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Abstract

Leishmaniasis is a neglected tropical disease that can be manifested through different

clinical forms, ranging from cutaneous to visceral. The host response against Leishmania

spp. is greatly dependent on T cell-mediated immunity, in which T helper 1 responses are

associated with macrophage activation and elimination of the parasite, while regulatory

T cells and T helper 2 responses are correlated with parasite survival and persistence

of infection. Leishmania uses different virulence factors as strategies for evading the

immune response of the host. One of them are cathepsin-like cysteine proteases, which are

currently under extensive investigation as targets for drug development. Previous studies

with inhibitors of cathepsins B and L in vivo revealed an outstanding modulation of the

host T helper cell response. However, the mechanisms behind these observations were not

further investigated. Given the urgent need for better treatments against leishmaniasis,

the aim of this study was to investigate the effects that the lack of cathepsin B and L

activity have on the signals that dendritic cells use to instruct T helper cell polarization

in response to infection with Leishmania major.

The cathepsin inhibitors tested showed low or no cytotoxicity in bone marrow-derived

dendritic cells, and dendritic cells and macrophages could be generated from cathepsin

B and cathepsin L-deficient mice without apparent alterations in their phenotype in

comparison to wild-type controls. Furthermore, lack of cathepsin B and L activity showed

no impact in the rate of promastigote processing by dendritic cells. Cathepsin B and

cathepsin L-deficient macrophages showed no differences in parasite proliferation and

capacity to produce nitric oxide in comparison to wild-type macrophages. In response to

the parasite, dendritic cells treated with a cathepsin B inhibitor and dendritic cells from

cathepsin B-deficient mice showed higher levels of expression of major histocompatibility

complex (MHC) class II molecules than dimethyl sulfoxide (DMSO) or wild-type controls,

but it was not accompanied by changes in the expression of costimulatory molecules.

Wild-type dendritic cells and macrophages are not able to express the pro-inflammatory

cytokine interleukin (IL)-12 in response to promastigotes. However, cells treated with a

cathepsin B inhibitor or cells deficient for cathepsin B were able to express IL-12, while

the expression of other cytokines -including IL-6 and tumor necrosis factor (TNF)-α-

remained unchanged. These characteristics point towards a more “pro-Th1” profile of

dendritic cells in the absence of cathepsin B.

This data is the first report on IL-12 regulation depending on cathepsin B. The IL-12

up-regulation observed was already present at the transcriptional level. Furthermore, it

was also present in macrophages and dendritic cells in response to LPS, and the latter had
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a higher capacity to induce T cell helper 1 polarization in vitro than wild-type dendritic

cells. The activation of different signaling pathways was analyzed, but the up-regulation

of IL-12 could not be attributed to modulation of nuclear factor-κB (NFκB), p38 mitogen

activated protein kinase (MAPK) and extra-cellular signal-regulated kinase (ERK)1/2

pathways. Thus, the mechanism behind IL-12 regulation by cathepsin B remains to be

elucidated, and the impact of these effects is yet to be confirmed in vivo. Altogether it is

tempting to speculate that cathepsin B, in addition to its role in processing endocytosed

material, is involved in the modulation of the pro-inflammatory cytokine IL-12.
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Zusammenfassung

Leishmaniose ist eine hauptsächlich in den Tropen vorkommende Infektionskrankheit, die

sich in verschiedenen klinischen Formen, von kutan bis viszeral, manifestieren kann. Die

Reaktion des Wirtes gegen Leishmania spp. hängt stark von der T-Zell-vermittelten Immu-

nantwort ab, wobei die Antwort der T1-Helferzellen assoziiert ist mit der Aktivierung von

Makrophagen und der Beseitigung des Parasiten, während die regulatorischen T-Zellen

und T2-Helferzellen mit dem Überleben der Parasiten und der Fortdauer der Infektion

in Verbindung stehen. Leishmania verwendet verschiedene Virulenzfaktoren als Strate-

gie zur Umgehung der Immunantwort des Wirtes. Darunter zählen Cathepsin-ähnliche

Cysteinproteasen, die derzeit Gegenstand umfangreicher Untersuchungen sind mit dem

Ziel, für die Arzneimittelentwicklung eingesetzt werden zu können. Frühere Studien mit

Inhibitoren von Cathepsin B und L in vivo zeigten eine hervorragende Modulation der

Wirt-T-Helferzellantwort. Jedoch wurden die Mechanismen, die diesen Beobachtungen zu

Grunde liegen, nicht weiter untersucht. Angesichts der dringenden Notwendigkeit einer

besseren Behandlung gegen Leishmaniose war das Ziel dieser Studie die Auswirkungen zu

untersuchen, die das Fehlen von Cathepsin B und L-Aktivität auf die Signale hat, welche

die dendritischen Zellen verwenden, um die Reaktion der T-Helferzellen auf eine Infektion

mit Leishmania major zu beeinflussen.

Die getesteten Cathepsin-Inhibitoren zeigten geringe oder keine Cytotoxizität in

den aus dem Knochenmark präparierten dendritischen Zellen. Dendritische Zellen und

Makrophagen von Cathepsin B- und Cathepsin L-defizienten Mäusen zeigten keine of-

fensichtlichen Veränderungen ihres Phänotyps im Vergleich zu Wildtypkontrollen. Weit-

erhin zeigte das Fehlen von Cathepsin B- und L-Aktivität keine Auswirkung auf die

Prozessierung der Promastigoten durch dendritische Zellen. Auch zeigten Cathepsin B-

und Cathepsin L-defiziente Makrophagen keine Unterschiede in der Parasitenprolifera-

tion und der Fähigkeit Stickoxid zu produzieren im Vergleich zu Wildtyp-Makrophagen.

In Reaktion auf den Parasiten war bei mit einem Cathepsin-B-Inhibitor behandelten

dendritischen Zellen und dendritischen Zellen von Cathepsin-B-defizienten Mäusen eine

höhere Expression von MHC-Klasse-II-Molekülen ersichtlich im Vergleich zu DMSO

oder Wildtyp-Kontrollen, aber es wurden keine Veränderungen in der Expression von

costimulatorischen Molekülen festgestellt. Dendritische Zellen und Makrophagen von

Wildtyp-Mäusen sind nicht in der Lage das pro-inflammatorische Zytokin IL-12 als Reak-

tion auf die Promastigoten zu exprimieren. Jedoch konnten dendritische Zellen, die mit

einem Cathepsin-B-Inhibitor behandelt waren oder Cathepsin-B-defiziente Zellen, IL-12

exprimieren, während die Expression von anderen Zytokinen - einschließlich IL-6 und



Zusammenfassung

TNF-α - unverändert blieb. Diese Eigenschaften weisen in die Richtung einer "pro-Th1"-

Antwort der dendritischen Zellen in Abwesenheit von Cathepsin B.

Diese Daten sind der erste Bericht über die IL-12-Regulierung in Abhängigkeit von

Cathepsin B. Die Hochregulation von IL-12 war bereits auf der Transkriptionsebene zu

beobachten. Weiterhin war sie in Makrophagen und dendritischen Zellen auch als Reak-

tion auf LPS vorhanden. Dendritische Zellen von Cathepsin B-defizienten Mäusen hatten

eine höhere Kapazität zur Induktion einer eine T1-Helferzell-Polarisierung in vitro als

dendritische Zellen von Wildtyp-Mäusen. Die Aktivierung von verschiedenen Signalwegen

wurde untersucht, jedoch konnte die Hochregulierung von IL-12 nicht auf die Modulation

von NFκB, p38 MAPK und ERK1/2-Signalwege zurückgeführt werden. Damit ist der für

die IL-12-Regulierung durch Cathepsin B verantwortliche Mechanismus noch nicht geklärt;

auch die Auswirkungen dieser Effekte in vivo müssen noch bestätigt werden. Insgesamt

lässt die vorliegende Studie vermuten, dass Cathepsin B nicht nur an der Prozessierung

von endozytiertem Material sondern auch an der Regulierung des pro-inflammatorischen

Zytokins IL-12 beteiligt ist.
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CHAPTER 1

Introduction: Leishmaniasis

1.1 General aspects of leishmaniasis

Leishmaniasis is considered by the World Health Organization (WHO) as a neglected trop-

ical disease that affects “the poorest of the poor”. [1,2] It affects more than 10 million people

worldwide, with 350 million people considered to be at risk. It is caused by protozoan

parasites of the Leishmania genus, with more than 20 species identified, and transmitted

by the bite of Phlebotomous spp., in the Old World, and Lutzomya spp. sandflies in

the New World. Leishmaniasis comprises a wide variety of clinical manifestations, from

cutaneous to visceral, which can be lethal if left untreated. There is not yet an available

human vaccine against leishmaniasis, and the commonly used drugs for treatment pose

the risk of considerable side effects or are associated with great costs for the patients.

Leishmaniasis is a disease known from longtime. Figures from prehispanic cultures in

the Americas already depicted skin lesions and facial deformities typical of cutaneous and

mucocutaneous leishmaniasis. Fig. 1.1 summarizes a historic time line from the discovery

of Leishmania parasites as the agent causative of leishmaniasis in the early 20th century,

to the introduction of different therapeutics, from trivalent and pentavalent antimonials

(1904-1920s), to liposomal amphotericin B (1990s), and the registration of miltefosine

and paramomycin in the 2000s as the most recent therapeutics against the disease. Im-

portantly, the first reports of HIV-Leishmania coinfection and of antimonial resistance

in the 1980s have added to the need of novel therapeutic and preventive approaches to

control the disease.
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1890s-1900s	



1910s-1920s	



1940s	



1950s	



1970s	



1980s	



1990s	



2000s	



v  Identification of the parasite that causes leishmaniasis by Leishman, Donovan, Wright, Lindenberg 
and Vianna (indepedently)	



v  Identification of L. infantum, and of other Leishmania parasites causing visceral, mucocutaneous 
and cutaneous leishmaniasis. 	



v  Introduction of trivalent antimonials for treatment of leishmaniasis	


v  Introduction of urea stibamine, the first pentavalent antimonial for treatment of leishmaniasis	



v  Phlebotomine sandflies were demonstrated to be responsible for the transmission of L. donovani 
and L. tropica (L. major)	



v  Introduction of large scale control of leishmaniasis vectors with insecticides in Asia	



v  Introduction of iso-enzyme analysis, allowing genetic speciation of Leishmania spp.	


v  First reports of antimonial resistance in Kenya	



v  Genetic speciation of Leishmania spp. by DNA hybridization. 	


v  Introduction of promastigote agglutination for diagnosis of leishmaniasis.	


v  First reports to antimonial resistance in Bihar, India	


v  First reports of coinfection with HIV in leishmaniasis patients in European Mediterranean 

countries	



v  Introduction of immunochromatographic detection of leishmania in patients in the field, using 
recombinant K39 dip-stick. 	



v  Introduction of PCR for detection of kinetoplast DNA from patient samples	


v  Liposomal amphotericin B first registered for treatment of visceral leishmaniasis	



v  Registration of miltefosine for treatment of leishmaniasis (2004)	


v  Registration of paromomycin for treatment of leishmaniasis (2006)	



Figure 1.1. Time-line of main events in treatment and control of leishmaniasis, according to the
WHO [1]

This chapter describes the main aspects of clinical and experimental leishmaniasis.

The first sections focus on the biology of the parasites, the distribution of the disease, and

the pathologies observed in the different forms of leishmaniasis observed in the clinics.

Next, the current status of chemotherapy and immunotherapy against leishmaniasis is

reviewed, and the need for novel approaches against the disease is highlighted. Finally,

the experimental model of cutaneous leishmaniasis is reviewed, with emphasis on the

knowledge gained in how the immune system of the host interacts with the parasite, and

ultimately determines the outcome of the disease.

1.1.1 The parasite

Leishmania spp. are intracellular trypanoplastid, protozoan parasites that belong to the

order of Kinetoplastids. Kinetoplastids are characterized by a unique mitochondrial DNA

structure, the kinetoplast, which contains approximately 30% of total cell DNA. [3] Leish-

mania parasites have a digenetic life cycle, which requires a susceptible vertebrate host

and a permissive insect vector. The life cycle of Leishmania parasites is illustrated in

Fig. 1.2. The extracellular form of the parasites is the promastigote, which is flagellated

and motile, and colonizes the digestive tract of Phlebotomous spp. and Lutzomia spp.
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Metacyclic	


 promastigotes	



Sandfly bite	

Sandfly bite	



Attachment	



Phagocytosis	



Lysis	



Intracellular 	


amastigote	



Reinvasion	



Proliferation	



Amastigotes	



Proliferation in the midgut	



Procyclic promastigotes	



Figure 1.2. Life cycle of Leishmania spp. Life cycle of Leishmania spp. Leishmania metacyclic promastig-
otes reside in the midgut of an infected sandlfy, and are inoculated to the host when the sandfly
takes a blood meal. It is rapidly taken up by cells of the innate immune system, macrophages being
their preferred host. The promastigotes first attach to the membrane of the macrophages and are
taken up by receptor-mediated phagocytosis. Within the macrophage, the promastigotes survive
inside a PV, where they differentiate to amastigotes. Amastigotes are responsible for the clinical
manifestation of the disease, as they proliferate in the macrophages and invade uninfected cells
in the vicinity. When a sandfly takes a blood meal from an infected host, the cycle is completed,
as amastigotes are ingested either in free form, or contained within the cells taken up. Inside the
sandfly, the amastigotes will transform back to promastigotes, first in a highly replicative form
(procyclic promastigotes) and then to a metacyclic form, concomitant with the up-regulation of
virulence factors for an upcoming invasion of a new host.

sandflies. [4] During the insect blood feeding, metacyclic promastigotes are inoculated into

the host dermis, together with saliva and parasitic phosphoglycans are also introduced

into the host, the latter playing an important role in the establishment of the infection and

modulation of the host response. Once inside the host, the promastigotes are quickly taken

up by mono- and polymorphonuclear cells. The preferred host are macrophages, which

take up the promastigotes by receptor-mediated phagocytosis. [5] Inside the macrophages,

the promastigotes reside in phagolysosomes, where they transform into the non-flagellated

amastigote form. Amastigotes are obligate intracellular, and account for the clinical man-

ifestation of the disease, as they replicate and infect additional macrophages.

When the sandfly takes a blood meal from a Leishmania-infected host, the cycle

is completed, as it ingests free amastigotes or infected cells. The amastigotes then are
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transformed into proliferative, procyclic promastigotes, which can eventually become

metacyclic promastigotes in a process known as metacyclogenesis. Metacyclogenesis is

characterized by the modification of surface proteins and glycoconjugates, which confers

virulence to the parasites should they be inoculated in a new host. [6,7] The changes that

promastigotes undergo in this process can be mimicked in liquid culture of promastig-

otes, as logarithmically growing promastigotes resemble to procyclic promastigotes, and

stationary phase promastigotes, to metacyclic promastigotes. [5]

The genus Leishmania is divided into two subgenera -Leishmania and Viannia- based

on the place within the alimentary tract of the sandfly vectors where they develop. Species

of the subgenus Leishmania present suprapylarian development, as their growth is re-

stricted to the section anterior to the pylorus at the junction of midgut and hindgut.

Viannia species, on the other hand, show peripylarian development, as they can grow in

both the midgut and the hindgut. [1,8] The subgenera Leishmania is present in both the

Old and the New Worlds, while Viannia is restricted to the New World. [1] The clinical

form of leishmaniasis developed by a patient varies greatly depending on the parasite

species. Identification of Leishmania spp. can be performed by culturing parasites from

lesion biopsies, and PCR-based methods, particularly with multiplex PCR assays, or

isoenzyme electrophoresis. However, the use of these methods is limited to reference

laboratories, since they require significant infrastructure and technical expertise. [1] Other

approaches can be used for diagnosis of the parasite in the field, including rK39 antigen-

based immunochromatographic test, and agglutination tests [1] but they do not allow to

differentiate between different species of Leishmania.

Leishmania parasites use different evasion mechanisms to avoid the attack of the host

immune response. As most of them act at the level of silencing the effector functions of

macrophages, the interaction of Leishmania virulence factors with these cells are reviewed

in Section 1.2.1.4. Cysteine proteases are virulence factors from the parasites of great

importance for this study, and are described in more detail in Section 2.8.

1.1.2 Epidemiology

The leishmaniases can be classified according to the reservoir hosts that are source of

human infection: zoonotic leishmaniases, in which the reservoir hosts are wild, perido-

mestic or domestic animals, and anthroponoic leishmaniases, in which the reservoir host

is human. [1] The transmission cycles of leishmaniasis can furthermore be classified into

primary and secondary transmission cycles for zoonotic leishmaniasis, and into tertiary

cycles for anthroponoic leishmaniases, [9] as illustrated in Fig.1.3. The great gerbil (Rhom-

bomys opimus) and the sand rat (Psammomys obesus) are the primary reservoir hosts
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Figure 1.3. Types of transmission cycles found in leishmaniasis.. Adapted from P. Buffet. [9]

for L. major in Central Asia, and in West Asia and North Africa, respectively. [1] For L.

infantum, dogs are considered the principal reservoir hosts, and it is estimated that more

than 50% of all infected dogs are asymptomatic carriers. [1] Anthroponoic transmission

posses the risk of increase in drug resistance. [9] Human beings are considered to be the

principal reservoir host of L. donovani, which causes visceral leishmaniasis, and of L.

tropica, which causes cutaneous leishmaniasis. [1] HIV and Leishmania co-infection was

first reported in the mid-1980s, and it is accounted to be present in one third of the

endemic countries. Patients co-infected with Leishmania and HIV are furthermore known

to be highly infectious to sandflies. [1] Other forms of leishmaniasis transmission included

the sharing of syringes among intravenous drug users, blood transfusion, and congenitally,

although these are considerably rarer than vector-borne transmission. [1]

Cutaneous leishmaniasis in the New World is predominantly zoonotic, and in the

past it was considered mostly an occupational disease, related to activities in forests areas.

One example is the chiclero ulcer in southern Mexico, found in workers who tap rubber

trees. [10] However, widespread deforestation and the extension of human settlements into

formerly uninhabited lands has resulted in a sharp increase in peridomestic, periurban,

and in some instances, urban transmission of leishmaniasis. [1,11] In the Old World, cuta-

neous leishmaniasis is also predominantly zoonotic, attributed in most cases to L. major
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and L. aethiopica. Increased risk of infection is attributed not only to man-made ecolog-

ical changes and immigration of non-immune population, but also to practices such as

sleeping outdoors without a bednet. [1] Epidemics of cutaneous and visceral leishmaniasis

in the Old World and the New World are associated with population movements, and

the introduction of non-immune people to areas were the disease is present. [1] Examples

of this case are the kala-azar epidemic in war refugees from southern Sudan in the 1990s,

resulting in the death of 100,000 people [12] and recent reports of cutaneous leishmaniasis

in Syrian refugees. [13]

Poverty plays a key role in the risk of transmission of leishmaniasis. Poor housing

and sanitary conditions contribute to the increase of sandfly breeding sites. Furthermore,

the crowding of a large number of people into a small space -i.e. the favelas in Brazil’s

periurban areas or war refugee camps in the Middle East- attracts sandflies and provides

a large biomass for blood meals. [1] Additionally, malnutrition and consequent anemia

contributes to the severity of the disease, particularly in cases of visceral leishmaniasis and

mucocutaneous leishmaniasis. [1,11] Furthermore, treatment of leishmaiasis is expensive

for the patients. In India, it has been estimated that the median total cost for visceral

leishmaniasis treatment per patient is equivalent to 1.2-1.4 times the annual income per

capita. [1] The burden of the disease, expressed in disability-adjusted life years (DALYs)

is estimated at 2,357,000. [14]

Endemic leishmaniasis transmission has been reported in 98 countries and 3 territo-

ries. [2] Out of these 98 countries, 72 are developing nations, with 13 of them corresponding

to the least developed countries, and cases of HIV-Leishmania co-infection have been

reported in 35 countries. [15] It has been recently estimated that approximately 0.7 to 1.2

million cases of cutaneous leishmaniasis, and 0.2 to 0.4 million cases of visceral leishmani-

asis occur each year. [2] Furthermore, more than 90% of the cases of visceral leishmaniasis

in the world are concentrated in six countries: Bangladesh, Brazil, Ethiopia, India, South

Sudan and Sudan. Furthermore, 70% to 75% of all cases of cutaneous leishmaniasis occur

in ten countries: Afghanistan, Algeria, Brazil, Colombia, Costa Rica, Ethiopia, Iran, North

Sudan, Peru, and Syria. It is estimated that leishmaniasis causes 20,000 to 40,000 deaths

per year, a 10% case-fatality rate. [2] The overall prevalence of leishmaniasis is 12 million

cases, with 350 million people estimated to be at risk. [16] Fig. 1.4 depicts the geographical

distribution of cutaneous leishmaniasis in the Old World, particularly the areas affected

by L. major. Since it has been reported that changes in the environment have a strong

influence on the epidemiology of leishmaniasis, it has been suggested that the distribution

of leishmaniasis might be affected by climate changes resulting from global warming. [1]
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Figure 1.4. Geographical distribution of cutaneous leishmaniasis. Adapted from P. Buffet. [9]

1.1.3 Pathology

Depending on the parasite species, genetic factors and the immune status of the host,

leishmaniasis can manifest in three main clinical forms: cutaneous leishmaniasis, visceral

leishmaniasis, and mucocutaneous leishmaniasis. Fig. 1.5 depicts examples of Leishmania

spp. classified according to the clinical form of leishmaniasis that they cause in human

patients. The control of Leishmania parasites within the host is mediated by innate

and adaptive immune responses, and this interplay between parasite and host immune

response is ultimately reflected in the clinical outcome of the infection. [1] While important

variations characterize the different clinical forms of leishmaniasis, some of the common

features are:

• Neutrophils are the first cells to encounter Leishmania parasites at the site of

infection, followed by skin dendritic cells

• Macrophages are the preferred host cell for Leishmania

• While in murine models disease resistance or susceptibility is marked by a strict

dichotomy of T helper (Th)1 and Th2 immune responses, respectively, while in hu-

man disease a rather mixed Th1/Th2 response is observed. [1] The Th cell immunity

corresponding to each clinical form of leishmaniasis is further reviewed in Section

1.2.3.2

• Clinical cure confers lifelong immunity, but it is not sterile. Small amounts of para-

site persist, and can be reactivated in conditions of immunosuppression. [17,18]
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Figure 1.5. Clinical forms of leishmaniasis and the Leishmania spp. that cause them. Several factors
influence the clinical form of leishmaniasis that a patient develops, and the parasite species is of the
most important. [9]

Treatment recommendations are formulated based on the clinical form of leishmaniasis

present, after considering the cost-benefit for the patient. The use of different chemothera-

peutic and immunotherapeutic strategies against Leishmania is discussed in section 1.1.4.

1.1.3.1 Visceral leishmaniasis

Visceral leishmaniasis is comprised by a broad variety of disease severity and manifes-

tations. The incubation period of the disease varies from weeks, months, or sometimes

even years. Patients infected with L. donovani or L. infantum develop a reticuloendothe-

lial hyperplasia, affecting the spleen, liver, small intestine mucosa, bone marrow, lymph

nodes and other lymphoid tissues. Other symptoms include prolonged fever and cachexia,

as malnutrition is both a risk factor and also a sequel of the disease. [19] Furthermore,

anemia, leukopenia and granulocytopenia are developed, as a result of a reduction of

the lifespan of leukocytes and erythrocytes. In later stages, prothrombin production is

decreased, and in combination with thrombocytopenia, severe mucosal hemorrhage might

be present. Hyperglobulinaemia is also present, in most of the cases characterized by

polyclonal immunoglobulin (Ig) G, as a result of B cell inactivation. [1] The three classical

symptoms hepatosplenomegaly, fever, and pancytopenia are however absent in more than

10% of immunocompetent patients, and in 50% of immunosuppressed patients. [9] The

high antibody response observed in the patients is not protective, but it is useful for
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diagnosis. Spontaneous healing is rare. If left untreated, concomitant infections frequently

take place, mainly pneumonia, dysentery and tuberculosis, which are common causes of

death. [1,20]

The term kala-azar (black fever in Hindi) is used to refer to an advanced, life threaten-

ing visceral leishmaniasis form in the Indian subcontinent, which, in some cases, presents

darkening of the skin. [19] Post-kala azar dermal leishmaniasis (PKDL) is a form of cu-

taneous leishmaniasis that takes place in some patients during or after an apparently

successful treatment of visceral leishmaniasis. It is triggered by the immune response of

the host. The skin lesions can occur as macules, papules, nodules or patches, and appear

most prominently on the face. In some cases, PKDL may heal spontaneously, but in

others, further treatment might be required. [19]

1.1.3.2 Cutaneous leishmaniasis

The typical incubation time for cutaneous leishmaniasis ranges from weeks to months.

The lesions usually progress from papules to plaques, which might develop central ulcer-

ation. The lesions might be presented as papulonodular, nodular, and noduloulcerative.

Multiple primary lesions or satellite lesions might also appear. Other symptoms include

regional adenopathy, nodular lymphangitis, thick hemorrhagic crusts, and in occasions

might become infected with bacteria. [19] In early forms of the disease or in cases of patients

with low levels of antibodies, there are large numbers of parasite-carrying macrophages.

As the lesion evolves, lymphocytes and plasma cells infiltrate, and the destruction of

host infected macrophages usually leads to elimination of the parasites. Generally, the

cutaneous lesions are painless, but require months for healing and leave permanent scars,

which might be disfiguring.

Depending on the strength of the cellular response developed by the patient and the

parasitic burden found in the lesions, three main manifestations of cutaneous leishmania-

sis have been described: localized, recidivans, and diffuse. [1,9] A schematic representation

of these forms can be found in Fig. 1.6. In Leishmaniasis recidivans, the lesions present

a heavy lymphocyte infiltrate, while presenting few or not visible parasites. In contrast,

diffuse cutaneous leishmaniasis is characterized by low or absent cell-mediated immunity;

instead of lymphocyte infiltrates in the lesions, dermal infiltration is composed of va-

cuolated, parasite-carrying macrophages. Only after treatment, signs of acquired cellular

immunity are present. [1] The lesions of localized cutaneous leishmaniasis can appear

as self-healing ulcers, or as dermal granulomas, that require several months or years to

heal, [21] and in some cases, can become chronic. [22] Cutaneous leishmaniasis from the New
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Figure 1.6. Clinical manifestations of cutaneous leishmaniasis Cutaneous leishmaniasis (CL) can be
presented in patients in three main forms, which are characterized by distinctive cell response and
parasitic burden: CL recidivans, localized CL, and diffuse CL. Adapted from P. Buffet, [9] with
photographs (from left to right) from: I. Esfandiarpour, [25] A. Bari, [26] and N. Mehrolhasani [27]

World present a relatively more rapid pathological development, wetter and larger ulcers,

longer ulcerative phase and more involvement of the connective tissue in comparison with

cutaneous leishmaniasis of the Old World. [23,24]

1.1.3.3 Mucocutaneous leishmaniasis

The term mucocutaneous leishmaniasis (also known as mucosal leishmaniasis or espundia)

has been traditionally used to refer to a disfiguring form of sequel of New World cuta-

neous leishmaniasis. Mucocutaneous leishmaniasis is characterized by dissemination of

the parasites from the skin to the naso-oropharyngeal mucosa. [19] Mucosal and cutaneous

lesions can occur at the same time, or appear years apart. Typically, the mucosal lesions

appear several years after the resolution of the initial cutaneous lesions that were not

treated, or were treated suboptimally. [19]

The initial manifestations of the disease include epistaxis and stuffiness in the nose,

with erythema and edema of the nasal mucosa. [19] Minor necrotic and granulomatous

reactions appear, associated to the infiltration of lymphocytes, macrophages and plasmo-

cytes. As the disease evolves, acute vasculitis and necrosis of the walls of the small blood

vessels appear, [1] and a progressive and ulcerative destruction of the naso-oropharyngeal

mucosa and surrounding tissues takes place. [19]
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Table 1.1. Summary of therapeutic approaches implemented in comparative studies for leishmaniasis
treatment. [9]

Mode of Antibiotics Antineoplastics and Antiparasitics Antifungals
administration immunomodulators

Parenteral Paromomycin Destroyed
promastigotes +
BCG

Pentavalent
antimonials

Amphotericin B

IFN-γ Sodium
stibulconate

Liposomal
amphotericin B

GM-CSF Meglumine
antimoniate

Pentamidine

Lipidic complex
amphotericin B

Oral Allopurinol
Azithromycin

Miltefosine Sitamaquine
(WR6026)

Dapsone

Ketoconazole
Itraconazole
Fluconazole

Physical methods

Local Topic
paromomycin

Cryotherapy
CO2 laser
Thermotheraphy

Imiquimod Dynamic phototherapy
Intralesional zinc sulfate
Intralesional pentavalent antimony

1.1.4 Current treatments against leishmaniasis

1.1.4.1 Chemotherapy

In the absence of an available effective human vaccine against leishmaniasis, the control

of the disease relies on chemotherapy and control of the transmission vector. [28,29] Table

1.1 summarizes the different chemotherapeutic agents against leishmaniasis currently in

use. The choice of a chemotherapeutic will depend greatly on the form of leishmaniasis

present (cutaneous, mucocutaneous, or visceral), the species of Leishmania suspected,

and the data available on success rates in different geographical populations. In addition,

the potential side effects of these chemotherapeutics are considered. For example, the

most serious side effects of the current antimonials available -meglumine antimoniate and

sodium stibogluconate- include pancreatitis, cardial and renal toxicity. [28,30] Miltefosine,

originally developed as an anticancer drug, is the first effective oral drug against leish-

maniasis. However, a limitation for its use is its reported teratogenicity, and therefore it

is not suitable for use during pregnancy, and it is ruled out for treatment in women of

childbearing age for whom adequate contraception cannot be assured. [31] Amphotericin

B also presents nephrotoxicity as a common side effect. However, it is highly effective

against antimonial resistant L. donovani, and newer formulations, including liposomal

amphotericin B reduce the associated toxicity. [32] The use of pentamidine isenthionate

is limited, due to the severity of its reported side effects: diabetes mellitus, severe hypo-

glycemia, shock myocarditis and renal toxicity. [1]
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Table 1.2. Treatments for Old World (*) and New World (**) cutaneous leishmaniasis. [9]

Parasite First line Second line Observations from ongoing
species treatment treatment research

L. major* Pentavalent antimonials
(intralesional) and
superficial criotherapy

Pentavalent antimonials
(parenteral)

Topical paromomycin/-
gentamycin: good
efficacy

Alternatively,
fluconazole, local
paromomycin,
miltefosine

Parenteral antimonials:
mixed efficacy in
children

Itraconazole: low or nule
efficacy

L. tropica* Pentavalent antimonials
(intralesional) and
superficial criotherapy

Pentavalent antimonials
(parenteral)

Thermotherapy
L. infantum* Pentavalent antimonials

(intralesional) and
superficial criotherapy

Pentavalent antimonials
(parenteral)

L. aethiopica* Pentavalent antimonials
(parenteral)

Miltefosine
L. guyanensis** Pentamidine isethionate

(i.v. with better
results than i.m.)

Miltefosine
Pentavalent antimonials
(parenteral)

L. panamensis** Pentamidine isethionate
(i.v. with better
results than i.m.)

Topical paromomycin/-
gentamycin: good
efficacy

Miltefosine
Pentavalent antimonials
(parenteral)

Imiquimod: moderate
adjuvant effect
associated to
pentavalent
antimonials

L. braziliensis** Pentavalent antimonials
(parenteral)

Amphotericin B
deoxycolate

Amphotericin B
liposomal

Pentamidine: no efficacy
Miltefosine: no efficacy
Local paromomycin:
good efficacy

L. mexicana** Ketoconazole Miltefosine: no efficacy
Thermotherapy Fluconazole Pentavalent antimonials:

low efficacy

Table 1.2 summarizes the recommended lines for treatment of cutaneous leishmania-

sis. [9] Depending on the status of the patient, the size of the lesions and their location. In

general, local treatment is recommended for cutaneous leishmaniasis caused by L. major,

because the lesions are associated with a self-cure rate of about 50% at 6 months, and

because of the side effects associated with systemic treatment using the currently available

antileishmanial drugs. [1] However, if the lesions are disfiguring or disabling, bigger than

5 cm in diameter or numerous (more than 4), or if the patient is immunocompromised,

systemic treatment is recommended. [1]

Treatment of leishmaniasis is quite challenging in the poorest and most remote regions,

not only in terms of medicament supply, but also because of the health infrastructure and

12



Chapter 1. Introduction: Leishmaniasis

personnel required for their administration. Pentavalent antimonials need to be adminis-

tered intramuscularly or intravenously, and according to the WHO treatment guidelines,

the patients should be monitored by serum chemistry, complete blood counts and electro-

cardiography. [1] Amphotericin B is administered by intravenous infusion, and due to its

toxicity, continuous monitoring in a hospital is recommended. [2] For cutaneous leishma-

niasis, topical administration of paromomycin ointments have shown promising results,

and is expected to reach the clinics within the next years. [9] Ultimately, the therapeutic

decisions are based on the benefit-risk ratio for each patient, the health service setting

and their availability of such medicines.

A last, but not least, concern about the currently available drugs against leishma-

niasis, is the emergency of drug resistant parasites. Antimonials have been one of the

first chemotherapeutics used against Leishmania, and for more than half a century they

have been the first line of treatment in several countries for leishmaniasis. [1] However,

antimonials are obsolete for use in the Indian subcontinent, due to the emergence of

resistance in Bihar, India. [33] In this region, antimonials show up to 65% failure rate .

Therefore, other chemotherapeutics are used, among them miltefosine. Recent reports

from India, [34] Bangladesh, [35] and Nepal [36] on miltefosine treatment efficacy indicate

the emergency of miltefosine resistance. [28] The risk of selection of drug resistant parasites

is higher in anthroponotic leishmaniases, because of the higher exposure of the parasites

to antileishmanial drugs. [1,9]

Altogether, there is a need for novel antileishmanial drugs, with fewer side effects as

the currently available options, and ideally with easier modes of administration, i.e. oral

or topical.

1.1.4.2 Immunotherapy

Immunotherapy consists in the use of agents for modulating the immune response of

a patient for prophylactic or therapeutic purposes. [37] The strategy of action of im-

munotherapeutic agents may be to (1) augment the host natural defenses, (2) restore

effector functions, or (3) decrease host excessive response. [37,38] The aim of immunothe-

rapeutic approaches against leishmaniasis is to obtain a therapeutic cure by modulating

and activating the immune response of the host, [37] overcoming the control strategies

that the parasite uses to escape the immune system.

Vaccines and immunotherapeutics

The first hints for the possibility to develop a vaccine against Leishmania spp. came

from a practice used in endemic areas for centuries, consisting in the inoculation of live
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and virulent Leishmania parasites obtained from cutaneous lesions. This “leishmanization”

resulted in lesion development, but once it healed, conferred subsequent immunity to

infection. [39] This approach was tested in vaccination trials, but due to serious safety

concerns, its use was no longer recommended. [40] Although several studies have inves-

tigated the use of virulence-attenuated parasites or parasites with a so called “suicidal

cassette”, [41,42] due to the risks associated to the handling of live vaccines a different

strategy was explored: the use of killed parasites.

Several developments of a vaccine for cutaneous leishmaniasis using killed parasites

or parasite lysate have been reported, and are considered to be the first-generation can-

didate vaccines. Convit and colleagues found a 94% of cure rate in patients in Venezuela,

using three injections of a vaccine composed of L. mexicana lysate with Bacillus Cal-

mette–Guérin (BCG; formulation referred as the “Convit vaccine”). [43] In another study

using 5,341 patients with mucocutaneous and chronic cutaneous leishmaniasis, treatment

with this vaccine resulted in cure rate between 91.2% and 98.7%. [37,44] Mayrink and

colleagues evaluated vaccination with a mixture of lysates from 5 Leishmania strains

using BCG as adjuvant (the “Mayrink vaccine”), and observed a cure rate of 76% in

patients with cutaneous leishmaniasis. [37,45,46] In a later clinical trial with 542 patients,

the authors found that repeated daily doses of killed L. amazonensis and BCG resulted

in a cure rate of 98.1%. [46] This vaccine showed comparable results as the use of the drug

antimoniate N-methyglucamine (Glucantime ®) and as a combined chemotherapeutic

treatment, discussed in the next section. Another candidate was produced in Iran (the

“Razi Institute vaccine”) for L. major given in combination with BCG. While these results

have been encouraging for therapeutic indications, they have been inconclusive or negative

for prophylaxis. [1]

The second generation vaccines consist of recombinant proteins and DNA vaccines. [1]

Up to date, the only commercially available vaccine for leishmaniasis is formulated for

dogs. Canine visceral leishmaniasis is challenging to treat, because under the WHO guide-

lines human chemotherapeutics are not recommended to be used, in order to prevent the

development of drug resistance. [37,47] The vaccine Leishmune ® was developed in Brazil,

and it is composed by the fucose-mannose-ligand (FML) antigen of L. donovani . [48] Cur-

rently only one defined vaccine, Leish-111f+MPL-SE, has reached clinical trials in Sudan,

Peru and India for its use in humans. [49] Leish-111f is a polyprotein, composed of L.

major homolog of eukaryotic thiol specific antioxidant (TSA), L. major stress-inducible

protein-1 (LmSTI-1) and L. braziliensis elongation and initiation factor (LeIF). [50,51]

The adjuvant, monophosphoryl lipid A-stable emulsion (MPL-SE) stimulates Toll-like

receptor (TLR)-4, and is the only TLR agonist in approved human vaccines. [49] A version

of this vaccine lacking the His-tag, for manufactory and regulatory purposes, is currently
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under clinical trials in India. [50]

Immunochemotherapy

Immunochemotherapy involves the combination of immunotherapy with chemother-

apeutic drugs, with the aim to create a synergy between the activation of the immune

system, and direct action of drugs against an infectious agent. [37] The benefit of this type

of strategy is to reduce the amount of drug required, the duration of treatment or both. By

this mean, the toxic side effects associated to leishmanicidal drugs could in turn be reduced.

