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INTRODUCTION 1 

1 Introduction 

1.1 The tropical disease malaria 

The unicellular eukaryotic parasites of the genus Plasmodium are responsible for malaria, 

affecting more than 200 million people and killing roughly 655 000 people annually (WHO, 

2013), thus historically being one of mankind´s most lethal diseases to date. The disease is 

most prevalent in Sub-Saharan Africa, Southeast Asia, India and South and Central America 

(Fig. 1.1). 

Malaria parasites of the genus Plasmodium belong to the phylum Apicomplexa. This phylum is 

a wide-ranging category of protists exhibiting an apical complex that besteads the parasite to 

penetrate the host cell, as exemplified by the invasion of plasmodial parasites into host 

erythrocytes during blood stage infection. Malaria parasites are transmitted by the bite of 

infected female mosquitoes of more than 30 Anopheles species (WHO, 2013). 

Whereas A. gambiae is the major insect vector for malaria in Africa, mosquitoes belonging to 

the A. stephensi-complex show up to be highly adaptable and potent vectors in the Middle 

East and the Indo-Pakistan subcontinent (Kamali et al., 2011). Globally, a reckoned 3.3 billion 

people were at risk of malaria in 2011, with populations living in Sub-Saharan Africa having 

the highest risk of acquiring malaria: Approximately 80 % of cases and 90 % of deaths are 

estimated to occur in the African region, with pregnant women and children under five years 

of age most ruthlessly affected (WHO, 2013).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1: Worldwide distribution of vivax and falciparum malaria. World map displaying the proportion of 
human malaria caused by P. falciparum and P. vivax by country (Feachem et al., 2010). P. falciparum 
malaria is predominant in Africa, whereas P. vivax is more prevalent in Southeast Asia as well as Central and 
South America. As P. malariae, P. ovale and P. knowlewsi contribute to a much lower extent to malaria 
morbidity and mortality, these species are not taken into consideration in this figure.  
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Malaria is caused by five species of parasites of the genus Plasmodium that affect humans, 

which are:    P. falciparum, 

     P. vivax, 

     P. ovale,  

     P. malariae, 

     P. knowlesi. 

Malaria tropica caused by P. falciparum is the most fatal form which predominates in Africa 

(WHO, 2013) and accounts for practically all deaths from this disease as well as high levels of 

morbidity, thus representing a serious barrier to social and economic progress of second and 

third world countries (reviewed in (Sachs and Malaney, 2002, Kokwaro, 2009)). On the 

contrary, P. vivax is less dangerous but more prevalent (Fig. 1.1), especially outside Africa; 

whereas P. ovale as well as P. malariae are found much less frequently and are rarely lethal 

(WHO, 2013). Interestingly, P. knowlesi as the fifth genus of human pathogenic plasmodial 

species habitually infects monkeys, occurring in certain forested areas of Southeast Asia (Cox-

Singh et al., 2008; Lim et al., 2013). It was recently reported to infect humans (Singh et al, 

2004; Jongwutiwes et al, 2011), rendering P. knowlesi as significant human pathogenic 

malaria parasite (Cox-Singh et al., 2008; Lim et al., 2013).  

The public health system in malarious countries is affected by the burden of malaria as well as 

all aspects of educational systems and economic or social structures of many developing 

countries with endemic parasites, particularly in Africa (reviewed in (Sachs and Malaney, 

2002; Breman et al., 2004; Sims and Hyde, 2006; Kokwaro, 2009)). To mention only a few 

educational problems that arise from the burden of malaria, there are school absenteeism of 

elder children and depletion in learning ability or cognitive development already in pre-school 

children (reviewed in Sachs and Malaney, 2002). Being most vulnerable due to loss of 

maternal immunity and having not yet developed specific immunity to malaria infection, 

children between six months and five years of age are mostly at risk of malaria. Herein, 

malaria manifests through various clinical symptoms: cerebral malaria, severe anemia, renal 

failure, hypoglycemia or pulmonary edema; occurring reclusively or in combinations 

(reviewed in Schumacher and Spinelli, 2012). Upon being exposed frequently to malarial 

infections, a person may develop a partially protective immunity, the so called “semi-

immunity” (Bull et al., 1998). Principally, semi-immune persons still can be infected, but do 

not progress severe disease and often lack any typical malarial symptoms. Irrespective of this 

protective semi-immunity, pregnant women become highly susceptible to malaria due to 

diminished immunity (Roll Back Malaria Partnership, 2008), especially during first or second 

time pregnancies. Malaria infection of pregnant women impacts on fetal development and 

contributes to an increase in maternal deaths, miscarriages, several complications like 

maternal anemia or low birth weight, and the likelihood of stillborn children (reviewed in 

Rogerson et al., 2007).  
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1.2 The malaria pathogen Plasmodium falciparum  

Plasmodium falciparum displays the most fatal plasmodial species (WHO, 2013), which 

deviates from the other Plasmodium species in several properties. One of the most 

devastating features of P. falciparum is its ability to confer cytoadhesive characteristics to its 

surrounding host erythrocyte, which contributes in large parts to the P. falciparum 

pathogenesis (reviewed in Doerig et al., 2010). The adhesion of infected red blood cells (RBCs) 

to uninfected RBCs (rosetting) and to endothelial cells (sequestration) are involved in both 

host pathogenesis and parasite survival. These phenomena are facilitated by different host 

and parasite derived proteins on the surface of infected RBCs (reviewed in Kirchgatter and Del 

Portillo, 2005). Major players in cytoadherence are the parasite-encoded surface antigen 

PfEMP1, a modified host erythrocyte membrane protein (band 3) as well as receptors on the 

endothelium (reviewed in (Sherman et al., 2003; Carvalho et al., 2013; Ho, 2014; Aird et al., 

2014)). PfEMP-1 mediates cytoadherence of the infected RBCs to the endothelium of the 

vascular system with intercellular adhesion molecule 1 (ICAM-1) as one key receptor of the 

endothelium (reviewed in (Kirchgatter and Del Portillo, 2005; Miller et al., 2013)). ICAM-1 is 

an endothelial molecule that also acts as receptor for infected erythrocytes (Berendt et al. 

1989), thus leading to the sequestration of mature trophozoites and schizonts from the 

peripheral circulation (reviewed in Kirchgatter and Del Portillo, 2005). ICAM-1 has been 

reported to play crucial roles in cerebral malaria (Berendt et al., 1989; Fernandez-Reyes et al. 

1997). This phenomenon plays an important role in the pathogenicity of the disease, resulting 

in occlusion of small blood vessels and thus contributing to failure of many organs (reviewed 

in (Miller et al., 2002; Kirchgatter and Del Portillo, 2005)). Rosetting signifies the formation of 

rosettes due to adhesion of erythrocytes infected with mature parasite forms to uninfected 

RBCs. It is likely to increase microvascular obstruction of the blood circulation by clumping 

(reviewed in (Miller et al., 2002; Kirchgatter and Del Portillo, 2005)). Both sequestration and 

rosetting result in limited oxygen supply, thus causing organ damage in brain, heart, lung, 

liver, kidney or subcutaneous tissues leading to death or coma of infected patients (reviewed 

in Miller et al., 2002).  

 
P. falciparum exhibits a complex life cycle, alternating between the human intermediate host, 

where asexual replication and multiplication takes place, and the anopheline insect host, 

where sexual propagation occurs (Fig. 1.3). Upon one human being bitten by an infected 

female mosquito, sporozoites are injected into the blood stream and migrate through the 

blood vessels to the liver. The parasites are subsequently invading hepatocytes followed by a 

first asexual replication cycle, giving rise to hepatic schizonts. Approximately seven days post 

infection, these liver schizonts rupture and release thousands of newly developed invasion 

stages, called merozoites, into the bloodstream. Each merozoite invades one RBC, residing 

inside the same and undergoing various morphologically distinct developmental changes (Fig. 

1.2). During the subsequent ring stage, a parasitophorous vacuole (PV) is formed. Ring stages 

start to feed on host cell hemoglobin and other nutrients from the extracellular milieu (Kumar 

et al., 2014). The parasite thereby enters a highly metabolic maturation phase, termed 

trophozoite stage, which subsequently merges into the schizont stage (Bozdech et al., 2003). 

In this stage, the parasite prepares for reinvasion of fresh RBCs. Following mitotic division, the 
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developing erythrocytic schizont matures so that it encompasses about 16 to 32 new 

merozoites. Upon rupture of the schizont and subsequent release, these merozoites invade 

fresh erythrocytes resulting in higher parasitemia and the manifestation of the disease. 

Residence of P. falciparum in human erythrocytes is the major cause of malarial pathology 

and a key step for the parasites’ development and propagation. This erythrocytic schizogony 

occurs in a cyclic manner every 48-72 h (reviewed in Hill, 2006).  

 

Fig. 1.2:  Representative asexual blood stage parasites in Giemsa-stained blood smears. 1: Schizont, 24 h 
after synchronization. 2 & 3: Transition from schizont to segmenter. 4: Ring stage parasite. 5: 
Early trophozoite. 6 – 8: Trophozoite stages (modified from Bracchi-Ricard et al., 2000).  

Given unknown factors, a subset of predetermined merozoites develops into sexual precursor 

stages, the male and female gametocytes (reviewed in Hill, 2006). Commitment to the sexual 

cycle already occurs in the trophozoites of the preceding asexual generation (reviewed in 

Talman et al., 2004), corroborated by the observation that all gametocytes arisen from one 

schizont are either male or female (Silvestrini et al., 2000). Density stress due to high 

parasitemia is one assumed factor triggering the induction of the formation of gametocytes 

(Bruce et al., 1990).  

 

Fig. 1.3:  Schematic of the life cycle of P. falciparum (modified from Bousema and Drakeley, 2011).   
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The process of arising gametocytes from asexual blood stage parasites in humans is called 

gametocytogenesis (reviewed in Talman et al., 2004) and takes approximately 10 days. Over 

this period of time, maturing gametocytes represent five morphologically recognizable stages, 

which can be distinguished by means of Giemsa-stained blood smears (Fig. 1.4).  

 
Fig. 1.4:  Gametocytes of P. falciparum in Giemsa-stained blood smears. The five developmental stages 

of P. falciparum gametocytes (stage I–V). Whereas Giemsa-stained stage I gametocytes resemble 
young asexual trophozoites, stages II–V are easily distinguishable in a blood smear (modified 
from Bousema and Drakeley, 2011).  

Whereas mature gametocytes (stage V, Fig. 1.4) are released into circulation and are 

accessible to mosquitoes taking a blood meal, immature stages from I to IV are sequestered 

away from the blood circulation, presumptively to avoid splenic immune clearance (reviewed 

in Bousema and Drakeley, 2011; Fig. 1.4). Upon ingestion of mature gametocytes by a female 

mosquito during a blood meal, the emergence of gametocytes from surrounding erythrocytes 

follows. Triggered by diverse factors within the mosquito midgut, including a decrease in 

temperature of 5°C below that of the vertebrate host, an increase of carbon dioxide and the 

presence of the mosquito-specific molecule xanthurenic acid (Billker et al., 1998; Arai et al., 

2001), the gametocytes get activated and the egress of gametes from the red blood cells 

occurs. Noteworthy, this emergence is mediated by proteases in an inside-out manner 

(Sologub et al., 2011). The female macrogametocyte subsequently transforms into a spherical 

extracellular and non-motile macrogamete, whereas the male microgametocyte releases 

eight motile flagellated microgametes after replicating its genome three times (reviewed in 

Kuehn and Pradel, 2010), which is called gametogenesis. Upon activation, exflagellation 

occurs in the mosquito midgut, which is the process in which the cells form rosettes due to 

adherence of the newly emerged microgametes to adjacent erythrocytes. This rosetting cells 

are called exflagellation centers and counting of them is a routine measurement of 

gametocyte activation potential. During exflagellation, the female macrogametes are 

fertilized by the motile male microgametes, thus resulting in a zygote by rapid meiotic 

division, with the zygote being the only diploid stage in the parasite´s life cycle (Lobo and 

Kumar, 1999). Within 24 hours, the zygote transforms into a motile tetraploid ookinete 

(reviewed in Pradel, 2007), being capable of traversing the mosquito midgut epithelium and 

forming an oocyst. Replication takes place subsequently and the oocyst gives rise to a large 

amount of newly emerged invasion stages, the sporozoites. For perpetuating the parasite life 

cycle, the sporozoites migrate to the mosquito´s salivary glands, where they await discharge 

into a new host during the mosquito’s blood meal, and subsequently invade blood capillaries 

of the human intermediate host (Lobo and Kumar, 1999).  
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1.3 Malaria control strategies 

Given high incidences of resistances against the widely used antimalarial chloroquine as well 

as the sulfadoxine-pyrimethamine combination therapy, malaria still is pervasive, along with 

the fact that alternative medications are practically too expensive for the population of 

malarious countries (reviewed in Wiesner et al., 2003). Control strategies are further 

subverted by co-infections with HIV, severe poverty and the lack of health services and well-

established infrastructures (reviewed in Breman et al., 2004; WHO, 2013). To aggravate the 

situation, the efficacy of transmission control by means of widely used insecticide-treated bed 

nets and indoor residual spraying is dropping because of resistances (reviewed in Ranson et 

al., 2011; Ndiath et al., 2014). Even if there have been major gains during the last 13 years in 

malaria control in many endemic countries including many in Africa (reviewed in O´Meara et 

al., 2010), subsisting malaria control strategies still are vastly vulnerable to emerging 

resistances. Therefore there is an urgent demand of research and development of new 

effective and affordable malaria control strategies (reviewed in Doerig and Meijer, 2007). 

Furthermore, there are particular African countries with a static or even deteriorated 

situation regarding malaria transmission control, especially in the highland areas of East 

Africa (reviewed in O´Meara et al., 2010), rendering the continuation and improvement of 

malaria control strategies.  

1.3.1 Vaccine development 

In spite of, or exactly because of the complex life cycle of P. falciparum providing a plurality of 

antigenic targets for vaccine development, there is currently no effective vaccine available 

against malaria (reviewed in Good et al., 2001; Santos et al., 2013). Opposed to vaccines that 

are developed for various diseases relying on the basic principle of a whole cell antigen 

complex of the respective organism in killed or attenuated form, this is not feasible for 

malaria vaccines to this date. The reason is that malaria parasites require human erythrocytes 

for growth or culturing and a whole-cell vaccine is consequently considered to be potentially 

unsafe and impracticable for a disease for which 40 % of the world´s population is 

theoretically at risk (reviewed in Good et al., 2001). Therefore, malaria vaccine development 

is attempted to generate a subunit vaccine. Out of the five known human pathogenic 

Plasmodium species, there are only two species represented in vaccine development, with 

over 40 vaccine projects for P. falciparum and only one for P. vivax to reach clinical trial stage 

(reviewed in Schwartz et al., 2012). 

Vaccine development against malaria can be subdivided into their ability of targeting 

different life cycle stages, for example vaccines targeting pre-erythrocytic stages like 

sporozoites and liver stage parasites. They can be mentioned as the first category, in contrast 

to vaccines of the second category that target blood stage parasites which are responsible for 

clinical symptoms and thus the pathology of malaria. The vast majority of vaccination 

strategies aim to target this intraerythrocytic developmental cycle (Bozdech et al., 2003; 

reviewed in Hill, 2006). As a third class, there are vaccines that aim at blocking sexual stages 

and are therefore called transmission blocking vaccines (TBV).  
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Being classified as a pre-erythrocytic vaccine, RTS,S/AS01E is by far the most advanced 

candidate, hence being at least 5 to 10 years ahead of all other malaria vaccine projects 

(reviewed in Schwartz et al., 2012). RTS,S is a protein particle vaccine (comprised of 

polypeptides RTS and S) targeting the P. falciparum circumsporozoite protein (CSP), fused to a 

hepatitis B surface antigen including a new potent adjuvant (WHO, 2013). The vaccine 

manufacturer is focusing on African children resident in malaria-endemic countries. RTS,S was 

capable to induce clinical efficacy in the 25-60 % range, depending on the respective clinical 

settings. It is assumed that the WHO recommends RTS,S for use in 2015, depending on the 

outcome of the current trials (reviewed in Schwartz et al., 2012). Recent reports give account 

on the accomplished clinical trial phase II. The immunogenicity of RTS,S vaccines containing 

Adjuvant System AS01 or AS02 was evaluated as compared with non-adjuvanted RTS,S in 

healthy, malaria-naïve adults in a randomized, double-blind study. The result revealed 

acceptable safety profiles of the adjuvanted vaccines, with the anti-CSP antibody response 

being significantly higher as RTS,S/AS01 combination than RTS,S/AS02. Therefore, RTS,S/AS01 

is being selected for clinical phase III in Africa (Leroux-Roels et al., 2014).  

Blood stage vaccines principally aim at targeting antigens that are expressed on the surface of 

merozoites. There are at least two plasmodial antigens worth mentioning (reviewed in Hill, 

2006). These two are, at least subunits of it, currently under clinical trials: merozoite surface 

protein 1 (MSP-1) and apical membrane antigen 1 (AMA-1). Firstly, there is much knowledge 

about the immune effector mechanisms of MSP-1. It is expressed from the onset of 

schizogony and involved in erythrocyte invasion by merozoites (reviewed in Schwartz et al., 

2012). Antibodies against MSP-1 revealed to be implicated in a diminished risk of clinical 

malaria (reviewed in Fowkes et al., 2010). Secondly, AMA-1 antibodies were observed in 

patients with acquired natural immunity, with repeated natural exposure leading to high 

AMA-1 antibody titers (Udhayakumar et al., 2001; Courtin et al., 2009). MSP-1 as well as 

AMA-1 are highly polymorphic and display complex folding patterns (reviewed in Good, 

2001).  

Although receiving revived attention, sexual stage vaccines display the third and still most 

underrepresented vaccine category. They are intended to block the life cycle in mosquitoes 

by utilizing antisera that are raised against sexual stage-specific antigens (Vogel, 2010). 

Vaccines protecting from liver stage or blood stage parasites and thus from the symptoms of 

malaria are still not capable of clearing all the parasites from the patient. Consequently, a 

vaccinated person could be symptom-free, but still be infected and, moreover, still infect 

others (Vogel, 2010). This is the starting approach for transmission blocking vaccines (TBVs). 

Currently there are only a few sexual stage vaccines in pre-clinical development, at least one 

phase 1 trial is underway: A vaccine candidate that is based on Pfs25, supplemented with a 

meliorated adjuvant formula, as previous studies revealed low antibody titers and only 

marginal transmission blocking activity (Qian et al., 2007; Qian et al., 2008). An addition of 

aluminum hydroxide gel and an oligodeoxynucleotide that acts as Toll-like receptor 9 (TLR9) 

agonist elicited a significant increase in functional antibody levels in mice, compared to the 

same formulation without the supplementation (Qian et al., 2007; Qian et al., 2008). Both 

transmission blocking efficacy and antibody titers were auspicious in subsequent studies, 

however both vaccines revealed unanticipated reactogenicity for further development (Wu et 
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al., 2008). Due to the observed systemic adverse events including erythema nodosum 

associated with the vaccine formulation, current efforts are focused on the development of a 

well tolerated formulation capable of inducing strong immune responses (Wu et al., 2008). 

1.3.2 Antimalarial chemotherapy 

Likewise to the development of antimalarial vaccines, the complex parasite life cycle offers 

several points of attack for chemotherapeutical intervention. Similarly, antimalarials can be 

distinguished into 3 classes that represent the different life cycle compartments of 

P. falciparum: Drugs that zero in on the asymptomatic liver stages are primarily utilized for 

prophylactic chemotherapy by preventing blood stage infection, i.e. for travellers (reviewed 

in Doerig et al., 2010). As a second and best-represented category, drugs that target 

erythrocytic stages are deployed for the treatment of the disease. The vital importance of 

these drugs is inappropriately accompanied by their high susceptibility to the emergence of 

drug resistances (reviewed in Doerig et al., 2010). Out of the presently amenable 

armentarium, a vast majority of current drug resistances occur among schizonticidal drugs 

(reviewed in Doerig et al., 2010). Lastly, a third implement of antimalarial control is to 

obstruct the parasite sexual stages. An interference of drugs with sexual stage parasites is 

feasible either at the level of gametocytogenesis or within the mosquito host during 

sporogony (reviewed in (Pradel, 2007; Doerig et al., 2010)), thus blocking the transmission of 

malaria parasites from the human host to the insect vector and therefore obviating or 

reducing parasite propagation. 

The onset of antimalarial chemotherapy took place in the early 18th century when the bark of 

South American cinchona trees was used for malaria treatment (reviewed in Wongsrichanalai 

et al., 2002). The latter isolated bark compound quinine is a quinoline alkaloid and has been 

the mainstay for treating severe malaria in children, but even it reveals high efficacy, there 

are concerns that the value of quinine is retrograding in parts of Southeast Asia 

(Pukrittayakamee et al., 1994; reviewed in Praygod et al., 2008) and South America (Zalis et 

al., 1998). Additionally, isolated cases of quinine resistant P. falciparum malaria have been 

reported from East Africa, confirming an association of a special mutation in the pfmdr-1 

gene with reduced susceptibility (Jelinek et al., 1995). Quinine is presently set aside as a 

second- or third-line drug, only being used in case of severe malaria (reviewed in 

Wongsrichanalai et al., 2002).   

Being firstly manufactured in Germany, the quinine-derived quinoline chloroquine (CQ) 

gained attention as overwhelmingly effective synthetic antimalarial not before the 1940s 

during World War II (reviewed in Wongsrichanalai et al., 2002). Becoming the cornerstone of 

antimalarial chemotherapy, it was widely used and turned out to be the affordable drug of 

choice until its efficacy began to decline when parasite strains acquired resistance to CQ 

firstly in the 1960s (reviewed in Schlitzer, 2007). Resistances are nowadays widespread with 

the WHO no longer considering CQ as adequate antimalarial chemotherapeutic. Regarding 

several related quinolines, for example mefloquine and piperaquine, there are reported 

resistances (reviewed in Schlitzer, 2007). Presently used quinine-derived antimalarials are 

halofantrine or amodiaquine in combination with artesunate (reviewed in Hyde, 2005).  
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As gametocytes exhibit susceptibility towards primaquine (PQ) and other 8-aminoquinolines, 

they might be utilized as transmission blocking drugs, thus reducing the transmission and 

therefore the incidence of malaria. PQ is the only currently available drug that actively clears 

mature P. falciparum gametocytes and prevents malaria transmission to mosquitoes (White, 

2013; Eziefula et al., 2013). However, PQ is also known to have potentially grave side effects 

in people with an enzyme deficiency common in several malaria endemic regions (glucose-6-

phosphate dehydrogenase deficiency; G6PD; Eziefula et al., 2014). In these patients, high 

doses of PQ administered over several days occasionally destroys erythrocytes, causing 

anaemia and possibly life-threatening effects (Alving et al., 1956; reviewed in Beutler, 1959; 

Eziefula et al., 2013; Eziefula et al., 2014). Consequently, in 2013 the WHO revised the 

previously recommended single dose to 0.25 mg/kg from initially 0.75 mg/kg due to concerns 

about safety (reviewed in Graves et al., 2014). 

Sulfadoxine (SDX) and pyrimethamine (PYR), a combination of antimalarial antifolates, have 

been used widely in many parts of Africa in order to replace CQ treatment since the 

emergence of CQ resistance (Eriksen et al., 2008). Contrary to its great advantage that the 

SDX/PYR treatment can be administered by one single dose, reported resistances raise 

serious doubts if this affordable and practical combination therapy will have a prolonged life 

span in the treatment of malaria (Warsame et al., 2002; Barnes et al., 2006). Mutations in the 

antifolate resistance genes coding for dihydrofolate reductase (dhfr) and dihydropteroate 

synthase (dhps) confer resistance to SDX and PYR by reducing the parasite´s chemosensitivity 

towards these compounds (Inoue et al., 2014). Pharmacogenetic studies revealed that the 

current SDX/PYR dosing is inadequate especially in young infants and that the childrens’ age 

has critical impact on the pharmacokinetic features of the compounds (Barnes et al., 2006). 

These findings emphasize the need for appropriately designed prospective pharmacokinetic 

studies especially for young children to ensure optimal dosing of all antimalarial drugs.  

Another drug type which is of particular importance as recently licensed antimalarial drug is 

atovaquone. Being solely used in combination with the antifolate drug proguanil and listed as 

commercially available Malarone®, it was successfully used for a period of time, especially for 

travellers (reviewed in (Marra et al., 2003; Hyde, 2007)). It is still used effectively as 

prophylactic drug, nevertheless some cases of resistance to Malarone® treatment have been 

reported in West Africa as well as in Thailand (Kuhn et al., 2005; Krudsood et al, 2007).  

Implying an urgent need of alternatives, artemisinin and its derivatives (artemether, arteether 

and artesunate) are taken into account as potent and rapidly acting schizontocide against all 

Plasmodium species, having an exceptional broad activity against asexual parasites and young 

gametocytes (Kumar and Zheng, 1990; Sutanto et al., 2013). It was originally used and is still 

deployed successfully in combination with mefloquine in areas of persistent multidrug-

resistance, for example in Southeast Asia (reviewed in Hyde, 2007). Artemisinin derivatives 

are now being assessed as artemisinin combination therapies (ACT) in several other 

combinations with antimalarials like lumefantrine, amodiaquine or SDX/PYR (Roll Back 

Malaria Partnership, 2008). The slower-acting non-artemisinin partners of these formulations 

are aimed to exterminate small portions of parasites that were able to escape the rapidly 

metabolized artemisinin, which has a short plasma-half life of only four hours (reviewed in 

Hyde, 2007). However, the effectiveness of ACTs is doubtful, with an already compromised 
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partner drug to artemisinin (Duffy et al., 2006). It is of tremendous significance for millions of 

malaria-affected people to generate an effective antimalarial drug, with ACT proposing the 

utmost anticipation (Roll Back Malaria Partnership, 2008). Nevertheless, proceeded research 

as well as continued surveillance is necessary to monitor which drug combination is the most 

sustainable in different populations, as emerging resistances to ACT would be a massive 

failure and regression regarding antimalarial combat strategies by the use of drugs (Duffy et 

al., 2006; Ferreira et al., 2013). There is strong disagreement over the implication of putative 

newly emerged artemisinin susceptibility observations (Dondorp and Ringwald, 2013; 

reviewed in Krishna and Kremsner, 2013). Particularly, the term of “artemisinin resistance” is 

currently under discussion, since recent research observed artemisinin resistance prevalent 

across mainland Southeast Asia which is associated with distinct mutations in kelch13 gene 

locus (Dondorp et al., 2009; Ashley et al., 2014). The authors of this specific study attribute a 

high significance to these observations (Dondorp and Ringwald, 2013). Moreover, recent 

observations report a case of malaria in a patient returning to Vietnam after several years in 

Angola that did not respond to intravenous artesunate and clindamycin or an oral 

artemisinin-based combination (Van Hong et al., 2014). On the contrary, other findings report 

merely a slow clearance rate of parasites by ACT as a result of a drop in susceptibility among 

young ring stages, whereas the susceptibility is sustained in mature stages (Ferreira et al., 

2013; Witkowski et al., 2013). Nevertheless, according to these authors the clinical relevance 

of these findings still remains elusive since these infections could still be successfully treated 

with ACTs (reviewed in Krishna and Kremsner, 2013; Lun et al., 2014).  

 

With constantly emerging resistances against a variety of applied antimalarials, antibiotic 

substances as a special class of antimalarial drugs are currently taken more and more into 

account. The first antibiotics that have been reported to counteract malaria parasites were 

chloramphenicol, chlortetracycline and oxytetracycline (reviewed in Pradel and Schlitzer, 

2010). Antibiotics exhibit a slowly acting antimalarial activity; therefore it is often used in 

combination therapy with faster acting drugs. Nowadays, clindamycin and doxycycline are 

used in combination with artemisinin derivatives or quinine, and this combination is 

moreover recommended as malarial second line treatment and chemoprophylaxis in most 

Western countries (Briolant et al., 2010; WHO 2013). Antimalarial activity of antibiotics is 

traced back to the fact that the mitochondrion as well as the apicoplast of Plasmodium sp. are 

of prokaryotic origin, being semiautonomous structures within the parasite and possessing 

sovereign genomes (reviewed in (Wiesner et al., 2003; Pradel and Schlitzer, 2010)). Due to 

the fact that bacterial co-infections are often fundamental complications of malaria, 

antibiotics are supplementarily administered. As antibiotics mostly impede bacterial 

translation processes, they are slowly acting; furthermore for some antibiotics, a delayed 

death effect was observed and postulated in P. falciparum (Barthel et al., 2008; reviewed in 

Pradel and Schlitzer, 2010).  

Being solely administered as ectopic antiseptic, chlorhexidine (CHX) exhibited an antimalarial 

effect among other antibiotic compounds. CHX is commonly applied externally as antibiotic in 

dentistry and is used in general skin cleansing, skin decolonization, preoperative showering 

and bathing, vascular catheter site preparation, impregnated catheters and oral 
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decontamination (reviewed in Milestone et al., 2008). CHX exhibits the highest antibiotic 

activity against gram-positive cocci, whereas acid-fast bacteria, enveloped viruses and spores 

are CHX resistant. The mode of action of this strongly basic compound on E. coli and S. aureus 

is given by its capability to adsorp to the bacterial surface and integrate into the bacterial 

membrane, thereby damaging the permeability barriers. After entering the bacterial cell, CHX 

reacts with free solutions of the cytoplasm, hence leading to precipitation of the cytoplasm 

(Davies, 1975). The first experimental evidence of antimalarial activity of CHX was provided 

by in vivo examinations (Curd and Rose, 1946). Based on these observations, the 

antiplasmodial activity of CHX was further assessed by culture testings utilizing the Trager-

Jensen system (Geary and Jensen, 1983). There, it revealed an IC50 of approximately 

0.316 µM, determined by concentration-effect curves. Moreover, CHX demonstrated to effect 

on human cyclin-dependent kinase-like kinases (CLKs), therefore affecting alternative splicing 

(Younis et al., 2010; Wong et al., 2011). 

To counteract uprising resistances against antimalarial drugs, there are general prerequisites 

that have to be fulfilled. As first and most important premise, a combination therapy of two 

different compounds is required with the components targeting different metabolic 

reactions, hereby decreasing the risk of developing rapid mutations that confer resistance to 

the malaria parasites (reviewed in Farooq and Mahajan, 2004; Smith et al., 2010). To prevent 

the further propagation of surviving parasites in the patient, the ideal medication should also 

have transmission-blocking capabilities (reviewed in (White 2004; Doerig 2005)). As 

schizonticidal drugs can select randomly occurring mutations that could confer resistance to 

the parasite population, these resistant parasites then develop into gametocytes, 

transmitting drug-resistant phenotypes to the insect vector (reviewed in Doerig et al., 2007). 

Consequently, drug-resistant parasites are spread into the human population. Transmission 

blocking drugs (TBD) would be the method of choice in this scenario, being co-administered 

with schizonticidal compounds. An example is artemisinin, which also kills young 

gametocytes, in addition to its schizonticidal properties (Kumar and Zheng, 1990; reviewed in 

Doerig et al., 2010; Sutanto et al., 2013). As gametocytes do not divide, resistant genotypes 

would not be selectively amplified by the application of TBDs (reviewed in (Doerig et al., 

2007, Doerig et al., 2010)). Moreover, one of the combination partners of the drug of choice 

must possess a fast clearance rate in such a way that the surviving parasites are not exposed 

to sub-therapeutic drug levels, thereby supporting the emergence of resistance-conferring 

mutations. In contrast, the other member of the combination drug should exhibit a long 

termination half life (White, 1998; Dormoi et al., 2014).  

Taken all of the above mentioned premises into account, this approach could represent a 

strategy to prevent emerging resistances against antimalarial compounds, thus taking one 

step towards worldwide eradication of malaria (Feachem et al., 2008; reviewed in 

Greenwood et al., 2008).  
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1.4 The kinome of P. falciparum 

Reversible protein phosphorylation catalyzed by protein kinases is ubiquitous in all aspects of 

cellular processes, such as proliferation, differentiation, metabolism and gene expression 

(Hanks, 2003). The addition of phosphate groups leads to remarkable changes in terms of 

enzymatic activity, stability, binding properties or subcellular localization of the protein 

substrates (reviewed in Kappes et al., 1999), rendering protein kinases (PK) as key regulators 

of cellular life. Since their early discovery by the 1992 Medicine Nobel Prize laureates Edwin 

G. Krebs and Edmond H. Fischer, human protein kinases have been the subject-matter of 

elaborate research (reviewed in Doerig et al., 2007). Moreover, the substantial importance of 

eukaryotic protein kinases (ePK) is displayed by the number of these specific enzymes present 

in eukaryotes: In the human genome for example, approximately 1.7 % of all genes encode 

protein kinases (reviewed in Manning et al., 2002), whereas in budding yeast, protein kinase 

genes consist of even 2 % of the total genome (Johnson et al., 1998). Dysfunction of protein 

phosphorylation has been identified as major cause or consequence of human diseases such 

as cancer, inflammation, neurodegenerative disorders, diabetes or viral infections (reviewed 

in Cohen et al., 2002).  

ePKs are modularly organized with regard to specific substrate recognition, localization to 

substrate sites and a determined mode of regulation. The identification of ePKs is conducted 

by database mining, which is based on the presence of a distinct conserved kinase domain. 

This specific kinase domain is further sectioned into twelve conserved subdomains that fold 

into a common catalytic core structure (reviewed in Hanks and Hunter, 1995; Fig. 1.5). All of 

them carry a conserved amino acid motif that is required for the kinase activity (Hanks, 2003; 

depicted in Fig. 1.5). Of certain importance for the kinase's catalytic function is on the one 

hand the invariant lysine (K73) in subdomain II and on the other hand the conserved 

aspartate (D) present in subdomain VII. These motifs conduct binding and positioning of ATP 

in the catalytic cleft of the enzyme (Hanks and Quinn, 1995; Hanks, 2003). The glycine triad of 

subdomain I forms a hairpin which encloses a part of the ATP molecule (reviewed in Ward et 

al., 2004). Conversely, the invariant aspartate present in subdomain VIB is assumed to 

mediate the phosphotransfer reaction, whereas peptide-substrate recognition is 

implemented by subdomain VIB as well as VIII and the highly conserved APE motif (Johnson 

et al., 1998). The APE motif is furthermore responsible for structural stability of the large lobe 

(Hanks and Quinn, 1995; reviewed in (Hanks and Hunter, 1995; Ward et al., 2004)).  

 

Fig. 1.5:  Schematic of the typical ePK catalytic subdomain structure. Roman numerals indicate the 12 
conserved subdomains. The positions of amino acid (aa) residues and motifs highly conserved 
throughout the ePK superfamily are indicated above the domains (single letter aa code with x as 
any aa). Hanks, 2003.  
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Generally, subdomains I to V comprise the amino- (N-)terminal lobe required for ATP binding, 

whereas the stretch of domain V to XI is referred to as carboxy- (C-)terminal lobe and 

mediates peptide binding and phosphotransfer (reviewed in Hanks and Hunter, 1995; Hanks, 

2003).  

Eukaryotic protein kinases can be classified into two superfamilies, based on their sequence 

similarity and their enzymatic specificity (reviewed in Kappes et al., 1999). The first 

superfamily, the Ser, Thr and Tyr kinases, catalyze the transfer of phosphate residues from 

ATP to serine, threonine or tyrosine, respectively, whereas the second superfamily of His 

kinases autophosphorylates conserved histidine residues (reviewed in (Hanks and Hunter, 

1995; Kappes et al., 1999)). The superfamily of Ser, Thr and Tyr kinases can be further 

partitioned into five major groups by means of phylogenetic tree construction (reviewed in 

Kappes et al., 1999). Noteworthy, the plasmodial kinome displays a comparatively small 

kinome, encompassing less than 100 kinases (reviewed in Lucet et al., 2012). Given the 

outstanding importance of ePKs, several protein kinases of P. falciparum have been identified 

in recent years and were classified according to the above mentioned scheme, based on the 

general characteristics of the respective eukaryotic kinase group (reviewed in Kappes et al., 

1999), leading to the classification of the plasmodial kinome as follows: 

  

1) CMGC group 

This vast group comprises 18 plasmodial members from four different families: i) the family of 

cyclin-dependent protein kinases (CDKs), ii) mitogen-activated protein kinases (MAPK), iii) the 

glycogen-synthase kinase 3 (GSK-3) family, iv) the CDK-like kinase (CLK) family and other close 

relatives (reviewed in Manning et al., 2002). CDKs have been identified in all eukaryotes 

investigated so far and are principally implied in cell cycle regulation (reviewed in (Kappes et 

al., 1999; Doerig et al., 2002)). In P. falciparum, five related CDKs have been described so far 

(reviewed in Doerig et al., 2002) and two previously characterized MAPKs, Pfmap-1 and 

Pfmap-2, cluster together with a member of the MAPK family (Doerig et al., 1996; Dorin et al., 

1999). Interestingly, PfPK6 and Pfcrk-4 display features of both CDKs and MAPKs (Bracchi-

Ricard et al., 2000; reviewed in Ward et al., 2004). Two subfamilies are grouped to the GSK-3 

family: the GSK-3 family itself and the casein kinase 2 (CK2)-type enzyme family (reviewed in 

Kappes et al., 1999). P. falciparum encodes three GSKs, sharing a sequence similarity of 

greater than 45 % with other eukaryotic GSKs (Anamika et al., 2005). Conversely, only one 

CK2 homologue is encoded in the parasite genome: PfCK2, which possesses two beta subunit 

species and is most likely involved in the chromatin assembly pathway (Holland et al., 2009; 

Dastidar et al., 2012). Four CLK kinases are identified in P. falciparum, which are involved in 

RNA metabolism, processing and transport (Li et al., 2001; Dixit et al., 2010; Agarwal et al., 

2011) and are investigated in detail in this study (section 1.7).  

 

2) AGC group 

This group (cyclic-nucleotide & calcium/phospholipid-dependent kinase group) is represented 

in P. falciparum by five kinases out of which cGMP-dependent PfPKG, cAMP-dependent PfPKA 

and calcium/calmodulin-dependent PfPKB have been described so far (Li et al., 2000; Deng et 

al., 2002; Diaz et al., 2006; Vaid et al., 2006) There appears to be no homologue of the protein 
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kinase C (PKC) subfamily in P. falciparum, but it is assumed that the calcium-dependent 

protein kinase (CDPK) homologue PfCDPK7 may perform functions analogous to mammalian 

PKCs that are activated by calcium and phospholipids (reviewed in Kappes et al., 1999). 

PfCDPK7 is an atypical parasite CDPK, possessing two calcium-binding EF-hands and being of 

particular importance for the survival of erythrocytic asexual stages (Kumar et al., 2014).  

