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0Preface
This thesis, by Philipp Kindermann, deals with the visualization of graphs. Graphs are a
frequently used tool to model relationships among entities. A graph is a binary relation
between objects, that is, it consists of a set of objects (vertices) and a set of pairs of objects
(edges). Networks are commonly modeled as graphs. For example, relationships between
actors in a social network, or links between computers in a telecommunication network can
be represented by a graph. For human beings, arguably, the best way to approach such data is
to draw the underlying graphs. The field of Graph Drawing is about finding algorithms that
draw graphs “nicely”. The niceness of a drawing can be measured by different criteria such as
the number of crossings between edges or the area of the drawing.

Philipp Kindermann’s thesis is devoted to Angular Schematization in Graph Drawing, where
the task is to lay out graphs under angular restrictions. These restrictions concern different
objects in the drawing. In many layouts, the directions of the edges are restricted to a small
set of slopes; a famous example are orthogonal layouts where only horizontal and vertical edge
segments are allowed. Often drawings of graphs are required to induce large angles between
edges that meet at a vertex. Preferably, edges are drawn without crossings and in a way that
makes them easy to follow for the human eye. If crossings cannot be avoided, it is important
to have large (ideally right) angles between crossing edges. Philipp Kindermann considers
these different types of angular restrictions and presents several results to problems that are
discussed extensively in the graph drawing community.
Philipp Kindermann introduces us into his thesis by giving an overview on the field of

graph drawing and on his results. Then, he presents the tools needed for the algorithms and
proofs in the following chapters. The main part of the thesis consists of three parts, each of
which is further divided into two chapters. The three parts address the placement of boxes,
visual guidance, and crossings at large angles.

Part I deals with two different problems concerning the placement of boxes. First, Philipp
Kindermann considers the problem of labeling sites on a map with text that cannot be placed
directly next to these points because the sites are too close to each other with regards to the
label sizes. Instead, he places the labels beyond the boundary of the map and connects them to
the corresponding points by orthogonal curves (leaders). The boxes should be placed such that
the leaders do not intersect each other and are preferably as short as possible. The author gives
the first algorithms to decide whether there is a crossing-free drawing that places the labels on
two or more adjacent sides of the map. The dynamic programming algorithms exploit some
nice characterizations of feasible solution. Second, Philipp Kindermann considers box contact
representations. In such a representation, each vertex is represented by a rectangle of specified
height and width; the edges are modeled by contact between the rectangles. The task is to
realize as many edges as possible. The author shows that this problem is APX-complete and
presents approximation algorithms for several graph classes, including the first constant-factor
approximation algorithm for general graphs, which I consider a very nice result.



Part II deals with visual guidance in graph drawing, that is, approaches that make it easy for
the viewer to follow the trajectory of an edge or even a path between two vertices in a drawing
of a graph. First, Philipp Kindermann considers smooth orthogonal drawings of planar graphs
of maximum degree 4. In this drawing style, edges consist only of axis-aligned segments
and circular arcs that meet without bends. By design, the angles between edges meeting in a
vertex are at least 90○. The main result is that each planar graph of maximum degree 4 admits
a crossing-free drawing with at most two segments per edge, and that this bound is tight.
Second, the author examines drawings of graphs in which a path between two vertices can
be easily identified. To this end, he considers monotone drawings, that is, drawings where
each pair of vertices is connected by a path that is monotone in some direction. In strongly
monotone drawings, this direction is the vector between the locations of the two vertices.
Philipp Kindermann shows that any tree admits a monotone drawing in polynomial area such
that the unbounded faces are convex and the vertex angles are close to optimal. Furthermore,
he shows that every tree and every biconnected outerplanar graph admit a strongly monotone
drawing, which is not the case for simply connected planar graphs.

In the final part of the thesis, part III, Philipp Kindermann investigates drawings of graphs
with crossings at large angles. First, he considers simultaneous drawings, that is, drawings of
two planar graphs on a common point set such that each drawing is crossing-free, but edges
of different graphs may cross each other. He shows that any pair of planar graphs can be
simultaneously drawn with at most six bends per edge such that crossings between edges of
different graphs are always at right angles. For subclasses of planar graphs, he reduces the
number of required bends. Second, the author studies IC-planar graphs, that is, graphs in
which every edge is crossed at most once and every vertex is incident to at most one crossing
edge. He shows that any IC-planar graph can be drawn with right-angle crossings. On the
other hand, he shows that there are IC-planar graphs that require exponential area when
insisting on right-angle crossings. Further, it is NP-hard to decide whether a given graph is
IC-planar, even if the underlying rotation system is prescribed, that is, the cyclic ordering
of the edges around each vertex is given. I find this a valuable contribution to the study of
near-planar graphs.
In this thesis, Philipp Kindermann addresses a number of problems that are currently in

the focus of the graph drawing community. I had the pleasure of working on some of these
problems together with him, and I enjoyed seeing all this work come together in this beautiful
thesis. I wish the author and the readers many more nice graph-drawing problems to work
on!

Alexander Wolff
Chair I – Efficient Algorithms and Knowledge-Based Systems
Institute of Computer Science
University of Würzburg
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1 Introduction

In Graph Theory, a graph is an abstract structure that represents a set of objects, called
vertices, and a set of pairs of vertices, called edges. Graphs are a frequently used tool to model
network data. For example, a social network can be modeled by a graph whose vertices
correspond to persons, and whose edges correspond to relationships between these persons.
Similarly, in integrated circuit design for the production of computer components such as
microprocessors or memory systems, vertices represent the electronic components and edges
represent connections. A wide range of problems can be solved efficiently by modeling as a
graph, and then using graph algorithms to solve the underlying problem. For instance, a route
between two positions computed by a navigation system can be found by finding a shortest
path in the graph that represents the street network. The term “graph” has been introduced by
Sylvester [Syl78].

Graph Drawing. The area of visualizing graphs is called Graph Drawing. Graphs are
usually drawn as node-link diagrams in the Euclidean plane. In such diagrams, the vertices
are represented as geometric objects such as points, disks, or boxes, and the edges are drawn
as Jordan curves, for example, line segments, polygonal lines, or circular arcs. A drawing
should be readable, that is, the human eye should be able to easily follow the edges and
thus understand the relationship between the objects in the graph at first glance. In a good
drawing, simple tasks can be answered quickly, for example, finding a shortest path between
two vertices. Various properties that define a good drawing have been studied.
A very common approach is to draw graphs such that they induce no crossing between

edges; or, if this is not possible, to minimize the number of crossings. Another commonly
desired feature is the minimization of the drawing area, usually defined as the area of the
smallest bounding box containing the drawing under the restriction that the vertices are
placed on the integer grid. Recently, researchers have reconsidered the problem how to draw
graphs with angular restrictions.

Angular Schematization. The problem of angular schematization deals with computing
drawings of graphs under angular restrictions. In many network layouts, the directions of
the edges are restricted, for example, any edge in an orthogonal layout consists exclusively of
horizontal and vertical segments. These layouts are constructed in a wide range of research
communities: graph drawing, geographic information science, information visualization,
VLSI layout, computational geometry, and underground mining. Most fields of application
require large angles between edges that meet at a common vertex or a crossing point. Clearly,
it is hard to follow an edge if there are many edges that are drawn close to each other with
a small angle between them. We distinguish between two types of angles: vertex angles and
crossing angles. Another possible requirement in angular schematization ismonotonicity, that
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is, for each pair of vertices there exists some direction such that the drawing contains a path
that connects the vertices and is increasing in this direction.

Vertex Angles. A vertex angle is the angle formed by two edges that meet at a common
vertex of the drawing. The angular resolution of a drawing is the smallest vertex angle. Angular
resolution was first defined by Formann et al. [FHH+93] for straight-line drawings. Drawings
with small angular resolution make it difficult for the viewer to tell lines apart. Thus, an
important aesthetic criterion is to have high angular resolution, preferably perfect angular
resolution, that is, the edges are equally spaced around each vertex. Clearly, in a graph with
maximum degree d, the angular resolution is bounded by 2π/d. For trees, this bound can be
achieved in polynomial area. However, even for outerplanar graphs, perfect angular resolution
cannot always be achieved with straight-line edges, since the edges of a vertex on the convex
hull of the drawing cannot be spaced equally. Moreover, for some planar graphs, the optimal
angular resolution of a planar straight-line drawing of maximum degree d is Θ(1/d3) [GT94].
We deal with drawings for planar graphs of maximum degree 4 with perfect angular resolution
in Chapter 5, and with drawings of trees with close-to-perfect angular resolution in Chapter 6.

Crossing Angles. A crossing angle is the angle formed by two crossing edges in their
common crossing point. Similar to vertex angles, small crossing angles can make a viewer
follow the wrong edge after encountering a crossing. In a user study by Huang et al. [HHE08],
it has been shown that crossings with large angles are much less harmful to the readability of
drawings than shallow crossings. Thus, not only the minimization of the number of crossings,
but also the maximization of the crossing angles are important in the visualization of graphs.
Furthermore, even more planar graphs it may be beneficial to allow some crossings if they
induce right angles [vK11]. Such drawings are called right-angle crossing (Rac) drawings. In
general, it is NP-hard to decide whether a given graph admits a Rac drawing with straight
edges, and the maximum number of edges in such a drawing is 4n − 10. However, if bends
are allowed, this number increases to 6.5n (one bend per edge) and 74.2n (two bends per
edge). Every graph as a Rac drawing with three bends per edge. In Chapter 7, we produce
Rac drawings (with bends) for two planar graphs on a common vertex set, and in Chapter 8
we show that every graph with independent crossing edges admits a Rac drawing.

Contact Representations. A contact representation describes an approach in visualizing
graphs different from node-link diagrams. In such a representation, vertices are drawn as
non-overlapping geometric objects of a given type such as disks, rectangles or polygons. In
contrast to node-link diagrams, an edge is represented as a common region of two objects,
that is, if two objects touch, then an edge between their corresponding vertices exists in
the underlying graph. By a classical results of Koebe [Koe36], the class of graphs that are
representable by touching disks in the plane is exactly the class of planar graphs. However, if
the shape and area of the objects are prescribed, in general it is NP-hard to decide whether a
graph admits a contact representation. We deal with contact representations of rectangles
with given width and height in Chapter 4. Since not every graph admits such a drawing, we
seek to maximize the number of represented edges.

2
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Map Labeling. The placement of labels on a map is an important field of visualization that
is related to graph drawing. In this problem, the task is to place the names (labels) of specific
sites, for example towns or points of interest, on a map such that the reader can immediately
identify which name describes which site. Usually, labels are represented by the smallest
bounding rectangle containing the text in a given font. For readability, labels have to be placed
without overlaps and close to their corresponding sites. If labels are too large to be placed
on the map, they are usually placed into the margin, and connected to the sites by so-called
leaders. We study this problem, called boundary labeling, in Chapter 3. In terms of graph
drawing, this problem can be interpreted as drawing a matching between sites and labels with
given coordinates of the sites and a specified region into which the labels have to be placed.

1.1 Outline of the Book

This book consists of three parts, each dealing with different types of angular restrictions. In
Part I, we deal with the placement of boxes. In this setting, vertices are associated with a text,
and are represented by the bounding rectangle of the words. The edges are represented by
common horizontal or vertical segments of the rectangles. Part II is devoted to visual guidance,
that is, planar drawings with high angular resolution and edges that are appealing and easy to
follow. Finally, Part III deals with non-planar graphs that are drawn with crossings with large
angles. In these drawings, crossing edges induce exclusively right angles, such that the reader
does not inadvertently “jump” to another edge when encountering a crossing. Before starting
with the main part of this book, we give a short introduction into the terminology that we
use; see Chapter 2.

1.1.1 Placement of Boxes

In Part I of this book, we deal with the placement of boxes representing text. We consider
two different problems. First, the boxes are used to label important sites on a map with
text that is too large to be placed directly next to the corresponding site. Thus, we place the
boxes in the margin of the map and connect them to the labeled points by so-called leaders.
Second, we want to create semantic word clouds, that is, word clouds in which related words
(according to some semantic) are placed next to each other. More formally, the task is to
create a non-overlapping box contact representation of an underlying graph such that two
boxes touch if there is an edge between the corresponding vertices.

Multi-Sided Boundary Labeling

In Chapter 3, we study the Multi-Sided Boundary Labeling problem, with labels lying on
at least two sides of the enclosing rectangle; see Figure 1.1 for an illustration. We present a
polynomial-time algorithm that computes a crossing-free leader layout if one exists. So far,
such an algorithm has only been known for the cases in which labels lie on one side or on
two opposite sides of R. In both cases, a crossing-free solution always exists. The case where
labels may lie on adjacent sides is more difficult. We present an efficient algorithm for testing
the existence of a crossing-free leader layout that labels all sites. We also study the problem

3
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Figure 1.1: Boundary Labeling for kindergartens in Karlsruhe, Germany

of maximizing the number of labeled sites in a crossing-free leader layout. For two-sided
boundary labeling with adjacent sides, we show how to minimize the total leader length in a
crossing-free layout.

This chapter is based on joint work with Benjamin Niedermann, Ignaz Rutter, Marcus
Schaefer, André Schulz, and Alexander Wolff [KNR+13].

Approximation Algorithms for Box Contact Representations

In Chapter 4, we study the following geometric representation problem: Given a graph
whose vertices correspond to axis-aligned rectangles with fixed dimensions, arrange the
rectangles without overlaps in the plane such that two rectangles touch if the graph contains
an edge between them; see Figure 1.2 for an example. This problem was named Contact
Representation of Word Networks (Crown) since it formalizes the geometric problem
behind drawing word clouds in which semantically related words are close to each other.
Crown is known to be NP-hard, and there are approximation algorithms for certain graph
classes for the optimization version, Max-Crown, in which realizing each desired adjacency
yields a certain profit.

We present the first O(1)-approximation algorithm for the general case, when the input is a
complete weighted graph, and for the bipartite case. Since the subgraph of realized adjacencies
is necessarily planar (if we insist on non-trivial contacts), we also consider several planar
graph classes (namely stars, trees, outerplanar, and planar graphs), improving upon the known
results. For some graph classes, we also describe improvements in the unweighted case, where
each adjacency yields the same profit. Finally, we show that the problem is APX-hard even on
bipartite graphs of bounded maximum degree.

This chapter is based on joint work withMichael A. Bekos, Thomas C. vanDijk, Martin Fink,
Stephen Kobourov, Sergey Pupyrev, Joachim Spoerhase, and Alexander Wolff [BvDF+14].

4
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Figure 1.2: A semantic word cloud representing the 20 most frequently used words in
this book, excluding common English words; created with the World Cloud Generator at
http://wordcloud.cs.arizona.edu/cloud.html?id=715 (Layout: Star Forest).

1.1.2 Visual Guidance

In Part II of this book, we seek to create drawings of specific subclasses of planar graphs
that visually guide the viewer, that is, it is easy for the human eye to continuously follow an
edge and to find a path between to vertices. Naturally, bends interrupt the eye movement
of the viewer, as it has to abruptly change the direction it follows. Thus, we seek to draw
edges with straight-line segments and circular arcs that induce no bends. For circular arcs,
we consider its tangent at the touching point with another segment to determine whether a
bend occurs. In straight-line drawings, the task is to draw them in a way that a path between
two vertices can be found by linearly following a specific direction, preferably the direction
between the two endpoints of the path. The drawings computed by our algorithms have
perfect or close-to-perfect angular resolution.

Smooth Orthogonal Layouts of Planar Graphs

Chapter 5 is devoted to smooth orthogonal layouts of planar graphs. In these layouts, every
edge is an alternating sequence of axis-aligned segments and circular arcs with common
axis-aligned tangents; see Figure 1.3 for some example drawings. In this chapter, we study
the problem of finding smooth orthogonal layouts of low edge complexity, that is, with few
segments per edge. We say that a graph has smooth complexity k—for short, an SCk-layout—if
it admits a smooth orthogonal drawing with at most k segments per edge.

Our main result is that every planar graph of maximum degree 4 has an SC2-layout. While
our drawings may have super-polynomial area, we show that for planar graph of maximum
degree 3, cubic area suffices. We also show that any biconnected outerplane graph ofmaximum
degree 4 has an SC1-layout. On the negative side, we construct two infinite families of
biconnected planar graphs of maximum degree 4 that (1) require exponential area for an
SC1-layout and (2) do not admit an SC1-layout.

This chapter is based on joint work with Md. Jawaherul Alam, Michael A. Bekos, Michael
Kaufmann, Stephen G. Kobourov, and Alexander Wolff [ABK+14].

5
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Figure 1.3: An orthogonal layout (left) and a smooth orthogonal layout (right) of the same graph

Monotone Drawings of Trees

In Chapter 6, we investigatemonotone drawings. A crossing-free straight-line drawing of a
graph is monotone if there is a monotone path between any pair of vertices with respect to
some direction. We show how to construct a monotone drawing of a tree with n vertices on
a section of size O(n1.5) × O(n1.5) of the integer grid such that the angles at a vertex v are
bounded from below by roughly 1/deg(v). Our drawings are convex, that is, if every edge
to a leaf is substituted by a ray, the (unbounded) faces form convex regions. It is known that
convex drawings are monotone and, in the case of trees, crossing-free.
A monotone drawing is strongly monotone if, for every pair of vertices, the direction that

witnesses the monotonicity comes from the vector that connects the two vertices. We show
that every tree admits a strongly monotone drawing; see Figure 1.4 for an example drawing.
For biconnected outerplanar graphs, this is easy to see. On the other hand, we present a
simply-connected graph that does not have a strongly monotone drawing in any embedding.

This chapter is based on joint work with André Schulz, Joachim Spoerhase, and Alexander
Wolff [KSSW14].

Figure 1.4: Amonotone (and strictly convex) drawing of a tree

6
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Figure 1.5: A RacSim drawing of a tree (solid edges) and a matching (dashed edges)

1.1.3 Crossings with Large Angles

In Part III of this book, we consider non-planar graphs. If a drawing of these graphs induces
small crossing angles, the reader may follow the wrong edge after a crossing point. To avoid
this, angles at edge crossings should be large. We deal with drawings of non-planar graphs in
which all crossings form right angles (Rac). In simultaneous embeddings, two planar graphs
are drawn on the same point set such that each graph is plane, and the crossings between
the two graphs are Rac. Since only few classes of graphs admit such drawings, we allow a
constant number of bends per edge. Then, we consider IC-planar graphs, that is, graphs that
have a drawing in which every edge is crossed at most once and every vertex is incident to
at most one crossing edge. We prove that every IC-planar graph admits a straight-line Rac
drawing. If we drop the restriction of only one crossing edge per vertex, the graphs are called
1-planar graphs and cannot always be drawn Rac.

Simultaneous Drawing of Planar Graphs with Right-Angle Crossings

In Chapter 7, we study the Rac simultaneous drawing problem. Given two planar graphs
that are defined on the same set of vertices, a Rac simultaneous drawing is one in which
each graph by itself is drawn planar, there are no edge overlaps and the crossings between the
two graphs form right angles. The geometric version restricts the problem to straight-line
drawings. It is known, however, that there exists a wheel and a matching which do not admit
a geometric Rac simultaneous drawing.
In order to enlarge the class of graphs that admit Rac simultaneous drawings, we allow

bends when drawing the edges; see Figure 1.5. We prove that two planar graphs always
admit a Rac simultaneous drawing with six bends per edge, in quadratic area. For more
restricted classes of planar graphs (that is, matchings, paths, cycles, outerplanar graphs, and
subhamiltonian graphs), we manage to significantly reduce the required number of bends per
edge while keeping the drawing area quadratic.

This chapter is based on joint work with Michael A. Bekos, Thomas C. van Dijk, Alexander
Wolff [BvDKW15].

7
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Figure 1.6: A drawing of an IC-planar graph

Recognizing and Drawing IC-Planar Graphs

In Chapter 8, we consider a subclass of 1-planar graphs, so-called IC-planar graphs. A graph is
called 1-planar if it can be drawn in the plane such that each edge is crossed at most once, and
is called IC-planar if the crossings are independent and no vertex is incident to more than
one crossing edge; see Figure 1.6 for an example graph. A Rac graph is a graph that admits a
straight-line right-angle crossing drawing. It has been shown by Eades and Liotta [EL13] that
not every 1-planar graph is a Rac graph and vise versa. They have stated the open problem
of characterizing the intersection between the class of 1-planar graphs and the class of Rac
graphs. We prove that the class of IC-planar graphs lies in this intersection.
We show that every IC-planar graph admits a straight-line drawing in polynomial area

that can be computed in linear time. However, we observe that quadratic area is sometimes
necessary for straight-line IC-planar drawings. Further, the angles formed by crossing angles
in this drawing might be small. We present an algorithm that, given an embedded IC-planar
graph, computes a Rac drawing of the given graph. Our drawings need exponential area. This
area bound is justified by the fact that there are IC-planar graphs that cannot be drawn in
polynomial area.

For a plane triangulated graph, it can be tested in polynomial time whether a disjoint set of
matching edges can be added to form an IC-planar graph. However, testing IC-planarity of a
graph is NP-complete, even if the graph is given with a rotation system.

This chapter is based on joint work with Franz J. Brandenburg, Walter Didimo, William S.
Evans, Giuseppe Liotta, and Fabrizio Montecchiani.
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2 Preliminaries

This chapter contains the most important preliminaries and definitions of graphs, graph
drawing, and complexity of algorithms. We seek to give a small introduction to the notation
and the techniques used in this book. For an extended introduction into these fields, we refer
to books designated to this matter.
A basic introduction to graph theory is given in the book Introduction to Graph Theory

by Trudeau [Tru93]. A more algorithmic approach is used in Algorithmic Graph Theory by
Gibbons [Gib85]. The basic concepts and algorithms for graph drawing are presented inGraph
Drawing: Algorithms for the Visualization of Graphs by Di Battista et al. [BETT99], Drawing
Graphs: Methods and Models by Kaufmann and Wagner (editors) [KW01], and Planar Graph
Drawing by Nishizeki and Rahman [NR04]. These works are complemented by the recently
published Handbook of Graph Drawing and Visualization by Tamassia (editor) [Tam13]. For
an introduction to the basic design and analysis of algorithms, we refer to Introduction to
Algorithms by Cormen et al. [CLRS09]. Regarding approximation algorithms, more infor-
mation can be found in Approximation Algorithms by Vazirani [Vaz03] an The Design of
Approximation Algorithms by Williamson and Shmoys [WS11].

2.1 Graphs

A directed graph is defined by a tupel G = (V , E) of a non-empty set of vertices V and a set
of directed edges E ⊆ V × V = {(u, v) ⊆ V ∣ u ≠ v}. We say that an edge e = (u, v) starts
in u and ends in v. We call u and v the endpoints of e. We call e an outgoing edge of u and
an incoming edge of v. We forbid so-called loops, that is, edges where the two endpoints are
the same. We denote the number of vertices by n = ∣V ∣ and the number of edges by m = ∣E∣.
Clearly, m ≤ (n2) = n(n − 1)/2.

An undirected graph is defined by a tupel G = (V , E) of a non-empty set of vertices V and
a set of undirected edges E = {{u, v} ⊆ V ∣ u ≠ v}. The notation e = (u, v) is often used for
undirected edges, too. In this case, we identify (u, v) and (v , u). If not specified otherwise,
we assume graphs to be undirected.

In a graphG = (V , E), two verticesu, v ∈ V are called adjacent orneighbors if (u, v) ∈ E. We
denote the set of vertices that are adjacent to a vertex u ∈ V by Adj(u) ∶= {v ∈ V ∣ (u, v) ∈ E}.
Given an edge (u, v) ∈ E, we say that the vertices u and v are incident to (u, v).
For a vertex v of an undirected graph, we define the degree deg(v) ∶= ∣Adj(v)∣ of v as the

number of adjacent vertices. Themaximum degree of a graph, which we denote by ∆, is the
maximum of the degrees over all vertices, that is, ∆ = maxv∈V deg(v). For a vertex v of an
directed graph, we define the outdegree outdeg(v) ∶= ∣{u ∈ V ∣ (v , u) ∈ E}∣ as the number of
edges leaving v and the indegree indeg(v) ∶= ∣{u ∈ V ∣ (u, v) ∈ E}∣ as the number of edges
entering v.
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We call G′ = (V ′ , E′) a subgraph of a graph G = (V , E) if V ′ ⊆ V and E′ ⊆ E. We say that G′
is induced by V ′ if E′ contains exactly the edges of G whose endpoints are both in V ′, that is,
if E′ = {(u, v) ∈ E ∣ u, v ∈ V ′}. This graph is denoted by G[V ′].

A subdivision of a graph G is a graph G′ that is obtained by replacing every edge by a path
of arbitrary length. We call this operation subdividing an edge. The inverse operation, that is,
replacing a path by an edge, is called smoothing out (the vertices on) the path. Similarly, and
edge (u, v) can be contracted, that is, it is replaced by a single vertex w that is adjacent to the
neighbors of u and v.
A path P of length k is a graph P = (V , E) with V = {v0 , v1 , . . . , vk} and E = {(v i , v i+1) ∣

0 ≤ i ≤ k − 1}. We also denote a path by the sequence of its vertices P = ⟨v0 , v1 , . . . , vk⟩, or by
its endpoints v0 → vk . A path is called simple if all vertices are pairwise different. We say that
there is a path from u to v in a graph G if there is a subgraph P = ⟨u, . . . , v⟩ of G. A cycle of
length k is a path Ck = ⟨v0 , v1 , . . . , vk⟩ of length k with v0 = vk and k > 1 for directed graphs,
and k > 2 for undirected graphs. A cycle is called simple if all vertices are pairwise different,
with the exception of v0 = vk .

A graphG = (V , E) is connected if for every for every pair of vertices u, v ∈ V there is a path
from u to v in G; otherwise, G is disconnected. A connected component of G is a connected
subgraphG[V ′] induced by amaximal subsetV ′ ⊆ V , that is, for everyV ′′ withV ′ ⊊ V ′′ ⊆ V ,
G[V ′′] is not connected. Thus, G[V] = G is the only connected component of G if G is
connected.
A Hamiltonian path is a path that visits every vertex exactly one. Correspondingly, a

Hamiltonian cycle is the augmentation of a path to a cycle. A graph is called Hamiltonian if it
contains a Hamiltonian cycle.
A graph G is called k-vertex-connected or k-connected if G remains connected after the

removal of any k − 1 vertices. Correspondingly, G is called k-edge-connected if G remains
connected after the removal of any k − 1 edges. A vertex cut is a set of vertices whose re-
moval renders G disconnected, and an edge cut is a set of edges whose removal renders G
disconnected. For 2-connected and 3-connected graphs, we also use the terms biconnected
and triconnected, respectively. If a vertex cut consists of a single vertex, we refer to it as a
cutvertex. Analogously, if an edge cut consists of a single edge, we refer to it as a bridge. If an
edge cut forms a cycle, we refer to it as separating cycle. A separating cycle of length 3 is called
separating triangle.

A graph that contains no simple cycle is called a forest. A connected forest is known as a tree.
It is well-known that a tree contains exactly n − 1 edges, and that there is a unique simple path
between every pair of vertices. A tree T = (V , E) is usually considered as rooted in a root r ∈ V .
In a rooted tree, the edges are directed such that indeg(r) = 0 and indeg(v) = 1 for every
other vertex v ∈ V ∖ {r}. A vertex v ∈ V is called a leaf if indeg(v) = 1 and outdeg(v) = 0.
If (u, v) is an edge of T , we call u a parent of v and v a child of u. Similarly, we call u an
ancestor of v and v a successor of u if there exists a (directed) path from u to v. We define a
subtree T[v] of a tree to be the induced subgraph T[V ′] with V ′ = {u ∣ u is a successor of v}.
Consequently, v is the root of T[v].

A caterpillar is a tree that consists of a path, called spine, and a set of leaves that are connected
to the spine. An edge between a leaf and a spine vertex is called a leg. Another subclass of
trees are stars, which consist of a set of leaves and a single vertex that is connected to all leaves,
called center. A wheel consists of a star and a cycle that connects all leaves of the star.
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Figure 2.1: Two different IC-planar embeddings of the same graph with the same rotation system

A graphG = (V , E) is called bipartite if the set of vertices can be decomposed into two disjoint
sets V1 and V2 with V = V1 ∪V2 and V1 ∩V2 = ∅, such that all edges are incident to a vertex of
each set: E ⊆ {(u, v) ∣ u ∈ V1 , v ∈ V2}. Amatching is a bipartite graph of maximum degree 1.

2.2 Graph Drawing

A drawing of a graph G = (V , E) is a mapping Γ of G into the plane R2. Each vertex v ∈ V is
mapped to a distinct point Γ(v), that is, Γ(u) ≠ Γ(v) for any other vertex u ≠ v. Each edge e =
(u, v) ∈ E is mapped to a simple Jordan curve Γ(e) between the endpoints Γ(u) and Γ(v)
of e. The relative interior of the curve Γ(e) does not contain Γ(w) for any vertex w ∈ V .
We say that two edges e1 and e2 cross in a drawing Γ if the relative interiors of Γ(e1)

and Γ(e2) share at least one point. We call e1 and e2 crossing edges and the common point
a crossing point. We do not allow edges to overlap, that is, to share an infinite number of
points. A drawing is planar if it has no crossing edges, and 1-planar if each edge is crossed at
most once. An IC-planar drawing is a special case of a 1-planar drawing where each vertex
is incident to at most one crossing edge. Following Euler’s formula, a planar graph has at
most 3n − 6 edges, a 1-planar graph has at most 4n − 8 edges, and an IC-planar graph has at
most 13n/4 − 6 edges.
A drawing Γ of a graph G induces an embedding E(G), which is the class of topologically

equivalent drawings. An embedding specifies faces, whose boundary consists of a cyclic
sequence of edges between two vertices and of segments of edges from a vertex to a crossing
point or from a crossing point to a crossing point. We say that a vertex u is incident to a face f
in E(G) if u lies on the boundary of f . Incident edges are defined analogously. A triconnected
planar graph has a unique planar embedding: the faces of the embedding are exactly the
non-separating cycles of the graph.
An embedding can also be defined by a rotation system, that is, the circular order of the

incident edges around a vertex. Note that both definitions are equivalent for planar graphs.
For non-planar graphs, the rotation system can directly be retrieved from a drawing or an
embedding. The converse does not necessarily hold, as shown in Figure 2.1.
In every drawing, there is exactly one face of infinite area, called the outer face. All other

faces, called inner faces, are bounded by the drawing of their surrounding edges. For outer-
planar graphs, an embedding exists in which all vertices are incident to the outer face. Note
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that every drawing induces a unique embedding, but for every embedding there is an infinite
number of realizing drawings.

The planarization G× of an embedding with crossings is obtained by treating the crossing
points of two edges as specialized vertices of degree at least 4 and the edge segments as new
edges. The planar embedding ofG× is inherited from E(G), and the embeddings can be taken
as synonyms, in particular for an algorithmic treatment. In general, we assume that no more
than two edges cross in a single point.

Let G be a graph property, for example, planar, 1-planar, IC-planar, or Rac. An embedding
is maximal-G if no further edge can be added without violating G. We call the operation
of adding edges to make a graph maximal-G amaximal-G augmentation. A graph G ∈ G is
maximal-G if every G-embedding is maximal-G. Such graphs are maximally dense since the
addition of an edge destroys the defining property.
An embedding E(G) of a planar graph G, called primal graph, induces a dual graph G∗.

The dual graph consists of a vertex corresponding to each face in E(G), and an edge between
each pair of neighboring faces. This property is symmetric, meaning that G is the dual graph
of G∗. Since any triconnected graph has a unique embedding, it induces a unique dual graph.
A weak dual is the subgraph of the dual graph after removal of the vertex corresponding to
the outer face. The weak dual can be used to get an alternative definition for outerplanar
graphs: A graph is outerplanar if and only if its weak dual is a tree. Similarly, we can define an
outerpath as a graph whose weak dual is a path.

The drawing style or layout determines the types of curves used to draw the edges. In
straight-line or geometric drawings, every edge is represented by the straight-line segment that
connects the representation of its endpoints. In polyline drawings, each edge consists of a
finite number of edge segments. The touching points of these segments are called bends. A
special type of polyline drawings are orthogonal drawings, in which every segment has to be
horizontal or vertical. Note that orthogonal drawings restrict vertex degrees to at most 4. In
circular-arc drawings, every edge is drawn as a segment of a circle. A (strictly) convex drawing
is a drawing in which every face is (strictly) convex. Amonotone drawing is a straight-line
drawing such that, for every pair of vertices, there exists a path that monotonically increases
with respect to some direction. A drawing is strongly monotone if this direction is the vector
between the representation of the two vertices.
For planar graphs, many quality measures are well-studied. The most common measure

is the drawing area. If a graph is drawn such that all its vertices lie on the integer grid, the
area is defined by the width, that is, the difference between the extremal x-coordinates, and
the height, that is, the difference between the extremal y-coordinates. If the vertices are not
drawn on the integer grid, the area can be measured as the maximum distance over all pairs
of vertices over the minimum distance over all pairs of vertices. Note that the area is bounded
from below by the ratio between the length of the longest and the length of the shortest edge
in the drawing. Another important quality measure is the angular resolution of a drawing.
The angular resolution measure is defined as the smallest angle formed by any pair of edges
that meet at a common vertex. For a graph with maximum degree d, a drawing has perfect
angular resolution if the angular resolution is 2π/d.
For non-planar graphs, there are different approaches to make the drawing appealing. In

general, a drawing with many crossings is harder to comprehend than a drawing with fewer
crossings. However, minimizing the number of crossings is NP-hard [GJ83], even for graphs
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that become planar after removal of a single edge [CM13]. Another optimization criterion is
the maximization of crossing angles, that is, the angles between two edges in a crossing point.
A drawing in which all crossing angles are optimal, that is, 90○, is called a right-angle crossing
(Rac) drawing.

2.3 Complexity

For algorithms and problems on graphs, we often analyze the complexity. There are two
fundamental types of problems. Decision problems are yes-or-no questions, for example,
whether a graph is planar. In optimization problems, we do not look for the existence of a
solution, but for a best solution according to a given target function, for example, a drawing of
a graph with the minimum number of crossings. In amaximization problem, a best solution is
one that maximizes the value of the target function. Analogously, in aminimization problem,
a best solution is one that minimizes the value of the target function.
When talking about the running time of an algorithm, we usually analyze the asymptotic

running time, which is described by the big O notation. Let f ∶N→ N be a function that maps
the input size of a problem to the time that the algorithm requires to solve the problem. Then,
we denote by

O( f ) = {д∶N→ N ∣ ∃c > 0, n0 ∈ N ∀n ≥ n0∶ д(n) ≤ c ⋅ f (n)}

the class of functions that asymptotically grow at most as fast as f . We say that the running
time д of an algorithm lies in the order of f if д ∈ O( f ).
If the running time of an algorithm lies in O(nk) for some constant k > 0, then the

algorithm is called a polynomial-time or efficient algorithm. The class P consists of all decision
problems for which a deterministic algorithm exists that solves the problem in polynomial
time. Similarly, the class NP consists of all decision problems for which a nondeterministic
algorithm exists that solves the problem in polynomial time. It holds that P ⊆ NP, however, it
is a long standing open problem whether P = NP or P ⊊ NP.

A problem A is NP-hard if every problem B ∈ NP can be reduced to A in polynomial time.
A reduction from B to A is a transformation that maps any instance J of B to an instance I of A
such that there is a valid solution for J if and only if there is a valid solution for I. Consequently,
if we can solve one NP-hard problem in polynomial time, then we can solve every problem
in NP efficiently. Since the common conjecture is that P ≠ NP, most people do not expect
that an NP-hard problem can be solved efficiently. A problem is NP-complete if it is NP-hard
and in NP.
An NP-hard problem is weakly NP-hard if there is an algorithm for the problem with

running time polynomial in the dimension of the problem and the magnitude of the input
numbers if they are encoded in unary. Such an algorithm is called pseudo-polynomial; see
Garey and Johnson [GJ79]. On the contrary, a problem is strongly NP-hard if it remains
NP-hard even when the magnitude of the input numbers are encoded in unary; see Garey
and Johnson [GJ78]. Weak and strong NP-completeness are defined analogously.
Usually, NP-hardness is proven by a reduction from a known NP-hard problem. In this

book, we use the following NP-hard problems for NP-hardness proofs.
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Sat The Boolean satisfiability problem (Sat) is the first problem known to be NP-complete,
and is used as a starting point for proving NP-hardness of any other problem [Coo71]. A Sat
formula is built from Boolean variables, the operators AND (denoted by ∧), OR (denoted
by ∨), and NOT (denoted by ¬). A Sat formula is called satisfiable if it is true for some
assignment of Boolean values to the variables. Sat is the problem of deciding whether a given
Sat formula is satisfiable.

A literal l is either a variable x or the negation of a variable ¬x. A clause c is a disjunction
of literals l1 , . . . , kk , that is, c = (l1 ∨ . . . ∨ lk). A formula F is in conjunctive normal form if
it is a conjunction of clauses c1 , . . . , cm , that is, F = c1 ∧ . . . ∧ cm . It is known that every Sat
formula can be converted into an equivalent formula in conjunctive normal form. However,
the size of the formula can rise exponentially by this conversion.

3Sat The 3-satisfiability problem (3Sat) is a special version of Sat. A 3Sat formula is a
formula in conjunctive normal form in which every clause consists of at most three literals.
This problem is also NP-complete; see Karp’s famous list of 21 NP-complete problems [Kar72].
On the other hand, the 2-satisfiability problem (2Sat), in which every clause consists of at
most two literals, can be solved efficiently; see Krom [Kro67].

Planar-3Sat The planar 3-satisfiability problem (Planar-3Sat) is a version of 3Sat that
is often used to prove NP-hardness of planar graph drawing problems. An instance of 3Sat
with a set X of variables and a set C of clauses is in Planar-3Sat if and only if the bipartite
graph GXC = (X ∪ C , EXC) with

EXC = {(x , c) ∣ x ∈ c or ¬x ∈ c, x ∈ X , c ∈ C}

is planar. Thus, there is an edge connecting a variable x ∈ X to a clause c ∈ C if x or ¬x is a
literal of c.

1-Planarity testing 1-Planarity testing is the problem of testing whether a given graph
is 1-planar. It was shown by Grigoriev and Bodlaender [GB07] to be NP-complete. The
problem remains NP-complete even if the input graph is a maximal planar graph with one
additional edge [CM13].

Recall that NP-hard problems are not expected to admit efficient algorithms. However, for
optimization problems, we can still try to find a feasible solution that is close to optimal.

A usual approach for this is an approximation algorithm. For an instance I of an optimization
problem Π, suppose that the value of an optimal solution is OPTI , and there is an algorithm
that finds a solution with value ALGI . If Π is a minimization problem, then this algorithm
is an α-approximation algorithm if there is a factor α > 1 such that ALGI ≤ α ⋅ OPTI for
every instance I of Π. Analogously, if Π is a maximization problem, then this algorithm is
an α-approximation algorithm if there is a factor 0 < α < 1 such that ALGI ≥ α ⋅OPTI for
every instance I of Π. We call the algorithm an α-approximation, and α is the approximation
factor of the algorithm. Note that α does not necessarily have to be a constant; there are also
approximation algorithm whose approximation factor depends on the input size. If α is a
constant, we call the algorithm a constant-factor approximation algorithm.
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A polynomial-time approximation scheme (PTAS) is an approximation algorithm that, given an
instance of an optimization problem and a factor ε > 0, solves the problemwith approximation
factor 1 + ε. The running time of a PTAS is required to be polynomial in the input size for
every fixed ε. Usually, the running time heavily depends on ε. For example, a PTAS can have a
running time of nO(1/ε). The term PTAS can also be used to refer to the class of optimization
problems that have a PTAS.

The class APX is the set of optimization problems for which a constant-factor approximation
algorithm with polynomial running time exists. A problem A is called APX-hard if there is a
PTAS reduction from every problem B ∈ APX to A, that is, a transformation that maps any
instance J of B to an instance I of A such that a (1 + ε)-approximation to I yields a (1 + f (ε))-
approximation to J, for some surjective function f ∶R+ → R+. A problem is APX-complete if it
is APX-hard and in APX. Under the assumption that P ≠ NP, it holds that PTAS ≠ APX, that
is, no APX-hard problem has a PTAS. In this book, we use the following APX-hard problems
as starting points of APX-hardness reduction.

Gap The Generalized Assignment Problem (Gap) is defined as follows. Given a set X of
items x1 , . . . , xn and a set B of bins b1 , . . . , bn . Each bin b i is associated with a budget w i , and
each item x j has a profit p ij and a weight w ij depending on the bin it is placed in. A solution
to Gap is an assignment of each item into at most one bin, such that, for each bin b i , the
sum of the weights w ij of the items that are assigned to the bin does not exceed its budget w i .
The profit of a solution is the sum of the profits p ij for each item–bin assignment. The goal
is to find a solution with maximum profit. Chekuri and Khanna [CK05] proved that Gap is
APX-hard.

3DM The 3-dimensional matching problem (3DM) is a generalization of the efficiently solv-
able bipartite matching problem, that is, finding a maximummatching in a bipartite graph.
In 3DM, the input is not a graph as we know it, but a 3-dimensional hypergraph, that is, an
edge does not connect two but three vertices. The value of a solution is the number of picked
hyperedges. More formally, an instance of this problem is given by three disjoint sets X ,Y , Z
with cardinalities ∣X∣ = ∣Y ∣ = ∣Z∣ = k and a set E ⊆ X × Y × Z of hyperedges. The objective
is to find a matching M ⊆ E, such that no element of V = X ∪ Y ∪ Z is contained in more
than one hyperedge in M and such that ∣M∣ is maximized. This problem was shown to be
APX-hard by Fleischer et al. [FGMS11].
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Placement of Boxes





3 Multi-Sided Boundary Labeling

Label placement is an important problem in cartography and, more generally, information
visualization. Features such as points, lines, and regions in maps, diagrams, and technical
drawings often have to be labeled so that users understand better what they see. Even very
restricted versions of the label-placement problem are NP-hard [vKSW99], which explains
why labeling a map manually is a tedious task that has been estimated to take 50% of total
map production time [Mor80]. The ACM Computational Geometry Impact Task Force
report [Cc99] identified label placement as an important research area. The point-labeling
problem in particular has received considerable attention, from practitioners and theoreticians
alike. The latter have proposed approximation algorithms for various objectives (label number
versus label size), label shapes (such as axis-parallel rectangles or disks), and label-placement
models (so-called fixed-position models versus slider models).

The traditional label-placement models for point labeling require that a label is placed
such that a point on its boundary coincides with the point to be labeled, the site. This can
make it impossible to label all sites with labels of sufficient size if some sites are very close
together. For this reason, Freeman et al. [FMC96] and Zoraster [Zor97] advocated the use
of leaders, (usually short) line segments that connect sites to labels. In order to ensure that
the background image or map remains visible even in the presence of large labels, Bekos
et al. [BKSW07] took a more radical approach. They introduced models and algorithms
for boundary labeling, where all labels are placed beyond the boundary of the map and are
connected to the sites by straight-line or rectilinear leaders (see Figure 3.1).

Problem statement. Following Bekos et al. [BKSW07] we define the Boundary Label-
ing problem as follows. We are given an axis-parallel rectangle R = [0,W] × [0,H], which
is called the enclosing rectangle, a set P ⊂ R of n points p1 , . . . , pn , called sites, within the
rectangle R, and a set L of m ≤ n axis-parallel rectangles ℓ1 , . . . , ℓm of equal size, called labels.
The labels lie in the complement of R and touch the boundary of R. No two labels overlap. We
denote an instance of the problem by the triplet (R, L, P). A solution of a problem instance is
a set ofm curves c1 , . . . , cm in the interior of R, called leaders, that connect sites to labels such
that the leaders

(a) induce a matching between the labels and (a subset of) the sites,

(b) touch the associated labels on the boundary of R.

Following previous work, we do not define labels as the text associated with the sites, but as
the empty rectangles into which that text will be placed (during a post-processing step). This
approach is justified by our assumption that all label rectangles have the same size.
A solution is planar if the leaders do not intersect. We call an instance solvable if a planar

solution exists. Note that we do not prescribe which site connects to which label. The endpoint
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Figure 3.1: Labeling of kindergartens in Karlsruhe, Germany. The pictures show different types of leaders with
labels on adjacent sides of the map. For better readability, we have simplified the label texts.

of a curve at a label is called a port. We distinguish two versions of the Boundary Labeling
problem: either the position of the ports on the boundary of R is fixed and part of the input,
or the ports slide, that is, their exact location is not prescribed.
We restrict our solutions to po-leaders, that is, starting at a site, the first line segment of a

leader is parallel (p) to the side of R touching the label it leads to, and the second line segment
is orthogonal (o) to that side; see Figure 3.1c. (Figure 3.1b shows a labeling with so-called opo-
leaders, which were investigated by Bekos et al. [BKSW07]). Bekos et al. [BKPS10, Figure 16]
observed that not every instance admits a planar solution with po-leaders in which all sites
are labeled (even if m = n).

Previous and related work. For po-labeling, Bekos et al. [BKSW07] gave a simple
quadratic-time algorithm for the one-sided case that, in a first pass, produces a labeling
of minimum total leader length by matching sites and ports from bottom to top. In a second
pass, their algorithm removes all intersections without increasing the total leader length. This
result was improved by Benkert et al. [BHKN09] who gave an O(n log n)-time algorithm for
the same objective function and an O(n3)-time algorithm for a very general class of objective
functions, including, for example, bend minimization. They extend the latter result to the
two-sided case (with labels on opposite sides of R), resulting in an O(n8)-time algorithm. For
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Figure 3.2: Length-minimal solutions may have crossings. By increasing ∆, we canmake the ratio between the
length-minimal matching and the length-minimal crossing-free matching arbitrarily small.

the special case of leader-length minimization, Bekos et al. [BKSW07] gave a simple dynamic
program running in O(n2) time. All these algorithms work both for fixed and sliding ports.
Leaders that contain a diagonal part have been studied by Benkert et al. [BHKN09] and

by Bekos et al. [BKNS10]. Recently, Nöllenburg et al. [NPS10] have investigated a dynamic
scenario for the one-sided case, Gemsa et al. [GHN11] have usedmulti-layer boundary labeling
to label panorama images, and Fink et al. [FHS+12] have boundary labeled focus regions, for
example, in interactive on-line maps. Lin et al. [LKY08] consider boundary labeling where
more than one site may be labeled by the same label. Lin [Lin10] and Bekos et al. [BCF+13]
study hyperleaders that connect each label to a set of sites.

At its core, the boundary labeling problem asks for a non-intersecting perfect (ormaximum)
matching on a bipartite graph. Note that an instance may have a planar solution, although
all of its leader-length minimal matchings have crossings. In fact, the ratio between a length-
minimal solution and a length-minimal crossing-free matching can be arbitrarily bad; see
Figure 3.2. When connecting points and sites with straight-line segments, the minimum
Euclideanmatching is necessarily crossing-free. For this case anO(n2+ε)-timeO(n1+ε)-space
algorithm exists [AES99].

Boundary labeling can also be seen as a graph-drawing problem where the class of graphs
to be drawn is restricted to matchings. The restriction concerning the positions of the graph
vertices (that is, sites and ports) has been studied for less restricted graph classes under the
name point-set embeddability (PSE), usually following the straight-line drawing convention
for edges [GMPP91]. For polygonal edges, Bastert and Fekete [BF96] proved that PSE with
minimum number of bends or minimum total edge length is NP-hard, even when the graph
is a matching. For minimizing the total edge length and the same graph class, Liebling et
al. [LMM+95] introduced heuristics and Chan et al. [CHKL13] presented approximation
algorithms. Chan et al. also considered paths and general planar graphs. PSE has also been
combined with the ortho-geodesic drawing convention [KKRW10], which generalizes po-
labeling by allowing edges to have more than one bend. The case where the mapping between
ports and sites is given has been studied in VLSI layout [RCS86].

Our contribution. In the first part of the chapter, we investigate the problem Two-Sided
Boundary Labeling with Adjacent Sides where all labels lie on two adjacent sides of R,
without loss of generality, on the top and right side. Note that point data often comes in a
coordinate system; then it is natural to have labels on adjacent sides (for example, opposite
the coordinate axes). We argue that this problem is more difficult than the case where labels
lie on opposite sides, which has been studied before: with labels on opposite sides, (a) there
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is always a solution where all sites are labeled (if m = n) and (b) a feasible solution can be
obtained by considering two instances of the one-sided case.
We present an algorithm that, given an instance with n labels with fixed ports and n sites,

decides whether a planar solution exists where all sites are labeled and, if yes, computes a
layout of the leaders (see Section 3.2). Our algorithm uses dynamic programming to “guess” a
partition of the sites into the two sets that are connected to the leaders on the top side and on
the right side. The algorithm runs in O(n2) time and uses O(n) space.
We study several extensions of our main result (see Section 3.3). First, we show that our

approach for fixed ports can also be made to work for sliding ports. Second, we optimally
solve the label-number maximization problem (in O(n3 log n) time using O(n) space). This
is interesting if the position of the sites and labels does not allow for a perfect matching or
if there are more sites than labels. Finally, we present a modification of our algorithm that
minimizes the leader length (in O(n8 log n) time and O(n6) space).
In the second part of the chapter, we investigate the problems Three-Sided Boundary

Labeling and Four-Sided Boundary Labeling where the labels may lie on three or even
all four sides of R, respectively. To that end we generalize the concept of partitioning the sites
labeled by leaders of different sides. In this way we obtain subinstances that we can solve
using the algorithm for the two-sided case. We obtain an algorithm solving the four-sided
case in O(n9) time and O(n) space and an algorithm solving the three-sided case in O(n4)
time and O(n) space. Except for the leader-length minimization, all extensions presented
previously extend to the three- and four-sided case, of course with a corresponding impact
on the running time and space requirements.

Notation. We call the labels that lie on the right (left / top / bottom) side of R right (left /
top / bottom) labels. The type of a label refers to the side of R on which it is located. The type
of a leader (or a site) is simply the type of its label. We assume that no two sites lie on the
same horizontal or vertical line, and no site lies on a horizontal or vertical line through a port
or an edge of a label.
For a solution L of a boundary labeling problem, we define several measures that will be

used to compare different solutions. We denote the total length of all leaders inL by length(L).
Moreover, we denote by ∣L∣x the total length of all horizontal segments of leaders that connect a
left or right label to a site. Similarly, we denote by ∣L∣y the total length of the vertical segments of
leaders that connect top or bottom labels to sites. Note that generally, ∣L∣x + ∣L∣y ≠ length(L).

We denote the (uniquely defined) leader connecting a site p to a port t of a label ℓ by λ(p, t).
We denote the bend of the leader λ(p, t) by bend(p, t). In the case of fixed ports, we identify
ports with labels and simply write λ(p, ℓ) and bend(p, ℓ), respectively.