An approach used in Venezuela is the administration of three injections of the “Convit

vaccine” to patients of cutaneous leishmaniasis; if the patient does not respond, then

chemotherapy treatment is started. [1] Mayrink and colleagues reported the evaluation of

an immunochemotherapy protocol, consisting on a combination of the "Mayrink vaccine"

with the pentavalent antimonial Glucantime®. This protocol was associated with a 17.9%

reduction of the volume of drug required, and a 31.6% (about 1 month) reduction of the

treatment duration time. [46] Currently, the use of repeated daily doses of the “Mayrink

vaccine” with low dose of antimonial is applied in the clinics in Brazil, and the “Mayrink

vaccine” is registered as an adjuvant for low-dose chemotherapy. [1] Furthermore, a study

in Sudan performed by Musa and colleagues in patients with persistent PKDL, the effects

of immunochemotherapy with sodium stibogluconate and a mixture of killed L. major

parasites with alum and BCG were analyzed. The treatment was administered four times

at weekly intervals. The cure rate of patients treated with this immunotherapeutic ap-

proach presented a 87% of cure rate, while for sodium stibogluconate alone was of only

53%. [52]

Another immunochemotherapeutic strategy is the combination of leishmanicidal drugs

with cytokines. Interferon (IFN)-γ is key for the activation of macrophages to kill Leish-

mania amastigotes, and it is reported to be clinically well-tolerated. [37,53] Different studies

have evaluated the use of pentavalent antimonials in combination with IFN-γ. [37,54–58]

Overall, these results indicate that IFN-γ enhances the efficacy of the pentavalent anti-

monials, reflected in higher cure rates and faster parasitological control in comparison

with pentavalent antimonials alone. Granulocyte-macrophage colony-stimulating factor

(GM-CSF) has also been studied in combination with pentavalent antimonials, either by

intralesional injection or applied topically, [59,60] and reported to accelerate the healing of

lesions, even in patients that have previously not responded successfully to antimonial

therapy. [61]

All together, the use of immunotherapeutic approaches, alone or in combination with
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chemotherapeutics, have demonstrated promising results, and further emphasize the im-

portance on the immune response of the host for control of the disease.

1.2 The murine model of cutaneous leishmaniasis

Several mouse models are available for studying cutaneous leishmaniasis, based on dif-

ferent sites of infection (i.e., the footpad, the ears, the rump) and parasite dose. One

of the most widely used involves the subcutaneous injection of L. major promastigotes

in the footpad of the mice. Depending on the mouse strain, the infection may proceed

as lesions that grow and are self-healing over the course of 6 to 8 weeks -as in the case

of C57BL/6, CBA/N, DBA2, C3H/He, Sv129/Ev mice-, or in non-healing lesions, as

observed in BALB/c mice. BALB/c mice not only fail to contain the development of

the skin lesions, but also present dissemination of the parasites to internal organs, and

therefore must be euthanized. [62,63] In resistant mice, healing of the lesions is followed

by long-lasting immunity against infection. As observed in humans, this immunity is

not sterile, and one year after cure viable parasites can still be detected. [64] The strong

difference in outcome of infection indicated a genetically determined predisposition for

susceptibility or resistance, and led to intensive investigations on the mechanisms behind

this phenomenon. It should be noticed that other experimental setups reflect better the

clinical outcome of cutaneous leishmaniasis observed in humans, particularly the intra-

dermal injection of parasites in the ears of mice. [65,66]

Susceptibility and resistance in the murine model of cutaneous leishmaniasis is con-

trolled by cell-mediated immunity, but not by humoral immunity. Mice deficient in an-

tibody (Ab) response are reported to be still resistant to L. major infection, [67] and

transfer of Ab from immune mice showed no protection to infection in BALB/c mice. [68]

In contrast, T-cell deficient mice -athymic nude mice- are susceptible to L. major infec-

tion, despite being in a C57BL/6 or CBA background. [63,69] After syngeneic transfer of T

cells, the ability to resist infection was restored in these mice. [63] Later on, it was shown

that the syngeneic transfer of purified CD4+T cells from mice that have been cured

from a primary infection or from immunized mice to naïve mice conferred protective

immunity. [63,70] While these results strongly indicated the role of protective CD4+T cells,

studies in BALB/c mice showed that blocking the functions of CD4+T cells by injection of

anti-CD4 Ab or cyclosporin A [71,72] resulted in protection against the parasite. Therefore,

CD4+T cells in this model where responsible for the protection and susceptibility of the

different mouse strains.
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In 1986, Mosmann and colleagues discovered that CD4+T cells can be divided in

two subsets, based on the cytokines they produce. The first group, Th1 cells, responds

to antigens by secreting the cytokines interleukin (IL)-2, interferon (IFN)-γ and tumor

necrosis factor (TNF). The second group, Th2 cells, produce IL-4, IL-5 and IL-10, [73–75]

as well as the later discovered IL-13. Resistant mouse strains against Leishmania develop

a Th1 immune response, while susceptible BALB/c mice develop a Th2 immune response.

The importance of Th1 response for the control of leishmaniasis relies greatly upon the

activating function of IFN-γ to activate macrophages for the killing of the parasites

residing within them. IFN-γ-deficient mice are unable to cure infection, [76] while IL-4-

deficient BALB/c mice were reported to cure. [77,78] These observations resulted in the

formulation of what is known as the “Th1/Th2 paradigm” of resistance/susceptibility to

L. major infection. While some of the main principles of this paradigm still hold true,

more recent investigations indicate a more complex system with the discovery of other

Th cell populations. This aspect is explored in more detail in Section 1.10.

The integration of different components from the innate and the adaptive immune

system of the host ultimately result in control or susceptibility to the disease. This section

summarizes the contribution of cells and chemical signals from the innate and adaptive

immune responses against leishmaniasis.

1.2.1 The role of the innate immune system in cutaneous leishmaniasis

The defense against a pathogen is mediated by two main systems. The first system, innate

immunity, is set up in place in steady state, ready to act rapidly upon infection. This

system reacts upon detection of pathogen-associated molecular patterns (PAMP), which

are structures highly conserved in a wide variety of microorganisms during evolution, but

are not expressed on the body’s own cells. PAMP are recognized by cells of the innate

immune system by using pattern recognition receptors (PRR), which activates the effector

mechanisms aimed to eliminate or control the pathogens. The response orchestrated by the

innate immune system in turns provides signals that initiate the second system, adaptive

immunity, to develop a pathogen-adapted response to eliminate the microbe, and to that

generate long-lasting memory to rapidly respond in case of a reinfection. Furthermore,

the immune response against a pathogen can be classified into a cell-mediated response,

and a humoral immune response. The latter corresponds to mechanisms of defense based

on proteins circulating in the blood, including the Ab produced by adaptive immunity,

or complement proteins corresponding to the innate immune system. [79–81]
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Although the murine model of cutaneous leishmaniasis has demonstrated a paramount

role of the adaptive cell-mediated immunity in the susceptibility or resistance to leishmani-

asis, the innate immune system in its own contributes in different levels to the outcome of

the disease. The innate immune system is comprised by physical barriers (i.e. the skin and

skin-resident effector cells), circulating effector cells (including neutrophils, macrophages,

and natural killer cells), circulating effector proteins (including the complement system),

and cytokines and chemokines. [79] The innate immune response of the host contributes to

resistance against the infection by controlling the parasite growth during the early stages,

by directing the recruitment of cells from other compartments of the immune system, and

by contributing to the cytokine microenvironment in which parasite-specific T cells are

primed. [37,82,83] The roles of the different compartments of the innate immune system are

described next.

1.2.1.1 The skin

The skin is the first barrier against infection. It contains a network of immune cells, either

as patrols or residents, whose purpose is to sense pathogens and control infection. [84] The

immune cells comprised in this network include Langerhans cells -a specialized type of

dendritic cells (DC)-, tissue residents T cells, mast cells, monocytes, and dermal DC. [23]

Furthermore, neutrophils continuously circulating through dermal vessels extravasate

quickly upon signs of inflammation. The skin is the site of primary infection, and while

the mechanisms of Th cell differentiation have been proposed to primarily occur in the

lymph node, [85] there is an increased amount of evidence indicating that the skin also

plays a role influencing the direction of the immune response. For example, one of the dif-

ferences observed in the skin of BALB/c mice in comparison to C57BL/6 mice is that the

first present a higher percentage of infiltrating granulocytes, -particularly neutrophils [86]

and macrophages [87]-, and depletion of neutrophils in BALB/c mice resulted in a Th1

response. [86] Furthermore, it has been proposed that the infected tissue generates danger

signals within the first hours after infection, which could be integrated by DC and trans-

ferred to the lymph nodes, were they instruct the polarization of naïve Th cells (Th0). [88,89]

Keratinocytes constitute more than 90% of epidermal cells. [84] They express differ-

ent PRR, as well as MHC class II molecules that are up-regulated upon activation for

the presentation of antigens. [90] IL-6 production from keratinocytes has been reported

to play an important role for the innate immune response against Leishmania, and for

the development of a Th1 immune response. [91,92] Ehrchen and colleagues reported the

expression of chemokines and cytokines in the skin within the first hours at the site

of infection. [91] The skin of C57BL/6 mice presented higher gene expression levels of

the cytokines IL-1β, IL-4, IL-12p40, IL-12p35, and TNF-α, and osteoponin, as well as
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of the chemokines CXCL2, CXCL10, CCL2, CCL4 in comparison to BALB/c mice. At

the secretion level, the authors found higher amounts of secreted CCL2, osteoponin, IL-6,

and TNF-α. The authors attributed the expression of these cytokines and chemokines

to keratinocytes. They found that chimeric mice in a C57BL/6 background laking IL-6

expression in keratinocytes but not in immune cells showed a Th2 immune response. [91]

The roles of different immune cells that also infiltrate the skin lesions are discussed

in the next pages.

1.2.1.2 Neutrophils

Following parasite inoculation into the dermis, neutrophils rapidly infiltrate the wounded

skin, and immediately take up Leishmania promastigotes. Neutrophils are thus the first

cells to encounter the parasites. [93,94] After an initial acute inflammation, the infection

proceeds “silently”, as the parasite proliferates without any visible pathology in the patient,

and the peak in parasite load is found when the skin lesions start to become apparent. [65,95]

In lesions from localized cutaneous leishmaniasis, neutrophils have been reported in the

vicinity of the keratinocyte layer of the skin, and are presumably involved in the destruc-

tion of keratinocytes, resulting in ulceration. [23,96] As neutrophils are found in necrotic

and perinecrotic areas from lesions of human cutaneous leishmaniasis, it is suggested that

neutrophils are involved in the protection, but also in the pathology of the disease. [23,97,98]

Laskay and colleagues have proposed that neutrophils could act as “Trojan horses”

for Leishmania infection, by allowing the parasites to invade macrophages silently. [99,100]

They observed in vitro that neutrophils rapidly take up L. major promastigotes, but the

parasites were able to survive as promastigotes within them. Furthermore, the parasites

induced the neutrophils to undergo apoptosis, which in turn made them a target for

macrophages as these cells routinely clear up apoptotic cells from the system. By this

mechanism, the parasites able to enter silently to the macrophages together with the dead

neutrophils, and ultimately to find a niche for replication within the macrophage phago-

somes. [100] Furthermore, infected neutrophils released MIP1-β, a monocyte-attracting

chemotactic factor.

Two-photon intravital microscopy showed in vivo that neutrophils are indeed rapidly

recruited to the site of infection. 40 min. after exposure to sandflies, neutrophils could

be already detected into the skin, localized around the site of apparent bite sites. [94] The

parasites were readily taken up by the neutrophils, but remained viable, and were pro-

posed to contribute with the establishment of infection. Moreover, they results indicated
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that macrophages were also recruited to the site of infection, and suggested the release of

viable parasites from apoptotic neutrophils in the vicinity of surrounding macrophages.

They found however no evidence in vivo for the uptake of apoptotic neutrophils harboring

living parasites. Nevertheless, the importance of neutrophils in the infection outcome was

confirmed in this study, as they also found that neutrophil depletion resulted in reduced

disease.

A different feature of neutrophils, is that upon recruitment to the site activation they

can be activated to die and release “nets” of DNA and granular contents, but there is

currently no consensus yet on the fate of the entrapped parasites. [101] Recently, Ribeiro-

Gomes and colleagues reported the uptake of apoptotic neutrophils harboring L. major by

DC, which prevented the activation of infected DC in the skin. [102] Furthermore, exposure

to L. major was shown to induce the secretion of CCL3 by neutrophils from C57BL/6

mice, in levels considerably higher than in neutrophils from BALB/c mice. [103] The au-

thors of this study also showed that CCL3 acted as a strong DC-attracting chemokine,

and that a higher number of Langerhans, dermal and monocyte-derived DC were recruited

to the infection site of C57BL/6 mice in comparison to BALB/c mice. Therefore, it has

been proposed that the crosstalk between neutrophils and DC may play an important

role to the outcome of L. major infection. [104]

1.2.1.3 Natural killer cells

Natural killer cells (NK) are members of the innate immune system, whose function

is to eliminate host cells harboring intracellular pathogens, or cells that present that

have undergone malignant transformation, or cells presenting a strong stress reaction. [66]

NK cells are activated in response to an up-regulation of ligands for NK-cell activating

receptors, or the down-regulation of NK cell-inhibitory receptors. Leishmania infection

has been reported to trigger a rapid but transient activation of NK cells. They have been

found accumulated at the site of Leishmania inoculation 24 h after infection of C57BL/6

mice [66,105] and in the lymph nodes. [106] The cytotoxic activity of NK cells in Leishmania

infection is dispensable, as myeloid cells infected with Leishmania are reported to resist

NK-mediated lysis. [66] Nevertheless, mice depleted of NK cells show an aggravated course

of L. major infection, whereas transfer or activation of NK cells is reported to have an

ameliorating effect. [66,107–109]

In addition to their cytotoxic role, NK cells are also known to produce the cytokines

IFN-γ and TNF. [66,110,111] IFN-γ plays a crucial role in the activation of macrophages for

the killing of the Leishmania parasites they harbor, The cytotoxic activity of NK cells and
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IFN-γ production has been detected as early as 1 day post infection in resistant mouse

strains. [66,106,108,112] It has also been observed that BALB/c mice present a significantly

weaker NK cell activity in response to L. major than C57BL/6 mice. [66,108,113,114] The

activation of NK cells has been attributed to different factors, including: cytokines (IL-2,

IL-12, IFN-α/β), IFN-α/β-induced inducible nitric oxide synthase (iNOS), the receptor

tyrosine kinase Tyk2, and the transcription factor IRF-2. [66] It has been proposed that

the activation of NK cells, in experimental mouse models and in human infection with

Leishmania, is mediated by the interaction with myeloid cells, as the production of NK

cell-stimulatory cytokines is required. [66] In addition, the activity of NK cells has been

reported to be transient, and it has been demonstrated that L. major inhibits IFN-γ

production, proliferation and cytotoxic activity of human NK cells, as shown with pro-

mastigotes, parasite lysate, and the 63 kDA glycoprotein GP63 of L. major . [66,115]

While there is a consensus on NK cells exerting a protective function in the murine

model of cutaneous leishmaniasis, they are non-essential for the resolution of the in-

fection, [66] as a Th1 immune response against the parasite can still be induced in the

absence of NK cells- derived IFN-γ. [66,116] Nevertheless, the activation of NK cells has

been proposed as a useful strategy to improve the course of infection by immunotherapies

or immunochemotherapies. [66]

1.2.1.4 Macrophages

Macrophages are cells of the immune system with great phagocytic capacity that are

located in various tissues. They serve different important functions; they are able not only

to engulf and degrade microbial pathogens, but also to produce cytokines and chemokines

in response to detection of PAMP, which in turn promote the recruitment of other immune

cells and the triggering of an immune response. Furthermore, they are able to present

antigens from the degraded pathogens to T cells, participating in the promotion or effec-

tor phase of adaptive immunity. [117] In addition, they are the main cell type responsible

for engulfing and eliminating apoptotic cells, or efferocytosis. [118] Macrophages take up

microbial pathogens by phagocytosis, a process in which the cell forms actin protrusions

around the microbe that fuse and result in its engulfment. The microbe is then inside the

cell within an intracellular vesicle, called the phagosome. The phagosome then fuses with

lysosomes, forming a phagolysosome that has an acidic pH and contents hydrolytic and

catabolic enzymes. This environment is enough to destroy some microorganisms. [118,119]

Activated macrophages kill the phagocytosed pathogens by the action of microbicidal

molecules in the phagolysosomes.

21



Chapter 1. Introduction: Leishmaniasis

One mechanism for the elimination of pathogens in the phagolysosomes of macrophages

is the conversion of molecular oxygen into reactive oxygen species (ROS), also known

as respiratory burst. This process is mediated by the nicotinamide adenine dinucleotide

phosphatase (NADPH) oxidase complex, which is assembled in the phagosolysosome

membrane. [120] The oxidase complex is induced and activated by different stimuli, includ-

ing the recognition of PAMP by TLR and IFN-γ. Moreover, in response to these stimuli

macrophages produce reactive nitrogen intermediaries, in particular nitric oxide (NO),

by the enzymatic action of iNOS. iNOS catalyzes the conversion of arginine to citrulline

and NO, which can acts in synergy with ROS. [79]

Macrophages form the second wave of cells infiltrating the site of infection. While

Leishmania parasites can infect phagocytic cells and some non phagocytic cells (i.e. fi-

broblasts), macrophages are widely recognized as the preferred host cell for Leishmania

parasites. [99,121] Upon entering the host, Leishmania promastigotes are exposed to the

antimicrobial properties of serum components. Serum-opsonized promastigotes are taken

up by macrophages in a process mediated by the complement receptor 3, depending on the

GTPase RhoA. [120,122] C3b has been documented to bind to leishmanial surface lipophos-

phogylcan (LPG) and metalloprotease GP63. [5,123,124] In in vitro systems, macrophages in

culture synthesize small amounts of proteins, including C3 for the opsonization of nearby

particles or cells. [5] C3 has been detected in the surface of L. donovani amastigotes and

promastigotes incubated with murine peritoneal macrophages without serum pretreat-

ment. [125] Other receptors associated with the phagocytosis of Leishmania parasites by

macrophages include mannose receptors, complement 1 receptor, fibronectin receptors,

and Fc gamma receptors. [5]

Although most of the microbial pathogens that proliferate in macrophages do so by

escaping the phagocytic pathway, a characteristic feature of Leishmania parasites is their

ability to survive and proliferate within the mature phagolysosomes of macrophages. [99,126]

Promastigotes taken up by macrophages are delivered to the phagolysosome -also referred

in the literature as parasitophorous vacuoles (PV) [127]- where they differentiate into

amastigotes. The PV in which amastigotes reside contain lysosomal hydrolases, and their

membranes are enriched with late endosomal/lysosomal proteins, as well as an acidic pH

(4.7-5.2). [120] Unlike promastigotes, whose metabolic activities are optimal at neutral pH,

amastigotes are greatly adapted to the acidic pH of the phagolysosome environment. A

pH between 4.0 and 5.5 optimal for their metabolism. [120,128]

Leishmania parasites have been shown to actively manipulate the PV where they

reside. They are reported to: alter the composition of the lipid bilayer of this compartment

membrane, prevent its fusion with lysosomes, and to remodel the surrounding cytoskeletal
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network. [118,120,129] The arrest on phagosome maturation is specific for promastigotes, but

not for amastigotes, and it is characterized by periphagosomal F-actin accumulation. [120]

Furthermore, amastigotes are able to avoid the generation of ROS from the macrophages

by degrading and preventing the assembly of the NADPH oxidase assembly. [120,130,131]

NO-dependent Leishmania elimination is crucial in macrophages, as treatment with in-

hibitors of iNOS result in a drastic reduction of parasite elimination in vitro and in

vivo. [132–134] Furthermore, mice lacking iNOS have been shown to be highly susceptible

to L. major despite the development of a Th1 immune response. [135] Pro-inflammatory

cytokines characteristic of a Th1 immune response are strong inducers of iNOS, particu-

larly IFN-γ and TNF-α. [136,137] Conversely, Th2 typical cytokines, including IL-4, IL-10,

IL-13 and transforming growth factor (TGF)-β have been reported to inhibit macrophage

activation and NO-mediated elimination of the parasites. [138–141]

In addition, to survive within the macrophage intracellular amastigotes must satisfy

their metabolic requirements by scavenging nutrients from their host. It is predicted that

amastigotes must obtain all their purine requirements, several vitamins and about ten

essential amino acids from the phagolysosome. [126] The uptake of nutrients has been at-

tributed to different membrane transporters, including amino acid permease 3, biopterin

transporter 1, inositol transporter 1, folate transporter 1, glucose transporters 1 to 3,

purine transporters 1 to 4, and polyamide transporter 1. [142] Furthermore, it has been

suggested that the amastigotes might obtain essential amino acids and heme from the

proteolysis of host phagolysosome proteins. [143]

As previously mentioned, besides phagocytosis macrophages play a key role in in-

flammation, due to their capacity to produce cytokines in response to detection of PAMP.

Examples of inflammatory cytokines typically secreted by activated macrophages include

IL-1, IL-6, IL-12, TNF-α, among others. [144] L. major promastigotes have been docu-

mented to attach and enter into bone marrow-derived macrophages (BMM) in a silent

manner. Particularly, the production of IL-12 has been shown to be actively impaired in

infected BMM, [145] as well as in granuloma macrophages, [146] and human monocytes. [147]

This effect has been confirmed in BMM from susceptible and resistant mouse strains, [145]

and it was speculated that it might explain the delayed onset of parasite killing ob-

served even in resistant mice. [146] The suppression of IL-12 expression in macrophages

is maintained even after further stimulation with lipopolysaccharide (LPS), [146,148,149] a

strong inducer of proinflammatory cytokine expression. The observed regulation of IL-12

synthesis has been attributed to different virulence factor from the parasite, including

Leishmania phosphoglycans [148] and cysteine proteases. [150] The effect of cysteine pro-

teases of Leishmania in the macrophage is discussed in detail in Section 2.8.
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At the molecular level, it has been shown that Leishmania parasites efficiently silence

different signaling pathways important for the immune response of macrophages. One

strategy is the interference with TLR signaling. L. major, L. mexicana and L. donovani

have been reported to exploit the macrophage Src homology region 2 domain-containing

phosphatase-1 (SHP-1) to inactivate kinases necessary for proper TLR signaling. [4,151]

SHP-1 is modulated by GP63, one of the major virulence factors of Leishmania, and

it is also proposed to be up-regulated by Leishmania elongation factor-1 (EF-1)β. [152]

Fig. 1.7 summarizes the effect of GP63 in different signaling pathways of the infected

macrophage. Leishmania-mediated modulation of SHP-1 results in an inhibition of Janus

kinase (JAK)/signal transducer and activator of transcription (STAT), of mitogen acti-

vated protein kinase (MAPK) -including extra-cellular signal-regulated kinase (ERK)1/2,

Jun N-terminal kinase (JNK), and p38 MAPK-, as well as nuclear factor-κB (NFkB)

signaling pathways. Another important effector activated by Leishmania-induced SHP-1

is protein-tyrosine-phosphatase-1 (PTP-1), which dephosphorylates intermediaries of the

Janus kinase (JAK)/STAT signaling pathway. [152] lipophosphogylcan (LPG) is known

to interact with TLR2, and it has been recently reported that TLR9 expression is de-

creased in response to this interaction. [153] Furthermore, LPG has been shown to block

protein kinase C (PKC) signaling, which is important for the NO and oxidative burst

processes. In addition, the down-regulating effect of cysteine proteases from Leishmania in

macrophages is reported to be dependent on NF-κB signaling pathway. [150] Furthermore,

L. major infection has been documented to down-regulate IL-12 production by alteration

of CD40-mediated signaling. [154] It has also been proposed that Leishmania might down-

regulate IL-12 expression by modulating the phosphoinositol-3-kinase (PI3K)/protein

kinase B (Akt) signaling pathway. [4,155]

Altogether, macrophages are the preferred host cell for Leishmania parasites, which

have evolved different strategies for invasion and survival. These strategies include adap-

tation and active modulation of the phagolysosomal environment, mechanisms for uptake

of the nutrients available within the host, and silencing of the host defense pathways.

Macrophages thus are left dependent on exogenous IFN-γ for their activation, in order

to be able to successfully eliminate the intracellular parasites. As discussed in the next

pages, Th1 polarized cells are a crucial source of IFN-γ, playing a key role in the control

of the disease.
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Figure 1.7. Leishmania interactions with host macrophages. Leishmania parasites use different strategies
in order to silence their host macrophage. One of the most important virulence factors is the
metalloprotease GP63, which directly activates the host phosphatases SHP-1 and PTP-1B in order
to block multiple signaling pathways including: JAK/STAT, MAPK, and NF-κB. Furthermore,
GP63 is also able to cleave the p65 subunit of NF-κB (represented by the dashed lines). The red
arrows indicate down-regulation. Adapted from Shio and colleagues. [152]

1.2.2 Dendritic cells: the bridge between innate and adaptive response
to L. major

Innate immunity alone is not enough for the control of Leishmania infection, since a Th1-

mediated macrophage activation is required for the intracellular killing of the parasites.

DC play a key role in inducing a cell-mediated immune response against pathogens, serv-

ing as a bridge between innate and adaptive immune systems. DC were first reported by

Steinman and Cohn in 1973, describing them as cells in lymphoid organs with a dendritic

appearance. [156] DC differentiate from haematopoietic progenitor cells, and can be orga-

nized in three main stages of differentiation: DC precursors, immature DC, and mature

DC. [157] Fully differentiated DC exist as a heterogeneous mixture of populations. [158] They

have been subdivided into two major different populations, based on their developmental

origin, expression of surface antigens, cytokine production and functional capacity. [157]

The first population are conventional DC (cDC), and include Langerhans cells found in

the skin and interstitial DC. [157,159] The second population are plasmacytoid DC (pDC),

which secrete high amounts of type 1 interferons and are therefore strong inducers of

cytotoxic immunity. [157,160] Fig.1.8 depicts the origins and development of different DC
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Figure 1.8. Origin of different DC subsets. All DC are generated from hematopoietic stem cells (HSC),
which differentiate in the bone marrow to macrophage/DC progenitors (MDP). In the presence of
Flt-3 ligand, MDP give rise to common DC progenitors (CDP). CPD can be further differentiated
into plasmacytoid and DC precursors (pre-pDC and pre-DC, respectively), that travel through the
blood to lymphoid and nonlymphoid tissues in steady-state and inflammatory conditions. MDP can
also differentiate in the presence of GM-CSF into monocytes that can be further differentiated into
macrophages, or in the case of inflammation/infection, into inflammatory DC (mo-DC). Adapted
from C. Hespel and M. Moser. [161]

populations. It should be noticed that this is rather a simplistic classification, as also

spleen precursors have been identified, and emerging data from the field indicate that

DC precursors have a multilineage potential, with the possibility of multiple alternative

routes for DC differentiation. [158]

DC are known as “professional” antigen presenting cells (APC), due to their capacity

to internalize pathogens and process them into antigens, and further migration to the

draining lymph nodes to present them to Th0 cells. They are considered to be the most

potent APC known. [162] In steady-state conditions, immature DC reside in peripheral

tissues, sampling and processing the antigens present in their microenvironment in the

search for danger signals. Immature DC have a high endocytic capacity, and continu-

ously sample their environment by macropinocytosis, receptor-mediated endocytosis, and

phagocytosis. [163] Danger signals for infection include host-derived inflammatory cytokines

(including TNF-α, IL-1, IL-6, and IFN-α), CD40 ligand (CD40L), molecules released by

damaged host tissues, and microbial products. [164] The latter are detected by PRR in the

surface, including TLR.
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Figure 1.9. Polarization of naïve Th0 cells by DC. Th0 cells require three main signals for polarization: (1)
the recognition of antigen, by means of their TCR, which is presented in MHC class II molecules on
the surface of DC. (2) The recognition of costimulatory molecules expressed by the DC (CD80/CD86,
and CD40) by the receptors CD28 and CD40, respectively, and (3) the recognition of cytokines
expressed by DC. DC express these signals in response to activation by PAMP. Some stimuli, like
LPS, are associated with strong DC maturation and the polarization of Th0 cells to Th1 cells; other
signals, including TNF-α induce only a semi-maturation of the DC, and the polarization of Th0
cells to Th2 cells. Adapted from M. Kapsenberg [89]

These stimuli trigger the maturation of DC, characterized by a reduced phagocytic

uptake, the acquisition of cellular motility and migration to lymphoid tissues, and the

expression of signals that mediate the polarization of Th0 cells. [157] DC use three main

signals for instructing Th cell polarization: (1) the presentation of antigen in MHC class

II molecules, (2) the expression of costimulatory molecules, and (3) the secretion of

cytokines (Fig. 1.9). Several authors proposed in the late 90s that specific DC popu-

lations were predetermined into promoting Th responses. [165–167] However, it was later

demonstrated that each DC subset has the capacity to induce different forms of Th cell

polarization [157,168,169] , and that qualitative and quantitative differences in the signals

they present determine the polarization fate of Th0 cells. [170] Presentation of antigen in

the absence of costimulation by CD80 and CD86 results in T cell anergy. [171] Polarization

by semi-mature DC (as in DC not producing IL-12, [172] or presenting low amounts of

antigen [173] is associated with the development of Th2. [170] In contrast, strongly matured

DC -as observed by stimulating them with LPS- typically express high levels of MHC class

II and costimulatory molecules, and of proinflammatory cytokines, including IL-12. The

sum of this signals result in Th1 responses. [174] IL-12 is a key cytokine for the development

of Th1 polarization, and it is crucial for protection against leishmaniasis.

DC are key players in the cell-mediated immune response against Leishmania, and

their contributions to the control of the disease have been extensively documented. [175]
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DC are able to carry parasite antigens for an extended period of time, and these DC

are able to stimulate T cells in the lymph nodes. [176] Several subsets of DC have been

documented to capture Leishmania parasites and induce Th cell polarization, including

DC residing in the skin -such as Langerhans cells [177] and dermal DC [178]-, lymph node

resident DC, and monocyte-derived DC. [179,180] Lesions of human cutaneous leishmaniasis

show strong tissue infiltration of inflammatory, monocyte-derived DC, where it has been

suggested that they may stimulate T cells in an antigen-dependent manner. [181,182] It has

been proposed that at early stage of infection, DC residing in the skin would be the first to

capture Leishmania parasites, [183] while at a later stage of infection, monocyte-derived DC

would differentiate in the inflamed skin, migrating then to the draining lymph nodes. [179]

Monocyte-derived DC have also the capacity to produce NO. STAT6-deficient BAL-

B/c, which present defective IL-4 and IL-13-mediated signaling, display higher recruitment

of monocyte-derived DC producing NO. [184] Leon and colleagues reported two de novo

formed DC subsets in popliteal lymph nodes of mice infected with L. major. These two

subsets were infected by the parasites, and were proposed to be involved in the Th cell

polarization. The first DC subset was derived from monocytes directly recruited to the

lymph nodes. The second subset consisted of DC derived from monocytes that were

first recruited to the dermis, and then migrated to the lymph nodes. The authors re-

ported that only the second subset was essential for the induction of Th1 responses. [161,179]

The entry of L. major to DC is not a passive event, as it has been reported that DC

actively extend capture the parasite, by elaborating motile pseudopods. [183] It has been

reported that DC are able to uptake amastigotes by Fcγ receptor (FcγR)I and FcγRIII.

Mice lacking functional FcγR have been shown to present decreased numbers of infected

lesional DC. [185] This feature has been correlated with the capacity of DC to cross-present

Leishmania antigens in MHC class I to CD8+ T cells. [175] The C-type lectin receptor

DC-SIGN has also been reported to participate in the uptake of some Leishmania spp.,

including L. infantum and L. pifanoi, but not for L. major . [186]

In terms of the signals used by DC to instruct Th cell polarization, IL-12 is a key

cytokine for inducing a Th1 response. Even in resistant mouse strains, neutralization of

IL-12 by Ab results in susceptibility to L. major infection. [187,188] In contrast, treatment

of BALB/c mice with IL-12 develop a Th1 response. [189] Von Stebut and colleagues have

reported that DC are the primary source of IL-12 in lymphoid tissues, [190] although it

IL-12 production was found to vary depending on the DC subset, maturation status, and

life stage of the parasites. Furthermore, other members of the IL-12 family, including IL-27

and IL-23, as well as the proinflammatory cytokine IL-1, have been shown to contribute

to the establishment of Th1 responses. [175,191–193] However, DC are also affected by the
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evasion mechanisms of Leishmania. It has been reported that Leishmania parasites are

also able to inhibit the production of IL-12 in DC. [194] In addition, it has been documented

that Leishmania has a detrimental influence in the expression of MHC class I and MHC

class II molecules in macrophages [195] and a similar effect has been observed in DC during

L. major infection. [196]

The key role played by DC during L. major infection has been experimentally

exploited by means of DC vaccination. This concept was first explored by Inaba and

colleagues, showing that DC pulsed with antigen ex vivo and injected to mice would

sensitize them to the protein antigen. [197] In the model of cutaneous leishmaniasis, DC

activated ex vivo with TLR agonists have been reported to be potent inducers of host

resistance in otherwise susceptible BALB/c mice. [198,199] As previously described, antigen

persistence has been shown to be important for the maintenance of T cell memory, and

IL-10 has been shown to play an important role in this phenomenon. Long-term infected

mice have been shown to present persisting parasites, and it has been therefore proposed

that DC contributes to the maintenance of memory responses. [176]

1.2.3 Cell-mediated immunity and the Th1/Th2 paradigm

An adaptive immune response involves the selection and amplification of clones of lym-

phocytes carrying receptors that recognize a foreign antigen. It is initiated when the

mechanisms of defense from the innate immune system fail to eliminate a new infec-

tion, and aims to eliminate pathogens via humoral immunity, cell-mediated immunity

or both. [200] T cells perform two main functions within the adaptive immune system:

(1) to orchestrate cell mediated immunity, and (2) to regulate B cell responses to most

antigens. [200] Furthermore, T cells can be classified into two main classes, based on their

activity. The first class, are cytotoxic T cells, which control infection by killing directly

the infected cell to prevent further pathogen replication. They express the co-receptor

CD8, and recognize antigens bound to MHC class I molecules. The second class are T

helper cells, which interact with B cells for the production of Ab, and can be further

organized into different subsets depending on the effector functions they perform upon

differentiation. They express the co-receptor CD4, and recognize antigens bound to MHC

class II molecules.

T cells have a hematopoietic origin, and differentiate and develop in the thymus,

where they undergo a stringent process of selection. The final competent T cells emigrate

from the thymus to the bloodstream, from where they are able to home towards lymphoid

organs. [200] Differentiated CD4+T cells are able to recognize antigen, but will remain
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“naïve” (Th0) and do not perform any effector functions unless activated or “polarized” by

the signals provided by APC, particularly DC. These signals include the presentation of

antigen in MHC class II molecules -which is recognized by their T cell receptor (TCR)-,

the expression of cytokines, and the ligation of costimulatory molecules.

