
All grown-ups were once children. . .
but only few of them remember it.
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ABSTRACT

This thesis deals with quantum Monte Carlo simulations of corre-
lated low dimensional electron systems. The correlation that we have
in mind is always given by the Hubbard type electron electron in-
teraction in various settings. To facilitate this task, we develop the
necessary methods in the first part. We develop the continuous time
interaction expansion quantum algorithm in a manner suitable for
the treatment of effective and non-equilibrium problems. In the sec-
ond part of this thesis we consider various applications of the algo-
rithms. First we examine a correlated one-dimensional chain of elec-
trons that is subject to some form of quench dynamics where we sud-
denly switch off the Hubbard interaction. We find the light-cone-like
Lieb-Robinson bounds and forms of restricted equilibration subject to
the conserved quantities. Then we consider a Hubbard chain subject
to Rashba spin-orbit coupling in thermal equilibrium. This system
could very well be realized on a surface with the help of metallic
adatoms. We find that we can analytically connect the given model
to a model without spin-orbit coupling. This link enabled us to in-
terpret various results for the standard Hubbard model, such as the
single-particle spectra, now in the context of the Hubbard model with
Rashba spin-orbit interaction. And finally we have considered a mag-
netic impurity in a host consisting of a topological insulator. We find
that the impurity still exhibits the same features as known from the
single impurity Anderson model. Additionally we study the effects
of the impurity in the bath and we find that in the parameter regime
where the Kondo singlet is formed the edge state of the topological
insulator is rerouted around the impurity.
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ZUSAMMENFASSUNG

In der vorliegenden Arbeit beschäftigen wir uns mit Quanten Mon-
te Carlo Simulationen von niedrig dimensionalen korrelierten elek-
tronischen Systemen. Die Korrelation der Elektronen wird hierbei
durch die Hubbard Elektron-Elektron Wechselwirkung ins Spiel ge-
bracht. Um dieses Problem anzugehen, werden wir im ersten Kapi-
tel die notwendigen Methoden, ein Quanten Monte Carlo Verfahren
mit kontinuierlicher Zeitdiskretisierung, das in der Hubbard Wech-
selwirkung entwickelt, in einer Art und Weise darlegen, die es uns
ermöglicht, effektive Probleme sowie Probleme, die durch eine Real-
zeitentwicklung charakterisiert sind, zu lösen. Im zweiten Teil der
Arbeit werden wir konkrete Anwendungen des Algorithmus disku-
tieren. Zuerst untersuchen wir eine ein-dimensionale Kette von Elek-
tronen, die wir einer plötzlichen Änderung ihrer Parameter ausset-
zen, indem wir die Hubbard Wechselwirkung ausschalten. Wir fin-
den in dieser Situation die lichtkegelartigen Lieb-Robinson Schran-
ken wieder und beobachten, dass die Äquilibrierung des Systems
durch die Erhaltungsgrößen eingeschränkt ist. Danach betrachten wir
wieder eine ein-dimensionale Kette mit Hubbard Wechselwirkung,
aber diesmal zusätzlich mit einer Spin-Bahn-Kopplung vom Rashba
Typ, im thermischen Gleichgewicht. Dieses System ist durchaus mit-
hilfe metallischer Adatome auf Oberflächen realisierbar. Wir zeigen,
wie wir dieses Modell analytisch mit dem gleichen Modell ohne Spin-
Bahn-Kopplung realisieren können. Dieser Zusammenhang ermög-
licht es uns, verschiedene bekannte Resultate des Hubbard Modells,
wie die Einteilchen Spektralfunctionen, im Kontext des Hubbard Mo-
dells mit Spin-Bahn-Kopplung zu interpretieren. Und schlußendlich
betrachten wir eine magnetische Störstelle in einem Trägermaterial,
das durch einen topologischen Isolator gegeben ist. Wir beobachten,
dass sich die Störstelle weiterhin so wie vom single impurity Ander-
son Modell erwartet verhält. Zusätzlich betrachten wir den Einfluß
der Störstelle auf das Trägermaterial und stellen fest, dass in dem Pa-
rameterbereich, in dem das Kondo-Singlett ausgebildet ist, der Rand-
zustand des topologischen Isolators die Störstelle umfließt.
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1 I NTRODUCT ION

A beginning is the time for taking
the most delicate care that

the balances are correct.

— Frank Herbert, Dune [2]

Tradition has it that thesises start with some kind of introduction
and I admit that reading them is often a pleasurable thing. As it
turned out writing an introduction is different and is still a hard task.
Asking a bit around about what to write in an introduction I got the
usual replies along the lines of

"Write what you have done and why you have done it."

Well, what I have worked on is the easy part: it is written up in three
published papers [3, 4, 5]. But, of course, this is just the end of the
road, before that it was necessary for a lot of technical details to fall
into place and we might ask ourselves the question: how did we get
there? Starting from the final applications we will now trace the way
backwards and maybe at the end we will come to the root and there-
fore find an answer to the latter question.
So which applications did we tackle in this thesis?
We have devoted the final part of this thesis to the applications where
each chapter has resulted in a publication and is, similar to the publi-
cations, presented in a self-contained manner. The last chapter, Chap-
ter 8, will consider the old problem of a magnetic impurity in a mod-
ern setting, namely in a host material in the form of a topological
insulator. We will see that the fundamental properties of the impurity
are similar to what is already known, but the edge states, the man-
ifestations of the topological insulator, change their behavior in the
presence of the impurity. Before that we will consider a chain subject
to Rashba spin-orbit coupling. Here we will see how basic quantum
mechanical symmetries in the low-dimensional setting enabled us to
map this chain to a chain without spin-orbit coupling and therefore
to an understanding in terms of quantities already known. And in
the first application, in Chapter 6, we will revisit various historic
properties of a quantum system in non-equilibrium. We will study
a one-dimensional chain of ions where we will address questions of

1



2 introduction

equilibration as well as the emergence of a causality structure in quan-
tum mechanical lattice systems, the so-called Lieb-Robinson bounds.
So which methods did we use to carry out these simulations?
We used the Quantum Monte Carlo (QMC) method and its develop-
ment is detailed in Chapter 5. As ingredients we used basic Monte
Carlo methods in the form of the Metropolis-Hastings algorithm and
Feynmans basic perturbation theory. Perturbation theory is detailed
in Chapter 4 in a form that is suitable to deal with systems out of
equilibrium. The formalism is action based which gave us the pos-
sibility to simulate effective models. To evaluate the resulting series
expansion we have used Monte Carlo methods. We will detail the
Metropolis-Hastings algorithm in Chapter 3. And then there is this
question of what makes the use of Monte Carlo methods so appeal-
ing? The technical aspect is the superior dimensional scaling, but
this would be meaningless were it not for the availability of huge
resources of computing power in the form of fast electronic comput-
ers where every generation of computers has enabled us to tackle
new problems. The power of the Monte Carlo method now hinges on
the fact that the solution to a complicated problem can be found by a
sum over a random points and a statistically valid answer can only be
found by performing a huge number of function evaluations. On the
level done today this is a task that is out of reach of what humans can
do and can only be performed with the help of an electronic computer.
This leads us to the introductory chapter which provides a historical
overview on the rise of the Monte Carlo method in conjunction with
the rise of the electronic computer. All of this has to be done an a com-
puter?
Yes indeed, to make things really messy we have to implement all
this on a computer, we have to take care of its intricacies and under-Floating point

arithmetic, I’m
looking at you. . .

stand its limitations as well as its possibilities to be able to write a
program that can find an application in the solution of a particular
physical problem.
And being able to take the mathematical and physical background
and cast this into a program that is able to predict the behavior of a
correlated electron system, while executing in an efficient manner, is
an experience that no student should be denied.A lot of other

people have
contributed to this
thesis. Appendix 4
is entirely devoted

to them.



Part I

T H E C O N T I N U O U S T I M E Q U A N T U M M O N T E
C A R L O M E T H O D





2 THE DEVELOPMENT OF THE
ELECTRON IC COMPUTER

I think one of the things that really separates us from the high primates is
that we’re tool builders. I read a study that measured the efficiency of

locomotion for various species on the planet. The condor used the least
energy to move a kilometer. And, humans came in with a rather

unimpressive showing, about a third of the way down the list. It was not too
proud a showing for the crown of creation. So, that didn’t look so good. But,

then somebody at Scientific American had the insight to test the efficiency
of locomotion for a man on a bicycle. And, a man on a bicycle, a human on

a bicycle, blew the condor away, completely off the top of the charts.
And that’s what a computer is to me.

What a computer is to me is it’s the most remarkable tool that we’ve ever
come up with, and it’s the equivalent of a bicycle for our minds.

— Steve Jobs, 1990 [6]

The history and success of Monte Carlo methods is inextricably linked
with the development of modern digital electronic computing de-
vices, today we call them just computers. Computing devices existed
since the antiquity and are not inventions of the 20th century. Two
of the more famous examples are Blaise Pascal’s "Pascaline" and, of
course, Charles Babbage’s proposed, but never finished, "Analytical
engine". The "Analytical engine" would have been the first mechani-
cal general-purpose computer. Monte Carlo experiments do also date
a bit farther back in time and were already done before computers
were available, e. g. Buffon’s needle, but it was usually impractical to Enrico Fermi is

said to be the first
to systematically
use
"hand-powered"
Monte Carlo
techniques [7], but
probably it is just
one of those
hobbies you
acquire when you
suffer from
insomnia.

perform the huge number of simulations required to apply statistical
methods. Sharing a similar fate as many other inventions of the 20th

century the electronic computer was conceived in those dark years
of World War II, giving us a good point in time that we can use to
locate the beginning of super-computing and modern Monte Carlo
methods. But not only geographical borders were rearranged during
the second World War. In a continuation of the first World War, the
scientific community was enlisted into the services of the opponents’
military forces. Taken together with the massive scale of the war, this
meant that the huge computational efforts on all sides created a de-
mand for the development of faster means of computation. One ex-
ample is given by specialized devices for encryption and decryption
of messages. The hard part is the decryption of a message; this there-
fore led to the construction of specialized computation devices, as e.g.
the COLOSSUS, the first electronic, limited programmable machine

5



6 the development of the electronic computer

dedicated to the specific task of decryption built in Great Britain.
In another scientific field, on the other side of the atlantic there was
also a demand for big amounts of computational power, this time
by the Ballistic Research Laboratory of the U.S. Army for the cre-
ation of artillery firing tables. The calculation of one of those ta-At the dawn of

WWII a computer
was some person
on a table with a
mechanical desk

calculator
calculating

ballistic tables.

bles would take one person about four years. To be able to better
meet the demand, some american universities were enlisted to help
with the calculation. Since the involved institutes could not keep up
with the demand for new tables, soon other hopefully faster meth-
ods of computation were investigated. To supplement the prevalent
mechanical desk calculators the army took a cue from the business
community and started to introduce mechanical punchcard devices.IBM can trace its

roots back to
manufacturing

punchcard devices.

Nevertheless, the still mounting pressure to produce those artillery
tables created a fertile ground for an idea by John Mauchly, namely
to build a completely electronic machine dedicated to computation.
He could draw on extensive experience already gathered by John
Atanasoff who was together with Clifford Berry involved in the con-From the

Atanasoff-Berry
computer we have

the idea that
everything in a

computer is
represented in

binary numbers.

struction of an electronic computer that was specialized for solving
linear equations. Together with John Presper Eckert, Jr. he submit-
ted a proposal to the United States Army for the construction of the
ENIAC, a completely electronic, programmable device for computa-
tions, which was granted and construction began at the University of
Pennsylvania in the end of 1942. By coincidence their military contact
person, the mathematician Herman Goldstine, met John von Neu-
mann in 1944 at a train station in Aberdeen and they talked about
Goldstine’s work on the ENIAC. Unbeknownst to him, Neumann
worked at Los Alamos in the Manhattan project which had a task
with a full set of computational problems of its own. At Los Alamos,It helped that the

Manhattan project
had a topic that

precluded
extensive field

testing making
numerical

simulation all the
more necessary.

which was still using the punchcard machines, von Neumann could
easily win the other scientists in trying the almost completed ENIAC
on a study of thermonuclear chain reactions for the hydrogen bomb.
These calculations were done as some final full-scale debugging test
of the ENIAC on the eve of WW2 and, according to some sources,
[8] were at least as moving as the first atomic bomb test since it of-
fered a speedup of about one thousand over the previously available
electromechanical devices and provided a glimpse into the future of
electronic computing. The ENIAC was officially announced to the
public and dedicated in February 1946. This was also the year when
Stanislaw Ulam was convalescing from an illness and seems to have
had some time to play solitaires [9]. Initially trying to deduce combi-Yepp, solitaire is

now also a part of
this thesis...

natorically the chances of winning he quickly thought that maybe a
more practical way is to play say a hundred times and count the num-
ber of successful plays. Since the work on the ENIAC was known to
him, he could very well envision the efficiency at which a computer
could do this repetitive process, and he quickly thought how to for-
mulate processes described by differential equations into their equiv-
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alent stochastic formulation. Again von Neumann was instrumental
in bringing this idea actually onto the computer when Ulam told him
about the idea. And so von Neumann lined out the first formulation
of a Monte Carlo computation on an electronic computer for the prob-
lem of neutron diffusion and multiplication where the state of each
neutron was represented by an 80-entry punched computer card. Be-
ing a "First" - the ENIAC as the first electronic computer - the machine
had its fair share of design flaws which were already envisioned to be
ironed out in its successors. The involved scientists quickly grasped
the power and almost unlimited possibilities of a programmable ma-
chine, which meant that the Los Alamos Laboratory had to have an
electronic computer, too. Under the lead of Nicholas metropolis the
construction of their own computer, the MANIAC, was begun. Simi-
lar efforts were undertaken at other U.S. universities since the team
of the ENIAC formed a blueprint for the creation of the new ded-
icated computing groups which began the area of institutionalized
computing that later forms the seed for the creation of supercomput- It will still take at

least one more
generation before
scientific
computing
becomes an
established
discipline by itself.

ing centers.
The basis for the new design learned from the lessons of the ENIAC
was put into a formal language by John von Neumann in Ref. [10]
which is widely regarded as the first description of what is now
known as the von Neumann architecture. The key difference lined
out in it - and still adhered to by the instruction set of modern pro-
cessors - is the idea that the program which a computer executes is
stored in the same memory cells as the input data and is therefore
modifiable by the instructions that the computer executes in exactly
the same way as data. The first application that von Neumann fore-
saw was in the usage of loops. On a larger scale this insight is what
nowadays makes linkers, assemblers and compilers possible since it
was now possible to write programs that write programs. Before, as
in the case of the ENIAC, it was always necessary to rewire the com-
plete computer. Thereby programming the ENIAC meant an effort
on the time scale of days or weeks. The stored program concept was
a design step forward, but today its problems are surfacing. On the
one hand there is the von Neumann bottleneck that describes the fact
that the throughput between a CPU and the memory is limited com-
pared to the amount of available memory. Additionally, a large part
of the data is not necessarily the data itself but instructions for cal-
culating where to find the relevant data. Another issue is that this Already in 1996 it

was pointed out
[11] that a
microprocessor
spends three out of
four cycles waiting
for the memory.

design opened the door to all types of bugs, clever hacks or exploits
since code could now be manipulated like data and data could be
reinterpreted as code.

As soon as the MANIAC was completed and used for actual us-
age, it was applied to the problems of the lab. In the summer of
1953 Fermi raised the question of how a one-dimensional string of
classical harmonic oscillators, which is initially in a single oscilla-
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tory mode, would approach equilibrium. Together with Pasta, Ulam
and Tsingou he wrote a program for the MANIAC and studied the
time evolution of the system [12] in order to find out whether the
chain approaches the state predicted by statistical mechanics. In other
words, they conducted the first numerical non-equilibrium simula-
tion, which is today known as the Fermi-Pasta-Ulam-Tsingou prob-
lem [13], to study the thermalisation of this system. Now that theMaybe this was

also the first
instance where a

computer was used
for the simulation

of a physical
situation instead of
merely performing

the required
calculations.

computer has evolved for more than sixty years we can revisit a sim-
ilar problem in Chapter 6 in the quantum dimensional setting where
we consider a one-dimensional chain of fermions in an initial, ther-
mal equilibrium and drive it out of equilibrium to study its possible
thermalisation. We note that this is not only due to the increase in
computer power but especially due to the algorithmic developments
that leverage the computational resources. The MANIAC was also
the computer that provided the resources for another historic calcu-
lation. Metropolis et al. describe in [14] how the algorithm that we
today call the Metropolis-Hastings algorithm can be applied to the
problem of the calculation of the equation of state of spheres in 2D.
The algorithm employed a Markov chain for the construction of the
samples and weighted them with the Boltzmann factor e−βE to focus
on the low-energy contributions which improved the speed of conver-
gence. Likewise, in this paper we find the use of periodic boundary
conditions in an attempt to minimize boundary effects, a simple trick
still employed today and also in all three chapters of the application
part in Part ii. This was necessary since, although the MANIAC was
a machine of impressive size for its time, it could only simulate 224
particles. The Metropolis-Hastings algorithm is still a major ingredi-
ent in todays QMC methods and we will review it in some detail in
Chapter 3. The Ballistic Research Laboratory continued to drive the
development of faster computers, but computer technology maturedIn 1982 the famous

ping utility was
developed there.

and became commercially available with the beginning of the sixties.
Famous names of that era include the IBM 1401, which was intro-
duced in 1959, the CDC 1604, which was designed by Seymour Cray,
as well as competing systems by General Electric, Honeywell and
DEC. The commercial availability of computers meant that soon theyThe DEC PDP-11

was released in
1970.

found their ways onto lots of university campuses and institutions
which paved the way for more civilian purposes. The dark begin-
nings of the computer came to an end and opened the door to the
era of institutionalized computing where computers are very often
located in companies for the processing of business transactions or atThe most visible

use of this is the
weather forecast.

research institutes for scientific calculations.
This was the story about how computing began and which questions
that still have relevance in today’s research could already be found
in the early days of computing. Now we will fast forward to today,
over the birth of the personal computer in the eighties and the era of
the world wide web which began in the nineties. The original com-
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puters based on the IAS design blueprint, like the MANIAC, were
usually room-sized and consumed about 10kW-30kW of power. To- The ENIAC

weighed 30t, cost
6 mio. $ for 385
operations per
second. The
original iPad
weighs 680g, cost
600$ for
21.6× 109
operations per
second.

days computers are able to offer a billion times more computational
power than their ancestors but the packaging has changed. On the
one end of the performance scale there are personal computing de-
vices like desktop computers and smartphones while at the other end
we have dedicated computing centers where whole, dedicated build-
ings are constructed to house the computers while keeping them cool.
And there is no end in sight to the scientific challenges that these
machines are tortured with. The exponential increase in computing
power over the past sixty years is codified into the semiconductor in-
dustry by "Moore’s Law" which states that the density of transistors
on a piece of silicon doubles every 18-24 months. Of course there is a
natural limit to this ongoing reduction of structure sizes somewhere
at the size of the substrate’s silicon atoms. To continue this trend of
miniaturization for the forseeable future we have to better understand
low-dimensional structures in various settings. Chapter 6 and Chap-
ter 7 present studies of one-dimensional systems whereas Chapter 8
offers a study on the perturbation of a one-dimensional entity, the
helical liquid, due to a magnetic impurity. One possibility is the shift
away from electronic devices based on the behavior of electrons to
devices using the already binary spin degree of freedom to encode
information. This emerging field is called spintronics and especially
Chapter 7 provides insight into the behaviour of a system subject
to Rashba coupling. The Rashba effect is of particular interest here,
since it offers the potential to tune the behavior of the spins without
the use of a magnetic field. In Chapter 8 the effect of an impurity on
the two spin-separated edge states is studied. This might be relevant
in a device employing the topological states for spin-separated trans-
port. Another venue for the development of computing is to look for
alternatives to the model of classical Turing machines that all our com-
puters still adhere to. There are designs based on analogies to neural The resistance of a

memristor depends
non linearly on the
charge that has
flown through it in
the past.

networks using the device class of memelements – the most promi-
nent of them is the memristor [15] – to construct something called
the universal memcomputing machine [16] which is heralded as a
paradigm shift from von Neumann architectures to more brain-like
computation providing a way around the von Neumann bottleneck.
Another popular idea is the Quantum Turing machine, a model for
the physical realization of a quantum computer. There are realizations
of quantum computers using optical traps, but it would be desireable
to use the established methods of the silicon based semiconductor
industry. Therefore there is research activity to find solid-state real-
ization of qbits.





3 MONTE CARLO TECHN IQUES

If God has made the world a perfect mechanism, He
has at least conceded so much to our imperfect

intellects that in order to predict little parts of it, we
need not solve innumerable differential equations, but

can use dice with fair success.

— Max Born, On quantum mechanics [17]

It starts with the innocent looking task to get an approximation of the
definite integral I of a function f(x) with respect to theD-dimensional
measure D,

I =

∫
ρ

f(x)dx, (3.1)

where ρ is some subspace of RD with volume LD. The deterministic
idea would be to approximate I with the help of a Riemann sum,

I =
∑
~s

f(~s)dρ. (3.2)

We have split up ρ into small hypercubes dρ with linear length l and
we will evaluate the function f at points ~s within these volumes. Now
why leave the deterministic nature of Riemann sums and try to deter-
mine the volume of something with the help of random numbers? To
understand the basic usefulness of Monte Carlo methods in the prob-
lem domain of definite integration, let us first estimate how often we
would evaluate the function f if we would use the Riemann sum (3.2).
The number of function evaluations therefore scales with the quan-
tity of small volumes that we have, and there are

(
L
l

)D
= eD ln(L/l)

many of them. This means we have an exponential scaling with the
dimension.
Now observe that (3.2) has the form of an expectation value,

〈O〉 =
∑
i

F(xi)O(xi) (3.3)

either of the observable O = 1 or, equivalently, as the expectation
value of the observable O = O(x) with the uniform density distribu-
tion F = 1. The sum in (3.3) runs over all the discrete states xi of the
system. This equivalence between volumes and probabilities forms

11
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the basic ingredient for the wide applicability of Monte Carlo meth-
ods. But how many function evaluations do we need now using the
stochastic idea? Applying a stochastic method enables us to evaluate
the integral with an uncertainty that scales as the inverse square root
of the number of function evaluations. Hence, in the large-D limitThe scaling stems

from the central
limit theorem.

stochastic methods become attractive since their numerical effort has
no obvious dependence on the dimension and - as an outlook - we
can even treat problems unbounded in dimension.

3.1 the metropolis hastings algorithm

Let us begin by restating our problem and its conditions in a more
formal manner. Basic probability theory states that the expectation
value 〈O〉 of an observable O is

〈O〉 =
∑
i

P(xi)O(xi) (3.4)

where the sum runs over all discrete states xi of the system. The value
of the observable for a given state is determined, hence O(xi) is cal-
culated, and multiplied by the weight distribution function P(xi) of
the state. The distribution function is usually not a flat object but it
has regions in state space that give a large contribution to the sum
(3.4), and, on the other hand, there are regions which are not so im-
portant and give a lesser contribution. The idea is then, to generate a
series of microscopic states xi according to the distribution function
P(xi) to exploit that fact and get a quick sampling of the important
parts of the state space. We can evaluate the unnormalized distribu-
tion function P̃ up to its normalization factor, but since it is a high-
dimensional object, a simple rejection sampling algorithm would also
suffer from a curse of dimensionality since the probability of rejec-
tion increases with the dimension. So we need a method that saves
us from rejecting too many proposed moves while still having some
handle to exploit the state space distribution of P. This is why we use
the Metropolis-Hastings algorithm to generate suitable states. At its
heart it is a Markov process that has the distribution P as its asymp-
totic distribution. Introducing a Monte Carlo time t we can describeWe see that

knowledge of the
distribution Pt is

the only thing
required to

determine Pt+1.
This is the

memorylessness of
a Markov process.

one step of the process as

Pt+1x ′ =
∑
x

Tx ′,xP
t
x (3.5)

with the transition Matrix T . We have now changed to the notation
Ptx = Pt(x) to emphasize the matrix character of the involved equa-
tions. T has to fulfill a set of properties:

• T has to be ergodic, i. e. every state must be reachable from
every other,
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• T must be a stochastic matrix,

• T must fulfill the stationarity property, TP = P, that is, the de-
sired distribution P is the unique eigenvector to the eigenvalue
1 of T .

One possibility to enforce the last property is to require the detailed
balance condition This can be seen

by summing both
sides over x.Ty,xPx = Tx,yPy (3.6)

for the process. Using the above we can now generate a set of states
x1, x2, . . . where the conditional probability P of sampling the state
xt+1 given the state xt is determined by the entries of T :

P(xt+1|xt) = Txt+1,xt . (3.7)

The key insight in the Metropolis Hastings algorithm is now that
the explicit construction of the transition matrix T can be facilitated
by separating T into a proposal step parametrized by g and an
acceptance-rejectance step denoted by A. We now split every entry
of T according to

Tx ′,x = P(x ′|x) = g(x ′|x)A(x ′|x). (3.8)

Inserting this into the detailed balance condition we find

A(x ′|x)
A(x|x ′)

=
Px ′g(x|x

′)
Pxg(x ′|x)

. (3.9)

Requiring a particular functional form for A with

A(x ′|x) = Φ
(
Px ′g(x|x

′)
Pxg(x ′|x)

)
(3.10)

where Φ(z) : z ∈]0,∞[ → [0, 1] we find that we can recast the condi-
tion for detailed balance into the form Functions Φ

satisfying (3.11)
have a Mellin
transform that is
symmetric around
s = −12 .

Φ(Z)

Φ(1/Z)
= Z with Z =

Px ′g(x|x
′)

Pxg(x ′|x)
. (3.11)

Now the only thing left to do for us, is the specification of the function
Φ. The most popular choice is that of Metropolis,

Φ(Z) = min(1,Z). (3.12)

Another possible choice for Φ yields the so-called Heat-Bath algo-
rithm with

Φ(Z) =
Z

1+Z
. (3.13)
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In an implementation we would first draw a random number r from
the interval [0, 1]. Now if r < Φ(Z), one accepts the proposed move
xi+1, else the move is rejected. That way we generate a Markov-Chain
of states xi, i ∈ {1, ...,N} of length N where each state xi is distributed
according to the distribution function F(xi). One has to take care that
initially the Markov-process has not yet relaxed to its stationary dis-
tribution F, thus one has to include a certain warm-up time. Having
these states xi we can start the measurement of observables. The re-
sulting Monte Carlo estimate of the observable is the average over all
generated states:

〈O〉MC =
1

N

∑
i

O(xi). (3.14)

In case the central limit theorem holds the standard deviation gives
the error according to ∆O = σO/

√
N. But there’s the catch, for the

central limit theorem to be applicable, we need a large number of
uncorrelated measurements. But having generated the states xi via a
small local change to the preceding states, the different measurements
of the observables are of course correlated. Lacking the central limit
theorem, other types of estimators for observables have to be used,
e.g. the Jackknife method or the Bootstrap method [18]. Another issueA promising

alternative might
be the idea of

population-based
Monte Carlo [19]

where a population
of random walkers

are subject to a
genetic algorithm.

that can arise is the so-called slow mixing of the chain. The acceptance
probability that results from (3.10) can be very small and therefore
a lot of moves that are proposed are rejected. Aside from problem
specific methods for circumventing this I only know of a few general
methods [20, 21, 19] applicable to the general metropolis algorithm
for addressing this. A technical detail that is not further elaborated
here is the generation of random numbers. They have to be of high
quality, but the requirements of the Monte Carlo field differ from the
cryptographic community in that respect. The used pseudo random
number generators must be fast and efficient and should pass a series
of statistical tests. A big advantage in the code development is their
deterministic nature which is tremendously useful for debugging a
Monte Carlo simulation.



4 PERTURBAT ION THEORY

It is going to be necessary that everything that happens in a finite volume of
space and time would have to be analyzable with a finite number of logical

operations. The present theory of physics is not that way, apparently. It
allows space to go down into infinitesimal distances, wavelengths to get
infinitely great, terms to be summed in infinite order, and so forth; and

therefore, if this proposition [that physics is computer-simulatable] is right,
physical law is wrong.

