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1 Introduction

Due to a wide range of technical and methodological innovations, imaging modalities
have become one of the major areas in the life sciences. First and foremost, Magnetic
Resonance Imaging (MRI) has established itself among the most important techniques
for diagnostic imaging as it offers a large number of advantages over other imaging
methods such as Computed Tomography (CT) and Positron Emission Tomography
(PET). While CT is based on ionizing radiation to which the subject is exposed during
the measurement, PET works by detecting ionizing radiation emitted by radioactive
agents, which are introduced to the subject prior to the scan. In contrast to these
techniques, which can potentially damage body cells, MRI utilizes a combination of
static magnetic fields and high frequency electromagnetic fields for image acquisition.
The absence of any known long-term side-effects not only greatly improves the patient
safety, but also enables risk-free volunteer studies, which can be of great importance in
many areas of clinical research. Magnetic Resonance (MR) images have an inherently
high soft tissue contrast, which can, to a large extent be adjusted through the imaging
parameters. Compared to most imaging modalities, which only offer the possibility of
observing a very limited set of physical properties (e.g. electron density in x-ray imaging),
MRI additionally enables the observation of a wide range of parameters such as proton
density, diffusion, flow, and temperature. Even complex quantities like tissue perfusion
or brain activation can be observed using the appropriate techniques.

Amongst this variety of parameters, mapping the longitudinal relaxation time T1 has
widespread applications in clinical MRI as it promises a quantitative comparison of
tissue properties across subjects and scanners. A quantitative assessment of tissue is
relevant in the detection of many pathologies such as diffuse myocardial fibrosis in cardiac
MRI [45, 63] or inflammation, infarction, white matter edema and tumor malignancy
in neurological MRI [10, 43, 71, 87]. Moreover, the continuous quantification of the T1
relaxation parameter during the first and delayed passage of paramagnetic contrast agents
would bring a great benefit towards the quantification of Dynamic Contrast-Enhanced
MRI (DCE-MRI) in pathologies like brain tumors [69, 76] and obstructive coronary
artery disease [61,91,107]. Due to the long scan times of conventional methods, however,
the use of quantitative MRI in clinical routine is still very limited.

In relaxation-based MR parameter mapping, a suitable magnetization preparation is
typically applied, followed by the acquisition of a predefined number of images of the
relaxation process. After the acquisition, these snapshots and a relaxation model accord-
ing to the type of preparation applied are used for a fit of the relaxation parameters.
In presence of short relaxation times, however, the acquisition of multiple images with a
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spatial and temporal resolution that is sufficient for clinical use can be difficult or even
impossible [18,88]. One approach to overcome this problem is a segmentation of the data
acquisition process [39, 59]. After each magnetization preparation pulse, only fractional
parts of the desired k-space are acquired corresponding to different contrasts of the relax-
ation process. By repeating this measurement with different k-space lines, the temporal
resolution can be highly improved. For the most commonly used InversionRecovery (IR)
preparation, a sufficient delay is required between two repetitions to ensure a complete
relaxation back to the thermal equilibrium before the subsequent preparation pulse is ap-
plied. Alternatively to the lengthy segmented acquisition techniques, single-preparation
techniques with a very low spatial resolution have to be used, impairing the accuracy
of the resulting parameter maps. Therefore, ways to reconstruct high-resolution im-
ages from undersampled k-spaces with less data sampled than required by the Nyquist
criterion would be desirable for fast and accurate T1 mapping.

Parallel imaging techniques [36, 75] exploit the information received in multiple receiver
coils to resolve aliasing in images reconstructed from coherently undersampled k-space
data. In these methods, however, the Signal-to-Noise Ratio (SNR) is limited by noise
enhancement due to the geometry factor of the particular coil setup and the signal loss
due to the reduction in the number of k-space points acquired. In dynamic studies, non-
Cartesian trajectories such as radial sampling schemes, which redundantly sample the
low spatial frequencies, can be used to reduce motion artifacts especially in undersam-
pled acquisitions [35, 64]. Contrast manipulation techniques such as k-space Weighted
Image Contrast (KWIC) use k-space filters to enhance or reduce the amount each of the
acquired projections contributes to the central region of k-space to generate multiple im-
ages of different contrast from radially acquired single-preparation experiments [27, 85].
A considerable disadvantage of these techniques is the lack of consistency caused by the
averaging of data belonging to various time points, which could possibly lead to errors
in the estimated contrasts.

Over the past years, model-based reconstruction techniques based on the mathematical
theory of compressed sensing [11,26] have become a very active field of research in MRI.
Images can be recovered from incoherently undersampled k-space data by exploiting
sparsity in any known transform domain. Apart from frequently used sparse transform
domains such as the wavelet or x-f domain [32,60], more specific sparsifying transforms
such as the exponential relaxation parameter spaces of T1 and T2 after magnetization
preparation [8,25,90] have recently been used to obtain images and parameter maps from
undersampled k-space data.

In this work, aModel-basedAcceleration of Parameter mapping (MAP) technique for T1
mapping is presented, enabling the model-based reconstruction of a parameter map from
undersampled datasets of different stages of the relaxation process. In the most extreme
case, one image can be reconstructed for each radial projection obtained in a Look-
Locker (LL) [59] acquisition after the application of a single magnetization preparation
pulse. It makes use of the fact that each of the projections carries information about a
single time point of the relaxation curve. By enforcing an appropriate relaxation model
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1 Introduction

to the measured data, MAP is capable of fully resolving an exponential signal evolution
after the application of a preparation pulse using a single-preparation dataset.

Organization of the thesis

First, all methodological concepts of MRI that are relevant for a better understanding
of this work are described in chapter 2. Subsequently, the model-based reconstruction
algorithm MAP, which will be used throughout this work, is introduced in chapter 3.
Chapters 4 and 5 present implementations of MAP for saturation recovery as well as
inversion recovery prepared sequences. Chapter 6 describes how MAP can be used for
dynamic T1 mapping with the example of a dynamic contrast-enhanced MRI experiment
of the brain. In chapter 7, the MAP technique is adjusted for perfusion measurements
in small animals using an Arterial Spin Labeling (ASL) technique. Chapter 8 intro-
duces a way of considering the slice profiles of Radio Frequency (RF) excitation pulses
in the relaxation model and improving the T1 fit. Finally, chapter 9 presents an imple-
mentation of MAP for an Arterial Input Function (AIF) estimation, which is essential
for quantitative myocardial first-pass perfusion MRI.
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2 Theory

There is broad literature about the basic principles of Nuclear Magnetic Resonance
(NMR) and MRI [6,38,62]. Therefore, some MRI basics such as the physics of the signal
generation, spatial encoding using magnetic field gradients, the k-space concept and the
Fourier transform will not be dealt with in great detail. Instead, only the concepts that
are relevant for an understanding of this work will be mentioned and described in the
following theory section.

2.1 The FLASH Imaging Sequence

MRI pulse sequences combine Radio Frequency (RF) pulses and magnetic field gradients
for image acquisition. One sequence that will be used throughout this work is the spoiled
gradient echo sequence, which combines one RF excitation pulse with a series of gradient
pulses to create a single echo. The pulse diagram is depicted in Figure 2.1.

Figure 2.1: Spoiled gradient echo sequence. Shown is the pulse diagram (a) as well as
the corresponding k-space sampling pattern (b).

First, a slice-selection gradient is applied simultaneously to an RF excitation pulse of
flip angle α for a slice-selective excitation in the z-direction. Next, a y-dependent phase

13



2 Theory

encoding gradient is applied, modifying the spin resonance frequencies depending on the
location in the y-direction. This results in a phase modulation in the y-direction after
the gradient is switched off. Finally, a frequency encoding gradient is applied during data
collection, modifying the Larmor frequency depending on the x-location. Only one line
of k-space is acquired in each repetition of this sequence. It has to be repeated multiple
times with different phase encoding gradients to fully encode a 2D k-space (colored boxes
in Fig. 2.1a).

Using the described pattern, a relaxation delay is required between two repetitions of
the described gradient echo pulse sequence to ensure that the equilibrium magnetization
M0 is restored and no transverse magnetizationMxy is left before the next RF excitation
pulse is applied. Therefore, any remaining transverse magnetization has to be dephased
(spoiled) in order to shorten the relaxation delay. Typically, two spoiling techniques are
combined to obtain the best possible dephasing:

• Spoiling Gradients: A straightforward way of spoiling is the application of gra-
dients at the end of each repetition to dephase any transverse magnetization. An
exemplary spoiling gradient is indicated in orange in Figure 2.1a. While the echo
time TE between the RF excitation pulse and the formation of the echo is unaf-
fected by this modification, the repetition time TR between two consecutive RF
excitation pulses can considerably be reduced.

• RF Spoiling: To further prevent transverse magnetization remaining from an RF
pulse from interfering with the transverse magnetization which is brought to the
transverse plane by the subsequent RF excitation pulse, each RF pulse is transmit-
ted with a different phase. In RF spoiling, the phase differences between subsequent
pulses increase linearly by a so-called phase increment (e.g. 117° [111] or 84° [29]).

Although the transverse magnetization can be effectively dephased by spoiler gradients
and RF spoiling, the longitudinal magnetization will not be completely relaxed into
equilibrium if TR is shorter than the required relaxation time. Therefore, a steady-
state magnetization forms after a number of repetitions, with a magnitude depending
on the flip angle α used for the RF excitations. For this reason, low flip angles are
typically used in spoiled gradient echo sequences, which will be called Fast Low Angle
SHot (FLASH)[40] pulse sequence throughout this work. The steady-state signal can be
described by [22]

SFLASH = M0(1− E1) sin(α)
(1− E1 cos(α)) , (2.1)

where M0 is the equilibrium magnetization, α is the flip angle and E1 = exp(−TR/T1)
is a factor dependent on the repetition time TR and the longitudinal relaxation time T1
(see section 2.3).
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2.2 Sampling Trajectories and Undersampling Artefacts

2.2 Sampling Trajectories and Undersampling
Artefacts

Instead of traversing k-space in a line-by-line fashion, the so-called Cartesian sampling
pattern, alternative paths can be used for data collection in k-space. Although, in prin-
ciple, there is an infinite number of sampling trajectories, two non-Cartesian sampling
schemes have established themselves besides the most frequently used Cartesian trajecto-
ries, namely the radial trajectory, which is also known as projection reconstruction [35],
and the spiral trajectory [64]. Both sampling schemes are illustrated in Figure 2.2. As
the center of k-space is sampled with every readout, these trajectories are very robust in
the presence of motion or flow. Moreover, sampling the k-space center can be beneficial
if changes in contrast appear during the acquisition as for example in acquisitions per-
formed after a magnetization preparation, which will be described in one of the following
sections.

For non-Cartesian sampling, the acquired data are typically brought to a Cartesian grid
to simplify further post-processing in what is called gridding. The most commonly used
technique for gridding is convolution gridding [46], where each (non-Cartesian) data point
is convolved with a gridding kernel, and the result sampled and accumulated on a Carte-
sian grid. A density compensation function w = w(|r|) decreasing with the distance |r|
to the k-space center is typically applied to compensate for the oversampling of the cen-
tral k-space. In a different approach for gridding, non-Cartesian points are shifted to the
nearest Cartesian location. It is based on the concept of parallel imaging and especially
the GeneRalized Autocalibrating Partially Parallel Acquisition (GRAPPA) technique,
which includes the information from multiple receiver coils in the image reconstruction,
and which will not be dealt with in this work. A detailed explanation can be found in
[7,36,41,75,84]. Based on this technique, the so-called GRAPPA operator can be derived
that shifts data in k-space by arbitrarily small amounts. The self-calibrating GRAPPA
Operator Gridding (GROG) technique [80, 81] makes use of this GRAPPA operator.
First, all acquired points are shifted to the nearest Cartesian location. Next, each of the
resulting k-space points is divided by the number of k-space points that were shifted to
this Cartesian location to compensate for the non-uniform density of the non-Cartesian
trajectories (similar to the density compensation function w in convolution gridding).

Many contrast manipulation approaches such as the k-space Weighted Image Contrast
(KWIC) technique [85] make use of the fact that the central region of k-space is intrin-
sically oversampled for radial or spiral k-space sampling. While the weighting function
w is usually only applied to compensate for the non-uniform density of non-Cartesian
trajectories, these techniques apply different filters to enhance or reduce the amount each
acquired radial projection or spiral arm contributes to the central k-space region. This
enables the reconstruction of a dynamic image series from a continuous acquisition of
dynamic processes such as a moving object (e.g. cardiac motion) or an image contrast
which is changing during the acquisition (e.g. if T1 or T2 relaxation is present which will
be described in the next section). However, although the KWIC technique appears to
generate a dynamic image series, it uses temporal averaging, which can lead to image
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2 Theory

artifacts if the temporal footprint, that is the time interval in which all the data used to
reconstruct the respective image were acquired, is too large. Such filtering techniques are
inapplicable for Cartesian sampling where only the k-space line without phase encoding
traverses the k-space center.

Figure 2.2: Cartesian and non-Cartesian undersampling. Depicted are k-space sam-
pling patterns (top) and the resulting images (bottom) for a Nyquist sam-
pled image (a) and for different undersampling patterns (b-e).

Another major difference between Cartesian and non-Cartesian trajectories is the ap-
pearance of undersampling artifacts, that is, if less data than required by the Nyquist
limit are acquired. In contrast to Cartesian sampling, where so-called "coherent" aliasing
artifacts appear as replicas of the image in the typically undersampled phase encoding
direction (Fig. 2.2b), non-Cartesian aliasing artifacts are more evenly distributed in all
directions of the imaging plane and therefore have a more noise-like appearance, as illus-
trated in Figure 2.2c&d. Therefore, it is often possible to recognize an underlying object
despite a high acceleration factor if the images are undersampled with a non-Cartesian
trajectory, providing a great potential for many MRI applications.

Non-Cartesian versions of any MRI pulse sequence (e.g. the FLASH sequence described
in section 2.1) can be obtained by omitting the phase encoding gradient and by applying
frequency encoding gradients in both spatial dimensions (x- and y-direction) instead.
The shape of these gradients can be adjusted to traverse the k-space in any desired
manner.

2.3 T1, T2 and T2
* Relaxation

For a spin system in a static magnetic field at thermal equilibrium, the phases of the
magnetic moments are uncorrelated, leading to a net magnetization ~M0 that is perfectly

16



2.3 T1, T2 and T2
* Relaxation

aligned with the static magnetic field (z-direction). By appropriately applying an RF
pulse, the spin system can be excited, resulting in a net magnetization in the transverse
plane (Mxy), which is usually measured in an MRI acquisition. Subsequently, the magne-
tization relaxes back into equilibrium, which can be described by two different relaxation
parameters:

Figure 2.3: Exemplary relaxation curves for T1 =200ms (a) and T2 =100ms (b).

• The T1 relaxation time is a measure of how quickly the magnetization recovers
towards its equilibrium orientation in the direction of the static magnetic field. As
the return of excited protons from the high energy state to the ground state is
associated with a loss of energy to the surrounding lattice, it is also known as spin-
lattice relaxation time. IfMz(t0) describes the z-component after an excitation, its
relaxation back to the equilibrium M0 can be described as follows:

Mz(t) = M0 + [Mz(t0)−M0] · exp(−t/T1) . (2.2)

An examplary T1 relaxation curve for T1 =200ms is depicted in Figure 2.3a.

• The T2 relaxation time characterizes the rate of dephasing of magnetic moments in
the transverse plane after excitation by an RF pulse. As T2 relaxation only refers
to dephasing that is caused by interactions between the spins of an ensemble, it is
also referred to as spin-spin relaxation. A transverse magnetization of Mxy(t0) is
typically described by:

Mxy(t) = Mxy(t0) · exp(−t/T2) . (2.3)

An examplary T2 relaxation curve for T2 =100ms is depicted in Figure 2.3b.

• T ∗2 decay refers to a total decrease in transverse magnetization following the initial
excitation pulse. In contrast to the T2 relaxation, it includes dephasing that is not
caused by other spins of the ensemble, such as local field inhomogeneities caused
by hardware imperfections or magnetic susceptibility effects in the patient within
the magnetic field.
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2.4 Segmented Inversion Recovery T1 Mapping

T1 can be very accurately determined by a segmented Inversion Recovery (IR) experi-
ment. At a starting time t0, the equilibrium magnetization M0 is inverted by a 180° RF
pulse, the so-called magnetization preparation pulse. As described in section 2.3, the
magnetization subsequently relaxes back to the thermal equilibriumM0 according to Eq.
2.2. In case of an inversion recovery magnetization preparation, the starting magnetiza-
tion equals the negative equilibrium magnetization, that is M(t0) = −M0, and Eq. 2.2
simplifies to

M(t) = M0 · [1− 2 exp(−t/T1)] . (2.4)

For reasons of clarity, the index z is typically omitted. An RF excitation pulse can be
applied at a specific inversion time t = TI to obtain one line of k-space corresponding to
this specific contrast (e.g. using a FLASH readout as described in section 2.1). In
a segmented IR experiment, this acquisition is repeated for a predefined number of
inversion times TI and k-space lines to obtain a set of snapshots of the relaxation process.
A pixel-wise fit of Eq. 2.4 to the resulting image series leads to a spatial distribution of
T1 relaxation parameters over the desired Field of View (FoV), a so-called T1 map. It is
important to keep a relaxation break between successive acquisitions to ensure that the
equilibrium magnetization is reached before each acquisition and that M(t0) = −M0.

Unfortunately, the relaxation of the magnetization according to Eq. 2.4 requires ~ 5T1
to reach 99% of the equilibrium magnetization M0. As an example, the relaxation in
gray matter tissue where T1≈ 1.4 s at a field strength of 3T [30,65,110] requires 7.4 s to
reach 99% of M0 and even 13.9 s to reach 99.99%. While a segmented acquisition with
insufficient relaxation delays would result in T1 errors, an extension of these delays leads
to unacceptably lengthy scan times.

As an example, the acquisition of a 128× 128 matrix at 10 different TI would require
128 · 10=1280 inversions. It would therefore require a total delay time of 1280 · 7.4 s =
9472 s ≈ 2.6 h to obtain correct T1 values in Grey Matter (GM) regions of a human
brain. Therefore, the segmented IR T1 mapping technique described in this section can
only be used for the acquisition of reference T1 values, i.e. in phantom measurements
where time-efficiency of the acquisition is of less relevance. Other, much faster techniques
have been developed for in vivo applications, one of which will be presented in the next
section.

2.5 Inversion Recovery Look-Locker T1 Mapping

As described in the previous section, the segmented inversion recovery acquisition has
the major disadvantage of acquiring only a single line of k-space per inversion pulse.
Combined with the lengthy relaxation time between successive inversions, this leads to
unacceptably long scan times.
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2.5 Inversion Recovery Look-Locker T1 Mapping

This acquisition time can be significantly reduced by the so-called Look-Locker (LL)
concept [59], which enables a high acceleration of inversion recovery T1 mapping. As
in the segmented IR acquisition, the sequence is started by applying an inversion pulse
for magnetization preparation. Instead of only applying one RF excitation pulse and
acquiring one line of k-space after each of the inversions, Look-Locker techniques apply a
series of low-angle RF pulses for a spoiled gradient echo (FLASH) acquisition of multiple
k-space lines after each IR pulse. According to [20], the continuous application of RF
excitation pulses of flip angle α results in a modified relaxation time T ∗1 < T1 which can
be described by

T ∗1 = 1
1/T1 − (1/TR) · ln(cos(α)) , (2.5)

where the repetition time TR denotes the time between two consecutive RF excitations.
Additionally, the continuous application of RF excitation pulses leads to a modified
steady-state magnetization M∗

0 < M0:

M∗
0 = M0 ·

1− exp(−TR/T1)
1− exp(−TR/T ∗1 ) . (2.6)

For TR � T ∗1 < T1, this can be simplified to

M∗
0 = M0 · T ∗1 /T1 . (2.7)

This new parameter set (M0,M
∗
0 , T

∗
1 ) defines the relaxation process in this so-called

Inversion Recovery Look-Locker FLASH (IR-LL FLASH) sequence:

M(t) = M∗
0 − (M0 +M∗

0 ) · exp(−t/T ∗1 ) . (2.8)

After the acquisition of a set of images of different contrasts, M∗
0 , M0 and T ∗1 can be

determined by means of a three-parameter least-squares fit of Eq. 2.8. The desired value
T1 can then be calculated using a combination of Eqs. 2.7 and 2.8:

T1 = T ∗1 · [(M0 +M∗
0 )/M∗

0 − 1] . (2.9)

Again, this relation only holds if the spin system is at equilibrium before the application
of the inversion pulse.

Instead of only a single line of k-space, multiple k-space lines can be acquired after each
inversion using the IR-LL FLASH sequence, leading to a considerable reduction in scan
time. If images at 10 different TI were to be acquired in a T1 mapping experiment, the
scan time would be reduced by a factor of 10 as all 10 contrasts for one line of k-space
could be acquired after each inversion. The 128× 128 matrix of the example in the
previous section could be acquired in ~ 16min instead of 2.6 h using the IR-LL FLASH
technique.

As mentioned in section 2.2, the IR-LL FLASH sequence can be applied with any Carte-
sian or non-Cartesian trajectory.
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2.6 Saturation Recovery Look-Locker T1
* Mapping

The inversion recovery preparation scheme, which is used in the previously described
T1 mapping techniques, requires long waiting periods between subsequent acquisitions
to ensure that the equilibrium magnetization M0 is reached before the application of
each inversion pulse. To avoid these relaxation delays, a Saturation Recovery (SR)
preparation scheme can be used instead. In this case, the magnetization is brought to
zero by a 90° RF pulse before the spoiled gradient echo acquisition is carried out. The
magnetization directly after the SR pulse is ideally M(t0)=0, and Eq. 2.8 becomes:

M(t) = M∗
0 · [1− exp(−t/T ∗1 )] . (2.10)

Although this so-called Saturation Recovery Look-Locker FLASH (SR-LL FLASH)
acquisition can be described by a very simple two-parameter model, the new model Eq.
2.10 no longer provides information about the equilibrium magnetizationM0. Therefore,
Eq. 2.9 can no longer be used for calculating T1 out of the effective longitudinal relaxation
parameter T ∗1 . Although - in general - Eq. 2.5 could be used instead to calculate T1
out of T ∗1 , variations of the B1 pulse amplitude lead to variations of the flip angle α
across the FoV. This can cause considerable errors in a calculation of T1 by simply
using the nominal flip angle that is entered by the operator in the scanner console.
Instead, the exact flip angle has to be determined in each voxel if T1 is to be calculated
using Eq. 2.9. This typically leads to an additional scan that might be required, in
turn prolonging the scan time. An additional disadvantage is the saturation of the
equilibrium magnetization prior to the FLASH acquisition, which leads to a loss in SNR
compared to an inversion magnetization preparation, where the acquisition starts at the
inverted equilibrium magnetization. Despite these limitations, the saturation recovery
preparation scheme has been used for the elimination of relaxation breaks in a variety of
applications where a magnetization preparation is unavoidable [14,21,82].

A more precise yet more complex description of an SR prepared Look-Locker FLASH
acquisition is given in [48]. It includes the delay TD between the saturation preparation
pulse and the first excitation pulse of the FLASH acquisition into the relaxation model
given by Eq. 2.10:

M(n) = M · (1− ED) · an−1 +M · (1− E1) · 1− an−1

1− a

where M = M0 · sin(α) · e−TE/T
∗
2 , ED = e−TD/T1 ,

E1 = e−TR/T1 , a = cos(α) · E1 . (2.11)
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2.7 Other T1 Mapping Methods

Besides the segmented IR and LL-based methods for T1 mapping, there are two other
main methods for determining T1:

Inversion Recovery Fast Spin Echo (IRFSE) measurements use spin echoes rather than
gradient echoes for T1 mapping. As described in section 2.4, the magnetization relaxes
back to the equilibrium according to Eq. 2.4 after the application of an IR preparation
pulse. After an appropriate inversion time TI , a 90° excitation pulse is applied to rotate
the available z-magnetization to the transverse plane and obtain a transverse magneti-
zation Mxy proportional to the M(TI). Subsequently, multiple echoes are generated out
of this transverse magnetization using a fast spin echo sequence [42,58]. These sequences
use multiple 180° refocusing pulses to continually invert the dephasing of the spins in
the transverse plane. One echo is generated per applied refocusing pulse, using phase
encoding and frequency encoding as described in section 2.1. All data collected after the
initial 90° excitation pulse carries the contrast of the inversion time TI . The number of
k-space lines that can be acquired after one inversion is limited by the T2 decay of the
transverse magnetization Mxy. Therefore, multiple acquisitions of the same TI have to
be performed in most cases to obtain an entire 2D k-space of one contrast of the T1 relax-
ation process. Similar to section 2.4, the acquisition is repeated for a predefined number
of inversion times TI to obtain a set of snapshots of the relaxation process. Again, a
pixel-wise fit of Eq. 2.4 to the resulting image series yields a T1 map.

Variable Flip Angle (VFA) approaches use 2D or 3D FLASH acquisitions of at least
two different flip angles αj for the quantification of the longitudinal relaxation time T1
[22, 100]. According to [9], the steady-state signal SFLASH of a FLASH sequence (Eq.
2.1) can be represented in the linear form y = mx+ b as:

SFLASH

sin(αj)
= E1

SFLASH

tan(αj)
+M0(1− E1) , (2.12)

where the same image is acquired with only the flip angle αj changed. Using linear
regression, T1 and M0 can be calculated out of the slope m and the y-intercept b:

T1 = −TR/ ln(m) , M0 = b/(1−m) . (2.13)

2.8 T1 Correction for Insufficient Relaxation Delays

As it was mentioned in section 2.5, the calculation of T1 out of the fitted parameters M0,
M∗

0 and T ∗1 using Eq. 2.9, as it is typically performed in inversion recovery Look-Locker
T1 mapping, only results in accurate T1 values if the spin system is at equilibrium before
the application of the inversion pulse. Relaxation delays of ∼ 5T1 as they were described
in section 2.4 would be in the order of several seconds for most types of human tissue,
leading to lengthy and ineffective acquisitions. Therefore, shorter waiting times are often
used in LL-based parameter mapping, leading to errors for high T1 values.
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In [83], a method was presented to correct for the insufficient relaxation between consecu-
tive IR-LL FLASH acquisitions and determine the underlying T1 value from a parameter
set (MA,MB, T

∗
1 ) obtained from a fit of Eq. 2.8 with M∗

0 →MA and M0 → −MB:

M(t) = M∗
0 − (M0 +M∗

0 ) · exp(−t/T ∗1 )

⇓

M(t) = MA − (MA −MB) · exp(−t/T ∗1 ) . (2.14)

It makes use of the fact that the proportion of T ∗1 relaxation during the acquisition
followed by T1 relaxation during the waiting period, which is illustrated in Figure 2.4, is
precisely known. By exploiting this knowledge, a set of underlying parameters T1 and
M0 best describing the observed relaxation behavior in every voxel of the acquired FoV
can be found.

Figure 2.4: The relaxation process of an entire IR frame. After the inversion pulse at
T0 and a short period of undisturbed T1 relaxation (blue background), an
IR-LL FLASH pulse sequence is applied from Tstart until Tstop (red back-
ground). The magnetization at these time points is denoted by MTstart and
MTstop . A fit of Eq. 2.14 to the IR-LL FLASH curve yields the magneti-
zation MB directly after inversion, a steady-state magnetization MA owed
to the continuous RF excitation and the apparent T ∗1 . The acquisition is
followed by a waiting period of TIR−Tstop of undisturbed T1 relaxation un-
til the whole process is repeated at TIR. If this waiting period is too short
for the magnetization in order to reach the equilibrium, an error can be
introduced in the determination of T1.
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2.9 From an RF Excitation Pulse to an Excited Slice

First, the following expression for T1 is derived:

T1 = − TR

ln
[
1−

(
MA −MA · e−TR/T

∗
1
)
/M0

] . (2.15)

M0 is the only unknown parameter in this equation as TR represents the exactly known
repetition time between two excitation pulses of the IR-LL FLASH acquisition and MA

as well as T ∗1 can be obtained by a three-parameter fit of Eq. 2.14.

Subsequently, the following term for M0 can be derived:

M0 = MTstart +MTstop ·K · e−Tstart/T1 · e−(TIR−Tstop)/T1

1− e−Tstart/T1 · [1 +K −K · e−(TIR−Tstop)/T1 ] . (2.16)

Here, a parameter K was introduced describing the quality of the inversion pulse (0:
no inversion, 1: perfect inversion), and TIR denotes the time between two consecutive
inversions. Additionally, Tstart and Tstop represent the acquisition times at the start and
stop of the IR-LL FLASH excitation pulse train and MTstart and MTstop stand for the
magnetization at these time points. The entire relaxation process of an IR-LL FLASH
acquisition followed by a relaxation delay of pure T1 relaxation before the next inversion
pulse, which is called IR frame in the following, is illustrated in Figure 2.4.

In the following, a fully sampled set of images of an IR-LL FLASH relaxation process
is considered that was recorded after an insufficient relaxation break. In addition, it is
assumed that the inversion efficiency K is known. After obtaining the parameter set
(MA,MB, T

∗
1 ) in a voxel-wise fit of Eq. 2.14, the resulting T ∗1 is used as initial guess

for T1 and inserted in Eq. 2.16 to obtain an initial guess for M0. This value can in
turn be used as input to Eq. 2.15 to receive a better estimate for T1. This succession is
repeated until T1 converges to a value where no significant changes occur between two
successive iterations. By repeating this iterative process in every voxel of the acquired
FoV, a map of T1 values best describing the relaxation behavior of the respective voxel
can be derived. This iterative T1 correction will be referred to as T1 Correction (T1C)
in the following.

2.9 From an RF Excitation Pulse to an Excited Slice

In MRI, RF excitation pulses are typically used for selecting the slice to be imaged. In
the ideal case of a sinc excitation pulse of infinite duration, this results in a rectangular
excitation profile in the observed object (dotted black line in Fig. 2.5b). To keep the
scan time acceptably short for clinical applications, filtered excitation pulses in the order
of milliseconds are usually applied. As an example, the amplitude of a commonly used
Hanning-filtered sinc pulse is given by:

A(t) = 1
2 · [1 + cos(πt)] · sinc(t) . (2.17)
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An example of a Hanning-filtered sinc pulse of 800µs duration sampled every 0.1µs (i.e.
8000 samples) is given in Figure 2.5a. A Bloch equation simulation can be applied to
obtain a distribution Ă(ω) of excitation amplitudes in the frequency domain.

