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Abstract

Global environmental change leads to the emergence of new human health risks. As a
consequence, transmission opportunities of environment-related diseases are transformed and
human infection with new emerging pathogens increase. The main motivation for this study is
the considerable demand for disease surveillance and monitoring in relation to dynamic
environmental drivers. Remote sensing (RS) data belong to the key data sources for
environmental modelling due to their capabilities to deliver spatially continuous information
repeatedly for large areas with an ecologically adequate spatial resolution.

A major research gap as identified by this study is the disregard of the spatial mismatch
inherent in current modelling approaches of profiling disease risk using remote sensing data.
Typically, epidemiological data are aggregated at school or village level. However, these point
data do neither represent the spatial distribution of habitats, where disease-related species find
their suitable environmental conditions, nor the place, where infection has occurred. As a
consequence, the prevalence data and remotely sensed environmental variables, which aim to
characterise the habitat of disease-related species, are spatially disjunct.

The main objective of this study is to improve RS-based disease risk models by incorporating
the ecological and spatial context of disease transmission. Exemplified by the analysis of the
human schistosomiasis disease in West Africa, this objective includes the quantification of the
impact of scales and ecological regions on model performance.

In this study, the conditions that modify the transmission of schistosomiasis are reviewed in
detail. A conceptual underpinning of the linkages between geographical RS measures, disease
transmission ecology, and epidemiological survey data is developed. During a field-based
analysis, environmental suitability for schistosomiasis transmission was assessed on the ground,
which is then quantified by a habitat suitability index (HSI) and applied to RS data. This
conceptual model of environmental suitability is refined by the development of a hierarchical
model approach that statistically links school-based disease prevalence with the ecologically
relevant measurements of RS data. The statistical models of schistosomiasis risk are derived
from two different algorithms; the Random Forest and the partial least squares regression
(PLSR). Scale impact is analysed based on different spatial resolutions of RS data. Furthermore,
varying buffer extents are analysed around school-based measurements. Three distinctive sites
of Burkina Faso and Cote d’Ivoire are specifically modelled to represent a gradient of ecozones
from dry savannah to tropical rainforest including flat and mountainous regions.
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The model results reveal the applicability of RS data to spatially delineate and quantitatively
evaluate environmental suitability for the transmission of schistosomiasis. In specific, the multi-
temporal derivation of water bodies and the assessment of their riparian vegetation coverage
based on high-resolution RapidEye and Landsat data proofed relevant. In contrast, elevation
data and water surface temperature are constraint in their ability to characterise habitat
conditions for disease-related parasites and freshwater snail species. With increasing buffer
extent observed around the school location, the performance of statistical models increases,
improving the prediction of transmission risk. The most important RS variables identified to
model schistosomiasis risk are the measure of distance to water bodies, topographic variables,
and land surface temperature (LST). However, each ecological region requires a different set of
RS variables to optimise the modelling of schistosomiasis risk. A key result of the hierarchical
model approach is its superior performance to explain the spatial risk of schistosomiasis.

Overall, this study stresses the key importance of considering the ecological and spatial
context for disease risk profiling and demonstrates the potential of RS data. The methodological
approach of this study contributes substantially to provide more accurate and relevant
geoinformation, which supports an efficient planning and decision-making within the public
health sector.



Zusammenfassung

Globale Umweltverdanderungen rufen neue Gesundheitsrisiken hervor. Eine Konsequenz sind
veranderte Bedingungen fiir die Ubertragung von umweltbezogenen Krankheiten und
ansteigende Infektionen mit neu auftauchenden Erregern. Die Motivation fir diese Arbeit
basiert auf der steigenden Nachfrage, dynamische Veranderungen der Umwelt und deren
Beziehung zu Veranderungen von umweltbedingten Krankheiten zu {berwachen.
Fernerkundungsdaten gehoéren zu den wichtigsten Datenquellen fir die Umweltmodellierung, da
diese es ermoglichen, die Landbedeckung flachendeckend, reproduzierbar und in einer
adaquaten raumlichen Auflésung zu kartieren.

Ein Forschungsbedarf, der in dieser Studie identifiziert wird, ist die fehlende Bericksichtigung
einer raumlichen Diskrepanz innerhalb der bisherigen Vorgehensweise der Modellierung von
Krankheitsrisiken mit Fernerkundungsdaten. Typischerweise werden epidemiologische Daten als
Pravalenz einer Krankheit aggregiert erhoben, beispielsweise auf Schul- oder Dorfebene. Jedoch
reprasentieren diese Punktmessungen weder die raumliche Verteilung von Habitaten, in
welchen krankheitsrelevante Arten ihre geeigneten Umweltbedingungen vorfinden, noch den
Ort, an dem sich die Menschen infiziert haben. Die Konsequenz ist, dass Messpunkte der
Krankheitpravalenz und fernerkundungsbasierte Umweltvariablen, welche das Habitat von
krankheitsrelevanten Arten charakterisieren sollen, raumlich nicht Gbereinstimmen.

Das Hauptziel dieser Studie ist, ein Verfahren fir die Anwendung von Fernerkundungsdaten
bei der Modellierung von Krankheitsrisiken zu entwickeln, welches sowohl den 6kologischen als
auch den raumlichen Kontext der Krankheitsiibertragung widerspiegelt. Am Beispiel der
Krankheit Schistosomiasis werden weitere mogliche EinflussgroBen auf die Modellgiite
guantitativ bewertet. Dies sind unter anderem die verschiedenen Skalenniveaus und die
Heterogenitit von Okozonen.

In dieser Arbeit werden die Bedingungen, die auf die Ubertragung von Schistosomiasis einen
Einfluss haben, aus der bestehenden Literatur im Detail ermittelt. Es wird eine konzeptionelle
Grundlage entwickelt, die bestehende Zusammenhdnge zwischen satellitengestiitzten
Messungen, der Okologie der Krankheitsiibertragung sowie zu den Ergebnissen der
epidemiologischen Studien ermittelt. Wahrend eines Aufenthaltes im Untersuchungsgebiet
wurde die Eignung der Umwelt fiir die Ubertragung der Schistosomiasis analysiert. Diese
Umwelteignung wird durch die Entwicklung eines Habitat-Eignungs-Index (habitat suitability
index, HSI) quantifiziert und mit relevanten Fernerkundungsvariablen verknipft. Im nachsten
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Schritt werden Inhalte dieses konzeptionellen Modells gezielt fir die Entwicklung eines
hierarchischen Modellansatzes verwendet, welcher die gemessene Pravalenz in einen
statistischen Zusammenhang mit 6kologisch relevanten Messungen von Fernerkundungsdaten
bringt. Die statistischen Modelle des Risikos, sich mit Schistosomiasis zu infizieren, basieren auf
zwei verschiedenen Modellalgorithmen, dem sogenannten Zufalls-Wald Algorithmus (Random
Forest) und der Regression der partiellen, kleinsten Quadrate (Partial Least Squares Regression,
PLSR). Der Einfluss von raumlichen Skalen auf die Risikomodellierung wird anhand verschiedener
rdumlicher Auflésungen der Fernerkundungsdaten ermittelt. Darlber hinaus werden
unterschiedlich groRe Einzugsgebiete mit Hilfe eines Pufferverfahrens (Buffer) anhand der
Schulen mit Pravalenzmessungen analysiert. Risikomodelle der Schistosomiasis werden fir drei
ausgewdhlte Untersuchungsgebiete in Burkina Faso und der Elfenbeinkiste erstellt, welche
einen okologischen Gradienten von der Trockensavanne zum tropischen Regenwald sowie von
flachen und bergigen Regionen darstellt.

Diese Studie zeigt, dass Fernerkundungsdaten fiir die raumliche Abgrenzung und eine
quantitative Bewertung der Umwelteignung fiir die Ubertragung der Schistosomiasis geeignet
sind. Besonders relevante Informationen sind zeitlich dynamische Verdnderungen der
Wasserbedeckung sowie die Erfassung des Grades der Ufervegetationsbedeckung auf Basis von
hochaufgel6sten RapidEye und Landsat Daten. Hingegen sind topographische Daten und die
satellitengestiitzten Messungen der Temperatur nur eingeschrdankt geeignet um Habitate der
Parasiten und Frischwasserschnecken als wesentlichen Bestandteil der Krankheitsiibertragung zu
charakterisieren. Bei zunehmender GréRRe des Einzugsgebietes der Schulen verbessern sich die
statistischen Modelle und kénnen somit das Ubertragungsrisiko besser erfassen. Die wichtigsten
Fernerkundungsvariablen fir die Modellierung des Schistosomiasis Risikos sind die Distanz zum
nachstgelegenen Gewasser, topographische Variablen sowie die Landoberflaichentemperatur
(land surface temperature, LST). Fir jede Okozone muss jedoch eine geeignete
Zusammenstellung von Fernerkundungsvariablen getroffen werden. Ein ganz wesentliches
Ergebnis der hierarchischen statistischen Modellierung ist eine verbesserte Erklarung des
raumlichen Risikos von Schistosomiasis.

Insgesamt unterstreicht diese Studie die Bedeutsamkeit des 6kologischen und raumlichen
Kontexts fir die Abschatzung des Krankheitsrisikos und demonstriert das Potential von
Fernerkundungsdaten. Der methodische Ansatz dieser Arbeit kann wesentlich dazu beitragen,
genaue und relevante Geoinformationen bereitzustellen. Damit wird eine effizientere Planung
und Entscheidungsfindung innerhalb des Gesundheitssektors ermdoglicht.



Résumé

Le changement environnemental global conduit a I'émergence de nouveaux risques pour la
santé humaine. En conséquence, les voies de transmission des maladies liées a I'environnement,
sont modifies de meme que l'infection humaine avec I'accroissement des nouveaux agents
pathogenes émergents. La motivation principale de cette étude est la demande considérable
pour la surveillance et le suivi des maladie en relation avec la dynamique des facteurs
environnementaux. Les données de la télédétection sont les sources principales utilisees pour la
modélisation de I'environnement en raison de leurs capacités a fournir une information de
maniere spatiale, repetitive et continue pour les grandes surfaces avec une résolution spatiale
écologique adéquate.

L'importante lacune de la recherche scientifique identifiée par cette étude est la non
considération de la disparité spatiale inhérente dans les approches actuelles de modélisation des
risques de la maladie en utilisant des données de la télédétection. Généralement, les données
épidémiologiques sont regrouper a I'école ou au niveau du village. Toutefois, ces données ne
peuvent pas représenter la distribution spatiale des habitats et definir les conditions
environnementales favorable a la proliferation des agents pathogenes de la maladie, ni le lieu,
ou l'infection s’est produite. En conséquence, les données sur la prévalence et les variables
environnementales de la télédétection, qui visent a caractériser I'habitat des agents liés a la
maladie, sont spatialement disjointes.

L'objectif principal de cette étude est d'améliorer en utilisant la télédétection les modeles de
risque de maladie en incorporant I'aspect écologique et spatiale de la transmission de la
maladie. lllustré par I'étude des personnes infectées de la schistosomiase en Afrique de I'Ouest,
cet objectif comprend la quantification du niveau d'impact des régions écologiques sur les
performances du modele.

Dans cette étude, les conditions qui modifient la transmission de la schistosomiase sont
examinées en détail. Une approche conceptuelle reliant les données mesurées issues de la
télédétection, la transmission de la maladie, I'écologie et des données de I'enquéte
épidémiologique a été développé. A partir d'une étude sur le terrain, les facteurs
environnementaux a la transmission de la schistosomiase ont été évalués, ensuite quantifiés par
I'indice de qualité de I'habitat (habitat suitability index, HSI) et combiné aux données de la
télédétection. Le modeéle conceptuel de la pertinence environnemental a été affiné par le
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développement d'une approche de modele hiérarchique qui relie statistiquement la prévalence
de la maladie en milieu scolaire avec les mesures écologiques pertinentes de données de la
télédétection. Les modeles statistiques de risque de schistosomiase proviennent de deux
différents algorithmes; la forét aléatoire (Random Forest) et la régression des moindres carrés
partiels (Partial Least Squares Regression, PLSR). Le niveau d'impact a été analysé sur la base de
différentes résolutions spatiales de données de la télédétection. En outre, des divers degrés
carre des bassin de réception ont été analysés autour de mesures en milieu scolaire. Trois sites
distinctifs du Burkina Faso et de la Cote d'lvoire sont spécifiquement modélisés pour représenter
un gradient de écozones de savane seche a forét tropicale y compris les régions plates et
montagneuses.

Les résultats du modele révélent I'applicabilité des données de la télédétection pour la
délimitation spatiale et I'’évaluation quantitative de la pertinence de I'environnement pour la
transmission de la schistosomiase. Precisement, la dérivation multi-temporelle des course d'eau
et I'évaluation de leur couverture riveraine de végétation a partir des images a haute résolution
RapidEye et Landsat jugées adequate. En revanche, les données d'altitude et de température de
la surface de I'eau ont montré certaines limites dans leur capacité a caractériser les conditions
de I'habitat des parasites et des escargots en tant que composantes essentielles de la
transmission de la maladie. Avec l'augmentation des degrés carres des bassins de réception
observés autour de l'emplacement de I'école, la performance des modeles statistiques
augmente, améliorant ainsi la prédiction du risque de transmission. Les plus importantes
variables des données de la télédétection identifiées pour modéliser le risque de schistosomiase
sont la mesure de la distance des plans d'eau, les variables topographiques, et la température de
surface de la terre (land surface temperature, LST). Cependant, chaque région écologique
nécessite une serie différente de variables de données de télédétection afin d'optimiser la
modélisation du risque de schistosomiase. Le résultat primordial de l'approche du modele
hiérarchique est sa supérieure performance a expliquer le risque spatiale de la schistosomiase.

Dans l'ensemble, cette étude souligne |'importance cruciale de tenir compte du contexte
écologique et spatiale pour le profilage du risque de maladie et démontre le potentiel des
données de télédétection. L'approche méthodologique de cette étude contribue de maniere
substantielle a fournir avec plus de précision et de pertinence l'information géographique,
prenant en charge une planification efficace et la prise de décision dans le secteur de la santé
publique.

Vi
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1 Introduction

1.1 Human health and the environment

Population health is central to the three dimensions of sustainable development - society,
economy and the environment (UN, 2012a: 27). The connection of human well-being to social
capabilities, economic output and environmental resources is both that of a beneficiary and a
contributor, which points out the key role of health for sustainable development (Confalonieri et
al., 2007: 393; UN, 2012a: 27). Three of the eight Millennium Development Goals (MDGs) focus
on health concerning child health (MDG 4), maternal health (MDG 5) and the control of
communicable diseases (MDG 6). The remaining goals are key determinants of health, such as
poverty reduction, education and environmental sustainability (Dye et al., 2013: IV).

The environment has a fundamental impact on human health (Guernier et al., 2004: 740;
Confalonieri and McMichael, 2006: 6) and is estimated to account for 24% of the global disease
burden and 23% of all deaths (Priiss-Ustiin and Corvalan, 2006: 9). In a medical sense, the
environment integrates all factors that are external to human hosts and “can be divided into
physical, biological, social, cultural, etc., any or all of which can influence the health status of
populations” (IEA, 1995: 53). Thereof, biophysical environments are essential to human health
due to the basic need of the human organism for food, water, clean air, shelter and suitable
climatic conditions (Corvalan et al., 2005: 12). The relation between the environment and human
health is investigated by the scientific discipline of spatial epidemiology, which describes and
analyses geographic variations in diseases with respect to environmental, demographic,
behavioural, socioeconomic, genetic and infectious risk factors (Elliott and Wartenberg, 2004:
998). The earliest milestone for this spatial linkage between human health and the environment
has been recognised already twenty-four centuries ago, when the ancient Greek physician
Hippocrates (460-377 BC) articulated the doctrine of “Airs, Waters, Places”, pointing out the
relationship between climatic elements, water quality and diseases (Bashford and Tracy, 2012:
513). His observation of regional differences in conditions of living and corresponding
differences in prevalent diseases, led him to proclaim the importance of interactions between
place and person in determining health and disease (Rosenberg, 2012: 661). In 1849, Snow
(1855: 45-48) successfully identified the source of the London cholera epidemic by mapping
cholera cases in geographic space. This led to the discovery of a contaminated water pump as
the source of the disease. In the mid-19" century the Russian parasitologist, Pavlovsky,
formulated the concept of landscape epidemiology based on his observations that: (i) some
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diseases are limited geographically; (ii) the spatial variation of diseases can be explained by an
underlying variation in physical and/or biological conditions that support pathogen, vectors and
their reservoirs; and (iii) if abiotic and biotic conditions can be delimited on maps then both
contemporaneous risk and future change in risk should be predictable (Pavlovsky, 1966: 155-
195; Ostfeld et al., 2005: 328). Nowadays, The acquisition and analysis of the spatial components
of disease epidemiology relies on tools such as geographic information systems (GIS), remote
sensing (RS) data, and spatial statistics, which enable epidemiological research, disease
surveillance and control (Kitron, 1998: 435). Based on these tools, spatial epidemiology offers a
variety of ways to identify and map the habitat of disease vectors, to relate it to social-ecological
factors and eventually predict the potential risk of disease transmission (Kitron, 1998: 437).

Today, it is clear that population growth and economic development induce high pressure on
the global environment and contribute to the human-induced global environmental change
(Confalonieri and McMichael, 2006: 6). At the same time, this biophysical environment provides
the fundamental elements (environmental media) for the transmission of environment-related
diseases (Figure 1-1), which can be categorised as vector-borne diseases (e.g. malaria), water-
based diseases (e.g. schistosomiasis), aerosol-borne diseases (e.g. avian influenza - H5N1 virus),
soil-borne diseases (e.g. hookworm infection) or food-borne diseases (e.g. salmonellosis) (Bright
et al., 2013: 5). Thus, the escalating human pressure on the environment with the consequences
of severe changes and degradation of ecosystems have resulted in multiple, mostly negative
health impacts (Corvalan et al., 2005: 1; Confalonieri and McMichael, 2006: 8; McMichael, 2013:
1335). Extensive alteration of the natural environment such as large-scale deforestation,
expansion of settlements, infrastructure and agricultural land use or human intervention in
watersheds, lakes, and river systems triggered widespread changes in the distribution of
organisms and biodiversity (Chapin Il et al., 2000: 234) and has been accompanied by global
increases in morbidity and mortality from a number of environment-related diseases (Patz et al.,
2000: 1396). Each environmental change influences the ecological balance and the context
within which disease vectors, intermediate hosts or parasites breed, develop, and transmit a
disease (Patz et al., 2000: 1395). Degradation of ecosystems may lead to the emergence of new
human pathogens, the resurgence of old ones or change the transmission opportunities of
established vector-borne pathogens (Kitron, 1998: 442; Patz et al., 2000: 1395; Foley et al., 2005:
571-572). The expected population growth from 7.2 billion in mid-2013 is projected to reach 9.6
billion by 2050 with the largest growth in developing regions, especially in Africa (UN, 2013).
Thus, the high pressure on the environment and poor husbanding of natural resources will be
further aggravated and might severely influence the habitat conditions and abundance of
parasites, vectors, and hosts.

Besides direct anthropogenic degradation of natural environments, climate change is
increasingly driving human health impacts. The predicted greenhouse gas concentrations in the
atmosphere are expected to increase the global average temperature until the end of this
century by between 0.3 and 4.8°C and influence the patterns and amounts of precipitation
(IPCC, 2013: 18). Already during the last decades of the 20" century, anthropogenic-induced
climate change has claimed an estimated 150,000 lives annually resulting for example from
increased exposure to thermal extremes, more frequent weather disasters, changing dynamics
of disease vectors, seasonality and incidence of food-related and water-borne infections, and
crop failures (WHO, 2002b: 72; Patz et al., 2005: 310). Observations of sudden changes in
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Figure 1-1: Conceptual framework of environment-related diseases. The environment provides disease
drivers and enables disease transmission through various media and exposure pathways. Environment-
related diseases result of released or transmitted contaminants or pathogens as disease agents (adjusted
from Bright et al., 2013: 4)

temperature or rainfall have been related to explosions of vector populations causing epidemics
of malaria (Gagnon et al., 2002), Rift Valley fever (Linthicum et al., 1999) or dengue fever
(Descloux et al., 2012) in disease-endemic areas (Githeko et al., 2000: 1137). Moreover, climate
warming and alterations of rainfall patterns are expected to modify the spatial distribution of
climate sensitive diseases resulting either in emerging disease transmission in previously
unaffected areas or the disappearance of a disease due to the establishment of unsuitable
conditions (Githeko et al., 2000).

Given the dramatic global environmental change, it is a growing concern worldwide that
environmental drivers increasingly influence unacquainted exposure to disease agents and
pathways of disease transmission with the consequence of new emergence, resurgence, and
sudden epidemic outbreaks of environment-related diseases (Gratz, 1999: 51; Weiss and
McMichael, 2004: 70; Bright et al., 2013: 4). Thus, there is considerable demand for disease
surveillance and monitoring in relation to dynamic environmental drivers (Patz et al., 2000:
1402; Kerr and Ostrovsky, 2003: 299). The key aspects herein lay within the spatially explicit
guantification of disease risk, upon which any supplementary step depends. The current
challenges in spatial epidemiology must be: (i) to gain a better understanding of the
environmental impact on disease ecology; (ii) to identify immediately required action for health
authorities and environmental managers; and (iii) to improve spatially explicit predictive models
(Patz et al., 2000: 1402).

The crucial basis for predicting disease risk is spatially explicit environmental information.
Due to the systematic and consistent view of the Earth at regular time intervals and
comparatively low cost, satellite RS data belong to the key data sources for environmental
modelling and have proven to be very useful in the assessment of biophysical characteristics of
the landscape (Gillespie et al., 2008: 204), the detection of suitable habitat conditions of species
(Goetz et al., 2000: 290), and the discovery of environmental changes (Kerr and Ostrovsky, 2003:
299). In combination with GIS, RS data are thought to “revolutionise the discipline of
epidemiology and its application in human health” (Hay, 2000: 2). The current approaches and
remaining challenges of RS for epidemiological applications are described in the following
section.
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1.2 Remote sensing for modelling disease risk:
approaches and challenges

“Whatever the epidemiological question, if there is an element of environmental input,
satellites of one sort or another offer the potential for developing surveillance and early-warning
systems to address it on a global scale” (Hay et al., 2000a: xii)

The prerequisite for RS to contribute to epidemiological research and application is any distinct
relation between the physical-natural environment that can be characterised by RS data and the
ecology of disease transmission (Hugh-Jones, 1989). Cline (1970) highlighted the opportunity to
measure environmental characteristics relevant for disease occurrence by means of RS and
record them in a regular fashion. Pavlovsky’s term “landscape epidemiology” (Pavlovsky, 1966:
155) seemed particularly well adapted to highlight the essential benefit of RS that yields relevant
information about the disease influencing environment in space and time on a landscape level,
which can hardly be acquired with field-based investigations (Cline, 1970: 87). In 1985, the Life
Science Division of the National Aeronautics and Space Administration (NASA) initiated the
Global Monitoring and Human Health (GMHH) programme and investigated the capability of RS
data to predict the spatial and temporal variability in malaria vector population dynamics to
assess risk of disease transmission (NASA, 1998). Specific landscape elements such as swamps
and unmanaged pasture could significantly explain disease vector abundance, allowing the
identification of villages with high human-vector contact (Beck et al., 1994).

Over the past 30 years, the use of RS data and techniques in mapping human and veterinary
diseases has increased substantially (Kalluri et al., 2007: 1362). The wealth of scientific literature
contains a set of explorative case studies that investigate the informative value of various
satellite data and variables with their spatial and temporal properties for selected geographical
regions and in relation to specific diseases or disease agents such as vectors, parasites or
intermediate hosts (Hay et al., 1997; Beck et al., 2000; Hay et al., 2000b; Yang et al., 2005c;
Kalluri et al., 2007; Simoonga et al., 2009; Tran et al., 2010). Since those agents have specific
requirements regarding climate, vegetation, soil, and other edaphic factors and are sensitive to
changes therein, RS can be used to determine their living conditions and predict potential
distributions (Rinaldi et al., 2006: 36). The general idea behind the linkage between RS and
disease data is: (i) to identify and map parasite, vector, and host habitats and thereby better
understand complex mechanisms of disease transmission; (ii) to monitor changes in those
habitats; (iii) to predict changes in vector or host populations based on habitat modification; and
(iv) to generate efficient risk maps and early warning systems that can be used to design control
programmes (Hugh-Jones, 1989: 244-245; Kitron, 1998: 438; Beck et al., 2000: 225; Myers et al.,
2000a). However, the ampleness of case studies show that there is not one single best suited
methodological approach for RS of diseases (Curran et al., 2000: 44). On the contrary, the choice
of methodology is highly specific to a disease, due to the distinct ecological requirements of
disease transmission (Beck et al., 2000: 223).
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RS of human diseases requires interdisciplinary research approaches combining disease-
related epidemiological and ecological information with environmental characteristics. The
point, where this diverse information is combined, is its geographical location. Thus, an
integrative, geographical perspective is required to establish the process chain from integrating
specific measurements of each discipline into a spatial database, applying the appropriate
methodological approach to combine data, and interpreting added value and the resulting
information. A conceptual framework of the linkage between remote sensing and disease-
related data (Figure 1-2) illustrates how land cover and surface properties at specific locations
bridge the gap between RS measurements and disease occurrence (Curran et al., 2000: 40-41). It
varies from physical and well-understood links between surface properties, electromagnetic
radiation and image reflectance to mainly empirical links between a vector or intermediate host
in the field and a patient in a hospital, the latter being the least understood (Curran et al., 2000:
44). The disease itself, hence the measure of human infection provides a distal relation to
specific surface properties, whereas species involved in the disease transmission cycle have a
direct relation to the biophysical environment, which is explained by their specific ecological
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requirements and environmental habitat (Hirzel et al., 2002: 2028). The preferred model
approach to enhance the contextual understanding of disease transmission ecology and predict
disease risk based on RS data (Figure 1-2), consists of a preliminary linkage between RS data and
disease-related species in its environment and additional information on resulting disease
prevalence in humans (Roberts et al., 1991: 273-274). However, due to scarcity of data on
disease-related vector or host species, a feasible, but pragmatic predictive model approach
(Figure 1-2) is to link RS data directly to human disease prevalence (Hugh-Jones, 1991: 202-203).
In this PhD thesis, the linkage between RS data and vector or host specific characteristics results
in the information of environmental suitability for disease transmission, whereas the linkage
between human disease prevalence and RS data result in the measure of disease risk. To model
environmental suitability or disease risk using RS data two approaches may be used, individually
or combined. These are: (i) biology-based, mechanistic models; (ii) statistical, correlative models
(Malone, 2005; Kearney, 2006). The first approach integrates biological requirements of a
species and mechanistic analyses of its fitness known from laboratory or field studies to model
environmental preferences, limits of tolerance, and behaviour of the organism (Malone, 2005:
28; Kearney, 2006: 186). The latter approach models a statistical relationship between survey
records of observed species or diseases and the corresponding environmental conditions
measured at the survey location to predict the established relationship into space and time
(Malone, 2005: 27). The aim of both model approaches is to measure the suitability of an
environment to establish the niche of a disease as zone, where the pathogen, the
vector/intermediate host, and the infected human converge and form a biocenosis in space and
time (Malone, 2005: 28).

However, from a geographical point of view, one of the remaining challenges of this defined
association between RS data and environment-related diseases is an inherent spatial mismatch
between locations of vector or host habitats and human disease prevalence, which again varies
in dependence of the disease-specific transmission ecology and the sampling location of
respective data. For the case of schistosomiasis, which is the target disease in this thesis to
demonstrate this phenomenon, the transmission cycle from human to human requires the
parasite to meet specific snails as intermediate host within an aquatic environment. While
human infection must happen within aquatic habitats, where parasite and freshwater snails
occur, survey measurements of disease prevalence are mainly located at schools where the most
vulnerable group is identified. The fact that these disease-related components are not spatially
super-imposed has already been mentioned by Curran et al. (2000: 44). At the time of writing
this thesis no schistosomiasis risk model based on RS data has recognised this phenomenon,
which however, increases uncertainties inherent to the data and modelling approaches — an
aspect that must be addressed for improved risk profiling (Brooker, 2007: 1).

Although a large variety of RS data are available and expected to provide useful information
for epidemiological studies (Hay et al., 2006), mainly freely available, pre-processed RS products
with coarse spatial resolution have been utilised. Most studies use pre-processed, readily
available calculations of the normalized difference vegetation Index (NDVI), “while other existing
vegetation indices, not directly accessible due to their complex nature, are used rarely but can
be helpful for health studies” (Herbreteau et al., 2007: 401). At the same time high spatial
resolution RS data have been explored only rarely, whereas these data are expected to be highly
advantageous to specifically address the above-mentioned spatial mismatch between disease-
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related components, and for the detection of heterogeneous habitat conditions of various
disease vectors on a local scale (Goetz et al., 2000: 303; Herbreteau et al., 2007: 402). The
current application of RS data results in a limited adaptability of environmental information to
address disease-related biological questions at ecologically relevant scales (Herbreteau et al.,
2007: 400-401) and points the need to further explore the potential of RS data to target the
disease-specific ecology.

Issues of scale and extent are fundamental to spatial statistical analysis, because ecological
and epidemiological processes operate differently dependent on scale and area of observation
(Robinson, 2000: 92). Disease epidemiology has to deal with an inherent complexity of biological
systems, spanning the range of phenomena from those so fine that they operate at the level of
the molecule to those so extensive that they can only be studied for large areas (Hay et al.,
2000a: xi). With the objective to detect, analyse and explain the spatial heterogeneity of a
disease, one has to refer to the variables that describe the data (e.g. vector density, disease
cases, micro-habitat conditions), but also to the nature of the spatial units themselves, their size,
shape and configuration (Kitron, 1998: 436). In this sense, the application of RS data to profile
disease risk needs to consider the appropriate spatial resolution regarding the ecological process
under investigation. Environmental suitability and schistosomiasis risk have been modelled from
local (Clennon et al., 2004; Raso et al., 2005) to national and continental scales of observation
(Clements et al., 2006b; Brooker, 2007; Schur et al., 2013; Stensgaard et al., 2013), most
probably resulting in different predictions for the overlapping area. The phenomenon that
model results are expected to vary considering different spatial scales (Openshaw, 1984) has not
yet been investigated and its impact on model performance never quantified for the case of
schistosomiasis risk profiling.

1.3 Objectives and outline

As outlined above, previous RS applications for profiling disease risk have not sufficiently
addressed the ecological and spatial context of this interdisciplinary research approach. Against
this background and based on the specified need for close collaboration between
epidemiologists and geographers to fully exploit the potential of RS data and adapt the
information to the needs of public health concerns (Mayer, 1983: 1220; Herbreteau et al., 2007:
402-403), this is specifically addressed in this thesis. The aim is to bridge the disciplines of
geographical RS, disease ecology, and epidemiology through a conceptual underpinning of their
linkages and an explicit spatial analysis of the respective data, illustrated by case studies
pertaining to schistosomiasis in West Africa.

The overall objective of this research is to investigate the potential and optimised application
of RS data for modelling environmental suitability and disease risk for schistosomiasis
transmission.

Considering the impact of global environmental change on population health, the
establishment of robust RS methods to monitor disease risk under changing environmental
conditions is of increasingly high interest. The allocation of up-to-date, accurate, and relevant
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geoinformation for planning can essentially contribute to informed decision-making within the
public health sector and support the efficient allocation of the sector’s limited ressources. In
contrast to existing schistosomiasis risk predictions that have used RS data, this study focusses
on the necessity to challenge the diversity of influencing factors on the accuracy of RS based
disease risk models such as the selection of appropriate variables, the impact of different scales,
or ecological regions. These research gaps are directly addressed in this thesis by investigating
multi-scale RS data from RapidEye, Landsat 5 Thematic Mapper (TM), and the Moderate
Resolution Imaging Spectroradiometer (MODIS) on the Terra platform with spatial resolutions
ranging from 6.5m to 1km. Its individual pre-processing allows the derivation of a series of RS
variables tailored to the specific disease ecology. With the geographical focus of this thesis being
West Africa, where both schistosomiasis burden and the need for control remain greatest
(Brooker, 2007: 2), the environmental gradient ranging from near desert to tropical rainforest
and including flat and mountainous regions provides a useful basis to systematically investigate
the impact of different ecological regions. This has most often been neglected by selective case
studies but has been shown by Brooker et al. (2001: 1001) to have significant impacts on model
accuracy.

To meet the overall objectives of this research, this thesis addresses specifically the following
research questions:

(1) Which RS data and variables are most useful to model environmental
suitability and disease risk?

(2) How can the spatial discrepancy between environmental suitability for
schistosomiasis transmission and the measure of disease risk be resolved?

(3) Which scale is most appropriate for spatial modelling of schistosomiasis risk?

(4) How do different ecozones impact the performance of schistosomiasis risk models in
West Africa?

Figure 1-3 outlines the structure of contents and methods employed in this thesis. The
geography and disease epidemiology of the study area in West Africa are described, with focus
on the specifically investigated local study sites, in Chapter 2. Given the interdisciplinary
character of this thesis, ecological details relevant for disease transmission, its linkage to RS
measurements of environmental conditions and a conceptual framework for modelling these
data are elaborated for the case study of schistosomiasis in Chapter 3. The procedures of pre-
processing epidemiological and RS data and sampling environmental in situ data used for the
analysis in this thesis are specified in Chapter 4. Chapter 5 investigates the potential of RS data
to model and predict environmental suitability for schistosomiasis transmission using the habitat
suitability index (HSI). Based on this approach, potential disease transmission sites are spatially
delineated, its suitability for schistosomiasis-related snails and parasites quantified, and the
transferability of this locally established model to different ecological regions evaluated. In
Chapter 6, the potential of RS data to model and predict schistosomiasis risk is elaborated using
two different statistical algorithms. Based on the spatial delineation of potential disease
transmission sites derived in Chapter 5, a hierarchical model approach is developed and evalu-
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Figure 1-3: Overview of the structure of this thesis




Introduction

ated to resolve the spatial discrepancy between environmental suitability and schistosomiasis
risk. Moreover, this chapter evaluates the importance of the selected RS variables as well as the
impact of different scales and ecological regions on model performance. Chapter 7 provides a
synthesis of the results of this thesis and gives concise answers to the research questions posed.
The transferability of the optimised application of RS data to profile the risk of other
environment-related diseases is discussed and an outlook on possible future research questions
is provided.
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2 Geography of Burkina Faso and Coéte
d’'Ivoire

The study area of this thesis is situated in West Africa and comprises the countries Burkina Faso
and Cote d’lvoire (Figure 2-1). In general, sub-Saharan Africa is considered a hotspot of
schistosomiasis transmission due to its suitable climate, the existing water management
practices together with a high level of poverty and low sanitary standards. Both countries,
Burkina Faso and Cote d’lvoire, are endemic regions of schistosomiasis with prevalence rates
estimated higher than 50% for Burkina Faso (Utzinger et al., 2011a: 124) and 9.1% for Cote
d’lvoire with a highly focal distribution (Yapi et al., 2014). Three local study sites have been
investigated in this study, namely: (i) BUF in central Burkina Faso; (ii) MAN around the city Man
in western Cote d’lvoire; and (iii) TAB around the Lake Taabo in south-central Cote d’lvoire (see
Figure 2-1). They represent a transect of ecozones ranging from dry savannah in the North to
tropical rainforest in the South and are characterised by environmental gradients of topography,
land cover, and climate. Within each study site, the disease epidemiology is described by highly
heterogeneous prevalence rates as shown in more detail in Section 4.1. Thus, these sites well
represent the requirements to specifically address the research objectives of this thesis, such as
the impact of scale or ecozone on modelling schistosomiasis risk.

2.1 The biophysical environment

2.1.1 Topography

The relief of the study area is generally flat. The only mountains are located in and around the
study site MAN in western Cote d’lvoire with few peaks higher than 1,000m (Savane, 2010b:
122) (Figure 2-1). The southern region of Coéte d’lvoire is characterised by a plane coastal strip
that is to the North delimited by a belt of dissected table lands varying from 300 to 600m in
altitude (Poorter et al., 2004: 7). An extensive zone of high plateaus spans from the centre of
Cote d’Ivoire to the North and covers most of Burkina Faso with only few isolated reliefs, e.g. in
the East and North-west of Cote d’lvoire or the South-west of Burkina Faso (Savane, 2010b: 122-
123) (Figure 2-1). The regional contrast between elevations is of high relevance with respect to
schistosomiasis transmission risk as topographic contrast essentially shapes the runoff
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characteristics of surface water. Figure 2-2 illustrates the contrast (difference between minimum
and maximum) of elevation data within 1km grid cells and illustrates the regions with steep
topographic brims in dark purple, whereas flat terrains appear in green. The topographic
contrast varies strongly between the three selected study sites from high contrast in MAN, few
peaks of high contrast in TAB, and a single elevated outcrop in the predominantly flat terrain of

the study site BUF.
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Figure 2-1: Overview of the study area Burkina Faso and Céte d’Ivoire in West Africa. The selected study

sites BUF, MAN and TAB are indicated by the black rectangles with the solid lines. The sub-site Ziniaré in
BUF represents the footprints of available high-resolution RapidEye data. Both study sites in Céte d’lvoire

are fully covered by RapidEye data.
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Figure 2-2: Topographic contrast in the study area derived from minimum and maximum elevation of
SRTM data within 1 km grid cells.