1.2.3.1 The Th1/Th2 model in cutaneous leishmaniasis

The murine model of cutaneous leishmaniasis allowed the confirmation in vivo of the

presence of two different subsets of CD4+T cells that differed in their cytokine profile,

Th1 and Th2, and documented their importance for the resistance and susceptibility to

infection, respectively. [73,201] This model grounded the basis for the Th1/Th2 paradigm,

in which susceptibility to intracellular infection was originated by an IL-4 driven Th2

response. This Th2 response counteracts with a protective Th1 response, thus resulting

in susceptibility. [201] Although the basic premise of this model is still valid, the use of

different transgenic mice and the discovery of more subsets of CD4+T cells -namely

Th17, Th9, follicular helper cells, and regulatory T cells- have questioned its apparent

simplicity. [75]

Fig.1.10 represents a model proposed by Alexander and Brombacher, integrating

the involvement of all these new players with the previous Th1/Th2 paradigm. [75] An

important feature is that protective immune response depends on Th1 immunity, and this

applies to infections with Leishmania spp. causing cutaneous leishmaniasis and visceral

leishmaniasis. [75,142] Furthermore, it is still recognized that IL-12 is the key cytokine

driving the differentiation and proliferation of Th1 cells, and it is produced by APC. Th1

responses can be further enhanced by other inflammatory cytokines, including IL-1β, IL-6,

IL-18, and IL-17, [75,202–205] and particularly, the IFN-γ-mediated killing of amastigotes

by macrophages can be further augmented by TNF-α and migration inhibition factor

(MIF). [75,206,207]

An infection model with a virulent L. major strain that causes non-curing infection

in C57BL/6 has been reported. These mice surprisingly presented IFN-γ production, but

the Th1 population responsible for this IFN-γ expression produced as well considerable

levels of IL-10. [75,208,209] These cells are represented in Fig.1.10 as Type-1 regulatory cells

(Tr1; CD4+CD25+FoxP3-). [208] Th17 cells have also been proposed to contribute with

increased pathologies, as it has been observed that they cause an influx into lesions. [75]

In contrast, the cytokines produced from Th2 and Th9 populations induce alternative

macrophage activation, which is characterized by arginase expression and the proliferation
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Figure 1.10. Impact of different T cell populations on the outcome of cutaneous leishmaniasis. In
the L. major infection model, Th1 polarization mediated by IL-12 leads to the production of IFN-γ,
which results in macrophage activation, production of NO, and parasite elimination. In the case of
latent infection, or use of more virulent strains, the persistence of infection is associated with a type-
1 regulatory T cells (Tr1), which produce IFN-γ and IL-10. If IL-4 is absent at early time points,
but IL-10 is present, the polarization of Th0 cells to other populations except Th1 is observed.
TGF-β and IL-6 induce the polarization of Th17 cells producing IL-17 and (*) IL-10, which cause
a neutrophil influx associated with pathology. The production of IL-4 by a Vβ4Vα8CD4+T cell
population that recognizes LACK antigen from the parasites is associated with Th2 and Th9
polarization. The cytokines produced by Th2, Th9, and natural regulatory T cells (nTregs) result
in alternative macrophage activation, arginase expression, and parasite proliferation. It also induces
B cell expansion mediated by follicular Th2 cells (Tfh2), and production of IgG1. The uptake of
amastigotes opsonized with IgG1 leads to the production of IL-10 in macrophages, and further
promotes the progression of the disease. Adapted from J. Alexander and F. Brombacher. [75]

of the parasites. [210]

Launois and colleagues demonstrated in BALB/c mice that the IL-4 produced by the

Th2 response developed could be traced back to CD4+T cells expressing the Vβ4 and the

Vα8 TCR chains which recognized the antigen Leishmania homolog of receptors for acti-

vated kinase (LACK). [75,211] Treatment of BALB/c with neutralizing anti-IL-4 Ab during

the early stage of infection was reported to direct the immune response towards Th1. [212]

It was initially thought that Th2 cells depended on IL-4 for their polarization, as IL-4

activates STAT6, which in turn induces GATA 3, known as the master regulator of Th2

differentiation. [75] However, later studies showed that GATA3 could be also be induced

independently of STAT6 activation. [75,213–215] Furthermore, an early IL-4 response has
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been detected as well in mice resistant to L. major infection, although it was observed

to be transient. [65,216–218] Studies using IL-4-deficient and IL-4Rα-deficient mice have

put into question the role of IL-4/IL-13, with contradictory results. While IL-4-deficient

BALB/c mice were reported to cure from infection, [77,78] other studies have reported that

IL-4 and IL-13 in certain experimental conditions were actually able to facilitate a Th1

response by promoting IL-12 production in DC and macrophages. [75,219–222] It has been

proposed that an important factor for this apparent contradicting roles of IL-4 and IL-13

is the variation of the expression of IL-4R (which also signals in response to IL-13) in

different target cells of the immune system. [75]

In contrast to IL-4 and IL-13, the importance of IL-10 in parasite persistence has been

clearly defined. Strong evidence indicating that IL-10 plays a key role in the persistence of

infection, since sterile cure has been observed in BALB/c mice treated with anti-IL-10 re-

ceptor Ab, [223] which was also confirmed in IL-10 deficient BALB/c mice. [224] Surprisingly,

after sterile cure these mice are no longer immune to L. major reinfection. Macrophages

have been observed to produce IL-10 in response to uptake of L. major amastigotes

opsonized with IgG1 Ab via Fcγ receptors. [224] The induction of IgG1 production by

B cells has been vinculated to follicular Th cells. [75] Furthermore, different CD4+T cell

populations have been found to produce IL-10, including: CD4+CD25+FoxP3+ regula-

tory T cells (Tregs), [225]and the CD4+CD25+FoxP3- Th1 population described above. [208]

The susceptibility of BALB/c mice to L. major has been related to deficient CXCR3

up-regulation in their Th1 cells, which prevents them to reach the site of infection, [226] a

similar effect also observed in their CD8+ T cells. The role of CD8+T cells in cutaneous

leishmaniasis has not been as extensively characterized as for CD4+T cells. [227] Initial stud-

ies reported that CD8+T were dispensable for control of a primary infection, although they

contributed in resistance to a reinfection. [228] However, a different experimental infection

setup, using low doses of parasites, indicated that CD8+T cells were required for control

of a primary infection. [229] In contrast, infection models of L. braziliensis and L. donovani,

suggest that CD8+T cells are involved in lesion progression and chronicity of infection. [227]

1.2.3.2 Th1 and Th2 responses in human patients of leishmaniasis

In terms of the adaptive immune response elicited, human visceral leishmaniasis is asso-

ciated with mixed Th1 and Th2 responses. In L. infantum cases, absence of lymphocyte

proliferation and production of IFN-γ is associated with progression of the infection.

Cure following treatment is concomitant to increased levels of IFN-γ and IL-12, and to

decreased levels of IL-10 and TGF-β. High serum concentrations of IL-10 during visceral
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leishmaniasis is correlated with PKDL. [1] In the case of PKDL, considerable infiltration

of macrophages and DC is present. IL-10 is the predominant cytokine present in the

lesions. [1] On the other hand, a wide profile of different Th1 and Th2 cytokines are

found in localized cutaneous leishmaniasis lesions. The majority of infiltrating cells are

macrophages, B cells, and CD4+ and CD8+ lymphocytes, which produce IFN-γ and

TNF-α. IL-10 and IL-13 are associated to chronic lesions. [1] Similarly, mucocutaneous

leishmaniasis is characterized by a huge proliferation of lymphocytes, and mixed Th1 and

Th2 cytokine responses. IFN-γ producing CD4+ and CD8+T cells can be found in biopsy

samples of mucosal regions, as well as a reduced expression of IL-10 and IL-10 receptor

in comparison to cutaneous leishmaniasis. [1] Th1 polarization is not necessarily enough

for elimination of the infection.This phenomenon has been attributed to the activation

of regulatory T cells. [209,223,230,231]

Altogether, Th1 and Th2 immune responses are essential for the resistance and

susceptibility of mice to cutaneous leishmaniasis, respectively. The original paradigm

of Th1/Th2 polarization in L. major has been expanded, incorporating studies on the

involvement of newly described Th cell subsets and the cytokines they produce. The main

principles of this model include the need of IFN-γ mediated activation of macrophages,

which is characteristic of a Th1 response, and the roles of Th2 cytokines on parasite

persistence. Although the immune responses observed in humans is not as clear-cut as

observed in the BALB/c versus C57BL/6 L. major infection model, it is still a useful

tool that has allowed to investigate the contribution of different components of T cell

mediated immunity, and a better insight to prospective immunotherapeutic approaches.
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Introduction: Cysteine cathepsins

Cathepsin B (Ctsb; EC 3.4.22.1) and cathepsin L (Ctsl; EC 3.4.22.15) are proteases

belonging to the class CA of cysteine peptidases, of the C1 family of enzymes similar

to papain. Cysteine proteases are expressed by all organisms, from bacteria to mam-

mals. [232,233] The name “cathepsin” is used to refer to intracellular proteases, which are

active at weakly acid pH values. [233] Thus, most of them are located in the lysosomes,

where they play a key role in protein degradation. This chapter summarizes the biochem-

ical properties of Ctsb and Ctsl, as well as the role they play in numerous physiological

processes, including immune responses. Furthermore, their regulation from transcription

to activity is discussed, as well as the relevance of cathepsin inhibitors in cutaneous

leishmaniasis.

2.1 Activity and structure of cysteine cathepsins

The term cysteine protease comes from the presence of cysteine residues in their active

site. In Ctsb, the cysteine residue C29 interacts with the histidine residue H199 to catalyze

peptide bond cleavage, which is mediated by nucleophilic attack by S- from C29 on the

carbonyl carbon atom, and proton donation from H199. [234] Most cysteine cathepsins

present predominantly endopeptidase activity. [235] Ctsb is able to exert endopeptidase

and exopeptidase activity. This particular dual activity results from the presence of an

occluding loop. [236] Ctsl, in contrast, lacks exopeptidase activity. [233] In environments

with an acidic pH, the active site of Ctsb is partially blocked by the occluding loop, which

allows access to small substrates or the carboxy terminus of proteins, and thus Ctsb

presents exopeptidase activity. When the pH is increased to neutral levels, the occluding

loop is displaced, and the active site can now accommodate larger substrates. [237] Thus,
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at neutral pH, Ctsb can function as an endopeptidase.

A total of 11 human cysteine cathepsins have been described: B, C, F, H, L, K,

O, S, V, X, and W. [238] In human tissues, cathepsins B, H, L, C, X, F, and O appear

expressed ubiquitously, while cathepsins K, S, V and W present predominance for spe-

cific tissues or cell types. Cathepsin S (Ctss) is predominantly expressed in APC. [239,240]

Cathepsin V (Ctsv) is highly homologous to Ctsl, but its expression is restricted to the

thymus and testis. [241] Out of these 11 cathepsins, only the 3-D structure of cathepsins

O and W are still unknown. Mature Ctsb can be found as a glycoprotein in two forms:

a single-chain form of 29 kDa, and a processed two-chain form consisting of a 25 kDa

and 4 kDa chains. [242] It is described as a bilobal protein, in which the active site and

substrate-binding cleft are located between the two lobes. [243]

Similarly, Ctsl is composed of two domains (L-domain and R-domain), which form an

interface opened at the top, where the active-site cleft is located. The reactive Cys and

His residues are located at the center of the active-site cleft, each one of them coming from

a different domain. All together, the residues from four loops contained on both domains

integrate the active site, where the substrate binds in an extended conformation. [235] 3-D

based sequence alignment of the mature forms of cathepsins B, C, F, H, L, K, S, V, and

X exhibits conservation of the active site residues and of the residues interacting with the

main chain of the bound substrate. [235] A common feature of the 3-D structures of most

cysteine cathepsins is the presence of three defined substrate-binding sites, named S2, S1,

and S1’. The S2 site forms a pocket, while S1 and S1’ represent side-chain interactions. [235]

A schematic representation of Ctsb and Ctsl structure can be found in Fig. 2.1. Ctsb

and Ctsl are synthesized as an inactive precursor protein, and require removal of their

N-terminal prodomain for activation. Different studies have documented the inhibitory

activity of this propeptide against mature cathepsins. [244,245] The prodomain serves also

for stabilization. In procathepsin B, the propeptide interacts with the occluding loop re-

gion, which is lifted away from the enzyme surface. This conformation provides structural

support, and shields the active site. [246]

The following sections summarize the known substrates of Ctsb and Ctsl. Furthermore,

a roadmap from ctsb and ctsl genes to the synthesis, processing and trafficking of mature

active Ctsb and Ctsl to different cellular locations is presented. Finally, the regulation of

cathepsin activity by endogenous and synthetic inhibitors is discussed.
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Figure 2.1. Structure of cysteine cathepsins. A) 3-D model of the quaternary structure of human Ctsb,
consisting of light and heavy chain, in complex with the inhibitor CA030. B) Quaternary structure
of human Ctsl, consisting of light and heavy chain, in complex with an inhibitor. C) Schematic
representation of S3, S2, S1, S1’, and S2´ sites in cysteine proteases, with reference to the 3-D
structure of the cathepsin itself (1; adapted from Turk and colleagues [235]), or with reference to
the substrate (2; adapted from Otto and Schirmeister [233] ). D) Schematic representation of pre-
procathepsins. Pre-procathepsins are an immature of cathepsins, containing still a signal peptide
(17 amino acids for Ctsb) to target them to Golgi for additional modifications, a propeptide, that
conveys protection and stabilizes the structure until arrival to the lysosomes, and the sequence
corresponding to the mature forms (adapted from Aggarwal and colleagues [243])

2.2 Cathepsin gene expression

Qian and colleagues first cloned and characterized the ctsb gene and its flanking regions.

They postulated that the lysosomal cysteine protease genes are evolutionary ancient,

and that intron shifting had occurred as they diverted from a common ancestral form.

Furthermore, they described the presence of several potential specificity protein 1 (Sp1)

binding sites, and, all together, concluded that the characteristics from this region re-

sembled those present in “house-keeping genes”, [247] which would explain the constitutive

expression of this protease. Currently it is known that the 5’ flanking region of ctsb gene

contains six Sp1-binding sites, four Ets-binding sites, and one enhancer box (E-box) for

transcriptional regulation. [243] Up-stream stimulatory factor 1 (USF1) and USF2 have

been shown to bind to the E-box of ctsb gene, thus enhancing its expression, while the

alternatively spliced form of USF2, USF2c acts as a repressor. [248] Studies of Ctsb from

Sarcophraga peregrina by Yano and colleagues revealed that the 3’-untranslated region

(3’-UTR) of the ctsb gene was necessary for repression of its translation, and identified a
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ctsb 3’-UTR-binding protein (CBBP) as responsible for this repression. Furthermore, they

documented that purified CBBP represses ctsb mRNA translation in rabbit reticulocyte

lysate. [249]

Although pre-procathepsin B is synthesized from a single gene, there is more than one

mRNA species for Ctsb. These transcripts vary in size depending on the length of the un-

translated regions [234] and constitute a form of Ctsb regulation at the post-transcriptional

level. Evidence of different transcripts for Ctsb can be found in reports from Moin and col-

leagues, who analyzed the relative amounts of mRNA for Ctsb in murine tumors, namely

hepatoma and B16 melanoma. They found higher levels of Ctsb transcripts, and these

higher levels were reflected in higher Ctsb activity. [250] Qian and colleagues confirmed the

up-regulation of Ctsb at the transcriptional level in B16a melanoma cells, and described

the up-regulation of three different transcripts. [251] They analyzed the cDNA sequences

corresponding to these three different transcripts, and found that while the three contain

identical coding sequences for normal pre-procathepsin B, two of them presented unusually

long extended 3´ untranslated regions. Later studies performed by Gong and colleagues,

comparing Ctsb mRNAs from human kidney and human cancer tissues, showed that

theses transcripts correspond to alternate splicing from a single gene. [252] In rheumatoid

synovial tissue, Lemaire and colleagues found alternative splicing of the 5’region of ctsb

pre-messenger RNA. [253] Up to date, 35 splice variants and 27 protein products have been

identified. [243]

Differentiation of human promonocytes (cell line U937) by 12,0,tetradecanoyl-phorbol-

13-acetate (TPA) or GM-CSF was reported to be accompanied by an increase of Ctsb

activity. [254] This observation was later supported by the study performed by Krause and

colleagues, who screened genetic markers of human monocyte to macrophage differentia-

tion, and found an up-regulation of ctsb, among other genes. [255] Multiple stimuli have

been reported to influence the expression of Ctsb and Ctsl. Table 2.1 enlists different

stimuli shown to up- or down-regulate the expression, activity or both, of these cathepsins.

2.3 Cathepsin synthesis and maturation

2.3.1 Cathepsin synthesis

Ctsb is synthesized at the rough endoplasmic reticulum as a pre-proenzyme consisting

of 339 amino acids, out of which 17 are a signal peptide that directs it to the lumen.

Once in the lumen, the signal peptide is removed, resulting in a 43-46 kDa precursor form

or procathepsin B. [243] This proform is transported to the Golgi apparatus where it is
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Table 2.1. Stimuli influencing Ctsb and Ctsl expression and activity; n.a., data non available; —, no
effect detected.

Stimulus Level at which regulation was observed Cell type or tissue Reference
Gene expression Mature protein Activity

Estradiol-17β n.a. n.a. increase rat preputial gland [256]

Interferon-α n.a. n.a. decrease human blood monocytes [257]

Interferon-β n.a. n.a. decrease cell line U937 [257]

Interferon-γ n.a. n.a. decrease rabbit articular chondrocytes [257]

increase* n.a. increase* THP-1 cells [258] [259] [260]

increase increase increase U937 and macrophages [261]

LPS increase n.a. increase THP-1 cells [259]

D-glucose — increase increase fibroblasts kBALB [262]

IL-1 β — — — human lung epithelial cell line [263]

IL-10 — — —
HGF — — —
IL-6 increase increase increase

TGF-β decrease decrease —
(*) The cells used for this study were previously primed with phorbol 12-myristate 13-acetate (PMA)

glycosylated with oligosaccharides containing mannose residues, which are important for

the trafficking of cathepsins to endosomes.

The first studies on the kinetics of Ctsb synthesis used pulse-chasing experiments in

culture rat hepatocytes in the presence of [35S] methionine. It was found that after short

time of labeling, a glycosylated 39 kDa pro-cathepsin B, which was then converted to

a 29-kDa form by limited proteolysis. A latent form of pro-cathepsin B was also found

by immunoblotting in microsomal lumen. [242] Since it was found that the conversion of

pro-cathepsin B to the mature form was blocked by pepstatin, the authors postulated

that cathepsin D would act as a processing protease for pro-cathepsin B, and that this

processing would take place within lysosomes. This last hypothesis was tested by labeling

living rats with [35S] methionine in vivo, and it was found that processing of a 39 kDa

pro-cathepsin B to a 29 kDa mature cathepsin B indeed took place at the lysosomes. A

two-chain form consisting of a 25 kDa subunit and a 4 kDa subunit was also detected.

The authors described the kinetics for cathepsin B synthesis and processing as follows:

Within 10 min after injection of [35S] methionine, a newly synthesized pro-cathepsin B

(39 kDa) was detected in rough microsomal fraction, and almost simultaneously in the

smooth microsomal fraction. This form was sensitive to endoglycosidase H treatment,

which indicated that the proenzyme is glycosylated. 30 min after injection, pro-cathepsin

B was detected in Golgi subfractions. 60 min. after injection, a mature single form of 29

kDa appeared in lysosomal fractions, and a two chain form of 25 kDa. [242]

Similar synthesis kinetics were found in rat peritoneal macrophages by Kominami and
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colleagues. [264] In this study, the authors used a similar pulse and chase approach with

[35 S] methionine, in which they immunoprecipitated cathepsins B, L, and H from lysate

preparation and medium. The kinetics for synthesis of a 39 kDa pro-cathepsin B precursor

and subsequent processing to a single-chain form of 29 kDa followed comparable kinetics

as described by Nishimura and colleagues, [264] and the appearance of the two chain form

took place over a period of 21 h. Moreover, after 30 min of chase the pro-cathepsin B

form was also found in the culture medium, and the authors estimated that about 30%

of the labeled Ctsb was secreted by the macrophages. The authors found similar kinetics

for the synthesis of the pro-cathepsin L, although the single-chain form of Ctsl was only

found transiently. Moreover, approximately 30% of the labeled Ctsl was found released

to the culture medium.

2.3.2 Cathepsin trafficking

The targeting of newly synthesized lysosomal enzymes in mammalian cells depends on the

presence of mannose-6-phosphate (M6P) residues in their oligosaccharide chains, and their

recognition by M6P receptors. The phosphorylated pro-cathepsin B and pro-cathepsin L

bind to M6P receptors, which mediate their transport to lysosomes by means of trans-

port vesicles. Evidence for M6P receptor-dependent cathepsin trafficking was found in

a study with retinoic acid. Retinoic acid (RA) was known to bind to the mannose-6-

phosphate/insulin-like growth factor II receptor (M6P/IGF2R), and it was found that

RA induced a shift of proteins, including Ctsb, from the perinuclear area by cytoplasmic

vesicles. This translocation of Ctsb was not observed in M6P/IGF2R-deficient cells. [265] A

later study by Takana and colleagues suggested that about half of the newly synthesized

Ctsb was targeted to lysosomes in an M6P-independent mechanism; [266] however, this

study was performed in hepatocytes, a cell type described to present a M6P-independent

pathway for lysosomal sorting. [267]

2.3.3 Cathepsins in endosomes and lysosomes

Pro-cathepsins B and L are inactive, as their propeptide functions as an inhibitor. Dif-

ferent studies have documented the inhibitory activity of this propeptide against mature

cathepsins. [244,245] Once they reach the acidic environment of lysosomes, the low pH

triggers the proteolytic removal of the propeptide. This proteolysis occurs as an auto-

catalytic process. [268,269] In some circumstances, Ctsb can alternatively be activated by

the aspartic protease cathepsin D, by cathepsin G, urokinase-type plasminogen activator

(uPAR), tissue-type plasminogen activator, and elastase. [270–272]
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Claus and colleagues characterized the steady state presence of cathepsins in J774

macrophage early endosomes, late endosomes and lysosomes enclosing latex beads. They

documented higher levels of Ctsb activity in lysosomes than in early and late endosomes.

In contrast, Ctsh was highly enriched in early endosomes, and Ctss activity levels were

higher in late endosomes than in lysosomes and early endosomes. [273] Furthermore, they

found in the same study that treatment with chloroquine or bafilomycin A1 led to complete

loss of Ctsb and Ctsl activity, [273] due to the capacity of chloroquine and bafilomycin A1

to increase lysosomal pH. [274,275] Later experiments from Muno and colleagues suggested

that Ctsb and Ctsl were located in different lysosomal subpopulations, defined by their

density in a Percoll gradient. [276] Although the majority of cathepsin activity in resting

DC has been found restricted to lysosomes, Lautwein and colleagues have shown that

cathepsins selectively accumulate in late endosomes after LPS-induced stimulation. [277]

Similarly, stimulation with IFN-γ has also been reported to induce a shift in the pattern

of cathepsin activity in endosomes vs. lysosomes. [278]

Within the endosomes and lysosomes, cathepsins are responsible for different impor-

tant functions. One of them is the proteolytic processing of endocytosed material, which

can be in turn used to generate peptides to be presented to induce an immune response

in APC. Furthermore, they contribute to process the MHC class II molecules-invariant

chain complexes, to allow the presentation of antigens. In addition, they also play a key

role in the processing of endosome-associated Toll-like receptor (TLR), including TLR3,

TLR7 and TLR9. The contributions of cysteine cathepsins in these processes is discussed

in detail in Section 2.6.

2.4 Beyond the lysosome

2.4.1 Cathepsins in the nucleus and association with histones

Szengo and colleagues documented evidence for translocation of minute amounts of Ctsb

in rat preputial gland to the nucleus in response to hormonal stimulation. The authors

used fluorometric assays with different synthetic substrates and a combination of the

inhibitors leupeptin, antipain and pepstatin to identify a purified protease from lysosomal

preparations of rat preputial gland as Ctsb. Surprisingly, Ctsb activity was detected not

only in lysosomes, but also in ultrapurified nuclei. [256] Ctsb activity was later reported

in nuclear preparations from ovaries, from healthy donors and patients with stage III

and IV ovarian cancer, [279] although this activity was smaller as the levels detected in

mitochondrial, plasma membrane and lysosomal fractions. Furthermore, Tedelind and

colleagues documented active variants of Ctsb and Ctsv in the thyroid carcinoma cell
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lines KTC-1, HTh7, and HTh74. [280] The authors later tested the trafficking of Ctsb and

an active-site mutant counterpart as chimeric proteins fused to the enhanced enhanced-

green fluorescent protein (eGFP), and concluded that the trafficking of both chimeric

proteins was altered in thyroid carcinoma cells, in comparison with normal, differentiated

thyrocytes. [281] A substrate for cysteine cathepsins identified in the cell nucleus is the

transcription factor YY1, which regulates cell differentiation and has been reported to

be processed by Ctsb. [282]

Active Ctsl variants in the nucleus have also been documented. Goulet and colleagues

reported a Ctsl variant lacking the signal peptide, that was able to translocate to the nu-

cleus and proteolytically process the transcription factor CDP/Cux, [283] which is involved

in the regulation of cell cycle progression. [284] Later work from Duncan and colleagues

showed that nuclear Ctsl proteolytically processes histone H3 during embryonic stem

cell differentiation in mice. [285] Furthermore, recent data indicates that the endogenous

cysteine protease inhibitor stefin B is also localized in the nucleus, and interacts with

nuclear Ctsl, [286] which suggests that stefin B plays a regulatory role in the proteolytic

activity of nuclear Ctsl. Similarly, myeloid and erythroid nuclear termination stage-specific

protein (MENT), is another serpin shown to interact with chromatin for its condensation.

It has been reported that MENT exerts strong inhibition against Ctsv, but not Ctsl, in

DNA-rich environments, [287] and that MENT interaction with nuclear papain-like cystene

proteases resulted in a block of cell proliferation. [288]

2.4.2 Cell membrane-bound cathepsins

Ctsb has also been found bound to the membrane, as demonstrated in epithelial cells

transformed with the ras oncogene, [289] in human breast carcinoma lines, [290] and in B16

melanoma cells. [291] The authors of the later study proposed that this membrane associa-

tion of Ctsb could play a role in the degradation of the extracellular matrix. Evidence

supporting this hypothesis was found in a study using human prostate tumors, in which

the mature form of Ctsb was found in cancer cells and in the subjacent extracellular

matrix. [292] It has been reported that Ctsb is able to associate with tumor cell surface

by binding to the annexin II heterotetramer, which localizes to the caveolae in the cell

membrane. [293]

2.4.3 Extracellular functions of cathepsins

The pH for optimal activity of cysteine cathepsins is slightly acidic, and they are mostly

unstable at neutral and basic pH. Among them, Ctsl is the most unstable at neutral
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pH, although association with a substrate conferred some protection. [294] An exception

to this is Ctss, which is able to retain most of its activity at neutral or slightly basic

pH. The extracellular environment of tumors is slightly acidic, [295] thus allowing Ctsb to

retain its optimal proteolytic capacity. [296] Since the extracellular localization of cysteine

cathepsins is concomitant to increased expression or activity, or both, it has been proposed

that pH might not the only factor responsible for their activity in the extracellular envi-

ronment. [235] For example, Herve-Grepinet and colleagues have reported the protective

action of extracellular catalases against cathepsin inactivation by hydrogen peroxide. [297]

2.5 Inhibitors of cysteine cathepsins

A crucial element for control of cathepsin activity is the presence of inhibitors. In this

section, the different types of endogenous cysteine protease inhibitors are summarized.

Next, small molecule inhibitors of cysteine cathepsins are described, with emphasis on

those used throughout the present study.

2.5.1 Endogenous cysteine protease inhibitors

Endogenous Cysteine protease inhibitors (CPI) play an important role in the regulation

of cathepsin activity. Based on their physiological role, endogenous protease inhibitors

can be described as either emergency or regulatory inhibitors. [298] Emergency inhibitors

are characterized by a large excess concentration of the inhibitor with respect to their

target protease, rapid binding kinetics, and by being separated from their targets. They

are meant to target proteases from pathogens, or proteases escaping their usual com-

partments. Regulatory inhibitors, on the other hand, are co-localized with their target

proteases, and can be further divided into threshold-type, buffer-type, and delay-type. [298]

Threshold inhibitors are present in low concentration and show rapid binding kinetics.

Buffer-type inhibitors bind to their target protease or proteases in a weak manner, and can

be easily displaced. An example of buffer-type inhibitors are the propeptides of cathepsins.

Delay-type inhibitors are often irreversible, although they present slow kinetics of binding.

Endogenous CPI can be further classified by their structure into the cystatin protein

superfamily, which is integrated by the following families: stefins (type 1 cystatins), cys-

tatins (type 2 cystatins) and kininogens (type 3 cystatins). [299] A common feature among

CPI is their stability at high temperatures, extreme pH, and their specificity against

cysteine proteases. [233] Cystatins and stefins have low molecular weights (11-13kDa)

and, with the exception of cystatin C, have no carbohydrate residues. [233] In contrast,

kininogens have higher molecular weights, ranging from 50-80 kDa (low molecular weight
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Table 2.2. Inhibitory activity of different CPI

Family Inhibitor Ki (nM)

Ctsb Ctsl Cruzipain Papain

Stefins (Type I cystatin) Stefin A 8.2 1.3 0.0072 0.019
Stefin B 73 0.23 0.06 0.12

Cystatins (Type II cystatines) Cystatin C 0.27 <0.005 0.014 0.00001
Cystatin D >1000 18 n.d. 1.2
Cystatin E/M 32 n.d. n.d. 0.39
Cystatin F >1000 0.31 n.d. 1.1
Cystatin S n.d. n.d. n.d. 108
Cystatin SA n.d. n.d. n.d. 0.32
Cystatin SN 19 n.d. n.d. 0.016
Chicken cystatin 1.7 0.019 0.001 0.005

Kininogens L-kininogen 600 0.017 0.041 0.015
Thyropins p41 fragment >1000 0.002 0.058 1.4

kininogens), to circa 120 kDa (high molecular weight kininogens). [233] Stefins are syn-

thesized without signal peptide, and lack disulphide bonds. They are present mainly as

intracellular proteins, although they can be also be found in body fluids. [235] Cystatins,

on the other hand, contain a signal peptide for their secretion to the extracellular milieu

and two highly conserved intra-molecular disulphide bonds. [235] Kininogens possess also

characteristics typical of extracellular proteins: they contain a signal peptide, disulfide

bridges, and carbohydrate residues. [233] Furthermore, they are precursors of the kinins

found predominantly in blood plasma. [235]

A fourth group of CPI has recently been proposed, based on two findings. First, the

inhibition of Ctsl by a fragment of the p41 invariant chain (Ii) associated with MHC

class II molecules. Second, the discovery of equistatin, a protein from Actinia equina,that

strongly inhibits Ctsl and papain. Both equistatin and p41 fragment show no homology to

cystatins, but do present significant homology to thyroglobulin type-1 domain. Thus, the

name thyropins has been proposed for this new group of CPI. [235] Moreover, some serpins,

known as inhibitors of serine proteases, can also present inhibitory activity against cys-

tein proteases. [235] Table 5.3 enlists the interactions between selected human CPI against

representative cysteine proteases.

Cystatin C is reported to be the most potent inhibitor of Ctsb, Ctsh, Ctsl, and

Ctss. [300] It is ubiquitously expressed, although its expression levels vary between differ-

ent tissue types. [301] Huh and colleagues reported that cystatin C-deficient mice present

reduced growth of melanoma lung metastases in comparison to wild-type mice. [302] During

the development of DC, it has been reported that the intracellular levels of cystatin C

increase during the differentiation of monocytes to immature DC, [303] and decrease upon

DC maturation. [304] Furthermore, stimulation of DC with TNF-α induces secretion of
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cystatin C. [303] It has been proposed that cystatin C participates in the regulation of

antigen presentation in MHC class II molecules in DC, although there is still controversy.

On one hand, work from El Sukkari and colleagues with cystatin C-deficient mice showed

that the expression levels of MHC class II molecules in DC from these mice was not

altered, and neither was its subcellular distribution, nor the formation of peptide-loaded

MHC class II complexes in different DC types. [305] Furthermore, the efficiency of antigen

presentation in cystatin C-deficient mice was comparable to wild-type mice. [305] However,

later work from Kitamura and colleagues reported that overexpression of cystatin C in

DC suppressed IL-6-dependent increase of Ctss activity, and in a reduction of MHC class

II α-β dimer, Ii, and H2-DM levels in DC. [306] It has been also proposed that cystatin C

may play a role in antigen presentation on MHC class I molecules by CD8+ DC, [299] but

this hypothesis has not been confirmed experimentally.

Stefin B, also known as cystatin B, has been shown in vitro to bind tightly to Ctsh,

Ctsl, and Ctss, and to a lesser extent, to Ctsb. [307] While it has been shown that stefin B is

up-regulated in the differentiation of macrophages from monocytes, [308] no co-localization

or interaction with Ctsb, Ctsl or Ctss could be found. [299] A serial analysis of gene ex-

pression (SAGE) study performed by Suzuki and colleagues revealed an up-regulation of

stefin B in human monocytes stimulated with LPS. [309] Stefin B-deficient mice have been

recently shown to be more sensitive to lethal LPS-induced sepsis, secreting higher amounts

of the pro-inflammatory cytokines IL-1β and IL-18. [310] This effect was associated by

increased gene expression of caspase-11, and of better activation of caspases 1 and 11. [310]

Surprisingly, the authors found that pre-treatment of macrophages with E-64d did not

affected IL-1β secretion, and therefore suggested that the inflammasome activation in

stefin B-deficient mice was not due to an increase in cathepsin activity. [310] Stefin B has

been reported to act as a regulator of cathepsin activity in the cell nucleus, binding to

cathepsin F in hepatic stellar cells [311] and to Ctsl in TG98G human glioblastoma cell

line. [286]

Some CPI have also been reported to modulate nitric oxide (NO) production in

macrophages. Verdot and colleagues documented that the NO production in macrophages

stimulated with IFN-γ was further enhanced with the use of chicken cystatin, cystatin

C, and stefin B. [312] Treatment with E-64 did not cause any increase of NO production,

suggesting that this effect was no dependent on cathepsin activity. [313] In addition to

increase NO production, IFN-γ activated macrophages treated with chicken cystatin were

shown to release TNF-α and IL-10. [312]

Treatment with recombinant IFN-γ (rIFN-γ) has been proved safe in other models
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such as leprosy, cancer and AIDS, but rIFN-γ alone is not enough to induce a Th1 re-

sponse in BALB/c mice. Since NO is a key effector molecule for antileishmanial activity

in macrophages, the effect of cystatins has been tested in infection models with L. dono-

vani. Kar and colleagues found in vivo that even at subtreshold concentrations of IFN-γ,

cystatin could induce Th2 to Th1 phosphorylation levels of JAK1, JAK2, and IRF-1. [314]

In agreement with early observations by Verdot and colleagues, the therapeutic effect of

cystatin was suggested to be independent from its cathepsin inhibitory capacity. By using

synthetic overlapping peptides from cystatin, Mukherjee and colleagues found that the

NO-regulatory activity of cystatin was confined to a 10-mer sequence, which corresponds

to a different region than the region responsible for cathepsin inhibition. [315]

Cytotoxic T-lymphocyte antigen-2 (CTLA-2) is a Ctsl inhibitor recently identified

and characterized. [316,317] The protein sequence of CTLA-2 has been reported to be ho-

mologous to the pro-region of mouse Ctsl. [317] The expression of CTLA-2 has been related

to immuno-priviledged organs -uterus, brain and retina- and its role in immune response

is currently under investigation. [318]

2.5.2 Small-molecule inhibitors

The discovery in 1978 of the epoxyscuccinyl-based inhibitor L-trans-Epoxysuccinyl-5Leu-

4-guanidinobutylamide (E-64) by Hanada and colleagues was a crucial milestone in the

field of cysteine cathepsins. [319] E-64 is a non-selective inhibitor of cysteine cathepsins

and calpain, isolated from culture extract of Aspergillus japonicus. Its inhibitory activity

results from selectively alkylating the cysteine residue at the active site, and remaining

covalently bond to the enzyme. [235] The scaffold of E-64 was used to develop the first

specific inhibitors of Ctsb, CA030 and CA074. [320,321] These inhibitors bind to the S1’

and S2’ of the active-site cleft. Furthermore, derivatives of these inhibitors with increased

cell permeability were developed, namely E-64d and CA074Me, [322] as well as the Ctsl

inhibitor Katunuma (CLIK)-series of inhibitors for Ctsl. [323] These inhibitors have been

extensively used to study the roles of cysteine cathepsins and of Ctsb in different disease

models. The mode of inhibition by the epoxysuccinyl group has been a useful concept for

the development of cathepsin inhibitors and activity-based probes. [324]

Based on their reactive groups, in addition to epoxysuccinyl-based inhibitors other

types of cathepsin inhibitors developed include: aldehydes, semicarbazoles, methyl ketones

and trifluoromethyl ketones, α-keto acides, α-keto esters, α-keto amides and diketones, ni-

triles, halomethyl ketones, diazomethanes, acyloxymethyl ketones, methylsulfonium salts,

disulfides, azapeptides, azobenzenes, aziridines, o-acylhydroxamates, azepanone-based,
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Figure 2.2. Structure of cathepsin inhibitors. Schematic representation of the structures of A) the
expoxysuccinyl-based inhibitors E-64, CA074, CA074Me, and CLIK148. B) the aziridine-based in-
hibitors RV122C, RV212C, and CS128; C) and the azapeptide ZRLR.

vinyl sulfones and allylsulfones. [233,235] A common characteristic of most of these in-

hibitors is that they comprise a peptide segment for recognition by cathepsins, based on

the sequence of a good substrate, and that this peptide segment is bound to a group

suitable to nucleophilic attack or substitution, to react with the cysteine residue of the

active site. [233] An example of a cathepsin inhibitor with anti-parasitic activity is K11777.