— Richard P. Feynman, Simulating Physics with Computers [22]

The task of this chapter is the derivation of equations which are
amenable for the evaluation via Monte Carlo integration. We will
start with a Hamiltonian formulation, but to have the possibility of
treating effective models in the real-time setting we will lift this to
an action-based formalism. To begin with some concrete example to
motivate the use of the Keldysh contour, let us assume that we want
to measure an observable OH given in the Heisenberg picture at time
t

O(t) = Tr (ρOH(t)) (4.1)

in a mixed initial state described by the density matrix ρ. We now
have to introduce two Hamiltonians which need not be the same in
general. First we have the thermal Hamiltonian Hβ that describes the
density matrix

ρ =
e−βHβ

Z
(4.2)

with the inverse temperature β = T−1 and the partition function Z =

Tr(ρ). The other Hamiltonian governs the time evolution of OH and is
denoted by H. Inserting the expansions of ρ and OH in the interaction
picture into (4.1), we find In this equation it

is implicit from the
argument which
Hamiltonian is
used.

O(t) =
Z0
Z

Tr (ρ0U(−iβ, 0)U(0, t)OI(t)U(t, 0)) (4.3)

with the free density matrix ρ0, the corresponding free partition func-
tion Z0, the time evolution operator U in the Dirac picture, and the
possibly explicitly time-dependent operator OI(t) which is also in the
interaction picture. Assuming that we can separate H as well as Hβ

15
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C

t

S

t+

t−

t0

τ

t0 − iβ

texp

Figure 1: The full contour C that enables us to cover imaginary-time evolu-
tion and real-time evolution on a common footing. t− is a time on
the forward branch, t+ is a time on the backward branch, and the
imaginary time τ is a time on the imaginary branch. This contour
is parametrized by the contour-time s, that runs from 0 to texp on
the forward contour, from texp to 2texp on the backward contour,
and from 2texp to 2texp +β on the imaginary branch.

into a non-interacting part H0 and an interaction V on their respec-
tive contours, then U fulfills on all branches separately the known
differential equation

i
d

dt
U(t, t ′) = V(t)U(t, t ′). (4.4)

Considering the arguments of the time evolution operator we see that
we first evolve the state in the imaginary time, then from 0 to the
measurement time t, now we perform the actual measurement and
then we propagate again backward in time. This motivates the use
of the full Keldysh contour C of Fig. 1. Due to its construction from
the usual time evolution of quantum mechanics we have the same
Hamiltonian H on the forward and backward branch of C and an-
other Hamiltonian Hβ on the imaginary branch. The possibility of
evolving with different Hamiltonians on the forward and backward
contour is developed in [23] and is exploited there to extract wave-
function overlaps within a Green’s function based formalism.
We will now construct an action based formalism on this contour CAll evolution-

operators can use
the same

Hamiltonian if one
restricts the

real-time evolution
to the real axis via

suitable
Θ-functions.

that unifies the expansions of the imaginary time and the real time.
We start with a partition function Z into which we introduce an arti-
ficial, at first glance redundant, time-dependency [24, 25, 26]:

Z = Tr(ρU(0, texp)U(texp, 0)) (4.5)
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where we use again a thermal density-matrix, ρ = e−βHβ , and the
time evolution operator is only on the real-axis for now. Employing
the interaction picture decomposition of the density matrix,

ρ =
Z0
Z
ρ0U(−iβ, 0), (4.6)

with

ρ0 =
e−βH0

Z0

we have

Z = Tr(ρ0U(−iβ, 0)U(0, texp)U(texp, 0)). (4.7)

With that, and the picture of the full contour (Fig. 1) in mind, we can
start to construct a functional expression. We subdivide the interval
[0, 2texp + β] in N infinitesimal parts of length δ and insert a time
evolution operator between every two time slices. Note, as there’s no Some results on

coherent states can
be found in
Sec. A.3.

evolution on the points of turn-around (texp and 2texp which corre-
sponds to 0) we insert the unity instead. We have in a coherent state
representation for the partition function

Z =

∫ ∏
x∈{τ,+,−}

N∏
jx=1

dφ̄jxdφjxe
−φ̄jxφjx 〈φjx |Ux|φjx+1〉 (4.8)

with coherent states φjx at time slice jx. The index x in this equation
is used to symbolically denote the contour part and Ux is the time
evolution operator on the respective contour part. Next, we must de-
termine the action of the time evolution operator between two time
slices. For a normal-ordered Hamiltonian it is The expression on

the left and right
of the ≈ are related
by the Trotter-
decomposition
[24].

〈φjx |Ux|φjx+1〉 = 〈jx|e−iH(~c†,~c)δx |jx + 1〉 ≈ e−iH(jx,jx+1)δx〈jx|jx + 1〉
= e−iH(jx,jx+1)δxeφ̄jxφjx+1 .

(4.9)

The first thing in this equation is that we have tried to lighten the
notation where possible by denoting the fields φjx merely by their
index jx with the implicit convention that they are still fields. We
can handle the time evolution on those different contour-parts in a
unified manner, if we agree to lump this information together with
the delta: It’s +δ on C−

because e−itH is
the forward
evolution.δx =


+δ x = −

−δ x = +

−iδ x = τ.

(4.10)

Now δx selects the proper evolution in imaginary or in real time.
Therefore, we find for the partition function

Z =

∫ ∏
x∈{τ,+,−}

∏
jx

dj̄xdjxe
S̃(j̄x,jx,jx+1) (4.11)
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where we have introduced the contribution S̃ to the action S,

S̃(j̄x, jx, jx + 1) = −iδxH(j̄x, jx + 1) + j̄x((jx + 1) − jx).

Since we are in the interaction picture, the separation in a part with
a known spectrum H0 and an interaction V is already given and we
can rewrite the contributions of the action as

S̃ = S̃0 + S̃1 (4.12)

with

S̃0 = δx(−iH0(j̄x, jx + 1) + j̄x
(jx + 1) − jx)

δx
(4.13)

and

S̃1 = −iδxV(j̄x, jx + 1). (4.14)

Summing the contributions

S =
∑
x

∑
jx

S̃(j̄x, jx, jx + 1) (4.15)

we obtain the full action S. We identify from S̃0 a particular dis-
cretized representation of the continuous form of the inverse of the
non-interacting Green’s function operator

(
G0
)−1

= ∂z − iH0 (4.16)

with the partial derivative ∂z with respect to the corresponding con-
tour time. By taking the continuum limit in the time evolution we
gain the representation of the partition function as a functional inte-
gral

Z =

∫
D[~φ(z), ~φ(z)]eS[

~φ(z),~φ(z)] (4.17)

where the action S is

S[~φ(z), ~φ(z)] =
∫
C

dz~φ(z)
(
G0
)−1 ~φ(z) − i

∫
C

dzV[~φ(z), ~φ(z)]

= S0 + S1

(4.18)

and the integrals run along our contour C. The information on whichIf you evaluate
these integrals,

you have to
introduce a

parametrization of
the contour C, e.g.
z(s)(most likely

sth. piecewise
linear) as in (5.15).

part of the contour we evaluate is now stored in the differential dz. If
we introduce the averaging with the gaussian part

〈•〉0 =
1

Z0

∫
D[~φ(z), ~φ(z)]eS0[

~φ(z),~φ(z)]•, (4.19)
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we can interpret the partition function as an averaging of the interac-
tion with the free part:

Z =

∫
D[~φ(z), ~φ(z)]eS0[

~φ(z),~φ(z)]+S1[
~φ(z),~φ(z)]

= Z0〈eS1[
~φ(z),~φ(z)]〉0.

(4.20)

From eq. (4.20) we can write down the expansion of the partition
function The

parametrization
z(s) takes care of
the book-keeping of
the phase-factors.

Z = Z0

∞∑
n=0

(−i)n

n!

∫
C

dz1...
∫
C

dzn〈TCV(z1)V(z2)....V(zn)〉0. (4.21)

TC denotes the time-ordering along the contour C. The great advan-
tage of investing the effort to derive an action based formalism lies in
the fact that we are able to treat effective models that have e.g. bath
degrees of freedom in their non-interacting action S0. We will use
this flexibility in Chapter 8. We are also able to rewrite the partition For more details,

take a look in [27].function as a generating functional with source terms ~J,

Z[~J,~̄J] =
∫
D[~φ(z), ~φ(z)]eS0(

~φ(z),~φ(z))+S1(
~φ(z),~φ(z))+i~J~φ(z)−i~φ(z)~̄J

(4.22)

from which correlation-functions can be generated by the process of
functional derivation. The one-particle Green’s function can be gen-
erated via differentiating equation (4.22) twice with respect to the
source,

Ga,b(z, z ′) =
δ2Z[~J,~̄J]
δJaδJb

∣∣∣∣
J,J=0

=
1

Z

∫
D[~φ(z), ~φ(z)]eS(

~φ(z),~φ(z))φa(z)φb(z
′)

= 〈TCc†a(z)cb(z ′)〉,

(4.23)

and in the last line we can make the connection to the canonical
formulation in terms of the common second quantized operators c†a
which create an electron in state a and cb which annihilate an elec-
tron in state b. Equation (4.23) defines a contour ordered Green’s
function which has time arguments z and z ′ that are ordered along
the Keldysh contour C. The definition of the Green’s function in (4.23)
where the creation operator comes first is common convention in the
CT-INT community but differs from the rest of the many-body theory
literature. Notice that the real-time branches are physically indistin-
guishable, thus for any operator holds A(t+) = A(t−). Analogous to This is an aid for

debugging. Note
also that
observables are at
least continuous at
the turn-around
points.

the partition function we expand the Green’s function:

Ga,b(s, s ′)=
Z0
Z

∞∑
n=0

(−i)n

n!

∫
C

dz1. . . dzn〈TCV(z1) . . .V(zn)φa(s)φb(s ′)〉0.
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(4.24)

Wick’s theorem can be easily derived in the functional approach, be-
ing a property of gaussian integrals [27]. A derivation in the canonical
formulation is also possible [28, 29].



5 QUANTUM MONTE CARLO

A rock pile ceases to be a rock pile
the moment a single man contemplates it,

bearing within him the image of a cathedral.

— Antoine de Saint-Exupéry, The little prince [1]

5.1 continuous time quantum monte carlo

With the physical ideas of Chapter 4 behind us we can move on and
apply the ideas of Monte Carlo integration from Chapter 3 to the
resulting equations. Starting from the partition function in its action
based formulation we derive a Continuous Time Interaction Expan-
sion (CT-INT) method on the full contour (remember Fig. 1) in an
analogous manner as done in [30, 31, 32, 33] for the imaginary con-
tour. Using the Metropolis Algorithm as a building block we can now
proceed to derive a QMC method that is continuous in the time pa-
rameter, thereby classifying the CT-INT method as an algorithm that
does not need a discrete time mesh in its construction; a property
that is in contrast to the auxiliary field algorithm that is described in
the next section. As a start to derive the CT-INT algorithm we need
the transition-probabilities between different configurations. For that,
we recall the expression of the partition function on the contour, eq.
(4.21)

Z = Z0

∞∑
n=0

(−i)n

n!

∫
C

dz1...
∫
C

dzn〈TCV(z1)V(z2)....V(zn)〉0. (5.1)

In this work we focus on models where many-body correlations enter
by the introduction of the Hubbard interaction

V = HU = U
∑
i

(ni,↑ −
1

2
)(ni,↓ −

1

2
) (5.2)

with ni,σ = c
†
i,σci,σ being the particle density of species σ on site

i and U the coupling strength of this interaction. It will make an
appearance in every chapter of Part ii where we will then highlight
in each case the relevant properties again. We now set out to present
the algorithm for this type of interaction allowing for time-dependent
Hamiltonians as well as systems without an apparent SU(2) spin sym-
metry. The breadth of topics considered in the applications part ne-

21
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cessitates this generality. Similar as references [30, 31], we introduce
an additional Ising spin si in the interaction

HU =
U

2

∑
i

∑
si=±1

(ni,↑ −
1

2
− siδ)(ni,↓ −

1

2
+ siδ) (5.3)

where we have introduced the new parameter δ. δ yields in effect an
additional factor to the partition function, but it does not influence
the measurement of physical observables, where it is equally occur-
ring in the denominator and the nominator. It is known from thermo-
dynamic QMC that δ can in certain circumstances be used to reduce
the sign problem of the simulation. The usual choice for 1D HubbardSee the appendix of

Reference [34] for
some discussion.

models to eliminate the sign problem is δ = 1
2 + 0

+. Introducing that
into the general expansion for the partition function (5.1) gives

Z

Z0
=

∞∑
n=0

(
−iU
2

)n

n!

∫
C

dz1
∑
i1,s1

. . .

∫
C

dzn
∑
in,sn

× 〈TC(ni1,↑(z1) −α
↑
s1
)(ni1,↓(z1) −α

↓
s1
) . . .

. . . (nin,↑(zn) −α
↑
sn)(nin,↓(zn) −α

↓
sn)〉0

(5.4)

where we have introduced

ασsi =
1

2
+ σsiδ. (5.5)

We can compactify (5.4) by introducing configurations. A configuration
consists of Hubbard-vertices with their Ising-spin Vj = [ij, zj, sj], that
is

Cn = {[i1, z1, s1], . . . , [in, zn, sn]}. (5.6)

With that concept we can introduce the sum over the configuration-
space∑

Cn

=

∞∑
n=0

1

n!

∫
C

dz1
∑
i1,s1

. . .

∫
C

dzn
∑
in,sn

(5.7)

and rewrite (5.4) as

Z

Z0
=
∑
Cn

(
−i
U

2

)n
〈TC(ni1,↑(z1) −α

↑
s1
)(ni1,↓(z1) −α

↓
s1
) . . .

. . . (nin,↑(zn) −α
↑
sn)(nin,↓(zn) −α

↓
sn)〉0.

(5.8)

Using Wick’s theorem the time-ordered average in the above equationNote that the
determinant does

not depend on the
position of its

entries. We can
therefore rearrange
the entries of M to

our liking.

can be rewritten as a determinant,

〈TC(ni1,↑(z1) −α
↑
s1
)(ni1,↓(z1) −α

↓
s1
) . . .

. . . (nin,↑(zn) −α
↑
sn)(nin,↓(zn) −α

↓
sn)〉0

=

∣∣∣∣∣
M↑↑(Cn) M↑↓(Cn)

M↓↑(Cn) M↓↓(Cn)

∣∣∣∣∣

= det(M(Cn))

(5.9)
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The spin diagonal submatrices are given by

Mσ,σ(Cn) =
∣∣∣∣∣∣∣∣∣∣∣∣

G0,σ,σ
i1,i1

(z1, z1) −ασs1 G0,σ,σ
i1,i2

(z1, z2) · · · G0,σ,σ
i1,in (z1, zn)

G0,σ,σ
i2,i1

(z2, z1) G0,σ,σ
i2,i2

(z2, z2) −ασs2 · · · G0,σ,σ
i2,in (z2, zn)

...
...

...

G0,σ,σ
in,i1

(zn, z1) G0,σ,σ
in,i2

(zn, z2) · · ·G0,σ,σ
in,in (zn, zn) −ασsn

∣∣∣∣∣∣∣∣∣∣∣∣
(5.10)

and the off-diagonal ones are

Mσ,−σ(Cn) =

∣∣∣∣∣∣∣∣∣∣∣∣

G0,σ,−σ
i1,i1

(z1, z1) G
0,σ,−σ
i1,i2

(z1, z2) · · · G0,σ,−σ
i1,in (z1, zn)

G0,σ,−σ
i2,i1

(z2, z1) G
0,σ,−σ
i2,i2

(z2, z2) · · · G0,σ,−σ
i2,in (z2, zn)

...
...

...

G0,σ,−σ
in,i1

(zn, z1)G
0,σ,−σ
in,i2

(zn, z2) · · ·G0,σ,−σ
in,in (zn, zn)

∣∣∣∣∣∣∣∣∣∣∣∣
(5.11)

The entries of Mσ,σ ′(Cn) are given by the free Green’s function, In the case of the
SIAM at
half-filling, Mσ,σ

corresponds to a
Wigner matrix
[35] with entries
distributed
according to PG,
the distribution of
the values of the
Green’s function
that stems from
the uniform
distribution of τ.

G0,σ,σ ′
i,j (zi, zj) = 〈TCc†i,σ(zi)cj,σ ′(zj)〉0 (5.12)

where the thermal average 〈•〉0 is, as in (4.19), taken with respect to
the non-interacting Hamiltonian H0, and therefore we have

Mσ,σ ′(Cn)i,j = G
0,σ,σ ′
i,j (zi, zj) − δi,jδσ,σ ′α

σ
si . (5.13)

With all this, the partition function (5.8) can be cast in a rather conve-
nient form

Z

Z0
=

∑
Cn

(
−
iU

2

)n
det(M(Cn)). (5.14)

For the Monte Carlo evaluation of the contour-integrals in (5.7), we
have to transform them to linear integrals. To achieve that we need to
specify the parametrization of the contour, and we choose the most
obvious linear one:

z(s) =


s s ∈ [0, texp]

2texp − s s ∈ (texp, 2texp]

−i(s− 2texp) s ∈ (2texp, 2texp +β].

(5.15)

Now you have to replace every contour-integral by

∫
C

dz · · · =
L∫
0

ds · dz(s)
ds

. . . (5.16)
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with the contour-length L = 2texp + β. This phase-factor dz(s)
ds can,

due to relation (5.15), take the values 1,−1,−i. With these notations
we can deduce the weight of a configuration from the partition func-
tion (5.14)Note, that in

real-time evolution
the weight is

usually a complex
value.

W(Cn) =

(
−iU

2

)n
det(M(Cn))F(Cn) (5.17)

where F(Cn) collects the contribution from all phases in the configu-
ration:

F(Cn) =

n∏
k=0

dz(s)

ds

∣∣∣∣
s=sk

. (5.18)

For the Markov-process as outlined above, we need, additionally to
the weights, the proposal probabilities g for the moves. The addition
of a vertex is proposed with gCn→Cn+1 = 1

2NL , which corresponds
to the selection of a spin (there are two of them), the choice of a site
(from N sites) and of a contour-time in the range from [0, 2texp + β].
The proposal probability to remove a vertex is gCn+1→Cn = 1

n+1 ,
which corresponds to the selection of a vertex from Cn+1 which has
n+ 1 vertices. Now we would like to write down the moves for the
Metropolis algorithm, but we encounter the problem that G0 is in this
general setting an arbitrarily complex value, and, additionally, the ex-
pressions for the weights have imaginary units all over them. So we
can not straightforwardly interpret these weights as probabilities. The
solution is that instead of working with the weights W(Cn) we use
their absolute values |W(Cn)|, but we have to fix this up later whenNote that playing

with the weights
means an

alteration of the
stationary

distribution of the
Markov-process!

measuring observables by keeping track of the phase of a configura-
tion. We write down the moves with the imaginary units still intact,
keeping in mind that while implementing them we have to use the
absolute values:

ACn→Cn+1 = min
(
−iUNLF(Cn+1)det(M(Cn+1))

(n+ 1)F(Cn)det(M(Cn))
, 1
)

(5.19)

and

ACn+1→Cn = min
(

(n+ 1)F(Cn)det(M(Cn))

−iUNLF(Cn+1)det(M(Cn+1))
, 1
)

. (5.20)

These two moves are usually sufficient for the ergodicity of the algo-
rithm. See [30] for a discussion of the cases when this is not applicable.
As a technical detail, we mention that there is the possibility that the
matrix M(Cn) contains two identical lines in which case the deter-
minant is zero and the corresponding move will not be taken. This
can happen if Cn contains two almost equal vertices and the Green’s
function is tabulated using some equidistant spacing in τ. A simple
and effective optimization that even prevents this from happening is
to perform a linear interpolation of G(τ) with the tabulated values.
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The additional arithmetic operations for the interpolation are usually
negligible in contrast to the cost for fetching the value from memory,
and the additional memory load of G(τ + ∆τ) is for free since it is CPUs process

memory requests
in chunks of the
cache line size,
which today is 64
bits.

usually in the same cache line of the processor assuming a memory
layout that is linear in τ.

5.2 measuring observables in ct-int

Having generated the Markov-chain of configurations we can start
to measure observables, e. g. Green’s functions. Having already an
expansion for the Green’s function (4.24) we can start rewriting it as
a sum over all configurations:

Gσ,σ ′
ij (s, s ′) =

Z0
Z

∞∑
n=0

(−i)n

n!

∫
C

dz1 . . . dzn

× 〈TCHU(z1) . . . HU(zn)c†i,σ(z(s))cj,σ ′(z(s ′))〉0

=

∑
Cn

(
− iU2

)n
F(Cn)det(M(Cn))〈〈Gσ,σ ′

ij (s, s ′)〉〉Cn∑
Cn

(
− iU2

)n
F(Cn)det(M(Cn))

=
∑
Cn

W(Cn)∑
Cn

W(Cn)
〈〈Gσ,σ ′

ij (s, s ′)〉〉Cn

(5.21)

where we have similarly to [30] introduced the contribution of one Here we can see
the connection to
the
Markov-process of
Chapter 3. The
weight of a
configuration
W(Cn) takes the
role of the
probability density
F in (3.3).

configuration to the observable

〈〈Gσ,σ ′
ij (s, s ′)〉〉Cn =

〈TCHU(z1) . . . HU(zn)c†i,σ(z(s))cj,σ ′(z(s ′))〉0
〈TCHU(z1) . . . Hu(zn)〉0

.

(5.22)

Now we are at the right spot to elaborate a bit on the sign problem.
As stated before, we have to replace the true weight W(Cn) by its
absolute value |W(Cn)|. We can repair this by rewriting the last equa-
tion of (5.21) with W(Cn) = |W(Cn)|π(Cn). We have introduced the
phase-factor π(Cn) = ei arg(W(Cn)) =

W(Cn)
|W(Cn)|

. Then

Gσ,σ ′
ij (s, s ′) =

∑
Cn

W(Cn)〈〈Gσ,σ ′
ij (s, s ′)〉〉Cn∑

Cn

W(Cn)

=

∑
Cn

|W(Cn)|π(Cn)〈〈Gij(s, s ′)〉〉Cn∑
Cn

|W(Cn)|π(Cn)
.
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Expanding this fraction by 1∑
Cn

|W(Cn)|
gives:

Gσ,σ ′
ij (s, s ′) =

∑
Cn

|W(Cn)|π(Cn)〈〈Gσ,σ ′
ij (s,s ′)〉〉Cn∑

Cn

|W(Cn)|∑
Cn

|W(Cn)|π(Cn)∑
Cn

|W(Cn)|

=
〈πGσ,σ ′

ij (s, s ′)〉
〈π〉 .

(5.23)

That way we see that measuring physical observables requires keep-
ing track of the phase-afflicted observable and of the phase itself. The
average value of the true physical observable is then determined as
their ratio. The same idea of keeping track of the phase holds for any
observable. And any higher Green’s function can be reduced to an ex-
pression involving only single-particle Green’s functions as detailed
by Luitz in [31]. We can now summarize that we have written down a
method for the simulation of correlated electron systems that allows
the evaluation of arbitrary complex observables both in real-time and
in imaginary-time. A particular advantage of this method is that it is
an action based formalism that enables the treatment of effective mod-
els, and on top of that only the correlated sites of the problem enter.
We exploit this property in Chapter 8 where we simulate a single im-
purity in a huge bath of electrons. In the subsequent chapter we will
deal with the problem of time evolution. Another venue where this
flexibility pays off is the inclusion of phononic degrees of freedom by
integrating them out and performing a simulation with an effective
electronic Green’s function [36, 37, 38, 39]. Sadly this method does
not solve the sign problem of QMC methods which is dependent on
the choice of the basis for the given problem. We will encounter in
Chapter 7 an example which has a sign problem in the basis of phys-
ical spins, but does not have a sign problem in a comoving frame of
reference for the spin. With the equations for the basic moves of the
Markov chain in (5.19) and (5.20) and a prescription for evaluating ob-
servables in (5.21) we can start to implement the method. We chose to
implement this in the C++ programming language which allowed for
an efficient reuse of various code parts that are common between the
three applications. To improve the efficiency it is worthwhile to note
that the update of the determinants due to the moves are low-rank
updates to the matrix M(Cn). Therefore they can be efficiently per-
formed using matrix identities like the Sherman-Morrison formula
and the Woodbury matrix identity [40]. Using these identities we canA short

introduction to O

is in Sec. A.2.1.
cut down the complexity for a single update to a matrix of size n
from O

(
n3
)

t O
(
n2
)
. For the Hubbard interaction it is known that

the average expansion order is

〈n〉 ∝ UNβ. (5.24)
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On average we have to exchange every vertex in a configuration Cn,
therefore we have to do at least about n updates to Cn. Since every
update incurs a cost of about n2 we see that the total complexity to
get from one configuration to another, independent configuration is

O
(
n3
)
= O

(
(βUN)3

)
. (5.25)

5.3 auxiliary field quantum monte carlo

While the algorithm presented in previous subsection is completely
general since it allows for a simulation of an almost arbitrary time-
dependent action-based problem, more efficient algorithms can be
derived for simulations of problems specified in terms of a Hamilto-
nian on a lattice. Since the decomposition of the interaction is accom-
plished by the introduction of auxiliary fields, the algorithm is known
as the Auxiliary field QMC method. Let us assume that our problem Occasionally the

algorithm is
referred to as the
BSS algorithm
since it harks back
to a paper by
Blankenbecler,
Scalapino and
Sugar [41].

is specified by a non-interacting hopping Hamiltonian Ht = H0 on
a lattice and the already known Hubbard interaction HU. This gives
the partition function

Z = Tr
[
e−β(H0+HU)

]
. (5.26)

Using the Trotter decomposition to decompose the exponential we
find

Z = Tr
[(
e−∆τHUe−∆τH0

)m]
+O(∆τ2) (5.27)

The time slice ∆τ divides β into m intervals. The next crucial insight
is to use at each infinitesimal time step a Hubbard Stratonovich de-
composition

e−∆τHU =
eN∆τU/4

2N

∑
s1···sN=±1

eα
∑
i si(ni,↑−ni,↓) (5.28)

to decouple the Hubbard interaction. The Ising-like variables si are
the auxiliary Hubbard-Stratonovich fields that give the method its
name. The parameter α is determined by the relation cosh(α) =

e∆τU/2 and N is the number of lattice sites. The particular form in
(5.28) is specific to the Hubbard model and exploits the fact that there
is a finite number of lattice sites. Introducing the combined index
x = (i,σ) with lattice position i and spin σ we find that

Ht =
∑
x,y

c†xTx,ycy = ~c†T~c (5.29)

and

α
∑
i

si(ni,↑ −ni,↓) =
∑
x,y

c†xV(s)x,ycy = ~c†V(s)~c. (5.30)
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Using the matrices T and V(s) which are defined by the above equa-
tions, we can define the imaginary-time propagators

Us(τ2, τ1) =
n2∏

n=n1+1

e~c
†V(sn)~ce−∆τ~c

†T~c (5.31)

and

Bs(τ2, τ1) =
n2∏

n=n1+1

eV(sn)e−∆τT . (5.32)

Us is the time-evolution operator between the imaginary time τ1
which defines a time slice n1 via n1∆τ = τ1 and the time τ2 that
defines a slice n2 via n2∆τ = τ2. Since the partition function (5.27)
contains the full imaginary time evolution we can express it in terms
of Us and find

Z =
eβNU/4

2mN

∑
s1,s2,...,sm

Tr [Us(β, 0)]

=
eβNU/4

2mN

∑
s1,s2,...,sm

det(1+Bs(β, 0))
(5.33)

where we have used the property that

Tr

[∏
i

e~c
†Ti~c

]
= det

[
1+

∏
i

eTi

]
. (5.34)

We can calculate observables from

Tr
[
e−βHO

]

Tr [e−βH]
=

∑
s

Ps〈〈O〉〉s +O(∆τ2) (5.35)

with the weight

Ps =
det(1+Bs(β, 0))∑
s det(1+Bs(β, 0))

(5.36)

and the per-configuration contribution of an observable

〈〈O〉〉s =
Tr [Us(β, τ)OUs(τ, 0)]

Tr [Us(β, 0)]
. (5.37)

This is in summary sufficient for implementing a Monte Carlo
method. We have to sample the space spanned by the Nm Ising spins.
For each configuration of spins s we can calculate the weight Ws, and
hence we can set up a Metropolis algorithm as outlined in Chapter 3.
The moves can e.g. consist in a change to the spin pattern that is en-
coded in s. Taking similar precautions against correlated samples as
in the implementation of the algorithm of Sec. 5.1 observables can
be measured. This is the idea of the auxiliary field QMC in a nutshell
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which, if directly implemented, is slow and numerically unstable. For Especially the
product of the Bs
in (5.32) turns out
to be a headache. . .

these deeper details the reader is referred to [42, 43]. Nevertheless,
using various optimizations the complexity of the algorithm can be
optimized to O(βN3) which is superior to the scaling of the CT-INT

method that has a complexity of O
(
(βN)3

)
. The optimization of the

CT-INT method has long been tried in the sense that one restricts it
to the simulation of lattice Hamiltonians and thereby tries to get the
linear β scaling of the auxiliary field and the lack of a discretization
error as present in the CT-INT. Recently a method was proposed [44]
that achieves to combine both methods. It reaps the advantages of
both, like the optimal scaling in β of the auxiliary field method and
the lack of a sign problem for certain problems as in the CT-INT, but
also the disadvantages like the heavy numerical stabilization schemes
of the auxiliary field QMC.
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6
QUENCH ING A
ONE -D IMENS IONAL HUBBARD
CHA IN

A one-dimensional system of 64 particles with forces between neighbors
containing non-linear terms has been studied on the Los Alamos computer

MANIAC I. The nonlinear terms considered are quadratic, cubic, and
broken linear types. The results are analyzed into Fourier components and
plotted as a function of time. The results show very little, if any, tendency

towards equipartition of energy among the degrees of freedom.

