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Abstract 

Primary human liver cells such as hepatocytes when isolated and cultured in 2D monolayers, 

de-differentiate and lose their phenotypic characteristics. In order to maintain the typical 

polygonal shape of the hepatocytes and their polarization with respect to the neighbouring 

cells and extra cellular matrix (ECM), it is essential to culture the cells in a three-dimensional 

(3D) environment. There are numerous culturing techniques available to retain the 3D 

organization including culturing hepatocytes between two layers of collagen and/or 

Matrigel
TM

 (Moghe et al. 1997) or in 3D scaffolds (Burkard et al. 2012). 

  

In this thesis, three different 3D hepatic models were investigated.  

 

1. To reflect the in vivo situation, the hepatocytes were cultured in 3D synthetic scaffolds 

called Mimetix
®
. These were generated using an electrospinning technique using 

biodegradable polymers.
 
The scaffolds were modified to increase the pore size to achieve an 

optimal cell function and penetration into the scaffolds, which is needed for good cell-cell 

contact and to retain long-term phenotypic functions. Different fibre diameters, and scaffold 

thicknesses were analyzed using upcyte
®
 hepatocytes. The performance of upcyte

®
 

hepatocytes in 3D scaffolds was determined by measuring metabolic functions such as 

cytochrome P450 3A4 (CYP3A4) and MTS metabolism.  

 

2. Apart from maintaining the hepatocytes in 3D orientation, co-culturing the hepatocytes 

with other non-parenchymal cell types, such as liver sinusoidal endothelial cells (LSECs) and 

mesenchymal stem cells (MSCs), better reflects the complexity of the liver. Three different 

upcyte
®
 cell types namely, hepatocytes, LSECs and MSCs, were used to generated 3D liver 

organoids. The liver organoids were generated and cultured in static and dynamic conditions. 

Dynamic conditions using Quasi-vivo
®
 chambers were used to reflect the in vivo blood flow. 

After culturing the cells for 10 days, the structural orientation of cells within the organoids 

was analyzed. Functional integrity was investigated by measuring CYP3A4 activities. The 

organoids were further characterized using in situ hybridization for the expression of 

functional genes, albumin and enzymes regulating glutamine and glucose levels.  

 

3. An ex vivo bioreactor employing a decellularized organic scaffold called a “Biological 

Vascularized Scaffold” (BioVaSc) was established. Jejunum of the small intestine from pigs 

was chemically decellularized by retaining the vascular system. The vascular tree of the 
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BioVaSc was repopulated with upcyte
®
 microvascular endothelial cells (mvECs). The lumen 

of the BioVaSc was then used to culture the liver organoids generated using upcyte
®

 

hepatocytes, LSECs and MSCs. The structural organisation of the cells within the organoids 

was visualized using cell-specific immunohistochemical stainings. The performance of liver 

organoids in the BioVaSc was determined according to metabolic functions (CYP3A4 

activities).   

 

This thesis also addresses how in vitro models can be optimized and then applied to drug 

development and therapy. 

 

A comprehensive evaluation was conducted to investigate the application of second-

generation upcyte
®
 hepatocytes from 4 donors for inhibition and induction assays, using a 

selection of reference inhibitors and inducers, under optimized culture conditions. CYP1A2, 

CYP2B6, CYP2C9 and CYP3A4 were reproducibly inhibited in a concentration-dependent 

manner and the calculated IC50 values for each compound correctly classified them as potent 

inhibitors. Upcyte
®

 hepatocytes were responsive to prototypical CYP1A2, CYP2B6, CYP2C9 

and CYP3A4 inducers, confirming that they have functional AhR, CAR and PXR mediated 

CYP regulation. A panel of 11 inducers classified as potent, moderate or non-inducers of 

CYP3A4 and CYP2B6 were tested. Three different predictive models for CYP3A4 induction, 

namely the Relative Induction Score (RIS), AUCu/F2 and Cmax,u/Ind50 were analyzed. In 

addition, PXR (rifampicin) and CAR-selective (carbamazepine and phenytoin) inducers of 

CYP3A4 and CYP2B6 induction, respectively, were also demonstrated.   

 

Haemophilia A occurs due to lack of functional Factor VIII (FVIII) protein in the blood. 

Different types of cells from hepatic and extrahepatic origin produce FVIII. Supernatants 

harvested from primary LSECs were evaluated for the presence of secreted functional FVIII. 

In order to increase the FVIII production, different upcyte
®
 endothelial cells such as blood 

outgrowth endothelial cells (BOECs), LSECs and mvECs were transduced with lentiviral 

particles carrying a FVIII transgene. Also, to reflect a more native situation, primary mvECs 

were selected and modified by transducing them with FVIII lentivirus and investigated as a 

potential method for generating this coagulation factor. 
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Zusammenfassung 

Primäre humane Leberzellen wie beispielsweise Hepatozyten de-differenzieren und verlieren 

ihre phänotypischen Eigenschaften, wenn man sie isoliert und in 2D Monoschicht kultiviert. 

Um die typische, polygonale Form der Hepatozyten und ihre Polarisation gegenüber den 

benachbarten Zellen und der extrazellulären Matrix (EZM) zu erhalten, ist es essentiell die 

Zellen in einer dreidimensionalen (3D) Umgebung zu kultivieren. Es sind zahlreiche 

Techniken verfügbar, um die 3D-Organisation zu erhalten wie beispielsweise die Kultur von 

Hepatozyten zwischen zwei Schichten von Kollagen und/oder Matrigel
TM

 (Moghe et al. 1997) 

oder in einem 3D Gerüst (Burkard et al. 2012). 

 

In dieser Arbeit wurden 3 verschiedene, hepatische 3D Modelle untersucht. 

 

1. Um die in vivo Situation widerzuspiegeln, wurden die Hepatozyten in einer synthetischen 

3D Matrix namens Mimetix
®
 kultiviert. Diese wurde aus biologisch abbaubaren Polymeren 

elektrogesponnen. Die Matrix wurde modifiziert indem die Poren vergrößert wurden, um eine 

optimale Besiedlung des Zellgerüsts und dadurch eine gesteigerte Zellfunktionalität zu 

erreichen. Dies wird sowohl für die Ausbildung von Zell-Zell-Kontakten wie auch für den 

Erhalt der phänotypischen Funktionen über einen längeren Zeitraum hin benötigt. 

Unterschiedliche Faserdurchmesser und Matrixschichtdicken wurden mittels upcyte
®
 

Hepatozyten analysiert. Die Leistungsfähigkeit der upcyte® Hepatozyten wurde durch die 

Messung metabolischer Funktionen bestimmt, wie beispielsweise Cytochrom P450 3A4 

(CYP3A4) und MTS Metabolismus. 

 

2. Abgesehen vom Erhalt der 3D Orientierung der Hepatozyten, hilft eine Ko-Kultur der 

Hepatozyten mit anderen nicht-parenchymalen Zelltypen wie beispielsweise leber-

sinusoidalen Endothelzellen (LSECs) und mesenchymalen Stammzellen (MSCs) die 

Komplexität der Leber darzustellen. Drei unterschiedliche upcyte
®
 Zelltypen, das heißt 

Hepatozyten, LSECs und MSCs wurden eingesetzt, um 3D Leberorganoide zu generieren. 

Die Leberorganoide wurden in statischen  Zellkulturbedingungen generiert und dynamischen 

Bedingungen kultiviert. Durch den Quasi-vivo Bioreaktor als dynamisches Zellkultursystem 

wurde der Blutstrom in vivo widergespiegelt. Nach einer Kulturdauer von 10 Tagen wurde 

die strukturelle Organisation der Zellen innerhalb der Organoide analysiert. Die Funktionalität 

wurde durch Messungen der CYP3A4 Enzymaktivitäten untersucht. Darüber hinaus wurden 
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die Organoide mittels in situ Hybridisierung auf die Expression von funktionalen Genen, 

Albumin sowie Glutamin- und Glukose-regulierende Enzyme hin analysiert. 

 

3. Es wurde ein ex vivo Bioreaktor etabliert, dessen Grundlage ein dezellularisiertes Zellgerüst 

namens ‚Biological Vascularized Scaffold‘ (BioVaSc) bildet. Hierfür wurde das Jejunum vom 

Dünndarm des Hausschweins chemisch dezellularisiert, wobei gleichzeitig das vaskuläre 

System erhalten wurde. Dieses Gefäßsystem wurde dann mit upcyte
®
 humanen dermalen 

mikrovaskulären Endothelzellen (HDMECs) besiedelt. Das Lumen der BioVaSc wurde 

anschließend benutzt, um darin die Leberorganoide, die aus den upcyte
®
 Hepatozyten, LSECs 

und MSCs generiert wurden, zu kultivieren. Die strukturelle Organisation der Zellen 

innerhalb der Organoide wurde mittels zell-spezifischer, immunhistochemischer Färbungen 

visualisiert. Die Funktionalität der Leberorganoide in der BioVaSc wurde anhand von 

metabolischer Aktivität (CYP3A4 Enzymaktivität) bestimmt. 

 

Diese Arbeit beschäftigt sich auch mit der Fragestellung, wie in vitro Modelle optimiert 

werden können, um sie schlussendlich für die Wirkstoffentwicklung aber auch 

zelltherapeutische Anwendungen einsetzen zu können. 

 

Eine umfassende Untersuchung wurde durchgeführt, um zu untersuchen inwiefern 4 Donoren 

der zweiten upcyte
®
 Hepatozyten Generation für Inhibitions- und Induktionsstudien geeignet 

sind. Hierfür wurde eine Auswahl an Referenzinhibitoren und – induktoren unter optimierten 

Kulturbedingungen eingesetzt. CYP1A2, CYP2B6, CYP2C9 und CYP3A4 konnten durch den 

Einsatz von Inhibitoren reproduzierbar, konzentrationsabhängig inhibiert werden und die 

berechneten IC50-Werte klassifizierte jede Substanz korrekt als potenten Inhibitor. Upcyte® 

Hepatozyten reagierten auf proto-typische CYP1A2-, CYP2B6-, CYP2C9- und CYP3A4-

Induktoren, wodurch eine funktionale AhR-, CAR- und PXR-vermittelte Regulation der 

jeweiligen CYP Enzymaktivität bestätigt werden konnte. Eine Sammlung von 11 Induktoren, 

die für CYP2B6 sowie CYP3A4 als potent, moderat potent und nicht potent klassifiziert sind 

wurden analysiert. Drei unterschiedliche Vorhersage-Modelle für die Induktion von CYP3A4 

wurden analysiert, der (I) ‚Relative Induction Score (RIS), (II) AUCu/F2 und (III) Cmax,u. 

Darüber hinaus wurden PXR-selektive (Rifampicin) und CAR-selektive (Carbamazepin und 

Phenytoin) Induktoren für eine CYP3A4- und CYP2B6-Induktion gezeigt. 
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Hämophilie A tritt aufgrund eines Mangels an funktionalem Faktor VIII protein (FVIII)  im 

Blut auf. Verschiedene Zelltypen hepatischen und extra-hepatischen Ursprungs produzieren 

FVIII. Zellkulturüberstände von primären LSECs wurden abgenommen und hinsichtlich des 

Vorhandenseins von sekretiertem FVIII  untersucht. Um die FVIII-Produktion zu steigern, 

wurden unterschiedliche upcyte
®
 Endothelzellen, wie beispielsweise ‚blood outgrowth 

endothelial cells‘ (BOECs), LSECs und HDMECs, mit lentiviralen Partikeln, die ein FVIII 

Transgen tragen transduziert. Um eine nativere Situation widerzuspiegeln, wurden primäre 

HDMECs ausgewählt, um sie mittels Transduktion von FVIII lentiviralen Partikeln zu 

modifizieren, zu selektionieren und im Anschluss hinsichtlich ihres Potentials zur Bildung des 

Koagulationsfaktors FVIII zu untersuchen. 
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List of abbreviations      

°C    Degrees Celsius       

Fig    Figure         

AB   Antibody         

BioVaSc   Biological Vascularized Scaffold     

BOEC   Blood outgrowth endothelialcells     

BSA     Bovine serum albumin       

CYP   Cytochrome         

DAPI   4',6-Diamidino-2-Phenylindole, Dilactate         

DMEM    Dulbecco's modified Eagle medium     

DMSO    Dimethyl sulfoxide       

DNA    Deoxyribonucleic acid       

dNTP    Deoxynucleotide Triphosphates      

EC   Endothelial cells       

ECGM 

ECM 

  Endothelial cell growth medium 

Extra Cellular Matrix 

    

EDTA   Ethylenediaminetetraacetic acid     

FBS    Fetal bovine serum       

fc   Final concentration       

FVIII   Factor VIII         

h   Hour         

HE   Hematoxylin -eosin       

HGF   Hepatocyte growth factor       

HGM   Upcyte
®
 hepatocyte growth medium     

HPM   Upcyte
®
 hepatocyte high performance medium   

HSA   Human serum albumin       

HSC   Hepatic stellate cell       

HUVEC   Human umbilical        

IgG   Immunoglobulin G       

iPSC   Induced pluripotent stem cell     

kGr   Kilo Gray         

KHB   Krebs-Henseleit buffer       

LB   Luria Bertani         

LSEC   Liver sinusoidal endothelial cell     
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M   Molar         

min   Minute         

mM    Millimolar         

mm    Millimeter         

ml    Milliliter         

MOI    Multiplicity of infection       

mvEC    Microvascular endothelial cells     

MTS   3 - (4,5- Dimehtylthiazol -2-yl ) -2,5- diphenyl- 

-tetrazolium bromide 

µ    Microns         

NaCl    Sodium chloride       

PBS   Phosphate buffer saline       

PCR    Polymerase chain reaction       

PD   Population doubling       

PLLA   Poly(L-lactic acid)          

rFVIII   Recombinant FVIII       

RNA    Ribonucleic acid       

rpm    Rounds per minute       

RT    Room temperature       

SDS    Sodium dodecyl phosphate       

SOC   Super Optimal broth with Catabolite 

repression  

        

VEGF   Vascular endothelial growth factor     

vWF    Von Willebrand factor       

e.g.   Example         

2D   Two-dimensional       

3D   Three-dimensional       
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1. Introduction 

1.1 Structure and physiology of the liver 

The liver is a multifunctional organ that plays a vital role in removing harmful 

chemicals/xenobiotic compounds from the body and is therefore often the first organ to suffer 

potentially adverse consequences. The liver is organized into irregular polygonal lobules, 60% 

of which are composed of parenchymal cells arranged in cords (hepatocytes) and 20% are 

sinusoidal cells such as LSECs and Kupffer cells (hepatic macrophages). The remaining 8-

10% of the liver contain perisinusoidal cells (hepatic stellate cells) (Gu & Manautou, 2012) 

Portal triads are situated between the adjacent lobules at the corners (Figure 1). Each of the 

portal triads are comprised of hepatic portal vein, hepatic artery and bile duct. Approximately 

75% of the liver is vascularized with blood derived from the hepatic portal vein and the 

remaining is from the hepatic artery. The hepatic portal vein carries deoxygenated/venous 

blood from spleen, gastrointestinal tract and other associated organs into the liver lobules 

(Godoy et al. 2013).  

 

Figure 1: Portal triads comprised of the bile duct (green), hepatic portal vein (blue) carrying the 

deoxygenated blood from intestinal tract and hepatic artery (orange) supplying oxygenated blood. The 

central vein runs through the centre of lobules and drains blood from the lobules (Picture source: 

Pearson Education Inc.) 
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1.2 Hepatic cells and their function 

1.2.1 Hepatocytes 

The liver is made of structural subunits called liver lobules. Liver lobules are composed of 

hepatocyte cords or also known as cords. Hepatocytes are the epithelial cells of the liver that 

are cuboidal in shape with 20-30 µm in diameter. The average life span of a hepatocyte is five 

months. Hepatocytes contain a large proportion of rough endoplasmic reticulum and 

mitochondria. Binucleated hepatocytes are common in adult hepatocytes but tetraploidy or 

polyploidy is also a common feature of hepatocytes (Elaut et al. 2006). Hepatocytes arranged 

in plates are exposed to vascular channels (sinusoids) to facilitate the exchange of various 

compounds. The surface that contacts adjacent hepatocytes is termed as lateral face. Bile 

canaliculi are formed between two adjacent hepatocytes joined by tight junctions. The thin 

capillaries of bile canaliculi merge to form bile ducts that transport bile secreted by 

hepatocytes. The space of Disse separates the hepatocytes from the sinusoids. Microvilli on 

the hepatocytes extend into space of Disse to increase the absorption of components from the 

plasma. Hepatic plates radiate from the central vein towards the periphery and they are 

organized in three different zones, namely the periportal, transitional and perivenous zones. 

Based on their location, there is a microdiversity in the hepatocytes, which can be detected 

using in situ hybridization (Gebhardt 1992; Jungermann & Kietzmann 1996). 

 

Hepatocytes play a key role in the metabolism and elimination of xenobiotic and endogenous 

compounds. Therefore, the function of hepatocytes has strong influence on the 

pharmacokinetics and toxicity of drugs (Boyer, Wright and Manns 2011). Cultures of isolated 

primary human hepatocytes contain a broad complement of CYPs and transporter proteins. 

Hepatocytes are the main site of glycogen storage, from where it is broken down into glucose 

and released directly into the blood stream. Hepatocytes play an important role in 

gluconeogenesis (formation of glucose from non-carbohydrate substrates) and in the 

deamination of amino acids to urea. Hepatocytes produce the majority of circulating plasma 

proteins (e.g. albumin), lipoproteins, non-immune alpha and beta-globulins and glycoproteins, 

including fibronectin. Hepatocytes also synthesize protease inhibitors (e.g. α1-antitrypsin, 

antithrombin), blood coagulation factors (e.g. fibrinogen, factor V, VII and VIII), modulators 

of immune complexes and inflammation (e.g. complement C3) (Boyer, Wright and Manns 

2011. Hepatocytes also synthesize the lipid portion of lipoprotein and cholesterol. Lipids are 

also stored in the liver and are present in various sizes of lipid droplets. 
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1.2.2 Liver sinusoidal endothelial cells  

The physiology of the liver is maintained by a special category of endothelial cell called liver 

sinusoidal endothelial cells (LSECs (Aird 2007). Nearly 50% of the non-parenchymal hepatic 

cells are comprised of LSECs. Hepatocytes are separated from the circulating blood by 

LSECs and the latter are responsible for hepatic microcirculation (Oda et al. 2003). LSECs 

from the liver form a fenestrated monolayer but they do not possess a basement membrane 

(Braet & Wisse 2002). The main function of LSECs is to control the exchange of materials 

between liver parenchyma and blood. LSECs also express a variety of scavenger receptors 

and as a result, constitute the most important scavenger system in the body (Smedsrød et al. 

1990). Together with hepatocytes, these cells play a vital role in the uptake, metabolism and 

elimination of xenobiotic compounds; therefore, these cells are also termed “scavenger 

endothelial cells”. LSECs are also antigen-presenting cells because they take up antigens by 

receptor-mediated endocytosis and/or phagocytosis. These antigens are presented to 

lymphocytes by a similar mechanism to that of dendritic cells. LSECs suppress selectively the 

proliferation of cells by producing interferon-gamma. This activity promotes the outgrowth of 

Th2 cells to express interleukin-4 (Klugewitz et al. 2002). LSECs play a vital role in immune 

tolerance of the liver without activating T-cells (Limmer et al. 2000). Regulatory T-cells 

producing interleukin-4 and interleukin-10 develop, when T-cells interact with LSECs 

(Bertolino et al. 2002; Limmer & Knolle 2001). 

 

LSECs secrete a coagulation factor, FVIII that plays a vital role in the intrinsic coagulation 

pathway (Do et al. 1999). LSECs are one of the most difficult cells to maintain in vitro whilst 

retaining their phenotypic character. Upon isolation of LSECs from liver, they lose their 

typical phenotypic function (Smedsrød et al. 1994). Rat LSECs, when cultured alone, lose the 

expression of SE-1 antigen (biomaker) and the expression of CD31 is increased. Increased 

expression of CD31 in LSECs indicates the cells have low proliferation capacity and reach 

senescence (DeLeve et al. 2004). However, co-culture of LSECs with primary hepatocytes 

suppresses CD31 expression (DeLeve et al. 2004) and enhances SE-1 expression (Hwa et al. 

2007). Optimal configuration of LSECs was retained for 2 weeks when they were co-cultured 

with hepatocytes and fibroblasts (March et al. 2009).  
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1.2.3 Microvascular endothelial cells  

The lumen of blood vessels is lined with endothelial cells (ECs), which helps to maintain the 

vessel wall permeability. ECs exhibit cobblestone-like morphology when cultured in 

collagen-coated plates in 2D. ECs also play an important role in maintaining the blood 

pressure by vasodilation or vasoconstriction (Cosentino & Volpe 2005). These cells also 

contribute to blood coagulation processes such as thrombosis and fibrinolysis (Wiel et al. 

2006; Chen & López 2005). ECs harbour Weibel palade bodies that store growth factors, 

cytokines and hormones  (Hannah et al. 2002; Michaux & Cutler 2004; van Mourik et al. 

2002). Under physiological conditions, ECs play a vital role in vascular biology (Wiel et al. 

2006) and angiogenesis i.e. sprouting of new blood vessels from an already existing vessel 

system. Receptors present on the surface of the cells are activated by angiogenic growth 

factors such as vascular endothelial growth factor (VEGF). The ECs degrade the underlying 

basement membrane and migrate through it. This migration and invasion is one of the 

characteristic features of endothelial cells. The migrated ECs proliferate into the surrounding 

extracellular matrix to form vascular sprouts (Brown et al. 1998; Bergers & Benjamin 2003). 

The specialized ECs that are present in the edge of vascular sprouts form a vascular network 

by connecting to the adjacent sprouts (Gerhardt & Betsholtz 2005; Szekanecz & Koch 2005).  

 

ECs are highly heterogeneous, for example: the gene expression between the human umbilical 

vein endothelial cells (HUVECs) and mvECs differ markedly. Likewise, the ECs that line 

arterial blood vessels differ significantly from those that line the veins. Like other cell lines, 

ECs isolated from tumours differ significantly from healthy ECs with regards to the marker 

profile (Charalambous et al. 2005). ECs isolated from different locations of the body express 

different surface proteins such as von Willebrand factor (vWF) (Turner et al. 1987). mvECs 

isolated from organs, such as the brain and lungs, also express different cell surface markers 

(Grau et al. 1997). The availability of a pure population of human mvECs is always a rate-

limiting step (Scott & Bicknell 1993) and they tend to lose the phenotypic markers when 

placed into culture (Unger et al. 2002). In addition, mvECs have a low proliferating potential 

(Kim & von Recum 2008) which underlines the need for alternative cell sources.  
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1.2.4 Mesenchymal stem cells  

Mesenchymal stem cells (MSCs) are a type of adult stem cell that has a self-renewal capacity 

(Williams et al. 2011) and a wide differentiation potential (Meirelles et al. 2009). The major 

cell types derived from MSCs include osteogeneic or bone cells (Brighton et al. 1992; Marsell 

& Einhorn 2011), cartilage cells or chondrocytes (Brighton & Hunt 1991) and adipocytes or 

fat cells. MSCs can also differentiate into neuron-like cells  (Jiang et al. 2002), muscle cells 

and skin cells (Figure 2). Amniotic fluid is a rich source of MSCs. Among the cells collected 

during amniocentesis, 1 in 100 cells are MSCs. Morphologically; the MSCs resemble 

fibroblasts, that is they have long and thin cell bodies with prominent nuclei. MSCs can be 

obtained from the stroma of bone marrow, as well as non-marrow tissues such as fat tissue, 

adult stroma, corneal tissue (Branch et al. 2012) and from the deciduous pulp of teeth (Batouli 

et al. 2003). Isolated MSCs are easy to culture as they adhere to standard plastic culture 

plates. Bone deterioration is one of the challenging steps with aged patients (Smith et al. 

2011; Wang et al. 2013). As MSCs have the potential to differentiate into osteoblasts, these 

cells are used for bone regeneration (Wang et al. 2013). Fat tissue is easily obtained from 

patients, and thus naturally lends itself as a source of autologous cells, especially since it has a 

low risk of tumorigenesis (Cao et al. 2005; Kuo et al. 2008) and can overcome immune-

rejection. MSCs express specific antigen expressing markers on their cell surface, such as 

CD73, CD90 and CD105 (M et al. 2011). 

 

 

Figure 2: Differentiating ability of MSCs includes adipocytes, chondrocytes, bone cells or osteoblast, 

muscle cells and neurons (Picture- Meregalli et al., 2011) 
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1.3 In vitro hepatic models 

1.3.1 Advantages and disadvantages 

There are numerous cell types that have been used as an alternative to primary human 

hepatocytes. These, together with their advantages and disadvantages, are summarized in 

Table 1. One of the most important disadvantages, especially relevant to screening assays, is 

the lack of a sufficient source of cells. 

 

Table 1.  Summarizes in vitro hepatic models, its advantages and disadvantages. 

 

Hepatic 

model(s) 

Advantages Disadvantages 

Primary human 

hepatocytes  

- Gold standard for the 

evaluation of human-specific 

drug properties such as 

metabolic fate, drug-drug 

interactions and drug toxicity 

(Hewitt et al. 2007; Li & Jurima-

Romet 1997). 

- Bulk availability is rate limiting and 

the cells are mostly derived from non-

healthy donor. 

- Donor-to-donor variability.  

- Limited life span and difficulties in 

maintaining a differentiated 

phenotype in in vitro culture. 

- Results in reduced expression of 

some of the transporters (Guguen-

Guillouzo & Guillouzo 2010). 

Immortalized 

cell line 

(HepG2, 

Hep3B, Huh7, 

Fa2N4, 

HepaRG) 

 

- Unlimited life span provides 

high availability. 

- Stable phenotype, logistically 

easy to culture and maintain, 

serves as alternative in vitro 

models for screening purposes 

(Godoy et al. 2013). 

- In Fa2N4 cells, the induction 

response to major CYPs is high 

(Youdim et al. 2007). 

- In HuH7 cells, increased level 

of CYP3A4 activity after 

treatment for several weeks is 

observed (Sivertsson et al. 

2010). 

- Represent only a single donor and 

some may lack sufficient 

responsiveness to CYP3A4 inducers 

(Westerink & Schoonen 2007).  

- In Fa2N4, basal enzyme activities 

are low (Sinz et al. 2008) and CAR 

expression is lacking (Hariparsad et 

al. 2008).   

- In HuH7 cells, phenotypic changes 

occur in the absence of DMSO 

(Sivertsson et al. 2010). 

- In HepaRG cells, CYP expression is 

generally lower than freshly isolated 

primary cells, except CYP3A4 

(Kanebratt & Andersson 2008). 
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iPS derived 

hepatocytes  

- iPS cells can be expanded and 

directly differentiated into 

hepatocytes in in vitro cultures. 

- Positive for many hepatic 

functions such as albumin 

secretion, glycogen storage, drug 

metabolism, drug transportation 

and lipogenesis  (Rashid et al. 

2010; Si-Tayeb et al. 2012). 

- Used to study familial 

hereditary cholestasis, a1-

antitrypsin deficiency and 

glycogen storage disease type 1a 

(Ghodsizadeh et al. 2010). 

- Large quantities of iPS-derived 

hepatocytes are required for large 

scale toxicity screening.  

- Variability in functionality and gene 

expression between batches (Godoy et 

al. 2013). 

- Variability in iPS differentiation 

procedures such as differences in iPS 

reprogramming (Kim et al. 2010) and 

epigenetic cell memory (Ohi et al. 

2011; Ruiz et al. 2012). 

Embryonic stem 

cell-derived 

hepatocytes 

 

- Secrete albumin, store 

glycogen, uptake low-density 

lipoprotein, and possess 

inducible CYP activity. 

- Express adult liver cell markers 

tyrosine aminotransferase, CYPs 

(7A1, 3A4 and 2B6) (Cai et al. 

2007). 

- Cells possess high levels of 

telomerase activity and, when injected 

in mice, they generate teratoma and 

eventually teratocarcinoma 

(Przyborski 2005). 

Animal 

hepatocytes 

model (mouse, 

rat and dog) 

- Bulk availability.  

- Used for in vitro toxicological 

studies. 

- Species-dependent metabolism and 

physiology prevents an accurate 

prediction of toxicity to humans for 

many drugs (Martignoni et al. 2006). 

- Rat hepatocytes lose Ntcp mRNA 

expression and taurocholate uptake 

capacity on collagen-coated plates 

(Liang et al. 1993) and Oatp trans- 

porters (Rippin et al. 2001). 

 

An ideal in vitro model would possess the advantages of both cell lines and primary cells: 

easy access and availability, the ability to proliferate, a consistent response to inducers with 

the ability to study donor variation, and expression of cell-specific enzymes and drug 

transporters that most closely resemble fresh primary cells (Sinz et al. 2008). 
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1.3.2 Upcyte
®
 technology 

The proliferative capacity of hepatocytes differs under different conditions, such that they do 

not proliferate in vitro but they do have significant proliferative capacity in vivo, particularly 

after partial hepatectomy. A technology called “upcyte
®

” technology has been developed to 

address the gap between the primary cells and cell lines. Human upcyte
®
 cells are derived 

from primary human cells by transducing them with proliferation inducing genes through 

lentiviral transduction (Patent WO 2009/030217) (Burkard et al. 2012). The proliferating cells 

are referred to as “upcyte
®”

 cells. The upcyte
®
 cells have the potential to undergo a finite 

number of cell divisions i.e. 20-40 population doublings, without losing adult primary cell 

phenotype (e.g. adult cell markers). After this additional number of population doublings, 

upcyte
®
 cells enter into senescence (Scheller et al. 2012). The extended proliferation capacity 

between primary cells (up to 10-25 population doublings) and cell lines (> 60 population 

doublings) represent that they are not immortalized.   

 
 
Figure 3: Primary human cells are induced to proliferate by a pool of cellular and viral genes using 

upcyte
®
 technology. This circumvents the cell cycle control mechanism, which results in controlled 

cell growth without immortalising them. The proliferating cells are selected and referred to as 

“upcyte
®”

 cells. 

 

After application of the upcyte
®
 process to primary cells, they are seeded at a low density 

which allows the cells to proliferate. The non-transduced cells have a limited lifespan and 

eventually detach from the culture dish culture, so a selection process is not necessary. When 

the upcyte
®
 technology is applied to single vial of primary human hepatocytes, more than 12 

billion upcyte
®
 hepatocytes can potentially be generated. Using the upcyte

®
 technology, first 

and second generation upcyte
®
 hepatocytes were generated. Second generation upcyte

®
 

hepatocytes were generated by refining the upcyte
®
 process (Levy et al-Manuscript 

submitted) enabling the cells for higher CYP activities compared with the first generation 
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hepatocytes. These upcyte
®
 hepatocytes also exhibit a primary cell phenotype such as adult 

cell markers, albumin production, phase 1 and 2 activities (Burkard et al. 2012). Upcyte
®

 

technology can be applied to different cells types e.g. mvEC (Scheller et al. 2012), LSECs 

(Nörenberg 2013) etc. and to different batches of cells, so that a range of primary cells from 

multiple donors can exhibit an extended lifespan. The cells are simple to use and offer the 

possibility of generating large amounts of cells from a single donor. Thus the upcyte
®

 

technology allows for sufficient quantities of different cell types to be produced for human-

based cell screening studies and are particularly suitable for the standardization of in vitro test 

systems and in tissue engineering (Scheller et al. 2012). 

 

1.4 Co-culture 

 

The liver is one of the most complex organs of the body and is composed of different cell 

types. Therefore, co-culturing hepatocytes with other hepatic cell types will better reflect the 

in vivo cellular composition than cultures containing only hepatocytes. In line with this, it has 

been shown that adult primary rat hepatocytes co-cultured with fibroblasts or other liver 

epithelial cells increase their function, such as albumin secretion (Guguen-Guillouzo et al. 

1983). 

 

LSECs and hepatocytes arrange themselves in close proximity in the liver. Cross talk between 

these two cell types plays an important role in their function and differentiation. For example, 

hepatocytes co-cultured with endothelial cells at a high concentration of vascular endothelial 

growth factor (VEGF) stimulated cell migration and neoangeogenesis (Shimizu et al. 2005). 

Cell polarization is important for hepatocytes to retain the correct distribution of transporters 

in the sinusoidal, basolateral and canalicular membranes (Berthiaume et al. 1996). Therefore, 

an in vitro liver model employing the co-culture of hepatocytes with endothelial cells is 

supposed to be beneficial. Hepatocytes co-cultured with MSCs derived from bone marrow 

have been shown to maintain their proliferative capacity and metabolic function (Shi et al. 