K11777 is a vinyl sulfone inhibitor of cathepsin L-like proteases, that has been shown

to cause reduction in worm burden and parasite egg output in mice infected with Schis-

tosoma mansoni . [325] Furthermore, this inhibitor also presents potent activity against

Entamoeba histolytica, [326] Trypanosoma cruzi , [327] T. brucei [328] and L. tropica. [329]

The inhibitors used in the present study include epoxysuccinyl-based inhibitors,

aziridine-based inhibitors and one azapeptide inhibitor. The structures of these inhibitors

can be found in Fig. 2.2. The following sections will summarize their main biochemical

characteristics and mode of action, as well as their used in parasitic disease models.

46



Chapter 2. Cysteine cathepsins

2.5.2.1 Azapeptides

One strategy for the design of cathepsin inhibitors has been the synthesis of peptidyl

derivatives whose structure is based in on the inhibitory sites of cystatins. [330,331] Unfor-

tunately, they have shown to present poor bioavaiblity due to proteolytic degradation and

rapid secretion. [331,332] To circumvent these problems, peptidomimetic approaches have

been used, leading to the development of azapeptides. Azapaptides are peptide analogs,

characterized by the replacement of one or more of the amino acid residues by a semicar-

bazide. [333] An α-carbon is replaced by nitrogen, [233] and this results in conformational

restrictions that cause the peptide to bend from a linear geometry, [333] as well as a loss

in chirality and reduction of flexibility of the linear peptide. [334] This aza-substitution in

azapeptides is reported to result in enhanced activity and selectivity, as well as aid to

prolong their stability in a biological context [333] as they are less susceptible to breakdown

by proteases. [334] Wieczerzak and colleagues have reported an azapeptide with a great

inhibitory capacity towards Ctsb (Ki = 480 pM): Z-Arg-Leu-Arg-alpha-aza-glycyl-Ile-Val-

OMe (also known as ZRLR). [331] In addition to its high inhibitory capacity, ZRLR was

shown to be cell-permeable and to have a higher specificity to Ctsb than the inhibitor

CA074Me. [335] Furthermore, it has been reported that inhibition of Ctsb by ZRLR re-

sulted in enhanced presentation of tetanus toxin C-fragment (TTC) to T cells by different

APC. [335] These results suggest that ZRLR is a useful inhibitor for study of Ctsb functions.

2.5.2.2 Epoxysyccinyl-based inhibitors

After the discovery of E-64 in A. japonicus, systematic studies were performed to determine

the role of its different structural components in cathepsin inhibition. As a result, it was

determined that the reactive group essential for inhibition was trans-L-(S,S)-epoxysuccinic

acid. [233] Analysis of E-64-papain and E-64c-papain complexes revealed that the epoxide

residue interacts with the S1 site while the leucil-residue binds to the S2 site. [233,336,337]

The inhibition of Ctsb by epoxysuccinyl-(iso)leucyl-proline derivatives -including CA074-

demonstrate a different pattern for inhibitor binding, by interacting with the S’ sites. [233]

A schematic representation of cathepsin inhibition by E-64 and CA074 can be found in

Fig. 2.3 . Out of different epoxysuccinyl-(iso)leucyl-proline derivatives synthesized, using

different ester and amide substitutes in the epoxide ring, CA074 has been shown to be

the most selective inhibitor for Ctsb in vitro. [233]

Both E-64 and CA074 present poor cell permeability. Therefore, chemical modifi-

cations were developed to improve the permeability of the inhibitors, in order to allow

the study of cysteine cathepsins in living cells. One of the first derivatives of E-64 was

E-64c, in which the agmatine residue is replaced by an isoamylamide residue. [233] E-64d
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Figure 2.3. Interaction of substrates and inhibitors with cysteine cathepsins. Schematic representation
of the mode of the sites of binding of substrate or the inhibitors E-64 and CA074 to the active site
of cathepsins (adapted from Otto and Schirmeister [233]).

is the ethyl ester of E-64c, and is nowadays widely used due to its great cell permeabil-

ity. CA074Me is the methyl ester modification of CA074. [322] Upon uptake by the cell,

CA074Me is hydrolyzed to CA074 by intracellular esterases. [322] Incomplete hydrolysis

causes unspecific inhibition of other cysteine cathepsins. [338] Another important group

of inhibitors developed based in the structure of E-64 are the series of Ctsl inhibitor

Katunuma (CLIK)-I. The essential common structure from these inhibitors necessary

for Ctsl inhibition is N-(L-transcarbamoyloxyrane-2-carbonyl)-phenylalaninde-dimethyl-

amide). [323] Among these inhibitors, CLIK148 showed strong inhibition of Ctsl, and strong

resistance to enzymatic degradation. [323] Therefore, it was later used for studies in vivo.

CA074 and CLIK148 have been used in the infection model of cutaneous leishmania-

sis, showing marked effects in the regulation of the immune response developed by the

host. Fig.2.4 summarizes the effects of CA074 and CLIK148 treatment of mice infected

with L. major. Treatment of BALB/c mice infected with L. major with CA074 resulted

in control of the parasite infection by inducing a protective Th1 immune response. [339,340]

Moreover, treatment of resistant DBA/2 mice and C57BL/6 mice with CA074 showed no

alteration in the onset of a Th1 response against the parasite. [341] In contrast, treatment of

L. major -infected BALB/c mice with CLIK148 resulted in the development of a stronger

Th2 response than control mice, which resulted in higher parasitic burden. [342] Similarly,

L. major -resistant mouse strains also developed a Th2 immune response when treated

with CLIK148. [341] Furthermore, in these studies neither CA074 nor CLIK148 showed a

direct effect on the proliferation of the parasite in vitro, and the authors showed that the

host cathepsins were inhibited. It was therefore proposed that the effects of CA074 and

CLIK148 observed were due to modulation of the host’s Ctsb and Ctsl, respectively, and
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Figure 2.4. Effect of cathepsin inhibitors in L. major infection. Treatment of mice infected with L. major
and treated with the inhibitors CA074 and CLIK148 is associated with a shift in Th polarization.
Susceptible BALB/c and resistant DBA2 and C57BL/6 mice develop a Th1 response when treated
with the inhibitor of Ctsb CA074. In contrast, these mouse strains are reported to develop a Th2
response when treated with the inhibitor CLIK148.

the authors hypothesized that the lack of Ctsb or Ctsl activity would lead to different

patterns for proteolytic processing of the parasite into antigens, thus altering the polar-

ization of naïve Th cells. This hypothesis however was not further investigated, and the

roles of Ctsb and Ctsl in Th polarization remained unclear.

2.5.2.3 Aziridine-based inhibitors

(S)-Aziridine-2-carboxylic acid is an irreversible inhibitor of papain. [233,343] Therefore

aziridine bound peptides are another strategy for the development of cysteine protease

inhibitors. [233] Aziridine-2,3-dicarboxylates are analogous to epoxide derivatives, and ir-

reversible cysteine protease inhibitors. Vicik and colleagues reported the development

of different aziridine-2,3-dicarboxylate inhibitors, with the aim to target Ctsl. [344] The

authors also tested the inhibitory capacity of these compounds against rhodesain, the

main cysteine protease from Trypanosoma brucei rhosesiense, and found that some of

them presented trypanocidal activities. [345]

These inhibitors were then also tested in vitro for leishmanicidal activity against L.

major. Out of them, two in particular -named 13b (also called RV122C) and 13e (also

called RV212C)- caused impaired promastigote growth at mid-micromolar concentrations,

while showing no toxicity against fibroblasts, macrophages and dendritic cells. Further-

more both compounds decreased the infection rate of peritoneal macrophages, [346] and in

the case of compound 13b, this effect correlated with increased production of NO. More-

over, treatment of peritoneal macrophages with 13b and 13e resulted in higher expression
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of IL-12 and TNF-α upon L. major infection. [346] When the mechanisms of parasite

killing were investigated, it was found that the cell death of L. major promastigotes

upon treatment with the inhibitors was characterized by cell shrinkage, reduction of mito-

chondrial transmembrane potential, and increased DNA-fragmentation. [347] Furthermore,

undigested debris in lysosome-like organelles was detected, which appeared to participate

in authophagy-related processes, differing from typical mammalian apoptosis. [347]

Based on these results, the compound RV122C was tested in vivo in BALB/c mice.

Despite the leishmanicidal activity of this compound in vitro, the tested dosis of RV122C

(0.25 mg per day for 6 weeks, intra peritoneal) was not enough to convey protection from

L. major infection. Furthermore, re-stimulation of splenocytes from infected mice with

L. major lysate revealed higher levels of IL-4 expression in splenocytes from RV122C-

treated mice, in comparison with non-treated controls. These results indicate the induction

of a stronger Th2 response, possibly by modulation of the host cathepsin activity. [348]

This prompted to the development of a new generation of aziridine-based inhibitors by

Schirmeister and colleagues, aiming to higher specificity towards parasitic cathepsins. One

of this new generation inhibitors is CS128, which is used for the present study.

2.6 Substrates of cysteine cathepsins

While various proteins have been demonstrated in vitro to be degraded by cathepsins, up

to date there is still limited data about intracellular physiological substrates of cathep-

sins. [235] A common feature derived from in vitro studies, is that cathepsins present broad

specificity, and that they cleave their substrates preferentially after basic or hydrophobic

residues. [235,349] While cysteine cathepsins were first believed to be involved only in pro-

tein degradation during necrotic and autophagic cell death [235] and intracellular protein

turnover, [298] it is now well documented that cystein cathepsins play important role in

different physiological processes. Seminal work by Davie and Ratnoff, and by MacFarland

and colleagues, resulted in the concept of protein activation by limited proteolysis, [298] and

thereby the current concept of protease signaling. [298,350] By definition, protease signaling

is irreversible. Moreover, in order to understand the role of a given protease, is necessary

to know not only their immediate physiological substrates -the protease degradome [351]-,

but also the downstream effects of the proteolysis of those substrates. [298] This section

summarizes investigations on substrates of physiological relevance of Ctsb and Ctsl.

The proapoptotic Bcl-2 homolog protein Bid was one of the first intracellular pro-

teins shown to be a substrate of cathepsins. Cathepsin-mediated processing of Bid into

a proapoptotic form leads to the release of cytochrome c from mitochondria. Bid has
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been found to be efficiently processed by cathepsins B, K, L, and H. [352] Furthermore,

cathepsins also degrade several antiapoptotic proteins, including Bcl-2, Bcl-xL, XIAP, and

Mcl-1 [353] which, in combination with the processed Bid, synergize to drive the cell into

apoptosis. Another important target of cysteine proteases is myristoylated alanine-rich

C kinase substrate (MARCKS), [354] which is a PKC. MARCKS concentrations within

the cell can be regulated by gene transcription, and by proteolytic cleavage by cathepsins

and calpains. Increased MARCKS cleavage was observed by Kopitar-Jerala and Turk

in brain and macrophages from stefin B-deficient mice, in comparison with wild-type

mice. [354] Since the processing of cathepsin B was not altered, the authors concluded that

the increased cleavage could be attributed to the lack of cysteine cathepsin inhibition by

stefin B. [354]

Another role of cysteine cathepsins is the processing of TLR. One of them is TLR9,

which signals in response to DNA. Ewald and colleagues demonstrated recently that the

proteolytic processing of TLR9 is a multistep process, first requiring the participation of

asparagine endopeptidase (AEP), followed by cathepsin-mediated trimming. [355] Further-

more, the authors showed that TLR7 and TLR3 are processed in a similar manner. [355]

Improper proteolytic processing of this receptor would thus result in impaired signaling

in response to pathogens.

The thyroid epithelium is one of the few locations where a tissue-specific natural

substrate of cysteine cathepsins has been identified. [280] Thyroglobulin is synthesized

as a pro-hormone, and requires proteolytic processing by Ctsb, Ctsk, and Ctsl. [356,357]

Furthermore, this processing takes place sequentially in different compartments within the

thymocyte: the extracellular follicle lumen, and endo-lysosomes. The secretion of mature

Ctsb in the follicular lumen is regulated by thyroid stimulating hormone (TSH). [358]

Ctsb-deficient mice present a normal phenotype in comparison to wild-type litter-

mates. [359] In contrast, lack of Ctsl in mice results in a phenotype including defects in the

positive selection of T cells in the thymus, epidermal thickening, periodical loss of hair

and develop a progressive dilated cardiomyopathy. Ctsl-deficient cardiomyocytes present

impaired collagen turnover, [360] as well as an increased number and altered morphology

of acidic compartments. These defects have been reported to ultimately result in loss of

cytoskeletal proteins and mitochondrial impairment. [361] This phenotype is associated

with deficient termination of macroauthophagy process. [362] The periodic hair loss and epi-

dermal thickening of these mice has been attributed to involvement of Ctsl in termination

of growth factor signaling in keratinocytes in endosome and lysosomal compartments. [363]
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The activity of cathepsins outside endosomes and lysosomes can be found discussed

in detail in Section 2.4.

2.7 Cathepsins and antigen presentation

Cysteine proteases contribute greatly to the proteolytic degradation of proteins taken up

by endocytosis into antigens, and to process the Ii in MHC class II complexes for antigen

presentation. Elucidation of a specific role for each cathepsin has been challenging due

to different constrains. On one hand, cysteine cathepsins present high redundancy in the

type of substrates they can process. On the other hand, early studies relied on the use

of inhibitors, with the disadvantage of potential unspecific inhibition of more than only

one cysteine cathepsin. Furthermore, the expression of different cysteine cathepsins is not

homogenous in all cell populations. [364–372] Moreover, the absence of one cathepsin may

affect the activity of other proteases. [270,373] This section summarizes the relevant studies

investigating the participation of different cathepsins in antigen presentation.

Lang and Antoine first reported the localization of MHC class II molecules in murine

BMM, in compartments rich in proteolytic activity. They detected MHC class II molecules

in the plasma membrane of BMM stimulated with recombinant IFN-γ, as well as on the

limiting membrane and internal structures of vesicular acidic compartments. These com-

partments were identified as early and late endosomes. [374] Furthermore, the authors

found that MHC class II molecules within these endosomes co-localized with Ctsb and

the aspartic protease Ctsd. [374] The same year, Roche and Cresswell showed that treat-

ment of purified HLA-DR α-β dimers in complex with the Ii with Ctsb resulted in the

proteolytic degradation of the HLA-DR-associated-Ii. [375] These results were confirmed

by Reyes and colleagues, who showed that Ctsb at pH 5.0 cleaved and released Ii from

MHC class II α- and β- chains. This proteolytic release was dose-dependent, and resulted

in a different fragmentation pattern than treatment with Ctsd. [376] The involvement of

Ctsb and Ctsd in the processing and release of Ii was also supported by experimental

data from Daibata and colleagues. [377] By using charge-loss mutations in three putative

sites for Ctsb cleavage in Ii, Xu and colleagues proposed a staged cleavage by Ctsb. [378]

Several more studies at the time analyzed the capacity of proteolytic processing of

different proteins by Ctsb to generate antigens recognized by T-cells. Van Noort and

colleagues analyzed the cleavage of sperm-whale myoglobin within the endocytic pathway

of macrophages, and found that Ctsd accounted for most of the initial cleavage of myo-

globin, while Ctsb appeared to be involved in the subsequent trimming at the C-terminal

of these products. Furthermore, this proteolytic processing resulted in products that

contained all major T cell epitopes for myoglobin known at the time. [379] In a different
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model, Bushell and colleagues presented evidence for the generation of T cell epitopes

from recombinant human growth hormone after proteolytic processing with Ctsb. [380] In

addition, the insertion of a Ctsb cleavage sites between determinants recognized by B

and T cells in a peptide was shown to enhance its immunogenicity. [381]

Later studies incorporated the use of cathepsin inhibitors. For example, Matsunaga

and colleagues used E-64 and CA074 to investigate the involvement of Ctsb in the pro-

cessing of vaccines for hepatitis type B (HBsAg) and rabies. They found that CA074

suppressed the primary antibody response to HBsAg in vivo, as well as an inhibitory

effect on the priming of mice and rechallenge in vitro with rabies vaccine or the antigenic

peptides. Treatment with the Ctsb inhibitor Cbz-Phe-Ala-CHN2 was shown to block

the presentation of conalbumin and ovalbumin (OVA), while having no effect in the

presentation of an OVA peptide. [382] The presentation of insulin, however, was enhanced

when this inhibitor was used. [382]

Mitzuochi and colleagues investigated the capacity of antigen presenting cells to

process OVA in the presence of CA074 or the Ctsd inhibitor pepstatin A, and to present

it to T helper cell clones. Both inhibitors impaired the IL-2 production using OVA, but no

alterations in the presentation of an OVA peptide (327−339), and therefore concluded that

both Ctsb and Ctsd are necessary for the processing of OVA. [383] In contrast, in another

study using a different OVA-specific Th clone, digestion of OVA with Ctsd produced the

antigenic OVA epitope 322-336, while Ctsb and Ctsl failed to generate this epitope and

caused its destruction. [384] In vitro studies on the proteolytic generation of antigens from

egg white lysozyme (HEL) by van Noort and Jacobs suggested that reduced HEL was

cleaved by Ctsd, but not by Ctsb; Ctsb was rather active in trimming HEL peptides after

their processing by Ctsd. [385]

Later research revealed the essential role of Ctss in the processing of MHC class II-

associated Ii. Riese and colleagues showed that inhibition of Ctss with LHVS (morpholinurea-

leucine-homphenylalanine-vinylsulfone phenyl) in lymphoblastoid cells prevented complete

proteolysis of the Ii, and as a result observed an accumulation of 13 kDa Ii fragment. [386]

The authors observed that purified Ctss could digest Ii from α-β Ii trimers to generate

α-β-CLIP complexes, while purified Ctsb, Ctsh and Ctsd failed to do so. Moreover, they

reported that administration in vivo of LHVS caused a diminished immune response

to OVA. [387] In contrast, Morton and colleagues showed in B-lymphoblastoid cells that

inhibition of cysteine proteases, particularly of Ctsb, resulted in the accumulation of

incompletely processed MHC class II-Ii complexes within lysosomal compartments. [388]
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A more refined approach became available with the use of APC from cathepsin-

deficient mice. Deussing and colleagues showed that the formation of α-β dimers of

MHC class II molecules was not altered by the absence of Ctsd or Ctsb. [359] The authors

concluded that multiple proteases could probably generate the same antigenic determi-

nants. [359] A year later, Driessen and colleagues reported the control of trafficking and

maturation of MHC class II molecules in DC from Ctss-deficient mice. [389] Their results

provided more evidence for proteolytic processing of the Ii by Ctss, and documented

that lack of Ctss resulted in a drastic reduction of the flow of MHC class II molecules

to the cell surface, related to the retention of MHC class II molecules in late endocytic

compartments. The same year, Shi and colleagues reported that APC from Ctss-deficient

mice failed to process the Ii beyond a 10 kDa peptide fragment. This resulted in turn in

delayed peptide loading, and also an accumulation of MHC class II-Ii (10 kDa) complexes

in the cell surface. [240] In agreement with this data, Nakagawa and colleagues documented

that Ctss-deficient mice presented a marked inhibition of degradation of the Ii in APC,

and a diminished susceptibility to collagen-induced arthritis. [390]

A later report from Zhang and colleagues still emphasized the participation of Ctsd

in the degradation of Ii. [391] In this study, the authors tested in vitro and in vivo the

processing and presentation of OVA in the presence of the inhibitors pepstatin A and

CA074. While a Th1-type immune response was reported with the inhibitor CA074,

treatment of mice with pepstatin A resulted in a suppression of OVA-specific lympho-

cytes, and the development of both Th1 and Th2 responses. [391] Cathepsin E (Ctse), an

aspartic protease, was also reported to participate in the processing of exogenous antigen

in primary cultured murine microglia. [392]

More studies confirmed the key role of Ctss in antigen presentation. Fiebiger and

colleagues showed that TNF-α and IL-1β cause an increase in Ctss and Ctsb activity in

human DC, and higher levels of formation of MHC class II dimers in a Ctss-dependent

manner. [369] IL-10, in contrast, was reported to impair the capacity of DC to up-regulate

Ctss and Ctsb activity, and this suppressed activity coincided with delayed formation

of MHC class-II dimers and degradation of antigens. [369] In a different model, Driessen

and colleagues analyzed the degradation of an immune complex (Ig-125I-labeled F(ab’)2)

delivered via FcγR-uptake in APC from mice lacking Ctsb, Ctsd, Ctsl, and Ctss. They

found that Ctsd and Ctsl were dispensable for the degradation of this immune complex,

while Ctsb and Ctss mediated the major part of its proteolytic processing. [393] In con-

trast, Plüger and colleagues showed in vitro that Ctsb, Ctsd, Ctsl, and Ctss digested

HEL with considerable redundancy, although there was evidence for preferential cleav-

age patterns. [394] Therefore, the authors concluded that while the proteolytic processing

presented high redundancy among the different cathepsins, Ctss played in this system an
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important and specific role in antigen presentation.

Studies on antigen presentation in Ctsl-deficient mice revealed that while Ctsl was

dispensable for degradation of the Ii in bone marrow-derived APC, it was necessary for

its degradation in cortical thymic epithelial cells (cTEC). Furthermore, the authors found

that the positive selection of CD4+T cells in vivo was reduced. [364] As a result, these

mice have a markedly reduced number of CD4+ T cells than their wild-type counterparts.

Ctsv is a cysteine cathepsin highly homologous to Ctsl, expressed exclusively in human

tymus and testis. In cTEC, Ctsv is the dominant cysteine protease expressed, while Ctss

and Ctsl is expressed mainly in DC and macrophages. [395] Tolosa and colleagues found

that recombinant Ctsv is capable of processing the Ii into CLIP efficiently, and proposed

that Ctsv - in analogy to Ctsl in mice- was the protease responsible for the generation of

α-β CLIP complexes. [395]

Another protease extensively investigated in the context of antigen processing and

presentation is asparagine AEP. Studies from Manoury and colleagues reported that using

a peptide inhibitor of AEP resulting in an inhibition of in vitro processing of tetanus

toxin antigen (TTCF). Moreover, they observed in vivo that this inhibitor slowed TTCF

presentation to T cells, while preprocessing of TTCF with AEP accelerated its presenta-

tion. [396] Furthermore, it was later suggested that AEP can initiate the removal of MHC

class II Ii. [397] It was proposed that AEP would have an “unlocking function”, necessary for

the further processing by AEP itself or other cysteine proteases. [398] However, it was later

shown that AEP-deficient mice presented no differences in comparison to wild-type mice

in processing of the Ii, in maturation of MHC class II molecules, and in the presentation

of antigen to T-cells. [399]

Finally, cathepsin G (Ctsg), a serine protease, has also been recently investigated

in the context of antigen presentation, as it is found in primary human B cells, DC,

and mouse microglia, but not in B cell lines or monocyte-derived DC. [400] While it has

been shown that Ctsg plays no relevant role in the degradation of the Ii, it has been

associated to the processing of antigens, notably of autoantigens, including myelin basic

protein, myelin oligodendrocyte glycoprotein, and pro-insulin. [401–403] However, important

variations in substrate specificity between mouse and human Ctsg have been reported,

and therefore Ctsg-deficient mice are not suitable for drawing any conclusions on human

antigen processing. [401]

In summary, Ctss plays an important role in the proteolytic processing of Ii, as con-

firmed by different approaches over the past years, while Ctsl - or Ctsv in humans- are key

to the processing of antigens for presentation in cTECs, thus allowing positive selection
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Figure 2.5. Cysteine cathepsins and antigen processing. Schematic representation of the processing of en-
docytosed material under normal conditions and cathepsin-deficiency. EE: early endosomes; LE: late
endosomes; SV: sorting vesicles, TV: transport vesicles. The endocytosed material (i.e. a pathogen)
is first located within EE, which transport them to the LE compartment. Within LE, the material is
proteolyticaly processed into antigens for loading onto MHC class II molecules. The antigen peptide-
MHC class II molecule complex is transported to the surface for antigen presentation by means of
TV. If Ctss is missing, the invariant chain bound to newly synthetized MHC class II molecules can-
not be processed for removal, and thus antigen cannot be presented. Furthermore, missing of one
cathepsin could potentially reduce the repertoire of antigens generated for presentation. Adapted
from Müller and colleagues. [362]

of T cells. The participation of other cathepsins remains still controversial, and it is likely

that rather than each of them having a specific role, the balance in the proteolytic activity

of the sum of all of them ultimately determines the relative levels of antigenic peptides

generated for presentation. Fig.2.5 represents a model proposed by Müller and colleagues

on the participation of cathepsins in antigen presentation. [362]

2.8 Cathepsin-like cysteine proteases from Leishmania

Cysteine proteases have been reported as virulence factors of Leishmania parasites. Three

cysteine proteases of the papain family have been reported in Leishmania spp.: two

cathepsin L-like, CPA and CPB, and one cathepsin B-like, named CPC. Among them,

numerous studies point out CPB as the most critical cysteine protease for parasite sur-

vival and virulence. CPB-deficient promatigotes have been shown to be less infective to

macrophages in comparison to wild-type promastigotes, as well as presenting a reduced

virulence in BALB/c mice, being able to form only small and slow-growing lesions. [404,405]
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Studies from Alexander and colleagues reported that mice infected with CPB-deficient L.

mexicana developed a protective Th1 immune response. [406] The cpb genes are multicopy,

with 19 copies arranged in a tandem repeat within a single locus. [404,407] In order to

completely rescue the virulence of CPB-deficient L. mexicana, Denise and colleagues

reported that the expression of multiple cpb genes was necessary, in contrast to insertion

of individual cpb genes. [408]

CPB has been shown to regulate IL-4 production. A lack of IL-4 expression was

reported in BALB/c mice infected with CPB-deficient L. mexicana, leading to the onset

of a Th1 response. In contrast, reinsertion of multiple cpb genes into the CPB-deficient

parasites restored the parasite capacity to induce IL-4. [408] Furthermore, injection of re-

combinant CPB alone in BALB/c mice paws was shown to cause an increase in IL-4 and

IL-5 expression, and in the levels of IgE. [409] In contrast, overexpression of endogenous

cysteine protease inhibitors from Leishmania resulted in reduced levels of Ab and IL-4

production as well as higher levels of IFN-γ in infected mice than infection with wild-type

parasites. [410]

Besides affecting IL-4 expression, Leishmania CPB has been also reported to alter

IL-12 production in macrophages and DC. [150,411,412] CPB-deficient L. mexicana amasti-

gotes were less efficient to inhibit IL-12 in response to LPS than wild-type amastigotes;

in concordance with this observation, inhibition of L. mexicana CPB also altered the

ability of amastigotes to inhibit IL-12 expression in infected macrophages. [150] This data

suggested that CPB might affect transcription factors relevant for IL-12 expression in

the host. Indeed, Cameron and colleagues reported that the observed regulation of IL-

12 expression was related to cleavage of the p65 subunit of NF-κB, which could still

translocate to the nucleus, but failed to correctly bind to DNA. Moreover, infection with

wild-type amastigotes resulted in cleavage of IκB-α and IκB-β, which was not observed

in infection with CPB-deficient amastigotes. [150] Furthermore, infection with wild-type

amastigotes resulted in cleavage of JNK and ERK, while pre-incubation with a CPB in-

hibitor prevented it. [150] In addition CPB from L. mexicana has been shown to affect the

transcription factors STAT-1 and AP-1 by impeding their translocation to the nucleus. [413]

Similar as in L. mexicana, CPB has also been reported to contribute to the viru-

lence of other Leishmania species. L. major parasites transfected with cpb-containing

cosmids were shown to cause stronger infection in C3He/FeJ mice than their wild-type

counterparts, which was characterized by higher parasitic loads and reduced expression

of IFN-γ. [414] Furthermore L. amazonensis amastigotes have been shown to internalize

and cleave MHC class II proteins inside the parasitophorous vacuoles (PV) of infected

host cells [415] and CPB is one of the parasite proteases accounted for degradation of
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internalized MHC class II molecules. [416] In addition to the proteolytic activity of CPB,

its COOH-terminal extension (CTE) is known to play a role in the modulation of the host

immune system. CTE is a polypeptide hydrolyzed during the processing of CPB to its

mature form, and the use of a synthetic peptide based on its structure in L. amazonensis

was reported to cause an increase in lesion growth in BALB/c mice. [417]

In contrast to the observations with CPB-deficient Leishmania, CPC-deficient L. mex-

icana promastigotes presented reduced infectivity to macrophages in vitro, but showed

to induce comparable rate of lesion development as in mice infected with wild-type pa-

rasites. [418] The authors found that re-expression of the cpc gene restored infectivity in

vitro, and suggested that although CPC played a role in the interaction of the parasite

with its host macrophage, it was not crucial overall for virulence in vivo. [418] Similarly,

although CPA has been reported to be relevant for host-parasite interaction of L. in-

fantum infection, it was not shown to be essential for parasite replication. [419] Studies

of infection of BALB/c mice with different CPA-, CPB- or CPC-deficient L. mexicana,

lack of CPA or CPC affected less the virulence of the parasites than CPB deficiency. [406]

Nevertheless, studies of L. mexicana parasites lacking both CPA and CPB suggest a

synergistic role of these proteases, as they displayed a greater impairment in infectivity in

comparison with parasites lacking only CPA or CPB. [420] L. mexicana parasites lacking

CPA and CPB present an impairment in authophagy, which is believed to be an important

step for cell differentiation as these parasites are unable to transform into amastigotes. [421]

In order to modulate its host, Leishmania cysteine proteases must be delivered.

Brooks and colleagues showed that the major route of trafficking of Leishmania cysteine

proteases to lysosomes is via the flagellar pocket, and that glycosylation was not required

for trafficking. [422] Temperature shift, as occurring between the transfer of promastigotes

from the sandfly to the host, has been reported in L. mexicana to induce the secretion

of CPB, among other immunomodulatory molecules, in exosomes. [423] Moreover, the au-

thors found that the release of these exosomes was taking place already within 4 h of

temperature shift, suggesting that this might be a strategy for immune modulation within

the early moments of interaction of the parasites with their host. [423] The delivery of

immunomodulatory cargo to the host via exosomes has also been documented for L. dono-

vani, which presented a direct suppressive effect in human monocyte-derived dendritic

cells. [424] Fig. 2.6 presents a model of action of cysteine proteases of Leishmania in the

modulation of the host’s immune response, proposed by Mottram and colleagues. [420]

Altogether, cysteine proteases from Leishmania have been shown to play an impor-

tant role in the parasite survival and virulence. Therefore, they have been extensively
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Figure 2.6. Cysteine protease B-like (CPB) as a virulence factor from Leishmania. Model proposed
by Mottram and colleagues, in which the immature form of CPB is trafficked to the flagellar pocket,
where it is processed to its mature form. From there, it is proposed to be either sorted to the
lysosomes, or secreted towards the PV. In this space, CPB interacts with MHC class II molecules of
macrophages, in order to impair the presentation of antigens. It is also proposed that CPB within
the parasitophorous vacuole could also reach the macrophage cytoplasm, where it is able to cleave
important transcription factors for the immune response of the host, including NF-κB. Finally, the
authors propose that CPB could also reach the extracellular space, where it can interact with other
components of the host’s immune system. Adapted from Mottram and colleagues. [420]

studied as potential targets for drug development. For example, the inhibitor N-Pip-F-

hF-VS Phenyl was reported to cause arrest of L. tropica promastigote pathogenicity

and growth. L. major showed to be sensitive to cysteine protease inhibitors in both

the promastigote and amastigote stages [425] while L. mexicana promastigotes appeared

to be resistant to the loss of cysteine protease activity. [329,404] A more detailed descrip-

tion of cysteine protease inhibitors with leishmanicidal activity can be found in section 2.5.
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Aims of the study

Leishmania parasites use different strategies to manipulate the immune response of their

host. One of them is the use of cysteine proteases. Therefore, cathepsin inhibitors have

been investigated as potential drug candidates. Reports of their use in vivo suggested

that treatment with cathepsin inhibitors resulted in a drastic change in the immune re-

sponse orchestrated by the mice, either towards Th1 and increased resistance, or towards

Th2 and enhanced susceptibility, depending on the cathepsin targeted. Mammals also

express cysteine cathepsins, which have been related to different functions, including the

processing of endocytosed material and protein turnover. It was demonstrated in those

studies that the inhibitors had no leishmanicidal activity per se, and that the cathepsins

of the mice were also being inhibited.

Considering that in APC cysteine cathepsins are known to participate in the process

of antigen presentation, it was proposed that the effects on the immune system observed

were due to changes in the pattern of processing of Leishmania antigens. This hypothesis,

however, remained to be tested. The urge for newer therapeutics to treat leishmaniasis

has led to the development of new cysteine protease inhibitors. With them comes the

need to understand the effects that they exert not only to the parasites, but also to the host.

This project aims to understand the effect that the lack of Ctsb and Ctsl activity

has in the immune response of the host against L. major. Given the critical role that DC

play in the polarization of CD4+ Th cells into Th1 or Th2 subsets, and thus the control

of infection, the aims of this project are:

• To determine the effect that the absence of cathepsin B and cathepsin L activity

have on the signals that these cells use to instruct Th cell differentiation during L.
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major infection: signal 1 (antigen presentation via MHC-class II molecules), signal

2 (expression of co-stimulatory molecules), and signal 3 (cytokine production).

• To investigate the mechanisms behind these effects

In order to address the aforementioned objectives, two approaches for this study were

used: cathepsin inhibitors, and APC derived from cathepsin-deficient mice.
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Materials and methods

4.1 Mice

The following mice strains were used to generate BMM and bone marrow-derived dendritic

cells (BMDC): BALB/c, C57BL/6, C57BL/6 Ctsb -/- and C57BL/6 Ctsl -/-. The Ctsb -/-

and Ctsl -/- mice were kindly provided by Prof. Thomas Reinheckel (University of Freiburg,

Germany) together with wild-type littermates, and their generation has been previously

described. [359,426,427]

In addition, for in vitro co-culture experiments, OT-II mice were used to isolate CD4+

T cells from lymph nodes and spleen. These mice were kindly provided by Prof. Manfred

Lutz. All mice were 6 to 12 weeks old, and were kept under conventional conditions in

accordance with the guidelines of the local authorities.

4.2 Parasites

4.2.1 Culture of wild-type L. major

The L. major isolate MHOM/IL/81/FE/BNI was maintained by continuous passage in

female BALB/c mice, from whose lesions the parasites were isolated, and grown in vitro

in blood-agar cultures as described previously [137] at 27 ◦C, 5% CO2 and 95% humidity.

Only promastigotes passaged 5 to 8 times were used for in vitro infection experiments,

in order to preserve optimal infectivity levels. This L. major isolate was used to generate

two different transgenic (tg) strains, used in some of the experiments for the present study.

One of these strains expresses luciferase, while the other expresses eGFP. The generation

and culture of both strains is described below.
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4.2.2 Generation and culture of Luc-tg L. major

The generation of the luciferase-transgenic (Luc-tg) strain was previously described. [428]

Briefly, the luciferase (Luc) coding region was cut from pGL4.13 (Promega, Mannheim,

Germany) by NcoI-XbaI, and the resulting fragment was cloned into the NcoI-NheI-

restricted Leishmania expression vector pLEXSY-hyg2 (Jena Bioscience, Jena, Germany),

which contains a marker gene for selection with hygromycin (HYG). The resulting plasmids

were linearized by SwaI (New England Biolabs, Frankfurt, Germany), and the parasites

were transfected by electroporation. The genes for Luc and HYG were integrated into

the 18S rRNA locus of the parasites by homologous recombination. As described for

the wild-type (WT) strain, the virulence of both the Luc-tg and eGFP-tg strains was

maintained by passage of the parasites in female BALB/c mice. Luc-tg promastigotes were

grown in blood-agar cultures supplemented with 50 µg/ml hygromycin (Sigma-Aldrich,

Taufkirchen, Germany), and only promastigotes at in vitro passages 5 to 8 were used for

the experiments here reported.

4.2.3 Generation and culture of eGFP-tg L. major

The generation of the eGFP-tg L. major strain here reported was performed by Angela

and Tobias Schwarz. Briefly, the eGFP-coding region from EGFP-N1 (Clontech, Saint-

Germain-en-Laye, France) by BamHI-NotI (Promega) was cut, and cloned into the Bglll-

NotI-restricted Leishmania expression vector pLEXSY-hyg2 (Jena Bioscience,). This

vector contains a marker gene for selection with hygromycin. The resulting plasmids

were linearized by SwaI (New England Biolabs), and the parasites were transfected by

electroporation. The genes for eGFP and hygromycin were integrated by homologous

recombination into the 18S rRNA locus of the parasites. As described above, the transgenic

promastigotes were grown in blood-agar cultures with 50 µg/ml hygromycin, and only

in vitro passages 5 to 8 were used for experiments. The stability of the integrated eGFP

was assessed in vitro and in vivo by flow cytometry.

4.2.4 Preparation of L. major lysate and heat-killed parasites

For preparation of L. major soluble antigen (LmAg), stationary-phase WT promastigotes

were washed three times in cold phosphate-buffered saline (PBS), counted, resuspended

at a concentration of 1×109 parasites/ml in PBS, and subjected to three cycles of freezing

in liquid nitrogen and thawing in a warm bath for no longer than 1 min. The aliquots

were stored at -80 ◦C, and each aliquot was thawed not more than twice. For preparation

of heat-killed parasites, WT promastigotes were harvested, washed three times with in

complete RMPI medium, counted, and adjusted to a concentration of 1×109 parasites/ml.