3.1 Structure of Two-Sided Planar Solutions

In this section, we tackle the two-sided boundary labeling problem with adjacent sides by
presenting a series of structural results of increasing strength. We assume that the labels are
located on the top and right sides of R. For simplicity, we assume that we have fixed ports.
By identifying the ports with their labels, we use L to denote the set of ports of all labels. For
sliding ports, we can simply fix all ports to the bottom-left corner of their corresponding
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Figure 3.3: Illustration of the proof of Lemma 3.1. Rerouting λ(p, ℓ) and λ(p′ , ℓ′) to λ(p, ℓ′) and λ(p′ , ℓ)
changes leaders only on the boundary of K′ .

labels. First we show that a planar two-sided solution admits a transformation sustaining
planarity such that the result of the transformation can be split into two one-sided solutions by
constructing an xy-monotone, rectilinear curve from the top-right to the bottom-left corner
of R; see Figure 3.4. Afterwards, we provide a necessary and sufficient criterion to decide
whether there exists a planar solution for a given separation. This will form the basis of our
dynamic programming algorithm, which we present in Section 3.2.

Lemma 3.1. Consider a solution L for (R, L, P) and let P′ ⊆ P be sites of the same type.
Let L′ ⊆ L be the set of labels of the sites in P′. Let K ⊆ R be a rectangle that contains all bends
of the leaders of P′. If the leaders of P ∖ P′ do not intersect K, then we can rematch P′ and L′
such that the resulting solution L′ has the following properties:

(i) all intersections in K are removed,

(ii) there are no new intersections of leaders outside of K,

(iii) ∣L′∣x = ∣L∣x , ∣L′∣y = ∣L∣y , and

(iv) length(L′) ≤ length(L).

Proof. Without loss of generality, we assume that P′ contains top sites; the other cases are
symmetric. We first prove that, no matter how we change the assignment between P′ and L′,
new intersection points can arise only in K. This enables us to construct the required solution.

Claim 1. Let ℓ, ℓ′ ∈ L′ and p, p′ ∈ P′ such that ℓ labels p and ℓ′ labels p′. Changing the
matching by rerouting p to ℓ′ and p′ to ℓ does not introduce new intersections outside of K.

Let K′ ⊆ K be the rectangle spanned by bend(p, ℓ) and bend(p′ , ℓ′). When rerouting, we
replace λ(p, ℓ) ∪ λ(p′ , ℓ′) restricted to the boundary of K′ by its complement with respect to
the boundary of K′; see Figure 3.3 for an example. Thus, any changes concerning the leaders
occur only in K′. The statement of the claim follows.
Since any rerouting can be seen as a sequence of pairwise reroutings, the above claim

shows that we can rematch L′ and P′ arbitrarily without running the risk of creating new
conflicts outside of K. To resolve the conflicts inside K, we use the length-minimization
algorithm for one-sided boundary labeling by Benkert et al. [BHKN09], with the sites and
ports outside K projected onto the boundary of K. Thus, we obtain a solution L′ satisfying
properties (i)–(iv).
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curve of a planar solution

Figure 3.5: A planar solution that contains any of the above four patterns
(P1)–(P4) is not xy-separated.

Definition 3.1. We call an xy-monotone, rectilinear curve connecting the top-right to the
bottom-left corner of R an xy-separating curve. We say that a planar solution to Two-Sided
Boundary Labeling with Adjacent Sides is xy-separated if and only if there exists an
xy-separating curve C such that

(a) the sites that are connected to the top side and all their leaders lie on or above C

(b) the sites that are connected to the right side and all their leaders lie below C.

It is not hard to see that a planar solution is not xy-separated if there exists a site p that is
labeled to the right side and a site q that is labeled to the top side with x(p) < x(q) and
y(p) > y(q). There are exactly four patterns in a possible planar solution that satisfy this
condition; see Figure 3.5. In Lemma 3.2, we show that these patterns are the only ones that
can violate xy-separability.

Lemma 3.2. A planar solution is x y-separated if and only if it does not contain any of the
patterns P1–P4 in Figure 3.5.

Proof. Obviously, the planar solution is not xy-separated if one of these patterns occurs. Let
us assume that none of these patterns exists. We construct an xy-monotone curve C from
the top-right corner of R to its bottom-left corner. We move to the left whenever possible,
and down only when we reach the x-coordinate of a site p that is connected to the top, or
when we reach the x-coordinate of a port of a top label, labeling a site p. If we have to move
down, we move down as far as necessary to avoid the corresponding leader, namely down to
the y-coordinate of p. Finally, when we reach the left boundary of R, we move down to the
bottom-left corner of R. If C is free of crossings, then we have found an xy-separating curve.
For an example, see curve C in Figure 3.4.
Assume for a contradiction, that a crossing arises during the construction, and consider

the topmost such crossing. Note that, by the construction of C, crossings can only occur with
leaders that connect a site p to a right port r. We distinguish two cases, based on whether the
crossing occurs on a horizontal or a vertical segment of the curve C.
If C is crossed on a vertical segment, then this segment belongs to a leader connecting a

site q to a top port t, and we have reached the x-coordinate of either the port or the site. Had
we, however, reached the x-coordinate of the port, this would imply a crossing between λ(p, r)
and λ(q, t). Thus, we have reached the x-coordinate of q. This means that p lies to the left of
and above q, and we have found one of the patterns (P1) and (P2); see Figure 3.5.
If C is crossed on a horizontal segment, then pmust lie above r. Otherwise, there would

be another crossing of C with the same leader, which is above the current one. This would
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contradict the choice of the topmost crossing. Consider the previous segment of C, which
is responsible for reaching the y-coordinate of the current segment. This vertical segment
belongs to a leader connecting a site q to a top port t. Since leaders do not cross, q is to
the right of p, and the crossing on C implies that q is below p. We have found one of the
patterns (P3) and (P4); see Figure 3.5.

Observe that patterns (P1) and (P2) can be transformed into patterns (P3) and (P4), respec-
tively, by mirroring the instance diagonally. Next, we prove constructively that, by rerouting
pairs of leaders, any planar solution can be transformed into an xy-separated planar solution.

Proposition 3.1. If there exists a planar solution L to Two-Sided Boundary Labeling with
Adjacent Sides, then there exists an xy-separated planar solution L′ with length(L′) ≤
length(L), ∣L′∣x ≤ ∣L∣x , and ∣L′∣y ≤ ∣L∣y .

Proof. Let L be a planar solution of minimum total leader length. We show that L is xy-
separated. Assume, for the sake of contradiction, that L is not xy-separated. Then, by
Lemma 3.2, L contains one of the patterns (P1)–(P4). Without loss of generality, we can
assume that the pattern is of type (P3) or (P4). Otherwise, we mirror the instance diagonally.

Consider all patterns (p, q) in L of type (P3) or (P4) such that p is a right site (with port r)
and q is a top site (with port t). Among all such patterns, consider the ones where p is
rightmost and among these pick one where q is bottommost. Let A be the rectangle spanned
by p and t; see Figure 3.6.. Let A′ be the rectangle spanned by bend(q, t) and p. Let B be the
rectangle spanned by q and r. Let B′ be the rectangle spanned by q and bend(p, r). Then we
claim the following:

(i) Sites in the interiors of A and A′ are connected to the top.

(ii) Sites in the interiors of B and B′ are connected to the right.

Property (i) is due to the choice of p as the rightmost site involved in such a pattern. Similarly,
property (ii) is due to the choice of q as the bottommost site that forms a pattern with p. This
settles our claim.
Our goal is to change the labeling by rerouting p to t and q to r, which decreases the

total leader length, but may introduce crossings. We then use Lemma 3.1 to remove the
crossings without increasing the total leader length. Let L′′ be the labeling obtained from L
by rerouting p to t and q to r. We have ∣L′′∣y ≤ ∣L∣y − (y(p) − y(q)) and ∣L′′∣x = ∣L∣x −
(x(q) − x(p)). Moreover, length(L′′) ≤ length(L) − 2(y(p) − y(q)), as at least twice the
vertical distance between p and q is saved; see Figure 3.6. Since the original labeling was
planar, crossings may only arise on the horizontal segment of λ(p, t) and on the vertical
segment of λ(q, r).
By properties (i) and (ii), all leaders that cross the new leader λ(p, t) have their bends

inside A′, and all leaders that cross the new leader λ(q, r) have their bends inside B′. Thus,
we can apply Lemma 3.1 to the rectangles A′ and B′ to resolve all new crossings. The resulting
solution L′ is planar and has length less than length(L). This is a contradiction to the choice
of L.

Since every solvable instance of Two-Sided Boundary Labeling with Adjacent Sides
admits an xy-separated planar solution, it suffices to search for such a solution. Moreover, an
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Figure 3.6: Types (top= ↑ / right =→) of the sites inside rectangles A, A′ , B, and B′

xy-separated planar solution that minimizes the total leader length is a solution of minimum
length. In Lemma 3.3 we provide a necessary and sufficient criterion to decide whether, for a
given xy-monotone curve C, there is a planar solution that is separated by C. We denote the
region of R above C by RT and the region of R below C by RR. We do not include C in either
RT or RR, so these regions are open at C.

For any point a ∈ R, we define the rectangle Ra , spanned by the top-right corner of R and a.
We define Ra such that it is closed but does not contain its top-left corner. In particular, we
consider the port of a top label as contained in Ra , only if it is not the upper left corner.
A rectangle Ra is valid if the number of sites of P above C that belong to Ra is at least as

large as the number of ports on the top side of Ra . The central idea is that the labels on the top
side of a valid rectangle Ra can be connected to the sites in Ra by leaders that are completely
contained inside that rectangle. We are now ready to present the strip condition.

Condition 1. The horizontal strip condition of the point b ∈ C is satisfied if there exists a
point a ∈ RT with y(a) = y(b) and x(a) ≤ x(b) such that Ra is valid.

Without loss of generality we may assume that the curve C is rectilinear. The condition is
named after the horizontal segments through points in C.
We now prove that, for a given xy-monotone curve C connecting the top-right corner to

the bottom-left corner of R, there exists a planar solution in RT for the top labels if and only if
all points of C satisfy the strip condition.

Lemma 3.3. Let C be an xy-monotone curve from the top-right corner of R to the bottom-left
corner of R. Let P′ ⊆ P be the sites that are in RT. There is a planar solution that uses all top
labels of R to label sites in P′ in such a way that all leaders are in RT if and only if each point
of C satisfies the strip condition.

Proof. For the proof we call a region S ⊆ R balanced if it contains the same number of sites
as it contains ports. To show that the conditions are necessary, let L be a planar solution for
which all top leaders are above C. Consider a point b ∈ C. If y(p) ≥ y(b) for all sites p ∈ P′,
rectangle Ra with a = (0, y(b)) is clearly valid, and thus the strip condition for b is satisfied.

28



Structure of Two-Sided Planar Solutions Section 3.1

C

Ra

b

p
h

a

(a)

C

h1

hl

hk

Sl

S1

h0S0

Sk

(b)

ai
ai−1

Rai−1

C
hi

Si

Ci−1Ci

h

K

(c)

Figure 3.7: The strip condition. (a) The horizontal strip condition of b is satisfied by a. (b) The horizontal
segments of C partition the strips S0 , S1 , . . . , Sk . (c) Constructing a planar labeling from a sequence of valid
rectangles.

Hence, assume that there is a site p ∈ P′ with y(p) < y(b) that is labeled by a top label; see
Figure 3.7a. Then, the vertical segment of this leader crosses the horizontal line h through b.
Let a denote the rightmost such crossing of a leader of a site in P′ with h. We claim that Ra
is valid. To see this, observe that all sites of P′ top-right of a are contained in Ra . Since no
leader may cross the vertical segment defining a, the number of sites in Ra ∩ RT is balanced,
that is, Ra is valid.

Conversely, we show that if the conditions are satisfied, then a corresponding planar solution
exists. For each horizontal segment of C consider the horizontal line through the segment.
We denote the part of these lines within R by h1 , . . . , h l , respectively, and let h0 be the top side
of R. The line segments h1 , . . . , h l partition RT into l strips, which we denote by S1 , . . . , S l
from top to bottom, such that strip S i is bounded by h i from below for i = 1, . . . , l ; see
Figure 3.7b. Additionally, we define S0 to be the empty strip that coincides with h0. Let Sk
be the last strip that contains sites of P′. For i = 0, . . . , k − 1, let a′i denote the rightmost
point of h i ∩ RT such that Ra′i is valid. Such a point exists since the leftmost point of h i ∩ C
satisfies the strip condition. We define a i to be the point on h i ∩ RT, whose x-coordinate
is min j≤i{x(a′j)}. Note that Ra i is a valid rectangle, as, by definition, it completely contains
some valid rectangle Ra′j with x(a′j) = x(a i). Also by definition the sequence formed by the
points a i has decreasing x-coordinates, that is, the Ra i grow to the left; see Figure 3.7c.
We prove inductively that, for each i = 0, . . . , k, there is a planar labeling Li that matches

the labels on the top side of Ra i to points contained in Ra i , in such a way that there exists
an xy-monotone curve C i from the top-left to the bottom-right corner of Ra i that separates
the labeled sites from the unlabeled sites without intersecting any leaders. Then Lk is the
required labeling.
For i = 0, L0 = ∅ is a planar solution. Consider a strip S i with 0 < i ≤ k; see Figure 3.7c.

By the induction hypothesis, we have a curve C i−1 and a planar labeling Li−1, which matches
the labels on the top side of Ra i−1 to the sites in Ra i−1 above C i−1. To extend it to a planar
solution Li , we additionally need to match the remaining labels on the top side of Ra i and
construct a corresponding curve C i . Let Pi denote the set of unlabeled sites in Ra i . By the
validity of Ra i , this number is at least as large as the number of unused ports at the top side
of Ra i . We arbitrarily match these ports to the topmost sites of Pi that are not labeled in Li−1.
We denote the resulting labeling byL′i . We observe that no leader ofL′i crosses the curve C i−1,
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and hence such leaders cannot cross leaders in Li−1. Let h be the topmost horizontal line such
that all labeled sites of L′i lie above h. Further, let K be the rectangle that is spanned by the
top-left corner of Ra i−1 and the intersection of h with the left side of Ra i . Since the ports of L′i
lie on the top side of K, any leader’s bend of L′i lies in K. We apply Lemma 3.1 on L′i to obtain
a planar labeling L′′i , which has no crossings with Li−1. Hence, the set Li = L′′i ∪ Li−1 is the
required labeling.
It remains to construct the curve C i . For this, we start at the top-left corner of Ra i and

move down vertically, until we have passed all labeled sites. We then move right until we
either hit C i−1 or the right side of R. In the former case, we follow C i−1 until we arrive at
the right side of R. Finally, we move down until we arrive at the bottom-right corner of Ra i .
Note that all labeled sites are above C i , unlabeled sites are below C i , and no leader is crossed
by C i . This is true since we first move below the new leaders and then follow the previous
curve C i−1.

A symmetric strip condition (with vertical strips) can be obtained for the right region RR of a
partitioned instance. The characterization is completely symmetric.
In the following we observe two properties of the strip condition. The first observation

states that the horizontal strip condition at (x , y) is independent of the exact shape of the
curve between the top-right corner r of R and (x , y), as long as the number of sites above the
curve remains the same. This is crucial for using dynamic programming to test the existence
of a suitable curve. The second observation states that the horizontal strip condition can only
be violated when the curve passes the x-coordinate of a top site. This enables us to discretize
the problem.

Observation 3.1. The horizontal strip condition for a point a ∈ C depends only on the number
of sites in Ra above C, in the following sense: Let C and C′ be two xy-monotone curves from r
to a with u sites in Ra above C and C′, respectively. Then, a satisfies the strip condition for C if
and only if it satisfies the strip condition for C′.

Observation 3.2. Let a, b ∈ C , x(a) ≤ x(b) such that there is no top site ℓ with x(a) < x(ℓ) ≤
x(b). Then, a satisfies the horizontal strip condition for C if and only if b satisfies the horizontal
strip condition for C.

Symmetric statements hold for the vertical strip condition. In the following, we say that a
point (x , y) on a curve C satisfies the strip condition if it satisfies both the horizontal and the
vertical strip condition.

3.2 Algorithm for the Two-Sided Case

How can we find an xy-monotone curve C that satisfies the strip conditions? For that pur-
pose we only consider xy-monotone curves contained in some graph G that is dual to the
rectangular grid induced by the sites and ports of the given instance. Note that this is not
a restriction since all leaders are contained in the grid induced by the sites and ports. Thus,
every xy-monotone curve that does not intersect the leaders can be transformed into an
equivalent xy-monotone curve that lies on G.
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(0, 0)

Figure 3.8: The four boxes B↑(s, t), B↓(s, t), B←(s, t) and B→(s, t) defined by grid point (s, t)

When traversing an edge e of G, we pass the x- or y-coordinate of exactly one entity of our
instance; either a site (site event) or a port (port event). When passing a site, the position of
the site relative to e (above/below e or right/left of e) decides whether the site is connected to
the top or to the right side. Clearly, there is an exponential number of possible xy-monotone
traversals through the grid. In the following, we describe a dynamic program that finds an
xy-separating curve in O(n3) time.
Let mR and mT be the numbers of ports on the right and top side of R, respectively. Also,

let N = n +mT + 2 and M = n +mR + 2, then the grid G has size N ×M. We define the grid
points as G(s, t), 0 ≤ s ≤ N , 0 ≤ t ≤ M with G(0, 0) being the bottom-left and r ∶= G(N ,M)
being the top-right corner of R. Finally, let Gx(s) ∶= x(G(s, 0)) and Gy(t) ∶= y(G(0, t)).

For each grid point (s, t) that is neither on the topmost row nor on the rightmost column,
we define four boxes B↑(s, t), B↓(s, t), B←(s, t) and B→(s, t) as follows; see Figure 3.8 for an
illustration.

1. B↑(s, t) = {(x , y) ∈ R ∣ Gx(s) ≤ x ≤ Gx(s + 1) ∧ y ≥ Gy(t)}

2. B↓(s, t) = {(x , y) ∈ R ∣ Gx(s) ≤ x ≤ Gx(s + 1) ∧ y ≤ Gy(t)}

3. B←(s, t) = {(x , y) ∈ R ∣ Gy(t) ≤ y ≤ Gy(t + 1) ∧ x ≤ Gx(s)}

4. B→(s, t) = {(x , y) ∈ R ∣ Gy(t) ≤ y ≤ Gy(t + 1) ∧ x ≥ Gx(s)}

Wedefine a table T[(s, t), u, b] that assigns to each grid position (s, t) and number of points u
and b a Boolean value. We define T[(s, t), u, b] to be true if and only if there exists an xy-
monotone curve C satisfying the following conditions.

(i) Curve C starts at r and ends at G(s, t).

(ii) Inside the rectangle spanned by r and G(s, t), there are u sites of P above C and b sites
of P below C.

(iii) For each grid point on C, the strip condition holds.

These conditions together with Proposition 3.1 and Lemma 3.3 imply that the instance admits
a planar solution if and only if T[(0, 0), u, b] = true for some u and b.
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We define a Boolean function S[(s, t), u, b] that is true if and only if the strip condition
at (s, t) is satisfied for some xy-monotone curve C (and thus by Observation 3.1 for all such
curves) from r to G(s, t) with u sites above and b sites below C. The following lemma gives a
recurrence for T , which is essentially a disjunction of two values, each of which is determined
by distinguishing three cases.

Lemma 3.4. For s = N and t = M, it holds that T[(s, t), 0, 0] = true. For s ∈ [0,N − 1] and
t ∈ [0,M − 1], it holds that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

T[(s + 1, t), u, b] ∧ S[(s, t), u, b] L ∩ B↑(s, t) ≠ ∅
T[(s + 1, t), u − 1, b] if P ∩ B↑(s, t) ≠ ∅
T[(s + 1, t), u, b] P ∩ B↓(s, t) ≠ ∅

⎫⎪⎪⎪⎬⎪⎪⎪⎭
T[(s, t), u, b] = ⋁

⎧⎪⎪⎪⎨⎪⎪⎪⎩

T[(s, t + 1), u, b] ∧ S[(s, t), u, b] L ∩ B→(s, t) ≠ ∅
T[(s, t + 1), u, b − 1] if P ∩ B→(s, t) ≠ ∅
T[(s, t + 1), u, b] P ∩ B←(s, t) ≠ ∅

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Proof. We show equivalence of the two terms. Let C be an xy-monotone curve from r to (s, t).
Let e be the last segment of C and let C′ = C − e. Since C is xy-monotone, C′ ends either
at the grid point (s + 1, t) or at (s, t + 1). Without loss of generality, we assume that C′ ends
at (s + 1, t). We show that T[(s, t), u, b] = true if and only if the first term of the right hand
side is true. Analogous arguments apply for C′ ending at (s, t + 1) and the second term. Note
that, by construction, property (i) is satisfied for C and C′.
We distinguish cases based on whether the traversal along the segment e from (s + 1, t)

to (s, t) is a port event or a site event.
Case 1: Traversal of e is a port event. Since e passes a port, all sites that lie in the rectangle

spanned by r and G(s, t) also lie in the rectangle spanned by r and G(s + 1, t). Thus, the
numbers u and b of such sites above and below C is the same as the numbers of sites above
and below C′, respectively. Hence, property (ii) holds for C if and only if it holds for C′.
Because C′ is a subset of C, the strip condition holds for every point of C if and only if it

holds for every point of C′ and for (s, t). Thus, property (iii) is satisfied for C if and only if it
is satisfied for C′ and S[(s, t), u, b] = true.
Case 2: Traversal of e passes a site p. For property (iii), observe that, since the traversal of e

is a site event, the strip conditions for (s, t) and (s + 1, t) are equivalent by Observation 3.2.
For property (ii), note that, except for p, the sites that lie in the rectangle spanned by r

and G(s, t) also lie in the rectangle spanned by r and G(s + 1, t). If p lies above e, there are u
sites above and b sites below C if and only if there are u − 1 sites above and b sites below C′,
respectively. Symmetrically, if p lies below e, there are u sites above and b sites below C if and
only if there are u sites above and b − 1 sites below C′, respectively. In either case, C satisfies
condition (ii) if and only if C′ does.

Clearly, the recurrence from Lemma 3.4 can be used to compute T in polynomial time via
dynamic programming. Note that it suffices to store u, as the number of sites below the curveC
can directly be derived from u and all sites that are contained in the rectangle spanned by r
and G(s, t). Thus, in the following we work with T[(s, t), u]. The running time crucially
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relies on the number of strip conditions that need to be checked. We show that after a O(n2)
preprocessing phase, such queries can be answered in O(1) time.

To implement the test of the strip conditions, we use a table BT, which stores in BT[s, t] how
large a deficit of sites to the right can be compensated by sites above and to the left of G(s, t).
That is, BT[s, t] is the maximum value k such that there exists a rectangle KBT[s ,t] with lower
right corner G(s, t) whose top side is bounded by the top side of R, and that contains k more
sites in its interior, than it has ports on its top side. Once we have computed this matrix, it is
possible to query the strip condition in the dynamic program that computes T in O(1) time
as follows: Assume we have an entry T[(s, t), u], and we wish to check its strip condition.
Consider a curve C from r to G(s, t) such that u sites are above C. The strip condition is
satisfied if and only if u + BT[s, t] is at least as large as the number of top ports to the right
of G(s, t). This is true if the rectangle spanned by the lower left corner of KBT[s ,t] and r
contains at least u + BT[s, t] sites, which is an upper bound on the number of ports on the
top side of that rectangle.

We now show how to compute BT in O(n2) time. We compute each row separately, starting
from the left side. We initialize BT[0, t] = 0 for t = 0, . . . ,M, since in the final column, no
deficit can be compensated. Thematrix B can be filled by a horizontal sweep. The entry BT[s, t]
can be derived from the already computed entry BT[s − 1, t]. If the step from s − 1 to s is a
site event, the amount of the deficit we can compensate increases by 1. If it is a port event
the amount of the deficit we can compensate decreases by 1. Moreover, the compensation
potential never goes below 0. We obtain

BT[s, t] =
⎧⎪⎪⎨⎪⎪⎩

BT[s − 1, t] + 1 if step is site event,
max{BT[s − 1, t] − 1, 0} if step is port event.

The table can be clearly filled out in O(n2) time. A similar matrix BR can be computed for
the vertical strips. Altogether, this yields an algorithm for Two-Sided Boundary Labeling
with Adjacent Sides that runs in O(n3) time and uses O(n3) space. However, the entries
of each row and column of T depend only on the previous row and column, which allows us
to reduce the storage requirement to O(n2). Using Hirschberg’s algorithm [Hir75], we can
still backtrack the dynamic program and find a solution corresponding to an entry in the last
cell in the same running time. We have the following theorem.

Theorem 3.1. Two-Sided Boundary Labelingwith Adjacent Sides can be solved in O(n3)
time using O(n2) space.

Our next goal is to improve the performance of our algorithm by reducing the number of
dimensions of the table T by 1. As a first step, we show that for any search position c = (s, t),
the set of all u with T[c, u] = true is an interval.

Lemma 3.5. Let T[c, u] = T[c, u′] = true with u < u′. Then, T[c, u′′] = true for any
u ≤ u′′ ≤ u′.

Proof. Let C be a curve corresponding to the entry T[c, u]. That is C connects r to c such
that any point on C satisfies the strip condition. Similarly, let C′ be a curve corresponding
to T[c, u′]; see Figure 3.9.
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Since u and u′ differ, there is a rightmost site p, such that p is below C and above C′. Let v
and v′ be the grid points ofC andC′ that are immediately to the left of p. Note that v is above v′
since C is above p and C′ is below it. Consider the curve C′′ that starts at r and follows C
until v, then moves down vertically to v′, and from there follows C′ to p. Obviously, C′′ is an
xy-monotone curve, and it has above it the same sites as C′, except for p, which is below it.
Thus there are u′′ = u′ − 1 sites above C′′ in the rectangle spanned by p and r. If all points
of C′′ satisfy the strip condition, then this implies T[c, u′′] = true.
We show that indeed the strip condition is satisfied for any point on C′′. Let C1 be the

subcurve of C′′ that connects r to v, let C2 be the segment vv′ and let C3 be the subcurve
of C′′ that connects v′ to c. Since C1 is also a subcurve of C and it starts at r, it directly
follows that any point of C1 satisfies the strip condition. For the points on C2 we can argue as
follows. Since C2 lies below C and any point of C satisfies the horizontal strip condition, any
point of C2 must satisfy the horizontal strip condition. Analogously, because C2 lies above C′
and any point of C′ satisfies the vertical strip condition, each point of C2 must satisfy the
vertical strip condition. Finally, since C3 is a subcurve of C′, any point of C′ satisfies the strip
condition and any point of C1 and C2 satisfies the strip condition, it directly follows that any
point of C3 satisfies the strip condition.

Using Lemma 3.5, we can reduce the dimension of the table T by 1. It suffices to store at each
entry T[c] the boundaries of the u-interval. This reduces the amount of storage to O(n2)
without increasing the running time. Using Hirschberg’s algorithm, the storage for T even
decreases to O(n). Tables BT and BR still have size O(n2), however.
Our next goal is to reduce the running time to O(n2). An entry in BT[s, t] tells us which

deficits can be compensated. This can also be interpreted as a lower bound on the number
of sites a curve from r to G(s, t)must have above it, in order to satisfy the horizontal strip
condition. Namely, let τs ,t denote the number of ports on the top side of the rectangle
spanned by G(s, t) and r. Then u ≥ τs ,t − BT[s, t] is equivalent to satisfying the horizontal
strip condition for the strip directly above G(s, t).
Similarly, the corresponding entry BR[s, t] gives a lower bound on the number of sites

below such a curve, which in turn, together with the number of sites contained in the rectangle
spanned by G(s, t) and r implies an upper bound on the number of sites above the curve.
Thus, BT, BR, and the information on how many sites, top ports and right ports are in the
rectangle spanned by G(s, t) and r together imply a lower and an upper bound, and thus an
interval of u-values, for which the horizontal and vertical strip conditions atG(s, t) is satisfied.
Hence, the program can simply intersect this interval with the union of the intervals obtained
from T[(s, t) − ∆c], where ∆c has exactly one non-zero entry, which is 1. Consequently,
the amount of work per entry of T is still O(1). Note that by Lemma 3.5 the result of this
computation is again an interval.
Now, we turn to the space consumption. Hirschberg’s algorithm [Hir75] immediately

reduces the space consumption of T to O(n). We would like to apply the same trick to BT and
to BR. Recall that BT is computed from left to right and BR from bottom to top. Unfortunately,
this is opposite to the order we use for computing T , where we proceed from top-right to
bottom-left. We can fix this problem by running the dynamic programs for computing BT
and BR backwards, by precomputing the entries of BT and BR on the top and right side, and
then running the updates backwards. This allows us to use Hirschberg’s algorithm, and the
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algorithms can run in a synchronized manner such that at any point in time the required data
is available, using only O(n) space.

A new issue, however, appears. The update BT[s, t] = max{BT[s − 1, t] − 1, 0} is not easily
reversible. When running the dynamic program backwards, it is not clear whether BT[s, t] =
0 implies BT[s − 1, t] = 0 or BT[s − 1, t] = 1 at a port step. To remedy this issue, fix a
column s of the table corresponding to a port event and consider the circumstances under
which BT[s − 1, t] − 1 = −1, that is, BT[s − 1, t] = 0. This implies that, for any rectangle K
with lower right corner G(s − 1, t) whose top side is contained in the top side of R, there
are at most as many sites in K as there are ports in the top side of K. Assume that this is
the case for some fixed value t0, that is, BT[s − 1, t0]. Since the possible rectangles for an
entry BT[s − 1, t] with t ≥ t0 contain at most as many sites as the ones for BT[s − 1, t0],
this implies BT[s − 1, t0] = BT[s − 1, t] = 0 for all t ≥ t0. If on the other hand, t0 is such
that BT[s − 1, t0] > 0, then the rectangles corresponding to BT[s − 1, t] for t < t0 contain
at least as many sites as the ones for BT[s − 1, t0], and we have BT[s − 1, t] ≥ BT[s − 1, t0]
for t < t0. Thus, there is a single gap t0 such that, for any t ≥ t0, we have BT[s − 1, t] = 0 and,
for any t < t0, we have BT[s − 1, t] > 0; see Figure 3.10. Storing this gap for each column s that
is a port event allows us to efficiently reverse the dynamic program. Note that storing one
value per column only incurs O(n) space overhead. Of course, the same approach works for
the dynamic program computing BR. Overall, we have shown the following theorem.

Theorem3.2. Two-Sided Boundary LabelingwithAdjacent Sides can be solved in O(n2)
time using O(n) space.

3.3 Extensions

The techniques we used to obtain Theorem 3.2 can be applied to solve a variety of different
extensions of the two-sided labeling problem with adjacent sides. We now show how to

(a) generalize to sliding ports instead of fixed ports,

(b) maximize the number of labeled sites, and

(c) minimize the total leader length in a planar solution.

3.3.1 Sliding Ports

First, observe that Proposition 3.1, which guarantees the existence of an xy-separated planar
solution, also holds for sliding ports. The same proofs apply by conceptually fixing the ports of
a given planar solution when applying the rerouting operations. The following lemma shows
that, without loss of generality, we can simply fix all ports at the bottom-left corner of their
corresponding labels. This immediately solves the problem.

Lemma 3.6. If there exists an xy-separated planar solution L for the two-sided boundary
labeling problem with adjacent sides and sliding ports, then there also exists an xy-separated
planar solution L′ in which the ports are fixed at the bottom left corners of the labels.
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Figure 3.9: Illustration for
the proof of Lemma 3.5

Figure 3.10: The gap t0 is defined such
that we have BT[s − 1, t] = 0 for any t ≥ t0 ,
and BT[s − 1, t] > 0 for any t < t0 .

Figure 3.11: Illustration for
the proof of Lemma 3.6

Proof. We show how to transform L into L′. Let C be the xy-monotone curve that separates
the top leaders from the right leaders ofL. We move the ports induced byL to the bottom-left
corner of their corresponding labels such that the assignment between labels and sites remains;
see Figure 3.11. Obviously, the bends of the leaders connected to the right side only move
downwards. Thus, the leaders lie entirely below C. Symmetrically, the bends of the leaders
connected to the top side only move to the left and thus these leaders lie entirely above C.
Consequently, only conflicts between the same type of leaders can arise. Consider the

topmost intersection of two leaders λ(p, ℓ) and λ(p′ , ℓ′) connected to the right side and
assume that p lies to the left of p′. Let K be the rectangle that is spanned by the bends
of λ(p, ℓ) and λ(p′ , ℓ′). Due to moving the ports downwards, the leaders lie entirely below C
and the bend of λ(p′ , ℓ′)must lie below λ(p, ℓ). Hence, K lies completely in RR. In order to
resolve the conflict, we reroute p to ℓ′ and p′ to ℓ using the bottom-left corners of ℓ and ℓ′
as ports. Obviously, the leaders only change on ∂K. Therefore, new conflicts can only arise
on the left and bottom sides of K. In particular, only the leader of ℓ′ can be involved in new
conflicts, while the leader of ℓ is free of any conflict. Thus, after finitely many such steps we
have resolved all conflicts, from top to bottom. Symmetric arguments apply for the leaders
connected to the top side.

Theorem 3.3. Two-Sided Boundary Labeling with Adjacent Sides and Sliding Ports
can be solved in O(n2) time using O(n) space.

3.3.2 Maximizing the Number of Labeled Sites

So far our algorithm only returns a leader layout if there is a planar solution that matches
each label to a site. As Bekos et al. [BKPS10, Figure 16] observed, this need not always be the
case, so it becomes important to be able to maximize the number of labels connected to sites
in a planar solution. We achieve this by removing labels from a given instance and using our
algorithm to decide whether a crossing-free solution exists.

Lemma 3.6 shows that we canmove top ports to the left and right ports to the bottomwithout
making a solvable instance unsolvable. Thus, it suffices to remove the rightmost top labels
and the topmost right labels. Let k be the number of labels we want to use with kT of them
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G(s, t) G(s−1, t)
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Figure 3.12: Illustration of the curve C and the rectangle K spanned by G(s, t) and the top-right corner of R.
(a) There are more sites than ports in K above C. The unlabeled sites are connected to a dummy port located
at the top-left corner of K. The dummy port is illustrated as a square. (b) There are more ports than sites
in K above C. The unlabeled ports are labeled to sites that lie to the left of K, which induce the front with
bottom-left point FT .

being top labels and kR right labels, so that kT + kR = k. For a given k, we can decide whether
a crossing-free solution that uses exactly k labels exists by removing the mT − kT rightmost
top labels and the mR − kR topmost right labels for any possible kT and kR. We therefore
start with kT = min{k,mT} and kR = k − kT. We keep decreasing kT and increasing kR by 1,
until a crossing-free solution is found or kR = min{k,mR}. In the latter case, no crossing-free
solution that uses exactly k labels exists. With this approach we can use binary search to
find the maximum k, using our algorithm up to k times per step. Since k ≤ n, this yields an
algorithm for Two-Sided Boundary Labeling with Adjacent Sides that maximizes the
number of labeled sites that runs in O(n3 log n) time and uses O(n) space.

Theorem 3.4. Two-Sided Boundary Labeling with Adjacent Sides can be solved in
O(n3 log n) time using O(n) space such that the number of labeled sites is maximized.

Assume that t sites cannot be labeled. ThenTwo-SidedBoundary LabelingwithAdjacent
Sides can be solved in O(n2 t log t) time using O(n) space and such that the number of
labeled sites is maximized. To that end we use the following approach. We check for h = 2i
with i = 0, 1, 2, . . . whether there is a planar solution with h unlabeled sites. We stop this
procedure when we have found such a solution, which takes place after ⌈log(t)⌉ steps. Using
the approach described above, we needO(n2 t) time for each test. We then know that h

2 < t ≤ h.
We apply a binary search to determine t. Overall, this approach needs O(n2 t log t) time.

3.3.3 Minimizing the Total Leader Length
Recall that, by Proposition 3.1, there always exists a length-minimal planar solution that is
xy-separated. To obtain a length-minimal planar solution, we mainly change the table T
used by the dynamic program given in Section 3.2. Let C be an xy-monotone curve C that
starts at r and ends at G(s, t). We assign to every table entry the length of the leaders that are
connected to the ports in the rectangle K spanned by r and G(s, t).

If there are more sites than top ports in K above C, we have to connect some of these sites
to ports that lie to the left of K; see Figure 3.12a. The vertical lengths of their leaders, however,
are fixed. We imagine a dummy top port at the left border of K and connect all unlabeled
sites to this port. When traversing the grid horizontally, this dummy port moves to the left. In
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order to update the total length of the leaders in K, we only have to keep track of the number
of unlabeled sites and increase the horizontal length of their leaders. The sites in K below C
are handled analogously.

If there are more top ports than sites in K above C, we have to connect these ports to sites
that lie to the left of K; see Figure 3.12b. In order to remember which sites are already labeled,
we store the top front as the rectangle with top-right corner r that includes all sites that are
already connected to a top port inside K, and the right front as the rectangle with top-right
corner r that includes all sites that are already connected to a right port inside K.

Let FT = (xT , yT) be the bottom-left point of the top front for a given xy-monotone curveC
that starts at r and ends at G(s, t). Similarly, let FR = (xR , yR) be the right front for C. We
define T[c = (s, t), u, FT , FR] = (l , дT , дR) if there exists an xy-monotone curveC and leaders
inside K ∪ FT ∪ FR such that the following conditions hold, otherwise it contains (−1, 0, 0).

(i) Curve C starts at the top-right corner r of R and ends at G(s, t).

(ii) Inside the rectangle K spanned by r and G(s, t), there are u sites of P above C.

(iii) For each strip in the two regions RT and RR defined by C the strip condition holds.

(iv) The sites in K ∪ FT ∪ FR are connected to the ports on the border of K ∪ FT ∪ FR such
that the induced solution is planar, length-minimal, the sites above C or in FT are only
connected to top ports, and the sites below C or in FR are only connected to right ports.

(v) There are дT unlabeled top sites and дR unlabeled right sites in K.

Note that дT and дR depend on s, t, u and can be precomputed, but to make the algorithm
more intuitive, we update these values on-line and store them in T . We first describe how to
handle the top front while traversing the grid.
Initially, FT = G(s, t). As long as we have more top sites than top ports in K, we can

connect all ports to sites and thus can maintain FT = G(s, t). Once we have exactly the same
number of top ports and top sites in K and we encounter a port event for a top port, we have
to check the strip condition and find the rightmost point FT with y(FT) = Gy(t) such that the
rectangle RFT spanned by FT and r is valid. By storing FT, we know that all ports to the right
of x(FT) are already connected to a site, all sites to the top-right of FT are already connected
to a port, and all top sites to the bottom-left of FT have to be connected to a port that lies to
the left of x(FT). Thus, we do not have to check new strip conditions until s < x(FT). We
handle FR similarly.

We now look at the length of the top leaders, the length of the right leaders can be handled
similarly. Note that by moving from t to t − 1, the length of the top leaders does not change.
If дT > 0, we imagine an additional port at x(FT) that can be connected to дT top sites. When
moving from s to s− 1, we add дT ⋅ (Gx(s)−Gx(s− 1)) to l . When we calculate a new value FT
by checking the strip condition, we can immediately connect all top sites inside the top front
to top ports, and add the corresponding leader length to l . Thus, we only encounter site events
for sites that are (a) inside FT ∖ K or (b) have to be connected to a top port that lies to the left
of x(FT). In case (a) we do not change l , in case (b) we connect the site to the imaginary port,
add the length of the corresponding leader to l and increase дT by 1.
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When we encounter a port event, if the port lies inside FT ∖ K, we do not change l , otherwise
we can connect any of the unlabeled sites to this port. We add the horizontal distance
between Gx(s) and the port to l and decrease дT by 1. Note that by choosing any unlabeled
site, the resulting solution may not be planar. However, because the bends of all unconnected
sites will be above C, we can use Lemma 3.1 to remove the crossings without changing the
total leader length.

Since the matrix now has four additional fields, the running time and storage is increased
by a factor of n4 over the algorithm from Theorem 3.1. Additionally, we need O(n log n) time
to check the strip condition and to compute a length-minimal solution for the sites and ports
inside FT ∖ K and FR ∖ K.

Theorem 3.5. Two-Sided Boundary Labeling with Adjacent Sides can be solved in
O(n8 log n) time using O(n6) space such that the total leader length is minimized.

Using an appropriate data structure to precompute the fronts, it may be possible to decrease
the running time slightly.

3.4 The Three- and Four-Sided Cases

In this section, we also allow labels on the bottom and the left side of R. In order to solve
an instance of the three- and four-sided case, we adapt the techniques we developed for the
two-sided case. We assume that the ports are fixed and the number of labels and sites is equal.
In Section 3.4.1 we first analyze the structure of planar solutions obtaining a result similar to
Proposition 3.1. In Sections 3.4.2 and 3.4.3, we present algorithms for the three- and four-sided
cases.

3.4.1 Structure of Three- and Four-Sided Planar Solutions

Similar to our approach to two-sided boundary labeling, we pursue the idea that if there exists
a planar solution, then we can also find a planar solution such that there are four xy-monotone
curves connecting the four corners of R to a common point o, and such that these curves
separate the leaders of the different label types from each other; see Figure 3.13. To that end,
we first show that leaders of left and right labels can be separated vertically and leaders of top
and bottom labels can be separated horizontally. Afterwards, we apply the result of Lemma 3.2
in order to resolve the remaining overlaps, for example, between top and right leaders. We
first introduce some notions.

Definition 3.2. A planar solution for the four-sided boundary labeling problem is

(i) x-separated if there exists a vertical line ℓ such that the sites that are labeled to the left
side are to the left of ℓ and the sites that are labeled to the right side are to the right of ℓ,
and

(ii) y-separated if there exists a horizontal line ℓ such that the sites that are labeled to the
top side are above ℓ and the sites that are labeled to the bottom side are below ℓ.
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o

C1

C2

C3

C4

Figure 3.13: The curves C1 , C2 , C3 and C4 meeting at the point o partition the rectangle into four regions.

A left leader λ and a right leader λ′ overlap if x(bend(λ)) > x(bend(λ′)). Analogously, a
bottom leader λ and a top leader λ′ overlap if y(bend(λ)) > y(bend(λ′)). Hence, a planar
solution L is both x-separated and y-separated if and only if no left and right leaders overlap,
and no bottom and top leaders overlap. We are now ready to prove that we can always find a
planar solution that is both x-separated and y-separated, if a solution exists.

Lemma 3.7. If there exists a planar solution for the four-sided boundary labeling problem, then
there exists a planar solution L that is both x-separated and y-separated.

Proof. Among all planar solutions letL be one that minimizes ∣L∣x + ∣L∣y . We prove that then
L is x- and y-separated by showing that otherwise we could reroute some leaders and obtain
a planar solution L′ with ∣L′∣x + ∣L′∣y < ∣L∣x + ∣L∣y .
Assume that L is not x-separated. Symmetric arguments hold for the case that L is not

y-separated. Then there exist sites pR and pL with x(pR) < x(pL), such that pR is labeled by a
right port r, and pL is labeled by a left port ℓ; see Figure 3.14a. Without loss of generality, assume
that the horizontal segment of λR = λ(pR , r) is above the horizontal segment of λL = λ(pL , ℓ),
otherwise we mirror the instance vertically.
We choose pL and pR as a closest pair in the sense that the horizontal segments of their

leaders have minimum vertical distance among all such pairs. Let A be the rectangle spanned
by bend(λL) and bend(λR). By the minimality of pL and pR, that rectangle can only be
intersected by top and bottom leader, but not by left or right leaders. If no such leader
intersects A, we reroute pR to the port of λL and pL to the port of λR, which decreases ∣L∣x
without increasing ∣L∣y ; see Figure 3.14a. It does not introduce any crossings.

In the following we assume that some leaders intersect A. Without loss of generality we
assume that there is a top leader λT that intersects A; otherwise we rotate the instance by 180○.
We denote its site by pT. Let S be the rectangle spanned by the ports ℓ and r; see Figure 3.14a.
Depending on the leaders intersecting S, we distinguish two cases. Note that in particular λT
intersects S.
Case 1: For any top leader λ intersecting S and for any bottom leader λ′ intersecting S such
that λ and λ′ overlap, the site of λ lies to the left of the site of λ′; see Figure 3.14b. Let qR
denote the bottommost site that is connected by a right leader, and that lies in the rectangle
spanned by bend(λT) and pR. Since pR lies in that rectangle, the site qR exists. We denote the
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Figure 3.14: Different constellations of leaders intersecting the rectangle A. (a) The rectangle A is empty.
(b)–(d) Different cases where A is intersected by a top leader. A is not explicitly illustrated, but spanned by
bend(λR) and bend(λL).

leader of qR by λ′R. Further, let qT be the topmost site that is connected by a top leader and
that lies in the rectangle spanned by bend(λ′R) and the bottom-right corner of R. Since pT
lies in that rectangle, the site qT exists. We denote its leader by λ′T.

We now define two rectangles that we use to reroute leaders such that ∣L∣x+∣L∣y is decreased
and arising crossings can be resolved. The rectangle K1 is spanned by bend(λ′R) and qT, and
the rectangle K2 is spanned by bend(λ′T) and qR.

Claim 2.

(1) K1 is only intersected by right leaders whose bends are contained in K1,

(2) K2 is only intersected by top leaders whose bends are contained in K2, and

(3) K1 and K2 are internally disjoint.

Assuming that the claim holds, we can reroute the sites as follows; we illustrate this rerouting
by dash-dotted lines in Figure 3.14b. The site qT is rerouted to the port of λ′R creating crossings
only on the right side of K1. The site qR is rerouted to the port of λ′T creating crossings only
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on the top side of K2. Each rerouting decreases either ∣L∣x or ∣Ly ∣ increasing the other one.
Further, only crossings between leaders of the same type are created. We apply Lemma 3.1 to
resolve the conflicts without increasing ∣L∣x or ∣Ly ∣. We now show that the stated claim holds.
First, we show that K1 is only intersected by right leaders whose bends lie in K1. It is not

intersected by any bottom leader, because such a leader would overlap λ′T, and its site would
lie to the left of qT—a contradiction to the assumption of this case. It is not intersected by any
left leader, because such a leader would intersect λ′T. It is not intersected by any top leader,
because such a leader would either intersect λ′R or contradict the choice of λ′T. Hence, K1 can
only be intersected by right leaders. Further, all those leaders have their bend in K1, because
the bottom-right corner is a site connected by a top leader. That leader would be intersected if
a right leader intersecting K1 had its bend outside of K1.
Next, we show that K2 is only intersected by top leaders whose bends lie in K2. It is not

intersected by any right leader, because such a leader would contradict the choice of λ′R or
intersect λT. It is not intersected by any bottom leader, because such a leader would overlap λ′T,
and its site would lie to the left of qT—a contradiction to the assumption of this case. It is not
intersected by any left leader, because such a leader would intersect λ′T. Hence, K2 can only
be intersected by top leaders. Further, all those leaders have their bend in K2, because the
top-right corner is a site connected by a right leader.
Finally, the rectangles K1 and K2 are internally disjoint, because K1 lies to the right of the

vertical line through qR, while K2 lies to the left of that line.
Case 2: There exist a top leader λT intersecting S and a bottom leader λB intersecting S such
that they overlap and the site of λT lies to the right of the site of λB; see Figure 3.14c. Among
all such pairs we choose λT and λB such that their horizontal segments have minimal vertical
distance. We denote the site of λT by pT and the site of λB by pB. Due to the choice of λT and
λB, the open rectangle that is spanned by pB and pT is intersected by no leader. The open
rectangle spanned by bend(λT) and bend(λB) is denoted by B. Depending on the sites that
are contained in B, we distinguish four cases.
Case 2.1: The rectangle B contains no sites that are connected by left of right leaders; see
Figure 3.14c. Let K1 be the rectangle spanned by bend(λT) and pB, and let K2 be the rectangle
spanned by bend(λB) and pT. WhileK1 is only intersected by left leaders,K2 is only intersected
by right leaders. Further, both rectangles are disjoint. We reroute pB to the port of λT and
pT to the port of λB. Obviously, this decreases ∣L∣y without increasing ∣L∣x . By applying
Lemma 3.1, we resolve the arising conflicts.
Case 2.2: The rectangle B contains sites that are connected by left leaders as well as sites
that are connected by right leaders; see Figure 3.14d. Let qR be the bottommost site in B
that is connected to the right. We denote the leader of qR by λ′R. Let qB be the leftmost
site with y(qB) ≥ y(pB) and x(qB) ≤ x(pB) that is connected to the bottom. Since pB also
satisfies these requirements, the site qB exists. Similarly, we denote the leader of qB by λ′B.
Let qL be the topmost site in B that is connected to the left. We denote the leader of qL by λ′L.
Finally, let qT be the rightmost site with y(qT) ≤ y(pT) and x(qT) ≥ x(pT) that is connected
to the top. Since pT also satisfies these requirements, the site qT exists. We denote the leader
of qT by λ′T.

We nowdefine four rectangles that we use to reroute leaders such that ∣L∣x+∣L∣y is decreased
and arising crossings can be resolved. The rectangle K1 is spanned by bend(λ′R) and qB, the
rectangle K2 is spanned by bend(λ′B) and qL, the rectangle K3 is spanned by bend(λ′L) and qT,
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and the rectangle K4 is spanned by bend(λ′T) and qR. Note that the rectangles K3 and K4 are
rotationally symmetric to K1 and K2, respectively.

Claim 3.

(1) K1 is only intersected by right leaders whose bends are contained in K1,

(2) K2 is only intersected by bottom leaders whose bends are contained in K2,

(3) K3 is only intersected by left leaders whose bends are contained in K3,

(4) K4 is only intersected by top leaders whose bends are contained in K4, and

(5) K1, K2, K3 and K4 are pairwise internally disjoint.

Assuming that the claim holds, we can reroute the sites in a circular fashion as follows; we
illustrate the rerouting as dash-dotted lines in Figure 3.14d. The site qB is rerouted to the port
of λ′R creating crossings only on the right side of K1. The site qL is rerouted to the port of λ′B
creating crossings only on the bottom side of K2. The site qT is rerouted to the port of λ′L
creating crossing only on the left side of K3. Finally, the site qR is rerouted to the port of λ′T
creating crossings only on the top side of K4. Each rerouting decreases either ∣L∣x or ∣Ly ∣
without increasing the other one. Further, only crossings between leaders of the same type are
created. We apply Lemma 3.1 to resolve the conflicts. In the remainder of this case we show
that the stated claim holds.
First, we show that K1 is only intersected by right leaders whose bends lie in K1. This

rectangle is not intersected by any bottom leader, because qB is the leftmost site with y(qB) ≥
y(pB) and x(qB) ≤ x(pB) that is connected to the bottom. It is not intersected by any top
leader, because such a leader would intersect λ′R whose site lies below qB. Finally, it is not
intersected by any left leader, because such a leader would intersect λ′T whose site lies to the
right of qB. Hence, only right leaders intersect K1. In particular, all those leaders have their
bend in K1, because the bottom-right corner of K1 is the site of a bottom leader. That leader
would be intersected if a right leader intersecting K1 had its bend outside of K1. Since K3
is rotationally symmetric to K1, we can use symmetric arguments to prove that K3 is only
intersected by left leaders whose bends are contained in K3
Next, we show that K2 is only intersected by bottom leaders whose bends lie in K2. This

rectangle is not intersected by any left leader, because such a leader would contradict the choice
of qL. It is also not intersected by any top leader, because such a leader would intersect λ′R
or contradict the choice of λT and λB. Finally, it cannot be intersected by any right leader,
because such a leader would intersect λ′B. Hence, K2 is only intersected by bottom leaders.
Further, all those leaders have their bend in K2, because the bottom-left corner of K2 is a site
connected to a left leader. That leader would be intersected if a bottom leader intersecting K2
had its bend outside of K2. Since K4 is rotationally symmetric to K2, we can use symmetric
arguments to prove that K4 is only intersected by top leaders whose bends are contained
in K4.