2.1.2 Geology and soils

From a geological perspective, the study area is located on the south-eastern margin of the West
African Craton, a stable and spacious unit of Precambrian basement. Granites, gneisses, quartz,
and schists form the main parental bedrock from which soils develop (Poorter et al., 2004: 8-9;
Reichert et al., 2010: 35). Regions that differ from this largely homogeneous crystalline base are
a sandstone massif rich in aquifers at the western border of Burkina Faso, rows of fossil dunes in
its northern boundary and the sedimentary basin at the southern coastal region of Céte d’lvoire
(Dipama and Anne, 2010: 126-128; Savane, 2010b: 122).
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The distribution of soils in the study area is illustrated in Figure 2-3. The zonal soil of the
humid region of Cote d’lvoire represented by the study site MAN is Acrisol with inclusions of
Cambisol, whereas the typical soil below tropical rainforest mainly towards the coastal region is
Ferralsol. The soil types within the study site TAB in Cote d’lvoire are a combination of Acrisol,
Cambisol, Lixisol and Plinthosol. In Burkina Faso, the Plinthosol and Lixisol are the zonal soil
types of the less humid climate. The northern region of Burkina Faso is characterised by
Arenosol, which is the typical zonal soil for dry regions. The study site of Burkina Faso is
characterised by the combination of Plinthosol and Arenosol with inclusions of Regosol,
Leptosol, Cambisol, Lixisol, Gleysol, and Vertisol (FAO et al., 2012).
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Figure 2-3: Soil types of the study area
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Soils in the study area are typically low in nutrients and leaching is the predominant
pedogenetic process (except for higher elevation areas with younger soils) resulting in low cation
availability (0—2cmol/kg) (Poorter et al., 2004: 8-9; Traore and Anne, 2010: 130). The areas
around streams are characterised by hydromorphic pedogenesis that evolves under the
influence of an excess of temporary water resulting in Gleysols (Traore and Anne, 2010: 130-
132). With respect to the potential risk for transmission of schistosomiasis, the water holding
capacity of soils is of relevance due to its impact on snail survival. This has been estimated to be
low (<25mm water per meter of soil) in the northern dry region of Burkina Faso, moderate (25—
100mm) for most of the study area, and high (100—200mm) for the hydromorphic soils along the
streams and seasonal flooded areas (USDA-NRCS, 1998).

2.1.3 Climate

The climate zones of the study area illustrated in Figure 2-4 and described in Table 2-1 show a
moisture gradient increasing from North to South. Interannual variations of rainfall are mainly
determined by the oscillation of the intertropical convergence zone (ITCZ), where humid
maritime and dry continental air masses meet and the convection process close to the Sun
zenith creates favourable conditions for rainfall (Poorter et al., 2004: 7-8; Dipama, 2010a: 122-
124). The northern end of the study area (Sahelian climate zone) is the zone of lowest rainfall
and is characterised by a high rate of potential evapotranspiration due to the high temperatures
throughout the year. The Sudano-Sahelian climate zone covers most of Burkina Faso that
experiences one rainy season from May to October with generally mid-range temperatures
between 20 and 30°C. The border region of Burkina Faso and Cote d’lvoire is characterised by
the Sudanian climate with one prolonged rainy season from April to November (Dipama, 2010a:
122-124). Towards the south, Céte d’lvoire is exposed to four seasons per year, because the ITCZ
transits this region both during its northward and southward movement (Chmielewski et al.,
1998: 156-157). The difference between the Baoulean climate in central Cote d’lvoire and the
Guinea climate in the South is that the monthly amounts of rainfall between April and June and
August and October are relatively
homogeneous to the Baoulean 1,40 2-1: characteristics of climate types in the study area
climate, whereas there is a peak of Burkina Faso and Céte d’Ivoire (Dipama, 2010a: 124; Savane,
of very heavy rainfalls in the  2010a:124)

coastal region of Céte d’lvoire

Type of climate Precipitation Characteristics of
during the first rainy season from (mm/a) season
May to July (Figure 2-4) compared Sahelian climate <600 2 sgas.ons: dry, ramy
to the second rainy season (rainy: 2-3 months)
- i 2 : i
between October and November Sgdano sahelian 600 —900 Seasons dry, rainy
climate (rainy: 4-5 months)
(Savane, 2010a: 125). In contrast, 2 seasons: dry, rainy

Sudanian climate >900-1,700

the mountainous climate zone is (rainy: 5-6 months)

azonal  and  results  from  Baoulean climate 1,500-2,200 4 seasons:
. e . 2 dry, 2 rainy
orographic modification of the 2 semons,

atmospheric circulation Guinean climate 1,300-2,400

(Chmielewski et al., 1998: 323-
325). A mountainous climate zone

2 dry, 2 rainy
2 seasons: dry, rainy

Mountain climate 1,500-2,200 (rainy: 6-7 months)

with one extensive rainy season is
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found in the region around the city Man in western Coéte d’lvoire. The temperature in sub-
tropical and tropical climate zones is characterised by a diurnal climate with higher temperature
ranges between day and night than between seasons of the year (Chmielewski et al., 1998: 71).
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Climate data: WorldClim (Hijmans et al., 2005)

Figure 2-4: Climate zones of the study area and Walther Lieth climate diagrams of selected sites in the

study area. The climate diagrams have been created based on estimates between 1950 and 2000 (Hijmans
et al., 2005)

2.1.4 Vegetation

The vegetation zones of the study area are in correspondence with the climate zones described
in Section 2.1.2 ranging from the Sahel in the northern end over several savannah biomes to the
tropical rainforest in the southern end of the study area (Figure 2-5) (White, 1983). However, in
this region, human land use strongly modifies the climate-related, characteristic zonal
vegetation. The Sahel zone is characterised by sparse vegetation of thorn bush and savannah
scrub, where grasses are short due to extensive grazing (Gornitz, 1985: 290). Towards the South,
the transition to the Sudanian savannah is reached with yearly rainfalls exceeding 600mm. The
vegetation in this zone covering the study site BUF - originally characterised by dense shrub
thickets with scattered trees — is degraded to open tree savannah due to repeated burning
practices and permanent land cultivation (Gornitz, 1985: 288-289). Subsequently, the Sudan-
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Guinea savannah is reached, where yearly rainfall exceeds 1,000mm. The former closed
woodland has been degraded through centuries of repeated grassfires and farming resulting in
an open savannah woodland with scattered fire-resistant short trees and tall grass (Gornitz,
1985: 288). The forest savannah mosaic zone spans the transition zone between the Guinea-
savannah and the tropical rainforest, which varies with its latitudinal expansion and is highly
modified by anthropogenic land use due to logging and extensive farming, which also affects the
north-eastern study site TAB. The southern end of the study area is located in the tropical
rainforest zone, which is characterised by an evergreen or semi-evergreen rainforest and
exhibits one of the world’s hotspots of biodiversity (Myers et al., 2000b: 853). It has an average
canopy height between 30 and 50m above ground level (Poorter et al., 2004: 10). However, the
average deforestation rate (1981-1990) of tropical rainforest in Céte d’lvoire has been assessed
to be 7.6% per year resulting in a remaining forest cover of 11,230km? in 1990 from an original
forest cover of 150,000km? in 1981 (Chatelain et al., 2004: 15). In general, the study area has
experienced an enormous rate of desertification in the North and deforestation in the South due
to human pressure from unsustainable farming practices and the need for resources (Gornitz,
1985: 287-288; Poorter et al., 2004: 12; Porembski et al., 2010: 67-68).
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Picture A & C: Dr. Martin Wegmann, University of Warzburg

Picture D: Dr. Giovanna Raso, Swiss Tropical and Public Health Institute

Figure 2-5: Vegetation zones in the study area according to White (1983). Pictures A to D illustrate the
vegetation zones from the field perspective for the corresponding sites indicated in the map.
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Apart from the zonal vegetation that responds mainly to the climatic gradient, there are
azonal vegetation types occurring in areas, where local site conditions dominate. The most
relevant examples within the study area are: (i) gallery forests that are found along riverbanks,
where the high moisture availability allows them to penetrate deep into the savannah zone, and
(i) rocky outcrops of granitic or gneissic inselbergs and laterite plateaus promoting a multitude
of habitat types e.g. for desiccation-tolerant vascular and carnivorous plants especially during
the rainy season (Poorter et al., 2004: 10-11; Porembski et al., 2010: 67).

2.1.5 Hydrology

The hydrology corresponds to the most decisive criteria to determine the spatial dynamic of
schistosomiasis transmission. In Burkina Faso, rivers are characterised by endorheic drainage,
where water coming from the southern and eastern catchments run dry in the Sahelian climate
zone. This implies that rivers and specifically their sections towards the North are seasonal. In
contrast, rivers in Coéte d’lvoire have an exorheic draining due to their flow from the northern
elevation towards the South mounding into the Atlantic Ocean often via estuaries and lagoon
systems (Figure 2-6) (Dipama, 2010b: 135; Savane, 2010c: 127).

Despite the dry climatic conditions and the flat relief in Burkina Faso, the river network is
relatively dense due to the discharge coming from three major outflow basins: the Niger in the
East, the Volta in the South-east, and the Comoé in the South-west (Dipama, 2010b: 134-135).
This river network is further subdivided by nearly 2,100 dammed lakes, which provide surface
water for manifold usage, especially during the dry season when rivers temporarily dry out.
Artificial dammed lakes strongly modify the river hydraulic, which results in e.g reduced water
flow velocity with huge impact on the environmental suitability for transmission of
schistosomiasis (N'Goran et al., 1997; Dianou et al., 2003). This environmental feature is very
well demonstrated based on the satellite images available for the study site BUF. Additionally,
one finds ponds where rainwater fills topographic depressions, these play a crucial role in
pastoral life especially in the northern part of Burkina Faso, where they constitute the only
major water source besides the sparse confined groundwater wells (Dipama, 2010b: 134).
Unfortunately, these important hydrologic features cannot be demonstrated on the map of the
study area due to the lack of respective data. However, specific sites of hydrological importance
such as small-scale reservoirs, temporary ponds, dried out sections of rivers or irrigation systems
have been visited in the study site BUF and are described in Section 4.3. These hydrological
features are slightly different in Cote d’lvoire. There are 570 artificial water reservoirs created
predominantly for agricultural and hydroelectric power production (Savane, 2010c: 126-128)
with a high impact on schistosomiasis transmission (N'Goran et al., 1997; Steinmann et al.,
2006). However, due to the more humid climate, the agriculture is less dependent on the
storage of water through constructed dams and irrigation practices as witnessed in Burkina Faso.
Furthermore, the high amount of rainfall in the study sites MAN and TAB is expected to have an
impact on water flow velocity of the presumably perennial rivers.

The hydrological potential is composed of renewable surface and groundwater resources and
varies between the North (Burkina Faso) and the South (Cote d’lvoire) of the study area. In
Burkina Faso, renewable surface water contributes with only 27% and groundwater with 73% to
the hydrological potential of the country (28.5 billion m3) (Dipama, 2010b: 134-136). The total
renewable water resources per capita and year are 715m?3 (FAO, 2014a). This is dissimilar to Cote
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d’lvoire, where renewable surface water contributes with 49% and groundwater with 51% to the
hydrological potential of the country (76.7 billion m3) (Savane, 2010c: 128-129). Here, the total
renewable water resources amount to 3,940m? per capita and year (FAO, 2014a).
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Figure 2-6: Hydrology of the study area illustrated by the extent of watersheds, rivers, lakes and the
stream order modelled from a digital elevation model (DEM). The derivation of stream order is described
in Section 4.2.2
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2.2 The human environment

2.2.1 Socio-cultural organisation

As in almost all developing countries, the population of the study area experienced rapid growth
with an average annual growth rate of 3.4% in Burkina Faso and 2% in Cote d’Ivoire between the
years 2002 and 2012 (Table 2-2) (FAO, 2014a). The total population in the year 2012 has been
estimated to be around 17.5 million inhabitants in Burkina Faso and 20.6 million in Cote d’lvoire.
Thereof, the majority of the population in Burkina Faso (73%) lives in rural areas, whereas the
proportion between rural (48%) and urban (52%) population is relatively balanced in Cote
d’lvoire (FAO, 2014a). The capitals Ouagadougou (Burkina Faso) and Yamoussoukro (Cote
d’lvoire) had an estimated population (in the year 2011) of 2.1 and 1.0 million, respectively (UN,
2012b). The comparably low number of inhabitants in Yamoussoukro can be explained by the
relatively recent transfer of the Ivorian capital status from Abidjan (4.3 million inhabitants in
2011) to Yamoussoukro in 1983. Still today, Abidjan is the economic capital of the country and
seat of the government (UN, 2012b), presumably due to its favourable location close to the sea.

The distribution of the population varies significantly within both countries, which is
illustrated in Figure 2-7. In Burkina Faso, the central region around the capital followed by the
western region around the economic capital Bobo-Dioulasso are characterised by higher
population density in contrast to the very low population density in the eastern parts of the
country (Senghor, 2010a: 139-140). In Cote d’lvoire, the South is more densely populated than
the North. The cities with highest population densities are Abidjan, Bouaké, Daloa, and
Yamoussoukro.

In Burkina Faso, census results showed significantly more women than men in the years post
1985, i.e. 93 men per 100 women (Senghor, 2010a: 138-139). Overall, there are 60 ethnic groups
and 60 languages spread among the Burkinabe population, whereby the principle ethnic group,
the Mossi, account for with more than 48% of the population. They are followed by the Fulani
with more than 10% and the Bobo, the Gourmantché, and the Gurunsi each with more than 7%.
In Burkina Faso, the major religions practiced are Islam and Christianity, whereby both are often
practiced in tandem with traditional indigenous beliefs (Senghor, 2010a: 140). Almost a quarter
of the population in Céte d’lvoire is comprised of foreigners who immigrated almost exclusively
from the neighbouring countries being members of the Economic Community of West African
Nations (ECOWAS). Major ethnic groups in Cote d’lvoire are: Akan (41%), Mandé North and
South (26.5%), Voltaic and Gur peoples (17.6%), and the Krou (12.7%). The religious composition
of the Ivorian population is characterised by 38.6% following Islam, 30.4% Christians, 11.9%
Animists, and 17.4% that are not a member of any religious group (Kouassi, 2010: 140-141).

The educational level of adolescents between 15 and 24 years of age indicated by the rate of
literacy is generally lower in Burkina Faso (39.3%) than in Cote d’lvoire (67.5%) (Table 2-2). More
than a third of the children of primary school age do not go to school in Burkina Faso (35%) and
Cote d’lvoire (38%) (UNESCO, 2011). However, high uncertainty is inherent in these national
indicators as demonstrated by another source, where over 70% of the population of 7 years or
older has no education referring to class attendance in Burkina Faso (M.E.F., 2008; Senghor,
2010b: 142). The literacy rate is higher among the young population compared to adults and
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generally more than 10% higher among the male population compared to the female population
(UNESCO, 2011)
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Figure 2-7: Population density in the study area derived from the WorldPop database (Linard et al., 2012)

2.2.2 Economy and agriculture

Burkina Faso and Céte d’lvoire are categorised as low-income and lower-middle-income
countries with an estimated gross domestic product (GDP) of USS$ 10.44 billion and 24.68 billion,
respectively (Table 2-2) (World Bank, 2014). In Burkina Faso, the agricultural sector has with 52%
the largest contribution to the GDP and accounts for 79% of the country’s export mainly from
livestock, food, and cash crops. Further economic income results from mining (e.g. gold, zinc,
copper), embryonic industries predominantly for agro-alimentary and textile production and a
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growing tertiary sector (e.g. hotel and restaurant industry, handicrafts) (Senghor, 2010b: 142-
148). In Cote d’Ivoire, the tertiary economic sector represented with 43.7% the highest activity
(I: 28%, 1I: 20.3%) resulting a GDP growth rate of above 2%, given the situation in the year 1996.
However, since the coup d’état in 1999 and the 2002 rebellion, Cote d’lvoire experienced
repetitive crises with great disruptions to its economy. In 2010 and 2011, another political crisis
has massively destabilised the Cote d’lvoire. These conflicts lead to decreasing economic
activities and increasing poverty (Doumbia, 2010: 146-147). Nevertheless, given the latest data
from the World Bank (2014) and UNESCO (2011), the GDP of Cote d’lvoire is still more than
double the GDP of Burkina Faso and the poverty rate of 46% is far less than that of Burkina Faso
(73%). The most actual information on malnutrition rates of children under 5 years of age in
Cote d’lvoire comes from the year 2007, where it was high at 29.4%. In Burkina Faso, the very
high malnutrition rate estimated in the year 2006 (37.6%) decreased significantly to 26.2% in
2010 (World Bank, 2014). An important socio-economic indicator in the context of this research
represents the access to improved sanitation facilities. Not even a quarter of the population in
Cote d’lvoire (23.9%) is supplied, whereas the situation is even worse in Burkina Faso (18%)
(World Bank, 2014). Especially among the poor, the access to basic services such as education or
sanitation as well as to health centres and hospitals is difficult (Doumbia, 2010: 148).

Table 2-2: Selected socio-cultural and socio-economic indicators for the study area Burkina Faso (BF) and
Céte d’Ivoire (RCI). Life expectancy at birth is given in years representing the situation in the year 2011;
Infant mortality rate is denoted as number of deaths per 1000 live births for the year 2011; the percentage
of population growth rate has been calculated for the time span between the year 2002 and 2012; literacy
rate is denoted as percentage of above 15 year old adults (a) or adolescents (ac) between 15 and 24 years
who were literate in the year 2007 (BF), respectively in the year 2011 (RCl); school absenteeism is given as
percentage of children at primary school age who were out of school for the year 2011 (BF), respectively
for the year 2009 (RCl); access to improved sanitation is indicated as percentage of the population with
access to improved sanitation facilities for the year 2011, malnutrition prevalence is given as percentage of
children under 5 years derived from the weight for age ratio for the year 2010 (BF), respectively for the
year 2007 (RCl); the gross domestic product (GDP) is given in billion USS and estimated for the year 2012;
the level of poverty is given as percentage of the population that live with less than USS 2 per day and
represents the situation in the year 2009 (BF), respectively in the year 2008 (RCI).

Indicator Burkina Faso Cote d’Ivoire Source

Life expectancy [years] 55 55 UNESCO (2011)
Infant mortality rate [%so] 82 81 UNESCO (2011)
Population growth [%] 3.4 2 FAO (2014a)
Literacy [%] 28.7 (a), 39.3 (ac) 56.9 (a), 67.5 (ac) UNESCO (2011)
School absenteeism [%] 35 38 UNESCO (2011)
Access to sanitation [%] 18 23.9 World Bank (2014)
Malnutrition prevalence [%] | 26.2 29.4 World Bank (2014)
GDP [billion USS] 10.44 24.68 World Bank (2014)
Poverty [%] 73 46 UNESCO (2011)

As already mentioned in Section 2.1.4, humans have converted most of the original forest
into savannah and agricultural land and only few natural parks and sacred sites remain (Janssen
et al., 2010: 90). Agriculture emerges in the northern part of the study area, as soon as river
water or sufficient amount of precipitation allows this. In general, West African agriculture is
predominantly rain fed and therefore dependent on the seasonal and spatial distribution of
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precipitation (Janssen et al., 2010: 88). However, especially in northern and central Burkina Faso
the collecting of rain water through a variety of artificial river dams and pools (Section 2.1.5) is
an established practice to prolong or even enable agriculture. Agricultural practices are mainly
based on traditional techniques for crop production (i.e. millet, maize, sorghum). Only the large-
scale and water-intensive production of cotton and rice is driven by politically supported modern
agricultural techniques. In the northern area, livestock farming is extensively practiced by
traditional herdsmen and farmers (Senghor, 2010b: 143-144). In Céte d’lvoire, the most widely
applied agricultural method is the use of fire for clearing in slash-and-burn cultivation, which
constitutes the cutting a section of forest or thinning out savannah to prepare or renew land for
rain-fed crop farming (Kouassi and Ahoussi, 2010: 150-151). In Burkina Faso, of the more than 8
million economically active inhabitants, 7.4 million are active in agriculture, whereas in Cote
d’lvoire, from 7.8 million economically active inhabitants, only 2.8 million are active in
agriculture (FAO, 2014a).

2.3 Schistosomiasis epidemiology

The study area is an endemic schistosomiasis region where moderate to high transmission rates
have been observed (WHO, 2010b). The general epidemiology and control strategies of
schistosomiasis are described in Sections 3.1.1 and 3.1.3, respectively. In the following, specific
epidemiological characteristics and national activities of disease control with relevance to this
thesis are briefly documented for Burkina Faso and Céte d’Ivoire.

In Burkina Faso, a review by Poda et al. (2004) has confirmed that no districts were free of
schistosomiasis transmission and its spatial distribution had a typical focal pattern. The most
frequent infections spread all over Burkina Faso result from the Schistosoma haematobium
parasite, whereas Schistosoma mansoni was less frequent and located only in six districts in the
southern and western part of the country (Poda et al., 2004). Epidemiological surveys that have
been conducted between 2003 and 2007 revealed a prevalence rate of S. haematobium
between 1.7 and 81.7% with the severest infection rate in the northern region (Figure 2-8)
(Dadjoari, 2011). The corresponding snails prevalent in Burkina Faso are Bulinus truncatus, Bu.
senegalensis and Bu. globosus for S. haematobium and Biomphalaria pfeifferi for S. mansoni. The
heterogeneity in transmission pattern of schistosomiasis is closely linked to the spatial
distribution of preferred breeding sites of the respective snail hosts and the principal point of
contact between people and the parasites (Boelee et al., 2009: 13). Based on snail surveys in
Burkina Faso carried out between 1985 and 1995, Poda (1996: 57-59) has found that 41% of
intermediate snail hosts have been found in small reservoirs, 34% in rivers, 20% in temporary
ponds, 3% in irrigation channels and 2% in natural lakes. This shows the importance of small
reservoirs with respect to the distribution of schistosomiasis in Burkina Faso (Boelee et al., 2009:
16). In general, changes in the natural hydraulic of water systems through dam construction are
an amplifying factor for the proliferation of mollusc species and parasite exchange (Poda, 1996;
Dianou et al., 2003; Boelee et al., 2009). In northern Burkina Faso, the climate-induced water
shortage results in a concentration of domestic activities around reservoirs and temporary
ponds that are mostly contaminated with the parasite (Poda et al.,, 2004). Beyond the 14°
northern latitude, parasite transmission takes place only at ponds available during the rainy
season, whereas temporary rivers exist typically for very short periods and have a fast drainage,
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which does not allow snail development (Boelee et al., 2009: 14). Towards the South between
14° and 12° northern latitudes, the transmission foci of schistosomiasis are numerous small
water reservoirs, dam lakes together with horticultural activities and isolated perennial rivers all
of which result from an increasing amount of rainfall (Boelee et al., 2009: 14-15). In the Sudanian
climate zone (Figure 2-4) between 12° and 10° northern latitudes most rivers and water
reservoirs are permanent. However, in this region the overall prevalence rate of schistosomiasis
is the lowest of the entire country. Here, the focal points of high prevalence rate (up to 80%)
were observed around large irrigated areas (Boelee et al., 2009: 15).
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Figure 2-8: Geographic distribution of schistosomiasis prevalence in the study area on district level based
on estimates of the national schistosomiasis control programme of Burkina Faso between 2003 and 2007

(Dadjoari, 2011) and estimates from epidemiological studies between 1998 and 2005 in Céte d’Ivoire (ICL,
2014).
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Similar to Burkina Faso, schistosomiasis transmission is endemic nationwide in Cote d’lvoire
with more than 21.5 million inhabitants who require treatment (WHO, 2010a). Both parasites,
S. haematobium and S. mansoni are prevalent in Cote d’lvoire. Their corresponding snails in Cote
d’lvoire are Bu. forskalii, Bu. globosus, Bu. truncatus and Bio. pfeifferi, respectively (Kinanpara et
al.,, 2013: 110). Epidemiological studies that have been conducted between 1998 and 2005
revealed prevalence rates of S. haematobium between 5.5 and 38.6% and of S. mansoni
between 13.6 and 57.4%, whereas the western and eastern districts of the country as well as the
central region around Lake Kossou show highest transmission rates with prevalence greater 50%
(Figure 2-8). Similar to the situation in Burkina Faso, the construction of large dams such as Lake
Kossou or Lake Taabo led to a marked increase of schistosomiasis prevalence predominantly
caused by S. haematobium (N'Goran et al., 1997: 541). The typical sites for potential disease
transmission in Cbte d’lvoire are dam lakes, natural ponds, irrigation canals, and river
confluences or bulges, where current of the river is slow and human contact frequent (Kinanpara
et al, 2013: 110).

The surveillance and control of schistosomiasis are subject to supervision by national health
authorities with the consequence that national borders delineate the respective efforts and
applied practices between countries. In Burkina Faso, with assistance from the Schistosomiasis
Control Initiative (SCI) (Fenwick et al., 2009) nation-wide control of the disease has been
implemented by the following steps: (i) identifying the most heavily infected regions; (ii) training
local health staff and teachers; (iii) providing health education to the local population; and (iv)
distributing the drug praziquantel to treat against the disease. Thereby, during mass treatment
campaigns conducted between 2004 and 2006 more than 6 million children aged between 5 and
15 years have been treated in Burkina Faso (MoH and PNLSc, 2010: 6). More than 97% of the
financial resources invested for schistosomiasis control in Burkina Faso stem from funding
through the United States Agency for International Development (USAID) and the SCI, and less
than 3% result from the national budget (MoH and PNLSc, 2010: 20). Since 2008, Burkina Faso is
no longer a target country of the SCI (ICL, 2013).

In Cote d’lvoire a national control programme has been established in 1998, but due to
limited funding and subsequent civil unrest, mass drug administration never happened at this
scale (Tchuem Tchuenté and N'Goran E, 2009: 1741-1742). Thus, in the year 2010 Céte d’lvoire
has been classified into the first group within the Integrated Control of Schistosomiasis in Sub
Saharan Africa (ICOSA) project, coordinated by the SCI, because no treatment had been given
previously. The objective was to map schistosomiasis in 66 targeted districts within Céte d’lvoire
by 2014 and distribute community- and school-based treatment dependent on the mapping
results. Treatments begun in June 2012 and were scheduled to cover more than one million until
May 2014. At the time of writing the current thesis, mapping has been completed (Eliézer K.
N'Goran, personal communication). If mapping results in full endemicity of the country as
already indicated by historical data, the project covered 12% (1.84 million) of the total
population of Céte d’lvoire with treatment (ICL, 2013).
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3 Remote sensing of schistosomiasis risk

3.1 Schistosomiasis

Schistosomiasis is a parasitic disease in humans caused by blood flukes of the genus
Schistosoma. The transmission cycle of the disease from human to human requires the parasite
to meet specific snails as an intermediate host. These snails release the parasite in a
development stage where it can infect humans within an aquatic environment.

The disease has already been known to occur in Egypt and Mesopotamia amongst the earliest
agricultural civilizations of the great river valleys (Farooq, 1973: 1-2). As early as the
16" century BC, haematuria, a typical sign of urogenital schistosomiasis, has been depicted in
hieroglyphs in Egyptian papyri and paintings (Farooq, 1973: 2; Adamson, 1976: 177; Jordan,
2000: 9). Calcified parasite eggs have been found in the kidneys of Egyptian mummies from the
20" dynasty between 1184 and 1087 BC (Ruffer, 1910: 16; Farooq, 1973: 2). In 1851, the
German physician Theodor Bilharz discovered the parasite S. haematobium recovered post-
mortem from the mesenteric veins of Egyptians and demonstrated their relationship to
haematuria and eggs passed in the urine (Bilharz, 1852: 72-73; Sturrock, 1993b: 1). Still today,
the term bilharzia is used as a synonym for schistosomiasis in association with this discovery
(Utzinger et al., 2011b: 10)

3.1.1 Geographical distribution and epidemiology

From a global public-health perspective, schistosomiasis is the most significant water-based
disease (Steinmann et al., 2006: 411). Global statistics on disease burden suggest that 779
million people are at risk (Steinmann et al., 2006: 414-415) and about 440 million people are
currently infected (Colley et al., 2014: 2259) with 97% of all infections occurring in Africa (Figure
3-1). There is a considerable discussion regarding the true burden of the disease (King et al.,
2005: 1564-1566; Gryseels et al., 2006: 1113; King and Dangerfield-Cha, 2008: 73; Utzinger et al.,
2011a: 124-125; Murray et al., 2012: 2204). It ranges from lowest estimates of 1.7 million
disability-adjusted life years (DALYs) (WHO, 1999: 104), an updated considerably higher value of
4.5 million (WHO, 2002a: 2) to a maximum of 70 million DALYs assessed by King and Dangerfield-
Cha (2008: 73). The most recent estimate of 3.3 million DALYs due to schistosomiasis is given by
Murray et al. (2012: 2204). The difficulty in assessing the true burden of schistosomiasis are the
resulting end-organ pathologies, impaired growth and development of children, chronic
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inflammation, anaemia, and other health consequences of the disease. Despite a comparatively
low mortality rate of 11,700 deaths estimated in the year 2010 (Lozano et al., 2012: 2105), the
burden of the disease is estimated to be equivalent to malaria or HIV/AIDS (Hotez and Fenwick,
2009: 1).
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Figure 3-1: Global distribution of schistosomiasis. Source: Utzinger et al. (2011a: 124)

Schistosomiasis is a typical disease of poverty (WHO, 2013) that is widespread where access
to clean water and basic sanitation is lacking, hygiene is at a sub-standard level and health
infrastructure is weak or non-existent (Bruun and Aagaard-Hansen, 2008: 50; Utzinger et al.,
2009: 1863; King, 2010: 102; Utzinger et al., 2011a: 122). In endemic parts of the world, the
prevalence of schistosomiasis is intimately linked with water resources development projects
and irrigated agriculture (Hunter et al., 1993; Steinmann et al., 2006: 411). The modification of
flowing hydrological regimes to stagnant water bodies enabled the spreading of the disease to
previously non-endemic areas (Dianou et al., 2003: 107-108; Fenwick, 2006: 1077), a situation
that might be further exacerbated by climate change and an increasing pressure of humans on
environmental resources as outlined in Section 1.1 (Martens et al., 1997; Yang et al., 2005b: 131;
Zhou et al., 2008: 192-193; Utzinger et al., 2011a: 122).

3.1.2 Ecology of schistosomiasis transmission

“Transmission of schistosomiasis is the result not only of interplay between humans,
snails and parasites, but also of complex demographic, environmental, biological, technological,
political, socio-economic and cultural processes” (Bruun and Aagaard-Hansen, 2008: 1)

As stated here, it becomes clear that human acquisition of schistosomiasis is multi-faceted and
complex, integrating various disciplines to understand and research this process. The parasite
life cycle, its intermediate snail host, and its definitive vertebrate hosts provide the fundamental
basis that schistosomiasis transmission from human to human can occur (Figure 3-2). There are
six schistosome species parasitising humans, namely, S. haematobium, S. mansoni, S. japonicum,
S. intercalatum, S. mekongi and S. guineensis. The former three are the most widespread and
important from a public health point of view (Utzinger et al., 2011b: 10-11). To complete a
successful life cycle, S. haematobium is transmitted almost exclusively by snails of the genus
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Bulinus, of which however, not all species are susceptible (Sturrock, 1993a: 33). All intermediate
hosts of the S. mansoni parasite belong to the genus Biomphalaria (Sturrock, 1993a: 33). Both
snail genera are pulmonate snails of the Planorbidae family and live in aquatic environments
(Sturrock, 1993a: 33). In contrast, S.japonicum is transmitted by snails of the genus
Oncomelania, which results in a different transmission ecology due to the amphibious habitat of
these snails (Sturrock, 1993b: 4-5). For the scope of this research only the transmission ecology
of S. haematobium and S. mansoni and its aquatic intermediate hosts are relevant due to their
endemic distribution within the study area of Burkina Faso and Cote d’Ivoire.

Cercariae represent the infective development stage of the parasites that enter the human
body through penetrating the intact skin within an aquatic environment (Sturrock, 1993b: 12).
The whole process of penetration through the skin of humans is completed within a few minutes
(Sturrock, 1993b: 15). Each successful cercaria travels through the blood circulation of its host to
reach the liver and develop into a single adult worm (Sturrock, 1993b: 15-16). After reaching
sexual maturity and the pairing of the worms, female worms release eggs (Sturrock, 1993b: 16).
These become either trapped in tissues of the human host causing pathology due to immune
reactions and progressive damage to organs, or leave the human body with excrements (urine in
the case of S. haematobium and stool in the case of S. mansoni) with the perspective to continue
the parasite life-cycle (Jordan and Webbe, 1993: 125). The time span between penetration of
cercariae and the first passage of eggs in excreta varies between 34-35 days for S. mansoni
(Clegg, 1965: 140) and 70 days for S. haematobium (Smith et al., 1976: 104). The mean life span
of the adult worm in humans range from 3 to 10 years (Jordan and Webbe, 1993: 110), however,
observations indicate a maximal life span of adult schistosome worms for more than 30 years
(Chabasse et al., 1985: 643; Jordan and Webbe, 1993: 109-110).

Eggs from the parasite contain fully developed larvae (i.e. miracidium) ready to hatch if they
reach freshwater (Sturrock, 1993b: 5-6). Excreted eggs can remain viable for about a week if
they are not exposed to excessive heating or desiccation (Upatham, 1972: 274-275; Sturrock,
1993b: 10). Miracidia are chemo-sensitive and swim with a speed of about 2mm per second
searching for their appropriate intermediate host snail species (Sturrock, 1993b: 10). They
remain active for 8 to 12 hours, but their infectivity starts to drop rapidly within 4 to 6 hours
after hatching (Sturrock, 1993b: 11). A successful miracidium penetrates the body of the snail
within a few minutes (Sturrock, 1993b: 11).

Within the freshwater snail, the miracidium can further develop to cercariae. Following an
asexual reproduction of the parasite within the snail, one single miracidium can give rise to
many hundreds or thousands of cercariae for several months although snails can also become
self-cured and stop cercarial shedding (Sturrock, 1993b: 12). Snails can fundamentally modify
the parasite life cycle and with it the transmission of the disease and its risk, due to specific
environmental conditions that influence snail survival, reproduction and the competence of a
snail to develop the parasite from a miracidium to cercariae (Table 3-1).

Similar to the miracidium, a cercaria is the second, free living, infective schistosome larva
which does not feed and is adapted to live in freshwater (Sturrock, 1993b: 12). After snails have
shed cercariae, their life span varies between 48 to 72 hours according to their initial food
reserves (glycogen) and their intensity of spending it through active swimming (Sturrock, 1993b:
14). However, infected snails can produce between 250 and 600 cercariae per day life-long and
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cercarial output might reach several thousand depending on size of the snail (Sturrock,
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Figure 3-2: Consecutive steps of the parasite life cycle of schistosomiasis transmission: Eggs of
the parasite are excreted by infected humans with faeces for S. mansoni or urine for S.
haematobium. When eggs meet water they start hatching and parasite larvae are released as
miracidia, search for their appropriate snail species as intermediate host and penetrate its
tissue. Following further development in the snail host, the parasite is released by the snail as
the infective stage of cercaria that can infect humans through the penetration of the intact skin
when humans enter a water body. Within the human body, the parasite migrates through the
blood vessel to the portal vein in the liver, where growth and sexual pairing starts. Dependent
on the schistosome species, the adult worms embed themselves in the mesenteric venules of
the bowel or bladder and continuously produce eggs that are excreted by humans via stool or
urine, respectively. If eggs become trapped, morbidity is caused by egg calcification and chronic

inflammation of the tissue.
Source: (King, 2009: 107)
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The ecology of parasite and snail species as well as human characteristics stimulate, inhibit or
modify the dynamics of disease transmission in a specific manner. The environment has thereby
an essential impact on the ecology of disease transmission such as successive rates of
reproduction, survival, and probability that the next step in the parasite life cycle is reached
(Hairston, 1973: 278-279). In the following paragraphs, factors that specifically influence the life
cycle of Schistosoma parasites, the ecology of intermediate snail hosts, and the vulnerability of
humans to become infected with the parasite are reviewed in detail. An overview of the relevant
variables and its effects on the ecology of disease transmission is presented in Table 3-1.

The Schistosoma parasites

The water temperature has a major influence on the length of the prepatent period of a
Schistosoma parasite, which is again related to its abundance in the environment. Within the
temperature range of 10-30°C, the hatching of the eggs is stimulated by a combination of light
and dilution of the shell that further affects the osmotic pressure (Sturrock, 1993b: 10). The
length of the prepatent period from penetration of the miracidium to initial shedding of
cercariae by the snail varies with temperature between the minimum of 17 days at 30-35°C and
several months towards cooler temperatures (Sturrock, 1993b: 12). Pfliger (1980) and Pfllger et
al. (1984) found a species-specific length of the prepatent period for S. mansoni and
S. haematobium parasites. The general increasing length of the prepatent period with
decreasing water temperature reached the developmental null point of parasite development at
14.2°C for S. mansoni (Pfliger, 1980: 162) and 15.3°C for S. haematobium (Pfliger et al., 1984:
99). The development time of S. mansoni parasites in the snails (y) given in days has been
approximated by Equation 3-1,

268
T x—14.2

where x represents the measured water temperature and 268 has been calculated as the sum of

y Equation 3-1

biological relevant temperatures until cercarial shedding becomes constant (Pfliiger, 1980: 162-
164). This relation was slightly shifted for the case of S. haematobium, where the theoretical
developmental null point was reached at 15.3°C and the sum of the constant time-temperature
product resulted in 295 (Pfliger et al., 1984: 99). It has further been observed, that the
maximum of S. haematobium cercarial shedding was reached at water temperatures around
25°C (Pflliger et al., 1984: 100-101).

Water flow velocity influences the spatial distribution of the parasite. Stagnant water refers
to highest cercarial density, whereas flowing water can transport the parasite passively for
considerable distances (Jordan and Webbe, 1993: 97). Very slow moving water with a speed of
approximately 0.1m/s is beneficial to allow the widespread dissemination of the parasite and
meet its intermediate and definitive host (Upatham, 1973: 296; Sturrock, 1993a: 62). At the
same time, active parasite mobility has been observed to be stimulated by various components
of sebum (sweat) secreted by humans (Haas and Schmitt, 1982: 304-305; Stirewalt et al., 1983:
366).

Schistosoma parasites in the stage of miracidia have natural predators such as fish and
diverse carnivorous invertebrates that feed on them and thereby reduce their abundance by a
certain degree (Gibson and Warren, 1970: 835; Jordan and Webbe, 1993: 122).
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Sunlight is a particular stimulus for the release of cercariae from infected snails, whereas the
number of infected cercariae produced is mainly influenced by the size of the snail and its
ambient temperature (Sturrock, 1993b: 13).