Next, the parasites were incubated for 30 min at 80 ◦C, and used for stimulation of BMDC

in a ratio equivalent of 5 parasites per BMDC.

63



Chapter 4. Materials and Methods

4.3 Buffers

All the buffers used in the present study can be found enlisted in Table A.1. The final

concentrations of each reagent are included, and those that were added freshly to the

buffers prior to each experiment are marked with the symbol (*).

4.4 Culture media and cells

4.4.1 Culture media

RPMI 1640 medium (Invitrogen, Darmstadt, Germany) was used, either containing phe-

nol red or phenol red-free, as indicated for each experiment. This medium was sup-

plemented with heat-inactivatedfetal calf serum (FCS) (10% v/v; PAA Laboratories,

Pasching, Austria), L-glutamine (final concentration 2 mM; Biochrom AG, Berlin, Ger-

many), HEPES (pH 7.2, 0.01 M; Invitrogen, Darmstadt, Germany), penicillin G (0.2

U/ml; Sigma-Aldrich), gentamicin (0.05 mg/ml; Sigma-Aldrich), and 2-mercaptoethanol

(0.05 mM; Sigma-Aldrich), and hereby will be referred as "complete RPMI medium". For

the generation of BMM, a conditioned medium was used containing Dulbecco’s Mod-

ified Eagles Medium (DMEM) from Invitrogen, heat-inactivated FCS (10% v/v; PAA

Laboratories), heat-inactivated horse serum (0.5%; Invitrogen), 2-mercaptoethanol (0.05

mM; Sigma-Aldrich), nonessential amino acids (Invitrogen), HEPES (0.01 M; Invitrogen),

L-glutamine (4 mM; Biochrom) and L929 supernatant (15% v/v). L. major promastig-

otes were cultured in a biphasic medium consisting of a solid base of rabbit-blood agar

(Elocin-lab, Gladbeck, Germany) and a liquid phase of phenol red-free RPMI medium.

4.4.2 Generation of BMDC

BMDC were generated from bone marrow progenitors following the protocol from Lutz

et al . [429] Briefly, total bone marrow cells were flushed from femurs and tibiae with

a syringe containing complete RPMI medium. The cell suspension was washed and

resuspended in fresh RPMI medium, and the cell number was determined by trypan blue

staining. The cell suspension was adjusted to a concentration of 0.2×106 cells/ml, and

seeded in bacteriological petri dishes in a final volume of 10 ml/dish, in the presence of

recombinant murine granulocyte-macrophage colony-stimulating factor (GM-CSF, 0.04

µg/ml; Invitrogen). The cultures were incubated at 37 ◦C, 5% CO2. On days 3 and 6, 5

ml of complete RPMI medium supplemented with GM-CSF were added to each dish. At

day 8, the non-adherent cells were collected, washed with complete RPMI medium and

resuspended at 2×106 cells/ml in complete RPMI medium.
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4.4.3 Generation of BMM

BMM were generated by culturing 0.67×106 cells/ml of total bone marrow progenitors as

described for BMDC, but using conditioned DMEM instead, at 37 ◦C and 5% CO2. On

day 6, the culture medium was removed carefully and replaced with cold RPMI complete

medium, and the petri dishes were kept on ice for 10 min. Thereafter, the macrophages

were removed with a cell scrapper, washed with fresh complete medium without phenol red,

and resuspended at 2×106 cells/ml. As quality control, the morphology of the obtained

BMDC and BMM was analyzed. Part of the cells was used for cytospin preparations

stained with Diff-Quik II dye (Medion Diagnostics, Düdingen, Switzerland) according

to the manufacturer’s instructions, and observed under the light microscope (see section

4.6.1). Furthermore, the expression of the phenotypic markers CD11c in DC and F4/80

in macrophages was assessed by flow cytometry (see section 4.8.2)

4.4.4 Isolation of T cells for polarization assays

Lymph nodes and spleens were removed from OVA-specific TCR-transgenic OT-II mice,

and kept in ice-cold complete RPMI medium in 60 mm× 15 mm petri dishes. Lymphocytes

were isolated by mechanical dissociation using the sterile plunger of a 5 ml syringe and

a cell strainer (70 µm, BD Falcon, Durham, USA), and the obtained cell suspension

was kept on ice. Similarly, splenocytes were isolated by mechanical dissociation in a cell

strainer. The obtained cell suspension was centrifuged at 300 × g, 4 ◦C for 5 min, and

the pellet was incubated with red blood cell lysis buffer for 5 min at 37 ◦C. The cells

were washed with fresh cold medium afterwards. Non-CD4+ cells were depleted using

the CD4+T cell enrichment kit (StemCell Technologies, Grenoble, France). CD25+ cells

were further depleted, using anti-CD25-Phycoerythrin (PE) and anti-PE magnetic beads

(Miltenyi Biotech, Bergisch Gladbach, Germany). The obtained cell population was used

for T cell differentiation assays as described in Section 4.11.1, and its purity was assessed

by flow cytometry.

4.4.5 Preparation of cell lysates

For preparation of total cell lysates from BMDC to be used for activity assays, ac-

tive site labeling, and Western Blot (WB) of cysteine cathepsins, the cells were har-

vested either directly from the petri dishes where they were generated, or after treat-

ment with different stimuli including: LPS (1 µg/ml, Sigma-Aldrich), CpG ODN 1668

(5´-TCCATGACGTTCCTGATGCT-3´, 25 µg/ml, Qiagen Operon, Cologne, Germany),

TNF-α ( 500 U/ml, Peprotech, Rocky Hill, NJ, USA), or infection 1:5 with L. major

promastigotes. The cells were washed twice in PBS, and centrifuged at 300 × g for 5

min at room temperature (RT) (Heraeus Multifuge X1R, Thermo Scientific). After the

last washing step, the cells were resuspended in 5 ml PBS and counted with trypan blue
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staining. The samples were centrifuged again, and the cell pellet was resuspended in

sodium acetate buffer (see composition on A.1), using 1 ml of buffer per 1×107 cells. The

samples were then immediately frozen in liquid nitrogen, and thawed at 37 ◦C in a water

bath for 1 min. This freeze-and-thaw process was repeated 3 times. The samples were

then centrifuged at 900 × g for 10 min at 4 ◦C (Heraeus Fresco21, Thermo Scientific),

and the supernatant was aliquoted and stored at -20 ◦C for later use. Each aliquot was

used no more than three times.

For experiments in which cathepsin expression was assessed, lysosome-enriched lysates

were prepared using a Lysosome isolation kit (Sigma-Aldrich), following the manufacturer’s

instructions. Briefly, the stimulated cells were harvested after 24 h, washed twice in

cold PBS, and resuspended in extraction buffer. The cells were lysed using a Dounce

homogenizer, and after every 5 strokes a small sample was observed under the light

microscope using trypan blue staining to ascertain the level of breakage, until achieving

between 80% to 85% of lysed cells. The samples were then centrifuged at 1000 × g for 10

min, and the supernatant was further centrifuged at 20,000 × g for 20 min. For further

enrichment, a multi-step Optiprep gradient, provided within the kit, was prepared, and

the samples were centrifuged for 12 h at 45,000 × g Optima L-80XP Ultracentrifuge

(Beckman Coulter, Fullerton, CA, USA). After centrifugation, the tubes showed multiple

bands floating in the gradient, with a volume of approximately 0.5 ml-0.7 ml. Each

fraction was collected with glass Pasteur pipettes starting from the top of the gradient

and stored for analysis. The protein concentration was determined using Bradford reagent

(Sigma-Aldrich), and lysosome-enriched fractions were identified by measuring their acid

phosphatase activity with the Acid phosphatase activity kit (Sigma-Aldrich) according

to the manufacturer’s instructions.

BMDC lysates for WB of intermediaries of different signaling pathways where pre-

pared as follows. 4×106 cells were incubated in 50-ml tubes with a loosen lid at 37 ◦C,

with or without L. major promastigotes at a 1:5 cell-to-parasites infection ratio. Incu-

bation in 50-ml tubes allows to minimize the amount of cells lost (in comparison with

culture plates) due to adherence as a result of activation of the cells. After different time

points, 15 ml of pre-warmed PBS was added, and the cells were washed as described

previously to remove any remaining parasite. After the last washing step, the cell pellet

was resuspended in 150 µl of ice-cold Triton X-100 Lysis Buffer, transferred to 1.5-ml

tubes, and left on ice for 30 min for lysis. The lysates are centrifuged at 18,000 × g

for 15 min at 4 ◦C (Heraeus Fresco21, Thermo Scientific), and the supernatants were

aliquoted and stored at -20 ◦C for later use. Each aliquot was used no more than three

times. For preparation of lysates from BMM with this protocol, 4×1010 cells per well

were plated in a final volume of 2 ml, and the cells were allowed to adhere for 4 h. After

this time, the culture medium was carefully removed, and replaced by either 2 ml of fresh

medium, or 2 ml of medium containing L. major promastigotes in a 1:15 cell-to-parasites
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infection ratio, and incubated at 37 ◦C, 5% CO2. At different time points, the medium

was carefully removed, and the wells were washed three times with warm PBS. After

the last washing step, 150 µl of ice-cold Triton X-100 Lysis Buffer were added to each

well, and the plate was incubated in ice for 30 min. The lysed cells were collected in

1.5-ml tubes, and centrifuged at 18,000 × g for 15 min at 4◦C (Heraeus Fresco21, Thermo

Scientific). The supernatants were aliquoted and stored as described above.

4.4.6 Preparation of cytoplasmic and nuclear extracts

In order to prepare cytoplasmic and nuclear extracts, 5×106 BMDC and BMM were

seeded in 50-ml falcon tubes or cell culture plates, respectively, and the cells were allowed

to rest for 90 min at 37 ◦C, 5% CO2. The cells were thereafter stimulated with L.

major promastigotes using the same infection ratios as described above, and further

incubated at 37 ◦C. Two different buffers were prepared: cell fractionation buffer A, and

cell fractionation buffer B. Both were supplemented with DTT (final concentration 0.

5 mM), protease inhibitor cocktail (1:100 dilution, Sigma-Aldrich), and Na3VO4 (final

concentration 1 mM). At different time points, the stimulated cells were washed twice

with cold PBS and centrifuged (300 × g, 4◦C, 5 min), and resuspended in 90 µl of ice-cold

cell fractionation buffer A. 10 µl of 1% Triton X-100 in cell fractionation buffer A were

added to the samples, and they were further incubated for 5 min in ice. The samples

were then centrifuged at 2000 × g for 5 min at 4 ◦C, and the supernatants were collected

as cytoplasmic fraction, and stored at -20 ◦C. The pellets were then washed with 100

µl of cell fractionation buffer A, and the samples were centrifuged again as described

above. The supernatants were discarded, and the pellets were resuspended in 60 µl of

cell fractionation buffer B (see composition of cell fractionation buffers A and B in table

A.1). The samples were further incubated for 30 min in ice. Then, they were sonicated

in ice (Sonoplus, Bandelin, Berlin, Germany) using two cycles of 20 s each, with 40% of

amplitude. The resulting suspensions were collected as nuclear fraction, and were stored

at -20◦C. MEK1/2 and lamnin A/C were used as protein markers for cytoplasm and

nucleus, respectively, and their presence in the obtained fractions was determined by WB

(see section 4.12).

4.5 Cytotoxicity assays

4.5.1 Alamar Blue assay

An Alamar Blue assay was used to measure the cytotoxic activity of cathepsin inhibitors

against L. major promastigotes, following the protocol described by Ponte-Sucre et

al. [346] The inhibitors included for these assays were: CA074Me (Bachem, Bubendorf,

Switzerland), E64-d (Bachem), CLIK148 (kindly provided by Prof. Tanja Schirmeister),
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and CS128 (provided by Prof. Tanja Schirmeister), and all were dissolved in dimethyl

sulfoxide (DMSO, Applichem). Briefly, 200 µl of a 1×107 parasites/ml suspension in

complete RPMI medium without phenol red were seeded into 96-well plates, in the

presence or absence of different concentrations of the inhibitors, in a range from 100 µM

to 0.8 µM. The plates were then incubated for 24 h at 27 ◦C, 5% CO2 and 95% humidity,

and 20 µl of Alamar Blue (Trinova Biochem, Giessen, Germany) were added per well.

The plates were incubated again, and after 24 h and 48 h the optical densities (OD) of

the wells were measured at a test wavelength of 540 nm and a reference wavelength of 630

nm, using a Multiskan Ascent microplate reader (Thermo Electronic Corporation). OD

values at 48 h were used to calculate the concentration that inhibits 50% cell proliferation

(IC50) by linear interpolation. Each plate included growth controls in which the parasites

were incubated without any inhibitor, in medium with an equivalent volume of DMSO

as used in the inhibitor-treated wells, which never exceeded 1% (vol/vol). In addition,

amphotericin B was used as positive control. The same protocol was followed and adapted

to measure the cytotoxic activity of cathepsin inhibitors in BMM, using 200 µl of a 2×105

cell/ml cell suspension per well. For each experiment, each inhibitor concentration was

tested in duplicates.

4.5.2 Amastigote Assay

In the present study, this assay was used to determine (1) the toxicity of different cathepsin

inhibitors against L. major, and (2) the differences in the proliferation of L. major in

cathepsin-deficient BMM, in comparison with WT BMM. This assay was previously

described by Bringmann et al. [428]

BMM from BALB/c, Ctsb -/-, Ctsl -/-, and their WT C57BL/6 counterparts were

harvested as previously indicated, and adjusted to a concentration of 2×105 cells/ml in

phenol red-free complete RPMI medium. This medium was used in all the following steps

of the assay. The cells were seeded into white 96-well plates with clear bottom (Greiner

Bio-One, Frickenhausen, Germany) in a final volume of 200 µl, and were incubated

for 4 h at 37◦C, 5% CO2 to allow cell adhesion. For the assays in which the toxicity of

chemical compounds against amastigotes was tested, blanks were set by using empty wells

containing medium with an equivalent volume of the solvent used for each compound,

water or DMSO. Similarly, growth control wells were included, using medium with an

equivalent volume of the solvent used, and different concentrations of amphotericin B were

used as positive controls. After the aforementioned incubation time, the culture medium

was carefully removed, and replaced by 200 µl of a 3×106 parasites/ml suspension of

Luc-tg. L. major promastigotes, to obtain an infection ratio of 1:15. The plates were

then incubated for 24 h at 37 ◦C, 5% CO2. Any remaining extracellular parasites were

eliminated by washing the plate wells 3 times with pre-warmed medium, and 200 µl of
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fresh medium were added per well. For toxicity assays, instead of only fresh medium,

different concentrations of compounds (from 100 µM to 0.4 µM) were used. The plates

were further incubated for 24 h at 37 ◦C, 5% CO2. For measurement of the luciferase

activity from the intracellular amastigotes, 50 µl of the luciferin-containing lysis buffer

Britelite Plus (PerkinElmer, Waltham, USA) were added to each well, and the plate was

incubated in the dark for 5 min at RT. The resulting luminescence was measured as

counts per second (CPS) with a Victor X Light 2030 luminometer (PerkinElmer).

4.6 Microscopy

4.6.1 Diff-Quik staining of BMDC and BMM

The morphology of BMDC and BMM generated from WT, Ctsb -/-, Ctsl -/- mice was

compared by Diff-Quik II dye (Medion Diagnostics, Düdingen, Switzerland) staining,

following the manufacturer’s instructions. Briefly, cytospin preparations of 2×105 cells

were prepared, and the glass slides were allowed to air-dry overnight at RT. The slides

were then dipped 5 times in the Diff-Quik fixative solution, which contains Fast Green

(0.002 g/l) in methanol, followed by five times dipping into Diff-Quik stain solution I,

which contains eosin Y (1.22 g/l), and five times dipping into Diff-Quik stain solution II,

containing thiazine dye (1.1 g/l). The slides were afterwards rinsed with distilled water,

air-dried overnight at RT, and mounted with Aquatex (Merck, Darmstadt, Germany)

for observation under the light microscope (Axiolab, Carl Zeiss, Oberkochen, Germany).

Infected macrophages were also stained following this method, in order to determine the

infection rate.

4.6.2 Transmission electron microscopy of BMDC and BMM

The morphology of BMDC and BMM from WT, Ctsb -/-, Ctsl -/- mice was additionally

compared by transmission electron microscopy (TEM). Samples of the obtained cells

were prepared for TEM using an adapted version of the protocol previously described by

Schurigt et al. [347] Briefly, 2×106 cells were harvested, washed in PBS, centrifuged, and the

resulting cell pellet was resuspended in a fixation solution containing 2.5% glutaraldehyde

(Sigma-Aldrich) in 0.2 M sodium cacodylate (Sigma-Aldrich) buffer,and incubated for

2 h at 4 ◦C. The fixed cells were afterwards washed with 0.5 M cacodylate buffer, and

incubated with 2% OsO4 in 0.5 M cacodylate buffer overnight at 4 ◦C for lipid staining.

The samples were afterwards washed with distilled water, and contrasted with aqueous

0.5% uranyl acetate overnight at 4 ◦C. The samples were centrifuged, and thereafter

subjected to a series of incubation steps with 50%, 70%, 90%, 96%, and three times in

100% ethanol, each of 30 min at 4 ◦C, for dehydration. The samples were then incubated in

100% propylene oxide (Sigma-Aldrich), for 30 min, followed by centrifugation, addition of
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a 1:1 solution of Epon 812 (Sigma-Aldrich) and propylene oxide, and overnight incubation

at RT. The samples were finally embedded by replacing this mixture with pure Epon 812,

incubating overnight at RT, and polymerized at 60 ◦C for 3 days. Ultrathin sections were

prepared and mounted at the Central Department for Electron Microscopy, University of

Würzburg, and analyzed with an EM 10 transmission electron microscope (Carl Zeiss).

The levels of vacuolization of at least 100 cells per sample were analyzed by using the

following scoring system: 0 if no vacuoles were visible; 1 if the area of the sum of all

the vacuoles corresponded to aprox. 1 to 20% of the cell surface; 2 if said area was of

aprox. 21% to 40%; 3 if it was of 41% to 60%; 4 for 61% to 80%; and 5 if it was over

80%. Furthermore, an extra score point was added if the vacuoles presented myeloid-like

structures and a double membrane, which are characteristic of autophagosomes.

4.6.3 Fluorescence microscopy

BMM from WT, Ctsb -/-, and Ctsl -/- mice were harvested, counted, and adjusted to a

concentration of 5×105 cells/ml in complete RPMI medium without phenol red. 250 µl

were seeded in duplicates into chambered cover glasses (Nunc Thermo Scientific), and

incubated for 4 h at 37 ◦C, 5% CO2 to promote cell adhesion. Meanwhile, eGFP-tg

L. major promastigotes were harvested, washed 3 times with warm PBS, counted, and

adjusted to a concentration of 3×106 parasites/ml in complete medium without phenol red.

After the 4 h incubation time of BMM was completed, the culture medium was carefully

removed, and replaced by 250 µl of the eGFP-tg parasite suspension, to obtain an infection

ratio of 1:15. The samples were further incubated for 24 h at 37 ◦C, 5% CO2. The cells

were then washed 3 times with warm PBS to remove any free parasites. The samples

corresponding to the time point of 24 h were incubated with Hoechst solution 0.5% v/v

(Immunochemistry Technologies, Bloomington, USA) for 15 min at 37◦C protected from

the light, followed by washing 3 times with warm PBS and addition of 250 µl of complete

medium. Then, they were observed under a fluorescence microscope (Leica Microsystems).

The rest of the samples corresponded to the time point of 48 h, and were incubated in

fresh medium for further 24 h, stained and observed under the fluorescence microscope

as described above. The amount of cells and L. major bodies were quantified with the

Cell Counter plug-in from the ImageJ software. [430]

4.7 Quantification of cathepsin expression and activity

4.7.1 Measurement of total protein by BCA

The protein concentration of lysates to be used for WB analysis was determined using a

microplate bicinchoninic acid (BCA) protein assay kit (Thermo Scientific, Rockfort, IL,

USA), following the manufacturer’s instructions. This method is based on the reduction of
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cupric ions to cuprous ions by cysteine, cystine, tyrosine, and tryptophan residues within

proteins, and the quelation of these resulting cuprous ions with BCA, to form a purple

complex. For this assay, dilutions of the lysates (1:5 to 1:25) were prepared using the

same buffer in which the samples were lysed, and 25 µl of each dilution were pipetted in

duplicates into transparent U-bottomed 96-well plates provided with the kit. As standard,

25 µl/well of serial dilutions of BSA in lysis buffer were included, using a concentration

range of 0.05 to 0.4 µg/µl. Next, reagents A and B were mixed (1:50), and 200 µl of this

solution were added per well. Reagent A contains BCA, while reagent B is composed of

4% cupric sulfate. The plate was incubated for 30 min at 37 ◦C. The absorbance per well

was measured with a Multiskan Ascent microplate reader, using a test wavelength of 562

nm.

4.7.2 Cathepsin B and cathepsin L activity assay

The proteolytic activity of cathepsins B and L was measured from cell lysates prepared

in sodium acetate buffer (pH 5.5) described in section 4.4.5. The protein concentration

for those lysates was measured using the BCA protein Assay protocol described in the

previous section, and the concentrations of the obtained lysates were in the range of

0.5 µg/µl to 1.0 µg/µl. The cathepsin activity assay used in the present study was

previously described by Schurigt et al, [347] and is based on the proteolytic cleavage of the

fluoropeptide z-Phe-Arg-4-methyl-coumarin-7-amide (AMC) (Z-Phe-Arg-AMC, Bachem),

which is a substrate for cysteine cathepsins B and L. Briefly, sodium acetate buffer was

supplemented with 0.5 mM DTT, and used as reaction buffer. 5 µg of total protein from

each sample were pipetted in triplicates in black flat-bottom 96-well plates (Nunc, Thermo

Scientific). For the experiments in which the activity of cathepsin inhibitors was tested

against murine lysates, 1 µl DMSO, or 1 µl of the inhibitors CA074 (10 µM Bachem) or

E64 (10 µM Bachem) were added for each sample, followed by addition of sodium acetate

reaction buffer to complete a volume of 94 µl/well, and a 15 min incubation step at 37 ◦C.

After this incubation, 1 µl of DMSO, CA074, E64, or the inhibitors CS128, CLIK148, and

RV212C were added per sample, and the plate was incubated again for 15 min at 37 ◦C. In

the experiments in which the lysates were generated from cells already pre-incubated with

cathepsin inhibitors during culture, the samples were incubated only with 1 µl of DMSO,

CA074 or E64 for 30 min at 37 ◦C. Standard curves were prepared with serial dilutions of

the fluorochrome 7-amino-4-methyl-coumarin (AMC; Bachem). Finally, the proteolytic

reaction was initiated by addition of 5 µl of 500 µM Z-Phe-Arg-AMC. The proteolytic

release of AMC was continuously monitored for 45 min by fluorescence spectroscopy,

using an excitation wavelength of 355 nm, and an emission wavelength of 460 nm with

a Fluoroskan Ascent fluorescence reader (Thermo Electron Corporation, Langenselbold,
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Germany). The proteolytic activity of each sample was calculated using the linear range

of the reaction curves.

4.7.3 Cathepsin S activity assay

The inhibitory capacity of some of the cathepsin inhibitors used in the present study

against Ctss was assessed using a Cathepsin S drug discovery kit (Enzo Life Sciences, Ply-

mouth Meeting, PA, USA). This assay is based on the proteolytic cleavage of a fluorogenic

substrate, z-Val-Val-Arg-AMC, by recombinant human Ctss, which results in the release

of AMC. The inhibitors were tested following the manufacture’s instructions. Briefly, all

the components of the kit were allowed to warm up to 37◦C, including assay buffer (50

mM potassium phosphate, pH 6.5), recombinant Ctss, DMSO, cathepsin inhibitors, the

substrate z-Val-Val-Arg-AMC, as well as AMC calibration standard. First, assay buffer

was pipetted to a 1/2 volume white 96-well plate, followed by addition of Ctss (0.06

mU/well). Next, cathepsin inhibitors were added: CS128, CA074Me, and 13b, in a range

of concentrations from 0.1 to 10 µM. In addition, for some wells 1 µM E64 was used as

control. Finally, AMC standard was added, and the plate was incubated for 30 min at

37◦C. The reaction was started by addition of z-Val-Val-AMC substrate (40 µM final

concentration), and the plate was continuously measured for 20 min, at intervals of 30 s

each, using an excitation wavelength of 355 nm, and an emission wavelength of 460 nm

with a Fluoroskan Ascent fluorescence reader. The remaining proteolytic activity of each

sample was calculated using the linear range of the reaction curves.

4.7.4 Determination of cathepsin B and L expression by WB

The expression of Ctsb and Ctsl in BMDC in response to different stimuli was analyzed

by Western Blot (WB). The composition of all the buffers described in this section

can be found on Table A.1. 10 µg of total protein from each sample were mixed with

5× PAGE-Sample Buffer, and boiled for 5 min at 95 ◦C. The samples were resolved

by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), using a 4%

polyacrylamide collecting gel, and a 12% separating gel. The samples were run through

the collecting gel at 80 V, and at 110 V at the separating gel, using SDS Transfer Buffer

I (1×
). After electrophoresis, the proteins were transferred to a polyvinylidene difluoride

(PVDF) membrane (PALL, Dreieich, Germany) at 140 V, 250 mA for 1 h using Transfer

Buffer I. The protein transfer was assessed by incubating the membranes for 5 min at

RT in Ponceau S solution (0.05% Ponceau S, 3% acetic acid), followed by continuous

washing with distilled water. The membranes were then blocked overnight at 4◦C with

10% non-fat, blotting grade milk (Biorad, Hercules, CA, USA) in PBS-Tween buffer. For

detection of Ctsb and Ctsl, the membranes were first incubated for 1 h at RT with the

72



Chapter 4. Materials and Methods

following biotinylated Ab: anti-mCathepsin-B (0.5 µg/ml, R&D Systems, Minneapolis,

MN, USA) or anti-mCathepsin-L (0.1 µg/ml, R&D Systems), followed by incubation

with horseradish peroxidase (HRP)-streptavidin (0.1 µg/ml in 0.5% milk, Thermo Scien-

tific). The membranes were developed using chemiluminescent HRP substrate (Millipore,

Billerica, MA, USA), and visualized using an ImageQuant LAS400 luminescent image

analyzer (GE Healthcare Life Sciences, Uppsala, Sweden). As loading control, the mem-

branes were stripped by incubation with Stripping buffer, freshly supplemented with

0.8% 2-mercaptoethanol for 20 min at 70 ◦C. The membranes were then washed with

PBS-Tween buffer, and blocked overnight at 4 ◦C with 10% non-fat, blotting grade milk.

Next, the membranes were incubated with anti-m-β-Actin (0.5 µg/ml, Sigma-Aldrich)

for 1 h at RT, followed by incubation with biotinylated goat anti-mIgG1 (0.1 µg/ml,

Abcam,Cambridge, UK) for 1 h at RT, and HRP-streptavidin (0.1 µg/ml in 0.5% milk)

for 1 h at RT. The membranes were developed and visualized as described above. The

images were analyzed using the software ImageJ.

4.7.5 Active site-labelling of cathepsins

The biotinylated probe DCG-04 was kindly provided by Prof. Matthew Bogyo (University

of California, San Francisco, CA, USA). This probe was engineered to track the activity

of cysteine proteases, using the structure of E64 as a scaffold. DCG-04 was used in the

present study to label simultaneously the cysteine cathepsins present in lysates prepared

from freshly generated BMDC from WT, Ctsb -/-, Ctsl -/- mice. 7 µg of total protein were

incubated with 100 µM DCG-04 in citrate reaction buffer (see Table A.1) for 1 h at RT,

followed by addition of 5X PAGE sample buffer and boiling for 5 min at 95 ◦C. The

samples were then resolved in 12% SDS-PAGE, and blotted to a PVDF membrane, as

described previously in section 4.7.4. The membranes were then incubated for 1 h at RT

in HRP-Streptavidin (0.1 µg/ml in PBS-T), followed by addition of chemiluminescent

HRP substrate, and imaging. The images were analyzed using the software ImageJ.

4.8 Flow cytometry

4.8.1 Measurement of uptake and processing of eGFP-L. major by
BMDC

1×106 BMDC/ml were harvested at day 7 of culture, plated in 6-well plates and incubated

overnight at 37◦C, 5% CO2. For some experiments, BALB/c BMDC were pre-incubated

with cathepsin inhibitors for 4 h prior to infection. eGFP-L. major promastigotes were

harvested, washed 3 times in warm PBS, added to the BMDC at a 1:5 infection ratio,

and further incubated at 37◦C. After 2 h of exposure of the BMDC to the parasites, the

cells were washed with warm PBS, and resuspended in fresh medium at a concentration
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of 1×106 cells/ml. Part of the cells was fixed in paraformaldehyde fixation buffer (PFA,

4%; Applichem, Darmstadt, Germany). The remaining cells were incubated for a total of

4 h or 24 h post infection, fixed, and the amount of infected cells at the different time

points was determined by flow cytometry, together with the expression of maturation

markers as described next.

4.8.2 Measurement of extracellular markers by flow cytometry

BMDC infected with e-GFP L. major, stimulated with LmAg (30 µl LmAg/ml, equivalent

to 30 parasites per BMDC), LPS (1 µg/ml) or TNF-α (500 U/ml) were fixed with

4% PFA and resuspended in FACS buffer containing the following Ab: phycoerythrin-

cyanine 7 (PECy7)-conjugated anti-CD11c (BD Biosciences, Heidelberg, Germany), PE-

conjugated anti-CD86 (BD Biosciences), allophycocyanin-conjugated anti-MHC class II

(Miltenyi, Bergisch Gladbach, Germany). For some assays, BMDC were infected with

WT L. major promastigotes instead, and fluorescein isothiocyanate (FITC)-conjugated

anti-CD40 (Biolegend, San Diego, USA) and FITC-conjugated anti-CD80 (eBioscience,

San Diego, USA) Ab were used. Data was obtained using the MACSQuant flow cytometer

(Miltenyi) and analyzed using FlowJo (Tree Star Inc., CA, USA). The expression of F4/80

in BMM was determined using FITC-conjugated anti-F4/80 Ab (Biolegend).

4.8.3 Measurement of intracellular cytokines by flow cytometry

The expression of intracellular IL-12 and IL-6 was analyzed in BMDC after 24 h stim-

ulation with LPS (1 µg/ml) at 37◦C, 5% CO2, in the presence or absence of different

cathepsin inhibitors, and brefeldin A (3 µg/ml, eBioscience). The cells were then incu-

bated for 20 min in 4% PFA fixation buffer, permeabilized for 20 min at 4 ◦C using

permeabilization buffer (see table A.1), and incubated for 1 h with (PECy7)-conjugated

anti-CD11c, PE-conjugated anti-IL-12(p40/p70, BD Biosciences), and APC-conjugated

anti IL-6 (Biolegend). Data was obtained using the MACSQuant flow cytometer. Fur-

thermore, cells from polarization assays described in section 4.11.1 were fixed with 2%

formaldehyde for 20 min at 4◦C, permeabilized for 20 min at 4◦C using permeabiliza-

tion buffer, and stained with the following Ab diluted in permeabilization buffer: Pacific

Blue-conjugated anti-CD4 (Biolegend), FITC-conjugated anti-IFN-γ (BD Biosciences),

PE-conjugated anti-CD25 (BD Biosciences), and allophycocyani-conjugated anti-IL10

(Biolegend). Data was obtained using a LSR-II flow cytometer (BD Biosciences, San Jose,

USA). All results were analyzed using the software FlowJo.
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4.9 Measurement of cytokine expression

4.9.1 Measurement of cytokines in supernatants by ELISA

1×106 BMDC were seeded in a final volume of 1 ml in 24-well plates, and were stimulated

with 5×106 L. major WT promastigotes (infection ratio 1:5), LmAg (30 µl/ml), LPS (1

µg/ml), or CpG ODN (25 µg/ml). The cells were further incubated for 24 or 48 h, and the

supernatants were collected. The concentration of the cytokines in the supernatants was

determined by sandwich enzyme-linked immunosorbent assay (ELISA), using capture-

detection Ab pairs purchased from BD Biosciences for IL-12p40, IL-6 and TNF-α, and

R&D Systems for IL-10 (Wiesbaden, Germany) following the suppliers’ instructions.

Briefly, 96-well plates were coated with the corresponding capture Ab diluted in

coating buffer (IL-12p40: 3.0 µg/ml; IL-6: 1.67 µg/ml; TNF-α: 4 µg/ml), or in PBS

(IL-10: 2 µg/ml), followed by overnight incubation at 4 ◦C. The plates were then washed 3

times in PBS-T, and blocked overnight at 4 ◦C with 10% FCS. Next, the plates were washed

3 times in PBS-T, and supernatants or standards were added, and the plates were further

incubated overnight at 4 ◦C. The plates were afterwards washed, incubated for 1 h at RT

with the corresponding biotinylated secondary Ab (IL-12p40: 2.5 µg/ml; IL-6: 1 µg/ml;

TNF-α: 1 µg/ml, IL-10: 0.2 µg/ml). Next, the plates were washed again, and incubated

for 45 min at RT with a 1:1000 dilution of alkaline phosphatase-streptavidin complex (BD

Biosciences) in blocking solution. To detect the cytokines, alkaline phosphatase substrate

(1 mg/ml in diethanolamin buffer) was added to each well, and the developing color in

the wells was measured at a test wavelength of 405 nm, and a reference wavelength of

490 nm in a Multiskan Ascent microplate reader. In addition, IL-12p70 was measured

by using the IL-12p70 ELISA Ready-SET-Go kit from eBioscience according to the

manufacturer’s instructions. This system uses as detection enzyme avidin-HRP, and

includes a tetramethylbenzidine substrate solution. To analyze the cytokine production

in BMM, 1×106 cells were seeded in 500 µl into 24-well plates, together with 15×06 L.

major WT promastigotes (infection ratio 1:15), in the presence or absence of LPS (1

µg/ml). The cells were incubated for 24 and 48 h, and the supernatants were collected.

Cytokine measurements by ELISA were performed as described above.

4.9.2 Measurement of cytokine expression by RT-PCR

Total RNA from 2×106 BMDC or BMM, stimulated as described above, was isolated

using the RNeasy kit (Qiagen, Hilden, Germany) according to the manufacturer’s in-

structions. cDNA synthesis was performed using the iScript cDNA synthesis kit (BioRad,

Munich, Germany ) and the resulting cDNA was used at a 1:8 dilution to assess the

expression of IL-12a(p35) by real-time PCR. The real-time PCR was performed in a

final volume of 25 µl per well using Maxima SYBR Green/Fluorescein qPCR Master
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Mix (Thermo Scientific, Schwerte, Germany) and run with a CFX96 Touch real-time

PCR detection system (BioRad) for 40 cycles. The primer pairs used were: Il12p35

forward: TGGCTACTAGAGAGACTTCTTCCACAA, Il12p35 reverse: GCACAGGGT-

CATCATCAAAGAC; Il12p40 forward: CGTGCTCATGGCTGGTGCAAA, Il12p40 re-

verse: ACGCCATTCCACATGTCACTGCC. The housekeeping gene β-actin was used

for normalization of the samples: β-actin forward: CATTGCTGACAGGATGCAGA,

β-actin reverse: TTGCTGATCCACATCTGCTG. Relative gene expression values were

calculated with the 2-∆∆CT method

4.10 Quantification of nitric oxide production

BMM from WT and cathepsin-deficient mice were seeded and infected as described above,

followed by incubation at 37◦C, 5% CO2 for 24 h. The cells were washed afterwards

with phenol-free complete RPMI medium to eliminate any extracellular parasites and

incubated for further 48 h in the absence or presence of 1 µg/ml LPS. The supernatants

were collected, and the concentration of nitrite (NO2
-) was determined by addition of

100 µl of culture supernatant to 100 µl of Griess reagent (Sigma-Aldrich) and incubation

for 15 min at RT. The resulting absorbance at 540 nm was measured with the Multiskan

Ascent ELISA reader (Thermo Electronic Corporation). The nitrite concentrations were

determined using sodium nitrite (NaNO) as a standard, and reflect the nitrite oxide levels

released by macrophages.

4.11 Polarization assays

4.11.1 Th1 polarization assay

In order to evaluate the effect of different cathepsin inhibitors on the Th1 polarization by

BMDC, a Th1 polarization assay was adapted from the protocol described by Pletinckx et

al, [431] and performed at the laboratory of Prof. Manfred B. Lutz (University of Würzburg,

Würzburg, Germany).For this assay, 1×104 BMDC were co-cultured with 5×104 purified

CD4+CD25− T cells from OT-II mice (see section 4.4.4), in the presence of OVA (1

mg/ml, Hyglos, Bernried, Germany)or OVA(327− 339) peptide (100 ng/ml, Activotec,

Cambridge, UK), and LPS (0.1 µg/ml), in U-bottom 96-well plates, with a final volume

of 200 µl/well for 5 days at 37◦C, 5% CO2. The cells were then harvested, counted, and

adjusted to a concentration of 1x106 cell/ml for restimulation with PMA (10 ng/ml,

Sigma-Aldrich) and ionomycin (1 µg/ml, Sigma-Aldrich) at 37 ◦C, 5% CO2. After 1 h

incubation, Brefeldin A was added (3 µg/ml), and the plates were further incubated for

4 h more. The cells were then washed, fixed in 2% formaldehyde, incubated for 20 min in
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permeabilization buffer, and the expression of Th1 cytokines was assessed by staining of

intracellular cytokines, and flow cytometry (see 4.8.3).

