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1 Introduction

Over the years organic semiconductor devices have gained more and more attention

due to their low production costs and easy processability compared with conventional

inorganic semiconductors. Important fields for application are organic light emitting

diodes (OLEDs) [1–4], organic field effect transistors (OFETs) [5–9], radio frequency

identification tags (RFIDs) [10–12] and organic photovoltaics (OPV) [13–22], to

mention just a few. The field has grown rapidly since it was shown in 1977 that

organic polymers can be made highly conductive by chemical doping [23].

In organic semiconductors, the 2s and 2p orbitals of the carbon atoms are hy-

bridized to three equivalent sp2 orbitals, which overlap with the sp2 orbitals of the

neighboured molecules, resulting in σ bonds. The remaining 2p orbitals are ori-

ented perpendicular to the molecular plane, whose overlaps lead to π bonds where

the electrons are delocalized over the whole π system. In highly ordered molecular

systems, the π systems interact with each other and the bonding and antibonding π

orbitals split up to a valence and a conduction band respectively. This is the reason

for the semiconducting properties of these materials.

While crystalline silicon solar cells reach efficiencies of about 25% at the present

time, organic cells only achieve 11% [24]. (The Shockley-Queisser limit, which is

the maximum theoretical efficiency of a p-n junction solar cell, is about 34% [25].)

A further continuous problem of organic solar cells is their limited durability due to

their degeneration in air, caused by oxygen and moisture [26–30]. On the other hand,

organic solar cells have decisive advantages such as low production costs due to the

low-temperature processing from vapour phase, solution or printing [31, 32], whereas

inorganic semiconductors usually need high-temperature processing. This expands

the range of substrates for deposition, as for example flexible plastic substrates. It

furthermore reduces the energy payback time. (This is the time that is needed to

produce the energy which has been invested during manufacturing, installation and

maintenance of the device.) Additionally, organic materials allow chemical tayloring

for tuning the relevant physical properties [16].
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Figure 1.1 depicts a bilayer heterojunction solar cell and the steps of the conver-

sion from the incident solar irradiation to electrical current:

1. A solar photon is absorbed and an exciton (a coulombically bound electron-

hole pair), is created.

2. The neutral exciton diffuses through the material.

3. At the donor-acceptor interface, the exciton is separated into a free electron

and a free hole.

4. The charge carriers (hole and electron) are accelerated by the built-in electric

field and move to the electrodes.

5. The charges are extracted from the solar cell.

The absorption efficiency mainly depends on the absorption spectrum and the

thickness of the organic layer. It has to be sufficiently thick so that most of the

incident light is absorbed. Organic molecules typically have discrete absorption

energies, which are broadened if it is possible to reach an ordered crystalline struc-

ture, resulting in an enhancement of the light harvesting [33]. In order to adapt

the range of the absorption spectrum to the solar emission spectrum, dyes can be

added to the material [34, 35]. Another way to enlarge the absorption range to the

near infrared region are ternary solar cells, where a second donor material with a

complementary absorption spectrum is added [36]. Since the organic film thickness

is typically smaller than the wavelength of the incident light (because of the short

anode

donor

acceptor

cathode

+

+

+

Figure 1.1: Schematic view of a bulk
bilayer solar cell and the electronic
processes (see text).

donor acceptor
LUMO

HOMO

LUMO

HOMO

−+ +

−

Figure 1.2: Energetic levels of the highest oc-
cupied and lowest unoccupied molecular or-
bital (HOMO and LUMO) of the donor and
acceptor respectively.
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exciton diffusion lengths, see below), optical interference effects lead to a standing

wave, and therefore the exciton generation rate can be improved by adapting the

layer thickness [18, 37–39]. A further way to increase efficiency are tandem solar

cells where materials with different optical band gaps are stacked on top of each

other which absorb different parts of the spectrum [40–44].

After the generation of the exciton it diffuses through the organic layer [45].

Since it is electrically neutral, it is not influenced by an electric field and therefore it

performs a random walk [46]. Especially for solar cells the exciton diffusion length,

that is the distance the exciton moves within its lifetime, is a crucial parameter. In

contrast to excitons in inorganic materials [47] the thermal energy at room temper-

ature (≈ 26meV) is not sufficient to separate the electron-hole pair into free charge

carriers because of the quite large binding energy of 100 to 500meV [16, 19, 48–

53]. That is why the exciton, which is created by the incident light, must reach

the donor-acceptor interface prior to recombination in order to become dissociated.

While the typical diffusion lengths are a few tens of nanometers [54–67], the ab-

sorption lengths of organic semiconductors are about 80 to 200 nm [16, 68], which

necessitates a compromise of the layer thickness in bilayer cells. In order to cir-

cumvent this problem, so-called bulk heterojunction solar cells are developed where

the donor and acceptor materials are mixed and form an interpenetrating, phase-

separated network [17, 19, 55, 69]. However, a problem that arises here is that there

have to be uninterrupted paths for the electrons and holes in the acceptor and donor

phases, respectively, from the place of dissociation to the electrodes, which requires

the control of the morphology [70–74].

As already mentioned above, the thermal energy is not sufficient to separate the

exciton into free charge carriers. Effective charge dissociation is only possible at the

interface of the donor and acceptor material. As donor such materials with a low

ionization potential (that is, high energetic level of the highest occupied molecular

orbital (HOMO)) are chosen, whereas the acceptor material exhibits a high electron

affinity (this corresponds to an energetic low-lying lowest unoccupied molecular or-

bital (LUMO)), see fig. 1.2. As a rough estimate, the energy difference between the

HOMOs of the two materials (and their LUMOs) should be larger than the exciton

binding energy [18, 19]. As a first step of the dissociation the hole is assumed to be

located at the HOMO of a donor molecule and the electron at the LUMO of an ad-

jacent acceptor molecule. Because of the close proximity electron and hole are still

coulombically bound, constituting a charge transfer exciton (sec. 2.1). The details

of the further separation are not yet fully understood and different mechanisms are

discussed [16, 75–78].



12 1. Introduction

As a next step, the charge carriers move through the organic layers to the elec-

trodes, accelerated by the built-in electric field, which is caused by the different work

functions of the electrodes. The morphology has a large impact on the transport

properties. The charge carrier mobility (sec. 2.2.5) varies over several orders of mag-

nitude when going from highly disordered amorphous to highly ordered crystalline

materials (typically from about 10−10 to more than 10−3 m2/(Vs) [79]). However,

growing of organic crystalline layers is technically demanding and expensive. As an

alternative, carbon nanotubes have been used since they permit an uninterrupted

way to the electrodes [80–83]. Though a problem is the quite poor crop of absorbed

light [18]. Beyond that, block copolymers are also taken into consideration for solar

cells, since they allow for periodic, adjustable nanostructures. However, the achieved

efficiencies are not satisfying [18, 84, 85]. Work is also done on discotic liquid crys-

tals [86–89], since they self-assemble in columns and because of the liquid character

they can self-repair structural defects [18].

All of the processes described are still important fields of research and need to be

improved in order to make organic solar cells ready for the market. This work focuses

on two of the processes, which are the exciton and the charge carrier transport. As

betoken above, these are two crucial steps for the effective functionality of small

molecule organic solar cells. Within the scope of this work, the transport is studied

in highly ordered crystalline structures. Though mainly amorphous materials are

used for solar cells, crystals are ideal to study the intrinsic transport mechanisms

aside any mechanisms caused only by structural disorder and defects. Furthermore,

they can serve as benchmark for real systems. X-ray crystal structures are available

as the basis for the calculations, which allows for a comparison with measurements

and with other calculations from the literature.

Various models for the transport of charges and excitons in organic crystals have

been proposed which are often contradictory. The band theory, which is well estab-

lished for inorganic covalently bonded materials, is not particularly appropriate for

organic conductors, because organic molecular crystals are only weakly bound by

van der Waals interactions causing the molecules to be much more flexible. Due to

the complex nodal structure of the molecular orbitals the transfer integrals between

the monomers are very sensitive to even small nuclear displacements. That is why

lattice vibrations play a more important role in organic than in inorganic materials,

as they destroy the long range order and lead to a charge carrier localization [90].

To account for these vibrations, a variety of models has been proposed which incor-

porate the local (Holstein) [91, 92] and the nonlocal (Peierls) [93] electron-phonon

coupling. The latter leads to a polaron model where the charge carrier is partially
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localized and dressed by phonons [94–97]. The fluctuations of the coupling between

the molecules are of the same order of magnitude as the average coupling [98], lead-

ing to a rather strong localization. Other models have been suggested, where the

charges are assumed to be localized and the inter- and intramolecular vibrations are

treated classically [99–101]. In this work a hopping mechanism for the movement of

the excitons and charge carriers is assumed. The band model and the hopping model

lead to different temperature dependencies of the transport parameters. While the

band model leads to decreasing charge mobilities and exciton diffusion coefficients

with increasing temperature because of the scattering off the phonons, the hopping

model leads to an increase of the transport parameters as the hopping process is

thermally activated. The description of the crossover region between these two mod-

els is complicated and not yet fully understood. However, this question is beyond

the scope of this work. The models used here are only appropriate in the hopping

regime and should not be used for transport calculations at low temperatures, where

band transport dominates.

The material parameter which is typically used to characterize the charge car-

rier transport is the mobility, which is the relation of the charge velocity to the

accelerating electrical field. For exciton transport, usually the diffusion coefficient

or the diffusion length is used for material characterization. Therefore, this work

derives approaches on how to calculate the charge mobility and the exciton diffu-

sion coefficient within the hopping model in a fast and efficient way. Because of

the comparatively fast calculations it is possible to conduct them direction-resolved,

which allows for a presentation of the anisotropy of these transport parameters in

the crystal.

Outline of this work

In chapter 2 the theoretical background is expounded. Section 2.1 briefly explains

the kinds of excitons and charge carriers which are important for this work. In

sec. 2.2 the different cases of transfer regimes – adiabatic and nonadiabatic – are

explained and their range of validity is described. Some alternative transport models,

not used here, such as band transport and polaron transport, are briefly discussed.

In sec. 2.3 all hopping equations which are used in this work are derived in detail.

It was attached importance to the point that those three hopping equations which

stem from Fermi’s Golden rule – the spectral overlap approach, the Marcus and

the Levich-Jortner hopping rate – are derived in a way that they build on each

other. Thereby it becomes clear how these models differ by the assumptions and

approximations made for their derivation and how their range of validity differs,
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which is important for the interpretation of the results. Since the exciton diffusion

is described by a random walk, the macroscopic diffusion equation and the diffusion

constant are derived, based on this model, in sec. 2.4, using a microscopic rate

equation as it is used throughout this work. As the Einstein relation, which describes

the relation between drift and diffusion, occupies a central position for the equations

developed later, its derivation is presented in sec. 2.5, based on the very general

Langevin equation. Section 2.6 explains the master equation, which is the workhorse

equation for the dynamic simulations conducted in this work, and the Monte Carlo

approach, which is mainly used to confirm the rate equations derived in the following

chapters. Section 2.7 derives all electronic coupling equations used for charge and

exciton transport, assuming a simple two-level system, and sec. 2.8 briefly illustrates

the quantum chemical methods used to calculate the parameters which are needed

for the hopping equations.

Chapter 3 focuses on the charge transport with the Marcus theory. The master

equation approach, concentrating on the steady state (t → ∞), and details of the

implementation of the resulting matrix equation are explained. The rate equation

for the charge carrier mobility is derived and then it is elucidated why the com-

monly applied approach to calculate the mobility via the diffusion constant along

with rate equations [79, 102–104] is not appropriate in many important cases. The

mathematical details for the numerical calculation of the electronic couplings are

described. Numerical results for the orientational and morphological dependency

of the mobility for pentacene, rubrene and two fluorinated perylene bisimides are

shown. Furthermore, a protocol for the calculation of the external reorganization en-

ergy based on force fields is developed and the resulting mobilities with and without

external reorganization are compared for a series of acenes.

Chapter 4 treats the charge transport with the Levich-Jortner theory and com-

pares the results with those of the Marcus theory for some acenes. In contrast to the

Marcus theory, the Levich-Jortner theory treats only the low-frequency vibrations

classically, whereas the the high-frequency vibrations of the molecules are treated

quantum mechanically, as it is – strictly speaking – necessary (cf. sec. 2.3.3).

In chapter 5, the exciton diffusion using the spectral overlap approach is studied.

The rate equation approach to calculate the diffusion coefficient is derived in detail.

Since the Einstein relation does not hold in this case, an alternative relation is

derived. Furthermore, the long-range character of the exciton coupling is regarded

in detail and an extrapolation scheme, which avoids numerical artefacts due to a

finite interaction radius of the molecules, is presented. A detailed approach on how

to deal with a mixing of different energetically close lying excited monomer states is



15

developed. Calculations for the anisotropy of the exciton diffusion in naphthalene

and anthracene are taken as examples, because highly accurate experimental data

for comparison and for the assessment of the approach are available.

In chapter 6, the Marcus theory, commonly used for charge transport, is adapted

to exciton transport. The frequently used supermolecular approach for the electronic

exciton coupling is actually only valid for symmetric dimers where the monomers

are not tilted with respect to each other (see sec. 2.7.3). The analogue coupling cal-

culation for charge carriers, the so-called energy splitting in dimer method, leads to

significant errors in the nonsymmetric case (sec. 2.7.4). In this chapter, an equation

for the non-symmetric case is derived and tested for the exciton coupling. Since

the Marcus theory has not been used for exciton transport before, the influence of

different quantum chemical methods and basis sets on the accuracy of the computed

exciton diffusion parameters is discussed. Results for naphthalene, anthracene and

diindenoperylene are shown.

In chapter 7 the spectral overlap approach, which has hitherto only been used

for exciton transport, is applied to charge transport. The mathematical differences

between the mobility and diffusion equations, and between the mobility calculation

within this approach and the Marcus theory, are carved out in detail. It is shown

that this theory can lead to good results for charge transport as well, however, its

application to this field is mathematically more critical than for exciton transport.

Finally, chapter 8 deals with charge transport in disordered materials. It is

discussed controversially in the literature if the Einstein relation holds in disordered

organic materials [105–113]. Since the Einstein relation is very important for the

equations derived in this work, its validity is proven if the Miller-Abrahams hopping

rate is taken as the basis for the transfer. Furthermore, the solution of the time-

dependent master equation is derived and the mobility and diffusion results are

compared with those obtained with the stationary master equation.





2 Background

2.1 Charge carriers and excitons

A charge carrier is a particle which is free to move and which carries an electrical

charge. In a conductor, these are the electrons, which carry the negative quantized

elementary charge each (1.6·10−19C), and which move in the partly filled conduction

band. (The band model is explained in more detail in sec. 2.2.5.) In a semiconductor,

also the so-called defect electron or (electron) hole plays an important role for charge

transport. If an electron is removed from the filled valence band, a hole remains.

This hole can be regarded as a particle with a positive elementary charge. Depending

on the material either the electron or the hole conduction dominates. (For inorganic

semiconductors this depends on the doping, for organic semiconductors it depends on

the electron affinity.) Also ions are charge carriers, for example in the electrolysis, in

a plasma or in particle accelarators. However, these are not regarded in this context.

If a molecule is excited, this means that the entity of the electrons is not in its

energetically lowest state, which corresponds to the ground state. This happens

if, e. g. energy in terms of light (photons) is absorbed. These excitations are also

quantized and can be treated as quasiparticles called excitons. (The final syllable

“-on” indicates the particle character due to quantization, analogously to phonons,

photons, magnons etc.) This collective excitation of the electrons can be simplified

to the two-particle picture of one electron lifted to a higher energetic state and a

remaining hole at its energetic ground state. This electron-hole pair, however, has a

lower energy than a free electron and a free hole, since they are coulombically bound

to each other. Excitons are neutral and not influenced by an external field. If they

move from one molecule to another, no charge but only energy is transferred.

A distinction is drawn between different types of excitons depending on their

characteristics. A Mott-Wannier exciton [114] describes the electron-hole pair in

the case of large distances (about an order of magnitude larger than the lattice

constant), so that it can be described analogously to the hydrogen atom. The

electron and the hole orbit each other where the surrounding can be taken into
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account by an effective dielectric constant. The exciton binding energy is rather

low. This type of exciton is only found in inorganic crystals. In the case of large

binding energies, which is the normal case in organic materials (because of their

rather low dielectric constant [19] and the resultant large screening length), the

electron-hole distance is rather small and both electron and hole are located at

the same lattice site (molecule). In this case one refers to Frenkel excitons [115].

Also found in organic crystals are the so-called charge transfer excitons, where the

electron-hole distance is about one or two times larger than the lattice sites [116].

Their binding energy and spatial expansion are between Mott-Wannier and Frenkel

excitons. Usually the hole and the electron are located at neigbouring molecules or

at different parts of the same molecule, resulting in a polar character.

2.2 Diabatic and nonadiabatic transport

2.2.1 Adiabatic representation and Born-Oppenheimer ap-

proximation

The molecular Hamilton operator Ĥ appearing in the Schrödinger equation [117]

ĤΨ(~R,~r) = EΨ(~R,~r) (2.1)

with the energy E and the wave function Ψ depends on both electron coordinates

~r = {~r1, ~r2, . . . , ~rnmax} and nuclear coordinates ~R = {~R1, ~R2, . . . , RNmax}:

Ĥ = T̂ (~R) + T̂ (~r) + V (~R,~r) (2.2)

Here T̂ (~R) and T̂ (~r) are the kinetic energy operators of the nuclei and the electrons

respectively, and V (~R,~r) is the coulombic potential between all electrons and all

nuclei. Because of the large difference of the electron mass and the mass of the nuclei

(mel/Mnuc < 10−3) the electrons are assumed to move much faster than the nuclei.

They instantaneously adapt their position to a change of the nuclear configuration

so that the electronic wave function is always in a stationary state. The interaction

between electrons and nuclei only changes quasi-statically, i. e. adiabatically, and no

transitions between different stationary electronic states occur. For that reason it is

possible to separate the treatment of the electron and the nuclear dynamics. One

regards the electronic Schrödinger equation for fixed nuclear coordinates:

[

T̂ (~r) + V (~R,~r)
]

ϕn(~r; ~R) = Ĥelϕn(~r; ~R) = V a
n (~R)ϕn(~r; ~R) (2.3)
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ϕn(~r; ~R) are the eigenfunctions and V a
n (~R) are the eigenvalues of the electronic

Hamiltonian, Ĥel. Since the nuclear coordinates are fixed, ϕn(~r; ~R) only depends

parametrically on ~R. The total molecular wave function can be expanded in the

basis of the electronic wave functions, which form a complete orthonormal basis:

Ψ(~R,~r) =
∑

n

χn(~R) · ϕn(~r; ~R) (2.4)

The summation is over all electronic states. The coefficients χn(~R) are the nuclear

wave functions. Inserting this expansion into the Schrödinger equation (2.1) along

with eq. (2.2), multiplying with ϕ∗
m(~r; ~R) from the left and integration over the

electronic coordinates ~r results in

〈ϕm(~r, ~R)|T̂ (~R) +
=Ĥel

︷ ︸︸ ︷

T̂ (~r) + V (~r, ~R) |
∑

n

χn(~R) · ϕn(~r; ~R)〉

= 〈ϕm(~r, ~R)|E|
∑

n

χn(~R) · ϕn(~r; ~R)〉

⇔ 〈ϕm(~r, ~R)|T̂ (~R)|
∑

n

χn(~R) · ϕn(~r; ~R)〉+ V a
m(~R) · χm(~R) = E · χm(~R) (2.5)

With the nuclear kinetic energy operator

T̂ (~R) =
∑

i

p̂2

2 ·Mi

= −
∑

i

~
2

2 ·Mi

·∆i (2.6)

where Mi is the mass of nucleus i and the Laplace operator applies to the nuclear

coordinate ~Ri, the first summand on the left hand side can be further evaluated to

〈ϕm(~r, ~R)|T̂ (~R)|
∑

n,i

χn(~R) · ϕn(~r; ~R)〉

=
∑

n,i

− ~
2

2Mi

· 〈ϕm(~r, ~R)|∆i[χn(~R) · ϕn(~r; ~R)]〉

=
∑

n,i

− ~
2

2Mi

· 〈ϕm(~r, ~R)|∇i[∇iχn(~R) · ϕn(~r; ~R) + χn(~R) · ∇iϕn(~r; ~R)]〉

=
∑

n,i

− ~
2

2Mi

〈ϕm(~r, ~R)|∆iχn(~R)ϕn(~r; ~R) + 2∇iχn(~R)∇iϕn(~r; ~R) + χn(~R)∆iϕn(~r; ~R)〉

= −
∑

i

~
2

2Mi

·
(

∆iχm(~R) + 2 ·
∑

n

〈ϕm(~r; ~R)|∇iϕn(~r; ~R)〉 · ∇iχn(~R)

+
∑

n

〈ϕm(~r; ~R)|∆iϕn(~r; ~R)〉 · χn(~R)

)
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= T̂ (~R)χm(~R) +
∑

n

[

−
∑

i

~
2

Mi

〈ϕm(~r; ~R)|∇iϕn(~r; ~R)〉∇i

︸ ︷︷ ︸

=:T̂
(1)
mn(~R)

−
∑

i

~
2

2Mi

〈ϕm(~r; ~R)|∆iϕn(~r; ~R)〉
︸ ︷︷ ︸

=:T̂
(2)
mn(~R)

]

χn(~R)

(2.7)

With this eq. (2.5) can be written as

[T̂ (~R) + V a
m(~R)] · χm(~R) +

∑

n

[T̂ (1)
mn(~R) + T̂ (2)

mn(~R)] · χn(~R) = E · χm(~R) (2.8)

This is the Schrödinger equation for the motion of the nuclei with the nuclear wave

functions χ(~R). Transitions between different adiabatic electronic states are possible

due to the nonadiabatic coupling terms T̂
(1)
mn and T̂

(2)
mn.

Within the Born-Oppenheimer approximation [118] (which is also called adiabatic

approximation) the nonadiabatic coupling terms are neglected, leading to

[T̂ (~R) + V a
m(~R)] · χm(~R) = E · χm(~R) (2.9)

The nuclei move in the effective potential V a
m(
~R) caused by the Coulomb interaction

with the other nuclei and the electrons. V a
m(
~R) defines the adiabatic potential energy

surface (PES) of the electronic state m. (The electronic states already decouple in

eq. (2.8) if only the nondiagonal terms, T̂
(1)
mn and T̂

(2)
mn for m 6= n, are neglected. This

is the Born-Huang approximation [119].)

However, this approximation is only valid if the electronic state does not change

during the motion of the nuclei. Otherwise the electronic and the nuclear motions are

not adiabatically separable and the nonadiabatic coupling cannot be neglected [120].

This is the case for nuclear configurations where the PES of two electronic states

are close to each other, leading to an avoided crossing (see below). Furthermore,

without the coupling a transition from one electronic state to another would be

impossible without an external perturbation.

2.2.2 Diabatic versus adiabatic representation

Since the character of the electronic wave function can change abruptly for a small

change of the nuclear configuration, the nonadiabatic coupling terms are often

sharply peaked or even singular, which can lead to numerical problems. As an

alternative a basis set can be chosen which does not depend on the nuclear coor-

dinates ~R, so that T̂
(1)
mn and T̂

(2)
mn (see their definition in eq. (2.7)) become zero in
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a two-state model. (In the case of more than two states, the nonadiabatic cou-

pling terms are minimized.) For that purpose a basis {ϕn(~r, ~R0)} with fixed nuclear

positions ~R0 is used. This could be, for example, the nuclear positions at a local

minimum of the PES. However, the choice of ~R0 is arbitrary. (This is called a crude

adiabatic basis [121, 122]). Of course ϕn(~r, ~R0) is no longer an eigenfunction of the

electronic Hamiltonian except for ~R = ~R0:

[

T̂ (~r) + V (~r, ~R0)
]

ϕn(~r; ~R0) = Ĥelϕn(~r; ~R0) = Vn(~R0)ϕn(~r; ~R0) (2.10)

The molecular wave function expanded in this diabatic basis set reads

Ψ(~R,~r) =
∑

n

χn(~R) · ϕn(~r; ~R0) (2.11)

Both the diabatic representation as well as the adiabatic representation, eq. (2.4),

will lead to the same results, but since the diabatic basis does not account for the

change of the nuclear configuration, the diabatic representation is in general not as

compact as the adiabatic one. (It must be noted that a strictly diabatic basis cannot

be created from a given adiabatic basis unless the curl condition is met [123–125],

which is in general not the case for Born-Oppenheimer eigenstates [126].)

The molecular Hamilton operator can be written as

Ĥ = T̂ (~R) + T̂ (~r) + V (~r, ~R) = T̂ (~R) +

=Ĥel(~r, ~R0)
︷ ︸︸ ︷

T̂ (~r) + V (~r, ~R0)+

=:U(~r, ~R,~R0)
︷ ︸︸ ︷

V (~r, ~R)− V (~r, ~R0)

= T̂ (~R) + Ĥel(~r, ~R0) + U(~r, ~R, ~R0) (2.12)

Multiplying the corresponding molecular Schrödinger equation with ϕ∗
m(~r; ~R0) from

the left and integration over the electron coordinates ~r leads to

〈ϕm(~r, ~R0)|T̂ (~R) + Ĥel(~r, ~R0) + U(~r, ~R, ~R0)|
∑

n

χn(~R) · ϕn(~r; ~R0)〉

= 〈ϕm(~r, ~R0)|E|
∑

n

χn(~R) · ϕn(~r; ~R0)〉

⇒ − ~
2

2M
·∆χm(~R) + Vm(~R0) · χm(~R) +

∑

n

Umn(~R, ~R0) · χn(~R) = E · χm(~R)

⇔ [T̂ (~R) + Vm(~R0)] · χm(~R) +
∑

n

Umn(~R, ~R0) · χn(~R) = E · χm(~R) (2.13)

where Umn(~R, ~R0) is defined as

Umn(~R, ~R0) = 〈ϕm(~r, ~R0)|U(~r, ~R, ~R0)|ϕn(~r, ~R0)〉 (2.14)
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In contrast to eq. (2.8), where the coupling between the electronic states is due

to the kinetic energy operators T̂
(1)
mn and T̂

(2)
mn (dynamic coupling), the coupling in

eq. (2.13) is caused by the potential coupling term Umn (static coupling). The

diabatic potential matrix elements are

V d
mn = Vn(~R0) · δm,n + Umn(~R, ~R0) (2.15)

whose diagonal elements are the diabatic PES. In contrast to the adiabatic potential

matrix, the diabatic potential matrix is not diagonal.

The diabatic PES and the coupling elements depend on the choice of ~R0 and

are therefore not unique. However, the adiabatic potential matrix (with all non-

diagonal elements equal to zero) is recovered from the diabatic potential matrix

by a principal axis transformation, i. e., the eigenvalues of the diabatic potential

matrix equal the adiabatic PES. If two diabatic PES are energetically far apart, the

coupling elements are close to zero and the diabatic PES coincide with the adiabatic

PES. However, if the diabatic PES approach each other or even cross, the couplings

cannot be neglected. Diagonalizing the diabatic potential matrix which describes

these two states,

Vd =

(

V d
1 V d

12

V d
21 V d

2

)

with V d
12 = V d

21 (2.16)

leads to the adiabatic PES

V a
1 =

V d
1 + V d

2

2
− 1

2
·
√

(V d
1 − V d

2 )
2 + 4 · (V d

12)
2 (2.17)

V a
2 =

V d
1 + V d

2

2
+

1

2
·
√

(V d
1 − V d

2 )
2 + 4 · (V d

12)
2 (2.18)

For the two adiabatic PES to become equal, the two independent conditions

V d
1 = V d

2 ∧ V d
12 = 0 (2.19)

must be satisfied. This reduces the degrees of freedom in the system by two. In a one-

dimensional system (e. g. a diatomic molecule with the atomic distance ~R as the only

degree of freedom, see fig. 2.1) the adiabatic PES cannot cross except for electronic

states with different symmetries since in that case the coupling vanishes (V d
12 = 0).

This is the so-called non-crossing rule [127]. In a two dimensional system the two

above conditions are met in a single point, leading to two conical PES standing on

the top of each other, which is named conical intersection [128–132]. This name is

also used in higher dimensions.
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V1 V2

V12
d

T12
a

RC

E

R

adiabatic
diabatic

Figure 2.1: Qualitative scheme of the adiabatic (solid) and diabatic (dashed) PES and
the respective coupling elements for a one-dimensional system. For R ≪ Rc V1 and V2

are well separated with V1 being the stable state, and the diabatic and adiabatic PES
coincide. At R ≈ Rc, the coupling terms become important and the two electronic
states interact. For R ≫ Rc, the character of the PES change as the diabatic V2 state
is the stable one. (T a

12 and V d
12 are depicted too large in relation to V1 and V2.)

2.2.3 Transfer regimes

This section is mainly based on ref. [133].

The question if the adiabatic or the nonadiabatic description is more appropriate

for charge and exciton transfer can be answered by an estimation of the time scale

for the transfer. It is

ttr =
~

V d
AD

(2.20)

where V d
AD is the diabatic coupling element between the donor and acceptor PES

respectively. ttr is in the order of magnitude of the time the electronic wave function

needs to move from the donor to the acceptor molecule. This has to be related to

the time scale of the molecular relaxation, which describes the time for the rear-

rangement of the molecular structure due to the transfer:

trel =
2π

ωrel

(2.21)

where ωrel is a mean frequency for the vibrational modes.

If ttr ≪ trel, the charge/exciton moves many times back and forth between donor

and acceptor before any change of the nuclear configuration happens. This is the sit-

uation assumed in sec. 2.2.1 for the derivation of the adiabatic (Born-Oppenheimer)

approximation. The charge/exciton is in an adiabatic state and delocalized over the

whole donor-acceptor complex. If the regarded time scale is larger than ttr, the de-

localized adiabatic description is appropriate. If the energetic distance between the
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two adiabatic PES is large enough, the motion along the vibrational coordinate can

be described by a double well potential, fig. 2.2a. When moving from the diabatic

donor to the diabatic acceptor PES, the energetic barrier Ea
act must be overcome.

The adiabatic transfer rate is expected to be of the Arrhenius type:

νaAD ∝ exp

(

−E
a
act

kBT

)

(2.22)

with the Boltzmann constant kB and the temperature T .

If ttr ≫ trel, which means that the nuclear reorganization is faster than the

charge/exciton transfer, the transport is nonadiabatic. The initial and final states of

the charge/exciton are spatially localized. Since the coupling is small, cf. eq. (2.20),

this case can be treated by means of perturbation theory where the coupling is

regarded as a perturbation acting on the diabatic states, which correspond to the

unperturbed states. This leads to a rate expression of the form

νdAD ∝ |V d
AD|2 · exp

(

−E
d
act

kBT

)

· δ(EA − ED) (2.23)

Because of the delta function the transfer occurs at the crossing point of the donor

and acceptor PES, see fig. 2.2b. The activation energy Ed
act is the energy between

the initial state at the donor PES minimum and the crossing point.

As indicated in fig. 2.2c, the molecular states also include vibrational levels

whose occupation follows a Boltzmann distribution ∝ exp[−E/(kBT )] in thermal

equilibrium. After the transfer, the donor-acceptor complex needs the time tvib to

reach this equilibrium. This time depends on the coupling to the environment. If

tvib < trel and tvib < ttr, i. e. if the donor and acceptor are in vibrational equilibrium

before any transfer takes place, a description based on transition rates is suitable.

E E

Eact
a Eact

d

ED EA

Ea) b) c)

q q q

Figure 2.2: a) Adiabatic potential curves with large coupling between donor and
acceptor, depending on a collective geometry coordinate q. The lower PES can be
described as a double well. The upper PES is not involved in the transport. b) Donor
and acceptor PES for the diabatic transfer regime when the coupling is small. c) Two
coupled PES with donor and acceptor vibrational levels.
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2.2.4 Landau-Zener theory

A quite popular theory for the description of transfer is the Landau-Zener the-

ory [133–137], since it allows an analytical derivation of a transfer rate which is

valid for any value of the coupling |VAD| covering the range beetween adiabatic and

nonadiabatic transfer.

A single vibrational collective coordinate q is regarded which is treated classically.

At the crossing point, the donor and acceptor PES are linearly approximated, see

fig. 2.3:

UD(q) ≈ U∗ − FD(q
∗) ·∆q and UA(q) ≈ U∗ − FA(q

∗) ·∆q (2.24)

where

FD(q
∗) = − ∂UD(q)

∂q

∣
∣
∣
∣
q=q∗

and FA(q
∗) = − ∂UA(q)

∂q

∣
∣
∣
∣
q=q∗

(2.25)

are the forces caused by the potential at the crossing point q∗. Furthermore U∗ :=

UD(q
∗) = UA(q

∗) and ∆q := q − q∗ ≈ v∗ · t, where v∗ is the velocity at the crossing

point. The Hamiltonian is

Ĥ = T̂ + U∗ +

(

−FD · v∗ · t VAD

VAD −FA · v∗ · t

)

(2.26)

with the kinetic energy operator T̂ . The initial state, where the charge/exciton is

at the donor, corresponds to t → −∞ (∆q → −∞), the final state, where it is at

the acceptor, corresponds to t→ ∞ (∆q → ∞).

For the determination of the transition rate only the time dependent part of the

Hamiltonian is important. In order to simplify the calculation, a constant energy is

UD UA

q*

U*

q

U

Figure 2.3: Donor and acceptor PES depending on a collective vibrational coordinate q
and their linear approximations at the crossing point.
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added so that

Ĥ =

(

0 VAD

VAD (FD − FA)v
∗t

)

=:

(

0 V

V 2αt

)

(2.27)

The system is described by the vector Ψ(t) = (d(t), a(t)) in the basis of the donor

and acceptor wave functions {ϕD, ϕA}. First the so-called survival probability, i. e.

the probability that the charge/exciton remains on the donor, pD = |d(t→ ∞)|2, is
determined. The time-dependent Schrödinger equation

i~ · d

dt
Ψ(t) = ĤΨ(t) (2.28)

leads to

i~ · ḋ = V · a ⇔ a =
i~

V
· ḋ ⇒ ȧ =

i~

V
· d̈ (2.29)

i~ · ȧ = V · d+ 2αt · a (2.30)

⇒ i~

(
i~

V
· d̈
)

= V · d+ 2αt ·
(
i~

V
· ḋ
)

⇔ d̈+ i · 2αt
~

· ḋ+ V 2

~2
· d = 0 (2.31)

This differential equation is solved by the Ansatz

d(t) = U(t) · ef(t) (2.32)

⇒ ḋ = (U̇ + U · ḟ) · ef (2.33)

⇒ d̈ = (Ü + 2 · U̇ · ḟ + U · f̈ + U · ḟ 2) · ef (2.34)

Inserting this into eq. (2.31) gives

(Ü + 2 · U̇ · ḟ + U · f̈ + U · ḟ 2) · ef + i · 2αt
~

· (U̇ + U · ḟ) · ef + V 2

~2
· U · ef = 0

⇔ Ü +

(

2 · ḟ + i · 2αt
~

)

· U̇ +

(

f̈ + ḟ 2 + i · 2αt
~

· ḟ +
V 2

~2

)

· U = 0 (2.35)

f is chosen in that way that the summand with U̇ vanishes:

2 · ḟ + i · 2 · α · t
~

!
= 0 ⇔ ḟ = −i · α

~
· t ⇒ f = −i · α

2 · ~ · t2 + C (2.36)

C is a constant of integration. So eq. (2.35) is now a differential equation only with

respect to U :

Ü +

(

− iα
~

− α2t2

~2
+

2α2t2

~2
+
V 2

~2

)

· U = Ü +

(

− iα
~

+
α2t2

~2
+
V 2

~2

)

· U = 0 (2.37)
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The variable t is substituted by

z :=

√

2 · α
~

· exp
[

−i · π
4

]

· t (2.38)

Since

Ü =
d

dt

dU

dt
=

d

dt

(
dU

dz
· dz
dt

)

=
d2U

dz2
·
(
dz

dt

)2

+
dU

dz
·

=0
︷︸︸︷

d2z

dt2
=

d2U

dz2
·
(
dz

dt

)2

(2.39)

eq. (2.37) is now

d2U

dz2
· 2α
~

·

=−i
︷ ︸︸ ︷

exp
[

−i · π
2

]

+

(

− iα
~

+
α2

~2
· ~

2α
·

=i
︷ ︸︸ ︷

exp
[

i · π
2

]

·z2 + V 2

~2

)

· U = 0

⇔ d2U

dz2
+

(
1

2
− z2

4
+ n

)

· U = 0 with n = i · V 2

2 · α · ~ (2.40)

This is the Weber differential equation [138, 139] which is solved by the Weber

functions Dn(z) and Dn(−z) which are linearly independent for n /∈ N, and therefore

U(t) = c1 ·Dn(z) + c2 ·Dn(−z) (2.41)

The limits of the Weber functions are

lim
z→∞

|Dn(z)|2 = exp
[

i · π
2
· n
]

= exp

[

− π · V 2

4 · α · ~

]

(2.42)

lim
z→∞

|Dn(−z)|2 = exp

[

−i · 3 · π
2

· n
]

= exp

[
3 · π · V 2

4 · α · ~

]

(2.43)

For α > 0 the condition 0 ≤ |d(t→ ∞)|2 ≤ 1 is only met by eq. (2.42), for α < 0 it

is only met by eq. (2.43). For the case α > 0 c2 must therefore be zero and one gets

with eqs. (2.32) and (2.36):

d(t) = c1 ·Dn(z) · exp
[

−i · α

2 · ~ · t2 + C
]

= c̃1 ·Dn(z) · exp
[

−i · α

2 · ~ · t2
]

(2.44)

with c̃1 := c1 · exp[C]. Since in the initial state the charge/exciton is localized at the

donor, the initial condition |d(t→ −∞)|2 = 1 must be met:

|d(t→ −∞)|2 = |c̃1|2 · exp
[
3 · π · V 2

4 · α · ~

]

· 1 !
= 1 ⇔ |c̃1|2 = exp

[

−3 · π · V 2

4 · α · ~

]

(2.45)
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The survival probability of the charge/exciton at the donor is then

pD = |d(t→ ∞)|2 = exp

[

−3 · π · V 2

4 · α · ~

]

·exp
[

− π · V 2

4 · α · ~

]

·1 = exp

[

−π · V 2

α · ~

]

(2.46)

The case α < 0 can be treated in the same way. The final result for both cases of

α = (FD − FA)v
∗/2 is then

pD = e−Γ with Γ =
2π

~ · v∗ · |VAD|2
|FD − FA|

(2.47)

where Γ is the Massey parameter [140].

The characteristic time interval is the rearrangement time of the donor-acceptor

complex, eq. (2.21), which is an estimate for the time the collective vibrational

coordinate q needs to go from the minimum of the donor PES to the minimum of

the acceptor PES and back, cf. fig. 2.3. The probability that the charge/exciton

moves to the acceptor while q changes from −∞ to ∞ is 1 − pD. Because of the

symmetry, the probability that it remains on the acceptor while q changes from ∞
to −∞ is pD. The charge/exciton can also remain on the donor during the first half

of the period and move to the acceptor during the second passing of the crossing

point, so that the total probability for the charge/exciton to be at the acceptor

after one vibrational period is 2 · (1− pD) · pD. Therefore the transition rate, i. e.

the change of the probability during trel is

νAD =
ωrel

2π
· 2 · (1− pD) · pD =

ωrel

π
· e−Γ · (1− e−Γ) (2.48)

which is valid independently of the value of the coupling. If the coupling is large, Γ

is large, see eq. (2.47), and the transition rate is

νAD ≈ ωrel

π
· e−Γ (2.49)

which is the adiabatic limit, cf. eq. (2.22). If the coupling and therefore Γ is small,

the transition rate is

νAD ≈ ωrel

π
· e−Γ · (1− 1 + Γ) =

ωrel

π
· e−Γ · Γ =

2 · ωrel

~ · v∗ · |VAD|2
|FD − FD|

· e−Γ (2.50)

This corresponds to the nonadiabatic limit, see eq. (2.23).
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2.2.5 Band transport

If the electronic coupling for charge/exciton transport is strong so that the time

scale for the transfer, eq. (2.20), becomes short compared with the time scale for the

nuclear reorganization, eq. (2.21), the charge/exciton moves back and forth many

times between two molecules prior to any change of the nuclear configuration. In

that case, the charge/exciton can be regarded as delocalized over the two molecules

involved in the transfer, as explained in sec. 2.2.3. In a crystal with sufficiently

strong coupling between the molecules, the charge/exciton is even delocalized over

the whole crystal (provided that the crystal is perfectly periodic) and can be de-

scribed by a plane wave. Because of the interaction of the energetically degenerated

molecules, the energetic levels are widened to so-called energy bands. This model is

well established for inorganic covalently bound materials [47]. It is also discussed in

the context of organic crystals, even though the molecules are only weakly coupled

by van der Waals interactions. The following derivation is mainly based on ref. [141].

The positively charged nuclei in the crystal cause a spatially periodic potential

V (~r) = V (~r+ ~R) for the electron, where the averaged potential of the other electrons

is included. The vector ~R = n1~a1+n2~a2+n3~a3 is a linear combination of the lattice

vectors ai with integer ni. Since V is invariant to a translation of ~R (expressed by

the translation operator T̂ ), the Hamilton operator

Ĥ = − ~

2 ·m ·∆+ V (~r) (2.51)

is also invariant, because the Laplace operator acts on ~r and therefore its result does

not change by the addition of a constant ~R. Therefore

T̂ Ĥϕ(~r) = T̂ Eϕ(~r) ⇔ ĤT̂ ϕ(~r) = ET̂ ϕ(~r) (2.52)

i. e., if ϕ(~r) is an eigenfunction to Ĥ with the eigenvalue E, this is also true for

all T̂ ϕ(~r). ϕ(~r) and ϕ(~r + ~R) only differ by a constant factor, wich can, however,

depend on ~R:

ϕ(~r + ~R) = f(~R) · ϕ(~r) (2.53)

Furthermore,

ϕ(~r+ ~R1+ ~R2) = f(~R1+ ~R2) ·ϕ(~r) and ϕ(~r+ ~R1+ ~R2) = f(~R1) ·f(~R2) ·ϕ(~r)
(2.54)

and therefore

f(~R1 + ~R2) = f(~R1) · f(~R2) (2.55)
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This condition is met by the function

f(~R) = ei·
~k·~R (2.56)

where ~k is the wave vector. Combining this equation with eq. (2.53) leads to the

Bloch theorem [142]:

ϕk(~r + ~R) = ei·
~k·~R · ϕk(~r) (2.57)

The index k refers to the fact that the eigenfunction ϕ (as well as its eigenvalue E)

depends on ~k. The eigenfunction must comply with the above equation, which is

the case for the Bloch function [142]

ϕk(~r) = uk(~r) · ei·~k·~r with uk(~r + ~R) = uk(~r) (2.58)

ϕk(~r) can be regarded as a plane wave which is modulated by the periodic function

uk(~r).

The Bloch function, eq. (2.58), is a function in the position space, however,

because of the dependance on ~k, it can also be regarded as a function in the space

of the reciprocal lattice, which is the space of the Fourier transform of the spatial

wave function. This means that the Bloch function can be written as the Fourier

series

ϕ(~k, ~r) =
1√
N

·
N∑

j=1

cj(~r) · ei·~k·~Rj (2.59)

where N is the number of unit cells in the lattice and ~Rj is their position. The

coefficients are, using eq. (2.58)

cj(~r) =
1√
N

·
∑

k

ϕ(~k, ~r) · e−i·~k·~Rj =
1√
N

·
∑

k

uk(~r) · ei·~k·~r · e−i·~k·~Rj

=
1√
N

·
∑

k

uk(~r − ~Rj) · ei·~k·(~r−~Rj) =: w(~r − ~Rj) (2.60)

The coefficients cj depend on the relative position ~r − ~Rj of the electrons to the

nuclei in the crystal, which is underlined by terming this function w(~r − ~Rj), the

so-called Wannier function [114, 143]. Inserting this into eq. (2.59) reads

ϕ(~k, ~r) =
1√
N

·
N∑

j=1

w(~r − ~Rj) · ei·~k·~Rj (2.61)

While ϕ(~k, ~r) as a Bloch function, eq. (2.58), is represented as a plane wave, here
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ϕ(~k, ~r) is built from functions w(~r− ~Rj) which can be assigned to particular lattice

sites and which have only small values for larger distances from the respective site.

Using the quasi bound electron approach (tight binding [144, 145]), it is assumed

that the electron of a certain lattice site is only weakly influenced by the surrounding

nuclei. In this case the Wannier functions, eq. (2.60) can be approximated by the

eigenfunctions ϕ0(~r− ~Rj) of electrons of a single free atom, so that eq. (2.61) reads

ϕ(~k, ~r) =
1√
N

·
N∑

j=1

ϕ0(~r − ~Rj) · ei·~k·~Rj (2.62)

If V0(~r− ~Rj) is the potential of an electron belonging to a free atom, the Schrödinger

equation of this electron reads

[

− ~
2

2 ·m ·∆+ V0(~r − ~Rj)

]

ϕ0(~r − ~Rj) = E0 · ϕ0(~r − ~Rj) (2.63)

Plugging the wave functions ϕ(~k, ~r) into the Schrödinger equation using the Hamil-

tonian of the electron in the crystal, eq. (2.51), leads to

[

− ~
2

2m
∆+ V (~r)

]
1√
N

N∑

j=1

ei·
~k·~Rjϕ0(~r − ~Rj) = E(~k)

1√
N

N∑

j=1

ei·
~k·~Rjϕ0(~r − ~Rj)

⇒
N∑

j=1

[

V (~r)− V0(~r − ~Rj) + E0 − E(~k)
]

· ei·~k·~Rjϕ0(~r − ~Rj)

= −
N∑

j=1

ei·
~k·~Rj

[

− ~
2

2 ·m∆+ V0(~r − ~Rj)− E0

]

ϕ0(~r − ~Rj)
eq. (2.63)

= 0

⇔ [E(~k)− E0]
N∑

j=1

ei·
~k·~Rjϕ0(~r − ~Rj) =

N∑

j=1

ei·
~k·~Rj [V (~r)− V0(~r − ~Rj)]ϕ0(~r − ~Rj)

(2.64)

Multiplication with ϕ∗(~k, ~r), eq. (2.62), and integration over the volume results in

[E(~k)− E0] ·
N∑

j=1

N∑

l=1

ei·
~k·(~Rj−~Rl) · 〈ϕ0(~r − ~Rl)|ϕ0(~r − ~Rj)〉

=
N∑

j=1

N∑

l=1

ei·
~k·(~Rj−~Rl) · 〈ϕ0(~r − ~Rl)|V (~r)− V0(~r − ~Rj)|ϕ0(~r − ~Rj)〉 (2.65)

The overlap 〈ϕ0(~r− ~Rl)|ϕ0(~r− ~Rj)〉 is small even for neighboured lattice sites j and



32 2. Background

l within the tight binding approach used here and is therefore approximately zero

for l 6= j. The double sum on the left hand side thus results in N . The integral

on the right hand side, however, cannot be approximated in the same way, since

|V (~r) − V0(~r − ~Rj)| can be large at a neighbouring site l, see fig. 2.4. Though it is

sufficient to take only the neighbour sites into account, because the wave function

ϕ0(~r − ~Rj) decays sufficiently fast. Therefore one gets

[E(~k)− E0] ·N = N ·
(

〈ϕ0(~r − ~Rj)|V (~r)− V0(~r − ~Rj)|ϕ0(~r − ~Rj)〉

+
∑

m

ei·
~k·(~Rj−~Rm)〈ϕ0(~r − ~Rm)|V (~r)− V0(~r − ~Rj)|ϕ0(~r − ~Rj)〉

)

(2.66)

The summation index m runs only over the neighboured atoms. If the wave function

is furthermore assumed to be spherically symmetric, the energy eigenvalue of an

electron in a periodic lattice finally is

E(~k) = E0 − α− γ ·
∑

m

ei·
~k·(~Rj−~Rm) (2.67)

with

α = 〈ϕ0(~r − ~Rj)|V0(~r − ~Rj)− V (~r)|ϕ0(~r − ~Rj)〉 (2.68)

γ = 〈ϕ0(~r − ~Rm)|V0(~r − ~Rj)− V (~r)|ϕ0(~r − ~Rj)〉 (2.69)

In the lattice, the electron energy is shifted by α with respect to the energy E0 of

an electron near to a free atom. Furthermore, since there are as many ~k values as

unit cells in the crystal, the energy range is split up. ~k can be regarded as quasi

continuous so that the discrete energy levels result in an energy band.

V0(r−Rj)

j
r

V(r)

V(r)

Figure 2.4: The potential V0(~r − ~Rj) of an electron near a free single nucleus (solid)
and the potential V (~r) of an electron in a periodic crystal (dashed).
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The charge carrier mobility for material characterization

In a semiconductor, there is a valence band which is filled with electrons, an empty

conduction band, and an energy gap in between, see fig. 2.5. (The only difference

to an insulator is that this energy gap is smaller and can be overcome at room

temperature.) In order to obtain a current, an electric field has to be applied which

accelerates the electrons to a certain velocity and which therefore enhances the

energy of the electrons. However, if the band is filled this is not possible within

the band because electrons are fermions and each energy level can only be doubly

occupied. Since furthermore the electrons cannot have energies which lie within the

energy gap, they have to be lifted into the empty conduction band. The conductivity

of a semiconductor is

σ = ne · q · µe + nh · q · µh (2.70)

where q is the unit charge, ne is the electron density in the conduction band, nh

is the hole density in the valence band and µe and µh are the electron and hole

mobilities respectively. The mobility is defined as

µ =
v

E (2.71)

v is the velocity of the electron or hole and E is the external electric field. The

charge carrier density is

ne = nh ∝ exp

[

− Eg

2 · kBT

]

(2.72)

band−
width

band−
width

valence
band

conduction
band

Eg

E(k)

k

energy gap

Figure 2.5: Energy E depending on the
wave vector ~k for the conduction and the
valence band.

E g

E d

conduction band

donor level

valence band

E

Figure 2.6: An n-type semiconductor
with a donor level between valence and
conduction band.
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with the Boltzmann constant kB, temperature T and the energy gap Eg, fig. 2.5.

Inorganic semiconductors are usually doped to obtain n- and p-type semiconductors

where the current is caused by a flow of electrons or holes respectively. Figure 2.6

depicts an n-type semiconductor with a higher lying donor level below the conduction

band. Here the conductivity is

σ = ne · q · µe with ne ∝ exp

[

− Ed

2 · kBT

]

(2.73)

where Ed is the energy gap between donor level and conduction band. (The holes as

minority charge carriers do not play a role here.) The above equations show that the

conductivity strongly depends on the temperature, the doping, and furthermore on

the charge injection properties. This is the reason why the mobility instead of the

conductivity is used for material characterization. (However, also µ depends on T ).

2.2.6 The Holstein-Peierls polaron theory

In this model the interaction between the electrons and the phonons, i. e., the intra-

and intermolecular vibrations, is taken into account explicitly. The system is de-

scribed by the Fröhlich Hamiltonian [146–150]:

Ĥ =
∑

i,j

εji · â+j âi
︸ ︷︷ ︸

electrons

+
∑

Q

~ωQ ·
(

b̂+Qb̂Q +
1

2

)

︸ ︷︷ ︸

phonons

+
∑

Q,j,i

~ωQ · gQji · (b̂Q + b̂+−Q) · â+j âi
︸ ︷︷ ︸

electron−phonon coupling

(2.74)

Here the second quantization with the charge and phonon annihilation (â, b̂) and

creation (â+, b̂+) operators is used. The first summand describes the electrons in

the system. â+j âi means that a charge is annihilated at molecule i and created

at molecule j, in other words, it moves from i to j. εji is the electronic coupling

between these molecules, whereas εii is the on-site energy of molecule i.

