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Introduction

Superconductivity attracted enormous attention after its discovery in 1911 by the Dutch

physicist H. Kamerlingh Onnes1. He succeeded in liquefying 4He, opening the possibility

to study the resistivity of metals at extremely low temperatures. Thereby he observed that

the electrical resistance of mercury disappears when cooled down to 4.2K [1]. Later it

turned out that a large number of metals and alloys are superconductors. The typical crit-

ical temperatures range from 1K to about 18K. A first successful attempt to describe the

properties of superconductors has been reported by Ginzburg and Landau in 1950. They

applied their theory of second-order phase transitions to characterize the behavior of the

superconductors close to the superconducting (SC) transition temperature Tc [2]. Whereas

their approach was phenomenological, a microscopic theory, starting from the constituent

electrons and ions, was lacking until 1957, when Bardeen, Cooper and Schriefer (BCS)

explained the phenomenon of SC in metals and alloys [3]. According to their so called

‘BCS-theory’ (for which Bardeen, Cooper and Schriefer were awarded with the Nobel

Prize 1972), two electrons of opposite spin and momentum form “Cooper pairs” and con-

dense into a symmetry broken ground state. The attraction of two electrons, which is

necessary to form the pairs is mediated by the interaction of the electrons with phonons

(lattice vibrations). This theory explained existing experiments and makes a lot of pre-

dictions, that have later been confirmed experimentally. The probably most well-known

is the ‘isotope effect’: Due to the essential role of the lattice vibrations, the SC transition

temperature depends on the mass of the atoms (matom), which form the crystal lattice,

i.e., Tc ∝
√

matom
−1. This proportionality has been checked experimentally by replacing

the atoms in the crystal by different isotopes of the same element.

The discovery of high-temperature superconductors (HTSC) in 1986 by Bednorz and

Müller (Nobel Prize 1987) dramatically enhanced the interest in superconductivity. They

1For the achievement of liquefying 4He H. Kamerlingh Onnes was honored with Nobel Prize in 1913

1



2 INTRODUCTION

measured an unusually high SC transition temperature of about 33K in the ‘ceramic’ com-

pound La2−δBaδCuO4 [4]. In the following months and years a burst of activity started

and further high-Tc superconductors, all of cuprate type (i.e. CuO2-planes as essen-

tial lattice units), were synthesized: La2−δSrδCuO4, YBa2Cu3O7−δ, Bi2Sr2CaCu2O8+δ,

Tl2Ba2CuO6+δ , HgBa2Ca2Cu3O8+δ or Ca2−δNaδCuO2Cl2, to name only a few. The crit-

ical SC-transition temperatures (Tc) for these materials range up to Tc = 138K for

HgBa2Ca2Cu3O8+δ [5]. This makes the HTSC, in principle, interesting candidates for

technical applications, because this temperature can be easily achieved using liquid N2

instead of rather expensive liquid 4He. However, the synthesis of these new copper-oxide

based materials was mostly empirical, because a ‘guiding theory’, i.e., the BCS-theory ev-

idently fails to describe the high-Tc superconductors. For example, the transition tempera-

ture of the high-Tc superconductors shows essentially no isotope effect at optimal doping,

which is, as discussed above, in contradiction to key predictions of the BCS-theory. Also

the experimentally observed d-wave symmetry of the SC order parameter [6, 7] cannot be

understood straight forwardly in terms of a conventional phonon mediated mechanism.

These experimental results suggest that the mechanism of high-Tc superconductivity is

mainly of an electronic nature.2 However, until today there is no consensus about the

microscopic origin of the high-Tc superconductivity.

Such a theory would obviously be important in order to ‘show the way’ to obtain super-

conductors with a higher transition temperature, than available today.

An important common feature of all high-Tc superconductors is the presence of stacked

copper-oxide layers, separated by layers containing rare earth metals. It is well accepted

that SC takes place in these copper-oxide layers. Doping with rare earth metals controls

the charge carrier density in the copper-oxide planes and, thereby, has a profound impact

on the material properties. At zero doping no ‘free’ charge carriers are available in the

copper-oxide planes, and the materials show antiferromagnetic (AF) Mott insulating

behavior. The situation changes already for small doping (δ), i.e., at δ ≈ 3% the

copper-oxide layers start to become SC (see Fig. 3.3). As soon as it became clear

that BCS-theory cannot fully account for high-Tc superconductivity, different theories

have been proposed. The simplest model for the copper-oxide planes is the so called

‘Hubbard-model’, containing only two ingredients: a kinetic energy term, which

describes the motion of the electrons on a two-dimensional (2D) lattice, and an on-site

interaction term. The latter models the Coulomb repulsion, i.e., if two electrons occupy

the same orbital. Despite its conceptual simplicity the Hubbard-model still awaits an

exact solution in two and three dimensions. The standard approach to describe such a

2Recent experiments also suggest the importance of an interaction between electrons and phonons [8, 9]

in copper-oxide superconductors, however it is well established, that the electron-electron interaction plays

a major role in the HTSC.
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Figure 1: Lattice structure of a typical high-Tc superconductor

(La2−δSrδCuO4) The Strontium atoms between the CuO2 layers remove

electrons from these layers, and thereby introduce holes. These holes are

the effective charge carriers in the superconducting CuO2 layers. Thus dop-

ing with Strontium changes the properties of La2−δSrδCuO4 from an AF

insulator at zero doping to a superconductor when 0.7
<∼ δ

<∼ 0.25.

system would be to start from the non interacting system and introduce the interaction

as a small perturbation. This assumes typically that the physics of the interacting

system evolves adiabatically, i.e., from the non-interacting system when ‘switching’ on

smoothly the interaction. This picture holds, if the interaction is small in comparison to

the bandwidth. However, for the physics of the high-Tc superconductors this standard

Fermi-liquid approach does not work, because the Coulomb interaction is of the order of

the bandwidth or even larger and, therefore, cannot be considered as a small perturbation.

A possible way out is to solve the Hubbard-model numerically. There are in principle

two complementary ways: One possibility is to diagonalize the Hamiltonian exactly.

This method is very successful in studying the ground-state properties of small sys-

tems. For bigger systems and finite temperatures, however, this method cannot be

applied successfully, because the Hilbert space grows like 4Ns , where Ns denotes the

number of lattice sites. The second possibility is to apply importance sampling of

the states. This procedure is carried through using the Quantum-Monte Carlo (QMC)

technique. QMC simulations of fermionic models have been very useful to study the

Hubbard-model [10, 11, 12, 13, 14]. The maximum system sizes are typically of the

order of 100 lattice sites and also the accessible temperatures range down to T ≈ 0.1t,

where t corresponds to about 0.5eV . Thus, the accessible parameter regime is rather
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limited. The limitation is due to the necessary anti-symmetrization of the fermionic

wave function, which introduces a severe sign problem in the importance sampling of the

states. Moreover, this sign problem is strongly doping dependent, and becomes worse

upon going away from half-filling further reducing the accessible parameter (temperature

and system size) range.

On the analytical side, one of the first theoretical proposals for understanding HTSC was

Anderson’s so called “Resonating-Valence Bond” (RVB) theory [15]. In this theory, the

Hilbert space of the Hubbard-model is reduced to the subspace of no double occupancies.

The RVB ground state can be formally generated as a Gutzwiller projection of the BCS

ground-state wave function, where electrons bind to a spin-singlet pair. These pairs then

form a kind of Bose liquid of “pair bonds”. This phenomenological ansatz is able to

explain a variety of experimental observations [16], e.g. the pseudogap, properties of

nodal quasiparticles and approximate spin-charge separation. Doping of the RVB-liquid

state naturally leads to superconductivity. However, the original RVB Ansatz is not able

to describe the long-range antiferromagnetic phase apparent in all HTSC.

A second rather different, successful theory for the HTSC is the ‘SO(5)-theory’ of

high-Tc superconductivity [17, 18]. Here, the general idea is to use symmetry to resolve

uniquely the competition between the different, yet nearly degenerate ground-states at

low temperatures and energy. The AF has an underlying SO(3) symmetry, broken at

TNéel and the SC a U(1) symmetry, broken at Tc. The SO(5)-theory comprises the SO(3)

and the U(1) symmetry and enlarges it to an SO(5)-Lie algebra [18]. This then allows

for ‘rotations’ from the AF to the SC states and vice versa, and thereby connects both

phases quite naturally. As described later in more detail, the SO(5)-theory describes

the physics of the HTSC in terms of characteristic bosonic excitations, i.e., triplets and

hole-pairs. It has recently been shown that the ‘2D-projected-SO(5) theory’, which

projects out the ‘high-energy’ physics of the double occupancies of charge carriers (due

to the Hubbard-U ≈ 5eV ), can account for the global phase diagram [19], i.e., a SC

phase, the experimentally observed Mott-Hubbard physics and dynamical properties,

such as the dispersion of the k = (π, π) neutron resonance peak [20].

Both, the SO(5)-theory as well as the RVB phenomenology capture essential ingredients

of the physics in the copper-oxide planes of the HTSC, using a bosonic description of the

low energy physics.

In this effective bosonic description, the difficulties connected with fermionic Quantum-

Monte Carlo simulations can be circumvented. Chap. 1 is dedicated to a description

of an algorithm that is perfectly suited to simulate bosonic model systems, namely

the Stochastic Series Expansion (SSE). Also its implementation is discussed in the

framework of the operator-loop update [21, 22]. One major part of this work was to

optimize the algorithm. Last, but not least, these optimizations made it possible to study
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systems of the order of ≈ 104 lattice sites. This corresponds to an increase of about

one order of magnitude in comparison to earlier implementations and two orders in

comparison with fermionic Quantum-Monte Carlo simulations.

The next chapter (Chap. 2) addresses the question how a physically relevant bosonic

Hamiltonian for the high-Tc superconductors may be constructed. One possibility is pro-

vided by the so called ‘Contractor-Renormalization Group approach’. This method has

been used to map the fermionic Hubbard-model onto an effective low-energy Hamilto-

nian [23], which can subsequently be analyzed numerically using the Stochastic-Series

Expansion [20, 19].

As already mentioned above, there exists also an alternative way to derive an effec-

tive bosonic Hamiltonian for the HTSC: The SO(5)-theory of high-Tc superconductiv-

ity [17, 18]. The SO(5)-theory starts from the experimental observation, that all copper-

oxide superconductors share a significant common feature in their phase diagram, i.e the

proximity of to competing phases: antiferromagnetism (AF) and superconductivity (SC).

The main idea of the SO(5)-theory is to use symmetry arguments, leading to a unified de-

scription of antiferromagnetism and superconductivity. This concept is motivated by the

success of employing symmetry principles in other fields in physics. One of the most fa-

mous examples of symmetry approaches is the unification of the magnetic field ~B and the

electric field ~E into a common electro-magnetic field tensor Fµν in the theory of relativity.

The SO(5)-theory is presented in chapter 3 and, as already stated above, it permits to

construct an effective bosonic Hamiltonian for the high-Tc superconductors. Aston-

ishingly, the model which is motivated by the SO(5)-theory has a strong similarity to

the Hamiltonian, that has been constructed independently in chapter 2 by means of the

Contractor-Renormalization Group approach (in the physically relevant strong-coupling

regime U ≈ 8t) [23].

So far the three concepts of treating strongly-correlated many-body systems had been

connected only loosely, i.e., the SO(5)-theory as well as the Contractor-Renormalization

Group approach permit to motivate an effective bosonic Hamiltonian, that can be

studied efficiently using the SSE. However, when looking at the energy scales in the

HTSC problem, the connection between the SO(5)-theory, the SSE and the Contractor-

Renormalization Group approach becomes obvious (see Fig. 2): The energy scale of

the interactions in the Hubbard-model, which is commonly believed to be the simplest

relvant model for the HTSC, is of the order of several eV (U ≈ 5 eV). But the interesting

phenomena in the high-temperature superconductors, i.e., the competition between

antiferromagnetic-, superconducting- or charge-ordered states take place at an energy
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scale corresponding to kBTc, i.e., at only few meV (100K correspond to ≈ 8.6meV). In or-

der to extract the relevant physics for the low-energy regime from a ‘high-energy’ model,

the three concepts, i.e. the SO(5)-theory, the SSE and the Contractor-Renormalization

Group technique can be combined to a multi-stage procedure, depicted in Fig. 2. When

starting from the ‘high-energy’ Hubbard-model, the Contractor-Renormalization Group

technique permits (within only one iteration) to construct an effective Hamiltonian, that

brings the energy scale down to 100 − 150 meV [23] (see also Fig. 2.4). Subsequently,

this effective Hamiltonian can be studied at temperatures corresponding to Tc using the

SSE. On the other hand, according to the the SO(5)-theory, the competition between

the quasi-degenerate states at these low temperatures should be controlled by an SO(5)-

symmetry close to a multicritical point [18].

In the following two chapters (Chap. 4 and Chap. 5), the results obtained by the bosonic

Quantum-Monte Carlo simulations are presented. Chapter 4 starts with a detailed numer-

ical study of the so called ‘projected-SO(5) model’, using the essentially numerical exact

Stochastic Series Expansion (SSE). The projected-SO(5) model describes the physics in

terms of four hard-core bosons, i.e. three triplets and the hole-pair or Cooper-pair bosons.

The boson, which contains two doubly occupied (with electrons) sites has been projected

out. The results are encouraging: The projected-SO(5) model indeed reproduces salient

features of the high-Tc superconductors and captures the competition between AF and SC

order [24, 19]. But what about the role of the SO(5)-symmetry? In the projected-SO(5)

model the SO(5)-symmetry is manifestly broken on the Hamiltonian level, but for the

validity of the SO(5)-theory the Hamiltonian does not need to be SO(5)-invariant. This

is expressed already in Zhang’s original SO(5)-theory [17], where the chemical potential

breaks the SO(5)-symmetry. Nevertheless, in the low energy regime the competition of

antiferromagnetism and superconductivity in the vicinity of multi-critical point should be

described by SO(5)-scaling relations [?].

Due to the efforts spent towards an optimization of the code [21, 22], it was possible

to calculate the 3D-phase diagram with an unprecedented accuracy, permitting even to

determine the scaling behavior close to multi-critical points. This is essential, since it

allows to address the central question of SO(5)-symmetry restoration in the vicinity of a

multi-critical point. The detailed analysis is presented in in Sec. 4.2.

Restricting the theory to antiferromagnetism and superconductivity is, however, not

sufficient, because the real copper-oxides display also a variety of other different phases,

for example charge density waves [25, 26, 27, 28, 29]. It is under discussion how

these ‘checkerboard’ like charge density waves are connected to superconductivity. In

Ref. [25] this question has been addressed by means of scanning tunneling microscopy
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Figure 2: Overview of the energy scales relevant for a description of the

high-Tc superconductors. The microscopic interactions between electrons

and ions are of the order of the Hubbard U (≈ 5 eV). The interesting physics,

however, takes place at considerably lower energies of the order of kBTc
<∼

10meV. When starting, for example with the Hubbard-model, one may use

a renormalization-group flow (CORE) to derive an effective Hamiltonian,

where the interaction energies are of the order of 100 − 150 meV (∼ J).

This is the energy-scale of the t − J model as well as the projected-SO(5)

model. In the next step, one has to go down to even lower energies and in-

creasing length-scales. In the present work this is performed using bosonic

QMC simulations, which allow for temperatures of about J/20 (5 − 7 meV).

In this regime, the different orders compete and the energetically most fa-

vorable one should be observable. If the SO(5)-theory is valid, the Hamil-

tonian, which describes the experimentally observed physics, does not need

to be SO(5)-symmetric. But in the low energy regime the SO(5)-symmetry

should be restored ‘dynamically’ close to a multi-critical point.
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(STM) experiments. STM yields that the superconducting coherence peaks, ubiquitous

in nearly-optimal doped tunneling spectra, disappear in favor of a local ‘checkerboard’

charge order. In order to include also charge-ordered phases, the projected-SO(5) model

needs to be extended.

As shown in chapter 5 the competition between charge order and superconductivity can

be incorporated in the projected-SO(5) model, by taking into account longer-ranged

Coulomb interactions. These additional interactions arise naturally from the Contractor-

Renormalization Group analysis [30] as well as from the SO(5)-theory [31].

The numerical investigation of the extended model starts with the calculation of the

ground-state phase diagram [32]. As discussed in Sec. 5.3, the extended model indeed

permits an explanation for the experimentally observed [25, 26, 27, 28, 29] charge

ordered patterns. Next, motivated by the experimental results in Ref. [33], the doping

dependence of the checkerboard order parameter is studied (Sec. 5.3.1). It is shown

there, that in the extended projected-SO(5) model the checkerboard order parameter

displays maxima for filling factors of δhole = 1/16, 1/8, 3/8 and 1/4. Moreover, at

exactly these dopings the system shows Mott insulating behavior. This offers a natural

explanation for the experimental results of Ref. [33], in particular, for the ‘magic

numbers’ δhole. The subsequent sections are dedicated to the interplay of checkerboard

and superconducting phases. First, the checkerboard to superconductor phase transition

is studied (Sec. 5.3.2). An interesting interplay of superconductivity and checkerboard

order as a function of temperature is reported in Sec. 5.3.2: Starting at T = 0 from a

SC-ground state the system shows, with increasing temperature, checkerboard order that

again disappears upon further heating in favor of superconductivity. Such a ‘reentrance

behavior’ upon increasing temperature is rare but not unique. It has been observed in the

Ising antiferromagnet [34], as a Pomeranchuk effect in 3He and in a 2D hardcore-boson

model [35].

In Sec. 5.3.3 data are presented, displaying another unusual phenomenon, namely the

coexistence of charge order and superconductivity. When considering the model as a

more generalized effective Hamiltonian, the charge bosons may be loosely interpreted

as 4He atoms. Then the coexistence of these two at first glance diametrically opposed

order parameters, i.e., charge order and SC order, can be interpreted in terms of a

‘supersolid’ behavior. The possible experimental detection of this phenomenon by Kim

and Chan [36, 37] has recently led to renewed interest in this topic.

Finally, in chapter 6 the results are summarized.



1
Stochastic-Series Expansion

In modern many body physics numerical simulations have proven to be an important tool

to calculate macroscopic quantities (observables) originating from a microscopic model

for some physical system. The numerical techniques that can be applied successfully to

strongly interacting many body systems can be classified by their Ansatz: One path to

follow, is to diagonalize the Hamiltonian. This route, at least in principle, allows to ac-

cess any physical quantity, but due to the exponential growth of the Hilbert-space with

the number of orbitals or lattice sites, only very small systems can be treated using diago-

nalization techniques. Several strategies to overcome this limitation have been developed.

Some try to combine a small cluster with other clusters (CPT), couple a small cluster to

bath sites or to reduce the Hilbert-space following a renormalization group scheme. For

a review see Ref. [38]. Despite the restrictions, these techniques can be very useful to

understand the physics on small length scales and at low temperatures. But on the other

hand, if one is interested in questions that imply long distances or finite temperature, one

has to follow a different direction. One possibility to avoid the disadvantages of the exact

diagonalization Ansatz are Quantum-Monte-Carlo (QMC) simulations. Using QMC one

does not directly diagonalize the Hamiltonian, but one tries to describe the physical many-

body system by importance sampling of its many-body states. Quantum-Monte Carlo has

proven to be an excellent tool for quantum many body physics since its first formulation

in the eighties [39, 40]. In the following, a description of a very efficient member of these

“importance-sampling methods”, namely the Stochastic-Series Expansion, is presented.