Finally, we show that the rectangles K1, K2, K3 and K4 are pairwise internally disjoint. For
a site p let v(p) denote the vertical line through p and let h(p) denote the horizontal line
through p. By construction we have that h(qB) lies above h(qT), K1 lies above h(qB), and K3
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lies below h(qT). Hence, the rectangles K1 and K3 are internally disjoint. Analogously, we
have that v(qL) lies to the right of v(qR), K2 lies to the right of v(qL), and K4 lies to the
left of v(qR). Hence, the rectangles K2 and K4 are internally disjoint. Further, the sites qL
and qR lie in between h(qB) and h(qT), because both lie in B. Consequently, K1 and K3 do
not intersect K2 and K4, respectively.
Case 2.3: The rectangle B contains only sites connected by right leaders. We apply the same
procedure as in the previous case. However, we do not need to consider left leaders. Hence, K3
is removed and K2 is the rectangle that is spanned by bend(λ′B) and pT. By the choice of B,
the rectangle K2 is only intersected by right leaders whose bend is contained in K2. Further,
the remaining rectangles K1, K2 and K4 are pairwise internally disjoint. The reroutings are
again done in a circular fashion decreasing ∣L∣x + ∣L∣y . Finally, we apply Lemma 3.1 to resolve
crossings.
Case 2.4: The rectangle B contains only sites connected by left leaders. This case can be
handled analogously to the previous case by mirroring the instance vertically.

This lemma shows that, when searching for a planar solution of the labeling problem, we
can restrict ourselves to solutions that are x-separated and y-separated. Let L denote such a
solution, and let ℓv and ℓh be the lines separating the sites labeled by left and right labels, and
the ones labeled by top and bottom labels, respectively. Let o ∈ R denote the intersection of ℓv
and ℓh , called center point. Let r1 , . . . , r4 denote the corners of R, named in counterclockwise
ordering, and such that r1 is the top-right corner. Consider the rectangles that are spanned
by o and r i for i = 1, . . . , 4. Each of them contains only two types of leaders. For example,
the top-right rectangle contains only top and right leaders. An x- and y-separated planar
solution is partitioned if, for each rectangle spanned by o and one of the corners r i of R, there
exists an xy-monotone curve C i from r i to o that separates the two different types of leaders
contained in that rectangle; see Figure 3.13. Our next step is to show that a planar solution
can be transformed into a partitioned solution without increasing ∣L∣x and ∣L∣y .

Proposition 3.2. If there exists a planar solution L for Four-Sided Boundary Labeling,
then there exists a partitioned solution L′.

Proof. By Lemma 3.7, we can assume that L is x- and y-separated. Let o be the center point
as defined above and let ℓv be the vertical line through o. We show how to ensure that the
area K of R right of ℓv admits an xy-monotone curve from the top-right corner of R to o that
separates the top leaders from the right leaders inside K. The remaining cases are symmetric.
Essentially, we proceed as in the proof of Proposition 3.1 to remove the obstructions of

types (P1)–(P4); see Figure 3.5. We note that in the rerouting, we only shorten vertical
segments of top leaders and right segments of right leaders; hence the solution remains x-
and y-separated. Moreover, in each step we decrease both ∣L∣x and ∣L∣y . Hence, after finitely
many steps all patterns between top and right leaders have been removed without creating
new patterns with other types of leaders.
After all patterns have been removed, an xy-monotone curve connecting the top-right

corner of R to o, separating the top labels from the right labels, can be found as in the proof
of Lemma 3.2.
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Figure 3.15: (a) The three-sided instance partitioned into two two-sided L-shaped instances Is and I′s . The
instances are induced by the grid point s of G and are balanced. (b) Illustration of the proof for Lemma 3.8.
Assuming that the grid point s of G, the balanced instances Is and I′s , and the curves C and C′ are given, a
planar solution for the whole instance can be constructed.

3.4.2 Algorithm for the Three-Sided Case

In the three-sided case, we assume that the ports of the given instance I are located on three
sides of R; without loss of generality, on the left, top and right side of R. Basically, we solve a
three-sided instance by splitting the instance into two two-sided L-shaped instances that can
be solved independently; see Figure 3.15a.
Let G be the dual of the grid that is induced by the sites and ports of the given instance.

The idea is that each grid point s of G induces two two-sided L-shaped instances with some
useful properties. We will show that there is a planar solution for I if and only if there is a
grid point s of G such that its induced two-sided instances both have planar solutions. Thus,
considering all O(n2) grid points of G the problem reduces to solve those L-shaped instances
of the two-sided case. By means of a simple adaption of the dynamic program presented in
Section 3.2 we solve these instances in O(n2) time achieving O(n4) running time in total.
In the following we call horizontal and vertical lines through grid points of G horizontal

and vertical grid lines, respectively. We now define the two two-sided L-shaped instances Is
and I′s of a grid point s of G formally. To that end, let R1 be the rectangle that is spanned by
the top-right corner of R and s, and let R2(p) be the rectangle that is spanned by a point p
on the horizontal grid line h through s and the bottom-right corner of R; see Figure 3.15a.
The instance Is(p) contains all sites and ports in R1 ∪ R2(p) and I′s(p) contains all sites
and ports in R ∖ (R1 ∪ R2(p)). We say that Is(p) and I′s(p) are balanced if all right ports lie
in R1∪R2(p), all left ports lie in R∖(R1∪R2(p)) and R1∪R2(p) contains the same number of
sites as it contains ports. Since the number of ports and sites in I is equal, this directly implies
that R ∖ (R1 ∪ R2(p)) contains the same number of sites as it contains ports. In particular,
the choice of balanced instances Is(p) and I′s(p) for a grid point s of G is unique with respect
to the contained sites and ports; only the location of pmight differ. We can therefore write Is
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and I′s for balanced instances and R1 and R2 for their defining rectangles. For any solution
of Is and any solution of I′s , we require that all leaders are completely contained in R1 ∪ R2
and in R ∖ (R1 ∪ R2), respectively. The next lemma states that a three-sided instance I has a
planar solution if and only if it can be partitioned into two two-sided L-shaped instances that
have planar solutions. To that end let hs denote the horizontal grid line through s. Figure 3.15
illustrates the lemma.

Lemma 3.8. There is a planar solution L for a three-sided instance I if and only if there is a
grid point s of G with balanced instances Is and I′s over rectangles (R1 , R2), an xy-monotone
curve C from the top-right corner to the bottom-left corner of R and an xy-monotone curve C′
from the top-left corner to the bottom-right corner of R such that

(1) each point on C satisfies the strip condition with respect to the ports and sites in Is ,

(2) C contains the top-left corner of R2 and the intersection of hs with the left segment of R,

(3) each point on C′ satisfies the strip condition with respect to the ports and sites in I′s ,

(4) C′ contains the top-left corner of R2 and the intersection of hs with the right segment of R.

Proof. First, assume that s, Is , I′s , (R1 , R2), C and C′ exist as required; see Figure 3.15b. The
curve C partitions R into two regions; we denote the region above C by A1 and the region
below C by A2. By Lemma 3.3, there is a planar solution L1 for the sites and ports in A1 such
that all leaders of L1 lie in A1. Since C contains the top-left corner of R2 and does not cross hs
until it reaches the intersection point of hs with the left segment of R, we know that all leaders
of L1 are contained in R1 ∪ R2. Analogously, there is a planar solution L2 for the sites and
ports in A2 such that all leaders of L2 lie in A2. Consequently, we can combine L1 and L2
into a planar solutionLs for the sites and ports in Is . Using symmetric arguments, we obtain a
planar solution L′s for I′s . As Is and I′s are defined over complementary areas, the solutions Ls
and L′s can be combined into a planar solution of I.
Assume that there is a planar solution L for a three-sided instance I; see Figure 3.16.

First, note that we can imagine an instance of Three-Sided Boundary Labeling as a
degenerated instance of Four-Sided Boundary Labeling with no bottom ports. Thus,
Proposition 3.2 also holds for the three-sided case, when assuming that the four xy-monotone
curves partitioning the solution meet on the bottom segment of R. Hence, without loss of
generality, we assume thatL is also partitioned by four xy-monotone curvesC1, C2, C3 andC4.
In particular, let C1 denote the curve that starts at the top-right corner of R and let C2 denote
the curve that starts at the top-left corner of R; see Figure 3.16a. Then, the two curves C3
and C4 are completely contained in the bottom side of R and can therefore be omitted. Now,
we first show how to construct the grid point s and the instances Is and I′s such that they
are balanced. Afterwards, we explain how to obtain C and C′ from C1 and C2, respectively.
Finally, we prove that each point on C and C′ satisfies the strip condition with respect to Is
and I′s , respectively.
Let λT be the top leader in L with the longest vertical segment of all top leaders in L. In

case the site of λT lies to the right of bend(λT), let v be the rightmost vertical grid line that lies
to the left of λT, and otherwise if the site of λT lies to the left of bend(λT), let v be the leftmost
vertical grid line that lies to the right of λT. Furthermore, let h be the topmost horizontal grid
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Figure 3.16: Illustration of the proof for Lemma 3.8. It is assumed that the partitioned planar solution L for
the three-sided instance is given. (a) By Proposition 3.2, we can assume that L is partitioned by the curves C1
and C2 . The extremal top leader λT induces the site s and the extremal right leader λR induces the line v′ . (b)
Based on C1 , C2 , h and v′ , the curves C and C′ can be constructed such that they do not cross any leader ofL.

line that lies below bend(λT); see Figure 3.16a. Due to the choice of h and v all top leaders
lie above h and none of them intersects h or v. Furthermore, no right or left leader of L
intersects v above h. The desired grid point s is then the intersection point of h and v.

Now, let λR be the right leader inL with longest horizontal segment among all right leaders
in L and let v′ be the rightmost vertical grid line that lies to the left of bend(λR). Note that v′
cannot be intersected by a left or a right leader, because both leader types are x-separated.
We define R1 to be the rectangle that is spanned by the top-right corner of R and s. Also, we
define R2 to be the rectangle spanned by the bottom-right corner of R and the intersection
point of v′ and h. The instance Is is defined by R1∪R2 and the instance I′s by R∖(R1∪R2). We
show that Is and I′s are balanced. To that end, we prove that a leader of L is either completely
contained in R1 ∪ R2 or in R ∖ (R1 ∪ R2), that R1 ∪ R2 contains only right and top leaders, and
that R ∖ (R1 ∪ R2) contains only left and top leaders.
Due to the choice of v′, all right leaders lie to the right of v′. Moreover, all right leaders

whose site or port lies above h, must lie to the right of v, because by definition of v no right
leader intersects v above h (otherwise it would intersect λT), and because otherwise C1 could
not be an xy-monotone curve separating right and top leaders. Thus, all right leaders lie
in R1 ∪ R2. For left leaders we can argue similarly. Since left and right leaders of L are x-
separated, all left leaders lie to the left of v′. All left leaders whose site or port lies above h, must
lie to the left of v, because by definition of v no left leader intersects v above h, and because
otherwise C2 could not be an xy-monotone curve separating left from top leaders. Thus, all
left leaders lie in R ∖ (R1 ∪R2). Finally, consider the top leaders in L. By definition of h and v,
none of the top leaders intersects h or v. In particular all top leaders lie above h and cannot
intersect R2. Consequently, each top leader is either contained in R1 or in R ∖ (R1 ∪ R2). This
concludes the argument that Is and I′s are balanced.

47



Chapter 3 Multi-Sided Boundary Labeling

t

s

Figure 3.17: There are no balanced instances Is and I′s for the grid point s. However, by Lemma 3.8 there must
be another grid point t with balanced instances It and I′t if the instance has a planar solution.

We are left with the construction of the curves C and C′; see Figure 3.16b. The curve C is
derived from C1 as follows. Starting at the top-right corner of R, the curve C coincides with C1
until C1 intersects h or v′ above h. If C intersects v′ above h, it follows v′ downwards until
it hits h. Then, in both cases, it follows h until h intersects the left segment of R. Finally, C
follows the left segment of R to the bottom-left corner of R. The curve C′ is constructed
symmetrically.
By construction, C contains the top-left corner of R2 and the intersection point of h with

the left segment of R. Symmetrically, C′ contains the top-left corner of R2 and the intersection
point of h with the right segment of R. We finally show that each point on C satisfies the strip
condition with respect to the sites and ports in Is . Using symmetric arguments we can prove
the analogous statement for C′ and I′s .
By the previous reasoning, we know that each leader of L either lies completely inside or

completely outside of R1 ∪ R2. Each leader that lies in R1 ∪ R2 is either a top or a right leader
and does not intersect C. Otherwise, if such a leader intersected C, it would also intersect C1
or the segment x of v′ that is contained in C. In particular, x cannot be intersected by any
leader because it lies to the left of all right leaders and below C1. Thus, the leaders in R1 ∪ R2
form a planar solution for Is without intersecting C. Hence, the claim directly follows from
Lemma 3.3.

Our approach now works as follows. For each grid point s of G we compute the instances Is
and I′s such that they are balanced. Then, by Lemma 3.8, we can apply our algorithm presented
in Section 3.2 in order to solve Is and I′s independently. To that end, we slightly adapt the
dynamic program such that it only considers curves satisfying the properties required by
Lemma 3.8. If both instances can be solved, we combine these solutions into one solution and
return that solution as the final result. Otherwise, we continue with the next grid point of G.
If all grid points of G have been explored without finding a planar solution, the algorithm
decides that there is no planar solution.
Note that it may happen that, for a grid point s, there are no balanced instances Is and I′s ;

for an example see Figure 3.17. However, in that case, if I has a solution, we also know by
Lemma 3.8 that there is another grid point t such that for t we find balanced instances. Hence,
we can refrain from considering s.
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Creating the two instances Is and I′s for a grid point s takes linear time, if we assume that the
sites are sorted by their x-coordinates. By Theorem 3.2 we then need O(n2) time and O(n)
space to solve Is and I′s . Consequently, we need O(n2) time and O(n) space to process a
single grid point s. Since we consider O(n2) grid points, the following theorem follows.

Theorem 3.6. Three-Sided Boundary Labeling can be solved in O(n4) time using O(n)
space.

Note that, except for the length minimization, our approach for the three-sided case also
carries over to the extensions from Section 3.3, because we only solve subinstances of Two-
Sided Boundary Labeling with Adjacent Sides. In particular with corresponding impact
on the running time we can soften the restriction that the number of labels and sites is equal.

3.4.3 Algorithm for the Four-Sided Case

In this section, we consider the case that the ports lie on all four sides of R. The main idea is to
seek a partitioned solution, which exists by Proposition 3.2. For a given partitioned solutionL,
we call a leader extremal if all other leaders of the same type in L have shorter orthogonal
segments; recall that the orthogonal segment of a po-leader is the segment connecting the
bend to the port. The algorithm consists of two steps. First, we explore all choices of (non-
overlapping) extremal leaders λL and λR for the left and the right side of R, respectively, plus a
horizontal line h that separates the top leaders and the bottom leaders. This information splits
the instance into two independent three-sided instances; see Figure 3.18a. There are, however,
two crucial differences from a usual three-sided instance. First, one side of the instance is
not a straight-line segment but an x-monotone orthogonal curve C that is defined by λL , λR
and h. Second, the extremal positions of λL and λR imply a separation of the points that are
labeled from the left and the right side. Let I31 be the three-sided instance above C and let I32
be the three-sided instance below C. The algorithm solves I31 and I32 independently from each
other. If for at least one of the two instances there is no solution, the algorithm continues
with the next choice of λL, λR and h. Otherwise, it combines the planar solutions of I31 and I32
into one planar solution and returns this solution. In case that all choices of λL, λR and h
have been explored without finding a solution, the algorithm returns that there is no planar
solution.
We next describe how to solve the three-sided instance I31 . A symmetric approach can be

applied to I32 . The algorithm explores all choices of the extremal leader λT for the top side
of R. This extremal leader partitions the instance into two two-sided subinstances I21 and I22 as
follows. Let AT,R be the rectangle that is spanned by bend(λT) and the top-right corner of R;
see Figure 3.18b. Analogously, let AT,L be the rectangle that is spanned by bend(λT) and the
top-left corner of R. Analogously, for λR we define the area AR,T to be the rectangle that is
spanned by bend(λR) and the top-right corner of R, and AR,B to be the rectangle spanned
by bend(λR) and the bottom-right corner of R. For the leader λL we define AL,B to be the
rectangle spanned by bend(λL) and the bottom-left corner of R, and AL,T to be the rectangle
spanned by bend(λL) and the top-left corner of R. We assume that the port p of λT is only
contained in that area A ∈ {AT,R ,AT,L} that also contains the site of λT. We make analogous
assumptions for λL and λR.
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Figure 3.18: (a) The right leader λL , the left leader λR and the horizontal line h split the instance into two
three-sided instances I31 and I32 . (b) Sketch of the areas AT,L , AT,R , AR,T , AR,B , AL,T and AL,B . (c) The leaders
λL , λR and λT split the three-sided instance into two two-sided instances.

The instance I21 consists of all ports and sites in A1 = (AR,T ∪ AT,R) ∖ (AT,L ∪ AR,B), and I22
consists of all ports and sites inA2 = (AL,T∪AT,L)∖(AT,R∪AL,B); see Figure 3.18c. We solve I21
and I22 independently from each other using the dynamic program introduced in Section 3.2
for each instance. However, we enforce that it only considers xy-monotone curves that exclude
top leaders crossing the horizontal line through bend(λT), left leaders crossing the vertical
line through bend(λL) and right leaders crossing the vertical line through bend(λR). If for at
least one of the two instances there is no solution, the algorithm continues to explore the next
choice of λT. Otherwise, it combines the solutions of I21 and I22 into one solution and returns
the result as the solution of I31 . In case that all choices of λT have been explored without
finding a solution, the algorithm returns that there is no solution for the given three-sided
instance. The following lemma shows that the algorithm is correct.

Lemma 3.9. Given an instance I of Four-Sided Boundary Labeling, the following two
statements are true.

(1) If there is no planar solution for I, the algorithm states this.

(2) If there is a planar solution for I, the algorithm returns such a solution.

Proof. In case the algorithm returns a solution, it has been constructed from planar solutions
of disjoint instances of Two-Sided Boundary Labeling with Adjacent Sides. As the
union of these two-sided instances contains all sites and ports of I, the algorithm returns a
planar solution of I, which shows the first statement.
Conversely, assume that I has a planar solution L. By Proposition 3.2, we may assume

that L is partitioned. In particular, let λT, λL, λB and λR be the extremal leaders in L of the
top, left, bottom and right side of R, respectively, and let h be a horizontal line that separates
the top leaders from the bottom leaders.

Obviously, λL, λR and h split the instance into two three-sided instances I31 and I32 . As the
algorithm systematically explores all choices of extremal right leaders, extremal left leaders
and horizontal lines partitioning the set of sites, it must find λL, λR and a horizontal line h′
that separates the same sets of sites as h. Thus, I31 and I32 are considered by the algorithm.
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Let I31 be the instance above the curve defined by λL, λR and h′, and let I32 be the instance
below that curve. We now show that the algorithm finds a planar solution for I31 . Symmetric
arguments hold for I32 . As the algorithm explores all choices of extremal top leaders in I31 , it
also considers λT to be the extremal top leader. This leader partitions the area of I31 into the
two disjoint areas A1 = (AR,T∪AT,R)∖(AT,L∪AR,B) and A2 = (AL,T∪AT,L)∖(AT,R∪AL,B);
see Figure 3.18a.
It directly follows from the extremal choice of λR, λT and λL that there is no leader in L

that intersects both A1 to A2. In particular, no left leader intersects A1 and no right leader
intersects A2. Thus, A1 and A2 split L into independent planar solutions L1 and L2 of two
two-sided instances I21 and I22 induced by A1 and A2, respectively. Note that the algorithm
considers the same two-sided instances independently from each other. As I21 has a solution,
namely L1, we know that the dynamic program finds a solution L2

1 for I21 . In particular, all
leaders of L2

1 lie in A1.
Applying symmetric arguments for I22 , the algorithm yields a planar solution L2

2 that stays
in A2. Consequently, combiningL2

1 andL2
2 into one solution yields a planar solutionL3

1 for I31 .
Analogously, we obtain a planar solution L3

2 for I32 . Obviously, due to the separation by λL, λR
and h′, the union of L3

1 and L3
2 is also planar, which is the overall solution returned by the

algorithm. This proves the second statement of the lemma.

Let us analyze the running time of the algorithm. Obviously, there are O(n5) possible com-
binations of left and right extremal leaders and a horizontal line separating the top and
bottom-labeled sites. For each combination, we independently solve two three-sided in-
stances. For such a three-sided instance, we considerO(n2) choices for the extremal leader λT
and independently solve two independent two-sided instances with Theorem 3.2 in O(n2)
time. This implies that solving one three-sided instances takes O(n4) time. Thus, the overall
running time is O(n9). The following theorem summarizes this result.

Theorem 3.7. Four-Sided Boundary Labeling can be solved in O(n9) time using O(n)
space.

Note that, except for the lengthminimization, our approach for the four-sided case also carries
over to the extensions from Section 3.3, because we only solve subinstances of Two-Sided
Boundary Labeling with Adjacent Sides. In particular with corresponding impact on
the running time we can soften the restriction that the number of labels and sites is equal.

3.5 Concluding Remarks

In this chapter, we have studied the problem of testing whether an instance of Two-Sided
Boundary Labeling with Adjacent Sides admits a planar solution. We have given the
first efficient algorithm for this problem, running in O(n2) time.

Our algorithm can also be used to solve a variety of different extensions of the problem. We
have shown how to generalize to sliding ports instead of fixed ports without increasing the
running time and how to maximize the number of labeled sites such that the solution is planar
in O(n3 log n) time. We further have given an extension to the algorithm that minimizes the
total leader length in O(n8 log n) time.
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With some additional work, our approach can also be used to solve Three-Sided and Four-
Sided Boundary Labeling in polynomial time. We have introduced an algorithm solving
the three-sided case in O(n4) time and the four-sided case in O(n9) time. Also, except for
the length minimization, all extensions carry over. It remains open whether a minimum
length solution of Three-Sided and Four-Sided Boundary Labeling can be computed in
polynomial time.
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4 Approximation Algorithms
for Box Contact Representations

In the last few years, word clouds have become a standard tool for abstracting, visualizing,
and comparing text documents. For example, word clouds were used in 2008 to contrast the
speeches of the US presidential candidates Obama and McCain. More recently, the German
media used them to visualize the newly signed coalition agreement and to compare it to a
similar agreement from 2009 [Wei13]. A word cloud of a given document consists of the
most important (or most frequent) words in that document. Each word is printed in a given
font and scaled by a factor roughly proportional to its importance (the same is done with the
names of towns and cities on geographic maps, for example). The printed words are arranged
without overlap and tightly packed into some shape (usually a rectangle). Tag clouds look
similar; they consist of keyword metadata (tags) that have been attributed to resources in
some collection such as web pages or photos.
Wordle [VWF09] is a popular tool for drawing word or tag clouds. The Wordle website

allows users to upload a list of words and, for each word, its relative importance. The user can
further select font, color scheme, and decide whether all words must be placed horizontally
or whether words can also be placed vertically. The tool then computes a placement of the
words, each scaled according to its importance, such that no two words overlap. Generally,
the drawings are very compact and aesthetically appealing.
In the automated analysis of text one is usually not just interested in the most important

words and their frequencies, but also in the connections between these words. For example, if
a pair of words often appears together in a sentence, then this is often seen as evidence that
this pair of words is linked semantically [Li02]. In this case, it makes sense to place the two
words close to each other in the word cloud that visualizes the given text.

Problem Statement. We capture the semantic connections between words by an input
graphG = (V , E) of desired contacts. We are also given, for each vertex v ∈ V , the dimensions
(but not the position) of a box Bv , that is, an axis-aligned rectangle. We denote the height
and width of Bv by h(Bv) and w(Bv), respectively, or, more briefly, by h(v) and w(v). For
complexity reasons, we require the lengths of the boxes to be rational numbers. For each edge
e = (u, v) of G, we are given a positive number p(e) = p(u, v) which corresponds to the
profit of e. For ease of notation, we set p(u, v) = 0 for any non-edge (u, v) ∈ V 2 ∖ E of G.
Given a box B and a point q in the plane, let B(q) be a placement of B with lower left

corner q. A representation of G is a map λ∶V → R2 such that for any two vertices u ≠ v,
it holds that Bu(λ(u)) and Bv(λ(v)) have disjoint interior. Boxes may touch, that is, their
boundaries may intersect. If the intersection is non-degenerate, that is, a line segment of
positive length, we say that the boxes are in contact. We say that a representation λ realizes an
edge (u, v) of G if boxes Bu(λ(u)) and Bv(λ(v)) are in contact.

This yields the problem Contact Representation of Word Networks (Crown): Given an edge-
weighted graph G whose vertices correspond to boxes, find a representation of G with the
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vertex boxes such that every edge of G is realized. In this chapter, we study the optimization
version of Crown, Max-Crown, where the aim is to maximize the total profit (that is, the
sum of the weights) of the realized edges. We also consider the unweighted version of the
problem, where all desired contacts yield a profit of 1.

PreviousWork. Barth et al. [BFK+14] recently introduced Max-Crown and showed that
the problem is strongly NP-hard even for trees and weakly NP-hard even for stars. They
presented an exact algorithm for cycles and approximation algorithms for stars, trees, planar
graphs, and graphs of constant maximum degree; see the first column of Table 4.1. Some of
their solutions use an approximation algorithm with ratio α = e/(e − 1) ≈ 1.58 [FGMS11] for
the Generalized Assignment Problem (Gap), defined as follows: Given a set of bins with
capacity constraints and a set of items that possibly have different sizes and values for each
bin, pack a maximum-valued subset of items into the bins. The problem is APX-hard [CK05].
Max-Crown is related to finding rectangle representations of graphs, where vertices are

represented by axis-aligned rectangles with non-intersecting interiors and edges correspond
to rectangles with a common boundary of non-zero length. Every graph that can be repre-
sented this way is planar and every triangle in such a graph is a facial triangle. These two
conditions are also sufficient to guarantee a rectangle representation [BGPV08]. Rectangle
representations play an important role in VLSI layout, cartography, and architecture (floor
planning). In a recent survey, Felsner [Fel13] reviews many rectangulation variants. Several
interesting problems arise when the rectangles in the representation are restricted. Eppstein et
al. [EMSV12] consider rectangle representations which can realize any given area-requirement
on the rectangles, so-called area-preserving rectangular cartograms, which were introduced
by Raisz [Rai34] already in the 1930s. Unlike cartograms, in our setting there is no inherent
geography, and hence, words can be positioned anywhere. Moreover, each word has fixed
dimensions enforced by its importance in the input text, rather than just fixed area. Nöllenburg
et al. [NPR13] recently considered a variant where the edge weights prescribe the length of
the desired contacts.

Finally, the problem of computing semantics-aware word clouds is related to classic graph
layout problems, where the goal is to draw graphs so that vertex labels are readable and Eu-
clidean distances between pairs of vertices are proportional to the underlying graph distance
between them. Typically, however, vertices are treated as points and label overlap removal is
a post-processing step [DMS05, GH10]. Most tag cloud and word cloud tools such as Wor-
dle [VWF09] do not show the semantic relationships between words, but force-directed graph
layout heuristics are sometimes used to add such functionality [BKP14, CWL+10, PTT+12,
WPW+11]. For an example output of such a tool, see Figure 4.1.

Model. We consider two different models. In the model with proper contacts, we consider
two boxes in contact only if their intersection is a line segment of positive length. Hence, the
contact graph of the boxes is planar. This is the standard model used in work on rectangle
contact representations. In the model with point contacts, we consider two boxes in contact if
their intersection is a line segment or a point. In this model, a realized graph is not necessarily
planar as four boxes can meet in a point and both diagonals correspond to edges of the input
graph. It is, however, easy to see that the graphs that can be realized are 1-planar. If not stated

54



Figure 4.1: Semantics-preserving word cloud for the 35 most ‘‘important’’ words in this section. Following the
text processing pipeline of Barth et al. [BKP14], these are the words ranked highest by LexRank [ER04], after
removal of stop words such as ‘‘the’’. The edge profits are proportional to the relative frequency with which
the words occur in the same sentences. The layout algorithm of Barth et al. [BKP14] first extracts a heavy star
forest from the weighted input graph as in Theorem 4.6 and then applies a force-directed post-processing.

otherwise, our approximation algorithms work for both models. We allow words only to be
placed horizontally.

Our Contribution. Known results and our contributions to Max-Crown are shown in
Table 4.1. Note that the results of Barth et al. [BFK+14] in column 1 are simply based on
existing decompositions of the respective graph classes into star forests or cycles.

Our results rely on a variety of algorithmic tools. First, we devise sophisticated decomposi-
tions of the input graphs into heterogeneous classes of subgraphs, which also requires a more
general combination method than that of Barth et al. Second, we use randomization to obtain
a simple constant-factor approximation for general weighted graphs. Previously, such a result
was not even known for unweighted bipartite graphs. Third, to obtain an improved algorithm
for the unweighted case, we prove a lower bound on the size of a matching in a planar graph
of high average degree. Fourth, we use a planar separator result of Frederickson [Fre87] to
obtain a polynomial-time approximation scheme (PTAS) for degree-bounded planar graphs.

Our other main result is the use of the combination lemma, which, among others, yielded
the first approximation algorithms for bipartite and for general graphs; see Section 4.2. For
general graphs, we present a simple randomized solution (based on the solution for bipartite
graphs), which we then derandomize. For trees, planar graphs of constant maximum degree,
and general graphs, we have improved results in the unweighted case; see Section 4.3. Finally,
we show APX-completeness for bipartite graphs of maximum degree 9 (see Section 4.4) and
list some open problems (see Section 4.5).

Runtimes. Most of our algorithms involve approximating a number of Gap instances
as a subroutine, using either the PTAS [BKV11] if the number of bins is constant or the
approximation algorithmof Fleischer et al. [FGMS11] for general instances. Because of this, the
runtime of our algorithms consists mostly of approximating Gap instances. Both algorithms
to approximate Gap instances solve linear programs, so we refrain from explicitly stating the
runtime of these algorithms.
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Weighted Unweighted

Graph class Ratio [BFK+14] Ratio [new] Theorem Ratio Theorem

cycle, path 1
star α 1 + ε 4.1
tree 2α 2 + ε 4.1 2 4.7

NP-hard
max-degree ∆ ⌊(∆ + 1)/2⌋
planar max-deg. ∆ 1 + ε 4.8
outerplanar 3 + ε 4.1
planar 5α 5 + ε 4.1
bipartite APX-complete 4.10
with proper contacts ≈ 8.4 4.2
with point contacts ≈ 9.5 4.2

general
with proper contacts ≈ 16.9 4.5 ≈ 13.4 4.9
with point contacts ≈ 19 4.5 ≈ 16.5 4.9

Table 4.1: Previously known and new results for the unweighted and weighted versions of Max-Crown (for
α ≈ 1.58 and any ε > 0). The exact approximation factors are denoted in the corresponding theorems.

For practical purposes, one can use a purely combinatorial approach for approximating
Gap [CKR06], which utilizes an algorithm for the Knapsack problem as a subroutine. The
algorithm translates into a 3-approximation for Gap running in O(NM) time (or a (2 + ε)-
approximation running in O(MN log 1/ε+M/ε4) time), where N is the number of items and
M is the number of bins. In our setting, the simple 3-approximation implies a randomized 32-
approximation (or a deterministic 40-approximation) algorithm with running time O(∣V ∣2)
for Max-Crown on general weighted graphs.

4.1 Some Basic Results

In this section, we present two technical lemmas that will help us to prove our main results in
the following two sections where we treat the weighted and unweighted cases of Max-Crown.
The second lemma immediately improves the results of Barth et al. [BFK+14] for stars, trees,
and planar graphs.

4.1.1 A Combination Lemma

Several of our algorithms cover the input graph with subgraphs that belong to graph classes
for which the Max-Crown problem is known to admit good approximations. The following
lemma allows us to combine the solutions for the subgraphs. We say that a graph G = (V , E)
is covered by graphs G1 = (V , E1), . . . ,Gk = (V , Ek) if E = E1 ∪ ⋅ ⋅ ⋅ ∪ Ek .
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Lemma 4.1. Let graph G = (V , E) be covered by graphs G1 ,G2 , . . . ,Gk . If, for i = 1, 2, . . . , k,
weighted Max-Crown on graph G i admits an α i-approximation, then weighted Max-Crown
on G admits a (∑k

i=1 α i)-approximation.

Proof. Our algorithm works as follows. For i = 1, . . . , k, we apply the α i-approximation
algorithm to G i and report the result with the largest profit as the result for G. We show
that this algorithm has the claimed performance guarantee. For the graphs G ,G1 , . . . ,Gk , let
OPT,OPT1 , . . . , OPTk be the optimum profits and let ALG, ALG1 , . . . , ALGk be the profits
of the approximate solutions. By definition, ALGi ≥ OPTi /α i for i = 1, . . . , k. Moreover,
OPT ≤ ∑k

i=1OPTi because the edges of G are covered by the edges of G1 , . . . ,Gk . Assume,
without loss of generality, that OPT1 /α1 = maxi(OPTi /α i). Then,

ALG = ALG1 ≥
OPT1

α1
≥ ∑

k
i=1OPTi

∑k
i=1 α i

≥ OPT
∑k

i=1 α i
.

4.1.2 Improvement on Existing Approximation Algorithms

The approximation algorithms for stars, trees, and planar graphs that was provided by Barth
et al. [BFK+14] use an α-approximation algorithm for Gap instances. We prove that these
instances require only a constant number of bins and thus can be approximated using the
PTAS of Briest et al. [BKV11].

Lemma 4.2 ([BKV11]). For any ε > 0, there is a (1+ ε)-approximation algorithm for Gap with
a constant number of bins. The algorithm takes nO(1/ε) time.

Hakimi et al. [HMS96] have studied the star arboricity of certain graph classes, that is, the
number of star forests into which a graph can be partitioned. The algorithm of Barth et
al. [BFK+14] uses some of these results to get approximation algorithms for trees and planar
graphs.

Lemma 4.3 ([HMS96]). Any tree can be partitioned into two star forests, any outerplanar
graph can be partitioned into three star forests, and any planar graph can be partitioned into
five star forests. All these partitions can be found efficiently.

Using Lemmas 4.1, 4.2, and 4.3, we improve the approximation algorithms provided by
Barth et al. [BFK+14].

Theorem 4.1. Weighted Max-Crown admits a (1 + ε)-approximation algorithm on stars,
a (2 + ε)-approximation algorithm on trees, a (3 + ε)-approximation algorithm on outerplanar
graphs, and a (5 + ε)-approximation algorithm on planar graphs.

Proof. By combining Lemma 4.3 and Lemma 4.1, the claim for stars implies the other three
claims. Note that a PTAS for stars immediately gives a PTAS for star forests since the algorithm
can be applied to each star in the forest independently.
We now show that we can use Lemma 4.2 to get a PTAS for stars. First, we give the PTAS

for the model with point contacts. Note that Barth et al. [BFK+14] already gave a similar
reduction from Max-Crown on stars with point contacts to Gap. However, instead of trying

57



Chapter 4 Approximation Algorithms for Box Contact Representations

uh
2

u

uc
1 uc

2

uc
3uc

4
uh

2

uv
1 uv

2

Figure 4.2: Notation for the PTAS for stars

all combinations for the adjacencies in the corners of the center box, we add an additional bin
for each corner. We proceed to show that a constant number of bins suffices.
Let u be the center vertex of the star. We create eight bins: four corner bins uc

1 , uc
2 , uc

3, and
uc
4 modeling adjacencies on the four corners of the box u, two horizontal bins uh

1 and uh
2

modeling adjacencies on the top and bottom side ofu, and two vertical bins uv
1 anduv

2 modeling
adjacencies on the left and right side of u; see Figure 4.2. The capacity of the corner bins is 1,
the capacity of the horizontal bins is the width w(u) of u, and the capacity of the vertical bins
is the height h(u) of u. Next, we introduce an item i(v) for any leaf vertex v of the star. The
size of i(v) is 1 in any corner bin, w(v) in any horizontal bin, and h(v) in any vertical bin.
The profit of i(v) in any bin is the profit p(u, v) of the edge (u, v).

Note that any feasible solution to the Max-Crown instance can be normalized so that any
box that touches a corner of u has a point contact with u. Hence, the above is an approximation-
preserving reduction from weighted Max-Crown on stars (with point contacts) to Gap. By
Lemma 4.2, we obtain a PTAS.

We now give a reduction fromMax-Crown on stars with proper contacts to Max-Crown
on stars with point contacts which has not been proven before. We first assume that all boxes
have integral edge lengths, which can be accomplished by scaling. Consider a feasible solution
with proper contacts. We modify the solution as follows. Each box that touches a corner
of u is moved so that it has a point contact with this corner. Afterwards, we move some of
the remaining boxes until all corners of u have point contacts or until we run out of boxes.
This yields a solution with point contacts in which there are two opposite sides of u—say
the two horizontal sides—which either do not touch any box or from which we removed
one box during the modification. Now observe that, if we shrink the two horizontal sides by
an amount of 1/2, then all contacts can be preserved since there was a slack of at least 1 at
both horizontal sides. Conversely, observe that any feasible solution with point contacts to
the modified instance with shrunk horizontal sides can be transformed into a solution with
proper contacts since we always have a slack of at least 1/2 on both horizontal sides. This shows
that there is a correspondence between feasible solutions with proper contacts and feasible
solutions with point contacts to a modified instance where we either shrink the horizontal or
the vertical sides by 1/2. The PTAS for Max-Crown on stars consists in applying a PTAS to
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two instances of Max-Crown with point contacts where we shrink the horizontal or vertical
sides, respectively, and in outputting the better of the two solutions.

4.2 TheWeighted Case

In this section, we provide new constant-factor approximation algorithms for more involved
classes of (weighted) graphs than in the previous section. Recall that α = e/(e− 1) ≈ 1.58. First,
we present an approximation algorithm for bipartite graphs. Then, for general graphs, we
provide a simple randomized approximation algorithm and show how to derandomize it to get
a deterministic approximation algorithm that makes O(n)many calls to the α-approximation
for Gap. Finally, we provide a deterministic approximation algorithm for general graphs that
has a slightly worse approximation factor but only makes a single call to the α-approximation
for Gap.

Theorem 4.2. Weighted Max-Crown on bipartite graphs admits

(i) a 16α/3(≈ 8.4)-approximation with proper contacts and

(ii) a 6α(≈ 9.5)-approximation with point contacts.

Proof. Let G = (V , E) be a bipartite input graph with V = V1 ∪̇ V2 and E ⊆ V1 × V2.
Using G, we build an instance of Gap as follows. For each vertex u ∈ V1, we create eight
bins uc

1 , uc
2 , uc

3 , uc
4 , uh

1 , uh
2 , uv

1 , uv
2 and set the capacities exactly as we did for the star center in

Theorem 4.1. Next, we add an item i(v) for every vertex v ∈ V2. The size of i(v) is, again, 1 in
any corner bin, w(v) in any horizontal bin, and h(v) in any vertical bin. For u ∈ V1, the profit
of i(v) is p(u, v) in any bin of u.

It is easy to see that solutions to theGap instance are equivalent toword cloud solutions (with
point contacts) in which the realized edges correspond to a forest of stars with all star centers
being vertices of V1. Hence, we can find an approximate solution of profit ALG1 ≥ OPT1 /α
where OPT1 is the profit of an optimum solution (with point contacts) consisting of a star
forest with centers in V1. Similarly, we can find a solution of profit ALG2 ≥ OPT2 /α with star
centers in V2, where OPT2 is the maximum profit that a star forest with centers in V2 can
realize.

We first show how to get a solution with point contacts. Among the two solutions described
above, we pick the one with larger profit ALG = max {ALG1 , ALG2}. LetG⋆ = (V , E⋆) be the
contact graph realized by a fixed optimum solution, and let OPT = p(E⋆) be its total profit.
We now show that ALG ≥ OPT /(6α). Recall that a realized graph in this model is 1-planar.
Hence, G⋆ is a bipartite 1-planar graph. Following a very recent proof of Ackerman [Ack14],
we can cover G⋆ by a planar bipartite graph G∗1 and a tree G∗2 . As G⋆1 is a planar bipartite
graph, each (connected) subgraph G′ = (V ′ , E′) of G∗1 is also planar bipartite and thus has at
most ∣E′∣ ≤ 2∣V ′∣ − 4 edges. Hence, we can decompose G⋆1 into two forests H1 and H2 using a
result of Nash-Williams [NW64]; see Figure 4.3.
We can further decompose H1 into two star forests S1 and S′1 in such a way that the star

centers of S1 are in V1 and the star centers of S′1 are in V2. Similarly, we decompose H2 into
a forest S2 of stars with centers in V1 and a forest S′2 of stars with centers in V2, and G∗2
into a forest S3 of stars with centers in V1 and a forest S′3 of stars with centers in V2. As
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G
(a) The graph G⋆ realized by an

optimum solution is planar
and bipartite.

H1 H2

(b)G⋆ can be decomposed into two forests H1 and H2 and further
into four star forests S1 , S2 (black) with centers in V1 (disks) and
S′1 , S

′
2 (dashed) with centers in V2 (boxes).

Figure 4.3: Partitioning the optimum solution in the proof of Theorem 4.2.

we decomposed the optimum solution into six star forests, one of them—say S1—has profit
p(S1) ≥ OPT /6. On the other hand, OPT1 ≥ p(S1). Summing up, we get

ALG ≥ ALG1 ≥ OPT1 /(6α) ≥ p(S1)/(6α) ≥ OPT /(6α).

We now show how to get a solution with proper contacts. Recall the Gap instance that we
constructed at the start of the proof. If the three bins on the top side of a vertex u (two corner
bins and one horizontal bin) are not completely full, we can slightly move the boxes in the
corners so that point contacts are avoided. Otherwise, we remove the lightest item from one
of these bins. We treat the three bottommost bins analogously. Note that in both cases we
only remove an item if all three bins are completely full. The resulting solution can be realized
with proper contacts. We do the same for the three left and three right bins and choose the
heavier of the two solutions.
It is easy to see that we lose at most 1/4 of the profit for the star center u: Assume that the

heaviest solution results from removing weight w1 from one of the upper and weight w2 from
one of the lower bins. As we remove the lightest items only, the remaining weight from the
upper and lower bins is at least 2(w1 +w2). On the other hand, the weight in the two vertical
bins is at least w1 + w2; otherwise, dropping everything from these vertical bins would be
cheaper. Hence, we keep at least weight 3(w1 +w2).

If we do so for all star centers, we get a solution with profit

ALG′1 ≥ 3/4 ⋅ALG1 ≥ 3OPT1 /(4α) ≥ 3OPT′1 /(4α)

where OPT′1 is the profit of an optimum solution (with proper contacts) consisting of a star
forest with centers in V1. Similarly, we can find a solution of profit ALG′2 ≥ 3OPT′2 /(4α)
with star centers in V2, where OPT′2 is the maximum profit that a star forest with centers
in V2 can realize. Among the two solutions, we pick the one with larger profit ALG′ =
max {ALG′1 , ALG′2}.
Let G⋆ = (V , E⋆) be the contact graph realized by a fixed optimum solution, and let

OPT = p(E⋆) be its total profit. We now show that ALG ≥ 3OPT /(16α). As G⋆ is a
planar bipartite graph, using the same argument as above, we can decompose it into four star
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forests S1 , S′1 , S2 , S′2 in such a way that the star centers of S1 and S2 are inV1 and the star centers
of S′1 and S′2 are in V2. As we decomposed the optimum solution into four star forests, one of
them—say S1—has profit p(S1) ≥ OPT /4. On the other hand, OPT1 ≥ p(S1). Summing up,
we get

ALG ≥ ALG1 ≥ 3OPT1 /(4α) ≥ 3p(S1)/(4α) ≥ 3OPT /(16α).

Theorem 4.3. Weighted Max-Crown on general graphs admits

(i) a randomized 32α/3(≈ 16.9)-approximation with proper contacts and

(ii) a randomized 12α(≈ 19)-approximation with point contacts.

Proof. Let G = (V , E) be the input graph and let OPT be the weight of a fixed optimum solu-
tion. Our algorithm works as follows. We first randomly partition the set of vertices into two
setsV1 andV2 = V ∖V1. To this end we assign every v ∈ V either toV1 or toV2 with probability
1/2 each, so that the random decisions for the nodes are mutually independent. Now, we
consider the bipartite graph G′ = (V1 ∪̇ V2 , E′) with E′ = {(v1 , v2) ∈ E ∣ v1 ∈ V1 and v2 ∈ V2}
that is induced by V1 and V2. By applying Theorem 4.2 on G′, we can find a feasible solution
for G with weight ALG ≥ 3OPT′ /(16α) in the model with proper contacts or weight ALG ≥
OPT′ /(6α) in the model with point contacts, where OPT′ is the weight of an optimum
solution for G′.

Any edge of the optimum solution is contained in G′ with probability 1/2. Let OPT be the
total weight of the edges of the optimum solution that are present in G′. Then, E[OPT] =
OPT /2. Hence,

E[ALG] ≥ 3E[OPT′]/(16α) ≥ 3E[OPT]/(16α) = 3OPT /(32α)

in the model with proper contacts and

E[ALG] ≥ E[OPT′]/(6α) ≥ E[OPT]/(6α) = OPT /(12α)

in the model with point contacts.

In order to derandomize the above algorithms, we make use of the following classical result.

Theorem 4.4 (Folklore [AS92]). Let n = 2k − 1 and d = 2t + 1 ≤ n. Then there exists a
probability space Ω of size 2(n + 1)t and d-wise independent random variables X1 , . . . , Xn over
Ω each of which takes values 0 and 1 with probability 1/2. The space and the variables can be
constructed in O(tnt+1 log n) time.

Proof. The construction is described, for example, by Alon and Spencer [AS92] (Theorem
16.2.1). They don’t state the running time of the construction explicitly, so we will do this now.
First, they set up a (1 + kt) × n matrix H over the field Z2. Computing an entry of H

takes O(tk2) time, hence O(t2n log3 n) time in total.
Second, they construct the probability space Ω and the variables X1 , . . . , Xn . To this end,

they compute the linear combinations of all 2kt+1 = 2(n + 1)t many subsets of rows of H,
each of which takes O(nkt) time. Using k = O(log n), this sums up to O(tnt+1 log n), which
dominates the first step since t ≤ n.
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Theorem 4.5. Weighted Max-Crown on general graphs admits

(i) a (deterministic) 32α/3(≈ 16.9)-approximation with proper contacts and

(ii) a (deterministic) 12α(≈ 19)-approximation with point contacts.

Both approximation algorithms make O(n)many calls to the α-approximation algorithm for
Gap on instances with O(n) items and bins.

Proof. Let G = (V , E) be the input graph and let V = {v1 , . . . , vn}. We set t = 1 and apply
Theorem 4.4 to construct, in O(n2 log n) time, a probability space of size O(n) and random
variables X1 , . . . , Xn that are 3-wise (and thus pairwise) independent.

We now run the algorithms described in the proof of Theorem 4.3 with the only difference
that we do not assign the vertices to V1 or V2 mutually independently but by sampling from
the space Ω. In doing so, we add v i to V1 if X i = 0 and to V2 if X i = 1. Let (v i , v j) be an
edge of the optimum solution. Since the variables X i and X j are independent, the probability
that the edge (v i , v j) ends up in the bipartite graph G′ is precisely 1/2 as in the original
algorithms. Using an analogous analysis, we can prove that both algorithms retain their
expected approximation performance if we use the space Ω. Hence, there must be at least one
elementary event in Ω that achieves the expected approximation ratio.

The crucial point is that we can exhaustively check the space Ω running the algorithms for
each of the elementary events to deterministically find a solution whose approximation ratio
is bounded by the expected approximation ratio.

Note that the above derandomization makes O(n)many calls to the α-approximation algo-
rithm for Gap on O(n) items and bins, two for each of the O(n)many bipartite graphs that
are considered. The α-approximation algorithm for GAP is based on LP rounding [CKR06],
which might be time consuming.

Below, we give a deterministic approximation algorithm solving only one Gap instance
with O(n) items and bins. The algorithm obtains a weaker but still constant approximation
ratio.

Theorem 4.6. Weighted Max-Crown on general graphs admits

(i) a 40α/3(≈ 21.1)-approximation with proper contacts and

(ii) a 14α(≈ 22.1)-approximation with point contacts.

Both approximation algorithms make a single call to the α-approximation algorithm for Gap on
an instance with O(n) items and bins.

Proof. Let G = (V , E) be the input graph. As in the proof of Theorem 4.2, our algorithm
constructs an instance of Gap based on G. The difference is that, for every vertex v ∈ V , we
create both eight bins and an item i(v). Capacities and sizes remain as before. The profit
of placing item i(v) in a bin of vertex u, with u ≠ v, is p(u, v). We stress here that every
vertex v ∈ V corresponds to both a bin and an item in the instance of Gap.

We first show how to get a solution with proper contacts. Let OPT be the value of an
optimum solution of Max-Crown inG, and let OPTGAP be the value of an optimum solution
for the constructed instance of Gap. Since any optimum solution of Max-Crown is a planar
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Figure 4.4: Partitioning a 1-tree into a star forest (light) and the union of a cycle and a star forest (dark)

graph, it can be decomposed into five star forests following a result of Hakimi et al. [HMS96].
Hence, there exists a star forest carrying at least OPT /5 of the total profit. Such a star forest
corresponds to a solution of Gap for the constructed instance; therefore, OPTGAP ≥ OPT /5.
Now we compute an α-approximation for the Gap instance, which results in a solution

of total profit ALGGAP ≥ OPTGAP /α. Next, we show how our solution induces a feasible
solution of Max-Crown where every vertex v ∈ V is either a bin or an item.
Consider the directed graph GGAP = (V , EGAP) with (u, v) ∈ EGAP if and only if the item

corresponding to u ∈ V is placed into a bin corresponding to v ∈ V . A connected component
in GGAP with n′ vertices has at most n′ edges since every item can be placed into at most one
bin. If n′ = 2, we arbitrarily make one of the vertices a bin and the other one an item. If n′ > 2,
the connected component is a 1-tree, that is, a tree and an edge. In this case, we partition
the edges into two subgraphs; a star forest and the disjoint union of a star forest and a cycle;
see Figure 4.4. Note that both subgraphs can be represented by touching boxes if we allow
point contacts. This is due to the fact that the stars correspond to a solution of GAP. Hence,
choosing a subgraph with larger weight and post-processing the solution as in the proof of
Theorem 4.2 results in a feasible solution of Max-Crown with proper contacts. Initially, we
discarded at most half of the weight and the post-processing keeps at least 3/4 of the weight,
so in total

ALG ≥ 3ALGGAP /8 ≥ 3OPTGAP /(8α) ≥ 3OPT /(40α).
We now show how to get a solution with point contacts. Since any optimal solution of Max-
Crown is a 1-planar graph, it can be decomposed into seven star forests by using the decom-
position into a planar graph and a tree proven by Ackerman [Ack14]; thus, OPTGAP ≥ OPT /7.
We proceed with the same algorithm as in the model with proper contacts. However, we do
not need the post-processing that discards up to 1/4 of the weight. Therefore,

ALG ≥ ALGGAP /2 ≥ OPTGAP /(2α) ≥ OPT /(14α).
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4.3 The Unweighted Case

In this section, we consider the unweightedMax-Crown problem, that is, all desired contacts
have profit 1. Thus, we want to maximize the number of edges of the input graph realized by
the contact representation. We present approximation algorithms for different graph classes.
First, we give a 2-approximation for trees. Then, we present a PTAS for planar graphs of
bounded degree. Finally, for general graphs, we provide a (5 + 16α/3)-approximation with
proper contacts and a (7 + 6α)-approximation with point contacts.