The second summand depicts the phonons. Here Q = (q, λ), i. e., the summation

is over all possible wave vectors q and phonon branches λ. The summation of b̂+Qb̂Q

equals the phonon number n and ~ωQ(n+1/2) is the energy of n harmonic oscillators

with frequency ωQ.

The last summand specifies the coupling between the electrons and the phonons:

While the charge moves from i to j, a phonon with wave vector −q in the branch λ

is created or a phonon with wave vector q in branch λ is annihilated. Because

of the quasi-momentum conservation, the quasi momentum of the charge changes

from ~k to ~(k + q). gQji is the coupling constant. For i = j this describes the
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local coupling between the charge and intramolecular vibrations, which is also called

Holstein coupling [91, 92]. For i 6= j this is the nonlocal or Peierls coupling [93]

between the charges and lattice vibrations.

The electron-phonon coupling means that the electron distorts the geometry of

the molecule it is placed at and also the lattice around due to polarization effects.

If it moves, it drags this distortion along. Therefore the charge together with the

molecule and lattice distortion can be treated as a quasi-particle called polaron,

conceptually first introduced by Landau [151]. If the polaron is spread out over

many lattice sites, one refers to large polarons (also Fröhlich polarons [146, 147]). In

this case the polaron effects are small and the transport is still band-like (sec. 2.2.5)

with slightly changed energy and effective mass of the electron.

In the limiting case of small (Holstein) polarons [91, 92], it is assumed that the

electron-phonon coupling dominates and the electronic coupling can be regarded

as perturbation. This leads to small bandwiths. The polaronic effect localizes the

charge carrier, and a phonon assisted hopping transport takes place [148]. In this

case the above mentioned Hamiltonian of the electron-phonon system can be trans-

formed by a canonical transformation to the polaron picture:

H̃ =
∑

i,j

Eji · Â+
j Âi

︸ ︷︷ ︸

polarons

+
∑

Q

~ωQ ·
(

b̂+Qb̂Q +
1

2

)

︸ ︷︷ ︸

phonons

(2.75)

In this way the coupling term between electrons and phonons vanishes.

While in the Holstein model only the local coupling to phonons at a certain lattice

site is taken into account, this model was extended by Hannewald and coworkers

by including nonlocal (Peierls) coupling (as for large polarons) [94, 152–155]. The

polaron transfer integral is [152]

Eji = εji · exp
[

−
∑

λ

(
1

2
+Nλ

)

·G
]

(2.76)

with the phonon branch λ, the effective coupling constant G, and the phonon occu-

pation number (a Bose-Einstein distribution [156])

Nλ =
1

exp
[
~ωλ

kBT

]

− 1
(2.77)

(The Einstein model [157] is taken as basis where the phonons are dispersionless, i. e.,

ωλ is constant and does not depend on q.) Eji is proportional to the orbital overlap
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and the bandwidth. Therefore the bandwidth decreases with increasing tempera-

ture. This has also been confirmed experimentally [158, 159]. At low temperatures,

this results still in a bandlike transport, however, with a reduced bandwith and an

increased effective mass of the electron. Nevertheless, this approach includes the

limiting case of hopping transport for higher temperatures [154, 155], such as the

Marcus theory [154] (explained in sec. 2.3.2).

2.2.7 Charge transport diffusion limited by thermal disor-

der

The band transport model is only appropriate if the mean free path of the charge

carrier is large compared to the intermolecular distances. It was shown for oligoacene

single crystals that this is only the case for temperatures below 150K [160]. Troisi

and coworkers have argued that the transfer integrals between the molecules in an

organic crystal are strongly modulated by thermal motions, because of the weak van

der Waal interactions between them. The amplitude of this modulation is in the

same order of magnitude as the average transfer integral, and therefore the transla-

tional symmetry of the external potential and the electronic Hamiltonian, which is

a prerequisite for band transport (explained in sec. 2.2.5), is lost [99, 100, 161–165].

In the following an alternative model developed by Troisi et al. is explained.

A one-dimensional model Hamiltonian is defined where the vibrations are treated

classically [100]:

Ĥ =
∑

j

(

(ε+ Λ · uj) · |j〉〈j|+ (−V + α · [uj+1 − uj]) · (|j〉〈j + 1|+ |j + 1〉〈j|)
)

+
∑

j

(
1

2
·m · u̇2j +

1

2
·m · ω2 · u2j

)

(2.78)

The summation index j runs over all molecules in the periodic chain. The electronic

part is [99]

Ĥel =
∑

j

(

(ε+Λ ·uj · |j〉〈j|+(−V +α · [uj+1−uj]) · (|j〉〈j+1|+ |j+1〉〈j|)
)

(2.79)

|j〉 is the electronic state and uj is the displacement of the molecule. ε is the

on-site energy, V is the electronic coupling between adjacent molecules, Λ is the

local (Holstein [91, 92]) and α the nonlocal (Peierls [93]) electron-phonon coupling
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constant. The Hamiltonian of the nuclei reads

Ĥnucl =
∑

j

(
1

2
·m · u̇2j +

1

2
·m · ω2 · u2j

)

+ 〈Ψ(t)|Ĥel|Ψ(t)〉 (2.80)

m is the mass of the molecule.

The local coupling constant is calculated as Λ = ωl

√
µλ with the reduced mass µ

of the C-C stretching, the corresponding frequency ωl and the reorganization energy

λ (explained in detail in sec. 2.3.2). Via a molecular dynamics simulation, the sta-

tistical distribution of the electronic couplings in the crystal at different snapshots is

determined. The monomer pair with the highest coupling in the crystal is identified

and the coupling constant V is set to its average value. By a Fourier transform of

the autocorrelation function of the time-dependent transfer integral

F (ω) =
1√
2π

·
∫

〈V (t) · V (t+ τ)〉 · ei·ω·t dτ (2.81)

〈V (t) · V (t+ τ)〉 = lim
T→∞

∫ T

0

V (t) · V (t+ τ) dt (2.82)

the frequency ω of the vibration with the largest contribution to the modulation of

the transfer integral is determined.

The potential energy of the molecules is supposed to be Boltzmann distributed:

exp

(

−
1
2
·m · ω2 · u2
kBT

)

= exp

(

− u2

2 · σ2
u

)

with σu =

√

kBT

m · ω2
(2.83)

The nonlocal electron phonon coupling constant α is chosen in that way that σV = ασu

where σV is the standard deviation of the electronic coupling, determined from the

molecular dynamics simulation.

The classical dynamics of the molecules is simulated with the Verlet algorithm [166,

167]

uj(t+∆t) = 2 · uj(t)− uj(t−∆t) + üj(t) ·∆t2 (2.84)

where üj(t) is calculated with Newton’s law

m · üj(t) = −m · ω2 · uj(t) +
∂

∂uj
〈Ψ(t)|Ĥel|Ψ(t)〉 (2.85)

The wave function is approximated by a Taylor expansion:

Ψ(t+∆t) = Ψ(t) + Ψ̇(t) ·∆t+ 1

2
· Ψ̈(t) ·∆t2 (2.86)
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where Ψ̇(t) and Ψ̈(t) are calculated with the time-dependent Schrödinger equation:

ĤelΨ(t) = i~Ψ̇(t) ⇔ Ψ̇(t) = − i

~
ĤelΨ(t) ⇒ Ψ̈(t) = − i

~
(HelΨ̇(t) + ḢelΨ(t))

(2.87)

The time derivative of the electronic Hamiltonian, eq. (2.79) is

Ḣel =
∑

j

(

Λ · u̇j · |j〉〈j|+ α · [u̇j+1 − u̇j] · (|j〉〈j + 1|+ |j + 1〉〈j|)
)

(2.88)

With the wave function expansion Ψ(t) =
∑
cm|m〉 and eq. (2.79) the derivative of

the energy in eq. (2.85) becomes

∂

∂uj
〈Ψ(t)|Ĥel|Ψ(t)〉

=
∂

∂uj

(
∑

k

c∗k〈k|
∑

l

[

Λul|l〉〈l|+ α(ul+1 − ul)(|l〉〈l + 1|+ |l + 1〉〈l|)
)]∑

m

cm|m〉
)

=
∂

∂uj

(
∑

k

c∗k · 〈k|
∑

l

[

Λ · cl · ul · |l〉+ α · (ul+1 − ul) · (cl+1 · |l〉+ cl · |l + 1〉)
]
)

=
∂

∂uj

∑

l

[

Λ · c∗l · cl · ul + α · (ul+1 − ul) · (c∗l · cl+1 + c∗l+1 · cl)
]

= Λ · c∗j · cj + α · (c∗j−1 · cj + c∗j · cj−1 − c∗j · cj+1 − c∗j+1 · cj) (2.89)

The initial displacements uj are randomly chosen from the Boltzmann distri-

bution of noninteracting harmonic oscillators, i. e., from a Gaussian distribution

with the standard deviation σu =
√

kBT/(mω2), eq. (2.83). Analogously the initial

velocities u̇j are Gaussian distributed with σu̇ =
√

kBT/m.

Using this approach, Troisi et al. calculated the charge mobility of a rubrene

crystal [100]. They have drawn the conclusion that the charge carrier is localized

(and therefore no band transport occurs), however, not because of polaronic self-

trapping as in the Holstein-Peierls model (sec. 2.2.6), but due to the dynamic dis-

order, i. e., the fluctuation of the electronic couplings caused by the thermal motion

of the molecules, which destroys the translational symmetry of the Hamiltonian.

Furthermore, the charge transport in this model is not thermally activated.

2.3 Transfer equations

In the following the equations are derived which describe the nonadiabatic transfer

of excitons and charges based on perturbation theory (except the Miller-Abrahams
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hopping rate in sec. 2.3.4). The charges/excitons are assumed to be localized at the

donor or acceptor molecule respectively and move by a hopping process from one

monomer to another.

2.3.1 The spectral overlap approach

A system containing two molecules which do not need to be identical is regarded.

One molecule is initially charged/excited (the donor, D) and the other one is in a

neutral/ground state (acceptor, A). If the coupling between the molecules is suffi-

ciently small, time dependent perturbation theory can be applied, where the cou-

pling appears as the perturbation. This leads to Fermi’s Golden rule [168–170],

which reads

νAD =
2π

~

∑

mDnD

∑

mAnA

|〈ΨDmD
Ψ♯

AnA
|V̂ |Ψ♯

DnD
ΨAmA

〉|2δ(EDmD
− E♯

DnD
+ E♯

AnA
− EAmA

)

(2.90)

where m and n are the vibrational quantum numbers of the neutral/ground state

and the charged/excited state, respectively, where the latter is indicated by ♯. With

consideration of the initial state as a thermalized state manifold with respect to the

vibrational states, the transition rate is

νAD =
2π

~
·
∑

mDnD

∑

mAnA

f ♯
DnD

· fAmA
· |〈ΨDmD

Ψ♯
AnA

|V̂ |Ψ♯
DnD

ΨAmA
〉|2 ·

δ(EDmD
− E♯

DnD
+ E♯

AnA
− EAmA

) (2.91)

f ♯
DnD

and fAmA
are the distribution functions for the initial vibrational equilibrium

of the donor in the charged/excited state and the acceptor in the neutral/ground

state.

Applying the Born-Oppenheimer approximation [118] (see sec. 2.2.1), the wave

functions can be written as

ΨDmD
(rD, RD) = ϕDRD

(rD) · χDmD
(RD) (2.92)

and accordingly for the acceptor wave function and the charged/excited states. rD

denotes the electron and RD the nuclear coordinates respectively. With this factori-

sation the coupling between the donor and the acceptor is

〈ΨDmD
(rD, RD)Ψ

♯
AnA

(rA, RA)|V̂ |Ψ♯
DnD

(rD, RD)ΨAmA
(rA, RA)〉

= 〈ϕDRD
(rD)ϕ

♯
ARA

(rA)|V̂ |ϕ♯
DRD

(rD)ϕARA
(rA)〉 (2.93)

·〈χDmD
(RD)|χDnD

(RD)
♯〉 · 〈χ♯

AnA
(RA)|χAmA

(RA)〉
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= VAD · 〈χDmD
(RD)|χ♯

DnD
(RD)〉 · 〈χ♯

AnA
(RA)|χAmA

(RA)〉 (2.94)

with the Coulomb matrix element

VAD = 〈ϕDRD
(rD)ϕ

♯
ARA

(rA)|V̂ |ϕ♯
DRD

(rD)ϕARA
(rA)〉 (2.95)

The overlap and exchange interaction is neglected here which is usually justified

for the dimer distances which appear in molecular crystals. The delta function in

eq. (2.91) ensures the energy conservation of the system during the charge/exciton

transfer. By introducing an energy integral it can be divided into a donor and an

acceptor part:

δ([EDmD
− E♯

DnD
] + [E♯

AnA
− EAmA

])

=

∞∫

−∞

dE δ(EDmD
− E♯

DnD
+ E) · δ(E♯

AnA
− EAmA

− E) (2.96)

The first delta function in eq. (2.96) accounts for the donor emission. The energy E

is set free from the donor and absorbed by the acceptor, which is taken into account

by the second delta function. By defining the auxiliary functions

DD(E) :=
∑

mDnD

f ♯
DnD

· |〈χDmD
(RD)|χ♯

DnD
(RD)〉|2 · δ

(

EDmD
− E♯

DnD
+ E

)

(2.97)

DA(E) :=
∑

mAnA

fAmA
· |〈χ♯

AnA
(RA)|χAmA

(RA)〉|2 · δ
(

E♯
AnA

− EAmA
− E

)

(2.98)

for the donor deexcitation/neutralisation and the acceptor excitation/ionisation re-

spectively, the hopping rate, eq. (2.91), can be written as

νAD =
2π

~
· V 2

AD ·
∞∫

−∞

dE DD(E) ·DA(E) =
2π

~
· V 2

AD · JAD (2.99)

with the Franck-Condon weighted density of states [171–173]

JAD =

∞∫

−∞

dE DD(E) ·DA(E) (2.100)

which accounts for the vibrations of the molecules and contains the spectral overlap

of the densities of statesDD of the donor emission andDA of the acceptor absorption.

Equation (2.99) is frequently used in the literature to calculate exciton transfer
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rates [133, 174–176]. However, it becomes clear that this approach works just as

well for charge transport. Though it is important to note that in the case of charge

transport no photon is exchanged, even though the picture of optical emission and

absorption is used here. But despite this fact the mathematical approach by defining

the auxiliary functions DD(E) and DA(E) and calculating their overlap is perfectly

approvable.

Calculation of the densities of states

In order to calculate the densities of statesD(E), the spectrum of a multidimensional

vibrational transition is calculated. Its relative intensity is

I(E) =
∞∑

m1,...,,np

[

Ĩ(m1, n1,m2, n2, . . . ,mp, np) · δ
(

p
∑

j=1

[(nj −mj) · ~ωj]− E

)]

(2.101)

with [177]

Ĩ(m1, n1,m2, n2, . . . ,mp, np)

=

p
∏

i=1

|〈χni
|χmi

〉|2 ·
exp

(

−~miωi

kBT

)

∑∞
ci=0 exp

(

−~ciωi

kBT

)

=

p
∏

i=1

|〈χni
|χmi

〉|2 ·
[

1− exp

(

− ~ωi

kBT

)]

· exp
(

−~miωi

kBT

)

(2.102)

(In the last step the geometric series
∑∞

c=0 q
c = (1−q)−1 was used for the calculation

of the partition function.) p is the number of the vibrational modes, ω is their

frequency, m are their initial and n their final vibrational quantum numbers. The

Franck-Condon factor |〈χni
|χmi

〉|2 is the overlap integral of the wave functions of

two harmonic oscillators. By assuming that the frequency of both oscillators is the

same, it results in [178]

|〈χni
|χmi

〉|2 = mi!

ni!
· Sni−mi

i · e−Si · [Lni−mi
mi

(Si)]
2 (2.103)

with the Huang-Rhys factor S [178, 179] (see below) and the Laguerre polyno-

mial [180, 181]

Lα
n(x) =

ex · x−α

n!
· dn

dxn
(e−x · xn+α) =

n∑

k=0

(
n+ α

n− k

)

· (−x)
k

k!
(2.104)
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which can be calculated via a recursion relation for n ≥ 1 [181]:

Lα
n+1(x) =

1

n+ 1
· (−x+ 2 · n+ α + 1) · Lα

n(x)− (n+ α) · Lα
n−1(x) (2.105)

Lα
0 (x) = 1

Lα
1 (x) = 1 + α− x

For the emission spectrum m and n must be interchanged in eq. (2.102). The

spectrum is convoluted with a Lorentzian function

l(E) =
1

π
· σ

σ2 + E2
(2.106)

(σ is the half width at half maximum) to account for natural and collision broadening

and to finally obtain the density of states:

D(E) =

∞∫

−∞

I(E ′) · l(E − E ′) dE ′ (2.107)

Calculation of the Huang-Rhys factors

In order to determine the Huang-Rhys factors Si which are needed for the Franck-

Condon factors, eq. (2.103), the difference vector ∆~d of the equilibrium structures of

the charged/excited state and the neutral/ground state is determined. This vector

is transformed from Cartesian coordinates into a vector ∆~q in the normal mode

basis via

N ·∆~q = ∆~d (2.108)

where the matrix N contains the normal mode vectors. The molecular vibrations

are treated as harmonic oscillators [177, 182]. Therefore, the relaxation energy

after ionization/excitation or neutralization/deexcitation into the new equilibrium

structure is (cf. fig. 2.7)

λi =
1

2
· ki ·∆q2i =

1

2
· µi · ω2

i ·∆q2i (2.109)

ki is the force constant, which is the eigenvalue of the force matrix with respect to

the normal mode i. µi is the reduced mass which is calculated as

µi =

∑

j n
2
i,j ·mj

∑

j n
2
i,j

(2.110)



2.3. Transfer equations 43

charged/
excited state

∆ qi

neutral/
ground state

λ i

λ*i

q

E

Figure 2.7: The potential curves for one vibrational mode in the neutral/ground state
and the charged/excited state depending on the normal mode coordinate q, based on
the harmonic approximation. ∆q is the difference vector between the two equilibrium
structures, λ indicates the relaxation energies.

ni,j is the jth coordinate in the ith normal mode vector and mj is the mass of the

respective atom. The sum
∑p

i=1 λi over all vibrational modes of the neutral/ground

state and the charged/excited state results in the reorganization energy used in the

Marcus theory, see sec. 2.3.2. The Huang-Rhys factor is finally defined as the ratio

between this relaxation (or reorganization) energy and the vibrational energy ~ωi:

Si =
λi

~ · ωi

=
µi · ω2

i ·∆q2i
2 · ~ · ωi

=
1

2
·
(√

µi · ωi

~
·∆qi

)2

=
1

2
·
(
∆qi
αi

)2

(2.111)

with

αi =

√

~

µi · ωi

(2.112)

αi is a parameter with the dimension of a length so that Si is a dimensionless

quantity.

In this approach it is assumed that the normal modes in the neutral/ground

state and the charged/excited state are aligned in a parallel manner so that the

vibrations in both states can be described by the same normal mode basis. Though,

in the extreme case, the molecular conformation could change completely due to

the ionisation/excitation. But usually the normal modes from one state can be

written as a linear combination of the normal modes of the other state. This can be

expressed by a Duschinsky rotation [183, 184]. However, the normal modes are not

necessarily rotated against each other by a certain angle, they are rather “rotated”

irregular. A measure for the Duschinsky effect is the product consisting of the

transposed matrix containing the normal mode vectors of the neutral/ground state,



44 2. Background

NT , and the corresponding matrix for the charged/excited state, N♯. It equals the

unit matrix E, i. e. NT · N♯ = E, if there is no Duschinsky rotation. Deviations

from this equation can be regarded as a measure for the Duschinsky effect. In many

cases, however, the Duschinsky rotation can be neglected [185], which is known as

the parallel mode approximation [177].

If initially only the vibrational ground state is occupied (m = 0), the Franck-

Condon factor, eq. (2.103), turns into a Poisson distribution,

|〈χn|χ0〉|2 =
Sn

n!
· e−S (2.113)

with the expectation value and the variance S. If the neutral/ground state and the

charged/excited state are not shifted against each other, ∆q (see fig. 2.7) and there-

fore S become zero and the 0 → 0 transition has the probability 1. In this case the

occupation of the vibrational modes does not change during ionisation/excitation.

However, if ∆q 6= 0 and therefore S 6= 0, the electronic and the vibronic excitations

couple. Therefore the Huang-Rhys factor S can be regarded as a measure for the

electron-vibration coupling.

2.3.2 The Marcus hopping rate

If the thermal energy exceeds the vibrational energy, kBT ≫ ~ω (high-temperature

limit), the vibrations can be treated classically. In this case the system reduces to a

simple two-level system (the neutral/ground and the charged/excited state), whose

energetic positions are modulated time-dependently by the molecular vibrations.

These vibrations are described by classical harmonic oscillators and the collective

coordinates qD and qA for the donor and the acceptor geometry respectively.

The Franck-Condon factor |〈χ♯
AnA

(RA)|χAmA
(RA)〉|2 equals the probability that

the acceptor in the neutral/ground state with the vibrational quantum number mA

is in the vibrational state nA after the ionisation/excitation. Since the vibrations

are treated classically here, there is only one single vibrational state in the neu-

tral/ground state and the charged/excited state respectively. Therefore, the transi-

tion probability must become 1 and in eq. (2.97) and (2.98) it is

|〈χDmD
(RD)|χ♯

DnD
(RD)〉|2 = |〈χ♯

AnA
(RA)|χAmA

(RA)〉|2 = 1 (2.114)

Furthermore, the summation over the vibrational quantum numbers changes to an
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integration over the vibrational coordinates qD and qA, resulting in

DD(E) =

∫

dqD f ♯
D(qD) · δ

(

ED(qD)− E♯
D(qD) + E

)

(2.115)

DA(E) =

∫

dqA fA(qA) · δ
(

E♯
A(qA)− EA(qA)− E

)

(2.116)

In the following calculations for the donor the index D is omitted. Regarding an

ensemble of donor-acceptor pairs, the excitation of the vibrational states is described

by a Boltzmann distribution:

f ♯(q) =
1

Z
· exp

(

−E
♯(q)− E♯(q♯0)

kBT

)

=
1

Z
· exp

(

−K · (q − q♯0)
2

kBT

)

(2.117)

Here a harmonic potential is assumed (see fig. 2.8), which is described by

E♯(q) = E♯(q♯0) +K · (q − q♯0)
2 (2.118)

and accordingly for the neutral/ground state

E(q) = E(q0) +K · (q − q0)
2 (2.119)

It is assumed that the curvature 2K is the same for both states. (However, K can

be different for the donor and the acceptor.) The partition function is

Z =

∞∫

−∞

dq exp

(

−K · (q − q♯0)
2

kBT

)

x:=(q−q♯0)=

∞∫

−∞

dx exp

(

−K · x2
kBT

)

Dλ

0DE
0DE#

qD
qD
~

0Dq#q0D

ED

ED
#

E

E0A
#

EA

EA
#

0AE
q0A qA

~ q0A
#

qA

Aλ

E

Figure 2.8: The potential curves for the neutral/ground state and the charged/excited
state (indicated by ♯) of the donor (left) and the acceptor (right) molecule, depending
on the geometry coordinate q. λ indicates the reorganization energy.
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=









∞∫

−∞

dx exp

(

− K

kBT
· x2
)




2



1
2

=





∞∫

−∞

dx

∞∫

−∞

dy exp

(

− K

kBT
· x2
)

· exp
(

− K

kBT
· y2
)




1
2

=





∞∫

−∞

dx

∞∫

−∞

dy exp

(

− K

kBT
· (x2 + y2)

)




1
2

=





2π∫

0

dϕ

∞∫

0

dr r · exp
(

− K

kBT
· r2
)




1
2

=

[

2π ·
[

− kBT

2 ·K · exp
(

− K

kBT
· r2
)]∞

0

] 1
2

=

[

2π ·
(

0 +
kBT

2 ·K

)] 1
2

=

√

π · kBT
K

(2.120)

Therefore the vibrational energy distribution reads

f ♯(q) =

√

K

π · kBT
· exp

(

−K · (q − q♯0)
2

kBT

)

(2.121)

The delta function in eq. (2.115) has to be transformed in order to execute the

integration with respect to q:

δ
(
E(q)− E♯(q) + E

)

= δ
(

E0 +K · (q − q0)
2 − E♯

0 −K · (q − q♯0)
2 + E

)

= δ(

=:∆E0
︷ ︸︸ ︷

E0 − E♯
0 +K · (q2 − 2 · q0 · q + q20 − q2 + 2 · q♯0 · q − q♯20 ) + E)

= δ
(

∆E0 + 2 ·K · (q♯0 − q0) · q +K · (q20 − q♯20 ) + E
)

=
1

2 ·K · (q♯0 − q0)
· δ
(

q +
∆E0 + E +K · (q20 − q♯20 )

2 ·K · (q♯0 − q0)

)

(2.122)

∆E0 = E0 − E♯
0 = E(q0) − E♯(q♯0) is the energetic shift between the parabolas for

the neutral/ground state and the charged/excited state, see fig. 2.8. Substituting

eqs. (2.121) and (2.122) in eq. (2.115) leads to

D(E) =

∫

dq

√

K

π · kBT
· exp

(

−K(q − q♯0)
2

kBT

)

· 1

2 ·K · (q♯0 − q0)
·

δ
(

q +

=:−q̃
︷ ︸︸ ︷

∆E0 + E +K · (q20 − q♯20 )

2 ·K · (q♯0 − q0)

)



2.3. Transfer equations 47

=
1

2
· 1
√

π · kBT ·K · (q♯0 − q0)2
· exp

(

−K · (q̃ − q♯0)
2

kBT

)

(2.123)

q̃ can be transformed further:

q̃ = −∆E0 + E +K · (q20 − q♯20 )

2 ·K · (q♯0 − q0)
=

−∆E0 − E +K · (q♯20 − q20)

2 ·K · (q♯0 − q0)

=
−∆E0 − E +K · (q♯0 − q0) · (q♯0 + q0)

2 ·K · (q♯0 − q0)
= − ∆E0 + E

2 ·K · (q♯0 − q0)
+
q♯0 + q0

2

= − ∆E0 + E

2 ·K · (q♯0 − q0)
− q♯0 − q0

2
+ q♯0

= −∆E0 + E +K · (q♯0 − q0)
2

2 ·K · (q♯0 − q0)
+ q♯0 (2.124)

The activation energy, which appears in the enumerator of the exponential function

in eq. (2.123), is defined as the energy difference between the intersection of E♯(q)

with E(q) at q = q̃ and the minimum of E♯(q):

Eact = E♯(q̃)− E♯(q0) = K · (q̃ − q♯0)
2 = K ·

(

−∆E0 + E +K · (q♯0 − q0)
2

2 ·K · (q♯0 − q0)

)2

=
(∆E0 + E +K · (q♯0 − q0)

2)2

4 ·K · (q♯0 − q0)2
(2.125)

The reorganization energy, which is depicted in fig. (2.8), is

λ = K · (q♯0 − q0)
2 (2.126)

which leads to

Eact =
(∆E0 + E + λ)2

4 · λ (2.127)

Substituting Eact in eq. (2.123), using the definition of λ and inserting the index D

again results in

DD(E) =
1

2 ·
√
π · kBT · λD

· exp
(

−(∆E0D + E + λD)
2

4 · kBT · λD

)

(2.128)

The same calculation for the acceptor molecule yields

DA(E) =
1

2 ·
√
π · kBT · λA

· exp
(

−(∆E0A − E + λA)
2

4 · kBT · λA

)

(2.129)
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Inserting these expressions into eq. (2.99) leads to

νAD =
2π

~
· V 2

AD ·
∞∫

−∞

dE

(
1

2 ·
√
π · kBT · λD

exp

[

−(∆E0D + E + λD)
2

4 · kBT · λD

])

·

(
1

2 ·
√
π · kBT · λA

exp

[

−(∆E0A − E + λA)
2

4 · kBT · λA

])

=
V 2
AD

2~kBT
√
λDλA

∞∫

−∞

dE exp

[

−(∆E0D + E + λD)
2

4 · kBT · λD

]

exp

[

−(∆E0A − E + λA)
2

4 · kBT · λA

]

=
V 2
AD

~
·
√

π

4 · kBT · (λD + λA)
· exp

(

−(∆E0D +∆E0A + λD + λA)
2

4 · kBT · (λD + λA)

)

·
[

erf

(

(∆E0D · λA −∆E0A · λD + (λD + λA) · E
√

4 · kBT · λDλA · (λD + λA)

)]∞

−∞

=
V 2
AD

~
·
√

π

kBT · (λD + λA)
· exp

(

−(∆E0D +∆E0A + λD + λA)
2

4 · kBT · (λD + λA)

)

(2.130)

With

λ := λD + λA (2.131)

∆E := ∆E0D +∆E0A = (E0D − E♯
0D) + (E♯

0A − E0A)

= (E0D + E♯
0A)

︸ ︷︷ ︸

final state

− (E♯
0D + E0A)

︸ ︷︷ ︸

initial state

(2.132)

this results in the Marcus equation:

νAD =
V 2
AD

~
·
√

π

kBT · λ · exp
(

−(∆E + λ)2

4 · kBT · λ

)

(2.133)

The Marcus theory was originally derived for outer sphere electron transfer in

solvents [186, 187]. It stems from time dependent perturbation theory (Fermi’s

Golden rule, eq. (2.90)). Treating the coupling as a perturbation requires that VAD

is small compared to λ/4, which corresponds to the total activation energy for the

charge/exciton to move from one molecule to another (for ∆E = 0). Furthermore,

the relaxation (the geometric reorganization) has to be fast in comparison with the

transfer so that the system can be assumed to be in thermal equilibrium during

the transfer. In addition, the theory is restricted to the high temperature case

since tunneling is neglected completely and the molecular vibrations are treated

classically, which requires kBT ≫ ~ω.
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2.3.3 The Levich-Jortner hopping rate

Whereas in the spectral overlap approach (sec. 2.3.1) the molecular vibrations are

treated quantum mechanically, they are treated as classical oscillations in the Marcus

theory (sec. 2.3.2). This is strictly speaking only acceptable in the high-temperature

limit if the thermal energy exceeds the vibrational energy. Most intramolecular vi-

brational frequencies however are high above the thermal energy at room temper-

ature (≈ 26meV). On the other hand, the reorganization of the environment (the

solvent, or, in the case of crystals, the movement of the surrounding molecules)

can often be treated classically. This is taken into account in the Levich-Jortner

theory [188–190].

In the Marcus theory, the Franck-Condon factors which appear in eq. (2.97)

and (2.98) become 1 because of the two-level approximation, eq. (2.114). Here the

quantum mechanical vibrational sublevels are taken into account for those vibrations

which are energetically higher than the thermal energy. For that reason, only the

vibrational ground state is occupied in the thermal equilibrium. That is why the

Franck-Condon factors for the donor and the acceptor are within the scope of the

harmonic approximation [133, 177, 178]

|〈χDmD
(RD)|χ♯

D0(RD)〉|2 =
Sm
D

m!
· e−SD (2.134)

|〈χ♯
AnA

(RA)|χA0(RA)〉|2 =
Sn
A

n!
· e−SA (2.135)

as derived in eq. (2.113). This corresponds to a Poisson distribution of the excited

vibrational states. SD and SA are the effective Huang-Rhys factors for the donor

and the acceptor respectively, because all vibrations are merged to only one effective

vibrational mode per molecule with the frequencies ωeff,D and ωeff,A.

Since one regards both classical low-energy and quantum mechanical high-energy

vibrations, eqs. (2.97) and (2.98) change to

DD(E) :=
∑

mD

∫

dqD f ♯
D(qD) ·

Sm
D

m!
· e−SD · δ

(

EDmD
(qD)− E♯

D(qD) + E
)

(2.136)

DA(E) :=
∑

nA

∫

dqA fA(qA) ·
Sn
A

n!
· e−SA · δ

(

E♯
AnA

(qA)− EA(qA)− E
)

(2.137)

As in the Marcus theory, the classical oscillations are described by the collec-

tive vibrational coordinates qD and qA, cf. eqs. (2.115) and (2.116). Before the
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charge/exciton transfer the energies of the donor and acceptor are

E♯
D(qD) = E♯

D(q
♯
0D) +K · (qD − q♯0D)

2 (2.138)

EA(qA) = EA(q0A) +K · (qA − q0A)
2 (2.139)

because initially only the classical vibrations (~ω ≪ kBT ) are excited (nD = mA = 0),

and after the transfer the energies are

EDmD
(qD) = ED(q0D) +K · (qD − q0D)

2 +mD · ~ωeff,D (2.140)

E♯
AnA

(qA) = E♯
A(q

♯
0A) +K · (qA − q♯0A)

2 + nA · ~ωeff,A (2.141)

In the following calculations for the donor the index D is omitted. Since in the

thermal equilibrium only the classical vibrations are excited, the distribution func-

tion f ♯(q) in eq. (2.136) is the same as in the Marcus case, eq. (2.121). However,

due to the excitation of the high-energy vibrations upon the transfer the delta term

in eq. (2.136) now changes slightly to

δ
(
Em(q)− E♯(q) + E

)

= δ
(

E0 +K · (q − q0)
2 +m · ~ωeff − E♯

0 −K · (q − q♯0)
2 + E

)

(2.142)

= δ(

=:∆E0
︷ ︸︸ ︷

E0 − E♯
0 +K · (q2 − 2 · q0 · q + q20 − q2 + 2 · q♯0 · q − q♯20 ) +m · ~ωeff + E)

= δ(∆E0 + 2 ·K · (q♯0 − q0) · q +K · (q20 − q♯20 ) +m · ~ωeff + E)

=
1

2 ·K · (q♯0 − q0)
· δ
(

q +
∆E0 +K · (q20 − q♯20 ) +m · ~ωeff + E

2 ·K · (q♯0 − q0)

)

(2.143)

As in the Marcus theory ∆E0 = E0 − E♯
0 = E(q0) − E♯(q♯0) is the energetic shift

between the parabolas which describe the classical part of the vibrations, see fig. 2.8.

With eqs. (2.121) and (2.142) eq. (2.136) becomes

D(E) =
∑

m

∫

dq

√

K

π · kBT
· exp

(

−K · (q − q♯0)
2

kBT

)

· S
m

m!
· exp(−S) ·

1

2 ·K · (q♯0 − q0)
· δ
(

q +

=:−q̃
︷ ︸︸ ︷

∆E0 +K · (q20 − q♯20 ) +m · ~ωeff + E

2 ·K · (q♯0 − q0)

)

=
1

2 ·
√

π · kBT ·K · (q♯0 − q0)2
·
∑

m

Sm

m!
· exp(−S) · exp

(

−K · (q̃ − q♯0)
2

kBT

)

(2.144)



2.3. Transfer equations 51

q̃ can be transformed analogue to eq. (2.124):

q̃ = −∆E0 +K(q20 − q♯20 ) +m~ωeff + E

2 ·K · (q♯0 − q0)
= −∆E0 +K(q♯0 − q0)

2 +m~ωeff + E

2 ·K · (q♯0 − q0)
+ q♯0

(2.145)

Equivalent to eq. (2.125) the activation energy is

Eact = K · (q̃ − q♯0)
2 =

(∆E0 +K · (q♯0 − q0)
2 +m · ~ωeff + E)2

4 ·K · (q♯0 − q0)2
(2.146)

=
(∆E0 + λcl +m · ~ωeff + E)2

4 · λcl
(2.147)

where the definition of the reorganisation energy, eq. (2.126), is used (see also

fig. 2.8). The index “cl” is added to indicate that only the classically treated low-

frequency vibrations enter λ here, as explained above. With the definition of λ and

Eact and inserting the omitted index D eq. (2.144) results in

DD(E) =
1

2
√
πkBTλcl,D

∑

mD

SmD
D

mD!
exp(−SD) exp

(

−(∆E0D + λcl,D +mD~ωeff,D + E)2

4 · kBT · λcl,D

)

(2.148)

The same calculation for the acceptor molecule leads to

DA(E) =
1

2
√
πkBTλcl,A

∑

nA

SnA
A

nA!
exp(−SA) exp

(

−(∆E0A + λcl,A + nA~ωeff,A − E)2

4 · kBT · λcl,A

)

(2.149)

Inserting these equations into eq. (2.99), performing the integration with respect to

E in the same way as in eq. (2.130) and using the definitions (2.131) and (2.132)

yields

νAD =
V 2
AD

~
·
√

π

kBT · λcl
·
∑

mD,nA

SmD
D

mD!
· exp(−SD) ·

SnA
A

nA!
· exp(−SA)

· exp
(

−(∆E + λcl +mD · ~ωeff,D + nA · ~ωeff,A)
2

4 · kBT · λcl

)

(2.150)

This equation simplifies further if the effective frequencies are assumed to be the

same in the neutral/ground state and the charged/excited state, ωeff,D = ωeff,A =:

ωeff , so that

mD · ~ωeff,D + nA · ~ωeff,A = (mD + nA) · ~ωeff (2.151)

This presumption is consistent with the classical part of the vibrations where the

curvature 2K (= 2µω2
cl with the reduced mass µ) is also set to be the same in both
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states, cf. eqs. (2.138) to (2.141).

If P (X) is the Poisson-distributed probability for a certain vibrational state and

m+ n =: p (the indices D and A are omitted again) then

∞∑

m=0

∞∑

n=0

P (XD = m) · P (XA = n) · f(m+ n)

=
∞∑

p=0

p
∑

m=0

P (XD = m) · P (XA = p−m) · f(p)

=
∞∑

p=0

p
∑

m=0

Sm
D

m!
· e−SD · Sp−m

A

(p−m)!
· e−SA · f(p)

=
∞∑

p=0

p
∑

m=0

1

p!
· p!

(p−m)! ·m!
· Sm

D · Sp−m
A · e−(SD+SA) · f(p)

=
∞∑

p=0

p
∑

m=0

1

p!
·
(
p

m

)

· Sm
D · Sp−m

A · e−(SD+SA) · f(p)

=
∞∑

p=0

(SD + SA)
p

p!
· e−(SD+SA) · f(p)

=
∞∑

p=0

P (X = p) · f(p) (2.152)

This is again a Poisson distribution and with Seff := SD + SA. Equation (2.150)

results in the Levich-Jortner equation [190]

νAD =
V 2
AD

~
·
√

π

kBT · λcl
·
∑

p

Sp
eff

p!
· exp(−Seff) · exp

(

−(∆E + λcl + p · ~ωeff)
2

4 · kBT · λcl

)

(2.153)

The effective frequency and Huang-Rhys factor are calculated as

ωeff =

∑

i ωi · Si
∑

i Si

(2.154)

Seff =
λqm,D

~ωeff

+
λqm,A

~ωeff

=
λqm
~ωeff

(2.155)

The summation with respect to i runs over all quantum mechanically treated vi-

brations of the donor-acceptor complex. It is important to note that the partition

between the classical and the quantum mechanical part and therefore λ, ωeff and

Seff depend on the temperature. For high temperatures eq. (2.153) turns into the

Marcus equation (2.133) [190].

Concerning the physical picture, this approach is better than the Marcus ap-
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proach, sec. 2.3.2, since at room temperature the vibrations are correctly treated

quantum mechanically. The advantage over the spectral overlap approach, sec. 2.3.1,

which also treats the molecular vibrations quantum mechanically, is that this ap-

proach allows for the inclusion of surrounding effects of the donor-acceptor complex

by including them by means of the external reorganisation energy in λcl.

2.3.4 The Miller-Abrahams hopping rate

The hopping rates derived so far in sec. 2.3.1 to 2.3.3 are all based on time-dependent

perturbation theory and are directly derived from Fermi’s Golden rule, eq. (2.90). In

contrast to that, the Miller-Abrahams equation is a empirically motivated hopping

equation which is used to describe charge transport in disordered materials.

Strongly disordered (i. e. amorphous) organic semiconductors can be simulated

by means of the Gaussian disorder model [191–194]. Because of the disorder all hop-

ping sites in the solid experience a different surrounding, which leads to different site

energies for charge transport. It can approximately be assumed that these site ener-

gies are randomly distributed. It is not unlikely that the energies of adjacent sites are

correlated [195], however, this is often neglected since structural correlation lengths

typically do not exceed a few intermolecular distances which is sufficiently small in

relation to the path a charge carrier travels during measurement or simulation [193].

Since the absorption band is Gaussian-shaped and because the polarization energy

is governed by a huge number of internal coordinates which vary randomly by small

amounts [192], the density of states is described by a Gauss distribution [192, 193]:

̺(E) =
1√

2π · σ
· exp

(

− E2

2 · σ2

)

(2.156)

The standard deviation σ of this distribution is called the energetic (diagonal) dis-

order of the material.

The motion of the charge carrier in a disordered material can be described based

on a theory originally developed for impurity conduction in semiconductors for low

temperatures and low impurity concentration [196]. The so-called Miller-Abrahams

jump rate reads [192, 193]

νAD = ν0 · exp(−2 · γ · rAD) ·
{

exp
(

− ∆E
kBT

)

∆E > 0

1 ∆E ≤ 0
(2.157)
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with the energetic difference

∆E = (EA − ED)− q · ~E · ~rAD (2.158)

where ED and EA are the site energies of the donor and acceptor molecule according

to the distribution in eq. (2.156), ~rAD is their distance, q is the elementary charge

and ~E is the external electric field. The first exponential function in eq. (2.157) is

an electronic wave function overlap factor where γ is the inverse localization radius.

The Boltzmann-type exponential function accounts for thermally activated jumps

upwards in energy. In contrast to the other hopping rates derived before, hops to

lower energies are not impeded by an energy matching condition, since it is assumed

here that the coupling to the phonons is sufficient to dissipate any energy. The

prefactor ν0 is the attempt-to-jump frequency, which is in the order of the lattice

vibrations.

The coupling between the molecules strongly depends on their mutual orientation

and is also affected by disorder (the so-called off-diagonal disorder). This can be

taken into account by a distribution of the inverse localization radius, however,

since the angular dependency of γ in disordered media is quite complicated [197], it

is controversial if the simple approach of a Gaussian-distributed γ is sensible [193].

Though it was shown that diagonal disorder is considerably larger than off-diagonal

disorder [192].

2.4 Diffusion in the random walk model

The excitons perform a random walk in the organic material [116], as was even

experimentally shown for triplet excitons in tetracene [46]. In the following it will

be shown how the random walk model and the microscopic rate equations lead to

the well-known macroscopic Fick’s law of diffusion and the definition of the diffusion

coefficient.

p(~x, t) is the probability that at the time t the site at ~x is occupied by a particle

(for example a charge or an exciton). ~x has the dimension n (typically one, two or

three). After the time interval ∆t the occupation probability for ~x is

p(~x, t+∆t) =
n∑

d=1

[αd+ · p(~x−∆x · ~ed, t) + αd− · p(~x+∆x · ~ed, t)] (2.159)

αd+ is the transition probability in the positive direction along the coordinate d,

αd− is the transition probability in the negative direction. ~ed is the unit vector in d
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direction. The change ∆p within the time interval ∆t is

∆p(~x, t) := p(~x, t+∆t)− p(~x, t)

=
n∑

d=1

[αd+ · p(~x−∆x · ~ed, t) + αd− · p(~x+∆x · ~ed, t)− (αd+ + αd−) · p(~x, t)]

(2.160)

because
∑n

d=1(αd+ + αd−) = 1. A random walk is assumed where the transition

probabilities in all 2n directions are the same, i. e. it is αd+ = αd− = (2n)−1 for all d:

∆p(~x, t) =
1

2n
·

n∑

d=1

[p(~x+∆x · ~ed, t)− 2 · p(~x, t) + p(~x−∆x · ~ed, t)]

⇒ ∆p(~x, t)

∆t
=

1

2n
·

n∑

d=1

[
(∆x)2

∆t

p(~x+∆x~ed, t)− 2 · p(~x, t) + p(~x−∆x~ed, t)

(∆x)2

]

=
1

2n
· (∆x)

2

∆t
·

n∑

d=1

[
p(~x+∆x·~ed,t)−p(~x,t)

∆x
− p(~x,t)−p(~x−∆x·~ed,t)

∆x

∆x

]

(2.161)

In the limit case where ∆x → 0 and ∆t → 0 this results in Fick’s law of diffu-

sion [198]:

∂p(~x, t)

∂t
= D ·

n∑

d=1

∂2p(~x, t)

∂x2d
= D · ∇2p(~x, t) (2.162)

with the diffusion coefficient

D :=
1

2n
· dx

2

dt
(2.163)

2.5 Einstein relation

The Einstein relation connects the parameters which are used to characterize the

diffusion and the drift of particles, which are the diffusion coefficient and the mo-

bility. Since it plays an important role for the equations derived in the following

chapters, its derivation is presented here.

A Langevin equation [199, 200] is used to describe the motion of a particle under

the influence of a stochastic force η(t), caused for example by thermal fluctuations,

in a dissipative environment:

m · ẍ(t) = F − β · ẋ(t) + η(t) (2.164)

m is the mass of the particle and β · ẋ(t) describes a damping proportional to the
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velocity ẋ(t) with the damping constant β. x(t) is a spatial coordinate in one, two

or three dimensions. (For simplicity x is written instead of ~x.) F is an external

force acting on the system. It is assumed that x(t) varies slowly in comparison to

the thermal fluctuations. In the following F is set to zero:

m · ẍ(t) = −β · ẋ(t) + η(t)

⇔ m · x(t) · ẍ(t) = −β · x(t) · ẋ(t) + x(t) · η(t)

⇔ m ·
[
d

dt
[x(t) · ẋ(t)]− ẋ2(t)

]

= −β · x(t) · ẋ(t) + x(t) · η(t)

⇒ m ·
〈

d

dt
[x(t) · ẋ(t)]

〉

−m · 〈ẋ2(t)〉 = −β · 〈x(t) · ẋ(t)〉+ 〈x(t) · η(t)〉 (2.165)

The brackets 〈〉 indicate an averaging over an ensemble of particles. The stochastic

force η(t) is not correlated with the spatial coordinate x(t) and therefore

〈x(t) · η(t)〉 = 〈x(t)〉 · 〈η(t)〉 = 0 (2.166)

since 〈η(t)〉 = 0.

The Hamilton function of the particle consists of the two summands for the ki-

netic and the potential energy, H = p2/(2m) + U(x), and so the probability density

in the phase space decomposes into a product:

w(x, p) =
exp

(

−H(x,p)
kBT

)

∞∫

−∞

∞∫

−∞

exp
(

−H(x,p)
kBT

)

dxdp

=
exp

(

− p2

2·m·kBT

)

∞∫

−∞

exp
(

− p2

2·m·kBT

)

dp

·
exp

(

−U(x)
kBT

)

∞∫

−∞

exp
(

−U(x)
kBT

)

dx

(2.167)

kB is the Boltzmann constant and T is the temperature. Integration over x leads to

the probability density with respect to p:

w(p) =

∞∫

−∞

w(x, p) dx =
exp

(

− p2

2·m·kBT

)

∞∫

−∞

exp
(

− p2

2·mkBT

)

dp

=
1√

2π ·m · kBT
·exp

(

− p2

2 ·m · kBT

)

(2.168)

(The integral in the denominator is calculated analogously to the integral in eq. (2.120).)

With p = mẋ the probability density with respect to the velocity ẋ is

w(ẋ) = w(p) ·
∣
∣
∣
∣

dp

dẋ

∣
∣
∣
∣
=

√
m

2π · kBT
· exp

(

− m · ẋ2
2 · kBT

)

(2.169)

This is the Maxwell-Boltzmann distribution [201] which describes the probability
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distribution of the velocity of a particle in thermal equilibrium. Calculating the

mean square velocity with this distribution results in

〈ẋ2(t)〉 =

∞∫

−∞

ẋ2 · w(ẋ) dẋ =

√
m

2π · kBT
·

∞∫

−∞

ẋ2 · exp
[

− m · ẋ2
2 · kBT

]

dẋ

=

√
m

2π · kBT
·

∞∫

−∞

d

dm

(

−2 · kBT · exp
[

− m · ẋ2
2 · kBT

])

dẋ

= −2 ·
√

m · kBT
2π

· d

dm

∞∫

−∞

exp

[

− m · ẋ2
2 · kBT

]

dẋ

= −2 ·
√

m · kBT
2π

· d

dm

(√

2π · kBT
m

)

= −2 · kBT ·
√
m · −1

2 ·m3/2

=
kBT

m
(2.170)

This is the equipartition theorem1: 1
2
m〈ẋ2〉 = kBT

2
. For an n dimensional system

the kinetic energy is
1

2
·m · 〈ẋ2(t)〉 = n · kBT

2
(2.171)

Taking eqs. (2.166) and (2.171) into account, eq. (2.165) changes to

m ·
〈

d

dt
[x(t) · ẋ(t)]

〉

= n · kBT − β · 〈x(t) · ẋ(t)〉

y(t):=〈x(t)ẋ(t)〉⇒ m · ẏ(t) = n · kBT − β · y(t) (2.172)

The solution of this inhomogeneous differential equation for y consists of the general

solution for the homogeneus differential equation m · ẏ(t)+β · y(t) = 0 and a special

solution of the inhomogeneous differential equation. For the homogeneous equation

the Ansatz yhom(t) = c · ea·t with the constants c and a leads to

m · d

dt
(c · ea·t) + β · (c · ea·t) = 0 ⇔ a = − β

m
(2.173)

A possible solution of the inhomogeneous differential equation (2.172) is yinh = n·kBT
β

as can be easily verified. This leads to

y(t) = yhom(t) + yinh = c · exp
[

− β

m
· t
]

+
n · kBT
β

(2.174)

1The equipartition theorem states that each canonic variable (coordinate or momentum) that
enters the Hamilton function quadratically contributes kBT/2 to the total energy.
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c can be determined by the initial condition

y(t = 0)
!
= 0 ⇒ c = −n · kBT

β
(2.175)

Resubstituting y(t) one gets

〈x(t) · ẋ(t)〉 = −n · kBT
β

· exp
[

− β

m
· t
]

+
n · kBT
β

⇔ 1

2
· d

dt
〈x2(t)〉 =

n · kBT
β

·
(

1− exp

[

− β

m
· t
])

⇔ 〈x2(t)〉 = 2 · n · kBT
β

·
(

t+
m

β
· exp

[

− β

m
· t
])

+ d (2.176)

d is a constant of integration which can be determined by the initial condition

〈x2(t = 0)〉 !
= 0 ⇒ 2·n · kBT

β
·m
β
+d = 0 ⇔ d = −2·n · kBT ·m

β2
(2.177)

This leads to

〈x2(t)〉 = 2 · n · kBT
β

·
[

t+
m

β
·
(

exp

[

− β

m
· t
]

− 1

)]

(2.178)

For short times, i. e. t≪ m/β, the exponential function can be approximated by

a Taylor expansion:

〈x2(t)〉 ≈ 2 · n · kBT
β

·
[

t+
m

β
·
([

1− β

m
· t+ 1

2
·
(

− β

m
· t
)2
]

− 1

)]

=
n · kBT
m

· t2

(2.179)

The spatial variance increases quadratically with time. For longer times, however

(t≫ m/β), the variance inreases only linearly with the time:

〈x2(t)〉 ≈ 2 · n · kBT
β

·
[

t+
m

β
· (0− 1)

]

≈ 2 · n · kBT
β

· t (2.180)

The diffusion constant is defined as

D :=
kBT

β
(2.181)

which leads to

〈x2(t)〉 = 2 · n ·D · t ⇒ D =
1

2 · n · d

dt
〈x2(t)〉 (2.182)
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〈x2(t)〉 is the spatial variance of an ensemble of particles. If F 6= 0, a drift term ap-

pears which has to be taken into account and the equation for the diffusion constant

reads

D =
1

2 · n · d

dt
〈(x(t)− 〈x(t)〉)2〉 (2.183)

In the stationary state when the particle moves with a constant velocity the ac-

celeration ẍ is zero. Since furthermore 〈η(t)〉 = 0, the Langevin equation (2.164)

becomes

0 = F − β · 〈ẋ(t)〉 ⇔ 〈ẋ(t)〉 = F

β
(2.184)

The mobility µ is defined as the average velocity 〈ẋ(t)〉 divided by the accelerating

force:

µ :=
〈ẋ(t)〉
F

=
1

β
(2.185)

With the definition ofD, eq. (2.181), one gets the Einstein (or Einstein-Smoluchowski)

relation:
D

µ
= kBT (2.186)

The ratio of the diffusion constant to the mobility equals the thermal energy kBT .