Table 3-1: Overview of parasite-, snail- and human-related factors that modify, retain or intensify the cycle
of schistosomiasis transmission

Parasite-related Effect on schistosomiasis transmission Reference(s)

factors

Temperature Length of prepatent period Pfliger (1980)
Activity, survival and infection rate of free-living stages of Sturrock (1993b)
the parasite

Water flow Passive transport of parasites in flowing water determines  Jordan and Webbe

velocity cercarial density (1993)

Predators Fish and carnivorous invertebrates reduce parasite Gibson and Warren
population as natural predators (1970); Jordan and

Webbe (1993)
Sunlight Stimulation of cercarial shedding Sturrock (1993b)

Pathogenicity
Species

Snail-related factors

Different strains of S. mansoni and S. haematobium result
in geographical variations of disease severity
Different efficiency in identifying and infecting snails

Effect on schistosomiasis transmission

Stirewalt (1973)
Sturrock (1993b)

Reference(s)

Water temperature

Water flow velocity

Vegetation

Substratum

Water depth

Fluctuations of
water level
Rainfall

Turbidity

Water chemistry/
quality

Sunlight

Predators/pathogens

Species

Fecundity, mortality and rate of reproduction

Flow velocity > 0.3m/s result that snails become dislodged and
swept away

Food supply

Surface to crawl and deposit egg masses

Increase of dissolved oxygen

Nature of substratum is related to snail abundance

Snails generally found in shallow water near the margins of their
habitats. Below 1.5 to 2 m, snails have little importance for
the transmission of schistosomiasis

Permanence of available habitats determines the distribution
patterns of snails

Creation of temporary snail habitats

Increase of water flow velocity

Supports contamination of water

Passively transports snails when rainfall is heavy

Turbidity can impact the reproduction cycle

Low pH, refuse from factories directly harm snails
High snail abundance where water is polluted with human
excrements

Completely shaded pools provide unsuitable habitat

Activity of snails is high in direct sunlight

Natural predators, parasites and pathogens may limit the
abundance of snails

Variation of susceptibility to parasite and efficiency to produce
cercariae
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Abdel-Malek (1958);
Shiff (1964); Shiff and
Garnett (1967);
Appleton (1978);
Pfliger (1980);
Pfliger et al. (1984)
Scorza et al. (1961);
Appleton (1978);
Sturrock (1993a)
Abdel-Malek (1958)

Abdel-Malek (1958);
Appleton (1978)
WHO (1957)

Abdel-Malek (1958);
Appleton (1978)
Appleton (1978);
Jordan and Webbe
(1993); Sturrock
(1993a)

Harrison and Farina
(1965); Appleton
(1978)

Deschiens (1954);
Abdel-Malek (1958);
Appleton (1978);
Sturrock (1993a)
Abdel-Malek (1958)

Abdel-Malek (1958)
Mulvey and

Vrijenhoek (1982);
Sturrock (1993a)
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Human-related Effect on schistosomiasis transmission Reference(s)
factors
Water contact Exposure of the skin to parasite infested water is the prerequisite ~ Bundy and

behaviour
Hygiene

Gender

Age

Immunity
Ethnic origin

Religion

Socioeconomic

status

Migration

Occupation

Location of house

Prevention/control
easures

for human infection.
Contamination of water due to excrements of infected humans in
or aside water

Relationship between gender and risk of infection is culturally
variable and a determinant of water contact activities

Highest risk for children as consequence of degree of exposure
and low level of immunity

Resistance to reinfection can be developed by the human body as
a consequence of previous infections
Variation in the susceptibility to infection

Religious rules are related to water contact behaviour and disease
exposure

Relation to hygiene, the availability of protected water supplies
and ability to cope with the disease

Population movements can modify spatial patterns of disease
transmission through both introduction of the parasite or the
acquisition of infection

Work related to water increases the exposure and risk of
infection (fishermen, farmer, etc.)

Location of house in relation to suitability of closest water source
can influence infection status

Spatial pattern of disease transmission can be highly modified by
mass treatment campaigns and successful preventive
measures

Blumenthal (1990)
Farooqg et al. (1966);
Huang and
Manderson (1992);
Jordan and Webbe
(1993)

Husting (1983);
Chandiwana (1987);
Huang and
Manderson (1992)
Bundy and
Blumenthal (1990);
Huang and
Manderson (1992);
Butterworth (1993)
Butterworth (1993)

Jordan and Webbe
(1993)

Huang and
Manderson (1992);
Jordan and Webbe
(1993)

Lima e Costa et al.
(1987)

Doumenge and Mott
(1987); Bundy and
Blumenthal (1990);
Jordan and Webbe
(1993)

Farooq et al. (1966);
Huang and
Manderson (1992)
Mota and Sleigh
(1987); Huang and
Manderson (1992);
Clennon et al. (2006)
Webbe and Jordan
(1993); Clements et
al. (2009b); Zhang et
al. (2012)

Internal factors of the parasite may modify the risk of infection such as different strains of
S. haematobium and S. mansoni having differing pathogenicity. This could also account for
geographical variations in severity of human schistosomiasis (Stirewalt, 1973: 30-31). The
efficiency of snail and human infection varies with species. Hence, miracidia of S. haematobium
have shown to need more individuals to infect their intermediate snail host than those of
S. mansonj (Sturrock, 1993b: 11). Additionally, intermediate host snails of S. haematobium are
more dispersed than those of S. mansoni, which further results in lower field snail infection rates
for S. haematobium (Sturrock, 1993b: 11).
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The freshwater snail as intermediate host

Similar to the parasite, survival, fecundity, and rate of reproduction of freshwater snails are
sensitive to water temperature. Despite snails having broad tolerance ranges of their ambient
temperature between day and night or seasons, the most favourable range lies between 18 and
32°C (Appleton, 1978: 4). Snails of the genus Bulinus show a distinct peak of maximal
reproduction at 25°C (Shiff, 1964: 103), whereas Biomphalaria represent a plateau of high
reproduction rates between 20 and 27°C (Shiff and Garnett, 1967: 437-438; Appleton, 1978: 5).
The correlation between thermal regimes and snail fecundity allowed deriving a critical level of
120-179 degree hours greater than 27°C per week. When this limit was exceeded, snails were
absent from this habitat (Appleton, 1978: 7). In contrast to the parasite, snails are more sensitive
to warm conditions and mortality increased to 100% when exposed to 36°C and higher for a few
days (Pfliiger, 1980: 164). However, in sub-tropical regions of Africa, the impact of temperature
on the limitation of snail distribution is only relevant for very small water bodies exposed to
continuous high temperatures (Abdel-Malek, 1958: 788).

Regarding water flow velocity, freshwater snails have a noticeable narrow tolerance range
(Appleton, 1978: 10) and become dislodged when flow velocity exceeds approximately 0.3 m/s
(Scorza et al., 1961: 194). A nearly linear, negative correlation between the density of
Biomphalaria spp. and water flow velocity has been derived until the aforementioned limit
(Scorza et al., 1961: 193; Appleton, 1978: 10). It has also been shown, that snails were being
dispersed along streams and irrigation schemes (Clennon et al., 2007: 690), which can result in
the agglomeration of snails and parasites in downstream areas, especially during and following
sufficient rains. Beck-Worner et al. (2007: 961) showed that habitat suitability for Bio. pfeifferi
was increasing with higher stream order assuming that higher stream order was linked to
decreased flow velocity and low stream order was related to streams more likely to desiccate
during the dry season.

Vegetation determines the habitat suitability of freshwater snails in several ways. First, the
presence of aquatic vegetation is positively linked to an increase of the amount of dissolved
oxygen and the consumption of carbon dioxide (CO,) and thereby linked to movement and
reproduction of pulmonate snails (Abdel-Malek, 1958: 804). Second, snails seek broad-leafed
vegetation as surfaces to crawl and deposit their egg masses on. Third, the periphyton, which
encrusts the submerged parts of the plant, provides the food supply for snails (Abdel-Malek,
1958: 813).

The nature of substratum of a water body is related to snail abundance. Whereas firm mud
rich in decaying organic matter provides a favourable habitat for snails, clean sand, semi-liquid
mud or bottom loose of organic matter does not provide a suitable snail habitat (Abdel-Malek,
1958: 794-795). The availability of food and firm surfaces for oviposition modify the selection of
the substratum by the snail (Appleton, 1978: 15).

Water depth is related to the distribution of freshwater snails, which are generally found in
shallow water near the margins of their habitats as a relation of food, shelter and light
conditions (WHO, 1957: 11). Despite the fact that snails are able to survive at a depth of 10 m,
they are rarely found below 1.5-2 m. However, the presence of snails in deeper water has little
importance for the transmission of schistosomiasis (WHO, 1957: 12).
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Sudden fluctuations of water levels, such as irrigation channels with certain pump schemes,
provide habitats of low suitability to establish a snail population (Abdel-Malek, 1958: 792). Thus,
the permanence of available habitats is one further criterion to determine the population and
distribution patterns of host snails. However, snail populations are also able to persist in
temporary habitats through their ability to aestivate during periods of drought in sheltered
spots, under vegetation, on mud or in mud crevices (Abdel-Malek, 1958: 792; Appleton, 1978:
12). In general, species of Bulinus are more successful to withstand periods of prolonged
desiccation surviving up to one year through burying themselves beneath the substratum
compared to species of Biomphalaria (Appleton, 1978: 13). During this time, development of the
parasite and cercarial shedding may be suspended temporarily (Pitchford et al., 1969: 370).

Rainfall modifies snail habitat conditions in manifold ways. If rainfall is heavy, snail
populations will be reduced through being swept away, as flow velocity of water is at the same
time increasing (Appleton, 1978: 10; Sturrock, 1993a: 53). Furthermore, temporary habitats are
created by enduring rainfall events and snails can establish a population either if they survived
desiccation or by being passively transported to the temporary habitat with the discharge of the
rain. Another relevant aspect with respect to the probability of disease transmission is that
rainfall directly supports the contamination of water through washing human faeces with large
amounts of parasite eggs into the potential snail habitats (Jordan and Webbe, 1993: 118).

Water turbidity due to a high content of suspended minerals (360 mg/l) can impact the
reproduction cycle of freshwater snails through smothering egg masses, preventing
development and hatching of eggs, however, adult snails were not affected (Abdel-Malek, 1958:
790; Harrison and Farina, 1965: 329-330). Growth of aquatic plants is limited due to high
turbidity and thereby habitat conditions become deteriorated (Abdel-Malek, 1958: 790).

With respect to water chemistry and quality, a low pH value in general may be directly
harmful to snails (Sturrock, 1993a: 51). Their frequency was found to be proportional to water
hardness with clear preference for very hard waters (Appleton, 1978: 3). Maximum tolerated
concentrations and lethal concentrations of certain ions for snail species have been quantified
by Deschiens (1954: 918). In general, Bulinus spp. show a greater tolerance to changing chemical
conditions than Biomphalaria spp., however, the latter genus was found to have higher
tolerance to chloride (Cl) and natrium (Na®) concentrations (Deschiens, 1954: 917-918; Abdel-
Malek, 1958: 796). Industrially polluted waters were found to be unsuitable for intermediate
host snails, whereas abundance was high near human habitations, which pollute water with
their excrements potentially containing large amounts of the parasite (Abdel-Malek, 1958: 793).

Similar to the stimulation of cercarial shedding with daylight, snails themselves were
observed to be noticeably active in sunlight (Abdel-Malek, 1958: 789). Egg masses of snails are
often seen in direct sunlight and are apparently unaffected (Abdel-Malek, 1958: 789).
Furthermore, sunlight corresponds to the flourishing of aquatic weeds, the abundance of
microflora and thereby a high content of dissolved oxygen rendering the water highly suitable
for snails (Abdel-Malek, 1958: 789; Appleton, 1978: 14). In contrast, completely shaded pools
provide unsuitable habitat conditions and snails remain absent (Abdel-Malek, 1958: 789).

There are several vertebrate (e.g. crabs, fish, amphibians, birds, mammals) and invertebrate
(e.g. insects, other snails) predators that influence the abundance of snails (Abdel-Malek, 1958:
810-812). Parasites such as leeches or trematodes and pathogens such as fungi, virus and
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bacteria may be pathogenic to snails (Abdel-Malek, 1958: 806-810). However, both, predators
and pathogens would mainly limit the abundance of aquatic snails (Abdel-Malek, 1958: 806).

Finally, the respective snail species have differing genetic predispositions that result in an
intraspecific variation of the susceptibility to the miracidium of a parasite as well as its efficiency
to produce cercariae (Mulvey and Vrijenhoek, 1982: 1199; Sturrock, 1993a: 59).

The humans as definitive host

Humans are the definitive host, where the schistosome parasite grows, pairs and reproduces
itself. Due to the life-long reproduction of the parasite within humans and the continuous
excretion of eggs through faeces or urine, humans are at the same time potentially circulating
the disease, when hygiene is sub-standard (WHO, 2013). Many of the human-related factors that
influence transmission of the disease are in consequence of each other, which is described in the
following paragraph and illustrated in Table 3-1.

The entry of the infective stage of the parasite by percutaneous penetration is fundamentally
dependent on the behaviour of the prospective human host. Hence, water contact behaviour is
the major, decisive factor related to the risk of infection with schistosomiasis. Even when the
environmental setting provides most suitable conditions for the transmission of the disease,
infection does not occur, if people do not either enter the water body or protect themselves
from direct contact with the water. Major activities leading to infection were identified to be
personal hygiene, swimming or bathing in water and washing clothes (Bundy and Blumenthal,
1990: 267). Less critical activities were the washing of objects, fetching water and crossing water
bodies most likely due to the shorter duration of water contact (Bundy and Blumenthal, 1990:
267).

The contamination of surface waters and their surroundings with human faeces or urine
containing Schistosoma eggs is the second major pillar for the transmission of the disease and is
preliminary defined by the hygiene of the human population (Jordan and Webbe, 1993: 117).
The rate of infection has been observed to be significantly higher in persons living in houses
without a latrine and access to piped water (Farooq et al., 1966: 293; Huang and Manderson,
1992: 183; Grimes et al., 2014 - under review).

The relationship between gender and risk of infection is equivocal and varies with the cultural
background of the people (Huang and Manderson, 1992: 180). In some regions, higher
prevalence of infection in women could be related to the fact that water-related activities were
four times greater for women than men (Husting, 1983: 28-29), whereas this was vice versa
when men dominated the activities with exposure to water (Chandiwana, 1987: 502). Therefore,
the predictive power of infection risk based on gender is poor (Chandiwana, 1987: 504; Huang
and Manderson, 1992: 180)

Age of humans influences the risk of acquiring the disease in manifold ways. In general,
children and adolescents are the highest risk group with a peak at around 10 years (Bundy and
Blumenthal, 1990: 278). On the one hand this is due to high exposure when fetching and playing
in water (Huang and Manderson, 1992: 179) and on the other hand there is a low level of innate
immunity to the disease (Bundy and Blumenthal, 1990: 282). It has been shown that humans are
able to develop defence mechanisms that modify the effects of exposure with increasing age
(Butterworth, 1993: 347-349). Hence, this typical convex shape of age-prevalence and age-
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intensity with respect to schistosomiasis is argued to be related to a slow acquisition of
immunity to reinfection following a slow death of adult worms from early infections (Bundy and
Blumenthal, 1990: 278; Butterworth, 1993: 350).

Furthermore, it has been observed that the acute stage of the disease was rarely found in
indigenous populations, yet very often in travellers to endemic areas (Jordan and Webbe, 1993:
124). Differences in the susceptibility to the disease with respect to ethnic origin of humans
have been attributed to the immunological response influenced by different ancestral
experiences with the infection (Jordan and Webbe, 1993: 124).

Religion plays a role when respective rules govern practices that may significantly affect
patterns of water use (Huang and Manderson, 1992: 183). For example, ritual washing five times
a day before prayer as required by male Muslims, significantly affects the prevalence of
schistosomiasis in the respective communities (Jordan and Webbe, 1993: 101).

Schistosomiasis is a typical disease of poverty (King, 2010; WHO, 2013), which accentuates
the high relevance of the socioeconomic status of a population with respect to the transmission
of the disease. In African countries, being poor is very often related to poor hygiene and
housing, limited access to clean water, subsistence farming and low educational level — all of
them are established factors that impact transmission of schistosomiasis (Utzinger et al., 2011a:
122-123). A very important aspect of a low socioeconomic status is further related to the lacking
ability of a household to cope with the disease through seeking medical care and avoiding
further infection through protective measures.

Often, large water resource development projects attract migrant workers and their families
to the hot spots of potential disease transmission (Jordan and Webbe, 1993: 88). Semi-
permanent or seasonal workers migrate to large agricultural projects for harvesting, often
related to extensive irrigation schemes (Bella et al., 1980; Cheesmond, 1980; Bundy and
Blumenthal, 1990: 88). These people are on the one hand at high exposure to becoming infected
with the disease if they enter endemic areas, on the other hand they can also (re-) introduce the
parasite into controlled or non-endemic areas (Jordan and Webbe, 1993: 88). It has also been
observed that after new rail and highway systems have been opened in West Africa, the spatial
distribution of schistosomiasis has followed (Doumenge and Mott, 1987: 11).

A positive relationship between the occupation of a person and risk of infection is not
surprising, if this person is exposed to water during work (Huang and Manderson, 1992: 182). It
has been shown that, especially farmers and farm laborers as well as fishermen and boatsmen,
had specifically higher prevalence rates compared to factory workers (Farooq et al., 1966: 306-
308).

The location of a household in relation to the suitability of a water body to transmit the
disease has shown to be highly relevant with respect to the level of prevalence (Huang and
Manderson, 1992: 183-184). Thus, a local study in Ghana has shown that high infection levels
were clustered around ponds known to contain snails that shed cercariae of S. haematobium,
and prevalence was low in households close to a river where the intermediate host snails were
rarely found (Clennon et al., 2006). The study by Mota and Sleigh (1987) resulted that the
relative location of a house to snail-free or snail-colonised water sources resulted as key
influence on infection status in Brazil.
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The application of various prevention and control measures (Section 3.1.3) has a remarkable
impact on the transmission of the disease. Following mass treatment campaigns, the level of
prevalence and morbidity decreases dramatically (Webbe and Jordan, 1993: 407-408;
Koukounari et al., 2007: 659). However, examples (e.g. Clements et al.,, 2009b; Zhang et al.,
2012) have demonstrated that the level of reinfection is often high, when prevention measures
have been neglected and water bodies are still infested with the parasite. In the following
section, the activities to prevent and control the disease are described in more detail.

3.1.3 Schistosomiasis control and elimination

Major strategies to prevent the transmission of the disease are: (i) to reduce human contact
with infected water; and (ii) to reduce further contamination of water with eggs from the
parasite (Webbe and Jordan, 1993: 405). In May 2001, at the 54" World Health Assembly (WHA)
held at World Health Organisation (WHO) headquarters in Geneva, resolution WHA 54.19 was
endorsed, urging member states to attain “a minimum target of regular administration of
chemotherapy to at least 75% and up to 100% of all school-age children at risk of morbidity by
2010” and to “promote access to safe water, sanitation and health education through
intersectoral collaboration” (WHA, 2001: 1). This resolution together with the guidelines
presented in a subsequent WHO Technical Report Series (WHO, 2002a), were considered as the
precursors for integrated and sustainable control of schistosomiasis (Utzinger et al., 2003: 1932;
Stothard et al., 2009: 1668). The most significant response to WHA resolution 54.19 was the
launch of the SCI, a charitable institution initiated with a start-up grant of US$ 30 million from
the Bill & Melinda Gates Foundation in 2002 (SCI, 2014). The major objectives of SCI are to
implement and evaluate control of schistosomiasis and integrate these programmes into the
structures of national health ministries to develop sustainable control (Fenwick et al., 2009:
1720-1721).

In practice, the antischistosomal drug praziquantel is administered to at-risk populations and
results in significant reductions of morbidity due to schistosomiasis (Doenhoff et al., 2009:
1825). Through its availability at low cost (approximately USS 0.1-0.2 per treatment of a school-
aged child) (WHO, 2002a: 11), it is distributed at large scale during survey and mass treatment
campaigns at school locations. However, examples have shown that this control strategy failed
to be sustainable, as re-infection occurred if prevention was neglected (Clements et al., 2009b:
7; Zhang et al., 2012: 5). Therefore, a shift from morbidity control to transmission control with
focus on the snails and potential infection sites together with prevention measures tailored to
the prevailing social-ecological system is the challenge of actual and future control of
schistosomiasis (Stothard et al., 2009: 1672; Utzinger et al., 2011a: 132; Rollinson et al., 2013:
436).

RS data and methods have been investigated predominantly with the aim of supporting the
work of national control programmes through prioritising areas of risk to most efficiently
allocate available resources for disease prevention and control (Brooker, 2002: 211; Simoonga et
al., 2009: 1687), which is reviewed in Section 3.2.2.
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3.2 Remote sensing

In the PhD thesis presented here, RS refers to the use of Earth observing satellites. Satellite RS
systems can be categorised into passive and active systems. The former measure the magnitude
of electromagnetic radiation (EMR) reflected and emitted from the Earth’s surface. The latter
generate and emit their own radiative energy and capture the reflected returns from the Earth
surface with a modification dependent on surface structure and condition. In this work, only
passive systems have been used and shall therefore be considered in detail.

3.2.1 Fundamentals of satellite remote sensing

The fundamental principle of passive RS is based on the interaction of EMR originating from the
Sun or the Earth itself with the atmosphere and the Earth surface as measured by a remote
sensor. Hence, RS is composed of three main components: EMR carrying the information about
the Earth surface, the capture of EMR using a remote sensor and the processing and analysis of
the received signals. A comprehensive overview of the fundamentals of RS is given by Jensen
(2000).
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Figure 3-3: Electromagnetic spectrum. Source: modified after Albertz (2001)

Besides the Sun, electromagnetic energy is emitted by any object with a temperature above
the absolute zero (0 Kelvin, -273°C), including water or vegetation. The propagation of this
energy results from an electromagnetic wave that transports energy with the speed of light and
a distinct relation between wavelength and frequency through space. The longer the
wavelength, the lower is its frequency. The amount of radiant energy is called the radiant flux
measured in watts [W]. According to Niels Bohr and Max Planck, the exchange of radiant energy
between surface and electromagnetic wave results from the transfer of energy in discrete
packets called quanta or photons. The wavelength of EMR is described by the electromagnetic
spectrum (Figure 3-3), of which only the spectral range between 0.3-14 um is of relevance for
passive RS. This range is typically classified further into the visible light (0.4-0.7 um), the near,
middle, and shortwave infrared (0.7-3 um), and the thermal infrared spectrum (3-14 um) (Figure
3-3).
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The radiant flux interacts in
a characteristic way with the
Earth’s EMR is
reflected absorbed

surface.

and
specifically in dependence of
the physical properties of any
surface such as type, structure,
texture, moisture content, and
chemical composition.
Reflectance, the amount of
EMR at

wavelengths, calculated as the

reflected specific
ratio of reflected and incident
radiation, refers to the spectral
properties, which are specific
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Figure 3-4: Spectral signature of vegetation, soil and water in
dependence on the spectral wavelength.

for surface conditions and provide the fundamental focus of RS research. Non-reflected incident

radiation is either absorbed or transmitted. Figure 3-4 exemplifies the typical spectral

reflectance properties of a surface with green vegetation, bare soil, and water. The spectral

properties of vegetation are characterised by a specifically high reflectance in the near infrared

compared to very low reflectance in the blue and red parts of the visible spectrum due to the
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Figure 3-5: Energy emitted from
black body radiators for Sun and
Earth as a function of
wavelength. Source: modified
after Jensen (2000: 33)

high chlorophyll absorption at these wavelengths. In contrast,

soil reflectance shows a continuous increase from low
reflectance at short wavelengths to higher reflectance at
longer wavelengths, while the overall reflectance is markedly
reduced for moist soils compared to dry soils. Due to the high
absorption of EMR by water, this type of surface is

characterised by very low reflectance values.

Apart from reflected EMR, the Earth also emits EMR as a
function of surface temperature. The magnitude of EMR
emitted from blackbodies in dependence of surface
temperature and spectral wavelength is described by the
Planck’s law, the Stefan-Boltzmann law, and the Wien’s
displacement law. A comprehensive overview of these thermal
RS fundamentals is provided by Kuenzer and Dech (2013). Very
few terrestrial surfaces act as perfect blackbody radiator and
therefore emit radiation in a modified way according to the
specific emissivity of a surface, which can be expressed as ratio
between the surface radiant flux and the blackbody radiant
flux at a given temperature. The dominant spectral wavelength
where maximal EMR is emitted by the Earth surface has its

peak at around 10 um (Figure 3-5).

The measurement of reflectance and emittance by a
satellite remote sensor makes use of the so-called atmospheric
windows (Figure 3-3) that correspond to wavelength regions in
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which the atmosphere transmits most of the incident, reflected or emitted electromagnetic
energy. Surface reflectance can be captured by the satellite sensor in the spectral wavelengths
of visible light and portions of the reflective infrared. The thermal infrared region of the
electromagnetic spectrum allows for the thermal measurement of thermal emission from the
Earth between 3 and 14 um.

However, the measurement of surface reflectance and emissivity by a remote sensor is
altered by three main factors, namely: (i) the atmosphere; (ii) the variation in sun illumination;
and (iii) variation in viewing angles of the sensor. The atmosphere influences EMR in both
directions, as it first reduces the amount of solar irradiance illuminating a ground object,
secondly it acts as reflector itself adding a scattered, extraneous path irradiance to the signal,
and thirdly it attenuates the reflected signal in a wavelength dependent way (Lillesand and
Kiefer, 2000: 21-22). The viewing geometry results from the position of the sensor and the
variation of its scan angle noted as view zenith and view azimuth angle, whereas the variation in
illumination angles is caused by the Earth’s orbit. The constellation of Sun illumination, sensor
view angle, and surface reflectance properties has an impact on the at-sensor detected
brightness. However, all three disturbing factors mentioned here can be corrected for by
performing an atmospheric correction for the respective satellite image as well as accounting for
directional reflectance effects (bi-directional reflectance distribution function; BRDF in short)
(Lillesand and Kiefer, 2000: 31).

Following this image correction process, the received signal has to be analysed with respect
to the objective of interest. The characteristic spectral properties of surfaces (Figure 3-4) can be
depicted by the signal measured at the remote sensor with its designed band combinations (see
Table 4-2). The reflectance at specific spectral wavelengths can be directly investigated in
relation to the phenomenon of interest. However, in most cases, indices are calculated from
spectral reflectance at different wavelengths to enhance information and normalise images (e.g.
atmospheric effects). The most prominent index is the NDVI given in Equation 3-2,

NDVI = M Equation 3-2
nir + red
where nir corresponds with the measurement at near infrared spectrum of the sensor and red
with the visible red light. This index responds to the change in the amount of green biomass and
chlorophyll content, where the red band records the high absorption of chlorophyll and the near
infrared band records the high reflectance when vegetation is dense and growing vigorously. For
passive RS, there are multiple vegetation-, water-, and soil-related indices available. An overview
of the indices with relevance to the schistosomiasis disease as investigated by this thesis is

provided in Section 4.2.2.

The measurement of thermal RS is especially used to measure the surface temperature,
which is the temperature of the radiating surface and therefore often referred to as skin
temperature (Czajkowskia et al., 2002: 254). However, the term land surface temperature (LST)
is thereby used ambiguously, as it includes a wide range of surface temperature variables such
as kinetic, thermodynamic, radiometric, canopy and even air temperature (Norman and Becker,
1995). The calculation of surface temperature in °C from the energy retrieved at the sensor
includes sensor calibration, atmospheric correction and the approximation of emissivity effects,
which can be realised by assigning specific emissivity values to each land cover class. Despite
different land surfaces varying only little in their emissivity (e.g. water: 0.98, plant leaves: 0.96,
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sand: 0.93), a difference in spectral emissivity from 1 to 0.99 typically results in an increase of 1-
2°C (Schmugge et al., 1998: 124).

3.2.2 Remote sensing for schistosomiasis risk profiling

Owing to the life cycle of the parasite and the mode of infection with the parasite, the
transmission of schistosomiasis is spatially and temporally restricted to water bodies inhabited
by snails and parasites. Schistosomiasis, as environmental disease, warrants a relevant
contribution of RS technologies with respect to the spatial distribution of the disease (Malone,
2005: 27). The first application of RS to predict the probability of spatial occurrence of human
schistosomiasis using Landsat 5 TM data was published in 1984 for the Philippines by Cross et al.
(1984). Ten years later, diurnal temperature differences derived from data of the Advanced Very
High Resolution Radiometer (AVHRR) from the National Oceanic Atmospheric Administration
(NOAA) have been related to survey measurements of schistosomiasis prevalence in Egypt
(Malone et al., 1994). As thermal differences between day and night reflect regional hydrologic
conditions (Jensen, 2000: 393), the significant inverse relationship showed well the predictive
ability of RS data for schistosomiasis transmission risk (Malone et al., 1994: 716-718). Since then,
the investigation of RS in relation to schistosomiasis has experienced considerable growth and
interest. To demonstrate this, the online library PubMed
(http://www.ncbi.nlm.nih.gov/pubmed/) has been accessed in January 2014 with the following
terms and Boolean operators: “remote sensing” OR “geographic information system” OR
“mapping” OR “prediction” AND “schistosomiasis” AND “Africa” (cf Simoonga et al., 2009: 1684)
for the time span between 1995 and 2013, which resulted in 93 publications, of which 31 were
relevant reviews or case studies using RS data for spatial modelling of schistosomiasis risk.
However, within the process of reviewing the literature as well as its cited references, the
number of studies increased to 37.

The development and potential of RS and its combination with GIS-based spatial analyses has
been reviewed by various groups (Bergquist et al., 2000; Brooker and Michael, 2000; Abdel-
Rahman et al., 2001; Brooker, 2002; Malone, 2005; Brooker et al., 2006; Brooker, 2007;
Simoonga et al.,, 2009). It can be summarised that the contribution of RS and GIS for
schistosomiasis risk profiling is composed of its ability to: (i) determine the geographical limit of
disease distribution due to ecological constraints of disease transmission; (ii) further investigate
the context of disease ecology and epidemiology through its spatial relation; (iii) support
prevention and control through prioritising areas of disease risk; and (iv) provide early warning
for areas where disease transmission could become established. However, most studies that
have been reviewed had an integrative focus combining the aforementioned objectives by some
means or other.

The first step to analyse spatial disease risk consists of the geographical mapping of empirical
survey data on disease prevalence and/or intensity, among which the “Atlas of the global
distribution of schistosomiasis” by Doumenge and Mott (1987) is deemed the pioneer work. It
has been shown that simple geographical mapping of the disease already provides useful
information to highlight endemic areas for which further information is required, to quantify
population at risk and to estimate the cost of disease intervention programmes (Brooker et al.,
2000a: 1459-1462; Standley et al.,, 2009: 42-45; Hodges et al., 2011: 3-4; Kabatereine et al.,
2011: 4-8). The comparison between surveys of different time steps on the very spot has been
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investigated to monitor disease development in space (Tchuem Tchuenté et al., 2012: 4-6) and
to evaluate the impact of disease intervention programmes (Clements et al., 2009b: 3).
However, it is widely discussed that the comparison between different maps of survey data is
critical due to a high variability of survey methodologies used in practice (Brooker et al., 2000b:
305-306; Brooker et al., 2009: 4-5). To give some examples, examination methods to detect the
parasite in faeces have variable sensitivities, the age of the examined population varies between
surveys, or the location of the survey varies between rural or urban areas as well as between
schools, households or community health centres (Brooker et al., 2009: 5). Even today, despite
the global positioning system (GPS) facilitated ease of geo-locating survey sites, measurements
of disease prevalence and intensity are painstaking and costly, which explains well the paucity of
reliable epidemiological data especially in the most affected areas of sub-Saharan Africa
(Simoonga et al.,, 2009: 1687). To overcome the problem of data paucity, the well-known
influence of the environment on disease distribution has been used for modelling and spatial
prediction of disease risk for non-sampled locations. The conceptual background and
methodological modelling approaches are detailed in Section 3.3.

Following the seminal work of Malone et al. (1994), a large number of studies have
investigated RS data and derived environmental variables and their relation to human infection
or snail occurrence with the objective of modelling and predicting schistosomiasis risk for
various regions and scales (Table 3-2). This review shows that the most frequently used RS data
are from the NOAA-AVHRR and later the MODIS sensors with ground resolutions of 1.1km and
250m, respectively. High resolution data from Landsat 5 TM (30m) have only marginally been
analysed and very high-resolution RS data (1m) have solely been investigated for one study site
in Kenya (Clennon et al., 2004; Clennon et al., 2006; Clennon et al., 2007). Topographic
information from either Shuttle Radar Topography Mission (SRTM) data or the global 30 arc-
second elevation (GTOPO30) model has been added in most studies as predictor variable. The
environmental variables most commonly used were the NDVI and LST, hypothesised to
represent surrogate measures of environmental moisture and temperature, respectively
(Malone et al., 2001: 62). The availability of NOAA-AVHRR and MODIS data at no charge and the
web-accessed supply of pre-processed imagery boosted studies that investigated these data
(Herbreteau et al., 2007: 401). However, there are many other vegetation or moisture-related
indices that are not directly accessible due to a more complex nature, which are rarely used for
health studies (Herbreteau et al., 2007: 401). Many studies (e.g. Clements et al., 2009a; Koroma
et al., 2010; Hodges et al., 2012) have used spatial information of perennial water bodies and
river networks from the GeoNetwork platform provided by the Food and Agricultural
Organization of the United Nations (FAO, 2014b). However, the acquisition dates back to the
1990s and it lacks information on temporal dynamics. Actualisation would be highly relevant to
monitor environmental changes such as construction of dam lakes or irrigation schemes
(Steinmann et al., 2006). Satellite RS provides data and methodological procedures to map and
monitor water bodies and other disease relevant variables such as water temperature, turbidity
or vegetation coverage (Tran et al., 2010).

Reference data for the spatial analysis with RS data were always point data, either of human
infection prevalence most frequently geo-located at schools, or snail occurrence located in
sampled water bodies (Table 3-2). Overall snail data were very rarely available and most
analyses were based on infection of schoolchildren surveyed. In most cases, infection of
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schoolchildren has been substantiated based on parasitological examinations, and few case
studies were built upon prevalence data sampled based on morbidity questionnaires (e.g.
Clements et al., 2008b). Epidemiological data of human infection or snail sampling often had a
temporal mismatch of several years between the sampling and the acquisition of RS data (e.g.
Brooker and Clements, 2009; Schur et al.,, 2011b). However, this has been considered a
negligible drawback since schistosomiasis is a chronic disease with a life-span of adult worms
being typically several years (Jordan and Webbe, 1993: 110). Therefore, spatial variability in
long-term synoptic environmental factors is hypothesised to have more influence on
transmission success and infection patterns than seasonal variability in a location (Brooker and
Clements, 2009: 592). When environmental data such as NDVI or LST are used to predict the risk
of schistosomiasis, “in effect, one is predicting the environmental requirements for a particular
snail species (infected with a particular parasite species) - and not the human parasitic infection
per se” (Simoonga et al., 2009: 1687). An analysis of RS data with respect to snail abundance and
disease prevalence showed that snail distribution generally corresponded to the prediction
model of schistosomiasis prevalence, however, the best model of snail distribution showed
different ranges of temperature than found in the schistosomiasis prevalence model (Kristensen
et al., 2001; Malone et al., 2001). One challenge to date to further improve RS and GIS-based risk
mapping, is to account for the spatial mismatch between the measurement of human infection
and the location where disease transmission may occur (Simoonga et al., 2009: 1687). This
aspect and a potential solution to overcome this spatial conflict when using RS data is directly
investigated in this thesis.

Environmental analyses using RS data provide the opportunity to understand more
completely the process underlying broad-scale patterns of schistosomiasis distribution and can
help to potentially improve our knowledge of schistosomiasis infection ecology (Brooker, 2002:
210). To give an example, the local study of Raso et al. (2005) found that — besides age, sex, and
socioeconomic status — rainfall pattern and elevation significantly explained the geographical
variation of S. mansoni distribution in the Man region in Western Cote d’lvoire. For the same
region, Beck-Worner et al. (2007) found a significant correlation for stream order of the closest
river, the water catchment and altitude. For sub-continental East Africa, a negative correlation
resulted from the distance to water body and elevation with respect to the distribution of
S. mansoni infection intensity (Clements et al., 2006b). In contrast, a study in sub-continental
West Africa reported only a negative correlation with distance to perennial inland water bodies
with respect to S. haematobium infection intensity and significance for elevation failed
(Clements et al., 2009a). Both sub-continental studies investigated a nearly 20-year mean of LST
and NDVI from NOAA-AVHRR, however, they provided no significant contribution to the final
model (Clements et al., 2006b: 716; Clements et al., 2009a: 924). In contrast, in Tanzania, a
positive effect of both LST and NDVI could be derived for prediction of S. haematobium (Brooker
et al., 2001). In another case study in Tanzania, the NDVI was already rejected in a preparatory
variable selection process (Clements et al., 2006a). In Nigeria, LST resulted as the only significant
environmental variable to predict urogenital schistosomiasis (Ekpo et al., 2008). This shows that
predictor variables and resulting models are tailored to the reference data, the scale of
observation and the geography of the study site. A reasonable impact of different ecological
zones on predictor performance and model outcome has been established by Brooker et al.
(2001: 1001) in Tanzania. This phenomenon is taken up by this thesis and specifically
investigated for the ecozones of savannah and tropical rainforest in study sites of West Africa.
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This review shows that different scales of RS data have been investigated for the risk profiling
of schistosomiasis with spatial resolutions ranging from 1 m to 8 km (Table 3-2). Most of the
studies have investigated data from a single sensor with predominantly low spatial resolution,
such as NOAA-AVHRR at 1.1 km. A common procedure was to combine the data with remotely
sensed topographic information. There are several approaches, where multi-scale RS data such
as 1m lkonos data, 30m Landsat, and 1km MODIS data have been analysed in an integrated way
(Abdel-Rahman et al., 2001; Kabatereine et al., 2004; Raso et al., 2005; Raso et al., 2006;
Clennon et al., 2007; Vounatsou et al., 2009). However, these studies used multi-scale data
predominantly to cover a broad spectrum of potentially relevant information such as land cover
classification based on high-resolution data and climatic surrogates based on multi-temporal low
resolution data. What is missing in all studies, but directly adressed by this thesis, is a direct
comparison of RS metrics derived at different spatial resolutions to evaluate the stability of
predictor performance for varying spatial scales. This issue of scale is essential to be considered
in order to better understand disease ecology based on the linkage between biological and RS
data (Brooker, 2002: 210).