Theorem 4.7. Unweighted Max-Crown on trees admits a 2-approximation.

Proof. Let T be the input tree. We first decompose T into edge-disjoint stars as follows. If T
has at most two vertices, then the decomposition is straight-forward. So, we assume without
loss of generality that T has at least three vertices and is rooted at a non-leaf vertex. Let u be a
vertex of T such that all its children, say v1 , . . . , vk , are leaf vertices. If u is the root of T , then
the decomposition contains only one star centered at u. Otherwise, denote by π the parent
of u in T , create a star Su centered at u with edges (u, π), (u, v1), . . . , (u, vk) and call the edge
(u, π) of Su the anchor edge of Su . The removal of u, v1 , . . . , vk from T results in a new tree.
Therefore, we can recursively apply the same procedure. The result is a decomposition of T
into edge-disjoint stars covering all edges of T .

We next remove, for each star, its anchor edge from T . We apply the PTAS of Theorem 4.1
to the resulting star forest and claim that the result is a 2-approximation for T . To prove the
claim, consider a star S′u of the new star forest, centered at u with edges (u, v1), . . . , (u, vk)
and let ALG be the total number of contacts realized by the (1 + ε)-approximation algorithm
on S′u . We consider the following two cases.

(a) 1 ≤ k ≤ 4: Since it is always possible to realize four contacts of a star, ALG ≥ k. Note
that an optimal solution may realize at most k + 1 contacts (due to the absence of the
anchor edge from S′u). Hence, our algorithm has approximation ratio (k + 1)/k ≤ 2.

(b) k ≥ 5: Since it is always possible to realize four contacts of a star, we have ALG ≥ 4. On
the other hand, an optimal solution realizes at most (1 + ε)ALG+1 contacts. Thus, the
approximation ratio is

((1 + ε)ALG+1)/ALG ≤ (1 + ε) + 1/4 < 2.

The theorem follows from the fact that all edges of T are incident to the star centers.

Next, we develop a PTAS for bounded-degree planar graphs. Our construction needs two
lemmas, one of which was shown by Barth et al. [BFK+14].

Lemma 4.4 ([BFK+14]). If the input graph has maximum degree ∆, then OPT ≥ 2∣E∣/(∆ + 1).

The other lemma provides an exponential-time exact algorithm for Max-Crown.

Lemma 4.5. There is an exact algorithm for unweighted Max-Crown with running time
2O(n log n).
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Proof. Consider a placement which assigns a position [ℓB , rB] × [bB , tB] to every box B,
with ℓB +w(B) = rB and bB + h(B) = tB . For the x-axis, this gives a (possibly nonstrict) linear
order on the values ℓB and rB , where some might be equal. An order on the y-axis is implied
similarly. Together, these two orders fully determine the combinatorial structure of overlaps
and contacts: for contact, two boxes must have a side of equal value and a side with overlap.

The algorithm enumerates all possible combinations of two such orders using the represen-
tation sketched above. On a single axis, this is a permutation of 2n variables and, between
every two variables adjacent in this permutation, whether they are equal or the second variable
has strictly larger value. This representation demonstrates that the number of distinct orders
in one dimension is bounded by

O((2n)! ⋅ 22n) = 2O(n log n) .

The number of combinations of two such orders also satisfies this bound.
For any given pair of orders, it can be determined if they imply overlaps and what the

objective value is: count the number of profitable contacts. If there are no overlaps, the
existence of an actual placement realizing the orders is tested using linear programming. As
these tests run in polynomial time, an optimal placement can be found in 2O(n log n) time.

We will now utilize these two lemmas to obtain a PTAS for planar graphs with bounded
degree.

Theorem 4.8. Unweighted Max-Crown on planar graphs with n vertices and maximum
degree ∆ admits a PTAS. More specifically, for any ε > 0 there is an (1 + ε)-approximation
algorithm with linear running time n2(∆/ε)

O(1)
.

Proof. Let G = (V , E) be a graph and let r be a parameter to be determined later. Frederick-
son [Fre87] showed that we can find a vertex set X ⊆ V (called r-division) of size O(n/

√
r)

in O(n log n) time such that the following holds. The vertex set V ∖ X can be partitioned
into n/r vertex sets V1 , . . . ,Vn/r such that (i) ∣Vi ∣ ≤ r for i = 1, . . . , n/r and (ii) there is no
edge running between any two distinct vertex sets Vi and Vj . In what follows, we assume
without loss of generality that G is connected, as we can apply the PTAS to every connected
component separately.
We apply the result of Frederickson to the input graph and compute an r-division X. By

removing the vertex set X from the graph, we remove O(n∆/
√
r) edges from G. Now, we

apply the exact algorithm of Lemma 4.5 to each of the induced subgraphs G[Vi] separately.
The solution is the union of the optimum solutions to G[Vi].

Since no edge runs between the distinct sets Vi and Vj , the subgraphs G[Vi] cover G − X.
Let E⋆ be the set of edges realized by an optimum solution to G, let OPT = ∣E⋆∣, and let
OPT′ = ∣E⋆ ∩ E(G − X)∣. Since G is connected, it has ∣E∣ ≥ n − 1 edges. Thus, by Lemma 4.4,
we have that

OPT ≥ 2(n − 1)/(∆ + 1) = Ω(n/∆).

When we removed X from G, we removed O(n∆/
√
r) edges. Hence,

OPT = OPT′ +O(n∆/
√
r) and OPT′ = Ω(n(1/∆ − ∆/

√
r)).
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Since we solved each sub-instance G[Vi] optimally and since these sub-instances cover G −X,
the solution created by our algorithm realizes at least OPT′many edges. Using this fact and the
above bounds on OPT and OPT′, the total performance of our algorithm can be bounded by

OPT
OPT′

= OPT′ +O(n∆/
√
r)

OPT′
= 1 + O ( n∆/

√
r

n(1/∆ − ∆/
√
r)
) = 1 + O ( ∆2

√
r − ∆2 ) .

We want this last term to be smaller than 1 + ε for some prescribed error parameter 0 < ε ≤ 1.
It is not hard to verify that this can be achieved by letting r = Θ(∆4/ε2). Since each of the
subgraphs G[Vi] has at most r vertices, the total running time for determining the solution
is n2(∆/ε)

O(1)
.

Before tackling the case of general graphs, we need a lower bound on the size of maximum
matchings in planar graphs in terms of the numbers of vertices and edges.

Lemma 4.6. Any planar graph with n vertices and m edges contains a matching of size at least
(m − 2n)/3.

Proof. Let G be a planar graph. If G has n ≤ 9 vertices, due to planarity, we have

(m − 2n)/3 ≤ (n − 6)/3 ≤ 1.

Hence, any nonempty matching is large enough.
Nishizeki and Baybars [NB79] showed that any connected planar graph with at least n ≥ 10

vertices and minimum degree 3 has a matching of size at least

⌈(n + 2)/3⌉ ≥ n/3 > (n − 6)/3 ≥ (m − 2n)/3

since m ≤ 3n − 6.
It remains to tackle the case where G has at least n ≥ 10 vertices and is not connected or has

a vertex of degree less than 3. Our proof is by induction on n. If G is not connected, the claim
follows by applying the inductive hypothesis to every connected component. Now assume
that G has a vertex u of degree less than 3. Consider the graph G′ = G − u with n′ = n − 1
vertices and m′ ≥ m − 2 edges. By the inductive hypothesis G′ (and hence, G, too) has a
matching of size at least

(m′ − 2n′)/3 ≥ ((m − 2) − 2(n − 1))/3 = (m − 2n)/3.

We are now ready to present an approximation algorithm for general graphs.

Theorem 4.9. Unweighted Max-Crown on general graphs admits

(i) a (5 + 16α/3)(≈ 13.4)-approximation with proper contacts and

(ii) a (7 + 6α)(≈ 16.4)-approximation with point contacts.

Proof. We first show how to get a solution with proper contacts. The algorithm first computes
amaximalmatchingM inG. LetV ′ be the set of verticesmatched byM, letG′ be the subgraph
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V ′

V \V ′

}
Ḡ

G′

}
(a)G is covered by Ḡ (bipartite, light) and G′ (black); maximal matchingM (bold).

(b)maximummatchingM′′ (bold) in G′′ = G′−M (c) optimum solution to G′ : graph G∗ (black) and
part ofM (bold)

Figure 4.5: Partitioning the input graph and the optimum solution in the proof of Theorem 4.9.

induced by V ′, and let E′ be the edge set of G′. Note that Ḡ = G − E′ is a bipartite graph with
partition (V ′ ,V ∖ V ′). This is because the matching M is maximal, which implies that every
edge in E ∖ E′ is incident to a vertex in V ′ and to a vertex not in V ′; see Figure 4.5a. Hence,
we can compute a 16α/3- approximation to Ḡ using the algorithm presented in Theorem 4.2.

Consider the graph G′′ = (V ′ , E′ ∖M) and compute a maximum matching M′′ in G′′; see
Figure 4.5b. The edge setM ∪M′′ is a set of vertex-disjoint paths and cycles and can therefore
be completely realized [BFK+14]. The algorithm realizes this set. Below, we argue that this
realization is in fact a 5-approximation for G′, which completes the proof (due to Lemma 4.1
and since G is covered by G′ and Ḡ).
Let n′ = ∣V ′∣ be the number of vertices of G′. Let E∗ be the set of edges realized by an

optimum solution to G′, and let OPT = ∣E∗∣. Consider the subgraph G∗ = (V ′ , E∗ ∖ M)
of G′′; see Figure 4.5c. Note that G∗ is planar and contains at least OPT−n′/2 many edges.
Applying Lemma 4.6 to G∗, we conclude that the maximummatching M′′ of G′′ has size at
least (OPT−5n′/2)/3. Hence, by splitting OPT appropriately, we obtain

OPT = (OPT−5n′/2) + 5n′/2 ≤ 3∣M′′∣ + 5∣M∣ ≤ 5∣M′′ ∪M∣ .

We now show how to get a solution with point contacts. We use the same algorithm as
described for the model with proper contacts, so we only have to adjust the analysis. We
can compute a 6α- approximation to the bipartite graph Ḡ using the algorithm presented in
Theorem 4.2.

It is easy to prove that any 1-planar graph with m edges and n vertices contains a matching
of size at least (m − 3n)/3: we planarize the graph (by removing at most n edges) and then
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apply Lemma 4.6. Thus, the maximummatchingM′′ of G′′ has size at least (OPT−7n′/2)/3).
Hence, by splitting OPT appropriately, we obtain

OPT = (OPT−7n′/2) + 7n′/2 ≤ 3∣M′′∣ + 7∣M∣ ≤ 7∣M′′ ∪M∣ .

4.4 APX-Completeness

In this section, we prove APX-completeness of weighted Max-Crown by giving a reduction
from 3-dimensional matching. This reduction works both in the model without and in the
model with point contacts.

Theorem 4.10. Weighted Max-Crown is APX-complete even if the input graph is bipartite of
maximum degree 9, each edge has profit 1, 2 or 3, and each vertex corresponds to a square of one
out of three different sizes.

Proof. We give a reduction from 3-dimensional matching (3DM). Recall that an instance of
this problem is given by three disjoint sets X ,Y , Z with cardinalities ∣X∣ = ∣Y ∣ = ∣Z∣ = k and a
set E ⊆ X × Y × Z of hyperedges. The objective is to find a set M ⊆ E, calledmatching, such
that no element of V = X ∪ Y ∪ Z is contained in more than one hyperedge in M and such
that ∣M∣ is maximized.

The problem is known to be APX-hard [FGMS11]. More specifically, for the special case
of 3DM where every v ∈ V is contained in at most three hyperedges (hence ∣E∣ ≤ 3k) it is
NP-hard to decide whether the maximummatching has cardinality k or only k(1 − ε0) for
some constant 0 < ε0 < 1. We reduce from this special case of 3DM to Max-Crown.

To this end, we construct the following Max-Crown instance from a given 3DM instance.
We create, for each v ∈ V , a square of side length 1. For each hyperedge e ∈ E, we create
nine squares e⋆ , e1 , . . . , e8 where e⋆ has side length 3.5 and e1 , . . . , e8 have side length 3. In
the desired contact graph, we create an edge (e⋆ , e1) of profit 2 and, for i = 2, . . . , 8, an edge
(e⋆ , e i) of profit 3. We also create an edge (e⋆ , v) of profit 1 if v is incident to e in the 3DM
instance.

Consider an optimum solution to the above Max-Crown instance. It is not hard to verify
that, for any hyperedge e = (x , y, z), the solution will realize the edges (e⋆ , e i) for i = 2, . . . , 8.
Moreover, we can assume without loss of generality that the solution either realizes all three
adjacencies (e⋆ , x), (e⋆ , y), and (e⋆ , z) of total profit 3 or the adjacency (e⋆ , e1) of profit 2;
see Figure 4.6. We call such a solution well-formed.
Assume that there is a solution M to the 3DM instance of cardinality k. Then this can be

transformed into a well-formed solution toMax-Crown of profit (7 ⋅3+2)∣E∣+∣M∣ = 23∣E∣+k.
Conversely, suppose that the maximummatching has cardinality at most (1 − ε0)k. Con-

sider an optimum solution to the respective Max-Crown instance. We may assume that
the solution is well-formed. Let M be the set of hyperedges e = (x , y, z) for which all
three adjacencies (e⋆ , x), (e⋆ , y), (e⋆ , z) are realized. Then, the profit of this solution is
(7 ⋅ 3 + 2)∣E∣ + ∣M∣ = 23∣E∣ + ∣M∣.
Note that M is in fact a matching because the solution to Max-Crown was well-formed.

Thus, the optimum profit is bounded by 23∣E∣ + (1 − ε0)k.
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Figure 4.6: The two possible configurations of a hyperedge e = (x , y, z) in the proof of Theorem 4.10

Hence, it is NP-hard to distinguish between instances with OPT ≥ 23∣E∣ + k and instances
with OPT ≤ 23∣E∣ + (1 − ε0)k. Using ∣E∣ ≤ 3k, this implies that there cannot be any approxi-
mation algorithm of ratio less than

23∣E∣ + k
23∣E∣ + (1 − ε0)k

= 1 + ε0k
23∣E∣ + (1 − ε0)k

≥ 1 + ε0k
(70 − ε0)k

= 1 + ε0
70 − ε0

,

which is a constant strictly larger than 1.

4.5 Concluding Remarks

In this chapter, we have presented approximation algorithms for the Max-Crown problem,
which can be used for constructing semantics-preserving word clouds. Apart from improving
approximation factors for various graph classes, many open problems remain. Most of our
algorithms are based on covering the input graph by subgraphs and packing solutions for the
individual subgraphs. Both subproblems—covering graphs with special types of subgraphs
and packing individual solutions together—are interesting problems in their own right which
may lead to algorithms with better guarantees. Practical variants of the problem are also of
interest, for example, restricting the heights of the boxes to predefined values (determined
by font sizes), or defining more than immediate neighbors to be in contact, thus considering
non-planar “contact” graphs. Another interesting variant is when the bounding box of the
representation has a certain fixed size or aspect ratio.
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5 Smooth Orthogonal Layouts
of Planar Graphs

In the visualization of technical networks such as the structure of VLSI chips [Lei80], floor
plans [SFK11], or UMLdiagrams [See97], there is a strong tendency to draw edges as rectilinear
paths. The problem of laying out networks in such a way is called orthogonal graph drawing
and has been studied extensively. For drawings of (planar) graphs to be readable, special care
is needed to keep the number of bends small. In a seminal work, Tamassia [Tam87] showed
that one can efficiently minimize the total number of bends in orthogonal layouts of embedded
maxdeg-4 planar graphs, that is, planar graphs of maximum degree 4 whose combinatorial
embedding (the cyclic order of the edges around each vertex) is given. In contrast to this,
minimizing the number of bends over all embeddings of a maxdeg-4 planar graph is NP-
hard [GT01]. Biedl and Kant [BK98] and Liu et al. [LMS98] have independently shown that
any planar embedding of a maxdeg-4 planar graph admits a drawing on the (n × n)-grid
with at most 2n + 2 bends in total and at most 2 bends per edge, with the exception of the
octahedron, that requires one edge with 3 bends. Bläsius et al. [BKRW14] gave an algorithm
that, given an embedded maxdeg-4 planar graph and a function flex∶ E → N≥1, computes a
drawing with at most flex(e) bends for every edge e ∈ E, if one exists.

In a so far unrelated line of research, circular-arc drawings of graphs have become popular
in the last few years. Inspired by American artist Mark Lombardi (1951–2000), Duncan et
al. [DEG+12] introduced and studied Lombardi drawings, which are circular-arc drawings
with the additional requirement of perfect angular resolution, that is, for each vertex, all pairs
of consecutive edges form the same angle. Among others, Duncan et al. treat drawings of
d-regular graphs, that is, graphs in which every vertex has degree d, where all vertices have to
lie on one circle. They show that, under this restriction, Lombardi drawings can be constructed
efficiently for some subclasses, whereas the problem is NP-hard for other subclasses. They
also show that ordered trees can always be Lombardi drawn in polynomial area, whereas
straight-line drawings with perfect resolution may need exponential area [DEG+13].

Very recently, Bekos et al. [BKKS13] introduced the smooth orthogonal graph layout problem
that combines the two worlds; the rigidity and clarity of orthogonal layouts with the artistic
style and aesthetic appeal of Lombardi drawings. Formally, a smooth orthogonal drawing of a
graph is a drawing on the plane where

(i) each vertex is drawn as a point

(ii) edges leave and enter vertices horizontally or vertically, and

(iii) each edge is drawn as an alternating sequence of axis-aligned line segments and circular-
arc segments such that consecutive segments have a common horizontal or vertical
tangent at their intersection point.

In the case of (maxdeg-4) planar graphs, it is additionally required that

(iv) there are no edge-crossings.
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graph class our contribution Bekos et al.
complexity area Theorem [BKKS13]

biconnected SC2 super-poly 5.1 SC3maxdeg-4 planar
maxdeg-4 planar SC2 super-poly 5.2
maxdeg-3 planar SC2 ⌊n2/4⌋ × ⌊n/2⌋ 5.3
biconnected SC1 exponential 5.4maxdeg-4 outerplane
triconnected SC1maxdeg-3 planar
Hamiltonian SC1maxdeg-3 planar
maxdeg-4 planar, /⊇SC1 5.5poly-area
OC3, octahedron /⊆SC1
OC2 /⊆SC1 5.6

Table 5.1: Comparison of our results to the results of Bekos et al. [BKKS13]

Note that, by construction, (smooth) orthogonal drawings of maxdeg-4 planar graphs have
angular resolution within a factor of two of optimal.

The public transport map Gmunden – Vöcklabruck – Salzkammergut1 of the Public Trans-
portation Association Austria (OÖVG) shows a real-world example: a smooth orthogonal
drawing of anAustrian regional bus and trainmap. Extending ourmodel, themap has (multi-)
edges that enter vertices diagonally.
For usability, it is important to keep the visual complexity of such drawings low. In a

(smooth) orthogonal drawing, the complexity of an edge is the number of segments it consists
of, that is, the number of inflection points plus one. Then, a natural optimization goal is to
minimize, for a given (embedded) planar graph, the edge complexity of a drawing, which
is defined as the maximum complexity over all edges. We say that a graph has orthogonal
complexity k if it admits an orthogonal drawing of edge complexity at most k, for short, an
OCk-layout. Accordingly, we say that a graph has smooth complexity k if it admits a smooth
orthogonal drawing of edge complexity at most k, for short, an SCk-layout. We seek for
drawings of maxdeg-4 planar graphs with low smooth complexity.

Our Contribution. Known results and our contributions to smooth orthogonal drawings
are shown in Table 5.1. Themain result of this chapter is that anymaxdeg-4 planar graph admits
an SC2-layout (see Sections 5.1 and 5.2). Our upper bound of 2 for the smooth complexity
of maxdeg-4 planar graphs improves the previously known bound of 3 and matches the
corresponding lower bound [BKKS13]. In contrast to the known algorithm for SC3-layout
[BKKS13], which is based on an algorithm for OC3-layout of Biedl and Kant [BK98], we
use an algorithm of Liu at al. [LMS98] for OC3-layout, which avoids S-shaped edges (see
1http://almtal.salzkammergut.at/fileadmin/user_upload/almtal/pdf/Liniennetzplan_
Salzkammergut_neu.pdf
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OC3

SC2

(a) vertical (b) horizontal (c) L-shapes (d) C-shapes (e) U-shape (f) S-shapes

Figure 5.1: Converting shapes from the OC3-layout to SC2

Figure 5.1f, top). Such edges are undesirable since they force their endpoints to lie on a line of
slope ±1 in a smooth orthogonal layout (see Figure 5.1f, bottom). Our construction requires
super-polynomial area. Hence, we have made no effort in proving a concrete bound.
Further, we prove that every biconnected maxdeg-4 outerplane graph admits an SC1-

layout (see Section 5.3), expanding the class of graphs with SC1-layout from triconnected
or Hamiltonian maxdeg-3 planar graphs [BKKS13]. Note that in our result the outerplane
embedding can be prescribed, while in the other results the algorithms need the freedom to
choose an appropriate embedding.

We complement our positive results by two negative results. First, we show that there is an
infinite family of graphs that admit SC1-layouts but require exponential area; see Section 5.4.
Second, we show that there is an infinite family of graphs that admit OC2-layouts but do not
admit SC1-layouts; see Section 5.5.

5.1 Smooth Layouts for BiconnectedMaxdeg-4 Planar
Graphs

In this section, we prove that any biconnected maxdeg-4 planar graph admits an SC2-layout.
Given a biconnected maxdeg-4 planar graph, we first compute an OC3-layout, using an
algorithm of Liu et al. [LMS98]. Then, we turn the result of their algorithm into an SC2-layout.
Liu et al. choose two vertices s and t and compute an st-ordering of the input graph.

An st-ordering is an ordering (s = 1, 2, . . . , n = t) of the vertices such that every vertex j
(2 < j < n − 1) has neighbors i and k with i < j < k. Then, they go through all vertices as
prescribed by the st-ordering, placing vertex i in row i. Calling an edge of which exactly one
endpoint is already drawn an open edge, they maintain the following invariant:

(I1) In each iteration, every open edge is associated with a column (a vertical grid line).

We define an L-shaped edge (for short, an L-shape) to be composed of a quarter-circle and a
horizontal or vertical line-segment; see Figure 5.1c. A C-shaped edge (for short, a C-shape) is
composed of a semicircle and (optionally) a vertical line segment; see Figure 5.1d. Similarly, a
U-shaped edge (for short, a U-shape) is composed of a semicircle and (optionally) a horizontal
line segment; see Figure 5.1e. Finally, an S-shaped edge (for short, an S-shape) is composed of
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Figure 5.2: Cases for drawing the edge (u, v) based on the port assignment. In each case, u is the
lower of the two vertices (y(u) < y(v)). As shorthand, we use ∆x = x(u) − x(v), ∆y = y(u) − y(v), and
s = slope(u, v) = ∆x/∆y.

two quarter-circles; see Figure 5.1f (bottom); they are undesirable as they force their endpoints
to lie on a line of slope ±1.

The algorithm of Biedl and Kant [BK98] yields an OC3-layout similar to that of Liu et al.
However, Liu et al. additionally show how to modify their algorithm such that it produces
OC3-layouts without the undesirable S-shapes.
In their modified algorithm, Liu et al. search for paths in the drawing that consist only of

S-shapes; every vertex lies on at most one such path. They place all vertices on such a path
in the same row, without changing their column. This essentially converts all S-shapes into
horizontal edges. Now, every edge (except (1, 2) and (1, n)) is drawn as a vertical segment,
horizontal segment, L-shape, or C-shape; see Figure 5.1a–5.1d. The edge (1, 2) is drawn as a
U-shape and the edge (1, n), if it exists, is either drawn as a C-shape or (only in the case of
the octahedron) as a three-bend edge that uses the left port of vertex 1 and the top port of
vertex n.

We convert the output of the algorithm of Liu et al. from OC3 to SC2. The coordinates of
the vertices and the port assignment of their drawing define a (non-planar) SC2-layout using
the conversion table in Fig 5.2. In order to avoid crossings, we carefully determine new vertex
positions scanning the drawing of Liu et al. from bottom to top.
We now introduce our main tool for the conversion: a cut, for us, is a y-monotone curve

consisting of horizontal, vertical, and circular segments that divides the current drawing into
a left and a right part, and only intersects horizontal segments and semicircles of the drawing.
In the following, we describe how one can find such a cut from any starting point at the top
of the drawing; see Figure 5.3. In spite of the fact that we define the cut going from top to
bottom, “to its right” will, as usually, mean “with larger x-coordinate”.

When such a cut encounters a vertex u to its right with an outgoing edge associated with its
left port, then the cut continues by passing through the segment incident to u. On the other
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u

(a) open edge
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(b) L-shape
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(d)maintaining (I2)

Figure 5.3: Finding a cut

hand, if the port has an incoming L-shaped or C-shaped edge, the cut just follows the edge.
The case when the cut encounters a vertex to its left is handled symmetrically.

Let v be a vertex incident to two incoming C-shapes (u, v) and (w , v). If y(w) ≤ y(u)
we call the C-shape (u, v) protected by (w , v); otherwise, we call it unprotected. In order to
ensure that a cut passes only through horizontal segments and that our final drawing is planar,
our algorithm will maintain the following new invariants:

(I2) An L-shape never contains a vertical segment (as in Figure 5.1c, right); it always contains
a horizontal segment (as in Figure 5.1c, left) or a single quarter-circle.

(I3) An unprotected C-shape never contains a horizontal segment incident to its top vertex
(as in Figure 5.1d, right); it always contains a horizontal segment incident to its bottom
vertex (as in Figure 5.1d, left) or no straight-line segment.

(I4) The subgraph induced by the vertices that have already been drawn has the same
embedding as in the drawing of Liu et al.

Below, we treat L- and C-shapes of complexity 1 as if they had a horizontal segment of length 0
incident to their bottom vertex. Note that we always cut around protected C-shapes, so we
will never end up in their interior. Now, we are ready to state the main theorem of this section
by presenting our algorithm for SC2-layouts.

Theorem 5.1. Every biconnected maxdeg-4 planar graph admits an SC2-layout.

Proof. In the drawing Γ of Liu et al., vertices are arranged in rows. Let V1 , . . . ,Vr be the
partition of the vertex set V in rows 1, . . . , r. Following Liu et al., the vertices in each such set
induce a path in G. We place vertices in the order V1 , . . . ,Vr . In this process, we maintain a
planar drawing Γ′ and the invariants (I1) to (I4). As Liu et al., we place the vertices on the
integer grid. We deal with the special edges (1, 2) and (1, n) at the end, leaving their ports,
that is, the bottom and left port of vertex 1 and the top port of vertex n, open.

For invariant (I1), we associate each open edge with the column on which the algorithm of
Liu et al. places it. If their algorithm draws the first segment of the open edge horizontally
(from the source vertex to the column), we use the same segment for our drawing. We use
the same ports for the edges as their algorithm. Thus, our drawing keeps the embedding of
Liu et al., maintaining invariant (I4).

Assume that, for some 1 ≤ i ≤ n, we have placed V1 , . . . ,Vi−1 and that the vertices in Vi are
v1 , . . . , vc in left-to-right order (the case v1 = vc is possible; this is the only case in which a
vertex can have incoming L- or C-shapes at both its left and right port). Vertex v j (1 ≤ j ≤ c) is
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Figure 5.4: Handling C-shapes

placed in the column with which the edge entering the bottom port of v j is associated. If the
left port of v1 is used by an incoming L- or C-shape e = (u1 , v1), we place v1 (and the other
vertices in Vi) on a row high enough such that a smooth drawing of e does not create any
crossings with edges lying on the right side of e in Γ; see Figure 5.4b.
In order to make sure that the new drawing of e does not create crossings with edges on

the left side of e in Γ, we need to “push” those edges to the left of e. We do this by computing
a cut that starts from v1, separates the vertices and edges that lie on the left side of e in Γ from
those on the right side, passes u1 slightly to the left, and continues downwards as described
above; see Figure 5.4c. Since, by invariant (I4), our drawing so far is planar and each edge is
drawn y-monotone, we can find a cut that is also y-monotone. We move everything on the
left side of the cut further left such that e has no more crossings. Note that the cut intersects
only horizontal edge segments. These will simply become longer by the move.
Let ∆x i = x(v i) − x(u i) and ∆y i = y(v i) − y(u i) for i = 1, . . . , c. It is possible that the

drawing of e violates invariant (I3)—if u1 lies to the left of v1. We consider two cases. First,
assume that the edge (u1 , v1) is the only incoming C-shape at v1. Note that this is always the
case if c > 1. In this case, we simply define a cut that starts slightly to the right of v1, follows e,
intersects e slightly to the left of u1, and continues downwards. Then, we move everything on
the left side of the cut by ∆x1 + 1 units to the left.

Next, assume that c = 1 and there is another C-shape (w1 , v1) entering the right port of v1;
see Figure 5.4e (left). We assume, without loss of generality, that y(w1) ≤ y(u1). Let (x1 , v1)
be the edge incident to the bottom port of v1. In this case, we first find a cut that starts slightly
to the right of v1, follows (x1 , v1), passes x1 slightly to the right, and continues downwards.
Then, we move everything on the right side of the cut by y(v1)− y(x1) units to the right. Thus,
there is an empty square to the right of (x1 , v1) of side length y(v1) − y(x1). Now, we place v1
at the intersection of diagonal through x1 with slope +1 and the vertical line through w1. Due
to this, we can draw (x1 , v1) using two quarter-circles with a common horizontal tangent in
the top right corner of the empty square; see Figure 5.4e (right). Note that the edge (u1 , v1) is
protected by (w1 , v1), so it can have a horizontal segment incident to v1. This establishes (I3).
It is also possible that the drawing of e violates invariant (I2)—if slope(u1 , v1) > 1. In this

case, we define a cut that starts slightly to the left of v1, intersects e and continues downwards.
Then, we move everything on the left side of the cut by ∆y1 units to the left. We treat vc , the
rightmost vertex in the current row, symmetrically to v1. This establishes (I2).
For the case that v1 does not have incoming C-shapes at both its left and right port, we

still have to treat the edges entering vertices v1 , . . . , vc from below. Note that these edges can
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only be vertical or L-shaped. Vertical edges can be drawn without violating the invariants.
However, invariant (I2) may be violated if an edge e i = (u i , v i) entering the bottom port of
vertex v i is L-shaped; see Figure 5.3d. Assume that x(u i) < x(v i). In this case, we find a
cut that starts slightly to the left of v i , follows e i , intersects e i slightly to the right of u i , and
continues downwards. Then, we move everything on the left side of the cut by ∆y i units to
the left. We handle the case x(u i) > x(v i) symmetrically. This establishes (I2).
We thus place the vertices row by row from bottom to top and draw the incoming edges

for the newly placed vertices, copying the embedding of the current subgraph from Γ. This
completes the drawing of G − {(1, 2), (1, n)}. Note that vertex 1 has no incoming edge and
vertex 2 has only one incoming edge, that is, (1, 2). Thus, the bottom port of both vertices is
still unused. We draw the edge (1, 2) as a U-shape. Finally, we finish the layout by drawing
the edge (1, n), if it exists. By construction, the left port of vertex 1 is still unused. Note that
vertex n has no outgoing edges, so the top port of n is still free. Hence, we can draw the
edge (1, n) as a horizontal or vertical segment followed by a three-quarter-circle. To avoid
crossings, we may have to move vertex n upwards. This way, we will get a horizontal segment
at vertex 1, and the three-quarter-circle will completely lie outside of the rest of the drawing.
This completes the proof of Theorem 5.1.

5.2 Smooth Layouts for Arbitrary Maxdeg-4 Planar
Graphs

In this section, we describe how to create SC2-layouts for arbitrarymaxdeg-4 planar graphs. To
achieve this, we decompose the graph into biconnected components, embed them separately,
and then connect them. For the connection, it is important that one of the connector vertices
lies on the outer face of its component. Within each component, the connector vertices have
degree at most 3; if they have degree 2, we must make sure that their incident edges do not
use opposite ports; otherwise, we cannot connect two components with a common connector
vertex. Following Biedl and Kant [BK98], we say that a degree-2 vertex v is drawn with right
angle if the edges incident to v use two neighboring ports.

Lemma 5.1. Any biconnected maxdeg-4 planar graph admits an SC2-layout such that all
degree-2 vertices are drawn with right angle.

Proof. Let v be a degree-2 vertex. We now show how to adjust the algorithm of Section 5.1
such that v is drawn with right angle. By construction, the top and the bottom ports of v are
used. Let (u, v) be the edge entering v from below (we allow v = 1 and u = 2). We modify the
algorithm such that (u, v) uses the left or right rather than the bottom port of v. We consider
three cases; (u, v) is either L-shaped, U-shaped, or vertical. These cases are handled when v
is inserted into the smooth orthogonal drawing.
First, we assume that (u, v) is L-shaped; see Figure 5.5a. Then, we can simply move v to

the same row as u, making the edge horizontal.
Second, we assume that (u, v) is U-shaped; see Figures 5.5b, 5.5c. Then, u = 1 and v = 2 or

vice versa. If both have degree 2, we move the higher vertex to the row of the lower vertex
(if necessary) and replace the U-shaped edge by a horizontal edge. Otherwise, we move the
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Figure 5.5:Modification of the placement of degree-2 vertices

vertex with degree 2, say v, downwards to row y(u)−∆x such that we can replace the U-shape
by an L-shape.
Finally, we assume that (u, v) is vertical; see Figure 5.5d. Then, we compute a cut that

starts slightly below v, follows (u, v) downwards, and passes u slightly to its left. We move all
vertices (including u, but not v) that lie on the right side of this cut by at least ∆y to the right.
Then, we can draw (u, v) as an L-shape that uses the right port of v.

Observe that, in each of the three cases, we redraw all affected edges with SC2. Hence,
the modified algorithm still yields an SC2-layout. At the same time, all degree-2 vertices are
drawn with right angle as desired.

Now, we describe how to connect the biconnected components. Recall that a bridge is an edge
whose removal disconnects a graph G. We call the two endpoints of a bridge bridge heads. A
cut vertex is a vertex whose removal disconnects the graph, but is not a bridge head.

Theorem 5.2. Any maxdeg-4 planar graph admits an SC2-layout.

Proof. Let G0 be some biconnected component of G, and let v1 , . . . , vk be the cut vertices and
bridge heads of G in G0. For i = 1, . . . , k, if v i is a bridge head, let v′i be the other head of the
bridge; otherwise, let v′i = v i . Let G i be the subgraph of G containing v′i and the connected
components of G − v′i not containing G0. Following Lemma 5.1, G0 can be drawn such that
all degree-2 vertices are drawn with right angle.

The algorithm of Section 5.1 that we modified in the proof of Lemma 5.1 places the last
vertex n at the top of the drawing and thus on the outer face. When drawing G i , we choose v′i
as this vertex. By induction, G i can be drawn such that all degree-2 vertices are drawn with
right angle.
In order to connect G i to G0, we make G0 large enough such that we can fit G i into the

face that contains the free ports of v i . This face is unique because v i is drawn with right angle.
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Figure 5.6: SC1-layout of K4 .

Wemay have to rotate G i by a multiple of 90○ to achieve the following. If v i is a cut vertex,
we make sure that v′i uses the ports of v i that are free in G0. Then, we identify v i and v′i .
Otherwise, we make sure that a free port of v i and a free port of v′i are opposite. Then, we
draw the bridge (v i , v′i) horizontally or vertically. This completes our proof.

For an example run of our algorithm, see Figure 5.7.
For graphs of maximum degree 3, we can make our drawings more compact. This is due to

the fact that we can avoid C-shaped edges (and hence cuts) completely. In the presence of
L-shapes only, it suffices to stretch the orthogonal drawing by a factor of n.

Theorem 5.3. Every biconnected maxdeg-3 planar graph with n vertices admits an SC2-layout
using area ⌊n2/4⌋ × ⌊n/2⌋.

Proof. It is known that every biconnectedmaxdeg-3 planar graph exceptK4 has anOC2-layout
using area ⌊n/2⌋× ⌊n/2⌋ from Kant [Kan96]. Now, we use the same global stretching as Bekos
et al. [BKKS13, Theorem 2] when they showed that every OC2-layout can be transformed into
an SC2-layout: we stretch the drawing horizontally by the height of the drawing, that is, by a
factor of ⌊n/2⌋. This makes sure that we can replace every bend by a quarter-circle without
introducing crossings. Figure 5.6 shows an SC1-layout of K4, completing our proof.
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(a) input graph (b) biconnected subgraphs

(c) st-ordering (d) eliminating S-shapes

(e) drawing degree-2 vertices with right angle (f) drawing subgraphs with SC2

(g) connecting second and fourth part by using the
bridge (third part)

(h) connecting first and second part

Figure 5.7: An example-run of our Algorithm for SC2-layout. The circle vertices of component i correspond to
the cut vertex v′i . The square vertices correspond to cut vertices of other components.
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5.3 SC1-Layouts of BiconnectedMaxdeg-4 Outerplane
Graphs

In this section, we considermaxdeg-4 outerplane graphs, that is, maxdeg-4 outerplanar graphs
with an outerplanar embedding. We prove that any biconnected maxdeg-4 outerplane graph
admits an SC1-layout. To do so, we first prove the result for a subclass of maxdeg-4 outerplane
graphs, which we call (2, 3)-restricted outerplane graphs; then, we generalize to maxdeg-4
outerplane graphs. We call a maxdeg-4 outerplane graph (2, 3)-restricted if it contains a pair x
and y of consecutive vertices on the outer face with deg(x) = 2 and deg(y) ≤ 3. Recall that
the weak dual of a plane graph is the subgraph of the dual graph whose vertices correspond to
the bounded faces of the primal graph.

Lemma 5.2. Any biconnected (2, 3)-restricted maxdeg-4 outerplane graph admits an SC1-
layout.

Proof. Let x and y be two consecutive vertices on the outer face of the given graph G with
deg(x) = 2 and deg(y) ≤ 3. Let also T be the weak dual tree of G rooted at the node v∗
of T corresponding to the bounded face f ∗ that contains both x and y. We construct the
SC1-layout Γ of G by traversing T , starting with v∗. When we traverse a node of T , we draw
the corresponding face of G with SC1.
Consider the case that we have constructed a drawing Γ(H) for a connected subgraph H

of G and we want to add a new face f to Γ(H). For each vertex u of H, we denote by pu =
(x(u), y(u)) the point at which u is drawn in Γ(H). The remaining degree of u is the number
of vertices adjacent to u in G −H. Since we construct Γ(H) face by face, the remaining degree
of each vertex in H is at most two. We call the ports of u that are not occupied by an edge of H
in Γ(H) free ports. During the construction of Γ, we maintain the following four invariants:

(J1) Γ(H) is an SC1-layout that preserves the planar embedding of G, and each edge is
drawn either as an axis-parallel line segment or as a quarter-circle in Γ(H). (Note that
we do not use semi- and 3/4-circles.)

(J2) For each vertex u of H, the free ports of u in Γ(H) are consecutive around u, and they
point to the outer face of Γ(H).

(J3) Vertices with remaining degree exactly 2 are incident to an edge drawn as a quarter-
circle.

(J4) If an edge (u, v) is drawn as an axis-parallel segment, then at least one of u and v has
remaining degree at most 1. If (u, v) is vertical and y(u) < y(v), then u has remaining
degree at most 1 and the free port of u in Γ(H) is horizontal; see Figures. 5.8a, 5.8d
and 5.8g. Symmetrically, if (u, v) is horizontal and x(u) < x(v), then u has remaining
degree at most 1 and the free port of u in Γ(H) is vertical; see Figures 5.8b, 5.8e and 5.8h.

We now show how to add the drawing of the new face f to Γ(H). Since G is biconnected
and outerplanar, and due to the order in which we process the faces of G, f has exactly two
vertices u and v which have already been drawn at pu and pv , respectively. The two vertices
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Figure 5.8: (a)–(i) Different cases that arise when drawing face f of G; (k) a sample drawing

are adjacent. Depending on how the edge (u, v) is drawn in Γ(H), we draw the remaining
vertices and edges of f , as follows.

Let k ≥ 3 be the number of vertices on the boundary of f . The slope of the line segment pu pv
is in {−1, 0,+1,∞}, where∞means that pu pv is vertical. For s ∈ {−1, 0,+1,∞}, we denote
by ℓsu the line with slope s through pu . Similarly, we denote by ℓsu ,ε the line with slope s
through the point (x(u) + ε, y(u)), for some ε > 0. Figures 5.8d–5.8f show the drawing of f
for k = 3, and Figures 5.8g–5.8i for any k ≥ 4.
Note that the lengths of the line segments and the radii of the quarter-circles that form f

are equal (except for the radii of the bold-drawn quarter-circles of Figures 5.8g and 5.8h which
are determined by the remaining edges of f ). Hence, the lengths of the line segments and the
radii of the quarter-circles that form any face that is descendant of face f in T are smaller than
or equal to the lengths of the line segments and the radii of the quarter-circles that form f .

Our construction ensures that all vertices of the subgraph of G induced by the subtree of T
rooted in f lie in the interior or on the boundary of the diagonal semi-strip Luv delimited
by ℓ+1u , ℓ+1v , and pu pv ; see Figure 5.8k. The only edges of this subgraph that are drawn in the
complement of Luv—and are potentially involved in crossings—are incident to two vertices
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that both lie on the boundary of Luv . In this particular case, however, the degree restriction
implies that Luv is surrounded from above and/or below by two empty diagonal semi-strips of
at least half the width of the semi-strip Luv , which suffices to ensure planarity for the following
two reasons.
First, any face that is descendant of face f in T is formed by line segments and quarter-

circles that are at most as long as the corresponding ones of face f . Second, due to the degree
restrictions, if two neighboring children of f are triangles, the left one cannot have a right
child, and vice versa.
Let us summarize. Figures 5.8d–5.8i show that the drawing of f ensures that the invari-

ants (J1)–(J4) of our algorithm are satisfied for H ∪ { f }. We begin by drawing the root
face f ∗. Since G is (2, 3)-restricted, f ∗ has two vertices x and y consecutive on the outer face
with deg(x) = 2 and deg(y) ≤ 3. We draw the edge (x , y) as a vertical line segment. Then,
the remaining degrees of x and y are 1 and 2, respectively, which satisfies the invariants for
face f ∗. Hence, we complete the drawing of f ∗ as in Figure 5.8d or 5.8g. Traversing T in
pre-order, we complete the drawing of G.

Suppose that the input graph G is not (2, 3)-restricted. As the following lemma asserts, we
can always construct a biconnected (2, 3)-restricted maxdeg-4 outerplane graph by deleting a
vertex of degree 2 from G.

Lemma 5.3. Let G = (V , E) be a non-(2, 3)-restricted biconnected maxdeg-4 outerplane graph.
Then, G has a degree-2 vertex whose removal yields a (2, 3)-restricted biconnected maxdeg-4
outerplane graph.

Proof. The proof is by induction on the number of vertices. The base case is a maximal
biconnected outerplane graph on six vertices, which is the only non-(2, 3)-restricted graph
with six or less vertices. It is easy to see that in this case the removal of any degree-2 vertex
yields a biconnected (2, 3)-restricted maxdeg-4 outerplane graph. Now, assume that the
hypothesis holds for any biconnected maxdeg-4 outerplane graph with k ≥ 6 vertices.

Let Gk+1 be a biconnected maxdeg-4 outerplane graph on k + 1 vertices which is not (2, 3)-
restricted. Let F be a face of Gk+1 that is a leaf in its weak dual. Then, F contains only one
internal edge and exactly two external edges since, if it contained more than two external
edges, Gk+1 would be (2, 3)-restricted. Therefore,F consists of three consecutive vertices a, b
and c on the outer face with deg(a) = deg(c) = 4 and deg(b), since, otherwise, Gk+1 would
be (2, 3)-restricted. By removing b, we obtain a new graph Gk on k vertices. If a or c is
incident to a degree-2 vertex in Gk , then Gk is (2, 3)-restricted. Otherwise, by our induction
hypothesis, Gk has a degree-2 vertex whose removal yields a (2, 3)-restricted outerplanar
graph. Since this vertex is neither adjacent to a nor c, the removal of this vertex makes Gk+1
also (2, 3)-restricted.

Now, we are ready to deal with general biconnected maxdeg-4 outerplane graphs.

Theorem 5.4. Any biconnected maxdeg-4 outerplane graph admits an SC1-layout.

Proof. If the given graph G is (2, 3)-restricted, the result follows from Lemma 5.2. Thus,
assume that G is not (2, 3)-restricted. Then, G contains a degree-2 vertex b whose removal
yields a biconnected (2, 3)-restricted maxdeg-4 outerplane graph G′. Hence, we can apply
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(a) (b)

Figure 5.9: (a) A graphwith an OC2-layout using polynomial area and (b) an SC1-layout using exponential area.

the algorithm of Lemma 5.2 to G′ and obtain an outerplanar SC1-layout Γ(G′) of G′. Since
this algorithm always maintains consecutive free ports for each vertex, and the neighbors
of b lie on the outer face of Γ(G′), we can insert b and its two incident edges to obtain an
SC1-layout Γ(G) of G as follows. Let a and c be the neighbors of b and assume, without loss
of generality, that c is drawn above a. If the edge (a, c) is drawn as a quarter-circle, then a
3/4-circle arc from pc to pb and a quarter-circle from pb to pa suffice. Otherwise, we can use
the line segment pa pb and a quarter-circle from pb to pc . This concludes our proof.

5.4 A Lower Bound for the Area Requirement of
SC1-Layouts

In this section, we demonstrate an infinite family of maxdeg-4 planar graphs that require
exponential area if they are drawn with SC1. Bekos et al. [BKKS13] presented such a family
of graphs for the rather restricted setting where both the embedding of the graph and the
port assignment of the edges are fixed. Here, we strengthen this result. Consider the graph
depicted in Figure 5.9a. This graph consists of several layers. Each layer consists of a cycle of
four pairs of adjacent triangles. The SC1-layout of this graph in Figure 5.9b obviously requires
exponential area since every layer uses more than twice the area of the previous layer. We will
now show that this is the only SC1-layout of the graph, up to translation, rotation and scaling.
First, we show that there are only two ways to draw one of the triangles of each layer. In

Figure 5.10, we show all 16 possible ways to get an SC1-layout of a triangle. However, in our
graph all free ports have to lie on the outer face. There are only two SC1-layouts of a triangle
that have this property, marked by a dashed circle.
Next, we build a pair of adjacent triangles. In Figure 5.11, we show that there are three

ways to combine two triangles that share an edge. Finally, we combine four pairs of adjacent
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Figure 5.10: All possible ways to get an SC1-layout of a triangle. Only two of these drawings (enclosed by
dashed circles) have all their ports on the outer face.

triangles to one layer of the graph. Using careful case analysis, it can be shown that there
are only two ways to draw one of the layers with SC1; see Figure 5.12. However, it is easy to
see that it is impossible to connect the drawing shown in Figure 5.12c to another layer. Thus,
the SC1-layout shown in Figure 5.9b is the only way to draw this graph, which proves the
following theorem.

Theorem 5.5. There is an infinite family of graphs that require exponential area if they are
drawn with SC1.

Figure 5.11: There are three ways to draw two adjacent triangles.
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(a) (b) (c)

Figure 5.12: (a) One layer of the graph in Figure 5.9. (b) & (c) The only twoways to draw the subgraph depicted
in (a) with SC1 .

5.5 Biconnected Graphs without SC1-Layouts

In this section, we demonstrate an infinite family of biconnected maxdeg-4 planar graphs
that admit OC2-layouts, but do not admit SC1-layouts. Bekos et al. [BKKS13] presented such
a family of graphs assuming a rather restricted setting in which the choice of the outer face
is fixed and always corresponds to a triangle. Here, we strengthen this result by providing
an infinite family of biconnected maxdeg-4 planar graphs that admit no SC1-layout in any
embedding. We start with the following lemma.

Lemma 5.4. There exists a biconnected maxdeg-4 planar graph that admits an OC2-layout,
but does not admit an SC1-layout.

Proof. Let G be the graph of Figure 5.13a. We prove that G has no SC1-layout. First, note
that G contains two copies of the graph depicted in Figure 5.13b. We denote this graph by H.
We first prove that H has no SC1-layout with the given embedding. In particular, we show
that the subgraph of H induced by the vertices on or inside the black cycle cannot be drawn
with SC1.

(a) the graph G

1

2

3

4

5

(b) the important subgraph H in detail

Figure 5.13: A graph G that admits an OC2-layout, but does not admit an SC1-layout
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Figure 5.14: Illustration for the proof of Lemma 5.4

Consider edge e = (1, 2) of H. This edge can be drawn as a straight-line segment, quarter-
circle, semicircle or 3/4-circle. Figure 5.14a illustrates the case that e is drawn as a horizontal
line segment. In this case, the ports for the edges are fixed due to the given embedding and
it is not possible to complete the drawing. The case that e is drawn as a vertical segment is
analogous. Similarly, we show that there is no SC1-layout for H if e is drawn as a quarter-
circle in Figures 5.14b–5.14c, as a semicircle in Figures 5.14d–5.14g and as a 3/4-circle in
Figures 5.14h–5.14l. Thus, there is no SC1-layout for this fixed embedding of H.

Next, we claim that there is no SC1-layout for any embedding of H where the vertices 2, 3,
4, and 5 define the outer cycle. Indeed, if the outer face is fixed, then the only way to find a
different embedding is to find a separating pair {u, v} in H and “flip” one of the components
ofH−{u, v}. There are two possible separating pairs inH: (i) vertex 1 and the red vertex; then,
the flip with respect to this pair gives an isomorphic graph due to symmetry; and (ii) vertices 2
and 4; then, the flip with respect to this pair again gives an isomorphic graph by interchanging
the role of 3 and 5. Thus, with the fixed outer cycle (2, 3, 4, 5), all possible embeddings of H
are isomorphic.
Since G contains two copies of H, in any embedding of G, at least one of the copies will

retain its outer cycle. Hence, there is no SC1-drawing for any embedding of G.
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Graph G of Figure 5.13a uses a few short paths to connect two copies of H. Obviously, we can
add an arbitrary number of vertices to these paths such that the augmented graph remains
biconnected and maxdeg-4 planar. This proves the following theorem.