2011). Co-culture with more than one cell type has also been investigated to develop 3D liver 

organoid-like structures. In these studies, human derived induced pluripotent stem cells 

(iPSCs), MSCs and human umbilical vein endothelial cells (HUVECs) were co-cultured on 

Matrigel
TM

 and subsequently self-organized to form liver bud-like structures (Takebe et al. 

2013). Co-cultures with more than two cell types coupled with 3D environments offers a 

promising model for many applications e.g. for toxicology tests (Godoy et al. 2013).   
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1.5 Development of 3D models (2D vs 3D) 

Although there are numerous advantages of using 2D cultures, the cells cultured in 

conventional monolayer (2D) are not reflective of the physiological situation. This is because 

the organization of cells in vivo is 3D. When cells are cultured over a long time in 

conventional 2D monolayers on a rigid surface, they do not accurately recapitulate the 

structure of the cells in vivo. In addition, many of the in vivo functions and physiology of 

living tissues are lost in 2D cultures, making it difficult to evaluate key cellular and molecular 

events. One such example is hepatocytes: hepatocytes cultured in 2D lose their skeletal 

integrity, which results in a flattening of their morphology. They also tend to de-differentiate 

and lose their phenotypic characters (Gómez-Lechón et al. 1998) that results in down-

regulation of phase I and II enzymes (Clayton & Darnell 1983). Ideally, the polygonal shape 

of the hepatocytes should be retained in addition to their polarization with respect to their 

neighbouring cells to maintain optimal parenchymal functions (Bissell et al. 1987). The 3D 

orientation of the hepatocyte can be retained in vitro using a number of culturing techniques 

(Pampaloni et al. 2009). When hepatocytes are cultured using a sandwich technique in which 

the cell monolayer is overlaid with an extra cellular matrix e.g. collagen, CYP activities and 

culture viability were reported to be increased (Dunn et al. 1991).  Other 3D formats include 

the use of hydrogels such as Matrigel
TM

 (Moghe et al. 1997), Extracel
TM

 (Ranucci et al. 

2000), synthetic scaffolds (Burkard et al. 2012; Bokhari et al. 2007) and biological scaffolds 

(Mertsching et al. 2005). 

 

1.6 Tissue Engineering 

The term “tissue engineering” was introduced in 1987 during a meeting of the National 

Science Foundation. Tissue engineering has evolved from the collaborative application of life 

science and engineering to understand the fundamental relationship of structure and function 

of the biological substitutes (Bell et al. 1981). The main aim of tissue engineering is to 

overcome the disadvantage of conventional treatment for organ transplantation or tissue 

repair. When there is an essential need to replace an organ, the major challenge is the 

availability of a suitable organ donor. Therefore, the application of the principles of tissue 

engineering to synthesize an organ or tissue ex vivo using patients’ cells (autologous) will 

reduce the dependency of supplementary therapies (Patrick, C. W., Jr., Mikos, A. G., and 

McIntire, L. 1998). Products of tissue engineering are not only interesting as grafts but also 

can provide a test system for validating drugs.  
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The main essential components of tissue engineering are cells, scaffolds and bioreactors. 

 

1.6.1 Cells used for bioreactors 

Tissue engineering offers the advantage of generating donor specific grafts; however, the 

availability of cells required to develop such organs grafts is difficult. There are numerous cell 

types and techniques that have been explored in order to meet the demand for bulk supplies of 

cells (Parenteau & Hardin-Young 2002; Germain et al. 2002; Faustman et al. 2002). These 

include adult, embryonic and foetal stem cells, as well as cells modified with nuclear 

transplantation. The major problem with progenitor cells was the absence of specific adult cell 

markers (Faustman et al. 2002). Autologous cells naturally offer a big advantage (Germain et 

al. 2002) over cells from a different donor. External organs such as skin can easily be treated 

with skin substitutes using autologous cells, which is minimally invasive. Also, such skin 

grafts integrate with the host tissue (Parenteau & Hardin-Young 2002). By contrast, it is not 

possible to obtain a sufficient quantity of autologous cells from internal organs (liver) from 

small biopsies.  Allogeneic and xenogeneic cells can be used as an alternative source; 

however, both can cause problems such as disease transmission (Germain et al. 2002) and 

adverse immune responses (Germain et al. 2002; Faustman et al. 2002). Despite these 

difficulties, tissue engineering has been shown to be successful in certain cases such as 

generation of cardiac tissue (Sefton 2002; Taylor 2002). Isolation of cells and their expansion 

has been achieved ex vivo with subsequent in vivo differentiation. However, the process of 

developing an entire organ under laboratory conditions using bioreactor is still difficult 

(Hirschi et al. 2002; Niklason et al. 2002). 

 

1.6.2 Scaffolds used for bioreactors 

1.6.2.1 Electrospinning scaffolds 

The electrospinning technique consists of three main components: a pipette tip or extruder, a 

high voltage power supply and a collecting plate. The biodegradable polymer solution is 

extruded at a constant rate through the pipette tip or nozzle at high DC voltage (10 to 100 kV) 

at room temperature under atmospheric conditions (Liang et al. 2007). The voltage is applied 

to the dissolved polymer solvents, which induce a charge on the surface of the liquid droplet. 

When the voltage is high enough, the hemispherical surface of the fluid elongates due to the 

electric field and a “Taylor cone” is established. On increasing the applied voltage further, a 

jet of whipping polymer solution is ejected from the Taylor cone (Bhardwaj & Kundu 2010). 

The charged liquid jet is attracted to the earthed collector, which is positioned at a fixed 
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distance from the needle. During this process the solvent evaporates from the polymer 

solution, leaving dry polymer fibres on the collector. As a result, fibrous scaffold with varying 

pore size (in microns) and large surface area-to-volume ratio is obtained (Figure 4). 

 

 
 
Figure 4: Schematic diagram of the set up of electrospinning apparatus representing the polymer 

solution extruded through spinneret by a high voltage power supply and a collecting plate at the 

bottom (Picture source: The Electrospinning company, UK) 

 

 

Scaffolds generated using this electrospinning technique have advantages in disciplines such 

as tissue engineering or in regenerative medicines (Wang et al. 2011). Electrospinning is ideal 

for the preparation of fibrillar networks with controlled diameters of down to tens or hundreds 

of nanometers (Reneker & Chun 1996) and 3D organization, which resembles that of the 

natural ECM. Culturing the cells in these types of scaffolds provides a 3D architecture, which 

resembles the physiological situation (Singh et al. 2011). Electrospun scaffolds are spun with 

nano or micrometer fibres. Electrospun fibres are composed of natural or synthetic 

biodegradable polymers such as poly-L-lactic acid (PLLA) or poly-L/D- lactic acid (PLDLA). 

When the microenvironment of each cell type is considered, the spinning conditions such as 

voltage, flow rate and polymer concentration can be altered to produce scaffolds with 

appropriate different fibre diameters/pore sizes (Liang et al. 2007). In order to increase the 

cell adherence to the scaffolds, they have been modified to carry negatively charged groups 

such as (COOH) (Lin et al. 2004). Other surface functionalization of scaffolds with sugar 

residues, such as galactose, can also enhance cell growth and functionality (Yin et al. 2003). 
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1.6.2.2 Biological Vascularized Scaffold  

Scaffolds have also been derived from natural materials and used to culture cells to retain 

their 3D architecture. For example, rat liver lobes have been decellularized and subsequently 

used to culture hepatocytes on heparin layers (Bao et al. 2011). A similar model has been 

developed using the jejunum of the small intestine from pigs. In this technique, a 10 to 15 cm 

length of “biological vascularized matrix (scaffold)” (BioVaSc) is chemically decellularized 

without disrupting the vascular system (capillaries, arterial inflow and venous outflow) lined 

with collagen I (Mertsching et al. 2005). The vascular system and the lumen portion of the 

BioVaSc are sterilized by gamma irradiation. Colonization of the vascular system can be 

achieved using mvECs (Scheller et al. 2012). Together with the vascular system, the lumen of 

the BioVaSc can also be populated with cells (Mertsching et al. 2005; Mertsching et al. 2009). 

As the vasculature in the BioVaSc is preserved, it provides a physiologically relevant model 

for optimized nutrient and mass transfer, which supports better viability and functionality of 

the cells.  

 

When more than one cell type was co-cultured in the BioVaSc, it was possible to generate 

vascularized tissue models (Schanz et al. 2010). As graft rejection is a major problem in organ 

transplantation, it is possible to generate such organ models using autologous cells. This will 

also obviate the need for long-term immune-suppressive drugs to prevent rejection. A 

BioVaSc populated with upcyte
®
 mvECs was able to pre-vascularize the decellularized matrix 

(Scheller et al. 2012). During transplantation, vasculature of BioVaSc can be connected to the 

existing vasculature of the patient to prevent necrosis. Decellularized BioVaSc seeded with 

autologous muscle cells and fibroblasts were shown to successfully repair a tracheal defect in 

58-year old man (Macchiarini et al. 2004). In addition to this, the BioVaSc has also been used 

as a tumour test system (Moll et al. 2013; Thude et al. 2008); a model for pharmacological, 

toxicological, cosmetic screening (Mertsching & Walles 2009); heart valves  (Bader et al. 

1998); as well as blood vessels (Robotin-Johnson et al. 1998) and trachea models (Schanz et 

al. 2009). These multiple applications of the BioVaSc emphasises the increasing the demand 

for vascularized test system. 
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1.6.3 Bioreactors 

Bioreactors have been used in many fields, such as in fermentation, effluent treatment and 

food processing industries (Martin & Vermette 2005). In the early 1980s, bioreactors were 

used to produce vaccines and drugs using animal cell culture. More sophisticated bioreactors 

are computer-controlled to regulate the physiological conditions (Hutmacher & Singh 2008; 

Mertsching & Hansmann 2009). The bioreactors used in tissue engineering today were 

evolved from these early models. 

The main aim of using bioreactors in tissue engineering is to: 

- Enhance uniform distribution of cells throughout the 3D scaffolds (Holy et al. 

2000). The cells that are cultured in 3D scaffolds, harbours fewer cells at the centre 

of the scaffolds. Due to non-uniform distribution of cells in the scaffolds, 

development of 3D tissue-like structures in vitro is challenging (Cartmell et al. 

2003). Also, cells in the middle of these scaffolds enter apoptosis or senescence 

because they are of devoid of nutrients.  The cells are further encouraged to 

produce ECM (Freed & Vunjak-Novakovic 1997), which further blocks the flow 

of nutrients to the cells in the centre. 

- Ensure optimal concentration of gas and nutrient circulation (Sutherland et al. 

1986). The nutrient gradient is higher in the periphery of scaffolds than the centre, 

which influences the cells to move away from the centre (Goldstein et al. 2001). 

- Provide mass transport to the tissue and mechanical stimulus to encourage cell 

differentiation e.g. MSCs (Altman et al. 2002). 

The main aim of using bioreactors in tissue engineering is not only to develop implantable 

grafts using autologous cells but also to develop ex vivo devices in case of non-availability of 

autologous cells or compatible organ (Mazariegos et al. 2001). Also as these 3D grafts reflect 

the in vivo situation, they can be used for drug research (Griffith & Naughton 2002).  

 

1.7 Application of hepatic models 

1.7.1 Drug metabolism and drug-drug interactions 

When a drug is administrated orally, it enters the portal circulation into liver. These 

xenobiotic chemical substances will undergo biotransformation - a process in which insoluble 

parent compounds are converted to excretable water-soluble metabolites by xenobiotic 

metabolizing enzymes (XMEs). Although CYP enzymes represent more than 50 isozymes, 

90% of marketed drugs are metabolized by six different CYPs, namely CYP1A2, CYP2C19, 

CYP2C9, CYP2D6, CYP2E1, and CYP3A4. Among these, the two CYPs that play a vital 
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role in drug metabolism are CYP3A4 and CYP2D6 (Ogu & Maxa 2000). In this thesis, four 

CYP isoforms (CYP1A2, CYP2C9, CYP3A4, CYP2B6) and their inducers and inhibitors for 

4 donors of upcyte
®
 hepatocytes have been characterized. CYP2D6 was not analyzed as the 

upcyte
®
 hepatocytes express negligible amount of CYP2D6 to be detected by HPLC analysis. 

Drugs and other xenobiotics may be metabolized by phase I and phase II enzymes before they 

are eliminated from the body. CYPs are responsible for major phase I reactions that 

biotransform the parent compound via oxidation or reduction or hydrolysis into hydrophilic 

compounds or reactive metabolite (Figure 5). Kidneys will excrete the resulting hydrophilic 

metabolites. Reactive metabolites that are not cleared from the circulation can be further 

metabolized by phase II enyzmes via conjugation reactions (mostly by transferase enzymes). 

 

 

Figure 5: Schematic representation of phase I und phase II metabolism. 

 

Most fatal drug-drug interactions are due to XME inhibition (Zhou et al. 2007). As a result, 

drugs that inhibit XMEs are a major concern in drug development and in the clinic such that 

potent inhibitor drugs are either de-selected from development or require labelling once on the 

market. In addition to inhibition, drugs that induce XMEs are also avoided in drug 

development since increased levels of XMEs increase the metabolic clearance of drugs, 

causing the plasma levels to drop below the therapeutic threshold. A well-known example of 

this is the rejection of organs in recipient patients also taking rifampicin in combination with 

the CYP3A4 metabolized immunosuppressant, cyclosporine (Zylber-Katz 1995).  Therefore, 

it is important to identify potential CYP inducers at an early stage in drug screening. 
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1.7.2 Use of upcyte
®
 hepatocytes for CYP induction and inhibition assays 

The upcyte
®
 hepatocytes generated using the refined technology were tested to determine 

whether they could be used in drug-drug interaction screening assays. Although first 

generation upcyte
®
 hepatocytes exhibited phase 2 activities that were comparable to those in 

freshly isolated human hepatocytes, the levels of CYP activities were present at levels of 

primary hepatocytes after 5 days in culture (i.e. not freshly isolated levels) (Burkard et al. 

2012). This may be expected since the primary cells are not transduced until 24 h after 

plating, after which time the levels of CYPs are known to be markedly lower than initial 

levels (Liddle et al. 1998). This meant that in order to be used in metabolism or inhibition 

studies, upcyte
®
 hepatocytes need to express higher CYP activities. The upcyte

®
 process was 

therefore refined to generate upcyte
®
 hepatocytes (second generation) with significantly 

higher CYP activities than was previously achieved. In addition, the culture conditions were 

altered to determine whether they could be optimized to favour higher CYP activities.  

 

Having established the second generation upcyte
®
 hepatocytes, it was investigated whether 

they could be used in classical CYP inhibition assays using known potent CYP inhibitors. The 

inhibitors, α-naphthoflavone, miconazole and ketoconazole, were selected as potent 

competitive inhibitors of CYP1A2, CYP2C9 and CYP3A4, respectively (Mao et al. 2012; 

Moeller et al. 2013). Ticlopidine was used as an inhibitor of CYP2B6 activities since this is 

known to be one of the most potent inhibitors of this CYP (Turpeinen et al. 2006). In addition, 

ticlopidine is a mechanism based inhibitor of CYP2B6 such that its metabolism by CYP2B6 

(and not other CYPs) leads to a reactive metabolite that inhibits the enzyme (Richter et al. 

2004). 

 

First generation upcyte
®

 hepatocytes are responsive to CYP inducers and for CYP3A4, the 

extent of induction of in upcyte
®
 hepatocytes generally reflected that in the paired primary 

cells (Burkard et al. 2012). Prototypical inducers at the mRNA level induced all CYP1A2, 

CYP2B6 and CYP3A4; however, CYP2B6 activities were not significantly induced by 

phenobarbital. The responsiveness to all three CYPs was markedly improved by placing 

upcyte
®

 hepatocytes into 3D culture using alvetex
®

 polystyrene scaffolds (Burkard et al. 

2012), and the regulatory genes for these CYPs were up-regulated (data not shown). Having 

refined the upcyte
®
 technology, it was investigated whether this improved the responsiveness 

of the second-generation cells to inducers in 2D cultures, as well as increasing the basal CYP 

activities.  
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AhR, CAR and PXR mediated induction was measured using prototypical inducers 

recommended by the FDA: omeprazole (AhR mediated induction of CYP1A2), phenobarbital 

(CAR mediated induction of CYP2B6) and rifampicin (PXR and CAR mediated induction of 

CYP2C9 and CYP3A4) (Food and Drug Administration 2012). CYP induction was monitored 

by measuring CYP selective substrate metabolism (i.e. activities), rather than changes in 

mRNA expression since the whole pathway of induction (from AhR/CAR/PXR activation, 

mRNA expression and subsequent synthesis of active enzyme proteins) can be shown to be 

functional. To this end, the compounds that were known to induce activities but were not 

potent mechanistic inhibitors were selected.  

 

The in vitro-in vivo CYP3A4 induction correlation has been modelled using predictions based 

on the maximum fold induction (Indmax), the concentration causing 50% maximal induction 

(Ind50) or the concentration causing a 2-fold induction (the “F2”).  The Indmax and Ind50 can be 

related to the unbound plasma concentration of the drug (Cmax,u) using the Relative Induction  

Score (RIS) and compared to the in vivo induction of CYP3A4 by each drug (measured as the 

percentage decrease in the midazolam AUC). Data generated from CYP3A4 induction studies 

using upcyte
®
 human hepatocytes were applied to three models recommended by PhARMA 

(Chu et al. 2009) to determine whether they can mimic the correlations already established for 

human hepatocytes (Fahmi et al. 2008).  

 

1.8 Therapy- Hemophilia A 

1.8.1 Hemophilia A 

Hemophilia A is an X-linked recessive disorder that affects 1 in 5000 males (Antonarakis et 

al. 1995). This is caused by a deficiency of functional FVIII in the blood plasma. The lack of 

sufficient production of FVIII may be due to spontaneous mutation in the gene that codes for 

FVIII, which is responsible for blood clotting. Between 5 to 10% of Haemophilia A occurs is 

due to a qualitative deficiency i.e. the production of a dysfunctional version of FVIII. The 

remaining 85-90% of patients have an insufficient amount of FVIII in the blood plasma (Meili 

2004). The normal concentration of FVIII in the blood plasma is 1 IU/ml of blood, equivalent 

to 200 ng of FVIII per ml. Both quantitative and qualitative deficiencies occur due to different 

mutations. Therefore, a general classification of haemophilia A is made depending on the 

amount of FVIII in the blood plasma.  Hemophilia A is classified into three main categories. 

Patients with a FVIII plasma level less than 1% of normal level are categorized as severe 

hemophiliacs. Severe hemophilia is the most complicated condition because spontaneous 
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bleeding occurs in joints, soft tissues, and vital organs (Figure 6). Patients with levels of FVIII 

of more than 1% but less than 5% are categorized as moderate hemophiliacs. Patients with 

FVIII levels above 5% but less than 49% of normal levels are classified as mild hemophiliacs. 

For mild hemophiliacs, it is often difficult to diagnose the condition until a severe bleeding or 

surgery occurs. In addition to these categories, development of inhibitory antibodies to FVIII 

can result in acquired hemophilia A or can complicate the treatment of genetic cases. 

        (a)                                                             (b)  

 

 

 

 

 

 

 

 

 

 

Figure 6:  a. Spontaneous bleeding occurs in joints and soft tissues of severe hemophilia-A patients, b. 

Haemarthrosis of the elbow joints (picture source: shsgdp.wikispaces.com) 

 

1.8.2 Factor VIII 

FVIII is a single chain glycoprotein encoded by the F8 gene (Toole et al. 1984; Truett et al. 

1985) on the X chromosome (Xq28) (Levinson et al. 1990). Transcription of FVIII molecules 

takes several hours and the gene is comprised of 26 exons, which encode a polypeptide chain 

of 2351 amino acids. The molecular weight of pre-mature FVIII at the time of synthesis is 320 

kDa. However the majority of FVIII is cleaved during expression and the molecular weight of 

mature FVIII ranges between 200 to 280 kDa, equal to 2332 amino acids. FVIII is also known 

as anti-hemophilic protein and is composed of two homologous groups, a heavy chain and a 

light chain, which are separated by third segment. The FVIII domain structure is organized as 

A1-A2-B-A3-C1-C2 (Vehar et al. 1984) (Figure 7).  Heavy chain and light chains are cleaved 

intracellularly into two heterodimer chains. The domain of the light chain is organized as A3-

C1-C2 and has a molecular weight of 80 kDa. The molecular weight of the heavy chain 

ranges from 90 to 200 kDa. The heavy chain is highly heterogeneous and is composed of an 

A1-A2-B domain. The heterogeneity is due to varying degrees of posttranslational 

modification, such as glycosylation (Manning et al. 1993). 
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Figure 7: Organization of FVIII domain. Light chain A1-A2-B and heavy chain A3-C1-C2 are 

intercellurlarly bonded using disulphide bridges. (Picture source: Lenting et al. 1998). 

 

FVIII circulates as inactive protein in the blood. The inactive form of FVIII molecule forms 

stable non-covalent bonds with another protein called the vWF (Kaufman et al. 1988; Legaz 

et al. 1973). The binding of FVIII to vWF occurs via the light chain (Saenko et al. 1994). The 

molecular weight of vWF is 226 kDa and serves as a carrier protein to FVIII molecule.  vWF 

predominantly occurs as multimeric forms that are linked by disulphide bridges (Kaufman et 

al. 1989). Failure to bind to the vWF protein will result in the FVIII molecule being highly 

unstable. Thus, the association of vWF with FVIII stabilizes the bonding between the light 

and heavy chains (Kaufman 1992; Wise et al. 1991; Fay 1988).  FVIII is released from the 

vWF molecule via proteolytic cleavage by thrombin. A series of proteolytic degradation 

occurs that result in the release of FVIII from vWF molecule, thus resulting in activation of 

FVIII (Vehar et al. 1984). The activated form of FVIII is known as FVIIIa and composed of 

the A1-A2 domain of the heavy chain and the A3-C1-C2 of the light chain. FVIIIa is highly 

unstable as it is deactivated due to dissociation of the A2 domain (Pipe & Kaufman 1997). 

The activated form of FVIIIa functions as a cofactor and plays a vital role in the coagulation 

pathway (Fay et al. 1991). During the activation of FVIII molecule, the B domain from heavy 

chain is lost and it does not play any role in coagulation activity (Toole et al. 1986; Fulcher et 

al. 1983). Therefore, the B domain deleted (BDD) version of FVIII transgene has been used to 

clone the FVIII construct.  
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1.8.3 Biosynthesis of FVIII 

Hepatic source 

Research on the in vivo production of FVIII in liver is ambiguous, with contrasting findings 

being reported. For example, liver transplantation (Marchioro et al. 1969; Bontempo et al. 

1987) and liver perfusion (Shaw et al. 1979; Owen et al. 1979) in hemophiliac patients 

resulted in increased amount of FVIII levels in blood. Results showed that FVIII mRNA was 

detected in hepatocytes rather than in LSECs (Karen L. Wion et al. 1985) and the response 

element in the FVIII promoter region was also found to be hepatocyte-specific (Figueiredo & 

Brownlee 1995). However, histochemical analysis detected FVIII in LSECs (Stel et al. 1983; 

van der Kwast et al. 1986; Kadhom et al. 1988). Although it has not been conclusively shown 

whether hepatocytes and/or LSECs produce FVIII, it is clear that liver is the major FVIII-

producing site. 

 

Extra hepatic source 

Although the liver (hepatocytes or LSECs) is the major site for production of FVIII, the FVIII 

gene has also been expressed in several non-hepatic tissues such as in kidney and lymph 

nodes (K L Wion et al. 1985; Levinson et al. 1992; Elder et al. 1993). Transplantation of 

spleens into hemophiliac animals resulted in the detection of FVIII in their blood (Veltkamp 

et al. 1974). Studies using perfused ex vivo human lungs also show that FVIII is produced in 

the lung (Jacquemin et al. 2006; Groth et al. 1974). Likewise, human adult pulmonary mvECs 

have also been shown to produce FVIII (Jacquemin et al. 2006). 

 

1.8.4 Blood coagulation 

Blood coagulation is an important response of the body for survival when there is a vascular 

injury. The process of blood clotting (Figure 8), followed by dissolution of the clot leading to 

the repair of damaged vascular damage or tissue injury, is termed ”haemostasis”.  
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Figure 8: Schematic representation of coagulation cascade involving FVIII molecule (Picture source: 

Lenting et al. 1998). 

  

1.8.5 Current treatment for haemophilia A 

Fundamental treatment to prevent the hemophilia A to bleed continuously is to infuse them 

with the missing clotting factor concentrate (FVIII) by intravenous injection. However the 

problem with FVIII is its stability: its half-life in the blood is between 7.4 h and 20.4 h 

Therefore, treatment for hemophilia A patients has to be carried out three times a week (van 

Dijk et al. 2005).  

 

Factor replacement therapy 

FVIII concentrate is obtained from two main sources: 

1. Plasma derived 

2. Recombinant derived  
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Plasma derived 

Plasma derived FVIII concentrate is prepared from human blood. Pooled plasma is 

fractionated into different components, such as FVIII and albumin. However, plasma derived 

FVIII concentrate had many disadvantages in early 1980s. One of the most serious was that 

nearly half of the hemophiliacs infused with plasma derived FVIII concentrates were infected 

with HIV and hepatitis C. 

 

Recombinant derived 

Recombinant derived FVIII concentrates can be achieved by genetic engineering. Using 

transgenic technology, the FVIII gene is incorporated into the host genome in cells such as 

Chinese hamster ovary cells (CHOs), baby hamster kidney cells, HEK 293 F cells 

(Casademunt et al. 2012) for the production of FVIII in cell culture. As FVIII is stabilized by 

vWF (Kaufman 1992; Wise et al. 1991; Fay 1988), co-expression of vWF with FVIII 

increases the stability of FVIII in cell culture (Pipe & Kaufman 1997). Failure to co-express 

vWF results in the secretion of FVIII as inactive separate chains (Kaufman et al. 1989; Wise 

et al. 1991). Recombinant FVIII (rFVIII) has an effective pathogen safety profile but post-

translational modification of the FVIII shows non-human patterns (Burnouf 2011). Incorrect 

post-translational modification of FVIII triggers an immune response in hemophiliacs, which 

results in the production of natural FVIII inhibitors. The percentage of hemophiliacs 

developing inhibitors due to recombinant FVIII is relatively high; 34.5% (Iorio et al. 2010). In 

order to treat the hemophiliacs by the healthcare systems, the cost ranges from 1.800€ to 

2.500€ / dose, with an average of 220.000€ /year/haemophiliac. This means that this is one of 

the most expensive diseases (Manco-Johnson 2007; Nichols et al. 2009).  

 

1.8.6 Other treatments 

Desmopressin 

Desmopressin or DDAVP (1-desamino-8-D-arginine vasopressin) is a synthetic drug, which 

is a modified version of arginine vasopressin. vWF is stored in weibel palade bodies (WPB) 

present in endothelial cells that lines the blood vessels (Rosenberg et al. 2000; Yarovoi et al. 

2003; Wilcox et al. 2003; Shi et al. 2006). Administrating DDAVP stimulates WPB to release 

stored vWF into the blood stream, which binds to the FVIII molecule and stabilizes it.  
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Antifibrinolytic treatment 

An antifibrinolytic medicine, such as tranexamic acid and epsilon aminocaproic acid, is used 

as a supplement to replacement therapy (Tengborn 2012). This prevents the degradation of 

blood clots. This medication was very often used in order to do the dental work on 

hemophiliacs or to treat intestinal bleeding in mild hemophiliacs.  

Gene therapy 

All the above-mentioned standard treatments for hemophilia A patients involve infusing 

patients with clotting factors for a prophylactic regime, which usually takes place between 2 

to 3 times a week. Although this is a temporary remedy, the quality of life is poor and a lot of 

care is involved in planning daily activities. The goal of researchers is to analyze a definitive 

cure that can permanently convert a patient from a severe to a mild or moderate stage i.e. 

correction through gene transfer (Youjin & Jun 2009). Successful results have been obtained 

from hemophilia animal models with gene transfers (Pfeifer & Verma 2001; Kelley et al. 

2002). However, this procedure has certain disadvantages, such as transient and 

therapeutically inadequate levels of clotting factors in blood (Powell et al. 2003). Other side 

effects such as induced host immune responses, insertional mutagenesis and random 

integration of gene resulting in oncogenesis, has decreased the drive for such remedies (High 

2007). Other gene therapies investigated have included the modification of cells such as 

platelets or endothelial cells to produce FVIII (Yarovoi et al. 2003; Shi et al. 2006). 

 

Cell therapy 

Implantation of ex vivo modified primary fibroblasts that have been transfected by receptor- 

mediated adenovirus allowed the in vivo production of FVIII in mice (Zatloukal et al. 1994). 

Autologous primary fibroblasts that were genetically modified ex vivo and subsequently 

implanted in the greater omentum region resulted in the detection of FVIII in the blood (Roth 

et al. 2001). 
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1.9 Aims of the thesis 

This thesis addresses optimization of in vitro hepatic models and application of these hepatic 

models for drug development and therapy. 

 

 The penetration of upcyte
®
 hepatocytes in 3D scaffolds (namely Mimetix

®
) was 

optimized using confocal microscopy. The growth, viability and metabolic functions 

of upcyte
®
 hepatocytes were optimized using different formats of 3D scaffolds.   

 

 Upcyte
®
 hepatocytes, LSECs and MSCs were used to generate liver organoids. The 

structural organisation of the cells within the organoids and functionality of the 

organoid (CYP3A4 activity) were investigated after culture in static conditions or in 

dynamic, long-term conditions using a Quasi-vivo
®
 chamber system.   

 

 An ex vivo bioreactor employing a decellularized organic scaffold (BioVaSc) to 

culture liver organoids was established. The vascular tree of the decellularized 

BioVaSc was first populated with upcyte
®
 mvECs. The structural orientation and 

functionality (CYP3A4) of the liver organoids were analyzed after 30 days dynamic 

culture. 

 

 The application of upcyte
®
 hepatocytes to drug development was investigated by 

measuring CYP inhibition and induction. In order to achieve the optimal levels 

required for CYP inhibition, the culture conditions were optimized. 