 
3) CK1 group 

Merely one plasmodial kinase has been identified and characterized hitherto from the casein 

kinase 1 group, PfCK1 (Barik et al., 1997) whereas this group is vastly expanded in other 

kinomes. C. elegans, for example, retains 85 genes which are assigned to the CK1 group 

(reviewed in Ward et al., 2004). Characterization of PfCK1 led to the hypothesis that it 

interacts with Rab GTPases of the parasite, suggesting to play a role in early and late 

endosome function in malaria parasites (Rached et al., 2012).  

 

4) CamK group 

The calmodulin-dependent kinase (CamK) group comprises 13 PfePKs, underlining the 

importance of calcium signalling in the parasite (reviewed in (Garcia, 1999; Ward et al., 

2004)). A tight cluster is formed by PfCDPK1-7 that share the canonical CDPK structure which 

is exclusively found in plants and alveolates, but not in metazoans and therefore mammals 

(reviewed in Ward et al., 2004). In these organisms, they are predominantly involved in stress 

and hormone responses, germination and most likely membrane biogenesis (Hegeman et al., 

2006). In the malaria parasite, CDPKs might substitute for the function of the CamKs or PKC 

isoenzymes, as this is also suggestive to be the case in plants (reviewed in Kappes et al., 

1999).  

 

5) TKL group 

The fifth malarial kinome group, the tyrosine kinase-like (TKL) family, encompasses five 

plasmodial enzymes (reviewed in Ward et al., 2004). PfTKL3 was characterized previously as 

essential kinase for asexual proliferation and co-localizes with cytoskeleton microtubules in 

gametocytes (Abdi et al., 2010). Moreover, it was anticipated as amenable drug target. 

Recently identified PfTKL2 is described to be exported to the host erythrocyte and 

successively secreted into the medium of asexual parasite cultures. It is suggested that PfTKL2 

might have immunomodulatory functions, promoting the parasites´ survival in the human 

host (Abdi et al., 2013).  

 

Up to date, no plasmodial protein kinase was identified that clusters within the tyrosin kinase 

(TyrK) group, albeit it was recently investigated by global phosphorylation analyses that 

PfGSK3 as well as PfCLK-3 are autophosphorylated at tyrosine residues within their activation 

loop and that the tyrosine phosphorylation is responsible for full kinase activity (Solyakov et 

al., 2011). TyrK family members are as well absent in yeast and in most, but not all unicellular 

eukaryotes (Shiu et al., 2004). STE kinases are kinases identified in sterile yeast mutants. 

Members of this group are absent in malaria parasites similar to TyrK group members. This 
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finding is consistent with the failure of in vitro and in silico attempts to identify MAPKK 

malarial homologues (Dorin et al., 2001; Dorin et al., 2005). This indicates a divergent 

organization of the MAPK pathways in malaria parasites (reviewed in Ward et al., 2004; 

further specified in section 1.5).  

Moreover, there are plasmodial kinases that have no orthologues in the human host as they 

do not cluster within any of the above mentioned groups. Hence they are denoted as “orphan 

kinases” or “other protein kinases” (reviewed in (Kappes et al., 1999; Doerig et al., 2008)). For 

example, the P. falciparum kinome encompasses a family of four protein kinases that cluster 

within the NIMA (never-in-mitosis) family: Pfnek-1 to Pfnek-4. Previously characterized Pfnek-

1 is non-redundant in asexual parasites and displays a potential target for antimalarial 

intervention (Dorin et al., 2001; Dorin-Semblat et al., 2011). Pfnek-2, -3 and -4 are 

predominantly expressed in gametocytes, and a role for Pfnek-2 and Pfnek-4 in meiosis has 

been described (Reininger et al., 2009; Dorin-Semblat et al., 2011). NIMA-related kinases in 

other organisms display a conserved family of kinases with critical roles in the regulation of 

mitosis as well as meiosis and an association with centrosomes, spindle poles and other 

components of the cell division apparatus are reported (Dorin-Semblat et al., 2011).  

Furthermore, the P. falciparum proteome comprises a family of putative kinases called FIKKs, 

some of which are exported to the host RBC and might play a role in erythrocyte remodeling 

and alteration of the host cell surface, thus ensuring the parasite survival in the host 

circulation (Nunes et al., 2007; Nunes et al., 2010; reviewed in Lim et al., 2012). This ePK 

group is exclusively found in Apicomplexa and termed after the conserved Phe-Ile-Lys-Lys 

motif in subdomain II of the catalytic domain present in all members of the family (reviewed 

in Ward et al., 2004; Schneider and Mercereau-Puijalon, 2005). Notably, the FIKK group 

encompasses the largest kinase family in P. falciparum with 21 members (Solyakov et al., 

2011). Remarkably, most FIKK genes are arranged in the subtelomeric region of chromosomes 

encoding for genes that are involved in antigenic variation such as the var genes (Schneider 

and Mercereau-Puijalon, 2005). 

 

In addition, several PfePKs exist that exhibit features from more than one conventional ePK 

family, being referred to as “composite” or “dual” kinases”. Pfcrk-4 as well as PfPK6 display 

characteristics of both CDKs and MAPKs (Bracchi-Ricard et al., 2000). It remains elusive if 

these “composite” enzymes reflect mutual ancestors to subsequently diverging kinase 

families or if they originated from domain shuffling between existing kinase genes (reviewed 

in Ward et al., 2004).  

1.5 Evaluation of protein kinases as drug targets 

One of the first inhibitory drugs that apply their potency on targeting a protein kinase used 

clinically was rapamycin (Cohen, 2001). This immunosuppressant acts as inhibitor of the 

serine-threonine kinase mTOR, thus blocking the signal transduction cascade which is 

activating and propagating the cell cycle of T-cells from the G1 to the S-phase. Consequently, 

rapamycin is the immunosuppressive agent of choice to prevent rejection after kidney 
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transplantations (Cohen, 2001). In general, kinase inhibitor research is most progressive in 

the field of combating cancer, neurodegenerative and inflammatory diseases (reviewed in 

Doerig and Meijer, 2007).  

In case of targeting plasmodial kinases for antimalarial control strategies, only minor progress 

has been reported so far. Given the lack of an effective vaccine up to date and several 

drawbacks in antimalarial drug development as well as arising insecticide resistances, there is 

an urgent need for the development of new antimalarials. Since recent years, the 

characterization of the P. falciparum kinome has disclosed grave divergences between the 

malaria parasite and the human host, rendering plasmodial kinases as potent targets for 

antimalarials (reviewed in (Doerig and Meijer, 2007; Lucet et al., 2012)). It requires the 

verification that a distinct kinase is indispensable for the parasite’s growth or differentation 

to validate the same as an effective drug target. Therefore, one promising tool might 

constitute gene knock-out attempts by reverse genetic approaches, resulting in the 

demonstration of the indispensability of the respective parasite kinase (reviewed in Kappes et 

al., 1999). Several investigations have been undertaken up to date to determine whether a 

parasite kinase is essential for the parasite’s survival in order to identify potential novel drug 

targets. For this purpose, reverse genetic approaches by disrupting the kinase gene locus 

were utilized to generate gene-disruptant parasite lines to investigate the phenotype (Dorin-

Semblat et al., 2007). To this day, numerous plasmodial kinases were scrutinized that are 

crucial for P. falciparum (reviewed in Lucet et al., 2012), for example Pbcrk-1, Pfmap-2 or 

PfCK2 (Rangarajan et al., 2006; Dorin-Semblat et al., 2007; Holland et al., 2009; Solyakov et 

al., 2011). Regarding curative drugs, the kinase of interest should ideally be essential for the 

asexual multiplication of the parasite, whereas an indispensability for the sexual development 

renders a kinase as potential target for transmission blocking drugs (reviewed in Doerig and 

Meijer, 2007).  

Secondly, to consider a kinase as a promising drug target the protein must be distinguishable 

from its human counterpart in such a way that interferring molecules can exploit a given 

substrate specificity of the kinase of choice. With P. falciparum belonging to the phylum 

Apicomplexa, this taxonomic group displays a phylogenetically significant distance from the 

Opisthokonta branch that includes animals and funghi (Baldauf, 2003; Solyakov et al., 2011). 

Recently, two independent studies of the P. falciparum kinome utilizing genome wide 

analyses of the collectivity of protein kinase encoding genes were undertaken (reviewed in 

Ward et al., 2004; Anamika et al., 2005). It was figured out that there exist vast divergences 

between P. falciparum and mammalian protein kinases on several levels. Numerous orphan 

kinases have been identified that do not cluster within any established family from yeast or 

mammalian kinomes. One of the largest groups comprising orphan plasmodial kinases display 

the FIKKs (reviewed in Ward et al., 2004; Nunes et al., 2007; Nunes et al., 2010; Solyakov et 

al., 2011). Secondly, the malaria parasite possesses a family of four protein kinases that 

cluster within the NIMA family that does not occur in the human host (Dorin et al., 2001; 

Dorin-Semblat et al., 2011). The family of calcium-dependent protein kinases (CDPKs) 

encompasses members in the malarial kinome, whereas representatives of this family are 

found in plants and ciliates, but not in mammalian cells (reviewed in (Ward et al., 2004; 

Doerig and Meijer, 2007)).  
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On the other hand, even if most established ePK groups have orthologue members in the 

plasmodial kinome, there is strong evidence that the malarial parasite lacks tyrosine kinases 

as well as members of the STE kinases, indicating a divergence regarding the MAPK pathways 

in P. falciparum (Dorin et al., 2001; reviewed in Ward et al., 2004; Dorin et al., 2005; Solyakov 

et al., 2011). Noteworthy, atypical MAPKs are present in P.falciparum, but no typical MAPKs 

are identified so far in the malaria parasite (reviewed in Doerig and Meijer, 2007).  

Even in case an individual kinase orthologue can be identified in P. falciparum, this candidate 

still can exhibit deviations from the human host enzyme. It is of high importance that these 

divergences can be exploited in the search for parasite-specific kinase inhibitors. Many 

orthologues still possess atypical characteristics compared to their human counterpart, such 

as large insertions, extensions or variant regulatory sites (reviewed in (Doerig, 2004; Doerig 

and Meijer, 2007)). For instance, the plasmodial MAPK lacks the usual TxY motif (Doerig et al., 

1996; reviewed in Doerig and Meijer 2007).  

1.6 The CLK kinases of P. falciparum 

In P. falciparum there are four kinases that resemble CDK-like kinases (CLK) which are 

involved in mRNA splicing and transport. These plasmodial kinases are referred to as PfCLK-1, 

PfCLK-2, PfCLK-3 and PfCLK-4 and, in its entirety, PfCLKs. PfCLK-1 is also denoted as LAMMER 

kinase, as it shows homology to the LAMMER kinase family (Li et al., 2001) which is conserved 

among eukaryotes and share the common motif EHLAMMERILG (Yun et al., 1994; Talevich et 

al., 2011). The PfCLKs are annotated in PlasmoDB as putative Ser/Thr kinases, most likely with 

a further function of tyrosine phosphorylation. PfCLK-1, PfCLK-2 as well as PfCLK-4 possess 

intron-less gene sequences whilst PfCLK-3 contains eight introns, with exons encoding large 

polypeptides.  

 

 
Fig. 1.6:  Domain structures of the PfCLKs. Schematic of the plasmodial PfCLKs depicting the catalytic 

domains (red) with molecular mass and nuclear localization signals (orange).  
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Regarding the catalytic domains of the PfCLKs, these are located at the C-terminus for PfCLK-1 

to PfCLK-3 and N-terminal for PfCLK-4 (Fig. 1.6). Two nuclear localization signals upstream of 

the C-terminal catalytic domain were evidenced for PfCLK-1 by the use of in silico analysis, 

whereas for PfCLK-2, one signal was predicted (Agarwal, 2010; Agarwal et al., 2011; Fig. 1.6). 

The evidence of these signals emphasizes a possible localization of PfCLK-1 and PfCLK-2 within 

nuclear speckles, subcellular organelles which display dynamic storage sites for splicing 

components like serine/arginine-rich (SR) proteins within the cell nucleus (Gui et al., 1994). 

For PfCLK-3 and PfCLK-4, no nuclear localization signals could be observed. Nevertheless, the 

subcellular localization is suggestive of promyelocytic leukemia bodies (PML bodies) and 

nucleoplasm for the two PfCLK kinases, respectively (Agarwal, 2010).  

Noteworthy, PfCLK-4 exhibits 45% sequence homology with the kinase domain of human 

SRPK1 (Dixit et al., 2010). For this reason, PfCLK-4 is often referred to as PfSRPK1, and PfCLK-2 

is denoted as SRPK2 (Dixit et al., 2010). Moreover, PfCLK-4/SRPK1 possesses all the conserved 

kinase subdomains as well as an insertion between domain VIb and VII, which is a signature of 

SRPKs (Dixit et al., 2010). In contrast, PfCLK-2/SRPK2 revealed distinct differences compared 

to PfCLK-4 and human SRPK1, as PfCLK-2 lacks the typical glycines in the ATP binding pocket 

(Dixit et al., 2010; Talevich et al., 2011). These results agree with previous report on the 

kinome of P. falciparum, which predicted PfCLK-2 and PfCLK-4 as members of SRPK family 

(reviewed in Ward et al., 2004).  

 

In preceding investigations, in silico analysis of the four PfCLKs was conducted (Agarwal, 2010; 

Agarwal et al., 2011) by aligning the catalytic domain sequences of the PfCLKs with the 

homologous kinase Sky1p from the yeast Saccharomyces cerevisiae (Nolen et al., 2001). Sky1p 

is a non-essential serine-arginine (SR) protein kinase which is well researched and known to 

be involved in splicing and transport of mRNA in budding yeast (Siebel et al., 1999). The 

analysis´ outcome revealed a remarkable homology in terms of catalytic domain sequences 

between Sky1p and all four PfCLKs. In addition, further sequence alignment with Sky1p 

discovered matches between substrate binding residues of the PfCLKs with the substrate 

binding site of Sky1p. The yeast kinase has a specific substrate, Npl3p, which shuttles 

between the nucleus and the cytoplasm of S. cerevisiae and therefore displays an mRNA 

transport protein which is regulated by reversible phosphorylation conducted by Sky1p 

(reviewed in Fu et al., 1995; Siebel et al., 1999; Lukasiewicz et al., 2007). On the basis of Npl3p 

representing the kinase substrate for homologous yeast kinase, various plasmodial proteins 

were identified that display homology to Npl3p and to mammalian CLK substrate SF2/ASF 

(Agarwal, 2010). Among them, plasmodial proteins were found that are putative splicing 

factors or RNA binding proteins. Noteworthy, the hypothetical splicing factor PfSR-1 

(PF3D7_0517300) also exhibited homology to Npl3p (29%) and mammalian SF2/ASF (52%), 

which was shown in previous studies to interact with PfCLK-4 (Dixit et al., 2010). For further 

investigation of interaction partners of the PfCLKs, four hypothetical plasmodial proteins 

were selected for this study which revealed substantial homology to the yeast protein and 

the mammalian splicing factor (Tab. 3.1): PfASF-1 (PF3D7_1119800), PfSRSF12 

(PF3D7_0503300), PfSFRS4 (PF3D7_1022400) and PfSF-1 (PF3D7_1321700).  
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Fig. 1.7:  Domain structures of yeast splicing factor Npl3p and the four homologous plasmodial factors. 
The regions of recombinantly expressed proteins are indicated by red lines. All investigated 
plasmodial factors possess RNA recognition motifs (RRM), whilst RS-rich domains are only found 
in PfSRSF12, PfSFRS4 and PfSF-1.  

1.7 Splicing in P. falciparum 

There exists a multitude of ways to control gene expression at different levels, for example 

transcriptional and post-transcriptional regulation, translational regulation and mRNA 

degradation (reviewed in Deitsch et al., 2007). One of the most important post-transcriptional 

mechanisms is pre-mRNA splicing. This is the molecular process that mediates the removal of 

intervening, noncoding intronic sequences and the joining of coding exons to form mature 

mRNA for subsequent translation (Aubol et al., 2013; reviewed in Naro and Sette, 2013). 

Whereas constitutive splicing results in solely one mature mRNA and thus one protein 

isoform from a specific primary transcript, alternative splicing (AS) displays the phenomenon 

of a single pre-mRNA giving rise to multiple mature mRNAs and thus protein isoforms, 

depending on the combination of exons of one gene being included within or excluded from 

the processed mRNA (reviewed in (Stojdl and Bell, 1999; Black, 2003)).  

AS enables eukaryotic organisms to enlarge their protein repertoire out of a comparatively 

small number of genes (reviewed in Hagiwara, 2005; Pajares et al., 2007; Eshar et al., 2012). 

These different protein isoforms out of one gene can have diverse biological properties, such 

as changes in protein/protein interaction, subcellular localization or catalytic abilities 

(reviewed in (Black, 2003; Stamm, 2008)). In mammals, 90% of multiexon genes undergo 

alternative splicing (Fedorov et al., 2011; reviewed in (Keren and Lev-Maor, 2010; Naro and 

Sette, 2013)). Splicing typically occurs inside the nucleus, governed by a multicomponent 

complex, the spliceosome. This dynamic structure is assembled by five small nuclear 

ribonucleoprotein particles (snRNP; U1, U2, U4, U5 and U6 snRNPs) and more than 200 

supportive proteins (reviewed in (Long and Cáceres, 2009; Naro and Sette, 2013)). The 
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assembly of the spliceosome is initiated by the recognition of short conserved sequences, the 

5´and 3´splice sites, by the U1 snRNP subunit and auxiliary factors. After recruiting the U2 

subunit to the branch point in an ATP dependent manner, further recruitment and 

association of the tri snRNP complex U4/U6-U5 with the pre-mRNA leads to structural 

rearrangements, resulting in the catalytically active spliceosomal C complex (reviewed in Long 

and Cáceres, 2009), leading to the cleavage of the 5´and 3´ends of the intron from the 

adjacent exons.  

Splicing involves reversible phosphorylation of serine/arginine-rich (SR) proteins, which 

directly mediate splice site selection in eukaryotic mRNA (reviewed in (Huang and Steitz, 

2005; Godin and Varani, 2007)). They are phosphorylated by two protein kinase families 

which display major keyplayers in these events: SRPKs and CLKs (Talevich et al., 2011; Aubol 

et al., 2013). SRPKs and CLKs possess pronounced differences regarding substrate specificity 

and enzymatic kinetics in phoshorylation of SR proteins (Colwill et al., 1996a; Colwill et al., 

1996b). SRPK phosphorylation of splicing factors displays a comparatively limited activity due 

to a specific docking interaction (Bullock et al., 2009). By contrast, CLK activity is less 

constrained due to specific kinase domain insertions (Bullock et al., 2009; Aubol et al., 2013). 

Moreover, a distinct regiospecificity of both kinase families in regard to SR protein 

phosphorylation has been confirmed by mass spectrometric mapping previously (Velazquez-

Dones et al., 2005). Kinases of the Clk/Sty family are able to transfer phosphates to the 

majority of serine residues in the RS domain of SR proteins, whereas SRPKs are highly 

restricted to a block of RS repeats in the N-terminal half of the RS domain.  

Even though AS is such a crucial mechanism in eukaryotes, the regulation of splicing events as 

well as the AS machinery itself are poorly understood in P. falciparum. Moreover, 

Plasmodium possesses a high degree of developmental control of gene expression (Le Roch et 

al., 2004) in contrast to a rather small genome with approximately 5 700 genes (Gardner et 

al., 2002). The blood stage antigen P41-3 precursor (Knapp et al., 1991) as well as the adenylyl 

cyclase (Muhia et al., 2003) were firstly reported to undergo AS in P. falciparum, giving rise to 

different isoforms of the respective protein. Another example for a conserved AS event 

across Plasmodium evolution is the splicing of the maebl gene in different Plasmodium 

species, whose gene product is involved in red blood cell invasion (Singh et al., 2004). More 

recent genome wide studies using RNA sequencing of different life cycle stages during the 

intraerythrocytic development cycle were carried out, implying that over 300 AS events occur 

in approximately 4 % of genes of the malaria genome (Otto et al., 2010; Sorber et al., 2011). 

In Plasmodium, about 54 % of the genes contain introns (Gardner et al., 2002), with 30 % of 

them possessing at least two introns (Eshar et al., 2012). Noteworthy, genes of malaria 

parasites and other unicellular organisms have larger exons with fewer and smaller introns 

than metazoans (Singh et al., 2004). Previously, a putative homologue of the SF2/ASF splicing 

factor was identified in P. falciparum, affecting alternative splice site selection by 

antagonizing other SR proteins and binding to ribosomes (Iriko et al., 2009). Moreover, the 

splicing branch points that give rise to the excised lariat intron are also unusual in P. 

falciparum: The 5´splice site is poorly conserved and tolerates various nucleotide 

substitutions (Zhang et al., 2011; reviewed in Hull and Dlamini, 2014). Noteworthy, some 
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introns also have numerous branch points indicating a further mechanism for alternative 

splicing and possessing flexibility in branch point nucleophilic attack (Zhang et al., 2011).  

It is proposed that AS may play an important role in the ability of endoparasites to evade the 

immune system of the human host, as AS gives rise to different isoforms of antigenic 

proteins. This may imply a further mechanism for immune evasion by the parasite to avoid 

immune detection (reviewed in Hull and Dlamini, 2014). In order to survive the hostile 

environment of the host organism, endoparasites like P. falciparium change their antigenic 

surface molecules during an infection. There are various antigenic proteins in P. falciparum 

that are known to have isoforms originating from AS, for example the blood antigen P41-3 

(Knapp et al., 1991) or the surface antigen UB05, which is the target of IgG antibodies from 

semi-immune adults infected with P. falciparum (Sorber et al., 2011). In addition, the mRNA 

of the surface antigen PF70 (PF3D7_1002100) reacting with anti P. falciparum serum contains 

a 5´ alternative splice site, resulting in a different protein isoform than the full-length 

transcript (Sorber et al., 2011). Recently, an alternate stop codon has been described for 

MSP-5, a member of the merozoite surface proteins (MSP), which are of great interest 

regarding a putative malaria vaccine (Otto et al., 2010). This finding could decrease its 

usefulness as vaccine target, as increased variation is implied by the alternatively spliced 

isoform. Apart from the alternatively spliced maebl gene which is involved in erythrocyte 

binding and invasion (Singh et al., 2004), another RBC-binding protein is expressed in 

different isoforms by AS. Cytoadherence linked asexual gene 9 (clag 9), which is required to 

bind to endothelial cell receptors and is immunogenic, was found to be alternatively spliced 

(Otto et al., 2010; reviewed in Hull and Dlamini, 2014). However, the specific roles played by 

these antigen isoforms still remain elusive.  
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1.8 Objective of this study  

The sequencing and subsequent annotation of the P. falciparum genome in 2002 offered the 

possibility to identify parasite proteins which might display targets for innovative antimalarial 

intervention strategies. In P. falciparum, the phylogenetic tree classifies the four identified 

members of the cyclin-dependent kinase-like kinases (PfCLKs) to the conventional branch of 

the CMGC group. This comparatively large group of typical ePKs are key regulators of mRNA 

splicing processes in other eukaryotes. There are numerous CLKs in other organisms that have 

been assigned to phosphorylation of SR proteins that act as splicing factors, governing pre-

mRNA processing with the collaboration of other components of the splicing machinery. Up 

to date, little information is available about the individual compartments of this complex. 

Therefore, gaining deeper insight into the function and putative interaction partners of the 

parasite CLKs will unwind the intricate regulation of the malarial spliceosomal complex. 

Preceding studies showed that two members of the PfCLKs, PfCLK-1 and PfCLK-2, are 

predominantly expressed in the parasite nucleus, which is consistent with the findings that 

both kinases possess nuclear localization signals. Both kinases are furthermore associated 

with phosphorylation activity in vitro and are indispensable for the asexual replication cycle. 

To successfully accomplish the study on the four CLKs of P. falciparum, this present study is 

conducted to gain deeper insight into the two remaining members of the parasite CLK family, 

PfCLK-3 and PfCLK-4. This will be achieved by scrutinizing the protein expression profile and 

subcellular localization of both kinases by means of Western blot analyses and indirect 

immunofluorescence assays. Therefore, antibodies directed against the catalytic domains of 

both PfCLKs are to be generated to study the expression pattern. Further, reverse genetic 

studies are intended to evaluate if the respective kinase loci can be genetically disrupted in 

order to determine the resulting phenotype in the parasite life cycle. Subsequent 

phosphorylation studies are planned to verify the in vitro phosphorylation capability. The 

functional characterization of PfCLK-3 and PfCLK-4 is complementing preceding studies in 

such a way that these four enzymes are validated in regard to their specific function in the 

parasite, and moreover, as potential targets for prospective antimalarial intervention 

strategies.   

Leading over to the principal part of the present thesis, all four kinases have previously been 

acknowledged to display a notable homology to the yeast protein Sky1p. This protein 

phosphorylates a specific SR protein, Npl3p, in the mRNA splicing and transport process in 

this organsim. Therefore, the investigations in the course of this thesis are undertaken to find 

putative interaction partners of the four parasite CLKs that represent SR proteins and most 

likely act as splicing factors. For this purpose, recombinant proteins are expressed in E. coli 

and utilized in kinase activity assays to investigate the in vitro interaction with the PfCLKs. 

These proteins are the yeast kinase substrate Npl3p and the four homologous plasmodial 

proteins PfASF-1, PfSRSF12, PfSFRS4 and PfSF-1. These parasite SR proteins show remarkable 

homology to Npl3p as well as to the mammalian splicing factor SF1/ASF. In addition, the four 

plasmodial SR proteins would be characterized with respect to their subcellular localization. 

By scrutinizing potential interaction partners of the four PfCLKs, these findings will set the 
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platform for future approaches to unravel the malarial spliceosome, thus finding potential 

drug targets as splicing displays such an indispensable mechanism of cellular life in 

eukaryotes, and in particular in P. falciparum.  

Taking another step towards the identification of targets for antimalarial strategies on the 

chemotherapeutic level, the third and concluding part of the present study includes the 

screening of a small compound library which is already available for intervention against 

human and microbial CLKs. Out of this CLK inhibitor library, it is intended to identify putative 

PfCLK inhibitors. In an additional approach, the study aims at characterizing the inhibitory 

effect of chlorhexidine, an antiseptic which was previously reported to affect human CLKs 

besides its reported antimalarial activity. For the purpose of defining specific PfCLK inhibitors, 

Malstat viability assays are to be carried out in an initial approach. Subsequent stage-of-

inhibition assays, gametocyte toxicity assays and exflagellation assays are aimed at 

deciphering the specific effect of the inhibitors on the asexual stages, gametocyte 

development and gamete formation, respectively. In order to define the specific inhibition of 

the compounds on the PfCLKs, kinase activity assays are to be carried out. Moreover, bearing 

in mind that a lot of P. falciparum kinases can not be knocked out by conventional strategies, 

finding specifically acting and effective small compounds would display a powerful tool to 

chemically knock-out the CLKs. This in turn could contribute to phenotypically characterize 

the PfCLKs.  

Taken together, all these studies were aimed at functionally characterizing components of the 

malarial splicing machinery and unravel regulatory mechanism of the same. With the 

background of the urgent need of innovative antimalarial chemotherapeutics, this study 

should target at identifying novel compounds for chemically intervention of the plasmodial 

CLKs.  
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2 Materials and Methods  

2.1 Materials 

2.1.1 Bioinformatical tools and computer programs 

 Adobe Acrobat Pro/Photoshop CS 

 BioEdit 

 GIMP 2.8.4 

 GraphPad PRISM 5 

 GraphPad QuickCalcs (www.graphpad.com/quickcalcs/) for calculation of IC80 values 

 ImageJ 

 Leica LAS AF Lite 

 LSM Image Browser  

 Microsoft Office® Excel/Word/PowerPoint 2010 

 NCBI/BLAST/blastp suite 

 PlasmoDB v.9.2 www.plasmodb.org 

 Primer3 v.0.4.0 http://frodo.wi.mit.edu/ 

 SMART/EMBL Heidelberg smart.embl-heidelberg.de 

 www.bioinformatics.org/sms/prot_mw.html for prediction of protein molecular 
weight 

 www.yeastgenome.org 

2.1.2 Laboratory Equipment 

Instrument Company 

Accu Jet® Pro Brand, Wertheim 

Assistent RM5 Tube Agitator Karl Hecht KG, Sondheim 

Bunsen burner Gasi Schütt, Göttingen 

Centrifuge Megafuge 1.OR Heraeus, Hanau 

Confocal microscope LSM 510  Zeiss, Oberkochen 

Confocal microscope TC S SP5 II Leica, Solms 

Consort electrophoresis power supply E835 Sigma-Aldrich, Taufkirchen 

Developing machine CURIX 60 Agfa, Cologne 

Electrophoresis chamber Mini-Protean 3 Bio-Rad, Munich 

French® Press SLM Aminco FA078 Heinemann, Schwäbisch Gmünd 

Gel documenter Gel Doc 2000 Bio-Rad, Munich 

Gel drying apparatus 14x14 cm Carl Roth, Karlsruhe 

Geldryer Model 583 Biorad, Munich 

Heating block Bio TBD-100 & TBD-120 Lab4you, Berlin 

Heating table OTS 40 Medite GmbH, Burgdorf 

Incubator HERAcell Heraeus, Hanau 

Incubator Model 100-800 Memmert, Schwalbach 

http://www.graphpad.com/quickcalcs/
http://www.plasmodb.org/
http://frodo.wi.mit.edu/
http://www.bioinformatics.org/sms/prot_mw.html
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LB 124 SCINT contamination monitor  Berthold Technologies, Bad Wildbad 

Light microscope Leica DMLS Leica, Solms 

Light microscope Leitz Laborlux 11 Leitz, Wetzlar 

Microcentrifuge Biofuge pico    Heraeus, Hanau 

Microscope camera AxioCam Zeiss, Oberkochen 

Microwave Durabrand, Wal-Mart, Arkansas, USA 

Mini-Rocker Shaker MR1 Lab4you, Berlin 

Mini-Shaker for immunology PSU-2T Lab4you, Berlin 

pH-Meter inoLab® 7110 WTW, Weilheim 

Pipettes Eppendorf AG, Hamburg 

Programmable thermal controller PTC-100TM MJ Research Inc., St. Bruno, Canada 

Refrigerated microcentrifuge Biofuge fresco Heraeus, Hanau 

Scales 440-47N & 440-33 Kern & Sohn GmbH, BL-Frommern 

Sonicator Sonopuls HD70 Bandelin, Berlin 

Spectrophotometer Multiskan Ascent Thermo Scientific, Waltham, USA 

Spectrophotometer NanoDrop ND-2000 Peqlab, Erlangen 

Sterile bench HERAsafe Heraeus, Hanau 

Test tube Vortexer Power Mix L46 Labinco, Breda, The Netherlands 

Thermocycler Primus 25 advanced Peqlab, Erlangen 

Thermomixer compact Eppendorf AG, Hamburg 

Universal shaker SM 30 control E. Bühler GmbH, Tübingen 

Vacuum pump Laboport KNF, Freiburg 

Water bath Hecht 3185 WTE K. Hecht KG, Sondheim 

Western blot apparatus Mini-Trans-Blot Bio-Rad, Munich 

2.1.3 Chemicals and consumables  
 

Chemicals  
Chemicals were purchased from the following companies: 

 

 AppliChem, Darmstadt  Merck/Novagen, Darmstadt 

 ATCC, Manassas, USA  Pharmacia/Pfizer, Vienna 

 Carl Roth, Karlsruhe  Roche Diagnostics, Penzberg 

 Dianova, Hamburg  Santa Cruz Biotechnology, Heidelberg 

 GE Healthcare/Amersham, Munich  Sigma Aldrich/Fluka, Taufkirchen 

 Invitrogen/Gibco, Molecular Probes, 

Karlsruhe 

 WAK Chemie, Darmstadt 
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Consumables 

Consumables were purchased from the following companies or suppliers: 

 

 BD Falcon, Heidelberg   Laborbedarf Hartenstein, Würzburg 

 Bio-Rad, Munich  Millipore, Schwalbach 

 Carl Roth, Karlsruhe  Noras, Höchberg 

 Eppendorf, Hamburg  Sarstedt, Nürnbrecht  

 Greiner, Flacht  VWR International, Darmstadt 

 

Miscellaneous 

 Human A+ serum and erythrocytes used for cell culture were obtained from 

Bayerisches Rotes Kreuz (BRK), Würzburg and the University Hospital of Aachen.  

 Six weeks old female NMRI-mice for immunization were purchased from Charles River 

Laboratories, Sulzfeld.  

 Gas cylinders containing a mixture of 5 % O2, 5 % CO2 in 90 % N2 used as gas 

supplement to Plasmodium cultures was purchased from Tyczka Industriegase, 

Würzburg or Westfalen AG, Münster, respectively. 

 Cell culture medium RPMI 1640 + 25 mM Hepes/L-Glutamine/Sodium bicarbonate 

was obtained from Invitrogen/Gibco, Karlsruhe. 

 γ32P-labeled ATP was purchased from Hartmann Analytic GmbH, Braunschweig.  

2.1.4 Inhibitors used in the study 

All CLK-inhibitors used in this study except of chlorhexidine were kindly provided by Dr. Franz 

Bracher (Department of Pharmacy, Center for Drug Research, Ludwigs-Maximillians-

University, Munich; tab. 2.1). Chlorhexidine was purchased from Sigma-Aldrich, Taufkirchen. 

All compounds were prepared as stock solutions of 100 mM and were dissolved in DMSO and 

stored at -20°C until further use.  

Tab. 2.1: List of CLK-inhibitors used in the present study, sorted by chemical substance classes. 

Substance Molecular weight [g/mol] Structure 

Aminopyrimidines 

C-117 344.41 

 

Kast180-HCl 311.8 
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C81 260.3 

 

C-129 337.4 

 

C-666-42-72 285.3 

 

C-667 285.3 

 

EK-28 279.1 

 

Kast-24 260.3 

 

Kast-25 234.3 

 

Kast-27 275.3 

 

Kast-50 250.3 

 

Kast-73 211.2 

 

Puzik-V8 275.3 

 

Puzik-V12 289.3 

 



MATERIALS AND METHODS 28 

Puzik-V16 275.3 

 

Puzik-V23.1 303.4 

 

gea-27 339.2 

 

gea-50 329.2 

 

gea-70 343.2 

 

gea-75 419.3 

 

Oxo-β-carbolines 

KH-CARB13xHCl 399.7 

 

Pohl-2 269.1 
 

Pohl-17 255.1 
 

KH-CB19T 338.2 

 

AR7 285.2 

 

KH-CARB1 308.2 
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KH-CARB8 350.2 

 

KH-CARB3A 362.3 

 

KH-CARB3B 348.2 

 

KH-CARB7 348.2 

 

KH-CARB9 364.2 

 

KH-CARB10 377.3 

 

KH-CARB11 391.3 

 

KH-CARB2 322.2 

 

KH-DTCMA 368.3 

 

KH-CARB6 282.1 
 

KH-AMTC 326.2 

 

KH-CB5 292.1 
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NIH85 293.1 

 

Tetramic acids 

KH-HP05 354.8 

 

KH-HP11 411.3 

 

KH-HP01 494.1 

 

KH-HP02 494.1 

 

KH-HP03 389.2 

 

KH-HP04 518.0 

 

KH-HP06 528.0 

 

KH-HP07 449.1 

 

KH-HP08 483.6 

 

KH-HP09 320.3 

 

Carbolines/Carbazoles 

CS-14 211.2 
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CS02 278.4 
 

CS04 224.3 

 

CS06 280.3 

 

CS07 238.3 

 

gea_11 264.1 

 

gea_49 288.1 

 

gea_55 298.1 
 

Indoles/Benzothiazoles 

NIH08 266.1 

 

NIH11 292.9 

 

NIH16 320.0 

 

NIH39 342.2 

 

NIH54 324.2 

 



MATERIALS AND METHODS 32 

KH-CM16 278.3 

 

Antibiotics 

Chlorhexidine 
 

505.4 

 
 

2.1.5 Enzymes and commercial kits  

Tab. 2.2: List of commercial kits and enzymes used in this study and their suppliers.   

Enzymes and Kits Suppliers 

Alkaline Phosphatase, Calf Intestinal (CIP) New England Biolabs, Ipswich, USA 
GoTaq® DNA Polymerase & buffer Promega GmbH, Mannheim 
NucleoSpin® Blood Macherey-Nagel, Düren 
NucleoSpin® Extract II Macherey-Nagel, Düren 
NucleoSpin® Plasmid Macherey-Nagel, Düren 
Phusion® High-Fidelity DNA Polymerase & buffer New England Biolabs, Ipswich, USA 
Restriction endonucleases & buffers New England Biolabs, Ipswich, USA 
T4 DNA Ligase & buffer New England Biolabs, Ipswich, USA 

2.1.6 Buffers, reagents and solutions 

Unless specified otherwise, buffers were stored at RT. 

Tab. 2.3: List of solutions, reagents and buffers used and their compositions.   

