sampling environmental in situ data used for the 

analysis in this thesis are specified in Chapter 4. Chapter 5 investigates the potential of RS data 

to model and predict environmental suitability for schistosomiasis transmission using the habitat 

suitability index (HSI). Based on this approach, potential disease transmission sites are spatially 

delineated, its suitability for schistosomiasis-related snails and parasites quantified, and the 

transferability of this locally established model to different ecological regions evaluated. In 

Chapter 6, the potential of RS data to model and predict schistosomiasis risk is elaborated using 

two different statistical algorithms. Based on the spatial delineation of potential disease 

transmission sites derived in Chapter 5, a hierarchical model approach is developed and evalu- 
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Figure 1-3: Overview of the structure of this thesis 
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ated to resolve the spatial discrepancy between environmental suitability and schistosomiasis 

risk. Moreover, this chapter evaluates the importance of the selected RS variables as well as the 

impact of different scales and ecological regions on model performance. Chapter 7 provides a 

synthesis of the results of this thesis and gives concise answers to the research questions posed. 

The transferability of the optimised application of RS data to profile the risk of other 

environment-related diseases is discussed and an outlook on possible future research questions 

is provided. 
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2 Geography of Burkina Faso and Côte 

d’Ivoire 

The study area of this thesis is situated in West Africa and comprises the countries Burkina Faso 

and Côte d’Ivoire (Figure 2-1). In general, sub-Saharan Africa is considered a hotspot of 

schistosomiasis transmission due to its suitable climate, the existing water management 

practices together with a high level of poverty and low sanitary standards. Both countries, 

Burkina Faso and Côte d’Ivoire, are endemic regions of schistosomiasis with prevalence rates 

estimated higher than 50% for Burkina Faso (Utzinger et al., 2011a: 124) and 9.1% for Côte 

d’Ivoire with a highly focal distribution (Yapi et al., 2014). Three local study sites have been 

investigated in this study, namely: (i) BUF in central Burkina Faso; (ii) MAN around the city Man 

in western Côte d’Ivoire; and (iii) TAB around the Lake Taabo in south-central Côte d’Ivoire (see 

Figure 2-1). They represent a transect of ecozones ranging from dry savannah in the North to 

tropical rainforest in the South and are characterised by environmental gradients of topography, 

land cover, and climate. Within each study site, the disease epidemiology is described by highly 

heterogeneous prevalence rates as shown in more detail in Section 4.1. Thus, these sites well 

represent the requirements to specifically address the research objectives of this thesis, such as 

the impact of scale or ecozone on modelling schistosomiasis risk. 

2.1 The biophysical environment 

2.1.1 Topography 

The relief of the study area is generally flat. The only mountains are located in and around the 

study site MAN in western Côte d’Ivoire with few peaks higher than 1,000m (Savane, 2010b: 

122) (Figure 2-1). The southern region of Côte d’Ivoire is characterised by a plane coastal strip 

that is to the North delimited by a belt of dissected table lands varying from 300 to 600m in 

altitude (Poorter et al., 2004: 7). An extensive zone of high plateaus spans from the centre of 

Côte d’Ivoire to the North and covers most of Burkina Faso with only few isolated reliefs, e.g. in 

the East and North-west of Côte d’Ivoire or the South-west of Burkina Faso (Savane, 2010b: 122-

123) (Figure 2-1). The regional contrast between elevations is of high relevance with respect to 

schistosomiasis transmission risk as topographic contrast essentially shapes the runoff 
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characteristics of surface water. Figure 2-2 illustrates the contrast (difference between minimum 

and maximum) of elevation data within 1km grid cells and illustrates the regions with steep 

topographic brims in dark purple, whereas flat terrains appear in green. The topographic 

contrast varies strongly between the three selected study sites from high contrast in MAN, few 

peaks of high contrast in TAB, and a single elevated outcrop in the predominantly flat terrain of 

the study site BUF. 

 
Figure 2-1: Overview of the study area Burkina Faso and Côte d’Ivoire in West Africa. The selected study 
sites BUF, MAN and TAB are indicated by the black rectangles with the solid lines. The sub-site Ziniaré in 
BUF represents the footprints of available high-resolution RapidEye data. Both study sites in Côte d’Ivoire 
are fully covered by RapidEye data. 
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Figure 2-2: Topographic contrast in the study area derived from minimum and maximum elevation of 
SRTM data within 1 km grid cells. 
 

2.1.2 Geology and soils 

From a geological perspective, the study area is located on the south-eastern margin of the West 

African Craton, a stable and spacious unit of Precambrian basement. Granites, gneisses, quartz, 

and schists form the main parental bedrock from which soils develop (Poorter et al., 2004: 8-9; 

Reichert et al., 2010: 35). Regions that differ from this largely homogeneous crystalline base are 

a sandstone massif rich in aquifers at the western border of Burkina Faso, rows of fossil dunes in 

its northern boundary and the sedimentary basin at the southern coastal region of Côte d’Ivoire 

(Dipama and Anne, 2010: 126-128; Savane, 2010b: 122). 
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The distribution of soils in the study area is illustrated in Figure 2-3. The zonal soil of the 

humid region of Côte d’Ivoire represented by the study site MAN is Acrisol with inclusions of 

Cambisol, whereas the typical soil below tropical rainforest mainly towards the coastal region is 

Ferralsol. The soil types within the study site TAB in Côte d’Ivoire are a combination of Acrisol, 

Cambisol, Lixisol and Plinthosol. In Burkina Faso, the Plinthosol and Lixisol are the zonal soil 

types of the less humid climate. The northern region of Burkina Faso is characterised by 

Arenosol, which is the typical zonal soil for dry regions. The study site of Burkina Faso is 

characterised by the combination of Plinthosol and Arenosol with inclusions of Regosol, 

Leptosol, Cambisol, Lixisol, Gleysol, and Vertisol (FAO et al., 2012). 

 
Figure 2-3: Soil types of the study area 
 
. 
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Soils in the study area are typically low in nutrients and leaching is the predominant 

pedogenetic process (except for higher elevation areas with younger soils) resulting in low cation 

availability (0–2cmol/kg) (Poorter et al., 2004: 8-9; Traore and Anne, 2010: 130). The areas 

around streams are characterised by hydromorphic pedogenesis that evolves under the 

influence of an excess of temporary water resulting in Gleysols (Traore and Anne, 2010: 130-

132). With respect to the potential risk for transmission of schistosomiasis, the water holding 

capacity of soils is of relevance due to its impact on snail survival. This has been estimated to be 

low (<25mm water per meter of soil) in the northern dry region of Burkina Faso, moderate (25–

100mm) for most of the study area, and high (100–200mm) for the hydromorphic soils along the 

streams and seasonal flooded areas (USDA-NRCS, 1998). 

2.1.3 Climate 

The climate zones of the study area illustrated in Figure 2-4 and described in Table 2-1 show a 

moisture gradient increasing from North to South. Interannual variations of rainfall are mainly 

determined by the oscillation of the intertropical convergence zone (ITCZ), where humid 

maritime and dry continental air masses meet and the convection process close to the Sun 

zenith creates favourable conditions for rainfall (Poorter et al., 2004: 7-8; Dipama, 2010a: 122-

124). The northern end of the study area (Sahelian climate zone) is the zone of lowest rainfall 

and is characterised by a high rate of potential evapotranspiration due to the high temperatures 

throughout the year. The Sudano-Sahelian climate zone covers most of Burkina Faso that 

experiences one rainy season from May to October with generally mid-range temperatures 

between 20 and 30°C. The border region of Burkina Faso and Côte d’Ivoire is characterised by 

the Sudanian climate with one prolonged rainy season from April to November (Dipama, 2010a: 

122-124). Towards the south, Côte d’Ivoire is exposed to four seasons per year, because the ITCZ 

transits this region both during its northward and southward movement (Chmielewski et al., 

1998: 156-157). The difference between the Baoulean climate in central Côte d’Ivoire and the 

Guinea climate in the South is that the monthly amounts of rainfall between April and June and 

August and October are relatively 

homogeneous to the Baoulean 

climate, whereas there is a peak 

of very heavy rainfalls in the 

coastal region of Côte d’Ivoire 

during the first rainy season from 

May to July (Figure 2-4) compared 

to the second rainy season 

between October and November 

(Savane, 2010a: 125). In contrast, 

the mountainous climate zone is 

azonal and results from 

orographic modification of the 

atmospheric circulation 

(Chmielewski et al., 1998: 323-

325). A mountainous climate zone 

with one extensive rainy season is 

Table 2-1: Characteristics of climate types in the study area  
of Burkina Faso and Côte d’Ivoire (Dipama, 2010a: 124; Savane, 
2010a: 124) 
 
Type of climate Precipitation 

(mm/a) 
Characteristics of 
season 

Sahelian climate <600 
2 seasons: dry, rainy 
(rainy: 2-3 months) 

Sudano-sahelian 
climate 

600 –900 
2 seasons: dry, rainy 
(rainy: 4-5 months) 

Sudanian climate >900-1,700 
2 seasons: dry, rainy 
(rainy: 5-6 months) 

Baoulean climate 1,500-2,200 
4 seasons:  
2 dry, 2 rainy 

Guinean climate 1,300-2,400 
4 seaons: 
2 dry, 2 rainy 

Mountain climate 1,500-2,200 
2 seasons: dry, rainy 
(rainy: 6-7 months) 
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found in the region around the city Man in western Côte d’Ivoire. The temperature in sub-

tropical and tropical climate zones is characterised by a diurnal climate with higher temperature 

ranges between day and night than between seasons of the year (Chmielewski et al., 1998: 71). 

 
Figure 2-4: Climate zones of the study area and Walther Lieth climate diagrams of selected sites in the 
study area. The climate diagrams have been created based on estimates between 1950 and 2000 (Hijmans 
et al., 2005) 
 

2.1.4 Vegetation 

The vegetation zones of the study area are in correspondence with the climate zones described 

in Section 2.1.2 ranging from the Sahel in the northern end over several savannah biomes to the 

tropical rainforest in the southern end of the study area (Figure 2-5) (White, 1983). However, in 

this region, human land use strongly modifies the climate-related, characteristic zonal 

vegetation. The Sahel zone is characterised by sparse vegetation of thorn bush and savannah 

scrub, where grasses are short due to extensive grazing (Gornitz, 1985: 290). Towards the South, 

the transition to the Sudanian savannah is reached with yearly rainfalls exceeding 600mm. The 

vegetation in this zone covering the study site BUF - originally characterised by dense shrub 

thickets with scattered trees – is degraded to open tree savannah due to repeated burning 

practices and permanent land cultivation (Gornitz, 1985: 288-289). Subsequently, the Sudan-
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Guinea savannah is reached, where yearly rainfall exceeds 1,000mm. The former closed 

woodland has been degraded through centuries of repeated grassfires and farming resulting in 

an open savannah woodland with scattered fire-resistant short trees and tall grass (Gornitz, 

1985: 288). The forest savannah mosaic zone spans the transition zone between the Guinea-

savannah and the tropical rainforest, which varies with its latitudinal expansion and is highly 

modified by anthropogenic land use due to logging and extensive farming, which also affects the 

north-eastern study site TAB. The southern end of the study area is located in the tropical 

rainforest zone, which is characterised by an evergreen or semi-evergreen rainforest and 

exhibits one of the world´s hotspots of biodiversity (Myers et al., 2000b: 853). It has an average 

canopy height between 30 and 50m above ground level (Poorter et al., 2004: 10). However, the 

average deforestation rate (1981-1990) of tropical rainforest in Côte d’Ivoire has been assessed 

to be 7.6% per year resulting in a remaining forest cover of 11,230km² in 1990 from an original 

forest cover of 150,000km² in 1981 (Chatelain et al., 2004: 15). In general, the study area has 

experienced an enormous rate of desertification in the North and deforestation in the South due 

to human pressure from unsustainable farming practices and the need for resources (Gornitz, 

1985: 287-288; Poorter et al., 2004: 12; Porembski et al., 2010: 67-68). 

 
Figure 2-5: Vegetation zones in the study area according to White (1983). Pictures A to D illustrate the 
vegetation zones from the field perspective for the corresponding sites indicated in the map.  
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Apart from the zonal vegetation that responds mainly to the climatic gradient, there are 

azonal vegetation types occurring in areas, where local site conditions dominate. The most 

relevant examples within the study area are: (i) gallery forests that are found along riverbanks, 

where the high moisture availability allows them to penetrate deep into the savannah zone, and 

(ii) rocky outcrops of granitic or gneissic inselbergs and laterite plateaus promoting a multitude 

of habitat types e.g. for desiccation-tolerant vascular and carnivorous plants especially during 

the rainy season (Poorter et al., 2004: 10-11; Porembski et al., 2010: 67). 

2.1.5 Hydrology 

The hydrology corresponds to the most decisive criteria to determine the spatial dynamic of 

schistosomiasis transmission. In Burkina Faso, rivers are characterised by endorheic drainage, 

where water coming from the southern and eastern catchments run dry in the Sahelian climate 

zone. This implies that rivers and specifically their sections towards the North are seasonal. In 

contrast, rivers in Côte d’Ivoire have an exorheic draining due to their flow from the northern 

elevation towards the South mounding into the Atlantic Ocean often via estuaries and lagoon 

systems (Figure 2-6) (Dipama, 2010b: 135; Savane, 2010c: 127).  

Despite the dry climatic conditions and the flat relief in Burkina Faso, the river network is 

relatively dense due to the discharge coming from three major outflow basins: the Niger in the 

East, the Volta in the South-east, and the Comoé in the South-west (Dipama, 2010b: 134-135). 

This river network is further subdivided by nearly 2,100 dammed lakes, which provide surface 

water for manifold usage, especially during the dry season when rivers temporarily dry out. 

Artificial dammed lakes strongly modify the river hydraulic, which results in e.g reduced water 

flow velocity with huge impact on the environmental suitability for transmission of 

schistosomiasis (N'Goran et al., 1997; Dianou et al., 2003). This environmental feature is very 

well demonstrated based on the satellite images available for the study site BUF. Additionally, 

one finds ponds where rainwater fills topographic depressions, these play a crucial role in 

pastoral life especially in the northern part of Burkina Faso, where they constitute the only 

major water source besides the sparse confined groundwater wells (Dipama, 2010b: 134). 

Unfortunately, these important hydrologic features cannot be demonstrated on the map of the 

study area due to the lack of respective data. However, specific sites of hydrological importance 

such as small-scale reservoirs, temporary ponds, dried out sections of rivers or irrigation systems 

have been visited in the study site BUF and are described in Section 4.3. These hydrological 

features are slightly different in Côte d’Ivoire. There are 570 artificial water reservoirs created 

predominantly for agricultural and hydroelectric power production (Savane, 2010c: 126-128) 

with a high impact on schistosomiasis transmission (N'Goran et al., 1997; Steinmann et al., 

2006). However, due to the more humid climate, the agriculture is less dependent on the 

storage of water through constructed dams and irrigation practices as witnessed in Burkina Faso. 

Furthermore, the high amount of rainfall in the study sites MAN and TAB is expected to have an 

impact on water flow velocity of the presumably perennial rivers. 

The hydrological potential is composed of renewable surface and groundwater resources and 

varies between the North (Burkina Faso) and the South (Côte d’Ivoire) of the study area. In 

Burkina Faso, renewable surface water contributes with only 27% and groundwater with 73% to 

the hydrological potential of the country (28.5 billion m³) (Dipama, 2010b: 134-136). The total 

renewable water resources per capita and year are 715m³ (FAO, 2014a). This is dissimilar to Côte 
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d’Ivoire, where renewable surface water contributes with 49% and groundwater with 51% to the 

hydrological potential of the country (76.7 billion m³) (Savane, 2010c: 128-129). Here, the total 

renewable water resources amount to 3,940m³ per capita and year (FAO, 2014a). 

 
Figure 2-6: Hydrology of the study area illustrated by the extent of watersheds, rivers, lakes and the 
stream order modelled from a digital elevation model (DEM). The derivation of stream order is described 
in Section 4.2.2 
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2.2 The human environment 

2.2.1 Socio-cultural organisation 

As in almost all developing countries, the population of the study area experienced rapid growth 

with an average annual growth rate of 3.4% in Burkina Faso and 2% in Côte d’Ivoire between the 

years 2002 and 2012 (Table 2-2) (FAO, 2014a). The total population in the year 2012 has been 

estimated to be around 17.5 million inhabitants in Burkina Faso and 20.6 million in Côte d’Ivoire. 

Thereof, the majority of the population in Burkina Faso (73%) lives in rural areas, whereas the 

proportion between rural (48%) and urban (52%) population is relatively balanced in Côte 

d’Ivoire (FAO, 2014a). The capitals Ouagadougou (Burkina Faso) and Yamoussoukro (Côte 

d’Ivoire) had an estimated population (in the year 2011) of 2.1 and 1.0 million, respectively (UN, 

2012b). The comparably low number of inhabitants in Yamoussoukro can be explained by the 

relatively recent transfer of the Ivorian capital status from Abidjan (4.3 million inhabitants in 

2011) to Yamoussoukro in 1983. Still today, Abidjan is the economic capital of the country and 

seat of the government (UN, 2012b), presumably due to its favourable location close to the sea. 

The distribution of the population varies significantly within both countries, which is 

illustrated in Figure 2-7. In Burkina Faso, the central region around the capital followed by the 

western region around the economic capital Bobo-Dioulasso are characterised by higher 

population density in contrast to the very low population density in the eastern parts of the 

country (Senghor, 2010a: 139-140). In Côte d’Ivoire, the South is more densely populated than 

the North. The cities with highest population densities are Abidjan, Bouaké, Daloa, and 

Yamoussoukro. 

In Burkina Faso, census results showed significantly more women than men in the years post 

1985, i.e. 93 men per 100 women (Senghor, 2010a: 138-139). Overall, there are 60 ethnic groups 

and 60 languages spread among the Burkinabe population, whereby the principle ethnic group, 

the Mossi, account for with more than 48% of the population. They are followed by the Fulani 

with more than 10% and the Bobo, the Gourmantché, and the Gurunsi each with more than 7%. 

In Burkina Faso, the major religions practiced are Islam and Christianity, whereby both are often 

practiced in tandem with traditional indigenous beliefs (Senghor, 2010a: 140). Almost a quarter 

of the population in Côte d’Ivoire is comprised of foreigners who immigrated almost exclusively 

from the neighbouring countries being members of the Economic Community of West African 

Nations (ECOWAS). Major ethnic groups in Côte d’Ivoire are: Akan (41%), Mandé North and 

South (26.5%), Voltaic and Gur peoples (17.6%), and the Krou (12.7%). The religious composition 

of the Ivorian population is characterised by 38.6% following Islam, 30.4% Christians, 11.9% 

Animists, and 17.4% that are not a member of any religious group (Kouassi, 2010: 140-141).  

The educational level of adolescents between 15 and 24 years of age indicated by the rate of 

literacy is generally lower in Burkina Faso (39.3%) than in Côte d’Ivoire (67.5%) (Table 2-2). More 

than a third of the children of primary school age do not go to school in Burkina Faso (35%) and 

Côte d’Ivoire (38%) (UNESCO, 2011). However, high uncertainty is inherent in these national 

indicators as demonstrated by another source, where over 70% of the population of 7 years or 

older has no education referring to class attendance in Burkina Faso (M.E.F., 2008; Senghor, 

2010b: 142). The literacy rate is higher among the young population compared to adults and 
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generally more than 10% higher among the male population compared to the female population 

(UNESCO, 2011) 

2.2.2 Economy and agriculture 

Burkina Faso and Côte d’Ivoire are categorised as low-income and lower-middle-income 

countries with an estimated gross domestic product (GDP) of US$ 10.44 billion and 24.68 billion, 

respectively (Table 2-2) (World Bank, 2014). In Burkina Faso, the agricultural sector has with 52% 

the largest contribution to the GDP and accounts for 79% of the country’s export mainly from 

livestock, food, and cash crops. Further economic income results from mining (e.g. gold, zinc, 

copper), embryonic industries predominantly for agro-alimentary and textile production and a 

 
Figure 2-7: Population density in the study area derived from the WorldPop database (Linard et al., 2012) 
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growing tertiary sector (e.g. hotel and restaurant industry, handicrafts) (Senghor, 2010b: 142-

148). In Côte d’Ivoire, the tertiary economic sector represented with 43.7% the highest activity 

(I: 28%, II: 20.3%) resulting a GDP growth rate of above 2%, given the situation in the year 1996. 

However, since the coup d´état in 1999 and the 2002 rebellion, Côte d’Ivoire experienced 

repetitive crises with great disruptions to its economy. In 2010 and 2011, another political crisis 

has massively destabilised the Côte d’Ivoire. These conflicts lead to decreasing economic 

activities and increasing poverty (Doumbia, 2010: 146-147). Nevertheless, given the latest data 

from the World Bank (2014) and UNESCO (2011), the GDP of Côte d’Ivoire is still more than 

double the GDP of Burkina Faso and the poverty rate of 46% is far less than that of Burkina Faso 

(73%). The most actual information on malnutrition rates of children under 5 years of age in 

Côte d’Ivoire comes from the year 2007, where it was high at 29.4%. In Burkina Faso, the very 

high malnutrition rate estimated in the year 2006 (37.6%) decreased significantly to 26.2% in 

2010 (World Bank, 2014). An important socio-economic indicator in the context of this research 

represents the access to improved sanitation facilities. Not even a quarter of the population in 

Côte d’Ivoire (23.9%) is supplied, whereas the situation is even worse in Burkina Faso (18%) 

(World Bank, 2014). Especially among the poor, the access to basic services such as education or 

sanitation as well as to health centres and hospitals is difficult (Doumbia, 2010: 148). 

 

Table 2-2: Selected socio-cultural and socio-economic indicators for the study area Burkina Faso (BF) and 
Côte d’Ivoire (RCI). Life expectancy at birth is given in years representing the situation in the year 2011; 
Infant mortality rate is denoted as number of deaths per 1000 live births for the year 2011; the percentage 
of population growth rate has been calculated for the time span between the year 2002 and 2012; literacy 
rate is denoted as percentage of above 15 year old adults (a) or adolescents (ac) between 15 and 24 years 
who were literate in the year 2007 (BF), respectively in the year 2011 (RCI); school absenteeism is given as 
percentage of children at primary school age who were out of school for the year 2011 (BF), respectively 
for the year 2009 (RCI); access to improved sanitation is indicated as percentage of the population with 
access to improved sanitation facilities for the year 2011; malnutrition prevalence is given as percentage of 
children under 5 years derived from the weight for age ratio for the year 2010 (BF), respectively for the 
year 2007 (RCI); the gross domestic product (GDP) is given in billion US$ and estimated for the year 2012; 
the level of poverty is given as percentage of the population that live with less than US$ 2 per day and 
represents the situation in the year 2009 (BF), respectively in the year 2008 (RCI). 
 

Indicator Burkina Faso Côte d’Ivoire Source 

Life expectancy [years] 55 55 UNESCO (2011) 
Infant mortality rate [‰] 82 81 UNESCO (2011) 
Population growth [%] 3.4 2 FAO (2014a) 
Literacy [%] 28.7 (a), 39.3 (ac) 56.9 (a), 67.5 (ac) UNESCO (2011) 
School absenteeism [%] 35 38 UNESCO (2011) 
Access to sanitation [%] 18 23.9 World Bank (2014) 
Malnutrition prevalence [%] 26.2 29.4 World Bank (2014) 
GDP [billion US$] 10.44 24.68 World Bank (2014) 
Poverty [%] 73 46 UNESCO (2011) 

 

As already mentioned in Section 2.1.4, humans have converted most of the original forest 

into savannah and agricultural land and only few natural parks and sacred sites remain (Janssen 

et al., 2010: 90). Agriculture emerges in the northern part of the study area, as soon as river 

water or sufficient amount of precipitation allows this. In general, West African agriculture is 

predominantly rain fed and therefore dependent on the seasonal and spatial distribution of 
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precipitation (Janssen et al., 2010: 88). However, especially in northern and central Burkina Faso 

the collecting of rain water through a variety of artificial river dams and pools (Section 2.1.5) is 

an established practice to prolong or even enable agriculture. Agricultural practices are mainly 

based on traditional techniques for crop production (i.e. millet, maize, sorghum). Only the large-

scale and water-intensive production of cotton and rice is driven by politically supported modern 

agricultural techniques. In the northern area, livestock farming is extensively practiced by 

traditional herdsmen and farmers (Senghor, 2010b: 143-144). In Côte d’Ivoire, the most widely 

applied agricultural method is the use of fire for clearing in slash-and-burn cultivation, which 

constitutes the cutting a section of forest or thinning out savannah to prepare or renew land for 

rain-fed crop farming (Kouassi and Ahoussi, 2010: 150-151). In Burkina Faso, of the more than 8 

million economically active inhabitants, 7.4 million are active in agriculture, whereas in Côte 

d’Ivoire, from 7.8 million economically active inhabitants, only 2.8 million are active in 

agriculture (FAO, 2014a). 

2.3 Schistosomiasis epidemiology 
The study area is an endemic schistosomiasis region where moderate to high transmission rates 

have been observed (WHO, 2010b). The general epidemiology and control strategies of 

schistosomiasis are described in Sections 3.1.1 and 3.1.3, respectively. In the following, specific 

epidemiological characteristics and national activities of disease control with relevance to this 

thesis are briefly documented for Burkina Faso and Côte d’Ivoire. 

In Burkina Faso, a review by Poda et al. (2004) has confirmed that no districts were free of 

schistosomiasis transmission and its spatial distribution had a typical focal pattern. The most 

frequent infections spread all over Burkina Faso result from the Schistosoma haematobium 

parasite, whereas Schistosoma mansoni was less frequent and located only in six districts in the 

southern and western part of the country (Poda et al., 2004). Epidemiological surveys that have 

been conducted between 2003 and 2007 revealed a prevalence rate of S. haematobium 

between 1.7 and 81.7% with the severest infection rate in the northern region (Figure 2-8) 

(Dadjoari, 2011). The corresponding snails prevalent in Burkina Faso are Bulinus truncatus, Bu. 

senegalensis and Bu. globosus for S. haematobium and Biomphalaria pfeifferi for S. mansoni. The 

heterogeneity in transmission pattern of schistosomiasis is closely linked to the spatial 

distribution of preferred breeding sites of the respective snail hosts and the principal point of 

contact between people and the parasites (Boelee et al., 2009: 13). Based on snail surveys in 

Burkina Faso carried out between 1985 and 1995, Poda (1996: 57-59) has found that 41% of 

intermediate snail hosts have been found in small reservoirs, 34% in rivers, 20% in temporary 

ponds, 3% in irrigation channels and 2% in natural lakes. This shows the importance of small 

reservoirs with respect to the distribution of schistosomiasis in Burkina Faso (Boelee et al., 2009: 

16). In general, changes in the natural hydraulic of water systems through dam construction are 

an amplifying factor for the proliferation of mollusc species and parasite exchange (Poda, 1996; 

Dianou et al., 2003; Boelee et al., 2009). In northern Burkina Faso, the climate-induced water 

shortage results in a concentration of domestic activities around reservoirs and temporary 

ponds that are mostly contaminated with the parasite (Poda et al., 2004). Beyond the 14° 

northern latitude, parasite transmission takes place only at ponds available during the rainy 

season, whereas temporary rivers exist typically for very short periods and have a fast drainage, 
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which does not allow snail development (Boelee et al., 2009: 14). Towards the South between 

14° and 12° northern latitudes, the transmission foci of schistosomiasis are numerous small 

water reservoirs, dam lakes together with horticultural activities and isolated perennial rivers all 

of which result from an increasing amount of rainfall (Boelee et al., 2009: 14-15). In the Sudanian 

climate zone (Figure 2-4) between 12° and 10° northern latitudes most rivers and water 

reservoirs are permanent. However, in this region the overall prevalence rate of schistosomiasis 

is the lowest of the entire country. Here, the focal points of high prevalence rate (up to 80%) 

were observed around large irrigated areas (Boelee et al., 2009: 15). 

 
Figure 2-8: Geographic distribution of schistosomiasis prevalence in the study area on district level based 
on estimates of the national schistosomiasis control programme of Burkina Faso between 2003 and 2007 
(Dadjoari, 2011) and estimates from epidemiological studies between 1998 and 2005 in Côte d’Ivoire (ICL, 
2014). 
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Similar to Burkina Faso, schistosomiasis transmission is endemic nationwide in Côte d’Ivoire 

with more than 21.5 million inhabitants who require treatment (WHO, 2010a). Both parasites, 

S. haematobium and S. mansoni are prevalent in Côte d’Ivoire. Their corresponding snails in Côte 

d’Ivoire are Bu. forskalii, Bu. globosus, Bu. truncatus and Bio. pfeifferi, respectively (Kinanpara et 

al., 2013: 110). Epidemiological studies that have been conducted between 1998 and 2005 

revealed prevalence rates of S. haematobium between 5.5 and 38.6% and of S. mansoni 

between 13.6 and 57.4%, whereas the western and eastern districts of the country as well as the 

central region around Lake Kossou show highest transmission rates with prevalence greater 50% 

(Figure 2-8). Similar to the situation in Burkina Faso, the construction of large dams such as Lake 

Kossou or Lake Taabo led to a marked increase of schistosomiasis prevalence predominantly 

caused by S. haematobium (N'Goran et al., 1997: 541). The typical sites for potential disease 

transmission in Côte d’Ivoire are dam lakes, natural ponds, irrigation canals, and river 

confluences or bulges, where current of the river is slow and human contact frequent (Kinanpara 

et al., 2013: 110). 

The surveillance and control of schistosomiasis are subject to supervision by national health 

authorities with the consequence that national borders delineate the respective efforts and 

applied practices between countries. In Burkina Faso, with assistance from the Schistosomiasis 

Control Initiative (SCI) (Fenwick et al., 2009) nation-wide control of the disease has been 

implemented by the following steps: (i) identifying the most heavily infected regions; (ii) training 

local health staff and teachers; (iii) providing health education to the local population; and (iv) 

distributing the drug praziquantel to treat against the disease. Thereby, during mass treatment 

campaigns conducted between 2004 and 2006 more than 6 million children aged between 5 and 

15 years have been treated in Burkina Faso (MoH and PNLSc, 2010: 6). More than 97% of the 

financial resources invested for schistosomiasis control in Burkina Faso stem from funding 

through the United States Agency for International Development (USAID) and the SCI, and less 

than 3% result from the national budget (MoH and PNLSc, 2010: 20). Since 2008, Burkina Faso is 

no longer a target country of the SCI (ICL, 2013). 

In Côte d’Ivoire a national control programme has been established in 1998, but due to 

limited funding and subsequent civil unrest, mass drug administration never happened at this 

scale (Tchuem Tchuenté and N'Goran E, 2009: 1741-1742). Thus, in the year 2010 Côte d’Ivoire 

has been classified into the first group within the Integrated Control of Schistosomiasis in Sub 

Saharan Africa (ICOSA) project, coordinated by the SCI, because no treatment had been given 

previously. The objective was to map schistosomiasis in 66 targeted districts within Côte d’Ivoire 

by 2014 and distribute community- and school-based treatment dependent on the mapping 

results. Treatments begun in June 2012 and were scheduled to cover more than one million until 

May 2014. At the time of writing the current thesis, mapping has been completed (Eliézer K. 

N´Goran, personal communication). If mapping results in full endemicity of the country as 

already indicated by historical data, the project covered 12% (1.84 million) of the total 

population of Côte d’Ivoire with treatment (ICL, 2013). 
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3 Remote sensing of schistosomiasis risk 

3.1 Schistosomiasis 
Schistosomiasis is a parasitic disease in humans caused by blood flukes of the genus 

Schistosoma. The transmission cycle of the disease from human to human requires the parasite 

to meet specific snails as an intermediate host. These snails release the parasite in a 

development stage where it can infect humans within an aquatic environment. 

The disease has already been known to occur in Egypt and Mesopotamia amongst the earliest 

agricultural civilizations of the great river valleys (Farooq, 1973: 1-2). As early as the 

16th century BC, haematuria, a typical sign of urogenital schistosomiasis, has been depicted in 

hieroglyphs in Egyptian papyri and paintings (Farooq, 1973: 2; Adamson, 1976: 177; Jordan, 

2000: 9). Calcified parasite eggs have been found in the kidneys of Egyptian mummies from the 

20th dynasty between 1184 and 1087 BC (Ruffer, 1910: 16; Farooq, 1973: 2). In 1851, the 

German physician Theodor Bilharz discovered the parasite S. haematobium recovered post-

mortem from the mesenteric veins of Egyptians and demonstrated their relationship to 

haematuria and eggs passed in the urine (Bilharz, 1852: 72-73; Sturrock, 1993b: 1). Still today, 

the term bilharzia is used as a synonym for schistosomiasis in association with this discovery 

(Utzinger et al., 2011b: 10) 

3.1.1 Geographical distribution and epidemiology 

From a global public-health perspective, schistosomiasis is the most significant water-based 

disease (Steinmann et al., 2006: 411). Global statistics on disease burden suggest that 779 

million people are at risk (Steinmann et al., 2006: 414-415) and about 440 million people are 

currently infected (Colley et al., 2014: 2259) with 97% of all infections occurring in Africa (Figure 

3-1). There is a considerable discussion regarding the true burden of the disease (King et al., 

2005: 1564-1566; Gryseels et al., 2006: 1113; King and Dangerfield-Cha, 2008: 73; Utzinger et al., 

2011a: 124-125; Murray et al., 2012: 2204). It ranges from lowest estimates of 1.7 million 

disability-adjusted life years (DALYs) (WHO, 1999: 104), an updated considerably higher value of 

4.5 million (WHO, 2002a: 2) to a maximum of 70 million DALYs assessed by King and Dangerfield-

Cha (2008: 73). The most recent estimate of 3.3 million DALYs due to schistosomiasis is given by 

Murray et al. (2012: 2204). The difficulty in assessing the true burden of schistosomiasis are the 

resulting end-organ pathologies, impaired growth and development of children, chronic 
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inflammation, anaemia, and other health consequences of the disease. Despite a comparatively 

low mortality rate of 11,700 deaths estimated in the year 2010 (Lozano et al., 2012: 2105), the 

burden of the disease is estimated to be equivalent to malaria or HIV/AIDS (Hotez and Fenwick, 

2009: 1).  

 
Figure 3-1: Global distribution of schistosomiasis. Source: Utzinger et al. (2011a: 124) 
 

Schistosomiasis is a typical disease of poverty (WHO, 2013) that is widespread where access 

to clean water and basic sanitation is lacking, hygiene is at a sub-standard level and health 

infrastructure is weak or non-existent (Bruun and Aagaard-Hansen, 2008: 50; Utzinger et al., 

2009: 1863; King, 2010: 102; Utzinger et al., 2011a: 122). In endemic parts of the world, the 

prevalence of schistosomiasis is intimately linked with water resources development projects 

and irrigated agriculture (Hunter et al., 1993; Steinmann et al., 2006: 411). The modification of 

flowing hydrological regimes to stagnant water bodies enabled the spreading of the disease to 

previously non-endemic areas (Dianou et al., 2003: 107-108; Fenwick, 2006: 1077), a situation 

that might be further exacerbated by climate change and an increasing pressure of humans on 

environmental resources as outlined in Section 1.1 (Martens et al., 1997; Yang et al., 2005b: 131; 

Zhou et al., 2008: 192-193; Utzinger et al., 2011a: 122). 

