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3. Prüfer: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Introduction

With increasing knowledge about the structure and dynamics of molecules, the

goal to not only observe, but to actively control chemical processes has been

approached in the last decades. The development of pulse shapers [1] makes it

possible to phase- and amplitude-modulate electromagnetic fields to be employed

to influence atoms, molecules and solid state systems in a desired way. Theoreti-

cal, as well as experimental efforts along these directions are summarized in two

recent monographs [2, 3] and numerous review articles [4–8].

Several activities originated from research groups in Würzburg (supported

within the Sonderforschungsbereich 347) where organometallics like Fe(CO)5 [9],

and also organic polymers [10,11] were selectively dissociated or excited, respec-

tively. A generic control scheme is visualized in fig. 1.

Figure 1: General scheme for a controlled dissociation of a molecule A – B – C. After an
excitation process one bond, either the A – B or the B – C bond, is broken selectively.
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2 INTRODUCTION

For a molecule A – B – C with two different bonds, the objective of control is to

selectively excite or break one of these bonds. Various control theories have been

developed to achieve this “selective bond-breaking”. The intuitive Tannor–Rice–

Kosloff scheme employs the explicit time-dependence of wave packets prepared

by ultrashort laser pulses [12, 13]. Starting from an initial state ψ0, a first pulse

excites the molecule. The branching ratio between competing reaction channels

of the system can be controlled by timing a second laser pulse correctly. Figure

2 illustrates the excitation scheme. After the excitation, dynamical processes

take place in the excited state (ψ∗(t)). Depending on the system’s properties, a

second laser excitation taking place at different times T1, T2 is able to produce

alternatively products of type (1) or (2).

Figure 2: Tannor – Rice – Kosloff scheme: After a first excitation, a second laser pulse
fired at different times populates one or the other reaction channel.

Within the STIRAP (acronym for “stimulated Raman adiabtic passage”)

method a population transfer is performed employing time-delayed pulses in a

counter-intuitive sequence [14]. Thereby, the population in the excited state |2〉

in the so-called Λ- configuration (see fig. 3) is negligible for all times. In a physi-

cal picture, this strong-field phenomenon is explained with a strong perturbation

induced by the first pulse, the Stokes pulse, inducing the formation of new “field-
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Figure 3: Population transfer for a three-level system in the so-called Λ-configuration.
Two pulses in a counter-intuitive pulse sequence, pump- (EP (t)) and Stokes-pulse ES(t)
couple the three levels, as indicated. Within the STIRAP-process the excited state
|2〉 which may be not resonantly accessible because of an energy detuning ∆ is not
populated remarkably at all times.

dressed” states. The second pulse, the pump-pulse, then transfers population

along one of these states, avoiding the excited state |2〉.

Brumer and Shapiro developed a method to control reaction yields via in-

terference effects of phase-varied laser pulses [15, 16]. Competing multiphoton

pathways to access a final state are marked with a phase difference which then

leads to an interference – very much like in Young’s double-slit experiment.

Variationally derived control fields relying on an overlap of a system’s wave-

function with a target state being maximized, are iteratively determined within

optimal control theory [17, 18]. Therefore, the system’s initial state is forward

propagated while, with the backward propagated target state the time-dependent

overlap of the states is used to construct the electric field.

In a combination of pulse-shaping techniques and feedback from a (mea-

sured or calculated) signal, control fields can be obtained adapting genetic algo-

rithms [19]. Starting from a random distribution, the driving field is determined
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by random modification of parameters in terms of the biological evolution in a

parallel search.

In most of the above described techniques, the derived control fields are diffi-

cult to interpret in terms of the system’s properties. In order to gain insight into

the entanglement of the applied perturbation and the molecular dynamics, an

algorithm is developed within this work which determines the control fields from

the instantaneous response of the system. This extents early work of Tannor and

others [20–23].

The principle can be visualized in regarding a classical particle moving along

a trajectory in an anharmonic potential. An increase of the particle’s energy as

a function of time is achieved if an external field is constructed propotional to

the instantaneous momentum of the particle. In contrary, the particle’s energy

decreases in choosing the external field to be phase shifted to the momentum.

Figure 4 illustrates the case where a heating of a particle moving in a Morse

potential occurs. The particle’s energy increases in a Morse potential (panel (a))

and the trajectory (panel (b)), as well as the field, driving the system in resonance

is shown (panel (c)).

The such established “principle of instantaneous control” is applied to vari-

ous molecular processes in this work [24–26]. Therefore, different objectives are

defined as the energy transfer in double well potentials, the excitation and disso-

ciation of selective vibrational modes, and also the population transfer between

molecular electronic states.

This work is organized as follows: The first three chapters summarize the

employed theoretical (chapter 1) and numerical methods (chapter 2), as well as

several control theories (chapter 3).
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Figure 4: Panel (a): A classical particle’s trajectory in a Morse potential; panel (b)
displays the trajectory depending on time, driven by a control field in panel (c). The
dashed lines indicate times where the trajectory is at a classical turning point, and the
electric field is zero.

The application of the instantaneous response algorithm to energy transfer

problems is presented in chapter 4. Relating the control fields to the vibrational

dynamics, it is shown that taylored IR-fields are able to effectively heat or cool

molecules.

Selective mode excitation leading to dissociation is studied for the HOD-

molecule in chapter 5. Here, control fields are constructed to break one or the

other bond within the electronic ground state.

The population transfer via non-resonant excitation into excited electronic

states is investigated in chapter 6. Here, the control fields derived from optimal

control theory, genetic algorithms and the instantaneous response are compared

for a model system representing methyl iodide.

Chapter 7 investigates selective population transfer in the sodium dimer. The

structure of the control fields is related to the vibrational and electronic dynamics

of the molecule. Orientational as well as field–strength effects are examined and
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time–resolved pump/probe spectroscopy is shown to yield information about the

efficiency of control processes [27].

In cooperation with experimental investigations on molecular iodine, a STI-

RAP-like technique is transferred into the femtosecond–regime. It is shown that

field dressed states and an adiabatic description are proper tools in characterizing

population transfer into highly excited vibrational eigenstates without populating

an excited electronic state remarkably. The motivation is to initiate a ground

state dynamics on a time scale much faster than those of decoherence processes.



Chapter 1

Theory

1.1 Dynamical Equations

The dynamical properties of a system can be described within two different for-

malisms, the latter being classical mechanics and quantum mechanics. For macro-

scopic systems the methods of classical mechanics are appropiate, while these

approaches are likely to fail for atoms and molecules because of their quantum

mechanical attributes. In this section the classical and quantum dynamical equa-

tions of motion and their solutions will be reviewed. The equations are generally

given for vectors if not denoted differently.

1.1.1 Classical Dynamics

Molecular dynamics (MD) methods employ the equations of classical mechanics

to determine the properties of a system. Considering a particle with mass m and

generalized coordinate x, the Lagrangian function L, defined as the difference

between the kinetic T and the potential energy V reads [28, 29]

L =
m

2
ẋ2 − V (x), (1.1)

7
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where ẋ is the time derivative of x. The resulting (Lagrangian) equation of motion

then is

d

dt

(

∂L
∂ẋ

)

− ∂L
∂x

= 0. (1.2)

To ease the transition to quantum mechanics, Hamiltons formulation is adopted

in defining the momenta p

p =
∂L
∂ẋ

. (1.3)

The Hamilton function H, the sum of kinetic and potential energy (H = T +V ),

is related to L via a Legendre transformation:

H = H(x, ẋ, p) = pẋ− L(x, ẋ, t). (1.4)

The canonical or Hamilton’s equations of motion read:

∂H
∂p

= ẋ;
∂H
∂x

= −ṗ. (1.5)

The Hamilton function describes the system’s energy. For Ḣ = 0, energy con-

servation law applies. In the case of a time-dependent external potential, e.g. a

classical laser field acting on the system, the equations of motion are, in general,

solved numerically (see chapter 2). For an ensemble of particles a trajectory en-

semble {xi} can be propagated and statistically weighted with a probability Pi

to construct a classical density ρ(t). Depicting the classical density, each xi is

smoothed by a (Gaussian) distribution around this particular point

ρ(x, t) =
∑

i

e−β(x−xi)
2

Pi. (1.6)

The classical density’s motion is expressed by the classical Liouville equation

dρ

dt
=

∂ρ

∂t
+

[

∂ρ

∂xi
ẋi +

∂ρ

∂pi
ṗi

]
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=
∂ρ

∂t
+

[

∂ρ

∂xi

∂H
∂pi

− ∂ρ

∂pi

∂H
∂xi

]

= 0. (1.7)

As the density ρ does not change along a trajectory, the total time derivative of

the density vanishes. Therefore, the equation of motion can be re-written using

poisson brackets

∂

∂t
ρ = −{ρ,H} (1.8)

For a density describable by a δ-function, eq. (1.8) transforms to Newton’s equa-

tions of motion [30].

1.1.2 Quantum Dynamics

The Hamiltonian formulation of classical dynamics can be transferred to quan-

tum dynamics by some modifications [31]. A similar picture as the classical

density can be regarded for a quantum mechanical description if assigning the

classical variables to corresponding quantum mechanical operators (principle of

correspondence). Operators representing physical observables have to be Her-

mitian. The vectors xi(t) are assigned to the complex linear vectors |ψ(x, t)i〉

describing a state in Hilbert space (Born’s proposal) [32]. The corresponding

equation of motion for the state vectors describing a quantum mechanical system

is the time-dependent Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = (T + V ) |ψ(t)〉 = H |ψ(t)〉, (1.9)

where H is the quantum mechanical Hamiltonian. Its precise form (within the

Born-Oppenheimer approximation) will be described in the next subsection, since

for molecules in a quantum mechanical picture, as treated here, it is in general

difficult to examine the dynamics of nuclei and electrons simultaneously.
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In order to describe a quantity in analogy to the classical picture, a density

operator ρ is defined

ρ(t) ≡ |ψ(t)〉〈ψ(t)|. (1.10)

Therefore, the quantum mechanical analogon of the classical density, the density

matrix, can be written as

ρ(x, t) =
∑

i

Pi 〈x|ψi(t)〉 〈ψi(t)|x〉, (1.11)

with the probability distribution Pi. Integration over a volume V yields

∫

V

∂

∂t
ρ dx =

d

dt

∫

V
ρ dx = 0, (1.12)

where the divergence theorem was used. Eq. (1.12) describes the global con-

servation property, meaning that the integral of |ψ|2 is independent of time - or

rescaling for V → R3 (Hilbert space)

∫

R3
|ψ|2dx = 1. (1.13)

The corresponding equation of motion (Liouville – Von Neumann equation) for

the density matrix is

∂

∂t
ρ = − i

h̄
[H, ρ] . (1.14)

Thereby, i/h̄ times the commutator is used in analogy to the poisson brackets of

classical mechanics. In the case of a pure state (Pi = δi1 in eq. (1.11), |ψ1〉) the

system is uniquely described (within non-relativistic quantum mechanics) by the

time-dependent Schrödinger equation. The solutions of eq. (1.9) can be repre-

sented in the complete and orthonormal basis set consisting of eigenvectors |φn〉
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of H having energies En defined by the time-independent Schrödinger equation

H|φn〉 = En|φn〉. (1.15)

Thus one obtains:

|ψ(t)〉 =
∑

n

|φn〉〈φn|ψ(t)〉. (1.16)

The time evolution can be expressed by a time evolution operator U(t, t0)

U(t, t0) =
∑

n

|φn〉e−i/h̄En(t−t0)〈φn|. (1.17)

Expanding an arbitrary function f(H) into a Taylor series one obtains

f(H) =
∞
∑

i=0

f (i)(0)

i!
Hi

f(H)|φj〉 =
∞
∑

i=0

f i(0)

i!
Hi

j|φj〉 ≡ f(Ej)|φj〉

⇒ U(t, t0) = e−i/h̄H(t−t0). (1.18)

The above specified propagator is only valid for time-independent Hamiltoni-

ans. Including a classical external radiation field the Hamiltonian becomes time-

dependent and the propagator is of a different form. Employing a classical ap-

proximation (see next section) for the field-matter coupling term W (t) yields

H(t) = H0 +W (t). (1.19)

A differential equation for the propagator can be derived when inserting the time

evolution |ψ(t)〉 = U(t, t0) |ψ(t0)〉 into the time-dependent Schrödinger equation

∂

∂t
U(t, t0) |ψ(t0)〉 = − i

h̄
H(t)U(t, t0) |ψ(t0)〉. (1.20)
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As this equation is valid for any |ψ(t0)〉 the propagator must also satisfy

∂

∂t
U(t, t0) = − i

h̄
H(t)U(t, t0). (1.21)

Integrating the differential equation from time t0 to t together with the initial

condition U(t0, t0) = 1 results in the integral equation

U(t, t0) = 1− i

h̄

∫ t

t0
dτ H(τ)U(τ, t0) (1.22)

which can be solved iteratively leading to the Dyson-series

U(t, t0) = 1 +
∞
∑

n=1

(

− i
h̄

)n ∫ t

t0
dτn

∫ τn

t0
dτn−1 · · ·

∫ τ2

t0
dτ1H(τn)H(τn−1) · · ·H(τ1).

(1.23)

Here the time variables are fully ordered t ≥ τn ≥ · · · ≥ τ1 ≥ t0 (for commutating

Hamiltonians the time-ordering would be of no relevance) and the positive time-

ordered exponential can equivalently be denoted as

U(t, t0) = exp+

[

− i
h̄

∫ t

t0
dτ H(τ)

]

. (1.24)

1.1.3 Born-Oppenheimer Approximation

The Hamiltonian describing a molecular system (neglecting spin-orbit interac-

tions) is given as [33]

H = Te(x) + Tn(R) + V (x,R), (1.25)

where x,R denote the electronic and nuclear coordinates, respectively. The ki-

netic energy operators of electrons Te(x) and nuclei Tn(R), and the potential

energy operator V (x,R) for a Coulomb system without external forces can be
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identified as follows

Te(x) = − h̄2

2me

∑

i

∇2
i

Tn(R) = −
∑

α

h̄2

2Mα

∇2
α (1.26)

V (x,R) =
∑

i

∑

j>i

e2

4πε0 |xi − xj|
+
∑

α

∑

β>α

e2ZαZβ

4πε0 |Rα − Rβ|

−
∑

i

∑

α

e2Zα

4πε0 |xi − Rα|
.

The equations above contain me,Mα, the electron’s and nuclei’ masses, the gra-

dients ∇i = ∂/∂x, ∇α = ∂/∂R, and the indices (i, j), (α, β) numbering electrons

and nuclei, respectively. Expanding the complete wave function ψ(x,R) into a

basis of electronic wave functions ϕi(x,R) yields

ψtot(x,R) =
∑

i

ϕi(x,R)χi(R), (1.27)

with the expansion coefficients χi(R) representing functions of the nuclear coor-

dinates. The electronic wave functions are solutions of the electronic Schrödinger

equation

He(x,R)ϕi(x,R) = εi(R)ϕi(x,R). (1.28)

Here, i is the electronic quantum number of the electronic state. The εi(R) are

the potential curves parameterically depending on the nuclear coordinates, and

He(x,R) denotes the electronic Hamiltonian

He(x,R) = Te(x) + V (x,R), (1.29)

so that

Htot = Tn(R) +He. (1.30)
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Inserting the basis set expansion into the Schrödinger equation yields

∑

i

(Tn +He) ϕi(x,R)χi(R) = Etot

∑

i

ϕi(x,R)χi(R). (1.31)

As the kinetic energy operator is a differential operator it transforms the coupled

equations

∑

i

(

∑

α

−h̄2

2Mα
∇2

α +He

)

ϕi χi = Etot

∑

i

ϕi χi

∑

i

{

∑

α

−h̄2

2Mα
∇2

α (ϕi χi) +He ϕi χi

}

= Etot

∑

i

ϕi χi

∑

i

{

∑

α

−h̄2

2Mα
∇α [(ϕi∇α χi) + (χi∇α ϕi)] + χiHe ϕi

}

= Etot

∑

i

ϕi χi(1.32)

∑

i

{

∑

α

−h̄2

2Mα
ϕi

(

∇2
α χi

)

+
∑

α

−h̄2

Mα
(∇α ϕi) (∇α χi)

+
∑

α

−h̄2

2Mα
χi

(

∇2
α ϕi

)

+ χi εi ϕi

}

= Etot

∑

i

ϕi χi

Projection on the basis vector 〈ϕj| results in the coupled set of equations:

∑

α

−h̄2

2Mα
∇2

α χj + εj χj +
∑

i

{

∑

α

−h̄2

Mα
〈ϕj |∇α|ϕi〉 (∇αχi)

+
∑

α

−h̄2

2Mα
〈ϕj

∣

∣

∣∇2
α

∣

∣

∣ϕi〉χi

}

= Etot χj.(1.33)

In equation (1.33), the electronic wave functions are comprised in the terms inside

of the curly brackets, kinetically coupling different electronic states. Within the

adiabatic approximation off-diagonal kinetic coupling terms (first and second

order non-adiabatic coupling elements) are neglected, leading to a separation of

electronic and nuclear degrees of freedom. For the electronic eigenstates being

real functions, the diagonal non-adiabatic coupling elements (〈ϕj|∇α|ϕj〉) are
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likewise zero using the orthonormality condition. Equation (1.33) then reads as

(

∑

α

−h̄2

2Mα

∇2
α + εj +

∑

α

−h̄2

2Mα

〈ϕj

∣

∣

∣∇2
α

∣

∣

∣ϕj〉
)

χj = Etotχj

(

Tn + εj +
∑

α

−h̄2

2Mα

〈ϕj

∣

∣

∣∇2
α

∣

∣

∣ϕj〉
)

χj = Etotχj, (1.34)

where in the second equation the kinetic energy operator was re-introduced.

The matrix elements −h̄2

2Mα
〈ϕj|∇2

α|ϕj〉 are known as the diagonal correction, being

smaller than εj because the masses of the nuclei enter into the denominator. In

the Born-Oppenheimer approximation [34] these slowly in R varying functions are

neglected and the energy surface is solely determined by εj. Thus the Schrödinger

equation for the nuclear motion in state j reads:

[Tn + εj(R)]χj(R) = Etotχj(R), (1.35)

where the electronic energy εj represents the potential energy surface in the elec-

tronic state j.

1.2 Design of Electro-Magnetic Fields

The exact form of the Hamiltonian in eq. (1.19) can be derived from field quan-

tization in quantum electrodynamics. Regarding the field-matter interaction of

a particle with mass m and charge q in an electromagnetic field given by [35,36]

E = −1

c

∂A

∂t
−∇Φ ; B = ∇× A (1.36)
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where E is the electric field with vector potential A and scalar potential Φ, and

B represents the magnetic field, results in a Hamiltonian

H =
1

2m

(

p− q

c
A(x, t)

)2

+ q Φ(x, t). (1.37)

The canonical momentum p is replaced by the kinetical momentum operators

mẋ = p−q/cA whose commutators satisfy slightly different conditions ([xi, mẋj] =

ih̄δij, [mẋi, mẋj] = ih̄qεijkBk). In the limit of large photon numbers the electric

field can be treated classically and described as

E(x, t) = E0 f(t)
[

eikx−iωt + e−ikx+iωt
]

. (1.38)

with the pulse envelope f(t), and E0 is half of the field strength. The first term in

eq. (1.38) corresponds to light absorption and the second to light emission. Since

usually molecules are much smaller than the optical wavelength of an external

field, the dipole approximation can be adopted which amounts to a neglection of

the position dependency, i.e.:

E(t) = E0f(t)
[

e−iωt + e+iωt
]

. (1.39)

Therefore, the form of the external coupling W (t) introduced in the last section

can be denoted as the projection of the electric field vector E(t) onto the system’s

dipole moment µ,

W (x, t) = −µE(t). (1.40)

The laser fields used and calculated in this work are often composed of different

frequencies (shaped) or are modulated in frequency- or time domain. Electric

fields in time E(t) and frequency domain E(ω) are connected by the Fourier
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relation [37]

E(t) =
1√
2π

∫ ∞

−∞
Ẽ(ω) eiωtdω

Ẽ(ω) =
1√
2π

∫ ∞

−∞
E(t) e−iωtdt (1.41)

Since E(t) is always a real quantity the relation in frequency domain is symmetric

Ẽ(−ω) = Ẽ∗(ω). For a full characterization of the electric field it is sufficient to

regard positive frequencies. The related (complex) temporal fields can be written

for positive and negative ω

E+(t) =
1√
2π

∫ ∞

0
Ẽ(ω) eiωtdω

E−(t) =
1√
2π

∫ 0

−∞
E(ω) e−iωtdω. (1.42)

Therefore, E−(t) = [E+(t)]∗, and E(t) = E+(t) + E−(t) = 2< (E+(t)). For

further calculations it is advantageous to regard the E+(ω), as only ω ≥ 0 is

physically meaningful. These fields can be described by an envelope function

f(t) (g(ω)) and a phase ϕ(t) (φ(ω)). Mathematically a phase modulation is im-

plemented by expanding the time-dependent phase ϕ(t) into a Taylor series:

ϕ(t) = ω(t0) +
∂ϕ(t)

∂t

∣

∣

∣

∣

∣

t0

(t− t0) +
1

2

∂2ϕ(t)

∂t2

∣

∣

∣

∣

∣

t0

(t− t0)2 + · · · , (1.43)

where the first term is the constant phase of the field, the second indicates the

carrier frequency, and the third one is a linear chirp in time domain. Higher order

terms in general are called (n-1) order chirps. Pulses with temporally increasing

frequency, exhibiting a positive linear chirp are called up-chirped pulses; the op-

posite behaviour is called down-chirped, accordingly. Introducing a time-domain

chirp changes the spectral distribution of the pulse, not corresponding to the

experimental setup where the spectral width remains constant and chirping is
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performed in frequency domain (e.g. routing the pulse through dispersive media

or grating dispersion). Expanding the frequency dependent phase into a Taylor

series leads to [38, 39]:

φ(ω) = φ(ω0) + α1
∂φ(ω)

∂ω

∣

∣

∣

∣

∣

ω0

(ω − ω0) + α2
∂2φ(ω)

∂ω2

∣

∣

∣

∣

∣

ω0

(ω − ω0)
2 + · · · . (1.44)

Analogously, the constant term determines the position in time domain, the sec-

ond term indicates a temporal displacement and the third one displays a linear

chirp in frequency domain. A linear dependency (i.e. only the first and second

term contribute) is again called unchirped in frequency domain. The appearence

of pulses in the particular domain after a Fourier transform is not easy to derive.

Nevertheless, from symmetry it can be said that a pulse possessing an asymmet-

ric distribution in one domain cannot be unchirped in the other. An important

case is a Gaussian laser pulse

E+(t) =
E0

2
e−2 ln 2·t2/τ2 · eiω0t (1.45)

Ẽ+(ω) = E0 τ

√

π

4 ln 2
e−τ2(ω−ω0)2/(8 ln 2), (1.46)

where τ is the pulse duration, the width at half maximum of the intensity-

envelope function I(t) = ε0E(t)2, and ω0 is the carrier frequency. A special

feature of Gaussian pulses is that, applying a linar chirp in frequency domain

1/2φ′′(ω0) · (ω − ω0), also implies a linear chirp in time domain. The resulting

fields have the analytical form

E+(t) =
E0

2γ1/4
e−t2/4βγ · ei(δt2−ε) · eiω0t (1.47)

Ẽ+(ω) = E0τ

√

π

4 ln 2
e−τ2(ω−ω0)2/(8 ln 2) · ei(ω−ω0)2φ′′/2, (1.48)
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with

β =
τ 2

8 ln 2
, γ = 1 +

φ′′2

4β2
, δ =

φ′′

8β2γ
ε = 1/2 arctan(

φ′′

2β
). (1.49)

The temporal broadening as a result of the linear chirp in frequency domain is

expressed in

τ2
τ1

=

√

√

√

√1 +

(

φ′′4 ln 2

τ 2
1

)2

. (1.50)

It can be seen that the pulse duration for a chirped pulse (τ2) depends on one

hand on the chirp φ′′ and on the other, on the pulse duration of the unchirped

pulse (τ1). The resulting broadening has been calculated for Gaussian pulses

before and can be taken from tables in the literature [38].

1.3 Weak Field Regime: Time-Dependent Per-

turbation Theory

Perturbation theory is appropriate for the description of systems with a weak

time-dependent interaction ε V (t) in the Hamiltonian of eq. (1.19), with ε being

a small dimensionless parameter [31]. For times t < t0, the perturbation V (t) = 0

and the system is in an initial state |ψ(t0)〉 satisfying the Schrödinger equation

ih̄
∂

∂t
|ψ(t0)〉 = H0 |ψ(t0)〉. (1.51)

When the perturbation sets in, a new state |ψ(t)〉 develops fulfilling the new

Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = [H0 + εV (t)] |ψ(t)〉, (1.52)
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with the initial condition |ψ(t)〉 = |ψ(t0)〉 for t ≤ t0. The temporal development

of the wave function can be described with the afore defined propagator in eq.

(1.18)

|ψ(t)〉 = U(t, t0) |ψ(t0)〉, (1.53)

where U(t, t0) satisfies eq. (1.21). For εV (t) is assumed to be a small perturbation,

the propagator U can be expressed differing only by a small amount from the

unperturbed propagator U0. One then writes

U = U0W, (1.54)

where W is an unitary operator implicating the interaction effects. Inserting the

form of U from eq. (1.54) into the Schrödinger equation eq. (1.21) yields

ih̄
∂

∂t
W (t, t0) = ε U †

0 (t− t0)V (t)U0(t− t0)W (t, t0). (1.55)

Combining

U †
0(t− t0)V (t)U0(t− t0) ≡ Vint(t, t0), (1.56)

the solutions of W (t, t0) can be expanded into a series

W (t, t0) ∼
∞
∑

n=0

εnWn(t, t0). (1.57)

Time integration of the resulting recursive set of differential equations for n ≥ 0:

ih̄
∂

∂t
Wn+1(t, t0) = Vint(t, t0)Wn(t, t0), (1.58)

and the intial condition W (t0, t0) = 1 yields terms of nth order, each form given

by the previous equation

W1(t, t0) =
1

ih̄

∫ t

t0
Vint(τ, t0) dτ (1.59)
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W2(t, t0) =
1

ih̄

∫ t

t0
Vint(τ, t0)W1(τ, t0) dτ

...

Wn+1(t, t0) =
1

ih̄

∫ t

t0
Vint(τ, t0)Wn(τ, t0) dτ.

The integral equation results in the Dyson series; its solutions can be obtained

via iterative insertion of term n into n + 1. Later, we will refer to cases where

the series can be truncated after the first term, describing first-order transitions.