Theorem 5.6. There is an infinite family of biconnected maxdeg-4 planar graphs that admit
OC2-layouts but do not admit SC1-layouts.

5.6 Concluding Remarks

In this chapter, we have presented several new results about smooth orthogonal drawings of
maxdeg-4 planar graphs. However, many problems remain open. We have shown that maxdeg-
3 planar graphs can be drawn in polynomial area with SC2, but it is unknown for maxdeg-4
planar graphs, as our algorithm requires exponential area. The graph classes admitting SC1-
layouts have not been fully characterized. It was already known that Hamiltonian maxdeg-3
planar and triconnected maxdeg-3 planar graphs always admit a SC1-layout, and we extended
these results to biconnected maxdeg-4 outerplane graphs. It remains open whether there are
larger classes of graphs that admit SC1-layouts, such as maxdeg-4 outerplanar or maxdeg-3
planar graphs. We strongly conjecture that it is NP-hard to decide whether a maxdeg-4 planar
graph has an SC1-layout, but we struggled with some details in our attempt for a proof.
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6 Monotone Drawings of Trees

A natural requirement for the layout of a connected graph is that between any source vertex
and any target vertex, there should be a source–target path that approaches the target according
to some distance measure. A large body of literature deals with problems of this type; various
measures have been studied. For example, in a greedy drawing you can find a path to a target
vertex by iteratively selecting a neighbor that is closer to the target.

In amonotone drawing, the distance between vertices (on the desired source-target path)
is measured with respect to their projections on some line, which may be different for any
source–target pair. We say that a path P ismonotone with respect to a vector v⃗ if the orthogonal
projection of the vertices of P on every line with direction vector v⃗ appear on the line in the
order induced by P. We also refer to v⃗ as a direction. In strongly monotone drawings, that line
is always the line from source to target, and in upward drawings, the line is always the vertical
line, directed upwards.
In this chapter, we focus on monotone and strongly monotone drawings of trees with

additional aesthetic properties such as convexity or small area. Given a tree, we call the edges
incident to the leaves leaf edges and all other edges interior edges. Given a straight-line drawing
of a tree, we substitute each leaf edge by a ray whose initial part coincides with the edge. The
embedding of the tree defines a combinatorial embedding of the tree, that is, the order of the
edges around every vertex. The faces are then specified by this combinatorial embedding as
leaf–leaf paths. If the faces of the augmented drawing are realized as convex non-overlapping
(unbounded) polygonal regions, then we call the original drawing a convex drawing. If every
region is strictly convex (that is, all interior angles are strictly less than π), we also call the
drawing strictly convex.

Note that a convex drawing is also monotone [ACM89, ACB+12], but a monotone drawing
is not necessarily convex. Strict convexity forbids vertices of degree 2. In this chapter, when
we talk about (strongly) monotone drawings, this always includes the planarity requirement.
Otherwise, as Angelini et al. [ACB+12] observed, drawing any spanning tree of the given graph
in a (strongly) monotone way and inserting the remaining edges would yield a (strongly)
monotone drawing of the graph.

Previous Work. Rao et al. [RRP+03] introduced the concept of greedy drawings for a
coordinate-based routing algorithm that does not rely on location information. While any
3-connected plane graph has a greedy drawing in the Euclidean plane [LM10] (even without
crossing [Dha10]), this is, unfortunately, not true for trees. Nöllenburg and Prutkin [NP13]
gave a complete characterization for the tree case, which shows that no tree with a vertex of
degree 6 or more admits a greedy drawing.

Alamdari et al. [ACG+13] studied a subclass of greedy drawings, so-called self-approaching
drawings which require that there always is a source–target path such that the distance de-
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creases for any triplet of intermediate points on the edges, not only for the vertices on the path.
These drawings are based on the concept of self-approaching curves [IKL95].

Carlson and Eppstein [CE07] studied convex drawings of trees. They give linear-time
algorithms that optimize the angular resolution of the drawings, both for the fixed- and
the variable-embedding case. They observe that convexity allows them to pick edge lengths
arbitrarily, without introducing crossings.
For monotone drawings, Angelini et al. [ACB+12] studied the variable-embedding case.

They showed that any n-vertex tree admits a straight-line monotone drawing on a grid of
size O(n1.6) × O(n1.6) (using a BFS-based algorithm) or O(n) × O(n2) (using a DFS-based
algorithm). They also showed that any biconnected planar graph has a monotone drawing
(using exponential area). Further, they observed that not every planar graph admits a mono-
tone drawing if its embedding is fixed. They introduced the concept of strong monotonicity
and showed that there is a drawing of a planar triangulation that is not strongly monotone.
Hossain and Rahman [HR14] improve some of the results of Angelini et al. by showing that
every connected planar graph admits a monotone drawing of size O(n) × O(n2) and that
such a drawing can be computed in linear time.
Both the BFS- and the DFS-based algorithms of Angelini et al. precompute a set of n − 1

vectors in decreasing order of slope by using two different partial traversals of the so-called
Stern–Brocot tree, an infinite tree whose vertices are in bijection with the irreducible positive
rational numbers. Such numbers can be seen as primitive vectors in 2d, that is, vectors with
pairwise different slopes. Then, both algorithms do a pre-order traversal of the input tree.
Whenever they hit a new edge, they assign to it the steepest unused vector. They place the
root of the input tree at the origin and draw each edge (u, v) by adding its assigned vector to
the position of u. They call such tree drawings slope-disjoint. We will not formally define this
notion here, but it is not hard to see that it implies monotonicity.
Angelini, with a different set of co-authors [ADK+13], investigated the fixed-embedding

case. They showed that, on the O(n) × O(n2) grid, every connected plane graph admits a
monotone drawing with two bends per edge and any outerplane graph admits a straight-line
monotone drawing.

Our contribution. We present two main results. First, we show that any n-vertex tree
admits a strictly convex and, hence, monotone drawing on the O(n1.5) × O(n1.5) grid (see
Section 6.2). As the drawings of Angelini et al. [ACB+12], our drawings are slope-disjoint, but
we use a different set of primitive vectors (based on Farey sequences), which slightly decreases
the grid size. (This also works for the BFS-based algorithm of Angelini et al.) Instead of
pre-order, we use a kind of in-order traversal (first child – root – other children) of the input
tree, which helps us to achieve convexity. Our ideas can be applied to modify the optimal
angular resolution algorithm of Carlson and Eppstein [CE07] such that a drawing on an
O(n1.5)×O(n1.5) grid is constructed at the expense of missing the optimal angular resolution
by a constant factor. Second, we show that any tree admits a stronglymonotone drawing (see
Section 6.3). So far, no positive results have been known for strongly monotone drawings.
In the case of proper binary trees, our drawings are additionally strictly convex. For

biconnected outerplanar graphs, it is easy to construct strongly monotone drawings. On
the other hand, we present a simply-connected planar graph that does not have a strongly
monotone drawing in any embedding.
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Figure 6.1: The 13 primitive vectors obtained from F6 . The smallest angle of ≈ 1.14○ is realized between
the vectors (4, 5) and (5, 6) marked with white dots; the best possible angular resolution in this case is
45○/12 = 3.75○ .

6.1 Building Blocks: Primitive Vectors

The following algorithms require a set of integral vectors with distinct directed slopes and
bounded length. In particular, we ask for a set of primitive vectors Pd = {(x , y) ∣ gcd(x , y) ∈
{1, d}, 0 ≤ x ≤ y ≤ d}. Our goal is to find the right value of d such that Pd contains at least k
primitive vectors, where k is a number that we determine later. We can then use the reflections
on the lines x = y, y = 0 and x = 0 to get a sufficiently large set of integer vectors with distinct
directed slopes. The edges of the monotone drawings in Section 6.2 are translates of these
vectors; each edge uses a different vector.

Assume that we have fixed d and want to generate the set Pd . If we consider each entry
(x , y) of Pd to be a rational number x/y and order these numbers by value, we get the Farey
sequenceFd (see, for example, Hardy andWright’s book [HW79]). The Farey sequence is well
understood. In particular, it is known that ∣Fd ∣ = 3d2/π2 +O(d log d) [HW79, Theorem 331].
Furthermore, the entries of Fd can be computed in time O(∣Fd ∣). We remark that the
set ⋃d Fd coincides with the entries of the Stern–Brocot tree. However, collecting the latter
level by level is not the most effective method to build a set of primitive vectors for our
purpose.
To obtain a set of k primitive vectors, we use the first k entries of the Farey sequence Fd ,

for d ∶= 4⌈
√
k⌉, replacing each rational by its corresponding two-dimensional vector. We

select exactly k primitive vectors from this set which we denote by Vk ; see Figure 6.1.
If we wish to have more control over the aspect ratio in our final drawing, we can pick

a set of primitive vectors contained inside a triangle spanned by the grid points (0, 0),
(mx , 0), (mx ,my). By stretching the triangle and keeping its area fixed, we may end up
with fewer primitive vectors. This will result in an (only slightly) smaller constant compared to
the case mx = my . As proven by Bárány and Rote [BR06, Theorem 2], any such triangular do-
main contains at leastmxmy/4 primitive vectors. This implies that we can adapt the algorithm
easily to control the aspect ratio by selecting the box for the primitive vectors accordingly. For
the sake of simplicity, we detail our algorithms only for the most interesting case (mx = my).
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Lemma 6.1. Let P ⊆ Pd be a set of k = ∣Pd ∣/c primitive vectors with no coordinate greater
than d for some constant c ≥ 1. Then, any two primitive vectors of P are separated by an angle
of Ω(1/k).

Proof. Since ∣Pd ∣ = 3d2/π2 + O(d log d), we have that 2d2 ≈ 2π2ck/3. Any line with slope m
encloses an angle α with the x-axis, such that tan(α) = m. Let m1 and m2 be the slopes of
two lines and let α1 and α2 be the corresponding angles with respect to the x-axis. By the
trigonometric addition formulas we have that the separating angle of these two lines equals

tan ϕ ∶= tan(α1 − α2) =
tan α1 − tan α2

1 + tan α1 tan α2
= m1 −m2

1 +m1m2
.

For any two neighboring entries p/q and r/s in the Farey sequence, it holds that qr − ps = 1
[HW79,Theorem 3.1.2], and therefore p/q and r/s differ by exactly (qr−ps)/(qs) = 1/(qs). As
a consequence, tan ϕ = 1/(pr + qs). The angle ϕ is minimized if pr + qs is maximized. Clearly,
we have that pr+ qs < 2d2 ≈ 2π2ck/3. By the Taylor expansion, arctan(x) = x − x2ξ/(1+ ξ2)2
for some value 0 ≤ ξ ≤ x. Substituting x with 3/(2π2ck) yields, for k ≥ 2, that

ϕ ≥ 3
2π2ck

− 9ξ
4π4c2k2(1 + ξ2)2 >

3
2π2ck

− 9
4π4c2k2

∈ Ω(1/k).

Since the best possible resolution for a set of k primitive vectors is 2π/k, Lemma 6.1 shows
that the resolution of our set differs from the optimum by at most a constant. To estimate this
constant, let us assume we use k = ∣Pd ∣ primitive vectors (that is, c = 1 in Lemma 6.1). Then,
the smallest angle ϕ spanned by these vectors is, according to the proof of the previous lemma,
at least 3/(2π2k) − 9/(16π4) for any k > 1. This value should be compared to opt = π/(4k)
since the primitive vectors span an angle of π/4 in total. We obtain that the ratio ϕ/opt is
smaller than 6.

6.2 Monotone Grid Drawings with Large Angles

In this section, we present a simplemethod for drawing a tree on a grid in a strictly convex, and
therefore monotone way. Lemma 6.2 shows that this drawing is automatically crossing-free.
We name our strategy the inorder-algorithm. We start by ensuring that convex tree drawings
are crossing-free. This has already been stated by Carlson and Eppstein [CE07].

Lemma 6.2. Any convex straight-line drawing of a tree is crossing-free.

Proof. Let T be a tree and Γ a convex straight-line drawing of T . Assume that two edges e =
(a, b) and e′ = (a′ , b′) are crossing in Γ in some point q, see Figure 6.2. Let w be the lowest
common ancestor of b and b′, let πq be the pathw → q via a, and let π′q the pathw → q via a′.
Let us assume that the children in w are ordered such that πq starts before π′q . Let Aq be the
region bounded by πq and π′q .
We can assume that Aq is of minimum area with respect to other crossings we may have

chosen (and, hence, Aq has a connected interior). Now, we consider two paths starting fromw.
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Figure 6.2: An illustration of the situation in the proof of Lemma 6.2

The first one, πℓ , starts with the first edge of πq and then always continues via the last child
until it reaches a leaf. The second path, πr , starts with the first edge of π′q and continues always
using the first child. Note that the polygonal chain πℓ together with πr forms a face fq of the
given convex drawing of the tree. Hence, the face is convex, which means that πℓ and πr only
meet in w. Furthermore, we either have πℓ /= πq or we have πr /= π′q since otherwise fq is
self-intersecting. As a consequence, at least one of the two paths, say πℓ , enters and leaves Aq .
Let p be the point where πℓ crosses πq for the first time, and let Ap be the polygon that is
bounded by the parts of πq and πℓ betweenw and p. Then Ap has smaller area than Aq , which
contradicts our assumption that Aq has minimum area.

Our inorder-algorithm first computes a reasonable large set of primitive vectors, then selects
a subset of these vectors, and finally assigns the slopes to the edges. The drawing is then
generated by translating the selected primitive vectors. In the following, an extended subtree
will refer to a subtree including the edge leading into the subtree (if the subtree is not the
whole tree).

Wewill assign a number s(e) to every edge e. This number will refer to the rank of the edge’s
slope (in circular order) in the final assignment. The rank assignment is done in a recursive
fashion. At any time, let ŝ be 1 plus the maximum rank s(e) assigned so far. Initially, ŝ = 1.
Let e = (u, v) be an edge (directed away from the root), and let v1 , v2 , . . . , vℓ be the children
of v ordered from left to right. We recursively set the ranks of all edges in the extended subtree
rooted at v1. Then, we set s(e) = ŝ (which increases ŝ by one). Finally, for i = 2, . . . , ℓ, we set
the ranks of the edges in the extended subtree rooted at v i . For an example of a tree with its
edge ranks, see Figure 6.3a.

Second, we assign actual slopes to the edges. Let e be an edge with s(e) = j. Then, we assign
some vector s j ∈ Z2 to e and draw e as a translate of s j . We pick the vectors s1 , s2 , . . . , sn−1 by
selecting a sufficiently large set of primitive vectors and their reflections in counterclockwise
order; see Section 6.1. Our drawing algorithm has the following requirements:
(R1) Edges that are incident to the root and consecutive in circular order are assigned to

vectors that together span an angle less than π.
(R2) In every extended subtree hanging off the root, the edges (including the edge incident

to the root) are assigned to a set of vectors that spans an angle less than π.
These requirements can always be fulfilled, as the following lemma shows.
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(b) our grid drawing of the tree

Figure 6.3: A strictly convex drawing of a tree

Lemma 6.3. We can select n − 1 vectors with distinct directed slopes from a [−d , d] × [−d , d]
grid with d = 4⌈

√
n⌉ such that the requirements (R1) and (R2) are fulfilled.

Proof. We first preprocess our tree by adding temporary edges at some leaves. These edges
will receive slopes, but are immediately discarded after the assignment.

First, our objective is to ensure that the tree can be split up into three parts that all have n
edges. In particular, we adjust the sizes of the extended subtrees hanging off the root by adding
temporary edges such that we can partition them into three sets of consecutive extended
subtrees which all contain n edges. Note that we have to add 2n + 1 edges to achieve this.

Second, we define three cones C1, C2, and C3; see Figure 6.4. Each cone has its apex at the
origin and spans an angle of π/4. The angular ranges are C1 = [0, π/4], C2 = [3π/4, π], and
C3 = [3π/2, 7π/4]; angles are measured from the x-axis pointing in positive direction. Note
that C2 is separated from the two other cones by an angle of π/2. As mentioned in Section 6.1,
the set Vn contains n primitive vectors in the [0, d] × [0, d] grid. When reflected on the x = y
line, these vectors lie in C1. Reflecting the vectors in C1, we further generate n vectors in C2
and n vectors in C3. In every cone, we “need” at most n − 3 edges. Hence, we can remove the
vectors on the boundary of each cone. After removing the temporary edges, the number of
vectors will drop from 3n to n − 1.

Now, we observe the following. Every two consecutive edges incident to the root lie in
the interiors of our cones. Given the sizes and angular distances of the cones, this yields
requirement (R1). Furthermore, any extended subtree is assigned slopes from a single cone.
This yields (R2).

For the example tree of Figure 6.3a, it suffices to pick the 16 vectors that one gets from reflecting
the primitive vectors from the [0, 2]×[0, 2] grid. These vectors already fulfill requirements (R1)
and (R2). Hence, we do not have to apply the more involved slope selection as described in
Lemma 6.3. The resulting drawing is shown in Figure 6.3b.

Every face in the drawing contains two leaves. The leaves are ordered by their appearance
in some DFS-sequenceD respecting some rooted combinatorial embedding of T . For a face f ,
we call the leaf that comes first inD the left leaf and the other leaf of f the right leaf of f . The
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Figure 6.4: The cones that contain the slopes used in the algorithm

only exception is the face whose leaves are the first and last child ofD. Here, we call the first
vertex inD the right leaf and the last vertex inD the left leaf.

Lemma 6.4. Let u be the left leaf, and let v be the right leaf of a face of T. Further, let w be
the lowest common ancestor of u and v. The above assignment of slope ranks s to the tree edges
implies the following.

(a) If edge e1 is on the path w → u and edge e2 is on the path w → v, then s(e1) < s(e2).

(b) The ordered sequence of edges on the path w → u is increasing in s(⋅).

(c) The ordered sequence of edges on the path w → v is decreasing in s(⋅).

Proof. Let a be an edge that links the parent p to its child u, let b be the edge that links u to its
leftmost child, and let c be the edge that links u to its rightmost child; see Figure 6.5b. In the
assignment, we first picked the slope in the subtree rooted at the leftmost children of u, then we
selected the slope for a, and later we picked the slopes for the subtree rooted at the rightmost
children of u. Since we select the slopes in their radial order, we have s(b) < s(a) < s(c).
Now, note that the slopes on the path w → u have been assigned before the slopes on the

path w → v, which proves (a). When traversing the path w → u, we follow the rightmost chil-
dren, except maybe for w’s child; see Figure 6.5a. Hence, the sequence of slopes is increasing,
and (b) follows. Statement (c) follows by a similar argument: We traverse the path w → v
by taking the leftmost child, except maybe for w’s child. Hence, the sequence of slopes is
decreasing.

We now prove the correctness of our algorithm.

Theorem 6.1. Given an embedded tree with n vertices (none of degree 2), the inorder-algorithm
produces a strictly convex and crossing-free drawing with angular resolution Ω(1/n) on a grid
of size O(n1.5) × O(n1.5). The algorithm runs in O(n) time.

Proof. We first show that no face in the drawing is incident to an angle larger than π. Let f
be a face, let e and e′ be two consecutive edges on the boundary of f , and let α be the angle
formed by e and e′ in the interior of f . If e and e′ are incident to the root, requirement (R1)
implies α < π. If both edges contain the lowest common ancestor of the leafs belonging to f ,
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Figure 6.5: Situation analyzed in Lemma 6.4

then, by requirement (R2), also α < π. In the remaining case, e and e′ both lie on a path to
the left leaf of f , or both lie on a path to the right leaf of f . At vertex v, we have at least two
outgoing edges. Let e1 be the first outgoing edge and e2 be the last outgoing edge at v—one of
the edges is e′. By the selection of the slope ranks, we have s(e1) < s(e) < s(e2). Consequently,
the supporting line of e separates e1 and e2, and hence both faces containing e have an angle
less than π at v. Therefore, it holds that α < π.
Next, we show that the edges and rays of a face do not intersect. Then, by Lemma 6.2, no

edges will cross. Assume that there are two edges/rays ℓ and r in a common face that intersect
in some point x. Let t be the lowest common ancestor of ℓ and r, and assume that ℓ lies on the
path to the left leaf and r on the path to the right leaf. We define a closed polygonal chain P
as follows. The chain starts with the path t → ℓ, continues via x to r, and finally returns to t.
We direct the edges according to this walk (for measuring the directed slopes) and call them
e1 , e2 , . . . , ek . We may assume that P is simple; otherwise, we find another intersection point.
By Lemma 6.4, the slopes are monotone when we traverse P. For i = 1, . . . , k − 1, let α i be the
difference between the directed slopes of the edges e i and e i+1. Then, the sum∑i<k α i equals
the angle between the slopes of e1 and ek . Due to requirement (R2), this angle is less than π.
Let β i = π − α i be the angle between e i and e i+1 in P, and let β0 > 0 be the “interior” angle
at t. We have that

∑
0≤i<k

β i = β0 + ∑
1≤i<k
(π − α i) > 0 + (k − 1)π − π = (k − 2)π.

This, however, contradicts the fact that the angle sum of the polygon with boundary P is
(k − 2)π. Thus, our assumption that two edges/rays cross was wrong.
Since the drawing is assembled from n − 1 vectors whose absolute coordinates are at

most O(
√
n), the complete drawing uses a grid of dimension O(n1.5) × O(n1.5). Since

all vectors are reflections of (a subset of) vectors defined by a Farey sequence with at most n
entries, Lemma 6.1 yields that the angular resolution is bounded by Ω(1/n).

We conclude this section with comparing our result with the drawing algorithm of Carlson
and Eppstein [CE07]. Their algorithm produces a drawing with optimal angular resolution. It
draws trees convex, but, in contrast to our algorithm, not necessarily strictly convex. Allowing
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parallel leaf edges can have a great impact on the angular resolution. However, our ideas
can be applied to modify the algorithm of Carlson and Eppstein. For the leaf edges, their
algorithm uses a set of k slopes and picks the slopes such that they are separated by an angle
of 2π/k. The slopes of interior edges have either one of the slopes of the leaf edges, or are
chosen such that they bisect the wedge spanned by their outermost child edges. However,
it suffices to assure that the slope of an interior edge differs from the extreme slopes in the
following subtree by at least 2π/(2k).
We can now modify the algorithm as follows. We pick 2k/8 primitive vectors and reflect

them such that they fill the whole angular space with 2k distinct integral vectors. We use every
other vector of this set for the leaf edges. For an interior edge, we take any vector from our
preselected set whose slope lies in between the extreme slopes of the edges in its subtree. Since
we have sufficiently spaced out our set of primitive vectors, we can always find such a vector.
Thus, we obtain a drawing on the O(n1.5) × O(n1.5) grid. Clearly, the drawing does not have
optimal angular resolution. However, since we use 2k integral vectors having, by Lemma 6.1,
an angular resolution of Ω(1/k), we differ from the best possible angular resolution 2π/k only
by a constant factor.
See Figure 6.6 for a comparison between our approach with that of Carlson and Epp-

stein [CE07] and that of Angelini et al. [ACB+12].

6.3 Strongly Monotone Drawings

In this section, we show how to draw trees in a strongly monotone fashion. We first show how
to draw any proper binary tree, that is, any internal vertex has exactly two children. We name
our strategy the disk-algorithm. Then, we generalize our result to arbitrary trees. Further, we
show that connected planar graphs do not necessarily have a strongly monotone drawing.
Finally, we show how to draw biconnected outerplanar graphs in a strongly monotone fashion.
Note that the drawings computed by our algorithms require exponential area. However,
Nöllenburg et al. [NPR14] have recently shown that exponential area is required for strongly
monotone drawings of trees, which justifies this area bound.
Let T be a proper binary tree, let D be any disk with center c, and let C be the boundary

of D. Recall that a strictly convex drawing cannot have a vertex of degree 2. Thus, we consider
the root of T a dummy vertex and ensure that the angle at the root is π. We draw T inside D.
We start by mapping the root of T to c. Then, we draw a horizontal line h through c and place
the children of the root on h ∩ int(D) such that they lie on opposite sites relative to c. We
cut off two circular segments by dissecting D with two vertical lines running through points
representing the children of the root. We inductively draw the right subtree of T into the right
circular segment and the left subtree into the left circular segment.
In any step of the inductive process, we are given a vertex v of T , its position in D (which

we also denote by v) and a circular segment Dv ; see Figure 6.7a. The preconditions for our
construction are that

(i) v lies in the relative interior of the chord sv that delimits Dv , and
(ii) Dv is empty, that is, the interiors of Dv and Du are disjoint for any vertex u that does

not lie on a root–leaf path through v.
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(c) drawing by Carlson and Eppstein [CE07]
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(d) drawing by our algorithm

Figure 6.6: Example tree of Angelini et al. [ACB+12], drawn by various algorithms. We treat the degree-2
vertices as dummy vertices because of the degree restriction.

In order to place the two children l and r of v (if any), we shoot a ray v⃗ from v perpendicular
to sv into Dv . Let v′ be the point where v⃗ hits C. Consider the chords that connect the
endpoints of sv to v′. The chords and sv form a triangle with height vv′. The height is
contained in the interior of the triangle and splits it into two right subtriangles. The chords
are the hypotenuses of the subtriangles. We construct l and r by connecting v to these chords
perpendicularly. Note that, since the subtriangles are right triangles, the heights lie inside the
subtriangles. Hence, l and r lie in the relative interiors of the chords. Further, note that the
circular segments D l and Dr delimited by the two chords are disjoint and both are contained
in Dv . Hence, D l and Dr are empty, and the preconditions for applying the above inductive
process to r and l with D l and Dr are fulfilled. See Figure 6.7b for the output of our algorithm
for a tree of height 3.
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Figure 6.7: Strongly monotone drawings of proper binary trees

Lemma 6.5. For a proper binary tree rooted in a dummy vertex, the disk-algorithm yields a
strictly convex drawing.

Proof. Let T be a proper binary tree and let f be a face of the drawing generated by the
algorithm described above. Clearly, f is unbounded. Let a and b be the leaves of T that are
incident to the two unbounded edges of f , and let v be the lowest common ancestor of a
and b; see Figure 6.7b. Consider the two paths v → a and v → b. We assume that the path
from v through its left child ends in a and the path through its right child ends in b.

Due to our inductive construction that uses disjoint disk sections for different subtrees, the
two paths clearly do not intersect. Moreover, each vertex on the two paths is convex, that is,
the angle that such a vertex forms inside f is less than π. This is due to the fact that we always
turn right when we go from v to a, and we always turn left when we go to b. Vertex v is also
convex since the two edges from v to its children lie in the same half-plane (bounded by sv).

It remains to show that the two rays a⃗ and b⃗ (defined analogously to v⃗ above) don’t intersect.
To this end, recall that v′ = v⃗ ∩ C. By our construction, a⃗ and b⃗ are orthogonal to two chords
of C that are both incident to v′. Clearly, the two chords form an angle of less than π in v′.
Hence, the two rays diverge, and the face f is strictly convex.

For the proof that the algorithm described above yields a strongly monotone drawing, we
need the following tools. Let v⃗1 and v⃗2 be two vectors. We say that v⃗3 lies between v⃗1 and v⃗2
if v⃗3 is a positive linear combination of v⃗1 and v⃗2. For two vectors v⃗ and w⃗, we define ⟨v⃗ , w⃗⟩ =
∣v⃗∣∣w⃗∣ cos(v⃗ , w⃗) as the scalar product of v⃗ and w⃗.

Lemma 6.6. If a path p is monotone with respect to two vectors v⃗1 and v⃗2, then it is monotone
with respect to any vector v⃗3 between v⃗1 and v⃗2.

Proof. Let v⃗3 = λ1v⃗1 + λ2v⃗2 with λ1 , λ2 > 0. Assume that the path p is given by the sequence
of vectors w⃗1 , w⃗2 , . . . , w⃗k . Since p is monotone with respect to vectors v⃗1 and v⃗2, we have that
⟨v⃗1 , w⃗ i⟩ > 0 and ⟨v⃗2 , w⃗ i⟩ > 0 for all i ≤ k. This yields, for all i ≤ k,

⟨v⃗3 , w⃗ i⟩ = ⟨λ1v⃗1 + λ2v⃗2 , w⃗ i⟩ = λ1⟨v⃗1 , w⃗ i⟩ + λ2⟨v⃗2 , w⃗ i⟩ > 0,

since λ1 , λ2 > 0. It follows that p is monotone with respect to v⃗3.
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Figure 6.8: Illustration of case 3 in the proof of Lemma 6.7

Lemma 6.7. For a proper binary tree rooted in a dummy vertex, the disk-algorithm yields a
strongly monotone drawing.

Proof. We split the drawing into four sectors: I, II, III and IV; see Figure 6.7b. Let a and b
be two vertices in the graph. We will show that the path a → b in the output drawing of
our algorithm is strongly monotone. Let c be the root of the tree. Without loss of generality,
assume that a lies in sector III. Then, we distinguish three cases.

Case 1: a and b lie on a common root–leaf path; see a and v in Figure 6.7b. Obviously, b lies
in sector III. Without loss of generality, assume that b lies on the path a → c. By construction,
all edges in sector III, seen as vectors directed towards c, lie between x⃗ = (0, 1) and y⃗ = (1, 0).
Thus, all edges on the path a → b, and in particular a⃗b, lie between x⃗ and y⃗. Since x⃗ is
perpendicular to y⃗, the path a → b is monotone with respect to x⃗ and y⃗. Following Lemma 6.6,
the path a → b is monotone with respect to

Ð→
ab, and thus strongly monotone.

Case 2: b lies in sector I; see a and d in Figure 6.7b. In Case 1, we have shown that the all
edges on the path a → c lie between x⃗ = (0, 1) and y⃗ = (1, 0). Analogously, the same holds
for the path c → b. Thus, the path a → b is monotone with respect to x⃗ and y⃗ and, following
Lemma 6.6, strongly monotone.
Case 3: a and b do not lie on a common root–leaf path, and b does not lie in sector I; see a

and b in Figure 6.7b. Let d be the lowest common ancestor of a and b. Let ⟨a = a0 , a1 , . . . , ak =
d⟩ be the path d → a to a. Further, let ⟨d = b0 , b1 , . . . , bm = b⟩ be the path d → b. Finally, let
p = ⟨ak , ak−1 , . . . , a0 , b1 , . . . , bm−1 , bm⟩ be the path a → b.
Below, we describe how to rotate and mirror the drawing such that any vector ÐÐÐÐ→a i , a i−1,

1 ≤ i ≤ k lies between x⃗ = (0, 1) and y⃗ = (1, 0), and any vector
ÐÐÐ→
b j−1 , b j , 1 ≤ j ≤ m lies

between x⃗ and − y⃗. This statement is equivalent to x(a i) < x(d) < x(b j), 1 ≤ i ≤ k, 1 ≤ j ≤ m
and y(ak) < . . . < y(a1) < y(d) > y(b1) > . . . > y(bm); see Figure 6.8. If b lies in sector
IV, then d = c and this statement is true by construction. If b lies in sector II, then d is a
child of c. We rotate the drawing by π/2 in counterclockwise direction and then mirror it
horizontally. If b lies in sector III, let p(d) be the parent of d. We rotate the drawing such
that the edge (p(d), d) is drawn vertically. Recall that, by construction, the ray from d in
direction

ÐÐÐ→
p(d)d = − y⃗ separates the subtrees of the two children of d; see Figure 6.7a. Further,

the angle between any edge (directed away from d) in the subtree of d and
ÐÐÐ→
p(d)d = − y⃗ is at

most π/2, that is, they are directed downwards.
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Let A i , 1 ≤ i ≤ k be the straight line through a i perpendicular to ÐÐÐ→a i−1a i . Let A′i be the
parallel line to A i that passes through a. Due to the x-monotonicity of p, the point a lies
below A i . During the construction of the tree, the line A i defined a circular sector in which
the subtree rooted at a i including a was exclusively drawn. It follows that a and b lie on
opposite sites of A i . Thus, b lies above A i and also above A′i . Let B j , 1 ≤ j ≤ m be the straight
line through b j perpendicular to

ÐÐÐ→
b j−1b j . Let B′j be the parallel line to B j that passes through a.

By construction, b lies below B j and a lies above B j . Thus, b lies below B′j .
Let A be the line A′i with maximum slope and let B be the line B′j with minimum slope.

First, we will show that the path is monotone with respect to the unit vector A⃗ on A directed to
the right. By choice of A, the angle between any edge (a i , a i−1), 1 ≤ i ≤ k and A⃗ is at most π/2.
Recall that any vectorÐÐÐÐ→a i , a i−1, 1 ≤ i ≤ k, lies between x⃗ and y⃗. Since A⃗ is perpendicular to one
of these edges and directed to the right, it lies between x⃗ and − y⃗. Since any vectorÐÐÐ→b j−1 , b j ,
1 ≤ j ≤ m, also lies between x⃗ and − y⃗, the angle between A⃗ and these edges is at most π/2.
Because the angle between A⃗ and any edge on the path a → b is at most π/2, the path is
monotone with respect to A⃗.

Analogously, it can be shown that the path is monotone with respect to B⃗. Recall that b lies
above A and below B. Hence, the vector

Ð→
ab lies between A⃗ and B⃗. Following Lemma 6.6, the

path is monotone with respect to
Ð→
ab and, thus, strongly monotone.

Lemmas 6.5 and 6.7 immediately imply the following.

Theorem 6.2. Any proper binary tree rooted in a dummy vertex has a strongly monotone and
strictly convex drawing.

Next, we (partially) extend this result to arbitrary trees.

Theorem 6.3. Any tree has a strongly monotone drawing.

Proof. Let T be a tree. If T has a vertex of degree 2, we root T in this vertex. Otherwise, we
subdivide any edge by creating a vertex of degree 2, which we pick as root. Then, we add a
leaf to every vertex of degree 2, except the root. Now, let v be a vertex with out-degree k > 2.
Let (v ,w1), . . . , (v ,wk) be the outgoing edges of v ordered from right to left. We substitute v
by a path ⟨v = v1 , . . . , vk+1⟩, where v i+1 is the left child of v i , for i = 1, . . . , k. Then, we
substitute the edges (v ,w i) by (v i ,w i), i = 2, . . . , k; see Figure 6.9.
Let T ′ be the resulting proper binary tree. Clearly, all vertices of T ′, except its root, have

degree 1 or 3, so T ′ is a proper binary tree. We use Theorem 6.2 to get a strongly monotone
drawing ΓT′ of T ′. Then, we remove the dummy vertices inserted above and draw the edges
that have been subdivided by a path as a straight-line. This yields a drawing ΓT of T that is
crossing-free since the only new edges form a set of stars that are drawn in disjoint areas of
the drawing.
Now, we show that ΓT is strongly monotone. Let (v ,w) be an edge in T . Let p = ⟨v =

v1 , . . . , vm = w⟩ be the path v → w in T ′. Suppose p is monotone with respect to some
direction d⃗. Thus,∠{ÐÐÐ→v iv i+1 , d⃗} < π/2 for 1 ≤ i ≤ m− 1. Clearly,Ð→vw = ∑m−1

i=1
ÐÐÐ→v iv i+1 is a positive

linear combination of ÐÐÐ→v iv i+1 , i = 1, . . . ,m and, hence, ∠{Ð→vw , d⃗} < π/2. It follows that the
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Figure 6.9: Subdivision of a vertex v with k outgoing edges

path a → b for some vertices a, b in T is monotone with respect to a direction d⃗ in ΓT if the
path a → b is monotone to d⃗ in ΓT′ . With d⃗ = Ð→ab, it follows that ΓT is strongly monotone.

We add to this another positive result concerning biconnected outerplanar graphs.

Theorem 6.4. Any biconnected outerplanar graph has a strongly monotone and strictly convex
drawing.

Proof. Let G be a biconnected outerplanar graph with outer cycle ⟨v1 , . . . , vn , v1⟩. We place
the vertices v2 , . . . , vn−1 in counterclockwise order on a quarter circle C that has v1 = (0, 0)
and vn = (1, 1) as its endpoints; see Figure 6.10. Since the outer cycle is drawn strictly convex,
the drawing is planar and strictly convex. Clearly, the path ⟨v1 , . . . , vn⟩ is x- and y-monotone.
Also, every vectorÐ→v iv j , j > i lies between x⃗ = (0, 1) and y⃗ = (1, 0). Thus, by Lemma 6.6, the
drawing is strongly monotone.

We close with a negative result. Note that the graphs in the family that we construct are neither
outerplanar nor biconnected.

Theorem 6.5. There is an infinite family of connected planar graphs that do not have a strongly
monotone drawing in any combinatorial embedding.

Proof. Let C be the graph that arises by attaching to each vertex of K4 a “leaf ”; see Figure 6.11.
Let v1 , . . . , v4 be the vertices of K4. For K4 to be crossing-free, one of its vertices, say v1,

lies in the interior. Let w be the leaf incident to v1. Because of planarity, w has to be
placed inside a triangular face incident to v1. Without loss of generality, assume that w
is placed in the face (v1 , v2 , v3). If the drawing is strongly monotone, then∠(Ð→wv2 ,Ð→wv1) < π/2
and∠(Ð→wv1 ,Ð→wv3) < π/2, and thus∠(Ð→wv3 ,Ð→wv2) > π. However, this means that w does not lie
inside the triangle (v1 , v2 , v3), which is a contradiction to the assumption. Thus, C does not
have a strongly monotone drawing in any combinatorial embedding. We create an infinite
family from C by adding more leaves to the vertices of K4.
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C

v1

vn

Figure 6.10: A strongly monotone drawing of a
biconnected outerplanar graph

v1

v2 v3
w

v4

Figure 6.11: A planar graph without any strongly
monotone drawing

6.4 Concluding Remarks

We have shown that any tree has a monotone drawings on a grid with area O(n3) and a
strongly monotone drawing, but several problems remain open. It is a common question
whether we can combine the features in our two algorithms, that is, whether any tree has a
stronglymonotone drawing on a grid of polynomial size. Angelini et al. [ACB+12, Figure 18(b)]
have constructed a drawing of a triangulation that is not strongly monotone. It is still open
whether there is also a triconnected (or biconnected) planar graph that does not have any
strongly monotone drawing. If yes, it is interesting whether this can be tested efficiently. If
we could show that our drawings for general trees are not just strongly monotone but also
convex (as in the proper binary case), then all Halin graphs would automatically have convex
and strictly monotone drawings, too.
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7 Simultaneous Drawing of Planar
Graphs with Right-Angle Crossings

A simultaneous embedding of two planar graphs embeds each graph in a planar way—using
the same vertex positions for both embeddings. Edges of one graph are allowed to intersect
edges of the other graph. There are two versions of the problem: In the first version, called
Simultaneous Embedding with Fixed Edges (Sefe), edges that occur in both graphs must be
embedded in the same way in both graphs (and hence, cannot be crossed by any other edge).
In the second version, simply called Simultaneous Embedding, these edges can be drawn
differently for each of the graphs. Both versions of the problem have a geometric variant
where edges must be drawn using straight-line segments.

Simultaneous embedding problems have been investigated extensively over the last few
years, starting with the work of Brass et al. [BCD+07] on simultaneous straight-line drawing
problems. Bläsius et al. [BKR13b] recently surveyed the area. For example, it is possible to
decide in linear time whether a pair of graphs admits a Sefe or not, if the common graph is bi-
connected [ABF+12] or if it has a fixed planar embedding [ADF+15]. Furthermore, Sefe can be
decided in polynomial time if each connected component of the common graph is biconnected
or subcubic [Sch13], or if it is outerplanar with cutvertices of degree at most 3 [BKR13a].

When actually drawing these simultaneous embeddings, a natural choice is to use straight-
line segments. It is NP-hard to decide whether two planar graphs admit a geometric simul-
taneous embedding [EBGJ+08]. This negative results holds even if one of the input graphs
is a matching [CvL+11]. In fact, only very few graphs can be drawn in this way and some
existing results require exponential area. For instance, there exist a tree and a path which
cannot be drawn simultaneously with straight-line segments [AGKN12], and the algorithm
for simultaneously drawing a tree and a matching [CvL+11] does not provide a polynomial
area bound.

A way to overcome the restrictions of straight-line drawings is to allow edges to bend. The
resulting drawings with polygonal edges are called polyline drawings for short. Such drawings
have been investigated by Haeupler et al. [HJL13]. They showed that if the common graph is
biconnected, then a drawing can be found in which one input graph has no bends at all and in
the other input graph the number of bends per edge is bounded by the number of common
vertices. Erten and Kobourov [EK05b] showed that three bends per edge and quadratic area
suffice for any pair of planar graphs (without fixed edges), and that one bend per edge suffices
for pairs of trees. Kammer [Kam06] reduced the required number of bends per edge to two for
the general case of planar graphs. Grilli et al. [GHKR14] proved that every Sefe embedding of
two graphs admits a drawing with no bends in the common edges and at most nine bends per
exclusive edge. If the common graph is biconnected, they can reduce the number of bends to
three per exclusive edge. In these results, however, the crossing angles can be very small.
In this chapter, we suggest a new approach that overcomes the aforementioned problems.

We insist that crossings occur at right angles, thereby “taming” them. We do this while drawing
all vertices and all bends on an integer grid of sizeO(n)×O(n) for any pair of planar n-vertex
graphs. In a way, our results give a measure for the geometric complexity of simultaneous
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(a) two graphs on the same vertex set
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Figure 7.1: (a) Two planar graphs on the same vertex set. (b) A RacSim drawing of the two graphs with at most
one bend per edge. The edge (v2 , v6) is drawn differently in the two graphs, while the edges (v3 , v4) and
(v2 , v3) are both represented by the same polyline in the two graphs. (c) A RacSefe drawing of the two graphs
with up to two bends per edge.

embeddability for various combinations of graph classes, some of which can be combined
more easily (that is, with fewer bends) and some not as easily (that is, with more bends).

LetG1 = (V , E1) andG2 = (V , E2) be two planar graphs defined on the same vertex set and
let n = ∣V ∣. We say that G1 and G2 admit a RAC simultaneous drawing (or, RacSim drawing
for short) if we can place the vertices on the plane such that:

(i) each edge is drawn as a polyline,

(ii) both graphs are drawn planar,

(iii) non-common edges are either disjoint or cross each other (one or several times) at right
angles, and

(iv) common edges may be represented by the same polyline.

Note that non-common edges may not overlap. G1 and G2 admit a RAC simultaneous drawing
with fixed edges (or, RacSefe drawing for short) if they admit a RacSim drawing with the
adjusted condition (iv):

(iv’) common edgesmust be represented by the same polyline.

In Figure 7.1, we give an example of two planar graphs on the same vertex set that admit a
RacSim drawing with at most one bend per edge and a RacSefe drawing with at most two
bends per edge.
Argyriou et al. [ABKS13] introduced and studied the geometric version of the RacSim

drawing problem. In particular, they proved that any pair of a cycle and a matching admits a
geometric RacSim drawing on an integer grid of quadratic size, while there exist a wheel and
a cycle that do not admit a geometric RacSim drawing. The problem that we study in this
chapter was left as an open problem.

Closely related to the RacSim drawing problem is the problem of simultaneously drawing
a (primal) embedded graph and its dual, so that the primal-dual edge crossings form right
angles. Brightwell and Scheinermann [BS93] proved that this is always possible if the input
graph is triconnected planar. Erten and Kobourov [EK05a] presented anO(n)-time algorithm
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Graph classes Number of bends Ref. Model

planar + planar 6 + 6 Theorem 7.1 RacSim
subhamiltonian + subhamiltonian 4 + 4 Corollary 7.1 RacSim
outerplanar + outerplanar 3 + 3 Theorem 7.2 RacSim

cycle + cycle 1 + 1 Theorem 7.3 RacSefe
caterpillar + cycle 1 + 1 Theorem 7.4 RacSefe
four matchings 1 + 1 + 1 + 1 Theorem 7.5 RacSim
tree + matching 1 + 0 Theorem 7.6 RacSefe

wheel + matching 2 + 0 Theorem 7.7 RacSefe
outerpath + matching 2 + 1 Theorem 7.8 RacSefe

Table 7.1: A short summary of our results

that computes a simultaneous drawing of a triconnected planar graph and its dual on an
integer grid of size O(n) × O(n), where n is the total number of vertices in the graph and its
dual; their drawings, however, can have non-right angle crossings.

Our contribution. Our main result is that any pair of planar graphs admits a RacSim
drawing with at most six bends per edge. For pairs of subhamiltonian graphs and pairs of
outerplanar graphs, we can reduce the required number of bends per edge to four and three,
respectively; see Section 7.1. (Recall that a subhamiltonian graph is a subgraph of a planar
Hamiltonian graph.) Then, we turn our attention to pairs of more restricted graph classes
where we can guarantee RacSim and RacSefe drawings with one bend per edge or two bends
per edge; see Sections 7.2 and 7.3, respectively. Table 7.1 summarizes our results. Note that all
our algorithms run in linear time, with the exception of the algorithm for an outerpath and a
matching (see Theorem 7.8), which runs in O(n log n) time. The produced drawings fit on
integer grids of quadratic size. The main approach of all our algorithms is to find linear orders
on the vertices of the two graphs and then to compute the exact coordinates of the vertices of
both graphs based on these orders. These drawings may contain non-rectilinear segments
(referred to as slanted segments, for short), but all crossings in our drawings appear between
horizontal and vertical edge segments and are therefore at right angle.

7.1 RacSim Drawings of General Graphs

In this section, we study general planar graphs and show how to efficiently construct RacSim
drawings in quadratic area, with few bends per edge. We prove that two planar graphs on
a common set of vertices admit a RacSim drawing with six bends per edge (Theorem 7.1).
We lower the required number of bends per edge to 4 for pairs of subhamiltonian graphs
(Corollary 7.1), and to 3 for pairs of outerplanar graphs (Theorem 7.2). Note that the class of
subhamiltonian graphs is equal to the class of 2-page book-embeddable graphs, and the class
of outerplanar graphs is equal to the class of 1-page book-embeddable graphs [BK79].
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Figure 7.2: Drawings of two planar graphs by Kaufmann and Wiese [KW02]

Central to our approach is an algorithm by Kaufmann andWiese [KW02] that embeds any
planar graph such that vertices are mapped to points on a horizontal line (the so-called spine)
and each edge crosses the spine at most once; see Figure 7.2. If one replaces each spine crossing
with a dummy vertex, then a linear order of the vertices (both original and dummy) is obtained
with the property that every edge is either completely above or completely below the spine. In
order to determine the exact locations of the vertices of the two given graphs in our problem,
we use the linear order induced by the first graph to compute the x-coordinates and the linear
order induced by the second graph to compute the corresponding y-coordinates. (Note that
this approach has been used for simultaneous drawing problems before [EK05b].) Then, we
draw the edges of both graphs, so that all edges-crossings

(i) are restricted between vertical and horizontal edge-segments, that is, slanted edge-
segments are crossing-free, and

(ii) appear in the interior of the smallest axis-aligned rectangle containing all vertices.

Theorem 7.1. Two planar graphs on a common set of n vertices admit a RacSim drawing on
an integer grid of size (14n − 26) × (14n − 26) with six bends per edge. The drawing can be
computed in O(n) time.

Proof. Let G1 = (V , E1) and G2 = (V , E2) be planar graphs. For m ∈ {1, 2}, let ξm be an
embedding of Gm according to the algorithm of Kaufmann and Wiese [KW02]; see Figure 7.2.
As explained before, we subdivide all edges of Gm that cross the spine in ξm by introducing a
dummy vertex at the point where it crosses the spine. LetG′m = (V ′m , E′m) = (V∪Vm ,Am∪Bm)
be the resulting graph, whereVm is the set of dummy vertices in G′m , Am is the set of edges that
are drawn completely above the spine and Bm is the set of edges that are drawn completely
below the spine. Let ξ′m be the embedding of G′m .
Now we show how to determine the x-coordinates of the vertices in V ′1 by assigning the

vertices to the columns of a grid; the y-coordinates of the vertices in V ′2 are determined
analogously. Let n′1 be the number of vertices in V ′1 and let v1 → v2 → ⋅ ⋅ ⋅ → vn′1 be the linear
order of the vertices of V ′1 along the spine in ξ′1. We start by placing v1. Between any two
consecutive vertices v i and v i+1, we reserve several columns for the bends of the edges incident
to v i and v i+1; see Figure 7.3.
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Figure 7.3: Reserving additional columns between v i and v i+1

The columns are used (in the given order) for the following purposes:

(i) for the first bend on all edges in A2 leaving v i ,

(ii) for the first vertical segment of each edge (v i , v j) ∈ E′1 with j > i,

(iii) for the last vertical segment of each edge (vk , v i+1) ∈ E′1 with k ≤ i, and

(iv) for the last bend on all edges in B2 entering v i+1.

Note that we can save some columns reserved for ((ii)) and ((iii)) because an edge in A1 and
an edge in B1 can use the same column for their bend.
With this procedure, we fully specify the x-coordinates of the vertices in V ′1 ; the y-coor-

dinates of the vertices in V ′2 are determined analogously. Let R be the smallest axis-aligned
rectangle that contains all vertices of the common vertex set of G′1 and G′2 (the gray rectangle in
Figure 7.4a). Note that the y-coordinates of the dummy vertices of V ′1 and the x-coordinates
of the dummy vertices of V ′2 have not been determined by the algorithm so far. They can be
set arbitrarily, as long as the corresponding vertices are inside R.
We proceed to describe how to draw the edges of graph G′1 with at most four bends per

edge such that all edge segments of G′1 in R are either vertical or of y-length exactly 1; see
Figure 7.4b. The edges of graph G2 are drawn analogously (rotated by 90○). First, we draw the
edges (v i , v j) ∈ A1 with i < j in a nested order: When we draw the edge (v i , v j), there is no
edge (vk , v l) ∈ A1 with k ≤ i and l ≥ j that has not already been drawn. Recall that the first
column to the right and the first column to the left of every vertex is reserved for the edges
in E2, hence we assume that they are already used. We draw (v i , v j) with at most four bends
as follows.

We start with a slanted segment incident to v i that has its other endpoint in the row above v i
and in the first unused column that does not lie to the left of v i . We follow with an upward
vertical segment that leaves R. We add a horizontal segment above R; the row of this segment
is determined by the nesting in the book embedding of G′1 . In the last unused column that
does not lie to the right of v j , we add a vertical segment that ends one row above v j . We
finish the edge with a slanted segment that has its endpoint in v j . We draw the edges in B1
symmetrically, with the horizontal segment below R.

Note that this algorithm always uses the top and the bottom port of a vertex v if there is at
least one edge incident to v in A1 and B1 respectively. The edges incident to a dummy vertex
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Figure 7.4: RacSim drawings of the graphs G1 and G2 (see Figure 7.2) with at most six bends per edge,
generated by our algorithm. The edges that cross the spine are drawn dashed; the dummy vertices on these
edges are drawn as squares.

use precisely the top and the bottom port: Dummy vertices have exactly one incident edge
in A1 and one in B1. We create a drawing of G1 and G2 with at most 6 bends per edge by
bypassing (that is, smoothing out) the dummy vertices. This does not change the drawing.
By construction, all edge segments of E1 inside R are either vertical segments or slanted

segments of y-length 1. Symmetrically, all segments of E2 inside R are either horizontal
segments or slanted segments of x-length 1. Thus, the slanted segments cannot intersect. All
crossings inside R occur between a horizontal and a vertical segment, and thus form right
angles. Also, there are no segments in E1 that lie to the left or to the right of R, and there are
no segments in E2 that lie above or below R. Hence, there are no crossings outside R, which
guarantees that the constructed drawing of G1 and G2 is a RacSim drawing.