3.1.2 Ecology of schistosomiasis transmission 

 

“Transmission of schistosomiasis is the result not only of interplay between humans, 

 snails and parasites, but also of complex demographic, environmental, biological, technological, 

political, socio-economic and cultural processes” (Bruun and Aagaard-Hansen, 2008: 1) 

 

As stated here, it becomes clear that human acquisition of schistosomiasis is multi-faceted and 

complex, integrating various disciplines to understand and research this process. The parasite 

life cycle, its intermediate snail host, and its definitive vertebrate hosts provide the fundamental 

basis that schistosomiasis transmission from human to human can occur (Figure 3-2). There are 

six schistosome species parasitising humans, namely, S. haematobium, S. mansoni, S. japonicum, 

S. intercalatum, S. mekongi and S. guineensis. The former three are the most widespread and 

important from a public health point of view (Utzinger et al., 2011b: 10-11). To complete a 

successful life cycle, S. haematobium is transmitted almost exclusively by snails of the genus 
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Bulinus, of which however, not all species are susceptible (Sturrock, 1993a: 33). All intermediate 

hosts of the S. mansoni parasite belong to the genus Biomphalaria (Sturrock, 1993a: 33). Both 

snail genera are pulmonate snails of the Planorbidae family and live in aquatic environments 

(Sturrock, 1993a: 33). In contrast, S. japonicum is transmitted by snails of the genus 

Oncomelania, which results in a different transmission ecology due to the amphibious habitat of 

these snails (Sturrock, 1993b: 4-5). For the scope of this research only the transmission ecology 

of S. haematobium and S. mansoni and its aquatic intermediate hosts are relevant due to their 

endemic distribution within the study area of Burkina Faso and Côte d’Ivoire. 

Cercariae represent the infective development stage of the parasites that enter the human 

body through penetrating the intact skin within an aquatic environment (Sturrock, 1993b: 12). 

The whole process of penetration through the skin of humans is completed within a few minutes 

(Sturrock, 1993b: 15). Each successful cercaria travels through the blood circulation of its host to 

reach the liver and develop into a single adult worm (Sturrock, 1993b: 15-16). After reaching 

sexual maturity and the pairing of the worms, female worms release eggs (Sturrock, 1993b: 16). 

These become either trapped in tissues of the human host causing pathology due to immune 

reactions and progressive damage to organs, or leave the human body with excrements (urine in 

the case of S. haematobium and stool in the case of S. mansoni) with the perspective to continue 

the parasite life-cycle (Jordan and Webbe, 1993: 125). The time span between penetration of 

cercariae and the first passage of eggs in excreta varies between 34-35 days for S. mansoni 

(Clegg, 1965: 140) and 70 days for S. haematobium (Smith et al., 1976: 104). The mean life span 

of the adult worm in humans range from 3 to 10 years (Jordan and Webbe, 1993: 110), however, 

observations indicate a maximal life span of adult schistosome worms for more than 30 years 

(Chabasse et al., 1985: 643; Jordan and Webbe, 1993: 109-110). 

Eggs from the parasite contain fully developed larvae (i.e. miracidium) ready to hatch if they 

reach freshwater (Sturrock, 1993b: 5-6). Excreted eggs can remain viable for about a week if 

they are not exposed to excessive heating or desiccation (Upatham, 1972: 274-275; Sturrock, 

1993b: 10). Miracidia are chemo-sensitive and swim with a speed of about 2mm per second 

searching for their appropriate intermediate host snail species (Sturrock, 1993b: 10). They 

remain active for 8 to 12 hours, but their infectivity starts to drop rapidly within 4 to 6 hours 

after hatching (Sturrock, 1993b: 11). A successful miracidium penetrates the body of the snail 

within a few minutes (Sturrock, 1993b: 11). 

Within the freshwater snail, the miracidium can further develop to cercariae. Following an 

asexual reproduction of the parasite within the snail, one single miracidium can give rise to 

many hundreds or thousands of cercariae for several months although snails can also become 

self-cured and stop cercarial shedding (Sturrock, 1993b: 12). Snails can fundamentally modify 

the parasite life cycle and with it the transmission of the disease and its risk, due to specific 

environmental conditions that influence snail survival, reproduction and the competence of a 

snail to develop the parasite from a miracidium to cercariae (Table 3-1). 

Similar to the miracidium, a cercaria is the second, free living, infective schistosome larva 

which does not feed and is adapted to live in freshwater (Sturrock, 1993b: 12). After snails have 

shed cercariae, their life span varies between 48 to 72 hours according to their initial food 

reserves (glycogen) and their intensity of spending it through active swimming (Sturrock, 1993b: 

14). However, infected snails can produce between 250 and 600 cercariae per day life-long and 
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cercarial output might reach several thousand depending on size of the snail (Sturrock, 1993a: 

64). 

 
Figure 3-2: Consecutive steps of the parasite life cycle of schistosomiasis transmission: Eggs of 
the parasite are excreted by infected humans with faeces for S. mansoni or urine for S. 
haematobium. When eggs meet water they start hatching and parasite larvae are released as 
miracidia, search for their appropriate snail species as intermediate host and penetrate its 
tissue. Following further development in the snail host, the parasite is released by the snail as 
the infective stage of cercaria that can infect humans through the penetration of the intact skin 
when humans enter a water body. Within the human body, the parasite migrates through the 
blood vessel to the portal vein in the liver, where growth and sexual pairing starts. Dependent 
on the schistosome species, the adult worms embed themselves in the mesenteric venules of 
the bowel or bladder and continuously produce eggs that are excreted by humans via stool or 
urine, respectively. If eggs become trapped, morbidity is caused by egg calcification and chronic 
inflammation of the tissue. 
Source: (King, 2009: 107) 



3.1 Schistosomiasis 

31 

The ecology of parasite and snail species as well as human characteristics stimulate, inhibit or 

modify the dynamics of disease transmission in a specific manner. The environment has thereby 

an essential impact on the ecology of disease transmission such as successive rates of 

reproduction, survival, and probability that the next step in the parasite life cycle is reached 

(Hairston, 1973: 278-279). In the following paragraphs, factors that specifically influence the life 

cycle of Schistosoma parasites, the ecology of intermediate snail hosts, and the vulnerability of 

humans to become infected with the parasite are reviewed in detail. An overview of the relevant 

variables and its effects on the ecology of disease transmission is presented in Table 3-1. 

 

The Schistosoma parasites 

The water temperature has a major influence on the length of the prepatent period of a 

Schistosoma parasite, which is again related to its abundance in the environment. Within the 

temperature range of 10-30°C, the hatching of the eggs is stimulated by a combination of light 

and dilution of the shell that further affects the osmotic pressure (Sturrock, 1993b: 10). The 

length of the prepatent period from penetration of the miracidium to initial shedding of 

cercariae by the snail varies with temperature between the minimum of 17 days at 30-35°C and 

several months towards cooler temperatures (Sturrock, 1993b: 12). Pflüger (1980) and Pflüger et 

al. (1984) found a species-specific length of the prepatent period for S. mansoni and 

S. haematobium parasites. The general increasing length of the prepatent period with 

decreasing water temperature reached the developmental null point of parasite development at 

14.2°C for S. mansoni (Pflüger, 1980: 162) and 15.3°C for S. haematobium (Pflüger et al., 1984: 

99). The development time of S. mansoni parasites in the snails (y) given in days has been 

approximated by Equation 3-1, 

y =
268

𝑥 − 14.2
 Equation 3-1 

where 𝑥 represents the measured water temperature and 268 has been calculated as the sum of 

biological relevant temperatures until cercarial shedding becomes constant (Pflüger, 1980: 162-

164). This relation was slightly shifted for the case of S. haematobium, where the theoretical 

developmental null point was reached at 15.3°C and the sum of the constant time-temperature 

product resulted in 295 (Pflüger et al., 1984: 99). It has further been observed, that the 

maximum of S. haematobium cercarial shedding was reached at water temperatures around 

25°C (Pflüger et al., 1984: 100-101).  

Water flow velocity influences the spatial distribution of the parasite. Stagnant water refers 

to highest cercarial density, whereas flowing water can transport the parasite passively for 

considerable distances (Jordan and Webbe, 1993: 97). Very slow moving water with a speed of 

approximately 0.1m/s is beneficial to allow the widespread dissemination of the parasite and 

meet its intermediate and definitive host (Upatham, 1973: 296; Sturrock, 1993a: 62). At the 

same time, active parasite mobility has been observed to be stimulated by various components 

of sebum (sweat) secreted by humans (Haas and Schmitt, 1982: 304-305; Stirewalt et al., 1983: 

366). 

Schistosoma parasites in the stage of miracidia have natural predators such as fish and 

diverse carnivorous invertebrates that feed on them and thereby reduce their abundance by a 

certain degree (Gibson and Warren, 1970: 835; Jordan and Webbe, 1993: 122). 
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Sunlight is a particular stimulus for the release of cercariae from infected snails, whereas the 

number of infected cercariae produced is mainly influenced by the size of the snail and its 

ambient temperature (Sturrock, 1993b: 13). 

 

Table 3-1: Overview of parasite-, snail- and human-related factors that modify, retain or intensify the cycle 
of schistosomiasis transmission 

Parasite-related 
factors 

Effect on schistosomiasis transmission Reference(s) 

Temperature Length of prepatent period 
Activity, survival and infection rate of free-living stages of 
the parasite 

Pflüger (1980) 
Sturrock (1993b) 

Water flow 
velocity 

Passive transport of parasites in flowing water determines 
cercarial density 

Jordan and Webbe 
(1993) 

Predators Fish and carnivorous invertebrates reduce parasite 
population as natural predators 

Gibson and Warren 
(1970); Jordan and 
Webbe (1993) 

Sunlight Stimulation of cercarial shedding Sturrock (1993b) 
Pathogenicity Different strains of S. mansoni and S. haematobium result 

in geographical variations of disease severity 
Stirewalt (1973) 

Species Different efficiency in identifying and infecting snails Sturrock (1993b)  
 

Snail-related factors Effect on schistosomiasis transmission Reference(s) 

Water temperature Fecundity, mortality and rate of reproduction Abdel-Malek (1958); 
Shiff (1964); Shiff and 
Garnett (1967); 
Appleton (1978); 
Pflüger (1980);  
Pflüger et al. (1984) 

Water flow velocity Flow velocity > 0.3m/s result that snails become dislodged and 
swept away 

Scorza et al. (1961); 
Appleton (1978); 
Sturrock (1993a) 

Vegetation Food supply 
Surface to crawl and deposit egg masses 
Increase of dissolved oxygen 

Abdel-Malek (1958) 

Substratum Nature of substratum is related to snail abundance Abdel-Malek (1958); 
Appleton (1978) 

Water depth Snails generally found in shallow water near the margins of their 
habitats. Below 1.5 to 2 m, snails have little importance for 
the transmission of schistosomiasis 

WHO (1957) 

Fluctuations of 
water level 

Permanence of available habitats determines the distribution 
patterns of snails 

Abdel-Malek (1958); 
Appleton (1978) 

Rainfall Creation of temporary snail habitats 
Increase of water flow velocity 
Supports contamination of water 
Passively transports snails when rainfall is heavy 

Appleton (1978); 
Jordan and Webbe 
(1993); Sturrock 
(1993a) 

Turbidity Turbidity can impact the reproduction cycle Harrison and Farina 
(1965); Appleton 
(1978)  

Water chemistry/ 
quality 

Low pH, refuse from factories directly harm snails 
High snail abundance where water is polluted with human 

excrements 

Deschiens (1954); 
Abdel-Malek (1958); 
Appleton (1978); 
Sturrock (1993a) 

Sunlight Completely shaded pools provide unsuitable habitat 
Activity of snails is high in direct sunlight 

Abdel-Malek (1958) 

Predators/pathogens Natural predators, parasites and pathogens may limit the 
abundance of snails 

Abdel-Malek (1958) 

Species Variation of susceptibility to parasite and efficiency to produce 
cercariae 

Mulvey and 
Vrijenhoek (1982); 
Sturrock (1993a) 
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Human-related 
factors 

Effect on schistosomiasis transmission Reference(s) 

Water contact 
behaviour 

Exposure of the skin to parasite infested water is the prerequisite 
for human infection. 

Bundy and 
Blumenthal (1990) 

Hygiene Contamination of water due to excrements of infected humans in 
or aside water 

Farooq et al. (1966); 
Huang and 
Manderson (1992); 
Jordan and Webbe 
(1993) 

Gender Relationship between gender and risk of infection is culturally 
variable and a determinant of water contact activities 

Husting (1983); 
Chandiwana (1987); 
Huang and 
Manderson (1992) 

Age Highest risk for children as consequence of degree of exposure 
and low level of immunity 

Bundy and 
Blumenthal (1990); 
Huang and 
Manderson (1992); 
Butterworth (1993) 

Immunity Resistance to reinfection can be developed by the human body as 
a consequence of previous infections 

Butterworth (1993) 

Ethnic origin Variation in the susceptibility to infection Jordan and Webbe 
(1993) 

Religion Religious rules are related to water contact behaviour and disease 
exposure 

Huang and 
Manderson (1992); 
Jordan and Webbe 
(1993) 

Socioeconomic 
status 

Relation to hygiene, the availability of protected water supplies 
and ability to cope with the disease 

Lima e Costa et al. 
(1987) 

Migration Population movements can modify spatial patterns of disease 
transmission through both introduction of the parasite or the 
acquisition of infection 

Doumenge and Mott 
(1987); Bundy and 
Blumenthal (1990); 
Jordan and Webbe 
(1993) 

Occupation  Work related to water increases the exposure and risk of 
infection (fishermen, farmer, etc.) 

Farooq et al. (1966); 
Huang and 
Manderson (1992) 

Location of house Location of house in relation to suitability of closest water source 
can influence infection status 

Mota and Sleigh 
(1987); Huang and 
Manderson (1992); 
Clennon et al. (2006) 

Prevention/control 
easures 

Spatial pattern of disease transmission can be highly modified by 
mass treatment campaigns and successful preventive 
measures 

Webbe and Jordan 
(1993); Clements et 
al. (2009b); Zhang et 
al. (2012) 

 

 

Internal factors of the parasite may modify the risk of infection such as different strains of 

S. haematobium and S. mansoni having differing pathogenicity. This could also account for 

geographical variations in severity of human schistosomiasis (Stirewalt, 1973: 30-31). The 

efficiency of snail and human infection varies with species. Hence, miracidia of S. haematobium 

have shown to need more individuals to infect their intermediate snail host than those of 

S. mansoni (Sturrock, 1993b: 11). Additionally, intermediate host snails of S. haematobium are 

more dispersed than those of S. mansoni, which further results in lower field snail infection rates 

for S. haematobium (Sturrock, 1993b: 11). 
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The freshwater snail as intermediate host 

Similar to the parasite, survival, fecundity, and rate of reproduction of freshwater snails are 

sensitive to water temperature. Despite snails having broad tolerance ranges of their ambient 

temperature between day and night or seasons, the most favourable range lies between 18 and 

32°C (Appleton, 1978: 4). Snails of the genus Bulinus show a distinct peak of maximal 

reproduction at 25°C (Shiff, 1964: 103), whereas Biomphalaria represent a plateau of high 

reproduction rates between 20 and 27°C (Shiff and Garnett, 1967: 437-438; Appleton, 1978: 5). 

The correlation between thermal regimes and snail fecundity allowed deriving a critical level of 

120-179 degree hours greater than 27°C per week. When this limit was exceeded, snails were 

absent from this habitat (Appleton, 1978: 7). In contrast to the parasite, snails are more sensitive 

to warm conditions and mortality increased to 100% when exposed to 36°C and higher for a few 

days (Pflüger, 1980: 164). However, in sub-tropical regions of Africa, the impact of temperature 

on the limitation of snail distribution is only relevant for very small water bodies exposed to 

continuous high temperatures (Abdel-Malek, 1958: 788). 

Regarding water flow velocity, freshwater snails have a noticeable narrow tolerance range 

(Appleton, 1978: 10) and become dislodged when flow velocity exceeds approximately 0.3 m/s 

(Scorza et al., 1961: 194). A nearly linear, negative correlation between the density of 

Biomphalaria spp. and water flow velocity has been derived until the aforementioned limit 

(Scorza et al., 1961: 193; Appleton, 1978: 10). It has also been shown, that snails were being 

dispersed along streams and irrigation schemes (Clennon et al., 2007: 690), which can result in 

the agglomeration of snails and parasites in downstream areas, especially during and following 

sufficient rains. Beck-Wörner et al. (2007: 961) showed that habitat suitability for Bio. pfeifferi 

was increasing with higher stream order assuming that higher stream order was linked to 

decreased flow velocity and low stream order was related to streams more likely to desiccate 

during the dry season. 

Vegetation determines the habitat suitability of freshwater snails in several ways. First, the 

presence of aquatic vegetation is positively linked to an increase of the amount of dissolved 

oxygen and the consumption of carbon dioxide (CO2) and thereby linked to movement and 

reproduction of pulmonate snails (Abdel-Malek, 1958: 804). Second, snails seek broad-leafed 

vegetation as surfaces to crawl and deposit their egg masses on. Third, the periphyton, which 

encrusts the submerged parts of the plant, provides the food supply for snails (Abdel-Malek, 

1958: 813).  

The nature of substratum of a water body is related to snail abundance. Whereas firm mud 

rich in decaying organic matter provides a favourable habitat for snails, clean sand, semi-liquid 

mud or bottom loose of organic matter does not provide a suitable snail habitat (Abdel-Malek, 

1958: 794-795). The availability of food and firm surfaces for oviposition modify the selection of 

the substratum by the snail (Appleton, 1978: 15). 

Water depth is related to the distribution of freshwater snails, which are generally found in 

shallow water near the margins of their habitats as a relation of food, shelter and light 

conditions (WHO, 1957: 11). Despite the fact that snails are able to survive at a depth of 10 m, 

they are rarely found below 1.5-2 m. However, the presence of snails in deeper water has little 

importance for the transmission of schistosomiasis (WHO, 1957: 12). 
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Sudden fluctuations of water levels, such as irrigation channels with certain pump schemes, 

provide habitats of low suitability to establish a snail population (Abdel-Malek, 1958: 792). Thus, 

the permanence of available habitats is one further criterion to determine the population and 

distribution patterns of host snails. However, snail populations are also able to persist in 

temporary habitats through their ability to aestivate during periods of drought in sheltered 

spots, under vegetation, on mud or in mud crevices (Abdel-Malek, 1958: 792; Appleton, 1978: 

12). In general, species of Bulinus are more successful to withstand periods of prolonged 

desiccation surviving up to one year through burying themselves beneath the substratum 

compared to species of Biomphalaria (Appleton, 1978: 13). During this time, development of the 

parasite and cercarial shedding may be suspended temporarily (Pitchford et al., 1969: 370).  

Rainfall modifies snail habitat conditions in manifold ways. If rainfall is heavy, snail 

populations will be reduced through being swept away, as flow velocity of water is at the same 

time increasing (Appleton, 1978: 10; Sturrock, 1993a: 53). Furthermore, temporary habitats are 

created by enduring rainfall events and snails can establish a population either if they survived 

desiccation or by being passively transported to the temporary habitat with the discharge of the 

rain. Another relevant aspect with respect to the probability of disease transmission is that 

rainfall directly supports the contamination of water through washing human faeces with large 

amounts of parasite eggs into the potential snail habitats (Jordan and Webbe, 1993: 118). 

Water turbidity due to a high content of suspended minerals (360 mg/l) can impact the 

reproduction cycle of freshwater snails through smothering egg masses, preventing 

development and hatching of eggs, however, adult snails were not affected (Abdel-Malek, 1958: 

790; Harrison and Farina, 1965: 329-330). Growth of aquatic plants is limited due to high 

turbidity and thereby habitat conditions become deteriorated (Abdel-Malek, 1958: 790). 

With respect to water chemistry and quality, a low pH value in general may be directly 

harmful to snails (Sturrock, 1993a: 51). Their frequency was found to be proportional to water 

hardness with clear preference for very hard waters (Appleton, 1978: 3). Maximum tolerated 

concentrations and lethal concentrations of certain ions for snail species have been quantified 

by Deschiens (1954: 918). In general, Bulinus spp. show a greater tolerance to changing chemical 

conditions than Biomphalaria spp., however, the latter genus was found to have higher 

tolerance to chloride (Cl-) and natrium (Na+) concentrations (Deschiens, 1954: 917-918; Abdel-

Malek, 1958: 796). Industrially polluted waters were found to be unsuitable for intermediate 

host snails, whereas abundance was high near human habitations, which pollute water with 

their excrements potentially containing large amounts of the parasite (Abdel-Malek, 1958: 793). 

Similar to the stimulation of cercarial shedding with daylight, snails themselves were 

observed to be noticeably active in sunlight (Abdel-Malek, 1958: 789). Egg masses of snails are 

often seen in direct sunlight and are apparently unaffected (Abdel-Malek, 1958: 789). 

Furthermore, sunlight corresponds to the flourishing of aquatic weeds, the abundance of 

microflora and thereby a high content of dissolved oxygen rendering the water highly suitable 

for snails (Abdel-Malek, 1958: 789; Appleton, 1978: 14). In contrast, completely shaded pools 

provide unsuitable habitat conditions and snails remain absent (Abdel-Malek, 1958: 789). 

There are several vertebrate (e.g. crabs, fish, amphibians, birds, mammals) and invertebrate 

(e.g. insects, other snails) predators that influence the abundance of snails (Abdel-Malek, 1958: 

810-812). Parasites such as leeches or trematodes and pathogens such as fungi, virus and 
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bacteria may be pathogenic to snails (Abdel-Malek, 1958: 806-810). However, both, predators 

and pathogens would mainly limit the abundance of aquatic snails (Abdel-Malek, 1958: 806).  

Finally, the respective snail species have differing genetic predispositions that result in an 

intraspecific variation of the susceptibility to the miracidium of a parasite as well as its efficiency 

to produce cercariae (Mulvey and Vrijenhoek, 1982: 1199; Sturrock, 1993a: 59). 

 

The humans as definitive host 

Humans are the definitive host, where the schistosome parasite grows, pairs and reproduces 

itself. Due to the life-long reproduction of the parasite within humans and the continuous 

excretion of eggs through faeces or urine, humans are at the same time potentially circulating 

the disease, when hygiene is sub-standard (WHO, 2013). Many of the human-related factors that 

influence transmission of the disease are in consequence of each other, which is described in the 

following paragraph and illustrated in Table 3-1. 

The entry of the infective stage of the parasite by percutaneous penetration is fundamentally 

dependent on the behaviour of the prospective human host. Hence, water contact behaviour is 

the major, decisive factor related to the risk of infection with schistosomiasis. Even when the 

environmental setting provides most suitable conditions for the transmission of the disease, 

infection does not occur, if people do not either enter the water body or protect themselves 

from direct contact with the water. Major activities leading to infection were identified to be 

personal hygiene, swimming or bathing in water and washing clothes (Bundy and Blumenthal, 

1990: 267). Less critical activities were the washing of objects, fetching water and crossing water 

bodies most likely due to the shorter duration of water contact (Bundy and Blumenthal, 1990: 

267). 

The contamination of surface waters and their surroundings with human faeces or urine 

containing Schistosoma eggs is the second major pillar for the transmission of the disease and is 

preliminary defined by the hygiene of the human population (Jordan and Webbe, 1993: 117). 

The rate of infection has been observed to be significantly higher in persons living in houses 

without a latrine and access to piped water (Farooq et al., 1966: 293; Huang and Manderson, 

1992: 183; Grimes et al., 2014 - under review). 

The relationship between gender and risk of infection is equivocal and varies with the cultural 

background of the people (Huang and Manderson, 1992: 180). In some regions, higher 

prevalence of infection in women could be related to the fact that water-related activities were 

four times greater for women than men (Husting, 1983: 28-29), whereas this was vice versa 

when men dominated the activities with exposure to water (Chandiwana, 1987: 502). Therefore, 

the predictive power of infection risk based on gender is poor (Chandiwana, 1987: 504; Huang 

and Manderson, 1992: 180) 

Age of humans influences the risk of acquiring the disease in manifold ways. In general, 

children and adolescents are the highest risk group with a peak at around 10 years (Bundy and 

Blumenthal, 1990: 278). On the one hand this is due to high exposure when fetching and playing 

in water (Huang and Manderson, 1992: 179) and on the other hand there is a low level of innate 

immunity to the disease (Bundy and Blumenthal, 1990: 282). It has been shown that humans are 

able to develop defence mechanisms that modify the effects of exposure with increasing age 

(Butterworth, 1993: 347-349). Hence, this typical convex shape of age-prevalence and age-



3.1 Schistosomiasis 

37 

intensity with respect to schistosomiasis is argued to be related to a slow acquisition of 

immunity to reinfection following a slow death of adult worms from early infections (Bundy and 

Blumenthal, 1990: 278; Butterworth, 1993: 350). 

Furthermore, it has been observed that the acute stage of the disease was rarely found in 

indigenous populations, yet very often in travellers to endemic areas (Jordan and Webbe, 1993: 

124). Differences in the susceptibility to the disease with respect to ethnic origin of humans 

have been attributed to the immunological response influenced by different ancestral 

experiences with the infection (Jordan and Webbe, 1993: 124). 

Religion plays a role when respective rules govern practices that may significantly affect 

patterns of water use (Huang and Manderson, 1992: 183). For example, ritual washing five times 

a day before prayer as required by male Muslims, significantly affects the prevalence of 

schistosomiasis in the respective communities (Jordan and Webbe, 1993: 101). 

Schistosomiasis is a typical disease of poverty (King, 2010; WHO, 2013), which accentuates 

the high relevance of the socioeconomic status of a population with respect to the transmission 

of the disease. In African countries, being poor is very often related to poor hygiene and 

housing, limited access to clean water, subsistence farming and low educational level – all of 

them are established factors that impact transmission of schistosomiasis (Utzinger et al., 2011a: 

122-123). A very important aspect of a low socioeconomic status is further related to the lacking 

ability of a household to cope with the disease through seeking medical care and avoiding 

further infection through protective measures. 

Often, large water resource development projects attract migrant workers and their families 

to the hot spots of potential disease transmission (Jordan and Webbe, 1993: 88). Semi-

permanent or seasonal workers migrate to large agricultural projects for harvesting, often 

related to extensive irrigation schemes (Bella et al., 1980; Cheesmond, 1980; Bundy and 

Blumenthal, 1990: 88). These people are on the one hand at high exposure to becoming infected 

with the disease if they enter endemic areas, on the other hand they can also (re-) introduce the 

parasite into controlled or non-endemic areas (Jordan and Webbe, 1993: 88). It has also been 

observed that after new rail and highway systems have been opened in West Africa, the spatial 

distribution of schistosomiasis has followed (Doumenge and Mott, 1987: 11). 

A positive relationship between the occupation of a person and risk of infection is not 

surprising, if this person is exposed to water during work (Huang and Manderson, 1992: 182). It 

has been shown that, especially farmers and farm laborers as well as fishermen and boatsmen, 

had specifically higher prevalence rates compared to factory workers (Farooq et al., 1966: 306-

308). 

The location of a household in relation to the suitability of a water body to transmit the 

disease has shown to be highly relevant with respect to the level of prevalence (Huang and 

Manderson, 1992: 183-184). Thus, a local study in Ghana has shown that high infection levels 

were clustered around ponds known to contain snails that shed cercariae of S. haematobium, 

and prevalence was low in households close to a river where the intermediate host snails were 

rarely found (Clennon et al., 2006). The study by Mota and Sleigh (1987) resulted that the 

relative location of a house to snail-free or snail-colonised water sources resulted as key 

influence on infection status in Brazil. 
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The application of various prevention and control measures (Section 3.1.3) has a remarkable 

impact on the transmission of the disease. Following mass treatment campaigns, the level of 

prevalence and morbidity decreases dramatically (Webbe and Jordan, 1993: 407-408; 

Koukounari et al., 2007: 659). However, examples (e.g. Clements et al., 2009b; Zhang et al., 

2012) have demonstrated that the level of reinfection is often high, when prevention measures 

have been neglected and water bodies are still infested with the parasite. In the following 

section, the activities to prevent and control the disease are described in more detail. 

3.1.3 Schistosomiasis control and elimination 

Major strategies to prevent the transmission of the disease are: (i) to reduce human contact 

with infected water; and (ii) to reduce further contamination of water with eggs from the 

parasite (Webbe and Jordan, 1993: 405). In May 2001, at the 54th World Health Assembly (WHA) 

held at World Health Organisation (WHO) headquarters in Geneva, resolution WHA 54.19 was 

endorsed, urging member states to attain ‘‘a minimum target of regular administration of 

chemotherapy to at least 75% and up to 100% of all school-age children at risk of morbidity by 

2010’’ and to “promote access to safe water, sanitation and health education through 

intersectoral collaboration” (WHA, 2001: 1). This resolution together with the guidelines 

presented in a subsequent WHO Technical Report Series (WHO, 2002a), were considered as the 

precursors for integrated and sustainable control of schistosomiasis (Utzinger et al., 2003: 1932; 

Stothard et al., 2009: 1668). The most significant response to WHA resolution 54.19 was the 

launch of the SCI, a charitable institution initiated with a start-up grant of US$ 30 million from 

the Bill & Melinda Gates Foundation in 2002 (SCI, 2014). The major objectives of SCI are to 

implement and evaluate control of schistosomiasis and integrate these programmes into the 

structures of national health ministries to develop sustainable control (Fenwick et al., 2009: 

1720-1721). 

In practice, the antischistosomal drug praziquantel is administered to at-risk populations and 

results in significant reductions of morbidity due to schistosomiasis (Doenhoff et al., 2009: 

1825). Through its availability at low cost (approximately US$ 0.1-0.2 per treatment of a school-

aged child) (WHO, 2002a: 11), it is distributed at large scale during survey and mass treatment 

campaigns at school locations. However, examples have shown that this control strategy failed 

to be sustainable, as re-infection occurred if prevention was neglected (Clements et al., 2009b: 

7; Zhang et al., 2012: 5). Therefore, a shift from morbidity control to transmission control with 

focus on the snails and potential infection sites together with prevention measures tailored to 

the prevailing social-ecological system is the challenge of actual and future control of 

schistosomiasis (Stothard et al., 2009: 1672; Utzinger et al., 2011a: 132; Rollinson et al., 2013: 

436). 

RS data and methods have been investigated predominantly with the aim of supporting the 

work of national control programmes through prioritising areas of risk to most efficiently 

allocate available resources for disease prevention and control (Brooker, 2002: 211; Simoonga et 

al., 2009: 1687), which is reviewed in Section 3.2.2. 
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3.2 Remote sensing 
In the PhD thesis presented here, RS refers to the use of Earth observing satellites. Satellite RS 

systems can be categorised into passive and active systems. The former measure the magnitude 

of electromagnetic radiation (EMR) reflected and emitted from the Earth´s surface. The latter 

generate and emit their own radiative energy and capture the reflected returns from the Earth 

surface with a modification dependent on surface structure and condition. In this work, only 

passive systems have been used and shall therefore be considered in detail. 

3.2.1 Fundamentals of satellite remote sensing 

The fundamental principle of passive RS is based on the interaction of EMR originating from the 

Sun or the Earth itself with the atmosphere and the Earth surface as measured by a remote 

sensor. Hence, RS is composed of three main components: EMR carrying the information about 

the Earth surface, the capture of EMR using a remote sensor and the processing and analysis of 

the received signals. A comprehensive overview of the fundamentals of RS is given by Jensen 

(2000). 

 
Figure 3-3: Electromagnetic spectrum. Source: modified after Albertz (2001) 
 

Besides the Sun, electromagnetic energy is emitted by any object with a temperature above 

the absolute zero (0 Kelvin, -273°C), including water or vegetation. The propagation of this 

energy results from an electromagnetic wave that transports energy with the speed of light and 

a distinct relation between wavelength and frequency through space. The longer the 

wavelength, the lower is its frequency. The amount of radiant energy is called the radiant flux 

measured in watts [W]. According to Niels Bohr and Max Planck, the exchange of radiant energy 

between surface and electromagnetic wave results from the transfer of energy in discrete 

packets called quanta or photons. The wavelength of EMR is described by the electromagnetic 

spectrum (Figure 3-3), of which only the spectral range between 0.3-14 µm is of relevance for 

passive RS. This range is typically classified further into the visible light (0.4-0.7 µm), the near, 

middle, and shortwave infrared (0.7-3 µm), and the thermal infrared spectrum (3-14 µm) (Figure 

3-3). 
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The radiant flux interacts in 

a characteristic way with the 

Earth´s surface. EMR is 

reflected and absorbed 

specifically in dependence of 

the physical properties of any 

surface such as type, structure, 

texture, moisture content, and 

chemical composition. 

Reflectance, the amount of 

reflected EMR at specific 

wavelengths, calculated as the 

ratio of reflected and incident 

radiation, refers to the spectral 

properties, which are specific 

for surface conditions and provide the fundamental focus of RS research. Non-reflected incident 

radiation is either absorbed or transmitted. Figure 3-4 exemplifies the typical spectral 

reflectance properties of a surface with green vegetation, bare soil, and water. The spectral 

properties of vegetation are characterised by a specifically high reflectance in the near infrared 

compared to very low reflectance in the blue and red parts of the visible spectrum due to the 

high chlorophyll absorption at these wavelengths. In contrast, 

soil reflectance shows a continuous increase from low 

reflectance at short wavelengths to higher reflectance at 

longer wavelengths, while the overall reflectance is markedly 

reduced for moist soils compared to dry soils. Due to the high 

absorption of EMR by water, this type of surface is 

characterised by very low reflectance values. 

Apart from reflected EMR, the Earth also emits EMR as a 

function of surface temperature. The magnitude of EMR 

emitted from blackbodies in dependence of surface 

temperature and spectral wavelength is described by the 

Planck´s law, the Stefan-Boltzmann law, and the Wien´s 

displacement law. A comprehensive overview of these thermal 

RS fundamentals is provided by Kuenzer and Dech (2013). Very 

few terrestrial surfaces act as perfect blackbody radiator and 

therefore emit radiation in a modified way according to the 

specific emissivity of a surface, which can be expressed as ratio 

between the surface radiant flux and the blackbody radiant 

flux at a given temperature. The dominant spectral wavelength 

where maximal EMR is emitted by the Earth surface has its 

peak at around 10 µm (Figure 3-5).  

The measurement of reflectance and emittance by a 

satellite remote sensor makes use of the so-called atmospheric 

windows (Figure 3-3) that correspond to wavelength regions in 

 
Figure 3-4: Spectral signature of vegetation, soil and water in 
dependence on the spectral wavelength. 

 
Figure 3-5: Energy emitted from 
black body radiators for Sun and 
Earth as a function of 
wavelength. Source: modified 
after Jensen (2000: 33) 
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which the atmosphere transmits most of the incident, reflected or emitted electromagnetic 

energy. Surface reflectance can be captured by the satellite sensor in the spectral wavelengths 

of visible light and portions of the reflective infrared. The thermal infrared region of the 

electromagnetic spectrum allows for the thermal measurement of thermal emission from the 

Earth between 3 and 14 µm.  