Figure 2.5: From RF excitation pulse to the excited slice. a: Hanning-filtered sinc
pulse of 800µs duration in the time domain. b: Corresponding excitation
profile obtained by a Fourier transform (red line) and the desired perfect
rectangular profile for a nominal flip angle of α0 =7°, a repetition time of
TR=4.24ms and slice thickness 10mm (black dashed line).

According to [6,70], a straightforward Fourier transform of A(t) leads to a distribution

Ã(ω) =
∫ ∞
−∞

A(t) · exp(−iωt) dt (2.18)

that, for small flip angles, is nearly identical to the Bloch simulated distribution Ă(ω) ≈
Ã(ω). For symmetric RF pulses A(t), the normalized real part of its Fourier transform
can be utilized as the frequency-dependent excitation profile p̃(ω) ∝ Real

{
Ã(ω)

}
. For

linear slice selection gradients, the frequency ω is proportional to the spatial dimension z
in the slice direction ω ∝ z, and a reparametrization of p̃(ω) can be performed to obtain
a z-dependent excitation profile p(z). The flip angle distribution α(z) can be obtained
by scaling p(z) such that its central maximum has the value of the nominal flip angle α0.
Figure 2.5b shows the perfect rectangular excitation profile of an ideal sinc pulse (black
dotted line) and the imperfect, non-rectangular excitation profile of the Hanning-filtered
sinc pulse obtained using Eq. 2.18 (red solid line) for a nominal flip angle of α0 =7°.

2.10 Dictionary Learning in MR Relaxometry

Dictionary learning methods are a new and promising way of efficiently approximating
a signal of dimension N by a linear combination of predefined signal prototypes [77]. L
of these model signals d - the so-called atoms - are typically combined to form an new
basis D = [d1,d2, ...,dL] ∈ RN×L, in which each signal x can be represented by means
of the dictionary:

x = D γs . (2.19)
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γs is a vector containing the weighting coefficients of the linear combination of dictionary
elements, the so-called sparse representation of x. To find the sparsest γs, that is a γ
with as few non-zero coefficients as possible, the following sparse coding problem has to
be solved:

γs = argmin
γ
‖x−Dγ‖2

2 subject to ‖γ‖0 ≤ Q . (2.20)

Here, ‖·‖0 is the l0 pseudo-norm which counts the non-zero entries and therefore con-
straints the sparse representation γ to a maximum number of Q elements. The l2 norm
or the difference between the initial signal vector and the sparse representation of the
signal has to be minimized with respect to such constraints.

The solution of Eq. 2.20 has been extensively studied over the past years, and a wide
range of algorithms have been proposed. In this work, an Orthogonal Matching Pursuit
(OMP) algorithm which was presented in [78] was used to solve Eq. 2.20 and obtain the
desired sparse representation γs of the signal vector x.

Figure 2.6: Exemplary dictionary for a SR-LL FLASH T1 mapping experiment which is
modeled by Eq. 2.10 for a relaxation curve x acquired at N = 10 saturation
times TS between 100ms and 8000ms, which is modeled for L = 12 different
parameter sets with 250ms≤ T ∗1 ≤ 5000ms. The blue box corresponds to
a signal with T ∗1 = 3000ms which can be expressed by a sparse vector with
only one element unequal to zero.

While the dictionary-based sparse coding approach is already widely used in many other
science fields such as image [28] and audio processing [73], it was only recently applied
for MR relaxometry [25]. In this case, the signal vector x is a relaxation curve which
is sampled at N multiple time points after magnetization preparation. The dictionary
consists of potential relaxation curves that are precalculated using the respective relax-
ation model with L different parameter sets. Therefore, the dimension of the dictionary
is N × L.
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An exemplary dictionary for a SR-LL FLASH experiment is given in Figure 2.6. In
this case, Eq. 2.10 is used for modeling a relaxation curve x acquired at N =10 satu-
ration times TS between 100ms and 8000ms with L=12 different parameter sets with
250ms≤ T ∗1 ≤ 5000ms. As described above, Eq. 2.20 can be solved using i.e. an OMP
algorithm to obtain a sparse representation of the signal x in terms of a linear combi-
nation of a maximum of Q dictionary elements. In other words, the dictionary can be
used in conjunction with the OMP algorithm to find a maximum of Q dictionary ele-
ments (corresponding to different parameter sets (M0,M

∗
0 , T

∗
1 )) best describing the given

relaxation curve. For Q = 1, the dictionary fit corresponds to a fit of Eq. 2.10 for a
predefined set of possible solutions. It should be noted that while a major part of the re-
laxation model is represented by the dictionary D, part of the modeled relaxation curve
is always expressed by the sparse representation γs. As an example, the dictionary for a
SR-LL FLASH consists of a set of multiple relaxation curves of potential parameters T ∗1 ,
while the parameter M∗

0 is set to 1 in the generation of the dictionary. After the solution
of Eq. 2.20, M∗

0 is represented by an element of the sparse vector γs.

The advantage of a dictionary-based fitting method is that any signal model, even re-
laxation models that are much more complicated than the two-parameter model of Eq.
2.10 or even the three-parameter model of Eq. 2.8, can be used to build up a dictionary,
while a standard nonlinear least-squares fit such as for example a Levenberg-Marquardt
method [57] might lead to a high computational complexity. Additionally, a fit of Q > 1
corresponds to a multi-exponential relaxation model which can for example be helpful
to overcome partial volume effects in many parametric mapping applications. Again, a
nonlinear least-squares fit of a multi-exponential function would lead to a considerable
increase in computational complexity in these cases.

However, it should also be mentioned that the duration needed for a solution of Eq.
2.20 using the OMP algorithm largely depends on the size of the dictionary D. As the
dictionary size grows with the complexity of the model, complex relaxation models such
as the model of a multi-parametric fit would not only require long computation times, but
would also be highly demanding on the working memory of the reconstruction computer.
Another disadvantage is that a dictionary-based fit highly depends on the accuracy of
the model used for precalculating the dictionary and the range of parameters used. If,
for example, only T1 values in the range of 0 s≤T1≤ 1 s were used in the design of the
dictionary, a curve with an underlying T1 of 2 s could not be solved and fitting errors
would occur instead.

2.11 A Sign-dependent Sum of Squares Approach
for Coil Combination

In an MRI measurement, data collection is usually performed with multiple receiver
elements of small dimension. While the additionally obtained spatial information can be
used to accelerate the data acquisition, the smaller winding diameter of the receiver coils
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leads to an increase in SNR compared to a volume coil. The complex signal intensity
Iξ(x) in pixel x that is received in receiver coil ξ can be modeled by

Iξ(x) = cξ(x) · I(x) , (2.21)

where Cξ describes the complex coil sensitivities that are superimposed on the underlying
signal intensity I(x). If no information is encoded in the phase of the signal (as for
example in phase contrast imaging), these single-channel signals are usually combined
using the square root of the Sum of Squares (SoS)

Icombined(x) =

√√√√√ Nc∑
ξ=1
|Iξ(x)|2 , (2.22)

where Nc is the number of receiver elements. The phase is destroyed in that process,
which is of no consequence if images without any temporal variations in the sign are to
be reconstructed. In a T1 mapping experiment, however, the images of different contrasts
are used to monitor the relaxation behavior after a suitable magnetization preparation.
In this case, the sign of the magnetization can change during the period of the relaxation,
which has to be respected in the coil combination. As an example, the signal after an
inversion starts at −M0, passes through zero during the relaxation and eventually arrives
back at the equilibrium M0.

To obtain one coil-combined model image I(x, t) which depicts the relaxation behavior
without losing any information of the sign, the complex-valued signal intensities of all
coils can be combined using a sign-dependent SoS approach. In the following, a phase
map ϕξ(x) for each location x and coil ξ has to be known. This can for example be
calculated from later images of the relaxation process where the signal has already passed
the phase-change at the zero-crossing. With this phase map, a real-valued intensity
curve for each coil ξ can be obtained by taking the real part of the complex-valued
magnetization Iξ(x, t) after a rotation to the real axis:

IReal,ξ(x, t) = Real {Iξ(x, t) · exp(−iϕξ(x))} . (2.23)

To combine these relaxation curves for all Nc coils, a sign-dependent SoS was then
calculated using

Icombined(x, t) = sign (θ(x, t)) ·
√
|θ(x, t)| ,

where

θ(x, t) =
∑
ξ

[
sign (IReal,ξ(x, t)) · |IReal,ξ(x, t)|2

]
. (2.24)

These coil-combined but still real-valued images can be used for further image process-
ing.
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Alternatively, the coil combination can be performed using the SoS of Eq. 2.22 if the
absolute value of the relaxation model is used for the least-squares fit. As an example,
the relaxation for an IR-LL FLASH sequence would change to:

MABS(t) = |M(t)| = |M∗
0 − (M0 +M∗

0 ) · exp(−t/T ∗1 )| . (2.25)

Although this model can, in general, be used for a determination of T1, the fitting method
can lead to problems in the presence of noise. While noise is initially equally distributed
above and below the course of the underlying relaxation curve, building the absolute
value results in a positive bias of the magnetization in the area around the zero-crossing,
potentially impairing the fitted T1 values.

2.12 Gadolinium-based Contrast Agents

Water-soluble, paramagnetic contrast agents (usually metal chelates with multiple un-
paired electrons) work by shortening both the T1 and the T2 relaxation time of sur-
rounding water protons [13, 72, 92]. As an example, the gadolinium-based gadobutrol
(Gd-DO3A-butrol) Contrast Agent (CA) consists of a gadolinium(III) (Gd3+) ion (the
MRI active part) and a chelating carrier molecule (which is not MRI active) that is added
to ensure the excretion of the CA via the renal system. Gadolinium is a lanthanide metal
ion with seven unpaired electrons that very effectively enhances proton relaxation due to
its high magnetic moment and very labile water coordination [13,23,98,109]. This leads
to a shortening in T1 and T2 in surrounding water protons that may, in turn, produce
the signal-enhancing effect. As the T1 effect tends to dominate at standard clinical doses
of 0.1-0.2 mmol/kg, these paramagnetic CAs are typically used to enhance the signal in
T1-weighted images [13].

The administration of CA with a concentration C [mmol/l] results in shorter relaxation
times T ′1 and T ′2, which can be described by [31,37]:

1
T ′1

= 1
T1

+R1 · C and 1
T ′2

= 1
T2

+R2 · C . (2.26)

Gadobutrol is marketed by the Bayer Schering Pharma AG (Berlin, Germany) as Ga-
dovist®, which was used as CA in all DCE-MRI acquisitions performed in this work.
1ml of Gadovist® contains 1mmol of gadolinium. According to [4], the relaxivities R1
and R2, as determined from the shortening of the spin-lattice relaxation time T1 and the
spin-spin relaxation time T2 are about

R1 = 3.58
[

l
mmol · s

]
and R2 = 3.99

[
l

mmol · s

]
. (2.27)
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2.13 SR-LL FLASH Sequences after the Admission
of Contrast Agent

Section 2.6 introduced Eq. 2.11 for describing the relaxation behavior of an SR-LL FLASH
sequence under the assumption of a perfect SR pulse, that is M(t0) = 0. To extend this
model for DCE-MRI, Eq. 2.26 describing the relaxation times T ′1 and T ′2 after the ad-
ministration of CA of a concentration C has to be substituted into Eq. 2.11, leading to
[48]:

M ′(n) → M(n,C)

M ′ = M0 · sin(α) · e−TE/T
∗
2
′ → M(C) = M0 · sin(α) · e−TE/T

∗
2 · e−TER

∗
2C ,

ED
′ = e−TD/T1′ → ED(C) = e−TD/T1 · e−TDR1C ,

E1
′ = e−TR/T1′ → E1(C) = e−TR/T1 · e−TRR1C ,

a′ = cos(α) · E1
′ → a(C) = cos(α) · E1(C) . (2.28)

Assuming a short echo time TE, the change in signal intensity due to the CA injection
can be described as

∆(n,C) = M(n,C)−M(n, 0)

≈M · an−1 ·
(
ED −

E1 − a
1− a ·

1− e−(TS−TD)R1C

1− e−TSR1C

)
· (1− e−TSR1C) , (2.29)

where TS = TD +(n−1)TR is the saturation time between the end of the SR preparation
pulse and the n-th RF excitation pulse of the FLASH acquisition.

2.14 Myocardial First-pass Perfusion Imaging

Dynamic Contrast-Enhanced MRI (DCE-MRI) is one of the most useful tools to eval-
uate myocardial perfusion using MRI [2,34]. After the intravenous injection of a signal-
enhancing (usually gadolinium-based) CA, the passage of the bolus through the desired
anatomical slice is imaged over multiple consecutive heartbeats. In myocardial first-
pass perfusion DCE-MRI, imaging is typically performed in the short heart axis view.
To minimize artifacts due to respiratory motion, the entire acquisition is performed in
breath-hold. In addition, the start of the imaging sequence in each heartbeat is triggered
by an ElectroCardioGram (ECG) to ensure that the entire time series is acquired in the
same phase of the cardiac cycle (typically within a temporal window of ~ 200ms to freeze
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cardiac motion). A saturation recovery magnetization preparation is applied at the start
of each image acquisition to ensure the same T1-weighted contrast for every heartbeat.
The acquisition scheme of a cardiac DCE-MRI measurement is illustrated in Figure 2.7.

Figure 2.7: Acquisition scheme of a myocardial first-pass perfusion measurement. After
the injection of CA, an ECG-triggered (a) SR-LL FLASH sequence (b) is
applied over ~ 200ms in diastole to minimize cardiac motion. By acquiring
one image in each heartbeat, an image series of the CA passage can be
generated (c).

As described in section 2.12, the CA is carried into the tissue of interest by the inflowing
blood. As the CA enhances the signal intensity in perfused regions of the myocardium,
a series of short axis views acquired after the administration of CA visualizes myocardial
regions with reduced perfusion. This enables the diagnosis of coronary artery disease
and myocardial ischemia using DCE-MRI [1, 79]. As the first pass of the CA through
the myocardium occurs over a very short time span of about 10 s, very fast imaging
sequences such as the SR-LL FLASH sequence described in section 2.6 are typically
applied in myocardial first-pass perfusion imaging.
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2.15 Quantification of Myocardial Perfusion Using
DCE-MRI

The evaluation of a myocardial first-pass perfusion MRI measurement, as it was described
in the previous section, is most often performed visually based on the reconstructed time
series of T1-weighted images (see Fig. 2.7c). Alternatively, a quantitative estimation of
the Myocardial Blood Flow (MBF) promises a more objective and unbiased analysis of
the data, which could be advantageous in many clinical settings.

If the native T1 value of the tissue before the CA injection as well as the altered T1
′

values during the pass of the CA were precisely known, Eq. 2.26 could be used to
obtain the temporal evolution of the CA concentration C and consequently quantify
the perfusion. However, as the acquisition time of each image is limited to ~ 200ms, a
determination of T1 is not feasible. Instead, T1 is typically estimated from the change
∆(C) = M(C) −M(0) in signal intensity due to CA injection, which is referred to as
Arterial Input Function (AIF) in the blood pool and Tissue Enhancement Curve (TEC)
in the myocardial tissue.

In order to obtain TECs from a first-pass perfusion image series, the following steps are
typically performed:

1. Motion correction: First, a motion correction is applied to obtain an image series
where the structures of the individual frames correspond as closely as possible.

2. Segmentation: Next, these images are segmented into six myocardial sectors,
according to the American Heart Association [12].

3. Partial volume correction: Left and right ventricle have a signal which is rel-
atively high compared to the myocardial signal. Therefore, partial volume effects
can alter the signal especially in the voxels near the endocardial border, which
partially consist of myocardial tissue and blood of one of the ventricles. To correct
for these effects, a partial volume correction has to be carried out in each of the
six sectors.

4. Baseline correction: B1 inhomogeneities and spatially varying coil sensitivities
result in a variation of the signal amplitude across the FoV. Therefore, a baseline
correction has to be performed using the initial frames, i.e. before the CA injection.

The AIF is determined by placing a left-ventricular Region of Interest (RoI) in the
motion-corrected image series.

As described in section 2.13, the relation between ∆(C) (i.e. TEC and AIF) and the
concentration C is given by

∆(C) = M(C)−M(0) ∝ (1− e−TSR1C) . (2.30)

For TSR1C � 1, a first-order Taylor series results in the linear relation

∆(C) ∝ (1− e−TSR1C) TSR1C�1−−−−−−→ ∆(C) ∝ TSR1C , (2.31)
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and the CA concentration C can be directly determined from the change in signal inten-
sity without an explicit conversion to gadolinium concentration. As the relaxivity R1 is
inherent to the CA used, the condition TSR1C � 1 is only fulfilled if either C is very
small or TS is very short:

• A small C corresponds to a low dose injection of CA. However, as the CA leads to
an enhanced MRI signal only in the relatively small blood fraction of the myocardial
tissue, a smaller dose of CA leads to a deterioration of the SNR in the myocardium.
While the SNR could be highly improved using a higher dose of CA, it would lead
to saturation effects especially in the blood pool, and Eq. 2.31 would no longer
hold.

• A short TS can be reached by acquiring the image as soon as possible after the
SR pulse. As the signal is zeroed by the saturation magnetization preparation,
this likewise results in a poor SNR of the reconstructed images. Again, longer
saturation times TS could be used to improve the SNR, but the linear relationship
between ∆(C) and TS would no longer hold.

The most important ways of obtaining both an unsaturated AIF as well as a TEC of
high SNR are:

• Dual-bolus methods [15, 16, 44, 55] consist of two separate first-pass perfusion ac-
quisitions with two different CA doses. First, an unsaturated AIF (prebolus) is
obtained from a low dose scan and scaled depending on the CA difference between
the two acquisitions. Next, TECs with good SNR are obtained from a high dose
injection. Combining the scaled unsaturated AIF of the low dose scan with the
TECs of the high dose scan, the perfusion can be quantified. In addition to the
extended scan time, the main disadvantage of dual-bolus methods is that the two
injections may reflect different physiological states, particularly during vasodilation
[51].

• In the second approach [33, 49], only one high dose CA injection is applied, and
two images of different saturation times TS are acquired in each heartbeat. First,
an image of a very short TS is acquired as soon as possible after the SR pulse (it
typically consists of only a few k-space lines). Although this image has a very low
spatial resolution, the blood pool is usually large enough for the determination
of an AIF. The very short TS ensures that the condition TSR1C � 1 is fulfilled
despite the high CA dose, and that the AIF can be assumed to be unsaturated. In
the remaining acquisition period, a second, well-resolved image of a good SNR is
acquired, and the TECs are obtained from this dataset. A main disadvantage is that
the saturation time TS has to be short enough for the condition TSR1C � 1 to hold,
greatly restricting the acquisition time available for the first low resolution image.
Additionally, the already short acquisition time of ~ 200ms is further reduced by
the time required for acquiring the unsaturated image. Another potential source
of error are imperfect saturation pulses with M(t0) 6= 0, which lead to errors in the
linear approximation of Eq. 2.31.
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• In [48], an alternative method for estimating T1 and thus gadolinium concentra-
tion from one high dose injection was proposed. The method applies a radial
SR-LL FLASH sequence for image acquisition. For a radial acquisition, each pro-
jection equally contributes to the reconstructed image’s contrast, and the acquired
projections can be divided into four sub-images of different effective saturation
times TS,eff. As the first sub-image has a relatively short TS,eff of ~ 50ms, it can be
used to determine an unsaturated AIF. In contrast, the image of the longest effec-
tive TS,eff has the highest SNR and can be used to obtain the TECs. Although an
effective saturation time TS,eff of ~ 50ms is relatively short, it can still be consider-
ably too long for the condition of TSR1C � 1 to hold especially for short relaxation
times T1 or, equivalently, large relaxivities R1 as they occur in DCE-MRI.

After all corrections have been carried out, the resulting TECs of all sectors can be
deconvolved using the AIF with the constraint of a Fermi function as residuum to obtain
absolute MBF values in ml g−1 min−1 (see [47] for a more detailed description).

2.16 Quantification of Myocardial Perfusion Using
Arterial Spin Labeling

As described in the previous section, myocardial perfusion of the human heart is typically
measured by tracking the first pass of an exogenous CA. In small animals, however, the
fast heart rate (> 600 bpm in mice) limits the ability to track a CA bolus with the required
temporal resolution. Additionally, MBF values of small animals are typically 5 times
higher than in humans, which further complicates contrast-enhanced first pass perfusion
measurements. Alternatively, Arterial Spin Labeling (ASL) is a non-invasive method
that provides quantitative measurements of tissue blood flow. As the ASL signal is
directly proportional to the MBF, it is typically used for the quantification of myocardial
perfusion in small animals.

The most common methodological approach is a Flow sensitive Alternating Inversion
Recovery (FAIR) preparation combined with an ECG-gated LL FLASH acquisition
scheme [5, 54, 89, 99]. In a FAIR-LL FLASH acquisition, which is schematically illus-
trated in Figure 2.8, two T1 measurements are performed, following a GLobal (GL) and
a Slice-Selective (SS) inversion (Fig. 2.8a). In the SS case, non-inverted spins will flow
into the imaging slice in which the magnetization has been inversed, altering the appar-
ent relaxation times T ∗1 in the relevant voxels. After a separate fit of the image series of
both acquisitions (Fig. 2.8b-c) as described in section 2.5, the resulting T1 values (Fig.
2.8d) can be combined to estimate the perfusion value P [54] (Fig. 2.8e):

P

λ
= TGL

1
T blood

1

(
1
T SS

1
− 1
TGL

1

)
. (2.32)

TGL
1 and T SS

1 stand for the global and slice-selective T1 value, T blood
1 denotes an average

T1 measured in a RoI in the left ventricular cavity and λ is the blood/tissue partition
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Figure 2.8: Acquisition scheme of an Arterial Spin Labeling experiment. a:
FAIR-LL FLASH acquisition with slice-selective (SS) and global (GL) in-
version. b: Resulting image series. c: Relaxation curves in an exemplary
myocardial RoI. d: Fitted T1 maps. e: Calculated perfusion map.

coefficient of water (e.g. 0.83ml g−1 for rat myocardium [3]). As a precise description
of the relaxation process and therefore a more accurate determination of T1 will be the
main focus in this work, the details of the quantification process will not be discussed
further in this section. However, a more detailed description can be found in [54].

Although the fast heart rate of rodents enables a high sampling rate of the T1 relaxation
curve, it limits the acquisition to only one phase-encoding (i.e. one k-space line) per
heartbeat if blurring by cardiac motion is to be avoided. After the inversion, the same
phase encoding step is acquired for about 50 consecutive FAIR-LL FLASH inversion
times. This acquisition is repeated with different phase encoding gradients until the
entire k-space is covered, leading to long scan times of about 20-25min. In the initial
implementation [54], the inversion time of each of the ~ 50 resulting images was obtained
as an average of the logged TI over all of the associated phase-encoding steps. A long
scan time associated with variable heart rates can therefore cause inconsistencies in the
TI used for the T1 fitting process which has been addressed in [99]. While cardiac motion
is minimized by ECG-gating of each phase encoding step, artifacts caused by respiratory
motion are visually excluded after the entire acquisition is completed.
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3 Model-based Acceleration of
Parameter Mapping (MAP)

3.1 Introduction

As mentioned in sections 2.4 to 2.6, one of the most prominent ways to perform T1
mapping is to track the spin-lattice relaxation process after a suitable magnetization
preparation. For short relaxation times, however, it can be difficult to cover the entire
relaxation process using only one magnetization preparation. Instead, the acquisition
often has to be performed in a segmented fashion, leading to long scan times. If the
scan time is to be limited, the spatial resolution has to be lowered, impairing the clinical
relevance of this promising technique for many clinical applications [18,88,94].

In the previous years, model-based reconstruction techniques based on the mathemat-
ical theory of compressed sensing [11, 26] have become an increasingly popular field of
research. In a compressed sensing reconstruction, images can be recovered from incoher-
ently undersampled k-space data by exploiting sparsity in any known transform domain.
In addition to commonly used sparse transform domains such as the wavelet [60] or x-f
domain [32], more specific sparsifying transforms such as the exponential relaxation pa-
rameter spaces of T1 and T2 after a suitable magnetization preparation have been used
to obtain images and parameter maps from undersampled k-space data [8, 25, 90].

In this work, a Model-based Acceleration of Parameter mapping (MAP) technique is
presented, capable of fully resolving an exponential signal evolution from a dataset ac-
quired after a single magnetization preparation. The technique was initially presented
for saturation recovery prepared, radially acquired Look-Locker datasets [94] and subse-
quently implemented for inversion recovery prepared datasets [96]. It was finally used for
acceleration of various applications such as DCE-MRI of the human heart [86] and brain
[53, 93] or arterial spin labeling in small animals [95], each of which will be described in
a separate section. This section therefore focuses mainly on the principle of the MAP
algorithm.

3.2 The MAP Reconstruction Scheme

The principle of the MAP algorithm is to use the contrast information in a set of k-space
lines acquired after a suitable magnetization preparation in conjunction with an expected
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relaxation model to fill the missing parts of k-space that were not acquired during the
acquisition.

Figure 3.1: MAP reconstruction scheme. Modified Figure from [94].

A set of np radial projections with nr readout points per projection acquired in a single
SR-LL FLASH acquisition (see section 2.6) will be used to demonstrate the individual
steps involved in the MAP reconstruction algorithm (see Fig. 3.1). Therefore, Eq. 2.10
in section 2.6 will be used as relaxation model:

M(t) = M∗
0 · [1− exp(−t/T ∗1 )] .

First, the algorithm is initialized by gridding each non-Cartesian projection on a separate
Cartesian grid using self-calibrating GROG (see section 2.2). Each of the np resulting
grids carries information about the contrast at one specific saturation time TS after the
SR preparation pulse. These highly undersampled k-spaces K̂0(t) are used for the first
iteration, each of which consists of the following steps:

1. Inverse discrete Fourier transform of the current consistent model k-spaces K̂(t)
into image space M̂(t) (first iteration: K̂0(t), M̂0(t)).

2. Pixel-wise fit of Eq. 2.10, yielding T ∗1 and M∗
0 in every pixel. This corresponds to

one 2D model image M(t) for every time point t.

3. Discrete Fourier transform to generate the corresponding model k-spaces K(t).

4. Ensure data consistency: Substitute measured data for the model data for all
acquired projections and zero the model k-space at all points where no information
is acquired for all TS, i.e. in the edges of the Cartesian grid that are not covered
by the radial sampling pattern. This results in the consistent model k-spaces K̂(t)
that are passed on to the next iteration.
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This reconstruction scheme is illustrated in Figure 3.1. It should be mentioned that M
and K describe the model obtained by a fit of the relaxation model (Eq. 2.10), whereas
M̂ and K̂ stand for the consistent model, i.e. after the substitution of the original data
in the data consistency step 4 of the algorithm.

A minimum difference between model k-spaces K(t) and consistent model k-spaces K̂(t)
or simply a fixed number of iterations can serve as termination criterion. The result is
one parameter set [T ∗1 , M∗

0 ] for each pixel of the acquired FoV which can be depicted in
a spatially resolved map to describe the local relaxation behavior.

3.3 Improvement of the Initial Estimates

In the reconstruction scheme described above, the gridded k-spaces of the single projec-
tions are simply used as initial estimates K̂0(t) in the first iteration of the MAP algorithm.
To improve the convergence behavior of MAP (i.e. less iterations are needed to reach the
termination criterion and local minima are avoided as solutions), these "nearly empty"
k-spaces can be "filled" by a linear interpolation of all acquired k-space points through
time before they are passed on to the first iteration. Using these new estimates K̂0(t)
for the initialization of MAP can greatly improve the time-efficiency of MAP.

3.4 Relaxation Models and Fitting Algorithms Used
in MAP

In principle, any model can be used to describe the relaxation curve obtained in the
respective acquisition. A very accurate relaxation model translates into a high accuracy
in the reconstructed parameter maps. If a rather simple two- or three-parameter model as
described in sections 2.4 to 2.6 is used as relaxation model, a straightforward least-squares
fit can be used in step 2 of the algorithm to obtain the parameter set best describing the
relaxation behavior. Alternatively, a more complicated yet more appropriate model such
as the Consideration of Slice Profiles (CSP) model which will be introduced in section
8.2 can be used as relaxation model. In this case, the least-squares fit has to be replaced
by a dictionary-based fitting approach as described in section 2.10.

Dictionary-based fitting can also be used to sensitize the relaxation model to the influence
of a multi-exponential relaxation, which can occur in voxels containing multiple different
tissue types. For this purpose, the maximum number of coefficients K in Eq. 2.20 that is
permitted for the sparse representation of the signal has to be set to the desired number
of atoms or, equivalently, tissue types. As described in section 2.10, a least-squares
approach for such a multi-exponential relaxation model would lead to a considerable
increase in computational complexity.
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A dictionary-based fitting algorithm where only one atom is used to describe the relax-
ation signal (that is K =1) results in one parameter set that was used for calculating the
respective dictionary atom and therefore leads to the same results as a least-squares fit
of the respective relaxation model.

3.5 Using MAP with Multiple Receiver Coils

Most clinical MRI systems are equipped with multi-channel phased-array coils for signal
reception. Therefore, the sensitivities of the individual receiver channels have to be
included in the reconstruction scheme of section 3.2.

As described in section 2.11, the sensitivity profiles cξ(x) received in coil ξ at pixel x
have to be included in the image reconstruction for an acquisition with multiple receiver
channels (Eq. 2.21 with I →M):

Mξ(x, t) = cξ(x) ·M(x, t) . (3.1)

In case of a relaxation curve, the signal can have a positive or a negative sign. Therefore,
a sign-dependent coil combination as described in section 2.11 has to be used for a
combination of the individual coil signals (Eq. 2.24 with I → M̂):

M̂combined(x, t) = sign (θ(x, t)) ·
√
|θ(x, t)| ,

where

θ(x, t) =
∑
ξ

[
sign

(
M̂Real,ξ(x, t)

)
·
∣∣∣M̂Real,ξ(x, t)

∣∣∣2] . (3.2)

The resulting real-valued relaxation curves can be used for the pixel-wise fit that is per-
formed in step 2 of the algorithm, resulting in the coil-combined signal modelMcombined(x, t)
in each pixel x.