4.12 Analysis of intermediates of signaling pathways

Differences in expression levels and activation status of intermediates of signaling pathways

relevant to immune response against leishmaniasis were analyzed by WB, all performed

at the lab of PD Dr. Heike Hermanns (University of Würzburg, Würzburg, Germany).

Lysates from WT and cathepsin-deficient BMDC and BMM were prepared as described

in section 4.4.5, after different time points of infection with L. major promastigotes (1:5

infection ratio for BMDC, and 1:15 for BMM). The samples were mixed with 4× Lämli

buffer, and boiled for 5 min at 95◦C, and their proteins were separated by SDS-PAGE

(10% acrylamide gels). The proteins were then transferred to PVDF membranes using a

semi-dry electro-blotter (Peqlab, Erlangen, Germany), which consists of a 3-buffer sys-

tem (see table A.1 for reference of anode buffer I, another buffer II, and cathode buffer).

The membranes were then blocked for 20 min with 10% bovine serum albumin (BSA,

Applichem) at RT, followed by overnight incubation at 4◦C with the following antibodies

against murine proteins, diluted in 5% BSA in Tris-buffered saline (TBS)-Tween, all of

them from Cell Signaling (Danvers, MA, USA): anti-p65, anti-IκB, anti-phosphorylated

p38, anti-p38, anti-phosphorylated ERK1/2, anti-ERK1/2, anti-phosphorylated MAPK,

and anti-MAPK The membranes were then washed, incubated for 1 h at RT with HRP-

conjugated anti-rabbit IgG or anti-mouse IgG1, respectively (both from DAKO, Hamburg,

Germany), and developed using a chemiluminescence kit (GE Healthcare, Munich, Ger-

many). The membranes were then visualized using a FluorChem Q imager (Biozym

Scientific, Oldendorf, Germany). For loading control, the membranes were stripped as

previously described in section 4.7.4, followed by incubation with anti-GAPDH as primary

antibody, followed by incubation with HRP-conjugated anti-rabbit IgG1. The images were

analyzed using the software ImageJ.

4.13 Statistical analysis

Values are provided as mean ± standard deviations from at least 2 independent exper-

iments. Statistical significance was determined by the unpaired 2-tail Student’s t test

(Microsoft Excel Software). In experiments using cathepsin-deficient BMDC or BMM,

this statistical test was used to compare, for each treatment, the results from Ctsb -/-

or Ctsl -/- cells with their WT counterparts, and in experiments were different cathepsin

inhibitors were tested, inhibitor-treated cells were tested against DMSO controls.
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Results

5.1 Effects of cathepsin deficiency and inhibition on BMDC

generation and survival

The first part of this section focuses on the cytotoxicity of the different cathepsin inhibitors

used for the present study. Next, BMDC and BMM from Ctsb -/- and Ctsl -/- mice were

generated and characterized in terms of their morphology, yield of cells generated and

expression of typical markers.

5.1.1 The cathepsin inhibitors used in the present study showed no
cytotoxicity in BMDC

The cytotoxic activity of different cathepsin inhibitors was evaluated in BMDC, using

an Alamar Blue assay. The active ingredient of Alamar Blue reagent is resazurin, a blue

cell-permeable compound with almost no fluorescence. When resazurin enters a viable

cell, the reducing environment within the cytosol results in the reduction of resazurin to

resorufin, which has a red color and is highly fluorescent, resulting in a change in the

color and increase in the fluorescence in the medium surrounding the viable cells. In this

assay, different cathepsin inhibitors were tested in BMDC, in a concentration range of

0.8 µM to 100 µM, and their IC50 values were calculated after 48 h.

Table 5.1 summarizes the IC50 values found. Almost all the cathepsin inhibitors

tested had very low cytotoxicity, since their IC50 values were superior to 100 µM, with

the exception of CA074Me, which had an IC50 value of 55.35 ± 6.76 µM. Therefore, the
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Table 5.1. Cytotoxicity of cathepsin inhibitors in BMDC

Compund IC50 value

RV212C >100 µM
CS128 >100 µM
CA074Me 55.35 µM ± 6.76
CLIK148 >100 µM
E64d >100 µM
CA074 >100 µM
ZRLR >100 µM

viability of BMDC after 48 h incubation with different concentrations of the inhibitors

was assessed by Trypan Blue staining (see Appendix, Fig. A.1). Concentrations up to 20

µM showed no significant effect in BMDC viability. Additionally, different concentrations

of these inhibitors were titrated in BMDC, by pre-treating them for 1 h with the inhibitors

and preparing lysates. The remaining proteolytic activity corresponding to cathepsins

in these lysates was measured (see Appendix, Fig. A.2). All together, a concentration of

10 µM was chosen for pre-treatment of BMDC, and unless stated otherwise, was used

throughout the rest of this study.

5.1.2 BMDC and BMM from cathepsin B- and cathepsin L-deficient
mice present comparable phenotypes as their wild-type counter-
parts

BMDC and BMM from cathepsin-deficient mice were generated from stem cell progeni-

tors. The morphology of the obtained cells was analyzed by light microscopy, and TEM.

BMDC from cathepsin-deficient mice displayed a typical immature DC phenotype, similar

as BMDC from WT mice (Fig. 5.1 A). Comparably, no morphological differences were

found in BMM from WT and cathepsin-deficient mice.

CD11c and F4/80 are commonly used as characteristic markers for BMDC and BMM,

respectively, and their expression in the generated cells was evaluated by flow cytometry

at day 8 in BMDC, and day 6 in BMM. The expression of these markers was comparable

between wild-type and cathepsin-deficient BMDC and BMM, and no significant differ-

ences were found in the yields of CD11c+ cells and F4/80+ cells obtained per plate at the

end of the generation culture (Fig. 5.1 B and C). In addition, the harvested BMDC from

WT and cathepsin-deficient mice presented comparable levels of MHC class II molecules

and CD86 expression (Fig. 5.1 D and E).
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Figure 5.1. Morphology and phenotype of bone marrow derived macrophages and dendritic cells
from wild-type and cathepsin-deficient mice. (A) The generated cells present comparable
morphologies, as illustrated here in representative TEM pictures (4400x magnification) and light
microscopy pictures (Diff-Quik staining, 40x magnification) of BMDC and BMM from wild-type,
Ctsb -/- and Ctsb -/- mice. (B) Comparable yields of CD11c+ cells per plate were obtained in
cultures of BMDC from wild-type and cathepsin-deficient mice. (C) Yields of F4/80+ cells per
plate obtained in cultures of BMM from wild-type and cathepsin-deficient mice. (D) Representative
density plots comparing the expression of MHC class II molecules and CD86 in BMDC from wild-
type and cathepsin-deficient mice. (E) Expression levels of MHC class II and CD86 in BMDC from
wild-type and cathepsin-deficient mice, represented by their medium fluorescence intensity (MFI).
The results in (B), (C), and (E) are expressed as mean ± SD from cells generated out of 3 different
animals per genotype. The results in (A), (B) and (C) are reported in [432]

Therefore, BMDC and BMM can be generated in the absence of Ctsb and Ctsl, and

these cells present comparable morphology and expression of characteristic markers as

cells generated from WT mice.
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Table 5.2. Toxicity of cathepsin inhibitors in L. major promastigotes

Compund IC50 value % of inhibition

RV212C 59.94 ± 8.82 µM 82.13%
CS128 51.28 ± 2.41 µM 89.7%
CA074Me >100 µM 0%
CLIK148 >100 µM 5.52%
E64d >100 µM 19.21%
CA074 >100 µM 0%
ZRLR >100 µM 0%

5.2 Toxicity of cathepsin inhibitors in L. major

In this section, the toxicity of cathepsin inhibitors used for the present study was assessed

against L. major parasites.

5.2.1 Toxicity against promastigotes

The cytotoxicity of different cathepsin inhibitors was tested in L. major promastigotes

using the Alamar Blue Assay previously described. The results of these assays can be

found in Table 5.2. CS128 had an IC50 value of 51.28 ± 2.41 µM, showing similar

leishmanicidal activity in comparison with RV212C, which had an IC50 value of 59.94 ±
8.82 µM. Moreover, CS128 at a concentration of 100 µM resulted in 89.7% inhibition of

parasite growth, while RV212C at 100 µM resulted in 82.13% of parasite growth.

The rest of the cathepsin inhibitors tested showed little or no leishmanicidal activity

in concentrations up to 100 µM, including CA074, CA074Me, CLIK148, E64d, and ZRLR.

5.2.2 Toxicity against amastigotes

After successfully infecting a host cell, L. major promastigotes differentiate into amastig-

otes within parasitophorous vacuoles. To reach the amastigote, a leishmanicidal compound

should permeate through three physical barriers: the cell membrane of the host, the mem-

brane of the PV where the amastigote is contained, and the parasite cell membrane.

Therefore, cell permeability is a critical factor to consider when evaluating a potential

leishmanicidal compound.

The leishmanicidal activity of CS128 was further examined using an amastigote assay

in which BMM are infected with Luc-tg L. major promastigotes. After 24 h, the parasites

would have transformed into amastigotes, and at this time point they are challenged with

different concentrations of CS128 or amphotericin B for another 48 h. With the addition

of D-luciferin in the presence of ATP and oxygen, the luciferase expressed by viable Luc-tg
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L. major amastigotes catalyzes its conversion to oxyluciferin and the generation of light.

CS128 presented an IC50 value of 1.34 ± 0.12µM, in comparison with amphotericin B,

which had an IC50 value of 14.87 ± 0.82 nM.

5.3 Expression of cathepsins in BMDC

The first part of this section concentrates on the expression of Ctsb and Ctsl in BMDC in

response to multiple stimuli, including infection with L. major promastigotes. Further on,

the expression of different cysteine cathepsins was compared in lysates generated from

Ctsb -/- and Ctsl -/- BMDC.

5.3.1 Expression of cathepsins B and L in BMDC during infection
with L. major promastigotes

The expression levels of Ctsb and Ctsl in BMDC during infection with L. major pro-

mastigotes was examined by WB. BMDC were incubated with the parasites using an

infection ratio of 5 parasites per BMDC, and whole cell lysates were prepared at the

following time points after infection: 0 h, 1 h, 4 h, 10 h, and 24 h. Figure 5.2 summarizes

the expression levels found. Ctsb is slowly up-regulated in BMDC upon infection with L.

major, as no increase is detected at 10 h p.i., but until a later time point, at 24 h p.i. Ctsb

is also slightly up-regulated in non treated BMDC, although their levels are considerably

lower as in infected cells. Ctsl is also up-regulated as a result of infection with L. major.

5.3.2 Expression of cathepsins B and L in BMDC in response to Th1-
and Th2- inducing stimuli

The expression of Ctsb and Ctsl was analyzed in BMDC in response to different stimuli,

including CpG, lipopolysaccharide (LPS), and TNF-α. First, lysates of freshly generated

BMDC from BALB/c and C57BL/6 mice were compared. Some differences in the basal

expression levels of Ctsb and Ctsl were observed between BALB/c and C57BL/6 BMDC.

However, the up-regulation of Ctsl and Ctsb as a response to the different maturation

stimuli was comparable (Fig. 5.3). Moreover, TNF-α induced higher expression levels of

Ctsb in comparison to CpG, and LPS.

5.3.3 Expression of cysteine proteases inCtsb -/- and Ctsl -/- BMDC

As a control, the expression of other cathepsins in Ctsb -/- and Ctsl -/- BMDC was ana-

lyzed. Lysates from these cells were prepared and incubated with DCG-04, a biotinylated

substrate that targets the same broad set of for cysteine proteases as E64, and resolved

by SDS-PAGE. The resulting blots allowed assessing the expression of multiple cysteine
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Figure 5.2. Expression of Ctsb and Ctsl in BMDC in response to L. major infection. BALB/c BMDC
were infected with L. major, and lysates from infected (inf.) and non-treated BMDC (NT) were
prepared at 1 h, 4 h, 10 h, and 24 h post-infection (p.i.). The expression of Ctsb and Ctsl was then
analyzed by WB. (A) Immunoblots for Ctsb from one representative experiment. (B) Immunoblots
for Ctsl from one representative experiment. (C) Summary of expression levels of Ctsb, described
in arbitrary units (AU) relative to NT BMDC at 1 h. (D) As in (C), expression of Ctsl. The results
are shown as mean ± SD from 3 independent experiments, *p<0.05.

proteases, identified by their apparent molecular weight (Fig.5.4 A). Among them were

Ctsb, Ctsl, cathepsin S (Ctss), and cathepsin X (Ctsx). There were no significant differ-

ences in the expression of Ctss and Ctsx between WT, Ctsb -/- and Ctsl -/- BMDC (Fig.

5.4 B). Moreover, Ctsb -/- BMDC expressed comparable levels of Ctsl as WT BMDC, and

Ctsl -/- BMDC expressed similar levels of Ctsb as WT BMDC. Therefore, Ctsb or Ctsl

deficiency had no effect in the expression levels of Ctss and Ctsx.

5.4 Impact of cathepsin deficiency in uptake and processing

of L. major promastigotes by BMDC

5.4.1 Processing of L. major promastigotes in BMDC in the presence
of cathepsin inhibitors

EGFP-tg L. major promastigotes were used to monitor the amount of living L. major

in BMDC and BMM. When BMDC were first analyzed by fluorescence microscopy, it

was found that although an infection ratio equivalent to 5 parasites per BMDC was used,

after 24h few cells bearing at least one parasite could be detected. The infection was

then monitored by flow cytometry during different time points (Figure 5.5 A). While 2
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Figure 5.3. Expression of Ctsb and Ctsl in BMDC in response to LPS, CpG, and TNF-α (A)
Expression levels of Ctsb and Ctsl in lysates from BALB/c and C57BL/6 BMDC, freshly harvested.
(B) Immunoblots for Ctsb and Ctsl in lysates of BMDC from BALB/c and C57BL/6 mice, 24 h
after stimulation with LPS, CpG or TNF-α. Non-treated cells (NT) were used as negative control.
(C) Summary of expression levels of Ctsb in BALB/c BMDC lysates, described in arbitrary units
(AU) relative to NT BMDC. (D) As in (C), expression of Ctsl. The results are shown as mean ±
SD from cells generated out of 3 independent experiments.

Figure 5.4. Expression of cysteine proteases in Ctsb -/- and Ctsl -/- BMDC. (A) Active-site labeling of
multiple cysteine cathepsins using biotinylated DCG04 in lysates of wild-type (WT), Ctsb -/- and
Ctsl -/- BMDC. The image corresponds to one representative experiment out of 3. (B) Determination
of relative expression levels of cathepsins X, B, S, and L in lysates from WT, Ctsb -/- and Ctsl -/-

BMDC. The results are shown as mean ± SD from lysates prepared from 3 different animals per
genotype
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h p.i. up to 65% BMDC were positive for infection, this proportion gradually decreases

over time, and 24 h later, less than 15% of the BMDC were still positive for infection.

This suggests that L. major promastigotes do not replicate inside BMDC, but are rather

processed during this timeframe.

Next, the effect of different cathepsin inhibitors in the aforementioned processing of L.

major was evaluated. BMDC from C57BL/6 and BALB/c mice were pre-incubated with

10 µM of CA074Me, CS128, or RV212C, followed by infection with enhanced-green fluores-

cent protein (eGFP)-tg promastigotes, and the fraction of CD11c+, eGFP+ BMDC was

used as a readout for infected cells. In BMDC from both mouse lines, the decrease in the

percentage of infected cells over the course of 24 h was comparable, and no significant differ-

ences were found in BMDC pre-incubated with the cathepsin inhibitors tested (Fig.5.5 B

and C). Therefore, the processing of L. major promastigotes in BMDC was not altered by

the use of cathepsin inhibitors. Moreover, this experiment was repeated using the peptide-

based cathepsin B inhibitor ZRLR. As observed with the epoxide- and aziridine-based

inhibitors, ZRLR showed no effect in the processing of L. major promastigotes (Fig.5.5 D).

5.4.2 Ctsb -/- and Ctsl -/- BMDC present similar uptake and processing
rate of promastigotes as WT BMDC

The uptake and processing of L. major promastigotes was analyzed in Ctsb -/- and Ctsl -/-

BMDC, using the same infection setup as described above. As expected from the results

in section 5.4.1, while up to 77% of WT BMDC are infected after 2 h, this proportion

decreases over time, and by 24 h p.i. less than 15% of BMDC are still infected (Fig. 5.6 A).

In agreement with the experiments using cathepsin inhibitors, Ctsb -/- and Ctsl -/-BMDC

presented a similar decrease in the percentage of infected cells over the course of 24 h,

with no significant difference with respect to WT BMDC (Fig. 5.6 B).

5.5 Parasite survival in Ctsb -/- and Ctsl -/- macrophages

5.5.1 Ctsb -/- and Ctsl -/- present smilar parasite survival as WT BMM

The cathepsin inhibitors used in the present study target murine cathepsins as well, and

some of them, like CS128 and RV212C, also showed leishmanicidal activity. Therefore it

was necessary to evaluate if host Ctsb and Ctsl could have a beneficial or detrimental

effect on the survival of L. major in infected BMM. With this aim, the proliferation of L.

major in BMM was analyzed using two different approaches: (1) infection with eGFP-tg

promastigotes, followed by monitoring using fluorescence microscopy, and (2) infection
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Figure 5.5. Processing of L. major promastigotes in BMDC in the presence of cathepsin inhibitors
(A) Representative histograms from one experiment with BALB/c BMDC, infected with eGFP-tg
promastigotes in the presence of DMSO (0.1% v/v) at different time points. (B) Processing of
eGFP-tg promastigotes in the presence of different cathepsin inhibitors by C57BL/6 BMDC and
(C) BALB/c BMDC. The results are expressed as mean ± SD of 3 independent experiments. (D)
Representative histogram of infected BALB/c BMDC in the presence or absence of the cathepsin
B inhibitor ZRLR, and summary from 3 independent experiments.

with Luc-tg promastigotes, having luciferase activity as an indicator for parasite viability

and proliferation as described in section 5.2.2.

The percentage of infected cells at 24 h and 48 h p.i. was comparable among WT,

Ctsb -/- and Ctsl -/- BMM (Fig. 5.7 A). The number of parasites per infected cell increased

between 24 h and 48 h p.i., indicating parasite proliferation (Fig. 5.7 B and C). No sig-

nificant differences were found between WT, and Ctsb -/- or Ctsl -/- BMM. Similarly, it
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Figure 5.6. Ctsb -/- and Ctsl -/- BMDC present similar uptake and processing rate of promastigotes
as WT BMDC. BMDC were infected for 2 h with eGFP-tg L. major promastigotes, and the
percentage of infected cells was monitored over the course of 24 h. (A) Representative histogram
from one experiment with WT BMDC. (B) No significant differences between BMDC from WT and
cathepsin-deficient mice were found in the uptake and processing of eGFP-tg promastigotes at 2 h,
4 h, and 24 h. The results are expressed as mean ± SD of 3 independent experiments and can be
found reported in [432]

was found that the proliferation of Luc-tg L. major 48 h p.i. was comparable between

WT, and Ctsb -/- or Ctsl -/- BMM (Fig. 5.7 D).

Additionally, the morphology of infected BMM was analyzed by TEM. For each

infected cell detected, a score representing its level of vacuolization was assigned, in order

to evaluate if the BMM presented signs that would indicate autophagy. No significant

differences were found in the vacuolization scores estimated for WT BMM, in comparison

to Ctsb -/- or Ctsl -/- BMM (Fig. 5.8).

5.5.2 Ctsb -/- and Ctsl -/- BMM produce comparable levels of nitric
oxide in response to L. major and to LPS

BMM use NO as an effector to eliminate intracellular pathogens. Since Ctsb -/- and

Ctsl -/- BMM presented comparable levels of survival and proliferation of intracellular

amastigotes, it would be expected that the levels of NO expressed in response to infection

would be comparable to those of WT BMM. Therefore, the levels of NO produce by BMM

were measured in supernatants after infection with L. major, stimulation with LPS, or

infection with L. major followed by LPS stimulation. No significant differences in the

levels of NO were detected between WT, Ctsb -/- and Ctsl -/- BMM, with neither of the

stimuli used (Fig. 5.9), indicating that Ctsb and Ctsl deficiency have no effect in the

87



Chapter 5. Results

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

24 h 48 h 

In
fe

ct
ed

 c
el

ls
 

WT Ctsb-/- Ctsl-/- 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

WT inf Ctsb -/- inf Ctsl -/- inf 

N
or

m
al

iz
ed

 C
PS

 

A 

D 

0 

0.5 

1 

1.5 

2 

2.5 

3 

24 h 48 h 

Pa
ra

si
te

s p
er

 in
fe

ct
ed

 c
el

l WT Ctsb -/- Ctsl-/- 

 ns 
 ns 

  * 
B 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

WT Ctsb-/- Ctsl-/- WT Ctsb-/- Ctsl-/- 

24 h 48 h 

In
fe

ct
ed

 c
el

ls
 

% 1 par/inf. cell 

% 2 par/inf cell 

% >3 par/inf cell 

C 

Figure 5.7. Ctsb -/- and Ctsl -/- BMM present similar parasite survival as WT BMM. WT, Ctsb -/-

and Ctsl -/- BMM where infected with eGFP-tg L. major promastigotes, and the percentage of
infected cells was determined by fluorescence microscopy at 24 h. and 48 h. post-infection (p.i.). (A)
Percentage of infected cells, determined by fluorescence microscopy. (B) As in (A), the number of
parasites per infected cells was determined by fluorescence microscopy. No significant differences in
parasite numbers were found among WT, Ctsb -/- and Ctsl -/- BMM, although the average number
of parasites per infected cell increased from 24 h. p.i. and 48 h p.i.(C) As in (B), percentage of
infected cells harboring 1, 2, or 3 or more parasites. (D) BMM where infected with Luc-tg L. major,
and the luminescence detected was used as a reference for parasite survival within the infected cell
at 48 h. p.i., here reported as counts per second (CPS). In all the graphs, the results are expressed
as mean ± SD of 3 independent experiments (*p<0.05) and can be found reported in [432]

activity of inducible iNOS.

5.6 Effect of cathepsin inhibitors on BMDC maturation

The recognition of a potential pathogen triggers the maturation of BMDC, characterized

by an increase in the expression of antigen-presenting MHC class II molecules and co-

stimulatory molecules in their surface. In this section, BMDC are treated with different

cathepsin inhibitors in order to evaluate their effect in BMDC maturation. The first

part of this section concentrates on the maturation of BMDC in response to L. major

promastigotes and soluble antigen (LmAg). The second part focuses on the maturation

of BMDC stimulated with LPS or TNF-α in the presence of cathepsin inhibitors.
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Figure 5.9. Ctsb -/- and Ctsl -/- BMM produce comparable levels of nitrite oxide in response to L.
major and to LPS as WT BMM. Nitric oxide (NO) production in supernatants from BMM,
48 h. p.i. with L. major or stimulation with LPS. The results are reported as mean ± SD of 3
independent experiments, and can be found reported in [432]

5.6.1 BMDC pre-treated with the cathepsin B inhibitor CA074Me
up-regulate MHC class II molecule expression in response to L.
major promastigotes

BMDC use three key signals to induce the polarization of naïve Th cells: (1) the pre-

sentation of antigen in MHC class II molecules, (2) the expression of co-stimulatory
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molecules, and (3) the production of cytokines. In order to investigate the effect of cathep-

sin inhibitors in the first two signals, BMDC were pre-incubated with 10 µM of different

cathepsin inhibitors, infected with L. major as described in the previous sections, and the

expression levels of MHC class II molecules and co-stimulatory molecules were analyzed

by flow cytometry.

First, the inhibitors CA074Me and CLIK148 were analyzed, as their effects on L.

major infection have been previously documented in vivo. These inhibitors had no signif-

icant effect in the expression levels of MHC classs II molecules and CD86 in non-infected

BMDC. However, infected BMDC pre-treated with CA074Me expressed higher levels of

MHC class II molecules, but not of CD86, in comparison with BMDC pre-treated with

CLIK148 and DMSO (Fig. 5.10). The inhibitors CS128 and RV212C showed no effect

in the expression of MHC class II, and CD86 (Fig. 5.11). Similarly, CA074Me enhanced

the expression of MHC class II, but not of co-stimulatory molecules in BMDC stimulated

with LmAg (Fig.5.12). On the other hand, the inhibitors CLIK148, CS128, and RV212C

showed no effect in the expression neither of MHC class II molecules, nor of co-stimulatory

molecules in BMDC stimulated with LmAg.

5.6.2 Effects of cathepsin inhibition in the response to LPS and TNF-α
by BMDC

LPS is a TLR4 agonist and strong maturation inducer in BMDC, which in turn provide

signals for Th1 maturation. BMDC stimulated with TNF-α, on the other hand, have been

reported as inducers for Th2 maturation. Being these stimuli characteristic “pro-Th1” or

“pro-Th2” inducers, the effects of cathepsin inhibitors in BMDC maturation to LPS and

TNF-α were thus evaluated.

Except for CA074, all the inhibitors tested using LPS as a stimulus showed a detri-

mental effect in the expression of MHC class II molecules. However, only CA074Me and

RV212C resulted in a decrease of the expression of CD86, but not of CD80 or CD40

(Fig. 5.13 ). When TNF-α was used as a stimulus, CA074Me pre-treatment resulted

rather in an enhancement of the expression of MHC class II molecules. CA074Me showed

no significant effect in the expression of CD86 and CD40, and only a slight decrease

in expression of CD80. The inhibitors RV212C and CS128 showed no significant effect

neither in the expression of MHC class II molecules, nor of co-stimulatory molecules (Fig.

5.14).
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Figure 5.10. BMDC pre-treated with the cathepsin B inhibitor CA074Me up-regulate the expres-
sion of MHC class II molecules in response to L. major promastigotes. BALB/c BMDC
where pre-incubated with 10 µM CA074Me, 10 µM CLIK148, or an equivalent volume of DMSO
(0.01% v/v), and infected with L. major promastigotes. (A) Expression of MHC class II molecules
24 h p.i. (B) Expression of CD86 24 h p.i. The chart bars represent the mean ± SD of 3 inde-
pendent experiments, *p<0.05. (C) Representative density dot plots depicting the maturation of
infected BMDC, treated with DMSO, CA074Me, or CLIK148. LPS stimulation is also shown as a
positive control.

A summary of the effects of cathepsin inhibitors in BMDC subjected to infection

and the aforementioned stimuli can be found in Table 5.3. The responses observed would

suggest that the effects can be grouped in two categories: semi-maturation stimuli (L.

major infection, LmAg, and TNF-α), and strong maturation stimulus (LPS). When a

semi-maturation stimulus is used, only CA074Me has an impact in MHC class II molecule

expression, which is enhanced, but there is no dramatic effect in the expression of co-

stimulatory molecules. Moreover, CLIK148, RV212C, and CS128 had no impact in the

maturation of BMDC. The use of cathepsin inhibitors in a strong maturation stimulus,

such as LPS, results rather in a detrimental effect on maturation.

5.7 Maturation of Ctsb -/- and Ctsl -/- deficient BMDC

The effects of cathepsin inhibition in BMDC maturation were next compared to the

maturation of Ctsb -/- and Ctsl -/- BMDC in response to L. major infection, as well as
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Figure 5.11. The aziridine-based cathepsin inhibitors CS128 and RV212C have no effect in the
maturation of BMDC in response to L. major promastigotes.(A) Effect of different
cathepsin inhibitors on the expression of MHC class II molecules and (B) CD86, as determined
by their mean fluorescence intensity (MFI) normalized to the values obtained for BALB/c BMDC
infected and treated with DMSO. All inhibitors were tested at a 10 µM concentration. The chart
bars represent the mean ± SD of 3 independent experiments, *p<0.05. (C) Representative density
dot plots depicting the maturation of infected BMDC, treated with DMSO, CA074Me, CS128, or
RV212C. LPS stimulation is also shown as a positive control.

different pro-Th1 and pro-Th2 stimuli.

5.7.1 Ctsb- /- BMDC express higher levels of MHC class II molecules
in response to L. major than WT and Ctsl -/-deficient BMDC

BMDC from WT, Ctsb -/- and Ctsl -/- mice were infected with L. major promastigotes as

described in the previous sections, and the expression of MHC class II molecules was deter-

mined by flow cytometry. Similarly as observed with the cathepsin B inhibitor CA074Me

in section 5.6.1,Ctsb -/- expressed higher levels of MHC class II molecules. Although the

Ctsl -/- inhibitor CLIK148 had no effect on the expression of MHC class II molecules,

Ctsl -/- also expressed higher levels of MHC class II molecules than WT BMDC, although

slightly lower than observed in Ctsb -/- BMDC (Fig. 5.15).

The expression levels of MHC class II molecules in response to LmAg were lower than

observed in infected BMDC. While CA074Me pre-treated BMDC expressed more MHC

class II molecules than those pre-treated with DMSO (see section 5.6.1), Ctsb -/- expressed
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Figure 5.12. CA074Me, but not CS128 and RV212C, enhances the up-regulation of MHC class
II molecules in BMDC in response to L. major soluble antigen (LmAg). BALB/c
BMDC were pre-incubated with DMSO, CA074Me or CLIK148, and stimulated with LmAg for
24 h. (A) Expression of MHC class II molecules, expressed as the MFI normalized to the values
of DMSO+LmAg treated cells. (B) As in (A), expression of CD86. (C) Normalized MFI for MHC
class II molecules in BMDC pre-incubated with CA074, CA074Me, RV212C, and CS128, and
stimulated with LmAg. (D) As in (C), normalized MFI for CD40, CD80, and CD86 expression.
In all the graphs, the results are expressed as mean ± SD of 3 independent experiments, and
the significance was estimated for every treatment versus DMSO + LmAg treated cells; *p<0.05,
***p<0.005.

comparable levels of MHC class II molecules as their WT and Ctsl -/- counterparts. In re-

sponse to heat-killed parasites, BMDC expressed more MHC class II molecules than those

in response to LmAg. However, no significant differences were found among WT, Ctsb -/-,

and Ctsl -/- BMDC. Moreover, in the absence of stimulation, non-treated WT BMDC ex-

pressed similar levels of MHC class II molecules as Ctsb -/- and Ctsl -/- BMDC (Fig. 5.15).

5.7.2 Cathepsin B and L deficiency have no effect on the expression
of co-stimulatory molecules in BMDC in response to L. major

In section 5.6, it was shown that the different cathepsin inhibitors used in the present

study showed no significant effect in the expression of co-stimulatory molecules by BMDC

in response to infection with L. major. Similarly, neither Ctsb -/- nor Ctsl -/- presented

differences in their expression of CD86, CD80, and CD40 in response to promastigotes

(Fig. 5.16). Upon use of LmAg or heat-killed parasites as stimuli, Ctsb -/- and Ctsl -/-

BMDC expressed comparable levels of co-stimulatory molecules as their WT counterparts

(Fig. 5.16).
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Figure 5.13. Effect of different cathepsin inhibitors in the maturation of BMDC in response to
LPS. BMDC were pre-incubated with 10 µM of different cathepsin inhibitors or DMSO, and fur-
ther stimulated with LPS for 24 h. (A) Representative density plots of LPS stimulated BMDC in
the presence of DMSO or CLIK148. (B) MFI of MHC class II molecules, normalized to DMSO
+ LPS-treated cells. (C) As in (B), normalized MFI of CD86. (D) As in (C), normalized MFI of
CD40 and CD80. The bars represent the mean ± SD of 3 independent experiments, and the signifi-
cance was estimated for every treatment versus DMSO + LPS treated cells; *p<0.05, ***p<0.005,
****p<0.001.
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Figure 5.14. Effect of different cathepsin inhibitors in the maturation of BMDC in response to
TNF-α. BMDC were pre-incubated with 10 µM of different cathepsin inhibitors or DMSO, and
further stimulated with TNF-α for 24 h. A) Representative dot plots of TNF-α-stimulated BMDC
in the presence of DMSO or CLIK148. (B) MFI of MHC class II molecules, normalized to DMSO
+ TNF-α-treated cells. (C) As in (B), normalized MFI of CD86. (D) As in (C), normalized MFI
of CD40 and CD80. The bars represent the mean ± SD of 3 independent experiments, and the
significance was estimated for every treatment versus DMSO + TNF-α-treated cells; *p<0.05.
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Table 5.3. Overview of the effects of cathepsin inhibitors on BMDC maturation in response
to different stimuli. (—) Indicates that no statistically significant effect was detected in 3
independent experiments.

Stimulus Inhibitor Effect
MHC Class II CD86 CD80 CD40

Non-treated

CA074 — — — —
CA074Me — — — —
CLIK148 — — — —
RV212C — — — —
CS128 — — — —

L. major

CA074 — — — —
CA074Me Increase — — —
CLIK148 — — — —
RV212C — — — —
CS128 — — — —

LmAg

CA074 — — — —
CA074Me Increase — — —
CLIK148 — — — —
RV212C — — — Decrease
CS128 — — — —

LPS

CA074 — — — —
CA074Me Decrease Decrease Decrease —
CLIK148 Decrease — — —
RV212C Decrease Decrease — Decrease
CS128 Decrease — Decrease Decrease

TNF-α

CA074 — — — —
CA074Me Increase — Decrease —
CLIK148 — — — —
RV212c — — — —
CS128 — — — —
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Figure 5.15. textitCtsb -/- BMDC express higher levels of MHC class II molecules in response to
L. major than wild-type, and Ctsl -/- BMDC. (A) Representative histogram for MHC class
II molecule expression in BMDC 24 h p.i. with L. major promastigotes. (B) Normalized MFI for
MHC class II molecules 24 h after stimulation with LmAg, heat-killed parasites (HK), or infection
with promastigotes. The obtained MFI values were normalized to WT, non-treated (NT) BMDC.
The bars represent the mean ± SD of 3 independent experiments, and the significance in every
treatment was estimated between WT and Ctsb -/- BMDC, and between WT and Ctsl -/-BMDC;
* p<0.05, **p<0.01.
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Figure 5.16. Wild-type and cathepsin-deficient BMDC express comparable levels of costimulatory
molecules in response to L. major. (A) Representative histogram for CD86 expression in
BMDC 24 h p.i. with L. major promastigotes. (B) Normalized MFI for CD80, and CD86 24 h
after stimulation with LmAg, heat-killed parasites (HK), or infection with promastigotes. (C) As
in (B), normalized MFI of CD40. The obtained MFI values were normalized to WT, non-treated
(NT) BMDC. The bars represent the mean ± SD of 3 independent experiments

5.7.3 Cathepsin B and L deficiency have no effect on the maturation
of BMDC in response to LPS

The effects of Ctsb and Ctsl deficiency were next evaluated using LPS as a stimulus. Un-

like the results observed using cathepsin inhibitors, which showed in general a detrimental

effect on the maturation of BMDC, neither Ctsb -/- nor Ctsl -/- BMDC expressed reduced

levels of MHC class II molecules (Fig. 5.17 A), and of co-stimulatory molecules (Fig. 5.17

and C).

5.8 Effect of cathepsin inhibitors on cytokine expression

Besides the presentation of antigen in MHC class II molecules and the expression of co-

stimulatory molecules, a key signal BMDC use for Th cell polarization is the expression

of different cytokines. The following sections -from 5.8 to 5.12- summarize the effect of

cathepsin inhibitors in the expression of cytokines relevant for Th1 or Th2 polarization,

and the cytokines expressed by cathepsin-deficient BMDC.
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Figure 5.17. Cathepsin-deficient BMDC express levels of MHC class II molecules and co-
stimulatory molecules in response to LPS comparable to wild-type BMDC. (A) Nor-
malized MFI of MHC class II molecules in BMDC, 24 h after stimulation with LPS. (B) As in (A),
normalized MFI of CD40, and (C) CD80, and CD86. All MFI values were normalized to WT NT
BMDC. The bars represent the mean ± SD of 3 independent experiments.

5.8.1 The tested cathepsin inhibitors have a negative effect on IL-12
expression

IL-12 is a key inducer of Th1 polarization, and the response to LPS by BMDC is charac-

terized by a high expression of IL-12. In order to analyze the effect of cathepsin inhibitors

in BMDC stimulated with LPS, two approaches were used: (1) intracellular staining and

analysis by flow cytometry, and (2) measurement of IL-12 in supernatants from stimulated

cells.