However, the measurement of surface reflectance and emissivity by a remote sensor is 

altered by three main factors, namely: (i) the atmosphere; (ii) the variation in sun illumination; 

and (iii) variation in viewing angles of the sensor. The atmosphere influences EMR in both 

directions, as it first reduces the amount of solar irradiance illuminating a ground object, 

secondly it acts as reflector itself adding a scattered, extraneous path irradiance to the signal, 

and thirdly it attenuates the reflected signal in a wavelength dependent way (Lillesand and 

Kiefer, 2000: 21-22). The viewing geometry results from the position of the sensor and the 

variation of its scan angle noted as view zenith and view azimuth angle, whereas the variation in 

illumination angles is caused by the Earth´s orbit. The constellation of Sun illumination, sensor 

view angle, and surface reflectance properties has an impact on the at-sensor detected 

brightness. However, all three disturbing factors mentioned here can be corrected for by 

performing an atmospheric correction for the respective satellite image as well as accounting for 

directional reflectance effects (bi-directional reflectance distribution function; BRDF in short) 

(Lillesand and Kiefer, 2000: 31). 

Following this image correction process, the received signal has to be analysed with respect 

to the objective of interest. The characteristic spectral properties of surfaces (Figure 3-4) can be 

depicted by the signal measured at the remote sensor with its designed band combinations (see 

Table 4-2). The reflectance at specific spectral wavelengths can be directly investigated in 

relation to the phenomenon of interest. However, in most cases, indices are calculated from 

spectral reflectance at different wavelengths to enhance information and normalise images (e.g. 

atmospheric effects). The most prominent index is the NDVI given in Equation 3-2, 

𝑁𝐷𝑉𝐼 =  
𝑛𝑖𝑟 − 𝑟𝑒𝑑

𝑛𝑖𝑟 + 𝑟𝑒𝑑
 Equation 3-2 

where nir corresponds with the measurement at near infrared spectrum of the sensor and red 

with the visible red light. This index responds to the change in the amount of green biomass and 

chlorophyll content, where the red band records the high absorption of chlorophyll and the near 

infrared band records the high reflectance when vegetation is dense and growing vigorously. For 

passive RS, there are multiple vegetation-, water-, and soil-related indices available. An overview 

of the indices with relevance to the schistosomiasis disease as investigated by this thesis is 

provided in Section 4.2.2. 

The measurement of thermal RS is especially used to measure the surface temperature, 

which is the temperature of the radiating surface and therefore often referred to as skin 

temperature (Czajkowskia et al., 2002: 254). However, the term land surface temperature (LST) 

is thereby used ambiguously, as it includes a wide range of surface temperature variables such 

as kinetic, thermodynamic, radiometric, canopy and even air temperature (Norman and Becker, 

1995). The calculation of surface temperature in °C from the energy retrieved at the sensor 

includes sensor calibration, atmospheric correction and the approximation of emissivity effects, 

which can be realised by assigning specific emissivity values to each land cover class. Despite 

different land surfaces varying only little in their emissivity (e.g. water: 0.98, plant leaves: 0.96, 
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sand: 0.93), a difference in spectral emissivity from 1 to 0.99 typically results in an increase of 1-

2°C (Schmugge et al., 1998: 124). 

3.2.2 Remote sensing for schistosomiasis risk profiling 

Owing to the life cycle of the parasite and the mode of infection with the parasite, the 

transmission of schistosomiasis is spatially and temporally restricted to water bodies inhabited 

by snails and parasites. Schistosomiasis, as environmental disease, warrants a relevant 

contribution of RS technologies with respect to the spatial distribution of the disease (Malone, 

2005: 27). The first application of RS to predict the probability of spatial occurrence of human 

schistosomiasis using Landsat 5 TM data was published in 1984 for the Philippines by Cross et al. 

(1984). Ten years later, diurnal temperature differences derived from data of the Advanced Very 

High Resolution Radiometer (AVHRR) from the National Oceanic Atmospheric Administration 

(NOAA) have been related to survey measurements of schistosomiasis prevalence in Egypt 

(Malone et al., 1994). As thermal differences between day and night reflect regional hydrologic 

conditions (Jensen, 2000: 393), the significant inverse relationship showed well the predictive 

ability of RS data for schistosomiasis transmission risk (Malone et al., 1994: 716-718). Since then, 

the investigation of RS in relation to schistosomiasis has experienced considerable growth and 

interest. To demonstrate this, the online library PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed/) has been accessed in January 2014 with the following 

terms and Boolean operators: “remote sensing” OR “geographic information system” OR 

“mapping” OR “prediction” AND “schistosomiasis” AND “Africa” (cf Simoonga et al., 2009: 1684) 

for the time span between 1995 and 2013, which resulted in 93 publications, of which 31 were 

relevant reviews or case studies using RS data for spatial modelling of schistosomiasis risk. 

However, within the process of reviewing the literature as well as its cited references, the 

number of studies increased to 37. 

The development and potential of RS and its combination with GIS-based spatial analyses has 

been reviewed by various groups (Bergquist et al., 2000; Brooker and Michael, 2000; Abdel-

Rahman et al., 2001; Brooker, 2002; Malone, 2005; Brooker et al., 2006; Brooker, 2007; 

Simoonga et al., 2009). It can be summarised that the contribution of RS and GIS for 

schistosomiasis risk profiling is composed of its ability to: (i) determine the geographical limit of 

disease distribution due to ecological constraints of disease transmission; (ii) further investigate 

the context of disease ecology and epidemiology through its spatial relation; (iii) support 

prevention and control through prioritising areas of disease risk; and (iv) provide early warning 

for areas where disease transmission could become established. However, most studies that 

have been reviewed had an integrative focus combining the aforementioned objectives by some 

means or other. 

The first step to analyse spatial disease risk consists of the geographical mapping of empirical 

survey data on disease prevalence and/or intensity, among which the “Atlas of the global 

distribution of schistosomiasis” by Doumenge and Mott (1987) is deemed the pioneer work. It 

has been shown that simple geographical mapping of the disease already provides useful 

information to highlight endemic areas for which further information is required, to quantify 

population at risk and to estimate the cost of disease intervention programmes (Brooker et al., 

2000a: 1459-1462; Standley et al., 2009: 42-45; Hodges et al., 2011: 3-4; Kabatereine et al., 

2011: 4-8). The comparison between surveys of different time steps on the very spot has been 
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investigated to monitor disease development in space (Tchuem Tchuenté et al., 2012: 4-6) and 

to evaluate the impact of disease intervention programmes (Clements et al., 2009b: 3). 

However, it is widely discussed that the comparison between different maps of survey data is 

critical due to a high variability of survey methodologies used in practice (Brooker et al., 2000b: 

305-306; Brooker et al., 2009: 4-5). To give some examples, examination methods to detect the 

parasite in faeces have variable sensitivities, the age of the examined population varies between 

surveys, or the location of the survey varies between rural or urban areas as well as between 

schools, households or community health centres (Brooker et al., 2009: 5). Even today, despite 

the global positioning system (GPS) facilitated ease of geo-locating survey sites, measurements 

of disease prevalence and intensity are painstaking and costly, which explains well the paucity of 

reliable epidemiological data especially in the most affected areas of sub-Saharan Africa 

(Simoonga et al., 2009: 1687). To overcome the problem of data paucity, the well-known 

influence of the environment on disease distribution has been used for modelling and spatial 

prediction of disease risk for non-sampled locations. The conceptual background and 

methodological modelling approaches are detailed in Section 3.3. 

Following the seminal work of Malone et al. (1994), a large number of studies have 

investigated RS data and derived environmental variables and their relation to human infection 

or snail occurrence with the objective of modelling and predicting schistosomiasis risk for 

various regions and scales (Table 3-2). This review shows that the most frequently used RS data 

are from the NOAA-AVHRR and later the MODIS sensors with ground resolutions of 1.1km and 

250m, respectively. High resolution data from Landsat 5 TM (30m) have only marginally been 

analysed and very high-resolution RS data (1m) have solely been investigated for one study site 

in Kenya (Clennon et al., 2004; Clennon et al., 2006; Clennon et al., 2007). Topographic 

information from either Shuttle Radar Topography Mission (SRTM) data or the global 30 arc-

second elevation (GTOPO30) model has been added in most studies as predictor variable. The 

environmental variables most commonly used were the NDVI and LST, hypothesised to 

represent surrogate measures of environmental moisture and temperature, respectively 

(Malone et al., 2001: 62). The availability of NOAA-AVHRR and MODIS data at no charge and the 

web-accessed supply of pre-processed imagery boosted studies that investigated these data 

(Herbreteau et al., 2007: 401). However, there are many other vegetation or moisture-related 

indices that are not directly accessible due to a more complex nature, which are rarely used for 

health studies (Herbreteau et al., 2007: 401). Many studies (e.g. Clements et al., 2009a; Koroma 

et al., 2010; Hodges et al., 2012) have used spatial information of perennial water bodies and 

river networks from the GeoNetwork platform provided by the Food and Agricultural 

Organization of the United Nations (FAO, 2014b). However, the acquisition dates back to the 

1990s and it lacks information on temporal dynamics. Actualisation would be highly relevant to 

monitor environmental changes such as construction of dam lakes or irrigation schemes 

(Steinmann et al., 2006). Satellite RS provides data and methodological procedures to map and 

monitor water bodies and other disease relevant variables such as water temperature, turbidity 

or vegetation coverage (Tran et al., 2010). 

Reference data for the spatial analysis with RS data were always point data, either of human 

infection prevalence most frequently geo-located at schools, or snail occurrence located in 

sampled water bodies (Table 3-2). Overall snail data were very rarely available and most 

analyses were based on infection of schoolchildren surveyed. In most cases, infection of 
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schoolchildren has been substantiated based on parasitological examinations, and few case 

studies were built upon prevalence data sampled based on morbidity questionnaires (e.g. 

Clements et al., 2008b). Epidemiological data of human infection or snail sampling often had a 

temporal mismatch of several years between the sampling and the acquisition of RS data (e.g. 

Brooker and Clements, 2009; Schur et al., 2011b). However, this has been considered a 

negligible drawback since schistosomiasis is a chronic disease with a life-span of adult worms 

being typically several years (Jordan and Webbe, 1993: 110). Therefore, spatial variability in 

long-term synoptic environmental factors is hypothesised to have more influence on 

transmission success and infection patterns than seasonal variability in a location (Brooker and 

Clements, 2009: 592). When environmental data such as NDVI or LST are used to predict the risk 

of schistosomiasis, “in effect, one is predicting the environmental requirements for a particular 

snail species (infected with a particular parasite species) - and not the human parasitic infection 

per se” (Simoonga et al., 2009: 1687). An analysis of RS data with respect to snail abundance and 

disease prevalence showed that snail distribution generally corresponded to the prediction 

model of schistosomiasis prevalence, however, the best model of snail distribution showed 

different ranges of temperature than found in the schistosomiasis prevalence model (Kristensen 

et al., 2001; Malone et al., 2001). One challenge to date to further improve RS and GIS-based risk 

mapping, is to account for the spatial mismatch between the measurement of human infection 

and the location where disease transmission may occur (Simoonga et al., 2009: 1687). This 

aspect and a potential solution to overcome this spatial conflict when using RS data is directly 

investigated in this thesis. 

Environmental analyses using RS data provide the opportunity to understand more 

completely the process underlying broad-scale patterns of schistosomiasis distribution and can 

help to potentially improve our knowledge of schistosomiasis infection ecology (Brooker, 2002: 

210). To give an example, the local study of Raso et al. (2005) found that – besides age, sex, and 

socioeconomic status – rainfall pattern and elevation significantly explained the geographical 

variation of S. mansoni distribution in the Man region in Western Côte d’Ivoire. For the same 

region, Beck-Wörner et al. (2007) found a significant correlation for stream order of the closest 

river, the water catchment and altitude. For sub-continental East Africa, a negative correlation 

resulted from the distance to water body and elevation with respect to the distribution of 

S. mansoni infection intensity (Clements et al., 2006b). In contrast, a study in sub-continental 

West Africa reported only a negative correlation with distance to perennial inland water bodies 

with respect to S. haematobium infection intensity and significance for elevation failed 

(Clements et al., 2009a). Both sub-continental studies investigated a nearly 20-year mean of LST 

and NDVI from NOAA-AVHRR, however, they provided no significant contribution to the final 

model (Clements et al., 2006b: 716; Clements et al., 2009a: 924). In contrast, in Tanzania, a 

positive effect of both LST and NDVI could be derived for prediction of S. haematobium (Brooker 

et al., 2001). In another case study in Tanzania, the NDVI was already rejected in a preparatory 

variable selection process (Clements et al., 2006a). In Nigeria, LST resulted as the only significant 

environmental variable to predict urogenital schistosomiasis (Ekpo et al., 2008). This shows that 

predictor variables and resulting models are tailored to the reference data, the scale of 

observation and the geography of the study site. A reasonable impact of different ecological 

zones on predictor performance and model outcome has been established by Brooker et al. 

(2001: 1001) in Tanzania. This phenomenon is taken up by this thesis and specifically 

investigated for the ecozones of savannah and tropical rainforest in study sites of West Africa. 
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This review shows that different scales of RS data have been investigated for the risk profiling 

of schistosomiasis with spatial resolutions ranging from 1 m to 8 km (Table 3-2). Most of the 

studies have investigated data from a single sensor with predominantly low spatial resolution, 

such as NOAA-AVHRR at 1.1 km. A common procedure was to combine the data with remotely 

sensed topographic information. There are several approaches, where multi-scale RS data such 

as 1m Ikonos data, 30m Landsat, and 1km MODIS data have been analysed in an integrated way 

(Abdel-Rahman et al., 2001; Kabatereine et al., 2004; Raso et al., 2005; Raso et al., 2006; 

Clennon et al., 2007; Vounatsou et al., 2009). However, these studies used multi-scale data 

predominantly to cover a broad spectrum of potentially relevant information such as land cover 

classification based on high-resolution data and climatic surrogates based on multi-temporal low 

resolution data. What is missing in all studies, but directly adressed by this thesis, is a direct 

comparison of RS metrics derived at different spatial resolutions to evaluate the stability of 

predictor performance for varying spatial scales. This issue of scale is essential to be considered 

in order to better understand disease ecology based on the linkage between biological and RS 

data (Brooker, 2002: 210). 

RS and GIS have proven to be useful for planning and implementing disease intervention and 

control programmes by excluding areas where schistosomiasis is unlikely to be a public health 

problem and modelling priority areas of increased transmission risk (Brooker et al., 2001: 1004; 

Brooker, 2002: 211). Clements et al. (2008a) predicted regions with a probability of 

schistosomiasis transmission greater than 50% to design mass treatment campaigns according to 

the criterion of the WHO in Burkina Faso, Mali, and Niger. Estimates of the number of 

schoolchildren at risk of high prevalence have been predicted for West Africa (Schur et al., 

2011b) and Tanzania (Brooker et al., 2001), where additionally expectable programme costs 

were calculated based on the model predictions. A greater demand of treatment resources 

resulted if data were aggregated on provincial level compared to the national level due to the 

integration of large spatial heterogeneities of disease risk on the sub-national level, again 

indicating the high relevance of scale for risk profiling (Schur et al., 2012). Many studies focused 

on modelling the risk of polyparasitic co-infections of schistosomiasis and soil-transmitted 

helminth infections with the objective to enhance cost-effectiveness through integrated control 

measures (e.g. Raso et al., 2006; Schur et al., 2011a; Hodges et al., 2012). Morbidity control 

through mass treatment campaigns has not proven to be sustainable (Section 3.1.3), because a 

water site can be converted to a high-risk transmission zone if it is (re-) contaminated by single 

untreated individuals. This suggests the importance of water-site factors to achieve the shift 

from morbidity to transmission control or even local elimination (Stothard et al., 2009: 1672; 

King, 2010: 100).  
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3.3 Modelling schistosomiasis risk 
The question of how diseases are distributed on Earth in space and time has a long history, 

which has inspired epidemiologists, ecologists and geographers to seek explanations (Section 

1.1). To overcome the paucity of epidemiological and intermediate host-related data, spatial 

model approaches have become the instrument of choice with the potential to discover 

relationships between disease occurrence and environmental and geographic conditions to 

predict this established relation for non-sampled locations (Simoonga et al., 2009: 1687). The 

conceptual principle for modelling disease risk is based on modelling the ecological niche of 

disease-related species (e.g. parasites or disease vectors) to understand the ecology of disease, 

characterise its habitat distribution and predict suitable environmental conditions in space 

(Peterson, 2006: 1822-1823) (Box 1). However, to model the risk of a human disease such as 

schistosomiasis, the human as the final host needs to be addressed in the model approach. The 

ecological niche concept to model species distribution must therefore be extended by human-

related environmental factors and adjusted to a social-ecological niche of disease (Section 3.3.1). 

Different approaches of modelling disease risk are presented in Section 3.3.2. The contextual 

relation between disease ecology and RS variables as well as its overall contribution for the 

multi-faceted and complex system of schistosomiasis transmission risk are consolidated in the 

next Section 3.4. 

 

Box 1. Terms and definitions 

Risk is defined as effect of uncertainty on 
objectives (International Organization of 
Standardization (ISO) 31000: Risk 
management) and implies a future event 
with an uncertainty if and how the entity of 
interest is affected by a certain phenomenon. 
For this research, risk is defined as 
probability of humans to become infected 
with the parasite. 

Niche is a subset of those environmental 
conditions (determined in an n-dimensional 
model space, Figure 3-6a) which affect a 
particular organism, where the average 
absolute fitness of individuals in a population 
is greater than or equal to one (Kearney, 
2006: 187) 

Environment in a medical sense integrates all 
factors external to humans but interact with 
them, e.g. physical, biological, social and 
cultural environment (IEA, 1995: 53). With 
respect to the parasite and snail species, 
environment includes biotic and abiotic 
phenomena surrounding and potentially 
interacting with the organisms (Kearney, 2006: 
187). 

Habitat is a description of a physical place (i.e. 
geographical space, Figure 3-6b), at a 
particular scale of space and time, where an 
organism either actually or potentially lives 
(Kearney, 2006: 187) 

 

3.3.1 Social-ecological niche of a disease 

The transmission cycle of a disease is a composite phenomenon that represents multiple 

interactions between a set of species, such as a pathogen, a human or animal host that become 

infected, and a vector to enable disease transmission (Peterson, 2006: 1822). It follows that the 

spatial occurrence of a disease is determined by the combination of complexities of the 
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occurrence of disease component species as well as effects of chance events (Peterson, 2006: 

1822). Within the concept of landscape epidemiology, Pavlovsky explained the nidality 

(=focality) of diseases through the “source of disease” (=nidus) in the spatial domain (Pavlovsky, 

1966: 7) being associated with specific landscapes (Pavlovsky, 1966), whereas the complexity of 

a nidus depends on the transmission requirements of a pathogen (Reisen, 2010: 469). The 

complex pattern and influences of environmental variation on disease distribution have been 

investigated by estimating specific ecological niches of disease-related species (Peterson, 2006: 

1822). According to the concept of landscape epidemiology, humans become infected when 

they travelled into the nidus and come in contact with the pathogen (Pavlovsky, 1966: 9). 

However, the disjunct distribution of infection and human residence complicates the 

understanding of disease epidemiology and transmission (Reisen, 2010: 462). 

The theoretical concept of the ecological niche of species has been established by Grinnell 

(1917). It hypothesises that the geographic distribution of a species is determined by an n-

dimensional set of ecological conditions under which the species can maintain its population 

(Grinnell, 1917: 115-118; Hutchinson, 1957: 416; Peterson, 2006: 1822). The distribution of a 

species in its environment is determined by abiotic conditions that correspond with its 

physiological limits, biotic factors that may be positive (e.g. mutualists, symbionts) or negative 

(competitors, predators), the dispersal abilities of a species dependent on landscape 

configuration and its evolutionary capacity to adapt to new conditions (Soberon and Peterson, 

2005: 2). A merely abstract formalisation of the ecological niche is the fundamental niche, which 

from an ecological point of view is the potential niche of a species driven by its environmental 

requirements and delineated by its physiological (in-)tolerance in absence of biotic interactions 

(Hutchinson, 1957: 416). The fundamental niche reflects Liebig´s law of the minimum (von 

Liebig, 1840) revealing that species distribution and abundance are determined by periods when 

conditions are at a minimum rather than times of the year when conditions are suitable (Odum 

and Barrett, 2005: 178). In contrast, the realised niche inhabited by a species represents both, 

the environmental dimensions in which species can survive and reproduce as well as its 

functional role within its biotic environment (Hutchinson, 1957: 418). The realised niche is thus 

often depicted as a subset of the fundamental niche (Figure 3-6), however, this is not necessarily 

true for the case of positive biotic interactions (Franklin, 2010: 37). The differentiation between 

fundamental and realised niche is important when modelling species distribution based on 

environmental data as it determines whether the distribution is predicted from theoretical 

physical constraints or field observations (Guisan and Zimmermann, 2000: 153). Both concepts 

are applied in this thesis by: (i) modelling the fundamental niche of schistosomiasis-related 

parasites and snails based on a mechanistic approach; and (ii) by modelling the realised disease 

niche (Figure 3-6) based on a statistical approach. These mentioned model approaches are 

further explained in Section 3.3.2. 

Spatial modeling of human diseases have been fundamentally based on the ecological niche 

concept to model the distribution and habitat conditions of disease-related species (Peterson et 

al., 2002; Peterson, 2006; Ayala et al., 2009; Mak et al., 2010). However, from a conceptual point 

of view, the ecological niche concept can straightforwardly be expanded by human dimensions 

(Ojiem et al., 2006: 81), factoring in all relevant demographic, behavioural and socioeconomic 

drivers that play a role in the disease transmission cycle (Figure 3-6). The integration of human, 

socioeconomic, institutional, and cultural conditions into the ecological niche of plant species 
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has been conceptualised as social-ecological niche and applied in agricultural sciences (Ojiem et 

al., 2006; Guto et al., 2012; Mtei et al., 2013). 

 
Figure 3-6: Theoretical concept of ecological and social-ecological disease niche in environmental space 
(a) and the spatial relation of schistosomiasis transmission in geographical space (b). 
(a) The set of environmental conditions of the snail and parasite species modelled in an n-dimensional 
space determine the ecological niche (modified after Franklin, 2010: 36). The integration of the human 
environmental factors into the model results in the social-ecological niche. The specific niche conditions 
(fundamental, realised) can be predicted into geographical space. 
(b) The school location corresponds to the geo-located measure of disease prevalence in humans 
(illustrated as +) and the water body as potential parasite and snail habitat represents the location, 
where human infection potentially occurs, if environmental conditions where suitable and humans 
susceptible. It is shown, that there are complex interactions between the measure of disease prevalence, 
infection at specific water contact site and human behaviour to seek water site. The water habitats, 
where disease transmission has occurred refer to the realised disease niche (bordered with green solid 
lines). The water sites bordered with purple dotted lines provide suitable habitats for parasites and snails 
and refer to the fundamental ecological niche. 
 

With regard to schistosomiasis, Malone (2005: 28) declared that the aim of modelling disease 

risk is to measure the relative suitability of the environment to establish a “disease niche”, which 

describes conditions of a zone where parasite, intermediate, and final host coincide. Considering 

the ecology of schistosomiasis transmission (Section 3.1.2), such a biocenosis can become 

established, when environmental conditions are suitable for the respective parasites, its 

intermediate snail host and when susceptible humans enter this habitat. Figure 3-6a illustrates 

the theoretical concept of the social-ecological disease niche. To establish this niche (Box 1) of 

schistosomiasis (Malone, 2005: 28), environmental conditions derived from observations, where 

parasite, snail and humans converge and infection has occurred are modelled within an n-

dimensional space. Regarding the social-ecological niche of schistosomiasis, the fundamental 

disease niche corresponds with habitats, where parasites and their corresponding snails could 
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potentially establish a population and susceptible humans potentially access this habitat. The 

realised disease niche reveals environmental conditions, where parasite, snail, and human 

infection essentially converge, which partly result of observations from inhabited disease niches. 

Figure 3-6b illustrates this concept as diagram of potential parasite and snail habitats (Box 1) and 

the dispersal of humans in geographical space, i.e. represented by two-dimensional (x,y) map 

coordinates. It shows that the integration of human water contact inherits complex spatial 

relations between human habitations and the localisation of infection, which again is measured 

at schools. This spatial complexity is further aggravated by varying disease susceptibility and 

behaviour of individuals (Table 3-1) that highly modify the spatial probability of water contact 

and disease infection. However, this conceptual underpinning makes clear, that spatial 

modelling of schistosomiasis risk comprises a complex interplay of social and environmental 

determinants of risk, which becomes further intricated through the disjunct appearance of 

disease agents in space. 

3.3.2 Model approaches 

Spatial modelling of disease distribution has been established as an important tool for disease 

epidemiology and control (Brooker, 2007; Pullan et al., 2011; Hodges et al., 2012). The general 

idea of modelling habitat relations either aims to understand the relationship between observed 

species/disease agents and its abiotic and biotic environment, or to test ecological or 

biogeographical hypotheses about its distribution and ranges (Franklin, 2010: 11-12). These 

models are widely used to predict the established relationship for locations, where survey data 

are lacking (Franklin, 2010: 12). Similar to species distribution modelling (Kearney, 2006: 188), 

there are two approaches for modelling a disease niche and predicting disease risk in space 

(Malone, 2005: 27-28), the so-called mechanistic (biological or process-based) models that aim 

to be general and realistic (Franklin, 2010: 105) and statistical (empirical) models designed to 

correlate empirical facts (Guisan and Zimmermann, 2000: 158). In this thesis, both model 

approaches have been used, as illustrated in Figure 3-7. 

The mechanistic model approach aims at modelling a species’ niche based on a set of 

physiological and behavioural traits to make inference on its potential environmental range 

(Kearney and Porter, 2009: 336). To give an example, the thermal niche of a species represents a 

fitness component such as survival, growth, development rate or reproduction as a function of 

body temperature (Kearney and Porter, 2009). For diseases, key features of such physiological 

requirements can be obtained from laboratory or field-based studies (Malone, 2005: 28), as 

reviewed in Section 3.1.2 with an emphasis on schistosomiasis. Environmental preferences, 

limits of tolerance, fitness values or behaviour of disease agents such as the parasite or the 

intermediate host snail can be modelled based on either direct observations or based on models 

of an individuals’ response to physical variables (Malone, 2005: 28). The objective of this model 

approach is to link information about species fitness to environmental conditions and predict 

habitat suitability of this species in geographical space (Kliskey et al., 1999; Kearney and Porter, 

2009: 336). As the mechanistic approach is based on direct measurements of physiological 

variables it models the fundamental niche, does explicitly not consider biotic interactions and 

has not the potential to take this into account (Soberon and Peterson, 2005: 2). As depicted in 

Figure 3-7, a mechanisic model approach has been used to model environmental suitability of 

schistosomiasis-related parasites and snails in this study. 
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Figure 3-7: Conceptual framework of the model approaches used in this study. A mechanistic model 
approach has been used to model environmental suitability for disease transmission and a statistical 
model approach has been used to link school-based disease prevalence data with RS environmental 
metrics. This study further explored the hierarchical combination of both model approaches with a 
statistical model that links school-based prevalence directly to the potential disease transmission sites 
modelled by the mechanistic approach. 
 

The statistical approach investigates the correlation between survey records (e.g. human 

prevalence, infection intensity, snail occurrence) and environmental variables (Malone, 2005: 

27). This inductive approach has the objective to identify key environmental features that best 

describe the range of conditions of reference data and predict the distribution and abundance of 

a given species or disease by projecting the established relation back into geographical space 

(Malone, 2005: 27). The assumption of this approach is that habitat suitability corresponds to 

the intensity of habitat usage by a species, which selects areas that are most satisfying to its life 

requisites (Schamberger and O´Neil, 1986: 6). In contrast to the mechanistic model approach, a 

statistical approach is biased by biotic interaction effects since it is based on in situ observations, 

which include those interactions. One can partially account for this bias by combining the 

geography of other species using single-species models (Soberon and Peterson, 2005: 2). 

Furthermore, evolutionary effects modify niche characteristics and spatial distribution of 

species, which are inherent in observational data but cannot be considered by the mechanistic 

model approach (Peterson and Holt, 2003: 776; Soberon and Peterson, 2005: 8). It has been 

shown that the mechanistic and statistical model approach are complementary with respect to 

the information they provide and should be interpreted carefully before being used 

interchangeably in applications (Soberon and Peterson, 2005: 8). In this thesis, the spatial 
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delineation of the potential disease transmission sites derived for the quantitative mechanistic 

model of environmental suitability provided the basis to develop a hierarchical versus a non-

hierarchical statistical approach to model schistosomiasis risk as illustrated in Figure 3-7. 

With respect to schistosomiasis, the mechanistic model approach has been applied by 

modelling the climatic envelope to establish parasite development based on minimum and 

maximum temperature thresholds and the number of growing degree days (GDD) required to 

complete a parasite life cycle (Stensgaard et al., 2013: 381). De Vlas et al. (1996) simulated 

human-, worm-, and infection-related aspects of schistosomiasis transmission to evaluate and 

predict the effects of different control strategies based on a stochastic process model. The 

inferential steps to statistically model the disease niche based on human prevalence or the 

ecological niche of snail and its parasites have been achieved using diverse algorithms, such as 

binomial logistic regression (e.g. Brooker et al., 2001; Stensgaard et al., 2005; Koroma et al., 

2010), Bayesian inference (e.g. Raso et al., 2005; Vounatsou et al., 2009; Schur et al., 2011b) or 

genetic algorithms (Stensgaard et al., 2006). Overall, the literature shows that the standard to 

investigate the spatial relation between the disease and its environment is a descriptive, 

statistical approach. This could be explained by the straightforward approach of a statistical 

model, where information is inherent in in situ observations compared to the mechanistic 

model, where all relevant criteria for species occurrence would need to be extracted from 

theoretical and experimental data and comprehensive validation is difficult. 

3.4 Contribution of remote sensing for 

schistosmiasis risk profiling 
The review of risk factors that influence the schistosomiasis transmission ecology (Section 3.1.2) 

and the previous applications of RS data for modelling disease risk (Section 3.2.2) are 

synthesised in this section. Table 3-3 provides an overview of the linkage between disease-

related risk factors and RS variables structured according to the steps of the parasite life cycle. 

The distribution of the filled rows, which correspond to risk factors that can potentially be 

measured by RS data, shows that specifically parasite- and snail-related risk factors are covered 

by RS measurements. However, it shows also very clear that RS has its natural limitations and 

cannot detect all relevant risk factors such as intrinsic factors related to parasites, snails, and 

humans as well as some chemical and biological aspects. Thus, remotely sensed environmental 

measurements can contribute substantially to characterise the habitat conditions of parasites 

and snails and can moreover detect human settlements and their spatial relation to suitable 

habitat conditions. However, against this background it has to be kept in mind that RS-based 

approaches for disease risk profiling always have gaps of information to be filled by other 

disciplines. 
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In the context of modelling schistosomiasis risk, RS variables can provide either direct 

measurements of the feature of interest, which are, for example, the measure of land surface 

temperature, water or vegetation. These variables are derived from respective RS metrics such 

as land surface emissivity or surface reflectance at appropriate wavelengths with respect to their 

spectral signature (see Figure 3-4). They can directly reflect habitat conditions and provide 

information about the potential impact on the ecology of disease transmission. On the other 

hand, RS data provide proxy variables, where the remotely sensed measurement is not 

representing the respective measure influencing disease transmission but being indirectly linked 

to the requested information. To give an example based on RS data, the slope of a land surface 

can be measured from topographic modelling, however, the relevant information to be drawn 

from this proxy measure would be water flow velocity as a decisive criterium for profiling risk of 

disease transmission. Due to an additional step of modelling information to ecological indicators, 

the potential sources of errors that affect the data may increase. 

Based on this theoretical background it was the aim to evaluate the potential contribution of 

RS data and variables for profiling schistosomiasis risk. Unfortunately, information on rainfall 

was not available at a useful spatial resolution to gain relevant information for the scale of 

observation used in this study. Furthermore, there were constraints regarding appropriate in situ 

data to model water depth and turbidity from RS measurements. However, the former variable 

has been approximated from field-based estimations (Section 4.3). Apart from these few 

exceptions, all RS variables described in Table 3-3 were investigated regarding their potential 

contribution for schistosomiasis risk profiling in this thesis. 
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4 Data and pre-processing 

This chapter presents the acquisition, pre-processing, and quality of epidemiological and RS 

datasets. Furthermore, environmental in situ data with focus on potential disease transmission 

sites visited in Burkina Faso are described. 

4.1 Epidemiological data 
Epidemiological data on schistosomiasis prevalence given as ratio between infected people and 

surveyed people have been accessed for the countries Burkina Faso and Côte d’Ivoire from the 

Global Neglected Tropical Disease database (GNTD) freely available under www.gntd.org 

(Hürlimann et al., 2011). Additional information of relevance for this study were included in this 

database, such as prevalence of parasite species, number of examined people, date of survey, 

description of the survey location (e.g. school, community, hospital), and the method used for 

sample recruitment and diagnostic techniques (Hürlimann et al., 2011: 4). The data of the GNTD 

were obtained from a systematic review of peer-reviewed journals and grey literature, ministries 

of health records in schistosomiasis-endemic countries and data from surveys conducted by 

research institutions (Hürlimann et al., 2011: 2-3). Data points retrieved from publications and 

reports were geo-referenced retrospectively using the GEOnet Names server (earth-

info.nga.mil/gns/html), topographic or sketch maps or Google web search (Hürlimann et al., 

2011: 4). An additional database of school- and community-based surveys has been provided by 

the national schistosomiasis control programme in Burkina Faso following a personal 

communication with Dr. Moussa Dadjoari (Dadjoari, 2011). These data represent 86 survey 

locations of S. haematobium species in Burkina Faso, each with 120 examined schoolchildren 

between 2003 and 2007. Epidemiological data used for this research refer to the species 

S. haematobium and S. mansoni, which are the most prevalent species in the study region. 

Pre-selecting steps of epidemiological data are illustrated in Figure 4-1 and are based on 

selection criteria proposed by Schur et al. (2011b: 4). Surveys before 1980 were removed, 

because the parasite can reach a maximal life span of only 30 years within the human host. To 

establish a comparable database, only surveys of schoolchildren have been selected for the 

database to avoid age effects. The sensitivity of diagnostic techniques to establish parasite 

prevalence is an indicator for data reliability. Surveys based on low diagnostic sensitivity have 

therefore been removed from the database as proposed by Schur et al. (2011b: 4). If schools 

were surveyed more than once, the most recent survey has been selected for the database of 
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this study. Assuming that school locations closer than 500m have a quasi-identical catchment 

area, those sample locations were combined by summing up the number of examined and 

number of positive schoolchildren resulting in an updated prevalence rate for this specific 

location. The geo-location error following the combination of points at this distance is negligible 

in comparison to the retrospective geo-location procedure of surveys inherent in the database. 