Buffers, reagents and solutions Ingredients and concentrations 

1 x TE (Tris-ETDA) buffer 10 mM Tris pH 8.0 
  1 mM EDTA pH 8.0                 in H2Obidest 

10 % Ammonium peroxosulphate (APS) 10 g APS, ad 100 ml H2Obidest, store at 4°C 
10 % Triton X-100 5 ml of 100 % Triton X-100 in 50 ml H2Obidest 
10 x DNA loading buffer 0.1 % Bromophenol blue (w/v) 

0.1 % Xylene cyanol (w/v) 
 50 % Glycerol (w/v)                    in 1 x TAE 

10 x  SDS-PAGE running buffer    29 g Tris 
144 g Glycine 
  10 g SDS 
ad 1000 ml H2Obidest 

10 x  Tris-buffered saline (TBS) 12.1 g Tris 
87.3 g NaCl 
ad 1000 ml H2Obidest, adjust pH to 7.5 

10 x Phosphate-buffered saline (PBS)    80 g NaCl 
     2 g KCl 
11.5 g Na2HPO4 
     2 g KH2PO4 
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ad 1000 ml H2Obidest, adjust pH to 7.4 
100 mM phenylmethanesulfonyl fluoride 
(PMSF) 

17.42 mg/ml Methanol 

2 x  SDS sample buffer 2.5 ml 500mM Tris-HCl pH 6.8 
2.0 ml Glycerol (100 %) 
4.0 ml 10 % SDS 
0.5 ml 0.1 % Bromophenol blue 
ad 10 ml H2Obidest, store at 4°C 

5 x Kinase buffer for kinase activity assay    20 mM Tris-HCl pH 7.5 
   20 mM MgCl2 

     2 mM MnCl2 

   10 mM 1 M NaF (Sigma) 
   10 mM 1 M β-glycerophosphate (Sigma) 
   10 µM ATP 
0.37 MBq γ-32P-ATP 
Dissolve in the required volume of H2Obidest 

prior to kinase activity assay, pre-chill at 
4°C 

50 x TAE electrophoresis buffer  242 g Tris 
57.1 g Acetic acid 
 100 ml 0.5 M EDTA pH 8.0 
ad 1000 ml H2Obidest, adjust pH to 8.0 

Blocking solution Western blot  50 ml 1 x TBS 
0.5 g BSA (Fraction V albumin) 
2.5 g Milk powder 

Buffer A for nuclear extraction 10 mM HEPES pH 7.9 
10 mM KCl 
0.1 mM EDTA 
  1 mM DTT 
10 % IGEPAL 
  1 x Incomp. PIC 

Buffer B for nuclear extraction 20 mM HEPES pH 7.9 
0.4 M NaCl 
1 mM EDTA 
10 % Glycerol 
1 mM DTT 
1 x incomp. PIC 

Column buffer MaBP purification   50 mM Tris pH 8.0 
    1 mM EDTA 
100 mM NaCl                   in H2Obidest 

Detergent buffer inclusion bodies    20 mM Tris/HCl pH 7.5 
    2 mM EDTA pH 8.0 
200 mM NaCl 
     1 % Deoxycholic acid 
     1 % Nonidet P-40  in H2Obidest, store at 
4°C 

Elution buffer GST purification 50 mM Tris pH 8.0 
10 mM reduced Glutathione             in 
H2Obidest Store at 4°C, should not be frozen 
and thawed more than five times 
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Elution buffer MaBP purification   50 mM Tris pH 8.0 
    1 mM EDTA 
100 mM NaCl 
  10 mM Maltose                      in H2Obidest 

Equilibration buffer Western blot 12.1 g Tris 
  5.8 g NaCl 
10.2 g MgCl2 

ad 1000 ml H2Obidest, adjust pH to 9.5 
Ketamine/Xylazine solution 1000 µl 10 % Ketamine (in H2O) 

  150 µl 2 % Xylazine (in methanol) 
Lysis buffer GST purification   20 ml 50 mM Tris-HCl/10 % Glycerol pH 

8.0 
 1.4 ml 5 M NaCl 
  20 µl β-mercaptoethanol 
216 µl 20 % (v/v) IGEPAL 
216 µl Imidazole 

Lysis buffer inclusion bodies  50 mM Tris/HCl pH 8.0 
0.25 % Sucrose 
1 mM EDTA, pH 8.0 
in H2Obidest, adjust pH to 8.0 

Lysis buffer MaBP purification    50 mM Tris pH 8.0 
    1 mM EDTA 
100 mM NaCl                 in H2Obidest 

Lysozyme solution 10 mg Lysozyme in 1 ml H2Obidest, prior to 
lysis 

Permeabilization/blocking solution for IFA   0.5 % BSA 
0.01 % Saponin (Sigma-Aldrich) 
in 1 x PBS pH 7.4 

PMSF lysis buffer for preparation of cell 
lysate 

20 µl 1 M Tris-HCl pH 8.0 
20 µl 0.5 M EDTA pH 8.0 
80 µl 5 M NaCl 
10 µl 1 M PMSF  
10 µl 1 M β-glycerophosphate 
10 µl 1 M NaF 
  5 µl 1 x PIC (Roche Diagnostics) 
  3 µl 10 % Triton X-100 
ad 1000 µl 1 x PBS, prepare fresh prior to 
lysis 

Solution 1 for Dirty mini of plasmid DNA 25 mM Tris/HCl pH 8.0 
50 mM Glucose 
10 mM EDTA pH 8.0 
5 mg/ml Lysozyme 

Solution 2 for Dirty mini of plasmid DNA 200 mM NaOH 
1 % SDS 

Solution 3 for Dirty mini of plasmid DNA 3 M KAc pH 4.8 
Stop buffer Western blot 1.2 g Tris  

0.4 g EDTA 
ad 1000 ml H2Obidest, adjust pH to 8.0 

TBS milk (TBSM) 3 % Milk powder in 1 x TBS 
TBS-T buffer solution Western blot 990 ml 1 x TBS 
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  10 ml 10 % Tween 20 
Transfer buffer Western blot 3.03 g Tris 

14.4 g Glycine 
 200 ml Methanol 
ad 1000 ml H2Obidest 

Washing buffer inclusion bodies  0.5 % Triton X-100 
1 mM EDTA pH 8.0                    in H2Obidest 

2.1.7 Media and solutions for Plasmodium falciparum cultivation 

All solutions were sterile filtered either using syringe filter (0.22 µm) or bottle-top filter 
(Millipore) prior to use. Unless specified otherwise, solutions and media were stored at 4°C.  

Tab. 2.4: List of media and solutions for P. falciparum cultivation.  

Medium or solution Ingredients and concentration 

0.2 % Dextrose/0.9 % NaCl for 
thawing of cultures 

0.1 g Dextrose 
0.45 g NaCl in 50 ml H2Obidest 

1 mM Xanthurenic acid 0.05 g Xanthurenic acid (Sigma-Aldrich) 
    1 ml 0.5 M NH4OH 
243 ml H2Obidest 

1.6 % NaCl for thawing of cultures 0.8 g NaCl in 50 ml H2Obidest 
10 % AlbuMax IITM stock 10 g AlbuMax IITM (Gibco), dissolve in 100 ml 

H2Obidest 
10 % Saponin 5 g Saponin (Sigma-Aldrich), ad 50 ml 1 x PBS 
10 x Giemsa buffer 0.7 g KH2PO4 

1.0 g Na2HPO4 
ad 1000 ml H2Obidest and adjust pH to 7.2 

10 x RPMI incomplete medium 
(ICM) 

10.43 g RPMI 1640 powder (Gibco) 
  5.94 g HEPES 
  0.05 g Hypoxanthine 
ad 1000 ml H2Obidest 

1000 x Hypoxanthine stock  0.05 g/ml in NaOH 
12 % NaCl for thawing of cultures 6 g NaCl in 50 ml H2Obidest 
5 % Sorbitol 2.5 g Sorbitol (AppliChem), dissolve in 50 ml 1 x ICM 
A+ medium  
(RMPI complete medium) 

To 500 ml RPMI 1640 (Gibco), add: 
  50 ml heat inactivated human A+ serum 
550 µl Gentamycine (10 mg/ml, Gibco) 
550 µl 1000 x Hypoxanthine stock solution 

AlbuMax IITM medium To 500 ml RPMI 1640 (Gibco), add: 
  25 ml 10 % AlbuMax IITM 
525 µl Gentamycine (10 mg/ml, Gibco) 
525 µl 1000 x Hypoxanthine stock solution 

Blasticidine (BSD) stock solution 5 mg Blasticidine (Invitrogen) per ml H2Obidest 
BSD medium (2.5 µg/ml) To 500 ml RPMI 1640 (Gibco), add: 

  50 ml Heat inactivated human A+ serum 
550 µl Gentamycine (10 mg/ml, Gibco) 
550 µl 1000 x Hypoxanthine stock solution 
275 µl BSD stock solution 
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Giemsa staining solution    3.5 ml Giemsa stock solution (Roth) 
in 70 ml 1 x Giemsa buffer 

Glycerolyte 57 solution 26.66 g Sodium lactate  
584 mg NaH2PO4 x 2 H2O (Monohydrate, monobasic) 
300 mg KCl 
570 g Glycerol 
2344 mg Na2HPO4 x 7 H2O (Anhydrate, dibasic) 
ad 1000 ml H2Obidest 

Malstat reagent       1 ml 10 % Triton X-100 
       1 g L(+) Lactate 
  0.33 g Tris 
0.033 g 3-Acetylpyrimidin-adenine dinucleotide  
(3-APAD) 
dissolve in 100 ml H2Obidest, adjust pH to 9.0, store at 
4°C for approx. 2 weeks 

2.1.8 Media and agar plates for bacterial cultivation 

Media and agar used in this study was autoclaved (121°C for 20 min) prior to use. 

Tab. 2.5: List of media and agar used in this study for bacterial cultivation.   

Medium or agar Ingredients and concentrations 

1000 x Ampicillin 100 mg/ml in H2Obidest 
LB agar 10 g Tryptone 

  5 g Yeast extract 
  5 g NaCl 
15 g Agar 
ad 1000 ml H2Obidest 

Lysogeny broth (LB) medium 10 g Tryptone 
  5 g Yeast extract 
  5 g NaCl 
ad 1000 ml H2Obidest, pH 7.0 

Super optimal broth with catabolite 
repression (SOC) medium 

 20 g Tryptone 
   5 g Yeast extract 
0.5 g NaCl 
 10 ml 0.25 M KCl 
   5 ml 2 M MgCl2 

 20 ml 1 M Glucose 
ad 1000 ml H2Obidest 

2.1.9 Plasmodial and bacterial cell lines  

Cell lines of Plasmodium falciparum 

P. falciparum wild type strain NF54 (MRA-1000) is a gametocyte producing strain which is 

chloroquine-sensitive. Isolated 1982 from a Dutch patient, the parasite was presumed of 

West African origin (Ponnudurai et al., 1981; www.mr4.org). 
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 P. falciparum clone 3D7 (MRA 102) is derived from wild type strain NF54 via limiting dilution 

(Rosario et al., 1981; www.mr4.org). 

P. falciparum strain F12 is a gametocyte-less strain obtained by limiting dilution after long-

term cultivation of 3D7 isolate for 20 months (Walliker et al., 1987). By courtesy of Dr. Pietro 

Alano, Rome, Italy.  

P. falciparum strain Dd2 (MRA 150) is derived from W2‐Mef, which was selected from clone 

W2 for resistance to mefloquine. Furthermore CQ‐resistant (intermediate) and 

pyrimethamine‐resistant. (Wellems et al., 1990; www.mr4.org). 

 

Cell lines of Escherichia coli 

E. coli BL21-CodonPlus®-(DE3)-RIL (Stratagene, Heidelberg): Chemically competent E. coli 

cells appropriate for protein expression. Genotype E. coli B F– ompT hsdS (rB
– mB

–) dcm+ Tetr 

E. coli gal λ (DE3) endA Hte [argU ileY leuW Camr] 

E. coli Nova Blue (Stratagene, Heidelberg): Chemically competent E. coli transformation cell 

line. Genotype endA1 hsdR17 (rK12
– mK12

+) supE44 thi-1 recA1 gyrA96 relA1 lac F′[proA+B+ 

lacIqZΔM15::Tn10] (TetR) 

E. coli OneShot®Top10-Competent Cells (Invitrogen, Karlsruhe): Chemically competent E. coli 

transformation cell line. Genotype F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacΧ74 

recA1 araD139 Δ(ara-leu)7697 galU galK rpsL(StrR) endA1 nupG λ- 

2.1.10 Plasmids 

pGEX-4T-1 

It is a high-copy protein expression vector conferring ampicillin resistance and a Glutathione-

S-transferase (GST) tag to the gene of interest for recombinant protein purification (GE 

Healthcare, Munich).  

 
Fig. 2.1:  Vector map of the expression vector pGEX-4T-1.Used in this study for the generation of GST 

fusion proteins. 
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pih902/pMAL-c 

The pIH902 expression vector is a precursor of the subsequently designed pMAL-c and its 

derivatives (Maina et al., 1988; New England Biolabs, Frankfurt). It was kindly provided by Kim 

Williamson, Chicago. The plasmid encodes a maltose binding protein (MaBP)-tag as well as 6-

His-tag and a lacZα-gene for blue/white screening. For selection of positive clones it confers 

an ampicillin resistance to the transformant bacteria.  

 

Fig. 2.2:  Vector map of the expression vector pIH902. Used in this study for the generation of MaBP 
fusion proteins. 

pCAM-BSD vector 

For the purpose of achieving gene-disruption or gene-tagging, respectively, pCAM-BSD vector 

was used to create a single cross-over homologous recombination (Sidhu et al., 2005), 

carrying a blasticidine as well as an ampicillin resistance cassette. It was kindly provided by 

Prof. Christian Doerig, Clayton, Australia. 

 

Fig. 2.3:  Vector map of pCAM-BSD for disrupting a specific gene locus.  

 
Fig. 2.4:  Vector map of pCAM-BSD-Myc for gene-tagging.  



MATERIALS AND METHODS 39 

2.1.11 Antibodies and antisera 

Tab. 2.6: List of antibodies used in this study, their properties and suppliers. If not mentioned otherwise, 
all antibodies are of polyclonal origin. 

Antibody Origin Working dilution Suppliers and source 

  Western blot IFA  

Primary antibodies 

anti-PfCLK-1 rabbit 1:50 1:50 
Biogenes, Berlin; 

Agarwal, 2010 PhD thesis; 
Agarwal et al., 2011. 

anti-PfCLK-2 mouse 1:50 - 
Biogenes, Berlin; 

Agarwal, 2010 PhD thesis; 
Agarwal et al., 2011. 

anti-PfCLK-3 mouse 1:15 - Pradel lab, this study 

anti-PfCLK-3 rat - 1:20 
A. Tobin, Leicester, UK; 
Solyakov et al., 2011. 

anti-PfCLK-4 mouse 1:75 1:75 Pradel lab, this study 

anti-PfASF-1 mouse - 1:15 Pradel lab, this study 

anti-PfSRSF12 mouse - 1:50 Pradel lab, this study 

anti-PfSFRS4 mouse - 1:30 Pradel lab, this study 

anti-PfSF-1 mouse - 1:50 Pradel lab, this study 

anti-PfMSP-1 mouse - 1:150 Pradel lab 

anti-PfMSP-1 rabbit - 1:1000 
ATCC/MR4, Manassas, USA 

(MRA-33) 

anti-Pf230-C rabbit - 1:200 Biogenes, Berlin 

anti-Pf39 mouse 1:500 - 
Pradel lab; 

Scholz et al., 2008. 

anti-PKRP mouse 1:50 1:20 Pradel lab 
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anti-GST-tag goat 1:4000 - GE Healthcare, Munich 

anti-MaBP-tag mouse 1:100 1:50 Pradel lab 

anti-Myc-tag rabbit 1:200 1:200 Cell Signaling 

Neutral mouse serum mouse same as tested antibody Pradel lab 

Neutral rabbit serum rabbit same as tested antibody Biogenes, Berlin 

Neutral goat serum goat same as tested antibody Sigma-Aldrich, Taufkirchen 

Neutral rat serum rat same as tested antibody Sigma-Aldrich, Taufkirchen 

Secondary antibodies 

anti-mouse Alexa 
Fluor®488 

goat - 1:1000 Invitrogen, Karlsruhe 

anti-mouse Alexa 
Fluor®594 

goat . 1:1000 Invitrogen, Karlsruhe 

anti-rat Alexa Fluor®488 goat - 1:1000 Invitrogen, Karlsruhe 

anti-rabbit Alexa 
Fluor®594 

goat - 1:1000 Invitrogen, Karlsruhe 

anti-rabbit Alexa 
Fluor®488 

goat - 1:1000 Invitrogen, Karlsruhe 

anti-mouse 
alkaline phosphatase 

goat 1:5000 - Sigma-Aldrich, Taufkirchen 

anti-goat 
alkaline phosphatase 

rabbit 1:5000 - Sigma-Aldrich, Taufkirchen 

anti-rabbit 
alkaline phosphatase 

goat 1:5000 - Sigma-Aldrich, Taufkirchen 
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2.1.12 Oligonucleotides 

All oligonucleotides were, if not already accessible in our working group, synthesized by and 
purchased from either biomers.net, Ulm or Eurofins MWG Operon, Ebersberg.  

Tab. 2.7:  List of primers used in this study for recombinant protein expression and gene modification. 
Restriction sites are underlined and stop codons are labeled in bold type. 

Gene locus/ 
name 

Name, 
restriction site 

5´-3´sequence Product 
length 

Primers for recombinant protein expression 

PfCLK-3 rp1 CLK3rp1.for, 
EcoRI 

TA GAA TTC AAG GGA AAT GCA GAT 
ACA 

1 155 bp 
PfCLK-3 rp1 CLK3rp1.rev, 

NotI 
TA GCGGCCGC TTA TGG TTG AAG GGA 
AAT AGC CCT AAA  

PfCLK-3 rp2 CLK3rp2.for, 
EcoRI 

TA GAA TTC GAT GAT TTT GAT ATG 
TTT TCC TGT 

828 bp 
PfCLK-3 rp2 CLK3rp2.rev, 

NotI 
TA GCGGCCGC TTA GCC CTT ATA TTC 
CAT CAT CAG 

PfCLK-4 rp4 0105RP4.for, 
BamHI 

TA GGATCC TCC AAT AAC AGC AAC 
AGT 

1 403 bp 
PfCLK-4 rp4 0105RP4.1.rev, 

SmaI 
TA CCCGGG TTA TTT GGT AAT CCC TTC 
CGC TTT 

PfASF-1 ASF1-rp1-S1, 
EcoRI 

AA GAATTC ATG AAA AAG TTA ATT 
AAT TGT GGC    

600 bp 
PfASF-1 ASF1-rp1-AS1-

NOT, NotI 
TT GCGGCCGC TTA ATT TAG TTC CTT 
TGG AGA 

PfSRSF12 SR1-RP2.for, 
EcoRI 

AA GAATTC ATG AAA AAG TTA ATT 
AAT TGT GGC 

901 bp 
PfSRSF12 SR1-

RP2.Not.rev, 
NotI 

TT GCGGCCGC TTA TTC ATT TTC CTT 
TCT CTT 

PfSFRS4  RP1.S1, BamHI TA GGATCC GAT GAT GGT GTT GGT 
CCA 

681 bp 
PfSFRS4  RP1.Sal.rev, SalI TA GTCGAC TTA CAT TTT CAT GTC CTG 

CAT TAG 
PFSF-1 rp1 Mal13RP1.for, 

BamHI 
GCGTA GGATCC ATG GAA GAG AAC 
TCA TAT TTT GAG GCA 

1 455 bp 
PfSF-1 rp1 Mal13RP1.rev, 

SalI 
TACGC GTCGAC TTA TTT TAA TCT TCT 
TTC TTC 

PfSF-1 rp2 Mal13RP2.for, 
EcoRI 

TA GAATTC GAA GAA ATG GAA GAA 
GCA AAA AGG GAT 

1 167 bp 
PfSF-1 rp2 recMal13.rev, 

NotI 
TA GCGGCCGC TTA CTT TGG AAG ACA 
AGT CAT ATC CCA TAC ATC 

Primers for gene disruption using pCAM-BSD vector 

PfCLK-3-KO pCAM-CLK3KOS CCT GTA GCT GTA AAA GTT 

435 bp 
PfCLK-3-KO pCAM-

CLK3KOAS 
TTA TGC TCT ATA AAA TCT ACT 

PfCLK-4-KO pCAM-CLK4KOS TGT ACG AGC AGT AAA GAA 
525 bp 
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PfCLK-4-KO pCAM-
CLK4KOAS 

TTA GTC GTT CTT TTC GGA ATC 

Primers for gene tagging using pCAM-BSD vector 

PfCLK-3-Myc pCAM-CLK3-tag-
S 

GGA AGT GCA AGT GAT ATA TCA 

561 bp 
PfCLK-3-Myc pCAM-CLK3-tag-

AS 
TTC ATT TTG AGA TTT TGA 

PfCLK-4-Myc pCAM-CLK4-tag-
S 

GAA GGA CAA GAA CAT GAT GCT 

651 bp 
PfCLK-4-Myc pCAM-CLK4-tag-

AS 
AGT ATA TGC ACA AGA GTT 

Tab. 2.8:  List of primers used in this study for genotype characterization. Primer pair combinations 
were used for diagnostic PCR investigating the genotype of transfected parasites and the expected PCR 
product lengths. WT: detection of wild type gene locus (primer combination A); Epi: detection of 
transfection episome (B); 5´-int: 5´-region of gene locus modified by vector integration (C); 3´-int: 3´-region 
of modified locus (D).  

Region of 
interest 

Oligonucleotide 5´-3´sequence 
Product 
length 

PfCLK-3-KO 

WT 
pCAM-KOS CTT GTA GCT GTA AAA GTT 

594 bp 
0156-IP3-new GTA TCA ATC CCC TGT GGT 

Epi 
pCAM-BSD-F TAT TCC TAA TCA TGT AAA TCT TAA A 

794 bp 
pCAM-BSD-R CAA TTA ACC CTC ACT AAA G 

5´-int 
pCAM-KOS CTT GTA GCT GTA AAA GTT 

1 200 bp 
pCAM-BSD-R CAA TTA ACC CTC ACT AAA G 

3´-int 
pCAM-BSD-F TAT TCC TAA TCA TGT AAA TCT TAA A 

1 000 bp 
0156-IP3-new GTA TCA ATC CCC TGT GGT 

PfCLK-3-Myc 

WT 
WT2S TA ATG TCC AAA GAT AAG AGA 

1 920 bp 
WT2AS AT ATC TTT ATT TAT CTG ATC 

Epi 
pCAM-BSD-F TAT TCC TAA TCA TGT AAA TCT TAA A 

1 940 bp 
pCAM-BSD-R CAA TTA ACC CTC ACT AAA G 

5´-int 
WT2S TA ATG TCC AAA GAT AAG AGA 

1 740 bp 
pCAM-BSD-R CAA TTA ACC CTC ACT AAA G 

3´-int 
pCAM-BSD-F TAT TCC TAA TCA TGT AAA TCT TAA A 

1 390 bp 
WT2AS AT ATC TTT ATT TAT CTG ATC 

PfCLK-4-KO 

WT 
RPP1S AGT AGT AGT GAA GAT GCT 

1 480 bp 
RPP1AS TCG GAT CCT TCT TTG CTC 

Epi 
pCAM-BSD-F TAT TCC TAA TCA TGT AAA TCT TAA A 

672 bp 
pCAM-BSD-R CAA TTA ACC CTC ACT AAA G 

5´-int 
RPP1S AGT AGT AGT GAA GAT GCT 

1 380 bp 
pCAM-BSD-R CAA TTA ACC CTC ACT AAA G 

3´-int 
pCAM-BSD-F TAT TCC TAA TCA TGT AAA TCT TAA A 

770 bp 
RPP1AS TCG GAT CCT TCT TTG CTC 

PfCLK-4-Myc 

WT 
0105-RTPC2H ATG ATG GAT CAT GAC ACA 

1 400 bp 
0105-IP3 AAA TGT ACC CGT TAG GTT 
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Epi 
pCAM-BSD-F TAT TCC TAA TCA TGT AAA TCT TAA A 

1 700 bp 
pCAM-BSD-R CAA TTA ACC CTC ACT AAA G 

5´-int 
0105-RTPC2H ATG ATG GAT CAT GAC ACA 

2000 bp 
pCAM-BSD-R CAA TTA ACC CTC ACT AAA G 

3´-int 
pCAM-BSD-F TAT TCC TAA TCA TGT AAA TCT TAA A 

900 bp 
0105-IP3 AAA TGT ACC CGT TAG GTT 

2.1.13 Gene IDs  

Tab. 2.9: Gene IDs of investigated genes proteins. The following gene identifiers are assigned to the 
proteins investigated in this study. Gene IDs and names were retrieved from PlasmoDB website 
(www.plasmodb.org) and yeast genome database (www.yeastgenome.org). 

Gene ID previous Gene ID Gene name 

PF3D7_1445400 PF14_0431 PfCLK-1; PfLAMMER 
PF3D7_1443000 PF14_0408 PfCLK-2 
PF3D7_1114700 PF11_0156 PfCLK-3 
PF3D7_0302100 PFC0105w PfCLK-4; SRPK1 
PF3D7_1119800 PF11_0205 PfASF-1; alternative splicing factor  
PF3D7_0503300 PFE0160c PfSRSF12; putative Ser/Arg-rich splicing factor 
PF3D7_1022400 PF10_0217 PfSFRS4; putative pre-mRNA splicing factor 
PF3D7_1321700 MAL13P1.120 PfSF-1; putative splicing factor 
YDR432W - Npl3p, RNA-binding protein of  

Saccharomyces cerevisiae 

2.1.14 DNA and protein ladders  

 
Fig. 2.5:  The DNA molecular weight standards for agarose gel electrophoresis. As DNA marker the 100 bp 

DNA Ladder (A) and the 1 kb DNA Ladder (B) from NEB, Frankfurt were utilized. Depending on the 
size of the gel pockets, 2 to 10 µl of the respective standard were applied.  

 

http://www.plasmodb.org/
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Fig. 2.6:  The protein molecular weight standards used for SDS-PAGE. PageRulerTM Prestained Protein 

Ladder (A) and PageRulerTM Plus Prestained Protein Ladder (B) were utilized for normal molecular 
weight proteins and 4 µl of the respective weight standard was applied per gel lane. For high 
molecular weight proteins, 10 µl per lane of the SpectraTM Multicolor High Range Protein Ladder 
(C) served as molecular weight standard. All three protein ladders were purchased from Fisher 
Scientific, Schwerte.  

2.2 Methods 

2.2.1 Microbiological and cell biology methods  

2.2.1.1 Cultivation and storage of bacterial cells 

Bacterial cells were cultivated in LB medium under antibiotic pressure, referring to the 

appropriate selection conditions, in a shaking incubator at 180-220 rpm. Agar plates were put 

in storage headfirst in an incubator. Optimal growing temperature for plasmid preparations 

was 37°C, and for bacterial cultivation and protein expression 18°C or room temperature (RT), 

respectively.  

Short-term storage of bacteria on agar plates for days or weeks was carried out at 4°C. 

Bacteria destined for protein expression were not deposited for more than two days due loss 

of expression efficacy and thus transformed freshly prior to subsequent cultivation and 

expression.  

Long-term storage of bacteria was facilitated by suspending 800 µl of overnight cultures in 

200 µl sterile 80 % Glycerol solution in cryovials and subsequently freezing them at -80°C.  

2.2.1.2 Transformation of competent bacterial cells  

Chemically competent E. coli bacteria were used in this study for plasmid transfer. 

Commercially available cell line BL21-CodonPlus-(DE3)-RIL was employed for recombinant 

protein expression, OneShot-Top10-cells or NovaBlue cell lines were used for replication of 

plasmid DNA (see 2.1.8). For transformation of the plasmid of interest, one aliquot of 20‐50 μl 

of competent cells was thawed on ice and mixed gently with 100 ng of plasmid DNA or 20 µl 

of a ligation reaction and kept on ice for 30 min. Subsequent heat shock for 45 sec at 42°C led 

to the uptake of free plasmid DNA by increased bacterial membrane permeability. After heat-
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shocking, cells were incubated on ice for further 2 min and 600 μl of SOC medium were added 

to the specimen and incubated for 1 h at 37°C on a bacterial shaker at 220 rpm. Lastly, 

bacteria were streaked on LBAmp agar plates and incubated at 37°C overnight. Single colonies 

were picked the following day either for colony PCR, plasmid mini-preparation or mini-

expression of recombinant protein. 

2.2.1.3 In vitro cultivation and maintenance of Plasmodium falciparum 

For performing the functional characterization of PfCLK kinases included in the study, 

Plasmodium falciparum was used as the model organism. Parasites were cultivated and 

harvested at their respective optimal conditions for subsequent experiments. 

2.2.1.3.1 Cultivation of P. falciparum 

Since the development of Trager and Jensen in 1976, in vitro cultivation and propagation of P. 

falciparum blood cultures is commonly feasible in the laboratory. To maintain continuous 

asexual cultures, parasites were cultivated in small 25 cm2-cell culture flasks in a volume of 

5 ml cell culture medium and A+ red blood cells to reach a final hematocrit of 5 %. The 

medium was replenished every second day followed by gassing to obtain an optimal gas 

environment of 5 % O2, 5 % CO2, and 90 % N2. Once a parasitemia of 2 % was reached, the 

culture was passaged, whereby a parasitemia of approximately 0.5 to 1 % was not exceeded 

to avoid density stress and subsequent formation of sexual stages. Parasitemia was measured 

by preparing thin blood smears and estimating the percentage of infected erythrocytes 

(section 2.2.1.3.4). To purify various blood stages, the remaining culture from passaging was 

cultivated in 75-cm2- cell culture flasks with appropriate medium and erythrocytes. 

Gametocyte maturation was performed by passaging asexual cultures with approximately 1 % 

parasitemia to 75 cm2- cell culture flasks and adding 15 ml cell culture medium as well as red 

blood cells to reach a final hematocrit of 5 %. Throughout cultivation for 10 to 20 days, sexual 

stage cultures were not passaged as high cell density induces formation and maturation of 

gametocytes. No more erythrocytes were added to the cell culture flasks for the same reason. 

Medium was aspirated daily and replenished, and stage progression was monitored 

microscopically preparing Giemsa-stained slides (section 2.2.1.3.4).  

2.2.1.3.2 Thawing of P. falciparum cultures 

The fundamental principle of thawing and recultivation of frozen plasmodial cultures displays 

the gentle adjustment to the level of salinity. Given the high salt level of the freezing solution, 

adaptation to the low salt level of the physiological conditions of the cell culture medium is 

indispensable. Therefore, the frozen culture was thawed on ice and transferred to a 15 ml 

centrifuge tube and 200 µl of 12 % NaCl solution was added dropwise under constant 

agitation. After letting rest for two minutes at RT, 10 ml of a 1.6 % NaCl solution was added 

dropwise while shaking gently. The mixture was subsequently centrifuged for 5 min at 

1 300 × g and the supernatant was discarded. For final adjustment of salt content, the cell 

pellet was lastly resuspended thoroughly in 10 ml of 0.2 % Dextrose/0.9 % NaCl solution, once 

more added dropwise. After repeated centrifugation, the cell pellet was finally resuspended 
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in 5 ml of the appropriate RPMI medium on 5 % hematocrit and transferred to a 25 cm2-cell 

culture flask for consecutive cultivation. 

2.2.1.3.3 Freezing and storage of P. falciparum cultures 

For successful cryopreservation, asexual cultures with high parasitemia (3-4 %) and preferably 

mostly ring stage parasites were frozen by transferring the culture into a 15 ml centrifuge 

tube and pelleting at 1 300 × g for 5 min. After aspirating the resulting supernatant, the cell 

pellet was resuspended in the fivefold of the pellet´s volume of Glycerolyte 57 freezing 

solution and relocated to 2 ml-cryotubes. After letting rest for 5 min, the tubes were frozen at 

-80°C for long-term storage until further required.  

2.2.1.3.4 Blood smear preparation and estimation of parasitemia 

For preparation of Giemsa-stained blood smears, a 100 µl-aliquot of the respective culture 

was collected in a 1.5 ml tube and centrifuged at 3 500 × g for 1 min. The supernatant except 

of a twofold volume of the pellet was discarded. The cell pellet was subsequently 

resuspended in the remaining fluid and transferred to a glass slide. To attain a thin film of 

cells on the slide, a second glass slide was used (method depicted in Fig. 2.7).  

 

Fig. 2.7:  Preparation of a thin blood smear for determination of parasitemia. The edge of a second slide 
(spreader slide) is brought in contact with the drop of blood on the first slide. The drop is allowed 
to bank evenly behind the spreader, which is positioned in an angle of 30-45° relative to the lying 
slide. Subsequently the spreader slide is pushed along the first slide in a smooth, quick motion to 
prepare a smear covering approximately half the glass slide. 

After letting air-dry, the slides were immersed in methanol for fixation and allowed to dry 

followed by 5-15 min of staining with Giemsa stain solution (1:25 dilution of commercially 

available Giemsa stain solution with Giemsa buffer). After rinsing the stained slides with 

H2Obidest to remove excessive stain and subsequent air-drying, the blood smear was evaluated 

with a light microscope at 1 000 x magnification in oil immersion. By means of Giemsa dyeing 

of cells, nuclei of protozoans appear magenta, whereas the cytoplasm is colored bluish. On 

the contrary, erythrocytes appear light reddish. For estimation of infected RBCs, the number 

of parasites per 100 erythrocytes was counted for five to eight optical fields. Average 

parasitemia in percent was then calculated using the following formula: 

 

 
   Number of infected RBCs x 100 

Total number of RBCs (infected + non-infected) 
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Fig. 2.8:  Neubauer hemocytometer and schematic representation of counting grid. For determining the 
total number of cells per ml, the mean value of cells in the four corner areas (depicted by arrows) 
are multiplied with Neubauer chamber factor 104 and combined with total volume of cells, i.e. 
10 ml. (http://www.who.int/vaccines/en/poliolab/webhelp/manu779_04-a_files/image005.jpg).  

When seeding parasites for limiting dilution (section 2.2.1.7) or determining gametocytemia, 

a Neubauer hemocytometer was used for counting the number of cells in a suspension. This 

was conducted by placing a volume of 10 µl of diluted sample into the chamber and counting 

the number of cells or parasites, respectively, in 64 small squares. Then the number of cells in 

10 ml was reckoned using the below formula: 

 

Total number of gametocytes = mean value of gametocytes x 104 x 10 ml 

 

2.2.1.4 Synchronization and purification of asexual blood stage parasites 

As the asexual development of P. falciparum is characterized by asynchronous stage 

appearance, it is indispensable to synchronize the asexual cultures when needed for stage-

specific expression analyses or Malstat assay. Upon having approximately 2 % early ring 

stages, the parasite cultures were synchronized with 5 % sorbitol, which acts by conferring an 

osmotic shock to schizonts and thereby killing them. Initially, the culture was transferred into 

a centrifuge tube and centrifuged at 1 300 × g for 2 min to gently pellet the cells. After 

aspirating the medium, the cells were resuspended thoroughly in five times pellet volume of 

5 % prewarmed sorbitol solution and incubated at 37°C for 10 min, followed by centrifuging 

as previously to remove sorbitol. The pellet was washed once by resuspending the cells in the 

same volume of complete medium as sorbitol earlier and centrifuging yet again. Finally the 

pellet was resuspended once more in the appropriate volume of complete medium, 

transferred to a new culture flask and taken into culture at 37°C under appropriate gas 

conditions. Above procedure was repeated once at an interval of 4 h to remove newly 

emerged schizonts. The medium of the synchronized culture was replenished the following 

day after the procedure to remove dead schizonts and metabolic remnants. 
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To extract genomic DNA or attain purified asexual parasites for protein lysates for several 

applications, enveloping RBCs were lysed to release parasites. Firstly the asexual parasite 

culture with approximately 6-8 % parasitemia was transferred to centrifuge tubes and 

centrifuged at 1 300 × g for 5 min. The resulting pellet was washed once in ice-cold 1 x PBS 

and subsequently resuspended thoroughly in 0.15 % saponin solution in 1 x PBS to lyse RBCs. 

Lysis was accomplished after 10 min of incubation on ice, then the mixture was centrifuged at 

3 220 × g for 10 min in a pre-chilled centrifuge resulting in a dark solid parasite pellet, which 

was washed once with 1 x PBS and consecutively stored at -20°C or immediately resuspended 

in 5 x pellet´s volume of lysis buffer and further processed.  

2.2.1.5 Purification of gametocytes using Percoll® 

Gametocytes were cultured until the desired stage was obtained and purified as described 

previously (Kariuki et al., 1998) to attain DNA or parasites for protein lysates. All 

centrifugation steps and utilized solutions were carried out and prewarmed at 37°C to obviate 

gametocyte activation. Gametocyte cultures were pelleted at 1 300 × g for 5 min, washed 

once with 10 ml RPMI incomplete medium (ICM) and taken up in 2 ml 1 x ICM. Percoll® was 

diluted to 90 % by addition of 10 x ICM. This solution was then diluted further with 1 x ICM to 

generate 80 %, 65 %, 50 % and 35 % Percoll® solutions, two ml of which were utilized as 

layers for a gradient, starting from the bottom with the heaviest (80 %, Fig. 2.8). The ICM-cell 

suspension was layered thoroughly onto the above gradient and centrifuged for 10 min at 

1 000 × g. The interphase between the 35 % and 50 % percoll layer was collected as it 

contains gametocytes and washed once in 1 x ICM. The gametocyte pellet was kept and 

stored at -20°C for proceeding experiments. 

 

2.2.1.6 Malstat assay 

The CLK inhibitors were assessed in this study for evaluation of growth inhibition activity 

against asexual parasites of P. falciparum by means of a microdilution assay. Different 

concentrations of the compounds to be tested were utilized in Malstat viability assay as 

described previously (Makler and Hinrichs, 1993; Makler et al., 1993; Aminake et al., 2011). 

Malstat viability assay relies on the detection of the Plasmodium-specific enzyme lactate 

Fig. 2.9:  Schematic depicting the different 
layers for percoll step gradient 
centrifugation method for 
gametocyte purification. The 
gametocytes are located at the 
interphase between the 35 % and 
50 % percoll layer (indicated by 
arrow).  
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dehydrogenase (pLDH), which is capable of using 3-acetylpyridine adenine dinucleotide 

(APAD) as NAD analogue for the back reaction of lactate to pyruvate. In contrast, human 

lactate dehydrogenase (hLDH) is not able to use the synthetic dinucleotide as coenzyme for 

redox reactions. In Malstat assay, pLDH is offered APAD along with lactate, which is 

metabolized to pyruvate subsequently by this enzyme. The reaction of lactate fermentation is 

subsequently measured in a colorimetric reaction (Makler et al., 1993). Being an essential 

enzyme in anaerobic glycolysis, pLDH catalyzes the reduction of pyruvate by utilizing NADH + 

H+ to lactate and therefore plays an important role in ATP supply during the asexual 

erythrocytic stage of the parasite. Employing the generated NAD+ for further process of 

glycolysis, P. falciparum utilizes the glucose metabolism pathway of the erythrocytes and 

expresses the hLDH homologue pLDH, which has a 200 fold faster kinetic for catalysis of APAD 

than the human counterpart (Gomez et al., 1997).  

 
Fig. 2.10:  Malstat plate depicting a typcial Malstat assay. Compound 1, 2 and 3 are tested in triplicates 

(vertical rows with descending concentrations from top to bottom well), whereas chloroquine 
(CQ) as the positive control was tested in one column per plate. DMSO alone in a concentration 
of 0.5 % on parasites (DMSO) as well as parasite culture alone (pos) served as positive controls 
with purple colours in the wells indicating viable parasites. As negative control (neg), uninfected 
RBCs in a final hematocrit of 5 % were plated, with the light red coloured wells indicating the 
absence of viable parasites.  

The CLK inhibitors were screened for growth inhibition against P. falciparum strain 3D7 at 

concentrations between 6.4 nM and 500 µM using the Malstat assay. Sorbitol-synchronized 

ring stages were plated in triplicates in 96-well plates (200 μl/well) at a parasitemia of 1 % in 

the presence of the compounds dissolved in DMSO. Chloroquine (diphosphate salt, Sigma- 

Aldrich; dissolved in double-distilled water) served as positive control in the experiments. 