To perform the data consistency step 4 of the algorithm and substitute the measured
data into the current model datasets, Mcombined(x, t) has to be re-separated into single-
coil relaxation curves Mξ(x, t). The complex coil sensitivity factor cξ(x) describes how
the fitted signal model Mcombined(x, t) is divided into real and imaginary part of a single-
coil model image Mξ(x, t). Therefore, cξ(x) was calculated separately for each coil ξ
by applying a least-squares approach of Eq. 3.1 to the current consistent model images
M̂ξ(x, t). Finally, the resulting complex-valued model imagesMξ(x, t) were Fourier trans-
formed into k-space (step 3 of the algorithm), where the data consistency was performed
to obtain new consistent model k-spaces K̂ξ(x, t) for the next iteration (step 4 of the
algorithm).
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Magnetization Preparation

4.1 Introduction

In this chapter, an implementation of the MAP algorithm presented in chapter 3 for T ∗1
mapping using a saturation recovery prepared Look-Locker FLASH sequence is presented.
The adjusted algorithm will be called Saturation Recovery MAP (SR-MAP) in the
following.

A majority of the content of this chapter has been published in [94]. The permission
to reuse images and text from this publication was granted by John Wiley and Sons.
Reused Figures and Tables are marked in the captions.

4.2 Implementation of SR-MAP

The implementation of MAP which is described in this chapter uses a radial dataset
obtained in a single-preparation SR-LL FLASH acquisition (see section 2.6) as input.
Therefore, the relaxation process after the SR pulse can be modeled by Eq. 2.10.

The "nearly empty" k-spaces obtained by gridding the single projections into separate
k-spaces as described in section 3.2 were used as initial estimates K̂0(x, t) for the first
iteration.

The changes in each step of the reconstruction scheme described in section 3.2 will be
pointed out in the following. For reasons of clarity, the pixel index x will be omitted.

1. As before, the current consistent model k-spaces K̂ξ(t) of all individual coils were
Fourier transformed to obtain consistent model images M̂ξ(t).

2. Before the pixel-wise fit, the signals received in the different coils ξ were combined
using a SoS as described in section 2.11 (Eq. 2.22 with I → M̂(t)):

M̂combined(t) =

√√√√√ Nc∑
ξ=1

∣∣∣M̂ξ(t)
∣∣∣2 . (4.1)
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As the signal after an SR preparation is expected to be positive for all saturation
times TS, the sign was not respected in that process. A pixel-wise least-squares fit
of Eq. 2.10 was applied to obtain a combined model Mcombined(t) of all coils.

3. Before the backward transform, the model imagesMcombined(t) had to be re-separated
into one model image Mξ(t) for each coil which can be described by

Mξ(t) = cξ ·M∗
0 · [1− exp (−t/T ∗1 )] . (4.2)

As T ∗1 was assumed to be coil-independent, the real and imaginary parts of the
product cξ ·M∗

0 in each coil were determined separately by using a least-squares
approach on Eq. 4.2. The resulting single-coil model images Mξ(t) were Fourier
transformed to obtain single-coil model k-spaces Kξ(t).

4. As before, the data consistency was ensured by separately substituting the mea-
sured data of all acquired projections for the model data and by additionally zeroing
the resulting consistent model k-spaces K̂ξ(t) at all pixels where no information was
measured for all TS.

The following termination criterion was used: As the intensity of the k-spaces is highly
dependent on the saturation time TS after the SR pulse, a difference between model
and consistent k-spaces would be strongly TS-weighted. Therefore, the variation in the
masked T ∗1 maps was used as termination criterion. As soon as the number of pixels
without any change in T ∗1 for 10 subsequent iterations was decreasing, the algorithm was
automatically stopped. In case this condition is not fulfilled within 1000 iterations, the
algorithm is automatically terminated.

4.3 Methods

All imaging experiments were carried out on a 3T whole-body scanner (MAGNETOM
Trio, Siemens AG Healthcare Sector, Erlangen, Germany) employing a 12 channel phased-
array head coil for signal reception.

All post-processing was performed on a standard desktop PC equipped with an Intel
Core i7-2600 CPU (3.4GHz) using MATLAB (The MathWorks, Natick, MA).

4.3.1 Numerical Simulations

To validate functionality and accuracy of the reconstruction algorithm, simulations were
performed on a numerical phantom of matrix size 128× 128 consisting of 4 compart-
ments with longitudinal relaxation times T ∗1 of 180ms, 250ms, 340ms and 600ms. The
magnetization M0 was set to 1 within and 0 outside of these compartments and a phase
ϕ linearly changing in the interval [π/2, 3π/2] was added. The relaxation process after
SR magnetization preparation was simulated using Eq. 2.10 for 512 time steps TS in the
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range of [30ms , 4118ms] equally spaced with a repetition time TR=8ms. Exemplary
signal-time curves for one single coil of sensitivity c=1 andM∗

0 =1 are depicted in Figure
4.1.

Figure 4.1: Exemplary SR-LL FLASH relaxation curves calculated using Eq. 2.10 for
the T ∗1 values used in the numerical simulations. Modified Figure from [94].

To simulate a measurement with multiple receiver coils, sensitivities of an eight-element
one-ring head coil array were derived using an analytic integration of the Biot-Savart
equations [81] and applied to these images. The Cartesian k-spaces obtained by a dis-
crete Fourier transform of the resulting images were then resampled as Golden Ratio
[108] radial trajectory (projections: 512, readout points: 256, base matrix: 128× 128)
using sinc interpolation. Finally, Gaussian complex white noise with standard deviations
(σN) of 0 (noiseless), 1.0, 2.5 and 5.0 in both real and imaginary part was added, cor-
responding to an SNR ranging from about 10, 4 and 2 for images at TS =30ms up to
about 200, 80 and 40 for images after complete relaxation (TS ~ 4000ms).

A maximum number of 1000 iterations of the proposed MAP algorithm was applied to
reconstruct 512 images of various contrasts or, in other words, determine the parameter
maps T ∗1 and M∗

0 for each of these datasets.

For an assessment of the quality of these reconstructions, a set of 512 Nyquist sampled
reference datasets was created in the same way as the undersampled datasets described
above and likewise gridded using self-calibrating GROG (see section 2.2).

4.3.2 Phantom Experiments

Phantom experiments were performed on a phantom consisting of 4 compartments with
different concentrations of contrast agent (Gadovist®, Bayer Schering Pharma, Berlin,
Germany) using a single-preparation SR-LL FLASH sequence (FoV: 200× 200× 8mm3,
TR: 6.8ms, TE: 3.1ms, α0: 6°) with a Golden Ratio [108] radial k-space trajectory
(projections: 512, readouts points: 128).
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To assess the accuracy of these effective relaxation times, a fully sampled reference dataset
was acquired for every time step TS by carrying out 512 separate measurements with a
total scan time of more than 2 h compared to 3.6 s for the single-preparation measure-
ment. In each of these measurements, the order of the acquired projections was shifted
with respect to the previous one. By retrospectively reordering these projections, a com-
plete dataset was reconstructed for each of the 512 time points, and a two-parameter fit
of Eq. 2.10 to the SoS (Eq. 4.1) of the signals received in all coils was used to obtain a
reference T ∗1 map.

To validate the functionality of the MAP algorithm, 1000 iterations of the MAP algorithm
were applied to one of the 512 single-preparation datasets of the reference scan (scan time
~ 3.5 s), yielding T ∗1 and M∗

0 as results. A RoI analysis was used to compare the T ∗1 map
of the reference to the one obtained from the MAP reconstruction. For comparison, mean
values (µ) and standard deviations (σ) of T ∗1 were calculated in every compartment.

4.3.3 In Vivo Measurements

All human in vivo studies were approved by our local ethics committee. They were
performed on healthy volunteers, and written informed consents were obtained from the
subjects prior to scanning.

Measurements of a human brain were carried out with the same sequence as in the phan-
tom experiments (FoV: 220× 220× 8mm3, TR: 6.6ms, TE: 3.1ms, α0: 6°, projections:
1024, readout points: 128). A set of 202 consecutive SR-prepared single-preparation
datasets (scan time ~ 24 min) was acquired, corresponding to the Nyquist limit for a
radial trajectory with 128 readout points per projection. By shifting the trajectory by
one golden angle for each of these SR pulses and subsequently assigning all acquired
projections to the appropriate time point TS of the relaxation process, Nyquist sampled
reference images were reconstructed for each of the 1024 time points. Again, a two-
parameter fit of Eq. 2.10 to the SoS of all coil signals was used to obtain a reference T ∗1
map.

As in the phantom studies, the MAP algorithm was applied to one of the 202 single-
preparation datasets (scan time ~ 6.8 s) to obtain T ∗1 and M∗

0 .

In addition, an IRFSE experiment (section 2.7) with a Cartesian k-space trajectory
(FoV: 220× 220× 8mm3, effective TE: 7.6ms, α0: 120°, echo train length: 32, base
matrix: 128× 128, total scan time ~ 23min) was acquired for 24 different contrasts in
the range of 100ms to 8000ms after the inversion. For a comparison of the effective
relaxation parameters obtained by the MAP reconstruction (T ∗1 , M∗

0 ) to this standard
T1 mapping method, the same slice was used for both measurements. A fit of Eq. 2.2 to
the SoS of all coil signals was used to determine T1 and M0.

To facilitate a comparison between the T ∗1 maps of both the MAP reconstructions and the
reference scan, a RoI analysis of typical White Matter (WM), GM, and CerebroSpinal
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Fluid (CSF) regions was performed. This analysis was repeated with the T1 maps ob-
tained from the IRFSE measurement for the same RoIs.

4.4 Results

4.4.1 Numerical Simulations

All reconstructions in this subsection were terminated after 1000 MAP iterations.

Figures 4.2-4.4 show results of the numerical simulations. Depicted are reconstructions
of datasets featuring different noise levels after 1000 iterations of the MAP algorithm. In
Figures 4.2 and 4.2, (a) corresponds to the Nyquist sampled reference dataset, whereas
(b-e) are MAP images reconstructed from single-preparation datasets, including one
noisefree dataset (b) as well as datasets with Gaussian white noise of standard deviation
σN =1.0 (c), σN =2.5 (d), and σN =5.0 (e).

Figure 4.2: Numerical simulations. a-e: MAP reconstructed image spaces (top row)
and a ten-fold difference from the reference (bottom row) for an exemplary
time point TS =502ms after 1000 iterations of the algorithm. Modified
Figure from [94].

The upper part of Figure 4.2 shows images of one exemplary contrast at TS =502ms
after SR preparation. All images reveal Gibbs ringing artifacts at the boundaries. The
reconstructions get noisier with σN increasing. The differences from the reference image
(Fig. 4.2a, top) can be seen in the lower part (Fig. 4.2b-e, bottom). To facilitate a
comparison of the areas within the compartments, they were scaled up by a factor of 10.
At this scale, it can be seen that the algorithm fails to reconstruct some of the small
variations in signal intensity caused by the Gibbs ringing with an increasing noise level.
For lower noise levels, the deviations from the reference image vary systematically over
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the compartments. Areas with more signal intensity reveal larger deviations. For higher
noise levels, however, the differences are distributed randomly over the compartments.

Figure 4.3: Numerical simulations. T ∗1 maps corresponding to the reconstructions de-
picted in Figure 4.2. The areas used for the RoI analysis are indicated in
dark red. Modified Figure from [94].

Figure 4.3 depicts T ∗1 maps corresponding to the reconstructions of Figure 4.2 (top) and
the differences between reference and reconstructed T ∗1 maps (bottom). For reasons of
clarity, T ∗1 values outside of the compartments were masked. Figure 4.3a (top) shows the
reference T ∗1 map with the areas used for the RoI analysis marked in dark red, Figure 4.3b-
e (top) depicts MAP reconstructed T ∗1 maps obtained from single-preparation datasets
with the indicated noise levels.

Position Top left Top right Bottom left Bottom right
µ± σ (ms) µ± σ (ms) µ± σ (ms) µ± σ (ms)

a) Reference 180 250 340 600
b) Noiseless 178.6± 2.9 250.4± 2.3 341.8± 4.0 600.4± 8.7
c) σN =1.0 178.5± 3.5 250.8± 3.0 342.2± 4.9 601.7± 13.1
d) σN =2.5 180.5± 5.7 253.4± 10.0 344.1± 11.2 601.4± 24.5
e) σN =5.0 181.6± 10.2 255.5± 16.9 343.3± 20.6 603.4± 45.3

Table 4.1: Numerical simulations. Means (µ) and standard deviations (σ) of T ∗1 ob-
tained in the RoI analysis of the T ∗1 maps depicted in Figure 4.3. Table from
[94].

The values obtained by the RoI analysis of the T ∗1 maps in Figure 4.3 are listed in
Table 4.1. The noisier the initial dataset and the larger the T ∗1 value of the respective
compartment, the wider the range of T ∗1 values obtained. Although the variations of the
reconstructed T ∗1 values within the compartments are growing with an increasing noise
level σN , their mean values are still in very good agreement with the reference values.

Figure 4.4 illustrates the temporal evolution of the consistent k-spaces K̂ξ(t) (obtained
in step 4 of the reconstruction algorithm, top) and the corresponding image spaces M̂ξ(t)
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Figure 4.4: Numerical simulations. Temporal evolution of the consistent k-spaces and
the corresponding image spaces for an exemplary time point TI =38ms
after the indicated number of iterations performed. Modified Figure from
[94].

(used in step 1 of the reconstruction algorithm, bottom) with the number of iterations
performed. MAP reconstructions are shown corresponding to time point TS =38ms after
the SR pulse for the iteration numbers indicated. The initial k-space only consists of
one projection. An inverse Fourier transform yields the initial image space with only
one dimension encoded. In the course of the reconstruction, this almost empty k-space
is continuously filled with intensity. For the first iterations (iteration 1 to ~ 50), the k-
space is still dominated by the initial projection. In the image domain, this is expressed
by a superposition of the initial pseudo-two-dimensional image space and the slowly
forming two-dimensional object. Once the central k-space is filled with enough intensity
(~ iteration 50), the initial image space starts fading out. The corresponding k-space now
contains enough information that it is no longer dominated by the signal of the acquired
projection. With a growing number of iterations performed, the k-space is slowly filled
from the central towards the outer regions, corresponding to an improvement of the
image resolution. The edges of the compartments become more and more pronounced
until eventually the whole circular k-space is filled with intensity and even the Gibbs
ringing artifacts resulting from finite support in k-space become visible (~ iteration 1000).
Changes between two consecutive iterations are now imperceptibly small.

4.4.2 Phantom Experiments

All reconstructions in this subsection were terminated after 1000 MAP iterations.

Figure 4.5 shows reconstructed images of the phantom measurements. Depicted is the
Nyquist sampled reference (Fig. 4.5a) as well as the MAP reconstruction from a single-
preparation dataset after 1000 iterations (Fig. 4.5b) for the saturation times TS indicated.
A ten-fold difference image (Fig. 4.5c) is added to facilitate a comparison. TS =140.3ms
(top row) is exemplary for the relaxation process, whereas at TS =3459.7ms (bottom
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Figure 4.5: Phantom measurements. Reference and MAP reconstructed (1000 itera-
tions) image spaces of the phantom measurements for the exemplary time
points indicated on the left. Modified Figure from [94].

row), the magnetization has almost reached the steady-state magnetization M∗
0 . The

variations in both images are relatively small and no systematic errors occur.

Figure 4.6: Phantom experiments. T ∗1 maps of the phantom measurements correspond-
ing to the reconstructions of Figure 4.5. The areas used for the RoI analysis
are indicated in dark red. Modified Figure from [94].

The corresponding T ∗1 maps are presented in Figure 4.6. The maps obtained from the
reference dataset (Fig. 4.6a) and the MAP reconstructions (Fig. 4.6b) as well as their
differences (Fig. 4.6c) are shown. Again, the areas used for the RoI analysis are indicated
in dark red.

The results of the RoI analysis are listed in Table 4.2. The MAP reconstruction yields
good estimates of the T ∗1 values. Although the standard deviation within the RoIs in-
creases with the order of magnitude of T ∗1 (~ 3.4% for the largest T ∗1 value) and a small
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Position Bottom right Top right Top left Bottom left
µ± σ (ms) µ± σ (ms) µ± σ (ms) µ± σ (ms)

a) Reference 185.7± 1.5 237.3± 2.0 329.1± 3.6 553.6± 8.4
b) MAP 192.0± 2.7 242.9± 3.2 330.0± 9.2 553.6± 18.9

Table 4.2: Phantom experiments. Means (µ) and standard deviations (σ) of T ∗1 ob-
tained in the RoI analysis of the T ∗1 maps depicted in Figure 4.6. Table from
[94].

error in the mean T ∗1 value increasing towards smaller T ∗1 values (~ 3.4% for the small-
est T ∗1 value) can be observed, the means of reference and reconstruction still strongly
agree, especially with regard to an acquisition time of only 3.6 s for the MAP acquisition
compared to more than 2 h for the segmented reference scan.

4.4.3 In Vivo Measurements

Results of the in vivo measurements are depicted in Figures 4.7 and 4.8. The termination
criterion was reached after 285 iterations.

Figure 4.7: In vivo measurements. Exemplary MAP reconstructions (a) and the corre-
sponding reference images (b) are shown for the contrasts indicated. Mod-
ified Figure from [94].

Representative MAP images (Fig. 4.7a) and the according reference images (Fig. 4.7b)
are shown for different saturation times TS. As the intensity in the images is increasing
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during the relaxation process, a separate normalization was performed for each TS. Al-
though the reference image is strongly affected by noise, both reconstructions show the
same contrast behavior for all TS.

Figure 4.8: In vivo measurements. Depicted areM∗
0 and masked T ∗1 maps for the MAP

reconstructions (a,d) and the reference data (b,e) as well as the standardM0
(f) and masked T1 maps (c) obtained by the IRFSE measurement. Modified
Figure from [94].

Figure 4.8 depicts M∗
0 and masked T ∗1 maps for the MAP reconstructions (Fig. 4.8a,d)

and the reference (Fig. 4.8b,e) as well as T1 and M0 obtained from the IRFSE mea-
surement (Fig. 4.8c,f). While both M∗

0 maps as well as both T ∗1 maps are visually
comparable, they show clear differences from the T1 as well as the M0 map, respectively.
In particular, T ∗1 of both reconstructions is smaller than T1.

The results of the associated RoI analysis (marked green in Fig. 4.8a) are listed in Table
4.3. While they indicate a very good agreement between the MAP reconstructed and the
reference T ∗1 map in WM (deviation: 1.3%), GM (deviation: 2.4%) and CSF (deviation:
4.0%), the clear difference to the T1 values obtained in the IRFSE measurement, which
was earlier observed in Figure 4.8, is confirmed.
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Position WM GM CSF
µ± σ (ms) µ± σ (ms) µ± σ (ms)

a) T ∗1 Reference 676± 32 928± 39 1655± 102
b) T ∗1 MAP 668± 26 900± 37 1588± 28
c) T1 IRFSE 866± 20 1386± 30 4383± 310

Table 4.3: In vivo measurements. Means (µ) and standard deviations (σ) of T ∗1
(IR-LL FLASH) and T1 (IRFSE) obtained in the RoI analysis of the T ∗1
and T1 maps depicted in Figure 4.8. Table from [94].

4.5 Discussion

The capability of the MAP algorithm to reconstruct images of various contrasts from
a radial single-preparation dataset acquired after SR magnetization preparation was
demonstrated in this chapter. As the difference between model and consistent images
almost completely disappears after a certain number of iterations, every resulting im-
age is carrying the contrast of the projection acquired at the respective saturation time
TS. Although an entire SR-LL FLASH dataset is used for the reconstruction, a consis-
tency condition with a temporal resolution equal to the repetition time TR is applied to
minimize the temporal footprint of the consistent images. An accurate determination
of the resulting effective longitudinal relaxation parameter T ∗1 was shown in numerical
simulations as well as in phantom and in vivo experiments. Although a determination
of the native T1 relaxation parameter would require knowledge about B1 and therefore
flip angle variations across the FoV (section 2.6) as well as further corrections concerning
magnetization transfer and imperfect slice profiles [27], SR-MAP can be used to obtain
quantitative information about a relaxation process from only one single-preparation
measurement. The consistency of the MAP reconstructions with the acquired data sig-
nifies a major upgrade of the commonly used KWIC techniques [85] that use temporal
averaging.

4.5.1 Radial Versus Other Trajectories

To describe the relaxation process in a single pixel of the image space, three pieces of
information, namely magnetization, spin-lattice relaxation time, and a complex phase
have to be known. In principle, this information can be obtained with any trajectory
such as the interleaved Cartesian trajectories used in [25, 90]. Although in these publi-
cations, high acceleration factors were achieved by retrospective undersampling, it was
still necessary to use segmented measurements. To enable the usage of single-preparation
datasets, a radial sampling scheme was used in our approach. The advantage of the radial
sampling pattern is the extensive coverage of the low spatial frequencies containing most
of the image contrast, leading to a fast convergence of the algorithm. In addition, under-
sampling artifacts of radial trajectories are incoherent and have no preferential direction,
improving the quality of the reconstructed images. Spiral trajectories offer another very
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promising way of k-space sampling as they not only cover the low frequencies but also
feature a much better coverage of the higher frequencies compared to radial sampling.

4.5.2 The MAP Algorithm under Presence of Motion

All the data required for a MAP reconstruction can be acquired in one single-preparation
measurement. This time efficient acquisition scheme leads to a lower sensitivity to motion
artifacts compared to the more time-consuming segmented measurements. Even in case of
motion occurring within the relatively short time span of a single-preparation acquisition,
radial sampling schemes are often favored over their Cartesian counterpart due to their
robustness in the presence of object motion [85]. Nevertheless, the technique would have
to be adapted for anatomies such as the heart where cardiac or respiratory motion is to
be expected.

4.5.3 Higher Intensity towards Outer Regions of the Field of
View

In the numerical simulations, variations between reference and MAP reconstructions
increase towards the outer regions of the FoV. This originates from the sensitivity profiles
used in our numerical phantom. As these simulated coils were placed at the edges of the
FoV, the corresponding sensitivity profiles lead to high signal intensities in these regions.
Therefore, the Gibbs ringing is relatively large at the outer compartment edges. As the
noise level reaches the order of magnitude of these truncation artifacts, they get lost in
the noise and variations are evenly distributed over the entire compartments. In this
case, the algorithm seems to suppress Gibbs ringing.

4.5.4 Dependence of the Accuracy of the T1
* Estimates on the

Temporal Coverage

Numerical simulations and phantom experiments both indicate that the exponential slope
as well as the saturation value in every pixel has to be temporally covered by the dataset
to quantify the relaxation parameter T ∗1 with sufficient accuracy. The larger the T ∗1 , the
longer the relaxation process will last, leading to ambiguous saturation valuesM∗

0 in case
of an insufficient temporal coverage of the relaxation process. Depending on the desired
accuracy of the reconstructed T ∗1 maps, the temporal coverage of the single-preparation
measurement can be adapted with respect to the largest relaxation parameters expected.
For experiments where only a limited temporal coverage is possible, e.g. due to motion
of the measured object, the signal relaxation can be described by various large T ∗1 values
in the same range, leading to a growing error in the determination of T ∗1 . As relaxation
curves more and more resemble other curves of similar T ∗1 values for large T ∗1 , the algo-
rithm will nevertheless deliver well resolved images consistent to the measured dataset.
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In the numerical simulations, indications of this behavior can be seen for T ∗1 =600ms,
where the saturation value of M∗

0 is not sufficiently covered. For high noise levels, the
standard deviation of the fitted relaxation parameter T ∗1 increases dramatically, whereas
the image quality is not considerably impaired.

4.5.5 Convergence Behavior of the Algorithm

Every pixel of the k-space contains information about the relaxation process only for
some time points TS. Analogously, this leads to mentionable signal intensity only for
several time points TS in every pixel of the corresponding image spaces. If a pixel is
covered frequently enough by the k-space trajectory, the numerical two-parameter fit
leads to the formation of a low-intensity version of the actual image. This results from
only some pixels carrying the correct intensity while the other low-intensity pixels lead
to an underestimation of the fitted parameters. The consistency step 4 can be seen as
a superposition of the initial pseudo-two-dimensional image space and this low-intensity
image of the measured object. As the energy in this low-intensity image is growing with
every iteration, its proportion in the superimposed consistent image is growing as well
until at some point, the intensity proportions in the superposition become equal or, in
other words, the algorithm converges.

To improve the convergence behavior of MAP, the "nearly empty" k-spaces that are
used to initialize the algorithm can be "filled" using a linear interpolation as described
in section 3.3 or other temporal averaging methods. This way, less iterations might be
necessary to fill the energy of the k-spaces and reach the termination criterion.

4.5.6 In Vivo Measurements

The reconstructions of the in vivo measurements demonstrate the functionality of the
algorithm for clinical imaging. The deviations between the reference and the MAP
reconstructed T ∗1 values obtained in the RoI analysis are as low as 1.3% in WM, 2.4%
in GM, and 4.0% in CSF. These differences are very small especially with respect to the
acquisition times of ~ 24min for the reference compared to 6.6 s for the single-preparation
dataset. Inaccuracies of the MAP reconstructed maps can be caused by imperfect SR
pulses leading to a residual magnetization M0 6= 0. In these areas, the signal cannot be
perfectly described by the two-parameter model function Eq. 2.10, causing deviations
in the fitted parameters. To compensate for that, the two-parameter model could be
supplemented by an initial magnetization similar to Eq. 2.8. Alternatively, the type and
order of pulses used for the saturation could be further optimized as proposed in [50].

The fact that the in vivo reconstruction - other than both phantom studies - reaches the
termination criterion lies in the more complex nature of the object to be reconstructed.
While the assumption of only one longitudinal relaxation parameter per voxel holds very
well for the phantom, an anatomical voxel inside the human brain consists of various
tissue types and can only be described by the mono-exponential model up to a certain
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point. At this point, the algorithm is terminated as no further improvement or even
deterioration can be expected.

The values of the relaxation parameter T1 obtained in the IRFSE measurement are in
good agreement with the literature values published by Wansapura et al. [106] (WM:
832ms, GM: 1331ms). According to Eq. 2.7, the effective relaxation parameter T ∗1 is
generally smaller than T1 due to the continuous excitation. This prediction coincides
with the in vivo results, where the effective values T ∗1 are systematically lower than the
true relaxation times T1. They are, however, in the same ratio with respect to Eq. 2.7.

4.5.7 Iterative Algorithm Versus Numerical Optimization

One iteration of the algorithm lasted around 70 s for a dataset with 512 time steps TS
for a 256× 256 image matrix. This time is proportional to the number of elements of
the image matrix. Compared to numerical optimization procedures, the iterative method
takes quite a long time to converge. In principle, such numerical optimization procedures
could likewise be applied to perform MAP reconstructions, their convergence behavior
is, however, depending on regularizing parameters. The lack of a generally accepted
method for objectively choosing these parameters depending on the problem to be solved
leads to problems of the transferability of these methods. The proposed method does
without any explicit regularization parameters, making it transferable and independent
of the particular problem. The fairly simple and straight-forward implementation of
the algorithm used in this chapter (and therefore also in [94]) was used as a proof of
principle of the idea. There is a variety of possibilities to speed up the algorithm such
as parallelizing the implementation of the algorithm or using images with more intensity
as initial image spaces for a faster convergence.

4.5.8 Numerical Fit Versus Dictionary-based Approach

In [25], Doneva et al. incorporate the signal model in the reconstruction using a collec-
tion (dictionary) of discrete-time signal prototypes (atoms). In case of a dictionary with
infinitely many atoms, the signal can be represented by one single atom which is equiva-
lent to a numerical fit of a model function to the signal. In our case of SR magnetization
preparation, the signal can be modeled by only two parameters. Thus, a fast numerical
fitting algorithm is easy to implement and provides equivalent results without the need of
choosing the appropriate dictionary size and the number of atoms used for signal approx-
imation. For more complex relaxation models such as the three-parameter model used
to describe IR-LL FLASH sequences (section 2.5) or a multi-exponential model which
might be used to describe voxels containing multiple different tissue types, a numerical
fit would take considerably longer to converge and the dictionary-based approach might
be the better choice.
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4.5.9 Limits of the Mono-exponential Signal Model

Another issue that has to be addressed is the assumption of a mono-exponential relax-
ation in every voxel. This leads to a high sensitivity for artifacts in image regions or
voxels not complying with this model such as voxels containing multiple tissues of differ-
ent relaxation parameters. Gibbs ringing originating in regions of high intensity might
also influence surrounding voxels by superimposing their exponential decay, leading to a
multi-exponential behavior not described by the model. These problems could be over-
come by extending the algorithm using a multi-exponential model, with the disadvantage
of an even greater requirement in reconstruction time and computational power.
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5.1 Introduction

The initial implementation of MAP which was described in the previous chapter com-
bines the benefit of a simple two-parameter model with the speed-efficient saturation
preparation, rendering relaxation breaks between subsequent preparations unnecessary.
However, the relaxation process contains no information about the equilibrium magne-
tization M0 (compare Eq. 2.10) and a direct calculation of T1 using Eq. 2.9 becomes
impossible. Moreover, variations of the flip angle α within the excited slice impede the
use of Eq. 2.5 for calculating T1.

In this chapter, the MAP algorithm is modified to directly enable T1 mapping. By re-
placing the SR magnetization preparation with an inversion recovery preparation scheme,
additional information about the relaxation process - namely the equilibrium magnetiza-
tionM0 - becomes available. Although this slightly complicates the fitting procedure, the
true T1 can now be obtained without knowledge of the actual flip angle α. To addition-
ally sensitize the fitted model to the influence of multi-exponential relaxation in voxels
containing multiple different tissue types, a dictionary-based approach as described in
section 3.4 is applied instead of the previously used mono-exponential least-squares fit to
enforce the model to the acquired data. The technique will be called Inversion Recovery
MAP (IR-MAP) in the following.

Some of the content of this chapter has been submitted for publication in PLOS ONE
[96]. Reused images are marked in the image caption.

5.2 Implementation of IR-MAP

In this implementation of MAP, a radial dataset obtained in a single IR-LL FLASH
acquisition (see section 2.5) is used as input for the reconstruction. Therefore, the mag-
netization after the IR pulse can be modeled by Eq. 2.8.

To improve the convergence behavior of the algorithm, the "nearly empty" k-spaces ob-
tained by gridding the single projections into separate k-spaces were "filled" by a linear
interpolation of all acquired k-space points through time as described in 3.3. These
improved k-spaces were used for initialization of the algorithm.
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As in the previous chapter, any changes from the reconstruction scheme described in
section 3.2 will be pointed out in the following. Again, the pixel index x will be omitted
for reasons of clarity.

1. As before, the current consistent model k-spaces K̂ξ of all individual coils were
Fourier transformed to obtain consistent model images M̂ξ.