1.1 Formulation of the SSE

The main idea of all known types of QMC simulations is to map the d-dimensional quan-

tum problem to d + 1-dimensional classical problem that can be solved using “standard”

9



10 CHAPTER 1. STOCHASTIC-SERIES EXPANSION

Monte-Carlo. Starting point of most QMC simulations is the Trotter decomposition of the

grand-canonical partition function:

Z = Tr
(

e−βĤ
)

= Tr

(

Lτ
∏

l=1

e−∆τĤ

)

, (1.1)

where the imaginary time

∆τ =
β

Lτ
, (1.2)

adds a further dimension to the system. Here β is the inverse temperature and Lτ is the

number of time slices. However, simulating systems in discrete imaginary time introduces

a systematic error of the order of O(∆τ 2). Thus, these methods require a delicate extrapo-

lation of ∆τ → 0 (Lτ → ∞). Furthermore these type of QMC simulations suffer from the

purely local update schemes, which often do not sample all possible states efficiently, and

as a consequence they show huge autocorrelation times. The last inconvenience can be

avoided using a more recent class of QMC algorithms, the so called “cluster-algorithms”

or “loop-algorithms” [41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. These algorithms reduce in

some cases the autocorrelation time by several orders of magnitude, as they use non-local

cluster updates. Unfortunately this improvement does not come without some serious dis-

advantages, i.e., the loop-udate scheme cannot be ported to any kind of second-quantized

Hamiltonian: it is often a nontrivial task to find a loop formulation for a new Hamiltonian

and some interactions cannot be incorporated in the loop scheme. These interactions can

slow down the simulation considerably, because one has to add them to the loop as a

posteriori acceptance probabilities after the construction of the loop. An other problem

connected with some loop-update schemes occurs, when there is a high probability for

one vertex to occupy the system, then the algorithms tends to freeze [41, 51].

A considerable improvement has been developed by A. Sandvik named the Stochastic-

Series Expansion (SSE) (see Ref. [52] and references therein). The SSE is very efficient,

applicable to a wide range of Hamiltonians and in principle exact. Starting point for the

SSE is also the grand-canonical partition function, but in contrast to the Trotter decompo-

sition, one chooses a convenient Hilbert base {| α〉} and expands the partition function in

a Taylor series.

Z =
∑

| α〉

∞
∑

n=0

(−β)n

n!
〈α |Ĥn| α〉. (1.3)

Sandvik has shown [52] that the statistical relevant powers are centered around

〈n〉 ∝ βNs, (1.4)

where Ns is the number of orbitals (or lattice sites). Thus, one can truncate the power

series after some L ∝ βNs, chosen such, that no systematic error is introduced by the
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cutoff. In practice, one determines a suited cutoff length L during an initial thermaliza-

tion phase: One simply starts with an arbitrary length L and whenever the actual cutoff

length is exceeded one increases it by a factor of 1.1 – 1.2.

So far the first problem in evaluating Eq. (1.3), namely the infinite sum over all power,

has been reduced to a numerically tractable one. But there still remains the sum over

the complete Hilbert base {| α〉}, that cannot be evaluated exactly, because the Hilbert

space grows exponentially with the number of orbitals (or lattice sites). The SSE method

evaluates the sum over all basis states by sampling them according to their physical rel-

evance. Let Ĥ be composed of a fixed number of elementary interactions involving one

or two sites, for example chemical potentials and Hubbard terms, as on-site interactions

or hopping terms and nearest neighbor interactions as off-site (two-site) interactions. In

order to obtain a uniform notation, one rewrites the on-site interactions in terms of bond

operators, e.g. a chemical potential term µ · n̂(site1) + µ · n̂(site2) can be reformulated

as 1
C
µ · (n̂(site1) + n̂(site2)), where the constant C assures that the sum over all new

bond operators is equal to the sum of the initial on-site operators. Thus, now it is possible

to write the Hamiltonian Ĥ as a finite sum over bond operators Ĥbi
=
∑

i Ĥbi
, and the

operator strings Ĥn in Eq. (1.3) can be expressed in terms composed of

n
∏

i

H
(ai)
bi

, (1.5)

here ai labels the operator type and bi the bond on which the elementary interaction ai

(e.g. hopping or spin flip) acts on. For actual calculations it is convenient to have one fixed

number of factors in the term (1.5). This can be accomplished by introducing ‘empty’ unit

operators
�

and Eq. (1.3) reads [53]:

Z =
∑

α

∑

{SL}

(−β)n(L − n)!

L!
〈α |

L
∏

i=0

(−Ĥ
(ai)
bi

)| α〉, (1.6)

where {SL} denotes the set of all concatenations of L bond operators Ĥ
(a)
b and n the

number of non unit operators in SL. Now one can sample (α, SL) accordingly to their

relative weights with a Monte Carlo procedure, but only if it is ensured that the energy of

each bond operator is non positive. This requirement is crucial, because in order to fulfill

detailed balance one chooses the weight of each bond operator proportional to its negative

matrix element. If a matrix element is however positive there are three possibilities, to

ensure anyhow purely positive acceptance rates:

• If the positive matrix element is a diagonal matrix element, then one can simply

add a constant to all diagonal matrix elements and thereby redefine the zero energy

such, that all diagonal matrix elements are zero or negative.
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• If the positive matrix elements can appear only pairwise (or in any even number),

then one can simply alter the sign, without changing the system’s physics, because

in Eq. 1.3 it is the product of the matrix elements that contributes to the partition

function.1

• If none of the two solutions above can be applied, one has to replace the acceptance

probability p by p′ = |p|, and calculate the expectation value of some observable

Ô as [40, 54, 55]:

〈Ô〉 =
〈Ôsign(p)〉
〈sign(p)〉 . (1.7)

Unfortunately the 〈sign(p)〉 tends exponentially to zero with increasing inverse tem-

perature β and the number of sites (orbitals) Ns. As a direct consequence the com-

putation time grows also exponentially with β ·Ns, what imposes restrictions on the

accessible temperatures and system sizes.

1.2 Operator-Loop Update

In the preceding section the principle idea of the SSE has been reviewed. To apply the

SSE to a physical problem one needs an effective update mechanism to sample the states

| α〉 and operator sequences SL. In the following the Operator-Loop Update, proposed by

Sandvik [52] is reviewed. The Operator-Loop Update uses the so called world-line repre-

sentation, here the x-axis represents the sites and the y-axis the propagation level l from

l = 1 to l = L (see Fig. 1.1 left). The update mechanism is separated in two fundamental

steps, a diagonal and an off-diagonal update, that alter during a simulation. Starting point

is an empty world-line lattice with an arbitrary start state | α0〉 for all propagation levels

(see Fig. 1.1). The update mechanism starts with a diagonal update, where for each propa-

gation level one chooses one bond. If the bond operator, corresponding to the chosen bond

is off-diagonal, the bond is left unchanged. If the bond operator is diagonal or empty, it is

replaced by an empty or diagonal operator, with a probability satisfying detailed balance,

i.e., a bond operator with lower energy is more likely to be kept or inserted than one with

a higher energy. Following Sandvik we write a state at propagation level l:

| α(l)〉 =

l
∏

i=1

Ĥ
(ai)
bi

| α(0)〉, (1.8)

1This procedure corresponds a to gauge transformation on all lattice sites with odd parity, thus this trick

is restricted to non frustrated lattices.
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Figure 1.1: Left: Example of the world-line representation for a six site sys-

tem, with two different particle types, before the first diagonal update. The

initial state | −, 1, 2,−, 1, 1〉 has been selected arbitrarily. The cutoff length

L is chosen to be nine (L = 9). Right: The same world-line representation

as left, but now the diagonal update has been performed. In this example

seven out of nine possible empty operators (i.e. unit operators) have been

replaced.

The detailed balance conditions then read:

P (Ĥ(0)(l) → Ĥ(diag)(l) = min

(

1,
Mβ〈α(l) |Ĥ(diag)

b | α(l)〉
L − n

)

, (1.9)

P (Ĥ(diag)(l) → Ĥ(0)(l) = min

(

1,
L − n + 1

Mβ〈α(l) |Ĥ(diag)
b | α(l)〉

)

. (1.10)

In contrast to the diagonal update, the off-diagonal update introduces changes in the

world-lines and thereby samples the states. In order to perform an off-diagonal update,

one selects arbitrarily a world-line ns and a propagation level l. Next, one inserts a lo-

cal change to the world-line and propagates this change through the world-line space until

the initial change is reached again, and the artificially introduced discontinuity is ‘healed’.

The aim of constructing such a closed loop is to obtain a changed, but valid world-line

web. To achieve this, one selects a propagation direction (up or down) and moves the

initial change (‘loop head’) in that direction, until one reaches an interaction vertex. Now

one has to decide how to go on. The loop head can go straight on, or if the Hamiltonian

contains an appropriate interaction it can turn, jump or bounce. The straight path is always
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(a) (e)(d)(c)(b)

Figure 1.2: Possible paths in the Operator-Loop Update: (a) Path straight:

always possible because the resulting vertex is diagonal. (b) Path jump:

possible if Hamiltonian contains hopping or site interchange terms. (c) Path

turn: can occur in the construction of the loop, if the Hamiltonian has a

term creating or annihilating two particles on adjacent sites. (d) Bounce

path: Here the loop head simply changes its direction, in some cases this can

enlarge the autocorrelation time, because the choosing the bounce path can

result in an unchanged vertex. (e) Loop head ends.

possible, because it is equivalent to the insertion of a diagonal vertex. There is also a fifth

possibility: The loop head can get stuck. In the latter case one has to restart the loop from

the initial world-line ns and propagation level l and move the loop head in the the opposite

direction until the loop gets stuck again, or the initial discontinuity is reached and healed.

The selection of a path through a vertex has to fulfill detailed balance. Thus, an interaction

vertex with lower energy is more likely to be inserted than one with a higher energy. If

the outgoing leg is chosen, the loop head moves along the world-line in the corresponding

direction, until it reaches the next vertex, where again a new path has to be selected. This

process has to be repeated until the loop head returns to its initial position (ns, l) and a

change is applied also to the ‘dangling’ end of the world-line. This closes the loop and

the propagation of the loop head is stopped. The world-line web contains now only valid

world-lines, in the sense, that there is no change in a world-line, that is not mediated by

some elementary bond operator Ĥ
(a)
b represented by a non-diagonal vertex. In the limit of

high temperatures a third update step can be useful: From Eq. (1.4) it becomes obvious,

that the world-line web of a simulation at high temperatures, i.e., β → 0, will contain

mostly empty bond operators, what decreases the efficency of the off-diagonal update.

Thus, it takes longer to sample the states | α〉. One can compensate this by adding a free

world-line update to the simulation, which changes the occupation of entire world-lines,

if they are not connected to any vertex.

Finally, one has to proof the ergodicity of the Operator-Loop Update mechanism, i.e., that

starting the simulation with a given | α〉 the update mechanism can reach any | α′〉 ∈ Hα,

where Hα denotes the basis of the Hilbert space. Recalling Eq. (1.8), it is obvious that

any | α′〉 = | α(l)〉 can be sampled, if a finite operator sequence can be composed from
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Figure 1.3: Example for the construction of a loop update. Left: Start of the

off-diagonal update, on world-line ns = 2 a local change (annihilation of a

particle of type 2) is inserted at propagation level l = 6 and the chosen direc-

tion is “up”. The loop head reaches the first interaction vertex. Right: Now

the loop reached its starting position after a replacing four diagonal vertices

by a sequence of ‘turn’, ‘jump’, ‘turn, ‘turn’ off-diagonal vertices. In the last

step the initial discontinuity is removed. (Pictures by A. Dorneich [56])

the terms forming the Hamiltonian, such that any | α〉 can be connected via Eq. (1.8) with

| α′〉:

| α′〉 =

LOS
∏

i

Ĥ
(ai)
bi

| α〉. (1.11)

Thus, if it is ensured that the length of longest necessary operator sequence (max(Los)) is

smaller than the cutoff length L the update is ergodic. In an actual simulation this can be

ensured by choosing L during the thermalization phase such that it is big enough.

Further Improvements of the Operator-Loop Update As already mentioned above

the bounce path can undo the last change made to the word-line web. If such a bounce

path has a significant probability, it can slow down the simulation considerably. Two at-

tempts have been developed to avoid the bounce path: If the matrix elements of all bounce

vertices can be made equal, for example by shifting the energy of the diagonal matrix el-

ements, the bounce path can be eliminated by shifting their energy to zero. This has very

favorable effects on the systems dynamics, since now all vertices of the loop accomplish

a change in the world-lines. A more general Ansatz has been proposed by Sandvik [57],
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called the Directed-Loop Update. Whereas in the Operator-Loop Update the heat-bath

algorithm is used for propagating the path between connected vertices, in the Directed-

Loop Update a more general set of equations have to be satisfied, in order to ensure that

the chosen path obeys detailed balance. This set of equations has an infinite number of

solutions and in principle one can select the solution that minimizes the probability for

the bounce path, but these equations have to be solved for each model that one whiches

to simulate. Moreover, finding an optimum solution is often a nontrivial task. The im-

plementation that has been enhanced significantly during this thesis, does not require the

solution of the directed-loop equations. The resulting disadvantage is, from our point of

view, overcompensated by the fact, that the implementation of the SSE used and further

developed within this thesis can simulate, within the restrictions discussed above, any

bosonic-quantum model [22].

1.3 Accessing Physical Observables

Simulating a physical system is only half of the job: To achieve a better understanding

of the physical model under consideration it is essential to have efficient access to the

observables during a simulation. In the following we will discuss briefly some of these

measurements, in order to exploit the general concept.

1.3.1 Calculating Expectation Values

Suppose we are interested in the expectation value of some observable 〈Ô〉. Starting from

its definition,

〈Ô〉 =
1

Z
Tr
(

ÔZ
)

, (1.12)

one easily rewrites 〈Ô〉 in terms of the SSE formulation:

〈O〉 =

∑

α,n,Sn
O(α, n)W (α, Sn)

∑

α,n,Sn
W (α, Sn)

, (1.13)

where W (α, Sn) is defined as:

W (α, Sn) =
(−β)n

n!
〈α |

n
∏

i=1

Ĥ
(ai)
bi

| α〉 (1.14)

Often such an operator Ô is an elementary interaction in the Hamiltonian,

〈Ô〉 = 〈Ĥ(a)〉, (1.15)
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than Ô can be accessed very efficiently by simply counting the number (N (a)) of interac-

tion vertices Ĥ(a):

〈Ô〉 = − 1

β
〈N (a)〉. (1.16)

Thus, the energy E of a system can be measured as:

〈Ê〉 = − 1

β
〈n〉, (1.17)

where n is the number of non unit operators. It is straightforward to access also more

complicated observables, that are not directly given by elementary interactions in the

Hamiltonian, but are connected to them, e.g. the heat capacity CV :

CV = 〈n2〉 − 〈n〉2 − 〈n〉 (1.18)

Sandvik derived very efficient expressions, for a wide range of static observables. A more

complete description can be found in Ref. [58].

1.3.2 Accessing Correlation Functions

Mathematical Formulation

The observables mentioned in Sec. 1.3.1 serve to describe important thermodynamic vari-

ables. However, often one is interested also in static- or dynamic-correlation functions and

susceptibilities. When recalling the construction of the loop in Sec. 1.2, it is obvious that

the propagation level l in the loop-operator update plays an analogous role to the imagi-

nary time in a standard path integral. The exact relation can be obtained Taylor-expanding

the time dependent correlation function [59]:

Ci,j(∆τ) = 〈e∆τĤÔie
−∆τĤÔj〉 (1.19)

=
1

Z

∑

α,n,m

(∆τ − β)n(−∆τ)m

n! m!
〈α |ĤnÔiĤ

mÔj| α〉, (1.20)

The indices i and j mark the operator type, for convenience the site labels r1, r2 of

Ci,j(∆τ, r1, r2), Ôi(r1) and Ôj(r2) are droped. In the next step one changes to a sum-

mation over index sequences and sums over all positions of Ôj in the operator product:

Ci,j(∆τ) = 1
Z

∑

α

L
∑

l=0

l
∑

m=0

∑

{Sn}

(−∆τ)m(∆τ − β)l−m

(l − m)! m!
×

〈α |
L
∏

k=m+1

Ĥ
(ak)
bk

Ôi

m
∏

h=1

Ĥ
(ah)
bh

Ôj| α〉 (1.21)
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Comparing Eq. (1.21) with Eq. (1.14) and replacing Ôi by its eigenvalue oi(α(l))

(Ôi| α(l)〉 = oi(α(l))| α(l)〉), and hereby restricting ourselves to diagonal operators, leads

to:

Ci,j(∆τ) =

〈

L−1
∑

l=0

l
∑

m=0

∆τm(β − ∆τ)l−m

βl

(l − 1)!

(l − m)! m!
oi(l) oj(l + m)

〉

W

.

(1.22)

The index W indicates, that the eigenvalues oi(α(l)) must be sampled according to

Eq. 1.14, what can be accomplished by simply summing them during the construction

of a loop. Of course Ôi and Ôj are not necessarily diagonal, but also off-diagonal corre-

lation functions can be calculated. Choosing Ôi = Ĥ
(ai)
bi

and Ôj = Ĥ
(aj)
bj

one obtains:

〈Ĥ(ai)
bi

Ĥ
(aj)
bj

〉(∆τ) =

〈

L−2
∑

m=0

(∆τ)m(β − ∆τ)L−m−2

βL

(L − 1)!

(L − m − 2)! m!
N(i, j; m)

〉

W

,

(1.23)

where N(i, j; m) is the number of times the operators Ĥ
(ai)
bi

and Ĥ
(aj)
bJ

appear in the se-

quence Sn separated by m positions in the operator string Sn. From Eq. (1.23) it is straight

forward to calculate also the susceptibility χi,j,

χi,j =

∫ β

0

〈Ôi(τ)Ôj(0)〉dτ. (1.24)

Integrating 〈Ôi(τ)Ôj(0)〉 from 0 to β gives the Kubo integral. In the diagonal case the

integral reads:

∫ β

0

〈Ôi(τ)Ôj(0)〉dτ =

〈

β

(n + 1)n

[(

L−1
∑

l=0

oi(l)

)(

L−1
∑

l=0

oj(l)

)

+

L−1
∑

l=0

oi(l) oj(l)

]〉

W

, (1.25)

where the cyclic periodicity of the propagated states has been used. For the product

〈Ĥ(ai)
bi

(τ)Ĥ
(aj )
bj

(0)〉, considered above, the integral becomes:

∫ β

0

〈Ĥ(ai)
bi

(τ)Ĥ
(aj)
bj

(0)〉dτ =
1

β

〈

L−2
∑

m=0

N(i, j; m)

〉

W

(1.26)

Including the Measurement of Ci,j in the Update Scheme

Whereas the formulation of the measurement for a dynamic single-particle correlation

functions is not difficult in a mathematical language, performing an actual measurement



1.3. ACCESSING PHYSICAL OBSERVABLES 19

poses some difficulties in the framework of the SSE. Measuring off-diagonal correlation

functions, demands that non local changes have to be inserted in the world-lines. These

insertions must sample all the distances in real space ∆r = r1 − r2, as well as in the

propagation dimension (∆l = l1 − l2), and detailed balance must still be satisfied.

When recalling the ‘off-diagonal’ update, as displayed in Fig. 1.3, one immediately

notices, that the same requirements are already fulfilled by the SSE off-diagonal update

mechanism. Hence Ci,j(τ) can be recored during the construction of a loop. An example

is given in Fig. 1.4. The matrix elements, i.e., the correlation functions Ci,j(r, ∆l), are

0
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9
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+
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Figure 1.4: Recording of of the Green’s function
〈

a†
2(r, ∆l)a2(0, 0)

〉

and
〈

a†
1(r, ∆l)a2(0, 0)

〉

during the construction of the loop as explained in

Fig. 1.3. r is the distance between to sites (or world-lines) and ∆l a propa-

gation level distance. ‘me(a
(†)
t )’ denotes the matrix element for annihilating

(creating) a particle of type t.

recorded like usual Monte Carlo variables. But for a physical interpretation one mostly

prefers a representation of Ci,j as function of momentum ~k and energy ω. Hence in

a first step a Fourier transformation is necessary in order to obtain Ci,j(~k, ∆l), and in

the next step formula (1.23) or (1.22), depending on the type of the operators, converts

Ci,j(~k, ∆l) to Ci,j(~k, τ). Finally, an inverse Laplace transformation yields Ci,j(~k, ω).