1.3.1 Fermi’s Golden Rule

The probability amplitude of a transition under the action of a weak external

potential εV (t) starting from a system in an eigenstate |i(t0)〉, whose temporal

development can be expressed according to eq. (1.17), into a final state |f(t)〉 is

given by [31]

Ai→f(t, t0) = 〈f |U(t, t0)|i〉

= e−i/h̄Ef (t−t0)〈f |W (t, t0)|i〉. (1.60)

The last integral term can be calculated within first-order perturbation theory:

〈f |W (t, t0)|i〉 = 〈i|f〉+ ε

ih̄

∫ t

t0
〈f |Vint(τ, t0)|i〉 dτ +O(ε2)

= δif +
ε

ih̄

∫ t

t0
ei/h̄(Ef−Ei)(τ−t0)〈f |µV (τ)|i〉 dτ +O(ε2).(1.61)

Because the transition probability is the absolute square of the transition am-

plitude and defining the transition frequency ωfi = (Ef − Ei)/h̄, the expression

reads as

|A(t)|2 =
ε2

h̄2

∣

∣

∣

∣

∫ t

t0
eiωfi(τ−t0)〈f |V (τ)|i〉dτ

∣

∣

∣

∣

2

. (1.62)
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Considering an absorption process with V (t) ≈ µ exp (−iωt) and real eigenstates

|i〉, |f〉 the transition probability can be expressed as

|A(t)|2 =
ε2

h̄2

[

sin[(ω − ωfi)t/2]

(ω − ωfi)/2

]2

|〈f |µ|i〉|2 . (1.63)

The expression in the squared brackets is related to the δ function via

lim
T→∞

sin2 αT

α2T
= πδ(α), (1.64)

so for long times the transition probability is given by

lim
T→∞

|Ai→f(T )|2 = t
2π

h̄
δ(h̄ω + Ef − Ei) |〈f |µ|εi〉|2 . (1.65)

Therefore, the transition rate Γif (transition probability per time) can evaluated:

Γif ≡
2π

h̄
δ(h̄ω + Ef − Ei) |〈f |µ|εi〉|2 . (1.66)

For a transition from a discrete initial to a final state in a continuous spectrum

the above equation has to be integrated taking into account the density of states

%(Ef ). The number of eigenstates in the interval dEf is calculated from the

density of states for %(Ef )dEf and the transition rate is

∑

f

Γif ∼
∫

dEf%(Ef )Γif = %(Ei)
2π

h̄
|〈f |µ|i〉|2 . (1.67)

Eq.(1.67) is the expression for Fermis golden rule.
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1.4 Strong Field: Rabi Oscillations

The strong coupling of a two-level system with the eigenstates |ϕa〉, |ϕb〉 with an

external radiation field cannot be described by perturbation theory. The state

vector |ψ(t)〉 of this system is [36, 40]

|ψ(t)〉 = Ca(t)|ϕa〉+ Cb|ϕb〉. (1.68)

The coefficients Ca, Cb describe the probability amplitudes of finding the sys-

tem in the particular state. The time-dependent Schrödinger equation (eq.(1.9))

describes the temporal development of |ψ(t)〉 containing a total Hamiltonian H

H = H0 +W (t), (1.69)

where H0 is the unperturbed part with the eigenstates |ϕa〉, |ϕb〉 and the eigenen-

ergies εa, εb. The interaction part can be written as [36]

W (t) = −µabE(t). (1.70)

Here, µab denotes the matrix element of the electric dipole moment e〈ϕa|x|ϕb〉

and the electric field, linearly polarized along the molecule’s (x-) axis can be

written, within the dipole approximation, as

E(t) = E0 cosωt (1.71)

with the amplitude E0 and the frequency ω. The equations of motion for Ca, Cb

are obtained as

Ċa = −i/h̄ εaCa + iΩR cosωtCb (1.72)

Ċb = −i/h̄ εbCb + iΩR cosωtCa. (1.73)
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In above equation, ΩR is the Rabi frequency, defined as

ΩR ≡
|µab|E0

h̄
. (1.74)

The solutions of eq. (1.72) can be obtained by solving the equations for the slowly

varying amplitudes ca, cb first

ca = Ca e
iεat/h̄

cb = Cb e
iεbt/h̄. (1.75)

Inserting into eq. (1.72) yields

ċa = i/2 ΩR cb e
i(∆ε−ω)t/h̄ (1.76)

ċb = i/2 ΩR ca e
i(∆ε−ω)t/h̄. (1.77)

For the solution the counter-rotating terms with exp(i(∆ε+ ω)t/h̄), where ∆ε =

εa − εb is the transition frequency, have been neglected. This is the so-called

rotating wave approximation (RWA). With the initial condition ϕa, ca(t0) =

1, cb(t0) = 0, the probability P (t) of finding the system in ϕb can be calculated

Pb(t) = |cb(t)|2 =
Ω2

R

Ω2
sin2

(

1

2h̄
Ωt
)

, (1.78)

setting Ω =
√

Ω2
R + (∆ε− ω)2. With the Rabi formula in eq. (1.78) periodic

oscillations (Rabi oscillations) to find the system in |ϕb〉 are described. In the

special case, when the carrier frequency of the field ω is in resonance with the

energy difference of the two eigenstates ∆ε we get Ω = ΩR and for the probability

Pb(t) = sin2(
1

2h̄
ΩRt). (1.79)
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Numerical Methods

In this chapter the numerical methods applied to solve the equations introduced

in chapter 1 are presented.

2.1 Classical Trajectories

To calculate a particle’s position at time t starting from an initial condition

x(t0), ẋ(t0) (initial value problem), the time interval [t0, t] is divided into N time

steps ∆t. A Taylor-expansion around time t as

f(t) =
n=∞
∑

n=1

1

n!

d(n)f

dtn
(t)∆tn, (2.1)

yields, for the particle’s position at time t + ∆t,

x(t + ∆t) = x(t) + ẋ(t)∆t +
1

2
ẍ(t)∆t2 + · · · . (2.2)

Truncation of the Taylor-series after the second term leads to an error of second-

order in ∆t (first-order Euler method). In the present work, trajectories xi(t)

were calculated with a propagation method of a second-order error, the standard

25
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second-order Runge-Kutta algorithm. There, the following equations, employing

intermediate points x12, ẋ12 at t + ∆t/2 are employed successively to calculate

points x1, ẋ1 at full time step t+ ∆t [41]:

x12 = x0 +
1

2
ẋ0∆t

ẋ12 = ẋ0 +
1

2
∆t

(

−∂V
∂x

(x0)/m

)

x1 = x0 + ẋ12∆t

ẋ1 = ẋ0 + ∆t

(

−∂V
∂x

(x12)/m

)

. (2.3)

2.2 Quantum Propagation

Propagating the wave function by applying the time-evolution operator (propa-

gator) for N infinitesimal time steps ∆t can be achieved numerically by using the

Fast Fourier Transform (FFT) split operator method [42]. It is assumed that the

(time-independent) Hamiltonian is composed out of terms depending on either

the momentum p or coordinate x operator. Therefore, the propagator can be

written as

e−i/h̄(T (p)+V (x))∆t =
a
∏

j=1

e−i/h̄bjT (p)∆t e−i/h̄cjV (x)∆t +O
(

(∆t/h̄)N+1
)

. (2.4)

The error arises from the neglection of higher-order commutators ∆tN/h̄N [T (p),

V (x)]. A symmetric splitting for a = 2 gives the short-time propagator of third

order error used throughout this work. The particular exponential operators

act on the wavefunction in momentum (ψ̃(p)) or coordinate space (ψ(x)) being

connected via a Fourier transform

ψ̃(p) =
1√
2πh̄

∫

e−ipx/h̄ ψ(x) dx. (2.5)
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A slightly different picture arises when the Hamiltonian is not time-independent.

The form of the time ordered exponential (1.24) is approximated in the split

operator method as

exp+

[

− i
h̄

∫ t1

t0
dτH(τ)

]

≈ exp
(

− i

2h̄
T (p)∆t

)

·

exp
(

− i
h̄
V (x)∆t

)

· exp
(

− i
h̄
W (t)∆t

)

· exp
(

− i

2h̄
T (p)∆t

)

, (2.6)

where ∆t = t1 − t0, and the time-dependent term W (t) displays the influence of

an external potential, e.g. electromagnetic interaction with a laser field. As a

function of a diagonal matrix remains in a diagonal form, the exponential terms

containing T, V are also diagonal. The kinetic operators T are diagonal in mo-

mentum space and the potential energy operators V are diagonal in configuration

space. An advantage of this unitary split-operator method (conservation of norm)

is that the exponential operators simply affect the wave functions in the partic-

ular space by their multiplication with a complex number at each value of the

discretized grid of {xi, pj}. Therefore the functions are represented on a spatial

grid. Since the time-dependent term exhibits off-diagonal terms for a field cou-

pling different electronic states, the operator has to be diagonalized first. For

simple cases the matrix can be digonalized analytically, calculating the eigenval-

ues λi and the corresponding (normalized and orthogonal) eigenvectors arranged

in a matrix A. Because of

AD(λi)A
T = W, (2.7)

where the diagonal matrix D contains the eigenvalues λi and AT denotes the

transposed matrix of A, the original matrix W can be replaced by the expression

on the left hand side of the equation (2.7). Again, applying the proposition that a

function of a diagonal matrix remains in a diagonal form leads to the propagation
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scheme

exp
(

− i
h̄
W (t) ∆t

)

= A exp
(

− i
h̄
D∆t

)

AT . (2.8)

The distances of grid points in coordinate xi ∈ [xmin, xmax] and momentum space

pi ∈ [pmin, pmax] are related via

−p = − h̄π
∆x

and p =
h̄π

∆x
with ∆p =

2h̄π

N∆x
. (2.9)

The spatial resolution is such chosen ensuring a good description in momentum

space, likewise (with respect to the computational effort, as each Fourier trans-

form scales with N log(N)). In this work the very efficient Fast Fourier Transform

library FFTW by Frigo and Johnson was used [43].

2.3 Eigenstates

The eigenstates of the stationary Schrödinger equation in eq. (1.15) can be

obtained numerically. As an application of the afore described split-operator

method the relaxation method by Kosloff [44] is starting from an arbitrary func-

tion ϕ(x), propagating it with a complex time τ = −it (imaginary time-propa-

gation). Its time-evolution (”eigenfunction expansion”) reads as

ϕ(x, τ + ∆τ) =
∑

n

〈φn(x)|ϕ(x, τ)〉 e−∆τ/h̄En |φn(x)〉. (2.10)

This non-unitary propagator diminishes the norm with increasing τ such that a

re-normalization in each propagation step is required. For an eigenstate being

less damped the initially guessed wavefunction ϕ converges in the limit t → ∞
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towards |φ0〉 (assuming a positive eigenvalue spectrum, En > 0). The eigenenergy

is calculated as

En = − 1

2∆τ
ln

(

〈ϕi+1|ϕi+1〉
〈ϕi|ϕi〉

)

, (2.11)

where the ϕi(ϕi+1) is the propagated wave function at times τi(τi+1). Obtaining

higher eigenstates is possible by projecting out already determined lower states

in each time step.



Chapter 3

Control Theories

Several theoretical approaches have been developed concerning the control of the

dynamics of molecules using external laser fields. An intuitive method arises from

controlling a delay time between two pulses guiding the generated wavepacket

into a defined reaction channel. Besides this Tannor-Rice-Kosloff scheme [12,

13, 18] a mathematical access, called optimal control theory is often applied [45,

46]. Within optimal control theory the overlap of a forward propagated initial

state and a backward propagated, final state is maximized. In another theory,

the coherent control theory by Brumer and Shapiro, dynamics is controlled by

interferences of competing multi-photon transitions [8,47]. Another possibility of

quantum dynamical control determined by feedback from a signal using genetic

algorithms has been proposed by Judson and Rabitz [17] and experimentally

realized by several groups [9, 48–50]. Compared to these approaches a theory

controlling a system’s dynamics instantaneously gives more physical insight into

the processes influencing and shaping the form of the derived electric field. This

theory was first proposed by Tannor [20], Kosloff [51] and Rabitz [23] and later

extended by us [24]. In this chapter some of the above mentioned theories are

introduced.

30
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3.1 Genetic Algorithms

Genetic algorithms are global optimization methods, combining elements of par-

allel and stochastic search. Terms and concepts of the applied operations are

associated with biological evolution. A physical problem, e.g. maximizing a

population in a selected electronic state |k〉, can be encoded in an optimization-

procedure of a fitness-function. Therefore, information is stored in ”genes“ xi,

which are a bit string of length N

xi = (a1, a2, · · ·aN ), (3.1)

where N is the number of parameters. As a result of the stochastic search a pa-

rameter set with size Npop is chosen. In this work the parameter set contains pulse

parameters α1, α2, ... of a laser field E(ω) with a non-linear chirp in frequency

domain (see chapter 1)

E(ω) = E0 e
−

(ω−ω0)2

2γ2 e−i/h̄[α1(ω−ω0)2+α2(ω−ω0)3+···]; (3.2)

xi = (α1,i, α2,i, ...αN,i), i = 1, Npop. (3.3)

E0 is the field strength (and can also be chosen as a parameter to be modified

by the algorithm), the first exponential is a Gaussian shape function centered

around the central frequency ω0 having a width of γ. The term indicating tem-

poral displacment α′(ω−ω0) (compare with eq. (1.44)) is not included as it does

not cause a chirped pulse. In order to constrain the spectral width we choose

the Taylor-expansion of the laser field in frequency domain. An initial parame-

ter set (a population) of pulse-parameters xi is generated randomly. With each

xi a complete propagation of the quantum mechanical system is performed and

the population A in state |k〉 is calculated. Each individual’s fitness is deter-
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mined via the definition of the fitness-function J . Possible definitions must be

discriminative, which means the value of J selects the quality of an individual.

For dissociative systems it may be helpful defining the fitness function via the

dissociated part – as the amount of the wave-packet |ψk
i (t)〉 in state |k〉 on a

dissociative potential surface which has passed a value R

J =
∫ ∞

R
dR′

∣

∣

∣ψk
i (R′)

∣

∣

∣

2
. (3.4)

Now each vector xi is randomly perturbed with a certain, pre-defined probability.

These modifications are called – according to evolutionary syntax – mutation and

cross-over. Mutation means replacing a parameter with a random number

xi = (α1, α2, α3, . . . αN )

↓ Mutation (3.5)

x′i = (α1, β2, α3, . . . αN ).

A cross-over causes an exchange of two parameter’s positions, the child-gene is a

mixture of two parental’s genes

xi = (α1, α2, α3, . . . αN ) x′i = (α1, α2, β3, . . . αN)

Cross− Over

−→

xj = (β1, β2, β3, . . . βN) x′j = (β1, β2, α3, . . . βN).

(3.6)

The next metaphor is the principle ”survival of the fittest“: after applying these

modification-operators the value of the fitness-function is re-calculated for the

next (the modified) generation and selection is enforced. Within the here em-

ployed differential evolution algorithm [52] those modified individuals, which lead



CHAPTER 3. CONTROL THEORIES 33

to a smaller value of the fitness-function, survive and replace their (non-modified)

parents. This new set of parameters, i.e. the new generation, is again modified

until the value of the fitness-function falls below a convergence criterion.

3.2 Optimal Control Theory (OCT)

Optimal control theory describes a mathematical way of maximizing a functional

J . In the connection with quantum mechanical systems the latter is mostly

defined as an overlap of a propagated state vector |ψ〉 starting in a defined initial

state |ϕ0〉 with a desired target state |ϕf〉 at time tf . By forward-propagating a

wave packet deriving from |ϕ0〉 and backward-propagating a wave packet starting

from |ϕf〉 the ”optimal“ electric field E(t) is calculated as the time-dependent

overlap of the wave packets. The precise form of the functional J(E) depends

on the method used. Here, the object functional is delimitated by an energy

conservation condition via Lagrange multiplier λ, constraining the intensity of

the form

λ =
1

ε

∫ tf

t0
E2(t) dt, (3.7)

using a skaling factor ε, and the fact that |ψ〉 has to satisfy the Schrödinger

equation in introducing Lagrange multiplier χ

〈χ(t)|ih̄ ∂
∂t
−H|ψ(t)〉 = 0. (3.8)
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The target wave function is assumed to have a complex Gaussian shape

ϕf(x; tf ) = e−β(x−xc)2+i/h̄·p0(x−xc), (3.9)

where the first term determines the position centered around xc in configuration

space and the second term characterizes the momentum space distribution. For

dissociative systems the momentum p0 is chosen corresponding to the kinetic

energy of the kinetic energy of the fragments of the desired channel. Including

the constraints via Lagrange multipliers χ(t), λ the functional can be written as

J = 〈ψ(tf)|ϕf〉+
i

h̄

∫ tf

t0
(〈χ|ih̄ ∂

∂t
−H|ψ〉 − c.c.)dt+

λ

h̄
[
∫ tf

t0
E2(t)dt− ε], (3.10)

where c.c. means the complex conjugate. For a maxmimum value of the object

functional the first derivative δJ with respect to the variations δE and δψ has to

be calculated

δJ = 〈δψ(tf)|ϕf〉 − 〈ϕf |δψ(tf)〉+
i

h̄

∫ tf

t0
(〈δψ|ih̄ ∂

∂t
−H|χ〉 − c.c.)dt

+
i

h̄

∫ tf

t0
−(〈χ|∂H

∂E
|ψ〉+ 〈ψ|∂H

∂E
|χ〉 − 2λiE(t)) δE dt. (3.11)

Since ∂H/∂E = µ the last integral term is converted leading to

δJ = 〈δψ(tf)|ϕf〉 − 〈ϕf |δψ(tf)〉+
i

h̄

∫ tf

t0
(〈δψ|ih̄ ∂

∂t
−H|χ〉 − c.c.)dt

+
i

h̄

∫ tf

t0
−(〈ψ|µ|χ〉+ c.c.− 2λiE(t)) δE dt. (3.12)

The overlap function O(t) = 〈ψ(t)|µ|χ(t)〉 linked to the electric field E(t) by

E(t) = −O(t)/λ can be calculated from the dipole matrix in the last integral

term. The exact form depends on the chosen system and will be given in chapter

4. We used the iteration algorithm given in the work of Rice et. al. [53]:
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1. Setting an initial field Ē(t)

2. Solving the Schrödinger equation for ψ(t) with ψ(t0) = ϕ0 (FWD)

3. Projecting ψ(tf ) onto the target function ϕf leading to a wave function

χ(tf )

4. Backward propagation of the projected function χ(tf ) (BCKWD)

5. Renormalization of the wavefunction

6. Determining the overlap O(t) = =〈ψ(t)|µ|χ(t)〉

7. Calculating a new field E(t) with

E(t) = −O(t)

λ
= −O(t)

(

1

ε

∫ tf

t0
dt |O(t)|2

)−1/2

(3.13)

After this last step the iteration restarts at step (2) till convergence is achieved.

It is also possible to insert a Gaussian shape-function into the calculation guar-

anteing a moderate in- and decrease of the calculated field [54, 55].

3.3 Restricted Optimal Control Theory

Within the optimal control theory described in the last section there is only small

influence on the derived electric field. There are some attempts in the literature

to influence the parameters of e.g. a Tannor-Rice pump-dump scheme [53]. Here

we constrain the electric field, rewriting it as a function of frequency ω and n
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(time-independent) chirp parameters αi according to eq. (3.2)

E(ω) = E(ω, α1, α2, ...αN ). (3.14)

For δE we get

δE =
N
∑

i=1

(

∂E

∂αi

δαi

)

. (3.15)

Inserting eq. (3.15) into eq. (3.12) and adding the further condition that δJ = 0

for all δαi we get N equations to determine the set of chirp parameters

− i
h̄

∫ tf

t0

(

〈ψ|∂H
∂E
|χ〉 − c.c.− 2iλE(t)

)

∂E

∂αi

dt. (3.16)

These coupled integral equations are solved via an anlytical expression for the first

and second order derivatives of the functional concerning the chirp parameters.

Therefore we compose two vectors F,A containing the first (F (αi) = δJ/δαi) and

second derivatives (A(αi) = δF/δαi = δ2J/δα2
i ), respectively. For small changes

in the αi the new set of parameters can be calculated by expansion into a Taylor

series

F (αi + δαi) ≈ F (αi) + Aδαi (3.17)

At extrema of the functional (i.e. if δJ ≈ 0) or close to extrema F → 0 we get

0 ≈ F + Aδαi

δαi ≈ −A−1F (3.18)

The iteration scheme now differs from the one described in the last section follow-

ing the last step (calculation of the field). In more detail, the following, additional

operations are necessary:

1. Setting up the partial derivatives of the electric field for the different chirp
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parameters

2. Assigning λ according to eq.(3.7):

λ = −(
1

ε

∫ tf

t0
O2(t) dt)1/2 (3.19)

3. Calculation of the integrals eq. (3.16) obtaining F,A

4. Generation of a new set of parameters using eq. (3.18)

Inserting this new set of pulse parameters into eq. (3.2) a new field is constructed.

This field is then Fourier-transformed into the time-domain and re-introduced

into the iteration scheme of section 3.2.

3.4 Instantaneous Dynamics

The principle of control from instantaneous dynamics is best illustrated in re-

garding a classically forced harmonic oscillator in one-dimension. One can think

of a physical process pumping energy into the system (heating) or taking energy

away (cooling). A particle moving inside the harmonic potential is accelerated

if an external field is applied acting in the same direction as its momentum. In

contrary, a deacceleration is achieved by an laser acting in the opposite direction

of the momentum. Furthermore, when the particle reaches a classical turning

point and then changes its direction, the sign of the field has to be changed in-

stantaneously to further drive the system. The frequency of the field therefore
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is in resonance with the oscillator. Obviously, the amplitude of the field would

increase when the system’s energy grows. In this section it is examined whether

this picture can be used for directing (or controlling) a quantum mechanical wave

packet. Therfore, the mathematical conditions are shortly introduced.

3.4.1 Classical Picture

A forced harmonic oscillator with coordinate x driven by an external, time-

dependent force F (t) is executing a forced vibration. The Lagrange function

L for a particle with mass m is

L =
1

2
mẋ2 − 1

2
kx2 + xF (t). (3.20)

As the Lagrangian is time-dependent, the energy conservation condition is not

valid. The equation of motion for such a forced (driven) oscillator:

F (t) = mẍ +mω0x, (3.21)

where ω0 =
√

k/m, has to be integrated. Possible solutions are of the form

x(t) = xp(t) + xharm(t). (3.22)

The xharm(t) is an arbitrary solution of the homogenous equation of the free

oscillator (without a driving force) and xp(t) any particular solution of eq. (3.21).

If the force is a periodic function being harmonic at a frequency Ω

F (t) = F0 cos Ωt (3.23)
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the linear oscillator will respond at that frequency. Inserting eq. (3.23) into eq.

(3.21) gives a new equation of motion

F0 cos Ωt = mẍ +mω0x. (3.24)

A solution of xp(t) = C cos(Ωt + γ) for γ = 0 results in a condition for C

C =
F0

m(ω2
0 − Ω2)

. (3.25)

For Ω 6= ω0 the general solution of eq. (3.24) can be expressed as

x(t) = A sin(ω0t+ δ) +
F0 cos Ωt

m(ω2
0 − Ω2)

, (3.26)

with A, δ as integration constants depending on the initial conditions. Eq. (3.26)

represents a solution oscillating at two frequencies, ω0 and Ω. The numerator is

in phase with the driving force but the sign of the denominator depends on the

relation between ω0 and Ω. For Ω < ω0 the Ω term is in phase with the driving

force and is out of phase for Ω > ω0 by π. The solution is not valid for Ω = ω0.

The correct solution for this resonant case is given by

x(t) = A sin(ω0t+ δ) +
F0t sinωt

2mω0

. (3.27)

The amplitude of this vibration increases linearly with time t, resulting in the

same picture as in the heating process described afore. Regarding the energy of

the system, the sum of kinetic and potential energy terms

E =
1

2
mẋ2 +

1

2
mω2

0x
2, (3.28)
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the temporal change of energy for a resonant driven oscillator can be calculated:

Ė = F ẋ. (3.29)

With the initial conditions x(0) = 0, ẋ(0) = 0 parameters A and δ in eq. (3.27)

are [29]:

x(0) = A sin(ω0 · 0 + δ) +
F0 · 0 sinω0 · 0

2mω0
= 0

x(0) = A sin(δ). (3.30)

Analogously, regarding the derivative ẋ(t), given by

ẋ(t) = Aω0 cos(ω0t+ δ)− F0ω0t cosω0t

2mω0
+
F0 sinω0t

2mω0
(3.31)

for t = 0 yields, together with eq. (3.30), that both parameters A, δ equal zero.

The new equations for x(t), ẋ(t) are

x(t) =
F0t

2mω0
sinω0t

ẋ(t) =
F0

2m

(

1

ω0
sinω0t + t cosω0t

)

. (3.32)

Inserting above equations into eq. (3.28) and eq. (3.29), respectively, the energy

and energy rate can be expressed as

E =
F 2

0

8

(

t2 +
1

ω2
0

sin2 ω0t+
2t

ω0

sinω0t cosω0t

)

Ė =
F 2

0

2

(

1

ω0
sinω0t+ t cosω0t

)

cosω0t. (3.33)

Regarding the energy rate, it can be seen that for times t → ∞ the energy

increases.
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3.4.2 Energy Condition

Consider, for simplicity, a quantum mechanical system in two dimensions (x, y),

with a Hamiltonian

H =
p2

x

2mx

+
p2

y

2my

+ V0(x, y) +W (x, y, t) = H0 +W (x, y, t). (3.34)

Here, px, py denote the momentum operators in directions x, y and mx and my are

the masses. The potential energy is given by V0(x, y) and an external potential

W (x, y, t) is added. The rate of energy change is given by

d〈H0〉
dt

=
i

h̄
〈[H0,H]〉

= − i
h̄
E(t)〈[µ(x), T (p)]〉. (3.35)

Choosing a linear dipole moment, so that:

W (x, y, t) = −(µxx + µyy)E(t), (3.36)

where the µx and µy are coefficients, one finds

d〈H0〉
dt

=

(

〈px〉
mx

µx +
〈py〉
my

µy

)

E(t). (3.37)

This equation reveals that a proper choice of the external field E(t) allows to

heat (d〈H0〉/dt > 0) or cool (d〈H0〉/dt < 0) the system. Equation (3.37) is the

quantum mechanical and two-dimensional version of the classical result obtained

for the forced harmonic oscillator. The actual choice of E(t) depends on the

expectation value of the commutator between the dipole- and kinetic energy

operator, which in turn is influenced by the external field.
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3.4.3 Momentum Condition

Another possibility of driving a system is to minimize the temporal change of the

momentum in one coordinate x. We can write

d

dt
〈ψ|px|ψ〉 = 〈ψ̇|px|ψ〉+ 〈ψ|px|ψ̇〉

=
1

ih̄
〈ψ|[px,H]|ψ〉. (3.38)

The commutator in eq. (3.38) can be evaluated as

[px,H] = [px, V +W (t)] = [px, V ] + [px,W (t)] (3.39)

[px,W (t)] = −µxE(t)[px, x] = −E(t)
h̄

i
µx

[px, V ] =
h̄

i

∂V

∂x
.