We now count the columns used by the drawing. For the leftmost and the rightmost vertex,
we reserve one additional column for its incident edges in E2; for the remaining vertices, we
reserve two such columns. For each edge in E1, we use up to three columns: one for each
endpoint of the slanted segment at each vertex and one for the vertical segment that crosses
the spine, if it exists. Recall that at least one edge per vertex does not need a slanted segment.
For each edge in E2, we need at most one column for the vertical segment to the side of R.
Since there are at most 3n − 6 edges, we need at most

3n − 2 + 3 ⋅ (3n − 6) − n + 3n − 6 = 14n − 26

columns. By symmetry we need the same number of rows.
The algorithm of Kaufmann and Wiese computes a drawing with at most 3 bends per

edge in O(n) time. We can compute the nested order of the edges in linear time from the
embedding, as the circular order of the edges around a vertex gives a hierarchical order on
the edges that describes the nested order of the edges. Thus, our algorithm also runs in O(n)
total time.
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We can improve the result of Theorem 7.1 for subhamiltonian graphs, which admit 2-page book
embeddings in which no edges cross the spine [BK79]. Since those edges are the only ones that
need six bends, the number of bends per edge is reduced to four. The number of columns and
rows are also reduced by one per edge. This is summarized in the following corollary. Note,
however, that it is NP-hard to decide whether a given planar graph is subhamiltonian, even
for maximal planar graphs [Wig82]. A 2-page book embedding can be found in linear time,
if the ordering of the vertices along the spine is given [HS99]. Several classes of graphs are
known to be (sub)hamiltonian, for example 4-connected planar graphs [NC08], planar graphs
without separating triangles [KO07], Halin graphs [CNP83], planar graphs with maximum
degree 3 or 4 [BGR14, Hea85].

Corollary 7.1. Two subhamiltonian graphs on a common set of n vertices admit a RacSim
drawing on an integer grid of size (11n−32)×(11n−32) with four bends per edge. The algorithm
runs in O(n) time if the subhamiltonian cycles of both graphs are given.

We use even fewer bends for a RacSim drawing of two outerplanar graphs. This is based on a
decomposition of each of the graphs into two forests. The following lemma shows that we can
do this in linear time.

Lemma 7.1. Every outerplanar graph can be decomposed into two forests. This decomposition
can be computed in linear time.

Proof. It follows by Nash-Williams’ formula [NW64] that every outerplanar graph has ar-
boricity 2, that is, it can be decomposed into two forests. To prove the linear running time,
we first assume biconnectivity and augment the input graph to a maximal outerplanar graph.
Now, if we add a new vertex that is incident to all vertices of the graph, the result is a maximal
planar graph which can be decomposed into three trees [Fel04], so that one of them is a star
incident to the newly added vertex. Hence, the removal of this vertex yields a decomposition
into two trees. The desired decomposition into two forests follows from the removal of the
edges added to augment the graph to maximal outerplanar. For an outerplanar graph that
is not biconnected, we have to compute the aforementioned decomposition for each of its
biconnected components individually. This forms a tree (a so-called BC-tree) and therefore
does not affect the structure of the overall decomposition: It still consists of two forests. The
overall the decomposition can be done in linear time, since both the decomposition of a
maximal planar graph into three trees, and the computation of the biconnected components
of the input outerplanar graph can be done in linear time.

With this lemma, we can further improve the required number of bends per edge to three for
outerplanar graphs. (Recall that all outerplanar graphs are 1-page book embeddable.) We will
use the order of the vertices on the spine of a 1-page book embedding to compute a 2-page
book embedding in which every edge uses a rectilinear port at one of its endpoints, enabling
us to omit one of its bends.

Theorem 7.2. Two outerplanar graphs on a common set of n vertices admit a RacSim drawing
on an integer grid of size (7n − 10) × (7n − 10) with three bends per edge. The drawing can be
computed in O(n) time.
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Proof. LetO1 = (V , E1) andO2 = (V , E2) be the given outerplanar graphs. Wewill embedO1
andO2 on two pages with one forest per page.
To do so, we first create 1-page book embeddings forO1 and forO2 using the linear time

algorithm ofHeath [Hea87]. This gives the orders of the vertices of both graphs along the spine.
It follows by Corollary 7.1 that, by using the algorithm described in the proof of Theorem 7.1,
we can create a RacSim drawing ofO1 andO2 with at most four bends per edge. We will now
show how to adjust the algorithm to reduce the number of bends by one.
We decomposeO1 into two forests A1 and B1 according to Lemma 7.1. We will draw the

edges of A1 above the spine and the edges B1 below the spine. By rooting the trees in A1 in
arbitrary vertices, we can direct each edge such that every vertex has exactly one incoming
edge. Recall that, in the drawing produced in Theorem 7.1, one edge per vertex can use its top
port. We adjust the algorithm such that every directed edge (v ,w) enters vertex w from its
top port. To do so, we draw the edge as follows. We start with a slanted segment of y-length 1.
We follow with a vertical segment to the top, a horizontal segment that ends directly above w,
and finish the edge with a vertical segment that enters w in the top port. We use the same
approach for the edges in B1, using the bottom port and treat the second outerplanar graphO2
analogously.
Since every port of a vertex is only used once, the drawing has no overlaps. We now

analyze the number of columns used. For every vertex except for the leftmost and rightmost,
two additional columns are reserved for the edges in E2; for the remaining two vertices,
we reserve a single additional column. The edges in E1 now only need one column for the
bend of the single slanted segment. For every edge in E2, we need up to one column for
the vertical segment to the side of R. Since there are at most 2n − 4 edges, our drawing
needs 3n−2+2n−4+2n−4 = 7n− 10 columns. Analogously, we can show that the algorithm
needs 7n − 10 rows. Since the decomposition can be computed in O(n) time, our algorithm
also requires O(n) time.

7.2 RacSim and RacSefe Drawings with One Bend per
Edge

In this section, we study simple classes of planar graphs and show how to efficiently construct
RacSim and/or RacSefe drawings with one bend per edge in quadratic area. In particular, we
prove that two cycles (four matchings, resp.) on a common set of n vertices admit a RacSefe
(RacSim, resp.) drawing on an integer grid of size 2n × 2n; see Theorem 7.3 (Theorem 7.5,
resp.). If the input to our problem is a caterpillar and a cycle, then we can compute a RacSefe
drawing with one bend per edge on an integer grid of size (2n − 1) × 2n; see Theorem 7.4. For
a tree and a cycle, we can construct a RacSefe drawing with one bend per tree edge and no
bends in the matching edges on an integer grid of size n × (n − 1); see Theorem 7.6.
In the next proof and in a few more places throughout this chapter, we use the following

common notation. For any real x, let the sign of x, sgn(x), be 0 if x = 0, 1 if x > 0, and −1 if
x < 0.

Lemma 7.2. Two paths on a common set of n vertices admit a RacSefe drawing on an integer
grid of size 2n × 2n with one bend per edge. The drawing can be computed in O(n) time.

116



RacSim and RacSefe Drawings with One Bend per Edge Section 7.2

1

3

5

7

9

11

1197531

v1

v2

v4

v6

v5

v3
C2

C1

P1

P2

Figure 7.5: RacSefe drawings with one bend per edge: two pathsP1 (thin solid) andP2 (bold dashed) and two
cycles C1 = P1 + (v1 , v6) and C2 = P2 + (v1 , v3)

Proof. Let P1 = (V , E1) and P2 = (V , E2) be the given paths. To keep the description
simple, we first assume that P1 and P2 do not share edges. Following standard practices
from the literature (see for example Brass et al. [BCD+07]), we draw P1 x-monotone and P2
y-monotone. This ensures that the drawing of the paths will individually be planar. We will
now describe how to compute the exact coordinates of the vertices and how to draw the edges
of P1 and P2, such that all crossings are at right angles and, more importantly, that no edge
segments overlap.

For m ∈ {1, 2} and any vertex v ∈ V , let πm(v) be the position of v in Pm . Then, v is drawn
at the point p(v) = (2π1(v) − 1, 2π2(v) − 1); see Figure 7.5. It remains to determine, for each
edge e = (v , v′), where to place its bend. First, assume that e ∈ E1 and that e is directed from
its left endpoint, say v, to its right endpoint, say v′. Then we place the bend to the left of v′,
and one row above or below it depending on which direction the edge is coming from. To
be exact, we place it at p(v′) − (2, sgn(y(v′) − y(v))). Second, assume that e ∈ E2 and e is
directed from its bottom endpoint, say v, to its top endpoint, say v′. Then, we place the bend
at p(v′) − (sgn(x(v′) − x(v)), 2).

The area required by the drawing is (2n− 1)×(2n− 1). An edge ofP1 leaves its left endpoint
vertically and enters its right endpoint with a slanted segment of x-length 1 and y-length 2.
Similarly, an edge of P2 leaves its bottom endpoint horizontally and enters its top endpoint
with a slanted segment of x-length 2 and y-length 1. Hence, the slanted segments cannot be
involved in crossings or overlaps. Since P1 and P2 are x- and y-monotone, respectively, it
follows that all crossings must involve a vertical edge segment of P1 and a horizontal edge
segment of P2, which is at right angle. The runtime is clearly linear.
Finally, we show that our algorithm supports the Sefe model. Assume that P1 = (V , E1)

and P2 = (V , E2) share edges, and let e = (v , v′) be an edge that belongs to both input paths.
Our algorithm automatically places v and v′ at consecutive x- and y-coordinates and draws e
as a diagonal of x- and y-length 2 in both graphs, which cannot be involved in a crossing.

We say that an edge uses the bottom/left/right/top port of a vertex if it enters the vertex from
the bottom/left/right/top.
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Theorem 7.3. Two cycles on a common set of n vertices admit a RacSefe drawing on an integer
grid of size 2n× 2n with at most one bend per edge. The drawing can be computed in O(n) time.

Proof. Let C1 = (V , E1) and C2 = (V , E2) be the given cycles and assume first that C1 and C2
do not share edges. Let v ∈ V be an arbitrary vertex. We temporarily delete one edge (v ,w1) ∈
E1 from C1 and one edge (v ,w2) ∈ E2 from C2 (refer to the edges (v1 , v3) and (v1 , v6) in
Figure 7.5). This results into two paths P1 = ⟨v , . . . ,w1⟩ and P2 = ⟨v , . . . ,w2⟩. We use the
algorithm of Lemma 7.2 to construct a RacSim drawing of P1 and P2 on an integer grid of
size (2n − 1) × (2n − 1). Since v is the first vertex in both paths, it is placed at the bottom-left
corner of the bounding box containing the drawing. Sincew1 andw2 are the last vertices inP1
and P2, respectively, w1 is placed on the right side, and w2 on the top of the bounding box.
By construction, the bottom port of w1 and the left port of w2 are both unoccupied. Hence,
the edges (v ,w1) and (v ,w2) that form C1 and C2 can be drawn with a single bend at points
(2n − 1, 0) and (0, 2n − 1) respectively; see Figure 7.5. Since both edges are completely outside
of the bounding box containing the drawing, neither is involved in crossings. The total area of
the drawing gets larger by a single unit in each dimension. The runtime bound is unaffected.

It remains to consider the case that C1 and C2 share edges. Since P1 and P2 already support
the Sefe model, it suffices to consider the case that a closing edge (v ,w1) or (v ,w2) is also
contained in the other graph. Since the closing edges are drawn planar, we can simply use
their drawing in both graphs and remove the corresponding edge from the path. Thus, the
drawing supports the Sefe model.

Theorem 7.4. A caterpillar and a cycle on a common set of n vertices admit a RacSefe drawing
on an integer grid of size (2n − 1) × 2n with one bend per edge. The drawing can be computed in
O(n) time.

Proof. Let A = (V , EA) be the given caterpillar and C = (V , EC) the given cycle. Similar
to the previous proofs, we will first prove thatA and C admit a RacSim drawing, assuming
that they do not share edges. We postpone the case whereA and C share edges for later. A
caterpillar can be decomposed into a path, called its spine, and a set of leaves connected to the
path, called its legs. Let v1 , v2 , . . . , vn be the vertex set ofA ordered as follows (see Figure 7.6):
Starting from an endpoint of the spine ofA, we traverse the caterpillar such that we visit all
legs incident to a spine vertex before moving on to the next spine vertex. This order defines
the x-order of the vertices in the output drawing.
As in the proof of Theorem 7.3, we temporarily delete an edge of C incident to v1 (see the

thin dashed edge in Figure 7.6) and obtain a path which we denote by P = (V , EP). For
any vertex v i ∈ V , let π(v i) be the position of v i in P . The map π determines the y-order
of the vertices in our drawing. For i ∈ {1, 2, . . . , n}, we draw vertex v i at point p(v i) =
(2i − 1, 2π(v i) − 1). It remains to determine, for each edge e = (v , v′), where to place its
bend. First, assume that e ∈ EP and that e is directed from its bottom endpoint, say v, to
its top endpoint, say v′ (see the bold dashed edges in Figure 7.6). Then, we place the bend
at p(v) + (sgn(x(v′) − x(v)), 2). Second, assume that e ∈ EA and e is directed from its left
endpoint, say v, to its right endpoint, say v′ (see the solid edges in Figure 7.6). Then, we place
the bend at (x(v′), y(v) + sgn(y(v′) − y(v)).

The approach described above ensures that P is drawn y-monotone, hence planar. The
spine of A is drawn x-monotone. The legs of a spine vertex of A are drawn to the right of
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Figure 7.6: A RacSefe drawing of a caterpillar (solid; its spine is drawn bold) and a cycle (dashed)

their parent spine vertex and to the left of the next vertex along the spine. Hence,A is drawn
planar as well. The slanted segments ofA have y-length 1, while the slanted segments of P
have x-length 1. Thus, they cannot be involved in crossings, which implies that all crossings
form right angles.
It remains to draw the edge e in EC ∖ EP . Recall that e is incident to v1, which lies at the

bottom-left corner of the bounding box containing our drawing. Let v j be the other endpoint
of e. Since π(v j) = n, vertex v j lies at the top of the bounding box. As the top port of v1 is not
used, we can draw the first segment of e vertical, bending at (1, 2n); see the thin dashed edge
in Figure 7.6.

To complete the proof of this theorem, it remains to show that our algorithm supports the
Sefe model. Suppose that there is an edge e = (v , v′) that belongs to both A and C. Our
algorithm places v and v′ at consecutive y-coordinates. Thus, the drawing of e inA consists
of a slanted and a vertical segment of y-length 1 each. This drawing of e inA is not crossed by
any edge of EC , so e can be drawn in the same way for both graphs.
Clearly, the area of the drawing is (2n − 1) × 2n, and the runtime is linear.

Theorem 7.5. Four matchings on a common set of n vertices admit a RacSim drawing on an
integer grid of size 2n × 2n with at most one bend per edge. The drawing can be computed in
O(n) time.

Proof. LetM1 = (V , E1),M2 = (V , E2),M3 = (V , E3) andM4 = (V , E4) be the given
matchings. Without loss of generality, we assume that all matchings are perfect; otherwise,
we augment them to perfect matchings. LetM1,2 = (V , E1 ∪ E2) andM3,4 = (V , E3 ∪ E4).
SinceM1 andM2 are defined on the same vertex set,M1,2 is a 2-regular graph. Thus, each
connected component ofM1,2 corresponds to a cycle of even length which alternates between
edges ofM1 andM2; see Figure 7.7. The same holds forM3,4. We will determine the
x-coordinates of the vertices fromM1,2, and the y-coordinates fromM3,4.
We start by choosing an arbitrary vertex v ∈ V . Let C be the cycle ofM1,2 containing

vertex v. We determine the x-coordinates of the vertices of C by traversing it in some direction,
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Figure 7.7: A RacSim drawing of four matchings:M1 (solid-plain),M2 (solid-bold),M3 (dashed-plain), and
M4 (dashed-bold)

starting from vertex v. For each vertex u in C, let π1(u) be the discovery time of u according
to this traversal, with π1(v) = 0. We set x(u) = 2π1(u) + 1. After doing this, we determine
the y-coordinates of all vertices that lie on cycles inM3,4 that contain at least one vertex of C
(that is, cycles inM3,4 that contain a vertex for which the x-coordinate has been determined).
Call these cycles C1 , . . . , Ck , ordered as follows. For i ∈ {1, . . . , k}, let a i be the anchor
of Ci , that is, the vertex with the smallest determined x-coordinate of all vertices in Ci .
Then, x(a1) < . . . < x(ak). In what follows, we start with the first cycle C1 of the computed
order and determine the y-coordinates of its vertices. To do so, we traverseC1 in some direction,
starting from its anchor vertex a1. For each vertex u in C1, let π2(u) be the discovery time
of u according to this traversal, with π2(a1) = 0. Then, we set y(u) = 2π2(u) + 1. We proceed
analogously with the remaining cycles Ci , i = 2, . . . , k, setting π2(a i) = maxu∈Ci−1 π2(u) + 1.

After this step, there are no vertices for which only the x-coordinate has been determined.
However, there might exist vertices where only the y-coordinate has been determined. If this
is the case, we repeat the aforementioned procedure to determine the x-coordinates of the
vertices of all cycles ofM1,2 ∖ C that have at least one vertex with a determined y-coordinate,
but without determined x-coordinates. If there are no vertices with only one determined
coordinate left, either all coordinates are determined, or we restart this procedure with another
arbitrary vertex that has no determined coordinates. Thus, our algorithm guarantees that the
x- and y-coordinate of all vertices are eventually determined.
Note that for each cycle inM1,2 there is exactly one edge e = (v , v′)with π1(v′) > π1(v)+ 1.

We call this the closing edge. Analogously, for each cycle inM3,4, there is exactly one closing
edge e = (u, u′) with π2(u′) > π2(u) + 1.
Finally we determine, for each edge e = (v , v′), where to place its bend. First, assume

that e ∈ E1 ∪ E2 and that e is directed from its left endpoint, say v, to its right endpoint,
say v′. If e is not a closing edge, we place the bend at (x(v′) − 2, y(v′) − sgn(y(v′) − y(v)).
Otherwise, we place the bend at (x(v′), y(v) − 1). Second, assume that e ∈ E3 ∪ E4 and e is
directed from its bottom endpoint, say v, to its top endpoint, say v′. If e is not a closing edge,
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Figure 7.8: A RacSefe drawing of a tree (solid; rooted in r) and a matching (dashed). For each of the three
subtrees hanging off vertex s we used a different color; the subtrees occupy disjoint x-intervals (marked below
the drawing).

we place the bend at (x(v′) − sgn(x(v′) − x(v)), x(v′) − 2). Otherwise, we place the bend
at (x(v) − 1, y(v′)); see Figure 7.7.
Our choice of coordinates guarantees that the x-coordinates of the cycles ofM1,2 and

the y-coordinates of the cycles ofM3,4 form disjoint intervals. Thus, the area below a cycle
ofM1,2 and the area to the left of a cycle ofM3,4 are free from vertices. Hence, the slanted
segments of the closing edges cannot have a crossing that violates the RAC restriction. The
total area required by the drawings is 2n × 2n. The running time is linear.

We now detail how to compute a RacSefe drawing of a rooted tree and a matching with one
bend per tree edge and no bends on matching edges. Figure 7.8 shows an example output of
our algorithm. Our layout algorithm is inspired by an algorithm for drawing a geometric
simultaneous embedding of a tree and a matching by Cabello et al. [CvL+11], which in turn
goes back to an algorithm of Di Giacomo et al. [DDvK+09]. Cabello et al. draw edges straight
(that is, no bends), but their crossing angles are not necessarily right. We recall some of their
notation that we will then use for our purposes.
Cabello et al. draw the edges of the matching horizontally. They partition the matching

into a top group and a bottom group. Within the top group, they place the edges from top to
bottom; vice versa within the bottom group. Once a matching edge is assigned to one of the
two groups, the edge and its endpoints are called placed.

The assignment of the edges to the groups is iterative. In each step, the placed vertices
induce an edge partition of the tree into connected components (subtrees); each component
up to and including the placed vertices is called a rope. If a rope with three placed vertices
exists, the vertex that lies on all three paths between these placed vertices is called a splitter;
see Figure 7.9a. Cabello et al. showed that placing a vertex creates at most one splitter and that
placing a splitter does not create a new one.
Now, we are ready to present our algorithm in detail.
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(b) Vertex w has been placed at the top in the previous step, creating a
splitter v that will now be placed at the bottom.

Figure 7.9: Definition and placement of a splitter

Theorem 7.6. A tree and a matching on a common set of n vertices admit a RacSefe drawing
on an integer grid of size n × (n − 1) with one bend per tree edge and no bends on matching
edges. The drawing can be computed in O(n) time.

Proof. We first consider the case where the input graphs do not share edges. We root the given
tree in an arbitrary leaf r, which yields a directed tree T . We will obtain the x-coordinates of
the vertices from a particular post-order traversal of this directed tree. As a consequence, all
children of a vertex are placed to its left, and disjoint subtrees are placed in disjoint x-intervals.
By adding dummy edges, we augment the given matching to a perfect matching if n is even,
or to a near-perfect matching if n is odd. LetM be the augmented matching. After the
algorithm terminates, these dummy edges can be safely removed. In order to compute a
RacSefe drawing of T andM, we follow an approach that is based on the one of Cabello
et al. The difference is that (a) rather than placing ropes in disjoint parallelograms, we place
subtrees into disjoint axis-parallel rectangles, and (b) the assignment of matching edges to
the two groups is much simpler.

First, we show how to compute the y-coordinates of the vertices. Each edge ofM is drawn
horizontally at a unique odd y-coordinate between 1 and n−1. The coordinates are determined
as follows. We start by putting the matching edge containing the root of T into the top group.
Within the top group, the edges are assigned to odd rows, from top to bottom, starting from
row n − 2 if n is odd, or n − 1 otherwise. In the bottom group, the edges are also assigned to
odd rows, but from bottom to top, starting from row 1. In this way, a matching edge is always
assigned to an odd row between 1 and n − 1. Thus, our drawing needs at most n − 1 rows. In
the following we show how to determine the group into which a matching edge goes. There
are two cases.

If there is no splitter, the algorithm finds an unplaced vertex that has a tree edge to a placed
vertex, and adds its matching edge to the top group. This creates at most one splitter since one
of the placed vertices is adjacent to a vertex that has already been placed. Hence, whenever a
new matching edge is placed, there will be at most one splitter in the graph.

Now, assume that a splitter exists. Call it v. For any subtree, we call the unique vertex with
no incoming edge its local root. Since we start by drawing the root of T , every vertex lies
in a rope that has its local root placed. Let T1(v), . . . , Tk(v) be the subtrees of T hanging
off v; see the left drawing of Figure 7.9b. Then, v is a splitter if and only if there are two
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subtrees Ti(v) and Tj(v) with at least one placed vertex, one of which has been placed in the
last step. Without loss of generality, let w ∈ Ti(v) be this vertex. If w was added to the top
group, we add v to the bottom group; otherwise, we add v to the top group. Thus, the vertices
of the subtrees Tl(v) with l ≠ j will be placed either all above or all below v; see Figure 7.9b.
Next, we describe how to determine the x-coordinates of the vertices. We proceed induc-

tively. For each non-leaf vertex, we compute an order of the subtrees that hang off this vertex.
This order determines the disjoint x-intervals into which we place the subtrees. Let v be a
vertex that is placed in an induction step. We traverse the path from v to the root of the rope it
lies on. For every vertex u on this path, we determine the order of the subtrees of its children
as follows. Let T1(u), . . . , Tℓ(u) be the subtrees hanging off u, assuming v ∈ T1(u). If v is the
only placed successor of vertex u, then we assign the order x(T1(u)) < . . . < x(Tℓ(u)) to
the x-intervals of the subtrees; otherwise, an order has already been determined. When the
algorithm is done, we know the order of the subtrees for every vertex on this path. In particular,
we know the x-interval of the subtree rooted in v. We assign the largest x-coordinate of this
interval to v.
Now, we show how to draw the edges. Let (u, v) be a directed edge of T . We draw (u, v)

with a slanted segment of y-length 1 at vertex u and a vertical segment at vertex v. The bend
of the edge lies at (x(v), y(v) + sgn(y(u) − y(v))). (Note that, if (u, v) ∈ M, then the bend
lies at v, that is, the edge is drawn horizontally.) Since we draw the edges of the matching
horizontally without bends and since the slanted segments are drawn between two consecutive
horizontal grid lines, there can only be crossings between vertical segments of the tree and
horizontal segments of the matching. Thus, all crossings between the tree and the matching
are at right angles.

It remains to show that the drawing of the tree itself is planar. Since the edges of the tree are
drawn with a slanted segment and a vertical segment, each crossing must involve a slanted
segment. Let v be a vertex of the tree. We will show that the slanted segments of the edges
leaving v do not induce a crossing. Since the subtree rooted in v is assigned an x-interval
that contains only vertices of the subtree, crossings can only occur with edges of this subtree.
Recall that v lies on the right border of this x-interval, so all edges leaving v are directed to
the left. Consider the step of the algorithm in which v is placed.

First, assume that v is not a splitter. If no successors of v have been placed so far, they will
be placed all above or all below v. Therefore, the slanted segments of the edges leaving v will
not induce any crossing. Otherwise, let T1(v), . . . , Tk(v) be the subtrees hanging off v. By
construction, all placed successors of v are located in the same subtree T1(v), and T1(v) is
placed to the left of the other subtrees hanging off v. Thus, no edge leaving v is drawn inside
the x-interval assigned to T1(v). The vertices in the other subtrees will be placed all above or
all below v. Therefore, the slanted segments of the edges leaving v will induce no crossing.

Second, assume that v is a splitter. Then, there is a vertex w that was placed in the previous
step and lies in the same rope as v; see Figure 7.9b. Further, all placed successors of v except w
are located in the same subtree T1(v), and T1(v) is placed to the left of the other subtrees
hanging off v. Hence, no edge leaving v is drawn inside the x-interval assigned to T1(v).
Recall that v is placed in the group opposite of w. Thus, w and all unplaced successors of v
(including all vertices in T2(v), . . . , Tk(v)), lie all above or all below v. Therefore, the slanted
segments of the edges leaving v do not induce any crossing. This concludes the proof of
planarity.
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Note that our algorithm supports the Sefe model. Edges that lie both inM and T are drawn
the same way; see the edge incident to vertex s in Figure 7.8.

Finally, we prove the area and running time bounds. Recall that each edge ofM is drawn
horizontally at a unique odd y-coordinate between 1 and n − 1. In every column, we place
exactly one vertex, so the drawing needs n columns. As for the running time, the algorithm to
place the vertices clearly requires only constant time per vertex, except when we traverse the
tree upwards to determine the x-coordinate of a new vertex. As soon as we hit a vertex whose
x-coordinate has already been determined, we are done, assuming that we have precomputed
the sizes of all subtrees (which can be done in linear total time). During the traversal, we fix the
x-coordinates of all vertices that we meet. Hence, in order to determine the x-coordinates of
all vertices, we traverse every edge of T at most once. Thus, the running time of the algorithm
is linear.

7.3 RacSefe Drawings with Two Bends per Edge

In this section, we study slightly more complex classes of planar graphs, and show how
to efficiently construct RacSefe drawings with two bends per edge, in quadratic area. In
particular, we prove that a wheel and a matching on a common set of n vertices admit a
RacSefe drawing on an integer grid of size (1.5n − 1) × (n + 2) with two bends per wheel
edge and no bends on matching edges; see Theorem 7.7. An outerpath (that is, an outerplanar
graph whose weak dual is a path) and a matching admit a RacSefe drawing with two bends
per outerpath edge and one bend per matching edge. They also need a slightly larger grid,
namely one of size (3n − 2) × (3n − 2); see Theorem 7.8.

Theorem 7.7. A wheel and a matching on a common set of n vertices admit a RacSefe drawing
on an integer grid of size (1.5n − 1) × (n + 2) with two bends per wheel edge and no bends on
matching edges, respectively. The drawing can be computed in O(n) time.

Proof. LetW = (V , EW) be the given wheel andM= (V , EM) the given matching. A wheel
can be decomposed into a cycle, called its rim, a center vertex, called its hub, and a set of
edges that connect the hub to the rim, called its spikes. First, we consider the simpler case
according to whichW andM do not share edges (clearly, in this case the hub of the wheel
cannot be incident to a matching edge). Let V = {v1 , v2 , . . . , vn}, such that v1 is the hub of
W and C = ⟨v2 , v3 , . . . , vn , v2⟩ is the rim ofW in this order. Thus, EW = {(v i , v i+1) ∣ i =
1, . . . , n − 1} ∪ {(vn , v2)} ∪ {(v1 , v i) ∣ i = 2, . . . , n}. LetM′ = (V , EM′) be the matchingM
without the edge incident to v1.

We first compute the x-coordinates of the vertices. We do this such that C − {(vn , v2)} is
x-monotone; see Figure 7.10. More precisely, for i ∈ {2, . . . , n}, we set x(v i) = 2i − 3. The
y-coordinates of the vertices are computed based on the matchingM′ as follows. Let EM′ =
{e1 , . . . , ek} be the matching edges, indexed such that v2 is incident to e1. For j ∈ {1, . . . , k},
we assign the y-coordinate 2 j−1 to the endpoints of e j . Next, we assign the y-coordinate 2k+1
to the vertices incident to the rim without a matching edge inM′. Finally, the hub v1 ofW is
located at point (1, 2k + 3).

It remains to place the bend of each edge e ∈ EW ; the edges inM′ are drawn without bends.
First, let e = (v1 , v i), i ∈ {3, . . . , n} be a spike. Then, we place the bend at (x(v i), 2k + 2).
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Figure 7.10: A RacSefe drawing of a wheel (solid; its rim is drawn in bold) and a matching (dashed)

Since both v1 and v2 are located in column 1, we can save the bend of the spike (v1 , v2). Second,
let e = (v i , v i+1), i ∈ {2, . . . , n − 1} be an edge of the rim C. We place the bend according to
the following case distinction.

(i) If y(v i+1) > y(v i), we place the bend at (x(v i+1), y(v i) + 1).
(ii) If y(v i−1) > y(v i) > y(v i+1), we place the bend at (x(v i+1), y(v i) − 1).
(iii) If y(v i) > max{y(v i−1), y(v i+1)}, by (i) the bottom port at v i is already used; see

the edge e in Figure 7.10. Thus, we draw e with two bends; at (x(v i) + 1, y(v i) − 1)
and (x(v i) + 1, y(v i+1) + 1).

Now, let e = (vn , v2) be the remaining edge of the rim. We place its bend at (2n − 2, 0).
Our approach ensures that C − {(vn , v2)} is drawn x-monotone, hence planar. The last

edge (vn , v2) of C is the only edge drawn outside of the bounding box that contains all vertices.
Therefore, also the last edge is crossing-free. The spikes are not involved in crossings with the
rim, as they are outside of the bounding box containing the rim edges. Hence, the drawing
ofW is planar. All edges ofM′ are drawn as horizontal, non-overlapping line segments, so
M′ is drawn planar as well. The slanted segments ofW − (vn , v2) are of y-length 1, so they
cannot be crossed by the edges ofM′. As the edge (vn , v2) is not involved in crossings, it
follows that all crossings betweenW andM′ form right angles.

Finally, we have to insert the matching edge (v1 , v i) incident to the hub. Note that this edge
also exists inW as a spike. Since v i is not incident to a matching edge inM′, it is placed
above all matching edges. Therefore, the copy of (v1 , v i) inW does not cross a matching edge,
and we can use the same layout for the copy of (v1 , v i) inM.
We now show that our algorithm supports the Sefe model. Suppose that there is an

edge e = (v , v′) that belongs to both the rim C and the matchingM. If e is the closing edge
of the rim, then it is drawn planar in C. Thus, this drawing can be used for both graphs.
Otherwise, our algorithm places v and v′ at consecutive x-coordinates and at the same y-
coordinate. Then, we can draw e as a horizontal edge of length 1 in both graphs, and such an
edge cannot be crossed.

We now prove the area bound of the drawing algorithm. To that end, we remove all columns
that contain neither a vertex, nor a bend. First, we count the rows used. Since we remove the
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(b) a RacSefe drawing

Figure 7.11: Two drawings of the same outerpath andmatching. In both figures, the outerpath is drawn solid,
the upper and the lower path are drawn in bold, the spine of the spanning caterpillar is drawn extra bold and
the matching is drawn dashed.

matching edge incident to v1, the matchingM′ has k ≤ n/2 − 1 matching edges. We place
the bottommost vertex in row 1 and the topmost vertex (that is, vertex v1) in row 2k + 3. We
add one extra bend in row 0 for the edge (vn , v2). Thus, our drawing uses 2k + 3 + 1 ≤ n + 2
rows. Next, we count the columns used. The vertices v2 , . . . , vn are each placed in their own
column. Every spike has exactly one bend in the column of a vertex. An edge (v i , v i+1) of rim
W has exactly one bend in a vertex column, except for the case that y(v i) > y(v i−1), y(v i+1).
In this case it needs an extra bend between v i and v i+1, i = 1, . . . , n − 1. Clearly, there can be at
most n/2 − 1 vertices satisfying this condition. Since the edge (vn , v2) uses an extra column
to the right of vn , our drawing uses (n − 1) + (n/2 − 1) + 1 = 1.5n − 1 columns.

Theorem 7.8. An outerpath and a matching on a common set of n vertices admit a RacSefe
drawing on an integer grid of size (3n − 2) × (2n − 1) with two bends per outerpath edge and
one bend per matching edge. The drawing can be computed in O(n log n) time.

Proof. Let Z = (V , EZ) be the given outerpath andM = (V , EM) the given matching.
Recall that an outerpath is a biconnected outerplanar graph whose weak dual is a path of
length at least two; see Figure 7.11a. Furthermore, assume initially that Z andM do not share
edges. Let V = {v1 , v2 , . . . , vn}, indexed such that ⟨v1 , v2 , . . . , vn , v1⟩ is the outer face of Z .
We start by augmenting Z to a maximal outerpath Z ′ = (V , EZ′) by triangulating its

bounded faces. As Z ′ is internally-triangulated, it contains exactly two vertices of degree
two, each of which lies on a face that is an endpoint of the dual path. We assume, without
loss of generality, that deg(vn) = deg(v j) = 2 for some j with 1 < j < n; see v10 and v6
in Figure 7.11a. We call the path Pu = (Vu , Eu) = ⟨v1 , v2 , . . . , v j−1⟩ the upper path of Z ′,
and Pl = (Vl , El) = ⟨v j , v j+1 , . . . , vn⟩ the lower path of Z ′. Observe that V = Vu ∪ Vl. If we
remove Eu ∪ El from EZ′ , then the resulting graph is a caterpillar C that spans V and whose
spine alternates between vertices of Vu and Vl.
We first compute the left-to-right order of the vertices of caterpillar C = (VC , EC) as

described by the algorithm supporting Theorem 7.4. Then, the x-coordinate of the ith vertex
in this order is 3i − 2, i = 1, 2, . . . , n; see Figure 7.11b.
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RacSefe Drawings with Two Bends per Edge Section 7.3

In order to compute the y-coordinates of the vertices, we first partitionM into three match-
ingsMll = (Vll , Ell),Muu = (Vuu , Euu) andMul = (Vul , Eul) as follows. Let (v , v′) ∈ EM.
Then,

(i) (v , v′) ∈ Ell if v , v′ ∈ Vl,

(ii) (v , v′) ∈ Euu if v , v′ ∈ Vu,

(iii) (v , v′) ∈ Eul if v ∈ Vu and v′ ∈ Vl.

Since V = Vu ∪ Vl, it holds that EM = Ell ∪ Euu ∪ Eul. In the resulting layout, the edges in Ell
will be drawn below the edges in Eul, which in turn will be drawn below the ones of Euu; see
Figure 7.11b. Thus, they will not cross each other.
Let mll = ∣Ell∣ and Ell = {e1 , . . . , em ll}. We draw the edges from bottom to top, starting

from row 1. For i = 1, . . . ,mll, let e i = (u i , u′i) with x(u i) < x(u′i). We set y(u i) = 4i − 1 and
y(u′i) = 4i − 3. Edge e i is drawn with a bend at (x(u i), y(u′i)). Our approach ensures that
there are no crossings between edges ofMll, as they are drawn in different horizontal strips of
the drawing. Similarly, we draw the edges in Euu from top to bottom, starting from row 2n − 1.
Let muu = ∣Euu∣. By construction, the topmost vertex of Vll is drawn in the row 4mll − 1 and
the bottommost vertex of Vuu is drawn in the row 2n + 1 − 4muu. The vertices of Vul will be
drawn between these rows; see Figure 7.11b.
In order to draw the edges in Eul, we process the vertices of the set Vul from left to right

and assign y-coordinates to both endpoints of the incident matching edge. Let mul = ∣Eul∣
and Eul = {ε1 , . . . , εmul}. For k ∈ {1, . . . , µ}, let εk = (wk ,w′k) and assume without loss of
generality that x(wk) < x(w′k) and x(w1) < . . . < x(wµ). We place the vertices in Vl from
bottom to top and the vertices in Vu ∩ Vul from top to bottom. If wk ∈ Vu, we assign the
y-coordinate 4mll−1+3k towk and the y-coordinate 2n+1−4muu tow′k ; ifwk ∈ Vl, we switch
the y-coordinates. Edge εk is drawn with a bend at (x(wk), y(w′k)). Further, every edge
ε l ∈ Eul with l > k has its endpoints to the right of wk and in the horizontal strip defined by
the lines y = y(wk) and y = y(w′k). Hence, it will not be involved in crossings with (wk ,w′k).
This guarantees that the drawing ofM is planar.

It remains to determine, for each edge e = (v , v′) ∈ Z ′, where to place its bend. Without loss
of generality, let e be directed from its left endpoint, say v, to its right endpoint, say v′. First,
assume that e ∈ Eu ∪El belongs to the outercycle. Then, we place its bends at (x(v′)−2, y(v))
and (x(v′) − 2, y(v′) − sgn(y(v′) − y(v))). Second, assume that e ∈ EC belongs to the
inner caterpillar. Then, we place its bends at (x(v′) − 1, y(v) + sgn(y(v) − y(v′))) and
(x(v′) − 1, y(v′) − sgn(y(v′) − y(v))).
Since Pu and Pl are drawn x-monotone, both are drawn planar. Following similar argu-

ments as in the proof of Theorem 7.4, we can show that C is drawn planar as well. Since C is
drawn between Pu and Pl, it follows that Z ′ is drawn planar, as desired. It now remains to
prove that all (potential) crossings between Z ′ andM only involve rectilinear edge segments
of Z ′, asM consists exclusively of rectilinear segments. As all slanted segments of Z ′ are of
y-length 1, no horizontal segment ofM can cross them. The same holds for vertical segments
ofMuu ∪Mll, as they are drawn above and below Pl and Pu, respectively. The only possible
non-rectilinear crossings are between a vertical segment of a matching edge (u, v) ∈ Eul and
a long slanted segment of C incident to a spine vertex w. This crossing can only occur if w
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Chapter 7 Simultaneous Drawing of Planar Graphs with Right-Angle Crossings

lies to the left of the vertical segment of (u, v). By construction, w is never drawn between u
and v, with respect to the y-coordinate. Thus, such crossings cannot occur, which implies all
crossings between Z ′ andM form right angles.
We now show that our algorithm supports the Sefe model. Assume thatM and Z share

edges, and let e = (v , v′) be an edge that belongs to both input graphs. If e ∈ El, then
also e ∈ Ell. Our algorithm places v and v′ at consecutive y-coordinates and determines their
x-coordinates such that no other vertex of Vl lies between them. Thus, edge e is drawn in the
matching as a vertical segment of length 2 and a horizontal segment that has no vertex below
it. Hence, the drawing of e in the matching is planar and can be used for both graphs. The
case e ∈ Eu is analogous.
If e ∈ EC , then also e ∈ Eul. In this case, we observe that the topological routing of e is the

same in both graphs with an offset of one unit to avoid overlaps. Thus, every other edge either
crosses both or none of the drawings of e. Since each drawing of e forbids crossings by edges
of one of the input graphs, actually none of the two drawings can have a crossing. Hence, we
can draw e the same way in both graphs.

By the choice of the coordinates, the area requirement of our algorithm is (3n−2)×(2n−1).
Since we have to sort the edges in Eul by the x-coordinates of the incident vertices, our
algorithm runs in O(n log n) time. To complete the proof of this theorem, observe that the
extra edges that we introduced when augmenting Z to Z ′ can be safely removed from the
constructed layout, affecting neither the crossing angles nor the area of the layout.

7.4 Conclusions and Open Problems

In this chapter, we have studied RacSefe and RacSim drawings with few bends per edge.
We have proven that two planar graphs always admit a RacSim drawing with at most six
bends per edge. For more restricted classes of graphs, we have reduced the number of bends
per edge. Some of these specialized results also hold for the stronger RacSefe model. All
drawings of our algorithms fit it quadratic area.

Our results raise several questions that remain open. First of all, can we strengthen any of
our results from RacSim to RacSefe (see Table 7.1)? Are there other graph classes that admit
RacSim drawings with few bends? Can we reduce the number of bends per edge by relaxing
the strict constraint that edge intersections are at right angles and instead ask for drawings
that have close to optimal crossing resolution? What about the computational complexity of
the general problem, that is, given two or more planar graphs on the same set of vertices and a
non-negative integer k, can we decide efficiently whether there is a RacSim drawing in which
each graph is drawn with at most k bends per edge and the crossings are all at right angles?
This seems unlikely. Finally, is it possible to achieve sub-quadratic area for RacSim drawings
of subclasses of planar graphs when accepting more bends per edge?
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8 Recognizing and Drawing
IC-Planar Graphs

The study of graphs that are, in some sense, “nearly-planar”, is an emerging topic in graph
theory, graph algorithms, and network visualization. The general framework is to relax the
planarity constraint by allowing edge crossings but still forbidding those configurations that
would affect the readability of the drawing too much. Different types of forbidden edge-
crossing configurations give rise to different families of nearly-planar graphs. For example, if
the number of crossings per edge is bounded by a constant k, we have the family of k-planar
graphs (see, for example, [ABK13, HELP12, PT97, Rin65, Tho88]). The k-quasi-planar graphs
admit drawings with no k pairwise crossing edges (see, for example, [DDLM12, FPS13]).
Rac (Right Angle Crossing) graphs can be drawn such that edges cross only at right angles
(see, for example, [DEL11, EL13]). Generalizations of Rac drawings are ACEα and ACLα
drawings, where the edges can cross only at an angle that is exactly α or at least α, respectively,
where α ∈ (0, π/2]; see [DL12] for a survey. Further families of nearly-planar graphs are
fan-crossing free graphs [CHKK13] and fan-planar graphs [BCG+14, BDD+14, KU14]. Most of
the existing literature on nearly-planar graphs can be classified according to the study of the
following problems (see also [Lio14] for additional references).

Previous work. Previous work on related graph classes can be categorized into different
types of problems.

Coloring Problem: While the chromatic number of planar graphs is four, it is rather natural
to ask what restrictions on the crossing configurations force the chromatic number of a
graph to be relatively small. For example, Borodin [Bor84] proved that the chromatic
number of 1-planar graphs is six. See also Borodin et al. [BKRS01] for more papers that
study the coloring problems of nearly-planar graphs.

Turán-type Problem: The question here is to determine how many edges a nearly-planar
graph can have. In particular, it is known that all the families of nearly-planar graphs
mentioned above are rather sparse (see, for example, [Ack09, AT07, AAP+97, BEG+12,
Did13, KU14, PT97, Val98, VBSW83]).

Recognition Problem: In contrast to testing for planarity, recognizing a nearly-planar
graph has often been proved to be NP-hard. This is, for example, the case for 1-planar
graphs [KM13], Rac graphs [ABS12], and fan-planar graphs [BCG+14, BDD+14]. For
some constrained classes of nearly-planar graphs, polynomial-time tests exist (for
example, [ABB+13, EHK+13, HEK+14]).

Drawing Algorithms: Some recent papers describe drawing algorithms for different families
of nearly-planar graphs; the majority of them focuses on drawings with straight-line
edges and often considers the interplay with other readability constraints, such as
compact area. A limited list of examples includes [ABK13, DDEL14, DDLM13].
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v

e1 e2

(a) a 1-planar drawing that is not IC-planar

v

e1 e2

(b) an IC-planar drawing

Figure 8.1: Two drawings of the same graph

Inclusion/intersection relationships: Therelationships between different classes of nearly-
planar graphs are also proved, as a fundamental step towards developing a comprehen-
sive theory of graph drawing beyond planarity (see, for example, [BDD+14, EL13]), or
between nearly-planar graphs and graphs that admit specific types of visual representa-
tions [Bra14, EKL+13].

This chapter studies IC-planar graphs, which stands for Independent Crossings graphs, i.e.,
graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is
crossed at most once. See Figure 8.1 for an example. For instance, the drawing of Figure 8.1a
is not IC-planar because the two edges e1 and e2 are both crossed and they share vertex v; the
drawing of Figure 8.1b is IC-planar. In other words, IC-planar graphs are 1-planar graphs with
the additional property that all edge crossings are independent from one another. Král and
Stacho [KS10] exploited the independence of the edge crossings to show that IC-planar graphs
have chromatic number at most five. Albertson [Alb08] has showm that IC-planar graphs
have chromatic number at most six; the chromatic number of IC-planar graphs was then
proved to be at most five by Zhang and Liu [ZL13]. Zhang and Liu also study the Turán-type
problem and prove that IC-planar graphs have at most 13n/4 − 6 edges, which is a tight
bound. Zhang [Zha14] studies so-called plane graphs with near independent crossings (NIC-
planar graphs), that is, each pair of crossing edges shares at most one endpoint, and states the
computational complexity of recognizing IC-planar graphs as an open problem.

Our contribution. We extend the theory on IC-planarity beyond the already studied
coloring and Turán-type problems. We investigate drawing algorithms, the complexity of
the recognition problem, and the interplay between IC-planar graphs and other families of
nearly-planar graphs. Our results are as follows.

(i) We present an O(n)-time algorithm that computes a straight-line drawing of an IC-
planar graph with n vertices in O(n2) area, which is worst-case optimal (Theorem 8.1).
It may be worth recalling that not all 1-planar graphs admit a straight-line drawing and
that there are embedded 1-planar graphs that require Ω(2n) area [HELP12].

(ii) We prove that IC-planarity testing is NP-complete both in the variable embedding
setting (Theorem 8.2) and when the rotation system of the graph is fixed (Theorem 8.3).
Note that 1-planarity testing is already known to be NP-complete in general [KM13],
even if the rotation system is fixed [ABGR15]. In addition to the hardness result, we
present a polynomial-time algorithm that tests whether a set of matching edges can
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(a) (b)

a b

c d
(c)

a

b

c
d

(d)

Figure 8.2: (a) An IC-planar drawing; (b) two different IC-planar embeddings of the same graph with the same
rotation system; (c) an X-configuration; (d) a B-configuration.

be added to a triangulated plane graph such that the resulting graph is IC-planar
(Theorem 8.4). We remark that in any IC-planar drawing the set of crossing edges form
a matching.

(iii) We study the interplay between IC-planar graphs and Rac graphs. Namely, we show that
every IC-planar graph is a Rac graph (Theorem 8.5), which sheds new light on an open
problem about the relationship between 1-planar graphs and Rac graphs [EL13]. We
also prove that a straight-line Rac drawing of an IC-planar graph may require Ω(qn)
area, for a suitable constant q > 1 (Theorem 8.6).

Notation. We consider simple undirected graphsG. Recall that a drawing Γ ofG is planar if
no edges cross, and 1-planar if each edge is crossed at most once. Γ is IC-planar if it is 1-planar
and there are no crossing edges that share a vertex (see Figure 8.2a). Further, recall that a
rotation systemR(G) of a graph G describes a possible cyclic ordering of the edges around
the vertices. R(G) is planar (1-planar, IC-planar) if G admits a planar (1-planar, IC-planar)
embedding that preservesR(G). Observe thatR(G) can directly be retrieved from a drawing
or an embedding. The converse does not necessarily hold, as shown in Figure 8.2b.
A kite K is a graph isomorphic to K4 with an embedding such that all the vertices are on

the boundary of the outer face, the four edges on the boundary are planar, and the remaining
two edges cross each other; see Figure 8.2c. Thomassen [Tho88] characterized the possible
crossing configurations that occur in a 1-planar drawing. This characterization applied to
IC-planar drawings gives rise to the following property, where an X-crossing is of the type
described in Figure 8.2c, and a B-crossing is of the type described in Figure 8.2d (the bolds
edges only).

Property 8.1. Every crossing of an IC-planar drawing is either an X- or a B-crossing.

8.1 Straight-Line Drawings of IC-planar graphs

We show that every IC-planar graph admits an IC-planar straight-line grid drawing in
quadratic area, and this area is worst-case optimal (Theorem 8.1). The result is based on
first using a new technique that possibly augments the input graph to a maximal IC-plane
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graph (the resulting embedding might be different from the original one) with specific proper-
ties (Lemma 8.1), and then on suitably applying on the augmented graph a drawing algorithm
by Alam et al. for triconnected 1-plane graphs [ABK13] on the augmented graph. We say
that a kite (a, b, c, d) with crossing edges (a, d) and (b, c) is empty if it contains no other
vertices, that is, the edges (a, c), (a, d), and (a, b) are consecutive in the counterclockwise
order around a; see Figure 8.3b. The condition for the edges around b, c, and d is analogous.

Lemma 8.1. Let G = (V , E) be an IC-plane graph with n vertices. There exists an O(n)-time
algorithm that computes a planar-maximal IC-plane graph G+ = (V , E+) with E ⊆ E+ such
that the following conditions hold:

(c1) The four endvertices of each pair of crossing edges induce a kite.

(c2) Each kite is empty.

(c3) Let C be the set of crossing edges in G+. Let C∗ ⊂ C be a subset containing exactly one
edge for each pair of crossing edges. Then G+ ∖ C∗ is plane and triangulated.

(c4) The outer face of G+ is a 3-cycle of non-crossed edges.