The spatial distribution of schistosomiasis 

prevalence data for the study area is illustrated in 

Figure 4-2. It can be seen that sample locations in 

Burkina Faso are distributed evenly in contrast to the 

more focal distribution in Côte d’Ivoire. For the selected 

study sites BUF, MAN, and TAB, the availability of 

epidemiological data was comparable (Figure 4-2). In 

the following, the properties of the data available for 

each of the three selected study sites are described in 

detail (Table 4-1). Data points of school prevalence are 

count data (Elliott et al., 2006: 5) that represent the 

sample of schoolchildren. Overall sample size is 

generally low and varies between the three study sites 

being highest in the MAN site (75), followed by the BUF 

site (74) and lowest in the TAB site (38). In contrast, the 

areal extent is lowest in the MAN (4,381 km²) and 

highest in the BUF site (32,826 km²). The number of 

individuals screened per school (=sample resolution) is 

an indicator of data reliability. The majority of school 

locations in Côte d’Ivoire have a sample resolution 

between 80 and 100 individuals per school and around 

50 children per school in BUF (Table 4-1). The observed 

cases of disease prevalence range from 0 to 100%, 

allowing to model prevalence and discriminate 

between low (<10%), moderate (10 - <50%) and high 

prevalence (>50%) according to the recommendations 

of the WHO (2002a: 34). Table 4-1 shows that this 

classification scheme is covered by the epidemiological 

data for all three study sites. The year of survey ranges from 1980 to 2007. The older surveys are 

predominantly in BUF and the most recent ones in MAN. Minimum distance between school 

locations varies from around 500 m in MAN to 3.26 km in BUF and maximum distance from 

62.2 km in MAN to 252.6 km in BUF, whereas the study site TAB represents intermediate ranges 

for both distance metrics. The average nearest neighbour ratio investigates spatial dispersal of 

point data (Clark and Evans, 1954). A value less than one exhibits a clustered pattern and a value 

greater one indicates a trend toward dispersion. The p-value indicates whether a trend is 

statistically significant. All three study sites resulted a random distribution of the sample points, 

as no trends have been statistically significant. 

 

 
Figure 4-1: Steps in pre-selection of 
epidemiological data 
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Table 4-1: Description of the epidemiological database for each of the three study sites in Côte d’Ivoire 
(MAN, TAB) and Burkina Faso (BUF). Sample size describes the number of school locations surveyed in each 
study site. The area extent indicates the area of each study site. Sample resolution gives the number of 
individuals surveyed per school location illustrated by a violin plot. The wider the plot at the x-axis the 
more school locations have been sampled with the number of individuals as indicated on the y-axis. The 
prevalence distribution is illustrated by a similar violin plot showing the prevalence between 0 and 100% on 
the y-axis. The year of survey is shown in histogram plots for all three study sites. The minimum and 
maximum distance describes the distance in km between the two closest and farthest school locations, 
respectively. The point pattern of sampled school locations for the study sites has been analysed using the 
nearest neighbour ratio (NNR). 
* outliers in BUF with 3,153 and 1,537 individuals/school removed from display 
 
 

MAN TAB BUF 

Sample size  
(number of schools) 

75 38 74 

Area extent (km²) 4,381 8,476 32,826 

Sample resolution*  
(individuals/school) 

   

Prevalence 
distribution 

   

Year of survey 

 
Minimum distance 
between schools 
(km) 

0.52 0.74 3.26 

Maximum distance 
between schools 
(km) 

62.2 101.1 252.6 

Point pattern index 
(NNR) 

1.03 (p=0.66) 0.89 (p=0.18) 1.07 (p=0.22) 
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Data on schistosomiasis prevalence are spatially correlated as common exposures to 

environmental conditions influence transmission similarly at neighbouring locations (Vounatsou 

et al., 2009: 1695). The phenomenon of spatial autocorrelation is a typical phenomenon in 

ecology (Legendre, 1993: 1659) and stipulated by the ‘first law of geography’ (Tobler, 1970) 

stating that “near things are more related than distant things” (Tobler, 1970: 236). Hence, the 

values of neighbouring measurements are either “more similar (positive autocorrelation) or less 

similar (negative autocorrelation) than expected for randomly associated pairs of observations” 

(Legendre, 1993: 1659). The autocorrelation inherent in spatial data has consequences on 

statistical models as many models are not explicitly spatial and make the standard assumption 

that observations are independent (Franklin, 2010: 138). However, it has at the same time been 

observed that prevalence of Schistosoma spp. has a typically focal distribution and therefore low 

spatial autocorrelation (Abdel-Rahman et al., 2001: 50). 

To understand spatial autocorrelation inherent in the data used in this study, in a first step 

the overall relationship between distance and prevalence similarity between school locations 

has been tested using the Mantel test (Mantel, 1967: 213). This investigates regression 

coefficients between the observed pattern and a randomized pattern with one of the matrices 

being shuffled (Koenig, 1999: 22-23). This test has been processed using the “ade4” package in R 

(Dray and Dufour, 2007). A Monte Carlo simulation based on 9,999 replications showed positive 

correlation for the study sites MAN and BUF and negative correlation for the study site TAB. The 

Null-Hypothesis of unrelated matrices has been rejected only for the study site MAN (p < 0.001). 

Based on this result, spatial autocorrelation changes significantly with distance for the study site 

MAN, and no significant change between autocorrelation and distance has been established in 

TAB and BUF. This reflects the high sample density given in sample size per area extent in MAN 

compared to much lower sample density in other study sites. 

MAN TAB BUF 

   
            sill = 0.053 
            range = 12.1km 

            sill = 0.074 
            range = 10.7km 

            sill = 0.045 
            range = 12.2km 

 
Figure 4-3: Patterns of the spatial structure of schistosomiasis prevalence in the three study sites MAN, TAB 
and BUF. The dots represent the empirical semivariogram and the solid line shows the best-fitted 
omnidirectional semivariogram based on a spherical model for de-trended prevalence data. The sill 
indicates the maximum of the modelled semivariance and the range indicates the distance, for which 
spatial independence of two school locations is given. Thus, spatial autocorrelation is inherent in the data 
until the distance of 12.1 km in MAN, 10.7 km in TAB, and 12.2 km in BUF. 
 

In a second step, the spatial dependence of schistosomiasis prevalence has been 

quantitatively assessed based on the estimation of spatial semi-variance between all pairs of 

observations according to Fortin and Dale (2005: 132-138). The empirical semivariogram of the 
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sample data provided the basis to fit an omni-directional, spherical and de-trended 

semivariogram model using the ordinary least-squares (OLS) regression method provided by the 

“gstat” package (Pebesma, 2004). The most relevant characteristics of the fitted semivariogram 

model are the total observed variation of the variable (= sill), the modelled variability at 

distances smaller than the shortest empirical distances (= nugget) and the distance at which two 

observations could be considered independent (= range) (Karl and Maurer, 2010: 197).  

Figure 4-3 presents semivariograms for the schistosomiasis prevalence in the three selected 

study sites of Burkina Faso and Côte d’Ivoire. In each setting, the semivariogram exhibits a 

spatial structure for distances between 10 and 12 km and after this distance there was no spatial 

autocorrelation in the database. However, if spatial autocorrelation is inherent in the data, 

either data that are closer to each other than the indicated distance need to be removed or this 

spatial structure needs to be considered by the model algorithm. 

4.2 Remote sensing data 
Remotely sensed land surface characteristics of different spatial resolutions were derived from 

RapidEye (6.5 m), Landsat 5 TM (30 m), and Terra MODIS (250 m/500 m/1 km) data for the 

purpose of multi-scale analysis. The spectral bands that correspond between the sensors are the 

blue, green, and red bands in the visible spectrum and the near infrared bands (Figure 4-4). 

RapidEye provides an additional red edge band (4) and both Landsat 5 TM and Terra MODIS data 

provide further spectral bands in the middle infrared and shortwave infrared wavelength, which 

are also suitable for the generation of relevant spectral indices (Figure 4-4). The technical details 

of these three sensors are listed in Table 4-2. 

 

Figure 4-4: Spectral bands of multi-scale RS data from the sensors RapidEye, Landsat 5 TM, and Terra 
MODIS used in this study. The band numbers according to the sensor configuration are noted above each 
band. Source of spectral response function: RapidEye (Blackbridge, 2013), Landsat 5 TM (USGS, 2014), and 
Terra MODIS (NASA, 2014). 
 

For the multi-scale analysis, data from the year 2010 and 2011 have been selected due to the 

availability of high-resolution RapidEye data. The temporal correspondence of RS data with 

1 2 3 4 5 

1 2 3 4 5 7 

5 6 7 1 2 3 4 

Wavelength (µm) 

Band response 
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epidemiological data is considered acceptable due to the 30 year life span of adult worms and 

the chronic characteristic of the disease. The specific scale-related analysis of RS data with 

different spatial resolutions has focused on the study site MAN, where coverage of multi-scale 

RS data was most appropriate. In contrast, the study site TAB was lacking coverage of 

corresponding Landsat data with acceptable level of cloud coverage and BUF was not sufficiently 

covered by RapidEye data. The available scenes used for the multi-scale analysis in this study are 

noted in Table 4-3. 

 

Table 4-2: Technical details of the multi-scale RS data used in this study. Numbers in round brackets refer 
to the spectral band number of the respective sensor. Nir = near infrared, mir = middle infrared, swir = 
shortwave infrared, tir = thermal infrared. 
 
 

RapidEye Landsat 5 TM MODIS 

Start 29th August 2008 1st March 1984 
18th December 1999 (Terra) 
4th May 2002 (Aqua) 

Repetition rate 
Daily (off-nadir) 
5.5 days (at nadir) 

16 days 
Daily (> 30°N/S), 
else every two days 

Swath width 77 km 185 km 2,330 km 

Spatial 
resolution 

6.5 m (nadir) 
30 m  
(120 m tir band 6) 

250 m (1-2) 
500 m (3-7) 
1 km (tir 20-23 and 31-32) 

Spectral 
resolution 

Blue (1): 0.44 – 0.51 µm 
Green (2): 0.52 – 0.59 µm 
Red (3): 0.63 – 0.685 µm 
Red edge (4): 0.69 – 
0.73 µm 
Nir (5): 0.76 – 0.85 µm 

Blue (1): 0.45 – 0.52 µm 
Green (2): 0.52 – 0.60 µm 
Red (3): 0.63 – 0.69 µm 
Nir (4): 0.76 – 0.90 µm 
Mir (5): 1.55 – 1.75 µm 
Tir (6): 10.40 – 12.50 µm 
Swir (7): 2.08 – 2.35 µm 

Red (1): 0.62 – 0.67 µm 
Nir (2): 0.841 – 0.876 µm 
Blue (3): 0.459 – 0.479 µm 
Green (4): 0.545 – 0.565 µm 
Mir (5): 1.23 – 1.25 µm 
Swir1 (6): 1.628 – 1.652 µm 
Swir2 (7): 2.105 – 2.155 µm 

 

Besides the multi-scale analysis of specifically derived RS variables, several other data 

products have been analysed with respect to the spatial risk of schistosomiasis transmission. The 

statistical metrics of Terra MODIS vegetation indices (MOD13Q1 product), daytime LST 

(MOD11A2) and the calculated difference between day and night-time LST have been 

investigated in this study, since these metrics respond to ecological requirements of the parasite 

and snail as documented in Section 3.2.2. Relevant topographic characteristics have been 

derived from the 30m Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) global digital elevation model (GDEM), which offers higher spatial resolution of 

topography in contrast to other topographic data (90m and more) so far used for schistosomiasis 

risk assessment. Other remotely sensed measurements relevant for schistosomiasis transmission 

used in this study were precipitation derived from Tropical Rainfall Measuring Mission (TRMM) 

data and information on the spatial distribution of human settlements provided as an 

established product from TerraSAR-X data. 
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4.2.1 Technical description and pre-processing of selected 

remote sensing data 

RapidEye, launched in 2008, is a constellation of five Earth imaging satellites with identical and 

equally calibrated sensors able to acquire multispectral images on a near-daily basis 

(Blackbridge, 2013). This multi-temporal high-resolution RS data provides a very useful database 

for the analysis of snail and parasite habitat dynamics. For this study, archive data from the 

years 2010 and 2011 have been accessed through the RapidEye Science Archive (RESA) at the 

German Aerospace Centre (DLR, 2014b) as level 1B (L1B) data. Basic pre-processing applied to 

L1B data include radiometric and geometric sensor corrections (Blackbridge, 2013: 7). For 

Burkina Faso, images free of clouds or acceptable cloud coverage below 5% could be received 

for the dry season in January/February and for the end of the rainy season in October/November 

(Table 4-3) covering the sub-site within the study site BUF (see Figure 2-1). In the tropical region 

of Côte d’Ivoire, only dry season images between January and February were sufficiently free of 

cloud contamination. Further pre-processing steps involved the transformation into the 

Universal Transverse Mercator (UTM) projection with the World Geodetic System 1984 (WGS84) 

using bilinear interpolation, orthorectification using a 90 m SRTM digital elevation model (DEM), 

as well as atmospheric and topographic correction using ATCOR (Richter and Schläpfer, 2012) 

within the CATENA pre-processing tool of the DLR (2014a). Geometric position of RapidEye data 

has been further adjusted based on sampled ground control points (GCPs) in Burkina Faso. 

Landsat 5 TM has been launched on 1st of March 1984 and was the longest lasting satellite 

(decommissioned on 5th June 2013) of the Landsat family established in 1972. Data from the 

Landsat 5 TM can be accessed at no cost from the Earth Resources Observation and Science 

(EROS) Centre at the United States Geological Survey (USGS) pre-processed using the Level 1 

Product Generation System (LPGS). For this study, L1B data have been acquired for the study 

sites MAN in western Côte d’Ivoire and BUF in central Burkina Faso with time steps in 

correspondence with available RapidEye data (Table 4-3). However, the study site TAB in 

southern Côte d’Ivoire has not been covered by Landsat 5 TM for this time period. As this study 

site is located in the border area of a Landsat tile, data from the Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+) sensor with large gaps due to the failed Scan Line Corrector (SLC) and at the 

same time largely contaminated with clouds have not provided an alternative. L1B data have 

been processed further using ATCOR 2/3, version 8.2 (Richter, 1996; Richter and Schläpfer, 

2012). Clouds have been detected and masked based on thresholds in the visible blue band and 

thermal infrared band six of Landsat 5 TM data (Martinuzzi et al., 2007). The geolocation 

accuracy of Landsat 5 TM data has been inspected based on sampled GCPs in Burkina Faso and 

RapidEye imagery. Position accuracy of the pre-processed data has been in the sub-pixel level of 

a 30m Landsat 5 TM pixel and therefore no additionally correction has been performed. 

MODIS is a multi-spectral (36 bands) and multi-temporal (daily to every day repeat coverage) 

remote sensor and part of the Earth Observing System (EOS), which was designed by the NASA 

to provide observations of terrestrial, atmospheric and oceanic phenomena and processes on a 

global scale (Justice et al., 2002: 3). The first MODIS was integrated on the Terra (EOS AM-1) 

spacecraft together with four other sensors and successfully launched on 18th December 1999. A 

second mission of MODIS was started on 4th May 2002 on-board the Aqua (EOS PM-1) 

spacecraft. MODIS data from Terra and Aqua have operational reception, are available at no cost 
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and still today acquire images on a near-daily basis (Justice et al., 2002: 3). MODIS provides 

seven spectral bands (bands 1-7) useful to derive land surface characteristics (Table 4-2) and six 

thermal infrared bands (bands 20-23 ranging from 3.66-4.08 µm and bands 31-32 ranging from 

10.78-12.27 µm) relevant to derive land surface temperature. Data products from the MODIS 

sensors can be directly downloaded from the Land Processes Distributed Active Archive Centre 

(LP DAAC) from the USGS (2013) including further information such as quality assessment layers, 

viewing angles or observation times, if images were composited. For this study, surface 

reflectance of Terra MODIS data have been accessed in correspondence to the available 

RapidEye and Landsat 5 TM data through the MOD09GQ and MOD09GA products, which provide 

daily acquisition of spectral bands 1-2 at 250 m and 3-7 at 500 m resolution, respectively (Table 

4-3). These Terra MODIS products are pre-processed as level 3 data and therefore corrected for 

radiometric, geometric, atmospheric, and bi-directional effects (Vermote and Vermeulen, 1999). 

Additionally, the MOD13Q1 product, a 16-day composite of vegetation indices with spatial 

resolution of 250 m, and the MOD11A2 product, an eight-day composite of LST and emissivity 

with spatial resolution of 1 km, have been investigated in this study. Data composition is done 

using a per-pixel Terra MODIS-specific compositing method that is dependent on the number of 

cloud-free observations available (Huete et al., 2002: 198). The Terra MOD13Q1 data include the 

NDVI and the enhanced vegetation index (EVI) from level 3 processed reflectance data (Huete et 

al., 1999). The Terra MOD11A2 comprises day-time and night-time LSTs retrieved under clear-

sky conditions and emissivities estimated in bands 31 and 32 from land cover types (MOD12 

product) per pixel at day and night-time (Wan, 1999). Both products have been downloaded for 

the year 2010 to match the high-resolution data. The Terra MODIS LST product has been 

validated for multiple validation sites with wide ranges of surface and atmospheric conditions 

and showed a deviation of ±1 K for temperatures between 263 K and 323 K (Wan et al., 2004: 

272). 

The ASTER is an imaging instrument, which is on-board the Terra satellite together with 

MODIS. In this study, the ASTER GDEM has been used as basis for topographic analyses. 

Altogether 82 tiles of the ASTER GDEM2 (Version 2) have been downloaded from Japan Space 

Systems (JSS, 2014) and mosaicked to cover the complete study area of Burkina Faso and Côte 

d’Ivoire with 30m spatial resolution, given a vertical root mean square error (RMSE) of 8.68 m 

(Meyer, 2011: 6). 

TerraSAR-X is a German radar satellite from a joint venture of the DLR and the European 

Aeronautic Defence and Space Company (EADS) Astrium designed with a spatial resolution 

ranging from 1-16 m. Further technical details of this satellite can be found at DLR (2014c). In 

this study, a processed settlement mask derived from TerraSAR-X data has been used as 

described in the following Section 4.2.2. 

4.2.2 Derivation of environmental variables 

Environmental variables that can be related to the ecology of disease transmission (Section 

3.1.2) were derived from spectral reflectance captured in the RS data and from the DEM (Section 

4.2.1). Thereby indices were calculated to enhance the signal of specifically addressed features 

(e.g. water, vegetation, etc.) taking advantage of the surface specific differences in reflectance 

(see Figure 3-4). The NDVI, the EVI, the soil-adjusted vegetation index (SAVI), the modified soil-

adjusted vegetation index (MSAVI), the normalized difference water index (NDWI), and the 
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modified normalized difference water index (MNDWI) were the vegetation and water indices 

used in this study and will be discussed in the following section. 

The NDVI (Equation 3-2), which has already been described in Section 3.2.1, is the most 

prominent spectral index to enhance the vegetation signal detected by a remote sensor. 

Vegetation indices are considered as proxy for water availability through vegetation monitoring 

and can also delineate water, if index values result negatively. The EVI is one further 

development of the NDVI with the aim of optimising the signal with improved sensitivity in high 

biomass regions, a decoupling of the canopy background signal and a reduction of atmospheric 

influences (Huete et al., 2002: 196). The EVI (Equation 4-1) is expressed as 

𝐸𝑉𝐼 =  𝐺 
𝑝𝑁𝐼𝑅 −  𝑝𝑟𝑒𝑑

𝑝𝑁𝐼𝑅 + 𝐶1𝑝𝑟𝑒𝑑 − 𝐶2𝑝𝑏𝑙𝑢𝑒 + 𝐿
 Equation 4-1 

where p are atmospherically corrected surface reflectances, L is the canopy background 

adjustment that addresses nonlinear differential near infrared (NIR) and red radiant transfer 

through a canopy, and C1, C2 are coefficients of the aerosol resistance term, which uses the blue 

band to correct for aerosol influences in the red band. The coefficients adopted in the EVI 

algorithm based on MODIS data are G (gain factor) = 2.5, C1 = 6, C2 = 7.5, L = 1 (Huete et al., 1994; 

Huete et al., 2002: 196). 

The SAVI introduces a soil calibration factor, L, to the NDVI equation to minimise soil 

background conditions that exert considerable influence on partial canopy spectra and the 

calculated vegetation index (Huete, 1988: 296-299). The SAVI (Equation 4-2) is expressed as 

𝑆𝐴𝑉𝐼 =  
𝑛𝑖𝑟 − 𝑟𝑒𝑑 

𝑛𝑖𝑟 + 𝑟𝑒𝑑 + 𝐿
 (1 + 𝐿) Equation 4-2 

where an L value of 0.5 in reflectance space has been identified to minimise soil brightness 

variations and eliminates the need for additional calibration for different soils (Huete, 1988: 306; 

Huete and Liu, 1994: 897). 

The MSAVI is based on the SAVI and uses an iterative, continuous L function to optimise soil-

adjustment that varies with the amount of vegetation present. A large L value would best 

describe soil-vegetation interactions for low vegetation amounts, while L should become smaller 

with increasing vegetation amounts (Qi et al., 1994: 123). The MSAVI (Equation 4-3) includes 

visible red (𝑝𝑟𝑒𝑑) and near infrared (𝑝𝑁𝐼𝑅) reflectance and is expressed as follows (Qi et al., 

1994: 124) 

𝑀𝑆𝐴𝑉𝐼 =  
2𝑝𝑁𝐼𝑅 + 1 −  √(2𝑝𝑁𝐼𝑅 + 1)2 − 8(𝑝𝑁𝐼𝑅 − 𝑝𝑟𝑒𝑑)

2
 Equation 4-3 

The NDWI was developed by McFeeters (1996) with the aim to delineate open water. The 

NDWI (Equation 4-4) is expressed as follows 

𝑁𝐷𝑊𝐼 =
(𝑔𝑟𝑒𝑒𝑛 − 𝑛𝑖𝑟)

(𝑔𝑟𝑒𝑒𝑛 + 𝑛𝑖𝑟)
 Equation 4-4 

where spectral reflectance at visible green wavelength corresponds with the maximum 

reflectance of water and reflected near infrared radiation (nir) indicates the spectral wavelength, 

where water absorption is very high and the contrast between water and terrestrial vegetation 

or soil greatest (McFeeters, 1996: 1429). 
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The MNDWI aims to enhance the delineation of open water features as proposed by 

McFeeters (1996) by using the middle infrared (mir) signal instead of the near infrared (nir) band 

and thereby reduce noise experienced from built-up land (Xu, 2006: 3026-3027). In this study, 

due to unavailable mir bands provided by RapidEye data, the MNDWI (Equation 4-5) could be 

calculated for Landsat 5 TM and Terra MODIS data only and is expressed as follows 

𝑀𝑁𝐷𝑊𝐼 =
(𝑔𝑟𝑒𝑒𝑛 − 𝑚𝑖𝑟)

(𝑔𝑟𝑒𝑒𝑛 + 𝑚𝑖𝑟)
 Equation 4-5  

At this point, it should be mentioned that Gao (1996) has also named a NDWI, however, this 

index uses band combinations of the near infrared and middle infrared wavelength and aims to 

detect vegetation water liquid and thus is different from McFeeters’ NDWI. 

 

Table 4-3: Overview of RS environmental variables used in this study and its availability for the three 
selected study sites. RE=RapidEye, LS=Landsat 5 TM, MOD=Terra MODIS, GUF=Global Urban Footprint, 
MOD13Q1 and MOD11A2 describe value added products of the Terra MODIS sensor, ASTER GDEM=Global 
Digital Elevation Model of the ASTER sensor. If (RE) is noted in brackets, only the sub-site of BUF (Figure 
2-1) is covered by RapidEye data. The acquisition dates of RapidEye, Landsat 5 TM and Terra MODIS for 
multi-scale analysis of the study site MAN are 5th January 2011, 12th January 2011 and mean from 5th to 
12th January 2011, respectively. The Rapid Eye data used for the study site TAB were acquired on 3rd 
January 2011. The Rapid Eye data that cover the sub-site of the study site BUF were acquired on 18th 
February 2010 (dry season image) and 27th October 2010 (wet season image). The full study site of BUF 
was covered by Landsat TM 5 data acquired between 29th January and 21st February 2010 for the dry 
season and between 4th November and 22nd December 2010 for the wet season. An extensive list of single 
RS environmental variables used for schistosomiasis risk modelling in each study site is given in the 
Appendix (Table A 1). 
 

Environmental variables MAN TAB BUF 

Spectral reflectance RE, LS, MOD RE (RE), LS (dry/wet) 
NDVI RE, LS, MOD RE (RE), LS (dry/wet) 
EVI RE, LS, MOD RE (RE), LS (dry/wet) 
SAVI RE, LS, MOD RE (RE), LS (dry/wet) 
MSAVI RE, LS, MOD RE (RE), LS (dry/wet) 
NDWI RE, LS, MOD RE (RE), LS (dry/wet) 
MNDWI LS, MOD - LS 
Water body RE/LS RE (RE), LS 
Euclidean distance from water body RE/LS RE (RE), LS 
Area of human settlements RE (mapping) RE (mapping) GUF 

- statistical metrics - 

NDVI (min, max, mean, median) MOD13Q1 MOD13Q1 MOD13Q1 
EVI (min, max, mean, median) MOD13Q1 MOD13Q1 MOD13Q1 
LST (min, max, mean, median) MOD11A2 MOD11A2 MOD11A2 
ΔTemp (min, max, mean, median) MOD11A2 MOD11A2 MOD11A2 

- topographic characteristics - 

Altitude ASTER GDEM ASTER GDEM ASTER GDEM 
Slope ASTER GDEM ASTER GDEM ASTER GDEM 
Sink depth ASTER GDEM ASTER GDEM ASTER GDEM 
Stream order ASTER GDEM ASTER GDEM ASTER GDEM 

 

The most important class of land cover with respect to transmission of schistosomiasis is 

water. The spectral signature of water is illustrated in Figure 3-4 and represents its maximum of 

reflectance in the visible wavelengths and shows nearly full absorption of EMR towards the near 
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infrared and middle infrared. The best mode of discriminating water from land using optical RS 

provide data at near infrared and middle infrared wavelengths between 0.74 and 2.5 µm, 

because in this region, water bodies appear very dark in contrast to land surfaces, where 

vegetation or soil appears bright due to reflection of significant amounts of EMR. However, most 

natural water bodies contain a variety of organic (e.g. phytoplankton) and inorganic (e.g. 

suspended minerals) constituents that highly modify the spectral properties of water (Jensen, 

2000: 385). This allows on the one hand estimating water quality and turbidity, on the other 

hand it proves to be difficult to distinguish land and water surfaces. For this study, a water mask 

has been derived from RapidEye and Landsat 5 TM imagery by thresholding the NDWI with a 

cut-off value set to zero, above which the spectral index delineates water (McFeeters, 1996: 

1429-1430). However, in the study site MAN in western Côte d’Ivoire, the outcome of threshold-

based water delineation was poor due to the very small ponds and river lines, which are further 

partly covered by dense riparian vegetation. The exposure of dark rocks in the mountainous 

region has further contributed to misclassification of water in this region. Hence, in this area, the 

water bodies have been mapped using a hierarchical procedure: First, a supervised classification 

of water/non-water based on RapidEye and Landsat 5 TM data as well as the NDWI has been 

applied using the random forest classification algorithm (Breiman, 2001). Secondly, topographic 

landscape elements improbable for the establishment of water bodies were excluded by 

thresholding curvature and slope calculated from the ASTER GDEM. The resulting water mask 

has been refined manually by visible inspection of RapidEye data and very high-resolution data 

available in Google Earth© (GoogleInc., 2010). The derivation of a water mask with spatial 

resolution of Terra MODIS data did not seem appropriate for the small-scale structure of water 

bodies as present in the selected study sites. Additionally, the Euclidean distance from water 

bodies has been calculated for the study sites. 

Human settlements provide a highly relevant piece of information for the analysis of 

schistosomiasis transmission risk in space, because only where humans are present, is there a 

risk of infection. Currently, there are several RS based products available, where human 

settlement is classified or modelled on global scale. An overview is given by Schneider et al. 

(2009: 2). However, even the products with highest spatial resolution such as GlobCover with 

300m (Arino et al., 2011) or the MCD12Q1 MODIS land cover product with 500 m (Strahler et al., 

1999) failed to represent the settlements reasonably. Currently, a settlement mapping approach 

based on high-resolution RS data from the TerraSAR-X and TanDEM-X missions is being explored 

for its potential to map urban settlements with 12 m spatial resolution on a global scale (Esch et 

al., 2010; Esch et al., 2012; Esch et al., 2013). An unpublished beta version of the global urban 

footprint (GUF) product was provided for this study covering strip wise most areas of Burkina 

Faso and Côte d’Ivoire. Additionally, information about human settlements has been derived 

from RapidEye data for the study sites in Côte d’Ivoire by visual delineation of settlements. 

However, this was not possible for the study site BUF, where rural settlements predominate and 

consist of dispersed, small agglomerations of loam houses. Due to the extensive area of this 

study site and the absence of very high-resolution data covering it, the provided beta version of 

the GUF was used here as it was the only available information. A simple comparison between 

the GUF and small areas of manually mapped settlements in Google Earth (GoogleInc., 2010) for 

testing the GUF correspondence resulted that information was useful for urban agglomerations 

but not appropriate in the rural regions. 
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Based on Terra MODIS time series data from the year 2010, statistical metrics of vegetation 

indices provided by the MOD13Q1 product (NDVI and EVI) and LST provided by the MOD11A2 

product have been calculated. Therefore, Terra MODIS time series data have been masked for 

clouds based on the provided cloud mask and then summarised by its minimum, maximum, 

mean, and median value, both on a pixel level. For Terra MODIS LST, statistical metrics have 

been derived for the daytime temperature measure and the difference between day- and 

night-time LST. 

Topographic information about the environment plays a crucial role for schistosomiasis risk 

profiling, due to the fact that topography can determine to some extent whether water 

accumulates at a certain location and how fast it flows at the surface. Elevation above sea level 

provided by the ASTER GDEM was used for this research. In a first step, the DEM was smoothed 

using a majority filter for a 15x15 moving window. This procedure minimises noise in the data 

and errors of single pixels. Subsequently, the topographic variables were derived by separate 

procedures (Figure 4-5). Topographic sinks were described by pixel values, where all 

neighbouring values were equal or greater than the centre pixel value. The landscape of Burkina 

Faso has demonstrated an undulating terrain with many natural and man-made sinks on a small 

scale. To map these sinks and measure its depth, a sink mask has been derived from an image-

differencing analysis between the smoothed image and the filled smoothed image. However, it 

is common that sinks in elevation data are due to errors in the data caused by rounding of 

elevations to integer numbers. Therefore, all other topographic variables such as elevation, 

slope and stream order have been calculated from a smoothed image with filled sinks. Slope of 

the terrain has been derived from the DEM as proxy-indicator for potential flow velocity of 

surface runoff with inclination calculated in degrees. As water runoff travels from higher to 

lower altitudes and usually becomes organised in a branched network of stream channels, the 

flow direction and flow accumulation of water result a stream network of topographic water 

drainage. The resulting stream network has been ordered according to Strahler (1957) based on 

an accumulation threshold of 18000 cells, which was the equivalent for the 30m ASTER GDEM to 

the given SRTM-based threshold given by Beck-Wörner et al. (2007).  

Water surface temperature of inland water bodies may be obtained using thermal RS 

techniques. However, unlike land surfaces, water bodies transfer energy primarily through 

convection between water surface and bottom of the water body. This mixing is responsible for 

the relatively uniform surface temperature of a water body between day and night in contrast to 

the high temperature deviations between day and night of land surfaces. Due to the thermal 

inertia of water bodies, they appear cooler than land during the day and warmer during the 

night. The emissivity of water is with 0.98-0.99 very close to 1, which allows obtaining relatively 

accurate water surface temperature measurements by the remote sensor, when effects of the 

intervening atmosphere are accounted for. However, the RS measurement of water 

temperature is only a surface measurement of the water body and does not detect any 

significant change of water temperature that might occur a few meters below the surface (e.g., a 

thermocline). In this study, the Landsat 5 TM thermal band six has been used to detect water 

surface temperature as ecological indicator for schistosomiasis-related snail and parasite habitat 

conditions. The atmospheric correction (Section 4.2.1) has been calculated with a standard 

emissivity of 0.98, which is appropriate to detect water surface temperature. However, the 
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120 m spatial resolution of the thermal Landsat 5 TM band 6 is a limitation for the measure of 

water temperature for water bodies of smaller extent. 

 
Figure 4-5: Processing chain to derive topographic variables from the ASTER GDEM 
* Function provided in the ArcGIS® spatial analyst toolbox 
** Number of cells accumulating water: 18000 
 

4.3 Environmental in situ data 
In the dry season of March 2011, a field trip to central Burkina Faso was conducted for the scope 

of this research. The objectives of this field trip were: (i) to investigate the landscape structure to 

discriminate surface characteristics using RS data; (ii) to sample GCPs for RS image geo-

rectification and verification; and (iii) to establish locally adjusted criteria that discriminate and 

evaluate suitability of potential snail and parasite habitats in the field. The planned field trip to 

the study sites in Côte d’Ivoire had to be cancelled due to political unrests. However, a rough 

guess of the landscape characteristics could be gained from very high-resolution imagery 

provided by Google Earth© (GoogleInc., 2010) and field photographs provided by courtesy of Dr. 

Giovanna Raso, Swiss Tropical and Public Health Institute. 

In total, 82 GCPs were sampled during this field trip in the rural landscapes within the sub-

site of BUF around Ziniaré (see Figure 2-1) using a non-probability, purposive sampling scheme. 

The aim was to explore the variety of potential disease transmission sites in this region based on 

ecological suitability criteria (see Table 3-1) with the drawback to receive a sample that is not 

representative in a statistical sense. Furthermore, no parasite and snail data were sampled 
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during this field trip as the sampling of a representative database on snail presence, absence, 

infection and cercarial density within water bodies was beyond the scope of this research. 

Instead, at each GCP, a field verification form (Figure A 1 in the appendix), which has been 

adjusted for the purpose of this study from the standard FAO Land Cover Classification System 

(LCCS) (Di Gregorio and Jansen, 2005) guided the local analysis of this area around potential 

disease transmission sites. The following data were recorded: general land cover information 

such as land cover type, homogeneity, land form and seasonality aspects, type of water body 

(e.g. pond, channel or river), seasonality (visit during the dry season), type of substratum, water 

flow velocity, water colour and temperature, water usage, access, and visible human contact. 

Water body temperature was measured using a handheld digital thermometer at the outer 

boundary of the water body and resulted between 26.2°C (minimum) and 36°C (maximum). The 

measurement at the outer boundary of the water surface varied strongly with water depth at 

the shoreline and is not representative for the complete water body, but indicates a 

temperature range of water surface temperature in this region. Measurements of water 

temperature in central and northern Côte d’Ivoire published by Kinanpara et al. (2013: 114) 

varied between 27.4°C and 35.2°C. 

During this field visit, local criteria to evaluate potential disease transmission sites have been 

derived. Thereby, the following observations were found to be highly relevant with respect to 

this study: 

(1) Several different types of potential disease transmission sites have been discriminated 

during the field trip for this region (Figure 4-6): 

(1.1) Man-made dam lakes have been observed to be used for fishing, irrigation of 

agricultural crops, to water animals, for recreational activities, washing clothes, and personal 

hygiene. 