 

 The therapy of hemophilia is currently lacking a suitable source of FVIII. Therefore, 

the application of mvECs and their modification by transducing them with FVIII 

lentivirus was investigated as a potential method for generating this coagulation factor. 
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2. Materials & Methods 

2.1 Materials 

 

2.1.1 Disposable Material 

 

Falcon tubes 
BioCoat

TM
 BD (Heidelberg, 

Germany) 

Pipette Eppendorf (Hamburg, Germany) 

Tips  Greiner (Frickenhausen, Germany) 

Multiwell plates - collagen coated BD (Heidelberg, Germany) 

Tissue culture dishes - collagen coated BD (Heidelberg, Germany) 

Multiwell plates - non-coated Greiner (Frickenhausen, Germany) 

Tissue culture dishes - non-coated Greiner (Frickenhausen, Germany) 

Freezing tubes Greiner (Frickenhausen, Germany) 

Disposable gloves  Diagonal (Münster, Germany) 

Petri dishes, 60 mm  Greiner (Frickenhausen, Germany) 

Pressure dome Memscap AS (Skoppum, Norway) 

Sterile filter, 0.2 micron  Whatman (Dassel, Germany) 

Sterile filter, 0.45 micron  Whatman (Dassel, Germany) 

Scalpels 
Aesculap AG (Tuttlingen, 

Germany) 

Screw caps with septa 100/pk Agilent (Karlsruhe, Germany) 

Screw vials, 2 ml clear 100/pk Agilent (Karlsruhe, Germany) 

Spin-X UF 20 ml Concentrator,100K cutoff Corning (Kaiserslautern, Germany) 

Precolumns Eclipse XDB-C18 4.6x12.5, 5mm Agilent (Karlsruhe, Germany) 

100 ml glass inserts Agilent (Karlsruhe, Germany) 

Oasis
®
 µElution Plate Oasis® HLB (30mm) Waters (Eschborn, Germany) 

10 ml x 24 Collection plate Waters (Eschborn, Germany) 

µElution Spacer Waters (Eschborn, Germany) 

Gene Pulser/MicroPulser Cuvettes Bio-Rad (Munich, Germany) 

 

 

2.1.2 Chemicals 

 

Chemical/supplements Supplier Cat# 

α-Naphthoflavone Sigma-Aldrich (Deisenhofen, 

Germany) 

N5757 

Acetaminophen (APAP) Sigma-Aldrich (Deisenhofen, 

Germany) 

A7085 

Acetonitrile, CHROMASOLV® Sigma-Aldrich (Deisenhofen, 

Germany) 

34998-2.5L 

Agarose  AppliChem (Darmstadt, Germany) A0949 

Albumin fraction V Applichem (Darmstadt, Germany) A1391 
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4-Androstene-3,17-dione (ASD) 

VETRANAL
®

 

Sigma-Aldrich (Deisenhofen, 

Germany) 

46033-250MG 

Blasticidin S HCl Invitrogen (Karlsruhe, Germany) R210-01 

Bupropion-HCl Sigma-Aldrich (Deisenhofen, 

Germany) 

B102 

Carbamazepine Sigma-Aldrich (Deisenhofen, 

Germany) 

C4024 

CellTiter
® 

96 AQueous non-

radioactive cell proliferation 

assay 

Promega (Mannheim, Germany) G5421 

Chlorpropamide Sigma-Aldrich (Deisenhofen, 

Germany) 

C1290 

DAPI Sigma-Aldrich (Deisenhofen, 

Germany) 

32670 

Dexamethasone Sigma-Aldrich (Deisenhofen, 

Germany) 

D4902 

Diethyl ether, 

CHROMASOLV
®
, for HPLC = 

99.9%, inhibitor-free 

Sigma-Aldrich (Deisenhofen, 

Germany) 

309966-1L 

Dispase Sigma-Aldrich (Deisenhofen, 

Germany) 

D4818 

Distilled water HPLC grade  GE Healthcare (Munich, Germany) S31-012 

DMSO Applichen (Darmstadt, Germany) A3672 

DMEM GE Healthcare (Munich, Germany) P-04-03600 

Ethanol (99.8 % p.a)  AppliChem (Darmstadt, Germany) 20.821.330 

FBS Gold Eu approved PAN (Aidenbach, Germany) P40-38500 

Flumazenil Sigma-Aldrich (Deisenhofen, 

Germany) 

F6300 

Formic acid 98% Sigma-Aldrich (Deisenhofen, 

Germany) 

6440 

Isopropanol Applichem (Darmstadt, Germany) A1592,2500 

Ketoconazole Sigma-Aldrich (Deisenhofen, 

Germany) 

K1003 

Krebs-Henseleit buffer Sigma-Aldrich (Deisenhofen, 

Germany) 

K3753 

L-Glutamine PAN (Aidenbach, Germany) P04-80100 

Lipofectamin 2000 Invitrogen (Karlsruhe, Germany) 11668-019 

hHGF Pepro Tech Inc. (Hamburg, Germany) 100-39 

4-Hydroxybupropion Santa Cruz Biotechnology (Heidelberg, 

Germany) 

sc-211604 

4-Hydroxymethyltolbutamide Santa Cruz Biotechnology (Heidelberg, 

Germany) 

Sc-218585 

6b-Hydroxytestosterone Sigma-Aldrich (Deisenhofen, 

Germany) 

H2898 

Na-Butyrate Sigma-Aldrich (Deisenhofen, 

Germany) 

B-5887 

NaOH Sigma-Aldrich (Deisenhofen, 

Germany) 

S5881 
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Nifedipine Sigma-Aldrich (Deisenhofen, 

Germany) 

N7634 

Matrigel
TM

 growth factor 

reduced 

BD (Heidelberg, Germany) 356230 

MEM non-essential aminoacid  GE Healthcare (Munich, Germany) P08-36500 

Methanol, CHROMASOLV
®

 Merck (Darmstadt, Germany) 34860 

(±)Miconazole nitrate salt Sigma-Aldrich (Deisenhofen, 

Germany) 

M3512 

MTS  Promega (Mannheim, Germany) G5421 

Oligo Dt primer  BioSpring (Frankfurt am Main, 

Germany) 

- 

Omeprazole Sigma-Aldrich (Deisenhofen, 

Germany) 

O104 

Opti-MEM I Gibco
® 

 Life Technologies (Darmstadt, 

Germany) 

31985-047 

Oncostatin M Pepro Tech Inc. (Hamburg, Germany) 300-10T-B 

PBS w/o Mg
2+

 w/o Ca
2+

 (PBS
-
) PAN (Aidenbach, Germany) P04-36500 

Penicillin-Streptomycin PAN (Aidenbach, Germany) P06-07001 

Phenacetin Sigma-Aldrich (Deisenhofen, 

Germany) 

77440 

Phenobarbital sodium salt Sigma-Aldrich (Deisenhofen, 

Germany) 

P1636 

Phenytoin Sigma-Aldrich (Deisenhofen, 

Germany) 

PHR1139 

Pioglitazone Sigma-Aldrich (Deisenhofen, 

Germany) 

E6910 

Polybrene 

(hexadimethrinebromide)  

Sigma - Aldrich (Steinheim, Germany) H9268 

Poly-D-lysine  Sigma - Aldrich (Steinheim, Germany) P7280 

Potassium phosphate monobasic 

(KH2PO4) 

Sigma - Aldrich (Steinheim) P5655 

Quinidine, anhydrous Sigma-Aldrich (Deisenhofen, 

Germany) 

Q3625 

Sulfaphenazole Sigma-Aldrich (Deisenhofen, 

Germany) 

S0758 

Reichstein’s substance 

(Cortexolone) 

Sigma-Aldrich (Deisenhofen, 

Germany) 

R0500 

RNase A Sigma-Aldrich (Deisenhofen, 

Germany) 

R5125 

Rifampicin Sigma-Aldrich (Deisenhofen, 

Germany) 

R3501 

Testosterone C-III Sigma-Aldrich (Deisenhofen, 

Germany) 

T6147 

Ticlopidine hydrochloride   Sigma-Aldrich (Deisenhofen, 

Germany) 

T6654 

Tolbutamide 

 

 

Sigma-Aldrich (Deisenhofen, 

Germany) 

T0891 
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Triton X 

 

Sigma-Aldrich (Deisenhofen, 

Germany) 

 

X100 

Troglitazone Sigma-Aldrich (Deisenhofen, 

Germany) 

T2573 

Trypan blue 0.4 %  Sigma - Aldrich (Steinheim, Germany) T8154 

Trypsin /EDTA PAN (Aidenbach, Germany) P10-024100 

Versene Invitrogen (Karlsruhe, Germany) 15040033 

VEGF  Sigma - Aldrich (Steinheim, Germany) V7259 

 

* All used chemicals were of analytical grade, unless otherwise stated, and were of the highest 

purity. For cell culture methods, chemicals that were appropriate for cell culture were chosen. 

All water used was free of ionic and organic compounds and was from a Milli-Q water 

conditioning system. 

 

2.1.3 Solutions and Buffers 

 

Krebs-Henseleit-buffer (KHB) 

The contents of the Sigma KHB (K3753) and following chemicals were dissolved in 900 ml 

distilled water: 

NaHCO3     2.1 g  

CaCl2 2H2O     0.175 g 

HEPES     5.958 g 

The pH was adjusted to 7.4 and then made up to 1l.  

 

Protein lysis buffer 

The following were combined:  

NaCl       4.38 g  

MgCl2 x 6H2O      0.1 g 

Tergitol
®
 Type NP-40S    5 ml 

Tris-HCl (1 M)    25 ml 

The volume was made up to 500 ml with distilled water.  

 

Decellularization solution 

Sodium deoxycholate    20 g  

Gentamycin  

The volume was made up to 500 ml with distilled water.  

  

 

HPLC internal standards 

Chlorpropamide solution 1 mg/ml in 100% methanol 

 

5 mM Cortexolone stock solution 

 

0.5 mM Cortexolone working solution 

1.73 mg/ml in 100% methanol 

 

The stock solution was diluted 1:10 in 100% 

methanol  
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HPLC solvents: 

2% Formic acid in methanol 

 

1 ml formic acid was added to 49 ml 100% 

methanol 

1:1 methanol:water 25 ml 100% methanol was mixed with 25 ml 

distilled water 

 Standard metabolites 

1 mM 4-Hydroxytolbutamide 0.29 mg/ml in 100% methanol 

 

1 mM 4-Hydroxybupropion 0.26 mg/ml in 100% methanol 

 

1 mM 6ß-Hydroxytestosterone 0.304 mg/ml in 100% methanol 

 

25 mM Acetaminophen (APAP) 3.78 mg/ml in 100% DMSO 

 

 

Mobile Phases 

All mobile phases were degassed using vacuum filter before use. 

 

For tolbutamide and bupropion:  

Mobile phase A  

 1.36 g KH2PO4  in 800 ml cell culture grade 

distilled water made up to 1 l (pH 4.6). 

 52.6 ml 100% acetonitrile 

  

Mobile phase B 500 ml acetonitrile 

500 ml water 

 

 

Testosterone 

 

Mobile phase A 390 ml methanol 

 600 ml distilled water 

 10 ml acetonitrile 

  

Mobile phase B 800 ml methanol 

180 ml distilled water 

20 ml acetonitrile 

 

 

Phenacetin 

 

Mobile phase A 17 ml isopropanol 

 1 ml formic acid 

 

Mobile phase B 1000 ml distilled water (purest quality) 

100 ml methanol 
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2.1.4 Cells and cell culture medium 

 

Cells 

293 FT  Invitrogen (Karlsruhe, 

Germany) 

Primary* mvECs Medicyte (Heidelberg, 

Germany) 

Upcyte
®
 mvECs Medicyte (Heidelberg, 

Germany) 

Upcyte
®
 LSECs Medicyte (Heidelberg, 

Germany) 

Upcyte
®
 Hepatocytes Medicyte (Heidelberg, 

Germany) 

Upcyte
®
 MSCs Medicyte (Heidelberg, 

Germany) 

Primary* MSCs Fraunhofer IGB (Stuttgart) 

  
*All human cells offered by Medicyte are derived from donors who have signed an informed consent form. This 

donor consent form outlines in detail the purpose of the donation and the procedure for processing the tissue. 

Medicyte is not accepting or using any human cells without signed donor consent documents. 

 

Cell culture medium 

upcyte
®
 Hepatocyte Thawing medium Medicyte (Heidelberg, 

Germany) 

upcyte
®
 Hepatocyte Growth Medium 

(HGM) 

Medicyte (Heidelberg, 

Germany) 

upcyte
®
 Hepatocyte High Performance 

medium (HPM) 

Medicyte (Heidelberg, 

Germany) 

  

upcyte
®
 LSECs Growth Medium   Medicyte (Heidelberg, 

Germany) 

upcyte
®
 mvECs Thawing  Medium  Medicyte (Heidelberg, 

Germany)  

vericyte
®
 Endothelial Cell Growth  

Medium  

Medicyte (Heidelberg, 

Germany)  

 

 

Upcyte
®
 MSC  Growth Medium 

DMEM High Glucose (4,5g/l) W/O L-Glutamine PAN (Aidenbach) 

W/O sodium pyruvate (E15-011)     

+ FBS     final concentration 10% 

 

 

Liver organoid growth medium 

upcyte
®
 LSECs Growth Medium 

upcyte
®
 Hepatocyte Growth Medium (HGM)-Mixed in 1:1 ratio 
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Freezing medium 

Growth Medium    70% 

DMSO      10%  

FBS       20% 

 

2.1.5 Antibodies 

Antibodies for immunostaining 

 

Antibody (1st or 2nd) Supplier Cat# 

Mouse anti-Ck 8 (C51) Santa Cruz Biotech (Heidelberg, 

Germany) 

Sc-8020 

Mouse anti-Ck 18(DC-10) Sc-6259 

Mouse anti human CD31 Dako (Hamburg, Germany) M0823 

Mouse anti human vWF Dako (Hamburg, Germany) M0616 

Vimentin Santa Cruz Biotech (Heidelberg, 

Germany) 

Sc-373717 

 

 

2.1.6 Kits 

Kits Supplier 

QIAquick
®
 PCR Purification Kit Qiagen (Hilden, Germany) 

RNeasy
®
 Mini Kit  Qiagen (Hilden, Germany) 

RNeasy
®
 Micro Kit  Qiagen (Hilden, Germany) 

SuperScript
®
 III First beach synthesis kit  

Invitrogen (Karlsruhe, 

Germany) 

ViraPower™ Lentiviral Packaging Mix  

Invitrogen (Karlsruhe, 

Germany) 

Gateway
®

 LR Clonase
®
 II Enzyme mix 

Invitrogen (Karlsruhe, 

Germany) 

Gateway
®

 BP Clonase
®
 II Enzyme mix 

Invitrogen (Karlsruhe, 

Germany) 

ElectroMAX™ Stbl4™ 

Invitrogen (Karlsruhe, 

Germany) 

Mega DH10B™ T1
R
 

Invitrogen (Karlsruhe, 

Germany) 

 

 

2.1.7 Primers 

Name Sequence 

FVIII-pENTR FWD ACAAGTTTGTACAAAAAAGCAGGCT 

FVIII-pENTR REV ACCACTTTGTACAAGAAAGCTGGGT 

pENTR11-R ACGGGCCAGAGCTGCAGC 

FVIII-FOR_601-1200 TTGAATTCAGGCCTCATTGG 

FVIII-FOR_1201-1800 CCTTCCTTTATCCAAATTCGC 

FVIII-FOR_1801-2400 TTGAGGATCCAGAGTTCCAA 

FVIII-FOR_2401-3000 GCCATCAACGGGAAATAACT 

FVIII-FOR_3001-3600 GAAAAAGATGTGCACTCAGGC 

FVIII-FOR_3601-4200 GACAGTGGGCCCCAAAGC 
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FVIII-FOR_4201-4416 GGGAGTAAAATCTCTGCTTACCA 

pEXP_Lenti6_FVIII_V5_CMV FWD1 CATAATGATAGTAGGAGGC 

pEXP_Lenti6_FVIII_V5_CMV FWD2 CGCAAATGGGCGGTAGGCGTG 

LTR -143 FWD TGTGTGCCCGTCTGTTGTGT 

LTR -143 REV GAGTCCTGCGTCGAGAGAGC 

KRT18 FWD GGTCAGAGACTGGAGCCATTACTT 

KRT18 REV CCAGCTTGACCTTGATGTTCAGCAG 

Albumin FWD GGTGAGACCAGAGGTTGATGTGATG 

Albumin REV CACACATAACTGGTTCAGGACCACG 

Glutaminase2 FWD GTGTGTGAGCAGCAACATTGTGCTC 

Glutaminase2 REV GATGGCTCCTGATACAGCTGACTTG 

Glutamine synthetase FWD GTTGCCTGAGTGGAATTTCGATGGC 

Glutamine synthetase REV CGGTTTCATTGAGAAGACACGTGCG 

HIF1α  FWD CATGGAAGGTATTGCACTGCACAGG 

HIF1α REV CAGCACTACTTCGAAGTGGCTTTGG 

G6P FWD GTGGCGTATCATGCAAGTGCTATGC 

G6P REV GAGGCTGAGACATGAGAATCGCTTG 

  

 

* - All the primer sequence were bought from Biospring (Frankfurt Am Main, 

Germany) 

 

 

2.1.8 General technical equipment and devices 

 

Equipment  Type  Manufacturer / Headquarters 

Analytical balance  BP 211D Sartorius (Göttingen, Germany) 

Autoclave 5075 ELV Systec (Wettenberg, Germany) 

Automated cell counter Scepter™ 2.0  Millipore, Germany 

Centrifuge Biofuge Pico Heraeus (Hanau, Germany) 

Centrifuge Biofuge stratos Heraeus (Hanau, Germany) 

Confocal microscope ZEISS Axiovert 

200M  

Zeiss (Neuenheim, Germany) 

Cryo 1
° 
C Freezing Container 5100 Nalgene Nunc International (Wiesbaden, 

Germany) 

Erlenmeyer flasks and beakers  - Schott (Mainz, Germany) 

Fluorescence microscope Axio Observer.Z1 Zeiss (Heidelberg, Germany) 

Freezer ( -20
°
 C)   PKM (Moers, Germany) 

Freezer ( -80
°
 C) Hera freeze Heraeus (Hanau, Germany) 

HPLC 1200 Infinity  Agilent Technologies (Waldbronn, 

Germany) 

Ice machine MF 26 Scotsman (Milan, Italy) 

Incubator NU- 5500E Integra Biosience GmbH (Fernwald, 

Germany) 

Laboratory Bottles  - Simax (Trutnov, Czech Republic) 
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Laminar Flow Hera Safe Kendra (Hanau, Germany) 

Magnetic stirrers with heating Mr 3001 K OMNILAB (Bremen, Germany) 

Measuring cylinders, various 

Sizes 

 

 - Duran (Wertheim, Germany) 

 

Microscope 

 

DMIL 

 

Leica Microsystems GmbH (Wetzlar, 

Germany) 

Microplate Reader Fluostar BMG labtech (Virginia, US) 

Microplate Reader Sunrise Tecan (Crailsheim, Germany) 

MicroPulser™ Electroporator 165-2100 Bio-Rad (Munich, Germany) 

Microcentrifuge 5804R Eppendorf (Hamburg, Germany) 

Milli-Q water conditioning 

system 

NanoPure Infinity Werner Reinstwassersysteme 

(Leverkusen, Germany) 

Mimetix
®
 plates - The Electrospin Company Ltd. (Didcot, 

UK) 

NanoDrop 2000 Thermo Scientific (Schwerte, Germany) 

Neubauer counting chamber   NeoLab (Heidelberg, Germany) 

Nitrogen tank CryoPlus 1 Thermo Scientific (Schwerte, Germany) 

PCR device PTC -200 MJ Research (St.Bruno, Canada) 

Pipetboy Pipetboy acu Integra Biosciences (Fernwald, Germany) 

Pipettes 10 µl , 200μl , 1000μl 

SL PetteXE 

Nichiryo (Maryland heights, US) 

pH Meter  - INO-Lab Servos (Singapore) 

Quasi-vivo
®
 System - Kirkstall Ltd. (Sheffield, UK) 

Real-time PCR instrument Rotor-Gene Q Qiagen (Hilden, Germany) 

Refrigerator  - Liebherr (Biberach an der Riss, Germany) 

Shaker DRS -12 NeoLab (Heidelberg, Germany) 

SunFire IS column 

C18 2.5μm 3.0 x 

20mm 

Waters (Eschborn, Germany) 

Universal oven Function line Heraeus (Hanau, Germany) 

Vacuum pump VacuSafe Integra Biosciences (Fernwald, Germany) 

Vortex Vortex Genie -2 Scientific Industries (Karlsruhe, Germany) 

Water bath GFL M & S Lab Equipment GmbH (Wiesloch, 

Germany) 
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2.2 Methods 

2.2.1 Cell culture techniques 

2.2.1.1 Incubation conditions 

The entire cell culture work was performed under sterile conditions under laminar flow. 

Morphology was examined daily via light microscope. All cells were cultured under standard 

culture conditions i.e. at 37°C, under an atmosphere of 5% CO2 and 95% humidity. The 

medium was refreshed twice a week using medium which had been pre-warmed at 37°C for 

10-15 min before use.  

 

2.2.1.2 Thawing and plating of cryopreserved cells 

The cryovial containing the frozen cells were rapidly thawed in a water bath maintained at 

37°C. The cells were then transferred directly by pouring the entire content into a falcon tube 

containing 50 ml of thawing medium. The tube was gently inverted to achieve a homogenous 

cell suspension. The cells were then centrifuged for 5 min at RT to pellet the cells using the 

appropriate speed, as shown in Table 2. 

 

The appropriate speed for centrifugation for different cell types were shown in Table 2. 

 

Table 2: Centrifugation parameters used for different cell types. 

 

Cell Type Centrifugal force 

Upcyte
® 

hepatocytes 90 ×g 

Upcyte
®
/primary mvECs 260 ×g  

Upcyte
®
 LSECs 720 ×g 

Upcyte
®
/ primary MSC 260 ×g 

 

The supernatant was discarded and the pellet was suspended in cell-specific Growth Medium 

(GM) (2.1.4). The cell density was counted using Millipore Scepter™- handheld automated 

cell counter (2.2.1.4). The cells were subsequently seeded and cultured in fully supplemented 

GM. The seeding density for different cell types was shown in Table 4. For the 

induction/inhibition experiments only, the upcyte
® 

hepatocytes were cultured at a seeding 

density of 5000 cells/cm
2 

and cultured in upcyte
® 

hepatocyte growth medium (HGM) 

containing 0.5% DMSO for 3 to 5 days. 
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2.2.1.3 Subculturing of cells  

The cells were subcultured when they reached a confluence of 75-80 %. The cells were rinsed 

with PBS
-
 to remove the GM, which can inhibit trypsin. Pre-warmed trypsin/EDTA solution 

was added (50 µl/cm
2
) and incubated under standard culture conditions for 3-5 min to detach 

the cells. This reaction was stopped with three times the volume of stop solution (See Table 3 

for cell-specific stop solutions).  The entire content of the flask was transferred to a sterile 50 

ml tube. The cells were then centrifuged at an appropriate speed (See Table 2). The 

supernatant was aspirated, the pellet was suspended in cell-specific culture medium, and the 

cells were seeded in a culture format according to the experiment and cell type. The seeding 

density for different cell types was shown in table 4. Remaining cells were cryopreserved (see 

Section 2.2.1.5). The growth of the cells was determined according to the number of 

population doublings (PD) they had undergone. 

 

Table 3. Cell-specific stop solutions 

 

Cell Type Stop solution 

upcyte
® 

hepatocytes upcyte
®
 Hepatocyte Thawing Medium 

upcyte
®
/primary  

mvECs 

Trypsin Neutralising Solution 

upcyte
®
 LSECs upcyte

®
 LSECs Medium + 10% FBS 

upcyte
®
/primary 

MSC 

DMEM High Glucose (4,5g/l) W/O L-

Glutamine W/O sodium pyruvate + 10% 

FBS 

 

Table 4. Cell-specific seeding density. 

 

Cell Type Optimal seeding densities 

After thawing After subculturing 

Upcyte
® 

hepatocytes 10,000-20,000
 
cells/cm

2
 5,000

 
cells/cm

2
 

Upcyte
®
/primary mvECs 5000-10,000

 
cells/cm

2
 5000-10,000

 
cells/cm

2
 

Upcyte
®
 LSECs 5000-10,000

 
cells/cm

2
 5000-10,000

 
cells/cm

2
 

Upcyte
®
/primary MSC 5000-10,000

 
cells/cm

2
 5000-10,000

 
cells/cm

2
 

 

2.2.1.4 Cell counting and viability determination 

The pellet was suspended in cell-specific culture medium and the cell suspension was diluted 

by 10-fold in PBS
-
 and counted using a Millipore Scepter™- handheld automated cell 

counter. Alternatively, the cell suspension was mixed with 0.05% Trypan blue solution (1:10 

dilution of the stock Trypan blue solution in PBS
-
) and pipetted onto a Neubauer counting 
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chamber. The unstained (viable) and stained (non-viable) cells were counted. The PD was 

calculated as described in Equation 1.  

 

2ln

ln
seedcellcount

yieldcellcount

PDlastPD 
       Equation 1 

 

Where “cellcount seed” is the number of cells initially seeded and “cellcount yield” is the 

number of cells harvested from the harvested cells after trypsinisation. 

 

2.2.1.5 Cryopreservation 

The cells were resuspended at an appropriate density in freezing medium. The optimal 

freezing densities and media for each cell type are summarized in Table 5.  The cells were 

aliquoted into cryovials (1 ml/vial) and then placed in a pre-cooled (4°C) Nalgene
® 

“Mr. 

Frosty” freezing container. The freezing container was then placed in a -70°C freezer for 16-

24 h. After this time, the vials were placed in a liquid nitrogen tank for long-term storage. 

 

Table 5. Freezing densities and media for different cell types. 

Cell Type Freezing Medium Optimal freezing 

densities 

upcyte
® 

hepatocytes 70% upcyte
®
 Hepatocyte Growth 

Medium (HGM) + 20%FBS 

+10%DMSO 

1.0-5.0 x 10
6 
cells/ml 

upcyte
®
/primary  mvECs vericyte

®
 Endothelial Cell Growth 

Medium (ECGM) + 20%FBS 

+10%DMSO 

1.0-3.0 x 10
6 
cells/ml 

upcyte
®
 LSECs upcyte

®
 LSECs Growth Medium + 

20%FBS +10%DMSO 

1.0-2.0 x 10
6 
cells/ml 

upcyte
®
/ primary MSC DMEM High glucose (4,5g/l) W/O L-

glutamine w/o sodium pyruvate + 10% 

FBS + 20%FBS +10%DMSO 

1.0-2.0 x 10
6 
cells/ml 

 

 

2.2.2 Hepatic models – 3D Mimetix
® 

scaffolds 

2.2.2.1 Upcyte
® 

hepatocyte in Mimetix
® 

scaffolds 

The Mimetix
® 

scaffolds were removed from the packaging material and transferred to a sterile 

flow hood. The scaffolds were wetted with 20% ethanol. Ethanol was aspirated carefully from 

the edge of the scaffolds and washed twice with HGM. The scaffolds containing the medium 

were incubated for 30 min under standard culture conditions before seeding the cells.  
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2.2.2.2 Confocal analysis 

Nuclei were stained with DAPI and analyzed for penetration into the scaffolds at the various 

time points using confocal microscopy. Optical z-stacks were obtained using a confocal 

microscope to generate side view images using the software ZEN 2012 (ZEN: Zeiss Efficient 

Navigation). 

 

2.2.2.3 Metabolic activity in Mimetix
® 

scaffolds 

The upcyte
®

 hepatocytes were seeded at a seeding density of 50,000 cells/well and pre-

cultured in HGM up to Day 7. To determine the induction of CYP3A4 activity, after the pre-

culture period, cells were cultured for an additional 3 days (day 7 to 10) in upcyte
®

 hepatocyte 

high performance medium (HPM), during which time medium was replaced every day with 

fresh HPM containing 20 µM of rifampicin. Control cells were cultured in 0.1% DMSO for 3 

consecutive days in HPM. Measurement of CYP3A4 activities were carried out on Day 10 

according to the method described in Section 2.2.5.3 using 250 µM testosterone in KHB as 

substrate. CYP activities were normalised with respect to protein content and time (min). 

 

2.2.2.4 Upcyte
®
 hepatocyte culture viability and protein content 

The viability of upcyte
®
 hepatocyte cultures was measured using the MTS assay (CellTiter

®
 

96 AQueous Non-Radioactive Cell kit), according to the supplier’s protocol. Cells bioreduce 

MTS in the presence of phenazine methosulfate (PMS) into a formazan product that is soluble 

in tissue culture medium. The formazan product has an absorbance maximum at 490-500 nm. 

The amount of formazan product produced is directly proportional to the number of living 

cells in culture. The MTS stock solution was thawed and diluted in KHB (5-fold dilution) and 

a volume of 0.2 ml MTS solution was added per well. The cultures were incubated with MTS 

for 1 h under standard culture conditions. The absorbance was read at 490 nm against a 

background absorbance of 620 nm. After the MTS incubation, the cultures were washed twice 

with PBS
-
 and the proteins dissolved in 0.2 ml protein lysis buffer. The protein content was 

measured using the Pierce assay according to the manufacture’s protocol. 

 

2.2.3 Hepatic models – Liver organoids 

2.2.3.1 Generation of liver organoids 

Upcyte
®

 and primary cells used to generate liver organoids were pre-cultured in 2D according 

to Section 2.2.1.2 in cell-specific growth medium. One day before the generation of the liver 

organoids, culture plates, Quasi-vivo
®
 chambers (Kirkstall Ltd.) and pipette tips were cooled 
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to 4°C. Matrigel
™

 (BD) was thawed overnight at 4°C. On Day 1 of the generation of liver 

organoids, Matrigel
™

 was mixed to homogeneity using cooled pipettes and then diluted in a 

1:1 ratio with upcyte
®
 LSEC growth medium. For generation of one liver organoid in a 24-

well format or in Quasi-vivo
®
 System, 380 µl of diluted Matrigel

™
 was required (~200 

µl/cm
2
) resulting in a thick layer of matrix. Using pre-cooled pipette tips, Matrigel

™
 was 

added to the plates/chambers and incubated at 37°C for 30 min to polymerize. The cells were 

trypsinized according to the method described in Section 2.2.1.3 and the cell pellets were re-

suspended in liver organoid growth medium. Liver organoid growth medium was prepared by 

adding upcyte
® 

HGM and upcyte
®
 LSEC growth medium in 1:1 ratio. The liver organoid was 

prepared by mixing the cells mixture as shown in Table 6 and added to the plates/chambers 

containing the thick layer of Matrigel
TM

. The cell mixture was incubated under standard 

culture conditions for the formation of liver organoids. 

 
Table 6. Number of cells required to form organoids according to the cell type in a 24-well format. 

 

Cell type Cell number 

upcyte
®
 hepatocytes (Donor 422A-03) 1.0 x 10

6
 

upcyte
®
 / primary MSC 0.2 x 10

6                         
 

upcyte
®
 LSECs 1.0 x 10

6
 

 

2.2.3.2 Liver organoids in Quasi-vivo
®
 System 

To create conditions that were more physiologically relevant, liver organoids were also 

cultured in a dynamic system, namely the Quasi-vivo
®
 System (Kirkstall Ltd.). The basic 

building blocks of this system are QV500 chambers, which are made of poly-dimethyl-

siloxane (PDMS), a biocompatible silicone polymer with a surface area similar to that of a 24-

well multi-well format. The liver organoids were generated in the Quasi-vivo
® 

chambers 

under static
 
conditions. After 24 h, chambers containing the liver organoids were connected to 

the dynamic system and cultured with a medium flow rate of 300 µl/min. The medium was 

changed every alternate day. Liver organoids were cultured for 7 days in liver organoid 

growth medium and then for 3 days in HPM. Liver organoids were incubated for 3 

consecutive days (day 7 to 10) in HPM containing 20 µM rifampicin in order to determine the 

CYP3A4 induction response in these organoids. The medium was changed every day during 

the induction period. For basal activities, organoids were cultured for 3 days (day 7 to 10) in 

HPM containing 0.1% DMSO. Incubation of liver organoids with 500 µM in KHB of 

testosterone as a substrate metabolized by CYP3A4 were carried out on Day 10 according to 

the method described in Section 2.2.5.3 using 500 µM testosterone in KHB. 
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2.2.3.3 Scalability to different well formats 

The scalability of liver organoids to 48-well formats and 96-well formats was achieved by 

reducing the cell numbers according to Table 7. In the static system, the organoids were 

cultured in liver organoid growth medium for 4 days with daily medium changes and then 

fixed with formalin for histological studies (see Section 2.2.3.5).   

 

Table 7. Cell numbers required for different formats and different cell types. 

 

Cell type Cell number 

48 well 96 well 

upcyte
®
 hepatocytes (Donor 422A-03) 0.5 x 10

6
 0.25 x 10

6
 

upcyte
®
 / primary MSC 0.1 x 10

6
 0.05 x 10

6
 

upcyte
®
 LSECs 0.5 x 10

6
 0.25 x 10

6
 

 

2.2.3.4 Immunocytochemistry in 2D monolayer 

Upcyte
®
 hepatocytes/LSECs/MSCs and primary MSCs were seeded at a density of 10,000 

cells/well in a 96-well plate and cultured for 2 days in cell-specific growth medium. Cells 

were washed twice with PBS
-
 and then fixed with 4% paraformaldehyde for 5 min. After 

washing three times with PBS
-
, cells were blocked using 3% BSA in PBS

- 
for 20 min to 

saturate unspecific binding sites. For detection of different markers, fixed cells were 

incubated with the respective primary antibodies. Cells were incubated for 45 min at 37°C 

with the primary antibody diluted in 0.2% BSA/PBS
-
 (washing buffer) to detect CD31 

(1:300), vimentin (1:200) or cytokeratin 8/18 (1:50). Wells were washed again three times 

with washing buffer to remove unbound primary antibody and incubated for 45 min at 37°C 

with the respective secondary antibody. Cy
TM

3-conjugated Affinity Pure Goat anti-Mouse 

IgG was used as a secondary antibody (at a dilution of 1:200 in 0.2% BSA in PBS
-
). The 

secondary antibody solution additionally contained DAPI (final concentration of 300 nM) in 

order to counterstain cell nuclei. After washing the cells three times in washing buffer, cells 

were analyzed using a fluorescence microscope. The immunocytochemical stainings were 

analyzed at a wavelength of 553 nm. This was compared with the cellular morphology of the 

culture observed using phase contrast microscopy. 

 

2.2.3.5 Immunohistochemistry of 3D organoid 

Immunoperoxidase-based immunohistochemistry was performed to stain 2 μm sections of 

paraffin-embedded liver organoids. The following primary antibodies were used: mouse anti 

human CK8/18 (monoclonal, concentrated, pH6), rabbit anti human vimentin (monoclonal, 
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1:400, pH 6), and mouse anti human CD31 (monoclonal, 1:500, pH 9). 