2. Before the pixel-wise fit, the signals received in the different coils ξ were combined
using a SoS as described in section 2.11. As a negative signal intensity is to be
expected directly after the inversion, the sign of the relaxation curve was respected
by taking the real part of the complex-valued magnetization after a rotation to the
real axis (2.23 with I → M̂):

M̂Real,ξ(t) = Real
{
M̂ξ(t) · exp(−iϕξ)

}
. (5.1)

A phase map ϕξ(x) was determined before the application of the algorithm from
a Nyquist sampled image reconstructed from the projections acquired after the
zero-crossing of the magnetization. Using this "signed" magnetization, the sign-
dependent SoS was calculated using Eq. 2.24 with I → M̂ :

M̂combined(t) = sign (θ(t)) ·
√
|θ(t)| ,

where

θ(t) =
∑
ξ

[
sign

(
M̂Real,ξ(t)

)
·
∣∣∣M̂Real,ξ(t)

∣∣∣2] . (5.2)

Next, a dictionary-fit was used to obtain a combined model Mcombined(t) = Dγs of
all coils (see section 2.10).

3. Before the backward transform, the model imagesMcombined(t) had to be re-separated
into one model image Mξ(t) for each coil. Again, a complex single-coil relaxation
process is modeled by multiplying the coil-combined model Mcombined(t) with a
complex coil sensitivity factor cξ, leading to the following model (Eq. 2.19 with
x→M):

Mξ(t) = cξ ·Mcombined(t) = cξ ·Dγs . (5.3)

As Dγs can be assumed to be coil-independent, the real and imaginary parts of
the product cξ in each coil were determined separately by using a least-squares
approach on Eq. 5.3. The resulting single-coil model images Mξ(t) were Fourier
transformed to obtain single-coil model k-spaces Kξ(t).

4. As before, the data consistency was ensured by substituting the measured data
for the model data separately for all acquired projections and all coils and by
additionally zeroing the resulting consistent model k-spaces K̂ξ(t) at all pixels where
no information was acquired for all TS.
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The dictionary used for all reconstructions performed in this chapter consisted of 1665
mono-exponential relaxation curves calculated using Eq. 2.8 for different parameter com-
binations of T1 (185 values between 10ms and 5000ms) and α ∈ {1°, 2°, . . . , 9°}. In the
fitting step 2 of the algorithm, an orthogonal matching pursuit algorithm [78] was used
in conjunction with this dictionary to find a linear combination of 3 relaxation curves
best describing the relaxation behavior in each voxel of the consistent model images
M̂(t). After termination of the algorithm, a pixel-wise mono-exponential fit of Eq. 2.8
was applied to the final consistent model images to obtain T ∗1 , M∗

0 and M0. Finally, one
single T1 value was calculated for every pixel using Eq. 2.9.

5.3 Methods

All imaging experiments were carried out on a 3T whole-body scanner (MAGNETOM
Trio, Siemens AG Healthcare Sector, Erlangen, Germany) employing a 12 channel phased-
array head coil for signal reception.

All post-processing was performed on a standard desktop PC equipped with an Intel
Core i7-2600 CPU (3.4GHz) using MATLAB (The MathWorks, Natick, MA).

For comparability of the reconstructions, the number of iterations was set to a fixed
number of 50 for all IR-MAP reconstructions performed in this section.

5.3.1 Phantom Experiments

To validate the functionality of the proposed reconstruction algorithm and the accuracy
of the resulting T1 values, a phantom study was performed on a phantom consisting of
7 vials with different concentrations of CA (Resovist®, Bayer Schering Pharma, Berlin,
Germany) and copper sulfate (CuSO4). T1 measurements were performed with a globally
prepared IR-LL FLASH sequence (FoV: 200× 200× 4mm3, TR: 6ms, TE: 2.5ms, α: 7°,
total acquisition time: 6s) with a Golden Ratio [108] radial k-space trajectory (projec-
tions: 1000, readouts points: 128). After a single-prepared acquisition, the IR-MAP al-
gorithm was used for T1 mapping. This is schematically depicted in Figure 5.1 (green).

To assess the accuracy of these relaxation times, a fully sampled IR-LL FLASH refer-
ence was acquired in a segmented fashion which is illustrated in Figure 5.1 (orange).
The acquisition consisted of 200 consecutive IR-LL FLASH measurements - the Nyquist
limit for a radial measurement with 128 readout points per projection. While the same
IR-LL FLASH sequence as before was used, the order of the 1000 projections was var-
ied after each inversion pulse. By retrospectively reordering these projections, a set of
1000 k-spaces was generated, each carrying the contrast of one of the 1000 inversion
times TI used in the acquisition and each fully sampled with 200 projections. Each of
these IR-LL FLASH segments was followed by a delay of 15 s, allowing for a complete
relaxation before the acquisition of the subsequent IR-LL FLASH segment. This led to
a total scan time of ~ 1 h compared to 6 s for the single-inversion measurement. After
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Figure 5.1: Acquisition scheme of all acquisitions performed in this work. The reg-
ular IR-MAP acquisition consists of one inversion followed by a spoiled
gradient-echo data collection (green). The segmented reference is acquired
by performing multiple IR-LL FLASH acquisitions, each of which is fol-
lowed by a 15 s break for relaxation before the next inversion (orange).
Using IR-MAP reconstructions for multiple of the acquired IR-LL FLASH
datasets, a reproducibility study was carried out (blue). Figure from [96].

gridding, a pixel-wise three-parameter fit of Eq. 2.8 to the SoS of all coils was used to
obtain reference T ∗1 , M∗

0 , M0 maps. Again, Eq. 2.9 was used to obtain T1.

Using the data of the segmented reference acquisition, a reproducibility study was per-
formed by separately applying IR-MAP reconstructions to the first 10 IR-LL segments.
This is illustrated in Figure 5.1 (blue). The resulting set of T1 maps was used to test the
reproducibility of the T1 values obtained from the IR-MAP reconstruction in repeated
acquisitions.

Additionally, a segmented inversion recovery T1 mapping experiment as described in
2.4 with only one RF excitation and gradient-echo readout per inversion was performed
(FoV: 200× 200× 4mm3, TR: 6ms, TE: 2.5ms, α: 7°, matrix size: 128× 128, total
acquisition time: ~ 10 h). In a segmented fashion, fully sampled images were acquired
for 10 inversion times (13ms, 50ms, 100ms, 250ms, 500ms, 1000ms, 1600ms, 2500ms,
5000ms, 8000ms). As in the segmented IR-LL FLASH measurement, a relaxation break
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of 15 s was kept between successive segments. After the acquisition, a fit of Eq. 2.2
resulted in a T1 map that was used for validating the general accuracy of the IR-MAP
technique.

A RoI analysis was used to obtain mean values µvial and standard deviations σvial of T1
in every compartment of both the reference and the IR-MAP reconstructed T1 maps.
Additionally, the SNR in each of the vials was calculated for all three reconstruction
techniques [24]:

SNRvial = µvial
σvial

(5.4)

5.3.2 In Vivo Measurements

All human in vivo studies were approved by our local ethics committee. They were
performed on healthy volunteers, and written informed consents were obtained from the
subjects prior to scanning.

T1 measurements of the brains of 7 healthy volunteers aged between 23 and 30 years
were carried out with the same sequence as in the phantom experiments (slice thick-
ness: 4mm, TR: 6ms, TE: 2.5ms, α: 7°, projections: 1000, readout points: 128 , total
acquisition time: 6 s), with a FoV ranging between 200× 200mm2 and 220× 220mm2.
After the acquisition, T1 maps were obtained using IR-MAP as described in the phantom
experiments.

Additionally, a fully sampled IR-LL FLASH reference dataset was obtained using the
same segmented acquisition as in the phantom experiments. To shorten the scan time,
the number of segments was reduced from 200 to 100, leading to each of the 1000 contrast
images consisting of only 100 projections, the equivalent of a two-fold Nyquist undersam-
pling. Maintaining a relaxation delay of 15 s between successive inversions, the total scan
time was reduced to ~ 30min. Using this acquisition, a reference T1 map was obtained
as described in the phantom experiments.

A RoI analysis was used to obtain mean values of T1 in WM, GM and CSF for the
reference as well as the IR-MAP reconstructed T1 maps of each volunteer. For comparison
of both reconstruction methods, a mean SNR over all volunteers was obtained according
to Eq. 5.4.

5.4 Results

5.4.1 Phantom Experiments

Figures 5.2, 5.3 and 5.4a show results of the phantom measurement. The upper part of
Figure 5.2 depicts the masked T1 maps obtained from the segmented IR reference (left),
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the IR-MAP reconstruction of a single-inversion IR-LL FLASH measurement (center) as
well as the segmented IR-LL FLASH reference (right). The lower part shows differences
of both LL-based reconstructions from the segmented IR reference. A comparison of the
two reference measurements shows a small deviation between the segmented Inversion
Recovery Look-Locker acquisition (IR-LL) and the segmented IR method increasing
with T1. Despite a noisier appearance, the same deviation is visible for the IR-MAP
reconstructed T1 map.

Figure 5.2: Phantom measurement. T1 maps of the segmented IR reconstruction (left,
top), the IR-MAP reconstruction of the single-inversion IR-LL FLASH ac-
quisition (center, top) and the segmented IR-LL FLASH reference (right,
top) as well as the differences (bottom). Figure from [96].

The visual observations are confirmed by the associated RoI analysis depicted in Table
5.1. The noisier appearance of the IR-MAP reconstruction is confirmed by a lower
SNR (ranging between 14 and 35) especially in comparison to the segmented IR-LL
acquisition (ranging between 80 and 220), but also to the segmented IR acquisition
(ranging between 31 and 72). However, despite the larger standard deviations of the
IR-MAP reconstruction, the values of both LL-based methods are in good agreement
with a difference smaller than 2.3% for all RoIs. Although there is a larger deviation
between both of these methods and the segmented IR measurement, the differences,
which are additionally listed in Table 5.1, also stay below 5.8% for all RoIs. Overall, the
IR-MAP results are in very good agreement with both references.

Figure 5.3 shows images of the IR-MAP reconstruction (top) and the reference (bottom)
for exemplary inversion times. Again, although the visual appearance of the IR-MAP
reconstructions is noisier, the contrasts of the both reconstructions are in good agree-
ment.

The reproducibility study, which is depicted in Figure 5.4a, shows no systematic devia-
tions in means and standard deviations of T1 in repeated IR-MAP reconstructions of the
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Vial IR IR-MAP IR-LL
µ± σ (ms) SNR µ± σ (ms) SNR diff (%) µ± σ (ms) SNR diff (%)

A 208± 4 50 201± 14 14 3.3 197± 2 80 5.1
B 573± 15 38 572± 37 16 0.1 560± 6 101 2.3
C 998± 20 49 1043± 38 27 4.5 1046± 6 171 4.8
D 1659± 23 72 1574± 56 28 5.1 1574± 8 188 5.1
E 2123± 38 55 2056± 59 35 3.2 2042± 9 220 3.8
F 2560± 49 52 2411± 70 34 5.8 2418± 13 191 5.5
G 2929± 94 31 2854± 138 21 2.6 2885± 22 130 1.5

Table 5.1: Phantom experiments. Listed are means (µ) and standard deviations (σ)
of T1 within the RoIs A-G of the phantom experiment as well as the corre-
sponding SNR. For the two LL-based acquisitions, the percentage difference
to the IR values is additionally listed. Table from [96].

Figure 5.3: Phantom measurement. IR-MAP reconstructions (top) and reference
IR-LL FLASH images (bottom) for exemplary inversion times. Figure from
[96].

same FoV.

5.4.2 In Vivo Measurements

The results of the in vivo measurements are depicted in Figures 5.4b, 5.5 and 5.6. Figure
5.5 shows T1 maps from IR-MAP reconstructions (left) and the IR-LL reference (center)
as well as a difference for volunteers V3 and V7. Despite a general accordance between
both T1 maps, the IR-MAP reconstructions have the same noisier overall appearance
that was already observed in the phantom measurements. In contrast to the phantom
study, blurring can be observed in the in vivo reference. The largest differences occur in
small areas of large T1 values such as the CSF in the ventricles.
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Figure 5.4: Reproducibility study. Shown are the mean T1 values obtained from
IR-MAP reconstructions of 10 consecutive IR-LL FLASH acquisitions, each
of which was followed by a 15 s break for relaxation. While (a) shows the
results in the 7 RoIs of the phantom (A-G), (b) depicts the RoIs used for
evaluation of T1 in WM, GM and CSF of volunteer V7. Figure from [96].

Figure 5.6 shows the corresponding images of the IR-MAP reconstruction (top) and the
reference (bottom) for the same exemplary inversion times as in the phantom exper-
iments. Despite the blurry nature of the reference images that was already observed
in the T1 maps, both reconstructions reveal the same contrast variations. The visual
impression is confirmed by the results of the RoI analysis in Table 5.2. The noisier ap-
pearance of the IR-MAP reconstruction manifests in a larger standard deviation within
the RoIs as well as a smaller mean SNR. This difference decreases with the value of
T1 (SNRCSF<SNRGM<SNRWM). However, differences of the means in WM and GM
stay below 5.1% in all volunteers, underlining the good agreement between the two re-
constructions. In contrast, the means in the CSF regions deviate by up to 27.6% in
V6.

The in vivo reproducibility study, which is depicted in Figure 5.4b, shows no systematic
deviations in means and standard deviations of T1 in WM and GM. However, T1 in the
CSF is decreasing with each of the repeated IR-MAP acquisitions.

5.5 Discussion

5.5.1 Phantom Experiments

The T1 maps of the phantom experiments clearly prove the functionality of IR-MAP for
parameter mapping. The lower SNR of the IR-MAP reconstructions can be explained
by the fact that only a small fraction of the data volume which was used for the recon-
struction of both reference T1 maps was used in the model-based IR-MAP reconstruction
(0.5% for the IR-LL reference and 10% for the IR reference). This SNR reduction also
causes the higher standard deviations within the RoIs of the IR-MAP reconstructed T1
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Figure 5.5: T1 maps of the IR-MAP reconstruction (left) and the segmented
IR-LL FLASH reference (center) as well as a difference (right) for volunteers
V3 and V7. Figure from [96].

maps. With a difference of less than 2.3% to the IR-LL reference and 5.8% to the IR ref-
erence, IR-MAP still provides a very good accuracy of the reconstructed T1 values. The
images obtained by the IR-MAP reconstruction reveal the same noise enhancement as the
T1 maps. Apart from that, the images feature the same spatial and temporal resolution
as well as the same contrast as the reference. Altogether, the very small degradation
in image quality and the slightly larger standard deviation of the determined T1 val-
ues is acceptable considering the acquisition time of 6 s for the IR-MAP reconstruction
compared to ~ 1 h for the IR-LL reference and ~ 10 h for the IR reference.

Additionally, the reproducibility study demonstrates the functionality of the IR-MAP
method in repeated measurements.
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WM GM CSF
IR-MAP REF IR-MAP REF IR-MAP REF
µ± σ (ms) µ± σ (ms) µ± σ (ms) µ± σ (ms) µ± σ (ms) µ± σ (ms)

V1 736± 82 734± 16 1447± 130 1436± 94 4694± 657 4296± 494
V2 705± 75 709± 42 1400± 85 1385± 98 4669± 677 4082± 620
V3 737± 68 712± 21 1455± 155 1402± 158 4565± 728 3877± 700
V4 686± 79 695± 31 1448± 207 1378± 147 4085± 512 3924± 348
V5 676± 81 693± 17 1425± 281 1401± 192 4473± 948 4061± 911
V6 726± 99 698± 17 1395± 93 1400± 58 4129± 368 3236± 249
V7 777± 63 744± 11 1426± 178 1409± 71 4445± 742 3878± 564
µ± σ 720± 78 712± 22 1428± 161 1402± 117 4437± 662 3908± 555
SNR 9 32 9 12 7 7

Table 5.2: In vivo measurements. Listed are means (µ) and standard deviations (σ)
obtained in the RoI analysis of the in vivo measurement. The RoIs were
placed in WM, GM and CSF areas of the T1 maps of all 7 volunteers (V1-
V7). The different T1 values correspond to the IR-MAP reconstruction and
the fully sampled reference (REF). The last two rows depict the means (µ)
and standard deviations (σ) over all volunteers as well as the corresponding
mean signal-to-noise ratio SNR calculated according to Eq. 5.4. Table from
[96].

5.5.2 In Vivo Measurements

All observations regarding the noise-increase of the IR-MAP reconstructions compared
to the reference can be explained similar to the phantom measurements. Due to the
nature of radial sampling patterns, the two-fold undersampling of the reference dataset
should only lead to negligible streaking artifacts and therefore only a small loss in spatial
resolution. Therefore, it was assumed that the additionally appearing blurriness of the
reference T1 maps resulted from motion of the volunteers, which seems unavoidable for
the lengthy acquisition of ~ 30min. This hypothesis is confirmed by the considerably
sharper appearance of the IR-MAP reconstructed T1 maps, each of which was acquired
in only 6 s, and which are therefore much less susceptible to motion artifacts. If regions
of high T1 values extend to only one or two pixels, motion of the subject smears out
each of these values over a small region of several pixels, leading to lower T1 values in
these regions. Due to the very fast acquisition process, less motion can occur in IR-MAP
reconstructions, leading to much less pronounced blurring and therefore an improved
accuracy in T1.

The reproducibility study showed no changes in WM and GM for repeated measure-
ments of the same FoV. The decreasing T1 values in the CSF can be explained by the
relaxation breaks of only 15 s that were used to ensure a complete relaxation of the
magnetization before each IR-LL measurement. While 99.9% of the magnetization will
be relaxed for T1 <2000ms, less than 98% will be relaxed for T1 >4000ms, leading to
errors in a quantification of T1 using Eq. 2.9. In conjunction with the motion-induced
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Figure 5.6: In vivo images. IR-MAP reconstruction (top) and segmented
IR-LL FLASH reference (bottom) of volunteers V3 and V7 at exemplary
inversion times. Figure from [96].

T1 reduction mentioned above, this effect explains the smaller T1 values observed in the
CSF of the in vivo reference. With a proper waiting time between successive acquisitions,
the reproducibility of IR-MAP could be ensured even in regions of higher T1 such as the
CSF. Such an acquisition, however, would be impractical for in vivo studies due to un-
acceptably long scan times. Alternatively, a correction method for insufficient relaxation
times between subsequent inversions as described in section 2.8 could be used.

Although there is a wide range of literature WM and GM values, the T1 values of GM
obtained in this study (ranging from 1395ms to 1455ms) are in good agreement to many
literature values [30,65,110] with a range from 1331ms to 1470ms. Although the values
of WM (ranging from 676ms to 777ms) are smaller than many literature values for
overall WM such as 832ms in [106], it is in agreement with the value of 761ms found in
[110] for frontal WM. Due to the large standard deviation within the RoIs of the CSF,
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these values were not compared to other literature.

5.5.3 Comparison of IR-MAP and SR-MAP

The proposed IR-MAP algorithm addresses some of the major issues of the SR-MAP
algorithm presented in the previous chapter. The most important change is the IR
pulse which is used instead of the SR pulse for magnetization preparation. Instead of
an effective relaxation parameter T ∗1 , one can now obtain T1 independently of the flip
angle from the three independent fit parameters T ∗1 , M∗

0 and M0. Additionally, the use
of IR pulses results in an SNR gain in comparison to SR-prepared sequences, where the
magnetization is initially zeroed. This can lead to a very low SNR especially for the
radial projections acquired directly after the SR pulse and therefore causes an inevitable
introduction of noise by the data consistency condition in step 4 of the algorithm (section
3.2). A drawback of the IR preparation is the additional relaxation time needed for
reaching the equilibrium magnetization before subsequent IR-LL acquisitions which was
already addressed in the previous section. This leads to a considerably longer scan time
if multiple subsequent parameter maps are to be acquired.

Another limitation of the initial SR-MAP implementation, which is not connected to
the type of magnetization preparation used, was the assumption of a mono-exponential
relaxation in every voxel. Despite the advantage of a low numerical complexity of the fit,
this can lead to systematic errors in image regions or voxels not complying with this model
such as voxels containing various types of tissue [94]. To avoid such problems, a multi-
exponential fit of up to three mono-exponentials was allowed in the dictionary look-up
used in this IR-MAP implementation. In addition, imperfect slice profiles caused by the
very short excitation pulses typically used in fast imaging sequences can cause variations
of the flip angle α within the excited slice as described in section 2.9. This problem was
addressed by adding mono-exponentials of different flip angles to the dictionary used for
the model fit. A more sophisticated correction method will be presented in chapter 8.

5.5.4 Dependence of the Accuracy of the T1 Estimates on the
Temporal Coverage

As described in section 4.5.4, the exponential slope as well as the steady-state magnetiza-
tion M∗

0 have to be covered in every pixel to ensure a quantification of T1 with sufficient
accuracy. All sequence parameters have to be chosen accordingly to fulfill this condition.
For 1000 projections acquired with a repetition time TR=6ms and a flip angle α=7°, as
they were acquired in the experiments of this work, M∗

0 would be covered even for very
large T1 values of about 4000ms as they would only occur in tissues with an extremely
high water content such as the CSF. This ensures an accurate quantification of T1.
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5.5.5 Duration of the IR-MAP Algorithm

In our implementation, one iteration of the dictionary-based algorithm lasted 90 s for a
dataset with 1000 time steps TI and a 256× 256 image matrix. In comparison, a mono-
exponential fit of the same matrix would take 86 s on the same CPU using standard
MATLAB libraries. In both cases, this time is proportional to the number of pixels in the
image matrix. For dictionary-based model fitting, the reconstruction time additionally
depends on the size of the dictionary. A straightforward and therefore quite lengthy
implementation of the dictionary look-up was used in this work to demonstrate the
functionality of the method. However, the duration of the look-up for an entire dataset
can be reduced by starting with a broad spacing of the parameters T1 and α0 used in
the dictionary of the first look-up which is recursively reduced in multiple iterations. As
the look-up is performed in a sequential fashion for the individual pixels, there is also a
great potential of speeding up the algorithm by parallelizing the implementation.

5.5.6 Comparison of IR-MAP to Existing T1 Mapping
Techniques

Many other T1 mapping techniques have been proposed, some of which achieve full brain
coverage with 1mm in-plane resolution in less than 10min. Most techniques based on
the LL approach apply inversion pulses, followed by a LL acquisition, to track the LL
relaxation process and subsequently use a fit similar to Eq. 2.9 to obtain a T1 map.
For a sufficiently high temporal and spatial resolution, the acquisition is performed in
a segmented fashion using multiple inversions [19, 67, 82]. These approaches offer whole
brain coverage with a slice thickness of up to 2mm and an in-plane resolution of 1mm
with a total acquisition time of less than 10min, leading to an effective acquisition time of
about 20 s per slice. However, due to the segmented acquisition of the entire volume, the
data needed to obtain the T1 map of a single slice are collected after multiple sequential
inversion pulses. Therefore, the temporal resolution for obtaining the T1 map of a single
slice using these techniques would therefore be considerably worse than the 6 s achieved
using IR-MAP.

The VFA technique is another popular approach for T1 mapping enabling an even better
spatial resolution (see section 2.7). Using this approach, the 3D acquisition of a whole
brain T1 map with an isotropic resolution of 1mm is possible in less than 8min [22].
These measurements require the exact knowledge of the flip angle, leading to potential
errors due to B1 field inhomogeneities and slice profile imperfections. Due to the broad
excitation profiles of fast RF pulses typically used in 2D acquisitions, a reliable T1 map
with a slice thickness of 1mm would be hard to obtain using a VFA technique. As the slice
profile errors are relatively low in the center portion of 3D slabs, most implementations of
the VFA technique use 3D acquisitions. Similar to the LL-based approaches, the temporal
resolution of the T1 map of a single slice therefore corresponds to the acquisition time of
the entire 3D volume.

66



5.5 Discussion

In contrast to the methods described above, IR-MAP has a slightly lower spatial reso-
lution of up to 1.6mm × 1.6mm × 4mm, but no segmentation is necessary, enabling a
self-contained acquisition of a single-slice T1 map in 6 s. This is advantageous for appli-
cations such as dynamic T1 mapping where a better temporal resolution is required (see
chapter 6).
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Contrast-Enhanced T1 Mapping

6.1 Introduction

Although the model-based IR-MAP reconstruction which was presented in chapter 5
greatly reduces the acquisition time needed for obtaining one T1 map, the requirement
of long waiting periods between two consecutive IR pulses leads to a significant delay
between two subsequently acquired T1 maps and therefore a poor temporal resolution of
dynamic series. To circumvent prolonged waiting periods, a correction as described in
section 2.8 can be applied to correct for T1 errors introduced by insufficient relaxation,
and thus enable a reduction of the waiting period.

In this chapter, the IR-MAP algorithm was applied for dynamic contrast-enhanced T1
mapping: Multiple radial IR-LL FLASH acquisitions are consecutively performed, each
followed by an insufficiently short waiting period (e.g. 3 s) for relaxation. Next, IR-MAP
is used to reconstruct an individual T1 map for each of these acquisitions. Finally, T1
errors caused by the insufficient relaxation between subsequent IR pulses are iteratively
corrected as described in section 2.8. After the method was implemented and validated in
Würzburg, it was applied for dynamic T1 mapping of a brain tumor patient in cooperation
with Dr. Sotirios Bisdas and Prof. Dr. Uwe Klose at the Department of Diagnostic and
Interventional Neuroradiology, Eberhard Karls University, Tübingen, Germany.

Some of the content of this chapter has been published in [53, 93]. The permission to
reuse images and text from this publication was granted by the International Society for
Magnetic Resonance in Medicine. Reused images are marked in the image caption.

6.2 Methods

All imaging experiments were carried out on a 3T whole-body scanner (MAGNETOM
Trio, Siemens AG Healthcare Sector, Erlangen, Germany) employing a 12 channel (Würzburg)
or a 32 channel phased-array head coil (Tübingen) for signal reception.

All post-processing was performed on a standard desktop PC equipped with an Intel
Core i7-2600 CPU (3.4GHz) using MATLAB (The MathWorks, Natick, MA).
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All in vivo studies were approved by the relevant local ethics committee. Written in-
formed consent was obtained from each volunteer prior to scanning.

6.2.1 Implementation of IR-MAP

An implementation of IR-MAP as described in section 5.2 was used for all IR-MAP
reconstructions performed in this chapter.

6.2.2 Acquisition and Reconstruction Scheme

Figure 6.1: Acquisition and reconstruction scheme. The acquisition scheme including
multiple consecutive IR pulses and the subsequent relaxation behavior is
indicated in (a). Each of these IR frames consists of an acquisition period of
T ∗1 relaxation (red background) followed by a waiting period of undisturbed
T1 relaxation (blue background). After the acquisition (b), the IR-MAP
algorithm is used to obtain one T1 map for each IR frame (c). Finally,
potential errors caused by an insufficient waiting period are corrected using
T1C. Modified Figure from [93].
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The acquisition and reconstruction scheme illustrated in Figure 6.1 was used for all
experiments in this work. Each of the so-called IR frames consists of the following
steps:

1. Global inversion pulse, followed by a very short time period of pure T1 relaxation
before the application of the first RF excitation pulse (blue background in Fig.
6.1a).

2. Radial IR-LL FLASH acquisition of T ∗1 relaxation (red background in Fig. 6.1a).

3. Waiting period of pure T1 relaxation (blue background in Fig. 6.1a) before the
next IR pulse initiates the next IR frame.

After data collection, the IR-MAP algorithm (see chapter 5) was applied separately to
the radial IR-LL FLASH datasets of all IR frames to obtain MA, MB and T ∗1 in every
pixel (Fig. 6.1c). While an adjusted Eq. 2.9

T1 = T ∗1 · [(MA −MB)/MA − 1] . (6.1)

with M∗
0 →MA and M0 → −MB was used to obtain a T1 map of the first IR frame, the

T1C correction presented in section 2.8 was applied to the parameter sets (MA,MB, T
∗
1 )

of the remaining IR frames to correct for errors caused by insufficient relaxation. The
result was a set of T1 maps containing the T1 dynamic of the acquisition (Fig. 6.1d).

6.2.3 Determination of the Quality of Inversion K

In the T1 correction described in chapter 2.8, a parameter K was introduced that de-
scribes the quality of the inversion pulse (0: no inversion, 1: perfect inversion), and that
is required for the T1C correction. To avoid a separate measurement for determining
K, a method for the estimation of K was developed. It was assumed that the magne-
tization is at equilibrium before this first inversion pulse and that no T1 changes occur
between the first two acquired IR frames. First, T1 of the first IR frame was obtained
using IR-MAP and Eq. 6.1, as no correction had to be carried out. Next, IR-MAP was
applied to the second IR frame, followed by the iterative T1C method for T1 correc-
tion. To see the influence of different K values on T1C, the correction was performed
for different inversion coefficients K ranging from 0.7 to 1.0. The K values leading to
the smallest T1 difference between the first and the second IR frame best describe the
efficiency of the inversion pulse used in the particular setup. Therefore, a map describing
the inversion efficiency K can be generated by performing this comparison for all pixels.
As the inversion coefficient was expected to have a continuous behavior, a 3× 3 median
filter was applied to smoothen the K map before any corrections were carried out. Using
this Ksmooth map, T1 was corrected for all IR frames affected by insufficient relaxation,
that is all but the first IR frame.
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6.2.4 Validation Study: Phantom

A validation study was performed using a phantom consisting of 7 vials with different
CA (Resovist®, Bayer Schering Pharma AG, Germany) concentrations. A set of 5 sub-
sequent IR frames was acquired (FoV: 200× 200× 4mm3, TR: 6ms, TE: 2.5ms, α: 7°,
projections: 1000, readout points: 128, acquisition period: 6 s, waiting period: 3 s, TIR:
9 s) using the 12 channel coil for signal reception. After data collection, the first two IR
frames were used to estimate the inversion efficiency Ksmooth. Subsequently, 50 IR-MAP
iterations, followed by 100 iterations of the T1C correction (for all but the first IR frame)
were applied to obtain one T1 map for each IR frame. The acquisition period of 6 s com-
bined with the waiting period of 3 s resulted in a temporal resolution of one T1 map every
9 s.

To illustrate the errors caused by the insufficient relaxation period, T1 values simply
calculated using Eq. 6.1 were compared to the values after T1C correction. This was
achieved by a RoI analysis of the first (without correction) and the fifth IR frame (before
and after correction). In each of the compartments, mean values (µ), standard deviations
(σ) and relative errors (σ/µ) were determined. Additionally, the percentage difference
was calculated between the undisturbed first IR frame and the two T1 maps of the fifth
IR frame affected by insufficient relaxation.