(1.2) Agricultural irrigation practices were observed close to permanent water bodies, where 

water was pumped by local generators and/or led through natural or concrete channels to the 

crop field. Thus, irrigated agricultural sites have been established almost exclusively at the shore 

side of these water bodies and unprotected direct human contact with these water bodies has 

been observed for almost all locations visited. 

(1.3) Rivers have been observed to be either stagnant or very slow moving during the dry 

season. Often, rivers were dried out either completely or at certain passages. Artificial pools 

were often observed within river beds, where profound holes have been dug to collect water 

available during the dry season. 

(1.4) Seasonal pools have been observed either as natural or artificial topographic 

depressions that have been either filled or dried out.  

(2) At all visited water sites human access was not restricted either through natural or man-

made barriers. 

(3) The rural settlement pattern consists of small-scale agglomerations of several loam 

houses where one family lives with an average of 30 individuals (personal communication with 

field assistant Herman Ouoba – graduate student (MSc) from the University of Ouagadougou). 

(4) The mode of transportation of the rural population has been observed to be mainly by 

foot or motor bike, whereas there were individual paths and gravel roads used all over the 
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sparse vegetated landscape. This information provides insight into the complex spatial relation 

between school location and human settlements within the catchment areas. 

(5) School buildings were often located separately from dispersed rural settlements. The 

catchment area of a rural school has been estimated to be maximum 5 km walking distance for 

the pupils (personal communication with field assistant Herman Ouoba). 
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Figure 4-6: Main types of potential disease transmission sites within the study site BUF 
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5 Modelling environmental suitability for 

schistosomiasis transmission 

An infection with schistosomes depends largely on the spatial distribution of suitable snails, that 

act as intermediate hosts and are the prerequisite that a Schistosoma parasite reaches the stage 

to infect humans (see Section 3.1.2). These disease relevant species have specific habitat 

requirements, which are determined by environmental factors. For example, it has been shown 

in the laboratory and through field-based investigations that water temperature affects the 

metabolism of parasites and snails with consequences on parasite activity, survival and infection 

or snail fecundity, mortality, and rate of reproduction (Table 3-1). Specific temperature 

thresholds govern the presence or absence of a species and impact its fitness. If temperature 

conditions were not suitable for a disease-related species, the proliferation of the disease was 

not successful. The extensive literature on abiotic factors in relation to snail and parasite fitness, 

reveal conditions that are likely to determine a habitat´s suitability or the unsuitability as a 

disease transmission site (Moodley et al., 2003: 618). Satellite RS data have proven to be useful 

to assess and monitor biophysical characteristics and detect such habitat conditions (Malone et 

al., 1994; Malone et al., 2001; Stensgaard et al., 2006). 

Biological requirements of a species can be derived from laboratory or field studies (Malone, 

2005: 28; Kearney, 2006: 186) and are useful to establish a relationship between a species and 

its abiotic environmental niche, which can be predicted for locations where survey data are 

lacking (Franklin, 2010: 12). The modelled environmental preferences, limits of tolerance, and 

behaviours of organism are summarised by the HSI, which was originally developed by the 

United States Fish and Wildlife Service (USFWS) to estimate the capacity of a habitat to support 

a species and quantify effects of land management alternatives on species habitats (USFWS, 

1981: 10). Thus far, USFWS has applied the HSI within more than 150 species-specific models 

with the objective to support informed decision making with respect to land management and 

species conservation (USFWS, 2014). Additionally, the HSI has been rigorously investigated and 

published in the peer-reviewed literature for marine species (Brown et al., 2000; Vinagre et al., 

2006), wildlife (Thomasma et al., 1991; Mitchell et al., 2002; Dussault et al., 2006) and plant 

species (Store and Kangas, 2001; Rüger et al., 2005; Williams et al., 2008). It was aggregated 

from spatially superimposed species-specific variables of environmental suitability. Although 

there are numerous HSI models, few have been validated (Duncan et al., 1995: 1361), probably 
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due to the unavailability of adequate data to support validation (Schamberger and O´Neil, 1986: 

7). However, HSI models belong to the most influential management tools in use and provide a 

transparent basis to further explore species-specific relations with the environment (Brooks, 

1997: 163-164). The key contribution of HSI models lies in quantifying both the quality and 

quantity of available habitats for selected species as well as providing a repeatable assessment 

procedure based on current environmental data (Ortigosa et al., 2000: 3). 

  

 

   

Figure 5-1: Suitability of potential transmission sites for schistosomiasis in Burkina Faso. In the upper row, 
the left RapidEye image (A) represents a dam lake during the wet season and the RapidEye image in the 
centre (B) represents the same site during the dry season. The upper field photographs (C and D) illustrate 
the situation of the dry season image on the ground. This site shows high suitability for potential 
transmission due to the stability of water persistence (C) and the practice of irrigation agriculture at its 
waterside (D). In the lower row, the left (E) and central (F) RapidEye images represent another dam lake 
during the wet and dry season, respectively, and the field photograph (G) illustrates this spot on the 
ground during the dry season. It shows that this dam lake is a less suitable area for disease transmission 
due to its temporary drying out. 
RS data from the RapidEye sensor were acquired on November 16, 2009 (end of wet season) and February 
18, 2010 (dry season). Spectral bands 5-3-1 were displayed as R-G-B colour composite. The field 
photographs were taken on March21, 2011 (C and D) and March 22, 2011 (G). 
 

With respect to schistosomiasis, such a mechanistic approach to derive environmental 

suitability for disease transmission has been investigated by Moodley et al. (2003), Stensgaard et 

al. (2006), and Stensgaard et al. (2013). All three studies investigated remotely sensed 

temperature suitability for snails and parasites only. However, RS data provide additional 

information with respect to environmental suitability for schistosomiasis transmission other 

than only temperature (see Table 3-3). According to the ecology of schistosomiasis as described 

in Section 3.1.2, an example, where different environmental suitability for schistosomiasis 

transmission can be directly derived from RS data, is stability of water level and riparian 

vegetation coverage, as illustrated in Figure 5-1. Landscape configuration and its temporal 

dynamic, influence the environmental suitability for potential schistosomiasis transmission and 

can be captured by RS data. 

The main objective of this chapter is to assess the potential contribution of RS data to derive 

environmental suitability for transmission of schistosomiasis by means of a deductive 

mechanistic HSI modelling approach. Hence, strengths and weaknesses of RS data will be 
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discussed placing emphasis on: (i) the spatial delineation of environmental conditions, where 

disease transmission can potentially occur; (ii) quantitative prediction of environmental 

suitability within potential transmission sites; and (iii) the evaluation of the regional 

transferability of an established model to different eco-geographic regions. 

5.1 Establishment of mechanistic model 
A mechanistic modelling approach was used to investigate the potential of RS data to assess 

environmental suitability for the transmission of schistosomiasis. This model is parameterised 

based on published information on fitness, limits of tolerance and behaviour of disease-related 

snail and parasite species, and on field data sampled at the eastern sub-site of BUF around 

Ziniaré (Figure 2-1). Model outcomes are quantitative estimates of environmental suitability for 

transmission of schistosomiasis. According to Brooks (1997), the general HSI modelling 

procedure can be divided into three steps, as illustrated in Figure 5-2: First, species-related 

habitat variables are selected and species-specific requirements are attributed to these 

variables. Second, the model is composed from single habitat variables, which are scaled 

between poor and excellent habitat quality (from zero to one) and calibrated based on a 

sensitivity analysis of different weighting schemes. Third, the model is verified based on the 

linkage between modelled environmental suitability and field-based estimates of species 

suitability. In this study, a sensitivity analysis and comprehensive model validation was not 

feasible as reliable estimates of snail and parasite species population density and fitness were 

not available. However, the plausibility of modelled environmental suitability in reference to 

field-based estimates and the transferability of the model to different ecological regions in 

reference to schistosomiasis prevalence data within a 5 km buffer zone around the survey 

location were evaluated in this study. 

5.1.1 Model development 

RS data provided the input data to model environmental conditions and ecological limitations 

relevant for schistosomiasis-related snails and parasites. The model was developed based on the 

provided information as reviewed in Section 3.1.2. Water temperature, water flow velocity, and 

habitat stability have been referred to as the most important factors conditioning habitats of 

freshwater snail species (Appleton, 1978: 1-2). Conditions that influence the longevity and 

infectivity of free living larval stages of Schistosoma parasites are temperature, water flow 

velocity, turbidity, UV radiation, and exposure to chemical stimuli (Sturrock, 1993b: 11). In 

general, environmental suitability for schistosomiasis transmission has been considered highest 

when most favourable conditions for the coexistence of snail and parasite were given and lowest 

vice versa. As soon as conditions for either snail or parasite species become unsuitable, the 

environment was considered hostile for disease transmission. 

The theoretical relations between species fitness and environmental conditions described in 

Section 3.1.2, were translated into mathematical expressions as proposed by an HSI modelling 

approach (USFWS, 1981: 42), namely, the functions of relative suitability. The estimation of 

relative suitability for each habitat variable by utilising continuous functions avoids the loss of 

information and the increased uncertainty, which would result from a categorical classification  
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Figure 5-2: Overview of a mechanistic model procedure to derive environmental suitability for 
schistosomiasis transmission using RS data. The functions of relative suitability developed for the 
model can represent species-specific information if provided (see dashed and dotted lines that refer to 
specific snail species suitability with respect to temperature). If the line is solid, the relative suitability 
addresses snail- and parasite-related suitability in general (see Figure 5-4 for detailed view). 
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approach (Store and Kangas, 2001). Three methods were applied for the derivation of relative 

suitability functions of habitat variables (USFWS, 1981: 45), depending on the source of 

information and data provided. In the event that species response curves were provided, this 

mathematical relation could be directly transferred to the corresponding environmental variable 

derived from RS data. An example is given by the function derived for the length of the 

prepatent period of a parasite within the snail in relation to measured water temperature 

(Pflüger, 1980; Pflüger et al., 1984). If measurement or thresholds expressed the relationship 

between species fitness and environmental conditions, functions of relative suitability for 

specific habitat variables were derived by piece-wise linear or polynomial interpolation between 

provided values or logical assumptions. This allowed that non-linear relationships between 

habitat suitability and an environmental variable could be depicted (Store and Kangas, 2001). A 

third approach uses expert opinions to directly define the relative suitability function of a certain 

habitat variable. Relative suitability was scaled between 0 and 1 to make the environmental 

suitability comparable based on the single habitat variables. 

The fundamental habitat variable, which is the prerequisite that schistosomiasis transmission 

can occur, is the availability of water. With RS data, this deterministic factor was mapped 

(Section 4.2.2) in a direct way by deriving a water mask for the area of interest based on high-

resolution RapidEye data. Additionally, the presence of potential water was mapped in an 

indirect way from topographic information of sinks and drainage lines, where water can 

potentially accumulate following rainfall or flooding events. The direct measurement of water 

during dry and rainy season has been further extended with a buffer zone of 200m. This distance 

was measured from RS data during the dry season to capture the irrigated agricultural sites, 

which are directly connected to permanent or seasonal water bodies in this study site (Section 

4.3). Water and potential water as deterministic habitat variables provide the basis for the HSI 

model and result in a mask of potential environmental suitability. Regions of potential 

environmental suitability have been further refined with quantitative information of snail- and 

parasite-specific habitat conditions, based on non-deterministic habitat factors described in the 

following paragraphs. Moreover, the binary classification provides the basis for analysis within 

the hierarchical model approach described in Chapter 6. Based on field expertise (Section 4.3) 

and the review of disease-related variables that can potentially be measured by means of RS 

data (Table 3-3), the following snail- and parasite-related habitat variables have been selected to 

establish an HSI model. 

Habitat stability is defined as length of water persistence in weeks and was derived for the 

study area based on RapidEye data from the year 2010. Water bodies persisting less than 4 

weeks for the case of S. mansoni and less than 5 weeks for S. haematobium were considered 

unsuitable, respectively (Sturrock, 1993a: 65). If water in a snail habitat remains for longer than 

6 or 7 weeks, the habitat stability was considered suitable for transmission of S. mansoni or 

S. haematobium, respectively (Sturrock, 1993a: 65). The relative suitability function that 

connects the unsuitable and suitable state of habitat stability results from a linear interpolation 

between the measured values. The mathematical expressions of relative suitability of habitat 

stability with respect to proliferation of S. mansoni and S. haematobium (Equation 5-1 and 

Equation 5-2) are illustrated in Figure 5-3. 
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S. mansoni: 𝑓(𝑤) =  {

0 𝑓𝑜𝑟 0 < 𝑤 ≤ 4
0.5𝑤 − 2.5 𝑓𝑜𝑟 5 ≤ 𝑤 ≤ 7

1 𝑓𝑜𝑟 8 ≤ 𝑤 ≤ 52
 Equation 5-1 

S. haematobium: 𝑓(𝑤) =  {

0 𝑓𝑜𝑟 0 < 𝑤 ≤ 3
0.5𝑤 − 2 𝑓𝑜𝑟 4 ≤ 𝑤 ≤ 6

1 𝑓𝑜𝑟 7 ≤ 𝑤 ≤ 52
 Equation 5-2 

 

 
Figure 5-3: Sub-priority functions of relative suitability of 
habitat stability for S. mansoni and S. haematobium. 
 

The relation between water temperature (T) and the length of the prepatent period of 

parasites was defined as response function for S. mansoni by Pflüger (1980) and for 

S. haematobium by Pflüger et al. (1984). These species response functions were directly scaled 

to functions of relative suitability of temperature, in which the shortest prepatent period 

corresponded with highest suitability for parasite development (Equation 5-3 and Equation 5-4). 

Additionally, the relation between water temperature and snail mortality was investigated for 

snails collected in the field and viewed under laboratory conditions. Bio. glabrata, the 

intermediate host snails of S. mansoni showed a mortality rate close to 100% at experimental 

water temperatures below 16°C and above 36°C (Pflüger, 1980: 163). The mortality thresholds of 

Bu. truncatus snails, the intermediate host snails of S. haematobium were at temperatures 

below 17°C or above 33°C (Pflüger et al., 1984). The laboratory-based measurements of snail 

mortality (Pflüger, 1980; Pflüger et al., 1984) were interpolated based on a second order 

polynomial function and resulted respective functional relations for Bio. glabrata snails 

(Equation 5-5) and Bu. truncatus snails (Equation 5-6) as illustrated in Figure 5-4. 
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S. mansoni: 𝑓(𝑇) =  {

0 𝑓𝑜𝑟 𝑇 < 16

−0.003 ∗ (
268

𝑇 − 14.2
− 335)  𝑓𝑜𝑟 16 ≤ 𝑇 ≤ 35

0 𝑓𝑜𝑟 35 < 𝑇

 
Equation 

5-3 

S. haematobium: 𝑓(𝑇) =  {

0 𝑓𝑜𝑟 𝑇 < 17

−0.006 ∗ (
295

𝑇 − 15.3
− 174)  𝑓𝑜𝑟 17 ≤ 𝑇 ≤ 33

0 𝑓𝑜𝑟 33 < 𝑇

 
Equation 

5-4 

Bio. glabrata: 𝑓(𝑇) =  {

0 𝑓𝑜𝑟 𝑇 < 16

−4.095 + 0.368 𝑇 − 0.007 𝑇² 𝑓𝑜𝑟 16 ≤ 𝑇 ≤ 35
0 𝑓𝑜𝑟 35 < 𝑇

 
Equation 

5-5 

Bu. truncatus: 𝑓(𝑇) =  {

0 𝑓𝑜𝑟 𝑇 < 17

−2.350 + 0.208 𝑇 − 0.004 𝑇² 𝑓𝑜𝑟 17 ≤ 𝑇 ≤ 33
0 𝑓𝑜𝑟 33 < 𝑇

 
Equation 

5-6 

 

 
 

Figure 5-4: Sub-priority functions of relative suitability of water temperature for S. mansoni and 
S. haematobium parasites (left) and Bio. glabrata and Bu. truncatus (right). The mean suitability of 
parasites and snails are indicated by the solid lines. 
 

A critical value of water flow velocity was established at 0.3 m/s (Scorza et al., 1961: 194). In 

faster flowing water snails become dislodged and the suitability of the habitat drops. The flow 

velocity of water 𝑉 was compared with slopes derived from topographic RS data using the 

Manning´s velocity Equation 5-7 (Albertson and Simons, 1964: 7-24) 

𝑉 =  
1.5 ∗  𝑅0.66 ∗  𝑆0.5

𝑛
 Equation 5-7 

where R is the hydraulic radius, S is the line slope and n is the Manning´s roughness coefficient. 

Within the visited test site around Ziniaré in Burkina Faso, the threshold of 0.3 m/s could be 

approximated to a slope of 0.00014 degrees. This calculation is based on the assumption that 

the majority of river beds are gravelled earth channels with some vegetation growth, which are 

represented by 0.025 for n (Albertson and Simons, 1964: 7-25). R is equal to the cross-sectional 

area of flow divided by the wetted perimeter (Arcement, 1989: 10) and was approximated for 

this calculation to be 0.7 m. This parameter could not be adjusted to the heterogeneous river 



Modelling environmental suitability for schistosomiasis transmission 

82 

beds in the study site, because the 30 m spatial resolution of topographic data from the ASTER 

GDEM could not depict this small-scale information at all. Therefore, a mean width and depth of 

river beds was assumed to be 5 m and 2 m, respectively. However, this approach was applied by 

Kiel et al. (2006: 318), who suggested that water surface elevations were reasonable to estimate 

flow velocities from slopes derived from SRTM data for large rivers. The relative suitability 

function of water flow velocity (Equation 5-8) was derived from linear interpolation between the 

minimum, the suitability threshold, and the maximum. It was assumed that the relative 

suitability decreases strongly towards the derived threshold slope of 0.00014 degrees 

corresponding to a relative suitability of 0.2 and levels out with this general low suitability 

towards 0 (Figure 5-5). 

 

Flow suitability 
calculated from 
slope: 

𝑓(𝑆) =  {
−5714.3 𝑆 + 1 𝑓𝑜𝑟 0 ≤ 𝑆 ≤ 0.00014

−0.0029 𝑆 + 0.2 𝑓𝑜𝑟 𝑆 > 0.00014
 Equation 5-8 

 

 
Figure 5-5: Sub-priority function of relative suitability of 
water flow velocity measured by the proxy of slope. 
 

The relative suitability of water depth is expressed by the proxy measurement of Euclidean 

distance from the shoreline, which was calculated from the polyline boundary of the water 

masks derived from RS images during the dry and wet season (Section 4.2.2). Intermediate host 

snails of schistosomiasis are primarily distributed in shallow water at the margins of their habitat 

(WHO, 1957: 11-12). This information was translated into a decreasing suitability derived from 

linear interpolation between shoreline and a distance of 200 m inside the water. The threshold 

was estimated based on the slope to distance ratio between the maximum water level and the 

current one during the dry season around the visited dam lakes. For this calculation, the 

threshold was adjusted to 210 m to multiply the 30 m pixel resolution of the satellite data 

employed in the current study. At distances greater than 2 km from the shoreline to the center 

of the water body, no suitability for snails transmitting schistosomiasis was assumed. This 
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threshold was extracted from the extent of the greatest water body in the study site (Equation 

5-9 and Figure 5-6). 

 

Water depth 
calculated from 
distance from 
shore: 

𝑓(𝑥) =  {

−0.0043𝑥 + 1 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 210
−0.000056𝑥 + 0.088 𝑓𝑜𝑟 210 > 𝑥 ≤ 2000

0 𝑓𝑜𝑟 𝑥 > 2000
 Equation 5-9 

 

 
Figure 5-6: Sub-priority function of relative suitability of 
water depth measured by the proxy of distance from shore 
in meter. 
 

The relative suitability based on vegetation coverage was measure within a 200 m buffer 

area along detected water sites. According to the theoretical suitability conditions described in 

Section 3.1.2, higher availability of vegetation positively conditions the habitat for freshwater 

snails in terms of food supply, surfaces to crawl and deposit egg masses or with respect to the 

content of dissolved oxygen in water (Table 3-1). The RS approach used in this study does not 

measure submerged vegetation, however, the buffer zone considers the potential vegetation 

input into the water body. In this model, the theoretical function of relative suitability with 

respect to vegetation coverage was derived to detect irrigated agricultural sites visited during 

the field trip, which corresponded to an average NDVI threshold around 0.3 in dry season 

RapidEye imagery. Based on this threshold, the sub-priority function of vegetation coverage 

(Equation 5-10) was a result of linear interpolation between unsuitable conditions for NDVI 

values smaller or equal 0 and suitable conditions at values of 0.3 and above (Figure 5-7). 

Stream order was derived for the study area of Burkina Faso and Côte d’Ivoire as described in 

Section 4.2.2 and resulted in hierarchical levels ranging from order 1 to 7. According to the study 

of Beck-Wörner et al. (2007), the relative suitability function for stream order (Equation 5-11) 

was estimated from a linear interpolation between the maximum stream order of highest 

suitability and the minimum stream order of lowest suitability (Figure 5-8). 
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Vegetation 
coverage: 

𝑓(𝑉) =  {
0 for 𝑉 < 0

3.33 𝑉 for 0 ≥ 𝑉 ≤ 0.3
1 𝑓𝑜𝑟 𝑉 > 0.3

 Equation 5-10 

 

 
Figure 5-7: Sub-priority function of relative suitability of 
vegetation coverage derived from the NDVI value. 
 

 

Stream order: 𝑓(𝑠𝑡𝑟𝑒𝑎𝑚) =   0.143 𝑠𝑡𝑟𝑒𝑎𝑚 𝑓𝑜𝑟 0 ≤ 𝑠𝑡𝑟𝑒𝑎𝑚 ≤ 7 Equation 5-11 

 

 
Figure 5-8: Sub-priority function of relative suitability of 
stream order. 
 

Sink depth was derived for the study area of Burkina Faso and Côte d’Ivoire as described in 

Section 4.2.2 and resulted in a maximum depth of 222 m. The sub-priority function of sink depth 
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(Equation 5-12) was calculated from linear interpolation between the lowest sink depth of 1 m 

and the aforementioned maximum sink depth of 222 m (Figure 5-9). 

 

Sink depth: 𝑓(𝑧) =   0.005𝑧 + 0.11 𝑓𝑜𝑟 1 ≤ 𝑧 ≤ 222 Equation 5-12 

 

 
Figure 5-9: Sub-priority function of relative suitability of 
sink depth. 
 

5.1.2 Model composition 

Following the assignment of specific suitability characteristics to relevant environmental 

variables with respect to schistosomiasis transmission (Section 5.1.1), single attributes were 

combined to an overall HSI for the study site Ziniaré using the multi-criteria decision analysis 

(MCDA). MCDA is defined as “an umbrella term to describe a collection of formal approaches 

which seek to take explicit account of multiple criteria in helping individuals or groups explore 

decisions that matter” (Belton and Stewart, 2002: 2). This definition outlines the three 

dimensions of MCDA, namely: (i) the formal approach; (ii) the presence of multiple criteria; and 

(iii) decisions made by individuals or groups of individuals (Mendoza and Martins, 2006: 1). 

MCDA has been widely used within the GIS community for spatial decision support (Malczewski, 

2006) and was investigated with respect to species habitat suitability modelling (Store and 

Kangas, 2001). In this research, model composition is formally described by the framework 

provided in Figure 5-10 and integrates multiple criteria relevant for schistosomiasis transmission 

that are captured by RS data as well as decisions connected to each criterium (Section 5.1.1). 

This structured approach can provide a basis for evaluating a number of alternative choices on 

the basis of the selected criteria (Store and Kangas, 2001: 80; DCLG, 2009: 10). 

Composition of the mechanistic model of environmental suitability for schistosomiasis 

transmission discriminated in a first step between directly measured water and areas of 

potential water accumulation based on topographic information (Figure 5-10). In this study, the 

HSI (Equation 5-13) was calculated using an additive priority function as adjusted from Store and 

Kangas (2001: 82), and Walz et al. (2012: 7225). 
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𝐻𝑆𝐼 =  ∑ 𝑎𝑖𝑝𝑖

𝑚

𝑖=1

 Equation 5-13 

HSI stands for the habitat suitability index and refers to the global priority of environmental 

suitability, m indicates the number of habitat suitability variables, ai describes the relative 

importance of factor i, and pi gives the relative suitability of the factor i. Due to the lack of 

appropriate reference data to calibrate the model, the relative importance of factor ai was 

weighted to 1/m. 

 
Figure 5-10: Composition of habitat suitability variables to model environmental suitability 
for schistosomiasis transmission. Water and potential water represent the major decision 
criteria to spatially delineate potential disease transmission, whereas water and potential 
water do not superimpose spatially in the model. The HSIwater integrates the upper four 
water-related suitabilities for the permanent water sites and all five variables for the 
seasonal water sites as indicated by the blue boxes. Additionally, the HSIpot.water has been 
separately calculated for the three groups that do not spatially superimpose, namely the 
waterside buffer, streams and sinks as illustrated by the boxes. 
 

There is one essential differentiation between the model composition approach illustrated in 

Figure 5-10 and other GIS-based HSI models presented in the literature introduced above. This is 

that single habitat variables are not all spatially superimposing. This phenomenon is a 

consequence of analysing water surfaces, topography, and vegetation coverage, which can 

predominantly be measured in a spatially exclusive way by means of RS. Vegetation coverage 

and topography cannot be measured in submerged areas and water characteristics can only be 

measured at sites where water is detected. Thus, the HSI has been derived separately for 

spatially superimposing components to capture the relevant suitability at the respective 

location, which is demonstrated by the hierarchical structure of the model composition in Figure 
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5-10. Water-related HSI values (HSIwater) were derived for distinct spatial units of water, namely 

permanent water and seasonal water, whereas potential water-related HSI values (HSIpot.water) 

were derived separately for the waterside buffer zone, topographic drainage lines (i.e. streams), 

and sinks. These distinct spatial units were separated during the process of model composition 

with the aim to highlight the relevant information per site. To give an example, the 

disaggregated calculation of the HSIwater for zones of permanent and seasonal water allowed for 

the recognition of seasonally flooded and vegetated zones of high environmental suitability. If 

spatial composition of the HSI were not be separated in this case, the overall HSI of water would 

disproportionately decrease due to vegetation suitability around 0 within water bodies 

measured by RS data. The habitat variable of flow suitability contributes both to the water and 

the potential water section of the model as the meaning of the measurement is slightly 

different. The suitability of water flow velocity was directly derived from the slope measured at 

the water surface, and hence corresponds to the calculation of the flow velocity based on 

Manning´s velocity equation (Equation 5-7), whereas potential flow velocity represents the slope 

measurement of the terrain measured within topographic drainage lines and is assumed to 

correspond with the course of (dried) river beds. The overall HSI value for a study site was 

calculated from the juxtaposition of the HSIwater and HSIpot.water derived for the defined spatial 

units. 

5.1.3 Model validation 

The mechanistic model of environmental suitability and RS habitat variables were analysed for 

plausibility with respect to field reference data of potential schistosomiasis transmission sites 

visited in Burkina Faso in March 2011. According to the biotope classification of intermediate 

host snails in Burkina Faso (Poda, 1996: 34-37), seven habitat types (Table 5-1) were selected 

and identified in the field for this study. These are reservoirs with permanent water or seasonal 

water, irrigated rice fields, other irrigated crops, rivers with permanent water, seasonally dry 

river beds as well as topographic sinks. Site specific characteristics were measured or observed 

in the field (Section 4.3) and most relevant characteristics of selected test sites are listed in Table 

5-1. The site specific estimate of environmental suitability is based on knowledge of habitat 

preferences of S. haematobium and S. mansoni parasites and Bulinus and Biomphalaria snail 

species (Section 3.1.2) together with at-site field measurements as well as scientific findings 

from Prof. Poda (Poda et al., 1994; Poda, 1996; Poda et al., 1996; Poda et al., 2001; Poda et al., 

2004). 
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Table 5-1: Typical habitat types of schistosomiasis transmission in Burkina Faso. Overview of site-specific 
results measured or estimated from observations in the study site Ziniaré in Burkina Faso (see Figure 2-1). 
The RS category refers to the deterministic variable of water or potential water as measured by means of 
RS data. NA indicates that no measure could be provided. 
 

 
Permanent 
water body 

Rice field 
Irrigated 

crops 
River water 

Seasonal 
water body 

Dry river 
bed 

Dry sink 

RS category 
Water 

(permanent) 
Pot 

water 
Pot  

water 
Water 

(permanent) 
Water 

(seasonal) 
Pot water 

Pot 
water 

Vegetation 
coverage 

NA 75% 60% NA 30% 20% 20% 

Flow 
velocity 

Stagnant Stagnant 
Slowly 
flowing 

Stagnant NA 
(Fluent: 
erosive 

river bed) 
NA 

Water tem-
perature 

26.2°C 28.5°C 32°C 31°C NA NA NA 

Suitability High High Moderate Moderate Moderate Low Low 

 

High environmental suitability for schistosomiasis transmission was attributed to dam lakes 

with permanent water and rice fields. Both sites showed stagnant water within a suitable 

temperature range. Irrigated rice fields contain a large amount of vegetation, which additionally 

favours a water site for freshwater snails. Both site types were observed to be accessed by the 

local population without skin protection measures. Moderate environmental suitability was 

attributed to irrigated crops, permanent river water, and seasonal dry dam lakes. Lower 

environmental suitability of irrigated crops in contrast to rice fields was explained by the nature 

of irrigation practice of crops other than rice. Whilst most rice crops need to be flooded by 

persistent water, most other crops were observed to be irrigated through regular flooding of 

man-made dike systems within the field. Hence, environmental suitability is lower in habitats 

that dry out or where water is only temporarily flowing, which is in line with malacological 

studies provided by Abdel-Malek (1958: 792). Additionally, the measured water temperature of 

32°C (see Table 5-1) is less favourable for intermediate host snail species of the genus Bulinus 

and Biomphalaria. Despite the fact that the observed river water appeared to be permanent and 

stagnant during the dry season due to cut-offs from dried-out sections of the river bed, this site 

was categorised as moderately suitable. Warm temperatures of the water as well as expected 

high flow velocities during the rainy season, demonstrated by strong erosive environments 

closely ahead of this river section, reduced the suitability of this permanent water site. Dam 

lakes that dried out during the dry season were categorised as moderatly suitable as the rate of 

parasite development and potential human contact were reduced through aestivation. Dried 

river beds and dried topographic sinks were classified with low environmental suitability for 

schistosomiasis transmission. Both sites were only temporarily covered by water and the erosive 

dried river bed indicated high water flow velocity during the rainy season, which would be 

unsuitable for snail and parasite proliferation. However, natural and man-made cavities were 

observed within the river beds, where water becomes stagnant and useable during the dry 

period. These seven field sites were mapped on the dry season RapidEye image from the study 

sub-site around Ziniaré. The field-based judgement of high, moderate, and low suitability of 

selected test sites were classified based on the following classification scheme: HSI values 

greater than 0.66 correspond to high environmental suitability, HSI values between 0.33 and 

0.66 represent moderate environmental suitability, and HSI values below 0.33 refer to low 
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environmental suitability. Areas of no environmental suitability for schistosomiasis transmission 

correspond to regions that are not covered by the deterministic habitat variable of water or 

potential water as explained in Section 5.1.1. 

Additionally, the modelled environmental suitability was related to schistosomiasis 

prevalence based on the assumption that high environmental suitability within a catchment area 

of a school location, would be plausible if the prevalence measured at the school location was 

high, and vice versa. It was the aim to elaborate whether this hypothesis can be confirmed and 

whether this locally developed model can be transferred to the study site BUF and into different 

ecozones of MAN and TAB. In order to link modelled environmental suitability to the measured 

prevalence of schistosomiasis infection, the information of available epidemiological data on 

school prevalence (Section 4.1) was spatially extended by a circular buffer with a radius of 5km 

(Kabatereine et al., 2004: 377; Steinmann et al., 2006: 413). Within this buffer region, mean 

values of habitat variable suitability and the composite HSI were extracted for each school 

catchment area. The resulting mean suitability was then related to the measured prevalence at 

the respective school location using the Spearman rank correlation coefficient (Boslaugh and 

Watters, 2008: 183-184). Despite field data of parasite- and snail-related fitness not being 

available for this study to directly validate the HSI, disease prevalence provided a highly useful 

reference to validate environmental suitability as prevalence documents the outcome of the 

disease transmission process in the environment. 

5.2 Results of the mechanistic model approach 
The mechanistic model of environmental suitability is composed of the suitability of selected 

habitat variables derived from RS data, which are presented in Section 5.2.1. The results of a 

plausibility analysis to evaluate the quantitative prediction of environmental suitability within 

potential schistosomiasis transmission sites are given in Section 5.2.2. Finally, the regional 

transferability of the model approach established in the study sub-site Ziniaré to different eco-

geographic regions in Côte d’Ivoire is presented in Section 5.2.3. 

5.2.1 Habitat variable suitability 

This section describes the resulting suitability of each habitat variable for the water sites, 

potential water sites, and the derived composite HSI for the model development site of Ziniaré. 

These results are illustrated in Figure 5-11 according to the model framework shown in Figure 

5-10. 

With respect to the water sites, the environmental variable of habitat stability resulted in 

highest suitability, where water was detected during the wet and the dry season representing 

the permanent water bodies. In contrast, temporary water bodies, which dried out during the 

dry season, resulted in moderate suitability. The study site showed multiple permanent and 

seasonal water sites, which fully dried out during the dry season. Water temperature suitability 

represented the mean temperature suitability for S. haematobium and S. mansoni parasites and 

Bulinus and Biomphalaria snail species calculated from the dry and wet season RS 

measurements. Most water bodies showed generally moderate to high temperature suitability 

for parasites and snails, whereas the riparian regions along the water bodies resulted in 

moderate to low temperature suitability. The relative suitability of water flow velocity showed 
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that within several small-scale water sites, the suitability of flow velocity appeared to be 

heterogeneous ranging from very low to very high suitability. However, one would expect 

stagnant or very slow moving water due to its topographic constitution as dam lake. Water 

depth suitability showed highest suitability at the boundary of permanent watersides and 

relative suitability of dry season vegetation coverage highlights areas of very high suitability, 

where dense vegetation covers a ground that was flooded during the rainy season. The very high 

suitability of dry season vegetation coverage corresponds mainly to irrigated agriculture, as can 

be seen on the dry season RapidEye image and was visible during the field survey at visited 

spots.  

Within the potential water sites, the relative suitability of riparian vegetation coverage 

represented the mean vegetation coverage measured at the dry season and wet season within a 

200 m buffer zone around water bodies. The resulting suitability highlighted areas of irrigated 

agriculture and dense vegetation coverage as highly suitable, whereas highest suitability was 

reached when dry season and wet season vegetation coverage were high and irrigation was 

possible throughout the year. Streams resulted in high suitability for the inflow and outflow of 

the great dam lake in the centre of the study site and low suitability for tributary waters, which 

was modified by the overlaying potential flow velocity as visible in the the respective image in 

Figure 5-11. The course of topographically derived streams often did not superimpose with the 

actual course of river beds, which could be seen in the overlay of derived streams and the 

RapidEye image. The sink habitat variable resulted preliminary in very low suitability due to its 

flat character and deeper sinks were masked due to its coverage with water. 