The inverse Laplace transformation imposes some substantial difficulties, because

Ci,j(~k, τ) can only be calculated for discrete τ = n · ∆τ | n ∈ � , further Ci,j(~k, n1∆τ)

is correlated with Ci,j(~k, n2∆τ). Different techniques can be used: Either one refers to
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the Maximum-Entropy Method [60, 61] or to a recently proposed generalization of the

Maximum-Entropy Method [62].

Recent developments

So far measurements of correlation functions of two off-diagonal operators, that are not

contained in the Hamiltonian have not been discussed. In principle, such a measurement

is possible, but it cannot be recored during the construction of a loop, because inserting

a local change, that cannot be expressed as a product of the elementary interactions in

the Hamiltonian contradicts detailed balance. To the author’s knowledge such a measure-

ment has not been reported so far. One escape is to introduce for each measurement the

off-diagonal operators under consideration and after the measurement one immediately

removes them by the insertion of their inverse operators. Effectively this corresponds to

adding the unit operator to the operator string. Thus, the physics of the system is not

changed by this procedure. However, this procedure has to be performed after each loop,

for all distances and propagation levels. Therefore, the advantage of measuring the corre-

lation functions on the run is lost and the CPU-time for an entire simulation will increase

significantly.

A more severe problem is, that the measurement of off-diagonal correlation functions has

been restriced to ‘one-particle correlation functions’ so far. In principle also two-particle

functions can be measured like described above, but then one has to insert and remove

four operators instead of two.

However, the two-particle functions can also be recorded during the construction of a

loop. For this purpose the concept presented in Sec. 1.3.2 can be extended to two-particle

functions, at least in principle. But again one is restricted to the case where the opera-

tors Ôi are fundamental operators in the Hamiltonian Ĥ
(ai)
bi

. The problem occurs during

an actual simulation: A measurement of some correlator Ci,j,k,h(r1, r2, ∆l) is only pos-

sible if the loop-head passes each position (r1 , l1) and (r2 , l2) in the world-line space at

least twice during the construction of the loop and if the four vertices changed at these

positions during the loop correspond to the operators i, j, k and h that one wants to mea-

sure. The probability for the construction of such loops is rather low. Therefore, it seems

more favorable to accept the disadavantage of introducing an extra measurement step and

perform the measurements of the off-diagobal two-particle correlation functions after the

construction of the loop.



1.4. CONCLUSIONS 21

1.4 Conclusions

The Stochastic-Series Expansion (SSE) in the Operator-Loop Update formulation is a

very useful method for the simulation many particle problems on lattices. The SSE is

in principle exact and allows to access a wide range of observables. Due to its concep-

tual simplicity it can be implemented very efficiently. A comparison with other methods

can be found in [63]. A more vivid proof of the algorithm’s capabilities is, that within

this thesis it has been made possible to simulate for the first time a rather complicated

hardcore boson model with more than 10000 lattice sites (see Chap. 4). Using these new

possibilities in the investigation of many particle models allows, to extrapolate the results

to the thermodynamic limes with an unprecedented precision.





2
Effective Models

Solid-state physics aims at an understanding of the experimentally observed properties,

based on a microscopic (i.e. quantum) description of the solid. This, however, in practice

requires simplifications which lead to a model. One of the most popular models in the

field of magnetism connected with localized and usually strongly interacting orbitals is the

Hubbard-model [64]. Here the microscopic interactions in the solid are placed on a lattice

model, containing electron hopping and on-site Coulomb interactions of the electrons.

The second-quantized Hubbard Hamiltonian reads:

ĤHub =
∑

<i,j>σ

ti,j c†i,σcj,σ +
∑

i

Ui n̂i(n̂i − 1) (2.1)

Here i, j are site indices, < i, j > denotes the sum over pairs of neighbored sites, n̂i

is the particle number operator on site i, and c
(†)
i,σ annihilates (creates) a particle on site

i with spin σ. The Hubbard-model has attracted considerable attention, especially af-

ter the discovery of the high-temperature superconductors in 1986 [4]. Dsepite its con-

ceptual simplicity the Hubbard-model still awaits an exact solution in two and three di-

mensions, and quantitatively understanding the physics of the Hubbard-model is still a

major challenge. This holds especially in the ‘strong-coupling’ case (U > t), where typi-

cally the kinetic energy is of the same magnitude as the correlation energy and, therefore,

perturbation theory fails. Various numerical techniques have been employed, especially

Quantum-Monte-Carlo simulations [11, 65, 66]. But the ‘notorious sign problem’, con-

siderably limits the system sizes and temperature ranges. This holds especially for doped

systems, away from half filling (〈n̂〉 6= 1). Unfortunately, the fermionic sign problem

grows exponentially with inverse temperature β and the system size Ns. One ‘way-out’

from these difficulties is offered by a real-space normalization group technique, i.e., the

Contractor-Renormalization group technique, which reformulates the physics of Eq. (2.1)

in the subspace of the low-lying excitations of the underlying model. This procedure

23
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yields an effective model, which in a subsequent step can be treated very efficiently by

means of a bosonic Quantum-Monte-Carlo simulation (see Chap. 1).

2.1 Constructing an effective Hamiltonian via the

Contractor-Renormalization Group Procedure

When aiming at an effective low-energy Hamiltonian one usually refers to renormaliza-

tion group (RG) techniques, that integrate out the high energy degrees of freedom iter-

atively and thereby extract the low-energy physics. These iterations can be associated

with an RG-flow, that may bring the system to a fix point. An improvement of this tech-

nique is the so called Contractor-Renormalization Group (CORE) [67, 68]. The CORE

technique supplements the real-space renormalization group approach with a so called

‘contraction’. In the usual real-space renormalization group scheme, one first performs

a coarse graining, i.e. one divides the infinite lattice into smaller cells, called plaquettes,

that can be diagonalized exactly. After the diagonalization, one restricts to the lowest m

eigenstates, and tries to find an approximation for the original Hamiltonian by coupling

the plaquettes using the m eigenstates as a new basis. The difficulty is to find the matrix

elements, for example to describe a quasiparticle propagation from one plaquette to an

other. Different ways of applying this method have been developed, for a review it is

refered to Refs. [69, 70, 71].

In addition to the above procedure, the CORE requires a further diagonalization step. This

‘extra’ diagonalization ensures that the lowest mr eigenstates of the resulting super cell

Hamiltonian have the same eigenenergies as the initial (original) Hamiltonian on the same

super cell, where r denotes the number of plaquettes the super cell is composed of. An

example with r = 2 is displayed in Fig. 2.1.

Performing a CORE calculation, for example, based on the 2D-Hubbard-model, one starts

dividing the sub-lattice in r equal blocks Gi (plaquettes), where the index i labels the pla-

quettes. Next, one diagonalizes the Hamiltonian for such a plaquette and retains only the

lowest m eigenstates | ν0〉i − | νm−1〉i, as in the usual real-space RG. In a second diago-

nalization, the whole sub-lattice has to be diagonalized. This is a crucial point, because it

poses severe restrictions to the allowed maximum plaquette-size as well as to the number

of plaquettes forming the sub-lattice.

The sub-lattice eigenstates | εp〉 can be written in terms of the product basis of all n

plaquette-eigenstates, i.e.:

| εp〉 =

nr−1
∑

α=0

vα,p| να0
〉0 ⊗ | να1

〉1 ⊗ . . . ⊗ | ναr−1
〉
r−1

, 0 ≤ αi < n, ∀ i ≤ r. (2.2)
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Figure 2.1: The infinite lattice (left), the supercell (middle), here composed

out of r = 2 plaquettes and a single plaquette (right). An infinite range super

cell (r → ∞) would again lead to the infinite lattice, as well as an infinite

plaquette size.

Next, one applies a suited projector P to the sublattice eigenstates, thereby the Hilbert

space is reduced to mr dimensions:

| ε̃p〉 = P | εp〉 =

nr−1
∑

α=0

vα,p

m−1
∑

j=0

| νj〉0〈νj |0| να0
〉0 ⊗

m−1
∑

j=0

| νj〉1〈νj |1| να1
〉1 ⊗

. . . ⊗
m−1
∑

j=0

| νj〉r−1〈νj |r−1| ναr−1
〉
r−1

(2.3)

=

mr−1
∑

α=0

vα,p| να0
〉0 ⊗ | να1

〉1 ⊗ . . . ⊗ | ναr−1
〉
r−1

,

where 0 ≤ αi < m, ∀ i ≤ r. The projected Basis {| ε̃p〉} can next be orthogonalized, and

the effective supercell Hamiltonian reads in the new orthonormal basis | θγ〉

Ĥeff =

mr−1
∑

γ=0

| θγ〉 εγ〈θγ |, (2.4)

where the εγ denote the supercell eigenenergies. This procedure can be applied in a

subsequent step to the obtained effective Hamiltonian, corresponding to the first iteration

step in an RG-sense. In order to study the CORE renormalization flow, the CORE method

has been applied to the spin- 1
2

Heisenberg chain by Morningstar and Weinstein [68].

They divide the lattice into three site blocks and carry out a range two (r = 2) calculation.

In the case of the Heisenberg spin chain the effective Hamiltonian is self-similar under

the CORE procedure, and an analytic expression for the ground state energy is found.

This permits to interate the CORE algorithm until the ground-state energy converges.

Morningstar and Weinstein obtain an accuracy of the ground-state energy per site of about
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99% in comparison to the exact Bethe-Ansatz solution [72]. Also the antiferromagnetic

(AF) properties are recovered by their calculation, i.e. no long-range AF order, but a

massless spectrum.

Employing this method to the Hubbard-model, one first has to define the basic plaquette

and the supercell. The resulting effective Hamiltonian will then describe the physics

on a coarse-grained lattice, where each lattice point represents an original plaquette. In

order to couple as much clusters as possible, one may be tempted to chose a dimer as

plaquette. This Ansatz has been followed to construct effective Hamiltonians for spin-

ladder systems [73, 74]. However, there is no hole pair binding for the Hubbard-model

on a dimer, which is an important ingredient for superconductivity. Further, if one wishes

to capture the experimentally observed the d-wave symmetry [6] of the hole-pair wave

function, the basic cluster to start from, must at least have four-fold rotational symmetry.

Hence the cluster chosen here is a four site (2 × 2) plaquette. By this choice the number

of coupled clusters r is immediately restrict to be equal to two. Already selecting r = 3

bears substantial numerical difficulties, because one would have to diagonalize a 12 site

Hubbard-model in multiple geometric configurations, which is on the edge of what can

be done, with the available computer resources. Altman and Auerbach carried out this so

called ‘Range 2 CORE’ (r = 2) for the Hubbard-model. The exact diagonalization of one

single plaquette is straightforward, and one obtains the spectrum and the wavefunctions.

The spectrum obtained by Altman and Auerbach is depicted in Fig. 2.2. Fortunately, the

(π,0) (0,π)
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(0,π)(π,0)
S=0

t f

S=1S=1 S=0
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0 holes 1 hole 2 holesE

(π,π)S=1
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Figure 2.2: Low-energy spectrum of the 4 site Hubbard-model. The Eigen-

states are labeled by their spin quantum number and by the associated pla-

quette momenta.

low-lying states have a bosonic character (total spin S = 0 or S = 1), hence restricting to

the lowest five states (m = 5) for each plaquette, will yield an effective Hamiltonian, that
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contains only (hardcore-) bosons. As already stated above, such an effective Hamiltonian

can be studied very efficiently using QMC.

In the following paragraphs the five lowest eigenstates of a single plaquette are discussed.

The Ground State The plaquette ground state of four site Hubbard-model at half filling

| Ω〉i can be understood in the real-space representation as the resonating valence bond

(RVB) ground state of the Heisenberg model, plus small contributions from doubly occu-

pied sites. The product state of the plaquette ground states | Ω〉i defines the new vacuum

state | Ω〉,
∏

i

| Ω〉i = | Ω〉. (2.5)

The second quantized operators b†i and t†α,i connect the vacuum to the lowest lying eigen-

states as shown in Fig. 2.2.

The Triplet State The S = 1 triplet states describe the lowest lying magnon states, they

are given by:

t†α,i =
P̂√
Zt

∑

~Q,s

c†~Q,s
σs,s′c ~Q+(π,π),s′| Ω〉i = | tα〉i, α = x, y, z, (2.6)

where the operator P̂ performs a partial Gutzwiller projection (P̂ (U/t)),
√

Zt normalizes

the wave function | tα〉i and the plaquette electron operator is defined as:

c†~Q,s
=

1

2

∑

η

ei ~Q·ηc†η,s. (2.7)

The sum over η covers all sites on a plaquette, here the plaquette index has been dropped

for convenience. These magnons have plaquette momentum ~Q = (π, π) and their ex-

citation energy is close to the superexchange energy J ≈ 4t2/U . Thus, a long-range

correlation between the triplet states corresponds to long-range AF order in the original

Hubbard-model. In Landau theory the formation of this AF state has a formal equivalence

to Bose condensation. In this sense the triplets condense into the long-range AF ordered

state, however, there is no transport associated with this condensation. From this point of

view the condensation picture fails.

The Hole Pair State The operator b†i creates a hole pair with internal d-wave symmetry,

with respect to the vacuum:

b†i | Ω〉i =
P̂√
Zb

c†(0,0)↑c(0,0)↓| 0〉 (2.8)
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As shown in [23] the two holes do not disintegrate into two fermions. The binding energy

is generated dynamically on the lattice, because a correlated movement is energetically

more favorable. A simplified sketch is depicted in Fig. 2.3. Binding hole pairs have been

reported for a multitude of lattices, starting with the four-site plaquette [75, 76, 77]. In

larger clusters hole binding has been observed up to 6 holes [78].

(a) (b) (c)

(d) (e) (f)

Figure 2.3: Sketch of the correlated movement of two holes for a 2-D

Hubbard-model close to half filling. The upper three figures (a-c) display

the movement of a single hole in an AF background. The arrows sym-

bolize the electronic spins. If only a single hole moves, the system gains

the hopping energy t but the AF order of the electronic spins is destroyed,

this corresponds to an energy penalty of three times the superexchange en-

ergy J ≈ 4t2/U . The frustrated bonds are indicated by the three crosses in

Fig. (b). If the hole keeps on moving it creates further two frustrated bonds

(c). In this picture the movement of a single hole is connected with an energy

penalty that grows linear with the distance covered by the hole. In contrast

to that, the two holes in the lower row (d-f) form a “Cooper pair” and can

move in the plain, without such an energy penalty, as long as the Cooper pair

does not disintegrate.

2.2 The effective Hamiltonian

The model constructed using a range 2 CORE, contains bilinear and quartic (interaction)

terms of the quasiparticles discussed above [23]:

ĤCORE = Ĥb + Ĥt + Ĥ int
b,t (2.9)
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The bilinear terms read:

Ĥb = (∆c − 2µ)
∑

i

b†ibi − Jc

∑

<i,j>

(b†ibj + h.c.), (2.10)

Ĥt = ∆s

∑

i

t†α,itα,i +
∑

<i,j>

[

Js(t
†
α,itα,j + h.c) + Jss(t

†
α,it

†
α,j + h.c)

]

. (2.11)

The higher order interaction terms are:

Ĥ int
b,t = Vc

∑

<i,j>

n̂c,in̂c,j + VS

∑

<i,j>

(tα,itα,j)
†
S(tα,itα,j)S (2.12)

+Jπ

∑

<i,j>,α

(b†ibjt
†
α,jtα,i + h.c) + Vπ

∑

<i,j>,α

(b†ibit
†
α,jtα,j + h.c).

The bosonic quasiparticles obey a local hardcore constraint:

b†ibi +
∑

α

t†α,itα,i ≤ 1. (2.13)

Here again < i, j > denotes pairs of neighbored sites (i, j) and α = x, y, z. (tα,itα,j)
†
S

creates triplets with total Spin S on sites i, j and n̂c,i is the particle number operator for

the charge bosons on site i. The calculations of Altman and Auerbach showed that Js and

Jss are very close within a wide range of the Hubbard U keeping t constant. Thus, for the

further calculations it is justified to consider only the case Jss := Js, then Ĥt takes a more

convenient form:

Ĥt = ∆s

∑

i

t†α,itα,i + Js

∑

<i,j>

n̂α,in̂α,j, (2.14)

where n̂α,i = (t†α,i + tα,i). The parameters in the model vary as a function of the

Hubbard U , like it is depicted in Fig. 2.4. For U/t ≈ 8, the model is close to a

projected SO(5)symmetry point. It is known from numerically essential exact evalua-

tions of the 2D Hubbard-model, that it reproduces salient features of the high-temperature

superconductors precisely in this regime [79, 66]. Thus, the projected SO(5) symmetric

point is obtained in this physically relevant regime. This issue will be discussed in more

detail in Sec. 3.4.1.

2.3 Conclusions

In summary, the application of the CORE algorithm has shown that the low-lying states

of the 2D Hubbard-model provide basic ingredients for a description of the physics in the

copper-oxide layers of the high-Tc superconductors [23]: Antiferromagnetism can be un-

derstood as a “condensation” of triplet magnons, and superconductivity as a condensation
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Figure 2.4: Boson hopping rates versus Hubbard U . The three lines intersect

(nearly) at Hubbard U ≈ 8t. This value of U is believed to be relevant for

the high-temperature superconductors. The intersection region near U ≈ 8t

is close to the projected SO(5)point. Picture taken from [18]. The energies

in the plot given are in units of t.

process of the hole pair bosons. These two excitations are the basic ingredients of the ef-

fective bosonic Hamiltonian. Further, the effective Hamiltonian fulfills a projected-SO(5)

symmetry in the parameter regime that is commonly believed to be relevant for the high-

Tc superconductors (U/t ≈ 8). An extensive numerical analysis of the obtained effective

Hamiltonian is presented in Chap. 4 and Chap. 5.



3
SO(5)-Theory

In the previous chapter the construction of a ‘coarse grained’ low-energy efective model

using the Contractor-Renormalization Group technique has been discussed.. A comple-

mentary, approach to describe the physics of the high-Tc superconductors is to employ

symmetry principles. The latter can be motivated by experimental observations and

impose constraints on the models. In the current chapter, the SO(5)-theory of high-

temperature superconductivity will be discussed.

3.1 Introduction

Symmetry principles have been a very successful concept in physics. Symmetry unifies

apparently different phenomena into a common framework. Well-known examples are the

unification of the electric ~E and the magnetic field ~B, which is the result of the underlying

relativistic space-time symmetry. Considering the high-temperature superconductors, the

central question is how to unify the antiferromagnetic (AF) and superconducting (SC)

phases, apparent in all high-temperature superconductors (see Fig. 3.1).

A new and detailed summary of the key ideas and results of the SO(5)-theory is presented

in Ref. [18].

Zhang proposed 1997 [17] to combine the three-dimensional AF ( ~NNéel) and the two-

dimensional SC order parameter (~∆SC) by introducing a five dimensional superspin ~n

(see Fig. 3.4). The superspin concept is only useful, if there is also some symmetry group

acting on it. In order to avoid constraints, it is most natural to consider the most general

rotation of the five dimensional order parameter. This most general rotation in a five di-

mensional parameter space is described by the SO(5) group. The SO(5)-symmetry is the

lowest symmetry-group embedding the SO(3) AF spin rotational symmetry and the U(1)

symmetry of charge conservation.

31
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Figure 3.1: Generic temperature versus chemical potential phase diagram of

the high-temperature superconductors. The chemical potential can be varied

experimentally by different hole doping concentrations. ‘n’ and ‘p’ indicate

electron and hole doping, respectively. The dashed-dotted ‘T ?’ line indicates

the pseudo gap temperature, below which the so called “pseudo-gap regime”

is located.
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Figure 3.4: Combination of the AF (Néel) order parameter and the SC order

parameter into a five dimensional superspin.

