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Introduction

Some of the early works on the stability analysis of nonlinear discrete-time sys-
tems described by difference equations are [97, 118]. In these works, conditions are
derived under which the asymptotically stable linear part of the dynamics is domi-
nating the nonlinear part to conclude asymptotic stability of the equilibrium point.
An alternative method is the usage of Lyapunov functions, [105], whose existence
implies asymptotic stability of the equilibrium point. The advantage of using Lya-
punov functions is that the conditions are easy to check, in general. In particular,
solutions of the system do not have to be known. For discrete-time systems, Lya-
punov methods are developed in [54,73]. A particular observation of [54] is that for
asymptotically stable linear discrete-time systems, quadratic Lyapunov functions
can always be obtained by solving a matrix equation.

For nonlinear discrete-time systems with asymptotically stable equilibrium point,
the necessity of the existence of Lyapunov functions is shown by converse Lyapunov
theorems such as [71, 81, 116]. However, converse Lyapunov theorems for general
nonlinear systems do not lead to constructive procedures. Hence, Lyapunov func-
tions are, in general, hard to find. There are only a few constructive approaches to
obtain Lyapunov functions for nonlinear systems such as e.g. construction methods
using linear programming [51, 96] or Zubov methods [17]. Consequently, there is a
need for developing new tools for constructing Lyapunov functions.

For systems of a significant size in terms of dimension or complexity, direct methods
such as the Lyapunov method are often challenging or intractable. Although there is
no precise definition, such systems are frequently called large-scale, and they receive
a lot of attention since the mid 70s, see e.g. the books [109,127,140]. One prominent
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method for studying large-scale systems is the small-gain approach: The large-scale
system is considered as an interconnection of smaller subsystems, and the influence
of the subsystems on each other is treated as a disturbance. The classical small-gain
idea is to assume that the subsystems are in some sense robust, and the disturbing
influence is in some sense small. Then, asymptotic stability of the equilibrium point
of the overall system can be guaranteed.

In [128] the concept of input-to-state stability (ISS) was introduced. This concept
opened the door to nonlinear extensions [24,69] of the small-gain results in [127,140],
where the gains describing the disturbing influence of the subsystems were modeled
via linear functions. Moreover, as the concept of ISS can also be characterized by
the existence of ISS Lyapunov functions, several Lyapunov-based ISS small-gain
theorems have been derived, see e.g. [21, 25, 68, 75]. For discrete-time systems, ISS
and its Lyapunov characterizations are studied in [46, 70, 76, 93, 94], and ISS small-
gain theorems in various forms are derived e.g. in [24,48,65,70,89,99].

Most of the above references concerning ISS and ISS small-gain theorems were pub-
lished during the last 15 years, and the topic still receives a lot of attention. Let
us briefly mention some open problems in this area, which are studied in this the-
sis.

As mentioned before, small-gain theorems, in general, provide sufficient conditions
to conclude asymptotic stability (or ISS). A natural question is to study necessity of
the conditions involved. Only few authors studied this question so far. The authors
in [19] derive a small-gain theorem for continuous-time systems using the behav-
ioral setting, [120], and show that the conditions of the small-gain result are also
necessary for Lp-stability. In [64], necessary small-gain conditions are investigated
for interconnected continuous-time integral-input-to-state stable (iISS) subsystems.
Note that for continuous-time systems the concept of iISS is strictly stronger than
the 0-GAS property1, whereas for discrete-time systems, the notions of iISS and
0-GAS are equivalent, see [3]. The authors in [40] provide necessary and sufficient
conditions for interconnected discrete-time systems to conclude global exponential
stability (GES) of the origin. This work has also been the starting point for the
small-gain results that are derived in Chapter 2.

Whereas cascades of ISS systems are again ISS, stability of cascades of iISS is not
guaranteed, in general, see [64]. In particular, the authors in [64] show that at
least one subsystem has to be ISS to conclude stability of the interconnection. A
more general question is deriving conditions on interconnections within the con-
text of small-gain theory, to treat subsystems that do not share the same stability
property.

10-GAS means that the equilibrium point of a system is globally asymptotically stable if the
input is set to zero.
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A common assumption in the stability analysis of discrete-time systems is that the
dynamics of the system are assumed to be continuous, [65,71,99]. However, there are
several recent stabilization schemes that commonly lead to discontinuous feedback
control laws (such as e.g. model predictive control (MPC) [16,47,90], event-triggered
control [119,137] or quantized control [113]). Other examples, where discontinuities
occur, can be found in networked control systems (NCS) [57], where channel imper-
fections are modeled as error dynamics [12, 39], which are usually discontinuous at
transmission times. In this respect, the interest in tools for studying stability of
systems with discontinuous dynamics is high.

We see that there exists a variety of open problem within the context of stability
analysis of nonlinear large-scale discrete-time systems. The contribution of this
thesis is to answer some of these questions. In the remainder of this introduction,
the problems studied in this thesis are explained in more detail.

Lyapunov methods

Roughly speaking, stability of an equilibrium point of a discrete-time system is the
property that any trajectory that starts close to the equilibrium point will stay close
for all times. Furthermore, asymptotic stability of an equilibrium point means that,
in addition, trajectories starting close to the equilibrium point eventually converge
to the stable equilibrium point.

A powerful tool for establishing stability properties, such as global asymptotic sta-
bility (GAS) of the equilibrium point of a system, is the concept of a Lyapunov
function [105]. A Lyapunov function is a scalar function whose existence shows
(global) asymptotic stability of the equilibrium point. The main advantage of this
concept is to conclude asymptotic stability of the equilibrium point without knowing
any trajectory of the system. Moreover, the existence of a Lyapunov function is not
only sufficient, but also necessary for (global) asymptotic stability of the equilibrium
point. Theorems stating this converse direction, i.e., the necessity, are thus called
converse Lyapunov theorems. In general, converse Lyapunov theorems are proved
by constructing a Lyapunov function. This abstract construction of a Lyapunov
function is usually performed by taking infinite series [71] or the supremum over all
trajectories and all times [81,116]. As such, these approaches require the knowledge
of trajectories for all positive times.

For linear discrete-time systems quadratic Lyapunov functions can be constructed
by solving a matrix equation [54, 73]. On the other hand, for nonlinear discrete-
time systems constructive approaches to obtain a Lyapunov function are scarce and
often limited to certain classes of discrete-time systems, see also the explanation in
Section 2.5.
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In this thesis, we aim at deriving a constructive converse Lyapunov theorem for a
broader class of systems. In addition, we do not demand regularity assumptions such
as continuity that is often assumed in the literature [71,96,145]. In fact, we allow for
discontinuous dynamics, which recently attracts much attention [46,48,93].

To be more precise, let G : Rn → Rn satisfy G(0) = 0, and consider the discrete-time
system

x(k + 1) = G(x(k)), k ∈ N, x ∈ Rn. (1)

Then, see [71], global asymptotic stability of the equilibrium point 0 is ensured by
the existence of a Lyapunov function V : Rn → R+ satisfying the following two
properties:

(i) There exist K∞-functions α1, α2 such that for all ξ ∈ Rn we have

α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖).

(ii) There exists a positive definite function ρ : R+ → R+ satisfying ρ(s) < s for
all s > 0 such that for all ξ ∈ Rn we have

V (G(ξ)) ≤ ρ(V (ξ)).

If we denote by x(k, ξ) the trajectory of system (1) at time instant k ∈ N, starting
in the initial value x(0, ξ) = ξ ∈ Rn, the second condition of a Lyapunov function
can be written as

V (x(1, ξ)) ≤ ρ(V (ξ)).

In other words, condition (ii) ensures a decrease of the Lyapunov function along
trajectories at each time step.

A relaxation of the Lyapunov function concept, which was inspired by the results
in [1] for time-varying dynamical systems, is the following: the Lyapunov function is
allowed to decrease along the system trajectories after a finite number of time steps,
and not at every time step. To be precise, instead of condition (ii), we require the
following condition:

(ii’) There exists a finite M ∈ N and a positive definite function ρ : R+ → R+

satisfying ρ(s) < s for all s > 0 such that for all ξ ∈ Rn we have

V (x(M, ξ)) ≤ ρ(V (ξ)).

The idea of this relaxation is sketched in Figure 1. The function V to the left
decreases along the trajectory x(k, ξ) at any step. On the other hand, the function V
to the right decreases along the trajectory x(k, ξ) at least any three steps, and is
thus allowed to increase in between x(k, ξ) and x(k + 3, ξ).
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Figure 1: to the left: The function V decreases along x(k, ξ) at any step.
to the right: The function V decreases along x(k, ξ) any 3 steps.

We will show that this relaxation, named global finite-step Lyapunov function in
this thesis, still yields sufficient conditions for establishing GAS of the underlying
system’s origin. Here, we propose a different proof to the one in [1], where we do
not require any regularity assumptions on the system’s dynamics.

The main achievements by considering global finite-step Lyapunov functions instead
of Lyapunov functions that are developed in this thesis are the following:

1. Necessity of the existence of a global finite-step Lyapunov function to conclude
GAS of the origin can be ensured using converse Lyapunov theorems as e.g.
[46, 71]. Here, we propose an alternative approach by considering norms as
candidates for global finite-step Lyapunov functions. In particular, we prove
that for systems with globally exponentially stable (GES) origin any norm is a
global finite-step Lyapunov function, i.e., there exist an M ∈ N and a positive
definite function ρ < id such that for all ξ ∈ Rn we have

‖x(M, ξ)‖ ≤ ρ(‖ξ‖).

In addition, for systems with GAS origin we can show that any norm is an
(a, b) finite-step Lyapunov function, where 0 < a < b < ∞, which guarantees
a finite-step decay for all ξ ∈ Rn with ‖ξ‖ ∈ [a, b]. By picking M ∈ N large
enough we can enlarge the interval [a, b]. Hence, by taking M ∈ N large
enough, practical asymptotic stability can be ensured.
Consequently, we can take norms as (global or (a, b)) finite-step Lyapunov
functions. The difficulty is then to find a number M ∈ N large enough.

2. We present two methods to construct a (global) Lyapunov function for the
underlying system, in case a (global) finite-step Lyapunov function and a cor-
responding step size M ∈ N is known. The first construction is to take the
(finite) sum of the finite-step Lyapunov function evaluated at the first M tra-
jectory values, while the second construction is the maximum of this values,
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but suitably scaled. These constructions, in contrast to the infinite series con-
struction [71] and the supremum construction [81,116], are implementable.

3. Bringing these two items together, we obtain an alternative converse Lyapunov
theorem that provides an explicit construction of a Lyapunov function. In
particular, for any (discontinuous) discrete-time system with GES origin, we
can always construct a global Lyapunov function as a finite sum of the norm
of trajectories. Hence, this construction can be implemented straightforwardly
if a suitable number M ∈ N is known.

The Lyapunov function construction hinges on finding a suitable natural number
M ∈ N a priori. In this thesis, several systematic ways to find such a suitable number
are discussed for certain classes of systems. In particular, we establish necessity of
specific types of Lyapunov functions via the developed converse Lyapunov theorems.
Most notably, it is established that the existence of a conewise linear Lyapunov
function is sufficient and necessary for GES of conewise linear systems, which is
one of the open problems in stability analysis of conewise linear systems [72]. The
latter result further yields, as a by-product, a new method to construct polyhedral
Lyapunov functions for linear systems, i.e., the Lyapunov function V is of the form
V (ξ) = ‖Pξ‖, where P ∈ Rp×n, p ≥ n. We give an explicit formula of P in
terms of iterates of A. Hence, this method is tractable even in state spaces of high
dimension.

For discrete-time systems with inputs of the form

x(k + 1) = G(x(k), u(k)), k ∈ N, (2)

where G : Rn × Rm → Rn, x ∈ Rn and u ∈ Rm, we are interested in providing
conditions guaranteeing input-to-state stability (ISS) as introduced in [128]. De-
spite several other characterizations such as e.g. given in [133, Theorem 1], ISS of
system (2) is characterized by the following properties:

• 0-GAS: the origin of system (2) with zero input (u = 0) is GAS;

• asymptotic gain property : any trajectory converges to a neighborhood of the
origin, where the size of the neighborhood depends on the magnitude of the
input.

A particular consequence is that “small” perturbations, i.e., inputs with small mag-
nitude, have only “small” effects on the system trajectories. Importantly, ISS of
system (2) is equivalent to the existence of a dissipative ISS Lyapunov function,
see e.g. [46, 70]. Thus, we introduce the notion of dissipative finite-step ISS Lya-
punov functions as an extension of global finite-step Lyapunov functions for systems
without inputs. In particular, the decrease condition (ii) is now of the form
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(ii’) There exist a finiteM ∈ N, σ ∈ K, a positive definite function ρ with (id−ρ) ∈
K∞ such that for any ξ ∈ Rn and all u(·) ⊂ Rm we have

V (x(M, ξ, u(·))) ≤ ρ(V (ξ)) + σ(|||u|||∞).

As the dissipative finite-step ISS Lyapunov function evaluated at x(k, ξ, u(·)) does
now depend on a (worst-case) estimate of the input, the proposed construction from
a global finite-step Lyapunov function to a global Lyapunov function fails if we have
additional inputs, see Section 5.4 for an explanation.

However, some of the results for systems without inputs can be carried over to
systems with inputs. More specifically, we prove that the existence of a dissipative
finite-step ISS Lyapunov function is equivalent to the system being ISS. We consider
the dissipative form of an ISS Lyapunov function characterization as we do not
require continuity of the dynamics map. In particular, as it has been shown in [46],
the implication-form ISS Lyapunov function characterization is not strong enough
to conclude ISS of the system if the dynamics are discontinuous.

In addition, we prove that norms are dissipative finite-step ISS Lyapunov functions
for exponentially input-to-state stable (expISS) systems. Again, this result implies a
systematic procedure to check the expISS property of a system. Another important
application of the concept of global finite-step and dissipative finite-step ISS Lya-
punov functions lies in the context of interconnected nonlinear discrete-time systems
as outlined next.

Small-gain results

If we consider “large-scale” systems, e.g. in terms of size or complexity, then direct
methods such as Lyapunov methods might be challenging or intractable. A com-
mon approach is to treat a large-scale dynamical system as an interconnection of
smaller subsystems, [50, 109, 127, 140]. The idea is then to derive properties of the
overall interconnected system, as e.g. stability properties, from characteristics of the
subsystems.

One such appealing approach is the so-called small-gain approach, [24,25,65,68,69,
89]. Loosely speaking, the classical2 idea of small-gain theorems is to assume that
all subsystems’ equilibrium points are 0-GAS, and that the (disturbing) influence
of the interconnection structure is small enough. Then GAS of the overall system’s
equilibrium point can be deduced. However, the requirement that each subsystem’s
equilibrium point is 0-GAS is not necessary, even for simple linear interconnected

2We call those small-gain theorems classical to better distinguish our proposed relaxations from
former small-gain results.
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systems such as e.g.

x(k + 1) =

(
1.5 1

−2 −1

)
x(k), k ∈ N, x ∈ R2. (3)

The matrix on the right-hand side has spectral radius
√

2
2 < 1. Thus, the origin

of the linear discrete-time system (3) is GAS, see e.g. [54, Satz 5]. However, the
origin of the first decoupled subsystem with dynamic [x(k+ 1)]1 = 1.5[x(k)]1 is even
unstable. This in turn reveals that classical small-gain theorems come with certain
conservatism.

To reduce conservatism in small-gain theory, we relax the Lyapunov-based small-
gain approach as treated in e.g. [25, 67, 68, 89, 99], where the gains are derived from
Lyapunov function estimates of the subsystems, in the following way. Consider an
interconnection of N subsystems of the following form

xi(k + 1) = gi(x1(k), . . . , xN (k)), k ∈ N,

where xi ∈ Rni and gi : Rn1 × · · · ×RnN → Rni for i ∈ {1, . . . , N}. We assume that
for each subsystem there exists a function Vi : Rni → R+ satisfying a Lyapunov-type
decrease estimate after a finite number of time steps of the form

Vi(xi(M, ξ)) ≤ max
j∈{1,...,N}

γij(Vj(ξj)). (4)

Here, M ∈ N, ξ = (ξ1, . . . , ξN ) ∈ Rn with ξi ∈ Rni , and xi(·, ξ), denotes the
trajectory of the ith subsystem. The estimates also yield a set of K∞-functions
γij , called gains. The conclusion of this relaxation is that if a small-gain condition
invoking the K∞-functions γij is satisfied then we can construct a global finite-step
Lyapunov function of the overall system by using the construction method proposed
in [25]. In particular, the existence of the global finite-step Lyapunov function
ensures GAS of the overall system’s origin.

The advantages of this relaxed small-gain theorem are the following:

1. Although the functions Vi look similar to the finite-step Lyapunov functions
introduced in this thesis, these are not finite-step Lyapunov functions. Indeed,
the relaxed small-gain theorem does not imply that the origin of each subsys-
tem has to be 0-GAS. In particular, this relaxation allows the subsystems to
be unstable, when considered decoupled.
In this sense, the notion gain seems to be inappropriate, as gains usually con-
sider the influence of the subsystems on each other as disturbance. Here, γij
characterizes the (disturbing) effect of then initial state ξj on xi(M, ξ), and is
thus called gain. Note that stabilizing feedback effects of the subsystems are
implicitly taken into account.

8



2. The small-gain theorem is proved by constructing a global finite-step Lyapunov
function of the overall system, which shows GAS of the overall system’s origin.
Moreover, using the Lyapunov functions constructions via finite sums or finite
maxima that are established in this thesis, we can compute a global Lyapunov
function of the overall system in a straightforward manner. So despite the
fact that the subsystems might be unstable, a global Lyapunov function of the
overall system can be derived.

3. Under an additional assumption on the overall system, we can show that norms
are always admissible as Lyapunov-type functions Vi satisfying a condition of
the form (4). A particular class of systems satisfying the additional assump-
tion is the class of systems with GES origin. Hence, if the overall system’s
origin is GES then we can always find suitable Lyapunov-type estimates by
simply taking the norm of the subsystems’ trajectories. This implies a system-
atic procedure to construct Lyapunov functions of the overall interconnected
system.

4. Moreover, under the same additional assumption, the relaxed small-gain the-
orem is shown to be sufficient and necessary, hence non-conservative. This is
a distinguishing benefit over former small-gain results such as e.g. [65, 67, 99],
which only provide sufficient criteria.

For interconnected subsystems with additional inputs of the form

xi(k + 1) = gi(x1(k), . . . , xN (k), u(k)), k ∈ N, i ∈ {1, . . . , N}

we propose a similar strategy. Usually, ISS small-gain results such as [24, 25, 68,
69, 89, 99] assume that all subsystems are ISS, and the gains describing the dis-
turbing influence of the subsystems on each other, are in some sense small. Here,
we propose similar Lyapunov-type decrease conditions to the ones (4) in the case
without external inputs. Again, the distinguishing difference is that the decrease
of the Lyapunov-type functions is considered after a finite number of time steps.
Then a small-gain condition, where the gains are derived from these Lyapunov-type
inequality conditions, ensures that the overall system is ISS. The advantages of this
relaxation are similar to the ones in the case without external inputs:

1. We do not require the subsystems to be ISS. In particular, subsystems may be
unstable, when decoupled from the others.

2. For the class of expISS systems, we show that we can always obtain norm
estimates of the subsystems trajectories such that the Lyapunov-type inequal-
ity conditions of the small-gain theorem that we propose are met. Hence, for
the class of expISS systems the relaxed small-gain theorems are sufficient and
necessary, thus non-conservative. In particular, the proof implies a straight-
forward procedure to derive expISS of the overall system.
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We emphasize that in contrast to other available discrete-time small-gain results
in the literature such as e.g. [65, 67, 99], we do not impose regularity assumptions
as continuity on the dynamics. This is a distinguishing extension to former small-
gain results. In particular, as there is currently an immense interest in stabilization
schemes that commonly lead to discontinuous feedback control laws (such as e.g.
model predictive control (MPC) [16, 47, 90] or event-triggered control [119, 137]) the
proposed small-gain results can be applied.

Gain construction methods

A condition that all small-gain theorems presented in this thesis have in common,
is the so-called small-gain condition. This condition stems from [24, 25] as N -
dimensional extension to the 2-dimensional versions obtained in [68, 69]. Usually,
(trajectory-based or Lyapunov-based) estimates of the subsystems lead to a set of
K∞-functions (the gains), which describe the influence of the subsystems on each
other as a disturbance, and to a set of functions describing how the gains are aggre-
gated. For instance, in the summation case the gains are aggregated via summation
and in the maximization case the gains are aggregated via maximization. More
general cases of aggregating gains can be described by using monotone aggregation
functions, see [25,122].

The underlying problem of small-gain theory is that an interconnection of systems
is given, and one asks for stability properties of the overall system. On the other
hand, instead of considering fixed systems, we might consider parameter-dependent
systems, where we can scale the gains. For example, in networked control systems
(NCS) [57] one approach is to treat the error dynamics as a subsystem, see e.g. [12],
where the error gain might be decreased by faster sampling, more bandwidth, and
so on. It seems natural to ask how small the gains have to be such that a small-gain
condition is satisfied.

A slightly different design question is the following. Assume we are given a large-
scale system satisfying a small-gain condition, we wish to add further subsystems,
and we are able to design the interconnection gains. How can we derive a priori
bounds on the new gains depending on the given gains in order that a small-gain
condition holds? Interestingly, this question does not, to the best of the author’s
knowledge, appear in the literature.

We illustrate the problem via Figure 2. In this figure we see a weighted directed
graph, where the vertices 1, 2, 3 and 4 correspond to the subsystems. The goal
is that we want a small-gain condition to hold. Therefore assume that the gains
(K∞-functions) γ12, γ21 and γ23 are given from estimates of subsystems 1 and 2. On
the other hand, the gains (a34γ), (a41γ) and (a42γ) are determined by a positive
weight aij and the joint K∞-function γ. The positive weights a34, a41 and a42 may
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be interpreted as a scaling of the problem. For instance, the relative cost necessary
for achieving a gain in an interconnection might be high. In that case choosing a
small scaling factor aij leads to a relatively small gain in that position. The problem
is now to decide if there exists a K∞-function γ such that a small-gain condition for
the whole interconnection holds, and to find ways how to compute γ.

2

3

4

1

γ12

γ21

γ23

a34γ

a42γ

a41γ

Figure 2: A weighted directed graph with known gains γ12, γ21, γ23, known weights
a34, a41, a42 and γ ∈ K∞ to be determined.

Intuitively, if the small-gain condition for the whole interconnection is satisfied for
γ ≡ 0 then the small-gain condition is also satisfied if γ ∈ K∞ is “small” enough. We
will show in this thesis that this intuition is correct. Roughly speaking, a “small”
gain means that the disturbing influence of one subsystem on another subsystem is
also small. Hence, we are interested in making γ “large” in order to allow preferably
much disturbing influence.

For instance, in [12], the authors consider networked control systems, where states
of the subsystems are send over a communication network. At each transmission
time, one subsystem is granted access to the communication network and is allowed
to send its state. ISS of the networked control system is derived from a small-gain
condition in terms of a maximal allowable transfer interval (MATI), i.e., an upper
bound on the transmission times, at which the communication network has to send
the state of a subsystem to the others. Clearly, the smaller the MATI is, the more
often the communication network has to send the state of a subsystem. In particular,
as it is implied by [12, Equation (34)], the MATI is small if the corresponding gain
(here γ) is small.

We pose the following main question:

How small does γ ∈ K∞ have to be in order that a small-gain condition holds?

For several situations we derive constructive methods for obtaining amaximal gain γ.
Here, a maximal gain is characterized by the property that any (point-wise) smaller

11



K∞-function is admissible in the sense that a small-gain condition holds, while any
(point-wise) greater K∞-function violates the small-gain condition.

1. In the linear summation case, in which the linear gains are aggregated via
summation, the matrix collecting the gains is a nonnegative matrix. In ad-
dition, the small-gain condition can be equivalently expressed in terms of the
spectral radius of this matrix. By using results from the theory of nonnegative
matrices [8] and from the theory of stability radii [60,61], we give constructive
methods to compute maximal gains.

2. In the maximization case, in which gains are aggregated via maximization, we
can compute maximal gains by solving iterative functional K∞-equations as
outlined in the next paragraph. Here, we make use of the equivalent charac-
terization of the small-gain condition in terms of weakly contracting cycles of
the weighted directed graph.

3. For the general case we cannot derive maximal gains, but at least admissible
gains can be constructed. The difficulty in this case is that, in contrast to the
linear summation case (spectral radius condition) and the maximization case
(cycle condition), there is no equivalent small-gain condition that is easy to
check.

Iterative functional K∞-equations

In the maximization case, the small-gain condition is equivalent to the cycle con-
dition [122], which says that the composition of gains along a cycle in the directed
graph has to be less than the identity function. A cycle satisfying this property is
called weakly contracting. So to compute maximal gains in the maximization case,
we have to ensure that any cycle is weakly contracting. For instance, in Figure 2,
the cycle from vertex 2 to 4 to 3 to 2 has to satisfy the inequality

γ23 ◦ (a34γ) ◦ (a42γ) < id . (5)

If we define α1 := γ23(a34 id) and α2 := a42 id, and assume that γ ∈ K∞ satisfies
the iterative functional K∞-equation α1 ◦ γ ◦ α2 ◦ γ = id, then, by monotonicity
arguments, every K∞-function γ̃ < γ satisfies (5). Moreover, if γ̃ ≥ γ then (5) and
with it also the small-gain condition is violated. Hence, a solution of the iterative
functional K∞-equation α1 ◦γ ◦α2 ◦γ = id yields a greatest upper bound for gains γ
satisfying (5).

More general, we study the question of the existence of solutions of iterative func-
tional K∞-equations of the form

α1 ◦ γ ◦ α2 ◦ γ ◦ . . . ◦ αk ◦ γ = id , (6)
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where α1, . . . , αk ∈ K∞. Although iterative functional equations have been widely
studied in the literature [6, 138], the problem we address was only pointed out for
the special case γk = α. In particular, from [87], we derive, as a preliminary result,
that solutions of the special case γk = α exist, but they are not unique.

The results we develop can be summarized as follows:

1. We establish a subclass of the class K∞, which extends the class of piecewise
linear functions to the class of so-called right-affine K∞-functions, that is,
functions that are piecewise affine linear on intervals of a partition of [0,∞),
where partition intervals can only accumulate to the right.

2. We prove that for functions αi within this class of right-affine K∞-functions
there exists a solution of the iterative functional equation (6) that is unique in
the same class.

3. The method of proof leads to a constructive procedure. This is important as
we do not only derive an existence result, but we can also numerically compute
solutions for applications. In particular, maximal gains in the maximization
case can be numerically computed.

Outline of this thesis

In Chapter 1 we state the necessary preliminaries.

Discrete-time systems without inputs are treated in Chapter 2, where the main sec-
tions are concerned with the stability analysis via finite-step Lyapunov functions
(Section 2.2), relaxed small-gain theorems (Section 2.3), and application of the re-
sults to several system classes (Section 2.4).

Chapter 3 considers discrete-time systems with inputs. Here, we first study stabil-
ity analysis via dissipative finite-step ISS Lyapunov functions in Section 3.2. Then
we present two relaxed small-gain approaches: a Lyapunov-based approach in Sec-
tion 3.3 and a trajectory-based approach in Section 3.4.

Gain construction methods and iterative functional K∞-equations are studied in
Section 4.1 resp. Section 4.2.

In Chapter 5 we indicate some extensions of the results in this thesis and present
ideas for ongoing research.

Finally, some results from the theory of nonnegative matrices and stability radii for
linear systems are given in the Appendix.
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1
Preliminaries

In this chapter, we give an overview of the basic definitions, notions and preliminary
results that are used throughout this thesis.

1.1 Notions

By N we denote the natural numbers, where we assume 0 ∈ N, and by C we denote
the complex numbers. Let R denote the field of real numbers, R+ the set of non-
negative real numbers and Rn the vector space of real column vectors of length n.
For a vector v ∈ Rn we denote by [v]i its ith component. The cone1 Rn+ induces a
partial order on Rn+. For vectors v, w ∈ R+ we denote

v ≥ w ⇐⇒ ∀i ∈ {1, . . . , N} : [v]i ≥ [w]i

v > w ⇐⇒ ∀i ∈ {1, . . . , N} : [v]i > [w]i

v 6≥ w ⇐⇒ ∃i ∈ {1, . . . , N} : [v]i < [w]i.

Accordingly, for a matrix A ∈ Rn×m we denote by [A]i,j its (i, j)th entry. Further-
more, the notation [A]i,: denotes the ith row (resp. [A]:,j denotes the jth column)
of matrix A. For matrices A1, . . . , AN ∈ Rn×m we use the abbreviation

(A1; . . . ;AN ) := (A>1 . . . A>N )> ∈ RNn×m,

and for vectors vi ∈ Rni , i ∈ {1, . . . , N} we write

(v1, . . . , vN ) := (v>1 . . . v>N )>.

1for a definition of a cone, see Definition 2.46.
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Chapter 1. Preliminaries

For a given square matrix Q ∈ Rn×n the spectrum of Q, i.e., the set of eigenvalues
of Q, is defined by

σ(Q) := {λ ∈ C : ∃v ∈ Cn\{0} such that Qv = λv} .

Furthermore, the spectral radius of Q is defined as the largest absolute eigenvalue
of Q, i.e.,

ρ(Q) := max
λ∈σ(Q)

|λ|.

By In we denote the n× n identity matrix, but we mostly write I if the dimension
is clear from the context.

For the following functions, we use R+ as the domain of definition. Clearly, these
definitions can be extended to other domains of definition (such as e.g. R).

By id : R+ → R+ we denote the identity function id(s) = s for all s ∈ R+, and by
0 : R+ → {0} we denote the zero function 0(s) = 0 for all s ∈ R+.

A function α : R+ → R+ is called

• increasing if α(s2) ≥ α(s1) for all s2 ≥ s1 ≥ 0;

• strictly increasing if α(s2) > α(s1) for all s2 > s1 ≥ 0;

• positive (semi-)definite if it is continuous, satisfies η(0) = 0 and η(s) > 0 (resp.
η(s) ≥ 0) for all s > 0;

• sub-additive if for all s1, s2 ∈ R+ it holds

α(s1 + s2) ≤ α(s1) + α(s2).

For two functions α1, α2 : R+ → R, we write α1 < α2 (resp. α1 ≤ α2) if α2 − α1

is positive (semi-)definite. Furthermore, α1 ◦ α2 denotes the composition of two
functions α1, α2 : R+ → R+, and αk1 := α1 ◦ . . . ◦ α1 is the kth iterate of α1.

1.2 Norms

In this work we need several different norms. Firstly, we give a formal defini-
tion.

Definition 1.1. Let K ∈ {R,C} and n ∈ N. A function ‖ · ‖ : Kn → R+ is called a
norm on Kn if the following holds:

(i) ‖ · ‖ is positive definite, i.e., ‖x‖ ≥ 0 for all x ∈ Kn and ‖x‖ = 0 iff x = 0;

(ii) ‖ · ‖ is absolutely homogenous, i.e., ‖λx‖ = |λ|‖x‖ for all λ ∈ K, x ∈ Kn;

16



1.2. Norms

(iii) ‖ · ‖ satisfies the triangle inequality, i.e., for all x, y ∈ Kn we have

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Let a pair of norms ‖ · ‖Kl and ‖ · ‖Kn on Kl and Kn, and a matrix P ∈ Kl×n be
given. Then

‖P‖ := max
‖x‖Kn=1

‖Px‖Kl

denotes the induced operator norm of P .

A particularly relevant norm on Rn is the p-norm ‖ · ‖p with p ∈ [1, . . . ,∞], which
is defined for all x ∈ Rn by

‖x‖p :=

 n∑
j=1

|[x]j |p
1/p

, p ∈ [1,∞),

‖x‖∞ := max
j∈{1,...,n}

|[x]j |.

The latter norm ‖ · ‖∞ is also called infinity norm. Also often used is the p-norm
for p = 1 or p = 2, and thus, we state it explicitly:

‖x‖1 =

n∑
j=1

|[x]j | (1-norm),

‖x‖2 =

 n∑
j=1

(|[x]j |)2

1/2

(Euclidean norm).

It is well-known (see e.g. [82, Appendix A]) that norms on Rn (resp. Cn) are equiv-
alent in the sense that for any two norms ‖ · ‖(i), ‖ · ‖(ii) on Rn there exist real
constants c, C > 0 such that for all x ∈ Rn we have

c‖x‖(i) ≤ ‖x‖(ii) ≤ C‖x‖(i).

For instance, if 1 ≤ p2 ≤ p1 ≤ ∞ then for all x ∈ Rn it holds

‖x‖p1 ≤ ‖x‖p2 ≤ n
1
p2
− 1
p1 ‖x‖p1 .

A direct consequence of the equivalence of norms is the following inequality, which
is used in Chapter 3: For any norm ‖ · ‖ on Rn there exists a constant κ ≥ 1 such
that for all x = (x1, . . . , xN ) ∈ Rn with xi ∈ Rni and n =

∑N
i=1 ni, it holds

‖x‖ ≤ κ max
i∈{1,...,N}

‖xi‖, (1.1)
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Chapter 1. Preliminaries

where ‖xi‖ := ‖(0, . . . , 0, xi, 0 . . . , 0)‖ is the induced norm on Rni . In particular, if
‖ · ‖ is a p-norm then κ = N1/p is the smallest constant satisfying (1.1).

Some results stated in Appendix A.2 require the following property of a norm.

Definition 1.2. For any x = ([x]1, . . . , [x]n) ∈ Rn let abs : Rn → Rn+ be defined by

abs(x) := (|[x]1|, . . . , |[x]n|).

A norm ‖ · ‖ on Rn is said to be monotonic if for all x, y ∈ Rn it holds

abs(x) ≤ abs(y) ⇒ ‖x‖ ≤ ‖y‖.

It can be shown that a vector norm ‖ · ‖ is monotonic if and only if it is absolute,
i.e., ‖x‖ = ‖ abs(x)‖ holds for all x ∈ Rn, see e.g. [62]. It follows that every p-norm
on Rn, p ∈ [1,∞], is monotonic.

For a given norm ‖ · ‖ we define the set

B[a,b] := {x ∈ Rn : ‖x‖ ∈ [a, b]}.

Consider a sequence {y(l)}l∈N with y(l) ∈ Rm, (or for short y(·) ⊂ Rm). Let ‖ · ‖ be
an arbitrary norm on Rm, and define

|||y|||[0,k] := sup {‖y(l)‖ : l ∈ {0, . . . , k}} ∈ R+

|||y|||∞ := sup {‖y(l)‖ : l ∈ N} ∈ R+ ∪ {∞}

If |||y|||∞ <∞, then the sequence y(·) is called bounded .

1.3 Comparison functions

To state the stability results in this thesis we use the classes of comparison functions
K,K∞,L, and KL as defined e.g. in [81,82]. Since the introduction of input-to-state
stability in [128], the usage of these comparison functions has become standard
in control theory, especially concerning the stability analysis of nonlinear systems.
Following the recommendable work [77], it was Wolfgang Hahn who termed those
function classes by K [55] and KL [56]. It has been speculated that the letter K is
derived from Kamke, see [45,77].

Definition 1.3. A function α : R+ → R+ is said to be of class K (or a K-function,
denoted by α ∈ K) if it is strictly increasing, continuous, and satisfies α(0) = 0. In
particular, if α ∈ K is unbounded, it is said to be of class K∞ (or a K∞-function).
A function π : R+ → R+ is said to be of class L (or an L-function, denoted by
π ∈ L), if it is continuous, strictly decreasing, and satisfies lims→∞ π(s) = 0.
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1.3. Comparison functions

Definition 1.4. A continuous function β : R+×R+ → R+ is said to be of class KL
(or a KL-function, denoted by β ∈ KL), if it is of class K in the first argument and
of class L in the second argument.

The class K∞ is the set of all homeomorphisms of the interval [0,∞). This fact
immediately implies the following proposition.

Proposition 1.5. The pair (K∞, ◦) is a non-commutative group.

Proof. By the properties of any K∞-functions α1, α2 it is easy to see that α1 ◦ α2 ∈
K∞, α−1

1 exists and is of class K∞ and the identity map id is the identity element
of (K∞, ◦), which shows that (K∞, ◦) is a group. In particular, the group is non-
commutative, i.e., there exist α1, α2 ∈ K∞ with α1 ◦α2 6= α2 ◦α1, which can be seen
by taking e.g. α1(s) = s2 and α2(s) = es − 1 for s ≥ 0.

Due to the monotonicity property of K∞-functions, it holds for all α1, α2, α3 ∈ K∞
that

α1(max{α2, α3}) = max{α1 ◦ α2, α1 ◦ α3}.

In Section 4.2 we consider equalities of the form α1 ◦ α2 ◦ . . . ◦ αk = id, where
α1, . . . , αk ∈ K∞, k ∈ N. A consequence of Proposition 1.5 for such equalities is that
we can permute the functions cyclically , i.e., the following equivalence holds:

α1 ◦ α2 ◦ . . . ◦ αk = id ⇐⇒ αk ◦ α1 ◦ . . . ◦ αk−1 = id . (1.2)

Furthermore, for α ∈ K∞, j ∈ N, k ∈ N, k > 0, we denote by γ = αj/k ∈ K∞
a solution of the functional equation γk = αj . Its existence is shown in Proposi-
tion 4.16.

For two K∞-functions η1, η2 ∈ K∞ with η1 − η2 ∈ K∞, the inverse (η1 − η2)−1 is of
the form η−1

1 ◦ (id +ρ) with ρ ∈ K∞, which follows by setting ρ := η2 ◦ (η1− η2)−1 ∈
K∞:(
η−1

1 ◦ (id +ρ)
)
◦ (η1− η2) = η−1

1 ◦ (η1− η2 + η2 ◦ (η1− η2)−1 ◦ (η1− η2)) = id . (1.3)

Here we have used Proposition 1.5 to conclude that the composition of K∞-functions
yields a K∞-function. One particular case of this observation will be used in Chap-
ter 4, and is thus stated explicitly.

Lemma 1.6. Let η, η̂ ∈ K∞ such that η = id−η̂, and ε ∈ [0, 1]. Then we have

(i) id−εη̂ ∈ K∞;

(ii) there exists a function ρ ∈ K∞ such that (id +ρ) = (id−εη̂)−1.
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Chapter 1. Preliminaries

Proof. The first statement follows directly from id−εη̂ = η + (1 − ε)η̂ ∈ K∞. The
second statement follows from (1.3), where we set η1 = id, η2 = εη̂, and ρ =

εη̂(id−εη̂)−1.

A similar result to Lemma 1.6 is the following.

Lemma 1.7. Let η ∈ K∞. Then there exists a η̂ ∈ K∞ such that (id +η)−1 = id−η̂.
On the other hand, for given η̂ ∈ K∞ with (id−η̂) ∈ K∞, there exists a function
η ∈ K∞ such that (id +η)−1 = id−η̂.

Proof. The first implication follows directly with η̂ = η ◦ (id +η)−1, see also [123,
Lemma 2.4]. The other implication follows similarly, by setting η = η̂◦(id−η̂)−1.

1.4 Large-scale dynamical systems and stability properties

The abstract definition of a dynamical system usually consists of a structure con-
taining a time domain, a state space, an input value space, and a state transition
map, which has to satisfy some properties, see e.g. [130, Definition 2.1.2] or [60, Def-
inition 2.1.1]. In this work we consider time-invariant discrete-time dynamical sys-
tems.

Let G : Rn × Rm → Rn be given, and define the difference equation

x(k + 1) = G(x(k), u(k)), k ∈ N. (1.4)

Here u(k) ∈ Rm denotes the input at time k ∈ N. Note that an input is a function
u : N → Rm. By x(k, ξ, u(·)) ∈ Rn we denote the solution2 of (1.4) at time k ∈ N,
starting in the initial state x(0) = ξ ∈ Rn with input function u(·) ⊂ Rm.

Remark 1.8. The difference equation (1.4) implies a structure

Σ = (N,Rm, (Rm)N,Rn,Rn, ϕ, id).

In the first argument, N denotes the time domain. The input value space and the
input function space are Rm resp.

(Rm)N := {(u(0), u(1), u(2), . . .) : u(k) ∈ Rm, k ∈ N}.

By id in the last argument, state and output are equal; in particular, from arguments
4 and 5 we see that both state space and output value space are Rn. Finally, ϕ
denotes the state transition map. Moreover, the axioms in [60, Definition 2.1.1]

2Usually, trajectories denote the evolution of a state of a dynamical system [60]. Another notion
for trajectory that we do not use in this work is motion [141]. As the dynamical systems considered
in this work are described by difference equations, solutions (to an initial value problem) of a system
correspond to trajectories, and thus, both notions are used synonymously.
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1.4. Large-scale dynamical systems and stability properties

are satisfied. Thus, the structure Σ is a dynamical system in the sense of [60,
Definition 2.1.1], see also [60, Example 2.1.23].

To be precise, the structure Σ is a time-invariant dynamical system, as the func-
tion G in (1.4) does not explicitly depend on the time k ∈ N. Hence, we can always
assume that the initial time is 0. /

As the difference equation (1.4) gives rise to a (time-invariant) dynamical system
(Remark 1.8), we call the difference equation (1.4) a discrete-time (dynamical) sys-
tem.

Similarly, for given G̃ : Rn → Rn, the difference equation

x(k + 1) = G̃(x(k)), k ∈ N (1.5)

is called a discrete-time (dynamical) system, too. Clearly, (1.5) can be obtained
from a discrete-time system of the form (1.4) by setting G̃(x) := G(x, 0).

Next we discuss what we mean by large-scale dynamical systems. First let us mention
that the term “large-scale” is often used in different settings. As already observed
in e.g. [109], there is no precise definition of large-scale systems. We refer to Re-
mark 1.9, where we recite the understanding of different authors about large-scale
systems.

In this thesis we consider the following:

A large-scale system is an interconnection of smaller subsystems.

We do then call it the overall or interconnected system.

Remark 1.9. The authors in [109] consider a dynamical system to be large if “it
possesses a certain degree of complexity in terms of structure and dimensionality”.
Moreover, they divide problems concerned with large-scale systems into two broad
areas: static problems (e.g. graph theoretic problems, routing problems) and dynam-
ical problems, where the latter may in turn be separated into quantitative problems
(e.g. numerical solution of equations describing large systems) and into qualita-
tive problems (e.g. stability or instability in the sense of Lyapunov, boundedness
of solutions, estimates of trajectory behavior and trajectory bounds, input-output
properties of dynamical systems).

The author in [140] considers a large-scale system as “an interconnected system
consisting of several subsystems interacting through various interconnection oper-
ators”. Similarly, the authors in [50] write that “in analyzing complex large-scale
interconnected dynamical systems it is often desirable to treat the overall system as
a collection of interacting subsystems.”
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As described by [127] “advantage [of this decomposition] can be taken of the special
structural features of a given system to devise feasible and efficient ‘piece-by-piece’
algorithms for solving large problems which were previously intractable or impracti-
cal to tackle with ‘one shot’ methods and techniques”. In other words, precisely those
of [50, p.1], the advantage of this point of view is the following: “The behavior of
the aggregate or composite (i.e., large-scale) system can then be predicted from the
behaviors of the individual subsystems and their interconnections. The need for de-
centralized analysis and control design of large-scale systems is a direct consequence
of the physical size and complexity of the dynamical system. In particular, compu-
tational complexity may be too large for model analysis while severe constraints on
communication links between systems sensors, actuators, and processors may render
centralized control architectures impractical. Moreover, even when communication
constraints do not exist, decentralized processing may be more economical.”

Examples of large-scale systems that are naturally arising can be found e.g. in
the areas of economics (markets), ecology (swarms, multi-species communities), and
engineering (power plants), which are treated in more detail in [127]. /

To study stability properties of the discrete-time system (1.5), we call x̄ ∈ Rn an
equilibrium point of (1.5), if it satisfies x̄ = G̃(x̄). Thus, x̄ is a fixed point of the
function G̃. In addition, we can shift the equilibrium point x̄ to the origin as follows.
Let x̄ ∈ Rn be an equilibrium point of G̃. Consider the change of variables y = x− x̄.
If the evolution of x is described by (1.5), then the evolution of y can be described
by the difference equation

y(k + 1) = x(k + 1)− x̄ = G̃(x(k))− x̄ = G̃(y(k) + x̄)− x̄ =: F (y(k))

for all k ∈ N. Note that the origin ȳ = 0 ∈ Rn is a fixed point of F since x̄ is a fixed
point of G̃. Thus, we can always assume that the origin is an equilibrium point of
the time-invariant discrete-time system (1.5).

Next, we define stability properties of the origin of the discrete-time system (1.5).

Definition 1.10. Consider the discrete-time system (1.5) and assume that the origin
is an equilibrium point. Let ‖ · ‖ be any arbitrary fixed norm on Rn. Then we call
the origin

• stable3 if for any ε > 0 there exists a δ > 0 such that for all ξ ∈ Rn with
‖ξ‖ < δ and all k ∈ N we have

‖x(k, ξ)‖ < ε;

• unstable if it is not stable;
3this property is also often called Lyapunov stability
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• attractive if there exists an δ > 0 such that for all ξ ∈ Rn with ‖ξ‖ < δ we
have

lim
k→∞

x(k, ξ) = 0;

• globally attractive if it is attractive for any δ > 0;

• (globally) asymptotically stable if it is stable and (globally) attractive.

We illustrate these stability concepts in Figure 1.1.

stable unstable attractive asymptotically stable

Figure 1.1: Visualization of the stability concepts of Definition 1.10.

In this thesis, we use an equivalent characterization of the stability concepts in terms
of comparison functions as introduced in Section 1.3.

Lemma 1.11. The origin of system (1.5) is

• stable if and only if there exists a K-function γ and a constant c > 0 such that
for all ξ ∈ Rn with ‖ξ‖ < c and all k ∈ N,

‖x(k, ξ)‖ ≤ γ(‖ξ‖);

• asymptotically stable if and only if there exists a KL-function β and a constant
c > 0 such that for all ξ ∈ Rn with ‖ξ‖ < c and all k ∈ N,

‖x(k, ξ)‖ ≤ β(‖ξ‖, k); (1.6)

• globally asymptotically stable (GAS) if and only if (1.6) is satisfied for all
initial states ξ ∈ Rn and all k ∈ N.

This result is stated similarly in [82, Lemma 4.5] for time-varying continuous-time
systems. The proof of Lemma 1.11 can be derived from the proof of [82, Lemma 4.5]
by minor modifications and is therefore only sketched: Following the proof of [82,
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Lemma 4.5], the idea for the stability part is that for given ε > 0, we can set
δ := min{c, γ−1(ε)} to satisfy the ε, δ-criterion of Definition 1.10. Similarly, global
asymptotic stability is obtained as x(k, ξ) ≤ β(‖ξ‖, 0) implies stability of the origin,
and

0 ≤ lim
k→∞

‖x(k, ξ)‖ ≤ lim
k→∞

β(‖ξ‖, k) = 0

implies global attractivity of the origin, since β ∈ KL is strictly decreasing to zero
in the second argument.

For discrete-time systems with inputs of the form (1.4) we introduce the notion of
input-to-state stability in Chapter 3, which is defined similarly to GAS of the origin
in (1.6).

In contrast to continuous-time systems, the existence and uniqueness of solutions
for discrete-time systems of the form (1.4) (or (1.5)) is guaranteed since G(x, u) is
well-defined and unique for all x ∈ Rn and u ∈ Rm.

In order to check stability of the origin of the discrete-time system (1.5), the func-
tion G̃ has to be continuous in zero, which follows directly from Definition 1.10.
Thus, a common regularity condition is that the right-hand side function G̃ in (1.5)
(resp. G in (1.4)) is assumed to be continuous (see e.g. [71]). In this thesis, we
also allow for discontinuities of the function G̃ (resp. G). We thus give the following
definition, where the property defined therein will serve as a standing assumption in
the remainder of this thesis.

Definition 1.12. A function G̃ : Rn → Rn is called globally K-bounded if for some
given norm ‖ · ‖ there exists a class K-function ω, such that for all x ∈ Rn we have

‖G̃(x)‖ ≤ ω(‖x‖).

Firstly, note that the K-function ω depends on the norm ‖ · ‖. As all norms on Rn

are equivalent it is easy to see that the characterization of the global K-boundedness
property in Definition 1.12 is indeed independent of the choice of the norm ‖ · ‖.
Secondly, global K-boundedness does not require continuity of the map G̃(·) (except
at x = 0, which is a necessary condition for stability of the origin). On the other
hand, any continuous map G̃ : Rn → Rn with G̃(0) = 0 is K-bounded. Furthermore,
global K-continuity implies that the origin is an equilibrium point of the discrete-
time system (1.5). If the origin is GAS we can derive an obvious global K-bound ω
from (1.6) as

‖G̃(ξ)‖ = ‖x(1, ξ)‖ ≤ β(‖ξ‖, 1) =: ω(‖ξ‖).

Accordingly, for the discrete-time system (1.4) with inputs we define global K-
boundedness as follows.
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Definition 1.13. The function G : Rn × Rm → Rn in (1.4) is called globally K-
bounded if for given norms ‖ · ‖Rn on Rn and ‖ · ‖Rm on Rm there exist K-functions
ω1 and ω2 that satisfy

‖G(x, u)‖Rn ≤ ω1(‖x‖Rn) + ω2(‖u‖Rm)

for all x ∈ Rn and u ∈ Rm.

Again, the property of global K-boundedness of the function G is independent of the
norms ‖ · ‖Rn and ‖ · ‖Rm ; only the K-functions ω1 and ω2 depend on the choice of
the norms. Moreover, global K-boundedness of G immediately implies G(0, 0) = 0,
and that G is continuous in (0, 0).

We will see in Chapter 3 that any input-to-state stable discrete-time system of the
form (1.4) is also globally K-bounded. Thus, stability analysis of discrete-time sys-
tems under the assumption of global K-boundedness is not restrictive while allowing
for discontinuous dynamics.

1.5 Graphs

In this section we start by giving a formal definition of a directed graph, which
is strongly related to the theory of nonnegative matrices, see Appendix A.1 and
e.g. [8]. The correspondence derived can be extended to matrices of the form Γ =

(γij)
N
i,j=1 ∈ (K∞∪{0})N×N as in [123]. This is an essential idea in relating networks

or interconnections of dynamical systems to directed graphs.

Definition 1.14. A directed graph G(V,E) consists of a finite set of vertices V and
a set of edges E ⊂ V ×V. If G(V,E) consists of N vertices, then we may identify
V = {1, . . . , N}. So if (i, j) ∈ E then there is an edge from j to i.
We call the directed graph G(V,E) strongly connected if for each pair (i, j) ∈ V×V

there exists a path

((i0, i1), (i1, i2), . . . , (ik−1, ik))

with i = i0, j = ik such that (il−1, il) ∈ E for all i ∈ {1, . . . , k}.

In other words, a directed graph is strongly connected if every vertex can be reached
from any other vertex along a path of (directed) edges.

To any directed graph G = G(V,E) we can assign a matrix representing the
graph.

Definition 1.15. The adjacency matrix A(G) = (aij)
N
i,j=1 ∈ RN×N+ of a directed

graph G is defined by aij = 1 if (j, i) ∈ E and aij = 0 else.
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A matrix A ∈ RN×N+ is called reducible if there exists a permutation matrix P such
that

A = PT
(
B C

0 D

)
P

for suitable, square matrices B and D. Else, we call A irreducible.

On the other hand, to any given nonnegative matrix A ∈ RN×N+ we can associate a
directed graph G(A) by setting V := {1, . . . , N} and E := {(i, j) : aji > 0}. The
entries aji are called weights (of the edges), and the associated directed graph is
called a weighted directed graph. Then the following relation holds.

Theorem 1.16 ( [8, Theorem 2.2.7]). A matrix A ∈ RN×N+ is irreducible if and
only if G(A) is strongly connected.

The significance of Theorem 1.16 lies in the fact that the strong connectedness of
the graph can be ensured by a purely algebraic property.

Next, we consider matrices Γ ∈ (K∞ ∪ {0})N×N . Whereas nonnegative matrices
consist only of positive or zero entries, the matrix Γ has functions as entries, which
are either of class K∞ (in particular, positive definite) or the zero function. Thus,
we can define an adjacency matrix A(Γ) = (aij)

N
i,j=1 by setting aij = 1 if γij ∈ K∞

and aij = 0 if γij ≡ 0. We call Γ irreducible if the matrix A(Γ) is.