Figure 5.18 summarizes the results obtained by intracellular staining of IL-12. With

exception of CA074, all the cathepsin inhibitors tested resulted in a reduction of IL-12

expression. In particular, BMDC treated with CA074Me showed lower levels of IL-12

already at a concentration of 5 µM. The antibody used for intracellular staining recog-

nizes both the p40 and p70 forms of IL-12. Being IL-12p70 the bioactive form relevant

for inducing Th1 polarization, the levels of IL-12p70 in supernatants of LSP-stimulated

BMDC were measured by ELISA. In agreement with the results found by intracellular

staining, the cathepsin inhibitors tested –with the exception of CA074- resulted in lower

levels of IL-12p70 BMDC treated with DMSO (Figure 5.19). In contrast, most of the

cathepsin inhibitors that showed a down-regulation of IL-12p70 expression had no effect

on IL-10 expression. CA074Me, however, also induced a dose-dependent decrease in IL-10

expression.
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Figure 5.18. The tested cathepsin inhibitors have a negative effect on the expression of IL-12 by
BMDC in response to LPS. (A) MFI of IL-12(p40/p70), determined by intracellular staining of
BMDC in response to LPS after 24 h. The bars represent the mean ± SD of 3 independent experi-
ments, and the significance in every treatment was estimated against DMSO+LPS treated BMDC;
*p<0.05, **p<0.01, ***p<0.005. (B) Representative histograms of IL-12(p40/p70), detected by
intracellular staining.

The negative effect of CA074Me in IL-12 expression was unexpected. IL-12 is key

for induction of Th1 polarization; therefore, a decrease of IL-12 in BMDC treated with

CA074Me would contradict the results reported in the literature vivo with cathepsin

inhibitors. [340] Therefore, it was suspected that CA074Me at the concentrations used in

our experiments could be also inhibiting other cysteine cathepsins besides Ctsb. The

inhibitory capacity of CA074Me, RV212, and CS128 against Ctss was tested, and it was

confirmed that indeed, all three inhibitors present some degree of unspecific inhibition of

Ctss (see Appendix, Fig. A.3).

Furthermore, the effect in IL-12 expression of these cathepsin inhibitors was evaluated

in BMDC infected with L. major. In preliminary experiments, no IL-12 could be detected

48 h p.i. by ELISA and intracellular staining of infected BMDC. Similarly, neither of the

inhibitors tested –CLIK148, RV212, CA074, CA074Me, and CS128– induced detectable

levels of IL-12 (data not shown).

98



Chapter 5. Results

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

5µ
M

 

10
µM

 

20
µM

 

5µ
M

 

10
µM

 

20
µM

 

5µ
M

 

10
µM

 

20
µM

 

5µ
M

 

10
µM

 

20
µM

 

5 
µM

 

10
µM

 

DMSO DMSO RV212C CS128 CA074 CA074Me  CLIK148 

NT LPS 

IL
-1

2(
p7

0)
 n

or
m

al
iz

ed
 to

 L
PS

 D
M

SO
 

**** 

** 
*** 

*** 
*** *** 

** * 
** 

*** 
**** 

* 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 
5 
µM

 

10
 µ

M
 

20
 µ

M
 

5 
µM

 

10
 µ

M
 

20
 µ

M
 

5 
µM

 

10
 µ

M
 

20
 µ

M
 

5 
µM

 

10
 µ

M
 

20
 µ

M
 

5 
µM

 

10
 µ

M
 

DMSO DMSO RV212C  CS128  CA074 CA074Me  CLIK148 

NT LPS 

IL
-1

0 
no

rm
al

iz
ed

 to
 L

PS
 D

M
SO

 

*** *** 
*** 

Figure 5.19. Negative effect of cathepsin inhibitors in IL-12p70 expression in response to LPS. (A)
IL-12(p70) was measured by ELISA in supernatants from BMDC pre-treated with different cathep-
sin inhibitors, and stimulated for 48 h. with LPS. The obtained measurements were normalized to
DMSO+LPS-treated BMDC. (B) As in (A), IL-10 measurements of BMDC in response to LPS,
normalized to DMSO+LPS-treated BMDC. The results are presented as mean ± SD of 3 inde-
pendent experiments, and the significance in every treatment was estimated against DMSO+LPS
treated BMDC; *p<0.05, **p<0.01, ***p<0.005, ****p<0.001.

5.9 Effect of cathepsin inhibitors on in vitro Th1 polariza-

tion

A Th1 polarization assay was optimized, in order to determine if the cumulative effects

of cathepsin inhibitors in BMDC could play a role in their ability to induce in vitro

the polarization of naïve Th cells to Th1 cells. The standard protocols reported for this

kind of assay require previous stimulation of BMDC with LPS, and to supplement the

co-cultured BMDC and CD4+CD25- T cells with IL-12. Because the cathepsin inhibitors

tested had only a significant effect in IL-12 expression, but not in expression of MHC

class II molecules and of co-stimulatory molecules, a protocol was adapted to require no

addition of IL-12 (see section 4.11.1).

The results of these polarization assays are summarized in Fig. 5.20. While RV212

showed a slightly lower amounts of Th1 polarized cells in comparison to DMSO controls,

treatment with CA074Me resulted in a marked decrease in Th1 polarization. On the
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Figure 5.20. Effect of cathepsin inhibitors on Th1 polarization in vitro. . CD4+CD25- T-cells were
isolated from OT-II mice, and co-cultured with BMDC in the presence of ovalbumin, LPS, and
different cathepsin inhibitors or DMSO for 5 days. (A) Density plots of CD4+ gated cells at the
end of the co-culture, stained intracellularly for IFN-γ and IL-10. (B) Frequency of IFN-γ + and
IL-10+ CD4+ T cells, normalized to samples with LPS stimulation in the presence of DMSO. The
results are presented as mean ± SD of 3 independent experiments, and the significance in every
treatment was estimated against DMSO+LPS treated samples; *p<0.05,**p<0.01, ***p<0.005,
****p<0.001.

other hand, CS128 had no significant effect in the amount of Th1-polarized cells.

5.10 Cytokine expression in cathepsin-deficient BMDC and

BMM

Analogous to the experiments using cathepsin inhibitors, BMDC from WT, Ctsb -/- and

Ctsl -/- were used to assess the effects of Ctsb and Ctsl deficiency in cytokine expression.

5.10.1 Ctsb -/- BMDC and BMM express higher levels of IL-12 than
WT and Ctsl -/-BMDC and BMM in response to L. major

Pre-treatment of epoxide-based and aziridin-based cathepsin inhibitors did not result in

an increase in IL-12 expression (see section 8.8.1). Therefore, it was expected that Ctsb -/-

and Ctsl -/-BMDC would express similar levels of IL-12 as WT BMDC in response to L.
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major. Surprisingly, Ctsb -/- BMDC expressed significantly higher levels of IL-12p70 and

IL-12p40 than their WT and Ctsl -/- counterparts (Fig. 5.21 A and B). This response,

however, was exclusive to living L. major promastigotes, since no up-regulation of IL-12

was observed in BMDC stimulated with LmAg or heat-killed parasites. Similarly, an

increase in IL-10 expression was also observed in Ctsb -/- BMDC infected with L. major

promastigotes, but not in Ctsb -/- BMDC stimulated with LmAg or heat-killed parasites

(Fig. 5.21 C).

In the light of these results, the cytokine production of Ctsb -/- and Ctsl -/- BMM in

response to L. major was measured. Similarly as BMDC, Ctsb -/- BMM expressed higher

amounts of IL-12p70, IL-12p40, and IL-10 than WT and Ctsl -/- BMM (Fig. 5.21 D to

F). Moreover, the expression of other cytokines, such as IL-6 and TNF-α in response

to L. major was comparable amongWT,Ctsb -/- andCtsl -/- BMDC and BMM (Fig. 5.22).

The striking difference between the results observed using the Ctsb inhibitor CA074Me,

and Ctsb -/- BMDC and BMM in response to L. major urged us to consider the use of a

Ctsb inhibitor with a reported higher specificity for Ctsb than CA074Me. Therefore, the

effect of the peptide-based inhibitor ZRLR in BMDC infected with L. major was tested.

Pre-treatment with this inhibitor resulted in IL-12p70 expression levels in infected BMDC

comparable as those observed Ctsb -/- BMDC, regardless of the mouse line from which

the cells were generated. Moreover, pre-treatment of Ctsb -/- BMDC with this inhibitor

had no further effect in their levels of IL-12p70 expression (Fig. 5.23).

5.10.2 Ctsb -/- BMDC express higher levels of IL-12 than WT BMDC
in response to LPS

Epoxide- and aziridine-based inhibitors decreased the expression of IL-12 by BMDC in

response to LPS (see section 4.8.1). Therefore, it would be expected that Ctsb -/- BMDC

or Ctsl -/- BMDC, or both could also produce less IL-12 in response to LPS than WT

BMDC. Contrary to this, Ctsb -/- BMDC expressed higher levels of IL-12 than WT and

Ctsl -/- BMDC, and the later showed no significant impairment in IL-12 expression (Fig.

5.24 A). Moreover, there were no significant differences in the production of IL-6 (Fig.

5.24 B), although Ctsl -/- expressed slightly higher amounts of IL-10 than WT and Ctsb -/-

BMDC (Fig. 5.24 C). Furthermore, Ctsb -/- BMDC produced considerably lower levels of

TNF-α than WT and Ctsl -/- BMDC.

As described in the previous section, the effects were compared to BMDC pre-treated

with the Ctsb inhibitor ZRLR. IL-12 production was higher in BMDC treated with ZRLR
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Figure 5.21. Ctsb -/- BMDC and BMM express higher levels of IL-12 than Ctsl -/- and WT BMDC
and BMM in response to L. major. (A) IL-12p70 in supernatants from non-treated BMDC
(NT), BMDC infected (Inf) with L. major promastigotes at 48 hours p.i., BMDC stimulated with
parasite lysate (LmAg), or with heat-killed parasites (HK), for 48 h. (B) IL-12p40 and (C) IL-10
concentration in supernatants of BMDC at 48 h p.i., or stimulation with LmAg or HK parasites.
(D) IL-12p70 production in supernatants from non-treated BMM (NT), BMM infected (Inf) with
L. major promastigotes at 48 h p.i., and BMM stimulated for 48 hours with LmAg or HK parasites.
(E) IL-12p40 and (F) IL-10 concentration in supernatants of BMM at 48 hours p.i., or stimulation
with either LmAg or HK parasites. The results are expressed as mean ± SD of 5 independent
experiments, and can be found reported in ref. [432] . For each experimental group (NT, Inf, LmAg
and HK), statistical significance was estimated between WT and Ctsb -/- cells, and between WT
and Ctsl-/- cells, * p<0.05, **p<0.01, *** p<0.005.

in comparison to the DMSO controls, independently of the mouse background from which

the cells were generated (Fig. 5.25).
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Figure 5.22. Ctsb and Ctsl deficiency showed no effect in IL-6 and TNF-α expression in response
to L. major. A) TNF-α in supernatants from non-treated BMDC (NT), BMDC infected (Inf)
with L. major promastigotes at 48 h p.i. and BMDC stimulated with parasite lysate (LmAg)
or heat-killed parasites (HK) for 48 h. (B) IL-6 concentration in supernatants of BMDC at 48
h p.i. (C) TNF-α in supernatants from non-treated BMM (NT), BMM infected (Inf) with L.
major promastigotes at 48 h p.i. and BMM stimulated with LmAg or HK for 48 hours. (D) IL-6
concentration in supernatants of BMM at 48 h p.i. The results are expressed as mean ± SD of 3
independent experiments. For each treatment (NT, Inf, LmAg, and HK), statistical significance
was assessed between WT and Ctsb -/- cells, and between WT and Ctsl -/- cells, and in all cases
no statistical significance was found (p>0.05). The results can be found reported in ref. [432] .
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Figure 5.23. RLR pre-treatment of BMDC results in higher levels of IL-12 expression in response
to L. major. Effect of CA074Me (10 muM) and ZRLR (10 muM) in IL-12(p70) expression by
BMDC from BALB/c, C57BL/6 or Ctsb -/- mice in response to L. major promastigotes
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Figure 5.24. Ctsb -/- BMDC express higher levels of IL-12 than Ctsl -/- and WT BMDC and
BMM in response to LPS.Concentration of different cytokines in supernatants from non-
treated BMDC (NT) or LPS-stimulated BMDC (LPS, 1 µg/ml) after 24 hours: (A) IL-12p70,
(B) IL-6, (C) IL-10, and (D) TNF-α. The results are expressed as mean ± SD of 5 independent
experiments. The statistical significance in each treatment was assessed between WT and Ctsb -/-

BMDC, and between WT and Ctsl -/- BMDC. * p<0.05, **p<0.01, *** p<0.005. The results can
be found reported in ref. [432] .

5.10.3 IL-12 expression is impaired in cathepsin B-deficient BMDC
upon CpG stimulation

CpG is another stimulus known to induce IL-12 expression in BMDC, and thus Th1

polarization. BMDC from Ctsb -/- and Ctsl -/- BMDC mice were stimulated with CpG,

and their capacity to produce IL-12 was examined by ELISA. While Ctsl -/- BMDC

showed similar expression of IL-12 as WT BMDC, Ctsb -/- BMDC presented a significant

impairment in IL-12 production (Fig. 5.26).

5.11 The observed up-regulation in IL-12 in response to

LPS in Ctsb-/- BMDC is enough to induce higher lev-

els of Th1-polarized cells

Since Ctsb -/- BMDC expressed higher levels of IL-12 than WT and Ctsl -/-BMDC, it was

hypothesized that they might thus induce higher levels of Th1 polarization. Therefore,

BMDC from WT and Ctsb -/- BMDC were co-cultured with CD4+CD25- T-cells as de-

scribed in section 8.9. Ctsb -/- BMDC having LPS as a maturation stimulus resulted in

higher frequencies of IFN-γ+ T cells, but not of IL-4+ T cells than when WT BMDC

were used, indicating a Th1 polarization (Fig. 5.27). This effect was found not only when

104



Chapter 5. Results

0 

2 

4 

6 

8 

10 

D
M

SO
 

ZR
LR

  

D
M

SO
 

ZR
LR

 

D
M

SO
 

ZR
LR

  

D
M

SO
 

ZR
LR

 

NT LPS NT LPS 

BALB/c C57BL/6 

N
or

m
al

iz
ed

 M
FI

 fo
r 

IL
-1

2p
40

/7
0 

 * 

 * 
A B

%
 o

f m
ax

 

IL-12(p40/70) 

IJGL_28052014_analysed.jo Layout

8/18/14 2:52 PM Page 2 of 2 (FlowJo v8.7)

CD11c

0 102 103 104 105

IL-12(p40/70)

0

20

40

60

80

100

%
 o

f M
ax

Balbc NT DMSO 1 310 188
BALBc NT DMSO 378 213
Balbc NT ZRLR 1 415 223
BALBc NT ZRLR 508 221
Balbc LPS DMSO 1 5156 1025
BALBc LPS DMSO 4603 1019
Balbc LPS ZRLR 1 5973 1272
BALBc LPS ZRLR 5469 1214

CD11c

0 102 103 104 105

B2-A: PE-A

0

20

40

60

80

100

%
 o

f M
ax C57BL6 NT DMSO 406 238

C57BL6 NT DMSO 420 240
C57BL6 NT ZRLR 1 424 212
C57BL6 NT ZRLR 432 225
C57BL6 LPS DMSO 4064 1472
C57BL6 LPS ZRLR 5308 1950
C57BL6 LPS ZRLR 5962 2284

0 102 103 104 105

B2-A: PE-A

0

500

1000

1500

2000

# 
C

el
ls

CD11c

Balbc NT DMSO 1 310 188
BALBc NT DMSO 378 213
Balbc NT ZRLR 1 415 223
BALBc NT ZRLR 508 221
BALBc LPS DMSO 4603 1019
Balbc LPS DMSO 1 5156 1025
Balbc LPS ZRLR 1 5973 1272
BALBc LPS ZRLR 5469 1214

0 102 103 104 105

B2-A: PE-A

0

500

1000

1500

2000

# 
C

el
ls

CD11c

C57BL6 NT DMSO 406 238
C57BL6 NT DMSO 420 240
C57BL6 NT ZRLR 1 424 212
C57BL6 NT ZRLR 432 225
C57BL6 LPS DMSO 4064 1472
C57BL6 LPS ZRLR 5308 1950
C57BL6 LPS ZRLR 5962 2284

0 102 103 104 105

IL-12(p40/p70)

0

20

40

60

80

100

%
 o

f M
ax

CD11c

BALBc NT DMSO
BALBc NT ZRLR
BALBc LPS DMSO
BALBc LPS ZRLR

0 102 103 104 105

IL-12(p40/p70)

0

20

40

60

80

100

%
 o

f M
ax

CD11c

C57BL6 NT DMSO
C57BL6 NT ZRLR
C57BL6 LPS DMSO
C57BL6 LPS ZRLR

IJGL_28052014_analysed.jo Layout

8/18/14 2:52 PM Page 2 of 2 (FlowJo v8.7)

CD11c

0 102 103 104 105

IL-12(p40/70)

0

20

40

60

80

100

%
 o

f M
ax

Balbc NT DMSO 1 310 188
BALBc NT DMSO 378 213
Balbc NT ZRLR 1 415 223
BALBc NT ZRLR 508 221
Balbc LPS DMSO 1 5156 1025
BALBc LPS DMSO 4603 1019
Balbc LPS ZRLR 1 5973 1272
BALBc LPS ZRLR 5469 1214

CD11c

0 102 103 104 105

B2-A: PE-A

0

20

40

60

80

100

%
 o

f M
ax C57BL6 NT DMSO 406 238

C57BL6 NT DMSO 420 240
C57BL6 NT ZRLR 1 424 212
C57BL6 NT ZRLR 432 225
C57BL6 LPS DMSO 4064 1472
C57BL6 LPS ZRLR 5308 1950
C57BL6 LPS ZRLR 5962 2284

0 102 103 104 105

B2-A: PE-A

0

500

1000

1500

2000

# 
C

el
ls

CD11c

Balbc NT DMSO 1 310 188
BALBc NT DMSO 378 213
Balbc NT ZRLR 1 415 223
BALBc NT ZRLR 508 221
BALBc LPS DMSO 4603 1019
Balbc LPS DMSO 1 5156 1025
Balbc LPS ZRLR 1 5973 1272
BALBc LPS ZRLR 5469 1214

0 102 103 104 105

B2-A: PE-A

0

500

1000

1500

2000

# 
C

el
ls

CD11c

C57BL6 NT DMSO 406 238
C57BL6 NT DMSO 420 240
C57BL6 NT ZRLR 1 424 212
C57BL6 NT ZRLR 432 225
C57BL6 LPS DMSO 4064 1472
C57BL6 LPS ZRLR 5308 1950
C57BL6 LPS ZRLR 5962 2284

0 102 103 104 105

IL-12(p40/p70)

0

20

40

60

80

100

%
 o

f M
ax

CD11c

BALBc NT DMSO
BALBc NT ZRLR
BALBc LPS DMSO
BALBc LPS ZRLR

0 102 103 104 105

IL-12(p40/p70)

0

20

40

60

80

100

%
 o

f M
ax

CD11c

C57BL6 NT DMSO
C57BL6 NT ZRLR
C57BL6 LPS DMSO
C57BL6 LPS ZRLR

IJGL_28052014_analysed.jo Layout

8/18/14 2:52 PM Page 2 of 2 (FlowJo v8.7)

CD11c

0 102 103 104 105

IL-12(p40/70)

0

20

40

60

80

100

%
 o

f M
ax

Balbc NT DMSO 1 310 188
BALBc NT DMSO 378 213
Balbc NT ZRLR 1 415 223
BALBc NT ZRLR 508 221
Balbc LPS DMSO 1 5156 1025
BALBc LPS DMSO 4603 1019
Balbc LPS ZRLR 1 5973 1272
BALBc LPS ZRLR 5469 1214

CD11c

0 102 103 104 105

B2-A: PE-A

0

20

40

60

80

100

%
 o

f M
ax C57BL6 NT DMSO 406 238

C57BL6 NT DMSO 420 240
C57BL6 NT ZRLR 1 424 212
C57BL6 NT ZRLR 432 225
C57BL6 LPS DMSO 4064 1472
C57BL6 LPS ZRLR 5308 1950
C57BL6 LPS ZRLR 5962 2284

0 102 103 104 105

B2-A: PE-A

0

500

1000

1500

2000

# 
C

el
ls

CD11c

Balbc NT DMSO 1 310 188
BALBc NT DMSO 378 213
Balbc NT ZRLR 1 415 223
BALBc NT ZRLR 508 221
BALBc LPS DMSO 4603 1019
Balbc LPS DMSO 1 5156 1025
Balbc LPS ZRLR 1 5973 1272
BALBc LPS ZRLR 5469 1214

0 102 103 104 105

B2-A: PE-A

0

500

1000

1500

2000

# 
C

el
ls

CD11c

C57BL6 NT DMSO 406 238
C57BL6 NT DMSO 420 240
C57BL6 NT ZRLR 1 424 212
C57BL6 NT ZRLR 432 225
C57BL6 LPS DMSO 4064 1472
C57BL6 LPS ZRLR 5308 1950
C57BL6 LPS ZRLR 5962 2284

0 102 103 104 105

IL-12(p40/p70)

0

20

40

60

80

100

%
 o

f M
ax

CD11c

BALBc NT DMSO
BALBc NT ZRLR
BALBc LPS DMSO
BALBc LPS ZRLR

0 102 103 104 105

IL-12(p40/p70)

0

20

40

60

80

100

%
 o

f M
ax

CD11c

C57BL6 NT DMSO
C57BL6 NT ZRLR
C57BL6 LPS DMSO
C57BL6 LPS ZRLR

LPS ZRLR 
LPS DMSO 
NT ZRLR 
NT DMSO 

BALB/c C57BL/6 

LPS ZRLR 
LPS DMSO 
NT ZRLR 
NT DMSO 

IJGL_28052014_analysed.jo Layout

8/18/14 2:52 PM Page 2 of 2 (FlowJo v8.7)

CD11c

0 102 103 104 105

IL-12(p40/70)

0

20

40

60

80

100

%
 o

f M
ax

Balbc NT DMSO 1 310 188
BALBc NT DMSO 378 213
Balbc NT ZRLR 1 415 223
BALBc NT ZRLR 508 221
Balbc LPS DMSO 1 5156 1025
BALBc LPS DMSO 4603 1019
Balbc LPS ZRLR 1 5973 1272
BALBc LPS ZRLR 5469 1214

CD11c

0 102 103 104 105

B2-A: PE-A

0

20

40

60

80

100

%
 o

f M
ax C57BL6 NT DMSO 406 238

C57BL6 NT DMSO 420 240
C57BL6 NT ZRLR 1 424 212
C57BL6 NT ZRLR 432 225
C57BL6 LPS DMSO 4064 1472
C57BL6 LPS ZRLR 5308 1950
C57BL6 LPS ZRLR 5962 2284

0 102 103 104 105

B2-A: PE-A

0

500

1000

1500

2000

# 
C

el
ls

CD11c

Balbc NT DMSO 1 310 188
BALBc NT DMSO 378 213
Balbc NT ZRLR 1 415 223
BALBc NT ZRLR 508 221
BALBc LPS DMSO 4603 1019
Balbc LPS DMSO 1 5156 1025
Balbc LPS ZRLR 1 5973 1272
BALBc LPS ZRLR 5469 1214

0 102 103 104 105

B2-A: PE-A

0

500

1000

1500

2000

# 
C

el
ls

CD11c

C57BL6 NT DMSO 406 238
C57BL6 NT DMSO 420 240
C57BL6 NT ZRLR 1 424 212
C57BL6 NT ZRLR 432 225
C57BL6 LPS DMSO 4064 1472
C57BL6 LPS ZRLR 5308 1950
C57BL6 LPS ZRLR 5962 2284

0 102 103 104 105

IL-12(p40/p70)

0

20

40

60

80

100

%
 o

f M
ax

CD11c

BALBc NT DMSO
BALBc NT ZRLR
BALBc LPS DMSO
BALBc LPS ZRLR

0 102 103 104 105

IL-12(p40/p70)

0

20

40

60

80

100

%
 o

f M
ax

CD11c

C57BL6 NT DMSO
C57BL6 NT ZRLR
C57BL6 LPS DMSO
C57BL6 LPS ZRLR

0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 

DMSO ZRLR DMSO ZRLR DMSO ZRLR DMSO ZRLR 

NT LPS NT LPS 

BALB/c C57BL/6 

IL
-1

2p
70

 (n
g/

m
L

) 

  * C 
 * 

Figure 5.25. ZRLR enhances the up-regulation of IL-12 production by BMDC in response to LPS.
(A) Normalized MFI for IL-12(p40/70) from BMDC pre-treated with ZRLR in response to LPS.
(B) Histograms from a representative experiment, showing the expression of IL-12(p40/p70) by
BMDC in response to LPS. (C) Effect of ZRLR in IL-12(p70) expression by BMDC from BALB/c
and C57BL/6 mice in response to LPS. Results are presented as mean ± SD of 3 independent
experiments, *p<0.05.
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Figure 5.26. IL-12 expression is impaired in Ctsb -/- BMDC upon stimulation with CpG. Concentra-
tion of IL-12 in supernatants of BMDC fromWT, Ctsb -/- or Ctsl -/- mice, either non-treated (NT)
or stimulated with CpG for 24 hours. The results are expressed as mean ± SD of 3 independent
experiments.

full ovalbumin (OVA) was used as antigen, but also with the OVA peptide 327-339.

Moreover, as described in section 8.10.2, BMDC pre-treated with the Ctsb inhibitor
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Figure 5.27. Th1 polarization of OT-II CD4+ naïve T cells by BMDC from WT C57BL/6 and
Ctsb -/- mice. Isolated CD4+CD25- T cells from OT-II mice were co-cultured with BMDC gener-
ated from WT C57BL/6 and Ctsb -/- mice in the presence of LPS as a stimulus and OVA peptide
(327-339) or ovalbumin (OVA) as antigens. A) Density plots from one representative experiment.
B) Average percentages of IFN-γ, IL-4, or IL-10+ CD4+ T cells from 3 independent experiments
± SD. * p< 0.05. These results can be also found reported in [432] .

ZRLR produced higher levels of IL-12 than BMDC pre-treated only with DMSO. There-

fore, it would be expected that ZRLR would also contribute to higher levels of Th1-

polarized cells than co-cultures without the inhibitor. In agreement with the observations

with Ctsb -/- BMDC, treatment with ZRLR increased the frequency of Th1-polarized cells

in comparison with DMSO controls (Fig. 5.28). Altogether, these results indicate that

Ctsb in BMDC regulates their capacity to induce the polarization of naïve Th cells into

Th1 in vitro.

5.12 The observed up-regulation of IL-12 by Ctsb -/- BMDC

in response to L. major and LPS takes place at the

transcriptional level

In the previous sections, it was shown that Ctsb -/- BMDC and BMM expressed higher

levels of IL-12 in response to L. major promastigotes than WT and Ctsl -/- BMDC and

BMM. Moreover, Ctsb -/- BMDC produced more IL-12 in response to LPS, and therefore

induced higher levels of Th1-polarization in vitro. IL-12 production was measured by

ELISA or intracellular staining. In order to learn more about the possible mechanisms

by which Ctsb could regulate IL-12 expression, it was necessary to determine next if the

observed up-regulation of IL-12 was present at the transcriptional level.
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Figure 5.28. ZRLR enhances in vitro Th1-polarization. CD4+CD25- T-cells were isolated from OT-II
mice, and co-cultured with BMDC in the presence of ovalbumin, LPS, ZRLR (20 µM) or DMSO
for 5 days. (A) Density plots of CD4+ gated cells at the end of the co-culture, stained intracel-
lularly for IFN-γ and IL-10. (B) Frequency of IFN-γ+ and IL-10+ CD4+ T cells, normalized to
samples with LPS stimulation in the presence of DMSO. The results are presented as mean ±
SD of 3 independent experiments, and the significance in every treatment was estimated against
DMSO+LPS treated samples; ***p<0.005, ****p<0.001.

Total RNA was isolated from WT, Ctsb -/-, and Ctsl -/- BMM infected with L. major

promastigotes, at 6 h and 24 h p.i. Non-treated BMM, and LPS treated BMM were

used as negative and positive controls. The expression levels of the Il12p35 and Il12p40

subunits were then determined by real time PCR, and can be found summarized in Fig.

5.29. For both time points, Ctsb -/- BMM expressed higher levels of Il12p35 in response

to infection and LPS than WT, and Ctsl -/- BMM, while their transcription levels without

any stimulation were comparable. Similarly, Ctsb -/- BMM expressed higher levels of

Il12p40 in response to infection and LPS than WT, and Ctsl -/- BMM.

5.13 Approaches to determine mechanisms of IL-12 up-regulation

in cathepsin B-deficient BMDC and BMM

In the previous sections, it was shown that Ctsb plays a role in the expression of IL-12 in

response to L. major and LPS. Furthermore, this regulation takes place in BMDC and
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Figure 5.29. The observed up-regulation of IL-12 in response to L. major and LPS takes place at
the transcriptional level. Relative expression levels of (A) IL12p40 and (B) IL12p35 transcripts
in mRNA from BMM at 6 h or 24 h p.i. with L. major promastigotes or LPS stimulation. Non-
treated (NT) BMM from each mouse line were used as negative controls. The expression levels
were estimated using the 2-∆∆CT method, using WT NT BMM at 6 h as a reference. The results
are shown as mean ± SD of 4 independent experiments, (* p<0.05), and can be found reported in
ref. [432] .

BMM, and the up-regulation of IL-12 in Ctsb -/- BMM is present already at the transcrip-

tional level. Leishmania parasites are known to silence their host by manipulating key

signaling pathways, but somehow, in Ctsb -/- BMDC and BMM this silencing appeared

to be incomplete, as they were able to express IL-12. Therefore, different signaling path-

ways relevant to IL-12 expression and immune response to L. major were analyzed by

WB. The first part of this section focuses on NF-κB signaling pathway. The second part,

concentrates in analysis of ERK and p38-MAP kinase pathways.

5.13.1 Analysis of activation of NF-κB signaling pathway

One of the main signaling pathways involved in the expression of IL-12 is the NF-κB

pathway. Therefore, it was first investigated if the observed up-regulation of IL-12 was

dependent on the NF-κB signaling pathway by assessing the translocation of the p65

subunit from the cytoplasm to the nucleus. Two different monoclonal antibodies were

tested separately, to detect the NF-κB p65 subunit by WB. The protein bands with the

expected molecular weight (65 kDa) were used for analysis.

Figures 5.30 and 5.31 summarize the results from these experiments. It was found

that the different levels of p65 for all the treatments in nuclear fractions from WT and

Ctsb -/- had no statistical significance. It should be pointed out that we found with both
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Figure 5.30. Detection of NF-κB (p65 subunit) in nuclear and cytoplasmic extracts by WB. Nuclear
(N) and cytoplasmic (C) extracts were prepared from WT and Ctsb -/- BMM at different time
points after infection with L. major promastigotes or stimulation with LPS. (A) Quantification of
NF-κB (p65 subunit) by WB, represented as arbitrary units (AU) relative to the measurements
in WT BMM NT at 0 min. The bars represent the average result from 3 independent experiments
± SD. For each treatment, no statistical significance was found between samples from WT and
Ctsb -/- BMM. B) Representative immunoblots from one experiment including samples at 0 and
15 min. Multiple bands were detected independently using two different antibodies against NF-κB
(p65 subunit): sc-8008, from Santa Cruz, and #4764, from Cell Signaling. Only those with an
apparent molecular weight of 65 kDa (red arrows) were considered for the analysis in (A). The
expression levels of MEK and Lamin A/C were used as loading controls for cytoplasmic and nuclear
extracts, respectively. The results can be found reported in ref. [432] .

antibodies multiple protein bands with molecular weights other than 65 kDa. In par-

ticular, a non-identified protein with a molecular size around 30 kDa was observed in

WT LPS-stimulated BMM but not in LPS-stimulated Ctsb -/- BMM. While these results

suggest that NF-κB is not responsible of the Ctsb-mediated regulation of IL-12, more

experiments with different approaches would be needed to confirm this observation.

5.13.2 Analysis of activation of ERK and p38 MAP kinase signaling
pathways

The activation of ERK and p38 MAP kinases plays key roles in the immune response

against Leishmania parasites. Therefore, lysates of WT and Ctsb -/- BMM were prepared

at different time points of infection, and the phosphorylation of ERK 1/2 and p38 MAP
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Figure 5.31. Measurement of NF-κB (p65 subunit) in nuclear and cytoplasmic extracts by WB
(Continuation from 5.30). Representative immunoblots from one experiment, same as shown
in Figure 5.30 B, including samples at 30 min and 60 min.

kinase was analyzed by WB. Non-treated BMM were used as negative control, and LPS-

stimulated BMM were used as positive control.

Figures 5.32 and 5.33 summarize the results from these experiments. Both pathways

appeared silenced in lysates from infected WT and Ctsb -/- BMM, as indicated by the low

signal detected in phosphorylated p38 and ERK. As shown in the previous sections, Ctsb

deficiency resulted in higher levels of IL-12 expression in response to LPS. However, the

differences in activation of p38 MAPK and ERK pathways detected in LPS-stimulated

BMM were not statistically significant. Therefore, the regulation of IL-12 expression by

Ctsb is not by means of these signaling pathways.
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Figure 5.32. Analysis of p38 MAP kinase signaling pathway activation by WB.Lysates from WT
and Ctsb -/- BMM were prepared at different points after infection with L. major promastigotes
or stimulation with LPS. Immunoblots were prepared to detect phosphorylated p38 MAP kinase
(p-p38), total p38 MAPK, and GAPDH as a loading control. (A) Representative immunoblot from
one experiment, including samples at 0 min, 15 min, and 30 min. (B) As in (A), representative
immunoblot from one experiment, including samples at 1 h and 4 h.(C) Quantification of p-p38
MAPK and p38 MAPK, summarized from 3 independent experiments ± SD. Although some
variations were observed in LPS-stimulated BMM, no statistical significance was found.
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Figure 5.33. Analysis of ERK signaling pathway activation by WB. Lysates from WT and Ctsb -/-

BMM were prepared at different points after infection with L. major promastigotes or stimulation
with LPS. Immunoblots were prepared to detect phosphorylated ERK 1/2 (p-ERK), total ERK
1/2, and GAPDH as a loading control. (A) Representative immunoblot from one experiment,
including samples at 0 min, 15 min, and 30 min. (B) As in (A), representative immunoblot from
one experiment, including samples at 1 h and 4 h. (C) Quantification of p-ERK 1/2 and ERK 1/2,
summarized from 3 independent experiments ± SD. Although some variations were observed in
LPS-stimulated BMM, no statistical significance was found.
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Discussion

The drugs currently available for the treatment of leishmaniasis present several disad-

vantages, including strong side effects, difficulty of administration, and the emergence of

resistance. Hence, the need to develop novel therapeutics. The studies on immunochemo-

therapeutic approaches indicate that a synergy between parasite killing and stimulating

the immune system results in shorter duration of treatment and a reduced amount of drug

required. Cathepsin B-like and cathepsin L-like cysteine proteases from Leishmania have

been shown to be relevant for the virulence of the parasite, and some cathepsin inhibitors

-including aziridine-based and K11777-have shown to have leishmanicidal properties. The

test of two epoxysuccinyl-based cathepsin inhibitors by Katunuma and colleagues [339–341]

indicated that these inhibitors had immunomodulatory properties: CA074, the Ctsb

inhibitor, promoted a Th1 immune response; in contrast CLIK148, the Ctsl inhibitor,

induced a Th2 immune response. These results would suggest that CA074 could be a

potential immunochemotherapeutic agent for treatment of leishmaniasis. The mechanisms

behind the observed modulation of Th1/Th2 polarization were not further investigated,

and thus the aim of this study was to analyze the involvement of Ctsb and Ctsl in this

process. Given the importance of DC for instructing the polarization of Th0 cells, this

study focused on analyzing the effect of Ctsb and Ctsl inhibition and deficiency in the

signals that DC provide to Th0 for this process: the presentation of antigens in MHC

class II molecules, the expression of costimulatory molecules, and of cytokines.

The inhibitors tested presented no cytotoxicity at the working concentrations (5 µM

to 20 µM). Higher concentrations were avoided, as they are associated with unspecific

inhibition of other cysteine cathepsins. Furthermore, it was possible to generate functional

BMDC and BMM from Ctsb -/- and Ctsl -/- mice, with no apparent differences in their
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morphology and expression of characteristic markers (CD11c and F4/80, respectively).

Some of the inhibitors -RV212C and CS128- showed leishmanicidal activity in vitro . In

contrast, the survival and proliferation of L. major parasites was not altered in infected

Ctsb -/- and Ctsl -/- BMM. This comparable survival and proliferation of the parasites in

Ctsb/- and Ctsl -/- BMM was correlated with similar levels of NO expression in compari-

son to WT BMM, and at the time point analyzed, no apparent differences in the presence

of autophagosome-like structures were detected. In response to L. major infection, both

Ctsb and Ctsl are up-regulated in BMDC. Other stimuli, including LPS, CpG and TNF-α

were also found to induce an up-regulation of Ctsb and Ctsl, and this pattern of expression

appeared to be different depending on the genetic background of the mice (BALB/c or

C57BL/6). Lack of Ctsb and Ctsl showed no effect in the expression of other cysteine

cathepsins, including Ctss and Ctsx. The capacity of BMDC of uptake and processing

of L. major promastigotes was not altered neither by inhibition of cathepsins, nor by

Ctsb -/- and Ctsl -/- deficiency. However, some differences in the maturation of BMDC

were detected.