In a complete SO(5) symmetric system the superspin could rotate freely in a five dimen-

sional sphere. One would thus expect also mixed states with coexistence of antiferromag-

netism (AF) and superconductivity (SC). However, in the cuprates the SO(5)-symmetry

is explicitely broken by the chemical potential, which plays an analogous role to the mag-

netic field in SO(3) symmetry of angular momentum. Similar to a magnetic field, which

reduces the degeneracy of the angular momentum multiplet states (Zeeman effect), the

chemical potential in the SO(5)-theory of high-temperature superconductivity induces an

energetic anisotropy between AF and SC states, and thus lifts the degeneracy (for details

see Ref. [?]).

3.2 Mathematical formulation

Following [17, 18, 80, 31], the ideas of the preceeding section will be cast now into a

mathematical formalism. Starting point of the SO(5)-theory is the SO(3) spin symmetry,

which is broken in the AF state of the high-temperature superconductors and the U(1)

symmetry of charge conservation, which is broken in the SC state. The AF order param-

eter ~NNéel is defined as:
~NNéel =

∑

~k,s,s′

c†~k+(π,π),s
σα

s,s′c~k,s′, (3.1)

and the corresponding symmetry group is generated by the α components of the spin

operator:

Ŝα =
∑

~k,s,s′

c†~k,s
σα

s,s′c~k,s′, (3.2)

obeying the SO(3)-commutation relations:

[Sα, Sβ] = iεα,β,γ · Sγ and [Sα, Nβ] = iεα,β,γ · Nγ . (3.3)
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Here c†~k,s
(c~k,s) creates (annihilates) an electron with momentum ~k and spin s, σα are Pauli

matrices and α, β, γ ∈ {1, 2, 3} denote a direction in the � 3 (x,y,z).

Let’s recall also the corresponding quantities of the U(1) symmetry: The d-wave SC order

parameter (~∆), the U(1) symmetry generator (Q) and their commutation relation:

~∆ =
1

2

∑

~k,s,s′

d(~k)c†~k,s
σyc−~k,s′∆, (3.4)

Q =
Ne− − N◦

2
, (3.5)

[Q, ∆i] = εi,j∆j. (3.6)

d(~k) is the d-wave prefactor d(~k) = cos(kx)− cos(ky) and i, j ∈ {1, 2} label the real and

the imaginary part of the order-parameter. The component wise combination of the upper

order-parameters (defined in Eq. (3.1) and Eq. (3.4)) yields the new SO(5) superspin ~n

(depicted in Fig. 3.4).

A SO(n) group is composed out of n(n − 1)/2 different generators, thus the SO(5)

group has 10 generators, specified in an antisymmetric matrix Lab = −Lba. The SO(5)

group embeds the U(1) and the SO(3) group, so the spin and charge operators given in

Eq. (3.2) and Eq. (3.5) are four generators of the SO(5) group. The missing six, so called

π operators have been introduced by Demler and Zhang [81], and as discussed later, they

connect AF and SC states. They have the form:

π†
α =

∑

~k,s,s′

g(~k) c†~k+(π,π),s
(σασy)s,s′ c

†
−~k,s′

and πα = (π†
α)†. (3.7)

g(~k) is the sign of the d-wave prefactor d(~k), i.e. g(~k) = sign(cos(kx) − cos(ky)). These

six π
(†)
α operators together with the four operators Ŝx, Ŝy, Ŝz and Q can be cast into the

5 × 5 generator matrix:

L =

















0 −(π†
x + πx) −(π†

y + πy) −(π†
z + πz) −Q

π†
x + πx 0 Ŝz −Ŝy i(π†

x − πx)

π†
y + πy −Ŝz 0 Ŝx i(π†

y − πy)

π†
z + πz Ŝy −Ŝx 0 i(π†

z − πz)

Q −i(π†
x − πx) −i(π†

y − πy) −i(π†
z − πz) 0

















(3.8)

The generators Lab form a Lie-Algebra: It is straightforward to show that they span a

linear vector space. Further, there exists a commutator, obeying

[Lab, Lcd] = −[Lba, Ldc], (3.9)

and the Lab also fulfill the Jacobi-Identity:

[[Lab, Lcd], Lef ] + [[Lcd, Lef ], Lab] + [[Lef , Lab], Lcd] = 0. (3.10)
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Equation (3.9) follows immediately from the antisymmetric form of the SO(5) generator

matrix and the Jacobi-Identity (Eq. (3.10)) from the basic SO(5) commutation relation:

[Lab, Lcd] = −i(δacLbd + δbdLac − δadLbc − δbc − Lad). (3.11)

The components of the five-dimensional superspin ~n also obey commutation relations

with the group’s generators Lab:

[Lab, nc] = −iδbcna + i δacnb. (3.12)

Using the identities L2..4,1 = π†
α + πα and n2..4 = Nα, one obtains easily:

[π†
α, Nβ] =

1

2i
δα,β ∆† (3.13)

and

[πα, Nβ] =
1

2i
δα,β ∆. (3.14)

Thus physically speaking, the π
(†)
α operators replace triplets by hole or electron pairs [18,

80, 81]. This corresponds to a rotation of the of the SO(5) order-parameter from the AF

into the SC direction and vice versa. The L1α are the generators of the rotation, (see also

Fig. 3.5):

ei π
2
L1α| AF 〉 = | SC〉 (3.15)

Im(∆)

Re(∆)

π−rotation

nSC

Nα

Figure 3.5: Sketch of the π-rotation: The π-operator rotates the an AFstate

from the nα direction on the SC plane.

3.3 SO(5) Symmetry in the Hubbard- and t − J Model

In the previous section the mathematical formalism of the SO(5) group has been briefly

reviewed. Whereas this theory was originally proposed as an effective field theory
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description of the high-temperature superconductors, it turned out, that the SO(5)-

symmetry, could be implemented also in microscopic models. Therefore, it was essential

to test the models commonly accepted to be relevant for the description of the cuprate

physics, i.e., the t − J and the Hubbard-model, about their relation with the SO(5)-

symmetry group.

A microscopic model obeys a SO(5) symmetry, if the Hamiltonian commutes with the

generators of the SO(5) group, i.e.

[Ĥ, Lab] = 0. ∀ a, b ∈ {1, 2, · · · , 5} (3.16)

Obviously the Ŝα and the charge operators commute with the t − J and the Hubbard-

model. But what about the π operators? These operators, defined in Eq. (3.7), do not

commute with the Hubbard- or the t−J model. However, they satisfy a weaker condition:

[Ĥ, π†
α] ≈ ωαπ†

α. (3.17)

The π operators are so called ‘approximate eigenoperators’, at least for small excitation

energies ωα. Applying an eigenoperator on an eigenstate of a Hamiltonian yields an other

eigenstate. Subsequent application will generate a multiplet, that is not degenerate, but

the energy levels are equally spaced by ωα. This means that the dynamic auto-correlation

function of the πα operators contains a sharp peak at energy ωα. Although the SO(5)

symmetry is explicitly broken in the Hubbard and t − J model, the SO(5) multiplet

structure is still visible in the spectrum and can be sampled by ladder operators. Equa-

tion (3.17) has been tested using a T-matrix approximation [81], and an early numerical

test of the SO(5)-symmetry can be found in [82], where the dynamic auto-correlation

function has been calculated. In Ref. [80] the relation of the t − J model with the

SO(5)-theory has been studied, and it been shown that low-lying states of the t − J

model fit nicely into a SO(5)-multiplet structure.

In conclusion one may state, that the Hubbard-model, as well as the t − J model, show

clear signatures of an approximate SO(5)-symmetry. This is also supported by exact

diagonalization results on finite clusters [82, 80, 31]. A more detailed discussion of this

issue can be found in [18].

3.4 The projected SO(5)-theory

The SO(5)-theory turned out to be a very successful approach towards salient properties

of the high-temperature superconductors [18]. One success of SO(5)-theory is based

on the prediction of a collective excitation, the so called ‘π-resonance mode’, the
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Goldstone mode for the spontaneous symmetry breaking. This π-resonance mode offers

a natural explanation for the neutron resonance mode observed in wide range of cuprate

superconductors [83, 84, 85, 86, 87, 88, 89, 90, 91, 92]. This resonance mode has been

observed at energy ω0 = 41meV and wave vector ~k = (π, π), in the SC state and

vanishes above Tc. Beyond the π-resonance mode the SO(5)-theory makes a number

of further experimental predictions, such as the existence of AF and then, necessarily,

SC states [93, 94, 95, 96]. However, despite its success the SO(5)-theory in its original

formulation [17] cannot describe the Mott physics, experimentally observed in the

cuprate superconductors at half-filling [82, 97, 98, 99]. The origin of this problem is

inherent in the SO(5)-symmetry itself: In a fully SO(5) symmetric system a hole pair

and an electron pair, require to have the same (zero) excitation energy as a collective

spin-wave excitation. In other words, the SO(5) multiplets are energetically degenerated.

In the real cuprates however, at half filling the formation of an electron pair on one

lattice site is connected with an energy penalty of order U , originating from the Coulomb

repulsion of the electrons (see Fig. 3.6).

Q

Sz
Sz

Q

Q < 0

Q > 0

gap

~ U

"real" systems

∆ E

exact SO(5)

∆ E

Figure 3.6: Exemplary multiplet for a fully SO(5) symmetric (ladder) model

(left). A transition from a state represented by ◦ to an other state can be per-

formed without a change in energy. However, if the exact SO(5)-symmetry

is explicitely broken, for example by a chemical potential, then the states

with neighbored charge quantum numbers Q are separated by a constant

energy gap ∆E. In realistic physical systems, electron-electron excitations

above half filling are unfavorable due the Coulomb repulsion, which causes

a large energy gap of the order of the Hubbard U .
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One escape from this situation is to start from an SO(5)-symmetric Hamiltonian and to

break explicitly the SO(5)-symmetry, by projecting out the double occupancies, i.e. the

electron pairs. This so called ‘Gutzwiller projection’ can be justified by straight-forward

physical means: The Mott-Hubbard gap in the copper-oxide superconductors is of the or-

der of several eV , this corresponds to temperatures higher than 10000K. This energy scale

is far beyond the energy scale of the physics under consideration, namely antiferromag-

netism and superconductivity, taking place at substantially lower temperatures TN and Tc.

Therefore, states containing on-site pairing of electrons should not be important for an

understanding of the cuprate physics. Due to the extremely high energy penalty, they do

not even need to be taken into account as intermediate states in scattering processes.

The resulting models that implement the Gutzwiller constraint are called ‘projected

SO(5)’ models or simply ‘pSO(5)’ models. When constructing such a projected-SO(5)

model, one has to make sure to shift the chemical potential to the edge of the lower band.

This restores the energetic degeneracy of hole-pair and spin-excited states in hole doped

systems (see Fig. 3.7).

~2Uµ=0
−Uµ∼

~2U

Figure 3.7: By shifting the chemical potential to the lower band, the

projected-SO(5) models can account for the degeneracy of hole-pair and

spin excited states. The electron pairs become irrelevant for the microscopic

description due to the large Mott-Hubbard gap. Figure by A. Dorneich.

3.4.1 The projected SO(5) Model

In Ref. [100] Zhang, Hu, Arrigoni, Hanke and Auerbach constructed a model, where the

Gutzwiller constraint of no double occupancy is implemented exactly. Their model reads:

Ĥ = ∆s

∑

x,α=2,3,4

t†α(x)tα(x) + (∆c − 2µ)
∑

x

t†h(x)th(x) (3.18)

−Js

∑

<x x′>
α=2,3,4

nα(x)nα(x′) − Jc

∑

<x x′>

(

t†h(x)th(x
′) + h.c.

)

.
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The operators t
(†)
α annihilate (create) an α triplet (α ∈ {x, y, z}), t

(†)
h annihilates (creates)

a hole pair excitation and nα = 1√
2

(

t†α + tα
)

. The x and x′ label the lattice sites. This

model is defined on a coarse grained lattice, where each site corresponds to a four-site

electronic system. The vacuum state corresponds to the ground state of the underlying

electronic system. The operators obey a local hard-core constraint:

t†h(x)th(x) +
∑

α=2,3,4

t†α(x)tα(x) ≤ 1. (3.19)

The Gutzwiller projection in the limit U → ∞ simply reduces the Hilbert space such that

t†p(x)| vac〉 = 0, where t†p(x) would create a local electron-electron pair in the full Hilbert

space. The Hamiltonian (Eq. (3.18)) is equivalent to the effective bosonic low energy

model discussed in Sec. 2.2, if one neglects the quartic terms of Eq. (2.9) and considers

the strong coupling case of U ≈ 8t.

3.4.2 Properties of the projected SO(5) Model

The projected-SO(5) model on a two-dimensional lattice has been studied for the

first time numerically by Dorneich and coworkers. Their results reproduce many

salient features of the high-temperature superconductors [20, 56] and revealed, that the

projected-SO(5) model incorporates many ingredients, essential for a correct description

of the high-temperature superconductors. However, a number of open questions could not

be addressed by simulations of a two dimensional system. For example, it is impossible

to observe AF order at finite temperatures (see Sec. 5.2), making it impossible to compare

the generic phase diagram (see Fig. 3.1) with the simulations. Another open question is

revealed by mean-field results [100]: The energy difference between a hole and a local

spin excitation (see Sec. 3.4.1) can be compensated by adjusting the chemical potential

µ. In this case the mean-field ground state recovers exact SO(5) symmetry at Jc = 2Js

and ∆s = ∆c [100]. But on the other hand, the Casimir operator of the SO(5) group does

not commute with the projected SO(5) Hamiltonian. These results bring up the question

about the relevance of SO(5) symmetry in the projected-SO(5) model. Is there a point

in the phase diagram where the SO(5) symmetry is restored also ‘dynamically’? In a

classical SO(5) symmetric system symmetry restoration can indeed be observed, if the

symmetry breaking terms have an appropriate sign [101]. But this is in contrast to the

results from the ε-expansion [102], that predict a fluctuation induced first-order transi-

tion. In the following chapter these questions will be addressed by means of an accurate

Quantum-Monte-Carlo analysis.



4
Numerical Analysis of the

projected SO(5) Model

In this chapter the different ideas and results discussed in chapter 2 and chapter 3 are

merged with the technique presented in chapter 1, i.e., the Stochastic-Series Expansion

is applied to the effective bosonic Hamiltonian motivated by the SO(5)-theory and by

the Contractor-Renormalization Group analysis of the one-band Hubbard-model. This

combination allows to test salient ideas underlying the projected-SO(5) model, and in

addition, the results should reflect the low-energy properties of the Hubbard-model, like

discussed in chapter 2.

4.1 Phase Diagram

Starting point of the analysis is the phase diagram of the 3D-projected SO(5) model (see

Eq. 3.18) for the “symmetric” case Js = Jc/2 = J in Fig. 4.1. This choice of parameters

is called “symmetric”, because the model has a static SO(5)-symmetry on a mean field

level [100], this static SO(5)-symmetry is broken only by quantum fluctuations [103].

Fig. 4.1 shows an AF and a SC phase extending to finite temperatures. Furthermore,

the two phase transition lines merge into a multicritical point (at Tb = 0.960 ± 0.005

and µb = −0.098 ± 0.001). The line of equal correlation decay of hole-pairs and triplet

bosons also merges into this multicritical point P . Unlike the corresponding phase in the

classical SO(5)-model, which has been studied by Hu [104], the SC phase extends only

over a finite µ range; this is due to the hardcore constraint of the hole-pair bosons and

agrees with experimentally determined phase diagrams of the cuprates. In this sense, the

quantum mechanical projected-SO(5) model is more physical than the classical SO(5)

model.

40
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Figure 4.1: Phase diagram T (µ) of the three-dimensional pSO(5) model

with J = Js = Jc/2 and ∆s = ∆c = J . Nh and Nt are, respectively, the

hole-pair and the magnon-dominated regions of the disordered phase. The

separation line between Nh and Nt is the line of equal spatial correlation

decay of hole-pairs and bosons. The inset shows a detailed view of the region

near the multicritical point.
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Figure 4.2: Phase diagram for Jc/(2Js) = 0.225 as a function of the hole

doping δ. The ratio Tn/Tc has the same order of magnitude like in the real

cuprates.
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However, in real copper-oxide superconductors the ratio between the maximum SC tem-

perature Tc and Néel temperature TN is about 0.17 to 0.25, whereas in the pSO(5) model

the values are: Tc/J = 1.465 ± 0.008 at µopt/J ≈ 1.7 and TN/J = 1.29 ± 0.01, hence

Tc is slightly larger than TN . In order to obtain more realistic values for the transition

temperatures, it is necessary to relax the static SO(5) condition and take a smaller value

for the ratio Jc/(2Js), which breaks SO(5) symmetry even on a mean field level. The

phase diagram with Jc/(2Js) = 0.225 is plotted in Fig. 4.2. As one can see, this gives a

more realistic ratio of TN/Tc ≈ 0.2. However, it is pointed out that the numerical effort

to treat such different values of J is order of magnitudes larger than considering Jc and Js

of the same order of magnitude, as presented in Fig. 4.1. Thus, for Jc/(2Js) = 0.225 the

precision of the phase diagram is not sufficient to extract the scaling behavior. Therefore,

in Sec. 4.2.2 a system with Jc = Js = 1 will be considered, for which also the static

SO(5) symmetry is broken. For the same reason, the c-axis anisotropy is neglected here

in favor of an isotropic 3D model.

Before the scaling behavior for the different sets of parameters is considered, first an

analysis of the critical properties for the static SO(5)symmetric case (Jc/(2Js) = 1) is

presented. A closer look to the phase transition line between the points S and P reveals

(inset of Fig. 4.1) that this line is not vertical as in the classical SO(5) model but slightly

inclined. This indicates that a finite latent heat is connected with the AF-SC phase tran-

sition. Moreover, this means that in contrast to the classical model, µ is not a scaling

variable for the bicritical point P .

4.2 Scaling Analysis

4.2.1 Case Js = Jc/2, static SO(5)-symmetry

Now, the problem of symmetry restoration is addressed, or in other words: Is the SO(5)-

symmetry restored dynamically close to the multicritical point in the phase diagram?

Hu performed a scaling analysis similar to the one presented here in a classical SO(5)

model in which an additional quartic anisotropy term has been included [104]. Classical

Monte Carlo calculations are by orders of magnitude easier to perform and less resource

demanding than QMC simulations, hence very large system sizes can be simulated and

highly accurate data are obtained. For this reason Hu could carry out a detailed analysis

of the AF-SC phase diagram and of the critical behavior. In contrast to his work, here a

quantum system is studied. In order to determine the phase diagram (for Jc/(2Js) = 1)

the antiferromagnetic- (AF) and superconducting- (SC) order parameters are calculated

for systems of up to 183 = 5096 lattice sites, what allows to perform an accurate finite

size scaling: On the SC side, the finite-size scaling to extract the order parameter and the
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SC transition temperature turns out to be quite reliable. On the other hand, on the AF

side, the fluctuations in the particle numbers of the three triplet bosons slightly increase

the statistical errors of the SSE results and make the finite-size scaling more difficult.

First, the form of the TN(µ) and Tc(µ) curves in the vicinity of the bicritical point is

determined. For crossover behavior with an exponent φ > 1 one would generally expect

that the two curves merge tangentially into the first-order line. However, this holds for the

scaling variables, therefore, one should first perform a transformation from the old µ axis

to a new µ′ axis defined by µ′(T ) = µ− (T −Tb)/m , where m ≈ 0.11 is the slope of the

first order line below Tb.

After this transformation, the transition curves TN (µ′) and Tc(µ
′) are quite well described

by the crossover behavior (the prime is dropped for convenience)

Tc(µ)

Tb
− 1 = B2 · (µ − µb)

1/φ

and
TN (µ)

Tb

− 1 = B3 · (µb − µ)1/φ (4.1)

The fit to this behavior is shown in more detail in Fig. 4.3. However, the value of φ

obtained here

φ ≈ 2.35, (4.2)

is considerably larger than the value expected form the ε-expansion. It should be noted

that the above determination of φ is not very accurate: the data points in Fig. 4.3 are the

result of a delicate finite-size scaling, even if the precision of this scaling would be suffi-

cient, the error introduced by the subsequent transformation from µ to µ′ again increases

the numerical error bars significantly. For this reason it cannot be excluded, that the

accumulation of statistical errors, finite size effects and the errors introduced by the trans-

formation are responsible for the difference in the φ values. Therefore, a more accurate

evaluation of φ is employed below.