Immunohistochemistry was performed as described previously using the following: antigen 

retrieval in Novocastra antigen retrieval solution pH 6 or pH 9.0; blocking of endogenous 

peroxidase (DAKO blocking solution); detection of bound antibodies by the 

immunoperoxidase/DAB-based DAKO REAL detection system (DAKO). 

 

2.2.3.6 In situ hybridization 

Detection of mRNA transcripts in paraffin sections was performed. The protocol is based on 

the preparation of DNA in vitro transcription templates using PCR, with primers that include 

RNA polymerase promoter sequences and size-based purification of PCR fragments 

containing the target gene-specific cDNA and promoter elements for T7 and SP6 RNA 

polymerase. The primer sequences listed in Section 2.1.7 were used. 

 

2.2.4 Hepatic models – Liver organoids/BioVaSc 

2.2.4.1 Explantation of BioVaSc 

The experiments on culturing of liver organoid in biological vascularized scaffold (BioVaSc) 

were carried out in collaboration with Holger Kirch (M.Sc.) from University of Würzburg. 

The porcine jejunal segment was from German landrace pigs from Sigmaringen. At the time 

of explantation the pigs were 8 to 9 weeks old and weighed up to 30 kg. Prior to sacrifice, the 

animals were administrated heparin. The performed organ harvesting was performed 

according to the third section of the Animal Welfare Act, "killing animals" (§ 4 para 3 of the 

Animal Welfare" killing of animals for scientific purposes"). Abdominal cavity was cut open 

to expose the intestinal section connected to stomach (duodenum, jejunum). This enabled the 

location of suitable artery and vein pairs (the associated lymph node tissue was removed to 

achieve this). Arteries and veins were cannulated with an IV catheter and the intestinal 

segment rinsed with 0.9% NaCl solution. A section of intestinal lumen of between 10-15 cm 

in length with preserved vascular system (arterial and venous inflow), was tied off for 

explanation. The harvested biological vascularized scaffold is called a BioVaSc (Figure 9 b). 

The BioVaSc was transported on ice in a sealed plastic container containing cold PBS
-
 with 

1% gentamycin. The decellularization was carried out either directly on the day of surgery, or 

no later than one day after, provided the BioVaSc is sufficiently flushed with 0.9% NaCl 

solution (Figure 9 c).  

 

 



MATERIALS & METHODS 

41 

 

(a)                                          (b)                                        (c)                                  (d) 

 

Figure 9: a) Pigs used were German landrace pigs from Sigmaringen, b) BioVaSc harvesting: 10–15 

cm long segment of jejunum was harvested including its artery and vein outlets. c) Blood vessels and 

lumen portion of the BioVaSc was thoroughly flushed with PBS
+
 1% gentamycin, streptomycin and 

penicillin at 4°C. d) Arterial vascular pedicle was connected to a bioreactor system and perfused with 

500 ml of 3% sodium deoxycholate for chemical decellularization.  

 

2.2.4.2 Decellularization of BioVaSc 

Decellularization of the jejunal segment was carried out by a modified method of Meezan 

(Meezan et al. 1975). Decellularization solution was flushed into the BioVaSc via artery to 

remove blood. The BioVaSc was then transferred into a bioreactor and the arterial vascular 

pedicle of the BioVaSc was connected to the bioreactor system (Figure 8 d). A volume of 500 

ml of pre-cooled decellularization solution was perfused through the BioVaSc at a rate of 1.8-

2.8 ml/min for 60-90 min. The pressure was adjusted to 80 mm Hg, so as not to destroy the 

vascular system.  In addition, the lumen of the tissue was rinsed with 500 ml of 

decellularization solution through the vascular system. The decellularized intestinal segment 

was flushed with 1000 ml PBS
+
 at a rate of 2.8-5 ml/min via arterial perfusion for 1-2 h. The 

pressure was adjusted to 100 mm Hg. The resulting tissue was white in colour and no longer 

pinkish-red.  It was important to ensure no air bubbles were pumped through the vascular 

system. In the next step, decellularized scaffold was rinsed with 150 ml DNAse I (60 mg in 

PBS+) with 1% gentamycin, and incubated at 4°C. In order to remove the sodium 

deoxycholate from the BioVaSc, it was transferred to a glass bottle and rinsed further with 

PBS
+
 containing 1% gentamycin for 3 consecutive days. For best washing results, rinsing was 

carried out using a rotator maintained at 4° C. The BioVaSc was sterilized overnight by 

irradiating it with 25 kGr in pre-cooled PBS
+
 containing 1% gentamycin. The resulting matrix 

could be stored at 4°C until used. Before populating with cells, BioVaSc was incubated 

overnight in the cell-specific medium. 
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2.2.4.3 Colonization of the BioVaSc 

The vascular system of the BioVaSc was colonized with upcyte
®
 mvECs in two steps. 

Upcyte
®

 mvECs were cultured/passaged and harvested as described in Section 2.2.1.2/3. Cells 

were resuspended in the required amount of vericyte
®
 endothelial cell growth medium 

(ECGM) to achieve a density of 1.5-3.5x 10
6
 cells/ml of medium. The BioVaSc was clamped 

in the bioreactor, which was then filled with vericyte
®

 ECGM. In step 1, colonization of the 

vascular system was done by injecting upcyte
®

 mvECs into the BioVaSc via the arterial 

inflow using a 10 ml syringe (2-3 times with 2 ml of cell suspension with 45 minute break 

each time). To allow the cells to adhere to BioVaSc, the tissue was perfused with minimal 

media flow (1.26 ml/min) for 45-60 min. In step 2, the same method of injection was used via 

arterial inflow. On Day 1, the cells were incubated with a pulsating pressure of 20 mm Hg (± 

10 mm Hg). The next day, the pressure was gradually increased to 100 mm Hg (± 20 mm Hg) 

over 7 h and the pressure was maintained throughout the culture period. The BioVaSc was 

cultured in vericyte
®

 ECGM containing 1% gentamycin at 37°C, 5% CO2 in a specially 

developed chamber for 10 to 14 days (Figure 10). A medium change was performed every 3-4 

days. In order to ensure optimal culture conditions, parameters such as temperature, gas 

exchange, pumping power and pressure in the bioreactor was computer-controlled (Hewlett-

Packhard, Böblingen, software: Measure foundry, Data Translation, Bietigheim-Bissingen). 

After 10-14 days of culture, the lumen was colonized with liver organoids 

 

(a)                                                                (b)   

 

 

Figure 10: BioVaSc colonized with upcyte
®
 mvECs and cultured in the bioreactor for 14 days 
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2.2.4.4 Liver organoids in BioVaSc 

Generation of liver organoid was carried out in 48-well formats (Figure 11a) as described in 

Section 2.2.3.3 Bioreactors with the BioVaSc colonized with upcyte
®
 mvECs were cultured 

for 14 days, after which time they were disconnected from the system and carefully 

transferred to a laminar airflow. Freshly generated liver organoids cultured in static conditions 

for 48 h were then placed in the BioVaSc using a sterile spatula (Figure 11b & c). The 

BioVaSc colonized with liver organoids was then returned to the bioreactor chamber. After  

24 h, the dynamic flow was started and the pressure was adjusted to 80 mm Hg (reflecting 

physiological conditions). The liver organoids were cultured inside the BioVaSc for 30 days 

in liver organoid growth medium containing 1% gentamycin. 

(a)                                                              (b)                                                (c)    

 

 

Figure 11: a) Liver organoids generated in 48-well multi-well plate b) & c) Liver organoids 

transferred from multi-well plate into BioVaSc for long-term culture. 

 

 

2.2.5 Application of hepatic models - inhibition/induction study  

2.2.5.1 Pre-culture conditions for inhibition/induction study  

Two pre-culture durations were used: A standard pre-culture of 3 days, with a PD of one, or a 

longer 6-7 day pre-culture with a PD of 3.5. Standard pre-cultures were used for testing the 

induction of all 4 CYPs by a single concentration of inducer (as part of the quality control of 

the cell batch). All other inhibition and induction assays were conducted using a 6-7 day pre-

culture period. Standard pre-culture involved seeding the cells at 75,000 cells/cm² in HPM 

medium (0.5 ml/well) in collagen Type I-coated 48-well plates. The cells were cultured for 3 

days without a medium change, after which time, the medium was replaced with fresh HPM 

with the respective control and inducer compounds. For the longer pre-culture period, upcyte
®

 

hepatocytes were seeded at 5,000 cells/cm² in collagen Type I-coated T150 flasks in HGM 

and pre-cultured for up to 1 week or until they reached 70-80% confluence. The medium was 

changed every 2-3 days. The cells were then trypsinized and re-seeded into 48-well plates at 

150,000 cells/cm² (confluence) in HPM (0.5 ml per well).  
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2.2.5.2 Upcyte
®
 hepatocyte inhibition assays 

For inhibition assays, after the cells had attached (2-4 h), the medium was replaced with either 

HGM or HPM containing either 0.1% or 0.5% DMSO. The cells were cultured for a further 3 

days during which time the medium was replaced daily with the appropriate medium. 

Cultures that were subsequently used for CYP1A2 inhibition assays were treated daily for 3 

days with 100 M omeprazole to pre-induce this CYP. After this time, the cells were used for 

inhibition assays. The cells were washed twice with PBS
+
 and pre-incubated with 0.1 ml of an 

appropriate CYP inhibitor dissolved in KHB. -naphthoflavone (0.1 to 10 M), miconazole 

(0.01 to 50 M) and ketoconazole (0.01 to 20 M) were pre-incubated for 5 min and 

ticlopidine (0.01 to 50 M) was pre-incubated for 30 min (since this is a mechanism based 

inhibitor). CYP activities were measured by adding 0.1 ml of the CYP-selective substrate in 

KHB and incubating for 1 h (final concentrations were: 26 M phenacetin, 500 M 

bupropion, 75 M tolbutamide and 250 M testosterone). 

 

2.2.5.3 Upcyte
®
 hepatocyte induction assays measuring CYP activities 

There were two types of induction assays carried out: (1) standard induction assays in which a 

single concentration of prototypical CYP inducer was tested to determine CYP1A2, CYP2B6, 

CYP2C9 and CYP3A4 induction and (2) calibration induction assays in which a range of 

concentrations of test compounds were incubated to determine their potential to induce 

CYP2B6 and CYP3A4 only. For both assays, after attachment of upcyte
®

 hepatocytes in 48-

well plates, the medium was replaced with HPM and the cells were cultured for 24 h. After 

this time, the cells were treated daily for 3 days with the test compound/prototypical inducer. 

For standard induction assays, the prototypical inducers were 50 M omeprazole (CYP1A2 

inducer), 1 mM phenobarbital (CYP2B6 inducer) and 20 M rifampicin (CYP2C9 and 

CYP3A4 inducer). At the end of the induction period, the cells were washed with PBS
+
 and 

CYP activities were measured by adding 0.2 ml KHB containing final concentrations of CYP 

substrate: 26 M phenacetin, 500 M bupropion, 75 M tolbutamide and 250 M 

testosterone and incubating for 30 min (testosterone) or 1 h (phenacetin, bupropion and 

tolbutamide). After incubation, the supernatant was transferred to a fresh 96-well plate and 

processed for HPLC analysis. For induction assays generating dose response curves for 

CYP3A4 and CYP2B6 and subsequent calibration curves relating to in vivo induction, the test 

compounds were rifampicin (0.05-40 M), phenobarbital (20-2000 µM), phenytoin (1-1000 

M), carbamazepine (1-100 M), troglitazone (0.5-50 M), pioglitazone (0.5-40 M), 
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dexamethasone (0.1-500 M), nifedipine (0.05-100 M), omeprazole (0.5-200 ), 

flumazenil (0.05-100 M), and quinidine (0.1-250 M). At the end of the induction period, 

the cells were washed with PBS
+
 and a volume of 0.2 ml of 250 M testosterone in KHB was 

added to each well and incubated for 30 min. The supernatant was transferred to a fresh 

standard cell culture 96-well plate and processed for HPLC analysis. The remaining cell 

cultures were again washed twice with PBS
+
 and then incubated with 500 M bupropion in 

KHB for 1 h. The supernatant was transferred to a fresh standard cell culture 96-well plate 

and processed for HPLC analysis.  

 

2.2.5.4 Calculation and curve fitting 

Experiments were carried out in duplicate and each compound was tested in at least 2 

different experiments. All curve-fitting was carried out using Prism Version 8.0 software. 

Dose response curves for test compounds from calibration induction assays (Section 2.2.2.4) 

were generated and the Indmax and Ind50 values were determined by fitting the data to a three-

parameter sigmoid (Hill) equation as described by Ripp (Ripp et al. 2006). Indmax is the 

maximum fold induction of CYP activity induced by the compound and Ind50 is the 

concentration at which 50% maximal induction was achieved. The Relative Induction Score 

(RIS) was determined using Equation 2: 

 

RIS =  Cmax,u x Indmax                    Equation 2 

 Cmax,u + Ind50 

 

The Cmax,u value for omeprazole was taken from Mostafavi and Tavakoli (Mostafavi & 

Tavakoli 2004); the Cmax,u value for all other compounds used for RIS determinations were 

taken from Ripp (Ripp et al. 2006) or Fahmi (Fahmi et al. 2008). (values for quinidine and 

flumazenil were not needed since they were the negative control compounds). 

The relative induction of CYP3A4 and CYP2B6 by different compounds compared to the 

positive control was calculated using Equation 3: 

 

% Relative PC induction= Ind50, TC -1                                                               Equation 3                                                                                    

    Ind50, PC-1 

 

Where Ind50, TC is the Ind50 of the test compound and Ind50, PC is the Ind50 of the positive 

control (rifampicin for CYP3A4 and phenobarbital for CYP2B6. 
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2.2.5.5 Metabolite analysis by HPLC 

All metabolites were analyzed using UV-HPLC.  

 

Sample preparation 

CYP1A2 

After the substrate incubation, the supernatants (200 µl) were transferred to fresh 96-well 

plates for extraction. To each 200 µl sample, 10 µl of the internal standard (1 mg/ml 

chlorpropamide) was added.  The samples were then transferred to separate 10 ml glass tubes. 

To each of the glass tube containing samples, 3 ml diethyl ether was added. The samples were 

mixed by gentle vortexing for 4 seconds. The vortexing was repeated to maximize the 

extraction of the metabolites from the sample into the diethyl ether. The samples were 

allowed to settle so that the aqueous phase was separated from the diethyl ether. The lower 

aqueous phase was removed and discarded, leaving the diethyl ether phase. The samples were 

dried under a stream of nitrogen gas and then reconstituted in 30 µl of 1:1 methanol:distilled 

water.  

 

CYP3A4, CYP2B6 and CYP2C9 

After the substrate incubation, the supernatants (200 µl) were transferred to fresh 96-well 

plates for extraction. To each 200 µl sample, 10 µl of the internal standard was added. For 

testosterone and its metabolite, 0.5 mM cortexolone was used as internal standard. For 

tolbutamide and bupropion and their metabolites, 0.1 mg/ml chlorpropamide was used as 

internal standard. An Oasis
®
 Elution plate was prepared by conditioning the wells/columns 

with 200 µl 100% methanol. The solvent was pushed through the columns using the positive 

pressure manifold, according to the manufacturer’s instructions. The wells/columns were 

washed with 200 µl of 100% water. The water was pushed through the columns using the 

positive pressure manifold. The standards and samples were loaded into the wells and pushed 

them through the columns. A clean 96-well plate was paced below the plate separator so that 

the samples will be collected in this plate. To all the wells/columns containing sample or 

standard, 10 µl of solvent (Solvent: 100% isopropanol for testosterone and 2% formic acid in 

methanol for tolbutamide and bupropion) was added and pushed through the columns using 

the positive pressure manifold. A second 10 µl of the respective solvent was added to each 

well containing sample or standard and pushed through the columns using the positive 

pressure manifold. The collection 96-well plate was removed from the Positive Pressure 
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Manifold and 20 µl of 100% water was added directly to each of the sample after the 

extraction process.  

 

The samples were transferred to an HPLC glass insert inside the glass vial. Air bubbles were 

removed from the sample and the samples were transferred to the HPLC autosampler for 

analysis. All metabolites and their respective internal standards (chlorpropamide for 

phenacetin, bupropion and tolbutamide and cortexolone for testosterone) were separated on a 

SunFire C18 2.5µm 2.1×20mm column (Waters, Munich, Germany). The substrates for each 

CYP and their metabolites are shown in Table 8, together with the UV detection wavelength. 

 

Table 8. CYPs, substrates, metabolites and corresponding detection wavelengths. 

 

CYP Substrate Metabolite Detection 

wavelength (nm) 

CYP1A2 Phenacetin (26 µM)  Acetaminophen 240  

CYP2B6 Bupropion (500 µM)  4-Hydroxybupropion 200  

229  

CYP2C9 Tolbutamide (75 µM ) 4-Hydroxymethyl-tolbutamide 200  

229  

CYP3A4 Testosterone (250 µM) 6ß-hydroxytestosterone 252 

 

 

2.2.6 Application of hepatic models – Haemophilia Therapy 

2.2.6.1 Cloning of FVIII gene  

The full length FVIII gene was derived from pSP64-FVIII-FL [(Toole et al. 1984); ATCC: 

K01740]. As the B-domain of FVIII gene does not play a role in the coagulation cascade, 

nucleotides (2428-5067) corresponding to the B-domain were deleted as described by (Tonn 

et al. 2002). To mediate the Gateway
®

 BP recombination reaction with a donor vector, the 

FVIII gene (B-domain deleted) was incorporated with attB sites using the cocktail (Table 9) 

and quantitative real-time (PCR) programme shown in Table 10. 

 

Table 9. Cocktail used for the Gateway
®
 BP recombination reaction. 

 

Components Amount  

20 l rxn. vol. 

Final 

Concentration 

5X Phusion
®
 reaction HF buffer 

or GC buffer 
4 l  1X 

10 mM dNTP-mix 0.4 l 200 µM 

Forward primer 10 uM, FVIII-

pENTR FWD 
1.0 l 0.5 µM 
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Reverse primer 10 uM 

FVIII-pENTR REV 
1.0 l 0.5 µM 

Template DNA (100ng/ul), 

FVIII  
1 l (100 ng) < 250 ng 

Nuclease free H2O to 20 l  

Phusion polymerase  

(2.000 U/ml) 
0.2 l (0.4 U/20 

l) 

1.0 U/50 µl 

PCR 

 

Table 10. PCR programme used for the Gateway
®
 BP recombination reaction. 

 

 

 

 

 

 

 

The PCR programme was performed using Qiagen rotor genes. The FVIII gene, flanked by 

the attB site, was purified using quick-start protocol from the QIAquick
®
 PCR purification 

kit. The concentration and purity of the resulting DNA was determined by measuring the 

absorbance at 260 nm and 280 nm on a Nanodrop spectrophotometer. 

 

2.2.6.2 Generation of entry clones using BP Reaction 

The attB-flanked FVIII gene was used to create entry clone according to the protocol 

described in the BP Clonase™ II enzyme kit. The cocktail for the BP reaction is shown in 

Table 11. 

 

Table 11. Cocktail for the BP reaction. 

 

 

 

 

 

2.2.6.3 Transformation and plasmid extraction 

A volume of 2 µl of BP reaction mix was added to 8 µl of Mega DH10B™ T1
R 

electrocompetent E.coli cells and mixed gently. The Eppendorf tubes containing BP reaction 

mix and electrocompetent cells were transferred into a chilled electroporator cuvette and 

pulsed in an electroporator using Program EC-1. The cuvette was removed and 1 ml of 20°C 

Cycle step Temperature Time  Cycles 

Initial denaturation 98°C 30 sec 1 

Denaturation 

Annealing 

Extension 

98°C 

65°C 

72°C 

7 sec 

20 sec 

2,5 min 

 

32 

 

Final extension 

Hold 

72°C 

4°C 

7 min 

Unlimited 

1 

attB- flanked FVIII gene (100 ng) 1 µl 

pDONR-Donor vector (150 ng/µl) 1 µl 

TE buffer, pH 8.0 6  µl 

BP Clonase™ II enzyme mix 2 µl 
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warm SOC medium was added immediately and the entire contents of the cuvette were 

transferred into a 2 ml Eppendorf tube. The bacteria were then incubated at 37°C for 1 h in a 

Thermomixer (150 xg). After this time, the samples were centrifuged at 150 ×g for 5 min. The 

supernatant was discarded, leaving behind a volume of approximately 100 µl. The pellet was 

re-suspended in the medium and streaked onto LB agar plates containing 100 µg/ml 

kanamycin. The plates were placed upside down and incubated at 37°C overnight for bacterial 

colony to grow. Nine colonies were randomly picked for replica plating and these were 

inoculated in 3 ml of LB agar broth containing 100 µg/ml kanamycin. The vials and replica 

plates were incubated at 37°C overnight to allow bacterial growth. The plasmid extraction 

was carried out according to the QIAprep
®

 Spin Miniprep Kit protocol and the concentration 

and the purity of the DNA was determined by measuring the absorbance at 260 nm and 280 

nm on a Nanodrop spectrophotometer.  

2.2.6.4 Double restriction hydrolysis of entry clone  

To check for the integration of the FVIII transgene into the entry clone, 1 µg of DNA was 

taken for double restriction hydrolysis using Bsa H1 and Spe 1. The quantity of ingredients is 

shown in Table 12. 

Table 12. Ingredients for double restriction hydrolysis. 

 

Composition  Volume 

Bsa H1 (10,000 U/ml) 4 U 

Spe 1 (10,000 U/ml) 4 U 

10X NE buffer 5 µl (1X) 

DNA 1 µg 

Incubation time 1 h 

Incubation temperature 37°C 

Total Reaction volume 50 µl 

Heat inactivation   80°C -20 min 

 

2.2.6.5 Generation of expression clones using LR Reaction 

The expression clones were generated using LR Reaction as described in the LR Clonase ™ II 

enzyme kit protocol. The cocktail for the LR reaction is shown in Table 13. 

 

Table 13. Cocktail for the LR reaction. 

 

Composition  Volume 

Entry clone (120 ng/µl ) 5 µl 

Destination vector (150 ng/µl) 

pLenti6 V5 Dest 

1 µl 
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TE buffer, pH 8.0 2 µl 

LR Clonase™ II enzyme mix 2 µl 

 

A volume of 2 µl of LR reaction mix was added to 50 µl ElectroMAX™ Stbl4™ 

electrocompetent E.coli and the cells, and the sample was then gently mixed. Electroporation 

and plasmid extraction was carried out as described in Section 2.2.6.3. As an antibiotic 

selection process, 100 µg/ml ampicillin was added to the LB agar plates and incubated at 

30°C overnight in order to prevent recombination.  

2.2.6.6 Double restriction hydrolysis of expression clone 

To check the presence of FVIII transgene in the expression clone, 1 µg of DNA was taken for 

restriction hydrolysis using Spe 1. The corresponding composition for restriction hydrolysis is 

shown in Table 14 

 

Table 14. Restriction hydrolysis solution composition. 

 

Composition  Volume 

Spe 1 (10,000 U/ml) 4 U 

10X NE buffer 5 µl (1X) 

DNA 1 µg 

Incubation time 1 h 

Incubation temperature 37°C 

Total reaction volume 50 µl 

Heat inactivation   80°C -20 min 

 

2.2.6.7 Midi preparation and sequencing of FVIII transgene 

The expression clone that was positive for the presence of FVIII gene by double restriction 

hydrolysis was used to inoculate a starter culture. A volume of 2 ml starter culture was grown 

from the plate for 8 h in LB broth containing 100 µg/ml of ampicillin at 30°C with a rotation 

of 200 rpm. The starter culture was used to inoculate 200 ml of culture to extract plasmid for 

sequencing. The flask was incubated at 30°C overnight with a rotation mixing at 200 rpm for 

the bacterial growth. The plasmid extraction was carried out according to the QIAprep
®
 Spin 

Midiprep Kit protocol and the concentration of the DNA was determined by measuring the 

absorbance at 260 nm and 280 nm on a Nanodrop. Oligonucleotide primers were designed to 

analyse the FVIII gene in the expression vector. Approximately 2 µg of DNA was sent to 

GATC Biotech for sequencing.  
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2.2.6.8  Lentiviral production and Transduction 

The production of lentiviral particles was carried out according to a modified protocol of 

Scherr and colleagues (Scherr & Eder, 2002). For safety reasons, the production is based on a 

four-plasmid system. The day before transfection (Day 1), 3 ml poly-D-lysine (100 g/ml in 

PBS
-
) was added to coat the 10 cm petri dish, which was incubated at room temperature for 5 

min. Poly-D-lysine was aspirated and the plates were rinsed with 5 ml of sterile water. 293 FT 

cells (5 x 10
6
) were seeded in a 10 cm tissue culture plate to achieve a confluence of 90–95% 

on the day of transfection. The cells were cultured in DMEM medium containing 10% non-

heat inactivated FBS, 6 mM L-glutamine, 0.1 mM MEM non-essential amino acids, and were 

incubated at 37°C under standard culture conditions. On day 2 of transfection, the culture 

medium was aspirated and 5 ml Opti-MEM
®
 I medium containing 10% FBS was added to 

each plate. Plasmids (9 μg) from the ViraPower™ Packaging Mix and pLenti FVIII 

expression vector (3 μg) were diluted in 1.5 ml serum-free Opti-MEM
®
 I Medium and mixed 

gently. In a separate sterile tube, Lipofectamine™ 2000 was prepared and combined with the 

diluted DNA. The contents were mixed gently and incubated at RT for 20 min to allow the 

DNA-Lipofectamine™ 2000 complexes to form. DNA-Lipofectamine™ 2000 complexes 

were added drop-wise to each plate of cells. The plates were mixed gently by rocking back 

and forth and incubated overnight.  

 

The next day (Day 3), the DNA-Lipofectamine ™ 2000 complex medium was removed and 

replaced with 10 ml of complete culture medium (DMEM supplemented with 10% non-heat 

inactivated FBS, 6 mM L-glutamine, 0.1 mM MEM non-essential amino acids, 10 mM of 

sodium butyrate) and incubated further at 37°C under standard culture conditions. During this 

time, the expression of the VSV G glycoprotein causes 293FT cells to fuse, resulting in the 

appearance of large, multinucleated cells known as “syncytia”. After 4 to 5 h, the medium 

was discarded and fresh DMEM without any supplements was added to the plates and 

incubated under standard culture conditions. On Day 4, virus-containing supernatant was 

harvested and filtered through a 0.45 µm Whatman
®
 filter. In order to concentrate the virus 

particle, a Vivaspin column with a molecular weight cutoff of 100,000 Da was used. After 

washing with 10 ml of PBS
-
, the supernatant was added to the top of the column, which was 

then centrifuged (300 ×g until the supernatant was concentrated to 500-1000 µl). The 

concentrated virus supernatant was aliquoted in 50 µl volume and stored at -80 ° C.  
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2.2.6.9 Titration of virus supernatant 

The amount of virus particles per ml of solution was determined directly by titrating the 

amount of viral RNA using quantitative real-time PCR (qRT-PCR). qRT-PCR was performed 

using a modified protocol from Scherr (Scherr et al. 2001). The primer binding to the long 

terminal repeat (LTR) sequence of the viral vector backbone was used. A reference standard 

curve was prepared by diluting the vector from 1:10
1
 to 1:10

9
. Plasmids that contained the 

LTR sequence were amplified with the primers. In addition, various dilutions of the virus 

suspension (1:100, 1:1000 and 1: 10,000) were made. All reactions were carried out in 

triplicate according to the reaction mixture summarized in Table 15.  

 

Table 15. Reaction mixture for qPCR. 

 

Mastermix                                                     1x 

2x QuantiFast SYBR 

Green                      7.5 μl 

LTR Primer Mix 1:20                                  1 μl 

Nuclease free water                             5.5 μl 

Sample to be measured                           1 μl 

  15 μl 

 

qRT-PCR measurement was performed using a Qiagen rotor genes according to the program 

shown in Table 16. 

 

Table 16. qPCR program. 

 

 

 

 

 

 

 

To determine the concentration of virus particles in the suspension, a standard curve was 

derived for the vector (correlation <0.99). For this, the concentration of the vector was plotted 

against the corresponding Ct value. Using a linear equation, Ct values of the virus suspension 

were assigned against the concentration of the vector (FVIII). 

 

 

Cycle step Temperature Time  

1 95°C 15 min 

2 94°C 15 sec 

3 55°C 30 sec 

4 72°C 30 sec 

5 Go to step 2   40x 

6 Melting curve     
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2.2.6.10 Transduction  

Upcyte
®
 endothelial cells (BOECs, mvECs and LSECs) and primary mvECs were seeded 

according to Section 2.2.1.2 After 24 h, the cells were transduced with lentiviral particles at 

three different multiplicity of infection (MOI 1000, 10,000 and 100,000) (Figure 12). The 

MOI reflects the ratio of the infectious viral particles into the target cell. For example, an 

MOI of 1000 means each of the transduced cells will receive 1000 times the FVIII gene. To 

enhance the lentiviral transduction, 6 µg/ml of hexadimethrine bromide (polybrene
®
) was 

added to the culture medium. The medium was changed with fresh medium without lentivirus 

after 8 h and cultured further. Before plating the cells for FVIII supernatant harvest, they were 

grown for 5 to 6 passages. 
 

 

 

Figure 12: Schematic overview of lentiviral transduction into human endothelial cells (Picture source: 

www.invivogen.com - Modified) 

 

2.2.6.11 Cytotoxicity curve analysis  

In order to obtain a homogeneous population of FVIII secreting primary mvECs, it is 

important to select the transduced population from the non-transduced cells. The lentiviral 

construct used to transduce the FVIII gene also carries a gene for Blasticidine
®
. As an 

antibiotic selection process, the primary mvECs from same donor as upcyte
®
 mvECs were 

transduced with three different MOIs (MOI 1000, 10,000 and 100,000) and selected using 

Blasticidine
®
. To determinate the optimal concentration of Blasticidine

®
 required to eliminate 

non-transduced cells, a cytotoxicity curve was established over various concentrations. The 

concentration of blasticidine selected was the lowest concentration that killed 100% of the 

non-transduced cells and but resulted in maximal survival of transduced cells. To derive the 

cytotoxicity curve, cells were plated at approximately 25% confluence in 6-well plates and 

allowed to attach overnight. The next day, culture medium containing varying concentrations 

of blasticidine (i.e. 0, 2, 4, 6 and 8 μg/ml) was added to the wells. The medium was changed 

every 2 to 3 days, during which time, the percentage of surviving cells was observed. The 

appropriate concentration of blasticidine that was toxic to the cells within 10-14 days after 

addition of the antibiotic was determined. Therefore, the minimum antibiotic concentration 

Endothelial cells 

ECs 
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that eliminated all the non-transduced cells was used for cultures containing primary mvECs 

transduced with FVIII gene. During the 14-day culture period, a homogeneous population of 

primary mvECs carrying FVIII gene was selected (Figure 13). 

 

 

    

 

 

 

 
Figure 13: Pictorial representation of lentiviral transduction, followed by antibiotic selection to obtain 

uniform population of cells carrying FVIII gene (Picture source: www.invivogen.com  - Modified) 

 

2.2.6.12 Tube formation assay  

The tube formation assay was used to study angiogenesis based on the method described by 

Arnaoutova (Arnaoutova et al. 2009). The assay was performed according to a modified 

protocol of Kubota (Kubota et al. 1988). A volume of 50 µl of Matrigel
TM

 was pipetted onto a 

pre-cooled 96-well multi-well plate and incubated for 30 min at 37° C to polymerize. 

Thereafter, the cells were diluted in vericyte
®
 ECGM and then plated onto the Matrigel

TM
 at 

different densities (14,000 cells/cm
2
 and 20,000 cells/cm

2
). The cultures were incubated for   

6 h under standard culture conditions. The cells were then observed under light microscope 

for the formation of tubular networks.  

 

2.2.6.13 FVIII analysis from different cell cultures 

Primary LSECs 

Freshly harvested and frozen supernatants from primary LSECs (sent frozen on dry ice) were 

received from Dr. Cristina Ionica Oie from the University in Tromsø (Vascular Biology 

Research Group, Department of Medical Biology, Faculty of Health Sciences, Tromsø, 

Norway) were provided by Bard Smedsrod and Cristina Ionica Oie from the University in 

Tromsø (Vascular Biology Research Group, Department of Medical Biology, Faculty of 

Health Sciences, Tromsø, Norway). 