Proof. Let G be an IC-plane graph; we augment G by adding edges such that for each pair of
crossing edges (a, d) and (b, c) the subgraph induced by vertices {a, b, c, d} is isomorphic
to K4; see the dashed edges in Figures 8.2c and 8.2d. Next, we want to make sure that this
subgraph forms an X-configuration and the resulting kite is empty. Since G is IC-planar,
it has no two B-configurations sharing an edge. Thus, we remove a B-configuration with
vertices {a, b, c, d} by rerouting the edge (a, b) to follow the edge (a, d) from vertex a until
the crossing point, then edge (b, c) until vertex b, as shown by the dotted edge in Figure 8.2d.
This is always possible, because edges (a, c) and (b, d) only cross each other; hence, following
their curves, we do not introduce any new crossing. The resulting IC-plane graph satisfies
condition (c1) (recall that, by Property 8.1, only X- and B-configurations are possible). Now,
assume that a kite {a, b, c, d} is not empty; see Figure 8.3a. Following the same argument as
above, we can reroute the edges (a, b), (b, d), (c, d) and (a, d) to follow the crossing edges
(a, d) and (b, c); see Figure 8.3b. The resulting IC-plane graph is denoted by G′ and satisfies
condition (c2).
We now augment G′ to G+, such that condition (c3) is satisfied. Let C be the set of all

pairs of crossing edges in G′. Let C∗ be a subset constructed from C by keeping only one
(arbitrary) edge for each pair of crossing edges. The graph G′ ∖ C∗ is clearly plane. To
ensure condition (c3), graph G+ ∖ C∗ must be plane and triangulated. Because G′ satisfies
condition (c2), each removed edge spans two triangular faces in G′ ∖ C∗. Thus, no face
incident to a crossing edge has to be triangulated. We internally triangulate the other faces by
picking any vertex on its boundary and connecting it to all other vertices (avoiding multiple
edges) of the boundary; see e.g. Figure 8.3c. Graph G+ is then obtained by reinserting the
edges in C∗ and satisfies condition (c3). To satisfy condition (c4), notice that G+ is IC-plane,
hence, it has a face f whose boundary contains only non-crossed edges. Also, f is a 3-cycle by
construction. Thus, we can re-embed G+ such that f is the outer face.
It remains to prove that the described algorithm runs in O(n) time. Namely, let m be the

number of edges of G, augmenting the graph such that for each pair of crossing edges their
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(c) triangulating the remaining
faces

Figure 8.3: Illustration for the proof of Lemma 8.1

end-vertices induce a subgraph isomorphic to K4 can be done in O(m) time (the number
of added edges is O(n)). Similarly, rerouting some edges to remove all B-configurations
requires O(m) time. Also, triangulating graph G′ ∖ C∗ can be done in time proportional to
the number of faces of G′ ∖C∗, which is O(n +m). Since IC-planar graphs are sparse [ZL13],
the time complexity follows.

Theorem 8.1. There is an O(n)-time algorithm that takes an IC-plane graph G with n vertices
as input and constructs an IC-planar straight-line grid drawing of G in O(n) ×O(n) area. This
area is worst-case optimal.

Proof. Augment G into a planar-maximal IC-plane graph G+ in O(n) time using Lemma 8.1.
Graph G+ is triconnected, as it contains a triangulated plane subgraph. Draw G+ with the
algorithm by Alam et al. [ABK13] which takes as input a 1-plane triconnected graph with n
vertices and computes a 1-planar drawing on the (2n − 2) × (2n − 3) grid in O(n) time; this
drawing is straight-line, but for the outer face, which may contain a bent edge if it has two
crossing edges. Since by Lemma 8.1 the outer face ofG+ has no crossed edges, Γ is straight-line
and IC-planar. Dummy edges are then removed from Γ.

It remains to prove that the area bound of the algorithm is worst-case optimal. To this aim,
we show that for every n ≥ 2 there exists an IC-planar graph G with Θ(n) vertices, such that
every IC-planar straight-line grid drawing of G requires Ω(n2) area. Dolev et al. [DLT84]
described an infinite family of planar graphs, called nested triangle graphs, such that every
planar straight-line drawing of an n-vertex graph G (for n ≥ 6) of this family requires Ω(n2)
area. We augment G as follows. For every edge (u, v) of G, we add a vertex cuv , and two
edges (u, cuv) and (cuv , v). Denote by G+ the resulting augmented graph, which clearly
has Θ(n) vertices. We now show that in every possible IC-planar straight-line drawing
of G+ there are no two edges of G that cross each other. Suppose, by contradiction, that two
edges (u, v) and (w , z) of G cross each other in an IC-planar straight-line drawing Γ of G+.
Observe that the subgraph induced by the vertices u, v , cuv is a 3-cycle. Clearly, either w
or z lies inside this 3-cycle, while the other one lies outside, as otherwise (u, v) would be
crossed twice (or it would not be crossed). Thus, it immediately follows that the IC-planarity
condition cannot be respected, since either an edge of the 3-cycle is crossed twice or two edges
are crossed once, violating the IC-planarity condition. Hence, the subgraph G must be drawn
planar and this implies that Γ requires Ω(n2) area.
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(a) the input graph G
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(b) the augmented graph G∗

Figure 8.4: Illustration of the proof of Theorem 8.2.

8.2 Recognizing IC-planar graphs

The IC-planarity testing problem askswhether a given graphG admits an IC-planar embedding.
We first show that this problem is NP-complete in the general case and even if the rotation
system is given. Then, we give an O(n3)-time algorithm that decides whether the union of a
triangulated plane graph and a set of crossing edges is IC-planar and, if so, draws the graph.

8.2.1 Hardness of the Problem.

In the following, we give a simple reduction from the NP-hard problem 1-planarity testing to
IC-planarity testing, which shows that our problem is NP-complete.

Theorem 8.2. IC-planarity testing is NP-complete.

Proof. IC-planarity is in NP, as one can guess an embedding and check whether it is IC-
planar [GJ83]. For the hardness proof, the reduction is from the 1-planarity testing problem,
which asks whether a given graph is 1-planar or not. The reduction uses a 3-cycle gadget and
exploits the fact that at most one edge of a 3-cycle is crossed in an IC-planar drawing. We
transform an instance G of 1-planarity testing into an instance G∗ of IC-planarity testing, by
replacing each edge (u, v) of G with a graph Guv consisting of two 3-cycles, Tuv and Tvu , with
vertices {u, cuv , auv} and {v , cvu , avu}, respectively, plus edge (auv , avu), called the attaching
edge of u and v; see Figure 8.4.

Let Γ be a 1-planar drawing of G. An IC-planar drawing Γ∗ of G∗ can be easily constructed
by replacing each curve representing an edge (u, v) in Γ with a drawing of Guv where Tuv
and Tvu are drawn planar and sufficiently small, such that the possible crossing that occurs
on the edge (u, v) in Γ occurs on the attaching edge (auv , avu) in Γ∗. Hence, since all the
attaching edges are independent, Γ∗ is IC-planar.

Let Γ∗ be an IC-planar drawing of G∗. We show that it is possible to transform the drawing
in such a way that all crossings occur only between attaching edges. Once this condition
is satisfied, in order to construct a 1-planar drawing Γ of G, it suffices to remove, for each
edge (u, v), the vertices cuv and cvu , and to replace auv and avu with a bend point. Namely, as
already observed, no more than one edge can be crossed for every gadget Tuv of G∗. Suppose
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Recognizing IC-planar graphs Section 8.2

u

cuv

auv

u auv

cuv

(a)

u

u

v

w

v

w

(b)

Figure 8.5: Illustration of the proof of Theorem 8.2. (a) Rerouting the crossed edge (u, auv) via cuv to be planar.
(b) Rerouting the crossing edges (u, v) and (u,w) to be planar.

now that the edge (u, auv) of Tuv is crossed. Since the other two edges of Tuv are not crossed,
we can reroute (u, auv) such that it follows the curves that represent (u, cuv) and (cuv , auv);
see Figure 8.5a.
In order to complete the proof, we need to take care of the following particular case. Two

attaching edges auv and auw that cross and that are connected to two gadgets Tuv and Tuw
with a common vertex u represent a valid configuration in Γ∗, while they give rise to a
crossing between two adjacent edges in Γ, which is not allowed since Γ must be a simple
drawing. However, this case can be easily solved by rerouting the two edges in Γ as shown in
Figure 8.5b.

8.2.2 Hardness of the ProblemWith a Given Rotation System.

Note that the construction given above does not work for IC-planarity testing with a given
rotation system since the rerouting step changes the rotation system. However, we now prove
NP-hardness of IC-planarity testing for graphs with a given rotation system. We rely on
the membrane technique introduced by Auer et al. [ABGR15] to prove the NP-hardness of
1-planarity testing for graphs with a given rotation system. In particular, we design particular
gadgets that make it possible to use the membrane technique in the case of IC-planar graphs.
First, we replace the U-graphs [ABGR15] by M-graphs, calledmesh graphs. These graphs

have a unique embedding with a fixed rotation system. Namely, an M-graph is a mesh, where
cells are filled with two crossing edges, following a checkerboard pattern to ensure independent
crossings; see Figure 8.6. To see that with a given rotation system, an M-graph has a unique
embedding, observe that each subgraph isomorphic to K4 can be embedded planarly or as a
kite, and this is determined by the rotation system [Kyn09]. The rotation system defined by
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(a) (b)

Figure 8.6: (a) The structure of an M-graph and (b) and its abbreviation.

the drawing in Figure 8.6 implies that each subgraph isomorphic to K4 is embedded as a kite,
and therefore the embedding of an M-graph is unique.

Let M be an M-graph with a given fixed embedding. At its bottom line, M has sufficiently
many free vertices which are not incident with a crossing edge in M. These vertices are
consecutively ordered, say from left to right. The edges on the bottom line are not crossed in
any IC-planar embedding of M, so they are crossing-free in the given embedding. Finally, M
cannot be crossed by any path from a free vertex. In what follows, we attach further gadgets
to M by connecting these gadgets to consecutive free vertices. If there are several gadgets,
then they are separated and placed next to each other.

General Construction. Consider an instance α of Planar-3SAT with its corresponding
plane graph G and its dual G∗. Recall that the vertices of G represent variables x and clauses c,
also, there is an edge (x , c) if x or its negation occurs as a literal in c; see Figure 8.7a. We
transform G∗ into anM-supergraph G∗α as follows.
Each vertex of G∗, corresponding to a face of the embedded graph G, is replaced by a

sufficiently large M-graph. Further, each edge of G∗ is replaced by a barrier of l parallel edges
from/to l free consecutive vertices on the boundary of the M-graph. These edges will be
crossed by paths that are called ropes. The size of l will be determined later. The M-graph
must have sufficiently many free vertices for the edges from the gadgets and barriers. The
smallest bound can easily be computed from the embedding of G and the attached gadgets;
see Figure 8.7b.
For each variable x, we construct a V-gadget γ(x), and similarly we build a C-gadget for

each clause. These gadgets are described below.
Each vertex u of G lies in a face f ∗ of G, which corresponds to a vertex of G∗. We attach

the gadget γ(u) of u to a M-graph of a vertex of G∗ on the boundary of f ∗ such that γ(u) lies
in f ∗. To that end, it does not matter which vertex of f ∗ is chosen. Similarly, each edge e of G
between a variable and a clause is replaced by a rope of length 2l + 3. Since e is crossed by its
dual edge, the rope is crossed by a barrier. A rope acts as a communication line that “passes” a
crossing at a V-gadget across a barrier to a C-gadget. We denote by amembrane (similarly
as in [ABGR15]) a path between free vertices on the boundary of a M-graph, or between
particular vertices of a variable gadget. We call a vertex IN if it placed inside the region of
a membrane and the boundary of the M-graph in an IC-drawing, and OUT otherwise. IN
and OUT are exactly defined by edges which cross the membrane. Note that the framework is
basically a simultaneous embedding of G and G∗ by means of our gadgets, M-graphs, barriers
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a

b

c

(a) (b)

Figure 8.7: (a) The planar graph G (solid) and its dual G∗ (dotted) corresponding to the Planar-3SAT formula
(a ∨ b ∨¬c) ∧ (a ∨¬b ∨ c); (b) the corresponding M-supergraphG∗α with the clause gadgets (vertical) and the
variable gadgets (horizontal)

and ropes. The subgraph without V- and C-gadgets is 3-connected, since the M-graphs are
3-connected and the barriers have size l for l ≥ 3, and it has a unique planar embedding if
one edge from each pair of crossing edges in each M-graph is removed.

Constructionof theC-gadgets. TheC-gadget c = (l1 , l2 , l3)with three literals l1, l2 and l3
is attached to eight consecutive free boundary vertices of an M-graph M, say v1 , . . . , v8. For
each literal l i , there are three vertices u i , a i and b i , and four edges (u i , a i), (u i , b i), (a i , v2i)
and (b i , v2i+1), where u i is the initial vertex of the rope towards the corresponding variable
gadget. There is a membrane of nine edges from v1 to v8, see Figure 8.8a.
By construction, at most two vertices among u1, u2 and u3 can be moved outside the

membrane, and at least one initial vertex of a rope (and maybe all) must be IN. IN shall
correspond to the value true of the literal and thus of the clause.

Construction of the V-gadgets. Let x be a variable and let v be the vertex corresponding
to x in G. Suppose that the literal x occurs in k clauses for some k ≥ 1, which are ordered
by the embedding of G. Denote this sequence by x1 , . . . xk , where each x i corresponds to x
or ¬x. The V-gadget of x is γ(x) = γ(t l), γ(x1), . . . , γ(xk), γ(tr). This gadget is connected
to 7k + 14 free consecutive vertices on the border of the M-graph M to which it is attached;
see Figure 8.8b for an illustration. The gadgets γ(t l) and γ(tk) are called the (left and right)
terminal gadgets and each γ(x i) is called a literal gadget. They are similar to clause gadgets
and are each connected to seven consecutive free variables v1 , . . . , v7 on the boundary of M.

The terminal gadget γ(t l) has two primary vertices x+0 and x−0 . The primary vertex x+0 is
connected to v2, v3 and v4, and the other primary vertex x−0 is connected to v5 , v6 by paths
of length two, respectively. Analogously, the terminal gadget has two primary vertices x+k+1
and x−k+1, with the same requirements.. There is a local membrane of seven edges from v1
to v7. The gadget γ(x) has an outer membrane of length 2k + 1 from x+0 to x−k+1.
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(a) the clause gadget (b) the variable gadget

Figure 8.8: The two gadgets for theNP-hardness reduction

For each literal gadget γ(x i), consider two cases. If x i is positive, then γ(x i) has two primary
vertices x+i and x−i , where x+i is attached to three free vertices v2, v3 and v4 of M, and x−i is
attached to two free vertices v5 and v6 by two paths of length two, respectively. The rope to
the literal begins at x+i . Otherwise, if x i is negated, then the gadget is reflected, such that x+i
has two, and x−i has three paths of length two to the M-graph. The rope to the literal begins
at x+i . In both cases, there is a local membrane of length seven from v1 to v7. The rope is a
path of 2l + 3 edges from vertex x±i of the V-gadget to the vertex u i of the clause gadget.

The rotation system of the gadgets it retrieved from the drawing and the ordering of the
vertices on the border of M-graphs.

Correctness. Wewill now prove several lemmas on the structure of our construction. With
these lemmas, we will show that an IC-planar drawing to the resulting graph Gα immediately
yields a valid solution to the underlying Planar-3SAT problem. First, we show that theM-graph
is not crossed.

Lemma 8.2. The boundary edges of a M-graph (with a fixed rotation system) are never crossed
in an IC-planar drawing of Gα .

Proof. This lemma follows directly from the construction. Each K4 must be embedded as a
kite, and further edge crossings violate IC-planarity.

Consequently, the following corollary holds.

Corollary 8.1. A path from a free boundary vertex cannot cross any M-graph.

Now, we show that every clause, terminal and literal gadget has at least one primary vertex
that is not OUT.

Lemma8.3. In every IC-planar drawing of Gα , at most two of the primary vertices u1, u2 and u3
of a clause gadget can be OUT, and at most one of the primary vertices x+i , x−i of a terminal or a
literal gadget can be OUT of the local membrane.

Proof. Assume that u1, u2 and u3 all are OUT. Then, the membrane must cross five edges. Thus,
the membrane has a length of at least nine. However, from the construction, the membrane
only has length seven, which is a contradiction. The proof for terminal and literal gadgets
works analogously.

Next, we show that the outer membrane crosses each rope.
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Lemma 8.4. In every IC-planar drawing of Gα , each rope is crossed by the outer membrane of
the variable gadget.

Proof. In order to avoid a crossing, the outer membrane must be drawn around the C-gadget.
Then, the membrane must cross at least one barrier, which is impossible in an IC-planar
drawing if the size of a barrier is chosen to be too large, that is,

l ≥ max{k ∣ a variable x occurs in at most k clauses of α} + 2.

The fact that a rope propagates a truth value is due to the fact that its length is tight, as the
following lemma shows.

Lemma 8.5. In every IC-planar drawing of Gα , respecting the rotation system, the endpoint of
a rope at a gadget is OUT if the endpoint at the vertex is IN.

Proof. By construction of M-graphs, they cannot be crossed by a rope. Thus, the rope must
cross a barrier of l edges. In any IC-planar embedding, this costs (at least) 2l − 1 edges. In
addition, a rope is crossed by the outer membrane of the variable gadget. If the endpoint at
the vertex is IN, then the rope is crossed by the membrane, which costs two edges. Hence, it
cannot cross another membrane, since its length is 2k + 3.

The consistency of the truth assignment of the variable is granted by the following lemma.

Lemma 8.6. In every IC-planar drawing of Gα , and every variable x, if x−0 is OUT, then each x−i
is OUT and all x+j are IN for i = 1, . . . , k + 1 and j = 1, . . . , k + 1. The reversed statement also
holds.

Proof. If x−0 is OUT, then the local membrane crosses two edges of the paths of length two
fro x−0 to the border of M. Thus, by Lemma 8.3, x−0 is OUT and the local membrane must cross
an edge of the path of length two from x+0 to x−1 . This implies that the local membrane of the
first literal gadget cannot cross this path, and therefore must cross the paths from x−1 to the
M-graph. It follows by induction that all x−i are OUT and all x+i are IN. Conversely, if x+k+1 is
OUT, then we proceed from right to left. Now, all x+i are OUT and all x−i are IN.

With these lemmas, we can finally prove the following theorem.

Theorem 8.3. IC-planarity testing with given rotation system is NP-complete.

Proof. We have already stated in the proof of Theorem 8.2 that IC-planarity is in NP. We
reduce from Planar-3SAT and show that an expression α is satisfiable if and only if the
constructed graph G∗α has a IC-planar drawing. If α is satisfiable, then we draw the V- and
C-gadgets according to the assignment, such that the initial vertex of each rope from the
gadget of a variable x is IN at the C-gadget if the literal is assigned the value true. The resulting
drawing is IC-planar by construction. If G∗α has an IC-planar drawing, then we obtain the
truth assignment of α from the drawing. Thus, IC-planarity with a given rotation system is
NP-complete.

Note that the construction for the proof of Theorem 8.3 also holds in the variable embedding
setting, since the used graphs have an almost fixed IC-planar embedding. From this, we can
obtain an alternative NP-completeness proof of IC-planarity testing.
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Figure 8.9: (a) A triconnected Graph T (solid) and its dual T∗ (dotted), (b) The extended graph T∗ ∪ {u∗ , v∗}
and the three length-3 paths between u∗ and v∗ (bold).

8.2.3 Polynomial-Time Test for a Triangulated Plane Graph Plus a
Matching.

On the positive side, we now describe an algorithm to test whether a graph G = (V , ET ∪EM)
that consists of a triangulated plane graph T = (V , ET) and a matching M = (VM , EM)
with VM ⊆ V , EM ∩ ET = ∅ admits an IC-planar drawing that preserves the embedding of T .
An outline of the algorithm is as follows.

(1) Check for every matching edge if there is a way to draw it such that it crosses only one
edge of T .

(2) Split T into subgraphs that form a hierarchical tree structure.

(3) Traverse the 4-block tree bottom-up and solve a 2SAT formula for each tree node.

In order to check whether there is a valid placement for each matching edge (u, v) ∈ M, we
have to find two adjacent faces, one of which is incident to u, while the other one is incident
to v. To this end, we consider the dual T∗ of T that contains a vertex for each face in T that is
not incident to a vertex w ∈ VM ∖ {u, v}, and an edge for each edge in T that separates two
faces. Further, we add two additional vertices u∗ and v∗ to T∗ that are connected to all faces
that are incident to u and v, respectively. In the resulting graph T∗ ∪ {u∗ , v∗}, we look for
all paths of length 3 from u∗ to v∗. These paths are equivalent to routing (u, v) through two
faces that are separated by a single edge. Note that no path of length 1 or 2 can exist, since
(i) by construction u∗ and v∗ are not connected by an edge and (ii) if there was a path of
length 2 between u∗ and v∗, then u and v would lie on a common face in the triangulated
graph T ; thus, the edge (u, v) would exist both in ET and in EM , which is not possible since
ET ∩ EM = ∅. See Figure 8.9 for an illustration. If there is an edge that has no valid placement,
then G is not IC-planar and the algorithm stops. Otherwise, we save each path that we found
as a possible routing for the corresponding edge in M.
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u

v

luv ruve1 e2 ei ek

Figure 8.10: The ordered routing edges e1 , . . . , ek lie inside the quadrangle (u, luv , v , ruv).

Now, we make some observations on the structure of the possible routings in a drawing
of an edge (u, v) ∈ M that we can use to get a hierarchical tree structure of the graph T .
Every routing is uniquely represented by an edge that separates a face incident to u and a
face incident to v and that might be crossed by (u, v). We call these edges routing edges.
Let there be k routing edges for the pair (u, v). Each of these edges forms a triangular face
with u. From the embedding, we can enumerate the edges by the counterclockwise order
of their corresponding faces at u. This gives an ordering e1 , . . . , ek of the routing edges. Let
e1 = (luv , l ′uv) and ek = (r′uv , ruv) such that the edge (u, luv) comes before the edge (u, l ′uv),
and the edge (u, r′uv) comes before (u, ruv) in the counterclockwise order at u. Then, all
edges e1 , . . . , ek lie within the routing quadrangle (u, luv , v , ruv); see Figure 8.10. Note that
there may be more complicated structures between the edges, but they do not interfere with
the ordering. Denote by Quv = (u, luv , v , ruv) the routing quadrilateral of the matching
edge (u, v) ∈ M. We define the interior Iuv = (Vuv , Euv) as the maximal subgraph of T such
that, for all vertices v ∈ Vuv , each path from v to a vertex on the outer face of T contains u,
luv , v, or ruv . Consequently, Quv ∈ Vuv . We will now show that two interiors cannot overlap.

Lemma 8.7. For each pair of interiors Iuv , Iab , exactly one of the following conditions holds:

(a) Iuv ∩ Iab = ∅

(b) Iuv ⊂ Iab

(c) Iab ⊂ Iuv

(d) Iuv ∩ Iab = Quv ∩ Qab .

Proof. Assume that neither of the condition holds. Recall thatQuv andQab are the boundaries
of the interiors. Note that Iuv ∩ Iab = ∅ corresponds to disjointness, Iuv ⊂ Iab and Iab ⊂ Iuv
correspond to inclusion, and Iuv∩Iab = Quv∩Qab corresponds to touching in their boundary
of the two interiors Iuv and Iab . Thus, if the conditions do not hold, the interiorsmust properly
intersect, that is, without loss of generality, there is a vertex c ∈ Quv that lies in Iab ∖ Qab ,
and a vertex d ∈ Quv that does not lie in Iab . Hence, the other two vertices of Quv lie in Qab .
Clearly, c and d are opposite vertices in Quv . By definition of IC-planar graphs, it holds
that {a, b} ∩ {u, v} = ∅.
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Figure 8.11: Illustration of the proof of Lemma 8.7. The routing quadrilateral Qab is drawn bold, and Quv is
drawn extra bold.

First, assume that c = luv . Then, u and v must lie in Qab . More specifically, by definition
of IC-planar graphs {u, v} = {lab , rab}. Without loss of generality, assume that u = rab
and v = lab . Since the edges (u, c) and (v , c) have to lie in Iab , this leads to the situation
depicted in Figure 8.11a. However, this implies that that there are only two routing edges
for (a, b) with one of them incident to u, and the other one is incident to v. Thus, the routing
edges are not valid. The case that c = ruv works analogously.
Second, assume that c = u. Then, luv and ruv must lie in Qab . If luv and ruv are adjacent

on Qab , say luv = b and ruv = rab , then there is only a single routing edge for (u, v) that is
incident to b and thus not valid; see Figure 8.11b. Otherwise, there are two cases. If {luv , ruv} =
{a, b}, say ruv = a and luv = b, then there are only two routing edges for (u, v) with one of
them incident to a, and the other one incident to b; see Figure 8.11c. If {luv , ruv} = {lab , rab},
say luv = lab and ruv = rab , then both routing edges of (u, v) are incident to b; see Figure 8.11d.
The case that c = v works analogously.

This proves that, if there is a proper intersection between two routing quadrilaterals, than
at least one of the corresponding matching edges has no valid routing edge. Thus, one of the
conditions must hold.

By using Lemma 8.7, we can find a hierarchical structure on the routing quadrilaterals. We
construct a directed graph H = (VH , EH) with VH = {Iuv ∣ (u, v) ∈ M} ∪ {G}. For each
pair Iuv , Ix y , EH contains a directed edge (Iuv , Ix y) if and only if Vuv ⊂ Vx y and there is no
matching edge (a, b) with Vuv ⊂ Vab ⊂ Vx y . Finally, we add an edge from each subgraph that
has no outgoing edges to G. Each vertex but G only has one outgoing edge. Obviously, this
graph contains no (undirected) cycles. Thus, H is a tree.
We will now show how to construct a drawing of G based on H in a bottom-up fashion.

We will first look at the leaves of the graph. Let Iuv be a vertex of H whose children are all
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leaves. Let Iu iv i , . . . , Iukvk be these leaves. Since these interiors are all leaves in H, we can pick
any of their routing edges. However, the interiors may touch on their boundary, so not every
combination of routing edges can be used. Assume that a matching edge (u i , v i), 1 ≤ i ≤ k has
more than two valid routing edges. Then, we can always pick amiddle one, that is, a routing
edge that is not incident to lu iv i and ru iv i , since this edge will not interfere with a routing edge
of another matching edge.

Now, we can create a 2SAT formula to check whether there is a valid combination of routing
edges as follows. For the sake of clarity, we will create several redundant variables and formulas.
These can easily be removed or substituted by shorter structures to improve the running time.
For each matching edge (u i , v i), 1 ≤ i ≤ k, we create two binary variables l i and r i , such that l i
is true if and only if the routing edge incident to lu iv i is picked, and r i is true if and only if the
routing edge incident to ru iv i is picked. If (u i , v i) has only one routing edge, then it is obviously
incident to lu iv i and ru iv i , so we set lu iv i = ru iv i = true by adding the clauses lu iv i ∨ false

and ru iv i ∨ false. If (u i , v i) has exactly two routing edges, the picked routing edge has to be
incident to either lu iv i or ru iv i , so we add the clauses lu iv i ∨ ru iv i and ¬lu iv i ∨¬ru iv i . If (u i , v i)
has more than two routing edges, we can pick a middle one, so we set lu iv i = ru iv i = false by
adding the clauses ¬lu iv i ∨ false and ¬ru iv i ∨ false. Next, we have to add clauses to forbid
pairs of routing edges that can not be picked simultaneously, that is, they share a common
vertex. Consider a pair of matching edges (u i , v i), (u j , v j), 1 ≤ i , j ≤ k. If ru iv i=lu jv j , we add
the clause ¬r i ∨ ¬l j . For the other three cases, we add an analogue clause.

Now, we use this 2SAT to decide whether the subgraph Iuv is IC-planar, and which routing
edges can be used. For each routing edge (a, b) of Iuv , we solve the 2SAT formula given
above with additional constraints that forbid the use of routing edges incident to a and b.
To that end, add the following additional clauses: If lu iv i = a, add the clause ¬l i ∨ false.
For the other three cases, we add an analogue clause. If this 2SAT formula has no solution,
then the subgraph Iuv is not IC-planar. Otherwise, there is a solution where you pick the
routing edges corresponding to the binary variables. To decide whether a subgraph Iuv whose
children are not all leaves is IC-planar, we first compute which of their routing edges can be
picked by recursively using the 2SAT formula above. Then, we use the 2SAT formula for Iuv
to determine the valid routing edges of Iuv . Finally, we can decide whether G is IC-planar
and, if yes, get a drawing by solving the 2SAT formula of all children of G.

Hence, we give the following theorem.

Theorem 8.4. Let T = (V , ET) be a triangulated plane graph with n vertices and let M =
(V , EM) be a matching. There exists an O(n3)-time algorithm to test if G = (V , ET ∪ EM)
admits an IC-planar drawing that preserves the embedding of T. If the test is positive, the
algorithm computes a feasible drawing.

Proof. We need to prove that the described algorithm runs in O(n3) time. Indeed, for each
subgraph Iuv , we have to run a 2SAT formula for each routing edge. Once we have determined
the valid routing edges, we do not have to look at the children anymore. Let cuv be the number
of children of Iuv . Each of these 2SAT formula contains 2cuv variables and up to 2cuv + 2c2uv
clauses. Since every edge of G can only be a routing edge for exactly one matching edge, we
have to solve at most n 2SAT formulas.

The tree H consists of at most n/2 + 1 vertices (one for each matching edge), so a very
conservative estimation is that we have to solve O(n) 2SAT formulas with O(n) variables
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and O(n2) clauses each. Aspvall et al. [APT79] showed how to solve 2SAT in time linear
in the number of clauses. We can use the linear-time algorithm of Section 8.1 to draw the
IC-planar graph corresponding to the IC-planar embedding by picking the routing edges
corresponding to the binary variables. Thus, our algorithm runs in O(n3) time.

8.3 IC-planarity and Rac Graphs

It is known that everymaximally dense Rac graph is 1-planar, and that there exist both 1-planar
graphs that are not Rac and Rac graphs that are not 1-planar [EL13]. Additionally, every
1-planar graph drawable with all vertices on the outer face is Rac [DE12]. Here, we further
investigate the intersection between the classes of 1-planar and Rac graphs, showing that all
IC-planar graphs are Rac graphs. To this aim, we describe a polynomial-time constructive
algorithm. The computed drawingsmay require exponential area, which is however worst-case
optimal; indeed, we exhibit IC-planar graphs that require exponential area in any possible
IC-planar straight-line Rac drawing. Our construction is based on extending the linear-time
algorithm by de Fraysseix et al. that computes a planar straight-line grid drawing of a maximal
(that is, triangulated) plane graph in quadratic area [dFPP90]; we call this algorithm the dFPP
algorithm. For completeness, we recall the idea behind dFPP before describing our extension.

AlgorithmdFPP. Let G be a maximal plane graph with n ≥ 3 vertices. The dFPP algorithm
first computes a suitable linear ordering of the vertices of G, called a canonical ordering of G,
and then incrementally constructs a drawing of G using a technique called shift method.

This method adds one vertex per time, following the computed canonical ordering and
shifting vertices already in the drawing when needed. Namely, let σ = (v1 , v2 , . . . , vn) be
a linear ordering of the vertices of G. For each integer k ∈ [3, n], denote by Gk the plane
subgraph of G induced by the k vertices v1 , v2 , . . . , vk (Gn = G) and by Ck the boundary of
the outer face of Gk , called the contour of Gk . Ordering σ is a canonical ordering of G if the
following conditions hold for each integer k ∈ [3, n]:

(i) Gk is biconnected and internally triangulated;

(ii) (v1 , v2) is an outer edge of Gk ; and

(iii) if k + 1 ≤ n, vertex vk+1 is located in the outer face of Gk , and all neighbors of vk+1 in Gk
appear on Ck consecutively.

We call lower neighbors of vk all neighbors v j of vk for which j < k. Following the canonical
ordering σ , the shift method constructs a drawing of G one vertex per time. The drawing Γk
computed at step k is a drawing of Gk . Throughout the computation, the following invariants
are maintained for each Γk , with 3 ≤ k ≤ n:

(I1) pv1 = (0, 0) and pv2 = (2k − 4, 0);

(I2) x(w1) < x(w2) < ⋅ ⋅ ⋅ < x(wt), where w1 = v1 ,w2 , . . . ,wt = v2 are the vertices that
appear along Ck , going from v1 to v2.

(I3) Each edge (w i ,w i+1) (for i = 1, 2, . . . , t − 1) is drawn with slope either +1 or −1.
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Figure 8.12: Illustration of the shift algorithm at the addition step of vk+1 . The shift operation changed the
slopes of the edges drawn bold.

More precisely, Γ3 is constructed placing v1 at (0, 0), v2 at (2, 0), and v3 at (1, 1). The addition
of vk+1 to Γk is executed as follows. Letwp ,wp+1 , . . . ,wq be the lower neighbors of vk+1 ordered
from left to right. Denote by µ(wp ,wq) the intersection point between the line with slope +1
passing throughwp and the line with slope−1 passing throughwq . Point µ(wp ,wq) has integer
coordinates and thus it is a valid placement for vk+1. With this placement, however, (vk+1 ,wp)
and (vk+1 ,wq)may overlap with (wp ,wp+1) and (wq−1 ,wq), respectively; see Figure 8.12a.
To avoid this, a shift operation is applied: wp+1, wp+2,. . . ,wq−1 are shifted to the right by 1 unit,
andwq ,wq+1 , . . . ,wt are shifted to the right by 2 units. Then vk+1 is placed at point µ(wp ,wq)
with no overlap; see Figure 8.12b. We recall that, to keep planarity, when the algorithm shifts
a vertex w i (p + 1 ≤ i ≤ t) of Ck , it also shifts some of the inner vertices together with it; for
more details on this point refer to [CP95, dFPP90]. By Invariants (I1) and (I3), the area of the
final drawing is (2n − 4) × (n − 2).

Our extension. Let G be an IC-plane graph, and assume that G+ is the planar-maximal
IC-plane graph obtained from G by applying the technique of Lemma 8.1. Our drawing
algorithm computes an IC-planar drawing of G+ with right-angle crossings, by extending
algorithm dFPP. It adds to the classical shift operationmove and lift operations to guarantee
that the one of the crossing edges of a kite is vertical and the other one is horizontal. We now
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Figure 8.13: Example run of our algorithm on an IC-planar graph G with a separating triangle. The crossing
edges are drawn bold, the edges inside the separating triangle are drawn light. (a) Input graphG; (b) output of
dFPP after vertex 7; (c) output of dFPP after vertex 8; (d) lifting 3 to the level of 7; (e) moving 8 directly above 6.

give an idea of our technique, which we call RAC-drawer. Details are given in the proof of
Theorem 8.5. Let σ be a canonical ordering constructed from the underlying maximal plane
graph of G+. Vertices are incrementally added to the drawing, according to σ , following the
same approach as for dFPP.

However, suppose that K = (a, b, c, d) is a kite of G+, and that a and d are the first and the
last vertex of σ among the vertices in K, respectively. Once d has been added to the drawing,
the algorithm applies a suitable combination of move and lift operations to the vertices of the
kite to rearrange their positions so to guarantee a right-angle crossing. Note that, following the
dFPP technique, a was placed at a y-coordinate smaller than the y-coordinate of d. A move
operation is then used to shift d horizontally to the same x-coordinate as a (that is, (a, d)
becomes a vertical segment in the drawing); a lift operation is used to vertically shift the lower
between b and c, such that these two vertices get the same y-coordinates. Both operations are
applied so to preserve planarity and to maintain Invariant (I3) of dFPP; however, they do not
maintain Invariant (I1), thus the area can increase more than in the dFPP algorithm and may
be exponential. The application of move/lift operations on the vertices of two distinct kites do
not interfere each other, as the kites do not share vertices in an IC-plane graph. Figure 8.13
shows a running example of our algorithm.

Theorem 8.5. There is a O(n3)-time algorithm that takes an IC-plane graph G with n vertices
as input and constructs a straight-line IC-planar Rac grid drawing of G.

Proof. Let G+ be the augmented graph constructed from G by using Lemma 8.1. Call G′ the
subgraph obtained from G+ by removing one edge from each pair of crossing edges; G′ is a
maximal plane graph (see condition (c3) of Lemma 8.1). We apply onG′ the shelling procedure
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Figure 8.14: The lift operation

used by de Fraysseix et al. to compute a canonical ordering σ of G′ in O(n) time [dFPP88]; it
goes backwards, starting from a vertex on the outer face of G′ and successively removing a
vertex per time from the current contour. However, during this procedure, some edges of G′
can be replaced with some other edges of G+ that were previously excluded, although G′
remains maximal planar. Namely, whenever the shelling procedure encounters the first
vertex d of a kite K = (a, b, c, d), it marks d as top(K), and considers the edge e of K that is
missing in G′. If e is incident to d in K, the procedure reinserts it and removes from G′ the
other edge of K that crosses e in G+. If e is not incident to d, the procedure continues without
varying G′.

We then compute a drawing ofG+ by using the RAC-drawer algorithm. Let vertex v = vk+1
be the next vertex to be placed according to σ . Let U(v) be the set of lower neighbors
of v, and let λ(v) and ρ(v) be the leftmost and the rightmost vertex in U(v), respectively.
Also, denote by Al(v) the vertices to the top-left of v, and by Ar(v) the vertices to the
top-right of v. If v is not top(K) for some kite K, then v is placed by following the rules of
dFPP, that is, at the intersection of the ±1 diagonals through λ(v) and ρ(v) after applying
a suitable shift operation. If v = top(K) for some kite K, the algorithm proceeds as follows.
Let K = (a, b, c, d) with v = d = top(K). The remaining three vertices of K are in Gk
and are consecutive along the contour Ck , as they all belong to U(d) (recall that, G′ has
been computed in such a way that it contains edge (a, d)). W.l.o.g., assume that they are
encountered in the order {b, a, c} from left to right. Two cases are now possible:
Case 1: a ≺ b and a ≺ c in σ . This implies that a = ρ(b) and a = λ(c). The edges (a, b)

and (a, c) have slope −1 and +1, respectively, as they belong to Ck . We now aim at having b
and c at the same y-coordinate, by applying a lift operation. Suppose first that r = y(c)−y(b) >
0; see Figure 8.14a. We apply the following steps:

(i) Temporarily undo the placement of b and of all vertices inAl(b).

(ii) Apply the shift operation to vertex ρ(b) = a by 2r units to the right, which implies that
the intersection of the diagonals through λ(v) and ρ(v) is moved by r units to the right
and by r units above their former intersection point. Hence, b and c are placed at the
same y-coordinate; see also Figure 8.14b in.

(iii) Reinsert the vertices ofAl(b) and modify σ accordingly. Namely, by definition, each
vertex inAl(b) does not belong to U(b) and it is not an inner vertex below b; therefore,
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Figure 8.15: The move operation

vertices inAl(b) can be safely removed. Hence, σ can be modified by moving all of
them after b.

If r = y(c) − y(b) < 0, a symmetric operation is applied:

(i) Undo the placement of c and of all vertices inAr(c).

(ii) Apply the shift operation to vertex ρ(c) by 2r additional units to the right.

(iii) Reinsert the vertices ofAr(c).

Finally, we place d vertically above a. To this aim, we may need to apply a move operation;
see Figure 8.15a. If s = x(d) − x(a) > 0, then we apply the shift operation to vertex ρ(d) = c
by 2s units to the right and then place d (see Figure 8.15b. If s = x(d) − x(a) < 0, then a
symmetric operation is applied. Namely, we apply the shift operation to vertex λ(d) = b by 2s
units to the left and then place d (clearly, the shift operation can be used to operate in the left
direction with a procedure that is symmetric to the one that operates in the right direction).

Edges (a, d) and (b, c) are now vertical and horizontal, respectively. In the next steps, their
slopes do not change, as their endvertices are shifted only horizontally (they do not belong to
other kites); also, a is shifted along with d, as it belongs to U(d).

Case 2: b ≺ a ≺ c ≺ d. This case occurs if there is a separating triangle τ = (u, b, d) that
has a and c (and possibly other vertices) in its interior. A separating triangle is a 3-cycle
such that by removing its three vertices we disconnect the graph in two components. One
component embedded inside the triangle and one component embedded outside the triangle.
Let {z1 ≺ . . . ≺ zr} be the sequence of r ≥ 1 neighbors of b inside τ, with a = zr and b = λ(z i),
with 1 ≤ i ≤ r, as shown in Figure 8.16.

Suppose these vertices are inAr(b), since the case when they are inAl(b) is symmetric.
Consider the slopes α i of the edges (z i , z i+1) for 1 ≤ i < r, and let αmin be the negative slope
with the least absolute value among them; see the bold edge in Figure 8.16. Let s be the
(negative) slope of the edge (b, ρ(b)). We aim at obtaining a drawing where ∣s∣ ≤ ∣αmin ∣. To
this aim we apply the shift operation on ρ(b) by x units to the right, which stretches and
flattens the edge (b, ρ(b)). If ∣αmin ∣ = h/w, and ∣s∣ = h′/w′, then the value of x is the first
even integer such that x ≥ (h′w − hw′)/h. The fact that x is even preserves the even length of
the edges on the contour. This preliminary operation will be useful in the following part.
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Figure 8.16: Illustration for the proof of Theorem 8.5. The edge with slope αmin is thicker.

Next, let ∆(b) = y(b)− y(ρ(b)) > 0, and let ∆(c) = y(c)− y(b) > 0 , that is, b lies ∆(b) rows
above ρ(b), and c lies ∆(c) rows above b, where the edges (b, a) and (a, c) have slope +1.
We apply the following procedure to lift b at the same y-coordinate of c.

(i) We undo the placement of all vertices inAl(b).

(ii) If ∆(c) is not a multiple of ∆(b), say ∆(b) + δ = q ⋅ ∆(c) for some integer q, then we
shift ρ(c) by 2δ units to the right. This implies that c moves by (δ, δ) above its former
position.

(iii) We set the y-coordinate of vertex b equal to the y-coordinate of c. To that end, we
stretch the edge (ρ(b), b) by the factor q. Let w′ be the width and h′ be the height
of the edge (ρ(b), b). The new edge has the same slope as before, and has width qw′
and height qh′. This implies shifting all vertices ρ(b), z1 , . . . , zr−1 , a, c by (q − 1)w′
units to the right. Vertex b may need a further adjustment by a single unit left shift
if b = λ(d) and the intersection point of the ±1 diagonals through λ(d) and ρ(d) is
not a grid point. Also, we apply the shift operation on λ(b) by (q− 1)h′ units to the left.
This particular lifting operation applied on vertex b preserves planarity, which could be
violated only by edges incident to b. Namely, if vertexw is a neighbor of b in U(b), then
the edge (w , b) is vertically stretched by (q − 1)h′ units. This cannot enforce a crossing,
since it means a vertical shift of w. Clearly, b can see ρ(b), since the edge was stretched.
Consider the upper right neighbors z1 , . . . , zr with zr = a of b. The edges (b, z i) change
direction from right upward to right downward. Since the absolute value of the slope
of the edge (b, ρ(b)) is bounded from above by αmin , the new position of b is below or
to the left of the edges (z i , z i+1) for 1 ≤ i < r. Hence, b can see each such neighbor z i ,
including a = zr . The lifting of b has affected all vertices v ∈ Al(b) with y(v) < y(d).

(iv) We re-insert the vertices inAl(b) by changing σ accordingly, as already explained for
Case 1.

Finally, we place d = top(K). First, we place d at the intersection point of the ±1 diagonals
through λ(d) and ρ(d). Then, we adjust d such that it lies vertically above a. If the preliminary
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Figure 8.17: An IC-planar graph G that requires exponential area if drawn Rac

position of d is t units to the left (right) of a, then we apply the shift operation on ρ(d) by 2t
units to the right (on λ(d) by 2t units to the left).

To conclude the proof we need to consider the first edge of the construction, which is drawn
horizontal. Since the lift operation requires an edge that does not have slope 0, we may need to
introduce dummy vertices and edges. Namely, if there is a kite including the base edge (v1 , v2),
then we add two dummy vertices 1′ , 2′ below it that form a new base edge (v′1 , v′2). We add the
additional edges (v′1 , v1), (v′1 , v2), (v′1 , vn), (v′2 , v2) and (v′2 , vn) to make the graph maximal
planar. These dummy vertices and edges will be removed once the last vertex vn is placed.

In terms of time complexity,G+ can be computed inO(n) time, by Lemma 8.1. Furthermore,
each shift, move and the lift operation can be implemented inO(n) time, hence the placement
of a single vertex costs O(n) time. However, in some cases (in particular, when we are
placing the top vertex of a kite), we may need to undo the placement of a set of vertices
and re-insert them afterwards. Since when we undo and reinsert a set of vertices we also
update σ accordingly, this guarantees that the placement of the same set of vertices will not
be undone anymore. Thus, the reinsertion of a set of O(n) vertices costs O(n2). Hence, we
have∑n

i=1 O(n + n2) which gives an O(n3) time complexity.

Theorem 8.5 and the fact that there exist n-vertex Rac graphs with 4n − 10 edges [DEL11]
while an n-vertex IC-planar graph has at most 13n/4 − 6 edges [ZL13] imply that IC-planar
graphs are a proper subfamily of Rac graphs.

We now show that exponential area is required for Rac drawings of IC-planar graphs. Since
the vertices are not drawn on the integer grid, the drawing area is measured as the proportion
between the longest and the shortest edge.

Theorem 8.6. There exists an infinite family G of graphs such that every IC-planar straight-line
Rac drawing of an n-vertex graph G ∈ G requires area Ω(qn), for some constant q > 1.

Proof. Consider the family G depicted in Figure 8.17a. Let G ∈ G with n vertices. Then, G
consists of (n − 1)/4 kites that are sequentially connected by two triangles. More specifi-
cally, the graph consists of an augmented (k + 1) = ln/2-ladder. We denote the vertices
on the left rail by l0 , l2 , . . . , lk and the vertices on the right rail by r0 , r2 , . . . , rk . For every
face (l i , r i , r i+1 , l i+1) with odd i, we add the edges (l i , r i+1) and (r i , l i+1) to form a kite. For
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every face (l i , r i , r i+1 , l i+1) with even i, we add the edge (l i , r i+1) to triangulate it. Then, every
vertex of this augmented ladder is connected to a universal vertex u.

This graph is constructed such that, if we remove one edge for each pair of crossing edges,
the resulting planar graph is a triangulation. Thus, there is only one planar embedding (up to
the choice of the outer face). Furthermore, the removed crossing edges can only be inserted at
one position. Hence, up to the choice of the outer face, the embedding depicted in Figure 8.17a
is the only IC-planar embedding. We consider the graph embedded such that vertices u, l0,
and r0 are on the boundary of the outer face and the circular order of the vertices around u is
l0, l1,. . ., lk , rk , rk−1, . . ., r0.
Without loss of generality, we assume that the edge (l1 , r1) is drawn horizontally, otherwise

we rotate the drawing to make the edge horizontal. For sake of simplicity, we assume that
x(u) = (x(l1) + x(r1))/2, such that the triangle (l1 , r1 , u) is isosceles. Otherwise, the proof
works analogously, but with more complicated formulas.

Assume that l0 , l1 , r0 , r1 , u have already been placed. Consider the first kiteK = (l1 , r1 , r2 , l2)
depicted in Figure 8.17b. Let a be the length of the edge (l1 , r1), and let α be the angle at l1
spanned by (u, l1 , r1)which is equivalent to the angle at r1 spanned by (l1 , r1 , u). Since we have
to place a crossing pair with a pair of edges that form a Rac inside the kite, it holds that α > 45○.
In order to fit the whole drawing (except l0 and r0) into the triangle (l1 , r1 , u), we have to
maximize the area of the triangle (l2 , r2 , u) that contains the rest of the drawing. Obviously,
this triangle has maximum area if l2 and r2 are as close to the edges (l1 , u) and (r1 , u) as
possible, respectively. Thus, we want to minimize the area of the kite K with l2 on (l1 , u)
and r2 on (r2 , u).

We now argue that the area of K is minimal if the edge (l2 , r2) is drawn horizontally. Let p
be the length of the diagonal (l1 , r2) and let q be the length of the diagonal (r1 , l2). The area
of a kite is known to be (p ⋅ q)/2. Since α > 45○, the length p and q increases with ascending
y-coordinate of r2 and l2, respectively. Since the crossing has to be Rac, if we move r2 further
up, then we have to move l2 further down, and vice versa. Let γ be the angle at l1 spanned
by (r2 , l1 , r2). Then, the angle at r2 spanned by (lr , r2 , l1) is 180○ − α − γ. By the solution of
triangles, it holds that

p = a sin α/ sin(180○ − α − γ) = a sin α/ sin(α + γ)
= a sin α/(sin α cos γ + cos α sin γ).

Analogously, it holds that

q = a sin α/ sin(α + 90○ − γ) = a sin α/ cos(γ − α)
= a sin α/(cos α cos γ + sin α sin γ).
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Making use of trigonometric functions, we get that the product is

pq = a2 sin2 α/( sin α cos α cos2 γ + cos2 α sin γ cos γ
+ sin2 α sin γ cos γ + sin α cos α sin2 γ)

= 1
2
a2 sin2 α/( sin(2α) cos2 γ + cos2 α sin(2γ)

+ sin2 α sin(2γ) + sin(2α) sin2 γ)

= 1
4
a2 sin2 α/( sin(2α)(1 + cos(2γ)) + (1 + cos(2α)) sin(2γ)

+ (1 − cos(2α)) sin(2γ) + sin(2α)(1 − cos(2γ)))

= 1
8
a2 sin2 α/(sin(2α) + sin(2γ))

Since a and α are given, the product is minimal if sin(2γ) is maximal. As the sine function has
its maximum at sin(90○), the area of the kite is minimal for γ = 45○, and thus, the edge (l2 , r2)
is drawn horizontally.
Now, we show that the area of the triangle (l2 , r2 , u) is a fraction of the area of the tri-

angle (l1 , r1 , u) that depends only on α and a. Consider the kite depicted in Figure 8.17c.
Let c1 be the crossing point of the edges (l1 , r2) and (r1 , l2). Since γ = 45○, the length of
the edge (l1 , c1) is

√
2a/2. Let b be the length of the edge (c1 , l2). The angle at l1 spanned

by (c1 , l1 , l2) is α − 45○. The tangent of this angle is defined as

tan(α − 45○) = b√
2a/2

= 2 b√
2a

.

Further, from the subtraction theorem of tangent follows

tan(α − 45○) = tan α − tan 45○

1 + tan α tan 45○
= tan α − 1
tan α + 1

Combining these equations, we get that

b = a
√
2
2

tan α − 1
tan α + 1

.

Let d be the length of the edge (l2 , r2). Consider the triangle spanned by l2, c1 and themidpoint
of the edge. This triangle has a hypotenuse of length b and two catheti of length c = d/2.
Using the Pythagorean theorem, we obtain

2c2 = b2 ⇒ c = b√
2
= a
2
tan α − 1
tan α + 1

and thus
d = 2c = a tan α − 1

tan α + 1
.

Since α > 45○, this fraction is smaller than 1.

152



Conclucing Remarks Section 8.4

Now, consider another kite K i = (l2i−1 , r2i−1 , r2i , l2i), 2 ≤ i ≤ k. Letting d i be the length of
the edge (l2i , r2i), it holds that

d i = d i−1
tan α − 1
tan α + 1

.

This leads us to

dk = a (
tan α − 1
tan α + 1

)
k
.

If we impose dk = 1, we have that a = qk , with q = tan α+1
tan α−1 > 1. Since k ∈ O(n), we have that the

ratio between the longest and the shortest segment of the drawing is Ω(qn), which concludes
our proof.