The critical exponents for the onset of AF and SC order as a function of temperature for

various chemical potentials can be extracted from Fig. 4.3.

Far into the SC range, at µ=1.5, the SC helicity modulus [105] can be described using:

Υ ∝ (1 − T/Tc)
ν with ν = 0.66 ± 0.02 , (4.3)

which matches very well the values obtained by the ε-expansion and by numerical anal-

yses of a 3D-XY model. On the AF side, error bars are larger, as discussed above. The

AF-order parameter scales like:

CAF (∞) ∝ (1 − T/Tc)
β3 with β3 = 0.35 ± 0.03, (4.4)

for µ = −2.25, also in accordance with the value expected for a 3D classical Heisenberg

model.
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Figure 4.3: Plot of the AF (left) and SC (right) critical lines in the vicinity

of the multicritical point.

In order to determine ν and φ more accurately in the crossover regime, two expressions

derived from the scaling behavior are used (cf. Ref. [104]).

Υ(Tb, µ)/Υ(Tb, µ
′′) =

(

(µ − µb)/(µ′′ − µb)
)ν5/φ

. (4.5)

and

φ =
ln
(

µ2−µb

µ1−µb

)

ln

(

∂
∂T

Υ(T,µ1)
Υ(T,µ′

1
)

∣

∣

∣

T=Tb

/

∂
∂T

Υ(T,µ2)
Υ(T,µ′

2
)

∣

∣

∣

T=Tb

) (4.6)

where µ1, µ′
1, µ2, and µ′

2 are related by (µ1 − µb)/(µ′
1 − µb)=(µ2 − µb)/(µ′

2 − µb) > 0.

The result is shown in Fig. 4.4, the ratio is:

ν5/φ = 0.52 ± 0.01, (4.7)

which is in excellent agreement with the results of the ε-expansion and other numerical

analyses [104]. φ is then obtained by using Eq. (4.6). Eq. (4.6) has been applied onto 9

different combinations of (µ1, µ
′
1 =µ2, µ

′
2) values with µ1/µ

′
1 =µ2/µ

′
2 =0.5. The result is

φ = 1.43 ± 0.05 , (4.8)

which is again in good agreement with the ε-expansion for a SO(5) bicritical point and

with the results of Ref. [104].

4.2.2 Case Js = Jc

This agreement between the critical exponents obtained in the previous section may not

come completely as a surprise, since the SO(5) symmetry is only broken by quantum
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Figure 4.4: Helicity Υ as a function of the chemical potential µ at T = Tb.

From this function, the value of ν5/φ can be extracted via Eq. (4.5).

fluctuations for the parameters chosen here. The question addressed now, is whether

SO(5) symmetry is also asymptotically restored for a more realistic set of parameters for

which the static SO(5) symmetry is broken as well. As already mentioned above, the case,

where the phase diagram of the cuprates is qualitatively well reproduced (Jc/(2Js) =

0.225, see Fig. 4.2), is too difficult to address numerically, so that the critical exponents

cannot be determined with sufficient precision in this case. Therefore, the analysis is

repeated for the model in an intermediate regime (Jc = Jh), which is not so realistic but

for which the static SO(5) symmetry is broken as well. One could hope that if SO(5)

symmetry is restored also here, then it might be also restored for the case Jc/(2Js) =

0.225, although one may expect that the asymptotic region in which this occurs will be

less extended. Also one has to consider that eventually one should expect the system to

flow away from the SO(5) fixed point, although in a very small critical region, as pointed

out by Aharony [106].

The phase diagram for Jc = Jh is presented in Fig. 4.5 and a detailed view of the region

close to the bicritical point is plotted in Fig. 4.6. Here, the points in the plots were obtained

by a finite-size scaling with lattices up to 5032 (183) sites. In some cases, it has been pos-

sible to simulate lattices up to 10648 (223) sites. An example of the finite-size scaling is

shown in Fig. 4.7. Our analysis yields Tb = 0.682±0.005 and µb = 0.548±0.0005. Here

the line of equal correlation decay is vertical within the error bars, so the transformation

from µ to µ′ is not necessary and the error bars are not increased by the transformation.
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This allows to determine the critical exponents by fitting the data points visible in Fig. 4.6

against T (µ) = Tb ∗
(

1 + (B2 + B3 ∗ Sign[µb − µ])∗ | x − µb |
1

φ

)

. The result reads:

B2 = 0.47 ± 0.07, (4.9)

B3 = 0.11 ± 0.04, , (4.10)

φ = 1.49 ± 0.18, (4.11)

Tb = 0.683 ± 0.004, (4.12)
B2

B3
= 1.67,±0.36 (4.13)

Since points further away from the bicritical point are expected to show a larger deviation

from the bicritical behavior, also a weighted fit has been performed, which takes this fact

into account. Here, data points closer to the bicritical point are weighted more than the

ones further away. Specifically, in both the SC and the AF phase, the point closest to

the bicritical point is weighted six times the one with the largest distance to the bicritical

point. The second closest is weighted 5 times and so on. The results are, within the error

bars, quite similar to the ones obtained without this different weighting procedure:

B2 = 0.46 ± 0.05, (4.14)

B3 = 0.11 ± 0.03, (4.15)

φ = 1.53 ± 0.12 (4.16)

Tb = 0.682 ± 0.003 (4.17)
B2

B3
= 1.61 ± 0.23 (4.18)

The agreement between the equations (4.9) - (4.13) and equations (4.15) - (4.18) suggests

that the data points, that have been considered are still controlled by the bicritical point, In

order to test whether alternatively proposed fixed points may be excluded, a least-square

fit of our data to the decoupled fixpoint behavior is carried out (φ = 1, B2, B3 and Tb

arbitrary). The results are shown in Fig. 4.6 (dashed-dotted line). As one can see from the

curve, the data does not support this hypothesis in the numerically accessible region.
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Figure 4.5: Phase diagram of the 3D-projected-SO(5) model as a function

of the chemical potential for Jc = Jh = 1, the lines are guides to the eyes.
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Figure 4.6: Detailed view of the phase diagram depicted in Fig. 4.5, as a

function µ (Jc = Jh = 1). The two lines have been obtained by fits to

T (µ) = Tb ∗
(

1 + (B2 + B3 ∗ Sign[µb − µ])∗ | µ − µb]
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)

. The continuous

(dashed) line is the ‘normal’ (‘weighted’) fit. The decoupled fixpoint case is

plotted as a dashed-dotted line.
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Figure 4.7: Finite size scaling of the AF order parameter for µ = 0.5, the

temperatures cover 0.72J (lozenge), 0.73J (star), 0.735 (square), 0.74J (trian-

gle) and 0.75 (circle). The lattice size was varied from 216 (83) upto 10648

(223) sites, scanning all cubes with even edge length.

4.3 Validity of the Crossover Exponents obtained by the

numerical Analysis

Altogether, the scaling analysis of the 3D-projected SO(5) model has produced a

crossover exponent which matches quite well with the corresponding value obtained from

a classical SO(5) model and from the ε-expansion. This gives convincing evidence that

the static correlation functions at the pSO(5) multicritical point is controlled by a fully

SO(5) symmetric point in a large parameter region which is relevant experimentally and

in the numerically accessible region. However, one should point out that within the sta-

tistical and finite-size error, as well as within the error due to the extrapolation of the

ε-expansion value to ε = 1, one cannot exclude that the actual fixed point that is ap-

proached is the biconical one, which has very similar exponents to the isotropic SO(5)

one. On the other hand, the biconical fixed point should be accompanied by a AF+SC

coexistence region (as a function of chemical potential), which is not observed. As dis-

cussed above, one can certainly exclude in this transient region the decoupled fixed point

for which φ = 1. Of course, our limited system sizes cannot tell which fixed point would

be ultimately stable in the deep asymptotic region. Here, Aharony’s exact statement shows

that the decoupled fixed point should be ultimately the stable one in the deep asymptotic

region [106].
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The discrepancy between the numerically observed dynamical restoration of SO(5)-

symmetry and Aharony’s arguments can be solved: To do so, the scale at which the

instability of the SO(5) fixed point could be detectable is estimated, based on ε expan-

sion. This estimate holds for the case in which one has a “static” SO(5) symmetry at the

mean-field level (Js = J2/2). The symmetry-breaking effects due to quantum fluctuations

have been estimated in Ref. [103] and are given by Eq. (36) there. By replacing the initial

conditions for the bare couplings in terms of the microscopic parameters of the Hamilto-

nian (cf. equation. 26 of Ref. [103]), and projecting along the different scaling variables

around the SO(5) fixed point, one obtains a quite small projection along the variable that

scales away from the fixed point. Combined with the fact that the exponent for these scal-

ing variables are quite small (λ = 1/13 at the lowest-order in the ε expansion, although

more accurate estimates [107, 108, 109] give a somewhat larger value of λ ≈ 0.3), an

estimate for the scaling region in which the SO(5) fixed point is replaced by another is

obtained – e.g. the biconical or the decoupled – fixed point at t ≡ (Tb − T )/Tb ∼ 10−10

if one takes the O(ε) result for the exponent. Notice that taking the result of Ref. [108]

for the exponent, one obtains a quite larger value t ≈ 2 · 10−3. However, since the

multi-critical temperatures of relevant materials (organic conductors, and, more recently,

Y Ba2Cu3O6.35) are around 10 K, the critical region is still basically unaccessible exper-

imentally as well as with our quantum simulation. The situation is depicted schematicly

in Fig. 4.8.

On the other hand, the other scaling variables, although being initially of the order of 1,

rapidly scale to zero due to the large, negative, exponents. Therefore, the SO(5) regime

starts to become important as soon as the AF and SC correlation lengths become large and

continues to affect the scaling behavior of the system basically in the whole accessible

region.

4.4 Conclusions

Employing the essentially exact numerical Stochastic Series Expansion it has been shown,

that the pSO(5) model, which combines the idea of SO(5) symmetry with a realistic

treatment of the Mott-Hubbard gap, reproduces salient features of the cuprates’ phase

diagram. The model shows long-range ordered AF and SC phases, and the generic phase

diagram (see Fig. 3.1) is reproduced qualitatively, if not even on a semiquantitative level.

Furthermore, the scaling properties of the projected-SO(5) model have been studied and

it turned out that this model is controlled by a SO(5)-symmetric bicritical point, at least

within a large transient region. A remarkable fact is, that this holds for a case in which

the SO(5) symmetry is explicitely broken at the Hamiltonian level. Possible flow away
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Figure 4.8: Schematic representation of the area where SO(5)-symmetry

restoration takes place and where decoupled fixpoint behavior is predicted.

The left plot is a schematic representation of our numerical results. The data

obtained by the QMC simulations display an area close to the bicritical point,

where SO(5)-symmetry is dynamically restored. This region is represented

by the shaded area. The right plot shows a fictive zoom of the left plot with

the bicritical point in its center. In this extremely magnificated view the

resolution is sufficient to observe also a region governed by the decoupled

fixpoint behaviour, like stated by Aharony. However, a resolution like the

one obtained by the fictive zoom here, cannot be achieved at present, not in

the experiments nor with numerical simulations.

from the SO(5)-symmetric fix point occurs only within an extremely narrow region in

reduced temperature, making it more or less impossible to observe this experimentally

nor numerically. This last facet of our results is of course unsatisfactory as it cannot

be falsified with the available techniques. However, this is very similar to many other

examples in condensed-matter physics. The ubiquitous Fermi-liquid fix point is strictly

speaking always unstable because of the Kohn-Luttinger effect [110]. But for most metals

this instability occurs only at extremely low temperatures, and is practically irrelevant.

Another example is the transition of an “ordinary” superconductor to normal-state at Tc.

Strictly speaking, coupling to the fluctuating electromagnetic field renders this fix point

unstable [111]. However, this effect has never been observed experimentally, since the

associated critical region is too small. Therefore, irrespective of the question of ultimate

stability, one can conclude that the SO(5) fix point is a robust one in a similar sense, and

it controls the physics near the AF and SC transitions.



5
Extension of the projected-SO(5) Model

In the previous chapter a detailed study of the phase diagram of the projected-SO(5)

model in three dimensions has been presented. The results were encouraging:

The projected-SO(5) model reproduces salient features of the high-temperature super-

conductors’ phase diagram. In addition, the idea of SO(5)-symmetry gets reinforced

by the finding of symmetry restoration close to the bicritical point, although the SO(5)-

symmetry is manifestly broken on the Hamiltonian level. However, the generic phase

diagram depicted in Fig. 3.1 is simplified. Especially in the pseudo-gap regime, many

different possible phases have been reported, such as a spin-glass phase or magnetic

stripes [112, 113, 114]. This regime is characterized by a partial gapping of the low-

energy density of states (DOS), which is detected below a characteristic temperature T ?.

A possible interpretation of the pseudo-gap state is to consider it as a departure from

the Fermi-liquid picture [115]. Two main routes have been followed to understand the

pseudogap-physics of high-Tc superconductors. One attempt is the so called ‘preformed-

pair scenario’, where it has been proposed that superconducting pairing fluctuations per-

sist above Tc up to T ? in the underdoped regime [116]. This idea has been supported

by numerous experimental results, i.e.: The pseudogap evolves smoothly into the SC

gap [117], the Nernst effect [118, 119] and an anomalous high-frequency conductiv-

ity [120]. According to the second attempt, the pseudogap regime can be characterized by

a strong propensity for ordering. Several types of order have been proposed, including an-

tiferromagnetism [121] and stripe order [115, 122] as well as charge density waves [123],

to name only the most prominent. Recently scanning tunneling microscopy (STM) has

been used to examine the electronic states of the cuprate superconductors at an atomic

scale in the pseudogap state [27, 26]. These experiments show spatial modulations of the

DOS, which are oriented along the Cu-O bond directions. Whereas in Ref. [27] these

modulations have an incommensurate periodicity of ≈ 4.7a0 (here a0 denotes the Cu-

51
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Cu distance), in Ref. [26] commensurate periodicities of 4a0, 4/3a0 and a0 are reported

(see Fig. 5.1). Chen, Zhang and coworkers, proposed, that these experiments may be in-

terpreted in terms of a checkerboard pair-density wave [124, 125]. In the frame of the

projected-SO(5) model, such a state would correspond to a rotationally symmetric state

where hole pair occupied plaquettes alternate with empty plaquettes (see Fig. 5.9). How-

ever, these spatial modulations have not been reproduced by the original projected-SO(5)

model. But, as presented in this chapter, the projected-SO(5) model can be extended in a

natural way, in order to incorporate also charge ordering.

Figure 5.1: STM picture of underdoped Ca2−δNaδCuO2Cl2 (δ = 0.1).

Left: High resolution topograph of the cleaved CaCl plane of a crystal with

δ = 0.1. The perfect square lattice without discernible bulk or crystal re-

constructions is seen. Right: The conductance map at E = 24meV in the

field of view of the left picture. One can clearly identify strong modulations

with 4a0 × 4a0 commensurate periodicity plus equally intense modulations

at 4a0/3 × 4a0/3 and strong modulations at a0 × a0. Pictures taken from

Ref. [26].

5.1 The extended projected SO(5) Model

Motivated by the experimental finding of charge-ordered states, it appears quite natural

to add further (longer-ranged Coulomb) interactions to the projected-SO(5) model, that

may account for these additional phases. Recalling the results from Chap. 2, it appears

indeed natural to add the quartic terms defined in Eq. (2.12) and, thereby, recover the full

effective Hamiltonian (see Eq. (2.9)) constructed using the Contractor-Renormalization

Group analysis [23]. On the other hand, adding further interactions to a Hamiltonian
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can deeply change its physics and thereby may have an unexpected influence on the

phase diagram. From this point of view, it seems desirable to add the further extensions

to the projected-SO(5) model ‘step by step’. The advantage is obvious: The origin of

additional phases and effects in the phase-diagram can be understood in terms of the

extra interactions and their competition with the interactions of the ‘pure’ model. For

this reason, only the longer-ranged repulsion of the hole pairs is added here, which can

physically be motivated by the fact that the Coulomb interaction decays only like 1/r.

The Hamiltonian studied in this chapter then reads [30]:

Ĥ = (∆c − 2µ)
∑

i

b†ibi + ∆s

∑

i

t†α,itα,i

−Jc

∑

<i,j>

(b†ibj + h.c.) +
∑

<i,j>

Js

(

t†α,i + tα,i

) (

t†α,j + tα,j

)

(5.1)

+Vc

∑

<i,j>

n̂c,in̂c,j + V ′
c

∑

�i,j�
n̂c,in̂c,j

This model is named ‘extended projected-SO(5) model’ (or briefly epSO(5) model). The

same conventions as introduced in Chap. 2 are used. These are: b†i (bi) creates (annihilates)

a hole pair boson on lattice site i and t†α,i (tα,i) creates (annihilates) a triplet with spin

projection α on site i, here n̂c,i is the hole-pair number operator on site i. Sums indexed

with < i, j > (� i, j �) cover all pairs of (next-) nearest neighbor sites (i, j). The

quasi-particles obey a local hardcore constraint (see Eq. (2.13)).

In this chapter, the studies are focused on the ground-state properties of the extended

projected-SO(5) model on a two-dimensional square lattice. Again, the Stochastic Se-

ries Expansion (SSE) is applied. Unfortunately, the SSE does not allow to access the

ground state directly. As a consequence one has to make sure that the temperature in the

simulations is sufficiently low, i.e., the thermal fluctuations are mainly frozen out, and

do not affect the system’s behavior substantially. In this case the quantum fluctuations

dominate and the physics is governed by the ground-state properties. In order to deter-

mine the necessary temperature regime, one may consider the energy per site (E) as a

function of the inverse temperature β. If E(β) is converged with increasing inverse tem-

perature, one may be optimistic to be in the relevant temperature regime (see Fig. ??).

This is, of course not, sufficient. As it will be shown in Sec. 5.3.2, the low-energy states

can be quasi-degenerate, hence an infinitesimal change in E can be accompanied by a

change in the order parameters. Thus, it is essential to make sure that the order parameter

under consideration, as a function of β, is converged. In an additional step (like in the

preceding chapter), a finite-size scaling has to be performed in order to obtain the results

for a system with infinite size, necessary for spontaneous symmetry breaking. A differ-
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ence in the analysis is introduced by the change from a 3D- to a 2D-system, because the

Mermin-Wagner theorem [126] does not allow spontaneous symmetry breaking in 2D for

continuous symmetries at finite temperatures. Therfore, before presenting the numerical

results, a brief discussion how to access the different phases with the SSE technique, is

provided.

5.2 Excurse: Phase Transitions in 2D-Systems

5.2.1 Detecting Superconductivity in 2D-Systems

As already mentioned above, the Mermin Wagner theorem states, that one cannot observe

spontaneous symmetry breaking of a continuous symmetry in 2D at finite temperatures.

In addition, Hohenberg [127] specified the statement, proving that the expectation value

of the superfluid-order parameter for one- and two-dimensional superfluids is zero (at

T > 0), if the f -sum rule [128] is valid. However, he does not make any statement

about the existence of a phase transition. In a subsequent work, Kosterlitz and Thouless

(KT) associated a change in the decay behavior of a U(1) correlation function C(i) from

exponential (C(~r) ∝ e−a|~r|) to power-law decay (C(~r) ∝ |~r|−τ ) in 2D-systems with a

phase transition [129], later referred to as a KT-transition or KTB-transition.1 It is pointed

out here that a power-law decaying correlation function does not imply a non-vanishing

order parameter (if τ ≥ 2). This becomes obvious when recalling the definition of an

order parameter ∆ as a function of its corresponding correlation function C(i):

∆ = lim
Ns→∞

1

Ns

Ns
∑

i

C(i), (5.2)

where Ns is the volume of the system, and the i label the lattice sites. Therefore, a KT-

phase transition does not conflict with the Mermin Wagner theorem, because a power-law

decaying correlation function results in a vanishing order parameter, thus no symmetry-

breaking appears.