In a directed graph corresponding to a matrix Γ = (γij)
N
i,j=1, paths from a vertex to

itself are denoted as cycles:

Definition 1.17. A k-cycle in a matrix Γ = (γij)
N
i,j=1 ∈ (K∞ ∪ {0})N×N is a

sequence of K∞-functions

(γi0i1 , γi1i2 , . . . , γik−1ik)

of length k, i.e., γilil+1
∈ K∞ for l ∈ {0, . . . , k − 1}, il ∈ {1, . . . , N} and i0 = ik. If

il 6= ij for all j 6= l other than i0 = ik then the k-cycle is called minimal .
If for each k ∈ {1, . . . , N} each k-cycle satisfies

γi0i1 ◦ γi1i2 ◦ . . . ◦ γik−1ik < id

for all i0, . . . , ik ∈ {1, . . . , N} with i0 = ik and k ≤ N , then Γ is said to satisfy the
cycle condition.

We call a function γ ∈ (K∞ ∪ {0}) weakly contracting if γ(t) < t for all t > 0

or for short γ < id. Thus, the cycle condition says that any cycle in Γ is weakly
contracting.

In Chapter 2 and Chapter 3 we study stability properties of networks (i.e., in-
terconnections) of dynamical systems. The considered networks consist of N in-
terconnected subsystems, which can be seen as a directed graph with vertex set
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V = {1, . . . , N}, where each vertex corresponds to a subsystem. Moreover, the set
of edges E ⊂ V × V is defined by the interconnection structure, i.e., if system j

directly influences system i, then (i, j) ∈ E.

Remark 1.18. In small-gain theory, the classical approach is to assume that the
interconnected systems have a disturbing influence on each other. In a qualitative
form (e.g. (3.33)), this leads to a set of K∞-functions γij describing how much system
i is affected by system j. Note that if system j is not affecting system i, then we
set γij = 0, where 0 denotes the zero function. In other words, there is no edge
from j to i in the corresponding directed graph. Moreover, the K∞-functions γij are
weights of the edges. Thus, the weighted directed graph is completely determined
by the matrix Γ = (γij)

N
i,j=1 ∈ (K∞ ∪ {0})N×N .

From the viewpoint of interconnected systems, the K∞-functions γij correspond to
interconnection gains. Thus, the matrix Γ = (γij)

N
i,j=1 ∈ (K∞ ∪ {0})N×N is usually

called gain matrix . /

Example 1.19. Consider the interconnected discrete-time system given by

x1(k + 1) = g1(x1(k), x3(k))

x2(k + 1) = g2(x1(k)) k ∈ N.
x3(k + 1) = g3(x1(k), x2(k))

The right-hand side g1 of subsystem 1 depends on the states of system 1 and 3. Thus,
in the corresponding interconnection graph there is an edge from system (vertex) 1
and 3 to system 1, but no edge from system 2 to system 1. The whole interconnec-
tion graph is depicted below.

System 1

System 2 System 3

We observe that the interconnection graph is strongly connected as any vertex can
be reached by any other vertex. /
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1.6 Small-gain conditions

In this section, we state so-called small-gain conditions that are used in the remainder
of this work to impose stability criteria for the overall system, based on K∞-functions
derived from the subsystems. To formulate general small-gain conditions we use the
following definition taken from [123].

Definition 1.20. A continuous function µ : RN+ → R+ is called a monotone aggre-
gation function if it satisfies

(i) positive definiteness: µ(s) ≥ 0 for all s ∈ RN+ and µ(s) = 0 iff s = 0;

(ii) increase: µ(s1) < µ(s2) if s1 ≤ s2, s1 6= s2;

(iii) unboundedness: µ(s)→∞, as ‖s‖ → ∞;

The space of monotone aggregation functions is denoted by MAFN .

We observe that for any µ ∈ MAFN , and any i ∈ {1, . . . , N}, the function

υi(r) := µ(rei) (1.7)

is of class K∞. Here, ei denotes the ith unit vector. In this respect, the notion of
monotone aggregation functions extends the notion of K∞-functions.

The properties in Definition 1.20 can be extended to vectors in the sense that µ =

(µ1, . . . , µN ) ∈ MAFNN , µi ∈ MAFN , i ∈ {1, . . . , N}, defines a mapping µ : RN×N →
RN by

A = (aij)
N
i,j=1 7→ µ(A) :=

 µ1(a11, . . . , a1N )
...

µN (aN1, . . . , aNN )

 .

Generalizing this concept to matrices of the form Γ = (γij)
N
i,j=1 ∈ (K∞ ∪ {0})N×N ,

we obtain the so-called gain operator Γµ : RN+ → RN+ defined by

Γµ(s) := (µ ◦ Γ)(s) :=

 µ1(γ11([s]1), . . . , γ1N ([s]N ))
...

µN (γN1([s]1), . . . , γNN ([s]N ))

 (1.8)

For the k times composition of this operator we write Γkµ. We call an operator of
the form Γµ

(i) monotone if Γµ(s1) ≤ Γµ(s2) for all s1, s2 ∈ RN+ with s1 ≤ s2;

(ii) strictly increasing if Γµ(s1) < Γµ(s2) for all s1, s2 ∈ RN+ with s1 < s2.
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Note that if Γ ∈ (K∞ ∪{0})N×N and µ ∈ MAFNN , then Γµ is monotone and satisfies
Γµ(0) = 0, see [122, Lemma 1.2.3].

For δi ∈ K∞, Di = (id +δi), i ∈ {1, . . . , N}, we define the diagonal operator D :

RN+ → RN+ by
D(s) := (D1([s]1), . . . , DN ([s]N )) . (1.9)

Now we are ready to state small-gain conditions that are significant for the remainder
of this thesis.

Definition 1.21. The map Γµ from (1.8) is said to satisfy the small-gain condition
if

Γµ(s) 6≥ s for all s ∈ RN+\{0}. (1.10)

The map Γµ is said to satisfy the strong small-gain condition if there exists a diagonal
operator D as in (1.9) such that

(D ◦ Γµ)(s) 6≥ s for all s ∈ RN+\{0}. (1.11)

The condition Γµ(s) 6≥ s for all s ∈ RN+\{0}, or for short Γµ 6≥ id, means that for any
s > 0 there exists at least one component i∗ ∈ {1, . . . , N} such that [Γµ(s)]i∗ < [s]i∗

holds. We can further assume that all K∞-functions δi of the diagonal operatorD are
identical by setting δ(s) := mini δi(s). For short, we write D = diag(id +δ).

For any diagonal operator D = diag(id +δ) with δ ∈ K∞ there exist functions
δI , δII ∈ K∞ such that for Di := diag(id +δi), i ∈ {I, II} it holds D = DII ◦ DI ,
see [122, Lemma 1.1.4]. Moreover, we have the following equivalences of the strong
small-gain condition for Γµ from (1.8), which was proved in [122, Lemma 2.2.12]:

D ◦ Γµ 6≥ id ⇐⇒ DI ◦ Γµ ◦DII 6≥ id ⇐⇒ Γµ ◦D 6≥ id . (1.12)

For a given function Γµ : RN+ → RN+ , the set of decay Ω is defined by

Ω :=
{
s ∈ RN+ : Γµ(s) < s

}
. (1.13)

Points in Ω are called decay points. The set Ω is radially unbounded if for any x ∈ RN+
there exists a y ∈ Ω such that x ≤ y, see [123].

Definition 1.22. A continuous path σ = (σ1, . . . , σN ) ∈ KN∞ is called an Ω-path
with respect to Γµ : RN → RN if the following conditions are satisfied:

(i) for each i the function σ−1
i is locally Lipschitz continuous on (0,∞);

(ii) for every compact set K ⊂ (0,∞) there are constants 0 < c < C such that for
all i ∈ {1, . . . , N} and all points of differentiability of σ−1

i and we have

0 < c ≤ (σ−1
i )′(r) < C for all r ∈ K;
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(iii) σ(r) ∈ Ω(Γµ) for all r > 0, i.e., Γµ(σ(r)) < σ(r) for all r > 0.

The following lemmas summarize some relations between the existence of Ω-paths
and the (strong) small-gain condition.

Lemma 1.23. Let Γµ : RN+ → RN+ be the monotone gain operator defined in (1.8)
and D defined in (1.9). If there exists an Ω-path σ : R+ → RN+ with respect
to Γµ (resp. D ◦ Γµ) then Γµ satisfies the (strong) small-gain condition (1.10)
(resp. (1.11)).

Proof. This follows from [123, Lemma 5.1] by noticing the following two facts:
Firstly, the set Ω is radially unbounded since σi ∈ K∞ for all i ∈ {1, . . . , N}.
Secondly, there cannot exist a fixed point of Γµ (resp. D ◦Γµ) despite the origin, as
the Ω-path is strictly decreasing.

The converse implication in Lemma 1.23 is to the author’s knowledge still not fully
elaborated. Nevertheless, under additional, reasonable assumptions, the converse of
Lemma 1.23 can be shown as illustrated next.

Lemma 1.24. Let D be given by (1.9) and assume that the monotone gain operator
Γµ : RN+ → RN+ from (1.8) satisfies the strong small-gain condition (1.11). If µi ∈
MAFN , i ∈ {1, . . . , N}, is sub-additive or Γµ is irreducible, then there exists an
Ω-path σ : R+ → RN+ with respect to D̂ ◦ Γµ, where D̂ = diag(id +δ̂), δ̂ ∈ K∞. In
particular, we can choose D̂ = D if Γ is irreducible.

Proof. If µi is sub-additive then the result follows from [123, Theorem 5.10]. In
particular, if Γ is irreducible, then the strong small-gain condition even implies the
existence of an Ω-path with respect to D ◦ Γµ, cf. [25, Theorem 5.2(ii)].

Remark 1.25. In general, checking the (strong) small-gain condition (1.10)
(resp. (1.11)) is nontrivial. One way is to make use of the previous lemmata, which
show that if the underlying directed graph is strongly connected then the strong
small-gain condition is equivalent to the existence of an Ω-path σ. Hence, verifica-
tion of the small-gain condition is performed (at least locally) by constructing an
Ω-path σ. The construction consists of two parts:

(i) In a first step, a decay point w∗ is computed, i.e., a point in the set of decay Ω

defined in (1.13), see [37,125].

(ii) In a second step, the (local) Ω-path σ is constructed on (0, w∗] by piecewise
linear interpolation of the sequence {Γkµ(w∗)}k∈N, see e.g. [123].

The same procedure applies to verify the strong small-gain condition, where the gain
operator Γµ is replaced by D◦Γµ. We emphasize that a direct consequence of (1.12)
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is the following equivalence:

σ1 ∈ KN∞ satisfies (D ◦ Γµ)(σ1) < σ1

⇐⇒ σ2 := D−1
II ◦ σ1 ∈ KN∞ satisfies (DI ◦ Γµ ◦DII)(σ2) < σ2

⇐⇒ σ3 := D−1 ◦ σ1 ∈ KN∞ satisfies (Γµ ◦D)(σ3) < σ3 .

In some cases, there exist further equivalent characterizations of the small-gain con-
dition that give the possibility of a simpler verification. These are the linear case
(Lemma 1.27), the maximization case (Proposition 1.29), and the max linear case
(Remark 1.31) that will be discussed in the remainder of this section. /

The interest in the gain operator of the form (1.8) lies in the fact that for large-
scale interconnected systems of the form ẋi = fi(x1, . . . , xN , u) ISS (input-to-state
stability) conditions may be written in the form

‖x(t)‖vec ≤ β(‖x(0)‖vec, t) + Γµ(|||x|||[0,t]) + γ(|||u|||∞),

see [24, Equation (3.19)], where the inequality is understood component-wise for
‖x‖vec = (‖x1‖, . . . , ‖xN‖). In particular, we consider inequalities of this type in
Section 3.4.

Summation and maximization, as special cases of monotone aggregation, are in a
way easier to treat. That is why in [122, 123] the author additionally requires sub-
additivity of the monotone aggregation functions. This property is then used to show
that upper bounds in an additive form can always be obtained. More precisely, for
every µ̃ ∈ MAFN+1, β̃ ∈ KL, and γ̃i ∈ K∞ ∪ {0}, i ∈ {1, . . . , N}, there exist
µ ∈ MAFN−1, β ∈ KL, and γi ∈ K∞ ∪ {0}, i ∈ {1, . . . , N}, such that for all
r, t,∈ R+, u ∈ RN+ we have

µ̃
(
β̃(r, t), γ̃1([u]1), . . . , γ̃N ([u]N )

)
≤ β(r, t) + µ (γ̃1([u]1), . . . , γ̃N−1([u]N−1)) + γN ([u]N ) .

(1.14)

This can be seen by setting β = µ̃(β̃, 0, . . . , 0), γN := µ̃(0, . . . , 0, γ̃N ), and
µ([s]1, . . . , [s]N−1) = µ̃(0, [s]1, . . . , [s]N−1, 0) (under a certain compatibility assump-
tion [123, Assumption 2.3]).

We do now show that there also exist µ̄ ∈ MAFN−1, β̄ ∈ KL, γ̄N ∈ K∞ ∪ {0} such
that the inequality

µ̃
(
β̃(r, t), γ̃1([u]1), . . . , γ̃N ([u]N )

)
≤ max

{
β̄(r, t), µ̄ (γ̃1([u]1), . . . , γ̃N−1([u]N−1)) , γ̄N ([u]N )

} (1.15)

stays true without the assumption of sub-additivity. Note that the inequality (1.15)
is stronger than inequality (1.14) as (1.14) is implied by (1.15).
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Proposition 1.26. For any µ̃ ∈ MAFN+1, β̃ ∈ KL, and γ̃i ∈ K∞ ∪ {0}, i ∈
{1, . . . , N} there exist µ̄ ∈ MAFN−1, β̄ ∈ KL, γ̄N ∈ K∞ ∪ {0} such that (1.15)
holds.

Proof. Define the function γ̃ : RN−1
+ → R+ by

γ̃(u) := max
i∈{1,...,N−1}

γ̃i([u]i)

and note (by considering the maximum of β̃ and γ̃i) that the following inequality
holds:

µ̃
(
β̃(r, t), γ̃1([u]1), . . . , γ̃N ([u]N )

)
≤max

{
µ̃
(
β̃(r, t), . . . , β̃(r, t))

)
, µ̃
(
γ̃(u), γ̃1([u]1), . . . , γ̃N−1([u]N−1), γ̃(u)

)
,

µ̃
(
γ̃N ([u]N ), . . . , γ̃N ([u]N )

)}
=: max

{
β̄(r, t), µ̄ (γ̃1([u]1), . . . , γ̃N−1([u]N−1)) , γ̄N ([u]N )

}
,

where

(i) β̄(r, t) := µ̃
(
β̃(r, t), . . . , β̃(r, t)

)
is of class KL,

(ii) µ̄ ([s]1, . . . , [s]N−1) := µ̃
((

max
i∈{1,...,N−1}

[s]i
)
, [s]1, . . . , [s]N−1,

(
max

i∈{1,...,N−1}
[s]i
))

is of class MAFN−1, and

(iii) γ̄N ([s]N ) := µ̃ (γ̃N ([s]N ), . . . , γ̃N ([s]N )) is of class K∞ ∪ {0}.

In the following subsections we study two important cases of monotone aggregation
functions, namely summation and maximization, in more detail.

1.6.1 Summation of linear gains

If we consider the monotone aggregation functions µi(s) =
∑N
j=1[s]j for all s ∈ RN+

and i ∈ {1, . . . , N} then we obtain the corresponding gain operator ΓΣ : RN+ → RN+
as

ΓΣ(s) :=

 γ11([s]1) + . . .+ γ1N ([s]N )
...

γN1([s]1) + . . .+ γNN ([s]N )

 .

This case is called the summation case denoted by µ = Σ. If the gains γij , i, j ∈
{1, . . . , N}, are linear functions, the gain operator is of the form ΓΣ(s) = Γs with
Γ ∈ RN×N+ . In particular, ΓΣ is a linear map and we call it the linear summation
case. In this case, we have the following equivalences of the small-gain condition
(see [123, Lemma 1.1] and [24, Section 4.5]).
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Lemma 1.27. Let Γ ∈ RN×N+ , µ = Σ, and ΓΣ(s) = Γs. Then the following are
equivalent:

(i) ρ(Γ) < 1, where ρ(Γ) denotes the spectral radius;

(ii) Γs 6≥ s for all s ∈ RN+\{0};

(iii) Γk → 0 for k →∞;

(iv) the system x(k + 1) = Γx(k) is globally asymptotically stable.

Indeed, the small-gain condition Γµ 6≥ id in (1.10), originating from [24], stems
from the linear case, and is in fact, under the assumption of irreducibility of Γµ,
equivalent to the equilibrium x∗ = 0 of the system x(k + 1) = Γµ(x(k)) being GAS,
see [24, Theorem 5.6].

Remark 1.28 ( [122]). In the linear case the small-gain condition and the strong
small-gain condition are equivalent, which can be seen by setting D = diag((1+ε) id)

with ε > 0 small enough. /

In the linear summation case an Ω-path can be easily computed via the Perron-
Frobenius eigenvector. We refer to the Appendix A.1, where this procedure is out-
lined.

1.6.2 Maximization of gains

If we consider the monotone aggregations functions µi(s) = maxj∈{1,...,N}[s]j for
all i ∈ {1, . . . , N} then we obtain the corresponding gain operator Γ⊕ : RN+ → RN+
as

Γ⊕(s) :=

 max {γ11([s]1), . . . , γ1N ([s]N )}
...

max {γN1([s]1), . . . , γNN ([s]N )}

 . (1.16)

We call this case the maximization case and denote it by µ = ⊕.

For the map Γ⊕ defined in (1.16) we have the following equivalence, which gives the
possibility to check the small-gain condition (1.10) (see [123, Theorem 6.4]).

Proposition 1.29. The map Γ⊕ : RN+ → RN+ defined in (1.16) satisfies the small-
gain condition (1.10) if and only if all cycles in the corresponding graph of Γ⊕ are
weakly contracting, i.e., γi0i1 ◦ γi1i2 ◦ . . . ◦ γiki0 < id for k ∈ N and ij 6= il for j 6= l.

In the maximization case the converse implication of Lemma 1.23 holds true. For a
proof see [25, Theorem 5.2(iii)].

Lemma 1.30. Let Γ⊕ : RN+ → RN+ be the monotone gain operator from (1.16). If
Γ⊕ satisfies the small-gain condition (1.10) then there exists an Ω-path with respect
to Γ⊕.
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Remark 1.31 ( [123]). In the case where all γij are linear, Γ⊕ is a max linear operator
(cf. [104]). The cycle condition is equivalent to the maximum cycle geometric mean
µ̂(Γ) being less than one. The maximum cycle geometric mean is defined as the
maximum of all kth roots of the k-cycles in Γ ∈ RN×N+ , k ≤ N . Further, the
maximum cycle geometric mean is a max eigenvalue of Γ, i.e., there exists a v ∈ RN+
such that

Γ⊕ v = µ̂(Γ)v ⇐⇒ max
j∈{1,...,N}

γij [v]j = µ̂(Γ)[v]i, i ∈ {1, . . . , N}.

In particular, µ̂(Γ) ≤ ρ(Γ) where ρ(Γ) denotes the spectral radius of Γ. /
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2
Stability analysis of large-scale

discrete-time systems

In this chapter, we are interested in the stability analysis of discrete-time systems
of the form

x(k + 1) = G(x(k)), k ∈ N,

where G : Rn → Rn and x ∈ Rn. In particular, we derive criteria to ensure global
asymptotic stability (GAS) of the origin.

As outlined in the Introduction, GAS of the origin is equivalent to the existence
of a Lyapunov function [105]. The existence of a Lyapunov function is ensured
by converse Lyapunov theorems, where the proofs do usually construct a Lyapunov
function by taking infinite series or the supremum over all solutions, see e.g. [71,
81, 116]. Thus, these converse Lyapunov functions are important from a theoretical
point of view, but they do not lead to constructive methods. In general, Lyapunov
functions for nonlinear systems are hard to find.

In the first part of this chapter, Section 2.2, an alternative approach to the construc-
tion of Lyapunov functions for discrete-time systems is proposed. The first ingredient
of the proposed approach consists of a relaxation of the Lyapunov function concept,
which was originally introduced in [1]: the Lyapunov function is allowed to decrease
along the system solutions after a finite number of time steps, and not at every time
step. This relaxation is thus termed global finite-step Lyapunov function. Firstly,
we prove that the existence of a global finite-step Lyapunov function is sufficient
to establish GAS of the system’s origin. Secondly, a converse finite-step Lyapunov
theorem is derived. This converse Lyapunov theorem is constructive as it yields an
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Chapter 2. Stability analysis of large-scale discrete-time systems

explicit finite-step Lyapunov function. Here we use an additional assumption that is
satisfied for a large class of discrete-time systems. In particular, this assumption is
met if the origin is globally exponentially stable. Then, a way to construct a standard
Lyapunov function based on the knowledge of a finite-step Lyapunov function and
a corresponding natural number is given. The construction only depends on a finite
sum and therefore can be implemented directly. Nevertheless, the Lyapunov func-
tion construction a priori requires the knowledge of a suitable natural number that
determines the upper bound of summation. Several possibilities to systematically
find such a suitable number are discussed for certain classes of systems.

In the next part of this chapter, Section 2.3, we focus on the stability analysis of
large-scale discrete-time systems, i.e., we consider the system as an interconnection of
several smaller discrete-time systems. It is generally difficult to prove global stability
properties such as GAS for interconnected systems. One way to prove stability relies
on the existence of Lyapunov functions for each subsystem and testing if a small-gain
condition holds. However, as shown in the introduction (example in (3)), small-gain
theorems come with certain conservatism. To reduce this conservatism in small-gain
theory, we make use of the concept of a finite-step Lyapunov function as introduced
in Section 2.1. To be more precise, we do not demand that each subsystem has to
admit a Lyapunov function, and instead assume the existence of a Lyapunov-type
function that decreases after a finite time. The proof of the resulting small-gain
theorem is based on a construction of a finite-step Lyapunov function for the overall
system from the Lyapunov-type inequalities. The distinctive feature of the proposed
relaxation is the ability of the corresponding small-gain theorem to handle the case
of 0-input unstable subsystems.

Eventually, as small-gain theorems are only sufficient criteria, we study the necessity
of the hypothesis of the derived small-gain theorem. More specifically, we state a
converse of our small-gain theorem under which a GAS system can be considered
as the interconnection of subsystems that admit suitable Lyapunov-type functions
and satisfy a classical small-gain condition. The converse is shown to hold under
a reasonable assumption, which allows for a general class of discrete-time nonlinear
systems, which includes the class of GES systems.

The last part of this chapter, Section 2.4, is to establish necessity of specific types of
Lyapunov functions via the developed converse Lyapunov theorems from Section 2.2.
Most remarkably, we show that the existence of conewise linear Lyapunov functions
is sufficient and necessary for GES conewise linear systems. This has been one of the
open problems in stability analysis of conewise linear systems [72]. As a by-product,
a new method to construct polyhedral Lyapunov functions for linear systems is
obtained, that is tractable even in state spaces of high dimension.
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2.1. Problem statement

2.1 Problem statement

In this chapter we consider discrete-time systems of the form

x(k + 1) = G(x(k)), k ∈ N, (2.1)

where G : Rn → Rn is assumed to satisfy the following standing assumption.

Assumption 2.1. The function G in (2.1) is globally K-bounded. /

A definition of K-boundedness is given in Definition 1.12. Recall from Section 1.4,
that Assumption 2.1 is not restrictive, as it does not require continuity of the map
G(·) (except at x = 0, which is a necessary condition for (Lyapunov) stability of the
origin.). Moreover, the solution at time instance k ∈ N starting in the initial state
ξ ∈ Rn is denoted by x(k, ξ) ∈ Rn.

To study global asymptotic stability (GAS) of the origin of system (2.1), we recall
the characterization of GAS from Lemma 1.11.

Definition 2.2. The origin of system (2.1) is called globally asymptotically stable if
there exists a KL-function β such that for all ξ ∈ Rn and all k ∈ N it holds

‖x(k, ξ)‖ ≤ β(‖ξ‖, k). (2.2)

If the KL-function in (2.2) can be chosen as

β(r, t) = Cµtr (2.3)

with C ≥ 1 and µ ∈ [0, 1), then the origin of system (2.1) is called globally exponen-
tially stable (GES).

Remark 2.3. (i) The GAS property in Definition 2.2 is sometimes called KL-stability
(e.g. [81]), and in [98, Proposition 2.5] it is shown that KL-stability is equivalent to
uniform global asymptotic stability (UGAS). Note that for time-invariant systems
as considered in this thesis, every continuous GAS system is UGAS, see [71, Propo-
sition 3.2].

(ii) The definition of GES is somehow misleading, since global only indicates that (2.2)
with β as in (2.3) holds for all ξ ∈ Rn. In particular, systems in which all solutions
have an exponential rate of decay may fail to be GES. Since C ≥ 1 in (2.3) is cho-
sen globally, it does not reflect the local behavior of a particular solution near 0.
Note that this property is also often called exponentially stable in the whole, see
e.g., [56, Sec. 2] and [101, Sec. 6.3]. /

As conditions (2.2) and (2.3) imply ‖G(ξ)‖ = ‖x(1, ξ)‖ ≤ Cµ1‖ξ‖ for all ξ ∈ Rn, we
see that for any GES system the K-bound ω on G from (2.1) can always be chosen to
be linear. Similarly, as already shown in Section 1.4, any GAS system is K-bounded,
and the K-bound can be chosen as ω(s) = β(s, 1).
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Chapter 2. Stability analysis of large-scale discrete-time systems

Definition 2.4. A function W : Rn → R+ is a global Lyapunov function for sys-
tem (2.1) if

(i) W is proper and positive definite, i.e., there exist α1, α2 ∈ K∞ such that for
all ξ ∈ Rn

α1(‖ξ‖) ≤W (ξ) ≤ α2(‖ξ‖),

(ii) there exists a positive definite function ρ satisfying1 ρ < id such that for all
ξ ∈ Rn

W (x(1, ξ)) ≤ ρ(W (ξ)).

Remark 2.5. In many prior works such as e.g., [71], the definition of a Lyapunov
function requires the existence of a positive definite function α3 such that

W (x(1, ξ))−W (ξ) ≤ −α3(‖ξ‖) (2.4)

holds for all ξ ∈ Rn. Let us briefly explain that a proper and positive definite
function W satisfies inequality (2.4) if and only if it satisfies condition (ii) of Defi-
nition 2.4.

Assume that W satisfies an inequality of the form (2.4). By following similar steps
as in [90, Theorem 2.3.5], we conclude that

0 ≤W (x(1, ξ)) ≤W (ξ)− α3(‖ξ‖)
≤ (id−α3 ◦ α−1

2 )(W (ξ)) = ρ(W (ξ))

holds with ρ := (id−α3 ◦α−1
2 ) ≥ 0. We can without loss of generality assume that ρ

is positive definite by possibly picking a larger α2. We further have 0 ≤W (x(1, ξ)) ≤
(α2 − α3)(‖ξ‖), so α2 ≥ α3 and therefore ρ < id. Thus, W satisfies condition (ii) of
Definition 2.4.

On the other hand, let W satisfy Definition 2.4. Then W also satisfies (2.4) with
α3 := (id−ρ) ◦ α1 and ρ < id given from Definition 2.4.

Moreover, for the case α1(s) = asλ, α2(s) = bsλ, α3(s) = csλ for some a, b, c, λ > 0

we have W (x(1, ξ)) ≤ ρW (ξ) with ρ := (1− c
b ) ∈ [0, 1), see [90, Theorem 2.3.5].

Without loss of generality, we can assume that the positive definite function ρ in
Definition 2.4 is of class K∞. To see this, note that for any positive definite function
ρ < id there exists a K∞-function ρ̃ with ρ < ρ̃ < id. /

Next, the assumptions on global Lyapunov functions given in Definition 2.4 are
relaxed as follows.

1Recall that from the order relation introduced in Chapter 1 this notation means ρ(s) < s for
all s > 0.
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2.2. Stability analysis via finite-step Lyapunov functions

Definition 2.6. A function V : Rn → R+ is a global finite-step Lyapunov function
for system (2.1) if

(i) V is proper and positive definite, i.e., there exist α1, α2 ∈ K∞ such that for
all ξ ∈ Rn

α1(‖ξ‖) ≤W (ξ) ≤ α2(‖ξ‖),

(ii) there exists a finite M ∈ N and a positive definite function ρ < id such that
for all ξ ∈ Rn

V (x(M, ξ)) ≤ ρ(V (ξ)).

It is worth pointing out that the concept of a global finite-step Lyapunov function
was originally introduced in [1], which dealt with stability analysis of time-varying
systems, although the term finite-step was not used therein. Clearly, any global
Lyapunov function is a particular global finite-step Lyapunov function.

Observe that if V is a global finite-step Lyapunov function for system (2.1) then V
is a global Lyapunov function for the system

x̄(k + 1) = GM (x̄(k)), k ∈ N, x̄ ∈ Rn. (2.5)

Thus, global finite-step Lyapunov functions can be seen as global Lyapunov functions
of the iterated system.

2.2 Stability analysis via finite-step Lyapunov functions

The aim of this section is to derive a constructive converse Lyapunov theorem for
systems of the form (2.1). Firstly, we proceed by showing that any global finite-
step Lyapunov function guarantees GAS of the origin. In the next step, we prove
that the converse, i.e., the existence of a global finite-step Lyapunov function for a
GAS system, also holds. Moreover, we can show that under appropriate conditions
we can take norms as global finite-step Lyapunov functions. In particular, these
conditions are satisfied for any GES system of the form (2.1). To obtain a converse
Lyapunov theorem, an explicit construction of a global Lyapunov function from a
global finite-step Lyapunov function is provided.

2.2.1 Finite-step Lyapunov functions

This section proceeds by showing that the existence of a global finite-step Lyapunov
function is sufficient to conclude GAS of the origin. Recall that Assumption 2.1 is
supposed to hold throughout this chapter, and thus continuity of G at the origin is
implied.
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Chapter 2. Stability analysis of large-scale discrete-time systems

Theorem 2.7. The existence of a global finite-step Lyapunov function implies that
the origin of system (2.1) is GAS.

Proof. Assume that there exists a global finite-step Lyapunov function V as defined
in Definition 2.6 with suitable α1, α2 ∈ K∞, M ∈ N, M ≥ 1, and positive definite
ρ < id. First note that from the standing Assumption 2.1 we conclude that for any
j ∈ N we have

‖x(j, ξ)‖ ≤ ωj(‖ξ‖). (2.6)

With this, for any k = lM + j, l ∈ N, j ∈ {0, . . . ,M − 1} we have

‖x(k, ξ)‖ ≤ α−1
1 (V (x(k, ξ)))

≤ α−1
1 (V (x(lM, x(j, ξ))))

≤ α−1
1 ◦ ρl(V (x(j, ξ)))

≤ α−1
1 ◦ ρl ◦ α2(‖x(j, ξ)‖)

(2.6)
≤ α−1

1 ◦ ρl ◦ α2 ◦ ωj(‖ξ‖)
≤ max
i∈{0,...,M−1}

α−1
1 ◦ ρl ◦ α2 ◦ ωi(‖ξ‖)

≤ max
i∈{0,...,M−1}

α−1
1 ◦ ρ

k
M −1 ◦ α2 ◦ ωi(‖ξ‖)

≤ max
i∈{0,...,M−1}

α−1
1 ◦ ρ̃

k
M −1 ◦ α2 ◦ ωi(‖ξ‖)

=: β(‖ξ‖, k).

Since ρ < id is positive definite there exists a K-function ρ̃ with ρ ≤ ρ̃ < id. Then it
is easy to see that β is a KL-function. By Definition 2.2 the origin of system (2.1)
is GAS.

Remark 2.8. An alternative proof of Theorem 2.7 can be obtained by recognizing
the following equivalence for any M ∈ N

the origin of (2.1) is GAS ⇐⇒ the origin of (2.5) is GAS.

Since any global finite-step Lyapunov function of system (2.1) is a global Lyapunov
function of system (2.5), GAS of the origin of system (2.5) is implied, and with the
above equivalence, also GAS of the origin of system (2.1). /

If the global finite-step Lyapunov function satisfies stronger conditions on the func-
tions invoked then we can conclude GES of the origin.

Corollary 2.9. Let the global K-bound on G be ω(s) = ws for all s ≥ 0 and some
w > 0. Then the origin of system (2.1) is GES if there exists a global finite-step
Lyapunov function V satisfying conditions (i) and (ii) of Definition 2.6 with

α1(s) = a1s
λ, α2(s) = a2s

λ, ρ(s) = cs, (2.7)
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2.2. Stability analysis via finite-step Lyapunov functions

where 0 < a1 ≤ a2, λ > 0 and c ∈ [0, 1).

Proof. The proof of Theorem 2.7 implies ‖x(k, ξ)‖ ≤ Cµk‖ξ‖ with
C = maxi∈{1,...,M−1}(

a2
a1c

)1/λωi and µ = c1/Mλ ∈ [0, 1).

Note that the assumption on ω to be linear is necessary for the origin of the system
being GES as shown after Remark 2.3.

Since any global finite-step Lyapunov function with M = 1 is a global Lyapunov
function, the “classical” Lyapunov theorem2 can be obtained as a corollary of The-
orem 2.7.

Corollary 2.10. The existence of a global Lyapunov function W implies that the
origin of system (2.1) is GAS. In particular, if W satisfies conditions (i) and (ii) of
Definition 2.4 with α1, α2, ρ as in (2.7) then the origin of system (2.1) is GES.

The following result states that if the map G is contracting (i.e., G is globally K-
bounded with ω < id), then the origin of system (2.1) is GAS.

Proposition 2.11. If the map G in (2.1) is globally K-bounded with K-function
ω < id, then system (2.1) is GAS.

Proof. Take W (ξ) = ‖ξ‖ as a candidate Lyapunov function. Then clearly con-
dition (i) of Definition 2.4 is satisfied with α1 = α2 = id and condition (ii) of
Definition 2.4 is satisfied with ρ = ω and ω < id. So Corollary 2.10 applies, which
concludes the proof.

In this section we have shown that the existence of a global finite-step Lyapunov
function is sufficient to conclude GAS of the origin. In the next section we proceed by
showing that the existence of a global finite-step Lyapunov function is also necessary
for systems with GAS origin.

2.2.2 A converse finite-step Lyapunov theorem

Since global Lyapunov functions are global finite-step Lyapunov functions, we can
make use of the converse Lyapunov theorems [71, Theorem 1] (for continuous G)
resp. [116, Lemma 4] (for discontinuous G) to state the following proposition.

Proposition 2.12. If the origin of system (2.1) is GAS, then there exists a global
finite-step Lyapunov function.

Proposition 2.12 ensures the existence of a global finite-step Lyapunov function by
using a standard converse Lyapunov theorem, which is obvious. Indeed, a converse
result was not pursued in [1].

2also called Lyapunov’s second or direct method
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Chapter 2. Stability analysis of large-scale discrete-time systems

Theorem 2.7 and Proposition 2.12 together show the equivalence between the exis-
tence of a global finite-step Lyapunov function and GAS of the origin. In Figure 2.1
we present a diagram that illustrates some equivalences of global finite-step Lya-
punov functions.

V is a global
Lyapunov function
for system (2.5)

the origin of (2.5) is GAS

V is a global
finite-step Lyapunov function

for system (2.1)

the origin of (2.1) is GAS

∃V :Rn→R+ s.t. ∃V :Rn→R+ s.t.

Figure 2.1: Some equivalences of global finite-step Lyapunov functions

Next, a constructive converse finite-step Lyapunov theorem is stated, which, in con-
trast to Proposition 2.12, does not rely on existing converse Lyapunov theorems, but
on an appropriate assumption that is discussed in the following.

Assumption 2.13. There exists a KL-function β satisfying (2.2) for system (2.1)
and

β(r,M) < r (2.8)

for some M ∈ N and all r > 0. /

Under this assumption a global finite-step Lyapunov function can be given explic-
itly.

Theorem 2.14. If Assumption 2.13 is satisfied, then for any function η ∈ K∞ and
any norm ‖ · ‖ the function V : Rn → R+ defined by

V (ξ) := η(‖ξ‖) (2.9)

for all ξ ∈ Rn is a global finite-step Lyapunov function for system (2.1).

Proof. Take any η ∈ K∞ and let V be defined as in (2.9). Then clearly, V is proper
and positive definite. Let β ∈ KL satisfy (2.2), and M ∈ N satisfy (2.8). Then for
any ξ ∈ Rn

V (x(M, ξ)) = η(‖x(M, ξ)‖)
≤ η ◦ β(‖ξ‖,M)

= η ◦ β(η−1(V (ξ)),M) =: ρ̃(V (ξ)),
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2.2. Stability analysis via finite-step Lyapunov functions

where ρ̃(·) = η ◦ β(η−1(·),M) satisfies ρ̃ < id by (2.8). This shows condition (ii) of
Definition 2.6. So V defined in (2.9) is a global finite-step Lyapunov function for
system (2.1).

For simplicity, we can set η = id in (2.9). On the other hand, as η ∈ K∞ can be
chosen arbitrarily, η can be used as a scaling function to design the global finite-step
Lyapunov function.

Let us briefly discuss Assumption 2.13. First of all, by Definition 2.6, the norm of
any solution of a GES system is bounded by a KL-function β(r, t) = Cµtr with
C ≥ 1, µ ∈ [0, 1), see (2.3). So we can find an M ∈ N such that CµM < 1 by
simply taking M ∈ N with M > logµ(1/C), which immediately yields the following
lemma.

Lemma 2.15. If the origin of system (2.1) is GES, then Assumption 2.13 is satis-
fied.

This now implies that for a GES system (2.1) any norm is a global finite-step Lya-
punov function. Note that the norms in (2.2) and (2.9) coincide. In particular,
M ∈ N in (2.8) depends on the particular norm.

Corollary 2.16. If the origin of system (2.1) is GES, then for any function η ∈ K∞
the function V : Rn → R+ defined in (2.9) is a global finite-step Lyapunov function
for this system.

Proof. Lemma 2.15 implies that Assumption 2.13 holds, so Theorem 2.14 applies
and the result follows.

The converse implication of Lemma 2.15, i.e., Assumption (2.13) implies that the
origin of system (2.1) is GES, doesn’t hold in general. This is shown in the following
example.

Example 2.17. Consider the system

x(k + 1) = G(x(k)) :=

{
|x(k)| − x2(k) if |x(k)| ≤ 1

2
1
2 |x(k)| if |x(k)| > 1

2

k ∈ N. (2.10)

The right-hand side function G : R→ R satisfies

|G(ξ)| = max{|ξ| − |ξ|2, 1
2 |ξ|}, for all ξ ∈ R.

Hence, G is globally K-bounded with ω(s) = max{s − s2, 0.5s}. As ω < id, we
can apply Proposition 2.11 to conclude that the origin of system (2.10) is GAS.
Moreover, for all k ∈ N and all ξ ∈ R we have

|x(k, ξ)| = |Gk(ξ)| = ωk(|ξ|) =: β(|ξ|, k),
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Chapter 2. Stability analysis of large-scale discrete-time systems

where the function β is of class KL as ω ∈ K∞ satisfies ω < id. Thus, Assump-
tion 2.13 is satisfied for M = 1.

On the other hand, the origin of system (2.10) is not GES in the sense of Defini-
tion 2.2 as the decrease rate of any solution approaches 1, i.e.,

lim
k→∞

|x(k+1)|
|x(k)| = lim

k→∞
1− |x(k)| = 1.

/

If we assume the origin of system (2.1) to be GAS only, then (2.8) does not have to
hold globally, i.e., for all r > 0. But we can at least show that Assumption 2.13 is
satisfied in a semi-global practical sense.

Lemma 2.18. Let β ∈ KL. Then for any 0 < a < b < ∞ there exists an M ∈ N,
such that (2.8) holds for all r ∈ [a, b].

Proof. Let β ∈ KL. Using [139, Lemma 4.3] there exist K∞-functions σ1, σ2 ∈ K∞
such that β(r, t) ≤ σ1(σ2(r)e−t) holds for all r, t ≥ 0. Define for any r > 0

M(r) := min{M ∈ N : σ1(σ2(r)e−M ) < r}.

Note that M(r) is well-defined for any r > 0. Let 0 < a < b < ∞ be given and
define M̄ := sup {M(r) : r ∈ [a, b]} . We will show that M̄ <∞, which implies that
for all r ∈ [a, b] it holds

β(r, M̄) ≤ σ1(σ2(r)e−M̄ ) ≤ σ1(σ2(r)e−M(r)) < r.

So assume to the contrary that M̄ =∞. Then there exists a sequence {rl}l∈N ∈ [a, b]

such that {M(rl)}l∈N → ∞ for l → ∞. Since [a, b] ⊂ R+ is compact, we can,
without loss of generality, assume that the sequence {rl}l∈N is convergent to a point
r∗ ∈ [a, b], else take a convergent subsequence. Consequently, this means that in
any open neighborhood U around r∗ there exist infinitely many ri ∈ U with M(ri)

pairwise distinct. On the other handM(r∗) is well-defined, and, by continuity, there
exists an open neighborhood Ũ around r∗ with M(r̃) ≤ M(r∗) for all r̃ ∈ Ũ . But
this contradicts the unboundedness of the sequence {M(ri)}, where ri ∈ U ⊂ Ũ . So
M̄ <∞.

This now implies that for any GAS system of the form (2.1), any scaled norm is a
finite-step Lyapunov function for a set [a, b] as defined next.

Definition 2.19. Let 0 < a < b < ∞. A function V : Rn → R+ is an (a, b)

finite-step Lyapunov function for system (2.1) if

(i) there exist α1, α2 ∈ K∞ such that for all ξ ∈ Rn

α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖),
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2.2. Stability analysis via finite-step Lyapunov functions

(ii) there exists a finite M ∈ N and a positive definite function ρ < id such that
for all ξ ∈ V −1([a, b]) := {z ∈ Rn : V (z) ∈ [a, b]} we have

V (x(M, ξ)) ≤ ρ(V (ξ)),

and for all ξ ∈ V −1([0, a]) we have

V (x(M, ξ)) ≤ a.

Definition 2.19 implies that the function V : Rn → R+ is decreasing at least any
M steps towards the set [0, a] as long as ξ ∈ V −1([a, b]). Finally, along solutions
x(k, ξ) starting in ξ ∈ V −1([0, a]) we see that V (x(k, ξ)) is within [0, a] at least for
any k = lM with l ∈ N. In this respect, (a, b) finite-step Lyapunov functions can be
used to ensure practical asymptotic stability.

Corollary 2.20. If the origin of system (2.1) is GAS, then for any function η ∈ K∞
and any 0 < a < b < ∞, the function V : Rn → R+ defined in (2.9) is an (a, b)

finite-step Lyapunov function for this system.

Proof. Let η ∈ K∞ and 0 < a < b < ∞ be given, and define â := η−1(a)

and b̂ := η−1(b). Then Lemma 2.18 implies the existence of an M ∈ N such
that (2.8) holds for all r ∈ [â, b̂]. Hence, the positive definite function ρ̃ defined
in the proof of Theorem 2.14 satisfies ρ̃(r) < r for all r ∈ [η(â), η(b̂)]. Thus, for all
ξ ∈ V −1([η(â), η(b̂)]) = V −1([a, b]) it holds

V (x(M, ξ)) ≤ ρ̃(V (ξ)).

On the other hand, for all ξ ∈ Rn with ‖ξ‖ ∈ [0, â], or, equivalently, ξ ∈ V −1([0, a]),
we have

V (x(M, ξ)) = η(‖x(M, ξ)‖) ≤ η(β(‖ξ‖,M)) ≤ η(β(â,M)) = η(â) = a.

Hence, the function V defined in (2.9) is an (a, b) finite-step Lyapunov function for
system (2.1).

We stress that the constant M ∈ N chosen in Corollary 2.20 depends on the interval
[a, b]. In general, a larger interval requires a larger M .

The meaning of Corollary 2.20 is that if we are not aware of a global Lyapunov
function for system (2.1), we can nevertheless construct a finite-step Lyapunov func-
tion in (2.9) to ensure practical asymptotic stability of the origin. In this respect,
M ∈ N can be interpreted as a tuning parameter that regulates the size of the
interval [a, b].
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2.2.3 Construction of a Lyapunov function from a finite-step Lyapunov function

In this section we construct a global Lyapunov functionW for system (2.1) from the
knowledge of a global finite-step Lyapunov function V . We like to emphasize that
this construction does not depend on the particular structure of the global finite-
step Lyapunov function in (2.9), but rather holds in general. The construction is as
follows. For all ξ ∈ Rn we define the function W : Rn → R+ by

W (ξ) :=

M−1∑
j=0

V (x(j, ξ)). (2.11)

The idea behind this construction is that the summands for W (ξ) are the same as
for W (x(1, ξ)) except that V (ξ) is replaced by V (x(M, ξ)) < V (ξ). Hence, W is
decreasing along trajectories of (2.1), which yields the following result.

Theorem 2.21 (Construction of a global Lyapunov function I). If V : Rn → R+

is a global finite-step Lyapunov function for system (2.1) with M ∈ N satisfying
condition (ii) of Definition 2.6, then W : Rn → R+ defined in (2.11) is a global
Lyapunov function for system (2.1).

Proof. For the global finite-step Lyapunov function V let α1, α2, ρ,M satisfy condi-
tions (i) and (ii) of Definition 2.6. In the remainder of the proof, we will construct
α̃1, α̃2, ρ̃ such that they satisfy conditions (i) and (ii) of Definition 2.4 for the Lya-
punov function candidate W defined in (2.11). Assume that α1, α2 ∈ K∞ are given
such that α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖). Let α̃1 = α1, then by definition of W we have
α̃1(‖ξ‖) ≤ V (ξ) ≤ W (ξ). Since V is a global finite-step Lyapunov function we have
for all k ∈ N

‖x(k, ξ)‖ ≤ α−1
1 (V (x(k, ξ))) ≤ max

j∈N
α−1

1 (V (x(j, ξ)))

≤ max
j∈{0,...,M−1}

α−1
1 (V (x(j, ξ)))

≤ max
j∈{0,...,M−1}

α−1
1 ◦ α2 ◦ ωj(‖ξ‖) = σ(‖ξ‖),

for σ := maxj∈{0,...,M−1} α
−1
1 ◦ α2 ◦ ωj ∈ K∞. Moreover,

W (ξ) ≤M · max
i∈{0,...,M−1}

V (x(i, ξ))

≤M · max
i∈{0,...,M−1}

α2(‖x(i, ξ)‖) ≤Mα2 ◦ σ(‖ξ‖).

Define α̃2 = M id ◦α2 ◦ σ. Hence, we have shown condition (i) of Definition 2.4,

α̃1(‖ξ‖) ≤W (ξ) ≤ α̃2(‖ξ‖).
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To show the decay of W , condition (ii) of Definition 2.4, note that for any ξ ∈ Rn

W (x(1, ξ)) =

M∑
j=1

V (x(j, ξ))

≤
M−1∑
j=1

V (x(j, ξ)) + ρ(V (ξ))

= W (ξ)− (id−ρ)(V (ξ))

≤W (ξ)− (id−ρ)(α1(‖ξ‖))
≤ (id−(id−ρ) ◦ α̃1 ◦ α̃−1

2 )(W (ξ)) =: ρ̃(W (ξ)).

As α̃1 ◦ α̃−1
2 ≤ id it is easy to see that 0 < ρ̃ < id, and ρ̃ is positive definite. This

shows that W is a global Lyapunov function for system (2.1).

In the next theorem, we present an alternative construction of a global Lyapunov
function to the one given in (2.11). The construction is as follows. We define
W : Rn → R+ by

W (ξ) := max
j∈{0,...,M−1}

ρj/M
(
V (x(M − 1− j, ξ))

)
. (2.12)

Here the positive definite function ρ stems from the global finite-step Lyapunov
function V . Note that if ρ ∈ K∞, which we can assume without loss of generality,
then ρ1/M exists by Proposition 4.16. In particular, by ρ̂ := ρ1/M we mean that ρ̂
satisfies ρ̂M = ρ, see Section 1.3. With this construction we obtain an analogue to
Theorem 2.21.

Theorem 2.22 (Construction of a global Lyapunov function II). If V : Rn → R+

is a global finite-step Lyapunov function for system (2.1) with M ∈ N satisfying
condition (ii) of Definition 2.6, then W : Rn → R+ defined in (2.12) is a global
Lyapunov function for system (2.1).

Proof. The proof follows the lines of the proof of Theorem 2.21 and is therefore only
sketched. It is not hard to see that by definition of W in (2.12) we have

α̃1(ξ) := ρ(M−1)/M ◦ α1(ξ) ≤ ρ(M−1)/M (V (ξ))
(2.12)
≤ W (ξ) ≤ α̃2(ξ),

where α̃2 ∈ K∞ was defined in the proof of Theorem 2.21, and α1, ρ come from the
global finite-step Lyapunov function V . To show the decay of W , condition (ii) of
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Definition 2.4, note that for any ξ ∈ Rn, we have

W (x(1, ξ)) = max
j∈{0,...,M−1}

ρj/M (V (x(M − j, ξ)))

= max

{
max

j∈{1,...,M−1}
ρj/M (V (x(M − j, ξ))), V (x(M, ξ))

}
≤ max

{
max

j∈{1,...,M−1}
ρj/M (V (x(M − j, ξ))), ρ(V (ξ))

}
= max
j∈{0,...,M−1}

ρ(j+1)/M (V (x(M − 1− j, ξ)))

= ρ1/M (W (ξ)).

With ρ < id also ρ1/M < id holds, which shows that W satisfies condition (ii) of
Definition 2.4.

2.2.4 A converse Lyapunov theorem

In Section 2.2.2, we have presented converse finite-step Lyapunov theorems, which
show that (scaled) norms are finite-step Lyapunov functions. Moreover, in Sec-
tion 2.2.3, we have shown how to construct a Lyapunov function from a finite-step
Lyapunov function. In this section we will bring those results together to deduce
constructive converse Lyapunov theorems, which are corollaries of Theorem 2.14 and
Theorem 2.21 resp. Theorem 2.22.

Theorem 2.23 (Converse Lyapunov theorem I). Let M ∈ N satisfy Assump-
tion 2.13. Then for any function η ∈ K∞ the function W : Rn → R+ defined
by

W (ξ) :=

M−1∑
j=0

η(‖x(j, ξ)‖) (2.13)

for all ξ ∈ Rn is a global Lyapunov function for system (2.1).

Theorem 2.24 (Converse Lyapunov theorem II). Let M ∈ N satisfy Assump-
tion 2.13. Then for any function η ∈ K∞ the function W : Rn → R+ defined
by

W (ξ) := max
j∈{0,...,M−1}

ρj/M
(
η(‖x(M − 1− j, ξ)‖)

)
(2.14)

for all ξ ∈ Rn is a global Lyapunov function for system (2.1).

Remark 2.25. The main difference of the construction of the Lyapunov functions in
Theorem 2.23 and 2.24 in contrast to the constructions of Lyapunov functions in
other converse Lyapunov theorems, is that in (2.13) we use a finite sum of solutions
instead of an infinite series [71] (respectively, in (2.14) we use the maximum over a
finite set instead of the supremum over all solutions and all times, [81, 116]). /
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Since any GES system satisfies Assumption 2.13 (see Lemma 2.15), we obtain the
following converse Lyapunov theorem for GES systems of the form (2.1).

Corollary 2.26. If the origin of system (2.1) is GES then for any η ∈ K∞ there
exists an M ∈ N such that the function W defined in (2.13) resp. (2.14) is a global
Lyapunov function for system (2.1).

Proof. Since the origin of system (2.1) is GES, there exist C ≥ 1, and µ ∈ [0, 1) such
that ‖x(k, ξ)‖ ≤ Cµk‖ξ‖. Take M ∈ N such that CµM < 1, then Assumption 2.13
holds. Then by Theorem 2.23 resp. Theorem 2.24 the function W defined in (2.13)
resp. (2.14) is a global Lyapunov function for system (2.1).

Combining Corollary 2.20 and Theorem 2.21 resp. Theorem 2.22 we immediately
obtain an (a, b) Lyapunov function (Definition 2.19 with M = 1).