The fact that D and µ are directly related by this simple equation shows that the

fluctuations which cause the diffusive motion of a particle are at the same time the

reason for the dissipation in the case of a directional motion. This was originally

derived independently by Albert Einstein [202] and Marian Smoluchowski [203] in

their works on Brownian motion, in the context of the kinetic theory of gases.

For charge carriers, however, the mobility is defined as

µ =
〈ẋ(t)〉
E (2.187)

where E is the external electric field and F = q · E with the charge q. Merging this

equation with eqs. (2.184) and (2.187) one gets

µ =
q

β
(2.188)

and with eq. (2.181) the Einstein relation for charge carriers reads

D

µ
=
kBT

q
(2.189)
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2.6 Simulation of the dynamics

In this work mainly the master equation is used to study the dynamics of the ex-

citons and the charge carriers in the organic crystals. The Monte Carlo method is

used to verify the results of the developed rate equation approaches which are used

along with the master equation. In the following these two approaches, the master

equation and Monte Carlo, are explained.

2.6.1 The master equation

The master equation is a phenomenological first order differential equation which

describes the time evolution of the probability for a system to be in a certain state out

of a discrete set of states. It is often used in physics and chemistry, e. g. to describe

diffusion processes (random walks), population dynamics and chemical kinetics [176,

204–212].

If a particle (for example a charge carrier or an exciton) is at a certain position

at t = 0 and hops to other positions with a certain transition probability α, there

is a probability pi(t) that the particle is at the position i at the time t. The set {i}
can be regarded as the possible states of the system. Then pi(t) is the probability

that the system is in the state i at time t. It is (cf. eq. (2.159))

pi(t+∆ti) =
∑

j

αij · pj(t) (2.190)

pj(t) is the probability that the site j is occupied by a particle and αij is its transition

probability from j to i. The summation index j runs over all positions from where

a hop to i is possible. Since it is assumed that the particle definitely jumps after

the time ∆t (this dwell time will be determined below) it is

∑

j

αji = 1 (2.191)

From this it follows

pi(t+∆ti)− pi(t) =
∑

j

αij · pj(t)−
=1

︷ ︸︸ ︷
∑

j

αji ·pi(t)

⇔ pi(t+∆ti)− pi(t)

∆ti
=
∑

j

αij

∆ti
· pj(t)−

∑

j

αji

∆ti
· pi(t) (2.192)
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One now can define the hopping rate:

νji :=
αji

∆ti
(2.193)

The hopping rates are known since they are calculated by means of the rate equations

derived in sec. 2.3. For sufficient small ∆ti it follows the master equation

dpi(t)

dt
=
∑

j

[νij · pj(t)− νji · pi(t)] (2.194)

This equation describes the time-dependent change of the occupation probability

of site i. Using eq. (2.191) and (2.193) the average dwell time after which a jump

occurs can be expressed via the hopping rates:

τi := ∆ti =
∆ti
∑

j αji

=
1

∑

j
αji

∆ti

=
1

∑

j νji
(2.195)

Combining eqs. (2.193) and (2.195), the transition probability is

αji = νji ·∆ti =
νji

∑

k νki
(2.196)

The master equation describes a so-called Markov chain [213], where the next

state of the system only depends on the current state but not on the preceding

states, i. e. p(t+∆t) only depends on p(t) but not on p(t−∆t), see eq. (2.190).

The master equation is also known as Pauli master equation since Wolfgang Pauli

is said to have been the first who derived this type of kinetic equation [214]. He used

this approach to study the time evolution of a many-state quantum system [215]

where the state probabilities correspond to the diagonal elements of the density

matrix.

2.6.2 The Monte Carlo method

The Monte Carlo method [216, 217] is frequently used to study charge [105, 106,

110, 192, 193, 218–233] and exciton [234–238] transport in organic solids. Instead

of solving the master equation (2.194) directly in order to obtain the (probability)

distribution of particles, one can also solve this equation stochastically by simulating

trajectories of the particles and averaging over a sufficient number of simulation runs.

The algorithm works as follows [224]: The particle is assumed to be at a certain

site i. A cut-off radius around i has to be defined which contains all possible target
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sites k. For all targets the transition probability αki is calculated from the hopping

rates via eq. (2.196). Then a uniformly distributed random number ξ is generated

and the hopping target j is determined by

j−1
∑

k=0

αki < ξ ≤
j
∑

k=0

αki (2.197)

The particle moves from i to j and the time is advanced by the dwell time τi,

eq. (2.195). By repeating this process a trajectory of the particle is simulated.

Averaging over a sufficient number of trajectories leads to the same probability

distribution as obtained by solving the master equation (2.194).

For N simulated trajectories, the mean square deviation of the arithmetic mean

of the occupation probability p(i, t0) of site i at a certain time t0 is

σp(i,t0) =

√
√
√
√

∑N
n=1

(

pn(i, t0)− 1
N

∑N
m=1 pm(i, t0)

)2

N · (N − 1)
=
σ̃p(i,t0)√
N

(2.198)

where σ̃p(i,t0) is the mean square deviation of a single trajectory, which is independent

of N . This means that the statistical error of the Monte Carlo simulation converges

only with
√
N and therefore many simulation runs are needed in order to achieve

an acceptably low statistical error. Furthermore, the steady state is obtained only

after a certain transient time which may possibly lead to an untenable long simula-

tion time. However, especially for large systems the Monte Carlo approach can be

advantageous for describing the time-dependent motion of particles. The number of

coupled equations (2.194) which have to be solved for the master equation approach

increases with ld, where d is the dimensionality of the system and l is the length

of the regarded region in one dimension, while the convergence behaviour of Monte

Carlo, eq. (2.198), does not depend on the size and the dimension.

The Monte Carlo approach allows to simulate the motion of many particles at

the same time and to include interaction forces between them. For charge carriers,

the long-range Coulomb interaction is important in the case of higher charge carrier

densities. The charge distribution causes the lattice sites to have different energies,

which influences the hopping rates. Because of this interaction the motions of the

charges are not independent from each other, and one has furthermore to identify

in each cycle of the simulation which charge is the one to hop next, either by deter-

mining this from their respective dwell times and the simulation time [224], or by

choosing it randomly [239].
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Stochastic time steps

Instead of using eq. (2.195) for the dwell time, a fixed time interval [223, 237] or –

more frequently – a stochastic time step [192, 193, 219, 221, 225, 227, 228, 230, 233–

236, 238] for the simulation is used. If one chooses a constant time step ∆t, the

probability that the particle jumps within ∆t is with ui :=
∑

j νji and eq. (2.193):

ui ·∆t =
∑

j

νji ·∆t =
∑

j

αji ≤ 1 (2.199)

∆t has to be chosen sufficiently small so that this equation holds. The probability

that a jump occurs at time t = (n+ 1) ·∆t is [204]

wi = (1− ui ·∆t)n · ui ·∆t =
(

1− ui · t
n+ 1

)n

· ui ·∆t (2.200)

If ∆t→ 0 for constant t then n→ ∞ and a binomial serial expansion [181] leads to

lim
n→∞

(

1− ui · t
n+ 1

)n

= lim
n→∞

n∑

m=0

(−1)m
(
n

m

)

·
(
ui · t
n+ 1

)m

= lim
n→∞

n∑

m=0

(−1)m · n!

m! · (n−m)!
·
(
ui · t
n+ 1

)m

= lim
n→∞

n∑

m=0

(−1)m · n · (n− 1) · . . . · (n−m+ 1)

(n+ 1)m
· (ui · t)

m

m!
=

∞∑

m=0

(−1)m · (ui · t)
m

m!

= e−ui·t (2.201)

and therefore

wi = ui · e−ui·τ ·∆t = f(τ) ·∆t (2.202)

where f(τ) = ui ·exp(−uiτ) is the distribution of the dwell times. Since the hopping

processes of the particles follow a Poisson distribution (binomial distribution for rare

events, as for the radioactive decay) the time interval between two sequent events is

exponentially distributed as seen here. Two probability distributions f(τ) and f(ξ)

are connected via [167]

f(τ)dτ = f(ξ) ·
∣
∣
∣
∣

∂ξ

∂τ

∣
∣
∣
∣
dτ (2.203)

Is ξ is an equally distributed random number, then

ui · e−ui·τdτ = 1 ·
∣
∣
∣
∣

∂ξ

∂τ

∣
∣
∣
∣
dτ ⇒ ξ = e−ui·τ ⇔ τ =

− ln ξ

ui
=

− ln ξ
∑

j νji
(2.204)
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This random dwell time is often used in Monte Carlo simulations. However, the

average dwell time is

〈τi〉 =

∫ ∞

0

τ · ui · e−ui·τdτ =
[
−τ · e−ui·τ

]∞

0
−
∫ ∞

0

−e−ui·τdτ

=

[

−e−ui·τ ·
(

τ +
1

ui

)]∞

0

=
1

ui
=

1
∑

j νji
(2.205)

which is the dwell time used above, eq. (2.195). Both approaches for the dwell time

therefore lead to comparable results.

2.7 The electronic coupling equations

In the following sections equations for the electronic coupling V which appears in

the transfer rates for exciton and charge transport in sec. 2.3 are derived.

2.7.1 Förster and Dexter transfer of excitons

The exciton coupling equations are derived by means of a simple two-level model.

The ground state of the dimer is described by the Slater determinant

|Φ0〉 = |ϕi(~r1)ϕ̄i(~r2)ϕj(~r3)ϕ̄j(~r4)〉 = |ϕiϕ̄iϕjϕ̄j〉 (2.206)

where ϕi and ϕj are the highest occupied molecular orbitals (HOMO) located at the

monomers i and j respectively. This is depicted in fig. 2.9a. Since the nonadiabatic

transport regime is regarded here (see sec. 2.2.3), the excitation is assumed to be

localized at one of the monomers. The diabatic wave function of a singlet excitation
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Figure 2.9: HOMO and LUMO of the monomers i and j. a) Ground state, b) singlet
excitation, c) triplet excitation, d) charge transfer excitation, e) double excitation.
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on monomer i reads

|Φi〉 =
1√
2
· (|ϕiϕ̄

♯
iϕjϕ̄j〉 − |ϕ̄iϕ

♯
iϕjϕ̄j〉) (2.207)

where an electron is excited into the lowest unoccupied molecular orbital (LUMO)

ϕ♯
i, fig. 2.9b. This wave function consists of a linear combination of the two states

with reversed spins on monomer i describing the same excitation. An analogous

equation holds for |Φj〉. The wave functions of the triplet excitations, fig. 2.9c, of

monomer i are

|Φt1
i 〉 =

1√
2
· (|ϕiϕ̄

♯
iϕjϕ̄j〉+ |ϕ̄iϕ

♯
iϕjϕ̄j〉) (2.208)

|Φt2
i 〉 = |ϕiϕ

♯
iϕjϕ̄j〉 (2.209)

|Φt3
i 〉 = |ϕ̄iϕ̄

♯
iϕjϕ̄j〉 (2.210)

However, the spin multiplicity has to change, since the ground state is a singlet state.

This is only possible due to the spin orbit coupling, which, however, does not play

a role for organic metal-free substances. Therefore triplet excitons are neglected.

It is also possible that an electron from monomer i is transferred to the LUMO of

monomer j,

|Φi+j−〉 =
1√
2
· (|ϕiϕ̄

♯
jϕjϕ̄j〉 − |ϕ̄iϕ

♯
jϕjϕ̄j〉) (2.211)

or the other way round, fig. 2.9d. These charge transfer excitations are neclected

here as well. Double excitations, described by

|Φii〉 = |ϕ♯
iϕ̄

♯
iϕjϕ̄j〉 (2.212)

and depicted in fig. 2.9e, are also neglected here since they are usually energetically

much higher than single excitations and therefore not important for the transport.

So only the ground state |Φ0〉, eq. (2.206), and the single singlet excitations |Φi〉,
eq. (2.207), and |Φj〉 are taken into account in the following.

Since the ground state is usually energetically well separated from the excited

states, it decouples from the excited states so that it is possible to regard the isolated

singlet excitations Φi and Φj. The wave function ΨD of the dimer excitation has to

be set up as a linear combination of the diabatic wave functions of the monomer

excitations Φi and Φj, which are energetically close or even degenerated:

ΨD = N · (ci · Φi + cj · Φj) (2.213)
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ci and cj are coefficients and N is the normalisation factor. Putting this Ansatz into

the Schrödinger equation

Ĥ ·ΨD = ED ·ΨD (2.214)

multiplying with Φi from the left and integration with respect to the spatial coor-

dinates results in

〈Φi|Ĥ|N · (ci · Φi + cj · Φj)〉 = ED · 〈Φi|N · (ci · Φi + cj · Φj)〉
⇔ ci · 〈Φi|Ĥ|Φi〉

︸ ︷︷ ︸

=:Hii

+cj · 〈Φi|Ĥ|Φj〉
︸ ︷︷ ︸

=:Hij

= ED · (ci · 〈Φi|Φi〉
︸ ︷︷ ︸

=:Sii

+cj · 〈Φi|Φj〉
︸ ︷︷ ︸

=:Sij

)

⇔ ci ·Hii + cj ·Hij = ED · (ci · Sii + cj · Sij)

⇔ (Hii Hij) ·
(

ci

cj

)

= ED · (Sii Sij) ·
(

ci

cj

)

(2.215)

where ED is the excitation energy of the dimer, Hij = 〈ϕi|Ĥ|ϕj〉 is a matrix element

of the Hamiltonian operator Ĥ and Sij = 〈ϕi|ϕj〉 is the overlap of the wave functions

of the monomers i and j. Since the wave functions are normalised, it is Sii = 1.

Multiplying the Schrödinger equation with Φj instead of Φi and spatial integration

leads analogously to

(Hji Hjj) ·
(

ci

cj

)

= ED · (Sji Sjj) ·
(

ci

cj

)

(2.216)

with Sjj = 1.These two equations can be combined to

(

Hii Hij

Hji Hjj

)

·
(

ci

cj

)

= ED ·
(

1 Sji

Sij 1

)(

ci

cj

)

(2.217)

Since the Hamiltonian and the corresponding matrix are hermitian, it is Hij = Hji.

Hii = Ei and Hjj = Ej are the excitation energies of the monomers i and j. Fur-

thermore is Sji = Sij .

The orbitals which belong to the same monomer are orthogonal to each other,

i. e. 〈ϕi|ϕ♯
i〉 = 〈ϕj|ϕ♯

j〉 = 0. Strictly speaking, this does not hold for orbitals of

different monomers and therefore 〈ϕi|ϕj〉, 〈ϕi|ϕ♯
j〉, 〈ϕ♯

i|ϕj〉 and 〈ϕ♯
i|ϕ♯

j〉 are not zero.
However, in the following it is assumed that all orbitals are approximately orthogonal

and therefore Sij = Sji = 0. In this case the coupling Vji between the monomers i

and j equals the nondiagnoal element of the Hamilton matrix, Hji. With eq. (2.207)
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one gets

Vji := Hji = 〈Φj|Ĥ|Φi〉

=
1

2
· (〈ϕiϕ̄iϕjϕ̄

♯
j| − 〈ϕiϕ̄iϕ̄jϕ

♯
j|)Ĥ(|ϕiϕ̄

♯
iϕjϕ̄j〉 − |ϕ̄iϕ

♯
iϕjϕ̄j〉)

=
1

2
· (〈ϕiϕ̄iϕjϕ̄

♯
j|Ĥ|ϕiϕ̄

♯
iϕjϕ̄j〉 − 〈ϕiϕ̄iϕjϕ̄

♯
j|Ĥ|ϕ̄iϕ

♯
iϕjϕ̄j〉

−〈ϕiϕ̄iϕ̄jϕ
♯
j|Ĥ|ϕiϕ̄

♯
iϕjϕ̄j〉+ 〈ϕiϕ̄iϕ̄jϕ

♯
j|Ĥ|ϕ̄iϕ

♯
iϕjϕ̄j〉)

=
1

2
· (〈ϕiϕ̄iϕjϕ̄

♯
j|Ĥ|ϕiϕ̄

♯
iϕjϕ̄j〉+ 〈ϕiϕ̄iϕjϕ̄

♯
j|Ĥ|ϕ♯

iϕ̄iϕjϕ̄j〉

+〈ϕiϕ̄iϕ̄jϕ
♯
j|Ĥ|ϕiϕ̄

♯
iϕ̄jϕj〉+ 〈ϕiϕ̄iϕ̄jϕ

♯
j|Ĥ|ϕ♯

iϕ̄iϕ̄jϕj〉) (2.218)

In the last step the electrons are permuted within the orbitals. Applying the Slater-

Condon rules [240–242] leads to

Vji =
1

2
· e2

4πε0
·
(〈

ϕ̄iϕ̄
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕ̄♯
iϕ̄j

〉

−
〈

ϕ̄iϕ̄
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕ̄jϕ̄

♯
i

〉

+

〈

ϕiϕ̄
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕ♯
iϕ̄j

〉

−
〈

ϕiϕ̄
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕ̄jϕ

♯
i

〉

+

〈

ϕ̄iϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕ̄♯
iϕj

〉

−
〈

ϕ̄iϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕjϕ̄

♯
i

〉

+

〈

ϕiϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕ♯
iϕj

〉

−
〈

ϕiϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕjϕ

♯
i

〉)

(2.219)

e is the elementary charge and ε0 is the dielectric constant. Integration over the

spin results in

Vji =
1

2
· e2

4πε0
·
(〈

ϕiϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕ♯
iϕj

〉

−
〈

ϕiϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕjϕ

♯
i

〉

+

〈

ϕiϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕ♯
iϕj

〉

− 0

+

〈

ϕiϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕ♯
iϕj

〉

− 0 +

〈

ϕiϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕ♯
iϕj

〉

−
〈

ϕiϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕjϕ

♯
i

〉)

= 2 · e2

4πε0
·
〈

ϕiϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕ♯
iϕj

〉

− e2

4πε0
·
〈

ϕiϕ
♯
j

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
ϕjϕ

♯
i

〉

= 2 · e2

4πε0
·
∫∫

d~r1d~r2 ϕ
∗
i (~r1)ϕ

♯
i(~r1) ·

1

r12
· ϕ♯∗

j (~r2)ϕj(~r2)

− e2

4πε0
·
∫∫

d~r1d~r2 ϕ
∗
i (~r1)ϕj(~r1) ·

1

r12
· ϕ♯∗

j (~r2)ϕ
♯
i(~r2) (2.220)

The first summand

V F
ji := 2 · e2

4πε0
·
∫∫

d~r1d~r2

x

ϕ∗
i (~r1)ϕ

♯
i(~r1) ·

1

r12
·

x

ϕ♯∗
j (~r2)ϕj(~r2) (2.221)

= 2 · e2

4πε0
·
∫∫

d~r1d~r2 ̺i(~r1) ·
1

r12
· ̺j(~r2) (2.222)
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Figure 2.10: a) HOMO orbital ϕ of ethene, b) LUMO orbital ϕ♯, c) transition den-
sity ̺, cf. eq. (2.223).

describes the Förster transfer [243, 244], where

̺i(~r1) := ϕ∗
i (~r1) · ϕ♯

i(~r1) and ̺j(~r2) := ϕ♯∗
j (~r2) · ϕj(~r2) (2.223)

are the transition densities at the monomers i and j [245]. The arrows in eq. (2.221)

indicate the transition of monomer i into the ground state and monomer j into the

excited state. As an example fig. 2.10 shows the HOMO and LUMO orbitals of

ethene and the transition density resulting as a product of these two orbitals. The

Förster transfer can be interpreted as a coulombic interaction between the charge

distributions e̺i and e̺j. The mechanism is depicted in fig. 2.11a and indicated by

the arrows in eq. (2.221): While monomer j changes to the excited state, monomer

i changes to the ground state due to the interaction of the transition densities.

The second summand

V D
ji := − e2

4πε0
·
∫∫

d~r1d~r2
x

ϕ∗
i (~r1)ϕj(~r1) ·

1

r12
·

x

ϕ♯∗
j (~r2)ϕ

♯
i(~r2) (2.224)

describes the Dexter transfer [246], see fig. 2.11b. The arrows indicate the change of

the electrons: While an electron moves from the LUMO of monomer i to the LUMO

of monomer j, another electron moves from the HOMO of monomer j to the HOMO

a)

b)

Figure 2.11: a) Förster transfer, b) Dexter transfer for singlet (left) and triplet (right)
excitation.
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of monomer i. In contrast to the Förster transfer, this mechanism is also possible

for the transfer of triplet excitons.

For Dexter transfer the wave functions of the donor i and the acceptor j must

overlap. However, if the monomer distance becomes large, their differential overlaps

ϕ∗
i (~r1)·ϕj(~r1) and ϕ

♯∗
j (~r2) · ϕ♯

i(~r2) approach zero. In contrast to that, Förster transfer

is also possible for larger distances because ̺i(~r1) and ̺j(~r2) do not depend on the

distance. Therefore the Dexter transfer can often be neglected for sufficiently large

distances. However, it is important for the transfer of triplet excitations and of

dipole forbidden excitations since there V F
ji = 0.

2.7.2 The dipole approximation for exciton coupling

For sufficiently large distances the Dexter transfer can be neglected as explained

in sec. 2.7.1. Therefore it is Vji = V F
ji , see eq. (2.222). Figure 2.12 shows the two

monomers and electrons and the vectors which are used to describe their position.

With the vectors defined there ~r1 and ~r2 in eq. (2.222) can be written as

~r1 = ~Ri + ~ri1 and ~r2 = ~Rj + ~rj2 (2.225)

The distance vector between the electron positions which appears in the operator in

eq. (2.222) is therefore

~r12 = ~r2 − ~r1 = (~Rj + ~rj2)− (~Ri + ~ri1) = (~Rj − ~Ri)
︸ ︷︷ ︸

=:~R

+(~rj2 − ~ri1)
︸ ︷︷ ︸

=:~r

= ~R + ~r (2.226)

With these vectors eq. (2.222) writes

Vji = 2 · e2

4πε0
·
∫∫

d~ri1d~rj2 ϕ
∗
i (~Ri + ~ri1)ϕ

♯
i(
~Ri + ~ri1)

1

|~R + ~r|
ϕ♯∗
j (
~Rj + ~rj2)ϕj(~Rj + ~rj2)

(2.227)

R

ri1 rj2

r12

i j

1 2

Figure 2.12: The monomers i and j and electrons 1 and 2 with the vectors indicating
their relative position.
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A Taylor expansion up to second order leads to

1

|~R + ~r|
=

∞∑

n=0

1

n!
· (~r · ∇~r)

n 1

|~R + ~r|

∣
∣
∣
∣
∣
~r=0

~r12=~R+~r
=

∞∑

n=0

1

n!
· (~r · ∇~r12)

n 1

|~r12|

∣
∣
∣
∣
~r12=~R

=
∞∑

n=0

1

n!
· (~r · ∇~R)

n 1

|~R|

≈ 1

|~R|
+ ~r · ∇~R

1

|~R|
+

1

2
· (~r · ∇~R)

2 1

|~R|
(2.228)

The second summand is

~r · ∇~R

1

|~R|
= ~r ·






∂/∂Rx

∂/∂Ry

∂/∂Rz






1
√
R2

x +R2
y +R2

z

= ~r · −2

2 · (R2
x +R2

y +R2
z)

3
2

·






Rx

Ry

Rz






= −~r ·
~R

|~R|3
(2.229)

The expression in the third summand becomes

(~r · ∇~R)
2 1

|~R|
=

(

rx ·
∂

∂Rx

+ ry ·
∂

∂Ry

+ rz ·
∂

∂Rz

)2
1

|~R|

=
∑

a,b=x,y,z

ra · rb ·
∂

∂Ra

∂

∂Rb

1

|~R|
=

∑

a,b=x,y,z

ra · rb ·
∂

∂Ra

−Rb

|~R|3

= −
∑

a,b=x,y,z

ra · rb ·
(

−3 ·Ra ·Rb

|~R|5
+

1

|~R|3
· δab

)

=
3 · (~r · ~R)2

|~R|5
− ~r 2

|~R|3
(2.230)

Combining eqs. (2.228), (2.229) and (2.230) one gets

1

|~R + ~r|
≈ 1

|~R|
− ~r · ~R

|~R|3
+

3 · (~r · ~R)2

2 · |~R|5
− ~r 2

2 · |~R|3

=
1

|~R|
− (~rj2 − ~ri1) · ~R

|~R|3
+

3 · ([~rj2 − ~ri1] · ~R)2

2 · |~R|5
− (~rj2 − ~ri1)

2

2 · |~R|3

=
1

|~R|
− (~rj2 − ~ri1) · ~R

|~R|3
+

3 · [(~rj2 · ~R)2 − 2 · (~rj2 · ~R) · (~ri1 · ~R) + (~ri1 · ~R)2]
2 · |~R|5

−
~r 2
j2 − 2 · ~rj2 · ~ri1 + ~r 2

i1

2 · |~R|3
(2.231)
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This has to be inserted into eq. (2.227). The integrals over expressions which do not

contain both ~ri1 and ~rj2 vanish because

∫∫

d~ri1 d~rj2 ϕ
∗
i (~Ri + ~ri1) · ϕ♯

i(
~Ri + ~ri1) · ~ri1 · ϕ♯∗

j (
~Rj + ~rj2) · ϕj(~Rj + ~rj2)

=

∫

d~ri1 ϕ
∗
i (
~Ri + ~ri1) · ~ri1 · ϕ♯

i(
~Ri + ~ri1) ·

∫

d~rj2 ϕ
♯∗
j (
~Rj + ~rj2) · ϕj(~Rj + ~rj2)

︸ ︷︷ ︸

=0 since ϕ♯∗
j ⊥ϕj

= 0 (2.232)

The shifts ~Ri and ~Rj of the orbitals do not change the integral:

∫

d~ri1 ϕ
∗
i (~Ri + ~ri1) · ~ri1 · ϕ♯

i(
~Ri + ~ri1) =

∫

d~r1 ϕ
∗
i (~r1) · (~r1 − ~Ri) · ϕ♯

i(~r1)

=

∫

d~r1 ϕ
∗
i (~r1) · ~r1 · ϕ♯

i(~r1)− ~Ri ·
∫

d~r1 ϕ
∗
i (~r1) · ϕ♯

i(~r1)
︸ ︷︷ ︸

=0

=

∫

d~r1 ϕ
∗
i (~r1) · ~r1 · ϕ♯

i(~r1) (2.233)

Therefore the coupling can be written as:

Vji = 2 · e2

4πε0
·
∫∫

d~r1d~r2 ϕ
∗
i (~r1)ϕ

♯
i(~r1)

[

~r1 · ~r2
|~R|3

− 3 · (~r1 · ~R) · (~r2 · ~R)
|~R|5

]

ϕ♯∗
j (~r2)ϕj(~r2)

(2.234)

By defining the transition dipole moment [247]

~pi := e · 〈Φi|~r1|Φ0〉 =
e√
2
· (〈ϕiϕ̄

♯
iϕjϕ̄j| − 〈ϕ̄iϕ

♯
iϕjϕ̄j|)~r1|ϕiϕ̄iϕjϕ̄j〉

=
e√
2
· (〈ϕiϕ̄

♯
iϕjϕ̄j|+ 〈ϕ♯

iϕ̄iϕjϕ̄j|)~r1|ϕiϕ̄iϕjϕ̄j〉 =
e√
2
· (〈ϕ̄♯

i|~r|ϕ̄i〉+ 〈ϕ♯
i|~r|ϕi〉)

=
√
2 · e · 〈ϕ♯

i|~r|ϕi〉 (2.235)

the exciton coupling finally results in [248]

Vji =
1

4πε0
·
(

~pi · ~pj
|~R|3

− 3 · (~pi · ~R) · (~pj · ~R)
|~R|5

)

(2.236)

This corresponds to the energy of two interacting dipoles. As mentioned above, the

Dexter transfer, eq. (2.224), is neglected here which is not justified for short distances

as explained in sec. 2.7.1. In addition the actual distribution of the charge in the

molecule is not taken into account in detail since the Taylor expansion, eq. (2.228),

is only up to second order. Therefore the dipole approximation should only be used

for distances which are large compared to the molecule size.
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2.7.3 The supermolecular approach for exciton coupling

For the preceding derivations of the exciton coupling, sec. 2.7.1 and 2.7.2, the or-

bitals and wave functions are chosen in such a way that they represent the diabatic

picture (cf. sec. 2.2.2 and 2.2.3) where the exciton is localized at one molecule. The

wave functions and molecular properties such as the transition density, eq. (2.223),

for the Förster coupling, eq. (2.222), and the transition dipole moment, eq. (2.235),

for the dipole coupling, eq. (2.236), can be obtained without the presence of the

other molecule. This significantly reduces the computational effort of the coupling

calculation, though it necessitates additional approximations. The donor and ac-

ceptor orbitals are not orthogonal, however, their overlap, cf. eq. (2.217), is simply

neglected. This can be avoided by an adiabatic computation of the complete donor-

acceptor unit where the orbitals are delocalized over the whole dimer. Yet it must

be noted that despite the adiabatic computational approach the physical picture

behind is still diabatic.

The Schrödinger matrix equation is set up as shown in sec. 2.7.1 leading to

eq. (2.217)

(

Ei Vji

Vji Ej

)

·
(

ci

cj

)

= ED ·
(

1 0

0 1

)(

ci

cj

)

(2.237)

⇔
(

Ei − ED Vji

Vji Ej − ED

)

·
(

ci

cj

)

= 0 (2.238)

where Ei = Hii and Ej = Hjj are the monomer excitation energies and Vji =

Hji = Hij is the exciton coupling. Since the whole dimer is treated with the same

basis, the monomer excitations Φi and Φj, eq. (2.207), are orthogonal and therefore

Sji = Sij = 0.

In order to have nontrivial solutions for this equation, the determinant of the

matrix must be 0:

∣
∣
∣
∣
∣

Ei − ED Vji

Vji Ej − ED

∣
∣
∣
∣
∣
= (Ei − ED) · (Ej − ED)− V 2

ji
!
= 0 (2.239)

If the monomer excitation energies are the same, Ei = Ej, this leads to

(Ei − ED)
2 − V 2

ji = 0 ⇔ Ei − ED = ±Vji ⇔ ED = Ei ∓ Vji

⇒ ED2 − ED1 = (Ei + Vji)− (Ei − Vji) = 2 · Vji
⇔ Vji =

ED2 − ED1

2
(2.240)
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2V ji

ED2

ED1

Ei=E(i*,j) Ej=E(i,j*)

E

Figure 2.13: The Davydov splitting between the first two excited states of the dimer
with the energies ED1 and ED2. The splitting is twice the exciton coupling Vji. Ei

and Ej are the monomer excitation energies.

Because of the interaction of the two degenerated monomer excitations Φi and Φj the

resulting dimer excitations are split by a value of 2Vji. This is the so-called Davydov

splitting [249], fig. 2.13, and corresponds to the energetic distance of the adiabatic

PES at the avoided crossing point (cf. sec. 2.2.2). At this point the excitation is

equally delocalized over both monomers if the dimer is symmetric. Strictly speaking,

the dimer geometry at this transition point has to be taken for the calculation of

the coupling. As a simplification normally the geometry of the ground state dimer

is used instead.

2.7.4 Energy splitting in dimer method for charge transport

The energy splitting in dimer method [79, 250] for calculating the couplings for

charge transport is very similar to the supermolecular approach for exciton coupling,

see sec. 2.7.3. The charge is supposed to be localized at one monomer in the dimer.

This is described by the diabatic wave functions Φi = Φ(i♯, j) and Φj = Φ(i, j♯)

where the ♯ indicates the monomer carrying the excess charge. This can be either

an electron or a hole. Instead of calculating the ionization energies, the Koopmans’

theorem [251, 252] can be applied which states that the ionisation energy of the

HOMO equals the negative orbital energy. It is also approvable to approximate the

electron affinity by the negative LUMO energy [250]. The splittings of the adiabatic

energies for the corresponding ionized systems can therefore be approximated by

the splittings of the HOMO and LUMO respectively. Generally the calculations are

based on the geometry of the neutral system instead of the geometry at the transition

structure. However, the coupling does not depend strongly on the geometry [250].

As depicted in fig. 2.14, the interaction between the HOMOs and the LUMOs of

two monomers leads to an energetical splitting up in the dimer. The linear combi-

nation of the monomer HOMOs leads to the HOMO and HOMO-1 orbitals in the

dimer, the linear combination of the monomer LUMOs results in the dimer LUMO

and LUMO+1. In the following the HOMOs are regarded which are important for
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E dimermonomer i monomer j

Figure 2.14: The interaction of the monomer HOMOs and LUMOs leads to an ener-
getical splitting up of the orbitals in the dimer.

hole transport. In the case of electron transport, the LUMOs have to be treated in

the same way.

The dimer HOMO and HOMO-1 orbitals ΨD can be written as a linear combi-

nation of the two monomer HOMOs ϕi and ϕj:

ψD = N · (ci · ϕi + cj · ϕj) (2.241)

ci and cj are coefficients and N is the normalisation factor. This approach is

completely the same as in eq. (2.213), however, here molecular orbitals are com-

bined instead of excitation wave functions. Plugging this into the Schrödinger equa-

tion (2.214) and doing similar calculations as explained in sec. 2.7.1 for the exciton

coupling leads to, cf. eq. (2.237):

(

Hii Hij

Hji Hj

)

·
(

ci

cj

)

= ED ·
(

1 0

0 1

)(

ci

cj

)

(2.242)

The off-diagonal element Vji := Hji = Hij = 〈ϕj|Ĥ|ϕi〉 is the coupling between the

initial state, where the hole is located at the HOMO of monomer i, and the final

state, when the hole has moved to the HOMO of monomer j. Provided that the

monomer orbital energies Ei = Hii = 〈ϕi|Ĥ|ϕi〉 and Ej = Hjj = 〈ϕj|Ĥ|ϕj〉 are the

same, the calculation of the coupling for holes ends in (see sec. 2.7.3)

Vji =
1

2
· (ED,HOMO − ED,HOMO−1) (2.243)

A similar calculation for electrons leads to

Vji =
1

2
· (ED,LUMO+1 − ED,LUMO) (2.244)

As mentioned above these equations only hold if the monomer HOMO and
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LUMO energies respectively are the same, Ei = Ej. This is only the case if the

dimer is symmetric, i. e. if one monomer is shifted in a parallel manner relative to

the other (and if it is rotated only around the axis perpendicular to the molecu-

lar plane if the monomer is planar). However, this is not the case for many of the

monomer pairs in crystals, which are regarded in this work. It was shown before [253]

that for monomers which are tilted with respect to each other the couplings deviate

singificantly from the ones calculated with equations (2.243) and (2.244). Therefore,

these equations cannot even be used as an approximation if the charge transport

in crystals is studied. For this reason the energy splitting in dimer approach is not

used in this work.

2.7.5 Generalized electronic coupling for charge transport

In a crystal, where many of the monomers are tilted with respect to each other, the

monomer site energies Hii and Hjj are not the same. Assuming basis sets localized

at the monomers, the orbitals ϕi and ϕj in eq. (2.241) are not orthogonal and the

overlap S is not zero. Therefore eq. (2.242) changes to [253, 254]

(

Hii Hij

Hji Hjj

)

·
(

ci

cj

)

= ED ·
(

1 S

S 1

)(

ci

cj

)

⇔ H·~c = ED ·S·~c (2.245)

This equation must first be orthogonalized [79], i. e. a transformation matrix X must

be found so that

X+ · S ·X =

(

1 0

0 1

)

(2.246)

The transformation between the vector ~c in the old basis and the vector ~c ′ in the

new orthogonal basis is

~c = X · ~c ′ (2.247)

Putting this into eq. (2.245) and using eq. (2.246) leads to

H ·X · ~c ′ = ED · S ·X · ~c ′ ⇒ X+ ·H ·X · ~c ′ = ED ·X+ · S ·X · ~c ′

⇒ H′ · ~c ′ = ED · ~c ′ with H′ = X+ ·H ·X (2.248)

One possible orthogonalization procedure is the so-called symmetric orthogonaliza-

tion which is also called Löwdin orthogonalization [242, 255]. Here the inverse square

root of S is used for X:

X = S−1/2 = U · s−1/2 ·U+ (2.249)
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U is a unitary matrix which transforms the overlap matrix S into its diagonal form s,

i. e. s = U+SU. This is necessary to calculate the square root of S. U consists of

the eigenvectors of S. Its eigenvalues λ, which are the diagonal elements of s, are

calculated via the secular equation

∣
∣
∣
∣
∣

1− λ S

S 1− λ

∣
∣
∣
∣
∣
= (1− λ)2 − S2 !

= 0 ⇔ 1− λ = ±S

⇔ λ = 1 + S ∨ λ = 1− S (2.250)

The eigenvector to λ = 1 + S follows from

(

1− (1 + S) S

S 1− (1 + S)

)(

U11

U21

)

!
= 0 ⇔

{

U11 = U21

U11 = U21

⇒
(

U11

U21

)

=
1√
2

(

1

1

)

(2.251)

An analogue calculation for the eigenvalue λ = 1 − S leads to the eigenvector

(U12, U22) = 1/
√
2 · (1,−1). Inserting this all into eq. (2.249) leads to

X =
1√
2

(

1 1

1 −1

)

·
(

(1 + S)−1/2 0

0 (1− S)−1/2

)

· 1√
2
·
(

1 1

1 −1

)

=
1

2
·
(

l11 + l22 l11 − l22

l11 − l22 l11 + l22

)

with
l11 := 1/

√
1 + S

l22 := 1/
√
1− S

(2.252)

The coupling is finally the nondiagonal element of the Hamilton matrix in the or-

thogonalized basis, cf. eq. (2.248) [254]:

Vji = H ′
ji =

(

X11 X21

)

·
(

Hii Hji

Hji Hjj

)

·
(

X12

X22

)

= X11 · (Hii ·X12 +Hji ·X22) +X21 · (Hji ·X12 +Hjj ·X22)

=
1

4
· [Hii · (l11 + l22) · (l11 − l22) +Hji · (l11 + l22)

2 +Hji · (l11 − l22)
2

+Hjj · (l11 − l22) · (l11 + l22)]

=
1

4
· [(Hii +Hjj) · (l211 − l222) + 2 ·Hji · (l211 + l222)]

=
1

4
·
[

(Hii +Hjj) ·
(

1

1 + S
− 1

1− S

)

+ 2 ·Hji ·
(

1

1 + S
+

1

1− S

)]

=
1

4
·
[

(Hii +Hjj) ·
(1− S)− (1 + S)

(1 + S) · (1− S)
+ 2 ·Hji ·

(1− S) + (1 + S)

(1 + S) · (1− S)

]

=
1

4
·
[

(Hii +Hjj) ·
−2 · S
1− S2

+ 2 ·Hji ·
2

1− S2

]

=
Hji − 1

2
· (Hii +Hjj) · S
1− S2

(2.253)
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2.8 Quantum chemical methods

In the following the quantum chemical methods are explained which were used to

conduct the calculations of the electronic couplings as explained in sec. 2.7, and the

calculation of the vibrational spectra and the reorganization energies, respectively,

needed for the transfer equations, sec. 2.3. The underlying problem is to solve the

electronic Schrödinger equation (2.3). If the energy of a molecule can be calculated,

it is possible to derive further important properties. For example, the molecular

equilibrium geometry is determined by the minimum of the potential energy sur-

face, and the force constants and vibrational frequencies can be calculated from its

gradients.

2.8.1 The Hartree-Fock method

The electronic Hamiltonian for a system consisting of N electrons and K nuclei is,

cf. eq. (2.3):

Ĥel = T̂ (~r)+V (~R,~r) =
N∑

i=1

(

− ~
2

2m
·∆i −

e2

4πε0
·

K∑

a=1

Za

|~Ra − ~ri|

)

+
1

2
· e

2

4πε0

∑

i 6=j

1

|~ri − ~rj|
(2.254)

where ~R indicates the nuclear and ~r the electron positions, m is the electron mass,

e the elementary charge, Z the atomic coordination number and ε0 the permittivity

of vacuum. Since electrons are fermions, the wave function must be antisymmetric

with respect to a permuation of the electrons and therefore

Φ0 =
1√
N !

·
∑

P

(−1)p · P [ϕ1(~r1) · ϕ2(~r2) · . . . ϕN(~rN)] (2.255)

P is the permutation operator and the summation is over all possible permutations

of the electrons. p is the number of transpositions P consists of. The Hartree-

Fock equations [256–260] are derived by means of the variational method, where

the expectation value of the electronic Hamiltonian, 〈Ĥel〉, is minimized by varying

the wave function Φ. It can be shown that the result is an upper bound for the

real energy. Since the electron wave functions ϕi and their respective conjugated

complex wave functions ϕ∗
i are treated as independent variables (this is equivalent

to treating the real and imaginary part independently), their orthonormality must
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be included as a boundary condition by means of Lagrange multipliers λi:

δ

[

〈Ĥel〉 −
N∑

i=1

λi ·
(∫

d3r ϕ∗
i (~r) · ϕi(~r)− 1

)]

!
= 0 (2.256)

The variational calculation leads to the Hartree-Fock equations [261]

[

− ~
2

2m
·∆− e2

4πε0
·

K∑

a=1

Za

|~Ra − ~r1|
+

e2

4πε0
·
∑

j

∫

d3r2
1

|~r1 − ~r2|
·

(

|ϕj(~r2)|2 − ϕ∗
j(~r2) · ϕi(~r2) ·

ϕj(~r1)

ϕi(~r1)
· δms,1,ms,2

)]

ϕi(~r1)

= λi · ϕ(~r1) (2.257)

The expression in squared brackets is the Fock operator fi of the electron i [258].

Equation (2.257) has the form of an eigenvalue equation where the Lagrange mul-

tiplier λi corresponds to the eigenvalue and the optimized ϕi corresponds to the

eigenvector. Since the Fock operator contains the one-electron wave functions ϕ,

they have to be already known for solving this equation. Therefore initial wave func-

tions are needed which can e. g. be determined by neglecting the interaction term

in eq. (2.254). The wave functions are optimized iteratively until self-consistency is

obtained. Therefore this approach is also known as self-consistent field method.

The Hartree-Fock equations are one-particle equations for the respective elec-

tron i which moves in the average potential of all other electrons which are indepen-

dent from each other, i. e. the correlation between the electrons is neglected (except

the Pauli repulsion between electrons with the same spin). The Coulomb operator

Ĵj =
e2

4πε0
·
∫

d3r2 ϕ
∗
j(~r2) ·

1

|~r1 − ~r2|
· ϕj(~r2) (2.258)

accounts for the coulombic repulsion between the electrons. The exchange part

K̂j =
e2

4πε0
·
∫

d3r2 ϕ
∗
j(~r2) ·

1

|~r1 − ~r2|
· ϕi(~r2) ·

ϕj(~r1)

ϕi(~r1)
· δms,1,ms,2 (2.259)

stems from the antisymmetrization of the wave function and is a pure quantum

mechanical effect. It only acts on electrons with the same spin. This term is nonlocal

because of the factor ϕi(~r2). λi corresponds to the one-electron orbital energy.

As already mentioned the calculated energy obtained with approaches based on

variational calculus is always larger than the true value. The Hartree-Fock energy

constitutes more than 99% of the total energy [262]. However, the missing corre-
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lational energy is often bigger than typical binding energies and therefore better

quantum chemical methods have to be used. The bond distances in molecules de-

termined with Hartree-Fock are too small compared to the experiment and, as a

consequence, the vibrational frequencies are overestimated [263, 264]. This is usu-

ally compensated by empirical scaling factors for the frequencies. Hartree-Fock fails

completely if the dispersion interaction [265] becomes important, since this is missing

in this approach.

The scaling of a method specifies how the numerical effort increases with the sys-

tem size. The Hartree-Fock method basically scales as N4, where N is the number of

basis functions, since N4 two-electron integrals have to be evaluated. By introducing

numerical simplifications the scaling behaviour can be improved to about N2.5. The

Hartree-Fock approach is hardly used anymore, since the density functional theory

(sec. 2.8.5) has a similar scaling but contains the electron correlation and therefore

leads to better results. However, this approach is used as a starting point for the

so-called post-Hartree-Fock calculations, which do take the electron correlation into

account, as for example the configuration interaction (sec. 2.8.2) and the coupled

cluster approach (sec. 2.8.4).

2.8.2 Configuration interaction

The configuration interaction (CI) [267] procedure takes the electron correlation

into account by including the interaction between different electronic configura-

tions. This is explained taking the water molecule H2 as example [266]. Its possible

configurations (in the minimal basis) are 1σ2
g, 1σg1σu and 1σ2

u. This is depicted in

fig. 2.15. The wave functions describing these states are

Φ1(1, 2;
1Σg) = σg(1) · σg(2) · [α(1) · β(2)− β(1) · α(2)] (2.260)

Φ2(1, 2;
1Σu) =

1√
2
· [σg(1) · σu(2) + σu(1) · σg(2)] · [α(1) · β(2)− β(1) · α(2)]

Φ3(1, 2;
1Σg) = σu(1) · σu(2) · [α(1) · β(2)− β(1) · α(2)]

Φ4(1, 2;
3Σu) =

1√
2
· [σg(1) · σu(2)− σu(1) · σg(2)] · [α(1) · β(2) + β(1) · α(2)]

+

b) c)a)

Figure 2.15: The possible electronic configurations of the H2 molecule. a) 1σ2
g, de-

scribed by the wave function Φ1, b) 1σg1σu, represented by the wave functions Φ2(+)
and Φ4(−), c) 1σ2

u, wave function Φ3.
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Figure 2.16: The energy of the four states, eqs. (2.260), depending on the internuclear
distance [266]. For the dotted lines the interaction is neglected.

In contrast to the Hartree-Fock aproach, where only Φ1 is considered, here a linear

combination of all these states is used:

Φ = c1 · Φ1 + c2 · Φ2 + c3 · Φ3 + c4 · Φ4 (2.261)

The potential energies of these four individual states are plotted in fig. 2.16, depend-

ing on the internuclear distance R. Φ1 and Φ3 both have 1Σg symmetry and converge

to the same value for R → ∞. However, as explained in sec. 2.2.2, states of the

same symmetry never cross because the diabatic potential matrix, eq. (2.16), always

has non-zero off-diagonal elements, leading to a splitting as in eq. (2.17). Because of

the configuration interaction the energy of the ground state Φ1 is further lowered by

the interaction with Φ3. Since the calculated energy is always an upper bound for

the real energy when using a variational approach, the CI result is an improved de-

scription for the ground state. The wave function Φ has here more flexibility as the

single Slater determinant used in the Hartree-Fock approach, eq. (2.255), because

of the coefficients c1 and c3, which are also optimized.

Generalized for an arbitrary molecule, the CI wavefunction is

ΦCI = c0 ·Φ0 +
occ∑

i

vir∑

a

cai ·Φa
i +

occ∑

i<j

vir∑

a<b

cabij ·Φab
ij +

occ∑

i<j<k

vir∑

a<b<c

cabcijk ·Φabc
ijk + . . . (2.262)

where Φ0 is the Hartree-Fock wave function, Φa
i is a singly excited determinant where

an electron is excited from orbital i to the virtual orbital a, and so on. The energy

associated with this wavefunction is the exact non-relativistic ground state energy

and the difference to the energy of the Hartree-Fock limit (i. e. infinite basis set)

is the correlation energy. In a full CI calculation, all determinants of appropriate

symmetry are included (using a finite basis set).
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However, in most cases it is not possible to include all excitations in eq. (2.262)

since there are
(
2n
N

)
possible determinants for a system consisting of 2n orbitals and

N electrons. Therefore it is necessary to truncate the wave function (limited CI ).

Usually only those determinants are taken into account which differ from Φ0 by no

more than a certain number of excitations. Since the two-electron operator r−1
12 can-

not affect more than two electrons, the matrix elements of the Hamilton operator

between Φ0 and more than doubly excited determinants are zero (cf. the Slater-

Condon rules [240–242]). Furthermore, the matrix elements between Φ0 and the

singly excited determinants Φa
j vanish because of Brillouin’s theorem [242]. How-

ever, the Φa
j interact with the doubly excited determinants which themselves mix

with Φ0 and therefore they do have a small but non-zero effect. Additionally, single

excitations affect the electronic charge distribution and therefore properties as for

example the dipole moment. For these reasons often only the single and double exci-

tations (CISD, scaling N6), or even only the double excitations (CID) are included.

As already explained, including only single excitation determinants (CIS, scaling

N4) does not improve the ground state, however, it is useful as an approximation

for excited states. The only CI method that is generally applicable for a large variety

of systems is CISD, which recovers 80 to 90% of the correlation energy [268].

A serious drawback of the CI method is the lack of size-consistency for limited

CI. The energy of two molecules with infinite distance should be the same as the

sum of the two separately calculated molecular energies. If, e. g. a CISD calculation

is performed on two helium atoms separately, this is a full CI. However, a double

excitation of both atoms corresponds to a quadruple excitation of the He + He

dimer with infinite nuclear distance, which is not included in a CISD calculation of

the whole dimer. Since a CISD calculation is not a full CI for the whole system,

this results in a different wave function and a different energy than the separate

calculation of the helium atoms.