Incubation of parasites with DMSO alone at a concentration of 0.5% vol. was used as negative 

control. Parasites were cultivated in vitro for 72 h, resuspended, and aliquots of 20 μl were 

transferred and added to 100 μl of the Malstat reagent to initiate the formation of pyruvate 

from parasite lactate dehydrogenase (LDH) and the release in the reaction of reduced APAD 

(APADH) in a 96-well microtiter plate. The assessment of pLDH activity was obtained by 

adding 20 μl of a mixture of NBT (nitroblue tetrazolium)/diaphorase (1:1; 1mg/ml stock each) 

to the Malstat reaction and optical densities were measured at 630 nm. Each compound was 

tested two to four times, and the IC50 values were calculated from variable slope sigmoidal 

dose-response curves using the GraphPad Prism program version 5.  
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2.2.1.7 Limiting dilution 

Upon obtaining integrant populations that were confirmed by diagnostic PCR (section 

2.2.2.10), it is inevitable to separate single wild type-free parasites of the integrant 

population from the mixed parasite culture. For this purpose, a thin blood smear was 

primarily prepared to monitor parasitemia using the above mentioned formula (section 

2.2.1.4.3) by counting parasites and RBCs for at least 8-15 fields. Hereinafter the number of 

cells per ml was then determined applying a Neubauer chamber (section 2.2.1.3.4) as follows: 

 

Number of erythrocytes x 10 000 x dilution factor 

Number of corner squares counted 

 

Total number of parasites per ml (p/ml) was thereafter ascertained by using succeeding 

formula: 

Average parasitemia        x               (p/ml) 

                              100                                Total number of cells 

In a series of dilution (three times 1:50), 24 parasites were finally plated into two 96-well 

microwell plates upon 5 % hematocrit and placed into the incubator within an air-tight 

chamber following gassing. Excess culture was cultured under normal conditions in a 25 cm2-

cell culture flask and served as control for parasite growth. For each well, 160 µl of medium 

supplemented with BSD was replenished every second day and the plates were cultured for 

two to four weeks. Fresh blood was added once a week to attain a final hematocrit of 5 %. 

The control flask was treated accordingly. As soon as parasites could be monitored in the 

control flask, 20 µl of each well was transferred to new 96-well microtiter plates and parasites 

were detected by Malstat detection assay (section 2.2.1.6). Wells with parasites were taken 

into culture, checked for integration by integration PCR and integrant clones devoid of wild 

type bands were used for proceeding experiments.  

2.2.1.8 Exflagellation inhibition assay 

In the life cycle of malaria parasites, the maturation of microgametocytes, i.e. exflagellation, 

takes place in the mosquito midgut succeeding an infectious blood meal. Exflagellation 

inhibition assays were performed to scrutinize the activity of the evaluated CLK-inhibitors on 

gamete formation. Preceding the assay, an aliquot of 100 µl of the mature wild type culture 

was collected from the flask and activated by incubation with xanthurenic acid (XA) at a final 

concentration of 100 µM for 15 min. The suspension was pelleted by centrifugation at 

3 500 × g for 1 min and 95 µl of the supernatant was discarded. After resuspension in the 

remaining 15 µl, the activated parasites were placed onto a glass slide and coated with a 

cover slip. The number of exflagellation centers per optical field was counted using a light 

microscope at 400-fold magnification. If a minimum quantity of 5 exflagellation centers per 

optical field were monitored, the culture was applicable for the inhibition assay. To perform 

the assay, the culture was preincubated for 15 min with the respective compound ranging 

between 0.1 and 1 000 mM or DMSO as solvent control to a final concentration of 0.5 % at 

37°C. Subsequently the specimens were activated using XA for another 15 min and thereby 
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transferred to RT. After incubation, the suspension was yet again centrifuged and the 

resulting pellet processed as described above. Exflagellation centers were counted in 30 fields 

for each compound and DMSO-control in triplicates in two independent experiments. 

Exflagellation inhibition was calculated as a percentage of the number of exflagellation 

centers in compound-treated cultures in relation to the number of exflagellation centers in 

untreated DMSO controls. The IC50 values were calculated from variable-slope sigmoidal 

dose-response curves using GraphPad Prism version 5. 

2.2.1.9 Gametocyte toxicity assay 

In this study, gametocyte toxicity assay was utilized to evaluate the capacity of CLK inhibitors 

to inhibit gametocytes at their early stages, therefore preventing the formation of mature 

gametocytes, which is necessary for parasite transmission. P. falciparum wild type parasites 

were cultured at high parasitemia to promote gametocyte commitment. Upon obtaining 

stage II gametocytes, 1 ml of culture was aliquoted in triplicates in a 24-well-plate in the 

presence of respective inhibitor IC50 concentrations. As positive control, the proteasome 

inhibitor epoxomicin was used in a final concentration of 30 nM (Aminake et al., 2011). In 

contrast, chloroquine (CQ) in a final concentration of 40 nM served as negative control, as CQ 

has the ability to kill asexual parasites, but not sexual stage parasites. This compound rather 

stimulates gametocyte commitment due to stress reasons (Buckling et al., 1999). Besides 

negative and positive control, DMSO was used as solvent control, as all tested inhibitors were 

solved in DMSO. The aliquots were cultivated within the influence of the inhibitors for 48 h. 

After the 48 h-treatment, the cultures in the wells were further maintained for additional five 

days to allow healthy gametocytes to mature to stage IV and V in compound-free medium. 

Medium was replenished daily by replacing 800 µl compound-free medium. At day 7, Giemsa-

stained blood smears were prepared and gametocytemia was monitored by counting the 

numbers of gametocyte stages IV and V in a total amount of 1 000 erythrocytes per 

inhibitor/well. The gametocytes in each setting were counted in triplicates. Two independent 

experiments were performed and the mean gametocytemia was calculated for each 

compound. Data from the experimental cultures was normalized to the DMSO control, which 

was set to 100 % and the Student´s t-test was performed for statistical analysis of the 

obtained data. 

2.2.1.1 Stage-of-inhibition assay  

To determine the stage of inhibition, synchronized ring stage parasites (T0) were 

supplemented with CHX, KH-CARB10, KH-CARB11, KH-CARB13xHCl and gea-27 in 

concentrations of their determined IC50 values (0.8, 7.5, 6.1, and 4.0 µM, respectively; 

determined by Malstat viability assay, section 2.2.1.6) and IC80 values (4.0, 37.0, 30.0 and 

20.0, respectively; calculated by usage of GraphPad QuickCalcs), plated in triplicates in 96-

well plates. Blood smear samples were taken at 12 h, 24 h, 36 h, 48 h, 60 h and 72 h of 

inhibitor incubation. The numbers of ring stages, trophozoites, schizonts as well as amounts 

of dead parasites were counted for a total number of 100 infected erythrocytes for each 

setting. Ring stage parasites initially treated with 0.5 % DMSO served as negative control 

parasites. 
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2.2.1.2 Indirect immunofluorescence assay (IFA) 

To study the stage-specific expression and cellular localization of the PfCLK kinases and SR 

proteins in P. falciparum in this study, indirect immunofluorescence assays were conducted. 

Aliquots of synchronized parasite cultures at ring, trophozoite and schizont stages as well as 

non-activated gametocytes were obtained (according to the experimental design), 

centrifuged for 1 min at 3 550 × g and the supernatant was discarded to a great extent. Cells 

were resuspended and placed in thin layers onto the wells of Teflon IFA slides (Carl Roth). 

Following air-drying, fixation was carried out by incubating the slides for 10 min in -80°C cold 

methanol. To label the SR proteins, parasites were fixed with 4 % paraformaldehyde (pH 7.4). 

Dried IFA slides were incubated in permeabilization/blocking solution for 30 min at RT and 

subsequently further blocked for 30 min in permeabilization/blocking solution supplemented 

with 1 % neutral goat serum (Sigma-Aldrich) to block unspecific binding sites. In case of 

paraformaldehyde-fixed samples, permeabilization was deployed with 0.1 % vol. Triton X-100 

and 125 mM glycine (Carl Roth) in PBS for 30, followed by blocking with 3 % BSA in PBS for 

1 h. Specimens were then incubated for 1.5 -2 h at 37°C with primary antibodies against the 

respective kinase, diluted in blocking solution. For double-labeling experiments, slides were 

consecutively incubated with the respective primary stage-specific antibody originating from 

different animal species than the kinase antibody. Thereafter, specimens were washed twice 

with IFA blocking solution to remove unbound antiserum. Binding of primary antibodies was 

subsequently prepared for visualization by incubating the slides with fluorophore-conjugated 

goat-derived secondary antibody (Alexa Fluor® 488 or Alexa Fluor® 594, respectively, 

Molecular Probes) against the origin species of primary antibodies used in the experiment. 

Incubation of secondary antibody was carried out for 1 h at 37°C. To avoid bleaching of the 

conjugated fluorescence dye, all succeeding washing and staining steps were protected from 

light. Final washing steps in 1 x PBS removed exceeding secondary antibodies. After rinsing of 

slides twice times for 5 min in 1 x PBS, samples were finally counterstained with Hoechst 

nuclear stain (diluted 1:5 000 in 1 x PBS; Molecular Probes) for dyeing of nuclei. After 

repeated rinsing in 1 x PBS for two times, specimens were dried and subsequently mounted in 

Antifading CitiFluor® Mounting Medium (LTD, London), subsequently covered with a cover 

slip and sealed with nail polish to avoid drying out of the specimens. Immunolabeled IFA 

slides were subsequently examined by confocal fluorescence microscope (Leica or Zeiss). 

Digital images were processed using the manufacturers´ image editing software of the 

respective microscope or Adobe Photoshop CS software.  

2.2.2 Molecular biology methods 

2.2.2.1 Genomic DNA isolation 

Genomic DNA was isolated from purified asexual blood stages of P. falciparum using the 

NucleoSpin® Blood Kit according to the manufacturers’ protocol. Prior to the isolation, 

parasites were purified with 0.15 % saponin as mentioned above (section 2.2.1.4). For DNA 

elution, 50 µl of sterile H2Obidest were used instead of the buffer provided by the 

manufacturer. The DNA concentration was subsequently determined photometrically using 

NanoDrop spectrophotometer (Peqlab) measuring absorption at 260 nm.  
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2.2.2.2 Polymerase chain reaction 

Polymerase chain reaction (PCR) was used to amplify kinase and splicing factor (subunit) 

sequences for recombinant protein expression as well as diagnostic PCR to identify episomal 

integration of the pCAM-BSD plasmid for reverse genetic studies. Two diverse polymerases 

were utilized in this study: Regarding the cloning procedure preparative to recombinant 

protein synthesis, Phusion® High-Fidelity DNA Polymerase was used as this enzyme possesses 

a 3’→5’-exonuclease activity that reduces the error rate and furthermore generates blunt-

ended products. Gene-specific nucleotide sequences of desired proteins were obtained from 

the PlasmoDB database and the program Primer3 was employed to design primers for each of 

the constructs. In case of introns prevailing in the gene of interest, cDNA was used as PCR 

template, which was kindly provided by Dr. Shruti Agarwal.  

For colony PCR as well as integration PCR, GoTaq® DNA Polymerase was employed as proof 

reading activity is abdicable for these purposes. Its provided 5 x Buffer is supplemented with 

blue and yellow dyes which renders further adding of loading buffer dispensable.  

The master mix for a PCR reaction was prepared as follows: 

Table 2.10:  Pipetting scheme for PCR reactions using GoTaq® or Phusion® Polymerase, respectively. 

GoTaq® DNA Polymerase Phusion® High-Fidelity DNA Polymerase 

        Reagent                              Final conc.         Reagent                              Final conc. 

gDNA* 100ng/µl gDNA/cDNA 100ng/µl 

5 x GoTag®Flexi buffer 1 x 5 xPhusion® HF buffer 1 x 

MgCl2 (25 mM) 2 mM - - 

dNTPs (10 mM stock) 0.2 mM dNTPs (10 mM stock) 0.2 mM 

Sense primer (100 µM) 1 µM Sense primer (100 µM) 1 µM 

Antisense primer (100 µM) 1 µM Antisense primer (100 µM) 1 µM 

GoTaq® DNA Polymerase 

(5 U/µl) 

1.25 U Phusion® High-Fidelity DNA 

Polymerase (2 U/µl) 

1.0 U 

*in case of colony PCR, one single colony was diluted in 10 μl of distilled water. 

The PCR reaction was supplemented with sterile H2Obidest to reach a final volume of 50 µl. 

Following program was employed for amplification of gene products of interest: 

Table 2.11: Thermocycler programs for GoTaq® and Phusion® polymerase. TM = Primer melting 
temperature. 

Step type GoTaq® DNA Polymerase Phusion® High-Fidelity DNA 

Polymerase 

 Temperature Time Temperature Time 

Initial Denaturation 95°C 2 min 98°C 30 s 

Denaturation 95°C 40 s 98°C 7 s 

Primer annealing lowest TM -5°C 50 s lowest TM -5°C 30 s 

Elongation 72°C 1 min/kb 72°C 30 s/kb 

Final elongation 72°C 5 min 72°C 5 min 

Cycle number 35 33 
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2.2.2.3 Agarose gel electrophoresis 

As the phosphate residues confer a negative charge to nucleic acids, the same can be 

separated in an electric field due to their size. For this purpose, an inert matrix of agarose was 

utilized in this study. Resolved DNA fragments were visualized by using ethidium bromide 

(EtBr) solution. Ethidium bromide intercalates into the major grove of DNA and fluoresces 

when exposed to ultraviolet (UV) light, thus visualizing the migrated DNA fragments. In this 

study, 1.0 % agarose gels were employed to evaluate PCR products as well as to resolve 

digested DNA fragments out of a certain plasmid for subsequent gel purification (section 

2.2.2.4).  

For preparing 1 % agarose gels, the appropriate amount of agarose was solved in 1 x TAE 

buffer and subsequently brought to the boil. After cooling down to roughly 50°C, either EtBr 

was supplemented to a final concentration of 0.5 µg/ml or the latter gel with separated 

fragments was incubated for 15 min in a bath which was diluted with EtBr 1:10 000 in 

H2Obidest. After polymerization, samples were resuspended in 6 x DNA sample buffer for 

increase of density and denaturation of secondary structures. Subsequently specimens were 

loaded on gel, as well as a DNA size standard for estimation of fragment sizes (section 2.1.14). 

The gel was run with electric field strength of 6 V/cm. If the gel was not yet supplemented 

with EtBr previous to loading and running, the same was incubated in an EtBr solution bath 

after separating the fragments entirely. The separated DNA fragments were visualized and 

documented with a transilluminator and images were processed with Adobe Photoshop CS 

software.  

2.2.2.4 Purification of DNA fragments 

DNA fragments were either purified directly after PCR/digestion or, in case of purification of 

vector-containing insert, firstly separated on an agarose gel and excised by using the 

NucleoSpin® Extract II Kit (Macherey-Nagel) according to the manufacturer´s protocol. The 

underlying principle of the purification kit is based on the DNA´s ability to bind to silica 

membranes in the presence of high saline buffers. In contrast, contaminations like 

oligonucleotides, genomic DNA or enzymes pass the silica column as they are not capable of 

binding to silica membranes. After washing of DNA, it can be easily eluted from the silica 

column by resuspension with water or TE buffer.  

2.2.2.5 DNA digestion via restriction endonucleases 

Restriction endonucleases are enzymes of prokaryotic origin which are able to recognize 

palindromic sequences and cut DNA specifically at this sequences. In this study, restriction 

endonucleases were purchased from New England Biolabs (NEB) for preparing spin-purified 

inserts as well as target vectors for final ligation destined to cloning. 

 

Digestion of inserts/vectors was carried out as follows: 
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Tab. 2.12: Pipetting scheme for digestion reactions.  

Reagent Digestion of insert Digestion of vector 

DNA 3 µg 5 µg 

10 x buffer (NEB) 5 µl 5 µl 

10 x BSA  5 µl 5 µl 

Restriction enzyme 1 1 µl 1 µl 

Restriction enzyme 2 1 µl 1 µl 

H2Obidest, sterile  add up to 50 µl add up to 50 µl 

 

The reaction mixture was incubated for at least 2 h at 37°C. Concerning vector digestion, 1 h 

prior to the experiment´s end, 1 µl of calf intestine phosphatase (CIP) was added to the 

digestion reaction. CIP removes phosphate residues from DNA ends and thus averts vector 

religation. The digested vectors were loaded on agarose gels where the respective bands 

were cut out and spin-purified or, in case of insert fragments, merely spin-purified to remove 

residual enzymes and contaminations prior to ligation.  

2.2.2.6 Ligation of DNA fragments 

For ligation of DNA fragments, T4 DNA Ligase was used which catalyzes the joining of double 

stranded DNA by generation of phosphoric diester bonds between 3´-hydroxy residues and 

5´-phosphate residues. For cloning in this study, the molar ratio of vector to insert was set 

1:3. The amount of insert required for ligation was calculated using the following formula: 

 Amount of insert [ng] = (amount of vector [ng] x fragment length [bp] x 5) 

                    length of vector [bp] 

The reaction volume was prepared as depicted in Tab. 2.13 and incubated for at least 3 h at 

16°C or overnight at 4°C. For further transformation, 2 µl of the ligation reaction was added 

to competent E. coli cells (section 2.2.1.2).  

Tab. 2.13: Pipetting scheme for ligation reactions.  

Reagent Volume 

Digested insert DNA x µl 

Digested vector DNA [50ng/µl] y µl  

10 x Ligation buffer 2 µl 

T4 DNA ligase (NEB) 1 µl 

H2Obidest add up to 20 µl 

2.2.2.7 Amplification and extraction of plasmid DNA 

Transformed E. coli strains (section 2.2.1.2) were cultivated in 3-5 ml LB medium under 

appropriate selection conditions overnight at 37°C on a bacterial shaker. Cells were harvested 

and underwent alkaline lysis for extraction of plasmid DNA. Depending on the projected 

purpose, two distinct kinds of preparation were used: on the one hand, a curtailed type of 

preparation was employed for analysis of bacterial clones after transformation of ligation 

reactions (Dirty mini). On the other hand, if DNA of higher purity was required for 
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transformation or sequencing, plasmid mini preparation was utilized by means of 

commercially available NucleoSpin® Plasmid Kit (Macherey-Nagel) according to the 

manufacturer´s protocol. Principally both preparations are premised on the same alkaline 

lysis step associated with precipitation with isopropyl alcohol; however the commercially 

available kit employs silicate membranes for further increase of purity of DNA.  

For the variant of Dirty mini plasmid preparation, 3 ml of bacterial culture were inoculated 

and kept shaking overnight at 37°C. After harvesting cells via centrifugation at 13 000 × g for 

5 min, they were resuspended in 100 µl of Solution 1, which was supplemented with RNAse. 

Subsequently cells were lysed by addition of 200 µl of Solution 2 and gently mixed by 

inverting the tubes, as vortexing would lead to an unwanted shearing of DNA, and incubated 

on ice for 5 min. For neutralization, 150 µl of Solution 3 were supplemented and specimens 

were again inverted and incubated on ice for further 5 min. Thereafter, RNA was removed by 

adding 450 µl of 5 M LiCl and centrifuged for 15 min at 16 060 × g after 5 min incubation on 

ice. The resulting supernatant was transferred to a new tube and DNA was precipitated using 

0.6 proportion of volume isopropyl alcohol, for these tubes were inverted, incubated at RT for 

10 min and finally centrifuged for 10 min at 16 060 × g. The resulting DNA pellet was 

subsequently washed once with 200 µl of 70 % ethanol and dried at RT until no ethanol 

residues could be traced. The pellet was resuspended lastly in 30 µl H2Obidest and stored at -

20°C for future purposes.  

2.2.2.8 Colony PCR and control digestion 

For analysis of single transformant bacterial colonies, colony PCR as well as control digestion 

analysis was conducted. Regarding colony PCR, five single colonies were picked separately the 

following day after transformation (section 2.2.1.2) with a disposable pipette tip and 

transferred into PCR reaction tubes containing 10 µl H20bidest. The single colonies were 

resuspended and PCR reaction was prepared using GoTaq® DNA polymerase as described 

previously (Tab. 2.7). For amplification of inserts prevailing in transformed bacterial colonies, 

insert primers respective to the cloned insert were employed. Thermocycler program for 

GoTaq® DNA polymerase was used as mentioned above (Tab. 2.8). In case of positive clones 

attained by colony PCR, gDNA of overnight cultures was prepared as itemized in section 

2.2.2.4. Isolated plasmid DNA was control digested using the following pipetting scheme: 

Tab. 2.14: Pipetting scheme for control digestion of purified plasmid DNA from transformant bacterial 
colonies. 

 Reagent Volume 

10 x Reaction buffer  1 µl 

10 x BSA 1 µl 

Miniprep-DNA 5 µl 

Restriction enzyme 1 0.5 µl 

Restriction enzyme 2 0.5 µl 

H20bidest 2 µl 
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Restriction endonucleases were purchased from New England Biolabs (NEB) in conjunction 

with provided buffers.  

2.2.2.9 Sequencing 

Upon having verified correct size of vector and insert fragment by control digestion, the 

purified plasmid DNA from plasmid mini preparation (section 2.2.2.4) was quantified using 

spectrophotometer NanoDrop ND-2000 (Peqlab). 700 ng of purified plasmid DNA and 

20 pmol of the appropriate sequencing primer were subsequently added to sterile H20bidest to 

a final volume of 7 µl and sent for “Extended HotShot sequencing” to Seqlab sequence 

laboratories (Göttingen). Sequences were analyzed utilizing BioEdit or Clone Manager, 

respectively, and NCBI nucleotide BLAST®.  

2.2.2.10 Genotype characterization by diagnostic integration PCR 

Vectors used for transfecting asexual parasite stages were cloned and transfected (kindly 

provided and carried out by Dr. Shruti Agarwal). Once the transfectant parasite population 

was growing, gDNA was isolated from enriched asexual parasites as mentioned (section 

2.2.1.5 and 2.2.2.1) and utilized in diagnostic PCR for genotype characterization. For that 

purpose, primers were designed that bind to the 5´- and 3´-end of the amplified kinase gene 

locus. 

Primers were used in the following combinations (see section 2.1.12): 

Combination A  Amplification of wild type gene locus 

Combination B  Amplification of episome (epi) 

Combination C  Amplification of 5´-integrated gene locus (5´int) 

Combination D  Amplification of 3´-integrated gene locus (3´int) 

 

Diagnostic PCR reactions were carried out using GoTaq® DNA polymerase and were 

composed of reagents as mentioned above (Tab. 2.7). Reaction parameters are listed in 

Tab. 2.8.  

2.2.3 Protein biochemistry methods 

2.2.3.1 Expression of recombinant proteins 

P. falciparum proteins were expressed recombinantly in E. coli for generation of antigens to 

raise mouse polyclonal antibodies as well as to directly apply the recombinant proteins in 

interaction studies like kinase activity assays. Depending on the size and the demanded part 

of the respective protein, either a small fraction of a protein domain or the full size 

recombinant protein was designed and generated. Recombinant proteins were expressed as 

fusion proteins with a GST-tag using the pGEX 4T1 vector or with a MaBP-tag using the pIH 

vector (section 2.1.10) in E. coli BL21-CodonPlus®-(DE3)-RI cells. Cloning was conducted by 

addition of restriction sites to the ends of PCR-amplified gene fragments complying with the 

respective protein domains (Fig. 1.6).  
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Mini protein expression 

To confirm protein expression of the respective tagged recombinant protein, single colonies 

of transformed E. coli BL21-CodonPlus®-(DE3)-RIL cells were picked and transferred into 3 ml 

LBAmp/Cam overnight preculture. The following day, each preculture was diluted in duplicates 

1:5 with LBAmp/Cam as one reaction serves as negative control. The diluted cultures were 

subsequently grown in a shaking incubator at 37°C until the optical density reached 0.5 at a 

wavelength of 600 nm (OD600). At this time point, the bacteria are in the log phase of growth. 

As both expression plasmids possess the lac operon, protein expression can be initiated by 

adding the artificial substrate IPTG (isopropyl-β-D-thiogalactoside, Life Technologies). One of 

the two cultures yielded by one single clone was induced by supplementing IPTG at a final 

concentration of 0.75 mM whilst the other culture served as negative uninduced control. 

Cultures were shaken and incubated for further 3 h at 30°C for expression of recombinant 

protein. Thereafter, 30 µl of samples were acquired, diluted with 2 x SDS sample buffer 

containing 25 mM DTT and boiled at 95°C for 10 min to denature protein structures. Samples 

were finally loaded onto a SDS-gel and separated for analysis (section 2.2.3.5).  

 

Maxi protein expression 

Upon having verified the proper expression of recombinant proteins by mini protein 

expression mentioned above, protein expression was conducted in a large scale to attain an 

appropriate concentration of the recombinant protein. Consequently, 20 to 50 ml of freshly 

transformed overnight culture was diluted 1:10 in an appropriate volume (2-6 l per 

recombinant protein construct) and further grown at 37°C on a shaking platform. Once the 

OD600 of 0.5 and hence the exponential growth phase was reached, cultures were initially 

cooled down for 30 min to RT or 18°C and subsequently induced with IPTG in a final 

concentration of 0.75 mM as mentioned above. To ensure a slower and thus more precise 

expression and folding of the synthesized recombinant protein in bacteria, temperature was 

decreased for that purpose to RT or preferably 18°C. Incubation of induced cultures on a 

shaking platform was carried out for at least 4 h to overnight and thereafter harvested by 

centrifugation of the bacterial cultures for 5 min at 4°C and 5 000 × g. Cell pellets were 

subjected to lysis immediately or stored until further use at -20°C.  

2.2.3.2 Purification of recombinant proteins 

All steps were conducted on ice as well as all samples, buffers, centrifuges and tubes were 

prechilled at 4°C.  

 

Purification of soluble recombinant GST-tagged proteins 

Bacterial pellets attained above were resuspended initially in lysis buffer and incubated for at 

least 1 h on a tumbler at 4°C. Cell disruption was thereafter performed using a French® Press 

by applying 1 200 psi pressure in three subsequent cycles, whereas DNA degradation was 

conducted furthermore by pulse sonication of the sample for 2 min at 50 % intensity and 

50 cycles. The resultant sample was centrifuged at 15 000 × g for 1.5 h at 4°C to separate the 

proteinaceous supernatant from the remaining cell debris. Clear supernatant was 
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subsequently collected and filtered through a 0.22 µm syringe filter. At the same time, 

Glutathione sepharose 4FastFlow beads (GE Healthcare) were prepared by washing three 

times with ice-cold 1 x PBS. 500 µl of washed beads were added to the above filtered protein 

containing supernatant and incubated overnight on a tumbler under gentle rotation at 4°C to 

favour selective binding of GST-tagged proteins to sepharose beads. The following day, the 

mixture was loaded onto a PolyPrep® column (Bio-Rad) and allowed to pass through the 

matrix where GST-tagged proteins selectively bound to sepharose were retained, whereas 

unbound proteins passed through the matrix. Three times washing with 1 x PBS followed 

whereby all flow-through washing steps were retained for analysis. Lastly the proteins were 

eluted with GST elution buffer in three fractions of 1-3 ml each. Fractions were stored at -

20°C, destined to SDS-PAGE and protein yield and concentration were corroborated by 

comparing band intensities of purified proteins with protein bands of known BSA 

concentations.  

 

Purification of soluble recombinant MaBP-tagged proteins 

The harvested cell pellet acquired from maxi expression was washed once with 1 x PBS and 

thereafter resuspended in 3 ml of MaBP lysis buffer containing 1 mM PMSF and 80 µl of 

lysozyme (stock 10 mg/ml) per g pellet. DNA degradation was conducted by sonicating the 

sample for 2 min at 50 % intensity and 50 cycles. Cell lysis was then induced by adding 6 µl of 

1 M MgCl2 and 0.08 g NaCl per ml to the lysate followed by incubation on a rotating mixer for 

1 h at 4°C. Subsequent separation of cell debris and proteinaceous supernatant by means of 

centrifugation at 15 000 × g for 1.5 h at 4°C and afterwards filtering of supernatant using a 

0.22 µm syinge filter was conducted. In the meantime, 1 ml of amylose resin was washed 

three times with 1 x TE buffer and finally added to the filtered supernatant. Incubation 

overnight on a tumbler at 4°C conducted binding of MaBP-tagged proteins to the amylose 

resin beads whilst other untagged proteins did not bind to the resin. The following day, batch 

elution of MaBP-tagged proteins was carried out by initially spinning down the resin for 5 min 

at 60 × g with decreased deceleration. Subsequent washing steps were carried out 3 times 

using column buffer without supplemented maltose. All supernatants were saved and 

processed for SDS-PAGE analysis. For elution of proteins, 8 ml of column buffer with maltose 

was added to the washed beads, incubated for at least 20 min on a rolling mixer at 4°C and 

centrifuged for 5 min at 60 × g. This elution step was repeated and samples of elution 

fractions were processed for determination of concentration via SDS-PAGE. Protein 

concentations were estimated by comparison of stained SDS-gels showing a dilution series of 

BSA proteins of known concentrations. Specimens were stored at -20°C up to further use.  

 

Purification of inclusion bodies 

In case of limited yield of soluble recombinant proteins which were subjected merely to 

immunization and subsequent generation of antibodies, the alternative choice of purifying 

recombinant proteins as inclusion bodies was the method of choice. Therefore, an expression 

and purification protocol of the company ImmunoGlobe (Himmelstadt) was utilized. Inclusion 

bodies represent cellular and nuclear protein aggregates which are composed of denatured 
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proteins formed through excessive overexpression in bacterial cells. Inclusion bodies are not 

membrane bound and often reversibly misfolded.  

Following maxi expression and harvesting of cells, lysis was implemented by resuspending the 

pellet in 80 ml of lysis buffer and supplementing another 20 ml of lysis buffer with 20 mg of 

lysozyme. After incubation on ice for 30 min, the sample was sonicated as described above 

and the lysate was resuspended in 200 ml of Detergent buffer followed by centrifugation at 

5 000 × g for 10 min. Thereafter the pellet was washed with 200 ml of washing buffer each, 

until the pellet became solid and less viscous. It was subsequently thoroughly washed once 

with 70 % ethanol. Finally the pellet was resuspended in 2-5 ml of freshly prepared sterile PBS 

and sonicated to enable the proteins to pass through a 23 G needle which was used later on 

for immunization of mice. Protein concentration was estimated by loading the samples onto a 

SDS-gel and comparison of specimen with the protein ladder to calculate the appropriate 

amount for immunization. Moreover, the approximate protein concentrations were 

confirmed by comparing the band intensities with protein bands of known BSA protein 

concentrations. Inclusion body preparations were stored at -20°C until further use.  

2.2.3.3 Immunization of mice and generation of mouse polyclonal antibodies 

Specific immune sera were generated by the immunization of six week-old female NMRI 

mice. Beforehand, the purified soluble proteins were buffer-exchanged and concentrated 

using Millipore Amicon centrifugal filters with nominal molecular weight limits suitable for 

the molecular weight of the protein to be concentrated. Regarding recombinant proteins 

purified from inclusion bodies, usage of Amicon filters was dispensable. Concentrated protein 

solution was transferred from the Amicon centrifugal unit and resuspended in sterile 1 x 

PBS/5 % glycerol, followed by scrutiny of concentration by means of SDS-PAGE. 100 µg of 

recombinant protein or inclusion bodies for each mouse were dissolved in 200 µl of sterile 

PBS and emulsified in Freund´s incomplete adjuvant which acts as immunopotentiator. After 

an interval of four weeks, mice were boosted with 100 µg of soluble protein solution or 50 µg 

of inclusion bodies, respectively, supplemented with Freund´s incomplete adjuvant as 

mentioned above. Ten days later mice were anesthetized by intraperitoneal injection of a 

mixture of ketamine and xylazine according to the manufacturer´s prototol (Sigma-Aldrich), 

and immune sera were then collected via heart puncture. Sera from non-immunized mice 

served as control for antibody reagent studies. 

2.2.3.4 Preparation of parasite lysates and nuclear extract 

Parasite pellets attained by either saponin lysis (section 2.2.1.4) or gametocyte purification 

(section 2.2.1.5) were lysed subsequently in an appropriate volume of PMSF lysis buffer for 

10 min on ice and thereafter sonicated for approximately 30 seconds at 50 % intensity and 50 

cycles to degrade DNA. Consecutively the protein solution was separated from the cell debris 

by centrifugation at 13 000 × g for 10 min at 4°C. Resulting supernatant containing parasite 

proteins was transferred into a sterile pre-chilled 1.5 ml tube and was either stored at -20°C 

or preferably used freshly in subsequent SDS-PAGE or kinase activity assays (sections 2.2.3.5 

or 2.2.3.8). Total protein concentration was measured by means of Bradford assay (Bio-Rad).  
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For preparation of nuclear extracts, parasite pellets gained by saponin lysis were initially 

washed with 1 x PBS and subsequently resuspended in Buffer A supplemented with protease 

inhibitor cocktail and incubated for 10 min at RT. After centrifugation at 13 000 × g for 10 min 

at 4°C, the supernatant containing the cytoplasmic fraction was transferred to a new reaction 

tube and the resultant pellet was resuspended in Buffer B. The resuspended pellet was then 

shaken vigorously for 2 h at 4°C followed by centrifugation at 13 000 × g for 5 min at 4°C. 

Nuclear fraction of parasite pellets was represented by the resulting supernatant and purity 

was confirmed by Hoechst labeling of nuclei (kindly conducted by Dr. Shruti Agarwal). Nuclear 

extract as well as cytoplasmic fraction was then immediately used for further analyses or kept 

at -20°C for future purposes.  

2.2.3.5 SDS polyacrylamide gel electrophoresis  

SDS polyacrylamide gel electrophoresis (SDS-PAGE) was utilized for separation of a protein 

mixture in an electrical field due to their different molecular weights. The strong anionic 

detergent sodium dodecyl sulfate (SDS) ensures a linearization of proteins and confer a 

uniform negative charge so that the proteins migrate to the anode and are separated on the 

basis of their molecular weight. Further denaturation of proteins is ensured by adding β-

mercaptoethanol, which reduces disulfide linkages. Varying percentage of resolving gels (in 

this study 10 % and 12 %) were prepared according to the size of the protein to be identified. 

A stacking gel of 5 % served as starting zone for the protein separation in the resolving gel, 

composition given below (Tab. 2.14). TEMED and APS were added lastly to initiate 

polymerization of the gel.  

Tab. 2.15:  Composition of different SDS gels (stacking and resolving). Volumes refer to one mini-gel. 

 Resolving gel Stacking gel 

10 % 12 % 5 % 

H2Obidest 1.9 ml 1.6 ml 1.4 ml 

30 % acrylamide 1.7  ml 2.0 0.33 ml 

1.5 M Tris pH 8.8 1.3 ml 1.3 ml - 

0.5 M Tris pH 6.8 - - 0.25 ml 

10 % SDS 50.0 µl 50.0 µl 20.0 µl 

10 % APS 50.0 µl 50.0 µl 20.0 µl 

TEMED 2.0 µl 2.0 µl 2.0 µl 

 

The samples were prepared in 2 x SDS sample buffer supplemented with 25 mM DTT and 

heated for 10 min at 95°C and afterwards cooled down for 2 min on ice to denature the 

proteins futher. For gel electrophoresis, the Mini-PROTEAN® electrophoresis system was 

utilized (Bio-Rad, Munich). Specimens were loaded onto the gel and allowed to resolve for 

approximately 15-20 min at 80 V until they migrated out of the stacking gel. Separation was 

then run at 120 V until the desired separation was achieved. The gel was subsequently either 

used in a Western blot analysis (section 2.2.3.6) or washed three times in distilled water for 

further staining with GelCode®-Blue Stain (Pierce, Thermo Fisher, Rockford, USA) on a Mini 

rocker shaker according to the manufacturer´s protocol. Long-term gel preservation was 
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conducted by incubating the gel with a solution of 10 % glycerol/20 % ethanol for 30 min and 

subsequently dried between cellophane sheets in a gel drying frame (Roth, Karlsruhe) for up 

to two days at RT.  

2.2.3.6 Western blot analysis 

For immunodetection, proteins were separated by SDS-PAGE (section 2.2.3.5) and 

subsequently transferred to Hybond ECL Nitrocellulose membrane (Amersham Biosciences, 

Munich). For this purpose, the Mini Trans-Blot® apparatus was employed (Bio-Rad, Munich) 

and constructed according to the manufacturer´s protocol (Fig. 2.11), using transfer buffer. 

Particular attention was paid that no air bubbles persisted between the gel and the 

nitrocellulose membrane. The transfer was subsequently transformed for either 2 h at 25 V or 

overnight at 15 V. The membranes were thereafter washed once for 5 min in 1 x TBS to 

dispose of the methanol-containing transfer buffer. Subsequently the blocking of non-specific 

protein binding sites was conducted by incubating the membrane in blocking solution for 

Western blotting containing BSA and milk powder for at least 1 h at RT. After washing the 

blocked membrane for three times with 1 x TBS to remove blocking solution, the same was 

incubated with the respective primary antibodies diluted in TBSM for 2 h at RT or overnight at 

4°C under constant agitation.  

 

Fig. 2.11:  Assembly of Mini Trans-Blot® Western blotting apparatus from Bio-Rad, Munich. The cassette 
holds the gel and the nitrocellulose membrane between buffer-saturated filter papers and fiber 
pads, followed by vertical insertion of the cassette in the electrode module inside the transfer 
tank filled with transfer buffer. The cassette is then placed between the anode and the kathode, 
thus being ready for transferring. 

After removing unbound antibodies by washing 10 min each with TBSM, twice with TBSM-T 

and once again with TBSM, the corresponding secondary antibody conjugated with alkaline 
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phosphatase was diluted in TBSM and added to the membrane. Binding of the respective 

secondary antibody was conducted by incubation for 1 h at RT under constant agitation. To 

remove excessive antibodies, the membrane was subsequently washed once with 1 x TBS, 

twice with TBS-T and again with 1 x TBS for 10 min each. Thereafter, the membrane was 

equilibrated for 3 min in equilibration buffer and subsequently the membrane was developed 

by adding one NBT (nitroblue tetrazoliumchloride)/BCIP (5-bromo-4-chloro-3´-

indolylphosphate) tablet (Sigma-Aldrich) which was previously dissolved in 10 ml H2Obidest for 

1 to 15 min, depending on the desired signal intensity and background staining. The detection 

reaction was then stopped by rinsing the developed membrane in stop buffer.  