Based on the aforementioned habitat variables, the HSI for potential schistosomiasis 

transmission was calculated and is illustrated in Figure 5-11. It showed a general discrimination 

between moderate to high suitability in and around water bodies and low suitability at 

topographic sinks. Individual water sites performed with variable suitability depending on the 

location in or around the water site. The zoomed-in part of the image in Figure 5-11 shows that 

high suitability was given in areas at densely vegetated sites in the buffer zone of the water site 

and in certain areas of the water body, where especially water flow velocity was low. Moderate 

suitability referred to the littoral zone of permanent water levels, moderately vegetated buffer 

zones, and certain sectors of the topographic drainage line, where potential flow velocity 

resulted in high suitability. Low suitability resulted predominantly from topographic sinks as well 

as the low vegetated region of seasonal flooded land as well as sparsely vegetated regions in the 

buffer zone around the water site. Especially densely vegetated zones around permanent water 

sites resulted in high environmental suitability. 
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Figure 5-11: Overview of single habitat variable suitability and result of a mechanistic 
model of environmental suitability for schistosomiasis transmission at the sub-site of 
Ziniaré in Burkina Faso for the year 2010, based on which the model was developed. A map 
showing the location of the Ziniaré sub-site in West Africa is given in Figure 2-1. 
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5.2.2 Plausibility of modelled environmental suitability 

The modelled environmental suitability was validated with reference to field sites that were 

visited in March 2011. Table 5-2 and Table 5-3 summarise the resulting suitability of habitat 

variables and the HSI for water and potential water sites, respectively. The site-specific expert 

judgement (Section 5.1.3) provided the basis to evaluate modelled environmental suitability 

within the test site of Ziniaré. The permanent water at the dam lake and the dried river bed sites 

(Table 5-1) covered more than one pixel of the 30 m resolution suitability image and therefore 

represented mean values of environmental suitability. 

 

Table 5-2: Modelled suitability of single habitat variables and the HSI in comparison to field-based 
expert judgement for water sites. 
HS = suitability of habitat stability; TS = water temperature suitability; FS = water flow suitability; DS = 
water depth suitability; dVS = dry season riparian vegetation suitability 
 

 HS TS FS DS dVS HSI 
Expert 

judgement 

Permanent dam lake 

 

1 0.41 0.2 0.81 NA 0.6 (Mod) High 

 
Permanent river water 

 

1 0 0.19 1 NA 0.55 (Mod) Mod 

 
Seasonal dam lake 

 

0.5 0 0.20 0.5 0.42 0.32 (Low) Mod 

 

With respect to the water sites, environmental suitability measured at the permanent 

waterside of a dam lake had a HSI of 0.6. This was composited by the suitability based on habitat 

stability (i.e. 1), temperature suitability (i.e. 0.41) that resulted from the mean temperature 

measured by RS data in the dry season (i.e. 30°C) and wet seasons (i.e. 35°C), flow suitability 

(i.e. 0.2), and water depth suitability (i.e. 0.81). The expert judgement of environmental 

suitability at the permanent dam lake site was high suitability, which corresponded to a HSI 

ranging between 0.67 and 1 and did not meet the modelled HSI at this site. The permanent river 

water test site was correctly detected by the water mask and resulted in a habitat stability of 1 

corresponding to permanent water coverage. The temperature suitability provided by the RS 
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measurement was above the 38°C threshold resulting in suitability of 0. Flow suitability was 

0.19, however, the field estimation of flow velocity at this site was stagnant during the dry 

season, whereas the erosive environment in the field indicated high flow velocity during the wet 

season. The water depth suitability of 1 reflected well the sub-pixel extent of this river section. A 

composite HSI of 0.55 resulted in conformity with the estimated moderate environmental 

suitability at this test site. The dam lake, which dried out during the dry season and was sparsely 

vegetated was correctly captured by the water mask with a habitat stability of 0.5. The overall 

composite HSI at this test site has been calculated from all five water-related habitat variables 

and resulted in an HSI of 0.32, which lies below the expert judgement derived at the field site. 

 

Table 5-3: Modelled suitability of single habitat variables and the HSI in comparison to field-based expert 
judgement for potential water sites. 
bVS = mean vegetation suitability within 200m buffer zone of water; StS: stream suitability; SiS = sink 
suitability; pFS = potential water flow suitability in streams 
 

 bVS StS SiS pFS HSI 
Expert 

judgement 

Rice field 

 

0.97 NA NA NA 0.97 (High) High 

 
Irrigated crops 

 

0.64 NA NA NA 0.64 (Mod) Mod 

 
Dry river bed 

 

0.55 NA NA NA 0.55 (Mod) Low 

 
Dry topographic sink 

 

NA NA 0.08 NA 
0.08  

(Low) 
Low 
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The HSI of potential water sites resulted mainly from the suitability of mean vegetation 

coverage within a 200 m buffer zone of water except for the detection of the dried topographic 

sink test site. The rice field and irrigated crop test sites were both located within a 200 m buffer 

zone around detected water sites. The mean vegetation suitability of the rice field was 0.97, 

which was retrieved from NDVI values between 0.3 (dry season) and 0.6 (wet season), and 0.64 

at the irrigated crop site that resulted from NDVI values between 0.2 (dry season) and 0.3 (wet 

season). Based on the suitability of vegetation coverage, both HSI values well reflected the high 

and moderate suitability that resulted from the expert judgement for rice and irrigated crop 

sites, respectively. However, the estimated environmental suitability of rice and irrigated crop 

sites resulted mainly from the irrigation practice, which varies between a permanently flooded 

rice field and crops that were irrigated by temporary flooding. This measure was not captured by 

RS data in this case. The low environmental suitability estimated for the dried topographic sink 

corresponded well to the measured HSI of 0.08. However, the dried river bed was only captured 

as a potential water site due to its position within a 200 m buffer zone of water and resulted a 

HSI value of 0.55 as a consequence of vegetation coverage at the side of the river bed. The HSI 

measure at this site would have been expected to result from stream and potential flow 

suitability. However, the topographic drainage lines did not cover this dried river bed. 

5.2.3 Model transferability 

The established model of environmental suitability was transferred to the study sites BUF (Figure 

5-12), MAN (Figure 5-13) and TAB (Figure 5-14) with the objective to investigate whether model 

composition as illustrated in Figure 5-10 would remain reasonable in different regions and 

ecological settings based on visual inspection in reference to high-resolution RapidEye data. At 

the same time, the linkage between modelled environmental suitability and school based 

measures of schistosomiasis prevalence was statistically tested for each study site. 

The modelled environmental suitability for the study site BUF is illustrated in Figure 5-12. This 

study site covers the training site around Ziniaré and based on visual inspection results for this 

wider region were comparable. As already seen in the HSI of the Ziniaré sub-site (Figure 5-11), 

seasonal and permanent water sites appeared with moderate to high environmental suitability, 

whereas potential water accumulation due to topographic features resulted in moderate to low 

suitability. Vegetation coverage within a 200 m buffer zone around water sites reflected well the 

distribution of irrigated agriculture with respect to dam lakes, which are widespread in this area. 

Water in rivers was not captured very well by RS data, when river beds appeared narrow or 

vegetation covered part of them. However, the course of the drainage system was very well 

reflected by topographic sinks in this study site. Although environmental suitability appeared to 

be reasonable as evaluated for the test site Ziniaré, the rank correlation analysis resulted in no 

significant correlation between the level of Schistosoma prevalence and environmental 

suitability in the respective school catchment (Table 5-4). It is demonstrated by the zoomed area 

in Figure 5-12 that both very low and very high prevalence measured at neighbouring school 

locations were located in close proximity to potential transmission sites of high environmental 

suitability in its catchment area. Hence, already based on visual inspection, it can be seen that 

other factors besides environmental suitability as reviewed in Section 3.1.2 would explain the 

spatial heterogeneous distribution of disease prevalence in the study site BUF. 
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Table 5-4: Spearman rank correlation coefficients for human Schistosoma prevalence and modelled 
environmental suitability and its corresponding confidence intervals given in brackets. Therefore, single 
variable suitability and composite HSI mean values were extracted from a 5 km buffer zone around the 
measured prevalence. 
 

 
BUF MAN TAB 

Suitability of habitat 
stability (HS) 

-0.14 (-0.36, 0.09) 0.50* (0.30, 0.65) 0.32 (-0.00, 0.58) 

Water temperature 
suitability (TS) 

-0.08 (-0.30, 0.15) 0.47* (0.27, 0.63) - 

Water flow suitability (FS) 0.04 (-0.19, 0.27) 0.42* (0.21, 0.59) 0.30 (-0.17, 0.57) 

Water depth suitability 
(DS) 

-0.23 (-0.44, -0.01) 0.54* (0.36, 0.68) -0.15 (-0.45, 0.18) 

Dry season riparian 
vegetation suitability 

(dVS) 
0.02 (-0.21, 0.25) - - 

Mean vegetation 
suitability within 200 m 

buffer zone of water 
(bVS) 

0.22 (0.00, 0.43) 0.47* (0.27, 0.63) 0.05 (-0.27, 0.36) 

Stream suitability (StS) 0.09 (-0.14, 0.32) 0.50* (0.30, 0.65) 0.25 (-0.08, 0.53) 

Sink suitability (SiS) -0.12 (-0.34, 0.11) 0.20 (-0.03, 0.41) -0.10. (-0.41, 0.23) 

Potential water flow 
suitability in streams 

(pFS) 
-0.09 (-0.31, 0.14) 0.42* (0.21, 0.59) 0.30 (-0.02, 0.56) 

HSI -0.12 (-0.34, 0.11) 0.45* (0.25, 0.62) 0.57* (0.31, 0.75) 

*p < 0.01 

 

The modelled environmental suitability of the study site MAN is illustrated in Figure 5-13. 

Based on visual inspection, the derived environmental suitability did perform reasonable 

discrimination between low suitability derived in the mountainous region in the northern part of 

the study site and the high suitability in the lowland of the southern part. Areas of high 

suitability for disease transmission were predominantly represented by the course of the river, 

whereas the waterside buffer zone was largely covered by forest, which does not correspond to 

high environmental suitability for potential schistosomiasis transmission due to irrigated 

agricultural areas. However, a significant correlation to prevalence of schistosomiasis was found 

for all habitat variables except for sink suitability and for the HSI. 

The resulting environmental suitability for schistosomiasis transmission in TAB (Figure 5-14) 

showed moderate to high environmental suitability for the major river crossing this study site, 

the waterside of its intersecting Lake Taabo as well as river tributaries and very small water sites 

detected predominantly in the northern part of the study site. However, no seasonal water 

could be detected for this site because RS data from the wet season were not available. 

Furthermore, high vegetation coverage within a 200 m buffer zone of water sites did not 

correspond to irrigated agriculture in this region, but reflected high tree coverage, which might 

have misled the classification into high environmental suitability for schistosomiasis 
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transmission. However, the result of the statistical evaluation at this site resulted in a significant 

Spearman rank correlation coefficient of 0.57 between the composite HSI value and the school 

based prevalence (Table 5-4). This positive relation is confirmed by the spatial distribution of 

high prevalence rates in close proximity to the Bandama River and Lake Taabo, whereas low 

prevalence rates are predominantly distributed further away from these hotspots of 

environmental suitability with few exceptions close to the river outflow of Lake Taabo. 

5.3 Discussion of remotely sensed environmental 

suitability 
This research has shown that RS data can provide spatial information of environmental 

suitability for potential schistosomiasis transmission. The validation of derived suitability of a 

habitat variable in relation to measurements and observations in the field has shown that the 

agreement between measured suitability and the respective field derived expert judgment 

varied between remotely sensed variables and test sites. This validation procedure aimed to 

identify strengths and weaknesses of RS variables to assess environmental suitability for 

potential schistosomiasis transmission. However, a comprehensive approach to validate the 

environmental variables and suitability would need a representative set of field data on parasite 

and snail prevalence and the corresponding environmental metrics at respective sites. 

5.3.1 Remote sensing derived biophysical variables 

The RapidEye and Landsat 5 TM sensor provided useful data sources to detect the small-scale 

heterogeneity of water bodies in the Ziniaré, TAB, and BUF study sites, respectively. For the 

study site MAN, the spatial resolution of 6.5 m was still too coarse as water bodies 

predominantly consisted of small reservoirs and rivers, which were furthermore covered by 

large trees (see Section 4.2.2). Despite the fact that there were only two useful points in time of 

RapidEye data available for this study, the RapidEye sensor was well designed to capture data on 

a near-daily basis (see Section 4.2.1), which would allow for the monitoring of the critical limit of 

water persistence between 4 to 6 weeks for S. mansoni and 5 to 7 weeks for S. haematobium 

(Sturrock, 1993a: 65). Despite the theoretical capacity to detect this seasonal dynamic of water 

bodies and rivers, cloud coverage strongly impacted optical RS data especially in the southern 

region of Côte d’Ivoire. In this case, active RS based on radar data, which are not limited by cloud 

coverage, could provide a useful alternative. 
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Figure 5-13: Environmental suitability for potential schistosomiasis transmission in the study site MAN, 
Côte d’Ivoire. A map showing the location of the study site MAN in West Africa is given in Figure 2-1. 

 

  



5.3 Discussion of remotely sensed environmental suitability 

99 

 
Figure 5-14: Environmental suitability for potential schistosomiasis transmission in the study site TAB, Côte 
d’Ivoire. A map showing the location of the study site TAB in West Africa is given in Figure 2-1. 
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Water temperature is considered an important habitat variable from an ecological point of 

view as temperature is critical for both snail and parasite development as reviewed in Section 

3.1.2. However, the measure of water surface temperature provided only estimates of water 

temperature that directly impacts snail and parasite development and reproduction. Especially 

within isolated and shallow water bodies, extreme temperature variations were detected by 

Fisher and Mustard (2004: 293). Field-based measurements at the waterside were taken in 

March 2011, whereas the RS data employed for this study were recorded in February 2010. This 

might be a further cause of deviating temperatures between the field and RS measurements. 

However, the measurement deviation in the range of 10°C at the permanent river water 

supports the assumed impact of the inappropriate spatial resolution of the remotely sensed 

temperature measurement at this site. Here, the 120 m spatial resolution of the thermal Landsat 

5 TM did not capture the linear structure of the river with its transect not exceeding 10m and 

resulted in mixed pixel information of water and land surface temperature. This results in 

incorrect surface temperature measurements due to the calibration of surface emissivity for 

pure water. At this scale, airborne thermal RS data would be more useful to derive water 

temperature of rivers and streams as shown by Torgersen et al. (2001). Nevertheless, the 

thermal band of the Landsat 5 TM sensor was evaluated, whereupon an offset error of 

0.092 W/m² (approximately 0.68 K) was corrected by modifying a calibration coefficient in the 

processing system post 2007 (Barsi et al., 2007: 552), which was relevant for the pure water 

pixel at large dam lakes. 

Most optical RS data capture visible and near infrared spectral reflectance and are therefore 

well designed to measure vegetation coverage. In this study, vegetation was reasonably 

detected by high-resolution RapidEye data in comparison to field-based estimates of vegetation 

coverage for the rice field and the irrigated crops. However, vegetation coverage also plays a 

crucial role for characterising a potential schistosomiasis transmission site in the subaquatic 

area, as submerged vegetation conditions dissolved oxygen content of the water body and 

thereby influences snail activity and reproduction (Section 3.1.2). Hyperspectral RS data have 

demonstrated the ability to detect submerged aquatic vegetation (William et al., 2003; Vahtmäe 

et al., 2006; Marcus and Fonstad, 2008). In this study, the measurement of submerged 

vegetation coverage was not feasible due to the lack of hyperspectral RS data and appropriate 

field data, which was also beyond the scope of this work. 

The topography derived from the ASTER GDEM provided information on the topographic 

structure below the detected water level in all water bodies except for parts of the great dam 

lake in the study site Ziniaré. Therefore, the measurement of slope for water sites did not always 

correspond to the water surface as intended for this model. This was well documented by strong 

heterogeneities of the slope measure within a dam lake, which was evident to have a flat surface 

of stagnant or very slow moving water. Additionally, the temporal dynamic of flow velocity 

between dry season and wet season as seen for permanent river water sites could not be 

captured by the single acquisition of a DEM. However, suitability of flow velocity resulted 

reasonable for the large dam lake in the Ziniaré study site and was considered a useful proxy to 

highlight very flat zones within topographic streams. For large rivers, Kiel et al. (2006: 317-318), 

successfully derived water flow velocity using SRTM data. Topographically derived streams were 

very often not superimposing with the course of the actual river bed in high-resolution RS data, 

which was further documented at the dry river bed test site. However, topographic sinks 
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documented very well the course of river beds and could successfully detect a field measured 

sink. 

5.3.2 Modelling environmental suitability 

Environmental suitability for schistosomiasis transmission was modelled based on single habitat 

variables, which were parameterised by theoretical functions of relative suitability. These 

functions were derived from different background information, which is demonstrated by the 

following examples: habitat suitability related to water temperature was derived from 

laboratory-based measurements (Pflüger, 1980; Pflüger et al., 1984), whereas stream order 

suitability was characterised from field-based surveys (Clennon et al., 2007) or spatial analysis 

(Beck-Wörner et al., 2007). The parasite-related water temperature suitability function was 

directly provided in the literature, whereas snail-related water temperature suitability was 

interpolated from provided measurements of snail mortality at given temperatures. The 

thresholds that characterise the range and course of functions given in this study were either 

cited in the literature (e.g. habitat stability-related suitability), measured within high-resolution 

RS data (e.g. vegetation coverage) or directly estimated in the field (e.g. water depth). These 

mixed sources of information can impact the validity of resulting habitat variable suitability as it 

is not clear whether this function fits for the modelled location. Due to the lack of appropriate 

field data on prevalence or fitness of parasites and snails, the parameterisation of these 

functions could not be verified within this thesis. However, these functions reflect the state-of-

the-art of available knowledge with respect to environmental suitability for schistosomiasis 

transmission and provide the basis for location specific evaluation. In the following paragraph, 

strengths and weaknesses of selected functions of relative suitability used in this study will be 

discussed. 

The water flow velocity based suitability has been parameterised based on the given 

suitability threshold in relation to snail prevalence and the defined relation (Equation 5-8) 

between the RS measurement of slope and water flow velocity. However, this distinct relation is 

still exposed to error sources that need to be considered with respect to input data, namely the 

inconsistent RS measurement of slope at water sites as discussed in Section 5.3.1 as well as the 

rough estimation of several variables necessary to compute the Manning’s equation (Equation 

5-7) at only few locations in the field. To receive more accurate information on flow velocity, it 

would be necessary to derive these input parameters specifically at location, which is not 

feasible with the 30m resolution ASTER GDEM within the small scale terrain heterogeneity 

experienced in this study site. Nevertheless, the water flow velocity based suitability showed 

reasonable values for large stagnant water bodies such as the large dam lake in the Ziniaré study 

site and was considered a useful proxy to highlight very flat zones within topographic streams. 

The theoretical function to parameterise the water depth-related suitability was based on 

subjective thresholds, which were not validated with respect to its relation to water depth but 

were solely estimated during the field visit at the seasonally dried areas of a dam lake boundary. 

The thresholds of 210 m and 2 km are not considered appropriate for rivers in the study area, 

which have a steep gradient towards the main current line and are often narrow. Nevertheless, 

the distance from water level was considered a useful proxy with respect to dam lakes and 

provides reasonable information that suitability of schistosomiasis transmission is highest in the 

very flat littoral zones of a water body as indicated by the WHO (1957). Other studies found that 
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if water depth measurements were provided, spectral reflectance of airborne multispectral 

imagery (Gilvear et al., 1995; Winterbottom and Gilvear, 1997), Landsat 5 TM data (Bierwirth et 

al., 1993) or data from the IRS-LISS sensor (Kumar et al., 1997) were successfully used to 

estimate water depth based on regression models. The theoretical function of topographic sink 

based suitablity represents the logical assumption that the deeper sinks are the longer water 

persists, which resulted in higher suitability for schistosomiasis transmission. This function 

derived from linear interpolation between minimum and maximum sink depth is certainly 

modified by the given sink depth thresholds within the area of interest. A validation of sink 

depth and its relation to water holding capacities would require additional field data considering 

precipitation and soil drainage. With respect to precipitation, rainfall measurements derived 

from the TRMM data were not considered useful for this study site due to the large scale 

mismatch between a 30 m resolution suitability image and the TRMM resolution of 28 km. This 

scale mismatch was similar to the soil characteristics provided by the FAO et al. (2012). 

The single remotely sensed variables of environmental suitability were aggregated to a 

composite HSI and evaluated in relation to reference test sites scored into the classes low, 

moderate, and high environmental suitability. Despite the model composition was adapted to 

the prerequisites of schistosomiasis transmission specifically to the study site Ziniaré, it provides 

a transparent basis to reproduce and adjust the model. The implausible HSI at the seasonal 

water in dam lake and the dried river bed could be explained by the RS measurements of water 

temperature and topography with inappropriate spatial resolution as discussed in Section 5.3.1. 

However, a precise identification of key factors determining the suitability of any particular 

habitat is difficult especially from field-based analyses due to complex interactions (Sturrock, 

1993a: 50). These interactions are considered to some extent through the aggregation of single 

environmental variables to an overall HSI. It has to be stated here that the modelled 

environmental suitability represents the fundamental ecological niche (Section 3.3.1) of 

S. haematobium and S. mansoni parasites and Bulinus and Biomphalaria snail species, which 

does not necessarily imply that species are abundant at an appropriate site. Parasites and snails 

can still be absent from apparently suitable habitats, because isolation of individual habitats and 

(re-) invasion are dictated by chance combinations of factors that permit snail dissemination 

(Sturrock, 1993a: 50). 

5.3.3 Model transferability 

The mechanistic model of environmental suitability related to schistosomiasis transmission was 

developed and composed specifically for the study site Ziniaré in Burkina Faso and was then 

transferred to the study sites BUF, TAB, and MAN to analyse the impact of different geographical 

settings. The topographic variables performed comparable results in all three study sites, where 

sinks represented the flat areas of potential water accumulation as potential disease 

transmission sites with low suitability. Streams traced the water drainage based on topography, 

however, in all three study sites the streams did not fully correspond with the course of the 

current river beds visible in high-resolution RS images. The specific landscape configuration of 

dam lakes and irrigated agriculture was highly relevant for potential schistosomiasis 

transmission in the BUF region, however, this was not given in the study sites TAB and MAN in 

Côte d’Ivoire. In the study site TAB there were dam lakes, but not with irrigated agricultural sites 

at its waterside and in the study site MAN there were hardly any dam lakes visible, but rivers 
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with dense forests at its watersides. Therefore, the 200 m buffer zone around watersides in Côte 

d’Ivoire was not considered to represent high environmental suitability given by the index in 

most areas, which hampered the direct transferability of the model between different 

geographical settings. However, the deterministic variable of water and potential water sites 

was well represented in all three study sites and provides a reasonable basis for locally specific 

analysis of environmental suitability with respect to schistosomiasis prevalence as provided in 

Chapter 6. 

Evaluation of modelled environmental suitability in relation to S. haematobium and 

S. mansoni prevalence was based on the , that high environmental suitability within a catchment 

area of a school location would be plausible if the prevalence measured at the school location 

was high, and vice versa. It is clear that suitable environmental conditions provide the 

prerequisite that transmission of the disease may occur (Section 3.1.2). However, at the same 

time there are other factors that modify this relation between environmental suitability and 

schistosomiasis prevalence, such as local disease intervention measures (Clements et al., 2009b; 

Zhang et al., 2012), economic development (King, 2010), individual disease susceptibility 

(Butterworth, 1993; Jordan and Webbe, 1993) or human behaviour (Bundy and Blumenthal, 

1990; Schmidlin et al., 2013), whether an infective habitat is entered or protective measures are 

applied or not. The lack of correlation between the HSI and schistosomiasis prevalence at the 

BUF site could additionally be related to the temporal gap between environmental suitability 

assessed for the year 2010 and school-based surveys that were conducted 20 to 30 years ago 

(see Section 4.1). The composite HSI was plausible in the study site TAB, which could be 

explained by the clear demarcation of highly suitable disease transmission sites in this region 

(Figure 5-14) and the non-existence of intervention measures prior to the surveys of the 

provided data in this region (Section 2.3). This study site exemplifies that aggregation of relevant 

information is superior to single variables per se. In contrast, in MAN both the single habitat 

variables and the composite HSI provided a significant plausible relation to the school-based 

schistosomiasis prevalence measures. Especially the topographic habitat variables performed 

reasonably in this mountainous study site and in consideration of the ecological requirements 

for disease transmission. While the plausibility of stream suitability confirmed the results 

derived by Beck-Wörner et al. (2007), water flow suitability, sinks, and water depth suitability 

appear to be new variables that could be useful to model environmental suitability and disease 

transmission risk. 

A predicitive map of environmental suitability mainly supports prevention and control 

measures in line with the shift from morbidity to transmission control (Utzinger et al., 2011a: 

132). These maps could be useful to target specific schools for initial epidemiological surveillance 

or to focus on areas of high reinfection potential for more regular re-treatment (Stothard et al., 

2002: 474; Brooker, 2007). Despite the numerous constraints and limitations underlying 

mechanistic models of environmental suitability, simple and even untested HSI models were 

continuously used for different kinds of decision making procedures (Brooks, 1997: 165). The 

fact that only few HSI models were tested and validated against field data (Duncan et al., 1995) 

could be explained by the difficulty of sampling appropriate species occurrence and behaviour 

data. However, despite available information coming from various sources such as field surveys 

and laboratory tests, the deductive approach applied in this study was considered the only 

suitable method to derive environmental suitability (Ottaviani et al., 2004). If species presence-
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absence data had been available, they would not necessarily imply whether a habitat was 

suitable or not to establish a population. There is no standard approach to test HSI models as 

each model defines habitat in a slightly different manner and test data that are consistent with 

model content and purpose are hardly accessible (Schamberger and O´Neil, 1986: 7). HSI models 

were particularly affected by subjective judgement and model uncertainty, which occurs as a 

result of interpretation of data, especially when data are scarce and error-prone. This is 

particularly the case when expert knowledge is the primary means of informing an HSI and when 

experts estimate facts or classifications as provided in this research. Uncertainty occurs as a 

result of the simplification of real processes by models (Ray and Burgman, 2006). However, the 

model presented in this study can be easily reproduced and adjusted by other experts and in 

reference to new data and information. A comprehensive validation of this mechanistic model 

approach would consist of a direct linkage between derived environmental suitability and field 

data of parasite- and snail-related fitness, which were not available for this study. 

5.4 Summary of environmental suitability model 
In summary, RS data displayed the potential to spatially delineate and evaluate environmental 

suitability for transmission of schistosomiasis. The prerequisite that disease transmission may 

occur in the environment could be derived through water bodies and sites of potential water 

accumulation by means of RS. This delineated environment of potential schistosomiasis 

transmission could be further evaluated based on the HSI resulting in areas of divergent 

priorities. The mechanistic model has large components of subjective estimates, however it is 

transparent, easily reproducable, and can be well adjusted to new findings and data. Remotely 

sensed temperature and topographic variables did not perform appropriatly due to their coarse 

spatial and temporal resolution. However, water and vegetation well reflected the 

environmental suitability and could be regularly updated to monitor changing conditions and 

newly emerging habitats based on this model. This could support an immediate reaction of 

public health authorities to target prevention measures. The composition of the model needs 

adjustements to regional landscape structures relevant for schistosomiasis transmission. 
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6 Modelling schistosomiasis risk 

RS data have been widely used for spatial modelling of schistosomiasis risk in different 

geographical settings (Seto et al., 2002; Stensgaard et al., 2005; Yang et al., 2005a; Beck-Wörner 

et al., 2007; Brooker, 2007; Clennon et al., 2007; Vounatsou et al., 2009; Guimaraes et al., 2010; 

Schur et al., 2013). Thereby, survey measurements of disease prevalence provided the reference 

to model environmental data and predict schistosomiasis risk in space. Risk modelling provides a 

more comprehensive analysis than modelling environmental suitability alone, because the 

presence and successful completion of the parasite life cycle is implicit in disease prevalence 

data. However, as demonstrated by the conceptual framework of the social-ecological disease 

niche (Figure 3-6) and the RS based model of environmental suitability for schistosomiasis 

transmission (Chapter 5), the location of survey measurement at schools do not spatially 

superimpose with the RS measurement of schistosomiasis relevant environmental conditions 

(Figure 6-1). This spatial divergence has not been addressed in any of the existing spatial 

schistosomiasis risk models that statistically link disease prevalence with RS data. 

Social-ecological processes of schistosomiasis transmission – similar to nearly all ecological 

phenomena – operate across different scales and vary with the scale of observation (Schur et al., 

2012). Thus far, models of schistosomiasis risk have mainly been developed at regional and 

national scales (Simoonga et al., 2009: 1686) using low spatial resolution RS data (Table 3-2). On 

this scale of observation, it has been concluded that predominantly climatic conditions 

determine the spatial risk of schistosomiasis transmission (Brooker, 2007: 3). There are very few 

studies that modelled schistosomiasis risk on the local scale (Clennon et al., 2004; Raso et al., 

2005; Beck-Wörner et al., 2007). These studies showed that besides the environment, socio-

economic and demographic predictors were highly relevant in explaining the spatial 

heterogeneity of disease transmission on the micro-scale (Simoonga et al., 2009: 1686-1687). 

This underlies the fact that statistical correlation can vary dramatically according to the extent of 

observed area and scale of aggregation (Marshall, 1991: 431), which has been identified as a 

major constraint of RS based schistosomiasis risk models. Herbreteau et al. (2007: 401) 

emphasise the need to address diseases at different relevant scales and investigate the impact 

of RS image resolution (Herbreteau et al., 2007: 401). Especially high spatial resolution RS data 

are expected to be highly beneficial for the detection of heterogeneous habitat conditions of 

disease-related species on a local scale (Goetz et al., 2000: 303; Herbreteau et al., 2007: 402). 

Simoonga et al. (2009: 1689) concluded that the neglected scale issue “affected usefulness of 
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developed models and maps for reducing micro-scale transmission through improved resource 

targeting” (Herbreteau et al., 2007: 1689). 

 
Figure 6-1: Illustration of the spatial discrepancy between the measurement of schistosomiasis prevalence 
at a school (surrounded in red) and the location where disease transmission has potentially occurred 
(water body surrounded by the black dotted line). Source: Google Earth (Image ©DigitalGlobe 2011) 
 

RS variables used for schistosomiasis risk modelling so far were predominantly NDVI and LST 

(Table 3-2), mainly because these variables are pre-processed and readily available (Herbreteau 

et al., 2007: 401). However, further vegetation indices can be calculated from RS data, which are 

expected to be helpful for health studies (Herbreteau et al., 2007: 401). Furthermore, reviewing 

the ecology of disease transmission reveals that additional RS variables may improve models of 

schistosomiasis transmission (Table 3-3). The relevance of an RS variable for modelling 

schistosomiasis transmission risk is expected to vary between different landscapes and 

ecological regions, which could have an impact on outcome of the model and its transferability 

between different regions. Important aspects that impact RS measurements besides the surface 

conditions per se are the composition of the landscape regarding size and heterogeneity of 

relevant features such as water bodies and riparian structures. Figure 6-2 illustrates the 

difference in landscape structure covered by the study area, which ranges from savannah in the 

North to tropical rainforest in the South, all of which are endemic for schistosomiasis 

transmission. A study by Brooker et al. (2001: 1004) has shown that RS based schistosomiasis 

risk models performed only reasonably if modelled within the same ecological zone in the 

Republic of Tanzania. 
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Figure 6-2: The impact of different ecological regions on RS based schistosomiasis risk models. The study 
area covers different ecological regions ranging from savannah to tropical rainforest. 
Picture B provided with courtesy of Dr. Giovanna Raso. 
 
 

The main objective of this chapter is to investigate and quantify the potential of RS data for 

schistosomiasis risk modelling and spatial risk prediction. Therefore, the research gaps 

introduced above regarding: (i) the issue of scale; (ii) the spatial discrepancy of model 

components; (iii) the importance of specific RS variables; and (iv) the impact of ecological 

regions on model performance and transferability will be addressed in detail. The issue of scale 

is investigated through analysis of multi-scale RS data from RapidEye (6.5 m resolution), Landsat 

5 TM (30 m resolution), and Terra MODIS (250 and 500 m resolution). Furthermore, an 

appropriate scale of observational units around school locations for RS based environmental 

analysis is investigated. To account for the spatial discrepancy between school-based disease 

prevalence and relevant environmental conditions, a hierarchical model approach has been 

developed. Relevant RS predictors were identified from a series of vegetation and water-related 

indices and other variables tailored to the disease transmission ecology. The impact of ecozones 

on variable importance and model performance is addressed by comparison of model results 

from study sites in savannah, tropical, and mountainous regions. 

6.1 Statistical model algorithms 
The data were analysed by means of two different statistical algorithms in order to achieve 

broader generalizability: the non-parametric Random Forest machine learning algorithm 

(Breiman, 2001) and the parametric partial least squares regression (PLSR) (Wold et al., 1984). 

Schistosomiasis prevalence (continuously scaled between 0 and 100%) was the response 

variable to be explained by predictor variables consisting of a multitude of RS reflectances, 

indices and other variables (Table 4-3). Both model approaches are by design able to deal with 

A 

B 

B 

A 
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the substantial collinearity between predictor variables and allow to identify which RS data and 

variables perform best for the application of schistosomiasis risk modelling. Due to the small 

extent of the study sites limited by the spatial coverage of available high-resolution data, the 

sample size was generally low. For the study site TAB it was even smaller than the number of 

predictor variables. These prerequisites required model algorithms capable of handling and 

predicting continuous response data, dealing with low numbers of training samples, and 

multicollinear predictor variables. The following Sections 6.1.1 and 6.1.2 explain the model 

algorithms of Random Forest and PLSR, respectively, and illustrate how these algorithms can 

deal with the above mentioned prerequisites. 

6.1.1 Random forest 

The statistical machine learning approach of random forests is a ensemble learning method that 

operates by constructing a multitude of decision trees. In contrast to convential statistical 

procedures, machine learning algorithms learn the relation between predictor and response 

variables from the data and do not assume a specific statistical model, e.g. normality. While 

other non-parametric machine learning approaches such as neural networks or support vector 

machines are rather complex, tree-structured models are based on simple functions of the input 

variables (Sutton, 2005: 303). Decision trees have the capability to consider non-linear relations 

between the response and predictor variables and do not require reducing the feature space of 

predictor variables to a non-correlated data-set, as would be the case for conventional 

multinomial regression models. In addition, decision tree ensembles are highly robust with 

respect to outliers in the training data (Breiman et al., 1984: 55-58). 

There are different approaches to construct decision trees, namely the Automatic Interaction 

Detection (AID) developed by Morgan and Sonquist (1963), the Theta-AID (THAID) developed by 

Morgan and Messenger (1973), and the Classification and Regression Trees (CART) developed by 

Breiman et al. (1984). CART is the most commonly used approach and represents the decision 

tree method implemented in Random Forests used in this study. 