Simple CI approaches are rarely used since density functional theory (sec. 2.8.5)

and coupled cluster approaches (sec. 2.8.4) are more efficient. CI approaches are

commonly used as multi-reference CI (MRCI), which start from several reference

configurations. The coefficients of the basis functions which build the orbitals are

not improved anymore once the HF-SCF calculation has been completed. In contrast

to that, the spin orbitals and the CI coefficients are optimized simultaneously when

using multi-configuration self-consistent field (MCSCF) [269]. This can be quite

accurate for open-shell systems as radicals or excited states. In a CASSCF (complete

active space self consistent field) calculation a full CI is performed taking only a

subsystem of all orbitals (the active space) into account.
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2.8.3 Møller-Plesset perturbation theory

Perturbation theory [261, 270, 271] is an alternative systematic approach for calcu-

lating the correlation energy. The Hamiltonian Ĥ is split into a part whose eigen-

values and eigenvectors are known, Ĥ(0), and a perturbational part, Ĥ(1), which is

assumed to be small:

Ĥ = Ĥ(0) + λ · Ĥ(1) (2.263)

λ is a perturbation parameter. The eigenvectors and the eigenvalues are developed

as

Φi = Φ
(0)
i + λ · Φ(1)

i + λ2 · Φ(2)
i + . . . (2.264)

Ei = E
(0)
i + λ · E(1)

i + λ2 · E(2)
i + . . . (2.265)

Inserting these into the electronic Schrödinger equation (2.3) leads to

(Ĥ(0)+λ·Ĥ(1))(Φ
(0)
i +λ·Φ(1)

i +. . .) = (E
(0)
i +λ·E(1)

i +. . .)(Φ
(0)
i +λ·Φ(1)

i +. . .) (2.266)

This can be sorted according to the order of the perturbation parameter:

λ0 : Ĥ(0) · Φ(0)
i = E

(0)
i · Φ(0)

i (2.267)

λ1 : Ĥ(0) · Φ(1)
i + Ĥ(1) · Φ(0)

i = E
(0)
i · Φ(1)

i + E
(1)
i · Φ(0)

i (2.268)

λn : Ĥ(0) · Φ(n)
i + Ĥ(1) · Φ(n−1)

i =
n∑

k=0

E
(k)
i · Φ(n−k)

i (2.269)

The perturbed wave function is chosen to be intermediately normalized so that the

overlap with the unperturbed wave function is 1 and all correction terms are orthog-

onal to Φ
(0)
i . Multiplication of eq. (2.269) from the left with Φ

∗(0)
i and integration

over the spatial coordinates leads to

〈Φ(0)
i |Ĥ(0)|Φ(n)

i 〉
︸ ︷︷ ︸

=〈Φ
(n)
i |Ĥ(0)|Φ

(0)
i 〉=E

(0)
i 〈Φ

(n)
i |Φ

(0)
i 〉=0

+〈Φ(0)
i |Ĥ(1)|Φ(n−1)

i 〉 =
n∑

k=0

E
(k)
i · 〈Φ(0)

i |Φ(n−k)
i 〉

︸ ︷︷ ︸

=δn,k

⇔ E
(n)
i = 〈Φ(0)

i |Ĥ(1)|Φ(n−1)
i 〉 (2.270)

The first order correction to the wave function can be written as

Φ
(1)
i =

∑

j 6=i

cji · Φ(0)
j (2.271)
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where Φ
(0)
j are solutions of the unperturbed Schrödinger equation (i. e., Slater deter-

minants of excited states) which form a complete set and which are known. Equa-

tion (2.268) can be transformed to

(Ĥ(0) − E
(0)
i ) · Φ(1)

i = −(Ĥ(1) − E
(1)
i ) · Φ(0)

i

⇒
∑

j 6=i

cji · 〈Φ(0)
k |Ĥ(0) − E

(0)
i |Φ(0)

j 〉 = −〈Φ(0)
k |Ĥ(1) − E

(1)
i |Φ(0)

i 〉

⇔ (E
(0)
k − E

(0)
i ) · cki = −〈Φ(0)

k |Ĥ(1)|Φ(0)
i 〉

⇔ cki = −〈Φ(0)
k |Ĥ(1)|Φ(0)

i 〉
E

(0)
k − E

(0)
i

⇒ Φ
(1)
i = −

∑

j 6=i

〈Φ(0)
j |Ĥ(1)|Φ(0)

i 〉
E

(0)
j − E

(0)
i

· Φ(0)
j (2.272)

With eq. (2.270) the second order energy correction is

E
(2)
i = 〈Φ(0)

i |Ĥ(1)|Φ(1)
i 〉 = −

∑

j 6=i

〈Φ(0)
j |Ĥ(1)|Φ(0)

i 〉 · 〈Φ(0)
i |Ĥ(1)|Φ(0)

j 〉
E

(0)
j − E

(0)
i

(2.273)

In the Møller-Plesset perturbation theory (MPPT) [272], the zero-order Hamil-

tonian Ĥ(0) is the sum of the one-electron Fock operators f̂i, cf. eq. (2.257):

Ĥ(0) =
N∑

i=1

f̂i (2.274)

where N is the number of electrons. Its eigenvalue E
(0)
0 is the sum of all orbital

energies which is worse than the Hartree-Fock energy EHF, since the Coulomb and

exchange interaction energy is counted twice. The first-order perturbation Ĥ(1) is

Ĥ(1) = Ĥ − Ĥ(0) (2.275)

and its eigenvalue is

E
(1)
0 = 〈Φ0|Ĥ(1)|Φ0〉 = 〈Φ0|Ĥ − Ĥ(0)|Φ0〉 = 〈Φ0|Ĥ|Φ0〉 − 〈Φ0|Ĥ(0)|Φ0〉 = EHF − E

(0)
0

(2.276)

Φ0 is the ground state Hartree-Fock wave function, eq. (2.255). This demon-

strates that first-order perturbation theory recovers the Hartree-Fock energy, be-

cause EHF = E
(0)
0 + E

(1)
0 . To achieve an improvement compared to Hartree-Fock,

the second-order correction to the energy, eq. (2.273), has to be included. Since

higher excitations than those of second order do not interact with the ground state
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(Slater-Condon rules [240–242]) and first order excitations do not interact either

(Brillouin’s theorem [242]), it is

E
(2)
0 = −

occ∑

i<j

vir∑

a<b

〈Φab
ij |Ĥ(1)|Φ0〉 · 〈Φ0|Ĥ(1)|Φab

ij 〉
Eab

ij − E0

(2.277)

where the summations are over all occupied and virtual orbitals respectively. It is

also possible to calculate excitation energies of a molecule in an analogous way. The

MPPT up to second order is named MP2.

Perturbation theory is quite efficient since the equations do not have to be solved

self-iteratively. MP2 is more precise and furthermore computationally less demand-

ing than CISD (sec. 2.8.2), since it scales as N5 (CISD: N6). It is the most eco-

nomical method for including electron correlation and accounts for 80 to 90% of

the correlation energy [268]. In contrast to limited CI, it is size-consistent. How-

ever, since it is not a variational approach, the energies cannot be regarded as an

upper limit of the exact energy. It furthermore fails in cases where the states are

(quasi) degenerate, since then the denominator of the energy correction, eqs. (2.273)

and (2.277), approaches zero.

MP2 overestimates the interaction between same spins. Therefore the calcula-

tions can be improved by the so-called spin component scaling (SCS), where the

integrals with same and with opposite spins are scaled with empirical factors [273].

2.8.4 The coupled-cluster approach

The coupled-cluster (CC) approach [274–277] is also size-consistent but not varia-

tional. The exact wave function is represented as [278]

ΦCC = eT̂ ·Φ0

Taylor
exp.
=

∞∑

k=0

1

k!
· T̂ k ·Φ0 =

(

1 + T̂ +
1

2!
· T̂ 2 +

1

3!
· T̂ 3 + . . .

)

·Φ0 (2.278)

with the Hartree-Fock wave function Φ0, eq. (2.255), and the excitation operator

T̂ = T̂1 + T̂2 + T̂3 + . . ., so that

eT̂ = 1+T̂1+

(

T̂2 +
1

2
T̂ 2
1

)

+

(

T̂3 + T̂2T̂1 +
1

6
T̂ 3
1

)

+

(

T̂4 + T̂3T̂1 +
1

2
T̂ 2
2 +

1

2
T̂2T̂

2
1 +

1

24
T̂ 4
1

)

+. . .

(2.279)

A certain excitation (e. g. third order) can be obtained either by one excitation

operator (T̂3, connected cluster) or by a cluster of excitation operators (T̂2T̂1, T̂
3
1 ,

disconnected clusters), where the latter ensure the size-consistency.
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CC theory is related to perturbation theory, sec. 2.8.3. However, while pertur-

bation theory takes all kinds of corrections (singles, doubles, triples etc.) up to a

certain order into account, cf. eqs. (2.264) and (2.271), the CC approach includes all

corrections up to a certain type but to infinite order, see eq. (2.278) [278]. Widely

used approximations to the full T̂ operator forN occupied orbitals, T̂ = T̂1+. . .+T̂N ,

truncate T̂ , for example T̂ = T̂1 + T̂2 (CCSD, coupled cluster singles and doubles),

T̂ = T̂2 (CCD, coupled cluster doubles), T̂ = T̂1 + T̂2 + T̂3 (CCSDT, coupled cluster

singles, doubles and triples).

In the case of the simplest approximation, CCD, inserting the wave function

from eq. (2.278) into the electronic Schrödinger equation (2.3) leads to

ĤeT̂2Φ0 = EeT̂2Φ0 ⇔ Ĥ

(

1 + T̂2 +
1

2
T 2
2 + . . .

)

Φ0 = E

(

1 + T̂2 +
1

2
T 2
2 + . . .

)

Φ0

⇒ 〈Φ0|Ĥ
(

1 + T̂2 +
1

2
T 2
2 + . . .

)

|Φ0〉 = E · 〈Φ0|
(

1 + T̂2 +
1

2
T 2
2 + . . .

)

|Φ0〉

⇔ 〈Φ0|Ĥ|Φ0〉
︸ ︷︷ ︸

=EHF

+〈Φ0|ĤT̂2|Φ0〉 = E (2.280)

with the Hartree-Fock energy of the ground state, EHF. Multiplying with Φab∗
ij

instead of Φ∗
0 leads to

〈Φab
ij |Ĥ|Φ0〉+ 〈Φab

ij |ĤT̂2|Φ0〉+
1

2
· 〈Φab

ij |ĤT̂ 2
2 |Φ0〉 = E · 〈Φab

ij |T̂2|Φ0〉 (2.281)

Substituting E with eq. (2.280) one obtains an equation which contains the coeffi-

cients cabij (cf. eq. (2.262)) as the only unknowns. This results in a system of coupled

nonlinear equations (coupled cluster) for the double-excitation coefficients with as

many equations as unknown coefficients, which is usually solved iteratively.

The CCD wave function is

ΦCCD = eT̂2Φ0 =

(

1 + T̂2 +
1

2
· T̂ 2

2 + . . .

)

Φ0 = Φ0 + T̂2Φ0
︸ ︷︷ ︸

=ΦCID

+
1

2
· T̂ 2

2Φ0 + . . . (2.282)

It contains all double excitations as CID (sec. 2.8.2) and additionally also higher

excitations and is therefore size-consistent, in contrast to CID.

An alternative formulation is possible transforming the Hamiltonian operator [268].

Inserting the CC wavefunction, eq. (2.278) into the electronic Schrödinger equa-

tion (2.3) leads to

ĤeT̂Φ0 = E · eT̂Φ0 ⇒ 〈Φ0|e−T̂ ĤeT̂ |Φ0〉 = E · 〈Φ0|e−T̂ eT̂ |Φ0〉 = E (2.283)
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The energy is here the expectation value of a similarity transformed, non-Hermitian

Hamiltonian. e−T̂ can also be regarded as a deexcitation operator which acts on the

wave function on the left. The coefficients can be determined from the equations

which result from multiplying with an excited configuration:

〈Φa
i |e−T̂ ĤeT̂ |Φ0〉 = E · 〈Φa

i |Φ0〉 = 0, 〈Φab
ij |e−T̂ ĤeT̂ |Φ0〉 = 0, . . . (2.284)

The computational effort of CCD and CCSD scale as N6, however, their results

are often not satisfactory. CCSDT [279] scales as N8, and is therefore often al-

ready too expensive for larger molecules. Therefore alternative approaches as e. g.

CCSD(T) [280] have been developed, where the coefficients for the triple excitations

are determined by perturbation theory, sec. 2.8.3. It scales as N7 and in combination

with sufficiently large basis sets it serves as a criterion standard for other methods.

The CC2 method [281] corresponds to CCSD where the double excitations are

approximated by their contribution in the lowest non-zero order perturbation theory.

It is similar to MP2 but additionally contains the orbital relaxation caused by the

single excitation term. As for MP2, the spin component scaling (sec. 2.8.3) further

improves the calculations (SCS-CC2).

2.8.5 Density functional theory

The quantum chemical methods shown so far are all based on the wave function Φ,

which allows to calculate physical quantities (observables), e. g. the energy E, as

the expectation value of the respective operator (which is the Hamiltonian Ĥ in the

case of E):

E = 〈Φ|Ĥ|Φ〉 =
∫

Φ∗ĤΦ d~r1d~r2 . . . drN (2.285)

where N is the number of electrons. However, it is also possible to determine the

physical properties using the electron density

̺(~r1) = N ·
∫

Φ∗(~r1, ~r2, . . . ~rN) · Φ(~r1, ~r2, . . . ~rN) d~r2d~r3 . . . d~rN (2.286)

instead of the wave function. While Φ depends on 3N variables, ̺ only depends

on 3. According to the Hohenberg-Kohn existence theorem [282], the ground-state

energy (and all other ground-state electronic properties) uniquely depend on the

electron density and can be written as a functional of ̺:

E = E[̺(~r)] (2.287)
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Therefore this approach is called density functional theory (DFT) [283, 284]. How-

ever, neither the electron density nor the general dependence of E on ̺ is known.

For this reason approximations are necessary. The first ideas of DFT were formu-

lated by Thomas [285] and Fermi [286], which were based on a uniform electron gas

of noninteracting electrons (similar to the particle in a box model). Even though

this very rough theory leads to good energy estimations for some systems [287], it

is not good enough for most of the physical properties of interest, as for example,

molecules do not bind [288].

The electronic energy of a many-electron system is [289, 290]

E = ET + EV + EJ + EX + EC = EHF + EC (2.288)

where ET is the kinetic energy of the electrons, EV is their potential energy in the

coulombic field of the nuclei, EJ is the Coulomb energy between the electrons and

EX is the exchange energy. The sum of these four terms is the Hartree-Fock energy,

cf. sec. 2.8.1. EC is the correlation energy, which is missing in the picture of the

independent particles that is used in the Hartree-Fock theory. The potential energy

can be written as

EV[̺(~r)] = −
K∑

a=1

Za · e2
4πε0

·
∫

̺(~r)

|~Ra − ~r|
d~r (2.289)

where K is the number of nuclei and Za is the atomic number of nucleus a. The

Coulomb interaction between two electron densities is

EJ[̺(~r)] =
1

2
· e2

4πε0
·
∫∫

̺(~ri) · ̺(~rj)
|~ri − ~rj|

d~rid~rj (2.290)

These equations are derived from classical electrostatics. For the terms ET, EX and

EC, however, such complete analytical expressions cannot be derived with sufficient

quality.

To tackle this problem the orbital picture from Hartree-Fock theory is adopted

by introducing the one-electron orbitals ϕi(~ri), which are called Kohn-Sham or-

bitals [291, 292]. Analogously to the Hartree-Fock equations (2.257) one obtains the

Kohn-Sham equations

[

− ~
2

2m
∆i −

e2

4πε0

K∑

a=1

Za

|~Ra − ~ri|
+

e2

4πε0

∑

j

∫

d3rj
|ϕj(~rj)|2
|~ri − ~rj|

+ UXC

]

ϕi(~ri) = λiϕ(~ri)

(2.291)
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with

UXC[̺] =
δEXC[̺]

δ̺
(2.292)

In contrast to the Hartree-Fock equation (2.257), eq. (2.291) also contains the elec-

tron correlation, which is merged with the exchange term to UXC. Analogously

to the Hartree-Fock approach, sec. 2.8.1, eq. (2.291) is solved iteratively and self-

consistently. The electron density is then

̺(~r) =
∑

i

bi · ϕ∗
i (~r) · ϕi(~r) (2.293)

where bi is the occupation number of orbital i. The energies ET, EV and EJ can be

calculated analogously to Hartree-Fock by means of the Kohn-Sham orbitals. EXC

must include the complete exchange and correlation energy. Using the local density

approximation (LDA) [290, 291], only the electon density ̺(~r) at the point ~r is taken

into account. Better results are obtained if furthermore the gradient ∇̺ = ∂̺/∂~r

is included (generalized gradient approximation, GGA). So-called hybrid functionals

combine different approaches, as for example a linear combination of Hartree-Fock

and density functional exchange.

The exchange and correlation functionals typically contain semiempirical param-

eters which are fitted to experimental data or more precise calculations. Since the

exchange term is only an approximate expression here, the calculated energy cannot

be regarded as an upper bound for the true energy, even though the variation theory

underlies this method.

A standard GGA functional is PBE (named after Perdew, Burke and Ernzer-

hof) [293, 294], which does not contain any fitting to reference data but only contains

information from the slowly varying electron gas. The hybrid functional PBE0 [295]

has a contribution of 25% exact exchange. Within the empirical functionals, B88

(named after Becke, 1988) [296] is the standard GGA for exchange and LYP (named

after Lee, Yang and Parr) [297] for correlation, whose combination is the BLYP

functional. A frequently used hybrid functional is B3LYP [298], which contains the

Hartree-Fock and the B88 exchange functional and the LYP and the VWN (named

after Vosko, Wilk, Nusair) [299] correlation functional, linearly combined by three

empirical parameters.

The computational effort of DFT is comparable to Hartree-Fock (scaling N3

for non-hybrid, N4 for hybrid functionals [300]), however, electron correlation is

approximately included via the exchange-correlation potential, which makes DFT to

a standard approach for quantum chemical calculations. A disadvantage compared
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to wave function based methods is that there is no systematic way to improve the

method. A variety of functionals exists, however, it is often not clear to decide

whether a certain functional is better or worse than another. Often the functionals

do not comply with fundamental physical requirements, as there are, e. g., correlation

effects for one-electron systems, furthermore the Coulomb and exchange term do not

vanish for the interaction of the electron with itself. Furthermore, the van der Waals

(dispersion) interaction is missing since this is a nonlocal effect. For this purpose so-

called dispersion-corrected DFT-D approaches are developed where the dispersion

is included empirically [301–303].

2.8.6 Configuration interaction singles for excited states

The conceptually simplest wave-function-based approach to calculate excited states

is the configuration interaction singles (CIS) method, which is similar to the con-

figuration interaction approach for the ground state energies, which was explained

in sec. 2.8.2. Starting point is the Hartree-Fock ground state Φ0, eq. (2.255). The

wave function used in the CIS approach for excited states is similar to the CI wave

function, eq. (2.262), however, only the singly excited Slater determinants are in-

cluded [304]:

ΦCIS = T̂1Φ0 =
occ∑

i

vir∑

a

cai · Φa
i (2.294)

where T̂1 is the single excitation operator and Φa
i are the singly excited slater de-

terminants. The summation index i runs over all occupied, the summation index a

over all virtual orbitals. Inserting this wave function into the electronic Schrödinger

equation (2.3) and multiplication with 〈Φb
j| from the left leads to

∑

ia

〈Φb
j|Ĥ|Φa

i 〉 · cai = ECIS ·
∑

ia

〈Φb
j|Φa

i 〉 · cai = ECIS ·
∑

ia

cai · δij · δab (2.295)

and

〈Φb
j|Ĥ|Φa

i 〉 = (E0 + ǫa − ǫi) · δij · δab + 〈ab||ij〉 (2.296)

with

〈ab||ij〉 = e2

4πε0

∫∫
ϕ∗
a(~r) · ϕ∗

b(~r
′) · ϕi(~r) · ϕj(~r

′)− ϕ∗
a(~r) · ϕ∗

b(~r
′) · ϕj(~r) · ϕi(~r

′)

|~r − ~r ′| d~r d~r ′

(2.297)

ǫi and ǫa are the orbital energies of the single-electron orbitals ϕi and ϕa and E0 is

the Hartree-Fock ground state energy. With the excitation energy ω := ECIS − E0
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one gets

∑

ia

[(ǫa − ǫi) · δij · δab + 〈ab||ij〉] · cai = ω ·
∑

ia

cai · δij · δab

⇔ A ·X = ω ·X (2.298)

The matrix X contains the CIS expansion coefficients and the matrix elements of

A are given as

Aia,jb = (ǫa − ǫi) · δij · δab + 〈ab||ij〉 (2.299)

Equation (2.298) is an eigenvalue equation with the excitation energies as the eigen-

values and the expansion coefficients appearing in eq. (2.294) as the eigenvectors,

which can be solved by a principal axis transformation.

Since the CIS method is based on Hartree-Fock and therefore on the varia-

tion principle, the total energies and also the excited-state total energies are upper

bounds to their exact values. In contrast to other truncated CI approaches, it is

size consistent (because owing to Brillouin’s theorem the singly excited Slater deter-

minants do not interact with the ground state and therefore the ground state CIS

energy equals the ground state Hartree-Fock energy). The expression for the total

excited state energy, ECIS, can be expressed analytically and is therefore analyti-

cally differentiable [305, 306], which allows for the application of analytic gradient

techniques for the calculation of, e. g., excited state equilibrium geometries and vi-

brational frequencies. The calculated excitation energies are typically overestimated

by about 0.5 to 2 eV compared to experimental values [304, 305, 307, 308]. A further

drawback of CIS is that it does not obey the Thomas-Reiche-Kuhn sum rule [309–

311], which states that the sum of the oscillator strengths fai, which are proportional

to the square of the transition dipole moments ~pai, eq. (2.235), equals the number

of electrons N [312]:

∑

a

fai =
∑

a

2

3
· m · (Ea − Ei)

~2
· |~pai|2 = N (2.300)

The sum is over all levels, including the continuum. Therefore the calculated tran-

sition dipole moments are not very accurate. The CIS method scales as N4 (with

N the number of basis functions), which can be reduced to N3 by the introduction

of auxiliary basis set expansions (N being the number of basis sets) [304].

2.8.7 Time-dependent Hartree-Fock

The so-called time-dependent Hartree-Fock (TDHF) method [313, 314] method al-

lows for the calculation of excited states based on the Hartree-Fock theory (sec. 2.8.1)
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and time-dependent perturbation theory to first order [304]. Starting point is the

time-dependent Schrödinger equation

i · ∂
∂t

Ĉ = F̂ · Ĉ and − i · ∂
∂t

Ĉ† = F̂ · Ĉ† (2.301)

where Ĉ is the matrix of coefficients for the Hartree-Fock eigenvalue equation, and

F̂ is the Fock matrix, cf. eq. (2.257). With the density matrix P̂ := Ĉ · Ĉ† this leads

to

i · ∂
∂t

P̂ = i · ∂
∂t

(Ĉ · Ĉ†) = F̂ · Ĉ · Ĉ† − Ĉ · Ĉ† · F̂ (2.302)

Within perturbation theory up to first order, the density and and the density-

dependent Fock matrix can be decomposed into an unperturbed (superscript 0)

and a perturbation part (superscript 1):

P̂ = P̂(0) + P̂(1) and F̂ = F̂(0) + F̂(1) (2.303)

The time-dependent perturbation can be written as

ĝpq =
1

2
· (f̂pq · e−i·ωt + f̂ ∗

qp · ei·ωt) (2.304)

where the matrix f̂ is a one-electron operator describing the applied perturbation.

The resulting first-order density response has the form

P̂ (1)
pq =

1

2
· (d̂pq · e−i·ωt + d̂∗qp · ei·ωt) (2.305)

with the perturbation densities dpq. The first-order change of the Fock matrix is

F̂ (1)
pq = ĝpq +∆F̂ (0)

pq = ĝpq +
∑

st

∂F̂
(0)
pq

∂P̂st

· P̂ (1)
st (2.306)

Based on this approach one results in the equation

(

A B

B∗ A∗

)

·
(

X

Y

)

= ω ·
(

1 0

0 −1

)

·
(

X

Y

)

(2.307)

with the excitation energy ω, the matrix elements

Aab,ij = (ǫa − ǫi)δabδij +
e2

4πε0

∫

d3r1d
3r2 ϕ

∗
a(~r1)ϕ

∗
b(~r2)

1

r12
(1− P12)ϕi(~r1)ϕj(~r2)

Bab,ij =
e2

4πε0

∫

d3r1d
3r2 ϕ

∗
a(~r1)ϕ

∗
j(~r2)

1

r12
(1− P12)ϕi(~r1)ϕb(~r2) (2.308)



92 2. Background

and the transposition operator P12 and Xai = dai and Yai = dia. By means of the

“deexcitations” Y the ground-state correlation is also taken into account. Equa-

tion (2.307) is a non-Hermitian eigenvalue equation. If the B matrix is zero, it

equals the corresponding CIS equation (2.298).

In the field of condensed matter and nuclear physics, the TDHF approach is

better known as random phase approximation (RPA) [315–318]. Taking only one-

particle-one-hole excitations into account, i. e., neglecting the correlation between

the electrons, is called Tamm-Dancoff approximation [319–321] here. It is identical

to neglecting the B matrix, and therefore identical to CIS [304].

TDHF is size-consistent and, in contrast to CIS, it obeys the Thomas-Reiche-

Kuhn sum rule, eq. (2.300). There exist analytical expressions for the first derivatives

which facilitates optimization and vibrational calculations. The excitation energies

obtained with this method are usually slightly smaller than those obtained with

CIS, however, they are still overestimated [304], whereas charge transfer excitations

(sec. 2.1) are more severely overestimated (1.5 eV and more). Because of the B

matrix, the computational cost is about twice of that for CIS.

2.8.8 Time-dependent density functional theory

Analogously to the Hartree-Fock method (secs. 2.8.1 and 2.8.7), the density func-

tional theory (sec. 2.8.5) can be extended to time-dependent density functional theory

(TDDFT) [322] for the calculation of excited states. The Runge-Gross theorem [323]

extends the Hohenberg-Kohn existence theorem (explained in sec. 2.8.5) [282] to the

time-dependent case. It states that the time-dependent electron density ̺(~r, t) de-

termines the time-dependent external potential, up to a spatially constant, time

dependent function and hence the time dependent wave function up to a time-

dependent phase factor α(t) [304]:

Φ(~r, t) = Φ[̺(t)](t) · e−iα(t) (2.309)

Since Hartree-Fock and DFT are very similar (see sec. 2.8.5), the derivation of the

TDDFT equations within the linear response approach is very similar and leads to

an equation of the same form as eq. (2.307) for TDHF, however, with

Aab,ij = (ǫa − ǫi) · δab · δij +
e2

4πε0
·
∫

d3r1d
3r2 ϕ

∗
a(~r1)ϕ

∗
b(~r2) ·

1

r12
· ϕi(~r1)ϕj(~r2) +

∫

d3r1d
3r2 ϕ

∗
a(~r1)ϕ

∗
b(~r2) · fXC · ϕi(~r1)ϕj(~r2)



2.8. Quantum chemical methods 93

Bab,ij =
e2

4πε0
·
∫

d3r1d
3r2 ϕ

∗
a(~r1)ϕ

∗
j(~r2) ·

1

r12
· ϕi(~r1)ϕb(~r2) +

∫

d3r1d
3r2 ϕ

∗
a(~r1)ϕ

∗
j(~r2) · fXC · ϕi(~r1)ϕb(~r2) (2.310)

Similar to the difference between the Hartree-Fock equations (2.257) and the Kohn-

Sham equations (2.291), the difference between the A and B components of TDHF

and TDDFT is that the exchange term of TDHF is replaced by the exchange-

correlation term of DFT.

TDDFT usually leads to better results for the excitation energies than TDHF,

because the energies of the virtual orbitals are evaluated for the N electron system,

whereas in TDHF they are determined for N + 1 electrons. Therefore the energy

difference ǫa−ǫi, which is the leading term of the diagonal elements of the A matrix,

eqs. (2.308) and (2.310), respectively, is much better estimated with TDDFT [304,

324]. However, because of the wrong long-range behaviour of most of the standard

XC functionals (they decay faster than r−1), Rydberg states (where the excited

electron and the rest of the molecule resembles a hydrogen atom because of the

large distance) and extended π systems pose a problem [325, 326].

As for TDHF, it is possible to introduce the Tamm-Dancoff approximation, i. e.,

neglecting the B matrix (see sec. 2.8.7) [327]. It was shown that TDA/TDDFT

is a quite good approximation to TDDFT [327, 328], presumably because in DFT

correlation is already included in the ground state because of the XC functional [304].

A frequently used method to reduce the numerical effort in quantum chemical

calculations is the resolution of the identity (RI) [329–331]. By introducing the

identity operator 1 =
∑∞

p |ϕp〉〈ϕp| by an auxiliary basis set {ϕp}, the four-index

two-electron integrals can be approximated by three- and two-index integrals [268].

The computation time reduces by a divisor of 3 to 8 depending on the system

size and changes the scaling from N4 to N3. The additional error caused by this

approximation is less for the excitation energies than for the total energies of the

ground and excited states [304].

Because of the close relation to TDHF, TDDFT is also size-extensive and obeys

the Thomas-Reiche-Kuhn sum rule of the oscillator strengths. However, because

of the approximation of the exchange-correlation functional, the calculated energies

cannot be regarded as an upper bound for the real energies, as this is the case for

the variational TDHF [304].

A severe problem of TDDFT is the underestimation of the excitation energies

of charge transfer excitations (sec. 2.1) [332–334]. Since the electron-donating and

accepting orbitals (i, j and a, b respectively) are far apart in that case, their overlap is

zero and thereforeBab,ij = 0 andAab,ij = (ǫa−ǫi)·δab·δij , i. e., the energy is dominated
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by the energy difference between the electron-donating and the electron-accepting

orbital. Within DFT, both orbital energies are calculated for a system with N

electrons, while in Hartree-Fock theory the virtual orbital energy is calculated for

N + 1 electrons which – in the case of charge transfer excitations – would be the

better description. Therefore the virtual orbital energy is a worse approximation

for the electron affinity within DFT than within Hartree-Fock theory, leading to

energetically too low virtual orbital energies, and therefore to a too low energy

gap [304].

2.8.9 Algebraic diagrammatic construction

The time-dependent methods explained so far, TDHF (sec. 2.8.7) and TDDFT

(sec. 2.8.8), belong to the so-called propagator methods. Propagators are time-

dependent Green’s functions [335, 336]. The polarization propagatorx [337] is a

two-particle Green’s function which describes electron-hole excitations. The poles

of its Fourier transform (the spectral representation) correspond to the excitation

energies. Depending on the perturbation order made for the propagator and on the

chosen reference wave function this leads to different quantum chemical approaches.

(For TDHF and TDDFT only single excitations are taken into account in the prop-

agator and the Hartree-Fock wave function is used [268].)

A further propagator approach, using a mathematically different procedure, is

the algebraic-diagrammatic construction (ADC) [338–343]. It is based on a dia-

grammatic perturbation expansion of the polarization propagator using Goldstone

diagrams [344]. The expansion is summed by an algebraic scheme which leads to

approximations which are exact up to a finite order of perturbation theory. Up to

first order, only single electron-hole pairs (i. e., singly excited states) are taken into

account, as this is the case for TDHF [338].

The frequently used second-order approximation, ADC(2), is exact up to second

order for singly excited states but also takes double excitations into account [338]. It

is related to CIS(D) and CC2, however, in contrast to CI, it is size-consistent and the

configuration space is smaller than that of CI. The Thomas-Reiche-Kuhn sum rule,

eq. (2.300), is fulfilled. The accuracy of the absolute excitation energies is moderate

(deviations to experimental values about 0.5 to 1.2 eV), though the relative energies

are in better agreement [339]. Whereas the coupled cluster approach leads to a right

and a left transition dipole moment because of a non-Hermitian Hamiltonian caused

by a similarity transformation [345] (sec. 2.8.4), only one definite transition dipole

moment is obtained with ADC, since an Hermitian eigenvalue problem is solved in

this case.



3 Charge transport with the

Marcus theory

In the case of small electronic couplings and higher temperatures it is often ap-

propriate to assume that the charge is localized due to the thermal disorder of

the molecules and that charge transport occurs nonadiabatically (see sec. 2.2.3)

via thermally activated hopping [346]. In some cases room temperature should be

sufficient for this assumption to be justified. The Marcus theory, which was ex-

plained in sec. 2.3.2, is widely accepted for charge transfer in organic crystals [102–

104, 227, 254, 300, 347, 348] and disordered materials [349]. As made clear by the

detailed derivation of the Marcus hopping rate, the thermal energy must be large

compared to the molecular vibration energy and the coupling must be small com-

pared to the reorganization energy. Since the intramolecular vibration frequencies

are in the order of 1014Hz, the last condition is not fulfilled at room temperature.

Furthermore, the highest coupling values for charge transport have the same order

of magnitude than the reorganization energy [162, 350]. However, despite all im-

perfections one can certainly assume that this theory is suitable for the purpose of

a qualitative charge transport analysis. Here it is applied to study the dependence

of the charge carrier mobility on the molecular structure and morphology as well as

its angular dependency. The latter point is important since most organic crystals

show a pronounced anisotropy for the transport parameters which has to be taken

into account for device design. Furthermore, it is known that the mobility is very

sensitive to the arrangement of the monomers and that already small changes in

their alignment can alter the transport parameters dramatically [351].

Most of the results presented in this chapter have already been published in

ref. [352].
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3.1 The hopping rate

The Marcus hopping rate, eq. (2.133), is used to calculate the transfer rate νji from

the donor molecule i to the acceptor molecule j. If the material is less ordered

or even amorphous, each molecule experiences slightly different surrounding effects

(such as polarization) that lead to different site energies E0. Furthermore, the

external electric field ~E causes an energetic difference for the charge q between the

donor and acceptor molecule, so that the total energy difference which appears in

the hopping rate, eq. (2.133), is

∆Eji = (E0
j − E0

i )
︸ ︷︷ ︸

caused by disorder

−q · ~E · ~rji
︸ ︷︷ ︸

caused by
external field

(3.1)

cf. eq. (2.132). ~rji is the distance vector between the molecules i and j. Marcus

rates have been used before for calculating the anisotropy of the charge carrier

mobility [102], but with ∆Eji ≡ 0. Since here the charge transport in crystals is

treated, the disorder part of ∆Eji is zero and the only energy difference is caused

by the electric field.

As explained in sec. 2.2.6, the charge carrier causes both a geometric distor-

tion of the host molecule (local charge-phonon coupling) as well as a distortion

of the surrounding due to polarization effects (nonlocal charge-phonon coupling).

This is partially considered by the reorganization energy. Due to the weak van der

Waals interactions between organic molecules, it can be divided into an internal

(intramolecular) and an external (intermolecular) part, i.e.

λ = λint + λext (3.2)

The intramolecular reorganization energy λint is due to the geometry changes of the

donor and the acceptor monomer upon the charge transfer process. The external

reorganization energy λext covers the energetic changes concerning the surrounding,

caused by lattice distortion and polarization. For oligoacenes λext was asserted to

be about one order of magnitude smaller than λint [353, 354]. (This will be studied

in sec. 3.7.) Furthermore, it was demonstrated that λint of a molecule is lower in a

cluster than in gas phase and that the total reorganization energy of naphthalene

is closer to λint in the gas phase than to λint in the cluster [353]. That is why the

external reorganization energy is neglected for now and the internal reorganization

energy of the monomer in vacuum is used for λ. Though λext and its influence on

the transport will be regarded in sec. 3.7.
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3.2 The master equation approach

The external electrical field causes a drift of the charge carriers in the crystal, and

therefore the probability that a certain lattice site is occupied by a charge carrier

differs for the different monomers in the unit cell. These occupation probabilities

are determined by the master equation approach (sec. 2.6.1). In the case of low

charge carrier densities, it has the simple linear form (cf. eq. (2.194))

dpi
dt

=
∑

j

(νij · pj − νji · pi) (3.3)

where pi and pj denote the probabilities that the lattice sites i and j are occupied by

a charge carrier. νji is the Marcus hopping rate from the donor i to the acceptor j,

eq. (2.133). The index j sums over all possible target sites in the surrounding. This

equation describes the time-dependent change of the occupation probability of site i.

In principle, it is also possible to include repulsive forces between the charge

carriers in the master equation in order to account for higher charge carrier densi-

ties [207, 208, 224, 355]:

dpi
dt

=
∑

j

[νij · pj · (1− pi)− νji · pi · (1− pj)] (3.4)

Here jumps are only possible if the target site is not already occupied by another

charge. However, in the case of low densities, even the quite simple eq. (3.3) leads

to good results and is easier to solve than the nonlinear equation (3.4).

Since such an equation as eq. (3.3) holds for all sites in the crystal, this results

in a system of linear equations (SLE) with as many equations as lattice sites which

can also be written in the matrix form

d

dt
~p = N · ~p (3.5)

The vector ~p contains the unknown pi and the matrix N contains all hopping
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rates νji:

N =















...
...

...
...

. . . −∑j 6=i νj,i νj,i+1 νj,i+2 νj,i+3 . . .

. . . νj+1,i −∑j 6=i+1 νj,i+1 νj+1,i+2 νj+1,i+3 . . .

. . . νj+2,i νj+2,i+1 −∑j 6=i+2 νj,i+2 νj+2,i+3 . . .

. . . νj+3,i νj+3,i+1 νj+3,i+2 −∑j 6=i+3 νj,i+3 . . .
...

...
...

...















(3.6)

This matrix is negative semidefinite and not symmetric in the general case. The

columns correspond to the initial sites i of the charge carrier and the lines correspond

to the final sites j, i.e., the jump rate νji from i to j appears in the ith column and

the jth line. The diagonal elements contain the negative sum of all hopping rates

away from the respective site. The infinite matrix N is approximated by a finite

matrix with cyclic boundary conditions, i.e., a charge carrier that leaves the crystal

at one side reenters at the opposite side. For a one-dimensional system with five

sites where the charge can only hop to the two neigbour sites this looks

N =











−(ν51 + ν21) ν12 0 0 ν15

ν21 −(ν12 + ν32) ν23 0 0

0 ν32 −(ν23 + ν43) ν34 0

0 0 ν43 −(ν34 + ν54) ν45

ν51 0 0 ν54 −(ν45 + ν15)











(3.7)

For this boundary condition to be applicable it has to be assured that the hopping

rate from site 5 to site 1 in negative direction is negligible. This results in a constraint

for the minimum size of the matrix. The structure of N for a two dimensional

5 × 5 lattice is denoted in fig. 3.1. It consists of 5 × 5 sub-matrices of the kind of

eq. (3.7). A three-dimensional 5 × 5 × 5 lattice consists of 5 × 5 of the matrices

depicted in fig. 3.1. The fact that there are different monomers in the unit cell is

mathematically treated according to a fourth dimension so that the description of

a three-dimensional crystal results in a (n3
d · nm)× (n3

d · nm) matrix where nd is the

number of unit cells in each direction and nm is the number of monomers per unit

cell.

In the steady state (t→ ∞), a dynamic balance is reached where the occupation

probabilities for the sites do not change anymore and therefore dpi/dt = 0 so that
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Figure 3.1: Pattern of the matrixN for a two-dimensional lattice with five sites in each
dimension. Left: Only the four nearest neighbours are taken into account. Σ indicates
the diagonal elements and ν the non-zero matrix elements. Right: Additionally the
shortest diagonal jumps are allowed. The corresponding matrix elements are indicated
with δ.

the system of differential equations (3.5) turns into

N · ~p = ~0 (3.8)

which is much easier to solve since this is a simple homogeneous SLE. (The time-

dependent solution of eq. (3.5) is derived in sec. 8.2.1.) All monomers within a cube

of three unit cells length in each dimension of the crystal are taken into account.

It was verified that a bigger matrix with more than 3 × 3 × 3 unit cells does not

change the result. The hopping rates are calculated from one monomer to all other

monomers in the same cell and in the adjacent ones. The jump rate, eq. (2.133),

implicitly depends on the distance via the electronic coupling Vji. Since this coupling

depends on the overlap of donor and acceptor, it decays exponentially and therefore

larger jump distances can be neglected.

As can be seen in eq. (3.6) and (3.7), the matrix N is singular. (The sum of all

elements of a column in N is zero and therefore detN = 0.) The solution of eq. (3.8)

is the eigenvector of N to the eigenvalue zero. However, the algorithms commonly

used for solving SLE do not work for singular matrices. Therefore one element of ~p

is set constant, for example p1 = 1. This is possible because a homogeneous SLE

with singular matrix always has at least one degree of freedom. As a consequence

the matrix becomes regular with the dimension lowered by 1 and the SLE becomes

inhomogeneous. Therefore its solution is unique. It can be solved by common
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algorithms such as the lower upper (LU) decomposition [356, 357], the generalized

minimum residual (GMRES) method [357, 358] or the biconjugate gradient stabilized

(BiCGSTAB) method [357, 359]. Finally the constant element of ~p is appended to

the vector again and taking into account the normative condition Σipi = 1 one

gets the occupation probabilities for all sites as a unique solution to the original

SLE (3.8).

3.3 The rate equations

As explained in sec. 2.2.5, the material parameter commonly used to characterize

the charge transport in a semiconductor is the mobility. As mentioned in sec. 2.5,

the definition of the charge carrier mobility is

µ =
〈v〉
E (3.9)

cf. eq. (2.187). The average velocity can be calculated as

〈v〉 =
∑

i

pi · vi (3.10)

pi is the probability that site i is occupied by a charge obtained by the master

equation as described in sec. 3.2 and vi is the resulting average velocity of the

charge at the lattice site i. This is

vi =
〈r‖〉i
τi

(3.11)

where τi is the dwell time of the charge carrier at site i, eq. (2.195), and

〈r‖〉i =
∑

j νji ·
(

~rji · ~E
E

)

∑

j νji
(3.12)

is the average displacement at site i in field direction. Equations (2.195) and (3.9)

to (3.12) result in

µ =
1

E ·
∑

i

pi · vi

=
1

E ·
∑

i

pi ·
〈r‖〉i
τi
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=
1

E ·
∑

i



pi ·
∑

j

νji ·
∑

j νji ·
(

~rji · ~E
E

)

∑

j νji





=
1

E ·
∑

ij

pi · νji · ~rji ·
~E
E (3.13)

In order to simplify the calculation of the mobility within such a jump rate ap-

proach, the mobility is often calculated without external field because then νji = νij

and the occupation probabilities of the sites in the steady state do not differ in this

case, cf. eq. (3.3):

∑

j

(νij · pj − νji · pi) =
dpi
dt

= 0

⇒
∑

j

νji · (pj − pi) = 0

⇔ pi = pj ∀ i, j

⇒ pi =
1

Ncryst

∀ i because

Ncryst∑

i

pi = 1 (3.14)

where Ncryst is the total number of monomers in the regarded system. As explained

in sec. 3.2, this solution for ~p is unique. Since eq. (3.9) is not applicable in that case

(because E = 0), the mobility is calculated via the diffusion coefficient D and the

Einstein relation, eq. (2.189). A rate equation for D can be derived in a similar way

as for µ. Using the definition for D, eq. (2.163), one gets

D =
1

2n
· d

dt
〈r2〉

=
1

2n
· 1

N
·

N∑

i=1

〈r2〉i
τi

(3.15)

where N is the number of monomers in the unit cell and n is the spatial dimension-

ality. Since the diffusion is regarded in one dimension here, n equals 1 and

D =
1

2
· 1

N
·

N∑

i=1

〈r2‖〉i
τi

(3.16)

where

〈r2‖〉i =
∑

j νji · (~rji · ~e)2
∑

j νji
(3.17)

is the variance of the charge carrier position at site i in the direction of the unit
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vector ~e. The result is

D =
1

2
· 1

N
·

N∑

i=1

∑

j

νji ·
∑

j νji · (~rji · ~e)2
∑

j νji

=
1

2
· 1

N
·

N∑

i=1

∑

j

νji · (~rji · ~e)2 (3.18)

for the diffusion coefficient in the direction of ~e. If one even neglects the differences

between the different monomers in the unit cell, one gets

D =
1

2
·
∑

j

νji · (~rji · ~e)2 (3.19)

This equation is found quite often in the literature1 to evaluate D [108, 376, 377] or

µ in combination with the Einstein relation, eq. (2.189) [79, 378].

It is important to note, that the diffusion constant in eq. (3.19) is not in all cases

correct. Just if the unit cell of the crystal contains only a single molecule and if the

crystal structure is perfectly translation-symmetric, i.e. E0
i = E0

j for all monomer

pairs in eq. (3.1), so that ∆Eji = 0, this equation becomes correct. However, in

less ordered or even amorphous materials the site energies E0
i and E0

j are different

because of the differing surroundings for each lattice site. In that case νji 6= νij and

hence eq. (3.14) does not hold. Therefore eqs. (3.16) and (3.18) change to

D =
1

2
·
∑

i

pi ·
〈r2‖〉i
τi

=
1

2
·
∑

ij

pi · νji · (~rji · ~e)2 (3.20)

However, even this equation can lead to wrong results, even in perfectly ordered

1Also found quite often is the equation [102–104, 231, 233, 236, 360–373]

D =
1

2 · n ·
∑

j

νji · r2ji · αji

=
1

2 · n ·
∑

j ν
2
ji · r2ji

∑

j νji

with αji given as in eq. (2.196). However, this equation is wrong, presumably because of assuming
the wrong dwell time [227, 229, 235, 360, 374]

τwrong = ν−1
ji

The right dwell time, eq. (2.195), is derived in sec. 2.6.1. Inspired by the work presented here and
already published in ref. [352], this was tested and confirmed in ref. [375].
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energy

Figure 3.2: The charge carrier is “trapped” between two lattice sites, since strongly
differing jump rates lead to a capturing.

crystals where all jump rates are symmetric, i.e. νji = νij (without external field).

If different sites exist in the elementary cell of the crystal and if the hopping rates

within the cells differ from those to neighboured unit cells, as depicted in fig. 3.2, the

charge carrier jumps back and forth between two monomers with a high coupling

because the coupling to the other neighbours is lower. These moves do not contribute

to a macroscopic spreading of the occupation probability of the charge carrier with

the time. That is why the averaging in eqs. (3.18), (3.19) and (3.20) overestimates

the true macroscopic diffusion coefficient. This problem does not appear in the

mobility rate equation (3.13), since the jump distance ~rji is not squared as in the

equations for D. For that reason the contribution of the trapped charge cancels

when summing over all lattice sites.

3.4 The Monte Carlo approach

The master equation results are verified with Monte Carlo simulations applying the

algorithm described in sec. 2.6.2. Since specific time-dependent trajectories of the

charge carriers are simulated, the mobility, eq. (2.187), can be directly calculated

via

µ =
〈v〉
E =

1

E · d

dt

〈

~r(t) ·
~E
E

〉

(3.21)

At equally spaced points in time, a snapshot of the charge carrier positions with

respect to the field direction, ~r(t) · ~E/E , is taken and the arithmetic mean 〈~r(t) · ~E/E〉
is determined. The average is calculated with a sufficient number of simulation runs

to obtain smooth lines. It was checked that the average position shows a linear time

dependence in order to ensure the stationary state.

As already explained in sec. 2.6.2, the Monte Carlo approach is just an alternative

way to solve the time dependent master equation (3.5). It is a feasible way to log

the atomic scale motions underlying the transport properties as a function of time.

However, as this is a stochastic method, many simulation runs are needed in order to
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achieve an acceptably low statistical error such that sufficiently significant values are

obtained for the mobility and the diffusion coefficient. Furthermore, one has to take

care that the stationary state is reached within the simulation time. This is a serious

problem in the case of strongly disordered materials. In contrast to that, the master

equation approach used here (sec. 3.2) by solving the matrix equation (3.8) which

provides the stationary state by means of analytic numerical methods guarantees

the stationary solution and is furthermore numerically more efficient than Monte

Carlo simulations [208].

3.5 Quantum chemical calculations

The electronic coupling Vji and the reorganization energy λ needed for the Marcus

hopping rate, eq. (2.133), are determined by quantum chemical first-principles cal-

culations. The reorganization energy is defined in eqs. (2.126) and (2.131). Since

in the crystal the donor and the acceptor monomer are the same kind of molecule,

the fig. 2.8, which depicts the parabola pairs of the ground and charged state of the

donor and acceptor, can be merged to the parabola pair in fig. 3.3. In order to cal-

culate λ, the geometry of the isolated monomer is optimized for the charged and the

neutral state. The energies E0 and Ec of the neutral and the charged monomers in

their lowest energy geometries and the energies E∗
0 and E∗

c of the neutral monomer

with the ion geometry and the charged monomer with the geometry of the neutral

λ 0
0E

E*0

Ec

cE*
cλ

en
er

gy

geometry

charged

neutral

Figure 3.3: The potential energy surfaces of the neutral and the charged monomer.
The dashed arrows indicate the vertical transitions from one state to the other. λ0

and λc are the two contributions to the reorganization energy, see eq. (3.22).
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state are calculated to get the intramolecular reorganization energy [177, 185, 379]

λ = λc + λ0

= (E∗
c − Ec) + (E∗

0 − E0) (3.22)

cf. fig. 3.3. It was shown that this approach using the diabatic potential surfaces

of the neutral and the charged state leads to the same λ as summing up the λi,

eq. (2.109), for all vibrations which are obtained by a normal mode analysis [380].

For all quantum chemical calculations the Turbomole program package [381, 382]

is used. The calculations are conducted via density functional theory (sec. 2.8.5)

using the hybrid generalized gradient functional B3-LYP [296–299, 383, 384] with

the correlation consistent polarized valence double ζ basis set (cc-pVDZ) [385] for

all atoms. This functional is chosen because it has been shown that it leads to

quite good results for describing the ionization-induced geometry modifications of

oligoacenes [185, 380].

In order to obtain the couplings Vji, eq. (2.253), the molecular HOMO or LUMO

orbitals (for hole and electron transport respectively) of the isolated monomers i

and j

Φi =

Ni∑

k=1

cik · ϕi
k and Φj =

Nj∑

k=1

cjk · ϕ
j
k (3.23)

are calculated. Ni and Nj are the number of basis functions of the monomers. These

orbitals are merged to the dimer functions

ΦD
i =

Ni+Nj∑

k=1

cDi
k ϕ

ij
k and ΦD

j =

Ni+Nj∑

k=1

cDj
k ϕij

k (3.24)

with the basis functions

ϕij = (ϕi
1, . . . , ϕ

i
Ni
, ϕj

1, . . . , ϕ
j
Nj
) (3.25)

and the coefficients

cDi = (ci1, . . . , c
i
Ni
, 0, . . . , 0) (3.26)

cDj = (0, . . . , 0, cj1, . . . , c
j
Nj
)

ϕij is used to set up the Kohn-Sham-Hamiltonian ĤKS. The energy difference

between HOMO and HOMO-1 and between LUMO and LUMO+1 is more than

1 eV for all molecules regarded here. That is why only the HOMO and LUMO
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orbitals of the monomers contribute significantly to the HOMO and LUMO orbitals

of the dimer and the other orbitals can be neglected [254]. Since the monomer

orbitals are not orthogonal to each other, the coupling is calculated with eq. 2.253,

which takes the nonorthogonality into account, and whose elements are

Hii = 〈ΦD
i |ĤKS|ΦD

i 〉 (3.27)

Hjj = 〈ΦD
j |ĤKS|ΦD

j 〉
Hji = 〈ΦD

j |ĤKS|ΦD
i 〉

Sji = 〈ΦD
j |ΦD

i 〉

Hii and Hjj are the site energies of the two monomers, Sji is the spatial overlap

and Hji is the charge transfer integral in the non-orthogonalized basis. As the

reorganization energy, the couplings were calculated with DFT using the B3-LYP

functional and the cc-pVDZ basis sets.

The arrangement of the monomers in the crystal was extracted from X-ray crystal

structure data which was retrieved from the Cambridge Structural Database [386,

387].

3.6 Numerical results

In the following the results of the approach developed in the preceding sections

are shown taking four different molecules as examples. If not otherwise stated, the

calculations have been conducted with an electric field of 107V/m and a temperature

of 300K. Results are shown for the orientational and morphological dependency of

the mobility for pentacene, rubrene and two fluorinated perylene bisimides. The first

two materials are experimentally and theoretically well investigated [79, 102, 177,

388–397] which allows for the comparison with experimental data. The molecules

under investigation are depicted in fig. 3.4 and the crystallographic parameters of

the corresponding crystals are listed in tab 3.1.

3.6.1 Pentacene

Pentacene (see fig. 3.4a) exists in several morphologies. Here the structure described

by Mattheus et al. [388] (at 293K) was investigated. The unit cell contains two

differently orientated monomers. Pentacene is known to be a hole conductor, but

for comparison, the electron transport is regarded here as well. The reorganization

energy, eq. (3.22), was calculated to 92meV for holes and 131meV for electrons. This
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Table 3.1: Lattice constants and angles for the unit cells of all calculated crystals.

a [nm] b [nm] c [nm] α [◦] β [◦] γ [◦] Ref.
pentacene 0.627 0.778 1.453 76.48 87.68 84.68 [388]
rubrene 2.686 0.719 1.443 90.00 90.00 90.00 [395]
PBI-F2 1.746 0.528 1.528 90.00 110.90 90.00 [398]
PBI-(C4F9)2 1.057 1.289 1.668 66.86 76.52 84.62 [399]

OO

O ON

N

a) b)

F7 C3

F7C3

N OO

F
F

O ON

c)

F7 C3

C3F7

C4F9

F9C4

d)
Figure 3.4: The molecules under investigation: a) pentacene, b) rubrene, c) PBI-F2,
d) PBI-(C4F9)2.

is in good agreement with values reported before (99, 98 and 95meV for holes [79,

177, 380] and 132meV for electrons [79]).