2.2.3.7 Co-immunoprecipitation assay  

Co-immunoprecipitation (Co-IP) is the technique of precipitating a protein antigen out of 

intact protein complexes using an antibody that specifically binds to the protein of interest, 

also called bait-antibody. Co-IP is a powerful method for isolation and concentration of this 

particular protein from a mixed protein sample, together with binding partners of the protein 

of interest. Initially, parasite lysates attained from wild type NF54 or tagged cultures were 

processed as described above (section 2.2.1.4) and subsequently pre-cleared by means of 

successively adding 5 % v/v of pre-immune serum and 20 µl of PBS-washed protein G-beads 

(Santa Cruz Biotechnology, Heidelberg) and incubation for 30 min each at 4°C. Depending on 

the origin species of the latter used bait antibody, pre-immune sera was utilized from the 

same species for pre-purification, in this study pre-immune serum from mouse, rat and 

rabbit, respectively. Pre-clearing of lysates was then completed by centrifugation of 

specimens at 3 500 × g for 5 min at 4°C and the supernatant containing the pre-purified 

parasite protein lysate was transferred in new pre-chilled reaction tubes. Further incubation 

of the lysates with the appropriate amount of anti-kinase (bait) antibody for at least 1 h at 4°C 

on a tube agitator was followed by successive incubation with 20 µl of PBS-washed protein G 

beads each. Incubation of beads was carried out overnight to ensure appropriate binding of 

the protein-antibody complex to the protein G beads. The following day, the supernatant was 

removed by centrifugation at 3 500 × g for 5 min at 4°C and the bead-immunocomplexes 

were washed three to five times with ice-cold 1 x PBS. For succeeding kinase activity assay, 

the immunocomplexes were washed lastly with 5 x kinase buffer. In case of SDS-PAGE, the 

specimens were solely resuspended with an equal volume of SDS loading buffer containing 

DTT (see section 2.2.3.5) and loaded onto an SDS gel for verification or processing via 

Western blotting. 
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Fig. 2.12:  Schematic depicting the principle of Co-IP. 1. Specific antibodies are utilized that target the 
respective kinase in the parasite lysate which 2. then bind the kinase in the solution. 3. 
Subsequently added protein G coated beads bind the Fc region of the antibodies to form a 
immunocomplex. 4. Washing and centrifugation of the immunocomplex separates it from the 
remaining parasite proteins in the solution, which can be thoroughly aspirated.  

2.2.3.8 Kinase activity assay 

For investigating phosphorylation activity of the PfCLK kinases in vitro, kinase activity assays 

were performed with radioactive labeled ATP proceeding co-immunoprecipitation (section 

2.2.3.7) of the respective PfCLK from wild type NF54 lysates. The kinase reaction was either 

supplemented by the exogenous substrates histone H1, myelin basic protein (MBP) and α-/β-

casein or recombinant plasmodial SR proteins destined to be investigated as putative PfCLK 

substrates. In case of testing the effect of CLK inhibitors in the kinase activity assays, sorbitol-

synchronized ring stages were incubated with the inhibitors at approximate IC80 

concentrations for 12 h prior to generation of lysates for immunoprecipitation. In the event of 

preincubated Npl3p, no further substrates were added as Npl3p was already added to the 

parasite lysate within the scope of Co-IP. A standard kinase reaction of 30 µl was conducted in 

a standard kinase buffer and prepared as follows: 

Tab. 2.16: Composition of a standard kinase reaction for kinase activity assay.  

Reagent Volume 

5 x kinase buffer  6 µl 

Exogenous substrates/recombinant protein (10 µg) y µl 

ATP-mix 5 µl 

Sterile H20bidest x µl 

Final volume 30 µl 

 

60 μM ATP non-radiolabeled was prepared by mixing 75 μl dH2Obidest and 5 μl of 1 mM ATP 

stock. Further, a mixture of 4.75 μl 60 μM ATP and 0.25 μl 0.1 MBq [γ-32P] ATP was prepared 

per reaction. This 5 μl mixture of radiolabelled and non-radiolabelled ATP was added to the 

above 25 μl reaction, scaling the final volume of 30 μl kinase reaction. Reactions were 

incubated at 37°C for 1 h under constant agitation and terminated by addition of 8 μl of 
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2 x sample buffer (section 2.1.7) for 5 min at 100°C. Samples were separated on 12 % SDS-

PAGE (section 2.1.7 and 2.2.4.4) and the gel was dried followed by exposing it to an X-ray 

film. The film was incubated at -20°C for 48-90 h and developed to detect the 

phosphorylation signal. For negative control, purified GST- or MaPB-tag alone was used for 

substrate in the kinase activity assays. An additional negative control, in which the parasite 

lysate was replaced by the same volume of 1 x PBS (PBS control), was used to exclude 

unspecific phosphorylation of reaction components. Recombinantly expressed His6-tagged 

protein kinase 6 (rPK6), purified as previously described (Bracchi-Ricard et al., 2000), was 

used as a positive control for the kinase activity assay using exogenous substrates. For 

quantification of inhibition of phosphorylation, the mean grey values (MGV) for the DMSO 

control were set to 100% to calculate the relative MGV (rMGV).  
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3 Results 

3.1 Functional characterization of the PfCLKs 

The CMGC group of eukaryotic kinases displays the vastest group in the plasmodial kinome. 

Although members of the CDK, MAPK and GSK3 families have been investigated extensively, 

scant research has been undertaken up to date regarding the fourth family, the CDK-like 

kinases (CLK) in P. falciparum. The four members belonging to this family, PfCLK-1/LAMMER, 

PfCLK-2, PfCLK-3 and PfCLK-4, are most probably assigned to be involved in mRNA processing 

and transport. They represent dual specificity kinases with the ability to autophoshorylate 

tyrosine residues, but phosphorylate their specific substrate proteins solely on 

serine/threonine residues (Bullock et al, 2009). Previous studies revealed a primarily nucleus-

associated expression of PfCLK-1 as well as PfCLK-2 in asexual parasites, with both kinases 

revealing essentiality for the replication cycle of asexual parasites (Agarwal, 2010; Agarwal et 

al., 2011). Furthermore, immunoprecipitated PfCLK-1 and PfCLK-2 exhibited in vitro 

phosphorylation acitivity on exogenously added substrates (Agarwal, 2010; Agarwal et al., 

2011). As scarce research has been conducted regarding the remaining family members 

PfCLK-3 and PfCLK-4, functional characterization studies were performed by means of 

immunofluorescence assays and Western blots in the present study in order to scrutinize the 

stage-specific expression of both kinases. Moreover, the recombinogenicity of the pfclk-3 and 

pfclk-4 loci was determined by reverse genetic approaches in order to permit any reliable 

forecasts on the essentiality of the plasmodial CLKs. Similarly as it was carried out for PfCLK-1 

and PfCLK-2 (Agarwal, 2010), phosphorylation capability of PfCLK-3 and PfCLK-4 was 

determined by kinase activity assays.  

3.1.1 Protein expression analysis of PfCLK-3 and PfCLK-4 in P. falciparum 

stages 

The protein expression profile of the two plasmodial CDK-like kinases PfCLK-3 and PfCLK-4 

was investigated in this study. For the detection and verification of stage-specific expression 

of PfCLK-3, attempts to generate a recombinant protein were made using primers from 

regions covering portions of the catalytic domain. Two different primer pairs were utilized 

resulting in diverse fragments of the catalytic domain of PfCLK-3 with a size of 41.1 and 30.4 

kDa, respectively. The recombinant proteins were fused to an N-terminal GST-tag (26.0 kDa) 

resulting in a size of 67.1 and 56.4 kDa, respectively and named PfCLK-3 rp1 and PfCLK-3 rp2. 

Purification of either PfCLK-3 rp1 or rp2 was conducted as soluble proteins as well as inclusion 

bodies. As the concentration of soluble GST-tagged protein after two independent 

purification steps was too low for immunization of mice (Fig 3.1) and was diminished 

furthermore after buffer exchange via Amicon centrifugal units (not shown), merely the 

inclusion body purified recombinant proteins (Fig. 3.2) were viable and therefore used for 

immunization of mice.  
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Fig. 3.1:  Generation of GST-tagged recombinant PfCLK-3 fragments as soluble proteins for polyclonal 
antibody production in mice. Bacterial overnight cultures of one clone for each plasmid was 
induced with IPTG (+ IPTG) to induce transcription. Uninduced cultures (- IPTG) were cultivated as 
negative transcription controls. Large scale purification revealed protein bands migrating at the 
respective molecular weight of the purified protein by means of SDS-PAGE and subsequent 
Coomassie blue staining. A. A first fragment from the catalytic domain, PfCLK-3 rp1, was 
recombinantly expressed in E. coli at the expected size of 67.1 kDa in all five elution steps, 
however only in marginal concentrations (indicated by arrows). B. A second, 30.4 kDa portion of 
the catalytic domain of PfCLK-3, rp2, was N-terminally fused with GST and expressed 
recombinantly with a complete size of 56.4 kDa only in very low concentrations in the first 
elution step (arrows). FT: flow-through of bacterial protein lysate, PBS wash: flow-through of 
washed column. 

Generated polyclonal mouse antisera based on purified inclusion bodies of PfCLK-3 rp1 were 
utilized in Western Blot analysis (Fig. 3.3 B) and revealed protein expression in lysates of 
asexual parasites (ASEX, using the gametocyte-less strain F12) and of gametocytes (GC, using 
the gametocyte-producing strain NF54). The detected protein bands migrated at the 
calculated full-length of PfCLK-3 (81.0 kDa). 

 

Fig. 3.2:  Synthesis of PfCLK-3 rp1 and rp2 purified from bacterial inclusion bodies. Inclusion body (IB) 
specimens were diluted 1:10 in 1x PBS prior to loading onto the SDS gel to avoid overloaded 
bands due to highly concentrated protein preparations. Preparations were loaded in different 
volumes for estimation of protein concentration destined to subsequent immunization of mice. 
Staining of SDS-gels was conducted by means of Coomassie blue staining.     
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A similar expression pattern was achieved using antibodies against the recombinant fragment 

PfCLK-3 rp2 (not shown). Full size protein bands were furthermore observed in nuclear pellet 

fractions of asexual parasites (NP) and cytoplasmic fractions (CF). Preparation of nuclear 

pellet fractions of asexual parasites, the corresponding cytoplasmic fractions and nuclei 

verification by means of Hoechst staining were kindly provided and carried out by Dr. Shruti 

Agarwal (Agarwal, 2010). No protein bands were detected in lysates of uninfected 

erythrocytes (EC) incubated with the mouse anti-PfCLK-3 antibody or when neutral mouse 

serum (NMS) was used on asexual parasite lysates (ASEX).  

 
Fig. 3.3:  Verification of PfCLK-3 antisera for expression studies. A. Western Blot on the inclusion body-

derived recombinant protein PfCLK-3 rp1 was performed to verify the detection of the 81.0 kDa 
protein by the antiserum generated against it. Inclusion body preparations were diluted 1:10. B. 
Protein level expression of PfCLK-3 in blood stage parasites by means of Western blot analysis. 
Protein bands at sizes of 81.0 kDa and approx. 70.0 kDa (indicated by arrows) were detected. For 
kinase detection in asexual parasites, lysates of the gametocyte-less strain F12 (ASEX) and for 
detection of gametocytes, lysates of the gametocyte-producing strain NF54 (GC) were utilized. 
Neither in lysates of uninfected erythrocytes (EC) nor in asexual parasite lysates blotted with 
neutral mouse serum (NMS), specific bands could be detected.  

Antibodies against both fragments raised from inclusion bodies were not capable of detecting 

the kinase by means of indirect immunofluorescence assays (IFA). For this purpose, 

antibodies kindly provided by Andrew Tobin (MRC Toxicology Unit, Leicester, UK) were used 

for expression studies in IFA. Therefore, specific rat antibodies against PfCLK-3 were raised by 

immunizing rats with peptide YKSKHEENSPDGDSY (AA30-44) and purified by protein G as 

described previously (Solyakov et al., 2011).  

Immunolabeling with rat anti-PfCLK-3 antibody exhibited a labeling of the kinase which is 

associated with the nucleus of trophozoites. However, in schizonts the kinase seems to be 

displacing to the parasite cytoplasm (Fig 3.4, upper panel) with a rim-associcated expression 

especially in latter stages. An analogical detection of PfCLK-3 was observed in the cytoplasm 

of stage IV and stage V gametocytes with a substantial rim-associated labelling pattern (Fig 

3.4, lower panel). Asexual parasites were counterstained with antibodies against the 
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merozoite surface protein MSP-1, and gametocytes were labeled with antibodies against the 

sexual stage protein Pfs230. 

 

 

Fig. 3.4:  Expression analysis of PfCLK-3 by the use of rat antisera. Indirect immunofluorescence assays 
were performed using rat polyclonal antibodies directed against a portion of the kinase. Whereas 
the kinase labeling can be detected in association with the parasite nucleus in trophozoites (TZ), 
the kinase appears to be more distributed into the periphery of the cytoplasm of schizonts (SZ). 
In gametocytes, a likewise rim-associated labelling of PfCLK-3 is observed. Kinase labeling was 
visualized with Alexa Fluor488 secondary antibody (green). Neutral rat serum (NRS) was used in 
IFA and showed no binding (lower panel). Asexual parasites were detected with antibodies 
against the merozoite surface protein PfMSP-1, whereas gametocytes were labeled with 
antibodies against the sexual stage protein Pfs230. Parasite nuclei were highlighted by means of 
Hoechst staining.(blue). Bar, 5 µm.  
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For investigation of protein expression of PfCLK-4, a 51.6 kDa fragment of the catalytic 

domain was selected to be recombinantly expressed in E. coli. The recombinant fragment of 

the catalytic domain sequence was fused to an N-terminal GST-tag with a size of 26.0 kDa, 

resulting in a 77.6 kDa recombinant fusion protein, PfCLK-4 rp4. Overnight bacterial cultures 

expressed the fusion protein after transcription induction by means of IPTG (section 2.2.3.1) 

which was verified by Western blot detection utilizing antisera against the GST-tag (Fig. 3.5 

A). Affinity purification (Fig 3.5 B) as well as subsequent buffer exchange and concentration 

by means of Amicon centrifugal units (Fig. 3.5 C) was carried out and GST-tagged fusion 

protein PfCLK-4 rp4 was obtained, which was further used for immunization of mice for 

raising polyclonal antibodies against a region of the catalytic domain of PfCLK-4.  

 

Fig. 3.5:  Generation of GST-tagged recombinant PfCLK-4 rp4. A fragment from the catalytic domain was 
fused to GST N-terminally and recombinantly expressed in E. coli. A. Western Blot of bacterial 
overnight culture lysates to detect PfCLK-4 rp4-GST by antisera against the GST-tag. Bacterial 
overnight cultures of one clone for each plasmid was induced with IPTG (+ IPTG) to initiate 
transcription. Uninduced cultures (- IPTG) were cultivated as negative transcription controls. B. 
SDS-PAGE of large scale purification revealed protein bands migrating at the respective molecular 
weight of the purified recombinant fusion protein PfCLK-4 rp4 (77.6 kD, arrows). C. SDS-PAGE for 
estimation of protein concentration after buffer exchange and concentration with different 
dilutions of eluate loaded onto the gel. Staining of SDS-gels was conducted by Coomassie blue 
staining. FT: flow-through of bacterial protein lysate, PBS wash: flow-through of washed column. 

In conformity with transcription data (Agarwal, 2010; Agarwal et al., 2011), immunoblotting 

revealed protein expression in lysates of asexual blood stages with bands migrating at the 

calculated full-length molecular weight of PfCLK-4 (157 kDa, Fig. 3.6.B). In addition, bands of 

lower molecular weight (100 kDa; 70 kDa) were detected in mixed asexual parasite lysates. 

Similar lower molecular weight bands were obtained in lysates of mature gametocytes (GC) 

and cytoplasmic fractions (CF) of asexual parasites. To experimentally verify the presence of 

PfCLK-4 in the parasite nucleus, nuclear pellet fraction from mixed asexual parasite stages 

was collected and employed in Western blot analysis. A full-length protein of 157 kDa was 

detected in the nuclear pellet of asexual parasites (NP, Fig. 3.6 B). No protein bands were 

detected in lysates of uninfected erythrocytes (EC) or in asexual parasites incubated with 

neutral mouse serum (NMS), both used as negative controls. 
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Fig. 3.6:  Determination of antisera directed against PfCLK-4 for expression studies. A. Western blot 

analysis for evaluation of PfCLK-4 antibodies. Immunoblotting of mouse antiserum directed 
against GST-tagged fusion protein PfCLK-4 rp4 (diluted 1:20) revealed bands at the expected size 
of 77.6 kDa. B. Western blot analysis for stage-specific expression of PfCLK-4. Mouse-derived 
polyclonal antibodies against recombinantly expressed fusion protein of PfCLK-4 rp4 revealed 
protein bands with full-length kinase bands (157 kDa) in asexual parasite lysates (ASEX) as well as 
nuclear pellet preparations (NP), alongside with processed kinase bands running at 100 and 70 
kDa, respectively. Exclusively the truncated kinase fragments could be detected in gametocytes 
(GC) and cytoplasmic fractions (CF). Neither in lysates of uninfected erythrocytes (EC) nor in 
asexual parasite lysates incubated with neutral mouse serum (NMS), specific kinase bands could 
be detected.  

 

Protein expression of PfCLK-4 was scrutinized by immunofluorescence assays on P. falciparum 

wild type strain NF54. Immunolabeling detected the presence of PfCLK-4 in the nucleus and 

cytoplasm of both asexual stages, trophozoites (TZ) as well as schizonts (SZ). Similarly, in 

gametocytes the kinase was detected in both cellular compartments with the specific mouse 

antisera. Kinase labelling was carried out with Alexa Fluor488 secondary antibody and nuclei 

were highlighted with Hoechst staining. Asexual parasites were counterstained with 

antibodies against the merozoite surface protein PfMSP-1, and gametocytes were labeled 

with antibodies against the sexual stage protein Pfs230. 
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Fig. 3.7:  Protein expression analysis of PfCLK-4. IFAs were performed using polyclonal antibodies. 
Whereas the kinase labeling can be detected in association with the parasite nucleus as well as 
the cytoplasm in both investigated asexual stages, trophozoites (TZ) and schizonts (SZ). In 
gametocytes (stage IV shown here), a similar distribution can be observed. Kinase labeling was 
visualized with Alexa Fluor488 secondary antibody (green). Asexual parasites were detected with 
antibodies against the merozoite surface protein PfMSP-1, whereas gametocytes were labeled 
with antibodies against the sexual stage protein Pfs230. Parasite nuclei were highlighted by 
means of Hoechst staining. Bar, 5 µm.  

3.1.2 Reverse genetic studies on PfCLK-3 and PfCLK-4  

For investigating the cellular function of the PfCLK kinases, reverse genetic approaches 

(Dorin-Semblat, 2007) were utilized to confirm whether PfCLK-3 or PfCLK-4 are indispensable 

for the completion of the asexual replication cycle. This approach aims at the verification 

whether the kinases play an essential role in the parasite’s lifecycle. In an initial attempt, the 

respective PfCLK knock-out (KO) was aimed to be generated via a single cross-over 

homologous recombination technique, deploying the pCAM-BSD vector (Sidhu, 2005). This 

KO-vector encompasses the insert corresponding to a portion of the respective kinase 

catalytic domain and furthermore a resistance cassette conferring resistance to blasticidine 

(BSD) to mutant parasites. For a successful homologous recombination, the respective kinase 

insert of the KO-vector is designed homologous to the endogenous kinase gene, which is 

attempted to be knocked out. In case of integration of this vector into the genome of P. 

falciparum, a gene-disruptant, pseudo-diploid gene locus arises, in which the ATP-binding 
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region is disjointed from the proline-glutamate-rich (PE) motif, resulting in a disrupted 

catalytic domain and thus a non-functional, truncated enzyme. Cloning of KO-pCAM-BSD 

vector for PfCLK-3 and for PfCLK-4 was kindly carried out by Dr. Shruti Agarwal (Agarwal, 

2010).  

 

Fig. 3.8:  Generation of gene-disruptant parasites by means of reverse genetics. A. Schematic of knock-
out (KO)-strategy by single cross-over homologous recombination utilizing the pCAM-BSD vector. 
Primer combinations used for discrimination between wild type (A), episomal presence (B), 5´-
integration (C) and 3´-integration (D) of the transfection plasmid are indicated by arrows. 
Modified from Agarwal, 2010; Agarwal et al., 2011. Primer combination A: amplification of wild 
type (Wt) gene locus; primer B: amplification of episome (E); primers C: diagnostic for 5´-
integration of plasmid; primers D: diagnostic for 3´-integration of plasmid. BSD: blasticidine drug 
resistance cassette. ATP: ATP binding motif. PE: Proline-glutamate motif. B. Molecular analysis of 
PfCLK-3 and PfCLK-4 KO attempts by reverse genetic approaches. Diagnostic PCR from total DNA 
of pCAM-BSD- PfCLK-3-KO vector transfected parasites showed amplification only for the wild 
type (Wt, 594 bp) and episomal gene locus (E, 794 bp, observed dimerization of amplicons). No 
amplification was observed for PfCLK-3-KO attempts at the sizes of the 5´- or 3´-integration 
concatemers. Similarly as observed for PfCLK-3-KO, no integration of PfCLK-4-KO plasmid was be 
demonstrated. Only the wild type (1.48 kb) and non-integrated episomal band (672 bp) could be 
detected. Wild type parasites of strain NF54 were used as a control of the wild type locus.  

Electroporated parasites were cultivated under the influence of selection medium containing 

BSD, and after onset of drug pressure for both PfCLK-3 and PfCLK-4, drug-resistant 



RESULTS 74 

subpopulations emerged after three weeks, although the number of parasites was initially 

reduced. For both plasmodial kinases, only parasites containing the non-integrated episomal 

plasmids were detected by means of diagnostic PCR (section 2.2.2.10), even after prolonged 

cultivation for more than 20 weeks. In addition, a second attempt of transfection followed by 

cultivation, gDNA isolation and PCR amplification led to the same result (Fig 3.8 B). 

 

Fig. 3.9:  Gene tagging strategy by reverse genetics. A. Schematic of gene tagging strategy by single cross-
over homologous recombination utilizing the pCAM-BSD-tag vector construct. Regions used for 
discrimination between wild type (A), episomal presence (B), 5´-integration (C) and 3´-integration 
(D) of the transfection plasmid are indicated by arrows. Modified from Agarwal, 2010; Agarwal et 
al., 2011. Primer combination A: amplification of wild type (Wt) gene locus; primer combination 
B: amplification of episome (E); primers C: diagnostic amplification of 5´-integration of plasmid; 
primers D: diagnostic amplification of 3´-integration of plasmid. BSD: blasticidine drug resistance 
cassette. Myc: double Myc-tag, exemplary. 3´UTR: 3´-untranslated region from P. berghei DHFR-
ts gene. B. Molecular analysis of successful in situ PfCLK-3 and PfCLK-4 tagging attempts by 
reverse genetic approaches after separation and selection of wild type-devoid clones by limiting 
dilution. Diagnostic PCR from single clone 1C9 genomic DNA of pCAM-BSD-PfCLK-3-Myc vector 
transfected parasites showed amplification of episome (E, 1.94 kb) as well as 5´- or 3´-
integration-correlating DNA fragments (1.74 kb and 1.39 kb, indicated by arrows), respectively. 
The single clone population was devoid of wild type indicating band (1.92 bp). Likewisely, PfCLK-
4-Myc plasmid transfected parasites of the single clone 2A4 showed integration of episome (1.70 
kb) as well as bands for 5´- or 3´-integration amplicons (2.0 kb and 900 bp, indicated by arrows), 
respectively. The clone 2A4 was devoid of wild type sequences (1.40 bp). Wild type parasites of 
strain NF54 were used as a control of the wild type locus. 

To verify the accessibility of the respective gene locus for recombination, a second approach 

was carried out simultaneously. For this purpose, another pCAM-BSD based vector was 

generated, containing an insert homologous to the 3´-end of the respective kinase gene. This 



RESULTS 75 

insert was fused to the sequence of a c-Myc-epitope followed by the 3´-untranslated region 

of the P. berghei dhfr-ts gene (Fig. 3.9 A). Genomic integration of this vector is resulting in a 

complete functional kinase that is tagged by a Myc epitope. By means of gene-tagging, 

recombinogenicity of the respective gene locus can be proven if successful integration of the 

vector occurs. Cloning and preparation of Myc-tagged pCAM-BSD-vectors was carried out by 

Dr. Shruti Agarwal (Agarwal, 2010). Electroporation and subsequent treatment of cultures 

with blasticidine resulted in a subpopulation of drug-resistant parasites after approximately 

three weeks and diagnostic PCR revealed integration of tagged constructs into the respective 

gene locus. Both PfCLK-3 and PfCLK-4 could be tagged with a Myc-epitope. To gain parasites 

devoid of the wild type allele which was still present, single clones were isolated by means of 

limiting dilution (section 2.2.1.7), which maintained the integrated plasmid even after 

prolonged cultivation. The clone 1C9 of PfCLK-3-Myc subpopulation was chosen and 

diagnostic PCR verified the absence of the wild type kinase locus, whereas 5´- and 3´-

integration of the tagging vector could be confirmed (Fig 3.9 B). Similarly, the PfCLK-4-Myc 

clone 2G2 showed complete integration of the respective tagging vector, whilst the parasites 

were devoid of the wild type allele of the kinase (Fig 3.9.B).  

 

Fig. 3.10:  Phenotype analyses of genetically modified parasites by means of Western Blotting with 
antisera directed against Myc-tag. A. Lysates of Myc-tagged PfCLK-3 parasites were utilized to 
detect the integrant parasite population using rabbit anti-Myc antibody via immunoblotting. The 
protein bands migrated at the expected kinase full size molecular mass of 81 kDa (right lane, 
indicated by arrows). The same bands occurred when mouse anti-PfCLK-3 antibody was blotted 
on WT and mutant parasite lysates (left lanes). No protein band was observed in the non-
integrated WT lysate used as control (WT NF54). B. Western blot utilizing anti-Myc antibody 
detected the 157 kDa full-length protein band (arrows) as well as an addition processed protein 
band at 70 kDa in Myc-tagged PfCLK-4 parasite lysates (right lane). No band was observed in the 
WT control. The same bands with an additional 50 kDa band of processed protein occurred when 
mouse anti-PfCLK-4 antibody was blotted on WT and mutant parasite lysates (left lanes).  

Subsequently, the successful integration of tagged PfCLK-3 and PfCLK-4 was furthermore 

confirmed by Western blot. Lysates of Myc-tagged PfCLK-3-asexual parasites demonstrated 
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an immunoreactive band of the full size kinase (81 kDa) when incubated with anti-Myc 

antisera, whereas in wild type parasites of the strain NF54, no kinase was detected by 

immunoblotting with anti-Myc antibodies (Fig 3.10 A). Full size bands for PfCLK-3 were 

observed in both wild type and tagged mutant parasites when incubated with the specific 

anti-PfCLK-3 antisera. Anti-Myc antibodies were capable of detecting the full size PfCLK-4 

(157 kDa) in lysates of integrant parasites of clone line 2A4, similarly to anti-PfCLK-4 mouse 

antisera in both wild type and mutant parasite lysates (Fig 3.10 B).  

Once the mutant parasite lines with the tagged PfCLKs were obtained, they were 

subsequently deployed for additional characterization by immunofluorescence assays. 

Therefore, lysates of parasite lines possessing the respective Myc-tagged kinase were 

immunolabeled with anti-Myc antisera. Both tagged kinases showed expression patterns 

likewise in WT parasites (Fig 3.11). PfCLK-3 and PfCLK-4 are distributed in the cytoplasm of 

blood stage schizonts and are not only restricted to the parasite nucleus.  

 

Fig. 3.11:  Subcellular localization of Myc-tagged PfCLK-3 and PfCLK-4 in blood stage schizonts. Mixed 
asexual blood stage cultures of the integrant PfCLK-3-Myc and PfCLK-4-Myc lines were methanol-
fixed and prepared for IFA (section 2.2.1.2), using rabbit antibodies against the Myc-tag (green). 
Parasite nuclei were labeled by Hoechst nuclear staining (blue) and schizonts were highlighted 
with mouse antibodies against PfMSP-1 (red). Bar, 5 µm.  

3.1.3 Kinase activity assays on PfCLK-3 and PfCLK-4-specific precipitate 

As previous attempts to use recombinantly expressed PfCLK-1/LAMMER in kinase activity 

assays were unsuccessful (Agarwal, 2010), solely the kinase activity of endogenous PfCLK-1-4 

was investigated in the current study. For the purpose of testing endogenous PfCLKs on their 

ability to phosphorylate physiological substrates, kinase activity assays were performed as 

described previously (Reininger et al., 2009, Agarwal et al., 2011). Native kinases were 

immunoprecipitated using the kinase-specific mouse antisera (section 2.2.3.7) from asexual 

wild type NF54 parasite lysates (section 2.2.3.4). After washing the immunocomplex, a kinase 

activity assay was performed adding exogenous substrates histone H1, myelin basic protein 

(MBP) as well as α-/β-casein. Subsequently the proteins were destined to separation by SDS 

gel electrophoresis (section 2.2.3.5), gels were vacuum-dried and phosphorylation signals 

were finally detected by autoradiography. All four endogenous PfCLK kinases were able to 
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significantly phosphorylate all three exogenously added substrates (Fig. 3.12, upper panel). As 

positive control, recombinantly expressed protein kinase 6 (rPK6; Bracchi-Ricard et al., 2000) 

which predominantly phosphorylates MBP, revealed strong phosphorylation activity of all 

three exogenously added substrates. The assay was performed without precipitated kinases 

(PBS control) as negative control and no phosphorylation signal was observed. As loading 

control, Coomassie blue-stained radiolabelled gels were utilized (Fig. 3.12, lower panel).  

 
Fig. 3.12:  Kinase activity assays performed on immunoprecipitated PfCLKs. In order to scrutinize in vitro 

phosphorylation activity, ubiquitous kinase substrates were added to a standard kinase reaction 
including the precipitated kinases. All four investigated endogenous PfCLKs were capable of 
phosphorylating α-/β-casein, myelin basic protein (MBP) as well as histone H1 in vitro (upper 
panel). Recombinant protein kinase PfPK6 served as phosphorylation control and exhibited 
similar strong phosphorylation signals. Instead of parasite lysates, immunoprecipitation reactions 
containing PBS were used as negative control (PBS). Coomassie blue-stained SDS-gels served as 
loading control (lower panel). 

3.2 Identification of putative interaction partners of the PfCLKs 

In preceding studies, the catalytic domain sequences of all four PfCLKs have been aligned with 

the homologous yeast kinase Sky1p (Agarwal, 2010; Agarwal et al., 2011), which is a well-
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studied kinase of S. cerevisiae and involved in mRNA splicing and mRNA transport in this 

organism (Siebel et al., 1999). Sequence alignment revealed that all conserved kinase 

domains are present in the PfCLKs (Agarwal, 2010), and further striking matches between 

substrate binding residues between the kinases of the different organisms were disclosed. In 

this previous study, this led to having a closer look at the specific substrate protein of Sky1p, 

which is referred to as Npl3p and displays a shuttle-protein for nucleocytoplasmic transport 

(Siebel et al., 1999; Lukasiewicz et al., 2007). In the onset of the study of Dr. Agarwal, several 

plasmodial proteins were found that were homologues to the BLAST searches of the yeast 

kinase substrate Npl3p as well as mammalian kinase substrate SF2/ASF (Tab. 3.1). Among 

them were the putative splicing factor PF3D7_1119800 (PfASF-1), the putative 

serine/arginine-rich splicing factor PF3D7_0503300 (PfSRSF12), the putative pre-mRNA 

splicing factor PF3D7_1022400 (PfSFRS4) as well as the putative splicing factor 

PF3D7_1321700 (PfSF-1).  

Tab. 3.1:  Table displaying homologies between the plasmodial proteins investigated in this study and 
yeast Npl3p and human SF2/ASF.  

Plasmodial protein Homology with yeast Npl3p Homology with human SF2/ASF 

PfASF-1  32% 44% 

PFSFRS4 28% 45% 

PfSRSF12 45% 80% 

PfSF-1 46% 63% 

 

Noteworthy, all these hits were putative plasmodial splicing factors or at least putatively 

assigned to RNA binding protein function, possessing one or two RNA recognition motifs 

(RRM). In order to generate major insights into the individual components of the plasmodial 

splicing machinery, these four plasmodial factors were investigated in this study. Initially, the 

plasmodial factors as well as yeast Npl3p were recombinantly expressed in E. coli. In a 

subsequent approach, these recombinant factors were utilized in kinase activity assays for 

determining whether they display interactions partners for the PfCLKs in vitro. Lastly, 

localization studies were carried out in order to further characterize the four chosen 

plasmodial proteins.  

3.2.1 Expression of recombinant proteins in E. coli  

To identify putative interactions partners of the PfCLKs, we first recombinantly expressed 

GST-tagged yeast splicing factor Npl3p in E. coli (expression plasmid kindly provided by Dr 

Gourisankar Gosh, Department of Cellular and Molecular Medicine, University of California, 

San Diego, California, USA). After several unsuccessful attempts to gain recombinant GST-

tagged Npl3p in the elution fraction of the affinity purification, the bacterial flow-through was 

utilized which was rich of recombinant Npl3p-GST, as verified by SDS-PAGE (Fig. 3.13 A). 

Further confirmation of the presence of GST-tagged Npl3p was utilized by immunoblotting 

the bacterial flow-through and detection of protein with anti-GST polyclonal antibodies (Fig. 

3.13 B). The recombinant protein possessed an expected molecular mass of 63.4 kDa, 

resulting in a fusion protein with a molecular mass of 89.4 kDa.  
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To scrutinize whether plasmodial factors are displaying substrates for the four PfCLKs in vitro, 

four proteins were recombinantly expressed that revealed significant homology to the yeast 

kinase substrate Npl3p and mammalian SF2/ASF (Tab. 3.1). Towards this aim, either the full 

size parasite protein (in case of PfASF-1 and PfSRSF12, Fig. 1.7) was bacterially expressed in E. 

coli, or fragments of the respective putative splicing factor (for PfSFRS4 and PfSF-1). 

Moreover, for PfSF-1 it was feasible to split the recombinant protein into two separate 

recombinant proteins due to its higher molecular weight compared to the other three chosen 

proteins. The N-terminal part of the protein which comprises the RS-rich domain was termed 

PfSR-1 rp1, whereas the C-terminal part consisting of three RNA recognition motifs was 

expressed separately and referred to as PfSF-1 rp2 (Fig. 1.7).  

 

Fig. 3.13:  Recombinant expression of yeast GST-tagged splicing factor Npl3p in E. coli. A. Affinity 
purification of GST-tagged Npl3p did not lead to purified eluted protein with an expected 
molecular mass of 89.6 kDa, but protein was yielded in the bacterial flow-through of the 
purification column (FT, arrow). B. Western Blot analysis utilizing mouse derived anti-GST 
antibodies detected the full-length recombinant protein (rNpl3p-GST) running at 89.6 kDa (arrow 
in the figure) as well as truncated fragments migrating at lower molecular weights. GST-tag alone 
was also detected by antibodies (arrow). Dilutions of 5 and 10 µl of bacterial flow-through were 
used, respectively.  

PfASF-1, which has a predicted molecular weight of 22 kDa, was recombinantly expressed as 

GST-tagged full size fusion protein. Consecutively, it was purified via affinity chromatography 

resulting in a 48 kDa recombinant protein (Fig. 3.14 A). Immunoblotting of diluted purified 

soluble protein with antisera against GST confirmed the presence of GST-tagged PfASF-1 in 

concentrations that could be utilized in subsequent interaction studies (Fig 3.14 B.).  
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Fig. 3.14:  Generation of GST-tagged recombinant PfASF-1 via affinity purification. The full-length protein 
was N-terminally fused to GST, expressed in bacteria and subsequently affinity-purified as soluble 
protein with a combined molecular weight of 48 kDa (arrows). FS: filtered supernatant, FT: 
column flow-through. 

Portions of the splicing factors PfSRSF12 and PfSFRS4 were likewise bacterially expressed, but 

these recombinant fragments were tagged with a MaBP-tag with a resulting molecular weight 

of 73 and 87 kDa, respectively (Fig. 3.15).  

 

Fig. 3.15:  Generation of recombinant splicing factors PfSRSF12 and PfSFRS4 in E. coli. A. Affinity 
purification of MaBP-tagged recombinant PfSRSF12. The full-length protein was N-terminally 
fused to MaBP, expressed in bacteria and subsequently affinity-purified as soluble protein with a 
combined molecular weight of 73.0 kDa (arrows). B. Generation of MaBP-tagged recombinant 
PfSFRS4 via affinity purification. The protein was fused N-terminally with MaBP, expressed in 
bacteria and subsequently affinity-purified as soluble protein with a combined molecular weight 
of 65.2 kDa (arrows). FS: filtered supernatant, FT: column flow-through. 
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Fig. 3.16:  Generation of MaBP-tagged recombinant PfSF-1 fragments. They were expressed as soluble 
proteins for examination of interaction with the PfCLKs. A. One clone for the recombinant PfSF-1 
rp1 fragment from bacterial overnight cultures was induced with IPTG (+ IPTG) to induce 
transcription (indicated by arrow). Uninduced cultures (- IPTG) were cultivated as negative 
transcription controls. B. Large scale purification revealed protein bands migrating at the 
expected molecular weight of the purified protein (94.6 kDa). C. One clone for the recombinant 
PfSF-1 rp2 fragment from bacterial overnight cultures was induced with IPTG (+ IPTG) to induce 
transcription (indicated by arrow). Uninduced cultures (- IPTG) were cultivated as negative 
transcription controls. D. Large scale purification revealed protein bands migrating at the 
expected molecular weight of the purified protein (85.7 kDa). FS: filterd supernatant, FT: flow 
through of bacterial protein lysate, PBS wash: flow through of washed column. 

Given the molecular weight of 101 kDa for the fourth chosen plasmodial splicing factor, PfSF-

1, two recombinant portions of this protein were expressed recombinantly as MaBP-tagged 

fusion proteins. PfSF-1rp1 displays the N-terminal part of the physiological protein consisting 

of the RS-domain which is known to be phosphorylated by kinases (Fig. 1.7). This recombinant 

protein has a molecular weight of 95 kDa, whereas the C-terminal part consisting of the RRM 

domains was expressed as 85 kDa fusion protein referred to as PfSR-1 rp2. Both recombinant 

proteins were affinity purified similarly to the above mentioned proteins and subsequently 

loaded onto SDS gels to scrutinize the concentration of soluble protein respectively (Fig 3.16).  
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3.2.2 Kinase activity assays with putative SR proteins 

For experimental verification whether the yeast splicing factor Npl3p is phosphorylated by 

the PfCLKs in vitro, the recombinant protein yielded in the bacterial flow-through was 

subsequently utilized in kinase activity assays (section 2.2.3.8). The PfCLKs were therefore 

immunoprecipitated and recombinant Npl3p was added to each reaction which was 

supplemented with phophorus32-labeled ATP (Fig. 3.17). Preparations were separated via 

SDS-PAGE and phosphorylation signals of Npl3p were detected subsequently by 

autoradiography. Full size bands of the phosphorylated yeast splicing factor were detected 

when PfCLK-1, PfCLK-2 and PfCLK-4 were precipitated from asexual parasite extracts. In 

contrast, PfCLK-3 was not capable of interacting in vitro with the yeast protein Npl3p. 

Interestingly, by incubating Npl3p with parasite extract prior to immunoprecipitation with 

PfCLK-1, Npl3p was phosphorylated as well (Fig. 3.17).  