Corollary 2.27. If the origin of system (2.1) is GAS, then for 0 < a < b < ∞
there exists an M ∈ N such that the function W defined in (2.13) resp. (2.14) is an
(a, b) Lyapunov function for system (2.1).

For general systems of the form (2.1) the following procedure enables us to check
asymptotic stability of the origin at least on a set [a, b]. Note that this procedure
may fail if a suitable number M has to be chosen too large, or if the dynamics G
are too complex.

Procedure 2.28. The stability analysis we proposed so far to construct a Lyapunov
function (at least on a set [a, b]) can be summarized as follows. Let a system of the
form (2.1) be given.

[0] Set k = 1.

[1] Check ‖Gk(ξ)‖ < ‖ξ‖ for all ξ ∈ Rn with ‖ξ‖ ∈ [a, b], and ‖Gk(ξ)‖ ≤ a for all
ξ ∈ Rn with ‖ξ‖ ∈ [0, a]. If these inequalities hold proceed with step [2]; else
set k = k + 1 and repeat.

[2] Define W : Rn → R+ by (2.13) or (2.14) with M = k.

If this procedure is successful then W is an (a, b) finite-step Lyapunov function for
the overall system (2.1), and it particularly ensures practical asymptotic stability.
If a = 0 then we obtain a Lyapunov function and if, additionally, b = ∞, then the
Lyapunov function is a global one. /

Computation of a suitable M ∈ N can be done by iteratively checking the condition
‖x(M, ξ)‖ < ‖ξ‖ while increasing the value of M , which needs to be verified either
globally or for a subset of Rn. At least, if the origin is GES, there always exists an
M large enough for which the condition holds globally. The difficulty of checking
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this condition depends on the particular map G. Systematic methods for obtaining
an M for linear and conewise linear maps are given in Section 2.4.

To conclude this section we apply our results, following Procedure 2.28, to an ex-
ample.

2.2.5 Illustrative example

We consider the following discrete-time system

x(k + 1) =

(
[x(k)]1 − 0.3[x(k)]2

0.7[x(k)]1 + 0.2
[x(k)]22

1+[x(k)]22

)
. (2.15)

The aim is to prove that the origin of this system is GAS, and we want to use the
results derived in this section to construct a global Lyapunov function.

Firstly, we show that the map

G(ξ) :=

(
[ξ]1 − 0.3[ξ]2

0.7[ξ]1 + 0.2
[ξ]22

1+[ξ]22

)
satisfies Assumption 2.1. To this end, observe that for all t ∈ R, we have

t2

1 + t2
≤ |t|

2
. (2.16)

Thus, applying the infinity norm ‖ · ‖∞, and using the triangle inequality, we ob-
tain

‖G(ξ)‖∞ = max

{
|[ξ]1 − 0.3[ξ]2|, |0.7[ξ]1 + 0.2

[ξ]22
1 + [ξ]22

|
}

≤ max{|[ξ]1|+ 0.3|[ξ]2|, 0.7|[ξ]1|+ 0.1|[ξ]2|} ≤ 1.3‖ξ‖∞.

Hence, G is globally K-bounded with ω(s) = 1.3s ∈ K∞ (with respect to the infinity
norm ‖ · ‖∞).

To show GAS of the origin of system (2.15) we follow the methodology given in Pro-
cedure 2.28. Iterating the dynamics map G, we see that for k = 3 we obtain

G3(ξ)=



0.58[ξ]1−0.237[ξ]2−0.06
[ξ]22

1+[ξ]22
−0.06

(0.7[ξ]1+0.2
[ξ]22

1+[ξ]22
)2

1+(0.7[ξ]1+0.2
[ξ]22

1+[ξ]22
)2

0.553[ξ]1−0.21[ξ]2−0.042
[ξ]22

1+[ξ]22
+0.2

0.7[ξ]1−0.21[ξ]2+0.2

(0.7[ξ]1+0.2
[ξ]22

1+[ξ]22
)2

1+(0.7[ξ]1+0.2
[ξ]22

1+[ξ]22
)2


2

1+

0.7[ξ]1−0.21[ξ]2+0.2

(0.7[ξ]1+0.2
[ξ]22

1+[ξ]22
)2

1+(0.7[ξ]1+0.2
[ξ]22

1+[ξ]22
)2


2


.
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Again, exploiting (2.16), and the fact that x(3, ξ) = G3(ξ), we obtain

‖x(3, ξ)‖∞ ≤ max{0.601|[ξ]1|+ 0.397|[ξ]2|, 0.6335|[ξ]1|+ 0.253|[ξ]2|} ≤ 0.998‖ξ‖∞.

We therefore conclude that V : Rn → R+ defined by V (ξ) = ‖ξ‖∞ is a global finite-
step Lyapunov function for system (2.15) with M = 3 and ρ(s) = 0.998s yielding
GAS of the origin by Theorem 2.7. Furthermore, as the K-bound ω and the function
ρ < id are linear, and V satisfies condition (i) of Definition 2.6 with α1 = α2 = id,
the origin of system (2.15) is GES by Corollary 2.9.

Finally, a global Lyapunov function can be constructed from the global finite-step
Lyapunov function as in (2.13) (resp. (2.14)). In Figure 2.2, a contour plot of
the global Lyapunov function constructed in (2.13) with η = id, i.e., W (ξ) =∑2
j=0 ‖x(j, ξ)‖∞ is depicted. We furthermore include a plot of the trajectory starting

in ξ = (3,−3).
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ξ =(3,−3)

Figure 2.2: Contour plot of the Lyapunov function W (ξ) =
∑2
j=0 ‖x(j, ξ)‖∞ for

system (2.15), and the trajectory of system (2.15) starting in ξ = (3,−3).

We note that as V (ξ) = ‖ξ‖∞ is a global finite-step Lyapunov function with M = 3,
the function V is also a global finite-step Lyapunov function for any M = 3k, where
k ∈ N, k ≥ 1. Thus, the construction of the global Lyapunov function as in (2.13)
(resp. (2.14)) only depends on finding a suitably large M ∈ N. To end this section,
we give a contour plot of a global Lyapunov function with M = 150 in Figure 2.3,
i.e., W̃ (ξ) :=

∑149
j=0 ‖x(j, ξ)‖∞ for all ξ ∈ R2. Recall that usually proofs of converse
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Figure 2.3: Contour plot of the Lyapunov function W̃ (ξ) =
∑149
j=0 ‖x(j, ξ)‖∞ for

system (2.15).

Lyapunov theorems use infinite series or suprema of solutions. Hence, W and W̃ are
approximations of the infinite series Lyapunov function construction, but these are
already global Lyapunov functions.

2.3 Relaxed and non-conservative small-gain theorems

In Section 2.2, we have derived sufficient and necessary conditions in terms of exis-
tence of global (finite-step) Lyapunov functions to show GAS of a system’s origin.
For large-scale systems, this approach (following Procedure 2.28) might be compu-
tationally hard. In this section we present an alternative approach, the so-called
small-gain approach, where we consider the system split into several smaller subsys-
tems. GAS of the overall system’s origin can then be deduced from properties of the
subsystems.

We consider the interconnection of N ∈ N discrete-time systems of the form

xi(k + 1) = gi(x1(k), . . . , xN (k)) ∈ Rni , k ∈ N, (2.17)

with xi(0) ∈ Rni and gi : Rn1×. . .×RnN → Rni for i ∈ {1, . . . , N}. Let n =
∑N
i=1 ni,

x = (x1, . . . , xN ) ∈ Rn, and G : Rn → Rn be defined by G = (g1, . . . , gN ). Then
the overall system is of the form (2.1). Moreover, we assume that gi(0) = 0 for all
i ∈ {1, . . . , N}. We call the states xj , j 6= i, the (internal) inputs for system i.
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Throughout this section, we assume the standing Assumption 2.1 to hold, i.e., we
require the map G to be globally K-bounded. Observe that existing results on small-
gain theory typically assume continuity of the map G. Moreover, at some places of
this section, we consider the p-norm ‖·‖p to simplify technicalities. Indeed, we could
have used any monotonic norm.

2.3.1 Sufficient and necessary small-gain theorems

The basic idea of this section is to drop the assumption in (at least Lyapunov-
based) small-gain theory that each subsystem has to admit a Lyapunov function.
Instead, we require the existence of a Lyapunov-type function that decreases after
a finite number of time steps. The first result, Theorem 2.29, states the sufficiency
to conclude GAS of the origin. For this theorem, we recall the definition of the gain
operator

Γ⊕(s) :=

 max {γ11([s]1), . . . , γ1N ([s]N )}
...

max {γN1([s]1), . . . , γNN ([s]N )}

 .

from (1.16).

Theorem 2.29. Let (2.1) be the overall system of the interconnected systems (2.17).
Assume that there exist an M ∈ N, M ≥ 1, functions Vi : Rni → R+, and γij ∈
K∞ ∪ {0}, i, j ∈ {1, . . . , N}, defining the gain operator Γ⊕ in (1.16), such that the
following conditions hold:

(i) For all i ∈ {1, . . . , N} there exist α1i, α2i ∈ K∞ such that for all ξi ∈ Rni it
holds

α1i(‖ξi‖) ≤ Vi(ξi) ≤ α2i(‖ξi‖). (2.18)

(ii) For all i ∈ {1, . . . , N}, and all ξ = (ξ1, . . . , ξN ) ∈ Rn with ξi ∈ Rni it holds

Vi(xi(M, ξ)) ≤ max
j∈{1,...,N}

γij(Vj(ξj)), (2.19)

where xi(M, ξ) denotes the solution of the ith subsystem (2.17).

(iii) The map Γ⊕ from (1.16) induced by the functions γij satisfies the small-gain
condition Γ⊕ 6≥ id.

Then the origin of (2.1) is GAS.
In particular, there exists an Ω-path σ ∈ KN∞ such that the function W : Rn → R+

defined by

W (ξ) :=

M−1∑
j=0

max
i
σ−1
i (Vi(xi(j, ξ))) (2.20)

is a global Lyapunov function for the overall system (2.1).
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Note that (2.19) can be written in compact form as V1(x1(M, ξ))
...

VN (xN (M, ξ))

 ≤ Γ⊕


 V1(ξ1)

...
VN (ξN )


 . (2.21)

Proof. Firstly, condition (iii) and Lemma 1.30 imply the existence of an Ω-path
σ ∈ KN∞ (Definition 1.22) with respect to Γ⊕, i.e., a function σ : R+ → RN+ with
σi ∈ K∞ for i ∈ {1, . . . , N} satisfying

Γ⊕(σ(r)) < σ(r) for all r > 0, (2.22)

or component-wise, for any i ∈ {1, . . . , N}, maxj∈{1,...,N} γij ◦ σj(r) < σi(r) for all
r > 0. In the following let i, j, j′ ∈ {1, . . . , N}. Define

V (ξ) := max
i
σ−1
i (Vi(ξi)). (2.23)

We will show that V is a global finite-step Lyapunov function for the overall sys-
tem (2.1). For this purpose note that condition (i) of Theorem 2.29 implies

V (ξ) ≥ max
i
σ−1
i (α1i(‖ξi‖)) ≥ α1(‖ξ‖)

with α1 := minj σ
−1
j ◦α1j ◦ 1

κ id ∈ K∞, where κ ≥ 1 comes from (1.1). On the other
hand, we have

V (ξ) ≤ max
i
σ−1
i (α2i(‖ξi‖)) ≤ α2(‖ξ‖)

with α2 := maxi(σ
−1
i ◦α2i) ∈ K∞, which shows that V is proper and positive definite.

To show the decay of V , condition (ii) of Definition 2.6, note that (2.22) is equivalent
to maxi,j σ

−1
i ◦ γij ◦ σj(r) < r for all r > 0. Define ρ := maxi,j σ

−1
i ◦ γij ◦ σj , then

ρ < id and we have

V (x(M, ξ)) = max
i
σ−1
i (Vi(xi(M, ξ)))

(2.21)
≤ max

i,j
σ−1
i ◦ γij(Vj(ξj)) = max

i,j
σ−1
i ◦ γij ◦ σj ◦ σ

−1
j (Vj(ξj))

≤ max
i,j,j′

(
σ−1
i ◦ γij ◦ σj

)
◦
(
σ−1
j′ (Vj′(ξj′))

)
= ρ(V (ξ)).

This shows that V is a global finite-step Lyapunov function for system (2.1). So from
Theorem 2.7 we conclude that the origin of system (2.1) is GAS. Furthermore, the
functionW defined in (2.23) is a global Lyapunov function, which follows from (2.11)
and Theorem 2.21.

54



2.3. Relaxed and non-conservative small-gain theorems

Theorem 2.29 states sufficient conditions under which GAS of the overall system’s
origin is shown. In the following, we explain the meaning of the functions involved.
In particular, we study the role of the number M ∈ N.

Assume that we can choose M = 1 in Theorem 2.29. Let i ∈ {1, . . . , N} and set
ξj = 0 for each j ∈ {1, . . . , N}\{i}. Then condition (ii) implies

Vi(xi(1, (0, . . . , 0, ξi, 0, . . . , 0))) ≤ γii(Vi(ξi)).

From condition (iii) and Proposition 1.29, we conclude that γii < id. Moreover,
by condition (i), Vi is proper and positive definite. Hence, Vi is a global Lyapunov
function for the decoupled system

xi(k + 1) = g(0, . . . , 0, xi(k), 0, . . . , 0). (2.24)

This implies that the origin of the decoupled system (2.24) is GAS. Hence, each
subsystem is 0-GAS3. In this case, Theorem 2.29 resembles results in [67,99]. Indeed,
if M = 1 then Theorem 2.29 is a small-gain theorem in the classical sense: The
origin of each subsystem is at least 0-GAS and, by the small-gain condition, the
(disturbing) influence of the subsystems on the interconnection structure is small
enough. Hence, the origin of the overall system is GAS.

To better understand the distinguishing difference between the cases M = 1 and
M > 1, we consider the following example.

Example 2.30. Consider the 2-dimensional discrete-time system

x1(k + 1) = x1(k)− x2(k)

x2(k + 1) = 2
3 (x1(k)− x2(k))

with k ∈ N, x1, x2 ∈ R. Clearly, the origin of the first subsystem is not 0-GAS, as
x1(k, ξ1, 0) ≡ ξ1 for all k ∈ N. Nevertheless, computing solutions for k = 2 we obtain

x1(2, ξ) = 1
3 (ξ1 − ξ2), x2(2, ξ) = 2

9 (ξ1 − ξ2)

for all ξ = (ξ1, ξ2) ∈ R2. Taking the norm, we can derive the estimates

|x1(2, ξ)| ≤ max
{

2
3 |ξ1|,

2
3 |ξ2|

}
, |x2(2, ξ)| ≤ max

{
4
9 |ξ1|,

4
9 |ξ2|

}
,

which implies condition (ii) of Theorem 2.29 with Vi(·) := | · | and

γ11(s) := 2
3s, γ12(s) := 2

3s, γ21(s) := 4
9s, γ22(s) = 4

9s.

By definition of Vi, condition (i) of Theorem 2.29 holds. Moreover, by Proposi-
tion 1.29, also condition (iii) of Theorem 2.29 is satisfied. Hence, the origin of the
2-dimensional system is GAS. /

3I.e., the origin of each subsystem (2.24) is GAS, see also Definition 3.6.
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Example 2.30 shows that Theorem 2.29 can be applied, although the origin of the
first subsystem is not 0-GAS. In addition, as we will see in Section 2.3.2, the subsys-
tems (2.17) may be 0-input unstable, i.e., the origin of subsystem (2.24) is unstable
for some i ∈ {1, . . . , N}. This means that Theorem 2.29 is not a classical small-gain
result, where the origin of each subsystem has to be at least 0-GAS. In any case,
GAS of the overall system’s origin can be guaranteed by Theorem 2.29. Thus, this
theorem is a strict relaxation of previous small-gain theorems as the ones in [67,99],
which cannot handle the case of 0-input unstable subsystems (2.17).

To understand why subsystems do not have to be 0-GAS for M > 1, again, let
i ∈ {1, . . . , N} and set ξj = 0 for j 6= i. Then (2.19) implies

Vi(xi(M, (0, . . . , 0, ξi, 0, . . . , 0)) ≤ γii(Vi(ξi)), for all ξi ∈ Rni ,

but, and this is important, it does not imply

Vi(xi(M, ξi, 0)) ≤ γii(Vi(ξi)), for all ξi ∈ Rni .

Let us explain the difference of these two estimates. Firstly, the 0 in xi(M, ξi, 0)

means that all inputs xj , j 6= i, are set to zero (for all times k ∈ N). Hence,
xi(M, ξi, 0) denotes the solution of the decoupled system (2.24) at time M starting
in the initial value ξi ∈ Rni . On the other hand, xi(M, (0, . . . , 0, ξi, 0, . . . , 0)) denotes
the solution of (2.17) at timeM starting in the initial value ξ = (0, . . . , 0, ξi, 0, . . . , 0).
This means that the (internal) inputs xj , j 6= i, are zero at time k = 0, i.e., xj(0) =

ξj = 0 for all j 6= i, but they may be nonzero for times k ≥ 1. The consequence
is that the state of the ith subsystems can be fed back via the internal inputs
xj , j 6= i. Hence, stabilizing feedback effects are implicitly taken into account by
Theorem 2.29.

To make this observation more clear, consider Example 2.30 again. Obviously, the
systems are in a feedback loop. If we consider the subsystems to be decoupled the
dynamics are

x1(k + 1) = x1(k), x2(k + 1) = − 2
3x2(k), for all k ∈ N.

As observed in Example 2.30, the origin of the first subsystem is not 0-GAS as
x1(k, ξ1, 0) ≡ ξ1 for all k ∈ N and all ξ1 ∈ R. On the other hand, the solution
of the first subsystem starting in the initial state (ξ1, 0) at time k = 2 is given by
x1(2, (ξ1, 0)) = 1

3ξ1. This means that the second subsystem has a stabilizing effect
on the first subsystem.

Summarizing, we can interpret the functions involved in Theorem 2.29 as follows:

(i) The proper and positive definite functions Vi : Rni → R+, i ∈ {1, . . . , N} are
used to characterize a decrease of the solutions of the subsystems (2.17). If
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M = 1 then these functions are global Lyapunov functions for the decoupled
systems (2.24). For M > 1 the subsystems may be 0-input unstable. Thus,
the functions Vi are, in general, also not global finite-step Lyapunov function.

(ii) The number M ≥ 1 denotes a time step after which a decrease of the function
Vi evaluated at the solution ξi(M, ξ) of the form (2.19) is guaranteed for each
i ∈ {1, . . . , N}. In particular, the function V : Rn → R+ defined in (2.23)
is shown to be a global finite-step Lyapunov function for the overall system,
which decreases along solutions after M steps.

(iii) The functions γij ∈ K∞∪{0}, i, j ∈ {1, . . . , N} in (2.19) describe, via a worst-
case estimate, how the solution xi(M, ξ) behaves depending on the size of ξj ∈
Rnj . From this point of view, we can consider γij as the gain characterizing
the (disturbing) effect of ξj on xi(M, ξ). In this spirit, we call Theorem 2.29 a
small-gain theorem.

We emphasize that to check the conditions of Theorem 2.29, we have to compute
the solutions xi(j, ξ) for all i ∈ {1, . . . , N} and all j ∈ {1, . . . ,M} in (2.19). As
computing solutions of discrete-time systems corresponds to iterating the dynamics
map G in (2.1), it is clear that deriving estimates of the form (2.19) might be
challenging if G is complex or M is large. We refer to Remark 2.34, where we
comment on finding a suitable M ∈ N.

Next, we consider the case that the Lyapunov-type functions Vi and the gains γij in
Theorem 2.29 are of a special form. Then GES of the origin of the overall system (2.1)
can be derived.

Theorem 2.31. The origin of system (2.1) is GES if there exists anM ∈ N,M ≥ 1,
functions Vi : Rni → R+, i ∈ {1, . . . , N}, and linear functions γij ∈ K∞ ∪ {0},
i, j ∈ {1, . . . , N}, such that the following conditions hold.

(i) There exist 0 < c1 ≤ c2 and λ > 0 such that (2.18) holds with α1i(s) = c1s
λ

and α2i(s) = c2s
λ.

(ii) For all ξ ∈ Rn, (2.21) holds.

(iii) The map Γ⊕ from (1.16) satisfies the small-gain condition (1.10).

Proof. We only give a sketch of the proof, which follows the proof of Theorem 2.29.
Note that since the functions γij are linear we can also choose a linear Ω-path
σ ∈ KN∞, see [37] or Appendix A.1. Then the constructed global finite-step Lyapunov
function V in (2.23) satisfies Definition 2.6 for functions α1(s) = a1s

λ, α2(s) = a2s
λ

with λ > 0 as above and suitable 0 < a1 ≤ a2. Furthermore, the function ρ < id

can be chosen to be linear. Applying Corollary 2.9 proves GES of the origin of the
overall system (2.1).
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An alternative proof of Theorem 2.31 can be found in [40].

Theorem 2.29 states sufficient conditions to prove GAS of the origin of system (2.1).
Next, we study the necessity of Theorem 2.29. This means we consider the question
whether the existence of particular functions Vi and γij satisfying the conditions of
Theorem 2.29 can be ensured if the origin of the overall system (2.1) is GAS. This
is achieved by taking Vi as a norm. To simplify the presentation, we will use the
p-norm ‖ · ‖p in the remainder of this section. Note that we could have used any
arbitrary norm on Rn, but, in this case, the constant N1/p in Assumption 2.32 and
in the following has to be replaced by the constant κ ≥ 1 given in (1.1). A discussion
of the following assumption can be found in the remainder of this section.

Assumption 2.32. Let system (2.1) be the interconnection of N subsystems given
in (2.17). Moreover, system (2.1) admits a global Lyapunov functionW that satisfies
for some M ∈ N, M ≥ 1 and all s > 0

ρM (s) < α1 ◦ ( 1
N1/p id) ◦ α−1

2 (s), (2.25)

where α1, α2, ρ are related to the global Lyapunov function W as in Definition 2.6,
and p ∈ [1,∞] is arbitrary but fixed. /

Note that p ∈ [1,∞] in Assumption 2.32 defines the norm ‖ ·‖p that is used to define
the functions Vi, i ∈ {1, . . . , N}, in the next theorem. In addition, recall that for
p =∞, by definition, 1

N1/∞ := 1.

Under Assumption 2.32 we can prove the converse of Theorem 2.29.

Theorem 2.33. If system (2.1) satisfies Assumption 2.32, then there exist functions
Vi : Rni → R+, i ∈ {1, . . . , N}, and γij ∈ K∞ ∪ {0}, i, j ∈ {1, . . . , N}, such that the
following holds:

(i) For all i ∈ {1, . . . , N} there exist α1i, α2i ∈ K∞ such that for all ξi ∈ Rni ,
(2.18) holds.

(ii) For all ξ ∈ Rn and each M ∈ N, M ≥ 1 satisfying (2.25) it holds (2.21).

(iii) The map Γ⊕ from (1.16) satisfies the small-gain condition (1.10).

Proof. By Assumption 2.32 system (2.1) admits a global Lyapunov function W .
Thus, by Corollary 2.10 system (2.1) is GAS. From condition (ii) of Definition 2.6
we obtain by iteration

W (x(k, ξ)) ≤ ρk(W (ξ)). (2.26)

Take any η ∈ K∞ (for simplicity, take η = id) and define, for i ∈ {1, . . . , N},

Vi(ξi) := η(‖ξi‖p). (2.27)
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Then condition (i) of Theorem 2.33 holds with α1i = α2i = η for all i ∈ {1, . . . , N}.
Let M ∈ N satisfy (2.25). Then

Vi(xi(M, ξ)) = η(‖xi(M, ξ)‖p) ≤ η(‖x(M, ξ)‖p)
≤ η ◦ α−1

1 (W (x(M, ξ)))

(2.26)
≤ η ◦ α−1

1 ◦ ρM (W (ξ))

≤ η ◦ α−1
1 ◦ ρM ◦ α2(‖ξ‖p)

(2.28)
≤ max

j
η ◦ α−1

1 ◦ ρM ◦ α2(N1/p‖ξj‖p)

≤ max
j
η ◦ α−1

1 ◦ ρM ◦ α2 ◦ (N1/p id) ◦ η−1(Vj(ξj)),

where we used
‖ξ‖p ≤ max

j
N1/p‖ξj‖p, (2.28)

which follows from (1.1). By (2.25) we obtain

γ := η ◦ α−1
1 ◦ ρM ◦ α2 ◦N1/p id︸ ︷︷ ︸

<id

◦η−1 < id .

Let γij := γ for i, j ∈ {1, . . . , N} then Vi(xi(M, ξ)) ≤ maxj γij(Vj(ξj)) holds for
all i ∈ {1, . . . , N} showing condition (ii) of Theorem 2.33, and from γij < id we
conclude that condition (iii) of Theorem 2.33 holds. This concludes the proof.

Remark 2.34. (i) The distinguishing feature of Assumption 2.32 in Theorem 2.33 is
that the functions Vi satisfying (2.18) and (2.21) can be chosen as (scaled) norms
by (2.27).

(ii) The number M ∈ N in Theorem 2.29 and Theorem 2.33 depends on the system
dynamics (2.1) and, of course, on the functions Vi and γij . The goal of reducing the
conservatism present in small-gain theorems is attained, however, for the price of
finding a suitableM . Since verifying GAS of nonlinear systems is a difficult problem,
also finding a suitable M is challenging. However, since the only constraint on M is
that it is large enough, the developed results hold the promise of delivering applicable
conditions. This is also demonstrated by the example provided in Section 2.3.2.

(iii) In addition, observe that when existing (Lyapunov-based) small-gain theorems
can be applied4, the hypothesis of the relaxed small-gain theorem is verified with
M = 1. Different from existing small-gain theorems, we propose to iterate the right-
hand side G to find a suitable M such that the subsystems decrease in norm after
M time instants. Thus, in general, the problem of finding a suitable M reduces

4This usually requires the construction of ISS Lyapunov functions for the subsystems to conclude
GAS of the origin of the overall system, cf. [25].
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to iterating the map G, which leads to systematic algorithms. Compare to find-
ing a suitable ISS Lyapunov function, for which there is, in general, no systematic
approach for nonlinear systems. /

If we combine Theorem 2.33 with Theorem 2.29, then Assumption 2.32 implies an
explicite construction of a global Lyapunov function.

Corollary 2.35. If system (2.1) satisfies Assumption 2.32, then for arbitrary η ∈
K∞, and M ∈ N satisfying (2.25), the function W : Rn → R+ defined by

W (ξ) :=

M−1∑
j=0

max
i∈{1,...,N}

η(‖xi(j, ξ)‖p) (2.29)

is a global Lyapunov function for system (2.1).

Proof. From the proof of Theorem 2.33 we see that γij = γ < id for all i, j ∈
{1, . . . , N}. Thus σ ∈ KN∞ with σi = id for all i ∈ {1, . . . , N} is an Ω-path for Γ⊕.
Then from (2.20) we see that (2.29) is a global Lyapunov function.

An alternative Lyapunov function to the one given in (2.29) is obtained as

W (ξ) := max
i∈{1,...,N}

max
j∈{0,...,M−1}

γj/M (η(‖xi(j, ξ)‖p))

for all ξ ∈ Rn, where γ < id is defined in the proof of Theorem 2.33. This follows as
by definition of ρ in the proof of Theorem 2.29 we have ρ := maxi,j σ

−1
i ◦γij ◦σj = γ,

which implies the above alternative global Lyapunov function by (2.12).

We will see in Theorem 2.38 that Assumption 2.32 is satisfied if the underlying
system is GES. On the other hand, Assumption 2.32 does not imply that system (2.1)
is GES. This can be seen by system (2.10) in Example 2.17, which has been shown to
be GAS, but not GES. In this example, the right-hand side function G is globally K-
bounded with K-function ω < id. Hence, as shown in the proof of Proposition 2.11,
the function W : R→ R+, ξ 7→ ‖ξ‖p is a Lyapunov function with α1 = α2 = id, ρ =

ω < id, M = 1, N = 1, satisfies (2.25), and, consequently, Assumption 2.32.

Unfortunately, a result connecting both Assumptions 2.13 and 2.32 by stating whether
these assumptions imply each other or not, is still missing. But for N = 1 both As-
sumptions 2.13 and 2.32 have the same implication as shown next.

Theorem 2.36. For N=1, Assumptions 2.13 and 2.32 both imply that V (ξ) := ‖ξ‖p
is a global finite-step Lyapunov function, and W (ξ) :=

∑M−1
j=0 ‖x(j, ξ)‖p is a global

Lyapunov function for system (2.1).

Proof. Let Assumption 2.32 hold. Then Corollary 2.35 with N = 1 and η = id

implies that W (ξ) =
∑M−1
j=0 ‖x(j, ξ)‖p is a global Lyapunov function. In particular,
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V (ξ) = ‖ξ‖p is a global finite-step Lyapunov function for the overall system (2.1),
which follows by

‖x(M, ξ)‖p ≤ α−1
1 (W (x(M, ξ))) ≤ α−1

1 ◦ ρM (W (ξ)) ≤ α−1
1 ◦ ρM ◦ α2︸ ︷︷ ︸

=:ρ̃<id

(‖ξ‖p).

The same holds true under Assumption 2.13, i.e., by Theorem 2.14, V (ξ) = ‖ξ‖p
is a global finite-step Lyapunov function with suitable M ∈ N, and applying Theo-
rem 2.23, againW (ξ) =

∑M−1
j=0 ‖x(j, ξ)‖p turns out to be a global Lyapunov function

for system (2.1).

Next, we provide sufficient conditions under which Assumption 2.32 holds. We start
with the case that (2.25) is not globally satisfied.

Theorem 2.37. Let W be a global Lyapunov function for system (2.1) with suitable
α1, α2 ∈ K∞, and positive definite ρ. Then the following holds.

(i) For any compact set [a, b] ⊂ (0,∞) there exists an M ∈ N, M ≥ 1 such
that (2.25) holds for any s ∈ [a, b].

(ii) If, additionally, α1, α2, ρ are continuously differentiable and satisfy ρ′(0) < 1

and (α1 ◦ α−1
2 )′(0) > 0, then for any compact set [0, b] ⊂ R+ there exists an

M ∈ N, M ≥ 1 such that (2.25) holds for any s ∈ [0, b].

Proof. (i) Let [a, b] ∈ (0,∞) be given. Let M ∈ N, M ≥ 1. Then (2.25) holds for
any s ∈ [a, b] if and only if β(M, s) < s for any s ∈ [a, b], where

β(k, r) := α2 ◦N1/p ◦ α−1
1 ◦ ρk(r), k, r ∈ R+.

Since β ∈ KL, the result follows from Lemma 2.18.

(ii) We will show that there exists an ε > 0 sufficiently small, and an M ∈ N such
that for all s ∈ [0, ε) it holds ρM (s) < η(s). From the first part it follows that there
exists a finite M̄ ∈ N such that (2.25) is satisfied for all s ∈ [ε, b]. The result follows
by taking the maximum of M and M̄ .
Since ρ′(0) < 1 there exists a c1 < 1 such that ρ(t) < c1t for all t ∈ [0, ε) and
ε > 0 sufficiently small, and since (α1 ◦ α−1

2 )′(0) > 0 there exists a c2 > 0 such that
α1 ◦ 1

N1/p id ◦α−1
2 (t) > c2t for all t ∈ [0, ε). Pick any M ∈ N such that cM1 < c2 then

ρM (t) < cM1 t < c2t < α1 ◦ 1
N1/p id ◦α−1

2 (t)

for all t ∈ [0, ε), which is (2.25) and concludes the proof.

Note that it is not restrictive to assume α1, α2, ρ to be continuously differentiable
on (0,∞), cf. [106].
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The essence of Theorems 2.33 and 2.37-(i) is the following. Assume that system (2.1)
admits a global Lyapunov functionW . Then there exist anM ∈ N, functions Vi and
γij ∈ K∞ ∪ {0} satisfying the conditions (i) and (ii) of Theorem 2.33 for ξi ∈ Rni ,
and condition (iii) of Theorem 2.33 for all s ∈ [a, b] ⊂ (0,∞). This may be used
to show that the construction (2.27) and (2.20) can be used to obtain a Lyapunov
function guaranteeing practical asymptotic stability of the origin of system (2.1). It
is worth mentioning that the procedure only requires iterating the map G in (2.1)
and searching for an M ∈ N satisfying (2.25) on a particular set B[a,b].

Next, we briefly explain why the assumption on the derivatives in Theorem 2.37-(ii)
is reasonable. Assume that system (2.1) admits a global Lyapunov function W for
which the bounds in Theorem 2.37-(ii) are satisfied. If we fix η ∈ K∞, b > 0, and Vi
given by (2.27) then for anyM ∈ N large enough condition (iii) of Theorem 2.33 holds
for all s ∈ [0, b]. Again, this can then be used to obtain a Lyapunov function that
guarantees asymptotic stability of the origin of system (2.1). Note that the bounds
on the derivatives are satisfied if the equilibrium point 0 is locally exponentially
stable (i.e., there exists a local Lyapunov function with exponential bounds), see
also Theorem 2.38-(i).

Now we state particular cases under which Assumption 2.32 holds globally.

Theorem 2.38. Let W be a global Lyapunov function for system (2.1) with suitable
α1, α2 ∈ K∞, and positive definite ρ. If one of the following conditions holds then
Assumption 2.32 is globally satisfied.

(i) For some a1, a2, λ > 0, c ∈ [0, 1) we have α1(s) = a1s
λ, α2(s) = a2s

λ, and
ρ(s) = cs.

(ii) We have ρ′(0) < 1, (α1 ◦ α−1
2 )′(0) > 0 and ρ ∈ K\K∞.

(iii) We have ρ′(0) < 1, (α1◦α−1
2 )′(0) > 0, as well as lim infs→∞ (α1)

′
(s) ∈ (0,∞),

lim infs→∞
(
α−1

2

)′
(s) ∈ (0,∞) and lim sups→∞ ρ′(s) ∈ (0, 1).

Proof. (i) From Remark 2.5-(ii) we obtain ρ := (1 − c
b ) ∈ [0, 1). Then (2.25) is

equivalent to ρM < a
N1/pb

, and there always exists anM ∈ N such that this condition
holds.

(ii) Since ρ ∈ K\K∞ there exists a C > 0 such that ρ(s) ≤ C for all s ∈ R+. Let
v := α−1

1 (C) ∈ R+. From Theorem 2.37-(ii) there exists an M ∈ N such that (2.25)
holds for all s ∈ [0, α2(N1/pv)]. Then for all s > α2(N1/pv),

ρM (s) < ρ(s) ≤ C = α1

(
1

N1/p id ◦α−1
2 ◦ α2 ◦N1/p id

)
(v)

< α1 ◦ 1
N1/p id ◦α−1

2 (s).

This shows that (2.25) holds for all s ∈ R+.
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(iii) Define c1 := 1
2 lim infs→∞ (α1)

′
(s) > 0, c2 := 1

2 lim infs→∞
(
α−1

2

)′
(s) > 0 and

c3 := 1
2 (lim sups→∞ ρ′(s) + 1) ∈ (0, 1). Let T > 0 be such that α′1(s) > c1 for all

s > T . Then for all s > T we have

α1(s) =

∫ T

0

α′1(τ)dτ︸ ︷︷ ︸
=:K̂1

+

∫ s

T

α′1(τ)︸ ︷︷ ︸
>c1

dτ > c1s+ (K̂1 − c1T )︸ ︷︷ ︸
=:K1

.

Similar observations for α2 and ρ imply that there exists an ŝ > 0 suitably large and
constants K1,K2,K3 ∈ R such that for all s ≥ ŝ we have

α1(s) > c1s+K1 (2.30)

α−1
2 (s) > c2s+K2 (2.31)

ρ(s) < c3s+K3. (2.32)

Let s ≥ ŝ1, and ŝ1 suitably large, then equations (2.30) and (2.31) imply

α1 ◦
1

N1/p
id ◦α−1

2 (s) >
c1c2
N1/p

s+

(
c1K2

N1/p
+K1

)
. (2.33)

Furthermore, from ρ < id and (2.32), we see that for all k ∈ N and all s ≥ ŝ1 we
have

ρk(s) < ck3s+K3

k−1∑
j=0

cj3 < ck3s+K3

∞∑
j=0

cj3 < ck3s+
K3

1− c3
(2.34)

by evaluating the geometric series. Let M1 ∈ N be such that cM1
3 < c1c2

N1/p and define

ŝ2 :=
K3/(1− c3)−K2c1/N

1/p −K1

c1c2/N1/p − cM1
3

.

Then this implies for all s > ŝ2

cM1
3 s+

K3

1− c3
<

c1c2
N1/p

s+

(
c1K2

N1/p
+K1

)
. (2.35)

Altogether we conclude for all s > ŝ := max{ŝ1, ŝ2}

ρM1(s)
(2.34)
< cM1

3 s+
K3

1− c3
(2.35)
<

c1c2
N1/p

s+
c1
N1/p

K2 +K1

(2.33)
< α1 ◦

1

N1/p
id ◦α−1

2 (s). (2.36)

From Theorem 2.37-(ii) we conclude that there exists an M2 ∈ N such that (2.25)
holds for all s ∈ [0, ŝ]. Take M := max{M1,M2}, then (2.25) holds on [0, ŝ], since
ρM ≤ ρM2 . And (2.25) holds for all s ≥ ŝ since ρM ≤ ρM1 and (2.36).
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We note that the condition of Theorem 2.38-(i) implies that the origin of system (2.1)
is GES, which follows from Theorem 2.31 with N = M = 1. The condition ρ ∈
K\K∞ of Theorem 2.38-(ii) indicates that there exists a compact set U containing the
origin such that the system dynamic maps any point ξ ∈ Rn in one step into U . This
is the case if G in (2.1) is bounded. The conditions on the derivatives only require
the study of the local behavior in 0. Furthermore, Theorem 2.38-(iii) considers the
case where for large s > 0, α1 and α2 are bounded from below and above by affine
functions, and ρ is bounded from above by an affine function with slope less than
one.

We highlight the following theorem, which combines the results of Theorems 2.31,
2.33 and 2.38-(i). This theorem shows that for GES systems the conditions im-
posed in Theorem 2.31 are sufficient and necessary (and hence, they are non-
conservative).

Theorem 2.39. The origin of the overall system (2.1) is GES if and only if there
exist an M ∈ N, M ≥ 1, 0 < c1 ≤ c2 and λ > 0, functions Vi : Rni → R+,
i ∈ {1, . . . , N}, and linear functions γij ∈ K∞ ∪{0}, i, j ∈ {1, . . . , N}, such that the
following conditions hold.

(i) Condition (2.18) holds with α1i(s) = c1s
λ and α2i(s) = c2s

λ.

(ii) For all ξ ∈ Rn, (2.21) holds.

(iii) The map Γ⊕ from (1.16) satisfies the small-gain condition (1.10).

Furthermore, there exists a global Lyapunov function for the overall system (2.1) of
the form W (ξ) :=

∑M−1
j=0 maxi ςi‖xi(j, ξ)‖p with ςi > 0, i ∈ {1, . . . , N}.

2.3.2 Illustrative example

In this section, we illustrate the results obtained in Section 2.3 by means of an
example. In the following, we study the stability of an interconnected system, which
is similar to the example in Section 2.2.5, with xi ∈ R, i ∈ {1, 2}, k ∈ N:

x1(k + 1) = 1.01x1(k)− 0.3x2(k)

x2(k + 1) = x1(k) + 0.3
x2

2(k)

1 + x2
2(k)

.
(2.37)

Firstly, the right-hand side map is globally K-bounded, which follows by the same
arguments as in Section 2.2.5. Furthermore, we observe that the origin of the first
subsystem is 0-input unstable. So there does not exist a Lyapunov function for this
subsystem. At this point, usually, existing (Lyapunov-based) small-gain theorems
cannot be applied as they assume that the origin of each subsystem is (at least)
GAS.
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2.3. Relaxed and non-conservative small-gain theorems

Suppose that Assumption 2.32 is satisfied. Following the proof of Theorem 2.33, by
defining functions Vi(ξi) := η(|ξi|) with η ∈ K∞, we can find an M ∈ N, M ≥ 1

and functions γij ∈ K∞ ∪ {0} such that the conditions (i)-(iii) of Theorem 2.33
are satisfied. Eventually, this leads to a global finite-step Lyapunov function for
the overall system as constructed in (2.23), which implies GAS of the origin of
system (2.37).

So let us start with Vi(ξi) := |ξi|, i = {1, 2}. Then we compute for all ξ ∈ R2

V1(x1(1, ξ)) = |1.01ξ1 − 0.3ξ2| ≤ max {2.02V1(ξ1), 0.6V2(ξ2)} ,

V2(x2(1, ξ)) = |ξ1 + 0.3
ξ22

1+ξ22
| ≤ max

{
2V1(ξ1), 0.6

V2
2 (ξ2)

1+V2
2 (ξ2)

}
.

From this estimate, we derive the gain γ11(s) = 2.02s, which violates the small-gain
condition (1.10). This is also clear as the origin of the first subsystem is 0-input
unstable.

So we iterate the dynamics map, and see that for k = 3, we obtain

x(3, ξ)=



0.424301ξ1 − 0.21603ξ2 − 0.0909
ξ22

1+ξ22
− 0.09

(ξ1+0.3
ξ22

1+ξ22
)2

1+(ξ1+0.3
ξ22

1+ξ22
)2

0.7201ξ1−0.303ξ2−0.09
ξ22

1+ξ22
+0.3

1.01ξ1−0.3ξ2+0.3

(ξ1+0.3
ξ22

1+ξ22
)2

1+(ξ1+0.3
ξ22

1+ξ22
)2


2

1+

1.01ξ1−0.3ξ2+0.3

(ξ1+0.3
ξ22

1+ξ22
)2

1+(ξ1+0.3
ξ22

1+ξ22
)2


2


.

Using (2.16), we obtain the estimates

V1(x1(3, ξ)) ≤ 0.424301|ξ1|+ 0.21603|ξ2|+ 0.0909
2 |ξ2|+ 0.09

2

(
|ξ1|+ 0.3

2 |ξ2|
)

= max{0.939V1(ξ1), 0.537V2(ξ2)},
V2(x2(3, ξ)) ≤ 0.7201|ξ1|+ 0.303|ξ2|+ 0.09

2 |ξ2|+
+ 0.3

2

(
1.01|ξ1|+ 0.3|ξ2|+ 0.3

2 (|ξ1|+ 0.3
2 |ξ2|)

)
= max{1.789V1(ξ1), 0.793V2(ξ2)}.

From this we derive the linear functions

γ11(s) = 0.939s, γ12(s) = 0.537s, γ21(s) = 1.789s, γ22(s) = 0.793s.

Since γ11 < id, γ22 < id and γ12 ◦ γ21 < id, we conclude from the cycle condition
(Proposition 1.29) that the small-gain condition (1.10) is satisfied. Hence, Theo-
rem 2.29 yields GAS of the origin of the overall system (2.37). Since the functions
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Figure 2.4: Contour plot of the Lyapunov function W (ξ) =∑2
j=0 max

{
2|x1(j, ξ)|, 25

23 |x2(j, ξ)|
}

for the overall system (2.37) obtained via
the small-gain approach (Theorem 2.33).

γij are linear as well as α1 = α2 = id satisfying (2.18), we can even apply Theo-
rem 2.31 to conclude GES of the origin of the overall system (2.37).

Theorem 2.29 proves the GAS property of the interconnected system (2.1) by con-
structing a global finite-step Lyapunov function in (2.20). This construction is
straightforward to implement, and is now executed for system (2.37). Firstly, we
use the method proposed in [37] to compute the Ω-path σ(r) := (0.5r, 0.92r), which
satisfies

Γ⊕(σ(r)) ≈
(

0.494r

0.895r

)
<

(
0.5r

0.92r

)
= σ(r)

for all r > 0. From the proof of Theorem 2.29 we can now conclude that V (ξ) :=

maxi σ
−1
i (Vi(ξi)) = max{2|ξ1|, 25

23 |ξ2|} is a global finite-step Lyapunov function for
the overall system (2.37). In addition, a global Lyapunov functionW can be directly
computed using (2.20) as

W (ξ) =

2∑
j=0

max
{

2|x1(j, ξ)|, 25
23 |x2(j, ξ)|

}
.

A contour plot of the global Lyapunov function W is shown in Figure 2.4.

Remark 2.40. Alternatively, we can use the approach presented in Section 2.2 to
derive a global Lyapunov function as in Section 2.2.5. We omit the details, but
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2.3. Relaxed and non-conservative small-gain theorems

mention that for system (2.37) the function V (ξ) := ‖ξ‖2 is a global finite-step
Lyapunov function with M = 4. Hence, we obtain an alternative global Lyapunov
function for this system as

W̃ (ξ) =

3∑
k=0

‖x(k, ξ)‖2.

A contour plot of the global Lyapunov function W̃ is shown in Figure 2.5. /
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Figure 2.5: Contour plot of the Lyapunov function W̃ (ξ) =
∑3
k=0 ‖x(k, ξ)‖2 for

system (2.37) obtained via the converse Lyapunov function approach in Section 2.2
(Theorem 2.23).

Although the construction of the overall global Lyapunov function W via the small-
gain approach in (2.20) requires the computation of an Ω-path, we believe that
for large-scale interconnections the small-gain approach is still more advisable than
the converse Lyapunov function approach in Section 2.2 using the construction of a
global Lyapunov function (2.13) (resp. (2.14)). The reason for this belief is that the
choice of a suitable natural number M in (2.13) (resp. (2.14)) might be, in general,
much higher than the choice for a suitable natural number M in (2.21), and thus for
the construction of the Lyapunov function in (2.20). For instance, for system (2.37)
the small-gain approach for constructing a global Lyapunov function yieldsM = 3 as
the smallest suitable natural number, whereas the direct construction of the global
Lyapunov function yieldsM = 4 as the smallest suitable natural number, as outlined
in Remark 2.40.
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Chapter 2. Stability analysis of large-scale discrete-time systems

2.4 Further applications

This section makes use of the developed converse Lyapunov theorems from Sec-
tion 2.2 to obtain relevant implications for several classes of dynamical systems.

2.4.1 Continuous, polynomial and homogeneous dynamical systems

In [71] the authors prove a converse Lyapunov theorem under the assumption that
the dynamics are continuous. In this case, the authors show that there also exists
a continuous global Lyapunov function. Here we make use of the construction of
the global Lyapunov function W in (2.13) in Theorem 2.23 (respectively (2.14) in
Theorem 2.24) to show that the global Lyapunov function obtained is also continuous
if the dynamics are continuous.

Theorem 2.41. Let the origin of system (2.1) be GAS, and assume that Assump-
tion 2.13 is satisfied. If G in (2.1) is continuous then there exists a continuous global
Lyapunov function for system (2.1).

Proof. Theorem 2.23 implies that

W (ξ) :=

M−1∑
j=0

η(‖Gj(ξ)‖) (2.38)

is a global Lyapunov function for system (2.1). Alternatively, Theorem 2.24 yields
global Lyapunov function

W (ξ) := max
j∈{0,...,M−1}

ρj/M
(
η(‖GM−1−j(ξ)‖)

)
as a global Lyapunov function for system (2.1). In both cases the composition of
continuous functions (η, ρ,G) yields a continuous function, implying that W is a
continuous global Lyapunov function.

Remark 2.42. The converse Lyapunov theorem obtained in [71] does not only show
that there exists a continuous global Lyapunov function, the authors also prove that
there exists a smooth global Lyapunov function. Smoothness of the global Lyapunov
function is achieved by using smoothing techniques, see e.g. [71], [81, Sec. 3]. How-
ever, for discrete-time systems, the existence of a smooth global Lyapunov function
does not give any more insights of the system than a continuous global Lyapunov
function. On the other hand, continuous global Lyapunov functions are important
as even for discontinuous dynamics, a continuous global Lyapunov function already
yields inherent robustness, see [94]. Additionally, if the system dynamics are discon-
tinuous it is not possible to guarantee the existence of a continuous global Lyapunov
function, see also [116]. /
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Remark 2.43. Let G : Rn → Rn be a polynomial function and suppose that As-
sumption 2.13 holds. Then there exists a polynomial global Lyapunov function for
system (2.1). This follows by taking η(s) := s2 in the global Lyapunov function
in (2.13), and noticing that the sum and the composition of polynomial functions
yields a polynomial function. /

Next, we study another relevant type of map G, which was considered e.g. in [26,
27,92,121].

Definition 2.44. A function G : Rn → Rn is called positively homogeneous of degree
one if for all ξ ∈ Rn and all c > 0 we have G(cξ) = cG(ξ).

Theorem 2.45. Let G in (2.1) be positively homogeneous of degree one and let the
origin of system (2.1) be GAS. Then there exists a global Lyapunov function for
system (2.1) that is positively homogeneous of degree one.
If, in addition, G is continuous then there exists a continuous global Lyapunov func-
tion, which is positively homogeneous of degree one.

Proof. If the map G is positively homogeneous of degree one and system (2.1) is
GAS, it holds by Corollary V.3 in [92] that the origin of system (2.1) is GES, i.e.,
GAS is equivalent to GES for homogeneous dynamics. Let η ∈ K∞ be positively
homogeneous of degree, then Corollary 2.26 yields a global Lyapunov function of the
form (2.38). The proof is completed by observing that vector norms are positively
homogeneous functions of degree one as well and that the composition of a finite
number of such functions remains a positively homogeneous function of degree one.
Hence, the function W defined in (2.38) is a global Lyapunov function, which is
positively homogeneous of degree one. If, in addition, G is continuous then the
constructed global Lyapunov function is also continuous by Theorem 2.41.

In the next two sections we consider the cases of conewise linear and linear dynamical
systems in more detail.

2.4.2 Conewise linear dynamical systems

Now we focus on conewise linear systems, see e.g. the survey [135] or [9]. In [72]
it was shown that conewise linear Lyapunov functions are sufficient for establishing
GES for conewise linear systems and that such functions can be computed via linear
programming. See also [95], which focuses on the discrete-time setting. The open
question that remains to be answered is whether the existence of conewise linear
Lyapunov functions is also necessary for GES conewise linear systems. In what
follows we make use of the results of Section 2.2 to answer this question affirmatively,
within the discrete-time setting.
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Chapter 2. Stability analysis of large-scale discrete-time systems

To this end, a formal characterization of conewise linear dynamics is given. We
need the following notion. A nonempty set C ⊂ Rn is convex if for any two points
ξ1, ξ2 ∈ C and λ ∈ [0, 1] we have λξ1 + (1 − λ)ξ2 ∈ C. The dimension dim(C) of
a convex set C is equal to the dimension of the smallest affine subspace U ⊂ Rn

containing C. We define the relative interior of a convex set C (denoted by relint(C))
as its interior relative to the smallest affine subspace U ⊂ Rn containing C. This is
equivalent to the definition

relint(C) := {ξ ∈ C : ∀ξ̃ ∈ C ∃λ > 1 such that λξ + (1− λ)ξ̃ ∈ C}. (2.39)

The convex hull co{S} of a set S ⊂ Rn is the smallest convex set containing S,
and cl{S} denotes the closure of S. A ray induced by a vector v ∈ Rn is the set
〈v〉 := {cv : c ∈ R+}.

In the following definition we define convex polyhedral cones. As this is the only
type of cones considered in this thesis, we will for the sake of simplicity only speak
of cones.

Definition 2.46. A nonempty set C ⊂ Rn is a (convex polyhedral) cone if C is the
convex hull of a finite number of rays, i.e., C := co{〈v1〉, . . . , 〈vr〉}. By dim(C) we
denote the number of linearly independent vectors v1, . . . , vr. If S, C are cones with
S ⊂ C then S is called a subcone of C. If additionally dim(S) < dim(C) then S is a
(lower dimensional) subcone of C.
A finite set of cones {Ci ⊂ Rn}i∈{1,...,l} defines an l-conic partition of Rn if the
following holds:

(i)
⋃
i∈{1,...,l} relint(Ci) = Rn;

(ii) for i 6= j, i, j ∈ {1, . . . , l}, we have relint(Ci) ∩ relint(Cj) = ∅.

Note that by definition of an l-conic partition, two cones can only intersect on the
boundaries, and for any point ξ ∈ Rn there exists a unique cone Ci such that ξ is
contained in the relative interior of Ci. In particular, the cone {0} must be contained
in the l-conic partition.