A single decision tree grows by partitioning the feature space with respect to the response 

variable, which results in increasingly homogeneous sub-spaces. Thereby, at each node of a tree 

branch the best binary split, meaning highest informative value with respect to the response 

variable, is selected (Figure 6-3). The main idea is to select a subset of the response variable 

training set that is “purer than the data in the parent subset” (Breiman et al., 1984: 23) with the 

aim of constructing a tree that estimates the response variable noted in the end leaves of the 

tree with a best set of predictor variables as given by the respective tree branch. In this logic, 

purity is indicated by the difference between the residual sum of squares (RSS) before and after 

the split (Hastie et al., 2009: 593). To find the optimal size of a tree, criteria such as the minimum 

amount of data per leaf can be defined to stop further splitting of a node. A single decision tree 

is instable due to the hierarchical structure of the tree, where errors or changes in lower level 

branches propagate at all subsequent splits of the tree (Hastie et al., 2009: 588). It is thus the 

strength of ensemble regression trees such as random forests to combine constructed trees and 

thereby reduce this high variance between single trees to derive a stable model result. 

The methodical family of random forests has in common that random processes are 

implemented to grow single trees and combine them to a forest model. Methodical approaches 

used in different implementations of random forests are for example the random subspace 
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method (Ho, 1998), the random split selection (Dietterich, 1999) or bagging and random input 

selection (Breiman, 1996, 2001). The latter approach from Breiman (2001), is most widespread 

and mainly termed Random Forest method in the literature (from now on referred to as Random 

Forest in capitals). In the Random Forest algorithm, the growth of a tree is based on a random 

subset selection of training data, called bagging (i.e. in bag, see Figure 6-3). This prevents the 

model from overfitting and provides an independent test data set (i.e. out of bag) for internal 

model evaluation or the measure of variable importance. Secondly, only a subset of predictor 

variables (=mtry) is randomly selected at each node (see Section 6.2.4). Finally, the Random 

Forest ensemble combines the predictions of all single trees by calculating their mean prediction 

for regression or by majority voting for classification. The ensemble approach leads to reduced 

model variance. 

 
Figure 6-3: Schematic representation of a Random Forest regression tree. Y corresponds to the response 
variable, which is the schistosomiasis prevalence in this study. X refers to the set of predictor variables, 
which consists of the RS variables listed in Table 4-3. At each node, the response variable will be split into 
more homogeneous sub-spaces, while a split is explained by a threshold derived from the variable with 
highest informative value out of the number (mtry) of randomly selected predictor variables. A leaf 
represents the mean value of a most pure subset of the response variable, which is best explained by the 
predictor variables and threshold indicated by its tree branch. 
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Besides the aim to explore the relationship between response and predictor variables, the 

Random Forest algorithm is used to predict this relationship for non-sampled locations in the 

case of spatial modelling. For spatial prediction, the fitted Random Forest is applied to new data 

and the predictions of all trees are again combined by averaging or majority voting. 

6.1.2 Partial least squares regression 

The PLSR developed by Wold et al. (1984), is a special approach of conventional multivariate 

regression methods. For PLSR, the original data of both the response (if multivariate) and 

predictor variables, are transformed to principal components with the aim of capturing most of 

the information in the predictor variables (X) that is useful for predicting the response variable(s) 

(Y). A linear regression model is then derived from the scores of the principal components 

(Figure 6-4). The model thereby overcomes the restrictions of standard regression methods as 

the high dimensionality of original predictor variables is reduced. The orthogonality of the 

principle components eliminates the multicollinearity issue. Therefore, PLSR can, unlike multiple 

linear regression (MLR), analyse data with strongly collinear, noisy, and numerous X variables 

(Wold et al., 2001: 109). The main goal of PLSR is to derive the relation between X and Y. In 

contrast to the principal component analysis (PCA), which is mainly designed to decompose the 

original predictor data to best represent X, the PLSR selects components with highest 

explanatory power to predict Y. This is achieved by the simultaneous decomposition of X and Y 

with the constraint of maximizing the covariance between X and Y (Garthwaite, 1994: 122). 

In the context of PLSR, components are called latent variables (LVs) and are obtained 

iteratively (Mevik and Wehrens, 2007: 3). The general procedure to iteratively compute the LVs 

is: (i) to mean-center and scale the original data matrix; (ii) to compute the scores, loadings and 

weights of the LVs (Figure 6-4); (iii) to subtract the LVs from the original data (= residual matrix E, 

see Figure 6-4); and (iv) to iteratively repeat this procedure based on the deflated data matrix 

(Dayal and MacGregor, 1997). It is continued as long as there are significant LVs (Höskuldsson, 

1988: 217) and the residuals can no longer be minimised. To ensure that a best set of LVs from X 

to predict Y is derived, the computations of LVs consider both the outer relation of the scores 

and loadings with respect to X and the inner relation between the scores of X and Y with the aim 

of minimising their mixed relation. In order to obtain orthogonal scores from the original data, it 

is necessary to obtain weights (Geladi and Kowalski, 1986: 12). Figure 6-4 illustrates the 

transformation and procedure of the PLSR for the case of one response variable (Y) and a 

predictor matrix (X) of m variables and n samples, which reflects the general data structure 

provided for this thesis. Thus, one LV results in: (i) one score for each sample n (matrix T), which 

provide a new X variable as input for the subsequent MLR analysis; (ii) one loading per variable 

m (matrix P’), which reflect the regression coefficient obtained for each originial variable from 

the PLSR algorithm; and (iii) one weight pe variable m (matrix w’), which reflects the covariance 

structure between predictor and response variable. 
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Figure 6-4: Schematic representation of the PLSR approach. This graph shows the 
PLSR model procedure for the case of a single response variable Y (corresponds to 
schistosomiasis prevalence) to be predicted by a multitude of predictor variables X 
(correspond to the RS environmental variables). 
Source: modified after Wold et al. (2001: 113) 
 

There are different methods of computing LVs for PLSR models: the classical PLS algorithm is 

the nonlinear iterative partial least squares (NIPALS) procedure developed by Wold (1975). In 

1993, Lindgren et al. (1993) developed a new kernel partial least squares (PLS) algorithm, which 

has been proven to be faster and provide identical results to those obtained from the standard 

NIPALS procedure (De Jong and Ter Braak, 1994: 169). Whereas the NIPALS deflates both the X 

and Y matrices, the kernel PLS deflates only the X matrix given the fact that deflation of the Y 

matrix was considered optional (Höskuldsson, 1988; Dayal and MacGregor, 1997: 73-74). Due to 

the data structure of this thesis with only one response (Y) variable, the faster kernel PLS was 

assumed to provide the most suitable algorithm. Furthermore, less prominent and used 

approaches to compute LVs for PLSR are discussed by Höskuldsson (1995). 

Before the analysis, the X and Y variables need to be transformed to make their distributions 

fairly symmetrical (Wold et al., 2001: 113). Thus, in this thesis, the input data have been 

standardised using the z-score given in Equation 6-1, 

𝑧 =  
𝑥 −  𝑥𝑚𝑒𝑎𝑛

𝑠
 Equation 6-1 

which centers the data 𝑥 in relation to their mean value 𝑥𝑚𝑒𝑎𝑛 and scales to unit variance 𝑠. The 

initial standardisation of the data allows to directly compare the scores and loadings of different 

PLSR implementations (Mevik and Wehrens, 2007: 3). As in multiple linear regression, the 

overall purpose of PLSR is to build a linear model between the response variable (or matrix) Y 

and the predictor matrix X. Therefore, the problem of choosing an optimum set of predictors still 

remains. The number of LVs (ncomp) used for the PLSR model needs to be specified for the 

respective PLSR model and is therefore a parameter for tuning the model (see Section 6.2.4). 
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6.2 Statistical model procedures 
In this study, specific methodological procedures of modelling schistosomiasis risk were applied 

to meet the respective objectives introduced above. Due to the prerequisite of scaled data as 

input for the PLSR model (Section 6.1.2), the full database of epidemiological and RS variables 

(Chapter 4) was scaled to z-scores in a preparatory step. This scaled database was used as input 

data for all model approaches used in this study. 

6.2.1 Multi-scale modelling 

When modelling the risk of schistosomiasis with RS data, the issue of scale is inherent in 

different aspects of the modelled phenomenon. A very prominent scale issue in this regard is the 

spatial mismatch between sampling units of disease prevalence and remotely sensed 

environmental information, which is prominent in high spatial resolution RS data (Figure 6-1). 

This scale issue is influenced by the spatial resolution of RS data and the school catchment area 

included in the spatial modelling. In the multi-scale modelling approach of this study (Figure 

6-5), the impact of the spatial resolution of RS data (scale 1) and the extent of the school 

catchment area (scale 2) on the model accuracy was investigated based on the study site MAN. 

This study site was covered by RapidEye, Landsat 5 TM, and Terra MODIS data and provided at 

the same time the highest sample size of school prevalence. To discriminate between effects 

due to spatial resolution and due to specific sensor characteristics, the sensor characteristics 

were analysed separately at a given spatial resolution. 

The impact of the spatial resolution of RS data (scale 1) was investigated based on high-

resolution RapidEye reflectance and spectral indices. This dataset was thenceforth aggregated to 

the relevant spatial resolution of 30 m (corresponding to Landsat 5 TM) and 250 m and 500 m 

(corresponding to Terra MODIS). In a separate analysis, the spatial resolution was represented 

by data from the respective sensor with the intention to discriminate between the resolution 

and sensor impact on the model. The sensor impact was furthermore evaluated by comparing 

model results from associated spectral reflectance and indices available for all three sensors 

with all available reflectance and indices provided by the respective sensor (Table 6-1). 

 

Table 6-1: Overview of bands and indices used for multi-scale and multi-sensor analysis. The spectral 
wavelength of bands is given in Table 4-2. nir = near infrared, mir = middle infrared, swir = shortwave 
infrared, tir = thermal infrared 
 

 RapidEye Landsat 5 TM Terra MODIS 

Cut-set of bands and 
indices 

Blue, green, red, nir, NDVI, 
EVI, SAVI, MSAVI, NDWI 

Blue, green, red, near 
infrared, NDVI, EVI, SAVI, 
MSAVI, NDWI 

Blue, green, red, nir, NDVI, 
EVI, SAVI, MSAVI, NDWI 

Full set of bands and 
indices 

Blue, green, red, redegde, 
nir, NDVI, EVI, SAVI, 
MSAVI, NDWI 

Blue, green, red, nir, mir, 
swir, tir, NDVI, EVI, SAVI, 
MSAVI, NDWI, MNDWI 

Blue, green, red, nir, mir, 
swir1, swir2, NDVI, EVI, 
SAVI, MSAVI, NDWI, 
MNDWI 
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The impact of the selected extent of the school catchment area (scale 2) was investigated by 

spatial buffer analysis for a defined area around the point measurement of the school location. 

The buffer radius has been defined in steps of 100m around points and analysis ceased at a 

buffer radius of 5km. This distance was estimated to represent the maximum estimated school 

catchment area (Malone et al., 2001: 62). The RS variables were aggregated by their means for 

each buffer extent. 

Scale 1: 
spatial resolution of  
RS data 

Scale 2: 
catchment area of school 

 

 

 

 
Figure 6-5: Multi-scale analysis of RS environmental factors. The first scale issues addresses the spatial 
resolution of RS data (left column) for modelling schistosomiasis risk, which is investigated for RapidEye 
with 6.5 m (top), Landsat 5 TM with 30 m (centre), and Terra MODIS data with 500 m (bottom). The 
second scale issue considers the catchment area of the school to be considered in the spatial model 
procedure. The buffer radius for multi-scale analysis with respect to the catchment area ranges from 100 
to 5 km from school location. 

6.2.2 The hierarchical model approach 

A hierarchical model was developed to address the spatial mismatch between the school 

measurement of schistosomiasis prevalence and relevant environmental conditions for disease 

transmission measured from RS data. For the hierarchical model, the binary mask of potential 

disease transmission sites derived in Chapter 5 were used to specifically select only relevant 

regions for modelling schistosomiasis risk (Figure 6-6). The underlying hypothesis of this 

hierarchical model approach was that only sites where water was detected or water potentially 

may accumulate, represent relevant environmental information with respect to schistosomiasis 

transmission and the prevalence measured for the school catchment area. 
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Figure 6-6: Flowchart of the hierarchical model approach considers only potential disease transmission 
sites derived in Chapter 5 for modelling schistosomiasis risk based on remotely sensed environmental 
variables. 
 

The impact of this hierarchical model approach was evaluated in reference to the 

corresponding non-hierarchical procedure, where the respective buffer area around the school 

location was completely considered by the model. Both approaches rely on the full set of RS 

variables derived for this thesis (Table 4-3), whereas each study site was modelled based on the 

best available data set (see Table A 1 in the Appendix). The models were processed for different 

extents of the school catchment areas ranging from a buffer radius of 500 m to 5 km in steps of 

100 m. RS variables were aggregated by their means within the spatial buffer extent, except for 

the variables settlement area and streams, which were aggregated by their sum and maximum, 

respectively. The extraction of the data within given buffer zones was based on RS variables 

resampled to a spatial resolution of 30m using the nearest neighbour method. Thus, the spatial 
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resolution matches with the provided mask of potential disease transmission sites and makes 

extraction of small patches feasible as required by the hierarchical model approach. 

Additionally, the impact of different ecological regions on model accuracy was further 

evaluated by comparing the resulting models from each study site with the overall region. Thus, 

schistosomiasis risk models were separately derived for each study site based on the common 

cut-set of variables, which were available for all three study sites (see Table A 1 in Appendix) and 

compared with the cross-ecozonal model. This was based on data from all three sites, where 

savannah, tropical lakeside and tropical mountainous regions were combined in one cross-

ecozonal model approach. 

Both models, the non-hierarchical and hierarchical model, were used to predict 

schistosomiasis risk for non-sampled locations in space. The predicted z-scores were then 

calculated in reverse to schistosomiasis prevalence between 0 and 100% and further inspected 

by their spatial mean, standard deviation, and coefficient of variation through all spatial extents 

modelled. 

6.2.3 The measure of variable importance 

In order to evaluate which of the multitude of RS variables provide valuable information to 

explain the spatial distribution of the disease, each predictor´s individual variable importance 

was calculated. Moreover, changes in variable importance with ecozone were evaluated. 

Random Forest regression provides two measures of variable importance: the increase of the 

mean squared error (IncMSE) and the cumulative increase in node purity (IncNodePurity). The 

IncMSE is derived for each predictor variable from the MSE difference between the predictive 

measure based on the original dataset and based on a permuted dataset, where the predictor in 

question was randomized. The IncNodePurity calculates for each predictor variable how much it 

reduces node impurity, which is the difference between RSS before and after the split and sums 

this up over all splits and trees (Hastie et al., 2009: 593). For the Random Forest regression 

analysis used in this study, the IncNodePurity measure was used to evaluate the importance of 

RS predictor variables. Only variables with an increase in node purity greater than one were 

considered important in this study. 

A varible importance measure of the PLSR model is the VIP (Equation 6-2), which reflects how 

well a predictor variable describes the response variable and how important this information is 

for the composition of the set of predictor variables. This is due to the inclusion of the weights, 

which reflect the covariance between the predictor and response variables (Andersen and Bro, 

2010: 732). The VIP value for a variable j is expressed as 

𝑉𝐼𝑃𝑗 =  √
 ∑   𝑤𝑗𝑓

2  𝑆𝑆𝑌𝑓  𝐽𝐹
𝑓=1

𝑆𝑆𝑌𝑡𝑜𝑡𝑎𝑙  𝐹
 Equation 6-2 

where 𝑤𝑗𝑓 is the weight value for variable j and component f, SSYf is the sum of the squares of 

the explained variance for the fth component and J is the number of variables. SSYtotal is the total 

sum of squares explained of the response variable, and F is the total number of components. If 

the VIP exceeds the threshold value of one it indicates an important variable (Andersen and Bro, 

2010: 732) 
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6.2.4 Model validation 

All Random Forest and PLSR model approaches have been validated through internal cross 

validation using the “caret” package in R (Kuhn, 2008). The principle of cross-validation is to split 

the database into a larger training and a smaller test data set. Based on training data, the model 

is established and applied to test data, which are at the same time used to evaluate model 

performance. Typical measures to evaluate model quality in a regression context are the 

coefficient of determination (R²), which indicates how well data fit a statistical model ranging 

between 0 and 1, and the RMSE, which measures the difference between predicted and 

observed values in units of the predicted measure. A third measure used for model evaluation is 

the Nash-Sutcliffe efficiency (NSE) index, which determines the relative magnitude of residual 

variance or noise compared to measured data variance, hence the real information provided by 

the model (Nash and Sutcliffe, 1970). This index can range between one and minus infinity. An 

index value of one corresponds to the optimal match between simulated and observed data and 

positive scores indicate that model simulation is better compared to a model based on the mean 

value of observations. The NSE (Equation 6-3) is commonly used to assess predicitive power of 

hydrological models (Krause et al., 2005), however, it was successfully applied for other model 

applications such as the evaluation of wind erosion prediction systems (Hagen, 2004) or energy 

flux analysis (Wong et al., 2010). It is expressed as 

𝑁𝑆𝐸 = 1 −  (
∑ (𝑌𝑖

𝑜𝑏𝑠 −  𝑌𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠 −  𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

) Equation 6-3 

where 𝑌𝑖
𝑜𝑏𝑠 is the ith observation for the total number of observations n, 𝑌𝑖

𝑠𝑖𝑚 is the ith 

simulated value for the corresponding observation and 𝑌𝑚𝑒𝑎𝑛 is the mean value of observed 

data. 

K-fold cross-validation splits the database into a defined number of parts, of which one part is 

used to test the model and all other parts are used to fit the model. To keep a comparable 

amount of validation data per group of test data, the data splitting of internal cross-validation 

was adjusted according to the sample size of each study site. Models of the study site MAN 

(sample size = 75; fold size = 7-8) and BUF (sample size = 74; fold size = 7-8) were validated 

based on a 10-fold cross-validation and models of the study site TAB (sample size = 38; fold size 

= 7-8) were validated with 5-fold cross-validation. The cross-validation procedure was repeated 

ten times for each model and the best model defined through the minimum RMSE was selected 

as the final model. Within the cross-validation procedure, the model-algorithm specific 

parameters mtry (number of variables selected per split) and ncomp (number of components used 

for model), were iterated to tune the Random Forest (Liaw and Wiener, 2002) and PLSR model 

(Geladi and Kowalski, 1986), respectively. 

Due to the limited amount of data points available for this study, only the model outcome of 

study site MAN could be verified by external validation. At this site, 33 additional school surveys 

were derived from the pre-selection steps of epidemiological data (Figure 4-1). This independent 

test set corresponded to schools surveyed a few years earlier than the latest surveys used in the 

training data base of the model. The predicted prevalence was evaluated by the test data set 

based on the resulting R² of a linear model. The common approach to split the data base into 

80% training and 20% test data was used for the internal cross-validation procedure described 
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above and not considered useful for external validation of the model due to the general 

shortage of reference data. 

6.3 Results of statistical risk modelling 
This section presents the results according to the objectives introduced above. The impact of 

scales regarding RS data and area of observation are described in Section 6.3.1. The outcome of 

the developed hierarchical model to bridge the spatial discrepancy between the prevalence 

measure and remotely sensed environmental conditions is presented in Section 6.3.2. The most 

important RS variables for modelling schistosomiasis risk are given in Section 6.3.3. Finally, 

Section 0 presents the results of spatial schistosomiasis risk predictions and its validation for the 

study site MAN. The comparison between different ecological regions and used model 

algorithms are reported in the respective model results of all sections. 

6.3.1 How scale matters 

The impact analysis of scale on schistosomiasis risk modelling referred to the scale of RS data, 

hence its spatial resolution, and the scale of observation regarding the environment within the 

catchment area of school locations. Figure 6-7 shows the predictive power of Random Forest 

and PLSR models based on RapidEye, Landsat 5 TM, and Terra MODIS data for different 

catchment buffers around the surveyed schools. Although the spatial resolution of RS data per 

se, as tested based on aggregated RapidEye data, showed no impact on the model outcome (see 

Figure A 2 in the Appendix), the model performance varied strongly between the different 

sensors used for schistosomiasis risk modelling. Terra MODIS data resulted generally in poor 

model performance with R² values around 0.25, RapidEye data reached higher predictive power 

and Landsat 5 TM provided superior results. 

The scale of observation around the school location shows a marked impact concerning the 

predictive power of models based on RapidEye and Landsat 5 TM data. In all cases, the R² results 

are lowest, if RS variables were directly extracted at the school location. The models derived 

from RapidEye and Landsat 5 TM data performed better with an increasing area of observation 

around school locations. In most cases, the R² levelled out at its highest score for analysis within 

a buffer extent between 2 and 4 km. However, this was different for the Random Forest model 

of Landsat 5 TM data, which resulted in a peak of explanatory power for the analysis within 3 km 

around the school locations and deteriorated for larger observational units. 

The comparison between the cut-set of bands and indices available for all three sensors and 

the sensor specific spectral properties showed that Landsat 5 TM data resulted in the highest 

overall model performance, if the full potential of the Landsat 5 TM spectrum was used. In 

contrast, RapidEye and Terra MODIS data showed no impact between the cut-set and full set of 

bands and indices used for modelling. Both model algorithms result in similar trends considering 

the scale of observation, however, Random Forest reached higher R² scores for the Landsat 5 TM 

model and PLSR reached higher scores for the RapidEye model. 
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Figure 6-7: Comparison between model results from RapidEye, Landsat 5 TM, and Terra MODIS data for 
the study site MAN. The red dots represent model results (R²) derived from the cut-set of bands and indices 
available for all three sensors and the blue dots refer to the model results derived from the full set of bands 
and indices available for the respective sensor as given in Table 6-1. The lines show the spline interpolation 
and the grey bars represent the confidence interval. The upper row represents model results from the 
Random Forest algorithm and the lower row from the PLSR analysis. 
 

6.3.2 The hierarchical model: a solution to bridge the spatial 

gap? 

The hierarchical model approach was developed with the aim of overcoming the spatial 

mismatch between the school-based prevalence and remotely sensed environmental 

information regarding the ecological process of disease transmission. 

Figure 6-8 illustrates the model performance in comparison between the non-hierarchical 

and the hierarchical model approach for the three study sites and based on the two model 

algorithms used in this study. It is apparent that the outcomes of both approaches, the non-

hierarchical and hierarchical model, vary strongly between the study sites. In BUF, none of the 

established models performed satisfactorily with R² values below 0.3. The performance of the 

model was better in the study site MAN and highest in the study site TAB. In accordance to this, 

performance of the hierarchical model approach improved substantially in TAB and improved 

partially in MAN but did not make a difference in BUF. In TAB, both model algorithms showed a 

marked improvement of explanatory power through the hierarchical model approach with 

maximum R² scores between 0.6 and 0.7 within buffer zones of 3 km radius and larger. At this 

site, the PLSR model performed slightly better than the Random Forest algorithm. In MAN, only 

the PLSR model indicated an improvement for the analysis within the first kilometre around the 

school locations. 
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Figure 6-8: R² values per selected buffer radius of the non-hierarchical (red) and the hierarchical (blue) 
models for the three study sites MAN, TAB and BUF based on the Random Forest (upper row) and PLSR 
model (lower row). 
 

Models were additionally evaluated based on the RMSE (Figure A 3) and the NSE (Figure A 4). 

Lowest RMSEs around 0.6 were reached in accordance with highest R² values around 0.7 and 

highest NSE scores close to 0.75 for the hierarchical PLSR model in the study site TAB. Similar to 

the R² values in TAB, the NSE resulted slightly lower from the Random Forest model compared to 

the PLSR model, however, with lower RMSE for the buffer zones between 0 and 2 km. For larger 

buffer zones, the PLSR model performed superiorly due to a lower RMSE. The three model 

evaluation criteria R², RMSE, and NSE consistently confirmed that the hierarchical model 

approach performed superiorly in comparison to the non-hierarchical model approach in the 

study site TAB with high model efficiency confirmed by the NSE index. In MAN, the NSE of the 

PLSR model perforemd superiorly to the R² values with scores up to 0.6 for the hierarchical 

approach, whereas for the Random Forest model this index resulted minor scores below 0.3. 

However, this was different for the RMSE, whose scores corresponded well to the results of the 

R² values derived in MAN. In BUF, the poor model performance indicated by the R² values was 

confirmed by the consistently high RMSE and low NSE, except for some outliers of NSE scores 

greater than 0.4 for the hierarchical PLSR model within buffer extents of 4 to 5 km radius. 

The strong impact of the geographical region on modelling schistosomiasis risk and the 

outcome of modelling across ecozones is illustrated in Figure 6-9. The deviation in explanatory 

power between the poorest models in BUF and best models in TAB reaches up to 40%. The 

combination of training data from different ecological regions resulted in poor model 

performance with R² scores below 0.25. This is further confirmed by the RMSE (Figure A 5) and 

NSE (Figure A 6). 
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Figure 6-9: Hierarchical model performance in different ecological regions and for the cross-ecozonal 
model using PLSR 
 

6.3.3 Key remote sensing variables for schistosomiasis risk 

modelling 

Until now, the NDVI and LST were the most commonly used RS variables for schistosomiasis risk 

modelling. The objective of this thesis was to explore the multitude of disease relevant RS 

variables listed in Table 4-3 and assess their individual contribution to modelling the spatial 

distribution of disease risk. The importance of the most relevant variables in the hierarchical 

Random Forest model is illustrated in Figure 6-10 for each of the three study sites. An overview 

of all variables with importance greater than one is given in Figure A 7 for the non-hierarchical 

Random Forest model, in Figure A 8 for the hierarchical Random Forest model and in Figure A 9 

for both PLSR model approaches in the Appendix. 

Variable importance resulted differently depending on the study site investigated (Figure 

6-10). For example, the variable “euclidean distance from water body” was highly important for 

all school catchment radii in MAN and had comparably little importance regarding the study 

sites TAB and BUF. Furthermore, the topographic variables “altitude”, “slope”, and “streams” 

were of high importance in the hierarchical Random Forest model for MAN, whereas the non-

hierarchical approach additionally considered the variable “sinks” important at this site (Figure A 

7). In contrast, the spatial prediction of schistosomiasis risk in the study site TAB was mainly 

explained by the mean and median of Terra MODIS LST, which was not considered important in 

the study sites MAN and BUF. However, maximum LST contributed more in the MAN site and 

minimum LST contributed more in BUF. Based on the Random Forest model, in BUF no variables 

are highlighted specifically important with nearly all variables contributing marginally to the 

model (Figure A 7 and Figure A 8). 
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Figure 6-10: Variable importance measured for selected variables in comparison between the three study 
sites given by the increase of node purity from the Random Forest hierarchical model. The nomenclature of 
selected RS variables is explained in Table A 1. 
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The PLSR models resulted in generally different variable importance (Figure A 9) compared to 

the Random Forest models. In MAN, “streams” and “settlement area” resulted in VIP greater 

than one for selective buffer extents around school locations, whereas “euclidean distance from 

water body” was not considered important by this model. In TAB, the PLSR model considered 

“streams” as the major variable of high importance for both the non-hierarchical and 

hierarchical model, whereas Terra MODIS LST reached the threshold only for two buffer extents 

of the hierarchical model approach. In the study site BUF, the PLSR model considered 

“settlement area” as the important variable to model schistosomiasis risk. 

6.3.4 Schistosomiasis risk prediction and validation 

The overall objective to model schistosomiasis risk based on RS data, is to generate spatial 

information of disease transmission risk to support planning, intervention, and control initiatives 

of public health authorities. The RS based models used in this study were therefore used to 

predict the established relation between disease prevalence and environmental conditions for 

the non-hierarchical and the hierarchical model approach. Figure 6-11 and Figure 6-12 present 

examples of spatial predictions based on the Random Forest and PLSR model for the study sites 

MAN and TAB, respectively. Spatial predictions in the study site BUF (see Figure A 10 in the 

Appendix) were not analysed further due to its overall poor performance in this study. 

Figure 6-11 illustrates the spatial predictions from the Random Forest and PLSR models for 

the non-hierarchical and hierarchical approach in the study site MAN. The validation of this 

analysis based on an external test data set is expressed by the R² for each model. The Random 

Forest model predicted low risk in the mountainous part and high risk along the river valleys 

running towards the South of the study site. Despite the resulting R² value of 0.54 being slightly 

higher compared to the one of the hierarchical model (R² = 0.51), the north-south running river 

in the western part of the study site and specifically the small-scale structures of high disease 

risk along the river valley north of the city Man, were better predicted according to the visual 

indication of measured prevalence. In contrast, the PLSR model resulted in a more fuzzy 

distribution of low and high risk regions and showed similar results of spatial predictions 

between the non-hierarchical and hierarchical approach. However, the external validation 

indicated that the non-hierarchical approach of the PLSR model performed better (R² = 0.51) 

than the hierarchical one (R² = 0.44). This slightly better performance of the non-hierarchical 

PLSR model compared to the hierarchical PLSR model was found for almost all scales of 

observation around schools, whereas no difference between hierarchical and non-hierarchical 

approach and scales of observations was indicated by the Random Forest model (Figure A 11). 
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Figure 6-11: Comparison of spatial risk prediction between non-hierarchical and hierarchical model 
approach at the study site MAN based on Random Forest (upper row) and PLSR model (lower row). This 
example is based on spatial modelling within a buffer extent of 3 km around school location. The R² value 
presents the result of the linear model between predicted and test data. Yellow bars indicate the school 
locations of the test data: the higher the bar the higher the measured prevalence. 
 

Figure 6-12 illustrates the spatial predictions from the Random Forest and PLSR models for 

the non-hierarchical and hierarchical approach in the study site TAB. For this study site, no 

additional data for external validation were available. The four models predicted the Lake Taabo 

in the centre of the study site as area of high risk for disease transmission. The Bandama river 

running from north-west to south-east crossing Lake Taabo was identified as a high risk area by 

the hierarchical models of both algorithms and the non-hierarchical approach of the PLSR model. 

However, the course of the river in the north-eastern corner of the study site was only predicted 

as a high risk area by the hierarchical Random Forest model. Additionally, several hotspots of 

high disease risk were predicted by Random Forest models that correspond to settlements and 

topographic elevations in TAB. Those were predicted with less risk by the PLSR model. 

  

R² = 0.51 R² = 0.54 

R² = 0.44 R² = 0.51 
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Figure 6-12: Comparison of spatial risk prediction between non-hierarchical and hierarchical model 
approach at the study site TAB based on Random Forest (upper row) and PLSR model (lower row). This 
example is based on spatial modelling within a buffer extent of 3km around school location. 
 

The mean predicted prevalence, its standard deviation and the coefficient of variation 

derived from buffer extents between 0 and 5 km, are illustrated in Figure 6-13 for the non-

hierarchical and hierarchical Random Forest model approach in TAB. Both the non-hierarchical 

and hierarchical model approaches, predicted a very high mean value of disease prevalence for 

Lake Taabo from all buffer extents. This predicted mean value indicates that parasite prevalence 

and human infection due to water contact is estimated very high in Lake Taabo. The course of 

the Bandama river shows a mean predicted prevalence around 50% with a moderate standard 

deviation and a low coefficient of variation. The coefficient of variation results in higher scores 
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for the non-hierarchical approach in comparison to the hierarchical model and shows large areas 

in the southern part of the study site with highest scores of variation between different buffer 

extents analysed. Similar results were provided by the PLSR model as illustrated in Figure A 12, 

however, with a generally lower coefficient of variation and standard deviation between 

different buffer extents. The results of mean predicted prevalence, standard deviation, and 

coefficient of variation from buffer extents between 0 and 5 km for the study site MAN are 

illustrated in Figure A 13 for the Random Forest model and Figure A 14 from the PLSR model. 

Moderate to high mean prevalence was predicted from both model algorithms and approaches 

close to the course of the river, however, the Random Forest model predicting the high impact 

of distance to the river appearing as buffer of mean moderate to high prevalence. All models of 

MAN resulted a very low mean prevalence for the mountaineous region in the north-east of the 

study site. Similar to TAB, the standard deviation and coeffcient of variation resulted generally 

lower from Random Forest models compared to PLSR models. 

6.4 Discussion of remotely sensed schistosomiasis 

risk modelling 
RS data have shown a high potential for spatial risk modelling and prediction of schistosomiasis 

risk. This study has shown that with the presented approach not the spatial resolution of RS data 

per se, but the extent of the area observed around a school location has a major impact on the 

model performance. From the 60 RS variables investigated for schistosomiasis risk profiling, 

there were very few that explained most of the disease variation. The Random Forest and PLSR 

algorithms were used to investigate a non-hierarchical and hierarchical approach for modelling 

schistosomiasis risk with the hierarchical approach performing considerably superiorly. In the 

following, the RS data and sensors used for schistosomiasis risk modelling (Section 6.4.1) and the 

performance of spatial modelling and risk prediction (Section 6.4.2) are discussed. 

6.4.1 Remote sensing data for schistosomiasis risk modelling 

RS data provide information on environmental conditions for Schistosoma parasites, 

corresponding snails, and schistosomiasis transmission sites. Statistical disease risk models link 

these environmental conditions to school-based measures of disease prevalence, which 

represents the school catchment area and aim at indicating the environmental suitability for 

diseases transmission in this area. Due to this discrepancy between point measurement and 

school catchment area, the impact of scale on schistosomiasis risk models based on RS data was 

investigated by this research. 
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Figure 6-13: Mean prevalence (top row), standard deviation (middle row) and coefficient of variation 
(bottom row) derived from buffer extents between 0 and 5 km using the Random Forest model. 
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The improvement of model performance with the observation of an increasing school 

catchment area confirms the spatial conflict of schistososmiasis risk modelling based on RS data. 

It indicates that in a distance of 2 km and larger, the school catchment area integrates 

environmental conditions that represent the disease transmission conditions corresponding to 

the school-based measure of prevalence. This impact of different scales of aggregation on model 

performance has also been shown for the example of aggregating on different administrative 

levels, where treatment needs were over- or underestimated depending on the level of spatial 

aggregation and focality of disease distribution (Schur et al., 2012: 11). However, so far no 

spatial analysis of schistosomiasis risk models based on divergent buffer extents could be 

identfied in the literature. In contrast, the spatial resolution of RS data did not show any impact 

on model performance, which is a direct consequence of the approach taken in this study, 

where RS measurements are summarised by their mean within a buffer zone around the school 

catchment area. 

RS variables from different sensors showed that the explanatory power of the Landsat 5 TM-

based model increased, when the full set of sensor specific bands and indices were used, 

whereas this was not the case for models based on RapidEye and Terra MODIS data. This 

superior performance of Landsat 5 TM could be explained by the additional information 

provided by shortwave infrared and thermal bands of the Landsat 5 TM, which are not provided 

by the RapidEye sensor but highly sensitive to water (see Section 4.2.2). In contrast, the rededge 

band from RapidEye did not provide any further information for modelling schistosomiasis risk. 

In this analysis, corresponding Terra MODIS reflectance data provided no valuable information 

for schistosomiasis risk modelling, which could be a consequence of poor data quality due to 

cloud contamination. Despite the application of the product specific cloud mask, cloud 

contamination was present in the data. 