 

 

 

Primary mvECs 

 
Pseudoviral 

particles 

10-14 Days 

EC 

 
Homogenous population of 

primary mvECs carrying 

FVIII transgene 

 Blasticidine 

selection  
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Upcyte
® 

endothelial cells 

To harvest the supernatant for FVIII analysis, different upcyte
®
 endothelial cells (BOECs, 

mvECs and LSECs) transduced with lentiviral particles carrying a FVIII transgene were 

upcyte
® 

BOECs, mvECs and LSECs transduced with FVIII gene were seeded at confluence 

(approximately 30,000 cells/cm
2
) in 6-well plates. Upcyte

® 
BOECs and upcyte

® 
mvECs were 

cultured for 2 to 3 days in vericyte
®
 ECGM; whereas, upcyte

® 
LSECs were

 
cultured in 

upcyte
®
 LSEC Growth Medium. After the initial culture period, the cells were cultured in 2 

ml of the respective growth medium. 

 

Primary mvECs 

After antibiotic selection, an homogeneous population of primary mvECs carrying FVIII 

transgene was seeded and cultured in the same manner as that for upcyte
® 

mvECs. After 24 h, 

200 µl of the supernatant was harvested and centrifuged at 180 ×g for 20 min at 4°C to 

remove any cell debris. FVIII analysis was carried out according to the protocol by the 

supplier of the IMUBIND
®
 Factor VIII ELISA Kit. The IMUBIND Factor VIII ELISA is a 

“sandwich” ELISA using a monoclonal antibody against human FVIII as the capture 

antibody. Samples were incubated in microwells coated with an anti-human FVIII 

monoclonal antibody and a second monoclonal antibody, horseradish peroxidase (HRP) 

conjugated, was used to detect the bound FVIII antigen. The addition of a perborate/3,3’,5,5’ 

– tetramethyl benzidine substrate, and its subsequent reaction with the HRP creates a blue 

colored solution. The sensitivity was enhanced by adding 0.5 M sulfuric acid, yielding a 

yellow color. FVIII levels were determined by measuring the absorbance at 450 nm and 

comparing the values to those of a standard curve and blank. Cell-specific Growth Medium 

was used as a blank.  
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3. Results 

3.1 Hepatic models – 3D Mimetix® scaffolds 

The hepatocytes were cultured in 3D synthetic scaffolds made of biodegradable polymers and 

generated using an electrospinning technique. Different fibre diameters and scaffold 

thicknesses were analyzed using upcyte
®
 hepatocytes for optimal cell function and penetration 

into the scaffolds. The performance of upcyte
®
 hepatocytes in 3D scaffolds was determined 

by measuring metabolic functions such as cytochrome P450 3A4 (CYP3A4) and MTS 

metabolism.  

 

3.1.1 Effect of scaffold fibre thickness on cell penetration 

Initial experiments were performed to study the ability of upcyte
®
 hepatocytes (Donor 653-

03) to penetrate the electrospun mesh, which was analyzed using confocal microscopy. 

Upcyte
®
 hepatocytes were cultured in rhodamine-labelled, non-functionalized PLLA scaffolds 

(4 m fibre diameter with 100 µm thickness) in HGM in a 12-well plate format. A seeding 

density of 300,000 cells/well was selected (confluence) and the penetration of the cells was 

analyzed over a period of 13 days. Upcyte
®

 hepatocytes penetrated the scaffold to a depth of 

40 µm on Day 1 and by Day 13, clusters were observed at a depth of 45 µm. There were very 

few clusters observed beyond the depth of 45 µm. The cells formed 3D islands or clusters, 

which were distributed horizontally throughout the scaffold (Figure 14), which were 

equivalent of 2 to 3 stacked cell layers. In order to determine whether a different fibre 

diameter (and therefore a larger pore size) resulted in deeper penetration of upcyte
®

 

hepatocytes, the subsequent experiment compared scaffolds (100 µm thickness) with fibres of 

4 µm diameter (pore size ~ 15-31 µm) and 6 µm diameter (pore size ~ 18-42 µm). On Day 13, 

similar cell clusters were detected at a depth of 100 µm in 6 µm fibre diameter scaffolds i.e. 

they had reached the lower surface of the scaffold. There were no islands of cells observed in 

the middle of the scaffolds such that all the cells had moved through the scaffold to the lower 

surface of the scaffolds. 
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Figure 14: Visualization of the clusters of upcyte
®
 hepatocytes (Donor 653-03 in 12-well rhodamine-

labelled, non-functionalized PLLA scaffolds after 13 days of culture (100 µm thickness, 4 µm fibre 

diameter). Nuclei of the cells had been counter-stained using DAPI. 

 

3.1.2 Viability and growth of upcyte
® 

hepatocytes in 3D scaffolds 

Having analyzed the penetration of upcyte
® 

hepatocytes into electrospun scaffolds, the next 

step was to determine whether the cells could (a) proliferate within the scaffold and (b) 

whether the viability of the cells would be maintained over time, without necrosis. Confocal 

analysis showed that the penetration of the cells into and through the scaffolds was increased 

when the pore size was increased (by using 6 µm fibres); however, this technique did not 

show whether the cells were viable during the culture. Therefore, the viability of upcyte
® 

hepatocytes (50,000 cells/well, i.e. confluence) in 96-well plates with electrospun, 

non-functionalized PLLA scaffolds was assessed by measuring MTS metabolism over a 

period of 7 days after seeding. MTS is a measure of both cell number and viability; an 

increase in the metabolism of MTS generally indicates proliferation has occurred (they were 

93% viable at the start of the incubation); whereas, a decrease indicates detachment of cells or 

a loss in cell viability. In order to compare the effect of placing cells into 3D culture, 

concurrent 2D conventional cultures were cultured and analyzed in parallel. Two variables 

were assessed for their potential effects on cell viability, namely the scaffold thickness and the 

fibre diameter.  

                                                                                                      

3.1.2.1 Scaffold thickness: 100 µm vs 50 µm 

The viability and cell number within the scaffolds was determined over 7 days using MTS 

metabolism. The cells were also cultured in conventional 2D cultures in order to compare the 

effect on 3D scaffolds on the cell viability. Figure 15 shows the effect of scaffold thickness, 

using 4 µm fibre diameter on MTS metabolism. Two different scaffold thicknesses were 

tested, 100 µm and 50 µm, and the metabolism of MTS was measured after 4 h, Day 1, 3, 5 
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and 7. Cells cultured in 2D exhibited a higher MTS metabolism compared to cells grown in 

3D scaffolds over the first 3 days of culture. However, after this time, the cells cultured in 2D 

showed a decrease in MTS metabolism after Day 5 and Day 7. In contrast to cells grown in 

2D, upcyte
®

 hepatocytes grown in scaffolds of both thicknesses continued to proliferate over 

the entire 7 days of culture period, evident as an increase in MTS metabolism.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Effect of scaffold thickness on the viability of upcyte
®

 hepatocytes (Donor 653-03) 

cultured in 2D monolayers and in 3D cultures in PLLA 4 µm fibre Ø scaffolds with a thickness of 100 

and 50 µm. The viability/cell number of cells (MTS metabolism) was represented as green bars (4 h), 

orange bars (Day 1), blue bars (Day 3), red bars (Day 5) and grey bars (Day 7). Values are the mean ± 

SD from 2 experiments, each with n=4 wells per condition. 

 

3.1.2.2 Fibre thickness: 4 µm vs 6 µm  

Figure 16 shows the MTS metabolism in the cultures of upcyte
® 

hepatocytes in 2D culture 

and in non-functionalized PLLA scaffolds (50 µm thickness) with a fibre diameter of 4 and 6 

µm. The growth rate of cells was initially similar in both the fibre diameters. However, on 

Days 3 and 5, the growth of the cells was marginally but significantly higher (P=< 0.05) in 

PLLA scaffolds with 4 µm fibre diameter than with 6 µm fibre diameter. Based on the 

increase in MTS, the PD time for upcyte
®
 hepatocytes grown in 2D was 4.7 days, compared 

to longer times of 8.2 (50 m scaffolds) and 8.8 (100 m) days in 3D cultures. On Day 7 

there was no significant difference (P=0.08) observed in the MTS metabolism in both the 

fibre diameters. Whereas in 2D monolayer, there was a significant difference (P=< 0.05) 

observed in the growth of the cells on Day 3 compared with the two scaffold formats. But the 

viability of cells started to decline on Day 5 and Day 7. The decrease in MTS values in 2D 
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monolayer indicates detachment of cells or a loss in cell viability. The viability of cells in 2D 

monolayer correlated well with previous results (Figure 15). 

 
 

Figure 16: Effect of fibre thickness on the viability and growth of upcyte
®
  hepatocytes (Donor 653-

03) in 2D monolayers and in PLLA 50 µm thick scaffold with 4/6 µm fibre Ø in 96-well format. The 

viability/cell number of cells (MTS) is represented as green bars (4 h), orange bar (Day 1), blue bar 

(Day 3), red bar (Day 5) and grey bar (Day 7).  Values are the mean ± SD from 2 experiments, each 

with n=4 wells per condition.   

 

 

 3.1.3 Functionality of upcyte
® 

hepatocytes in Mimetix®
 scaffolds 

The aim of these experiments was to analyze the influence of different parameters on the 

functionality of the cells. As there were no marked differences in terms of viability of upcyte
®
 

hepatocytes cultured in two different scaffold thickness and scaffolds with different fibre 

diameters, further investigations were carried out to determine whether these conditions also 

affect the metabolic function of the cells. The functionality of upcyte
®
 hepatocytes was 

investigated by measuring the metabolism of a CYP3A4 substrate, testosterone, and the 

responsiveness of the cells to a CYP3A4 inducer, rifampicin. The cells were first cultured in 

96-well plates with electrospun, non-functionalized PLLA scaffolds in HGM for 7 days and 

then incubated for another 3 days (day 7 to 10) in HPM containing either 20 µM rifampicin or 

0.1 % DMSO (solvent control). During this induction period, medium was replaced daily with 

fresh HPM containing either inducer or DMSO. CYP activities were measured on day 10 

according to Section 2.2.2.3.  
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3.1.3.1 Scaffold thickness: 100 µm vs 50 µm  

The basal and induced CYP3A4 activities in upcyte
®

 hepatocytes cultured on two different 

scaffold thickness were measured. The basal CYP3A4 activity in upcyte
®
 hepatocytes 

cultured in non-functionalized PLLA 4 µm fibre scaffolds with a thickness of 50 µm 

thickness was 104 ± 3 pmol/mg/min and this was not significantly different (P=0.63) from 

that in the same cells cultured in 2D monolayers (119 ± 20 pmol/mg/min) (Figure 17). 

However, CYP3A4 activities in upcyte
®
 hepatocytes cultured in thicker scaffolds of 100 µm 

were marginally higher (1.3-fold) than those cultures in the other two formats. Cells cultured 

in all formats were responsive to CYP3A4 induction by rifampicin. The fold induction values 

in 2D, 50 µm and 100 µm scaffolds were 2.6, 3.4 and 3.1 respectively. Induced activities in 

50 µm thick scaffolds were 354 ± 26 pmol/mg/min and were not significantly different 

(P=0.3) from CYP activities in cells cultured in 2D monolayers (406 ± 32 pmol/mg/min)  

(Figure 17). Induced CYP3A4 activities in upcyte
®
 hepatocytes cultured in 100 µm scaffolds 

were significantly higher (P=0.003) than those in 50 µm scaffolds but they were not 

significantly higher than those in cells cultured in 2D monolayers.   

 
Figure 17: Basal and induced CYP3A4 activities in upcyte

®
 hepatocytes (Donor 653-03) cultured in 

2D monolayers and in PLLA 4 µm fibre scaffolds with a thickness of 50 and 100 µm. The CYP3A4 

activity is shown as red bars (basal activity) and blue bar (induced activity). Values are the mean ± SD 

from 2 experiments, each with n=4 wells per condition.   

 

3.1.3.2 Fibre thickness: 4 µm vs 6 µm 

Upcyte
®

 hepatocytes cultured in 2D monolayer had basal activity of 119 ± 12 pmol/mg/min 

and the induced activity was 3.4 folds higher (406 ± 40 pmol/mg/min).  Cells cultured in 50 
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µm thick scaffolds with a fibre diameter of 6 µm had basal and induced activity of 107 ± 4 

pmol/mg/min and 354 ± 26 pmol/mg/min respectively. The fold induction is 3.3 times higher 

than the basal activity. However, upcyte
®
 hepatocytes cultured in 50 µm thick scaffolds with a 

fibre diameter of 4 µm had higher basal (149 ± 9 pmol/mg/min) and induced CYP3A4 

activities (487 ± 61 pmol/mg/min) compared to the cells cultured in 2D monolayers or 50 µm 

thick scaffolds with 6 µm fibre diameter (Figure 18).  

 
Figure 18: Basal and induced CYP3A4 activities in upcyte

®
 hepatocytes (Donor 653-03) cultured in 

2D monolayers and in PLLA 50 µm thickness scaffolds with a fibre Ø of 4 and 6 µm. The CYP3A4 

activity is represented as red bars (basal activity) and blue bar (induced activity). Values are the mean 

± SD from 2 experiments, each with n=4 wells per condition.   

 

 

3.1.4 Viability: donor-to-donor variation 

Since scaffolds with a thickness of 50 µm resulted in marginally higher basal and induced 

activities in upcyte
®
 hepatocytes from Donor 653-03, the same scaffold thickness was used to 

investigate the viability and metabolic functions in upcyte
®
 hepatocytes from two additional 

donors. In order to have the comparative study, Donor 653-03 was also cultured at the same 

time as the other two donors. Cells were seeded on non-functionalized, plain PLLA scaffolds 

with a fibre diameter of either 4 or 6 µm. The three different donors of upcyte
®
 hepatocytes 

from first and second-generation batches were used. Donor 151 a first generation upcyte
®
 

hepatocyte and Donors 653-03 and 422A-03 were second-generation upcyte
®
 hepatocytes. 

Figure 19a & b shows the MTS metabolism by upcyte
®

 hepatocytes from three different 

donors on non-functionalized plain PLLA scaffolds with 50 µm thickness and a fibre diameter 

of 4 µm and 6 µm.  For upcyte
®

 hepatocytes  from Donor 151 MTS metabolism on Day 1 was 
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initially higher in both the scaffold formats. However, there was a decline in MTS metabolism 

observed on Day 3 in both the scaffolds, followed by increase in the rate of viability on Day  

5 and 7. The decline in MTS metabolism may be due to detachment of cells from the 

scaffolds. In contrast to upcyte
®
 hepatocytes from Donor 151, the growth rate of upcyte

®
 

hepatocytes from Donor 653-03  continously increased over time in both scaffold formats. 

The Donor 422A-03 showed almost no variation in MTS metabolism over time in both the 

scaffold formats.  

 

(a) 4 µm fibre diameter                                                                          

 
(b) 6 µm fibre diameter 

 

 
Figure 19: Three different donors of upcyte

®
  hepatocytes were used to analyze the donor-to-donor 

variation on the cell viability and cellular growth rate when cultured in PLLA 50 µm thick scaffold 

with 4/6 µm fibre  Ø  in a 96-well format. Donor 151; Donor 653-03; Donor 422A-03 were used. The 

viability/cell number of cells (MTS) are shown as orange bar (Day 1), blue bar (Day 3), red bar (Day 

5) and grey bar (Day 7).  Values are the mean ± SD from 2 experiments, each with n=4 wells per 

condition.   
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3.1.4.1 Functionality: donor-to-donor variation 

The basal and induced CYP3A4 activities in the three different donors were analyzed in 2 

different scaffold formats and the results were compared with 2D monolayer (Table 17). For 

upcyte
®

 hepatocytes from Donor 151, the basal CYP3A4 activity in 4 µm and 6 µm fibre 

diameter was 13.7 ± 1 pmol/mg/min and 9.1 ± 1 pmol/mg/min, respectively. The fold 

induction upon culturing the cells with rifampicin in 4 µm and 6 µm fibre diameter was 5.1 

and 7.9 respectively. Thus, for upcyte
®
 hepatocytes from Donor 151, there was no significant 

difference (P=0.69) observed between the basal activities or responsiveness to rifampicin 

induction in the two scaffold formats.   Likewise, for upcyte
®
 hepatocytes from Donor 653-

03, there was no difference observed in the fold induction when they were cultured in both the 

scaffold formats. However, the basal and induced activities in cells from this donor were 

significantly higher (P <0.05) when cultured in scaffolds with fibres of 4 µm diameter than 

those with 6 µm thick fibres. This is in contrast to upcyte
®
 hepatocytes from Donor 422A-03, 

for which the basal and induced CYP3A4 activities were significantly higher (P <0.05) in 

scaffolds with 6 µm than 4 µm fibre diameters. 

 

Table 17: Basal and induced CYP3A4 activities (pmol/mg of protein/min) in upcyte
®
 hepatocytes 

(Donor 151; Donor 653-03; Donor 422A-03) cultured in PLLA 50 µm thickness scaffolds with a fibre 

diameter of 4 and 6 µm. Values are the mean ± SD from 2 experiments, each with n=4 wells per 

condition.   

 
Donor 151 Donor 653-03 Donor 422A-03 

 
Basal Induced 

Fold 

Induction Basal Induced 

Fold 

Induction Basal Induced 

Fold 

Induction 

2D 

monolayer 3.5 ± 1 35 ± 4 10 

118.7 

± 12 

406.2      

± 40 3.4 

199.64 

± 19 

670.79 

± 67 3.4 

4 µm fibre 

diameter 

13.7 

± 1.1 69.9  ±7.5 5.1 

148.5         

± 8.78 

486.7       

± 60.83 3.3 

184.2 

± 12.99 

676.13 

± 45 3.7 

6 µm fibre 

diameter 9.1 ± 1 72.1 ± 7.7 7.9 

107.04       

± 3.47 

353.6      

± 25.6 3.3 

277.60 

± 35.76 

787.85 

± 24.63 2.8 

 

3.2 Hepatic models – Liver organoids 

When hepatocytes were cultured in 3D synthetic scaffolds, difference in functionality and 

viability of cells were observed in the Section 3.1. In order to reflect physiological situation, 

liver organoids were generated by co-culturing the upcyte
®
 cell types namely, hepatocytes, 

LSECs and MSCs. A comparative study was performed to study the difference between static 

and dynamic system (Quasi-vivo
®
 chambers). Functionality was investigated by measuring 

CYP3A4 activities. The organoids were also characterized using in situ hybridization for the 

expression of functional genes such as albumin and enzymes regulating glutamine and 

glucose levels. 
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3.2.1 Generation of liver organoids in static culture using upcyte
®
 and primary cells 

The morphology of primary and upcyte
®
 cells, cultured in 2D and used for the generation of 

liver organoids were observed under light microscopy. The cells were initially cultured under 

static conditions i.e. no flow of medium over the cells. Upcyte
® 

hepatocytes at sub-confluence 

were smooth with clear nuclei. Some cells were binucleated, suggesting they were in the 

process of cell division; whereas, other cells appeared to have recently gone through 

cytokinesis (Figure 20 a). Upcyte
® 

LSECs are usually broad cells with extended cytoplasmic 

features having prominent nucleus at its centre. However, the cells become more compact 

when they reach confluence (as shown in Figure 20 b). Primary MSCs show fibroblast-like 

morphology, which is typical for the MSCs (Figure 20 c). 

       (a) Upcyte
® 

Hepatocytes               (b) Upcyte
® 

LSEC                        (c) Primary MSC 

 
Figure 20: Morphology of (a) Upcyte

®
 hepatocytes, (b) upcyte

®
 LSECs and (c) primary MSCs 

observed under light microscopy (magnification: 100x). 

 

All cells were harvested when they had reached 70-80% confluence. On Day 1, 1 x 10
6 

upcyte
® 

hepatocytes, 1 x 10
6 

upcyte
® 

LSECs and 0.2 x 10
6 

primary
 
MSC were mixed in liver 

organoid growth medium and cultured in 24-well format plates coated with a thick layer of 

Matrigel
TM

. When all the three cell types were co-cultured, they interacted and moved 

towards each other (Figure 21- 8 h) and self-organized to form a single 3D liver organoid-like 

structure (Figure 21- 24 h). When cultured up to 72 h, this macroscopically visible 3D liver 

organoid-like structure became more compact and measured 2-3 mm in diameter (Figure 21- 

48 h & 72 h). 

                                      8 h                          24 h                           48 h                          72 h 

 
Figure 21: Self-organization and formation of liver organoid-like structures from upcyte

® 
hepatocytes, 

upcyte
® 

LSECs and primary
 
MSCs. The cells move spontaneously towards each other (within 8 h) and 

formed liver organoid-like structure within 24 h.  The organoid became more compact between 48 h 

and 72 h.  
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3.2.2 Generation of liver organoids in static culture using only upcyte
®
 cells 

As the generation of liver organoid-like structure was successful with upcyte
®

 hepatocytes, 

LSECs and primary MSCs (Figure 21), the next step aimed to replace primary MSCs with 

upcyte
® 

MSCs and evaluate the subsequent formation of liver organoid. Similar to primary 

MSCs (Figure 20 c), upcyte
®
 MSCs also exhibited an elongated fibroblastic morphology 

(Figure 22) when observed under light microscopy.  

 
 

Figure 22: Morphology of upcyte
®
 MSCs observed under light microscopy (magnification: 100x). 

 

Figure 23 shows that it was possible to generate 3D liver organoid-like structure with all the 

three cell types as upcyte
® 

(hepatocytes, LSECs and MSC) and the generation of organoids 

was reproducible.
 
Also similar to initial experiments using primary MSCs, all the three cell 

types, when co-cultured in 24-well multiwells coated with a thick layer of Matrigel
TM

,
 

self-organize to form an organoid-like structure within 24 h (Figure 23). When cultured up to 

72 h, a compact structure (2-3 mm in diameter) was obtained.  

 

Figure 23: Formation of liver organoid-like structures from upcyte
® 

hepatocytes, upcyte
® 

LSECs and 

upcyte
® 

MSCs within 24 h.  The organoids became more compact between 48 h and 72 h. 
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3.2.3 Histology of organoids maintained in static culture 

Liver organoids were cultured in a static system in liver organoid growth medium for 72 h, 

with a medium change every 24 h and then fixed with formalin for histological studies. The 

organization of cells in liver organoids maintained in static cultures for 72 h was visualized 

using HE staining. The static conditions may have prevented the nutrients and oxygen from 

the medium from reaching the inner part of the organoids. This was indicated by the presence 

of collapsed nuclei and cell debris accumulation (visualized as dark specks and indicated by a 

red arrow in Figure 24), which signify the presence of necrotic or dead cells.  

                  (a)                                                                     (b)  

 
Figure 24: HE stainings of liver organoids maintained in static culture for 72 h.  The presence of 

necrotic cells is denoted with a red arrow. The liver organoids were generated in a 24-well multiwell 

format using either (a) upcyte
® 

hepatocytes, upcyte
® 

LSECs and primary
 
MSCs or  (b) upcyte

®
 forms 

of all three cell types (magnification: 400x).    

 

3.2.4 Scalability 

Downscaling of cell numbers was done according to Section 2.2.3.3 to generate liver 

organoids in smaller formats, such as the 96-well and 48-well multiwell formats, so that the 

smaller organoids can be adapted for other systems such as BioVaSc. When upcyte
® 

hepatocytes,
 
upcyte

® 
LSECs and

 
upcyte

® 
MSCs were co-cultured on polymerized Matrigel

TM
, 

as with cells cultured in the 24-well format, they form an organoid-like structure in 24 h 

(Figure 25).  

 
Figure 25: Formation of liver organoids within 24 h in static condition in 48-well and 96-well 

multiwell format using upcyte
® 

Hepatocytes, upcyte
® 

LSECs and upcyte
® 

MSCs. 



RESULTS 

67 

 

3.2.5 Adaptation of liver organoid in dynamic culture 

The applicability of liver organoids generated from upcyte
® 

cells (hepatocytes, LSECs and 

MSC) to dynamic culture conditions was investigated. Liver organoids were generated as 

described in Section 2.2.3.1 using Quasi-Vivo
®
 chambers coated with a thick layer of 

Matrigel
TM

 instead of 24-well plates. As before, the cells self-organized to form liver 

organoid-like structures within 24 h (Figure 26 a). After 24 h, chambers containing the liver 

organoids were connected to the dynamic system (Figure 32 b) and perfused with liver 

organoid growth medium at a flow rate of 300 µl/min. The organoids were cultured for up to 

10 days and during this time, the medium was changed every 2 to 3 days.  

 

(a)                                                                                     (b)             

 

 
 

Figure 26: Formation of liver organoids in Quasi-vivo
® 

chambers (QV500) under static
 
conditions 

within 24 h (a). Once formed, the liver organoids were perfused with medium at a flow rate of 300 

µl/min (b). Arrows indicate the flow of medium from the reservoir bottle through the pump to the 

consecutively connected chambers. 

 

3.2.6 Histology of liver organoids maintained in dynamic culture 

Liver organoids in Quasi-vivo
® 

chambers maintained in dynamic cultures
 
were formalin fixed 

and paraffin embedded after 10 days. Under dynamic conditions, different cell types separated 

from each other and arranged into different layers (Figure 27 a). The number of necrotic cells 

was significantly reduced when liver organoids were maintained in dynamic culture compared 

to static culture (Figure 27 b). This suggests dynamic culture conditions help maintain the 

viability of the core cells, possibly by increasing the supply of nutrients and oxygen. 
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     (a)                                                                 (b) 

 

Figure 27: Histology of liver organoids maintained in dynamic culture for 10 days. Different cell 

types arrange in different layers (a) and very few necrotic cells were present (b). Liver organoids were 

generated using upcyte
®
 forms of hepatocytes, LSECs and

 
MSC (magnification: (a) 50x; (b) 200x).  

 

3.2.7 Immunocytochemistry in 2D monolayers 

2D monolayer cultures of upcyte
®
 hepatocytes, upcyte

® 
LSECs and

 
upcyte

® 
MSCs that were 

used for the generation of liver organoids were characterized for the presence of cell-specific 

markers. Similar to adult primary hepatocytes, upcyte
® 

hepatocytes also expressed high levels 

of the differentiation marker, CK8 (Figure 28 a). Figure 28 b shows the presence of CD31 at 

cell-cell junctions in upcyte
® 

LSECs which was similar to primary LSECs. Vimentin is a type 

III intermediate filament protein and also a major cytoskeletal component of MSCs. Figure 28 

c shows that the MSCs were positive for vimentin staining.  

 

  (a)                                                (b)                                               (c)  

 
 

Figure 28: Immunocytochemistry staining for specific cell type markers in 2D monolayers. (a) 

upcyte
® 

hepatocytes for CK8, (b) upcyte
® 

LSECs for CD31 and (c) upcyte
® 

MSCs for vimentin. The 

cell nuclei were stained blue with DAPI (magnification: 200x). 

 

These specific markers were subsequently used to identify the different cells and their 

arrangement within the liver organoids.  
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3.2.8 Immunohistochemistry of 3D organoid 

Liver organoids were generated using upcyte
®
 cells (hepatocytes, LSECs and MSC) and 

maintained in in dynamic culture for 10 days. The arrangement of three different cells types 

inside the organoid was located using cell-specific immunostaining. Figure 29 b shows that 

upcyte
®

 hepatocytes, which stained positive for CK8, were arranged in a closely adherent 

sheet and moved towards periphery of the liver organoid. Unlike the hepatocytes, upcyte
® 

LSECs (Figure 29 c), which stained positive for CD31, occupied the inner part of the 

organoid. Upcyte
® 

MSCs stained positive for vimentin and, in contrast to hepatocytes and 

LSECs, were distributed throughout the organoid (Figure 29 d). MSCs had a tendency to 

migrate easily; whereas; the epithelial cells or hepatocytes were polarized cells in an apical-

basal orientation that lacked mobility and were organized into closely adherent sheets. 

(a)            (b) 

                   

 

 

 

 

 

 

 

 

 

(c)            (d) 

 

 

 

 

 

 

 

 

 

 

   (a)                                                             (b) 

Figure 29: Liver organoids maintained for 10 days in dynamic cultures. (a) HE staining and 

immunostaining of cell-specific markers: (a) upcyte
®
 hepatocytes expressing CK8,  (b) upcyte

® 
LSECs 

expressing CD31 and (c) upcyte
® 

MSCs expressing vimentin (magnification: 200x). 
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3.2.9 In situ hybridizations 

In an attempt to further characterize the functional status of the upcyte
®
 hepatocytes within 

the organoids, in situ hybridization was performed on serial sections of organoids that were 

maintained for 10 days in dynamic culture. Upcyte
®
 hepatocytes within the organoid retained 

a constitutive expression level of typical markers (e.g. CK8), as well as important functional 

genes such as albumin, enzymes regulating glutamine (such as glutaminase and glutamine 

synthase) and glucose (glucose-6-phosphate) and hypoxia-inducible factor 1-α (Hif1α)  

(Figure 30).  

 

  (a)                                                           (b) 

 

 

 

 

 

 

 

 

 

 

  (c)                                                           (d) 

 

 

 

 

 

 

 

 

  (e)                                                 
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 (e)                                                           (f) 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Detection of mRNA transcripts of genes in sections of liver organoids after 10 days of 

dynamic culture. a. Glutaminase, b. Hif1α, c. albumin, d. CK 8/18, e. glutamine synthase f. glucose-6-

phosphate.  

 

3.2.10 Liver organoid architecture 

Liver organoids that were maintained for 10 days in dynamic culture were stained for the 

expression of CK8 to detect upcyte
®
 hepatocytes and the architecture were compared with 

that of intact liver slices. Figure 31 a shows that upcyte
®
 hepatocytes are separated from the 

neighboring cells (indicated by a red arrow) by a space, which could be bile canaliculi-like 

structures. Similar to the normal adult liver Figure 31 a & b, upcyte
®
 hepatocytes arrange 

themselves in a circle with a gap in the middle and form a sinusoidal lumen-like architecture 

similar to that observed in the differentiated adult liver (Figure 31 d).  Hepatocytes in adult 

liver are arranged in a line to form a hepatic cord (Figure 31 d). Figure 31 c shows strings of 

upcyte
®
 hepatocytes in the liver organoid that have arranged themselves to form hepatic cord-

like structure. 

    (a)                                                                                       (b)  
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                                            (c)                                              (d) 

                                         
Figure 31: Arrangement of upcyte

®
 hepatocytes expressing CK8 in 10-day liver organoids showing a  

(a) & (b) cellular arrangement surrounding circular openings, resembling bile canaliculi-like structures 

and (c) & (d) cord-like alignment of hepatocytes similar to the in vivo liver architecture 

(magnification: 400x). 

 

3.2.11 Metabolic activity 

Liver organoids were evaluated for the presence and induction of the major liver CYP, CYP 

3A4. Organoids were cultured in liver organoid growth medium for 7 days and in HPM for 3 

days, during which time some of the liver organoids were incubated with either vehicle 

control (0.1% DMSO) or a CYP3A4 inducer (rifampicin). The basal CYP3A4 activity in liver 

organoids was 47 ± 13 pmol/mg/min in experiment 1 and 70 ± 11 pmol/mg/min in experiment 

2. When liver organoids were cultured in the presence of 20 µM rifampicin from Day 7 to 10, 

CYP3A4 was induced by 3.4-fold (Experiment 1) and 2.2-fold (Experiment 2).   

 

Figure 32: Basal and induced CYP 3A4 activities in liver organoid cultured for 10 days in a 

bioreactor. Values are the mean ± SD from 2 experiments, each with n=3 organoids per condition. 
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3.3 Hepatic models – BioVaSc/Organoids 

BioVaSc was prepared from the jejunum of the small intestine from pigs by chemical 

decellularization. The vascular system of the BioVaSc was retained which was repopulated 

with upcyte
®
 mvECs. The BioVaSc was cultured in an ex vivo bioreactor. The lumen of the 

BioVaSc was used to culture the liver organoids generated using upcyte
®
 hepatocytes, LSECs 

and MSCs. Immunohistochemical stainings were done to visualise the structutral integrity of 

the different cell types within the organoid. After culturing the organoids inside the lumen of 

the BioVaSc for 30 days, CYP3A4 activities in the liver organoids were measured to evaluate 

their functionality.  

 

3.3.1 Liver organoids in BioVaSc 

Liver organoids were generated using upcyte
®
 cells (hepatocytes, LSECs and MSCs) in static 

cultures in 48-well multiwell plates (using an appropriate cell number for this format) coated 

with a thick layer of Matrigel
TM

. The liver organoids were cultured for a further 48 h under 

static conditions and then transferred to the luminal part of the repopulated BioVaSc. The 

vascular tree of the BioVaSc were repopulated with upcyte
®
 mvECs and cultured for 14 days 

under dynamic conditions.  The arterial vessel of the BioVaSc was perfused with endothelial 

cell growth medium to maintain the upcyte
®
 mvECs, and the luminal vessels were perfused 

with liver bud growth medium. During this time, medium was changed every 3-4 days. The 

organoids inside the BioVaSc were maintained for 30 days under dynamic conditions. Figure 

33 a shows the presence of organoids inside the lumen from the outer surface of the BioVaSc. 