Inserting these into eq. (3.38) we get an expression for minimizing the integral

via minimizing the expectation value of the force ∂V/∂x:

d

dt
〈ψ|px|ψ〉 = −〈ψ|∂V

∂x
|ψ〉+ E(t)µx. (3.40)

In order to d/dt〈px〉 = 0 the force of the molecule must be compensated by the

electric field.

3.4.4 Population Transfer

The principle of population transfer employing the instantanous dynamics was

first proposed by Tannor et al. [20] and extended by us [25, 26]. The temporal

change of an observable A (here the population in state |k〉; A = |k〉〈k|) can be
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expressed in terms of two commutators,

dA(t)

dt
=
i

h̄
〈ψ|[H, A]|ψ〉 = i

h̄
〈ψ|[H0, A]|ψ〉+ i

h̄
〈ψ|[W,A]|ψ〉. (3.41)

The Hamiltonian of the unperturbed system, H0 commutes with A:

H0 =
∑

n

|n〉Hn 〈n| (3.42)

[H0, A] =
∑

n

|n〉Hn 〈n| |k〉〈k| − |k〉〈k|
∑

n

|n〉Hn 〈n| = 0 (3.43)

The temporal change of population A(t) can be obained from the last term in eq.

(3.41), if the interaction W and A do not commute. For

|ψ(t)〉 =
∑

n

ψn(t) |n〉, (3.44)

W = −E(t)
∑

n

∑

m

|n〉µnm 〈m|, (3.45)

the commutator can be derived for a population Sk(t) in state |k〉 employing the

projector A = |k〉〈k|, so that

Sk(t) = 〈ψ(t)|A|ψ(t)〉 (3.46)

dSk(t)

dt
= −E(t)

i

h̄

∑

m

{〈ψm(t)|µmk|ψk(t)〉 − 〈ψk(t)|µkm|ψm(t)〉}

= −E(t)
2

h̄

∑

m

=(〈ψk(t)|µkm|ψm(t)〉), (3.47)

where = denotes the imaginary part. The condition that the population Sk(t)

increases at all times can be fulfilled by a proper choice of the (real) electric field

E(t). From eq. (3.47) it is clear, that if one wants to control the flux into state

|k〉, a (small) initial population in the target state is required. This is usually

achieved by a seed-pulse, an arbitrary laser pulse that precedes the control pulse

which transfers a small amount of population into the target state.
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To understand the physical meaning of eq. (3.47), a two-level system inter-

acting with a weak electric field E(t) = cos (ωt) is treated. Employing first-

order perturbation theory and imposing the initial condition c0(0) = 1, the time-

dependence of the state vector

|ψ(t)〉 = c0(t)|0〉+ c1(t)|1〉 (3.48)

is given by

c0(t) = e−iE0t/h̄,

c1(t) =
i

h̄

t
∫

0

dt′e−iE1(t−t′)/h̄ cos (ωt′) µ10 e
−iE0t/h̄. (3.49)

Here, the dipole matrix-element is µ10 = 〈1|µ|0〉 and En is the eigenenergy of

state |n〉. The matrix element appearing in eq. (3.47) is evaluated (for k = 1) as

〈ψ1(t)|µ10|ψ0(t)〉 =
i

h̄
|µ10|2

t
∫

0

dt′ cos (ωt′) e−i∆(t′−t), (3.50)

where ∆ = (E1−E0)/h̄ is assumed to be positive, in what follows. The rate then

takes the form

dS1(t)

dt
=

2

h̄2 |µ10|2
t
∫

0

dt′ cos (ωt) cos (ωt′) cos(∆(t′ − t)). (3.51)

The product of the cosine-functions can be rewritten as

cos(∆(t′ − t)) cos(ωt) cos(ωt′) =
1

4
{cos[(∆− ω)(t′ − t)] + cos[(∆ + ω)(t′ − t)]

+ cos[(∆− ω)t′ − (∆ + ω)t] + cos[(∆ + ω)t′ − (∆− ω)t]}. (3.52)

If the fast oscillating terms containing ∆+ω in the argument of the cos-function
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are neglected (rotating wave approximation (RWA)), one obtains

dS1(t)

dt
=
|µ10|2
2h̄2

t
∫

0

dt′ cos[(∆− ω)(t′ − t)]. (3.53)

Depending on time t, the integral assumes positive and negative values. The

simplest choice for the parameter ω assuring that the rate of population change

is always positive, is to force the integrand to be positive at each time t′. This is

readily fulfilled by the choice ω = ∆, which is the resonance condition obtained

from Fermi’s Golden rule expression and ensures that the rate increases linearly

with time [56]. That means, if the field oscillations ω are adjusted to match the

system’s dynamics, characterized by (E1−E0)/h̄, an efficient population transfer

is induced. To conclude, the condition that, upon excitation, the population in

a final state increases monotonically, leads (employing the usual approximation)

directly to Fermi’s Golden rule expression for the transition rate.



Chapter 4

Dynamics in Double Well

Potentials

Double well potentials serve as model systems describing isomerizations [57] or

proton [58–60] and electron transfer reactions [61–63], respectively. The objective

is to influence such reactions, thereby using the system’s dynamics as a guide.

Within this chapter the algorithm is applied to classical and quantum mechanical

one-dimensional oscillators. Afterwards, an extension to two-dimensional systems

is presented.

4.1 One-Dimensional Cases

Let us first regard a symmetric double-minimum potential V (x) of the form (in

atomic units)

V (x) = (0.2x4 − 8x2 − 80) · 10−4, (4.1)

which is displayed in fig. 4.1. This potential form describes, e.g. the ammonia

umbrella motion giving rise to the NH3 maser transitions [64]. Also, it often

serves as a model to characterize proton transfer processes taking place along a

46
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reaction coordinate x [57, 65–67]. Regarding, e.g. a particle localized in the well
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Figure 4.1: Potential energy surface of the generic double minimum potential.

at positive values of x, the objective is to move it over the potential barrier and

stabilize it in the inner well, at least for times which are smaller than the time-

scale where tunneling occurs. Therefore a heating field Eh(t) is employed as long

as the particle’s coordinate is smaller than the position of the potential barrier.

As soon as it has reached negative values of x the field is to be phase-shifted and

exhibits the form of a cooling field Ec(t).

4.1.1 Classical Trajectories

In the classical picture a trajectory, starting at point x0 = 5.1 a.u. with an initial

velocity ẋ = 0, was propagated using the Runge-Kutta algorithm. For a particle

with proton mass m and a linear dipole moment µ(x) = 0.2x + 1 a.u. the field
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was determined as

E(t) = E0
ẋ(t)

m
{Θ[−x(t)] −Θ[x(t)]} (4.2)

where Θ denotes the Heaviside step function. This means that, if the particle’s

position is inside the starting well a heating occurs, whereas, if it exceeds the

barrier, a cooling sets in. To facilitate a comparison to a quantum dynamical cal-

culation an ensemble of 50 trajectories was propagated, weighted with a Gaussian

distribution Pi of the form

Pi(x) = e−6·(xi−xc)2 , (4.3)

where i counts the trajectories. In order to compare classical dynamics with

the quantum dynamics the Gaussian was chosen to exhibit the same extent as

a quantum mechanical wave function. The classical density is then constructed

from the ensemble each at a point xi, weighted with the Gaussian distribution Pi

for the particular trajectory i

ρ =
∑

i

Pixi. (4.4)

The xi were chosen to be centered around a value xc = 5.1 a.u. according to the

position where the quantum machanical wave packet is centered. Applying the

Runge-Kutta algorithm

ρ12(t) = ρ0 + ∆t ẋ0
i

ρ1(t) = ρ12(t) + ∆t ẋ12
i (4.5)
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Figure 4.2: Dynamics of the classical density in the double minimum potential. The
initially localized trajectory ensemble in the outer potential well is transferred over the
barrier and stabilized in the inner well.

where the velocities ẋi were weighted with the quantum mechanical momentum

distribution Pi,mom, likewise assumed to be of Gaussian form

Pi,mom(ẋ) = e−0.3·(ẋi−p0)2 (4.6)

ẋi = ẋiPi,mom. (4.7)

The momentum distribution is centered around p0 = 0, meaning that the most

probable momentum is zero. The field resulting from eq. (4.2) driving the dy-

namics (fig. 4.2) is presented in fig. 4.3 where we used a value of E0 = 8 · 10−4

a.u.. It can be seen that the transition is possible during the second vibrational

period. Afterwards the cooling sets in and stabilizes the trajectory ensemble. The

constructed electric field shows the temporal behaviour as described in chapter

3.
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Figure 4.3: Upper panel: Electric field constructed from the momentum changes in
the classical system. The phase jump results from the Heaviside step function, occuring
at the time where the ensemble average value 〈x〉 of the trajectory ensemble displayed
in the lower panel equals zero.

4.1.2 Quantum Dynamical Picture

Applying the algorithm of instantaneous control to the quantum dynamics, a

field can be constructed in analogy to the classical procedure by replacing in eq.

(4.2) the classical ensemble average value by the quantum mechanical expectation

value. Therefore an initial Gaussian wave function centered around xc = 5.1 a.u.

with a width of 2 a.u. was employed and the dipole moment was chosen as in

the classical treatment. A comparable dynamics was procured with a value of

E0 = 1 · 10−5. The wave packet dynamics and the corresponding field are shown

in fig. 4.4, 4.5.
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Figure 4.4: Wave packet dynamics in the double minimum potential. The initially
localized wave packet in the outer potential well is transferred over the barrier and
stabilized in the inner well.

The fields derived from the classical and the quantum mechanical description

are similar. We tried to insert the classical field into the quantum dynamical

calculations in order to examine the conduct of the quantized system. The result

is pictured in fig. 4.6. It can bee seen that the population transfer is not complete,

a part of the wave packet has too much energy and re-crosses the barrier. At the

time when the cooling process sets in, two parts are cooled down in the particular

well. The quantum dynamical behaviour can not be expressed completely in

terms of classical mechanics.
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Figure 4.5: Electric field constructed from the momentum changes in the system. The
phase jump results from the Heaviside step function, occuring at the time where the
bond-length expectation value 〈x〉 of the wave packet equals zero.

4.1.3 Asymmetric Double-Well Potential

In what follows, the over-the-barrier dynamics in an asymmetric double-well po-

tential is examined. Its analytical form is given as (in atomic units)

V (x) = (0.5x4 − 1 · 10−5x3 − 15x2 − 12.02x+ 160.2) · 5 · 10−4. (4.8)

The potential, together with the ground-state wave function, located in the outer

potential well, is displayed in fig.(4.7) . As before, the objective is to transfer the

wave function from its original position to the other potential well. In order to

do so, energy has to be pumped into the system until the average energy exceeds

the height of the potential barrier. If the then prepared wave packet passes the

barrier to the left, it is to be stabilized in the other well by a cooling process.
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Figure 4.6: Wave packet dynamics in the double minimum potential if applying the
field due to the classical calculations into the quantum dynamical system.

To achieve the transfer process the electric field was determined from Eq.(3.37)

using the form

E(t) = E0 µ1 〈P (t)〉 {Θ[〈x(t)〉]− Θ[−〈x(t)〉]}, (4.9)

where 〈x(t)〉 (〈P (t)〉) denotes the coordinate (momentum) expectation value. As

in section 4.1.2 the dipole moment is taken to be a linear function: µ = µ1x,

with µ1=1 a.u. The parametrization of the field ensures that, as long as the

average position of the wave packet is positive, the field is in phase with the

particle momentum so that energy is absorbed. On the other hand, the field has

the opposite sign as the momentum for negative values of 〈x(t)〉 which amounts

to an effective cooling. As the initial wave function is an eigenstate of H0, the

expectation value of the momentum equals zero so that eq. (4.9) yields E(t) = 0.

Therefore, initially a small constant field is applied which induces a small non-zero
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Figure 4.7: Potential energy surface of the asymmetric double minimum potential.

average momentum.

In our example for the transfer dynamics, a particle mass of 1823 a.u. and a

strength parameter of E0 = 3 · 10−6 a.u. is used. Figure 4.8 shows the coordinate

expectation value (panel (a)) and the derived control field (panel (b)). It is seen

that the field follows the vibrational dynamics of the system. Its maximal field

amplitude corresponds to an intensity of 1.9 · 109W/cm2, so that the field is not

superintense. As the expectation value 〈x(t)〉 becomes negative, the field exhibits

a phase jump so that energy is taken away from the system. This yields a wave

packet localized - for the times regarded here - in the inner potential well. The

wave-packet motion is illustrated in fig. 4.9. Starting from a stationary state,

it takes some time until a vibrational motion with increasing amplitude sets in.

This leads to a crossing of the barrier at about 280 fs. Afterwards, the wave
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Figure 4.8: Panel (a) Coordinate expectation value; panel (b) electric field constructed
from the momentum changes in the system. The phase jump results from the Heaviside
step function, occuring at the time where the bond-lenght expectation value 〈x〉 of the
wave packet equals zero.

packet is stabilized in the inner potential well, exhibiting vibrational dynamics.

Comparing results obtained from calculations performed with different field

strengths E0, it is found that the time required for the barrier crossing is inverse

proportional to the field strength. However, if the field is too weak the dispersion

of the wave packet becomes substantial (not for classical dynamics), and the

momentum expectation value approaches zero so that eq. (4.9) is no longer

suited as a condition to determine the control field.

In fig.(4.11) the mass-dependence of the driving dynamics is shown. The

intuitive impression that a heavier particle requires lower field intensities because
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Figure 4.9: Wave packet dynamics in the asymmetric double minimum potential. The
ground-state wavefunction is transferred over the barrier and stabilized in the inner
potential well.

of close-lying energy levels to drive the system is confirmed. The simple form of

the constructed field reflects directly the properties of the underlying quantum

mechanical motion. One has to keep in mind that, if the motion is comparably

slow, it might not be possible to experimentally realize such a field (up to date).

4.2 Two-Dimensional Case

To illustrate the influence of a motion in more than a single degree of freedom

on the control fields, a two-dimensional problem is regarded. The model system

is characterized by a Hamiltonian

H =
p2

x

2mx

+
p2

y

2my

+ V0(x, y) +W (x, y, t) = H0 +W (x, y, t), (4.10)
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Figure 4.10: Left hand side: Coordinate expectation values for different field strengths.
Right hand side: appertaining fields. In going from (a) – (c) ((b) – (f)) E0 is increasing:
2 · 10−6, 3 · 10−6, 4 · 10−6.

with a potential energy V (x, y) of the form (in atomic units)

V (x, y) = (0.2x4 − 8x2 + 8y2 + γxy) · 10−4. (4.11)

The latter is displayed in fig. 4.12. The parameter γ controlls the coupling

between the two degrees of freedom. For a value of γ = 0, the separable potential

is a double minimum potential along the x direction, and a harmonic potential in

the y coordinate. In analogy to the one-dimensional case, a linear dipole moment

is assumed (µ(x, y) = µ1x + µ2y, µ1 = µ2 = 1 a.u.). The expression for the field
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Figure 4.11: Mass-dependence of the dynamics. Left hand side: Coordinate expecta-
tion values for different masses. Right hand side: appertaining fields. The lower panel
shows the dynamics of a mass of 18229 a.u. and E0 of 3 · 10−6 vs. upper panel: mass
= 1823 a.u. with same E0.

reads

E(t) = E0 {µ1〈P1(t)〉+ µ2〈P2(t)〉} {Θ[〈x(t)〉]− Θ[−〈y(t)〉]}. (4.12)

Here, the field is constructed from the motion in both degrees of freedom. Energy

is transferred to the system if the expectation value of x is larger than zero and

the cooling is effective if it is negative. In the calculation, the masses are fixed

to the hydrogen mass and the coupling parameter is chosen as γ = 1 a.u. .

In fig. 4.13 the time-dependent expectation values of the two coordinates

(middle panel) are compared with the control field (lower panel). For the em-
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Figure 4.12: Potential energy surface of a two-dimensional double minimum potential.
Contours are shown as a function of the two coordinates x, y The contours start at an
energy of 0 and increase in increments of 5 · 10−3a.u..

ployed strength parameter (E0 = 6 · 10−5a.u.), it takes about 150 fs to overcome

the barrier, whereas it takes another 300 fs to cool the system and confine the

wave packet to the other potential minimum. The electric field exhibits the same

phase jump as in the one-dimensional case but now its time dependence is in-

fluenced by the motion in both degrees of freedom. An inspection of the wave

function shows that it is not completely transferred from one potential well to

the other. There is about 10 % of the probability amplitude which remains at

positive values of the coordinate x.

It is instructive, to modify the procedure to construct the field, and exclusively

determine it from the dynamics in the reaction coordinate x. This can formally

be obtained in setting µ2 in eq.(3.37) equal to zero. An example for the outcome

of this construction scheme is presented in Fig. 4.14 (E0 = 5 · 10−5a.u.). The
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Figure 4.13: Panel (a) Electric field constructed from the momentum changes in the
system. The phase jump results from the Heaviside step function, occuring at the time
where the bond-lenght expectation value 〈x〉 of the wave packet equals zero. Panel (b):
Coordinate expectation values.

expection value 〈x(t)〉 clearly shows that the wave-packet transfer takes place as

found in the case discussed above. Nevertheless, here the cooling is only effective

in the x-degree of freedom and the motion in the other coordinate, for the time

interval displayed, exhibits a periodic motion showing a substantial amount of

vibrational excitation. Comparing the above described possibilities of deriving a

field for a two-dimensional system there are some conclusions. First, regarding

the case where the field is derived from both coordinates, the absolute intensity

of the constructed field is higher as both momenta contribute to the field. On

the other hand, the vibrational motion is therefore cooled more effectively in

both coordinates on a faster time scale. This can be explained since driving
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Figure 4.14: Same as fig.(4.13), here only x coordinate contributes to the field.

only one coordinate (x) resonantly the other coordinate is forced to follow the x-

coordinate’s dynamics. Considering the intensity, the second case suffices a lower

intensity as only one coordinate is controlled – the other coordinate’s dynamics

is adapted.



Chapter 5

Selective Bond Breaking: The

HOD Molecule

Much attention has been paid to the bond-selective dissociation of molecules.

A well studied system is the HOD molecule [68–70]. The photo-dissociation

into the two possible decomposition channels H + OD and D + OH has been

investigated applying several theoretical approaches and experiments [71]. One

possibility for a system initially in the electronic ground state X̃1A1 is to apply an

intense IR-pulse and then excite via an UV-pulse into the dissociative B̃1A1-state.

Controlling dissociation ratios by involving the excited dissociative state was

realized by pump/dump control [68], fractional revivals [69], few-cycle pulses [70],

coherent radiative control [72], and non-adiabatic tunneling [73]. Within the

latter a stationary laser field is proposed by utilizing the phenomenon of complete

reflection.

Another possibility to control branching ratios proceeds within one single

electronic state leading to a bond breaking by selectively exciting one vibrational

mode. This was accomplished by ladder-climbing via local or non-local modes

[74,75], by applying optimal control theory [76] or few-cycle Gaussian-pulses [77].

62
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Figure 5.1: Schematic representation of HOD. The molecule is lying in the xz-plane
with a fixed bonding angle of γ = 104◦ bisected by the z-axis. RH and RD denote the
coordinates of H and D, respectively.

In this chapter the model system is shortly introduced and the instantaneous

dynamics approach is applied in order to control the ratio of products in the two

fragmentation channels in the electronic ground state.

5.1 The HOD Model System

Treating the case of total angular momentum J = 0, freezing the bonding-angle

γ, and separation of the rotation and translational motion of the molecule, the

nine degrees of freedom of HOD are reduced to two independent vibrational

modes: For the large mass difference of oxygen, and hydrogen and deuterium

atom, respectively, the center-of-mass is set to the oxygen’s position and the

motions of the other atoms are described by coordinates according to fig. 5.1.

The bonding angle of HOD is fixed to its equilibrium value of 104◦. The form

of the potential energy surface (see fig. 5.2) is approximated by two coupled
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Figure 5.2: Potential energy surface of the water molecule for fixed bending angle
(104◦). The contours start at zero energy and increase incrementally with 0.05 a.u..

Morse-potentials as

V (rH , rD) = D(1− e−β(RH−r0))2 +D(1− e−β(RD−r0))2 − A(RH − r0)(RD − r0)
1 + e(RH−r0)(RD−r0)

.

(5.1)

The potential is taken from Ref. [78], with parameters D = 0.2092 a.u., β =

1.1327 a.u., r0 = 1.81 a.u and A = 0.00676 a.u.. The kinetic energy operator is

given as

T = − 1

2mH

∂

∂R2
H

− 1

2mD

∂

∂R2
D

, (5.2)

where mH is the mass of the hydrogen atom and mD of the deuterium atom. The

dipole moment was taken from Ref. [79] describing a bond-dipole moment as

µ(RH) = µ0RH · e−(RH/r0), (5.3)

where µ0 = 1.63 a.u. and r0 = 1.14 a.u. The dipole moment is equal for both
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coordinates. Assuming, the HOD molecule is fixed in the xz plane (compare to

fig. 5.1), the total dipole moment is given by µ(RH , RD) = µ(RH) + µ(RD) for

a z-polarized electric field. A x-polarized electric field can be described by using

a dipole moment of the form µ(RH , RD) = µ(RH) − µ(RD). To calculate the

term µ · E(t) the angluar dependency has to be included. That means the field

is calculated by

E(t) = Ec(t) · µ(RH , RD) cos(52◦), (for z-polarization) (5.4)

E(t) = Ec(t) · µ(RH , RD) sin(38◦) (for x-polarization). (5.5)

5.2 Dissociation

The branching ratio between the two fragment configurations is determined em-

ploying two different approaches within instantaneous control. The fragmentation

ratio is calculated by applying a mask function cof(R) which collects the part of

a wave packet passing over a defined bondlength value

cof(R) =















1 : R < 5 a.u.

cos2(0.5π(5 a.u.− R)) : R ≥ 5 a.u.
(5.6)

The wave packet is multiplied by the mask function in both coordinates. The

result is collected as it displays the dissociated part of the wave packet. In a first

example the electric field is derived from the condition that the temporal change

of one coordinate’s momentum is zero (comp. chapter 3). Another subsection

describes the fields constructed by a heating process. Furthermore, the role of

the polarization of the irradiating field is compared. It is mentioned explicitly

that in this work both coordinates couple equally to the strong electric field.
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Figure 5.3: HOD dynamics for a field derived with the momentum condition. Panel
(a): expectation values of bondlengths. Panel (b): constructed electric field driving
the instantaneous dynamics. Panel (c): temporal development of the norm (solid line)
and the dissociated parts of the system, as indicated.

5.2.1 Momentum Condition

As a first method the field is determined by the condition of the minimal temporal

momentum change d〈pH〉/dt = 0. The field was constructed by the commutator

E(t) =
E0

h̄
〈ψ(t)|[p(H),H]|ψ(t)〉 (5.7)

E(t) =
E0

h̄

〈

ψ(t)

∣

∣

∣

∣

∣

∂V (RH , RD)

∂Rh

∣

∣

∣

∣

∣

ψ(t)

〉

(5.8)

assuming a linear dipole moment µ(RH , RD) = µ1RH + µ2RD, where µ1, µ2 =

1. In fig. 5.3 the dynamical behaviour is shown. The constructed electric field

with E0 = 1.5 a.u. has a relatively high field strength of 0.3 a.u., proceeding a
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dissociation process within one vibrational motion. This can be seen regarding

the bond length expectation values in panel (a) compared with the dissociated

part in panel (c). The dissociation process occurs at very short times, at longer

times no fundamental change of the dynamical behaviour can be observed. Con-

cerning the ratio of the exit channels the DO + H dissociation is executed with

a 7 times higher probability. The strong field and the fast procedure feature

the disadvantages of this method. Better results can be obtained imposing the

heating condition as presented in the next subsection.

5.2.2 Energy Condition

The second possibility to selectively dissociate the molecule is to apply a heating

process. Again, the H+OD channel ought to be populated. Therefore, the field

is exclusively determined from the momentum in the RH direction (compare to

the two-dimensional double well dynamics in chapter 4):

E(t) =
E0

h̄
〈ψ(t) |[µ(RH , RD), T (PH)]|ψ(t)〉. (5.9)

The dipole moment now is non-linear, exhibiting the mathematical form accord-

ing to eq. 5.3. The commutator yields a different condition, then. Neglecting

second-order derivatives of the dipole-moment µ with respect to R the field is

calculated by

E(t) = E0 · (µH + µD) ·
〈

ψ(t)

∣

∣

∣

∣

∣

∂µ(RH , RD)

∂Rh

∣

∣

∣

∣

∣

ψ(t)

〉

. (5.10)

Fig. 5.4 shows a such constructed field. Panel (a) contains the expectation

values of the two bondlengths, as indicated. The H-motion proceeds with a larger

amplitude than the D-motion. The field (panel (b)) follows the vibrations in the
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Figure 5.4: HOD dynamics for a z-polarized field derived with the heating condition.
Panel (a): expectation values of bondlengths. Panel (b): constructed electric field
driving the instantaneous dynamics. Panel (c): temporal development of the norm and
the dissociated part of the system.

RH degree of freedom, as discussed in chapter 4. The norm of the wave packets

moving into the two reaction channels is also displayed in fig. 5.4. Starting at

65 fs, a first fraction of H+OD reaction products are built and a second burst of

products occurs one OH-vibrational period later. For the chosen E0 parameter

of 1.3 · 10−2 a.u., an overall dissociation probability of 90 % is found as on the

calculated time scale the H+OD dissociation channel is not populated.

Next, the influence of the polarization of the electric field is examined. Em-

ploying the same E0 as in the z-polarized case a similar behaviour is obtained.

This case is illustrated in fig. 5.5. Here, dissociation occurs with a higher proba-
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Figure 5.5: HOD dynamics for a x-polarized field derived with the heating condition.
Panel (a): expectation values of bondlengths. Panel (b): constructed electric field
driving the instantaneous dynamics. Panel (c): temporal development of the norm and
the dissociated part of the system.

bility. As the field intensities are very strong the HOD molecule can be seen as a

prototype system. In the next chapters the instantaneous dynamics approach is

applied to heavier molecules controlling the population ratios of excited electronic

states.



Chapter 6

Controlling Resonant vs.

Non-Resonant Transitions

The control theories introduced in chapter 3 concerning electronic transitions of

molecules are based on resonant transitions. In order to compare resonant to non-

resonant excitation processes, methyl iodide being a well-known model example

is regarded. The structureless absorption band, the so called A-band region cen-

tered around a wavelength of 266 nm, indicating a fast and direct dissociation

process, has been studied experimentally [80,81], as well as theoretically [82], for

reviews see e.g. Refs. [83, 84]. The absorption spectrum in the range of 210 to

350 nm does not exhibit a vibrational finestructure indicating only small contri-

butions of the H-atoms to the approximately pure C – I vibrational motion [83].