— E. Fermi, J. Pasta and S. Ulam, Studies of non linear problems.
[12]

6.1 introduction

The results of this
chapter have been
published in the
accompanying
publication [3].

Ultra-cold atomic gases in optical lattices have allowed the realization
of models from solid-state physics that have previously only been
considered as low-energy effective theories of real materials. Ongo-
ing experimental work has achieved great control in the preparation
of those systems and experimental physicists have started studying
the dynamics of these systems when they e. g. change parameters
of their trapping devices [45, 46]. Atomic gases are rather unique
in their controllability which is not so easily achieved in the conven-
tional electron system of a solid. If we now change the model parame-
ters through the controlling devices in a sudden manner, we have the
usual setup of a quench. An intriguing question is then: how does
the atomic gas evolve in real-time? Another interesting venue which
has an inherent time dynamics is pump and probe femtosecond spec-
troscopy which permits the study of electron relaxation dynamics
[47, 48]. In this section we employ the QMC methods of Chapter 5 in
the non-equilibrium setting. We apply them to one and two dimen-
sional half-filled Hubbard models prepared in a thermal initial state
and quench them to a Hamiltonian without the Hubbard interaction,
that is U(t > 0) = 0. Sotiriadis [49] called this situation with a ther-
mal initial density matrix a thermal quantum quench in contrast to
the pure quantum quench of a pure initial state.
In this setup we can ask a number of questions concerning the evolu-
tion of the system after the quench.

• Does the system evolve to a new steady-state?
• How does an isolated system approach a possible new equilib-

rium?

33



34 quenching a one-dimensional hubbard chain

• What is the nature of this state?
• Does the system retain memory of the initial state?

In 1D we have used the CT-INT method outlined in Chapter 5 with
some optimizations that are mentioned in Sec. 6.6. For the 2D simu-
lations we have used the auxiliary field algorithm of Sec. 5.3. But, as
it stands, the algorithm there is not fit for the required real-time sim-
ulations. In Sec. 6.5.2 we detail how the method was tailored towards
quenches to non-interacting systems. Both QMC algorithms enable a
numerically exact treatment of the problem at hand without intro-
ducing any uncontrolled bias. Of special importance is the fact that
these methods allow for quenches to arbitrary non-interacting models
without introducing an additional dynamical sign problem. In com-
parison, Exact Diagonalization (ED) is limited to much smaller system
sizes. Only Density-Matrix Renormalization Group (DMRG) methods
would have allowed for similar system sizes. Applied to the 2D prob-
lem, the BSS algorithm is to our knowledge unmatched by any other
algorithm. A complementary model to ours, where, starting from freeThis seems to be

still true in 2014.
People still use it
as one of the rare
examples of a 2D

study [50].

electrons, the Hubbard interaction was switched on at t = 0, was stud-
ied theoretically in [51] and numerically by Eckstein et al. [52] using
Dynamical Mean Field Theory (DMFT). Eckstein et al. found a critical
value of UC ≈ 3.3 where the characteristic oscillations in the dou-
ble occupancy and the fermi surface discontinuity seem to have been
suppressed. The behavior of the momentum distribution in the Bril-
louin zone was also a focus of newer work by [50]. Using an equation
of motion technique they studied the same Hamiltonian as [52] and
considered the time dependence of the discontinuity in 1D as well as
in 2D. They see, that similar as in our setup, the equilibration hap-
pens much faster in 2D than in 1D. A further study in the same vein
was recently published by Iyer et al. in [53] where the quench was
performed from a non-interacting model to a model with finite Hub-
bard interaction U but without electron hopping t using ED. More
general results for the quench dynamics of a quantum system in arbi-
trary dimensions have been presented by Moeckel and Kehrein [54].
Manmana et al. [55] studied a similar problem as ours using time-
dependent DMRG techniques, but in contrast to us they considered the
case of spin-less electrons. They quenched from interaction parame-
ters lying in the metallic or insulating regime to specific values of final
Hubbard U’s, where they also crossed those phases. They found that
the information propagation in their system, as observed in the den-
sity density correlation functions, happens only with a finite velocity
that depends on the final interaction and not instantaneously. We also
observe this finite velocity of propagation in the charge charge corre-
lation functions for spinful fermions, which gives rise to the notion
of a light cone like evolution of the information propagation. For a
number of models this finite velocity of the propagation of informa-
tion is known as the Lieb-Robinson bound and was first discovered
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for quantum spin systems [56]. Lieb and Robinson proved that in
their system only exponentially small corrections exist outside this
light cone. Over the years these theorems got extended to more sys-
tems up to arbitrary harmonic systems on general lattices with local
dynamics (see Ref. [57] and references therein). This light cone like
structure is a direct consequence of the locality of the dynamics.
This chapter has the following structure. First we will write down
the Hamiltonian and the particular type of time evolution that we
have in mind. To gain some insight into the physics at hand we per-
form mean-field and perturbative calculations. This is summarized in
Sec. 6.3. Sec. 6.5 describes the simplifications and the input Green’s
functions that we use in the CT-INT method as well as the extensions
that make the auxiliary field method fit for real-time evolution. Our
exact numerical results derived with these programs are presented in
Sec. 6.6 and compare favorably with the analytic calculations. Using
these methods we find that in 1D and 2D local quantities equilibrate
to values that can be reasonably well described by an effective single-
particle density matrix that respects the particle densities nk of the
initial, thermal density matrix. The approach to the equilibrium fol-
lows a dimension dependent power law. For single-particle quantities
such as Green’s functions this power law follows that of a diffusion
process, t−D/2, where t is the time. Finally, in Sec. 6.6.3 we take a look
at the information propagation of correlations in real space through
the system. We show that a light cone like structure exists beyond
which the propagation of the information of the correlation is expo-
nentially suppressed.

6.2 the model and its symmetries

In this chapter on time dependent systems we consider the familiar
Hubbard model with Hamiltonian

H = −
∑
ijσ

tijc
†
iσcjσ︸ ︷︷ ︸

=:H0

+U
∑
i

(ni↑ −
1

2
)(ni↓ −

1

2
)︸ ︷︷ ︸

=HU

. (6.1)

Here niσ = c
†
iσciσ. For our simulations, we restrict ourselves to the

case of nearest-neighbor hopping on hyper-cubic lattices with the lat-
tice constant set to unity.

tij =

1 if i, j are nearest neighbors

0 otherwise
(6.2)

and we restrict ourselves to half-band filling corresponding to a chem-
ical potential of µ = 0. With this choice of parameters, the negative
sign problem does not plague the evaluation of the initial density ma-
trix. Defining the hopping matrix in that way we set the energy unit
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to the amplitude of the hopping. Using this convention we have freed
the letter t and can now use it for denoting the real time t. The aboveThis use of the

letter t is specific
to this chapter.

defines our unnormalized initial density matrix:

ρ(t = 0) = e−βH (6.3)

describing a Mott insulating state at inverse temperature β. In the
following we will call the initial H, the thermal Hamiltonian. At t = 0
we switch off the Hubbard interaction, that is HU(t > 0) = 0, such
that the unitary time evolution of the system is given by

U(t, t ′) = e−iH0(t−t
′). (6.4)

As the evolution of the system is carried out with the hopping Hamil-
tonian H0, there are a number of conserved quantities. In particular
the k-space resolved particle density nkσ and all related quantities,
such as the kinetic energy, are conserved, since [nkσ,H0] = 0. In ad-
dition, at the particle-hole symmetric point, where

ε(~k) = −ε(~k− ~Q) (6.5)

holds, η-pairing

η
†
~Q
=

∑
~k

c
†
~k,↑c

†
−~k+~Q,↓ (6.6)

is a conserved quantity, since

η
†
~Q
(t) =

∑
~k

eit(ε(
~k)+ε(−~k+~Q))c

†
~k↑c
†
−~k+~Q,↓ (6.7)

with ε(~k) = −2
D∑
i=1

cos(ki) in D dimensions and ~Q = π
D∑
i=1

~ei where

~ei denotes cartesian unit vectors.

6.3 approximate methods

6.3.1 Mean-field Analysis

We carried out a mean-field approximation for the initial state based
on an anti-ferromagnetic decomposition of the Hubbard Hamiltonian.
In 1D, the unit-vector a1 = (1), and in 2D, the basis a1 = (1, 0)T

and a2 = (0, 1)T span the lattice. To have the possibility of an anti-
ferromagnetic ordering in the mean-field approximation we define
the anti-ferromagnetic unit cell in 1D simply as twice as large as A1 =
(2) and in 2D we define the unit-vectors as A1 = (1, 1)T and A2 =

(1,−1)T . The unit cell now contains two orbitals, and we label one of
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them with ci and the other with di. We define the Fourier transform
of these operators as

cR =
1√
N

∑
k

eikRck

dR =
1√
N

∑
k

eikRdk

(6.8)

where R denotes lattice vectors labeling anti-ferromagnetic unit cells.
With the definition of the anti-ferromagnetic unit cell and the label-
ing of its electrons we can now proceed to describe the calculation
in a unified way. Additionally, we introduce ndRσ = d

†
RσdRσ as well

as ncRσ = c
†
RσcRσ as shorthand notation. We rewrite the Hubbard

interaction as

HU =
−U

2

∑
R

[(
ncR↑ −n

c
R↓
)2

+
(
ndR↑ −n

d
R↓
)2]

. (6.9)

In this mean-field approximation we introduce the mean-field order
parameter mz:

mz =
〈
ncR↑ −n

c
R↓
〉

−mz =
〈
ndR↑ −n

d
R↓
〉 (6.10)

such that the mean-field Hubbard interaction reads

HMF
U = −

Umz

2

∑
R

(
ncR↑ −n

c
R↓
)
−
(
ndR↑ −n

d
R↓
)

. (6.11)

Carrying out the Fourier transform on the kinetic energy part and
introducing the quantity γkσ = (ckσ,dkσ)

T we can rewrite the total
Hamiltonian in a matrix form like

HMF =
∑
kσ

(
c
†
kσ,d†kσ

)T
(

−∆σ Zk

Z̄k ∆σ

)

︸ ︷︷ ︸
=:H0(k,σ)

(
ckσ

dkσ

)
. (6.12)

Here Z(k) contains the information about the lattice structure, Z(k) =
−
(
1+ e−ikA

)
in 1D and Z(k) = −

(
1+ e−ikA1

) (
1+ e−ikA2

)
in 2D.

∆ = mzU
2 and the band structure is determined by

E(k) = ±
√
∆2 + |Z(k)|2. (6.13)

This, so far, is well known from thermodynamics. The next step is
to introduce real-time dynamics into this setting. The Hamiltonian re-
sponsible for the time evolution contains no explicit time-dependence,
therefore the evolution of γ is given by:

γkσ(t) = e
iH0tγkσe

−iH0t. (6.14)
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To obtain a Heisenberg equation of motion, we differentiate this equa-
tion with respect to t. Taking into account the structure of γ as well
as the fermionic commutation rules, we get

d

dt
γkσ,α(t) = −i(H0(k,σ)γ†kσ(t))α. (6.15)

This is solved by

γkσ(t) = e
−iH0(k,σ)tγkσ. (6.16)

Then, the time dependence of the magnetization is

mz(t) =
1

N

∑
kσ

〈γ†kσ(t)σzγkσ(t)〉. (6.17)

This quantity is plotted in Fig. 2 (a) as a function of dimension D
and at T = 0. From the log-log-plot (Fig. 2 (b)) we clearly see that the
maxima of the oscillations can be fitted by functions that decay as a
power law. To get rid of certain numerical artifacts in the log-log-plot
of the absolute value we also plot mz(t) · tD/2 in Fig. 3 (a). We see
that this quantity quickly approaches a simple sine wave oscillation
pattern with constant amplitude. In Fig. 3 (b) we show the Fourier
transform of this quantity. In 1D only a single frequency of ω ≈ 4 is
present whereas 2D oscillates with a frequency of ω ≈ 8. Depending
on the dimensionality we see an odd-even effect. Even dimensions
have the same base frequency as in 2D, and odd dimensions have the
same base frequency as 1D. Additionally, higher harmonics show up
in D = 3 and D = 4 with a spacing of ∆ω ≈ 8. Judging from this plot
we propose that the long time behavior of the envelope of this decay
is connected with the dimensionality of the system like

|mz(t)| ∝ t−
D
2 . (6.18)

In the thermodynamic limit we can perform a more detailed analysis
of the behavior of the 1D magnetization. After some calculation we
get

mz(t) =
2∆

π

2∫
0

dx
cos(2tx)√

4− x2
√
x2 +∆2

. (6.19)

The limit ∆ → ∞ is exactly solvable and is a representation of the
Bessel function J0, thereforemz(t) = J0(4t). The leading order asymp-
totic behavior of the 1D magnetization with respect to t is given by

mz(∆, t) = (1+
4

∆2
)−

1
2 J0(4t). (6.20)

The calculation is outlined in Sec. 6.4.1. The well-known asymptotic
behavior for large t of J0 is

J0(4t) = sin(4t+
π

4
)
1√
2π

1√
t
+O(t−3/2), (6.21)
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Figure 2: The time-dependent decay of the magnetization of the mean-field
solution with parameters T = 0 and U = 2. (a) shows the behavior
of Eq. 6.17 in dimensions from 1 to 4 and (b) depicts the same data
in a log-log-plot revealing the power law decay. The kinks in (b)
in the data for 1D and 3D are due to the fact that we have data
with a very fine time-resolution. The oscillations in these graphs
would extend all the way to zero in the plot, thereby effectively
coloring the plot in black. Nevertheless the power law decay of the
envelopes is clearly visible. The equations for the magnetization
were solved self-consistently, and afterwards the time propagation
was calculated. The colors are chosen consistently in the two plots
of this plot as well as in the more analysis oriented plot of Fig. 3.
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Figure 3: In this set of plots we continue the analysis of the dimension de-
pendent decay of the magnetization of Fig. 2. In (a) we have mul-
tiplied every data set by the expected t

D
2 behavior. We see that all

data sets approach sines with constant amplitude, thereby confirm-
ing our conjecture in Eq. 6.18 without introducing the numerical
artifacts (the oscillations) of the log-log-plot of Fig. 3(b). (b) is the
Fourier transform of the data sets in (a) which shows sharp peaks
for only a few frequencies.
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therefore confirming our hypothesis in 1D. In Sec. 6.4.2 we general-
ized this to arbitrary dimensions and give an asymptotic expansion
of mz(t,∆) with respect to ∆. A key observation is that in dimension
D the limit ∆→∞ is exactly solvable

mz,D(t,∆→∞) ∝ JD0 (4t), (6.22)

therefore the dominant term with respect to time in the asymptotic
expansion of the magnetization is

mz,D(t,∆→∞) ∝ t−D
2 sinD(4t+

π

4
) (6.23)

which fits well to our numerical observations at a finite ∆. The ob-
served frequencies can be explained by using power reduction formu-
las for trigonometric functions [58]. In the following ωD,k = 4(D−

2k) denotes the k’th frequency. For even dimension we have

sinD(4t) =
1

2D


2

D
2 −1∑
k=0

(−1)
D
2 −k

(
D

k

)
cos(ωD,kt) +

(
D
D
2

)
 . (6.24)

Therefore, in even dimensions the smallest observed frequency is 2ω0
where ω0 is some base frequency (in our case we have ω0 = 4) and
the largest observed frequency is Dω0. To this observation fits a sim-
pler result derived by using a flat band of bandwidth 2w in Sec. 6.4.3.
The behavior in the limit of ∆→∞ is

mconst
z (w, t) ∝ sin(2wt)

2wt
. (6.25)

Hence, the decay of a system with a constant density of states is sim-
ilar to a 2D Hubbard system with bandwidth 2w = 8. This result is
consistent with the t−

D
2 law since a constant density of states is re-

alized by free electrons in a 2D continuum. Here it is obvious that
the frequency of the oscillations depends on the bandwidth. In odd
dimensions the powers of the sine are given by

sinD(4t) =
1

2D−1

D−1
2∑
k=0

(−1)
D−1
2 +k

(
D

k

)
sin(ωD,kt), (6.26)

proving that odd dimensions show a lowest observable frequency of
ω0 and that the largest occuring frequency is again Dω0. We see that
in the large-t regime the frequencies are given by ωk = (D− 2k)ω0.
Therefore it is clear that the difference between two frequencies is
∆ω = 2ω0, which gives in our case the observed ∆ω = 8. By noting
that the squared magnetization is related to the double occupancy by

2

N

∑
i

〈(ni↑ −ni↓)2〉 = 1−
2

N

∑
i

〈ni↑ni↓〉 (6.27)
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we expect to see similar behavior in accessible correlation functions in
our QMC data. We also observe in our mean-field data that in all di-
mensions the information about the border seems to propagate with
the same velocity irrespective of the dimension. Thus, the property of
a finite velocity of information propagation is also preserved in the
mean-field description.

6.3.2 Perturbation Theory

Here we consider a first order expansion in the strength of the interac-
tion in the thermal Hamiltonian. This is sufficient since no interaction
is present in the real-time evolution. Additionally, the expansion has
the advantage that we can analytically perform the thermodynamic
limit. We consider the spin spin correlation function

S(Ri, t) =
∑
σσ ′

σσ ′〈niσ(t)n0σ ′(t)〉

=
∑
σσ ′
kpq

σσ ′

N2
eiRiq〈c†kσ(t)ck−qσ(t)c

†
pσ ′(t)cp+qσ ′(t)〉

=
∑
σσ ′
kpq

eiRiq
σσ ′

N2
〈Sσσ ′(k,p,q, t)〉,

which implicitely defines the k-space spin spin correlation function
via

S(Ri, t) =
1

N

∑
q

eiRiqS(q, t), (6.28)

which is in turn given by

S(q, t) =
1

N

∑
σσ ′
pq

σσ ′〈Sσσ ′(k,p,q, t)〉. (6.29)

The usual perturbative expansion of the initial density matrix ρ gives

〈Sσσ ′(k,p,q, t)〉 = 〈(1−
β∫
0

dτHU(τ))Sσσ ′(k,p,q, t)〉0. (6.30)

This result is the same as obtained by an expansion of the full Keldysh
evolution operator SC. It is obvious that all contributions stem from
correlation functions that mix real-time and imaginary-time. There-
fore, a solution of this problem using a plain Keldysh method along
the real-time contour is not possible. After Wick-decomposing this ex-
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pression and collecting the remaining terms we get for the spin spin
correlation function S(q, t):

S(q, t) = −
2

N

∑
k

〈nk−q〉〈nk〉−

2U

N2

β∫
0

dτ
∑
kp

G<p+q(τ, t)G>p (t, τ)G
<
k−q(τ, t)G>k (t, τ).

(6.31)

To interpret the dimensional dependence in QMC simulations we will
take a closer look at S(π, t) since it is related to the magnetization.
Neglecting the time-independent zeroth order contribution we get:

S(π, t) = const. − 2U

β∫
0

dτξ(t, τ)ξ(t, τ), (6.32)

ξ(t, τ) =
1

N

∑
k

(f(βεk) − 1)
2e2iεk(t+iτ)

=

∞∫
−∞

dεg(ε)(f(βε) − 1)2e2iε(t+iτ).
(6.33)

In the last line of Eq. 6.33 we performed the thermodynamic limit and
introduced the density of states g(ε). f(ε) denotes the usual Fermi
function. Performing the τ-integral in S(t) and rearranging terms we
get:

S(π, t) ∝
∞∫

−∞
dεk

∞∫
−∞

dεp
g(εp)g(εk)

εk + εp
e2it(εp+εk)

×
[
f2(−βεk)f

2(−βεp) − f
2(βεk)f

2(βεp)
]

.

(6.34)

The large bracket that contains all Fermi functions has an expansion
in β as β8 · (εp + εk) +O(β3). Therefore, to first order the denomina-
tor in Eq. 6.34 is canceled and the two remaining integrals decouple.
Then we have

S(π, t) ∝




∞∫
−∞

dεg(ε)e2iεt



2

. (6.35)

Specializing to the density of states of a 1D chain

g1(ε) =
Θ(4− ε2)√
4− ε2

(6.36)

we find that S(π, t) ∝ J20(4t) with J0 denoting the Bessel function of
the first kind. Since the spin spin correlation in the high temperature
limit is just the squared mean-field magnetization, we can deduce
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Figure 4: The spin spin correlation function S(~q = (π,π)T , t) of a 2D Monte
Carlo simulation of a 20 × 20 lattice at U = 8 and β = 2.5. We
expect this to be in the high-temperature regime where Eq. 6.35 is
valid. The dashed black line is ∝ J40(4t), the result from perturba-
tion theory. The offset is taken from the large time behavior of the
QMC data and the amplitude was taken from the value at t = 0.
The inset shows a magnified view of the region below the inset
from t = 1 to t = 4.5. We see that the approximation works almost
flawlessly in that regime. The deviation for t → 5 has its root in
boundary effects that set in for approaching that point in time.

from the general result in Sec. 6.4.2 that the leading order decay of
S(π, t) is like S(π, t) ∝ t−D sin2D (4t). Fig. 4 shows a comparison of
this theoretically predicted behavior in this approximation to an exact
Monte Carlo run in 2D. We note that the large β limit gives the same
leading order behavior.

6.4 an analytic study of the mean-field magnetization
in various dimensions

6.4.1 The magnetization in 1D

The magnetization mz(∆, t) in the thermodynamic limit reads in 1D:

mz(∆, t) =
2∆

π

2∫
0

dx
1√
4− x2

1√
∆2 + x2

cos(2tx). (6.37)
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Setting t = 0 we get the initial value of the magnetization in 1D as

mz(∆, t = 0) =
2

π
K(−

4

∆2
) (6.38)

where K(z) denotes the complete elliptic integral of the first kind.
Inserting the familiar expansion of the cosine into Eq. 6.37 and inte-
grating term-wise we get

mz(∆, t) =
∞∑
k=0

(−16t2)k
(12)k

(2k)!k!2
F1

(
1
2
+k, 1

2

k+1

;
−4

∆2

)

=

∞∑
k=0

(−4t2)k

(k!)2 2F1

(
1
2
+k, 1

2

k+1

;
−4

∆2

) (6.39)

where (α)k denotes the Pochhammer symbol, which is defined with A definition of
hypergeometric
functions in terms
of Mellin
transforms is
given in the course
of Sec. A.2.5.

the help of the Γ function as (α)k = Γ(α + k)/Γ(α), and 2F1 is the
Gauss hypergeometric function. Using the Pfaffian transformation for
the hypergeometric function we get

mz(∆, t) =
(
1+

4

∆2

)− 1
2

∞∑
k=0

(−4t2)k

(k!)2 2F1

(
1
2
1
2

k+1

;
4

∆2 + 4

)
. (6.40)

Decomposing the Gauss hypergeometric function and using some
properties of the Pochhammer symbol we get again a series of hy-
pergeometric type:

mz(∆, t) =
(
1+

4

∆2

)− 1
2

∞∑
k,j=0

(−4t2)k

k!
ηj

j!
(12)j(

1
2)j

(1)k+j
(6.41)

=

(
1+

4

∆2

)− 1
2

Ξ2(
1

2
,
1

2
, 1,η,−4t2) (6.42)

with the definition η = 4(4+ ∆2)−1. Ξ2 was introduced by P. Hum-
bert to denote the twice confluent version of Appell’s F3 double hy-
pergeometric function. See Ref. [59] chapter 7.2.4 for the definitions of
hypergeometric functions in several variables. We note the expansion
of this Ξ2 in terms of Bessel functions:

Ξ2(
1

2
,
1

2
, 1,η,−4t2) =

∞∑
j=0

( η
2t

)j (12)j(12)j
j!

Jj(4t). (6.43)

So far, this particular Ξ2 has resisted all attempts to deduce a closed
form expression. Nevertheless, it gives the asymptotic expansion with
respect to t. The right hand side of Eq. 6.43 provides a generalized
asymptotic series which is asymptotic for t → ∞ with respect to the Definitions of

asymptotic series
are given in
Sec. A.2.2.

asymptotic scale {φj} = {t−j−
1
2 }, j = 0, 1, . . . . Note that for large t, Ξ2

gets insensitive to changes in η. This is due to the fact that the leading
order behavior of Ξ2 is just J0(4t) without any η-dependent prefactor.
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Figure 5: A comparison of numerically gained mean-field data of a finite
chain of 4096 sites with the asymptotic expansion given in (6.44).
Here U = 2, which gives a self-consistently determined ∆ ≈ 0.34.

To conclude, we give the leading order behavior of mz(∆, t) for large
t,

mz(∆, t) = (1+
4

∆2
)−

1
2 J0(4t). (6.44)

This function is plotted in Fig. 5 for U = 2 which gives ∆ ≈ 0.34.
Obvious are the deviations for small t, but it is remarkable that the
amplitude of the long time behavior is very accurately described by
the inverse square root in Eq. 6.44.

6.4.2 The magnetization in arbitrary dimensions in the large ∆ limit

In this subsection we consider the mean-field magnetization mz on a
hyper-cubic isotropic lattice of dimension D.

mz(t,∆,D) =
2∆

π

∞∫
−∞

dεgD(ε)
cos(2tε)√
ε2 +∆2

=
2∆

π
Re

∞∫
−∞

dεgD(ε)
e2tiε√
ε2 +∆2

(6.45)

so essentially it is just the Fourier transform of some more compli-
cated function involving the density of states gD for the respective
dimension. But having rewritten it that way, we see that the follow-
ing results also apply to the spin spin correlation function as derived
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in perturbation theory Eq. 6.35. To be able to extract an asymptotic
expansion with the help of the Mellin-transform technique, we start For properties of

the Mellin
transform the
reader is referred
to Sec. A.2 and
references given
there.

by inserting the representation of

∆√
x2 +∆2

=

c+i∞∫
c−i∞

ds∆−s 1

2
√
π
xsΓ(−

s

2
)Γ(
1+ s

2
) (6.46)

in terms of a Mellin-Barnes integral. In this expression the strip of
analyticity is given by −1 < Re(s) < 0. Then we have that

mz(t,∆,D) =
∆

π

∞∫
−∞

dεgD(ε)
e2tiε√
ε2 +∆2

=
1

2π
3
2

c+i∞∫
c−i∞

ds∆−sΓ
(
−
s

2

)
Γ

(
1

2
+
s

2

) ∞∫
−∞

dεgD(ε)e
2itεεs.

(6.47)

Inserting the definition of the density of states this lengthens to

mz(t,∆,D) =
1

2π
3
2

c+i∞∫
c−i∞

ds∆−sΓ
(
−
s

2

)
Γ

(
1

2
+
s

2

)

×
∞∫

−∞
dε

∫
dkDδ(ε− 2

D∑
i=1

cos(ki))e2itεεs.

(6.48)

Substituting xi = cos(ki) in the integral we get

mz(t,∆,D) =
1

2π
3
2

c+i∞∫
c−i∞

ds∆−sΓ
(
−
s

2

)
Γ

(
1

2
+
s

2

) ∞∫
−∞

dε

×
∫

RD

D∏
i=1


Θ(1− x

2
i )dxi√

1− x2i


 δ(ε− 2

D∑
i=1

xi)e
2itεεs,

(6.49)

which after evaluating the ε-integral gives

mz(t,∆,D) =
1

2π
3
2

c+i∞∫
c−i∞

ds∆−sΓ
(
−
s

2

)
Γ

(
1

2
+
s

2

)

×
∫

RD

D∏
i=1

(g1(xi)dxi) e
4it

D∑
i=1
xi
(2

D∑
i=1

xi)
s.