The lumen was split to see the organization of liver organoids inside the lumen. After this 

time, the liver organoids were attached to the BioVaSc, albeit randomly distributed (Figure 33 

b).  

 

CYP3A4 activities in the liver organoids were measured to evaluate their functionality. To 

this end, individual liver organoids, together with the portion of the attached BioVaSc, were 

excised and incubated with testosterone. The basal CYP3A4 activity in liver organoids was 

50.8 ± 5.5 pmol/mg/min in experiment 1, 48.6 ± 9.5 pmol/mg/min in experiment 2 and 48  ± 

7.5 pmol/mg/min in experiment 3 which was reproducible across 3 experiments (Figure 40). 

The liver organoids expressed the average basal CYP 3A4 activity of 43.8 ± 3  pmol/mg/min 

in 60 min and 54 ± 1  pmol/mg/min in 90 min 
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                                     (a)                                                  (b) 

 
Figure 33: Liver organoids were cultured inside the lumen of the BioVaSc for 30 days. Distribution of 

organoids (a) from the outer surface of the lumen, (b) inside the lumen. 

 

 
Figure 34: Basal CYP3A4 activities of liver organoids cultured in the lumen of BioVaSc for 30 days 

in the bioreactor. Values are the mean ± SD from 3 experiments, each with n=4 organoids.   

 

3.3.2 Immunostaining of organoids in BioVaSc 

Liver organoids that had been cultured for 30 days in the lumen BioVaSc were analyzed for 

cell-specific markers to visualize the arrangement of the three different cells types in the 

organoid. CK8 was selected as a marker to denote upcyte
®
 hepatocytes; whereas, CD31 and 

vimentin were selected to denote upcyte
® 

LSECs and MSCs, respectively. As with liver 

organoids that had been maintained under dynamic culture (Figure 35), the three different 

cells types in the liver organoids cultured in the BioVaSc, also rearranged themselves into 

specific patterns. Upcyte
®
 hepatocytes had a tendency to move towards the outer part of the 

liver organoid (Figure 35 b); whereas upcyte
®
 LSECs were more localized in the central 
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regions (Figure 35 c), and upcyte
®
 MSCs distributed evenly across the liver organoids, 

between hepatocytes and LSECs (Figure 35 d).  

  (a)                                                                               (b) 
 

   
 

 

 

   
 

Figure 35: Architecture of liver organoids maintained in the lumen of the BioVaSc for 30 days in 

dynamic conditions. HE staining and immunostaining of cell specific markers:(a) upcyte
®
 hepatocytes 

expressing CK8,  (b) upcyte
® 

LSECs expressing CD31 and (c) upcyte
® 

MSC expressing vimentin 

(magnification: 200x). 

 

3.3.3 Immunostaining for BioVaSc/organoid vascularization 

Upcyte
®

 mvECs were used to recolonize the vascular tree of the BioVaSc, as described in 

Section 2.2.4.3. As CD31 is one of the predominant markers expressed by endothelial cells, 

the vascular tree of the BioVaSc was examined for the expression of CD31. Sections of the 

liver organoids were analyzed to determine whether the capillaries from the BioVaSc had 

(c)                                                                                (d)                                
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reached the organoids. Figure 36 shows that circular opening inside the organoid was lined 

with endothelial cells since the upcyte
®

 mvECs expressing CD31 were present in this area.  

   (a)            (b) 

 
Figure 36: Section of a liver organoid. The openings of the blood vessel lined with upcyte

®
 mvECs 

expressing CD31 are indicated with red circles (magnification: (a) 200x; (b) 100x).   

 

3.4 Application of hepatic models - CYP inhibition 

Second-generation upcyte
®

 hepatocytes from 4 donors were used to perform inhibition assays, 

using a selection of reference inhibitors, under optimized culture conditions. CYP1A2, 

CYP2B6, CYP2C9 and CYP3A4 were reproducibly inhibited in a concentration-dependent 

manner and the calculated IC50 values for each compound correctly classified them as potent 

inhibitors.   

 

3.4.1 Culture optimisation for inhibition studies 

Before starting inhibition studies, the culture conditions were modified to determined whether 

they could result in upcyte
®
 hepatocyte cultures with higher CYP activities than were present 

using standard conditions i.e. seeding at 50% confluence with a 3-day pre-culture period 

(allowing for 1 PD) in HGM followed by a 3 day culture at confluence in HPM with daily 

refreshment of medium.  

The main aspects investigated were: 

(1) The effect of DMSO in the pre-culture and conditioning medium. 

(2) The length of the pre-culture period (since previous studies using these cells in the 

in vitro micronucleus assay showed that there was less DNA damage to the cells when they 

were pre-cultured for 7 days prior to performing the assay (Nörenberg et al. 2013). 

(3) The type of basal medium used for the culture of cells at confluence (HGM versus 

HPM) and supplementing the pre-culture (during growth) and “conditioning” (i.e. at 

confluence) medium with DMSO. 
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Initial experiments were conducted to optimize the culture conditions for inhibition studies 

using Donor 422A-03.  There was little difference observed in CYP activities when the pre-

culture medium contained 0.25% or 0.5% DMSO (data not shown); therefore, in order to 

ensure maximal CYP activities, all subsequent experiments were conducted using 0.5% 

DMSO in the pre-culture HGM medium. The effect of DMSO on CYP2B6 and CYP3A4 

activities in upcyte
®
 hepatocytes from four donors (422A-03, 151-03, 653-01 and 10-03) was 

measured using a 7-day pre-culture followed by 3 daily treatments with HPM supplemented 

with a range of concentrations of DMSO (Figure 37). Activities of both CYPs in cells from all 

four donors were markedly induced in a concentration-dependent manner by DMSO and 

maximal effects were evident at 0.5-0.75% (v/v) DMSO. At higher concentrations of DMSO, 

there was a decrease in both CYP activities. 

 

Figure 37: Effect of DMSO on CYP3A4 (A) and CYP2B6 (B) activities in upcyte
®
 hepatocytes from 

different donors. Donor 10-03=○; Donor 151-03=●; Donor 422A-03= ; Donor 653-03=□. Values 

are a mean of two experiments, each with n=2 wells per treatment 

 

 

The influence of pre-culture conditions affected CYP2B6 and CYP3A4 activities in upcyte
®
 

hepatocytes from four donors is shown in Figure 38.  

 

The conditions compared were:  

(1) Standard culture conditions (allowing for 1 PD)  

(2) Seeding at 3% confluence (5000 cells/cm
2
) in a T-flask with a 6-7-day pre-culture 

period (allowing for ~3.5 PDs) in HGM supplemented with 0.5% DMSO followed by 

trypsinisation, seeding at confluence (i.e. 150,000/cm
2
) and a 3 day culture in HGM with 

0.5% DMSO with daily refreshment of medium 

(3) Seeding at 3% confluence in a T-flask with a 6-7-day pre-culture period in HGM 

supplemented with 0.5% DMSO followed by trypsinisation, seeding at confluence (i.e. 
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150,000/cm
2
) and a 3 day culture at confluence in HPM with 0.1% DMSO with daily 

refreshment of medium. 

Increasing the pre-culture time from 3 days to 7 day did not increase the CYP3A4 activities 

but in three of the four donors, CYP2B6 activity was significantly increased. CYP3A4 

activities were increased when the conditioning medium (used when the cells were at 

confluence) was changed from growth medium (HGM) to endpoint medium (HPM) with a 

lower concentration of DMSO (0.1% v/v). All further experiments were conducted using a 6-

7 pre-culture period using HGM supplemented with 0.5% DMSO, trypsinisation, seeding at 

5000 cells/cm
2
 and conditioning for 3 days with HPM supplemented with 0.1% DMSO. 
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Figure 38: Effect of pre-culture time and DMSO treatment on CYP2B6 and CYP3A4 activities in 

upcyte
®
 hepatocytes from different donors. White bars represent cells grown over a 3 day pre-culture 

and 3 days conditioning at confluence in GM+0.1% DMSO (standard conditions); grey bars represent 

cells grown over a 6-7-day pre-culture period followed by re-seeding at confluence and a 3 day 

conditioning in HGM+0.5% DMSO, and black bars represent cells grown over a 6-7-day pre-culture 

period followed by re-seeding at confluence and a 3 day conditioning in HPM + 0.1% DMSO. Values 

are a mean of two experiments, each with n=3 wells per treatment. * = significantly different from 

standard conditions (P< 0.05). 
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Having optimized the culture conditions, CYP activities in control incubations of upcyte
®

 

hepatocytes (using the optimized conditions) were compared with the corresponding primary 

human hepatocyte cultures from which they were derived (Table 18). As with primary 

hepatocytes, the CYP activities in upcyte
®
 hepatocytes varied between donors. CYP1A2 

activities were present in upcyte
®
 hepatocytes from all four donors, although this activity in 

Donors 653-03 and 151-03 was only detected using 24 h incubations and analysis by LC-MS 

(data not shown), and all were lower than in corresponding paired donor hepatocytes. 

CYP2B6 mediated bupropion hydroxylation was markedly higher in upcyte
®
 hepatocytes and 

were comparable to that in the original primary hepatocytes measured by the supplier (all 

donors). CYP2C9 activities were higher in upcyte
®
 hepatocytes than the paired primary cells. 

As with CYP2B6 activities, CYP3A4 activities, measured using testosterone, were markedly 

higher in upcyte
®
 hepatocytes than in their paired primary cells. 

 

Table 18. Basal CYP activities (pmol/min/mg protein) in second-generation upcyte
®
 hepatocytes and 

paired primary human hepatocytes were cultured. Values generated were compared with data provided 

by the supplier. Values for upcyte
®
 hepatocytes are mean ± SD, n=6-8 wells from 1-2 separate 

experiments. APAP = acetaminophen; OH-Bup = Hydroxybupropion; OH-Tolb = 

Hydroxytolbutamide; 6ß-OHT = 6ß-hydroxytestosterone; M = Medicyte, P = provider information on 

the cells, ND = not determined. 

 

 

 

 

 

CYP Metabolite 

Donor 1 Donor 2 Donor 3 Donor 4 

upcyte
®
 

Donor 

10-03 

Paired 

primary 

upcyte
®
 

Donor 

151-03 

Paired 

primary 

upcyte
®
 

Donor 

422A-03 

Paired 

primary 

upcyte
®
 

Donor 

653-03 

Paired 

primary 

1A2 APAP 3.3 ± 0.4 

(M) 

ND (P) 0.7 ± 1.4 

(M) 

 

2.0 (P) 

 

2.3 ± 0.1 

(M) 

 

4.5 (P) 

0.1 ± 0.0 

0.0 ± 0.0 

(M) 

 

13.4 (P) 

2B6 OH-Bup 40.3 ± 6.5 

(M) 

14.3 (P) 71.1 ± 

11.3 

(M) 

 

1.3 (P) 

 

33.6 ± 

11.4 (M) 

 

1.3 (P) 

4.5 ± 1.2 

46.4 ± 

18.0 (M) 

 

5.3 (P) 

2C9 OH-Tolb 91.8 ± 5.7 

(M) 

6.3 (P) 29.1 ± 

21.4 

(M) 

 

ND (P) 

 

4.8 ± 3.1 

0.39 ± 

0.19 (M) 

ND (P) 

0.8 ± 0.0 

20.2 ± 2.1 

(M) 

 

ND (P) 

3A4 6-OHT 21.4 ± 9.6 

(M) 

16.2 (P) 77.8 ± 

22.6 

(M) 

10.8 (P) 42.9 ± 6.3 

(M) 

24.5 (P) 41.4 ± 7.7 

(M) 

22.7 (P) 
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3.4.2 CYP inhibition studies  

Inhibition studies were conducted using short-term incubation period of 1 h. Although the 

CYP1A2 activities that were present in upcyte
®
 hepatocytes were measurable, cells incubated 

were pre-induced with 100 µM omeprazole in order to obtain consistently high CYP1A2 

activities for the inhibition studies using UV-HPLC as the analytical method. Two pre-

induction regimen were investigated, namely a single treatment of 100 µM omeprazole over 3 

days and a daily treatment of 100 µM omeprazole over the same period. Both induction 

regimen resulted in high CYP1A2 activities in upcyte
®
 hepatocytes from Donors 422A-03 

and 10-03 (>40 pmol/min/mg protein), suggesting both could be employed for CYP1A2 

inhibition studies. In this study, daily treatments were used since this resulted in higher 

CYP1A2 activities than a single treatment. The induced activities were 57.1 ± 17.1, 83.8 ± 

21.7, 205.0 ± 44.9 and 115.2 ± 30.2 pmol/min/mg protein in upcyte
®
 hepatocytes from 

Donors 10-03, 151-03, 422A-03 and 653-03, respectively. CYP2B6, CYP2C9 and CYP3A4 

did not require pre-induction with an inducer; therefore, conditioning medium included 100 

µM omeprazole for CYP1A2 assays only. Results for inhibition studies using upcyte
®
 

hepatocytes from Donor 422A-03 are shown in Figure 39. In these studies, CYPs were 

inhibited using competitive (α-naphthoflavone, miconazole and ketoconazole) and time-

dependent (ticlopidine) inhibitors.     
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Figure 39: -naphthoflavone, (B) CYP2B6 by ticlopidine, (C) 

CYP2C9 by miconazole and (D) CYP3A4 by ketoconazole in upcyte
®
 hepatocytes from Donor 422A-

03. Values are the mean ± SD from triplicates in 2-4 experiments (denoted by different symbols). 

 

The inhibition of different CYPs was reproducible across experiments (as shown for Donor 

422A-03 in Figure 39) and in upcyte
®
 hepatocytes from all four donors tested (Table 19). 

There was a concentration-dependent inhibition of CYP1A2, CYP2B6, CYP2C9 and 

CYP3A4, such that at the highest concentration all activities were completely inhibited. MTS 

analysis showed that inhibitors did not cause significant cytotoxicity at any concentration 

tested in upcyte
®
 hepatocytes from all four donors (with the exception of ticlopidine, which 

caused ~10% cytotoxicity in upcyte
®
 hepatocytes from Donor 151-03 at the highest 

concentration only). The IC50 values for each CYP tested also compared well with those 

reported in primary human hepatocytes or human liver microsomes (Table 19), such that all 

four CYP inhibitors were classified as potent inhibitors of the respective CYP. These results 

support the use of upcyte
®

 hepatocytes in inhibition studies incubated in short-term assays to 

derive an IC50 value. 
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Table 19. IC50 values of CYP inhibitors incubated with upcyte
®
 hepatocytes from different donors. 

For comparison, literature values for microsomes and/or hepatocytes are also shown. Values for 

upcyte
®
 hepatocytes are mean ± SD, n=6-8 wells from at least 2 separate experiments. 

 

Donor 

  

IC50 value 

CYP1A2 by 

-naphthoflavone  

M 

CYP2B6 by  

ticlopidine 

nM 

CYP2C9 by 

miconazole 

nM 

CYP3A4 by 

ketoconazole 

M 

upcyte
®
 Primary

a
 upcyte

®
 Microsome

b
 upcyte

®
 Primary

c
 upcyte

®
 Primary

c
 

10-03 

0.15, 0.04 

(n=2) 

0.1 

8.1 ± 1.6 

(n=4) 

0.32 

251, 

95.8 

(n=2) 

2.12 

0.30 ± 0.3 

(n=4) 

0.28 

0.14 

 

151-03 

0.38, 0.19 

(n=2) 

36.1 ± 

27.9 

(n=4) 

12, 6.6 

(n=2) 

0.15 ± 0.01 

(n=4) 

422A-

03 

0.46 ± 0.22 

(n=4) 

7.3 ± 1.6 

(n=4) 

3.1, 4.3 

(n=2) 

0.27 ± 0.06 

(n=5) 

653-03 

0.36, 0.12 

(n=2) 

27.5 ± 

19.7 

(n=4) 

14.7, 4.1 

(n=2) 

0.23 ± 0.12 

(n=4) 

Values are a a = (Moeller et al. 2013); b = (Turpeinen et al. 2004) (microsomes); c = (Mao et al. 2012a; 

Moeller et al. 2013). 

 

 

3.5 Application of hepatic models - CYP induction studies 

Similar to  the inhibition assays,  induction assays were performed using second-generation 

upcyte
®
 hepatocytes from 4 donors using  a panel of 11 inducers classified as potent, 

moderate or non-inducers of CYP3A4 and CYP2B6.  Upcyte
®
 hepatocytes were responsive to 

prototypical CYP1A2, CYP2B6, CYP2C9 and CYP3A4 inducers, confirming that they have 

functional AhR, CAR and PXR mediated CYP regulation.. Three different predictive models 

for CYP3A4 induction, namely the Relative Induction Score (RIS), AUCu/F2 and Cmax,u/Ind50 

were analyzed. In addition, PXR (rifampicin) and CAR-selective (carbamazepine and 

phenytoin) inducers of CYP3A4 and CYP2B6 induction, respectively, were also 

demonstrated.   

 

3.5.1 CYP induction responses in upcyte
®
 hepatocytes  

Upcyte
®
 hepatocytes from four donors (422A-03, 151-03, 653-03 and 10-03) using a 3 day 

pre-culture period were responsive to CYP1A2, CYP2B6, CYP2C9 and CYP3A4 induction 

by prototypical inducers (data from two donors are shown in Figure 40). In order to rule out 

false positive results from CYP3A4 induction studies, the FDA recommends including a 

negative control i.e. a non-inducer, in each induction assay. In these assays, two negative 

controls were included, namely quinidine (0.1-250 µM) and flumazenil (0.05 – 50µM), both 

of which did not induce CYP3A4 or CYP2B6 at any concentration tested (data not shown). 
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Figure 40: Induction of CYP1A2 (by 50 µM omeprazole), CYP2B6 (by 2 mM phenobarbital), 

CYP2C9 (by 20 µM rifampicin) and CYP3A4 (by 20 µM rifampicin) in upcyte
®
 hepatocytes from 

Donors 10-03 and 422A-03.White bars indicate control values and black bars indicate values for the 

prototypical inducers. Values are the mean ± SD from triplicates. 

 

3.5.2 Prediction models for in vivo CYP3A4 induction 

Three main prediction models recommended by the FDA, EMA and PhARMA for CYP3A4 

induction (Food and Drug Administration 2012; Chu et al. 2009; European Medicines Agency 

2013), namely, the RIS, AUCu/F2 and Cmax,u/Ind50 were compared. Data from upcyte
®

 

hepatocytes from Donor 653 were used to compare the different models (Figure 41). Of the 

three, the fit was best when the RIS (R
2
 = 0.92) and Cmax,u/Ind50 (R

2
 = 0.93) were used; 

however, there was also a good correlation when the  F2 value (R
2
 = 0.89), was used. The 

Indmax and Ind50 values from all four donors were applied to the RIS model (values shown in 

Table 4) and, although the calibration curves were different across donors, they all exhibited a 

good fit of the data (R
2
 = 0.87 to 0.94, Figure 41 C and Figure 42) 
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Figure 41: Comparison of calibration curves for RIS, AUCu/F2 and Cmax,u/Ind50 using upcyte
®
  

hepatocytes from Donor 653. Values are the mean from duplicate values of 2 experiments. 
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Figure 42: Comparison of calibration curves for RIS from three donors of upcyte
®
 hepatocytes. 

Values are the mean from duplicate values of 2 experiments. 

 

3.5.3 CAR and PXR selective induction of CYPs 

The relative induction of CYP2B6 and CYP3A4 is known to be a result of selective activation 

of either the PXR or CAR receptors (Faucette et al. 2007); therefore, this attribute was 

investigated by treating upcyte
®

 hepatocytes with different inducers and measuring CYP3A4 

and CYP2B6 in same wells. Table 20 summarises the CYP3A4 and CYP2B6 induction 

responses of upcyte
®

 hepatocytes from all donors to the same compounds tested for CYP3A4 

induction. The unbound plasma concentrations (Cmax) and in vivo induction values (expressed 

as a % decrease in the AUC of midazolam) used in the calculation of the RIS are shown for 

each compound.  
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Table 20. CYP3A4 induction responses of upcyte
®
 hepatocytes from different donors to known 

inducers and non-inducers of CYP3A4. Values are from two experiments. 

 

Compound 

Donor 10-03 Donor 151-03 Donor 422A-03 Donor 653-03 

Indmax Ind50 
% 

Rif 
Indmax Ind50 

% 

Rif 
Indmax Ind50 

% 

Rif 
Indmax Ind50 

% 

Rif 

Rifampicin 31 11 100 7.2 12 100 12 12 100 10 4.6 100 

Phenobarbital 23 455 74 5.2 38 68 11 385 95 12 113 120 

Phenytoin 15 46 45 4.7 1.1 60 16 225 137 6.3 2.4 59 

Carbamazepine 4.8 6.2 13 3.8 2.0 45 4.0 11 28 5.7 3.1 52 

Troglitazone 4.7 6.3 12 1.8 2.8 13 2.7 1.0 15 2.2 0.8 14 

Pioglitazone 4.3 18 11 4.0 31 48 2.6 27 14 9.2 49 91 

Dexamethasone 2.5 185 5 3.5 13 39 3.4 32 22 2.7 15 19 

Nifedipine 2.1 0.4 4 4.6 5.6 58 Not determined 7.2 23 69 

Omeprazole 
2.3 36 4 3.1 22 34 Not determined 1.5 5.5 5 

Flumazenil 
No Induction No Induction No Induction No Induction 

Quinidine 
No Induction No Induction No Induction No Induction 

 

 

The relative induction of both CYPs (compared to the maximal fold-induction by the positive 

controls, according to equation 3 in the Methods Section) by the PXR selective drug, 

rifampicin, the CAR-selective drugs, phenytoin and carbamazepine; and the mixed activator, 

phenobarbital was compared in Figure 43 in all four donors. The relative induction of 

CYP3A4 and CYP2B6 was compound-specific and donor-dependent. Rifampicin was a 

potent inducer of CYP3A4 in all upcyte
®
 hepatocytes (Table 21), and only phenobarbital and 

phenytoin caused a higher induction (137% and 120% of rifampicin maximal induction in 

Donor 422A-03 and Donor 653-03, respectively (Figure 43 c and d, grey bars). Rifampicin 

was also a potent inducer of CYP2B6 in upcyte
®
 hepatocytes from Donor 422A-03 (108% of 

the maximal PB response, Figure 43 c). By contrast, rifampicin was only a moderate inducer 

of CYP2B6 in upcyte
®
 hepatocytes from Donors 10-03, 151-03 and 653-03 (between 14% 

and 34% of the maximal PB response). Phenobarbital was a potent inducer of both CYP3A4 

and CYP2B6 and resulted in maximal induction of both CYPs in upcyte
®
 hepatocytes from all 

four donors. Phenytoin was also a potent inducer of CYP3A4. This was reflected in these 



RESULTS 

87 

 

studies by the predominance for CYP2B6 over CYP3A4 induction by this compound in three 

of the four donors (e.g. the induction of CYP2B6 and CYP3A4 in upcyte
®
 hepatocytes from 

Donor 151-03 was 130% and 60% of the positive controls, respectively). Although 

carbamazepine was a moderate inducer of CY3A4 and CYP2B6, the relative predominance 

for CYP2B6 induction was also evident for this CAR-selective compound in three of the four 

Donors. 

 

Table 21. CYP2B6 induction responses of upcyte
®
 hepatocytes from different donors to known 

inducers and non-inducers of CYP2B6. Values are from two experiments. 

 

 

Compound 

Donor 10-03 Donor 151-03 Donor 422A-03 Donor 653-03 

Indmax Ind50 
% 

PB 
Indmax Ind50 

% 

PB 
Indmax Ind50 

% 

PB 
Indmax Ind50 

% 

PB 

Rifampicin 2.0 60 34 1.3 21 14 7.8 11 108 1.6 16 29 

Phenobarbital 3.9 277 100 2.9 183 100 7.3 731 100 3.1 60 100 

Phenytoin 3.6 99 88 2.7 5.8 89 4.0 5.4 48 2.8 5.9 85 

Carbamazepine 2.0 48 33 2.3 6.6 68 4.3 20 52 1.4 50 17 

Troglitazone 5.4 18 150 2.1 4.6 57 5.0 5.4 63 2.3 5.9 63 

Pioglitazone 2.6 20 55 1.9 89 49 3.6 9.3 42 2.1 65 54 

Dexamethasone No induction No Induction No Induction No Induction 

Nifedipine 3.9 12 98 No Induction No Induction No Induction 

Omeprazole 
2.0 12 31 No Induction Not determined 2.2 9.7 56 

Flumazenil 
No Induction No Induction No Induction No Induction 

Quinidine 
No Induction No Induction No Induction No Induction 
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Figure 43. A comparison of % maximum fold induction by rifampicin, phenobarbital, phenytoin and 

carbamazepine in upcyte
®
 hepatocytes from different donors. Black bars indicate values for CYP3A4 

and white bars indicate values for CYP2B6.Values are the mean from duplicate values of 2 

experiments. 

 

3.6 Application of hepatic models – Haemophilia Therapy 

As the primary LSECs are one of the predominant FVIII producing cells in vivo, the 

supernatant from primary LSECs were evaluated to detect the presence of functional FVIII. In 

order to increase the FVIII production, different upcyte
®
 endothelial cells such as BOECs, 

LSECs and mvECs were transduced with lentiviral particles carrying a FVIII transgene. To 

duplicate the physiological situation, primary endothelial cells (primary mvECs) were used to 

transduce with FVIII lentivirus. The supernatant was harvested and evaluated for the secretion 

of functional FVIII. 
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3.6.1 FVIII expression in primary LSECs 

Supernatants were harvested from cultures of primary LSECs and analyzed immediately or 

frozen and stored at -20°C before analysis. The concentration of FVIII in both medium 

samples was below the limit of detection of the assay; however, after concentrating them by 

25-fold using an Amicon
®

 Ultra-0.5 centrifugal filter device (30K MWCO) FVIII was 

detectable (Figure 44). The rate of production of FVIII was 27 ± 4 mU/10
6 

cells/24 h and 23 ± 

3 mU/10
6 

cells/24 h in fresh (non-frozen) and frozen supernatant, respectively which is not 

significantly different (P>0.05). By extrapolating the concentration factor of 25, the non-

concentrated samples expressed ~1 mU/10
6 

cells/24 h. 

 

 
 
Figure 44: Comparison of the rate of secretion of FVII by LSECs and the effect of freezing and 

storing the media before analysis. Values are a mean of n=3 cultures ± SD. 

 

3.6.2 Generation of lentiviral FVIII construct 

3.6.2.1 Cloning of entry clone 

Figure 45 a shows the amplification of the FVIII gene flanked with attB sites using PCR and 

separated on 0.7% agarose gel. The expected size of the FVIII insert DNA is ~ 4 Kb. FVIII 

gene flanked with attB was used to generate an entry clone using BP Clonase™ II enzyme kit 

(as described in 2.2.6.2).  The entry clone was digested using the restriction enzymes, Bsa HI 

and SpeI, to verify the presence of FVIII gene. The expected size of the DNA fragment is ~ 1 

Kb and 6 Kb. The double digestion confirmed the presence of FVIII gene in entry clone      

figure 45 b. 



RESULTS 

90 

 

 
Figure 45: (a) Amplified FVIII gene fragment flanked with attB, (b) 1 µg of entry clone plasmid was 

restricted digested using Bsa HI and SpeI to verify the presence of FVIII gene. Both the samples (a & 

b) were separated on 0.7 % agarose gel stained with gel red. 

 

3.6.2.2 Cloning of expression clone 

A recombination reaction occurs between the entry clones and destination vector, which 

results in generation of expression clone (LR reaction). The plasmid from the expression 

clone was digested as described in Section 2.2.6.5 with SpeI to verify the presence of FVIII 

gene. The expected size of the fragment DNA is ~ 685 bp and backbone construct is 11 kb. 

The double digestion confirmed the presence of FVIII gene in expression clone (Figure 46). 

 

 

Figure 46: Expression clone plasmid (1 µg) was restricted digested with SpeI and analyzed for the 

presence of FVIII gene after separation on a 0.7 % agarose gel and stained with gel red. 
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3.6.2.3 Sequencing of FVIII gene 

DNA was sequenced at GATC Biotech and the results correlated 100% with the parental 

vector and NCBI sequence (Appendix no.6.1) 

 

3.6.3 Viral titer determination 

The titer of viral preparations is normally estimated from the number of infected cells 

expressing a transduced marker gene. This procedure is time-consuming step, and generally 

takes 4 to 5 days. To circumvent this, a protocol was established whereby the RNA of the 

lentiviral particle was directly measured by quantitative real-time PCR without a reverse 

transcription step. Each individual viral vector with similar backbone can be measured using 

primers binding at the LTR sequence. Titration of virus-containing supernatant was carried as 

described in Section 2.2.6.9, which resulted in 7.51x10
10

 viral particles per ml of solution 

carrying the FVIII gene. 

 

3.6.4 FVIII expression in upcyte
®
 mvECs 

Upcyte
®
 LSECs, upcyte

®
 mvECs and upcyte

®
 BOECs were transduced as described in 

Section 2.2.6.10 with three different MOIs (MOI 1000, 10,000 and 100,000). Figure 47 shows 

that the upcyte
®

 endothelial cells (BOECs/LSECs/mvECs) exhibited cobble stone 

morphology which is typical for the endothelial cells. 

(a) upcyte
® 

BOECs                             (b) upcyte
® 

LSECs                            (c) upcyte
® 

mvECs 

 
 

Figure 47: Morphology of (a) upcyte
®
 BOECs, (b) upcyte

®
 LSECs and (c) upcyte

®
 mvECs observed 

under light microscopy (magnification: 100x). 

 

To analyze FVIII production, upcyte
®
 endothelial cells were transduced as described in 

Section 2.2.6.10. FVIII was not detected in the supernatant harvested from upcyte
®

 BOECs 

and LSECs. However, upcyte
®
 mvECs transduced with FVIII lentiviral particles (MOI 1000) 

yielded 6.9 mU/10
6
cells/24 h (Figure 48). Upcyte

®
 mvECs transduced with MOIs of 10,000 

and 100,000 produced 15.3 mU and 15.7 mU of FVIII per 10
6
cells in 24 h, respectively.  
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Figure 48: FVIII production in upcyte
®
 mvECs transduced with different MOIs of lentiviral particles 

carrying FVIII gene. Values are the mean ± SD from 2 experiments, each with n=3 wells.   

 

3.6.5 Transduction of primary mvECs 

As the proof-of-principle experiment demonstrated that upcyte
®
 mvECs could produce FVIII 

after transduction with this specific gene, the next step was to transduce primary mvECs with 

lentiviral particles carrying FVIII gene in order to reflect in vivo situation, i.e. using primary 

cells (mvECs). Primary mvECs transduced as described in to 2.2.6.10 were used for antibiotic 

selection process as described in Section 2.2.6.11. Using the blasticidine application, primary 

mvECs carrying FVIII gene were selected. The number of primary mvECs carrying the FVIII 

gene was relatively higher (30%) in cells transduced with a MOIs of 100,000 and MOI 10,000 

than with a MOI of 1000. The islands of cells that were selected using blasticidine were 

cultured until they reached confluence before collecting the supernatant for FVIII analysis. 

Throughout the selection process each of the MOIs maintained the cobble stone morphology, 

which is typical for endothelial cells (Figure 49). 
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  (a)                                                  (b)                                                          (c)  

 

 

Figure 49: A comparison of the morphology of primary endothelial cells, seeded at 20,000 cells/cm
2
 

and 24 h after transduction with lentiviral particles with different MOIs (a. MOI 1000, b. MOI 10,000 

and c. 100,000) (magnification: 100x).  

 

3.6.5.1 Characterization of primary mvECs 

Tube formation is an important endothelial cell character in the process of angiogenesis in in 

vivo. Primary mvECs transduced and selected for FVIII gene construct were analyzed for their 

ability to form tubes in MatrigelTM. The cells were seeded at densities of 14,000 cells/cm² and 

20,000 cells/cm² and then assessed for tube formation. The cells began to form tube-like 

structures after 2 h and, after 6 h of incubation. A complete network of capillaries was 

formed. A seeding density of 14,000 cells/cm² was found to be optimal for tube formation, since 

these primary mvECs formed tubes from single cells, as shown in Figure 50 a. At higher seeding 

densities, tubes were formed from more than one cell Figure 50 b.  