At least five electronic states are accessible in the A-band, three of them being

dipole-allowed. But the main contribution to the dissociation products is given

by the repulsive 3Q0 state leading to a methyl radical [x2A′′
2] and a spin-orbit

excited iodide radical [I(2P1/2)] [80]. A conical intersection with the 1Q1 state

is likewise leading to the same dissociation products. The third accessible, also

repulsive electronic state, the 3Q1 state, leading to ground state iodide radicals

70
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[I(2P3/2)] carries a small oscillator strength and can be neglected in describing

the photodissociation dynamics [80]. Time-dependent calculations have been per-

formed implementing model systems in two [85–87], three [88], four [89], five [84],

and also nine [90] dimensions. In this work, a one-dimensional, pseudo-diatomic

model including one and two dissociative potential curves in the A-band, respec-

tively is assumed in order to actively control dissociationratios.

Experiments by Gedanken et.al. investigated multi-photon transitions in

methyl iodide with a wavelength of 798 nm [91]. While the A-band is accesible

by a three-photon process, a corresponding four-photon process gave evidence of

a Rydberg 5pπ → 6s excitation. The aim of the calculations of this work was the

question whether it is possible to modify a laser pulse such that the ratio of the

dissociation products of the particular states can be controlled. In order to do so,

the one-dimensional model system is extended by adding a generic dissociative

potential being likewise accessible by a four-photon process from the electronic

ground state. The model system, consisting of three and four one-dimensional

potential curves, respectively, serves as a base for a comparison of different con-

trol theories. Thereby, the possibility to restrict the algorithms to perform a

non-resonant three-photon process is taken into account.
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6.1 Description of the 3-Level Model System

The time-dependent Schrödinger-equation for the simplified one-dimensional mo-

del system with three electronic states (|X〉, |1〉, |2〉) is of the form

ih̄
∂

∂t

















ψX

ψ1

ψ2

















= H

















ψX

ψ1

ψ2

















, (6.1)

with the Hamiltonian H:

H =

















HX wX1(t, R) wX2(t, R)

w1X(t, R) H1 w12(t, R)

w2X(t, R) w21(t, R) H2

















. (6.2)

Besides the Hamiltonians Hn describing the nuclear motion in state |n〉, the field-

molecule interaction is of the form

wnm(t, R) = −µnm(R)E(t), (6.3)

with the electric field E(t) and the dipole matrix elements µnm(R). For simplicity,

the Condon-appoximation is applied (µ(R) = µ = 1), so that the molecule-field

coupling is taken to be equal in and between all electronic states. Below, several

coupling schemes are investigated, which will be specified later.

With Hn = T + Vn and T being the kinetic energy operator p2/2m and m

the reduced mass of the X – I (X = CH3) pseudo molecule the Hamiltonian H can

be devided into a coordinate- and momentum part, and another term depending

explicitly on time. For simplification, the numerous potential surfaces of the

A-band region are reduced within the model system to the one single potential
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Table 6.1: Parameters for potential energy functions in [a.u.]

a11 51.53 β11 1.64 kf 0.036225 g1 0.0874
a12 25.15 β12 1.3 ε0 0.034642 g2 0.87094
a21 0.71398 β13 1.4 x0 0.619702 g3 4.04326
a22 0.82978 β21 0.38597 R0 4.16799 g4 0.036225
a23 0.048149 β22 1.5 R02 4.5 g5 0.15581

β23 1.5 rx R-0.20218x g6 0.4914
β24 0.5 x 0.1 g7 0.619702

ε2 0.0615 g8 0.034642

curve 3Q0 |1〉 (which dominates the A-band absorption spectrum). The form

of the potential is taken from Refs. [86, 87] and reduced into one dimension by

fixing one parameter of the two-dimensional potential surface given there. The

Rydberg state (|2〉) is described by a potential having the form of the 1Q1 state

shifted by an additional parameter ε2:

VX(R) = g1(e
−g2(R−g3) − 1)2 − g1 + 0.5(g4 + (g5 − g4)e

(−g6(R−g3))

· (x− g7e
−g6·(R−g3))2 − g8

V1(R) = a11 · e−β11·R + 0.5 · (kf + a12 · e−β12·R)(x− x0 · e−β13(R−R0))2

V2(R) = ε2 + (a21e
−β21·R/{1 + eβ22(R−R02)}+ a22e

−β23rx

+ a23e
−β24rx + 0.5 · kfx

2 − ε0) (6.4)

The potentials are displayed in fig. 6.1, which also indicates the multiphoton

excitation scheme to be discussed in what follows. Their colors black (ground

state |X〉), red (state |1〉) and green (state |2〉) are retained throughout this

chapter encoding populations and dissociation ratios of the various states.

Because of the dissociative character of the two upper potential surfaces, it

is necessary to apply a mask function (cof) removing the outgoing parts of the
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Figure 6.1: Potential energy sufaces in methyl iodide in one dimension, assuming a
reaction coordinate describing the X – I (X = CH3) separation. The form of the poten-
tials for |X〉 and |1〉 are taken from [86,87]. State |2〉 is a model potential parameterized
as described in the text. The arrows indicate three-photon non-resonant plus an addi-
tional one-photon resonant transition at a wavelength of 5.71·10−2 a.u. [798 nm]. The
colors black, red and green are used throughout this chapter to denote populations and
dissociation yields in the |X〉, |1〉 and |2〉 electronic states, respectively.

wave packets:

cof(R) =















1 : R < 13 a.u.

cos2(0.5π(13 a.u.− R)) : R ≥ 13 a.u.
(6.5)

The parts of the wavepacket being removed as a function of time are collected

and are taken to measure the population in the respective electronic state.
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6.2 Control of Photodissociation Dynamics

Applying a Fourier-transform limited Gaussian laser pulse with a carrier wave-

length of 798 nm [5.71·10−2 a.u.], a field strength of 0.15 a.u. and a spectral

width of β = 1000 cm−1 yields a temporal evolution of populations and dissoci-

ation yields as is shown in fig. 6.2.
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Figure 6.2: Panel (a) displays the temporal evolution of population; (b): dissociated
part of the wave packets, the main dissociation product results from state |2〉, but small
contributions from state |1〉 are also obtained. Panel (c): The Gaussian pulse, E =
0.15 a.u., λ = 798 nm, β = 1000 cm−1. The colors of (a) and (b) are chosen according
to the corresponding potential curves.

Within the calculation, the coupling in eq. (6.2) is set to w(t) = −E(t).

Regarding the behavior of the population, oscillations in the three states can be

observed. As can be taken from the figure, the main dissociation channel corre-
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sponds to the electronic state |2〉. Thereby, the fragment distribution depends

on the spectral width β and strongly on the pulse intensity.

6.2.1 Genetic Algorithm

In order to maximize the population of state |1〉 a genetic algorithm was applied.

Starting with a population of 10 individuals, a cross-over probability of 50% and

a mutation probability of 30%, four chirp-parameters and the field strength were

refined. Thereby, the evolutionary parameters are to be deliberated: a huge

population dimension may lead to faster convergence but inflates the calculation

time, while a very small dimension may never find a minimum. Similarly, the

probability of modification has to be estimated, influencing the convergence be-

havior, likewise. An adequate large mutation or cross-over probability arranges

for a sufficient number of new coincidental numbers in a gene’s parameters. As a

modified parameter set need not to be better than the “parental” unmodified pa-

rameter set, an undersized modification probability could cause to be trapped in

a local minimum. In contrary, an oversized evolutionary modification probability

may eliminate good parameters from the gene-pool too early. The convergence

behavior for the chosen evolutionary parameters was checked upon the basis of a

simple minimization problem.

Several calculations have been made, varying the laser field strength and

spectral width β in the frequency domain. A small spectral width β leads to

longer pulses in the time domain. For numerical reasons the step-size, both in

frequency- dω as well as in time-domain dt, are confined to very small numbers.

The reciprocal relation between these two incrementals

dt =
2π

dωN
, (6.6)
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Figure 6.3: Pulse design using genetic algorithms. Panel (a): temporal development
of population and (b) dissociation yields for a pulse (c) with β = 500 cm−1, a1 =
−2.24 · 103, a2 = 1.01 · 106, a3 = −2.27 · 106, a4 = 3.46 · 106 and an field strength of E
= 0.965 a.u. in time domain and (d) the absolut square in frequency domain.

with N being the number of grid points requires a relatively huge grid (Nyquist-

frequency: 2.733 a.u. [600000 cm−1]) size. From N = 214 a step-size of dt = 1.17

a.u. [0.028 fs] and dω = 3.37 ·10−4 [73.25 cm−1] arises. Fig. 6.3 and 6.4 display

the temporal development of the norm in the various electronic states and the

respective dissociation yields, as well as the parameterized pulses for two spectral

widths, β = 500 and 1000 cm−1.

Both pulses are ultra-intense. Noticeably, the first (linear) chirp parameters

α1 take in both cases negative values, while the second ones α2, a quadratic shift
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Figure 6.4: Pulse design using genetic algorihms, see fig. 6.3 for a pulse (c) with
β = 1000 cm−1, a1 = −8.72 · 104, a2 = 4.51 · 106, a3 = 3.12 · 106, a4 = 1.91 · 106 and an
field strength of E = 0.677 a.u. in time domain and (d) in frequency domain.

of ω0, are positive. [The lower-order parameters (phase factor, group delay) are

not considered here.]

The negative value of α1 can be estimated by displaying the difference poten-

tials:

V2(R)− VX(R) = D2X

V1(R)− VX(R) = D1X (6.7)

V2(R)− V1(R) = D21

It can be seen from fig. 6.5 that the differences between the potential energy
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Figure 6.5: Difference potentials of MeI, as indicated. The position of the ground-state
wave-function is also displayed.

surfaces diminish with increasing bond-lengths. Considering the temporal devel-

opment of the population it is assumed that its dynamical behaviour occurs at

small distances (around the ground-state wave-function’s position) only. At the

end of the pulse duration the generated excited-state wave packets are moving

outward into the region of decreasing difference potential. The negative sign of

the linear chirp parameter α1, denoting a red-shift (i.e. the smaller frequencies

arise in a temporal picture at later times) causes a population-transfer into the

first excited state avoiding a population transfer into the second excited state. It

can be read off the figure that the energy difference between states |1〉 and |X〉

decreases more rapidly than the difference potential between states |2〉 and |1〉.

At the trailing edge of the pulses where the smaller frequencies emerge, a transi-
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tion |1〉 ← |X〉 is favored as the other transition’s energies are not diminished to

the same degree.

The positive sign of α2, a quadratic shift elicits a shape deforming of the

laser pulse. The symmetric Gaussian pulse envelope deforms to an asymmetric

function, where the raising edge is shorter than the falling edge of the pulse.

Therfore, the lower frequencies, arising mainly in the falling edge, act with a

higher intensity.

These simple considerations are presented in order to estimate the dynami-

cal processes induced by the chirped pulse. For a more accurate description a

Fourier analysis of the pulse is to be performed. The parametrical defined pulses

obtained in terms of chirp parameters are efficient in driving the dissociation

yield. Dissociation deriving from target state |1〉 occurs with a 4.5 times higher

probability namely about 70 %. It is therefore possible to reverse the ratio of

dissociation products. While a rough estimation of the chirp parameter’s sign

can be explained in a physical picture, the exact numbers resulting from the

performed genetic algorithm are very difficult to interpret in terms of a physical

meaning.

6.2.2 Optimal Control Theory (OCT)

Within Optimal Control Theory the final time tf and the position of a pre-defined

wavefunction at final time ϕf (tf) serve as a parameter. In our calculations the

initial wave function ϕi(t = 0) is the groundstate wave function. The target wave

function in state |1〉 was chosen according to eq. (3.9), centered around 11.4 a.u.

and slightly broadended compared to the ground state wavefunction [92]. As an

initial guess a Gaussian pulse with the central wavelength of λ = 798 nm and
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a FWHM = 100 fs was assumed. The overlap-function O(t) for the coupling

scheme given in eq. (6.2) is given by

O(t) = =〈ψ|µ|χ〉 = ={〈ψX(t)|χ1(t)〉+ 〈ψX(t)|χ2(t)〉

+ 〈ψ1(t)|χX(t)〉+ 〈ψ1(t)|χ2(t)〉+ 〈ψ2(t)|χX(t)〉+ 〈ψ2(t)|χ1(t)〉} ,(6.8)

where the χn(t) and ψm(t) are the backward and forward-propagated wave pack-

ets, respectively. Calculating the time-dependend overlap, the electric field can

be determined according to eq. (3.13). Since the backward propagated functions

χn(t) are constructed by projection of ψ1(tf) onto the target state ϕf(tf), the

form of the optimal pulse depends strongly on the final time tf as can be taken

from fig. 6.6 and fig. 6.7.

Comparing the shaped pulses for 400 and 600 fs it can be seen that for a short

final time tf multi-photon processes are favored while longer times prefer one-

photon processes, a tendency which is well known in literature [93]. Furthermore,

in fig. 6.6 for short final time tf the field interaction starts immediately, exciting

the system into the upper electronic states. Since for the excited states wave

packets a certain time (approx. 100 fs) is needed to reach the target state’s

position, a second pulse starting near 300 fs re-excites the system such that

at tf = 400 fs the overlap of the forward propagated wave function and ϕf is

maximized.

A longer final time tf of 600 fs lets the pulse start later (at about 450 fs)

again that the wavepacket moving outwards overlaps with the target state wave

function at tf = 600 fs. The excitation is performed by a one-photon process.

Regarding the disociation yield, very poor results at the final time (about 10

%) are achieved but the increase at later times (about 70 %), because ψ1(tf ) is
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Figure 6.6: Pulse shaping with optimal control theory. Panel (a): Temporal develop-
ment of population and (b) the dissociation yields for a final time tf = 400fs. Panel
(c) shows the optimal pulse in time and (d) in frequency domain.

centered around 11.4 a.u. and dissociation is defined to occur at R > 13 a.u.

(see eq. (6.5)). For this case a calculation succeeding the final time is performed

in oder to demonstrate the dissociation amount after the pulse derived from the

optimal control theory has switched off.

The algorithm has just few possibilities to reach the target, either with a

strong pulse, shaking the population via Rabi-like oscillations, remaining the

bonding distance at shorter values so the wave packet moves outwards at longer

times (see e.g. genetic algorithm), or with a tardy starting pulse via a one-photon

process as happens here. (In principle, the tendency is influenced by the choice of

the strengthning parameter α.) In fig. 6.6 (short time, tf = 400 fs), parts of the
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Figure 6.7: As in fig. 6.6, pulse shaping with optimal control theory for a final time
tf = 600fs. Additionally later times, after the control pulse has switched off are shown.

spectrum are near 12000 cm−1, the corresponding 3-photon frequency, while these

contributions to the spectrum are absent in the other spectrum. The 1-photon

frequency at 36000 cm−1 can be found in both spectra.

Within optimal control theory a system starting from an initial state |ϕ0〉 is

driven into a pre-defined target state |ϕf〉 at a certain final time tf by an iterative

algorithm. There are only few possibilities e.g. the choice of final time tf and

position of the target state to influence the variationally obtained optimal field.

The derived fields, composed of several frequency components are very efficient

but perform mainly the corresponding one-photon excitation. An interpretation

in terms of a physical meaning is not easy at all, as no simple considerations



84 6.2. CONTROL OF PHOTODISSOCIATION DYNAMICS

concerning the different temporal und frequency components can be made. In

the next approach the algorithm is restricted to find an electric field transfering

population with a fixed central frequency.

6.2.3 Restricted OCT

Using the restriction conditions for optimal control theory, a search in terms of

chirp parameters of a field with a defined central frequency can be performed.

Thus, the pulse is rewritten in terms of a Taylor series in frequency domain. With

the additional condition δJ = 0 for all δαi the set of chirp parameters can be

determined. For N chirp parameters N coupled integral equations are obtained.

With the approximations discussed in section 3.3, the first (Fi(αi)) and second

(Ai(αi)) partial derivatives of the electric field E(ω, α1, α2...) with respect to the

chirp parameters α1, α2... are calculated as

∂E1(ω)

∂α1
= −i · (ω − ω0)

2 · exp(−((ω − ω0)/β)2 − i(α1 · (ω − ω0)
2

+ α2 · (ω − ω0)
3 + α3 · (ω − ω0)

4 + α4 · (ω − ω0)
5))

... (6.9)

∂2E1(ω)

∂α2
1

= −(ω − ω0)
4 · exp(−((ω − ω0)/β)2 − i(α1 · (ω − ω0)

2

+ α2 · (ω − ω0)
3 + α3 · (ω − ω0)

4 + α4 · (ω − ω0)
5)).

...

The partial derivatives are Fourier-transformed into time domain and the 2N

integral equations

F1(α1) =
∫ tf

t0
dt (O(t)− 2λE(t)) · ∂E(t)1

∂α1

(6.10)

...
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A1(α1) =
∫ tf

t0
dt (O(t)− λE(t)) · ∂

2E(t)1

∂α2
1

− λ∂E1

∂α1

...

are solved numerically. In the above equations, E(t) is the electric field, O(t) the

overlap function as before (eq. (6.8)) and λ is given by the overlap function and

the strength parameter α

λ = −
√

1

α

∫ tf

t0
dtO(t)2. (6.11)

The new set of chirp parameters is determined with the help of eq. (3.18). Then,

using these chirp parameters, the new electric field E(ω, α1, α2 · · ·) is calculated

and Fourier-transformed into time-domain. Fig. 6.8 shows a such derived field

and the corresponding dynamics for a set of four chirp parameters, where αi ∈

[−106; +106].

The approach to restrict optimal control theory in terms of the chirp param-

eters yields only poor results concerning the dissociation yield and the ratio of

dissociation products deriving from the target state |1〉. Compared to the rean-

dom genetic algorithms a linear search described by a clear mathematical access

is executed. The functional J differs from the one defined for the genetic algo-

rithms as a maximal overlap of wave functions at a certain time tf is maximized.

Therefore, the system is forced to excite such that the generated wave packet

in moving onward overlaps with the target wave function. Genetic algorithms

possess a lower dependence concerning the time dissociation takes place, as the

dissociated part in one electronic state is collected and maximized and no final

time tf influences the results.

The chirp parameters αi differ in their absolute values compared to the ones
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Figure 6.8: Pulse shaping with restricted optimal control theory. Panel (a): Temporal
development of population and (b) the dissociation yields for a final time tf = 400fs.
Panel (c) shows the optimal pulse in time and (d) in frequency domain. Field strength
parameter α = 9.8e-4, E =0.35, a1 = -57171.99, a2 = 393528.4 a.u.

obtained from genetic algorithms, but the tendency, namely a negative sign for

α1 (-5.72·104) and a positive one for α2 (+3.94·104), can be observed likewise.

Thus, the restricted optimal control theory yields a picture consistent with the

one discussed for the parameters refined with genetic algorithms.

6.2.4 Instantaneous Dynamics

Applying the instantaneous algorithm with the condition of monotonic increase

of population in state |1〉 as introduced in chapter 3.4.4, a control field can be
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constructed in chosing

E(t) = −E0

h̄

∑

m

=〈ψ1(t)|µ1m|ψm(t)〉, (6.12)

where m takes the values X and 2 and the transition dipole moments µ1m are

constant within the Condon-approximation. In order to prepare a small amount

of population in states |1〉 and |2〉 (for zero population the field is zero, see section

3.4.4) a seed pulse with a carrier wavelength λ = 798 nm, field strength Es = 0.05

a.u. and a width FWHM = 20 fs is applied. After 50 fs the field is constructed

via eq. (6.12) with a field strength parameter E0 = 1·10−1 a.u. Fig. 6.9, panel

(a) shows the population in the three electronic states, the colors according to

the encoding as desribed before.

A close look at the electric field shows a strong and short pulse, centered

around 55 fs. The seed-pulse does not influence the population appreciably but

assures that there is a few percentage of population in the excited states. Then,

the strong pulse transfers population via a 1-photon process into |1〉 state. After

about 100 fs the exited state wave packet reaches the dissociation limit and

the main part within the given timeframe is dissociated. Thereby a very high

efficiency concerning the dissociation ratio and amount (85%) is achieved.

The derived pulse reflects the dynamical behaviour of the system, leading to

a strong pulse transfering the main part of the population into the first excited

state. This is due to the fact that the electric field is derived by the overlap of the

excited wavepackets with the ground state wavepacket. Since the wavepackets

moving outward have no significant overlap to ψX at later times, the main part

is transfered into state |1〉 at once. Examining the spectral distribution of the

pulse it can be seen that it exhibits frequency components around 36000 cm−1,
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Figure 6.9: Pulse constructed with the instantaneous dynamics algorithm. Panel (a):
Temporal development of population and (b) the dissociation yield. Panel (c) shows
the derived pulse in time domain obtained with a field strength parameter E0 = 1 ·10−1

a.u. and a Gaussian seed pulse with field strength Es = 0.05 a.u., a carrier wavelength
λ = 798 nm and a width FWHM = 20 fs.

describing an one-photon process. This follows from the fact that the population

transfer is solely performed from the electronic ground state, being energetically

seperated from the target electronic state |1〉 by about 36000 cm−1 – the same

frequency as found here. As the algorithm describing instantaneous dynamics

relies on a physical picture, only few possibilities exerting an influence on the

system as well as the laser pulse are given. These effects will be discussed in the

next chapter on a different model system.
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6.2.5 Restricted Instantaneous Dynamics

Re-considering the excited states, it is realized that they are energetically seper-

ated by about 12000 cm−1. In order to restrict the algorithm to construct a field

where the one-photon transition is eliminated and a three-photon process is en-

forced, the main population transfer has to originate from state |2〉. Hence, eq.

(6.12) is converted to

E(t) = −E0

h̄
=〈ψ1(t)|ψ2(t)〉. (6.13)

The algorithm can only work when there is a sufficient amount of population in

state |2〉. Therefore, a much stronger seed-pulse with the same parameters as

before, but an field strength of 0.1 a.u. is applied. In fig. 6.10 the obtained pulse

and the driven dynamics are shown.

In comparison to the unrestricted case the seed-pulse causes not only a few

percentage of population in the excited electronic states but an approximately

equal distribution. Then, a very short pulse at 55 fs transfers the main part

of population from |2〉 into state |1〉, exhibiting a similar dynamics as in the

unrestricted case. Thereby, a dissociation yield of about 50 % is achieved. As

shown in fig. 6.10, panel (d), the frequency of the pulse is – as to be expected

– near 12000 cm−1. Comparing the dissociation ratios to the ones obtained

with the other algorithms, the field constructed by instantaneous dynamics yields

a more accurate discrimination and additionally gives physical insight into the

transfer processes of the system. The high field strength is within the scale of

the other algorithm’s intensities for a multiphoton process. In the next sections

the comparison concerning the different algorithms is applied for different non-

resonant transitions within this model system.
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Figure 6.10: Pulse constructed with the restricted instantaneous dynamics algorithm.
Panel (a): Temporal development of population and (b) the dissociation yields. Panel
(c) shows the derived pulse in time and (d) in frequency domain obtained with a field
strength parameter E0 = 0.9 a.u. and a Gaussian seed pulse with field strength E =
0.1 a.u., a carrier wavelength λ = 798 nm and a width FWHM = 20 fs.

6.3 Alternative Coupling scheme

In another coupling scenario it is assumed that the Rydberg state |2〉 is not

directly accessible from the electronic ground state |X〉. As before, state |1〉 is

equally coupled to both other electronic states. Therefore, the coupling matrix

is of the form

W (t) =

















0 w(t) 0

w(t) 0 w(t)

0 w(t) 0

















, (6.14)
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where w(t) = −E(t). Within this coupling scheme, the population dynamics

exhibits other features. This is exemplified with an unchirped pulse (fig. 6.11),

where a higher field strength is needed to transfer population into the excited

state.

150 200 250 300 350 400 450
Time [fs]

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8

1

Figure 6.11: Dynamics when applying an untaylored Gaussian laser pulse to the system
in the abscence of a coupling between states |X〉 and |2〉. The upper panel displays the
temporal evolution of population; lower panel: dissociated part of the wave packets,
the main dissociation product results from state |2〉, but small contributions from state
|1〉 are also obtained. The colors are chosen according to the corresponding potential
curves. For the calculations an unchirped Gaussian with a width β = 1000 cm−1,
carrier wavelength λ = 798 nm, but an field strength E = 0.28 a.u. is applied.

The instanataneous dynamics algorithms shows a similar picture as before

(see fig. 6.12). We chose a seed-pulse of the form E(t) = 5 · 10−2 exp(−β(t −

t0)
2) · cos(ω0t) assuring a small population transfer to the excited states. Again,

a low field strength is sufficient as a one-photon process occurs.



92 6.3. ALTERNATIVE COUPLING SCHEME

0 100 200 300 400 500
Time [fs]

−0.1

−0.05

0

0.05

0.1

E
 [a

.u
.]

0

0.2

0.4

0.6

0.8

0

0.5

1

(a)

(b)

(c)

Figure 6.12: Pulse constructed with the instantaneous dynamics algorithm without a
coupling between states |X〉 and |2〉. Panel (a): Temporal development of population
and (b) the cut part of the wavepackets itemized to the different dissociation channels.
Panel (c) shows the derived pulse in time domain obtained with a field strength pa-
rameter E0 = 9·10−1 a.u. and a Gaussian seed pulse with field strength E = 0.05 a.u.,
a carrier wavelength λ = 798 nm and a width FWHM = 20 fs.

A similar scenario can be seen for a pulse optimization with a genetic algo-

rithm. It may be surprising that the linear chirp parameter α1 has a positive sign,

but a closer look to the temporal evolution of the norm gives the explanation for

this behavior. The blue shift of the pulse, that means, the increasing temporal

frequency forces the system to perform the |X〉 to |1〉 transition at the end of the

pulse duration. Then, as the direct four-photon transition is forbidden (coupling

scheme) a high yield of population in the |1〉 state is achieved with a higher en-

ergy. This is consistent with fig. 6.5 and the resonance condition obtained from

the difference potentials in eq. (6.7).
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Figure 6.13: Taylored pulse obtained by a genetic algorithm for a system without
coupling between states |X〉 and |2〉. Panel (a): resulting evolution of population and
dissociation amount from the both electronic excited states (panel b)). Panel (c): The
pulse with β = 1000 cm−1, a1 = 6.84·104, a2 = 2.19·105, a3 = −9.45·106, a4 = 4.50·106

a.u. and field strength E = 0.354 a.u. in time domain and in frequency domain (panel
(d)). The ordinate displays the field stength [a.u.].