The inhibitor CA074Me enhanced the expression of MHC class II molecules in BMDC

in response to L. major promastigotes and of LmAg. This effect was not detected with

other cathepsin inhibitors, including CLIK148, RV212C, and CS128. Similarly, Ctsb -/-

BMDC showed higher expression of MHC class II molecules in response to L. major

promastigotes. Furthermore, none of the inhibitors showed an effect on the expression

of costimulatory molecules -CD40, CD80 and CD86- and a comparable observation was

made with BMDC from Ctsb -/- and Ctsl -/- mice. In contrast, BMDC stimulated with

LPS showed a small down-regulation of the expression of MHC class II molecules, and

in some cases, of CD86. However, these effects were not observed in Ctsb -/- or Ctsl -/-

BMDC. When analyzing the cytokines expressed by BMDC, L. major promastigotes did

not induce significant expression of cytokines in BMDC.

In response to LPS, BMDC express high concentrations of pro-inflammatory cytokines

and IL-10. Most of the tested inhibitors showed a detrimental effect in the expression of

IL-12 in LPS-stimulated BMDC. When co-culturing these cells with naïve CD4+ T cells

from OT-II mice, it was found that this was correlated with a lower frequency of Th1-

polarized cells. In contrast, when analyzing the cytokine expression of Ctsb -/- and Ctsl -/-

BMDC, it was found that Ctsb -/- BMDC are able to express IL-12 in response to L. major.

Furthermore, in response to LPS Ctsb -/- express higher levels of IL-12, and in co-culture

assays, Ctsb -/- BMDC induced higher frequencies of Th1 polarized cells than when WT

BMDC were used. Thus, lack of Ctsb was found to result in the up-regulation of two of the

signals used by BMDC to induce Th cell polarization, particularly of Th1. The observed

up-regulation of IL-12 was found to occur at the transcriptional level, but it could not be

114



Chapter 6. Discussion

attributed to differences in the activation of the signaling pathways NF-κB, p38 MAPK,

and ERK 1/2. The next pages contrast these observations against reports in the literature.

Lysosomal cathepsins have been described as effector molecules in the lysosomal path-

way of apoptosis. [433] In this pathway, lysosomal proteases are released into the cytosol

in response to different stress factors, including oxidative stress. Lysosomal cathepsins

-particularly Ctsb- have been reported to process the pro-apoptotic protein Bid into its

active form, and to proteolytically inactivate anti-apoptotic proteins of the Bcl-2 family,

which results in apoptosis induction via the mitochondrial release of cytochrome c. [433]

Therefore, it would be tempting to speculate that inhibition of Ctsb rather than having

a cytotoxic effect would actually prevent the activation of apoptosis. However, the Ctsb

inhibitor Z-Phe-Gly-NHO-Bz has been reported to induce apoptotic cell death in cancer

cells, [434] and the Ctsb inhibitor z-FA-FMK was shown to have a detrimental effect on T

cell proliferation by blocking NF-κB activation and cell cycle progression. [435] Therefore

the cytotoxicity of all the inhibitors in this study was determined for BMDC. The cathep-

sin inhibitors used showed no cytotoxicity in BMDC in the range of concentration used

for this study. Most of them presented an IC50 value no lower than 100 µM, with the

exception of CA074Me, which showed some cytotoxicity at concentrations higher than

50 µM. Furthermore, BMDC and BMM could be generated from Ctsb -/- and Ctsl -/-

mice, with no differences in terms of morphology, yields of cells, and the expression of the

characteristic markers CD11c and F4/80 in comparison with those from WT mice. All

these cells showed a similar capacity for the uptake of L. major parasites regardless of

their genetic background. In addition, the generated immature BMDC showed comparable

levels of expression of MHC class II molecules and of the costimulatory molecule CD86

as the WT BMDC.

As mentioned in Table 2.1, several reports in the literature indicated an up-regulation

of cysteine cathepsins in response to inflammatory stimuli (including the cytokines IFN-

γ [436] and IL-6 [263]), and LPS. [437] BMDC were found to up-regulate the expression of

Ctsb, and to a lesser extent of Ctsl in response to L. major. The expression of Ctsb and

Ctsl was then analyzed in BMDC in response to other stimuli: LPS and CpG, known to

induce the maturation of BMDC to induce Th1 immune responses, and TNF-α, which

causes a semi-maturation of BMDC and subsequent induction of Th2 responses. [170,431]

The expression of Ctsb and Ctsl was different in BMDC freshly harvested depending

on their genetic background: BMDC from BALB/c mice appeared to express higher

levels of Ctsb and lower levels of Ctsl than their C57BL/6 counterparts. However, the

regulation of Ctsb expression in response to different stimuli was found to be similar.

As opposed to the report form Li and colleagues, showing an up-regulation of Ctsb in
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response to LPS in THP-1 cells, [437] BMDC stimulated with LPS did not show significant

changes in the expression of Ctsb regardless of their genetic background, and similar

results were found in BMDC stimulated with CpG. However, the expression of Ctsb

was up-regulated in BMDC stimulated with TNF-α in BMDC from both BALB/c and

C57BL/6 mice. In contrast, the expression of Ctsl was found to vary depending on the

genetic background of the BMDC. In C57BL/6, Ctsl followed a similar expression pattern

as Ctsb, with a significant up-regulation only in response to TNF-α. BALB/c BMDC on

the other hand, up-regulated Ctsl in response to LPS, CpG, and TNF-α. Therefore, it

was not possible to conclude from these results a pattern of Ctsb and Ctsl expression

characteristic for strong maturation (or pro-Th1) or semi-maturation (pro-Th2) of BMDC.

It is possible that the deletion of one cysteine cathepsin could impact the expression

of other cathepsins. For example, Honey and colleagues described that Ctss had the

capacity to control the turnover of other enzymes in the endosomes, including Ctsl. [373]

As a control, the expression of other cysteine cathepsins in Ctsb -/- and Ctsl -/- BMDC

was evaluated by labeling the active site with biotinylated probe -DCG04- which was

developed using the E64 scaffold. With this approach, the other cathepsins detected cor-

responded in size to Ctsx, and Ctss. Both were expressed at comparable levels in WT and

cathepsin-deficient BMDC. Furthermore, no significant differences in Ctsl expression were

found between WT and Ctsb -/- BMDC. Similarly, no differences in Ctsb expression were

found between WT and Ctsl -/- BMDC. Therefore, any effects found in this study would

likely not be due to impaired expression or overexpression of other cysteine cathepsins.

Following their uptake by macrophages, Leishmania parasites transform into amastig-

otes that survive and proliferate within their host cell. The process of differentiation of

promastigotes to amastigotes has been characterized in vitro by Tsigankov and colleagues

in four main stages: first, signal perception (0 to 5 h); second, movement cessation and

aggregation (5 to 10 h); third, amastigote morphogenesis (10 to 24 h) and maturation (24

to 120 h). [438] Therefore, the time course analyzed for parasite survival and proliferation

in macrophages would correspond to fully formed amastigotes, undergoing maturation.

During this stage, the parasites not only survived, but the average number of parasites

per infected cell increased, indicating proliferation. The parasite survival and proliferation

was found comparable between cathepsin-deficient BMM and WT BMM, indicating that

the macrophage Ctsb and Ctsl play no role in controlling the parasite survival. When the

production of NO was analyzed, negligible levels of NO were detected in infected BMM

from WT and cathepsin-deficient mice. Furthermore, no differences in NO expression

were found between WT and cathepsin-deficient BMM upon LPS stimulation. Chicken

cystatin -an inhibitor of cysteine cathepsins- has been reported to stimulate NO release
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in IFN-γ-activated peritoneal macrophages. [312] Furthermore, in a mouse model of vis-

ceral leishmaniasis, the combination of chicken cystatin with IFN-γ resulted in complete

elimination of parasite burden, which was attributed to an enhanced production of NO

in cystatin-treated animals. [439] However, the up-regulation of NO associated to cystatin

was not dependent on cathepsin inhibition: the NO-regulatory of cystatin was associated

with a 10-mer sequence not corresponding with the site for interaction with cathepsins,

and this peptide alone was enough to result in enhanced NO production. [315] These results

suggest that the differential cytokine expression detected in Ctsb -/- BMM was not corre-

lated with differences in the parasite load and NO production in comparison to WT BMM.

Macrophages infected in vitro with L. amazonensis have been reported to develop

autophagy, and this phenomenon was also reported in skin lesions of BALB/c mice, [440]

and in a model of L. donovani infection. [441] Furthermore, treatment with an autophagy

inhibitor resulted in this model in the reduction of the infection index, and it was proposed

that autophagy would be a medium for the parasite for nutritive support. [440] Autophagy

involves the proteolytic degradation of cellular material in lysosomes, mediated by the

activity of different proteases. The initial steps rely on the proteolytic processing of Atg8

by the cysteine protease Atg4. [442] Lysosome cysteine proteases proteolytically process

the contents of the autophagosome, disposing the autophagic flux. [442] Besides degrad-

ing autophagosome contents, Ctsl is also known for degrading the membrane proteins

GABARAP-II and LC3-II. [442] It has been reported that Ctsl -/- mouse embryonic fi-

broblasts present no apparent defects in the initiation of autophagy, the formation of

autophagosomes or the fusion of autophagosomes with lysosomes. However, it was at the

last stage, the degradation of autophagolysosomal content that some impairment was

observed. [443] Similarly, Ctsb -/- cells have been reported to present no defects in the

fusion of LC3-containing autophagic vacuoles, but a delay in the autophagic flux was

observed. [442,444] At the time point in which infected BMM were observed by TEM (48 h

p.i.) the presence of some autophagic-like vacuoles was identified, although no significant

differences were detected. It is possible that at later time points, the defects on degrada-

tion of autophagolysosomal content could have been reflected. However, it is at this and

earlier time points that the differences in cytokine expression in BMM were observed.

Inhibitors of Ctsb, including CA074Me and ZRLR, showed no cytotoxic activity

against L. major. However, the inhibitors RV212C and CS128 did show a cytotoxic activ-

ity against promastigotes, in the range of IC50 values of 50 to 60 µM. In comparison, the

cathepsin L-like inhibitor K11777 has been reported about 30% of growth inhibition of L.

major promastigotes at a concentration of 50 µM. These inhibitors were designed against

the cathepsin L-like CPB. Interestingly, neither the Ctsl inhibitor CLIK148 nor the broad

cathepsin inhibitor E64d presented cytotoxic activity against L. major promastigotes.
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Similarly, it was reported that CA074 and CLIK148 had no effect on the proliferation in

vitro of L. major promastigotes. [340,341] While it might be possible that CLIK148 has a

better affinity to mammal Ctsl than to Leishmania Ctsl-like, it is surprising that E64d

did not show comparable IC50 values as theRV212C and CS128 inhibitors. It has been

reported that amastigotes and promastigotes of CPB-deficient Leishmania can be cul-

tured in vitro, although they present reduced virulence. [404] In L. mexicana, the cathepsin

L-like CPB and CPA have been described as crucial for autophagy, which greatly con-

tributes to the organelle remodeling required for the transformation of promastigotes into

amastigotes. [445] In L. major, however, the cell death observed was associated with the

accumulation of debris in autophagy-related vacuoles. [347] The discrepancies in the effects

of the different CPB inhibitors used in this study might be an indication of involvement

with other targets besides CPB.

The lack of Ctsb and Ctsl has not been shown to impair the presentation of antigens.

However, it could be possible that the absence of one cysteine cathepsin causes a “slower”

antigen presentation. A slower antigen processing is reported to be beneficial antigen

presentation. Delamarre and colleagues reported that DC and B lymphocytes express

lower levels of proteases than macrophages, and this was associated with a capacity to

retain antigens for extended periods and favor antigen presentation. [367] Therefore, the

processing of L. major parasites was analyzed by infecting BMDC with eGPF-tg pro-

mastigotes, and following the rates of infected cells over the course of 24 h. 2 h after

infection no differences in parasite uptake were detected in BMDC upon treatment with

different cathepsin inhibitors. As the time progressed, the amount of BMDC in which the

eGFP+ parasites could be detected was progressively reduced, which was interpreted as a

result of parasite destruction and processing, and it was similar in BMDC from BALB/c

and C57BL/6 background. Furthermore, none of the inhibitors tested showed an effect

on the kinetics of parasite processing. Similarly, BMDC from Ctsb -/- and Ctsl -/- mice

presented comparable kinetics of parasite processing as WT BMDC.

The maturation of DC in response to Leishmania infection has been addressed by

numerous studies. There is a great variation in the reported levels of DC maturation in

response to Leishmania found in the literature, which varies depending on the Leishmania

species and strain, the developmental stage of the parasite, the DC studied, if the parasites

were opsonized. [194] DC have been reported to present incomplete maturation after uptake

of L. major promastigotes [199] and of L. amazonensis amastigotes. [446] The impaired

activation of DC observed upon infection with L. amazonensis has been associated with

interference of the JAK/STAT, NF-κB, IRF pathways [447] and ERK. [448] Incomplete DC

maturation, as observed after stimulation with Trypanosoma brucei antigens or TNF-α,
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has been shown to induce activation of genes correlated with the induction of Th2 polar-

ization. [431] Upon recognition of PAMP or danger signals, immature DC become activated

and mature, in a process characterized by the up-regulation of the surface expression of

MHC class II molecules for the presentation of antigens, of costimulatory molecules, and

of cytokines. These in turn are used as signals for instructing the polarization of Th0

cells in the lymph nodes.

Studies using the Ctsb inhibitor CA074 and the Ctsl inhibitor CLIK148 reported

drastic effects on the Th response elicited, and it was hypothesized that the observed

change in Th polarization could be attributed to different patterns of antigen processing.

The process of antigen presentation requires multiple serial steps. On one hand, the

processing of proteins into antigenic peptides that fit into the peptide-binding cleft of

MHC class-II molecules. On the other hand, the processing and eventual removal of the

invariant chain (Ii) from MHC class-II molecules in order to load the processed antigen.

A more recent model for the presentation of some antigens in MHC class II molecules

has been described as “bind first trim later”, in which large fragments of antigen bind to

adjacent MHC class II molecules in the endosome membrane plane, and once captured,

are trimmed by further proteolytic processing. [449]

The individual contributions of cysteine cathepsins to antigen presentation have

been extensively investigated. Up to date, the only cysteine cathepsins with a confirmed

essential role for this process are Ctss for the degradation of the Ii in APC [240,386,387] and

of Ctsl for the processing of antigens specific of cTECs. [450] In contrast, other cathepsins

including Ctsb, Ctsd, and Ctsl contribute to processing the bulk of proteins contained

in endolysosomal compartments. Because of their broad substrate specificity, [349] the

combined proteolytic activity of the cathepsins present could compensate the absence

of a single one. In general, the antigen processing requirements for the MHC class II

presentation pathway appear to be minimal and quite redundant. [451] Indeed while Ctsb

has been described as the most abundant cysteine cathepsin in the lysosome, [359,452] Ctsb

has been reported to be dispensable for the maturation of MHC class II molecules. [359]

In the studies using the inhibitors CA074 and CLIK148, the authors incubated Leish-

mania lysate together with a lysosomal crude extract and observed different patterns of

processing, reflected as the generation of peptides with diverse molecular weights that

varied depending on the inhibitor used. [340–342] Studies evaluating the presentation of

antigens to T-cell hybridomas reported that splenocytic APC from Ctsb -/- mice were

more efficient to present certain antigens, [359] and similar results were found with the

use of inhibitors in murine splenocytes [453] and primary human DC. [391] The latter is a

report by Reich and colleagues, in which it was observed that the azapeptide inhibitor of
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Ctsb, ZRLR, enhanced the presentation of TTCF.

In the present study, Ctsb -/- BMDC expressed higher levels of MHC class II molecules

than WT and Ctsl -/- BMDC in response to L. major promastigotes. Similar results were

found with the Ctsb inhibitor CA074Me. However, no effect was detected in the expres-

sion of the costimulatory molecules CD40, CD80 and CD86. As previously discussed, the

kinetics of parasite processing were similar between WT and cathepsin-deficient BMDC,

and between BMDC treated with cathepsin inhibitors and DMSO controls. These ob-

servations suggest that the different levels of MHC class II molecules expressed are not

explained by faster or slower parasite processing. Deussing and colleagues suggested that

some antigenic determinants may present different degrees of susceptibility to proteolytic

degradation by cathepsins before being able to bind to MHC class II molecules. [359] It is

possible therefore, that in the absence of Ctsb antigens may have a prolonged survival to

proteolytic destruction. Higher levels of antigen presented have been associated with the

induction of Th1 responses. [173] While in this study the immunogenicity of the antigens

generated by Ctsb -/- BMDC, data from Delamarre and colleagues suggest that protein

antigens resistant to proteolytic processing were better immunogens compared with anti-

gens more susceptible to proteolytic attack. [454]

It should be noted that no differences in the expression of MHC class II molecules were

found when stimulating WT and cathepsin-deficient BMDC with LmAg. This observation

might be related to the differences in uptake mechanism and subsequent processing be-

tween intact promastigotes and lysates. [453,455] On the other hand, while Ctsb -/- BMDC

tended to express higher levels of MHC class II molecules in response to heat-killed

parasites than WT BMDC, the difference was not statistically significant, which could

reflect the interaction of the living parasite with the host cell. For example, L. mexicana

parasites have the capacity to internalize and cleave MHC class II molecules in the in-

fected macrophage, in a process in which CPB is believed to play an important role. [416]

Furthermore, for the preparation of LmAg, the parasites were killed by repeated cycles

of freeze and thaw, whereas heat-killed parasites and both procedures could result in

different forms of cell death (i.e. necrosis and apoptosis). Different modes of cell death are

associated with more or less immunogenicity of tumor lysates for DC vaccination, [456] and

the detection of posphatidylserine in the membrane of apoptotic parasites is associated

with a silent invasion of the remnant viable parasites. [457] Indeed, BMDC stimulated

with heat-killed parasites expressed higher levels of MHC class II molecules than BMDC

stimulated with living L. major promastigotes and LmAg.

DC have different capacity to express IL-12 in response to Leishmania, depending on

the DC subset and life stage of the parasite (i.e., whether the infection was carried out
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using amastigotes or promastigotes). [458] The semi-maturation profile observed in BMDC

in response to L. major promastigotes is accompanied by poor cytokine expression. [412]

In agreement with these observations, in this study WT BMDC were unable to produce

IL-12 in response to promastigotes, regardless of their genetic background (BALB/c or

C57BL/6). In contrast, Ctsb -/- BMDC were able to express higher levels of IL-12 (both

p70 and p40 forms) than WT and Ctsl -/- BMDC. No significant differences were detected

in the expression of other pro-inflammatory cytokines, including IL-6 and TNF-α, which

could indicate that this effect was not a generalized up-regulation of cytokine expression,

but rather a more specific mechanism. IL-10 was also up-regulated in Ctsb -/- BMDC.

IL-10 is an anti-inflammatory cytokine expressed by BMDC also in response to stimuli

inducing Th1 responses, such as LPS. In terms of kinetics, the pro-inflammatory cytokines

IL-12 and IL-6 are expressed first, and hours later, the expression of IL-10 starts. [172] At

the time point in which the supernatants were collected (48 h), it is therefore expected

to find both IL-12 and IL-10.

BMDC and BMM have been reported to be modulated differently by Leishmania

parasites. [458] However, Leishmania-infected macrophages do not secrete IL-12, [190] and

produce poor expression of cytokines in general, [145,149] similarly as observed with BMDC

in response to promastigotes. In order to address if the observed up-regulation of IL-12

was specific for BMDC, the cytokine expression of BMM from WT, Ctsb -/- and Ctsl -/-

mice in response to promastigotes was analyzed. Similar as observed in Ctsb -/- BMDC,

Ctsb -/- BMM were able to produce IL-12, with similar level of IL-12p70 as Ctsb -/- BMDC,

although the up-regulation of IL-12p40 was not as high. A similar observation has been

reported by Pompei and colleagues in response to Mycobacterium tuberculosis, and the

authors suggested that this effect was dependent upon the level of engagement of differ-

ent TLR, particularly TLR9 in BMDC. [459] It has been suggested that TLR2 -which is

engaged by LPG-, TLR3, 4, 7 and 9 are involved in the response to Leishmania infection.

However, the engagement of these TLR by promastigotes has been described as relatively

weak, and it is associated to the weak activation of DC. [194]

Therefore, the response of Ctsb -/- BMDC to stimulation of specific TLR was ana-

lyzed. LPS is recognized by TLR4 and it has been recently reported that the inhibition of

IL-12 production in macrophages infected by L. mexicana occurs in a TLR4-dependent

manner. [460] In response to LPS, Ctsb -/- BMDC present comparable maturation as WT

and Ctsl -/- BMDC. However, they did produce higher levels of IL-12. When the ex-

pression of other cytokines was analyzed, it was found that Ctsb -/- BMDC expressed

significantly lower levels of TNF-α. Ha and colleagues have also reported that BMM

lacking Ctsb secrete significantly less TNF-α in response to LPS, due to an accumulation

of TNF-α-containing vesicles that could not reach the plasma membrane. [461] Next, the
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response of Ctsb -/- BMDC to stimulation with CpG was analyzed, and it was found

that they produced considerably lower levels of IL-12 than WT and Ctsl -/- BMDC. CpG

is recognized by TLR9, which is known to require processing by endosomal cathepsins

to initiate signaling. [355,462] Therefore, these results agree with a previous report from

Matsumoto and colleagues, [462] and suggest that the up-regulation of IL-12 expression

observed in Ctsb -/- BMDC and BMM was independent from TLR9 signaling.

These results using cathepsin-deficient BMDC can be contrasted to BMDC treated

with different cathepsin inhibitors. A striking difference found, was that the BMDC

treated with the Ctsb inhibitor CA074Me did not expressed IL-12 as observed in Ctsb -/-

BMDC. Furthermore, except from CA074 -which has poor cell permeability- all of the

tested inhibitors presented a negative, dose-dependent effect on IL-12 expression in re-

sponse to LPS. In particular, CA074Me appeared to be the most detrimental inhibitor

for IL-12 expression. A previous report from Schotte and colleagues showed that the

Ctsb inhibitor z-FA.FMK, a fluoromethylketone [463] down-regulated cytokine expression

in macrophages in response to LPS. However, a common problem of the use of cathepsin

inhibitors is the potential of unspecific targeting other cathepsins. As described in Section

2.5.2.2, the methyl ester modification of CA074, CA074Me, allows the inhibitor to be cell

permeable, but if it is not completely processed intracellularly by esterases to CA074, it

is reported to inhibit other cysteine proteases besides Ctsb. [323]

Therefore the inhibitors were tested for activity against Ctss. Indeed, the inhibitors

CA074Me, CS128, and RV212C showed a dose-dependent inhibition of Ctss, in the con-

centration range used in the present study. Ctss has been reported to have an immuno-

suppressive activity, and inhibitors against this cathepsin have been studied in models of

autoimmune diseases. [464] Thus, the azapeptide Ctsb inhibitor ZRLR was also incorpo-

rated to the present study, as it has been reported to be highly selective towards Ctsb. [335]

Pre-treatment of BMDC with ZRLR resulted in IL-12 expression levels comparable to

those observed with Ctsb -/- BMDC. The Ctsb -/- and Ctsl -/- mice used in this study

were in a C57BL/6 background. However, the up-regulation of IL-12 expression by ZRLR

was observed in BMDC from BALB/c and C57BL/6, indicating that this effect was

mediated by Ctsb deficiency -or lack of activity- rather than by the BALB/c or C57BL/6

background of the mice. Furthermore, Ctsb -/- BMDC showed no significant differences in

their expression of IL-12 upon treatment with ZRLR, indicating that the up-regulation

of IL-12 observed with this inhibitor was dependent only on abrogation of Ctsb activity.

In contrast to Ctsb -/- BMDC and BMM, their Cstl -/- counterparts did not present

significant differences in cytokine production in comparison with WT cells in response to

L. major promastigotes or to CpG. When LPS was used as a stimulus, they produced
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higher levels of IL-10 and TNF-α, but no significant differences were found in IL-12 ex-

pression. When the effects of CLIK148 were analyzed in BMDC, no significant effects were

detected in the expression of MHC class II molecules, costimulatory molecules, and IL-12

expression in response to L. major promastigotes. In response to LPS, CLIK148 resulted

in a modest down-regulation of MHC class II molecules, and a slight down-regulation of

IL-12 expression, which was not as marked as observed with the other inhibitors tested.

Therefore, these results alone would not explain the observations made by Onishi and

colleagues, who observed that the Ctsl inhibitor CLIK148 caused a Th2-like immune

response to L. major in otherwise resistant mice. [341] However, CLIK148 is also able to

inhibit other cathepsins, including Ctsc, Ctsk, and Ctss, [323] and the authors of this study

did not analyze if the dose administered in vivo of CLIK148 was enough to inhibit them.

Altogether, in response to L. major promastigotes, Ctsb -/- BMDC present higher

levels of two signals for the polarization of Th0 towards Th1: (1) the expression of cos-

timulatory molecules, and (2) the expression of IL-12. The latter is also up-regulated in

response to LPS. Higher secretion of IL-12 would be expected to result in higher levels

of Th1 polarized cells. Therefore, the capacity of Ctsb -/- BMDC to polarize Th0 cells

towards Th1 was tested in vitro using CD4+CD25- T cells from OT-II mice, using full

OVA and OVA(327−339) peptide as antigens and LPS as a maturation stimulus. With

both antigens, co-culture of Ctsb -/- BMDC resulted in higher levels of polarized Th1

cells than WT BMDC. Similarly, BMDC treated with ZRLR were able to induce higher

levels of Th1 polarization than DMSO controls. As expected from their effects on IL-12

production in BMDC, CA074Me and RV212C resulted in lower levels of Th1 polarized

cells. It should be noted that in contrast to other co-culture protocols for Th1 polarization,

no exogenous cytokines were added to the culture. Although this approach results in

lower levels of Th1 polarized cells it allows to directly appreciating the effects of the

cytokines directly produced by the stimulated BMDC. The results obtained indicate that

the observed regulation of IL-12 expression in BMDC from Ctsb -/- mice, or upon Ctsb

inhibition with ZRLR, can have a direct impact in the polarization of Th cells towards

Th1. Of note, although the inhibitor CS128 did not showed a clear negative effect in Th1

polarization in vitro, during the course of this study it was independently tested in vivo,

and it was found that it did not protected BALB/c mice from Leishmania infection. It

was found that CS128 also targeted Ctss, and it is thus possible that the negative effect

observed in vivo was mediated by Ctss inhibition.

In order to determine if the observed up-regulation in Ctsb -/- BMM and BMDC was

taking place at the transcriptional level, the genetic expression of the two IL-12 subunits

was analyzed. Indeed, at the time points analyzed, the genes composing the two subunits

of IL-12p70 were up-regulated in response to LPS and L. major. If lack of Ctsb activity
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results in an up-regulation of IL-12 expression, how is it that Ctsb influences cytokine

production in BMDC and BMM?

From the model of cutaneous leishmaniasis, it has been reported that L. major para-

sites induce tolerance in macrophages-characterized by poor or absent cytokine production-

by a process involving the MAPK and NF-κB pathways of the host. [465,466] Although

these pathways are initially activated by contact with the parasite, but once the infection

is firmly established, they become silenced and render the cell unresponsive even to fur-

ther stimulation with LPS. [465] This silencing has been attributed to different virulence

factors from Leishmania, including surface phosphoglycans, [148,467] GP63, [468] and cys-

teine proteases. [150] Despite these strategies for silencing, somehow the infected BMM

and BMDC were able to produce IL-12. Therefore a next point to address was how Ctsb

may influence cytokine production, and the approach taken was to analyze the activation

status of different signaling pathways that are reported to be silenced by Leishmania.

The first signaling pathway chosen for analysis was NF-κB, as it has been described that

upon translocation to the nucleus, the p65 subunit interacts with the upstream promoter

region of the Il12p40 gene. [469]

Upon analyzing the nuclear translocation of the p65 subunit of NF-κB, it was not

possible to conclude that IL-12 expression was up-regulated directly by a higher activation

of this pathway. On the other hand, IL-6 expression was not found to be up-regulated in

Ctsb -/- BMDC and BMM, and IL-6 transcription has been shown to be also dependent

on NF-κB signaling pathway. Therefore, it is likely that the molecular mechanism behind

the involvement of Ctsb in the expression of IL-12 would not be shared by IL-6. These

results contrast with the observations of Lawrence and colleagues, who found that the

Ctsb inhibitor z-FAM-FMK blocked NF-κB activation, inhibiting T cell blast formation,

and preventing the cells from entering and leaving the cell cycle. [435] Therefore, this

inhibitor showed an immunosuppressive activity.

Thus, the activation of two other signaling pathways was analyzed, p38 MAPK and

ERK 1/2. The p38 MAPK appeared phosphorylated transiently during the first time

point of LPS stimulation, but no activation was detected with L. major promastigotes.

In contrast, ERK1/2 remained phosphorylated upon stimulation, and the levels of ac-

tivation were more strongly activated when LPS was used as a stimulus than with L.

major promastigotes. In both signaling pathways, no significant differences in activation

were detected, and therefore could not be accounted for the up-regulation of Ctsb -/-

observed. Therefore, the molecular mechanism behind the regulation of IL-12 expression

by Ctsb remains still to be elucidated. Some directions for further investigation would be

to analyze the activation of JAK/STAT, mTOR and PI3K signaling pathways, [470] and
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the intracellular location of Ctsb during L. major infection, as it might be possible that

Ctsb participates in the proteolytic processing of signaling intermediates in the cytoplasm,

or of transcription factors in the nuclear space, as described in thyroid carcinoma cells. [280]

Altogether, while previous studies hypothesized that the absence of Ctsb or Ctsl activ-

ities during L. major infection would lead to different Th polarization due to alterations

in antigen presentation, [340,341,391] the results found in this study indicate that Ctsb -/-

BMDC up-regulate two of the three types of signals for instructing T cell polarization:

the expression of higher levels MHC class II molecules for antigen presentation than

their WT counterparts, and expression of IL-12. Thus, these cells exhibit a “more mature”

or “pro-Th1”-like profile. Moreover, a similar trend was observed upon LPS stimulation,

and co-culture of purified naïve CD4+ T cells with Ctsb -/- BMDC resulted in a higher

frequency of polarized T cells than using WT BMDC.

The results from this study were the first to document a Ctsb-mediated regulation of

IL-12 expression, and the mechanisms responsible for this effect remain yet to be answered.

Furthermore, although the results obtained strongly indicate a profile more favorable for

a Th1 response to L. major infection, a definitive confirmation would still require in vivo

experiments. At the time of this study, only Ctsb -/- and Ctsl -/- mice on a C57BL/6

background were available. While assays with the Ctsb inhibitor ZRLR confirmed the

observations with Ctsb -/- BMDC in BMDC derived from C57BL/6 and BALB/c mice, it

would be necessary to backcross the Ctsb -/- C57BL/6 mice to the Leishmania-susceptible

BALB/c background in order to evaluate if they are protected against infection with

the parasite. Furthermore, transfer experiments of Ctsb -/- BMDC would be necessary in

order to determine if Ctsb deficiency in these cells is enough to result in Th1 polarization

during infection.

The concept of “protease signaling” described by Turk and colleagues has gained in-

creasing attention in different research fields, [350] especially in the context of therapeutic

applications. However, the interplay between proteolytic networks and other signaling

pathways is still to be addressed in different disease models. Based on the results presented

in this study, a novel role for Ctsb during L. major infection is proposed: in addition to

its involvement in antigen presentation, it is also a regulator of cytokine expression. Thus,

pharmacological inhibition of Ctsb might have the potential to improve the Th1-mediated

clearance of L. major.
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A.1 Buffers and solutions

Table A.1. Buffers.

Buffer name Compound Concentration Supplier Location

10X PBS Sodium Chloride 1.37 M Sigma-Aldrich St. Louis, MO, USA

(pH=7.4) Potassium

Chloride

26.83 mM Roth Karlsruhe, Germany

di-Sodium

hydrogen

phosphate

101.44 mM Roth

Potassium

dihydrogen

phosphate

17.64 mM AppliChem Darmstadt, Germany

10X TBS-T Sodium Chloride 1.37 M Sigma-Aldrich

(pH=7.6) Tris 200 mM Sigma-Aldrich

Tween-20 1% AppliChem

1X PBS-T 10X PBS 10% See 10X PBS

Tween-20 0.05% AppliChem

Sodium acetate Sodium acetate 200 mM Sigma-Aldrich

buffer EDTA 1 mM Roth

(pH=5.5) Brij35 0.05% Thermo Scientific Rockfort, IL, USA

Citrate reaction Citric acid 50 mM Sigma-Aldrich St. Louis, MO, USA

buffer

(pH=5.5)

DTT * 50 mM Sigma-Aldrich Oakville, Canada

Fixation buffer PFA 4% AppliChem

4% PFA 10X PBS 10% See 10X PBS

FACS Buffer Sodium Azide 0.1% Sigma-Aldrich St. Louis, MO, USA

FCS 2.5% PAA Laboratories Pasching, Austria

10X PBS 10% See 10X PBS

Permeabilization FCS 1% PAA Laboratories

buffer Sodium Azide 0.10% Sigma-Aldrich

(pH=7.6) Saponin 0.10% AppliChem

10X PBS 10% See 10X PBS

Coating buffer

(pH= 8.3)

Sodium hydrogen

carbonate

0.1 M Roth

Continued on next page
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Table A.1 – continued from previous page

Buffer name Compound Concentration Supplier Location

Diethanolamin

buffer

(pH=9.8)

Magnesium

chloride

hexahydrate

0.393 mM Roth

Diethanolamin 9.70% Merck Darmstadt, Germany

Triton X-100 Tris 20 mM Sigma-Aldrich

lysis buffer Sodium Chloride 150 mM Sigma-Aldrich

(pH=7.5) Triton X-100 1%

Sodium fluoride* 10 mM AppliChem

Sodium ortho-

vanadate*

1 mM AppliChem

PMSF* 1 mM AppliChem

Aprotinin* 5 µg/ml Sigma-Aldrich Taufkirchen, Germany

Leupeptin* 5 µg/ml MP Biomedical Inc. Illkirch, France

5X

PAGE-Sample

Tris.HCl

(pH=6.8)

250 mM Applichem

Buffer Glycerol 50% Roth

SDS 5% Roth

Bromphenolblue 0.05% Sigma-Aldrich

DTT 250 mM Sigma-Aldrich

4X Laemmli Tris 0.25 mM

Buffer SDS 8%

(pH=6.8) Glycerol 40%

2-

Mercaptoethanol

20 AppliChem%

Bromphenol Blue 0.1%

10x SDS Running Tris 25 mM Sigma-Aldrich

Buffer I Glycin 190 mM Sigma-Aldrich

SDS 1% Roth

10X SDS Tris 0.25 M

Running Buffer Glycin 1.92 M

II SDS 35 mM

Transfer Buffer I Tris 25 mM Sigma-Aldrich

Glycin 190 mM

Methanol 30% Honeywell Seelze, Germany

3-Buffer Transfer

System

Anode Buffer I Tris 300 mM

Methanol 20%

Anode Buffer II Tris 25 mM

Methanol 20%

Cathode Buffer 6-Aminocaproic

acid

25 mM AppliChem

Methanol 20%

Continued on next page
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Table A.1 – continued from previous page

Buffer name Compound Concentration Supplier Location

Cell fractionation

buffer A

HEPES

Potassium

chloride

10 mM

10 mM

Magnesium

chloride

hexahydrate

1.5 mM

D-sucrose 0.34 M Sigma-Aldrich

Glycerin 10% Roth

DTT 1 mM

Cell fractionation EDTA 3 mM

buffer B EGTA 0.2 mM Roth

DTT 1 mM

Reagents marked with (*) were freshly added before use

A.2 Effect of inhibitors in BMDC viability
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Figure A.1. Effect of inhibitors in BMDC viability. BMDC form BALB/c mice were incubated for 48 h
with different concentrations of cathepsin inhibitors, and the percentage of viable cells was deter-
mined by using Trypan Blue staining.
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A.3 Titration of cathepsin inhibitors
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Figure A.2. Titration of cathepsin inhibitors. BMDC form BALB/c mice were incubated for 1 h with dif-
ferent concentrations of cathepsin inhibitors, and lysates were prepared from these cells. Incubation
of the lysates with CA074 and E64 was used to differentiate between Ctsb and Ctsl activity. The
remaining proteolytic activity of the lysates against z-Phe-Arg-AMC was then measured. Titration
of (A) CLIK148, (B) RV212C, and (C) CS128. (D) BMDC were incubated for 30 min, 1 h, 2 h, and
4 h with 10 µM of ZRLR or CA074Me, and lysates were prepared. The remaining Ctsb activity in
these lysates was measured by using the substrate z-Arg-Arg-AMC.
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A.4 Cathepsin S inhibition
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Figure A.3. Unspecific cathepsin S inhibition. The unspecific inhibitory activity of CA074Me, CS128, and
RV212C was measured against recombinant Ctss, and the remaining proteolytic activity is here
reported.
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