 

Fig. 3.17:  Phosphorylation of yeast Npl3p by immunprecipitated PfCLKs. Phosphorylation signals were 
observed when recombinant yeast Npl3p-GST was added to the kinase reaction containing 
immunoprecipitated PfCLK-1, PfCLK-2 and PfCLK-4 (left panel). When Npl3p was added prior to 
the kinase activity assay, PfCLK-1 was also capable of phosphorylating the yeast factor (PfCLK-1 
Co-IP). No interaction of PfCLK-3 was verified in vitro with the yeast factor. GST-tag alone as 
substrate (26 kDa) was used as negative control. Shown here is an assay using PfCLK-1 specific 
immunoprecipitate, similar results were obtained with immunoprecipitates of other PfCLKs (data 
not shown). Coomassie blue staining of radiolabeled SDS gels was used as loading control (right 
panel).  

Likewise to Npl3p-GST, recombinant plasmodial SR proteins PfASF-1, PfSRSF12, PfSFRS4 and 

PfSF-1 were expressed either in fragments or as full size proteins (Fig. 1.7). Affinity-purified 

recombinant proteins were added to the kinase reactions for each PfCLK kinase and kinase 

activity assays were carried out as mentioned before (section 2.2.3.8). Bacterially expressed 

full-length GST-tagged PfASF-1 showed interaction with PfCLK-1 and PfCLK-2, as strong 

phosphorylation signals were observed (Fig. 3.18). No phosphorylation bands could be 

detected in kinase reactions containing immunoprecipitated kinases PfCLK-3 and PfCLK-4, 

when recombinant PfASF-1 was added.  
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Fig. 3.18:  Phosphorylation of plasmodial SR protein PfASF-1 by immunoprecipitated PfCLKs. Kinase 
activity assays were deployed to detect phosphorylation of recombinant PfASF-1 (48 kDa, arrows) 
by PfCLK-1 and PfCLK-2 (autoradiogram, left panel). For PfCLK-3 and PfCLK-4, no phosphorylation 
signals could be detected. Coomassie blue staining of radiolabeled SDS gels (right panel) was 
utilized as loading control.  

 
Fig 3.19:  Phosphorylation of plasmodial SR proteins PfSRSF12 and PfSFRS4 by immunoprecipitated 

PfCLKs. Kinase activity assays were deployed to detect phosphorylation of recombinant PfSRSF12 
and PfSFRS4 (73 kDa, 65.3 kDa, indicated by arrows). PfSRSF12 was solely capable of 
phosphorylating PfCLK-2 and PfCLK-3 in vitro, whereas phosphorylation of PfSFRS4 by all four 
PfCLKs was detected in the kinase activity assay. 

Deploying recombinant full-length PfSRSF12, this factor was solely phosphorylated by 

precipitates of PfCLK-2 and PfCLK-3, whereas recombinant PfSFRS4 was phosphorylated by all 
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four immunoprecipitated plasmodial kinases (Fig. 3.19). Regarding the fourth recombinant 

parasite splicing factor PfSF-1, this protein was recombinantly expressed as two independent 

fragments. The N-terminal fragment containing the RS-rich domains and the C-terminal part, 

which only comprises RNA binding motifs, but no RS-rich repeats (Fig. 1.7). PfSF-1 rp1 

displaying the N-terminal RS-rich domain was phosphorylated by the plasmodial CLKs except 

of PfCLK-3 precipitate (Fig. 3.20 A). On the contrary, no phosphorylation signals were 

observed in kinase activity assays for the recombinant C-terminal domain PfSF-1 rp2 when 

incubated with all four precipitated PfCLKs, respectively. Purified GST- and MaBP-tag alone 

was utilized as substrate instead of the recombinant SR proteins and served as negative 

control in the described assays (Fig. 3.20 B). No phosphorylation of the two tags was detected 

in these reactions. Coomassie blue-stained dried gels served as loading control (Fig. 3.20, 

lower panel). 

 
Fig. 3.20:  Phosphorylation of the plasmodial SR protein PfSF-1 by immunoprecipitated PfCLKs. A. The N-

terminal fragment (95 kDa, arrows) of recombinant PfSF-1 was phosphorylated by PfCLK-1, 
PfCLK-2 and PfCLK-4. An additional phosphorylation signal of truncated N-terminal PfSF-1 was 
visible at approximately 60 kDa. On the contrary, the C-terminal fragment of PfSF-1 showed no 
phosphorylation by any of the four PfCLKs. B. GST-tag (26 kDa) or MaBP-tag (43 kDa) alone was 
used as substrate contol and revaled no phosphorylation when added to immunoprecipitates of 
PfCLK-1 and PfCLK-4, respectively. Coomassie blue staining of radiolabeled SDS gels (lower 
panels) was utilized as loading control.  
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3.2.3 Localization studies on putative SR proteins  

Available transcriptome data at PlasmoDB point to a predominant transcript expression in the 

trophozoite stage for all investigated SR proteins (Aurrecoechea et al., 2009). For further 

verification of the subcellular localization of the investigated SR proteins, the soluble 

recombinant protein fractions (section 3.2.1) were utilized to immunize mice for generation 

of antisera against the parasite splicing factors. Antisera raised against the full-length 

plasmodial splicing factor PfASF-1 were utilized in immunofluorescence assays for 

determining the specific localization. The assays showed faint to no signals in all investigated 

life cycle stages of P. falciparum, whereas the stage-specific labeling was clearly visible (Fig. 

3.21). Asexual parasites were counterstained with antibodies against the merozoite surface 

protein PfMSP-1, and gametocytes were labeled with antibodies against the sexual stage protein 

Pfs230. 

 

Fig. 3.21:  Subcellular localization of PfASF-1 in blood and gametocyte stages. Mixed asexual blood stage 
cultures containing trophozoites (TZ) and schizonts (SZ) as well as mature gametocyte cultures 
(GC) were fixed with 4 % paraformaldehyde, using mouse-derived antiserum against PfASF-1. 
Kinase-specific labeling is displayed in green (Alexa Fluor 488), whereas the parasite nuclei are 
highlighted by Hoechst staining in blue. Asexual blood stage parasites are labeled with rabbit 
antibodies against PfMSP-1 and gametocytes with rabbit antibodies directed against Pfs230 (red, 
Alexa Fluor 594) .Bar, 5 µm.  
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Fig. 3.22:  Subcellular localization of PfSF-1 in blood and gametocyte stages. Mixed asexual blood stage 

cultures containing trophozoites (TZ) and schizonts (SZ) as well as mature gametocyte cultures 
(GC) were fixed with 4 % paraformaldehyde, using mouse-derived antiserum against PfSF-1. 
Kinase-specific labeling is displayed in green (Alexa Fluor 488), whereas the parasite nuclei are 
highlighted by Hoechst staining in blue. Asexual blood stage parasites are labeled with rabbit 
antibodies against PfMSP-1 and gametocytes with rabbit antibodies directed against Pfs230 (red, 
Alexa Fluor 594) .Bar, 5 µm.  

Investigation of the subcellular localization of PfSF-1, PfSRSF12 and PfSFRS4 by using specific 

mouse antisera revealed a predominant expression in the nucleus of trophozoites for all 

three plasmodial factors (Fig. 3.22, 3.23 A, B). By means of these investigations, schizonts 

exhibited an additional minor labeling for the three SR proteins. In mature gametocytes, 

presence of PfSRSF12 and PfSF-1 was confirmed via IFA. On the contrary, no PfSFRS4-specific 

labeling pattern could be observed in these stages (Fig. 3.23 B). Furthermore, more thorough 

investigations of the localization of the SR proteins PfSRSF12, PfSFRS4 and PfSF-1 in 

transforming trophozoites (2-nuclei-stage) verified the finding that these splicing factors 

prevail in distinct areas of the parasite nuclei (Fig. 3.25). In contrast, these factors can not be 

detected in the cytoplasm of the parasite. 
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Fig. 3.23:  Subcellular localization of the SR proteins PfSRSF12 and PfSFSR4 in blood and gametocyte 

stages. Mixed asexual blood stage cultures containing trophozoites (TZ) and schizonts (SZ) as well 
as mature gametocyte cultures (GC) were fixed and prepared for IFA, using mouse-derived 
antiserum against PfSRSF12 (A.) or PfSFSR4 (B.), respectively. Kinase-specific labeling was 
visualized using Alexa Fluor 488-labeled secondary antibodies (green), whereas the parasite 
nuclei are highlighted by Hoechst staining in blue. Asexual blood stage parasites were labeled 
with rabbit antibodies against PfMSP-1 and gametocytes with rabbit antibodies directed against 
Pfs230 (red, Alexa Fluor 594) .Bar, 5 µm.  
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Fig. 3.24:  Control IFAs. A. Neutral mouse serum was used in IFA and showed no binding. Asexual parasites 

were counterlabeled with antibodies directed agaist PfMSP-1, whereas sexual stage parasites 
were counterlabeled with rabbit or mouse anti-Pfs230 serum. B. Goat-derived fluorescence-
conjugated secondary antibody exhibited no labeling of asexual parasites or gametocytes. C. 
Furthermore antibodies against the GST-tag or the MaBP-tag alone revealed no binding to 
plasmodium-specific proteins. Bar, 5 µm.  
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Fig. 3.25:  In depth analysis of the localization of the SR proteins PfSRSF12, PfSFRS4 and PfSF-1 in the 

parasite nucleus. Transforming trophozoite stages (2-nuclei-stages) were prepared for IFA as 
described above and the localization of the SR proteins was verified in the Hoechst-positive 
nuclei. Counterlabeling was deployed with rabbit antibodies against PfMSP-1 Bar, 5 µm.  

To confirm co-localization with PfCLK-1, subsequent IFA studies were undertaken which 

demonstrated an expression of the above mentioned three splicing factors in association with 

PfCLK-1/LAMMER (Fig 3.26). In a subsequent step, the numbers of parasites positive for the 

PfCLKs and the three SR proteins PfSRSF12, PfSFRS4 and PfSF-1 were determined. When 

blood stage schizonts were highlighted by immunolabeling with α-PfMSP-1 antibody or by 

Hoechst nuclear staining, 99 ± 1% of schizonts labeled for PfCLK-1-3 or PfSF-1, 96 ± 2% of 

schizonts labeled for PfCLK-4, 92 ± 2.8% of schizonts labeled for PfSFRS4, and 94 ± 0.6% of 

schizonts labeled for PfSRSF12. Further 100 ± 0.9% of Pfs230-positive gametocytes labeled for 

PfCLK-1, 98 ± 1.1% of gametocytes labeled for PfCLK-2, 84 ± 2.3% of gametocytes labeled for 

PfCLK-3, 94 ± 1.1% of gametocytes labeled for PfCLK-4, 96 ± 1.6% of gametocytes labeled for 

PFSF-1, and 96 ± 0.6 of gametocytes labeled for PfSRSF12. No labeling was detected when 

serum of non-immunized mice or secondary antibodies were used in the IFAs (Fig. 3.24 A, B). 

Further, IFAs using mouse antisera directed against the GST- and MaBP-tag did not result in 

any labeling of the blood stage parasites (Fig. 3.24 C).  
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Fig. 3.26:  Co-localization of PfSRSF12. PfSFRS4 and PfSF-1 with PfCLK-1/LAMMER. Immunolabeling of 

PfCLK-1 with rabbit antisera (red) detected the kinase in the cytoplasm of schizonts as well as in 
the nuclei, where it co-localizes with the three SR proteins (green). Schizonts were 
counterlabelled with rabbit antibodies against PfCLK-1 (red). All nuclei were highlighted by 
Hoechst staining (blue). Bar, 5 µm. 

3.3 Evaluation of potential PfCLK inhibitors 

Knock-out attempts for PfCLK-1, PfCLK-2 (S. Agarwal, 2010; Agarwal et al., 2011; Solyakov et 

al., 2011) as well as for PfCLK-3 and PfCLK-4 (this study) were unsuccessful; nonetheless locus 

modification by tagging the respective sequence with an epitope to the 3´end was 

successfully conducted. As a result of a lack of functional kinase disruptant parasites, we 

further aimed at chemically knocking out the respective CLK kinase to functionally analyze 

their roles in plasmodial development and survival. Assuming that the inability to knock out 

PfCLK-3 and PfCLK-4 displays their essentiality in the asexual replication cycle, the 

identification of inhibitory compounds can be an initial step to investigate putative plasmodial 

CLK inhibitors.  

On this account, a small compound library of 63 compounds (section 2.1.4; Fedorov et al., 

2011; Huber et al., 2012) plus the antiseptic CHX was tested on their antiplasmodial activity in 

this study. All of these compounds are known to interfere with human or microbial CLKs.  

3.3.1 Antiplasmodial activity of CLK inhibitors against asexual blood 
stages of P. falciparum 

Initially, the antiplasmodial activity of the compounds was tested on asexual blood stages of 

the parasite by Malstat viability assay (Makler and Hinrichs, 1993; Makler et al., 1993; 

Aminake et al., 2011). This in vitro screening assay takes advantage of the fact that the 

plasmodial enzyme lactate dehydrogenase (pLDH) has a high catalytic efficacy to use the 

synthetic NAD+ analogue 3-acetylpyridine adenine dinucleotide (APAD) instead of the 

coenzyme NAD+ for the oxidation reaction of L-lactate to pyruvate. On the contrary, human 

LDH is not capable of reducing APAD as NAD+ analogue with the same enhanced catalytic 



RESULTS 91 

efficiency as the parasitic LDH (Gomez et al., 1997). For enzyme-based detection of malaria 

parasites, this circumstance is taken advantage of in Malstat viability assay (Gomez et al., 

1997). The activity of pLDH is measured by a colorimetric reaction, which is verified by 

measuring the optical density (OD).  

A stock solution of 100 mM in 100 % DMSO of each inhibitor was generated, as previous 

observations showed that the inhibitors were not able to dissolve in AlbuMax II™ medium or 

H2Obidest directly. Furthermore, DMSO does not inhibit plasmodial growth in a final 

concentration of 0.5 % vol. The measurement of the inhibitory effect of the compounds on 

asexual blood stages of 3D7 strain of P. falciparum was conducted by a microdilution assay, 

where the half-maximal inhibitory concentration (IC50) of each of the compounds was 

determined by measuring the optical density. Therefore, a measurement range between 6.4 

nM and 500 µM was chosen. 

After determining the antiplasmodial activity of the small library of CLK inhibitors (Tab. 9.1, 

Appendix), five compounds, C-117, gea-27, KH-CARB10, KH-CARB11 and KH-CARB13xHCl were 

chosen for further examination, as they revealed IC50 values in the low micromolar range 

(Tab. 3.2). As a sixth compound, the antibiotic CHX was further examined with an IC50 value in 

the nanomolar range (Tab. 3.2). 

Tab. 3.2:  Malstat assay results showing IC50 values of the tested inhbitors.  

Substance name IC50 (µm) 

C-117 9.3 ± 3.82 

gea-27 5.2 ± 0.35 

KH-CARB10 7.4 ±  5.75 

KH-CARB11 6.1 ±  1.09 

KH-CARB13xHCl 7.5 ± 6.13 

CHX 0.6 ± 0.40 

3.3.2 Effect of CLK inhibitors on PfCLK-mediated phosphorylation 

In a subsequent attempt, three of the chosen inhibitory compounds (gea-27, KH-CARB-13xHCl 

and CHX) were investigated if the CLK inhibitors specifically affect the phosphorylation 

activity of the four PfCLKs in vitro. For that purpose, synchronized blood stage parasites were 

incubated for 12 h with the above mentioned compounds at IC80 concentrations prior to 

kinase activity assays. The solvent DMSO was used for negative control, and MBP was used as 

kinase substrate (10 µg per reaction). Kinase activity assays were employed as described in 

section 2.2.3.8. Likewise described above, the phosphorylation signals of MBP by the 

respective kinases was perceived by autoradiography of dried SDS gels and the rMGV was 

measured (section 2.2.3.8). When the parasites were incubated with the inhibitors prior to 

the immunoprecipitation and the assay, a reduction in the rMGV by 24.1 to 76.4% was 

observed compared to the DMSO control (Fig. 3.27). No effect on the phosphorylation activity 

of PfCLK-4 was observed for gea-27.  
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Fig. 3.27:  Effect of CLK inhibitors on CLK-mediated MBP phosphorylation. Kinase activity assays were 

performed to determine MBP phosphorylation by immunoprecipitated PfCLKs. The parasites 
were incubated with the CLK inhibitors at approximate IC80 concentrations or 0.5 % vol. DMSO for 
12 h prior to the assays. Specific phosphorylation signals were measured as rMGV (MGV of 
DMSO-treated parasites set to 100 %).  

 
Fig. 3.28:  Controls for kinase activity assays determining the effect of CLK inhibitors on CLK-mediated 

MBP phosphorylation. A. PfPKRP-specific immunoprecipitate phosphorylates MBP in the 
presence of 50 mM CaM, independent from prior incubation of the parasites with the CLK 
inhibitors. When CaM is missing in the kinase assay reaction, no signals of phosphorylation are 
observed. B. Pf39-specific immunoprecipitate was used as a negative control in the assays.  
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Immunoprecipitates of the non-CLK-kinase PfPKRP was utilized in these assays as control. 

PfPKRP is a CaM-dependent protein-kinase related protein (reviewed in Ward et al., 2004) 

and displays a homologue of the P. berghei PKRP, which is crucial for parasite transmission to 

the mosquito (Purcell et al., 2010). It was shown in IFA to be present in asexual blood stages 

as well as gametocytes (Agarwal, 2010; Brügl, 2011), where it is present throughout sexual 

stage maturation from stage II to stage V. There, it is localized in the cytoplasm. The control 

assays were carried out with and without the addition of 50 mM CaM, as PfPKRP is annotated 

as CaM-dependent kinase of the parasite (reviewed in Ward et al., 2004). In the presence of 

CaM, the PfPKRP-specific immunoprecipitate was capable of phosphorylating MBP, whereas 

reactions without CaM did not lead to a detectable MBP phosphorylation signal (Fig. 3.28 A). 

Noteworthy, the phosphorylation signals (rMGV) were of the same intensity for both 

inhibitor-treated precipitates and DMSO-treated control parasites.  

As a second negative control, the endoplasmatic reticulum (ER)-associated plasmodial protein 

Pf39 (Templeton et al., 1997) was immunoprecipitated by specific antisera for employing in 

the kinase inhibition assays. Pf39-specific precipitate was not capable of phosphorylating 

MBP, neither in inhibitor-treated parasite precipitates nor DMSO control precipitates (Fig. 

3.28 B).  

3.3.3 Effect of CLK inhibitors on specific blood stages  

Besides proving that the CLK inhibitors specifically impair the activity of the PfCLKs in vitro, 

studies were conducted to scrutinize which particular parasite stage is affected by the 

inhibitors specifically. Therefore, the stage-of-inhibition assay was carried out as previously 

described (Barthel et al., 2008; Aminake et al., 2011). The most active inhibitor CHX, as 

determined by Malstat assay (section 3.3.1; Tab. 3.2), was incubated with synchronized ring 

stage parasites (T0) at approximate IC50 and IC80 concentrations and cultured further as 

described (section 2.2.1.1). DMSO-treated parasite cultures at a concentration of 0.5% vol. 

DMSO served as negative controls. Giemsa-stained smears were taken at distinct time points 

between 12-60 h of incubation and the numbers of different blood stages and dead parasites 

were counted in a total of 100 infected erythrocytes (Fig. 3.29).  

 

Fig. 3.29:  Giemsa-stained asexual parasite stages distinguished in stage-of-inhibition assays.   

The Giemsa-stained smears revealed that the CHX-treated asexual parasites developed to 

trophozoites normally, but the majority of the investigated parasites died before they were 

able to enter the schizont stage (Fig. 3.30 A). At the given concentrations of CHX, a marginal 

amount of parasites was able to escape the killing during the first round of replication. These 

parasites died finally during the second replication cycle where they were not capable of 
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transforming from trophozoites to schizont stages. DMSO-treated parasites exhibited regular 

growth and stage-transition during the given cycles of asexual replications, with no or only 

very few parasites being killed due to prolonged cultivation under the given conditions.  

 
Fig. 3.30:  Effect of CLK inhibitors on blood stage parasites. A. Stage of growth inhibition of asexual blood 

stage parasites between 12 to 60 h of CHX treatment. The compound at approximate IC50 and 
IC80 concentrations (0.8 µM and 4.0 µM, respectively) or 0.5 % vol. of DMSO was added to 
synchronized ring stage parasites. Giemsa-stained blood smears were prepared at six time points 
between 0-60 h of incubation with CHX and the numbers of ring stages, trophozoites, schizonts 
and dead parasites were counted. Histograms display the percentages of developmental stages 
prevailing in the respective blood smears. B. Parasites were treated with CLK inhibitors as 
described above and the stage of growth inhibition was ascertained at 24 h of compound 
incubation. A total number of 100 parasites was counted in A and B for each condition.   

To determine whether a comparable killing mechanism can be considered for the other 

investigated CLK inhibitors, stage-of-inhibition-assays were carried out for KH-CARB10, KH-

CARB11, KH-CARB13xHCl and gea-27 (Fig. 3.30 B). After incubating the respective inhibitor for 

24 h at approximate IC50 and IC80 concentrations and evaluation of Giemsa-stained smears, it 

was observed that all blood stages died when incubated with each of the four investigated 

compounds once they entered schizogony. The lowest death rate at 24 h of compound 

incubation was recorded for gea-27 where schizonts were counted in parasite samples 

treated with IC50 and IC80 concentrations of this CLK inhibitor. All three investigated oxo-β-

carboline-derived CLK inhibitors, on the contrary, exhibited the same effective killing effect 

on parasites treated with both concentrations, respectively.  
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3.3.4 Effect of CLK inhibitors on gametocyte maturation 

In order to verify the gametocytocidal effect of a selection of the above mentioned CLK 

inhibitors, gametocyte toxicity assays were carried out as previously described (Aminake et 

al., 2011). The observation was made that all CLK inhibitors tested in this assay significantly 

compromised gametocyte maturation by 40-60% compared to DMSO-treated control 

parasites (Fig. 3.31). The highest gametocytocidal effect was exhibited by KH-CARB11 with a 

reduction rate of mature gametocytes by 62.5%. Chloroquine was used as negative control 

(Buckling et al., 1999) and the proteasome inhibitor epoxomicin was utilized as positive 

control (Kreidenweiss et al., 2008; Aminake et al., 2011). 

 
Fig. 3.31:  Gametocyte toxicity assay. Compounds at IC50 concentrations or 0.5 % vol. DMSO were added to 

stage II gametocyte cultures for two days. After seven days, the numbers of stage IV and V 
gametocytes were counted in a total of 1000 RBCs and correlated to the gametocyte numbers of 
DMSO control, which was set to 100 %. *, significant reduction of gametocyte numbers 
(p < 0.001, student´s t-test). Epoxomicin was utilized as positive control, chloroquine was used as 
negative control.  

3.3.5 Effect of CLK inhibitors on microgametocyte exflagellation 

Exflagellation inhibition assays were conducted subsequently to scrutinize the effect of the 

CLK inhibitors on microgamete formation. Male gametogenesis was impaired most severely 

by the oxo-β-Carbolines KH-CARB10, KH-CARB11 and KH-CARB13xHCl with IC50 values ranging 

between 10 and 20 µM (Tab. 3.3, Fig 3.32 A). Combined results (mean and SD) of two 

independent experiments were determined, comprising six counts per sample and 

concentration in total. Number of exflagellation centers are shown as percentage of DMSO 

controls (Fig. 3.32 and. 3.33). 
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Tab. 3.3:  Summary of observed IC50 values in exflagellation assays. 

Compound IC50 (µM) 

KH-CARB10 14.0 ± 3.72 

KH-CARB11 15.8 ± 0.84 

KH-CARB13xHCl 13.8 ± 6.22 

C-117 67.5 ± 13.03 

gea-27 154.2 ± 56.43 

CHX 19.8 ± 0.93 

 

 
Fig. 3.32:  Transmission blocking potential of selected CLK inhibitors in exflagellation assays. Compounds 

at various concentrations (A. oxo-β-carbolines and B. aminopyrimidines) or 0.5 % volume of 
DMSO were added to mature gametocyte cultures and activated with XA. The number of 
exflagellation centers were counted 15 min after activation. Combined results (mean and SD) of 
two independent experiments, comprising six counts per sample and concentration in total, are 
shown as percentage of DMSO control. 
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Fig. 3.33:  Impact of CHX on parasite gametogenesis. CHX at different concentrations or 0.5 % volume of 

DMSO were added to mature gametocyte cultures and activated with XA. The number of 
exflagellation centers were counted 15 min after activation; the number of centers was recorded 
and compared to the number of centers in the untreated DMSO controls. Results of two 
independent experiments. Mean ± SEM.  
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4 Discussion  

As one of the world's most devastating diseases, malaria still displays an enormous burden to 

socio-economic development and public health conditions (reviewed in (Breman et al., 2004; 

Kokwaro, 2009)). Most severely affected areas are regions in Sub-Saharan Africa, the Amazon 

region and Southeast Asia (Hyde, 2005), where predominantly malaria tropica is a leading 

cause of death in children and pregnant women. Numerous factors such as poor health 

services, poverty, malnutrition and co-infections with tuberculosis or HIV contribute to 

deteriorate the situation in endemic countries (reviewed in Breman et al., 2004; WHO, 2013). 

As rising resistances against commonly used medications as well as a lack of an effective 

vaccine prevail, strategies to counteract malaria have to be enhanced and effective drug 

targets have to be searched for (reviewed in Greenwood et al., 2008).  

Resulting from the sequencing of the genome of P. falciparum and succeeding genome 

annotation, merely one tenth out of 5 300 genes encode for enzymes (Gardner et al., 2002). 

Two independent genome-wide analyses of P. falciparum subsequently led to the 

identification of 86 or 99 sequences related to kinases, respectively (reviewed in Ward et al., 

2004; Anamika et al., 2005), depending on the stringency applied to include borderline 

sequences (reviewed in Doerig et al., 2008, Solyakov et al., 2011). Representing 1.1-1.6 % of 

the parasite´s coding genes, 65 out of these are evidently related to the eukaryotic protein 

kinase (ePK) family (Solyakov et al., 2011). Pre-genomic classification distributed ePKs into 

conventional eukaryotic groups (reviewed in Miranda-Saavedra et al., 2012). Several of the 65 

ePKs of P. falciparum can be ascribed to the acquainted groups of AGC, CMGC, CK1, CaMK 

and tyrosine-kinase like groups observed in the human kinome (reviewed in Doerig et al., 

2008).  

Phylogenetic tree construction led to the classification of plasmodial kinases into seven main 

groups, with the CMGC group representing the largest of these groups. Amongst cyclin-

dependent (CDK), mitogen-activated (MAPK) and glycogen-synthase (GSK) kinases, the CLK 

kinase family surveyed in this study belongs to this significant group. In other eukaryotes, 

CLKs play crucial roles regarding mRNA splicing or processing and have been studied 

extensively, representing corroborated targets for drugs (Talevich et al., 2011). CLKs are 

conserved throughout eukaryote evolution and possess a unique and conserved LAMMER 

signature motif, often being referred to as LAMMER kinases (Yun et al., 1994; Bullock et al., 

2009). The specific LAMMER signature has been previously suggested to prescribe kinase 

substrate specificity (Yun et al., 1994). Remarkably, CLKs have been reported to possess dual-

specificity properties, being capable of performing autophosphorylation at tyrosine residues 

as well as phosphorylation of substrates exclusively on serine/threonine residues (Nayler et 

al., 1997). Tyrosine phosphorylation was actually reported for PfCLK-3 in a global genomic 

analysis (Solyakov et al., 2011).  

Nevertheless, scant research is carried out regarding CLKs as well as mRNA splicing in P. 

falciparum (Dixit et al., 2010; Eshar et al., 2012). Consequently, characterization of malarial 

CLKs is indispensable as to conceive and disclose the mechanisms of splicing regulation. As 

alternative splicing displays such an essential cell cycle mechanism in all eukaryotes analyzed 
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so far (reviewed in Hagiwara, 2005), the exploration of the same in P. falciparum will unravel 

the cascades and components involved in this process and may lead to the identification of 

additional drug targets. The present study chose the four serine/threonine CLK kinases of P. 

falciparum, namely PfCLK-1/LAMMER (PF3D7_1445400), PfCLK-2 (PF3D7_1443000), PfCLK-3 

(PF3D7_1114700) and PfCLK-4 (PF3D7_0302100) for functional characterization in the 

parasite life cycle stages. All four plasmodial kinases of the CLK family cluster with the human 

SRPK1-3 and the human LAMMER kinases CLK1-4, which also phosphorylate SR proteins 

(reviewed in Ward et al., 2004). Previously described PfCLK-1/LAMMER is related to yeast 

kns1 (Li et al., 2001; Prasad et al., 2003), and PfCLK-3 is clearly reported to be an orthologue 

of human PRP4 (Talevich et al., 2011), which is associated with mRNA splicing and is 

conserved in most eukaryotic genomes including the Schizosaccharomyces pombe genome 

(Gross et al., 1997; reviewed in Ward et al, 2004). Human SRPK1 was previously reported to 

phosphorylate SR proteins and homologues are conserved in all eukaryotic genomes (Wang 

et al., 1999). PfCLK-4 and PfCLK-2 cluster within SRPKs, with both kinases possessing an 

insertion which is an unmistakeable attribute of SRPKs (reviewed in Ward et al., 2004; Dixit et 

al., 2010; Talevich et al., 2011). Furthermore, preceding studies revealed that the PfCLKs 

share homologies with the yeast kinase Sky1p (Agarwal, 2010; Agarwal et al., 2011), which is 

involved in mRNA splicing and transport in S. cerevisiae (Siebel et al., 1999; Nolen et al., 

2001).  

In order to gain deeper insight into the splicing machinery of P. falciparum, this study was 

carried out to identify putative interaction partners of the PfCLKs, which are most likely SR 

proteins or RNA binding proteins. These proteins function in the RNA processing pathway 

during splicing events. Additionally, a library of inhibitors of human and microbial CLKs was 

used to scrutinize the antiplasmodial activity of the used inhibitors. By rendering some of 

these compunds active against the parasite kinases, they can be used as agents to chemically 

inhibit the specific PfCLKs and for further identification of the components of the plasmodial 

splicing machinery. 

4.1 Functional characterization of PfCLK-3 and PfCLK-4 

Previously, PfCLK-1/LAMMER was described as sexual stage-specific kinase (Li et al., 2001) by 

measuring the mRNA level of the kinase gene by means of Northern blotting. However, 

subsequent studies revealed that transcripts of all four plasmodial CLKs are predominantly 

present in schizonts and gametocytes, conducted by RT-PCR and more sensitive Real Time RT-

PCR (Agarwal, 2010; Agarwal et al., 2011). The transcript expression ceases with proceeding 

parasite development, detecting only low transcript levels for pfclk-4 in zygotes. None of the 

other kinase genes studied showed considerable expression in this life cycle stage of P. 

falciparum.  

Characterization of protein expression of PfCLK-3 and PfCLK-4 was carried out in this study. To 

determine the kinase expression on the protein level, mouse antisera raised against the 

recombinantly expressed catalytic domains of PfCLK-3 and PfCLK-4 were used (Fig. 1.6). 

Kinase catalytic domains were preferred for antisera production as these protein domains are 
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fundamental components responsible for kinase activity. Moreover, their presence can be 

predicted as indispensable for the cellular function of the respective kinase. They are 

comprised of twelve highly conserved subdomains with distinct functions in ATP binding 

capability as well as the ensurement of structural stability of the kinase (reviewed in Hanks 

and Hunter, 1995; Hanks, 2003; reviewed in Ward et al., 2004).  

For both PfCLK-3 and PfCLK-4, asexual parasite lysates were obtained from gametocyte-less 

parasite strain F12, whereas gametocyte lysates were attained by use of wild type strain 

NF54. Western blot analysis performed on these lysates using mouse antisera against PfCLK-3 

detected a full size protein band migrating at 81 kDa. In addition, a processed protein band 

was revealed at approximately 70 kDa, most likely representing truncated forms of the 

recombinant protein due to improper translation. The protein expression of both kinases in 

these life cycle stages is in concordance with previously reported mRNA transcript expression 

(Agarwal, 2010; Agarwal et al,. 2011). The same protein bands were detected in nuclear pellet 

fractions as well as in cytoplasmic fractions of asexual parasites. Full size PfCLK-4 (157 kDa) 

was similarly detected in lysates of asexual parasites and nuclear pellet fractions, whereas a 

processed PfCLK-4 protein only was observed in gametocyte lysates.  

The presence of both kinases under study in the parasite nucleus and the cytoplasm is 

consistent with previous in silico analyses which exhibited that PfCLK-3 and PfCLK-4 do not 

possess nuclear localization signals, unlike PfCLK-1 and PfCLK-2 (Agarwal, 2010; Agarwal et al., 

2011). In that study it was observed by in silico analysis and immunoelectron microscopy that 

PfCLK-1 as well as PfCLK-2 possess nuclear localization signals, directing them to subcellular 

nuclear structures called nuclear speckles. Nuclear speckles are associated with the storage of 

splicing factors like snRNPs (small nuclear ribonucleoprotein particles) and SR-proteins 

(reviewed in (Lamond and Spector, 2003; Spector and Lamond, 2011)). Previous studies 

confirm presence of mammalian Clk/Sty kinases within nuclear speckles. Consequently, these 

kinases display parts of the splicing machinery in synergy with splicing factors. (reviewed in 

Lamond and Spector, 2003;. Ngo et al., 2005). Given the recent observations in this study, 

PfCLK-3 and PfCLK-4 are as well located in the parasite nucleus despite the absence of nuclear 

localization signals (NLS) in these kinases. Several nuclear proteins are reported that lack 

classic NLS and can still be found inside the nucleus (Eshar et al., 2012). One prominent 

example is Clk/Sty, which was reported to be localized to the nucleus (Duncan et al., 1997), 

most probably within nuclear speckles in conjuction with SR proteins (Colwill et al., 1996b). 

Likely as a consequence of hyperphosphorylation, the proteins remain inside the nuclear 

speckles through their RS domain (Bullock et al, 2009). Upon phosphorylation, SR splicing 

factors are released from these sites (Colwill et al., 1996b), presumably “piggy-backing” the 

associated kinase and thus relocating it to the cytoplasm (Dixit et al., 2010). For PfCLK-4, a 

similar mechanism has been proposed, since SRPK of mammalian cells is also present in the 

cytoplasm to phosphorylate the RS domain of SF2/ASF, which leads to its nuclear 

translocation (Koizumi et al., 1999; Lai et al., 2000; reviewed in Stamm, 2008; Dixit et al., 

2010). SF2/ASF is further hyperphosphorylated inside the nucleus by Clk/Sty, resulting in its 

release from the speckles to the site of mRNA splicing (Dixit et al., 2010). Export to the 

cytoplasm is subsequently facilitated by dephosphorylation conducted by a protein 

phosphatase (reviewed in Stamm, 2008). In accordance with previous studies (Dixit et al., 
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2010), the findings of this study show that PfCLK-4 (PfSRPK1) is principally located inside the 

parasite nucleus during early asexual stages and switches to cytoplasmatic localization after 

mid to late trophozoite stages. It was previously observed that PfCLK-4 localization almost 

permanently coincides with localization of PfSR-1, suggesting an interaction of both proteins 

in such a way that one partner “piggy-backs” the other in and out of the nucleus (Dixit et al., 

2010). Such an interaction of two proteins was reported for non-kinase proteins, as Pfsec13 

seems to be specifically associated with another plasmodial protein, which contains a nuclear 

transport factor (Dahan-Pasternak et al., 2013). Pfsec13 is an integral component of the 

nuclear pore complex as well as of the vesicle transport system in the parasite cytoplasm and 

does not possess any NLS.  

In addition, the localization of PfCLK-3 and PfCLK-4 was further verified by IFAs on asexual and 

gametocyte parasite stages. As the mouse antiserum directed against PfCLK-3 was not 

capable of detecting the endogenous parasite kinase in IFAs, rat antiserum was utilized which 

was kindly provided by Prof. Dr. Andrew Tobin and was generated as previously described 

(Solyakov et al., 2011). Both kinases, PfCLK-3 and PfCLK-4, revealed in immunofluorescence 

assays that they are profusely expressed in asexual blood stages of P. falciparum. Similar to 

previous studies on PfCLK-1 and PfCLK-2, the kinases investigated in this actual study are 

located to the nucleus of trophozoites. In contrast, both kinases displace to the parasite 

cytoplasm during schizogony and subsequent gametocytogenesis. In concordance with the 

recent findings, previous studies reported that PfCLK-4 is predominantly located inside the 

parasite nucleus in early asexual stages, switching to cytoplasmic distribution from late 

trophozoites and schizonts (Dixit et al., 2010). Likewise to the current investigations, PfCLK-4 

was only detected in the cytoplasm of gametocytes in the preceding study by Dixit et al. In 

compliance with these findings, it was previously shown that PfCLK-4 is abundantly expressed 

in gametocytes, but down-regulated once gametogenesis has terminated (Ngwa et al., 2013). 

This observation is connoting PfCLK-4 to have a particular function during parasite 

transmission from the human host to the anopheline vector.  

Previous attempts to demonstrate any kinase activity of PfCLK-1 by utilizing its recombinant 

catalytic domain were ineffective (Agarwal, 2010). This failure can most likely be explained 

due to missing residues in the recombinantly expressed kinase fragment. Therefore for this 

study, in vitro substrate phosphorylation was carried out by precipitating endogenous PfCLKs 

from parasite lysates with specific antisera against PfCLK-3 and PfCLK-4. Subsequently they 

were processed in a specific kinase activity reaction by adding γ-32phosphorus-labeled ATP 

and common physiological substrates in vitro. Likewise to PfCLK-1 and PfCLK-2 (Agarwal, 

2010; Agarwal et al., 2011), both kinases under the current study were capable of 

phosphorylating all offered physiological substrates (section 2.2.3.8) in vitro. PfCLK-4 was 

already reported in previous studies to phosphorylate these substrates in vitro as well (Dixit 

et al., 2010).  
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4.2 PfCLK-3 and PfCLK-4 are essential for the asexual 
replication cycle  

Generation of gene-disruptant parasites was conducted to investigate the correspondent 

kinase phenotype in asexual parasite cultures. For this purpose, a pervasive strategy was used 

to disrupt the respective kinase gene by single cross-over homologous recombination (Dorin-

Semblat et al., 2007). The disruption was placed into the catalytic domain to separate the ATP 

binding domain (GXGXXG) from the PE motif which is responsible for the structural stability of 

the kinase, thus rendering the same non-functional. Up to date, numerous parasite kinases 

have been reported to be indispensable for the parasite in both P. berghei as well as P. 

falciparum. To only mention a few, these are Pbcrk-1, Pfmap-2 or PfCK2 (Rangarajan et al., 

2006; Dorin-Semblat et al., 2007; Holland et al., 2009). On the contrary, kinases like Pfmap-1 

have been disrupted successfully, while the resulting knock-out parasites revealed a normal 

phenotype in all parasite stages (Fenell et al., 2009). In summary, 12 plasmodial ePKs were 

identified in a global kinomic analysis that are definitely dispensable, as demonstrated by 

viable parasite clones carrying the respective inactivated kinase genes. For further 14 ePKs, 

they appear to be likely dispensable, as they revealed a strong signal diagnostic for gene 

disruption in (mixed) transfected populations (Solyakov et al., 2011). 