(6.50)
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We have used that we find in the integration measure the already
defined one-dimensional density of states g1 of (6.36). Displacement
of the integration path to the right yields

mz(t,∆,D) ∼
1

π
3
2

M∑
k=0

Γ
(
1
2 + k

)

k!(−∆2)k

∫
RD

D∏
i=1

(g1(xi)dxi) e
4it

D∑
i=1
xi
(2

D∑
i=1

xi)
2k

=
1

π

M∑
k=0

(
1
2

)
k

k!4k
d2k

dt2k




∞∫
−∞

dxg1(x)e
4itx



D(

1

∆

)2k

=
πD

2π

M∑
k=0

(
1
2

)
k
(−1)k

(2k)!4k
d2k

dt2k
JD0 (4t)

(
1

∆

)2k
,

which gives the final result

mz(t,∆,D) ∼ πD−1
M∑
k=0

(12)k

k!(4∆2)k
d2k

dt2k
JD0 (4t) (6.51)

where we have introduced the cut-off index M to terminate the
asymptotic series. The ∆ → ∞ limit can also be inserted into the
high-temperature expression of the spin spin correlation function.

6.4.3 The Magnetization in the large ∆ Limit for a constant Density of
States

Assuming a constant density of states

g(ε) =
1

2w
Θ(ε2 −w2) (6.52)

with bandwidth w the relevant expression to analyze is

mz(w,∆, t) =
∆

wπ

w∫
0

dx
cos(2tx)√
∆2 + x2

. (6.53)

We again perform an asymptotic expansion with respect to ∆ by using
Eq. 6.46. Then

mz(w,∆, t) =
1

2wπ
3
2

c+i∞∫
c−i∞

dsΓ
(
−
s

2

)
Γ

(
1+ s

2

)w∫
0

dx cos(2tx)xs

=

c+i∞∫
c−i∞

dsΓ
(
−
s

2

)
Γ

(
1+ s

2

)
w1+s∆−s

2wπ
3
2 (1+ s)

1F2

(
1
2
+ s
2

1
2

, 3
2
+ s
2

;−t2w2
)

.

(6.54)

The poles in the positive complex half-plane are at zero and at even
integers. The displacement over the first M poles located at sk = 2k

yields:

mz(w,∆, t)∼
1

2π

M∑
k=0

(−1)k(12)kw
2k

k!(1+ 2k)∆2k 1
F2

(
1
2
+k

1
2
3
2
+k

;−t2w2
)

. (6.55)
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The first term is the contribution at infinity, therefore the ∆→∞ limit.
We get

mz(w,∆→∞, t) =
sin(2wt)
4wt

. (6.56)

We proceed to evaluate the hypergeometric function by using an inte-
gral representation ([59] Eq. 7.2.3.9). The hypergeometric function in
Eq. 6.55 is related to the spherical Bessel functions, and consequently,
a reduction to a finite sum of elementary functions is possible. Setting
x = wt we get

1F2

(
1
2
+k

1
2

, 3
2
+k

;−x2
)

=
Γ
(
3
2 + k

)

Γ
(
1
2 + k

)
1∫
0

dyyk−
1
2 0F1

(
1
2

;−x2y
)

=
2Γ
(
3
2 + k

)

Γ
(
1
2 + k

)
1∫
0

dz z2k cos(2xz)

(6.57)

where we have performed a variable substitution in the last line and
reduced the hypergeometric function in the integrand to a cosine.
Performing integration by parts in the integral 2k times we get

1∫
0

dz z2k cos(2wtz) =
(2k)!
2wt

(−(2wt)2)−k sin(2wt)

+
1

2wt

2k−1∑
j=0

(2k− j+ 1)j(−2wt)
−j sin(2wt−

πj

2
).

(6.58)

From this expression we immediately see that the only occurring fre-
quency is 2w and that the slowest decay is 1

2wt for all valid values
of k. As a by-product we have reduced the hypergeometric function
in Eq. 6.55 to a finite series of elementary functions and therefore see
that the oscillations are due to pure sines.

6.5 qmc methods applicable to quenched hubbard mod-
els

6.5.1 CT-INT

After the study of the Hamiltonian (6.1) with approximate methods
we apply the QMC method outlined before to it. Since the Hamilto-
nian possesses SU(2) symmetry on all branches of the Keldysh con-
tour the evaluation of the determinant in (5.14) can be optimized since

det(M(CN)) =
∏
σ

det (Mσσ(Cn)) . (6.59)
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The free Green’s functions G0 that we need as input for the program
is given by

G0(k, s, s ′) = Θ(s− s ′)G<0 (k, s, s ′) −Θ(s ′ − s)G>0 (k, s, s ′)

where the lesser and greater Green’s functions that depend on two
different times s and s ′ as well as momentum k are given by

G<0 (k, s, s ′) =eiε(k)(z(s)−z(s
′))f(ε(k))

G>0 (k, s, s ′) =eiε(k)(z(s)−z(s
′))(1− f(ε(k))).

Here ε(k) = −2 cos(k) is the 1D dispersion relation and f(ε) again
denotes the Fermi function. Note that this Green’s function has times
in the contour-time s, thus you need to transform them via (5.15) to
their physical times.

6.5.2 Auxiliary Field QMC

Restricting the real-time dependence in the time evolution U(t, t ′) of
(4.3) to single-particle Hamiltonians enables the treatment of time-
dependent problems by using the auxiliary field type algorithm of
Sec. 5.3. The time evolution with a single-particle Hamiltonian canWe emphasize that

even if the
real-time

propagation is that
of a

non-interacting
Hamiltonian, we

need a QMC
method to deal

with the
correlations in the

initial state.

then be very efficiently computed with the auxiliary field quantum
Monte Carlo method provided that the stochastic evaluation of the
thermal density matrix does not suffer from the negative sign prob-
lem. A simple modification of the measurement prescription (5.35)
is sufficient to include the quench dynamics into the algorithm. The
contribution 〈〈O〉〉s of an observable defined in (5.37) becomes a time-
dependent quantity

〈〈O〉〉sss(t) =
Tr
[
Usss(β, 0)eitH0Oe−itH0

]

Tr [Usss(β, 0)]
. (6.60)

Since for a fixed Hubbard Stratonovitch configuration Wick’s theorem
applies the knowledge of the single-particle Green’s function

[Gsss(t)]x,y = 〈〈cxc†y〉〉sss(t), (6.61)

is sufficient to compute the time evolution of any quantity. For

H0 =
∑
x,y

c†x [T]x,y cy (6.62)

the Green’s function matrix satisfies the equation of motion:

d

dt
Gsss(t) = −i [T,Gsss(t)] (6.63)

which is solved by

Gsss(t) = e
−itTGsss(t = 0)e

itT (6.64)
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with the Hamiltonian matrix T. The above equation reveals how to
generalize standard finite temperature implementations of the auxil-
iary field algorithm to account for quenches to non-interacting Hamil-
tonians. In particular the equal time Green’s function matrix, which
is a central quantity in the algorithm, can be propagated according
to the above equation at the expense of two matrix multiplications
for each realization of the Hubbard Stratonovitch field. Using Wicks
theorem, arbitrary correlation functions at a given time t can be com-
puted. This idea of performing the imaginary-time evolution of the
system using a QMC method and then to perform the real-time evo-
lution analytically is not restricted to the BSS method but has also
successfully been applied to the CT-INT method in [60].

6.6 actual numerical simulations

6.6.1 Relaxation towards a free Model

In Fig. 6 we show the time-resolved double occupancy. Starting from
its initial value in the Mott-insulating state the double occupancy
shoots up to a value larger than that of free electrons (〈n↑n↓〉 = 0.25)
and peaks at a time of t ≈ 0.61 independently of the initially chosen
U. This coincides nicely with the first zero of J0(4x). Furthermore,
the period of the following oscillations is independent on U. This
confirms our approximate analytic result that the frequency of the
oscillations mostly depends on the bandwidth. In the long time limit
〈n↑n↓〉 approaches the non-interacting value. (Note that we limited
the plot to a maximal time of t = 16 as this is the time scale where
the finite size effects due to the boundary set in.) Since the double
occupancy equilibrates to the value of free electrons, we can conjec-
ture that the long time stationary behavior is described by a non-
interacting model. Nevertheless, we know that we have to take the
conserved particle densities into account. Hence, we investigate in the
following whether an effective Hamiltonian supplemented with La-
grange multipliers that enforce the conservation laws gives the right
long-term limits. We therefore propose an effective density matrix of
the form

ρeff =
e−βeffHeff

Tre−βeffHeff
(6.65)

where the effective Hamiltonian is of the form

Heff =
∑
ijσ

c
†
iσTijcjσ +

∑
kσ

λkσ(nkσ − 〈nkσ(t = 0)〉) (6.66)

with undetermined Lagrange multipliers λkσ and an arbitrary single-
particle Hamiltonian set by the matrix Tij. To equip our effective
model with the single-particle occupancies is similar to the ensem-
bles found in Refs. [61, 62]. With this ansatz one can predict uniquely
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Figure 6: The double occupancy 〈n↑n↓〉 of the 1D Monte Carlo simulations
for different values of the Hubbard interactionU of a 64 site system
at β = 10 seems to decay to 0.25, the value of a free model.
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ted quantities – each graph’s y-axis labels – are given in each sub-
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the long time stationary value of any correlation function. In partic-
ular, let us consider the equal time spin spin correlations. Owing to
Wick’s theorem they are uniquely determined by the single-particle
occupations,

Seff(q) ∝
1

N

∑
σσ ′
kp

σσ ′〈c†kσck+q,σc
†
pσ ′cp−q,σ ′〉eff

∝ 1

N

∑
σk

〈nkσ〉eff(1− 〈nk+q,σ〉eff).

(6.67)

Since the single-particle occupation numbers are conserved quanti-
ties, the long time behavior of any correlation function can be unam-
biguously determined from the knowledge of 〈nkσ〉 at t = 0. We test
this prediction by computing the time-dependent spin spin correla-
tion functions:

S(q, t) =
1

N

∑
σσ ′
kp

σσ ′〈c†kσck+q,σc
†
pσ ′cp−q,σ ′〉(t). (6.68)

Fig. 7a shows the behavior of S(q = π, t) in 1D and Fig. 7c in 2D. In
both considered dimensions the spin spin correlations decay rapidly
and approach the values determined with the effective model. Note
that in 1D it takes longer for the oscillations to fade out than in
2D. This is consistent with our calculations from perturbation theory
which predict a smaller exponent in 1D than in 2D.

6.6.2 Decay of Correlation

To extract the decay rate of the correlation functions we plotted in
Fig. 7b and Fig. 7d the difference to the effective model on a log-log
scale. We see that the maxima of each of the oscillations can roughly
be fitted by straight lines, thus the decay shows power law behavior.
Due to the rather low linear dimension of the 2D system the observ-
able time evolution is restricted by finite-size effects to about t = 4.5.
In 1D we observe a decay with a power law like t−1 whereas in 2D
as t−2. This is consistent with the previous analytic considerations
which predict S(~π, t) ∝ J40(4t) in 2D and S(π, t) ∝ J20(4t) in 1D. The
fact that we can predict the equilibrated values is equivalent to the
property that the system retains memory of at least the initial nkσ for
all times.

To conclude we observe that the system relaxes to a state that is well
described by a fermionic gaussian Hamiltonian. At least for bosons
Cramer et al. [63] have published proofs that the time evolution of an
arbitrary initial state under a quadratic Bose Hamiltonian – therefore
some kind of quench dynamics – leads to local relaxation towards
gaussian Hamiltonians. The physical argument of the authors is that
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this is due to the effect that every subsystem acts like a bath for the
other while their coupling is mediated by the local interactions.

6.6.3 Information Propagation in Correlation Functions

To study the information propagation in the system we consider two-
particle correlation functions. Information propagation has already
been studied for a 1D Bose-Hubbard model in Ref. [64] and for spin-
less fermions in Ref. [55]. First we will consider the correlated part

Ccorr(r, t) = 〈n0(t)nr(t)〉− 〈n0(t)〉〈nr(t)〉 (6.69)

of the charge charge correlation function 〈n0(t)nr(t)〉.
Fig. 8 plots the spatially resolved charge charge correlation func-

tions as a function of time. At t = 0 we observe the characteristic ex-
ponential decay of this quantity as appropriate for insulating states.
As a function of time a characteristic horizon forms. Beyond this hori-
zon the charge charge correlation functions retain their exponential
decay, whereas well within the horizon time-independent correlation
functions emerge. A rather surprising result is that, although the
distribution-function nk is a conserved quantity and therefore that
of a Mott insulator, the system nevertheless shows a transition to a
metallic state in the charge charge correlation function. An interest-
ing point is that – due to the conservation laws – the metallic state
has the same single-particle occupation as the initial Mott insulator.
To understand the nature of the decay of the charge correlations well
within the horizon, we plot in Fig. 9 their time evolution for fixed dis-
tances r. As apparent, the equilibration time grows with the distance
r as well as with the initial value of the Hubbard interaction U. How-
ever, the stationary value is consistent with our effective model such
that well within the horizon the charge charge correlation functions
are given by:

〈n(r)n(0)〉eff ∝
1

N2

∑
σkq

eiqr〈nkσ〉(1− 〈nk+q,σ〉). (6.70)

In the above, 〈nkσ〉 corresponds to the single-particle occupation
number at time t = 0. Within a mean-field spin density wave approx-
imation this quantity reads:

〈nkσ〉SDW =
1

2

(
1−

ε(k)√
ε(k)2 +∆2

)
. (6.71)

Inserting this form in Eq. 6.70 yields an exponential decay of the
charge charge correlations. We note that this exponential decay of
the QMC data may be very well reproduced by the above equations
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Figure 8: Snapshots of the spatially resolved charge charge correlation,
|Ccorr(r, t)|, for different times. For t = 0 we see the characteris-
tic exponential decay of an insulator. Between t = 1.6 and t = 3.2
we see that a characteristic front forms that is propagating through
the lattice. The area behind this front seems to be metallic as evi-
denced by the lack of an exponential decay. This is a lattice of 128
sites at β = 10 with an initial U = 1.
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Figure 9: For a 64 site lattice we observe that the time in which the corre-
lation functions Ccorr(r, t) equilibrate depends on the initial con-
ditions, the chosen U. But for U = 1 it seems reasonable to think
of the short-ranged correlation functions as having equilibrated to
the effective values Ceff(r). Note that the y-axis has a logarithmic
scale.
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with ∆ ≈ 0.075. At our largest time, t = 14.4 in Fig. 9, the charge
correlations are converged in the region r < 16, and the maximum of
each oscillation is consistent with an exponential decay. In terms of
the effective model, which is suited to describe the long time station-
ary state, the SDW result of Eq. 6.71 implies that:

Tr [ρeffnkσ] = 〈nkσ〉SDW =
1

1+ eβeffεeff(k)
. (6.72)

The last equation defines an effective band structure as well as an
effective temperature. The notion of an effective temperature makes
sense and is a well-defined quantity if one fixes the overall bandwidth
of the dispersion relation, for example, to that of the non-interacting
Hamiltonian. With this construction, the state after the quench may
be perceived as a metallic state at finite temperature.

Having discussed the velocity of the information propagation we
get a rather clear-cut estimate of the time scale at which finite-size
effects set in. In our simulations on lattices of 128 sites the finite-size
effects set in at t ≈ 16, because the velocity of the information is
v ≈ 4 and due to the periodic boundary conditions we can effec-
tively only use half of the lattice. The torus topology of the lattice
can be observed in Fig. 10 and Fig. 11 where the horizon is symmetri-
cally expanding from the top and the bottom of the figure. Calabrese
and Cardy [65, 66] have put forward the picture that this information
transport happens mainly by ballistic transport of the electrons. As
we have a characteristic upper limit of the speed of the information
propagation, this limit can be identified with a Lieb-Robinson bound.
Lieb-Robinson bounds are the upper limits to the group velocities
of excitations traveling through the considered system. As already
mentioned, they define a light cone-like structure that gives rise to a
notion of causality, since outside of the cone any influence of an ex-
citation is exponentially suppressed. Any non-negligible information
transport is therefore limited by this speed. To assess if we really ful-
fill this characteristic exponential suppression of information outside
the light cone we consider some specific values of the charge charge
correlation functions as a function of time. In Fig. 12 we see that es-
pecially the longer range correlation functions show an exponential
build-up of correlation outside of the causality cone.

Since we see a maximum velocity of information propagation as
well as the exponential suppression outside of the causality cone, we
believe to have truly found the Lieb-Robinson bound in the charge
sector. The spin-sector also shows a characteristic velocity and the
exponential suppression, but our data is way more noisy for the spin
spin correlations as is visible from Fig. 11. The fact that we could
observe this finite propagation of information is due to our ability to
do lattice simulations on very long chains (at least in 1D), in contrast
to the simulation of an effective impurity-like model as e.g. in the
DMFT approximation. There is surprosingly small body of work [67]
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Figure 10: We see the causality cone in the charge charge correlation func-
tion |Ccorr(r, t)|. Fig. 12 corresponds to a vertical cut along the
t-axis.
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horizon, but also more noise. This plot as well as Fig. 10 are for a
128 site lattice at U = 1 and β = 10.
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Figure 12: The exponential suppression of |〈n0(t)nr(t)〉 − 〈n0(t)〉〈nr(t)〉|
outside of the causality cone. The orange lines are exponentials
meant as a guide to the eye. The indices n correspond to different
distances in the measurement of the correlation function.

on methods that include the light cone into numerical approximation
schemes, although it is a characteristic feature of lattice models in
non-relativistic quantum mechanics.

6.7 summary

We have successfully used the CT-INT method in 1D as well as the aux-
iliary field method in 2D to tackle the general problem of quenches
from correlated thermal initial states to arbitrary one-particle Hamil-
tonians. Provided that the initial density matrix can be generated
without encountering a negative sign problem, the real-time dynam-
ics does not suffer from a dynamical sign problem. This allows to ac-
cess large lattices and long propagation times. Both algorithms used
are generalizations to the Matsubara-Keldysh contour of Fig. 1. The
CT-INT method is here also the more fexible tool since it is in the-
ory able to simulate the real-time behavior of any time-dependent
problem. In contrast, the method employing the auxiliary field algo-This

non-interacting
Hamiltonian is

arbitrary as long
as you can

analytically
compute its time

evolution.

rithm is restricted to the time evolution with a non-interacting Hamil-
tonian. Both of these methods allow to access the true real-time evo-
lution which is a different venue than methods tailored towards the
steady state non-equilibrium as the Matsubara voltage method [68].
A positive aspect of this method is that it has not the restriction of a
maximum expansion time built in. In summary we have studied the
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dynamical transition from a Mott insulating state to a Fermi liquid
corresponding to the quench from a finite to a vanishing Hubbard
repulsion U, both in one and two dimensions using QMC methods.
We find that spin spin correlation functions and double occupancy
decay towards values that can be reproduced by an effective single-
particle Hamiltonian where the particle densities nkσ are restricted
to the values of the thermal density matrix. We observe in Fig. 7 that
the decay of the magnetic order depends on the dimensionality of
the system. In 1D we observe a decay where the oscillations are en-
veloped by a decay like t−1 and in 2D as t−2. in 2D there is a lack of
non-equilibrium approximation schemes that could provide insight
into the system at hand. We can only mention an extension of Cluster
Perturbation theory in Ref. [69] and the already discussed equation
of motion approach in [50]. We have successfully compared our re-
sults with mean-field and perturbative calculations in both one and
two dimensions. The very good agreement points to the fact that the
quench pumps enough energy in the isolated system such that the
detailed correlation induced properties of the initial system do not
effect in any significant way the evolution to the stationary state. This
is particularly striking in the one-dimensional case since the mean-
field approximation captures by no means the physics of the initial
Mott insulating state. Due to this large amount of energy released by
the quench one can argue that the isolated system goes to a high tem-
perature state where vertex corrections can be neglected. Hence, any
n-point correlation function can be described by a product of single-
particle Green’s functions. Since in D dimensions the single-particle
Green’s function of a non-interacting system exhibits a diffusive en-
velope, t−

D
2 , it follows that an n-point correlation function has a long

time behavior ∝ t−
Dn
2 . This is confirmed by the QMC simulations

both in one and two dimensions. In the charge charge correlation
functions, Fig. 10, we observe that the information propagates with
a velocity of v ≈ 4 through the lattice. This behavior is the same as
predicted by Lieb-Robinson theorems for various systems. Thus, in
the charge charge correlation function this system preserves a sense
of locality. The same applies for the spin spin correlations, Fig. 11. For
distances within the light cone, the charge charge correlations are con-
sistent with a power law decay. Beyond this length scale they follow
an exponential law characteristic of the insulating state.
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A ONE -D IMENS IONAL CHA IN
SUBJECT TO RASHBA
SP IN -ORB IT INTERACT ION

There is nothing like looking, if you want to find something.
You certainly usually find something, if you look,

but it is not always quite the something you were after.

— J.R.R. Tolkien, The Hobbit [70]

7.1 introduction

The results in this
chapter have
mostly been
published in [5].

The steady advances in controlling the surface of a solid coupled with
the ingenuity of experimental groups [71, 72, 73, 74] have made it
possible to grow monatomic chains in a controlled manner. It turns
out, that the growing process for gold atoms on silicon surfaces is a
nice example of self-assembly. The clean silicon surface has a nat-
ural tendency to form anisotropic reconstructions of metal atoms
[75, 76]. Helping a bit by cutting the crystal along specific directions
creates terraces on the surface and thereby introduces an additional
anisotropy. These terraces now provide the ground on which the gold
atoms are deposited. The underlying regular geometry of the silicon
surface forces the atoms to form ladders of gold ions, and in the best
case, real, one-dimensional chains of several hundred ions in length.
By a proper choice of the surface it is possible to tune the distance
between the terraces and therefore between the chains. This leads to
a variation in the coupling strength between the chains and can be
used to experimentally access the crossover from one-dimensional to
two-dimensional systems [76]. But, since the ions are on a surface,
inversion symmetry is broken and the Rashba spin-orbit interaction
is not negligible anymore since its coupling strength is proportional
to the gradient of the electrical potential perpendicular to the surface.
The Rashba spin-orbit coupling will manifest itself in a splitting of the Platin works, too

[77].single-particle bands, although neither silicon nor gold are magnetic
compounds by themselves. Having these chains now within reach of
our experimental probes the question is now asked to theory which
behaviour is expected in this setup with strong spin-orbit coupling.
A very detailed answer to this problem has already been given a
long time ago by Kaplan [78]. He gave a detailed description how
the single band Hubbard model with Rashba spin-orbit interaction
is solved in terms of the same model without spin-orbit interaction
by a gauge transform of the fields. He analytically proved the shift
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in the single-particle spectra and, inspired by work of Calvo [79], he
showed how the spin spin correlations change in the presence of spin-
orbit interaction by considering the strong coupling limit of the Hub-
bard model, the Heisenberg chain. Some years later the same trans-
form was found by Meir et al. and used to study disorder in meso-
scopic rings in Ref. [80]. Persistent currents in mesoscopic Hubbard
rings with this particular form of spin-orbit interaction were studied
by Fujimoto et al. in Ref. [81]. It seems like they were the first that
noted the interpretation in terms of a comoving frame of reference
for the spin quantization axis. This peculiar rotation was also noted
by Refs. [78, 82, 83]. The transformation is naturally present in one di-
mension but also exists in higher dimensions as already pointed out
by Kaplan [78]. The realization is possible if one considers the inter-
play of Rashba and Dresselhaus spin-orbit interaction at special val-
ues of the coupling strength [84, 82], which has been experimentally
realized in ultracold atom experiments [85, 86]. Another possibility is
to assume the existence of a vector potential with a specific direction
[87, 88] that generates the spin-orbit interaction. Aspects of this map-
ping in a bosonization context were already mentioned in Ref. [83]
which discussed the special case of an infinite parabolic band and
considered the Peierls transition in 1D systems. Results on the crit-
ical exponents for this model using Bethe ansatz were obtained by
Zvyagin [89]. We know that Rashba spin-orbit interaction leads al-
ready to a complication of the single-particle spectra: the originally
spin-degenerate bands split.

In this chapter we will now exhibit a mapping between a Hub-
bard model with spin-orbit interaction to the familiar Hubbard model
without spin-orbit interaction. We focus on the details of finite latticesWe emphasize that

this is an exact
identity at the

Hamiltonian level.

with finite bandwidth at non-zero temperature and its experimental
consequences, which should also be of importance to the field of ul-
tracold fermionic chains [90, 91]. The importance of this mapping has
grown since algorithmic progress allows for a very precise numeri-
cal evaluation of spectral and thermodynamic properties of the Hub-
bard model. The mapping now enables researchers to use numerical
studies to address systems with Rashba spin-orbit interaction using
almost the same codes. We will also employ this idea and reinterpret
single-particle spectra of the Hubbard model in this new setting. As
a further consequence of the mapping we will consider the strong
coupling Heisenberg limit for the half-filled band and give spectra
for spin spin correlations.

As usual, we will start out in Sec. 7.2 by writing down the Hamil-
tonian that we are considering. After that we will derive the trans-
formation between the Hamiltonians in k-space. This transformation
forces us to change our observables accordingly, this is outlined in
Sec. 7.3.4. This sets the stage for Sec. 7.6, which in particular dis-
cusses the experimental consequences for spin resolved Angle Re-
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solved Photo Emission Spectroscopy (ARPES) measurements. Here we
discuss experimental tests on the validity of the mapping. Since we
are dealing with a one-dimensional model, the textbook method for
the treatment of one-dimensional systems, bosonization, has its ap-
pearance in Sec. 7.4. We will see that we still recover the spin-charge
separation of a Luttinger liquid. Now Monte Carlo methods will enter
the stage and we begin Sec. 7.5 with technical details before we turn
to study the two-particle quantities. Here we will study the spin spin
correlation functions and we will give an interpretation of these spec-
tra in terms of the isotropic Heisenberg model. After that we briefly
consider some more general Hamiltonians in Sec. 7.7 and Sec. 7.8
that satisfy the mapping before we will wrap things up in Sec. 7.9
and give an outlook.

7.2 model

As a model realization of the Rashba spin-orbit interaction we con-
sider the HamiltonianH of a one-dimensional chain subject to Rashba
interaction Hλ and Hubbard interaction HU:

H = Ht +HU +Hλ (7.1)

with the bare hopping Hamiltonian The Peierls
transition is
expected to be
suppressed by
bonding to a
substrate [76].

Ht = −t
∑
r

~c†r~cr+1 + h.c. − µN

= −2t
∑
kσ

cos(k)nk,σ − µN.
(7.2)

~cr denotes a spinor of fermionic operators c†r,σ (cr,σ) which creates
(annihilates) an electron at site r with spin σ. These are fermionic
operators denoting electrons that have ~ez as spin quantization axis.
We will label this basis, the "physical" spin basis, to distinguish it
from others. In (7.2) t denotes the hopping matrix element which
is set to t = 1 for all that follows, nr,σ = c

†
r,σcr,σ, µ denotes the

chemical potential, and N is the total particle number operator. For
the time being we only consider the case of next-nearest neighbour
hopping. We devote a separate section, Sec. 7.8, to realizations with
longer-range hopping.
The Rashba-type spin-orbit interaction in the basis of physical spins
spins is given by

Hλ = λ
∑
r

~c†r+1iσy~cr + h.c.

= −2λ
∑
k,σ

σi sin(k)c†k,−σck,σ.
(7.3)
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σi with i ∈ {x,y, z} denotes the set of three Pauli spin matrices and
λ is the coupling strength. This expression stems from the familiar
form of a Rashba spin-orbit interaction [92],

Hs-o = λ~ez(~σ×~j),

by restricting the current~j of the electrons to the ~ex axis. It is possible
to choose other axes; but of importance is the fact that the movement
is one-dimensional. ~σ = (σx,σy,σz)T denotes the Pauli spin vector
and we note that the Rashba spin-orbit coupling breaks SU(2) spin
symmetry but preserves time-reversal symmetry.
Finally, we have the Hubbard interaction

HU = U
∑
r

(
nr,↑ −

1

2

)(
nr,↓ −

1

2

)
. (7.4)

We consider this model with periodic boundary conditions and σ ∈
{↑, ↓} denotes the physical spin with a quantization axis pointing in
the ~ez direction. It turns out that this basis is not the most convenient
one. To see this, we first turn to the non-interacting part H0 of the
Hamiltonian H

H0 = Ht +Hλ

=
∑
kσ

ε(k)c†k,σck,σ + iσV(k)c
†
k,−σck,σ − µN

(7.5)

with ε(k) = −2 cos(k) and V(k) = −2λ sin(k). The Hamiltonian is
already diagonal in k-space; therefore we only need to perform a
rotation in spin-space to fully diagonalize it. The σy matrix can be
rotated into a σz matrix by utilizing a rotation S in spin space around
the x-axis:

S =
1√
2
(1+ iσx), (7.6)

such that the fermionic operators transform as

ck,s =
∑
σ

Ss,σck,σ. (7.7)

The index s ∈ {+,−} will exclusively refer to the new fermionsThat the y-axis
enjoys some

distinction was
later on pointed

out to me by some
experimentalists:

The ~ez axis is the
surface normal and
~ex is the direction

of movement of the
electrons. Those

two axis uniquely
define ~ey.

given by (7.7). For the future we will refer to this new spin basis as
the helical basis. The transform (7.6) is a rotation in spin space that
rotates the spin quantization axis from the ~ez axis onto the ~ey axis.
A peculiarity is the fact that in 1D this rotation is always possible
irrespective of the internal structure of ε(k) and V(k). Evaluating the
transform the non-interacting Hamiltonian then reads

H0 = −2
∑
k,s

Es(k)nk,s − µN (7.8)
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with the new non-interacting dispersion given by

Es(k) = cos(k) − λs sin(k). (7.9)

Using the harmonic addition theorem this can be recast into the form You may wish to
look ahead to
Fig. 15 for a
graphical
visualization of
this spectrum.