Optimal control theory gives a different picture. The objective is to maximize

the overlap between a propagated wave function and a fixed target wave function

at a pre-defined time tf . Within the altered coupling scheme the time-dependent

overlap O(t) takes the form:

O(t) = =〈ψ|µ|χ〉 = = (〈ψX(t)|χ1(t)〉+ 〈ψ1(t)|χX(t)〉

+ 〈ψ1(t)|χ2(t)〉+ 〈ψ2(t)|χ1(t)〉) (6.15)



94 6.3. ALTERNATIVE COUPLING SCHEME

0 20000 40000 60000 80000
Frequency [cm

−1
]

0 100 200 300 400

Time [fs]

−0.02

−0.01

0

0.01

0.02

E
 [a

.u
.]

0.0001

0.0002

0

0.5

1

(a)

(b)

(c)

(d)

Figure 6.14: Pulse shaping with optimal control theory for a system without coupling
between states |X〉 and |2〉. Panel (a): Temporal development of population and (b)
the cut part of the wavepackets itemized to the different dissociation channels for a
final time tf = 400fs. Panel (c) shows the optimal pulse in time and (d) in frequency
domain.

As the target function ϕf is fixed at a certain time (tf), the pulse sets in at

later times. The resulting dissociation yield can be estimated to resulting mainly

from the |1〉-state. It can be seen that a short final time of 400 fs preferes a

multi-photon process. Invoking different coupling schemes results in a different

fragmentation behavior. Thus, the derived control fields are quite sensitive to

changes in a system’s properties.
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6.4 Extended Model System: 4 electronic po-

tentials

In this section, the model system is extended to include a fourth electronic state

and a non-adiabatic coupling. The corresponding potential curve represents a cut

through the 1Q1 potential surface in the A-band of methyl iodide. The coupling

matrix is given as

W (R, t) =

























0 w(t) w(t) w(t)

w(t) 0 V12(R) + w(t) w(t)

w(t) V12(R) + w(t) 0 w(t)

w(t) w(t) w(t) 0

























, (6.16)

where the diabatic states |1〉 and |2〉 are coupled by a potential coupling term

V12 and an external electric field w(t) = −E(t) (further referred to as coupling

scheme I). The analytic form of the 1Q1 potential and the coupling element is

taken from Ref. [87]

V2(R) = (a21e
−β21·R/{1 + eβ22(R−R02)}+ a22e

−β23rx

+ a23e
−β24rx + 0.5 · kfx

2 − ε0) (6.17)

V12(R) = 0.0021 · e−(R−4.2)/2. (6.18)

In a second coupling scheme to be investigated, the states |1〉 and |2〉 are not

coupled by the external field, i.e. the respective matrix elements contain only the

potential coupling V12 (coupling scheme II). Fig. 6.15 shows the potential curves

of the model system. States |1〉 and |2〉 are tangent to each other at a bonding

distance around the equilibrium position in the electronic ground state |X〉.

The various control schemes as presented in the former sections are applied to
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Figure 6.15: Potential energy sufaces in methyl iodide in one dimension, assuming a
single C – I vibrational motion without H-atom contribution. The form of the potentials
for |X〉 - |2〉 are taken from [86,87]. The exact form of the generic potential |3〉 can be
found in the text. Diabatic states |1〉 and |2〉 are coupled by a potential coupling term
V12(R) (not shown here).

the four state system in what follows. In doing so, the objective is to selectively

excite into one of the two states |1〉 and |2〉 , respectively.

The two coupling schemes I and II, as mentioned above, are compared concern-

ing the dynamical behavior of the system. Therefore, a non-taylored Gaussian

laser-pulse with λ = 798 nm, a field strength of E = 0.2 a.u., and FWHM = 50

fs is applied to the system. The temporal development of the populations in the

various states is shown in fig. 6.16, upper panel.

Both scenarios differ strongly in their dynamical development and therefore

also in the ratio of dissociation products. For coupling case II the ratio of the

main dissociation products, mainly deriving from state |1〉 and |2〉, is about 3:2;



CHAPTER 6. RESONANT VS. NON-RESONANT TRANSITIONS 97

150 200 250 300 350
0

0.1

0.2

0.3

0

0.2

0.4

0.6

0.8

1

150 200 250 300 350 400
Time [fs]

−0.2

−0.1

0

0.1

E
 [a

.u
.]

150 200 250 300 350 400
0

0.1

0.2

0.3

0.40

0.2

0.4

0.6

0.8

1

Figure 6.16: Left panels: temporal development of the populations and the dissociation
yields for coupling case II. Right panels: the same for an additional external coupling
with the laser field (case I), the latter is displayed in the lowest panel. Field parameters:
λ = 798 nm, E = 0.2 a.u., and FWHM = 50 fs.

both other states are less populated. A different picture arises when the external

field also couples both diabatic states. Then, state |2〉 is 3 times more populated

than all the other states, which are approximately equally populated.

6.4.1 Instantaneous Dynamics

Applying the instantaneous dynamics approach in order to maximize the disso-

ciation ratio of one particular state, either |1〉 or |2〉, the results differ strongly

depending on the coupling scheme, as can be taken from fig. 6.17. First, state

|1〉 is to be optimized. Choosing the same field strength parameter E0 = 3 · 10−1
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a.u. for both coupling schemes, a similar picture emerges: a short and intense

pulse with the one-photon frequency follows the intitial seed pulse immediately,

causing a strong increase of population in state |1〉, accompanied with a weaker

increase in state |2〉, because of the potential coupling transferring population

into this state. A closer look at the population in state |1〉 near 80 fs shows

small oscillations according to a population transfer into state |2〉 via potential

coupling. This can not be seen in coupling scheme I (Fig. 6.17, right panels),

where the field is allowed to influence the coupling between the diabatic states.
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Figure 6.17: Optimizing |1〉 state population employing fields from the instantaneous
dynamics. Left panels: temporal development of the population (a) and the dissociation
yields (c) for coupling scheme scheme II. Right panels: the same for an additional
external coupling with the laser field (coupling scheme I). Field strength in both cases:
E0 = 3 · 10−1a.u., seed-pulse with Es= 5 · 10−2 a.u..
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When both states are additionally coupled by the electric field, the dissoci-

ation yield of the target state |1〉 and also the ratio of dissociation products is

higher than in the other coupling scheme. Since the diabatic potential coupling

decreases for increasing bonding distances R, no significant part of population is

transfered via diabatic coupling into state |2〉 at larger distances. An external

coupling between states |1〉 and |2〉 reduces the part of population being trans-

ferred into the diabatic state even at smaller bondlengths.

As state |1〉 is the main dissociation channel even without a special pulse

design, the more demanding objective is to maximize the dissociation products

originating from state |2〉. First, coupling scheme II is assumed (fig. 6.18, left

panels). The approach yields poor results concerning dissociation yield as well as

the ratio of dissociation products; the temporal development of the population

resembles the case where the objective was to optimize the |1〉 state population.

In the second case, where both states are additionally coupled by the external

field, the system is very sensitive to an additional coupling as can be seen in the

dissociation yields of state |2〉 in panels (b) and (d) of fig. 6.18. Nevertheless,

the obtained pulses including and excluding external coupling look very similar

but yield different populations.

All resulting fields exhibit a frequency component around 36000 cm−1 describ-

ing a resonant one-photon process. In order to restrict the system to perform a

three-photon process, according to the preceding section, the field is constructed

by excluding the electronic ground state from the calculation. Therefore, the

pulse is determined by two diferent approaches depending on the coupling of
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Figure 6.18: Optimizing |2〉 state employing fields from the instantaneous dynamics.
Left panels: temporal development of the population (a) and the dissociation yields
(c) for coupling scheme II. Right panels: the same for an additional external coupling
with the laser field. Field strength in both cases: E0 = 3 · 10−1a.u., seed-pulse with
Es= 5 · 10−2 a.u..

states |1〉 and |2〉:

(I) E(t) = E0={〈ψ2|ψ1〉+ 〈ψ2|ψ3〉}

(II) E(t) = E0={〈ψ2|ψ3〉}. (6.19)

Fig. 6.19 and fig. 6.20 show the temporal developments of the population

and the dissociation yields as well as the derived electric fields for a monotonic

increase of population in the |1〉 (fig. 6.19) and |2〉 state (fig. 6.20), depending
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Figure 6.19: Optimizing |1〉 state with restricted instantaneous response. Left panels:
temporal development of the population (a) and the dissociation yields (b) for coupling
scheme II. Right panels: the same for an additional external coupling with the laser
field (scheme I). Field strength in both cases: E0 = 3 a.u., seed-pulse with Es= 1 ·10−1

a.u.

on the coupling scheme.

As before, in the one-photon case, the dissociation amount of the |1〉 state for

optimizing this state is not remarkably influenced by the additional field coupling.

For both coupling schemes the resulting fields resemble each other, leading to a

similar dynamical behavior. The fast dissociation process is mainly determined

by pulse sequences within the first 200 fs.

A different picture arises if the objective is to optimize state |2〉. For coupling

scheme II the dissociation ratio is determined by two pulse groups, the first
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Figure 6.20: Optimizing |2〉 state with restricted instantaneous response. Left panels:
temporal development of the population (a) and the dissociation yields (b) for coupling
scheme II. Right panels: the same for an additional external coupling with the laser
field (scheme I). Field strength in both cases: E0 = 3 a.u., seed-pulse with Es= 1 ·10−1

a.u.

located around 50 fs (shortly after the seed pulse ends), arranging a population

transfer originating from state |X〉 via the (dipole allowed) |1〉 state to reach

state |2〉 by potential coupling. The second pulse group is activated around 140

fs when a first part dissociates and the wave packets are located at larger bonding

distances, influenced by a vanishing potential coupling. Then, by first populating

state |3〉, state |2〉 is accessible directly without reaching state |1〉. Therefore,

in order to achieve population tranfer into state |2〉 without a direct access by

the electric field, dissociation products from all involved electronic states are

obtained.
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An additional field coupling between the diabatic states allows for a direct

transfer into state |2〉. Thus, at larger bond distances, where the potential cou-

pling vanishes, population from state |1〉 and |3〉 is transferred. A discrimination

between state |X〉 and |2〉 leading to the same dissociation limit is more challeng-

ing to resolve. In the next subsections the objective is to maximize population

in state |2〉 for coupling scheme I without additional external coupling within the

afore used algorihms.

6.4.2 Optimal Control Theory

In this subsection the control fields obtained by the instantaneous dynamics al-

gorithm are compared to the optimal control field. Optimal control theory in its

unrestricted form was applied for a final time tf = 400 fs and a strength parame-

ter α = 9.8 · 105. The field and the dynamical behaviour of the system are shown

in fig. 6.21.

A first weak pulse sequence near 40 fs excites a small part of the system.

The very strong part of the field initiating at about 300 fs induces a wave packet

moving outward to maximize the overlap with the target wave function at final

time tf = 400 fs. The derived field is stronger than the ones obtained from

the instantaneous dynamics algorithm. Although the disscociation yield within

the caluclated time is very poor it will increase at later times, as discussed in

the last sections. The control field derived from optimal control theory transfers

population effectively into state |2〉 but is difficult to interpret.
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Figure 6.21: Maximizing the overlap with a target wavefunction in state |2〉 within
optimal control theory. Panel (a): temporal development of the population and the
dissociation yield (middle panel) for coupling scheme II. Panel (c): Derived laser field
for field strength parameter of α = 9.8 · 105a.u.

6.4.3 Genetic Algorithm

In a last approach the dissociation amount in state |2〉 without additional coupling

between the diabatic states |1〉 and |2〉 by an external electric field (coupling

scheme II) was maximized using a genetic algorithm. The population size is

chosen as before (10 individuals) and the evolutionary modifying parameters as

cross-over and mutation probability are chosen to 60 % and 50%, respectively.

In order to maximize the dissociation amount of state |2〉 the object functional

is defined as

J =
1

|〈ψ2(R)|ψ2(R)〉| (6.20)
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Figure 6.22: Upper panel: Temporal development of the norm. Middle panel: The
dissociation yields. Lower panel: Parameterized pulse obtained from a genetic algo-
rithm as described in the text with β = 1000 cm−1, a1 = −1.00 · 105, a2 = −1.00 · 107,
a3 = 5.26 · 106, a4 = 5.95 · 106 a.u.. Field strength: 0.308 a.u.

to be minimized. The resulting dynamics and dissociation yields as well as the

electric field are shown in fig. 6.22.

An analysis based on difference potentials as performed in the last section is

more complicated. The system is very sensitive to the present position of the

wavepackets, as the various difference potentials of the energetically close lying

states depending on the coordinate may change very rapidly. But similar to the

behavior of the system in the last section the first two chirp parameters feature

negative signs.

To conclude the comparison it can be said that the fields derived from the
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various control theories are effective in transfering population into the chosen tar-

get state. In the here treated case of dissociative excited states the application of

optimal control theory yields control fields which are very effective in maximizing

an overlap of the propagated wavepacket and the target wavefunction localized

in the dissociation channel. The imposed constraints do not allow to make pre-

dictions about the overall dissociation yield or the ratio of dissociation products

after excitation. The mathematically derived optimal fields consist of various

frequency components but the underlying physical background is not obvious to

explain. Although there are approaches in the literature to illucidate the “black

box” phenomenon of optimal control theory [93], the connection between control

fields and the underlying wavepacket dynamics remain unclear. The approach

to restrict optimal control theory to find a field initiating a non-resonant three-

photon process in varying the chirp parameters, produces poor results concerning

the dissociation yield.

Feedback-control employing genetic algorithms presents a very simple me-

thod to obtain taylored fields. The parameterization of the electric field allows

for a description in terms of chirp parameters around a central frequency. As

this carrier frequency can be chosen at will, directing the system via a three-

photon process can simply be arranged. Representing a global search method,

the minimum of a constellation should easyly be found. The definition of the

object functional is influencing the result and the choice of the probability of the

evolutionary parameter’s action is influencing the convergence behavior and has

to be investigated or, at least estimated. As is the case for optimal control theory,

the interpretation of the designed pulses is difficult, especially for non-resonant

transitions with very intense laser fields. An advantage of the such derived field

in contrast to optimal control fields for dissociative systems, is the possibility
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to define the object functional by the dissociation yield directly without the

constraint of a final time and position. Therefore, the algorithm is not as sensitive

to the overall propagation time.

The instantaneous dynamics algorithm allows to establish a direct relation

between the derived fields and the underlying processes. Because no maximiza-

tion or minimization search in a mathematical sense is performed, no “optimal”

field is obtained. Nevertheless, the control fields are very effective. The disad-

vantage in dissociative systems is the condition of the wavepacket’s overlap. For

moving wavepackets on potentials with different gradients, the resulting differ-

ence in velocity reduces the possibility of overlaps at later times. The system is

forced to perform the transition on a short time scale at once, before the outrun-

ning wavepacktes reach larger bonding distances. A restriction to three-photon

processes can also succesfully be performed. Especially for the demanding task

transferring population into state |2〉 without an additional external coupling

(scheme II) good performance for instantaneous response could be obtained.

The employed model of methyl iodide, although treating only a single degree

of freedom, is a computational demanding task, as it combines elements of dis-

sociative sytems, diabatic couplings and multi-photon transitions. It represents

possibly the most unfavourable case. Nevertheless, the instantaneous response

algorithm is comparable in quality and it is expected therefore, that bound-bound

transitions can be performed more effectively. This is the objective of the next

chapter.



Chapter 7

The Sodium Dimer

In this chapter the sodium dimer is investigated concerning population transfer

using instantaneous dynamics. A remarkable feature of this system is the ener-

getic difference of the two (here regarded) electronic states |A〉 and |Π〉. Starting

from the electronic ground state |X〉, |A〉 is accessible by a pulse with a wave-

length of 620 nm, whereas by a two-photon process of the same wavelength the

|Π〉 state is populated. A direct transition |Π〉 ← |X〉 is one-photon forbidden.

The dynamic behaviour of the system depending on the condition which state

is to be populated is reflected in the form of the pulse. Therefore, the obtained

electric fields are interpreted with short-time Fourier-transforms and possibilities

are presented how such derived wave packets can be re-constructed from experi-

mental signals obtained by time-dependent pump/probe ionization experiments.

7.1 The Model System

The sodium dimer is treated here within a restricted model consisting of five

electronic states. Other neutral and ionic states are decoupled. The respective

potential curves for the ground state (X1Σ+
g ), the excited states A1Σ+

u , 21Σ+
u and

108
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21Πg as well as the dissociative ionic state 2Σ+
u and the bound ionic state 2Σ+

g are

displayed in fig. 7.1, and taken from Ref. [94–96]. Panel (a) shows the system to

be discussed in connection with selective population transfer, panel (b) displays

another excitation scheme regarded for the purpose of wave packet imaging.
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Figure 7.1: Potential energy sufaces of the sodium dimer. (a) Potentials as used for
the control algorithm: The |Π〉 state is not directly accessible by the electronic ground
state |X〉 but via a two-photon process mediated by the |A〉 state. Furthermore, the
bound ionic ground state state for the photoelectron spectra is shown. Panel (b):
Potential surfaces illustrating wave packet imaging: Besides the electronic ground state
the double minimum 21Σ+

u and a dissociative ionic state are shown.

As mentioned in the introduction of this chapter, the two excited states are

both accessible via a pulse with the wavelength λ of 620 nm. The |A〉 ← |X〉

transition is a parallel one while the |Π〉 ← |A〉 transition is perpendicular.
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7.2 Time-Frequency Analysis

Time-frequency analysis is instrumental in the interpretation of signals evolving

in time in an unpredictable way. A frequency analysis that is local in time gives

knowledge about the discrete changes of pulses. Mathematically this can be done

by either calculating Wigner or Husimi distributions [97, 98], or by convoluting

(windowing) the time-dependent signal E(t). In this work the latter ”short-time

Fourier transform“ is applied. For a fixed time τ the short-time Fourier transform

of a function E(t) describes the local spectral content of E(t) near τ as a function

of the frequency ω. It is defined as the Fourier transform of E(t) g(t− τ), where

g(t) is the window function. Moving the center of the window function g along

the time axis, allows to obtain ”snapshots“ S(ω, t) of the time-frequency behavior

of the function

S(ω, τ) =
∫ ∞

−∞
E(t) g(t− τ)e−iωtdt. (7.1)

The width of the window function g(t) also scales the resolution of the short-time

Fourier transforms, as the time-frequency resolution is limited by the Fourier

product. A wide window yields a good frequency resolution but poor time reso-

lution, while a small window results in the opposite behavior. Convoluting with

a δ-function, however, would result in a spectrogram |S(ω, τ)|2 completely inde-

pendent of frequency, |S(τ)|2. A possible solution is using the pulse to gate itself,

as a non-collinear autocorrelation function, termed FROG (frequency-resolved

optical gating) [38]

IFROG(ω, τ) =

∣

∣

∣

∣

∫ ∞

−∞
E+(t)E+(t− τ)2e−iωtdt

∣

∣

∣

∣

2

, (7.2)

where E+(t) is the complex electric field, the Fourier transform of E+(ω) contain-

ing solely the positive frequencies of the field (compare to eq. (1.42)). Depending
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on the nonlinear effect used (e.g. SHG (second harmonic generation)) different

types of FROG are distinguished. Since FROG is a squared quantity, the electric

field is determinable in amplitude and phase but not in the absolute phase φ0.

Nevertheless, short-time Fourier transform may help to interprete complex laser

fields.

7.3 Instantaneous Dynamics

Regarding the excitation scheme shown in panel (a) of fig. 7.1, population transfer

is controlled adapting the formalism in chapter 3. As indicated by the arrows in

the figure, transitions from the ground state to the higher states as well as to the

ionization continuum can be induced by photons with a wavelength of λ = 620

nm. The transition dipole-moments are taken as constant, assuming their values

at the respective equilibrium position [99], such that the field-matter interaction

is of the form

wXA(t) = −3.6E(t) cos Θ

wAΠ(t) = −1.44E(t). sin Θ (7.3)

The transitions are described by matrix elements differing in their angular de-

pendence because of the varying polarization of these transitions (|A〉 ← |X〉 is

parallel and |Π〉 ← |A〉 perpendicular). Choosing the polarization vector ε of

the electric field to point along the space fixed z-axis, Θ is defined as the angle

between ε and the dipole-moment vector µ. Applying the instantaneous control

algorithm to this excitation scheme, for an increase of population as a function
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of time the field can be obtained

E(t) = −E0
2

h̄

∑

m

=〈ψk(t)|µkm|ψm(t)〉, (7.4)

where k is the target electronic state and m counts the other electronic states; the

ionic state is not included into the instantaneous algorithm, because the dipole-

coupling to the ionization continuum is much weaker than couplings between

neutral molecular states. In the next subsections the electric fields obtained

by dynamical response of the perturbed molecule for population transfer into

different electronic states |k〉 are shown.

7.3.1 |A〉 State Population Transfer

First, the population transfer to the A-state is tmaximized. For now, exclusively

molecules at an angle of 45◦ with respect to the field polarization are considered,

orientational effects are discussed in section 7.3.3. Employing eq. (7.4), m takes

the values X,Π. It is necessary to start the process by applying a seed pulse

Es(t) = Esf(t) cos(ωt) in order to transfer a small amount of population into the

upper electronic states. The seed pulse has a Gaussian envelope with 20 fs width

(FWHM) and a field strength of Es = 5 · 10−5 a.u. The pulse is centered around

t = 20 fs with a frequency ω = 0.0735 a.u. corresponding to a wavelength of 620

nm, the resonant energy to induce transitions. Starting in the vibrational ground

state |X〉, fig. 7.2 shows the population in the three electronic states and the

constructed field with a parameter E0 = 8 · 10−5 a.u.

The A-state population SA increases in steps whereas the ground state popula-

tion SX decreases stepwise. The higher lying |Π〉 state is only weakly populated

and a nearly 100 % population transfer into the target state |A〉 is achieved.
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Figure 7.2: Panel (a): Electric field E(t) constructed with E0 = 5.6 · 10−5. The
first pulse is the seed pulse inducing resonant transitions between the electronic states.
Panel (b): population Sn in the various electronic states, as indicated.

Comparing the resulting dynamics for different field strength parameters, a very

similar picture is obtained. Fig. 7.3 shows the constructed electric fields and

the respective population. In all cases the stepwise structure can be seen, only

differing in the fact that a higher field strength prepares the population inversion

at earlier times.

Regarding the rather weak field (no Rabi-like oscillations in the populations),

a sequence of pulses separated by the average vibrational period in the A state

can be seen. Each of these sub-pulses is modulated with a faster frequency

approximately proportional to the resonant electronic transition energy. The

form of the field can be explained by a wave packet ψA, prepared in the |A〉 state
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Figure 7.3: Panel (a), (b): Electric field E(t) constructed with E0 = 8.5 · 10−5 and
1.4·10−5. Lower panels (c), (d): population S in the various electronic states for the
different field strengths as indicated. Population SΠ is negligible at all times.

moving out of the Franck-Condon region for the |A〉 ← |X〉 transition, driven by

the resonant center frequency. When ψA is moving outward, transitions to the

|Π〉 state become more efficient (fig. 7.4) [100]. As a consequence, a decrease in

population is avoided by switching off the field to zero. After one round-trip the

wave packet re-enters the Franck-Condon region and the field intensity increases

again. The already existing wave packet ψA interfers constructively with the

newly transfered part. This resembles very much the scenario where populations

in excited states are influenced via sequences of phase-locked pulses [101, 102].

In order to analyze the control field, a time interval from 1300 to 1800 fs is

prescinded, where only a single sub-pulse appears (panel (a) of fig. 7.4). Therefore
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the following difference potentials (panel (c)) are considered

DAX(t) = VA(〈RX(t)〉)− VX(〈RX(t)〉) (7.5)

DΠA(t) = VΠ(〈RA(t)〉)− VA(〈RA(t)〉),

where 〈Rn(t)〉 is the bondlength expectation value in state |n〉 at time t. Reso-

nant transitions |m〉 ↔ |n〉 occur for photon energies which equal the respective

difference potential Dmn [103, 104]. The bondlength-expectation values are like-
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Figure 7.4: Panel (a) shows a sub-pulse centered around 1500 fs. In panel (b) the
bondlength-expectation values RX(t) and RA(t) are illustrated. The difference poten-
tials Dnm(t) between two states (see eq. (7.5) are displayed in panel (c). Also shown
is the time-dependent frequency of the field (dashed line).

wise shown in fig. 7.4, panel (b). It can be seen that 〈RX(t)〉 assumes a nearly

constant value of approx. 6 a.u., indicating that the ground state wave function is
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nearly a stationary state. The time-dependence can be understood in regarding

〈RA(t)〉. The wave packet ψA(R, t), prepared through the interaction at earlier

times moves towards smaller bondlengths and reaches its turning point at 1523

fs, which is the time the pulse envelope reaches its maximum. Afterwards, the

pulse decays to zero as the wave packet moves out of the Franck-Condon region

for the |A〉 ← |X〉 transition. Since the field intensity is determined by the over-

lap between the ground- and excited state wave packets, it directly reflects the

motion of ψA(R, t) in and out of the Franck-Condon region. As a consequence,

the sub-pulse structure is determined by the vibrational motion in state |A〉.

To identify the times when resonant transitions between the various states

are possible, the average frequency ω(t) of the pulse (fig. 7.4, panel (a)) is

determined for field amplitudes which differ substantially from zero. This is ac-

complished by calculating an average frequency of the field within a temporal

window where ten field oscillations occur, shifting this window continuously over

the pulse (short-time Fourier transform). The result is displayed in panel (c) of

fig. 7.4 as a dashed line. A resonant transition |A〉 ← |X〉 is effective at about

1460 fs, where the corresponding difference potential and ω(t) cross. As the field

intensity increases, the frequency shifts off resonance, thus the algorithm prevents

a too-strong coupling which would allow for a population transfer to states |X〉

and |A〉. At a time of 1585 fs, the transient frequency equals DΠA(t), so that

resonant |Π〉 ← |A〉-transitions become very probable. Obviously, the construc-

tion scheme prevents this transition by shifting ω(t) away from the transition

frequency towards smaller values.

Therfore, a consistent picture of how the control field is related to the elec-

tronic and vibrational dynamics of the system is given. The analysis of other sub-
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pulses yields the same conclusions drawn above. The interference scheme [105]

as experimentally realized [102, 106], where a pair of phase-locked pulses is able

to enhance or destroy an excited state population, is naturally obtained within

the here presented method to construct the control field. Taking the example

of destructive interference, the replacement of the condition dSA(t)/dt > 0 by

dSA(t)/dt < 0 yields, via eq. (7.4) to a phase shift of π in the field, as is to be

expected [105].

7.3.2 |Π〉 State Population Transfer

The next task is a population transfer to the |Π〉 state. Employing the same seed

pulse as before, and for E0 = 4.9 ·10−2 a.u. we get a rather different picture. The

population and the calculated pulse are depicted in fig. 7.5 and, displayed in an

restricted time interval, in fig. 7.6.