RS and GIS have proven to be useful for planning and implementing disease intervention and
control programmes by excluding areas where schistosomiasis is unlikely to be a public health
problem and modelling priority areas of increased transmission risk (Brooker et al., 2001: 1004;
Brooker, 2002: 211). Clements et al. (2008a) predicted regions with a probability of
schistosomiasis transmission greater than 50% to design mass treatment campaigns according to
the criterion of the WHO in Burkina Faso, Mali, and Niger. Estimates of the number of
schoolchildren at risk of high prevalence have been predicted for West Africa (Schur et al.,
2011b) and Tanzania (Brooker et al., 2001), where additionally expectable programme costs
were calculated based on the model predictions. A greater demand of treatment resources
resulted if data were aggregated on provincial level compared to the national level due to the
integration of large spatial heterogeneities of disease risk on the sub-national level, again
indicating the high relevance of scale for risk profiling (Schur et al., 2012). Many studies focused
on modelling the risk of polyparasitic co-infections of schistosomiasis and soil-transmitted
helminth infections with the objective to enhance cost-effectiveness through integrated control
measures (e.g. Raso et al., 2006; Schur et al., 2011a; Hodges et al.,, 2012). Morbidity control
through mass treatment campaigns has not proven to be sustainable (Section 3.1.3), because a
water site can be converted to a high-risk transmission zone if it is (re-) contaminated by single
untreated individuals. This suggests the importance of water-site factors to achieve the shift
from morbidity to transmission control or even local elimination (Stothard et al., 2009: 1672;
King, 2010: 100).
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3.3 Modelling schistosomiasis risk

The question of how diseases are distributed on Earth in space and time has a long history,
which has inspired epidemiologists, ecologists and geographers to seek explanations (Section
1.1). To overcome the paucity of epidemiological and intermediate host-related data, spatial
model approaches have become the instrument of choice with the potential to discover
relationships between disease occurrence and environmental and geographic conditions to
predict this established relation for non-sampled locations (Simoonga et al., 2009: 1687). The
conceptual principle for modelling disease risk is based on modelling the ecological niche of
disease-related species (e.g. parasites or disease vectors) to understand the ecology of disease,
characterise its habitat distribution and predict suitable environmental conditions in space
(Peterson, 2006: 1822-1823) (Box 1). However, to model the risk of a human disease such as
schistosomiasis, the human as the final host needs to be addressed in the model approach. The
ecological niche concept to model species distribution must therefore be extended by human-
related environmental factors and adjusted to a social-ecological niche of disease (Section 3.3.1).
Different approaches of modelling disease risk are presented in Section 3.3.2. The contextual
relation between disease ecology and RS variables as well as its overall contribution for the
multi-faceted and complex system of schistosomiasis transmission risk are consolidated in the
next Section 3.4.

Box 1. Terms and definitions

Risk is defined as effect of uncertainty on
objectives (International Organization of
Standardization (1SO) 31000: Risk
management) and implies a future event
with an uncertainty if and how the entity of
interest is affected by a certain phenomenon.
For this research, risk is defined as
probability of humans to become infected
with the parasite.

Niche is a subset of those environmental
conditions (determined in an n-dimensional
model space, Figure 3-6a) which affect a
particular organism, where the average
absolute fitness of individuals in a population
is greater than or equal to one (Kearney,
2006: 187)

Environment in a medical sense integrates all
factors external to humans but interact with
them, e.g. physical, biological, social and
cultural environment (IEA, 1995: 53). With
respect to the parasite and snail species,
environment includes biotic and abiotic
phenomena surrounding and potentially
interacting with the organisms (Kearney, 2006:
187).

Habitat is a description of a physical place (i.e.
geographical space, Figure 3-6b), at a
particular scale of space and time, where an
organism either actually or potentially lives
(Kearney, 2006: 187)

3.3.1 Social-ecological niche of a disease

The transmission cycle of a disease is a composite phenomenon that represents multiple
interactions between a set of species, such as a pathogen, a human or animal host that become
infected, and a vector to enable disease transmission (Peterson, 2006: 1822). It follows that the
spatial occurrence of a disease is determined by the combination of complexities of the
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occurrence of disease component species as well as effects of chance events (Peterson, 2006:
1822). Within the concept of landscape epidemiology, Pavlovsky explained the nidality
(=focality) of diseases through the “source of disease” (=nidus) in the spatial domain (Pavlovsky,
1966: 7) being associated with specific landscapes (Pavlovsky, 1966), whereas the complexity of
a nidus depends on the transmission requirements of a pathogen (Reisen, 2010: 469). The
complex pattern and influences of environmental variation on disease distribution have been
investigated by estimating specific ecological niches of disease-related species (Peterson, 2006:
1822). According to the concept of landscape epidemiology, humans become infected when
they travelled into the nidus and come in contact with the pathogen (Pavlovsky, 1966: 9).
However, the disjunct distribution of infection and human residence complicates the
understanding of disease epidemiology and transmission (Reisen, 2010: 462).

The theoretical concept of the ecological niche of species has been established by Grinnell
(1917). It hypothesises that the geographic distribution of a species is determined by an n-
dimensional set of ecological conditions under which the species can maintain its population
(Grinnell, 1917: 115-118; Hutchinson, 1957: 416; Peterson, 2006: 1822). The distribution of a
species in its environment is determined by abiotic conditions that correspond with its
physiological limits, biotic factors that may be positive (e.g. mutualists, symbionts) or negative
(competitors, predators), the dispersal abilities of a species dependent on landscape
configuration and its evolutionary capacity to adapt to new conditions (Soberon and Peterson,
2005: 2). A merely abstract formalisation of the ecological niche is the fundamental niche, which
from an ecological point of view is the potential niche of a species driven by its environmental
requirements and delineated by its physiological (in-)tolerance in absence of biotic interactions
(Hutchinson, 1957: 416). The fundamental niche reflects Liebig’s law of the minimum (von
Liebig, 1840) revealing that species distribution and abundance are determined by periods when
conditions are at a minimum rather than times of the year when conditions are suitable (Odum
and Barrett, 2005: 178). In contrast, the realised niche inhabited by a species represents both,
the environmental dimensions in which species can survive and reproduce as well as its
functional role within its biotic environment (Hutchinson, 1957: 418). The realised niche is thus
often depicted as a subset of the fundamental niche (Figure 3-6), however, this is not necessarily
true for the case of positive biotic interactions (Franklin, 2010: 37). The differentiation between
fundamental and realised niche is important when modelling species distribution based on
environmental data as it determines whether the distribution is predicted from theoretical
physical constraints or field observations (Guisan and Zimmermann, 2000: 153). Both concepts
are applied in this thesis by: (i) modelling the fundamental niche of schistosomiasis-related
parasites and snails based on a mechanistic approach; and (ii) by modelling the realised disease
niche (Figure 3-6) based on a statistical approach. These mentioned model approaches are
further explained in Section 3.3.2.

Spatial modeling of human diseases have been fundamentally based on the ecological niche
concept to model the distribution and habitat conditions of disease-related species (Peterson et
al., 2002; Peterson, 2006; Ayala et al., 2009; Mak et al., 2010). However, from a conceptual point
of view, the ecological niche concept can straightforwardly be expanded by human dimensions
(Ojiem et al., 2006: 81), factoring in all relevant demographic, behavioural and socioeconomic
drivers that play a role in the disease transmission cycle (Figure 3-6). The integration of human,
socioeconomic, institutional, and cultural conditions into the ecological niche of plant species
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has been conceptualised as social-ecological niche and applied in agricultural sciences (Ojiem et
al., 2006; Guto et al., 2012; Mtei et al., 2013).

Ecological niche Social-ecological @
disease niche

[
Ll
[

Enviornmental axis 2
Enviornmental axis 2
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anng,
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Figure 3-6: Theoretical concept of ecological and social-ecological disease niche in environmental space
(a) and the spatial relation of schistosomiasis transmission in geographical space (b).

(a) The set of environmental conditions of the snail and parasite species modelled in an n-dimensional
space determine the ecological niche (modified after Franklin, 2010: 36). The integration of the human
environmental factors into the model results in the social-ecological niche. The specific niche conditions
(fundamental, realised) can be predicted into geographical space.

(b) The school location corresponds to the geo-located measure of disease prevalence in humans
(illustrated as +) and the water body as potential parasite and snail habitat represents the location,
where human infection potentially occurs, if environmental conditions where suitable and humans
susceptible. It is shown, that there are complex interactions between the measure of disease prevalence,
infection at specific water contact site and human behaviour to seek water site. The water habitats,
where disease transmission has occurred refer to the realised disease niche (bordered with green solid
lines). The water sites bordered with purple dotted lines provide suitable habitats for parasites and snails
and refer to the fundamental ecological niche.

With regard to schistosomiasis, Malone (2005: 28) declared that the aim of modelling disease
risk is to measure the relative suitability of the environment to establish a “disease niche”, which
describes conditions of a zone where parasite, intermediate, and final host coincide. Considering
the ecology of schistosomiasis transmission (Section 3.1.2), such a biocenosis can become
established, when environmental conditions are suitable for the respective parasites, its
intermediate snail host and when susceptible humans enter this habitat. Figure 3-6a illustrates
the theoretical concept of the social-ecological disease niche. To establish this niche (Box 1) of
schistosomiasis (Malone, 2005: 28), environmental conditions derived from observations, where
parasite, snail and humans converge and infection has occurred are modelled within an n-
dimensional space. Regarding the social-ecological niche of schistosomiasis, the fundamental
disease niche corresponds with habitats, where parasites and their corresponding snails could
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potentially establish a population and susceptible humans potentially access this habitat. The
realised disease niche reveals environmental conditions, where parasite, snail, and human
infection essentially converge, which partly result of observations from inhabited disease niches.
Figure 3-6b illustrates this concept as diagram of potential parasite and snail habitats (Box 1) and
the dispersal of humans in geographical space, i.e. represented by two-dimensional (x,y) map
coordinates. It shows that the integration of human water contact inherits complex spatial
relations between human habitations and the localisation of infection, which again is measured
at schools. This spatial complexity is further aggravated by varying disease susceptibility and
behaviour of individuals (Table 3-1) that highly modify the spatial probability of water contact
and disease infection. However, this conceptual underpinning makes clear, that spatial
modelling of schistosomiasis risk comprises a complex interplay of social and environmental
determinants of risk, which becomes further intricated through the disjunct appearance of
disease agents in space.

3.3.2 Model approaches

Spatial modelling of disease distribution has been established as an important tool for disease
epidemiology and control (Brooker, 2007; Pullan et al., 2011; Hodges et al., 2012). The general
idea of modelling habitat relations either aims to understand the relationship between observed
species/disease agents and its abiotic and biotic environment, or to test ecological or
biogeographical hypotheses about its distribution and ranges (Franklin, 2010: 11-12). These
models are widely used to predict the established relationship for locations, where survey data
are lacking (Franklin, 2010: 12). Similar to species distribution modelling (Kearney, 2006: 188),
there are two approaches for modelling a disease niche and predicting disease risk in space
(Malone, 2005: 27-28), the so-called mechanistic (biological or process-based) models that aim
to be general and realistic (Franklin, 2010: 105) and statistical (empirical) models designed to
correlate empirical facts (Guisan and Zimmermann, 2000: 158). In this thesis, both model
approaches have been used, as illustrated in Figure 3-7.

The mechanistic model approach aims at modelling a species’ niche based on a set of
physiological and behavioural traits to make inference on its potential environmental range
(Kearney and Porter, 2009: 336). To give an example, the thermal niche of a species represents a
fitness component such as survival, growth, development rate or reproduction as a function of
body temperature (Kearney and Porter, 2009). For diseases, key features of such physiological
requirements can be obtained from laboratory or field-based studies (Malone, 2005: 28), as
reviewed in Section 3.1.2 with an emphasis on schistosomiasis. Environmental preferences,
limits of tolerance, fitness values or behaviour of disease agents such as the parasite or the
intermediate host snail can be modelled based on either direct observations or based on models
of an individuals’ response to physical variables (Malone, 2005: 28). The objective of this model
approach is to link information about species fitness to environmental conditions and predict
habitat suitability of this species in geographical space (Kliskey et al., 1999; Kearney and Porter,
2009: 336). As the mechanistic approach is based on direct measurements of physiological
variables it models the fundamental niche, does explicitly not consider biotic interactions and
has not the potential to take this into account (Soberon and Peterson, 2005: 2). As depicted in
Figure 3-7, a mechanisic model approach has been used to model environmental suitability of
schistosomiasis-related parasites and snails in this study.
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Remote sensing:
nvironmental metrics

Ecological ] Disease T s

data e Water and potential prevalence r'-"n i)
(host/parasite) water accumulation Bt ln:r 0 .=
— S 1
IJI .

268

H———re) Y g '
Potenﬁal disease . !
transmis'si | sites- !
558 1
i
1
1
1
Functional l Calibration Calibration 1
relation .
A 4 1
Masking !
RS data Buffering I
1
1
Prediction Prediction I
1
Environmeéntal Probability of Probability of @mﬁm I
suitabilit prevalence prevalence '?jg i
i N e e DN R L% B o .
; e I
\3". # :i--‘ﬁ 4 % 1
/ ! 1
Hierarchical Non-hierarchical !
model approach model approach 1
1
Mechanistic model | Statistical model | | Statistical model 1
* Validation 4 vatidation ]

Figure 3-7: Conceptual framework of the model approaches used in this study. A mechanistic model
approach has been used to model environmental suitability for disease transmission and a statistical
model approach has been used to link school-based disease prevalence data with RS environmental
metrics. This study further explored the hierarchical combination of both model approaches with a
statistical model that links school-based prevalence directly to the potential disease transmission sites
modelled by the mechanistic approach.

The statistical approach investigates the correlation between survey records (e.g. human
prevalence, infection intensity, snail occurrence) and environmental variables (Malone, 2005:
27). This inductive approach has the objective to identify key environmental features that best
describe the range of conditions of reference data and predict the distribution and abundance of
a given species or disease by projecting the established relation back into geographical space
(Malone, 2005: 27). The assumption of this approach is that habitat suitability corresponds to
the intensity of habitat usage by a species, which selects areas that are most satisfying to its life
requisites (Schamberger and O’Neil, 1986: 6). In contrast to the mechanistic model approach, a
statistical approach is biased by biotic interaction effects since it is based on in situ observations,
which include those interactions. One can partially account for this bias by combining the
geography of other species using single-species models (Soberon and Peterson, 2005: 2).
Furthermore, evolutionary effects modify niche characteristics and spatial distribution of
species, which are inherent in observational data but cannot be considered by the mechanistic
model approach (Peterson and Holt, 2003: 776; Soberon and Peterson, 2005: 8). It has been
shown that the mechanistic and statistical model approach are complementary with respect to
the information they provide and should be interpreted carefully before being used
interchangeably in applications (Soberon and Peterson, 2005: 8). In this thesis, the spatial
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delineation of the potential disease transmission sites derived for the quantitative mechanistic
model of environmental suitability provided the basis to develop a hierarchical versus a non-
hierarchical statistical approach to model schistosomiasis risk as illustrated in Figure 3-7.

With respect to schistosomiasis, the mechanistic model approach has been applied by
modelling the climatic envelope to establish parasite development based on minimum and
maximum temperature thresholds and the number of growing degree days (GDD) required to
complete a parasite life cycle (Stensgaard et al., 2013: 381). De Vlas et al. (1996) simulated
human-, worm-, and infection-related aspects of schistosomiasis transmission to evaluate and
predict the effects of different control strategies based on a stochastic process model. The
inferential steps to statistically model the disease niche based on human prevalence or the
ecological niche of snail and its parasites have been achieved using diverse algorithms, such as
binomial logistic regression (e.g. Brooker et al., 2001; Stensgaard et al., 2005; Koroma et al.,
2010), Bayesian inference (e.g. Raso et al., 2005; Vounatsou et al., 2009; Schur et al., 2011b) or
genetic algorithms (Stensgaard et al., 2006). Overall, the literature shows that the standard to
investigate the spatial relation between the disease and its environment is a descriptive,
statistical approach. This could be explained by the straightforward approach of a statistical
model, where information is inherent in in situ observations compared to the mechanistic
model, where all relevant criteria for species occurrence would need to be extracted from
theoretical and experimental data and comprehensive validation is difficult.

3.4 Contribution of remote sensing for
schistosmiasis risk profiling

The review of risk factors that influence the schistosomiasis transmission ecology (Section 3.1.2)
and the previous applications of RS data for modelling disease risk (Section 3.2.2) are
synthesised in this section. Table 3-3 provides an overview of the linkage between disease-
related risk factors and RS variables structured according to the steps of the parasite life cycle.
The distribution of the filled rows, which correspond to risk factors that can potentially be
measured by RS data, shows that specifically parasite- and snail-related risk factors are covered
by RS measurements. However, it shows also very clear that RS has its natural limitations and
cannot detect all relevant risk factors such as intrinsic factors related to parasites, snails, and
humans as well as some chemical and biological aspects. Thus, remotely sensed environmental
measurements can contribute substantially to characterise the habitat conditions of parasites
and snails and can moreover detect human settlements and their spatial relation to suitable
habitat conditions. However, against this background it has to be kept in mind that RS-based
approaches for disease risk profiling always have gaps of information to be filled by other
disciplines.
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In the context of modelling schistosomiasis risk, RS variables can provide either direct
measurements of the feature of interest, which are, for example, the measure of land surface
temperature, water or vegetation. These variables are derived from respective RS metrics such
as land surface emissivity or surface reflectance at appropriate wavelengths with respect to their
spectral signature (see Figure 3-4). They can directly reflect habitat conditions and provide
information about the potential impact on the ecology of disease transmission. On the other
hand, RS data provide proxy variables, where the remotely sensed measurement is not
representing the respective measure influencing disease transmission but being indirectly linked
to the requested information. To give an example based on RS data, the slope of a land surface
can be measured from topographic modelling, however, the relevant information to be drawn
from this proxy measure would be water flow velocity as a decisive criterium for profiling risk of
disease transmission. Due to an additional step of modelling information to ecological indicators,
the potential sources of errors that affect the data may increase.

Based on this theoretical background it was the aim to evaluate the potential contribution of
RS data and variables for profiling schistosomiasis risk. Unfortunately, information on rainfall
was not available at a useful spatial resolution to gain relevant information for the scale of
observation used in this study. Furthermore, there were constraints regarding appropriate in situ
data to model water depth and turbidity from RS measurements. However, the former variable
has been approximated from field-based estimations (Section 4.3). Apart from these few
exceptions, all RS variables described in Table 3-3 were investigated regarding their potential
contribution for schistosomiasis risk profiling in this thesis.
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4 Data and pre-processing

This chapter presents the acquisition, pre-processing, and quality of epidemiological and RS
datasets. Furthermore, environmental in situ data with focus on potential disease transmission
sites visited in Burkina Faso are described.

4.1 Epidemiological data

Epidemiological data on schistosomiasis prevalence given as ratio between infected people and
surveyed people have been accessed for the countries Burkina Faso and Céte d’lvoire from the
Global Neglected Tropical Disease database (GNTD) freely available under www.gntd.org
(Hurlimann et al., 2011). Additional information of relevance for this study were included in this
database, such as prevalence of parasite species, number of examined people, date of survey,
description of the survey location (e.g. school, community, hospital), and the method used for
sample recruitment and diagnostic techniques (Hurlimann et al., 2011: 4). The data of the GNTD
were obtained from a systematic review of peer-reviewed journals and grey literature, ministries
of health records in schistosomiasis-endemic countries and data from surveys conducted by
research institutions (Hirlimann et al., 2011: 2-3). Data points retrieved from publications and
reports were geo-referenced retrospectively using the GEOnet Names server (earth-
info.nga.mil/gns/html), topographic or sketch maps or Google web search (Hirlimann et al,,
2011: 4). An additional database of school- and community-based surveys has been provided by
the national schistosomiasis control programme in Burkina Faso following a personal
communication with Dr. Moussa Dadjoari (Dadjoari, 2011). These data represent 86 survey
locations of S. haematobium species in Burkina Faso, each with 120 examined schoolchildren
between 2003 and 2007. Epidemiological data used for this research refer to the species
S. haematobium and S. mansoni, which are the most prevalent species in the study region.

Pre-selecting steps of epidemiological data are illustrated in Figure 4-1 and are based on
selection criteria proposed by Schur et al. (2011b: 4). Surveys before 1980 were removed,
because the parasite can reach a maximal life span of only 30 years within the human host. To
establish a comparable database, only surveys of schoolchildren have been selected for the
database to avoid age effects. The sensitivity of diagnostic techniques to establish parasite
prevalence is an indicator for data reliability. Surveys based on low diagnostic sensitivity have
therefore been removed from the database as proposed by Schur et al. (2011b: 4). If schools
were surveyed more than once, the most recent survey has been selected for the database of
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Data and pre-processing

this study. Assuming that school locations closer than 500m have a quasi-identical catchment
area, those sample locations were combined by summing up the number of examined and
number of positive schoolchildren resulting in an updated prevalence rate for this specific
location. The geo-location error following the combination of points at this distance is negligible
in comparison to the retrospective geo-location procedure of surveys inherent in the database.

The spatial distribution of schistosomiasis

prevalence data for the study area is illustrated in GNTD: Schistosomiais

Figure 4-2. It can be seen that sample locations in prevalence surveys

Burkina Faso are distributed evenly in contrast to the Remove surveys before 1980
more focal distribution in Cote d’Ivoire. For the selected or when year of survey is missing
study sites BUF, MAN, and TAB, the availability of *

epidemiological data was comparable (Figure 4-2). In Surveys since 1980

the following, the properties of the data available for

Remove communily or village

each of the three selected study sites are described in survcys

detail (Table 4-1). Data points of school prevalence are y
count data (Elliott et al., 2006: 5) that represent the
sample of schoolchildren. Overall sample size s

School-based surveys

generally low and varies between the three study sites Remove surveys with no sensitive
being highest in the MAN site (75), followed by the BUF | diagnastic techniques

site (74) and lowest in the TAB site (38). In contrast, the :
areal extent is lowest in the MAN (4,381 km?) and
highest in the BUF site (32,826 km?2). The number of

Surveys with sensitive
diagnostic techniques

TR _ . . Replace older surveys at
individuals screened per school (=sample resolution) is some school focotion
an indicator of data reliability. The majority of school A 2
locations in Cote d’lvoire have a sample resolution
L Most recent surveys
between 80 and 100 individuals per school and around
50 children per school in BUF (Table 4-1). The observed Agaregate surveys that are
cases of disease prevalence range from 0 to 100%, dloser than 500m
-

allowing to model prevalence and discriminate
between low (<10%), moderate (10 - <50%) and high
prevalence (>50%) according to the recommendations

of the WHO (2002a: 34). Table 4-1 shows that this Figure 4-1: Steps in pre-selection of
epidemiological data

Locally aggregated
surveys

classification scheme is covered by the epidemiological
data for all three study sites. The year of survey ranges from 1980 to 2007. The older surveys are
predominantly in BUF and the most recent ones in MAN. Minimum distance between school
locations varies from around 500 m in MAN to 3.26 km in BUF and maximum distance from
62.2 km in MAN to 252.6 km in BUF, whereas the study site TAB represents intermediate ranges
for both distance metrics. The average nearest neighbour ratio investigates spatial dispersal of
point data (Clark and Evans, 1954). A value less than one exhibits a clustered pattern and a value
greater one indicates a trend toward dispersion. The p-value indicates whether a trend is
statistically significant. All three study sites resulted a random distribution of the sample points,
as no trends have been statistically significant.
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Table 4-1: Description of the epidemiological database for each of the three study sites in Céte d’Ivoire
(MAN, TAB) and Burkina Faso (BUF). Sample size describes the number of school locations surveyed in each
study site. The area extent indicates the area of each study site. Sample resolution gives the number of
individuals surveyed per school location illustrated by a violin plot. The wider the plot at the x-axis the
more school locations have been sampled with the number of individuals as indicated on the y-axis. The
prevalence distribution is illustrated by a similar violin plot showing the prevalence between 0 and 100% on
the y-axis. The year of survey is shown in histogram plots for all three study sites. The minimum and
maximum distance describes the distance in km between the two closest and farthest school locations,
respectively. The point pattern of sampled school locations for the study sites has been analysed using the
nearest neighbour ratio (NNR).

* outliers in BUF with 3,153 and 1,537 individuals/school removed from display

MAN TAB BUF
Sample size
75 38 74
(number of schools)
Area extent (km?) 4,381 8,476 32,826
400- ! 400 | 400 =+
§3oor i 2300, %300—
Sample resolution* gzoor (1\, E‘ZOO E’Qoo
(individuals/school) E A El E
2100 e 2100 2100
0 0 ‘ 0
sample points sample points sample points

=}
=3
2
e
(=]
S

~
a

Prevalence
distribution

prevalence [%)]
(41]

o
prevalence [%)]
[41]
=}
prevalence [%)]
) [
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(=}

sample points samplé points. samplé points

I =z
z
2 _m _
H =
L]
Year of survey g l =
G —
1 lor)
I :
1980 1990 2000 2010
year of survey
Minimum distance
between schools 0.52 0.74 3.26
(km)
Maximum distance
between schools 62.2 101.1 252.6
(km)
'(Dh‘l’,'q”;)pattem index 1.03 (p=0.66) 0.89 (p=0.18) 1.07 (p=0.22)
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4.1 Epidemiological data

Data on schistosomiasis prevalence are spatially correlated as common exposures to
environmental conditions influence transmission similarly at neighbouring locations (Vounatsou
et al., 2009: 1695). The phenomenon of spatial autocorrelation is a typical phenomenon in
ecology (Legendre, 1993: 1659) and stipulated by the ‘first law of geography’ (Tobler, 1970)
stating that “near things are more related than distant things” (Tobler, 1970: 236). Hence, the
values of neighbouring measurements are either “more similar (positive autocorrelation) or less
similar (negative autocorrelation) than expected for randomly associated pairs of observations”
(Legendre, 1993: 1659). The autocorrelation inherent in spatial data has consequences on
statistical models as many models are not explicitly spatial and make the standard assumption
that observations are independent (Franklin, 2010: 138). However, it has at the same time been
observed that prevalence of Schistosoma spp. has a typically focal distribution and therefore low
spatial autocorrelation (Abdel-Rahman et al., 2001: 50).

To understand spatial autocorrelation inherent in the data used in this study, in a first step
the overall relationship between distance and prevalence similarity between school locations
has been tested using the Mantel test (Mantel, 1967: 213). This investigates regression
coefficients between the observed pattern and a randomized pattern with one of the matrices
being shuffled (Koenig, 1999: 22-23). This test has been processed using the “ade4” package in R
(Dray and Dufour, 2007). A Monte Carlo simulation based on 9,999 replications showed positive
correlation for the study sites MAN and BUF and negative correlation for the study site TAB. The
Null-Hypothesis of unrelated matrices has been rejected only for the study site MAN (p < 0.001).
Based on this result, spatial autocorrelation changes significantly with distance for the study site
MAN, and no significant change between autocorrelation and distance has been established in
TAB and BUF. This reflects the high sample density given in sample size per area extent in MAN
compared to much lower sample density in other study sites.

MAN TAB BUF
0.08 0.08 0.08
-}
§ § §
0.06 . . 0.06 0.06
g et : :
] . . : ] ]
g 0.04 ) ot g 0.04 g 0.04
= . "= =
£ . 2 i
2 002 r E 0.02 E 0.02
5000 10000 15000 20000 1m'mo 20('100 30600 20600 40600 60600 80600
distance [m] distance [m] distance [m]
sill = 0.053 sill=0.074 sill = 0.045
range = 12.1km range = 10.7km range = 12.2km

Figure 4-3: Patterns of the spatial structure of schistosomiasis prevalence in the three study sites MAN, TAB
and BUF. The dots represent the empirical semivariogram and the solid line shows the best-fitted
omnidirectional semivariogram based on a spherical model for de-trended prevalence data. The sill
indicates the maximum of the modelled semivariance and the range indicates the distance, for which
spatial independence of two school locations is given. Thus, spatial autocorrelation is inherent in the data
until the distance of 12.1 km in MAN, 10.7 km in TAB, and 12.2 km in BUF.

In a second step, the spatial dependence of schistosomiasis prevalence has been
guantitatively assessed based on the estimation of spatial semi-variance between all pairs of
observations according to Fortin and Dale (2005: 132-138). The empirical semivariogram of the
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Band respanse -

sample data provided the basis to fit an omni-directional, spherical and de-trended
semivariogram model using the ordinary least-squares (OLS) regression method provided by the
“gstat” package (Pebesma, 2004). The most relevant characteristics of the fitted semivariogram
model are the total observed variation of the variable (= sill), the modelled variability at
distances smaller than the shortest empirical distances (= nugget) and the distance at which two
observations could be considered independent (= range) (Karl and Maurer, 2010: 197).

Figure 4-3 presents semivariograms for the schistosomiasis prevalence in the three selected
study sites of Burkina Faso and Cote d’lvoire. In each setting, the semivariogram exhibits a
spatial structure for distances between 10 and 12 km and after this distance there was no spatial
autocorrelation in the database. However, if spatial autocorrelation is inherent in the data,
either data that are closer to each other than the indicated distance need to be removed or this
spatial structure needs to be considered by the model algorithm.

4.2 Remote sensing data

Remotely sensed land surface characteristics of different spatial resolutions were derived from
RapidEye (6.5 m), Landsat 5 TM (30 m), and Terra MODIS (250 m/500 m/1 km) data for the
purpose of multi-scale analysis. The spectral bands that correspond between the sensors are the
blue, green, and red bands in the visible spectrum and the near infrared bands (Figure 4-4).
RapidEye provides an additional red edge band (4) and both Landsat 5 TM and Terra MODIS data
provide further spectral bands in the middle infrared and shortwave infrared wavelength, which
are also suitable for the generation of relevant spectral indices (Figure 4-4). The technical details
of these three sensors are listed in Table 4-2.
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Figure 4-4: Spectral bands of multi-scale RS data from the sensors RapidEye, Landsat 5 TM, and Terra
MODIS used in this study. The band numbers according to the sensor configuration are noted above each
band. Source of spectral response function: RapidEye (Blackbridge, 2013), Landsat 5 TM (USGS, 2014), and
Terra MODIS (NASA, 2014).

For the multi-scale analysis, data from the year 2010 and 2011 have been selected due to the
availability of high-resolution RapidEye data. The temporal correspondence of RS data with
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4.2 Remote sensing data

epidemiological data is considered acceptable due to the 30 year life span of adult worms and
the chronic characteristic of the disease. The specific scale-related analysis of RS data with
different spatial resolutions has focused on the study site MAN, where coverage of multi-scale
RS data was most appropriate. In contrast, the study site TAB was lacking coverage of
corresponding Landsat data with acceptable level of cloud coverage and BUF was not sufficiently
covered by RapidEye data. The available scenes used for the multi-scale analysis in this study are
noted in Table 4-3.

Table 4-2: Technical details of the multi-scale RS data used in this study. Numbers in round brackets refer
to the spectral band number of the respective sensor. Nir = near infrared, mir = middle infrared, swir =
shortwave infrared, tir = thermal infrared.

RapidEye Landsat 5 TM MODIS
th st 18™ December 1999 (Terra)
Start 29" August 2008 1" March 1984 gth May 2002 (Aqua)
- Daily (off-nadir) Daily (> 30°N/S),
Repetition rate 5.5 days (at nadir) 16 days else every two days
Swath width 77 km 185 km 2,330 km
. 250 m (1-2)
f:::lltaxlion 6.5 m (nadir) ?lozrgm tir band 6) 500 m (3-7)
1 km (tir 20-23 and 31-32)
) Blue (1): 0.45—-0.52 um Red (1): 0.62 - 0.67 um
zlr‘;zﬁlzéﬁ'giz E-gtgmm Green (2): 0.52 —0.60 um | Nir (2): 0.841 — 0.876 um
S Red (3); 0.63 - 0.685 t:q Red (3): 0.63 — 0.69 pm Blue (3): 0.459 — 0.479 pm
r:solution Red ed.e.(4)' 0 69 ~ H Nir (4): 0.76 — 0.90 um Green (4): 0.545 —0.565 um
0.73 rf’] o Mir (5): 1.55 — 1.75 pm Mir (5): 1.23 = 1.25 pm
N‘ir (SL)l' 0.76 — 0.85 um Tir (6): 10.40 — 12.50 um Swirl (6): 1.628 — 1.652 um
o S H Swir (7): 2.08 — 2.35 um Swir2 (7): 2.105 — 2.155 um

Besides the multi-scale analysis of specifically derived RS variables, several other data
products have been analysed with respect to the spatial risk of schistosomiasis transmission. The
statistical metrics of Terra MODIS vegetation indices (MOD13Q1 product), daytime LST
(MOD11A2) and the calculated difference between day and night-time LST have been
investigated in this study, since these metrics respond to ecological requirements of the parasite
and snail as documented in Section 3.2.2. Relevant topographic characteristics have been
derived from the 30m Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) global digital elevation model (GDEM), which offers higher spatial resolution of
topography in contrast to other topographic data (90m and more) so far used for schistosomiasis
risk assessment. Other remotely sensed measurements relevant for schistosomiasis transmission
used in this study were precipitation derived from Tropical Rainfall Measuring Mission (TRMM)
data and information on the spatial distribution of human settlements provided as an
established product from TerraSAR-X data.
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4.2.1 Technical description and pre-processing of selected
remote sensing data

RapidEye, launched in 2008, is a constellation of five Earth imaging satellites with identical and
equally calibrated sensors able to acquire multispectral images on a near-daily basis
(Blackbridge, 2013). This multi-temporal high-resolution RS data provides a very useful database
for the analysis of snail and parasite habitat dynamics. For this study, archive data from the
years 2010 and 2011 have been accessed through the RapidEye Science Archive (RESA) at the
German Aerospace Centre (DLR, 2014b) as level 1B (L1B) data. Basic pre-processing applied to
L1B data include radiometric and geometric sensor corrections (Blackbridge, 2013: 7). For
Burkina Faso, images free of clouds or acceptable cloud coverage below 5% could be received
for the dry season in January/February and for the end of the rainy season in October/November
(Table 4-3) covering the sub-site within the study site BUF (see Figure 2-1). In the tropical region
of Cote d’lvoire, only dry season images between January and February were sufficiently free of
cloud contamination. Further pre-processing steps involved the transformation into the
Universal Transverse Mercator (UTM) projection with the World Geodetic System 1984 (WGS84)
using bilinear interpolation, orthorectification using a 90 m SRTM digital elevation model (DEM),
as well as atmospheric and topographic correction using ATCOR (Richter and Schlapfer, 2012)
within the CATENA pre-processing tool of the DLR (2014a). Geometric position of RapidEye data
has been further adjusted based on sampled ground control points (GCPs) in Burkina Faso.

Landsat 5 TM has been launched on 1* of March 1984 and was the longest lasting satellite
(decommissioned on 5™ June 2013) of the Landsat family established in 1972. Data from the
Landsat 5 TM can be accessed at no cost from the Earth Resources Observation and Science
(EROS) Centre at the United States Geological Survey (USGS) pre-processed using the Level 1
Product Generation System (LPGS). For this study, L1B data have been acquired for the study
sites MAN in western Cbte d’lvoire and BUF in central Burkina Faso with time steps in
correspondence with available RapidEye data (Table 4-3). However, the study site TAB in
southern Coéte d’Ivoire has not been covered by Landsat 5 TM for this time period. As this study
site is located in the border area of a Landsat tile, data from the Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) sensor with large gaps due to the failed Scan Line Corrector (SLC) and at the
same time largely contaminated with clouds have not provided an alternative. L1B data have
been processed further using ATCOR 2/3, version 8.2 (Richter, 1996; Richter and Schlapfer,
2012). Clouds have been detected and masked based on thresholds in the visible blue band and
thermal infrared band six of Landsat 5 TM data (Martinuzzi et al., 2007). The geolocation
accuracy of Landsat 5 TM data has been inspected based on sampled GCPs in Burkina Faso and
RapidEye imagery. Position accuracy of the pre-processed data has been in the sub-pixel level of
a 30m Landsat 5 TM pixel and therefore no additionally correction has been performed.