Figure 3.5 shows the mobilities of holes and electrons in the crystal in all three

dimensions. For better legibility fig. 3.6 shows two dimensional cross sections or-

thogonal to the a∗, b∗ and c∗ direction respectively. The magnitudes of the hole and

electron mobility are quite similar. For both types of charge carriers the transport

is almost two dimensional since the minimal mobility, which is found in the c∗ direc-

tion, is very low (0.2 cm2/V s for holes and 1.3 cm2/V s for electrons) compared with

the other directions. This can be explained by the electronic couplings. The highest

ones are listed in tab. 3.2 and the directions of the corresponding charge transitions

are drawn in fig. 3.7. All of them are coplanar in the ab plane. For holes, the biggest

coupling belonging to a transition with a component in c direction is about one order

of magnitude lower (4meV) than the lowest coupling listed in tab. 3.2 (electrons:

10meV, about a factor 5 smaller). The highest couplings for holes belong to the

transitions in [11̄0] direction, the second highest to the [110] direction. The reverse

is true for electrons. That is why the directionality of the mobilities for holes and

electrons differ in the ab plane. The maximum mobility for holes (18.5 cm2/V s) is
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a

b
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mobility µ [cm2/(Vs)]
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 0  5  10  15

mobility µ [cm2/(Vs)]

Figure 3.5: The mobility for holes (left) and electrons (right) in the pentacene crystal
for F = 107V/m and T = 300K.
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Figure 3.6: The mobility for holes and electrons in the pentacene crystal in the ab,
ac and bc plane. The parameters are the same as in fig. 3.5. For comparison some
experimental values [390] are plotted. (In the experiment the crystal orientation could
not be determined [390] and therefore the experimental data are rotated to fit best.)
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h+ [meV] e− [meV]
V1 90.69 85.18
V2 55.05 89.66
V3 39.68 50.00
V4 36.62 47.10
λ 92 131

Table 3.2: The most important elec-
tronic couplings and the reorganization
energy in the pentacene crystal for holes
and electrons, cf. fig. 3.7.

V3

V2

V1

V4

a

b

Figure 3.7: The most important hopping
paths in the pentacene crystal. Direction
of view is parallel to the c∗ axis. The
couplings are listed in tab. 3.2.

found at 132◦, the maximum for electrons (13.7 cm2/V s) at 37◦.

Figure 3.6 shows a comparison between the calculation and some experimental

mobility values for holes [390]. It should be noted that the crystal orientation could

not be determined in the experiment [390]. The measured mobility varies between

0.66 and 2.3 cm2/V s. This shows that the calculated maximal mobility is almost one

order of magnitude too big. However, in highly purified single crystals of pentacene

a mobility of 35 cm2/V s has been measured [389]. It was also experimentally con-

firmed that the mobility in the ab plane is much larger than along the c∗ axis [389].

This is in agreement with the calculations where the minimal mobility of about

0.2 cm2/V s is in c∗ direction. For room temperature and lower, the measurements

showed a temperature dependence of the mobility following µ ∝ T−n with a pos-

itive n indicating band transport [389]. While this is not in accordance with the

thermally activated hopping model used here, it was also shown that above room

temperature a different transport mechanism dominates the mobility. A further

reason for the overestimation of the mobility is that the nonlocal electron-phonon

coupling [94–101] is neglected in our model. While the absolute values do not match

the measured mobilities, the qualitative dependency on the crystal direction fits to

the experimental results.

3.6.2 Rubrene

Rubrene (see fig. 3.4b) is a hole conductor. It crystallizes with four differently

oriented monomers in the unit cell. The calculations were conducted using the

morphology described by Jurchescu et al. [395] at 293K. Table 3.3 shows the re-
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organization energies and the values of the four highest electronic couplings. The

couplings next in size are two orders of magnitude smaller than the smallest coupling

listed. This is in agreement with previous calculations [79, 102]. The hopping paths

corresponding to these couplings are drawn in fig. 3.8. The largest coupling (V1)

is between equally oriented monomers along the b direction, which is the smallest

lattice constant. The second largest couplings are between monomers which lie in

the same plane perpendicular to the a axis. V3 is the coupling between these planes

and V4 is the coupling between monomers in the same plane perpendicular to the b

axis.

Table 3.3: The most important electronic couplings and the reorganization energy
in the rubrene crystal for holes and electrons, cf. fig. 3.8. For comparison calculated
values for holes from refs. [102] and [79] are shown.

h+ [meV] e− [meV] h+ [meV] [102] h+ [meV] [79]
V1 95.73 49.40 89 83
V2 16.38 5.55 19 15
V3 1.36 0.59
V4 0.24 0.24
λ 146 199 152 159

V2

1V
b

c

V3

V4

c

a

Figure 3.8: The most important hopping paths in the rubrene crystal. Direction of
view is parallel to the a axis (left) and the b axis (right) respectively. The black and
the gray monomers have a different position in b direction. The corresponding values
of the couplings is listed in tab. 3.3.
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Figure 3.9: The mobility for holes and electrons in the rubrene crystal in the ba, ac
and bc plane. The parameters are F = 107V/m, T = 300K. For comparison some
experimental values for hole mobilities [391, 396, 397] are plotted for the ba plane.
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Figure 3.10: The mobility for holes (left) and electrons (right) in the rubrene crystal
in all three dimensions. The parameters are the same as in fig. 3.9.
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In contrast to pentacene, the electronic coupling for holes and electrons in

rubrene differs remarkably. That is why the calculated mobility for electrons is

about one order of magnitude smaller than for holes, see fig. 3.9. But unlike pen-

tacene, the angular dependence of the mobility is qualitatively the same for both

types of charge carriers. A three dimensional depiction is shown in fig. 3.10. The

maximum mobility (20 cm2/V s for holes and 3 cm2/V s for electrons) is in b direction

because of the short lattice constant in that direction and the resulting strong elec-

tronic coupling. The lowest mobility (0.03 cm2/V s for holes and 0.003 cm2/V s for

electrons) is in a direction. The main contribution to the mobility in that direction

are the zig-zag jumps between the planes perpendicular to b which are marked with

V3 in fig. 3.8 and the zig-zag jumps between the planes perpendicular to the c axis

marked with V4. The corresponding couplings are more than one order of magnitude

smaller than the next highest coupling V2. The zig-zag jumps corresponding to V2

are the main contribution to the mobility in c direction.

Figure 3.9 shows some experimental mobility values for holes for the ba plane [391,

396, 397]. As for pentacene the calculation overestimates the mobility. The calcu-

lated maximum mobility is four times larger than the measured value. The mobilities

for pentacene and rubrene calculated in ref. [102] with a similar approach seem to

fit better to the experiment. Yet it seems that in those calculations a wrong dwell

time of the charge carriers was used (cf. sec. 3.3).

The reorganization energy for rubrene is much higher than for pentacene. It was

shown that the low-frequency bending of the phenyl side-groups in rubrene around

the tetracene backbone contributes strongly to λ [394]. However, this bending might

be impeded in the crystal and a smaller reorganization energy would lead to an even

higher mobility.

Temperature-dependent measurements in rubrene have shown a decrease of the

mobility with increasing temperature around room temperature [392, 393]. This

could be an indication for band transport. However, the qualitative anisotropy of

the mobility calculated with the hopping model fits quite well to the measurements.

3.6.3 PBI-F2

A promising class of materials for organic electronics are perylene bisimides. Due to

their light resistance [400] and intense photoluminescence [401] they are widely used

as robust organic dyes in the automotive industry [400]. Furthermore, they show a

considerable electron mobility [87, 89, 402] and a high electron affinity [398, 402].

That is why they serve as n-type semiconductors for organic field effect transis-
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tors [398, 403–407] and as electron acceptor material in organic solar cells [88, 407–

409].

The core-fluorinated perylene bisimide PBI-F2 described by Schmidt et al. [398]

and depicted in fig. 3.4c was analyzed. This material is quite interesting for applica-

tion since it is remarkably air stable because of its electron-withdrawing substituents

which makes the electrons less susceptible to trapping with oxygen. The planarity

of the perylene core is only slightly distorted by the core fluorination which leads

to a torsion angle of 3◦ [398]. It was shown that PBI-F2 has a narrower valence

band and a broader conduction band than the unsubstituted PBI, mainly due to

the altered molecular packing [410]. The unit cell contains two differently orientated

monomers. In contrast to pentacene and rubrene, PBI-F2 is an electron conductor

which is caused by its high electron affinity. The electronic couplings for electrons

and holes differ remarkably. The strongest couplings are collected in tab. 3.4. The

couplings which are not listed are at least one order of magnitude smaller than the

smallest coupling mentioned. The strongest coupling for electron transport is found

between monomers shifted along the b direction, see fig. 3.11. Note that this is

about 300 times bigger than the coupling next in size, which is the one between two

differently orientated monomers within the same unit cell. The result is an almost

one dimensional charge transport along the b direction, see fig. 3.12 and 3.13. This

might be problematic for application, since the charge transport gets very sensitive

to lattice distortions, because the electron cannot easily pass at lattice defects which

cannot be avoided in real crystals.

Whereas the coupling between b shifted monomers is very strong for electrons,

this is surprisingly not the case for holes. Their coupling is more than two orders of

magnitude smaller than the electron coupling. This is confirmed by other calcula-

tions [410]. The reason can be found in the differing nodal structure of the HOMO

and the LUMO orbital for that dimer, see fig. 3.14. By sliding one monomer relative

to the other along the long axis, the coupling for holes oscillates depending on the

displacement around zero [410], because the overlap of the two HOMO orbitals with

same and different phase alternate. All the other coupling constants do not differ

significantly for the two types of charge carriers. This sole difference in the coupling

results in a maximum electron mobility that is two orders of magnitude bigger than

the maximum hole mobility, which is achieved in c direction. However, in the plane

perpendicular to b, the hole mobility is two orders of magnitude bigger than that of

electrons, see fig. 3.13.

The calculated reorganization energies, 303meV for electrons and 213meV for

holes, is bigger than those for rubrene and pentacene. The values are in very good
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Table 3.4: The most important electronic couplings and the reorganization energy in
the PBI-F2 crystal for electrons and holes, cf. fig. 3.11.

h+ [meV] e− [meV] h+ [meV] Ref. [410] e− [meV] Ref. [410]
V1 0.251 129.234 2 107
V2 2.398 0.452
V3 0.010 0.017
V4 0.003 0.004
V5 0.001 0.002
λ 213 303 215 (213) 309 (307)

c

b

a

V2

V4

a
b
c

V3

V5

V1

Figure 3.11: The most important hopping paths in the PBI-F2 crystal. The values of
the corresponding couplings are listed in tab. 3.4.

a

b

c

h+

 0  0.004  0.008  0.012

mobility µ [cm2/(Vs)]

a

b

c

e−

 0  1  2  3

mobility µ [cm2/(Vs)]

Figure 3.12: The mobility for holes (left) and electrons (right) in the PBI-F2 crystal
in all three dimensions. The parameters are F = 107V/m, T = 300K.
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Figure 3.13: The mobility for electrons and holes in the PBI-F2 crystal in the ab, ac
and bc plane. The parameters are F = 107V/m, T = 300K.
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Figure 3.14: The PBI-F2 HOMO (left) and the LUMO (right) orbital for the dimer
which is built by a b shift and leads to the coupling V1, cf. tab. 3.4 and fig. 3.11.

agreement with reorganization energies calculated by Delgado et al. [410] (309 and

307meV for electrons, 215 and 213meV for holes).

In order to test the master equation approach, some calculations were verified

with Monte Carlo calculations. Figure 3.15 shows some averaged positions of the

electrons depending on the time calculated with the Monte Carlo method, for differ-

ent angles to the a axis within the ab plane. The average was taken over 100 charge

carriers resulting in straight lines whose gradient is the average velocity needed

for the calculation of the mobility, see eq. (3.21). The results of both methods,

the master equation and Monte Carlo, agree very well within the error bars of the

Monte Carlo method. As an example fig. 3.16 shows the mobility of electrons in
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Figure 3.15: Averaged electron positions in the ab plane of PBI-F2 for different an-
gles to the a axis. Calculated with Monte Carlo. (Averaged over 100 trajectories,
E = 107V/m, T = 300K.) The slope triangle corresponds to the velocity.
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Figure 3.16: Comparison of master equation and Monte Carlo results for the electron
mobility in PBI-F2 in the ab plane. The parameters are E = 107V/m, T = 300K.
The two methods show very good agreement.

PBI-F2 in the ab plane calculated with both approaches. The Monte Carlo simula-

tions have run for at least 10 ns and have been averaged over at least 100 simulation

runs, leading to a relative average error of less than 1%. For this example the master

equation approach required about 80.000 times less CPU time than the Monte Carlo

approach. Thus the master equation approach is clearly advantageous as it is exact

within the numerical accuracy of the computer while the Monte Carlo approach

contains significant and slowly converging statistical errors.

3.6.4 PBI-(C4F9)2

A further fluorinated perylene bisimide was investigated (see fig. 3.4d and tab. 3.1)

which was described by Li et al. [399] and which is also an electron conductor.

The four most important couplings are listed in tab. 3.5 and depicted in fig. 3.17.

In contrast to the other molecules it is striking that there is no symmetry-caused

degeneration of the electronic couplings. It is furthermore important to notice that

the intracolumn couplings V1 and V2 along the π stacks, which are parallel to the

a axis, differ by a factor of 3. This leads to a “trapping” of the charge carrier

between the monomers which are coupled by V1 as described in sec. 3.3: After

jumping from one monomer to the next one along V1, the charge carrier is more

likely to jump back to the first monomer than to move on along V2. To illustrate this

trapping a charge trajectory along the a axis, simulated by Monte Carlo, is drawn in
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Table 3.5: The most important electronic couplings and the reorganization energy in
the PBI-(C4F9)2 crystal, cf. fig. 3.17.

h+ [meV] e− [meV] e− [meV] Ref. [229]
V1 47.2 97.7 95.7
V2 26.8 33.7 35.0
V3 1.1 2.1 2.2
V4 0.3 1.1 0.9
λ 258 339 360

V1V2

a

V3

V4

b

c

Figure 3.17: The most important hopping paths in the PBI-(C4F9)2 crystal. The
coupling values are listed in tab. 3.5.

fig. 3.18 (top). One clearly sees that the charge carrier very often oscillates between

two sites which lowers the mobility of the charge along the stacks. For comparison,

a charge trajectory in PBI-F2 along the high mobility axis is also depicted. No

oscillatory motions can be found there.

This peculiarity of PBI-(C4F9)2 becomes important when calculating the mo-

bility: Because of the “trapping” that is caused by these oscillations, the mobility

calculated with eq. (3.18) or (3.20) and the Einstein relation, eq. (2.189), is severely

overestimated, see fig. 3.19. The green dotted curve is calculated without external

field with the master equation along with eq. (3.20) or (3.18) respectively, where

the latter one is often used in literature. The red solid curve is also obtained by the

master equation but the direct equation for the mobility, eq. (3.13), was applied.

The maximum mobility between these two curves differ by a factor of 2.4. Besides

that, the calculation using the diffusion coefficient and the Einstein relation even
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Figure 3.18: Projection of the charge trajectory onto the respective direction with the
highest mobility for PBI-(C4F9)2 (a direction, top) and PBI-F2 (b direction, bottom).
The parameters are E = 107V/m, T = 300K.

0 0.2 0.4 0.6

mobility µ [cm2/(Vs)]

 

a

b
via D (E = 0)

via D (E = 107 V/m)
direct (E = 107 V/m)

Monte Carlo

Figure 3.19: Comparison of the mobility in the ab plane of PBI-(C4F9)2 calculated
via the diffusion coefficient [eq. (3.20)] and the Einstein relation [eq. (2.189)] for E = 0
(green, dotted) and E = 107V/m (black, dashed), calculated directly [eq. (3.13), red,
solid] and calculated with Monte Carlo [eq. (3.21), blue points] for E = 107V/m
(T = 300K in all cases).
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a
b

c
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 0  0.1  0.2  0.3

mobility µ [cm2/(Vs)]
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c
e

−

 0  0.1  0.2
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Figure 3.20: The mobility for holes (left) and electrons (right) in the PBI-(C4-F9)2
crystal in all three dimensions. The parameters are F = 107V/m, T = 300K.

results in a wrong angle for the maximum mobility. To prove that the result of

eq. (3.13) (red solid line) is the right one, Monte Carlo simulations were conducted

(blue points). The simulations ran for 10 ns and 〈x〉 was averaged over 1000 trajec-

tories. The relative average error was about 0.4% and the deviation of the master

equation from Monte Carlo was about 0.2%. The Einstein relation was proven to

hold, even in the presence of an external field. The differences in the results of

eq. (3.18) or (3.20) and (3.13) are not caused by the electric field. This is shown

by the black dashed line which was calculated with eq. (3.20) but with the same

field as for the red solid line. One clearly sees that the black dashed line does not

coincide with the red solid line but with the green dotted line (calculated without

field) instead, proving that this approach cannot be applied. Referring to the work

presented here and published before [352], this was also shown for the β phase of

the mer-tris(8-hydroxyquinolinato)aluminum(III) (Alq3) crystal [375]. Figure 3.20

shows the hole and electron mobility in all three dimensions.

3.7 The external reorganization energy

The charge carrier does not only influence the geometry of the molecule it is located

at, but also the surrounding due to polarization effects (nonlocal electron-phonon

coupling). This intermolecular effect can be taken into account within the Marcus

theory by calculating the external reorganization energy and adding this to the

internal (intramolecular) part, eq. (3.2). As already mentioned in sec. 3.1, the

external λ and therefore its impact on the transport is expected to be small [353,

354]. Here this is tested with some of the crystals already investigated in sec. 3.6 to

be able to compare. However, the external reorganization energy is very important
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in the framework of the Levich-Jortner theory, sec. 2.3.3. Its impact there is studied

in chapter 4.

3.7.1 Calculational approach

The calculations of the external reorganization energy were conducted by Dr. Maxim

Tafipolski by force field methods.

The polarizable force field AMOEBA (atomic multipole optimized energetics

for biomolecular applications) [411] is used. It uses multipole moments at each

atomic centre including the monopole (charge), dipole, and quadrupole moments

to treat permanent electrostatic interactions (pairwise additive). Atomic multipole

moments are derived from density functional theory (PBE0 [293, 294, 412], aug-cc-

pVTZ) calculations performed with Gaussian [413] of the isolated monomer (neutral

or cationic) wave function. For that purpose Stone’s distributed multipole analy-

sis [414, 415] is used. In addition to permanent electrostatic interactions, damped

induced dipoles at each atomic centre are used for explicit treatment of many-body

polarization effects (non-pairwise additive) [416]. In AMOEBA, a classical point

dipole moment is induced at each polarizable atomic site according to the electric

field felt by that site. Molecular polarization is achieved via an interactive induc-

tion model with distributed atomic polarizabilities damped at very short range.

This interactive or mutual induction scheme requires that an induced dipole pro-

duced at any site will further polarize all other sites, and such mutual induction

will continue until the induced dipoles at each site reach convergence. The univer-

sal damping factor adopted by AMOEBA and isotropic atomic polarizabilities for

carbon and hydrogen in aromatic rings recommended in ref. [411] are used. With

these atomic polarizabilities the molecular polarizability tensors for polyacenes are

underestimated as compared to the benchmark values calculated in ref. [417]. To

reproduce those benchmark results more closely the isotropic polarizability of the

aromatic carbon atom is enlarged by ca. 14% (from 1.75 to 2.0 A3) but almost no

difference is found (as far as the reorganization energy is concerned). All force field

calculations are done with the Tinker program package [418].

A crystalline cluster consisting of 6× 6× 3 unit cells in a, b and c direction and

with periodic boundary conditions is optimized with a charge carrier positioned in

the middle of the cluster, leading to the energy E. The geometry of the central

molecule is kept frozen during the optimization in order to isolate the external part

of the reorganization. In a next step the energy E∗ of the same cluster geometry, but

with the charge at a neighbour molecule, is calculated. The reorganization energy



122 3. Charge transport with the Marcus theory

is then

λext = E∗ − E (3.28)

However, depending on the crystal symmetry λext depends on the regarded donor-

acceptor pair, because the different monomers have a different crystal surrounding.

The resulting λext is taken as the average of these values and added to the intramolec-

ular reorganization energy calculated as explained in sec. 3.5.

Another approach which is also found in literature [354] is to optimize the cluster

in its neutral state and with a charge carrier positioned in the middle of the cluster.

The energies E0 of the neutral cluster and Ec of the cluster containing the excess

charge are determined and additionally the energy of the cluster with neutrally

optimized geometry but with additional charge, E∗
c , and the energy of the neutral

cluster with the geometry optimized for the charged state, E∗
0 , are determined. The

external reorganization energy is then calculated analogously to the internal λ, cf.

eq. (3.22),

λ′ext = (E∗
c − Ec) + (E∗

0 − E0) (3.29)

This approach is also tested. However, the reorganization is probably overestimated

because for the calculation the crystal structure of a cluster containing a charge in

the middle is compared with the structure of a completely neutral cluster.

It was shown that the polarization energy is the main contribution to λext [353,

354, 419]. However, the charge redistribution within the molecules, which con-

tributes significantly [420, 421], is not taken into account by the AMOEBA force

field, leading to an underestimation of the polarization energy [353] and therefore

probably to an underestimation of the external reorganization energy.

3.7.2 Numerical results

Table 3.6 lists the analyzed molecules and their external reorganization energies.

Because of the crystal symmetry, a monomer in an acene crystal has three differently

orientated neighbour monomers with respect to itself, which are indicated in fig. 3.21

(exemplarily for naphthalene) by arrows. Naphthalene and anthracene belong to the

space group P21/a, whereas tetracene, pentacene and hexacene belong to the space

group P 1̄. Because of the lower symmetry of the latter three, the two monomers in

the unit cell do not have exactly the same environment. However, this is neglected

here. The numbers of the monomer pairs given in tab. 3.6 correspond to the numbers

in fig. 3.21.
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Table 3.6: External reorganization energies for hole transport. The numbers of the
dimers in the third column correspond to the numbers in fig. 3.21. λext is calculated
for each of these dimers using eq. (3.28), 〈λext〉 is the average of the dimer values,
and λ′

ext is determined with eq. (3.29). For comparison the internal reorganization
energies λint, eq. (3.22), are also given.

ref. dist. [nm] λext [meV] 〈λext〉 [meV] λ′ext [meV] λint [meV]
1 0.496 38

naphthalene [422] 2 0.505 37 35 70 183
3 0.588 31
1 0.515 50

anthracene [423] 2 0.525 55 52 72 136
3 0.595 50
1 0.471 14

tetracene [424] 2 0.515 16 19 56 110
3 0.603 27
1 0.479 28

pentacene [388] 2 0.514 27 29 52 92
3 0.624 32
1 0.474 35

hexacene [367] 2 0.513 31 33 44 81
3 0.625 33

1

2

3

Figure 3.21: A naphthalene monomer with its nearest neighbours in the crystal.

For comparison the internal reorganization energies λint (sec. 3.5) are also given

in tab. 3.6. They decrease with increasing number n of the benzene rings (from

183meV for naphthalene to 81meV for hexacene) which can be described by the

fitted power law

λint ≈ 0.31 · n−0.74 (3.30)
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see fig. 3.22. However, because of the larger complexity, there is no such simple

correlation for the external reorganization energy. As already mentioned above,

even the crystal symmetry changes with increasing monomer length, which impedes

to find a similar relationship as for λint. Anthracene has the highest λext of 52meV,

whereas tetracene has the lowest of only 19meV, cf. tab. 3.6 and fig. 3.22.

Table 3.6 furthermore lists the alternative reorganization energies λ′ext calcu-

lated with eq. (3.29). As expected these energies are larger than λext obtained with

eq. (3.28), up to a factor of 3 for tetracene. In contrast to λext, λ
′
ext decreases with

increasing molecule size for the molecules with P 1̄ symmetry (tetracene to hexac-

ene). Furthermore λ′ext is almost the same for naphthalene and anthracene, whereas

their λext differs by a factor of 1.5. This shows the necessity of further effort to in-

vestigate the correct calculational approach for the external reorganization energy,

since even the qualitative trend differs for different approaches. Since the approach

of calculating λext seems to be physically more reasonable than λ′ext, these external

reorganization energies are used for the mobility calculations.

The calculations are conducted with a relative dielectric constant of εr = 1.

However, because of the polarization of the crystal environment, a value of εr = 3

seems to be more appropriate [425–429]. Taking this into account, the λ′ext value

of naphthalene changes from 70meV (εr = 1) to 24meV (εr = 3) which is about
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Figure 3.22: The internal and external reorganization energies for the acenes depend-
ing on the number of benzene rings. The line is a fit, see eq. (3.30). Note that the
crystal symmetry changes when going from three to four benzene rings: naphthalene
and anthracene belong to the space group P21/a, tetracene, pentacene and hexacene
belong to the space group P 1̄.
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a divisor of three smaller. In the case of λext, this effect is expected to be smaller.

However, one has to bear in mind that the external reorganization energy is probably

overestimated in trend.

Figures 3.23 to 3.27 depict the hole mobilities for naphthalene, anthracene,

tetracene, pentacene and hexacene for three different crystal planes, calculated with

and without the external reorganization energy. For comparison, some experimen-

tal values are also drawn. For naphthalene the measured mobilities [430–434] are

even larger than µ calculated without λext. In the case of anthracene, including

λext leads to a better agreement with the experiment [430, 435, 436]. However, for

tetracene and pentacene the calculated mobilities are much larger than in the ex-

periment [390, 437] so that even including λext hardly leads to an improvement. In

the literature, different approaches for the calculation of the external reorganization

energies are proposed [354, 438]. However, the large discrepancy between calculation

and experiment suggests that improving the calculation of λext is not constructive in

order to achieve better agreement with the experiment. For a matching, the external

reorganization energy for pentacene for example had to be about 180meV, which

is twice the internal reorganization. This is not realistic and it makes clear that

the mismatch between the measurement and the Marcus hopping model cannot be

explained by surrounding effects.

3.8 Summary

A quantum chemical protocol for calculating the charge-carrier mobilities in organic

semiconductor crystals was presented. A hopping model using Marcus theory has

0 1 2
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b without λext
with λext
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0 1 2

mobility µ [cm2/(Vs)]
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c

0 1 2
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c

Figure 3.23: Hole mobility in the naphthalene crystal, calculated with and without
external reorganization energy. For comparison som experimental values are also
given [430–434].
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Figure 3.24: Hole mobility in the anthracene crystal, calculated with and without
external reorganization energy, and some experimental values for comparison [430,
435, 436].
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Figure 3.25: Hole mobility in the tetracene crystal, calculated with and without ex-
ternal reorganization energy. The experimental values are from ref. [437].

0 5 10 15 20

mobility µ [cm2/(Vs)]

a

b without λext
with λext

measurement

0 5 10 15 20

mobility µ [cm2/(Vs)]

a

c

0 5 10 15 20

mobility µ [cm2/(Vs)]

b

c

Figure 3.26: Hole mobility in the pentacene crystal, calculated with and without
external reorganization energy. The experimental values are from ref. [390].
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Figure 3.27: Hole mobility in the hexacene crystal, calculated with and without ex-
ternal reorganization energy.

been implemented by means of the master equation approach which is more than four

orders of magnitude faster than the Monte Carlo method and free from statistical

errors. In contrast to the master equation, the Monte Carlo approach allows to

simulate the transport parameters with a time dependent framework. However,

since this is a stochastic method many simulation runs are needed in order to achieve

an acceptable statistical error. Furthermore, it is important to make sure that the

stationary state is obtained within the simulation time. This is a serious problem

for disordered materials (see chapter 8). By solving the analytic matrix equation

describing the stationary state instead by means of analytic numerical methods

guarantees the stationary solution.

The mobility is often calculated without external field, and without the master

equation by calculating the diffusion coefficient and applying the Einstein relation.

However, often the diffusion coefficient is overestimated in amorphous materials

and even in perfect crystals due to a “trapping” of the charge between energetically

similar sites. That is why it is more appropriate to calculate the mobility by means of

the master equation from the charge drift velocity. The obtained results fit perfectly

with those of Monte Carlo simulations.

The angular dependence of the mobility in pentacene, rubrene, PBI-F2 and

PBI-C4F9 was calculated and the results were correlated with the morphology of the

crystals. The results for pentacene and rubrene show a good qualitative agreement

with experimental data. However, the absolute values of the mobilities are strongly

overestimated, due to the assumption of localized charge carriers that move in a

hopping process without any interaction with nonlocal lattice vibrations being not

completely adequate for organic crystals. Nevertheless, this simple model allows for

qualitative transport property predictions. It was shown that PBI-F2 appears to be
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an almost one dimensional n-type semiconductor.

A protocol for the calculation of the external reorganization energy based on

force fields was developed. Two different approaches were compared, which result

in different energy values up to a factor of 3 for the acene molecules tested here.

They even show contradictorily qualitative trends for the acene subseries with P 1̄

symmetry. Further investigations for finding the correct calculational approach for

the external reorganization energy are therefore necessary. However, despite the

question of the reliability of the approaches tested here, it could be shown that

the surrounding effects are too small to explain the mismatch between the Marcus

theory and the experimental values in general.



4 Charge transport with the

Levich-Jortner theory

In chapter 3 the Marcus theory was tested for charge transport. However, as ex-

plained in detail in sec. 2.3.2, in the Marcus theory the molecular vibrations are

treated completely classically. Strictly speaking, this is only valid in the high-

temperature limit where the thermal energy exceeds the vibrational energy, i. e.

kBT ≫ ~ω. The intramolecular vibration frequencies are in the order of 1014Hz,

and these high-frequency vibrations have to be treated quantum mechanically. This

is taken into account in the Levich-Jortner theory which is derived in detail in

sec. 2.3.3. Though the external reorganization energy, caused by the interaction be-

tween the charge carrier and the donor-acceptor environment, can often be treated

classically, since the low-frequency condition is fulfilled. Whereas it is not obvious

how to include the external reorganization energy in the fully quantum mechanical

spectral overlap approach (sec. 2.3.1), it is simply added to the internal reorganiza-

tion energy in the Marcus theory. The Levich-Jortner theory combines the classical

treatment of the low-frequency vibrations, where surrounding effects are included,

and the quantum mechanical treatment of the high-frequency intramolecular vibra-

tions. Similar to the collective vibrational mode used for the classical vibrations

(explained in detail in the context of the Marcus theory in sec. 2.3.2), the quantum

mechanical vibrations are taken into account by introducing an effective frequency

and an effective Huang-Rhys factor.

4.1 The hopping rate

The hopping rate from a molecule i to molecule j within the Levich-Jortner theory

is, cf. eq. (2.153):

νji =
V 2
ji

~
·
√

π

kBT · λcl
·
∑

p

Sp
eff

p!
· exp(−Seff) · exp

(

−(∆Eji + λcl + p · ~ωeff)
2

4 · kBT · λcl

)
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The reorganization energy λcl covers the low-frequency vibrations, which are treated

classically. Its main contribution is the external reorganization energy λext, see

sec. 3.7. Additionally, the low-frequency intramolecular vibrations are also included

so that

λcl = λext +
∑

i

λi

eq. (2.111)
= λext +

∑

i

Si · ~ωi (4.1)

The summation index i runs over all classically treated vibrational modes of both

donor and acceptor. Also found in literature is the approach to treat all intramolec-

ular vibrations quantum mechanically and only the external vibrations classically:

λcl = λext (4.2)

Depending on the partition between classical and quantum mechanical vibrations,

the resulting hopping rates may differ [438].

The calculation of the Huang-Rhys factors Si is explained in sec. 2.3.1, see

eq. (2.111). ωeff is the average frequency of the high-frequency modes, weighted by

the respective Si, eq. (2.154), and Seff is the effective Huang-Rhys factor, eq. (2.155).

The calculation of the electronic coupling Vji is explained in sec. 2.7.5. The energy

difference ∆Eji between donor and acceptor is caused by the external electric field,

see eq. (3.1).

For the transport calculations the master equation approach as explained in-

depth in sec. 3.2 is used. The mobility is calculated with the rate equation (3.13).

4.2 Quantum chemical calculations

The electronic couplings are calculated as explained in sec. 3.5. For the calculation

of the Huang-Rhys factors Si and the frequencies ωi, the molecule is optimized in

the ground and in the ionized state using DFT (sec. 2.8.5) with the hybrid general-

ized gradient functional B3-LYP [296–299, 383, 384] and the correlation-consistent

polarized double ζ (cc-pVDZ) basis sets [385]. The same method and basis sets

are used for the frequency calculations of both geometries. Since unrestricted DFT

was used for the ionized states, the 〈S2〉 value was checked to exclude spin contam-

ination. The couplings are calculated with restricted DFT. It is known that the

acenes show an increase of unpaired electrons with increasing chain length, leading
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to a multiradical character. However, this can be neglected for the molecules re-

garded here [439, 440]. All quantum chemical calculations are performed with the

Turbomole program package [381, 382, 441].

4.3 Numerical results

Numerical investigations are performed using a series of acenes, which are depicted

in fig. 4.1, the lattice parameters of the crystals are listed in tab. 4.1.

Table 4.2 lists the effective frequencies, the effective Huang-Rhys factors and the

quantum mechanical and classical part of the reorganization energy for the inves-

tigated molecules. Seff slightly decreases with increasing molecular length, which

means that the geometric distortion upon the charge transfer becomes smaller with

increasing molecular size, cf. eq. (2.111), and the distribution of excited vibrational

quantum numbers is shifted to lower values. (The Franck-Condon factor can be

approximated (for low temperatures) by a Poisson distribution with expectation

value Si, see eq. (2.113)).

a) b) c) d) e)

Figure 4.1: The molecules investigated in this chapter: a) naphthalene, b) anthracene,
c) tetracene, d) pentacene, e) hexacene.

Table 4.1: Experimental lattice constants and angles for the unit cells used for the
considered crystals.

a [nm] b [nm] c [nm] α [◦] β [◦] γ [◦] ref.
naphthalene 0.869 0.601 0.829 90.00 122.60 90.00 [442]
anthracene 0.850 0.600 1.114 90.00 124.91 90.00 [423]
tetracene 0.606 0.783 1.301 77.13 72.12 85.79 [424]
pentacene 0.627 0.778 1.453 76.48 87.68 84.68 [388]
hexacene 0.629 0.767 1.642 98.66 91.16 95.71 [367]
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Table 4.2: Effective frequencies ωeff , effective Huang-Rhys factors Seff , quantum me-
chanical part of reorganization energy, λqm, and classical part, λcl, for the investigated
molecules. For the molecules regarded here λcl is identical to λext. For the external
reorganization energies cf. tab. 3.6.

ωeff [1014Hz] Seff λqm [meV] λcl [meV]
naphthalene 2.670 1.039 183 35
anthracene 2.795 0.738 136 52
tetracene 2.674 0.626 110 19
pentacene 2.447 0.574 92 29
hexacene 2.183 0.548 81 33

Table 4.3 lists all vibrational modes with a λi contribution of more than 1meV.

Only the totally symmetric vibrations are excited upon charge transfer. The number

of contributing vibrations increases with increasing molecule size, however, only 5

to 10 vibrational modes are relevant for the molecules regarded here.

At room temperature (kBT = 26meV), vibrations up to a frequency of

ω =
kB
~

· T ≈ 4 · 1013 Hz (4.3)

are excited. However, all vibrational modes in the acene molecules studied here lie

energetically higher, i. e., all intramolecular vibrations have to be treated quantum

mechanically. Therefore the classical part of the reorganization energy is λcl = λext,

eq. (4.1), and the partition into the classical and quantum mechanical vibrational

part, sec. 4.1, is clear. Though, this is not the general case, especially for large

molecules, where usually more low-frequency vibrations (molecular bending modes,

vibrations of side chains) appear. In the case of the acenes, the frequency of the

energetically lowest totally symmetric vibration – the stretch vibration in the di-

rection of the long molecule axis – decreases with increasing molecular length from

9.76 · 1013Hz for naphthalene to 4.23 · 1013Hz for hexacene.

Figures 4.2 to 4.6 show the hole mobilities for the acenes, calculated with both

the Levich-Jortner equation (2.153) and the Marcus equation (2.133), including

the external reorganization energy calculated in sec. 3.7. For comparison some

experimental values are also plotted. The values calculated with Levich-Jortner are

throughout significantly larger than those obtained with the Marcus theory. The

crucial difference between the Levich-Jortner equation and the Marcus equation is

that in the former the classical part of the reorganization energy, λcl, takes the place

of the total λ in the Marcus equation. Furthermore the quantum mechanical part

p · ~ωeff is added in the argument of the exponential function and the exponential
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Table 4.3: Frequencies, Huang-Rhys factors and reorganization energies of the vibra-
tions of the neutral and the cation structures of the investigated molecules. Only
those vibrational modes with λi > 1meV are listed.

neutral cation
ωi [10

14 Hz] Si λi [meV] ωi [10
14 Hz] Si λi [meV]

naphthalene
0.976 0.044 3 0.966 0.046 3
1.971 0.001 0 2.005 0.013 2
2.204 0.024 3 2.241 0.025 4
2.668 0.153 27 2.682 0.228 40
2.791 0.040 7 2.802 0.017 3
3.055 0.262 53 3.070 0.181 37

anthracene
2.212 0.020 3 2.240 0.024 3
2.434 0.041 7 2.416 0.015 2
2.719 0.100 18 2.691 0.151 27
2.854 0.011 2 2.885 0.048 9
3.018 0.191 38 3.027 0.127 25

tetracene
1.931 0.005 1 1.970 0.002 0
2.209 0.013 2 2.233 0.018 3
2.300 0.036 6 2.324 0.034 5
2.687 0.014 3 2.679 0.030 5
2.692 0.071 13 2.715 0.092 16
2.778 0.016 3 2.767 0.001 0
2.941 0.024 5 2.913 0.045 9
2.987 0.119 23 2.999 0.080 16

pentacene
0.496 0.031 1 0.494 0.030 1
1.924 0.005 1 1.959 0.003 0
2.204 0.012 2 2.226 0.017 2
2.255 0.036 5 2.274 0.034 5
2.517 0.001 0 2.508 0.005 1
2.684 0.085 15 2.687 0.010 2
2.721 0.008 1 2.713 0.098 18
2.804 0.005 1 2.822 0.000 0
2.945 0.081 16 2.923 0.049 9
2.983 0.018 4 2.985 0.039 8

hexacene
0.423 0.055 2 0.422 0.055 2
1.921 0.005 1 1.952 0.003 0
2.205 0.014 2 2.224 0.018 3
2.244 0.036 5 2.261 0.034 5
2.670 0.084 15 2.689 0.033 6
2.690 0.001 0 2.697 0.058 10
2.699 0.000 0 2.715 0.004 1
2.774 0.004 1 2.766 0.003 1
2.926 0.065 12 2.922 0.047 9
2.986 0.004 1 2.977 0.015 3
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Figure 4.2: Hole mobility in the naphthalene crystal, calculated with the Marcus and
the Levich-Jortner hopping rate. For comparison some experimental values are also
given [430–434].
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Figure 4.3: Hole mobility in the anthracene crystal, calculated with the Marcus and
the Levich-Jortner hopping rate, and some experimental values for comparison [430,
435, 436].
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Figure 4.4: Hole mobility in the tetracene crystal, calculated with the Marcus and
the Levich-Jortner hopping rate. The experimental values are from ref. [437].
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Figure 4.5: Hole mobility in the pentacene crystal, calculated with the Marcus and
the Levich-Jortner hopping rate. The experimental values are from ref. [390].
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Figure 4.6: Hole mobility in the hexacene crystal, calculated with the Marcus and the
Levich-Jortner hopping rate.

part is summed over all final vibrational states, p = mD + nA, weighted by the

probability of p, which is a Poisson distribution1:

P (p) =
Sp
eff

p!
· e−Seff (4.4)

This is plotted in fig. 4.7 for the regarded acenes. In the case of naphthalene,

the exponential term in the Marcus hopping rate, exp[−λ/(4kBT )] (for simplic-

ity ∆E = 0 here) has a value of 0.12, using the total reorganization energy of

λ = λqm + λcl = 218meV, tab. 4.2. The same exponential term appears in the first

summand of the Levich-Jortner hopping rate (p = 0), however, since λcl (35meV,

tab. 4.2) replaces the total λ, its value is 0.71. This is weighted with the probability

1It is assumed that initially the system is in equilibrium and vibrations with ~ω > kBT , i. e.,
the quantum mechanically treated vibrational modes, are not excited, and therefore nD = mA = 0,
see eqs. (2.138) to (2.141). In this case the Franck-Condon factor turns into a Poisson distribution,
eq. (2.113).
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Figure 4.7: The probability distribution of the sum of the final vibrational numbers
p = mD + nA, eq. (4.4), for the regarded acenes.

P (p = 0) = exp(−1.039) = 0.35, leading to 0.25, which is still twice the value from

the Marcus hopping rate. The summands with p 6= 0 in principle further increase

the hopping rate with respect to the Marcus rate, which leads to the much higher

mobilities obtained with the Levich-Jortner theory. This comparison of numbers

shows that the different reorganization energies which are used in the Marcus and

the Levich-Jortner hopping rates are the reason for the large differences of their

results. In the Levich-Jortner theory, it is taken into account that in essence the

vibrations up to an energy of kBT are excited and that higher energetic vibrations

do become partially excited upon charge transfer, however, play a minor role for

the molecular reorganization. In the Marcus theory, all vibrational modes influence

the hopping rate, even those which are too high in energy to become excited. The

vibrational modes highest in energy in the neutral and in the cationic naphthalene

respectively have an energy of ~ω ≈ 200meV ≈ 8kBT and may hardly play a role for

charge transfer, however, they contribute 90meV to the total λ in the Marcus theory

(see tab. 4.3). The reason for the better results of the Marcus theory than those of

the Levich-Jortner theory compared to the experimental values (figs. 4.2 to 4.5) is

therefore the overestimation of the physically relevant molecular reorganization due

to the simplified treatment of the vibrations.

The Levich-Jortner theory is derived in detail in sec. 2.3.3. The energy p · ~ωeff

enters the exponential function by integration over the delta function in eq. (2.144).
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As can be seen in eq. (2.142), and as it is explained in the text above this equation,

the appearance of this term in the delta function corresponds to an energetic shift of

the auxiliary function DD(E) with respect to DA(E), eqs. (2.136) and (2.137), which

both are “quasi-densities of states”, leading to a smaller overlap and therefore to a

smaller hopping rate. For the acenes regarded here, the exponential functions in the

Levich-Jortner hopping rate with p 6= 0 are virtually zero and only the summand

with p = 0, i. e. the vibrational 0 → 0 transitions for both donor and acceptor,

contribute here to the hopping rate.

As explained above, the reason for the higher mobilites of Levich-Jortner theory

compared with Marcus is the comparatively small classical part of the reorgani-

zation energy, λcl, where mainly (in the case of the acenes even exclusively) the

external reorganization energy contributes. The correct way of how to take the

nonlocal charge-phonon coupling into account and how to calculate the external

reorganization energy is currently a frequently discussed topic [353, 354, 438]. In

sec. 3.7.1 two different approaches to calculate the external λ were developed, leading

to λext = 29meV and λ′ext = 52meV respectively for pentacene (tab. 3.6). Figure 4.8

shows the hole mobility for this crystal in the ab plane calculated with both values

for the external reorganization energy. The mobility decreases by a divisor of 1.7

when using the higher λ′ext instead of λext, however, it is still a factor of about eight

bigger than the experimental values. In order to obtain mobilities in the same order

of magnitude than the measured values, an external reorganization energy of about

0 10 20 30

mobility µ [cm2/(Vs)]

 

a

b λext =   29 meV
λext =   52 meV
λext = 200 meV

measurement

Figure 4.8: The hole mobility for pentacene calculated with λext = 29meV (dashed),
λ′
ext = 52meV (dotted, for both values see tab. 3.6) and λext = 200meV (solid), which

is chosen so that the mobility fits to the experimental values (green).
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Figure 4.9: The hole mobility for tetracene calculated with λext = 500meV which is
chosen so that the mobility approximately fits to the experimental values.

200meV is necessary. In the case of tetracene (λext = 19meV and λ′ext = 56meV),

fig. 4.9, even an external λ of 500meV is necessary. However, these high values

are not realistic. Therefore the reason for the much too large mobilities obtained

with the Levich-Jortner theory cannot be found in an insufficient consideration of

surrounding effects, as was already shown for the Marcus theory in sec. 3.7.2.

4.4 Summary

The Levich-Jortner theory (derived in sec. 2.3.3) was applied to charge transport.

In contrast to the Marcus theory, only the low-frequency vibrations are treated

classically, whereas the high-frequency vibrations of the molecules are treated quan-

tum mechanically, which is physically more correct. It was shown that mainly the

classical part of the reorganization energy influences the hopping rate.

The Levich-Jortner theory strongly overestimates the charge carrier mobilities

and the results deviate even stronger from the experiment than those obtained with

the Marcus theory (sec. 3.7.2). The Marcus theory contains larger approximations

by treating all vibrational modes classically (sec. 2.3.2). It was shown that this

approximation leads to a strong overestimation of the significance of the molecu-

lar high-frequency vibrations to the molecular reorganization upon charge transfer,

which lowers the hopping rates. As a result the Marcus theory fits better to the

experiment than the Levich-Jortner theory due to error cancellation.
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Only those vibrational modes with an energy up to the thermal energy have

an essential impact for charge transport. This is the case for the intermolecular

vibrations which are covered by the external reorganization energy. However, as

already shown for the Marcus theory, the surrounding effects are too small to explain

the gap between the theoretical values calculated with the Levich-Jortner theory and

the experimental values.

The theory was tested taking a series of acene molecules as examples. In these

cases the classical reorganization energy equals the external reorganization energy,

since all intramolecular vibrations are energetically far above kBT . In terms of the

intramolecular vibrations, only the 0 → 0 transitions for both donor and acceptor

play a role, because the overlap between the vibrational densities of states is too

small for higher excitations.





5 Exciton transport with the

spectral overlap approach

The exciton can be regarded as a quasiparticle (an electron-hole pair, cf. sec. 2.1). If

the coupling between the molecules is small, the exciton is assumed to be localized

and its motion can be described as a nonadiabatic hopping process (sec. 2.2.3) based

on time dependent perturbation theory (Fermi’s Golden rule [168–170]). In contrast

to charge carriers (sec. 3), where often the Marcus theory is used, sec. 2.3.2, for

excitons the spectral overlap approach is customarily applied [133, 174–176, 235,

443]. This approach was derived in sec. 2.3.1 and contains less assumptions and

approximations than the Marcus theory.

In contrast to charge carriers, excitons are neutral and are therefore not ac-

celerated by an external field. Their motion is completely diffusive (non-directional

random walk), and therefore the central material parameter describing exciton trans-

port is the diffusion length, as explained in chapter 1. In this chapter a protocol and

the related equations are developed which allow for the efficient directional analy-

sis of exciton transport. It is based on an alternative rate equation compared to

the frequently employed rate equation since the latter was found to be erroneous in

some cases. The new approach makes it possible to use the master equation which is

considerably faster than the corresponding Monte Carlo approach. The approach is

applied to singlet exciton diffusion in those substances where these quantities are ex-

perimentally best established: naphthalene and anthracene. The high quality of the

crystals, furthermore, diminish uncertainties arising from the geometrical structures

used in the computations.

Most of the results in this chapter have already been published in ref. [444].
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5.1 The transport calculations

The hopping rate within the spectral overlap approach is given as in eq. (2.99):

νji =
2π

~
· V 2

ji · J

The calculation of the electronic couplings Vji is explained in sec. 2.7. The Franck-

Condon-weighted density of states J , which is given in eq. (2.100), accounts for

the vibrations of the molecules and is approximated by the spectral overlap of the

densities of states Dem
i (E) of the donor emission and Dabs

j (E) of the acceptor absorp-

tion, see eqs. (2.97) and (2.98). In order to calculate J the molecular vibrations are

treated as harmonic oscillators [177, 182]. Since it was reported that the Duschinsky

rotation [183] (explained in sec. 2.3.1) was found to be minor [185], it is neglected

here, i. e., it is assumed that the normal modes of the ground and excited state are

aligned in parallel (parallel mode approximation [177]). The densities of states D

are directly related to the intensities of the absorption and emission spectra. Their

calculation is explained in detail in sec. 2.3.1.

The diffusion constant in a certain direction is often calculated via eq. (3.18) [79,

108, 376, 377]:

D =
1

2
· 1

N
·

N∑

i=1

∑

j

νji · (~rji · ~e)2 (5.1)

where N is the number of monomers in the unit cell, ~rji is the distance between

site i and j and ~e is the unit vector in the regarded direction. The summation

index j runs over all neighbouring lattice sites. However, it was shown in chapter 3

that this approach leads in some cases to wrong results. This is depicted in fig. 3.2:

If the electronic couplings in one direction are alternating strong and weak, the

exciton frequently jumps back and forth between two strong interacting monomers

without moving on. These back and forth jumps are all summed up in eq. (5.1) even

though they do not contribute to the diffusive spreading of the excitons, resulting

in an overestimation of D. The severity of this artefact depends on the crystal and

on the regarded direction in the crystal. In the case of naphthalene for example

(sec. 5.3.1), the diffusion constants obtained with eq. (5.1) are too large by a factor

of one to six depending on the direction so that the predicted anisotropy of D is

even qualitatively wrong.

In the new approach developed here this problem is circumvented by applying a

mathematical trick. A non-physical, fictitious “force” ~F is introduced which gives

rise to an average velocity 〈v〉 and thus a mobility µ of the excitons. As it is shown
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in the following µ can be efficiently calculated by solving the stationary master

equation as developed in sec. 3.2, and the limit of µ to zero F is related to the

diffusion constant via readily available properties of the Franck-Condon weighted

density of states (FCWD).

The introduced force causes an energy difference

Eji = −~F · ~rji (5.2)

between the monomers i and j. This energetic shift influences the FCWD: Inserting

eqs. (2.97) and (2.98) back into eq. (2.100) the FCWD is without the force

J =

∞∫

−∞

dE Dem
i (E) ·Dabs

j (E) (5.3)

=

∞∫

−∞

dE
∑

mini

f ♯
ini

· |〈χimi
(Ri)|χ♯

ini
(Ri)〉|2 · δ

(

Eimi
− E♯

ini
+ E

)

·
∑

mjnj

fjmj
· |〈χ♯

jnj
(Rj)|χjmj

(Rj)〉|2 · δ
(

E♯
jnj

− Ejmj
− E

)

=
∑

mini

∑

mjnj

f ♯
ini

· fjmj
· |〈χimi

(Ri)|χ♯
ini
(Ri)〉|2 · |〈χ♯

jnj
(Rj)|χjmj

(Rj)〉|2

·δ
(

[Eimi
+ E♯

jnj
]

︸ ︷︷ ︸

final state

− [E♯
ini

+ Ejmj
]

︸ ︷︷ ︸

initial state

)

(5.4)

Here the monomer i corresponds to the donor and the monomer j corresponds to

the acceptor. The delta function expresses the conservation of the energy after the

exciton transfer (donor in the ground state, acceptor excited (♯), first square bracket

in the delta function argument) and before the transfer (donor excited, acceptor in

the ground state, second square bracket). However, in the presence of the force,

the exciton has a different site energy at the donor and the acceptor. If the exciton

moves in force direction (i. e., ~F ‖ ~rji), its energy is lowered by Eji. Therefore

eq. (5.4) changes to

J̃(Eji) =
∑

mini

∑

mjnj

f ♯
ini

· fjmj
· |〈χimi

(Ri)|χ♯
ini
(Ri)〉|2 · |〈χ♯

jnj
(Rj)|χjmj

(Rj)〉|2

·δ
(

[Eimi
+ E♯

jnj
− ~F · ~rji]− [E♯

ini
+ Ejmj

]
)

=
∑

mini

∑

mjnj

f ♯
ini

· fjmj
· |〈χimi

(Ri)|χ♯
ini
(Ri)〉|2 · |〈χ♯

jnj
(Rj)|χjmj

(Rj)〉|2

·δ
(

[Eimi
− E♯

ini
− ~F · ~rji] + [E♯

jnj
− Ejmj

]
)
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=
∑

mini

∑

mjnj

f ♯
ini

· fjmj
· |〈χimi

(Ri)|χ♯
ini
(Ri)〉|2 · |〈χ♯

jnj
(Rj)|χjmj

(Rj)〉|2

·
∫

dE δ
(

Eimi
− E♯

ini
+ [E − ~F · ~rji]

)

· δ
(

E♯
jnj

− Ejmj
− E

)

=

∞∫

−∞

dE Dem
i (E − ~F · ~rji) ·Dabs

j (E)

=

∞∫

−∞

dE Dem
i (E) ·Dabs

j (E + ~F · ~rji) (5.5)

This means that for a jump in the force direction the donor emission density of states

(dashed line in fig. 5.1) is shifted to higher energy values, or the acceptor absorption

density (solid line) is shifted to lower energies respectively. As a consequence, the

energetic overlap of the donor emission and acceptor absorption densities of states

increases for a jump in the force direction and therefore J̃ increases. The distribution

functions f ♯
ini

and fjmj
are not influenced because the relaxation into equilibrium is

assumed to be fast compared to the exciton transport process.