Es(k) =
√
1+ λ2 cos(k− sφ(λ)) (7.10)

where we have introduced the phase-shift

φ(λ) = arctan(λ). (7.11)

Simple as this step may seem it is enlightening since it shows that the
effect of the Rashba interaction can be separated into an increase of
the bandwidth given by

√
1+ λ2 and a phase-shift φ(λ) that differs

in sign for the different helicity branches. In terms of helical fermions
we find from (7.6) for the spin resolved particle densities:

nk,σ =
1

2

(
nk,+ +nk,− − σc†k,+ck,− − σc†k,−ck,+

)
. (7.12)

Inserting this into the Hubbard Interaction (7.4) we see that it stays
form-invariant under this transformation. We find This is due to the

SU(2) symmetry
of HU.HU = U

∑
r

(
nr,+ −

1

2

)(
nr,− −

1

2

)
(7.13)

now with the helical particle densities nr,s.

7.3 gauge transforms

7.3.1 Starting Simple: the Inversion

We start this part on gauge transforms with a simple example before
writing down the general relation. Assuming a real x with x 6= 0,
arctan(x) has the inversion relation

arctan(x) =
π

2
sgn(x) − arctan(

1

x
), (7.14)

therefore a value x can be connected to its inverse x−1. We should be
able to somehow use this relation to fold down the size of the parame-
ter space. To that end we introduce some more precise notation of the
parameters of (7.8) and (7.13). We rewrite H0 in the two equivalent Remember that

periodic boundary
conditions are
imposed. The
dependency on the
chemical potential
is suppressed but
can be easily
restored later on.

forms

H0(λ) =− 2
√
1+ λ2

∑
k,s

cos(k+ sφ(λ))nks (7.15a)

=−
√
1+ λ2

∑
r,s

eisφ(λ)c
†
r+1,scrs + h.c. (7.15b)
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Equation (7.15b) shows that the introduction of the Rashba spin-orbit
interaction is equivalent to a helicity dependent magnetic flux. Insert-
ing (7.14) into equations (7.15) and playing a bit with the prefactors
we see that we can almost connect the two values of λ

H0(λ) = −2|λ|

√
1+

(
1

λ

)2∑
k,s

cos
(
k+ s

(
π

2
sgn(λ) −φ

(
1

λ

)))
nks

(7.16a)

= −|λ|

√
1+

(
1

λ

)2∑
r,s

eis(
π
2 sgn(λ)−φ( 1λ))c†r+1,scrs + h.c.

(7.16b)

The key realization after staring long enough at (7.16b) is that we need
a transformation that enables us to get rid of the factor eis

π
2 sgn(λ).

This can be achieved by a simple, helicity spin s dependent gauge
transform of the fermionic operators,This is a transform

with the σz part of
the group SU(2). c̃rs = crse

−isrπ2 sgn(λ). (7.17)

This gauge transformation is valid if it honors the periodic boundary
conditions, therefore we have to impose

c̃r+L,s = cr+L,se
−is(r+L)π2 sgn(λ)

= cr,se
−isrπ2 sgn(λ)e−isL

π
2 sgn(λ)

= c̃rs e
−isLπ2 sgn(λ)︸ ︷︷ ︸

=1

.
(7.18)

This is fulfilled if the last exponential is 1 or, equivalently if its argu-
ment is at least equal to 2πn. Therefore we find the condition that
L = 4n. Continuing the calculation from (7.16b) we find that under
this condition H0(λ) transforms to

H0(λ) = −|λ|

√
1+

(
−
1

λ

)2∑
r,s

eis(
π
2 sgn(λ)φ(− 1

λ ))c
†
r+1,scr,s + h.c.

= −|λ|

√
1+

(
−
1

λ

)2∑
r,s

eisφ(− 1
λ )c̃
†
r+1,sc̃r,s + h.c.

= |λ|H0

(
−
1

λ

)
.

(7.19)

Using this property for the full Hamiltonian we find that H trans-
forms as

H(λ,µ,U) = H0(λ) − µN+HU(U)

= |λ|H0

(
−
1

λ

)
− µN+HU(U)

= |λ|

(
H0

(
−
1

λ

)
−
µ

|λ|
N+HU

(
U

|λ|

))
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giving us finally the mapping

H(λ,µ,U) = |λ|H

(
−
1

λ
,
µ

|λ|
,
U

|λ|

)
(7.20)

which shows that the full range of values of λ can be recovered from
the interval [−1, 1] given a compatible chain length.

7.3.2 The General Transform

We have seen that using the inversion theorem of arctan(x) together
with a gauge transform enables us to map different points in the pa-
rameter space onto each other. Of course the question arises whether
more relations between them are possible. In fact there is an infinite
number of them by using the addition theorem of arctan(x):

arctan(λ)+arctan(y) = arctan
(
λ+ y

1− λy

)
+
π

2
sgn(λ)(sgn(λy−1)+1)

(7.21)

with λy 6= 1. From the calculation in the previous section we can
anticipate that we need to choose certain parts of (7.21) to be com-
patible with the boundary conditions so that we can employ a gauge
transform. This is ensured by the choice of

arctan
(
λ+ y

1− λy

)
=
jπ

m
(7.22)

where m > 2, 1 6 j < m denote integers with a greatest common
divisor of one. We can hope to generate an identity for every tuple
(j,m) as will be shown later on. Defining

tm = tan
(
jπ

m

)
=
sm

cm
=

sin
(
jπ
m

)

cos
(
jπ
m

) , (7.23)

then, after rearranging for y, (7.22) links λ and y in the following way:

y =
tm − λ

1+ tmλ
. (7.24)

We have to check the requirement that λy 6= 1:

λy =
λ(tm − λ)

1+ tmλ
6= 1

→ λtm − λ2 6= 1+ tmλ
→ λ2 6= −1.

(7.25)
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So this should hold for all real λ. Next, we consider the term in (7.21)
that has all those signum functions:

σm(λ) := sgn(λ)
(

sgn
(
λ(tm − λ)

1+ tmλ
− 1

)
+ 1

)

= sgn(λ)
(

sgn
(
−1− λ2

1+ tmλ

)
+ 1

)
.

(7.26)

Note that σm(λ) can only take the values 0 and ±2. Using these
preliminaries we find the following parametrized identities Im for
arctan(x):

Im : arctan λ =
jπ

m
+
π

2
σm(λ) + arctan(λm) (7.27)

with the definition of the new spin-orbit coupling strength,

λm =
λ− tm
1+ tmλ

=
cmλ− sm
smλ+ cm

. (7.28)

We note that this particular transform is a case of the group ofTo be precise, it is
an elliptic Möbius

transform. The
group is cyclic,

which is the reason
why we only keep
the order m in the

notation.

fractional linear transform or Möbius transforms. We will continue
with the consequences for the Hamiltonian H before we will devote
Sec. 7.3.5 to the group properties. Inserting relation (7.27) into equa-
tion (7.15b) and employing the gauge invariance we find that H0
transforms to

H0(λ) = −
√
1+ λ2

∑
r,s

eis(
jπ
m+π

2σm(λ)+φ(λm))c†r+1,scr,s + h.c.

= −νm(λ)
√
1+ λ2m

∑
r,s

eisφ(λm)c̃
†
r+1,sc̃r,s + h.c.

which yields the simple relation

H0(λ) = νm(λ)H0(λm). (7.29)

In the derivation we have used newly defined, gauge-transformed
fermionic operators

c̃r,s = cr,se
−isr( jπm+π

2σm(λ)) (7.30)

as well as the scaling factor of the total bandwidth

νm(λ) =

√
1+ λ2

1+ λ2m

=

∣∣∣∣cos
(
jπ

m

)
+ sin

(
jπ

m

)
λ

∣∣∣∣ .
(7.31)

As already shown in the introductory example we need to check how
the boundary conditions transform. Our original operators were sub-
ject to the condition cr+L,s = cr,s. This is fulfilled for c̃r,s, if

c̃r+L,se
−is(r+L)( jπm+π

2σm(λ)) = cr,se
−isr( jπm+π

2σm(λ)) (7.32)
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C(x, λ)

m = 3
m = 5
m = 7
m = 11
m = 13
m = 17
m = 19
m = 23

0
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λ

x = jπ
m

Figure 13: For λ = 0.5we show which values the transform (7.28) permits for
the new value λm as a function of the angle x = jπ

m . m is chosen
according to a prime as given in the legend and 1 < j < m.

and therefore

e−isL(
jπ
m+π

2σm(λ)) = 1 (7.33)

which is equivalent to

sL(
jπ

m
+
π

2
σm(λ)) = 2πn (7.34)

with an arbitrary integer n ∈ Z. Simplifying we find the condition

L =
4nm

2j+mσm(λ)
. (7.35)

So, given a system size L that is compatible with the boundary condi-
tions, which means that m and j can be chosen such that (7.35) is an
identity, we find that the total Hamiltonian transforms as

H(λ,µ,U) = νm(λ)H

(
λm,

µ

νm(λ)
,

U

νm(λ)

)
(7.36)

This means that for a given λ, H(λ,µ,U) is connected to m other
Hamiltonians that are identical at the Hamiltonian level, with the
new Spin Orbit Interaction (SOI) strength given by λm. It is interesting
to get a graphical visualization which points are accessible from a
specific value of λ as in Fig. 13. The limit function C(x, λ) is given by
the transform itself

C(x, λ) =
cos(x)λ− sin(x)
sin(x)λ+ cos(x)

(7.37)

In the limit of m → ∞ we see that one value of λ can be mapped
to the complete real axis. In particular this implies that it should be This includes

λ = 0.possible to map a Hamiltonian with spin-orbit interaction λ 6= 0 back
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to the plain Hubbard model with λ = 0. For that we have to start to
explore the consequences of the equation

λm(λ) = 0 (7.38)

which implies

tm = tan
(
jπ

m

)
= λ. (7.39)

Inverting the tangent we can state this in terms of the phase-shift φ
of (7.11) as

jπ

m
= φ(λ). (7.40)

This implies σm(λ) = 0. For the scaling factor we find

νm =
√
1+ t2m =

1

|cm|
. (7.41)

Stated in terms of an operator identity between Hamiltonians we de-
rive from (7.29) the relation

H0(tm) =
√
1+ t2mH0(0) =

H0(0)

|cm|
. (7.42)

Which means for the full Hamiltonian (7.1)

H(tm,µ,U) =
H(0,µ|cm|,U|cm|)

|cm|
. (7.43)

Of course identities (7.42) and (7.43) are independent on the choice of
the ensemble used for the thermal averaging. Hence the mapping be-
tween the two models is valid in the canonical as well as in the grand-
canonical ensemble. Setting m = L and compatibility with (7.35) re-
quires j = 2n. Therefore we have seen how at the Hamiltonian level
the cases of Rashba spin-orbit interaction and no spin-orbit interac-
tion can be mapped onto each other. The number of points at which
identity (7.43) holds is finite for a given order m of the transform. But
in the limit of m→∞ this grid gets dense as shown in figure Fig. 13.

7.3.3 Numerical Consequences

A lot of researchers have already developed codes that have been
heavily optimized for the solution of Hubbard like problems. The
mapping now enables them to address questions involving the Hub-
bard model with Rashba interaction with little modifications to their
codes. Since a direct QMC simulation of (7.1) would yield a sign prob-
lem, the existence of the mapping (7.43) is important because it shows
that in the proper basis – the comoving spin basis – a simulation
without the fermionic sign problem is possible since the plain one-
dimensional Hubbard model exhibits no sign problem at arbitrary
chemical potential µ as discussed in Ref. [30]. Unfortunately, we have
to trade this fact for a more complicated representation of observables
as shown in the next subsection.
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7.3.4 Observables

The rescaling due to (7.43) in conjunction with the transformation of
the operators in (7.30) forces us to transform our physical quantities
as well. In momentum space we have for the fermionic operators of In a sense we have

traded the simple
Hamiltonian
description in
(7.43) for having
to deal with more
complicated
observables.

momentum k and helical spin s that

ck,s = c̃k+ sjπ
m ,s. (7.44)

Using this we find for observables in the helical base:

nk,s = ñk+ sjπ
m ,s

nk =
∑
s

nk,s =
∑
s

ñ
k+ sjπ

m ,s

Sz =
∑
s

snk,s =
∑
s

sñ
k+ sjπ

m ,s

S+ = c̃†
k+ jπ

m ,+
c̃
k− jπ

m ,−

S− = c̃†
k− jπ

m ,−
c̃
k+ jπ

m ,+

Going forward to thermal averages we find for the full single-particle
Green’s function

Gs(k, τ,β, λ = tj,m,µ,U)

= 〈c†k,s(τ)ck,s(0)〉

= Tr
(
e−βH(tj,m,µ,U)c̃

†
k+ sjπ

m ,s
(τ)c̃

k+ sjπ
m ,s

(0)

)

= Tr
(
e−β̃H(0,µ̃,Ũ)c̃

†
k+ sjπ

m ,s
(τ̃)c̃

k+ sjπ
m ,s

(0)

)

with τ̃ = τ
|cj,m|

, Ũ = U|cj,m|, µ̃ = µ|cj,m| and β̃ = β
|cj,m|

. This results
finally in the connection

Gs(k, τ,β, λ = tj,m,µ,U) = Gs
(
k+

sjπ

m
, τ̃, β̃, λ = 0, µ̃, Ũ

)
. (7.45)

The j-dependence on the previously defined quantities tm and cm is
now written down explicitly since we need to determine the shift in k.
Note that the final result on the above equation has λ = 0 and is there-
fore measured with the plain Hubbard model. Inverting this equation
to explicitly see which point of the Hubbard model is connected to
which part of the Rashba-Hubbard chain we have

Gs(kH, τH,βH,µH,UH) =

Gs
(
k−

sjπ

m
, τH|cj,m|,βH|cj,m|, tj,m,

µ

|cj,m|
,
U

|cj,m|

) (7.46)
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where the index H denotes that the parameter was used in a simula-
tion of the Hubbard model. Having studied the mapping of the single-
particle Green’s function it is natural to study the single-particle spec-
tral function

As(k,ω) = −
1

π
Im
(
Gs(k,ω+ i0+)

)
. (7.47)

We find that it transforms as

As(k,β,ω, λ) = |cj,m|As
(
k+

sjπ

m
, β̃,ω|cj,m|, 0

)
. (7.48)

Hence the local density of states D(ω,β, λ) transforms as

D(ω,β, λ) =
∑
k,s

As(k,β,ω, λ)

= |cj,m|
∑
k,s

As
(
k+

sjπ

m
, β̃,ω|cj,m|, 0

)
,

and since the quantity sjπ
m is a multiple of the inverse lattice spacing,

this gives us finally the simple relation

D(ω,β, λ) = |cj,m|D(ω|cj,m|, β̃, λ = 0). (7.49)

Therefore, the local density of states will not contain any new struc-
ture in comparison to the spectra of a plain Hubbard model at the
lower temperature β̃. Fig. 14 shows a selection of spectra for various
parameters. The imaginary-time Green’s functions for Fig. 14a were
simulated using the auxiliary field QMC method of Sec. 5.3 along the
lines of Ref. [43]. The analytic continuation to real frequencies was
performed using the stochastic maximum entropy method of Sec. A.1.
Using (7.48) we can then derive the spectra for other values of λ. Al-
though these spectra show a seemingly richer structure than the plain
Hubbard model, one can e. g. identify Rashba split holon and spinon
bands in the spectra, all spectra have in common that they can be con-
nected back to the single Hubbard simulation at parameters U = 6

and β = 10 (Fig. 14a) with the well-known signatures of the fraction-
alization of the electron into a spinon and a holon [43, 93].

We also have various two-particle correlation functions and we can
recover their respective equivalents in the Hubbard model analogue.
We have the charge charge correlation function

N(k, τ,β, λ,U) = 〈nk(τ)nk〉
=

∑
s,s ′
〈nk+sφ,s(τ̃)nk+s ′φ,s ′〉(β̃, Ũ) (7.50)

and the Sz − Sz correlation function

Szz(k, τ,β, λ,U) = 〈Szk(τ)Szk〉
=

∑
s,s ′
〈c†k+sφ,s(τ̃)ck−sφ,−s(τ̃)c

†
k+s ′φ,s ′ck−s ′φ,−s ′〉(β̃, Ũ). (7.51)
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(a) λ = 0,U = 6,β = 10,µ = −2.29
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(b) λ = 0.387402,U = 6.43,β = 9.33,µ = −2.46
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(c) λ = 0.911620,U = 8.11,β = 7.39,µ = −3.09
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(d) λ = 2.008271,U = 13.46,β = 4.46,µ = −5.13

Figure 14: This panel shows a series of spectra A(k,ω) which are connected
to each other via the mapping (7.48). The starting point is the
spectrum in (a) at λ = 0. Increasing λ in the panels (b) to (d)
leads to a shift of the spectra and we see the four Fermi-points
developing in the left column. Similarly we see in the logarithmic
plots of the right column, which are restricted to the domain [0,π],
the splitting of the original spinon and holon bands.
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The left hand side of (7.50) and (7.51) is measured in a simulation
of (7.1), and the right hand side is measured in the Hubbard model
analogue. Examples of spin spin correlations calculated using the pre-
viously outlined CT-INT method are shown in Fig. 17 and Fig. 18. The
analytic continuation of the spectra was performed using the bosonic
variant of the stochastic MaxEnt detailed in Sec. A.1.3.

7.3.5 Group Properties

In Sec. 7.3.2 we already hinted at the group properties of the trans-
form between the possible values of λ,

λm(λ) =
cmλ− sm
smλ+ cm

. (7.52)

Since it is a particular type of an elliptic Möbius transform, we also
find the familiar group structure, e. g.:

λm(λm(λ)) =
c2,mλ− s2,m

s2,mλ+ c2,m
. (7.53)

Or, if we denote the iterated insertion of λm into λm by Tnm, we have

Tnmλm := λn,m =
cn,mλ− sn,m

sn,mλ+ cn,m
. (7.54)

The index m denotes that this is an identity for the order m and the
superscript n denotes n successive applications. Using the notational
shorthands

cn,m = cos
(nπ
m

)
and sn,m = sin

(nπ
m

)

we find for the energy rescaling factors νi,m

νi,m(λj,m) = |ci,m + λj,msi,m|

=
|si+j,mλ+ ci+j,m|

|sj,mλ+ cj,m|
,

which results in the relation

νi,m(λj,m) =
νi+j,m

νj,m
. (7.55)

This group structure carries over to observables. Assuming a simple
k-independent observable that obeys

O(β, λ,µ,U) = O
(
νm(λ)β, λm,

µ

νm(λ)
,

U

νm(λ)

)
(7.56)

we find that the application of Tim yields

TimO

(
βνj,m, λj,m,

µ

νj,m
,
U

νj,m

)

= O

(
βνj,m

νi+j,m

νj,m
, λj+i,m,

µ

νj,m

νj,m

νi+j,m
,
U

νj,m

νj,m

νi+j,m

)

= O

(
βνi+j,m, λi+j,m,

µ

νi+j,m
,

U

νi+j,m

)
.

(7.57)
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We can recover some special cases. In the case of even m we find:

T
m/2
m λm =

cos(π/2)λ− sinπ/2
sin(π/2)λ+ cos(π/2)

=
−1

λ
(7.58)

which was the introductory example on the gauge transform that we
used in Sec. 7.3.1. If m is divisible by 4, we find

T
m/4
m λm =

cos(π/4)λ− sinπ/4
sin(π/4)λ+ cos(π/4)

=
λ− 1

λ+ 1
, (7.59)

which is linked to another arctan(x) identity. The formed group is a
cyclic group of order m since

Tmmλm =
cos(π)λ− sinπ

sin(π)λ+ cos(π)
= λ (7.60)

which yields the identity operation in this group. For a given order m
the operation Tm is closed since it does not yield Möbius transforms
that leave the group. Different transforms TinandT

j
m can be combined

to yield elements of other groups:

TinT
j
m = Tim+jn

nm . (7.61)

Of course, if the exponent i and the order n are not relatively prime
but share a common factor p identities of lower order are recovered:

Tin = T
pa
pb = Tab . (7.62)

Therefore, we recover the symmetry group of the roots of the equation
zn = 1 on the unit circle which is also the symmetry group of the
regular n-gon. For a finite chain with arbitrary λ it is not granted that
there exists a root that is located at z0 = 1. The n-gon will be slightly
canted with respect to the solutions of zn = 1 and is instead given by
the solutions of

zn = eiαn (7.63)

with some arbitrary angle in the complex plane α. The freedom to
rotate the n-gon from one root to the next is given by the gauge trans-
form and is described by the transformation Tnm. The restriction on
the values of λ in (7.39) now ensures that α = 0 in (7.63) and therefore,
that exactly one of the roots is located at z0 = 1, which corresponds
to the plain Hubbard model, and has an angle of rotation φ between
the roots of unity of order n. Some number theory provides us with
a means to classify the allowed values of the tm further since the val-
ues of the tm are not given by arbitrary real numbers but are instead
expressible as roots of polynomials of degree g. We cite the following
theorem on the rationality of the tangent function (Theorem 1 in [94]):

Theorem. If m > 2 and (k,m) = 1, then the degree g of tm = tan
(
kπ
m

)

is equal to ϕ(n) if n mod 4 6= 0 and ϕ(n)/2 if n mod 4 = 0.

Here ϕ(n) denotes Euler’s ϕ-function, which is also called Euler’s
totient function.
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7.3.6 Classical Thermodynamics

Due to the identity (7.43) that is valid at the Hamiltonian level, we
can derive how quantities from classical thermodynamics transform.
For the partition function Z we haveRemember that ν

is given in (7.41).

Z(β, λ,U,µ) = Z(βν, 0,
U

ν
,
µ

ν
) (7.64)

and for the free energy F

F(β, λ,U,µ) = −β ln(Z) =
1

ν
F(βν, 0,

U

ν
,
µ

ν
). (7.65)

From F we derive the entropy S

S(β, λ,U,µ) = −β2
dF

dT
=
1

ν2
S(βν, 0,

U

ν
,
µ

ν
) (7.66)

and the specific heat CV

CV(β, λ,U,µ) = −β
dS

dβ
=
1

ν2
CV(βν, 0,

U

ν
,
µ

ν
). (7.67)

For the internal energy E we derive in the canonical ensembleA pity that the
letter U was

already taken.
E(β, λ,U) = 〈H〉 = νE(βν, 0,

U

ν
). (7.68)

In the grand-canonical ensemble we can derive the average particle
number N,

N(β, λ,U,µ) = −
1

β

∂F

∂µ
=
1

ν
N(βν, 0,

U

ν
,
µ

ν
), (7.69)

and the compressibility κ,

κ(β, λ,U,µ) =
∂N

∂µ
=
1

ν2
κ(βν, 0,

U

ν
,
µ

ν
). (7.70)
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7.4 bosonization

7.4.1 Introduction

The standard procedure for the solution of one-dimensional systems
is the technique of bosonization [95, 96, 97]. Conceptually, it starts
with the determination of the Fermi points to construct a linearized
spectrum of the original band structure around these. See Fig. 15 for
this construction in our present setting with Rashba interaction. Next,
the approximation is made to allow states of arbitrary high energies
in this linearized spectra. This introduces unphysical states but their
effect on the low-energy properties of interest will be negligible. In
this setting it is now possible to employ the famous bosonization
identity for fermionic operators ψη in state η

ψη(x) ∝ Fηe−iφη(x) (7.71)

with the so-called Klein factors Fη and a new bosonic field φη. The The introduction
of the Klein factors
makes this an
identity in the
Fock space.

importance of this relation is given by the fact that certain important
cases of interactions that are difficult in a fermionic language, such as
the Hubbard interaction, become sort of easy in a bosonic language.
An added benefit is that the resulting theory, the Tomonaga-Luttinger
liquid, is a well-known object that exhibits as its most prominent fea-
ture the famous spin charge separation. There are already a number
of studies of the Hamiltonian (7.1) using bosonization in the litera-
ture [98, 99, 100, 101] but since they consider more general setups for
the bosonization they have not explicitly written down the connec-
tion to the plain Hubbard model. The connection was mentioned in
the context of a bosonization study of Peierls transitions [83] where
the interpretation in terms of a comoving frame of reference for the
spin quantization axis was noted. We will bosonize the Hamiltonian
that still manifestly contains the Rashba spin-orbit interaction. This
enables us to compare these results to the predictions made by the
plain Hubbard model.

7.4.2 The Fermi Points

As already mentioned, as a fundamental building block we need the
Fermi points to be able to linearize the Hamiltonian. From the disper-
sion relation in (7.10) we find that the Fermi momenta are given by

kα,s
F (λ) = α arccos

(
−µ

2
√
1+ λ2

)
+ sφ(λ)

= αk0F + sφ.
(7.72)

Note that this expression is only well defined if | −µ

2
√
1+λ2

| < 1. This
restricts the possible values of µ to lie within the band. Here we have
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Figure 15: An example of the two non-interacting cosine-bands with the
corresponding linearized spectra. We have also denoted the four
Fermi points given by (7.72). Note that all four of them have the
same magnitude of the Fermi velocity given by (7.74).

defined the additional index α ∈ {R,L} which enumerates the two
possibilities for a band of helicity s to cross the Fermi level is in this
section mostly used as an index for enumeration. If α turns up in an
expression where a concrete natural number is required for evalua-
tion, as in (7.72), then one has to replace {R,L} by {+1,−1}. We also
define

k0F = arccos
(

−µ

2
√
1+ λ2

)
. (7.73)

In Fig. 15 we see these four possibilities for the Fermi points and we
see that all of them are shifted by an equal amount, due to φ, from
the values for the Hubbard model analogue. Since the Fermi velocity
is the group velocity at those four points, we have

vαF (λ) =
∂Es(k)

∂k

∣∣∣∣
k=kα,s

F (λ)

= 2
√
1+ λ2 sin

(
α arccos

(
−µ

2
√
1+ λ2

)
− sφ+ sφ

)
,

where the phase-shift φ will cancel. With the help of some trigonom-
etry we are left with

vαF (λ) = α
√
4(1+ λ2) − µ2

= αvF(λ).
(7.74)

Therefore, the absolute value of the Fermi velocity is the same for all
helicities; it only differs for left and right movers by a different sign,
α. This is due to the fact that the two bands are still simple shifted
cosine-bands.
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7.4.3 Bosonizing the Hamiltonian

We have shown in Sec. 7.2 that For notational
convenience we
have dropped the
chemical potential.
It will be
reintroduced in the
bosonization
through the
backdoor with vF
and kF.