In the case of the epSO(5) model on a square lattice, the existence of a SC phase can be

detected via a KT-transition, i.e, by measuring the decay behavior of the SC correlation

function Ch(ri), defined as

Ch(ri) =
(

b†i − bi

)(

b†0 − b0

)

. (5.3)

If Ch(~ri) decays like |~ri|−τ , with τ > 0 the system is SC, if Ch(~ri) decays like e−a|~ri| the

system is not. Here |~ri| denotes the distance between the sites i an 0. A reliable distinction

1KTB stands for Kosterlitz,Thouless and Berezinskii, the later published [130] his results three years

before Kosterlitz and Thouless.
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between these two behaviors requires a finite-size scaling of large system sizes as well,

as efficient estimators for Ch(~ri). A more accurate determination of the KT transition can

be accomplished using the fact that a KT transition, apart from the change in the decay

behavior, also shows a jump in the superfluid density to some finite value. This simplifies

the distinction between the two phases considerably, because the superfluid density can be

measured in an extremely efficient way via SSE by simply counting the charge winding

number [131].

5.2.2 Antiferromagnetic Order in 2D-Systems

Long-range antiferromagnetic (AF) order, also breaks a continuous symmetry (namely

SO(3)) and can, therefore, not occur in two-dimensional systems at finite temperature.

The argumentation of Kosterlitz and Thouless applies to U(1) order parameters. But, one

can ‘cure’ this by regarding the inverse temperature β as third dimension. If one recalls,

that the numerical effort of the SSE simulations scales with β ·
∏

α Lα, where the Lα

denote the edge lengths of the lattice, it becomes clear that the inverse temperature β

has a significance similar to the space directions, i.e., the simulation time scales like the

volume of the hypercube space spanned by the cluster edges and the inverse temperature.

Considering the inverse temperature as a dimension is very convenient, when aiming at

the ground-state properties of the 2D extended projected-SO(5) model: The limit T → 0

corresponds to β → ∞, thus by considering the ground-state properties one performs the

step to the infinite system ‘automatically’, thereby fulfilling the other condition to observe

spontaneous symmetry breaking.

In conclusion, a phase transition to a long-range AF ordered state can be detected, if β as

well as the lattice size, determined by the x and y edge lengths of the lattice are scaled to

infinity. A schematic representation is shown in Fig. 5.2.

Plotting the AF order as a function of the inverse temperature, yields a nice convergence

already in the numerically accessible temperature regime. An example is shown in

Fig. 5.3. Therefore, in this chapter the measured values for the AF-correlation function

at sufficiently low temperatures have been taken directly as T = 0 extrapolated data.

In a subsequent step, a finite size scaling (e.g. in Fig. 5.6) is used to extrapolate the

system to the thermodynamic limit. Even if the AF-correlation function seems to be

converged at β = 5J−1
s , the results presented in this chapter have been obtained choosing

10 ≤ βJs ≤ 20. This makes sure, that the thermal fluctuations are frozen out as

nmerically possible.
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x

y β y

x

Figure 5.2: In two dimensional systems spontaneous symmetry breaking

of the SO(3) symmetry is not possible, as stated by the Mermin-Wagner

theorem. However, the inverse temperature β plays a role analogous to a

third dimension and in the limit of β, x and y → ∞ the system can undergo

a phase transition into a state with broken SO(3) symmetry.
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Figure 5.3: Plot of the AF-correlation function as a function of the inverse

temperature β. As one can see, convergence is reached already at moder-

ate temperatures. The results presented in this chapter have been obtained

choosing βJs equal to 10 or 20.
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There exists also a more mathematical way to show that, for T = 0, AF order can oc-

cur. Requiring only the validity of the f -sum rule and bosonic commutation relations,

Hohenberg showed [127] that:

〈a†
~k
a~k〉 ≥ −1

2
+

T m

~k2

n0

n
, (5.4)

where a†
k (ak) creates (annihilates) a boson with momentum ~k. n̂0 (n̂~k) is the number

operator for particles with momentum 0 (~k), n the total boson number and m denotes

their mass. For finite temperature T and D ≤ 2, this expression is incompatible with:

Ω−1
∑

~k 6=0

n̂~k =
1

2π

∫

dsks n̂~k = n − n0. (5.5)

This is due to the fact, that insertion of n~k from Eq. (5.4) in Eq. (5.5) yields a diverging

integral (s is the dimensionality), i.e. the particle number conservation is violated. For

T = 0 the situation is different, because now the second term on the right hand site of

Eq. (5.4) vanishes and in 2D the compatibility of the two equations is restored.

This argumentation holds also for superconductivity (~k = 0), i.e., at T = 0 also real

long-range superconducting (SC) order can occur in 2D, however due to the possibility of

a Kosterlitz-Thouless type of transition already at finite temperature, the scaling β → ∞
is less crucial. However, one should keep in mind, that looking for the ground-state

properties, one has to ensure, that the SC-order parameter is converged as well.

5.3 Phase Diagram of the epSO(5) Model in 2D

This section is dedicated to a presentation of the numerical results for the epSO(5) model.

The results have been obtained on two-dimensional square lattices for very low tempera-

tures (T ≤ 0.1Js). The finite-size scaling has been performed using lattice sizes ranging

from 16 up to 144 sites. The numerical analysis starts, using the parameters proposed in

Ref. [30]:

∆s = 4.8Js, ∆c = 0, Vc = 4.101Js, and V ′
c = 3.6329Js. (5.6)

The energy unit is chosen to be Js. For the physically relevant strong-coupling case

(Hubbard-U ≈ 8t) Js can be identified with about 0.3t, i.e., Js is of the order of 120meV

(see Fig. 2.4).

In Fig. 5.4, the T → 0, i.e., β → ∞ extrapolated phase diagram is plotted. Apart

from the AF phase, the results presented here agree well (within error bars) with the data

obtained in Ref. [30]. What is the reason for the discrepancy in measuring long-range
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Figure 5.4: T=0 phase diagram of the epSO(5) model. Below the

“δ c = 1/4-CDW lobe”, indicated by the dashed lines, the system shows

“checkerboard”-charge order (defined in Eq. 5.9) with a filling of δc = 1/4.

The dashed lines are approximate and are guides to the eyes. In the shaded

area, a small but finite hole-pair density is observed, indicating “metallic”

behavior. The solid lines connect the data.

AF order? In Ref. [30], the spin-stiffness was measured by counting winding numbers.

However, in Appendix A, it is shown that the triplet-winding number cannot be accessed

in the framework of the operator-loop-update mechanism [63], used here. Therefore, in

the present chapter, the static AF-correlation function CAF (ri) for the maximum possible

distance (rmax) in each lattice is calculated. Subsequently, a finite-size scaling to infinite-

system sizes is performed. The correlator CAF (ri), where ri denotes the distance between

sites 0 and i, reads:

CAF (ri) =
∑

α=x,y,z

〈(

t†α,i + tα,i

)(

t†α,0 + tα,0

)〉∣

∣

∣

∆τ=0
(5.7)

If (limri→∞ CAF (ri)) > 0, then the AF-order parameter | ~NNéel|, defined as

| ~NNéel| =
1

Ns

∑

i

CAF (ri), (5.8)

does not vanish. An example for such a finite size scaling is depicted in Fig. 5.6. This

figure shows that AF order is obtained only for ∆s
<∼ 4Js.

But why is long-range AF order not established for ∆s
>∼ 4Js and, thus, also for the

parameters of Ref. [30], i.e., ∆s = 4.8Js?



5.3. PHASE DIAGRAM OF THE epSO(5) MODEL IN 2D 59

� � ��� ��� ���
��� �

��� �

��� �

��� �

�

∆ �

Figure 5.5: Ground state phase diagram of the epSO(5) model as a function

of µ and Jc, obtained by Chen and coworkers [30]. They claim to have found

also an AF phase, that has not been reproduced by the calculations presented

in Fig. 5.4. The energies are in units of Js and PDW is an abbreviation for

‘pair-density wave‘.

The numerical results in Refs. [20, 19] and the mean-field results of Chen, Capponi et

al. [30] strongly suggest that the epSO(5) model should display long-range AF order, in

the case of a negligible hole pair density (µ < 0, Jc < 1Js). In this case, the epSO(5)

model and the projected-SO(5) model should show exactly the same behavior, i.e., AF

order. However, a closer look at the parameters chosen for the simulations of the epSO(5)

model reveals that at ∆s = 4.8Js the triplet density δs =
∑

α 〈t
†
i,αti,α〉 is rather low

(δs ≈ 0.048). Thus, only every ≈ 20th site is occupied by some triplet and the missing

AF order can be reduced to the simple explanation, that the mean distance between two

triplets is bigger than the range of the effective interaction. This is documented in Fig. 5.6,

which shows that the AF-correlation function CAF (r) scales to zero for ∆s = 4.8Js. On

the other hand, long-range AF order is found for triplet densities larger than 0.05 (see

Fig. 5.7).
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potentials ∆s ∈ {2, 3, 4, 4.8, 5}, keeping Jc = 0.4, µ = 0 and T = 0.1.

The lines are a least square fits of CAF (rmax). The symbols indicate ∆s as
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of Js, the error bars are smaller then the symbols.

0.025

0.05

0.075

0.1

0.125

0.15

PSfrag replacements

δ s

∆s/Js

V ol = 144, δc = 0, Jc = 0.4Js, β = 10J−1
s

8 6 4 2
0

0

Figure 5.7: Triplet density as a function of ∆s. If the error bars are not

explicitly drawn, they are smaller than the size of the symbols. The dashed

line indicates the critical triplet density, above which long-range AF order is
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∑

α
1
2
〈t†αtα〉 (circles) as a function of the chemical potential µ at

T/J = 0.03 for the projected-SO(5) model (see Eq. (3.18)). The plotted

points result from a finite-size scaling with lattice sizes V = 10×10, 14×14

and 20×20. The small inlay shows a detailed view to the µ region in which

the hole-pair density jumps to a finite value. The additional solid lines with

error bars are T = 0 data obtained from a simultaneous scaling of β →∞
and V →∞ (with lattice sizes of V =8×8, 10×10, 12×12, 16×16, 20×20

and β =4.8, 7.5, 10.8, 19.6, and 30). Data taken from Ref. [56].
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To conclude this issue: The epSO(5) model shows long-range AF order like expected, but

only if the triplet density is larger than 0.05 and not for the choice of parameters suggested

in [30].

In the following sections, the parameter regime defined in Eq. (5.6) is considered, i.e.,

in the studies of the checkerboard order, the AF ordered state is not explicitely taken

into account. This is justified by earlier studies in Ref. [20], which demonstrate that the

magnon density decays rather rapidly with increasing charge carrier density beyond the

AF regime [100, 20]. For the ranges of δc studied in this chapter, the magnon density is

extremely small and thus negligible (see Fig. 5.8). Within mean-field this is automatically

fulfilled, since then the magnon density δs = 〈t†α,itα,i〉 vanishes identically at some µc,

where µc marks the onset of finite δc [100].

5.3.1 Doping Dependence of the Checkerboard Order

The recently reported checkerboard order in the epSO(5) model [30], offers a natural

explanation of the scanning tunneling microscopy (STM) results of on Bi2Sr2CaCu2O8+δ

and Ca2−xNaxCuO2Cl2 compounds [29, 28, 27, 25]. These experiments show rotationally

symmetric 4a0 × 4a0 charge ordering patterns. As depicted in Fig. 5.9, the charge mod-

ulations on the original copper-oxide plane correspond to checkerboard order in terms of

the coarse-grained boson-plaquette model [23], if one colors a plaquette occupied with

a hole pair white and all other possible occupations black [30]. Starting from a charge-

ordered checkerboard state, one can iteratively construct new checkerboard ordered states

for a variety of dopings by simply coloring half of the “white” (i.e., Cooper-pair) pla-

quettes black. The new state obtained by such an iteration has a new hole-pair density

δ′c = 1/2 δc. Starting, for example, with a checkerboard state associated to hole-pair dop-

ing δc = 1/2 (equivalent to a hole doping of 1/4 in the original copper-oxide plane) the

newly generated state has δ′c = 1/4 (1/8 ). The process of painting half of the “white”

plaquettes black can be repeated and in the next step one obtains again a checkerboard

state with half of the previous Cooper-pair density. But there exists also a second possi-

bility of generating checkerboard states: One can simply paint half of the newly colored

black squares white again. In the example chosen above, starting at δc = 1/4, this leads

to commensurate hole pair doping of 3/8 (equiv. to hole doping of 3/16).

Recently, Komiya and coworkers measured systematically the doping dependence of the

charge carrier mobility [33]. Their observations suggest that at particular doping levels

the hole pair motion seems to be hindered. They identify these doping levels with exactly

the fractions (or ‘magic numbers’), for which one can construct the checkerboard states,

i.e., δhole = 1/16, 3/32, 1/8 and 3/16, Komiya et al. suggest that charge ordering is
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Figure 5.9: Rotationally symmetric 4a0×4a0 charge modulation, in terms of

the boson-plaquette model. The grey boxes represent plaquettes in the half-

filled singlet ground state, and the white boxes the Cooper-pair plaquettes.

In the left lattice, half of the white plaquettes have been replaced by black

ones, leading again to a checkerboard ordered state.

the mechanism behind the reduced Cooper-pair mobility. In principle, 1D-stripes as well

as 2D-checkerboard order could explain the commensurate doping fractions, but the 1D-

stripes would lead to 2a0 × 2pa0 charge unit cells, where p is two times the hole doping.

However, the STM experiments observe a rotationally invariant 4a0 × 4a0 charge order-

ing, thus the 1D-stripe case can be excluded.

Motivated by these findings checkerboard order is here studied as function of µ for

Jc = 0.3Js, using the static charge-density wave (CDW) correlation function CCDW (~k):

CCDW (~k) = 〈n̂c, n̂c〉(~k)
∣

∣

∣

∆τ=0
, (5.9)

checkerboard order corresponds to ~k = (π, π), and stripe order to ~k = (0, π) as well as
~k = (π, 0). As shown in Fig. 5.10, which plots CCDW (~k = (π, π)), it is found that the

checkerboard order parameter is peaked around the commensurate dopings of δc = 1/2

(µ ≈ 17.5Js), 1/4 (µ ≈ 5Js), 1/8 (µ ≈ 1.2Js) and 3/8 (µ ≈ 12.5Js).

Besides the ‘domes’ or maxima in the checkerboard-order parameter in Fig. 5.10, also

plateaus in the density against the chemical potential µ are found (see Fig. 5.11). These

plateaus are, in principle, similar to the plateaus observed in the density (as a function of

the chemical potential) of ‘true’ bosons in the Bose-Hubbard model. In the Bose-Hubbard

model, the plateaus are observed at integer fillings and indicate Mott insulating behavior.

The reason for the Mott insulating regime in the Bose-Hubbard model is the huge on-site

interaction, causing an energy penalty of the order of the Hubbard-U for delocalization

at integer filling factors. The situation is rather different for the extended hardcore-boson
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Figure 5.10: Checkerboard-order parameter as function of the chemical po-

tential µ, for the parameters Jc = 0.3Js, ∆s = 4.8Js and T = 0.1Js ex-

trapolated to the infinite system. The sizeable error bars are due to the rather

low value of Jc (where the autocorrelation time grows significantly). How-

ever, for small µ ≈ 1.2Js corresponding to δc ≈ 1/8, one can clearly iden-

tify a peak in the particle-particle correlation function 〈n̂c, n̂c〉(π, π). Also

checkerboard order for chemical potentials corresponding to 1/2, 1/4 as well

as 3/8 doping is observed. The line connects the data.

projected-SO(5) model, studied here: In this case, the off-site potentials V and V ′ are

the reason for the reduced hole-pair mobility. For example, if δc = 1/2, the energy

penalty for one particle to leave the energetically optimized checkerboard configuration

is ≈ V − V ′. At lower doping fractions, this penalty of leaving the checkerboard

configuration can be even higher: At δc = 1/4 the energy penalty for delocalization is

equal to V or V ′ depending on the new position. When also δc = 1/8 is considered,

the situation changes again: The average free path for a particle, before it approaches to

another particle and gets effectively ‘pushed’ back to its energetically optimized position

in the charge ordered pattern, is bigger than for higher doping fractions. Thus, the

propensity for checkerboard ordering at δc = 1/8 is lower than it is for higher doping

fractions. This is supported by the results in Fig. 5.10, showing that the order parameter

is much lower for δc = 1/8 than it is for δc = 1/4.

In conclusion, the calculation of the checkerboard-order parameter as a function of the

chemical potential reproduces salient features of the experimental findings by Komiya
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Figure 5.11: Hole pair density vs. µ for the same parameters as in Fig. 5.10.

The plateaus indicate Mott insulating behavior. The notion of a Mott insula-

tor is usually restricted to insulating behavior caused by on-site interaction

at integer filling factors. But as discussed in Refs. [30, 23], the epSO(5)

model can be interpreted as an effective Hamiltonian generated from the one

band Hubbard model. In this sense, the plateaus indicate correlation induced

insulating ‘Mott’ phases. A more precise discussion is provided in the text.

and coworkers [33]: Insulating lobes at commensurate doping fractions δc = 1/2, 1/4,

1/8 and 3/8 with non-vanishing checkerboard order are found. In terms of the copper-

oxide plane, these doping fractions δc correspond to half of the original hole-doping frac-

tion δhole, i.e., δhole = 1/4, 1/8, 1/16 and 3/16 observed experimentally. In addition,

the epSO(5) model permits a microscopic understanding of the insulating plateaus at

commensurate dopings levels.

5.3.2 Detailed Investigation of the CDW to SC Transition on Top of

the δc = 1/4 insulating Lobe

In this section, a detailed discussion of the properties of the δc = 1/4 insulating lobe (see

Fig. 5.4) is provided. The top of this lobe is of special interest, because it is a possible

candidate for SO(5)-symmetry restoration [30], if the chemical potential of the triplets

(∆s) is chosen appropriately. Here, like discussed in Sec. 5.3, the case without long-range

AF order (∆s = 4.8Js) is considered. First, the phase transition from checkerboard to SC
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order is classified. In the second part, the temperature dependence of the checkerboard-

order parameter is studied.

Nature of the phase transition

The distinction between first- and higher-order phase transitions based on numerical

simulations is a cumbersome issue. This is, because the autocorrelation time increases

close to phase transitions, thereby reducing the achievable precision. On the other

hand, the type of a phase transition in a model Hamiltonian is an important information,

which can be checked experimentally in some cases. Therefore, in Fig. 5.12 the SC-

and the checkerboard-order parameters, obtained by an extrapolation to the infinite

system, keeping µ = 5Js and T = 0.1Js constant, are plotted against Jc. Thereby,

the behavior of the order parameters passing the phase transition on top of the 1/4th

insulating lobe (see Fig. 5.4) is studied. In order to compare both order parameters in

one graph, the checkerboard-order parameter has been scaled by a factor of 200. Both

order parameters seem to emerge continously, indicating a second or higher-order phase

transition. Unfortunately, the first order case cannot be safely excluded (on the basis of

the results of Fig. 5.12 only), due to the statistical errors of the SSE simulation and the

errors introduced by the subsequent finite-size scaling.

For this reason also a second criterion to distinguish between a first- and second-order

phase transition is considered, i.e, the continuity of the first derivative of the free energy
∂F
∂Jc

(Ehrenfest criterion). It is straight-forward to show that,

∂F

∂Jc
=

〈

∂Ĥ

∂Jc

〉

=
∑

<i,j>

< b†ibj + h.c. > . (5.10)

Thus, measuring the static correlation function < b†ibj + h.c. >, (< i, j > as usual de-

notes pairs of next-neighbor sites) allows to access directly ∂F
∂Jc

. The results are shown in

Fig. 5.13. Even if the slope gets steeper with increasing system size, it converges within

the accessible regime, and a continuous behavior of ∂F
∂Jc

is observed, indicating indeed a

second-order (or higher) phase transition.
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The error bars are estimates obtained from the finite size scaling. The
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10,µ = 5Js)Lines are guides to the eyes.
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excludes a first-order phase transition. The lines are guides to the eyes.
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Reentrance behavior

Next, the temperature dependence of the checkerboard-order parameter is presented. In

order to keep δc = 1/4 constant, canonical calculations at Jc = 1.05Js are employed.