The drift-corrected FCWD J̃(Eji) can be approximated by a Taylor expansion
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Figure 5.1: The density of states for the donor emission (dashed), the acceptor ab-
sorption (solid), and their product (shaded area), which is the integrand in eqs. (5.3)
and (5.5) respectively. (For better legibility, the densities of states are rescaled.)
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up to first order as

J̃ji(Eji) ≈ J̃ji(Eji)
∣
∣
∣
Eji=0

+
dJ̃ji(Eji)

dEji

∣
∣
∣
∣
∣
Eji=0

· Eji

= J̃ji(Eji)
∣
∣
∣
Eji=0

− dJ̃ji(Eji)

dEji

∣
∣
∣
∣
∣
Eji=0

· ~F · ~rji

= J − J ′ · ~F · ~rji

= J ·
(

1− J ′

J
· ~F · ~rji

)

(5.6)

where J ′ = dJ̃ji(Eji)/dEji for Eji = 0 and J = J̃ji(0). Therefore the jump rate,

eq. (2.99), changes to

ν̃ji =
2π

~
· V 2

ji · J̃ji

=
2π

~
· V 2

ji · J ·
(

1− J ′

J
· ~F · ~rji

)

= νji ·
(

1− J ′

J
· ~F · ~rji

)

(5.7)

where νji is the hopping rate without drift, eq. (2.99). Now an “exciton mobility”

µ =
〈v〉
F

(5.8)

can be defined according to eq. (2.185) where the velocity is calculated as

〈v〉 =
∑

ij

pi · ν̃ji ·
(

~rji ·
~F

F

)

(5.9)

(For the derivation of this equation compare the similar calculation in sec. 3.3.) pi

is the occupation probability of site i. As explained in sec. 3.3, the pi differ for

the different monomers in the crystal as soon as νij 6= νji, which is the case here

because of the drift term. They can be calculated by the master equation approach

described in sec. 3.2.

The well-known Einstein relation (see sec. 2.5), which states that the diffusion

to drift ratio equals the thermal energy, eq. (2.186), does not hold here. Hence, an

alternative equation has to be derived. For simplicity only one dimension is regarded

in the following. The diffusion constant is (cf. eq. (5.1), where νji is replaced now
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by ν̃ji, eq. (5.7))

D =
1

2
· 〈ν̃ji · r2ji〉

=
1

2
·
〈

νji ·
(

1− J ′

J
· F · rji

)

· r2ji
〉

=
1

2
·
〈

νji · r2ji −
J ′

J
· F · νji · r3ji

〉

=
1

2
·
(

〈νji · r2ji〉 −
J ′

J
· F · 〈νji · r3ji〉

︸ ︷︷ ︸

=0

)

=
1

2
· 〈νji · r2ji〉 (5.10)

〈νji · r3ji〉 vanishes because νji = νij and rji = −rij . This shows that the diffusion

constant is not influenced by the drift term as long as F is sufficiently small so that

nonlinear effects can be neglected. The mobility is with eqs. (5.7), (5.8) and (5.9):

µ =
1

F
· 〈ν̃ji · rji〉

=
1

F
·
〈

νji ·
(

1− J ′

J
· F · rji

)

· rji
〉

=
1

F
·
〈

νji · rji −
J ′

J
· F · νji · r2ji

〉

=
1

F
·
(

〈νji · rji〉
︸ ︷︷ ︸

=0

−J
′

J
· F · 〈νji · r2ji〉

)

= −J
′

J
· 〈νji · r2ji〉 (5.11)

Dividing the last two equations one gets the relation

D

µ
=

1
2
· 〈νji · r2ji〉

−J ′

J
· 〈νji · r2ji〉

= − J

2 · J ′
(5.12)

It is important to note that this is a constant number here and in the following

calculations because J and J ′ are constants since they are defined for Eji = 0, see

above. However, J(Eji)/J
′(Eji) does depend on Eji and therefore D(Eji)/µ(Eji) 6=

const., i. e. the Einstein relation does not hold.

Figure 5.2 shows a typical FCWD J̃1(Eji) (solid line, eq. (5.5)) depending on

the energetic shift Eji, eq. (5.2). J̃2(Eji) (dotted line) is calculated with the simpler

Marcus theory (see chapter 6) which incorporates only one effective vibrational
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Figure 5.2: J̃1(Eji) (solid line) is a typical FCWD J̃ji as a function of the energetic

shift Eji = −~F ·~rji. J̃2(Eji) is calculated with the Marcus theory (see chapter 6) which
incorporates only one effective vibrational mode. In the vicinity of Eji = 0 it can be
approximated by an exponential function (dashed line) so that J̃ ′/J̃ = −(2 · kBT )−1

and the Einstein relation holds.

mode. In the vicinity of Eji = 0, it can be approximated by an exponential function,

J̃2(Eji) ≈ J̃2(0) · exp
[

− Eji

2 · kBT

]

(5.13)

so that

J̃ ′
2(Eji) =

dJ̃2(Eji)

dEji

= − 1

2 · kBT
· J̃2(0) · exp

[

− Eji

2 · kBT

]

= − 1

2 · kBT
· J̃2(Eji)

⇔ J̃2(Eji)

J̃ ′
2(Eji)

= −2 · kBT = const. (5.14)

and the Einstein relation holds, cf. eqs. (5.12) and (2.186). However, because of

the many vibrational modes included in the approach used here, J̃1(Eji) is much

broader. If it is approximated by a Gaussian bell curve,

J̃1(Eji) ≈ a · exp
[

−(Eji + λ)2

σ2

]

(5.15)
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where λ is the mean value and σ is the variance, then

J̃ ′
1(Eji) = −a · 2 · (Eji + λ)

σ2
· exp

[

−(Eji + λ)2

σ2

]

= −2 · (Eji + λ)

σ2
· J̃1(Eji)

⇔ J̃1(Eji)

J̃ ′
1(Eji)

= − σ2

2 · (Eji + λ)
(5.16)

Since J̃1(Eji)/J̃
′
1(Eji) is not constant but depends on Eji and therefore on ~F , the

diffusion to drift ratio also depends on ~F and is bigger than kBT for ~F = 0.

If one regards the limiting case where the ficticious force vanishes, F → 0, the

equations again become physically reasonable and merging eqs. (5.8), (5.9) and

(5.12) the diffusion constant can be calculated via

D = lim
F→0

−J
2 · J ′

· 1
F

·
∑

ij

pi · ν̃ji · ~rji ·
~F

F
(5.17)

Here the back and forth jumps cancel because the sign of ~rji is not squared away

as this is the case in eq. (5.1). Fortunately, the diffusion constant does not depend

on F if F is sufficiently small as shown in eq. (5.10). Thus, instead of explicitly

calculating the limit in eq. (5.17), it is sufficient to simply choose a small value for

F so that it is guaranteed that the linear approximation introduced in eq. (5.6) is

valid. This was thoroughly tested.

Since the diffusion constant is not influenced by the drift as shown in eq. (5.10), it

does not depend on J ′, as will be shown in more detail in sec. 7.1. As a consequence,

it is not even necessary to calculate J ′. Instead, J ′ can be replaced by a sufficiently

small, but apart from that arbitrary constant. In this case the resulting mobility

value is of course meaningless. However, if one is only interested in an algorithm for

the determination of D, its calculation can be considerably simplified at this point.

The rate equation approach developed here is verified by Monte Carlo simulations

of the exciton diffusion, as described in sec. 2.6.2. The one-dimensional diffusion

coefficient, eq. (2.183), is calculated via

D =
1

2
· d

dt

〈
[~r(t) · ~e− 〈~r(t) · ~e〉]2

〉

=
1

2
· d

dt

〈
[~r(t) · ~e]2 − 2 · [~r(t) · ~e] · 〈~r(t) · ~e〉+ 〈~r(t) · ~e〉2

〉

=
1

2
· d

dt

(
〈[~r(t) · ~e]2〉 − 2 · 〈~r(t) · ~e〉2 + 〈~r(t) · ~e〉2

)
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=
1

2
· d

dt

(
〈[~r(t) · ~e]2〉 − 〈~r(t) · ~e〉2

)
(5.18)

where ~e is the unit vector in the regarded direction. If an external force is

applied, it is ~e = ~F/F . The averaging is over all exciton positions. For that purpose

at equally spaced points in time a snapshot of the exciton positions with respect

to the regarded direction ~e in the crystal, ~r(t)~e, is taken and the arithmetic means

〈~r(t)~e〉 and 〈[~r(t)~e]2〉 are determined. D is calculated both with F = 0 in order to

exclude any influence of the external force and with F 6= 0 in order to verify that

eq. (5.12) holds, where the mobility is calculated with eq. (5.8) and

〈v〉 = d

dt

〈

~r(t) ·
~F

F

〉

(5.19)

〈~r(t)~e〉 and 〈(~r(t)~e)2〉 have to be averaged over a sufficient number of simulation

runs to obtain smooth lines. It was checked that both the average position and the

variance show a linear time dependence in order to ensure the stationary state.

The electronic coupling Vji for singlet exciton transport decays quite slowly with

respect to the monomer distance r. It can be approximated by a dipole-dipole

interaction [243, 445, 446] as derived in sec. 2.7.2, which is proportional to r−3, see

eq. (2.236). If a cut-off radius rmax is used in eq. (5.1), the missing residue is

Dres ∝
∞∫

rmax

ν(r) · r2 d3r

∝
∞∫

rmax

V 2(r) · r2 d3r

∝
∞∫

rmax

(
1

r3

)2

· r2 d3r

=

∞∫

rmax

1

r4
d3r

=

2π∫

ϕ=0

π∫

ϑ=0

∞∫

r=rmax

1

r4
(r dϑ)(r sinϑ dϕ) dr

=

2π∫

ϕ=0

dϕ ·
π∫

ϑ=0

sinϑ dϑ ·
∞∫

r=rmax

1

r2
dr
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= 2π ·
−1∫

cosϑ=1

−d(cosϑ) ·
[

−1

r

]∞

rmax

= 2π · 2 · 1

rmax

=
4π

rmax

(5.20)

This also holds when using eq. (5.17) because D/µ = const., see eq. (5.12). Since

this convergence is very slow, it is almost impossible to choose a sufficiently large

cut-off radius which avoids serious numerical errors. In order to get reliable results

it is necessary to extrapolate the calculated D(rmax) values to rmax → ∞:

D(rmax → ∞) = D(rmax) +Dres

= D(rmax) +
c

rmax

⇔ D(rmax) = D(rmax → ∞)− c

rmax

(5.21)

D(rmax → ∞) and c are determined by a least-squares fit. The values rmax which

are used in the fit must be sufficiently large that V (r) ∝ r−3 holds. The deviations

which appear at smaller distances are very important for the resulting D value, and

appear as an offset in eq. (5.21). They do not change the convergence for rmax → ∞.

If the exciton life time (the fluorescence life time) τ is known, the diffusion

length of the excitons can finally be calculated, which is the square root of the

spatial variance of the excitons after the time τ , cf. eq. (2.182) [46, 116, 447]1:

L =
√
2 ·D · τ (5.22)

The problem of the dependence of the transport parameters on rmax also appears

in the Monte Carlo simulation. While a large cut-off radius just leads to a bigger

and less sparse matrix N, eq. (3.6), in the master equation approach, which can

be handled by appropriate algorithms, the hopping probability, eq. (2.196), and

the dwell time, eq. (2.195), have to be evaluated for each time step of the Monte

Carlo simulation. There the summation runs over all sites within rmax. This is

why the master equation approach seems to be more convenient than the Monte

Carlo approach for exciton transport. For charge transport the master equation

approach has the drawback that long range interactions as the Coulomb interaction

cannot be taken into account while this is possible for Monte Carlo. However, such

1Sometimes the definition L =
√
Dτ is used in the context of excitons [448], and it is not always

clear in the literature which definition has been used.
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interactions do not exist for excitons, making the master equation superior to Monte

Carlo especially for exciton transport.

5.2 Quantum chemical calculations

The electronic coupling Vji, sec. 2.7, and the Huang-Rhys factors S, derived in

sec. 2.3.1, which are needed for the FCWD J , are determined by quantum chemical

first-principles calculations performed with the Turbomole program package [381,

382, 441]. Frequency calculations of the monomer in the ground and the excited

state geometry are conducted with spin-component scaled [273, 449] approximate

coupled cluster singles and doubles [281, 450–452] (SCS-CC2, sec. 2.8.4) and the

correlation consistent polarized triple ζ basis sets [385] (cc-pVTZ). The influence of

the quantum chemical method and basis sets on the coupling is studied in chapter 6.

Is the monomer excited to a higher electronic state, the internal conversion to the

lowest excited state (S1) is about two orders of magnitude faster than the exciton

transfer to another molecule and 104 times faster than the fluorescence from S1 to

the ground state S0 [453], which is in the order of nanoseconds. For this reason only

the S1 state of the monomer is relevant for the exciton transport.

The exciton coupling Vji is calculated by a supermolecular approach of the whole

dimer [446], as explained in sec. 2.7.3. The coupling, eq. (2.240), is half the energy

difference of the Davydov splitting [249] of the first monomer excitation. However,

this approach is only valid if the lowest monomer excitations are energetically well

separated from the monomer S2 excitations, see fig. 5.3a. Otherwise, excitations of

one monomer do not only interact with their counterparts at the other monomer, but

with all others which are energetically close, see fig 5.3b. The result is a mixing of the

S1

S2

2 V ji

S2

S1

S2 S2

S1 S1

b)
dimer mon.

en
er

gy

mon. dimer mon.mon.

a)

Figure 5.3: Energy splitting of the first two excited monomer states in a dimer. a) The
monomer excitations are energetically well separated, b) the monomer excitations are
energetically close, resulting in a mixing of the states.
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excited monomer states in the dimer, making it impossible to use an equation similar

to eq. (2.240). For this case another approach was developed which is explained in

detail at the end of this section.

It is well known that excitons in organic crystals are typically a strong mix-

ture between charge transfer (CT) states, where an electron is transferred from one

molecule to another one, and Frenkel excitons, where the excitation is localized at a

single molecule, see sec. 2.1. For perylene-based dyes [454–456] and oligoacenes [457]

this mixing has been shown to affect the Davydov splittings of states with predom-

inant Frenkel character and thus also the exciton couplings Vji. In the approach

presented here this mixing is – at least partially – taken into account for next

neighbour molecules where the quantum chemical treatment of the (supermolecu-

lar) dimer system describes the mixing between CT and Frenkel in a systematic

manner. Furthermore, the energy separation between the charge transfer and the

Frenkel states increases with decreasing oligoacene size and is already about 0.4 eV

for anthracene [458]. The charge transfer contribution to the Davydov splitting was

estimated to be quite moderate in anthracene (10 to 15% [457]) and is expected

to be even smaller for naphthalene. Thus, effects of the CT-Frenkel mixing that

are not incorporated in our approach have probably only a moderate effect on the

exciton diffusion in the considered systems.

For a reliable extrapolation of the diffusion constant for rmax → ∞, as described

in sec. 5.1, the number of couplings which has to be calculated is quite huge as it

scales with r3max. The supermolecular approach is too time consuming to be used

for all couplings. However, for large distances the coupling calculations can be

considerably simplified. Since the wave function overlap is small in that case, the

Dexter transfer [246], eq. (2.224), and the exchange interaction can be neglected

so that a Förster [243] coupling, eq. (2.222), can be taken. This was explained in

detail in sec. 2.7.1. In sec. 2.7.2 it was shown that a multipole expansion of the

Coulomb term up to second order leads to an electrostatic dipole-dipole interaction

of the two monomer transition dipole moments ~pi and ~pj, eq. (2.236). The dipoles

are assumed to be point dipoles located at the centre of the molecules. Due to

all these simplifications the dipole approach is only valid if the separation of the

monomers is large compared to their extension [445, 446, 459–462]. Consequently,

the supermolecular approach has to be used up to a sufficient distance.

For larger distances, the monomer coupling is weakened by the screening of the

other monomers that lie in between. To take this effect into account, the coupling

to the monomers beyond the directly neighbouring cells is divided by the relative

dielectric constant εr, which depends on the material and on the direction of the
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crystal. However, it will become clear in sec. 5.3 that the anisotropy of the dielectric

constant does not contribute strongly to the anisotropy of the diffusion constant in

the crystal.

The calculations of the excitation energies and the transition dipole moments

needed for the couplings are conducted with the spin component scaled algebraic

diagrammatic construction through second order [338] (SCS-ADC(2), sec. 2.8.9) to-

gether with the cc-pVTZ basis sets for all atoms. A comparison of different quantum

chemical methods and basis sets and an analysis of their influence on the exciton

coupling and the exciton diffusion constant is given in sec. 6.4.

Exciton couplings for mixed excited monomer states

The excitation energies Ek and transition dipole moments ~pk of the four excited

states k = 1 . . . 4 of the dimer system are calculated. In order to relate them to

monomer properties, it is assumed that the dimer states are represented by a linear

combination of the monomer wave functions ϕl with l = 1, 2 corresponding to the

first and second excited state at the first monomer and l = 3, 4 to the corresponding

states at the second monomer. The excited electronic dimer wave functions are

approximated by the CI-type linear combination

Ψk =
4∑

l=1

ckl · ϕl (5.23)

Note that the ϕl are not orthogonal to each other if they correspond to excitations at

different monomers. Plugging the wave function from eq. (5.23) into the Schrödinger

equation gives rise to

Ĥ Ψk = Ek Ψk (5.24)

Multiplying this equation from the left with the configurations ϕm leads to to the

generalized matrix eigenvalue problem









ε1 0 V13 V14

0 ε2 V23 V24

V13 V23 ε3 0

V14 V24 0 ε4









·









ck1

ck2

ck3

ck4









= Ek ·









1 0 S13 S14

0 1 S23 S24

S13 S23 1 0

S14 S24 0 1









·









ck1

ck2

ck3

ck4









(5.25)

Here the εl and Vji are the diagonal and non-diagonal elements of the Hamiltonian,

respectively. The diagonal matrix elements are supposed to be the monomer ex-

citation energies. However, they are modified by interactions with the neighbour
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molecule and not identical to the excitation energies of an isolated monomer in vac-

uum. The Vji are the coupling matrix elements between states which are localized on

different monomers. Similarly, the Sji matrix elements on the right hand side of the

equation represent the overlap matrix elements between the excited configurations.

Within the wave function representation in eq. (5.23) it is a good approximation to

evaluate the transition dipole vector as

~pk =
4∑

l=1

ckl · ~pl (5.26)

where ~pl and ~pk are the monomer and dimer transition dipole moments, respectively.

The values of the matrix elements are determined in a fit procedure. The fit

parameters x := (εl, Vji, Sji) are modified such that the function

χ2(x) = a ·
4∑

k=1

[Ek − Ek(x)]
2 +

4∑

k=1

[~pk − ~pk(x)]
2 (5.27)

reaches a minimum with respect to variation of x. In equation (5.27) Ek and ~pk

are the energies and transition dipole moments of the dimer system calculated with

Turbomole. a is a parameter that is chosen to be 1 eV−2 a20. An evaluation cycle in

this fit procedure incorporates the numerical solution of the generalized eigenvalue

problem in eq. (5.25) to obtain Ek(x) and ~c(x) for a given tuple x of parameters,

determination of the corresponding transition dipole vectors ~pk(x) of the electronic

states according to eq. (5.26) and finally the determination of χ2 by eq. (5.27).

The signs of the monomer transition dipole moments are not well defined. In

order to find proper values for them, they are adapted such that the linear combi-

nations of the calculated monomer transition dipole moments with the expansion

coefficients are in reasonable agreement with the calculated dimer transition dipole

moments for the four considered electronic states. In case of doubt, all possible

signs of the monomer transition dipole moments are considered and the combina-

tion which allows for an optimal fit is taken.

As a last step eq. (5.25) is transformed by a Löwdin orthogonalization [242, 255]

so that the S matrix vanishes and H contains the final couplings and monomer

energies.
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5.3 Numerical results

Naphthalene and anthracene crystals have been used as test systems for the approach

developed in the previous sections since highly accurate experimental data are avail-

able. The high quality of the available crystals also diminishes uncertainties in the

calculation arising from the mutual geometrical arrangements of the monomers or

crystal defects. As described in the literature the half width at half maximum σ

of the Lorentzian function, eq. (2.106), was taken as 40meV [176]. The hopping

rates are calculated at a temperature of T = 300K and an external “force” (see

eq. (5.5) and (5.17)) of F = 16 aN is applied. The molecules under investigation are

depicted in fig. 4.1 and the crystallographic parameters of the corresponding crystals

are listed in tab. 4.1.

5.3.1 Naphthalene

The naphthalene crystal consists of two differently orientated monomers (fig. 4.1a)

per unit cell [442], see tab. 4.1 for the crystal parameters. The first monomer

excitation, S1, (4.37 eV, called α or Lb, B3u symmetry) is energetically well separated

from the S2 state (4.92 eV, p or Ba, B2u symmetry) so that no mixing between these

states, as depicted in fig. 5.3, has to be considered.
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Figure 5.4: Vibrational absorption (top) and emission (bottom) spectra for the naph-
thalene monomer. The line spectra I(E) are calculated with eq. (2.101) and the broad-
ened spectra which correspond toD(E) are obtained by eq. (2.107) (with σ = 12meV).
Note that all four spectra (absorption and emission, line and broadened spectra) are
divided by I(0) and D(0), respectively, for better perceptibility. (Calculated with
SCS-CC2/cc-pVTZ.)



156 5. Exciton transport with the spectral overlap approach

Figure 5.4 shows the vibrational absorption and emission spectra. Note that

for better perceptibility both the line and the broadened spectra are divided by

their respective intensity of the 0 → 0 transition. The spectra fit quite nice to the

measured spectrum in ref. [463]. The resulting FCWD is J = 0.71 eV−1 and its

derivation at F = 0 is J ′ = −3.64 eV−2. The couplings in the naphthalene crystal

are relatively small. The largest coupling is the one between the two monomers in

the same unit cell, which has a value of only 7.1meV. This results from the small

transition dipole moment of the 11B3u excitation [464, 465]. The calculated oscillator

strength is only 1.3 · 10−4. (For comparison: The oscillator strength of the 11B2u

excitation is 8.2 · 10−2.) The transition densities (cf. sec. 2.7.1) of the monomer and

the first two excitations of the dimer in the unit cell are depicted in fig. 5.5.

Figure 5.6 shows the difference of the electronic coupling Vji calculated with the

supermolecular approach, eq. (2.240), and with the dipole approximation, eq. (2.236),

in relation to the distance of the centre of mass of the monomers in the crystal. As

expected for a J-aggregated dimer (cf. fig. 5.5b) the dipole approximation underes-

S1 excitation S2 excitation

b)

S1 excitation (B3u)

a)

Figure 5.5: Transition densities of naphthalene a) to the S1 excitation of the monomer,
b) to the first two excitations of the dimer in the unit cell. The arrows indicate the
direction of the transition dipole moments.
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Figure 5.6: The difference of the electronic coupling Vji of the dimers in the crystal
for naphthalene calculated with the supermolecular approach and with the dipole
approximation (SCS-ADC(2)/cc-pVTZ) plotted against the monomer distance.

timates the coupling for small distances. However, for distances larger than about

1 nm the differences of both approaches are negligible. For that reason the su-

permolecular approach is only used for all monomers with a distance smaller than

1.5 nm, while the dipole approximation was used beyond.

Since the couplings are rather small it happens that for naphthalene the extrap-

olation of the diffusion constant, as described in sec. 5.1, is not necessary, because

the couplings between monomers with a distance of several lattice constants are so

small that they do not contribute to the transport. Instead a fixed maximum jump

radius of 2.5 nm was used. For the same reason D does not depend on the value

of the dielectric constant (εr = 2.5 [427]) either, because only transitions between

the dimers within neighboured unit cells, which are hardly influenced by monomers

lying in between, are important.

Table 5.1 shows the calculated and some experimental exciton diffusion constants

and diffusion lengths. For the calculation of L an exciton lifetime of 78 ns [54, 466,

467] was assumed. The diffusion length of 48 nm in a direction compares well with

the experimental value of 50 nm [54]. A possible reason for the difference between

the calculated and the experimental diffusion coefficient in c′ direction is that c′

is the direction where D is minimal, leading to higher uncertainties in both the

measurement and the calculation. Figure 5.7 shows a polar plot of the calculated

diffusion lengths in all directions of the crystal. It clearly shows the anisotropy of

the exciton transport which mainly takes place in the ab plane.
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Table 5.1: The exciton diffusion constants D (in 10−9m2/s) and diffusion lengths L
(in nm, τ = 78ns [54, 466, 467]) in the naphthalene crystal. For comparison some
experimental values are listed.

theor. D theor. L exp. D exp. L
a 14.4 48 50b

b 33.6 72
c 10.3 40
c′ 9.0 37 5a

aref. [54], direction unknown, bref. [468]

a

b

c

 35  40  45  50  55  60  65  70  75

diffusion length L [nm]

Figure 5.7: The exciton diffusion length in the naphthalene crystal in all spatial
directions (SCS-ADC(2)/cc-pVTZ for Vji, SCS-CC2/cc-pVTZ for J).

Figure 5.8 shows a two dimensional depiction of the diffusion lengths in different

planes of the crystal. Here, the different approaches to calculate D (see sec. 5.1)

are shown. The solid lines are calculated with the master equation approach along

with eq. (5.7) for the hopping rate and eq. (5.17) for D, which is the method used

throughout this chapter. The results agree within the statistical error with the

Monte Carlo simulation (points) along with eq. (5.18), where no “external force”

was applied. The dashed lines are calculated with eq. (5.1) for D, which is frequently

found in literature [79, 108, 376, 377]. This approach overestimates L in some

directions, most severely in the c direction, and causes that the anisotropy of L

is even qualitatively wrong: Eq. (5.1) predicts the highest diffusion length in c

direction, whereas both eq. (5.17) and Monte Carlo lead to highest L in b direction.

The anisotropy of L is underestimated in the ab and bc plane and overestimated in

the ac plane.
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Figure 5.8: The exciton diffusion length in the naphthalene crystal in the ab, bc
and ac plane. The dashed lines are calculated with eq. (5.1), the solid lines are
calculated with the master equation approach along with eq. (5.17) and the points are
calculated with a Monte Carlo simulation using eq. (5.18). (Vji was calculated with
SCS-ADC(2)/cc-pVTZ, J was calculated with SCS-CC2/cc-pVTZ.)

It has already been shown in chapter 3 that eq. (5.1) leads to wrong results for

charge transport calculations. However, for charge transport only very few monomer

pairs contribute since the coupling decays exponentially with the distance as it

depends on the overlap, cf. sec. 2.7.5. In that case it is comprehensible that such a

trapping effect as described in sec. 5.1 (see fig. 3.2) may easily happen [229, 231]. But

for excitons the coupling decays much slower with the distance (shown in sec. 2.7.2)

and as a consequence a much larger number of dimers gives significant contributions

to the transport and one would expect a much weaker trapping effect. Here it is
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Figure 5.9: The variance of 10.000 excitons in the naphthalene crystal depending on
the time for different angles relative to the a axis within the ab plane. The slope
triangle corresponds to twice the diffusion constant.

shown that, nevertheless, the effect is important for exciton diffusion as well.

For the Monte Carlo simulations shown in fig. 5.8 the time dependent spatial

variance of 10.000 excitons was calculated for a simulation time of 10 ns, with a

maximum jump radius of 2.5 nm, cf. fig. 5.9. While the calculation of one value

takes only seconds with the master equation approach, the Monte Carlo simulation

needs several hours. Figure 5.7 was calculated with steps of 2◦ for both the azimuth

and the polar angle, which is hardly possible with a Monte Carlo simulation. The

master equation outperforms Monte Carlo especially in the more frequent case where

D has to be calculated with several values of rmax in order to extrapolate as explained

in sec. 5.1.

5.3.2 Anthracene

The anthracene lattice parameters are listed in tab. 4.1. The unit cell contains

two differently orientated monomers [423]. The monomer is depicted in fig. 4.1b.

Figure 5.10 shows the vibrational spectra of the monomer for absorption and emis-

sion. They fit quite well to the measured spectrum in ref. [463]. The FCWD is

J = 0.35 eV−1 and its derivation at F = 0 is J ′ = −1.93 eV−2.

Table 5.2 lists the adiabatic and vertical excitation energies of the two lowest

monomer excitations, which have B2u (S1) and B3u (S2) symmetry, respectively.
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Figure 5.10: Vibrational absorption (top) and emission (bottom) spectra for the an-
thracene monomer. The line spectra I(E) are calculated with eq. (2.101) and the
broadened spectra which correspond to D(E) are obtained by eq. (2.107) (with σ =
12meV). Note that all four spectra (absorption and emission, line and broadened spec-
tra) are divided by I(0) and D(0) respectively. (Calculated with SCS-CC2/cc-pVTZ.)

From experiment [464, 469–471] it is known that the 11B2u excitation is energeti-

cally lower than the 11B3u excitation and therefore the excitations are interchanged

compared to naphthalene [464, 465]. This is correctly reproduced for adiabatic ex-

citation energies, however, the two excitations are energetically extremely close and

even change order in the case of vertically calculated excitation energies.

Figure 5.11a shows the transition densities of the first two monomer excitations

where their symmetry can be identified. As described in sec. 5.2 and depicted

in fig. 5.3b, the different excited monomer states mix in a dimer if their energy

separation is in the same order of magnitude as the Davydov splitting. This is

the case for anthracene as can be seen in fig. 5.11b which depicts the transition

densities of the first two excitations of the dimer in the unit cell. The excitations

are composed of the 11B2u excitation of one monomer and the 11B3u excitation of

Table 5.2: Vertical and adiabatic excitation energies (in eV) of the two lowest exci-
tations in the anthracene monomer calculated with SCS-ADC(2) and SCS-CC2 re-
spectively and the cc-pVTZ basis sets (without zero point correction). The values for
the non-optimized monomer structure taken from the x-ray crystal data are given in
brackets. For comparison some experimental adiabatic excitation energies are given.

state vert. ADC(2) vert. CC2 ad. CC2 ad. exp.
S1(p) 1

1B2u 3.83 (3.91) 3.84 (3.94) 3.56 3.31a/3.43b

S2(α) 1
1B3u 3.81 (3.89) 3.82 (3.89) 3.69 3.45c/3.84d

aref. [464], bref. [469], cref. [470], dref. [471]
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S1 excitation (B 3u ) S2 excitation (B 2u )

S1 excitation S2 excitation

S1 excitation S2 excitation

b)

c)

a)

Figure 5.11: The transition densities of anthracene. The arrows indicate the direction
of the transition dipole moments. a) The first two vertical excitations of the monomer.
The energetic order of the 11B2u and 11B3u excitation is changed for SCS-CC2 and
SCS-ADC(2) (used here) compared to the adiabatic values, see tab. 5.2. b) The first
two excitations of the dimer in the unit cell which consist of a mixing of the S1 and
S2 monomer excitations. c) A dimer where one monomer is shifted along the b lattice
vector relative to the other. No mixing for symmetry reasons.

the other monomer. For that reason eq. (2.240) cannot be applied and the fitting

procedure described in sec. 5.2 has to be used. Figure 5.11c shows a dimer where

one monomer is shifted by the lattice vector ~b relative to the other one. Here the

different excitations do not mix due to the symmetry and eq. (2.240) can be applied.

Note that the energetic order of the excitations in this dimer is interchanged relative

to the isolated monomer. The first two dimer excitations are plus and minus linear
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combinations of the 11B2u monomer excitation, even though the 11B3u excitation

of the isolated monomer lies energetically lower for the quantum chemical method

used here.

In figure 5.11a the directions of the transition dipole moments of the monomer

excitations are indicated by arrows. For similar symmetry reasons as for naphthalene

the 11B3u transition has a very low oscillator strength (5.9 · 10−4) compared to the

11B2u excitation (9.5 · 10−2). Since it was shown experimentally that 11B2u is lower

in energy (cf. tab. 5.2), this one is the significant state for exciton transport.

Table 5.3 lists the couplings for the dimers depicted in fig. 5.11b and c, calculated

with different approaches. Dimer c consists of two monomers which are parallely

shifted by the lattice constant b. This is the smallest lattice constant (see tab. 4.1)

and this dimer is the one with the highest coupling in the crystal. Because of

the dimer symmetry the 11B2u and 11B3u monomer excitations do not mix and

it is possible to apply eq. (2.240). The resulting value of 24.2meV corresponds

nicely to the fitted value of 25.1meV and the coupling calculated via the dipole

approximation, eq. (2.236), of 24.4meV. Due to the interaction of the 11B2u and

11B3u monomer excitations in the dimer in the unit cell (dimer b), eq. (2.240) cannot

be applied. Both the supermolecular approach along with the fit procedure and the

dipole approximation lead to the same coupling value of 1.3meV.

The calculations for these two dimers which have the smallest monomer distance

in the crystal show that the dipole approximation leads to very good results even for

the coupling to the nearest neighbours. Since furthermore dimer c is the one with

the largest coupling in the crystal, which is about 5 times larger than the coupling

next in size, the dipole approximation was used for all couplings in the anthracene

crystal.

Table 5.3: The exciton couplings of two different dimers in the anthracene crystal
(SCS-ADC(2)/cc-pVTZ) calculated with the supermolecular approach and eq. (2.240),
the supermolecular approach along with the fit procedure described in sec. 5.2 and the
dipole approximation, eq. (2.236). The χ2 value of the fit, eq. (5.27), and the centre
of mass distance of the monomers are also given. The dimers b and c correspond to
the dimers in fig. 5.11b and 5.11c respectively.

dimer b dimer c
supermolecular, eq. (2.240) [meV] – 24.2
supermolecular, fit [meV] 1.3 25.1
dipole approximation [meV] 1.3 24.4
χ2 0.09 0.05
monomer distance [nm] 0.52 0.60
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The dielectric constants εr of crystals are in general anisotropic. For anthracene

a value of about 3 has been measured for all directions in the ab plane and 3.7 per-

pendicular to this plane [425]. Other measurements yielded values between 2.6 and

4.1 in the directions of the principal axes [426]. Figure 5.12 shows the dependency

of the diffusion constant on εr. For values between 1 and 2 D clearly depends on

the dielectric constant, however, for higher values D decreases only slightly with

increasing εr. A variation of εr between 3 and 4 changes D between 3 and 6%

depending on the direction. For that reason the anisotropy of εr is neglected here

and a value of εr = 3 was used for all calculations.

Figure 5.13 shows the dependency of the diffusion constant in b direction on the

inverse of the maximum jump radius rmax. It can be seen that D slowly converges

as explained in sec. 5.1, cf. eq. (5.21). This of course becomes the more important

the stronger the couplings are and the lower the shielding is, as can be seen by the

comparison between the diffusion constants calculated with εr = 1 and 3, respec-

tively. Neglecting this effect and calculating with an rmax value which is too small

would underestimate the effect of the dielectric constant.

In general, the slow convergence of D with rmax cannot be ignored since it can

be much more severe in other cases. Minimizing the error by choosing a large value

for the jump radius slows down the computation considerably and it may even not

be sufficient for a reliable result. Instead, it is much more efficient and precise to
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Figure 5.12: The diffusion constant of anthracene along the lattice vectors depending
on the dielectric constant εr. (SCS-ADC(2), cc-pVTZ was used for Vji and SCS-CC2,
cc-pVTZ for J .)
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Figure 5.13: The diffusion constant of anthracene in b direction for a dielectric con-
stant of 1 and 3, respectively, depending on the inverse of the maximum jump radius.
The lines are a fitted with eq. (5.21). (Vji was calculated with SCS-ADC(2)/cc-pVTZ,
J was calculated with SCS-CC2/cc-pVTZ.)

choose some intermediate values for rmax and to extrapolate D(rmax → ∞). The D

values for anthracene presented here were all extrapolated with explicitly simulated

values for rmax = 2, 3 and 4 nm. It was tested that the extrapolation also works if

variable multiples of the lattice constants are chosen instead of an isotropic rmax,

leading to a parallelepiped-shaped jump region instead of a spherical one. This may

be sometimes easier to implement in a simulation.

Table 5.4 shows the calculated diffusion constants and diffusion lengths, re-

spectively, in comparison with some experimental values. The measured diffusion

lengths [61, 475, 476] perfectly agree with the theoretical results. For the calculation

an exciton life time of 10 ns was assumed [54, 472, 473]. There are also higher values

found in literature, [466, 467, 477] but it seems that these values have not been

corrected for the reabsorption effect [473]. However, the estimated experimental dif-

fusion constants [474] are considerably lower than the calculated ones. Figure 5.14

depicts the diffusion lengths in all spatial directions.



166 5. Exciton transport with the spectral overlap approach

Table 5.4: The exciton diffusion constants D (in 10−7m2/s, τ = 10ns [54, 472, 473])
and diffusion lengths L (in nm) for anthracene with a dielectric constant of
εr = 3. (Vji was calculated with SCS-ADC(2)/cc-pVTZ, J was calculated with
SCS-CC2/cc-pVTZ.)

calc. D measured D
a 1.7
b 8.7 ≤ 0.5a

c 1.7
c’ 1.6 ≤ 0.1a

calculated L measured L
a 58 60 ± 10b

b 132 approx. 100b

c 58
c’ 57 60 ± 5c, 49 ± 1d, 47 ± 1d, 36 ± 20e

aref. [474], bref. [61], cref. [475], dref. [476], eref. [61]

a

b

c

 60  70  80  90  100  110  120  130

diffusion length L [nm]

Figure 5.14: The exciton diffusion length in the anthracene crystal in all spatial
directions. (Vji was calculated with SCS-ADC(2)/cc-pVTZ, J was calculated with
SCS-CC2/cc-pVTZ.)

5.4 Summary

For the calculation of singlet exciton diffusion in organic crystals a protocol was

developed which is based on a hopping approach. It does not require any input

from experimental data, since all needed quantities can be taken from high-level

quantum chemical calculations. Hence, it allows the prediction of exciton diffusion

properties of yet unknown compounds for given packings, which is important for a

rational design of new materials. The protocol contains a fitting procedure which
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allows to calculate the couplings with the supermolecular approach even in the case

of energetically close excitations and a mixing of the states. This new approach

is based on an alternative to the frequently used rate equation for the diffusion

constant, since the latter leads to an overestimation of D (up to a factor of 6 for

naphthalene). It was furthermore shown that the Einstein relation does not hold

here and an alternative relation was derived. The results were confirmed by Monte

Carlo simulations.

The problem of the long range character of the singlet exciton coupling was

examined in detail. An extrapolation scheme was developed in order to eliminate

the influence of the truncation of the jump radius used in the simulation and in order

to accelerate the poor convergence of the coupling with the jump radius. Employing

the master equation instead of Monte Carlo allows for a rapid calculation of diffusion

constants, which permits an efficient directional analysis of the exciton transport.

To prove the accuracy of the protocol, calculations for naphthalene and an-

thracene are performed. They are chosen since the available crystal structures pos-

sess such a high quality that errors caused by defects or uncertainties in the crystal

structure are avoided. The computed values show an excellent agreement with their

experimental counterparts. For naphthalene L = 48nm was computed for the a

direction, which agrees excellently with a measured value of 50 nm. For anthracene

the computed value of L = 58nm for the a direction compares also excellently to its

experimental counterpart of 60±10 nm. For the other directions similar agreements

are found.

Since values for all directions are provided, it is possible to compare the anisotropy

of exciton and charge transfer. Actually, the anisotropy for exciton transport is less

pronounced than for charge transport, cf. chapters 3 and 4, because the exciton

couplings decay slower with the distance than the charge couplings, leading to more

dimers involved in the transport.

The excellent agreement between experiment and theory indicates that the as-

sumption of a hopping approach is appropriate in the presently investigated weak

coupling cases.





6 Exciton transport with the

Marcus theory

In chapter 5 it was shown that the hopping approach based on time-dependent per-

turbation theory (sec. 2.3) leads to good results for exciton transport in crystals.

There the spectral overlap approach derived in sec. 2.3.1 was used which is already

well established and frequently used for exciton transport [174, 176, 210, 225, 478,

479]. As derived in sec. 2.3.2, the Marcus theory is based on this approach but in-

troduces further approximations which were explained in detail. The Marcus theory

is often applied in the context of charge transport [478, 480, 481], see chapter 3. In

contrast to the common approach of calculating the exciton hopping rate via the cou-

pling and the spectral overlap, the Marcus theory is less demanding because instead

of calculating all molecular vibrations to get the spectral overlap only geometry op-

timizations for the reorganization energy are needed. To demonstrate the capability

of the approach, calculations on naphthalene and anthracene are taken as examples

in order to be able to compare them with the results from chapter 5. Additionally,

the medium size of these molecules makes it possible to use numerically expensive

methods. Since the Marcus theory is not used for exciton transport so far, it is nec-

essary to evaluate and compare the quantum chemical methods, which are used for

the calculation of the parameters. Furthermore, diindenoperylene [482] is examined,

which is a highly promising candidate for application in organic electronics because

of its ambipolar charge transport characteristics [483], its long-range ordered struc-

ture in thin films [484] and the relatively high charge carrier mobilities [485] as well

as exciton diffusion length [66, 486].

Most of the results in this chapter have already been published in ref. [487].
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6.1 The hopping rate

In chapter 5, the spectral overlap hopping rate, eq. (2.99), is used to calculate the

exciton jump frequency νji from molecule i to molecule j. For that purpose the

Franck-Condon-weighted density of states (FCWD), eq. (2.100), has to be calcu-

lated, which accounts for the vibrations of the molecules and is approximated by

the spectral overlap of the densities of states DD(E) of the donor emission and

DA(E) of the acceptor absorption. In order to calculate J , the vibrational wave

functions of both the ground and the excited state of the molecule have to be eval-

uated. Commonly the harmonic approximation (sec. 2.3.1) is used [177, 182], which

is, however, doubtful for low frequency vibrations. For that reason the low frequency

modes are usually fitted to measured spectra [176, 210]. In the general case the nor-

mal modes of the ground and excited state mix which has to be taken into account

by a Duschinsky rotation [177, 183] (sec. 2.3.1), which complicates the calculations

significantly. Because of these difficulties sometimes experimental values for J are

used instead [225].

As an alternative approach, here the Marcus theory (sec. 2.3.2), which is already

widely and successfully used for charge transport [102–104, 254, 300, 347, 348],

is adapted to exciton transport. Since the excitons are neutral and therefore not

influenced by an external field, the Marcus hopping rate [133, 186, 187, 247, 480]

reads, cf. eq. (2.133):

νji =
Vji

2

~
·
√

π

λ · kBT
· exp

[

− λ

4 · kBT

]

(6.1)

λ is the reorganization energy of the neutral donor-acceptor complex due to the

exciton transfer, T is the temperature and kB is the Boltzmann constant, ~ is the

reduced Planck constant and Vji is the electronic coupling for exciton transport,

see sec. 2.3. Similarities between the spectral overlap hopping rate, eq. (2.99) and

eq. (6.1) were already denoted in refs. [488–490].

From the viewpoint of quantum chemical calculations the Marcus theory is much

easier since instead of explicitly calculating the spectral overlap for the Franck-

Condon factors, it is sufficient to calculate the reorganization energy λ, which can

be done with much less effort, since no frequency calculations but only geometry

optimizations of the ground and the excited state are necessary. (The calculation of

λ is explained in detail in sec. 6.3).

Treating the coupling as a perturbation requires Vji to be small compared to

λ/4, which corresponds to the activation energy for the charge or the exciton to
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change place (weak coupling regime [488]). Because of the smaller couplings and

the larger reorganization energies this condition is satisfied much better for excitons

than for charges. Furthermore, the relaxation (the geometric reorganization) has

to be fast in comparison with the transfer so that the system can be assumed in

its thermal equilibrium during the transfer. In addition, the theory is restricted to

the high temperature case since tunneling is neglected completely and the molecular

vibrations are treated classically, thus requiring kBT ≫ ~ω. This condition is often

not met for the high-frequency intramolecular vibrational modes. However, despite

all imperfections the Marcus theory has been proven to yield good results for charge

transfer in organic crystals [102–104, 254, 300, 347, 348] and one can certainly assume

that this theory is suitable for the purpose of a qualitative exciton transport analysis

as well.

The interaction between excitons and phonons is partially considered by the re-

organization energy. Due to the weak van der Waals interactions between organic

molecules, it can be divided into an internal (intramolecular) and an external (in-

termolecular) part, i.e. λ = λint + λext, as already explained in sec. 3 in the context

of charge transport. The intramolecular reorganization energy λint is due to the

geometry changes of the donor and the acceptor monomer upon exciton transfer.

The external reorganization energy λext covers the energetic changes concerning the

surrounding, caused by the lattice distortion. For charge transport λext was shown

to be much smaller than λint, see sec. 3.7.2. For exciton transport, the internal reor-

ganization energies are typically larger than for charge transport because an electron

from a bonding orbital is lifted into an antibonding orbital, leading to a stronger

change of the molecular geometry. In contrast, the external reorganization energy is

expected to be smaller in the case of excitons since they are neutral and do not lead

to a strong polarization of their surroundings as in the case of charge carriers. That

is why the external reorganization energy is neglected here and solely the internal

reorganization energy of the monomer in vacuum is used for λ.

6.2 The transport calculations

It has been shown in sec. 5 that averaging by means of a simple diffusion rate

equation based on the jump rates and the squared jump distance, eq. (5.1), possibly

leads to an overestimation of the diffusion constant. This can be circumvented by

determining the diffusion coefficient via the mobility by introducing a drift term, as
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explained in detail in sec. 5.1. The Marcus rate, eq. (6.1), then changes to

ν̃ji =
Vji

2

~
·
√

π

λ · kBT
· exp

[

−(−~F · ~rji + λ)2

4 · λ · kBT

]

(6.2)

=
Vji

2

~
·
√

π

λ · kBT
· exp

[

−(~F · ~rji)2 − 2 · λ · ~F · ~rji + λ2

4 · λ · kBT

]

=
Vji

2

~
·
√

π

λ · kBT
· exp

[

− λ

4 · kBT

]

︸ ︷︷ ︸

=νji, eq. (6.1)

· exp
[

−(~F · ~rji)2 − 2 · λ · ~F · ~rji
4 · λ · kBT

]

= νji · exp
[

−(~F · ~rji)2 − 2 · λ · ~F · ~rji
4 · λ · kBT

]

(6.3)

cf. eq. (2.133), with ∆E given by eq. (5.2). The diffusion constant D is then calcu-

lated for a vanishing force, F → 0, along with the Einstein relation, eq. (2.186), the

definition of the mobility µ, eq. (5.8), and eq. (5.9) for the average velocity 〈v〉:

D = lim
F→0

kBT · µ(F )

= lim
F→0

kBT · 〈v(F )〉
F

= lim
F→0

·kBT
F

·
∑

ij

pi · ν̃ji · ~rji ·
~F

F
(6.4)

The exciton diffusion length is calculated with eq. (5.22).

It has been shown in sec. 5.1 that the classical Einstein relation, eq. (2.186),

which states that the diffusion to drift ratio equals the thermal energy, does not

hold in the presence of a drift term in the rate equation (2.99) which is based on the

spectral overlap. However it does hold when applying the Marcus theory, which is

shown in the following: A first-order Taylor approximation of eq. (6.3) for small F

leads to

ν̃ji ≈ νji ·
(

1 +
~F · ~rji
2 · kBT

)

(6.5)

For simplicity only one dimension is regarded in the following. The diffusion constant

is (cf. eq. (3.18), now with ν̃ji, eq. (6.3), instead of νji)

D =
1

2
· 〈ν̃ji · r2ji〉

=
1

2
·
〈

νji ·
(

1 +
F · rji
2 · kBT

)

· r2ji
〉
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=
1

2
·
〈

νji · r2ji +
F

2 · kBT
· νji · r3ji

〉

=
1

2
·
(

〈νji · r2ji〉+
F

2 · kBT
· 〈νji · r3ji〉
︸ ︷︷ ︸

=0

)

=
1

2
· 〈νji · r2ji〉 (6.6)

〈νji · r3ji〉 vanishes because νij = νji and rij = −rji. This reveals that the diffusion is

not influenced by the drift provided that F is sufficiently small and nonlinear effects

can be neglected, as already shown in sec. 5.1, cf. eq. (5.10). The mobility is with

eqs. (5.8), (5.9) and (6.5):

µ =
1

F
· 〈ν̃ji · rji〉

=
1

F
·
〈

νji ·
(

1 +
F · rji
2 · kBT

)

· rji
〉

=
1

F
·
〈

νji · rji +
F

2 · kBT
· νji · r2ji

〉

=
( 1

F
· 〈νji · rji〉
︸ ︷︷ ︸

=0

+
1

2 · kBT
· 〈νji · r2ji〉

)

=
1

2 · kBT
· 〈νji · r2ji〉 (6.7)

Dividing eq. (6.6) by eq. (6.7) leads to

D

µ
=

1
2
· 〈νji · r2ji〉

1
2·kBT

· 〈νji · r2ji〉
= kBT (6.8)

This proves that the Einstein relation holds for the Marcus theory as long as the

linear approximation in eq. (6.5) is valid. This is also consistent with eq. (5.12)

derived for the spectral overlap approach: Comparing the hopping equations (2.99)

and (6.2), one gets for the FCWD within the Marcus theory with Eji = −~F~rji:

2π

~
· V 2

ji · J̃
!
=

Vji
2

~
·
√

π

λ · kBT
· exp

[

−(Eji + λ)2

4 · λ · kBT

]

⇒ J̃Marcus(Eji) =
1

2 ·
√
π · λ · kBT

· exp
[

−(Eji + λ)2

4 · λ · kBT

]

(6.9)

⇒ JMarcus =
1

2 ·
√
π · λ · kBT

· exp
[

− λ

4 · kBT

]

(6.10)

where JMarcus in the last line is defined for Eji = 0. The derivative with respect to
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Eji is

dJ̃Marcus(Eji)

dEji

=
−2 · (Eji + λ)

4 · λ · kBT
· 1

2 ·
√
π · λ · kBT

· exp
[

−(Eji + λ)2

4 · λ · kBT

]

=
−Eji − λ

2 · λ · kBT
· J̃Marcus(Eji)

⇒ J ′
Marcus =

−1

2 · kBT
· JMarcus (6.11)

J ′
Marcus is the derivation for Eji = 0. Inserting this into eq. (5.12) derived for the

spectral overlap approach leads to

D

µ
= − JMarcus

2 · J ′
Marcus

= − JMarcus

2 · −1
2·kBT

· JMarcus

= kBT (6.12)

as in eq. (6.8).