MODIS is a multi-spectral (36 bands) and multi-temporal (daily to every day repeat coverage)
remote sensor and part of the Earth Observing System (EOS), which was designed by the NASA
to provide observations of terrestrial, atmospheric and oceanic phenomena and processes on a
global scale (Justice et al., 2002: 3). The first MODIS was integrated on the Terra (EOS AM-1)
spacecraft together with four other sensors and successfully launched on 18" December 1999. A
second mission of MODIS was started on 4™ May 2002 on-board the Aqua (EOS PM-1)
spacecraft. MODIS data from Terra and Aqua have operational reception, are available at no cost
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and still today acquire images on a near-daily basis (Justice et al., 2002: 3). MODIS provides
seven spectral bands (bands 1-7) useful to derive land surface characteristics (Table 4-2) and six
thermal infrared bands (bands 20-23 ranging from 3.66-4.08 um and bands 31-32 ranging from
10.78-12.27 um) relevant to derive land surface temperature. Data products from the MODIS
sensors can be directly downloaded from the Land Processes Distributed Active Archive Centre
(LP DAAC) from the USGS (2013) including further information such as quality assessment layers,
viewing angles or observation times, if images were composited. For this study, surface
reflectance of Terra MODIS data have been accessed in correspondence to the available
RapidEye and Landsat 5 TM data through the MOD09GQ and MODO09GA products, which provide
daily acquisition of spectral bands 1-2 at 250 m and 3-7 at 500 m resolution, respectively (Table
4-3). These Terra MODIS products are pre-processed as level 3 data and therefore corrected for
radiometric, geometric, atmospheric, and bi-directional effects (Vermote and Vermeulen, 1999).
Additionally, the MOD13Q1 product, a 16-day composite of vegetation indices with spatial
resolution of 250 m, and the MOD11A2 product, an eight-day composite of LST and emissivity
with spatial resolution of 1 km, have been investigated in this study. Data composition is done
using a per-pixel Terra MODIS-specific compositing method that is dependent on the number of
cloud-free observations available (Huete et al., 2002: 198). The Terra MOD13Q1 data include the
NDVI and the enhanced vegetation index (EVI) from level 3 processed reflectance data (Huete et
al., 1999). The Terra MOD11A2 comprises day-time and night-time LSTs retrieved under clear-
sky conditions and emissivities estimated in bands 31 and 32 from land cover types (MOD12
product) per pixel at day and night-time (Wan, 1999). Both products have been downloaded for
the year 2010 to match the high-resolution data. The Terra MODIS LST product has been
validated for multiple validation sites with wide ranges of surface and atmospheric conditions
and showed a deviation of +1 K for temperatures between 263 K and 323 K (Wan et al., 2004:
272).

The ASTER is an imaging instrument, which is on-board the Terra satellite together with
MODIS. In this study, the ASTER GDEM has been used as basis for topographic analyses.
Altogether 82 tiles of the ASTER GDEM2 (Version 2) have been downloaded from Japan Space
Systems (JSS, 2014) and mosaicked to cover the complete study area of Burkina Faso and Cote
d’lvoire with 30m spatial resolution, given a vertical root mean square error (RMSE) of 8.68 m
(Meyer, 2011: 6).

TerraSAR-X is a German radar satellite from a joint venture of the DLR and the European
Aeronautic Defence and Space Company (EADS) Astrium designed with a spatial resolution
ranging from 1-16 m. Further technical details of this satellite can be found at DLR (2014c). In
this study, a processed settlement mask derived from TerraSAR-X data has been used as
described in the following Section 4.2.2.

4.2.2 Derivation of environmental variables

Environmental variables that can be related to the ecology of disease transmission (Section
3.1.2) were derived from spectral reflectance captured in the RS data and from the DEM (Section
4.2.1). Thereby indices were calculated to enhance the signal of specifically addressed features
(e.g. water, vegetation, etc.) taking advantage of the surface specific differences in reflectance
(see Figure 3-4). The NDVI, the EVI, the soil-adjusted vegetation index (SAVI), the modified soil-
adjusted vegetation index (MSAVI), the normalized difference water index (NDWI), and the
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modified normalized difference water index (MNDWI) were the vegetation and water indices
used in this study and will be discussed in the following section.

The NDVI (Equation 3-2), which has already been described in Section 3.2.1, is the most
prominent spectral index to enhance the vegetation signal detected by a remote sensor.
Vegetation indices are considered as proxy for water availability through vegetation monitoring
and can also delineate water, if index values result negatively. The EVI is one further
development of the NDVI with the aim of optimising the signal with improved sensitivity in high
biomass regions, a decoupling of the canopy background signal and a reduction of atmospheric
influences (Huete et al., 2002: 196). The EVI (Equation 4-1) is expressed as

PNIR — Pred
EVI = G Equation 4-1
Pnir T Clpred - Czpblue + L

where p are atmospherically corrected surface reflectances, L is the canopy background

adjustment that addresses nonlinear differential near infrared (NIR) and red radiant transfer
through a canopy, and C;, C; are coefficients of the aerosol resistance term, which uses the blue
band to correct for aerosol influences in the red band. The coefficients adopted in the EVI
algorithm based on MODIS data are G (gain factor) = 2.5, C;=6, C,=7.5, L = 1 (Huete et al., 1994;
Huete et al., 2002: 196).

The SAVI introduces a soil calibration factor, L, to the NDVI equation to minimise soil
background conditions that exert considerable influence on partial canopy spectra and the
calculated vegetation index (Huete, 1988: 296-299). The SAVI (Equation 4-2) is expressed as

nir — red .
SAV] = ——— (1 + L) Equation 4-2
nir+red + L
where an L value of 0.5 in reflectance space has been identified to minimise soil brightness
variations and eliminates the need for additional calibration for different soils (Huete, 1988: 306;

Huete and Liu, 1994: 897).

The MSAVI is based on the SAVI and uses an iterative, continuous L function to optimise soil-
adjustment that varies with the amount of vegetation present. A large L value would best
describe soil-vegetation interactions for low vegetation amounts, while L should become smaller
with increasing vegetation amounts (Qi et al., 1994: 123). The MSAVI (Equation 4-3) includes
visible red (pyeq) and near infrared (py;r) reflectance and is expressed as follows (Qi et al.,
1994: 124)

2pnir + 1= /(2Pwir + 1)% — 8(Dnir — Prea) Equation 4-3
2

The NDW!I was developed by McFeeters (1996) with the aim to delineate open water. The

MSAVI =

NDWI (Equation 4-4) is expressed as follows

(green — nir) )
NDWI = ——————— Equation 4-4
(green + nir)

where spectral reflectance at visible green wavelength corresponds with the maximum
reflectance of water and reflected near infrared radiation (nir) indicates the spectral wavelength,
where water absorption is very high and the contrast between water and terrestrial vegetation
or soil greatest (McFeeters, 1996: 1429).
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The MNDWI aims to enhance the delineation of open water features as proposed by
McFeeters (1996) by using the middle infrared (mir) signal instead of the near infrared (nir) band
and thereby reduce noise experienced from built-up land (Xu, 2006: 3026-3027). In this study,
due to unavailable mir bands provided by RapidEye data, the MNDW!I (Equation 4-5) could be
calculated for Landsat 5 TM and Terra MODIS data only and is expressed as follows

(green — mir)

MNDWI = Equation 4-5

(green + mir)

At this point, it should be mentioned that Gao (1996) has also named a NDWI, however, this
index uses band combinations of the near infrared and middle infrared wavelength and aims to
detect vegetation water liquid and thus is different from McFeeters’ NDWI.

Table 4-3: Overview of RS environmental variables used in this study and its availability for the three
selected study sites. RE=RapidEye, LS=Landsat 5 TM, MOD=Terra MODIS, GUF=Global Urban Footprint,
MOD13Q1 and MOD11A2 describe value added products of the Terra MODIS sensor, ASTER GDEM=Global
Digital Elevation Model of the ASTER sensor. If (RE) is noted in brackets, only the sub-site of BUF (Figure
2-1) is covered by RapidEye data. The acquisition dates of RapidEye, Landsat 5 TM and Terra MODIS for
multi-scale analysis of the study site MAN are 5" January 2011, 12" January 2011 and mean from 5" to
12" January 2011, respectively. The Rapid Eye data used for the study site TAB were acquired on 3"
January 2011. The Rapid Eye data that cover the sub-site of the study site BUF were acquired on 18"
February 2010 (dry season image) and 27" October 2010 (wet season image). The full study site of BUF
was covered by Landsat TM 5 data acquired between 29" January and 21° February 2010 for the dry
season and between 4™ November and 22™ December 2010 for the wet season. An extensive list of single
RS environmental variables used for schistosomiasis risk modelling in each study site is given in the
Appendix (Table A 1).

Environmental variables MAN TAB BUF

Spectral reflectance RE, LS, MOD RE (RE), LS (dry/wet)
NDVI RE, LS, MOD RE (RE), LS (dry/wet)
EVI RE, LS, MOD RE (RE), LS (dry/wet)
SAVI RE, LS, MOD RE (RE), LS (dry/wet)
MSAVI RE, LS, MOD RE (RE), LS (dry/wet)
NDWI RE, LS, MOD RE (RE), LS (dry/wet)
MNDWI LS, MOD - LS

Water body RE/LS RE (RE), LS
Euclidean distance from water body RE/LS RE (RE), LS

Area of human settlements RE (mapping) RE (mapping) GUF

- statistical metrics -

NDVI (min, max, mean, median) MOD13Q1 MOD13Q1 MOD13Q1

EVI (min, max, mean, median) MOD13Q1 MOD13Q1 MOD13Q1

LST (min, max, mean, median) MOD11A2 MOD11A2 MOD11A2
ATemp (min, max, mean, median) MOD11A2 MOD11A2 MOD11A2

- topographic characteristics -

Altitude ASTER GDEM ASTER GDEM ASTER GDEM
Slope ASTER GDEM ASTER GDEM ASTER GDEM
Sink depth ASTER GDEM ASTER GDEM ASTER GDEM
Stream order ASTER GDEM ASTER GDEM ASTER GDEM

The most important class of land cover with respect to transmission of schistosomiasis is
water. The spectral signature of water is illustrated in Figure 3-4 and represents its maximum of
reflectance in the visible wavelengths and shows nearly full absorption of EMR towards the near
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infrared and middle infrared. The best mode of discriminating water from land using optical RS
provide data at near infrared and middle infrared wavelengths between 0.74 and 2.5 um,
because in this region, water bodies appear very dark in contrast to land surfaces, where
vegetation or soil appears bright due to reflection of significant amounts of EMR. However, most
natural water bodies contain a variety of organic (e.g. phytoplankton) and inorganic (e.g.
suspended minerals) constituents that highly modify the spectral properties of water (Jensen,
2000: 385). This allows on the one hand estimating water quality and turbidity, on the other
hand it proves to be difficult to distinguish land and water surfaces. For this study, a water mask
has been derived from RapidEye and Landsat 5 TM imagery by thresholding the NDWI with a
cut-off value set to zero, above which the spectral index delineates water (McFeeters, 1996:
1429-1430). However, in the study site MAN in western Cote d’Ivoire, the outcome of threshold-
based water delineation was poor due to the very small ponds and river lines, which are further
partly covered by dense riparian vegetation. The exposure of dark rocks in the mountainous
region has further contributed to misclassification of water in this region. Hence, in this area, the
water bodies have been mapped using a hierarchical procedure: First, a supervised classification
of water/non-water based on RapidEye and Landsat 5 TM data as well as the NDW!I has been
applied using the random forest classification algorithm (Breiman, 2001). Secondly, topographic
landscape elements improbable for the establishment of water bodies were excluded by
thresholding curvature and slope calculated from the ASTER GDEM. The resulting water mask
has been refined manually by visible inspection of RapidEye data and very high-resolution data
available in Google Earth© (Googlelnc., 2010). The derivation of a water mask with spatial
resolution of Terra MODIS data did not seem appropriate for the small-scale structure of water
bodies as present in the selected study sites. Additionally, the Euclidean distance from water
bodies has been calculated for the study sites.

Human settlements provide a highly relevant piece of information for the analysis of
schistosomiasis transmission risk in space, because only where humans are present, is there a
risk of infection. Currently, there are several RS based products available, where human
settlement is classified or modelled on global scale. An overview is given by Schneider et al.
(2009: 2). However, even the products with highest spatial resolution such as GlobCover with
300m (Arino et al., 2011) or the MCD12Q1 MODIS land cover product with 500 m (Strahler et al.,
1999) failed to represent the settlements reasonably. Currently, a settlement mapping approach
based on high-resolution RS data from the TerraSAR-X and TanDEM-X missions is being explored
for its potential to map urban settlements with 12 m spatial resolution on a global scale (Esch et
al., 2010; Esch et al., 2012; Esch et al., 2013). An unpublished beta version of the global urban
footprint (GUF) product was provided for this study covering strip wise most areas of Burkina
Faso and Coéte d’lvoire. Additionally, information about human settlements has been derived
from RapidEye data for the study sites in Cote d’lvoire by visual delineation of settlements.
However, this was not possible for the study site BUF, where rural settlements predominate and
consist of dispersed, small agglomerations of loam houses. Due to the extensive area of this
study site and the absence of very high-resolution data covering it, the provided beta version of
the GUF was used here as it was the only available information. A simple comparison between
the GUF and small areas of manually mapped settlements in Google Earth (Googlelnc., 2010) for
testing the GUF correspondence resulted that information was useful for urban agglomerations
but not appropriate in the rural regions.
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Based on Terra MODIS time series data from the year 2010, statistical metrics of vegetation
indices provided by the MOD13Q1 product (NDVI and EVI) and LST provided by the MOD11A2
product have been calculated. Therefore, Terra MODIS time series data have been masked for
clouds based on the provided cloud mask and then summarised by its minimum, maximum,
mean, and median value, both on a pixel level. For Terra MODIS LST, statistical metrics have
been derived for the daytime temperature measure and the difference between day- and
night-time LST.

Topographic information about the environment plays a crucial role for schistosomiasis risk
profiling, due to the fact that topography can determine to some extent whether water
accumulates at a certain location and how fast it flows at the surface. Elevation above sea level
provided by the ASTER GDEM was used for this research. In a first step, the DEM was smoothed
using a majority filter for a 15x15 moving window. This procedure minimises noise in the data
and errors of single pixels. Subsequently, the topographic variables were derived by separate
procedures (Figure 4-5). Topographic sinks were described by pixel values, where all
neighbouring values were equal or greater than the centre pixel value. The landscape of Burkina
Faso has demonstrated an undulating terrain with many natural and man-made sinks on a small
scale. To map these sinks and measure its depth, a sink mask has been derived from an image-
differencing analysis between the smoothed image and the filled smoothed image. However, it
is common that sinks in elevation data are due to errors in the data caused by rounding of
elevations to integer numbers. Therefore, all other topographic variables such as elevation,
slope and stream order have been calculated from a smoothed image with filled sinks. Slope of
the terrain has been derived from the DEM as proxy-indicator for potential flow velocity of
surface runoff with inclination calculated in degrees. As water runoff travels from higher to
lower altitudes and usually becomes organised in a branched network of stream channels, the
flow direction and flow accumulation of water result a stream network of topographic water
drainage. The resulting stream network has been ordered according to Strahler (1957) based on
an accumulation threshold of 18000 cells, which was the equivalent for the 30m ASTER GDEM to
the given SRTM-based threshold given by Beck-Worner et al. (2007).

Water surface temperature of inland water bodies may be obtained using thermal RS
techniques. However, unlike land surfaces, water bodies transfer energy primarily through
convection between water surface and bottom of the water body. This mixing is responsible for
the relatively uniform surface temperature of a water body between day and night in contrast to
the high temperature deviations between day and night of land surfaces. Due to the thermal
inertia of water bodies, they appear cooler than land during the day and warmer during the
night. The emissivity of water is with 0.98-0.99 very close to 1, which allows obtaining relatively
accurate water surface temperature measurements by the remote sensor, when effects of the
intervening atmosphere are accounted for. However, the RS measurement of water
temperature is only a surface measurement of the water body and does not detect any
significant change of water temperature that might occur a few meters below the surface (e.g., a
thermocline). In this study, the Landsat 5 TM thermal band six has been used to detect water
surface temperature as ecological indicator for schistosomiasis-related snail and parasite habitat
conditions. The atmospheric correction (Section 4.2.1) has been calculated with a standard
emissivity of 0.98, which is appropriate to detect water surface temperature. However, the
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120 m spatial resolution of the thermal Landsat 5 TM band 6 is a limitation for the measure of

water temperature for water bodies of smaller extent.

-

flow accumulation®
threshold™*

hierarchical order:
#Strahler“*

streams

Figure 4-5: Processing chain to derive topographic variables from the ASTER GDEM
* Function provided in the ArcGIS® spatial analyst toolbox
** Number of cells accumulating water: 18000

4.3 Environmental in situ data

In the dry season of March 2011, a field trip to central Burkina Faso was conducted for the scope
of this research. The objectives of this field trip were: (i) to investigate the landscape structure to
discriminate surface characteristics using RS data; (ii) to sample GCPs for RS image geo-
rectification and verification; and (iii) to establish locally adjusted criteria that discriminate and
evaluate suitability of potential snail and parasite habitats in the field. The planned field trip to
the study sites in Céte d’lvoire had to be cancelled due to political unrests. However, a rough
guess of the landscape characteristics could be gained from very high-resolution imagery
provided by Google Earth© (Googlelnc., 2010) and field photographs provided by courtesy of Dr.
Giovanna Raso, Swiss Tropical and Public Health Institute.

In total, 82 GCPs were sampled during this field trip in the rural landscapes within the sub-
site of BUF around Ziniaré (see Figure 2-1) using a non-probability, purposive sampling scheme.
The aim was to explore the variety of potential disease transmission sites in this region based on
ecological suitability criteria (see Table 3-1) with the drawback to receive a sample that is not
representative in a statistical sense. Furthermore, no parasite and snail data were sampled
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during this field trip as the sampling of a representative database on snail presence, absence,
infection and cercarial density within water bodies was beyond the scope of this research.
Instead, at each GCP, a field verification form (Figure A 1 in the appendix), which has been
adjusted for the purpose of this study from the standard FAO Land Cover Classification System
(LCCS) (Di Gregorio and Jansen, 2005) guided the local analysis of this area around potential
disease transmission sites. The following data were recorded: general land cover information
such as land cover type, homogeneity, land form and seasonality aspects, type of water body
(e.g. pond, channel or river), seasonality (visit during the dry season), type of substratum, water
flow velocity, water colour and temperature, water usage, access, and visible human contact.
Water body temperature was measured using a handheld digital thermometer at the outer
boundary of the water body and resulted between 26.2°C (minimum) and 36°C (maximum). The
measurement at the outer boundary of the water surface varied strongly with water depth at
the shoreline and is not representative for the complete water body, but indicates a
temperature range of water surface temperature in this region. Measurements of water
temperature in central and northern Cote d’lvoire published by Kinanpara et al. (2013: 114)
varied between 27.4°C and 35.2°C.

During this field visit, local criteria to evaluate potential disease transmission sites have been
derived. Thereby, the following observations were found to be highly relevant with respect to
this study:

(1) Several different types of potential disease transmission sites have been discriminated
during the field trip for this region (Figure 4-6):

(1.1) Man-made dam lakes have been observed to be used for fishing, irrigation of
agricultural crops, to water animals, for recreational activities, washing clothes, and personal
hygiene.

(1.2) Agricultural irrigation practices were observed close to permanent water bodies, where
water was pumped by local generators and/or led through natural or concrete channels to the
crop field. Thus, irrigated agricultural sites have been established almost exclusively at the shore
side of these water bodies and unprotected direct human contact with these water bodies has
been observed for almost all locations visited.

(1.3) Rivers have been observed to be either stagnant or very slow moving during the dry
season. Often, rivers were dried out either completely or at certain passages. Artificial pools
were often observed within river beds, where profound holes have been dug to collect water
available during the dry season.

(1.4) Seasonal pools have been observed either as natural or artificial topographic
depressions that have been either filled or dried out.

(2) At all visited water sites human access was not restricted either through natural or man-
made barriers.

(3) The rural settlement pattern consists of small-scale agglomerations of several loam
houses where one family lives with an average of 30 individuals (personal communication with
field assistant Herman Ouoba — graduate student (MSc) from the University of Quagadougou).

(4) The mode of transportation of the rural population has been observed to be mainly by
foot or motor bike, whereas there were individual paths and gravel roads used all over the
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sparse vegetated landscape. This information provides insight into the complex spatial relation
between school location and human settlements within the catchment areas.

(5) School buildings were often located separately from dispersed rural settlements. The
catchment area of a rural school has been estimated to be maximum 5 km walking distance for
the pupils (personal communication with field assistant Herman Ouoba).

Man-made dam
lakes

Irrigated agriculture

Rivers

Seasonal pools

ar R : e

Figure 4-6: Main types of potential disease transmission sites within the study site BUF
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5 Modelling environmental suitability for
schistosomiasis transmission

An infection with schistosomes depends largely on the spatial distribution of suitable snails, that
act as intermediate hosts and are the prerequisite that a Schistosoma parasite reaches the stage
to infect humans (see Section 3.1.2). These disease relevant species have specific habitat
requirements, which are determined by environmental factors. For example, it has been shown
in the laboratory and through field-based investigations that water temperature affects the
metabolism of parasites and snails with consequences on parasite activity, survival and infection
or snail fecundity, mortality, and rate of reproduction (Table 3-1). Specific temperature
thresholds govern the presence or absence of a species and impact its fitness. If temperature
conditions were not suitable for a disease-related species, the proliferation of the disease was
not successful. The extensive literature on abiotic factors in relation to snail and parasite fitness,
reveal conditions that are likely to determine a habitat’s suitability or the unsuitability as a
disease transmission site (Moodley et al., 2003: 618). Satellite RS data have proven to be useful
to assess and monitor biophysical characteristics and detect such habitat conditions (Malone et
al., 1994; Malone et al., 2001; Stensgaard et al., 2006).

Biological requirements of a species can be derived from laboratory or field studies (Malone,
2005: 28; Kearney, 2006: 186) and are useful to establish a relationship between a species and
its abiotic environmental niche, which can be predicted for locations where survey data are
lacking (Franklin, 2010: 12). The modelled environmental preferences, limits of tolerance, and
behaviours of organism are summarised by the HSI, which was originally developed by the
United States Fish and Wildlife Service (USFWS) to estimate the capacity of a habitat to support
a species and quantify effects of land management alternatives on species habitats (USFWS,
1981: 10). Thus far, USFWS has applied the HSI within more than 150 species-specific models
with the objective to support informed decision making with respect to land management and
species conservation (USFWS, 2014). Additionally, the HSI has been rigorously investigated and
published in the peer-reviewed literature for marine species (Brown et al., 2000; Vinagre et al.,
2006), wildlife (Thomasma et al., 1991; Mitchell et al., 2002; Dussault et al., 2006) and plant
species (Store and Kangas, 2001; Ruger et al., 2005; Williams et al., 2008). It was aggregated
from spatially superimposed species-specific variables of environmental suitability. Although
there are numerous HSI models, few have been validated (Duncan et al., 1995: 1361), probably
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due to the unavailability of adequate data to support validation (Schamberger and O’Neil, 1986:
7). However, HSI models belong to the most influential management tools in use and provide a
transparent basis to further explore species-specific relations with the environment (Brooks,
1997: 163-164). The key contribution of HSI models lies in quantifying both the quality and
quantity of available habitats for selected species as well as providing a repeatable assessment

procedure based on current environmental data (Ortigosa et al., 2000: 3).

Figure 5-1: Suitability of potential transmission sites for schistosomiasis in Burkina Faso. In the upper row,
the left RapidEye image (A) represents a dam lake during the wet season and the RapidEye image in the
centre (B) represents the same site during the dry season. The upper field photographs (C and D) illustrate
the situation of the dry season image on the ground. This site shows high suitability for potential
transmission due to the stability of water persistence (C) and the practice of irrigation agriculture at its
waterside (D). In the lower row, the left (E) and central (F) RapidEye images represent another dam lake
during the wet and dry season, respectively, and the field photograph (G) illustrates this spot on the
ground during the dry season. It shows that this dam lake is a less suitable area for disease transmission
due to its temporary drying out.

RS data from the RapidEye sensor were acquired on November 16, 2009 (end of wet season) and February
18, 2010 (dry season). Spectral bands 5-3-1 were displayed as R-G-B colour composite. The field
photographs were taken on March21, 2011 (C and D) and March 22, 2011 (G).

With respect to schistosomiasis, such a mechanistic approach to derive environmental
suitability for disease transmission has been investigated by Moodley et al. (2003), Stensgaard et
al. (2006), and Stensgaard et al. (2013). All three studies investigated remotely sensed
temperature suitability for snails and parasites only. However, RS data provide additional
information with respect to environmental suitability for schistosomiasis transmission other
than only temperature (see Table 3-3). According to the ecology of schistosomiasis as described
in Section 3.1.2, an example, where different environmental suitability for schistosomiasis
transmission can be directly derived from RS data, is stability of water level and riparian
vegetation coverage, as illustrated in Figure 5-1. Landscape configuration and its temporal
dynamic, influence the environmental suitability for potential schistosomiasis transmission and
can be captured by RS data.

The main objective of this chapter is to assess the potential contribution of RS data to derive
environmental suitability for transmission of schistosomiasis by means of a deductive
mechanistic HSI modelling approach. Hence, strengths and weaknesses of RS data will be
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discussed placing emphasis on: (i) the spatial delineation of environmental conditions, where
disease transmission can potentially occur; (ii) quantitative prediction of environmental
suitability within potential transmission sites; and (iii) the evaluation of the regional
transferability of an established model to different eco-geographic regions.

5.1 Establishment of mechanistic model

A mechanistic modelling approach was used to investigate the potential of RS data to assess
environmental suitability for the transmission of schistosomiasis. This model is parameterised
based on published information on fitness, limits of tolerance and behaviour of disease-related
snail and parasite species, and on field data sampled at the eastern sub-site of BUF around
Ziniaré (Figure 2-1). Model outcomes are quantitative estimates of environmental suitability for
transmission of schistosomiasis. According to Brooks (1997), the general HSI modelling
procedure can be divided into three steps, as illustrated in Figure 5-2: First, species-related
habitat variables are selected and species-specific requirements are attributed to these
variables. Second, the model is composed from single habitat variables, which are scaled
between poor and excellent habitat quality (from zero to one) and calibrated based on a
sensitivity analysis of different weighting schemes. Third, the model is verified based on the
linkage between modelled environmental suitability and field-based estimates of species
suitability. In this study, a sensitivity analysis and comprehensive model validation was not
feasible as reliable estimates of snail and parasite species population density and fitness were
not available. However, the plausibility of modelled environmental suitability in reference to
field-based estimates and the transferability of the model to different ecological regions in
reference to schistosomiasis prevalence data within a 5 km buffer zone around the survey
location were evaluated in this study.

5.1.1 Model development

RS data provided the input data to model environmental conditions and ecological limitations
relevant for schistosomiasis-related snails and parasites. The model was developed based on the
provided information as reviewed in Section 3.1.2. Water temperature, water flow velocity, and
habitat stability have been referred to as the most important factors conditioning habitats of
freshwater snail species (Appleton, 1978: 1-2). Conditions that influence the longevity and
infectivity of free living larval stages of Schistosoma parasites are temperature, water flow
velocity, turbidity, UV radiation, and exposure to chemical stimuli (Sturrock, 1993b: 11). In
general, environmental suitability for schistosomiasis transmission has been considered highest
when most favourable conditions for the coexistence of snail and parasite were given and lowest
vice versa. As soon as conditions for either snail or parasite species become unsuitable, the
environment was considered hostile for disease transmission.

The theoretical relations between species fitness and environmental conditions described in
Section 3.1.2, were translated into mathematical expressions as proposed by an HSI modelling
approach (USFWS, 1981: 42), namely, the functions of relative suitability. The estimation of
relative suitability for each habitat variable by utilising continuous functions avoids the loss of
information and the increased uncertainty, which would result from a categorical classification
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Figure 5-2: Overview of a mechanistic model procedure to derive environmental suitability for
schistosomiasis transmission using RS data. The functions of relative suitability developed for the
model can represent species-specific information if provided (see dashed and dotted lines that refer to
specific snail species suitability with respect to temperature). If the line is solid, the relative suitability
addresses snail- and parasite-related suitability in general (see Figure 5-4 for detailed view).
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approach (Store and Kangas, 2001). Three methods were applied for the derivation of relative
suitability functions of habitat variables (USFWS, 1981: 45), depending on the source of
information and data provided. In the event that species response curves were provided, this
mathematical relation could be directly transferred to the corresponding environmental variable
derived from RS data. An example is given by the function derived for the length of the
prepatent period of a parasite within the snail in relation to measured water temperature
(Pfluger, 1980; Pfliiger et al., 1984). If measurement or thresholds expressed the relationship
between species fitness and environmental conditions, functions of relative suitability for
specific habitat variables were derived by piece-wise linear or polynomial interpolation between
provided values or logical assumptions. This allowed that non-linear relationships between
habitat suitability and an environmental variable could be depicted (Store and Kangas, 2001). A
third approach uses expert opinions to directly define the relative suitability function of a certain
habitat variable. Relative suitability was scaled between 0 and 1 to make the environmental
suitability comparable based on the single habitat variables.

The fundamental habitat variable, which is the prerequisite that schistosomiasis transmission
can occur, is the availability of water. With RS data, this deterministic factor was mapped
(Section 4.2.2) in a direct way by deriving a water mask for the area of interest based on high-
resolution RapidEye data. Additionally, the presence of potential water was mapped in an
indirect way from topographic information of sinks and drainage lines, where water can
potentially accumulate following rainfall or flooding events. The direct measurement of water
during dry and rainy season has been further extended with a buffer zone of 200m. This distance
was measured from RS data during the dry season to capture the irrigated agricultural sites,
which are directly connected to permanent or seasonal water bodies in this study site (Section
4.3). Water and potential water as deterministic habitat variables provide the basis for the HSI
model and result in a mask of potential environmental suitability. Regions of potential
environmental suitability have been further refined with quantitative information of snail- and
parasite-specific habitat conditions, based on non-deterministic habitat factors described in the
following paragraphs. Moreover, the binary classification provides the basis for analysis within
the hierarchical model approach described in Chapter 6. Based on field expertise (Section 4.3)
and the review of disease-related variables that can potentially be measured by means of RS
data (Table 3-3), the following snail- and parasite-related habitat variables have been selected to
establish an HSI model.

Habitat stability is defined as length of water persistence in weeks and was derived for the
study area based on RapidEye data from the year 2010. Water bodies persisting less than 4
weeks for the case of S. mansoni and less than 5 weeks for S. haematobium were considered
unsuitable, respectively (Sturrock, 1993a: 65). If water in a snail habitat remains for longer than
6 or 7 weeks, the habitat stability was considered suitable for transmission of S. mansoni or
S. haematobium, respectively (Sturrock, 1993a: 65). The relative suitability function that
connects the unsuitable and suitable state of habitat stability results from a linear interpolation
between the measured values. The mathematical expressions of relative suitability of habitat
stability with respect to proliferation of S. mansoni and S. haematobium (Equation 5-1 and
Equation 5-2) are illustrated in Figure 5-3.
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Figure 5-3: Sub-priority functions of relative suitability of
habitat stability for S. mansoni and S. haematobium.

The relation between water temperature (7) and the length of the prepatent period of
parasites was defined as response function for S. mansoni by Pfluger (1980) and for
S. haematobium by Pfliiger et al. (1984). These species response functions were directly scaled
to functions of relative suitability of temperature, in which the shortest prepatent period
corresponded with highest suitability for parasite development (Equation 5-3 and Equation 5-4).
Additionally, the relation between water temperature and snail mortality was investigated for
snails collected in the field and viewed under laboratory conditions. Bio. glabrata, the
intermediate host snails of S. mansoni showed a mortality rate close to 100% at experimental
water temperatures below 16°C and above 36°C (Pflliger, 1980: 163). The mortality thresholds of
Bu. truncatus snails, the intermediate host snails of S. haematobium were at temperatures
below 17°C or above 33°C (Pflliger et al., 1984). The laboratory-based measurements of snail
mortality (Pfliger, 1980; Pfliger et al., 1984) were interpolated based on a second order
polynomial function and resulted respective functional relations for Bio. glabrata snails
(Equation 5-5) and Bu. truncatus snails (Equation 5-6) as illustrated in Figure 5-4.
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Figure 5-4: Sub-priority functions of relative suitability of water temperature for S.mansoni and
S. haematobium parasites (left) and Bio. glabrata and Bu. truncatus (right). The mean suitability of
parasites and snails are indicated by the solid lines.

A critical value of water flow velocity was established at 0.3 m/s (Scorza et al., 1961: 194). In
faster flowing water snails become dislodged and the suitability of the habitat drops. The flow
velocity of water VV was compared with slopes derived from topographic RS data using the
Manning’s velocity Equation 5-7 (Albertson and Simons, 1964: 7-24)

1.5 * R0.66 % 50.5

V= Equation 5-7
n

where R is the hydraulic radius, S is the line slope and n is the Manning’s roughness coefficient.
Within the visited test site around Ziniaré in Burkina Faso, the threshold of 0.3 m/s could be
approximated to a slope of 0.00014 degrees. This calculation is based on the assumption that
the majority of river beds are gravelled earth channels with some vegetation growth, which are
represented by 0.025 for n (Albertson and Simons, 1964: 7-25). R is equal to the cross-sectional
area of flow divided by the wetted perimeter (Arcement, 1989: 10) and was approximated for
this calculation to be 0.7 m. This parameter could not be adjusted to the heterogeneous river
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beds in the study site, because the 30 m spatial resolution of topographic data from the ASTER
GDEM could not depict this small-scale information at all. Therefore, a mean width and depth of
river beds was assumed to be 5 m and 2 m, respectively. However, this approach was applied by
Kiel et al. (2006: 318), who suggested that water surface elevations were reasonable to estimate
flow velocities from slopes derived from SRTM data for large rivers. The relative suitability
function of water flow velocity (Equation 5-8) was derived from linear interpolation between the
minimum, the suitability threshold, and the maximum. It was assumed that the relative
suitability decreases strongly towards the derived threshold slope of 0.00014 degrees
corresponding to a relative suitability of 0.2 and levels out with this general low suitability
towards O (Figure 5-5).

Flow suitability
calculated from f(S = {
slope:

—571438+1for 0 <5 <0.00014

—0.0029 S + 0.2 for S > 0.00014 Equation 5-8
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Figure 5-5: Sub-priority function of relative suitability of
water flow velocity measured by the proxy of slope.

The relative suitability of water depth is expressed by the proxy measurement of Euclidean
distance from the shoreline, which was calculated from the polyline boundary of the water
masks derived from RS images during the dry and wet season (Section 4.2.2). Intermediate host
snails of schistosomiasis are primarily distributed in shallow water at the margins of their habitat
(WHO, 1957: 11-12). This information was translated into a decreasing suitability derived from
linear interpolation between shoreline and a distance of 200 m inside the water. The threshold
was estimated based on the slope to distance ratio between the maximum water level and the
current one during the dry season around the visited dam lakes. For this calculation, the
threshold was adjusted to 210 m to multiply the 30 m pixel resolution of the satellite data
employed in the current study. At distances greater than 2 km from the shoreline to the center
of the water body, no suitability for snails transmitting schistosomiasis was assumed. This
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threshold was extracted from the extent of the greatest water body in the study site (Equation
5-9 and Figure 5-6).

Water depth
calculated from
distance from
shore:

—0.0043x + 1 for 0 < x < 210
f(x) = {—0.000056x + 0.088 for 210 > x < 2000 Equation 5-9
0 for x > 2000
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Figure 5-6: Sub-priority function of relative suitability of
water depth measured by the proxy of distance from shore
in meter.

The relative suitability based on vegetation coverage was measure within a 200 m buffer
area along detected water sites. According to the theoretical suitability conditions described in
Section 3.1.2, higher availability of vegetation positively conditions the habitat for freshwater
snails in terms of food supply, surfaces to crawl and deposit egg masses or with respect to the
content of dissolved oxygen in water (Table 3-1). The RS approach used in this study does not
measure submerged vegetation, however, the buffer zone considers the potential vegetation
input into the water body. In this model, the theoretical function of relative suitability with
respect to vegetation coverage was derived to detect irrigated agricultural sites visited during
the field trip, which corresponded to an average NDVI threshold around 0.3 in dry season
RapidEye imagery. Based on this threshold, the sub-priority function of vegetation coverage
(Equation 5-10) was a result of linear interpolation between unsuitable conditions for NDVI
values smaller or equal 0 and suitable conditions at values of 0.3 and above (Figure 5-7).

Stream order was derived for the study area of Burkina Faso and Cote d’Ivoire as described in
Section 4.2.2 and resulted in hierarchical levels ranging from order 1 to 7. According to the study
of Beck-Waorner et al. (2007), the relative suitability function for stream order (Equation 5-11)
was estimated from a linear interpolation between the maximum stream order of highest
suitability and the minimum stream order of lowest suitability (Figure 5-8).
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vegetation coverage derived from the NDVI value.
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Figure 5-8: Sub-priority function of relative suitability of
stream order.

Sink depth was derived for the study area of Burkina Faso and Cote d’lvoire as described in
Section 4.2.2 and resulted in a maximum depth of 222 m. The sub-priority function of sink depth
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(Equation 5-12) was calculated from linear interpolation between the lowest sink depth of 1 m
and the aforementioned maximum sink depth of 222 m (Figure 5-9).

Sink depth: f(z) = 0.005z+ 0.11 for 1 <z < 222 Equation 5-12
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Figure 5-9: Sub-priority function of relative suitability of
sink depth.

5.1.2 Model composition

Following the assignment of specific suitability characteristics to relevant environmental
variables with respect to schistosomiasis transmission (Section 5.1.1), single attributes were
combined to an overall HSI for the study site Ziniaré using the multi-criteria decision analysis
(MCDA). MCDA is defined as “an umbrella term to describe a collection of formal approaches
which seek to take explicit account of multiple criteria in helping individuals or groups explore
decisions that matter” (Belton and Stewart, 2002: 2). This definition outlines the three
dimensions of MCDA, namely: (i) the formal approach; (ii) the presence of multiple criteria; and
(iii) decisions made by individuals or groups of individuals (Mendoza and Martins, 2006: 1).
MCDA has been widely used within the GIS community for spatial decision support (Malczewski,
2006) and was investigated with respect to species habitat suitability modelling (Store and
Kangas, 2001). In this research, model composition is formally described by the framework
provided in Figure 5-10 and integrates multiple criteria relevant for schistosomiasis transmission
that are captured by RS data as well as decisions connected to each criterium (Section 5.1.1).
This structured approach can provide a basis for evaluating a number of alternative choices on
the basis of the selected criteria (Store and Kangas, 2001: 80; DCLG, 2009: 10).