Next, consider the class of conewise linear dynamics, i.e.,

G(x) := Aix if x ∈ relint(Ci); i ∈ {1, . . . , N}, (2.40)

where N ∈ N, Ai ∈ Rn×n, i ∈ {1, . . . , N}, and the finite set of cones {Ci}i∈{1,...,N}
defines an N -conic partition of Rn. By the above considerations, the map G in (2.40)
is well-defined. Observe that G satisfies the global K-boundedness Assumption 2.1
with ω(s) := maxi∈{1,...,N} ‖Ai‖s.

Remark 2.47. (i) Note that G in (2.40) is continuous if and only if for any ξ ∈ Ci∩Cj
with i 6= j, i, j ∈ {1, . . . , N}, it holds Aiξ = Ajξ, or, equivalently, ξ ∈ ker(Ai −Aj).
Indeed, continuity of G is not required in our next result.
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(ii) For any cone Ci, the map G in (2.40) is only defined in the relative interior of Ci,
but can also be defined on the closed cone Ci. In this case, well-posedness of G, i.e.,
that G is uniquely defined for any ξ ∈ Rn, can only be guaranteed if there is a rule
to decide which map is applied in points that lie on the boundary of several cones.
In the case that G is continuous this is not an issue, see (i). /

Let x(·, ξ) be the solution of the conewise linear system

x(k + 1) = Aix(k) if x(k) ∈ relint(Ci) (2.41)

starting in x(0) = ξ ∈ Rn. For any k ∈ N, we associate the k-tuple (j1, . . . , jk) with
ji ∈ {1, . . . , N} that satisfies x(l, ξ) ∈ relint(Cjl+1

) for l ∈ {0, . . . , k − 1}. Since G
is well-defined, the associated k-tuple (j1, . . . , jk) is uniquely determined. Unifying
these k-tuples for all ξ ∈ Rn we obtain the set

Ik := {(j1, . . . , jk) ∈ {1, . . . , N}k :

Ajk{. . . {Aj2{Aj1Cj1 ∩ Cj2} ∩ Cj3} ∩ . . . ∩ Cjk} 6= ∅}.

Note that the set Ik can be computed by basic operations (image under the linear
mappings Aji from (2.41) and intersection) involving cones.

Furthermore, we define the set

Ak :=

{[
k−1∏
i=0

Ajk−i

]
: (j1, . . . , jk) ∈ Ik

}
,

where
[∏k−1

i=0 Ajk−i

]
:= AjkAjk−1

. . . Aj1 , and for k = 0 this product is defined as
the identity matrix I.

The following theorem states that GES of the origin of a conewise linear system (2.41)
is equivalent to the existence of a conewise linear Lyapunov function. Observe that
conewise linear maps are positively homogeneous maps of degree one and, as such,
GAS as defined in this work, or equivalently KL-stability, is equivalent to GES
by [92, Corollary V.3]. Thus, without loss of generality, we can state the following
result in terms of GES.

Theorem 2.48. The origin of the conewise linear system (2.41) is GAS, and thus
also GES, if and only if it admits a global conewise linear Lyapunov function.

Proof. In [95, Theorem 4.6] it is shown that the existence of a conewise linear Lya-
punov function implies GAS of the origin of system (2.41), and hence even GES. So
in this proof we consider the converse statement.

Let the origin of system (2.41) be GES. Then Corollary 2.16 implies that the function
V : Rn → R+ defined by V (ξ) := ‖ξ‖1 is a global finite-step Lyapunov function for
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system (2.41). Furthermore, let M ∈ N satisfy condition (ii) of Definition 2.6.
Hence, applying Corollary 2.26 we see that the function W : Rn → R+ defined by
W (ξ) :=

∑M−1
k=0 ‖x(k, ξ)‖1 is a global Lyapunov function for system (2.41). We will

now show that this global Lyapunov function is defined on a conic partition.

For any ξ ∈ Rn let ι := (j1, . . . , jM ) ∈ IM be associated to the solution x(·, ξ), i.e.,

x(k, ξ) ∈ relint(Cjk+1
) for k ∈ {0, . . . ,M − 1}. (2.42)

Note that the number #IM of non-identical M -tuples in IM is at most NM . Then
for any ι = (j1, . . . , jM ) ∈ IM we define the sets

Mι := {ξ ∈ relint(Cj1) : (2.42) holds} (2.43)

= {ξ ∈ relint(Cj1) :

[
k−1∏
i=0

Ajk−i

]
ξ ∈ relint(Cjk+1

) ∀k ∈ {1, . . . ,M − 1}},

and
Dι := cl{Mι}. (2.44)

First observe, that by (2.43) and (2.44) an equivalent definition of Dι is that Dι is
the largest subset S of Cj1 satisfying for all k ∈ {1, . . . ,M − 1}

Ajk{. . . {Aj2{Aj1S ∩ Cj2} ∩ Cj3} ∩ . . . ∩ Cjk} ⊂ Cjk+1
. (2.45)

We will now show that the sets Dι are cones in the sense of Definition 2.46. So
consider two cones Cj1 , Cj2 with Aj1Cj1 ∩ Cj2 6= ∅. If we can show that the largest
subset S1 ⊂ Cj1 with Aj1S1 ⊂ Cj2 , i.e., Aj1S1 = Aj1Cj1 ∩ Cj2 , is a cone, then
the largest subset S2 ⊂ S1 satisfying Aj2Aj1S2 = Aj2Aj1S1 ∩ Cj3 is a cone, and
inductively, by (2.45), Dι is a cone. To do this we first note that the intersection
of two cones in the sense of Definition 2.46 is a cone. Furthermore, a cone under
a linear map is a cone, since for A ∈ Rn×n, we have AC = A co{〈v1〉, . . . , 〈vr〉} =

co{〈Av1〉, . . . , 〈Avr〉}. On the other hand, the pre-image of a cone C under a linear
map A defined by InvA(C) := {ξ ∈ Rn : Aξ ∈ C} is a cone [13, Proposition 5.1.8].
Hence, S1 = (InvAj1 (Aj1Cj1)∩Cj2)∩Cj1 is a cone, and by the above argumentation,
we conclude that Dι is a cone.

Now we want to show that the finite set5 of cones {Dι}ι∈IM forms a conic partition.
Firstly, consider two cones Dι1 6= Dι2 . We show that condition (ii) of Definition 2.46
holds. So assume to the contrary that relint(Dι1)∩relint(Dι2) 6= ∅. Thus, there exists
a ξ ∈ relint(Dι1)∩ relint(Dι2). In particular, ξ 6= 0. By (2.43) and (2.44), for any ι ∈
{j1, . . . , jM}, we have relint(Dι) =Mι ⊂ relint(Cj1). Since the cones {Ci}i∈{1,...,N}
form a conic partition, for any ξ ∈ Rn the M -tuple ι = (j1, . . . , jM ) ∈ IM for

5There exist at most NM cones Dι.
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which (2.42) holds is uniquely determined. Thus, if ξ ∈ relint(Dι1) ∩ relint(Dι2),
then ι1 = ι2, showing condition (ii) of Definition 2.46.

Clearly,
⋃
ι∈IM Dι = Rn, since solutions x(k, ξ) are defined for any time k ∈ N

and any initial point ξ ∈ Rn. To show condition (i) of Definition 2.46, we have
to show that for all ξ ∈ Rn there exists a cone Dι such that ξ ∈ relint(Dι). So
pick ξ ∈ Rn, then, as {Ci}i∈{1,...,N} forms a conic partition, there exists a unique
ι = (j1, . . . , jM ) ∈ IM such that (2.42) holds. Assume to the contrary, that ξ 6∈
relint(Dι). Take any point ξ̄ ∈ relint(Dι). Then, by convexity of the cones Ci, also
x(k, λξ + (1 − λ)ξ̄) ∈ relint(Cjk+1

) for all λ ∈ [0, 1] and all k ∈ {0, . . . ,M − 1}.
Thus, we can extend the line segment in Dι, i.e., there exists a ε > 0 such that
x(k, λξ + (1 − λ)ξ̄) ∈ relint(Cjk+1

) for all λ ∈ [0, 1 + ε] and all k ∈ {0, . . . ,M − 1}.
Then λξ + (1 − λ)ξ̄ ∈ Dι for all λ ∈ [0, 1 + ε] implying, by (2.39), ξ ∈ relint(Dι).
Therefore, the set {Dι}ι∈IM forms a conic partition of Rn.

For any cone Dι there exists a matrix Pι ∈ Rp×n with p ≥ n such that

M−1∑
k=0

‖

[
k−1∏
i=0

Ajk−i

]
ξ‖1 = ‖Pιξ‖1 (2.46)

for all ξ ∈ relint(Dι). This matrix Pι ∈ Rp×n can be chosen as

Pι =

([
M−2∏
i=0

AjM−1−i

]
; . . . ; Aj2Aj1 ; Aj1 ; I

)
,

where I denotes the identity matrix. In particular, p = Mn. Then the global
Lyapunov function takes the explicit form

W (ξ) =

M−1∑
k=0

‖x(k, ξ)‖1 =

M−1∑
k=0

‖

[
k−1∏
i=0

Ajk−i

]
ξ‖1

= ‖Pιξ‖1 if ξ ∈ relint(Dι).

Since weighted 1-norms are conewise linear functions, see e.g. [84], and
⋃
ι∈IM Dι

defines a conic partition of Rn we obtain thatW is a conewise linear function, which
concludes the proof.

The proof of Theorem 2.48 essentially relies on refining the conic partition
{Ci}i∈{1,...,N} to obtain the conic partition {Dι}ι∈IM . In the next example we will
indicate how this refinement is obtained.

Example 2.49. Consider the vector space R3, and denote the ith unit vector in R3
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by ei, i ∈ {1, 2, 3}. Assume the partition of R3 into the 8 orthants given by

C1 =co{〈e1〉, 〈e2〉, 〈e3〉}, C2 =co{〈e1〉, 〈e2〉, 〈−e3〉},
C3 =co{〈e1〉, 〈−e2〉, 〈e3〉}, C4 =co{〈e1〉, 〈−e2〉, 〈−e3〉},
C5 =co{〈−e1〉, 〈e2〉, 〈e3〉}, C6 =co{〈−e1〉, 〈e2〉, 〈−e3〉},
C7 =co{〈−e1〉,〈−e2〉,〈e3〉}, C8 =co{〈−e1〉,〈−e2〉,〈−e3〉}.

Note that this partition is not a conic partition in the sense of Definition 2.46, since⋃
i∈{1,...,8} relint Ci 6= Rn. To achieve that all points in Rn are contained in the

interior of a cone, we have to add the 2−dimensional cones

C9 =co{〈e1〉, 〈e2〉}, C10 =co{〈e1〉, 〈−e2〉}
C11 =co{〈e1〉, 〈e3〉}, C12 =co{〈e1〉, 〈−e3〉},
C13 =co{〈−e1〉, 〈e3〉}, C14 =co{〈−e1〉, 〈−e3〉},
C15 =co{〈−e1〉, 〈−e2〉}, C16 =co{〈−e1〉, 〈e2〉}
C17 =co{〈e2〉, 〈e3〉}, C18 =co{〈e2〉, 〈−e3〉},
C19 =co{〈−e2〉, 〈e3〉}, C20 =co{〈−e2〉, 〈−e3〉},

the 1-dimensional cones

C21 =〈e1〉, C22 =〈−e1〉,
C23 =〈e2〉, C24 =〈−e2〉,
C25 =〈e3〉, C26 =〈−e3〉,

and the 0-dimensional cone

C27 ={0}.

To see how the cones Dι are generated consider the cone C9 with corresponding
linear map A9 =

[
1 1 0
1 1 0
−1 1 0

]
. Thus, for any point ξ ∈ relint(C9) we have G(ξ) = A9ξ.

We see that for all ξ ∈ relint(C9) we have G(ξ) ∈ C1 ∪ C2 ∪ C9. In particular, we
obtain the refinement of the cone C9 into the cones

D(9,1) =co
{〈(

1
1
0

)〉
, 〈e2〉

}
,

D(9,2) =co
{〈(

1
1
0

)〉
, 〈e1〉

}
,

D(9,9) =
〈(

1
1
0

)〉
.

The partition of the cone C9 into the cones D(9,1),D(9,2), and D(9,9) is shown in
Figure 2.6. We see that the number of cones Dι generated may, in general, increase
fast. /
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x1

D(9,2)

D(9,1)

D(9,9)

x2

x3

Figure 2.6: The partition of the cone C9 into the cones D(9,1),D(9,2), and D(9,9).

If the dynamics of the conewise linear system (2.41) are continuous then Theo-
rem 2.45 directly yields a continuous global Lyapunov function. In this case, the
conewise linear dynamics (2.40) are well-defined on the intersection of two cones, see
Remark 2.47. Thus the conewise linear system (2.41) can be written as

x(k + 1) = Aix(k) if x(k) ∈ Ci, (2.47)

where

(i)
⋃
i Ci = Rn;

(ii) for i 6= j we have relint(Ci) ∩ relint(Cj) = ∅; and

(iii) for ξ ∈ Ci ∩ Cj it holds Aiξ = Ajξ.

By continuity of the right-hand side of system (2.47), we do not need to worry about
well-posedness at the points on the boundary of the cones Ci. Hence, the proof of
Theorem 2.48 can be simplified as outlined in Procedure 2.50.
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Chapter 2. Stability analysis of large-scale discrete-time systems

Procedure 2.50. The following steps show in an algorithmic fashion how a continuous
global conewise linear Lyapunov function can be obtained for a continuous conewise
linear system (2.41). We emphasize that this method only illustrates how a contin-
uous global conewise linear Lyapunov function can be constructed, whereas we do
not treat the problem of an efficient implementation here.

[1] Compute M ∈ N satisfying condition (ii) of Definition 2.6 for V (ξ) := ‖ξ‖1 as
follows:

(i) Set k = 1;

(ii) Compute ρ := max(j1,...,jk)∈Ik ‖
∏k
i=1Aji‖1;

(iii) If ρ < 1 set M = k and go to step [2]; else set k = k + 1 and repeat with
step (ii).

[2] For any ι = (j1, . . . , jM ) ∈ IM define the cones

Dι :=

{
ξ ∈ Cj1 :

[
k−1∏
i=0

Ajk−i

]
ξ ∈ Cjk+1

∀k ∈ {1, . . . ,M − 1}

}
.

(Note that these cones are closed.)

[3] Take those cones Dι1 that are not contained in another cone Dι2 , i.e.,

PM := {Dι1 : ι ∈ IM and ∀ι2 ∈ IM Dι1 6⊂ Dι2}.

(Note that
⋃
Dι∈PM Dι = Rn and relint(Di) ∩ relint(Dj) = ∅ if i 6= j.)

[4] Define Pι as in (2.46).

[5] Then
W (ξ) := ‖Pιξ‖1 if ξ ∈ Dι

is a continuous global conewise linear Lyapunov function.

/

Remark 2.51. For continuous conewise linear systems (2.41) an alternative approach
to the proof of Theorem 2.48 is to approximate the Lyapunov function by a contin-
uous conewise linear Lyapunov function. By the robustness of a continuous global
Lyapunov function this also yields a conewise linear Lyapunov function. Note that
by applying such an approximation, the information on the number of cones required
for the conewise linear Lyapunov function is lost. /

The proof of Theorem 2.48 is constructive as it yields a global conewise linear Lya-
punov functionW . In this proof we use the sum formulation (2.13) of Corollary 2.26
for the 1-norm to construct the Lyapunov function W . Alternatively, we can use
the max formulation (2.14) of Corollary 2.26 for the infinity norm as follows.
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Since we have a conewise linear system, the positive definite function ρ in (2.14),
corresponding to the global finite-step Lyapunov function V (ξ) = ‖ξ‖∞ in Defini-
tion 2.6, can be chosen as ρ(s) = cs with c ∈ [0, 1). Using the same conic partition
Rn =

⋃
ι∈IM Dι as in the proof of Theorem 2.48, we have for ξ ∈ relint(Dι),

W (ξ) = max
k∈{0,...,M−1}

ρk/M (‖x(k, ξ)‖∞)

= max
k∈{0,...,M−1}

ρk/M

(
‖

[
k−1∏
i=0

Ajk−i

]
ξ‖∞

)

= max
k∈{0,...,M−1}

‖ck/M
[
k−1∏
i=0

Ajk−i

]
ξ‖∞

= ‖Pιξ‖∞

with

Pι =

(
c
M−1
M

[
M−2∏
i=0

AjM−1−i

]
; . . . ; c

2
MAj2Aj1 ; c

1
MAj1 ; I

)
,

where Pι ∈ RnM×n. Hence, W is a global conewise linear Lyapunov function for
system (2.41). This is the infinity norm analogue to the 1-norm construction in
Theorem 2.48.

Besides establishing non-conservatism of conewise linear Lyapunov functions for sta-
bility analysis of conewise linear systems, Theorem 2.48 and the above paragraph
for the infinity norm case, provide an explicit construction of such Lyapunov func-
tions. The construction depends on finding an admissible value of the positive in-
teger M , related to the finite-step Lyapunov condition, which hinges on computing
the set Ak.

Example 2.52. To illustrate the above results, consider the discontinuous dynam-
ics (2.40) with N = 9, and

Ai =

(
0.197 −0.241

1.845 1.703

)
for i ∈ {1, 3, 5, 7, 9},

and

Ai =

(
−0.638 −0.823

0.175 0.538

)
for i ∈ {2, 4, 6, 8}.

Note thatA1 is unstable. The corresponding conic partition is defined by {Ci}i∈{1,...,9},
where Ci = {x ∈ R2 : Eix > 0} for all i ∈ {1, . . . , 4} with

E1 = −E3 =

(
1 −1

1 1

)
, E2 = −E4 =

(
1 −1

−1 −1

)
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Chapter 2. Stability analysis of large-scale discrete-time systems

are the 2-dimensional cones. Furthermore, the 1-dimensional cones (rays) are

C5 = {x ∈ R2 : x1 = x2 ≥ 0},
C6 = {x ∈ R2 : x1 = x2 ≤ 0},
C7 = {x ∈ R2 : −x1 = x2 ≥ 0},
C8 = {x ∈ R2 : −x1 = x2 ≤ 0},

and the 0-dimensional cone is C9 = {0}. To make use of the results developed in
Section 2.2, we first indicate that the function V (x) = ‖x‖1 is a global finite-step
Lyapunov function with M = 18, which was established by computing ‖

∏k
i=1Aji‖1

for all (j1, . . . , jk) ∈ Ak for k ∈ {1, . . . , 18}. Hence, the function

W (ξ) :=

17∑
k=0

‖x(k, ξ)‖1

is a global Lyapunov function for system (2.41).

In Figure 2.7 we show a contour plot of the constructed non-convex conewise linear
Lyapunov function. Note that W is conewise linear with respect to a conic partition
Dι, which is finer than that given by C1, . . . , C9. This follows from the trajectory-
wise definition of W . The effect can be seen in Figure 2.7, where discontinuities of
W occur along rays. /

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

C1

C2

C3

C4
C5C6

C7
C8

Figure 2.7: Contour plot of the Lyapunov function W (ξ) :=
∑17
k=0 ‖x(k, ξ)‖1 for

Example 2.52.
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Example 2.53. Consider Example 6.1 in [135]. In this example the author showed
the global exponential stability of a conewise linear system, where two out of three
of the linear dynamics6 are unstable. The system is given by

x(k + 1) = Aix(k), k ∈ N, x(k) ∈ relint Ci

with

A1 =

[
−1.4078 0.1223

1.3846 0.4437

]
, A2 =

[
0.2405 0.1223

−0.3420 0.4437

]
, A3 =

[
−0.5837 −0.7019

0.5213 1.3070

]
,

and

C1 =

{
x ∈ R2 :

[
1 0

1 −1

]
x ≥ 0

}
,

C2 =

{
x ∈ R2 :

[
1 1

−1 1

]
x ≥ 0

}
,

C3 =

{
x ∈ R2 :

[
−1 0

−1 −1

]
x ≥ 0

}
.

Accordingly we define

C4 := C1 ∩ C2, C5 := C2 ∩ C3, C6 := C1 ∩ C3, C7 = C1 ∩ C2 ∩ C3 = {0},

and
A4 = A7 = A1, A5 = A2, A6 = A3.

Similarly, as done in the previous example, one can compute M = 4 for the infinity
norm case, and M = 3 for the 1-norm case, for which the corresponding finite-
step Lyapunov function condition is met. Hence, the function V (ξ) := ‖ξ‖1 is a
global finite-step Lyapunov function by Theorem 2.14, and the function W (ξ) :=∑2
i=0 ‖x(k, ξ)‖1 is a global Lyapunov function for this system. A contour plot show-

ing the sublevel sets of W is given in Figure 2.8. /

2.4.3 Linear dynamical systems

Interestingly, if the conewise linear dynamics reduce to standard linear dynamics,
Theorem 2.48 implies that GES is equivalent to the existence of a global polyhedral7

Lyapunov function of the formW (ξ) := ‖Pξ‖1,∞. In this case, the Lyapunov weight
matrix P ∈ Rp×n with p ≥ n is not square in general, but of full column rank. Poly-
hedral Lyapunov functions [84,102,111] are in fact convex conewise linear functions,

6Please note the typo in [135]: The matrices A2 and A3 have to be interchanged.
7I.e., the sublevel sets of such a function are convex polyhedra with zero in their interior.
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Figure 2.8: A contour plot of the Lyapunov function W (ξ) :=
∑2
k=0 ‖x(k, ξ)‖1 in

Example 2.53 .

which can be expressed as the maximum over a finite number of linear functions (see
also [91] for further insights).

The above observation is stated formally next.

Corollary 2.54. The origin of the linear system

x(k + 1) = Ax(k) (2.48)

with k ∈ N, and A ∈ Rn×n is GES if and only if there exists a global polyhedral
Lyapunov function of the form W (ξ) = ‖Pξ‖1 with P ∈ Rp×n, p ≥ n.

In particular, if M ∈ N satisfies CµM < 1 with C ≥ 1, µ ∈ [0, 1) satisfying (2.3)
and (2.2), then the number of rows of P can always be chosen as p = Mn.

We highlight that Corollary 2.54 explicitly gives an exact bound on the number
of rows of P , which, by the best of the author’s knowledge, has not been solved
elsewhere, see also Remark 2.56.

Proof. The sufficiency part was proven in [84]. So it remains to show that GES
of the origin of the linear system (2.48) implies the existence of a matrix P ∈
Rp×n such that W (ξ) = ‖Pξ‖1 is a global Lyapunov function. First note that by
Corollary 2.26, GES implies the existence of an M ∈ N such that the function
W (ξ) :=

∑M−1
k=0 ‖x(k, ξ)‖1 =

∑M−1
k=0 ‖Akξ‖1 is a global Lyapunov function. In
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particular, M satisfies CµM < 1, where C ≥ 1, µ ∈ [0, 1) stem from (2.3) and (2.2).
Exploiting the fact that

M−1∑
k=0

‖Akξ‖1 = ‖Pξ‖1

with
P :=

(
AM−1; AM−2; . . . ; A; I

)
we obtain that W (ξ) = ‖Pξ‖1 is a global Lyapunov function for the linear sys-
tem (2.48). Note that P has full column rank because of the identity matrix in the
last row block.

Remark 2.55. The proof of Corollary 2.54 constructs a suitable global Lyapunov
function W as a weighted 1-norm. Following the paragraph after Remark 2.51 it is
easy to see thatW (ξ) := ‖Pξ‖∞, i.e., a weighted infinity norm, is a global polyhedral
Lyapunov function as well. In this case, however, the matrix P is defined as

P :=
(

(c1/MA)M−1; . . . ; c2/MA2; c1/MA; I
)
,

where c ∈ (0, 1) and ρ(s) := cs satisfies condition (ii) of Definition 2.6 for the global
finite-step Lyapunov function V (ξ) = ‖ξ‖∞. /

Remark 2.56. In [111], [84] and, among several other works, [91], existence of a poly-
hedral Lyapunov function W (ξ) = ‖Pξ‖1,∞ with P ∈ Rp×n is established for GES
linear systems. We stress that [111] treats the more general problem of difference
inclusions. However, the proofs therein are rather complex and not constructive. In
particular, no estimate of an upper bound on the number of rows p of the Lyapunov
weight matrix P is given. This is in fact one of the non-trivial, open problems in the
construction of polyhedral Lyapunov functions for linear systems, see e.g. [10,11,102].
In [10,11] the problem is studied for continuous-time systems and lower bounds are
given in terms of the geometry of the spectrum of A. Corollary 2.54 solves this
problem by explicitly giving an admissible value of p for the 1-norm case, while an
admissible value of p for the infinity norm case is given in Remark 2.55. In both cases
p = Mn, where M is derived from the corresponding global finite-step Lyapunov
function V (ξ) = ‖ξ‖1,∞. /

Based on the above results and insights, we are in a position to provide a systematic
procedure for constructing polyhedral Lyapunov functions for linear systems that
is applicable in state spaces of high dimension. Note that this is attained without
employing a (Jordan) decomposition of the A matrix or any further assumptions on
the eigenvalues of A, as done in existing works on this topic, see e.g. [91] and the
references therein. To this end, in view of the proof of Corollary 2.26, it is possible
to obtain an admissible value for M analytically, for linear systems. The procedure
is as follows.
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Procedure 2.57. Consider the matrix A ∈ Rn×n from the linear system (2.48). Let
Q ∈ Rn×n be any given symmetric and positive definite matrix, denoted by Q � 0.
We consider the linear matrix inequalities (LMIs)

ρ(A)2R−A>RA � Q,
c2In � R � In, (2.49)

where c2 ≥ 1 and ρ(A) denotes the spectral radius of A. There exists a matrix R
that satisfies the LMIs (2.49) if and only if the origin of the linear system is GES,
see e.g. [73, Corollary 3.2]. A matrix R that satisfies (2.49) can be found by solving
the LMIs (2.49) while minimizing c2. Thus, it follows from standard Lyapunov
arguments, see e.g. [71], that the GES property ‖x(k, ξ)‖2 ≤ Cµk‖ξ‖2 holds with
µ := ρ(A), C :=

√
c2 for the Euclidean norm ‖ · ‖2. Hence, it follows from the

condition CµM < 1 that any M ∈ N satisfying M > logµ( 1
C ) is admissible in the

sense that it provides a valid global finite-step Lyapunov function. /

Note that for the 1-norm and the infinity norm case, we have to choose C :=
√
nc2

in Procedure 2.57, which follows by the equivalences of norms in Rn. The polyhedral
Lyapunov function is then directly obtained from Corollary 2.54 or Remark 2.55,
respectively.

An alternative to the LMI approach in Procedure 2.57 to computing a suitable
M ∈ N was obtained in [92].

Procedure 2.58. Take any norm ‖ · ‖. Then it holds ‖x(k, ξ)‖ = ‖Akξ‖ ≤ ‖Ak‖‖ξ‖.
Define M := min{k ∈ N : ‖Ak‖ < 1}. /

As we can see in the following example, this second approach yields smaller values
for M ∈ N compared to the LMI approach.

Example 2.59. To illustrate the results for linear dynamics, consider system (2.48)

x(k + 1) = Ax(k) :=

[
1 0.4

−0.2 0.9

]
x(k), k ∈ N. (2.50)

We construct global Lyapunov functions both for the 1-norm case and for the infinity
norm case.

(i) In the 1-norm case we obtain M = 74 by the LMI approach (2.49), whereas
the second approach, Procedure 2.58, for computing M ∈ N yields ‖x(k, ξ)‖1 ≤
‖Ak‖1‖ξ‖1, and ‖A11‖1 < 1. Hence for M = 11, the function W1(ξ) = ‖P1ξ‖1 is
a conewise linear Lyapunov function for system (2.50), where P1 ∈ R22×2 can be
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computed in a straightforward manner by Corollary 2.54 as

P1 =



−0.8193 0.3726
−0.1863 −0.9125
−0.6764 0.7147
−0.3573 −0.8551
−0.4753 1.0053
−0.5027 −0.7267
−0.2314 1.2199
−0.6099 −0.5363
0.0365 1.3392
−0.6696 −0.2983
0.3068 1.3516
−0.6758 −0.0311
0.5576 1.2540
−0.6270 0.2441
0.7680 1.0520
−0.5260 0.5050
0.9200 0.7600
−0.3800 0.7300
1.0000 0.4000
−0.2000 0.9000
1.0000 0

0 1.0000



.

In Figure 2.9 we provide a contour and surface plot of the Lyapunov function W1.
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Figure 2.9: Surface plot of the Lyapunov function W1 of Example 2.59.

(ii) In the infinity norm case, again, we obtain M = 74 by the LMI approach (2.49).
Alternatively, ‖A11‖∞ < 1 implies that V (ξ) = ‖ξ‖∞ is a global finite-step Lyapunov
function for the linear system (2.50) satisfying V (x(11, ξ)) ≤ ‖A11‖∞V (ξ). Hence
for M = 11, the function W∞(ξ) = ‖P∞ξ‖∞ is a conewise linear Lyapunov function
for system (2.50), where P∞ ∈ R22×2 can be computed in a straightforward manner
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by Remark 2.55 as

P∞ =



−0.7520 0.3420
−0.1710 −0.8375
−0.6262 0.6616
−0.3308 −0.7916
−0.4438 0.9387
−0.4693 −0.6785
−0.2179 1.1488
−0.5744 −0.5051
0.0346 1.2720
−0.6360 −0.2834
0.2939 1.2949
−0.6475 −0.0298
0.5388 1.2117
−0.6059 0.2359
0.7485 1.0253
−0.5126 0.4922
0.9044 0.7471
−0.3735 0.7176
0.9915 0.3966
−0.1983 0.8923
1.0000 0

0 1.0000



,

where we took c = 0.91. /

Example 2.60. To illustrate the applicability of the developed methods in high
dimension state spaces, consider the linear system (2.48) with

A =


0 −0.3 0.1 −0.1 −0.3 0 −0.1 −0.1 0 −0.4
−0.4 0.4 −0.3 0.1 −0.2 0.1 −0.4 0 −0.2 0.4
−0.4 −0.1 0.1 0.2 −0.3 −0.3 0 0.2 0.3 0.3
−0.4 −0.3 0.2 −0.1 −0.1 −0.1 0 −0.1 −0.2 0.4
0.3 0.2 0.4 0.2 −0.2 −0.4 −0.3 −0.4 0.1 0.2
−0.4 0.4 0.2 0.3 −0.2 −0.1 0.4 −0.2 −0.3 0.4

0 0.2 0.2 0 0.2 −0.3 −0.3 −0.4 0.2 −0.1
0.4 0.3 0.4 0.3 0 0 0.4 0.3 0.4 0
0.2 0 −0.2 −0.3 −0.3 0 0 0 0.2 0.2
0 0.1 0 −0.1 0.4 0.3 −0.2 0.3 0.4 0.3

 .

This systems is GES as the spectral radius of A is 0.9544, and hence, less than 1.
So we can compute the value M ∈ N by the LMI approach (2.49) as M = 39. Using
the alternative approach, by computing the minimal k ∈ N satisfying ‖Ak‖ < 1,
Procedure 2.58, we obtain for the 1-norm case a value of M1 = 17, and for the
infinity-norm case a value of M∞ = 20. Thus, by Corollary 2.54, we obtain the
linear Lyapunov function W1(ξ) = ‖P1ξ‖1, where the matrix P1 ∈ R170×10 is given
by Corollary 2.54. Following Remark 2.55, we obtain the linear Lyapunov function
W∞(ξ) = ‖P∞ξ‖∞ with matrix P∞ ∈ R200×10. /

2.5 Notes and references

The concept (but not the name) of a finite-step Lyapunov function was first intro-
duced in [1] for time-varying continuous-time systems, where it was shown that its
existence implies uniform asymptotic stability of the origin. The proof relies on the
ε, δ-criterion in contrast to our proof relying on the construction of a KL-function β.
We point out that for continuous-time systems, similar results to those presented in
Section 2.2 may be derived. Nevertheless, this approach requires the computation
of solutions of the systems in both continuous and discrete time. In discrete time,
computing solutions reduces to iterating the dynamics map G. Thus, this approach
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appears to be implementable in a wide range of applications. Otherwise, in contin-
uous time solutions cannot be computed easily or exactly, in general. Recent works
on finite-step Lyapunov functions, including the results presented in this chapter,
are [31–35, 41, 92]. Note that e.g. in [31, 92] and several preprints the term “finite-
time” Lyapunov function is used, but as this term has also been used in studying
finite-time stability8 we do now use the term finite-step Lyapunov function.

The existence of a Lyapunov function is guaranteed by converse Lyapunov theorems
under the assumption that the origin of the system is GAS. Classic results in this
direction are [5,73,107,108] and also the seminal books [56,142]. Extensions of this
theory can be found e.g. in [4, 71, 81, 116, 139], and the references therein. For the
discrete-time case, which is of interest in this work, the abstract construction of
a global Lyapunov function for a converse theorem is performed by taking infinite
series [71] or the supremum over all solutions and all times [81, 116]. For certain
classes of dynamical systems, Lyapunov functions are guaranteed to exist in classes
of functions that are computationally easy to describe; e.g. quadratic functions [73]
for linear difference equations and polyhedral functions [4, 84, 111] for linear differ-
ence inclusions. But for most nonlinear systems we only know that C∞ Lyapunov
functions exist, which are a class of functions that is not computationally easy to
describe.

Existing results of constructive converse Lyapunov theorems for general nonlinear
systems are scarce and come with certain limitations, as discussed in the following.
A relevant result for continuous-time systems can be found in [17], where the authors
show the relation between control Lyapunov functions and solutions to generalized
Zubov equations, i.e., a first order partial differential equation. A result relevant for
discrete-time systems was given in [145], where it was shown that for a GES discrete-
time system a Lyapunov function can be constructed by a finite sum of solutions.
This was established under the assumption that the system dynamics are locally
Lipschitz continuous. In [51, 52] (see also the monograph [53]) converse Lyapunov
theorems for continuous-time systems are obtained via piecewise linear Lyapunov
functions and linear programming. Some recent extensions to discrete-time systems
are [42,96], which we discuss in more detail next.

Firstly, in [96], the authors consider discrete-time systems with locally Lipschitz
continuous dynamics. In this work, an alternative Lyapunov function construction
is proposed using Yoshizawa functions, [142]. The idea is the following. Let sys-
tem (2.1) satisfy an estimate of the form (2.2), and let, for given µ ∈ (0, 1), the
K∞-functions α1, α2 satisfy

α1(β(s, k)) ≤ α2(s)µ2k, ∀s ≥ 0, ∀k ∈ N. (2.51)

8I.e., the equilibrium point is reached in a finite amount of time
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Note that such K∞-functions α1, α2 always exist, see [96, Lemma 1]. If α1 ∈ K∞
is locally Lipschitz continuous then the function V : D ⊂ Rn → R+ defined by
V (ξ) := supk∈N α1(‖x(k, ξ)‖)µ−k, called discrete-time Yoshizawa function, is a Lya-
punov function for system (2.1). The domain of definition D is assumed to be open,
compact and includes the origin. Moreover, for each x ∈ D there exists a positive
integer K(x) such that

V (x) = sup
k∈{0,...,K(x)}

α1(‖x(k, ξ)‖)µ−k. (2.52)

Although not explicitly stated in [96], we see that in the case of GES of the origin,
i.e., β(s, k) = Cµ̃ks with C ≥ 1 and µ̃ ∈ (0, 1), we can pick α1 = id, α2 = C id and
µ =
√
µ̃ to satisfy (2.51). This can be used to show that we can pick K(x) the same

for all x ∈ D, which follows from the estimate [96, Equation (33)]. In this case, the
Lyapunov function from (2.52) is similar to the one proposed in (2.14). However,
the Yoshizawa construction requires the knowledge of the KL-function β, which may
be hard to characterize. Moreover, local Lipschitz continuity of a K∞-function α1

satisfying (2.51) has to be checked.

Secondly, in [42], the authors consider a linear programming problem, where the
solution parametrizes a continuous and piecewise affine (CPA) Lyapunov function.
The domain of the Lyapunov function is only limited by the size of the equilibrium’s
domain of attraction. Note that this approach requires the origin to be GES, and
the dynamics to be C2, i.e., two times continuously differentiable.

Physical systems do often continuously depend on time. Standard examples are
e.g. the pendulum, electrical circuits or neural networks, [82, 130]. The control
of continuous-time systems is often performed digitally, see e.g. [103]. One way
of applying digital control is the co-called emulation approach: A continuous-time
controller is discretized (e.g. via sample-and-hold) and the discrete controller is
implemented. Alternatively, one finds a discrete-time system for the continuous-
time system, computes a discrete-time controller for the discrete-time system, which
is then implemented at the continuous-time system. The discrete-time system is
also called sampled-data system. Especially for linear systems, this second approach
is often used, as an exact linear sampled-data system for the linear continuous-
time system can be obtained from the variation of constants formula. For further
reading on sampled-data control, we refer to [114] and the references therein. The
disadvantage of the second approach is that for nonlinear systems an exact sampled-
data system often cannot be found. On the other hand, if a sampled-data system of a
continuous-time system is obtained, then the results developed in this chapter can be
applied to the sampled-data system to check stability properties of the continuous-
time system.

There exists a wide variety of small-gain theorems, and it seems that the first small-
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2.5. Notes and references

gain result was obtained by Zames [143] in 1966. Since then, there has been an
extensive study in that topic, and hence, small-gain theory is present in many
monographs as e.g. [82, 109, 140]. More recent publications on small-gain results
are [21,23–25,49,68,69,75,115,124] for mainly continuous-time and hybrid systems,
as well as [40, 65, 67, 89, 99] for discrete-time systems. Note that some of the above
references consider input-to-state stability, which will be the subject of the next
chapter. In particular, the construction of a global finite-step Lyapunov function
within the small-gain results of Section 2.3 follows the construction procedure pro-
posed in [25]. There the authors construct an overall ISS Lyapunov function using
the ISS Lyapunov functions of the subsystems and an Ω-path that is derived from
the gains. It is worth mentioning that non-conservative small-gain results have been
reported for interconnected systems in the frequency domain, mostly for specific
settings related to robust analysis and synthesis, see [20,83]. Moreover, the authors
in [28,64] show that classical small-gain theorems are, in general, not necessary, even
if all subsystems’ equilibria are GAS.

For the system classes considered in Section 2.4 there exists an extensive list of
literature, so we only cite a selection, which are connected to the results presented
in this chapter, and further refer to the references therein. For homogeneous systems
these are [26,27,92,121], for conewise linear systems these are [9,72,95,135], and, in
conclusion, for work on polyhedral Lyapunov functions we refer to [10,11,73,84,91,
92,102,111].
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3
Stability analysis of large-scale

discrete-time systems with inputs

In Chapter 2 we have considered discrete-time systems of the form

x(k + 1) = G(x(k)), k ∈ N,

i.e., the updated state x(k+ 1) is defined by the map G and the previous state x(k).
Indeed, the focus of Chapter 2 has been to establish stability properties such as
global asymptotic stability of the origin.

In this chapter, we consider discrete-time systems with inputs of the form

x(k + 1) = G(x(k), u(k)), k ∈ N,

where x ∈ Rn, u ∈ Rm and G : Rn×Rm → Rn. The input may be used as a control
input, e.g. for feedback stabilization, but here, we treat the input as a disturbance.
The stability analysis we establish in this chapter aims at providing conditions guar-
anteeing input-to-state stability (ISS) that has been introduced in [128]. The concept
of ISS turned out to be fruitful for nonlinear control systems, not least because ISS
can be characterized by Lyapunov functions, see [128, 132] for continuous-time sys-
tems and [70,76] for discrete-time systems.

For discrete-time systems, ISS Lyapunov functions are assumed to decay at each time
step (while neglecting the input). To relax this assumption we introduce the concept
of dissipative finite-step ISS Lyapunov functions, where the function is assumed to
decay after a finite number of time steps rather than at each time step. This extends
the notion of a global finite-step Lyapunov function introduced in Definition 2.6 to
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Chapter 3. Stability analysis of large-scale discrete-time systems with inputs

systems with inputs. Again, as in Chapter 2, we do not require continuity of the
right-hand side G.

We provide, in a first step, an equivalent characterization of input-to-state stabil-
ity in terms of the existence of a dissipative finite-step ISS Lyapunov function in
Section 3.2. The sufficiency part follows the lines of [70, Lemma 3.5], which shows
that the existence of a continuous (dissipative) ISS Lyapunov function implies ISS
of the system. Necessity is shown using a converse ISS Lyapunov theorem [70, 88].
Moreover, for the case of exponentially input-to state stable (expISS) systems we
can show that any norm is a dissipative finite-step ISS Lyapunov function.

As we have seen in Chapter 2, it may be difficult to show stability properties of
large-scale nonlinear systems directly. Clearly, if there are additional inputs acting
as disturbances, proving ISS of the system directly gets even more difficult. Thus,
we consider the system as an interconnection of a number of smaller components.
The classical ISS small-gain approach for studying input-to-state stability can be
divided into two approaches:

• The classical Lyapunov-based small-gain approach considers the existence of
ISS Lyapunov functions for each subsystem. Gains may then be derived from
estimates of the ISS Lyapunov functions, see e.g. [23, 25,65,68,74,89,99].

• In the classical trajectory-based small-gain approach, gains are derived from
ISS estimates of the subsystems’ trajectories, see e.g. [24, 67,69].

In the second part of this chapter we present relaxed ISS small-gain theorems that
have some advantages over classical ISS small-gain theorems such as:

(i) we do not require continuity of the system dynamics;

(ii) we do not require the subsystems to be ISS;

(iii) we establish system classes for which these relaxed ISS small-gain conditions
are also necessary.

On the other hand, we admit that these relaxed ISS small-gain theorems are, in
general, technically challenging.

In Section 3.3 we state relaxed Lyapunov-based small-gain theorems that follow the
same idea as proposed in Section 2.3: The requirement imposed is that Lyapunov-
type functions for the subsystems have to decrease along solutions after a finite
number of time steps. Indeed, each subsystem may be unstable when decoupled
from the other subsystems. This is a crucial difference to classical ISS small-gain
results, where it is implicitly assumed that the other subsystems act as perturbations.
Here the subsystems may have a stabilizing effect on each other. This relaxation
includes previous ISS small-gain theorems as special cases. We will show by means
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of an example that the relaxed ISS small-gain theorem applies to a larger class of
interconnected systems. Furthermore, if the overall system is expISS, i.e., solutions
of the unperturbed system are decaying exponentially, the relaxed ISS small-gain
theorems are also necessary, i.e., they are non-conservative. The proofs of the ISS
small-gain theorems presented give further insight in the system’s behavior. For the
sufficiency part, a dissipative finite-step ISS Lyapunov function is constructed from
the Lyapunov-type functions and the gain functions involved. Moreover, for expISS
systems suitable Lyapunov-type and gain functions are derived. This particularly
implies a constructive methodology for applications.

The relaxed trajectory-based small-gain approach that we propose in Section 3.4 has
the following idea. Usually, the trajectory-based small-gain approach considers the
interconnection of systems that have the same stability properties, as e.g. ISS, global
stability (GS) or the asymptotic gain property (AG), see [24,69]. For instance, if all
subsystems are ISS then ISS of the overall system is implied by a small-gain condi-
tion, where the gain operator is derived from trajectory estimates of the subsystems.
In other cases, the interconnection might consist of systems with different stability
properties. We mention the class of networked control systems, where information
is sent via data channels, see [39]. There, the effects of the data channels might
be modeled as error dynamics that are treated as subsystems. The error dynamics
might not be ISS, but GS. Hence, we consider the case of the interconnection of ISS
and GS subsystems. The small-gain theorem that we derive in Section 3.4 states
sufficient conditions under which the whole interconnection is GS, while the inter-
connection of the ISS systems is ISS with respect to the GS systems and possibly
additional external inputs.

The outline of this chapter is as follows. The problem statement including the def-
inition of a dissipative finite-step ISS Lyapunov function is given in Section 3.1.
Stability analysis via dissipative finite-step ISS Lyapunov functions is treated in
Section 3.2, starting with some preliminary lemmas in Section 3.2.1. In particular,
we state the sufficiency of the existence of dissipative finite-step ISS Lyapunov func-
tions to conclude ISS in Section 3.2.2. Subsequently, in Section 3.2.3, we propose a
particular converse dissipative finite-step ISS Lyapunov theorem that shows that for
any expISS system any norm is a dissipative finite-step ISS Lyapunov function. The
relaxed Lyapunov-based small-gain approach that we present in Section 3.3 is split
as follows. Firstly, in Section 3.3.1, sufficient ISS small-gain theorems are presented
that do not require each system to admit an ISS Lyapunov function. Secondly, in
Section 3.3.2, we show the non-conservativeness of the relaxed ISS small-gain the-
orems for the class of expISS systems, by stating a converse of the presented ISS
small-gain theorems. We conclude Section 3.3 by examining a nonlinear illustrative
example in Section 3.3.3. Finally, we propose a relaxed trajectory-based small-gain
approach in Section 3.4 and conclude with notes and references in Section 3.5.
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Chapter 3. Stability analysis of large-scale discrete-time systems with inputs

3.1 Problem statement

We consider discrete-time systems of the form

x(k + 1) = G(x(k), u(k)), k ∈ N, (3.1)

where x ∈ Rn, u ∈ Rm and G : Rn×Rm → Rn. Recall from Section 1.4 that u(k) ∈
Rm denotes the input at time k ∈ N, and x(k, ξ, u(·)) ∈ Rn denotes the state at time
k ∈ N, starting in the initial state x(0) = ξ ∈ Rn with input u(·) ⊂ Rm.

Unless otherwise stated, we consider ‖ · ‖ to be some arbitrary norm on Rn resp.
Rm, and ||| · |||∞ to be the supremum norm for input sequences u(·) ⊂ Rm as defined
in Section 1.2. Moreover, we demand the map G : Rn × Rm → Rn to satisfy the
following assumption throughout this chapter.

Assumption 3.1. The function G in (3.1) is globally K-bounded, i.e., there exist
ω1, ω2 ∈ K such that

‖G(ξ, ν)‖ ≤ ω1(‖ξ‖) + ω2(‖ν‖) (3.2)

for all ξ ∈ Rn and ν ∈ Rm. /

We recall Definition 1.13, where global K-boundedness for the function G is intro-
duced. Note that in this chapter, the K-functions ω1 and ω2 are always used to
denote the K-bounds in (3.2). As outlined in Section 1.4, Assumption 3.1 implies
continuity of G in (0, 0) with G(0, 0) = 0, but it does not require the map G to
be continuous elsewhere (as assumed e.g. in [70, 71, 99]) or (locally) Lipschitz (as
assumed e.g. in [1, 2]). For further remarks on Assumption 3.1 see Remark 3.3 and
Section 3.2.1.

The aim of this chapter is to check input-to-state stability of system (3.1), which is
defined as follows.

Definition 3.2. We call system (3.1) input-to-state stable (ISS) (from u to x) if there
exists a KL-function β and a K-function γ such that for all initial states ξ ∈ Rn, all
bounded inputs u(·) ⊂ Rm and all k ∈ N we have

‖x(k, ξ, u(·))‖ ≤ β(‖ξ‖, k) + γ(|||u|||∞). (3.3)

If the KL-function in (3.3) can be chosen as

β(r, t) = Cµtr (3.4)

with C ≥ 1 and µ ∈ [0, 1), then system (3.1) is called exponentially input-to-state
stable (expISS).

An alternative definition of ISS replaces the sum in (3.3) by the maximum. Indeed,
both definitions are equivalent, and the equivalence even holds for more general
definitions of ISS using monotone aggregation functions, see Proposition 1.26.
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Remark 3.3. Since we are interested in checking the ISS property of system (3.1), it is
clear that the existence of functions ω1, ω2 ∈ K satisfying the global K-boundedness
condition (3.2) is no restriction, since every ISS system necessarily satisfies (3.2).
Particularly, by (3.3), we have for all ξ ∈ Rn and ν ∈ Rm

‖G(ξ, ν)‖ = ‖x(1, ξ, ν)‖ ≤ β(‖ξ‖, 1) + γ(‖ν‖)

and we may choose ω1(·) = β(·, 1) and ω2(·) = γ(·) to obtain (3.2). Moreover,
for expISS systems we can take ω1(s) = Cµs, where C ≥ 1 and µ ∈ [0, 1) stem
from (3.4) . In other words, any expISS system is globally K-bounded with a linear
function ω1 ∈ K. /

The following lemma shows that by a suitable change of coordinates, i.e., a home-
omorphism T : Rn → Rn with T (0) = 0 (see e.g. [78, 131]), we can always assume
that the function ω1 ∈ K in (3.2) is linear.

Lemma 3.4. Consider system (3.1) and let Assumption 3.1 hold. Then there exists
a change of coordinates T such that for z(k) := T (x(k)) the induced system

z(k + 1) = G̃(z(k), u(k)), ∀k ∈ N (3.5)

satisfies (3.2) with linear ω1 ∈ K∞.

Proof. Consider a change of coordinates T : Rn → Rn, and define z(k) := T (x(k)),
where x(k) comes from (3.1). Then z satisfies (3.5) with

G̃(z, u) := T (G(T−1(z), u)).

Note that G̃(0, 0) = 0 since T and its inverse fix the origin. Furthermore, let G
satisfy the global K-boundedness condition (3.2) with ω1, ω2 ∈ K∞. Note that it
is no restriction to assume ω1 and ω2 to be of class K∞ as any K-function can
be upper bounded by a K∞-function. Without loss of generality, we assume that
(2ω1 − id) ∈ K∞, else increase ω1. Take any λ > 1. By [79, Lemma 19] there exists
a K∞-function ϕ satisfying

ϕ ◦ 2ω1(s) = λϕ(s) ∀s ≥ 0. (3.6)

Now we consider the particular change of coordinates defined by T (x) := ϕ(‖x‖) x
‖x‖

for x 6= 0, and T (0) = 0. Clearly, T is continuous for x 6= 0. On the other hand,
‖T (x)‖ = ϕ(‖x‖), so continuity of T in zero is implied by continuity of ϕ and
ϕ(0) = 0. With z = T (x) a direct computation yields T−1(z) := ϕ−1(‖z‖) z

‖z‖ for
z 6= 0 and T−1(0) = 0. By the same arguments as above, also T−1 is continuous.
Hence, T is a homeomorphism. Moreover, we obtain the following estimate

‖G̃(ξ̃, ν̃)‖ = ϕ
(
‖G
(
ϕ−1(‖ξ̃‖)
‖ξ̃‖ ξ̃, ν̃

)
‖
) (3.2)
≤ ϕ

(
ω1(ϕ−1(‖ξ̃‖)) + ω2(‖ν̃‖)

)
≤ ϕ

(
2ω1(ϕ−1(‖ξ̃‖))

)
+ ϕ (2ω2(‖ν̃‖)) (3.6)

= λ‖ξ̃‖+ ϕ (2ω2(‖ν̃‖)) .

93



Chapter 3. Stability analysis of large-scale discrete-time systems with inputs

So, G̃ satisfies (3.2) with the linear function ω1(s) = λs, s ∈ R+, which concludes
the proof.

In Sections 3.3 and 3.4 we will derive small-gain theorems for an interconnection
of subsystems that have weaker stability properties than ISS. As there exists an
extensive amount of different stability notions, we only state those notions that will
be used in the remainder of this work.

Definition 3.5 ( [70, Definition A.2]). We call system (3.1) robustly stable if there
exists a K∞-function ψ such that the origin of the system

x(k + 1) = G(x(k), d(k)ψ(‖x(k)‖))

with d(k) ∈ [−1, 1]m is GAS in the sense that

(i) for every ε > 0 there exists some δ > 0 such that ‖x(k, ξ, d(·))‖ < ε for all
k ≥ 0, all d(·) ⊂ [−1, 1]m and all ‖ξ‖ < δ; and

(ii) limk→∞ ‖x(k, ξ, d(·))‖ = 0 holds for all ξ ∈ Rn and all d(·) ⊂ [−1, 1]m.

The notion of robust stability is somehow redundant as in [70] the authors show
that for continuous dynamics, robust stability and ISS are equivalent. Nevertheless,
we introduce the notion of robust stability as it will be needed in the proof of
Lemma 3.33 later on. As we will see in this proof the equivalence of robust stability
and ISS also holds true for discontinuous dynamics, see Remark 3.34.

Definition 3.6. We call system (3.1) globally asymptotically stable with 0 input (0-
GAS) if there exists a KL-function β such that for all initial states ξ ∈ Rn and all
k ∈ N we have

‖x(k, ξ, 0)‖ ≤ β(‖ξ‖, k).