6.2.5 Validation Study: Healthy Volunteer

To validate the technique in vivo, T1 maps of the brains of 7 healthy volunteers aged
between 23 and 30 years were acquired using the same sequence as in the phantom study
with a FoV ranging from 200× 200mm2 to 220× 220mm2. Again, the 12 channel coil was
used for signal reception. After IR-MAP reconstruction and T1C correction (performed
exactly as in the phantom validation study), the functionality of the T1 correction was
validated by a RoI analysis in WM, GM and CSF of the first (without correction) and
the fifth IR frame (after 100 iterations of the T1C correction).

6.2.6 Clinical DCE-MRI Examination

To test the dynamic T1 mapping technique in a clinical setting, a DCE-MRI experiment
was performed on a patient with primary lymphoma using the 32 channel coil for sig-
nal reception. This time, 33 IR frames were acquired with the described acquisition
(FoV: 230× 230× 3mm3, TR: 6ms, TE: 2.5ms, α: 7°, projections: 1000, readout points:
128, acquisition period: 6 s, waiting period: 3 s, TIR: 9 s) to track T1 changes after the
intravenous injection of CA (Gadovist®, Bayer Schering Pharma AG, Germany).

After five IR-MAP iterations, the T1 maps before and after 100 iterations of the T1C
correction were compared. Additionally, a RoI analysis was performed in normal WM,
in the tumor regions and in the vein to visualize the effect of the T1C correction for the
dynamic T1 series.
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6.3 Results

6.3.1 Validation Study: Phantom

Figure 6.2 shows results of the phantom experiment. In the first column (a), a T1 map
of the first IR frame (top) as well as the areas used for the RoI analysis (bottom) are
depicted. The second column (b) shows the uncorrected T1 map of the fifth IR frame
(top) as well as a two-fold difference from the undisturbed first IR frame (bottom). In
the third column (c), the T1 map of the fifth IR frame after the T1C correction (top)
and a two-fold difference from the undisturbed first IR frame (bottom) are displayed.
While differences from the undisturbed T1 map of the first IR frame are clearly visible in
the uncorrected T1 map of the fifth IR frame especially in vials of large T1 values (vials
E-G), they are considerably reduced by the T1 correction. This observation is further
illustrated in the difference images. While there are clearly visible deviations before the
T1 correction in vials D-G, the differences are greatly reduced by the T1 correction.

Figure 6.2: Phantom validation study. T1 maps of the undisturbed first IR frame (a)
and the uncorrected (b) as well as the corrected fifth IR frame (c) obtained
in the phantom are shown in the upper part. In the lower part, the areas of
vials A-G used for the RoI analysis are depicted and a two-fold difference
for (b) and (c) with respect to (a) is given.

Figure 6.3a plots the T1 values of the first IR frame against the T1 values of the fifth
IR frame before (red, top) and after (blue, bottom) the T1C correction. Before the
correction, a systematic underestimation of T1 increasing with the absolute value of
T1 can be observed. This systematic deviation is considerably reduced using the T1C
correction. However, a slight overestimation is introduced by T1C for some of the higher
T1 values.
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Figure 6.3: Functionality of the T1C correction. Shown are plots of the undisturbed T1
values of the first IR frame (horizontal axis) against the uncorrected (red,
top) and corrected (blue, bottom) T1 values for the phantom experiment
(a) as well as for two exemplary volunteers V1 (b) and V4 (c).

Finally, the inversion coefficient Ksmooth is depicted in Figure 6.4a. It shows a good
inversion efficiency of ~ 100% across the entire phantom.

Figure 6.4: Quality of inversion. Shown are the inversion coefficients Ksmooth
smoothened using a 3× 3 median filter obtained for the phantom exper-
iment (a) as well as for two exemplary volunteers V1 (b) and V4 (c) and
the patient (d).

The RoI analysis in Table 6.1 underlines the good accordance between the T1 maps of the
undisturbed first IR frame and the T1C-corrected fifth IR frame. While the uncorrected
T1 maps show percentage differences of up to 19.8% for the largest T1 in the order of
3 s (vial G), they can be reduced to less than 4.2% by the T1 correction. For very small
T1 values around 200ms, the correction has only little effect, with a difference remaining
at 1.0%. The reconstruction exhibits a good visual quality, which is underlined by an
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average relative error of less than 4.6% in the individual RoIs. Despite a small increase of
the standard deviation within the RoIs in the process of the T1C correction, the average
relative error over all vials remains at an acceptable amount of 6.3% after the correction.

Vial
IR frame 1 IR frame 5 before T1C IR frame 5 after T1C
µ± σ σ/µ µ± σ σ/µ diff µ± σ σ/µ diff
(ms) (%) (ms) (%) (%) (ms) (%) (%)

A 202± 15 7.3 200± 15 7.6 1.0 200± 15 7.6 1.0
B 573± 38 6.7 568± 31 5.5 0.9 569± 31 5.5 0.8
C 1047± 46 4.4 1019± 43 4.3 2.7 1041± 49 4.7 0.6
D 1574± 57 3.6 1465± 54 3.7 6.9 1573± 74 4.7 0.1
E 2064± 61 3.0 1807± 62 3.4 12.5 2068± 106 5.1 0.2
F 2430± 71 2.9 2043± 91 4.4 15.9 2476± 173 7.0 1.9
G 2868± 118 4.1 2299± 121 5.2 19.8 2988± 288 9.6 4.2

AVG - 4.6 - 4.9 - - 6.3 -

Table 6.1: Phantom experiments. Shown are means (µ), standard deviations (σ) and
the relative error (σ/µ) of T1 in vials A-G of the phantom. The columns
contain T1 values obtained from IR frame 1 and IR frame 5 before as well
as after the T1C correction. Additionally, the percentage difference between
the uncorrected and the corrected means is given.

6.3.2 Validation Study: Healthy Volunteers

Results of the in vivo validation experiment are depicted in Figure 6.5. Again, the T1
map of the undisturbed first IR frame (a) is depicted together with the T1 maps of the
fifth IR frame before (b) and after the T1 correction (c) for two exemplary volunteers V1
and V4. As in the phantom experiment, substantial differences before the T1 correction
occur especially for large T1 values such as the CSF but also the GM. Again, they are
greatly reduced by the T1 correction, leaving recognizable differences only in small areas
of the CSF.

As in the phantom experiment, Figures 6.3b-c plot the correlation between the T1 values
of the first IR frame and the T1 values of the fifth IR frame before (red, top) and after
the T1C correction (blue, bottom) for the same volunteers. Again, the initial systematic
deviation can be considerably reduced using the T1C correction.

As expected, the corresponding inversion coefficients Ksmooth, which are depicted in Fig-
ures 6.4b-c show a good inversion efficiency of ~ 100% over the major part of the object.

The RoI analysis shown in Table 6.2 provides a quantitative proof of these observations.
It shows means and standard deviations for T1 of the first IR frame and the fifth IR
frame before and after T1C correction in WM, GM and CSF areas of all 7 volunteers.
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Figure 6.5: In vivo validation study. Shown are the T1 maps of the undisturbed first
IR frame (a) and the uncorrected (b) as well as the corrected fifth IR frame
(c) obtained for volunteers V1 and V4. Additionally, a two-fold difference
to (a) is given. The areas of WM (blue), GM (green) and CSF (red) used
for the RoI analysis are indicated in (a).

While the average percentage difference over all volunteers remains almost unchanged
for WM before (1.7%) and after the correction (1.8%), it can be considerably reduced
in GM (7.4% to 3.6%) as well as in the CSF (37.7% to 7.5%).

6.3.3 Clinical DCE-MRI Examination

Results of the dynamic contrast-enhanced T1 mapping experiment are shown in Figure
6.6. It depicts the T1 dynamic in the brain of the examined patient with a temporal
resolution of one T1 map every 9 s. T1 maps before (a) and after the T1 correction (b) are
depicted for the first 12 IR frames. In the exceptional case of the undisturbed first IR
frame (at 0 s), both the top as well as the bottom part show the same uncorrected T1 map.
As in the validation study, there is a systematic difference between the uncorrected and
the corrected T1 maps for all subsequent IR frames growing with the order of T1. This
error is best visible between the undisturbed first IR frame (at 0 s) and the second IR
frame (at 9 s). After the T1C correction, no visible deviations remain. The effect of the
CA on T1 becomes noticeable after about 45 s with a decrease in T1 in areas permeated
by the CA.

A RoI evaluation of the temporal T1 changes is shown in Figure 6.7. The upper left part
(a) shows T1 maps of the first and the last acquired IR frame with the RoIs indicated in
different colors, while the other parts (b-f) depict the T1 dynamic in these RoIs before
(crosses) and after T1C correction (solid lines). While the signal in the area of normal
WM (c: blue) remains in a similar range over the entire time series, a clear T1 reduction
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Region of Interest IR frame 1 IR frame 5 before T1C IR frame 5 after T1C
µ± σ (ms) µ± σ (ms) diff (%) µ± σ (ms) diff (%)

WM

V1 738± 85 752± 83 1.9 755± 87 2.3
V2 726± 91 741± 117 2.1 745± 122 2.6
V3 735± 68 725± 56 1.3 727± 57 1.0
V4 714± 86 721± 85 1.0 723± 87 1.3
V5 680± 54 680± 75 0.1 682± 76 0.4
V6 703± 81 716± 91 1.9 718± 93 2.2
V7 783± 74 755± 64 3.5 758± 66 3.2

AVG 725± 77 727± 81 1.7 730± 84 1.8

GM

V1 1386± 205 1286± 139 7.2 1331± 168 4.0
V2 1373± 106 1301± 112 5.3 1357± 135 1.2
V3 1318± 241 1239± 203 6.0 1286± 237 2.4
V4 1376± 211 1267± 162 7.9 1325± 198 3.7
V5 1381± 280 1279± 203 7.4 1334± 244 3.4
V6 1427± 110 1278± 85 10.4 1331± 101 6.7
V7 1409± 151 1301± 113 7.6 1357± 139 3.7

AVG 1381± 186 1279± 145 7.4 1332± 175 3.6

CSF

V1 4183± 723 2572± 304 38.5 4288± 851 2.5
V2 4428± 609 2696± 334 39.1 4821± 810 8.9
V3 3704± 880 2395± 401 35.3 3757± 1032 1.5
V4 4157± 434 2476± 182 40.4 3765± 592 9.4
V5 4317± 1043 2658± 579 38.4 4903± 1149 13.6
V6 4001± 417 2552± 113 36.2 3845± 429 3.9
V7 4081± 715 2625± 405 35.7 4596± 923 12.6

AVG 4124± 689 2568± 331 37.7 4282± 827 7.5

Table 6.2: In vivo validation study. Shown are means (µ) and standard deviations (σ) of
T1 in WM, GM and CSF regions of volunteers V1-V7. The columns contain
T1 values obtained from IR frame 1 and IR frame 5 before as well as after the
T1C correction. Additionally, the percentage difference between the means
of the undisturbed first IR frame and the uncorrected and corrected fifth
IR frame is given. The last row contains the averages (AVG) over all 7
volunteers.

can be seen in the tumor regions (b: red, d: green, f: cyan). In the vein (e: magenta),
T1 is greatly reduced by the CA. As already observed in the validation studies, the
uncorrected T1 only slightly decreases in areas of relatively small T1 such as the WM.
This decrease becomes significantly larger for regions of higher T1 such as the GM. In
these regions, the effect of the T1C correction is most apparent as it successfully restores
the T1 plateaus before the CA inflow after about 45 s.
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Figure 6.6: Clinical DCE-MRI example. Depicted are the first 12 IR frames of a dy-
namic T1 mapping experiment performed on a patient with primary lym-
phoma. Shown are the uncorrected T1 maps after the IR-MAP reconstruc-
tion (a) as well as the corrected T1 maps after the application of T1C (b).
Modified Figure from [93].

6.4 Discussion

6.4.1 Validation Study: Phantom

The results of the phantom validation study clearly indicate the functionality of the
proposed method for dynamic T1 mapping. Most importantly, the parameter maps
obtained in the model-based IR-MAP reconstruction were of a good visual quality, which
is underlined by an average standard deviation of less than 4.6% in the individual RoIs.
Also, the systematic error in T1 which is caused by the insufficient relaxation time between
two subsequent inversions and which is most clearly illustrated by the correlation plot
in Figure 6.3a was greatly reduced by the T1C correction. In the most extreme case of
vial G containing the liquid with the largest T1 value, the error was reduced from 19.8%
before the correction to 4.2% after the correction. Despite a minimal increase of the
relative error within the RoIs in that process, its average over all vials remains at an
acceptable amount of 6.3% after the correction (before: 4.6%).
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Figure 6.7: RoI analysis of the clinical DCE-MRI experiment. a: T1 maps of the first
and the last acquired IR frame with the positioning of the RoIs in tumor re-
gions (red, green, cyan), in WM (blue) and in the vein (magenta) indicated.
b-f: Dynamic of the mean T1 values in the selected RoIs before (crosses,
circles and diamonds) and after the T1C correction (solid line). Modified
Figure from [53].

6.4.2 Validation Study: Healthy Volunteer

Similar to the phantom experiments, the results of the vivo validation study clearly
suggest the functionality of the proposed method for in vivo measurements. Again, the
T1 maps obtained by IR-MAP are of a good visual quality with only an acceptable noise
enhancement caused by the high acceleration. Additionally, the fact that the average
difference to the undisturbed first IR frame was effectively reduced especially in areas of
large T1 underlines the capability of the T1C correction. As in the phantom experiments,
this is most apparent in the correlation plots in Figure 6.3, but also from the percentage
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differences listed in Table 6.2. The average difference between the undisturbed first IR
frame and the fifth IR frame affected by insufficient relaxation was reduced from up to
37.7% before the correction to a maximum of 7.5% after the application of T1C.

6.4.3 Clinical DCE-MRI Examination

The results of the clinical DCE-MRI measurement successfully demonstrate the capa-
bility of the proposed method for dynamic T1 mapping. The effect of the insufficient
relaxation time is nicely illustrated before the injection of the CA after about 45 s. Al-
though no change in T1 should be visible before that time point, T1 is significantly altered
between the first (0 s) and the second IR frame (9 s). As observed in the results section,
this effect is most apparent in the T1 time courses in Figures 6.7b,d,f, where the T1C
correction successfully restores the T1 plateaus in the tumor regions before the inflow
of the CA. The injection of the CA is clearly visible in the vein (Fig. 6.7e). As soon
as the CA is injected, it dissolves in the blood, significantly reducing its T1 relaxation
time and leading to an instant T1 drop-off after about 45 s. Although a much higher
reduction in T1 is to be expected in the vein over a very short period of time, it is not
visible in the time course due to an insufficient temporal resolution of 9 s between two T1
maps. As the inverted blood is completely replaced by inflowing blood of an equilibrium
magnetization between two IR frames, the effect of the inversion pulses of all previous
IR frames is greatly reduced in these voxels of the FoV. Consequently, no changes due to
an insufficient relaxation occur e.g. in the vein. As expected, T1 in areas where the CA
accumulates (such as the lymphoma) is significantly lowered after the CA injection.

6.4.4 Limitations of the Presented Combination of IR-MAP
and T1C

A high functionality of the proposed combination of IR-MAP for T1 mapping followed
by the application of T1C to correct for T1 errors due to an insufficient relaxation was
demonstrated for all experiments performed in this work. There are, however, some
difficulties and limitations of the approach which have to be considered before its appli-
cation.

First of all, motion of the object during the acquisition of one IR frame can lead to
errors in the reconstructed T1 maps [94]. Similarly, motion between two IR frames can
lead to inconsistencies in the mathematical descriptions of the relaxation process of two
consecutive IR frames, potentially causing errors in the T1C correction. In DCE-MRI of
the brain, however, the combination of little motion of the object and an acquisition time
of 15 s for two consecutive IR frames is expected to cause little motion-related errors.
Although only little motion should occur between two consecutive IR frames, changes
in the object’s position between the first and subsequent IR frames can lead to errors
due to the inversion efficiency map K which is calculated in each pixel of the FoV using
only the first and the second IR frame. This problem is addressed by the application of
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a 3× 3 median filter which smoothens the K maps over several pixels and reduces the
effects of sharp changes in the inversion efficiency, as they can e.g. occur in areas of low
SNR, on the T1C correction.

Lastly, contrast differences between two IR frames caused by the CA injection in DCE-MRI
can lead to errors in the T1C correction. In DCE-MRI measurements of brain tumors,
however, contrast changes in the regions of interest where CA accumulates (such as the
lymphoma in our patient) experience a very slow decrease in T1 compared to the tem-
poral resolution of 9 s per IR frame. Therefore, such errors can be expected to remain
negligible for the DCE-MRI measurement in this chapter.

6.4.5 Temporal Resolution of the Presented Technique

In the presented implementation, the temporal resolution of 9 s was defined by an acqui-
sition period of 6 s followed by a waiting period of 3 s. Either of these time periods could
be shortened in order to obtain a higher temporal resolution.

6.4.6 Advantages of the Proposed Approach over Existing T1
Mapping Techniques

As described in section 5.5.6, there is a variety of T1 mapping techniques, some of which
achieve full brain coverage with 1mm in-plane resolution and up to 1mm slice thickness
in less than 8min. However, segmented 3D acquisitions have to be used to achieve
such high resolutions, in turn leading to low temporal resolutions that are insufficient
for dynamic T1 mapping. The segmentation also prevents a correction of insufficient
relaxation delays similar to the T1C method. Instead, other approaches have to be used
to shorten the waiting period between subsequent inversions.

For LL-based methods, saturation pulses combined with an appropriate delay can be
applied prior to the global inversion pulse of each segment [67, 82], unfortunately also
lowering the SNR of the acquisition (see section 2.6). Alternatively, slice-selective inver-
sion pulses can be used to shorten the waiting period, requiring a thorough assessment
of the inversion efficiency [19]. Both approaches offer whole brain coverage with a slice
thickness of up to 2mm and an in-plane resolution of 1mm with a total acquisition
time of less than 10min, leading to an effective acquisition time of about 20 s per slice.
However, each image representing one specific contrast of the relaxation process con-
sists of data collected after multiple inversions and the temporal resolution of a dynamic
T1 mapping experiment using these techniques would therefore correspond to the total
acquisition time, which is inappropriate for dynamic T1 mapping.

Techniques based on the VFA approach (see section 2.7) enable the 3D acquisition of a
whole brain T1 map with 1mm3 isotropic voxels in less than 8min [22]. As in the LL-
based approaches, however, the temporal resolution of two subsequent T1 maps would
be equal to the acquisition time of the entire 3D volume, which is likewise inappropriate
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for DCE-MRI. In addition to the susceptibility to B1 field inhomogeneities, which was
already mentioned in section 5.5.6, the performance of VFA methods that use spoiled
gradient echo acquisitions is dependent on the value of the RF increment used for RF
spoiling (see section 2.1), which has to be corrected for [74].

In contrast, the proposed technique has a slightly lower spatial resolution of 1.6mm ×
1.6mm × 3mm, but no segmentation is necessary in the acquisition, enabling a self-
contained acquisition of a single-slice T1 map in 6 s. Therefore, only the presented com-
bination of IR-MAP and the subsequent T1 correction for insufficient relaxation offers a
temporal and spatial resolution sufficient for dynamic T1 mapping.
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7 MAP for Arterial Spin Labeling
Perfusion MRI in Small Animals

7.1 Introduction

As described in section 2.16, ASL performed with an ECG-triggered FAIR-LL FLASH
sequence can be used for quantification of myocardial perfusion in small animals. In
these acquisitions, varying heart rates as well as missed ECG-trigger pulses usually lead
to variations in the inversion times TI of different phase encoding steps. This behavior
is illustrated in the histogram in Figure 7.1, which depicts the logged inversion times of
the first 3 s of a FAIR-LL FLASH acquisition performed on a healthy mouse (temporal
bin size: 20ms). Each color indicates the inversion times of all phase encoding steps that
were used for reconstructing one image of the relaxation process.

Figure 7.1: Partial histogram of all inversion times < 3 s logged in an ECG-gated, FAIR
prepared LL FLASH acquisition. Figure from [95].

Variations in the heart rate occurring during the 20-25min of acquisition lead to a TI
distribution rather than a clearly defined single inversion time for each image of the
relaxation process. The width of these distributions increases with the temporal distance
to the inversion pulse, leading to a deterioration of the temporal resolution of the images
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with the inversion time. The use of averaged TI (dotted lines in Fig. 7.1) as it is performed
in the conventional reconstruction is a source of error in the T1 fit and therefore in the
resulting perfusion values.

In this chapter, the MAP algorithm introduced in chapter 3 is adjusted for FAIR acquisi-
tions to improve the temporal resolution of the image series of the relaxation process and
the precision of the T1 fit. For this purpose, the exact inversion time of each acquired
phase encoding step was recorded during the experiment. Based on this time log, all
phase encoding steps were assigned to bins of a temporal resolution of 20ms. The result
was a set of highly undersampled k-spaces which is illustrated in Figure 7.2. A modified
version of the MAP algorithm was then used to reconstruct a full k-space for each of
these undersampled k-spaces.

Figure 7.2: Undersampled k-spaces (top) and images (bottom) corresponding to dif-
ferent inversion time bins of 20ms obtained in the GL acquisition of a
Cartesian FAIR-LL FLASH measurement with the mean inversion times
indicated. Each of these images and k-spaces was individually windowed
for a clear appearance.

This approach offers the following two major benefits:

1. The ability to take into account any variations of TI that are caused i.e. by the
long scan time associated with variable heart rates during the acquisition.

2. To provide a possibility to apply k-space undersampling for eventually reducing
the total acquisition time.

The method was developed in cooperation with Dr. Thomas Troalen and Dr. Frank
Kober at the Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Faculté
de Médecine, Aix-Marseille Université, Marseille, France.

Some of the material in this chapter has been published in [95]. The permission to
reuse images and text from this publication was granted by the International Society for
Magnetic Resonance in Medicine. Reused images are marked in the image caption.
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7.2 Implementation of ASL-MAP

A FAIR-LL FLASH dataset consists of two LL datasets, acquired after a SS and a GL
inversion. Each of these LL datasets consists of nTI (inversion times) × np (phase encod-
ing steps) × nr (readout points) can be processed separately. Using a time log, each of
the phase encoding steps is assigned to a temporal bin (size: 20ms), resulting in a set of
n#bins undersampled k-spaces with inversion times corresponding to the mean over the
TI within the individual bins. The undersampling factor of each of the bins depends on
the TI variation during the entire acquisition, which is in turn dependent on the heart
rate of the animal.

These n#bins k-spaces were used as initial estimates K̂0(x, t) for the first iteration of
the MAP algorithm. As only one receiver coil was used for all acquisitions, no coil
combination had to be included in the reconstruction. The changes in each step of the
reconstruction scheme described in section 3.2 will be pointed out in the following. Again,
the pixel index x will be omitted for reasons of clarity:

1. As before, the current consistent model k-spaces K̂(t) were Fourier transformed to
obtain consistent model images M̂(t).

2. Before the pixel-wise fit, a real-valued relaxation curve in each voxel was calculated
by taking the real part of the complex-valued magnetization M̂(t) after a rotation
to the real axis (Eq. 2.23 with I → M̂):

M̂Real(t) = Real
{
M̂(t) · exp(−iϕ)

}
. (7.1)

As the phase is changing at the zero-crossing of an inversion recovery experiment,
the phase map ϕ was calculated as an average over the phase of the last 80% of
the nTI conventionally reconstructed images, that is after the inversion pulse. A
pixel-wise model fit of Eq. 2.8 for an IR-LL FLASH relaxation process was applied
to obtain model images M(t).

3. The model images M(t) were transformed back to the complex plane by a multi-
plication with the phase exp(iϕ) and Fourier transformed to obtain model k-spaces
K(t).

4. As before, the data consistency was ensured by substituting the measured data
for the model data separately for all undersampled k-spaces resulting in consistent
model k-spaces K̂(t).

7.3 Methods

The experiments were conducted according to a protocol approved by the animal ex-
perimentation committee of the University of Marseille, and conformed with European
guidelines for the care and use of laboratory animals.
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All imaging experiments were performed at the CRMBM, Marseille, France on a Bruker
Biospin 4.7T imager (Ettlingen, Germany). The animals were positioned prone on an
actively decoupled surface coil (Rapid Biomedical, Würzburg, Germany).

All post-processing was performed on a standard desktop PC equipped with an Intel
Core i7-2600 CPU (3.4GHz) using MATLAB (The MathWorks, Natick, MA) and an
IDL environment (RSI, Boulder, CO).

To validate the proposed method, a conventional FAIR-LL FLASH experiment was per-
formed with a healthy C57Bl6J mouse. As described in [54], every repetition started with
an ECG- and respiratory-gated IR pulse, followed by the acquisition of nTI=55 ECG-
gated gradient echoes. This was repeated for all np=64 phase encoding steps (nr=128)
with an additional repetition delay of 3 s for relaxation between successive IR pulses.
Post-processing was performed in three different ways:

• A: The complete dataset including all 55 acquired images of the relaxation process
was used for a conventional reconstruction of the SS and the GL measurement.

• B: First, the same reconstruction as in A was performed. Next, all images visibly
affected by respiratory motion were excluded for the evaluation of the perfusion.

• C: The phase encoding steps were assigned to bins of 20ms, and the MAP algo-
rithm was applied to the n#bins resulting undersampled k-spaces for both the SS
and the GL measurement (5 examplary k-spaces and the corresponding images for
the GL case are given in Fig. 7.2). The result is a set of n#bins model images or,
equivalently, a set of parameters M0, M∗

0 and T ∗1 for every pixel for both acqui-
sitions. These parameters were used with the TI mean values of the conventional
reconstruction (dotted lines in Fig. 7.1) to calculate a series of 55 model images,
which was subsequently used for post-processing.

After the image reconstruction, perfusion maps were calculated separately for A-C as
described in [54].

7.4 Results

The binning resulted in a set of n#bins=357 undersampled k-spaces for both the GL and
the SS inversion that were passed on to the MAP reconstruction. Figure 7.3 shows 5
exemplary contrasts of the relaxation process after the GL (a) and the SS (b) inversion
reconstructed by the conventional reconstruction (A) and using the MAP algorithm
(C) with the mean inversion times of the conventional reconstruction indicated. In the
conventional reconstruction, artifacts caused by respiratory motion are clearly visible (red
arrows). These artifacts are considerably reduced by the model-based reconstruction.

A RoI analysis of the anterior myocardium is depicted in Figure 7.4. It shows relaxation
curves of the SS (blue) and GL (purple) acquisition obtained by the three reconstruction
methods as well as the T1 values obtained by the three-parameter fit of Eq. 2.8. The
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Figure 7.3: Exemplary contrasts of the relaxation process after global (a) and the slice-
selective (b) inversion reconstructed by the conventional reconstruction (A)
and the MAP algorithm (C) with the mean inversion times of the conven-
tional reconstruction indicated. Respiratory artifacts are highlighted by the
red arrows.

images in A which are affected by respiratory motion are indicated in orange. They were
omitted in reconstruction B, leading to a different curve fits and relaxation times. C
shows the images reconstructed using the model-based reconstruction, which is why the
reconstructed images match the fitted curves.

Figure 7.5 shows the three perfusion maps obtained from the different post-processing
techniques A-C. Although the perfusion values of A especially in the myocardium are
higher than in the corresponding areas of the model-based reconstruction C, the perfusion
map C more closely resembles the conventional reconstruction B without images affected
by respiratory motion. This can be best observed in areas affected by respiratory motion
such as the anterior and lateral myocardium.

This observation is confirmed by the perfusion values which are listed in Table 7.1.
It includes perfusion values obtained from different myocardial regions (anterior and
lateral) as well as the entire myocardium and the chest muscle. Again, good concordance
was found between myocardial perfusion assessed after excluding images affected by
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Figure 7.4: Relaxation curves in an anterior RoI obtained from the reconstruction meth-
ods A (all images), B (no images affected by respiratory motion) and C
(MAP reconstructed images. The T1 values obtained in the fit are listed in
the bottom of the respective curves.

respiratory motion (B) and the model-based reconstruction (C).

7.5 Discussion

An extension of the MAP algorithm for a model-based reconstruction of FAIR-LL FLASH
datasets is presented. In conjunction with a time log of all acquired PE steps, this allows
taking into account any variations in TI , which can be caused by variable heart rates or
imperfect R-wave detection during the acquisition. Sorting the acquired data prior to
the reconstruction leads to an excellent temporal resolution <20ms for the model-based
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Figure 7.5: Perfusion maps. Figure from [95].

Region
Conventional Reconstruction

MAP (C)All images (A) Respiration
excluded (B)

Anterior 10.4± 5.2 8.6± 5.5 8.0± 5.9myocardium
Lateral 12.0± 4.3 7.4± 5.5 7.5± 6.2myocardium
Global 10.3± 5.0 8.1± 5.8 8.1± 5.8myocardium
Chest 0.3± 1.5 0.3± 1.5 0.4± 1.7muscle

Table 7.1: Perfusion values in ml g−1 min−1. Data are represented as mean ± standard
deviation within the respective RoI. Table from [95].

fit. This represents a clear improvement in comparison with the average images over a
wide range of inversion times, as it was done in the former implementation [54].

Previous attempts of minimizing respiratory artifacts for ASL studies in small animals
included controlling the respiration using a mechanical ventilator [5,101–105], the use of
velocity-compensated gradients, signal averaging, and higher levels of isoflurane [66,89] or
the exclusion of images affected by respiratory motion [54] as it was performed as a ref-
erence in this study. While mechanical ventilation is technically very challenging in mice
and cannot be routinely performed, the visual identification of images with respiratory
artifact is typically performed manually, which is not feasible for larger studies. Addition-
ally, the respiratory cycle usually varies over the course of an ASL experiment, leading to
a distribution of motion artifacts over the entire relaxation curve. By enforcing a model
of the relaxation process to the relaxation dataset, respiratory artifacts were successfully
suppressed without any further changes in the setup of the measurement. Although the
three perfusion maps seem visually similar, perfusion is overestimated if images affected
by respiratory motion are not excluded from the T1 fit (A vs. B). By using the constraint
of a mono-exponential relaxation, the MAP algorithm automatically suppresses respira-
tory artifacts. To further minimize respiratory artifacts and to improve the accuracy of
the fit, a time log of the respiratory motion of the animals could additionally be included
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in the post-processing, and phase encoding steps affected by respiratory motion could be
removed before the model-based reconstruction.