This study showed that few RS variables were highly important to explain the variation of 

disease prevalece. However, the importance of RS variables varied strongly between model 

algorithms and study sites, which confirms the hypothesis that different ecological regions 

require different RS variables. In the mountainous region of MAN, schistosomiasis risk has 

predominantly been explained by the distance to water bodies and topographic variables. This 

fits to the strong topographic gradient and confirms the positive correlation between disease 

prevalence and stream order of the nearest water body or altitude as derived by Beck-Wörner et 

al. (2007) for this study region. In contrast, the high importance of slope does not reflect the 

missing correlation between slope and disease prevalence in the study by Beck-Wörner et al. 

(2007). The variable “sinks” was identified as a new important RS variable from the non-

hierarchical model approach. Topographic variables are considered as proxies for relevant 

ecological conditions for schistosomiasis-related parasite and snail species such as flow velocity 

of water or temperature conditions and were also found useful for schistosomiasis risk 

modelling in Côte d’Ivoire (Beck-Wörner et al., 2007; Vounatsou et al., 2009) and Kenya (Clennon 

et al., 2007). In the tropical lake-side region of TAB, LST and temperature difference between 

day and night-time summarised as yearly mean and median together with distance to water 

bodies and stream order, were the most important variables to predict the spatial 

schistosomiasis risk. As already demonstrated by Malone et al. (1994) in the Nile delta in Egypt, 

remotely sensed temperature is a useful proxy to model hydrological conditions at this scale of 

observation. Due to the poor performance of the models, variable importance in BUF could not 
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be evaluated. It is assumed, that the importance of variables is attributed rather to noise than 

information in this case. The fact that each ecological region resulted in dissimilar important 

variables, provides a further explanation for the poor performance of the cross-ecozonal model 

presented in Figure 6-9. The different importance of variables per ecozone indicates that 

valuable information from RS data for one specific ecozone is lost when modelled across 

different ecozones where this relation is not given. 

6.4.2 Modelling schistosomiasis risk 

In this research, a hierarchical model approach was developed to bridge the spatial gap 

between school prevalence and relevant environmental conditions for schistosomiasis 

transmission based on the two different algorithms Random Forest and PLSR. It was shown that 

the hierarchical model approach improved schistosomiasis risk models in regions where the 

environment contributes significantly to explain the spatial pattern of the disease. Analysis in the 

study site TAB, demonstrated that close to 70% of the variance could be explained by 

hierarchical models based on RS data. Given the complex social-ecological interaction that 

underlies schistosomiasis transmission, RS is assumed to provide a highly valuable contribution 

for schistosomiasis risk assessment in this case. However, models derived for the study site BUF 

have shown that in some regions environmental conditions explain the distribution of disease 

prevalence poorly. Both very high and very low disease prevalence has been measured in the 

direct neighbourhood of schools sourrounded by sites of high environmental suitability for 

disease transmission (Figure 5-12). Despite the chronic character of the disease, the time-lag of 

surveys conducted in the mid-1980s could to some extent explain the missing relation between 

schistosomiasis prevalence and environmental data derived for the year 2010. In MAN, the 

hierarchical model approach improved its performance compared to the non-hierarchical only 

for the PLSR algorithm within school catchment radii up to 1km. In this region, it was generally 

very difficult to detect water bodies due to its small-scale heterogeneity and frequent coverage 

by riparian forests. The poor model performance across all ecozones despite an increase in 

sample size from the minimum of 38 in the TAB site to 184 in all ecozones confirmed the result 

of Brooker et al. (2001) in Tanzania, where only models fitted within the same ecological zone 

performed reasonably. 

It has to be stated here that the outcome of all spatial models of schistosomiasis risk may be 

affected by spatial autocorrelation. As analysed in Section 4.1, the response variable of 

schistosomiasis prevalence is – like most spatial data – affected by spatial autocorrelation until a 

specific distance between points. This common phenomenon of spatial autocorrelation is on the 

one hand a relevant information from an ecological point of view, e.g. whether high or low 

disease prevalence is spatially clustered or shows a trend from rivers to mountaineous areas. 

However, spatial autocorrelation at the same time impacts the predictive performance of spatial 

models and may lead to mis-estimation of up to 25% (Dormann, 2007: 135). Unfortunately, the 

impact of spatial autocorrelation on model accuracy could not be evaluated in this study due to 

sample size constraints. Even for the study site MAN, where the sample size was highest, the 

reduction of school locations that were located closer than 12.1km according to the modelled 

range of spatial autocorrelation (Figure 4-3) would have led to only ten remaining school 

locations, which is an insufficient sample size for statistical modelling. However, the impact of 
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spatial autocorrelation is assumed to be small due to the typical focal distribution of the disease 

mentioned above. 

In most cases, the Random Forest and PLSR models performed in a comparable way with 

respect to their predictive power, which indicates that model results are stable. However, the 

variation between variable importance that result from each model is considerable. Variables 

found to be highly important for the Random Forest model were not considered important by 

the PLSR model and vice versa. This could be attributed to the different procedure of assessing 

variable importance by each model approach as described in Section 6.2.3. 

The spatial predictions of the study sites MAN and TAB reflected well the variables that were 

considered most important by the respective variable importance measure. In MAN, the 

Random Forest model showed a high impact of euclidean distance to water on the spatial 

prediction (Figure 6-11), whereas in TAB the LST data had a high impact (Figure 6-12). The 

superior model performance of the hierarchical models in the study site TAB was well reflected 

by an appropriate spatial prediction of disease risk according to the distribution of reference 

data. However, the predicted disease risk at those single hotspots away from the well 

investigated water sites around Lake Taabo can not be evaluated due to the lack of respective 

data on disease prevalence. 

In general, the schistosomiasis risk modelling and prediction in this study is based on a 

relatively small sample size, which can impact the stability of model performance. Furthermore, 

the comparison between different study sites and ecozones, respectively, might be impacted by 

inhomogeneities of input data on schistosomiasis prevalence (Table 4-1) due to different sample 

sizes, different years of surveys and different distributions of prevalence of samples between the 

three investigated study sites. Both the R² value and the NSE index, are not very sensitive to 

systematic over- or underprediction of a model (Krause et al., 2005: 90). Nevertheless, the RS 

based models of schistosomiasis risk resulted in useful spatial predictions of schistosomiasis risk, 

whereas the hierarchical approach explicitly models the potential disease transmission sites. This 

spatial prediction can support the planning of disease prevention and control measures in a 

spatially explicit way and supports the identification of new causal relations of disease 

transmission in different ecological regions. 

6.5 Summary of schistosomiasis risk modelling 
In summary, this study has demonstrated that RS data have a highly valuable contribution for 

schistosomiasis risk modelling explaining up to 70% of the variation in disease prevalence. 

However, it has also been shown in the study site BUF that environmental conditions do in some 

cases not explain the spatial distribution of the disease. The hierarchical model approach 

developed in this thesis is capable of bridging the spatial discrepancy between school-based 

measurements of prevalence and the disease relevant remotely sensed environmental 

conditions. However, only in the study site TAB, where environmental conditions strongly 

indicate the spatial distribution of measured disease risk, did this hierarchical approach improve 

the model considerably. The analysis between different ecological settings provided insights into 

the variation of importance of RS variables according to the ecozone under investigation. The 

most important RS variables identified in this study were distance to water bodies and 

topographic variables for the mountainous region in MAN and LST and the stream order for the 
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tropical lakeside region in TAB. This underlines further that modelling across ecozones is 

challenging due to changing relationships between disease prevalence and the environment. 

Ignoring ecozonal differences strongly deteriorates the performance of schistosomiasis risk 

modelling. Whereas the spatial resolution of RS data per se did not have any impact with the 

approach taken, the scale of observation around surveyed school locations substantially 

impacted model accuracy. Best model performances were obtained at larger observational units 

with radii of 2 km and larger, although this depended on the study site and model approach. The 

combination of spectral properties and spatial resolution of the Landsat 5 TM data resulted in 

the best performance of schistosomiasis risk models compared to RapidEye and Terra MODIS 

data.
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7 Synthesis and outlook 

The overarching goal of this thesis was to bridge relevant disciplines and bring together several 

strands of scientific inquiry in order to investigate the potential of RS data for profiling disease 

risk. Emphasis was placed on schistosomiasis. A hierarchical model approach was developed to 

optimise the application of RS data and to overcome the spatial discrepancy between 

environmental habitats of disease-related parasites and intermediate host snails and 

measurements of human infections. In this chapter, the strengths and limitations of RS data are 

discussed according to the specific research questions (Section 7.1). The transferability of the 

hierarchical model approach to optimise spatial risk profiling of other environment-related 

diseases is highlighted in Section 7.2. Future research needs are outlined in Section 7.3. 

7.1 Strengths and limitations of remote sensing 

data for schistosomiasis risk profiling 

(1) Which RS data and variables are most useful to model environmental suitability and 

disease risk? 

Findings presented in this thesis revealed that RS data were highly useful to spatially delineate 

and quantitatively evaluate environmental suitability for transmission of schistosomiasis and 

model disease risk. Based on RapidEye and Landsat 5 TM data, the small-scale heterogeneity of 

water bodies could be well detected, as long as water was not considerably covered by trees. 

Despite its lower spatial resolution compared to RapidEye, Landsat 5 TM data thereby 

performed especially well, presumably due to its sensor configuration in the shortwave and 

thermal infrared spectrum, which is highly suitable to detect water. In contrast, Terra MODIS 

reflectance data performed unsuitably in detecting smaller water bodies and modelling disease 

risk, which reflects the limited spatial detail at the expense of the sensors well-known capacity 

to monitor large-scale temporal dynamics. Despite all three sensors having sufficient nominal 

temporal resolution for this application, cloud coverage has shown to be a strong limitation 

when establishing information on seasonal dynamics, especially in the tropical regions of Côte 

d’Ivoire. 
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The topographic model derived from ASTER data was highly useful to model disease risk, 

specifically in the mountainous region of western Côte d’Ivoire. However, the spatial resolution 

of 30 m provided a significant constraint to characterise the small-scale topographic features to 

quantify environmental suitability for schistosomiasis-related snails and parasites as proposed in 

this study. To better assess habitat suitability for freshwater snails, the content of submerged 

aquatic vegetation is of high ecological relevance. Yet, this measure would require hyperspectral 

RS data together with comprehensive in situ measurements, which was beyond the scope of this 

thesis. 

In the schistosomiasis risk model, some 60 RS variables were investigated, of which only a 

handful were of relevance in the final model specifications. The most important RS variable 

identified in this study was the measure of distance to water bodies, which reflects well the 

overall importance of the spatial location of water sites for the explanation of schistosomiasis 

risk. For the mountainous region in the study site MAN, the topographic variables “altitude”, 

“slope”, “streams” and “sinks” were found of highest importance, which confirms the strong 

impact of the topographic gradient on schistosomiasis risk, as previously shown by Beck-Wörner 

et al. (2007). In contrast, the model of the tropical lakeside region of TAB resulted in mean and 

median temperature difference between day and night-time, LST and stream order as most 

important variables. Other than for the model of environmental suitability mentioned above, LST 

contributed significantly to modelling disease risk as has been shown two decades ago (Malone 

et al., 1994). In this study, the importance of RS variables varied strongly between model 

algorithms and study sites, which confirms that a single statistical model algorithm does not 

generate representative results and different ecological regions require different RS variables for 

modelling schistosomiasis risk. Furthermore, the widely used NDVI for modelling schistosomiasis 

risk, as well as other vegetation indices investigated in this thesis, did not provide a noteworthy 

contribution to explain the spatial variation of schistosomiasis prevalence. 

The most suitable RS variables to model environmental suitability for schistosomiasis 

transmission consisted of the multi-temporal derivation of water bodies and the assessment of 

their riparian vegetation coverage based on high-resolution RS data from the RapidEye and 

Landsat 5 TM sensors. The regions of permanent water coverage and high vegetation coverage 

during the dry season outlined the hotspots of environmental suitability for schistosomiasis 

transmission. The topographic sinks and streams, which could potentially become habitats as a 

result of rainfall or flooding, complemented the spatial delineation of potential disease 

transmission sites. However, the accuracy of modelled topographic streams was very poor. 

Regarding the ecological context of disease-related parasites and snails, RS measurements of 

water surface temperature are of limited use as surface temperature does not directly indicate 

the water temperature that impacts parasite and snail development and critical limits of long-

term variation and extreme values cannot appropriately be measured and monitored by 

currently available remote sensors. Additionally, the dynamic changes of water flow velocity 

between dry and wet seasons cannot be derived based on topographic RS data. 

Taken together, the satisfactory performance in delineating environmental suitability for 

schistosomiasis transmission is a promising feature upon which one might establish an 

operational monitoring of environmental changes with focus on the suitability of disease 

transmission in the near future. Hence, this issue warrants further scientific inquiry, as discussed 

in Section 7.3. 
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(2) How can the spatial discrepancy between environmental suitability for schistosomiasis 

transmission and the measure of disease risk be resolved? 

In this thesis, a hierarchical model approach was developed to overcome the spatial mismatch 

between school-based disease prevalence data and remotely sensed environmental information, 

which is of relevance regarding the ecological process of disease transmission. Therefore, the 

delineation of potential disease transmission sites derived by the mechanistic model of 

environmental suitability provided the spatial basis to model schistosomiasis risk within the 

catchment area of the school-based measure of disease prevalence providing the response 

variable for the model. Particularly for the study site TAB, where environmental conditions 

contributed strongly to model schistosomiasis risk, the hierarchical model approach improved 

model performance considerably in comparison to the non-hierarchical model approach, as 

indicated by the explanatory power close to 70% versus lower than 60%, respectively. However, 

both values are considered high against the background that a complex social-ecological 

interaction underlies the process of schistosomiasis transmission, which cannot be fully 

described by means of RS. Limitations of disease risk modelling using either a hierarchical or a 

non-hierarchical model approach were revealed for the study site BUF, where environmental 

conditions in general explained the spatial distribution of school-based disease prevalence very 

poorly. However, keeping the ecological process of disease transmission in mind and observing 

this process from a geographical and spatially explicit perspective, a non-hierarchical approach 

would not fully exploit the potential of RS data for profiling schistosomiasis risk as the relevant 

RS signal would be averaged between relevant and non-relevant sites. 

The superior performance of the hierarchical model approach in the study site TAB was well 

reflected by the spatial prediction of disease risk, which is in agreement with the spatial 

distribution of school-based measures of disease prevalence. Furthermore, the issue of 

anisotropy inherent in the spatial structure of the data (Chammartin et al., 2013) is directly 

addressed by the hierarchical model approach. However, insufficient data were available to 

validate this prediction with independent data of school-based prevalence. 

(3) Which scale is most appropriate for spatial modelling of schistosomiasis risk? 

The impact of scale on schistosomiasis risk modelling was investigated in this thesis observing 

the scale of RS data, hence its spatial resolution, and the scale of observation regarding the 

environment within the catchment area of modelled school locations. The results confirmed the 

hypothesis that suitable environments for disease transmission rarely occur at the location of 

the school but within its larger catchment area up to a distance of 5 km, which is reflected by the 

increasing model performance with increasing extent of the school catchment area considered 

in the model. From a distance of 2 km from school location and above, the explanatory power of 

the schistosomiasis risk models either peaked at around 3 km or levelled out at its highest score 

for analysis within a buffer extent between 2 and 4 km. Due to the aggregation of RS 

measurements within the school catchment area investigated, the spatial resolution per se did 

not impact the model performance. However, based on these findings it can be assumed that 

spatial resolution of RS data greater than 500 m has an impact on model performance if no 

buffer is used for the spatial risk modelling as done in previous studies. 
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(4) How do different ecozones impact the performance of schistosomiasis risk models in West 

Africa? 

Based on the three selected study sites in different ecological regions of West Africa that range 

from dry savannah (study site BUF in Burkina Faso) to tropical rainforest including flat and 

mountainous regions (study sites TAB and MAN in Côte d’Ivoire, respectively), the impact of 

different ecozones on model performance was investigated. The first step of disease risk 

profiling - modelling environmental suitability – already showed that the constitution and 

characteristics of specific sites for potential schistosomiasis transmission reflect an obvious 

impact of different ecological regions. To underscore this point, the riparian vegetation coverage 

during the dry season in the savannah region of Burkina Faso revealed environmental suitability 

as it detects irrigated agriculture as hotspot for disease transmission. In contrast, the densly 

forested riparian zones in the study sites of Côte d’Ivoire did not represent such specifically 

suitable environments, although the RS measures were comparable. The crucial role of divergent 

ecological regions is further emphasised by the results obtained from the statistical model of 

schistosomiasis risk, highlighting specific environmental features. Here, the model of each 

ecological region identified different sets of variables, which indicate that valuable information 

of RS data for one specific ecozone would be lost when models are developed across different 

ecozones, where such prior relations are not given. In view of the poor performance of the 

model across all ecozones, this study confirms the result of Brooker et al. (2001) from the United 

Republic of Tanzania, emphasising that only models fitted within the same ecological zone 

perform with reasonable fidelity. 

7.2 Transferability of the hierarchical model 

approach to other environment-related 

diseases 
Within this PhD thesis, a hierarchical model approach has been developed to bridge the spatial 

discrepancy between environmental suitability for disease-related parasites and snails and 

human infection measurements. Spatial processes of disease transmission are complex, this was 

illustrated and conceptualised for the water-based disease schistosomiasis that is the focus of 

the current work (see Section 3.3.1). However, schistosomiasis is not the only environment-

related disease, where RS data are useful for spatial risk profiling. Hence, the question of 

transferability arises with regard to the optimised application developed in this thesis to other 

environment-related diseases, which is offered for discussion. 

As outlined in the introduction (see Section 1.1), there are several categories of environment-

related diseases, such as vector-borne diseases (e.g. malaria and dengue), aerosol-borne 

diseases (e.g. avian influenza due to H5N1 virus), soil-borne diseases (e.g. hookworm infection) 

or food-borne diseases (e.g. salmonellosis). In order to evaluate the transferability of the 

hierarchical model approach, the spatial processes of disease transmission have to be reviewed 

for the different diseases. Even if exposure pathways are very similar such as schistosomiasis 

referring to water-based and cholera to water-borne diseases, spatial processes of transmission 

are different. Whereas human infection with Schistosoma spp. results from penetration of the 
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parasite through the intact skin at a suitable freshwater body where intermediate hosts have 

released cercariae, an infection with the Vibrio cholerae bacterium occurs during consumption 

of contaminated water. With regards to the spatial processes of schistosomiasis transmission, 

human infection takes place at the infested water body, while, in the case of cholera, 

transmission can happen anywhere, as it is governed by contaminated water that is consumed, 

most often due to sub-standard hygienic conditions. Nevertheless, RS data have been used to 

monitor temporal and spatial variations of chlorophyll abundance and sea surface temperature 

as proxy for dynamics of cholera (Lobitz et al., 2000; Jutla et al., 2010). In this context, the 

linkage between human infection and environmental suitability for the respective disease agent 

is affected by a spatial discrepancy of measurements. For this application, the hierarchical model 

approach developed in this thesis would need some specific modifications to link respective 

regions beyond a 5 km buffer zone. 

For the case of vector-borne diseases such as malaria and dengue, environmental data 

derived from RS aims at evaluating habitat conditions of the respective vector species. Of note, 

there is an inherent spatial discrepancy between human infection and relevant environmental 

conditions for vectors. However, in this case, the spatial relation is modified by the species-

specific flight and drift range. In contrast to schistosomiasis, the delineation of potential habitats 

for vector species is rather fuzzy, especially if these are well adapted to often man-made 

microhabitats, such as old tyres stored around households that collect rain water. For the time 

being at this small scale, vector habitats cannot be detected by means of RS. 

The direct transferability of this hierarchical model approach is limited due to the specific 

ecological requirements of environment-related diseases for transmission of the pathogen from 

human to human and its consequences on spatial processes. As soon as disease transmission 

from human to human occurs, which is the case for the current epidemic of the Ebola in West 

Africa (Butler, 2014), the potential of RS data to spatially model disease risk is highly limited. 

Despite the fact that this environment-related disease has its origin in areas adjacent to pristine 

habitats of primates or Chiroptera, which can - similar to other species - be monitored by RS 

data, this environmental information could then rather provide a basis for a dispersion model of 

the fuzzy spread of the disease among humans. Nevertheless, what can be drawn from the 

hierarchical model approach developed in this thesis is the crucial step to think spatially and 

question the specific ecological context when using RS data for disease risk profiling to fully 

exploit its potential. 

7.3 Future research needs 
Against the background of this systematic investigation of optimised RS applications for risk 

profiling of schistosomiasis, there remains the fundamental need to establish a generalised 

framework that synthesises the spatial relations of environment-related diseases and its 

implications on RS-based analyses. Such a framework could substantially contribute to bridge 

the disciplines of geographic RS and epidemiology through a common spatial perspective. 

Additionally, the yet limited transferability of the hierarchical model approach developed in this 

research needs to be further investigated and integrated in this generalised conceptual 

underpinning. 
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The model of environmental suitability needs to be complemented with ground-truthed field 

data, which could validate not only the RS variables themselves but also parameterise the 

derived variable and index suitability in reference to the measured prevalence of 

schistosomiasis-related parasite and snail species at transmission sites. Furthermore, this model 

can also be tested and adjusted with respect to similar disease ecologies as given for fascioliasis 

in wildlife, livestock and humans (Mas-Coma et al., 2009; Quayle et al., 2010). Moreover, 

suitable environments for schistosomiasis transmission are closely related to suitable habitats 

for mosquito breeding sites (Keiser et al., 2005) and could therefore provide useful information 

to further assess the environmental suitability for vector-borne diseases such as malaria, dengue 

or Rift Valley fever (Martens et al., 1997; Linthicum et al., 1999) 

Future models of disease risk based on RS data need to consider the ecotonal transitions in 

their model approach. Based on the results of this thesis, it is suggested to establish separate 

models for each ecological region and consider the variation in landscape structure as well as 

the vertical structure of the modelled area. Diseases have, however, more triggers than just the 

environment. Hence, RS is only one building block in the research on the complex and multi-

faceted phenomenon of disease transmission. Thus, in a next step, RS-based schistosomiasis risk 

models need to be complemented by demographic, educational, socio-economic and political 

data to model the comprehensive social-ecological process of disease transmission. To draw 

causal conclusions on the force of transmission from RS data, these comprehensive social-

ecological models again need data on parasite prevalence both in humans and snails. 

This work has shown that in order to fully exploit the potential of RS data, there are still 

several challenges imposing the spatial profiling of risk for a single disease. In practice however, 

polyparasitism is widespread in the developing world and resources for disease control and 

prevention are limited. Thus, the potential of RS data needs further exploration to determine the 

scope and limits within a modelling framework to predict co-endemic areas, where different 

parasitic diseases coexist (Brooker and Utzinger, 2007). In this regard, the spatial approach of 

Raso et al. (2006) has already shown that elevation was an important variable to predict the 

prevalence of S. mansoni-hookworm co-infection. Building upon the findings of this study, RS 

data are expected to fundamentally contribute to an integrative model of polyparasitc infection 

risk if the application of data and modelling respects the specific ecological requirements of the 

targeted diseases. 
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Appendix 

Table A 1: Overview of all RS variables available for the three study sites MAN, TAB and BUF. The 
nomenclature indicates the abbreviation of the RS variable as used in this study.

RS data RS variable Nomenclature MAN TAB BUF 

RapidEye Blue reflectance RE_blue X X  
Red reflectance RE_green X X  
Green reflectance RE_red X X  
Rededge reflectance RE_rededge X X  
Near infrared reflectance RE_nir X X  
NDVI RE_ndvi X X  
SAVI RE_savi X X  
MSAVI RE_msavi X X  
EVI RE_evi X X  
NDWI RE_ndwif X X  

      
Landsat 5 TM  
(dry season 
image) 

Blue reflectance lsd_blue X  X 
Red reflectance lsd_blue X  X 
Green reflectance lsd_green X  X 
Red reflectance lsd_red X  X 
Near infrared reflectance lsd_nir X  X 
Middle infrared reflectance lsd_mir X  X 
Shortwave infrared reflectance lsd_swir X  X 
Thermal infrared emissivity lsd_tir X  X 
NDVI lsd_ndvi X  X 
SAVI lsd_savi X  X 
MSAVI lsd_msavi X  X 
EVI lsd_evi X  X 
NDWI lsd_ndwif X  X 
MNDWI lsd_mndwi X  X 

      
Landsat 5 TM  
(wet season 
image) 

Blue reflectance lsw_blue   X 
Red reflectance lsw_blue   X 
Green reflectance lsw_green   X 
Red reflectance lsw_red   X 
Near infrared reflectance lsw_nir   X 
Middle infrared reflectance lsw_mir   X 
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RS data RS variable Nomenclature MAN TAB BUF 

Landsat 5 TM  
(wet season 
image) 

Shortwave infrared reflectance lsw_swir   X 
Thermal infrared emissivity lsw_tir   X 
NDVI lsw_ndvi   X 
SAVI lsw_savi   X 
MSAVI lsw_msavi   X 
EVI lsw_evi   X 
NDWI lsw_ndwif   X 
MNDWI lsw_mndwi   X 

      
Terra MODIS 
MOD13Q1 

Mean NDVI of 2010 ndvi_mean X X X 
Median NDVI of 2010 ndvi_median X X X 
Maximum NDVI of 2010 ndvi_max X X X 
Minimum NDVI of 2010 ndvi_min X X X 
Mean EVI of 2010 evi_mean X X X 
Median EVI of 2010 evi_median X X X 
Maximum EVI of 2010 evi_max X X X 

Minimum EVI of 2010 evi_min X X 
X 
 

Terra MODIS 
MOD11A2 

Mean LST of 2010 lst_mean X X X 
Median LST of 2010 lst_median X X X 
Maximum LST of 2010 lst_max X X X 
Minimum LST of 2010 lst_min X X X 
Mean of difference between day 
and night-time LST of 2010 

dtemp_mean X X X 

Median of difference between day 
and night-time LST of 2010 

dtemp_median X X X 

Maximum of difference between 
day and night-time LST of 2010 

dtemp_max X X X 

Minimum of difference between 
day and night-time LST of 2010 

dtemp_min X X X 

      
ASTER GDEM Altitude alt X X X 

Slope slope X X X 
Sink depth sinks X X X 
Stream order streams X X X 

      
RapidEye / 
Landsat 5 TM 

Water distance water_dist X X X 

      
RapidEye / 
TerraSARX 

Settlement area settl_area X X X 
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Figure A 1: Field verification form to guide the sampling of environmental in-situ data 
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Figure A 2: Impact of spatial resolution on model accuracy derived from the RapidEye database, which was 
aggregated from 5 m to 30 m, 250 m and 500 m. The red dots represent models results (R²) derived from 
the Random Forest model and blue dots refer to the results of the PLSR model. The lines reflect the results 
of spline interpolation and the grey bar represents the confidence interval. Note that cases where the 
buffer radius is smaller than the spatial resolution are not shown except for the extraction of the pixel 
value with no buffer (corresponds to 0m buffer radius). 
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Figure A 3: RMSE values of the non-hierarchical (red) and the hierarchical (blue) models for the three 
study sites MAN, TAB and BUF based on the Random Forest (upper row) and PLSR model (lower row). 
 

 
Figure A 4: NSE of the non-hierarchical (red) and the hierarchical (blue) models for the three study 
sites MAN, TAB and BUF based on the Random Forest (upper row) and PLSR model (lower row). 
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Figure A 5: RMSE of the non-hierarchical (left) and the hierarchical (right) models of the 
combined ecozones in comparison to the respective model result from the three study sites 
MAN, TAB and BUF based on the Random Forest (upper row) and PLSR model (lower row). The 
models per site are derived from the cut-set of data that match all three zones (see Table A 1). 
 

 

Figure A 6: NSE of the non-hierarchical (left) and the hierarchical (right) models of the 
combined ecozones in comparison to the respective model result from the three study sites 
MAN, TAB and BUF based on the Random Forest (upper row) and PLSR model (lower row). The 
models per site are derived from the cut-set of data that match all three zones (see Table A 1). 
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Figure A 10: Comparison between non-hierarchical (top) and hierarchical (bottom) prediction of 
S. haematobium prevalence for the study site BUF. This example is based on spatial modelling within 
a buffer extent of 3 km around school location. 

 

 

 

 



Appendix 

168 

 

Figure A 11: R² values resulting from a linear model of the validation of spatial predictions based on an 
independent external dataset at the study site MAN. 
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Non-hierarchical prediction Hierarchical prediction 

  

  

  

Figure A 12: Mean prevalence (top row), standard deviation (middle row) and coefficient of variation 
(bottom row) derived from buffer extents between 0 and 5 km using the PLSR model in TAB. 
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Non-hierarchical prediction Hierarchical prediction 

  

  

  

Figure A 13: Mean prevalence (top row), standard deviation (middle row) and coefficient of variation 
(bottom row) derived from buffer extents between 0 and 5 km using the Random Forest mode in MAN. 
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Non-hierarchical prediction Hierarchical prediction 

  

  

  

Figure A 14: Mean prevalence (top row), standard deviation (middle row) and coefficient of variation 
(bottom row) derived from buffer extents between 0 and 5 km using the PLSR mode in MAN. 
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Abbreviations 

AID Automatic Interaction Detection 

ASI Italian Space Agency  

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer 

AVHRR Advanced Very High Resolution Radiometer 

BRDF Bi-directional reflectance distribution function 

BUF Study site around Ouagadougou in Burkina Faso 

CART Classification and Regression Trees 

DALY Disability-adjusted life year 

DEM Digital elevation model 

DFD German Remote Sensing Data Center 

DLR German Aerospace Center 

EADS European Aeronautic Defence and Space Company 

ECOWAS Economic Community of West African Nations 

EMR Electromagnetic radiation 

EOS Earth Observing System 

EROS Earth Resources Observation and Science 

EVI Enhanced vegetation index 

FAO Food and Agricultural Organization of the United Nations 

GCP Ground control point 

GDD Growing degree days 

GDEM Global digital elevation model 

GIS Geographic information systems 

GNTD Global Neglected Tropical Disease database 

GPS Global Positioning System 

GTOPO30 Global 30 Arc-Second Elevation 

GUF Global urban footprint 

HSI Habitat suitability index 

ICOSA Integrated Control of Schistosomiasis in Sub Saharan Africa 

IncMSE Increase of the mean squared error 

IncNodePurity Increase in node purity 
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JPL Jet Propulsion Laboratory 

JSS Japan Space Systems 

L1B Level 1B (level of RS data preprocessing including radiometric and 
geometric sensor corrections) 

Landsat 5 TM Landsat 5 Thematic Mapper 

Landsat 7 ETM+ Landsat 7 Enhanced Thematic Mapper Plus 

LCCS Land Cover Classification System 

LP DAAC Land Processes Distributed Active Archive Centre 

LPGS Level 1 Product Generation System 

LST Land surface temperature 

LV Latent variable 

MAN Study site around the city of Man in Côte d’Ivoire 

MCDA Multi-criteria decision analysis 

MDG Millenium Development Goal 

MLR Multiple linear regression 

MNDWI Modified normalised difference water index 

MODIS Moderate Resolution Imaging Spectroradiometer 

MOD09GA Surface reflectance daily L2G global 1km and 500m 

MOD09GQ Surface reflectance daily L2G global 250m 

MOD11A2 Land surface temperature & emissivity 8-day L3 global 1km 

MOD12 MODIS global land cover product 

MOD13Q1 Vegetation indices 16-day L3 global 250m 

MSAVI Modified soil-adjusted vegetation index 

mtry Subset of predictor variables (Random Forest) 

NASA National Aeronautics and Space Administration 

NDVI Normalized difference vegetation index 

NDWI Normalized difference water index 

NIPALS Nonlinear iterative partial least squares 

NOAA National Oceanic Atmospheric Administration 

NSE Nash-Sutcliffe efficiency 

OLS Ordinary least-squares 

PCA Principal component analysis 

PLSR Partial least squares regression 

R² Coefficient of determination 

RESA RapidEye Science Archive 

RMSE Root mean square error 

RS Remote sensing 

RSS Residual sum of squares 

SAVI Soil-adjusted vegetation index 

SCI Schistosomiasis Control Initiative 

SLC Scan Line Corrector 

SRTM Shuttle Radar Topography Mission 
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TAB Study site around Lake Taabo in Côte d’Ivoire 

TPH Swiss Tropical and Public Health Institute 

TRMM Tropical Rainfall Measuring Mission 

USAID United States Agency for International Development 

USFWS United States Fish and Wildlife Service 

USGS United States Geological Survey 

UTM Universal Transverse Mercator 

VIP Variable importance measure (PLSR) 

WGS84 World Geodetic System 1984 

WHA World Health Assembly 

WHO World Health Organisation 
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Glossary 

Acrisol Acidic soils with a layer of clay accumulation. This class consists 
only of clays with low cation exchange capacity. 

Aestivation The ability of intermediate host snails to survive under dry 
conditions for a certain period of time. 

Anti-helminthic drug Pharmaceutical that takes effect to kill parasitic worms that live 
within human bodies. 

Arenosol Sandy soils with little profile development. 

Cambisol Soils with slight profile development that is not dark in colour. 

Chiroptera Scientific name for the order of bats. 

Cercaria, -ae Larval stage of the Schistosoma parasites that are free 
swimming in water and able to penetrate through the intact 
skin of humans. 

Disease vector A vector is any living agent (animal or microorganism) that 
carries and transmits an infectious pathogen into another living 
organism. 

Endemic regions Regions, where the pathogen or parasite is present. 

Endorheic Endorheic waterbodies do not drain into the sea but pertain in 
the interior drainage basin. 

Exorheic Exorheic waterbodies do not drain into the sea. 

Ferralsol Highly weathered soils rich in sesquioxide clays and with low 
cation exchange capacities. 

Gleysol Freshwater saturated soils. 

Haematuria Symptom of infection with S haematobium. Red blood cells can 
be found in the urine. 

Intermediate host An intermediate host is any living agent that harbours the 
parasite only for a short transition period during which usually 
some developmental stage is completed. 

Leptosol Shallow soil over hard rock or highly calcareous material or a 
deeper soil that is extremely gravelly and/or stony. 
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Lixisol Soils with subsurface accumulation of low activity clays and high 
base saturation that develop under intensive tropical 
weathering conditions. 

Miracidium, -a Larval stage of the Schistosoma parasites that are free 
swimming in water and need to find a suitable intermediate 
host snail to further develop to the next larval stage of 
cercariae. 

Plinthosol Soil type defined by a subsurface layer containing an iron-rich 
mixture of clay minerals (chiefly kaolinite) and silica that 
hardens on exposure into ironstone concretions known as 
plinthite. The impenetrability of the hardened plinthite layer, as 
well as the fluctuating water table that produces it, restrict the 
use of these soils to grazing or forestry. 

Prepatent period Period of time, which is necessary for a species to develop (e.g. 
from egg to adult parasite). 

Prevalence rate Proportion of a population found to have a disease. 

Pulmonate snail Snails that belong to an informal group of snails that have the 
ability to breathe air. 

Regosol Surface layer of rocky material. 

Vector competence Vector competence refers to the ability of arthropods to 
acquire, maintain, and transmit a pathogen or microbial agent 
to the final host. 

Vertisol Clayey soils that form deep and wide cracks when dry. 
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