Remark 3.7. In [3] the author shows that in the discrete-time setting integral input-
to-state stability (iISS) is equivalent to 0-GAS, at least for continuous dynamics.
However, this equivalence does not hold for continuous-time systems.

Furthermore, results from this chapter can be used to derive results for systems
without inputs by simply setting the external input u to zero. In this respect,
several results of Chapter 2 can be derived immediately from the results in this
chapter. /

Definition 3.8. We say that system (3.1) has the global stability property (GS) if
there exist σ1, σ2 ∈ K∞ such that for all initial states ξ ∈ Rn, all inputs u(·) ⊂ Rm

and all k ∈ N we have

‖x(k, ξ, u(·))‖ ≤ σ1(‖ξ‖) + σ2(|||u|||∞).
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Definition 3.9. We say that system (3.1) has the asymptotic gain property (AG) if
there exists γ ∈ K∞ such that for all initial states ξ ∈ Rn and all inputs u(·) ⊂ Rm

we have
lim sup
k→∞

‖x(k, ξ, u(·))‖ ≤ γ(|||u|||∞).

It is not difficult to see that ISS implies AG and GS. Moreover, if system (3.1) has
continuous dynamics then also the converse implication holds, i.e., if system (3.1) is
AG and GS then it is also ISS, see [70, Theorem 1] and [30, Theorem 2]. We em-
phasize that this converse implication also holds for discontinuous dynamics, which
will be shown in Lemma 3.33.

To prove ISS of system (3.1) the concept of ISS Lyapunov functions is widely used,
see Section 3.5. Note that the definition of an ISS Lyapunov function stated here
does not require continuity of the ISS Lyapunov function.

Definition 3.10. A proper and positive function W : Rn → R+ is called a dissi-
pative ISS Lyapunov function for system (3.1) if there exist σ ∈ K and a positive
definite function ρ with (id−ρ) ∈ K∞ such that for any ξ ∈ Rn and ν ∈ Rm we have

W (G(ξ, ν)) ≤ ρ(W (ξ)) + σ(‖ν‖). (3.7)

Remark 3.11. (i) In many prior works (e.g. [70,99]) the definition of an ISS Lyapunov
function requires the existence of a K∞-function α3 and a K-function σ such that

W (G(ξ, ν))−W (ξ) ≤ −α3(‖ξ‖) + σ(‖ν‖)

holds for all ξ ∈ Rn, ν ∈ Rm. Note that this condition is equivalent to condition (3.7).
The proof of this observation follows the same steps as in Remark 2.5, and is therefore
omitted. However, a proof can be found in [38, Remark 3.7].

(ii) For systems with external inputs there are usually two forms of ISS Lyapunov
functions. The first one is the dissipative form of Definition 3.10. The other type are
frequently called implication-form ISS Lyapunov functions. These are proper and
positive definite functions W : Rn → R+ satisfying

‖ξ‖ ≥ χ(‖ν‖) ⇒ W (G(ξ, ν)) ≤ ρ̄(W (ξ)). (3.8)

for all ξ ∈ Rn, ν ∈ Rm, and some positive definite function ρ̄ < id and χ ∈ K. If
the function G in (3.1) is continuous then conditions (3.7) and (3.8) are equivalent,
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see [70, Remark 3.3] and [46, Proposition 3.3 and 3.6]. So the existence of a dissi-
pative or implication-form ISS Lyapunov function implies ISS of the system if the
dynamics are continuous, see [70, Lemma 3.5].

If G is discontinuous then the equivalence between the existence of dissipative and
implication-form ISS Lyapunov functions is no longer satisfied. Indeed, any dissi-
pative ISS Lyapunov function is an implication-form ISS Lyapunov function, but
the converse does not hold in general, see [46]. In particular, for discontinuous dy-
namics, an implication-form ISS Lyapunov function is not sufficient to conclude ISS,
see [89, Remark 2.1] and [46, Example 3.7].

(iii) To prove ISS of system (3.1), the authors in [46, Proposition 2.4] have shown that
the assumption (id−ρ) ∈ K∞ in Definition 3.10 can be weakened to the condition
(id−ρ) ∈ K and sup(id−ρ) > supσ. Moreover, for any ISS system (3.1) there exists
a dissipative ISS Lyapunov function W with linear decrease function ρ, see [46,
Theorem 2.6]. /

We relax the condition (3.7) in Definition 3.10 by replacing the solution after one
time step G(ξ, ν) = x(1, ξ, ν) by the solution after a finite number of time steps. This
generalizes the definition of a global finite-step Lyapunov function as introduced in
Definition 2.6 to systems (3.1) with inputs.

Definition 3.12. A proper and positive definite function V : Rn → R+ is called
a dissipative finite-step ISS Lyapunov function for system (3.1) if there exist an
M ∈ N, σ ∈ K, a positive definite function ρ with (id−ρ) ∈ K∞ such that for any
ξ ∈ Rn and u(·) ⊂ Rm we have

V (x(M, ξ, u(·))) ≤ ρ(V (ξ)) + σ(|||u|||∞). (3.9)

We point out, however, that it is not sufficient to know a dissipative finite-step ISS
Lyapunov function, but we also require to know the constantM , which may be hard
to characterize. Certainly, the introduction of global finite-step Lyapunov functions
in Chapter 2 has offered several useful implications. Thus, in the following two
sections, we elaborate several similar results to those of Chapter 2 for systems with
(external) inputs.

3.2 Stability analysis via dissipative finite-step ISS Lyapunov
functions

In this section we prove that the existence of a dissipative finite-step ISS Lyapunov
function as introduced in Definition 3.12 is sufficient and necessary to show ISS of
system (3.1). For convenience, we split the section in three parts. In the first part,
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3.2. Stability analysis via dissipative finite-step ISS Lyapunov functions

Section 3.2.1, we state some preliminary lemmas that are needed in the remainder
of this section. In Section 3.2.2 we state the sufficiency part of the above equiva-
lence, namely that the existence of a dissipative finite-step ISS Lyapunov function
implies ISS. Finally, in Section 3.2.3, we show the converse implication. In partic-
ular, we state a procedure, how a dissipative finite-step ISS Lyapunov function can
be obtained for an expISS system.

3.2.1 Preliminary lemmata

In this section we state some lemmas that are needed in the subsequent section. The
first lemma is a particular comparison lemma for finite-step dynamics.

Lemma 3.13. Let M ∈ N\{0}, L ∈ N∪{∞}, k0 ∈ {0, . . . ,M −1}, and y : N→ R+

be a function satisfying

y ((l + 1)M + k0) ≤ χ (y(lM + k0)) , ∀ l ∈ {0, . . . , L}, (3.10)

where χ ∈ K∞ satisfies χ < id. Then there exists a KL-function βk0 such that the
function y also satisfies

y(lM + k0) ≤ βk0(y(k0), lM + k0), ∀ l ∈ {0, . . . , L}.

In addition, if (3.10) is satisfied for all k0 ∈ {0, . . . ,M − 1} then there exists a
KL-function β such that with ymax

M := max{y(0), . . . , y(M − 1)} we have

y(k) ≤ β(ymax
M , k), ∀k ∈ {0, . . . , (L+ 1)M − 1}.

Proof. Let M ∈ N\{0}, L ∈ N∪{∞} and k0 ∈ {0, . . . ,M − 1}. From (3.10) and the
monotonicity property of χ ∈ K, we obtain

y ((l + 1)M + k0) ≤ χ (y(lM + k0)) ≤ . . . ≤ χl+1(y(k0))

for all l ∈ {0, . . . , L}. Note that since χ < id we have χl > χl+1, and χl(s) → 0 as
l → ∞ for any s ∈ R+. Define tk0,l := lM + k0 and t+k0,l := (l + 1)M + k0 for all
l ∈ N. Let βk0 : R+ × R+ → R+ be defined by

βk0(s, r) :=

{
1
M

(
(tk0,0 − r)χ−1(s) + (r +M − k0) id(s)

)
r ∈ [0, tk0,0), s ≥ 0

1
M

(
(t+k0,l − r)χ

l(s) + (r − tk0,l)χl+1(s)
)

r ∈ [tk0,l, t
+
k0,l

), s ≥ 0.

Note that this construction is similar to the one proposed in [71, Lemma 4.3]. Clearly,
βk0 is continuous and βk0(·, r) is a K-function for any fixed r ≥ 0. On the other
hand, for any fixed s ≥ 0, βk0(s, ·) is an L-function, as it is linear affine on any
interval [tk0,l, t

+
k0,l

] and strictly decreasing by

βk0(s, tk0,l) = χl(s) > χl+1(s) = βk0(s, t+k0,l).
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Hence, βk0 ∈ KL. Moreover, for all l ∈ {0, . . . , L} we have

y(lM + k0) ≤ χl(y(k0)) = βk0 (y(k0), lM + k0) ,

which shows the first assertion of the lemma.

Now let (3.10) be satisfied for all k0 ∈ {0, . . . ,M − 1}. Define

β(s, r) := max
k0∈{0,...,M−1}

βk0(s, r),

which is again a function of class KL. For any k ∈ {0, . . . , (L+ 1)M − 1} there exist
unique l ∈ {0, . . . , L} and k0 ∈ {0, . . . ,M − 1} such that k = lM + k0, and we have

y(k) = y(lM + k0) ≤ χl(y(k0)) = βk0(y(k0), lM + k0) ≤ βk0(ymax
M , k) ≤ β(ymax

M , k)

with ymax
M := max{y(0), . . . , y(M − 1)}. This concludes the proof.

If the function χ in Lemma 3.13 is linear, then the KL-function β has a simpler form
as we will see in the next lemma.

Lemma 3.14. Let the assumptions of Lemma 3.13 be satisfied for all k0 ∈ {0, . . . ,M−
1} with χ(s) = θs and θ ∈ (0, 1). Let ymax

M := max{y(0), . . . , y(M − 1)}, then for all
k ∈ {0, . . . , (L+ 1)M − 1} we have

y(k) ≤ ymax
M

θ
θk/M .

Proof. A direct computation yields that for any k0 ∈ {0, . . . ,M − 1}, and any l ∈
{0, . . . , L} we have y(lM + k0) ≤ χ(y((l− 1)M + k0)) ≤ χl(y(k0)) = θly(k0). Hence,
for any k = lM + k0 ≤ (L + 1)M − 1, with l ∈ {0, . . . , L} and k0 ∈ {0, . . . ,M − 1}
we have

y(k) ≤ max
k0∈{0,...,M−1}

{y(k0)θl} ≤ ymax
M θk/M−1.

This proves the lemma.

As noted in Remark 3.3 the requirement on the existence of K-functions ω1, ω2

satisfying (3.2) in Assumption 3.1 is a necessary condition for system (3.1) to be
ISS. The following lemma states that under the assumption of global K-boundedness
any trajectory of system (3.1) has a global K-bound for any time step. This result
is needed in Theorem 3.17 to show that the existence of a dissipative finite-step ISS
Lyapunov function implies ISS of system (3.1).

Lemma 3.15. Let system (3.1) satisfy Assumption 3.1. Then for any j ∈ N, there
exist K-functions ϑj , ζj such that for all ξ ∈ Rn and all boundedu(·) ⊂ Rm we have

‖x(j, ξ, u(·))‖ ≤ ϑj(‖ξ‖) + ζj(|||u|||∞). (3.11)
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Before we prove this lemma we note that, by definition, any trajectory of a GS
system has a uniform global K-bound, i.e., (3.11) is satisfied by taking ϑj = σ1 and
ζj = σ2 for all j ∈ N. On the other hand, if the system is not GS then we cannot
find functions σ1 ∈ K∞ resp. σ2 ∈ K∞ upper bounding the functions ϑj ∈ K, j ∈ N,
resp. ζj ∈ K, j ∈ N, in (3.11).

Proof. We prove the result by induction. Take any ξ ∈ Rn and any input u(·) ⊂ Rm.
For j = 0 we have ‖x(0, ξ, u(·))‖ = ‖ξ‖ satisfying (3.11) with ϑ0 = id and arbitrary
ζ0 ∈ K. For j = 1 it follows by Assumption 3.1 that

‖x(1, ξ, u(·))‖ ≤ ω1(‖ξ‖) + ω2(|||u|||∞),

where ω1, ω2 ∈ K come from (3.2). So we can take ϑ1 := ω1 and ζ1 := ω2.

Now assume, that there exist ϑj , ζj ∈ K satisfying (3.11) for some j ∈ N. Then

‖x(j + 1, ξ, u(·))‖ = ‖G(x(j, ξ, u(·)), u(j))‖
≤ ω1(‖x(j, ξ, u(·))‖) + ω2(|||u|||∞)

≤ ω1(ϑj(‖ξ‖) + ζj(|||u|||∞)) + ω2(|||u|||∞)

≤ ω1(2ϑj(‖ξ‖)) + ω1(2ζj(|||u|||∞)) + ω2(|||u|||∞)

=: ϑj+1(‖ξ‖) + ζj+1(|||u|||∞).

By induction, the assertion holds for all j ∈ N.

If the functions ω1, ω2 in (3.2) are linear then the functions ϑj , ζj in Lemma 3.15 are
also linear, and have an explicit construction in terms of ω1, ω2.

Lemma 3.16. Let system (3.1) satisfy the global K-boundedness condition of As-
sumption 3.1 with linear functions ω1(s) := w1s and ω2(s) := w2s, where w1, w2 > 0.
Then (3.11) is satisfied with ϑj(s) = wj1s and ζj = w2

∑j−1
i=0 w

i
1s.

Proof. Following the proof of Lemma 3.15, we inductively obtain for any j ∈ N,

ϑj+1(s) = ω1(ϑj(s)) = ωj+1
1 (s) = wj+1

1 s,

and

ζj+1(s) = ω1(ζj(s)) + ω2(s) = w2

j∑
i=0

wi1s.

3.2.2 Dissipative finite-step ISS Lyapunov functions: sufficient criteria

We start this section by proving that the existence of a dissipative finite-step ISS
Lyapunov function is sufficient to conclude ISS of system (3.1). As any dissipative
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ISS Lyapunov function is a particular dissipative finite-step ISS Lyapunov function,
this result includes [70, Lemma 3.5]. Furthermore, the class of dissipative ISS Lya-
punov functions is a strict subset of the class of dissipative finite-step ISS Lyapunov
functions. Hence, this result is more general than showing that the existence of a
dissipative ISS Lyapunov function implies ISS of the underlying system.

Theorem 3.17. If there exists a dissipative finite-step ISS Lyapunov function for
system (3.1) then system (3.1) is ISS.

The proof follows the lines of [70, Lemma 3.5], which establishes that the existence of
a continuous dissipative ISS Lyapunov function implies ISS of the system. Note that
in [70] the authors assume continuity, whereas in this chapter global K-boundedness
is considered.

Proof. Let V be a dissipative finite-step ISS Lyapunov function satisfying Defini-
tion 3.12 for system (3.1) with suitable α1, α2 ∈ K∞, M ∈ N, σ ∈ K, and a positive
definite function ρ with (id−ρ) ∈ K∞. Let ξ ∈ Rn and fix any bounded input
u(·) ⊂ Rm. We abbreviate the state x(k) := x(k, ξ, u(·)). Let ν ∈ K∞ be such that
id−ν ∈ K∞ and consider the set

∆ :=
{
ξ ∈ Rn : V (ξ) ≤ δ := (id−ρ)−1 ◦ ν−1 ◦ σ(|||u|||∞)

}
.

We will now show that for any k ∈ N with x(k) ∈ ∆ we have x(k + lM) ∈ ∆ for all
l ∈ N. Using (3.9), a direct computation yields

V (x(k +M)) ≤ ρ(V (x(k))) + σ(|||u|||∞) ≤ ρ(δ) + σ(|||u|||∞)

= −(id−ν) ◦ (id−ρ)(δ) + δ − ν ◦ (id−ρ)(δ) + σ(|||u|||∞)

= −(id−ν) ◦ (id−ρ)(δ) + δ ≤ δ.

Hence, x(k +M) ∈ ∆ and by induction we get x(k + lM) ∈ ∆ for all l ∈ N.

Let j0 ∈ N ∪ {∞} satisfy j0 := min{k ∈ N : x(k), . . . , x(k + M − 1) ∈ ∆}. By
definition of j0 and by the above consideration, we see that x(k) ∈ ∆ for all k ≥ j0.
Thus, we have

V (x(k)) ≤ (id−ρ)−1 ◦ ν−1 ◦ σ(|||u|||∞) =: γ̃(|||u|||∞). (3.12)

For k < j0, we have to consider two cases.

First, if x(k) ∈ ∆ then by definition of ∆ we have V (x(k)) ≤ γ̃(|||u|||∞). Secondly, if
x(k) 6∈ ∆ let l ∈ N and k0 ∈ {0, . . . ,M − 1} satisfy k = lM + k0. Since x(k0) ∈
∆ implies x(lM + k0) ∈ ∆, we conclude x(k0) 6∈ ∆. Hence, by definition of ∆,
V (x(k0)) > (id−ρ)−1 ◦ ν−1 ◦ σ(|||u|||∞), or, equivalently, σ(|||u|||∞) < ν ◦ (id−ρ) ◦
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V (x(k0)), which implies

V (x(k0 +M)) ≤ ρ(V (x(k0))) + σ(|||u|||∞)

< ρ(V (x(k0))) + ν ◦ (id−ρ) ◦ V (x(k0))

= (ρ+ ν ◦ (id−ρ)) ◦ V (x(k0)).

Note that the function χ := (ρ+ ν ◦ (id−ρ)) satisfies χ = id−(id−ν) ◦ (id−ρ) < id.
Let L := sup{l ∈ N : V (x(lM + k0)) 6∈ ∆}. Then we have for all l ∈ {0, . . . , L}

V (x((l + 1)M + k0)) ≤ χ(V (x(lM + k0))).

Note that the function χ = ρ + ν ◦ (id−ρ) is continuous, positive definite and
unbounded as ν, (id−ρ) ∈ K∞, and it satisfies χ(0) = 0. Hence, we can without
loss of generality assume that χ ∈ K∞, else pick χ̃ ∈ K∞ satisfying χ ≤ χ̃ < id.
Applying Lemma 3.13 there exists a KL-function βk0 satisfying

V (x(lM + k0)) ≤ βk0(V (x(k0)), lM + k0)

for all l ∈ {0, . . . , L}. Moreover, for all l > L, we have V (x(lM + k0)) ∈ ∆ implying
V (x(lM + k0)) ≤ γ̃(|||u|||∞). Thus, for all l ∈ N, we have

V (x(lM + k0)) ≤ max {βk0 (V (x(k0)), lM + k0) , γ̃(|||u|||∞)} . (3.13)

It is important to note that both γ̃ and χ are independent on the choice of ξ ∈ Rn

and u(·) ∈ l∞(Rm). In addition, by the proof of Lemma 3.13, also βk0 ∈ KL does
not depend on ξ ∈ Rn and u(·) ⊂ Rm. Hence, (3.13) holds for all solutions x(k).

Define the KL-function

β̃(s, r) := max
k0∈{0,...,M−1}

βk0(s, r)

and V max
M (ξ, u(·)) := maxj∈{0,...,M−1} V (x(j, ξ, u(·))). Then for all k ∈ N, all ξ ∈ Rn

and all u(·) ∈ l∞(Rm) we have

V (x(k)) ≤ max
{
β̃(V max

M (ξ, u(·)), k), γ̃(|||u|||∞)
}
.

Consider ϑj , ζj ∈ K from Lemma 3.15 and define ϑ̃ := maxj∈{0,...,M−1} α2(2ϑj) and
ζ̃ := maxj∈{0,...,M−1} α2(2ζj). Then for all ξ ∈ Rn and u(·) ∈ l∞(Rm) we get

V max
M (ξ, u(·)) ≤ max

j∈{0,...,M−1}
α2(‖x(j)‖) ≤ ϑ̃(‖ξ‖) + ζ̃(|||u|||∞).

So all in all we have for all k ∈ N, all ξ ∈ Rn and all u(·) ∈ l∞,

V (x(k)) ≤ max
{
β̃(ϑ̃(‖ξ‖) + ζ̃(|||u|||∞), k), γ̃(|||u|||∞)

}
≤ max

{
β̃(2ϑ̃(‖ξ‖), k) + β̃(2ζ̃(|||u|||∞), 0), γ̃(|||u|||∞)

}
≤ β̃(2ϑ̃(‖ξ‖), k) +

(
β̃(2ζ̃(|||u|||∞), 0) + γ̃(|||u|||∞)

)
.
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Hence, we get (3.3) by defining β(s, r) := α−1
1 (2β̃(2ϑ̃(s), r)) and

γ(s) := α−1
1

(
2(β̃(2ζ̃(|||u|||∞), 0) + γ̃(|||u|||∞))

)
. Note that for fixed r ≥ 0, β(·, r) is a

K-function as the composition of K-functions, and for fixed s > 0, β(s, ·) ∈ L, since
the composition of K- and L-functions is of class L (see [56, Section 24], [77, Sec-
tion 2]), so really β ∈ KL. Further note that the summation of class-K functions
yields a class-K function, so γ ∈ K.

If we impose stronger conditions on the dissipative finite-step ISS Lyapunov function
and on the dynamics, then we can conclude an exponential decay of the bound on
the system’s state.

Theorem 3.18. Let system (3.1) be globally K-bounded with linear ω1 ∈ K∞. If
there exists a dissipative finite-step ISS Lyapunov function V for system (3.1) sat-
isfying for any ξ ∈ Rn and any bounded u(·) ⊂ Rm

a‖ξ‖λ ≤ V (ξ) ≤ b‖ξ‖λ,
V (x(M, ξ, u(·))) ≤ cV (ξ) + d|||u|||∞

with b ≥ a > 0, c ∈ [0, 1) and d, λ > 0, then system (3.1) is expISS.

Proof. The proof follows the lines of the proof of Theorem 3.17. Hence, we will omit
the detailed proof, and only give a sketch.
Consider the linear global K-bound ω1 ∈ K∞. We assume that ω2 ∈ K is a linear
function, too. This second assumption is only for simplifying the proof, but does
not change the result. First note that in the proof of Theorem 3.17 we can choose
η(s) = hs with h ∈ (0, 1) linear, and since ρ and σ are linear K∞-functions, we
obtain that

γ̃(s) := (id−ρ)−1 ◦ η−1 ◦ σ(s) = d
h(1−c)s

is a linear function. Furthermore, in the case that x(k) 6∈ ∆, we see that

V (x(k +M, ξ, u(·))) ≤ (c+ h(1− c))V (x(k, ξ, u(·))).

Define µ̃ := (c+ h(1− c)) < 1. In this case, using the comparison Lemma 3.14, we
obtain the estimate

V (x(k, ξ, u(·))) ≤ (µ̃1/M)
k

µ̃ V max
M (ξ, u(·)),

where V max
M (ξ, u(·)) := maxj∈{0,...,M−1} V (x(j, ξ, u(·))). Let ω1(s) := w1s and

ω2(s) := w2s for s ∈ R+ and w1, w2 > 0. Using Lemma 3.16, the estimate (3.11) is
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satisfied for ϑj(s) = wj1s and ζj(s) = w2

∑j−1
i=0 w

i
1s. Thus,

V (x(j, ξ, u(·))) ≤ b (‖x(j, ξ, u(·))‖)λ

≤ b

(
wj1‖ξ‖+ w2

j−1∑
i=0

wi1|||u|||∞

)λ
= b (w̃1‖ξ‖+w̃2|||u|||∞)

λ

with w̃1 := maxj∈{0,...,M−1} w
j
1, and w̃2 := maxj∈{0,...,M−1} w2

∑j−1
i=0 w

i
1, and hence,

V (x(k, ξ, u(·))) ≤ max
j∈{0,...,M−1}

µ̃k/M

µ̃
b

(
wj1‖ξ‖+ w2

j−1∑
i=0

wi1|||u|||∞

)λ
≤ b

µ̃
µ̃k/M (w̃1‖ξ‖+ w̃2|||u|||∞)

λ
.

This implies that for all ξ ∈ Rn and all bounded u(·) ⊂ Rm we have

‖x(k, ξ, u(·))‖ ≤
(
a−1V (x(k, ξ, u(·)))

)1/λ
≤
(
b
aµ̃ µ̃

k/M
)1/λ

(w̃1‖ξ‖+ w̃2|||u|||∞)

≤

(
bω̃

1/λ
1

aµ̃

)λ
µk‖ξ‖+

(
bω̃

1/λ
2

aµ̃

)λ
|||u|||∞,

with µ := µ̃1/λM < 1. So, system (3.1) satisfies (3.3) with β as in (3.4), where

C =
(
bω̃

1/λ
1

aµ̃

)λ
and µ < 1 as defined above. Hence, system (3.1) is expISS.

3.2.3 Dissipative finite-step ISS Lyapunov functions: necessary criteria

While Theorem 3.17 shows the sufficiency of the existence of dissipative finite-step
ISS Lyapunov functions to conclude ISS of system (3.1), we are now interested in the
necessity. At this stage we can exploit the fact that any dissipative ISS Lyapunov
function as introduced in Definition 3.10 is a particular dissipative finite-step ISS
Lyapunov function satisfying Definition 3.12 with M = 1.

Theorem 3.19. If system (3.1) is ISS then there exists a dissipative finite-step ISS
Lyapunov function for system (3.1).

Proof. If the right-hand side G : Rn × Rm → Rn of system (3.1) is continuous,
then [70, Theorem 1] implies the existence of a smooth function V : Rn → R+

satisfying α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖) and V (G(ξ, µ)) − V (ξ) ≤ −α3(‖ξ‖) + σ(‖µ‖)
for all ξ ∈ Rn, µ ∈ Rm, and suitable α1, α2, α3 ∈ K∞, σ ∈ K. From Remark 3.11
and M = 1 we conclude that V is a dissipative finite-step ISS Lyapunov function.
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Similarly, if the right-hand side G is discontinuous, then the existence of a dissipative
ISS Lyapunov function follows from [46, Lemma 2.3].

Obviously, Theorem 3.19 makes use of the converse ISS Lyapunov theorem in [46,70]
to guarantee the existence of a dissipative (finite-step) ISS Lyapunov function. Con-
verse Lyapunov theorems have, in general, the disadvantage that they are theoretical
results and no (ISS) Lyapunov function can be explicitly constructed (see also the
explanation in Chapter 2). Consequently, finding a suitable (finite-step) (ISS) Lya-
punov function is a difficult task, in general.

However, for the case of expISS systems of the form (3.1), we can show that norms
are dissipative finite-step ISS Lyapunov functions. The following result extends
Corollary 2.16 to systems with inputs.

Theorem 3.20. If system (3.1) is expISS then the function V : Rn → R+ defined
by

V (ξ) := ‖ξ‖, ξ ∈ Rn (3.14)

is a dissipative finite-step ISS Lyapunov function for system (3.1).

Proof. System (3.1) is expISS if it satisfies (3.3) and (3.4) for constants C ≥ 1 and
µ ∈ [0, 1). Take M ∈ N such that CµM < 1, and V as defined in (3.14). Clearly,
V is proper and positive definite with α1 = α2 = id ∈ K∞. In addition, for any
ξ ∈ Rn, we have

V (x(M, ξ, u(·))) = ‖x(M, ξ, u(·))‖ ≤ CµM‖ξ‖+ γ(|||u|||∞)

= CµMV (ξ) + γ(|||u|||∞) =: ρ(V (ξ)) + σ(|||u|||∞)

where ρ(s) := CµMs < s for all s > 0, since CµM < 1. Note that (id−ρ)(s) =

(1−CµM )s ∈ K∞ and σ := γ ∈ K∞, which shows (3.9). So V defined in (3.14) is a
dissipative finite-step ISS Lyapunov function for system (3.1).

We emphasize that the hard task in Theorem 3.20 is finding a sufficiently large
M ∈ N. However, Theorem 3.20 suggests to take the norm as a candidate for a
dissipative finite-step ISS Lyapunov function. Verification for this candidate function
to be a dissipative finite-step ISS Lyapunov function can be done as outlined in the
following procedure.

Procedure 3.21. Consider system (3.1) and assume that Assumption 3.1 holds.

[1] Set k = 1.

[2] Check
‖x(k, ξ, u(·))‖ ≤ c‖ξ‖+ σ(|||u|||[0,k])

for all ξ ∈ Rn, u(·) ⊂ Rm with suitable c ∈ [0, 1) and σ ∈ K∞. If the inequality
holds set M = k; else set k = k + 1 and repeat.

104



3.2. Stability analysis via dissipative finite-step ISS Lyapunov functions

If this procedure is successful, then V (ξ) := ‖ξ‖ is a dissipative finite-step ISS
Lyapunov function for system (3.1). By Theorem 3.18 system (3.1) is expISS. /

Step [2] can be checked by noticing that the solution x(k, ξ, u(·)) for each k ∈ N
and all ξ ∈ Rn, u(·) ⊂ Rm can be expressed in a closed form by considering higher
order iterates of G as defined by below. In this way, step [2] can be checked by using
suitable norm estimates for ‖Gk(ξ, u(1), . . . , u(k))‖. Compare to Section 3.3.3, where
such estimates are obtained by means of an example.

To clarify the concept of dissipative finite-step ISS Lyapunov functions we now
discuss the connection to higher order iterates of system (3.1).
Let G : Rn × Rm 7→ Rn from (3.1) be given. Then, for any i ∈ N with i ≥ 1, we
define the ith iterate of G, denoted by Gi : Rn × (Rm)i 7→ Rn, as follows:

ξ ∈ Rn, w1 = u1 ∈ Rm 7→ G1(ξ, w1) := G(ξ, u1),

ξ ∈ Rn, wi := (u1, . . . , ui) ∈ (Rm)i 7→ Gi(ξ, wi) := G(Gi−1(ξ, wi−1), ui)

with i ∈ N, i ≥ 2. Now fix any M ∈ N, and consider the system

x̄(k + 1) = GM (x̄(k), wM (k)) (3.15)

with state x̄ ∈ Rn and input function wM (·) = (u1(·), . . . , uM (·)) ⊂ (Rm)M . Firstly,
for any k ∈ N there exist unique l ∈ N and i ∈ {1, . . . ,M} such that k = lM + i.
For u : N→ Rm define ui, i ∈ {1, ..,M}, by

ui(l) := u(lM + i), l ∈ N, i ∈ {1, . . . ,M}

we call (3.15) the M -iteration corresponding to system (3.1). Note that |||wM|||∞ :=

max{|||u1|||∞, . . . , |||uM|||∞} = |||u|||∞. It is not difficult to see that for all j ∈ N and all
ξ ∈ Rn we have

x(jM, ξ, u(·)) = x̄(j, ξ, wM (·)). (3.16)

Thus, if system (3.1) is ISS, i.e., it satisfies (3.3), then also the M -iteration (3.15) is
ISS and satisfies

‖x̄(j, ξ, wM (·))‖ (3.16)
= ‖x(jM, ξ, u(·))‖
≤ β(‖ξ‖, jM) + γ(|||u|||∞)

=: β̄(‖ξ‖, j) + γ(|||wM|||∞).

Moreover, a dissipative finite-step ISS Lyapunov function for system (3.1) with suit-
ableM ∈ N is also a dissipative ISS Lyapunov function for theM -iteration (3.15).

Conversely, let system (3.15) be ISS then there exists a dissipative ISS Lyapunov
function V for system (3.15) (see e.g. [70, Theorem 1] for continuous GM or [46,
Lemma 2.3] for discontinuous GM ). From (3.16) we see that V is also a dissipative
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finite-step ISS Lyapunov function for system (3.1), and by Theorem 3.17 we conclude
that system (3.1) is ISS.

Summarizing, we obtain the following corollary.

Corollary 3.22. System (3.1) is ISS if and only if the M th iterated system (3.15)
is ISS. In particular, a function V : Rn → R+ is a dissipative Lyapunov function
for system (3.15) if and only if it is a dissipative finite-step Lyapunov function for
system (3.1).

As finding ISS Lyapunov functions is a difficult task in general, we will see in the next
section that finding a dissipative finite-step ISS Lyapunov function (or equivalently a
dissipative Lyapunov function for a corresponding M -iteration) is sometimes easier.
In particular, the next section is dedicated to deriving ISS small-gain theorems,
where the proof relies heavily on constructing a dissipative finite-step ISS Lyapunov
function for the overall system.

3.3 Relaxed small-gain theorems: a Lyapunov-based approach

In the remainder of this chapter we consider system (3.1) split into N subsystems
of the form

xi(k + 1) = gi(x1(k), . . . , xN (k), u(k)), k ∈ N, (3.17)

with xi(0) ∈ Rni and gi : Rn1 × . . . × RnN × Rm → Rni for i ∈ {1, . . . , N}. We
further let n =

∑N
i=1 ni, x = (x1, . . . , xN ) ∈ Rn, then with G := (g1, . . . , gN ) we

call (3.1) the overall system of the subsystems (3.17).

The aim of this section is to derive an ISS small-gain theorem which relaxes the as-
sumption of classical (Lyapunov-based) ISS small-gain theorems to admit ISS Lya-
punov functions for each subsystem. We assume that each system has to admit a
Lyapunov-type function that decreases after a finite number of time steps rather
than at each time step. So the Lyapunov-type functions proposed here allow the
subsystems to be 0-input unstable. The results in this section base on the small-
gain theorems in Chapter 2 for systems without inputs, and the construction of ISS
Lyapunov functions presented in [25].

The section is divided into two parts. In the first one, Section 3.3.1, we prove ISS of
system (3.1) by constructing an overall dissipative finite-step ISS Lyapunov function.
In Section 3.3.2, we show that the relaxed small-gain theorems derived are necessary,
at least for expISS systems. We conclude in Section 3.3.3 with an example where
the relaxed small-gain approach is applied.
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3.3.1 Dissipative ISS small-gain theorems

In this section we derive small-gain theorems by constructing dissipative finite-step
ISS Lyapunov functions for the overall system (3.1). We highlight that the proposed
small-gain results do not require the subsystems (3.17) to be ISS. This fact is outlined
in Remark 3.24.

We start with the case that the effect of the external input u can be captured via
maximization.

Theorem 3.23. Let (3.1) be given by the interconnection of the subsystems in (3.17).
Assume that there exist anM ∈ N,M ≥ 1, functions Vi : Rni → R+, γij ∈ K∞∪{0},
γiu ∈ K ∪ {0}, and positive definite functions δi, with di := (id +δi) ∈ K∞, for
i, j ∈ {1, . . . , N} such that with Γ⊕ defined in (1.16), and the diagonal operator D
defined by D = diag(di) the following conditions hold.

(i) For all i ∈ {1, . . . , N}, the functions Vi are proper and positive definite.

(ii) For all ξ = (ξ1, . . . , ξN ) ∈ Rn with ξi ∈ Rni , i ∈ {1, . . . , N}, and u(·) ⊂ Rm it
holds that V1(x1(M, ξ, u(·)))

...
VN (xN (M, ξ, u(·)))

 ≤ max

Γ⊕


 V1(ξ1)

...
VN (ξN )


 ,

 γ1u(|||u|||∞)
...

γNu(|||u|||∞)


 .

(iii) The small-gain condition1 Γ⊕ ◦D 6≥ id holds.

Then there exists an Ω-path σ̃ ∈ KN∞ for Γ⊕ ◦D. Moreover, if for all i ∈ {1, . . . , N}
there exists a K∞-function α̂i satisfying

σ̃−1
i ◦ d

−1
i ◦ σ̃i = σ̃−1

i ◦ (id +δi)
−1 ◦ σ̃i = id−α̂i (3.18)

then the function V : Rn → R+ defined by

V (ξ) := max
i

(σ̃−1
i ◦ d

−1
i )(Vi(ξi)). (3.19)

is a dissipative finite-step ISS Lyapunov function for system (3.1). In particular,
system (3.1) is ISS.

Proof. Assume that Vi and γij , γiu satisfy the hypothesis of the theorem. Denote
γu(·) := (γ1u(·), . . . , γNu(·))>. Then from condition (iii) and [25, Theorem 5.2-(iii)]
it follows that there exists an Ω-path σ̃ ∈ KN∞ such that

(Γ⊕ ◦D)(σ̃(s)) < σ̃(s)

1Note that the strong small-gain condition in Definition 1.21 requires the functions δi in the
diagonal operator to be of class K∞, whereas here we only require δi to be positive definite.
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holds for all s > 0. In particular,

max
i,j∈{1,...,N}

σ̃−1
i ◦ γij ◦ dj ◦ σ̃j < id . (3.20)

In the following let i, j ∈ {1, . . . , N}. Let V : Rn → R+ be defined as in (3.19).
The aim is to show that V is a dissipative finite-step ISS Lyapunov function for the
overall system (3.1). Recall that condition (i) implies the existence of α1i, α2i ∈ K∞
such that for all ξi ∈ Rni we have α1i(‖ξi‖) ≤ Vi(ξi) ≤ α2i(‖ξi‖). Thus,

V (ξ) ≥ max
i

(σ̃−1
i ◦ d

−1
i )(α1i(‖ξi‖)) ≥ α1(‖ξ‖)

with α1 := minj σ̃
−1
j ◦ d−1

j ◦ α1j ◦ 1
κ id ∈ K∞, where κ ≥ 1 comes from (1.1) in

Chapter 1. On the other hand we have

V (ξ) ≤ max
i

(σ̃−1
i ◦ d

−1
i )(α2i(‖ξi‖)) ≤ α2(‖ξ‖)

with α2 := maxi σ̃
−1
i ◦ d

−1
i ◦ α2i ∈ K∞, which shows V defined in (3.19) is proper

and positive definite. To show the decay of V , i.e., an inequality of the form (3.9),
we define σ := maxi σ̃

−1
i ◦ d

−1
i ◦ γiu, and obtain

V (x(M, ξ, u(·))) = max
i

(σ̃−1
i ◦ d

−1
i )(Vi(xi(M, ξ, u(·))))

cond. (ii)

≤ max
i

(σ̃−1
i ◦ d

−1
i )

(
max

{
max
j
γij(Vj(ξj)), γiu(|||u|||∞)

})
= max

{
max
i,j

σ̃−1
i ◦ d

−1
i ◦ γij(Vj(ξj)),max

i
σ̃−1
i ◦ d

−1
i ◦ γiu(|||u|||∞)

}
≤ max

{
max
i,j

(
σ̃−1
i ◦d

−1
i ◦σ̃i

)︸ ︷︷ ︸
=id−α̂i by (3.18)

◦
(
σ̃−1
i ◦γij◦dj◦σ̃j

)︸ ︷︷ ︸
<id by (3.20)

◦
(
σ̃−1
j ◦d

−1
j ◦Vj(ξj)

)︸ ︷︷ ︸
≤V (ξ)

, σ(|||u|||∞)

}

< max
{

max
i

(id−α̂i)(V (ξ)), σ(|||u|||∞)
}
.

Define ρ := maxi(id−α̂i), then ρ ∈ K∞ by (3.18), and satisfies id−ρ = mini α̂i ∈
K∞. Noting that the maximum can be upper bounded by summation, this shows
that V is a dissipative finite-step ISS Lyapunov function as defined in Definition 3.12.
Then from Theorem 3.17 we conclude that system (3.1) is ISS.

Remark 3.24. (i) To understand the assumptions imposed in Theorem 3.23 consider
the case thatM = 1 and δi ∈ K∞, i ∈ {1, . . . , N}. Firstly, by condition (ii), we have
for any i ∈ {1, . . . , N}

Vi(xi(1, ξ, u(·))) ≤ max

{
max

j∈{1,...,N}
γij(Vj(ξj)), γiu(|||u|||∞)

}
. (3.21)

From the small-gain condition (iii) of Theorem 3.23 we conclude that γii ◦ (id +δi) <

id by considering the ith unit vector. Hence, since δi ∈ K∞, γii < (id +δi)
−1 = id−δ̂i
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with δ̂i ∈ K∞, where the last equality follows from [123, Lemma 2.4] or Lemma 1.6.
Thus, we can write (3.21) as

Vi(xi(1, ξ, u(·))) ≤ (id−δ̂i︸ ︷︷ ︸
=:ρi

)(Vi(ξi)) +

N∑
j=1
j 6=i

γij(Vj(ξj)) + γiu|||u|||∞.

Together with condition (i) this implies that the functions Vi are dissipative ISS
Lyapunov functions for the subsystems (3.17) with respect to both internal and
external inputs.
Therefore, if M = 1 and δi ∈ K∞ then Theorem 3.23 is a dissipative small-gain
theorem for discrete-time systems in the classical sense.

(ii) If M = 1 and the functions δi are only positive definite, then the functions Vi
are not necessarily dissipative ISS Lyapunov functions, as we cannot ensure that the
decay of Vi in terms of the function ρi satisfies id−ρi ∈ K∞. In Theorem 3.23, even
in the case M = 1, we do not necessarily assume that the subsystems are ISS.

(iii) Now consider the case M > 1. Typically in classical ISS small-gain theorems
the systems are required to be ISS with respect to internal and external inputs,
and the small-gain condition ensures that the (internal and external) inputs cannot
destabilize the subsystem. In particular, the subsystems are 0-GAS.
However, in Theorem 3.23, the internal inputs xj may have a stabilizing effect on
system xi in the first M time steps, whereas the external input u is considered as a
disturbance. Thus, the subsystems do not have to be ISS, while the overall system is
ISS. This observation is essential as it extends the classical idea of small-gain theory.
In particular, the subsystem (3.17) can be 0-input unstable, see also Section 3.3.3,
which is devoted to the discussion of an example. We further refer to the detailed
explanation in Section 2.3.1, were we comment on how such a result can be embedded
into the small-gain context.

(iv) In contrast to classical ISS small-gain theorems, condition (ii) of Theorem 3.23
requires the knowledge of solutions of the subsystems at time step M or at least
estimates for these. Whereas computing solutions can be done by iterating the
dynamics map G, computing gains satisfying condition (ii) might be challenging, in
general. /

Example 3.25. In this example, we show that condition (3.18), which quantifies the
robustness given by the scaling matrix D, is not trivially satisfied, even if δi ∈ K∞.
To this end consider the functions

σ̃(s) := es − 1, σ̃−1(s) = log(s+ 1), δ̂(s) = (s+ 1)

1−
(

1

s+ 1

) 1
s+1

 .
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It is not hard to see that σ̃, σ̃−1 ∈ K∞. Moreover, as we show in the Appendix A.3,
also δ̂ ∈ K∞ and (id−δ̂) ∈ K∞. Similarly as in [123, Lemma 2.4], there exists2 a
function δ ∈ K∞ such that (id +δ)−1 = id−δ̂. Hence, we have for all s ∈ R+, see
Appendix A.3,

σ̃−1 ◦ (id +δ)−1 ◦ σ̃(s) = σ̃−1 ◦ (id−δ̂) ◦ σ̃(s) = s(1− e−s).

As lims→∞ s(1− e−s)− s = 0, there cannot exist a K∞-function α̂ satisfying (3.18).
/

In condition (ii) of Theorem 3.23 the effect of internal and external inputs was
captured via maximization. Next, we replace the maximum in condition (ii) of
Theorem 3.23 by a sum. Note that in the case of summation, the small-gain condition
invoked in Theorem 3.23 is not strong enough to ensure that V defined in (3.19) is
a dissipative finite-step ISS Lyapunov function (see [25]), so we also have to change
condition (iii) of Theorem 3.23. In particular, we assume that the functions δi are of
class K∞, and not only positive definite. We recall from (1.12) that if the diagonal
operator D = diag(id +δi) is factorized into

D = D2 ◦D1, Dj = diag(id +δij), δij ∈ K∞, i ∈ {1, . . . , N}, j ∈ {1, 2} (3.22)

then D ◦ Γ⊕ 6≥ id is equivalent to D1 ◦ Γ⊕ ◦D2 6≥ id.

Theorem 3.26. Let (3.1) be given by the interconnection of the subsystems in (3.17).
Let δi, δi1 , δi2 ∈ K∞ for i ∈ {1, . . . , N} and D := diag(di) := diag(id +δi) sat-
isfy (3.22). Assume that there exist an M ∈ N, M ≥ 1, functions Vi : Rni → R+,
γij ∈ K∞ ∪ {0}, and γiu ∈ K ∪ {0} for i, j ∈ {1, . . . , N} such that with Γ⊕ defined
in (1.16) the following conditions hold.

(i) For all i ∈ {1, . . . , N} the functions Vi are proper and positive definite.

(ii) For all ξ ∈ Rn and u(·) ⊂ Rm it holds that V1(x1(M, ξ, u(·)))
...

VN (xN (M, ξ, u(·)))

 ≤ Γ⊕


 V1(ξ1)

...
VN (ξN )


+

 γ1u(|||u|||∞)
...

γNu(|||u|||∞)

 .
(iii) The strong small-gain condition D ◦ Γ⊕ 6≥ id holds.

Then there exists an Ω-path σ̃ ∈ KN∞ for D1 ◦ Γ⊕ ◦ D2. Moreover, if for all i ∈
{1, . . . , N} there exists a K∞-function α̂i satisfying

σ̃−1
i ◦ d

−1
i2 ◦ σ̃i = id−α̂i (3.23)

2Note that [123, Lemma 2.4] argues that if δ ∈ K∞ is given, there exists a suitable δ̂ ∈ K∞
satisfying (id+δ)−1 = id−δ̂. Conversely, for any δ̂ ∈ K∞ with (id−δ̂) ∈ K∞ given there exists
δ ∈ K∞ satisfying (id+δ)−1 = id−δ̂, follows by defining δ := δ̂ ◦ (id−δ̂)−1 ∈ K∞.
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then the function V : Rn → R+ defined by

V (ξ) := max
i

(σ̃−1
i ◦ d

−1
i2 )(Vi(ξi)) (3.24)

is a dissipative finite-step ISS Lyapunov function for system (3.1). In particular,
system (3.1) is ISS.

Proof. Since the diagonal operator D is split as in (3.22), we can make use of the
equivalences in (1.12), which show that D ◦ Γ⊕ 6≥ id if and only if D1 ◦ Γ⊕ ◦D2 6≥
id. By [25, Theorem 5.2-(iii)] it follows that there exists an Ω-path σ̃ ∈ KN∞ for
D1 ◦ Γ⊕ ◦D2 satisfying

(D1 ◦ Γ⊕ ◦D2)(σ̃(r)) < σ̃(r) ∀r > 0,

or, equivalently, for all i ∈ {1, . . . , N},

max
j∈{1,...,N}

di1 ◦ γij ◦ dj2 ◦ σ̃j(r) < σ̃i(r) ∀r > 0. (3.25)

We show that this inequality implies the existence of a function ϕ ∈ K∞ such that
for all r > 0, we have

max
i,j

σ̃−1
i ◦ (γij ◦ dj2 ◦ σ̃j(r) + γiu ◦ ϕ(r)) < r. (3.26)

To do this, we assume, without loss of generality3, that γiu ∈ K∞. Since di1 = id +δi1
with δi1 ∈ K∞ for all i ∈ {1, . . . , N}, we can write (3.25) as

max
j∈{1,...,N}

γij ◦ dj2 ◦ σ̃j(r) + max
j∈{1,...,N}

δi1 ◦ γij ◦ dj2 ◦ σ̃j(r) < σ̃i(r). (3.27)

Let i ∈ {1, . . . , N}. We consider two cases:

(i) If γij = 0 for all j ∈ {1, . . . , N}, define

ϕi := 1
2γ
−1
iu ◦ σ̃i ∈ K∞.

(ii) If γij ∈ K∞ for at least one j ∈ {1, . . . , N}, define

ϕi := max
j∈{1,...,N}

γ−1
iu ◦ δi1 ◦ γij ◦ dj2 ◦ σ̃j ∈ K∞.

Note that we need δi1 ∈ K∞ for ϕi to be of class K∞, as opposed to the proof
of Theorem 3.23, where we only needed positive definiteness.

3If γiu ∈ K\K∞ take any K∞-function upper bounding γiu. If γiu = 0, take e.g. γiu = id.
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For both cases, the definition of ϕi ∈ K∞ together with (3.27) implies

max
j∈{1,...,N}

γij ◦ dj2 ◦ σ̃j(r) + γiu ◦ ϕi(r) < σ̃i(r).

for all r > 0. Then it is not hard to see that ϕ := mini∈{1,...,N} ϕi ∈ K∞ satis-
fies (3.26) for all r > 0.

In the following let i, j ∈ {1, . . . , N}. Consider the function V from (3.24). First
note that V is proper and positive definite, which follows directly from the proof of
Theorem 3.23.

To show the decay of V , i.e., an inequality of the form (3.9), we use (3.26), and
obtain

V (x(M, ξ, u(·))) = max
i

(σ̃−1
i ◦ d

−1
i2 )(Vi(xi(M, ξ, u(·))))

cond. (ii)

≤ max
i

(σ̃−1
i ◦ d

−1
i2 )

(
max
j
γij(Vj(ξj)) + γiu(|||u|||∞)

)
(3.23)

= max
i,j

(id−α̂i) ◦ σ̃−1
i (γij(Vj(ξj)) + γiu(|||u|||∞))

= max
i,j

(id−α̂i)◦σ̃−1
i

γij◦dj2◦σ̃j◦(σ̃−1
j ◦d

−1
j2 ◦ Vj(ξj′)

)︸ ︷︷ ︸
≤V (ξ)

+γiu◦ϕ◦ϕ−1(|||u|||∞)


(3.26)
< max

i
(id−α̂i)

(
max{V (ξ), ϕ−1(|||u|||∞)}

)
≤ max

i
(id−α̂i)(V (ξ)) + max

i
(id−α̂i)(ϕ−1(|||u|||∞)).

Define ρ := maxi(id−α̂i) and σ := maxi(id−α̂i) ◦ϕ−1, then id−ρ = mini α̂i ∈ K∞.
Hence, (3.9) is satisfied. Again, as in the proof of Theorem 3.23, this shows that V
is a dissipative finite-step ISS Lyapunov function as defined in Definition 3.12. From
Theorem 3.17 we conclude that system (3.1) is ISS.

Remark 3.27. If Theorem 3.23 (resp. Theorem 3.26) is satisfied withM = 1, then the
dissipative finite-step Lyapunov function V in (3.19) (resp. (3.24)) is a dissipative
ISS Lyapunov function. In particular, we obtain the following special cases: If
Theorem 3.26 is satisfied for M = 1 then this gives a dissipative-form discrete-time
version of [25, Corollary 5.6]. On the other hand, for M = 1, Theorem 3.23 includes
the ISS variant of [67, Theorem 3] as a special case. /

Remark 3.28. Condition (3.23) in Theorem 3.23 crucially depends on the decomposi-
tion (3.22). In this remark we comment on the question whether or not condition 3.23
holds depending on the decomposition 3.22.

112



3.3. Relaxed small-gain theorems: a Lyapunov-based approach

Let D1, D2 as well as D̂1, D̂2 be two compositions of D as in (3.22), i.e., D2 ◦D1 =

D = D̂2◦D̂1. A direct computation shows that if σ̃ ∈ KN∞ is an Ω-path forD1◦Γ⊕◦D2

then σ̂ := D̂1 ◦D−1
1 ◦ σ̃ ∈ KN∞ is an Ω-path for D̂1 ◦ Γ⊕ ◦ D̂2:

(D̂1 ◦ Γ⊕ ◦ D̂2)(σ̂) = (D̂1 ◦ Γ⊕ ◦D2) ◦ (D1 ◦ D̂−1
1 )(σ̂)︸ ︷︷ ︸

=σ̃

= (D̂1 ◦D−1
1 ) ◦ (D1 ◦ Γ⊕ ◦D2)(σ̃)

< (D̂1 ◦D−1
1 )(σ̃) = σ̂.

Moreover, if we assume that (3.23) holds, then we have

σ̂−1
i ◦ d̂

−1
i2 ◦ σ̂i = (σ̃−1

i ◦ d
−1
i2 ◦ σ̃i) ◦ (σ̃−1

i ◦ d̂i1 ◦ d
−1
i1 ◦ σ̃i)

= (id−α̂i) ◦ (σ̃−1
i ◦ d̂i1 ◦ d

−1
i1 ◦ σ̃i)

with α̂i ∈ K∞, i ∈ {1, . . . , N}. Unfortunately, from this equation we cannot conclude
that a condition of the form (3.23) holds for the decomposition D̂1, D̂2 and the Ω-
path σ̂ as defined above.