Composition of the mechanistic model of environmental suitability for schistosomiasis
transmission discriminated in a first step between directly measured water and areas of
potential water accumulation based on topographic information (Figure 5-10). In this study, the
HSI (Equation 5-13) was calculated using an additive priority function as adjusted from Store and
Kangas (2001: 82), and Walz et al. (2012: 7225).
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m
HSI = Zaipi Equation 5-13

i=1
HSI stands for the habitat suitability index and refers to the global priority of environmental
suitability, m indicates the number of habitat suitability variables, a; describes the relative
importance of factor i, and p; gives the relative suitability of the factor i. Due to the lack of
appropriate reference data to calibrate the model, the relative importance of factor a; was

weighted to 1/m.

Water suitability

Habitat stability Vegetation suitability

Temperature suitability

Flow suitability Stream suitability

Depth suitability Potential flow suitability

Sink depth suitability

H Sl water HSlpot water

Dry season vegetation suitability

Habitat suitability index
(HSI)

Figure 5-10: Composition of habitat suitability variables to model environmental suitability
for schistosomiasis transmission. Water and potential water represent the major decision
criteria to spatially delineate potential disease transmission, whereas water and potential
water do not superimpose spatially in the model. The HSl,.., integrates the upper four
water-related suitabilities for the permanent water sites and all five variables for the
seasonal water sites as indicated by the blue boxes. Additionally, the HSl,ot water has been
separately calculated for the three groups that do not spatially superimpose, namely the
waterside buffer, streams and sinks as illustrated by the boxes.

There is one essential differentiation between the model composition approach illustrated in
Figure 5-10 and other GIS-based HSI models presented in the literature introduced above. This is
that single habitat variables are not all spatially superimposing. This phenomenon is a
consequence of analysing water surfaces, topography, and vegetation coverage, which can
predominantly be measured in a spatially exclusive way by means of RS. Vegetation coverage
and topography cannot be measured in submerged areas and water characteristics can only be
measured at sites where water is detected. Thus, the HSI has been derived separately for
spatially superimposing components to capture the relevant suitability at the respective
location, which is demonstrated by the hierarchical structure of the model composition in Figure
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5-10. Water-related HSI values (HSl,q:) Were derived for distinct spatial units of water, namely
permanent water and seasonal water, whereas potential water-related HSI values (HSlyotwater)
were derived separately for the waterside buffer zone, topographic drainage lines (i.e. streams),
and sinks. These distinct spatial units were separated during the process of model composition
with the aim to highlight the relevant information per site. To give an example, the
disaggregated calculation of the HSl,q., for zones of permanent and seasonal water allowed for
the recognition of seasonally flooded and vegetated zones of high environmental suitability. If
spatial composition of the HSI were not be separated in this case, the overall HSI of water would
disproportionately decrease due to vegetation suitability around 0 within water bodies
measured by RS data. The habitat variable of flow suitability contributes both to the water and
the potential water section of the model as the meaning of the measurement is slightly
different. The suitability of water flow velocity was directly derived from the slope measured at
the water surface, and hence corresponds to the calculation of the flow velocity based on
Manning’s velocity equation (Equation 5-7), whereas potential flow velocity represents the slope
measurement of the terrain measured within topographic drainage lines and is assumed to
correspond with the course of (dried) river beds. The overall HSI value for a study site was
calculated from the juxtaposition of the HSl,ater and HSlyorwater derived for the defined spatial
units.

5.1.3 Model validation

The mechanistic model of environmental suitability and RS habitat variables were analysed for
plausibility with respect to field reference data of potential schistosomiasis transmission sites
visited in Burkina Faso in March 2011. According to the biotope classification of intermediate
host snails in Burkina Faso (Poda, 1996: 34-37), seven habitat types (Table 5-1) were selected
and identified in the field for this study. These are reservoirs with permanent water or seasonal
water, irrigated rice fields, other irrigated crops, rivers with permanent water, seasonally dry
river beds as well as topographic sinks. Site specific characteristics were measured or observed
in the field (Section 4.3) and most relevant characteristics of selected test sites are listed in Table
5-1. The site specific estimate of environmental suitability is based on knowledge of habitat
preferences of S. haematobium and S. mansoni parasites and Bulinus and Biomphalaria snail
species (Section 3.1.2) together with at-site field measurements as well as scientific findings
from Prof. Poda (Poda et al., 1994; Poda, 1996; Poda et al., 1996; Poda et al., 2001; Poda et al.,
2004).
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Table 5-1: Typical habitat types of schistosomiasis transmission in Burkina Faso. Overview of site-specific
results measured or estimated from observations in the study site Ziniaré in Burkina Faso (see Figure 2-1).
The RS category refers to the deterministic variable of water or potential water as measured by means of
RS data. NA indicates that no measure could be provided.

Permanent . Irrigated . Seasonal Dry river .
water body Rice field - River water water body bed Dry sink
Water Pot Pot Water Water Pot
RS category Pot water
(permanent) water water (permanent) (seasonal) water
Vegetation NA 75% 60% NA 30% 20% 20%
coverage
(Fluent:
Flow . Stagnant Stagnant SIov\./IV Stagnant NA erosive NA
velocity flowing .
river bed)
Water tem- 26.2°C 28.5°C 32°C 31°C NA NA NA
perature
Suitability High High Moderate Moderate Moderate Low Low

High environmental suitability for schistosomiasis transmission was attributed to dam lakes
with permanent water and rice fields. Both sites showed stagnant water within a suitable
temperature range. Irrigated rice fields contain a large amount of vegetation, which additionally
favours a water site for freshwater snails. Both site types were observed to be accessed by the
local population without skin protection measures. Moderate environmental suitability was
attributed to irrigated crops, permanent river water, and seasonal dry dam lakes. Lower
environmental suitability of irrigated crops in contrast to rice fields was explained by the nature
of irrigation practice of crops other than rice. Whilst most rice crops need to be flooded by
persistent water, most other crops were observed to be irrigated through regular flooding of
man-made dike systems within the field. Hence, environmental suitability is lower in habitats
that dry out or where water is only temporarily flowing, which is in line with malacological
studies provided by Abdel-Malek (1958: 792). Additionally, the measured water temperature of
32°C (see Table 5-1) is less favourable for intermediate host snail species of the genus Bulinus
and Biomphalaria. Despite the fact that the observed river water appeared to be permanent and
stagnant during the dry season due to cut-offs from dried-out sections of the river bed, this site
was categorised as moderately suitable. Warm temperatures of the water as well as expected
high flow velocities during the rainy season, demonstrated by strong erosive environments
closely ahead of this river section, reduced the suitability of this permanent water site. Dam
lakes that dried out during the dry season were categorised as moderatly suitable as the rate of
parasite development and potential human contact were reduced through aestivation. Dried
river beds and dried topographic sinks were classified with low environmental suitability for
schistosomiasis transmission. Both sites were only temporarily covered by water and the erosive
dried river bed indicated high water flow velocity during the rainy season, which would be
unsuitable for snail and parasite proliferation. However, natural and man-made cavities were
observed within the river beds, where water becomes stagnant and useable during the dry
period. These seven field sites were mapped on the dry season RapidEye image from the study
sub-site around Ziniaré. The field-based judgement of high, moderate, and low suitability of
selected test sites were classified based on the following classification scheme: HSI values
greater than 0.66 correspond to high environmental suitability, HSI values between 0.33 and
0.66 represent moderate environmental suitability, and HSI values below 0.33 refer to low
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environmental suitability. Areas of no environmental suitability for schistosomiasis transmission
correspond to regions that are not covered by the deterministic habitat variable of water or
potential water as explained in Section 5.1.1.

Additionally, the modelled environmental suitability was related to schistosomiasis
prevalence based on the assumption that high environmental suitability within a catchment area
of a school location, would be plausible if the prevalence measured at the school location was
high, and vice versa. It was the aim to elaborate whether this hypothesis can be confirmed and
whether this locally developed model can be transferred to the study site BUF and into different
ecozones of MAN and TAB. In order to link modelled environmental suitability to the measured
prevalence of schistosomiasis infection, the information of available epidemiological data on
school prevalence (Section 4.1) was spatially extended by a circular buffer with a radius of 5km
(Kabatereine et al., 2004: 377; Steinmann et al., 2006: 413). Within this buffer region, mean
values of habitat variable suitability and the composite HSI were extracted for each school
catchment area. The resulting mean suitability was then related to the measured prevalence at
the respective school location using the Spearman rank correlation coefficient (Boslaugh and
Watters, 2008: 183-184). Despite field data of parasite- and snail-related fitness not being
available for this study to directly validate the HSI, disease prevalence provided a highly useful
reference to validate environmental suitability as prevalence documents the outcome of the
disease transmission process in the environment.

5.2 Results of the mechanistic model approach

The mechanistic model of environmental suitability is composed of the suitability of selected
habitat variables derived from RS data, which are presented in Section 5.2.1. The results of a
plausibility analysis to evaluate the quantitative prediction of environmental suitability within
potential schistosomiasis transmission sites are given in Section 5.2.2. Finally, the regional
transferability of the model approach established in the study sub-site Ziniaré to different eco-
geographic regions in Cote d’lvoire is presented in Section 5.2.3.

5.2.1 Habitat variable suitability

This section describes the resulting suitability of each habitat variable for the water sites,
potential water sites, and the derived composite HSI for the model development site of Ziniaré.
These results are illustrated in Figure 5-11 according to the model framework shown in Figure
5-10.

With respect to the water sites, the environmental variable of habitat stability resulted in
highest suitability, where water was detected during the wet and the dry season representing
the permanent water bodies. In contrast, temporary water bodies, which dried out during the
dry season, resulted in moderate suitability. The study site showed multiple permanent and
seasonal water sites, which fully dried out during the dry season. Water temperature suitability
represented the mean temperature suitability for S. haematobium and S. mansoni parasites and
Bulinus and Biomphalaria snail species calculated from the dry and wet season RS
measurements. Most water bodies showed generally moderate to high temperature suitability
for parasites and snails, whereas the riparian regions along the water bodies resulted in
moderate to low temperature suitability. The relative suitability of water flow velocity showed
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that within several small-scale water sites, the suitability of flow velocity appeared to be
heterogeneous ranging from very low to very high suitability. However, one would expect
stagnant or very slow moving water due to its topographic constitution as dam lake. Water
depth suitability showed highest suitability at the boundary of permanent watersides and
relative suitability of dry season vegetation coverage highlights areas of very high suitability,
where dense vegetation covers a ground that was flooded during the rainy season. The very high
suitability of dry season vegetation coverage corresponds mainly to irrigated agriculture, as can
be seen on the dry season RapidEye image and was visible during the field survey at visited
spots.

Within the potential water sites, the relative suitability of riparian vegetation coverage
represented the mean vegetation coverage measured at the dry season and wet season within a
200 m buffer zone around water bodies. The resulting suitability highlighted areas of irrigated
agriculture and dense vegetation coverage as highly suitable, whereas highest suitability was
reached when dry season and wet season vegetation coverage were high and irrigation was
possible throughout the year. Streams resulted in high suitability for the inflow and outflow of
the great dam lake in the centre of the study site and low suitability for tributary waters, which
was modified by the overlaying potential flow velocity as visible in the the respective image in
Figure 5-11. The course of topographically derived streams often did not superimpose with the
actual course of river beds, which could be seen in the overlay of derived streams and the
RapidEye image. The sink habitat variable resulted preliminary in very low suitability due to its
flat character and deeper sinks were masked due to its coverage with water.

Based on the aforementioned habitat variables, the HSI for potential schistosomiasis
transmission was calculated and is illustrated in Figure 5-11. It showed a general discrimination
between moderate to high suitability in and around water bodies and low suitability at
topographic sinks. Individual water sites performed with variable suitability depending on the
location in or around the water site. The zoomed-in part of the image in Figure 5-11 shows that
high suitability was given in areas at densely vegetated sites in the buffer zone of the water site
and in certain areas of the water body, where especially water flow velocity was low. Moderate
suitability referred to the littoral zone of permanent water levels, moderately vegetated buffer
zones, and certain sectors of the topographic drainage line, where potential flow velocity
resulted in high suitability. Low suitability resulted predominantly from topographic sinks as well
as the low vegetated region of seasonal flooded land as well as sparsely vegetated regions in the
buffer zone around the water site. Especially densely vegetated zones around permanent water
sites resulted in high environmental suitability.
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Figure 5-11: Overview of single habitat variable suitability and result of a mechanistic
model of environmental suitability for schistosomiasis transmission at the sub-site of
Ziniaré in Burkina Faso for the year 2010, based on which the model was developed. A map
showing the location of the Ziniaré sub-site in West Africa is given in Figure 2-1.
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5.2.2 Plausibility of modelled environmental suitability

The modelled environmental suitability was validated with reference to field sites that were
visited in March 2011. Table 5-2 and Table 5-3 summarise the resulting suitability of habitat
variables and the HSI for water and potential water sites, respectively. The site-specific expert
judgement (Section 5.1.3) provided the basis to evaluate modelled environmental suitability
within the test site of Ziniaré. The permanent water at the dam lake and the dried river bed sites
(Table 5-1) covered more than one pixel of the 30 m resolution suitability image and therefore
represented mean values of environmental suitability.

Table 5-2: Modelled suitability of single habitat variables and the HSI in comparison to field-based
expert judgement for water sites.

HS = suitability of habitat stability; TS = water temperature suitability; FS = water flow suitability; DS =
water depth suitability; dVS = dry season riparian vegetation suitability

HS  Ts Fs DS dvs HSI _ Expert
judgement
Permanent dam lake
P -
1 0.41 0.2 0.81 NA 0.6 (Mod) High
0 0.19 1 NA 0.55 (Mod) Mod
0 0.20 0.5 0.42 0.32 (Low) Mod

With respect to the water sites, environmental suitability measured at the permanent
waterside of a dam lake had a HSI of 0.6. This was composited by the suitability based on habitat
stability (i.e. 1), temperature suitability (i.e. 0.41) that resulted from the mean temperature
measured by RS data in the dry season (i.e. 30°C) and wet seasons (i.e. 35°C), flow suitability
(i.e.0.2), and water depth suitability (i.e.0.81). The expert judgement of environmental
suitability at the permanent dam lake site was high suitability, which corresponded to a HSI
ranging between 0.67 and 1 and did not meet the modelled HSI at this site. The permanent river
water test site was correctly detected by the water mask and resulted in a habitat stability of 1
corresponding to permanent water coverage. The temperature suitability provided by the RS
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measurement was above the 38°C threshold resulting in suitability of 0. Flow suitability was
0.19, however, the field estimation of flow velocity at this site was stagnant during the dry
season, whereas the erosive environment in the field indicated high flow velocity during the wet
season. The water depth suitability of 1 reflected well the sub-pixel extent of this river section. A
composite HSI of 0.55 resulted in conformity with the estimated moderate environmental
suitability at this test site. The dam lake, which dried out during the dry season and was sparsely
vegetated was correctly captured by the water mask with a habitat stability of 0.5. The overall
composite HSI at this test site has been calculated from all five water-related habitat variables
and resulted in an HSI of 0.32, which lies below the expert judgement derived at the field site.

Table 5-3: Modelled suitability of single habitat variables and the HSI in comparison to field-based expert
judgement for potential water sites.

bVS = mean vegetation suitability within 200m buffer zone of water; StS: stream suitability; SiS = sink
suitability; pFS = potential water flow suitability in streams

bVS sts sis pFS HSI _ Expert
judgement

Rice field

0.97 NA NA NA 0.97 (High) High
Irrigated crops

0.64 NA NA NA 0.64 (Mod) Mod

0.55 NA NA NA 0.55 (Mod) Low
Dry pographic sink

NA NA 0.08 NA 0.08 Low
(Low)
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The HSI of potential water sites resulted mainly from the suitability of mean vegetation
coverage within a 200 m buffer zone of water except for the detection of the dried topographic
sink test site. The rice field and irrigated crop test sites were both located within a 200 m buffer
zone around detected water sites. The mean vegetation suitability of the rice field was 0.97,
which was retrieved from NDVI values between 0.3 (dry season) and 0.6 (wet season), and 0.64
at the irrigated crop site that resulted from NDVI values between 0.2 (dry season) and 0.3 (wet
season). Based on the suitability of vegetation coverage, both HSI values well reflected the high
and moderate suitability that resulted from the expert judgement for rice and irrigated crop
sites, respectively. However, the estimated environmental suitability of rice and irrigated crop
sites resulted mainly from the irrigation practice, which varies between a permanently flooded
rice field and crops that were irrigated by temporary flooding. This measure was not captured by
RS data in this case. The low environmental suitability estimated for the dried topographic sink
corresponded well to the measured HSI of 0.08. However, the dried river bed was only captured
as a potential water site due to its position within a 200 m buffer zone of water and resulted a
HSI value of 0.55 as a consequence of vegetation coverage at the side of the river bed. The HSI
measure at this site would have been expected to result from stream and potential flow
suitability. However, the topographic drainage lines did not cover this dried river bed.

5.2.3 Model transferability

The established model of environmental suitability was transferred to the study sites BUF (Figure
5-12), MAN (Figure 5-13) and TAB (Figure 5-14) with the objective to investigate whether model
composition as illustrated in Figure 5-10 would remain reasonable in different regions and
ecological settings based on visual inspection in reference to high-resolution RapidEye data. At
the same time, the linkage between modelled environmental suitability and school based
measures of schistosomiasis prevalence was statistically tested for each study site.

The modelled environmental suitability for the study site BUF is illustrated in Figure 5-12. This
study site covers the training site around Ziniaré and based on visual inspection results for this
wider region were comparable. As already seen in the HSI of the Ziniaré sub-site (Figure 5-11),
seasonal and permanent water sites appeared with moderate to high environmental suitability,
whereas potential water accumulation due to topographic features resulted in moderate to low
suitability. Vegetation coverage within a 200 m buffer zone around water sites reflected well the
distribution of irrigated agriculture with respect to dam lakes, which are widespread in this area.
Water in rivers was not captured very well by RS data, when river beds appeared narrow or
vegetation covered part of them. However, the course of the drainage system was very well
reflected by topographic sinks in this study site. Although environmental suitability appeared to
be reasonable as evaluated for the test site Ziniaré, the rank correlation analysis resulted in no
significant correlation between the level of Schistosoma prevalence and environmental
suitability in the respective school catchment (Table 5-4). It is demonstrated by the zoomed area
in Figure 5-12 that both very low and very high prevalence measured at neighbouring school
locations were located in close proximity to potential transmission sites of high environmental
suitability in its catchment area. Hence, already based on visual inspection, it can be seen that
other factors besides environmental suitability as reviewed in Section 3.1.2 would explain the
spatial heterogeneous distribution of disease prevalence in the study site BUF.
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Table 5-4: Spearman rank correlation coefficients for human Schistosoma prevalence and modelled
environmental suitability and its corresponding confidence intervals given in brackets. Therefore, single
variable suitability and composite HSI mean values were extracted from a 5 km buffer zone around the

measured prevalence.

BUF

MAN

TAB

Suitability of habitat
stability (HS)

Water temperature
suitability (TS)

Water flow suitability (FS)

Water depth suitability
(DS)

Dry season riparian
vegetation suitability
(dvs)

Mean vegetation
suitability within 200 m
buffer zone of water
(bVs)

Stream suitability (StS)
Sink suitability (SiS)

Potential water flow
suitability in streams

-0.14 (-0.36, 0.09)

-0.08 (-0.30, 0.15)
0.04 (-0.19, 0.27)

-0.23 (-0.44, -0.01)

0.02 (-0.21, 0.25)

0.22 (0.00, 0.43)

0.09 (-0.14, 0.32)
-0.12 (-0.34, 0.11)

-0.09 (-0.31, 0.14)

0.50* (0.30, 0.65)

0.47* (0.27, 0.63)
0.42* (0.21, 0.59)

0.54* (0.36, 0.68)

0.47* (0.27, 0.63)

0.50* (0.30, 0.65)
0.20 (-0.03, 0.41)

0.42* (0.21, 0.59)

0.32 (-0.00, 0.58)

0.30(-0.17, 0.57)

-0.15 (-0.45, 0.18)

0.05 (-0.27, 0.36)

0.25 (-0.08, 0.53)
-0.10. (-0.41, 0.23)

0.30 (-0.02, 0.56)

(pFS)

HSI -0.12 (-0.34, 0.11) 0.45* (0.25, 0.62) 0.57* (0.31, 0.75)

*p<0.01

The modelled environmental suitability of the study site MAN is illustrated in Figure 5-13.
Based on visual inspection, the derived environmental suitability did perform reasonable
discrimination between low suitability derived in the mountainous region in the northern part of
the study site and the high suitability in the lowland of the southern part. Areas of high
suitability for disease transmission were predominantly represented by the course of the river,
whereas the waterside buffer zone was largely covered by forest, which does not correspond to
high environmental suitability for potential schistosomiasis transmission due to irrigated
agricultural areas. However, a significant correlation to prevalence of schistosomiasis was found
for all habitat variables except for sink suitability and for the HSI.

The resulting environmental suitability for schistosomiasis transmission in TAB (Figure 5-14)
showed moderate to high environmental suitability for the major river crossing this study site,
the waterside of its intersecting Lake Taabo as well as river tributaries and very small water sites
detected predominantly in the northern part of the study site. However, no seasonal water
could be detected for this site because RS data from the wet season were not available.
Furthermore, high vegetation coverage within a 200 m buffer zone of water sites did not
correspond to irrigated agriculture in this region, but reflected high tree coverage, which might
have misled the classification into high environmental suitability for schistosomiasis
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transmission. However, the result of the statistical evaluation at this site resulted in a significant
Spearman rank correlation coefficient of 0.57 between the composite HSI value and the school
based prevalence (Table 5-4). This positive relation is confirmed by the spatial distribution of
high prevalence rates in close proximity to the Bandama River and Lake Taabo, whereas low
prevalence rates are predominantly distributed further away from these hotspots of
environmental suitability with few exceptions close to the river outflow of Lake Taabo.

5.3 Discussion of remotely sensed environmental
suitability

This research has shown that RS data can provide spatial information of environmental
suitability for potential schistosomiasis transmission. The validation of derived suitability of a
habitat variable in relation to measurements and observations in the field has shown that the
agreement between measured suitability and the respective field derived expert judgment
varied between remotely sensed variables and test sites. This validation procedure aimed to
identify strengths and weaknesses of RS variables to assess environmental suitability for
potential schistosomiasis transmission. However, a comprehensive approach to validate the
environmental variables and suitability would need a representative set of field data on parasite
and snail prevalence and the corresponding environmental metrics at respective sites.

5.3.1 Remote sensing derived biophysical variables

The RapidEye and Landsat 5 TM sensor provided useful data sources to detect the small-scale
heterogeneity of water bodies in the Ziniaré, TAB, and BUF study sites, respectively. For the
study site MAN, the spatial resolution of 6.5 m was still too coarse as water bodies
predominantly consisted of small reservoirs and rivers, which were furthermore covered by
large trees (see Section 4.2.2). Despite the fact that there were only two useful points in time of
RapidEye data available for this study, the RapidEye sensor was well designed to capture data on
a near-daily basis (see Section 4.2.1), which would allow for the monitoring of the critical limit of
water persistence between 4 to 6 weeks for S. mansoni and 5 to 7 weeks for S. haematobium
(Sturrock, 1993a: 65). Despite the theoretical capacity to detect this seasonal dynamic of water
bodies and rivers, cloud coverage strongly impacted optical RS data especially in the southern
region of Cote d’Ivoire. In this case, active RS based on radar data, which are not limited by cloud
coverage, could provide a useful alternative.
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Habitat suitability index (HSI)
for potential schistosomiasis
transmission

— — — — 1km %
Low (0) High (1) B8 =SS
Data source:
S. mansoni prevalence [%] Background image: Rapid Eye scene
from 5th January 2011 displayed with 3-2-1 (R-G-B)
U a7* Elevation: Shuttle Radar Topography Mission (SRTM)
by NASA, JPL, DLR and ASI
* The height of the bar indicates Epidemiological data: GNTD, Hiirlimann et al., 2011,
the percentage prevalence provided by Swiss Tropical and Public Health Institute, Basel

Figure 5-13: Environmental suitability for potential schistosomiasis transmission in the study site MAN,
Cote d’Ivoire. A map showing the location of the study site MAN in West Africa is given in Figure 2-1.
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Habitat suitability index (HSI)
for potential schistosomiasis

transmission
N
— i
L 0 5 10 15 20
Low (0) High (1) Data source:
Background image: Rapid Eye scene
from 3rd January 2011
. displayed with 3-2-1 (R-G-B)
Schistosoma SPp- prevalence [%] Elevation: Shuttle Radar Topography
Mission (SRTM) by NASA, JPL, DLR and ASI
[I 47* Epidemiological data: GNTD,
Hirlimann et al., 2011,
* The height of the bar indicates provided by Swiss Tropical and
the percentage prevalence Public Health Institute, Basel

Figure 5-14: Environmental suitability for potential schistosomiasis transmission in the study site TAB, Cote
d’lvoire. A map showing the location of the study site TAB in West Africa is given in Figure 2-1.
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Water temperature is considered an important habitat variable from an ecological point of
view as temperature is critical for both snail and parasite development as reviewed in Section
3.1.2. However, the measure of water surface temperature provided only estimates of water
temperature that directly impacts snail and parasite development and reproduction. Especially
within isolated and shallow water bodies, extreme temperature variations were detected by
Fisher and Mustard (2004: 293). Field-based measurements at the waterside were taken in
March 2011, whereas the RS data employed for this study were recorded in February 2010. This
might be a further cause of deviating temperatures between the field and RS measurements.
However, the measurement deviation in the range of 10°C at the permanent river water
supports the assumed impact of the inappropriate spatial resolution of the remotely sensed
temperature measurement at this site. Here, the 120 m spatial resolution of the thermal Landsat
5 TM did not capture the linear structure of the river with its transect not exceeding 10m and
resulted in mixed pixel information of water and land surface temperature. This results in
incorrect surface temperature measurements due to the calibration of surface emissivity for
pure water. At this scale, airborne thermal RS data would be more useful to derive water
temperature of rivers and streams as shown by Torgersen et al. (2001). Nevertheless, the
thermal band of the Landsat 5 TM sensor was evaluated, whereupon an offset error of
0.092 W/m? (approximately 0.68 K) was corrected by modifying a calibration coefficient in the
processing system post 2007 (Barsi et al., 2007: 552), which was relevant for the pure water
pixel at large dam lakes.

Most optical RS data capture visible and near infrared spectral reflectance and are therefore
well designed to measure vegetation coverage. In this study, vegetation was reasonably
detected by high-resolution RapidEye data in comparison to field-based estimates of vegetation
coverage for the rice field and the irrigated crops. However, vegetation coverage also plays a
crucial role for characterising a potential schistosomiasis transmission site in the subaquatic
area, as submerged vegetation conditions dissolved oxygen content of the water body and
thereby influences snail activity and reproduction (Section 3.1.2). Hyperspectral RS data have
demonstrated the ability to detect submerged aquatic vegetation (William et al., 2003; Vahtmae
et al.,, 2006; Marcus and Fonstad, 2008). In this study, the measurement of submerged
vegetation coverage was not feasible due to the lack of hyperspectral RS data and appropriate
field data, which was also beyond the scope of this work.

The topography derived from the ASTER GDEM provided information on the topographic
structure below the detected water level in all water bodies except for parts of the great dam
lake in the study site Ziniaré. Therefore, the measurement of slope for water sites did not always
correspond to the water surface as intended for this model. This was well documented by strong
heterogeneities of the slope measure within a dam lake, which was evident to have a flat surface
of stagnant or very slow moving water. Additionally, the temporal dynamic of flow velocity
between dry season and wet season as seen for permanent river water sites could not be
captured by the single acquisition of a DEM. However, suitability of flow velocity resulted
reasonable for the large dam lake in the Ziniaré study site and was considered a useful proxy to
highlight very flat zones within topographic streams. For large rivers, Kiel et al. (2006: 317-318),
successfully derived water flow velocity using SRTM data. Topographically derived streams were
very often not superimposing with the course of the actual river bed in high-resolution RS data,
which was further documented at the dry river bed test site. However, topographic sinks
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documented very well the course of river beds and could successfully detect a field measured
sink.

5.3.2 Modelling environmental suitability

Environmental suitability for schistosomiasis transmission was modelled based on single habitat
variables, which were parameterised by theoretical functions of relative suitability. These
functions were derived from different background information, which is demonstrated by the
following examples: habitat suitability related to water temperature was derived from
laboratory-based measurements (Pfliger, 1980; Pfliger et al., 1984), whereas stream order
suitability was characterised from field-based surveys (Clennon et al., 2007) or spatial analysis
(Beck-Worner et al., 2007). The parasite-related water temperature suitability function was
directly provided in the literature, whereas snail-related water temperature suitability was
interpolated from provided measurements of snail mortality at given temperatures. The
thresholds that characterise the range and course of functions given in this study were either
cited in the literature (e.g. habitat stability-related suitability), measured within high-resolution
RS data (e.g. vegetation coverage) or directly estimated in the field (e.g. water depth). These
mixed sources of information can impact the validity of resulting habitat variable suitability as it
is not clear whether this function fits for the modelled location. Due to the lack of appropriate
field data on prevalence or fitness of parasites and snails, the parameterisation of these
functions could not be verified within this thesis. However, these functions reflect the state-of-
the-art of available knowledge with respect to environmental suitability for schistosomiasis
transmission and provide the basis for location specific evaluation. In the following paragraph,
strengths and weaknesses of selected functions of relative suitability used in this study will be
discussed.

The water flow velocity based suitability has been parameterised based on the given
suitability threshold in relation to snail prevalence and the defined relation (Equation 5-8)
between the RS measurement of slope and water flow velocity. However, this distinct relation is
still exposed to error sources that need to be considered with respect to input data, namely the
inconsistent RS measurement of slope at water sites as discussed in Section 5.3.1 as well as the
rough estimation of several variables necessary to compute the Manning’s equation (Equation
5-7) at only few locations in the field. To receive more accurate information on flow velocity, it
would be necessary to derive these input parameters specifically at location, which is not
feasible with the 30m resolution ASTER GDEM within the small scale terrain heterogeneity
experienced in this study site. Nevertheless, the water flow velocity based suitability showed
reasonable values for large stagnant water bodies such as the large dam lake in the Ziniaré study
site and was considered a useful proxy to highlight very flat zones within topographic streams.
The theoretical function to parameterise the water depth-related suitability was based on
subjective thresholds, which were not validated with respect to its relation to water depth but
were solely estimated during the field visit at the seasonally dried areas of a dam lake boundary.
The thresholds of 210 m and 2 km are not considered appropriate for rivers in the study area,
which have a steep gradient towards the main current line and are often narrow. Nevertheless,
the distance from water level was considered a useful proxy with respect to dam lakes and
provides reasonable information that suitability of schistosomiasis transmission is highest in the
very flat littoral zones of a water body as indicated by the WHO (1957). Other studies found that
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if water depth measurements were provided, spectral reflectance of airborne multispectral
imagery (Gilvear et al., 1995; Winterbottom and Gilvear, 1997), Landsat 5 TM data (Bierwirth et
al., 1993) or data from the IRS-LISS sensor (Kumar et al.,, 1997) were successfully used to
estimate water depth based on regression models. The theoretical function of topographic sink
based suitablity represents the logical assumption that the deeper sinks are the longer water
persists, which resulted in higher suitability for schistosomiasis transmission. This function
derived from linear interpolation between minimum and maximum sink depth is certainly
modified by the given sink depth thresholds within the area of interest. A validation of sink
depth and its relation to water holding capacities would require additional field data considering
precipitation and soil drainage. With respect to precipitation, rainfall measurements derived
from the TRMM data were not considered useful for this study site due to the large scale
mismatch between a 30 m resolution suitability image and the TRMM resolution of 28 km. This
scale mismatch was similar to the soil characteristics provided by the FAO et al. (2012).

The single remotely sensed variables of environmental suitability were aggregated to a
composite HSI and evaluated in relation to reference test sites scored into the classes low,
moderate, and high environmental suitability. Despite the model composition was adapted to
the prerequisites of schistosomiasis transmission specifically to the study site Ziniaré, it provides
a transparent basis to reproduce and adjust the model. The implausible HSI at the seasonal
water in dam lake and the dried river bed could be explained by the RS measurements of water
temperature and topography with inappropriate spatial resolution as discussed in Section 5.3.1.
However, a precise identification of key factors determining the suitability of any particular
habitat is difficult especially from field-based analyses due to complex interactions (Sturrock,
1993a: 50). These interactions are considered to some extent through the aggregation of single
environmental variables to an overall HSI. It has to be stated here that the modelled
environmental suitability represents the fundamental ecological niche (Section 3.3.1) of
S. haematobium and S. mansoni parasites and Bulinus and Biomphalaria snail species, which
does not necessarily imply that species are abundant at an appropriate site. Parasites and snails
can still be absent from apparently suitable habitats, because isolation of individual habitats and
(re-) invasion are dictated by chance combinations of factors that permit snail dissemination
(Sturrock, 1993a: 50).

5.3.3 Model transferability

The mechanistic model of environmental suitability related to schistosomiasis transmission was
developed and composed specifically for the study site Ziniaré in Burkina Faso and was then
transferred to the study sites BUF, TAB, and MAN to analyse the impact of different geographical
settings. The topographic variables performed comparable results in all three study sites, where
sinks represented the flat areas of potential water accumulation as potential disease
transmission sites with low suitability. Streams traced the water drainage based on topography,
however, in all three study sites the streams did not fully correspond with the course of the
current river beds visible in high-resolution RS images. The specific landscape configuration of
dam lakes and irrigated agriculture was highly relevant for potential schistosomiasis
transmission in the BUF region, however, this was not given in the study sites TAB and MAN in
Cote d’lvoire. In the study site TAB there were dam lakes, but not with irrigated agricultural sites
at its waterside and in the study site MAN there were hardly any dam lakes visible, but rivers

102



5.3 Discussion of remotely sensed environmental suitability

with dense forests at its watersides. Therefore, the 200 m buffer zone around watersides in Cote
d’lvoire was not considered to represent high environmental suitability given by the index in
most areas, which hampered the direct transferability of the model between different
geographical settings. However, the deterministic variable of water and potential water sites
was well represented in all three study sites and provides a reasonable basis for locally specific
analysis of environmental suitability with respect to schistosomiasis prevalence as provided in
Chapter 6.

Evaluation of modelled environmental suitability in relation to S. haematobium and
S. mansoni prevalence was based on the , that high environmental suitability within a catchment
area of a school location would be plausible if the prevalence measured at the school location
was high, and vice versa. It is clear that suitable environmental conditions provide the
prerequisite that transmission of the disease may occur (Section 3.1.2). However, at the same
time there are other factors that modify this relation between environmental suitability and
schistosomiasis prevalence, such as local disease intervention measures (Clements et al., 2009b;
Zhang et al., 2012), economic development (King, 2010), individual disease susceptibility
(Butterworth, 1993; Jordan and Webbe, 1993) or human behaviour (Bundy and Blumenthal,
1990; Schmidlin et al., 2013), whether an infective habitat is entered or protective measures are
applied or not. The lack of correlation between the HSI and schistosomiasis prevalence at the
BUF site could additionally be related to the temporal gap between environmental suitability
assessed for the year 2010 and school-based surveys that were conducted 20 to 30 years ago
(see Section 4.1). The composite HSI was plausible in the study site TAB, which could be
explained by the clear demarcation of highly suitable disease transmission sites in this region
(Figure 5-14) and the non-existence of intervention measures prior to the surveys of the
provided data in this region (Section 2.3). This study site exemplifies that aggregation of relevant
information is superior to single variables per se. In contrast, in MAN both the single habitat
variables and the composite HSI provided a significant plausible relation to the school-based
schistosomiasis prevalence measures. Especially the topographic habitat variables performed
reasonably in this mountainous study site and in consideration of the ecological requirements
for disease transmission. While the plausibility of stream suitability confirmed the results
derived by Beck-Worner et al. (2007), water flow suitability, sinks, and water depth suitability
appear to be new variables that could be useful to model environmental suitability and disease
transmission risk.

A predicitive map of environmental suitability mainly supports prevention and control
measures in line with the shift from morbidity to transmission control (Utzinger et al., 2011a:
132). These maps could be useful to target specific schools for initial epidemiological surveillance
or to focus on areas of high reinfection potential for more regular re-treatment (Stothard et al.,
2002: 474; Brooker, 2007). Despite the numerous constraints and limitations underlying
mechanistic models of environmental suitability, simple and even untested HSI models were
continuously used for different kinds of decision making procedures (Brooks, 1997: 165). The
fact that only few HSI models were tested and validated against field data (Duncan et al., 1995)
could be explained by the difficulty of sampling appropriate species occurrence and behaviour
data. However, despite available information coming from various sources such as field surveys
and laboratory tests, the deductive approach applied in this study was considered the only
suitable method to derive environmental suitability (Ottaviani et al., 2004). If species presence-
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absence data had been available, they would not necessarily imply whether a habitat was
suitable or not to establish a population. There is no standard approach to test HSI models as
each model defines habitat in a slightly different manner and test data that are consistent with
model content and purpose are hardly accessible (Schamberger and O’Neil, 1986: 7). HSI models
were particularly affected by subjective judgement and model uncertainty, which occurs as a
result of interpretation of data, especially when data are scarce and error-prone. This is
particularly the case when expert knowledge is the primary means of informing an HSI and when
experts estimate facts or classifications as provided in this research. Uncertainty occurs as a
result of the simplification of real processes by models (Ray and Burgman, 2006). However, the
model presented in this study can be easily reproduced and adjusted by other experts and in
reference to new data and information. A comprehensive validation of this mechanistic model
approach would consist of a direct linkage between derived environmental suitability and field
data of parasite- and snail-related fitness, which were not available for this study.