Thus, the parameters are chosen such that the system is simulated exactly above the 1/4th

insulating lobe, where a SC ground state is found (see Fig. 5.4).

With increasing temperature (i.e. approaching βJs < 10 from the right-hand side in

Fig. 5.14), the checkerboard order grows in the limit of infinite-system size, until it

reaches a maximum. With further increase in temperature (βJs < 3), the order parameter

disappears again, like it is depicted in Fig. 5.14.
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Figure 5.14: Checkerboard-order parameter as a function of β , extrapolated

to the infinite lattice. The results have been obtained performing canonical

simulations keeping δc = 0.25 and Jc = 1.05Js. The line connects the data.

When considering low temperatures (i.e., βJs ≥ 10) the system is super-

conducting (see Fig. 5.4). With increasing temperature checkerboard order

is observed (3 < βJs < 10), which disappears again with further increase of

the temperature. From the temperature studies in Sec. 5.2 it is known that

SC critical inverse temperature (βc) is of about 2J−1
s , thus the checkerboard

order disappears in favor of SC.

However, the finite-size scaling of the checkerboard-order parameter is much more diffi-

cult here than it is for the AF-correlation function. This causes the significant error bars

in Fig. 5.14. In order to nevertheless corroborate the results, also the checkerboard-order

parameter is plotted as a function of temperature T for the finite lattices for which the
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calculations have been performed. The curves in Fig. 5.15 all show a maximum, located

in the temperature range, where in Fig. 5.14 finite checkerboard-order parameter is ob-

served. This maximum gets more pronounced with increasing system size. Thus, the

finite checkerboard-order parameter in Fig. 5.14, located at 3.3
<∼ βJs

<∼ 10, is not due to

statistical errors or finite-size effects, but a consequence of the temperature behavior of

the checkerboard-order parameter. These simulations have been performed canonically.

Unfortunately, when keeping the hole-pair number fixed, it is not possible to calculate the

SC-order parameter. However, from the calculations presented in Fig. 5.4 it is known, that

the system has a SC-ground state, i.e., for βJs ≥ 10 the system is SC. Furthermore, it is

known from the temperature studies discussed in Sec. 5.2, that the SC critical temperature

Tc in that parameter range is of the order of ≈ 0.5Js (i.e., βJs ≈ 2). This is in accor-

dance with calculations presented in Ref. [35]. Based on this argumentation, it is plausible

that the SC state recovers when increasing the temperature above the “melting” point of

the checkerboard order. A coexistence of checkerboard and superconducting order can

be excluded because, according to Ref. [132], such a coexistence is thermodynamically

unstable.

This sequence of transitions from SC to checkerboard order and back to SC order as a

function of temperature is called “reentrance” behavior. For a related, but simpler bosonic

model, this sequence of transitions has also been reported [35].
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Figure 5.15: Checkerboard-order parameter for different lattice sizes as a

function of temperature. The results have been obtained performing canon-

ical simulations, keeping δc = 0.25 and Jc = 1.05Js. Here the order pa-

rameter is plotted as a function of T , in order to better display the peak in

the temperature regime 0.15Js ≤ T ≤ 03. The peak structure develops with

increasing system size. The lines are guides to the eyes.
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5.3.3 Beyond HTSC: Supersolid Phase

So far the studies of the epSO(5) model revealed a variety of different phases: supercon-

ducting, antiferromagnetic as well as charge-ordered phases. Originally, the motivation

to study the Hamiltonian Eq. (5.2) stems from the physics of the high-temperature super-

conductors. However, the model can be considered as a more general toy model. The

identification of b†i and t†α,i with Cooper pairs and magnons is not the only possible inter-

pretation. Identifying the hardcore bosons with different quasi-particles may result in a

wider range of applicability for the present epSO(5) model. One can even go beyond the

restriction of representing quasiparticles by the hardcore bosons and identify, for exam-

ple, the b†i with 4He atoms. Of course 4He atoms are ‘true‘ bosons, thus multiple particles

can have the same quantum numbers, e.g. multiple atoms can occupy the same position.

However, the atoms interact strongly. Their interaction has been modeled successfully by

the repulsive Lennard-Jones potential, which diverges if the distance between two atoms

vanishes. Thus, also here the approximation of representing 4He by “hardcore” bosons is

justified. Moreover, 4He is believed to be well represented by Jastrow states [133], im-

plying that 4He has a hard core, is bounded below and has finite range. These properties

can be represented well by the b†i bosons in the epSO(5) model. Recently the research

considering 4He has gained a lot of attraction, caused by experiments of Kim and Chan.

They reported that solid 4He can behave like a superfluid [36, 37]. These studies have

renewed the interest in a long-standing question: can a supersolid phase – with simulta-

neous diagonal (i.e., solid) and off-diagonal (i.e., superfluid) long-range order – exist in a

bosonic system. Does the epSO(5) model also provide a supersolid phase? Whereas the

checkerboard (CCDW (~k = (π, π))) supersolid was recently found to be unstable in the

specific case of hardcore bosons, a striped supersolid phase with CCDW (~k = (π, 0)) was

shown to be stabilized by next-nearest neighbor interactions [132]. Therefore, one may

expect a CCDW (~k = (π, 0)) supersolid phase in the epSO(5) model.

If one changes the interpretation of b†i , such that b†i creates a 4He atom, one also has to

rename the order parameters: superconductivity corresponds to superfluidity and charge

order has to be translated into crystalline order. That is in our ‘familiar’ language of

HTSC, one would call the coexistence of superconductivity and charge order a supersolid

state.
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As a matter of fact, the results of the calculation show that the epSO(5) model contains

a supersolid phase: These results are shown in Fig. 5.16, where the SC- and stripe-order

parameters are plotted after their extrapolation to the thermodynamic limit for µ = 6Js

and Jc = 1Js as a function of β. In the accessible temperature regime, the system is

“supersolid” for inverse temperature βJs
>∼ 3.3. As shown in Fig. 5.17, phase separation

can be excluded.
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Figure 5.16: Superfluid density (ρSF ) and CDW (Stripe) order parameters

extrapolated to infinite system size. The dashed line connects the data points

of the superconducting order parameter and the continuous line connects data

for the CDW order parameter. The lines are guides to the eyes. Again the

CDW order parameter has been scaled (×20), in order to present both order

parameters in one graph. The β-range, where both order parameters are finite,

i.e., β > βc, marks the region where the epSO(5) model shows supersolid

behavior. As shown in Fig. 5.17, phase separation can be excluded.
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5.4 Conclusions

In this chapter, a detailed study of the epSO(5) model’s ground state and finite-

temperature phase diagram has been presented. First the AF behavior has been clarified,

i.e., the model contains long-range AF order only for triplet dopings typically larger

than ≈ 5%. Next, the checkerboard-order parameter as function of doping (for a small

value of Jc) has been studied. The results show qualitative agreement with experimental

data presented in Ref. [33]. In the framework of the epSO(5) model, a microscopic

explanation of the reduced charge mobility has been given. A classification of the

transition from checkerboard to SC order as second- (or higher-) order phase transition

has been presented. When studying the temperature dependence of these two competing

phases, an unusual reentrance behavior was found: the system displays a SC-ground

state, while it shows checkerboard order in a finite temperature regime, above which the

SC state is restored.

Finally, in Sec. 5.3.3 the epSO(5) model is considered as more general effective Hamil-

tonian, where the b†i bosons model 4He atoms. In this interpretation the epSO(5) model

shows “supersolid” behavior, i.e., coexistence of crystalline order and superfluidity, or

diagonal and simultaneously off-diagonal order. This phascinating issue is discussed in

the context of the experiments reported in Refs. [36, 37].



6
Summary

This thesis contains two major parts: The first part introduces the reader into three

independent concepts of treating strongly correlated many body physics. These are,

on the analytical side the SO(5)-theory (Chap. 3), which poses the general frame. On

the numerical side these are the Stochastic Series Expansion (SSE) (Chap. 1) and the

Contractor Renormalization Group (CORE) approach (Chap. 2). The central idea of this

thesis was to combine these above concepts, in order to achieve a better understanding

of the high-Tc superconductors (HTSC). The results obtained by this combination can be

found in the second major part of this thesis (chapters 4 and 5).

After a brief introduction, the first chapter is dedicated to the SSE technique, on which

the numerical analysis of the effective-bosonic Hamiltonians in the second part of this

work is based on. This technique belongs to the Quantum-Monte-Carlo approaches, but

in contrast to algorithms that rely on a discretization in imaginary time, the SSE is in

principle exact. The central ideas and advantages of the Stochastic-Series Expansion

are pointed out and the operator-loop update is discussed. A central position takes the

measurement of correlation functions. Based on the concepts developed by Dorneich and

Troyer [63], the measurement of single-particle correlation functions has been enhanced

considerably within this thesis. Due to these optimizations, the accessible system sizes

grew by one order of magnitude (from ≈ 5000 sites at T ≈ 1Jc to ≈ 10000 sites at

T ≈ 0.5Jc) [21, 22]. This was a necessary condition to obtain the results presented in

chapter 4 and chapter 5, especially when studying the restoration of the SO(5)-symmetric

scaling behavior close to the multicritical-critical point in the global phase diagram (see

Sec 4.2).

In addition, in section 1.3.2 a substantial extension of the capabilities of the operator-loop

update has been proposed. The implementation of these concepts will make it possible to
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measure arbitrary single-particle as well as two-particle correlation functions.

In chapter 2, a fundamentally different approach has been described: The iterative

Contractor-Renormalization Group (CORE) technique, which, in spirit, is related to

the real-space renormalization group scheme [67, 68]. Its application to the one-band

Hubbard-model yields in the first step an effective Hamiltonian [23], that captures the

low-energy physics of the Hubbard-model in terms of its low-lying bosonic excitations,

i.e., triplets and hole-pair bosons. This further motivates why these excitations can be

considered as necessary ingredients, when aiming for a description of the physics in the

copper-oxide planes of the high-Tc superconductors (see Sec. 2.1).

The last chapter of the first part introduces the elegant concept of the SO(5)-theory of

high-Tc superconductivity [17, 18]. It is explained how symmetry principles can be

employed to ‘unify’ antiferromagnetism and superconductivity. These two, at first glance,

different phases, which are apparent in all high-Tc superconductors, are connected by

rotations of a five dimensional superspin. The generators of these rotations are members

of the SO(5)-Lie group. The SO(5)-theory makes a number of predictions, that can

be tested experimentally, e.g., the global phase-diagram and the neutron resonance

mode [18]. Unfortunately, the original exact SO(5)-theory [17] (i.e. on the Hamiltonian

level) cannot account for the Mott physics near half-filling, which has been observed

experimentally in the high-Tc superconductors. This is due to the energetic degeneracy

of states describing hole- and electron-pair quasi-particles in the exact SO(5)-theory.

One escape is to explicitly break the SO(5)-symmetry on the Hamiltonian level by

projecting out the doubly occupied states. This symmetry-breaking on the Hamiltonian

level may have been expected, because the Hamiltonian itself does not need to be

SO(5) invariant. The central question is SO(5)-symmetry restoration, to be possibly

detected in the scaling behavior of the order parameters at the low energy level (≈ kBTc)

close to a multicritical point. Already in Zhang’s original exact SO(5)-theory [17] the

SO(5)-symmetry was explicitly broken by the chemical potential. Zhang, Hu, Hanke,

Arrigoni and Auerbach constructed a model, where the Gutzwiller projection has been

implemented exactly [100]. Interestingly, the resulting projected-SO(5) model has a

large similarity to the effective model motivated by the CORE analysis in chapter 2 (in

the physically relevant, strongly interacting parameter regime (Hubbard-U ≈ 8t)).

In the second major part of this thesis, these three different approaches towards the

physics of the copper-oxide superconductors are combined. The generalized SO(5)-

Hamiltonian (the projected-SO(5) model), that has been motivated by the SO(5)-theory

as well as by the CORE technique, is studied numerically using the Stochastic-Series
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Expansion. In chapter 4, the finite-temperature phase diagram is presented. There, it

is shown that the projected-SO(5) model reproduces salient features of the high-Tc

superconductors’ phase diagram, i.e., an antiferromagnetic Mott insulating phase for

low doping and a superconducting phase for larger doping. Even the correct ratio of the

Néel and the SC-critical temperature can be reproduced, when adjusting the ratio of the

parameters Jc and Js (Jc/(2Js) = 0.225).

In addition, the question of symmetry restoration has been addressed, and the scaling

properties of the critical lines close to the bicritical point, where antiferromagnetic-

(AF) and superconducting- (SC) transition lines meet, have been studied. Although the

SO(5)-symmetry has been broken on the Hamiltonian level, this symmetry is indeed

restored in a rather large transient region of the bicritical point [19, 24]. In the present

work numerical quantum simulations of lattices of more than 10.000 lattice sites have

been made possible, in particular for the projected-SO(5) model. The precision of these

calculations and the obtainable system sizes have been necessary prerequisites in order to

determine the critical exponents close to the bicritical point.

Motivated by the success of the projected-SO(5) model, this model was further extended

by the inclusion of longer ranged Coulomb interactions [30] in order to account also for

the competing and experimentally observed charge-order patterns [25, 26, 27, 28, 29].

This extension was studied numerically in chapter 5). It evolves naturally from the

CORE analysis [30] and also from the SO(5)-theory [31]. The numerical analysis of

the extended projected-SO(5) model (epSO(5) model) starts with the calculation of

the 2D ground-state phase diagram. The phase diagram contains in addition to the

AF and SC also charge-ordered phases. These charge-ordered ‘checkerboard states’

offer a natural explanation for the recent scanning-tunneling microscopy results of on

Bi2Sr2CaCu2O8+δ and Ca2−xNaxCuO2Cl2 compounds [25, 26, 27, 28, 29]. The AF

phase is not stabilized for the model parameters previously considered in Ref. [30]. The

reason for the initially missing AF order has been explained by the fact, that the range of

the effective triplet-triplet interaction is lower than the mean distance between triplets.

An explanation of the difference between the results presented here and the data given

in Ref. [30] has been provided, i.e., the spin stiffness cannot be calculated in the way

presented in Ref. [30] (see App. A).

Furthermore, the ‘checkerboard-order’ parameter as a function of doping has been

studied. The results show qualitative agreement with experimental data presented in

Ref. [33], namely that the epSO(5) model shows a propensity for checkerboard ordering

at commensurate filling factors of δc = 1/2, 1/4, 3/8 and 1/8 (‘magic doping fractions’

in Ref. [33]). This may account for the experimentally observed reduced charge-carrier

mobility, found at exactly these doping fractions. In the framework of the epSO(5)

model, a microscopic explanation of the reduced charge-carrier mobility has been
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presented. When studying the temperature dependence of these two competing phases

(superconductivity and checkerboard order), for parameters where a SC-ground state

has been observed, the calculations show that for a small finite-temperature regime the

checkerboard ordering restores.

In section 5.3.3, the epSO(5) model is considered as a more general effective Hamil-

tonian: This model permits to interpret the charge bosons b†i also as 4He atoms. The

calculation shows that the model contains coexistence of superfluidity and crystalline

order, also refered to as a ‘supersolid state’. Experimentally, a possible observation of

supersolid 4He has recently been reported by Kim and Chan [36, 37].

The main idea of this thesis, i.e., to combine the SO(5)-theory with the capabilities of

bosonic Quantum-Monte Carlo simulations and those of the Contractor-Renormalization

Group approach, has been proven to be a very successful Ansatz. Two different ap-

proaches, one based on symmetry and one on renormalization-group arguments, motivate

an effective bosonic Hamiltonian. In a subsequent step the effective Hamiltonian has

been simulated efficiently using the Stochastic-Series Expansion. The results reproduce

salient experiments on high-Tc superconductors, as explained above. In addition, it has

been shown that the model can be extended to capture also charge ordering. These results

also form a profound basis for further studies, for example one could address the open

question of SO(5)-symmetry restoration at a multicritical point in the epSO(5) model,

where longer ranged interactions are included.

Although this effective bosonic description has been quite successful it should be pointed

out, that the purely bosonic nature of the effective Hamiltonian has still to be further

justified. Neglecting fermionic-quasi particles in the simulations may eventually restrict

the validity of the studied Hamiltonians as a microscopic attempt towards the theory of

high-Tc superconductivity. In the author’s opinion this bosonic approach is justified from

a pragmatic point of view, i.e., by its success in describing the global phase diagram as

well as other salient features (e.g. neutron-scattering resonance, see Ref. [18]) of the

high-Tc superconductors. There is hope that future algorithms and computer techniques

might even permit to simulate coupled bosonic-fermionic Hamiltonians at comparable

temperatures and system sizes and, thereby, overcome the problems mentioned.



A
Detecting Antiferromagnetic Order in

SSE-Simulations of the
extended-projected SO(5) Model

In this section an explanation for the difference between the results presented in Ref. [30]

and the results obtained by our QMC calculations (see Sec. 5.3) is provided. The rea-

son for this difference can be explained by two different procedures of measuring an-

tiferromagnetism. In contrast to the procedure employed in this thesis, i.e. measuring

directly the antiferromagnetic (AF) -correlation function, Chen and coworkers tried to de-

tect antiferromagnetism using the spin stiffness ρs as an order parameter by counting the

triplet-winding number. In the following it will be shown, that in SSE simulations of the

epSO(5) model the triplet-winding number cannot be measured directly, like one usually

does for Hamiltonians containing Heisenberg spin-spin interaction.

Starting point of the calculation is the definition of the spin stiffness ρs:

ρs =
−1

βLd−2

∂2

∂φ2
ln (Z(φ))

∣

∣

∣

∣

φ=0

, (A.1)

where Z denotes the partition function, d the dimension and φ the torsion angle between

the spins. Because here only in the spin properties of the epSO(5) model are of interest,

it is sufficient to consider instead of the full Hamiltonian its spin-triplet term ĤTri:

ĤTri = Js

∑

<i,j>,α

nα
i nα

j , where nα
i = t†i,α + ti,α, (A.2)

Next, one introduces a twist in the boundary, lets say in the x-direction, keeping the

periodic boundary conditions for the y-direction. Using the canonical transformation,

ni := R̂(~e,−φ

L
~ex)ñi, where ñi = (nx

i , n
y
i , n

z
i )

T (A.3)
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and R̂ being the rotation operator, the twist may be eliminated from the boundary con-

dition, to appear explicitly in the Hamiltonian. Setting the rotation axis ~e to the ~ez-axis

yields:

ĤTri = Js

∑

i

nz
i n

z
i+ax

+Js

∑

i

1

2

(

eiφ a
L n+

i n−
i+ax

+ e−iφ a
L n−

i n+
i+ax

)

(A.4)

+Js

∑

i,α
α6=x

(

nz
i n

z
i+aα

+
1

2

(

n−
i n+

i+aα
+ n−

i n+
i+aα

)

)

,

where n+
i and n−

i are defined in formal equivalence to the S = 1
2

ladder operators Ŝ+
i and

Ŝ−
i :

n+
i = nx

i + iny
i , and n−

i = nx
i − iny

i . (A.5)

The combination of the upper equations with the SSE formulation of the partition function

(see Eq. (1.6)),

Z =
∑

n,{Sn}
(βJs)

n (M − n)!

M !
〈α |HbM ,rM

(φ) · · ·Hb1,r1
(φ)| α〉, (A.6)

yields the spin stiffness ρs:

ρs =
1

Z

∑

n,Sn

(βJs)
n (M − n)!