Finally, the new technique holds the potential for a quantification of myocardial per-
fusion from further undersampled k-spaces, promising shorter scan times in the future.
Although the initial k-spaces used in the model-based reconstruction were each under-
sampled with respect to a Nyquist sampled k-space for the desired FoV, the model-based
reconstruction C was obtained from the same dataset as the fully sampled reconstruc-
tions A and B. The reduction of the data used for the undersampled k-spaces of C was
limited by the SNR in our experiment. To enable a quantification of the perfusion from
less data or, equivalently, reduce the acquisition time, data collection would have to be
performed with multiple receiver channels or at higher field strengths to obtain a better
SNR.
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8 Consideration of Slice Profiles
(CSP) in IR-LL T1 Mapping

8.1 Introduction

As already mentioned in the theory chapter, numerous T1 mapping techniques make use
of the Look-Locker concept [59]. After a suitable magnetization preparation, excitation
pulses are applied continuously to acquire a set of images along the relaxation curve (Fig.
8.2). After an inversion recovery magnetization preparation, the three-parameter model
of Eq. 2.8 is typically used for describing the relaxation curve. The effect of the repeated
application of RF pulses is respected by introducing an effective magnetization M∗

0 as
well as an effective longitudinal relaxation parameter T ∗1 . After fitting, these parameters
can be used to derive the true longitudinal relaxation parameter T1 using Eq. 2.9.

The accuracy of the T1 obtained in these measurements is highly dependent on experi-
mental conditions. Systematic errors can for example be caused by the transmit coil’s
B1 inhomogeneity [19] or inaccurate preparation pulses [52]. A further source of error
is the quality of the pulse profile used for slice selection. Especially for fast imaging
sequences, short excitation pulses are frequently used, leading to a blurred slice profile as
well as a broad distribution of flip angles in the direction of the slice selection. The latter
problem has been addressed for T1 mapping using 2D inversion recovery steady-state free
precession sequences [17]. In [83], a local flip angle correction for T1 mapping using 3D
IR-LL FLASH sequences has been presented. This 3D specific technique assumes one
single flip angle in each voxel determined by the position of the voxel along the slice
direction without taking into account the shape of the RF excitation pulses.

In contrast to the previous chapters, which describe various implementations and ap-
plications of the MAP algorithm, this chapter introduces a new way of modeling the
relaxation process in a 2D IR-LL FLASH measurement, taking into account the flip
angle distribution caused by finite slice excitation pulses. This model will be called
Consideration of Slice Profiles (CSP) relaxation model in the following.

A majority of the content of this chapter has been published in [97]. The permission to
reuse images and text from this publication was granted by Elsevier. Reused images are
marked in the image caption.
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8.2 The CSP Model

As described in section 2.9, the RF pulses that are usually applied for slice selection
lead to a z-dependent distribution of different flip angles α(z). It can be derived using a
Fourier transform of the excitation pulse A(t) according to Eq. 2.18.

Figure 8.1: a: Hanning-filtered sinc pulse of 800µs duration in the time domain. b:
Corresponding excitation profile obtained by a Fourier transform (red line)
and the desired perfect rectangular profile for a nominal flip angle of α0 =7°,
a repetition time of TR=4.24ms and slice thickness 10mm (black dashed
line). c: Corresponding IR-LL relaxation signal M(t, z) for T1 =800ms
weighted with the excitation profile α(z). Figure from [97].

As an example, a Hanning-filtered sinc pulse according to Eq. 2.17 with a duration of
800µs and a sampling rate of 0.1µs (i.e. 8000 samples) and the corresponding flip angle
distribution α(z) across the excited slice for a nominal flip angle of α0 =7° is depicted
in Figure 8.1a-b. To derive an expression for an α0-dependent relaxation model, the
distribution α(z) was included in the inversion recovery Look-Locker relaxation model
described by Eq. 2.8. This leads to a z-dependent relaxation curve:

M(t, z) = M∗
0 (α(z))− (M0 +M∗

0 (α(z))) · exp (−t/T ∗1 (α(z))) . (8.1)

To simulate the effect of an RF excitation of angle α, these relaxation curves have to
be weighted with sin(α). The result is a z-dependent distribution S(t, z) of relaxation
curves over the excited slice:

S(t, z) ∝ sin (α(z)) ·M(t, z) ≈ α(z) ·M(t, z) . (8.2)

The last approximation only holds for small flip angles. Finally, the relaxation curve of
the entire voxel can be calculated by an integral of these relaxation signals over the all
locations z within the excited slice:

M(t) ∝
∫
slice

S(t, z) dz ≈
∫
slice

α(z) ·M(t, z) dz . (8.3)
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The relaxation curves described by this model include the slice profile of the excitation
pulse in the IR-LL relaxation model. They will be called CSP relaxation curves hence-
forth. Figure 8.1c shows the relaxation distribution S(t, z) for the exemplary Hanning-
filtered sinc pulse.

8.3 Methods

All imaging experiments were carried out on a 3T whole-body scanner (MAGNETOM
Trio, Siemens AG Healthcare Sector, Erlangen, Germany) employing a 12 channel phased-
array head coil for signal reception.

All post-processing was performed on a standard desktop PC equipped with an Intel
Core i7-2600 CPU (3.4GHz) using MATLAB (The MathWorks, Natick, MA).

For all simulations and measurements performed in this work, Hanning-filtered sinc pulses
described by Eq. 2.17 with −1 < t < 1 were used for excitation. The Hanning filter
ensures a smooth excitation profile with a relatively broad, flat top [19].

To simulate a highly resolved flip angle distribution, a pulse with 8000 sample points
was created according to Eq. 2.17 and zero-filled to a size of 2 · 105. As described in
the theory section 2.9, the resulting excitation pulse A(t) was Fourier transformed (Eq.
2.18) and the real part of the resulting distribution p̃(ω) was reparametrized and rescaled
to obtain α(z). This distribution was inserted in Eqs. 8.1, 8.2 and 8.3 to obtain CSP
relaxation curves.

A dictionary-based fitting approach as described in section 2.10 was used to find the CSP
relaxation curve best describing a measured signal. The atoms of the dictionary were
precalculated for various sets of underlying parameters (T1, α0, TR). It included 1000
different T1 values between 5ms and 5000ms. In-plane variations of the flip angle were
taken into account by including flip angles in the interval [3°, 4°, . . ., 16°]. TR is known
very precisely and a variation was not considered in the dictionary. The equilibrium
magnetization M0 represents a scaling factor in Eq. 8.3 that will be obtained by the
fitting process. The model curves were thus calculated usingM0 =1. First, the Hanning-
filtered sinc pulse given by Eq. 2.17 was used with a nominal flip angle α0 to calculate
a flip angle distribution α(z) as described in section 2.9. Next, α(z) and the nominal
relaxation time T1 were used in conjunction with Eqs. 2.5 and 2.6 to calculate T ∗1 and
M∗

0 distributions for the initial parameter set [T1, α0]. These were in turn used in Eqs.
8.1 and 8.2 to obtain a signal distribution across the excited slice. Finally, an integration
as in Eq. 8.3 delivered the CSP prototype belonging to the initial parameter set [T1, α0].
Additionally, a constant was added as prototype for pixels not following an exponential
relaxation. The resulting dictionary was used in conjunction with an OMP algorithm
[78] to find the CSP curve best describing the measured signal and thus the corresponding
parameter set [T1, α0].
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8.3.1 Numerical Simulations

To investigate the accuracy of the conventional three-parameter relaxation model, a
set of CSP relaxation curves for 80 T1 values between 50ms and 4000ms for different
combinations of TR= [4.24ms, 7.00ms] and α0 = [6°, 12°] was calculated. The thermal
equilibrium magnetization was set to M0 =1. The maximum inversion time was set to
15 s to make sure that the relaxation curve always covered the saturation magnetization
M∗

0 . A conventional mono-exponential fit was applied to these CSP curves and the
results were compared to the initial relaxation parameters T1 for every set of parameters
[T1, TR, α0]. As a fit of the CSP model to the simulated curves leads to exactly the initial
T1 values, these results are not shown.

Additionally, the influence of the temporal coverage of the relaxation signal (which will
be called maximum inversion time TImax in the following) on the mono-exponential fit
was simulated for different parameter sets [T1, α0] using different values of TImax between
1 s and 6 s.

8.3.2 Phantom Experiments

A validation study was performed with a phantom consisting of 7 vials with different
concentrations of CA (Resovist®, Bayer Schering Pharma, Berlin, Germany) and copper
sulphate (CuSO4) using an IR-LL FLASH sequence (FoV: 250×250×10mm3, TE: 1.9ms,
TR: [4.24ms, 7.00ms], α0: [6°, 12°]) with a non-selective, adiabatic IR pulse and a Golden
Ratio [108] radial k-space trajectory (1000 projections, 128 readouts points). A Hanning-
filtered sinc pulse according to Eq. 2.17 was used for slice excitation. To obtain a
Nyquist sampled k-space for every inversion time, the measurement was segmented into
202 consecutive IR magnetization preparations, each of them with a different order of
projections. A schematic illustration of the segmentation is given in Figure 8.2. Each
of these acquisitions was followed by a delay of 30 s to allow for a complete relaxation,
leading to a total scan time of ~ 2 h varying slightly with TR. Reordering the acquired
projections according to their inversion time resulted in 1000 Nyquist sampled k-spaces
each consisting of 202 projections - the Nyquist limit for a radial k-space with 128 readout
points per projection. Each of these images describing the contrast at different inversion
times of the relaxation process was separately gridded using self-calibrating GROG (see
section 2.2). After a Fourier transform, the images of the individual coils were combined
using the SoS. To take into account the sign change of the relaxation curve after inversion,
the sign of the individual coil entries was respected in that process (see section 2.11).

The dictionary look-up CSP evaluation described above was used in a pixel by pixel fash-
ion to obtain a T1 map from the acquired segmented IR-LL relaxation process. For com-
parison to the conventional signal model as described by Eq. 2.8, an mono-EXPonential
three-parameter fit (EXP) was additionally applied.

As in the numerical simulations, the dependence of both fitting methods on the coverage
of the relaxation process used for the fit was examined. For this purpose, the TImax value
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Figure 8.2: Schematic illustration of an IR-LL FLASH acquisition. After the applica-
tion of an inversion pulse, multiple RF pulses are applied to monitor the
relaxation behavior (T ∗1 relaxation indicated in red). In a segmented acqui-
sition, this acquisition period is followed by a relaxation break (T1 relaxation
indicated in blue) before the next IR-LL FLASH acquisition is carried out.
By segmenting the k-space to be acquired into multiple IR-LL FLASH ac-
quisitions, a well-resolved time-series of the T ∗1 relaxation process can be
obtained in every voxel. Figure from [97].

of the reference IR-LL FLASH dataset was artificially reduced to sampling times of 2 s,
3 s and 4 s before the application of the CSP or the mono-exponential fit.

Ground truth T1 values were obtained using a segmented inversion recovery sequence as
described in section 2.4. Here, only one RF pulse was applied after each non-selective
IR pulse and a delay of 30 s was added prior to the next inversion to ensure a complete
relaxation. This was repeated for incremented projection angles and inversion times such
that a Nyquist sampled image was obtained for 13 different contrasts corresponding to
inversion times between 2ms and 8000ms. A fit of Eq. 2.2 delivered a ground truth T1
map that was used to evaluate the accuracy of the CSP as well as the mono-exponential
fit.
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8.3.3 In Vivo Measurements

All human in vivo studies were approved by our local ethics committee. They were
performed on 7 healthy volunteers aged between 21 and 26 years, and written informed
consents were obtained from the subjects prior to scanning. Measurements of the hu-
man brain were carried out with the same IR-LL FLASH sequence as in the phantom
experiments (FoV: 250×250×8mm3, TE: 1.9ms, TR: 4.24ms, α0: 12°, projections: 1000,
readout points: 128). For time efficiency, the number of segments was reduced to 101
corresponding to a two-fold undersampling of the resulting segmented datasets, and the
delay between two consecutive segments was reduced to 15 s, leading to a total scan time
of ~ 0.5 h. The same post-processing as in the phantom experiments was used to obtain
T1 with both the conventional and the new method.

To examine the dependency of the accuracy of the CSP model and the EXP model on
the inversion time TI, the Normalized Root-Mean-Square Error (NRMSE)

NRMSE(t) =

√√√√∑N
x=1 [|Smeasured(x, t)| − |Smodel(x, t)|]2∑N

x=1 |Smeasured(x, t)|2
(8.4)

of the model images Smodel (obtained using CSP and EXP) with respect to the measured
images Smeasured (simply gridded without any fitting) was calculated. N represents the
number of image pixels.

Again, the dependence of CSP as well as EXP fitting on the coverage of the relaxation
process used for the fit was examined. As in the phantom study, the TImax values of the
reference IR-LL FLASH dataset were artificially reduced to sampling times of 2 s, 3 s and
4 s before the application of the CSP or the mono-exponential fit. With the resulting T1
maps, a RoI analysis was performed in WM, GM and CSF regions of all 7 volunteers.

8.4 Results

8.4.1 Numerical Simulations

Figure 8.3 shows the results of the numerical simulations. A comparison of the simu-
lated CSP relaxation curves (green dashed lines) and the fitted mono-exponential relax-
ation curves (red dash-dot lines) for T1 = [200ms, 1000ms, 2500ms] is shown in Figures
8.3a-b. For a better illustration of deviations between the two models, Figures 8.3c-d
depict the differences between the CSP curve and the corresponding mono-exponential
fit for the same T1 values. For very short inversion times, the EXP model noticeably
overestimates the CSP curves (see negative differences). For rising inversion times, the
mono-exponential model alternately over- and underestimates the simulated CSP curves.
As the signal approaches the saturation value, the fit underestimates the CSP signal for
all combinations of [T1, TR, α0]. This behavior becomes more prominent, the shorter TR
and the larger T1 as well as α0.
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Figure 8.3: Numerical simulations. a-b: Simulated CSP relaxation curves (green
dashed lines) and the curves obtained from a mono-exponential fit (red
dash-dot lines) for different combinations of relaxation time T1, repetition
time TR and flip angle α0. c-d: Differences between the CSP and the EXP
curves shown in Figures 8.3a-b. e: Influence of the maximum inversion time
TImax on the accuracy of the EXP fit for different parameter sets and T1
values of 500ms, 1500ms and 2500ms. Figure from [97].

Figure 8.3e demonstrates the influence of the coverage of the relaxation process on the
results of the EXP fit for exemplary T1 values of 500ms, 1500ms and 2500ms (vertical
axis). It can be clearly seen that the accuracy of the mono-exponential fit strongly
depends on TImax (horizontal axis). While there is a good agreement of all fitted values
for the shortest T1 of 500ms, there is a systematic overestimation of T1 by the mono-
exponential fit increasing with the absolute value of T1. For the highest T1 value of
2500ms, these deviations already start for TImax values of about 4 s. All observations
made in Figures 8.3a-d regarding the influence of the flip angle and the repetition time
on the systematic deviations of the EXP model are confirmed by Figure 8.3e. Again,
the overestimation of the fitted T1 values increases with larger α0 while it decreases with
longer TR.
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8.4.2 Phantom Experiments

A mono-exponential fit of 100 pixels using standard MATLAB (The MathWorks, Natick,
MA) routines took 3 s, the implemented CSP dictionary look-up for 100 pixels lasted 2.3
minutes on one single core of a standard desktop PC equipped with an Intel Core i7-2600
CPU (3.4GHz).

Results of the phantom experiments are shown in Figures 8.4 and 8.5. Figures 8.4a-b
depict exemplary voxels of the relaxation process in 3 different vials (black solid lines) as
well as model curves obtained from both the CSP (green dashed lines) and EXP approach
(red dash-dot lines). The associated vials are indicated in Figure 8.5b. Figures 8.4c-d
show differences between the measured relaxation curve and the CSP (green) as well as
the EXP (red) model curves for vial C and parameter combinations corresponding to
Figures 8.4a-b.

Figure 8.4: Phantom experiments. a-b: Measured relaxation curves (black solid lines),
CSP model curves (green dashed lines) and EXP model curves (red dash-dot
lines) for exemplary voxels and different sets of parameters [TR, α0]. c-d:
Differences between measured relaxation curve and CSP (green) as well
as mono-exponential (red) curve for vial C. The parameter combinations
correspond to Figures 8.4a-b. Figure from [97].

In all cases, the CSP relaxation curves represent an accurate model for the measured
relaxation curves. On the contrary, the similar shapes of the curves in Figures 8.4c-d and
Figures 8.3c-d confirm the systematic errors introduced by the EXP model which were
already observed in the simulations. Again, an extension of TR reduces the deviations
(see Fig. 8.3d). These differences are significantly lower for the CSP model.
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Figure 8.5: Phantom experiments. Influence of the maximum inversion time TImax on
both fitting methods. From left to right, TImax values of 4 s, 3 s and 2 s are
shown. a: Difference between the T1 values obtained from the ground truth
segmented IR experiment and the T1 values obtained from the CSP (green)
as well as the EXP fit (red) for different parameter sets. b: Reference
T1 map and T1 maps obtained by the CSP (top) as well as the EXP fit
(bottom) for values of TImax decreasing from left to right. Figure from [97].

Figure 8.5 shows the influence of the maximum inversion time TImax covered by the
acquired data on both fitting methods. From left to right, sampling times TImax of
4 s, 3 s and 2 s were used for the fit. In the top row, Figure 8.5a depicts the difference
between the reference T1 values obtained in the ground truth experiment and the CSP
fit (green) as well as the mono-exponential fit (red) for different combinations of [TR, α0].
Each point represents the mean over a RoI in the vials indicated in green in Figure 8.5b.
For relatively short T1 values, both models are in good agreement with the reference
regardless of TImax. As T1 increases, a systematic deviation can be observed for the
mono-exponentially fitted values, strongly increasing with the reduction of TImax. As
predicted by the simulations, the error increases with the flip angle α0 and decreases with
the repetition time TR. For a parameter set of TR=4.24ms, α0 =12°, TImax=2 s and a
T1 of about 3000ms, the difference in T1 reaches values of more than 1000ms. On the
contrary, despite a slight overestimation of T1 for high relaxation times of about 3000ms,
the CSP model delivers accurate T1 values for all ranges of T1. More importantly, the
T1 results of the CSP model, in contrast to the EXP model, are virtually independent of
the TImax value used for the fit.

Figure 8.5b shows the corresponding T1 maps obtained from the ground true reference
as well as the CSP (top) and the EXP fit (bottom). Again, TImax values of 4 s, 3 s and
2 s were used from left to right. The maps confirm the observation that the CSP model
results in accurate T1 values independent of the total sampling time while the accuracy
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of the values obtained from the EXP fit is strongly influenced by TImax (especially visible
in the red vials of the T1 maps).

8.4.3 In Vivo Measurements

Figure 8.6a shows the measured relaxation curves for two representative voxels (indi-
cated in Fig. 8.6e) of the brain of volunteer V2 (black solid lines) as well as the corre-
sponding model curves obtained from both the conventional mono-exponential fit (red
dash-dot lines) and the dictionary-based CSP approach (green dashed lines). As in the
numerical simulations and the phantom experiments, there is an overestimation of the
mono-exponential model for very short inversion times and an underestimation of the
saturation magnetization for long inversion times. For a better visualization of these
systematic errors, differences between the measured curve and the CSP (green) as well
as the EXP model (red) are shown for the same two exemplary voxels A (Fig. 8.6b)
and B (Fig. 8.6c). Although differences occur for both models, they remain significantly
smaller for the CSP model. Again, a higher absolute value of T1 leads to higher devia-
tions (see Fig. 8.6c). Additionally, the deviations between the measured image spaces
and the CSP (top) and the EXP model (bottom) are depicted in Figure 8.6d for exem-
plary inversion times as indicated in blue in Figure 8.6a. A notable difference is present
in both models especially for the shortest inversion times. These deviations decrease
with longer inversion times. However, it remains considerably lower for the CSP model
than for the mono-exponential model over the entire time course.

Again, the influence of TImax on the accuracy of the T1 fit was investigated. Figure 8.6e
shows the results of the CSP (top row) and the EXP fit (bottom row) for TImax values
of 2 s, 3 s and 4 s. For a better visualization of the differences, a three-fold difference
between the longest temporal coverage (4 s) and the two others is depicted additionally
to the T1 maps. While the T1 maps of the CSP fit remain unchanged for all values of
TImax, the results of the EXP fit especially in regions of high T1 values such as the CSF
are highly dependent on TImax.

The investigation of the NRMSE is shown in Figure 8.7. While Figure 8.7a shows the
temporal evolution of the NRMSE between the measured images and the EXP model
image (solid lines) and the CSP model image (dotted lines) for 3 exemplary volunteers,
Figure 8.7b shows the mean over all volunteers V1-V7. All temporal courses show sys-
tematic deviations similar to the observations made in the simulations and the phantom
experiments. However, as the NRMSE is positively defined (compare Eq. 8.4), no nega-
tive deviations can occur and the previously observed curves are reflected to the positive
part of the vertical axis. Although there are deviations for both models, they remain
significantly lower for the CSP model, which is demonstrated by a maximum value of
0.28 for the NRMSE of the EXP model compared to 0.12 for the CSP model.

The values of the in vivo RoI analysis are listed in Tables 8.1-8.3 for different tissue types.
While the T1 values obtained by the EXP model are strongly dependent on the temporal
coverage TImax, they are nearly independent of TImax if the CSP model is used for the
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Figure 8.6: In vivo measurement of volunteer V2 with TR=4.24ms and α0 =12°. a:
Measured (black solid lines) and model (green dashed and red dash-dot
lines) relaxation curves at the voxels indicated in Figure 8.6e. b-c: Differ-
ence between measured relaxation curves and CSP (green) as well as EXP
model (red) for voxel A (a) and B (b). d: Differences between measured
and model image spaces at the inversion times indicated in blue in Fig-
ure 8.6a. e: T1 maps obtained from CSP (top) and EXP fit (bottom) for
TImax= [2 s, 3 s, 4 s] as well as three-fold differences between the best tem-
poral coverage (TImax=4 s) and the poorer coverages of 3 s and 2 s. Figure
from [97].

fit. This is most clearly illustrated by the maximum percentage difference between the
highest TImax of 4 s (that is the best temporal coverage) and the other TImax values of 2 s
and 3 s. While it stays below 0.7% (TImax=3 s) and below 1.9% (TImax=2 s) using the
CSP fit, it reaches values of 14.5% (TImax=3 s) and even 54.9% (TImax=2 s) in the CSF
using the EXP model. Even though the differences are considerably smaller for tissues
of smaller T1, differences of about 9.6% (TImax=2 s) or 2.9% (TImax=3 s) still occur in
the GM using the EXP fit compared to 1.8% (TImax=2 s) or 0.5% (TImax=3 s) for the
CSP model. Even in the WM, a difference of 1.8% occurs for the smallest coverage of
TImax=2 s using the EXP fit, while it remains at 0.4% using CSP.
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Figure 8.7: Temporal evolution of the NRMSE between the measured images and both
models with the inversion time TI (EXP: Solid lines, CSP: Dotted lines).
a: NRMSE of volunteers V2 (red), V5 (blue) and V7 (green). b: Mean
NRMSE over all volunteers. Figure from [97].

TImax Model V1 V2 V3 V4 V5 V6 V7

4 s
EXP µ± σ 748 781 781 716 732 703 703

(ms) ± 9 ± 21 ± 10 ± 13 ± 23 ± 9 ± 8

CSP µ± σ 759 794 791 724 743 713 713
(ms) ± 8 ± 21 ± 10 ± 13 ± 24 ± 9 ± 8

3 s

EXP
µ± σ 751 785 784 718 735 706 705
(ms) ± 8 ± 21 ± 10 ± 13 ± 24 ± 9 ± 8

diff (%) 0.4 0.5 0.4 0.3 0.4 0.3 0.3

CSP
µ± σ 759 795 792 725 743 713 713
(ms) ± 8 ± 22 ± 10 ± 14 ± 24 ± 9 ± 8

diff (%) 0 0.1 0.1 0.1 0 0.1 0

2 s

EXP
µ± σ 758 795 793 724 742 711 710
(ms) ± 9 ± 23 ± 11 ± 13 ± 24 ± 10 ± 8

diff (%) 1.4 1.8 1.6 1.2 1.3 1.1 1.0

CSP
µ± σ 761 797 795 728 744 715 713
(ms) ± 9 ± 23 ± 11 ± 14 ± 23 ± 10 ± 8

diff (%) 0.3 0.3 0.4 0.4 0.1 0.2 0.1

Table 8.1: In vivo study. Means (µ) and standard deviations (σ) of T1 in WM regions
obtained with EXP and CSP fitting and different temporal coverages TImax
are listed for all 7 volunteers. Additionally, the percentage difference to the
best temporal coverage TImax=4 s is listed for the shorter coverages of 3 s
and 2 s. Table from [97].

8.5 Discussion

For certain combinations of T1, TR and α0 or a poor temporal coverage of the relaxation
process, the CSP model offers an essential extension of the mono-exponential model
which is widely-used for describing the relaxation behavior of an IR-LL FLASH sequence.
Application areas as well as limitations of the CSP model will be discussed in the following
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TImax Model V1 V2 V3 V4 V5 V6 V7

4 s
EXP µ± σ 1415 1393 1411 1507 1508 1499 1475

(ms) ± 77 ± 77 ± 60 ± 77 ± 129 ± 66 ± 49

CSP µ± σ 1438 1421 1437 1527 1527 1516 1494
(ms) ± 76 ± 76 ± 60 ± 73 ± 125 ± 64 ± 46

3 s

EXP
µ± σ 1444 1427 1452 1546 1547 1539 1508
(ms) ± 80 ± 84 ± 66 ± 82 ± 138 ± 71 ± 51

diff (%) 2.1 2.4 2.9 2.6 2.6 2.6 2.2

CSP
µ± σ 1435 1423 1445 1528 1527 1523 1495
(ms) ± 74 ± 77 ± 61 ± 74 ± 125 ± 65 ± 47

diff (%) 0.2 0.1 0.5 0 0 0.4 0.1

2 s

EXP
µ± σ 1514 1512 1546 1642 1640 1641 1602
(ms) ± 95 ± 101 ± 79 ± 101 ± 163 ± 85 ± 63

diff (%) 7.1 8.6 9.6 8.9 8.7 9.5 8.6

CSP
µ± σ 1437 1430 1460 1540 1531 1543 1513
(ms) ± 77 ± 78 ± 64 ± 85 ± 127 ± 64 ± 54

diff (%) 0.1 0.6 1.6 0.8 0.3 1.8 1.3

Table 8.2: In vivo study. Means (µ) and standard deviations (σ) of T1 in GM regions
obtained with EXP and CSP fitting and different temporal coverages TImax
are listed for all 7 volunteers. Additionally, the percentage difference to the
best temporal coverage TImax=4 s is listed for the shorter coverages of 3 s
and 2 s. Table from [97].

section.

8.5.1 Limitations of the Mono-exponential Relaxation Model

Numerical simulations and phantom experiments show that the ability to adequately
describe the relaxation process using the mono-exponential model largely depends on
the choice of TR and α0 as well as on the T1 value. If, especially for long T1 relaxation
times, TR becomes too short or α0 too large, there is an increasing deviation between the
EXP model and the measured relaxation curve. It therefore seems advisable to optimize
the parameter set [α0, TR] depending on the quality of the excitation pulse applied or
alternatively use accurately defined slice profiles in cases where large α0 and short TR
are inevitable.

Additionally, the accuracy of the conventional model depends on the relaxation parameter
T1. As T1 increases, the difference to the actual relaxation curve grows. Despite clear
deviations of the mono-exponential model from the actual relaxation curves, the error in
the determination of T1 stays acceptably low for most in vivo applications. However, in
model-based reconstruction algorithms [8, 25, 90, 94], the underlying model is iteratively
enforced to the acquired data and the systematic error of the conventional EXP model
would therefore be enhanced within each iteration (see chapters 3, 5 and 4). In these
cases where a very precise modeling of the course of the relaxation is of importance,
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TImax Model V1 V2 V3 V4 V5 V6 V7

4 s
EXP µ± σ 3052 2460 2832 2731 2985 2421 2427

(ms) ± 884 ± 547 ± 624 ± 574 ± 626 ± 459 ± 371

CSP µ± σ 2826 2397 2687 2613 2807 2373 2380
(ms) ± 637 ± 445 ± 484 ± 447 ± 460 ± 393 ± 314

3 s

EXP
µ± σ 3495 2706 3182 3064 3402 2659 2652
(ms) ± 1239 ± 694 ± 812 ± 755 ± 861 ± 569 ± 450

diff (%) 14.5 10.0 12.3 12.2 13.9 9.8 9.3

CSP
µ± σ 2807 2391 2673 2614 2797 2370 2375
(ms) ± 635 ± 435 ± 471 ± 443 ± 456 ± 389 ± 303

diff (%) 0.7 0.2 0.5 0 0.4 0.1 0.2

2 s

EXP
µ± σ 4726 3318 4103 3902 4527 3202 3171
(ms) ± 2490 ± 1136 ± 1454 ± 1290 ± 1677 ± 833 ± 653

diff (%) 54.9 34.9 44.9 42.9 51.6 32.3 30.7

CSP
µ± σ 2772 2386 2654 2608 2784 2358 2360
(ms) ± 629 ± 431 ± 460 ± 430 ± 454 ± 381 ± 283

diff (%) 1.9 0.4 1.2 0.2 0.8 0.6 0.9

Table 8.3: In vivo study. Means (µ) and standard deviations (σ) of T1 in CSF regions
obtained with EXP and CSP fitting and different temporal coverages TImax
are listed for all 7 volunteers. Additionally, the percentage difference to the
best temporal coverage TImax=4 s is listed for the shorter coverages of 3 s
and 2 s. Table from [97].

the proposed CSP model should be used instead of the conventional mono-exponential
model.

Finally, the accuracy of the mono-exponential fit is strongly related to the temporal
coverage of the relaxation process by the acquired signal that is used for the fit. Small
TImax values lead to a strong weighting of the initial increase of the magnetization after
the inversion pulse. In this case, insufficient information is available about the effective
steady-state magnetization M∗

0 usually reached for longer inversion times. The very
pronounced systematic deviations between the measured curve and the EXP model result
in the observed overestimation of T1. In contrast, the weighting of the exponential
increase and the steady state magnetization M∗

0 for the typical T1 range of human tissue
is more balanced for larger TImax values. Despite obvious systematic errors, this leads
to a better accuracy in the resulting T1 values of the EXP model.