5.4 Summary of environmental suitability model

In summary, RS data displayed the potential to spatially delineate and evaluate environmental
suitability for transmission of schistosomiasis. The prerequisite that disease transmission may
occur in the environment could be derived through water bodies and sites of potential water
accumulation by means of RS. This delineated environment of potential schistosomiasis
transmission could be further evaluated based on the HSI resulting in areas of divergent
priorities. The mechanistic model has large components of subjective estimates, however it is
transparent, easily reproducable, and can be well adjusted to new findings and data. Remotely
sensed temperature and topographic variables did not perform appropriatly due to their coarse
spatial and temporal resolution. However, water and vegetation well reflected the
environmental suitability and could be regularly updated to monitor changing conditions and
newly emerging habitats based on this model. This could support an immediate reaction of
public health authorities to target prevention measures. The composition of the model needs
adjustements to regional landscape structures relevant for schistosomiasis transmission.
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RS data have been widely used for spatial modelling of schistosomiasis risk in different
geographical settings (Seto et al., 2002; Stensgaard et al., 2005; Yang et al., 2005a; Beck-Worner
et al., 2007; Brooker, 2007; Clennon et al., 2007; Vounatsou et al., 2009; Guimaraes et al., 2010;
Schur et al., 2013). Thereby, survey measurements of disease prevalence provided the reference
to model environmental data and predict schistosomiasis risk in space. Risk modelling provides a
more comprehensive analysis than modelling environmental suitability alone, because the
presence and successful completion of the parasite life cycle is implicit in disease prevalence
data. However, as demonstrated by the conceptual framework of the social-ecological disease
niche (Figure 3-6) and the RS based model of environmental suitability for schistosomiasis
transmission (Chapter 5), the location of survey measurement at schools do not spatially
superimpose with the RS measurement of schistosomiasis relevant environmental conditions
(Figure 6-1). This spatial divergence has not been addressed in any of the existing spatial
schistosomiasis risk models that statistically link disease prevalence with RS data.

Social-ecological processes of schistosomiasis transmission — similar to nearly all ecological
phenomena — operate across different scales and vary with the scale of observation (Schur et al.,
2012). Thus far, models of schistosomiasis risk have mainly been developed at regional and
national scales (Simoonga et al., 2009: 1686) using low spatial resolution RS data (Table 3-2). On
this scale of observation, it has been concluded that predominantly climatic conditions
determine the spatial risk of schistosomiasis transmission (Brooker, 2007: 3). There are very few
studies that modelled schistosomiasis risk on the local scale (Clennon et al., 2004; Raso et al.,
2005; Beck-Woérner et al., 2007). These studies showed that besides the environment, socio-
economic and demographic predictors were highly relevant in explaining the spatial
heterogeneity of disease transmission on the micro-scale (Simoonga et al., 2009: 1686-1687).
This underlies the fact that statistical correlation can vary dramatically according to the extent of
observed area and scale of aggregation (Marshall, 1991: 431), which has been identified as a
major constraint of RS based schistosomiasis risk models. Herbreteau et al. (2007: 401)
emphasise the need to address diseases at different relevant scales and investigate the impact
of RS image resolution (Herbreteau et al., 2007: 401). Especially high spatial resolution RS data
are expected to be highly beneficial for the detection of heterogeneous habitat conditions of
disease-related species on a local scale (Goetz et al., 2000: 303; Herbreteau et al., 2007: 402).
Simoonga et al. (2009: 1689) concluded that the neglected scale issue “affected usefulness of
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developed models and maps for reducing micro-scale transmission through improved resource
targeting” (Herbreteau et al., 2007: 1689).

Figure 6-1: lllustration of the spatial discrepancy between the measurement of schistosomiasis prevalence
at a school (surrounded in red) and the location where disease transmission has potentially occurred
(water body surrounded by the black dotted line). Source: Google Earth (Image ©DigitalGlobe 2011)

RS variables used for schistosomiasis risk modelling so far were predominantly NDVI and LST
(Table 3-2), mainly because these variables are pre-processed and readily available (Herbreteau
et al., 2007: 401). However, further vegetation indices can be calculated from RS data, which are
expected to be helpful for health studies (Herbreteau et al., 2007: 401). Furthermore, reviewing
the ecology of disease transmission reveals that additional RS variables may improve models of
schistosomiasis transmission (Table 3-3). The relevance of an RS variable for modelling
schistosomiasis transmission risk is expected to vary between different landscapes and
ecological regions, which could have an impact on outcome of the model and its transferability
between different regions. Important aspects that impact RS measurements besides the surface
conditions per se are the composition of the landscape regarding size and heterogeneity of
relevant features such as water bodies and riparian structures. Figure 6-2 illustrates the
difference in landscape structure covered by the study area, which ranges from savannah in the
North to tropical rainforest in the South, all of which are endemic for schistosomiasis
transmission. A study by Brooker et al. (2001: 1004) has shown that RS based schistosomiasis
risk models performed only reasonably if modelled within the same ecological zone in the
Republic of Tanzania.
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Figure 6-2: The impact of different ecological regions on RS based schistosomiasis risk models. The study
area covers different ecological regions ranging from savannah to tropical rainforest.
Picture B provided with courtesy of Dr. Giovanna Raso.

The main objective of this chapter is to investigate and quantify the potential of RS data for
schistosomiasis risk modelling and spatial risk prediction. Therefore, the research gaps
introduced above regarding: (i) the issue of scale; (ii) the spatial discrepancy of model
components; (iii) the importance of specific RS variables; and (iv) the impact of ecological
regions on model performance and transferability will be addressed in detail. The issue of scale
is investigated through analysis of multi-scale RS data from RapidEye (6.5 m resolution), Landsat
5 TM (30 m resolution), and Terra MODIS (250 and 500 m resolution). Furthermore, an
appropriate scale of observational units around school locations for RS based environmental
analysis is investigated. To account for the spatial discrepancy between school-based disease
prevalence and relevant environmental conditions, a hierarchical model approach has been
developed. Relevant RS predictors were identified from a series of vegetation and water-related
indices and other variables tailored to the disease transmission ecology. The impact of ecozones
on variable importance and model performance is addressed by comparison of model results
from study sites in savannah, tropical, and mountainous regions.

6.1 Statistical model algorithms

The data were analysed by means of two different statistical algorithms in order to achieve
broader generalizability: the non-parametric Random Forest machine learning algorithm
(Breiman, 2001) and the parametric partial least squares regression (PLSR) (Wold et al., 1984).
Schistosomiasis prevalence (continuously scaled between 0 and 100%) was the response
variable to be explained by predictor variables consisting of a multitude of RS reflectances,
indices and other variables (Table 4-3). Both model approaches are by design able to deal with
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the substantial collinearity between predictor variables and allow to identify which RS data and
variables perform best for the application of schistosomiasis risk modelling. Due to the small
extent of the study sites limited by the spatial coverage of available high-resolution data, the
sample size was generally low. For the study site TAB it was even smaller than the number of
predictor variables. These prerequisites required model algorithms capable of handling and
predicting continuous response data, dealing with low numbers of training samples, and
multicollinear predictor variables. The following Sections 6.1.1 and 6.1.2 explain the model
algorithms of Random Forest and PLSR, respectively, and illustrate how these algorithms can
deal with the above mentioned prerequisites.

6.1.1 Random forest

The statistical machine learning approach of random forests is a ensemble learning method that
operates by constructing a multitude of decision trees. In contrast to convential statistical
procedures, machine learning algorithms learn the relation between predictor and response
variables from the data and do not assume a specific statistical model, e.g. normality. While
other non-parametric machine learning approaches such as neural networks or support vector
machines are rather complex, tree-structured models are based on simple functions of the input
variables (Sutton, 2005: 303). Decision trees have the capability to consider non-linear relations
between the response and predictor variables and do not require reducing the feature space of
predictor variables to a non-correlated data-set, as would be the case for conventional
multinomial regression models. In addition, decision tree ensembles are highly robust with
respect to outliers in the training data (Breiman et al., 1984: 55-58).

There are different approaches to construct decision trees, namely the Automatic Interaction
Detection (AID) developed by Morgan and Sonquist (1963), the Theta-AID (THAID) developed by
Morgan and Messenger (1973), and the Classification and Regression Trees (CART) developed by
Breiman et al. (1984). CART is the most commonly used approach and represents the decision
tree method implemented in Random Forests used in this study.

A single decision tree grows by partitioning the feature space with respect to the response
variable, which results in increasingly homogeneous sub-spaces. Thereby, at each node of a tree
branch the best binary split, meaning highest informative value with respect to the response
variable, is selected (Figure 6-3). The main idea is to select a subset of the response variable
training set that is “purer than the data in the parent subset” (Breiman et al., 1984: 23) with the
aim of constructing a tree that estimates the response variable noted in the end leaves of the
tree with a best set of predictor variables as given by the respective tree branch. In this logic,
purity is indicated by the difference between the residual sum of squares (RSS) before and after
the split (Hastie et al., 2009: 593). To find the optimal size of a tree, criteria such as the minimum
amount of data per leaf can be defined to stop further splitting of a node. A single decision tree
is instable due to the hierarchical structure of the tree, where errors or changes in lower level
branches propagate at all subsequent splits of the tree (Hastie et al., 2009: 588). It is thus the
strength of ensemble regression trees such as random forests to combine constructed trees and
thereby reduce this high variance between single trees to derive a stable model result.

The methodical family of random forests has in common that random processes are
implemented to grow single trees and combine them to a forest model. Methodical approaches
used in different implementations of random forests are for example the random subspace

108



6.1 Statistical model algorithms

method (Ho, 1998), the random split selection (Dietterich, 1999) or bagging and random input
selection (Breiman, 1996, 2001). The latter approach from Breiman (2001), is most widespread
and mainly termed Random Forest method in the literature (from now on referred to as Random
Forest in capitals). In the Random Forest algorithm, the growth of a tree is based on a random
subset selection of training data, called bagging (i.e. in bag, see Figure 6-3). This prevents the
model from overfitting and provides an independent test data set (i.e. out of bag) for internal
model evaluation or the measure of variable importance. Secondly, only a subset of predictor
variables (=my,) is randomly selected at each node (see Section 6.2.4). Finally, the Random
Forest ensemble combines the predictions of all single trees by calculating their mean prediction
for regression or by majority voting for classification. The ensemble approach leads to reduced
model variance.

Select mtry
predictor
variables
*.at each node

Y% | |6 | X% |X | X |-|X%

<::| e

R - ——— Out of bag

predictor of muy

Y=Y UY,

X3<0.27 X3 >»>0.27

Y = Response variable
X; = Set of predictor variables

[' _-_-Jl Root of tree

O Node of tree
I:l Leaf of tree

0.8 u=YXLuy,

Mean of Yz

Figure 6-3: Schematic representation of a Random Forest regression tree. Y corresponds to the response
variable, which is the schistosomiasis prevalence in this study. X refers to the set of predictor variables,
which consists of the RS variables listed in Table 4-3. At each node, the response variable will be split into
more homogeneous sub-spaces, while a split is explained by a threshold derived from the variable with
highest informative value out of the number (my,) of randomly selected predictor variables. A leaf
represents the mean value of a most pure subset of the response variable, which is best explained by the
predictor variables and threshold indicated by its tree branch.
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Besides the aim to explore the relationship between response and predictor variables, the
Random Forest algorithm is used to predict this relationship for non-sampled locations in the
case of spatial modelling. For spatial prediction, the fitted Random Forest is applied to new data
and the predictions of all trees are again combined by averaging or majority voting.

6.1.2 Partial least squares regression

The PLSR developed by Wold et al. (1984), is a special approach of conventional multivariate
regression methods. For PLSR, the original data of both the response (if multivariate) and
predictor variables, are transformed to principal components with the aim of capturing most of
the information in the predictor variables (X) that is useful for predicting the response variable(s)
(Y). A linear regression model is then derived from the scores of the principal components
(Figure 6-4). The model thereby overcomes the restrictions of standard regression methods as
the high dimensionality of original predictor variables is reduced. The orthogonality of the
principle components eliminates the multicollinearity issue. Therefore, PLSR can, unlike multiple
linear regression (MLR), analyse data with strongly collinear, noisy, and numerous X variables
(Wold et al., 2001: 109). The main goal of PLSR is to derive the relation between X and Y. In
contrast to the principal component analysis (PCA), which is mainly designed to decompose the
original predictor data to best represent X, the PLSR selects components with highest
explanatory power to predict Y. This is achieved by the simultaneous decomposition of X and Y
with the constraint of maximizing the covariance between X and Y (Garthwaite, 1994: 122).

In the context of PLSR, components are called latent variables (LVs) and are obtained
iteratively (Mevik and Wehrens, 2007: 3). The general procedure to iteratively compute the LVs
is: (i) to mean-center and scale the original data matrix; (ii) to compute the scores, loadings and
weights of the LVs (Figure 6-4); (iii) to subtract the LVs from the original data (= residual matrix E,
see Figure 6-4); and (iv) to iteratively repeat this procedure based on the deflated data matrix
(Dayal and MacGregor, 1997). It is continued as long as there are significant LVs (Hoskuldsson,
1988: 217) and the residuals can no longer be minimised. To ensure that a best set of LVs from X
to predict Y is derived, the computations of LVs consider both the outer relation of the scores
and loadings with respect to X and the inner relation between the scores of X and Y with the aim
of minimising their mixed relation. In order to obtain orthogonal scores from the original data, it
is necessary to obtain weights (Geladi and Kowalski, 1986: 12). Figure 6-4 illustrates the
transformation and procedure of the PLSR for the case of one response variable (Y) and a
predictor matrix (X) of m variables and n samples, which reflects the general data structure
provided for this thesis. Thus, one LV results in: (i) one score for each sample n (matrix T), which
provide a new X variable as input for the subsequent MLR analysis; (ii) one loading per variable
m (matrix P’), which reflect the regression coefficient obtained for each originial variable from
the PLSR algorithm; and (iii) one weight pe variable m (matrix w’), which reflects the covariance
structure between predictor and response variable.
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Figure 6-4: Schematic representation of the PLSR approach. This graph shows the
PLSR model procedure for the case of a single response variable Y (corresponds to
schistosomiasis prevalence) to be predicted by a multitude of predictor variables X
(correspond to the RS environmental variables).

Source: modified after Wold et al. (2001: 113)

There are different methods of computing LVs for PLSR models: the classical PLS algorithm is
the nonlinear iterative partial least squares (NIPALS) procedure developed by Wold (1975). In
1993, Lindgren et al. (1993) developed a new kernel partial least squares (PLS) algorithm, which
has been proven to be faster and provide identical results to those obtained from the standard
NIPALS procedure (De Jong and Ter Braak, 1994: 169). Whereas the NIPALS deflates both the X
and Y matrices, the kernel PLS deflates only the X matrix given the fact that deflation of the Y
matrix was considered optional (Hoskuldsson, 1988; Dayal and MacGregor, 1997: 73-74). Due to
the data structure of this thesis with only one response (Y) variable, the faster kernel PLS was
assumed to provide the most suitable algorithm. Furthermore, less prominent and used
approaches to compute LVs for PLSR are discussed by Hoskuldsson (1995).

Before the analysis, the X and Y variables need to be transformed to make their distributions
fairly symmetrical (Wold et al., 2001: 113). Thus, in this thesis, the input data have been
standardised using the z-score given in Equation 6-1,

X— X
z = ————mean Equation 6-1
S

which centers the data x in relation to their mean value x,,.4,, and scales to unit variance s. The
initial standardisation of the data allows to directly compare the scores and loadings of different
PLSR implementations (Mevik and Wehrens, 2007: 3). As in multiple linear regression, the
overall purpose of PLSR is to build a linear model between the response variable (or matrix) Y
and the predictor matrix X. Therefore, the problem of choosing an optimum set of predictors still
remains. The number of LVs (ncomp) used for the PLSR model needs to be specified for the
respective PLSR model and is therefore a parameter for tuning the model (see Section 6.2.4).
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6.2 Statistical model procedures

In this study, specific methodological procedures of modelling schistosomiasis risk were applied
to meet the respective objectives introduced above. Due to the prerequisite of scaled data as
input for the PLSR model (Section 6.1.2), the full database of epidemiological and RS variables
(Chapter 4) was scaled to z-scores in a preparatory step. This scaled database was used as input
data for all model approaches used in this study.

6.2.1 Multi-scale modelling

When modelling the risk of schistosomiasis with RS data, the issue of scale is inherent in
different aspects of the modelled phenomenon. A very prominent scale issue in this regard is the
spatial mismatch between sampling units of disease prevalence and remotely sensed
environmental information, which is prominent in high spatial resolution RS data (Figure 6-1).
This scale issue is influenced by the spatial resolution of RS data and the school catchment area
included in the spatial modelling. In the multi-scale modelling approach of this study (Figure
6-5), the impact of the spatial resolution of RS data (scale 1) and the extent of the school
catchment area (scale 2) on the model accuracy was investigated based on the study site MAN.
This study site was covered by RapidEye, Landsat 5 TM, and Terra MODIS data and provided at
the same time the highest sample size of school prevalence. To discriminate between effects
due to spatial resolution and due to specific sensor characteristics, the sensor characteristics
were analysed separately at a given spatial resolution.

The impact of the spatial resolution of RS data (scale 1) was investigated based on high-
resolution RapidEye reflectance and spectral indices. This dataset was thenceforth aggregated to
the relevant spatial resolution of 30 m (corresponding to Landsat 5 TM) and 250 m and 500 m
(corresponding to Terra MODIS). In a separate analysis, the spatial resolution was represented
by data from the respective sensor with the intention to discriminate between the resolution
and sensor impact on the model. The sensor impact was furthermore evaluated by comparing
model results from associated spectral reflectance and indices available for all three sensors
with all available reflectance and indices provided by the respective sensor (Table 6-1).

Table 6-1: Overview of bands and indices used for multi-scale and multi-sensor analysis. The spectral
wavelength of bands is given in Table 4-2. nir = near infrared, mir = middle infrared, swir = shortwave
infrared, tir = thermal infrared

RapidEye Landsat 5 TM Terra MODIS
Cut-set of bands and Blue, green, red, nir, NDVI,  Blue, green, red, near Blue, green, red, nir, NDVI,
indices EVI, SAVI, MSAVI, NDWI infrared, NDVI, EVI, SAVI, EVI, SAVI, MSAVI, NDWI
MSAVI, NDWI
Full set of bands and Blue, green, red, redegde, Blue, green, red, nir, mir, Blue, green, red, nir, mir,
indices nir, NDVI, EVI, SAVI, swir, tir, NDVI, EVI, SAVI, swirl, swir2, NDVI, EVI,
MSAVI, NDWI MSAVI, NDWI, MNDWI SAVI, MSAVI, NDWI,
MNDWI
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The impact of the selected extent of the school catchment area (scale 2) was investigated by
spatial buffer analysis for a defined area around the point measurement of the school location.
The buffer radius has been defined in steps of 100m around points and analysis ceased at a
buffer radius of 5km. This distance was estimated to represent the maximum estimated school
catchment area (Malone et al., 2001: 62). The RS variables were aggregated by their means for
each buffer extent.

Scale 1: Scale 2:
spatial resolution of catchment area of school

RS data

Figure 6-5: Multi-scale analysis of RS environmental factors. The first scale issues addresses the spatial
resolution of RS data (left column) for modelling schistosomiasis risk, which is investigated for RapidEye
with 6.5 m (top), Landsat 5 TM with 30 m (centre), and Terra MODIS data with 500 m (bottom). The
second scale issue considers the catchment area of the school to be considered in the spatial model
procedure. The buffer radius for multi-scale analysis with respect to the catchment area ranges from 100
to 5 km from school location.

6.2.2 The hierarchical model approach

A hierarchical model was developed to address the spatial mismatch between the school
measurement of schistosomiasis prevalence and relevant environmental conditions for disease
transmission measured from RS data. For the hierarchical model, the binary mask of potential
disease transmission sites derived in Chapter 5 were used to specifically select only relevant
regions for modelling schistosomiasis risk (Figure 6-6). The underlying hypothesis of this
hierarchical model approach was that only sites where water was detected or water potentially
may accumulate, represent relevant environmental information with respect to schistosomiasis
transmission and the prevalence measured for the school catchment area.
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Figure 6-6: Flowchart of the hierarchical model approach considers only potential disease transmission
sites derived in Chapter 5 for modelling schistosomiasis risk based on remotely sensed environmental

variables.

The impact of this hierarchical model approach was evaluated in reference to the
corresponding non-hierarchical procedure, where the respective buffer area around the school
location was completely considered by the model. Both approaches rely on the full set of RS
variables derived for this thesis (Table 4-3), whereas each study site was modelled based on the
best available data set (see Table A 1 in the Appendix). The models were processed for different
extents of the school catchment areas ranging from a buffer radius of 500 m to 5 km in steps of
100 m. RS variables were aggregated by their means within the spatial buffer extent, except for
the variables settlement area and streams, which were aggregated by their sum and maximum,
respectively. The extraction of the data within given buffer zones was based on RS variables
resampled to a spatial resolution of 30m using the nearest neighbour method. Thus, the spatial
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resolution matches with the provided mask of potential disease transmission sites and makes
extraction of small patches feasible as required by the hierarchical model approach.

Additionally, the impact of different ecological regions on model accuracy was further
evaluated by comparing the resulting models from each study site with the overall region. Thus,
schistosomiasis risk models were separately derived for each study site based on the common
cut-set of variables, which were available for all three study sites (see Table A 1 in Appendix) and
compared with the cross-ecozonal model. This was based on data from all three sites, where
savannah, tropical lakeside and tropical mountainous regions were combined in one cross-
ecozonal model approach.

Both models, the non-hierarchical and hierarchical model, were used to predict
schistosomiasis risk for non-sampled locations in space. The predicted z-scores were then
calculated in reverse to schistosomiasis prevalence between 0 and 100% and further inspected
by their spatial mean, standard deviation, and coefficient of variation through all spatial extents
modelled.

6.2.3 The measure of variable importance

In order to evaluate which of the multitude of RS variables provide valuable information to
explain the spatial distribution of the disease, each predictor’s individual variable importance
was calculated. Moreover, changes in variable importance with ecozone were evaluated.

Random Forest regression provides two measures of variable importance: the increase of the
mean squared error (IncMSE) and the cumulative increase in node purity (IncNodePurity). The
IncMSE is derived for each predictor variable from the MSE difference between the predictive
measure based on the original dataset and based on a permuted dataset, where the predictor in
guestion was randomized. The IncNodePurity calculates for each predictor variable how much it
reduces node impurity, which is the difference between RSS before and after the split and sums
this up over all splits and trees (Hastie et al., 2009: 593). For the Random Forest regression
analysis used in this study, the IncNodePurity measure was used to evaluate the importance of
RS predictor variables. Only variables with an increase in node purity greater than one were
considered important in this study.

A varible importance measure of the PLSR model is the VIP (Equation 6-2), which reflects how
well a predictor variable describes the response variable and how important this information is
for the composition of the set of predictor variables. This is due to the inclusion of the weights,
which reflect the covariance between the predictor and response variables (Andersen and Bro,
2010: 732). The VIP value for a variable j is expressed as

By wh SSY )
SSYtotal F

VIP; = Equation 6-2

where w; is the weight value for variable j and component f, SS§Y; is the sum of the squares of
the explained variance for the fth component and J is the number of variables. $5Y;.:, is the total
sum of squares explained of the response variable, and F is the total number of components. If
the VIP exceeds the threshold value of one it indicates an important variable (Andersen and Bro,
2010: 732)
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6.2.4 Model validation

All Random Forest and PLSR model approaches have been validated through internal cross
validation using the “caret” package in R (Kuhn, 2008). The principle of cross-validation is to split
the database into a larger training and a smaller test data set. Based on training data, the model
is established and applied to test data, which are at the same time used to evaluate model
performance. Typical measures to evaluate model quality in a regression context are the
coefficient of determination (R2), which indicates how well data fit a statistical model ranging
between 0 and 1, and the RMSE, which measures the difference between predicted and
observed values in units of the predicted measure. A third measure used for model evaluation is
the Nash-Sutcliffe efficiency (NSE) index, which determines the relative magnitude of residual
variance or noise compared to measured data variance, hence the real information provided by
the model (Nash and Sutcliffe, 1970). This index can range between one and minus infinity. An
index value of one corresponds to the optimal match between simulated and observed data and
positive scores indicate that model simulation is better compared to a model based on the mean
value of observations. The NSE (Equation 6-3) is commonly used to assess predicitive power of
hydrological models (Krause et al., 2005), however, it was successfully applied for other model
applications such as the evaluation of wind erosion prediction systems (Hagen, 2004) or energy
flux analysis (Wong et al., 2010). It is expressed as

= )

?=1 (Yiobs _ Ymean)2

NSE =1 — ( Equation 6-3
where Y?PS is the /™ observation for the total number of observations n, Y™ is the ith
simulated value for the corresponding observation and Y™¢?" is the mean value of observed
data.

K-fold cross-validation splits the database into a defined number of parts, of which one part is
used to test the model and all other parts are used to fit the model. To keep a comparable
amount of validation data per group of test data, the data splitting of internal cross-validation
was adjusted according to the sample size of each study site. Models of the study site MAN
(sample size = 75; fold size = 7-8) and BUF (sample size = 74; fold size = 7-8) were validated
based on a 10-fold cross-validation and models of the study site TAB (sample size = 38; fold size
= 7-8) were validated with 5-fold cross-validation. The cross-validation procedure was repeated
ten times for each model and the best model defined through the minimum RMSE was selected
as the final model. Within the cross-validation procedure, the model-algorithm specific
parameters my, (number of variables selected per split) and ne,me (Nnumber of components used
for model), were iterated to tune the Random Forest (Liaw and Wiener, 2002) and PLSR model
(Geladi and Kowalski, 1986), respectively.

Due to the limited amount of data points available for this study, only the model outcome of
study site MAN could be verified by external validation. At this site, 33 additional school surveys
were derived from the pre-selection steps of epidemiological data (Figure 4-1). This independent
test set corresponded to schools surveyed a few years earlier than the latest surveys used in the
training data base of the model. The predicted prevalence was evaluated by the test data set
based on the resulting R? of a linear model. The common approach to split the data base into
80% training and 20% test data was used for the internal cross-validation procedure described
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above and not considered useful for external validation of the model due to the general
shortage of reference data.

6.3 Results of statistical risk modelling

This section presents the results according to the objectives introduced above. The impact of
scales regarding RS data and area of observation are described in Section 6.3.1. The outcome of
the developed hierarchical model to bridge the spatial discrepancy between the prevalence
measure and remotely sensed environmental conditions is presented in Section 6.3.2. The most
important RS variables for modelling schistosomiasis risk are given in Section 6.3.3. Finally,
Section 0 presents the results of spatial schistosomiasis risk predictions and its validation for the
study site MAN. The comparison between different ecological regions and used model
algorithms are reported in the respective model results of all sections.

6.3.1 How scale matters

The impact analysis of scale on schistosomiasis risk modelling referred to the scale of RS data,
hence its spatial resolution, and the scale of observation regarding the environment within the
catchment area of school locations. Figure 6-7 shows the predictive power of Random Forest
and PLSR models based on RapidEye, Landsat 5 TM, and Terra MODIS data for different
catchment buffers around the surveyed schools. Although the spatial resolution of RS data per
se, as tested based on aggregated RapidEye data, showed no impact on the model outcome (see
Figure A 2 in the Appendix), the model performance varied strongly between the different
sensors used for schistosomiasis risk modelling. Terra MODIS data resulted generally in poor
model performance with R? values around 0.25, RapidEye data reached higher predictive power
and Landsat 5 TM provided superior results.

The scale of observation around the school location shows a marked impact concerning the
predictive power of models based on RapidEye and Landsat 5 TM data. In all cases, the R? results
are lowest, if RS variables were directly extracted at the school location. The models derived
from RapidEye and Landsat 5 TM data performed better with an increasing area of observation
around school locations. In most cases, the R? levelled out at its highest score for analysis within
a buffer extent between 2 and 4 km. However, this was different for the Random Forest model
of Landsat 5 TM data, which resulted in a peak of explanatory power for the analysis within 3 km
around the school locations and deteriorated for larger observational units.

The comparison between the cut-set of bands and indices available for all three sensors and
the sensor specific spectral properties showed that Landsat 5 TM data resulted in the highest
overall model performance, if the full potential of the Landsat 5 TM spectrum was used. In
contrast, RapidEye and Terra MODIS data showed no impact between the cut-set and full set of
bands and indices used for modelling. Both model algorithms result in similar trends considering
the scale of observation, however, Random Forest reached higher R? scores for the Landsat 5 TM
model and PLSR reached higher scores for the RapidEye model.
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Figure 6-7: Comparison between model results from RapidEye, Landsat 5 TM, and Terra MODIS data for
the study site MAN. The red dots represent model results (R?) derived from the cut-set of bands and indices
available for all three sensors and the blue dots refer to the model results derived from the full set of bands
and indices available for the respective sensor as given in Table 6-1. The lines show the spline interpolation
and the grey bars represent the confidence interval. The upper row represents model results from the
Random Forest algorithm and the lower row from the PLSR analysis.

6.3.2 The hierarchical model: a solution to bridge the spatial
gap?

The hierarchical model approach was developed with the aim of overcoming the spatial
mismatch between the school-based prevalence and remotely sensed environmental
information regarding the ecological process of disease transmission.

Figure 6-8 illustrates the model performance in comparison between the non-hierarchical
and the hierarchical model approach for the three study sites and based on the two model
algorithms used in this study. It is apparent that the outcomes of both approaches, the non-
hierarchical and hierarchical model, vary strongly between the study sites. In BUF, none of the
established models performed satisfactorily with R? values below 0.3. The performance of the
model was better in the study site MAN and highest in the study site TAB. In accordance to this,
performance of the hierarchical model approach improved substantially in TAB and improved
partially in MAN but did not make a difference in BUF. In TAB, both model algorithms showed a
marked improvement of explanatory power through the hierarchical model approach with
maximum R? scores between 0.6 and 0.7 within buffer zones of 3 km radius and larger. At this
site, the PLSR model performed slightly better than the Random Forest algorithm. In MAN, only
the PLSR model indicated an improvement for the analysis within the first kilometre around the
school locations.

118



6.3 Results of statistical risk modelling

100 — E— TS| — — — — S| EE— — — EO— S—
: : : ) : : : : I : : non-hierarchical :
= hierarchical

158104 LOpLE a:

0004

o

o H T H T H H H H H T H H H H H T
OO A b e Fpeeees i 20 | RESSES g froven s e A R g R R

i 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000
Buffer radius [m]

Figure 6-8: R? values per selected buffer radius of the non-hierarchical (red) and the hierarchical (blue)
models for the three study sites MAN, TAB and BUF based on the Random Forest (upper row) and PLSR
model (lower row).

Models were additionally evaluated based on the RMSE (Figure A 3) and the NSE (Figure A 4).
Lowest RMSEs around 0.6 were reached in accordance with highest R? values around 0.7 and
highest NSE scores close to 0.75 for the hierarchical PLSR model in the study site TAB. Similar to
the R? values in TAB, the NSE resulted slightly lower from the Random Forest model compared to
the PLSR model, however, with lower RMSE for the buffer zones between 0 and 2 km. For larger
buffer zones, the PLSR model performed superiorly due to a lower RMSE. The three model
evaluation criteria R?, RMSE, and NSE consistently confirmed that the hierarchical model
approach performed superiorly in comparison to the non-hierarchical model approach in the
study site TAB with high model efficiency confirmed by the NSE index. In MAN, the NSE of the
PLSR model perforemd superiorly to the R? values with scores up to 0.6 for the hierarchical
approach, whereas for the Random Forest model this index resulted minor scores below 0.3.
However, this was different for the RMSE, whose scores corresponded well to the results of the
R2 values derived in MAN. In BUF, the poor model performance indicated by the R? values was
confirmed by the consistently high RMSE and low NSE, except for some outliers of NSE scores
greater than 0.4 for the hierarchical PLSR model within buffer extents of 4 to 5 km radius.

The strong impact of the geographical region on modelling schistosomiasis risk and the
outcome of modelling across ecozones is illustrated in Figure 6-9. The deviation in explanatory
power between the poorest models in BUF and best models in TAB reaches up to 40%. The
combination of training data from different ecological regions resulted in poor model
performance with R? scores below 0.25. This is further confirmed by the RMSE (Figure A 5) and
NSE (Figure A 6).
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Figure 6-9: Hierarchical model performance in different ecological regions and for the cross-ecozonal
model using PLSR

6.3.3 Key remote sensing variables for schistosomiasis risk
modelling

Until now, the NDVI and LST were the most commonly used RS variables for schistosomiasis risk
modelling. The objective of this thesis was to explore the multitude of disease relevant RS
variables listed in Table 4-3 and assess their individual contribution to modelling the spatial
distribution of disease risk. The importance of the most relevant variables in the hierarchical
Random Forest model is illustrated in Figure 6-10 for each of the three study sites. An overview
of all variables with importance greater than one is given in Figure A 7 for the non-hierarchical
Random Forest model, in Figure A 8 for the hierarchical Random Forest model and in Figure A 9
for both PLSR model approaches in the Appendix.

Variable importance resulted differently depending on the study site investigated (Figure
6-10). For example, the variable “euclidean distance from water body” was highly important for
all school catchment radii in MAN and had comparably little importance regarding the study
sites TAB and BUF. Furthermore, the topographic variables “altitude”, “slope”, and “streams”
were of high importance in the hierarchical Random Forest model for MAN, whereas the non-
hierarchical approach additionally considered the variable “sinks” important at this site (Figure A
7). In contrast, the spatial prediction of schistosomiasis risk in the study site TAB was mainly
explained by the mean and median of Terra MODIS LST, which was not considered important in
the study sites MAN and BUF. However, maximum LST contributed more in the MAN site and
minimum LST contributed more in BUF. Based on the Random Forest model, in BUF no variables
are highlighted specifically important with nearly all variables contributing marginally to the
model (Figure A 7 and Figure A 8).
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Figure 6-10: Variable importance measured for selected variables in comparison between the three study
sites given by the increase of node purity from the Random Forest hierarchical model. The nomenclature of
selected RS variables is explained in Table A 1.
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The PLSR models resulted in generally different variable importance (Figure A 9) compared to
the Random Forest models. In MAN, “streams” and “settlement area” resulted in VIP greater
than one for selective buffer extents around school locations, whereas “euclidean distance from
water body” was not considered important by this model. In TAB, the PLSR model considered
“streams” as the major variable of high importance for both the non-hierarchical and
hierarchical model, whereas Terra MODIS LST reached the threshold only for two buffer extents
of the hierarchical model approach. In the study site BUF, the PLSR model considered
“settlement area” as the important variable to model schistosomiasis risk.

6.3.4 Schistosomiasis risk prediction and validation

The overall objective to model schistosomiasis risk based on RS data, is to generate spatial
information of disease transmission risk to support planning, intervention, and control initiatives
of public health authorities. The RS based models used in this study were therefore used to
predict the established relation between disease prevalence and environmental conditions for
the non-hierarchical and the hierarchical model approach. Figure 6-11 and Figure 6-12 present
examples of spatial predictions based on the Random Forest and PLSR model for the study sites
MAN and TAB, respectively. Spatial predictions in the study site BUF (see Figure A 10 in the
Appendix) were not analysed further due to its overall poor performance in this study.

Figure 6-11 illustrates the spatial predictions from the Random Forest and PLSR models for
the non-hierarchical and hierarchical approach in the study site MAN. The validation of this
analysis based on an external test data set is expressed by the R? for each model. The Random
Forest model predicted low risk in the mountainous part and high risk along the river valleys
running towards the South of the study site. Despite the resulting R? value of 0.54 being slightly
higher compared to the one of the hierarchical model (R? = 0.51), the north-south running river
in the western part of the study site and specifically the small-scale structures of high disease
risk along the river valley north of the city Man, were better predicted according to the visual
indication of measured prevalence. In contrast, the PLSR model resulted in a more fuzzy
distribution of low and high risk regions and showed similar results of spatial predictions
between the non-hierarchical and hierarchical approach. However, the external validation
indicated that the non-hierarchical approach of the PLSR model performed better (R* = 0.51)
than the hierarchical one (R? = 0.44). This slightly better performance of the non-hierarchical
PLSR model compared to the hierarchical PLSR model was found for almost all scales of
observation around schools, whereas no difference between hierarchical and non-hierarchical
approach and scales of observations was indicated by the Random Forest model (Figure A 11).
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Figure 6-11: Comparison of spatial risk prediction between non-hierarchical and hierarchical model
approach at the study site MAN based on Random Forest (upper row) and PLSR model (lower row). This
example is based on spatial modelling within a buffer extent of 3 km around school location. The R? value
presents the result of the linear model between predicted and test data. Yellow bars indicate the school
locations of the test data: the higher the bar the higher the measured prevalence.

Figure 6-12 illustrates the spatial predictions from the Random Forest and PLSR models for
the non-hierarchical and hierarchical approach in the study site TAB. For this study site, no
additional data for external validation were available. The four models predicted the Lake Taabo
in the centre of the study site as area of high risk for disease transmission. The Bandama river
running from north-west to south-east crossing Lake Taabo was identified as a high risk area by
the hierarchical models of both algorithms and the non-hierarchical approach of the PLSR model.
However, the course of the river in the north-eastern corner of the study site was only predicted
as a high risk area by the hierarchical Random Forest model. Additionally, several hotspots of
high disease risk were predicted by Random Forest models that correspond to settlements and
topographic elevations in TAB. Those were predicted with less risk by the PLSR model.
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Figure 6-12: Comparison of spatial risk prediction between non-hierarchical and hierarchical model
approach at the study site TAB based on Random Forest (upper row) and PLSR model (lower row). This
example is based on spatial modelling within a buffer extent of 3km around school location.

The mean predicted prevalence, its standard deviation and the coefficient of variation
derived from buffer extents between 0 and 5 km, are illustrated in Figure 6-13 for the non-
hierarchical and hierarchical Random Forest model approach in TAB. Both the non-hierarchical
and hierarchical model approaches, predicted a very high mean value of disease prevalence for
Lake Taabo from all buffer extents. This predicted mean value indicates that parasite prevalence
and human infection due to water contact is estimated very high in Lake Taabo. The course of
the Bandama river shows a mean predicted prevalence around 50% with a moderate standard
deviation and a low coefficient of variation. The coefficient of variation results in higher scores
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for the non-hierarchical approach in comparison to the hierarchical model and shows large areas
in the southern part of the study site with highest scores of variation between different buffer
extents analysed. Similar results were provided by the PLSR model as illustrated in Figure A 12,
however, with a generally lower coefficient of variation and standard deviation between
different buffer extents. The results of mean predicted prevalence, standard deviation, and
coefficient of variation from buffer extents between 0 and 5 km for the study site MAN are
illustrated in Figure A 13 for the Random Forest model and Figure A 14 from the PLSR model.
Moderate to high mean prevalence was predicted from both model algorithms and approaches
close to the course of the river, however, the Random Forest model predicting the high impact
of distance to the river appearing as buffer of mean moderate to high prevalence. All models of
MAN resulted a very low mean prevalence for the mountaineous region in the north-east of the
study site. Similar to TAB, the standard deviation and coeffcient of variation resulted generally
lower from Random Forest models compared to PLSR models.