Successfully disrupting genes does not only provide information about the indispensability of 

the respective kinase regarding replication of asexual parasite stages, but also delivers a 

powerful tool to determine the application of specific kinase inhibition. Differential inhibition 

can be applied onto PfCK2α subunit for example, which can be specifically blocked by ML-7 

and Rottlerin (Holland et al., 2009). Whereas these compounds exhibit moderate IC50 values 

for inhibiting the plasmodial subunit of CK2α, the human subunit of this kinase requires an 

extremely high concentration of these compounds, although CK2 has a high percentage of 

identity (65 %) between the human and the plasmodial counterparts (Holland et al., 2009).  

None of the two investigated pfclk loci could be disrupted successfully, which leads to the 

assumption that either the genomic locus of the kinase is not accessible for homologous 

recombination, or the kinase is essential for the replication and thus for the survival of 

asexual stage parasites (Rangarajan et al., 2006). This observation is in concordance with 

previous studies that showed that the gene loci for PfCLK-1/LAMMER as well as PfCLK-2 can 

not be disrupted by reverse genetic strategies (Agarwal, 2010; Agarwal et al., 2011; Solyakov 

et al., 2011). For the purpose of investigating the recombinogenicity of the kinase locus, a 

Myc-epitope was fused to the 3´-end of the respective kinase gene by means of single cross-

over homologous recombination. As a result, gene-tagging was conducted without disrupting 

the gene and thus no loss-of-function. Integrant populations of kinase-tagged parasites were 

detected by diagnostic PCR after transfection and single clones were subsequently isolated. 

Further verification after prolonged culturing was carried out and confirmed the stable 

integration of the tagging sequence into the genome. As this gene-tagging approach was 

successful for both PfCLK-3 and PfCLK-4, the recombinogenicity was validated for both gene 

loci. Earlier studies on the capability of recombining the kinase locus for PfCLK-1 and PfCLK-2 

showed that these two kinases can be tagged similarly. These results lead to the assumption 

that the inability to knock out the respective kinase locus is not caused by locus refractoriness 
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to recombination, but rather due to the indispensability of both PfCLK-3 and PfCLK-4 for the 

asexual replication cycle of P. falciparum. PfCLK-3 and PfCLK-4 thus display essential 

components in the parasite asexual life cycle. This finding aligns with the fact that multiple 

essential kinases are involved in SR protein phosphorylation in diverse cellular compartments 

in a non-redundant manner. Human ASF is phosphorylated by both SRPK1 and SRPK2 inside 

the cytosol, thereby triggering its nuclear import and accumulation inside the speckles. A 

family of CLKs hyperphosphorylates human ASF subsequently and mediates its release from 

the nuclear speckles again and directing it back to the cytoplasm, after splicing (Misteli et al., 

1998; Lai et al., 2000; Aubol et al., 2003). In conclusion, several diverse kinases orchestrate in 

close collaboration during the event of pre-mRNA processing (Ngo et al., 2005), rendering all 

invidual components indispensable for the entire splicing event. Moreover, none of the 

involved kinases is capable of compensating another.  

Fusing a tag to the 3´-end of kinase sequences by single cross-over homologous 

recombination leads to a tagged but functional enzyme and does not produce a loss-of-

function mutation in contrast to the knock-out strategy. Hence, tagging a specific kinase with 

a Myc-tag allows on the one hand the investigation of the kinase's role in the parasite life 

cycle. On the other hand, gene-tagging displays a potent device to further characterize PfCLK-

3 and PfCLK-4 by using antibodies directed against one of the tags which was successfully 

fused to the kinase sequence. By doing so, Western blot assays, IFAs, Pull down or 

immunoprecipitation assays can be utilized for further scrutinizing the role of the kinases in 

the parasite's life cycle. Tagged PfCLK-3 and PfCLK-4 were successfully confirmed by means of 

Western Blot and IFA using the respective antisera against the tag.  

Together, given the aforementioned results regarding the study on the essentiality of PfCLK-3 

and PfCLK-4, it can be concluded that both kinases play pivotal roles in the parasite asexual 

development. This conclusion can be drawn as the kinase loci cannot be disrupted but 

recombined successfully. These findings are in accord with their specific expression profiles 

throughout the asexual blood stages, both on the mRNA and protein level. Kinome-wide gene 

knock-out and reverse genetic approaches have been exhibited that out of the 65 identified 

P. falciparum ePKs approximately 50 % are most likely essential for the preservation of 

parasite viability (Solyakov et al., 2011). Given this lack of redundancy, it is likely to assume 

that a vast number of protein kinases possess pivotal roles for the parasite erythrocytic 

asexual cycle. Moreover, there is a hypothetically abundant source of protein kinases as 

targets for prospective anti-malarial strategies (Solyakov et al., 2011). Amongst all four 

PfCLKs, there are several protein kinases of P. falciparum that have shown to be 

indispensable by means of reverse genetic studies: for example the MAP kinase Pfmap-2 

(Dorin-Semblat et al., 2007), NIMA-related kinase Pfnek-1 (Dorin-Semblat et al., 2011), PfCK2 

(Holland et al., 2009) or the cyclin-dependent kinase-related kinase Pfcrk-3 (Halbert et al., 

2010).  
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4.3 Identification of putative CLK interaction partners 

Furthermore, the aim of this study was to examine putative interaction partners which may 

act as splicing factors in pre-mRNA processing. CLKs are capable of phosphorylating SR 

proteins that act as splicing factors in the post transcriptional/pre-mRNA processing pathway 

(reviewed in Godin and Varani, 2007; Bullock et al., 2009). When being inactive, SR proteins 

reside inside nuclear speckles, dynamic structures inside the cell nucleus and storage sites for 

components of the splicing machinery (reviewed in (Lamond and Spector, 2003; Spector and 

Lamond, 2011)). Nevertheless, SR proteins shuttle between the nucleus and the cytoplasm 

during a splicing event (Cáceres et al., 1997; Lai et al., 2000). The specific state of activity of 

SR proteins is controlled by their phosphorylation status (Misteli et al., 1998, reviewed in 

Graveley, 2000; Dixit et al., 2010). As a consequence of changing their phosphorylation status, 

SR proteins change their capability to interact with other proteins (reviewed in Fu et al., 1995; 

Bullock et al., 2009). Post-transcriptional splice site selection of splicing components such as 

splicing factors is tightly regulated by the concentration and phosphorylation status of SR 

proteins (reviewed in (Godin and Varani, 2007; Stamm, 2008)). Thus, CLKs play an indirect but 

nevertheless pivotal role in governing the choice of splice sites, highlighting their significance 

in alternative splicing events (Velazquez-Dones et al., 2005; reviewed in Stamm, 2008). SR 

proteins have been investigated extensively in several eukaryotes and have been identified as 

components in alternative splicing as well as CLK interaction partners and substrates (Colwill 

et al., 1996 a&b; Duncan et al., 1997; Bullock et al., 2009). Prototypical SR proteins like 

human SF2/ASF possess two arginine/serine repeat domains consisting of multiple 

arginine/serine dipeptides (reviewed in (Fu et al., 1995; Graveley, 2000)). Serine residues are 

subject to phosphorylation by CLKs, thus triggering nuclear import and accumulation in 

nuclear speckles (Velazquez-Dones et al., 2005, reviewed in Stamm, 2008; Bullock et al., 

2009).  

In this study, we were able to identify one yeast CLK substrate and four plasmodial SR 

proteins that revealed interaction with the investigated PfCLKs in vitro. Yeast factor Npl3p is 

reported to be the specific substate of yeast kinase Sky1p (Siebel et al., 1999; Nolen et al., 

2001) and was utilized as alignment template to find the homologous plasmodial factors 

investigated in this study. All four investigated parasite proteins possess a RNA recognition 

motif, rendering them as putative splicing factors (reviewed in Graveley, 2000). Except for 

PfASF-1, these factors also consist of a domain of RS-rich repeats, where presumably 

phosphorylation by CLKs takes place. Kinase activity assays utilizing the affinity purified 

recombinant yeast Npl3p revealed that it interacts with PfCLK-1, PfCLK-2 and PfCLK-4 in vitro. 

No phosphorylation signal was observed for PfCLK-3 incubated with recombinant Npl3p. 

Noteworthy, by incubating Npl3p with parasite extract prior to immunoprecipitation by 

PfCLK-1 antisera, Npl3p was phosphorylated, indicating that Npl3p is able to form a stable 

complex with PfCLK-1 in vitro, as it was precipitated conjointly with PfCLK-1. 

Regarding the four plasmodial factors which function as PfCLK substrates, we additionally 

recognized diverse phosphorylation preferences for the SR proteins under study. PfASF-1 was 

phosphorylated in vitro by PfCLK-1 and PfCLK-2, whereas recombinant PfSRSF12 showed 

phosphorylation by anti-PfCLK-2 and anti-PfCLK-3 precipitates. Moreover, PfSFRS4 was 
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phosphorylated in vitro by all PfCLK-specific precipitates. PfCLK-4 was previously described to 

phosphorylate another AS factor, PfSR-1 (PF3D7_0517300; Dixit et al., 2010). Whilst the N-

terminal RS-domain containing fragment of PfSF-1 was interacting with all PfCLKs except of 

PfCLK-3, no phosphorylation signals were observed when incubating the kinase 

immunoprecipitates with the C-terminal part of PfSF-1 lacking the RS domain. This domain 

was reported previously to be the phosphorylation target of CLKs (Bullock et al., 2009; 

Velazquez-Dones et al., 2005; reviewed in Stamm, 2008).  

Interestingly, PfASF-1 is the only of the four plasmodial splicing factors investigated that does 

not possess a RS domain but is phosphorylated by the PfCLKs. Presumably PfASF-1 is 

phosphorylated at location that is unique to the plasmodial ASF-1, since even this plasmodial 

factor shares homology with the human/mammalian factor, it remains elusive if PfASF-1 

definitely is a plasmodial splicing factor.  

Different preferences of CLKs and SRPKs for SR protein substrates have already been 

reported, as SRPK interaction is restricted by a specific docking interaction, whereas CLK 

activity is less constrained by a determined active-site mediated substrate specificity (Bullock 

et al., 2009). Domain insertions define the specificity of the conserved LAMMER signature 

motif in CLKs, displaying distinct binding activities (Velazquez-Dones et al., 2005; Bullock et 

al., 2009). During splicing events, CLKs and SRPKs often act in close collaboration (Ngo et al., 

2005). For all plasmodial proteins investigated in this study except of PfASF-1, 

phosphorylation sites have been identified (Kern et al., 2014) and the proteins are 

phosphorylated in vivo, as determined in the P. falciparum schizont stages (Solyakov et al., 

2011; Treeck et al., 2011; Lasonder et al., 2012; Pease et al., 2013). 

Once the phosphorylation activity of the four plasmodial factors was confirmed, IFAs were 

carried out utilizing antisera raised against the SR proteins of interest. Immunolabelling for 

PfASF-1 could not obtain significant signals, which may be elucidated by either a very low 

protein expression level in the investigated life cycle stages or, more likely, a non-functional 

or only poorly performing antibody raised in mice. Due to time restrictions, it was not 

possible in the course of this study to repeat the generation of functional antibodies. As the 

recombinant protein of PfASF-1 displayed the full-length protein, it was moreover not feasible 

to choose a diverse fragment of the plasmodial protein resulting in a more effectively 

expressed recombinant protein for immunization of mice.  

Antibodies raised against the fragments of the remaining three recombinant splicing factors 

under study, respectively, revealed that PfSRSF12, PfSFRS4 as well as PfSF-1 are located inside 

the parasite nucleus of trophozoite stages with a fainter labelling in schizonts, but also in co-

localization with the parasite nucleus. In gametocytes, nuclear localization of PfSRSF12 and 

PfSF-1 was detected, whilst PfSFRS4 was not observed in these sexual stages. Transcriptome 

data point as well to predominant transcript expression for these parasite SR proteins in 

trophozoites (Aurrecoechea et al., 2009). Several other nuclear proteins like PfSR-1 are 

located to the nucleus despite of the presence of NLS (Cáceres et al., 1997; Eshar et al., 2012). 

PfSR-1 was reported to be the phosphorylation substrate of PfCLK-4 (Dixit et al., 2010), 

possessing a RS-domain which is crucial for nuclear localization. Deletion analyses revealed 

that mutants lacking the RS-domain of PfSR-1 reside in the parasite cytoplasm (Eshar et al., 

2012). Therefore, it is indicative for the RS domain to act as NLS similar to the mammalian 
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SRSF1 (Eshar et al., 2012). Previous studies report that the RS domain is able to function as 

NLS in SR proteins, affecting the subcellular localization of SR proteins by mediating the 

interaction with the SR protein nuclear import receptor, transportin-SR (Cáceres et al., 1997; 

Lai et al., 2000; reviewed in Long and Cáceres, 2009). Furthermore, binding to nuclear export 

factors of human ASF is increased by dephosphorylation (Huang et al., 2004), therefore 

pointing to a distinct role of phosphorylation and subsequent dephosphorylation of SR 

proteins in nucleo-cytoplasmatic shuttling of the same. The phosphorylation status of SR 

proteins also regulates their accumulation inside the cytosol (Lai et al., 2000). 

Ribonucleoprotein A1 is accumulating in the cytosol succeeding serine phosphorylation of the 

F-peptide, which represents a motif being central to nuclear import and export (Allemand et 

al., 2005). 

4.4 CLK inhibitors block parasite development and impair 
PfCLK phosphorylation activity 

There is a serious need of new malaria combat strategies as there arises an increasing spread 

of resistance against pervasively used antimalarial drugs. Therefore, drugs eliciting novel 

modes of action and diverse targets have to be explored to combat this devastating tropical 

infectious disease. Towards this aim, effective novel compounds should not only be capable 

of killing asexual parasites, but also block the development of sexual stage parasites. 

Gametocytes are the sole parasite stages that are capable of infecting mosquitoes once they 

are taken up by the insect vector during a blood meal. Hence, the parasite is able to continue 

its life cycle inside the vector, resulting in transmitting the parasite to more human hosts 

when biting them during a subsequent blood meal. Killing of the transmissible sexual stages 

will lead to a block of the transmission of the parasites from one human host to the other via 

mosquitoes, hence lowering the infection rate of individuals in close communities. In P. 

berghei, the homologue to PfCLK-4 (SRPK1) was recently reported to be indispensable for the 

sexual phase, as this kinase is involved in microgamete formation (Tewari et al., 2010). Even 

though the pbclk4 (srpk1) gene can be knocked out, this phenotype revealed impaired 

exflagellation ability.  

Given the vast divergence between plasmodial kinases and the kinases of their human hosts 

(reviewed in Doerig and Meijer, 2007), selective inhibition by various compounds is a 

promising method to combat malaria. A major part of actual kinase inhibitors is presented by 

chemical compounds that are ATP analogues (reviewed in (Cox et al., 2011; Lamba and 

Ghosh, 2012)). Out of thousands of drug-like compounds, these ATP-antagonists have been 

identified as lead compounds, rendering protein kinases as one of the most important 

druggable targets.  

In addition to the aforementioned reasons, this study aimed at finding prospective promising 

compounds that possess the potential to chemically inhibit the PfCLKs. Previous studies 

(Solyakov et al. 2011, Agarwal et al., 2011) and this current study revealed that it was not 

possible to knock out all four PfCLKs, rendering them essential for the asexual replication 

cycle. To gain access to a powerful tool for chemically knocking out the parasite CLKs despite 
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the inability to create a genetic knock-out, attempts were made to identify effective PfCLK 

inhibitors. For this purpose, a small compound library of 63 CLK inhibitors known to inhibit 

microbial or human CLKs were screened in this study by Malstat assay in a first approach. 

Measured IC50 values revealed that a small compartment of the library compounds was 

capable of inhibiting the PfCLKs in such a manner that these compounds were considered to 

be utilized in further testing. Interestingly, out of this small compound library it was possible 

to identify three members of oxo-β-carbolines and two members of aminopyrimidines that 

show antiplasmodial activity with an IC50 in the micromolar range (Tab. 3.2).  

In addition to the chemical compound library, we screened the antiseptic CHX for its anti-CLK 

activity. In previous studies, CHX exhibited an antiplasmodial activity with IC50 concentrations 

of approximately 0.316 µM, which was determined by dose-response curves (Geary and 

Jensen, 1983). In Malstat assays, CHX was capable of inhibiting P. falciparum asexual stages 

with an IC50 of 0.6 ± 0.40 µM. CHX is a potent inhibitor of human CLK kinases. In a cell-based 

splicing reporter assay which aimed to identify modulators of splicing and splicing-dependent 

processes, 23 000 compounds have been screened. As one of the modulators, CHX revealed 

inhibitory effects on alternative splicing events by specifically and selectively inhibiting CLKs 

and SRPKs (Younis et al., 2010). A different study confirmed the inhibitory effect of CHX on 

CLKs by blocking CLK-dependent human SR proteins, which are crucial for RNA processing 

during replication of HIV-1 (Wong et al., 2011). Since CHX reveals high ototoxic effects which 

can lead to impaired hearing (reviewed in Milestone et al., 2008) and furthermore exhibits 

hemolytic effects at concentrations of 0.1 mM (Geary and Jensen, 1983), this antibiotic is 

most likely not applicable as antimalarial compound. Nevertheless, due to its high efficacy in 

inhibiting PfCLKs specifically, it displays a potent tool for using this compound to generate 

chemical KOs and therefore dissect the splicing mechanisms in malaria parasites.  

Given the fact that the four PfCLKs cannot be knocked out, this study aimed at chemically 

inhibiting the plasmodial kinases to gain insight into their specific function. Towards this aim, 

the five identified CLK inhibitors and the antiseptic CHX were screened out of a small 

compound library to have an effect on asexual stages of P. falciparum investigated in this 

study as well as sexual stage parasites. Given the vast divergence between plasmodial kinases 

and the kinases of their human hosts (reviewed in Doerig and Meijer, 2007), selective 

inhibition by various compounds is a promising method to combat malaria. Therefore, kinase 

activity assays were carried out to determine whether the compounds act specifically on the 

PfCLKs. The inhibitors revealed an inhibitory effect on the phosphorylation activity on all four 

PfCLKs, rendering all investigated compounds as specifically acting on the parasite CLKs. The 

inhibitors act on the Plasmodium parasites in the low micromolar range. While it was 

demonstrated that the CLK inhibitors have no activity against the calmodulin-dependent 

kinase PfPKRP, other off-target effects of the investigated compounds can currently not be 

excluded. Morphological analyses on drug-treated parasites showed that the inhibitors arrest 

the parasites during the trophozoite-to-schizont transition. Moreover, the inhibitors affected 

gametocyte development and exflagellation, especially the oxo-β-carbolines acted on blood 

stage replication and on exflagellation in similar concentrations. This approach demonstrated 

that the investigated compounds are qualified for being used to generate chemical KOs of the 

PfCLKs for further phenotype characterization and identification of mRNA processing 
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pathways and phosphorylation-dependent signal transduction during splicing events in P. 

falciparum. Noteworthy, 50 % of the identified compounds belong to the class of oxo-β-

carbolines. Members of this substance class have been reported previously to display potent 

CLK inhibitors with selective properties (Huber et al., 2011). In this study, specific oxo-β-

carbolines selectively inhibit human CLKs in a non-ATP-mimetic manner. Typically, common 

kinase inhibitors act in such a way that they target the ATP binding cleft of the kinase to be 

blocked (reviewed in Lamba and Ghosh, 2012). As the ATP binding pocket is highly conserved, 

the identification and screening of bisubstrate and bivalent kinase inhibitors is of high 

importance (reviewed in Cox et al., 2011). These new compounds are considered to posses an 

active site-directed residue which is bound to another ligand that targets a location outside of 

the ATP-binding cleft. As kinase signalling activity is regulated by regions outside of the ATP-

binding cleft, approaches that take advantage of these interactions have the capability to 

allocate compounds with high target specificity (reviewed in Gower et al., 2014).  

To summarize, the combined data gained in this study demonstrated that the four plasmodial 

members of the CLK family, PfCLK-1-4, have an important role during schizogony and are 

further crucial during parasite transmission from the human host to the mosquito. All four 

PfCLKs are phosphorylating plasmodial SR proteins in vitro, rendering them as important 

components of the parasite splicing machinery. The four identified parasite SR proteins are 

predominantly expressed in the nucleus of trophozoites and reveal co-localization with PfCLK-

1. Upon being inhibited by already available CLK inhibitors, phenotypic analyses are feasible 

by chemical knock-outs. These findings make the PfCLKs potential candidates as targets for 

antimalarials with transmission blocking properties. 
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5 Conclusions and future perspectives 

The present study was conducted to functionally characterize two of four identified members 

of the ePK family of cyclin-dependent kinase-like kinases (CLK) in the malaria pathogen P. 

falciparum, PfCLK-3 and PfCLK-4 and substrates of all four identified PfCLKs. Reverse genetic 

approaches revealed that PfCLK-3 as well as PfCLK-4 are indispensable for the completion of 

the asexual replication cycle. Protein expression studies showed an abundant expression of 

both kinases in asexual parasites and gametocytes. In particular, the present study exhibited 

that the two PfCLKs are predominantly present in the parasite nucleus of trophozoites, 

whereas the localization is more distributed to the cytoplasm in schizonts and gametocytes. 

In other eukaryotes, CLKs have been manifested to be involved in splicing events by reversibly 

phosphorylating SR proteins acting as splicing factors. Given the notable homology of all four 

PfCLKs to yeast SR protein kinase Sky1p, it was feasible to conduct in vitro interaction studies 

to determine putative substrates of the PfCLKs. Sky1p substrate and nuclear shuttle protein 

Npl3p as well as the plasmodial homologues and SR proteins PfASF-1, PfSRSF12, PfSFRS4 and 

PfSF-1 were identified as interaction partners of the PfCLKs in vitro in this study. These 

putative parasite splicing factors show an expression profile in association with the nucleus of 

trophozoites, indicating that they remain in dynamic storage sites for splicing factors inside 

the nucleus, most likely nuclear speckles. IFAs revealed that PfSRSF12, PfSFRS4 and PfSF-1 

also co-localize with PfCLK-1.  

To enlarge the scope of the interaction analysis for the four PfCLKs, prospective studies will 

also encompass the investigation of the co-localization of the identified SR proteins with 

PfCLK-2, PfCLK-3 and PfCLK-4 by means of IFA studies or additional co-immunoprecipitation 

assays. Therefore, it should be attempted to generate antibodies against the investigated 

splicing factors originating from other species than from mice. Future studies will also involve 

the investigation of additional putative SR proteins of P. falciparum. These expanded studies 

should include the plasmodial SR protein PfSR-1 (PF3D7_0517300), which has already been 

characterized and confirmed to display a substrate for PfCLK-4 in vitro (Dixit et al., 2010; 

Eshar et al., 2012). Moreover, the putative RNA-binding protein PF3D7_1004400 exhibited 

homology with Npl3p and human SF1/ASF to a notable extent of 45% or 56%, respectively, 

rendering this plasmodial protein as an additional subject to future interaction studies 

besides other plasmodial candidates (Eshar et al., 2012). For more in depth analyses, 

successful attempts to knock-out the parasite SR proteins would gain deeper insight into the 

hitherto mainly unexplored malarial spliceosomal complex and the mRNA transport 

machinery. With possibly obtained knock-out parasites, in vitro splicing reactions and in vitro 

RNA binding assays could be conducted to unravel the functions of the plasmodial SR 

proteins. In addition, Yeast 2-Hybrid assays could confirm the findings that were achieved 

regarding the in vitro phosphorylation interaction in the present study by kinase activity 

assays utilizing recombinant parasite proteins.  

Out of a small library, five compounds have been identified that showed inhibitory effects on 

malaria parasites. In addition, the antiseptic CHX exhibited a considerable inhibitory effect on 
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asexual parasites as well as gametocytes. The specific inhibition of PfCLKs by these 

compounds was confirmed in this study in an initial attempt, as it was demonstrated that the 

identified PfCLK inhibitors do not have any activity against the calmodulin-dependent kinase 

PfPKRP. Nevertheless, other eligible off-target effects of the inhibitors can not be ruled out at 

present. As the PfCLKs cannot be knocked out, the identified compounds investigated in this 

doctoral thesis display a useful tool for generation of chemial kinase knock-outs for 

subsequent more in depth phenotypic analyses on asexual stages as well as sexual stage 

parasites.  
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6 Summary 

Besides HIV and tuberculosis, malaria still is one of the most devastating infectious diseases 

especially in developing countries, with Plasmodium falciparum being responsible for the 

frequently lethal form of malaria tropica. It is a major cause of mortality as well as morbidity, 

whereby pregnant women and children under the age of five years are most severely 

affected. Rapidly emerging drug resistances and the lack of an effective and safe vaccine 

hamper the combat against malaria by chemical and pharmacological regimens, and 

moreover the poor socio-economic and healthcare conditions in malaria-endemic countries 

are compromising the extermination of this deadly tropical disease to a large extent. Malaria 

research is still questing for druggable targets in the parasitic protozoan which pledge to be 

refractory against evolving resistance-mediating mutations and yet constitute affordable and 

compliant antimalarial chemotherapeutics.  

The parasite kinome consists of members that represent most eukaryotic protein kinase 

groups, but also contains several groups that can not be assigned to conservative ePK groups. 

Moreover, given the remarkable divergence of plasmodial kinases in respect to the human 

host kinome and the fact that several plasmodial kinases have been identified that are 

essential for the intraerythrocytic developmental cycle, these parasite enzymes represent 

auspicious targets for antimalarial regimens. Despite elaborate investigations on several 

other ePK groups, merely scant research has been conducted regarding the four identified 

members of the cyclin-dependent kinase-like kinase (CLK) family, PfCLK-1-4. In other 

eukaryotes, CLKs are involved in mRNA processing and splicing by means of phosphorylation 

of serine/arginine-rich (SR) proteins, which are crucial components of the splicing machinery 

in the alternative splicing pathway. All four PfCLKs are abundantly expressed in asexual 

parasites and gametocytes, and stage-specific expression profiles of PfCLK-1 and PfCLK-2 

exhibited nucleus-associated localization and an association with phosphorylation activity. In 

the course of this study, PfCLK-3 and PfCLK-4 were functionally characterized by indirect 

immunofluorescence, Western blot analysis and kinase activity assays. These data confirm 

that the two kinases are primarily expressed in the nucleus of trophozoites and both kinases 

possess in vitro phosphorylation activity on physiological substrates. Likewise PfCLK-1 and 

PfCLK-2, reverse genetic studies exhibited the indispensability of both PfCLKs on the asexual 

life cycle of P. falciparum, rendering them as potential candidates for antiplasmodial 

strategies. Moreover, this study was conducted to identify putative SR proteins as substrates 

of all four PfCLKs. Previous alignments revealed a significant homology of the parasite CLKs to 

yeast SR protein kinase Sky1p. Kinase activity assays showed in vitro phosphorylation of the 

yeast Sky1p substrate and SR protein Npl3p by precipitated PfCLKs. In addition, four 

homologous plasmodial SR proteins were identified that are phosphorylated by PfCLKs in 

vitro: PfASF-1, PFSRSF12, PfSFRS4 and PfSR-1. All four parasite SR splicing factors are 

predominantly expressed in the nuclei of trophozoites. For PfCLK-1, a co-localization with the 

SR proteins was verified. 
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Finally, a library of human and microbial CLK inhibitors and the antiseptic chlorhexidine (CHX) 

was screened to determine their inhibitory effect on different parasite life cycle stages and on 

the PfCLKs specifically. Five inhibitors out of 63 compounds from the investigated library were 

selected that show a moderate inhibition on asexual life cycle stages with IC50 values ranging 

between approximately 4 and 8 µM. Noteworthy, these inhibitors belong to the substance 

classes of aminopyrimidines or oxo-β-carbolines. Actually, the antibiotic compound CHX 

demonstrated an IC50 in the low nanomolar range. Stage-of-inhibition assays revealed that 

CHX severely affects the formation of schizonts. All of the selected CLKs inhibitors also affect 

gametocytogenesis as well as gametogenesis, as scrutinized in gametocyte toxicity assays and 

exflagellation assays, respectively. Kinase activity assays confirm a specific inhibition of CLK-

mediated phosphorylation of all four kinases, when the CLK inhibitors are applied on 

immunoprecipitated PfCLKs. These findings on PfCLK-inhibiting compounds are initial 

attempts to determine putative antimalarial compounds targeting the PfCLKs. Moreover, 

these results provide an effective means to generate chemical kinase KOs in order to 

phenotypically study the role of the PfCLKs especially in splicing events and mRNA 

metabolism. This approach of functionally characterizing the CLKs in P. falciparum is of 

particular interest since the malarial spliceosome is still poorly understood and will gain 

further insight into the parasite splicing machinery.  
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7 Zusammenfassung 

Neben HIV und Tuberkulose stellt Malaria vor allem in Entwicklungsländern immer noch eine 

der verheerendsten Infektionskrankheiten dar, wobei Plasmodium falciparum für die oft 

tödlich verlaufende Form der Malaria tropica verantwortlich ist. Sie ist eine der Hauptgründe 

für Mortalität und Morbitität, von der vor allem schwangere Frauen und Kinder unter fünf 

Jahren am schlimmsten betroffen sind. Das Fehlen eines effektiven und ungefährlichen 

Impfstoffes und sich schnell ausbreitende Medikamentenresistenzen erschweren die 

Bekämpfung von Malaria mit Arzneimitteln. Darüber hinaus beeinträchtigen die schlechten 

sozioökonomischen Bedingungen und der mangelhafte Zustand des Gesundheitssystems in 

Malaria-endemischen Ländern die Elimination dieser tödlichen Tropenkrankheit in hohem 

Maße. Die Malariaforschung ist immer noch auf der Suche nach vielversprechenden 

Angriffspunkten im Parasiten, die widerstandsfähig gegenüber sich entwickelnden resistenz-

vermittelnden Mutationen sind und dennoch erschwingliche und verträgliche 

Chemotherapeutika gegen Malaria darstellen.  

Das Kinom des Parasiten besteht aus Vertretern der meisten eukaryotischen Proteinkinase-

Gruppen und enthält zudem einige Gruppen, die keiner der konventionellen Gruppen 

zuordenbar sind. Darüber hinaus stellen Kinasen vielversprechende Angriffspunkte für 

Malariamedikamente dar, da das Parasitenkinom bemerkenswerte Divergenzen gegenüber 

dem Wirtskinom aufweist und zudem einige Parasitenkinasen identifiziert wurden, die 

unerlässlich für den Replikationszyklus von asexuellen Parasiten sind. Trotz umfangreicher 

Untersuchungen anderer Kinasegruppen des Parasiten wurden die vier identifizierten 

Vertreter der Zyklin-abhängige-Kinase-ähnlichen Kinasen (cyclin-dependent kinase-like 

kinases, CLKs) bisher kaum untersucht. In anderen Eukaryoten sind CLKs an der mRNA-

Prozessierung und am Spleißen durch die Phosphorylierung von Serin/Arginin-reichen (SR-) 

Proteinen beteiligt, welche wiederum Komponenten der Spleißmaschinerie sind. Alle vier 

PfCLKs sind abundant exprimiert in asexuellen Parasiten sowie Gametozyten, und stadien-

spezifische Expressionsprofile von PfCLK-1 und PfCLK-2 zeigten eine Kern-assoziierte 

Expression sowie Phosphorylierungsaktivität in in vitro-Aktivitätsstudien. Im Verlauf dieser 

Studie wurden PfCLK-3 und PfCLK-4 mittels indirekter Immunfluoreszenzstudien, Western 

Blot-Analysen und Kinaseaktivitätsassays funktionell charakterisiert. Die Ergebnisse 

bestätigen, dass beide Kinasen vorrangig im Nukleus von P. falciparum-Trophozoiten 

lokalisiert sind und Phosphorylierungsaktivität gegenüber physiologischen Substraten in vitro 

aufweisen. Ähnlich wie für PfCLK-1 und PfCLK-2 konnte in Reverse-Genetik-Studien gezeigt 

werden, dass sowohl PfCLK-3 als auch PfCLK-4 essentiell für den asexuellen Replikationszyklus 

von P. falciparum sind. Dieser Umstand macht beide Kinasen zu potenziellen Angriffspunkten 

für antiplasmodiale Bekämpfungsstrategien. Des Weiteren wurde diese Studie ausgeführt, um 

mögliche Interaktionspartner aller vier PfCLKs zu identifizieren. Vorangegangene 

Sequenzabgleiche brachten eine bemerkenswerte Homologie der Parasiten-CLKs zur SR-

Proteinkinase Sky1p der Bäckerhefe zu Tage. Kinaseaktivitätsassays zeigten Phosphorylierung 

des Sky1p-Substrates und SR-Proteins Npl3p durch präzipitierte PfCLKs in vitro. Außerdem 
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wurden vier homologe plasmodiale SR-Proteine bzw. mutmaßliche Spleißfaktoren 

identifiziert, die ebenso von den PfCLKs in vitro phosphoryliert werden: PfASF-1, PFSRSF12, 

PfSFRS4 und PfSR-1. Alle vier Parasiten-Spleißfaktoren sind vorwiegend in Kernen von 

Trophozoiten exprimiert. Für PfCLK-1 konnte eine Ko-Lokalisation mit den SR-Proteinen 

nachgewiesen werden.  

Abschließend wurden eine Sammlung humaner und mikrobieller CLK-Inhibitoren sowie das 

Antiseptikum Chlorhexidin (CHX) auf ihren hemmenden Effekt auf verschiedene 

Lebenszyklusstadien von P. falciparum und gezielt auf die PfCLKs überprüft. Es wurden fünf 

Inhibitoren aus einer Sammlung von 63 Substanzen auserwählt, die eine moderate Hemmung 

auf asexuelle Lebenszyklusstadien aufwiesen, mit IC50-Werten zwischen ungefähr 4 und 8 µM. 

Das Antibiotikum CHX zeigte sogar einen IC50-Wert im niedrigen nanomolaren Bereich. 

Nachfolgende Stage-of-Inhibition-Assays deckten auf, dass CHX die Entwicklung von 

Schizonten enorm beeinträchtigt. Wie in Gametozyten-Toxizitätsassays und 

Exflagellationsassays ermittelt wurde, hemmen alle ausgewählten CLK-Inhibitoren ferner 

sowohl die Gametozytogenese als auch die Gametogenese. Kinaseaktivitätsassays bestätigen 

eine spezifische Hemmung der CLK-vermittelten Phosphorylierung aller vier Kinasen, wenn 

die CLK-Inhibitoren auf immunopräzipitierte PfCLKs angewendet wurden. Diese Erkenntnisse 

über PfCLK-hemmende Substanzen sind erste Ansätze, um mögliche Wirkstoffe gegen Malaria 

zu finden, die die PfCLKs als Angriffspunkte haben. Zudem stellen diese Resultate ein 

wirksames Mittel zur Verfügung, um chemische Kinase-Knockout-Parasiten zu generieren. 

Diese können dann verwendet werden, um die Rolle der PfCLKs vor allen in Bezug auf 

Spleißvorgänge und mRNA-Metabolismus phänotypisch zu untersuchen. Der Ansatz, die CLKs 

des Parasiten funktionell zu charakterisieren, ist von besonderem Interesse, da das 

Spleißosom des Malariaparasiten immer noch nicht ausreichend erforscht ist. Dadurch 

können weitere Erkenntnisse über die Spleißmaschinerie des Parasiten gewonnen werden.  
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9 Appendix 

9.1 Antiplasmodial activity of the CLK inhibitor library 

Tab. 9.1:  Measured IC50 values for the inhibitor library by Malstat assays. Compounds marked with an 
asterisk were further investigated in subsequent studies. 