  

(a)                                                   (b) 

 
 

Figure 50: Tube formation after 6h by primary mvECs seeded at different densities (a) 14,000 

cells/cm
2
 and (b) 20,000 cells/cm

2
. 
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3.6.5.2 FVIII expression in primary mvECs 

 

The rate of formation of FVIII in primary mvECs transduced with lentiviral particles (MOI 

1000) carrying FVIII gene was 160 mU/10
6
cells/24 h. The rate of FVIII expression in cells 

transduced with higher MOIs of 10,000 and 100,000 was 220.4 and 245.5 mU/10
6
/24 h, 

respectively. Primary mvECs transduced with FVIII lentiviral particles and selected using 

blasticidine produced FVII at a rate that was ~14 fold higher than the non-selected upcyte
®

 

mvECs .  

 

 

 

Figure 51: FVIII production in primary mvECs transduced with different MOIs of lentiviral particles 

carrying FVIII gene. Values are the mean ± SD from 2 experiments, each with n=3 wells. 
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4. Discussion 

Primary human cells are the gold standard for many in vitro liver-based assays, as they reflect 

the cell types present in vivo (Hewitt et al. 2007). However, the availability of primary cells is 

a limiting factor and there are different levels of quality of the cells due to the nature of the 

biopsy material (from healthy or diseased tissue) as well as different isolation techniques 

(Godoy et al. 2013). Donor-to-donor variation adds to complexity in interpreting the outcome 

of assays. This thesis mainly deals with hepatocytes and endothelial cells, namely mvECs and 

LSECs. Alternative models to replace and/or complement the use of freshly isolated primary 

hepatocytes have mainly focussed on hepatic cell lines, such as HepG2 (which are genetically 

unstable) and HepaRG (Castell et al. 2006) and also they express very low CAR and PXR 

activated pathways. Compared to primary hepatocytes, the phase 1 and phase II enzyme 

expression is low in hepatic cell lines (Wilkening et al. 2003). Human upcyte
®
 hepatocytes 

are proliferating hepatocytes which retain many characteristics of primary human hepatocytes 

(Burkard et al. 2012) (Levy et al-Manuscript submitted). They therefore represent a promising 

cell type for use in higher throughput assays, such as metabolism and drug-drug interaction 

(DDI) assays, since they address the need for large quantities of metabolically competent cells 

from multiple donors. Primary endothelial cells such as mvECs and LSECs have certain 

limitations including: (1) They de-differentiate rapidly, evident as a loss of their endothelial 

cell markers when placed in in vitro culture (Unger et al. 2002; Richard et al. 1998; Fodor 

2003). (2) Establishing standardized in vitro test systems is difficult due to donor-to-donor 

variation (Unger et al. 2002). (3) They have a limited proliferative capacity, for example, 

primary LSECs have a short life span in in vitro culture (2-3 population doublings) (Kim & 

von Recum 2008; Karasek 1989). (4) Similar to other primary cells, obtaining high purity and 

high yields of primary LSECs is also challenging. Additionally, compared to other cell types 

such as hepatocytes or mvECs, the published research regarding LSECs is limited and a full 

characterization of these cells is still lacking (Smedsrød et al. 1994). To overcome these 

limitations, upcyte
®
 mvECs and upcyte

®
 LSECs were generated employing the upcyte

®
 

technology. Upcyte
®

 mvECs and upcyte
®

 LSECs exhibit enhanced proliferative capacity and 

also retain their endothelial cell-specific markers when cultured in vitro (Scheller et al. 2012; 

Nörenberg 2013). As it is possible to obtain a large quantity of cells using upcyte
®

 

technology, in vitro test systems can be established. Multiple donors can also be obtained 

which makes it easier to study the donor-to-donor variations in cell responses and 

characteristics. 
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4.1 Hepatic models – 3D Mimetix
® 

scaffolds 

4.1.1 Confocal analysis of upcyte
®
 hepatocytes 

When seeded into Mimetix
®
 scaffolds the cells formed a 3D architecture within the scaffolds 

and the upcyte
®
 hepatocytes were able to penetrate to a depth of 42 µm. Cells that remained 

on the surface of the scaffolds also formed a multi-layered architecture similar to in vivo. 

Cells penetrated and colonized only halfway of the whole scaffold (100 µm thickness). This 

could be due to a difference in concentration gradient for the availability of nutrients and 

oxygen i.e. limited access of oxygen and nutrients at greater depths than on the top level 

(Goldstein et al. 2001). This might have influenced the cells to remain in middle of the 

scaffolds rather than colonizing the whole scaffold. Furthermore, upcyte
®
 hepatocytes reached 

deeper layers of the scaffolds when cultured in an insert format in Alvetex
® 

Strata scaffolds 

(Manuscript in progress), rather than when the scaffold was located at the bottom of the well 

(standard format). This could be due to the availability of higher volume of medium in the 

insert format (7 ml) than in the standard format (1 ml).  The pore size of the scaffold 

influences the rate at which cells can penetrate; therefore, over the same time, cells would be 

expected to penetrate further when larger pore sizes are used. Indeed, upcyte
®
 hepatocytes 

cultured in scaffolds with a larger pore size of ~18-42 µm (achieved when using scaffolds 

generated with fibres of 6 µm diameter) resulted in 100% penetration of the scaffold. 

However, culturing upcyte
®
 hepatocytes in scaffolds with a bigger pore size resulted in all the 

cells migrating down to the bottom layer of the scaffolds in multiple stacks, which is less 

representative of liver sections or slices (Olinga et al. 1998). This is also in contrast to the 

observations of others who showed that cells migrated throughout the scaffolds (Zajicek et al. 

1985; Arber et al. 1988) due to passive movement (Fabrikant 1967). Based on this result, it 

was decided to use 4 µm fibre diameter scaffolds with 50 µm thickness for future 

experiments.  

 

4.1.2 Scaffold thickness and fiber diameter 

Comparison of cell viability and functionality between two different thicknesses of 

electrospun scaffolds were conducted. Results from confocal microscopy shows that the cells 

were able to migrate up to a depth of 42 µm in scaffolds with a 4 µm fiber diameter compared 

to 6 µm fiber diameter, where the cells merely settle down to the bottom of the scaffolds. It 

may be expected that proliferating cells like upcyte
®
 hepatocytes would grow into and fill the 

scaffold over time upon culturing, since this is observed for proliferating tumour-derived cells 

such as HepG2 (Bokhari et al. 2007). Although upcyte
®
 hepatocytes proliferate, they also 



DISCUSSION 

97 

 

exhibit contact inhibition (Burkard et al. 2012) and therefore do not infiltrate the scaffold in 

the same way as tumour cells. The number of viable cells increases with time in both 50 µm 

and 100 µm PLLA scaffolds but the initial rate of increase was lower than those cultured in 

2D cultures. Cells cultured in 3D have a slower proliferation rate than the cells cultured in 2D, 

especially when they are sub-confluent (Stangegaard et al. 2006). However, the number of 

viable cells starts to decline in 2D cultures after Day 3 (day 5 and 7). The decline may be due 

to detachment of cells or loss of cell viability. On day 7, number of viable cells was 

significantly higher when they were cultured in both the formats of PLLA scaffolds (50 and 

100 µm scaffold thickness) compared cells cultured in 2D. This signifies that 3D scaffolds 

formats are more appropriate for long-term culture of upcyte
®
 hepatocytes, a finding also 

observed using primary hepatocytes (Larson et al. 2014). Although the basal CYP3A4 activity 

is marginally higher in 100 µm thickness scaffold, similar to cell viability/growth, there was 

no significant difference observed for basal CYP3A4 activity in upcyte
®
 hepatocytes cultured 

in the two different scaffold formats compared to those cultured in 2D monolayers. Unlike the 

nanofibrous scaffolds in which higher cell proliferation has been shown in thicker scaffolds 

(Ghasemi-Mobarakeh et al. 2009), increasing the thickness of electrospun scaffolds does not 

influence the cell growth and functionality. Results from confocal analysis and functional data 

(CYP3A4) signify that scaffolds of 50 µm thickness can be selected for future experiments. 

 

Using scaffolds with an optimal thickness of 50 µm, two different fiber diameters were used 

to investigate their influence on the number of viable cells and functionality. As observed 

with the two different scaffold thicknesses, the growth of viable cells was initially higher in 

the 2D environment compared with that in scaffolds of both fiber diameters. This may be due 

to a slower proliferation time in 3D than in 2D (Stangegaard et al. 2006).  However on Day 7, 

the number of viable cells present in both the scaffold formats (4 and 6 µm fiber diameter) 

increased and was higher than that in 2D cultures. Although there was no difference observed 

in the number of viable cells between the two scaffold formats, basal and induced CYP3A4 

activities were higher in 50 µm scaffolds with 4 µm fibres than with 6 µm fibres. In 

conclusion, confocal analysis and CYP3A4 data suggests that upcyte
®

 hepatocytes from 

Donor 653-03 can be optimally cultured in 50 µm thick scaffolds with 4 µm diameter fibres.  

 

4.1.3 Donor-to-donor variation 

Donor-to-donor variation was also investigated using 50 µm thick scaffolds with two different 

fiber diameters. Donor 151 was a first generation batch of cells and Donors 653-03 and 
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422A-03 were generated employing a refined upcyte
®

 technology resulting in a second 

generation of upcyte
®
 hepatocytes. Cells from first and second-generation batches were 

selected to determine if cells with lower metabolic activity play a role in cell functionality 

within the scaffolds. Regardless of the scaffold format used, the number of viable cells from 

Donor 653-03 increased over time. By contrast, the number of viable cells from Donor 422A-

03 remained constant between Days 1 to 7 in scaffolds with both 4 µm and 6 µm fiber 

diameters. The PD time of upcyte
®
 hepatocytes from Donor 653-03 in 2D monolayer was less 

than 48 h; whereas, the PD of upcyte
®
 hepatocytes from Donor 422A-03 was between 55 to 

60 h. The combined effects of the 3D environment and a slower proliferation rate of upcyte
®

 

hepatocytes from Donor 422A-03 may have resulted in slower proliferation throughout the 

culture period in 3D scaffolds. For upcyte
®
 hepatocytes from Donor 151, the number of viable 

cells was markedly lower between Day 1 and 2, possibly due to detachment of cells. 

However, the initial drop was followed by a gradual increase in the number of viable cells 

over the remaining 5 days, suggesting the remaining cells were functional and did undergo 

proliferation. To analyze an additional functionality of the cells in different scaffold formats 

and also to know the donor-to-donor variation, CYP3A4 activity was also measured. Upcyte
®

 

hepatocytes from each donor were cultured in two different scaffold formats and CYP3A4 

activities were compared with those in the same cells cultured in conventional 2D formats.  

Second-generation cells (Donors 653-03 and 422A-03) exhibited significantly higher 

CYP3A4 activities in both scaffold formats compared to the first generation cells (Donor 

151). For upcyte
®
 hepatocytes from Donor 653-03, the CYP3A4 activity was highest when 

they were cultured in scaffolds generated with 4 µm fibre diameter. By contrast, the CYP3A4 

activity in upcyte
®
 hepatocytes from Donor 422A-03 was highest when they were cultured in 

scaffolds with 6 µm diameter fibres. There were no differences observed in CYP3A4 

activities in upcyte
®
 hepatocytes from Donor 151 cultured in scaffolds with the two fiber 

diameters, which signifies that either of the scaffold formats can be used for this donor. In 

contrast to the second generation upcyte
®
 hepatocytes, CYP3A4 activities in first generation 

upcyte
®

 hepatocytes (Donor 151) were 3-fold higher when they were cultured in a 3D 

environment compared to 2D monolayers. An increase in CYP3A4 enzyme activity upon 3D 

culture has also been observed using primary hepatocytes (Hammond et al. 2006; Ohashi et 

al. 2007), thus, supporting the use of this more in vivo like culture format. In order to improve 

the scaffolds, surface functionalization of scaffolds with sugar residues such as galactose (Yin 

et al. 2003) or polymer coating (Philippart et al. 2015) can also enhances the cell growth and 

functionality. 
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4.2 Hepatic models – Liver organoids and in BioVaSc 

4.2.1 3D liver model- Liver organoid 

A shortage of livers for organ transplantation to treat end-stage liver disease and the lengthy 

waiting list of organ recipients emphasizes the importance of developing an ex vivo functional 

liver through tissue engineering (Rai 2013). Moreover, the intention to reduce animal 

experiments is of high priority and animal models can never fully reflect the human cell 

interactions (Martignoni et al. 2006; Liang et al. 1993; Rippin et al. 2001). Conventional in 

vitro systems often lack the necessary cellular cross-talk and cells (hepatocytes) in these 

systems often have lost major properties (Gómez-Lechón et al. 1998) of the corresponding 

primary cells, which profoundly limit their possible applications.  The main focus is to exploit 

the in vivo physiological mechanism that occurs during an organ development and to 

implement the similar principles to develop a functional tissue in vitro. Apart from this, other 

applications can be use of 3D liver-like structures, e.g. in order to meet the needs of 

pharmacological and toxicological industry for drug screening. Takebe and his colleagues 

(Takebe et al. 2013) have generated three-dimensional liver bud-like structure. When human 

induced pluripotent stem cells (iPSCs) differentiated to hepatic cells were co-cultured with 

HUVECs and MSCs on Matrigel
TM

, they self-organized to form liver bud-like structure. Such 

pre-formed liver buds were transplanted into the cranial window of mice where they have 

engrafted and rapidly have been vascularized (Takebe et al. 2013). 

 

The principal, functional cell type within the liver is the hepatocyte that contributes to 60% of 

parenchymal volume. The remaining volume is occupied by non-parenchymal cells such as 

LSECs, Kupffer cells (hepatic macrophages), hepatic stellate cells (Gu & Manautou 2012). It 

is not only hepatocytes by themselves but also non-parenchymal cells that have a direct 

impact on the development of functional hepatocytes (Lammert et al. 2003). During early 

organogenesis, signals from the heart induce the endoderm for liver bud formation (Jung et al. 

1999). Emergence of the liver bud requires transition of hepatic endodermal cells from the 

columnar epithelium. As soon as the liver bud emerges from the columnar epithelium, 

endothelial cells surround it and migrate rapidly through the mesenchyme (Matsumoto et al. 

2001). Studies revealed that when there is a lack of mature endothelial cells, the liver bud fails 

to expand and migration through the septum transverse mesenchyme was also affected 

(Matsumoto et al. 2001). Failure to invade the septum transverse mesenchyme results in 

development of liver lobes but devoid of hepatocytes (Sosa-Pineda et al. 2000). The 

mesenchymal part of the liver is essential for hepatoblast proliferation (Houssaint 1980). 
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Therefore, hepatic architecture requires certain morphogenetic cues from the 

endodermal/mesenchymal component (Zhao & Duncan 2005). In addition, MSCs secrete 

multiple growth factors that play a role in MSC migration to promote angiogenesis and also to 

decrease apoptosis (Boomsma & Geenen 2012). Not only during embryogenesis but also in 

adult tissue, cell-cell interaction plays an important role. For example: endothelial cells and 

hepatocytes signal during liver regeneration to establish sinusoidal liver architecture (Yamane 

et al. 1994). In conclusion, hepatocytes, endothelial cells and mesenchymal cells play vital 

roles in controlling the growth of the hepatic primodium (Davis et al. 1996). 

 

4.2.2 Generation of liver organoid 

A modified protocol of Takebe (Takebe et al. 2013) has been used for the generation of liver 

organoids. Human iPSCs differentiated to hepatic cells were replaced with adult differentiated 

upcyte
®

 hepatocytes (Donor 422A-03) to reflect the parenchymal cells of the adult liver. In 

order to depict hepatic, physiological conditions, HUVECs were replaced with upcyte
® 

LSECs, as LSECs are the native endothelial cells of the liver that are highly specialized to 

facilitate the selective transport of molecules into hepatocytes (Braet et al. 2001). Primary 

MSCs co-cultured with upcyte
®
 LSECs and upcyte

®
 hepatocytes on Matrigel

TM
, self-

organized to form liver organoids. MSCs are multipotent, self-renewing, adult stem cells, 

which can also differentiate into hepatocytes (Volarevic et al. 2014). Such differentiation can 

be induced by addition of growth factors like HGF or bFGF (Shu et al. 2004) or by co-

culturing the cells with hepatocytes (Lange et al. 2005; Luk et al. 2005).  

 

HE staining of the formalin-fixed organoid revealed the presence of collapsed nuclei and cell 

debris, which signifies necrotic cells in the liver organoid after a static culture period of 72 h.  

Though the medium was changed every 24 h, culturing nearly 2.2 x10
6 

cells in 1 ml of 

medium (24 well format) for 24 h most certainly resulted in deficiency of nutrients from the 

medium and also oxygen might not have reached the inner part of the liver organoid (3-4mm 

in diameter). This is similar to the retinal organotypic in vitro model, where disintegrated 

cytoarchitecture was observed in static culture (Kobuch et al. 2008). When the cells are 

cultured in 2D surface, nutrient reaches the cell by simple diffusion (van den Dolder et al. 

2003). However, when the cells are cultured in 3D environment, sufficient oxygen delivery 

and waste removal from the cell from inner part of the organoid will not be met by simple 

diffusion process, whereas the outer surface of the 3D structure will be nourished (Sikavitsas 

et al. 2002).  In order to overcome the hypoxia condition in the static culture, bioreactors were 



DISCUSSION 

101 

 

introduced in tissue engineering applications such as bone and cartilage to increase the 

nutrient availability for the 3D tissue and enhanced waste removal (Martin & Vermette 2005; 

Abousleiman & Sikavitsas 2006). Apart from nutrient deficiency, limited availability of 

quality of primary MSCs posed another challenge for liver organoid generation. Because, 

self-renewal capacity of MSCs which includes proliferation and differentiation function of 

MSCs decreases with increase in the age of donor (Stolzing et al. 2008; He et al. 2009; Li et 

al. 2011).   In addition, primary cells can be expanded only to a limited extent, the so-called 

“Hayflick limit”, before reaching senescence (Hayflick 1965).  The primary cells show a 

highly unstable phenotype in culture and produce very variable results due to donor 

differences (Stolzing et al. 2008) and/or varying effectiveness of the isolation process. 

Structures that resemble the 3D architecture such as hepatospheres is better than conventional 

monolayer cultures but consists of hepatoma cell lines (HepG2) (Chang & Hughes-Fulford 

2009) which is far from physiological conditions. Upcyte
®
 cell strains which exhibit primary 

cell phenotypes (Scheller et al. 2012; Burkard et al. 2012; Levy et al. Manuscript submitted) 

can be obtained in large amounts from the same or different donor, which meets the demand 

for comprehensive sets of experiments. Therefore, primary MSCs were replaced with upcyte
®

 

MSCs for liver organoid development. HE staining of the liver organoids generated using 

exclusively upcyte
® 

cells and cultured in a dynamic cell culture system, i.e. a bioreactor, 

showed that the presence of necrotic cells in the liver organoid has been considerably reduced 

compared to the organoids cultured in the static system. Very few nuclear fragmentations 

were present in liver organoids cultured in a dynamic system due to apoptosis, which 

represents the regular cell cycle. Liver organoids can also be stained for apoptotic markers 

such as caspase-1 to identify the cells entering apoptosis.  

 

4.2.3 Organoids cultured in a dynamic system 

Cell viability and synthesis of extra cellular matrix in the core of 3D organoid would be 

challenging to obtain in a static culture (Ishaug-Riley et al. 1998). Though culturing of liver 

organoids in a dynamic system such as the Quasi-Vivo
®
 system provides advantages over the 

static culture, it is still far from physiological conditions. In the Quasi-Vivo
®
 system, multiple 

chambers (5 to 6) are connected linearly each holding one liver organoid.  The flow of 

medium from the reservoir bottle to the Quasi-Vivo
®
 chambers is linear. Therefore, there 

would be a number parameters varying between the different organoids. For example: the 

nutrient availability to the first organoid (No.1), which is connected immediately to the 

reservoir bottle is high, compared the last chamber containing the last organoid (No.6). 
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Whereas, the cytokines and other signaling molecules secreted by the organoids will be 

available in higher amount to the last organoid (No.6) compared to the first organoid (No.1) 

due to linear flow of medium. Although the medium is mixed in the reservoir bottle, the 

condition in which the organoids were cultured is not uniform due to linear flow of medium. 

So it would be highly desirable to culture these organoids in an in vivo-like 

microenvironment. Hence, more sophisticated systems such as BioVaSc were used to culture 

the organoids using the computer-controlled bioreactor system (Mertsching & Hansmann 

2009). Briefly, nearly 10-15 cm of porcine small intestine with intact vascular system is 

excised from a sacrificed animal. The matrix is chemically treated to remove the native 

porcine cells that retain an intact vascular and capillary network (Mertsching et al. 2005; 

Schultheiss et al. 2005). The vascular system was re-populated with upcyte
® 

mvECs (Scheller 

et al. 2012) and the lumen of the BioVaSc was used for culturing the liver organoids for a 

period of 30 days. 

 

4.2.4 Immunostainings of liver organoid and in BioVaSc 

Cell-type specific immunostaining was performed on 2D monolayers to confirm the 

expression of cell-specific markers, i.e. their proper cellular identity and also for the 3D liver 

organoid to assess the arrangement of the three different cell types inside the organoid.  The 

upcyte
®
 hepatocytes are differentiated adult hepatocytes (Burkard et al. 2012) and were 

stained for CK8. CD31 is a transmembrane glycoprotein present predominantly along the cell-

cell contacts and also the most common endothelial marker present in different endothelial 

cells (Jaffe et al. 1973) which was also detected in upcyte
®
 LSECs (Nörenberg 2013) and 

upcyte
®
 mvECs (Scheller et al. 2012). MSCs were stained for vimentin, which is an 

intermediate filament protein. Vimentin is the most commonly used marker of mesenchymal-

derived cells or cells that undergo EMT i.e. epithelial to mesenchymal transition (Chen et al. 

2012). Immunohistochemistry can help to identify the arrangement of three different cells 

types in the organoid. Liver organoids cultured in the Quasi-Vivo
®
 system and in the BioVaSc 

showed similar type of cell arrangements i.e. different cell types arrange in different layers.  

Upcyte
®
 hepatocytes positive for CK8 organized in different compartments as closely 

adherent sheets and move towards the periphery of the liver organoid by surrounding the 

endothelial cells in its center. Compared to 2D monolayer, liver-specific functions, interaction 

with ECM (Berthiaume et al. 1996; Dunn et al. 1989) and cell density (Sudo et al. 2005; 

Hamilton et al. 2001) are maintained better in 3D environment. mRNA expression indicative 

of differentiated hepatic functionality such as albumin, enzymes regulating glutamine and 
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glucose as well as hypoxia-inducible factor 1-α (Hif1α) was detectable using in situ 

hybridization. In conclusion, these findings suggest that upcyte
®
 hepatocytes inside the 

organoids possess functional gene expression typical for hepatocytes without having faced 

gross changes such as epithelial to mesenchymal transition (EMT). In contrast to the upcyte
®
 

hepatocytes, upcyte
®
 LSECs were stained for CD31 in order to trace the presence of 

organization of endothelial cells in the inner part of liver organoid. Unlike the hepatocytes and 

endothelial cells, which followed specific patterns to organize in the liver organoids, MSCs 

that stained positive for vimentin were distributed throughout the organoid. Also during 

embryogenesis, construction of liver parenchyma depends on the complex signalling between 

epithelial cells (hepatocytes) themselves and between epithelial-mesenchymal cells (Zhao & 

Duncan 2005). MSC-derived hepatocytes acquired the ability to express hepatocyte marker 

genes like albumin, which makes it difficult to distinguish between the original hepatocytes 

and MSC-derived hepatocytes in the liver organoid. Therefore it is not possible to exclude the 

probability that some of the hepatocytes in the organoids might be derived from MSCs. 

However, direct differentiation of MSCs into hepatocytes might not represent the major 

mechanism of hepatocytes itself and how MSCs support the survival of liver tissue. 

 

 It has been shown that intravenous bolus of conditioned medium from MSCs can already 

provide a significant survival benefit in rats with fulminant liver failure (Parekkadan et al. 

2007). The hepatoprotective effect of MSCs seems to be mainly based on the secretion of 

factors, which on the one side may modulate cells of the immune system but also exert direct 

anti-apoptotic effects on hepatocytes (Xagorari et al. 2013). The exact nature of these MSC-

derived factors those are essential for organoid formation are yet to be explored. However, 

Takebe and colleagues have already described that application of inhibitors directed against 

bone morphogenetic proteins (BMPs) or fibroblast growth factor (FGF) effectively prevented 

the structure formation in their experimental set-up (Takebe et al. 2013). Sections of liver 

organoid can also be stained for proliferation marker such as Ki-67 to check if the cells 

undergo proliferation. E-cadherin is a calcium-dependent cell-cell adhesion molecule that 

plays a pivotal role in epithelial cell junctions. E-cadherin was well known to be expressed in 

differentiated cell types (Shino et al. 1995) and is widely expressed in most of the normal 

epithelial tissue (Takeichi 1990). As hepatocytes organize in asymmetrical orientation with its 

basolateral, apical and lateral domain, staining the hepatocytes for E-cadherin can be used to 

analyze the cell-cell junction.  
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4.2.5 Liver organoid architecture 

The network of bile canalicular structures (~1µm diameter) joins to form the bile-secretory 

unit, which is formed between adjacent hepatocytes (Boyer 2013). As bile acid causes 

detergent effects on the cell membrane, excretion of bile acid is considered as one of the 

primary detoxification mechanisms in liver (Tamai et al. 2013). The morphological 

architecture of the liver organoid cultured for 10 days was compared to normal adult liver 

slices. Bile canaliculi-like structures were observed between the neighboring upcyte
®

 

hepatocytes that stained positive for CK8. However, these organoids could be stained for 

hepatic bile canaliculus markers such as CD25, EP-1 to exactly confirm the presence of bile 

canaliculus structure in the organoid. The bulk of liver consists of hepatocytes, which 

organize to form linear or branched hepatic cords. These hepatic cords are one of the major 

characteristic features of mature liver, an arrangement of cells that happens during 

embryogenesis and also during regeneration of liver (Treyer & Müsch 2013).  

 

Similar to the adult liver slice, single-cell thick plates of hepatocytes arranged linearly to form 

hepatic cord-like structure in the organoid. As the upcyte
®
 hepatocytes used for the liver 

organoid generation are adult and differentiated cells, the organoid generated also retained 

characteristic features of mature liver. Liver lobules consist of intact sinusoidal lumen formed 

by hepatocytes in a circular manner with endothelial lining (Braet et al. 2004). The sinusoids 

lined with endothelial cells (LSECs) contain Kupffer cells, lymphocytes (pit cells) and 

immature dendritic cells (Crispe 2003). Similar to sinusoidal lumen in normal liver, the 

organoids also show circular arrangement of hepatocytes. However, lining of the lumen with 

endothelial cells could not be detected. Ongoing experiments aim at further optimizing the 

parameters for long-term culture and growth of liver organoids. Integration of further liver 

cell types like Kupffer cells and hepatic stellate cells is planned in order to generate 

bioartificial liver-like structures which come more close to the in vivo conditions. Though the 

circular arrangement of hepatocytes in liver organoid lacks endothelial lining, these structure 

resembled “Muralium” structures. During early embryogenesis, the hepatoblast that develops 

from the endoderm forms plates that are five to six cell thick known as Muralium multiplex. 

During the gestation week of 8
th

 -10
th

, muralium multiplex is reduced to two-cell thick 

structures known as muralium duplex. From the age of 6, a sheet of one-cell thick adult and 

differentiated hepatocytes forms the Muralium simplex architecture (Erwin Kuntz 2008). As 

the organoids were generated using adult, differentiated upcyte
®

 hepatocytes, the structure 

formed in the liver organoid could be Muralium simplex-like architecture.  
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4.2.6 Metabolic activity 

To further investigate if hepatocytes inside the organoids that have been cultured for 10 days 

in the Quasi-Vivo
®
 system show functional properties of liver parenchymal cells, liver 

organoids were analyzed for basal and induced CYP3A4 enzyme activity. CYP3A4 is an 

enzyme that metabolizes a large number of clinically important substrates. Induced activity of 

this enzyme was 2.8 fold higher than the basal activity that correlates with the FDA 

guidelines, which suggest that in vitro induction results should be 2 to 5 fold higher than the 

basal activity (Food and Drug Administration 2012). Whereas the liver organoids cultured for 

30 days inside the lumen of BioVaSc expressed the basal CYP3A4 activity of 49 

pmol/mg/min. This further supports the conclusion that hepatocytes within the organoids 

possess functional cells allowing the use of these structures to analyze e.g. hepatic toxicity of 

certain substances or drugs. Apart from CYP3A4 enzyme activities, upcyte
®

 hepatocytes 

when cultured in 2D monolayer also express functional CYPs such as CYP2B6, CYP1A2, 

CYP2C9 (Section 3.4) (Burkard et al. 2012). So these organoids could also be analyzed for 

larger panels of CYPs in future experiments. The detoxification function such as urea 

synthesis or the albumin secretion can also be evaluated in future studies. As the organoids 

were viable and functional for 30 days in culture, long-term culture such as 90 days can be 

planned to generate a model for chronic toxicity testing. 

 

4.2.7 Vascularization 

In the in vivo situation, mvECs line the lumen of the blood vessels and are naturally exposed 

to mechanical shear stress due to blood flow. mvECs are responsible for a wide number of 

functions such as regulating the blood pressure by vasodilation or vasoconstriction (Cosentino 

& Volpe 2005), regulating the exchange of substances between blood and tissue cells by para- 

and transcellular transport of molecules, contributing to the blood coagulation processes (Wiel 

et al. 2006; Chen & López 2005), harbouring Weibel palade bodies that store growth factors, 

cytokines and hormones (Hannah et al. 2002; Michaux & Cutler 2004; van Mourik et al. 

2002), play a vital role in vascular biology (Wiel et al. 2006) and angiogenesis (Scheller et al. 

2012). The native vascular system in the BioVaSc has been re-populated with dermal derived 

human upcyte
®
 mvECs and cultured in a bioreactor under systolic and diastolic pressure 

which is similar to the physiological condition. Sprouting of new capillaries from the existing 

blood vessel was also observed (Scheller et al. 2012). The decellularized BioVaSc contains 

mainly collagen I and III (Mertsching et al. 2005; Schanz et al. 2010). and these collagen 

components help the endothelial cells for adhesion and migration.   
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Studies show that the collagen gel would provide physiological microenvironment for 

microvessel formation  (Hoying et al. 1996; Pepper et al. 1991). A scaffold derived from 

biological source (BioVaSc) together with an intact vascular system that has been re-

populated with human derived upcyte
®
 mvECs provides a much more in vivo-like 

environment to culture liver organoids than the other two systems such as common 2D cell 

culture or a bioreactor, i.e. Quasi-Vivo
®
 system. Unlike the endothelial cells, which are 

exposed to shear stress, the hepatocytes are sensitive. Henceforth, liver organoids generated in 

48-well format using upcyte
®
 hepatocytes, LSECs and MSC (1.2x10

6
 cells/organoid) were 

cultured in the luminal part of the BioVaSc for 30 days. Collagen present in the mucosal part 

of the intestine enabled the organoids to adhere to the intestinal wall. HE staining of the liver 

organoid showed opening of blood vessel-like structure, which has been lined with cells. To 

explore further, when the sections of the liver organoids were stained for cell-specific 

immunostaining (CD31), the cells lining the blood vessel-like structures were positive for this 

endothelial cell specific marker. The upcyte
®
 mvECs expressed CD31 after culturing in the 

vascular tree of the BioVaSc for 30 days (Scheller et al. 2012).  In conclusion, the capillaries 

of the BioVaSc might have reached the organoid after 30 days of culturing in the bioreactor.  

VEGF is one of the most important growth factors for the neoangiogenesis (Ferrara et al. 

2003) and also plays a central role in liver regeneration (Bockhorn et al. 2007). Though 

VEGF is already present in the liver organoid growth medium, further optimization of 

medium composition together with other growth factors such as FGF, EGF and OSM can 

enable the organoid for increase in mass and also to produce their own ECM. The ECM 

contains a wide range of complex, tissue-specific proteins and polysaccharides that play a 

vital role in cellular function. Together with collagen that is already present in the BioVaSc, 

the ECM niche would improve the assessment of cell behavior in the areas of research such as 

drug development applications (DeQuach et al. 2010). 