However, consider the special case of the decomposition (3.22) with D2 = diag(id)

and D1 = D = diag(di). Let σ̃ ∈ KN∞ be an Ω-path for D1 ◦ Γ⊕ ◦ D2 = D ◦ Γ⊕.
The aim is to find a decomposition D̂1, D̂2 of D as in (3.22) such that (3.23) holds.
Following the same steps as above, we see that σ̂ = D̂1 ◦D−1 ◦ σ̃ ∈ KN∞ is an Ω-path
for D̂1 ◦ Γ⊕ ◦ D̂2. Moreover, as D = D̂2 ◦ D̂1 implies d−1

i = d̂−1
i1 ◦ d̂

−1
i2 , we see that

σ̂−1
i ◦ d̂

−1
i2 ◦ σ̂i = (σ̃−1

i ◦ di ◦ d̂
−1
i1 ) ◦ (d̂i1 ◦ d−1

i ) ◦ (d̂i1 ◦ d−1
i ◦ σ̃i)

= (σ̃−1
i d̂i1 ◦ d−1

i ◦ σ̃i)

= σ̃−1
i d̂−1

i2 ◦ σ̃i.

Hence, a condition of the form (3.23) holds for the decomposition D̂1, D̂2 with Ω-path
σ̂ ∈ KN∞ if and only there exist K∞-functions α̂i, i ∈ {1, . . . , N} satisfying

σ̃−1
i ◦ d̂

−1
i2 ◦ σ̃i = id−α̂i. (3.28)

Hence, to find a "good" decomposition D̂1, D̂2 of D, i.e., a decomposition for
which (3.23) holds, we can try to findK∞-functions d̂−1

i2 = (id +δ̂i2)−1, i ∈ {1, . . . , N}
that satisfy

(i) equation (3.28) for suitable αi ∈ K∞;

(ii) d̂i2 ◦ d̂i1 = di = id +δi with suitable d̂i1 = id +δ̂i1.

However, an answer to the question whether there exists a decomposition satisfying
these two conditions remains open. /
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In Theorem 3.23 we introduced the diagonal operator D. In addition, (3.18) is
assumed to hold. In the following corollary we impose further assumptions such that
we do not need the diagonal operatorD anymore. Under these stronger assumptions,
system (3.1) is shown to be expISS.

Corollary 3.29. Let (3.1) be given by the interconnection of the subsystems in (3.17).
Assume that there exist an M ∈ N, M ≥ 1, linear functions γij ∈ K∞, and func-
tions Vi : Rni → R+ satisfying condition (i) of Theorem 3.23 with linear functions
α1i, α2i. Let condition (ii) of Theorem 3.23 hold, and instead of condition (iii) of
Theorem 3.23, let the small-gain condition (1.10) hold. Furthermore, assume that
the K-function ω1 in Assumption 3.1 is linear. Then system (3.1) is expISS.

Proof. We follow the proof of Theorem 3.23. By the small-gain condition (1.10)
there exists an Ω-path σ̃ ∈ KN∞ satisfying Γ⊕(σ̃)(r) < σ̃(r) for all r > 0, see [25].
Moreover, as the functions γij ∈ K∞ are linear for all i, j ∈ {1, . . . , N}, we can also
assume the Ω-path functions σ̃i ∈ K∞ to be linear, see [37]. Thus, the function

V (ξ) := max
i
σ̃−1
i (Vi(ξi)) (3.29)

has linear bounds α1 and α2. Furthermore, since σ̃i and γij are linear functions,
we obtain (3.9) with linear function ρ := maxi,j σ̃

−1
i ◦ γij ◦ σ̃j < id, and σ :=

maxi σ̃
−1
i ◦ γiu. Clearly, (id−ρ) ∈ K∞ by linearity of ρ. Thus, V is a dissipative

finite-step ISS Lyapunov function for system (3.1). Since ω1 in Assumption 3.1 is
linear, we can apply Theorem 3.18 to show that system (3.1) is expISS.

Note that the requirement that ω1 is linear is necessary for the system to be expISS
as outlined in Remark 3.3.

A similar reasoning applies in the case where the external input enters additively.

Corollary 3.30. Let (3.1) be given by the interconnection of the subsystems in (3.17).
Assume there exist an M ∈ N, M ≥ 1, linear functions γij ∈ K∞, and functions
Vi : Rni → R+ satisfying condition (i) of Theorem 3.26 with linear functions α1i, α2i.
Let condition (ii) of Theorem 3.26 and the small-gain condition (1.10) hold. Fur-
thermore, assume that ω1 in Assumption 3.1 is linear. Then system (3.1) is expISS.

Proof. We omit the details as the proof follows the lines of the proof of Theorem 3.26
combined with the argumentation of the proof of Corollary 3.29.

Firstly, the small-gain condition implies the existence of an Ω-path σ̃ ∈ KN∞, which
is linear as the functions γij are linear. In particular, Γ⊕(σ̃(r)) < σ(r) for all r > 0.
Next, note that the function V defined in (3.29) has linear bounds as shown in the
proof of Corollary 3.29. It satisfies

V (x(M, ξ, u(·))) ≤ ρ(V (ξ)) + σ(|||u|||∞)
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with ρ := maxi,j σ̃
−1
i ◦ γij ◦ σ̃j and σ := maxi σ̃

−1
i ◦ γiu, which can be seen by a

straightforward calculation, invoking condition (ii) of Theorem 3.26 and the linearity
of the Ω-path σ̃. Again as in the proof of Corollary 3.29, (id−ρ) ∈ K∞ by linearity
of ρ. Thus, V defined in (3.29) is a dissipative finite-step ISS Lyapunov function for
system (3.1). Since ω1 in Assumption 3.1 is linear, we can apply Theorem 3.18, and
the result follows.

In this section we have presented sufficient criteria to conclude ISS, whereas in the
next section we will study the necessity of these relaxed small-gain results.

3.3.2 Non-conservative expISS small-gain theorems

Classical small-gain theorems come with certain conservatism, as explained in the
introduction. In the remainder of this section we show that the relaxation of classical
small-gain theorems given in Theorems 3.23 and 3.26 is non-conservative at least for
expISS systems, i.e., Corollary 3.29 and 3.30 provide conditions that are not only
sufficient but also necessary.

Theorem 3.31. Let system (3.1) be the overall system of the subsystems (3.17).
Then system (3.1) is expISS if and only if

(i) Assumption 3.1 holds with linear ω1, and

(ii) there exist an M ∈ N, M ≥ 1, linear functions γij ∈ K∞, proper and positive
definite functions Vi : Rni → R+ with linear bounds α1i, α2i ∈ K∞ such that
the following holds:

(a) condition (ii) of Theorem 3.23 (and thus also condition (ii) of Theo-
rem 3.26);

(b) the small-gain condition (1.10).

Proof. Sufficiency is shown by Corollary 3.29 and Corollary 3.30, so we only have to
prove necessity. Since system (3.1) is expISS, Assumption 3.1 holds with linear ω1,
see Remark 3.3. Furthermore, the function V (ξ) := ‖ξ‖ for all ξ ∈ Rn is a dissipative
finite-step ISS Lyapunov function for system (3.1) by Theorem 3.20. Hence, there
exist M̃ ∈ N, σ ∈ K and c < 1 such that for all ξ ∈ Rn and all bounded u(·) ⊂ Rm

we have
‖x(M̃, ξ, u(·))‖ ≤ c‖ξ‖+ σ(|||u|||∞). (3.30)

Define Vi(ξi) := ‖ξi‖ for i ∈ {1, . . . , N}, where the norm for ξi ∈ Rni is defined
by (1.1). Then Vi is proper and positive definite with α1i = α2i = id for all i ∈
{1, . . . , N}. Take κ ≥ 1 from (1.1), and define

l := min{` ∈ N : c`κ < 1
2},
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which exists as c ∈ [0, 1). Then we have

Vi(xi(lM̃ , ξ, u(·))) = ‖xi(lM̃ , ξ, u(·))‖ ≤ ‖x(lM̃ , ξ, u(·))‖
(3.30)
≤ c‖x((l − 1)M̃, ξ, u(·))‖+ σ(|||u|||∞)

(3.30)
≤ cl‖ξ‖+

l∑
j′=1

cj
′−1σ(|||u|||∞)

(1.1)
≤ max

j
clκ‖ξj‖+

l∑
j′=1

cj
′−1σ(|||u|||∞)

≤ max

{
max
j
γij(ξj), γiu(|||u|||∞)

}
≤ max

j
γij(ξj) + γiu(|||u|||∞)

with γiu(·) := 2
∑l
j=1 c

j−1σ(·), and γij := 2clκ id. The last inequality shows con-
dition (ii) of Theorem 3.26, while the second last inequality shows condition (ii) of
Theorem 3.23 for M = lM̃ . Finally, by definition of l ∈ N, we have γij < id for all
i, j ∈ {1, . . . , N}. Hence, Proposition 1.29 implies the small-gain condition (1.10).
This proves the theorem.

The non-conservative expISS small-gain Theorem 3.31 is proved in a constructive
way, i.e., it is shown that under the assumption that system (3.1) is expISS we can
choose the Lyapunov-type functions Vi : Rni → R+ as norms, i.e., Vi(·) = ‖ · ‖.
Then there exist an M ∈ N and linear gains γij ∈ K∞ satisfying condition (ii) of
Theorem 3.23, and thus also condition (ii) of Theorem 3.26, as well as the small-gain
condition (1.10). This suggests the following procedure.

Procedure 3.32. Consider (3.1) as the overall system of the subsystems (3.17). Check
that Assumption 3.1 is satisfied with a linear ω1 (else the origin of system (3.1) cannot
be expISS, see Remark 3.3). Define Vi(ξi) := ‖ξi‖ for ξi ∈ Rni , and set k = 1.

[1] Compute γiu ∈ K∞ and linear functions γij ∈ K∞ ∪ {0} satisfying

Vi(xi(k, ξ, u(·))) = ‖xi(k, ξ, u(·))‖ ≤ max
j∈{1,...,N}

γij‖ξj‖+ γiu(|||u|||∞).

[2] Check the small-gain condition (1.10) with Γ⊕ defined in (1.16). If (1.10) is
violated set k = k + 1 and repeat with step [1].

If this procedure is successful, then expISS of the overall system (3.1) is shown by
Theorem 3.31. Moreover, a dissipative finite-step ISS Lyapunov function can be
constructed via (3.29). /
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Although Procedure 3.32 is straightforward, even for simple classes of systems, find-
ing a suitable M ∈ N may be computationally intractable, as already noted in
Chapter 2. Nevertheless, a systematic way to find a suitable number M ∈ N for
certain classes of systems was discussed in Section 2.4 for systems without inputs.
For systems with inputs, similar ideas might be applied.

In the next section we consider a nonlinear system and show how Procedure 3.32
can be applied.

3.3.3 Illustrative example

In the introduction of this thesis the conservatism of classical small-gain theorems
was illustrated by a linear example without external inputs, which is GAS, but where
the subsystems are not 0-GAS. In this section we consider a nonlinear example with
external inputs and show how the relaxed small-gain theorems from Sections 3.3.1
and 3.3.2, and, in particular, Procedure 3.32, can be applied.

Consider the nonlinear system

x(k + 1) =

(
[x(k + 1)]1
[x(k + 1)]2

)
=

(
[x(k)]1 − 0.3[x(k)]2 + u(k)

[x(k)]1 + 0.3
[x(k)]22

1+[x(k)]22

)
(3.31)

with x(·) ⊂ R2, and u(·) ⊂ R. We show that this system is ISS by constructing
a suitable dissipative finite-step ISS Lyapunov function following Procedure 3.32.
We consider the system split into two subsystems. Note that the origin of the first
subsystem is not 0-GAS4, hence not ISS. So we cannot find an ISS Lyapunov function
for this subsystem. At this point, classical (Lyapunov-based) small-gain theorems
would fail.

The converse small-gain results in Section 3.3.2 suggest to prove ISS by a search for
suitable functions Vi and γij ∈ K∞ that satisfy the conditions of one of the small-
gain theorems (eg. Theorem 3.23 or Corollary 3.29). Here, we follow Procedure 3.32.
Firstly, the right-hand side function G of (3.31) is globally K-bounded, since

‖G(ξ, ν)‖∞ ≤ max{‖[ξ]1‖+ 0.3‖[ξ]2‖+ ‖ν‖, ‖[ξ]1‖+ 0.3
[ξ]22

1+[ξ]22
} ≤ 1.3‖ξ‖∞ + ‖ν‖,

where we used (2.16).

4If the first subsystem is considered decoupled, i.e., if we set x2 = u = 0, then this system is
globally stable but not GAS. We could also make the first decoupled system unstable by letting
x1(k + 1) = (1 + ε)x1(k)− 0.3x2(k) + u(k) and ε > 0 small enough, see also [35]. But here we let
ε = 0 to simplify computations.
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Let Vi([ξ]i) := |[ξ]i|, i ∈ {1, 2}. Then we compute for all ξ ∈ R2,

V1(x1(1, ξ, u(·))) = |[ξ]1 − 0.3[ξ]2 + u(0)| ≤ max {2V1([ξ]1), 0.6V2([ξ]2)}+ |||u|||∞,

V2(x2(1, ξ, u(·))) = |[ξ]1 + 0.3
[ξ]22

1+[ξ]22
| ≤ max

{
2V1([ξ]1), 0.6

V2
2 ([ξ]2)

1+V2
2 ([ξ]2)

}
.

Since γ11(s) = 2s, the small-gain condition is violated and we cannot conclude
stability. Intuitively, this was expected from the above observation that the origin
of the first subsystem is not ISS.

Computing solutions x(k, ξ, u(·)) with initial condition ξ ∈ R2 and input u(·) ⊂ R
we see that for k = 3 we have

[x(3, ξ, u(·))]1 = 0.4[ξ]1 − 0.21[ξ]2 − 0.09
[ξ]22

1+[ξ]22
+ 0.7u(0) + u(1) + u(2)

− 0.09
([ξ]1+0.3

[ξ]22
1+[ξ]22

)2

1+([ξ]1+0.3
[ξ]22

1+[ξ]22
)2

[x(3, ξ, u(·))]2 = 0.7[ξ]1 − 0.3[ξ]2 − 0.09
[ξ]22

1+[ξ]22
+ u(0) + u(1)

+ 0.3

[ξ]1−0.3[ξ]2+0.3

([ξ]1+0.3
[ξ]22

1+[ξ]22
)2

1+([ξ]1+0.3
[ξ]22

1+[ξ]22
)2


2

1+

[ξ]1−0.3[ξ]2+0.3

([ξ]1+0.3
[ξ]22

1+[ξ]22
)2

1+([ξ]1+0.3
[ξ]22

1+[ξ]22
)2


2 .

Using (2.16) again, we compute

V1([x(3, ξ, u(·))]1) ≤ 0.4|[ξ]1|+ 0.21|[ξ]2|+ 0.7|u(0)|+ |u(1)|+ |u(2)|
+ 0.09

2 |[ξ]2|+
0.09

2

(
|[ξ]1|+ 0.3

2 |[ξ]2|
)

= max{0.89V1([ξ]1), 0.5235V2([ξ]2)}+ 2.7|||u|||∞,
V2([x(3, ξ, u(·))]2) ≤ 0.7|[ξ]1|+ 0.3|[ξ]2|+ 0.09

2 |[ξ]2|+ |u(0)|+ |u(1)|
+ 0.3

2

(
|[ξ]1|+ 0.3|[ξ]2|+ 0.3

2 (|[ξ]1|+ 0.3
2 |[ξ]2|)

)
= max{1.745V1([ξ]1), 0.78675V2([ξ]2)}+ 2|||u|||∞.

From this we derive the linear functions

γ11(s) = 0.89s, γ12(s) = 0.5235s, γ1u(s) = 2.7s,

γ21(s) = 1.745s, γ22(s) = 0.78675s, γ2u(s) = 2s,

yielding the map Γ⊕ : R2
+ → R2

+ from (1.16) as

Γ⊕((s1, s2)) =

(
max{0.89s1, 0.5235s2}

max{1.745s1, 0.78675s2}

)
.
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Since γ11 < id, γ22 < id and γ12 ◦ γ21 < id, we conclude from the cycle condi-
tion, Proposition 1.29, that the small-gain condition (1.10) is satisfied. Hence, from
Corollary 3.30 we can now conclude that the origin of system (3.31) is expISS.

The small-gain results in Section 3.3.1, and in particular Corollary 3.30, prove the ISS
property of the interconnected system (3.1) by constructing a dissipative finite-step
ISS Lyapunov function. The following shows that this construction is straightforward
to implement. To do this, we use the method proposed in [37] to compute an Ω-path
σ̃(r) := ( 0.5r

0.9r ) that satisfies

Γ⊕(σ̃(r)) =

(
0.47115r

0.8725r

)
<

(
0.5r

0.9r

)
= σ̃(r)

for all r > 0. From the proof of Corollary 3.30 we can now conclude that

V (ξ) := max
i
σ̃−1
i (Vi([ξ]i)) = max{2|[ξ]1|, 10

9 |[ξ]2|}

is a dissipative finite-step ISS Lyapunov function for the overall system (3.31). In
particular, as shown in the proof of Corollary 3.30, we can compute

ρ(s) := max
i,j∈{1,2}

σ̃−1
i ◦ γij ◦ σ̃j(s) = 0.9695s,

and,
σ(s) := max

i∈{1,2}
σ̃−1
i ◦ γiu = 5.4s

for which V satisfies V (x(3, ξ, u(·)) ≤ ρ(V (ξ)) + σ(|||u|||∞) for all ξ ∈ R2.

In Figure 3.1 we plot the sublevel sets of the dissipative finite-step ISS Lyapunov
function V . In addition, we plot the trajectory starting in the initial state ξ =

(10,−15), where we assume that the input u : N → R is a disturbance that is uni-
formly distributed on [−0.2, 0.2]. We see that the trajectory converges to a neigh-
borhood of the origin, and the norm of the trajectory decreases at least any 3
steps.

3.4 Relaxed small-gain theorems: a trajectory-based approach

In the last section we proposed relaxed Lyapunov-based small-gain theorems, where
gains were derived from Lyapunov-type estimates such as e.g. condition (ii) of
Theorem 3.23. In this section we propose small-gain theorems that are trajectory-
based, i.e., gains are derived from estimates of system trajectories. In particular,
the obtained small-gain theorem handles the interconnection of systems that are
ISS, and systems that are globally stable (GS). Whereas in the last section the gain
operator Γµ defined in (1.8) was considered in the maximization case (i.e., in the
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Figure 3.1: Sublevel sets of the dissipative finite-step ISS Lyapunov function V (ξ) =

max{2|[ξ]1|, 10
9 |[ξ]2|}, and a trajectory starting in ξ = (10,−15), where u is uniformly

distributed on [−0.2, 0.2].

form Γ⊕ defined in (1.16)), we do now consider the general case of interconnection
using monotone aggregation functions as introduced in Definition 1.20.

To better distinguish between the subsystems we consider system (3.1) split into
N +M subsystems of the form

xi(k + 1) = gi(x1(k), . . . , xN+M (k), u(k)), k ∈ N, (3.32)

with ξi := xi(0) ∈ Rni and gi : Rn1×. . .×RnN+M×Rm → Rni for i ∈ {1, . . . , N+ M}.
Let n =

∑N+M
i=1 ni, x = (x1, . . . , xN+M ) ∈ Rn, then with G = (g1, . . . , gN+M ) we

call (3.1) the overall system of the subsystems (3.32). We collect the inputs (internal
xj , j 6= i, and external u) on system i in the input variable

wi = (x1, . . . , xi−1, xi+1, . . . , xN+M , u).

As we do now have more than one input, we extend the notions of ISS, GS and AG
given in Definitions 3.2, 3.8 and 3.9, respectively. We call the ith subsystem (3.32)
ISS (from wi to xi) if there exist βi ∈ KL, γij ∈ K∞ ∪ {0} for j ∈ {1, . . . , N +M},

120



3.4. Relaxed small-gain theorems: a trajectory-based approach

γiu ∈ K∞, and µi ∈ MAFN+M such that for all initial states ξi ∈ Rni and all k ∈ N
the solution xi(·, ξi, wi) of (3.32) satisfies an estimate of the form

‖xi(k, ξi, wi(·))‖ ≤
βi(‖ξi‖, k) + µi

(
γi1(|||x1|||[0,k]), . . . , γiN+M (|||xN+M|||[0,k])

)
+ γiu(|||u|||∞).

(3.33)

Note that instead of summation, we could also have used maximization or using a
monotone aggregation function (see Proposition 1.26).

Further, we call the ith subsystem (3.32) GS if there exist αi ∈ K∞, γij ∈ K∞∪{0},
j ∈ {1, . . . , N + M}, γiu ∈ K∞ and µi ∈ MAFN+M such that for all initial states
ξi ∈ Rni and all k ∈ N the solution xi(·, ξi, wi) of (3.32) satisfies an estimate of the
form

‖xi(k, ξi, wi(·))‖
≤ αi(‖ξi‖) + µi

(
γi1(|||x1|||[0,k]), . . . , γi,N+M (|||xN+M|||[0,k])

)
+ γiu(|||u|||∞).

(3.34)

We call the ith subsystem (3.32) AG if there exist γij ∈ K∞ ∪ {0}, j ∈ {1, . . . , N +

M}, γiu ∈ K∞ and µi ∈ MAFN+M such that for all initial states ξi ∈ Rni and all
k ∈ N the solution xi(·, ξi, wi) of (3.32) satisfies an estimate of the form

lim sup
k→∞

‖xi(k, ξ, wi(·))‖

≤ µi
(
γi1(|||x1|||[0,k]), . . . , γi,N+M (|||xN+M|||[0,k])

)
+ γiu(|||u|||∞).

(3.35)

Let the matrix Γ = (γij)
N+M
i,j=1 and the map Γµ : RN+M

+ → RN+M
+ defined by

Γµ(s) =

 µ1 (γ11([s]1), . . . , γ1,N+M ([s]N+M ))
...

µN+M (γN+M,1([s]1), . . . , γN+M,N+M ([s]N+M ))

 (3.36)

be given from the interconnection structures (3.33), (3.34), or (3.35).

We start by restating small-gain theorems for interconnected discrete-time subsys-
tems, where all subsystems are assumed to be GS, AG or ISS, respectively. These
results were presented in [24, 122] for continuous-time systems. Note that in [24]
the theorems are only proved for summation and maximization whereas in [122] the
theorems are given in a more general form using monotone aggregation functions.
The stated theorems also hold true for discrete-time systems in a suitable form, as
already observed in [24, Section 4.4].

Nevertheless, in [24] the following results in the discrete-time framework are shown
under the assumption that the dynamics of the subsystems (3.32) are continuous.
To ensure that the results also hold true for discontinuous dynamics, we have to
prove the following lemma first.
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Lemma 3.33. System (3.1) is ISS if and only if it is AG and GS.

Proof. As mentioned before, this result has been proven for continuous dynamics
in [70, Theorem 1] and in [30, Theorem 2]. Here, we prove the result also for the
case that the dynamics are discontinuous. Firstly observe that ISS implies AG as
the KL-function β in (3.3) converges to zero as k goes to infinity. Moreover, ISS
implies GS by defining σ1(·) := β(·, 0) and σ2 := γ. It remains to show that AG and
GS together imply ISS of system (3.1). We prove this implication by showing that

(1) AG + GS ⇒ (3.1) is robustly stable;

(2) (3.1) is robustly stable ⇒ there exists a dissipative ISS Lyapunov function.

Then by Theorem 3.19 system (3.1) is ISS.

Now we prove the implications (1) and (2):

(1) For continuous dynamics this result is proven in [70, Lemma 3.11] by noticing
that the GS property introduced in Definition 3.8 is qualitatively the same as the
uniformly bounded input bounded state (UBIBS) property defined in [70]. If the
dynamics are discontinuous, we can apply [70, Lemma 3.11] as well, as the proof
does not utilize the continuity property.

(2) For continuous dynamics this implication is shown in [70, Lemma 3.10]. For the
discontinuous case this implication is contained in the proof of [46, Theorem 2.6].
For the sake of completeness we give a sketch of the proof. First note that in [46]
robust stability is defined as the difference inclusion

x(k + 1) ⊂ G(x(k), ψ(‖x(k)‖) · [−1, 1]m)

being KL-stable, which is qualitatively the same as Definition 3.5. The authors
show that KL-stability of the above difference inclusion (in our context, this is
robust stability of system (3.1)) implies the existence of a Lyapunov function for the
difference inclusion (see [46, Theorem 6.4]). Finally, as it is shown in the proof of [46,
Theorem 2.6], the Lyapunov function for the difference inclusion is a dissipative ISS
Lyapunov function for system (3.1).

Remark 3.34. The proof of Lemma 3.33 immediately implies that system (3.1) is
ISS if and only if it is robustly stable. /

The following two small-gain results are taken from [24, Section 4.4]. We note that
continuity of the system dynamics is not needed in the particular proofs. Hence,
continuity of the right-hand side is not required.

Theorem 3.35 (small-gain global stability theorem). Assume that each subsystem
of (3.32) is GS, i.e., for all i ∈ {1, . . . , N + M} the solution xi(·, ξi, wi(·)) of sub-
system i satisfies a condition of the form (3.34). If Γµ given in (3.36), which is
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derived from the interconnection structure in (3.34), satisfies the strong small-gain
condition (1.11), then the overall system (3.1) is GS.

Theorem 3.36 (small-gain theorem for asymptotic gains). Assume that each sub-
system of (3.32) is AG as given by (3.35). If Γµ given in (3.36), which is derived
from the interconnection structure in (3.35), satisfies the strong small-gain condi-
tion (1.11), then the overall system (3.1) is AG.

For the next result we need the fact that AG and GS implies ISS, which has been
shown in Lemma 3.33. Hence, the following small-gain theorem for ISS systems
from [24, Proposition 4.8] also applies to discontinuous dynamics.

Theorem 3.37 (general small-gain theorem). Assume that each subsystem of (3.32)
is ISS (from wi to xi), i.e., for all i ∈ {1, . . . , N + M} the solution xi(·, ξi, wi(·))
satisfies a condition of the form (3.33). Let Γµ given in (3.36), which is derived from
the interconnection structure in (3.33), satisfy the strong small-gain condition (1.11).
Then the overall system (3.1) is ISS (from u to x).

Next, we consider the case that not all subsystems have the same stability properties.
In particular, we assume that the first N subsystems (3.32) of (3.1) are ISS, and
the remaining M subsystems are GS. We can thus view the overall system from two
different viewpoints. The first one considers the overall system as the interconnection
of all N +M subsystems, while the second one considers the overall systems as the
interconnection of the first N ISS subsystems with the remaining subsystems as
additional inputs. This point of view is indicated in Figure 3.2.

u

Σ1 Σ2

Figure 3.2: The interconnection of Σ1 (containing ISS subsystems) and Σ2 (contain-
ing GS subsystems)
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Summarizing, we are interested in a result guaranteeing that the interconnected
system

x(k + 1) = G(x(k), u(k)), k ∈ N (3.1)

of allN+M subsystems given in (3.32) with x = (x1, . . . , xN+M ), G = (g1, . . . , gN+M )

is GS, and the interconnected system of the first N subsystems

x̃(k + 1) = G̃(x̃(k), ũ(k)), k ∈ N (3.37)

with x̃ = (x1, . . . , xN ), G̃ = (g1, . . . , gN ), and input ũ = (xN+1, . . . , xN+M , u) is ISS
(from ũ to x̃).

This is stated in the next theorem and follows from the previous results in this
section.

Theorem 3.38. Assume that in (3.32) the subsystems i ∈ {1, . . . , N} are ISS and
the subsystems i ∈ {N + 1, . . . , N + M} are GS. If Γµ given in (3.36) derived
from (3.33) and (3.34) satisfies the strong small-gain condition (1.11) then the in-
terconnected system (3.1) is GS. In addition, the interconnected system of the first
N subsystems (3.37) is ISS from ũ = (xN+1, . . . , xN+M , u) to x̃ = (x1, . . . , xN ).

Proof. From (3.33) and (3.34) we see that the ISS subsystems i ∈ {1, . . . , N} are GS
with αi(‖x0

i ‖) = βi(‖x0
i ‖, 0). So if Γµ satisfies the strong small-gain condition (1.11)

then it follows directly from Theorem 3.35 that the interconnected system (3.1) is
GS.

Let us decompose the gain matrix Γ ∈ (K∞ ∪ {0})(N+M)×(N+M) into

Γ =

(
Γ1 Γ2

Γ3 Γ4

)
.

where Γ1 ∈ (K∞ ∪ {0})N×N , Γ2 ∈ (K∞ ∪ {0})N×M , Γ3 ∈ (K∞ ∪ {0})M×N , and
Γ4 ∈ (K∞ ∪ {0})M×M .

Let D = diag(id +δ) with δ ∈ K∞ be a diagonal operator for which the strong small-
gain condition (1.11) holds. Let D̄ : RN+ → RN+ be defined by D̄ := diag(id +δ). Then
we claim that (D̄ ◦ Γ1,µ)(s) 6≥ s for all s 6= 0, where Γ1,µ is defined by

Γ1,µ(s) :=

 µ1 (γ11([s]1), . . . , γ1N ([s]N ), 0, . . . , 0)
...

µN (γN1([s]1), . . . , γNN ([s]N ), 0, . . . , 0)

 .

Then we conclude from Theorem 3.37 that the system (3.37) is ISS from ũ to x̃.
So assume to the contrary that there exists an s̄ 6= 0 with (D̄ ◦ Γ1,µ)(s̄) ≥ s̄. Set
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s̃ =

(
s̄

0

)
then it follows

(D ◦ Γµ)(s̃) =

(
(D̄ ◦ Γ1,µ)(s̄)

∗

)
≥
(
s̄

0

)
,

a contradiction to the strong small-gain condition (1.11).

Remark 3.39. (i) As already mentioned above, Theorems 3.35, 3.36 and 3.37 have
been derived for continuous-time systems in [24, 122]. On the other hand, also
Theorem 3.38 can be stated for continuous-time systems. Moreover, we have derived
an analogous result to Theorem 3.38 in a hybrid systems framework in [39].

(ii) Instead of considering the interconnection of ISS and GS subsystems we could
consider the interconnection of ISS and AG subsystems. Indeed, the statement of
Theorem 3.38 with GS replaced by AG remains valid as can be easily seen from
the proof. A motivation for considering of ISS and GS subsystems can be found in
Section 3.5.

(iii) In [86] resp. [23] (for hybrid resp. continuous-time systems) a small-gain theorem
similar to Theorem 3.37 is given for interconnections of ISS systems with mixed ISS
characterizations, i.e., some subsystems are stated in the summation case and others
are stated in the maximization case. The condition that the interconnected system
then is ISS is a small-gain condition considering that (D ◦ Γ)(s) 6≥ s for all s 6= 0.
Here D (([s]1, . . . , [s]N+M )) = (D1([s]1), . . . , DN+M ([s]N+M )) with Di([s]i) = [s]i if
µi = ⊕ (the maximization case) and Di([s]i) = (id +δ)([s]i) with δ ∈ K∞ if µi = Σ.
The proof of Theorem 3.38 extends to this context in a straightforward manner, so
we have the same result even for mixed ISS characterizations. /

Remark 3.39 in particular implies the following special case. First note that in
the maximization case µ = ⊕ the gain operator Γ⊕ : RN+M

+ → RN+M
+ is of the

form (1.16). From [86, Theorem 2.4.5] we know that if each subsystem of the sys-
tem (3.32) is ISS and Γ⊕ satisfies the small-gain condition (1.10) then the intercon-
nected system (3.1) is ISS from u to x. So the same proof as in Theorem 3.38 now
yields the following corollary, where we can even omit the diagonal operator.

Corollary 3.40. Assume that for all i ∈ {1, . . . , N} the subsystems (3.32) satisfy
the ISS estimate (3.33) with µi = ⊕, and for all i ∈ {N + 1, . . . , N + M} the
subsystems (3.32) satisfy the GS estimate (3.34) with µi = ⊕. If Γ⊕ satisfies the
small-gain condition (1.10) then the interconnected system (3.1) is GS. In addition,
the interconnected system of the first N subsystems (3.37) is ISS from ũ to x̃.
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3.5 Notes and references

The concept of input-to-state stability was introduced in [128] for continuous-time
systems by E. Sontag. Since then, there has been an immense interest in this topic
as it turned out that the concept of ISS is well-suited for nonlinear control systems.
Two important research directions, where the concept of ISS emerges to be an elegant
tool, are

• (stability) analysis of dynamical systems, where the input acts as a disturbance;

• feedback (re-)design5 of dynamical systems, where the input acts as a feedback
control.

For an overview on different aspects of ISS we refer to [131], which also includes a
comprehensive list of references. An important observation has been derived in [132],
where it has been shown that ISS fits well in the context of Lyapunov functions. In
particular, the authors have shown that ISS is equivalent to the existence of an ISS
Lyapunov function.

For discrete-time systems, the notion of ISS has been introduced in [70,76]. In [70],
the authors also prove that ISS is equivalent to the existence of an ISS Lyapunov
function in the discrete-time framework. To be precise, the authors show that ISS
implies the existence of a dissipative ISS Lyapunov function, and note that dis-
sipative ISS Lyapunov functions are equivalent to implication-form ISS Lyapunov
functions if the dynamics are continuous. As recently shown in [46], the equivalence
between dissipative and implication-form ISS Lyapunov functions does not hold if
the dynamics are discontinuous, see also Remark 3.11. Indeed, for discontinuous
dynamics, the notion of an implication-form ISS Lyapunov function is not sufficient
to conclude ISS of the system.

Recently, there has been extensive interest in the derivation of small-gain theorems
for large-scale systems within the context of ISS systems. While stability conditions
for large-scale systems have already been studied in the 1970s and early 1980s cf.
[112,127,140] based on linear gains and Lyapunov techniques, nonlinear approaches
are more recent. It has been recognized that input-to-state stability is well suited
to the analysis of system interconnection. Early works on ISS small-gain theorems
are [68,69], where feedback interconnections of two systems were studied. For large-
scale systems defined through the interconnection of a number of ISS subsystems
there exist several small-gain type conditions guaranteeing the ISS property for the
interconnected system, see e.g. [21, 23–25, 64, 75, 124] for continuous-time systems

5Feedback redesign means that a feedback controller is optimized such that it does not only
make the system GAS, but also robust to disturbances as noise, uncertainty or computation errors,
see e.g. [131, Section 2.11 and 2.12].

126



3.5. Notes and references

and [22,86,115,126] for hybrid6 systems.

The first ISS small-gain theorems for discrete-time systems were presented in [70],
which parallel the results of [69] and [68] for continuous-time systems. For intercon-
nections consisting of more than two subsystems, small-gain theorems are presented
in [67] and in [24], whereas in [67] ISS was defined in a maximum formulation and
in [24] the results are given in a summation formulation. Further extensions to
the formulation via maximization or summation are ISS formulations via monotone
aggregation functions. In this formulation, the ISS small-gain results are shown to
hold in a more general form, see [122]. In [25] the authors present an ISS small-
gain theorem in a Lyapunov-based formulation that allows to construct an overall
ISS Lyapunov function. This idea is picked up in [99], where the authors present
a discrete-time version in a maximum formulation and construct an ISS Lyapunov
function for the overall system. Other small-gain theorems for discrete-time systems
can be found in [40,48,89], whereas these references do not require continuity of the
dynamics. While in this chapter Lyapunov-based small-gain results have been ob-
tained in a dissipative formulation, the authors in [48] consider an implication-form
formulation. We claim that the results in [48] can be generalized by incorporating
the finite-step idea.

There are several stability concepts related to the notions of global stability (GS), the
asymptotic gain property (AG), robust stability and zero input global asymptotic
stability (0-GAS) as introduced in Section 3.1. While the concept of integral input-
to-state stability (iISS) is weaker than ISS for continuous-time systems, see [129], it
is in fact stronger than the notion of 0-GAS. Nevertheless, for discrete-time systems,
the author in [3] showed that iISS and 0-GAS are equivalent. Another concept for
systems with outputs is the input-to-output stability (IOS), which is similarly defined
as in (3.3) but for output trajectories and not for state trajectories. This concept
generalizes the notion of ISS, which is the special case if the output is equal to the
state. For further insight in IOS we refer to the [69, 134] for the continuous-time
case and to [66] for the discrete-time case.

As already mentioned before, the results of Section 3.4 have also been derived for hy-
brid systems in [39]. The motivation for considering interconnections of ISS as well as
GS systems came up in the context of networked control systems, see e.g. [18,57,136]
and the references therein. Networked control systems consider the interconnec-
tion of systems via data channels that have communication imperfections as varying
transmission delays, varying sampling/transmission intervals, packet loss, commu-
nication constraints and quantization effects. Much work done in the context of
networked control systems aims at deriving bounds on the imperfections such that
a desired property such as e.g. asymptotic stability is preserved. For example

6I.e., systems that have both continuous-time and discrete-time dynamics involved.
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we mention the notions of MATI (maximum allowable transfer interval) and MAD
(maximum allowable delay), which are defined in e.g. [57]. For instance, the authors
in [12] derive ISS of the networked control system from a small-gain condition in
terms of a MATI. In particular, as it is implied by [12, Equation (34)], the MATI is
small if the corresponding gain is small.

The idea we propose in [39] is to consider the data channels as dynamical systems.
Since it would seem unreasonable to demand of a data channel that it be ISS, e.g.
if the signals are quantized with a fixed quantization region, we do only require the
data channels be globally stable. Alternatively, as it is e.g. done in [12,57], the im-
perfections can be modeled by error dynamics, which can be written as a dynamical
system. Finally, as networked control systems over data channels do naturally lead
to both continuous-time (e.g. the subsystems dynamics) and discrete-time (e.g. up-
date rules after transmissions and logic variables) dynamics, the framework of hybrid
systems as e.g. [14,15,43,126] fits well in studying networked control systems.
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4
About the tightness of small-gain

conditions

In Chapters 2 and 3 we have presented several small-gain results to study stability
properties of interconnected discrete-time systems. These small-gain results rely
heavily on a small-gain condition of the form Γµ 6≥ id (resp. D ◦ Γµ 6≥ id). Broadly
speaking, the small-gain condition guarantees that the composition of the gains is
small enough to avoid destabilizing effects of the interconnection. It is then clear
that, in general, there is a tradeoff between the size of the gains, which are admissible
at different places of the interconnection graph.

In the first part of this chapter we address the following design question: assume a
large-scale system is given satisfying a small-gain condition, we wish to add further
subsystems, and we are able to design the interconnection gains. Can we derive a
uniform bounding gain γ for the new gains depending on the given gains in order
that a small-gain condition holds? Furthermore, we are interested in a maximal
gain, i.e., a preferably large uniform bounding gain γ for the new gains preserving a
small-gain condition.

Considering several situations, we derive constructive methods for obtaining max-
imal gains γ. In particular, we treat the linear summation case (defined in Sec-
tion 1.6.1) and the maximization case (defined in Section 1.6.2) separately. For these
cases, equivalent characterizations of the small-gain condition can be used to com-
pute a maximal gain, as the “spectral radius less than one”-condition (Lemma 1.27)
and the cycle condition (Proposition 1.29). For the general case, we use the char-
acterization of strong small-gain conditions in terms of the existence of an Ω-path
(Lemma 1.23) to compute a set of uniform bounding gains γ ∈ K∞, in order to
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preserve a strong small-gain condition. For the general case, a complete answer to
the question of computing maximal gains is open.

In the second part of this chapter, we treat a problem that comes up in deriv-
ing maximal gains in the maximization case. In this case, by the cycle condition
(Proposition 1.29), the small-gain condition Γ⊕ 6≥ id is equivalent to all cycles of
the corresponding graph of Γ⊕ being weakly contracting. To determine a qualita-
tive uniform bounding gain for the new gains, we have to solve iterative functional
K∞-equations of the form

α1 ◦ γ ◦ α2 ◦ γ ◦ . . . ◦ αk ◦ γ = id , (4.1)

where α1, . . . , αk ∈ K∞ are determined by the given gains and the interconnection
structure. Note that (4.1) has, in general, non-unique solutions. Thus, we establish
a subclass of K∞, the class of right-affine K∞-functions, in which a unique solution
of the functional equation (4.1) exists. The proofs are constructive and can be
implemented to numerically compute this unique solution.

The outline of this chapter is as follows. In Section 4.1 we start with a precise de-
scription of the problem of finding admissible uniformly bounding gains such that
a (strong) small-gain condition is satisfied. For the maximization case and for the
linear summation case we give construction methods to compute maximal gains (Sec-
tions 4.1.1 resp. 4.1.2). The general case is treated in Section 4.1.3. In Section 4.2
we consider iterative functional K∞-equations of the form (4.1). As a motivation,
some examples show the different behavior of solutions of functional equations of
the form (4.1) in Section 4.2.1. We then restrict the functions αi, i ∈ {1, . . . , k} to
the class of right-affine K∞-functions. In Sections 4.2.2 and 4.2.3 we show existence
and uniqueness of solutions of the functional equation (4.1) within the class of right-
affine K∞-functions. To make the presentation more clear, we first consider the case
k = 2 in Section 4.2.2, and treat the general case k ≥ 2 afterwards in Section 4.2.3.
In Section 4.3 we conclude the chapter with notes and references.

4.1 Gain construction methods

The (strong) small-gain condition Γµ 6≥ id (resp. D◦Γµ 6≥ id) is a sufficient condition
to guarantee stability properties of interconnected systems (see Chapter 2 and 3, as
well as the notes and references therein). In the context of ISS of two interconnected
systems with suitable gains γ12, γ21 ∈ K∞, the small-gain condition (1.10) is satisfied
if and only if

γ12 ◦ γ21 < id . (4.2)

It is obvious that a “smaller” function γ12 ∈ K∞ enlarges the set of gains γ21 ∈ K∞
satisfying (4.2). We are interested in quantifying the set of suitable functions γ21
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that satisfies (4.2) for any fixed γ12 ∈ K∞. For this particular setting it is clear that
for fixed γ12 ∈ K∞, we have

S := {γ21 ∈ K∞ : (4.2) holds} = {γ21 ∈ K∞ : γ21 < γ−1
12 }.

In this section we want to extend this problem of finding suitable gains such that the
(strong) small-gain condition (1.10) (resp. (1.11)) holds. In particular, we raise the
problem of determining a maximal gain, if we assume that all undetermined gains
are the same.

So consider an interconnected system consisting of N +M subsystems. For the first
N subsystems it is assumed that the gains are determined and we assume to know
the gain matrices Γ1 ∈ (K∞∪{0})N×N and Γ2 ∈ (K∞∪{0})N×M . For the remaining
M subsystems only the interconnection structure is determined. For this purpose,
consider a weighted directed graph of the subsystems, as the one given by Figure 2
in the introduction, described by a weighted structure matrix

Γ∗sub := [Γ∗3 Γ∗4] ∈ RM×(N+M)
+ , to obtain Γ∗ =

[
Γ1 Γ2

Γ∗3 Γ∗4

]
, (4.3)

where [Γ∗sub]ij = 0 if and only if system N + i does not depend on system j. If we
choose a uniform gain γ in the structural entries, we obtain the gain operator Γγµ of
the form

Γγµ := µ ◦

[
Γ1 Γ2

Γ∗sub · γ

]
= µ ◦

[
Γ1 Γ2

Γ∗3 · γ Γ∗4 · γ

]
. (4.4)

Definition 4.1. Let µ ∈ MAFN+M
N+M , Γ1 ∈ (K∞ ∪ {0})N×N ,Γ2 ∈ (K∞ ∪ {0})N×M ,

and consider the structure matrix Γ∗sub from (4.3). A function γ ∈ K∞ is called
(strongly) admissible, if Γγµ defined in (4.4) satisfies a (strong) small-gain condition
of the form (1.10) (resp. (1.11)).

Note that in (4.4) the entries are linear scalings of the form [Γ∗sub]ij ·γ corresponding
to a(N+i)jγ in Figure 2 in the introduction. Intuitively, if Γ satisfies a small-gain
condition with γ = 0 then “small” γ should be admissible. In general, it might be
desirable to have large admissible γ, since this shows stability for a larger class of
systems. The question is then how large admissible γ may be and how a maximal γ
can be characterized.

We now state the problem in a more general form and do not assume that the entries
placed in the structure matrix coincide. For this purpose let J ⊂ ({1, . . . ,M} ×
{1, . . . , N + M}) be the set containing the non-zero entries of the structure entries
of Γ∗sub from (4.3), i.e.,

(i, j) ∈ J ⇐⇒ [Γ∗sub]ij 6= 0.
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It will be helpful to have precise notation linking theK∞-functions ([S]1, . . . , [S]#J) =:

S that are placed at the structure entries with the resulting gain matrix ΓS .
Let π : {1, . . . ,#J} → J be a bijective mapping. Define the map ΓSsub : K#J

∞ →
(K∞ ∪ {0})M×(N+M) by

S 7→
[
ΓSsub

]
ij

=

{
[Γ∗sub]ij [S]π−1(i,j) if (i, j) ∈ J

0 if (i, j) 6∈ J.

We arrive at the bijective correspondence between

S ∈ K#J
∞ and ΓS :=

(
Γ1 Γ2

ΓSsub

)
, (4.5)

and we denote γij := [ΓS ]ij ∈ K∞ ∪ {0}. We further define the potential decay
sets

S :=
{
S ∈ K#J

∞ : ΓSµ 6≥ id
}

(4.6)

and
Sstrong :=

{
S ∈ K#J

∞ : ∃D, D ◦ ΓSµ 6≥ id
}

(4.7)

where in the latter case D = diag(id +δ), δ ∈ K∞, is the diagonal operator defined
in (1.9). These potential decay sets can be viewed as the solution sets of the problem
of finding K∞-functions for the non-zero entries of (4.3) such that a (strong) small-
gain condition (1.10) (resp. (1.11)) holds for ΓS . Clearly, if some S ∈ S exists, then
the minimum over all component functions of S ∈ K#J

∞ is an admissible function in
the sense of Definition 4.1.

The questions from above are now whether the set S (resp. Sstrong) is nonempty.
And if yes, how to characterize maximal γ ∈ K∞ such that

Sγ :=
{
S ∈ K#J

∞ : [S]j(t) < γ(t), j ∈ {1, . . . ,#J}, t > 0
}
⊂ S, (4.8)

(resp. Sγ ⊂ Sstrong), provided such a γ exists. This leads to the following defini-
tion.

Definition 4.2. Let Γ∗ from (4.3) be given. A K∞-function γ is called maximal
for the set S (resp. for the set Sstrong) if any K∞-function γ < γ is admissible
(resp. strongly admissible), and any K∞-function γ ≥ γ is not admissible (resp. not
strongly admissible).

The remainder of this section is divided into three parts, where we use different
equivalent characterizations of the (strong) small-gain condition. As we will see, the
methods presented here for the case of interconnections modeled by general mono-
tone aggregation functions, invoking the equivalent characterization of the existence
of an Ω-path, will in general not lead to a maximal gain γ for which Sγ ⊂ Sstrong (Sec-
tion 4.1.3). In particular, we have to require that the monotone aggregation function
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is sub-additive to show that Sstrong is nonempty. But for the linear summation case
(Section 4.1.2), and the maximization case (Section 4.1.1) other characterizations
lead to a computable maximal γ. In particular, we can use the “spectral radius less
than one” (Lemma 1.27) and the “cycle condition” (Proposition 1.29) characteriza-
tion here. Thus, the proof techniques involved are different.

4.1.1 The maximization case

We now study the problem formulation (4.8) for the case of maximization, µ = ⊕, see
Section 1.6.2. In this case, the gain operator corresponding to Γ1 ∈ (K∞ ∪{0})N×N
is

Γ1,⊕(s) :=

 max {γ11([s]1), . . . , γ1N ([s]N )}
...

max {γN1([s]1), . . . , γNN ([s]N )}

 . (4.9)

Consider the gain matrix ΓS from (4.5). Any k-cycle c∗ = (γi0i1 , γi1i2 , . . . , γik−1ik)

of Γ∗ that contains at least one structural entry, i.e., (il −N, il+1) ∈ J for at least
one l ∈ {0, . . . , k−1}, is called a structural cycle. By cγ we denote the corresponding
cycle in ΓS with S = γ ·(1, . . . , 1). Moreover, N∗ is defined as the number of minimal1

structural cycles of Γ∗. Let us further denote the composition by⊗
cγ = γi0i1 ◦ γi1i2 ◦ . . . ◦ γik−1ik . (4.10)

Note that the equation
⊗
cγ = id can also be written in the form

(α1 ◦ γ) ◦ . . . ◦ (αl ◦ γ) = id, (4.11)

where the functions αk ∈ K∞, k ∈ {1, . . . , l}, subsume the known gains and
the structural scalings. For instance, consider the cycle (γi0i1 , ai1i2γ, γi2i0). Then⊗
cγ = α1 ◦ γ with α1 = γi2i0 ◦ γi0i1 ◦ ai1i2 id, where we used (1.2).

Theorem 4.3. Let µ = ⊕ and Γ1 ∈ (K∞ ∪ {0})N×N be given such that the small-
gain condition Γ1,⊕ 6≥ id is satisfied, with Γ1,⊕ defined as in (4.9). Let Γ2 ∈ (K∞ ∪
{0})N×M and consider the structure matrix Γ∗sub from (4.3). Assume that for any
minimal structural cycle c∗i , i ∈ {1, . . . , N∗}, the functional equation

⊗
cγii = id

exhibits a solution γi ∈ K∞. If there exist more than one solution, fix one, and
denote it by γi. Then, for

γ(t) := min
i∈{1,...,N∗}

γi(t), t ≥ 0 (4.12)

we have Sγ ⊂ S. Moreover, if there exists an index j and a T > 0 such that γj ≡ γ
on [0, T ), then γ is maximal.

1Recall the definition of a minimal cycle in Definition 1.17.
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Note that as solutions of the functional equation (4.10) may not be unique, also
maximal gains need not be unique, see also Remark 4.5.

Proof. We first show that every K∞-function γ < γ is admissible. From Proposi-
tion 1.29 we know that every k-cycle (k ≤ N) of Γ1 is weakly contracting since the
small-gain condition Γ1,⊕ 6≥ id is satisfied. Let S < γ · (1, . . . , 1). By construction
of γ, every k-cycle in ΓS is weakly contracting. From Proposition 1.29 it follows
ΓS⊕ 6≥ id implying Sγ ⊂ S.

For the proof of maximality, consider the structural cycle c∗ := c∗j satisfying
⊗
c
γj
j =

id and γj ≡ γ on [0, T ). Denote γ := γj and consider the equation
⊗
cγ = id in the

form of (4.11).

Let t1 ≤ T be such that (α1 ◦ γ)(t1) ≤ T . Define tk recursively for k ∈ {2, . . . , l} by

(αk ◦ γ)(tk) ≤ tk−1, tk ≤ tk−1.

Now consider γ̂ ≥ γ, γ̂ 6= γ. For the cycle c in (4.11) we obtain, using the definition
of tk backwards recursively from l to 1,⊗

cγ̂(tl) ≥ (α1 ◦ γ̂) ◦ . . . ◦ (αl−1 ◦ γ̂) ◦ (αl−2 ◦ γ̂) ◦ (αl ◦ γ)(tl)︸ ︷︷ ︸
≤tl−1≤T

tl≤T
≥ (α1 ◦ γ̂) ◦ . . . ◦ (αl−2 ◦ γ̂) ◦ (αl−1 ◦ γ) ◦ (αl ◦ γ)(tl)︸ ︷︷ ︸

≤tl−2≤T

tl−1≤T
≥ (α1 ◦ γ̂) ◦ . . . ◦ (αl−2 ◦ γ) ◦ (αl−1 ◦ γ) ◦ (αl ◦ γ)(tl)

...
t1≤T
≥

⊗
cγ(tl) = tl.

Here we used the fact that γ ≡ γ on [0, T ) and tk ≤ T for all k ∈ {1, . . . , l}. In
other words, we made use of the fact that, by monotonicity,

⊗
cγ̂(t) ≥

⊗
cγ(t) for

all t ≥ 0, and that tl is chosen such that
⊗
cγ(t) =

⊗
cγ(t) = t for all t ∈ [0, tl]. So

the cycle cγ̂ is not weakly contracting, hence Sγ̂ 6⊂ S.

In some cases, a solution γi for the equation
⊗
cγii = id can be determined analyti-

cally as the next example shows.