Substance name Single Malstat assays (µm) Mean IC50 (µm) ± SD 

C-117* 5.5 9.4 13.0 - 9.3 ± 3.82 

C81 36.1 77.8 40.2 - 51.4 ± 22.98 

C-129 >100 >100 - - >100 

C-666-42-72 >100 - - - >100 

C-667 >100 >100 - - >100 

EK-28 >100 - - - >100 

Kast-24 30.7 58.9 42.7 - 44.1 ± 14.15 

Kast-25 99.7 75.8 - - 87.8 ± 16.90 

Kast-27 >100 >100 - - >100 

Kast-50 11.0 9.9 19.3 6.7 11.7 ± 4.65 

Kast-73 >100 >100 - - >100 

Kast180-HCl >100 >100 - - >100 

Puzik-V8 >100 >100 - - >100 

Puzik-V12 16.4 28.6 37.7 - 27.6 ± 10.69 

Puzik-V16 55.7 25.3 - - 40.5 ±  21.50 

Puzik-V23.1 39.1 32.9 34.9 - 35.6 ±  3.16 

gea-27* 5.4 4.9 - - 5.2 ± 0.35 

gea-50 >100  - - >100 

gea-70 >100 >100 - - >100 

gea-75 3.6 33.8 - - 18.7 ± 21.35 

KH-CARB13xHCl* 6.4 2.0 14.1 - 7.5 ± 6.13 

Pohl-2 121.1 61.8 72.8 - 85.2 ± 31.54 

Pohl-17 >100 >100 - - >100 

KH-CARB1 72.2 119.1 - - 95.7 ± 33.16 

KH-CARB8 59.5 49.5 - - 54.5 ± 7.07 

KH-CARB3A >100 >100 - - >100 

KH-CARB3B >100 >100 - - >100 

KH-CARB7 >100 >100 - - >100 

KH-CARB9 >100 >100 - - >100 

KH-CARB10* 9.2 9.1 4.8 6.6 7.4 ±  5.75 

KH-CARB11* 7.1 6.4 5.0 - 6.1 ±  1.09 

KH-CARB2 142.4 63.2 - - 102.8 ± 56.00 
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KH-DTCMA 8.1 23.5 - - 15.8 ± 10.92 

KH-CARB6 76.3 60.3 - - 68.3 ± 11.31 

KH-AMTC 6.0 11.9 - - 9.0 ± 4.17 

KH-CB5 >100 - - - >100 

KH-CB19T >100 - - - >100 

NIH85 >100 >100 - - >100 

AR7 >100 >100 - - >100 

KH-HP05 36.0 46.8 41.2 - 41.3 ± 5.40 

KH-HP11 29.3 43.8 43.7 - 38.9 ± 8.34 

KH-HP01 >100 >100 - - >100 

KH-HP02 32.6 47.4 - - 40.0 ± 10.47 

KH-HP03 90.4 52.4 - - 71.4 ± 26.87 

KH-HP04 >100 - - - >100 

KH-HP06 >100 >100 - - >100 

KH-HP07 >100 - - - >100 

KH-HP08 56.8 57.3 - - 57.1 ± 0.35 

KH-HP09 37.4 66.1 - - 51.8 ± 20.29 

CS-14 59.6 29.9 97.2 79.0 66.4 ± 24.93 

CS02 >100 >100 - - >100 

CS04 >100 - - - >100 

CS06 >100 >100 - - >100 

CS07 >100 >100 - - >100 

gea-11 >100 - - - >100 

gea-49 25.8 64.0 - - 44.9 ± 27.01 

gea-55 67.2 64.3 - - 65.6 ± 2.05 

NIH11 23.0 55.0 17.7 - 32.0 ± 4.77 

NIH16 50.5 91.3 34.4 - 58.7 ± 29.33 

KH-CM16 78.2 130.8 - - 104.5 ± 37.19 

NIH08 >100 >100 - - >100 

NIH39 >100 - - - >100 

NIH54 >100 >100 - - >100 

CHX* 0.4 0.8 0.7 - 0.6 ± 0.40 
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9.2 Sequences of genes investigated in this study 

A Kinase sequences (5'-> 3') 

 

PfCLK-3 (PF3D7_1114700) 

       Coding sequence: 2100 bp  

 

Recombinant protein primers: rp1; rp2 

 

pCAM-BSD-KO primers 

pCAM-BSD tagging primers  

CATALYTIC DOMAIN 

 

 

ATGTCCAAAGATAAGAGAAACTCGTTTGCATCCAATTCTTTTGATTCTAGCAACGACGAA 

AAAAAATCTAAGAATGGAAATAAAATTTATAAATCAAAACATGAAGAGAATAGTCCTGAT 

GGTGATTCATATAAAATAAATAATAACGAAAAAGAGAAAAGTAAAGAAAAATTAAAAAAA 

GATCAAAAGAAAAAATCTAAAGAAATTTATAATTCATTTAATTCTCCTAATTCTACTAGT 

AGCGATTCGGATGGAAATGGATTACATCTAAATTTTTCCAACGCATCAAGTTCGAGTAGT 

GAAAACGGATTTAAGATACTACGAACACAAGAAAATGAGGATAAACTTCTAGAAGAAAGA 

AGAAGAAAAAGAGAAGCATTAAAAGAAAAATTAAAAAACATGGTTAAGGAAAATGAACAA 

AATAATGATGCGAATGAAATACTACAGAATGATCAGATAAATAAAGATTATAACAATGAA 

ACTTTTTTGTTAAGTGAAAATAAAAATGATAATGATATAATAACAAATGAAATACCATCT 

AATCCATCATATATCGACCAAAATGATGCGGCCTGCATTTTCGCACCCAACAATGATGTT 

ATTGAAGATACGTGCTCATCACTCTCATCAGATCATGAAATTATAGAAGAAAAACAAAAT 

AAAGAAAAACCAGAAGCAGTAAAAGAGTGTAGTGATTTGTATAATGATTTAAAAAAAAAA 

ATTGATGAAGAAAAGGCCAAAATTAGGTCATTTATAATCAAACAGAAAGAATTACATGAA 

AGATTAAAAATGAATGTGGATGATAGTTTATATGTGAATAAAAGTAAGGGAAATGCAGAT 

ACACATAATAATTTAACTAATAAGAAGAGTCCTCTTGAAAATGAAGAAGATGAAATGCAA 

GAAGAATACGATGAGGATAATGATGATTTTGATATGTTTTCCTGTGTACAAGCAAATAAA 

AAAAGAAAAGTTGAAAAAGTACATATAACTGATTATTACACAACAGGAAATAATGCAAAT 

TTGTCAGATAATTGGAATGACTCAGAGGGATATTACAAGGCTATGGTTGGCGAGGTTATT 

GATAAAAGATACAGTGTTGTGTGTGAACTGGTTGGGAAAGGTGTTTTTTCAAATGTATTA 

AAGTGTTATGATATGGTAAATAAAATTCCTGTAGCTGTAAAAGTTATTAGAGATAATGAT 

ATGATGAAAAAGGCTGCAGAAAAAGAAATATCTATTTTGAAGAAGTTAAATCAATATGAT 

AAGGACAATAAAAGGCACATCATTCGTTTATTAAGTAGTATAAAATATAAAAATCATTTA 

TGTTTAGTATTTGAGTGGATGTGGGGTAACTTAAGAATAGCACTGAAAAAGTATGGAAAT 

GGACATGGACTAAACGCAACAGCCGTTCATTGTTACACAAAACAATTATTTATAGCCCTA 
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AGACATATGAGAAAATGTCGAATAATGCATGCTGATCTAAAACCGGATAATATTCTTATT 

AATGAAAAATTTAACGCCTTAAAAGTTTGCGATTTAGGAAGTGCAAGTGATATATCAGAA 

AATGAAATTACGTCATATTTAGTTAGTAGATTTTATAGAGCACCTGAAATTATTTTGGGT 

TTTCGATACGACGCTCAGATTGATGTATGGTCAGCTGCTGCAACTGTTTTTGAATTAGCA 

ACGGGTAAAATCTTGTTTCCGGGTAAATCAAATAATCATATGATAAAACTGATGATGGAA 

TATAAGGGCAAATTTTCACATAAAATGATAAAAGGTGGGCAATTTTATTCTCAACATTTT 

AATGAAAATTTAGATTTTCTTTATGTGGATAGAGATCATTATTCCAAAAAAGAAGTTGTT 

AGAGTTATATCTGATTTGAGACCTACGAAAAATATAACATGTGATTTATTGGAGCATCAA 

TATTGGTTGAAGGGAAATAGCCCTAAAATGCAATTTTTGAAAAAAAAAATAAAACAACTA 

GGAGATTTATTAGAGAAATGTTTAATTCTAGATCCATCTAAACGATATACTCCAGATCAA 

GCTTTACAACATCCTTATTTAAGAGAATCTATTCATTTTTCAAAATCTCAAAATGAATAA 

 

 

PfCLK-4 (PF3D7_0302100) 

       Coding sequence: 4017 bp  

 

Recombinant protein primers  

pCAM-BSD-KO primers 

pCAM-BSD tagging primers  

CATALYTIC DOMAIN 

 

ATGAGTTTTAGTAATACATGCTCACTATCCAATAACAGCAACAGTTCTAGTAGTAGTGAA 

GATGCTACTTCTGGTAAATTACAATACACCGAAAGTGATGATGAAGGAAGTGATGAATAC 

TGCGAAGGAGGGTATCACCCAGTCAAAATTAATGAAATATATAATGATAGATATAGAATT 

GAAGGAAAATTAGGTTGGGGACATTTTTCAACCGTTTGGGTTGCTACTGATTTAAAAAGT 

AAACCCTTAAAATTTGTTGCTATAAAAATTCAAAAAGGATCAGAAACTTATACTGAATCA 

GCCAAATGTGAAATTAATTATTTAAATACAGTCAAAGTAAATTCTTTTGATTCTTCATGG 

GTTGAATTAAAAGAACAACAAAGAGAAAGATTATTTCATTATAATATGACTAAAGGAGTT 

GTCTCTTTTATTGATAGTTTTGAACATAAAGGTCCAAATGGTACTCATATTTGTATGGTC 

TTTGAATTTATGGGTCCTAATTTATTATCCCTAATAAAACATTATGATTATAAAGGAATT 

CCATTAAATTTGGTCAGAAAAATTGCTACACATGTGTTAATAGGAATGCAATATTTACAT 

GATGTCTGTAAAATTATACATAGTGATATCAAACCAGAAAATGTTTTGGTCTCACCATTG 

ACTACTATTCCAAAACCAAAGGATTATACCAAAGATAAATTAGAATCAAATAAATCTAAC 

CAAGTTGAAAAAAAAGAAAATGACCAAAATGTAGATAAGAAATTAATTACTACAATGAAT 



APPENDIX 134 

AATAACATAAATACAAATCTAAGTGAAAAAAAAAAAGTTATTAATGATACACAAAAAAAT 

GATAAAAATATAGAATATGATCAAAAATGTACGAGCAGTAAAGAAAATATTGAAGATAAT 

GTATCCTTTGTAAATGATCCAAGTGATCCTAATCAAAAGAATAATCTAAATAATAATATA 

ACGGATAATAATATCATACCCAGTAATGTACAAATAGAAAAACAATCTACATTAAGTAAA 

AATAAAAAAAATGAAAAAGATTCATATATAAATATAAACAATTCTCTTACAAATGATGAT 

CAAAATTTAAAAAGAGAAGATATCAAATTTAATGATAAAGCGGAAGGGATTACCAAATAT 

GATATGTTAAATATTAAAAATAATATATCTATTAAAGAAAAAATAAATGATTGTCATTCA 

CCCAATGAAAATAAAAATAAAGATAATCATAATCAATGTGAAGACAATTCGATCAACATA 

TGTAATAACAAAAATAATAATATTCAAACAAATAATATTAATGATAACACTGTTAACGAA 

AAAATTAATAATACATCAAAGAAGGATATGTTAAATAATACACAAAATAATAATGATTCC 

GAAAAGAACGACGTTGTTATTGAACAACAATTGGTAAATGAAGATATTTTAAAAAAAAAA 

AACAAACAAACAAAAAAAAAAAAAAATATAAATGAACCTCCATATGTTAAACATAAACTA 

AGACCATCAAATTCGGATCCTTCTTTGCTCACATCTTATTCTAATATACATGCACTTCAA 

GAAACCTTGACAAGGAAACCATATCATTATAATACCTATTTTTTAAACAACCCCGAAAAA 

TATAGAGATAATAAAATGAATCCATACTTACACAGATTGCCAAATGATTGCTTGAAAAAA 

ATCGATCAAGATGATAGTGATGAAACGGAAGAGGAGGATGATCTTTCAGATGTAGACCAA 

AATAAGGAACAAAATAAGAACCAATTAGAGGTCAACTTGCCAAATAATAAATATCCAAAT 

TCCAATGATGTGTATAAATTTTTTGAAAAAGATATTAATAAATTTCCCATATACTGCGAC 

ATGTTTAATCATCTTATACATCCAGAAGCCTTACGATTACATGAATTATATATGAAAAAT 

AAAAAAAACATCGATTCTAACAATACAATGAATGATTTAGGTAATAATCAAAATAGTCAT 

AAAGTAGTATATATAAATACTGAAGATGGAGAATATTGTATTAGGCCATACGATCCGTCT 

GTTTATTATCATGAAAAATCATGTTATAAAATATGTGACCTAGGAAATAGTTTGTGGATA 

GATGAATCAAGATATGCCGAAATTCAAACTAGACAATATCGAGCCCCTGAAGTTATTTTA 

AAAAGTGGGTTCAATGAAACAGCAGATATATGGTCCTTTGCATGCATGGTATTCGAATTA 

GTAACAGGAGACTTTTTATTTAATCCACAAAAAGGTGATAGATATGATAAAAATGAAGAA 

CATTTAAGTTTTATAATTGAAGTGTTAGGAAATATACCAAAGCATATGATTGATGCAGGG 

TATAATTCCCATAAATATTTTAACAAAAATAATTATCGACTTAAAAATATAAGAAATATT 

AAAAAATATGGTTTATATAAAATATTAAAATATAAATATAATCTTCCTGAAAAGGAAATT 

AGCCCCTTATGTAGTTTCTTATTACCCATGTTATCTGTGGATCCACAAACGCGCCCCTCA 

GCATATACCATGCTTCAACACCCATGGCTTAATATGGTATCATTAGAAGAAGGGGATGAC 
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ATGTATATTAATGATGAATCATATTCTATTAATAATGATAGAAACATGAAAAATAATAGT 

AATAGTAATAATTTCATCTACGACGGTCATAATAGTAGTAAAAATAAAAATTCTTCAAAT 

AAAAAAAAAATTGATGTAAACTACAAAATTGGTAATAATGGAAATAATGCTTATAACGAT 

AACTATTATAATAAAAATTATAAAAATAATAAAAATAATAAAAATTTTAATGATGATGTT 

GTAGAACCATCACCAGATCAATATATGCATGCAAATTATAATAATGATATTGTGCATGCA 

GTTTTGTATGAAAAGCCATATAATTCAAATAATGTCATTTCATACACTAATAACAAAGGA 

CATAAAAATAATTTTGATATTAATTATTTACAACATAGGAATGATAATAATTCGAACAAA 

CAAAATATTTCATTAACTACAAACGATTATACATTTAATTCGGATTATATTGCTAATATG 

ATGGATCATGACACATATAGAAAACAAATAATAAAAAATATTCCTGCACATCAAATTTCA 

AAACTAAAAGATGGTAAAAATTTTAAGGCATATAATGAATCTATTCAATATGAAATGCAT 

GATTTTCAACAATACAATGAACATGATTTTGAATACAAATTTAATAAAAGATTTGAACAT 

GCACATCATATAAAAGAAATGAAACATAACGATGATGATTACGAGGAGGAAGATGAAGAT 

GAAGATGACGATGATGAAGATTATGAAAGTGATGTTGATTATGATGATGATGATGAATAT 

GATGAAGGACAAGAACATGATGCTGATCAAGATGAAAAAAACAACGATAACGAAAAACAA 

CAAGAACAACAAAATTACGGTGAAAAATATAATTATGAACATTATGAAAATAATATGGGT 

TATAATAAAAACATTCAACAATTGTCATATACAAATAATAATGATGATGAAAATAATTTT 

TGTGAGACACAAAATATATATATATTACAAAACAAAAGAGATATAAATTTTAAAGAATGT 

ACACCACGAAATAATATCAACAAAGAAATAAAAAGTGATAAATATCAATCCAGTAAAGTT 

ATAAATCAAAAAGATAATTATTGGAATTACAAAATCAAAGAAAACACAAAATTAAGAGAA 

CATGCAAAAAAACAACATTATAGCAACAACAATAATATCAATAAAAATGATAATACTAAT 

ATAATGAACCAAATAGATACCAAAGATCAAATATCCAAAAATTTACATGATTTATCAACA 

AATAACAATATGGACCAAAAACACGGTGCATTACAAAAAATGCATATGAACGAAAAAACA 

AACCAAGACAAACCATTAAATGACGAAGAAATTTTAATCGAAAATAGAGATGACCAGAAT 

GTTAATAAAATCAATTGCAAAGTTATTAACAAAAAAAACTCTTGTGCATATACTTAA 
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B SR protein sequences (5'-> 3') 

 

PfASF-1 (PF3D7_1119800) 

       Coding sequence: 603 bp  

 

Recombinant protein primers  

 

ATGAAAAAGTTAATTAATTGTGGCAATAGATTATATGTTGGTAATATTCCAGGCTCAGCA 

ACAAGACAAGAATTAATAAAAATATTTGAAGAATATGGAAAGATATCAGATATCGATATA 

AAATATAATCGTAATAGTAATGGAACGAATTATGCATTTATCGAATATGAGAACCCTAAG 

AGTGCTGAGAAAACTATACAAAAAAGGAATGGAAAAAAATTTAAAGGTTATATGTTAAAA 

GTAGAATATAGTATAGAAAAAAAAAATAGAGATTTGAATGATATATATAGATCTGAATAC 

AGAGTTGTTGTAAAACATTTCCCGAGATTTTTTAAAAATATAAAAGAATTTTTATCAAGA 

GCAGGAAAAGTACTTTATATTCATAAAGATAATGGTCTTATTATTGCTGAATATGAAGAT 

AAAGAAAGTATGATTAAAGCTATTAGTACATTAGATAGAACCATCTATAATTCAAAAAGA 

AAAGTTTATGTTCGAGTATTTAAAGACATACCTTATGATTATTCGGATGTAAATCTTATT 

GATTATAATATGGTCTTCTCATCTACAAAAAATGAAAATATATCTCCAAAGGAACTAAAT 

TAA 

 

 

PfSRSF12 (PF3D7_0503300) 

       Coding sequence: 927 bp  

 

Recombinant protein primers  

 

ATGGGGCCATATATAAATCAGAAGAATCAACCCATGTCGTTATTGATAAGAAAATTAAAG 

TTTGATACATCCCCATCAATTGTAAGAGAAAAGTTTAAAAGATTTGGAGCGATTAAAGAT 

GTATATTTACCAATAGATTATTATACGAAAGAACCTCGAGGGTTTGGTTTCGTAGAATTT 

TATGATGCAAAAGATGCTGAACAAGCATTAAAAGAAATGAATGGTTCAGAAATTGATGGA 

AGTAGAATAGAAGTTTTTGTAGCACAGAAAGGAAGATCAGATCCAAGACATATGAGATAT 

AAAGAAAAAGGAGGTTATGCATATAGAAAAAATCCAGATAATAAAATAAGAAGAAGATAT 

ATATCGAAATCAAATTCAAGATATGGTTCATATTCAAGAGATAAAATAAGAAGACGCGAA 

AGATCAAAAGAAAGATTTAGATATAGAAGTAGTTATGATAGAAAAATGAGTAGTTACCGA 
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GATCGAAAAAATTATCATATGAAAAGTTATGACAAATATCGTGATAGAAATCATGACCGA 

AGTTTAAGTAGAAGATCAAGAGAATATCGTAATAATACATCAAGATATAGAGATAAAAGA 

AGATATGATAAATATTATAGAAGTACTAGTCGAAGAGCTAGTAGACATGAAAAAAGAAAT 

GAAAATTATAAATCTAAATATAATCATAGTAACGATGACTATAGTGATGAAACCAGAAAC 

TCAAGTAAGCATTCAAGAAAAGAACATGTGTCCAGATCTATTTCTTTTAATTCGGAAAAA 

GATGATGCCAAAAAGAAAAACGATAATACAAGTGAGAGAGATAATTCAAATGATTGGAAA 

GGAAGTGAACAAAGAAAAGAGGAAGAAGATGAGGAAGTAGAAAAGGAGAAGGAAAATGAA 

GAAGAGGAAGAAGCAATTTATGATTAA 

 

 

PfSFRS4 (PF3D7_1022400) 

       Coding sequence: 1617 bp  

 

Recombinant protein primers  

 

ATGAGTTTTAAACCAAGATTCAGTAAATCATCTTCATGCATATATGTAGGAAATTTACCA 

GGCAATGTCATTGAAGAAGAAGTTTACGATTTATTTGGAAAGTATGGGCGTATAAAGTAC 

ATAGATATAAAGCCATCAAGATCTTCCTCTAGTTCTTATGCTTTTGTTCATTATTATGAT 

TTGAAAGATGCAGATTATGCAATAGAAAGAAGAGATGGATATAAATTTGATGGATTTCGT 

TTACGTGTTGAACATTCAGGAGAAAACAGAAGTTTTGGAAAATATAGAAAAAAAGATGAT 

GGTGTTGGTCCACCTATAAGAACTGAAAATAGAGTAATTGTTACTAATTTACCAGATAAT 

TGCAGGTGGCAACATTTAAAAGATATTATGAGACAATGTGGTGATGTGGGATATGCTAAT 

ATTGAACGAGGAAAAGGTATAGTAGAATTTGTAAGTTATGATGATATGTTATATGCAATT 

GAAAAATTTGATGGTGCAGAATTTAAAGTGTATGACGATGTTACAAATATTAAAGTTAGA 

AGAGATAAAAGAGGTTCTTCTTATATGAAAAGATATAGAAATGATTATAGTCCTAAATAT 

AAAAAAAGACGTAGATATAGTAATGAATCGGGATTATCAGATAGAGATCGATCAAGATCT 

AGAAGATACAGTAAATCTAGTAATTCATCAAACAAAAGAAATAATAAATATGAATCTCAT 

AGTCAAAGTTTAAGCGATAATAGAAATAGTTACAGAAATAGAAGTAAGGGTAAAAAAAGA 

AGTGGATATAAAGGGAAAAGAAGTTATAGTTCTTATGAAAACCAAAACGATGATGTTAGT 

AGGAGTAGATCTGATCATGGATCAAGAAGTGGTGATAGAAGTTATAGAAAGAAAAAAAAT 

AAAAATGAAAGCTCTAGTGATGTATTAAGTAAACATTCTAGTGCATACCGAGATAGCGAT 

AGTGAAAAAAATAAAAGCTATAGAAAACGTTTATCAAGTGATAACAGAAGTCATAGCAGA 
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CGAAGAACTGTAAGTGAAGATAGAAGTGAAAGAAGGAGAAGTTTAAGTGAAGATAGAAGT 

AATAGTAGAAAAAGGAACGCAAGCAGCGACTTCAAAAGAGAACTAAATTCAGATGATGAT 

AAAAAAAGTAAAAAAAAAAGAAGCTATAGCGCTTCACCGGGATCGGCATATAAGAGCAGT 

TCACGTGAGTTAAAAAGTCAAGATAAAAGCAATGATAGATTAAGTGAATCAAAAAAGAGT 

TATAAATCTCAAAGTGCTTCTGTTAGATACAATAGCACAGAAGAGAAAAAAAGCGATGAT 

GAAACTGTAAAACCTAAGAGAGGTGGTAGGGGAAATGCAAAGAATACAGGGAAGAATAAG 

AATACTAAAGGAAGTAAAAAAGGTGCTAAAACAGAAGAAAATCATGATTCTAAAAGTGTT 

TCCAATGATAGAAATAAAAGTGATAAATCCGAAGAAAAAGAAAAACCTGAAGTTGTAAGT 

AAAGATGAAGAAGATAAGAAAACAGGAGGTGCAGAAGTAAAACCTAAGAGAGGAAGAAGA 

GGAAGAAAAAAAGCTAATGCAGCAGATGAAAATGCAAATGGTAATGTTAGCAACTAA 

 

 

PfSF-1 (PF3D7_1321700) 

       Coding sequence: 2595 bp  

 

Recombinant protein primers: rp1; rp2 

 

ATGGAAGAGAACTCATATTTTGAGGCAGTAGAAAAACTTTTTGAAATTAAAAATTCAAAA 

GAAGATAAAATAAATGGAAGTAGTAGTAATAAGGATGAATTAATTGAAAATAAAGAATTA 

AAAAATGATAACTTGAATAATAATACTTGTGATAGTGATAAAAAGAAAACAAACAAAAGA 

GAAGTCAAAAGAAAAAGTAAAGTTATCAATGATAATAAAATAGATAATGAAAACAAAAAT 

ACAAAAAGGAAAAAAAAAACAAATGGTGATGTCGATATAAATATAGATGAAAATTTTGAT 

GAAGATAATGATGAAAATGTTGATAAAAATGTTGATAAAAATGTTGATAAAAATGTTGAT 

AAAAATGATGATGAAGATGATGGTGAAGATGATGGTGAAGATGATGGTGAAGATGATGGT 

GAACACGATGGTGAAGATGACGGTGAAGATGATAGTGATGAAGATAAACATGAAAATATT 

CCTAAAAATAAAGCAGATACTTTGAAAGAAGAGTCTGATGTATCAGATAACCATCATAAC 

AACAGAAAATCTAAAAATATAAAAAATTCTATAAGGAGTAAGAGTAGTAATAGTAAAACA 

AAAAAAGAAGATGATGATAATAATATTCATTGTAATAATAGTTCGCAGGAAAATGAACAA 

AAGCGTAAGGAACAGCTTTTGGAAAATAAAGACAATAAGAAGGAGGGGAAAAATACAAAT 

TCCTCTAAAGTTAAAAAAAGATATCATACTAGTAGTGATGAAAATGATAGGAATAATGAT 

AATACATCATCAGAGGAAGAAAGGACAAAAAGTCGAAAAAAGAAACATAAAAATGATAAC 

AGTGATAAAAAAAATGAAAATAGAGTAGTAGACTATTCGTCGTCGTCTTCTTCCTCCTCT 
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GATGCTTCAAATGAATATAGCTCAAGTGATGAAGAAAGAGATCATAAAAAAAGAAAAATA 

AGAAAAACAAACCGATCTAGGAGAATTTCCAGATCATCTAGTGAAAGTAATTCAAGTACA 

GACAATGATAAACGTGGTACATCAAGAAGCAGTGAAGAAAAAGTGTACTCCAAATATGAT 

AAGATGAAAAGAAGAGATAGAGAAAGAGAAAGAGATAGGGATAGAGACAGAGATAGGGAT 

AGAGACAGAGACAGGGATAGAGACAGAGATAGGGATAGAGACAGAGATAGGGATAGAGAA 

AGAGAAAAGGATAAGGATCGAGATAGAGACCATGACCGATATAGAGATAGAGAACGTGAT 

CGATATAGAGATAGAGAAAGAGAGCGAAGAAAAGATAGAGAAAGGGAAAGAGAAAGGGAA 

AGGGAAAAAGAAAGAATAAGAAGAGAAAATGAAAGAGAAAGATTAAGGAAAGAAAGAGAA 

CTGGAAAGAGAAAGAAGAGAAAAAATAAGAGAAGAAAGAAGATTAAAAGAAGAAATGGAA 

GAAGCAAAAAGGGATGATTTAACAGTACTTGTATTAAATTTGGATTTAAAAGCAGATGAA 

AGAGATATATATGAATTTTTTTCAGAAGTAGCTGGAAAGGTTAGGGATATACAATGTATA 

AAAGATCAAAGGTCAGGAAAATCAAAAGGAGTAGCATATGTAGAATTTTACACTCAAGAA 

GCAGTAATAAAAGCATTAGCAGCAAATGGCATGATGTTAAAAAATCGACCAATAAAAATA 

CAATCATCTCAGGCAGAAAAAAATAGAGCAGCAAAAGCAGCAAAACATCAACCTATAGAT 

CCAAACGATATTCCATTAAAATTATATATCGGTGGATTATTAGGTCCATTAAGTAATATA 

ACAGAACAAGAATTAAAACAATTATTTAATCCTTTTGGTGATATATTAGATGTAGAAATA 

CATAGAGATCCTTATACAGGGAAATCTAAAGGATTTGGTTTTATTCAATTTCATAAAGCC 

TCTGAAGCCATTGAAGCATTAACTGTTATGAATGGAATGGAGGTAGCGGGTAGAGAAATT 

AAAGTAGGATATGCACAAGATTCTAAATATCTCTTAGCATGTGATAATACTCAAGAAAAT 

ATATTAAAGCAACAGCAAATGGCAAAAAATATAAACACTGAAGAGGAAGAACAAGATAAT 

GAGAAAATTGATAACGATGATGGAGACGGCGGTGGGCTCATAGCTGGCACTGGTAGCAAA 

ATAGCATTAATGCAGAAGCTTCAGAGGGATAGTATCATAGATCCTAATATACCCAGTAGG 

TATGCCACTGGAGCCAATGCTATTATGGCAAGGAATTCCTTCGTTCCCTCAACCAATAAT 

ATAAATAATAATGTGACAACTAATTTAGTATTAAGCAATATGTTTTCATCAAATGATGAA 

AATATAGGAAGCGACCCCGATTTCTTTAATGACATACTTGAAGATGTTAAAGAAGAATGT 

AGCAAATATGGAAAGGTTGTAAACATTTGGCTAGATACCAAGAACATTGATGGTAAGATT 

TACATAAAATATTCTAATAATGATGAATCATTAAAATCATTTCAATTTTTAAATGGAAGG 

TATTTTGGAGGCTCACTAATAAACGCGTATTTTATTTCAAACGATGTATGGGATATGACT 

TGTCTTCCAAAGTAG 
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9.3 List of abbreviations 

aa Amino acid 
AB Antibody 
ACT Artemisinin combination therapy 
Amp Ampicillin 
AP Alkaline phosphatase 
APAD 3-Acetylpyridine adenine dinucleotide 
approx.  Approximately 
APS Ammonium peroxide sulphate 
AS Alternative splicing 
ATP Adenosine tri-phosphate 
bp Base pairs 
BSA Bovine serum albumin 
BSD Blasticidin 
CaM Calmodulin 
CF Cytoplasmatic fraction 
CHX Chlorhexidine 
CIP Calf intestinal phosphatase 
Co-IP Co-immunoprecipitation 
CQ Chloroquine 
DMSO Dimethylsulfoxide 
DNA Deoxyribonucleic acid 
dNTP Deoxynucleotide 
DTT 1,4-Dithiothreitol 
EC Erythrocyte control 
EDTA Ethylenediaminetetraacetic acid 
EGTA Ethylene glycol tetraacetic acid 
ePK Eukaryotic protein kinase 
ER Endoplasmatic reticulum 
EtBr Ethidium bromide 
Fig. Figure 
FS Filtered supernatant 
FT Column flow-through 
GC Gametocytes 
GST Glutathione-S-transferase 
H2Obidest Double-distilled water 
HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid,  

N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) 
HIV Human immunodeficiency virus 
hLDH Human lactate dehydrogenase 
IB Inclusion bodies 
ICM Incomplete medium 
IFA Immunofluorescence assay 
IgG Immunoglobulin G 
IPTG Isopropyl-β-D-thiogalactopyranoside 
kb Kilobase 
kDa Kilodalton 
KO Knock-out 
LB Lysogeny broth 
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MaBP Maltose binding protein 
MBP Myeline basic protein 
mRNA Messenger RNA 
NBT Nitroblue tetrazolium 
NGS Neutral goat serum 
NLS Nuclear localization signal 
NMS Neutral mouse serum 
NP Nuclear pellet 
NRS Neutral rabbit serum 
NTF Nuclear transport factor 
OD Optical density 
PAGE Polyacrylamide gel electrophoresis 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
PIC Protease inhibitor cocktail 
PK Protein kinase 
pLDH Parasite lactate dehydrogenase 
PML Promyelotic bodies 
PMSF Phenylmethanesulfonyl fluoride 
PYR Pyrimethamine 
RBC Red blood cell 
rMGV Relative mean grey value  
RNA Ribonucleic acid 
rp Recombinant protein 
rpm Revolutions per minute 
RRM RNA recognition motif 
RS Arginine-serine 
RT Room temperature 
SD Standard deviation 
SDS Sodium dodecyl sulphate 
SDX Sulfadoxine 
SOC Super optimal broth with catabolite repression 
SR Serine-arginine 
SZ Schizonts 
Tab. Table 
TAE (buffer) Tris-acetate-EDTA (buffer) 
TBD Transmission blocking drugs 
TBS Tris buffered saline 
TBSM Milk powder in TBS 
TBSM-T TBSM-Tween 
TBS-T TBS-Tween 
TBV Transmission blocking vaccines 
TEMED N,N,N´,N´-Tetramethylethylendiamine 
term.  Terminal 
TLR Toll-like receptor 
TZ Trophozoites 
UV Ultraviolet  
WHO World Health Organization 
XA Xanthurenic acid 
α Anti 



APPENDIX 142 

9.4 List of tables 

Tab. 2.1: List of CLK-inhibitors used in the present study. ................................................... 26 
Tab. 2.2: List of commercial kits and enzymes used in this study and their suppliers. ........ 32 
Tab. 2.3: List of solutions, reagents and buffers used and their compositions.................... 32 
Tab. 2.4: List of media and solutions for P. falciparum cultivation. ..................................... 35 
Tab. 2.5: List of media and agar used in this study for bacterial cultivation. ....................... 36 
Tab. 2.6: List of antibodies used in this study, their properties and suppliers..................... 39 
Tab. 2.7:  List of primers used in this study for recombinant protein expression and gene 

modification.. ......................................................................................................... 41 
Tab. 2.8.:  List of primers used in this study for genotype characterization. ......................... 42 
Tab. 2.9: Gene IDs of investigated genes proteins. .............................................................. 43 
Table 2.10:  Pipetting scheme for PCR reactions using GoTaq® or Phusion® Polymerase, 

respectively. ........................................................................................................... 53 
Table 2.11: Thermocycler programs for GoTaq® and Phusion® polymerase. .......................... 53 
Tab. 2.12: Pipetting scheme for digestion reactions. ............................................................. 55 
Tab. 2.13: Pipetting scheme for ligation reactions. ................................................................ 55 
Tab. 2.14: Pipetting scheme for control digestion of purified plasmid DNA from 

transformant bacterial colonies. ........................................................................... 56 
Tab. 2.15:  Composition of different SDS gels (stacking and resolving). ................................. 61 
Tab. 2.16: Composition of a standard kinase reaction for kinase activity assay. ................... 64 
Tab. 3.1:  Table displaying homologies between the plasmodial proteins investigated in this 

study and yeast Npl3p and human SF2/ASF. ......................................................... 78 
Tab. 3.2:  Malstat assay results showing IC50 values of the tested inhbitors. ....................... 91 
Tab. 9.1:  Measured IC50 values for the inhibitor library by Malstat assays.. ...................... 130 

 

 

 



APPENDIX 143 

9.5 List of figures 

Fig. 1.1: Worldwide distribution of vivax and falciparum malaria. ....................................... 1 

Fig. 1.2:  Representative asexual blood stage parasites in Giemsa-stained blood smears.. .. 4 

Fig. 1.3:  Schematic of the life cycle of P. falciparum (modified from Bousema and 
Drakeley, 2011) ........................................................................................................ 4 

Fig. 1.4:  Gametocytes of P. falciparum in Giemsa-stained blood smears. ............................ 5 

Fig. 1.5:  Schematic of the typical ePK catalytic subdomain structure. ............................... 12 

Fig. 1.6:  Domain structures of the PfCLKs. .......................................................................... 17 

Fig. 1.7:  Domain structures of yeast splicing factor Npl3p and the four homologous 
plasmodial factors .................................................................................................. 19 

Fig. 2.1:  Vector map of the expression vector pGEX-4T-1 .................................................. 37 

Fig. 2.2:  Vector map of the expression vector pIH902 ........................................................ 38 

Fig. 2.3:  Vector map of pCAM-BSD for disrupting a specific gene locus ............................. 38 

Fig. 2.4:  Vector map of pCAM-BSD-Myc for gene-tagging. ................................................. 38 

Fig. 2.5:  The DNA molecular weight standards for agarose gel electrophoresis.. .............. 43 

Fig. 2.6:  The protein molecular weight standards used for SDS-PAGE. .............................. 44 

Fig. 2.7:  Preparation of a thin blood smear for determination of parasitemia.. ................ 46 

Fig. 2.8:  Neubauer hemocytometer and schematic representation of counting grid.. ...... 47 

Fig. 2.10:  Malstat plate depicting a typcial Malstat assay. ................................................... 49 

Fig. 2.11:  Assembly of Mini Trans-Blot® Western blotting apparatus from Bio-Rad, Munich..
 ............................................................................................................................... 62 

Fig. 2.12:  Schematic depicting the principle of Co-IP. 1 ........................................................ 64 

Fig. 3.1:  Generation of GST-tagged recombinant PfCLK-3 fragments as soluble proteins for 
polyclonal antibody production in mice. ............................................................... 67 

Fig. 3.2:  Synthesis of PfCLK-3 rp1 and rp2 purified from bacterial inclusion bodies .......... 67 

Fig. 3.3:  Verification of PfCLK-3 antisera for expression studies. ........................................ 68 

Fig. 3.4:  Expression analysis of PfCLK-3 by the use of rat antisera ..................................... 69 

Fig. 3.5:  Generation of GST-tagged recombinant PfCLK-4 rp4. ........................................... 70 

Fig. 3.6:  Determination of antisera directed against PfCLK-4 for expression studies. ........ 71 

Fig. 3.7:  Protein expression analysis of PfCLK-4 .................................................................. 72 

Fig. 3.8:  Generation of gene-disruptant parasites by means of reverse genetics .............. 73 

Fig. 3.9:  Gene tagging strategy by reverse genetics ............................................................ 74 

Fig. 3.10:  Phenotype analyses of genetically modified parasites by means of Western 
Blotting with antisera directed against Myc-tag ................................................... 75 

Fig. 3.11:  Subcellular localization of Myc-tagged PfCLK-3 and PfCLK-4 in blood stage 
schizonts. ............................................................................................................... 76 

Fig. 3.12:  Kinase activity assays performed on immunoprecipitated PfCLKs. ....................... 77 

Fig. 3.13:  Recombinant expression of yeast GST-tagged splicing factor Npl3p in E. coli. ..... 79 

Fig. 3.14:  Generation of GST-tagged recombinant PfASF-1 via affinity purification ............. 80 

Fig. 3.15:  Generation of recombinant splicing factors PfSRSF12 and PfSFRS4 in E. coli. ...... 80 

Fig. 3.16:  Generation of MaBP-tagged recombinant PfSF-1 fragments.. .............................. 81 

Fig. 3.17:  Phosphorylation of yeast Npl3p by immunprecipitated PfCLKs.. .......................... 82 

Fig. 3.18:  Phosphorylation of plasmodial SR protein PfASF-1 by immunoprecipitated PfCLKs.
 ............................................................................................................................... 83 

Fig 3.19:  Phosphorylation of plasmodial SR proteins PfSRSF12 and PfSFRS4 by 
immunoprecipitated PfCLKs. ................................................................................. 83 



APPENDIX 144 

Fig. 3.20:  Phosphorylation of the plasmodial SR protein PfSF-1 by immunoprecipitated 
PfCLKs. .................................................................................................................... 84 

Fig. 3.21:  Subcellular localization of PfASF-1 in blood and gametocyte stages. ................... 85 

Fig. 3.22:  Subcellular localization of PfSF-1 in blood and gametocyte stages ...................... 86 

Fig. 3.23:  Subcellular localization of the SR proteins PfSRSF12 and PfSFSR4 in blood and 
gametocyte stages. ................................................................................................ 87 

Fig. 3.24:  Control IFAs ............................................................................................................ 88 

Fig. 3.25:  In depth analysis of the localization of the SR proteins PfSRSF12, PfSFRS4 and 
PfSF-1 in the parasite nucleus. .............................................................................. 89 

Fig. 3.26:  Co-localization of PfSRSF12, PfSFRS4 and PfSF-1 with PfCLK-1/LAMMER. ........... 90 

Fig. 3.27:  Effect of CLK inhibitors on CLK-mediated MBP phosphorylation .......................... 92 

Fig. 3.28:  Controls for kinase activity assays determining the effect of CLK inhibitors on CLK-
mediated MBP phosphorylation.. .......................................................................... 92 

Fig. 3.29:  Giemsa-stained asexual parasite stages distinguished in stage-of-inhibition assays
 ............................................................................................................................... 93 

Fig. 3.30:  Effect of CLK inhibitors on blood stage parasites. ................................................. 94 

Fig. 3.31:  Gametocyte toxicity assay ..................................................................................... 95 

Fig. 3.32:  Transmission blocking potential of selected CLK inhibitors in exflagellation assays
 ............................................................................................................................... 96 

Fig. 3.33:  Impact of CHX on parasite gametogenesis ............................................................ 97 

 

 



CURRICULUM VITAE 145 

 