These deviations are significantly smaller for the CSP model, which was found to be
largely independent of the signal coverage in all experiments performed. It therefore
represents an improvement of the conventional mono-exponential fit in applications where
only short sampling times are feasible.
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8.5.2 Limitations of the CSP model

A straightforward but quite lengthy implementation of the CSP dictionary look-up was
used in this work to demonstrate the functionality of the method. However, the duration
of the look-up for an entire dataset can easily be shortened to a few seconds by starting
with a broader spacing of the T1 parameters used in the dictionary of the first look-up
which is recursively reduced in multiple iterations.

In all experiments, the courses of the CSP curves were in very good agreement with the
actual relaxation curves. They represent a simple extension of the mono-exponential
model for modeling the IR-LL relaxation process and become essential especially if short
TR, large α0 or short TImax are used in the sequence design. The quality of the CSP model
depends on the precision of the transmit coil’s B1 fields used for slice excitation defining
the flip angle distribution α(z). B1 inhomogeneities would result in spatial variations in
the distribution, leading to differences between the expected and measured slice profile
relaxation curves. Instead of re-examining the value of the nominal flip angle used in
the sequence design and replacing it by a more accurate estimate as it was proposed
in [19], a wide range of flip angles was used to create the CSP signal prototypes of the
dictionary.

According to [19], a low inversion efficiency can introduce systematic errors in the T1 eval-
uation using IR-LL FLASH sequences. Another source of error are off-center inversion
pulses causing magnetization transfer effects leading to a reduced initial magnetization
−M0 and therefore errors in the calculation of T1 using Eq. 2.9. Moreover, slice-selective
inversion can lead to arterial spin labeling effects altering the relaxation behavior. To
minimize these effects, non-selective, adiabatic inversion pulses were used for all exper-
iments in this work. As the CSP relaxation model equally well described the relaxing
signal of both the phantom as well as the in vivo experiments, it seems reasonable to
assume that none of these effects were large enough to produce relevant changes in the
relaxation behavior for the experiments in this chapter.

8.5.3 Limitations in the Assumption of a Mono-exponential
Behavior in Every Voxel

Both the mono-exponential and the CSP model are based on the assumption of a single
relaxation time in every voxel. As already mentioned in section 4.5.9, this assumption
is no longer valid for voxels containing multiple tissues of different relaxation parame-
ters [90, 94]. To correct for these errors in the proposed CSP model, relaxation models
with multiple exponentials would have to be considered in the dictionary used for the
fit. However, for most clinical situations with a sufficiently high spatial resolution, ho-
mogeneous tissue can be assumed in every voxel. As an example, spatial resolutions of
up to 1mm×1mm×2mm were previously achieved using segmented IR-LL techniques
[19,67,82]. An evaluation of multiple relaxation times in one pixel goes beyond the scope
of this work.
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8.5.4 Comparison of the Obtained T1 Values to Standard
Literature

Although there is a wide range of literature WM and GM values, the T1 values of GM
obtained in this study (ranging from 1393ms to 1527ms) for relaxation curves of a good
temporal coverage of the relaxation (TImax=4 s) are in agreement to many literature
values [30, 65, 110] with a range from 1331ms to 1470ms. In contrary, T1 values ob-
tained from an EXP fit with the poorest temporal coverage of TImax=2 s are ranging
from 1512ms to 1642ms - a systematic error which is not in agreement with litera-
ture. Although the values of WM (ranging from 703ms to 794ms for both models with
TImax=4 s) are smaller than many literature values for overall WM such as 832ms in
[106], they are in agreement with the value of 761ms found in [110] for frontal WM. For
these values, the coverage-dependent differences were relatively small (<1.8%). Due to
the large standard deviation within the RoIs of the CSF, these values were not compared
to other literature.

8.5.5 Application Areas of the New Model

In most parameter mapping applications, a trade-off between spatial and temporal reso-
lution has to be made for image reconstruction to obtain a set of images of the relaxation
process. Subsequently, a pixel by pixel fit is applied to these images to obtain a T1 and
M0 map. Despite relatively large inaccuracies in the course of the relaxation process, the
conventional mono-exponential fit generally results in a sufficient accuracy of the longitu-
dinal relaxation parameter T1. If only one fit is performed, discrepancies between model
and measured data do not lead to any consequential errors and the model can be used
without major concerns if the previously described limitations regarding the parameters
TR, α0 and TImax are taken into account in the sequence design.

In contrast, any inaccuracies in the relaxation model can be of great importance in
iterative model-based reconstruction techniques for parameter mapping such as the MAP
technique presented in this thesis. These methods try to obtain parameter maps out of
highly undersampled datasets by maximizing the consistency between the measured data
and the applied model iteratively. Therefore, even small model violations can accumulate
to considerable errors in the reconstruction. An artifact-free reconstruction is achievable
only if a very accurate model is available [90]. The maximum possible reduction factor
critically depends on the accuracy of the utilized model [25].

The influence of imperfect slice profiles was already addressed in the MAP implementa-
tions in chapters 5 and 6 by using a dictionary-based fitting approach. In this manner,
the flip angle distribution was approximated by a linear combination of multiple relax-
ation curves to the relaxation data (see section 5.5.3). Although this was accurate enough
for the MAP algorithm to converge, including the CSP model into the previously de-
scribed implementations of MAP promises a way of further minimizing systematic model
violations and improve the results of the MAP algorithm in future applications.
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9 MAP for AIF Determination in
Myocardial Perfusion MRI

9.1 Introduction

As described in section 2.14, myocardial first-pass DCE-MRI enables the visual assess-
ment of myocardial perfusion from a series of T1-weighted images. For a quantitative
evaluation of myocardial blood flow using the linear approximation ∆(C) ∝ TSR1C be-
tween the change in signal intensity due to the CA injection and the CA concentration
itself (Eq. 2.31), the condition TSR1C � 1 must be fulfilled, and unsaturated AIF and
TECs must be available (section 2.15).

As described in section 2.15, conventional methods for quantitative myocardial perfusion
measurements try to separately acquire an unsaturated but low-SNR as well as a satu-
rated but high-SNR time series for determination of an unsaturated AIF and a TEC of
good SNR. Instead, a radial SR-LL FLASH acquisition can be combined with a KWIC
filter (see section 2.2) for estimating T1 and thus gadolinium concentration from one
high dose injection [48]. Although a TS of ~ 50ms can be reached using this technique,
these saturation times can still be considerably too long for the condition TSR1C � 1 to
hold, especially for short T1. Thus, even shorter TS would be desirable to further improve
the estimation of the unsaturated AIF. Additionally, each of the KWIC-reconstructed
images consists of multiple radial projections acquired at different saturation times TS.
Despite the application of a weighting function, their average contrast and equally the
effective saturation time TS,eff of the resulting image is only a rough approximation of
the real contrast about 50ms after the SR pulse.

To overcome these problems, the SR-MAP algorithm (see chapter 4) is applied in this
chapter for the determination of an unsaturated AIF. As described in section 2.14, myo-
cardial perfusion imaging is usually performed separately for each heartbeat starting
with an SR preparation pulse, followed by a fast imaging sequence which is limited to
a temporal window of ~ 200ms in diastole. To enable a MAP-reconstruction, a radial
SR-LL FLASH sequence is applied for data collection. Next, the SR-MAP algorithm is
used to reconstruct one image for each projection, with the smallest TS,1 corresponding
to the acquisition time of the first projection acquired after the SR pulse. For such short
TS (typically only several milliseconds), the requirement of TSR1C � 1 is very well ful-
filled. By repeating this procedure for 40 consecutive heartbeats after the administration
of the CA bolus, an image series of the earliest contrast TS,1 enables the estimation of
an unsaturated AIF. To verify the quality of this approach for AIF determination and

106



9.2 Implementation of SR-MAP

thus the quantification of the MBF, the presented method was compared to a dual-bolus
quantification in a volunteer study.

This part of the project was assisted by the master’s candidate David Lohr. His tasks
involved the segmentation of the reconstructed image series and the subsequent quanti-
tative evaluation of the myocardial perfusion.

9.2 Implementation of SR-MAP

A radial dataset obtained in the single-preparation SR-LL FLASH acquisition of one
single heartbeat is used as input for this implementation of MAP. As described in section
5.2, the "nearly empty" k-spaces obtained by gridding the single projections into separate
k-spaces were "filled" by a linear interpolation of all acquired k-space points through
time. In that process, the intensity directly after preparation was assumed to be zero
(M(t0) = 0) due to the saturation pulse that was used for magnetization preparation.
These improved k-space estimates were used for initialization of the algorithm.

Compared to the implementation described in chapter 5.2, the following changes were
made:

1. As before, the current consistent model k-spaces K̂ξ(x, t) of all individual coils were
Fourier transformed to obtain consistent model images M̂ξ(x, t).

2. The signals received in the different coils ξ were combined using a sign-dependent
SoS as described in section 5.2. Although an SR pulse is applied for magnetiza-
tion preparation, the sign of the relaxation curve was respected in that process to
consider remaining longitudinal magnetization caused by imperfect saturation. As
only a small number of projections (well below the Nyquist limit) is available in
radial first-pass perfusion measurements, the precalculation of a phase map ϕξ(x)
prior to the reconstruction was impossible. Instead, a new phase map ϕξ(x) was
determined before the coil combination of each iteration using the median of the
phase in the temporal dimension (∠(◦) denotes the complex phase of ◦):

ϕξ(x) =



mediant
{
∠
(
M̂ξ(x, t)

)}
if − π/2 < mediant

{
∠
(
M̂ξ(x, t)

)}
< π/2,

mediant
{

mod
[
∠
(
M̂ξ(x, t)

)
+2π, 2π

]}
otherwise.

(9.1)

All phase angles lie in the interval −π < ϕ < π. While it is sufficient to directly
take the median for angles −π/2 < ϕ < π/2, the phase jump between −π and π
has to be respected by adding an increment of 2π and subsequently performing a
modulo operation of 2π to shift all phases to the interval 0 < ϕ < 2π before the
median is calculated. This phase map was used for coil combination with Eqs. 5.1
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9 MAP for AIF Determination in Myocardial Perfusion MRI

and Eq. 5.2 to obtain M̂combined(x, t). Next, a dictionary-fit was used to obtain a
combined model Mcombined(x, t) of all coils.

3. The re-separation into single-coil model images Mξ(x, t) was performed as before
and the result was Fourier transformed to obtain single-coil model k-spacesKξ(x, t).

4. As before, the data consistency was ensured by substituting the measured data for
the model data separately for all acquired projections and all coils. Due to the
highly undersampled sampling pattern, no additional zeroing was performed (as
e.g. in section 5.2).

The dictionary used for the SR-MAP reconstructions in this chapter was generated as
follows: As the same RF pulses as in chapter 8 were used for slice-selective excitation,
the CSP relaxation curves were generated as described in section 8.3 with Eq. 8.1
for IR-prepared sequences replaced by Eq. 2.11 for SR-prepared sequences. In that
equation, the nominal flip angle α had to be replaced by the z-dependent distribution
α(z) of flip angles before the integration along the z-direction (Eq. 8.3). Although
an acquisition window of only ~ 200ms and therefore a very poor temporal coverage
of the relaxation curve leads to a growing inaccuracy in the determination of T1 using
MAP, the curves can nevertheless be sufficiently modeled by a set of T1 with a growing
distance for T1 ≥ 200ms (see section 4.5.4). For that reason, a set of only 60 T1 values
corresponding to equally spaced relaxivities of R1 = [0.001, 0.002, . . . , 0.060] ms−1 in
combination with 5 different flip angles in the interval [α − 4°, α − 2°, α, α + 2°, α + 4°]
was used for the calculation of the CSP relaxation curves. This dictionary of 60 · 5 =
300 elements was complemented by a constant as prototype for pixels not following an
exponential relaxation. In the fitting step 2 of the algorithm, an orthogonal matching
pursuit algorithm [78] was used in conjunction with this dictionary of 301 elements to
obtain the relaxation curve best describing the relaxation behavior in each voxel of the
consistent model images M̂combined(x, t).

9.3 Methods

All imaging experiments were carried out on a 3T whole-body scanner (MAGNETOM
Trio, Siemens AG Healthcare Sector, Erlangen, Germany) employing a 32 channel cardiac
array for signal reception.

All post-processing was performed on a standard desktop PC equipped with an Intel
Core i7-2600 CPU (3.4GHz) using MATLAB (The MathWorks, Natick, MA).

All human in vivo studies were approved by our local ethics committee. They were
performed on healthy volunteers, and written informed consents were obtained from the
subjects prior to scanning.

Myocardial first-pass perfusion measurements were performed on 4 healthy volunteers (1
male, 3 female) aged between 20 and 24 years. For an assessment of the reproducibility,
2 of these volunteers were measured twice within a period of 1 month. A dual-bolus
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acquisition was used to validate the proposed AIF determination method against the
prebolus gold standard. The acquisition scheme had the following features:

• Imaging of a single slice (FoV: 250× 250mm2-270× 270mm2, slice thickness: 8mm-
10mm) in a double oblique orientation corresponding to the short axis view of the
heart.

• Entire acquisition in breath-hold to minimize respiratory motion.

• Intravenous injection of a gadolinium-based contrast agent (Gadovist®, Bayer Scher-
ing Pharma, Berlin, Germany) using a power injector Medrad MR Injector Spectris
Solaris EP (Volkach, Germany). The CA bolus (prebolus: 1ml at 3.6ml/s, bolus:
4ml at 4ml/s) was followed by a saline flush (20ml at 4ml/s).

• Application of an ECG-gated radial single-slice SR-LL FLASH sequence (TR: 3.49ms-
3.60ms, TE: 1.54ms-1.59ms, α: 12°, projections: 60, readouts points: 128, Golden
Ratio [108] sampling order) over 40 consecutive heartbeats.

• Limitation of the acquisition to a temporal window of ~ 200ms to minimize cardiac
motion. The repetition time TR was adjusted to enable the acquisition of a fixed
number of 60 radial projections within this time period.

• Utilization of a trigger delay adjusted to the heart rate of the measured subject to
ensure imaging in diastole and further minimize cardiac motion.

9.3.1 Determination of the Tissue Enhancement Curves

For a determination of the TECs, all 60 projections of each frame of the bolus acquisition
were gridded into one separate k-space using self-calibrating GROG (see section 2.2). A
Fourier transform resulted in a series of 40 images of the CA passage. As each radial
projection equally contributes to the contrast, the image series had an average contrast TS
of all saturation times TS,j of the acquisition (see section 2.15). Although 202 projections
are necessary to fulfill the Nyquist limit for a radial trajectory with 128 readout points
per projection, the quality of the resulting images was expected to be sufficient for a TEC
estimation due to the nature of the radial undersampling artifacts (see section 2.2).

Next, the correction steps 1-4 described in section 2.15 were applied to the image series
as follows:

1. Motion correction: All frames of the image series were rigidly shifted along the
two image axes until the structures of the individual slices matched as closely as
possible.

2. Segmentation: 6 myocardial sectors were defined in the motion-corrected image
series using the software package [68].

3. Partial volume correction: A partial volume correction as described in [56] was
carried out.
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4. Baseline correction: A baseline correction as described in [55] was applied.

These TECs were used for the entire post-processing.

9.3.2 Determination of Unsaturated Arterial Input Functions

Both the contrast agent concentration C of the bolus acquisition and the average satu-
ration time TS of the average contrast images are too large for the condition TSR1C � 1
to hold for the signal of the blood pool. Therefore, unsaturated AIFs were estimated in
the following ways:

• A: The data of the prebolus acquisition were reconstructed in the same way as the
for the TEC estimation using the bolus data. As this acquisition was performed
with a lower dose of CA, the condition TSR1C � 1 is assumed to be fulfilled and
an unsaturated AIF can be determined from the resulting image series. The scaling
factor sfprebolus between the bolus TECs and the prebolus AIF is given by the ratio
of injected CA:

sfprebolus = injected CA bolus
injected CA prebolus = 4ml

1ml = 4 . (9.2)

To rescale the prebolus AIF and match the CA concentration C of the bolus ac-
quisition, the prebolus AIF is plotted sfprebolus = 4 times next to each other with
a distance depending on the injection rate. The sum results in an AIFA that can
be used in conjunction with the bolus TEC for the quantification. This previously
published approach for determining the AIF was used as reference [55].

• B: Each of the SR-LL FLASH datasets of the bolus acquisition was reconstructed
separately using the SR-MAP sequence described in the previous section. The re-
sult was a set of 60 images with contrasts corresponding to the saturation times
TS,1, . . . , TS,60 of the acquired projections for each of the 40 frames. To fulfill con-
dition TSR1C � 1 as good as possible, the image series of the shortest saturation
time TS,1 was used to estimate an unsaturated AIF. The scaling factor sfMAP be-
tween the average contrast TECs and the AIFj of contrast TS,j is given by the ratio
of the saturation times:

sfMAP,j = TS
TS,j

=

(∑60
n=1 TS,n

)
/60

TS,j
. (9.3)

To rescale the early contrast AIF1 and match the level of the average contrast
TECs, AIF1 was multiplied by sfMAP,1. The result was an unsaturated AIFB that
can be used in conjunction with the bolus TEC for the quantification. This method
was compared to the reference AIFA.

• C: As the rescaled AIFA of the low dose prebolus acquisition and AIFB of the early
contrast obtained from the model-based reconstruction differently well fulfill condi-
tion TSR1C � 1, a third AIF was determined from the model-based reconstruction
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with saturation effects similar to the prebolus reference A. For this purpose, one of
the model-based contrasts TS,j of the bolus acquisition was chosen with a product
TS · C similar to the prebolus acquisition:

TS · Cprebolus
!= TS,j · Cbolus . (9.4)

As the contrast agent concentrations differed by sfprebolus = 4, the contrasts had
to have exactly the ratio between the average saturation time TS and the TS,j
being searched for. After choosing the contrast most closely resembling this ratio,
rescaling was performed as described in B according to Eq. 9.3. The resulting
AIFC was expected to have the same saturation effects as the prebolus AIFA.

9.3.3 Comparison of the Perfusion Values

Finally, the MBF of all volunteers was determined as described in [47] using the TECs
in conjunction with the different AIFs obtained using methods A-C.

9.4 Results

The reconstructed datasets of the 6 acquisitions were numbered from V1 to V6. Mea-
surements V1 and V5 as well as V3 and V6 correspond to the repeatedly measured
volunteers.

Figure 9.1 depicts 4 different frames (that is 4 different heartbeats) of the CA passage
for volunteer V1. Shown are 4 of the 60 contrasts obtained in the MAP reconstruction
as well as the conventional gridding reconstruction of the prebolus as well as the bolus
acquisition before any correction was carried out. To underline the difference between
the MAP contrasts, the intensity of all image series was left unchanged. As expected, the
image intensity of the model-based reconstructions increases along the saturation time
TS,j. In the two conventional reconstructions, the higher CA dose of the bolus series
manifests in a higher intensity of the ventricles in comparison to the low dose prebolus
series.

9.4.1 Determination of the Tissue Enhancement Curves

The determination of the TECs of measurement V6 can be seen in Figure 9.2. After
the rigid motion correction and segmentation, partial volume effects are clearly visible
in the septal RoIs (blue and green). They are effectively corrected by the partial volume
correction. Finally, a baseline correction is conducted to obtain the TECs which can be
used for the quantification.
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Figure 9.1: Reconstructed images of one volunteer. Shown are four exemplary contrasts
obtained from the application of MAP to the SR-LL FLASH datasets of
each heartbeat (left) as well as conventional gridding reconstructions of the
prebolus and the bolus acquisition (right).

Figure 9.2: Determination of TECs in 6 myocardial sectors for dataset V6. After mo-
tion correction and segmentation, a partial volume correction and a baseline
correction have to be performed to obtain TECs which can be used for the
quantification.
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9.4.2 Determination of Unsaturated Arterial Input Functions

Figure 9.3 depicts the methods that were used for AIF determination in this work for
volunteer V1. While the prebolus blood curve has to be shift-scaled in method A (Fig.
9.3a), the model-based reconstructions of time frames TS,1 (B) and TS,j (C) are rescaled
using the ratios sfMAP,1 and sfMAP,j of the saturation times (Fig. 9.3b).

Figure 9.3: Determination of the AIF using methods A (by shifting the signal-time-
curve of the prebolus acquisition) and B (by rescaling the signal-time-curve
of the model-based reconstruction) for volunteer V1.

While the scaling of the AIF using methods A and B was performed using the signal
curve of the prebolus (A) and the shortest saturation time TS,1 of the model-based
reconstruction (B), a saturation time had to be selected where the ratio of the saturation
times match the contrast agent concentrations as accurately as possible (C). For all
acquisitions, this was the case for saturation time TS,8. All saturation times and the
resulting scaling factors that were used for the AIF estimation are listed in Table 9.1.

V1 V2 V3 V4 V5 V6
TS (ms) 106.17 105.02 105.81 110.54 104.64 106.09
TS,1 (ms) 3.22 2.94 2.85 3.16 2.85 3.13
sfMAP,1 32.97 35.72 37.13 34.98 36.72 33.89
TS,8 (ms) 27.65 27.56 27.70 27.41 28.94 27.18
sfMAP,8 3.84 3.81 3.88 3.86 3.82 3.85

Table 9.1: Saturation times and scaling factors used for the AIF determination.

Figure 9.4 shows the saturated pseudo-AIF of the bolus acquisition (blue) as well as
the AIFs determined using methods A-C for all volunteers (blue, red, black). For all
volunteers, the saturation effects of the pseudo-AIF can be clearly recognized during the
passage of the CA through the left ventricle. In the same time interval, the model-based
curves AIFB of the shortest saturation time (TS,1) are least saturated and exceed all
other curves. For all volunteers, these two curves frame the other AIFs of reconstruction
methods A and C, which, as expected, have very similar signal intensities. Although
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these curves match very closely for volunteers V1, V3, V4 and V5, they still show a
comparable signal intensity for volunteers V2 and V6 compared to AIFB (higher) and the
saturated pseudo-AIF (lower). For all volunteers, the saturation effects of the prebolus
reconstruction A are similar to or smaller than the model-based reconstruction C of
comparable saturation.

The difference in the shape of reconstruction A compared to the curves of B and C can
be attributed to the fact that they originate from two separate acquisitions (prebolus and
bolus). For volunteers V4 and V6, a substantial change in the heart rate between these
two acquisitions in conjunction with the same trigger delay led to missed ECG triggers
in the bolus acquisition, which in turn resulted in a compressed signal-time-course of the
bolus acquisitions compared to the prebolus curve.

Figure 9.4: Arterial input functions obtained with methods A-C for all 6 volunteers.
Blue: Saturated pseudo-AIF of the bolus acquisition. Green: Shift-scaled
AIFA of the prebolus acquisition. Red: AIFB for TS,1 obtained from the
rescaled model-based reconstruction of the bolus acquisition. Black: AIFC
for TS,8 obtained from the rescaled model-based reconstruction of the bolus
acquisition resembling the saturation effects of AIFA.

9.4.3 Comparison of the Perfusion Values

The average perfusion values over all 6 sectors are listed in Table 9.2 for all volunteers.
Additionally, the means (µ), standard deviation (σ) and relative errors (σ/µ) over all
volunteers is given. While the difference in µ between the prebolus reference (A) and the
comparable model-based time series of similar saturation (C) is only 5.3%, the difference
to the unsaturated model-based time series (B) is 21.3%. As the relative error is about
10% for all methods, this indicates a systematic deviation between the methods A and
C with a more saturated AIF and method B with the least saturated AIF. A list of the
perfusion values of all sectors in all volunteers is given in Table F.1 of the appendix.
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Method V1 V2 V3 V4 V5 V6 µ± σ σ/µ(%)
A 0.69 0.86 0.71 0.78 0.64 0.83 0.75 ± 0.09 11.3
B 0.56 0.61 0.67 0.54 0.52 0.62 0.59 ± 0.06 9.9
C 0.63 0.69 0.77 0.82 0.63 0.70 0.71 ± 0.08 10.7

Table 9.2: Average myocardial blood flow (ml/g/min) over all sectors for all volunteers
as well as the means (µ), standard deviations (σ) and relative errors (σ/µ)
over all volunteers.

9.5 Discussion

As the two saturation times TS,8 and TS are in the same ratio (1:4) as the CA concen-
trations C of the prebolus and the bolus acquisition, the related AIFs were expected to
have a comparable signal behavior for the passage of the CA through the left ventricle
where saturation effects mainly occur. For all volunteers, this assumption is confirmed
by AIFA and AIFC . Although both of these curves show less saturation effects than the
highly saturated pseudo-AIF of the bolus acquisition, a considerable level of saturation
is still present in these acquisitions. This becomes apparent when looking at AIFB of the
shortest possible saturation time TS,1, which appreciably exceeds the saturated curves
for all volunteers. The lower level of saturation can be explained by the fact that the
condition TSR1C � 1, which has to be fulfilled for the linear relation ∆(C) ∝ TSR1C to
hold, is best satisfied in that case.

For the same TEC, a higher AIF results in lower MBF values. It was therefore expected
that the perfusion values based on the deconvolution of the least saturated AIFB were
lower than the perfusion values determined using AIFA and AIFC . The percentage
difference of 21.3% between the perfusion values of the prebolus reference A and the
model-based reconstruction B in combination with the fact that all methods have a
similar relative error (about 10%) underlines the assumption that there is an inherent
saturation in the left ventricle even for the prebolus acquisition of a low CA dose. The
order of magnitude of these effects is similar to the saturation at a TS,8 of about 28ms
(percentage difference 5.3% between perfusion values A and C), which leads to the
conclusion that even the very short saturation times of ~ 50ms that were achieved using
the AIF determination techniques described in section 2.15 [33, 48] have a systematic
error in the MBF quantification, which is caused by saturation effects.

The proposed MAP method enables saturation times of ~ 3ms in myocardial first-
pass perfusion imaging, which significantly improves the compliance to the condition
TSR1C � 1 for typical relaxivities R1 and contrast agent concentrations C and therefore
enhances the quality of the linear approximation ∆(C) ∝ TSR1C (see section 2.15). This
greatly reduces saturation effects compared to the current standard methods (dual bolus
and two saturation time method, section 2.15). Additionally, only one acquisition has
to be performed, which is advantageous compared to the two acquisitions needed in the
dual bolus method, as two injections may reflect different physiological states (e.g. the
variation of the heart rate between prebolus and bolus acquisition for volunteers V4 and
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V6). Quantitative myocardial perfusion combined with a model-based reconstruction
could therefore pave the way to a more accurate absolute quantification of myocardial
blood flow in future applications.
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10 Summary and Conclusions

In this work, a model-based acceleration of parameter mapping (MAP) for the determi-
nation of the tissue parameter T1 using magnetic resonance imaging (MRI) is introduced.
The iterative reconstruction uses prior knowledge about the relaxation behavior of the
longitudinal magnetization after a suitable magnetization preparation to generate a series
of fully sampled k-spaces from a strongly undersampled acquisition. A Fourier transform
results in a spatially resolved time course of the longitudinal relaxation process, or equiv-
alently, a spatially resolved map of the longitudinal relaxation time T1.

In its fastest implementation, the MAP algorithm enables the reconstruction of a T1 map
from a radial gradient echo dataset acquired within only a few seconds after magneti-
zation preparation, while the acquisition time of conventional T1 mapping techniques
typically lies in the range of a few minutes. After validation of the MAP algorithm for
two different types of magnetization preparation (saturation recovery & inversion recov-
ery), the developed algorithm was applied in different areas of preclinical and clinical
MRI and possible advantages and disadvantages were evaluated.

The first version of the MAP algorithm was based on a saturation recovery prepared
sequence, in which the longitudinal magnetization is brought to zero before data acqui-
sition. While the magnetization subsequently relaxes back into equilibrium, several lines
of k-space are collected with a gradient echo sequence. The continuous radio frequency
(RF) excitation results in a shorter relaxation time T ∗1 , which is dependent on the rep-
etition time TR as well as the flip angle α. This prevents a direct determination of T1
without a separate measurement of the flip angle. The saturation preparation, however,
has the great advantage that, as the magnetization is always brought to zero, no waiting
times are necessary between consecutive measurements. This results in a potentially
high temporal resolution in dynamic T1 measurements. With the saturation-prepared
implementation of the MAP algorithm (SR-MAP, chapter 4), all necessary data for
the reconstruction of a T ∗1 map were acquired within 6.6 s after a single magnetization
preparation. As part of a volunteer study, the T ∗1 values obtained using SR-MAP were
compared to the results of a segmented measurement (scan time: 24min). The differ-
ences were as low as 1.3% in the white matter (WM), 2.4% in the gray matter (GM)
and 4.0% in the cerebrospinal fluid (CSF). A perfect saturation was assumed in the
reconstruction, on the one hand reducing the numerical complexity, but on the other
hand potentially introducing errors in the iterative reconstruction if the measured signal
is not perfectly saturated. In addition, only a single exponential course was assumed
in each voxel, which can lead to errors in voxels consisting of several types of tissue, or
where excitation is performed with multiple flip angles due to poor excitation profiles.
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10 Summary and Conclusions

To enable a direct determination of the tissue parameter T1, a MAP implementation for
inversion-prepared gradient echo sequences was developed in chapter 5 (IR-MAP). Again,
the continuous RF excitation leads to a shorter relaxation time T ∗1 . In case of an initial
inversion, however, T1 can be determined using the additionally available information
about the magnetization −M0 directly after the inversion. To additionally consider the
occurrence of voxels with multiple tissue types (partial volume) as well as the typically
varying flip angle in slice selection direction (caused by imperfect slice profiles), the mono-
exponential model was replaced by a linear combination of three exponential functions.
T1 maps of an axial slice of the brain were determined in 7 healthy volunteers using
this IR-MAP algorithm. Again, the determined values (scan time: 6 s) were validated
against a segmented T1 mapping experiment (scan time: 30min). The difference between
the T1 values for the two measurements was smaller than 5.1%, both in GM as well as
in WM. In addition, the determined T1 values were in good agreement with standard
literature values in GM (IR-MAP: 1395ms-1455ms, literature: 1331ms-1470ms) and
WM (IR-MAP: 676ms-777ms, literature: 761ms).

The main disadvantage of inversion-prepared T1 determination techniques is that a cer-
tain waiting time is required before each measurement in order for the magnetization
to relax back to equilibrium. To enable the use of the presented method for dynamic
T1 mapping, a correction of insufficient relaxation between two successive inversions was
integrated in chapter 6. First, the presented combination of a model-based T1 deter-
mination and a correction for insufficient relaxation was validated in 7 healthy subjects
(maximum temporal deviations of 3.6% in GM and 1.8% in WM), before it was used for
dynamic contrast-enhanced T1 mapping in a brain tumor. In cooperation with Prof. Dr.
Uwe Klose and the Department of Diagnostic and Interventional Neuroradiology at the
Eberhard Karls University Tübingen, T1 changes in the tumor tissue after the injection
of contrast agent were tracked with a temporal resolution of 9 s.