Example 4.4. Consider the matrix

Γ∗ =

 γ11 0 γ13

γ21 γ22 0

0 1 1

 =

 1
2 id 0 1

3 id3

id2 id(1− e− id) 0

0 1 1

 (4.13)
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and let µ = ⊕. Clearly Γ1 ∈ (K∞ ∪ {0})2×2 satisfies Γ1,⊕ 6≥ id because the only
k-cycles are (γ11) and (γ22), and those are weakly contracting. In addition, in Γ∗

we have another 1-cycle ([Γ∗]33), no 2-cycles, and one 3-cycle (γ21, γ13, [Γ
∗]32). So

setting those two cycles equal to the identity map yields

γ = id and
(

1
3γ

3
)2

= id .

From the definition of γ in (4.12) we get

γ(t) = min{t, 31/3t1/6}.

So by Theorem 4.3, ΓS⊕ 6≥ id for any S < (γ, γ). /

Remark 4.5. In Section 4.2 we will consider the problem of solving iterative func-
tional K∞-equations of the form

⊗
cγ = id in more detail. In this remark we

highlight some of the results that are useful for computing maximal gains.

(i) For a given structural cycle c∗ a solution γ ∈ K∞ of the equation
⊗
cγ = id is not

unique, in general, see Example 4.20. However, in Definition 4.18 we introduce the
class of right affine K∞-functions R(K∞) ⊂ K∞ such that with αk ∈ R(K∞), the
functional equation

⊗
cγ = id has a unique solution within R(K∞). Furthermore,

this solution can be computed numerically, see Procedure 4.24.

(ii) If the solutions γi of the equations (4.11) are of class R(K∞), then the final
condition of Theorem 4.3 is automatically satisfied. Hence, γ defined in (4.12) is
maximal.

(iii) If
⊗
cγ = id cannot be solved analytically, i.e., if we cannot compute γ in (4.12),

we can at least construct an admissible K∞-function γ as outlined in Remark 4.34
under the assumption that the K∞-functions αk are differentiable in zero. /

4.1.2 The linear summation case

Now we consider the linear summation case with µ =
∑

and given nonnegative
matrices Γ1 ∈ RN×N+ , Γ2 ∈ RN×M+ , where Γ1 has the property that the spectral
radius satisfies ρ(Γ1) < 1. Note that by Lemma 1.27, ρ(Γ1) < 1 is equivalent to
the small-gain condition Γ1s 6≥ s for all s ∈ RN+\{0}. In addition, we consider the
nonnegative structure matrices Γ3 ∈ RM×N+ and Γ4 ∈ RM×M+ . The problem of this
section is to determine the largest scalar γ > 0 (possibly infinite) such that for all
γ ∈ [0, γ) the small-gain condition

Γγs 6≥ s for all s ∈ RN+M
+ \{0} (4.14)

is satisfied, where

Γγ :=

[
Γ1 Γ2

Γ3γ Γ4γ

]
. (4.15)
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Chapter 4. About the tightness of small-gain conditions

As Γγ ∈ R(N+M)×(N+M)
+ is a nonnegative matrix, we have the following implica-

tion

0 ≤ γ1 ≤ γ2 ⇒ Γ0 ≤ Γγ1 ≤ Γγ2 ⇒ ρ(Γ1) ≤ ρ(Γγ1) ≤ ρ(Γγ2), (4.16)

see [8, Corollary 2.1.5] resp. Lemma A.3. Thus, a maximal2 gain γ ∈ R+ ∪ {∞} is
characterized as follows.

Lemma 4.6. Let Γγ be given by (4.15), and assume ρ(Γ1) < 1. Let γ ∈ R+ ∪ {∞}
be defined as

γ := inf{γ > 0 : ρ(Γγ) = 1}. (4.17)

Then γ is maximal. In particular, for all γ ∈ [0, γ) the small-gain condition (4.14)
holds, and (4.14) is violated for all γ ≥ γ.

Proof. Consider γ from (4.17). Firstly, note that as the eigenvalues depend contin-
uously on the matrix entries the infimum in (4.17) is attained, and can be replaced
by a minimum.

If γ =∞ then for all γ ∈ R+ we have ρ(Γγ) < 1, which is equivalent to the small-gain
condition (4.14) by Lemma 1.27.

If γ <∞ we distinguish the following two cases:
(i) Let γ ∈ [0, γ) then by (4.16), we have ρ(Γγ) ≤ ρ(Γγ) = 1. Moreover, by definition
of γ in (4.17), ρ(Γγ) 6= 1. Hence, ρ(Γγ) < 1, and the small-gain condition (4.14) is
satisfied by Lemma 1.27.
(ii) Let γ ≥ γ then by (4.16), we have ρ(Γγ) ≥ ρ(Γγ) = 1. Thus, the small-gain
condition (4.14) is violated by Lemma 1.27.

The characterization of the maximal gain γ in (4.17) is in general inapplicable to
compute γ explicitly. Next, we focus on the computation of γ. Here, we make use of
tools from perturbation theory of linear systems, which are stated in the appendix
section A.2.

Let us decompose Γγ into the following form

Γγ =

[
Γ1 Γ2

0 0

]
+ γ

[
0

I

] [
Γ3 Γ4

]
=: A+ γDE, (4.18)

where A ∈ R(N+M)×(N+M)
+ , D ∈ R(N+M)×M

+ , E ∈ RM×(N+M)
+ . Then we define the

transfer function of the decomposition (4.18) by

G(s) := E(sI −A)−1D ∀s ∈ C\σ(A). (4.19)

2We allow γ =∞ and call it a maximal gain, which means that any linear gain is admissible in
the sense of Definition 4.2.
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The maximal gain γ in (4.17) can now be expressed in terms of the stability radius
r+(A;D,E) given in Definition A.4 as follows:

γ
(4.17)

= inf{γ > 0 : ρ(Γγ) = 1}
= inf{γ > 0 : ρ(A+ γDE) ≥ 1}
= r+(A;D,E). (4.20)

As outlined in the appendix section A.2, stability radii for positive systems can
be explicitly computed using the transfer function G from (4.19). Hence, the next
theorem follows immediately from Theorem A.8.

Theorem 4.7. Let Γγ be given in (4.15) and D,E be the decomposition matri-
ces from (4.18). Let G be the transfer function defined in (4.19) and assume that
ρ(Γ1) < 1. Then the maximal gain γ from (4.17) is given by

γ = (ρ(G(1)))−1.

Proof. From Lemma 4.6 and (4.20), a maximal gain for Γγ is equal to the stability
radius r+(A;D,E) with respect to the decomposition (4.18). Since ρ(A) = ρ(Γ1) < 1

by assumption, we can apply Theorem A.8 to conclude

γ
(4.20)

= r+(A;D,E)
Theorem A.8

= (ρ(G(1)))−1,

where G(s) is the transfer function defined in (4.19).

The importance of Theorem 4.7 is that in the linear summation case the (unique)
maximal gain γ of the (N + M) × (N + M)-matrix Γγ in (4.15) can be easily
obtained by computing the spectral radius of the nonnegative, lower-dimensional
M ×M -matrix G(1), see e.g. [110] for a reference that addresses the problem of
computing the spectral radius of a nonnegative matrix. In particular, a straightfor-
ward calculation yields

G(1) = Γ3(I − Γ1)−1Γ2 + Γ4.

In the next example we consider the question of how to choose the interconnection of
several systems under some restrictions to achieve a maximal gain γ for (4.8).

Example 4.8. In the following academic example we consider two interconnected
linear systems with (Lyapunov-based or trajectory-based) gains γ12 = 0.9 and γ21 =

0.8, so Γ1 = ( 0 0.9
0.8 0 ) has spectral radius less than one. Now we want to interconnect

five additional systems to this interconnected system with the following restrictions:

(i) the graph should be strongly connected;
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Chapter 4. About the tightness of small-gain conditions

(ii) the gains γii satisfy γii = 0 for i ∈ {3, . . . , 7};

(iii) we assume that there is no influence of the systems 3 and 7 on systems 1 and 2,
and vice versa;

(iv) we assume that there is no influence of system 3 on system 6, and there is no
influence of system 5 on system 3;

(v) we assume we use exactly seven additional interconnections.

(vi) the weights of the gains correspond to a nearest neighbor order, the first nearest
neighbors have a weight of 1, the second nearest neighbors have a weight of 2,
and so on.

Summarizing, the (irreducible) gain matrix is of the form

Γ =



0 0.9 0    0

0.8 0 0    0

0 0 0  0  

   0   

    0  

  0   0 

0 0     0


where exactly seven of the lower written entries (, , ) are non-zero and the other
lower written entries are set to zero.

The problem in question is now to determine which interconnection, satisfying the
above assumptions, leads to a largest gain γ > 0 such that Γγ satisfies the small-gain
condition for all γ ∈ [0, γ). Therefore, we compute γ for all possible graphs satisfying
the assumptions (i)-(vi). It turns out that the maximal γ occurs in the cases with
the following graphs

1
2

3

4

5
6

7

1
2

3

4

5
6

7
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with gain matrices

Γ(1) =



0 0.9 0 0 0 0 0

0.8 0 0 0 3 0 0

0 0 0 0 0 0 2

0 0 1 0 0 0 0

0 0 0 1 0 0 0

2 0 0 0 1 0 0

0 0 0 0 0 1 0


and Γ(2) =



0 0.9 0 0 0 0 0

0.8 0 0 0 0 3 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

3 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 2 0 0 0 0


.

Here γ = 0.47682 satisfies ρ(Γγ(i)) < 1, i ∈ {1, 2} for all γ ∈ [0, γ). /

4.1.3 The general case

We now study the general nonlinear case. Firstly, note that in the maximization
case (resp. in the linear summation case), we can determine a maximal gain γ ∈ K∞
(resp. γ ∈ R+) satisfying Sγ ⊂ S by using tools, which are equivalent to the
small-gain condition (“cycle-condition” Proposition 1.29 resp. “spectral radius less
than one”-condition Lemma 1.27). In the general nonlinear case, the operator D
from (1.9) is required for the formulation of small-gain conditions; this diagonal
operator will depend on the particular gain matrix. In our analysis, we thus rely on
the concept of Ω-paths introduced in Definition 1.22.

We start with a result on monotone aggregation functions that is used in the proof
of the subsequent theorem.

Lemma 4.9. Let µ ∈ MAFN be sub-additive, and η̂, η ∈ K∞ satisfy η̂ = id−η.
Assume that there exists an l ∈ {1, . . . , N − 1}, and functions γi ∈ K∞ for all
i ∈ {1, . . . , l} satisfying

µ(γ1(r), . . . , γl(r), 0, . . . , 0) < η(r) for all r > 0. (4.21)

Let ε ∈ (0, 1). Then there exists a K∞-function γl+1 such that we have

µ(γ1(r), . . . , γl+1(r), 0, . . . , 0) < (id−εη̂)(r) for all r > 0.

Proof. Let ε ∈ (0, 1). Then we have

(id−εη̂) = (id−η̂) + (1− ε)η̂ = η + (1− ε)η̂. (4.22)

Consider the function υl+1(r) := µ(rel+1), where el+1 denotes the (l + 1)th unit
vector. Note that υl+1 ∈ K∞ as observed in (1.7). Define

γl+1(r) := υ−1
l+1 ◦

(
(1− ε)
N

η̂

)
(r) for all r ∈ R+.
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Clearly, γl+1 ∈ K∞, and it holds

µ(0, . . . , 0, γl+1(r), 0, . . . , 0) <
(1− ε)
N

η̂(r) for all r > 0. (4.23)

By sub-additivity of µ, we have for all r > 0

µ(γ1(r), . . . , γl+1(r), 0, . . . , 0) ≤ µ(γ1(r), . . . , γl(r), 0, . . . , 0)

+ µ(0, . . . , 0, γl+1(r), 0, . . . , 0)

(4.21),(4.23)
< η(r) +

(1− ε)
N

η̂(r)

(4.22)
< (id−εη̂)(r),

which concludes the proof.

The following theorem shows in a constructive way that the set Sstrong defined
in (4.7) is nonempty if the monotone aggregation function µ is sub-additive.

Theorem 4.10. Let Γ1 ∈ ({0}∪K∞)N×N , Γ2 ∈ ({0}∪K∞)N×M , and the diagonal
operator D = diag(id +δ) with δ ∈ K∞ be given. Assume that µ ∈ MAFN+M

N+M is
sub-additive. Let σ1 ∈ KN∞ be an Ω-path with respect to (D ◦ Γ1,µ), where Γ1,µ is
defined by

Γ1,µ(s) :=

 µ1 (γ11([s]1), . . . , γ1N ([s]N ), 0, . . . , 0)
...

µN (γN1([s]1), . . . , γNN ([s]N ), 0, . . . , 0)

 .

Then for any weighted structure matrix Γ∗sub ∈ RM×(N+M)
+ from (4.3) there exists a

strongly admissible γ ∈ K∞, thus Sγ ⊂ Sstrong. In particular, Sstrong is nonempty.

Proof. To prove the statement we will construct an Ω-path σ with respect to (D̂◦Γµ),
with D̂ = diag(id +δ̂), and δ̂ given below in (4.28). By assumption, there exists an
Ω-path σ1 = (σ1

1 , . . . , σ
1
N ) ∈ KN∞ with respect to (D ◦ Γ1,µ), i.e.,

(D ◦ Γ1,µ)(σ1(r)) < σ1(r) for all r > 0. (4.24)

Since D = diag(id +δ), δ ∈ K∞, there exists, by Lemma 1.7, K∞-functions η, η̂ with
η = id−η̂ satisfying D−1 = diag(η). So (4.24) is equivalent to

Γ1,µ(σ1(r)) < D−1(σ1(r)) = diag(η) ◦ σ1(r) for all r > 0

or row by row

µi
(
γi1(σ1

1(r)), . . . , γiN (σ1
N (r)), 0, . . . , 0

)
< η(σ1

i (r)) (4.25)
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for all r > 0 and i ∈ {1, . . . , N}. Let ε ∈ (0, 1), then Lemma 1.6 implies that
the function id−εη̂ is of class K∞. By assumption, µ is sub-additive. Applying
Lemma 4.9 iteratively, we can determine functions σ2

j ∈ K∞, j ∈ {1 . . . ,M} such
that

µi
(
γi1(σ1

1(r)), . . . , γiN (σ1
N (r)), γi,N+1(σ2

1(r)), . . . , γi,N+M (σ2
M (r))

)
< (id−εη̂)◦σ1

i (r)

(4.26)
holds for all r > 0. This can be achieved by computing σ2

j ∈ K∞, j ∈ {1 . . . ,M} for
each i ∈ {1, . . . , N} and then taking the minimum for each j ∈ {1, . . . ,M}.

Define σ : R → RN+M
+ by σ(r) := (σ1(r), σ2(r)), then (4.26) can equivalently be

written as
(µ ◦ (Γ1,Γ2)) (σ(r)) < diag(id−εη̂) ◦ σ1(r), (4.27)

where µ = (µ1, . . . , µN ) ∈ MAFNN+M .

In the remainder of the proof, we show that we can choose the entries S ∈ K#J
∞ of

ΓS (defined in (4.5)) in such a way, that σ is an Ω-path with respect to (D̂ ◦ Γµ),
D̂ = diag(id +δ̂), where

δ̂ ∈ K∞ satisfies (id +δ̂) = (id−εη̂)−1, (4.28)

which exists by Lemma 1.6. Since σ1
i , σ

2
j ∈ K∞ and µi ∈ MAFN+M is sub-additive,

we can apply Lemma 4.9 to determine K∞-functions γi, i ∈ {1, . . . ,M}, such that
for all r > 0 we have

µi+N
(
γi(σ(i,j)∈J(r))

)
< (id−εη̂) ◦ σi+N (r), (4.29)

where we use the notation µi+N
(
γi(σ(i,j)∈J(r))

)
:= µi+N (ai1(r), . . . , ai,N+M (r))

with aij(r) =

{
[Γ∗sub]ijγi(σj(r)) if (i, j) ∈ J

0 if (i, j) 6∈ J . Define

γ(r) := min
i∈{1,...,M}

{γi(r)}. (4.30)

With Γγsub := Γ
γ·(1,...,1)
sub , (4.29) is equivalent to(

µ ◦ Γγsub

)
(σ(r)) < diag(id−εη̂) ◦ σ2(r). (4.31)

All in all we conclude from (4.27) and (4.31)

Γγµ(σ(r)) < diag(id−εη̂) ◦ σ(r) for all r > 0

which is equivalent to (D̂◦Γγµ)(σ(r)) < σ(r) with D̂ = diag(id +δ̂) and δ̂ ∈ K∞ given
in (4.28). Thus, Lemma 1.23 shows that the strong small-gain condition (D̂◦Γγµ) 6≥ id

is satisfied, which shows that Sγ ⊂ Sstrong.
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The proof that Sstrong is nonempty relies on the knowledge of an Ω-path σ1 of Γ1,µ,
which enables the construction of an Ω-path σ for the overall system with σ =

(σ1, σ2). Such Ω-paths can be computed efficiently using the algorithm in [37], see
Remark 1.25. Clearly, since Ω-paths are far away from being unique, γ in (4.30) may
vary within the different choices of σ1. Moreover, since the operator D̂, depending on
the non-unique D and ε ∈ (0, 1), influences γ, the construction of γ will in general be
conservative. In addition, the method of proof of Theorem 4.10 relies on choosing an
arbitrary path σ2. Clearly, the derived strongly admissible gain γ in (4.30) crucially
depends on this choice of σ2, but it is unclear how to choose an “optimal” path in
terms of maximizing γ.

In Theorem 4.10 we assume the existence of an Ω-path σ1 with respect to (D◦Γ1,µ).
Note that from Lemma 1.24 it follows that if Γ∗ defined in (4.3) is irreducible,
then this assumption is necessary. Indeed, if there exists a strongly admissible gain
γ ∈ K∞, then there exist a diagonal operator D and an Ω-path σ = (σ1, σ2) with
respect to (D ◦ Γγµ). If Γ∗ from (4.3) is reducible, then we can bring Γ∗ into upper
block triangular form, and apply Theorem 4.10 on each block separately.

The proof of Theorem 4.10 heavily relies on the fact that given an inequality of the
form (4.25), we can determine functions σ2

j ∈ K∞, j ∈ {1 . . . ,M}, such that an in-
equality of the form (4.26) holds. The following example shows that this step cannot,
in general, be carried out without the assumption that µ is sub-additive.

Example 4.11. Let µ ∈ MAF2 be defined by

µ(s1, s2) := 0.9s1 + (s1 + 1)s2, s1, s2 ∈ R+.

Indeed, µ is a monotone aggregation function, which is not sub-additive. Let γ1 := id

then µ(γ1(r), 0) = 0.9r for all r ∈ R+. We claim that there does not exist a function
γ2 ∈ K∞ satisfying

µ(γ1(r), γ2(r)) < r for all r > 0. (4.32)

To prove this claim, assume to the contrary that there exists a function γ2 ∈ K∞
satisfying (4.32). Then, by definition of µ, we have for all r > 0

0.9r + (r + 1)γ2(r) = µ(γ1(r), γ2(r)) < r ⇐⇒ γ2(r) < 0.1
r

r + 1
< 0.1.

Hence, any function γ2 satisfying (4.32) is bounded, which contradicts the unbound-
edness condition of a K∞-function. /

We proceed with an example, where Theorem 4.10 is applied.

Example 4.12. We consider Γγ(1) from Example 4.8. For this gain matrix we want
to determine γ > 0 such that for γ ∈ [0, γ) the small-gain condition (4.14) is satisfied,
by following the proof of Theorem 4.10. It is not hard to see that an Ω-path σ1 for
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the first two subsystems can be taken as σ1 = (id, id). The only condition for the
Ω-path σ2 for the remaining five subsystems from (4.26) (with ε = 1, since we do
not need the diagonal operator D) is

0.8 id +3σ2
3 < id ⇐⇒ σ2

3 <
2
30 id .

So if we choose σ2 to be linear then any

σ2(r) = vr, v > 0, v ∈ R5
+ with [v]3 <

2
30 (4.33)

will give an estimate for γ. For instance, the choice σ2 = 1
30 (1, . . . , 1) leads to

(see (4.30))
γ < 0.01634 ≈ min{0.5, 1, 1, 1/30

1/30+2 , 1}.

Compared to γ = 0.47682 obtained in Example 4.8, this shows the conservatism of
the method of Theorem 4.10.

More suitable is optimizing γ along all paths σ2 satisfying (4.33), i.e., solving the
following system for γ > 0

2γσ2
5 < σ2

1 , γσ2
1 < σ2

2 ,

γσ2
2 < σ2

3 <
2
30 id , 2γ id +γσ2

3 < σ2
4 ,

2γσ2
4 < σ2

5 ,

which leads to γ5(2 id +σ2
3) < 1

2σ
2
3 <

1
30 id and to the less conservative estimate

γ < 0.43804 .
/

The idea of using properties of the Ω-paths rather than using explicit paths is also
used in the next example.

Example 4.13. Recall Example 4.4 with Γ∗ from (4.13). Firstly, note that σ1(r) =

(σ1
1(r), σ1

2(r)) is an Ω-path for Γ1,⊕ if and only if

(σ1
1(r))2 < σ1

2(r) for all r > 0. (4.34)

Since we are in the maximization case, we can omit the diagonal operator and (4.26)
is satisfied if and only if

σ2
1(r) < (3σ1

1(r))1/3 for all r > 0. (4.35)

Then (4.29) is satisfied if and only if

max{γ(σ1
2(r)), γ(σ2

1(r))} < σ2
1(r)

holds for every r > 0. In particular, γ < id. From (4.34) and (4.35) we conclude

γ((σ1
1(r))2) < γ(σ1

2(r)) < σ2
1(r) < (3σ1

1(r))1/3 for all r > 0 ⇐⇒ γ(τ) < 31/3τ1/6.

143



Chapter 4. About the tightness of small-gain conditions

Together we have γ(τ) < max{τ, 31/3τ1/6} for all τ > 0 which coincides with the
maximal gain from (4.12). Note that fixing σ1

1 , σ1
2 and σ2

1 would have led to a
considerably more conservative estimate for γ. /

Remark 4.14. Throughout this section we assume that Γ2 ∈ (K∞ ∪ {0})N×M is
known. This assumption is further motivated in Chapters 2 and 3, where the entries
of Γ2 describe how the first N subsystems are influenced by the last M subsystems.
On the other hand, we could assume that the operator Γ∗(γ) in (4.4) is of the form

Γ∗(γ) :=

[
Γ1 Γ∗2 · γ

Γ∗3 · γ Γ∗4 · γ

]
.

By small modifications in the particular proofs, we obtain results similar to The-
orem 4.3, Theorem 4.7 with A =

[
Γ1 0
0 0

]
, D = I and E =

[
0 Γ2

Γ3 Γ4

]
, as well as

Theorem 4.10. /

Remark 4.15. To ease presentation, we assumed that the weights a(N+i)j ∈ R+,
collected in the matrix Γ∗sub in (4.3), are nonnegative real numbers. These weights
can also be chosen nonlinear, i.e., as α(N+i)j ∈ K∞. The statement of the results of
this section still holds true. /

4.2 Solutions of iterative functional K∞-equations

The purpose of this section is to study functional equations of the form

α1 ◦ γ ◦ α2 ◦ γ ◦ . . . ◦ αk ◦ γ = id , (4.36)

with k ∈ N, and αi ∈ K∞ for i ∈ {1, . . . , k}. Functional equations of the form (4.36)
will also be referred to as iterative functional K∞-equations, as the functions are
applied iteratively, and we are looking for solutions γ of class K∞. Of particular in-
terest are existence and uniqueness as well as the numerical computation of solutions
γ ∈ K∞ of the functional equation (4.36).

Functional equations of this class have been derived in Section 4.1 to determine the
set of functions such that a corresponding cycle is weakly contracting. To be more
precise, if γ ∈ K∞ satisfies (4.36), then by the strict increase of K∞-functions we
have

α1 ◦ γ ◦ . . . ◦ αk ◦ γ
{
< id if γ < γ

≥ id if γ ≥ γ .

From an abstract point of view, the results obtained in this section extend previous
results on functional equations such as the special case from [87], which is given in the
next proposition. Although functional equations have been extensively studied, the
problem we pose appears to be solved only for the special case, where α1, . . . , αk−1 =

id.
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4.2. Solutions of iterative functional K∞-equations

Proposition 4.16. Let α ∈ K∞. Then the iterative functional K∞-equation

γk = α

admits at least one solution γ ∈ K∞, which is not unique, in general.

Proof. The result follows directly from [87, Theorem 11.2.2] by noticing that α ∈ K∞
is a strictly increasing, continuous self-mapping of [0,∞) ⊂ R.

Proposition 4.16 can be used to ensure the existence of solutions of iterative func-
tional K∞-equations (4.36) of a special form.

Corollary 4.17. Consider the iterative functional K∞-equation (4.36) with αi ∈
K∞ for all i ∈ {1, . . . , k}, and assume that at least k − 1 of the functions αi ∈ K∞
are the same. Then there exists at least one solution γ ∈ K∞ of (4.36).
In particular, for k ∈ {1, 2} the iterative functional K∞-equation (4.36) always ex-
hibits a solution.

Proof. Let αi = β ∈ K∞ for all i ∈ {1, . . . , k} then clearly γ = β−1 solves (4.36).
Now assume that one function αi is different from the others. Denote β := αj , j 6= i.
Then defining χ := β ◦ γ and α := β ◦ α−1

i , and using the cyclic permutation
property (1.2) leads to the iterative functional K∞-equation χk = α, which has at
least one solution by Proposition 4.16. Thus, a solution γ of (4.36) is given by
γ = β−1 ◦ χ.
In particular, if k = 1 then γ = α−1

1 solves (4.36). If k = 2, then γ = α−1
2 ◦ χ

solves (4.36), where χ ∈ K∞ is a solution of χ2 = α2 ◦ α−1
1 . This solution exists by

Proposition 4.16.

Proposition 4.16 ensures the existence of solutions for a special class of iterative
functional K∞-equations (4.36). Also for this special case, solutions may not be
unique, and the proof of [87, Theorem 11.2.2] is not constructive. Hence, a solution
cannot be computed, in general.

To apply the results in Section 4.1.1, in particular Theorem 4.3, we have to be
able to compute a solution of (4.36). For this reason, we restrict the K∞-functions
γ, αi, i ∈ {1, . . . , k}, to the class of right affine K∞-functions in which uniqueness of
solutions will be shown in the remainder of this section.

Definition 4.18. A function α ∈ K∞ is called right affine, resp. left affine in
t ∈ [0,∞), if there exists an ε > 0 such that α is affine linear on [t, t + ε), resp.
(t − ε, t]. Then α ∈ K∞ is called right affine (resp. left affine), if it is right affine
(resp. left affine) in every t ∈ [0,∞).
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The set of right affine resp. left affine functions is denoted by R(K∞) resp. L(K∞).
Further, we denote

I(K∞) := {α ∈ K∞ | ∀t ∈ (0,∞) : α is right or left affine in t} .

A sampling point t > 0 for a function α ∈ I(K∞) is defined by the property that α
is left and right affine in t and

α′(t−) := lim
τ↗t

α(t)− α(τ)

t− τ
6= lim
τ↘t

α(τ)− α(t)

τ − t
=: α′(t+),

i.e., its left and right hand derivatives differ. Loosely speaking, α ∈ I(K∞) has a
kink in a sampling point t. Let P(K∞) = R(K∞) ∩ L(K∞), then P(K∞) is the set
of piecewise linear functions of class K∞, i.e., the set of those functions in K∞ which
locally have only finitely many sampling points and are affine linear between two
successive sampling points. By definition, the subset F(K∞) of P(K∞) consists of
those functions α ∈ P(K∞) that have only finitely many sampling points.

If α ∈ I(K∞) admits a strictly increasing or strictly decreasing convergent sequence
{tk}k∈N of sampling points, then the limit limk→∞ tk =: t∗ is called an accumulation
point of α. By definition, for α ∈ R(K∞) there do not exist strictly decreasing
sequences of sampling points. Furthermore, given α ∈ R(K∞) and t ∈ [0,∞), there
exists an ε > 0 such that α is affine linear on [t, t + ε). Hence, there exists a
t∗ ∈ (t,∞] such that α has at most countably many sampling points in (t, t∗) and no
other singularities in that interval. In particular, α ∈ R(K∞) has at most countably
many sampling points and countably many accumulation points.

The sets F(K∞),P(K∞),R(K∞) and I(K∞) satisfy the relation

F(K∞) ⊂ P(K∞) ⊂ R(K∞) ⊂ I(K∞).

Moreover, any of these sets, together with the composition ◦, is a group. We note
that we do not consider the class L(K∞) in this work, but rely on the class R(K∞).
This will become clear in the proof of Lemma 4.22, where we exploit the knowledge
of the right hand derivatives of the functions αi ∈ R(K∞) to construct a solution
of (4.36).

4.2.1 Motivating examples

We start with an example, where we study the behavior of solutions of the iterative
functional K∞-equation (4.36) with k = 2 and α1, α2 ∈ F(K∞). We show that in this
case we cannot conclude that a solution γ of (4.36) is of class P(K∞). This example
shows that the set P(K∞) is not appropriate for computing solutions of (4.36).
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4.2. Solutions of iterative functional K∞-equations

Example 4.19. Consider the following special case of (4.36),

α ◦ γ ◦ id ◦γ = id, (4.37)

where α ∈ F(K∞). We solve this equations for two different functions α, which are
given by

α1(t) =

{
4t t ∈ [0, 1]

1
2 t+ 7

2 t ∈ [1,∞)
, and α2(t) =

{
1
4 t t ∈ [0, 4]

t− 3 t ∈ [4,∞)
.

Using the procedure that will be given in Lemma 4.22, we can compute the unique
solution of (4.37) in R(K∞) as

γ1(t) =



1
2 t t ∈ [0, 4]

4t− 14 t ∈ [4, 9
2 ]

...
1
2 t+ 7·(2n−1)

2n+1 t ∈ [ 2n−1·14−5
2n , 2n−1·14−3

2n ] n ∈ N
4t− 7·(2n·3−1)

2n t ∈ [ 2n−1·14−3
2n , 2n·14−5

2n+1 ] n ∈ N
...√

2t− 7√
2+1

t ∈ [7,∞)

and

γ2(t) =



2t t ∈ [0, 2]
1
2 t+ 3 t ∈ [2, 4]

...
2t− 3n t ∈ [3n+ 1, 3n+ 2] n ∈ N

1
2 t+ 3

2n+ 3 t ∈ [3n+ 2, 3n+ 4] n ∈ N
...

.

The functions αi and γi are shown in Figure 4.1. In both cases, αi ∈ F(K∞) for
i ∈ {1, 2} with only one sampling point. However, the solutions γi have infinitely
many sampling points that may accumulate (in the case i = 1) or not (in the case
i = 2). /
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Figure 4.1: γi and αi satisfying αi ◦ γi ◦ id ◦γi = id.

The next example shows that even for linear αi ∈ F(K∞), i ∈ {1, . . . , k} we do not
have unique solutions γ ∈ I(K∞) for the functional equation (4.36). Hence, to obtain
unique solutions of (4.36), the set I(K∞) is too big to be a solution space.

Example 4.20. Consider the functional equation

1
2 id ◦γ ◦ 2 id ◦γ = id . (4.38)

Clearly, a solution is given by γ1 = id. Now consider the function

γ2(t) := t+



...
−1/3t− 1/12 t ∈ [1/4, 7/16]

t− 1/2 t ∈ [7/16, 1/2]

1/2t− 1/4 t ∈ [1/2, 3/4]

−1/2t+ 1/2 t ∈ [3/4, 1]

−1/3t+ 1/3 t ∈ [1, 7/4]

t− 2 t ∈ [7/4, 2]

1/2t− 1 t ∈ [2, 7/2]

−1/2t+ 5/2 t ∈ [7/2, 4]
...

(4.39)

shown in Figure 4.2.
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Figure 4.2: Solutions to functional equations of the form (4.36) are in general not
unique.

This function is defined as follows. We start by defining γ2 on the interval [1/2, 1] as
in (4.39), whence γ2([1/2, 1]) = [1/2, 1]. We now construct γ2 such that (4.38) holds.
By solving γ2(2γ2(t)) = 2t for t ∈ [1/2, 1], the definition of γ2 on [1, 2] as in (4.39)
follows. Continuing in this manner we can construct γ2 on all intervals [2k−2, 2k−1],
k ∈ N and solving this equation backwards, γ2 is obtained on [2−k−2, 2−k−1], k ∈
{0, 1, . . .}. By construction, γ2 ∈ I(K∞) satisfies (4.38). /

4.2.2 Solutions of iterative functional K∞-equations for k = 2

We start with the case k = 2 to explain the behavior of solutions and to give clear
ideas how to prove results in this context. From Proposition 4.16 we know that for
k = 2 and α1, α2 ∈ K∞ the iterative functional K∞-equation (4.36) always admits
a solution γ. But from Example 4.20 we know that even for linear functions αi we
cannot expect a unique solution in K∞ of (4.36). In the next lemma we show that
uniqueness of a solution of (4.36) is obtained for α1, α2 ∈ R(K∞) if only right affine
solutions are considered.

Lemma 4.21 (Unique representation). Let k = 2, α1, α2 ∈ R(K∞), T > 0, I =

[0, T ]. If for γ1, γ2 ∈ R(K∞) we have

∀t ∈ I : α1 ◦ γi ◦ α2 ◦ γi(t) = t , i ∈ {1, 2} , (4.40)
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then the restriction to Ī := I ∪ α2(γ1(I))∪ α2(γ2(I)) satisfies γ1|Ī ≡ γ2|Ī . In partic-
ular, there exists at most one right affine solution γ ∈ R(K∞) of (4.36).

Proof. Let k = 2 and αi ∈ R(K∞), i ∈ {1, 2}. Assume that there exist γ1, γ2 ∈
R(K∞), γ1 6= γ2 solving (4.40). Taking the derivative of (4.40), we obtain for i ∈
{1, 2}

(α1 ◦ γi ◦ α2 ◦ γi)′(0+) = α′1(0+) · γ′i(0+) · α′2(0+) · γ′i(0+) = 1.

and so γ′1(0+) = γ′2(0+). As γ1, γ2 ∈ R(K∞) this implies that there exists an interval
[0, a] with γ1(s) = γ2(s) for all s ∈ [0, a]. Seeking a contradiction, assume a < T and
without loss of generality γ1(s) < γ2(s) for all s ∈ (a, a+ ε) for ε > 0 small enough.
Fix t ∈ (a, a+ ε) ∩ I. If α2(γ2(t)) ≤ t, then we obtain the contradiction

t = α1 ◦ γ1 ◦ α2 ◦ γ1(t) < α1 ◦ γ1 ◦ α2 ◦ γ2(t)︸ ︷︷ ︸
≤t

≤ α1 ◦ γ2 ◦ α2 ◦ γ2(t) = t .

On the other hand, if α2(γ2(t)) > t, then pick a t̃ < t with α2(γ2(t̃)) = t, which is
uniquely determined by monotonicity and continuity. Then as t̃ ∈ I

t̃ = α1 ◦ γ2 ◦ α2 ◦ γ2(t̃) > α1 ◦ γ1(t) = α1 ◦ γ1 ◦ α2 ◦ γ2(t̃) ≥ α1 ◦ γ1 ◦ α2 ◦ γ1(t̃) = t̃,

where we have used that γ2 ≥ γ1 on [0, a+ε) by construction. This shows γ1|I ≡ γ2|I ,
whence α2 ◦γ1(I) = α2 ◦γ2(I). The claim for Ī now follows from (4.40). The second
statement is then immediate.

The following lemma makes the existence result of Proposition 4.16 more precise.
The proof is constructive and it ensures the existence of a solution of class R(K∞) if
α1, α2 ∈ R(K∞). Furthermore, the proof yields an algorithm for computing solutions
of (4.36) for k = 2 and α1, α2 ∈ R(K∞).

Lemma 4.22 (Existence). Let k = 2 and α1, α2 ∈ R(K∞). Then there exists a
right affine solution γ ∈ R(K∞) of (4.36).

Proof. The proof relies on an extension principle, which we describe next. Assume
that η ∈ R(K∞) and the interval I = [0, T ] are such that

∀t ∈ I : α1 ◦ η ◦ α2 ◦ η(t) = t , (4.41)

and let I be the maximal closed interval on which (4.41) holds. This implies
(α1 ◦ η ◦ α2 ◦ η)

′
(T+) 6= 1 as otherwise the interval I in (4.41) can be extended

to the right, contradicting the maximality of I. Define τ := max{T, α2(η(T ))} and
η̃ ∈ R(K∞) by setting

η̃(t) :=

{
η(t) , t ∈ [0, τ ]

m(t− τ) + η(τ) , t ∈ [τ,∞)
(4.42)
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with

m :=
(
α′1(η(T )+) · α′2(η(T )+)

)−1/2
, if T = α2(η(T )),

m :=
(
α′1(η ◦ α2 ◦ η(T )+) · α′2(η(T )+) · η′(T+)

)−1
, if T < α2(η(T )),

m :=
(
α′1(η ◦ α2 ◦ η(T )+)·η′(α2 ◦ η(T )+)·α′2(η(T )+)

)−1
, if T > α2(η(T )).

We claim that η̃ satisfies (4.41) on a strictly larger interval than I. To this end note
that in the case T = α2(η(T )) we have

(α1 ◦ η̃ ◦ α2 ◦ η̃)′(T+) = α′1(η̃◦α2◦η̃(T )+) · η̃′(α2◦η̃(T )+) · α′2(η̃(T )+) · η̃′(T+)

= α′1(η̃(T )+) · α′2(η̃(T )+) ·m2

= α′1(η(T )+) · α′2(η(T )+) ·m2 = 1 .

Similar arguments apply in the cases T < α2(η(T )), T > α2(η(T )) to show that
(α1◦η̃◦α2◦η̃)′(T+) = 1. Since η̃, α1, α2 ∈ R(K∞) we conclude that there exists an
ε > 0 such that α1 ◦ η̃ ◦ α2 ◦ η̃(t) = t holds for all t ∈ [0, T + ε). By continuity the
equality holds on [0, T + ε].

To show that there exists a function η ∈ R(K∞) and T > 0 satisfying (4.41), define
γ0(t) := (α′1(0+) ·α′2(0+))−1/2t for t ≥ 0. Then (α1 ◦γ0 ◦α2 ◦γ0)′(0+) = 1, and since
α1, α2 are right affine, there exists an ε > 0 such that α1 ◦ γ0 ◦ α2 ◦ γ0(t) = t for all
t ∈ I0 := [0, ε).

Finally, we show the existence of a solution γ ∈ R(K∞). We call η ∈ R(K∞) an
extension of γ0 if the two functions coincide on I0. Denote by I(η) the maximal closed
interval containing 0 on which (4.41) holds for η and let Ī(η) := I(η)∪ α2 ◦ η(I(η)).
By Lemma 4.21 two extensions η1, η2 of γ0 coincide on Ī(η1) ∩ Ī(η2). Thus the
definition

γ(t) = {η(t) | η extends γ0, t ∈ Ī(η)} (4.43)

is well defined on Īmax := ∪Ī(η), where the union is over all extensions η of γ0. If
Īmax and so Imax = ∪I(η) is bounded, then the fact that extensions η solve (4.40)
on I(η) implies that γ is strictly increasing and bounded on Īmax. Thus γ can be
continuously extended to clĪmax and then extended in an arbitrary manner to ∞ so
that the resulting function γ ∈ R(K∞). Now γ extends γ0, I(γ) = clImax and by
the first step of the proof γ may be extended to a function γ̃ which solves (4.40) on
a larger interval than Imax. This clearly contradicts the definition of Imax and so
(4.43) already defines a solution γ of (4.36).

The main result of this section is now a corollary of the previous lemmata.

Theorem 4.23 (Existence of a unique right affine solution). Let k = 2 and α1, α2 ∈
R(K∞). Then there exists a unique right affine solution γ ∈ R(K∞) of (4.36).
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Proof. This follows directly from Lemma 4.21 and Lemma 4.22.

We note that the method of proof of Lemma 4.22 lends itself to a constructive
procedure.

Procedure 4.24. Define γ0 as in the proof of Lemma 4.22 and then iterate.

[I] Compute ti+1 := inf{t > ti ≥ 0 : α1 ◦ γi ◦ α2 ◦ γi(t)− t 6= 0}.

[II] If ti+1 = ∞, then (4.36) is satisfied for γi and we are done. Otherwise define
the slope m as in the proof of Lemma 4.22 for T = ti+1.

[III] Define an extension γi+1 as in (4.42) and continue with Step [I]. /

This iteration will compute the solution up to an accumulation point. It is therefore
of interest to have criteria for the existence of accumulation points, which can be
used as initial values for computations beyond such points. This is discussed in the
sequel.

In the remainder of this section we investigate when accumulation points occur. We
start with the iterative functional K∞-equation (4.36), where the functions α1, α2 ∈
P(K∞), i.e., they are piecewise linear, but do not have accumulation points.

Proposition 4.25. Let k = 2, α1, α2 ∈ P(K∞), and γ ∈ R(K∞) be a solution
of (4.36). If γ has an accumulation point t∗ > 0, then

t∗ = α1(γ(t∗)) = α2(γ(t∗)) .

Proof. An accumulation point t∗ of γ is called isolated , if there exists an ε > 0 such
that (t∗ − ε, t∗ + ε) contains no other accumulation point. As γ ∈ R(K∞) has at
most countably many accumulation points, it follows that every accumulation point
of γ ∈ R(K∞) is either isolated or the limit of isolated accumulation points. Hence,
it is sufficient to prove the claim for isolated accumulation points. The full statement
then follows by continuity.

So assume to the contrary that t∗ < α2(γ(t∗)). The case t∗ > α2(γ(t∗)) will be dis-
cussed in the remainder of the proof. Assume that t∗ is the first accumulation point
of γ which arises and let {ti}i∈N be the (unique and strictly increasing) sequence of
all sampling points less than t∗ converging to t∗. By continuity there exists an index
J ∈ N such that for all i ≥ J

ti < t∗ < α2(γ(ti)),

which implies α1(γ(ti)) < α1(γ(t∗)) < ti, in particular α1(γ(t∗)) < t∗. We can
further assume, since α1, α2 ∈ P(K∞), that for all i ≥ J , γ(ti) is no sampling point
of α2 and γ ◦ α2 ◦ γ(ti) is no sampling point of α1. If we denote by m1 the slope
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of α1 on [γ ◦ α2 ◦ γ(tJ), γ ◦ α2 ◦ γ(t∗)), and by m2 the slope of α2 on [γ(tJ), γ(t∗)),
then, by the update rules given in the proof of Lemma 4.22 we have

γ′
(
α2(γ(ti))

+
)

=
(
m1 ·m2 · γ′(t+i )

)−1

for all i ≥ J . So γ has a sampling point in α2(γ(ti)) only if γ has a sampling point in
ti. But then γ accumulates in t∗ and in α2(γ(t∗)). Using the cyclic permutation (1.2)
we see that α2◦γ◦α1◦γ(ti) = ti holds for all ti. Since the sequence {ti} accumulates
in t∗, and α1, α2 ∈ P(K∞) have no accumulation points, the same argumentation
as above implies that γ accumulates in α1(γ(t∗)). The assumption t∗ < α2(γ(t∗))

implies
α1(γ(t∗)) < α1 ◦ γ ◦ α2 ◦ γ(t∗) = t∗ ,

which yields a contradiction to the assumption that t∗ is the first accumulation point.

Now assume t∗ > α2(γ(t∗)), or equivalently, by (4.36), t∗ < α1(γ(t∗)). Note
that (4.36) is satisfied if and only if α2 ◦ γ ◦ α1 ◦ γ = id, by (1.2). Assume that
t∗ is the smallest accumulation point of γ. Then following the above argumentation,
we conclude that α2(γ(t∗)) < t∗ is a smaller accumulation point; a contradiction to
the assumption that t∗ is the smallest one.

Thus, we conclude
α2(γ(t∗)) = t∗ = α1(γ(t∗)).

Now let t∗ be an isolated accumulation point of γ and let t∗− denote the previ-
ous accumulation point of t∗ (i.e., there exists no other accumulation point of γ
in (t∗−, t

∗)), and let {ti}i∈N be the (unique and strictly increasing) sequence of all
sampling points ti ∈ (t∗−, t

∗) that converges to t∗. We want to prove the statement
by induction. So assume that the claim holds for all previous accumulation points
t̃, i.e., α1(γ(t̃)) = t̃ = α2(γ(t̃)). Then by the same arguments as before, under the
assumption t∗ < α2(γ(t∗)) we conclude that α1(γ(t∗)) < t∗ and α1(γ(t∗)) is an
accumulation point of γ. But then, by assumption, α1(γ(t∗)) is one of the previous
accumulation points and hence satisfies α1(γ(t∗)) = t∗ = α2(γ(t∗)). This contradicts
the assumption t∗ < α2(γ(t∗)) and concludes the proof.

As we see from the proof of Proposition 4.25, an accumulation point t∗ > 0 implies
t∗ = α1(γ(t∗)) = α2(γ(t∗)). This observation can also be shown in a more general
form.

Proposition 4.26. Let k = 2, α1, α2 ∈ K∞ and γ ∈ K∞ be a solution of (4.36). If
α1 and α2 intersect in γ(t∗), then α1(γ(t∗)) = t∗ = α2(γ(t∗)).

Proof. Let y be an intersection point of α1, α2, i.e., α1(y) = α2(y). By strict increase
and continuity of γ there exists a t̃ such that γ(t̃) = y. We claim that α1(γ(t̃)) =

153



Chapter 4. About the tightness of small-gain conditions

t̃ = α2(γ(t̃)). To show this assume that α1(γ(t̃)) > t̃. Then we conclude

t̃ = α1 ◦ γ ◦ (α2 ◦ γ(t̃)) = α1 ◦ γ ◦ (α1 ◦ γ(t̃)) > α1(γ(t̃)) > t̃,

a contradiction. The case α1(γ(t̃)) < t̃ follows by the same arguments, thus α1(γ(t̃)) =

t̃, and the results follows since γ(t̃) satisfies α1(γ(t̃)) = α2(γ(t̃)).

If we do not assume α1, α2 to be of class P(K∞) then Proposition 4.25 does not hold
anymore. This is shown by the next example.

Example 4.27. Let us consider the equation (4.36) for k = 2 with α1 = 3 id ∈
F(K∞) and α2 ∈ R(K∞) defined as follows. For any t ∈ [10(1 − 1

n ), 10(1 − 1
n+1 ))

with n ∈ N, we define the right hand derivative

α′2(t+) :=

{
1
3 n is odd
3 n is even

.

Then t∗ = 10 is an accumulation point of α2. For all t ≥ 10 we define α′2(t+) := 1
2 .

We note that α1 and α2 do not intersect, but the solution γ, obtained by applying
Procedure 4.24, has accumulation points, see Figure 4.3. /
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Figure 4.3: An accumulation point of α can lead to infinitely many accumulation
points of γ.

The phenomenon that occurred in Example 4.27 is characterized in the following
proposition.

Proposition 4.28. Let γ be a solution of (4.36) for k = 2 and α1, α2 ∈ R(K∞). If
γ has an accumulation point t∗ > 0 and α1(γ(t∗)) 6= α2(γ(t∗)), then α1 or α2 has
at least one accumulation point.
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Proof. Let without loss of generality t∗ > 0 be the first accumulation point of γ
that arises. Else consider the reasoning from Proposition 4.25. By assumption
α1(γ(t∗)) 6= α2(γ(t∗)). But this implies t∗ 6= α2(γ(t∗)) since γ solves (4.36). Since
γ is unique by Lemma 4.21 it follows that γ satisfies the update rules (4.42) in the
proof of Lemma 4.22. Let {ti}i∈N be the strictly increasing sequence of sampling
points of γ with limit t∗. Here we have to distinguish between the following two
cases:

Assume t∗ > α2(γ(t∗)). Then there exists an index J ∈ N such that for all i ≥ J

it holds α2(γ(ti)) < α2(γ(t∗)) < ti < t∗. The update rule (4.42) for the case
T > α2(γ(T )) is applicable and we obtain

γ′(t+i+1) =
(
α′1(γ ◦ α2 ◦ γ(ti+1)+) · γ′

(
α2 ◦ γ(ti+1)+

)
· α′2(γ(ti+1)+)

)−1
.

Since t∗ was the smallest accumulation point of γ, γ′ (α2(γ(ti+1)+)) is constant for
i large enough. So α1 accumulates in γ ◦ α2 ◦ γ(t∗) or α2 accumulates in γ(t∗).

Assume t∗ < α2(γ(t∗)). Then there exists an index J ∈ N such that for all i ≥
J it holds ti < t∗ < α2(γ(ti)) < α2(γ(t∗)). Let t̃i be uniquely defined by the
relation α2(γ(t̃i)) = ti < α2(γ(ti)). By strict monotonicity t̃i < tj and in particular
t̃i < α2(γ(t̃i)). Furthermore, by definition we have t̃i → t̃ for i → ∞, and hence
α2 ◦ γ(t̃) = t∗ by continuity. But then from the update rule (4.42) for T < α2(γ(T ))

we conclude

γ′(t+i+1)=γ′
(
α2(γ(t̃i+1))+

)
=
(
α′1(γ ◦ α2 ◦ γ(t̃i+1)+)·α′2(γ(t̃i+1)+)·γ′(t̃+i+1)

)−1
.

From α2(γ(t̃)) = t∗ < α2(γ(t∗)) we obtain t̃ < t∗, and since t∗ was the smallest
accumulation point of γ, γ′(t̃+i+1)) is constant for i large enough. So α1 accumulates
in γ ◦ α2 ◦ γ(t̃) = γ(t∗) or α2 accumulates in γ(t̃).

If we restrict α1, α2 to the class of P(K∞), by Proposition 4.25, the existence of
an accumulation point of γ implies that α1 and α2 intersect. From a numerical
point of view this is important, since in a first step we can compute the intersection
points y of α1 and α2. From Proposition 4.25 and 4.26 we conclude that t∗ := α1(y)

is a possible accumulation point, γ(t∗) = y and since α2(γ(t∗)) = t∗, we have
γ′((t∗)+) = (α′1(γ(t∗)+) · α′2(γ(t∗)+))

−1/2. So if t∗ is an accumulation point we
can (numerically) compute the solution on [0, t∗], and then extend this solution as
in (4.42) with τ = t∗ and repeat the Procedure 4.24.

In a similar way we can argue if α1, α2 are of class R(K∞). Again, intersection
points of α1 and α2 lead to possible accumulation points, but also accumulation
points of α1 and α2. Note that there may exist infinitely many accumulation points
of a solution γ. This can be seen e.g. in (4.42) case 2. If t∗ is an accumulation point
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of γ, but neither γ(t∗) is an accumulation point of α2 nor is γ ◦α2 ◦γ(t∗) for α1 then
also α2(γ(t∗)) is an accumulation point of γ.

We further note that neither the conditions in Proposition 4.25 nor in Proposi-
tion 4.28 are necessary. This is shown in the next example.

Example 4.29. Consider the functional equation (4.36) for k = 2 with

α1(t) =

{
1
3 t t ∈ [0, 3]

3t− 8 t ∈ [3,∞)
and α2(t) =

{
3t t ∈ [0, 1]

1
3 t+ 8

3 t ∈ [1,∞)
.

Then α1, α2 ∈ P(K∞) intersect, but γ = id has no accumulation point. In a similar
way it is possible to construct α1, α2 ∈ R(K∞) that accumulate, but the solution
γ = id of the corresponding functional equation (4.36) has no accumulation point.
The functions αi and γ are shown in Figure 4.4. /

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

γ

α1

α2

0 2 4 6 8 10 12
0

2

4

6

8

10

12

α1

α2

γ

Figure 4.4: Neither intersection of α1 and α2 nor accumulation has to imply accu-
mulation of γ.

4.2.3 Solutions of iterative functional K∞-equations for k ≥ 2

In this section we generalize the results of the previous section. To avoid confusingly
long terms, we establish some notation first.