H=
∑
k,σ

ε(k)c†k,σck,σ+σiV(k)c
†
k,−σck,σ+U

∑
i

(
ni,↑ −

1

2

)(
ni,↓ −

1

2

)

represented with fermionic operators can be rewritten in helical states

H =
∑
k,s

Es(k)nk,s − µN+U
∑
i

(
ni,+ −

1

2

)(
ni,− −

1

2

)
. (7.75)

The summation index k in this equation still refers to the usual mo-
mentum k ∈ [0, 2π]. We start with this representation for the bosoniza-
tion. For the description of the low energy behavior of electrons in
one dimension we can use the approximate decomposition of the
fermionic operators cs(x) into left- and right-movers,

cs(x)" = "eik
L,s
F xcL,s(x) + e

ikR,s
F xcR,s(x). (7.76)

The symbol " = " is used in the same way as in Ref. [95] to denote that
(7.76) is an approximation due to the inclusion of additional unphysi-
cal positron states. Linearizing the non-interacting theory around the
four Fermi points we find for the non-interacting part

H0 = vF(λ)
∑
k,s

knR,s(k) − vF(λ)
∑
k,s

knL,s(k) (7.77)

where the summation index k now runs over all momentum states –
also the positronic ones – with k ∈ (−∞,∞). To bosonize the interac- Remember that

since in (7.74) the
phase-shift has
dropped out, (7.77)
contains no
information about
the position of the
four Fermi points.

tion we note that for the particle-density we have

ns(x) = c
†
s(x)cs(x)

=
∑
α=R,L

c†α,scα,s + c
†
α,sc−α,se

−i2αxk0F (7.78)

where the dependence on the phase-shift has also dropped out and
k0F as given in (7.73) contains only information on the original Fermi
velocity. Neglecting the 4k0F oscillations that would be relevant at half-
filling we find∑

x

n+(x)n−(x) ≈
∑
x

(nR+ +nL+)(nR− +nL−)

+
∑
x

(c†R+cL+c
†
L−cR− + c†L+cR+c

†
R−cL−)︸ ︷︷ ︸

Ã

.
(7.79)

We employ the bosonization identity of [95]

cα(x) = Fαa
− 1
2 e−iφα(x) (7.80)
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with the short-range energy cut-off a and find for Ã:The Klein factors
have been ignored.

Ã =
2

a2
cos(φR+ −φL+ −φR− +φL−). (7.81)

Employing the notation of Kane and Fisher, which is also explained
in Ref. [95], for a while with,

θs =
1

2
√
π
(φLs −φRs),

φs =
1

2
√
π
(φLs +φRs) and (7.82)

we find

Ã =
2

a2
cos
(
2
√
π(θ+ − θ−)

)
. (7.83)

Introducing the charge and spin combinations of all fields,

θC =
1√
2
(θ+ + θ−),

θS =
1√
2
(θ+ − θ−),

φC =
1√
2
(φ+ +φ−) and

φS =
1√
2
(φ+ −φ−),

(7.84)

we find

Ã =
2

a2
cos
(√
8πθS

)
. (7.85)

To get a bosonized representation of the remaining part of the inter-
action we employ another identity from [95],[95] has chapter

10. B. 3 on the
relation between

their notation and
that of Kane and

Fisher.

∂xθα(x) =
1

2
√
π
(nLα(x) +nRα(x)) (7.86)

and find

(nR+ +nL+)(nR− +nL−) = 4π∂xθ+∂xθ−

= 2π
(
(∂xθC)

2 − (∂xθS)
2
)

.
(7.87)

Therefore we have separated the interaction in spin and charge de-Constant offsets to
HU have been

neglected.
grees of freedom:

HU = 2π
(
(∂xθC)

2 − (∂xθS)
2
)
+
2

a2
cos
(√
8πθS

)
. (7.88)

If we set out to bosonize H0, we start with

H0 = vF(λ)
∑
k,s

knR,s(k) − vF(λ)
∑
k,s

knL,s(k), (7.89)
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which can be rewritten as

H0 = vF(λ)
∑
s=±

∫
dx
(
n2R,s +n

2
L,s
)

= vF(λ)
∑
s=±

∫
dx
(
(nR,s +nL,s)

2 + (nR,s −nL,s)
2
)

= 2πvF(λ)
∑
s=±

∫
dx
(
(∂xθs)

2 + (∂xφs)
2
)

.

(7.90)

With (7.84) we find that the Hamiltonian H0 separates in charge and
spin degrees of freedom

H0 = 2πvF(λ)

∫
dx
[
(∂xθC)

2 + (∂xφC)
2 + (∂xθS)

2 + (∂xφS)
2
]

. (7.91)

Therefore, in summary we have

H = HC +HS (7.92)

with

HC =

∫
dxvF(λ)2π

[
(∂xθC)

2 + (∂xφC)
2
]
+ 2πU(∂xθC)

2

HS =

∫
dxvF(λ)2π

[
(∂xθS)

2 + (∂xφS)
2
]
− 2πU(∂xθS)

2

+
2U

a2
cos
(√
8πθS

)
(7.93)

where terms can be collected to give

HC = 2πvF(λ)

∫
dx

[(
1+

U

vF(λ)

)
(∂xθC)

2 + (∂xφC)
2

]

HS = 2πvF(λ)

∫
dx

[(
1−

U

vF(λ)

)
(∂xθS)

2 + (∂xφS)
2

]

+
2U

a2
cos
(√
8πθS

)
.

(7.94)

Rescaling the fields as

θC/S =

(
1± U

vF(λ)

)− 1
4

θC/S,

φC/S =

(
1± U

vF(λ)

) 1
4

φC/S

(7.95)

enables us to bring the Hamiltonian in some canonical form,

HC = 2πvF(λ)

√
1+

U

vF(λ)

∫
dx
[
(∂xθc)

2 + (∂xφc)
2
]

HS = 2πvF(λ)

√
1−

U

vF(λ)

∫
dx
[
(∂xθs)

2 + (∂xφs)
2
]

+
2U

a2
cos

(
√
8π

(
1−

U

vF(λ)

)− 1
4

Θs

)
.

(7.96)
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Next comes the scaling dimension of the gap-generating cosine term.
We directly use the result of Ref. [96] for a cosine-term in the Hubbard
model and we see from the argument of the cosine that its scaling
dimension is

2d =
2√

1− U
vF(λ)

. (7.97)

Therefore, we conclude that the relevance of the cosine term changes
if the expression U

vF(λ)
crosses 0. Or in other words, if U changes its

sign, which would be the same for a plain Hubbard model. We will
finish this subsection by collecting all the necessary definitions that
will play some part in the following subsections:

H =
∑
a=C,S

Ha (7.98a)

Ha = 2πvF(λ)K
2
a

∫
dx
[
(∂xθa)

2 + (∂xφa)
2
]

(7.98b)

KC/S =

(
1± U

vF(λ)

) 1
4

(7.98c)

θC/S =
1

KC/S
θC/S (7.98d)

φC/S = KC/SφC/S (7.98e)

βC/S = 2πβvF(λ)W
2
C/S (7.98f)

7.4.4 Observables in Bosonization

With the bosonized version of the Hamiltonian (7.98) at hand, we can
proceed to compute correlation functions of observables. We use that,
given a free Hamiltonian of the form

H =

∫
dx(∂xφ)

2 + (∂xθ)
2, (7.99)

we have with equation (73) from Ref. [95] and the relation between
the various notations given in (7.82) that

〈θ(z)θ(0)〉 = 〈φ(z)φ(0)〉

=
1

2π
〈φL(z)φL(0)〉 =

1

2π
〈φR(z)φR(0)〉,

which gives the final result

〈θ(z)θ(0)〉 = 〈φ(z)φ(0)〉

= −
1

2π
ln
(
2β

L
sin
(
π

β
(z+ a)

))
.

(7.100)
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With that we derive

〈ei
√
2παφe−i

√
2πα ′φ〉 =

〈ei
√
2παθe−i

√
2πα ′θ〉 = δα,α ′

(
β

π
sin(

π

β
(z+ a))

)−αα ′

.
(7.101)

For mixed correlation functions we have

〈φsθs〉 = 〈(φL,s +φR,s)(φL,s −φR,s)〉
= 〈φL,sφL,s〉− 〈φL,sφR,s〉+ 〈φR,sφL,s〉− 〈φR,sφR,s〉
= 〈φL,sφL,s〉− 〈φR,sφR,s〉
= 0

(7.102)

since purely left- and purely right-moving correlation functions are
equal. To lighten the notation in the upcoming subsections we define
a couple of quantities. With the help of the free fermion correlation
function

FC/S(z) =
βC/S

π
sin
(

π

βC/S
(z+ a)

)
(7.103)

we can define

A
φ
C/S

(z) =
1

a
〈ei
√
2πKC/SφC/S(z)e−i

√
2πKC/SφC/S(0)〉

=
1

a

(
FC/S(z)

)−K2C/S
(7.104)

and

AθC/S(z) =
1

a
〈ei
√
2πK−1

C/S
θ
C/S

(z)
e
−i
√
2πK−1

C/S
θ
C/S

(0)〉

=
1

a

(
FC/S(z)

)− 1

K2
C/S .

(7.105)

7.4.4.1 Charge Charge Correlations

The charge charge correlation function N(k) is given by

N(k) =
∑
σσ ′
〈nkσnkσ ′〉 =

∑
ss ′
〈nksnks ′〉

=
∑
x

∑
ss ′

cos(kx)〈ns(x)ns ′(0)〉.
(7.106)

The density nα(x) in terms of the boson fields is given by

nα(x) = 2
√
π∂xθα+

1

a

(
e−2ixk

0
Fe−i2

√
πθα + e2ixk

0
Fei2

√
πθα
)

. (7.107)

Therefore, we find for the total density:

n(x) = n+(x) +n−(x)

=
√
8π∂xθC +

4

a
cos
(√
2πθC − 2k0Fx

)
cos
(√
2πθS

)

︸ ︷︷ ︸
=:A

. (7.108)
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We calculate the correlator N(x,y) = 〈n(x)n(y)〉 and set y = 0 at the
end. We find

N(x,y) =8π〈∂xθC∂yθC〉+
√
8π(〈∂xθCA(y)〉+ 〈A(x)∂yθC〉)

+ 〈A(x)A(y)〉.
(7.109)

We proceed by calculating the different parts separately. Taking the
partial derivatives to the front and using translation symmetry in
space and time we have

8π〈∂xθC∂yθC〉 = 8π∂x∂y〈θC(x− y)θC(0)〉

=
8π

K2C
∂x∂y〈θC(x− y)θC(0)〉.

(7.110)

Using (7.100) we find

8π〈∂xθC∂yθC〉 = ∂x∂y
−4

K2C
ln
(
2βC
L

sin
(
π

βC
(x− y+ a)

))
, (7.111)

which gives

〈∂xθC∂yθC〉 = −
π

2K2Cβ
2
C

csc2
(
π

βC
(a+ x− y)

)
. (7.112)

Next, we calculate the terms that mix charge and spin degrees ofYes, the system
size dependency on
L really drops out.

freedom.

〈∂xθCA(y)〉 = 〈A(x)∂yθC〉 = 0 (7.113)

since the factor 〈cos(
√
2πθS)〉 = 0 that is present in both terms. We

have e. g.

〈∂xθCA(y)〉 = 〈∂xθC cos(
√
2πθC(y) − 2ik

0
Fy)〉〈cos(

√
2πθS)〉︸ ︷︷ ︸

=0

= 0.
(7.114)

Finally, we have to calculate the last term, 〈A(x)A(y)〉, which gives

〈A(x)A(y)〉 =
16

a2
〈cos(

√
2πθC − 2k0Fx) cos(

√
2πθS) cos(

√
2πθC − 2k0Fy) cos(

√
2πθS)〉

=
16

a2
〈cos(

√
2πθC − 2k0Fx) cos(

√
2πθC − 2k0Fy)〉

× 〈cos(
√
2πθS(x)) cos(

√
2πθS(y))〉.

Using some trigonometry this results in

〈A(x)A(y)〉 = 4 cos(2k0F(x− y))A
θ
C(x− y)A

θ
S(x− y). (7.115)

Therefore, we find in summary

N(x) =
−4π2

K2Cβ
2
C

csc2
(
π

βC
(a+ x)

)
+ 4 cos(2k0Fx)A

θ
C(x)A

θ
S(x). (7.116)

We see that, although we started with a Hamiltonian with spin-orbit
interaction, the charge charge correlation function does not containYou may look

ahead to Fig. 16 to
confirm this.

any new structure in k-space. The only change is the rescaling of the
effective U that is contained in the Luttinger parameters KC/S.
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7.4.4.2 Sz-Sz Correlations

The rotation to the helical basis gives

Szz(k, τ) = 〈S±x (k, τ)S±x (k, 0)〉, (7.117)

and proceding in real space we find

Szz(r, τ) = 〈Sx(r, τ)Sx(0, 0)〉

=
1

4
〈(S+ + S−)(r, τ)(S+ + S−)(0)〉

=
1

2
Re
(
〈S+(r, τ)S+〉+ 〈S+(r, τ)S−(0)〉

)
.

(7.118)

The first expression is zero in the thermodynamic limit. For the sec-
ond term we have Notation: the first

bracket is
evaluated at r, the
second at (0).

〈S+(x)S−(0)〉 =
〈(ei2φxc†L+cL− + ei2k

R+
F xc

†
L+cR− + ei2k

L+
F xc

†
R+cL− + ei2φxc†R+cR−)

× (c†L−cL+ + c†R−cL+ + c†L−cR+ + c†R−cR+)〉
(7.119)

with φ = arctan(λ), kL+F = −k0F +φ and kR+F = k0F +φ. This expres-
sion simplifies considerably since in the thermodynamic limit only
four terms out of sixteen survive. We have

A1 = 〈c†L+(z)cL−(z)c
†
L−(0)cL+(0)〉

=
1

a2
〈eiφL+e−iφL−eiφL−e−iφL+〉

=
1

a2
〈ei
√
2π(φS(z)+θS(z))e−i

√
2π(φS(0)+θS(0))〉

=
1

a2
〈ei
√
2πφS(z)e−i

√
2πφS(0)〉〈ei

√
2πθS(z)e−i

√
2πθS(0)〉

=
1

a2
〈ei
√
2πKSφ̄S(z)e−i

√
2πKSφ̄S(0)〉〈ei

√
2π

θ̄S(z)
KS e

−i
√
2π

θ̄S(0)
KS 〉

= AφS (z)A
θ
S(z),

A6 = 〈c†L+(z)cR−(z)c
†
R−(0)cL+(0)〉

=
1

a2
〈eiφL+e−iφR−eiφR−e−iφL+〉

=
1

a2
〈ei
√
2πφS(z)e−i

√
2πφS(0)〉〈ei

√
2πθC(z)e−i

√
2πθC(0)〉

=
1

a2
〈ei
√
2πKSφ̄S(z)e−i

√
2πKSφ̄S(0)〉〈ei

√
2π

θ̄C(z)
KC e

−i
√
2π

θ̄C(0)
KC 〉

= AφS (z)A
θ
C(z),
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A11 = 〈c†R+(z)cL−(z)c
†
L−(0)cR+(0)〉

=
1

a2
〈eiφR+e−iφL−eiφL−e−iφR+〉

=
1

a2
〈ei
√
2πφS(z)e−i

√
2πφS(0)〉〈e−i

√
2πθC(z)ei

√
2πθC(0)〉

=
1

a2
〈ei
√
2πKSφ̄S(z)e−i

√
2πKSφ̄S(0)〉〈e−i

√
2π

θ̄C(z)
KC e

i
√
2π

θ̄C(0)
KC 〉

= A6,

and

A16 = 〈c†R+(z)cR−(z)c
†
R−(0)cR+(0)〉

=
1

a2
〈eiφR+e−iφR−eiφR−e−iφR+〉

=
1

a2
〈ei
√
2π(φS(z)−θS(z))e−i

√
2π(φS(0)+ΘS(0))〉

=
1

a2
〈ei
√
2πφS(z)e−i

√
2πφS(0)〉〈e−i

√
2πθS(z)ei

√
2πθS(0)〉

=
1

a2
〈ei
√
2πKSφ̄S(z)e−i

√
2πKSφ̄S(0)〉〈e−i

√
2π

θ̄S(z)
KS e

i
√
2π

θ̄S(0)
KS 〉

= A1.

Therefore, we have in total

Szz(x, τ) =
1

2
Re
(
2ei2φxA

φ
SA

θ
S + e

2ikR+F xA
φ
SA

θ
V + e2ik

L+
F xA

φ
SA

θ
C

)

= Re
(
ei2φx(AφSA

θ
S +A

φ
SA

θ
C cos 2k0Fx)

)
.

(7.120)

Looking at Fig. 17 we see that the low-energy features are predicted
correctly. We have peaks at k = π±φ but no peak at k = π.

7.4.4.3 S+-S− Correlations

Rotating to the helical basis we have

S±(r, τ) =
1

2
(〈(Sz(r, τ) + iSy(r, τ))(Sz(0) − iSy(0))〉+ h.c.)

= 〈Sz(r, τ)Sz〉︸ ︷︷ ︸
=Azz

+ 〈Sy(r, τ)Sy〉︸ ︷︷ ︸
=Ayy

. (7.121)

Evaluating the different parts we find

Ayy = 〈Sy(r, τ)Sy〉

=
−1

4
〈(S+(r, τ) − S−(r, τ))(S+ − S−)〉

=
−1

2
Re (〈S+S+〉− 〈S+S−〉) ,

which is a quantity that we already know from (7.120), and we have

Ayy = Szz(r, τ). (7.122)
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Lastly, we consider

Azz = 〈Sz(r, τ)Sz〉
= 〈(n+(r, τ) −n−(r, τ))(n+ −n−)〉.

(7.123)

Using (7.107) we find for Sz

Sz = n+ −n−

=
√
8π∂xθS −

4

a
sin(
√
2πθC − 2k0Fx) sin(

√
2πθS)︸ ︷︷ ︸

B(x)

. (7.124)

We start by calculating the different parts separately and begin with
the first term. Taking the partial derivatives to the front and using
translation symmetry in space and time we have

8π〈∂xθS∂yθS〉 = 8π∂x∂y〈θS(x− y)θS(0)〉

=
8π

K2S
∂x∂y〈θS(x− y)θS(0)〉.

(7.125)

Using (7.100) we find

8π〈∂xθS∂yθS〉 = ∂x∂y
−4

K2S
ln
(
2βS
L

sin
(
π

βS
(x− y+ a)

))
, (7.126)

which gives

〈∂xθS∂yθS〉 = −
π

2K2Sβ
2
S

csc2
(
π

βS
(a+ x− y)

)
. (7.127)

Next come the terms that mix charge and spin degrees of freedom. Again, the
dependency on the
system size L
really drops out.

〈∂xθSB(y)〉 = 〈B(x)∂yθS〉 = 0 (7.128)

since the factor 〈sin(
√
2πθC − 2k0Fx)〉 is present in both terms and

equals zero. We have e. g.

〈∂xθSB(y)〉 = 〈∂xθS sin(
√
2πθS(y))〉〈sin(

√
2πθC − 2k0Fx)〉︸ ︷︷ ︸

=0

= 0. (7.129)

And we have the last term 〈B(x)B(y)〉:

〈B(x)B(y)〉 =
16

a2
〈sin(

√
2πθC − 2k0Fx) sin(

√
2πθS) sin(

√
2πθC − 2k0Fy) sin(

√
2πθS)〉

=
16

a2
〈sin(

√
2πθC − 2k0Fx) sin(

√
2πθC − 2k0Fy)〉

× 〈sin(
√
2πθS(x)) sin(

√
2πθS(y))〉

= 4 cos
(
2k0F(x− y)

)
AθCA

θ
S

and we see that

〈B(x)B(y)〉 = 〈A(x)A(y)〉 (7.130)
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holds. Therefore, we find in summary

S±(x) = Szz(x) + 〈B(x)B(0)〉− 4π2

K2Sβ
2
S

csc2
(
π

βS
(a+ x)

)
. (7.131)

We note that the first term is exactly the same as in the Sz-Sz cor-
relation functions of (7.120) and the remaining two terms strongly
resemble terms found in the charge charge correlation function, equa-
tion (7.116), but instead of using the KC and βC we here have KS and
βS.

7.4.4.4 Single-Particle Green’s Function

We calculate the single-particle Green’s function of helicity s

〈c†s(x, t)cs(0)〉 =
∑
α,α ′

e−ik
α,s
F x〈eiφα,se−iφα ′ ,s〉. (7.132)

Reminding ourselves of the relations

φLs =

√
π

2
(φC + sφS + θC + sθS)

and

φRs =

√
π

2
(φC + sφS − θC − sθS)

we find for the pure boson correlators

〈φLsφLs〉 = 〈φRsφRs〉
=
π

2
(〈φCφC〉+ 〈φSφS〉+ 〈θCθC〉+ 〈θSθS〉)

=
π

2

((
K2C +

1

K2C

)
〈φ̄Cφ̄C〉+

(
K2S +

1

K2S

)
〈φ̄Sφ̄S〉

)

(7.133)

and for the mixed ones

〈φLsφRs〉 = 〈φRsφLs〉
=
π

2
(〈φCφC〉+ 〈φSφS〉− 〈θCθC〉− 〈θSθS〉)

=
π

2

((
K2C −

1

K2C

)
〈φ̄Cφ̄C〉+

(
K2S −

1

K2S

)
〈φ̄Sφ̄S〉

)
.

(7.134)

With the help of the auxiliary quantities

ARR = e〈φRsφRs〉

= (FC(z))
− 1
4 (K

2
C+K

−2
C ) (FS(z))

− 1
4 (K

2
S+K

−2
S )
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and

ARL = e〈φRsφLs〉

= (FC(z))
− 1
4 (K

2
C−K

−2
C ) (FS(z))

− 1
4 (K

2
S−K

−2
S )

we find for the Green’s function

Gs(x, τ) = 2eisφ(λ)x cos(k0Fx)(ARR +ARL). (7.135)

For the Green’s function of physical spins we find This is a
consequence of the
k-independence of
(7.6).

Gσ(x, τ) =
1

2
(G+(k, τ) +G−(k, τ))

= 2 cos(φx) cos(k0Fx)(ARR +ARL).
(7.136)

Again we see that the effect of the Rashba spin-orbit interaction is a
shift of Gσ.

7.5 two-particle quantities from qmc

The QMC algorithm presented in Chapter 5 is flexible enough to allow
simulations of this problem in two different ways. A simulation is
possible either in the physical spin basis or in the basis of helical spins,
both have their advantages and disadvantages. We have performed
simulations in the physical spin basis of Hamiltonian (7.5). The first
thing we note is that we can optimize the method since we only need
imaginary-time simulations. This means that the phase-factor F in
(5.18) is F(Cn) = (−i)n and therefore cancels the imaginary units in
(5.14). Due to Time-Reversal Symmetry (TRS) the Green’s functions
measured in the physical spin space fulfill the relation

Gσ,σ ′(k) = σσ ′G−σ,−σ ′(−k), (7.137)

and from this it can be shown that in real space Gσ,σ ′(r) is always
a real quantity, therefore allowing the code to use real arithmetic in-
stead of complex arithmetic, although the original Hamiltonian (7.5)
contains an imaginary unit. But since we lack the SU(2) symmetry
we have to keep track of spin-diagonal and spin-off-diagonal Green’s
functions in M(Cn). For the free Green’s functions we find

G0,↑↑(k, τ) = G0,↓↓(k, τ) = GD(k, τ) =
1

2

∑
s=±

G0,s(k, τ)

and

G0,↑↓(k, τ) = −G0,↓↑(k, τ) = GO(k, τ) =
i

2

∑
s=±

sG0,s(k, τ)

with the Green’s functions from the helical base

G0,s(k, τ) = eE
s(k)τf(Es(k))
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Figure 16: Charge charge correlation functions for U = 3 and β = 10. Figure
(a) has λ = 0.5 and (b) has λ = 2.

where f(x) denotes the Fermi function. The measurements of the ob-
servables are directly in the physical basis. On the other hand, a simu-
lation in the helical base would give us the opportunity to exploit the
SU(2) symmetry of the problem in the form that we can use a decom-
position of M(Cn) similar to what is done in Sec. 6.5.1. The trade-off
we have to make is that the free Green’s functions are now complex
quantities and the observables have to be transformed. For the follow-
ing charge charge and spin spin correlation functions we have used a
QMC in the physical spin basis. The spectra are analytically continued
from the τ-resolved data to the real axis using the stochastic maxi-
mum entropy method with the modifications for bosonic quantities
mentioned in Sec. A.1.3.

7.5.1 Charge Charge Correlation Functions

A simple two-particle correlation function is the charge charge corre-
lation function

N(r) =
∑

σ,σ ′=↑↓
〈nrn0〉. (7.138)

N(r) is invariant under the transform to the helical base and it gets
no additional k-dependent structure due to the gauge transform. This
is consistent with the bosonization result (7.116) where the only de-
pendence on λ is in the changed Luttinger parameters KC/S and can
be visually checked in Fig. 16. We see that for a given U = 3 the
structure is identical, except that the bandwidth of the correlation
functions has increased and the relative weight of the low-energy fea-
tures has changed; a prediction that we already expected from the
bosonization result.
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7.5.2 Spin Spin Correlation Functions

The study of spin spin correlation functions opens the venue of an
analysis via a spin-operator-only model valid in the strong-coupling
limit of the Hubbard Hamiltonian. This is possible for large U since
in this limit the primary excitations will be spin excitations, hence a
spin model will constitute a suitable starting point. Since the map-
ping (7.43) holds for all values of U, it can be expected that a similar
relation holds for the Heisenberg model. Before we present the Monte
Carlo data we will line out the derivation of the Heisenberg model
that will aid us in understanding the spectra. Here we consider the
half-filled case of (7.1) with non-interacting part

H0 =
∑
r

~c†rT~cr+1 (7.139)

where

T = t1 + iλσy. (7.140)

7.5.2.1 Heisenberg Model

The transform to the helical base can be facilitated by (7.6), which
results in

H0 =
∑
r

γ†r(t1 + iλσz)γr+1 (7.141)

with γr denoting a spinor in the helical base. We can insert the twist
by using

t1 + iλσz =
√
t2 + λ2eiφσz . (7.142)

Therefore, we find that H0 has the form

H0 =
√
t2 + λ2

∑
r

η†rηr+1 (7.143)

with fermions given by

η†r = γ
†
re

−iφσzr, (7.144)

which has the isotropic Heisenberg model Hiso as strong-coupling
limit [102]:

Hiso =
4(t2 + λ2)

U

∑
r

~Sηr~S
η
r+1. (7.145)

This implies a representation of the spin-operator in terms of
fermions as

~Sηr = η†r~σηr. (7.146)
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Now we start to twist back (7.145) where we find

~Sηr = ~c†rS
†e−iφσzr~σeiφσzrS~cr

= R(
π

2
, ~ex)R(2φr, ~ez)~Scr .

(7.147)

Therefore, we find for the isotropic Heisenberg model

Hiso =
4(t2 + λ2)

U

∑
r

~ScrR(2φ, ~ez)~Scr+1. (7.148)

Evaluating the rotation matrix we find that the following extended
anisotropic Heisenberg model corresponds to the isotropic Heisen-
berg model after the transform:

H = Haniso +HDM,

Haniso =
4

U

(
J‖(S

x
rS
x
r+1 + S

y
r S
y
r+1) + J⊥S

z
rS
z
r+1

)
,

HDM = −
8t

U
λ
(
SxrS

y
r+1 − S

y
r S
x
r+1

)
(7.149)

with J‖ = t2−λ2 and J⊥ = t2+λ2. This corresponds to an anisotropic
Heisenberg model with an added Dzyaloshinskii-Moriya (DM) inter-
action that is pointing in the Sz direction. It is well-known [103] that
the DM interaction can be gauged away by a gauge transform on the
S± operators. Having seen that the Heisenberg Hamiltonian is equiv-
alent to a suitable spin model with spin-orbit interaction our next
step is to find the transformations that we have to perform on the ob-
servables. Then we can compare to actual Monte Carlo data as well
as to the predictions from bosonization. From [104] we know that the
static spin spin correlations in the η-basis are

〈Sη,α
r S

η,α
0 〉 ∝ (−1)r

ln
1
2 (r)

r
(7.150)

in the long wavelength limit. This expression is valid for each spin
component α since in the η-basis SU(2) spin symmetry is present.
From this result one can obtain the spin spin correlations by twisting
back into the ↑↓-basis:

~Sηr = R(
π

2
,~ex)R(2φr,~ez)~S↑↓r . (7.151)

With that we find for the correlation functions in the ↑↓ basis

〈S↑↓α (r)S↑↓α (0)〉 =
=
[
R(
π

2
,~ex)R(2φr,~ez)RT (

π

2
,~ex)

]
α,α
〈Sηα(r)Sηα(0)〉.

(7.152)
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Figure 17: 〈SzSz〉(k,ω) correlation functions at U = 3 and β = 10 from a
Monte Carlo simulation. (a) has λ = 0.5 which gives φ ≈ 0.15π
whereas (b) has λ = 2 with φ ≈ 0.35π.