8.4 Conclucing Remarks

We have shown that every IC-planar graph can be drawn straight-line in quadratic area,
although the angle formed by any two crossing edges can be small. Conversely, straight-line
Rac drawings of IC-planar graphs may require exponential area. It would be interesting
to design algorithms that draw IC-planar graphs in polynomial area by relaxing the strict
constraint that edge intersections are at right-angles and instead asking for drawings that
have close to and good crossing resolution. Also, although IC-planar graphs are both 1-planar
and Rac, characterizing the intersection between these two classes is still an open problem.
The question whether NIC-planar graphs (see Zhang [Zha14]) which lie between IC-planar
graphs and 1-planar graphs are also Rac graphs is of particular interest.
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8Conclusion
In this book, we have investigated three aspects of angular schematization in graph drawing:
placement of boxes, visual guidance, and crossings with large angles. We have presented
several efficient algorithms that provided visually appealing drawings with large angles. For
some problems, we have also given NP-hardness results and approximation algorithms. We
will now browse through a short overview on the results stated in this book and state some
problems that are still open.

In Chapter 3, we have given the first polynomial-time algorithms of testing and computing
a solution to the Boundary Labeling problem with two adjacent sides, three sides, and four
sides. We have also presented an efficient algorithm to maximize the number of labeled sites
and, for the two-sided case, to minimize the total leader length. The latter problem remains
open for the three- and four-sided case.

OpenProblem 1. Can aminimum-length solution of Three-Sided and Four-Sided Bound-
ary Labeling be computed in polynomial time?

In Chapter 4, we have presented approximation algorithms for representing planar graphs as
contact graphs of boxes with given dimensions. We have given the first constant-factor approx-
imations for general graphs. For several graph classes, we have improved the approximation
factor. Further, we have shown that the problem is APX-complete even for bipartite graphs
of bounded degree. Basically, we acquired these algorithms by reduction to our solution for
stars. This leads us to the following open problems.

Open Problem 2. Is there any other graph class (except paths and cycles) that admit a direct
approximation algorithm in Max-Crown?

Open Problem 3. Can we find constant-factor approximation algorithms if the total width
and height of the representation is given?

In Chapter 5, we have given an algorithm to draw any planar of maximum degree 4 graph
with smooth complexity 2. If the input graph is planar of maximum degree 3 , then the
algorithm only requires polynomial area. Further, we have presented an algorithm that draws
biconnected outerplane graphs of maximum degree 4 with smooth complexity 1. We have
also shown that planar graphs of maximum degree 4 require exponential area if drawn with
smooth complexity 1, and that there is an infinite family of graphs that cannot be drawn
with smooth complexity 1, although they only require one bend in an orthogonal layout. The
following problems remain open.

Open Problem 4. Can any planar graph of maximum degree 4 be drawn in polynomial area
with smooth complexity 2?

Open Problem 5. Can we identify larger classes of graphs admitting smooth complexity 1
layouts, for example, does any (not necessarily biconnected) outerplanar graph of maximum
degree 4 or any planar graph of maximum degree 3 admit a smooth complexity 1 layout?
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Open Problem 6. Is it NP-hard to decide whether a given planar graph of maximum degree 4
admits a smooth complexity 1 layout?

In Chapter 6, we have introduced two algorithms for monotone drawings of trees. First, we
have given a linear-time algorithm that draws any n-vertex tree on the O(n1.5)×O(n1.5) grid
in a monotone fashion and close-to-perfect angular resolution. Second, we have shown that
any tree admits a strongly monotone drawing. For proper binary trees, the drawing is also
strictly convex. Several questions remain open.

Open Problem 7. Does any tree admit a strongly monotone drawing on a grid of polynomial
size?

Open Problem 8. Are there biconnected (or triconnected) planar graphs that do not admit
a strongly monotone drawing? If yes, can this be tested efficiently?

Open Problem 9. Are our drawings for general trees not just strongly monotone but also
convex?

In Chapter 7, we have considered the problem of simultaneously drawing planar graphs with
right-angle crossings and a constant number of bends per edge. Our main result was that
two planar graphs always admit a Rac simultaneous drawing with at most six bends per edge.
Further, we have given betters bounds on the number of bends per edge for more restricted
graph classes. All drawings can be computed efficiently and require quadratic area. Some
interesting problems remain open.

Open Problem 10. What other non-trivial classes of graphs admit a RacSim drawing with
less than six bends per edge?

Open Problem 11. Can we reduce the number of bends per edge if we do not insist on
right-angle crossings, but allow angles that are close to right angles?

Open Problem 12. Given two or more planar graphs on the same set of vertices and a non-
negative integer k, can we test whether there is a RacSim drawing in which each graph is
drawn with at most k bends per edge?

Open Problem 13. Can we achieve sub-quadratic area for special subclasses of planar graphs
if we increase the number of bends?

In Chapter 8, we have studied IC-planar graphs. We have shown that every IC-planar graph
admits a drawing on the O(n) ×O(n) grid that can be computed in linear time. If we restrict
the crossings to Rac, then we can compute drawings in exponential area. Both area bounds
are asymptotically tight. Deciding whether a given graph is IC-planar is NP-complete even if
the rotation system is given. Given, however, a triangulated planar graph, we can efficiently
test whether the graph can be made IC-planar by adding a matching. The following questions
remain open.

Open Problem 14. Can we efficiently test whether a graph with given rotation system is
maximal IC-planar?
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Open Problem 15. Can we achieve polynomial-size IC-planar drawings by using crossing
angles that are close to right angles?

Open Problem 16. Do larger graph classes that lie in the intersection of the class of 1-planar
graphs and the class of Rac graphs?

157





8Bibliography
[AAP+97] Pankaj K. Agarwal, Boris Aronov, János Pach, Richard Pollack, andMicha Sharir.

Quasi-planar graphs have a linear number of edges. Combinatorica, 17(1):1–9,
1997. [see page 129]

[ABB+13] Christopher Auer, Christian Bachmaier, Franz J. Brandenburg, Andreas
Gleißner, Kathrin Hanauer, Daniel Neuwirth, and Josef Reislhuber. Recognizing
outer 1-planar graphs in linear time. In Stephen K. Wismath and Alexander
Wolff, editors, Proc. 21st Int. Symp. Graph Drawing (GD’13), volume 8242 of
Lecture Notes Comput. Sci., pages 107–118. Springer-Verlag, 2013. [see page 129]

[ABF+12] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and
Ignaz Rutter. Testing the simultaneous embeddability of two graphs whose
intersection is a biconnected or a connected graph. J. Discrete Algorithms, 14:150–
172, 2012. [see page 109]

[ABGR15] Christopher Auer, Franz J. Brandenburg, Andreas Gleißner, and Josef Reislhu-
ber. 1-planarity of graphs with a rotation system. J. Graph Algorithms Appl.,
19(1):67–86, 2015. [see pages 130, 135, and 136]

[ABK13] Md. Jawaherul Alam, Franz J. Brandenburg, and Stephen G. Kobourov. Straight-
line grid drawings of 3-connected 1-planar graphs. In Stephen K. Wismath and
Alexander Wolff, editors, Proc. 21st Int. Symp. Graph Drawing (GD’13), volume
8242 of Lecture Notes Comput. Sci., pages 83–94. Springer-Verlag, 2013. [see
pages 129, 132, and 133]

[ABK+14] Md. Jawaherul Alam, Michael A. Bekos, Michael Kaufmann, Philipp Kinder-
mann, StephenG.Kobourov, andAlexanderWolff. Smooth orthogonal drawings
of planar graphs. In A. Pardo and A. Viola, editors, Proc. 13th Latin Am. Symp.
Theor. Inform. (LATIN’14), volume 8392 of Lecture Notes Comput. Sci., pages
144–155. Springer-Verlag, 2014. [see page 5]

[ABKS13] Evmorfia N. Argyriou, Michael A. Bekos, Michael Kaufmann, and Antonios
Symvonis. Geometric RAC simultaneous drawings of graphs. J. Graph Algo-
rithms Appl., 17(1):11–34, 2013. [see page 110]

[ABS12] Evmorfia N. Argyriou, Michael A. Bekos, and Antonios Symvonis. The straight-
line RAC drawing problem is NP-hard. J. Graph Algorithms Appl., 16(2):569–597,
2012. [see page 129]

[ACB+12] Patrizio Angelini, Enrico Colasante, Giuseppe Di Battista, Fabrizio Frati, and
Maurizio Patrignani. Monotone drawings of graphs. J. Graph Algorithms Appl.,
16(1):5–35, 2012. [see pages 91, 92, 99, 100, and 105]



Bibliography

[ACG+13] Soroush Alamdari, Timothy M. Chan, Elyot Grant, Anna Lubiw, and Vinayak
Pathak. Self-approaching graphs. In Walter Didimo and Maurizio Patrignani,
editors, Proc. 20th Int. Symp. Graph Drawing (GD’12), volume 7704 of Lecture
Notes Comput. Sci., pages 260–271. Springer-Verlag, 2013. [see page 91]

[Ack09] Eyal Ackerman. On the maximum number of edges in topological graphs with
no four pairwise crossing edges. Discrete Comput. Geom., 41(3):365–375, 2009.
[see page 129]

[Ack14] Eyal Ackerman. A note on 1-planar graphs. Discrete Appl. Math., 175:104–108,
2014. [see pages 59 and 63]

[ACM89] EstherM.Arkin, Robert Connelly, and Joseph S. B.Mitchell. Onmonotone paths
among obstacles with applications to planning assemblies. In Kurt Mehlhorn,
editor, Proc. 5th Ann. ACM Symp. Comput. Geom. (SoCG’89), pages 334–343.
ACM, 1989. [see page 91]

[ADF+15] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl,
Maurizio Patrignani, and Ignaz Rutter. Testing planarity of partially embedded
graphs. ACM Trans. Algorithms, 11(4):32:1–32:42, 2015. [see page 109]

[ADK+13] Patrizio Angelini, Walter Didimo, Stephen Kobourov, Tamara Mchedlidze, Vin-
cenzo Roselli, Antonios Symvonis, and Stephen Wismath. Monotone drawings
of graphs with fixed embedding. Algorithmica, pages 1–25, 2013. [see page 92]

[AES99] Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of
shallow levels in 3-dimensional arrangements and its applications. SIAM J.
Comput., 29(3):912–953, 1999. [see page 23]

[AGKN12] Patrizio Angelini, Markus Geyer, Michael Kaufmann, and Daniel Neuwirth.
On a tree and a path with no geometric simultaneous embedding. J. Graph
Algorithms Appl., 16(1):37–83, 2012. [see page 109]

[Alb08] Michael O. Albertson. Chromatic number, independence ratio, and crossing
number. Ars Math. Contemp., 1(1):1–6, 2008. [see page 130]

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time al-
gorithm for testing the truth of certain quantified boolean formulas. Inform.
Process. Lett., 8(3):121–123, 1979. [see page 144]

[AS92] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992. [see
page 61]

[AT07] Eyal Ackerman and Gábor Tardos. On the maximum number of edges in
quasi-planar graphs. J. Comb. Theory, Series A, 114(3):563–571, 2007. [see
page 129]

160



Bibliography

[BCD+07] Peter Brass, Eowyn Cenek, Cristian A. Duncan, Alon Efrat, Cesim Erten, Dan P.
Ismailescu, Stephen G. Kobourov, Anna Lubiw, and Joseph S. B. Mitchell. On
simultaneous planar graph embeddings. Comput. Geom. Theory Appl., 36(2):117–
130, 2007. [see pages 109 and 117]

[BCF+13] Michael A. Bekos, Sabine Cornelsen, Martin Fink, Seokhee Hong, Michael
Kaufmann, Martin Nöllenburg, Ignaz Rutter, and Antonios Symvonis. Many-
to-one boundary labeling with backbones. In Stephen Wismath and Alexander
Wolff, editors, Proc. 21st Int. Sympos. Graph Drawing (GD’13), volume 8242 of
Lecture Notes Comput. Sci., pages 244–255. Springer-Verlag, 2013. [see page 23]

[BCG+14] Michael A. Bekos, Sabine Cornelsen, Luca Grilli, Seok-Hee Hong, and Michael
Kaufmann. On the recognition of fan-planar and maximal outer-fan-planar
graphs. In Christian A. Duncan and Antonios Symvonis, editors, Proc. 22nd
Int. Symp. Graph Drawing (GD’14), volume 8871 of Lecture Notes Comput. Sci.,
pages 198–209. Springer-Verlag, 2014. [see page 129]

[BDD+14] Carla Binucci, Emilio Di Giacomo, Walter Didimo, Fabrizio Montecchiani,
Maurizio Patrignani, and Ioannis G. Tollis. Fan-planar graphs: Combinato-
rial properties and complexity results. In Christian A. Duncan and Antonios
Symvonis, editors, Proc. 22nd Int. Symp. Graph Drawing (GD’14), volume 8871 of
Lecture Notes Comput. Sci., pages 186–197. Springer-Verlag, 2014. [see pages 129
and 130]

[BEG+12] Franz-Josef Brandenburg, David Eppstein, Andreas Gleißner, Michael T.
Goodrich, Kathrin Hanauer, and Josef Reislhuber. On the density of maxi-
mal 1-planar graphs. In Walter Didimo and Maurizio Patrignani, editors, Proc.
20th Int. Symp. Graph Drawing (GD’12), volume 7704 of Lecture Notes Comput.
Sci., pages 327–338. Springer-Verlag, 2012. [see page 129]

[BETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.
[see page 11]

[BF96] Oliver Bastert and Sándor P. Fekete. Geometrische Verdrahtungsprobleme.
Technical Report 96–247, Universität zu Köln, 1996. [see page 23]

[BFK+14] Lukas Barth, Sara Irina Fabrikant, Stephen Kobourov, Anna Lubiw, Martin
Nöllenburg, Yoshio Okamoto, Sergey Pupyrev, Claudio Squarcella, Torsten
Ueckerdt, and AlexanderWolff. Semantic word cloud representations: Hardness
and approximation algorithms. In Alberto Pardo and Alfredo Viola, editors,
Proc. 11th Latin American Symp. Theor. Inform. (LATIN’14), volume 8392 of
Lecture Notes Comput. Sci., pages 514–525. Springer-Verlag, 2014. [see pages 54,
55, 56, 57, 64, and 67]

[BGPV08] Adam L. Buchsbaum, Emden R. Gansner, Cecilia Magdalena Procopiuc, and
Suresh Venkatasubramanian. Rectangular layouts and contact graphs. ACM
Trans. Algorithms, 4(1):8:1–8:28, 2008. [see page 54]

161



Bibliography

[BGR14] Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. Two-
page book embeddings of 4-planar graphs. In Ernst W. Mayr and Natacha
Portier, editors, Proc. 31st Int. Symp. Theor. Aspects Comput. Sci. (STACS’14),
volume 25 of LIPIcs, pages 137–148. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2014. [see page 115]

[BHKN09] Marc Benkert, Herman J. Haverkort, Moritz Kroll, and Martin Nöllenburg.
Algorithms for multi-criteria boundary labeling. J. Graph Algorithms Appl.,
13(3):289–317, 2009. [see pages 22, 23, and 25]

[BK79] Frank Bernhart and Paul C. Kainen. The book thickness of a graph. J. Comb.
Theory, Series B, 27(3):320–331, 1979. [see pages 111 and 115]

[BK98] Therese Biedl and Goos Kant. A better heuristic for orthogonal graph drawings.
Comput. Geom. Theory Appl., 9(3):159–180, 1998. [see pages 73, 74, 76, and 79]

[BKKS13] Michael A. Bekos, Michael Kaufmann, Stephen G. Kobourov, and Antonis
Symvonis. Smooth orthogonal layouts. In Walter Didimo and Maurizio Pa-
trignani, editors, Proc. 20th Int. Symp. Graph Drawing (GD’12), volume 7704 of
Lecture Notes Comput. Sci., pages 150–161. Springer-Verlag, 2013. [see pages 73,
74, 75, 81, 86, and 88]

[BKNS10] Michael A. Bekos, Michael Kaufmann,MartinNöllenburg, andAntonios Symvo-
nis. Boundary labeling with octilinear leaders. Algorithmica, 57(3):436–461,
2010. [see page 23]

[BKP14] Lukas Barth, Stephen Kobourov, and Sergey Pupyrev. Experimental comparison
of semantic word clouds. In Joachim Gudmundsson and Jyrki Katajainen,
editors, Proc. 13th Int. Symp. Experimental Algorithms (SEA’14), volume 8504 of
Lecture Notes Comput. Sci., pages 247–258. Springer-Verlag, 2014. [see pages 54
and 55]

[BKPS10] Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios Symvonis.
Area-feature boundary labeling. Comput. J., 53(6):827–841, 2010. [see pages 22
and 36]

[BKR13a] Thomas Bläsius, Annette Karrer, and Ignaz Rutter. Simultaneous embedding:
Edge orderings, relative positions, cutvertices. In Stephen Wismath and Alexan-
der Wolff, editors, Proc. 21st Int. Symp. Graph Drawing (GD’13), volume 8242 of
Lecture Notes Comput. Sci., pages 220–231. Springer-Verlag, 2013. [see page 109]

[BKR13b] Thomas Bläsius, Stephen G. Kobourov, and Ignaz Rutter. Simultaneous embed-
ding of planar graphs. In Roberto Tamassia, editor,Handbook of Graph Drawing
and Visualization, chapter 11, pages 349–381. CRC Press, 2013. [see page 109]

[BKRS01] Oleg V. Borodin, Alexandr V. Kostochka, André Raspaud, and Eric Sopena.
Acyclic colouring of 1-planar graphs. Discrete Appl. Math., 114(1-3):29–41, 2001.
[see page 129]

162



Bibliography

[BKRW14] Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner. Orthogonal
graph drawing with flexibility constraints. Algorithmica, 68(4):859–885, 2014.
[see page 73]

[BKSW07] Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander
Wolff. Boundary labeling: Models and efficient algorithms for rectangular maps.
Comput. Geom. Theory Appl., 36(3):215–236, 2007. [see pages 21, 22, and 23]

[BKV11] Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation techniques
for utilitarian mechanism design. SIAM J. Comput., 40(6):1587–1622, 2011. [see
pages 55 and 57]

[Bor84] O. V. Borodin. Solution of the Ringel problem on vertex-face coloring of planar
graphs and coloring of 1-planar graphs. Metody Diskret. Analiz., 41:12–26, 108,
1984. [see page 129]

[BR06] Imre Bárány and Günter Rote. Strictly convex drawings of planar graphs. Doc.
Math., 11:369–391, 2006. [see page 93]

[Bra14] Franz J. Brandenburg. 1-visibility representations of 1-planar graphs. J. Graph
Algorithms Appl., 18(3):421–438, 2014. [see page 130]

[BS93] Graham Brightwell and Edward R. Scheinerman. Representations of planar
graphs. SIAM J. Discrete Math., 6(2):214–229, 1993. [see page 110]

[BvDF+14] Michael A. Bekos, Thomas C. van Dijk, Martin Fink, Philipp Kindermann,
Stephen Kobourov, Sergey Pupyrev, Joachim Spoerhase, and Alexander Wolff.
Improved approximation algorithms for box contact representations. In An-
dreas S. Schulz and Dorothea Wagner, editors, Proc. 22nd Europ. Symp. Al-
gorithms (ESA’14), volume 8737 of Lecture Notes Comput. Sci., pages 87–99.
Springer-Verlag, September 2014. [see page 4]

[BvDKW15] Michael A. Bekos, Thomas C. van Dijk, Philipp Kindermann, and Alexander
Wolff. Simultaneous drawing of planar graphs with right-angle crossings and few
bends. In M. Sohel Rahman and Etsuji Tojima, editors, Proc. 9th Int. Workshop
on Algorithms and Computation (WALCOM’15), volume 8973 of Lecture Notes
Comput. Sci., pages 222–233. Springer-Verlag, February 2015. [see page 7]

[Cc99] Bernard Chazelle and 36 co-authors. The computational geometry impact task
force report. In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Adv. Dis-
crete and Comput. Geom., volume 223, pages 407–463. American Mathematical
Society, Providence, RI, 1999. [see page 21]

[CE07] Josiah Carlson and David Eppstein. Trees with convex faces and optimal angles.
In Michael Kaufmann and Dorothea Wagner, editors, Proc. 14th Int. Symp.
Graph Drawing (GD’06), volume 4372 of Lecture Notes Comput. Sci., pages
77–88. Springer-Verlag, 2007. [see pages 92, 94, 98, 99, and 100]

163



Bibliography

[CHKK13] Otfried Cheong, Sariel Har-Peled, Heuna Kim, and Hyo-Sil Kim. On the
number of edges of fan-crossing free graphs. In Leizhen Cai, Siu-Wing Cheng,
and TakWah Lam, editors, Proc. 24th Int. Symp. Algorithms Comput. (ISAAC’13),
volume 8283 of Lecture Notes Comput. Sci., pages 163–173. Springer-Verlag, 2013.
[see page 129]

[CHKL13] TimothyM. Chan, Hella-FranziskaHoffmann, StephenKiazyk, andAnna Lubiw.
Minimum length embedding of planar graphs at fixed vertex locations. In
Stephen K. Wismath and Alexander Wolff, editors, Proc. 21st Int. Symp. Graph
Drawing (GD’13), volume 8242 of Lecture Notes Comput. Sci., pages 376–387.
Springer-Verlag, 2013. [see page 23]

[CK05] Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation
scheme for the multiple knapsack problem. SIAM J. Comput., 35(3):713–728,
2005. [see pages 17 and 54]

[CKR06] Reuven Cohen, Liran Katzir, and Danny Raz. An efficient approximation for the
generalized assignment problem. Inform. Process. Lett., 100(4):162–166, 2006.
[see pages 56 and 62]

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press and McGraw-Hill, third edition edition,
2009. [see page 11]

[CM13] Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes
crossing number and 1-planarity hard. SIAM J. Comput., 42(5):1803–1829, 2013.
[see pages 15 and 16]

[CNP83] Gérard Cornuéjols, Denis Naddef, and William R. Pulleyblank. Halin graphs
and the travelling salesman problem. Math. Program., 26(3):287–294, 1983. [see
page 115]

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. InMichael A.
Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proc. 3rd Ann. ACM
Symp. Theory Comput. (STOC’71), pages 151–158. ACM, 1971. [see page 16]

[CP95] Marek Chrobak and Thomas H. Payne. A linear-time algorithm for drawing a
planar graph on a grid. Inform. Process. Lett., 54(4):241–246, 1995. [see page 145]

[CvL+11] Sergio Cabello, Marc van Kreveld, Giuseppe Liotta, Henk Meijer, Bettina Speck-
mann, and Kevin Verbeek. Geometric simultaneous embeddings of a graph and
a matching. J. Graph Algorithms Appl., 15(1):79–96, 2011. [see pages 109 and 121]

[CWL+10] Weiwei Cui, Yingcai Wu, Shixia Liu, Furu Wei, Michelle X. Zhou, and Huamin
Qu. Context-preserving dynamic word cloud visualization. Comput. Graph.
Appl., 30(6):42–53, 2010. [see page 54]

[DDEL14] Emilio Di Giacomo, Walter Didimo, Peter Eades, and Giuseppe Liotta. 2-layer
right angle crossing drawings. Algorithmica, 68(4):954–997, 2014. [see page 129]

164



Bibliography

[DDLM12] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchi-
ani. h-quasi planar drawings of bounded treewidth graphs in linear area. In
Martin Charles Golumbic, Michal Stern, Avivit Levy, and Gila Morgenstern,
editors, Proc. 38th Int. Workshop Grapth-Theor. Concepts Comput. Sci. (WG’12),
volume 7551 of Lecture Notes Comput. Sci., pages 91–102. Springer-Verlag, 2012.
[see page 129]

[DDLM13] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchi-
ani. Area requirement of graph drawings with few crossings per edge. Comput.
Geom., 46(8):909–916, 2013. [see page 129]

[DDvK+09] Emilio Di Giacomo, Walter Didimo, Marc van Kreveld, Giuseppe Liotta, and
Bettina Speckmann. Matched drawings of planar graphs. J. Graph Algorithms
Appl., 13(3):423–445, 2009. [see page 121]

[DE12] Hooman Reisi Dehkordi and Peter Eades. Every outer-1-plane graph has a right
angle crossing drawing. Int. J. Comput. Geom. Appl., 22(06):543–557, 2012. [see
page 144]

[DEG+12] Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G.
Kobourov, and Martin Nöllenburg. Lombardi drawings of graphs. J. Graph
Algorithms Appl., 16(1):85–108, 2012. [see page 73]

[DEG+13] Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G.
Kobourov, and Martin Nöllenburg. Drawing trees with perfect angular res-
olution and polynomial area. Discrete Comput. Geom., 49(2):157–182, 2013. [see
page 73]

[DEL11] Walter Didimo, Peter Eades, and Giuseppe Liotta. Drawing graphs with right
angle crossings. Theoretical Computer Science, 412(39):5156–5166, 2011. [see
pages 129 and 150]

[dFPP88] Hubert de Fraysseix, János Pach, and Richard Pollack. Small sets supporting
fary embeddings of planar graphs. In Janos Simon, editor, Proc. 20th Ann. ACM
Symp. Theory Comput. (STOC’88), pages 426–433. ACM, 1988. [see page 147]

[dFPP90] Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar
graph on a grid. Combinatorica, 10(1):41–51, 1990. [see pages 144 and 145]

[Dha10] Raghavan Dhandapani. Greedy drawings of triangulations. Discrete Comput.
Geom., 43(2):375–392, 2010. [see page 91]

[Did13] Walter Didimo. Density of straight-line 1-planar graph drawings. Inform. Process.
Lett., 113(7):236–240, 2013. [see page 129]

[DL12] WalterDidimo andGiuseppe Liotta. The crossing angle resolution in graph draw-
ing. In János Pach, editor, Thirty Essays on Geometric Graph Theory. Springer,
2012. [see page 129]

165



Bibliography

[DLT84] Danny Dolev, Tom Leighton, and Howard Trickey. Planar embedding of planar
graphs. Adv. Comput. Res., 2:147–161, 1984. [see page 133]

[DMS05] Tim Dwyer, Kim Marriott, and Peter J. Stuckey. Fast node overlap removal.
In Patrick Healy and Nikola S. Nikolov, editors, Proc. 13th Int. Symp. Graph
Drawing (GD’05), volume 3843 of Lecture Notes Comput. Sci., pages 153–164.
Springer-Verlag, 2005. [see page 54]

[EBGJ+08] Alejandro Estrella-Balderrama, Elisabeth Gassner, Michael Jünger, Merijam
Percan, Marcus Schaefer, and Michael Schulz. Simultaneous geometric graph
embeddings. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors, Proc.
16th Int. Symp. Graph Drawing (GD’08), volume 4875 of Lecture Notes Comput.
Sci., pages 280–290. Springer-Verlag, 2008. [see page 109]

[EHK+13] Peter Eades, Seok-Hee Hong, Naoki Katoh, Giuseppe Liotta, Pascal Schweitzer,
and Yusuke Suzuki. A linear time algorithm for testing maximal 1-planarity of
graphs with a rotation system. Theoretical Computer Science, 513:65–76, 2013.
[see page 129]

[EK05a] Cesim Erten and Stephen G. Kobourov. Simultaneous embedding of a planar
graph and its dual on the grid. Theory Comput. Syst., 38(3):313–327, 2005. [see
page 110]

[EK05b] Cesim Erten and Stephen G. Kobourov. Simultaneous embedding of planar
graphs with few bends. J. Graph Algorithms Appl., 9(3):347–364, 2005. [see
pages 109 and 112]

[EKL+13] William S. Evans, Michael Kaufmann, William Lenhart, Giuseppe Liotta,
Tamara Mchedlidze, and Stephen K. Wismath. Bar 1-visibility graphs and
their relation to other nearly planar graphs. Arxiv report, 2013. Available at
http://arxiv.org/abs/1312.5520. [see page 130]

[EL13] Peter Eades and Giuseppe Liotta. Right angle crossing graphs and 1-planarity.
Discrete Appl. Math., 161(7-8):961–969, 2013. [see pages 8, 129, 130, 131, and 144]

[EMSV12] David Eppstein, Elena Mumford, Bettina Speckmann, and Kevin Verbeek. Area-
universal and constrained rectangular layouts. SIAM J. Comput., 41(3):537–564,
2012. [see page 54]

[ER04] Günes Erkan and Dragomir R. Radev. Lexrank: Graph-based lexical centrality
as salience in text summarization. J. Artif. Int. Res., 22(1):457–479, 2004. [see
page 55]

[Fel04] Stefan Felsner. Geometric Graphs and Arrangements. Vieweg Verlag, 2004. [see
page 115]

[Fel13] Stefan Felsner. Rectangle and square representations of planar graphs. In
János Pach, editor, Thirty Essays on Geometric Graph Theory, pages 213–248.
Springer-Verlag, 2013. [see page 54]

166



Bibliography

[FGMS11] Lisa Fleischer, Michel X. Goemans, Vahab Mirrokni, and Maxim Sviridenko.
Tight approximation algorithms for maximum separable assignment problems.
Math. Oper. Res., 36(3):416–431, 2011. [see pages 17, 54, 55, and 68]

[FHH+93] Michael Formann, Torben Hagerup, James Haralambides, Michael Kaufmann,
FrankThomson Leighton, Antonios Symvonis, EmoWelzl, andGerhard J.Woeg-
inger. Drawing graphs in the plane with high resolution. SIAM J. Comput.,
22(5):1035–1052, 1993. [see page 2]

[FHS+12] Martin Fink, Jan-Henrik Haunert, André Schulz, Joachim Spoerhase, and
Alexander Wolff. Algorithms for labeling focus regions. IEEE Trans. Visual.
Comput. Graphics, 18(12):2583–2592, 2012. [see page 23]

[FMC96] Herbert Freeman, Sean Marrinan, and Hitesh Chitalia. Automated labeling of
soil survey maps. In Proc. ASPRS-ACSM Ann. Conv., Baltimore, volume 1, pages
51–59, 1996. [see page 21]

[FPS13] Jacob Fox, János Pach, and Andrew Suk. The number of edges in k-quasi-planar
graphs. SIAM J. Discrete Math., 27(1):550–561, 2013. [see page 129]

[Fre87] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with
applications. SIAM J. Comput., 16(6):1004–1022, 1987. [see pages 55 and 65]

[GB07] Alexander Grigoriev and Hans L. Bodlaender. Algorithms for graphs embed-
dable with few crossings per edge. Algorithmica, 49(1):1–11, 2007. [see page 16]

[GH10] Emden R. Gansner and Yifan Hu. Efficient, proximity-preserving node overlap
removal. J. Graph Algorithms Appl., 14(1):53–74, 2010. [see page 54]

[GHKR14] Luca Grilli, Seok-Hee Hong, Jan Kratochvíl, and Ignaz Rutter. Drawing simulta-
neously embedded graphs with few bends. In Christian Duncan and Antonios
Symvonis, editors, Proc. 22nd Int. Symp. Graph Drawing (GD’14), volume 8871
of Lecture Notes Comput. Sci., pages 40–51. Springer-Verlag, 2014. [see page 109]

[GHN11] Andreas Gemsa, Jan-Henrik Haunert, and Martin Nöllenburg. Boundary-
labeling algorithms for panorama images. In Isabel F. Cruz, Divyakant Agrawal,
Christian S. Jensen, Eyal Ofek, and Egemen Tanin, editors, Proc. 19th ACM
SIGSPATIAL Int. Conf. Adv. Geogr. Inform. Syst. (ACM-GIS’11), pages 289–298.
ACM, 2011. [see page 23]

[Gib85] Alan Gibbons. Algorithmic Graph Theory. Camb. Univ. Press, 1985. [see page 11]

[GJ78] Michael R. Garey and David S. Johnson. “ strong ” np-completeness results:
Motivation, examples, and implications. J. ACM, 25(3):499–508, 1978. [see
page 15]

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979. [see page 15]

167



Bibliography

[GJ83] Michael R. Garey andDavid S. Johnson. Crossing number is np-complete. SIAM
J. Algebraic and Discrete Methods, 4(3):312–316, 1983. [see pages 14 and 134]

[GMPP91] P. Gritzmann, B. Mohar, J. Pach, and R. Pollack. Embedding a planar triangula-
tion with vertices at specified positions. Amer. Math. Mon., 98:165–166, 1991.
[see page 23]

[GT94] Ashim Garg and Roberto Tamassia. Planar drawings and angular resolution:
Algorithms and bounds. In Jan van Leeuwen, editor, Proc. 2nd Ann. Europ.
Symp. Alg. (ESA’94), volume 855 of Lecture Notes Comput. Sci., pages 12–23.
Springer-Verlag, 1994. [see page 2]

[GT01] AshimGarg and Roberto Tamassia. On the computational complexity of upward
and rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001. [see
page 73]

[Hea85] Lenwood S. Heath. Algorithms for Embedding Graphs in Books. PhD thesis,
University of North Carolina, Chapel Hill, 1985. [see page 115]

[Hea87] Lenwood S. Heath. Embedding outerplanar graphs in small books. SIAM J.
Algebraic and Discrete Methods, 8(2):198–218, 1987. [see page 116]

[HEK+14] Seok-Hee Hong, Peter Eades, Naoki Katoh, Giuseppe Liotta, Pascal Schweitzer,
and Yusuke Suzuki. A linear-time algorithm for testing outer-1-planarity. Algo-
rithmica, pages 1–22, 2014. [see page 129]

[HELP12] Seok-Hee Hong, Peter Eades, Giuseppe Liotta, and Sheung-Hung Poon. Fáry’s
theorem for 1-planar graphs. In Joachim Gudmundsson, Julián Mestre, and
Taso Viglas, editors, Proc. 18th Ann. Int. Conf. Comput. Combin. (COCOON’12),
volume 7434 of Lecture Notes Comput. Sci., pages 335–346. Springer-Verlag, 2012.
[see pages 129 and 130]

[HHE08] Weidong Huang, Seok-Hee Hong, and Peter Eades. Effects of crossing angles.
In Proc. IEEE Pacifc Visual. Symp. (PacifcVis’08), pages 41–46. IEEE Computer
Society, 2008. [see page 2]

[Hir75] Daniel S. Hirschberg. A linear space algorithm for computingmaximal common
subsequences. Commun. ACM, 18(6):341–343, 1975. [see pages 33 and 34]

[HJL13] Bernhard Haeupler, Krishnam Raju Jampani, and Anna Lubiw. Testing simulta-
neous planarity when the common graph is 2-connected. J. Graph Algorithms
Appl., 17(3):147–171, 2013. [see page 109]

[HMS96] S. Louis Hakimi, John Mitchem, and Edward F. Schmeichel. Star arboricity of
graphs. Discrete Math., 149(1–3):93–98, 1996. [see pages 57 and 63]

[HR14] Md. Iqbal Hossain and Md. Saidur Rahman. Monotone grid drawings of planar
graphs. In Jianer Chen, John E. Hopcroft, and Jianxin Wang, editors, Proc.
8th Int. Workshop Front. Algorithmics (FAW’14), volume 8497 of Lecture Notes
Comput. Sci., pages 105–116. Springer-Verlag, 2014. [see page 92]

168



Bibliography

[HS99] Christian Haslinger and Peter F. Stadler. Rna structures with pseudo-knots:
Graph-theoretical, combinatorial, and statistical properties. Bull. Math. Biol.,
61(3):437–467, 1999. [see page 115]

[HW79] Godfrey H. Hardy and Edward M. Wright. An Introduction to the Theory of
Numbers. Oxford Univ. Press, 5th edition, 1979. [see pages 93 and 94]

[IKL95] Christian Icking, Rolf Klein, and Elmar Langetepe. Self-approaching curves. In
Math. Proc. Camb. Philos. Soc., volume 125, pages 441–453. Camb. Univ. Press,
1995. [see page 92]

[Kam06] Frank Kammer. Simultaneous embedding with two bends per edge in polyno-
mial area. In Lars Arge and Rusins Freivalds, editors, Proc. 10th Scand.Workshop
Algorithm Theory (SWAT’06), volume 4059 of Lecture Notes Comput. Sci., pages
255–267. Springer-Verlag, 2006. [see page 109]

[Kan96] Goos Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16(1):4–32, 1996. [see page 81]

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Com-
puter Computations, IBM Res. Symp. Series, pages 85–103. Springer-Verlag, 1972.
[see page 16]

[KKRW10] B. Katz, M. Krug, I. Rutter, and A. Wolff. Manhattan-geodesic embedding of
planar graphs. In David Eppstein and Emden R. Gansner, editors, Proc. 17th
Int. Symp. Graph Drawing (GD’09), volume 5849 of Lecture Notes Comput. Sci.,
pages 207–218. Springer-Verlag, 2010. [see page 23]

[KM13] Vladimir P. Korzhik and Bojan Mohar. Minimal obstructions for 1-immersions
and hardness of 1-planarity testing. J. Graph Theory, 72(1):30–71, 2013. [see
pages 129 and 130]

[KNR+13] Philipp Kindermann, Benjamin Niedermann, Ignaz Rutter, Marcus Schaefer,
André Schulz, and AlexanderWolff. Two-sided boundary labeling with adjacent
sides. In F. Dehne, R. Solis-Oba, and J.-R. Sack, editors, Proc. 13th Int. Algorithms
Data Struct. Symp. (WADS’13), volume 8037 of Lecture Notes Comput. Sci., pages
463–474. Springer-Verlag, 2013. [see page 4]

[KO07] Paul C. Kainen and Shannon Overbay. Extension of a theorem of whitney. Appl.
Math. Lett., 20(7):835–837, 2007. [see page 115]

[Koe36] Paul Koebe. Kontaktprobleme der konformen Abbildung. Berichte d. math.-
phys. Kl. d. Sächs. Akad. d. Wissenschaften zu Leipzig, 88(2):141–164, 1936. [see
page 2]

[Kro67] Melven R. Krom. The decision problem for a class of first-order formulas in
which all disjunctions are binary. Math. Logic Quarterly, 13(1-2):15–20, 1967.
[see page 16]

169



Bibliography

[KS10] Daniel Král and Ladislav Stacho. Coloring plane graphs with independent
crossings. J. Graph Theory, 64(3):184–205, 2010. [see page 130]

[KSSW14] Philipp Kindermann, André Schulz, Joachim Spoerhase, and Alexander Wolff.
On monotone drawings of trees. In C. Duncan and A. Symvonis, editors, Proc.
22nd Int. Symp. Graph Drawing (GD’14), volume 8871 of Lecture Notes Comput.
Sci., pages 488–500. Springer-Verlag, 2014. [see page 6]

[KU14] Michael Kaufmann and Torsten Ueckerdt. The density of fan-planar graphs.
Arxiv report, 2014. Available at http://arxiv.org/abs/1403.6184. [see page 129]

[KW01] Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs: Methods
and Models, volume 2025 of Lecture Notes Comput. Sci. Springer-Verlag, 2001.
[see page 11]

[KW02] Michael Kaufmann and RolandWiese. Embedding vertices at points: Few bends
suffice for planar graphs. J. Graph Algorithms Appl., 6(1):115–129, 2002. [see
page 112]

[Kyn09] Jan Kynčl. Enumeration of simple complete topological graphs. Electr. J. Comb.,
30(7):1676–1685, 2009. [see page 135]

[Lei80] Charles E. Leiserson. Area-efficient graph layouts (for VLSI). In Proc. 21st Annu.
IEEE Symp. Foundat. Comput. Sci. (FOCS’80), pages 270–281. IEEE Computer
Society, 1980. [see page 73]

[Li02] Hang Li. Word clustering and disambiguation based on co-occurrence data. J.
Nat. Lang. Eng., 8(1):25–42, 2002. [see page 53]

[Lin10] Chun-Cheng Lin. Crossing-free many-to-one boundary labeling with hyper-
leaders. In Proc. IEEE Pacific Visual. Symp. (PacificVis’10), pages 185–192. IEEE
Computer Society, 2010. [see page 23]

[Lio14] Giuseppe Liotta. Graph drawing beyond planarity: some results and open
problems. In Stefano Bistarelli and Andrea Formisano, editors, Proc. 15th Ital.
Conf. Theoret. Comput. Sci. (ICTCS’14), volume 1231 of CEURWorkshop Proc.,
pages 3–8. CEUR-WS.org, 2014. [see page 129]

[LKY08] Chun-Cheng Lin, Hao-Jen Kao, and Hsu-Chun Yen. Many-to-one boundary
labeling. J. Graph Algorithms Appl., 12(3):319–356, 2008. [see page 23]

[LM10] Tom Leighton and Ankur Moitra. Some results on greedy embeddings in metric
spaces. Discrete Comput. Geom., 44(3):686–705, 2010. [see page 91]

[LMM+95] Thomas M. Liebling, François Margot, D. Müller, Alain Prodon, and L. Stauffer.
Disjoint paths in the plane. ORSA J. Comput., 7(1):84–88, 1995. [see page 23]

[LMS98] Yanpei Liu, AuroraMorgana, and Bruno Simeone. A linear algorithm for 2-bend
embeddings of planar graphs in the two-dimensional grid. Discrete Appl. Math.,
81(1–3):69–91, 1998. [see pages 73, 74, and 75]

170



Bibliography

[Mor80] Joel L. Morrison. Computer technology and cartographic change. In D.R.F.
Taylor, editor, The Computer in Contemporary Cartography. Johns Hopkins
University Press, 1980. [see page 21]

[NB79] Takao Nishizeki and Ilker Baybars. Lower bounds on the cardinality of the
maximummatchings of planar graphs. Discrete Math., 28(3):255–267, 1979. [see
page 66]

[NC08] Takao Nishizeki and Norishige Chiba. Planar Graphs: Theory and Algorithms,
chapter Chapter 10. Hamiltonian Cycles, pages 171–184. Dover Books Math.
Courier Dover Pub., 2008. [see page 115]

[NP13] Martin Nöllenburg and Roman Prutkin. Euclidean greedy drawings of trees. In
Hans L. Bodlaender and Giuseppe F. Italiano, editors, Proc. 21st Europ. Symp.
Algorithms (ESA’13), volume 8125 of Lecture Notes Comput. Sci., pages 767–778.
Springer-Verlag, 2013. [see page 91]

[NPR13] Martin Nöllenburg, Roman Prutkin, and Ignaz Rutter. Edge-weighted contact
representations of planar graphs. J. Graph Algorithms Appl., 17(4):441–473, 2013.
[see page 54]

[NPR14] Martin Nöllenburg, Roman Prutkin, and Ignaz Rutter. On self-approaching and
increasing-chord drawings of 3-connected planar graphs. Arxiv report, 2014.
Available at http://arxiv.org/abs/1409.0315. [see page 99]

[NPS10] Martin Nöllenburg, Valentin Polishchuk, and Mikko Sysikaski. Dynamic one-
sided boundary labeling. In Proc. 18th ACM SIGSPATIAL Int. Symp. Adv. Geogr.
Inform. Syst. (ACM-GIS’10), pages 310–319. ACM, 2010. [see page 23]

[NR04] Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of
Lecture Notes Comput. Sci. World Sci. Pub., 2004. [see page 11]

[NW64] Crispin St. John Alvah Nash-Williams. Decomposition of finite graphs into
forests. J. London Math. Soc., 1(1):12–12, 1964. [see pages 59 and 115]

[PT97] János Pach and Gáza Tóth. Graphs drawn with few crossings per edge. Combi-
natorica, 17(3):427–439, 1997. [see page 129]

[PTT+12] Fernando Vieira Paulovich, Franklina M. B. Toledo, Guilherme P. Telles, Rosane
Minghim, and Luis Gustavo Nonato. Semantic wordification of document
collections. Comput. Graph. Forum, 31(3):1145–1153, 2012. [see page 54]

[Rai34] Erwin Raisz. The rectangular statistical cartogram. Geogr. Review, 24(3):292–
296, 1934. [see page 54]

[RCS86] Raghunath Raghavan, James Cohoon, and Sartaj Sahni. Single bend wiring. J.
Algorithms, 7(2):232–257, 1986. [see page 23]

[Rin65] Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abh. aus dem Math.
Seminar der Univ. Hamburg, 29(1-2):107–117, 1965. [see page 129]

171



Bibliography

[RRP+03] Ananth Rao, Sylvia Ratnasamy, Christos H. Papadimitriou, Scott Shenker, and
Ion Stoica. Geographic routing without location information. In David B.
Johnson, Anthony D. Joseph, and Nitin H. Vaidya, editors, Proc. 9th Ann. Int.
Conf. Mob. Comput. Netw. (MOBICOM’03), pages 96–108. ACM, 2003. [see
page 91]

[Sch13] Marcus Schaefer. Toward a theory of planarity: Hanani-tutte and planarity
variants. J. Graph Algorithms Appl., 17(4):367–440, 2013. [see page 109]

[See97] Jochen Seemann. Extending the Sugiyama algorithm for drawing UML class
diagrams: Towards automatic layout of object-oriented software diagrams. In
GiuseppeDi Battista, editor, Proc. 5th Int. Symp. GraphDrawing (GD’97), volume
1353 of Lecture Notes Comput. Sci., pages 415–424. Springer-Verlag, 1997. [see
page 73]

[SFK11] Sven Schneider, Jan-Ruben Fischer, and Reinhard König. Rethinking automated
layout design: Developing a creative evolutionary design method for the layout
problems in architecture and urban design. In John S. Gero, editor, Proc. 4th
Int. Conf. Design Comput. Cognition (DCC’10), pages 367–386. Springer-Verlag,
2011. [see page 73]

[Syl78] James J. Sylvester. On an application of the new atomic theory to the graphical
representation of the invariants and covariants of binary quantics. Amer. J.
Math., Pure and Applied, 1(1):64–90, 1878. [see page 1]

[Tam87] R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput., 16(3):421–444, 1987. [see page 73]

[Tam13] Roberto Tamassia, editor. Handbook of Graph Drawing and Visualization, vol-
ume 81 of Discrete Math. Appl. Chapman & Hall/CRC, 2013. [see page 11]

[Tho88] Carsten Thomassen. Rectilinear drawings of graphs. J. Graph Theory, 12(3):335–
341, 1988. [see pages 129 and 131]

[Tru93] Richard J. Trudeau. Introduction to Graph Theory. New York: Dover Pub, 1993.
[see page 11]

[Val98] Pavel Valtr. On geometric graphs with no k pairwise parallel edges. Discrete
Comput. Geom., 19(3):461–469, 1998. [see page 129]

[Vaz03] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, 2003. [see
page 11]

[VBSW83] R Von Bodendiek, H Schumacher, and K Wagner. Bemerkungen zu einem
sechsfarbenproblem von g. ringel. Abh. Math. Semin. Univ. Hambg., 53(1):41–52,
1983. [see page 129]

172



Bibliography

[vK11] Marc van Kreveld. The quality ratio of rac drawings and planar drawings of
planar graphs. In Ulrik Brandes and Sabine Cornelsen, editors, Proc. 18th Int.
Symp. Graph Drawing (GD’11), volume 6502 of Lecture Notes Comput. Sci., pages
371–376. Springer-Verlag, 2011. [see page 2]

[vKSW99] Marc van Kreveld, Tycho Strijk, and AlexanderWolff. Point labeling with sliding
labels. Comput. Geom. Theory Appl., 13:21–47, 1999. [see page 21]

[VWF09] Fernanda B. Viégas, Martin Wattenberg, and Jonathan Feinberg. Participatory
visualization with Wordle. IEEE Trans. Visual. Comput. Graphics, 15(6):1137–
1144, 2009. [see pages 53 and 54]

[Wei13] Severin Weiland. Der Koalitionsvertrag im Schnellcheck (Quick
overview of the [German] coalition agreement). Spiegel Online,
www.spiegel.de/politik/deutschland/was-der-koalitionsvertrag-deutschland-
bringt-a-935856.html. Click on “Fotos”, 27 November 2013. [see page 53]

[Wig82] Avi Wigderson. The complexity of the hamiltonian circuit problem for max-
imal planar graphs. Technical Report TR-298, EECS Department, Princeton
University, 1982. [see page 115]

[WPW+11] YingcaiWu, Thomas Provan, FuruWei, Shixia Liu, and Kwan-LiuMa. Semantic-
preserving word clouds by seam carving. Comput. Graph. Forum, 30(3):741–750,
2011. [see page 54]

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algo-
rithms. Camb. Univ. Pres, 2011. [see page 11]

[Zha14] Xin Zhang. Drawing complete multipartite graphs on the plane with restrictions
on crossings. Acta Math. Sinica, 30(12):2045–2053, 2014. [see pages 130 and 153]

[ZL13] Xin Zhang and Guizhen Liu. The structure of plane graphs with independent
crossings and its applications to coloring problems. Central Europ. J. Math.,
11(2):308–321, 2013. [see pages 130, 133, and 150]

[Zor97] Steven Zoraster. Practical results using simulated annealing for point feature
label placement. Cartogr. GIS, 24(4):228–238, 1997. [see page 21]

173

http://www.spiegel.de/politik/deutschland/was-der-koalitionsvertrag-deutschland-bringt-a-935856.html
http://www.spiegel.de/politik/deutschland/was-der-koalitionsvertrag-deutschland-bringt-a-935856.html








ISBN 978-3-95826-020-7


	Preface
	Introduction
	Outline of the Book
	Placement of Boxes
	Visual Guidance
	Crossings with Large Angles


	Preliminaries
	Graphs
	Graph Drawing
	Complexity

	I Placement of Boxes
	Multi-Sided Boundary Labeling
	Structure of Two-Sided Planar Solutions
	Algorithm for the Two-Sided Case
	Extensions
	Sliding Ports
	Maximizing the Number of Labeled Sites
	Minimizing the Total Leader Length

	The Three- and Four-Sided Cases
	Structure of Three- and Four-Sided Planar Solutions
	Algorithm for the Three-Sided Case
	Algorithm for the Four-Sided Case

	Concluding Remarks

	Approximation Algorithms for Box Contact Representations
	Some Basic Results
	A Combination Lemma
	Improvement on Existing Approximation Algorithms

	The Weighted Case
	The Unweighted Case
	APX-Completeness
	Concluding Remarks


	II Visual Guidance
	Smooth Orthogonal Layouts of Planar Graphs
	Smooth Layouts for Biconnected Maxdeg-4 Planar Graphs
	Smooth Layouts for Arbitrary Maxdeg-4 Planar Graphs
	SC1-Layouts of Biconnected Maxdeg-4 Outerplane Graphs
	A Lower Bound for the Area Requirement of SC1-Layouts
	Biconnected Graphs without SC1-Layouts
	Concluding Remarks

	Monotone Drawings of Trees
	Building Blocks: Primitive Vectors
	Monotone Grid Drawings with Large Angles
	Strongly Monotone Drawings
	Concluding Remarks


	III Crossings with Large Angles
	Simultaneous Drawing of Planar Graphs with Right-Angle Crossings
	RacSim Drawings of General Graphs
	RacSim and RacSefe Drawings with One Bend per Edge
	RacSefe Drawings with Two Bends per Edge
	Conclusions and Open Problems

	Recognizing and Drawing IC-Planar Graphs
	Straight-Line Drawings of IC-planar graphs
	Recognizing IC-planar graphs
	Hardness of the Problem.
	Hardness of the Problem With a Given Rotation System.
	Polynomial-Time Test for a Triangulated Plane Graph Plus a Matching.

	IC-planarity and Rac Graphs
	Conclucing Remarks


	Conclusion
	Bibliography