M !
· 〈α |HbM ,rM

(φ) · · ·Hb1,r1
(φ)| α〉ρs(Sn), (A.7)

with:

ρs(Sn) =
−1

βLd−2

∑

p,i

〈αp |
∂2

∂φ2

(

eiφ a
L n+

i n−
i+ax

+ e−iφ a
L n−

i n+
i+ax

)

∣

∣

∣

∣

φ=0

| αp−1〉, (A.8)

here p labels the propagation in the loop update, and is i the site index. After introducing

a winding number Wx such that:

ρs(Sn) =
1

βLd
Wx(Sn)2, (A.9)

it is now sufficient to calculate the winding number Wx(Sn) to detect an AF phase. The

definition of the winding number follows by inserting Eq. (A.8) in Eq. (A.9) and reads:

Wx(Sn)2 =
∑

p,i

L2〈αp |
∂2

∂φ2

(

eiφ a
L n+

i n−
i+ax

+ e−iφ a
L n−

i n+
i+ax

)

∣

∣

∣

∣

φ=0

| αp−1〉.(A.10)

Evaluating expression (A.10) yields:

Wx(Sn) =
∑

p,i

c · 〈αp |n+
i n−

i+ax
− n−

i n+
i+ax

| αp−1〉 (A.11)
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For simplicity the constant c unifies all other prefactors. To access Wx in an actual SSE

simulation, one has to rewrite it in terms of tα,i and t†α,i and Wx(Sn) becomes:

Wx(Sn) =
∑

p,i

c ·
(

〈αp |t†y,it
†
x,i+ax

− t†x,it
†
y,i+ax

| αp−1〉

+〈αp |t†y,itx,i+ax
− t†x,ity,i+ax

| αp−1〉
+〈αp |ty,it

†
x,i+ax

− tx,it
†
y,i+ax

| αp−1〉
+〈αp |ty,itx,i+ax

− tx,ity,i+ax
| αp−1〉

)

(A.12)

Apparently this is different from what one usually refers to as a ‘winding number’ in the

context of world-line based update schemes. In the latter case the winding number de-

scribes the expectation value of a twist in the world line, that are extremely easy to access

numerically. For example, if the spin interaction in some Hamiltonian is described by a

Heisenberg term J
∑

<i,j> ŜiŜj , one can replace the operators n+
i and n−

i in Eq. (A.11)

by their Heisenberg counterparts Ŝ+
i and Ŝ−

i , and the winding number reads:

W Heis
x (Sn) =

∑

p,i

c · 〈αp |Ŝ+
i Ŝ−

i+ax
− Ŝ−

i Ŝ+
i+ax

| αp−1〉. (A.13)

The operators on the right hand side of Eq. A.13 are parts of the Heisenberg Hamiltonian,

i.e., they are contained in the operator-loop update, represented by vertices. Therefore,

in models containing Heisenberg spin interactions, the spin stiffness can very easily be

measured by simply counting the winding numbers.

Unfortunately during a simulation of the Hamiltonian Eq. (5.2), the spinstiffness cannot

be calculated from the twist of the worldlines, because the Hamiltonian does not contain

interaction terms between different spin projections, i.e, no terms tα,it
†
α′,i+ax

, for α 6= α′.

As a consequence, measuring a twist in the worldline of some triplet is not equivalent to

measuring the winding number given by Eq. (A.12) (like it would be for the Heisenberg

case). In addition, measuring off-diagonal correlation functions, of operator sequences

that are not contained in the Hamiltonian poses (to our knowledge) an unsolved problem

in the framework of the SSE operator loop update scheme. However, as explained in

Sec. 1.3.2, these kind of correlation functions can be accessed in an extra measuring step

after the construction of the loop.

In order to make sure, that the above argumentation explains the difference between the

results of Chen’s and our calculations, also the expectation value of the twists (〈TW 〉)in
the triplet-world lines have been recorded and evaluated ‘naively’ using Eq. (A.9), i.e.,

setting Wx = 〈TW 〉x. This procedure indeed reproduces the results of Ref. [30], and

therefore one can be sure, that the incompatibility of their and our results is due to an

invalid way of determining the spin stiffness in Ref. [30].
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Zusammenfassung

Diese Arbeit läßt sich in zwei grobe Abschnitte gliedern. Der erste Teil umfaßt die Kapitel

1– 3, in denen drei verschiedene Konzepte beschrieben werden, die zum Verständis stark

korrelierter Vielteilchen-Systeme dienen. Dies sind zunächst einmal die SO(5)-Theorie

in Kapitel 3, die den allgemeinen Rahmen vorgibt und auf der numerischen Seite die SSE

(Stochastic-Series Expansion) in Kapitel 1 und der Contractor Renormierungsgruppen

Ansatz (Contractor-Renormalization Group approach, s. Kapitel 2). Die zentrale Idee

dieser Dissertationsschrift besteht darin, diese verschiedenen Konzepte zu kombinieren,

um ein besseres Verständnis der Hochtemperatursupraleiter zu erhalten. Im zweiten Teil

dieser Arbeit (Kap. 4 und Kap. 5) werden die so gewonnenen Ergebnisse dargestellt.

Nach einer kurzen Einführung, wurde in Kapitel 1 die den numerischen Untersuchun-

gen in Kap 4 und Kap. 5 zugrunde liegende Stochastische Reihen Entwicklung (SSE)

vorgestellt. Die SSE gehört zu den Quanten Monte-Carlo Verfahren. Im Vergleich zu

Algorithmen, die auf einer Diskretisierung der imaginären Zeit beruhen hat die SSE

den fundamentalen Vorteil, daß sie keinen systematischen Fehler trägt. Eine zentra-

le Position in der Beschreibung des Algorithmus nimmt der sogenannte “Operator

Schleifenaktualisierungs-Mechanismus” (engl. Operator Loop Update Mechanism) ein.

Dieses Verfahren wurde, aufbauend auf den Konzepten von Dorneich und Troyer [63] im

Rahmen dieser Arbeit deutlich verbessert [22, 21]. Durch diese Optimierung, die insbe-

sondere den Bereich der Messung von Greenschen Einteilchenfunktionen betrifft, gelang

es die Größe der behandelbaren Systeme um eine Grössenordnung zu erhöhen (von ca.

5000 Plätzen bei T = 1Jc auf ca. 10000 Plätze bei T = 0.5Jc). Diese Erhöhung stellte

eine notwendige Bedingung dar, um die in Kapitel 4 und Kapitel 5 dargestellten Ergeb-

nisse erhalten zu können. Insbesondere ist sie für die Untersuchung des Skalenverhaltens

am kritischen Punkt im Phasendiagram von Bedeutung

89
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Darüber hinaus wurden substanzielle Verbesserungen des Algorithmus hinsichtlich

der Meßbarkeit von nicht diagonalen Zweiteilchen-Greenfunktionen, als auch von

Einteilchen-Greenfunktionen die nicht im Hamiltonoperator enthalten, sind entwickelt.

Wurde in Kapitel 1 ein numerisches Verfahren vorgestellt und weiterentwickelt, so ist

der Ansatz des in Kapitel 2 beschriebenen Verfahrens ein anderer. Mit Hilfe der dort

vorgestellen iterativen Contractor Renormierungsgruppen Technik kann die Physik eines

Ausgangsmodells auf ein effektives Niedrigenergiemodell abgebildet werden, welches

die effektiven niedrig-energetischen Anregungen des Ausgangsmodells in Form von

Quasi-Teilchen (Bosonen, Fermionen)beschreibt. Die Anwendung des Verfahrens auf

das Hubbard-Modell liefert nach einer Iteration ein Modell, welches die Physik des

Hubbard-Modells auf wechselwirkende Loch-Paare und Triplett-Anregungen redu-

ziert [23]. Die Diskussion dieser Zustände in Abschnitt 2.1 zeigte, daß sie geeignet sind,

um Antiferromagnetismus und Supraleitung, zwei zentrale Komponenten für die Physik

der Hochtemperatur-Supraleiter zu beschreiben.

Das letzte Kapitel des ersten Teils dieser Arbeit (Kap. 3) widmet sich einem eleganteren,

zunächst mathematisch postulierten [17] Ansatz, um die Physik der Hochtemperatur-

Supraleiter zu erfassen: Das Symmetrieprinzip. Die SO(5)-Theorie der Hochtemperatur

Supraleitung [18] führt einen fünf-dimensionalen Ordnungsparameter ein, der die auf

den “ersten Blick” sehr verschieden erscheinenden Ordnungsparameter für Antiferro-

magnetismus (3 komponentiger Ordungsparameter) und Supraleitung (2 komponentiger

Ordnungsparameter) vereint. Die Generatoren der SO(5)-Gruppe verbinden dann

antiferromagnetische und supraleitende Zustände, durch entsprechenden Rotationen.

Die SO(5)-Theorie macht eine Reihe von experimentell überprüfbaren Aussagen,

neben dem globalen Phasendiagram z.B. die Neutronen-Resonanz-Mode [18]. Aller-

dings hat die exakte SO(5)-Theorie der urspünglichen Zhang Arbeit [17] auch einen

gravierenden Nachteil. Exakt SO(5)-symmetrische Modelle können die Mott-Physik

der Hochtemperatur-Supraleiter in der Nähe von Halbfüllung nicht wiedergeben, da

Zustände, die gepaarte Elektronen beschreiben und Zustände die Lochpaar-Anregungen

beschreiben in einer exakten SO(5) Lie-Algebra und Theorie energetisch entartet sind.

Projiziert man aber die Elektronen-Paare durch eine Gutzwiller-Projektion aus dem

Modell [100], so wird die SO(5)-Symmetrie auf dem Niveau des Hamilton-Operators

zu Gunsten einer korrekten Beschreibung der Mott-Physik explizit gebrochen. Diese

Symmetriebrechung auf der Ebene des Hamilton-Operators (Ĥ) ist jedoch eigentlich zu

erwarten, da Ĥ noch nicht das Skalenverhalten, d.h. das niedrig energetische Verhalten

(E ≈ kBTc) selbst zeigt, sondern es nur implizit beinhaltet. Dazu mußdas Skalenverhalten

eines multi-kritischen Punktes studiert werden. Die alles entscheidende Frage ist, ob in

der Nähe eines solchen Punktes die SO(5)-Symmtrie auftritt – oder wie man sagt – asym-

ptotisch restauriert wird. Selbst in der ursprünglichen exakten SO(5)-Theorie [17] ist
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die SO(5)-Symmetrie durch das chemische Potential, welches die Dotierung beschreibt

gebrochen. Zhang, Hu, Arrigoni, Hanke und Auerbach haben ein entsprechendes Modell

mit gebrochener SO(5)-Symmetrie konstruiert [100]. Erstaunlicherweise stimmt dieses

projizierte sof -Modell mit dem durch CORE Rechnungen (s. Kapitel 2) motivierten

effektiven Modell im stark-korrelierten Parameterbereich im wesentlichen überein.

Im zweiten Teil dieser Arbeit wird nun das in den Kapiteln 2 und 3 motivierte verallge-

meinerte SO(5)-Modell mit den in Kapitel 1 vorgestellten und entwickelten numerischen

Möglichkeiten untersucht.

Dazu wird zunächst das Phasendiagramm als Funktion der Temperatur und der Dotie-

rung (chem. Potential) für das projizierten SO(5)-Modell berechnet. Das berechnete

Phasendiagramm enthält zentrale Elemente der experimentell beobachteten Phasendia-

gramme der Hochtemperatur-Supraleiter, d.h. einen antiferromagnetischen Isolator für

kleine Dotierungen und eine supraleitende Phase für größere Dotierungen. Durch eine

geeignete Wahl der Modellparameter (Jc/(2Js) = 0.225) konnte sogar das korrekte

Verhältniss von supraleitender Sprungtemperatur zur Néel-Temperatur wiedergegeben

werden. Das Phasendiagramm zeigt einen multikritischen Punkt, in dessen Nähe die

SO(5)-Symmetrie in der Tat wieder hergestellt wird, obgleich diese auf dem Niveau des

Hamilton-Operators explizit gebrochen ist [19, 24]. Nach unserem besten Wissen war

es das erste Mal, daß Phasenübergänge in einem Quantenmodell mittels numerischen

Simulationen so exakt bestimmt werden konnten, daß die Berechnung der kritischen

Exponenten mit hinreichender Genauigkeit möglich wurde. Dies ist vor allem ein

Verdienst der in Kapitel 1 geleisteten Optimierung des Algorithmus.

Das Phasendiagram der Hochtemperatur-Supraleiter zeigt aber neben AF und SL z.B.

auch ladungsgeordnete Phasen [25, 26, 27, 28, 29], die mit dem projizierten SO(5)-

Modell nicht beschrieben werden können. Ermutigt durch die in Kapitel 4 dargestellten

Ergebnisse, wurde das projizierte SO(5)-Modell erweitert, indem längerreichweitige

Wechselwirkungen zwischen den Loch-Paar Bosonen hinzugefügt wurden [30], um somit

auch die ladungsgeordneten Phasen zu erfassen. Diese Wechselwirkungen sind durch

CORE Analysen [30], als auch durch algemeinere SO(5) Ansätze [18, 31] begründet.

Dieses erweiterte Modell wurde dann in Kapitel 5 eingehend untersucht. Dabei wurde zu-

nächst das Grundzustandsphasendiagram berechnet und mit den SSE-Daten der früheren

Referenz [30] verglichen. Dabei fiel auf, daß die in Referenz [30] berichteten Ergebnisse

bis auf antiferromagnetische Phase reproduziert werden konnten. Der Grund für diese

Abweichung konnte in der inkonsistenten Bestimmung der Spinsteifheit in Referenz [30]

lokalisiert werden (siehe Anhang A). Da das erweiterte projizierte SO(5)-Modell

(epSO(5)-Modell) für die zunächst in Ref. [30] gewählten Parameter keinen Antifer-

romagnetismus zeigt, wurde ausgehend von analytischen Überlegungen das chemische
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Potential für die Triplett-Anregungen variiert, und gezeigt daß dann das Modell – wie er-

wartet – die antiferromagnetische Phase reproduziert. Das Grundzustandsphasendiagram

enthält also Antiferromagnetismus, Supraleitung und als phaszinierenden neuen Befund

ladungsgeordnete Phasen. Die in den Simulationen nachgewiesene Ladungsordnung in

sogenannten Schachbrettmustern, liefert eine natürliche Erklärung für die mittels der

Rastertunnelmikroskopie in Bi2Sr2CaCu2O8+δ und Ca2−xNaxCuO2Cl2 experimentell

beobachtete Ladungsordnung [25, 26, 27, 28, 29]. Motiviert durch Experimente von

Komyia et al. [33], die für bestimmte sogenannte kommensurable Dotierungen (‘magic

doping fractions’) eine verringerte Ladungsträgermobilität berichten, wurde auch die

Dotierungsabhängigkeit des “Schachbrettordnungsparameters” bestimmt. Das epSO(5)-

Modell zeigt ladungsgeordnete Schachbrettmusterphasen (‘Checkeboard-Phases’) für

eben diese sogenannten kommensurablen Dotierungen δc = 1/8, 1/4, 3/8 und 1/16. Im

Rahmen eines einfachen physikalischen Bildes wurde insbesondere ein Zusammenhang

zwischen der experimentell beobachteten verringerten Ladungsträgermobilität und der

Ladungsordnung im epSO(5)-Modell hergestellt, der die verringerte Ladungsträgermo-

bilität erklärt. Dabei wurde auch das Wechselspiel von Ladungsordnung und Supraleitung

eingehend untersucht, d.h. zunächst wurde der Phasenübergang als Typ zweiter oder

höherer Ordnung charakterisiert. Die Temperaturabhängigkeiten der Ordnungsparameter

wurden mittels kanonischer Messungen untersucht. Es zeigte sich ein überaschendes

‘Wiedereintritts-Phenomen’ (‘Reentrance Behavior’), d.h. bei Temperatur T=0 ist das

System supraleitend, wird dann mit Erhöhung der der Temperatur ladungsgeordnet, um

bei erneuter Temperaturerhöhung wieder supraleitend zu werden.

Im letzten Abschnitt des Kapitels 5 wird gezeigt, daß der effektive epSO(5)-

Hamiltonoperator als allgemeineres effektives Vielteilchenmodell betrachtet werden

kann und zum Beispiel geeignet ist, 4He-Atome in einem Gitter zu beschreiben. Im

Rahmen einer solchen Interpretation des epSO(5)-Modells wurde eine supersolide Phase

nachgewiesen, d.h. eine Phase in der Suprafluidität und kristalline Ordnung coexistieren.

Solch ein Verhalten wurde möglicherweise kürzlich für 4He-Atome experimentell

beobachtet [36, 37].

Die zentrale Idee dieser Arbeit, d.h. die Kombination der SO(5)-Theorie mit den

Fähigkeiten bosonischer Quanten-Monte-Carlo Verfahren und den Überlegungen der

Renormierungsgruppe, hat sich sich am Beispiel der Physik der Hochtemperatur-

Supraleiter als sehr tragfähig erwiesen. Wie schon in den vorhergehenden Abschnitten

zusammengefaßt, reproduzieren die numerischen Simulationen der beiden behandelten

Modelle eine Reihe wichtiger experimenteller Daten. Die Grundlage für eine künftige

weitere schrittweise Erweiterung des Modells wurde so geschaffen. Eine offene Frage ist

z.B. die Restaurierung der SO(5)-Symmetrie an einem multi-kritischen Punkt, wenn die
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längerreichweitigen Wechselwirkungen mit in das Modell einbezogen sind.

Abschliessend muss darauf hingewiesen werden, daß die rein bosonische Natur der Mo-

delle eine vorgegebene Randbedingung darstellt, welche die Konstruktion und die Trag-

fähigkeit der Modelle als mikroskopische Ansätze zur Lösung des Hoch-Tc Problems

möglicherweise einschränkt. Nur aufgrund der rein bosonischen Natur der Quasiteilchen,

die in den Modellen wechselwirken, waren die numerischen Studien in der dargestellten

Form (bis zu 10000 Gitterplätze bei T ≈ 0.5Jc) und Präzision möglich. Dennoch ver-

tritt der Autor die Auffassung das dieser Ansatz phenomenologisch gerechtfertigt war.

Diese Auffassung beruht zum einen darauf, daß im Rahmen dieser Arbeit wesentliche

experimentelle Beobachtungen an den Hochtemperatur-Supraleitern reproduziert werden

konnten (s.o.). Zum Anderen muß ganz klar festgestellt werden, daß derzeit keine nume-

rischen Verfahren bekannt sind, die die gleichzeitige Einbeziehung fermionischer Physik

ermöglichten (bei ähnlichen Systemgrößen und Temperaturen). Dennoch bleibt zu hof-

fen, daß durch verbesserte Algorithmen und Rechnersysteme künftig auch gekoppelte

fermionisch-bosonische Modellsysteme ähnlich effizient behandelt werden können, wie

es heute schon für bosonische Modelle möglich ist.
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und Matthias Balzer sowie Christine Schmeisser und Bettina Spiegel.

Schlussendlich geht ein besonderer Dank an meine Frau Christina Maria und meine El-

tern. Die Unterstüzung, die ich von ihnen erfahren durfte, macht mich sehr glücklich und

hat entscheidend dazu beigetragen, daß ich die Zeit des Promotionsstudiums nicht missen

möchte. Allen ein herzliches ‘Vergelt’s Gott!’.
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VERSICHERUNG AN EIDES STATT 101

Eidesstattliche Versicherung

Hiermit versichere ich, Martin Jöstingmeier geboren am 1. Mai 1974 in Halle (Westf.),

an Eides statt, daß ich die vorliegende Arbeit eigenständig, d.h. insbesondere ohne Hilfe

eines kommerziellen Promotionsberaters angefertigt habe. Es wurden keine anderen als

in der Arbeit angegebenen Quellen und Hilfsmittel benutzt. Diese Arbeit liegt nicht in

gleicher oder anderer Form in einem anderen Prüfungsfach vor.

Würzburg, am 10. Mai 2005

Martin Jöstingmeier