Evaluating the matrix we find for the components:

〈S↑↓x (r)S↑↓x (0)〉 ∝ cos(2φr)(−1)r
ln
1
2 (r)

r
(7.153)

〈S↑↓y (r)S↑↓y (0)〉 ∝(−1)r ln
1
2 (r)

r
(7.154)

〈S↑↓z (r)S↑↓z (0)〉 ∝ cos(2φr)(−1)r
ln
1
2 (r)

r
. (7.155)

Equation (7.155) is consistent with the Monte Carlo data of Fig. 17.
While U = 3 is certainly not yet bigger than the bandwidth, it is
sufficient to gap out the charge degrees of freedom and therefore
at energy scales below the charge gap the Heisenberg Hamiltonian
can be used as a guide for understanding the spectra of Fig. 17 and
Fig. 18. We note that the charge gap in the 1D Hubbard model [105]
is asymptotically given by ∆C ∝ U for U � t and is exponentially
small if

∆C ∝
8t

π

√
U

t
exp

(
−
2πt

U

)
.

In Fig. 17 we can clearly see the two low energy peaks located sym-
metrically around k = π while at the same time no peak is located at
k = π. The same prediction is made in the bosonization analysis in
equation (7.120).
Using equations (7.153) and (7.154) we find

〈S↑↓+ (r)S↑↓− (0)〉+ 〈S↑↓− (r)S↑↓+ (0)〉 ∝ (−1)r
ln
1
2 (r)

r
(cos(2φr) + 1) .

(7.156)

The predicted behaviour is consistent with the Monte Carlo spectra
of Fig. 18. We have one contribution pinned to k = π and other con-
tributions located symmetrically around k = π identical to what is
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Figure 18: 〈S+S−〉(k,ω) correlation functions at U = 3 and β = 10 from a
Monte Carlo simulation. (a) has λ = 0.5, which gives φ ≈ 0.15π
whereas (b) has λ = 2 with φ ≈ 0.35π. Note the additional low-
energy peak at k = π.

found in 〈S↑↓z (r)S↑↓z (0)〉. This is consistent with the bosonization re-
sult of (7.131) which explains this as a decomposition into a structure
similar to the 〈SzSz〉 correlation function and something that is identi-
cal to the k structure found in the charge charge correlation function.
With the knowledge of the transform for the spin-operators, (7.151),
it is possible to analytically calculate the transform that is necessary
to reinterpret the results for the full dynamical spin structure factors
computed in [106] for the isotropic Heisenberg model in situations
with Rashba spin-orbit coupling.

7.6 rotating the spin quantization axis

The possibility of performing spin-resolved ARPES experiments en-
ables spin-resolved measurements of the single-particle spectral func-
tion. Since the measurement device now defines a preferred spin
quantization axis, we have to calculate the projections of the electrons’
original spin quantization axis onto this new axis. Assuming this axis
is given by a unit vector ~D which is

~D = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))T (7.157)

in spherical coordinates with θ ∈ [0,π] and ϕ ∈ [−π,π], we can rotate
the fermionic operators ~c ~ez , which have ~ez as quantization axis, to
the new base using

~c~D = ei
θ
2 ~σ·~n~c~ez . (7.158)

Here ~σ denotes the Pauli-vector, the rotation axis is

~n = (− tan(ϕ), 1, 0)T ,

and ~c~D denotes fermionic operators with the new quantization axis ~D.
For Green’s functions Gσσ

′
~ez

which have spins measured with respect
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Figure 19: These figures show the different spectra that are obtained using a
device with a quantization axis ~D defined by the maroon-colored
arrow in the right-most column. The left-most column shows
spectra which have spin up, and the spectra in the middle column
have spin down with respect to the quantization axis ~D. The num-
bers in the diagram of the right-most column denote the x and
y components of the used orientation ~D. The spectra are taken
from data at U = 6.43,β = 9.32,µ = −2.45 and λ = 0.39 which
was in turn derived from a simulation of the Hubbard model at
U = 6,β = 10 and µ = −2.29.

to the quantization axis ~ez, and therefore for the spectra A(ω), this
implies the following relation

Gσσ~D (k) = D(k) − σRe
(

sin(θ)e−iϕG↑↓~ez (k)
)

(7.159)

with D(k) = sin2(θ2 )G
↑↑
~ez
(k) + cos2(θ2 )G

↓↓
~ez
(k). The spectra shown in

Fig. 14 correspond to ~D = ~ez. In Fig. 19a and Fig. 19c we see that
along ~D = ±~ey a clear separation of the helicities should be observ-
able, whereas in Fig. 19b we see that for a general ~D a mixture of
the two helicities is observed. It is worth noting that Fig. 19a shows
that the separation of the helicities is crystal momentum independent
and a signature of the one-dimensional nature of the system. There
are a couple of properties to note. First, we have the independence
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on the variable k, which should be experimentally observable and
is due to the 1D nature of the system. Second, we have due to TRS

the symmetry between the two different helicity branches. And last,
from Sec. 7.8, we can guess that the cosine-like structure points at the
effective short-range nature of the hopping.

7.7 generalized interactions

Having established the mapping Eq. 7.43 it is natural to ask wether
there exist other interactions where this mapping is possible.

7.7.1 Long-Range Interaction

First, we have Hubbard models with a long-range Coulomb interac-
tion.

HLR = H0(λ) +
∑
r

V(r)
∑
i

ni+rni (7.160)

where ni = ni,↑ + ni,↓. Again, the Rashba spin-orbit interaction can
be rescaled into the coupling parameters,

HLR(λ) =
1

|cm|

(
H0(0) +

∑
r

Ṽ(r)
∑
i

ni+rni

)
(7.161)

with Ṽ(r) = V(r)|cm| and thereby indicating how studies on the long-
range Coulomb interation can be reused in the Rashba Hubbard set-
ting.

7.7.2 Coupling to the Spin

A further extension to so-called anisotropic Hubbard models is possi-
ble by adding spin-terms to the Hubbard Hamiltonian. In particular,
we consider the additional term

Hyy =
∑
r

S
y
r+1S

y
r (7.162)

with Syr = −i
2

(
c
†
r,↑cr,↓ − c

†
r,↓cr,↑

)
. Performing the transform to heli-

cal electrons we find that Syr given in physical spins transforms to
−Szr = 1

2(nr,− − nr,+), now given in terms of helical spins, which is
manifestly invariant under the gauge-transform.
This invariance of Sz can be used to additionally include an in-plane
magnetic field with coupling strength b in the y-direction:

Hmag = b
∑
r

Syr , (7.163)
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which transforms to

Hmag = −b
∑
r

Szr (7.164)

and is again invariant under the gauge-transform.

7.7.3 Phonons

Our results can be further generalized to electron-phonon models
with Holstein type electron-phonon coupling [39]. Since the part of
the Hamiltonian that couples electrons and phonons is given by

He-p = g
∑
i

Qi(ni − 1) (7.165)

where ni = ni,↑ + ni,↓, we see that in this case the transformation
required to eliminate the Rashba term corresponds to a rescaling of
the coupling strength gwith the bandwidth. Further generalization to
long-range electron-phonon interaction is possible. If the interaction
is

He-p =
∑
i,j

fi,jQj
∑
σ

ασ(ni,σ −
1

2
), (7.166)

and we assume a spin-independent α, we find

He-p = α
∑
i,j

fi,jQj(ni − 1), (7.167)

which is again invariant under the transform to helical spins and the
gauge transform.

7.7.4 Disorder

Potential disorder

Hdis =
∑
i

µini (7.168)

couples only to the local particle density ni, which is equally invari-
ant under the transformation to the helical basis and is not modified
by the gauge transform. Reference [78] discusses the case of how to
link different realizations of bond disorder.
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7.8 various forms of long-range hopping

When talking with experimental groups, the question occured how
the mapping generalizes to long-range hopping. They speculated thatRemember that the

symmetries hold
for long-range

Coulomb
interaction.

coupling to the substrate or other, neighbouring chains might lead ef-
fectively to non-negligible long-range hopping. The one-dimensional
case without spin-orbit coupling but with long-range Coulomb inter-
action was already discussed in Reference [34]. We will consider in
this section non-interacting Hamiltonians of the form

H0 =

R∑
d=1

Hd(td, λd) (7.169)

with hopping distances d up to R. R may be smaller than the lattice
length. The contributions to the Hamiltonian for each distance d are
given in the helical base by

Hd(td, λd) =
√
t2d + λ

2
d

∑
k,s

cos(kd+ sφd)nk,s (7.170)

with φd = arctan(λdtd ). Until now we considered the case that the
sum terminates at R = 1 and we will study now the arising non-
interacting spectra in the limit R → ∞. This section will consider
three realisations. First, we will consider the case of exponentially
decaying hopping. Next, we will study hopping matrix elements that
decay as a power law. And we will finish with a particular point of the
hopping matrix elements where we can now, again, employ a gauge
transform to get rid of the Rashba interaction.

7.8.1 Exponentially Decaying Hopping

Beginning with the case of exponentially decaying hoppings with

td = t0e
−α(d−1) and λd = λ0e

−α(d−1) (7.171)

and the same exponents of decay for the hopping and the Rashba
interaction strength we find that evaluating the resulting series in
(7.169) in the limit R→∞ results in the spectrum

Es(k) =
√
t2 + λ2Re

(
e−iφ

s

eik − e−α

)
(7.172)

with φs = s arctan(λt ). The short range limit can be recovered for
α→∞, a prediction that is confirmed by Fig. 20. The bands get more
cosine-like whereas for small α the bands are more like lorentzians.
Hence, only in this limit where the bands are cosines, the spin-orbit
split bands can be identified with the λ = 0 case.
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Figure 20: The spectrum
∑
s E
s(k) given by (7.172). We show different val-

ues of the inverse decay length α in each plot and increase the
spin-orbit coupling strength λ in every figure. The colors are the
same in each figure.

7.8.2 Power Law Like Hopping

Here we consider the case of power law like decay described by

td = td−α and λd = λd−α (7.173)

with the same α > 1 for the hopping and the Rashba interaction
strength. Evaluating the resulting series of (7.169) in the limit R→∞
we find that H0 has the spectrum See the technical

report [107] for
details on the
efficient
computation of
Liα(z).

Es(k) =
√
t2 + λ2Re

(
eiφ

s

Liα(e−ik)
)

(7.174)

with φs = s arctan(λt ). Liα(z) denotes the Polylogarithm. Fig. 21a
shows that the spectra with λ = 0 have a pronounced cusp like feature
at k = 0. Since Liα(e0) = ζ(α), we see that this cusp is finite for all
α > 1 because the simple pole of Riemann’s ζ-function is at s =

1. This cusp-like feature is not present anymore in the Rashba spin-
split spectra giving us a simple argument that the spectra cannot be
recovered from the spectra with λ = 0 anymore. Increasing α the
bands get more cosine-like since

lim
α→∞ Liα(eik) = eik. (7.175)
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Figure 21: The spectrum
∑
s E
s(k) given by (7.174). We show different val-

ues of the exponent of decay α in every plot and increase the
spin-orbit coupling strength λ in every figure. The colors denote
the same value of α in every figure.

This is also observable in the spectra, which are visibly more cosine-
like for strong λ.

7.8.3 Locking in λd

We begin by reminding ourselves of the constituents of H0,

Hd(td, λd) =
√
t2d + λ

2
d

∑
k,s

cos(kd+ sφd)nk,s,

with φd = arctan(λdtd ). We can only employ the U(1) gauge symmetry
globally if we require

φd = dφ1. (7.176)

This has for consequence that argument of the cosine

kd+ sφd = d(k+ sφ1) (7.177)

and the shift is identical for all distances d. This means that we can
employ the gauge invariance in the same way as before and link var-
ious values of λd. If we require that

φ1 =
2jπ

L
, (7.178)
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Figure 22: The spectra from eq. (7.180) with (7.181) for various choices of
td and with a maximum distance of d = 10. For clarity only one
helicity branch is plotted in each figure, but for different values
of the initial phaseshift φ.

a value commensurate with the lattice, we can gauge away all λd’s at
once and have for each distance d the Hamiltonian of free electrons.
Equation (7.178) enforces a particular form for the λd’s, namely

λd = td tan
(
2jπd

L

)
. (7.179)

With that we find for the hopping Hamiltonian∑
d

Hd(td, λd) =
∑
d

Hd(t̃d, 0) (7.180)

with

t̃d =

∣∣∣∣∣∣
td

cos
(
2πjd
L

)

∣∣∣∣∣∣
. (7.181)

In contrast to the two examples before the full set of parameters td is
still free in this setting which enables us to consider various functions
behaviors for td in Fig. 22. Fig. 22a is particular interesting since the
spectra for every value of φ exhibit multiple Fermi points. This hints
at the fact that these are models which are one-dimensional represen-
tations of models from higher dimensions. Since via Eq. 7.179 only
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the value of λ in relation to the hopping t is fixed, it should be pos-
sible to generate graphs of arbitrary connectivity. This would mean
that also in higher dimensions there should be specific lattices that
allow to gauge away the Rashba spin-orbit coupling.

7.9 summary

We have reviewed the mapping between the Hubbard and the RashbaRediscovered feels
more like it. . . Hubbard chain already published by Kaplan [78]. Discussing with ex-

perimental groups it seems plausible that the validity of the mapping
for a material can in principle be tested by means of spin and an-
gle resolved photoemission spectroscopy. In one spatial dimension
this implies that the transformation to the helicity basis is a global
SU(2) transformation (i.e., site or momentum independent). Sec. 7.7
has shown that for a variety of global SU(2) invariant interactions,
such as long-range Coulomb interactions, coupling to the lattice, and
potential disorder, the helicity is a good quantum number. The map-
ping onto the SU(2) symmetric Hubbard model requires a helicity de-
pendent twist, which places constraints on the form of the hopping
matrix elements, and requires commensurability between the lattice
length and the value of the Rashba spin-orbit coupling. For spin re-
solved ARPES experiments and as explicitly shown for the Hubbard
model, this has for consequence that spin resolved spectra can be de-
composed into two Hubbard type spinon-holon spectra, generically
with different weights due to the device’s spin quantization axis. Both
spectra map exactly onto each other when shifting the momentum in
opposite directions. Commensurability issues do not occur for open
boundary conditions The experimental work [108] reports a value of
the Luttinger liquid parameter KC ≈ 0.26. This particular low value
points to extended Hubbard models with long-range interactions [34]
in addition to an already very large value of U. Since our mapping is
also valid in the presence of long-range interactions, it proves that it is
justified to analyze the local density of states, Eq. (7.49), in the realm
of Luttinger liquid theory for the plain vanilla Hubbard model [108],
because, as shown in Sec. 7.3.4, the local density of states is a quan-
tity that is not sensitive to the additional fine structure present in the
k-resolved spectra at a finite λ, but is expected to be present in gold
chains [71, 72, 109]. At the two-particle level the result allows to un-
derstand the spin dynamics of the Mott insulating state of the Rashba-
Hubbard chain based on the results of the plain isotropic Heisenberg
model [106]. The mapping equally impacts numerical simulations. It
enables one to reinterpret simulations of the Hubbard model in the
Rashba-Hubbard setting. In this section we have shown this explicitly
for the spin-resolved single-particle spectral function as well as for
spin dynamics at half-band filling. It is also interesting to point out
that CT-INT simulations of the Rashba-Hubbard model are plagued by
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the negative sign problem. Hence, the mapping is a particular exam-
ple where we can show how to carry out a basis transformation that
eliminates the sign problem for this model.
Generalizations of this mapping to higher dimensions with larger co-
ordination number require fine tuning by choosing parameters where
the spin-orbit interaction remains effectively one-dimensional [84, 82],
as already shown by Kaplan [78]. The presence of more than two
Fermi points in the non-interacting spectra of Fig. 22a hints at the
possibility of higher-dimensional realizations that also exhibit this
mapping. In light of the very special and robust features encoun-
tered in one-dimensional chains with Rashba spin-orbit interactions,
it is certainly very interesting to revisit the dimensional crossover
[110, 111, 112, 113]. In the one-dimensional limit the mapping im-
plies an SU(2) symmetry [82] which will generically break down in
higher dimensions or when chains are coupled to form ladder sys-
tems [114, 115]. It is further expected that in this crossover regime
the interplay between low-dimensionality and spin-orbit coupling
may lead to realizations of the Fulde-Ferrell-Larkin-Ovchinnikov type
[91, 116, 117] superfluidity.





8 MAGNET IC IMPUR IT I E S IN
TOPOLOG ICAL INSULATORS

A child[’s]. . . first geometrical discoveries are topological. . .
If you ask him to copy a square or a triangle,

he draws a closed circle.

— Jean Piaget, How children form mathematical concepts [118]

8.1 introduction

The results of this
chapter have been
published in the
accompanying
publication [4].

Numerical studies of variants of the Kane-Mele model [119] have re-
cently been pursued with increasing interest [120, 121, 122, 123, 124]
since it can be used as a theoretical framework to study correlation
effects in a two-dimensional (2D) Topological Insulator (TI) [125]. A
characteristic feature of this material class is the formation of metal-
lic edge states at the boundary of the system, which are robust to
external perturbations provided that TRS is not broken [126]. The
emergence of these edge-states is described by the so-called bulk-
boundary correspondence. At the boundary between a topological
material and the vacuum a topological invariant that characterizes This is not

peculiar to the
vacuum, but any
material with
another topological
invariant.

the system has to change. This is in direct correspondence to physi-
cal properties of the boundary, hence the material forms edge-states.
They form a helical liquid such that the electrons’ spin is tied to
their direction of motion [127]. A particularly interesting perturba-
tion of the helical edge state is the introduction of magnetic impuri-
ties interacting with the edge — a problem usually modeled by an
S = 1

2 local spin that is coupled to the helical liquid. Due to the
one-dimensional nature of the edge this problem has been studied
extensively with bosonization techniques with suitable Luttinger liq-
uid parameters accounting for correlation effects in the helical edge
state [128, 129, 130, 131]. The Kondo effect in three dimensional TIs
has been studied in Refs. [132, 133, 134, 135].
Here, we will consider the 2D case in the weak coupling regime with
respect to electronic correlations on the edge. Then, the formation of
the Kondo singlet will effectively remove sites, thereby redefining the
topology of the slab and the flow of the edge state. In this chapter we
will study the temperature dependence of this effect by computing,
among other quantities, the site dependent density of states. To do
so, we will set out to model the magnetic impurity using the single
impurity Anderson model [136], which accounts for a single local-
ized energy level that hybridizes with the states of the TI and has an
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on-site Coulomb repulsion, while sites in the bulk are assumed to
be noninteracting. For non-vanishing Hubbard interaction this model
enables us to trace the progression from the high-temperature regime
over the development of the local moment towards the formation of
the Kondo singlet. The simulations are carried out by using the nu-
merically exact CT-INT algorithm introduced in Chapter 5, which is
particularly suitable for the study of impurity problems since nonin-
teracting bath sites (the TI) do not count towards the computational
complexity of the algorithm and can be integrated out. We show the
emergence of the Kondo effect on the impurity using single-particle
spectral functions in Fig. 29 and by a data collapse of the local spin
susceptibility χzz in Fig. 31. To access the single-particle properties of
the bath we calculate the self-energy on the impurity and then calcu-
late the bath Green’s functions using Dyson’s equation. This allows
us to exhibit the deflection of the edge state at the impurity by look-
ing at the spectral signatures arising in the bulk spectral functions
(see Fig. 33) due to the emerging Kondo effect on the impurity. To-
wards the end we progress from the one-particle spectral functions to
a two-particle quantity, the spatially-resolved, equal-time, spin spin
correlation function. With the help of this quantity we can inquire the
spatial extent of the correlation between the impurity and the bulk
electrons, which gives us the most common measure to define and
actually measure the so-called Kondo cloud in the bulk and along
the edge. Restricting the measurement along the metallic edge we
find this extent in Fig. 36 as the cross-over from an r−1 decay to an
r−2 behavior.

8.2 model

The Kane-Mele model was first proposed as a candidate for a possible
quantum spin-Hall effect in graphene. Although it turned out that in
graphene the spin-orbit coupling is too small to observe the QSH
state, the model can still be used as an effective Hamiltonian for this
topological state of matter. The effect of electron electron interactions
in graphene was studied in Ref. [137, 138, 139]. Now, the Hamiltonian
of the Kane-Mele model is given by

HKM = Ht +Hλ (8.1)

with

Ht = −t
∑
~iσ

a
†
~iσ

(b~iσ
+ b~i+~a1−~a2,σ

+ b~i−~a2,σ
) + h.c.,

Hλ = λ
∑
~iσ

σ
[
ia
†
~iσ

(
a~i+~a1,σ

+ a~i−~a2,σ
+ a~i+~a2−~a1,σ

)

−ib†~iσ

(
b~i+~a1,σ

+ b~i−~a2,σ
+ b~i+~a2−~a1,σ

)]
+ h.c.
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Figure 23: The ribbon is periodic along the r-direction and at site r = 0,
n = 0, the orange box denotes the impurity orbital which couples
with a matrix element V . Sublattice A is denoted by open circles
and sublattice B by filled circles. a1 and a2 denote the primitive
vectors of the honeycomb lattice. The colored arrows denote sites
that are connected via Hλ.

A slight complication that arises in the study of this model is the fact
that it employs the geometry of a honeycomb lattice. A figure of it
is depicted in Fig. 23 where in addition to the sublattices, the prim-
itive vectors of the unit cell, a1 = (

√
3, 0) and a2 = 1

2(
√
3, 3), and

the coupling directions of Hλ are given a~iσ and b~iσ denote fermionic
operators acting on the respective sublattice, and, to open the possi-
bility for edge states, we consider this model on a slab geometry. The
boundary conditions are periodic in r-direction – the corresponding
number of sites is denoted by Nx – and open in n-direction with a
length of Ny sites. λ is the strength of the spin-orbit interaction and
the hopping t is set to t = 1 for everything that follows. This model
is related to the spinless Haldane model that shows a quantum Hall
effect but breaks TRS [140]. The Kane-Mele model can be understood
as two copies of the Haldane model while preserving time-reversal
symmetry and exhibiting a quantum spin-Hall effect. Into this bath
system we embed an impurity at an edge. The impurity’s Hamilto-
nian Himp is given by

Himp = HD +HU (8.2)

with

HD = εd
∑
σ

d†σdσ + V
∑
σ

(a†~0,σ
dσ + d

†
σa~0,σ

)

HU = U

(
nd↑ −

1

2

)(
nd↓ −

1

2

)
.

Here, εd denotes the energy of the dot, U is as usual the strength of
the Hubbard interaction that in this chapter is only present on the
impurity, and V is the strength of the hybridization between the first
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Figure 24: Spectrum of the Kane-Mele model. Here we have used Nx = 512,
Ny = 80, and λ = 0.1, which constitute our “canonical values” in
the following. Visible are the different bands due to the "orbitals"
in n-direction, as well as the famous edge states crossing at the
Fermi energy.

site of the honeycomb lattice and the impurity. dσ denotes fermionic
operators acting on the impurity and ndσ is their particle number. We
have chosen a symmetric representation of the Hubbard interaction
that sets the chemical potential to zero for the half-filled case. We
note that the impurity Hamiltonian obeys time-reversal symmetry
together with the bath.

8.3 properties of the bath

As already mentioned, the bath model HKM exhibits the so-called
edge states, which are localized at the edges. Since we attach the im-
purity to a site belonging to an edge, we revisit some properties of
the bath. We refer to anything outside of the impurity as bath and ev-
erything in the bath that is not dominated by the edge state as bulk.
The edge states correspond to the states in the energy spectrum of
Fig. 24 that cross at the Fermi energy, ε(kx) = 0, and enable gapless
electronic excitations at the edge. These edge states constitute a he-
lical liquid where the spin of an electron is coupled to the direction
of propagation, hence an interaction flipping the spin reverses its mo-
mentum. Since we will argue quite a bit with the help of the spectral
functions, we write down the general structure of An(r,ω) here. It is

An(r,ω) = A0n(ω) +Bn(r,ω,V) +Cn(r,ω,Σ(ω)) (8.3)

with an impurity independent background A0n(ω), a term Bn(r,ω,V)
that depends on the hybridization V between lattice and impurity,
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Figure 25: This plot shows a part of the real-space lattice at λ = 0.1 where to
every lattice point we have attached the spectral function A0n(ω).
For a given value of r, the black arrows denote the path that
is taken through the lattice if n is increased. Since the impu-
rity is not yet added, we have translation invariance along the
r-direction. The bulge of the edge state in the n = 0 spectral
functions is clearly visible. The color coding here and in subse-
quent plots was chosen for a visible separation of different spec-
tra where along the n-direction the spectra change their hue, and
along the r-direction the color saturation differs.

and the contribution Cn(r,ω,Σ(ω)) due to the self-energy Σ(ω) of
the impurity. In Fig. 25 we show a site-resolved view onto the spec-
tral functions A0n(ω) of the bath. The bulge that is visible in the outer-
most (n = 0) spectral functions is the edge state, which has its spectral
weight centered around ω = 0. Since we consider the system without
an impurity, we have translation invariance along the r-direction. For
comparison we show in Fig. 26 a cut along r = 0 of the same spec-
tral functions. Further into the bulk the gap of the insulator appears.
Also, we see the odd-even pattern close to the edge. The fine wig-
gles in the spectral functions, as e.g. in n = 0 or n = 1, are artifacts
of the finite system size. The edge state at n = 0, which almost im-
mediately decays farther in the bulk, is clearly visible. Having used
a finite η = 4∆ω ≈ 0.03, where ∆ω is the resolution of the energy
ω, we have some broadening which prevents the gap of the spectral
function from vanishing in the bulk. The n = 1 spectral function does
show a gap, whereas the n = 2 function only shows some remains of
the exponentially decaying edge state.



112 magnetic impurities in topological insulators

ω

A
0
(ω

)

0
0

1

1 2 3 4

n = 0
n = 1
n = 2
n = 4
n = 6
n = 10
n = 11

0.5

1.5

−4 −1−2−3

Figure 26: Spectral functions of Fig. 25 for comparison in a more traditional
2D plot. Both plots are from a system withNx = 512 andNy = 80

sites at λ = 0.1.

8.4 an uncorrelated impurity

Adding to the bath system the uncorrelated impurity given by HD
at site r = 0 and n = 0 the spectral properties of the system change
around the impurity since now the B-term in Eq. 8.3 contributes to
the spectral functions due to the hybridization V . We have studied
the symmetric case εd = 0. From Fig. 27a and Fig. 27b it is visi-
ble that right at the impurity the spectral weight of the edge state
is drastically reduced. Looking ahead to Fig. 34 we can compare the
scale of this perturbation and we see that, especially in contrast to
the effect due to correlations in Fig. 34d, this potential locally poses a
quite strong perturbation to An(r,ω). Since time-reversal symmetry
is present, single-particle backward scattering is prohibited as this
would amount to flipping the orientation of the spin. As a conse-
quence, the edge state has to circumvent the potential impurity by
deflecting into the bulk. Thus, the missing spectral weight reappears
at sites further into the bulk. Fig. 27c and Fig. 27d show the change in
the spectral function, Bn(r,ω,V), due to the hybridization. The edge
state is deformed around the impurity since it acts as a pure potential
scatterer for the edge state. This is consistent with the spectral func-
tion of the impurity, which is just a gaussian around ω = 0 similar
to the “correlated” spectral function at β = 0.1 in Fig. 29a. Although
the edge state is protected by symmetry against potential scattering,
the effect of the impurity is that it acts as a trap for electrons from the
bulk, which can then in turn interact with the electrons of the edge
state [128]. An interpretation of the resulting new path of the edge
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Figure 27: (a) shows the complete spectral functions now with a non-
interacting impurity located at r = 0 and n = 0. The original
edge state is deformed into the bulk around the impurity. The
missing weight in the n = 0 spectral functions shows up in the
n = 1, 2 spectral functions. (b) is a cut of An(r,ω) along r = 0 that
shows the rearrangement of spectral weight from the edge into
the bulk. (c) shows Bn(r,ω,V), the effect on the spectral func-
tions attributable to the hybridization V of the impurity with the
edge state. We see large negative contributions to the edge state
at the impurity and positive contributions farther into the bulk.
Bn(r = 0,ω,V) is shown in (d). Obvious is the strong reduction
at the site below the impurity (r = 0,n = 0), which is shifted to
the sites around the impurity.
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channel is that the site to which the impurity is connected is effec-
tively removed from the lattice. In that sense the deformation of the
edge state can be understood as a rerouting along the changed edge
of the system. A similar deflection of the edge state around centers of
potential scattering has also been reported in 3D TI’s [141].