At earlier times the population changes only very slightly, indicating that

before any substantial transfer sets in, the |Π〉 state population must exceed a

certain threshold value. This is verfied by calculations with a more intensive seed

pulse, resulting in a similar dynamics but taking place at earlier times (fig. 7.7)

At times before a critical value, the ground state population is monotonically

transferred into state |A〉, accompanied by a very small population increase in

state |Π〉. At early times the populations behave as is expected from perturbation

theory. At later times, a population inversion occurs, and perturbation theory

fails. Then, Rabi-like oscillations are observed which take place under the con-

straint that the upper state population increases monotonically. The population
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Figure 7.5: Electric field E(t) constructed with E0 = 7 · 10−2 a.u. The same pulse is
depicted within a restricted time-interval in fig. 7.6.

flux is not exclusively directed to the target state but also, the ground state is

repopulated significantly. This is not unlikely, since the dipole-coupling to the

ground state is much stronger (about a factor of 2.3) than the one to the |Π〉

state. The same scenario repeats itself afterwards, yielding an efficiency of nearly

90 %. At later times, no substantial increase in the target state is observed.

The time-interval where the population dynamics takes place (fig. 7.7) is

in the order of 10 fs, being much smaller than any vibrational periods present

in the Na2 molecule. Thus, here it is solely the electronic transition frequency

determining the form of the control field, the field does not exhibit signatures of

a vibrational motion. In fact, a calculation where the kinetic energy operator for

the vibrational motion is ignored leads almost to identical results as compared to

the numerically exact solution, confirming that the system can safely be described
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Figure 7.6: Upper panel: Electric field E(t) constructed with E0 = 7 · 10−2 a.u. The
first pulse is the seed pulse inducing resonant transitions between the electronic states.
Lower panel: population Sn in the various electronic states, as indicated.

as a three-level system where the energy separation corresponds to the difference

between the potential curves taken at the ground-state equilibrium distance.

Another possibility to transfer population into the |Π〉 state is to first populate

the |A〉 state and then change the target state and subsequently to the |Π〉 state.

This can be thought of as a two-step process and the result is shown in fig. 7.8

using EXA = 1.1 · 10−4 a.u. and EAΠ = 3.5 · 10−4 a.u.

Thereby, a first sequence of pulses (ending at 2 ps) prepares a vibrational

wavepacket in state |A〉, as described before. Not surprisingly, this vibrational

motion introduces a vibrational structure in the control field triggering the second

step. Nevertheless, at longer times, when another wave-packet is created in the
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Figure 7.7: Selective excitation of the |Π〉 state. Panels (a) and (b) show the derived
control fields E(t) constructed with two different seed pulses but the same field strengh
parameter E0 = 7 · 10−2 a.u. Intensity of the seed pulse: (a) Es = 7.1 · 10−5 a.u., (b)
Es = 11.3 ·10−5 a.u. The respective population in the three electronic states are shown
in panels (c) and (d).

|Π〉 state, the nuclear motion in that state as well influences the field giving rise to

the structure as seen in the figure. The final target state (|Π〉 state) is populated

to nearly 100%.
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Figure 7.8: Lower panel: Electric field E(t) constructed with EXA = 1.1 · 10−4 a.u.
and EAΠ = 3.5 ·10−4 a.u. The first pulse is the seed pulse inducing resonant transitions
between the electronic states with Es = 3.5 · 10−5 a.u. Lower panel: population Sn in
the various electronic states as indicated. Population is first transferred into the |A〉
state and in what follows into the |Π〉 state.

7.3.3 Orientational Effects

In the last subsections control fields were constructed for the case of a fixed orien-

tation (45◦) of the molecular axis with respect to the field vector. To investigate

the orientational effect, the vectorial properties are included within the rotational

sudden approximation where the kinetic energy operator for the angular motion

is neglected and the angular dependence enters only via the anisotropy of the
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field-matter interaction

W (t) =

















0 −3.6E(t) · cos Θ 0

−3.6E(t) · cos Θ 0 −1.44E(t) · sin Θ

0 −1.44E(t) · sin Θ 0

















. (7.6)

The orientation and therefore the angle Θ directly influences the coupling el-

ements and the construction of the field. As the transitions |A〉 ← |X〉 and

|Π〉 ← |A〉 are perpendicular, the dependency on the orientation implicates a

favor of one transition. For an angle of Θ = 0 the molecule is parallel to the

electric field and the coupling into the higher |Π〉 state equals zero. The opposite

case appears for Θ = 90◦ where the molecule is perpendicular to the field, the

coupling X ↔ A equals zero and the |Π〉 ← |A〉 transistion is strongly favoured.

In fig. 7.9 the electric fields and the corresponding dynamics for three values of Θ

are shown. The fields are relatively similar, exhibiting the pulse-train structure,

where the sub-pulses are seperated by the vibrational period in the intermediate

state. As can be taken from the figures, the derived fields just differ in inten-

sity. With increasing angle, the time when the population transfer is finished is

shifted to longer times. This can be understood in terms of the coupling matrix

in eq. (7.6). For an orientation of 30◦, the coupling wXA is strongest, so that the

population inversion is achieved within 1.5 ps. On the other hand, wXA is about

a factor of 1.7 smaller at an orientation of 60◦ so that, effectively, the inversion

is completed at a later time of 2 ps. In this sense, the orientation angle of 45◦

represents an intermediate situation.

Therefore, the question arises what happens if a field derived for an angle of

45◦ is used to drive the dynamics of molecules with a different orientation. Or,

more commmon: is it possible to control molecules with differently distributed
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Figure 7.9: Control fieldsE(t) constructed withE0 = 1·10−4 a.u. obtained for different
fixed orientations of the molecule relative to the polarization vector, as indicated. The
seed pulse has an intensity of 3.5 · 10−5 a.u., the field strength parameter is chosen to
be 2 · 10−4 a.u. On the right hand side the particular population Sn in the various
electronic states is shown.

orientation with one single derived control field? Therefore, a calulation is per-

formed where first, the field derived for an angle of 45◦ is determined and then

this field is applied to molecules oriented at angles of Θ = 30◦ and 60◦, respec-

tively. The results are displayed in fig. 7.10, together with the 45◦ case which is

included for comparison.

It can be seen that for the strongest coupling wXA (at 30◦) nearly 100% inver-

sion is reached at 1.5 ps but the field then induces a depletion of the intermediate

state, as the excited state wave-packet re-enters the Franck-Condon region for a

transition into the ground state. On the other hand, in the case of the weakest
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Figure 7.10: Upper panel: control field constructed for an orientation of Θ = 45◦. The
same field is applied to molecules at different oreientation leads to a different population
S in the various electronic states as is shown in the lower panels of the figure.

coupling (60◦), not all of the ground state population is transferred to the target

state, amounting a final population SA of nearly 80%. From the presented cases

it is concluded that the effect of orientation is not dramatic in the sense that

only a few molecules are optimally driven to the intermediate state. Rather, the

overall control yield is expected to be in the order of 70% or more.

To gain experimental information on the efficiency of control processes, fem-

tosecond spectroscopic methods have been analyzed concerning their significance.

Three of them are introduced in the next subsection and compared with respect

to their accuracy.



CHAPTER 7. THE SODIUM DIMER 125

7.4 Approaches to Wave Packet Imaging Using

Femtosecond Ionization Spectroscopy

In this section different methods to obtain information about the probability

density of vibrational wave packets are compared [27]. Considering time-resolved

spectroscopy the derived signals directly reflect the time behaviour of the system.

Here, three pump/probe ionization processes are compared with respect to the

quality of their predictions . In a typical experiment, a first laser pulse W1(t) =

1/2µ1Xg1(t) exp(−iω1t) (pump pulse) interacts with the system, producing a lin-

ear combination of eigenstates, a wave packet. The interaction W is defined by

the term leading to absorption with frequency ω and pulse envelope g(t). µX1 is

the projection of the transition dipole moment on the field polarization vector. At

a variable delay-time T a second pulse W2(t) = 1/2µI1g2(t−T ) exp(−iω2(t−T ))

(probe pulse) causes another transition in the system, e.g. into an ionic state

|I〉. Within this section, the final ionic state is a dissociative one, see fig. 7.1,

panel (b). A signal is recorded as a function of this delay-time. In the case of

ionization spectroscopy the transient signal consists of ion yields or photoelectron

distributions. Below, transient signals of photoelectron spectra, total ion yields,

and fragment momentum distributions are calculated and the such constructed

densities are compared to the numerically obtained ones.

7.4.1 Pump/Probe Ionization Signals

The photoelectron spectrum P (R, T ) is determined from the probability of find-

ing electrons with a certain kinetic energy E, depending on the delaytime T .

Seel and Domcke showed that P (E, T ) directly reflects the wave packet dynamic

in molecules [107, 108]. For diatomic molecules the assignment is unique [109].
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The spectrum is calculated from the norm of the ionic states, obtained by time-

dependent perturbation-theory

P (E, T ) = 〈ψE(T )|ψE(T )〉. (7.7)

As the population in the ionic state remains constant after the ionizing pulse

switches off, the states |ψE〉 at time t = T enter in the expression.

The total ion yield Ptot(T ) is likewise a function of the pulse delay T and is

calculated from the photoelectron spectrum by integration

Ptot(T ) =
∫

dE P (E, T ). (7.8)

The momentum (p) distribution of the ionic fragments F (p, T ), as a third

measurable quantity, is calculated from the momentum-space wave functions of

the states |ψE〉 as

F (p, T ) = lim
t→∞

∫

dE |〈p|UE(t− T )|ψE(T )〉|2

=
∫

dE |〈p− |ψE(T )〉|2 . (7.9)

The kets |p−〉 are the eigenstates of the full nuclear Hamiltonian and |p〉 are

plane waves. As the time-limit enters into the calculation a wave packet has to

move into the asymptotic region. This is necessary since a constant momentum

distribution must be ensured for the projection onto the plane waves.

7.4.2 Photoelectron Spectra

Concerning the re-construction of wave packets from photoelectron spectra some

approximations are employed. Besides the Born-Oppenheimer approximation it
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is assumed that the ejected photoelectron decouples from the nuclei and the other

electrons. Furthermore, the ionic states |ψE(R, T )〉 are calculated by neglecting

the commutators between kinetic energy and the R-dependent operators (poten-

tial energy, dipole moment) [110–116]

ψE(R, T ) = µI1(R)ψ1(R, T ) I(R,E), (7.10)

where the integral

I(R,E) =
i

2

∫ ∞

−∞
dt ei(VI(R)−V1(R)−(ω2−E))tg2(t). (7.11)

In above equation Vn(R) denotes the potential energy in state |n〉. The photo-

electron-spectrum now takes the form

P (E, T ) =
∫

dR ρ(R, T ) |I(R,E)|2. (7.12)

The density to be re-constructed is defined as

ρ(R, T ) = |µI1(R)ψ1(R, T )|2 . (7.13)

To calculate the density from the spectrum P (E) it is clear from eq. (7.12)

that the integral I(R,E) is necessary. The product between the transition dipole

moment and the vibrational wave function can not be disentangled. Evaluating

the time-integral employing a Gaussian envelope function g2(t) = exp(−(β t/2)2)

leads to the expression

I(R,E) =
i

2

√

4π/β2e−(D(R)−(ω2−E))2/β2

, (7.14)

where the difference potential D(R) = VI(R)− V1(R) was introduced. The time-

integral I(R,E) represents a window function peaked around distances Ri which
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are roots of the equation

D(R)− (ω2 − E) = 0. (7.15)

For a monotonic difference potential as is assumed here, eq. (7.15) establishes a

connection between the bond length and the photoelectron energy. In the limit

of long pulses (for β → 0) the window function becomes a representation of the

δ-function. Thus, the function I(R,E) can be written as

I(R,E) = iπ{δ(D(R)− (ω2 − E)) + c(R,E)}, (7.16)

where the additional term c(R,E) compensates the error made by replacing the

window function by a δ-function. Neglecting this term the spectrum is reduced

to the simple form

P (E, T ) ∝ ρ(Ri, T )

|dD(R)/dR|2Ri

. (7.17)

Here, we used the properties of the δ-function: δ(f(x)) = δ(x)/|df/dx|xi
. Eq.

(7.15) and eq. (7.17) relate the radial probability density ρ(R) and the photo-

electron spectrum P (E) for a fixed delay-time T . The quality of the two ap-

proximations, namely (a) the neglect of commutators and (b) the replacement

of the window function by a δ-function are discussed in detail in Refs. [112,117].

For a constant difference potential, approximation (a) becomes exact, but then,

the spectrum P (E, T ) is independent of the actual position of the wave function

ψ1(R, T ) (and consequently of time). Also, for a δ-pulse excitation, the spectrum

becomes energy- and R-independent and no information can be gathered from

the signal. On the other hand, for very long pulses, the correction term c(R,E) in

eq. (7.16) vanishes, but then, approximation (a) is invalid. The connection in eq.

(7.17) is reasonable for substantially R-dependent difference potentials D(R) and
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for pulses that are short compared to the vibrational periods but long enough to

guarantee that the window function I(E,R) is strongly peaked around the root

of eq. (7.15).

7.4.3 Transient Ion Yields

In the ionization scheme the photon energy ω2 is chosen such that for small bond

lengths R ionization is not possible, but for a certain bond length R = a the

photon energy matches the difference potential ω2 = D(R = a), see Fig. 7.1,

panel (b). The ion yield is zero if the wave packet is located at distances smaller

than a and increases when the wave packet moves into regions with R ≥ a. If the

transition dipole moment µ1I can be approximated by a constant and the laser

frequency is large enough the ion yield will settle to a constant value [107,118,119].

For later times, when the wave packet passes the distance R = a on its way back,

the signal decreases to zero.

Applying a Gaussian probe-pulse as in the last subsection the total ion yield

can be calculated with

Ptot(T ) =
π

β2

∫

dR ρ(R, T )
∫ ∞

0
dEe−2 [E−(ω2−D(R))/β]2 . (7.18)

Performing the integration over energy and employing properties of the error

function erf(x) [120] yields

Ptot(T ) =
(π/2)3/2

β

∫

dR ρ(R, T )

{

1 + erf

[√
2(ω2 −D(R))

β

]}

. (7.19)

Above equation demonstrates once again that if the density ρ(R, T ) is located in

a region where the argument of the error function is substantially negative, the

signal is zero. For larger bond lengths R ≥ a the signal levels off to a constant
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proportional to the area under the density [120, 121].

To establish the relation between the total ion yield at a fixed delay-time T

and the radial density, the expression (1 + erf(x))/2 in eq. (7.19) is replaced by

a step function Θ(R− a). It can be shown that [122]

dPtot(T )

dT
= j(a, T ), (7.20)

with j(a, T ) being the probability flux through the point R = a at time T .

Employing the definition

µI1(R)ψ1(R, T ) =
√

ρ(R, T )eiS(R,T ), (7.21)

where S(R, T ) is a real function, assumed to depend only weakly on delay time,

eq. (7.20) can be written as

dPtot(T )

dT
=

1

m

{

dS(R, T )

dR

}

a

ρ(a, T ). (7.22)

The latter equation, where m is the reduced mass, relates the time-derivative of

the total ion signal to the density at the resonance point R = a at time T . The

density is calculated from

ρ(R = a+ v0t, T ) ∝
{

dP (λ)

dλ

}

λ=T−t

. (7.23)

Here enters the average velocity of the wavepacket in state |1〉 which can be

estimated classically as v0 =
√

2(ω1 − V1(a))/m.

7.4.4 Transient Fragment Distributions

A third method for wave packet imaging was used in connection with the Coulomb

explosion of small molecules [123–125]. For discussions see the paper of Chelkowski
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and Bandrauck [125]. The main idea here is to relate the asymptotic momentum

distribution of the charged atoms to the density ρ(R, T ) at the time T of the

ionization. The fragment distribution is given by eq. (7.9)

F (p, T ) =
∫

dE

∣

∣

∣

∣

∫

dR〈p− |R〉〈R|
∫

dtei(p2/2m+VI (∞)+E−ω2−V1)t
i

2
g2(t)µ1Iψ1(T )〉

∣

∣

∣

∣

2

(7.24)

In the derivation of this equation the fact that |p−〉 is an eigenstate of the Hamil-

tonian in the ionic state, and a neglection of the kinetic energy operator in state

|1〉 was used. Employing a Gaussian envelope (as before) the time-integral can

be evaluated as

Ip(R,E) =
i

2

∫

dtei(p2/2m+VI (∞)−V1(R)+E−ω2)tg2(t)

=
i

2

√

4π/β2e−(p2/2m+VI (∞)−V1(R)−(ω2−E)/β2

. (7.25)

Employing the same arguments as given above concerning the window function,

the time-integral is written as

Ip(R,E) = iπ
{

δ(p2/2m+ VI(∞)− V1(R)− (ω2 − E)) + cp(R,E)
}

= iπ
δ(R− Ri)

|dVI(R)/dR|2Ri

. (7.26)

The values Ri are defined as roots of the equation

p2

2m
+ VI(∞)− V1(R)− (ω2 − E) = 0 (7.27)

As a projection onto the eigenstate |p−〉 was performed to calculate the frag-

ment distribution, the value of the momentum p is fixed so that R depends only

parametrically upon p. Evaluating the integral over R leads to the fragment
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distribution

F (p, T ) ∝
∫

dE
|〈p− |Ri(E)〉|2 ρ(Ri(E), T )

dVI(R)/dR|Ri(E)

. (7.28)

The energy integral is eliminated by an additional approximation. Employing

the limit of energy conservation, saying that at a given value of R

V1(R) + ω2 = V1(R) + E, (7.29)

although the probe pulse is spectrally broad, eq. (7.27) reduces to

p2

2m
+ VI(∞)− V1(R) = 0. (7.30)

Since the roots from this equations are independent of E, the momentum distri-

bution now reads

F (p, T ) ∝ |〈p− |Ri〉|2 ρ(Ri, T )

|dVI(R)/dR|2Ri

. (7.31)

In principle, for a given potential VI(R), the stationary scattering states 〈p− |R〉

can be calculated by solving

(

p2/2m+ VI(R)
)

|p−〉 =
(

p2/2m+ VI(∞)
)

|p−〉, (7.32)

taking the proper boundary conditions into account. Within a linear approxima-

tion to the potential around the point Ri, the solution of the time-independent

Schrödinger equation is an Airy function Ai(R = Ri) = Ai(0), thus is indepen-

dent of Ri [126] and may be omitted in evaluating the fragment distribution. The

final expression then is

F (p, T ) ∝ ρ(Ri, T )

|dVI(R)/dR|2Ri

. (7.33)
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The expressions for the photofragment (eq. (7.33)) and photoelectron spectrum

(eq. (7.17)) are very similar and are identical if the denominators (containing

the derivative of V1(R) and D(R) at the same resonance distance) are set to the

same constant. It is noted that they are, nevertheless, based on different kind of

approximations.

In practice, the momentum distributions are calculated from eq. (7.9): for a

fixed value of E the ionic wave functions |ψE(R, T )〉 are propagated until they

are completely localized in the asymptotic region. Then a Fourier transform into

momentum space is performed. After repeating this for a discrete set of energies

E the energy integral is calculated.

7.4.5 Numerical Results

First, the construction of radial densities from photoelectron spectra will be

treated. In what follows, results are discussed for photon energies of 332 nm

(pump-pulse into the double minimum potential) and 275 nm (probe-pulse into

the dissociative ionic state), see Fig. 7.1, panel (b). The Gaussian pump-pulse

has a duration of 50 fs (full width at half maximum), and a shorter (Gaussian)

probe-pulse of 20 fs is employed. Figure 7.11 compares the numerically exact

density ρ(R, T ) with the constructed density ρc(R, T ) obtained from eq. (7.17)

for different delay times T , as indicated.

In this system, the difference potential between the double minimum state |1〉

and the repulsive ionic state |I〉 is a monotonically decreasing function of R (in

the region, the wave packet dynamics takes place), so that there is a one-to-one

correspondence between the points Ri and the photoelectron energy, as defined

in eq. (7.15). The figure documents that the prescription for the construction of
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t = 200 fs
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Figure 7.11: Constructed ρc vs. numerically exact density ρ for different pump-probe
delays. The densities are derived from the photoelectron spectra.

the density is excellent, as was demonstrated theoretically before [127, 128]. For

all three delay-times, the position of the maximum of ρc(R) coincides with that

of ρ(R). Also, the widths of the density agree well so that here we may say that

wave packet imaging trough time-resolved photoelectron spectroscopy works very

well.

Next, the densitities as obtained from the total ion yield using eq. (7.23) are

compared. The same pulse parameters as specified above were employed except

that the probe photon-energy was varied for different delay times, as resonant

ionization with pulses of different photon energies ω2 selects different bond lengths

R = a, at which the vibrational wave packet can be monitored. Figure 7.12

containes the calculated densities. The energy ω2 was chosen to assume values
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of 400 nm (upper panel), 420 nm (middel panel), and 450 nm (lower panel),

corresponding to bond lengths of a = 8.1, 8.3 and 9.4 a.u., respectively.

6 8 10 12 14 16 18
R [a.u.]

ρc

ρ

λ = 450 nm
a = 9.4 a.u.

λ = 420 nm
a = 8.3 a.u.

λ = 400 nm
a = 8.1 a.u.

200 fs

260 fs

160 fs

Figure 7.12: Constructed ρc vs. numerically exact density ρ for different pump-probe
delays. Here the wave packet imaging is performed using the time-derivative of the
transient ion yield. The choice of the probe photon-energies allows for the mapping
at different bond lengths. The numbers given in the different panels indicate the
times when the wave packet has completely entered the excitation window so that the
ionization signal has leveled to a constant.

For the choice of the first two parameters, the constructed and numerically

exact densities agree perfectly. A larger discrepancy occurs in the a = 9.4 a.u.

case, mainly at longer bond lengths. This results from the fact that here the wave

packet passes the barrier of the double minimum state and thus the approximation

of a constant velocity v0 within this state is not valid. It has to be noted that

a wave packet being localized in the regions of the classical turning points in

the excited state cannot be monitored using the flux method as described above,
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since the transient ion yield will not level to a constant value as a function of

delay-time.

Finally, wave packet imaging by inversion of the fragment distribution is dis-

cussed. As in the case of the photoelectron spectra pulses with λ1 = 332 nm, 50

fs width (pump) and λ2 = 275 nm, 20 fs width (probe) are employed. The upper

panel of fig. 7.13 compares the densities at a delay-time of T = 100 fs. Here, the

vibrational wave packet in the intermediate state is localized at a bond length be-

tween 5.7 and 7.6 a.u. The constructed density is shifted slightly towards smaller

distances as compared to the numerically exact one. At a later time of 150 fs, the

fact that ρc peaks at smaller distances is as well observed. This trend continues

and is most pronounced at T = 250 fs (lower panel of fig. 7.13).

The reason for the discrepancy in the location of the two densities can be

rationalized in the following way: the basic idea of the construction method is that

the initial wave packet, produced within the ionization step, carries a momentum

distribution which is dominated by components with zero momentum, and thus

the energy at early times is almost exclusively potential energy. The latter is then

transformed into kinetic energy of the fragments. The assumption of a mean zero

momentum is not necessarily valid: since the wave packet ψ1(R, T ) is moving

outward in the double minimum state, its kinetic energy is transferred into the

ionic state (see, e.g. eq. (7.10)). Thus, the fragment distribution peaks at higher

momentum which, in turn, yields a constructed density at shorter distances. This

reasoning explains why the mismatch in the peak position increases in going from

100 to 250 fs, since for the longer time, the lower state wave packet has picked

up more speed.

As a second observation, the deviation in the width of the two densities is
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Figure 7.13: Constructed ρc vs. numerically exact density ρ for different pump-probe
delays. The momentum distribution of the fragments was used for the construction.

much more pronounced in the 250 fs case than at earlier times. Because of

large positive momentum from the intermediate state dynamics, the fragment

momentum distribution yields a constructed density at too small distances where

the potential energy is rather steep and thus the width becomes too small as well.

For the example regarded here, the use of the fragment distribution is good as

long as the vibrational wave packet in state |1〉 has not developed a momentum

distribution far away from zero momentum which, in this example, is the case at

small delay-times.
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7.5 Simultaneous Monitoring of the Control

Process by Time-Dependent Photoelectron

Spectra

In order to obtain information about the temporal behaviour of control processes

time-dependent photoelectron spectra have been calculated. As shown in the

last section, it is possible to construct the nuclear density in excited electronic

states from photoelectron spectra. For the discussed control scheme |X〉 → |A〉

or |X〉 → |Π〉 (see fig. 7.1, panel (a)) resulting from transitions into the bound

ionic state have been determined. While the ground state |ψX〉 and the excited

electronic state wave packets |ψA〉 and |ψΠ〉 are propagated with an exact coupling

of the states to the field, the ionic wave packets |ψE(t)〉 have been calculated by

time-dependent perturbation theory. It is assumed that the probe laser with

a wavelength of 620 nm ionizes the |A〉 state by a two-photon process and the

|Π〉 state via a one-photon process. The temporal change of the kinetic energy

distribution of the photoelectrons directly reflects the vibrational dynamics of

the state where ionization derives from. Therefore, oberserving photoelectron

spectra provides information on the excited state.

First, the amount of population in the |A〉 state while maximizing population

in |A〉 state is observed. The time-dependent photoelectron spectrum is shown

in fig. 7.14. Then, the |Π〉 state population is maximized, monitored by the

corresponding photoelectron spectrum (fig. 7.15). In both cases, the spectra are

modulated by the vibrational motion in the respective state. The corresponding

excited state wave packets in the |A〉 and |Π〉 state are shown in fig. 7.16, 7.17,

respectively. It can be seen that the kinetic energy distribution of the photoelec-

trons exhibits a maximum at the time when the coordinate expectation value is
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Figure 7.14: Time-dependent photoelectron spectrum with a probe laser with wave-
length of 620 nm after optimizing the |A〉 state population.
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Figure 7.15: Time-dependent photoelectron spectrum with the same probe wavelength
as before after optimizing the |Π〉 state population.
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Figure 7.16: Absolute square of the |A〉 state wavefunction ψA(R, t), exhibiting a
vibrational motion.

largest. This can be explained in regarding the difference potential, expressed by

the condition in eq. (7.15). In order to clarify the assignment to the particular

electronic state, cuts through the time-dependent photoelectron distributions for

selected kinetic energies are shown in fig. 7.18.

The photoelectron spectra differ in the temporal separation of their maxima.

Panel (a) shows a cut at a kinetic energy of 0.976 eV after populating the |A〉

state, featuring a separation of succesive extrema of ≈ 300 fs, according to the

average vibrational period in this state. A population of the |Π〉-state leads to

a kinetic energy distribution of photoelectrons exhibiting a longer periodicity of

≈ 356 fs, which is the time-scale of vibrations taking place in the |Π〉 state.