6.4 Discussion of remotely sensed schistosomiasis
risk modelling

RS data have shown a high potential for spatial risk modelling and prediction of schistosomiasis
risk. This study has shown that with the presented approach not the spatial resolution of RS data
per se, but the extent of the area observed around a school location has a major impact on the
model performance. From the 60 RS variables investigated for schistosomiasis risk profiling,
there were very few that explained most of the disease variation. The Random Forest and PLSR
algorithms were used to investigate a non-hierarchical and hierarchical approach for modelling
schistosomiasis risk with the hierarchical approach performing considerably superiorly. In the
following, the RS data and sensors used for schistosomiasis risk modelling (Section 6.4.1) and the
performance of spatial modelling and risk prediction (Section 6.4.2) are discussed.

6.4.1 Remote sensing data for schistosomiasis risk modelling

RS data provide information on environmental conditions for Schistosoma parasites,
corresponding snails, and schistosomiasis transmission sites. Statistical disease risk models link
these environmental conditions to school-based measures of disease prevalence, which
represents the school catchment area and aim at indicating the environmental suitability for
diseases transmission in this area. Due to this discrepancy between point measurement and
school catchment area, the impact of scale on schistosomiasis risk models based on RS data was
investigated by this research.
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Figure 6-13: Mean prevalence (top row), standard deviation (middle row) and coefficient of variation
(bottom row) derived from buffer extents between 0 and 5 km using the Random Forest model.
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The improvement of model performance with the observation of an increasing school
catchment area confirms the spatial conflict of schistososmiasis risk modelling based on RS data.
It indicates that in a distance of 2km and larger, the school catchment area integrates
environmental conditions that represent the disease transmission conditions corresponding to
the school-based measure of prevalence. This impact of different scales of aggregation on model
performance has also been shown for the example of aggregating on different administrative
levels, where treatment needs were over- or underestimated depending on the level of spatial
aggregation and focality of disease distribution (Schur et al., 2012: 11). However, so far no
spatial analysis of schistosomiasis risk models based on divergent buffer extents could be
identfied in the literature. In contrast, the spatial resolution of RS data did not show any impact
on model performance, which is a direct consequence of the approach taken in this study,
where RS measurements are summarised by their mean within a buffer zone around the school
catchment area.

RS variables from different sensors showed that the explanatory power of the Landsat 5 TM-
based model increased, when the full set of sensor specific bands and indices were used,
whereas this was not the case for models based on RapidEye and Terra MODIS data. This
superior performance of Landsat 5 TM could be explained by the additional information
provided by shortwave infrared and thermal bands of the Landsat 5 TM, which are not provided
by the RapidEye sensor but highly sensitive to water (see Section 4.2.2). In contrast, the rededge
band from RapidEye did not provide any further information for modelling schistosomiasis risk.
In this analysis, corresponding Terra MODIS reflectance data provided no valuable information
for schistosomiasis risk modelling, which could be a consequence of poor data quality due to
cloud contamination. Despite the application of the product specific cloud mask, cloud
contamination was present in the data.

This study showed that few RS variables were highly important to explain the variation of
disease prevalece. However, the importance of RS variables varied strongly between model
algorithms and study sites, which confirms the hypothesis that different ecological regions
require different RS variables. In the mountainous region of MAN, schistosomiasis risk has
predominantly been explained by the distance to water bodies and topographic variables. This
fits to the strong topographic gradient and confirms the positive correlation between disease
prevalence and stream order of the nearest water body or altitude as derived by Beck-Wérner et
al. (2007) for this study region. In contrast, the high importance of slope does not reflect the
missing correlation between slope and disease prevalence in the study by Beck-Wérner et al.
(2007). The variable “sinks” was identified as a new important RS variable from the non-
hierarchical model approach. Topographic variables are considered as proxies for relevant
ecological conditions for schistosomiasis-related parasite and snail species such as flow velocity
of water or temperature conditions and were also found useful for schistosomiasis risk
modelling in Cote d’lvoire (Beck-Worner et al., 2007; Vounatsou et al., 2009) and Kenya (Clennon
et al., 2007). In the tropical lake-side region of TAB, LST and temperature difference between
day and night-time summarised as yearly mean and median together with distance to water
bodies and stream order, were the most important variables to predict the spatial
schistosomiasis risk. As already demonstrated by Malone et al. (1994) in the Nile delta in Egypt,
remotely sensed temperature is a useful proxy to model hydrological conditions at this scale of
observation. Due to the poor performance of the models, variable importance in BUF could not
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be evaluated. It is assumed, that the importance of variables is attributed rather to noise than
information in this case. The fact that each ecological region resulted in dissimilar important
variables, provides a further explanation for the poor performance of the cross-ecozonal model
presented in Figure 6-9. The different importance of variables per ecozone indicates that
valuable information from RS data for one specific ecozone is lost when modelled across
different ecozones where this relation is not given.

6.4.2 Modelling schistosomiasis risk

In this research, a hierarchical model approach was developed to bridge the spatial gap
between school prevalence and relevant environmental conditions for schistosomiasis
transmission based on the two different algorithms Random Forest and PLSR. It was shown that
the hierarchical model approach improved schistosomiasis risk models in regions where the
environment contributes significantly to explain the spatial pattern of the disease. Analysis in the
study site TAB, demonstrated that close to 70% of the variance could be explained by
hierarchical models based on RS data. Given the complex social-ecological interaction that
underlies schistosomiasis transmission, RS is assumed to provide a highly valuable contribution
for schistosomiasis risk assessment in this case. However, models derived for the study site BUF
have shown that in some regions environmental conditions explain the distribution of disease
prevalence poorly. Both very high and very low disease prevalence has been measured in the
direct neighbourhood of schools sourrounded by sites of high environmental suitability for
disease transmission (Figure 5-12). Despite the chronic character of the disease, the time-lag of
surveys conducted in the mid-1980s could to some extent explain the missing relation between
schistosomiasis prevalence and environmental data derived for the year 2010. In MAN, the
hierarchical model approach improved its performance compared to the non-hierarchical only
for the PLSR algorithm within school catchment radii up to 1km. In this region, it was generally
very difficult to detect water bodies due to its small-scale heterogeneity and frequent coverage
by riparian forests. The poor model performance across all ecozones despite an increase in
sample size from the minimum of 38 in the TAB site to 184 in all ecozones confirmed the result
of Brooker et al. (2001) in Tanzania, where only models fitted within the same ecological zone
performed reasonably.

It has to be stated here that the outcome of all spatial models of schistosomiasis risk may be
affected by spatial autocorrelation. As analysed in Section 4.1, the response variable of
schistosomiasis prevalence is — like most spatial data — affected by spatial autocorrelation until a
specific distance between points. This common phenomenon of spatial autocorrelation is on the
one hand a relevant information from an ecological point of view, e.g. whether high or low
disease prevalence is spatially clustered or shows a trend from rivers to mountaineous areas.
However, spatial autocorrelation at the same time impacts the predictive performance of spatial
models and may lead to mis-estimation of up to 25% (Dormann, 2007: 135). Unfortunately, the
impact of spatial autocorrelation on model accuracy could not be evaluated in this study due to
sample size constraints. Even for the study site MAN, where the sample size was highest, the
reduction of school locations that were located closer than 12.1km according to the modelled
range of spatial autocorrelation (Figure 4-3) would have led to only ten remaining school
locations, which is an insufficient sample size for statistical modelling. However, the impact of
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spatial autocorrelation is assumed to be small due to the typical focal distribution of the disease
mentioned above.

In most cases, the Random Forest and PLSR models performed in a comparable way with
respect to their predictive power, which indicates that model results are stable. However, the
variation between variable importance that result from each model is considerable. Variables
found to be highly important for the Random Forest model were not considered important by
the PLSR model and vice versa. This could be attributed to the different procedure of assessing
variable importance by each model approach as described in Section 6.2.3.

The spatial predictions of the study sites MAN and TAB reflected well the variables that were
considered most important by the respective variable importance measure. In MAN, the
Random Forest model showed a high impact of euclidean distance to water on the spatial
prediction (Figure 6-11), whereas in TAB the LST data had a high impact (Figure 6-12). The
superior model performance of the hierarchical models in the study site TAB was well reflected
by an appropriate spatial prediction of disease risk according to the distribution of reference
data. However, the predicted disease risk at those single hotspots away from the well
investigated water sites around Lake Taabo can not be evaluated due to the lack of respective
data on disease prevalence.

In general, the schistosomiasis risk modelling and prediction in this study is based on a
relatively small sample size, which can impact the stability of model performance. Furthermore,
the comparison between different study sites and ecozones, respectively, might be impacted by
inhomogeneities of input data on schistosomiasis prevalence (Table 4-1) due to different sample
sizes, different years of surveys and different distributions of prevalence of samples between the
three investigated study sites. Both the R? value and the NSE index, are not very sensitive to
systematic over- or underprediction of a model (Krause et al., 2005: 90). Nevertheless, the RS
based models of schistosomiasis risk resulted in useful spatial predictions of schistosomiasis risk,
whereas the hierarchical approach explicitly models the potential disease transmission sites. This
spatial prediction can support the planning of disease prevention and control measures in a
spatially explicit way and supports the identification of new causal relations of disease
transmission in different ecological regions.

6.5 Summary of schistosomiasis risk modelling

In summary, this study has demonstrated that RS data have a highly valuable contribution for
schistosomiasis risk modelling explaining up to 70% of the variation in disease prevalence.
However, it has also been shown in the study site BUF that environmental conditions do in some
cases not explain the spatial distribution of the disease. The hierarchical model approach
developed in this thesis is capable of bridging the spatial discrepancy between school-based
measurements of prevalence and the disease relevant remotely sensed environmental
conditions. However, only in the study site TAB, where environmental conditions strongly
indicate the spatial distribution of measured disease risk, did this hierarchical approach improve
the model considerably. The analysis between different ecological settings provided insights into
the variation of importance of RS variables according to the ecozone under investigation. The
most important RS variables identified in this study were distance to water bodies and
topographic variables for the mountainous region in MAN and LST and the stream order for the
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tropical lakeside region in TAB. This underlines further that modelling across ecozones is
challenging due to changing relationships between disease prevalence and the environment.
Ignoring ecozonal differences strongly deteriorates the performance of schistosomiasis risk
modelling. Whereas the spatial resolution of RS data per se did not have any impact with the
approach taken, the scale of observation around surveyed school locations substantially
impacted model accuracy. Best model performances were obtained at larger observational units
with radii of 2 km and larger, although this depended on the study site and model approach. The
combination of spectral properties and spatial resolution of the Landsat 5 TM data resulted in
the best performance of schistosomiasis risk models compared to RapidEye and Terra MODIS
data.
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The overarching goal of this thesis was to bridge relevant disciplines and bring together several
strands of scientific inquiry in order to investigate the potential of RS data for profiling disease
risk. Emphasis was placed on schistosomiasis. A hierarchical model approach was developed to
optimise the application of RS data and to overcome the spatial discrepancy between
environmental habitats of disease-related parasites and intermediate host snails and
measurements of human infections. In this chapter, the strengths and limitations of RS data are
discussed according to the specific research questions (Section 7.1). The transferability of the
hierarchical model approach to optimise spatial risk profiling of other environment-related
diseases is highlighted in Section 7.2. Future research needs are outlined in Section 7.3.

7.1 Strengths and limitations of remote sensing
data for schistosomiasis risk profiling

(1) Which RS data and variables are most useful to model environmental suitability and
disease risk?

Findings presented in this thesis revealed that RS data were highly useful to spatially delineate
and quantitatively evaluate environmental suitability for transmission of schistosomiasis and
model disease risk. Based on RapidEye and Landsat 5 TM data, the small-scale heterogeneity of
water bodies could be well detected, as long as water was not considerably covered by trees.
Despite its lower spatial resolution compared to RapidEye, Landsat 5 TM data thereby
performed especially well, presumably due to its sensor configuration in the shortwave and
thermal infrared spectrum, which is highly suitable to detect water. In contrast, Terra MODIS
reflectance data performed unsuitably in detecting smaller water bodies and modelling disease
risk, which reflects the limited spatial detail at the expense of the sensors well-known capacity
to monitor large-scale temporal dynamics. Despite all three sensors having sufficient nominal
temporal resolution for this application, cloud coverage has shown to be a strong limitation
when establishing information on seasonal dynamics, especially in the tropical regions of Cote
d’lvoire.
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The topographic model derived from ASTER data was highly useful to model disease risk,
specifically in the mountainous region of western Cote d’Ivoire. However, the spatial resolution
of 30 m provided a significant constraint to characterise the small-scale topographic features to
qguantify environmental suitability for schistosomiasis-related snails and parasites as proposed in
this study. To better assess habitat suitability for freshwater snails, the content of submerged
aquatic vegetation is of high ecological relevance. Yet, this measure would require hyperspectral
RS data together with comprehensive in situ measurements, which was beyond the scope of this
thesis.

In the schistosomiasis risk model, some 60 RS variables were investigated, of which only a
handful were of relevance in the final model specifications. The most important RS variable
identified in this study was the measure of distance to water bodies, which reflects well the
overall importance of the spatial location of water sites for the explanation of schistosomiasis
risk. For the mountainous region in the study site MAN, the topographic variables “altitude”,
“slope”, “streams” and “sinks” were found of highest importance, which confirms the strong
impact of the topographic gradient on schistosomiasis risk, as previously shown by Beck-Wérner
et al. (2007). In contrast, the model of the tropical lakeside region of TAB resulted in mean and
median temperature difference between day and night-time, LST and stream order as most
important variables. Other than for the model of environmental suitability mentioned above, LST
contributed significantly to modelling disease risk as has been shown two decades ago (Malone
et al.,, 1994). In this study, the importance of RS variables varied strongly between model
algorithms and study sites, which confirms that a single statistical model algorithm does not
generate representative results and different ecological regions require different RS variables for
modelling schistosomiasis risk. Furthermore, the widely used NDVI for modelling schistosomiasis
risk, as well as other vegetation indices investigated in this thesis, did not provide a noteworthy
contribution to explain the spatial variation of schistosomiasis prevalence.

The most suitable RS variables to model environmental suitability for schistosomiasis
transmission consisted of the multi-temporal derivation of water bodies and the assessment of
their riparian vegetation coverage based on high-resolution RS data from the RapidEye and
Landsat 5 TM sensors. The regions of permanent water coverage and high vegetation coverage
during the dry season outlined the hotspots of environmental suitability for schistosomiasis
transmission. The topographic sinks and streams, which could potentially become habitats as a
result of rainfall or flooding, complemented the spatial delineation of potential disease
transmission sites. However, the accuracy of modelled topographic streams was very poor.
Regarding the ecological context of disease-related parasites and snails, RS measurements of
water surface temperature are of limited use as surface temperature does not directly indicate
the water temperature that impacts parasite and snail development and critical limits of long-
term variation and extreme values cannot appropriately be measured and monitored by
currently available remote sensors. Additionally, the dynamic changes of water flow velocity
between dry and wet seasons cannot be derived based on topographic RS data.

Taken together, the satisfactory performance in delineating environmental suitability for
schistosomiasis transmission is a promising feature upon which one might establish an
operational monitoring of environmental changes with focus on the suitability of disease
transmission in the near future. Hence, this issue warrants further scientific inquiry, as discussed
in Section 7.3.
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7.1 Strengths and limitations of remote sensing data for schistosomiasis risk profiling

(2) How can the spatial discrepancy between environmental suitability for schistosomiasis
transmission and the measure of disease risk be resolved?

In this thesis, a hierarchical model approach was developed to overcome the spatial mismatch
between school-based disease prevalence data and remotely sensed environmental information,
which is of relevance regarding the ecological process of disease transmission. Therefore, the
delineation of potential disease transmission sites derived by the mechanistic model of
environmental suitability provided the spatial basis to model schistosomiasis risk within the
catchment area of the school-based measure of disease prevalence providing the response
variable for the model. Particularly for the study site TAB, where environmental conditions
contributed strongly to model schistosomiasis risk, the hierarchical model approach improved
model performance considerably in comparison to the non-hierarchical model approach, as
indicated by the explanatory power close to 70% versus lower than 60%, respectively. However,
both values are considered high against the background that a complex social-ecological
interaction underlies the process of schistosomiasis transmission, which cannot be fully
described by means of RS. Limitations of disease risk modelling using either a hierarchical or a
non-hierarchical model approach were revealed for the study site BUF, where environmental
conditions in general explained the spatial distribution of school-based disease prevalence very
poorly. However, keeping the ecological process of disease transmission in mind and observing
this process from a geographical and spatially explicit perspective, a non-hierarchical approach
would not fully exploit the potential of RS data for profiling schistosomiasis risk as the relevant
RS signal would be averaged between relevant and non-relevant sites.

The superior performance of the hierarchical model approach in the study site TAB was well
reflected by the spatial prediction of disease risk, which is in agreement with the spatial
distribution of school-based measures of disease prevalence. Furthermore, the issue of
anisotropy inherent in the spatial structure of the data (Chammartin et al.,, 2013) is directly
addressed by the hierarchical model approach. However, insufficient data were available to
validate this prediction with independent data of school-based prevalence.

(3) Which scale is most appropriate for spatial modelling of schistosomiasis risk?

The impact of scale on schistosomiasis risk modelling was investigated in this thesis observing
the scale of RS data, hence its spatial resolution, and the scale of observation regarding the
environment within the catchment area of modelled school locations. The results confirmed the
hypothesis that suitable environments for disease transmission rarely occur at the location of
the school but within its larger catchment area up to a distance of 5 km, which is reflected by the
increasing model performance with increasing extent of the school catchment area considered
in the model. From a distance of 2 km from school location and above, the explanatory power of
the schistosomiasis risk models either peaked at around 3 km or levelled out at its highest score
for analysis within a buffer extent between 2 and 4 km. Due to the aggregation of RS
measurements within the school catchment area investigated, the spatial resolution per se did
not impact the model performance. However, based on these findings it can be assumed that
spatial resolution of RS data greater than 500 m has an impact on model performance if no
buffer is used for the spatial risk modelling as done in previous studies.

133



Synthesis and outlook

(4) How do different ecozones impact the performance of schistosomiasis risk models in West
Africa?

Based on the three selected study sites in different ecological regions of West Africa that range
from dry savannah (study site BUF in Burkina Faso) to tropical rainforest including flat and
mountainous regions (study sites TAB and MAN in Cote d’lvoire, respectively), the impact of
different ecozones on model performance was investigated. The first step of disease risk
profiling - modelling environmental suitability — already showed that the constitution and
characteristics of specific sites for potential schistosomiasis transmission reflect an obvious
impact of different ecological regions. To underscore this point, the riparian vegetation coverage
during the dry season in the savannah region of Burkina Faso revealed environmental suitability
as it detects irrigated agriculture as hotspot for disease transmission. In contrast, the densly
forested riparian zones in the study sites of Coéte d’lvoire did not represent such specifically
suitable environments, although the RS measures were comparable. The crucial role of divergent
ecological regions is further emphasised by the results obtained from the statistical model of
schistosomiasis risk, highlighting specific environmental features. Here, the model of each
ecological region identified different sets of variables, which indicate that valuable information
of RS data for one specific ecozone would be lost when models are developed across different
ecozones, where such prior relations are not given. In view of the poor performance of the
model across all ecozones, this study confirms the result of Brooker et al. (2001) from the United
Republic of Tanzania, emphasising that only models fitted within the same ecological zone
perform with reasonable fidelity.

7.2 Transferability of the hierarchical model
approach to other environment-related
diseases

Within this PhD thesis, a hierarchical model approach has been developed to bridge the spatial
discrepancy between environmental suitability for disease-related parasites and snails and
human infection measurements. Spatial processes of disease transmission are complex, this was
illustrated and conceptualised for the water-based disease schistosomiasis that is the focus of
the current work (see Section 3.3.1). However, schistosomiasis is not the only environment-
related disease, where RS data are useful for spatial risk profiling. Hence, the question of
transferability arises with regard to the optimised application developed in this thesis to other
environment-related diseases, which is offered for discussion.

As outlined in the introduction (see Section 1.1), there are several categories of environment-
related diseases, such as vector-borne diseases (e.g. malaria and dengue), aerosol-borne
diseases (e.g. avian influenza due to H5N1 virus), soil-borne diseases (e.g. hookworm infection)
or food-borne diseases (e.g. salmonellosis). In order to evaluate the transferability of the
hierarchical model approach, the spatial processes of disease transmission have to be reviewed
for the different diseases. Even if exposure pathways are very similar such as schistosomiasis
referring to water-based and cholera to water-borne diseases, spatial processes of transmission
are different. Whereas human infection with Schistosoma spp. results from penetration of the

134



7.3 Future research needs

parasite through the intact skin at a suitable freshwater body where intermediate hosts have
released cercariae, an infection with the Vibrio cholerae bacterium occurs during consumption
of contaminated water. With regards to the spatial processes of schistosomiasis transmission,
human infection takes place at the infested water body, while, in the case of cholera,
transmission can happen anywhere, as it is governed by contaminated water that is consumed,
most often due to sub-standard hygienic conditions. Nevertheless, RS data have been used to
monitor temporal and spatial variations of chlorophyll abundance and sea surface temperature
as proxy for dynamics of cholera (Lobitz et al., 2000; Jutla et al., 2010). In this context, the
linkage between human infection and environmental suitability for the respective disease agent
is affected by a spatial discrepancy of measurements. For this application, the hierarchical model
approach developed in this thesis would need some specific modifications to link respective
regions beyond a 5 km buffer zone.

For the case of vector-borne diseases such as malaria and dengue, environmental data
derived from RS aims at evaluating habitat conditions of the respective vector species. Of note,
there is an inherent spatial discrepancy between human infection and relevant environmental
conditions for vectors. However, in this case, the spatial relation is modified by the species-
specific flight and drift range. In contrast to schistosomiasis, the delineation of potential habitats
for vector species is rather fuzzy, especially if these are well adapted to often man-made
microhabitats, such as old tyres stored around households that collect rain water. For the time
being at this small scale, vector habitats cannot be detected by means of RS.

The direct transferability of this hierarchical model approach is limited due to the specific
ecological requirements of environment-related diseases for transmission of the pathogen from
human to human and its consequences on spatial processes. As soon as disease transmission
from human to human occurs, which is the case for the current epidemic of the Ebola in West
Africa (Butler, 2014), the potential of RS data to spatially model disease risk is highly limited.
Despite the fact that this environment-related disease has its origin in areas adjacent to pristine
habitats of primates or Chiroptera, which can - similar to other species - be monitored by RS
data, this environmental information could then rather provide a basis for a dispersion model of
the fuzzy spread of the disease among humans. Nevertheless, what can be drawn from the
hierarchical model approach developed in this thesis is the crucial step to think spatially and
qguestion the specific ecological context when using RS data for disease risk profiling to fully
exploit its potential.

7.3 Future research needs

Against the background of this systematic investigation of optimised RS applications for risk
profiling of schistosomiasis, there remains the fundamental need to establish a generalised
framework that synthesises the spatial relations of environment-related diseases and its
implications on RS-based analyses. Such a framework could substantially contribute to bridge
the disciplines of geographic RS and epidemiology through a common spatial perspective.
Additionally, the yet limited transferability of the hierarchical model approach developed in this
research needs to be further investigated and integrated in this generalised conceptual
underpinning.

135



Synthesis and outlook

The model of environmental suitability needs to be complemented with ground-truthed field
data, which could validate not only the RS variables themselves but also parameterise the
derived variable and index suitability in reference to the measured prevalence of
schistosomiasis-related parasite and snail species at transmission sites. Furthermore, this model
can also be tested and adjusted with respect to similar disease ecologies as given for fascioliasis
in wildlife, livestock and humans (Mas-Coma et al., 2009; Quayle et al., 2010). Moreover,
suitable environments for schistosomiasis transmission are closely related to suitable habitats
for mosquito breeding sites (Keiser et al., 2005) and could therefore provide useful information
to further assess the environmental suitability for vector-borne diseases such as malaria, dengue
or Rift Valley fever (Martens et al., 1997; Linthicum et al., 1999)

Future models of disease risk based on RS data need to consider the ecotonal transitions in
their model approach. Based on the results of this thesis, it is suggested to establish separate
models for each ecological region and consider the variation in landscape structure as well as
the vertical structure of the modelled area. Diseases have, however, more triggers than just the
environment. Hence, RS is only one building block in the research on the complex and multi-
faceted phenomenon of disease transmission. Thus, in a next step, RS-based schistosomiasis risk
models need to be complemented by demographic, educational, socio-economic and political
data to model the comprehensive social-ecological process of disease transmission. To draw
causal conclusions on the force of transmission from RS data, these comprehensive social-
ecological models again need data on parasite prevalence both in humans and snails.

This work has shown that in order to fully exploit the potential of RS data, there are still
several challenges imposing the spatial profiling of risk for a single disease. In practice however,
polyparasitism is widespread in the developing world and resources for disease control and
prevention are limited. Thus, the potential of RS data needs further exploration to determine the
scope and limits within a modelling framework to predict co-endemic areas, where different
parasitic diseases coexist (Brooker and Utzinger, 2007). In this regard, the spatial approach of
Raso et al. (2006) has already shown that elevation was an important variable to predict the
prevalence of S. mansoni-hookworm co-infection. Building upon the findings of this study, RS
data are expected to fundamentally contribute to an integrative model of polyparasitc infection
risk if the application of data and modelling respects the specific ecological requirements of the
targeted diseases.
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Table A 1: Overview of all RS variables available for the three study sites MAN, TAB and BUF. The
nomenclature indicates the abbreviation of the RS variable as used in this study.

RS data RS variable Nomenclature MAN TAB BUF
RapidEye Blue reflectance RE_blue X X
Red reflectance RE_green X X
Green reflectance RE_red X X
Rededge reflectance RE_rededge X X
Near infrared reflectance RE_nir X X
NDVI RE_ndvi X X
SAVI RE_savi X X
MSAVI RE_msavi X X
EVI RE_evi X X
NDWI RE_ndwif X X
Landsat 5 TM Blue reflectance Isd_blue X X
(dry season Red reflectance Isd_blue X X
image) Green reflectance Isd_green X X
Red reflectance Isd_red X X
Near infrared reflectance Isd_nir X X
Middle infrared reflectance Isd_mir X X
Shortwave infrared reflectance Isd_swir X X
Thermal infrared emissivity Isd_tir X X
NDVI Isd_ndvi X X
SAVI Isd_savi X X
MSAVI Isd_msavi X X
EVI Isd_evi X X
NDWI Isd_ndwif X X
MNDWI Isd_mndwi X X
Landsat 5 TM Blue reflectance Isw_blue X
(wet season Red reflectance Isw_blue X
image) Green reflectance Isw_green X
Red reflectance Isw_red X
Near infrared reflectance Isw_nir X
Middle infrared reflectance Isw_mir X
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RS data RS variable Nomenclature MAN TAB BUF
Landsat 5 TM Shortwave infrared reflectance Isw_swir X
(wet season Thermal infrared emissivity Isw_tir X
image) NDVI Isw_ndvi X
SAVI Isw_savi X
MSAVI Isw_msavi X
EVI Isw_evi X
NDWI Isw_ndwif X
MNDWI Isw_mndwi X

Terra MODIS Mean NDVI of 2010 ndvi_mean X X X

MOD13Q1 Median NDVI of 2010 ndvi_median X X X
Maximum NDVI of 2010 ndvi_max X X X
Minimum NDVI of 2010 ndvi_min X X X
Mean EVI of 2010 evi_mean X X X
Median EVI of 2010 evi_median X X X
Maximum EVI of 2010 evi_max X X X

X

Minimum EVI of 2010 evi_min X X

Terra MODIS Mean LST of 2010 Ist_mean X X X

MOD11A2 Median LST of 2010 Ist_median X X X
Maximum LST of 2010 Ist_max X X X
Minimum LST of 2010 Ist_min X X X
Mean of difference between day
and night-time LST of 2010 dtemp_mean X X X
Median of difference between day .
and night-time LST of 2010 dtemp_median X X X
Maximum of difference between dtemp max X X X
day and night-time LST of 2010 P-
Minimum of difference between dtemp min X X X
day and night-time LST of 2010 P-

ASTER GDEM Altitude alt X X X
Slope slope X X X
Sink depth sinks X X X
Stream order streams X X X

RapidEye / . .

Landsat 5 TM Water distance water_dist X X X

RapidEye /

TerraSARX Settlement area settl_area X X X
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A. General Information

Waypoint Date
Location Lat
Observer Lon

B. General Land Cover Information

B.1 Area Land Cover Homogeneity

Land Cover Homogeneous for
more than 300m around the

yes O Position of field photographs

sample area: o |:| |:| I:l
:LElsom 1“ (]
[0 O |:1|50EZI ] L DEFI —

L]

B.2 General Landform:

Slope Flat to Gently Sloping Terrain (0 -7 %; ca 0—4 °)

Gently Sloping to Moderately Sloping (8 — 13 %; ca 4 -7 %)

Steep to Very Steep, Rolling to Hilly Terrain 21 =55 %; 11 -29 °)

O

O

@) Sloping to Moderately Steep, Undulating to Rolling terrain (14 - 20%;ca8-11°)

O

O Extremely Steep Terrain, Steeply Dissected Hilly and Mountainous Terrain (56 — 140%, 30 — 55°)

B.3 Land Cover

General Land Cover O vegetated O  non-vegetated

Specific Land Cover O

O  terrestrial

O aguatic or regularly flooded land (+ WADY)

cultivated

O bare

B.4 Seasonal Aspect

O natural / semi-natural

O  artificial water body

O built-up

O inland water

Natural / Semi-Natural Vegetation Cultivated Fields

dry green [flowering] fruits | ploughed Jinitial stage] full mat. stage | harvested
TREES — — — — — — — —
SHRUBS — — — — — — — —
HERBS — — — — — — — —
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C. Specific Land Cover Information

C.1 Natural and Semi-Natural Vegetation C.2 Soil
Layer | Cover [%] | Height [m] | Remarks Calour |
WOODY Type sand ©]
Trees 1 3-7 silt o]
2 7-14 clay O
Shrubs 1 <05 loam (@)
2 05-3 consolidated O
3 3-5 unconsolidated @]
HERBACEOUS bare rock o]
BARE SOIL gravel, stones O

C.3 Disturbance

Fire O not evident O slight O medium O strong
Fire Date O not evident O not recent O recent O very recent

Grazing O not evident O slight O medium O strong

C.4 Waterbody
Type O  permanent O seasonal

O natural O  man-made

O river O stream O  pool/pond O lake

O  channel O ditch O flood area O  swamp
Substratumtypes O muddy O sandy O stony O decomposing material
Velocity O stagnant O slow O fast
Colour
Temperature
Human Contact O directly observed O  indirectly observed O waterbody not accessible
Usage O washing O hygiene O leisure

O irrigation R c_lrmklng SIS 1 O figh farming
livestock

Access O visible access to waterbody via path, road, buildings, etc

Figure A 1: Field verification form to guide the sampling of environmental in-situ data
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Figure A 2: Impact of spatial resolution on model accuracy derived from the RapidEye database, which was
aggregated from 5 m to 30 m, 250 m and 500 m. The red dots represent models results (R?) derived from
the Random Forest model and blue dots refer to the results of the PLSR model. The lines reflect the results
of spline interpolation and the grey bar represents the confidence interval. Note that cases where the
buffer radius is smaller than the spatial resolution are not shown except for the extraction of the pixel
value with no buffer (corresponds to Om buffer radius).
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Figure A 3: RMSE values of the non-hierarchical (red) and the hierarchical (blue) models for the three

study sites MAN, TAB and BUF based on the Random Forest (upper row) and PLSR model (lower row).
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Figure A 4: NSE of the non-hierarchical (red) and the hierarchical (blue) models for the three study
sites MAN, TAB and BUF based on the Random Forest (upper row) and PLSR model (lower row).
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Figure A 5: RMSE of the non-hierarchical (left) and the hierarchical (right) models of the
combined ecozones in comparison to the respective model result from the three study sites
MAN, TAB and BUF based on the Random Forest (upper row) and PLSR model (lower row). The
models per site are derived from the cut-set of data that match all three zones (see Table A 1).
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Figure A 6: NSE of the non-hierarchical (left) and the hierarchical (right) models of the
combined ecozones in comparison to the respective model result from the three study sites
MAN, TAB and BUF based on the Random Forest (upper row) and PLSR model (lower row). The
models per site are derived from the cut-set of data that match all three zones (see Table A 1).
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Appendix
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Figure A 10: Comparison between non-hierarchical (top) and hierarchical (bottom) prediction of
S. haematobium prevalence for the study site BUF. This example is based on spatial modelling within
a buffer extent of 3 km around school location.
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Figure A 11: R? values resulting from a linear model of the validation of spatial predictions based on an
independent external dataset at the study site MAN.
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Figure A 12: Mean prevalence (top row), standard deviation (middle row) and coefficient of variation
(bottom row) derived from buffer extents between 0 and 5 km using the PLSR model in TAB.
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Figure A 13: Mean prevalence (top row), standard deviation (middle row) and coefficient of variation
(bottom row) derived from buffer extents between 0 and 5 km using the Random Forest mode in MAN.
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Figure A 14: Mean prevalence (top row), standard deviation (middle row) and coefficient of variation
(bottom row) derived from buffer extents between 0 and 5 km using the PLSR mode in MAN.
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Japan Space Systems

Level 1B (level of RS data preprocessing including radiometric and
geometric sensor corrections)

Landsat 5 Thematic Mapper

Landsat 7 Enhanced Thematic Mapper Plus

Land Cover Classification System

Land Processes Distributed Active Archive Centre
Level 1 Product Generation System

Land surface temperature

Latent variable

Study site around the city of Man in Cote d’lvoire
Multi-criteria decision analysis

Millenium Development Goal

Multiple linear regression

Modified normalised difference water index
Moderate Resolution Imaging Spectroradiometer
Surface reflectance daily L2G global 1km and 500m
Surface reflectance daily L2G global 250m

Land surface temperature & emissivity 8-day L3 global 1km
MODIS global land cover product

Vegetation indices 16-day L3 global 250m
Modified soil-adjusted vegetation index

Subset of predictor variables (Random Forest)
National Aeronautics and Space Administration
Normalized difference vegetation index
Normalized difference water index

Nonlinear iterative partial least squares

National Oceanic Atmospheric Administration
Nash-Sutcliffe efficiency

Ordinary least-squares

Principal component analysis

Partial least squares regression

Coefficient of determination

RapidEye Science Archive

Root mean square error

Remote sensing
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TPH
TRMM
USAID
USFWS
USGS
UT™
VIP
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WHO

Study site around Lake Taabo in Céte d’lvoire
Swiss Tropical and Public Health Institute
Tropical Rainfall Measuring Mission

United States Agency for International Development
United States Fish and Wildlife Service
United States Geological Survey

Universal Transverse Mercator

Variable importance measure (PLSR)

World Geodetic System 1984

World Health Assembly
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Glossary

Acrisol

Aestivation

Anti-helminthic drug

Arenosol
Cambisol
Chiroptera

Cercaria, -ae

Disease vector

Endemic regions

Endorheic

Exorheic

Ferralsol

Gleysol

Haematuria

Intermediate host

Leptosol

Acidic soils with a layer of clay accumulation. This class consists
only of clays with low cation exchange capacity.

The ability of intermediate host snails to survive under dry
conditions for a certain period of time.

Pharmaceutical that takes effect to kill parasitic worms that live
within human bodies.

Sandy soils with little profile development.
Soils with slight profile development that is not dark in colour.
Scientific name for the order of bats.

Larval stage of the Schistosoma parasites that are free
swimming in water and able to penetrate through the intact
skin of humans.

A vector is any living agent (animal or microorganism) that
carries and transmits an infectious pathogen into another living
organism.

Regions, where the pathogen or parasite is present.

Endorheic waterbodies do not drain into the sea but pertain in
the interior drainage basin.

Exorheic waterbodies do not drain into the sea.

Highly weathered soils rich in sesquioxide clays and with low
cation exchange capacities.

Freshwater saturated soils.

Symptom of infection with S haematobium. Red blood cells can
be found in the urine.

An intermediate host is any living agent that harbours the
parasite only for a short transition period during which usually
some developmental stage is completed.

Shallow soil over hard rock or highly calcareous material or a
deeper soil that is extremely gravelly and/or stony.
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Glossary

Lixisol

Miracidium, -a

Plinthosol

Prepatent period

Prevalence rate

Pulmonate snail

Regosol

Vector competence

Vertisol

Soils with subsurface accumulation of low activity clays and high
base saturation that develop under intensive tropical
weathering conditions.

Larval stage of the Schistosoma parasites that are free
swimming in water and need to find a suitable intermediate
host snail to further develop to the next larval stage of
cercariae.

Soil type defined by a subsurface layer containing an iron-rich
mixture of clay minerals (chiefly kaolinite) and silica that
hardens on exposure into ironstone concretions known as
plinthite. The impenetrability of the hardened plinthite layer, as
well as the fluctuating water table that produces it, restrict the
use of these soils to grazing or forestry.

Period of time, which is necessary for a species to develop (e.g.
from egg to adult parasite).

Proportion of a population found to have a disease.

Snails that belong to an informal group of snails that have the
ability to breathe air.

Surface layer of rocky material.

Vector competence refers to the ability of arthropods to
acquire, maintain, and transmit a pathogen or microbial agent
to the final host.

Clayey soils that form deep and wide cracks when dry.
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