 

4.3 Application of hepatic models - CYP inhibition 

4.3.1 Culture optimisation 

In order to carry out CYP inhibition assays, the cells require sufficient levels of CYP enzyme 

activities such that they can be inhibited in a concentration-dependent manner, i.e. there 

should be a sufficient dynamic range. Therefore, different (pre-) culture conditions such as the 

effect of DMSO, length of pre-culture period and type of basal medium were analyzed (HGM 

and HPM). DMSO is known to induce CYP3A4 activities in primary human hepatocytes 

(LeCluyse 2001) and CYP3A4 and CYP2B6 activities in HepaRG cells (Anthérieu et al. 
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2010) by activating PXR and/or CAR, although, CYP1A2 is not induced over the same 

concentration of DMSO (LeCluyse 2001). Therefore, the effect of DMSO was determined for 

CYP3A4 and CYP2B6 only. For the Donor 422A-03, there was negligible difference 

detectable between the two different DMSO concentrations, i.e. pre-culture medium contained 

0.25% or 0.5%. Moreover, a maximum CYP2B6 and 3A4 activity is observed for all the 

donors at 0.5-0.75% (v/v) DMSO whereas at higher concentrations of DMSO, there was a 

decrease in both CYP activities.   These data confirmed that supplementing the medium with 

DMSO was beneficial to the overall DME (drug metabolizing enzyme) properties of the cells. 

Among the different culture conditions tested to analyse the effect on CYP3A4 and CYP2B6, 

CYP3A4 activity did not increase significantly in all the four donors. Increasing the pre-

culture time (3 days to 7 days), significantly increased the CYP2B6 activity. Also for 

CYP3A4 activity, when the conditioning medium is changed from HGM to HPM with a 

lower concentration of DMSO (0.1% v/v), an increase in CYP3A4 activity was observed. The 

reason for this effect may be due to a down-regulation of CYPs when the DMSO 

concentration is maintained at the higher concentration and/or that factors in the growth 

medium may not be suitable for differentiating the cells once they reach confluence. These 

results suggest that 6-7 days of pre-culture time using HGM supplemented with 0.5% DMSO 

followed by conditioning the cells at confluence for 3 days with HPM supplemented with 

0.1% DMSO result in sufficiently high CYP activities that can be inhibited. This 

concentration of DMSO in the conditioning medium was considered acceptable since it is the 

standard solvent and concentration for many test compound control incubations.  

 

4.3.2 CYP activities in different donors of upcyte
®
 hepatocytes 

Similar to primary hepatocytes, the CYP activities in upcyte
®
 hepatocytes varied between 

donors. Except for the Donor 653-03 in which the CYP1A2 activity was only detected using 

LC-MS (data not shown), all the other CYPs (CYP2B6, CYP2C9, CYP3A4) were expressed 

in varying levels in upcyte
®
 hepatocytes from all four donors (422A-03, 653-03,151-03, 10-

03) compared to that in the original primary hepatocytes measured by the supplier (all 

donors). These results demonstrate that upcyte
®
 hepatocytes exhibit functional phase 1 and 2 

activities and, with the exception of CYP1A2, the CYP activities were generally higher than 

in their corresponding primary human hepatocyte cultures. Despite the low CYP1A2 activities 

demonstrated in short-term incubations of 1 h, longer incubations of 24 h showed that 

CYP1A2 substrates were also metabolized.  Moreover, in the case of CYP2B6 and CYP3A4, 

activities in upcyte
®

 hepatocytes were 5 to 10-fold higher than paired primary cultures. The 
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CYP activities in upcyte
®
 hepatocytes which were comparable to their corresponding primary 

hepatocytes demonstrated that these cells can serve as a suitable model for both metabolic 

identification, clearance and inhibition studies, which all require XMEs higher than that 

present in short-term cultures of primary human hepatocytes. These studies demonstrated that 

refinement of the upcyte
®
 technology, together with optimized culture conditions, resulted in 

hepatocyte cultures expressing sufficient levels of CYP activities equivalent or higher than in 

those in paired primary cell cultures from the same donor. The sustained levels of CYPs 

makes them ideal for longer-term clearance studies (lasting 24-72 h) for metabolically stable 

compounds, since they can be used over days in culture without a medium change. Upcyte
®

 

hepatocytes therefore offer an advantage over liver microsomes and hepatocytes which 

generally do not metabolise test compounds sufficiently in short-term assays (< 24 h) to 

determine an area under the curve measurement (Di et al. 2012). 

 

4.3.3 Inhibition and induction studies  

CYPs were inhibited using competitive inhibitors such as α-naphthoflavone for CYP1A2 

(induced with 100 µM of omeprazole), miconazole for CYP2C9 and ketoconazole for 

CYP3A4. For CYP2B6, a time-dependent inhibitor, ticlopidine was used.  There was a 

concentration-dependent inhibition of CYP1A2, CYP2B6, CYP2C9 and CYP3A4, such that 

at the highest concentration all corresponding enzyme activities were completely inhibited. 

These results support the use of upcyte
®
 hepatocytes in inhibition studies incubated in longer-

term assays to determine clearance in the presence and absence of selected inhibitors. In 

conclusion, the data shows that upcyte
®
 hepatocytes can also be used in CYP inhibition 

studies, which require sufficient metabolic activities to ensure a good dynamic range. For 

CYP1A2, inhibition assays can be conducted using a 24 h incubation period to ensure higher 

control activities; whereas, incubations of 1 h require booting of CYP activity by pre-inducing 

CYP1A2 (e.g. with omeprazole). All four CYPs were inhibited in a concentration-dependent 

manner and the calculated IC50 values were comparable to those reported in primary human 

hepatocytes. Upcyte
®
 hepatocytes from all four donors (422A-03, 151-03, 653-03 and 10-03) 

tested using a 3 day pre-culture period were responsive to CYP1A2, CYP2B6, CYP2C9 and 

CYP3A4 induction by prototypical inducers. This was a significant finding since induction 

CYP2B6 in upcyte
®
 hepatocyte using previous technology was only evident at the mRNA 

level (Burkard et al. 2012). This suggests the responsiveness of these cells, especially via 

CAR, was improved by the refined upcyte
®
 process. Likewise, upcyte

®
 hepatocytes 

demonstrated functional AhR and PXR mediated CYP induction since CYP1A2 and CYP3A4 
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were also induced by omeprazole and rifampicin, respectively. So, upcyte
®

 hepatocytes from 

all four donors were responsive to prototypical CYP1A2, CYP2B6, CYP2C9 and CYP3A4 

inducers, confirming that they have functional AhR, CAR and PXR mediated CYP regulation.  

 

4.3.4 Prediction models for in vivo CYP3A4 induction 

Among the three prediction model used namely, the RIS, AUCu/F2 and Cmax,u/Ind50, best fit 

was obtained from RIS (R
2
 = 0.92) and Cmax,u/Ind50 (R

2
 = 0.93); however, the F2 value (R

2
 = 

0.89) may also be used when compounds are too toxic or insoluble to reach a maximal 

induction response. Moreover, there was a good fit of data from these studies when they were 

applied to three different predictive models for CYP3A4 induction, namely the Relative 

Induction Score, AUCu/F2 and Cmax,u/Ind50. Importantly, there was a very good intra- and inter 

experimental reproducibility of the measurements for all end points measured in these studies. 

For researchers employing the RIS calibration curve as part of their screening process, the 

robust nature of these cells means that the calibration curve would not need to be repeated 

once established (although a yearly check would be advisable). By contrast, those who 

employ cryopreserved human hepatocytes for the same assay need to re-establish a new 

calibration curve for each batch once the previous batch is depleted. Since billions of upcyte
®

 

hepatocytes from a number of donors are available, results over a period of years can be 

compared. 

 

4.3.5 CAR and PXR selective induction of CYPs  

The relative induction of CYP3A4 and CYP2B6 was compared between a PXR selective drug 

(rifampicin), the CAR-selective drugs (phenytoin and carbamazepine) and the mixed activator 

(phenobarbital). Rifampicin in general is a potent CYP3A4 inducer which was clearly seen in 

all the donors of upcyte
®
 hepatocytes (Section 3.5.3). However, rifampicin can also induce the 

CAR pathway, which results in increased expression of CYP2B6. Except for the Donor 422A-

03, for all the other three donors (10-03, 151-03 and 653-03), rifampicin was a moderate 

inducer of CYP2B6. This explains why the relative induction potential of different CYPs 

varies between donors. Phenobarbital which is a mixed activator, was a potent inducer of both 

CYPs in all the donors of upcyte
®
 hepatocytes. Though phenytoin is a CAR-selective drug, 

the induction potential is higher only in two of the four donors used. The relative induction 

potential of carbamazepine is higher for CYP2B6 in three of the four Donors. However, 

similar to rifampicin, carbamazepine is a moderate inducer of both CYP3A4 and CYP2B6. 

These data correspond to the findings of Faucette and colleagues (Faucette et al. 2004) who 
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reported phenytoin, phenobarbital and rifampicin to be classified as strong inducers, and 

carbamazepine as a moderate inducer of CYP2B6 (based on mean fold induction values).  

 

By contrast, dexamethasone - a known PXR selective activator - did not induce CYP2B6 in 

upcyte
®
 hepatocytes from any of the donors (Table 4) but it were a weak inducer of CYP3A4 

(Table 3). Troglitazone is a mixed PXR/CAR activator and induced both CYP3A4 and 

CYP2B6. This drug is known to cause in vivo CYP3A4 induction; whereas, pioglitazone is a 

weak inducer (Sahi et al. 2003; Ripp et al. 2006). In upcyte
®
 hepatocytes, troglitazone was a 

more potent inducer of both CYP3A4 and CYP2B6 than pioglitazone, either due to a higher 

fold induction or a lower Ind50 (i.e. the efficiency ratio was higher). Like primary human 

hepatocytes, there were differences in the responsiveness of upcyte
®
 hepatocytes to CYP 

inducers. There were also differences in the CYP3A4 and CYP2B6 induction responses in the 

same cultures of upcyte
®
 hepatocytes to different inducers. For example, phenytoin 

preferentially activates CAR over PXR, evident in these cells as a more potent induction of 

CYP2B6 than CYP3A4 at the same concentration. By contrast, rifampicin was a more potent 

inducer of CYP3A4 than phenytoin, indicative of the preferential activation of PXR by this 

potent inducer.  

 

4.4 Application of hepatic models – Haemophilia Therapy 

Deficiency of functional coagulation FVIII causes hemophilia A, which is due to a X-linked 

recessive disorder that affects 1 in 5000 males (Antonarakis et al. 1995). By a complete liver 

transplant a sub-hemophiliac phenotype arises (50% of FVIII is produced in extra hepatic 

sources). In case of bleeding, e.g. during surgery, FVIII is quickly exhausted. Therefore, 

FVIII is given to these patients prophylactically before OPs. According to Morbi-RSA (based 

on the “Risikostrukturausgleich” (Morbi-RSA)) the average cost of the treatment for one 

hemophilia patient ranges between € 180,000 to € 220,000 in 2011/2012 (Prof. Oldenburg, 

personal communication). Liver transplantation may not be an appropriate alternative 

treatment for hemophilia A due to the dependency of immunosuppression drugs after the 

surgery. Since hemophilia A is treatable, the consequential damages or costs due to 

immunosuppression drugs during treatment (leading to renal failure that results in dialysis) 

are very high. Hemophilia A can also be treated using recombinant FVIII (rFVIII) therapy. 

However, rFVIII is expensive due to the cost of production, purification and formulation 

(Mannucci 2003). An average of 280,000 (range 70 to 700,000) rFVIII units are used for a 

patient per year, where 1 unit costs ~1 €. The Experimental Hematology and Transfusion 
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Medicine (EHT) in Bonn charges 75 CT / unit of rFVIII and 45 CT / unit of plasma-derived 

FVIII. Nevertheless the cost of treatment is still expensive. Also, rFVIII has to be infused 

through intravenous access; otherwise an increase in bioavailability of FVIII cannot be 

achieved using other delivery routes. In vitro production of FVIII was analyzed from the 

supernatant of primary LSECs. Primary LSECs were analyzed because the hepatic source is 

one of the major sites (50%) for FVIII production (Stel et al. 1983).  

 

4.4.1 Calculation for FVIII dosage 

    

 

 

The primary LSECs produced only negligible amount of FVIII i.e., non-concentrated samples 

expressed 1mU/1x10
6
cells/24 h. This may be due to lose of functional characters of LSECs in 

in vitro culture (Smedsrød et al. 1994).  In severe hemophiliacs, spontaneous bleeding 

episodes occur often in their joints and muscles. When the blood plasma level is maintained 

above 2% (moderate hemophilia A - 5% of FVIII in blood plasma), this can effectively 

prevent most severe hemorrhages (Tusell & Pérez-Bianco 2002). This makes hemophilia A an 

attractive target for gene therapy applications. If the blood plasma concentration of the severe 

haemophilia A is increased from 0% to 5 %, the quality of life of a severe hemophilia A 

patient will be significantly improved. Assuming the fact that the haemophilia A patient 

whose body mass is 70 kg has severe hemophiliac condition i.e., 0% of FVIII level in blood 

plasma and in order to raise the blood plasma concentration from 0% to 5%, using the above 

mentioned calculation for FVIII dosage, 175x10
9
 primary LSECs are required. As the cell 

volume required to treat the patient is too high for any kind of practical handling, genetic 

modification of cells is required to increase the FVIII expression per unit per cell. As 

hemophiliacs already face severe problems with bleeding episodes, it was decided to choose 

other cell types than LSECs that can be harvested using minimal invasive methods for the 

proof-of-principle study. 

 

4.4.2 Proof-of-Principle 

Primary cells are sporadic in availability and are difficult to obtain which can be overcome by 

using upcyte
® 

cells (Burkard et al. 2012; Scheller et al. 2012). So as a proof-of-principle 

concept, three different upcyte
®

 endothelial cells were chosen for genetic modification.  

BOECs are one such cell type that can be harvested with minimal injury. From the initially 

FVIII dose (U) = [body weight (BW) (kg) x desired FVIII increase (%)]/2 

1U FVIII per kg of bodyweight increases FVIII plasma levels by ~2% 
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isolated BOECs, an overall 3.4 x 10
12

 fold expansion can be achieved (Lin et al. 2002) which 

provides a sufficient source of cells for genetic modification during therapeutic application. 

Next to BOECs, mvECs can be harvested from skin graft. Together with BOECs and mvECs, 

LSECs were also included for genetic modification using a B-domain deleted (BDD) FVIII 

lentiviral construct, as LSECs are one of the primary cell types that produce FVIII in vivo. 

Full-length mature FVIII comprises of 2332 aminoacids, which is one of the large plasma 

proteins (Vehar et al. 1984).  The B domain within the FVIII molecule does not play a pivotal 

role in the coagulation activity (Toole et al. 1986). Therefore, starting from serine 743 to 

glutamine 1638, the B-domain was excised from the full length FVIII molecule that results in 

significant decrease in the size of protein molecule (38% reduction). Compared to the full-

length FVIII molecule, BDD-FVIII results in 17 folds increase in mRNA expression, which 

eventually results in 30%, increased protein secretion in eukaryotic cells (Pittman et al. 1993). 

Biological activity of B-domain deleted (BDD) version of the FVIII molecule in the 

coagulation cascade is comparable with full length FVIII (Miao et al. 2004).   

 

4.4.3 Cloning of FVIII gene 

B-domain deleted FVIII gene construct was cloned using Gateway
®

 Technology. Upon 

sequencing the cloned FVIII construct showed 100% homology when compared against 

parental vector and also with nucleotide database (NCBI). The expression of FVIII is driven 

by a CMV (Cytomegalovirus) promoter sequence. The CMV promoter is a constitutive RNA 

polymerase II promoter, which is active in wide range of eukaryotic cell types. RNA 

polymerase II is mainly responsible for in vivo transcription of mRNA within the cell. CMV 

is a strong promoter compared to other widely used RNA pol II promoters including Simian 

virus-40 (SV40) and Rous sarcoma virus (RSV) (Foecking & Hofstetter 1986). As FVIII is 

already a large glycoprotein, using a strong promoter like CMV can enhance the protein 

secretion. The FVIII gene construct driven by the CMV promoter also contains a gene 

conferring resistance towards blasticidine, which can be used as a selection marker. 

Blasticidine is an efficient selective antibiotic that was used to eliminate all the non-

transduced cells. When the transduced cells were cultured in medium containing antibiotic, it 

prevented the proliferation of untransduced cells (Bloor & Cranenburgh 2006), which resulted 

in a homogeneous population of cells harboring FVIII gene. 
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4.4.4 Lentiviral Transduction 

Lentiviral particles harboring FVIII gene were generated for transient transduction. Lentiviral 

vector, which is a modified version of retrovirus, is the most commonly used tool for the gene 

introduction into the cells. Lentivirus has the potential to get through the intact membrane of 

both dividing and non-dividing cells. However, the lentiviral particle cannot enter the cells 

that are in the G0 stage as this blocks the reverse transcription step (Amado & Chen 1999). 

Though there is an advantage of gene integration and long-term expression of the transferred 

gene, the risk of insertional mutagenesis is higher. Lentiviral systems have the potential for 

random gene integration into the host system, which may activate e.g. oncogenes or 

degenerate the cells (Pauwels et al. 2009; Gray 1991). For the in vitro proof-of-principle study 

to analyze the functionality of cloned FVIII vector, the lentiviral construct was used to 

transduce different endothelial cells. For the in vivo gene therapy application for hemophilia, 

alternative sources such as adenovirus that does not integrate the gene into host genome 

(Nagabhushan Kalburgi et al. 2013) or AAV (adeno-associate virus) can be investigated. 

There are a number of promising adenoviral gene therapy applications which are in phase III 

clinical trials such as for malignant glioma (European union), cancer gene therapy (U.S and 

China) (Shirakawa 2009). 

 

4.4.5 FVIII production in upcyte
®
 cells 

Upcyte
®

 endothelial cells (mvECs, BOECs and LSECs) were transduced with three different 

MOIs. Viral titer values for lentiviral vector that are packed with FVIII gene were measured 

by quantitative PCR. As the measurement is based on quantification of viral RNA, it is not 

possible to obtain information on the number of functional viral particles.  Also in order to 

increase the integration of more number of gene copies per cell for increased FVIII secretion, 

higher MOIs (MOI 1000, 10,000 and 100,000) were chosen. Among the three endothelial 

cells used, FVIII secretion was detected only from the upcyte
®
 mvECs supernatant. Compared 

to upcyte
®
 mvECs transduced with MOI 10,000 and 100,000; the amount of FVIII secreted 

from cells that had been transduced with MOI 1000 was 2.2-fold less. This result explains that 

the amount of FVIII secreted is directly proportional to the MOI used, which means the 

number of gene copies integrated into the host system from MOI 1000 was significantly lower 

than the other two MOIs. However, there was no difference observed in the amount of FVIII 

secreted from cells that has been transduced with MOI 10,000 and 100,000, this may be due 

to the possibility of maximum levels of FVIII secretion might have already been reached in 

these cells.  
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Compared to primary LSECs, FVIII secretion by upcyte
®
 mvECs was increased by an 

average of 15-fold. Taking the same parameters such as body weight into consideration and to 

increase the blood plasma concentration of the severe hemophiliacs from 0% to 5%, the 

number of upcyte
®

 mvECs required still would be 12x10
9
 cells. As the amount of cells 

required for treatment would still be high, it is necessary to increase the FVIII production 

(unit/cell). To select homogeneous population of FVIII producing cells, antibiotic selection 

process was included. The backbone vector construct used for upcyte
® 

process and also for 

FVIII transduction were same. This means that upcyte
® 

cells already carries gene for 

blasticidine resistance. So it was not possible to select the FVIII transduced
 

upcyte
® 

population from the non-transduced cells. To circumvent this issue, two approaches could be 

performed. The first approach could be to replace the gene conferring blasticidine resistance 

in the FVIII construct with hygromycin or neomycin resistance gene.  

 

The second approach could be to use primary endothelial cells for FVIII transduction. As the 

final aim of the work is to launch it for therapeutic application using primary autologous cells, 

it was decided to transduce primary mvECs using lentiviral particles carrying FVIII. As the 

lentiviral system incorporate the gene into the host genome, the cells were cultured further for 

3-5 passages to increase the number of cells carrying FVIII gene. At 80% confluence, the 

transduced cells were selected using blasticidine (7 µg/ml). The primary mvECs transduced 

with the lentiviral FVIII construct were selected and subsequently analyzed for their tube 

formation capacity, a major indicator of endothelial cell specific functionality. Endothelial 

cells play an important role in the process of angiogenesis by formation of new blood vessels 

in vivo (Ausprunk & Folkman 1977; Folkman 1971). This property of endothelial cells is 

mimicked in vitro by tube formation assay. Also, if these cells are transplanted in 

intracorporeal devices like the Cell Pouch System™ then formation of tubes to connect to the 

host vascular system is an important feature. The half-life of FVIII molecules is between 7.4 h 

and 20.4 h (van Dijk et al. 2005), so to increase the availability of the secreted FVIII 

molecule, it has to reach the blood circulation faster. As mvECs facilitate neovascularization 

(Scheller et al. 2012), therapeutic cells producing FVIII can be connected to the blood stream 

enabling the circulation of FVIII. This potentially protects hemophiliacs from severe episodes 

of excessive bleeding and greatly reduces annual therapy costs. 
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4.4.6 FVIII production in primary mvECs 

When compared with cells that have been transduced with MOI 10,000 and 100,000 of the 

FVIII lentiviral construct; the number of cells surviving the selection process employing a 

MOI 1000 was 10-fold less. As it was possible to select the cells, a homogeneous population 

of primary mvECs could be obtained, which resulted in higher FVIII secretion of those cells 

(220mU/1x10
6
cells/24 h). Compared with non-selected upcyte

®
 mvECs, while using the same 

MOIs nearly a 14.6-fold increase in production of FVIII was detected in transduced primary 

mvECs. Therefore the amount of cells required to treat a patient (same parameters) will be 

reduced by 14.6-fold i.e., 0.8 x10
9
 cells. The FVIII molecule is stabilized by the carrier 

protein VWF (Kaufman et al. 1989). Therefore, in order to increase the FVIII secretion 

(unit/cells), one future approach could be to co-transduce the primary cells with lentiviral 

particles carrying the FVIII gene and additionally the VWF gene.  

 

The generated FVIII producing primary mvECs are in the process of being evaluated by 

Sernova
TM

 in its subcutaneous device (Cell Pouch System™) in small animal studies from a 

safety and efficacy perspective.  
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5. Summary 

In summary this thesis deals with two major topics. First, the in vitro generation of three 

different hepatic models. Second, optimization of the hepatic models to drug development and 

therapy. 

  

Optimization of 3D Mimetix
® 

scaffolds for growth and viability of upcyte
®
 hepatocytes 

(Donor 653-03) was achieved using confocal microscopy. By modifying the fiber diameter 

(pore size) and thickness of scaffold, the penetration of upcyte
®
 hepatocytes and their 

metabolic functions, such as CYP3A4 activities, was optimized. Two additional donors, 

namely 422A-03 and 151, were also studied for the cell growth and CYP3A4 activity to 

analyze the donor-to-donor variation. Upcyte
®

 hepatocytes, LSECs and MSCs were co-

cultured to generate live organoids. The liver organoids were cultured for 10 days in Quasi-

vivo
®
 chambers and analyzed for cell organization within the organoids (HE staining, cell 

type specific immunohistochemistry), metabolic activity (CYP3A4), expression of functional 

genes such as albumin, as well as enzymes regulating glutamine and glucose (in situ 

hybridization). Organoids generated using upcyte
®
 hepatocytes, LSECs and MSCs were 

cultured in biologically derived de-cellularized scaffold (BioVaSc) in an ex vivo bioreactor for 

a period of 30 days. The vascular tree of the BioVaSc that has been re-populated with upcyte
®

 

mvECs also undergoes angiogenesis to connect the liver organoids to the host blood vessel 

system. CYP3A4 activity and cell-specific immunohistochemical analysis were also 

performed.The application of four donors of second generation upcyte
®
 hepatocytes (653-03, 

422A-03,151-03 and 10-03) for CYP induction and inhibition study under optimized culture 

conditions was established. The CYPs (CYP1A2, CYP2B6, CYP2C9 and CYP3A4) were 

inhibited in a concentration-dependent manner and the calculated IC50 values correlated with 

the classification of inhibitors. CYP3A4 and CYP2B6 activities are induced by a panel of 

inducers of all categories such as potent, moderate and non-inducer. For CYP3A4 induction, 

three different predictive models, namely the Relative Induction Score (RIS), AUCu/F2 and 

Cmax,u/Ind50 were analyzed.  Supernatant obtained from primary LSEC cultures, upcyte
®

 

endothelial cells (mvECs, BOECs and LSECs) that have been transduced with lentiviral 

particles carrying a FVIII-BDD gene were analyzed for the expression of FVIII protein using 

FVIII-ELISA. Primary mvECs were also transduced using FVIII lentiviral particles followed 

by antibiotic selection after which the secreted amount of FVIII increased compared to all the 

other endothelial cells such as primary LSECs and non-selected upcyte
®
 cells. 

 



 

117 

 

6. Appendix 

6.1 Sequence of FVIII 

FVIII DNA was sequenced at GATC Biotech and the sequence is shown below:  

TCACCTTTTCAACATCGCTAAGCCAAGGCCACCCTGGATGGGTCTGCTAGGTCCT

ACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAACATGGCTT

CCCATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCTTCTGAGGGA

GCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAAGATGATAAAGTCTTC

CCTGGTGGAAGCCATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGG

CCTCTGACCCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCTGGTAAAA

GACTTGAATTCAGGCCTCATTGGAGCCCTACTAGTATGTAGAGAAGGGAGTCTGG

CCAAGGAAAAGACACAGACCTTGCACAAATTTATACTACTTTTTGCTGTATTTGA

TGAAGGGAAAAGTTGGCACTCAGAAACAAAGAACTCCTTGATGCAGGATAGGGA

TGCTGCATCTGCTCGGGCCTGGCCTAAAATGCACACAGTCAATGGTTATGTAAAC

AGGTCTCTGCCAGGTCTGATTGGATGCCACAGGAAATCAGTCTATTGGCATGTGA

TTGGAATGGGCACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATT

TCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTA

CTGCTCAAACACTCTTGATGGACCTTGGACAGTTTCTACTGTTTTGTCATATCTCT

TCCCACCAACATGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGTCCAGAGG

AACCCCAACTACGAATGAAAAATAATGAAGAAGCGGAAGACTATGATGATGATC

TTACTGATTCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTTCCTTT

ATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACTTGGGTACATTACATTG

CTGCTGAAGAGGAGGACTGGGACTATGCTCCCTTAGTCCTCGCCCCCGATGACAG

AAGTTATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTAGGAAGTAC

AAAAAAGTCCGATTTATGGCATACACAGATGAAACCTTTAAGACTCGTGAAGCT 

ATTCAGCATGAATCAGGAATCTTGGGACCTTTACTTTATGGGGAAGTTGGAGACA

CACTGTTGATTATATTTAAGAATCAAGCAAGCAGACCATATAACATCTACCCTCA

CGGAATCACTGATGTCCGTCCTTTGTATTCAAGGAGATTACCAAAAGGTGTAAAA

CATTTGAAGGATTTTCCAATTCTGCCAGGAGAAATATTCAAATATAAATGGACAG

TGACTGTAGAAGATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTA

CTCTAGTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCTCC

TCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGATAATGTCAGACA

AGAGGAATGTCATCCTGTTTTCTGTATTTGATGAGAACCGAAGCTGGTACCTCAC

AGAGAATATACAACGCTTTCTCCCCAATCCAGCTGGAGTGCAGCTTGAGGATCCA

GAGTTCCAAGCCTCCAACATCATGCACAGCATCAATGGCTATGTTTTTGATAGTTT

GCAGTTGTCAGTTTGTTTGCATGAGGTGGCATACTGGTACATTCTAAGCATTGGA

GCACAGACTGACTTCCTTTCTGTCTTCTTCTCTGGATATACCTTCAAACCAAAATG

GTCTATGAAGACACACTCACCCTATTCCCATTCTCAGGAGAAACTGTCTTCATGTC

GATGGAAAACCCAGGTCTATGGATTCTGGGGTGCCACAACTCAGACTTTCGGAAC

AGAGGCATGACCGCCTTACTGAAGGTTTCTAGTTGTGACAAGAACACTGGTGATT

ATTACGAGGACAGTTATGAAGATATTTCAGCATACTTGCTGAGTAAAAACAATGC

CATTGAACCAAGAGAAATAGAAGTCACCTGGGCAAAGCAAGGTAGGACTGAAAG

GCTGTGCTCTCAAAACCCACCAGTCTTGAAACGCCATCAACGGGAAATAACTCGT

ACTACTCTTCAGTCAGATCAAGAGGAAATTGACTATGATGATACCATATCAGTTG

AAATGAAGAAGGAAGATTTTGACATTTATGATGAGGATGAAAATCAGAGCCCCC

GCAGCTTTCAAAAGAAAACACGACACTATTTTATTGCTGCAGTGGAGAGGCTCTG

GGATTATGGGATGAGTAGCTCCCCACATGTTCTAAGAAACAGGGCTCAGAGTGGC

AGTGTCCCTCAGTTCAAGAAAGTTGTTTTCCAGGAATTTACTGATGGCTCCTTTAC

TCAGCCCTTATACCGTGGAGAACTAAATGAACATTTGGGACTCCTGGGGCCATAT

ATAAGAGCAGAAGTTGAAGATAATATCATGGTAACTTTCAGAAATCAGGCCTCTC
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GTCCCTATTCCTTCTATTCTAGCCTTATTTCTTATGAGGAAGATCAGAGGCAAGGA

GCAGAACCTAGAAAAAACTTTGTCAAGCCTAATGAAACCAAAACTTACTTTTGGA

AAGTGCAACATCATATGGCACCCACTAAAGATGAGTTTGACTGCAAAGCCTGGGC

TTATTTCTCTGATGTTGACCTGGAAAAAGATGTGCACTCAGGCCTGATTGGACCC

CTTCTGGTCTGCCACACTAACACACTGAACCCTGCTCATGGGAGACAAGTGACAG

TACAGGAATTTGCTCTGTTTTTCACCATCTTTGATGAGACCAAAAGCTGGTACTTC

ACTGAAAATATGGAAAGAAACTGCAGGGCTCCCTGCAATATCCAGATGGAAGAT

CCCACTTTTAAAGAGAATTATCGCTTCCATGCAATCAATGGCTACATAATGGATA

CACTACCTGGCTTAGTAATGGCTCAGGATCAAAGGATTCGATGGTATCTGCTCAG

CATGGGCAGCAATGAAAACATCCATTCTATTCATTTCAGTGGACATGTGTTCACT

GTACGAAAAAAAGAGGAGTATAAAATGGCACTGTACAATCTCTATCCAGGTGTTT

TTGAGACAGTGGAAATGTTACCATCCAAAGCTGGAATTTGGCGGGTGGAATGCCT

TATTGGCGAGCATCTACATGCTGGGATGAGCACACTTTTTCTGGTGTACAGCAAT

AAGTGTCAGACTCCCCTGGGAATGGCTTCTGGACACATTAGAGATTTTCAGATTA

CAGCTTCAGGACAATATGGACAGTGGGCCCCAAAGCTGGCCAGACTTCATTATTC

CGGATCAATCAATGCCTGGAGCACCAAGGAGCCCTTTTCTTGGATCAAGGTGGAT

CTGTTGGCACCAATGATTATTCACGGCATCAAGACCCAGGGTGCCCGTCAGAAGT

TCTCCAGCCTCTACATCTCTCAGTTTATCATCATGTATAGTCTTGATGGGAAGAAG

TGGCAGACTTATCGAGGAAATTCCACTGGAACCTTAATGGTCTTCTTTGGCAATG

TGGATTCATCTGGGATAAAACACAATATTTTTAACCCTCCAATTATTGCTCGATAC

ATCCGTTTGCACCCAACTCATTATAGCATTCGCAGCACTCTTCGCATGGAGTTGAT

GGGCTGTGATTTAAATAGTTGCAGCATGCCATTGGGAATGGAGAGTAAAGCAAT

ATCAGATGCACAGATTACTGCTTCATCCTACTTTACCAATATGTTTGCCACCTGGT

CTCCTTCAAAAGCTCGACTTCACCTCCAAGGGAGGAGTAATGCCTGGAGACCTCA

GGTGAATAATCCAAAAGAGTGGCTGCAAGTGGACTTCCAGAAGACAATGAAAGT

CACAGGAGTAACTACTCAGGGAGTAAAATCTCTGCTTACCAGCATGTATGTGAAG

GAGTTCCTCATCTCCAGCAGTCAAGATGGCCATCAGTGGACTCTCTTTTTTCAGAA

TGGCAAAGTAAAGGTTTTTCAGGGAAATCAAGACTCCTTCACACCTGTGGTGAAC

TCTCTAGACCCACCGTTACTGACTCGCTACCTTCGAATTCACCCCCAGAGTTGGGT

GCACCAGATTGCCCTGAGGATGGAGGTTCTGGGCTGCGAGGCACAGGACCTCTAC

TGA 
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