Let c = (α1, . . . , αk), αi ∈ K∞, i ∈ {1, . . . , k}, which we abbreviate by c ∈ Kk∞. For
γ ∈ K∞ we define ⊗

k

cγ(t) := α1 ◦ γ ◦ . . . ◦ αk ◦ γ(t). (4.44)

With this notation the iterative functional K∞-equation (4.36) is equivalent to⊗
k

cγ = id . (4.36’)
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Remark 4.30. Although the notation
⊗

k c
γ in (4.44) is similar to the notation

⊗
cγ

in (4.10) there is an important difference. In (4.44), c = (α1, . . . , αk) is simply a
vector of k K∞-functions, which are in each case applied on γ ∈ K∞, and then aggre-
gated according to (4.44). Otherwise, c = (γi0i1 , . . . , γik−1ik) in (4.10) corresponds
to a k-cycle in ΓS with S = γ(1, . . . , 1), hence the structural entries in the cycle are
replaced by γ ∈ K∞.

However, k ∈ N in (4.44) is the number of functions αi, and thus, γ ∈ K∞ appears
k times in (4.44). On the other hand, k ∈ N in (4.10) is the length of the cycle c.
Hence, the number of how often the function γ ∈ K∞ appears in (4.10) may be
smaller than k ∈ N.

Nevertheless, the iterative functional K∞-equation
⊗
cγ = id with

⊗
cγ from (4.10)

can always be written in the form (4.36’) as outlined in (4.11). /

Given α1, . . . , αk ∈ K∞, we define for any t ≥ 0

η1(t) := t

η2(t) := αk ◦ γ(t)

η3(t) := αk−1 ◦ γ ◦ αk ◦ γ(t)

...

ηk(t) := α2 ◦ γ ◦ . . . ◦ αk ◦ γ(t).

Then for each t ≥ 0 we define

ηmax(t) := max
j∈{1,...,k}

ηj(t) (4.45)

and its underlying index set

Jmax(t) =
{
j ∈ {1, . . . , k} : ηj(t) = ηmax(t)

}
.

By construction, ηmax, η
j ∈ K∞ for all j ∈ {1, . . . , k}, since γ, α1, . . . , αk ∈ K∞. By

ηmax,l we denote the function in (4.45), which is defined for the equation
⊗
cγl = id.

With this notation Lemma 4.21 may be generalized as follows.

Lemma 4.31 (Unique representation). Let αi ∈ R(K∞) for i ∈ {1, . . . , k}, T > 0,
I = [0, T ]. If for γ1, γ2 ∈ R(K∞) we have

∀t ∈ I :
⊗
k

cγl(t) = t , l ∈ {1, 2} , (4.46)

then the restriction to Ī := ηmax,1(I) ∪ ηmax,2(I) satisfies γ1|Ī ≡ γ2|Ī . In particular,
there exists at most one right affine solution γ ∈ R(K∞) of (4.36).

157



Chapter 4. About the tightness of small-gain conditions

Proof. Let αi ∈ R(K∞) for i ∈ {1, . . . , k}, or, in another notation, c = (α1, . . . , αk) ∈
R(K∞)k. Assume that there exist two right affine functions γ1 and γ2 satisfy-
ing (4.46). In particular γ′1(0+) = γ′2(0+), which follows by the same argument as
in Lemma 4.21. So there exists an interval [0, a] with γ1(t) = γ2(t) for all t ∈ [0, a],
and seeking a contradiction assume that there exists an ε > 0 small enough such
that

γ1(t) < γ2(t) for all t ∈ (a, a+ ε). (4.47)

Fix t ∈ (a, a + ε). If ηmax,i(I) ⊂ [0, a], i ∈ {1, 2} there is nothing to show. Else,
since ηmax,2 ∈ K∞, there exists a t̃ ≤ t with ηmax,2(t̃) = t. By choice of t we get

t = ηmax,2(t̃) ≥ ηmax,1(t̃). (4.48)

Let l := max{Jmax,2(t̃)}, i.e., ηl2(t̃) = ηmax,2(t̃). Since (4.36) is equivalent to (4.36’),
we conclude

t̃ =
⊗
k

cγ2(t̃) = (α1 ◦ γ2) ◦ . . . ◦ (αk−l+1 ◦ γ2) ◦ (αk−l+2 ◦ γ2) ◦ . . . ◦ (αk ◦ γ2)(t̃)

= (α1 ◦ γ2) ◦ . . . ◦ (αk−l+1 ◦ γ2) ◦ ηmax,2(t̃)

= (α1 ◦ γ2) ◦ . . . ◦ (αk−l ◦ γ2) ◦ (αk−l+1 ◦ γ2)(t)

(4.47)
> (α1 ◦ γ2) ◦ . . . ◦ (αk−l ◦ γ2) ◦ (αk−l+1 ◦ γ1)(t)

(4.48)
≥ (α1 ◦ γ2) ◦ . . . ◦ (αk−l ◦ γ2) ◦ (αk−l+1 ◦ γ1) ◦ ηmax,1(t̃)

≥
⊗
k

cγ1(t̃) = t̃,

where the last step follows since l is the maximal element in Jmax(t̃), which implies
that (αi ◦ γ2), i ∈ {1, . . . , k − l} is evaluated in values less or equal to t ∈ [0, a+ ε).
But in this case γ2 ≥ γ1 by (4.47) and since γ1 and γ2 are identical on [0, a]. But
this is a contradiction to the assumption that γ1 and γ2 are distinct on [a, a+ ε]. So
γ1 and γ2 are identical on [0, t], t > a.

To show that γ1 and γ2 are identical on Ī assume that ηmax,i(I) 6⊂ [0, a] for at least
one i ∈ {1, 2}. Then this implies the existence of a t̃ ∈ I with ηmax,2(t̃) = t > a

satisfying (4.47) and (4.48). Again, this leads to a contradiction, showing that
ηmax,2(I) ⊂ [0, a]. Hence, γ1|Ī ≡ γ2|Ī for Ī := ηmax,1(I) ∪ ηmax,2(I).

A generalization of Lemma 4.22 is given now.

Lemma 4.32 (Existence). For the iterative functional K∞-equation (4.36) with αi ∈
R(K∞), i ∈ {1, . . . , k}, there exists at least one right affine solution γ ∈ R(K∞).

Proof. The proof follows the same steps as the proof of Lemma 4.22 by constructing
a right affine solution γ ∈ R(K∞) for (4.36) with αi ∈ R(K∞), i ∈ {1, . . . , k}.
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Assume that γ ∈ R(K∞) and the interval I = [0, T ] are such that

∀t ∈ I :
⊗
k

cγ(t) = t , (4.49)

and let I be the maximal closed interval on which (4.49) holds. This implies⊗
k c

γ(T+) 6= 1 as otherwise (4.49) can be extended to the right.

To extend γ we define

mα(t) :=

k∏
j=1

α′j
(
γ ◦ ηk+1−j(t)+

)
as the product of slopes of the αi that occur by evaluating

⊗
k c

γ in t. And we define

m 6∈Jγ (t) :=
∏

j 6∈Jmax(t)

γ′
(
ηj(t)+

)
as the product of slopes of γ that remain as they are. Then the update rule reads
as follows. Set

τ := ηmax(T )

m :=
(
mα(T ) ·m 6∈Jγ (T )

)−1/#Jmax(T )
> 0,

where #Jmax(T ) denotes the cardinality of Jmax(T ). Define γ̃ ∈ R(K∞) by setting

γ̃(t) :=

{
γ(t) , t ∈ [0, τ ]

m(t− τ) + γ(τ) , t ∈ [τ,∞)
.

Again, by construction,(⊗
k

cγ̃

)′
(T+) =

k∏
j=1

(
α′j
(
γ ◦ ηk+1−j(T )+

)
· γ′
(
ηk+1−j(T )+

))

=

k∏
j=1

α′j
(
γ ◦ ηk+1−j(T )+

)
·
∏

j∈Jmax

γ′
(
ηj(T )+

)
·
∏

j 6∈Jmax

γ′
(
ηj(T )+

)
= mα(T ) ·m#Jmax ·m6∈Jγ (T )

= 1,

and since γi, α1, . . . , αk are right affine, this holds on an interval [0, T+ε) with ε > 0

suitable, and the solution is extended.

To start set γ′0(0+) :=
(∏k

i=1 α
′
i(0

+)
)−1/k

. Then there exists an ε > 0 such
that (4.49) holds on [0, ε].

The procedure described above extends to a solution γ of (4.36) by the same argu-
ments as in Lemma 4.22.
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The main result of this section now follows directly.

Theorem 4.33 (Existence of a unique right affine solution). For the iterative func-
tional K∞-equation (4.36) with αi ∈ R(K∞), i ∈ {1, . . . , k}, there exists exactly one
right affine solution γ ∈ R(K∞).

Proof. This follows directly from Lemma 4.31 and Lemma 4.32.

Remark 4.34. Consider the iterative functionalK∞-equation (4.36) with α1, . . . , αk ∈
K∞, or equivalently,

⊗
cγk with c = (α1, . . . , αk). We assume that α′i(0) <∞ for all

i ∈ {1, . . . , k}. Then the functions αi can be approximated from above by a function
α̃i ≥ αi that is of class R(K∞), for each i ∈ {1, . . . , k}. By Theorem 4.33, there
exists a unique solution γ̃ ∈ R(K∞) of the approximated equation

⊗
c̃γk = id with

c̃ = (α̃1, . . . , α̃k). By monotonicity, we have
⊗
cγ̃k ≤

⊗
c̃γ̃k = id. This inequality

is particularly useful for Theorem 4.3 as it implies that if we can approximate the
entries of Γ1 and Γ2 from above by functions of class R(K∞) ∪ {0}, then γ defined
in (4.12) is admissible in the sense of Definition 4.1. /

4.3 Notes and references

The topic of constructing gains that satisfy a small-gain condition was motivated
by the small-gain results in Chapters 2 and 3. Therein, small-gain theorems for
interconnected discrete-time systems have been derived that rely on a (strong) small-
gain condition of the form (1.10) (resp. (1.11)). Moreover, there exist several small-
gain results also for interconnected continuous-time and hybrid systems that use the
same small-gain condition, see e.g. [22–25,124].
In other publications, the small-gain conditions are different to the ones used herein.
However, we list a few of those references to indicate how the results derived in this
chapter can also be applied in these cases.

In [21] the authors present a small-gain condition of the form Γ ◦ A−1(s) 6≥ s for
all s ∈ RN+\{0}. Here the function A−1 : R+ → RN+ serves as a scaling operator
for the gains γij of the matrix Γ. Hence, by defining Γ̃ := Γ ◦ A−1, and noticing
that the weights in Γ∗sub can also be chosen nonlinear (see Remark 4.15), the results
of this chapter can be applied. In other publications as e.g. [67, 75, 99] the authors
do not propose a gain operator of the form Γµ as it is done here, but the small-
gain condition is expressed in terms of a cycle condition. So it is straightforward
to collect the gains into a matrix and write the cycle condition in the equivalent
small-gain condition Γ⊕ 6≥ id, see Proposition 1.29. Moreover, sometimes a small-
gain condition of the form (1.10) is not explicitly stated, but does also apply. For
instance, the small-gain condition in [40] is the same as (1.10), but simply written
in a slightly different form.
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Summarizing, the proposed gain construction methods are not restricted to inter-
connected systems as considered in Chapters 2 and 3. We emphasize that these
methods may be useful in a variety of different setups.

The whole procedure of this chapter relies on the assumption that it is possible to
determine the gain of an interconnection, thus to determine the gain matrices Γ1

and Γ2. We do not treat this problem here, but note that results in this direction
have been obtained in [45, 63, 144]. In the latter references [63, 144] tight integral
ISS bounds for nonlinear systems are investigated.

In the maximization case (Section 4.1.1) we have seen that a maximal gain γ can
be obtained by solving an iterative functional K∞-equation for each cycle (The-
orem 4.3). Interestingly, as solutions of iterative functional K∞-equation are, in
general, not unique (Example 4.20), also maximal gains are not unique. Unique-
ness is only obtained if the gains are required to be in a certain subclass of the
class of K∞-function. The subclass R(K∞) that we propose in Section 4.2 seems to
be promising as solutions of iterative functional R(K∞)-equations exist, are unique
within R(K∞), and can be numerically computed as we have shown in Section 4.2.
Moreover, if we consider the gains to be of class R(K∞) then there exists a unique
maximal gain in R(K∞), see Remark 4.5.

To compute maximal gains in the linear summation case (Section 4.1.2) we make use
of the concept of stability radii. We refer to the textbook [60] for a comprehensive
overview and further references. Of particular importance is [61], where the authors
consider positive linear systems, i.e., systems of the form x(k + 1) = Ax(k), k ∈
N with nonnegative matrix A. In this case, the stability radius can be explicitly
computed. As we have shown that the maximal gain in the linear summation case is
equal to the stability radius, the results of [61] can be directly employed. We further
refer to the appendix Section A.2, where we present definitions and results related
to stability radii for positive linear systems in more detail.

Constructing admissible gains in the general case (Theorem 4.10) requires the ex-
istence of an Ω-path. These paths can be computed with the recently developed
algorithm [37] or, alternatively, [125]. As shown in the examples of Section 4.1.3 the
obtained admissible gain is conservative. This conservatism comes from the fact that
we first fix the path σ1 (which is not unique), and then fix the path σ2 (that we can
choose). Not till then, we compute an admissible gain. So to reduce conservatism
in the general case it would seem reasonable to find construction methods, which do
not rely on Ω-paths.

Iterative functional equations, as considered in Section 4.2, have been extensively
studied in the second half of the 20th century and there exists an extensive literature;
see for example the survey papers [6,138] and the references therein. The history of
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the subject goes back to work of Charles Babbage in 1815. The particular case of
iterative functional K∞-equations that we address has, to the best of the author’s
knowledge, not previously been studied in the literature.

Special cases of the iterative functional equation we proposed can be found in [85],
where the author considers the problem of solving the functional equation x(x(t)) =

f(t) with f piecewise linear from a numerical perspective. Solutions are computed
by considering fixed points of f , which, in our case, correspond to intersection points
of the functions α1, α2. Another special case is the functional equation xN (t) = f(t),
for t ∈ R and N ∈ N, which is known as finding iterative roots (see [6,87]). From [87]
it is known that iterative roots of class K∞ exist if the function f is of class K∞;
such solutions are not unique, in general.
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5
Extensions and outlook

In this chapter, we give a variety of possible extensions of some results in this thesis.
On the one hand, we state results that build upon the findings in this thesis, but
have not been included for reasons of brevity. On the other hand, we describe open
problems related to some of the results in this thesis that can be seen as a starting
point for future research.

5.1 On computing the finite-step number M ∈ N

In Chapter 2 we have studied the relation between global finite-step Lyapunov func-
tions and global Lyapunov functions. A distinctive difference between global Lya-
punov functions and global finite-step Lyapunov functions is that in the latter one
we also require the knowledge of a finite-step number M ∈ N, see Definition 2.6.
In particular, we know from Corollary 2.16 that any norm is a global finite-step
Lyapunov function for a system with globally exponentially stable origin. However,
this result only shows existence of a suitably large finite-step number M . We note
that the knowledge of M is particularly required for the construction of a global
Lyapunov function in Theorem 2.21 and Theorem 2.22. Hence, deriving methods to
compute the numberM ∈ N for different system classes is an important task.

In Section 2.4 we have studied several classes of dynamical systems by using the
converse Lyapunov theorems from Section 2.2. In doing so, we have derived system-
atic ways to compute the finite-step numberM for the classes of conewise linear and
linear systems. In both cases (e.g. Procedure 2.50 for continuous conewise linear
systems and Procedure 2.58 for linear systems), we have obtained conditions for
computing M that invoke the matrices Ai resp. A of the dynamics. Hence, these
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conditions on M are independent of the initial state, and thus easier to check. For
general nonlinear systems we cannot expect to derive e.g. algebraic conditions for
the number M . Nevertheless, we think that there are several interesting system
classes for which procedures to compute a suitable finite-step number M can be
derived. For instance, the class of discrete-time Lur’e systems [44, 100] seems to be
feasible. Roughly speaking, a Lur’e system has both a linear and a nonlinear part.
In the stability analysis of Lur’e systems as e.g. [44], the nonlinearity is assumed
to be cone bounded. Thus, a similar reasoning as in Section 2.4.2 can be used to
derive a method for computing M ∈ N for discrete-time Lur’e systems with globally
asymptotically stable origin.

5.2 Lyapunov functions for difference inclusions

In Section 2.4.2 we have studied conewise linear systems of the form (2.41) (discon-
tinuous dynamics) and (2.47) (continuous dynamics). For discontinuous dynamics
we cannot use the form (2.47) as we have to ensure well-posedness of the system.
Well-posedness in this case means that the image of the right-hand side

G(ξ) := Aiξ, ξ ∈ relint(Ci) resp. ξ ∈ Ci

has to be uniquely determined for any ξ ∈ Rn. For discontinuous dynamics G there
exist points ξ ∈ Ci ∩ Cj , i 6= j with Aiξ 6= Ajξ. To ensure well-posedness, we have
extended the set of cones Ci such that any point ξ ∈ Rn lies in the relative interior
of a unique cone Ci, see (2.40).

Alternatively, we can allow the right-hand side G to be set-valued, i.e.,

G(ξ) := {Aiξ : ξ ∈ Ci} ,

where the set of cones {Ci}i∈{1,...,l} satisfies
⋃
i Ci = Rn. Then for any point ξ ∈

Ci ∩ Cj we have {Aiξ, Ajξ} ⊂ G(ξ). In this respect, we can regard a conewise linear
system as a difference inclusion

x(k + 1) ∈ G(x(k)), x ∈ Rn, k ∈ N. (5.1)

Difference inclusions have been studied e.g. in [27, 80, 81]. In [27] the authors
consider difference inclusions under the assumption that the right-hand side G is
upper semicontinuous [27, Definition 1], the image G(ξ) is nonempty and compact
for any point ξ ∈ Rn, and G is homogeneous of degree one. The main result in [27]
is that KL-stability (or, equivalently, GAS as defined in this thesis) of the difference
inclusion (5.1) implies the existence of a homogeneous Lyapunov function. In [80,81]
the authors do impose the same assumptions as [27] except homogeneity and they
derive a converse Lyapunov theorem for difference inclusions.
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To define a Lyapunov function for the difference inclusion (5.1), let x(·, ξ) denote a
solution of the difference equation (5.1) from the initial value ξ ∈ Rn. As the map G
in (5.1) is set-valued there might exist more than one solution. So we denote the set
of all solutions starting from ξ ∈ Rn by S(ξ). A Lyapunov function W : Rn → R+

for the difference inclusion (5.1) in its simplest1 form has to satisfy the following two
properties:

(i) W is proper and positive definite;

(ii) there exists µ ∈ (0, 1) such that for all ξ ∈ Rn we have

sup
g∈G(ξ)

W (g) ≤ µW (ξ).

With regard to the results obtained in Chapter 2, we propose the following defini-
tion.

Definition 5.1. A function V : Rn → R+ is a global finite-step Lyapunov function
for the difference inclusion (5.1) if

(i) V is proper and positive definite, i.e., it satisfies condition (i) of Definition 2.6;

(ii) there exists a finite M ∈ N and a positive definite function ρ < id such that
for all ξ ∈ Rn we have

sup
x(·,ξ)∈S(ξ)

V (x(M, ξ)) ≤ ρ(V (ξ)).

If the right-hand side G is upper semicontinuous, and G(ξ) is nonempty and compact
for any ξ ∈ Rn then from [80, Theorem 10] we obtain that the existence of a global
finite-step Lyapunov function is equivalent to the difference inclusion being KL-
stable. Moreover, several other results from Chapter 2 can be carried over to the
case of difference inclusions such as e.g.

1. Theorem 2.14,

2. Corollary 2.16,

3. Theorem 2.21 with

W (ξ) :=

M−1∑
j=0

sup
x(·,ξ)∈S(ξ)

V (x(j, ξ)),

1In [27,81] the authors additionally consider Lyapunov functions with respect to one resp. two
measures.
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4. Theorem 2.22 with

W (ξ) := max
j∈{0,...,M−1}

sup
x(·,ξ)∈S(ξ)

ρj/M (V (x(j, ξ))).

Proofs are omitted as they follow the same lines as the proofs of the results for differ-
ence equations (discrete-time systems). Hence, studying KL-stability of difference
inclusions (5.1) is possible via the results of Section 2.2. Moreover, we claim that
the small-gain results developed in Section 2.3 can be extended to derive stability
criteria for interconnected difference inclusions.

5.3 Stabilization using the finite-step idea

We consider the following discrete-time system

x(k + 1) = G(x(k), u(k)), k ∈ N, x ∈ Rn, u ∈ Rm.

While inputs u(·) ⊂ Rm have been treated as disturbances throughout this thesis,
we do now consider it as a control input. To be precise, we want to compute a
stabilizing control law f : Rn → Rm to ensure that the origin of the feedback system
with u(k) = f(x(k)),

x(k + 1) = Ĝ(x(k)) := G(x(k), f(x(k))), k ∈ N, (5.2)

is GAS.

The idea we propose is to design a stabilization control law such that all solutions
of the feedback system (5.2) satisfy an estimate of the form

‖x(M, ξ)‖ < ρ(‖ξ‖),

where ξ ∈ Rn, M ∈ N is fixed, and the function ρ < id is positive definite. Such
a stabilizing control law can be derived, for instance, by solving an optimization
problem (similarly as done e.g. in model predictive control (MPC) [16,47,90]) or by
applying stabilization schemes as event-triggered control [119,137].

5.4 Construction of dissipative ISS Lyapunov functions

In Chapter 2, particularly Theorem 2.21 and Theorem 2.22, we have established
two constructions of a global Lyapunov function from a global finite-step Lyapunov
function. For systems with inputs that act as disturbances, this construction cannot
be applied to obtain a dissipative ISS Lyapunov function from a dissipative finite-
step ISS Lyapunov function. For instance, the sum construction in (2.11) of a system
x(k + 1) = G(x(k)) is of the form

W (ξ) :=

M−1∑
j=0

V (x(j, ξ)),
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where V is a global finite-step Lyapunov function with finite-step number M ∈ N.
If V is a dissipative finite-step ISS Lyapunov function for the system x(k + 1) =

G(x(k), u(k)) satisfying

V (x(M, ξ, u(·))) ≤ ρ(V (ξ)) + σ(|||u|||∞),

with (id−ρ) ∈ K∞, σ ∈ K, then the function

W (ξ, u(·)) :=

M−1∑
j=0

V (x(j, ξ, u(·)))

depends explicitly on the input sequence u(·) ⊂ Rm. Hence, W cannot be a dissipa-
tive ISS Lyapunov function by definition. Alternatively, if we define

W (ξ) :=

M−1∑
j=0

V (x(j, ξ, 0))

then additional assumptions are required to guarantee that at least2 an inequality
of the form

W (G(ξ, ν))−W (ξ) =

M−1∑
j=0

(V (x(j,G(ξ, ν), 0))− V (x(j, ξ, 0))) < σ(‖ν‖)

for all ξ ∈ Rn, ν ∈ Rm holds, where σ ∈ K. Eventually, it is an interesting task
to elaborate how a dissipative ISS Lyapunov function can be constructed from the
knowledge of a dissipative finite-step ISS Lyapunov function.

5.5 On solving iterative functional K∞-equations

In Section 4.2, and also in [36], we have studied iterative functional K∞-equations
of the form

α1 ◦ γ ◦ α2 ◦ γ ◦ . . . ◦ αk ◦ γ = id (5.3)

with k ∈ N, and αi ∈ K∞ for i ∈ {1, . . . , k}. Clearly, for k = 1 the iterative functional
K∞-equation (5.3) has a unique solution, which follows from Proposition 1.5. From
Corollary 4.17 we know that at least for k = 2 a solution of (5.3) exists, which is in
general not unique.

Whereas Section 4.2 focusses on establishing the class of right affine K∞-functions
R(K∞), in which solutions exist and are unique within this class, the following
questions remain open.

2Note that this inequality is necessary but not sufficient forW being a dissipative ISS Lyapunov
function.

167



Chapter 5. Extensions and outlook

Firstly, for k > 2 there exists, to the best of the author’s knowledge, no result
guaranteeing the existence of solutions of (5.3), except for the special case γk = α

proposed in Proposition 4.16. Here, we present an idea for proving existence, which,
unfortunately, is not successful. Nevertheless, we present this idea as it gives more
insight into the problem.

Consider the set

Z = {γ ∈ K∞ : α1 ◦ γ ◦ α2 ◦ γ ◦ . . . ◦ αk ◦ γ ≤ id} .

We observe the following.

(i) The set Z is partially ordered, which is implied by the partial order of K∞.

(ii) Any chain {γi}i∈N ⊂ Z, i.e., a sequence {γi}i∈N ⊂ Z with γi ≤ γi+1, γi 6= γi+1

for all i ∈ N, is upper bounded.

Assume that any chain {γi}i∈N ⊂ Z has an upper bound in Z. Then, by Zorn’s
lemma [146], the set Z has at least one maximal element. Clearly, if γ ∈ K∞
satisfies (5.3) then γ is a maximal element of Z. However, maximal elements in Z
do not have to satisfy (5.3) as we show in the next example.

Example 5.2. Let ε ∈ (0, 1
3 ) and consider the F(K∞)-functions

α1(t) =


t t ∈ [0, 1− ε)

5
6 t+ 1−ε

6 t ∈ [1− ε, 1 + ε)
2
3 t+ 1

3 t ∈ [1 + ε, 2.5)
4
9 t+ 8

9 t ∈ [2.5,∞)

and α2(t) = 4t t ∈ [0,∞).

Let

γ1(t) :=

{
1
2 t t ∈ [0, 2]

3
4 t−

1
2 t ∈ [2,∞)

.

Then we have

α1 ◦ γ1 ◦ α2 ◦ γ1(t)


= t t ∈ [0, 1− ε]
< t t ∈ (1− ε, 1 + ε)

= t t ∈ [1 + ε,∞)

. (5.4)

Clearly, for ε = 0 we would have α1 ◦ γ1 ◦ α2 ◦ γ1 = id.

Let us assume that there exists a K∞-function γ2 satisfying γ2 ∈ Z, γ2 ≥ γ1 and
γ2 6= γ1. By monotonicity of K∞-functions and by (5.4) we conclude that γ2(t) =

γ1(t) for all t ∈ [0, 1− ε] ∪ [1 + ε,∞). Further there exists a t∗ ∈ (1− ε, 1 + ε) with
γ2(t∗) > γ1(t∗). Define t̃ := γ−1

1 (α−1
2 (t∗)) = t∗

2 ∈ ( 1−ε
2 , 1+ε

2 ). Since ε < 1
3 we have

t̃ 6∈ [1− ε, 1 + ε]. This implies

α1 ◦ γ2 ◦ α2 ◦ γ2(t̃) = α1 ◦ γ2 ◦ α2 ◦ γ1(t̃) = α1 ◦ γ2(t∗)

> α1 ◦ γ1(t∗) = α1 ◦ γ1 ◦ α2 ◦ γ1(t̃) = t̃,
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a contradiction to γ2 ∈ Z. So such an γ2 cannot exist. Hence, γ1 is a maximal
element in Z, but γ1 does not satisfy (5.3). /
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α1 ◦ γ1 ◦ α2 ◦ γ1

Figure 5.1: Maximal elements of Z do not have to satisfy (5.3).

In this respect, solutions of the iterative functional K∞-equation (5.3) cannot be
equivalently described by maximal elements of Z. Hence, the question for an exis-
tence result of solutions of (5.3) remains unsolved.

Secondly, as outlined in Remark 4.34, we can approximate a K∞-function α that
satisfies α′(0) < ∞ from above by a R(K∞)-function α̃ ≥ α. This approximation
is done in order to compute solutions of (5.3) that lead to an admissible (but not
maximal) gain γ̄ in Theorem 4.3.

On the other hand, if we are only interested in solutions of (5.3), we can approx-
imate the K∞-function α1, . . . , αk via piecewise linear K∞-functions α̃1, . . . , α̃k by
linear interpolation of the points αi(∆k) with k ∈ N, where ∆ > 0 is the sampling
distance.

An interesting problem is then to derive an estimate of the deviation of the solution γ
of (5.3) and a closest3 solution γ̃ of the approximated iterative functional R(K∞)-
equation, i.e., for instance, an estimate of the form

sup
t≥0
‖γ(t)− γ̃(t)‖ ≤ sup

t≥0
max

i∈{1,...,k}
φ(‖αi(t)− α̃i(t)‖)

with φ ∈ K∞ to be found. Nevertheless, the following example indicates that such
an accuracy estimate might be hard to obtain even if the domain of t is restricted
to some finite interval [0, T ], T > 0.

3Recall that solutions of (5.3) are not unique, in general.
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Chapter 5. Extensions and outlook

Example 5.3. Let α1(t) = max{t, t2} and α2(t) = t(1− e−t) for all t ≥ 0 and con-
sider the iterative functional K∞-equation (5.3). We approximate the K∞-functions
α1, α2 by sampling and linear interpolation, where ∆ > 0 is the constant sampling
distance, i.e., we define the functions α̃i, i ∈ {1, 2} by

α̃i(t) := αi(k∆)+(αi((k + 1)∆)− αi(k∆))
(
t
∆ − k

)
, t ∈ [k∆, (k+1)∆), k ∈ N.

Then we compute the solutions γ∆ ∈ R(K∞) of the sampled iterative functional
R(K∞)-equation

α̃1 ◦ γ ◦ α̃2 ◦ γ = id .

Since α1 and α2, and also α̃1 and α̃2 do not intersect, the solutions γ∆ do not have
accumulation points, see Proposition 4.25. The solutions are shown in Figure 5.2.
Although the solutions γ0.001 (blue) and γ0.01 (green) are close near zero they deviate
widely away from zero. /
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Figure 5.2: Solutions of the approximated iterative functional R(K∞)-equations
α̃1 ◦ γ ◦ α̃2 ◦ γ = id with different sampling distances ∆ > 0.
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A
Appendix

In this chapter, we recall some facts from the literature, which are on the one hand
necessary for some results in this thesis, and, on the other hand, give further in-
sight.

In the first section, we recall some results from the theory of nonnegative matrices.
Indeed, if we are in the linear summation case (Section 1.6.1), i.e., the gain operator
Γµ in (1.8) consists of linear gains γij that are aggregated via summation, then
the gain operator is a linear map defined by a nonnegative matrix. Moreover, as
the small-gain condition is equivalent to the spectral radius being less than one
(Lemma 1.27), the theory of nonnegative matrices plays an important role.

In the second section, we study the concept of stability radii of positive linear sys-
tems. This concept describes bounds on perturbations such that a perturbed system
is still GAS. The results recalled in this section are used in Section 4.1.2 to compute
a maximal gain for the linear summation case.

In the third section, we recall l’Hôpital’s rule, which is used to prove that the func-
tion δ̂ from Example 3.25 is of class K∞.

A.1 Nonnegative matrices

In this thesis, we have stated several small-gain theorems, which heavily rely on
the gain operator Γµ : RN+ → RN+ as defined in (1.8). We recall that in the linear
summation case the gain operator ΓΣ(s) = Γs is a linear map with nonnegative
matrix Γ ∈ RN×N+ , see Section 1.6.1.

Moreover, we have seen that the small-gain condition Γs 6≥ s for all s ∈ RN+\{0} is
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equivalent to the spectral radius ρ(Γ) < 1, and to the fact that the discrete-time
linear system x(k + 1) = Γx(k), k ∈ N is GAS, see Lemma 1.27.

In this section, we state further properties of nonnegative matrices related to the
gain operator ΓΣ, which are mainly taken from [8].

Lemma A.1 ( [8, Theorem 2.1.1]). Let A ∈ RN×N+ . Then the spectral radius ρ(A)

is an eigenvalue of A, and there exists a nonnegative eigenvector v corresponding
to ρ(A).

Perron [117] proved that for positive matrices, i.e., [A]ij > 0 for all i, j ∈ {1, . . . , N},
there exists a positive eigenvector v corresponding to ρ(A), and ρ(A) is a simple
eigenvalue. Frobenius [29] gave the extension to nonnegative irreducible matrices.
Thus, the following theorem is often called the (classical) Perron-Frobenius theo-
rem.

Theorem A.2 ( [8, Theorem 2.1.4]). If A ∈ RN×N+ is irreducible, then the following
holds:

(i) ρ(A) is a simple eigenvalue of A;

(ii) any eigenvalue of A of the same modulus is also simple;

(iii) A has a positive eigenvector v corresponding to ρ(A) (called the Perron-Frobenius
eigenvector);

(iv) any nonnegative eigenvector of A is a multiple of v.

We recall that the irreducibility assumption on Γ is equivalent to the underlying
interconnection graph of the subsystems being strongly connected, see Theorem 1.16
and Remark 1.18.

The small-gain theorems in Sections 2.3 and 3.3 prove stability properties of the
overall system by constructing a (finite-step) (ISS) Lyapunov function for the overall
system. This construction stems from [25], and hinges on an Ω-path with respect
to the gain operator Γµ. In general, computing an Ω-path is nontrivial, but can be
obtained as outlined in Remark 1.25.

However, in the linear summation case an Ω-path can be easily obtained if Γ ∈ RN×N+

is irreducible. This can be seen as follows: By Lemma 1.27, the small-gain condition
Γs 6≥ s for all s ∈ RN+\{0} is equivalent to ρ(Γ) < 1. Since Γ is irreducible, there
exists a positive Frobenius eigenvector v ∈ RN+ corresponding to ρ(Γ) satisfying
Γv = ρ(Γ)v < v. Thus, σ(r) := vr for all r ≥ 0 is a linear Ω-path with respect to Γ,
see Definition 1.22.

On the other hand, if Γ is reducible, then an Ω-path can be obtained as in the proof
of [123, Lemma 1.1]: Let E = (eij), eij = 1 for all i, j ∈ {1, . . . , N}. By continuity
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of the spectrum there exists an ε > 0 small enough such that ρ(Γ + εE) < 1. We
define Γ̃ := Γ + εE and observe that Γ̃ is positive, hence irreducible. Applying the
Perron-Frobenius theorem A.2 there exists a positive Frobenius eigenvector ṽ with
Γṽ < Γ̃ṽ = ρ(Γ̃)ṽ < ṽ. Therefore, σ(r) := ṽr is an Ω-path with respect to Γ.

Related to this observation is the following monotonicity property of nonnegative
matrices.

Lemma A.3 ( [8, Corollary 2.1.5]). Let A,B ∈ RN×N+ . If 0 ≤ A ≤ B, then ρ(A) ≤
ρ(B). In particular, if 0 ≤ A < B and A+B is irreducible, then ρ(A) < ρ(B).

A.2 Stability radii of positive linear discrete-time systems

Before restricting ourselves to positive linear discrete-time systems, we consider
(complex) linear discrete-time system of the form

x(k + 1) = Ax(k), k ∈ N (A.1)

with A ∈ CN×N and x ∈ CN . Assume that we have additional affine parameter
perturbations of the dynamics A leading to a system of the form

x(k + 1) = (A+D∆E)x(k), k ∈ N, ∆ ∈ D, (A.2)

where D ∈ CN×L, E ∈ CQ×N are given structure matrices and D ⊂ CL×Q is a given
set of perturbation matrices, see [61]. We may also restrict the class of perturbation
matrices to real and nonnegative matrices, and define

DR = D ∩ RL×Q, D+ = D ∩ RL×Q+ . (A.3)

The problem under consideration is the following: Assume that the unperturbed sys-
tem (A.1) is GAS. Can we impose an upper bound on the perturbation (in terms of a
norm) such that the perturbed system (A.2) is still GAS? To answer this question af-
firmatively, we introduce the notation of stability radii, see [61, Definition 3.1].

Definition A.4. Let D ⊂ CL×Q and ‖ · ‖ be a given norm on spanD. The stability
radius with respect to perturbations of the form A + D∆E with ∆ ∈ D, and D ∈
CN×L, E ∈ CQ×N , is defined by

rD = rD(A;D,E) = inf{‖∆‖ : ∆ ∈ D, ρ(A+D∆E) ≥ 1}. (A.4)

Note that the map ∆ 7→ ρ(A + D∆E) is continuous. Hence, decreasing the set of
perturbation matrices D leads to an increase of the stability radius. In particular,
we have (see [61, (Equation (19)])

0 < rD(A;D,E) ≤ rDR(A;D,E) ≤ rD+(A;D,E).
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Remark A.5. The concept and the computation of stability radii of linear system
of the form (A.1) has been widely studied starting with [58]. We refer to [60] for a
comprehensive list of references and further insights into this topic (especially [60,
Chapter 5]). /

In general, the complex stability radius rC(A;D,E) and the real stability radius
rR(A;D,E) are distinct. While real perturbations seem to be more natural in several
applications, complex stability radii are easier to compute, see [59]. But if we restrict
our attention to positive systems, both stability radii are equal and can be computed
more easily, as outlined next.

We call a dynamical system positive if trajectories starting in the positive orthant
remain in the positive orthant. Note that system (A.1) is positive if and only if
the matrix A is nonnegative. Moreover, any positive time-invariant linear discrete-
time systems can be written in the form (A.1) with nonnegative matrix A, see [61].
Considering the perturbed system (A.2), we assume the structure matrices to be
nonnegative as well, i.e., D ∈ RN×L+ and E ∈ RQ×N+ . In this case the complex, real
and nonnegative stability radii are equal.

Lemma A.6 ( [61, Proposition 3.9]). Suppose A ∈ RN×N+ satisfies ρ(A) < 1,
D ∈ RN×L+ and E ∈ RQ×N+ are given nonnegative structure matrices, and D ⊂ CL×Q

is a perturbation class endowed with an admissible1 perturbation norm. Then with
DR and D+ defined in (A.3), we have

rD(A;D,E) = rDR(A;D,E) = rD+(A;D,E).

To compute the spectral radius in Lemma A.6, we define the transfer matrix asso-
ciated to the triplet (A,D,E) by

G(s) = E(sI −A)−1D, s ∈ C\σ(A). (A.5)

Note that if the matrices A,D,E are nonnegative, then for all s > ρ(A) also G(s)

is a nonnegative matrix and satisfies the following monotonicity property, see [61,
Lemma 4.1],

∀ t > s > ρ(A) : G(s) ≥ G(t) ≥ 0.

The transfer matrix can now be used to compute the (complex, real and nonnegative)
stability radius as follows.

Theorem A.7 ( [61, Theorem 4.3]). Suppose A ∈ RN×N+ satisfies ρ(A) < 1, D ∈
RN×L+ and E ∈ RQ×N+ are given nonnegative structure matrices, CL,CQ are provided

1An admissible perturbation norm is an operator norm induced by monotonic norms, see [61,
Definition 3.4] for a precise definition.
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with monotonic norms and D = CL×Q is endowed with the induced operator norm.
Then

rC(A;D,E) = rR(A;D,E) = rR+(A;D,E) = ‖G(1)‖−1
L(CL,CQ)

,

where G(s) is the transfer matrix defined in (A.5), ‖G(1)‖L(CL,CQ) is the operator
norm of G(1) : CL → CQ and, by definition, 0−1 =∞.

To conclude this section, the following theorem considers the special case, where
∆ = δI. Hence, the right-hand side of the perturbed linear system (A.2) has the
form (A + D∆E) = (A + δDE). This result is needed in Chapter 4 to derive a
maximal gain in the linear summation case in Theorem 4.7. Here, the stability
radius can be expressed by the spectral radius of the transfer matrix G(1).

Theorem A.8 ( [61, Theorem 4.7]). Suppose A ∈ RN×N+ satisfies ρ(A) < 1, D ∈
RN×L+ and E ∈ RL×N+ are given nonnegative structure matrices, and ∆ = δI with
δ ∈ C. Then

rC(A;D,E) = rR(A;D,E) = rR+(A;D,E) = (ρ(G(1))
−1
,

where G(s) is the transfer matrix defined in (A.5).

A.3 L’Hôpital’s rule and completion of Example 3.25

Firstly, we recall l’Hôpital’s rule to compute the limit of a quotient of two real
functions. The result can be found in most of the textbooks on real analysis, e.g.
in [7, Satz 4.2.4 and 4.2.5]. The rest of this section is dedicated to prove properties
of the function δ̂ from Example 3.25.

Theorem A.9 (L’Hôpital’s rule). Let a ∈ R, and f, g : [a,∞)→ R be differentiable,
with g′(s) 6= 0 for all s ∈ [a,∞). Assume that one of the following holds:

(i) lims→∞ f(s) = lims→∞ g(s) = 0;

(ii) lims→∞ f(s) = ±∞, and lims→∞ g(s) = ±∞.

If lims→∞
f ′(s)
g′(s) exists then also lims→∞

f(s)
g(s) exists, and it holds

lim
s→∞

f(s)

g(s)
= lim
s→∞

f ′(s)

g′(s)
. (A.6)

Next, we make use of Theorem A.9 to show some properties of the function δ̂ : R+ →
R+ defined in Example 3.25. The aim is to prove that δ̂ ∈ K∞ and (id−δ̂) ∈ K∞.
In order to do this, we firstly establish properties of the function

h(s) :=

(
1

s+ 1

) 1
s+1

, s ∈ R+.
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Note that the function δ̂ from Example 3.25 can be written as

δ̂(s) = (s+ 1)(1− h(s)), s ∈ R+. (A.7)

Clearly, h(0) = 1 and for all s > 0 we have h(s) ∈ (0, 1). To compute the limit of h
for s→∞, we make use of l’Hôpital’s rules, Theorem A.9, and we obtain

lim
s→∞

h(s) = lim
s→∞

(
1

s+ 1

) 1
s+1

= lim
s→∞

elog( 1
s+1 )·( 1

s+1 ) (A.6)
= lim

s→∞
e−

1
s+1 = 1.

Moreover, using the exponential representation of h again, the derivative can be
computed as

h′(s) = − 1

(s+ 1)2

(
1 + log

(
1

s+ 1

))(
1

s+ 1

) 1
s+1

, s ∈ R+.

From (A.7) and the properties of h, we can now derive properties of δ̂.

(i) As h is a continuous function on R+, also δ̂ is continuous on R+. Moreover,
from h(0) = 1 and h(s) ∈ (0, 1) for all s > 0 we conclude that δ̂ : R+ → R+ is
positive definite.

(ii) The function δ̂ is unbounded, since we have

lim
s→∞

δ̂(s) = lim
s→∞

(s+ 1)(1− h(s))

= lim
s→∞

1− h(s)
1
s+1

(A.6)
= lim

s→∞

−h′(s)
− 1

(s+1)2

= lim
s→∞

−
(

1 + log

(
1

s+ 1

))(
1

s+ 1

) 1
s+1

︸ ︷︷ ︸
→1

=∞.

(iii) To show that δ̂ is strictly increasing, we compute the derivative

δ̂′(s) = (1− h(s))− (s+ 1)h′(s)

= 1−
(

1

s+ 1

) 1
s+1

+
1

s+ 1

(
1 + log

(
1

s+ 1

))(
1

s+ 1

) 1
s+1

=
1

s+ 1︸ ︷︷ ︸
>0

(
(s+ 1)

(
1

s+ 1

)− 1
s+1

− s+ log

(
1

s+ 1

))
︸ ︷︷ ︸

=:f(s)

(
1

s+ 1

) 1
s+1

︸ ︷︷ ︸
>0

.
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A.3. L’Hôpital’s rule and completion of Example 3.25

Since δ̂ is strictly increasing if δ̂′(s) > 0 for all s ∈ R+, it remains to show that
f(s) > 0 for all s ∈ R+. By the coordinate transformation s 7→ 1

t − 1, we see
that f(s) > 0 for all s ∈ R+ if and only if f̂(t) > 0 for all t ∈ (0, 1], where the
function f̂ is defined by

f̂(t) := f( 1
t − 1) = 1

t t
−t − 1

t + 1 + log(t) for all t ∈ (0, 1]. (A.8)

In particular, as we can see from Figure A.1, we have f̂(t) ≥ 1 for all t ∈ (0, 1].
Equivalently, f(s) ≥ 1 > 0 for all s ∈ R+, which shows that δ̂′(s) > 0 for all
s ∈ R+. Thus, δ̂ is strictly increasing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

1.1
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1.4

1.5

f̂(t)

Figure A.1: The function f̂ defined in (A.8)

Summarizing, we have shown that the function δ̂ satisfies δ̂(0) = 0, and it is contin-
uous, unbounded and strictly increasing. Thus, δ̂ is of class K∞.

A similar reasoning can be used to show that also (id−δ̂) ∈ K∞. Here, we prove this
property in a different way. Let σ̃(s) = es−1 and σ̃−1(s) = log(s+ 1) be given from
Example 3.25. Define ν(s) := s(1− e−s) for all s ∈ R+. Note that σ̃, σ̃−1, ν ∈ K∞.
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Appendix A. Appendix

Then we have

σ̃ ◦ ν ◦ σ̃−1(s) = σ̃ ◦
(

log(s+ 1)(1− e− log(s+1))
)

= σ̃ ◦
(

log(s+ 1)

(
1− 1

s+ 1

))
= elog(s+1)(1− 1

s+1 ) − 1

= (s+ 1)

(
1

s+ 1

) 1
s+1

− 1

= s− (s+ 1)

(
1−

(
1

s+ 1

) 1
s+1

)
= (id−δ̂)(s).

This equation shows that (id−δ̂) ∈ K∞, since the composition of K∞-functions is
again of class K∞, see Proposition 1.5.
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List of symbols

Notions

(A1; . . . ;AN ) := (A>1 , . . . , A
>
N )>

(v1, . . . , vN ) := (v>1 , . . . , v
>
N )>

[v]i the ith component of the vector v
α′(t−), α′(t+) the left resp. right hand derivative⊗
cγ as defined in (4.10)⊗
cγk as defined in (4.44)[∏k−1
i=0 Ajk−i

]
:= AjkAjk−1

. . . Aj1

ρ(Q) the spectral radius of the matrix Q
σ(Q) the spectrum of the matrix Q
I the identity matrix
v > w ∀i ∈ {1, . . . , N} : [v]i > [w]i
v ≥ w ∀i ∈ {1, . . . , N} : [v]i ≥ [w]i
v 6≥ w ∃i ∈ {1, . . . , N} : [v]i < [w]i
0-GAS global asymptotic stability with zero input
AG asymptotic gain property
expISS exponential input-to-state stability
GAS global asymptotic stability
GES global exponential stability
GS global stability property
ISS input-to-state stability
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List of symbols

Functions

0 the zero function
diag the diagonal operator defined in (1.9)
ηmax as defined in (4.45)
Γµ the gain operator defined in (1.8)
Γγµ the gain operator defined in (4.4)
Γ⊕ the gain operator in the maximization case
ΓΣ the gain operator in the summation case
Γ∗sub he weighted structure matrix defined in (4.3)
id the identity function
K the set of continuous, and strictly increasing functions α : R+ → R+

satisfying α(0) = 0, see Definition 1.3
K∞ the set of unbounded K-functions, see Definition 1.3
KL the set of continuous functions β : R+ × R+ → R+, which are of class

K in the first argument, and of class L in the second argument, see
Definition 1.4

L the set of continuous, and strictly decreasing functions π : R+ → R+

satisfying lims→∞ π(s) = 0, see Definition 1.3
MAF the set of monotone aggregation functions, see Definition 1.20
I(K∞) the set of piecewise linear K-functions
F(K∞) the set of piecewise linear K-functions with finitely many sampling

points
R(K∞) the set of right-affine K-functions, see Definition 4.18
Vi functions Vi : Rni → R+ are usually assumed to denote Lyapunov-type

functions for the subsystems in Section 2.3 and Section 3.3
V functions V : Rn → R+ are usually assumed to denote global finite-

step Lyapunov functions or dissipative finite-step ISS Lyapunov func-
tions

W functions W : Rn → R+ are usually assumed to denote global Lya-
punov functions or dissipative ISS Lyapunov functions

γ ∈ K∞ usually denotes a gain
γ ∈ K∞ A maximal gain
σ, σ̃ ∈ KN∞ usually denotes an Ω-path, see Definition 1.22

Norms

| · | the absolute value of a scalar
‖ · ‖∞ the infinity norm on Rn

||| · |||[0,k] the supremum norm for finite sequences
‖ · ‖1 the 1-norm on Rn
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List of symbols

‖ · ‖p the p-norm on Rn

‖ · ‖2 the Euclidean norm on Rn

||| · |||∞ the supremum norm for sequences
‖ · ‖ an arbitrary norm on Rn or an arbitrary operator norm on Rl×n

Z
Sets

C the field of complex numbers
cl{S} the closure of a set S
co{S} the convex hull of a set S
C,D A (convex polyhedral) cone
S,Sstrong the potential decay set defined in (4.6) and (4.7)
N the natural numbers including zero
Ω the set of decay defined in (1.13)
R the field of real numbers
R+ the set of nonnegative real numbers
Rn+ the cone of nonnegative real column vectors
Rn the vector space of real column vectors
relint(S) the relative interior of a set S
B[a,b] := {x ∈ Rn : ‖x‖ ∈ [a, b]}
Z

195



196



Index

0-input unstable, 56
Ω-path, 29

accumulation point, 146
isolated, 152

bounded sequence, 18

change of coordinates, 93
closure of a set, 70
comparison function, 18

K, 18
KL, 19
K∞, 18
L, 18

cone
conic partition, 70
convex polyhedral cone, 70
subcone, 70

convex hull, 70
convex set, 70

dimension of a convex set, 70
relative interior, 70

cycle
k-cycle, 26
cyclic permutation, 19

minimal cycle, 26
structural cycle, 133
weakly contracting cycle, 26

cycle condition, 26

decay point, 29
diagonal operator, 29
difference equation, 20

equilibrium point, 22
(Lyapunov) stable equilibrium point,

22
asymptotically stable equilibrium

point, 23
attractive equilibrium point, 23
globally attractive equilibrium point,

23
unstable equilibrium point, 22

function
polynomial function, 69
conewise linear, 70
contracting, 41
identity function, 16
increasing function, 16
left affineK∞-function, 145
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Index

monotone aggregation function, 28
monotone function, 28
positive (semi-)definite function,

16
positively homogeneous function

of degree one, 69
proper and positive definite func-

tion, 38
right affineK∞-function, 145
strictly increasing function, 16, 28
sub-additive function, 16
weakly contracting function, 26
zero function, 16

gain
admissible gain, 131
interconnection gain, 27
maximal gain, 132

gain matrix, 27
gain operator, 28
globalK-boundedness, 24, 25, 37, 92
global asymptotic stability with 0 in-

put (0-GAS), 94
graph

directed graph, 25
edge, 25
path in a directed graph, 25
strongly connected, 25
vertex, 25
weighted directed graph, 26, 131

iterative functionalK∞-equation, 144

linear matrix inequality (LMI), 82
linear summation case, 32
Lyapunov function

(a, b) finite-step Lyapunov func-
tion, 44

dissipative finite-step ISS Lyapunov
function, 96

dissipative ISS Lyapunov function,
95

global finite-step Lyapunov func-
tion, 39

global Lyapunov function, 38
global polyhedral Lyapunov func-

tion, 79
global polynomial Lyapunov func-

tion, 69
global positively homogenous Lya-

punov function of degree one,
69

implication-form ISS Lyapunov func-
tion, 95

matrix
adjacency matrix, 25
gain matrix, 27
identity matrix, 16
irreducible matrix, 26
nonnegative matrix, 173
reducible matrix, 26
spectral radius, 16
spectrum, 16
weighted structure matrix, 131

maximization case, 33

norm, 16
1-norm, 17
p-norm, 17
absolute norm, 18
Euclidian norm, 17
infinity norm, 17
monotonic norm, 18
operator norm, 17

Perron-Frobenius eigenvector, 174
Perron-Frobenius theorem, 174
potential decay set, 132

radially unbounded set, 29
ray, 70

sampling point, 146
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Index

set of decay, 29
small-gain

small-gain condition, 29
strong small-gain condition, 29

solution, 20
stability

KL-stability, 37
asymptotic gain property (AG),

95, 121
exponential input-to-state stabil-

ity (expISS), 92
exponential stability in the whole,

37
global asymptotic stability (GAS),

37
global exponential stability (GES),

37
global stability (GS), 94, 121
input-to-state stability, 24
input-to-state stability (ISS), 92,

120
integral input-to-state stability (iISS),

94
robust stability, 94
see also equilibrium point, 22
uniform global asymptotic stabil-

ity (UGAS), 37
zero input global asymptotic sta-

bility (0-GAS), 55
stability radius, 137, 175
system

M -iteration, 105
conewise linear system, 71, 75
discrete-time system, 21
dynamical system, 20
large-scale system, 21
linear system, 80
Lur’e system, 164
positive system, 176
time-invariance, 21

trajectory, 20
transfer function, 136
transfer matrix, 176
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