If both elelctronic states are populated significantly, the photoelectron spectra
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Figure 7.17: Absolute square of the |Π〉 state wavefunction ψΠ(R, t), exhibiting a
vibrational motion.
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Figure 7.18: Panel (a): Cut of the photoelectron spectrum of fig. 7.14 at 0.976 eV
after populating the |A〉 state; panel (b): Cut of the time-dependent photoelectron
spectrum of fig. 7.15 at 0.954 eV after transferring population into the |Π〉 state.
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reveal characteristics of nuclear motion in both states, as was found before for the

sodium dimer [109,129]. Maximization of population in a target state |n〉 results

in photoelectron spectra modulated by the characteristic vibrational period Tn.

It is then possible to deduct the degree of excitation from the transient spectrum.



Chapter 8

Iodine Dimer

In this chapter a different approach to control molecules is given by investigat-

ing molecular iodine with a setup similar to the STIRAP (Stimulated Raman

Adiabatic Passage) technique. Until now, this technique has been incorporated

using ns laser pulses. Here, the possibility to extent it towards the fs-regime is

investigated, a problem which has not been addresses so far. Within the STIRAP

technique developed by Bergmann [14] two time-delayed pulses in a defined ge-

ometric arrangement interact with the molecular sample. Compared to a CARS

(Coherent Anti-Stokes Raman-Spectroscopy) process the pulse sequence is coun-

terintuitive. In a femtosecond CARS experiment a first laser pulse (pump-pulse)

with frequency ωP propagating in direction k1, prepares a coherent superposition

of molecular eigenstates. The system then interacts with the Stokes-pulse of fre-

quency ωS and direction k2, and population is dumped into excited states within

the electronic ground state vibrational manifold. A time-delayed probe-pulse hav-

ing the same frequency as the pump-pulse and propagating in direction k3 again

excites the molecule and the CARS signal is obtained in direction k4 = k1−k2+k3.

The STIRAP technique now modifies the CARS experiment by choosing a

143
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counterintuitive pulse sequence: the Stokes-pulse acts before the pump-pulse.

In this work, the conditions of generating highly excited vibrational states by a

STIRAP-like scenario in the fs regime are established employing the I2 molecule

as a prototype example. The temporal behavior of the population transfer is

investigated as a function of photon energy, intensity and delay-time. The present

studies are motivated by experiments, performed most recently in the Kiefer

group in Würzburg.

8.1 Model System

Spectroscopic transitions in the iodine molecule have been investigated exten-

sively, both experimentally and theoretically. In particular, the |B〉 ← |X〉

transition [130–133] was extremely well characterized by Raman spectroscopy

[134], time-resolved spectroscopy [135, 136] and time-dependent CARS experi-

ments [137–140].

In what follows, the molecule is described within an artificial system of three

electronic states, where |1〉 denotes the electronic ground state (|X〉) which is

coupled via the pump-pulse to the excited electronic state |2〉 (the |B〉 state).

The model incorporates an initially not populated third state |3〉 which is the

electronic ground state coupled only to |2〉 via the Stokes-pulse interaction. A

direct transition from the vibrational ground state |1〉 to the vibrational excited

state |3〉 is excluded so that the coupling matrix reads

W (t) =

















0 w1(t) 0

w1(t) 0 w2(t)

0 w2(t) 0

















, (8.1)
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Figure 8.1: Potential energy curves of molecular iodine. The examined |X〉 ↔ |B〉
transitions for resonant and off-resonant excitation are indicated by the arrows. The
solid arrows display the non-resonant transitions, while the resonant transitions are
represented by the dot-dashed arrows

where w1(t) and w2(t) contain the interaction with the electric fields. The matrix

describes the so-called Λ-configuration as shown in fig. 8.2.

Within a numerically exact coupling scheme, the field coupling of the three

states is given by the sum of the pump- and Stokes-pulse w1(t) = w2(t) = wP (t)+

wS(t), where

wP (t) = −µ · EP (t) = −EP · e−(t−tP )2∗γP cosωP (t− tP )

wS(t) = −µ · ES(t) = −ES · e−(t−tS)2∗γS cosωS(t− tS), (8.2)

with En being the field strength, γn = 2 ln 2/β2 related to the the pulse width βn,

ωn the frequency and tn (n = P,S) the time where the Gaussian pulses exhibit
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P
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|1

|3

|2

Figure 8.2: Three level system in the Λ-configuration [141]. A direct transition between
states |1〉 and |3〉 is forbidden. The two pulses (pump and Stokes) couple the three
states, as indicated, where ∆ characterizes a possible detuning.

their maxima. The transition dipole momenent µ is constant within the Condon-

approximation (µ = 1).

Another coupling scheme is regarded where w1(t) = wP (t) and w2(t) = wS(t).

This scheme will be called “adiabatic”, because possible |2〉 ↔ |1〉 transitions

induced by the Stokes pulses, and also transitions |3〉 ↔ |2〉 caused by the pump

pulse are neglected. The adiabatic approach allows a description within the

picture of dressed states. In the next section the adiabtic description of dressed

states in a three level system is presented.
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8.2 Adiabatic Limit - STIRAP

The coupling matrix in eq. (8.1) can be adapted to describe an adiabatic popula-

tion transfer within the STIRAP mechanism [6,142]. For a system including three

potential curves in the Λ-configuration illustrated in fig. 8.2, the Schrödinger

equation reads as [143]

ih̄
∂

∂t

















ψ1(x, t)

ψ2(x, t)

ψ3(x, t)

















=

[

− h̄2

2m

∂2

∂x2
I+ (8.3)

















V1(x) −µEP (t) 0

−µEp(t) V2(x) −µES(t)

0 −µES(t) V3(x)

















































ψ1(x, t)

ψ2(x, t)

ψ3(x, t)

















,

where I is the unitary matrix, Vn(x) are the potential energy curves (where

V1(x) = V3(x)), µ is the transition dipole moment (µ = 1 within the Condon-

approximation) and EP (t), and ES(t) are pump and Stokes pulse, respectively.

As the laser frequency ω is close to the transition energy between states |1〉, |2〉

ω0 = (E2−E1)/h̄, the off-diagonal elements of the Hamiltonian can be represented

by a sum of two terms. One term oscillates rapidly near (ω0 + ω), (twice the

transition frequency) and the second term slowly at ∆ = ω0 − ω where ∆ is

the detuning. Following the rotating wave approximation (RWA) the rapidly

oscillating term is neglected. The Rabi frequencies (compare to section 1.4) are

the field amplitudes in frequency units ΩP (t) = EP (t)/h̄ and ΩS(t) = ES(t)/h̄,

represented by the pulse envelopes (compare to eq. (1.74)). Thus, separating the

time-dependent part, H(t) = Hmol +H(t)STIRAP , the Hamiltonian describing the
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field interaction is of the form

HSTIRAP =
h̄

2

















0 −ΩP (t) 0

−Ωp(t) ∆ −ΩS(t)

0 −ΩS(t) 0

















. (8.4)

The state vector |Ψ〉 can be written as

|Ψ〉 = c1|1〉+ c2|2〉+ c3|3〉. (8.5)

The system is initially in state |1〉, |c1(t0)|2 = 1; for a complete population transfer

|c3(t)|2 = 1. Explaining the dynamics results from an adiabatic representation

being obtained via an unitary transformation [144]

|Ψ〉 = A|Φ〉, (8.6)

diagonalizing the Hamiltonian

A†HSTIRAP A = D, (8.7)

where D is the diagonal form of HSTIRAP , and A is the rotation matrix

A =

















sin γ sin Θ cos Θ cos γ sin Θ

cos γ 0 − sin γ

sin γ cos Θ sin Θ cos γ cos Θ

















, (8.8)

where the angle Θ is specified below. The transformed Schrödinger equation

ih̄
∂

∂t
|Φ〉 =

(

D − ih̄A† ∂

∂t
A

)

|Φ〉 (8.9)
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yields, together with the unitary matrix A, the adiabatic form of the Hamiltonian

Had ≡
(

D − ih̄A† ∂

∂t
A

)

=

















ΩT cot γ iΘ̇ sin γ iγ̇

−iΘ̇ sin γ 0 −iΘ̇ cos γ

−iγ̇ iΘ̇ cos γ −ΩT tan γ

















. (8.10)

The new basis vectors {|φ+〉, |φ0〉, |φ−〉} for state |Φ〉 with eigenvalues {ε+, ε0, ε−},

are obtained according to the procedure described in chapter 1.4

|φ+(t)〉 =
1√
2

[sin Θ(t) sin γ(t)|1〉+ |2〉+ cos Θ(t) sin γ(t)|3〉] (8.11)

|φ0(t)〉 = cos Θ(t)|1〉 − sin Θ(t)|3〉 (8.12)

|φ−(t)〉 =
1√
2

[sin Θ(t) cos γ(t)|1〉 − |2〉+ cos Θ(t) cos γ(t)|3〉] (8.13)

with the eigenvalues ε

ε+(t) = 1/2
[

∆(t) +
√

∆2(t) + 4Ω2
T (t)

]

= ΩT (t) cot γ(t)

ε0(t) = 0 (8.14)

ε−(t) = 1/2
[

∆(t)−
√

∆2(t) + 4Ω2
T (t)

]

= −ΩT (t) tan γ(t).

The eigenenergy ε0 does not depend on the laser parameters while both other

eigenenergies are expressed in terms of ΩT (t), the mean square Rabi frequency

ΩT (t) =
√

Ω2
P (t) + Ω2

S(t). (8.15)

The time-dependend Euler’s angles Θ(t) and γ(t) appearing in the rotation matrix

A in eq. (8.8) are defined by

tan Θ(t) =
ΩP (t)

ΩS(t)
,



150 8.2. ADIABATIC LIMIT - STIRAP

tan 2γ(t) =
2ΩT (t)

∆
. (8.16)

Population transfer with the counterintuitive pulse sequence, for the Stokes pulse

ΩS(t) preceeding the pump pulse ΩP (t), implies the condition of a sufficient

overlap of both pulses. The two-photon resonance of this counterintuitive pulse

sequence is termed STIRAP. It relies on the compositon of eigenstate |φ0〉 as a

coherent superposition of the initial state |1〉 and the final state |3〉 only. As

the complete state vector can be expressed by a linear combination of the three

dressed states at any time, the aim is to perform a complete population inversion

by restricting the system into the dark state |φ0〉 at all times. Figure 8.3 shows

the temporal behavior of the system for a population inversion.

For t → −∞ the fraction ΩP/ΩS vanishes as the pump pulse is very weak,

therefore cos Θ = 1, sin Θ = 0, and φ0 coincides with the initial state |1〉. Like-

wise, for t→∞, when (ΩP/ΩS)−1 vanishes and φ0 assumes the form of the target

state |3〉. At resonance, ∆ = 0, and therefore, with eq. (8.16), γ = π/4. In the

adiabatic limit, as the mixing angle Θ(t) rises from 0 to π/2, the adiabatic state

|φ0〉 evolves from the pure initial state |1〉 to a superposition of states |1〉 and |3〉

at intermediate times, and finally to the target state |3〉. Therefore, for a high

efficiency of population transfer, non-adiabatic transitions are to be reduced. The

requirement for adiabatic conditions can be expressed as

h̄

∣

∣

∣

∣

∣

dΘ

dt

∣

∣

∣

∣

∣

� |ε0 − ε±| = h̄|ΩT (t)|. (8.17)

That means, for adiabaticity a large pulse area is obligatory. Thus, in the coun-

terintuitive pulse sequence, the pump laser should start only after the Stokes

pulse provided a sufficiently large separation of the dressed eigenstates. For the

most efficient population transfer the delay time of both pulses corresponds to ap-
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Figure 8.3: Temporal behavior (schematic) of pump and Stokes Rabi frequencies (top),
the eigenenergies (middle) and the populations (bottom) for a three-state STIRAP
process.

proximately the half of the pulse width. The delay time influences the population

transfer the more sensitively with increasing Rabi frequency. Non-adiabatic ef-

fects can be corrected by summing perturbation series in the adiabatic basis [145].

In order to prepare a large pulse area a similar process related to STIRAP,

called fractional STIRAP (f-STIRAP), where the Stokes pulses still preceeds the

pump pulse but both pulses vanish simultaneously,

lim
t→−∞

ΩP (t)

ΩS(t)
= 0, lim

t→+∞

ΩP (t)

ΩS(t)
= tanΘ, (8.18)
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can be applied. This scenario causes a sufficient separation of the dressed eigen-

states by the preceeding Stokes pulse and a fast population transfer by the pump

pulse, where the limits are [146]

|φ0(−∞)〉 = |1〉, (8.19)

|φ0(+∞)〉 = cos Θ|1〉 − sin Θ|3〉.

For limt→+∞ ΩP (t)/ΩS(t) = 1, Θ = π/4 and φ0(+∞) = 1/
√

2(|1〉 − |3〉). The

eigenstate |φ0〉 represents, within the f-STIRAP approach, a coherent superpos-

tition of eigenstates |1〉 and |3〉, in which the ratio of the probability amplitudes

of these states is proportional to the ratio of pump and Stokes pulse. Adiabatic

behavior in this case will not yield complete population transfer. In contrast to

the standard STIRAP, f-STIRAP is more robust concerning variations in pulse

parameters.

Comparing the possible pulse sequences, the physical processes in the strong

field regime are very different. While within the STIRAP picture population

transfer from |1〉 to |3〉 is performed adiabatically without populating state |2〉,

the intuitive pulse order (pump pulse preceeds the Stokes pulse) describes a

pump/dump process and therefore state |2〉 is populated. For completely over-

lapping pulses with the same time dependence, the mixing angle Θ(t) is constant

and therefore Θ̇ = 0. As the |φ0〉 decouples (compare to eq. (8.10)), the system is

reduced to an effective two-level system with the adiabatic states |φ+〉 and |φ−〉.

This can be demonstrated analytically assuming pulses of the form [141]

ΩP (t) =
α

T
f
(

t

T

)

, ΩS(t) =
β

T
f
(

t

T

)

, (8.20)

where the parameters are real and positive. Both fields may have different
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strenghts α and β but the same pulse width T . The envelope function f(x)

is assumed to be a Gaussian. In the adiabatic equation of motion

ih̄
d

dt









φ+(t)

φ−(t)









=









ΩT cot γ iγ̇

−iγ̇ −ΩT tan γ

















φ+(t)

φ−(t)









, (8.21)

the coupling between states |φ+〉 and |φ−〉 vanishes on resonance, when ∆ = 0,

γ = π/4 and, γ̇ = 0. The exact solution

P3 =

(

2αβ

α2 + β2

)2

sin4
(

1/2
√

α2 + β2

)

(8.22)

is an analytic expression for the Rabi-like oscillations describing the population

transfer into state |3〉 as a function of the field strengths α and β. For α = β the

amplitude is largest.

8.3 CARS-Signals

In this section an expression for resonant CARS signals within a perturbative de-

scription of the wave functions is given [138,139,147]. The wave function picture

shows a simple connection between the wave functions and the transitions con-

tributing to the signal. Regarding the response of a molecule with two electronic

states, |X〉 and |B〉 (here the notation is changed as state |3〉 is a virtual state

and does not contribute to the signal), to an electric field consisting of a sequence

of three laser pulses, the Hamiltonian is given as

H = Hmol +Hint. (8.23)

The molecular Hamiltonian Hmol including the kinetic energy operator as well

as the potential energy operators is represented in the basis of vibronic states
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{|Xn〉, |Bm〉} with eigenenergies {EXn, EBm} as

Hmol =
∑

n

|Xn〉〈Xn|EXn +
∑

m

|Bm〉〈Bm|EBm. (8.24)

The time-dependent pulses are of the form

E(x, t) =
3
∑

j=1

Ej(x, t) =
3
∑

j=1

1

2
E0,jfj(t− τi)

[

eiωj(t−τi)−ikjx + e−iωj(t−τi)+ikjx
]

,

(8.25)

where fj(t − τj) are the pulse envelopes centered at time τj, ωj are frequencies,

kj wave vectors and x the spatial coordinate, see chapter 1, eq. (1.38). Within

the dipole approximation the radiation-matter interaction is written without the

position dependency, assuming a dipole operator of the form [148]

Hint = −µ+ · E(t)− µ− · E∗(t),

µ+ =
∑

nm

|Bm〉µmn〈Xn|,

µ− = (µ+)† =
∑

mn

|Xn〉µmn〈Bm|. (8.26)

The µmn are matrix elements of the dipole moment operator, µmn = 〈Bm|µ|Xn〉.

Here, the dipole operators are defined such that µ+ · Ei(t), defining absorption,

couples a ket in the ground state to the excited state and, in contrast, µ− ·E∗
i (t)

corresponds to stimulated emission, coupling an excited ket-state into the ground

state. Entering in the experimental signal is the polarization, defined as

P (t) ≡ 〈ψ(t)|µ|ψ(t)〉, (8.27)

where |ψ(t)〉 is the total nuclear and electronic wave function, being iteratively

determined by time-dependent perturbation theory (compare to chapter 1.3)

|ψ(n)〉 = (ih̄)−1
∫ t

−∞
dt′ e−iHmol(t−t′)/h̄Hint(t

′)|ψ(n−1)(t′)〉. (8.28)
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The states |ψ(n)〉 carry a spatial dependence, according to the wave vector of the

particular pulse. The signal S is detected in direction k1−k2 +k3 as (dependence

on τ being supressed)

S(τ) =
∫ TE

−∞
dt
∣

∣

∣P (3)(t)
∣

∣

∣

2
, (8.29)

where TE is the detection time, τ the delay time and P (3)(t), the third order

polarization, given by

P (3)(t) =
3
∑

n=0

〈ψ(n)(t)|µ|ψ(3−n)(t)〉. (8.30)

The polarization including the geometric configurational constraint into direction

k1 − k2 + k3 can be written as

P (3)(t, k1 − k2 + k3) =
{

〈ψ(0)(t)|µ|ψ(3)
k1−k2+k3

(t)〉+ 〈ψ(0)(t)|µ|ψ(3)
k3−k2+k1

(t)〉

+ 〈ψ(2)
k2−k1

(t)|µ|ψ(1)
k3

(t)〉+ 〈ψ(2)
k2−k3

(t)|µ|ψ(1)
k1

(t)〉
}

+ c.c.(8.31)

including all possible time orderings of the three interactions. In the latter equa-

tion 〈ψ(0)(t)| is the unperturbed initial state, |ψ(3)
k1−k2+k3

(t)〉 is created by a suc-

cessive absorption in direction k1, emission in k2 and absorption in k3. The other

wave functions can be explained likewise by absorption (positive sign) and emis-

sion (negative sign of the k-vectors). In many CARS experiments the signal is

dominated by the first term in eq. (8.31)

P (3)(t) ≈ PCARS(t) = 〈ψ(0)(t)|µ|ψ(3)
k1−k2+k3

(t)〉+ c.c. (8.32)

Applying third order perturbation theory, the CARS signal (eq. 8.29) can be

evaluated from

PCARS(t) = − i

h̄3

∑

n,n′,m,m′

pnµnm′

∫ t

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1 e

−iωnm′ (t−t3)/h̄
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(µnm′E3(t3)) e
−iωnn′ (t3−t2)/h̄ (µn′mE

∗
2(t2)) e

−iωnm(t2−t1)/h̄ (µnmE1(t1)) + c.c.,(8.33)

where the indices n, n′ and m,m′ correspond to ground and excited state vi-

brations, respectively, and the ω are the transition frequencies, see fig. 8.4.

Weighting the paths with Boltzmann factors pn of the initial states, the terms

E
ne

rg
y

k3-k2k1

|X

Timet1 t2 t3 t4

|B

n

n’

m

m’

Figure 8.4: CARS scheme for transitions beteween ground |X〉 and excited state |B〉
energy levels. The up-arrows indicate absorption from, and the down-arrow emission
processes into the vibrational levels n, n′,m,m′. The dashed arrow illustrates the CARS
signal being obtained.

in eq. (8.33) represent an amplitude for creating polarization along the direction

k1 − k2 + k3. With respect to the frequency difference between the currently

occupied level and the inital level a phase is attained to the amplitude, given by

Em′n = EBm′−EXn, En′n = EXn′−EXn etc. The oscillations in the CARS signal

in varying the delay times are caused by these phases, connecting initial and final

states.
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Within this work no CARS signals are calculated: Rather, the wave packet

motion in the ground and excited states |X〉 and |B〉 are related to experimentally

derived CARS signals.

8.4 Numerical Results

In this section numerical results on the population transfer are presented for

various pulse sequences differing in the pulse order, wavelengths and intensities.

A comparison of results from the numerically exact coupling scheme to those

derived from the adiabatic approximation (as discussed in section 8.1 and 8.2)

provides evidence for the existance of STIRAP in the fs-regime. The efficiency

of population transfer is embodied by the norm in the particular states after the

time when both pulses, the pump and the Stokes pulse, are switched off. Then,

in absence of both pulses, the population ratio does not change any more.

8.4.1 Pump/ Stokes Resonant Excitation

Here, the case of resonant excitation with wavelengths of λS = 545 nm and λP =

525 nm is treated. Both pulses have a FWHM of 150 fs and an intensity of 8·10−3

a.u., being resonant with the excited |B〉-state, as indicated by the dot-dashed

arrows in fig. 8.1. The wavelengths are adjusted to the v ′′ = 5 vibrational state

of the electronic ground state. The parameters for the calculations are chosen

according to the experimental values.

The experimental CARS signals in fig. 8.5 show a sequence of at least two

vibrational periods depending on the delay time of both pulses. First, a fast

decaying signal with a peak separation of about 160 fs (fig. 8.5, panel (a)),
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Figure 8.5: Experimental CARS signals with wavelengths 525/545/554 nm for pump,
Stokes, and the probe pulse. The signals are obtained for different delay times ∆T of
the Stokes pulse, as indicated. Panel (a) features a short vibrational period estimated
to be about 160 fs, according to energy separations around the v ′′ = 5 vibrational
state. Panel (c) exhibits a long oscillatory period deriving from the excited electronic
state. In panel (b) contributions of both, the electronic ground and excited states can
be seen.
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second, a longer oscillation period of about 400 fs (panel (c)), and an intermediate

situation (panel (b)), where a superposition of the two sequences occurs, can be

seen. The separation of the peaks reflects the vibrational dynamics in different

electronic states. The pronounced peaks with the short separation, corresponding

to an energy of 213 cm−1, originate from the electronic ground state signal being

superposed by the contribution of the excited electronic state’s nuclear motion.

As the signals reflect the vibrational wave packet motion, calculations have

been performed describing the dynamics starting from a fixed vibrational state

v′′ = 0, and neglecting rotations. The different dynamical behavior for the adi-

abatic and the numerically exact coupling schemes are shown in fig. 8.6. Com-

paring the results from an adiabatic description (fig. 8.6, lower panel) with the

case of numerically exact coupling (fig. 8.6, upper panel) it is obvious that the

adiabatic picture for the chosen case of resonant excitation does not describe a

STIRAP-process, as the main part remains in the excited state. A second feature

is the asymmetric behavior of the norm for the counterintuitive pulse sequence

(Stokes pulse preceeds the pump pulse) as compared to the intuitive one (Stokes

pulse succeds the pump pulse). Regarding the wave packet motion in the par-

ticular states gives an explanation for the described features. Since both laser

pulses are resonant with the excited state, both prepare interfering excited state

wave packets in the |B〉 electronic state, see fig. 8.7.

Figure 8.6, upper panel, also explains why the experimental CARS signals

feature the ground and excited electronic state dynamics: Since a substantial part

remains in the excited state and a small part is dumped into the electronic ground

state, both state’s vibrational periods contribute to the signal. The separation

of the peaks reflecting the electronic ground state contribution can be assigned
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Figure 8.6: Temporal development of the norm in the different states, where the solid
line describes the |1〉, the dotted line the |2〉 and the dashed line the |3〉 state. The norm
is calculated after 1000 fs for one pulse sequence. The abscissae display the temporal
delay of the Stokes pulse relative to the pump pulse located at ∆T = 0 fs; negative
delay times mean a preceeding Stokes pulse. Upper panel: Norm for an exact coupling
case, lower panel: adiabatic description. Field strength of both pulses E = 3 · 10−3

a.u.(3 · 1011W/cm2).
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Figure 8.7: Probability density of the excited state wave packet for a fixed delay-time
∆T = -200 fs of pump and Stokes pulse .

to the period (≈ 160 fs) of the vibrational excited ground state wave packet

displayed in fig. 8.8.

The experimental as well as the theoretical results show that a counterin-

tuitive pulse sequence comparable to a STIRAP scheme does not represent a

STIRAP but a simple pump/dump process with two interfering excited states

wave packets. Therefore, to increase the adiabaticity, the most important condi-

tion for a STIRAP process to take place, the detuning ∆ and the pulse intensity

Ω0
max, or, alternatively, the pulse width have to be increased [141]. Therefore, the

case of an increased detuning achieved in choosing larger wavelengths λS and λP

is investigated in the next subsection.
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Figure 8.8: Probability density of the ground state wave packet for a delay time ∆T
= -200 fs of the pulses. The maxima exhibit a period of about 160 fs.

8.4.2 Pump/Stokes Off-Resonant Excitation

In order to avoid the preparation of excited state wave packets and to increase

adiabaticity, next the wavelenghts are chosen as λS = 795 nm and λP = 645 nm.

Using the same pulse widths as in the resonant case but higher intensities (8·10−3

a.u.), leads to the experimental signals in fig. 8.9.

A very broad and intense signal centered around 0 fs is accompanied by a

sequence of small peaks reflecting a vibrational structure. In a three-dimensional

representation (fig. 8.10) the weak vibrational structure can be seen. The calcu-

lations performed to compare the adiabatic (lower panel) to the exact coupling

case (upper panel) yield the picture shown in fig. 8.11

The adiabatic picture fails in describing the temporal changes of the pop-

ulation exactly but gives a qualitatively correct description of the population
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Figure 8.9: Experimental CARS signals with wavelengths 634/795/554 nm for pump,
Stokes, and the probe pulse. The vibrational period is estimated to be 180 fs, according
to energy separations around the v′′ = 15 vibrational state.

Figure 8.10: Experimental CARS signals with wavelengths 634/795/554 nm for pump,
Stokes, and the probe pulse. A three-dimensional representation is shown.
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Figure 8.11: Temporal development of the norm in the different states, as indicated.
Upper panel: Norm for an exact coupling case, lower panel: adiabatic description.
Intensity of both pulses I = 8 · 10−3 a.u..
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maxima. As its accuracy is correlated to the effect of the adiabaticity criterion

of eq. (8.17), depending on the pulse area, an increase of intensity should give a

better description within this picture. Additionally, the temporal separation of

the two pulses (delay) influences the validity of the adiabatic picture: when both

pulses act at shortly successive times the shared pulse area is relatively high and

the Rabi frequency ΩT is large. At the same time, the temporal change of the

mixing angle Θ is largest. For larger pulse delays ΩT decreases and the adiabatic-

ity is not assured any more. At a delaytime corresponding to the width at half

maximum (FWHM) the transfer efficiency is the optimal one [141]. In the case

of vanishing detuning ∆, the three-level problem can be reduced to an effective

two-level problem. Then, depending on the adiabaticity parameter α = Ω0/T ,

where T is the pulse width and Ω0 the pulse intensity, the inital state popula-

tion for both pulse orders is the same while the final state popualation oscillates.