It was already explained in sec. 5.1 that the diffusion constant converges only

with the inverse of the maximum jump radius used in the simulation, see eq. (5.20).

Therefore, the fit equation (5.21) was also used here to determine D for infinite

jump radius.

6.3 Quantum chemical calculations

The electronic couplings Vji and the reorganization energy λ needed for the hopping

rate, eq. (6.1) and (6.2), are determined by quantum chemical first-principles cal-

culations. The reorganization energy is calculated analogously to the λ for charge

transport, described in sec. 3.5: The monomer geometry is optimized for the ground

and the excited state. The energies Eg and Eex of the ground and excited state

in their respective minimum geometries and the energies E∗
g and E∗

ex of the ground

state in the excited state geometry and vice versa are calculated to obtain the in-

tramolecular (internal) reorganization energy

λ = λex + λg

= (E∗
ex − Eex) + (E∗

g − Eg) (6.13)
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cf. fig. 6.1. To test the influence of the quantum chemical method on the re-

sult, spin-component scaled [273, 449] approximate coupled cluster singles and dou-

bles [281, 450–452] (SCS-CC2, sec. 2.8.4), time dependent Hartree-Fock (TDHF,

sec. 2.8.7) and time dependent density functional theory (sec. 2.8.8) using the hy-

brid generalized gradient functional B3-LYP [296–299, 383, 384] and the generalized

gradient functional B-LYP [297, 383, 384] together with the resolution of the identity

approximation [329, 491, 492] (RI-BLYP), are compared. The respective methods

are employed for both geometry and energy calculations. The correlation consis-

tent polarized double, triple and quadruple ζ basis sets [385] (cc-pVDZ, cc-pVTZ,

cc-pVQZ) are used for all atoms. All quantum chemical calculations are performed

with the Turbomole program package [381, 382, 441].

The exciton coupling Vji is calculated by a supermolecular approach of the whole

dimer [446] as described in sec. 2.7.3. The interaction between the lowest excita-

tion of one monomer with that of another is described by the Hamilton matrix in

eq. (2.237),

H =

(

Ei Vji

Vji Ej

)

(6.14)

provided that the lowest monomer excitations are energetically well separated from

the monomer S2 excitations (cf. sec. 5.2). Ei and Ej are the excitation energies of

monomer i and j. It is important to be aware that the monomer excitation energies

in the dimer configuration are not the same as for an isolated molecule since the

Eex*

Eex

Eg*

Eg

λ ex

λg

excited
state

ground
state

en
er

gy

geometry

Figure 6.1: The potential energy surfaces of the ground and the excited state of the
monomer. The dashed arrows indicate the vertical transitions from one state to the
other. λg and λex are the two contributions to the reorganization energy, see eq. (6.13).
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monomers influence each other leading to a lowering of energies, see fig. 6.2. If

the dimer is symmetric as in fig. 6.3a then Ei = Ej, and diagonalization of the

Hamilton matrix leads the supermolecular coupling equation (2.240). However, in a

crystal many monomers are tilted with respect to each other (see fig. 6.3b), leading

to Ei 6= Ej. In this case, dimer excitation energies, starting from eq. (2.239), are

calculated as

(Ei − ED) · (Ej − ED)− V 2
ji = 0

⇔ E2
D − (Ei + Ej) · ED + Ei · Ej − V 2

ji = 0

⇔ ED =
Ei + Ej

2
±
√

(Ei + Ej)2

4
− Ei · Ej + V 2

ji (6.15)

The relation between the energetic splitting and the coupling is then

ED2 − ED1 =

(

Ei + Ej

2
+

√

(Ei + Ej)2

4
− Ei · Ej + V 2

ji

)

−
(

Ei + Ej

2
−
√

(Ei + Ej)2

4
− Ei · Ej + V 2

ji

)

= 2 ·
√

(Ei + Ej)2

4
− Ei · Ej + V 2

ji

= 2 ·

√

E2
i + 2 · Ei · Ej + E2

j

4
− 4 · Ei · Ej

4
+ V 2

ji

= 2 ·

√

E2
i − 2 · Ei · Ej + E2

j

4
+ V 2

ji

= 2 ·
√

(Ei − Ej)2

4
+ V 2

ji

⇒ (ED2 − ED1)
2

4
=

(Ei − Ej)
2

4
+ V 2

ji

⇒ Vji =
1

2
·
√

(ED2 − ED1)2 − (Ei − Ej)2 (6.16)

Yet it will be shown in sec. 6.4.3 that eq. (2.240) is a very good approximation even

for tilted monomers and can therefore be used for all monomer arrangements in the

crystal. Thermal motion of the monomers is neglected. This should be justified

for excitons even more than for charge carriers, since the exciton coupling is less

dependent on the distance.

The quantum chemical methods which are applied to test their influence on the

coupling parameter and the diffusion length are TDHF (sec. 2.8.7), SCS-CC2 [493]

(sec. 2.8.4), and the spin component scaled algebraic diagrammatic construction
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Figure 6.2: The excitation energies of the isolated monomers, Evac
i = Evac

j , are lowered
in the presence of the other monomer to Ei 6= Ej . Davydov splitting leads to the dimer
excitation energies ED1 and ED2.

a) b)

Figure 6.3: a) Monomers shifted in parallel, resulting in a symmetric dimer, b) tilted
monomers, no symmetry.

through second order [338] (SCS-ADC(2)) (sec. 2.8.9) together with the cc-pVDZ,

cc-pVTZ and cc-pVQZ basis sets for all atoms. The non-variational coupled cluster

approach leads to a right and a left transition dipole moment because of the non-

Hermitian Hamiltonian caused by a similarity transformation [345]. For that reason

the arithmetic mean of both vectors is used.

It has been shown for smaller molecules that SCS-CC2 and SCS-ADC(2) ex-

citation energies compare quite well with full configuration interaction (sec. 2.8.2)

calculations [340, 494], whereas TDHF leads to larger errors [454, 494]. CC-based

methods are very accurate if the excited and ground states are mainly described

by single excitations [495]. By applying spin component scaling [273] (sec. 2.8.3),

the accuracy of the excitation energies further increases [449, 496] without addi-

tional computational cost. SCS-CC2 delivers excellent excitation energies also for

larger molecules as for example perylene-based dye-aggregates [455] and paracyclo-

phanes [497, 498]. It has been shown that TDHF [245, 454, 499] as well as CC2 and

ADC(2) [500] lead to transition dipole moments that agree well with experimen-

tal values. Applying spin component scaling to the latter two improves the results

further [500].

It is known that time dependent density functional theory (TDDFT, sec. 2.8.8)

often predicts substantially too low excitation energies [326], especially for charge

transfer states [304, 325, 334, 455, 501], leading furthermore to an erroneous influence

on the neutral states, which are energetically close [245, 454]. For that reason

TDDFT was not investigated in this context.
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6.4 Numerical results

If not otherwise stated, the cc-pVTZ basis set was used. The couplings were calcu-

lated with the SCS-ADC(2) method. Optimizations and calculations of the reorga-

nization energies were conducted with SCS-CC2. The hopping rates were calculated

at a temperature of T = 300K and a fictitious “force” (see eq. (6.2)) of F = 16 aN

was applied.

6.4.1 Naphthalene

The naphthalene crystal consists of two differently orientated monomers per unit

cell [442]. The monomer is depicted in fig. 4.1a and the lattice parameters are listed

in tab. 4.1. Table 6.1 shows the vertical monomer excitation energies of the two

lowest excitations, 11B3u and 11B2u, which have a single excitation contribution of 89

and 91%, respectively. The S1 state (called α or Lb, B3u symmetry) is energetically

well separated from the S2 state (p or Ba, B2u symmetry) so that no mixing between

these states has to be considered. Note that for TDHF the energetical order is

reversed. The corresponding adiabatic excitation energies are listed in tab. 6.2.

Table 6.3 shows the reorganization energy for the 11B3u excitation of naphthalene

calculated with different methods and basis sets. The influence of the basis set is

negligible, however the strong dependence on the method becomes obvious. While

SCS-CC2 as the presumably most accurate method predicts a reorganization energy

Table 6.1: Vertical excitation energies (in eV) of the two lowest excitations in the
naphthalene monomer. The structure was optimized in the ground state with SCS-
CC2/cc-pVTZ. The values for the non-optimized monomer structure taken from the
x-ray crystal data are given in brackets.

state TDHF SCS-CC2 SCS-ADC(2)
S1(α) 1

1B3u 5.00 (5.12) 4.36 (4.46) 4.37 (4.47)
S2(p) 1

1B2u 4.73 (4.83) 4.95 (5.04) 4.92 (5.01)

Table 6.2: Adiabatic excitation energies (in eV) of the two lowest excitations in the
naphthalene monomer. Both geometry optimization and energy calculations were
conducted with the same respective method and the cc-pVTZ basis set. (The zero
point correction is neglected.)

state TDHF SCS-CC2 experimental
S1(α) 1

1B3u 4.94 4.18 3.97a, 4.0b

S2(p) 1
1B2u 4.53 4.62 4.45c, 4.7d

aref. [502], bref. [503], crefs. [502, 503], dref. [504]
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of 350meV, TDHF gives rise to a much larger value of about 520meV. (This is

regarded in more detail for anthracene in sec. 6.4.2.) Both tested DFT approaches

considerably underestimate the reorganization energy in comparison to SCS-CC2.

Since the reorganization energy enters the hopping rate exponentially, (see eq. (6.1)

and (6.2)), variations in the reorganization energy change the diffusion constant

by almost two orders of magnitude, cf. fig. 6.4. This indicates that at least the

reorganization energy has to be computed with a high-level ab initio method to

achieve reliable estimates for D. However, this is feasible since λ has to be computed

only once.

SCS-CC2 tends to slightly overestimate bond lengths as compared to experiments

and correspondingly underestimates the vibrational frequencies. However, since the

Table 6.3: The reorganization energy of naphthalene calculated with different methods
and basis sets (in meV).

cc-pVDZ cc-pVTZ cc-pVQZ
RI-BLYP 183 187 186
B3-LYP 213 218 216
TDHF 515 527 525
SCS-CC2 351 347 345
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Figure 6.4: The diffusion constant D of naphthalene along the unit cell vectors de-
pending on the reorganization energy λ. The λ values from tab. 6.3 are tagged by
arrows. (Vji was calculated with SCS-ADC(2)/cc-pVTZ.)



180 6. Exciton transport with the Marcus theory

deviations have the same sign for both the ground and the excited state, changes

in the bond length and the frequencies are obtained with quite high accuracy [452],

so that the reorganization energies obtained with SCS-CC2 seem to be reliable.

TDDFT was shown to be less trustworthy than SCS-CC2 [452, 505]. Hartree-Fock

overestimates the vibrational frequencies in the ground state [263, 264]. However,

it is shown in detail in sec. 6.4.2 that this does not hold correspondingly for excited

states which is the reason for the much higher λ. Furthermore, TDHF does not

include electron correlation and is therefore inferior to SCS-CC2 and SCS-ADC(2).

Table 6.4 shows the largest coupling in the naphthalene crystal, which is the

coupling between the two monomers in the same unit cell. Obviously, the basis sets

do not have much influence and even the methods do not differ significantly in this

case.

Table 6.5 shows exciton diffusion constants as obtained with the coupling param-

eters Vji from the different quantum chemical methods and basis sets. The reorga-

nization energy λ was set to 347meV (SCS-CC2/cc-pVTZ) in order to identify the

influence of the coupling calculations. It can be seen that TDHF overestimates the

Table 6.4: The largest coupling Vji (in meV) in the naphthalene crystal which is the
coupling between the two monomers in the unit cell.

cc-pVDZ cc-pVTZ cc-pVQZ
TDHF 9.3 9.5 9.5
SCS-CC2 7.5 7.4 7.5
SCS-ADC(2) 6.8 7.1 7.1

Table 6.5: The exciton diffusion coefficient D in the naphthalene crystal depending on
the method and the basis sets used for the couplings (in 10−9m2/s). The reorganization
energy was λ = 347meV (SCS-CC2/cc-pVTZ) for all calculations.

cc-pVDZ cc-pVTZ cc-pVQZ
a direction

TDHF 5.1 3.0 2.3
SCS-CC2 1.4 2.1 –
SCS-ADC(2) 3.0 2.0 –

b direction
TDHF 8.9 9.0 8.8
SCS-CC2 5.3 5.3 –
SCS-ADC(2) 4.8 4.9 –

c direction
TDHF 3.6 4.0 4.3
SCS-CC2 1.4 1.5 –
SCS-ADC(2) 1.7 1.5 –
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diffusion constant compared to the higher level methods SCS-CC2 and SCS-ADC(2).

Since the coupling enters the hopping rate quadratically, cf. eq. (6.1) and (6.2), the

differences between the methods are much more pronounced as for the couplings

themselves. In this context, the trend of D depending on the basis set is not yet

clear as it behaves differently for the different directions. A possible reason is that

the couplings in the naphthalene crystal are quite small so that the inaccuracies of

the methods become more important than the influence of the basis sets.

In order to compare the differences for the different quantum chemical methods

used for the coupling, fig. 6.5 shows the diffusion length L in the (ab) plane, assuming

an exciton life time of 78 ns [54, 466, 467]. The reorganization energy is λ = 347meV

(SCS-CC2/cc-pVTZ) for all calculations. As already seen in tab. 6.5, SCS-CC2 and

SCS-ADC(2) lead to similar results while TDHF leads to larger diffusion lengths.

Table 6.6 shows a comparison of the exciton diffusion constants and lengths be-

tween the ones obtained with the Marcus theory, the ones calculated with the spec-

tral overlap approach as described in chapter 5, and experimental values. While the

values calculated with the spectral overlap fit very accurately to the measurements,

the Marcus theory yields smaller values. The FCWD, eq. (5.4), for naphthalene is

0 10 20 30 40

diffusion length L [nm]

 

a

b
SCS−ADC(2)

SCS−CC2
TDHF

Figure 6.5: The exciton diffusion length in the naphthalene crystal in the (ab) plane
(τ = 78ns [54, 466, 467]). The couplings were calculated with SCS-ADC(2), SCS-
CC2 and TDHF, respectively. In all cases the cc-pVTZ basis sets were used and the
reorganization energy was calculated with SCS-CC2/cc-pVTZ.
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Table 6.6: The exciton diffusion constants D and diffusion lengths L for naphthalene.
(Vji was calculated with SCS-ADC(2)/cc-pVTZ, λ was calculated with SCS-CC2/cc-
pVTZ.)

diffusion constant D (in 10−9m2/s)
Marcus overlap (sec. 5.3.1) measured [468]

a 2.0 14.4
b 4.9 33.6
c 1.5 10.3
c’ 1.3 9.0 5

diffusion length L (in nm)
Marcus overlap (sec. 5.3.1) measured [54]

a 18 48 50a

b 28 72
c 15 40
c′ 14 37

adirection unknown

J = 0.71 eV−1 (calculated with SCS-CC2, cc-pVTZ). The corresponding value in the

Marcus theory, eq. (6.10), is JMarcus = 0.10 eV−1 (with λ = 347meV, also calculated

with SCS-CC2/cc-pVTZ). JMarcus is smaller than J because in the Marcus theory a

quasiclassical approximation is employed which underestimates the delocalization of

the nuclear positions. This corresponds to narrow absorption and emission spectra,

resulting in a smaller overlap of the spectra. Therefore the diffusion constants cal-

culated with the more precise spectral overlap are larger by a factor of 6.9 while the

diffusion lengths are bigger by a factor of 2.6. Figure 6.6 compares both approaches

and Monte Carlo simulations (sec. 2.6.2, applying eq. (5.18) for D) using Marcus

theory to verify the approach for the transport calculations as explained in sec. 6.2

within the three principal crystal planes. Figure 6.7 shows a three-dimensional de-

piction of the diffusion length in the crystal.

6.4.2 Anthracene

The anthracene lattice parameters are listed in tab. 4.1. The unit cell contains two

differently oriented monomers [423]. The monomer is depicted in fig. 4.1b. Table 6.7

lists the adiabatic excitation energies of the first two monomer excitations, calculated

with TDHF and SCS-CC2, which have B2u (S1) and B3u (S2) symmetry, respectively,

with single excitation contributions of 89 and 91%. In tab. 6.8 the vertical excitation

energies are shown, calculated with TDHF, SCS-CC2 and SCS-ADC(2). Compared

to naphthalene, the 11B2u and the 11B3u are energetically interchanged [464, 465]

and in close proximity. (Compare also the experimental values in tab. 6.7.) For
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Figure 6.6: The exciton diffusion length in the naphthalene crystal in the (ab), (bc)
and (ac) plane. The dashed lines are calculated with the spectral overlap approach
using eqs. (5.7) and (5.17) as explained in sec. 5, the solid lines are calculated with
the Marcus equation (6.2), and eq. (6.4) along with the master equation (sec. 3.2)
and the dots are calculated with the Marcus equation (6.1) using the Monte Carlo
method. (Vji was calculated with SCS-ADC(2)/cc-pVTZ, λ and J were calculated
with SCS-CC2/cc-pVTZ.)

SCS-CC2 and SCS-ADC(2) the 11B2u and 11B3u vertical excitation energies even

change order although the order of the adiabatic excitation energies is correctly

reproduced.

Table 6.9 shows the reorganization energy of anthracene calculated with different

methods and basis sets. While λ increases by about 5% going from double to triple

ζ basis set, the change from triple to quadruple ζ is very small (about 2% variation)
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Figure 6.7: The exciton diffusion length in the naphthalene crystal along all spatial
directions. (Vji was calculated with SCS-ADC(2)/cc-pVTZ, λ was calculated with
SCS-CC2/cc-pVTZ.)

Table 6.7: Adiabatic excitation energies (in eV) of the two lowest excitations in the
anthracene monomer. Both geometry optimizations and energy calculations were
conducted with the same respective method and cc-pVTZ. (The calculated values are
without zero point correction.)

state TDHF SCS-CC2 exper.
S1(p) 1

1B2u 3.57 3.56 3.31a, 3.43b

S2(α) 1
1B3u 4.36 3.69 3.45c, 3.84d

aref. [464], bref. [469], cref. [470], dref. [471]

Table 6.8: Vertical excitation energies (in eV) of the two lowest excitations in the
anthracene monomer calculated with different methods and the cc-pVTZ basis set.
The structure was optimized in the ground state with SCS-CC2/cc-pVTZ. The value
for the non-optimized monomer structure as taken from the x-ray crystal data are
given in brackets.

state TDHF SCS-CC2 SCS-ADC(2)
S1(p) 1

1B2u 3.70 (3.82) 3.84 (3.94) 3.83 (3.91)
S2(α) 1

1B3u 4.37 (4.43) 3.82 (3.89) 3.81 (3.89)

and lies in the range of the accuracy of the method. It seems that the energy is

already converged for the cc-pVTZ basis set and for that reason it was used for all

further calculations.

As already seen for naphthalene, there are severe differences for λ depending on

the quantum chemical method used. TDDFT leads to the lowest energies, while

TDHF highly overestimates the reorganization energies. Because of the exponential
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Table 6.9: The reorganization energy of anthracene calculated with different methods
and basis sets (in meV).

cc-pVDZ cc-pVTZ cc-pVQZ
RI-BLYP 323 341 340
B3-LYP 423 445 444
TDHF 876 921 923
SCS-CC2 509 530 533

dependency of the jump rate on λ, eq. (6.1) and (6.2), the diffusion constant changes

even by three orders of magnitude depending on the method used, see fig. 6.8.

The reorganization energy calculated with TDHF is about a factor of 1.74 larger

than the more reliable energy calculated with SCS-CC2 (both with cc-pVTZ). This

is caused by the larger geometry change for TDHF due to the excitation as will be

explained below.

As already explained in sec. 5.2 and shown in sec. 5.3.2, the first two excitations in

the anthracene monomer are energetically very close (tab. 6.7 and 6.8), so that these

excitations mix in the dimer as depicted in fig. 5.3b, unless the dimer is symmetric.

This can be nicely identified by means of the transition densities in fig. 5.11. It was

shown by a fitting procedure described in sec. 5.2 that the dipole approximation,

eq. (2.236) leads to good results even for the coupling of monomers with smaller
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Figure 6.8: The diffusion constant of anthracene along the unit cell vectors depending
on the reorganization energy λ. The λ values from tab. 6.9 are tagged by arrows. (Vji

was calculated with SCS-ADC(2)/cc-pVTZ.)
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distances, cf. tab. 5.3, which is therefore used here again for all couplings in the

anthracene crystal.

Figure 5.11c shows the dimer with the highest coupling in the anthracene crys-

tal. Here one monomer is parallely shifted by the lattice vector ~b relative to the

other. Because of the dimer symmetry the 11B2u and 11B3u monomer excitations do

not mix and the supermolecular approach, eq. (2.240), can be applied in this case.

Table 6.10 shows the coupling of this dimer calculated with both the supermolecular

approach and the dipole approximation with different quantum chemical methods

and basis sets. As for the reorganization energy the dependency on the basis sets

is not very strong; however, the coupling decreases slightly with increasing basis

set. More important is the dependency on the method used. While SCS-CC2 and

SCS-ADC(2) lead to similar values, the coupling calculated with TDHF is about

a factor of 1.5 larger. For SCS-CC2 and SCS-ADC(2) the accordance between the

dipole approximation and the supermolecular approach increases with increasing

basis sets, whereas, for TDHF, no improvement depending on the basis set is ob-

served. The best agreement between the supermolecular calculation and the dipole

approximation is found for SCS-ADC(2) which is also the most reliable approach

for the present problem as it is accounting for electron correlation and applicable to

nearly degenerate cases. Thus, SCS-ADC(2) is mostly used here.

Since the anisotropy of the dielectric constant is not important for the anisotropy

of the exciton transport (see sec. 5.3.2), εr = 3 was used for all calculations. In

tab. 6.11 the diffusion constants in different directions are listed which were calcu-

lated with different quantum chemical methods and basis sets. As for the coupling

(see tab. 6.10) D slightly decreases with increasing basis sets. From quadruple ζ

to the smaller triple ζ basis set D increases by about 8% on average, from triple ζ

to double ζ it increases about 14%. The triple ζ basis set seems to be a good

Table 6.10: The largest coupling Vji in the anthracene crystal (in meV) calculated
with different quantum chemical methods and with both the supermolecular approach,
eq. (2.240), and the dipole approximation, eq. (2.236). The corresponding dimer is
depicted in fig. 5.11c.

cc-pVDZ cc-pVTZ cc-pVQZ
supermolecular, TDHF 39.82 37.22 36.31
supermolecular, SCS-CC2 25.62 23.08 21.37
supermolecular, SCS-ADC(2) 25.26 24.17 23.38
dipole approx., TDHF 29.92 27.36 26.34
dipole approx., SCS-CC2 22.02 20.38 19.67
dipole approx., SCS-ADC(2) 26.05 24.41 23.30
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Table 6.11: The exciton diffusion coefficients in the anthracene crystal depending on
the method and the basis sets used for the couplings (in 10−9m2/s), εr = 3. The
reorganization energy was λ = 530meV (SCS-CC2/cc-pVTZ) for all calculations.

cc-pVDZ cc-pVTZ cc-pVQZ
a direction

TDHF 10.5 8.8 8.2
SCS-CC2 5.6 4.8 4.5
SCS-ADC(2) 7.9 6.9 6.1

b direction
TDHF 53.3 44.7 41.4
SCS-CC2 28.8 24.7 23.0
SCS-ADC(2) 40.3 35.3 32.1

c direction
TDHF 10.3 8.7 8.1
SCS-CC2 5.5 4.8 4.4
SCS-ADC(2) 7.8 6.8 6.0

c′ direction
TDHF 10.1 8.5 7.9
SCS-CC2 5.4 4.6 4.3
SCS-ADC(2) 7.6 6.6 5.9

compromise, in particular as quadruple ζ basis sets are often too big for calcula-

tions of typical organic molecules which are used for semiconductor application. As

already seen in the case of the couplings, tab. 6.10, the diffusion constant consid-

erably depends on the quantum chemical method used. TDHF overestimates D

compared to the higher level methods SCS-CC2 and SCS-ADC(2). The values cal-

culated with TDHF are about a factor of 1.8 larger than the values determined with

SCS-CC2. However, the SCS-CC2 values are about a factor of 0.7 smaller than

the SCS-ADC(2) values. As already seen in tab. 6.10, the supermolecular approach

leads to quite similar results for the coupling for SCS-ADC(2) and SCS-CC2, how-

ever, the dipole approximation is better for SCS-ADC(2). This seems to be the

reason for the deviations between both methods in the calculation of D.

Experimental estimations of the diffusion constants have lead toD ≤ 5 · 10−8m2/s

in b direction and D ≤ 10−8m2/s in c direction [474]. This fits quite well with the

calculated results of 3.5 · 10−8m2/s for the b axis and 0.7 · 10−8m2/s for the c axis.

Table 6.12 shows a comparison of the calculated diffusion lengths with experi-

mental values [61, 475] and with values calculated in chapter 5 using the spectral

overlap approach. The FCWD, eq. (5.4), for anthracene is J = 0.35 eV−1 (calculated

with SCS-CC2, cc-pVTZ, see sec. 5.3.2) while the corresponding expression in the

Marcus theory, eq. (6.10), has a value of 0.01 eV−1 (λ = 530meV, calculated with
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Table 6.12: Comparison of diffusion lengths for anthracene (in nm, τ = 10ns [54, 472,
473]) calculated with the Marcus theory, the spectral overlap approach (chapter 5),
and experimental values. Note that the measured values have not been corrected for
reabsorption. (Vji was calculated with SCS-ADC(2)/cc-pVTZ, λ was calculated with
SCS-CC2/cc-pVTZ.)

Marcus overlap (sec. 5.3.2) measured
a 12 58 60 ± 10a

b 27 132 approx. 100a

c 12 58
c’ 11 57 60 ± 5b, 49 ± 1c, 47 ± 1c, 36 ± 20a

aref. [61], bref. [475], cref. [476]

SCS-CC2, cc-pVTZ). The diffusion constants determined with the approach derived

in chapter 5 are therefore larger by a factor of 24.7 while the diffusion lengths differ

by a factor of 5.0.

For the calculation of L an exciton life time of 10 ns was assumed [54, 472, 473].

The calculated results compare qualitatively good with the experimental values. As

in the experiment the b direction is the one with the highest diffusion length, and

this value is about twice as large as in a and c′ direction. The calculated diffusion

lengths are smaller than the corresponding measured ones and those calculated with

the approach derived in chapter 5, depending on the direction by about a factor of

four to five. Figure 6.9 depicts the diffusion lengths along all spatial directions.

a
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c
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diffusion length L [nm]

Figure 6.9: The exciton diffusion length in the anthracene crystal along all spatial
directions. (Vji was calculated with SCS-ADC(2)/cc-pVTZ, λ was calculated with
SCS-CC2/cc-pVTZ.)
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Comparison of the reorganization energies calculated with TDHF and

SCS-CC2

In order to have a closer look at the large differences between the reorganization

energies calculated with TDHF and SCS-CC2, the difference vectors of the atomic

positions of the excited and the ground state structure were calculated for both

TDHF (~RTDHF) and SCS-CC2 (~RCC2). The angle between these two vectors is 14◦,

which means that the vectors can be regarded as almost parallel and the relaxation

can be described as a one-dimensional motion in a harmonic potential with the

energy

E =
1

2
·K · ~R2 (6.17)

where R is the coordinate characterizing the geometry and K is the force constant.

Multiples x of the average shift vector

~R =
1

2
· (~RTDHF + ~RCC2) (6.18)

are added to the respective TDHF and SCS-CC2 ground state structures and the

excited state energies for these geometries are calculated, leading to the parabolas

in fig. 6.10. Fitting these parabolas to the equation

E =
1

2
·K ′ · (x− x0)

2 − E0 (6.19)

leads to the minima x0,TDHF = 1.14 and x0,CC2 = 0.85, which correspond to the

excited state geometries. The fitted curvatures are K ′
TDHF = 0.68 eV and K ′

CC2 =

0.76 eV. This is quite surprising, because for ground state vibrations it has been

shown that the overestimation of the force constant is stronger for Hartree-Fock

(6% [263, 264]) than for Møller-Plesset perturbation theory 2nd order (MP2, 3% [263]),

which is very similar to CC2 for ground state calculations. However, here also ex-

cited state vibrations are involved, making the situation more complex. A rough

estimation leads to

ETDHF

ECC2

=
K ′

TDHF

K ′
CC2

·
(
x0,TDHF

x0,CC2

)2

=
0.68

0.76
·
(
1.14

0.85

)2

= 1.61 (6.20)

which is quite close to the actual value of 1.74. This calculation shows that the

reason for the quite large reorganization energy for TDHF, see tab. 6.9, is caused

essentially by the larger geometry change due to the excitation.
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Figure 6.10: Excited state energy for different structures depending on the multiple
x of the shift vector ~R. The zero point is the ground state structure of TDHF and
SCS-CC2, respectively, and their respective excited state energies. The dashed lines
indicate the energy minima of the parabolas, corresponding to the respective excited
state geometries.

6.4.3 Diindenoperylene

Because of the size of the diindenoperylene molecule (fig. 6.11), all calculations were

conducted with the cc-pVDZ basis sets. This seems to be sufficiently accurate since

as shown for naphthalene and anthracene the couplings and reorganization energies

are only little affected by the basis sets (cf. tab. 6.3, 6.4, 6.9 and 6.10). The lattice

parameters [482] are listed in tab. 6.13.

It has been shown that above 80K the exciton transport in diindenoperylene

Figure 6.11: The diindenoperylene
molecule.

Table 6.13: The lattice constants and an-
gles for the unit cell of the diiondenop-
erylene crystal [482].

a [nm] 0.717
b [nm] 0.855
c [nm] 1.680
α [deg] 90.00
β [deg] 92.42
γ [deg] 90.00
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Table 6.14: Vertical excitation energies, oscillator strengths and the fractions of
single excitations of the three lowest excitations in the diindenoperylene monomer.
The structure was optimized with SCS-CC2/cc-pVDZ and Eex and fosc were calcu-
lated with SCS-ADC(2)/cc-pVDZ. The values in brackets are for the non-optimized
monomer geometry as it is found in the crystal structure.

state Eex [eV] fosc contrib. single exc. [%]
S1 11B3u 2.75 (2.90) 1.050 (1.054) 90 (90)
S2 11B1g 2.92 (3.12) 0.000 (0.000) 90 (90)
S3 11B2u 3.51 (3.68) 0.002 (0.000) 90 (89)

is incoherent with activation energies of 10 to 20meV [486]. This legitimates the

hopping approach. Table 6.14 lists the three lowest excitations in the diindenopery-

lene monomer. The excitations are sufficiently separated so that no mixing of the

states can occur. Excitation of the ground state to the lowest excited state (11B3u)

gives rise to a very large oscillator strength, while the second excitation (11B1g) is

dipole forbidden. The third excitation (11B2u, 3.5 eV) is dipole allowed, however,

the oscillator strength is virtually zero. The transition density of the first monomer

excitation is depicted in fig. 6.12a. The transition dipole moment is parallel to

the long axis of the molecule, as indicated by the arrow. Figure 6.12b shows the

transition density of the first two excitations of the dimer in the unit cell. These ex-

citations are minus and plus linear combinations of the 11B3u monomer excitations

and therefore the supermolecular approach can be applied.

Figure 6.13 shows the difference of the coupling Vji calculated with the super-

molecular approach, eq. (2.240), and the dipole approximation, eq. (2.236), depend-

ing on the distance of the monomers. No dielectric shielding was taken into account

here. For small distances the dipole approximation leads to a large overestimation

of the coupling, as expected for an H aggregate, cf. fig. 6.12b. For distances larger

than 1.5 nm the approximation leads to quite similar results as the supermolecular

approach. To be on the safe side, the couplings up to a monomer distance of 2 nm

were calculated with the supermolecular approach while the dipole approximation

was used for distances beyond that.

One of the dimers with the largest coupling is the one which consists of the two

monomers in the unit cell, see fig. 6.12b. Here the monomers are tilted with respect

to each other as depicted in fig. 6.3b. As explained in detail in sec. 6.3, eq. (2.240)

should not be valid in this case because both monomers have different “environ-

ments” caused by the respective other monomer, resulting in different monomer

excitation energies, cf. fig. 6.2. In this case eq. (6.16) should be used. The energy of
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S1 excitation S2 excitation

S1 excitation (B )3u

b)

a)

Figure 6.12: The transition densities of diindenoperylene. The arrows are in the
direction of the transition dipole moments. a) The first excitation of the monomer.
b) The first two excitations of the dimer in the unit cell.

the first excitation of an isolated monomer is Evac = 2.902 eV. In order to determine

the monomer excitation energies in the presence of the other monomer, the fit pro-

tocol which was applied to anthracene and described in sec. 5.2 was adapted to this

two state problem, leading to Ei = 2.859 eV and Ej = 2.841 eV. These values seem

to be reasonable because they lie approximately in the middle of the first two dimer

excitations with the energies of ED1 = 2.776 eV and ED2 = 2.925 eV. The monomer

excitations are lowered by 43 and 61meV relative to the isolated monomer, respec-

tively, differing by 18meV. Equation (2.240) leads to a coupling of Vji = 74.43meV,

while eq. (6.16) results in 73.95meV which is consistent with the fitted value. There-

fore it is possible to use the approximated eq. (2.240) for all dimers in the crystal.

However, the deviation of eq. (2.240) from eq. (6.16) could be stronger in the case

that the transition dipole moments are not aligned almost parallel, see fig. 6.12b,

but orthogonal. Such dimers become important in organic crystals with an in-plane

herringbone structure if the transition dipole moment lies in the direction of the

short molecular axis.
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Figure 6.13: The difference between the electronic coupling Vji for diindenoperylene
calculated with the supermolecular approach and with the dipole approximation de-
pending on the monomer distance (calculated with SCS-ADC(2)/cc-pVDZ).

For the transport calculations a dielectric constant of ε = 7 was assumed [506].

While the dipole-allowed B3u excitation has the smallest vertical excitation energy,

the adiabatic B1g excitation energy is 66meV below the corresponding B3u value,

cf. tab. 6.15, because the states change their energetic order during the relaxation

into the equilibrium structure. In fig. 6.14 the parabolas of the ground state and

the two excited states were determined with an analogous proceeding as described

in sec. 6.4.2. Because of the small energetic gap between the two excited states

both have to be taken into account for transport. Since it is assumed that the

relaxation into thermal equilibrium is fast compared to the transport (see sec. 2.3.2),

the states are populated according to a Boltzmann distribution, exp[−E/(kBT )],
leading to 92% of the excitons in the B1g and 8% in the B3u state. However, the

diffusion constant of the dipole-forbidden B1g state – using the reorganization energy

Table 6.15: Vertical and adiabatic excitation energies (in eV) of the two lowest exci-
tations in the diindenoperylene monomer. Both geometry optimizations and energy
calculations were conducted with SCS-CC2, cc-pVDZ. (The calculated values are with-
out zero point correction.)

state Evert [eV] Eadiab [eV]
S11

1B3u 2.76 2.57
S21

1B1g 2.90 2.51
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Figure 6.14: Energies of the ground state and the 11B3u and 11B1g excited states of

diindenoperylene depending on the multiple x of the shift vector ~R relative to the
energy of the ground state in the equilibrium structure (SCS-CC2/cc-pVDZ). The
dashed lines indicate the equilibrium structures.

of 673meV which follows from the process where the exciton is first excited into the

B3u state (fig. 6.14) – is about seven orders of magnitude smaller than the diffusion

constant of the B3u state (λ = 361meV, both reorganization energies calculated with

SCS-CC2, cc-pVDZ). In c′ direction the diffusion constant of B3u is 6.6 · 10−6m2/s,

and averaging over both states results in D = 5.3 · 10−7m2/s. With an exciton life

time of 10 ns [66] this leads to a diffusion length of 103 nm. This fits quite nicely with

the measured values of D = 5 · 10−7 m2/s and L > 100 nm [66] and L = 90nm [486]

respectively. It is important to note that grain boundaries limit the exciton diffusion

in diindenoperylene to about 100 nm [486], i. e. also for diindenoperylene the Marcus

based values seem to underestimate the exciton diffusion lengths for a crystal without

any defects which is assumed in our modelling. Table 6.16 also lists the calculated

diffusion lengths in the other directions. The diffusion lengths in all directions are

depicted in fig. 6.15. As can be seen the anisotropy is less pronounced than for

naphthalene and anthracene, rendering diindenoperylene interesting for application

in opto-electronic devices.
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Table 6.16: Diffusion lengths (in nm) for diindenoperylene along different crys-
tal directions, calculated with τ = 10ns [66] and with 92% B1g and 8% B3u oc-
cupation. (Vji was calculated with SCS-ADC(2)/cc-pVDZ, λ was calculated with
SCS-CC2/cc-pVDZ.)

calculated measured
a 75
b 77
c′ 103 > 100a, 90b

aref. [66], bref. [486]

a

b
c

 70  80  90  100  110

diffusion length L [nm]

Figure 6.15: The exciton diffusion length in the diindenoperylene crystal in all spa-
tial directions, calculated with a single maximum jump distance of 3 nm. (Vji was
calculated with SCS-ADC(2)/cc-pVDZ, λ was calculated with SCS-CC2/cc-pVDZ.)

6.5 Summary

The Marcus theory, which is widely used for charge transport in organic semiconduc-

tors, was transferred to exciton transport. The rate equations were derived in detail

and verified by Monte Carlo simulations. It was shown that the Einstein relation

holds for the Marcus theory, which is in contrast to the spectral overlap approach

as shown in chapter 5.

The adaption of the Marcus theory to exciton transport allows the efficient cal-

culation of exciton diffusion coefficients with first-principles methods avoiding the
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demanding calculation of the spectral overlap as in the commonly used spectral

overlap approach, eq. (2.99), and without the need of any fitting to experimental

data.

Since the frequently used equation for the electronic coupling, where the coupling

is half of the Davydov splitting, eq. (2.240), is in the strict sense only valid for

symmetric dimers, an alternative equation was derived. However, it was shown that

eq. (2.240) is sufficiently precise even for the tilted monomers in a crystal.

It was shown that the calculations are not very sensitive to the basis set sizes.

Triple ζ basis sets are a good compromise between accuracy and computational

cost, but also double ζ basis sets lead to good results, which is important for larger

molecules.

The choice of the quantum mechanical method applied has a large effect on the

predicted exciton diffusion coefficient. It was shown that TDHF overestimates the

coupling compared to more accurate methods such as SCS-CC2 and SCS-ADC(2).

Whereas the electronic coupling enters the hopping rate and therefore the dif-

fusion constant quadratically, the reorganization energy contributes exponentially

and therefore has a large influence on D. The calculated reorganization energy λ

strongly depends on the employed method. The simplest approach, TDHF, sub-

stantially overestimates λ due to the strong geometry change during excitation. In

comparison to the more accurate SCS-CC2 approach, DFT approaches on the other

hand result in much lower energies. It was shown that in the range in which the

reorganization energy varies depending on the quantum chemical method applied,

the diffusion constant varies over two to three orders of magnitude. Though it is

known that SCS-CC2 leads to more accurate energies [449, 451], and because of the

high influence of λ on the diffusion coefficient, it is essential to choose a preferably

precise method. However, this hardly restricts the applicability of this approach

since the reorganization energy has to be calculated only for one monomer in the

crystal.

The angular dependence of exciton diffusion in naphthalene, anthracene and

diindenoperylene was calculated and compared with experimental findings and with

calculated values obtained with the physically more sophisticated spectral overlap

approach (chapter 5). It was shown that the qualitative agreement is good, however,

the values calculated with Marcus hopping rates tend to be considerably smaller than

the measured values as well as those obtained with the spectral overlap approach.

This is probably due to the fact that only one effective vibrational mode is taken into

account in the Marcus theory. Nevertheless, the Marcus based approach seems to

be sufficiently accurate to study trends. This is especially true for systems in which
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uncertainties in the geometrical arrangement of the monomers already may lead to

errors, e. g. amorphous or strongly disordered systems. The anisotropy for exciton

transport is less pronounced than for charge transport (cf. chapter 3) because the

exciton couplings decay slower with distance than the charge couplings, leading to

more dimers involved in the transport.

Comparing exciton and charge transport, the accordance of the Marcus based

approach with the experiment is better for exciton transport than for charge trans-

port, since in the former case the reorganization energy is larger and the coupling

is smaller, making perturbation theory more warrantable. Furthermore, the ne-

glected external reorganization energy should be considerably smaller for excitons

than for charge carriers, since excitons are neutral, therefore leading to much weaker

polarization effects in the environment.





7 Charge transport with the

spectral overlap approach

While for exciton transport the spectral overlap approach is well accepted [174,

176, 210, 225, 478, 479] (chapter 5), for charge transport the Marcus theory is

commonly used [102–104, 254, 300, 347, 348] (chapter 3). However, in sec. 2.3.1

it was shown that the derivation of the spectral overlap hopping rate does not

contain any assumptions which do not hold for charge transport as well. Actually,

the Marcus hopping rate, eq. (2.133), is based on the spectral overlap hopping

rate, eq. (2.99), and just contains further approximations as explained in detail in

sec. 2.3.2. These also hold for excitons and the applicability of the Marcus theory for

excitons was already investigated in chapter 6. The results of the spectral overlap

calculations, however, fit better to the experimental values, as shown in chapter 5,

which is not surprising because of the fewer approximations which have been made.

Here the applicability of the spectral overlap approach to charge carriers is examined.

7.1 The transport calculations

In sec. 5.1 the hopping rate of the spectral overlap approach, eq. (2.99), was modified

for the case that the exciton is accelerated by an external force, resulting in eq. (5.7).

The force ~F , which appears in this equation, is purely fictitious in the case of excitons

and it is just introduced to overcome the trapping of the rate equation approach.

(This was explained in detail in sec. 3.3). Charge carriers, however, are influenced

by electric fields, and therefore the force acting on the charge is

~F = q · ~E (7.1)

where q is the elementary charge and ~E is the electric field. The field causes an

energetic difference of

Eji = −q · ~E · ~rji (7.2)
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between the molecules i and j. Inserting this into eq. (5.7) leads to the hopping rate

ν̃ji = νji ·
(

1− J ′

J
· q · ~E · ~rji

)

(7.3)

where νji is the hopping rate without drift, eq. (2.99). J is the Franck-Condon-

weighted density of states and J ′ is its derivative, both for ~E = 0. They are de-

termined via eq. (5.5). According to the definition of the charge carrier mobility,

eq. (2.187), the mobility is calculated using eq. (3.13). The occupation probabilities

of the lattice sites which appear in this equation are calculated with the master

equation approach as explained in detail in sec. 3.2.

Using the definition for the charge carrier mobility, eq. (2.187), and eq. (7.3),

one gets for one dimension by an analogous calculation as in eq. (5.11):

µ =
1

E · 〈ν̃ji · rji〉

=
1

E ·
〈

νji ·
(

1− J ′

J
· q · E · rji

)

· rji
〉

=
1

E ·
〈

νji · rji −
J ′

J
· q · E · νji · r2ji

〉

=
1

E ·
(

〈νji · rji〉
︸ ︷︷ ︸

=0

−J
′

J
· q · E · 〈νji · r2ji〉

)

= −J
′

J
· q · 〈νji · r2ji〉 (7.4)

〈νji · rji〉 = 0 because νji = νij and rji = −rij . Because of the different definition of

the mobility for charge carriers and excitons, the diffusion to drift ratio for charge

carriers is with eq. (7.4) and eq. (5.10):

D

µ
=

1
2
· 〈νji · r2ji〉

−J ′

J
· q · 〈νji · r2ji〉

= − J

2 · q · J ′
(7.5)

Replacing νji in eq. (7.4) by eq. (2.99) leads to

µ = −J
′

J
· q ·

〈(
2π

~
· V 2

ji · J
)

· r2ji
〉

= −2π

~
· q · J ′ · 〈V 2

ji · r2ji〉 (7.6)

Within the linear approximation, the mobility does not depend on J but only on
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J ′. This is in contrast to the diffusion constant. This is not obvious from the rate

equation (5.17) for D, which is used throughout the exciton diffusion calculations,

since it is based on the mobility rate equations (5.8) and (5.9). However, using

eq. (7.6) and the diffusion to drift ratio, eq. (7.5), one gets

D = − J

2 · q · J ′
· µ

= − J

2 · q · J ′
·
(

−2π

~
· q · J ′ · 〈V 2

ji · r2ji〉
)

=
π

~
· J · 〈V 2

ji · r2ji〉 (7.7)

D does not depend on J ′ but only on J . It was already shown in eq. (5.10) that the

diffusion does not depend on the drift as long as the accelerating force is sufficiently

small so that the linear approximation holds, see sec. 5.1.

While for the diffusion constant J has to be calculated, for the mobility the

derivative J ′ has to be reliably determined in order to get reasonable results. How-

ever, J ′ possibly depends stronger on low-frequency vibrational modes of the molecule

than J . Though, the harmonic approximation, which is used here is doubtful for

low frequency vibrations.

Even though J does not appear in the equation for the mobility within the

spectral overlap approach, eq. (7.6), this is different when using the Marcus theory:

µMarcus =
1

E · 〈ν̃ji,Marcus · rji〉

≈ 1

E ·
〈[

νji ·
(

1 +
q · E · rji
2 · kBT

)]

· rji
〉

=
1

E ·
〈

νji · rji +
q · E

2 · kBT
· νji · r2ji

〉

=
1

E ·
(

〈νji · rji〉
︸ ︷︷ ︸

=0

+
q · E

2 · kBT
· 〈νji · r2ji〉

)

=
q

2 · kBT
· 〈νji · r2ji〉

=
q

2 · kBT
·
〈(

2π

~
· V 2

ji · JMarcus

)

· r2ji
〉

=
π · q

~ · kBT
· JMarcus · 〈V 2

ji · r2ji〉 (7.8)

Here the eqs. (6.5) and (7.1) have been used.

There is a further critical point when adapting the spectral overlap approach,

developed in chapter 5 for exciton diffusion, to charge carrier mobilities: In the con-
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text of exciton transport a fictitious force and an “exciton mobility” (eqs. (5.5) and

(5.8) respectively) are introduced in order to avoid calculational artefacts stemming

from the diffusion rate equation (5.1). Since the force is purely ficticious, it is cho-

sen to be infinitesimally small, eq. (5.17), in order to obtain a physically reasonable

equation for the exciton diffusion coefficient. Therefore the linear approximation of

the force-dependent FCWD, J̃(~F ), eq. (5.6), is not critical. In contrast to the neu-

tral excitons, however, charge carriers are accelerated by an external electric field,

eq. (7.1). Typical applied fields are in the order of about 107V/m. The distances

between the molecules in the crystal are in the order of 10−9m. This results in

energetic shifts of ∼ 10−2 eV, and therefore it cannot be presumed that the linear

approximation holds in all cases. However, as shown in eq. (7.6), the mobility does

not depend on J but only on J ′ assuming the linear approximation. If one regards

the average velocity for a jump back and forth, i. e. from molecule i to j and from

j to i, one gets

v̄ji =
1

2
· (vji + vij)

=
1

2
· (ν̃ji · rji + ν̃ij · rij)

=
1

2
· (ν̃ji · rji − ν̃ij · rji)

=
1

2
·
(
2π

~
· V 2

ji · Jji −
2π

~
· V 2

ij · Jij
)

· rji

=
π

~
· V 2

ji · (Jji − Jij) · rji

=
π

~
· V 2

ji ·∆J · rji (7.9)

with

∆J = Jji − Jij

= J(Eji)− J(Eij)

= J ′
sec,ji · (Eji − Eij)

= 2 · J ′
sec,ji · Eji

= −2 · J ′
sec,ji · q · E · rji (7.10)

where J ′
sec,ji is the slope of the secant through the points (−Eji, J(−Eji)) and

(Eji, J(Eji)). Here eq. (7.2) has been used and furthermore Eij = −Eji, which

is the energetical shift between i and j caused by the external field. The resulting
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mobility for the back and forth jumps between i and j is

µ̄ji =
v̄ji
E

=
1

E · π
~
· V 2

ji ·∆J · rji

=
1

E · π
~
· V 2

ji · (−2 · J ′
sec,ji · q · E · rji) · rji

= −2π

~
· q · J ′

sec,ji · V 2
ji · r2ji (7.11)

Averaging over all pairs leads to

µ = −2π

~
· q · 〈J ′

sec,ji · V 2
ji · r2ji〉 (7.12)

which corresponds to eq. (7.6) with the only difference that here an average of J ′
sec,ji

appears instead of J ′ = dJ/dEji|Eji=0. The important point is not if eq. (5.6) is a

good approximation for J(Eji) but if J
′ is a good approximation for J ′

sec,ji. (Note

that the slope of the secant depends on the molecules i and j.)

7.2 Quantum chemical calculations

The electronic couplings are calculated as explained in sec. 3.5. Frequency calcula-

tions of the monomer in the neutral and in the ionized state geometry are performed

for the calculation of J (see sec. 2.3.1). As in sec. 3, all quantum chemical calcu-

lations are conducted using DFT (sec. 2.8.5, with the B3-LYP functional and the

cc-pVDZ basis sets).

7.3 Numerical results

In the following, hole mobilities in anthracene, pentacene, tetracene and rubrene as

well as electron mobilities in 1,2,5,6,7,8,11,12-octachloroperylene-3,4:9,10 (PBI-Cl8)

and a tetrachlorinated perylene bisimide derivative (PBI-Cl4F10) are regarded as

examples. For the molecules and the lattice parameters see fig. 4.1 and tab. 4.1

for anthracene, tetracene and pentacene and fig. 7.1 and tab. 7.1 for PBI-Cl8 and

PBI-Cl4F10. The line spectra are convoluted with a Lorentzian function, eqs. (2.106)

and (2.107), with a half width at half maximum of σ = 40meV [176].
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Figure 7.1: PBI-Cl8 (left) and PBI-
Cl4F10 (right).

Table 7.1: The lattice constants and
angles for the unit cell of PBI-Cl8
and PBI-Cl4F10.

PBI-Cl8 PBI-Cl4F10

a [nm] 1.446 1.178
b [nm] 0.736 1.203
c [nm] 2.003 1.323
α [deg] 90.000 103.663
β [deg] 90.000 100.758
γ [deg] 90.000 117.633

ref. [507] [508]

7.3.1 Acenes

Figure 7.2 shows the FCWD depending on the energetic shift caused by the electric

field, eq. (7.2), for hole transport in pentacene (top), tetracene (middle) and an-

thracene (bottom). The red line is calculated with eq. (5.5) where ♯ here indicates

the ionized state and ~F is replaced by eq. (7.1). For comparison the FCWD calcu-

lated with the Marcus theory, eq. (6.9), is also plotted (green line). The blue line

is the linear approximation of J , eq. (5.6). One clearly sees that this is a quite bad

approximation for J , even in the energy range which is relevant for charge transport,

which is plotted enlarged in the right graphs. However, the slope of the tangent at

J(Eji = 0) seems to fit quite well to the slope of the secants through the points

(±Eji, J(±Eji)). Two secants for the energies Eji = ±20meV and ±40meV are

plotted as blue dashed lines. The secants are almost parallel to each other and they

are almost parallel to the linear approximation. As explained in sec. 7.1 this is an

important prerequisite for the usability of the spectral overlap approach for mobility

calculations.