In the next part of this thesis, the MAP algorithm was applied for preclinical MRI of
small animals (chapter 7). This was performed in collaboration with Dr. Frank Kober
and the Centre de Résonance Magnétique Biologique et Médicale at the Aix-Marseille
Université Marseille. Here, the algorithm was implemented for perfusion measurements
using arterial spin labeling (ASL). In a first measurement, the slice of interest is selec-
tively inverted, before a global inversion is performed in a subsequent measurement. By
determining a T1 map for both measurements, a perfusion map can be calculated from
the spatially resolved signal change. After the inversions, the acquisition of the individual
k-space lines is synchronized with the heartbeat of the animals, which can considerably
vary over the lengthy measurement (scan time: ~ 30min). Instead of the typically used
average inversion time over the entire acquisition, which is a very rough estimate, changes
in the inversion time can be included in the reconstruction using MAP. The use of a
model-based reconstruction led to a reduction of artifacts caused by respiratory motion
of the animals.

The very short RF pulses used in most MRI sequences cause an excitation profile in
the shape of a distribution of multiple flip angles instead of only a single flip angle in
each voxel. As already briefly mentioned above, this, in turn, leads to an error in the
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description of the relaxation process using a mono-exponential model. While this effect
was only considered by the very rough approximation of a linear combination of three
exponentials in the IR-MAP implementation (see chapter 5), a detailed examination
of this effect was carried out in chapter 8. Finally, a model for the exact description
of the relaxation process after an inversion preparation with the inclusion of imperfect
slice profiles is presented. Using this CSP model, systematic differences between the
measured signal courses and the relaxation model, which were clearly visible using the
conventional mono-exponential model in a phantom as well as an in vivo study, were
largely eliminated. While the T1 relaxation times were nearly identical for a good tem-
poral coverage of the relaxation curves, the CSP model led to a significant improvement
in the T1 determination for a poor coverage (that is, only the approximately linear initial
part of the relaxation curve is covered). The T1 values obtained in a volunteer study
were in good agreement with standard literature in both GM (CSP: 1393ms-1527ms,
literature: 1331ms-1470ms) and WM (CSP: 703ms-794ms, literature: 761ms). While
the flip angle distribution was successfully incorporated in the relaxation model by the
CSP model, partial volume effects caused by different tissue types in one voxel are still
not considered by the CSP model. Therefore, the presented implementation of IR-MAP,
which is based on a linear combination of multiple mono-exponential relaxation curves,
is still useful for heterogeneous voxels. Alternatively, a linear combination of multiple
CSP curves could be used for modeling partial volume effects.

In the last part of this thesis, the MAP reconstruction method was used for quantitative
myocardial perfusion measurements (chapter 9). At this point, the CSP model was used
instead of the conventional mono-exponential model. In cardiac perfusion measurements,
a contrast agent is intravenously injected, and the passage of the contrast agent bolus
through the cardiovascular system is then monitored. A series of saturation-prepared
images is acquired over several heartbeats, to take account of potential arrhythmia and
to obtain exactly the same contrast for successive heartbeats. For an absolute quantifi-
cation of the myocardial perfusion, the signal changes caused by the contrast agent in
the myocardium (tissue enhancement curve, TEC) have to be known with a good signal-
to-noise ratio (SNR). These TECs are typically obtained from a series of images at a
late stage after the saturation pulse after the administration of a high dose of contrast
agent. In addition, however, an unsaturated signal change in the left ventricle (arterial
input function, AIF) is required. This is usually obtained by a low-resolution image se-
ries acquired shortly after the saturation pulse or by previously acquiring an image series
with a low contrast agent dose (prebolus measurement). In this chapter, the MAP algo-
rithm was used to resolve the entire relaxation curve after the saturation pulses of each
heartbeat over time and thus determine AIF and TECs from one measurement of high
contrast agent dose. For an assessment of the determined AIFs as well as the quantified
perfusion values, a reference AIF was additionally estimated in a prebolus acquisition.
In a volunteer study (6 examinations), it was shown that AIFs determined using the
conventional prebolus method still exhibit a certain level of saturation, which reflects in
systematic deviations in the resulting perfusion values. By providing an opportunity of
reconstructing unsaturated AIFs, the MAP algorithm could pave the way to quantitative
myocardial perfusion measurements with an increased accuracy in the future.
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10 Summary and Conclusions

The successful application of the introduced MAP algorithm is primarily dependent on
the quality of the model used to describe the acquired dataset. Even the slightest de-
viations between measured data and relaxation model can result in significant errors
brought about by the repeated application of the model within the iterative reconstruc-
tion. If the deviations are too large, the algorithm may even diverge, and a termination
criterion must be applied to obtain meaningful results. For T1 relaxometry, the most
obvious errors are on the one hand flip angle distributions over the excited slice, which
are caused by very short RF pulses, and on the other hand voxels of different tissue types
and thus multiple T1 values. These deviations can be minimized by modeling the signal
by linear combinations of multiple mono-exponential or CSP curves.

Although the algorithm can, in principle, be implemented for all trajectories (for example,
a Cartesian trajectory was used for the ASL measurements), non-Cartesian trajectories,
for which the low frequencies and therefore much of the information about the image
contrast is sampled very often, are well suited for the implementation of MAP.

The duration of one iteration of the MAP algorithm for a matrix of 256× 256 pixels and
1000 relaxation times was in the order of about 1 minute. However, the implementations
used in this work were only used to demonstrate the functionality of the algorithm. Thus,
there are still some points in which an acceleration is possible, such as a gradual decrease
of the interval of the parameter space used for the fit or a parallelization of the fit of the
individual voxels. Additionally, the speed of the reconstruction crucially depends on the
fitting method.

Although the presented MAP reconstruction algorithm with its 2D acquisition provides
a poorer spatial resolution than conventional 3D techniques (1.6× 1.6× 4mm3 for MAP
compared to up to 1× 1× 2mm3 for other techniques), most of the other techniques
are based on segmented 3D measurements, resulting in a lower temporal resolution than
the non-segmented 2D MAP acquisition (a few seconds for MAP compared to several
minutes for other techniques). Therefore, the choice of the method to be used must
be made depending on the desired temporal and spatial resolution. Altogether, the
MAP algorithm represents a promising method for accelerating magnetization-prepared
T1 measurements and could be applied in many areas of MRI in the future.
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11 Zusammenfassung und
Schlussfolgerungen

This chapter is a German translation of the Summary and Conclusions chapter 10.

Im Rahmen dieser Arbeit wurde ein modellbasiertes Verfahren namens MAP (engl.
Model-based Acceleration of Parameter mapping) für die Bestimmung des T1-Gewe-
beparameters mittels Magnetresonanztomographie (MRT) entwickelt. Dieser iterative
Algorithmus verwendet das Vorwissen über den nach einer Magnetisierungspräparation
zu erwartenden Signalverlauf, um aus einer im Anschluss an eine initiale Präparation
aufgenommene zeitliche Serie stark unterabgetasteter k-Räume eine Serie voll abge-
tasteter k-Räume zu generieren.Eine Fourier-Transformation dieser Serie in den Bildraum
zeigt den örtlich aufgelösten zeitlichen Verlauf der longitudinalen Relaxation, was eine
Kartierung des Gewebeparameters T1 ermöglicht.

In seiner schnellsten Form ermöglicht dieses Verfahren die Rekonstruktion einer T1-Karte
aus einem innerhalb weniger Sekunden nach einer passenden Magnetisierungspräparation
aufgenommenen radialen Gradienten-Echo-Datensatz, während die Messdauer herkömm-
lich verwendeter T1-Bestimmungstechniken üblicherweise im Bereich von einigen Minuten
liegt. Nach der Validierung des MAP-Algorithmus für zwei unterschiedliche Arten der
Magnetisierungspräparation (Sättigungspräparation, Inversion) wurde die entwickelte
Technik im Rahmen dieser Arbeit in verschiedenen Bereichen der präklinischen und kli-
nischen MRT angewendet und mögliche Vor- und Nachteile untersucht.

Die erste Version des MAP-Algorithmus basiert auf der Sättigungspräparation, bei der
die longitudinale Magnetisierung vor der Datenakquirierung auf null gebracht wird.
Während die Magnetisierung anschließend mit der Relaxationszeit T1 zurück ins Gleich-
gewicht relaxiert, werden mittels einer Gradienten-Echo-Sequenz einzelne Zeilen des k-
Raums ausgelesen. Durch die kontinuierliche Hochfrequenz-Anregung wird jedoch der
zu bestimmende Parameter T1 verkürzt und die Magnetisierung relaxiert stattdessen
mit einer verkürzten Relaxationszeit T ∗1 , die von der Repetitionszeit TR sowie dem
Flipwinkel α der Pulssequenz abhängt. Dies verhindert eine direkte Bestimmung von
T1 ohne eine separate Messung des Flipwinkels. Die Sättigungspräparation hat jedoch
den großen Vorteil, dass keine Wartezeiten zwischen aufeinanderfolgenden Messungen
notwendig sind, da die Magnetisierung immer wieder auf null gebracht wird. Dies führt
zu einer hohen potenziellen zeitlichen Auflösung in dynamischen T1-Messungen. Mit Hilfe
der sättigungspräparierten Implementierung des MAP-Algorithmus (SR-MAP, Kapitel
4) konnten die zur Bestimmung einer T ∗1 -Karte des menschlichen Gehirns notwendigen
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11 Zusammenfassung und Schlussfolgerungen

Daten innerhalb von 6.6 s nach einer einzigen Präparation akquiriert werden. Im Rah-
men einer Probandenuntersuchung wurden die mittels SR-MAP bestimmten T ∗1 -Werte
mit den Ergebnissen einer segmentierten Messung (Messdauer: 24min) verglichen.Dabei
fielen die Unterschiede mit 1.3% in der weißen Gehirnsubstanz (engl. white matter,
WM), 2.4% in der grauen Gehirnsubstanz (engl. grey matter, GM) und 4.0% im Liquor
(engl. Cerebrospinal fluid, CSF) sehr gering aus. Es wurde dabei eine perfekte Sättigung
angenommen, was die numerische Komplexität stark vereinfacht, jedoch auch zu Fehlern
in der iterativen Rekonstruktion führen kann, wenn das tatsächlich gemessene Signal
nicht perfekt gesättigt wurde. Außerdem wurde in jedem Bildvoxel nur ein einziger ex-
ponentieller Verlauf angenommen, was ebenfalls zu Fehlern in Voxeln führen kann, in
denen sich mehrere Gewebetypen befinden oder in denen durch schlechte Anregungspro-
file mit unterschiedlichen Flipwinkeln angeregt wird.

Um die direkte Bestimmung des Gewebeparameters T1 zu ermöglichen, wurde der MAP-
Algorithmus in Kapitel 5 für inversionspräparierte Gradienten-Echo-Sequenzen weiter-
entwickelt (IR-MAP). Auch hier ergibt sich aufgrund der kontinuierlichen Hochfrequenz-
Anregung eine verkürzte Relaxationszeit T ∗1 , aus der jedoch mit Hilfe der zusätzlich
vorhandenen Information über die Magnetisierung −M0 direkt nach der Inversion T1
bestimmt werden kann. Um außerdem das Auftreten von Voxeln mit mehreren Gewe-
betypen (engl.partial volume) sowie den in Schichtselektionsrichtung üblicherweise nicht
konstanten Flipwinkel (durch nicht-perfekte Schichtprofile) zu berücksichtigen, wurde
das mono-exponentielle Modell durch eine Linearkombination aus drei Exponentialfunk-
tionen ersetzt. Mit diesem IR-MAP-Algorithmus wurden in 7 gesunden Probanden T1-
Karten einer axialen Gehirn-Schicht bestimmt. Die dabei ermittelten Werte (Messzeit:
6 s) wurden auch hier mittels einer segmentierten Messung (Messzeit: 30min) validiert.
Die Differenz zwischen den T1-Werten beider Messungen war in grauer und weißer Gehirn-
substanz kleiner als 5.1%. Außerdem stimmten die bestimmten T1-Werte sowohl im GM
(IR-MAP: 1395ms-1455ms, Literatur: 1331ms-1470ms) als auch im WM (IR-MAP:
676ms-777ms, Literatur: 761ms) sehr gut mit gängigen Literaturwerten überein.

Der Nachteil dieser inversionspräparierten T1-Bestimmung ist, dass vor jeder Messung
eine gewisse Wartezeit eingehalten werden muss, damit die Magnetisierung wieder zurück
ins Gleichgewicht relaxieren kann. Um die vorgestellte Methodik auch für dynami-
sche T1-Messungen verwenden zu können, wurde in Kapitel 6 eine Korrektur der un-
zureichenden Relaxation zwischen zwei aufeinanderfolgenden Inversionen eingebaut.Die
vorgestellte Kombination aus T1-Bestimmung und T1-Korrektur wurde zunächst an 7
gesunden Probanden validiert (maximale zeitliche Abweichungen von 3.6% im GM und
1.8% im WM), um das Verfahren schließlich für eine dynamische kontrastmittelgestützte
T1-Messung in einem Gehirntumor zu verwenden. In Zusammenarbeit mit Prof. Dr.
Uwe Klose und der Abteilung für Diagnostische und Interventionelle Neuroradiologie der
Eberhard Karls Universität Tübingen konnte die T1-Änderung im Tumorgewebe nach der
Kontrastmittelgabe mit einer zeitlichen Auflösung von 9 s aufgezeichnet werden.

Im nächsten Teil der Arbeit wurde der MAP-Algorithmus in der präklinischen MR-
Bildgebung am Kleintier eingesetzt (Kapitel 7). Dies wurde in Kooperation mit Dr.
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Frank Kober und dem Centre de Résonance Magnétique Biologique et Médicale der Aix-
Marseille Université Marseille durchgeführt. Hierbei wurde der Algorithmus für die
Perfusions-Bestimmung mittels der Arterial-Spin-Labeling-Methode verwendet. Dabei
wird in einer ersten Messung die zu betrachtende Schicht selektiv invertiert und in einer
darauffolgenden Messung nochmals das gesamte Volumen. Bestimmt man für beide Mes-
sungen jeweils eine T1-Karte, so kann man aus der räumlich aufgelösten Signaländerung
eine Perfusionskarte bestimmen. Nach der Inversion wird die Messung der einzelnen
k-Raum-Linien üblicherweise mit dem Herzschlag der Kleintiere synchronisiert, der je-
doch über die langwierige Messung (ca. 30min) stark variieren kann. Statt der üblicher-
weise verwendeten, über alle Herzschläge und damit sehr grob gemittelten Inversionszeit,
konnten durch Einbezug des MAP-Algorithmus Änderungen in der Inversionszeit in die
Rekonstruktion miteinbezogen werden. Die Verwendung der modellbasierten Rekonstruk-
tion führte zudem zu einer Reduzierung der Atmungsartefakte.

Die in den meisten MRT-Sequenzen für die Anregung verwendeten, sehr kurzen Hoch-
frequenz-Pulse führen dazu, dass in jedem Voxel statt mit einem einzigen Flipwinkel
mit einer ganzen Verteilung von Filpwinkeln angeregt wird. Dies wiederum führt, wie
oben bereits kurz erwähnt, zu einem Fehler bei der Beschreibung der Relaxation durch
ein mono-exponentielles Modell. Während dieser Effekt bei der Implementierung des
IR-MAP-Algorithmus (siehe Kapitel 5) noch durch eine recht grobe Näherung berück-
sichtigt wurde, erfolgt in Kapitel 8 einer detaillierte Studie dieses Effekts. Schließlich
wird ein Modells für die exakte Beschreibung der Relaxation nach einer Inversionsprä-
paration unter Einbezug der nicht-perfekten Schichtprofile vorgestellt. Mit diesem so-
genannten CSP-Modell (engl. Consideration of Slice Profiles) konnten sowohl in einer
Phantom-, als auch in einer Probandenstudie systematische Abweichungen zwischen den
gemessenen Signalverläufen und dem Relaxationsmodell, die für das herkömmlich ver-
wendete mono-exponentielle Modell deutlich sichtbar waren, weitgehend beseitigt wer-
den. Während die mit beiden Modellen bestimmten T1-Werte bei einer guten zeitlichen
Abdeckung der Relaxationskurve nahezu identisch waren, führte das CSP-Modell zu einer
deutlichen Verbesserung der T1-Werte, sobald die Relaxationskurven zeitlich nicht mehr
ausreichend abgedeckt waren. Die in einer Probandenstudie ermittelten T1-Werte im GM
(CSP: 1393ms-1527ms, Literatur: 1331ms-1470ms), aber auch im WM (CSP: 703ms-
794ms, Literatur: 761ms) stimmten gut mit gängigen Literaturwerten überein. Während
durch das CSP-Modell die Flipwinkel-Verteilung in das Relaxationsmodell miteinbezogen
werden kann, werden Partialvolumeneffekte, die durch unterschiedliche Gewebetypen in
einem Voxel entstehen können, auch hier nicht berücksichtigt. Daher ist für heterogene
Voxel die Verwendung der vorgestellten Implementierung von IR-MAP, deren Modell auf
einer Linearkombination mono-exponentieller Signalverläufe basiert, weiterhin sinnvoll.
Alternativ könnte auch eine Linearkombination aus mehreren CSP-Kurven verwendet
werden, um Partialvolumeneffekte zu modellieren.

Im letzten Teil der Arbeit wurde die MAP-Rekonstruktionsmethode für die quantitative
myokardiale Herzperfusionsmessung eingesetzt (Kapitel 9). An dieser Stelle wurde das
CSP-Modell statt des herkömmlich verwendeten mono-exponentiellen Modells verwen-
det. Bei der verwendeten Herzperfusionsmessung wird Kontrastmittel injiziert und an-
schließend die Passage des Kontrastmittels durch den Blutkreislauf verfolgt. Dabei wird
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über mehrere Herzschläge eine Bilderserie aufgenommen, wobei jedes dieser Einzelbilder
mit einem Sättigungspuls präpariert wird, um trotz mog̈licher Arrhythmien für jeden
der aufeinanderfolgenden Herzschläge genau den gleichen Kontrast zu erhalten. Für eine
Absolut-Quantifizierung der Herzperfusion benötigt man zunächst den Signalverlauf im
Myokard (engl. Tissue Enhancement Curve, TEC) mit einem guten Signal-zu-Rausch-
Verhältnis. Dabei wird üblicherweise eine Bilderserie zu einem späten Zeitpunkt nach
der Sättigung bei Gabe einer hohen Kontrastmitteldosis aufgenommen. Außerdem wird
jedoch ein ungesättigter Signalverlauf im linken Ventrikel (engl. Arterial Input Function,
AIF) benötigt. Dieser wird üblicherweise durch ein kurz nach der Sättigung zusätzlich
aufgenommenes, niedrig aufgelöstes Bild oder durch eine vorher separat mit einer niedri-
gen Kontrastmittel-Dosis gemessene komplette Bilderserie erreicht (Präbolus-Messung).
Der MAP-Algorithmus wurde in diesem Fall verwendet, um für jeden Herzschlag den
gesamten Signalverlauf nach dem Sättigungspuls zeitlich aufzulösen und somit die Be-
stimmung von AIF und TEC aus einer Messung mit hoher Kontrastmitteldosis zu er-
möglichen. Für eine Beurteilung der ermittelten AIFs sowie der quantifizierten Perfu-
sionswerte wurde zusätzlich eine AIF aus einer Präbolus-Messung bestimmt. In einer
Probandenstudie (6 Untersuchungen) konnte gezeigt werden, dass die mit der herkömm-
lichen Präbolus-Methode ermittelten AIFs immer noch eine gewisse Sättigung aufweisen,
was sich schließlich auch in systematischen Abweichungen in den daraus daraus ermittel-
ten Perfusionswerten niederschlägt. Durch die Rekonstruktion einer ungesättigten AIF
könnte der MAP-Algorithmus zukünftig Herzperfusionsmessungen mit einer erhöhten
Genauigkeit ermöglichen.

Für eine erfolgreiche Anwendung des eingeführten MAP-Algorithmus ist in erster Linie
ist die Güte des zur Beschreibung der akquirierten Datensätze verwendeten Modells aus-
schlaggebend. Selbst kleinste Abweichungen zwischen Messdaten und angenommenem
Relaxationsmodell können durch die wiederholte Applikation des Modells im Rahmen
des iterativen Verfahrens zu erheblichen Fehlern in der Rekonstruktion führen. Sind die
Abweichungen zu groß, so kann der Algorithmus gar divergieren, sodass ein Abbruch-
Kriterium eingesetzt werden muss, um sinnvolle Ergebnisse zu erhalten. Für die T1-
Relaxometrie sind die offensichtlichsten Fehler zum einen die durch kurze Hochfrequenz-
Pulse verursachten Flipwinkel-Verteilungen über die angeregte Schicht, zum anderen
aber auch Voxel unterschiedlicher Gewebetypen und somit unterschiedlicher T1-Werte.
Diese Abweichungen konnten durch die Signalmodellierung durch Linearkombinationen
mehrerer Exponentialfunktionen oder mehrerer CSP-Kurven minimiert werden.

Obwohl der Algorithmus prinzipiell für alle Trajektorien implementiert werden kann
- beispielsweise wurde für die ASL-Messungen eine kartesische Trajektorie verwendet
- eignen sich nicht-kartesische Trajektorien, bei denen die niedrigen Frequenzen und
damit ein Großteil der Information über den Bildkontrast sehr häufig abgetastet werden,
vorrangig für die Implementierung von MAP.

Weiterhin ist die Bewegung des zu messenden Objektes bei der Verwendung von MAP zu
beachten. Da der gesamte nach der Magnetisierungspräparation gemessene Datensatz für
die Rekonstruktion einer T1-Karte verwendet wird, wirkt sich Bewegung während dieser
Zeitspanne von einigen Sekunden negativ auf die Rekonstruktion aus und kann zu einer
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schlechteren Auflösung oder sogar Fehlern in den bestimmten T1-Karten führen. Für
die Validierung der Methoden in dieser Arbeit wurde hauptsächlich am menschlichen
Kopf gemessen, wo die Bewegung sehr gut unterdrückt werden kann. Jedoch müsste das
Verfahren für Anatomien wie das menschliche Herz angepasst werden, wenn - anders als
bei den Herzperfusionsmessungen in dieser Arbeit - die Messung nicht unter Atemstopp
durchgeführt wird und die Datenakquisition nicht auf die Diastole beschränkt wird.

Es wurde gezeigt, dass eine unzureichende zeitliche Abdeckung des gemessenen Signalver-
laufs sich negativ auf die Genauigkeit der bestimmten T1-Werte auswirkt. Ist nicht genug
Information über den nach dem näherungsweise linearen Anfangsteil einsetzenden expo-
nentiellen Signalverlauf vorhanden, kann der Verlauf zwar immer noch gut modelliert
werden, die Ungenauigkeit der ermittelten T1-Werte nimmt jedoch mit der Größenord-
nung der zugrunde liegenden T1-Werte zu. Daher muss die Dauer der Abtastung an
die zu erwartenden T1-Werte angepasst werden, wenn die Genauigkeit von T1 für die
Messung von Bedeutung ist. Soll lediglich der Signalverlauf beschrieben werden - wie
bei der AIF-Bestimmung bei der quantitativen Herzperfusionsmessung, bei der nur über
ein Intervall von 200ms gemessen werden konnte - so genügt auch eine geringere zeitlich
Abdeckung der Kurve.

Obwohl MAP zunächst für anfänglich fast "leere" k-Räume implementiert wurde, die
lediglich aus den zu den einzelnen Zeitpunkten gemessenen Daten bestehen, so kann
das Konvergenzverhalten deutlich verbessert werden, indem die Ausgangs-k-Räume vor
der ersten Iteration beispielsweise durch eine lineare Interpolation durch alle Zeitpunkte
aufgefüllt werden.

Die Dauer für eine Iteration des MAP-Algorithmus bei einer Matrix von 256× 256 Pixeln
und 1000 Relaxationszeitpunkten war ungefähr in der Größenordnung von einer Minute.
Die in dieser Arbeit verwendeten Implementierungen dienten jedoch lediglich als Be-
weis der Funktionalität des Algorithmus. Dieser könnte an einigen Stellen noch deutlich
beschleunigt werden, beispielsweise durch eine sukzessive Intervallverkleinerung kleinerer
Parameterräume oder eine Parallelisierung des Fittings in den einzelnen Voxeln. Außer-
dem hängt die Geschwindigkeit von der Art des Fittings ab.

Im Vergleich zu anderen Techniken der T1-Bestimmung bietet der für 2D-Messungen
vorgestellte MAP-Algorithmus zwar eine schlechtere räumliche Auflösung als herkömm-
liche 3D-Techniken (1.6× 1.6× 4mm3 für MAP verglichen mit bis zu 1× 1× 2mm3 für
andere Techniken), jedoch handelt es sich bei den anderen Verfahren meist um segmen-
tierte 3D Messungen, weshalb die zeitliche Auflösung bei der nicht-segmentierten 2D
MAP-Akquisition deutlich höher ist (einige Sekunden für MAP verglichen mit mehreren
Minuten für andere Techniken). Demnach muss die Auswahl der Technik in Abhängigkeit
der gewünschten zeitlichen sowie räumlichen Auflösung erfolgen. Insgesamt stellt der
MAP-Algorithmus eine vielversprechende Methode zur Beschleunigung magnetisierungs-
präparierter Messungen dar und könnte zukünftig in vielen Bereichen der MRT Verwen-
dung finden.
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12 Outlook

In this doctoral thesis, a model-based reconstruction method for magnetization-prepared
MRI acquisitions was developed and applied for acceleration in a wide range of MR ac-
quisitions. However, these applications of MAP only provide a small impression on what
could be achieved by the application of model-based reconstruction techniques in quan-
titative MR parameter mapping or other magnetization-prepared acquisition techniques
such as arterial spin labeling and myocardial first-pass perfusion measurements in the
future.

Although the acquisition time was greatly reduced in all implementations of MAP pre-
sented in this work, the reconstruction time lied in the range of several minutes to several
hours, depending on the particular applicaition and the size of the dataset. In contrast
to the majority of routinely used post-processing methods where the final images can be
viewed only a few moments after the scan, the MAP algorithm goes along with a trade-
off between scan time and reconstruction time. A reduction in acquisition time results
in an extension of the reconstruction time. While a moderate undersampling factor can
be used to reduce the required reconstruction time in applications where the temporal
resolution is of no particular importance, high undersampling factors can be used if the
temporal resolution has to stay within a certain limit (e.g. if data collection is performed
in diastole only as in first-pass perfusion imaging). In these cases, the reconstruction time
on a standard PC would be considerably too long for clinical examinations. Besides the
acceleration of the fitting method to be used, the MAP algorithm could be implemented
on a powerful multi-core computer to guarantee its clinical relevance.

Another important point which has to be addressed in future work is the susceptibility
of the current MAP implementations to motion of the object within the scan time of
several seconds. If this motion cannot be prevented, such as the cardiac and respiratory
cycle in first-pass perfusion imaging, an image registration would have to be included in
the model-based reconstruction to ensure a reliable parameter mapping.

One last point for potential improvements are the sampling trajectories with which the
relaxation process is tracked. Radial trajectories which provide a good coverage of the
low spatial frequencies were used for data collection in all but one MAP implementa-
tion performed in this work. Alternatively, the reconstructions might be even further
improved using spiral readouts. While the low spatial frequencies are still well covered
by spiral sampling patterns, each spiral arm encodes more than one dimension in the
pseudo-2D-k-space. Therefore, more spatial information than for a radial projection is
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available for each acquisition time point after the magnetization preparation. Using spi-
ral trajectories, datasets of a similar temporal resolution but with considerably more
information could be acquired in the future.
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F Appendix

Quantified values of the myocardial blood flow obtained in all 6 sectors (S1-S6) using AIF
determination method A, B and C for all volunteers (V1-V6). Additionally, the mean values
(µ), the standard deviations (σ) as well as the relative errors (µ/σ) are listed.

Method Volunteer S1 S2 S3 S4 S5 S6 µ± σ σ/µ(%)

A

V1 0.68 0.74 0.95 0.61 0.55 0.64 0.69 ± 0.14 20.0
V2 0.74 0.91 1.21 0.86 0.72 0.73 0.86 ± 0.19 21.7
V3 0.84 0.90 0.80 0.59 0.50 0.65 0.71 ± 0.16 21.9
V4 0.79 0.92 1.00 0.72 0.54 0.75 0.78 ± 0.16 20.8
V5 0.64 0.82 0.73 0.51 0.55 0.58 0.64 ± 0.12 18.8
V6 0.72 1.02 1.21 0.70 0.63 0.68 0.83 ± 0.23 28.4
AVG 0.73 0.89 0.98 0.66 0.58 0.67 0.75 ± 0.17 22.1

B

V1 0.54 0.60 0.76 0.49 0.44 0.51 0.56 ± 0.11 20.0
V2 0.53 0.64 0.86 0.61 0.51 0.52 0.61 ± 0.13 21.6
V3 0.76 0.83 0.76 0.57 0.50 0.61 0.67 ± 0.13 19.8
V4 0.54 0.62 0.69 0.49 0.37 0.51 0.54 ± 0.11 20.7
V5 0.53 0.67 0.61 0.41 0.44 0.47 0.52 ± 0.10 19.1
V6 0.54 0.76 0.91 0.53 0.48 0.51 0.62 ± 0.18 28.3
AVG 0.57 0.69 0.76 0.52 0.46 0.52 0.59 ± 0.13 21.7

C

V1 0.62 0.67 0.87 0.55 0.51 0.58 0.64 ± 0.13 20.0
V2 0.59 0.73 0.98 0.70 0.57 0.58 0.69 ± 0.16 22.6
V3 0.88 0.96 0.87 0.65 0.57 0.71 0.77 ± 0.15 19.7
V4 0.85 0.81 1.10 0.79 0.59 0.81 0.82 ± 0.16 19.8
V5 0.63 0.80 0.74 0.50 0.54 0.57 0.63 ± 0.12 18.8
V6 0.60 0.85 1.01 0.59 0.54 0.58 0.70 ± 0.19 27.6
AVG 0.69 0.80 0.93 0.63 0.55 0.64 0.71 ± 0.15 21.4

Table F.1: Perfusion values (ml/g/min) for all 6 sectors of all 6 volunteers as well as
the average over all volunteers.
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