Therefore, the temporal behavior of the states, and also the final population of

state |3〉 is very sensitive towards changes in the pulse width and intensity, since

it influences the adiabaticity of the process [141]. Figure 8.12 and 8.13 compare

two cases where the counterintuitive pulses are separated by the same delay time

∆τ but differ in the width of the Stokes pulse.

For the case where the Stokes pulse preceeds the pump pulse for about the

width at half maximum of the pulses, the population tranfer into state |3〉 is

very effective (nearly complete within the adaibatic calculation). Regarding the

dressed state picture in panels (f), the dressed state |φ0(t)〉, the one without

contribution of state |2〉, is mainly populated. According to a constant small

value of the mixing angle Θ the population of state |φ0(t)〉 originates from initial

state |1〉. At times, when the overlap of both pulses is very large, the other

dressed states |φ+〉 and |φ−〉 contribute. At later times when the pulse interaction
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Figure 8.12: Temporal development of the norm in the different states for a counterin-
tuitive pulse sequence. Panel (a): Pulse envelopes of the pump (EP (t)) and the Stokes
pulse (ES(t)), as indicated. Pulse parameters are I = 4 · 10−2 a.u. for both pulses,
pump pulse: λP = 645 nm, FWHMP = 120 fs and Stokes pulse λS = 795 nm, FWHMS

= 100 fs preceeding the pump pulse with ∆τ = 60 fs. Panel (c) shows the mean-square
Rabi frequency calculated within the rotating wave approximation (RWA). The mixing
angle Θ(t) is displayed in panel (e) and its time derivative in panel (d). Panel (b) shows
the norm in the various states and (f) the norm in the dressed states.
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Figure 8.13: As before, but with the same pulse width of both pulse parameters,
FWHM = 120 fs.
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vanishes and Θ levels to the constant value π/2, the dressed state |φ0〉 corresponds

to state |3〉.

The dynamics of the dressed states depends sensitively on the adiabaticity.

For very small or very large times the adiabatic approximation is not valid because

of the vanishing pulse area. Then, when adiabaticity can be assumed and the

system is locked onto the dressed states, the most critical time concerning the

validity of the adiabaticity arises when both pulses overlap and dΘ/dt is largest.

For each time the condition dΘ/dt � ΩT must be guaranteed. The maximal

change dΘ/dt in both cases reaches a similar value where adiabaticity breaks

down (compare dΘ/dt ≈ 0.012 6� ΩT ≈ 0.008). This can be observed in the

temporal development of the dressed states in this time interval, since under

validity of the adiabaticity criterion state |φ0〉 should be solely populated for all

times. In the case of equal pulse widths the derivative takes values different from

zero for a longer time. Thus, the adiabatic locking onto state |φ0〉 cannot be

ensured. Therefore, in order to reduce the time derivative of the mixing angle,

the pulse ratio is changed.

8.4.3 Intensity Effects

Experimentally, the intensity of the Stokes pulse was chosen to be about a factor

of four higher than the pump pulse’s intensity. The wavelengths and widths for

pump and Stokes pulse were set to λP = 645 nm, λS = 805 nm, FWHMP = 80

fs, and FWHMS = 70 fs. In fig. 8.14 the obtained CARS signals are shown. The

pulse arrangement gives a similar picture as shown above for fractional-STIRAP.
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Figure 8.14: Experimental CARS signals with wavelengths 654/805/554 nm for pump,
Stokes, and the probe pulse, where the Stokes pulse has a four times higher intensity
than the pump pulse.

Figure 8.15: Experimental CARS signals with wavelengths 654/805/554 nm for pump,
Stokes, and the probe pulse, where the Stokes pulse has a four times higher intensity
than the pump pulse. Three-dimensional representation.
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Figure 8.16: Pulses and populations for the exact couplig case. Right panels: Temporal
development of the norm in the various states for three different pulse pulse orders
illustrated in the left panels. Panel (a) Stokes pulses preceeds the pump pulse; panel
(c): both pulses centered around the same time, panel (e): pump pulse preceeds the
Stokes pulse. Field strength of the pulses is ES = 2 · 10−2 a.u., ES = 2.5 · 10−3 a.u.
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In order to understand the dynamics of the system, three cases are consid-

ered where the delay time between pump and Stokes pulse is varied. Fig. 8.16

illustrates three different pulse orders for the exact coupling case. It can be seen

that, depending on the pulse sequence, states |3〉 and |1〉 are mainly populated

and state |2〉 does not contribute remarakbly. Therefore, the the dyncamics is

calculated within the adiabatic picture. Although the population ratio of the

three situations yields similar values, the temporal behavior described by the

dressed states differs very much.

First, the case where the Stokes pulse preceeds the pump pulse is discussed

(fig. 8.17). As to be expected, the system initially in state |1〉 can be described in

the dressed state formalism by state |φ0〉. The short pulses cause a rapid change

of the mixing angle (panel (d)), violating the adiabaticity. The mixing angle’s

time derivative Θ̇ is now smaller than the Rabi frequency ΩT but only to a small

extent. One can say to be in the “vicinity” of adiabatic behavior. Panel (f) shows

how during the non-adiabatic conditions a population transfer from dressed state

|φ0〉 into the other dressed states occurs. Afterwards, when the interaction stops,

the system is fixed in the actual state.

For the case of both pulses being centered around the same time t = 300 fs

a different picture arises, as displayed in fig. 8.18. The population is transferred

effectively into state |3〉. In the dressed state picture the system is originally in

states |φ+〉 and |φ−〉. Since both pulses exhibit the same pulse envelopes, the

mixing angle is constant and therefore, the differential change of Θ equals zero.

As a consequence, state |φ0〉 decouples and the system can be described by an

effective two-level system.

A similar case emerges for the intuitive pulse sequence describing a pump/
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Figure 8.17: Temporal development of the norm in the particular states for a counter-
intuitive pulse sequence. Panel (a): Pulse envelopes of the pump (EP (t)) and the Stokes
pulse (ES(t)), as indicated. Pulse parameters are for the pump pulse: I = 1.2 · 10−3

a.u., λP = 645 nm, FWHMP = 120 fs and Stokes pulse I = 5.5 · 10−3 a.u., λS = 795
nm, FWHMS = 100 fs preceeding the pump pulse with ∆τ = 40 fs. Panel (c) shows the
mean-square Rabi frequency within RWA. The mixing angle Θ(t) is displayed in panel
(e) and its time derivative in panel (d). Panel (b) shows the norm in the molecular and
(f) the norm in the dressed states.
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Figure 8.18: Temporal development of the norm in the various states for pulses cen-
tered around 0 fs. Panel (a): Pulse envelopes of the pump (EP (t)) and the Stokes pulse
(ES(t)), as indicated. Pulse parameters are for the pump pulse: I = 1.2 · 10−3 a.u.,
λP = 645 nm, FWHMP = 120 fs and Stokes pulse I = 5.5 · 10−3 a.u., λS = 795 nm,
FWHMS = 100 fs, both centered around ∆τ = 0 fs. Panel (c) shows the mean-square
Rabi frequency within RWA. The mixing angle Θ(t) is displayed in panel (e) and its
time derivative in panel (d). Panel (b) shows the norm in the molecular and (f) the
norm in the dressed states.
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Figure 8.19: Temporal development of the norm in the different states for an intuitive
pulse sequence. Panel (a): Pulse envelopes of the pump (EP (t)) and the Stokes pulse
(ES(t)), as indicated. Pulse parameters are for the pump pulse: I = 1.2 · 10−3 a.u.,
λP = 645 nm, FWHMP = 120 fs and Stokes pulse I = 5.5 · 10−3 a.u., λS = 795 nm,
FWHMS = 100 fs succeeding the pump pulse with ∆τ = 40 fs. Panel (c) shows the
mean-square Rabi frequency within RWA. The mixing angle Θ(t) is displayed in panel
(e) and its time derivative in panel (d). Panel (b) shows the norm in the molecular and
(f) the norm in the dressed states.
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dump like scenario (fig. 8.19). In contrast to the counterintuitive pulse sequence,

Θ starts at the value π/2 and decreases. Except from the sign, dΘ/dt features the

same gradient as in the counterintuitive pulse sequence. Starting from dressed

states |φ+〉 and |φ−〉 with non-adiabtic perturbation by state |φ0〉 finally the

system ends in both initially occupied dressed states mainly consisting of state

|3〉.

As a conclusion, it can be said that neither the f-STIRAP like pulse sequence

nor the STIRAP-like pulse sequence are describable solely by adiabatic processes.

Regarding the rate of the adiabatic mixing angle Θ, its change is largest for the

case when both pulses, the pump- and Stokes-pulse, overlap. Then, the adiabatic

picture is violated, as the rate Θ̇ is not very much smaller than the mean square

Rabi frequency, ΩT . Nevertheless, the analysis of the dressed states formalism

helps to understand the concurrent processes in the system. It is shown that the

f-STIRAP-like pulse sequence is suited to prepare ground state wavepackets of

highly excited vibrational states and monitor it using femtosecond spectroscopy.



Summary

In this work a new algorithm to determine quantum control fields from the in-

stantaneous response of systems has been developed. The derived fields allow to

establish a direct connection between the applied perturbation and the molecular

dynamics. The principle is most easily illustrated in regarding a classical forced

oscillator. A particle moving inside the respective potential is accelerated if an

external field is applied acting in the same direction as its momentum (heating).

In contrary, a deceleration is achieved by a field acting in the opposite direction

as the momentum (cooling). Furthermore, when the particle reaches a classi-

cal turning point and then changes its direction, the sign of the field has to be

changed to further drive the system in the desired way. The frequency of the

field therefore is in resonance with the oscillator. This intuitively clear picture

of a driven classical oscillator can be used for directing (or controlling) quantum

mechanical wave packet motion.

The efficiency of the instantaneous dynamics algorithm was demonstrated

in treating various model problems, the population transfer in double well po-

tentials, excitation and dissociation of selective modes, and also the population

transfer between molecular electronic states. Although it was not tried to opti-

mize the fields to gain higher yields, the control was found to be very efficient.

Driving population transfer in a double well potential could be shown to take

176
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place with nearly 100 % efficiency. Furthermore, it was shown that selective dis-

sociation within the electronic ground state of HOD can be performed by either

maximizing a selected coordinate’s differential momentum change or the energy

absorption.

Concerning the population transfer into excited electronic states, a direct com-

parison with common control algorithms as optimal control theory and genetic

algorithms was accomplished using a one-dimensional representation of methyl

iodide. The fields derived from the various control theories were effective in

transferring population into the chosen target state but the underlying physical

background of the derived optimal fields was not obvious to explain.

The instantaneous dynamics algorithm allowed to establish a direct relation

between the derived fields and the underlying molecular dynamics. Naturally,

because no variational principle was employed, no “optimal” field was obtained.

Nevertheless, the constructed fields were found to be very effective. The dis-

advantage in dissociative systems is the condition of the wavepacket’s overlap

which directly determines the electric fields. For wavepackets moving on po-

tentials with different gradients, the resulting difference in velocity reduced the

possibility of overlaps at later times. Thus, the system is forced to perform the

transition suddenly on a short time scale. A restriction to three-photon processes

could also succesfully be performed. Especially, for the difficult task to transfer

population selectively into a single of two diabatically coupled states without an

additional external coupling, good performance for instantaneous response could

be obtained.

Whereas the control of dynamics in dissociative systems represents a very de-

manding task, as is to be expected, bound-to-bound transitions could be handled
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more effectively. This was demonstrated on the sodium dimer in a representa-

tion of three electronic states being initially in its vibronic ground state. The

objective was to transfer population into a predefined excited state. Choosing

the first or the second state as a target, the control fields exhibited quite different

features. In the case of selective excitation of the first excited electronic state, a

π-pulse was obtained consisting of a sequence of pulses. The separation of the

subpulses is determined by the vibrational motion. The carrier-frequency, on the

other hand, is related to the energy gap between the curves. A time-frequency

analysis utilizing the difference potentials dependend on the time-varying coordi-

nate expectation values, was employed to relate the pulse-structure to the excited

state wave packet, moving in, and out of the Franck-Condon region. Changing

the control objective, the derived control field did not feature a vibrational struc-

ture any more. The electronic transition was performed on a fast time-scale via

a two-step transition.

Regarding the sodium dimer, orientational effects have been investigated.

The question of an overall-efficiency of the population transfer for differently

oriented molecules was answered to be about 70 % or more if applying a control

field derived for an 45◦ orientation. Furthermore, spectroscopic methods to gain

information about the outcome of the control process have been investigated.

Therefore the exact nuclear probability density and the density construced from

spectroscopic data were contrasted. It was shown that pump/probe femtosecond

ionization spectroscopy is suited to monitor time-dependend molecular probabil-

ity distributions. In particular, it was shown that time-dependend photoelectron

spectra are able to monitore the population in the various electronic states after

applying the control field.
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In the last chapter a completely different possibility of controlling molecules

was regarded by investigating molecular iodine with a setup similar to the STI-

RAP (“Stimulated Raman Adiabatic passage”) scenario. The possibility to ex-

tend this technique to a fs-time scale was examined in theory as well as in exper-

iments, the latter being performed by Dr. Torsten Siebert in the Kiefer group,

University of Würzburg. It was shown that resonant excitation with a STIRAP-

like pulse sequence caused two interfering excited state wave packets contributing

to the CARS signals. For off-resonant excitation completely different pictures

emerged depending on the relative intensity of the two pulses. Implementation

of the pulses with a higher intensity of the Stokes pulse as compared to the pump

pulse – describing a so-called f-STIRAP like configuration – was shown to ef-

fectively transfer population into excited ground-state vibrational levels. This

was theoretically underlined by comparing the numerically exact coupling case

with the adiabatic picture. The process was described to run in the vicinity of

adibaticity.

Recent experiments and calculations have given additional insight into the

dynamical processes for the counterintuitive pulse sequence in the f-STIRAP like

setup. Experimental results in varying pulse intensities gave new information

about the composition of the CARS signals. A new model explaining the CARS

signals by a rotating dressed state vector will be adopted in future calculations to

expand the picture of a near-adiabatic behavior of the system in the femtosecond

regime.

Concerning the instantaneous response algorithms, manifold applications can

be thought of. The principle works for selective population transfer in double

well systems and will be expanded to treat quantum well structures, where an
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electron is transferable from one into a neighboring quantum dot. In principle,

for a semiconductor energy band consisting of a series of adjoint quantum dots a

selective transfer of one or more electrons should be possible.

Another application concerning population transfer may be expanded to mo-

lecular bridges mediating electron-transfer or linking vibrational modes between

molecular entities. In the context of quantum information the objective is to

transport information deriving from an initial state and a spaitally separated

final state being connected by linkers. This should be feasable to accomplish

employing the instantaneous response algorithm.

Furthermore, the latter algorithm can be modified to selectively transfer pop-

ulation into excited vibrational eigenstates of molecules. This may represent an

alternative to the STIRAP process.

Altogether, a new promising algorithm to control dynamical processes based

on the instantaneous response has been developed. Because the derived control

fields have been shown to be very efficient in selectively influencing molecules,

it is to be expected that farther reaching applications can be realized in future

investigations.



Zusammenfassung

In dieser Arbeit wurde ein neuer Algorithmus zur Bestimmung von Kontrollfel-

dern aus der instantanen Respons von Systemen auf die Wirkung von Laserfel-

dern entwickelt. Die damit berechneten Felder ermöglichen es, eine Verbindung

zwischen der durch das Laserfeld applizierten Störung und der molekularen Dy-

namik herzustellen. Das Prinzip lässt sich am einfachsten anhand eines klassi-

schen Oszillators veranschaulichen. Ein sich innerhalb dieses Oszillatorpotenzials

bewegendes Teilchen wird durch ein extern angelegtes Feld beschleunigt, wenn

dieses und der Impuls des Teilchens in die gleiche Richtung weisen (,,Heizen“).

Im Gegensatz dazu wird ein Abbremsen des Teilchens durch ein Feld erzielt, wel-

ches dem Impuls des Teilchens entgegengerichtet ist (,,Kühlen“). Wenn nun das

Teilchen in diesem Oszillator einen klassischen Umkehrpunkt erreicht und dort

seine Richtung ändert, muss das Vorzeichen des Feldes der neuen Richtung ent-

sprechend angepasst werden, damit das Feld das System weiterhin steuern kann.

Die Frequenz des Feldes befindet sich demnach in Resonanz mit der Oszillator-

freuqenz. Dieses intuitive, klassische Bild einer erzwungenen Schwingung eines

Oszillators kann für die Steuerung (oder Kontrolle) einer quantenmechanischen

Wellenpaketbewegung angewendet werden.

Die Effizienz des Algorithmus’ wurde innerhalb dieser Arbeit an verschiede-

nen, grundlegenden Problemen, wie dem Populationstransfer in Doppelminimum-

181



182 ZUSAMMENFASSUNG

Potenzialen, Anregung und Dissoziation selektiver Moden und den Populations-

transfer zwischen unterschiedlichen elektronischen Zuständen aufgezeigt. Obwohl

eine Optimierung der Kontrollfelder bezüglich höherer Ausbeuten nicht durch-

geführt wurde, konnte dennoch eine hohe Effizienz der Kontrollprozesse nach-

gewiesen werden. Ein Populationstransfer in Doppelminimum-Potentialen wurde

nahezu vollständig erreicht. Des weiteren wurde selektive Dissoziation innerhalb

des elektronischen Grundzustandes des HOD-Moleküls unter Verwendung zweier

unterschiedlicher Methoden, der Maximierung der zeitlichen Änderung des Im-

pulses oder der Energieabsorption einer Koordinate, erzielt.

Bezüglich des Populationstransfers in elektronisch angeregte Zustände wur-

den bekannte Kontrollalgorithmen wie der Theorie der optimalen Kontrolle und

genetischer Algorithmen mit dem in dieser Arbeit entwickelten Prinzip der in-

stantanen Respons anhand einer eindimensionalen Darstellung des Methyliodids

verglichen. Die mit Hilfe der verschiedenen Kontrolltheorien konstruierten Felder

erzielten einen effektiven Populationstransfer in einen zuvor definierten Zielzu-

stand, jedoch ist der dem zu Grunde liegende, physikalische Hintergrund nicht

einfach zu beschreiben.

Mit Hilfe des Instantanen-Dynamik-Algorithmus’ konnte eine direkte Relation

zwischen den Kontrollfeldern und der molekularen Dynamik hergestellt werden.

Nachdem kein Variationsprinzip im Sinne einer mathematischen Minimierung an-

gewandt wurde, konnte kein ,,optimales“ Feld erhalten werden; die berechneten

Kontrollfelder sind dennoch sehr effektiv. Ein Nachteil der Methode ist die Be-

dingung überlappender Wellenpakete, aus der die elektrischen Felder berechnet

werden: da sich die Wellenpakete auf Potenzialen mit unterschiedlichen Steigun-

gen bewegen, sinkt mit fortlaufender Zeit die Wahrscheinlichkeit eines großen
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Überlapps. Daher ist das System zu einem plötzlichen Übergang auf einer sehr

kurzen Zeitskala gezwungen. Auch die Einschränkung auf einen nicht-resonanten

drei-Photonen Prozess konnte erfolgreich implementiert werden. Besonders das

schwierige Problem eines selektiven Populationstransfers in eines von zwei diaba-

tisch gekoppelten Zuständen zeigte erfreuliche Ergebnisse.

Da die Kontrolle von Dynamiken in einem dissoziativen System eine beson-

dere Herausforderung darstellt, konnten Übergange in gebundene Zustände er-

wartungsgemäß besser behandelt werden. Dies wurde für den Fall des Natrium-

Dimers in einer Darstellung von drei elektronischen Zuständen gezeigt. Ausge-

hend von einer Besetzung des vibronischen Grundzustandes sollte nur ein Zu-

stand selektiv angeregt werden. Je nach Wahl des Zielzustandes zeigten sich in

der Form des Kontrollfeldes deutliche Unterschiede. Selektive Anregung des ers-

ten Zustandes erzeugte ein Kontrollfeld bestehend aus einer Pulsfolge. Dabei

wird der zeitliche Abstand dieser Pulse durch die Schwingungsbewegung festge-

legt, während die Trägerfrequenz durch die Energiedifferenz zwischen den Poten-

tialkurven festgelgt wird. Eine Zeit-Frequenz-Analyse anhand dieser Differenz-

potentiale in Abhängigkeit vom Ortserwartungswert konnte die Pulse der zuvor

beschriebenen Pulsfolge mit einem Wellenpaket im angeregten Zustand, welches

sich in und aus dem Franck-Condon Fenster wieder heraus bewegt, in Beziehung

setzen. Eine Änderung des zu populierenden Zustandes führte zu einem Kon-

trollfeld, welches nun keinerlei Vibrationsstruktur mehr zeigt. Die elektronische

Anregung fand in einem zwei-Schritte-Prozess auf einer sehr kurzen Zeitkskala

statt.

Anhand dieses Moleküls wurden zusätzlich Orientierungseffekte untersucht.

Die Frage nach einer Gesamteffizienz des Populationstransfers für alle Orientie-
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rungen konnte mit einem Kontrollfeld, welches aus einer mittleren Orientierung

bestimmt wurde, beantwortet und auf ca. 70 % abgeschätzt werden. Des weiteren

wurden spektroskopische Methoden untersucht, die in der Lage sind, Informatio-

nen über die Effizienz von Kontrollprozessen zu liefern. Dabei konnte in einem

Vergleich exakter Kernwahrscheinlichkeitsdichten und aus spektroskopischen Da-

ten konstruierten Dichten gezeigt werden, dass Pump-Probe Ionisationsspektro-

skopie im Femtosekundenbereich sehr gut dazu geeignet ist, detaillierte Abbil-

der molekularer Wahrscheinlichkeitsverteilungen zu konstruieren. Im Speziellen

konnte mit zeitabhängigen Photoelektronenspektren die Populationen in den ver-

schiedenen elektronischen Zuständen nach Anlegen des jeweiligen Kontrollfeldes

,,beobachtet“ werden.

Im letzten Kapitel wurde eine komplett andere Methode der Kontrolle von

Molekülen in Anlehnung an einen STIRAP (,,Stimulated Raman Adiabatic Pas-

sage“) Prozess am Beispiel molekularen Iods vorgstellt. Dabei wurde die Möglich-

keit, diese Technik auf die Femtosekunden-Zeitskala auszudehnen, in Theorie und

Experiment untersucht, wobei die Messungen von Dr. Torsten Siebert (Univer-

sität Würzburg, Arbeitskreis Prof. Kiefer) durchgeführt worden sind. Es konnte

gezeigt werden, dass resonante Anregung mit einer STIRAP-ähnlichen Pulsse-

quenz zwei interferierende Wellenpakete im angeregten Zustand erzeugt, die zu

den CARS-Signalen beitragen. Bei nicht-resonanter Anregung hingegen konn-

ten zwei verschiedene Szenarien beobachtet werden, welche von dem Intensitäts-

verhältnis der beiden Pulse zueinander abhängen. Eine Abfolge der Pulse, so dass

der Stokes-Puls mit der höheren Intensität im Vergleich zum Pump-Puls in einer

f-STIRAP-artigen Anordnung dem Pump-Puls vorausgeht, führte dabei zu einem

effizienten Populationstransfer in einen schwingungsangeregten Zustand im elek-

tronischen Grundzustand. Dies konnte durch einen Vergleich des numerisch ex-



ZUSAMMENFASSUNG 185

akten Falls mit einer adiabatischen Behandlung theoretisch untermauert werden.

Dabei wurde festgestellt, dass die zu Grunde liegenden Prozesse näherungsweise

durch adiabatisches Verhalten charakterisiert sind.

Neuere Experimente und Rechnungen haben zusätzliche Informationen über

die ablaufenden dynamischen Prozesse bei einer umgekehrten Pulsfolge geliefert.

Über die Variation der Pulsintensitäten konnte zusätzlich Einblick über die Zu-

sammensetzung der CARS-Signale erhalten werden. Dazu wird gerade ein neu-

es Modell entwickelt, welches die CARS-Signale mit einem rotierenden dressed-

state-Vektor erklärt und als als Grundlage für weitere Rechnungen dient, die das

Bild eines nahezu-adiabatischen Verhaltens des Systems in der Femtosekunden-

zeitskala erklären sollen.

Bezüglich des Instantanen-Dynamik-Algorithmus’ bestehen noch vielfältige

Anwendungsmöglichen. Aufgrund des effektiven Populationstransfers in den Dop-

pelminimum-Potentialen können auf der gleichen Grundlage ,,Quanten-Well“-

Strukturen behandelt werden, wobei ein Elektron von einem in einen benach-

barten Quanten-Dot übertragen werden kann. Im Prinzip sollte demnach in den

Energieband-Strukturen von Halbleitern, die aus einer großen Anzahl solcher mit-

einander verknüpfter Quanten-Dots bestehen, ein selektiver Transfer von einem

oder mehreren Elektronen möglich sein.

Weitere Anwendungsmöglichkeiten bezüglich eines Populationstransfers kön-

nen auf sogenannte ,,Molekulare Brücken“ ausgedehnt werden, welche Elektro-

nen-Transfer übermmitteln oder Schwingungsmoden zwischen verschiedenen mo-

lekularen Einheiten miteinander verknüpfen. Im Kontext von Quanteninforma-

tion übernehmen diese Brücken die Aufgabe, Information von einem Ausgangs-

punkt zu einem räumlich getrennten Endpunkt weiterzuleiten. Dieses sollte auch
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durch Anwendung instantaner Resonanz möglich sein.

Des weiteren kann der entwickelte Algorithmus auch dementsprechend verän-

dert werden, dass Population in einen bestimmten, schwingungsangeregten Ei-

genzustand übertragen wird. Dies mag eine Alternative zum STIRAP-Prozess

darstellen.

Zusammenfassend wurde in dieser Arbeit ein vielversprechender Algorithmus

zur Kontrolle von Moleküldynamik entwickelt, der auf der instantanen Antwort

eines Systems bei Wechselwirkung mit einem elektrischen Feld beruht. Es konnte

gezeigt werden, dass die daraus berechneten Kontrollfelder sehr effizient bezüglich

einer selektiven Kontrolle von Molekülen sind und noch viele zukünftige Anwen-

dungsmöglichkeiten versprechen.
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[65] N. Došlić, O. Kühn, J. Manz, and K. Sundermann, J. Phys. Chem. A 102,

9645 (1998).
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beibehalten und gegen Ende immer neuen Versionen meines ,,Telefonbuchs“ ge-

duldig und gewissenhaft gelesen. Zum anderen danke ich Philipp Marquetand, der

freundlicherweise alle administrativen und verwaltenden Aufgaben übernommen

hat und mit viel Humor und der Wahl adäquater Hotels den Alltag erheitert hat.
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