It can also be shown analytically that J ′ (the slope of the tangent) is an accept-

able approximation to J ′
sec (the slope of the secants). As can be seen in fig. 7.2,

J(Eji) can be approximated by a Gaussian function (black dashed line) within the

energy interval relevant for charge transport:

J(E) = c · exp
[

−(E + a)2

σ2

]

(7.13)
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Figure 7.2: The Franck-Condon-weighted density of states J̃(Eji) for hole transport
in pentacene (top), tetracene (middle) and anthracene (bottom). The red line is
calculated with the spectral overlap approach, eq. (5.5), the black dashed line is a
Gaussian fit of J̃(Eji), the blue solid line is the linear approximation used in eq. (5.6),
the blue dashed lines are secants through the points (±E1|J̃(±E1)), and the green line
is calculated with the Marcus theory, eq. (6.9). The right graphs are a magnification
of the left ones, which show the energy intervals that are relevant for charge transport.
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a, c and σ are independent parameters. (a corresponds to λ in the Marcus theory,

where J(Eji) is a perfect Gaussian function, see eq. (6.9). J(−a) is the maximum J .)

The derivative is

J ′(E) =
dJ(E)

dE
= −2 · (E + a)

σ2
· c · exp

[

−(E + a)2

σ2

]

(7.14)

and therefore the slope of the tangent used in the linear approximation is

J ′ := J ′(0) = −2 · a
σ2

· c · exp
[

−a
2

σ2

]

(7.15)

The slope of the secant through the points (±Eji, J(±Eji)) is

J ′
sec =

∆J

∆E

=
J(Eji)− J(−Eji)

Eji − (−Eji)

=
1

2 · Eji

·
(

c · exp
[

−(Eji + a)2

σ2

]

− c · exp
[

−(−Eji + a)2

σ2

])

=
c

2 · Eji

·
(

exp

[

−
(E2

ji + 2 · a · Eji + a2)

σ2

]

− exp

[

−
(E2

ji − 2 · a · Eji + a2)

σ2

])

=
c

2 · Eji

· exp
[

−a
2

σ2

]

·
(

exp

[

−
E2

ji + 2 · a · Eji

σ2

]

− exp

[

−
E2

ji − 2 · a · Eji

σ2

])

(7.16)

The exponential functions can be approximated by a Taylor expansion up to second

order:

exp

[

−
E2

ji ± 2 · a · Eji

σ2

]

≈ 1∓ 2 · a
σ2

· Eji +

(
4 · a2
σ4

− 2

σ2

)

· E2
ji (7.17)

and therefore the secant slope is

J ′
sec ≈ c

2 · Eji

· exp
[

−a
2

σ2

]

·
([

1− 2 · a
σ2

· Eji +

(
4 · a2
σ4

− 2

σ2

)

· E2
ji

]

−
[

1 +
2 · a
σ2

· Eji +

(
4 · a2
σ4

− 2

σ2

)

· E2
ji

])

=
c

2 · Eji

· exp
[

−a
2

σ2

]

·
(

−4 · a
σ2

· Eji

)

= −2 · a
σ2

· c · exp
[

−a
2

σ2

]

= J ′ (7.18)
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cf. eq. (7.15). This analytic calculation confirms the visual impression that the

secants through the points (±Eji, J(±Eji)) are approximately parallel to each other

and to the tangent at (0, J(0)) independently of the specific Eji, and therefore the

approach developed in chapter 5 should also work for charge mobility calculations

for the acenes.

Figure 7.3 shows the hole mobilities for pentacene, calculated with both the

spectral overlap approach (red) and the Marcus theory (blue). For comparison

some experimental values [390] are also drawn. The FCWD is J = 2.15 eV−1 and

its derivative at Eji = 0 is J ′ = −2.74 eV−2. While the values calculated with the

Marcus theory are much larger than the experimental values (as already shown in

sec. 3.6.1), the values calculated with the spectral overlap approach perfectly fit to

the measured values. (However, in the experiment the crystal orientation could not

be determined [390] and therefore the experimental data are rotated to fit best.)

Figure 7.4 depicts the hole mobilities for tetracene. The FCWD is J = 2.39 eV−1

and J ′ = −2.53 eV−2. As for pentacene, the Marcus theory highly overestimates

the mobilities, whereas the overlap approach clearly fits better to the measured

values [437].

In contrast to pentacene and tetracene, the mobilities calculated with the spectral

overlap for anthracene (J = 2.57 eV−1, J ′ = −3.16 eV−2) are much smaller than the

measured ones [430, 435, 436], cf. fig. 7.5, even though the linear approximation of

J looks as good for anthracene as for pentacene and tetracene, fig. 7.2. The values

calculated with the Marcus theory fit better to the measurements, even though it

contains more simplifications than the spectral overlap approach as was explained

in detail in sec. 2.3.2. The severe underestimation of the mobilities obtained by the

spectral overlap approach, which is expected to fit better than Marcus, cannot be

explained with the data compiled here.

7.3.2 Rubrene

Figure 7.6 shows the FCWD for hole transport in rubrene (J = 1.62 eV−1, J ′ =

−10.14 eV−2). At first glance the linear approximation seems to fit better than

for the acenes, fig. 7.2, however, the magnification of the energy interval ±50meV

shows that the secants are neither parallel to each other nor parallel to the tangent

at (0, J(0)). Whereas the Gaussian fit is better here than for the acenes, the second-

order approximation used in eq. (7.17) to show that J ′ ≈ J ′
sec is worse here because

it also depends on the parameter a which appears as a prefactor of Eji in the

approximated exponential function. At E = −a is the vertex of J , cf. eq. (7.13)
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Figure 7.3: The hole mobilities for pentacene in all three crystal planes, calculated
with the spectral overlap approach (red lines) and the Marcus theory (blue lines). The
experimental values are taken from ref. [390].
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Figure 7.4: The hole mobilities for tetracene in all three crystal planes, calculated
with the spectral overlap approach (red lines) and the Marcus theory (blue lines).
The experimental values are taken from ref. [437].
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Figure 7.5: The hole mobilities for anthracene in all three crystal planes, calculated
with the spectral overlap approach (red lines) and the Marcus theory (blue lines). The
experimental values are taken from ref. [430].



7.3. Numerical results 209

 0

 1

 2

 3

 4

 5

−0.6 −0.4 −0.2  0  0.2  0.4

F
C

W
D

 J
 [e

V
−

1 ]

energetic shift Eji [eV]

overlap approach
linear approx.
Marcus theory

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

−0.04 −0.02  0  0.02  0.04

F
C

W
D

 J
 [e

V
−

1 ]

energetic shift Eji [eV]

overlap approach
linear approximation

Gaussian fit

Figure 7.6: The Franck-Condon-weighted density of states J(Eji) for hole transport
in rubrene. See also the legend of fig. 7.2.

and from figs. 7.2 and 7.6 it is clear that a is much bigger for rubrene. (As already

mentioned, a corresponds to λ in the Marcus theory. The reorganization energy for

rubrene is bigger than for pentacene and anthracene because of its phenyl rings, cf.

fig. 3.4b.)

As can be seen in fig. 7.6, the slopes of the secants slightly decrease with increas-

ing |Eji|. The slope of the tangent is therefore (since it is the secant for |Eji| → 0) a

little bit larger than the secant slopes. This suggests that the calculated mobilities

are too large. Figure 7.7 shows the hole mobilities for rubrene. The values calcu-

lated with the spectral overlap approach are indeed larger than the experimental

ones [391, 396, 397], by a factor of about 2 in b direction. However, the results are

closer to the experimental values than those calculated with the Marcus theory.
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Figure 7.7: The hole mobilities for rubrene in all three crystal planes, calculated with
the spectral overlap approach (red lines) and the Marcus theory (blue lines). The
experimental values are from refs. [391, 396, 397].
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7.3.3 PBI derivatives

Figure 7.8 shows the FCWD of PBI-Cl8 (top, J = 0.55 eV−1, J ′ = −4.32 eV−2) and

PBI-Cl4F10 (bottom, J = 0.75 eV−1, J ′ = −5.56 eV−2). Both molecules are electron

conductors. They are larger molecules (see fig. 7.1), containing more low-frequency

vibrational modes than anthracene, pentacene and rubrene, which lead to smoother,

more gaussian-shaped J(Eji). For comparison the spectra of pentacene and PBI-Cl8

are plotted in figs. 7.9 and 7.10. The linear approximation is better here as for the

other molecules studied. The tangent slope seems to be a good approximation for

the secant slopes. Experimental electron mobility values found in literature are
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Figure 7.8: The Franck-Condon-weighted density of states J(Eji) for electron trans-
port in PBI-Cl8 (top) and PBI-Cl4F10 (bottom). See also the legend of fig. 7.2.
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Figure 7.9: Vibrational absorption (top) and emission (bottom) spectra for the pen-
tacene monomer.

 0

 0.5

 1

 1.5

 2

in
te

ns
ity

 I/
I 0

 0

 0.5

 1

 1.5

 2

−0.6 −0.4 −0.2  0  0.2  0.4  0.6

in
te

ns
ity

 I/
I 0

energy [eV]

Figure 7.10: Vibrational absorption (top) and emission (bottom) spectra for the
PBI-Cl8 monomer.

0.91 cm2/(V·s) for PBI-Cl8 [507] and 0.28 ± 0.07 cm2/(V·s) for PBI-Cl4F10 [508],

however, the direction of measurement is not known. Figure 7.11 shows the calcu-

lated electron mobilities obtained via the spectral overlap approach and the Marcus

theory. It is hardly possible to judge the quality of the calculation because of the

little experimental data. However, the measured values do not contradict the cal-

culated ones.

For the two PBI derivatives the electron mobilities obtained with the spectral

overlap approach are larger than those calculated with the Marcus theory, while it

is the other way round for the hole mobilities of the acenes and rubrene. It was
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Figure 7.11: The electron mobility in all three crystal planes for PBI-Cl8 (top) and
PBI-Cl4F10 (bottom).

shown in sec. 6.4 that the exciton diffusion constants calculated with Marcus are

always smaller than those calculated with the spectral overlap approach, probably

because in the Marcus theory only one collective vibrational mode is taken into

account, which leads to an underestimation of the FCWD. This also holds for the

charge carrier diffusion constants, however, since for the Marcus theory the Einstein

relation, eq. (2.189), holds, which is not the case for the spectral overlap approach,

eq. (5.12), the mobilities obtained via Marcus are not necessarily smaller than those

obtained with the spectral overlap approach.

7.4 Summary

The spectral overlap approach, derived in sec. 2.3.1 and commonly used for exciton

transport (chapter 5), was adapted here to charge transport. It was derived that

the mobility does not depend on the FCWD J at all, but only on its derivative J ′

with respect to the energy difference between the monomers, which is caused by

the applied electrical field. It was shown that this is in contrast to the diffusion
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constant, which depends only on J but not on J ′. This is also in contrast to the

Marcus theory, where the mobility is proportional to JMarcus. As a consequence, J ′

has to be reliably determined which is possibly more critical within the harmonic

approximation used for the molecular vibrations (see sec. 2.3.1).

The influence of the external electric field was incorporated into the hopping rate

using a linear approximation valid only for small fields. An analogous approach was

used for the exciton transport in chapter 5. Though, while in the case of excitons

the accelerating force is purely ficticious and can be chosen arbitrarily small so that

the linear approximation holds, this does not hold for electric fields in the case of

charge carriers, which are usually in the order of 107V/m for mobility measure-

ments. This could be improved by using better approximations or even calculating

the exact spectral overlap for each dimer. However, it was demonstrated that the

mobility actually depends on the secants through (±Eji, J(±Eji)). Even though

the linear approximation is not a good approximation for J itself, which, however,

does not appear in the mobility equation as mentioned above, J ′ is an acceptable

approximation to the secant slopes, and therefore the linear approximation should

be sufficient. Except for anthracene, the calculated charge carrier mobilities seem

to fit quite well to the experimental values and as an improvement to the commonly

used Marcus theory.





8 Charge transport in disordered

materials

In the preceding chapters the charge and exciton transport in organic crystals was

studied. However, amorphous materials are technologically more important, since

organic crystals are too expensive to produce for low-cost applications. Because of

that, organic light emitting diodes, solar cells or field effect transistors, to mention

just a few, are typically made from amorphous materials which allow easy and

inexpensive processing.

It has been argued that the Einstein relation, eq. (2.189), does not hold in

disordered organic materials in general [105–107, 113] or at least if additionally an

external field is applied [108–110]. Others claim that that this is only true under

nonequilibrium conditions due to deeply trapped charge carriers [112] or for rather

high charge carrier densities [111], low temperatures and high electric fields which

are out of the scope of the present work. At extremely low temperatures, the thermal

energy of the charge carriers is not sufficient to reach sites which are higher in energy

and only energy-loss jumps occur. In that case, neither µ nor D depends on the

temperature [222]. For low fields, the transport coefficients are independent of the

field [193, 221], but for higher fields nonlinear effects become important and D/µ

increases with increasing field [220]. It was shown in sec. 5.1 that the Einstein

relation does not hold for crystals using the spectral overlap approach, however,

it does hold in the case of the Marcus theory as derived in sec. 6.2, as long as the

electrical field is sufficiently small so that nonlinear effects can be neglected. Here the

question is addressed if the Einstein relation holds when using the Miller-Abrahams

hopping rate, sec. 2.3.4, for charge transport in amorphous systems.
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8.1 The hopping rate

A strongly energetically disordered organic semiconductor is simulated by means

of the Gaussian disorder model [192–194] which is explained in sec. 2.3.4. The

charge transport is described by the Miller-Abrahams hopping rate [192, 193, 196],

eq. (2.157):

νji = ν0 · exp(−2 · γ · rji) ·
{

exp
(

−∆Eji

kBT

)

∆Eji ≥ 0

1 ∆Eji < 0

with the energetic difference, eq. (2.158),

∆Eji = (E0
j − E0

i )
︸ ︷︷ ︸

=:∆E0
ji

−q · ~E · ~rji

The site energies E0
i and E0

j of the hopping sites are randomly distributed according

to a Gaussian distribution, eq. (2.156). There is no correlation in energy between

adjacent hopping sites.

The probability distribution P (t) of the difference t between two independent

random numbers x1 and x2 with the respective distributions px1 and px2 is

P (t) = . . .+ px1(un) · px2(un − t) + px1(un+1) · px2(un+1 − t) + . . .

=
∞∑

n=−∞

px1(un) · px1(un − t)

→ P (t) =

∞∫

−∞

px1(u) · px2(u− t) du (8.1)

This is a convolution of the single distributions px1 and px2 . For the probability

distribution P (∆Eji) of the energy difference ∆Eji = Ej −Ei, where Ej and Ei are

distributed according to the Gaussian distribution, eq. (2.156), this leads to

P (∆Eji) =

∞∫

−∞

̺(Ej) · ̺(Ej −∆Eji) dEj

=

∞∫

−∞

1√
2π · σ

· exp
(

−
E2

j

2 · σ2

)

· 1√
2π · σ

· exp
(

−(Ej −∆Eji)
2

2 · σ2

)

dEj

=
1

2π · σ2
·

∞∫

−∞

exp

(

−
2 · E2

j − 2 ·∆Eji · Ej +∆E2
ji

2 · σ2

)

dEj
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=
1

2π · σ2
· exp

(

−
∆E2

ji

2 · σ2

)

·
∞∫

−∞

exp

(

−
E2

j −∆Eji · Ej

σ2

)

dEj

=
1

2π · σ2
· exp

(

−
∆E2

ji

2 · σ2

)

·
[

−
√
π

2
· σ · exp

(
∆E2

ji

4 · σ2

)

· erf
(
∆Eji − 2 · Ej

2 · σ

)]∞

Ej=−∞

= − 1

4 · √π · σ · exp
(

−
∆E2

ji

4 · σ2

)

· [erf(x)]−∞
x=∞

= − 1

4 · √π · σ · exp
(

−
∆E2

ji

4 · σ2

)

· (−1− 1)

=
1

2 · √π · σ · exp
(

−
∆E2

ji

4 · σ2

)

=
1√

2π · (
√
2 · σ)

· exp
(

−
∆E2

ji

2 · (
√
2 · σ)2

)

=
1√

2π · Σ
· exp

(

−
∆E2

ji

2 · Σ2

)

(8.2)

with

Σ :=
√
2 · σ (8.3)

This is again a Gaussian distribution, however, with a variance Σ2 as large as twice

the variance σ2 of ̺(E). This means that the variation of the energy differences

which have to be overcome by the charge carriers is even larger than the variation

of the lattice site energies. The distributions ̺(E) and P (Eji) are plotted in fig. 8.1

with σ = 60meV as example.
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Figure 8.1: The probability distribution ̺(E) of the lattice site energies, eq. (2.156)
(solid), and the probability distribution P (Eji) of the difference of two site energies,
eq. (8.2) (dashed), calculated with an energetic disorder of 60meV.
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8.2 The transport calculations

The mobility can be calculated with the master equation approach, explained in

sec. 3.2, along with eq. (3.13). It is explained in detail in sec. 3.3 that the analogously

derived rate equation for the diffusion constant, eq. (3.20), leads to wrong results

if the hopping rates differ strongly in a certain direction. This is even worse in the

case of amorphous materials. Whereas the hopping rates in a periodic structure,

described by the spectral overlap hopping rate, eq. (2.99), the Marcus hopping

rate, eq. (2.133), or the Levich-Jortner hopping rate, eq. (2.153), are symmetric as

long as no external field is applied, i. e., νji = νij for E = 0, the Miller-Abrahams

hopping rate is not symmetric because of the differing site energies. In the case of

strongly different E0
i , the charge carrier can be “trapped” between two lattice sites

with similar energy [509], see fig. 8.2: Because of the energetically unfavourable

surrounding, the charge carrier jumps back and forth between the same sites all the

time. In such cases the diffusion rate equation overestimates the diffusion coefficient

and hence, in conjunction with the Einstein relation, eq. (2.189), also overestimates

the mobility. Therefore only eq. (3.13) provides the correct results for µ.

Additionally, Monte Carlo simulations, sec. 2.6.2, are conducted for both the

mobility and the diffusion coefficient. The mobility is calculated with eq. (3.21), the

diffusion coefficient is calculated with eq. (5.18).

energy

Figure 8.2: The charge carrier is “trapped” between two lattice sites, since the sur-
rounding of the monomer causes an energetic “pit”.

8.2.1 The time dependent master equation

In sec. 3.2 it was explained that the master equation can be written in the matrix

form of eq. (3.5),

N · ~p(t) = d

dt
~p(t)

where ~p(t) is the occupation probability of all hopping sites and the matrix N

contains all jump rates νji, cf. eq. (3.6). This is a first-order differential equation.
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So far only the stationary solution for t→ ∞, where ~p does not change anymore and

therefore d~p/dt = 0, was regarded. In this case the differential equation turns into

a homogeneous linear system of equations, eq. (3.8). However, it is also possible to

derive the time-dependent solution of the master equation by inserting the ansatz

~p(t) := ~a · el·t (8.4)

into the master equation:

N · (~a · el·t) =
d

dt
(~a · el·t)

= l · ~a · el·t

⇔ N · ~a = l · ~a
= l · E · ~a

⇔ (N− l · E) · ~a = 0 (8.5)

This is an eigenvalue equation where l is the eigenvalue and ~a is the eigenvector of

the hopping rate matrix N. If the matrix has n dimensions there are n eigenvalues

and eigenvectors, which can be calculated numerically. N is negative semidefinite

and therefore all eigenvalues are less than or equal to zero. The steady state solution,

which was exclusively regarded in the previous sections, is the eigenvector to the

eigenvalue l = 0. The general time-dependent solution of the differential equation

is a linear combination of all these solutions:

~p(t) =
n∑

i=1

ci · ~ai · eli·t (8.6)

The coefficients ci have to be determined by the initial condition

~p(0) =
n∑

i=1

ci · ~ai (8.7)

Since a homogeneous system of linear equations has no unique solution, the eigen-

vectors ~ai are only unique except for a scalar factor, which is, however, included in

the ci.

The calculation of the time-dependent solution of the master equation allows

to calculate the mobility and the diffusion coefficient using eqs. (3.21) and (5.18)

respectively, analogously to the evaluation of Monte Carlo simulations.
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8.3 Numerical results

8.3.1 The Einstein relation

In all calculations the attempt-to-jump frequency ν0 is 10
13 s−1, the inverse localiza-

tion radius γ is 5 · 109 m−1. A simple cubic lattice of sites with a lattice constant

of 1 nm is used. In order to achieve a sufficient statistics for the site energies the

lattice consists of 80 × 40 × 40 sites. For a given site only the hops from and to

the 26 adjacent sites are considered. This is sufficient since the hopping rate (as the

electronic coupling for charge transport, derived in sec. 2.7.5), decays exponentially.

It was tested that calculations with a bigger lattice and also further jump targets

taken into account do not affect the result. The calculations were conducted with an

external electric field of E = 105V/m. In the Monte Carlo simulation, the average

and the variance of the charge carrier position is averaged over 50 000 trajectories

and the simulation time has been up to 1 s.

Figure 8.3a shows the mobility depending on the energetic disorder σ. The top

x axis shows the corresponding disorder Σ for the energy differences, eq. (8.3). The

mobility is calculated with the master equation approach along with the mobil-

ity rate equation (3.13) (blue solid line) and with the Monte Carlo approach and

eq. (3.21) (red dashed line). Both approaches perfectly agree and lead to the same

mobility values. Increasing the disorder from 0 to 120meV, the mobility decreases

by four orders of magnitude.

Figure 8.3b depicts the diffusion constant depending on σ. One clearly sees that

with increasing energetic disorder the D rate equation (3.18) overestimates the diffu-

sion constant compared with the Monte Carlo approach. The discrepancy increases

with increasing σ since the “pit depth”, cf. fig. 8.2, increases. The deviations be-

come visible for Σ values which are higher than the thermal energy (kBT ≈ 26meV

at T = 300K). This confirms that the D rate equations (3.18) to (3.20), which

were proven to be erroneous even in the case of crystals with no energetic disorder,

sec. 3.6.4, lead to diffusion constants which are too large even more for amorphous

systems.

In fig. 8.3c the diffusion to drift ratio, D/µ, is drawn. According to the Einstein

relation for charge transport, eq. (2.189), it equals the thermal voltage, kBT/q. The

Monte Carlo simulations confirm that the Einstein relation holds within the Miller-

Abrahams hopping model, independent of the energetic disorder σ. Using the rate

equations for both µ and D, however, appear to show that the Einstein relation

does not hold. Though, as elucidated in detail above, this is based on the deficient

D rate equation.
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Figure 8.3: a) The mobility µ, b) the diffusion constant D and c) the relation D/µ
depending on the energetic disorders σ and Σ, eq. (8.3), respectively, calculated with
both the master equation and the rate equations (3.13) for µ and (3.20) for D respec-
tively (blue solid), and with the Monte Carlo approach and equations (3.21) and (5.18)
(red dashed). Calculated with T = 300K and E = 105V/m.
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Figure 8.4a shows the mobility depending on the temperature, calculated with

σ = 60meV. (This corresponds to Σ = 85meV.) The top x axis shows the cor-

responding thermal energy kBT . Since the hopping is thermally activated, the

mobility increases with increasing temperature from 7.8 · 10−7cm2/(V·s) at 200K

to 3.2 · 10−5cm2/(V·s) at 600K. Again the Monte Carlo simulations confirm the

mobility rate equation approach.

In fig. 8.4b the diffusion constant calculated with both approaches is drawn. The

rate equation overestimates D over the whole temperature range, since the thermal

energy is below the energetic disorder of Σ = 85meV. The discrepancy increases with

decreasing temperature, because the thermal energy decreases, which is needed for

the charge carrier to overcome the energetic barriers from one site to another.

Figure 8.4c depicts the drift to diffusion ratio D/µ. Within the Miller-Abrahams

hopping model, the Einstein relation holds for all values of the temperature as

confirmed by the Monte Carlo simulation. Because of the erroneous D rate equation,

the rate equation approach leads to a much too largeD/µ ratio at low temperataures.

The transient time, before the diffusion reaches the stationary state where x2 ∝ t

(see sec. 2.5), strongly increases with the energetic disorder. Since

〈x2〉 = 2 ·D · t
⇔ log〈x2〉 = log(2 ·D) + log t (8.8)

cf. eq. (2.182), 〈x2〉(t) has a slope of 1 in a log-log plot, cf. fig. 8.5. For the example

plotted there with σ = 120meV, this is the case only for times larger than about

0.3 s. This demonstrates the need of quite long simulation times for the Monte Carlo

simulation.

8.3.2 Time-dependent vs. steady-state rate approach

In order to keep the computational effort for the calculation of the time-dependent

solution of the master equation manageable, a one-dimensional system is regarded

here. The one-dimensional periodic lattice consists of 2000 sites separated by a

lattice constant of 1 nm. The temperature is T = 300K and the external electric

field is E = 107V/m for all calculations presented here.

In fig. 8.6 the temporal development of the occupation probability pn(t) of the

lattice sites n is depicted both without (left) and with (right) an accelerating electric

field of 107V/m. The energetic disorder is zero here. At t = 0 the probability is

initialized with 1 for a certain hopping site and 0 for all other sites. The spreading of
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Figure 8.4: a) The mobility µ, b) the diffusion constant D and c) the relation D/µ
depending on the temperature and the thermal energy, respectively, calculated with
both the master equation and the rate equations (3.13) for µ and (3.20) for D respec-
tively (blue solid), and with the Monte Carlo approach and equations (3.21) and (5.18)
(red dashed). Calculated with σ = 60meV and E = 105V/m.
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Figure 8.5: Monte Carlo simulation of the variance averaged over 50 000 charge carriers
depending on the time, with an energetic disorder of σ = 120meV. The reference line
(dashed) has a slope of 1.

the probability slows down with increasing time, because
√

〈x2〉 ∝
√
t, eq. (2.180).

(For small times even
√

〈x2〉 ∝ t as shown in eq. (2.179).)

Figure 8.7a shows the mobility depending on the time for an energetic disorder

of σ = 70meV, calculated with the time-dependent solution of the master equation,

eq. (8.6), along with the mobility equation (3.21) (red). Because of the Gaussian

energetic disorder it is necessary to average over several simulation runs to obtain
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Figure 8.6: The occupation probability pn(t) for the lattice sites n for different times t
calculated with the master equation without (left) and with (right) an external electric
field of 107V/m. The energetic disorder is zero.
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reliable results. The line connects the average mobility of five simulation runs,

whose individual mobilities are also sketched. It is important to note that the

variant results are not caused by an intrinsic stochasticity as this is the case for

Monte Carlo simulations (sec. 2.6.2).

For low times (approximately t ≤ 10−6 s) the mobility decreases until the station-

ary state is reached, where it converges to the mobility calculated with the steady-

state master equation (3.8) in combination with the mobility rate equation (3.13)

(blue line). The latter is of course not time-dependent but is added in this graph

to allow for a comparison between both approaches. One sees that both ways lead

to the same value for the mobility. However, using the time-dependent approach

it has to be assured that the stationary state is reached when the variance of the

charge carrier positions increases linearly with time. The transient time increases

with increasing disorder. The occupation probability ~p(t) is known for any time as

soon as all eigenvalues and eigenvectors are calculated, however, for the calculation

of the mobility with eq. (3.21) the periodic lattice has to be sufficiently large so

that the spreading occupation probability does not interfere with itself. Since the

number of eigenvalues and eigenvectors increases with increasing system size, the

computational cost for the calculation of ~p(t) for large t also increases. This is not

a problem when using the rate equation approach. The computed values calculated

here are not comparable to a three dimensional system with the same σ value, since

in a more-dimensional system energetic barriers can more easily be overcome by

choosing an alternative path through the system.

In fig. 8.7b the diffusion constant is depicted. The red line is calculated using

the time-dependent ~p(t) along with eq. (5.18), the blue line is calculated solving the

steady-state master equation and using the “wrong” diffusion rate equation (3.20).

It was explained in sec. 8.2 that this equation overestimates the diffusion constant

because of back and forth jumps in energetic “pits” as depicted in fig. 8.2. (A

circumvention of this problem was derived in detail in sec. 5.1.) These calculations

confirm that the diffusion rate equation leads to values which are too high compared

to the right value, which is obtained by the time-dependent calculation.

Figure 8.7c illustrates the mobility depending on the energetic disorder, both

the stationary mobility determined from the time-dependent solution of the master

equation and the rate equation result obtained using the time-independent master

equation. As already seen in fig. 8.7a both approaches lead to the same results.
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8.4 Summary

In this chapter the charge transport in amorphous materials using the Gaussian

disorder model along with the Miller-Abrahams hopping rate (sec. 2.3.4) was studied

both with the master equation approach and with Monte Carlo simulations. It was

demonstrated that the severe overestimation of the diffusion coefficient using the rate

equation (3.20) is even more pronounced in the case of amorphous materials, since

the different surroundings of the molecules in amorphous systems cause different

site energies of the molecules. This results in a “trapping” of the charge carrier

between adjacent sites with similar energies, since the charge jumps back and forth

without moving on. The mobility rate equation (3.13) was verified by Monte Carlo

simulations over a large range of energetic disorders and temperatures. It was proven

that the Einstein relation holds for the Miller-Abrahams hopping rate in amorphous

materials.

The time-dependent solution of the master equation was derived, resulting in an

eigenvalue equation. This was studied numerically for one dimension and compared

with the steady-state approach (sec. 3.2). Both approaches – time dependent and

steady-state – lead to the same results for the mobility. The diffusion constants ob-

tained with the steady-state rate equation approach are larger than those calculated

with the time-dependent approach because of overestimation due to the trapping as

explained above.





9 Summary

As organic semiconductors gain more importance for application, research into their

properties has become necessary. This work investigated the exciton and charge

transport properties of organic semiconducting crystals. Based on a hopping ap-

proach, protocols have been developed for the calculation of charge mobilities and

singlet exciton diffusion coefficients. The protocols do not require any input from

experimental data except for the x-ray crystal structure, since all needed quanti-

ties can be taken from high-level quantum chemical calculations. Hence, they allow

to predict the transport properties of yet unknown compounds for given packings,

which is important for a rational design of new materials.

Different thermally activated hopping models based on time-dependent pertur-

bation theory were studied for the charge and exciton transport; i. e. the spectral

overlap approach, the Marcus theory, and the Levich-Jortner theory. Their deriva-

tions were presented coherently in order to emphasize the different levels of ap-

proximations and their respective prerequisites. A short reference was made to the

empirical Miller-Abrahams hopping rate.

Rate equation approaches to calculate the stationary charge carrier mobilities

and exciton diffusion coefficients have been developed, which are based on the mas-

ter equation. In the literature, the charge carrier mobilities are often calculated

without external field via a diffusion rate equation and the Einstein relation. It was

shown that this often leads to wrong results, since numerical artefacts give rise to

an overestimation of the diffusion due to a “trapping” of the charge between two

hopping sites. Hence, it is more appropriate to include the drift of the charge carri-

ers explicitly and to calculate the mobility directly from the drift velocity. Based on

this, a rate equation for the exciton diffusion coefficient has been developed, which

avoids the numerical artefact of the common diffusion calculation. The long-range

interaction of the singlet exciton coupling was taken into account by an extrapola-

tion scheme. Furthermore, a fitting procedure which allows the calculation of the

exciton couplings with the supermolecular approach even in the case of energetically

close excitations and a mixing of the states was presented.
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The rate equation approach is faster and more efficient than the frequently used

Monte Carlo method and, therefore, provides the possibility to study the anisotropy

of the transport parameters and their three-dimensional representation in the crys-

tal. It was shown that the anisotropy for exciton transport is less pronounced than

for charge transport, because the exciton couplings decay slower with the distance

than the charge couplings, leading to more dimers involved in the transport. For

charges, the transport is often even only two-dimensional.

The Marcus theory, originally derived for outer sphere electron transfer in sol-

vents, had already been well established for charge transport in organic solids. It

was shown that this theory fits even better for excitons than for charges compared

with the experiment, because for excitons the reorganization energy is larger and

the coupling is smaller, making perturbation theory more warrantable. However, in

comparison to the spectral overlap approach and experimental values, the calculated

diffusion constants are underestimated. Nevertheless, the Marcus theory seems to

be sufficiently accurate to study trends even without the demanding calculation of

the molecular vibrational spectrum, as this is necessary for the spectral overlap ap-

proach. Yet it is very important to choose a preferably precise quantum chemical

method for the calculation of the reorganization energy, since this energy depends

strongly on the method used and has a large influence on the diffusion constant.

Depending on the chosen method, the diffusion coefficient varies up to three orders

of magnitude.

The Levich-Jortner theory strongly overestimates the charge carrier mobilities

and the results deviate even stronger from the experiment than those obtained

with the Marcus theory. The latter contains larger approximations by treating all

vibrational modes classically. It was shown that this approximation leads to a strong

overestimation of the significance of the molecular high-frequency vibrations to the

molecular reorganization upon charge transfer, which lowers the hopping rates. As

a result, the Marcus theory fits better to the experimental data than the Levich-

Jortner theory due to error cancellation.

The spectral overlap approach in combination with the developed rate equations

leads to even quantitatively very good results for exciton diffusion lengths compared

to experiment. This approach and the appendant rate equations have also been

adapted to charge transport. It was shown that in this case the mobility does not

depend on the spectral overlap itself, but only on its derivative with respect to the

external electric field. It was shown that this approach leads to better results than

the Marcus theory compared with measured values, however, because of the linear

approximation of the spectral overlap introduced here, the reliability of this method
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is more critical than in the case of exciton transport and may depend on the studied

molecules.

For charge transport, a protocol for the calculation of the external reorganiza-

tion energy based on force fields has been developed. For a series of acenes, two

different approaches were compared, which resulted in different energy values up to

a factor of three. Further investigation for finding the correct calculational approach

for the external reorganization energy is therefore necessary. However, despite the

question of the reliability of the approaches tested here, it could be shown that the

surrounding effects are too small to explain the mismatch between the Marcus and

Levich-Jortner theory and the experimental values in general.

The Einstein relation, which relates the diffusion coefficient with the mobility, is

important for the rate equations, which have been developed here for transport in

organic crystals. It has been argued that this relation does not hold in disordered

organic materials. This was analyzed within the framework of the Gaussian disorder

model and the Miller-Abrahams hopping rate. It was shown by Monte Carlo sim-

ulations that it does hold within the limits of this model and for moderate electric

fields.

The results of the various rate equation approaches developed for charge and

exciton transport were always verified by Monte Carlo simulations.

Zusammenfassung

Organische Halbleiter gewinnen immer größere Bedeutung für Anwendungen in der

Elektronik. In dieser Arbeit wurden deren Eigenschaften bezüglich des Exzitonen-

und Ladungstransports untersucht. Diese beiden Prozesse sind wesentlich für viele

Bauteile der organischen Elektronik, wie zum Beispiel Solarzellen. Ausgehend von ei-

nem Sprungmodell wurden Verfahren zur Berechnung von Ladungsträgerbeweglich-

keiten und Diffusionskoeffizienten von Singulettanregungen entwickelt, wofür bis auf

die Röntgenstruktur des Kristalls keine weiteren experimentellen Daten benötigt

werden, da alle notwendigen Größen durch quantenchemische Rechnungen auf ho-

hem Niveau bestimmt werden können. Dies ermöglicht die Vorhersage der Trans-

porteigenschaften von noch unbekannten Materialien mit bekannter Struktur, was

eine Voraussetzung für das Maßschneidern neuer Materialien darstellt.

Verschiedene, auf der zeitabhängigen Störungstheorie basierende thermisch ak-

tivierte Sprungmodelle – der spektrale Überlappungsansatz, die Marcus- und die

Levich-Jortner-Theorie – wurden für die Anwendung auf den Ladungs- und Ener-

gietransport hin untersucht. Ausgehend von Fermis Goldener Regel wurden die
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Sprunggleichungen konsistent hergeleitet, um die verschiedenen Abstufungen der je-

weils vorgenommenen Näherungen und deren Voraussetzungen deutlich zu machen.

Zusätzlich dazu wurde ein kurzer Exkurs zur empirischen Miller-Abrahams-Sprung-

rate und deren Anwendung in amorphen Systemen gemacht.

Unter Verwendung der Mastergleichung wurden Ratengleichungsansätze zur Be-

rechnung der stationären Ladungsträgerbeweglichkeiten und Exzitonendiffusionsko-

effizienten entwickelt. Die Ladungsträgerbeweglichkeiten werden herkömmlich meist

ohne externes Feld über die Einsteinrelation aus dem Diffusionskoeffizienten berech-

net. Es wurde gezeigt, daß diese Herangehensweise im Zusammenhang mit Raten-

gleichungen häufig zu falschen Ergebnissen führt, weil der Diffusionskoeffizient auf-

grund von mathematischen Artefakten überschätzt wird, wenn der Ladungsträger

durch häufige Hin- und Hersprünge zwischen zwei Molekülen
”
eingefangen“ wird.

Deshalb ist es notwendig, die Driftbewegung der Ladung durch das Feld explizit

zu berücksichtigen und die Mobilität direkt aus der Geschwindigkeit zu berechnen.

Ausgehend davon wurde ein Ratengleichungsansatz zur Berechnung des Exzitonen-

diffusionskoeffizienten entwickelt, der die numerischen Fehler der üblichen Diffu-

sionsratengleichungen vermeidet. Die langreichweitige Wechselwirkung, die im Falle

von Singulettangregungen zwischen zwei Molekülen auftritt, wurde explizit durch ein

Extrapolationsverfahren berücksichtigt. Darüber hinaus wurde eine Fitprozedur vor-

gestellt, welche die Berechnung von Exzitonkopplungen mit dem supermolekularen

Ansatz auch für die Fälle ermöglicht, in denen die Monomeranregungen energetisch

sehr dicht liegen und sich im Dimer mischen.

Die Berechnung der Transportgrößen über Ratengleichungen ist wesentlich schnel-

ler und effizienter als die häufig angewendete Monte-Carlo-Simulation. Dies ermög-

licht die Analyse der Anisotropie des Transports im Kristall und ihre dreidimen-

sionale Darstellung. Es wurde gezeigt, daß die Anisotropie für Exzitonentransport

nicht so ausgeprägt ist wie für Ladungstransport, da die Kopplung für Exzitonen

deutlich langreichweitiger ist als für Ladungsträger, und deshalb viel mehr Dimere

am Transport beteiligt sind. Für Ladungsträger ist der Transport im Kristall sogar

häufig quasi zweidimensional.

Die Marcustheorie, die ursprünglich für Elektronentransfer in Lösungen ent-

wickelt wurde, hat sich auch für Ladungstransport in organischen Festkörpern bewährt.

Hier wurde diese Theorie auf Exzitonentransport übertragen und gezeigt, daß sie

im Vergleich zum Experiment für Exzitonen sogar bessere Ergebnisse liefert als

für Ladungsträger, weil für Exzitonen die Reorganisationsenergie größer ist und

die Kopplungen kleiner sind, womit die Voraussetzungen für die Zulässigkeit ei-
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nes störungstheoretischen Ansatzes besser erfüllt sind. Im Vergleich zum spektralen

Überlappungsansatz und zum Experiment sind die mit der Marcustheorie berechne-

ten Diffusionskoeffizienten jedoch zu groß. Trotzdem ist diese Theorie hinreichend,

um qualitative Trends zu studieren, ohne die aufwändige Berechnung der Molekül-

schwingungen durchführen zu müssen, wie das bei der spektralen Überlappungsme-

thode der Fall ist. Es zeigte sich allerdings, daß es sehr wichtig ist, für die Berechnung

der Reorganisationsenergie eine möglichst zuverlässige quantenmechanische Metho-

de zu wählen, da diese Energie zum einen sehr stark von dem gewählten Rechenver-

fahren abhängt und zum anderen einen starken Einfluß auf die Diffusionskonstante

hat. Abhängig von der gewählten Methode kann die Diffusionskonstante um bis zu

drei Größenordnungen variieren.

Die Levich-Jortner-Theorie überschätzt die Ladungsträgerbeweglichkeiten im Fal-

le der Acene sehr stark. Ihre Ergebnisse weichen sogar stärker vom Experiment ab

als die der Marcustheorie. Letztere enthält deutlich stärkere Näherungen, weil alle

Molekülschwingungen klassisch behandelt werden. Es wurde gezeigt, daß dadurch

der Einfluß der hochfrequenten Molekülschwingungen stark überschätzt wird, was

die Sprungraten erniedrigt. Aufgrund dieser Tatsache liefert die Marcustheorie bes-

sere Ergebnisse als die Levich-Jortner-Theorie, obwohl die klassische Behandlung

sämtlicher Molekülschwingungen eigentlich physikalisch nicht zulässig ist.

Der spektrale Überlappungsansatz führt zusammen mit den hier entwickelten

Ratengleichungen sogar zu quantitativ guten Ergebnissen für die Exzitonendiffusi-

on. Dieser Ansatz und die Ratengleichungen wurden auch für die Berechnung der

Ladungsträgerbeweglichkeiten angepaßt. Es stellte sich heraus, daß in diesem Fall

der Transport nicht von der spektralen Überlappung selbst abhängt, sondern nur

von deren Ableitung bezüglich des externen elektrischen Felds. Es wurde gezeigt, daß

diese Theorie auch für Ladungstransport bessere Ergebnisse liefert als die Marcus-

theorie. Allerdings ist in diesem Fall die verwendete lineare Näherung der spektralen

Überlappung kritischer als beim Exzitontransport, so daß die hier gezeigten Ergeb-

nisse nicht ohne weitere Prüfung auf andere Moleküle übertragen werden sollten.

Basierend auf Molekulardynamiksimulationen wurde eine Herangehensweise für

die Berechnung der externen Reorganisationsenergie für den Ladungstransport ent-

wickelt. Zwei unterschiedliche Ansätze wurden verglichen, deren Energien sich bis zu

einem Faktor von drei für die beispielhaft betrachtete Serie von Acenen unterschei-

den. Hier sind noch weitere Untersuchungen notwendig, um ein möglichst sinnvolles

physikalisches Bild der externen Reorganisation zu entwickeln. Trotz der noch nicht

abschließend geklärten Zuverlässigkeit der hier versuchten Ansätze konnte aber an-
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hand dieser Rechnungen gezeigt werden, daß Umgebungseffekte zu klein sind, um

die Abweichungen der Marcus- und Levich-Jortner-Theorie zum Experiment zu er-

klären.

Für die in dieser Arbeit entwickelten Ratengleichungen ist die Einsteinrelation,

welche die Diffusion mit der Drift in Beziehung setzt, von zentraler Bedeutung.

Es ist umstritten, ob diese Beziehung auch in amorphen, ungeordneten Materialien

gültig ist. Dieser Frage wurde im Rahmen des Gaußschen Unordnungsmodells und

der Miller-Abrahams-Sprungrate nachgegangen. Durch Monte-Carlo-Simulationen

wurde gezeigt, daß die Einsteinrelation in den Grenzen dieses Modells für moderate

elektrische Felder (105V/m) gültig ist.

Die Ergebnisse der verschiedenen Ratengleichungsansätze, die im Rahmen dieser

Arbeit für Ladungs- und Exzitontransport entwickelt wurden, wurden durch Monte-

Carlo-Simulationen verifiziert.
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[220] R. Richert, L. Pautmeier, H. Bässler: Diffusion and drift of charge
carriers in a random potential: Deviation from Einstein’s law. Phys. Rev.
Lett. 63(5), 547 (1989)
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ties of prototype molecular materials for organic electronics based on graphene
nanoribbons. Phys. Chem. Chem. Phys. 11, 2741 (2009)

[349] K. Seki, M. Tachiya: Electric field dependence of charge mobility in en-
ergetically disordered materials: Polaron aspects. Phys. Rev. B 65, 014305
(2001)

[350] J.-D. Picon, M. N. Bussac, L. Zuppiroli: Quantum coherence and car-
riers mobility in organic semiconductors. Phys. Rev. B 75(23), 235106 (2007)

[351] J. L. Brédas, J. P. Calbert, D. A. da Silva Filho, J. Cornil: Or-
ganic semiconductors: A theoretical characterization of the basic parameters
governing charge transport. Proc. Natl. Acad. Sci. U.S.A. 99, 5804 (2002)

[352] V. Stehr, J. Pfister, R. F. Fink, B. Engels, C. Deibel: First-principles
calculations of anisotropic charge-carrier mobilities in organic semiconductor
crystals. Phys. Rev. B 83, 155208 (2011)



260 BIBLIOGRAPHY

[353] J. E. Norton, J.-L. Brédas: Polarization energies in oligoacene semicon-
ductor crystals. J. Am. Chem. Soc. 130, 12377 (2008)

[354] D. P. McMahon, A. Troisi: Evaluation of the external reorganization en-
ergy of polyacenes. J. Phys. Chem. Lett. 1, 941 (2010)

[355] W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bob-

bert, P. W. M. Blom, D. M. de Leeuw, M. A. J. Michels: Unified
description of charge-carrier mobilities in disordered semiconducting polymers.
Phys. Rev. Lett. 94, 206601 (2005)

[356] A. M. Turing: Rounding-off errors in matri processes. Quarterly Jnl. of
Mechanics & App. Maths. 1(1), 287 (1948)

[357] A. Meister: Numerik linearer Gleichungssysteme (Vieweg, 2008), 3rd edi-
tion

[358] Y. Saad, M. Schultz: GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3),
856 (1986)

[359] H. van der Vorst: Bi-CGSTAB: A fast and smoothly converging variant
of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput. 13(2), 631 (1992)

[360] Y. Song, C. Di, X. Yang, S. Li, W. Xu, Y. Liu, L. Yang, Z. Shuai,
D. Zhang, D. Zhu: A cyclic triphenylamine dimer for organic field-effect
transistors with high performance. J. Am. Chem. Soc. 128(50), 15940 (2006)

[361] A. Li, S.-H. Wen, J.-L. Song, W.-Q. Deng: Synthesis of cyanated
tetracenes as the organic semiconductors. Org. Electron. 10(6), 1054 (2009)

[362] S. Chai, S.-H. Wen, J.-D. Huang, K.-L. Han: Density functional theory
study on electron and hole transport properties of organic pentacene derivatives
with electron-withdrawing substituent. J. Comput. Chem. 32(15), 3218 (2011)

[363] C. Lee, R. Waterland, K. Sohlberg: Prediction of charge mobility in
amorphous organic materials through the application of hopping theory. J.
Chem. Theory Comput. 7(8), 2556 (2011)

[364] J.-D. Huang, S.-H. Wen, W.-Q. Deng, K.-L. Han: Simulation of hole
mobility in α-oligofuran crystals. J. Phys. Chem. B 115(10), 2140 (2011)

[365] X. Wang, K.-C. Lau: Theoretical investigations on charge-transfer proper-
ties of novel high mobility n-channel organic semiconductors – diazapentacene
derivatives. J. Phys. Chem. C 116(43), 22749 (2012)

[366] X.-D. Tang, Y. Liao, H.-Z. Gao, Y. Geng, Z.-M. Su: Theoretical study
of the bridging effect on the charge carrier transport properties of cyclooctate-
trathiophene and its derivatives. J. Mater. Chem. 22, 6907 (2012)



BIBLIOGRAPHY 261

[367] M. Watanabe, Y. J. Chang, S.-W. Liu, T.-H. Chao, K. Goto, M. M.

Islam, C.-H. Yuan, Y.-T. Tao, T. Shinmyozu, T. J. Chow: The synthe-
sis, crystal structure and charge-transport properties of hexacene. Nat. Chem.
4, 574 (2012)

[368] H. Tamura, I. Hamada, H. Shang, K. Oniwa, M. Akhtaruzzaman,
T. Jin, N. Asao, Y. Yamamoto, T. Kanagasekaran, H. Shimotani,
S. Ikeda, K. Tanigaki: Theoretical analysis on the optoelectronic properties
of single crystals of thiophene-furan-phenylene co-oligomers: Efficient photo-
luminescence due to molecular bending. J. Phys. Chem. C 117(16), 8072 (2013)

[369] J.-D. Huang, S.-H. Wen: First-principles investigation of anisotropic elec-
tron and hole mobility in heterocyclic oligomer crystals. ChemPhysChem
14(11), 2579 (2013)

[370] X.-Y. Zhang, G.-J. Zhao: Anisotropic charge transport in
bisindenoanthrazoline-based n-type organic semiconductors. J. Phys. Chem. C
116(26), 13858 (2012)

[371] B. Zhang, Y.-H. Kan, Y. Geng, Y.-A. Duan, H.-B. Li, J. Hua, Z.-
M. Su: An efficient strategy for improving carrier transport performance –
introducing fluorine into aryl substituted tetracene. Org. Electron. 14(5), 1359
(2013)

[372] Y.-A. Duan, H.-B. Li, Y. Geng, Y. Wu, G.-Y. Wang, Z.-M. Su: The-
oretical studies on the hole transport property of tetrathienoarene derivatives:
The influence of the position of sulfur atom, substituent and π-conjugated core.
Org. Electron. 15(2), 602 (2014)

[373] M. V. Basilevsky, A. V. Odinokov, K. G. Komarova: Charge-transfer
mobility parameters in photoelectronic devices: The advanced miller–abrahams
computation. J. Phys. Chem. B 0(0), 0 (2015)

[374] G. Nan, X. Yang, L. Wang, Z. Shuai, Y. Zhao: Nuclear tunneling effects
of charge transport in rubrene, tetracene, and pentacene. Phys. Rev. B 79,
115203 (2009)

[375] S. Yin, L. Li, Y. Yang, J. R. Reimers: Challenges for the accurate simula-
tion of anisotropic charge mobilities through organic molecular crystals: The β
phase of mer-tris(8-hydroxyquinolinato)aluminum(III) (Alq3) crystal. J. Phys.
Chem. C 116(28), 14826 (2012)

[376] V. Zhdanov: General equations for description of surface diffusion in the
framework of the lattice-gas model. Surface Sci. 149(1), L13 (1985)

[377] A. V. Myshlyavtsev, A. A. Stepanov, C. Uebing, V. P. Zhdanov:
Surface diffusion and continuous phase transitions in adsorbed overlayers.
Phys. Rev. B 52(8), 5977 (1995)



262 BIBLIOGRAPHY
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[438] N. G. Martinelli, J. Idé, R. S. Sánchez-Carrera, V. Coropceanu,
J.-L. Brédas, L. Ducasse, F. Castet, J. Cornil, D. Beljonne: In-
fluence of structural dynamics on polarization energies in anthracene single
crystals. J. Phys. Chem. C 114(48), 20678 (2010)
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[484] A. C. Dürr, F. Schreiber, M. Münch, N. Karl, B. Krause,
V. Kruppa, H. Dosch: High structural order in thin films of the organic
semiconductor diindenoperylene. Appl. Phys. Lett. 81, 2276 (2002)

[485] N. Karl, K.-H. Kraft, J. Marktanner, M. Münch, F. Schatz,
R. Stehle, H.-M. Uhde: Fast electronic transport in organic molecular
solids? J. Vac. Sci. Technol. A 17, 2318 (1999)

[486] A. K. Topczak, T. Roller, B. Engels, W. Brütting, J. Pflaum:
Investigation of exciton transport in crystalline thin-films of the or-
ganic semiconductor di-indeno-perylene using photoluminescence analyses.
http://arxiv.org/abs/1207.1036 (2012)

[487] V. Stehr, R. F. Fink, B. Engels, J. Pflaum, C. Deibel: Singlet exciton
diffusion in organic crystals based on Marcus transfer rates. J. Chem. Theory
Comput. 10, 1242 (2014)

[488] A. Kimura, T. Kakitani, T. Yamato: Theory of excitation energy trans-
fer in the intermediate coupling case. II. Criterion for intermediate coupling
excitation energy transfer mechanism and application to the photosynthetic
antenna system. J. Phys. Chem. B 104(39), 9276 (2000)

[489] D. Beljonne, C. Curutchet, G. D. Scholes, R. J. Silbey: Beyond
Förster resonance energy transfer in biological and nanoscale systems. J. Phys.
Chem. B 113(19), 6583 (2009)
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Kohelet 12,12