8.5 a correlated impurity

Now we add the Hubbard interactionHU to the impurity, which leads
us to consider the Single Impurity Anderson model (SIAM)

H = Himp +HKM (8.4)

with the bath given by the Kane-Mele model HKM. The SIAM is an
electronic model that exhibits various temperature regimes. Starting
from a high-temperature regime where all states of the impurity are
with equal probability occupied we first have the so-called local mo-
ment regime where a free spin-12 is formed and for very low temper-
atures we have the Kondo regime where the bath electrons form a
singlet state with the impurity. It is in this regime that the famous
Kondo resonance emerges, and we will show spectral functions in
Fig. 29 that confirm this also for an Anderson impurity on a TI. The
relation between the Kondo model and the SIAM that allows us to
find similar features in both models can be analytically established
by the Schrieffer-Wolf transformation [142]. The formation of this sin-
glet state with the bath electrons in the Kondo regime is something
that should have an effect that is visible outside of the impurity. This
spatial region of entanglement between bath and impurity is the so-
called Kondo screening cloud. The extent of this screening cloud isThere are various

theoretical
proposals on how

to do that, see
[143, 144, 145].

expected to be of the order of mesoscopic distances, but the mesaure-
ment of the required correlation functions has proven to be challeng-
ing. Since we are on the edge of a TI, we can study the interaction of
the impurity with the edge state and see its reaction to a magnetic
impurity. To that end we will show spectral functions in the bath
surrounding the impurity and we will observe the deflection. The
strictest definition of the Kondo cloud is given in terms of correlation
functions between the impurity spin and the bath electrons’ spin, and
we study this correlation towards the end in Sec. 8.6.2.
To make the Hamiltonian (8.4) amenable for the CT-INT method we
begin by integrating out the bath electrons and obtain the action

S = −
∑
σ

β∫
0

dτ

β∫
0

dτ ′d†σ(τ)
(
G0d,d

)−1
(τ− τ ′)dσ(τ

′)

+U

β∫
0

dτ

(
nd↑ (τ) −

1

2

)(
nd↓ (τ) −

1

2

)
.

(8.5)
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This action is perfectly suitable for the CT-INT method outlined in
Chapter 5 since it allows for the simulations of models that are spec-
ified using an effective action. In the same manner as in Sec. 7.5 we
are performing a simulation only on the imaginary-time axis. Just as
advantageous is the fact that the complexity of the QMC algorithm
depends only on the number of correlated sites present in the prob-
lem. In our present problem we only have the single impurity that
is subject to the Hubbard interaction, and therefore the vertices of
the algorithm simplify to Vj = [τj, sj]. With the help of the resolvent
formalism we find for the free Green’s function of the dot

G0d,d(iωn) =
1

iωn − εd − V2
∑
k,n

|U(k,n)|2
iωn−λk,m

(8.6)

where U(k,n) is the first component of the eigenvector vk,n and λk,n See [146, 147] for
an introduction to
the family of MR3

algorithms for the
symmetric
eigenvalue
problem.

the corresponding eigenvalue from the diagonalization of HKM. The
computational effort is reduced if one uses the property that our
model is time-reversal invariant, which leads to a spin-diagonal im-
purity Green’s function Gd,d. Since this property can be shown on
quite general grounds, it has been deferred to Sec. 8.8 at the end of
this chapter. We will begin with various impurity quantities to de-
lineate the regimes. The double occupancy, 〈nd↑nd↓ 〉, in Fig. 28a will
allow us to track the formation of the local moment and its screen-
ing. The same information is essentially contained in the local spin
susceptibility

χzz =

β∫
0

dτ〈Sz(τ)Sz〉

measured on the impurity and plotted in Fig. 28b. Due to TRS it is
sufficient to consider only χzz since the other components are degen-
erate. Fig. 29 shows spectral functions

A(ω) = −
1

π
Im (Gd,d(ω)) (8.7)

of the impurity. The different visible line-shapes occur at different
temperatures and define the three temperature regimes of the Ander-
son model. We have a high-temperature regime with a gaussian line-
shape at high temperatures. Then, we have an intermediate regime
where two Hubbard-band-like features are visible at ±U2 . At the low-
est temperatures, we observe the emergence of the Kondo resonance
at ω = 0. To study the deflection of the edge state as well as the for-
mation of the Kondo resonance, we also compute the site-dependent
single-particle spectral function

An(r,ω) = −
1

π
Im (Gn(r,ω+ iη)) (8.8)
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Figure 28: Overview of (a), the double occupancy of the impurity 〈nd↑nd↓ 〉,
and (b), its susceptibility χzz, as a function of temperature T = 1

β .
The plots of the double occupancy highlight the different regimes.
All functions start out at the uncorrelated value 〈n↑n↓〉 = 0.25
and then fall towards some dip at intermediate temperatures.
This dip roughly coincides with the local moment regime. After
that, the double occupancy increases slightly up to a saturation,
which is a signature of the Kondo regime.
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Figure 29: The spectral functions of the dot for (a) U = 2 and (b) U = 4, both
at V = 0.5. At β = 0.1, we see the high-temperature regime with
weight centered around zero. Lowering the temperature we cross
over into the local moment regime with two clearly separated
Hubbard bands at ω ≈ ±U2 . Lowering the temperature further
we see the emergence of the Kondo resonance at ω = 0.
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for a small η from the bath Green’s function Gn(r, z) at site (r,n).
Instead of performing the analytical continuation for every set of
indices (r,n), we adopt an idea that has been successfully used in
the context of the dynamical cluster approximation (DCA) [148]: weThis part can also

be found in [31]. perform an analytical continuation of the self-energy as outlined in
Sec. A.1.4, which is beneficial since the self-energy matrix of the sys-
tem contains only a single non-vanishing entry. Using Dyson’s equa-
tion for the system of the impurity and the bath,

(
G~r,~r(z) G~r,d(z)

Gd,~r(z) Gd,d(z)

)
=

(
G0~r,~r(z) G0~r,d(z)

G0d,~r(z) G0d,d(z)

)

+

(
G0~r,~r(z) G0~r,d(z)

G0d,~r(z) G0d,d(z)

)(
0 0

0 Σ(z)

)(
G~r,~r(z) G~r,d(z)

Gd,~r(z) Gd,d(z)

)
,

(8.9)

we gain access to all bath’s Green’s functions from the knowledge of
the self-energy Σ and the non-interacting Green’s function. To gain
a Monte Carlo estimator for the modified self-energy Σ ′, which we
defined in Sec. A.1.4, we need a couple of model specific constants.
Evaluating the required moments of the spectral function with theThese constants

stem from the
asymptotic

expansion of
G(iωm).

Hamiltonian H we obtain the constants

a2 − a
0
2 = U 〈d†−σd−σ 〉−

U

2
(8.10)

and
(
a02
)2

− a22 + a1(a3 − a
0
3)

a1
=

UV
(
〈a†~0,−σ

d−σ 〉−〈d†−σa~0,−σ
〉
)
+U2 〈d†−σd−σ 〉−U2 〈d†−σd−σ 〉2 .

(8.11)

At half filling, 〈d†σdσ 〉 = 1
2 , so the constant term (8.10) of the self-

energy vanishes. Additionally, we get access to the term Cn(r,ω,Σ(ω))

of Eq. 8.3. Fig. 30 shows the self-energy – which is non-vanishing only
on the impurity site – in different temperature regimes. Since Σ(z) is
a holomorphic function its real and imaginary part are linked via the
Kramers-Kronig relations, therefore we find the peak-structure-like
features of the imaginary part as zero-crossings in the real part. The
apparent symmetry of the self-energies is due to the kernel we have
used for the analytical continuation procedure. As input data we have
used the imaginary part of the Green’s function G(iωn) measured at
Matsubara frequencies

ωn =
π(2n+ 1)

β
. (8.12)

Since we have for the quantity Σ ′ that

Σ ′(iωn) =

∞∫
−∞

dω
Im (Σ ′(ω))

iωn −ω
, (8.13)
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Figure 30: Real and imaginary part of the self-energy Σ(ω) in different tem-
perature regimes for U = 2. Both are linked via the Kramer-
Kronig relations since Σ(z) is a holomorphic function. Im(Σ(ω))

shows a simple lorentzian shape for β = 2 in the local moment
regime. Crossing over to the Kondo regime we see the develop-
ment of a two peak structure.
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U 1 2 3 4

βK 0.4 2.08 10 50

Table 1: Numerical values for the inverse Kondo temperature βK.

its imaginary part is

Im
(
Σ ′(iωn)

)
= −ωn

∞∫
−∞

dω
Im (Σ ′(ω))

ω2n +ω2
, (8.14)

which is symmetric in ω. Note that Σ and Σ ′ are linked via a simple
rescaling. The temperature dependence of the self-energy documents
the crossover from a single peak to a three-peak structure in the impu-
rity spectral function shown in Fig. 29. At temperature scales above
the Hubbard U, correlation effects are not important, and the self-
energy essentially vanishes such that the impurity spectral function
reduces to the non-interacting one with a single central peak pinned
at the Fermi energy due to particle-hole symmetry. Lowering the tem-
perature, we observe the formation of three zero crossings in Re (Σ).
Two are roughly located at ω = ±U/2, are heavily damped since
Im (Σ) is large for those frequencies, and correspond to the upper
and lower Hubbard features. The central zero crossing corresponds
to the Kondo resonance. It has a narrow line shape and hence has
a small value of Im (Σ). That these central crossings have the same
slope is somehow expected since the slope should be proportional to
the Kondo temperature of the system [149].

8.5.1 Estimating the Kondo Temperature

To get an estimate of the involved Kondo temperatures TK we car-
ried out a data collapse in Fig. 31 of the susceptibilities shown in
Fig. 28b. At low enough temperatures, the Kondo effect becomes uni-
versal with the Kondo temperature as the only remaining, intrinsic
energy scale [150]. Therefore, in this limit, all thermodynamic quanti-
ties should be expressible as universal functions. For the susceptibility
χzz this means thatThis is a very

universal feature.
A magnetic flux on

a honeycomb
lattice shows

remarkably similar
behavior [151].

TKχzz = F

(
T

TK

)
(8.15)

with TK as the only scaling parameter [152]. We find the numerical
values for the inverse Kondo temperature βK = T−1K as given in Ta-
ble 1. With the Kondo temperatures at hand we performed a cross
check of the obtained values of TK and assumed the validity of the
asymptotic behavior of the Kondo temperature for the symmetric An-
derson model, which is given by

TK ∝ e
− U

8V2ρ0 (8.16)
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Figure 31: Since χzz is a universal function with TK as the only parameter,
we show a data collapse of the data for different values of U at
a fixed V = 0.5 and λ = 0.1 that enables us to estimate TK. The
data points roughly lie on the same function, with the U = 1

points extending to the lowest relative temperatures. Note that
the data collapse only fixes the relative values of the obtained
Kondo temperatures. The inset shows in a log-plot the obtained
Kondo temperatures with its dependence on U. It shows an expo-
nential dependence on the interaction U that is expected for the
symmetric Anderson model.
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with the density of states ρ0[152]. Note that for the Kane-Mele model
in the considered parameter range, the Fermi velocity of the edge
state is set by the spin-orbit coupling. Hence, ρ0 ∝ 1/λ. The straight
line in the logarithmic plot of the inset of Fig. 31 indeed confirms
this behavior. Additionally, another cross-check is available by means
of the impurity spectral functions of Fig. 29. For U = 2 we have an
inverse Kondo temperature of βK ≈ 2.1, which is consistent since
somewhere in the range β = 2 and β = 10 the Kondo resonance
starts to build-up at ω = 0. For U = 4 we get βK = 50, which is again
consistent with the data for the spectral function.

8.5.2 High-temperature Regime

The high-temperature regime is defined by the lack of any visible
structure in the dot’s spectral function. β = 0.1 in Fig. 29a is a good
example, it shows just some lorentzian peak around ω = 0. With the
presence of the small parameter βU it is obvious that any interaction-
induced correlation effects to the spectral functions are negligible.
Therefore, in this regime the spectral function is that of the uncor-
related system. Since all correlation effects are thermally washed out,
the notion of a self-energy is meaningless, and hence the self-energy
contribution Cn(r,ω,Σ(ω)) in Eq. 8.3 vanishes. This implies that the
lattice spectral functions look indistinguishable to the non-interacting
case Fig. 27a. Since we are considering the particle-hole symmetric
point, the occupancy of the impurity site is pinned to half-filling.
Hence, in the absence of interactions the double occupancy 〈nd↑nd↓ 〉
takes the value 0.25. As apparent in Fig. 28a, this value is approached
as β → 0. Also, from Fig. 28b we can already see that the suscep-
tibility crosses over into a linear regime in the log-log-plot that is
characteristic of the local moment regime.

8.5.3 Local Moment Regime

The formation of a local moment is at best characterized by the quan-
tity

〈nd↑nd↓ 〉
〈nd↑ 〉〈nd↓ 〉

. (8.17)

Since, as mentioned previously, the denominator of the above equa-
tion is pinned to 0.25 by particle-hole symmetry, the formation of the
local moment boils down to the suppression of the double occupancy.
We will associate a characteristic energy scale of this regime by the
dip in the double occupancy of Fig. 28a. The local moment regime
corresponds to the regime where the Hubbard bands at ω ≈ U

2 de-
velop in the dot’s spectral function. In Fig. 29a, β = 2 is a good
example of that. At these intermediate temperatures we have one oc-
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Figure 32: The spectra for the local moment regime at β = 2,U = 2,V = 0.5,
and λ = 0.1. (a) shows all spectral functions around the impurity,
whereas (b) shows a cut of the spectral functions along r = 0. (c)
and (d) show the self-energy contribution Cn(r,ω,Σ(ω)). Cn(r =
0,ω,Σ(ω)) is shown in (d). A neat thing is that the contribution
C, which captures the effect from the self-energy, seems to exactly
cancel the effects of B, the hybridization of the impurity with the
bath, since the contribution in e. g. Fig. 32d has the opposite sign
of Fig. 27d.
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cupied spin state below the Fermi energy at −U2 with a single elec-
tron. This gives rise to essentially a free spin-12 degree of freedom: a
local moment. The energy scale at which the double occupancy is en-
hanced before saturating marks the onset of the super exchange scale.
This scale is set by V2/U for our particle-hole symmetric impurityThe super

exchange scale is
linked to the slight
dip in the data sets

of Fig. 28a.

problem. In the context of the helical liquid the spin-flip scattering
generated by the super-exchange scale corresponds to single-particle
back-scattering. These processes will hence reduce the conductance
as noted in Ref. [128]. In the local moment domain, the site-resolved
single-particle spectral function of the edge and bulk states in Fig. 32a
show no sign of Kondo screening. In particular, there is no deflection
of the edge current perceivable. Fig. 34b shows that the change of
An(r,ω) relative to some very distant point of reference has a very
small amplitude. Due to Eq. 8.3 this means an approximate cancella-
tion of the hybridization effect from Fig. 27d with the now present
self-energy effect shown in Fig. 32d. The edge state is in that sense
restored to the true boundary of the lattice as if no impurity were
present. This confirms the robustness of the edge state to a free lo-
cal moment at least in regard of the spectral functions. Nevertheless,
we expect the conductance through this edge state to decrease in this
regime due to the possible backscattering spin-flip processes which
is now available due to the impurity [153]. Lowering the temperature
further should break this match and deform the edge state again with
the emergence of the Kondo resonance at ω = 0 in the impurity’s
spectral function.

8.5.4 Kondo Regime

Lowering the temperature further we enter the Kondo regime. A
prominent signature of this regime is the emergence of the Kondo res-
onance in the dot’s spectral function as seen for example in Fig. 29a at
β = 200. The Kondo resonance shows up as a dip in the local spectral
function of the edge state electrons at the position of the impurity
(r = 0 and n = 0) as seen in Fig. 33b. The origin of these spectral
features lies in the formation of the Kondo singlet which entangles
the impurity spin with the spins of the surrounding electrons. On an
energy scale set by the Kondo temperature we expect the impurity
site to act as a potential scatterer and hence lead to the deflection of
the edge current into the bulk. As apparent, the dip in the spectral
weight at n = 0 in Fig. 33d is accompanied by the emergence of a peak
at n = 1 and n = 2. At this very low temperature scale, T/TK ' 0.01,
it is this deflection of the edge state discussed by Maciejko et al. [128]
which restores the conductance to unitarity in the limit T → 0. Al-
though we have decreased the temperature by two magnitudes, the
form of the change in Fig. 33d still looks the same, only its magni-
tude has decreased. But of course now the self-energy term C and the
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Figure 33: For the parameters β = 200,U = 2,V = 0.5 and λ = 0.1, (a)
shows a frontal view on the full spectral functions. The dip at the
impurity is visible as well as the progression to the full edge state
at the edge. (b) shows a cut of the same spectral functions now for
increasing n. The displacement of the edge into the bulk is visible.
(c) and (d) show the effect due to the self-energy Cn(r,ω,Σ(ω)).
Especially figure (d) shows that in comparison with Fig. 32d the
functional form of C seems to be the same although we have
increased β by two magnitudes, but the amplitude is reduced
from about 0.6 to 0.4.
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hybridization term B do not match anymore as nicely as for β = 2.
Hence there is not a full cancellation of the hybridization effect. A
further decrease of the temperature should bring us deeper into the
Kondo regime with a deflection of the edge state around the impurity
as predicted by Maciejko et al. [128]. This confirms that, to the outside
world, the singlet state of a magnetic impurity and bath electrons has
the same low-energy features as plain potential scattering. We only
expect this circumvention of the edge state on an energy scale set by
the Kondo temperature TK since beyond this energy scale the equiva-
lence to a potential scatterer is not tenable [154]. Note that, since the
width of the Kondo resonance is of the order of TK, the dip in the bulk
spectral functions is of the same size. On the other hand, the width
of the edge state is determined by the spin-orbit coupling λ > TK.
Therefore, it can be expected that a perfect match of the two quanti-
ties will not happen. Fig. 34 shows the change ∆n(r,ω), attributable
to the impurity, measured against the spectral function A0n(ω) of a
very distant point in the same orbital n:

∆n(r,ω) = An(r,ω) −A0n(ω).

We see the strong local effect of a potential scatterer in Fig. 34a. In
Fig. 34b we see that a correlated impurity at β = 2 has a negligible
effect on the bath. This corresponds to the local moment regime. As
the temperature drops below the Kondo scale (see the data sets at β =

7 in Fig. 34c and at β = 200 in Fig. 34d) a reduction happens at the
site below the impurity and the missing spectral weight is transferred
into the bulk and therefore the same deflection of the edge current as
observed for the potential scatterer emerges.
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Figure 34: Here we show the changes to the spectral functions in the vicin-
ity of the impurity relative to some very distant reference point
that feels no effect of the impurity. This corresponds to the quan-
tity ∆n(r,ω) = An(r,ω) −A0n(ω). (a) shows the changes due to
an uncorrelated impurity. (b) is the change in the local moment
regime at β = 2. Note the small amplitude of ∆n(r,ω), which
means that in this regime the bath feels only a negligible effect of
the impurity. (c) is in the Kondo regime for β = 7. (d) is in the
Kondo regime for β = 200. Note that only (b) - (d) share the same
scale on the ∆n(r,ω) axis.
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8.6 spatially resolved dot bulk spin spin correlation
functions

To provide a different point of view on our study of the Kondo cloud
in the bath system that does not rely on an analytic continuation
procedure we now turn our attention towards the site resolved spin
spin correlation functions 〈SzdSzc(r,n)〉 between the impurity spin

Szd =
1

2

(
nd↑ −n

d
↓
)

and the spin of a conduction electron that is located at a particular
site,

Szc(r,n) =
1

2

(
nr,n,↑ −nr,n,↓

)
(8.18)

This enables us to define the Kondo cloud as the region of substantial
entanglement of the impurity spin with a particular bath site. This
is complementary to our previous results where we have defined the
Kondo cloud as the region of suppression of the edge state since this
was a single-particle quantity. From a related publication [155] by an-
other group on the plain Kondo model we know that this decoupling
of single-particle and two-particle quantities for measuring the extent
of the Kondo cloud is characteristic of the half-filled setting. Far away
from half-filling the profiles get more similar. The spatial extent of the
spin spin correlations gives us another popular quantity to measure
the size of the Kondo cloud [156, 157, 158], which we can compare
with the data we have from the suppression of the spectral weight of
the edge state.

8.6.1 A 2D Overview

First, we consider the non-interacting case and find non-negligible
correlations that are confined to the edge of the system. Along the
edge, the spin spin correlations decay as r−2, as already pointed out
in Ref. [156, 159] for a 1D system of electrons. Clearly, this power law
holds only in the zero temperature limit and at finite temperature an
exponential decay sets in beyond the thermal length scale ξT ∝ vFβ
(vF is the Fermi velocity). This similarity to the one-dimensional case
provides yet another confirmation of the 1D nature of the edge state.
The local moment regime just shows a small amount of correlation
in Fig. 38 since due to the high temperature all long-range effects are
destroyed. This is in contrast to the behavior of the spectral functions
in Fig. 32a where we see no signature of the impurity in the bath
system. If we now lower the temperature into the Kondo regime, as
done in Fig. 35, we see that the effect of the impurity mostly extends
into the helical liquid in the lower edge and develops some spatial
structure.
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Figure 35: A 2D overview of the color-coded correlation function
〈SzdSzc(r,n)〉 with the full spatial dependence at β = 100, λ = 0.1,
and U = 2. The impurity is the green spot at (r,n) = (0, 0) in
the middle of the lower edge. Positive values are shades of green,
negative values are shades of red and neutral values are blue. The
color coding is linear, which does not mean a linear perception of
the color values. The long chain of sites having various shades of
red at the bottom of the diagram is the extent that the correlation
reaches into the edge state. The correlation extends comparatively
far into the edge state but is almost immediately suppressed away
from it.

8.6.2 Correlation Functions along the Edge

We now focus our attention on the correlations along the edge as
a function of temperature, Hubbard interaction, and spin-orbit cou-
pling λ. Borda et al. [156] have studied the spatial behavior of the
spin spin correlation functions of an Anderson impurity embedded
in a one-dimensional wire as bath system. They observed at a distance
of ξK ≈ vFβK a crossover from an r−1 behavior to an r−2 behavior.
For finite temperatures they predict the onset of an exponential de-
cay at ξT ≈ vFβ. In their study of a plain one-dimensional chain
they find that the spin spin correlations oscillate with a frequency
ν ∝ kF = π. Carrying this prediction over to our simulation we find
that this seems to be some kind of generic feature. Their study shows
that the spatial decay is oscillating with a wave vector k ∝ kF = π.
Already from the 2D overviews, Fig. 35 and Fig. 37, we see that the
correlation function measured along the edge does not exhibit oscil-
lations, which is consistent with a wave vector k ∝ kF = π. Fig. 36
shows that the general trend of these predictions made for a 1D chain
of electrons also holds for the 1D helical liquid of the edge state of a
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Figure 36: The spatial dependence of the correlation between the impurity’s
spin and the spin of a site of the edge

∣∣〈SzdSzc(r,n)〉
∣∣ with a hy-

bridization of V = 0.5. Diagram (a) shows the dependence on the
Fermi velocity at U = 1 of the cross-over point from an r−1 to
an r−2 behavior, ξK, as well as of the point ξT where the decay
crosses over into an exponential law. In the graph for λ = 0.2 the
exponential falloff is shifted outside of the visible lattice although
the temperature is kept constant. The dashed lines are guides to
the eye and are explained in the main text. Diagrams (b) - (d) are
at λ = 0.1. In diagram (b) we show data for higher TK at U = 2.
We see that for the higher temperature, β = 200, the thermal de-
cay at the end of the plot is shifted outside of the visible part of
the lattice and we can clearly identify the regimes with power law
like behavior. In the diagram for β = 100 even the r−1 decay is
already dominated by the thermal decay.



8.6 spatially resolved dot bulk spin spin correlation functions 131

topological insulator if we perform an analysis similar to Ref. [129].
In Fig. 36 (a) we find the dependence on the Fermi velocity, which is
expected to be proportional to the spin-orbit coupling λ. In the plot
for λ = 0.2 the exponential falloff is shifted outside of the visible part
of the edge channel, although the plots for λ = 0.1 and λ = 0.2 are
at the same temperature. In this plot we have already introduced a
couple of lines that are meant as guides to the eye. We have two en-
ergy scales in this setting and therefore two length scales where we
can find them. First, we have the thermal energy scale given by β,
and this corresponds to the thermal length scale ξT ∝ vFβ. The ther-
mal energy scale leads to an exponential decay of correlation beyond
ξT , and we denote this exponential decay by yellow dashed lines.
The next energy scale we have is the inverse Kondo temperature βK,
which corresponds via ξK = vFβK to a length scale ξK. In the re- Note that these

power laws are not
easily reproduced
in a plot of the
logarithmic
derivative of the
same data as was
done for the
resonant level
model in [158].
Further work to
pin down the
precise nature of
the correlation
function is
required.

gion ξK > r > ξT we find the power law decay with r−2, and the
straight dashed magenta lines are used to denote it in Fig. 36. Note
that both the Fermi velocity and the Kondo temperature depend on
λ: vF ∝ λ and βK ∝ exp

(
λ
J

)
. Finally, at the smallest distances from

the impurity, the straight dashed orange lines denote the r−1 decay
that is present for r < ξK. We see that for λ = 0.2 the crossover
from an r−1 behavior to a r−2 decay is approximately shifted from
r ≈ 7 to r ≈ 16, and the thermally induced exponential suppression
of the spin spin correlation happens much later. We can estimate the
thermal cutoff scale by fitting exponentials (the yellow dashed lines),
e
− r
ξT , to the tails of the plots for β = 100 and we find a consistent

value of ξT ≈ 8.7 for all values of U. A more detailed analysis of the
temperature dependence for the point U = 2 is found in Fig. 38. In
Fig. 36 (b) and (c) we can compare the temperature effects for U = 3

and we see that at twice the temperature the exponential decay is not
visible anymore. Comparing the plots from (a) to (d) we can trace the
shift of the cross-over from an r−1 behavior to an r−2 decay with in-
creasing U and therefore with the Kondo temperature. Fig. 36 (c) and
(d) show that further increments of U, which leads to higher values
of βK, shifts the cross-over point to larger distances. In Fig. 36 (c) we
see that, although the violet data set is at twice the inverse tempera-
ture, the cross-over in the algebraic decay that marks the extent of the
Kondo cloud keeps roughly its position. This verifies that the Kondo
length scale is independent of temperature. The presence of the char-
actistic cross-over scales as well as the validity of the estimates for the
oscillation frequencies in our system and that of [156, 129] show that
the Kondo cloud is one of the more generic features. As an outlook
we note that placing a magnetic impurity into an edge state might
provide a way to finally get experimental access to the Kondo cloud
[145].
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Figure 37: Here we see an overview of the spin spin correlations in the local
moment regime. Due to the rather high temperature we see that
the correlation effects are quickly suppressed. Additionally, the
absolute value of the correlations is an order of magnitude lower.
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Figure 38: A more detailed view of
∣∣〈SzdSzc(r, 0)〉

∣∣ at U = 2, but at different
values of β in a logarithmic plot. obvious is the mirror symmetry
around the impurity. We see that for β = 10, which is in the local
moment regime (compare the spectral functions, Fig. 29a), the
decay of the correlation function is immediately exponential. This
is consistent with the quick suppression in Fig. 37. Decreasing the
temperature to β = 100 we see that the exponential decay sets in
at around ξT ≈ 8, whereas for β = 200 at ξT ≈ 16.
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8.7 summary

We have studied a magnetic impurity coupled to a helical edge state
as modeled by the Kane-Mele Hamiltonian on a slab geometry. Due
to TRS the effective action of the impurity orbital (see Eq. 8.5) has pre-
cisely the same form as the generic SIAM such that the local physics
is identical. In particular the Hubbard scale marks the appearance of
a local moment which couples magnetically via the superexchange
scale J ∝ V2/U to the conduction electrons. Below the Kondo temper-
ature TK, the magnetic moment is screened due to the formation of
an entangled singlet state of the magnetic impurity and conduction
electrons. We have shown these commonalities numerically with the
double occupancy, the spin susceptibility and determined the Kondo
temperature with a data collapse.

The differences to generic Kondo physics are non-local. As shown
in Ref. [130], if the interactions along the helical edge are not too
strong, spin-flip single-particle backward scattering processes are ex-
pected to be irrelevant, such that in the low-temperature limit the
conductance should reach the unitarity limit. The mechanism which
allows this to occur is the deflection of the edge state into the bulk,
thus avoiding the Kondo singlet. By computing the temperature de-
pendence of the site resolved density of states by an analytic continu-
ation of the impurity self-energy to real frequencies, we were able to
follow the temperature dependence of the edge mode and in particu-
lar its deflection into the bulk due to the emergence of the Kondo sin-
glet. Complementary information on the extent of the Kondo singlet –
without resorting to an analytical continuation – was also obtained by
computing the spatial dependence of the spin spin correlation func-
tions between the local moment and conduction electrons. At low
temperatures the spin spin correlations do not extend significantly
into the bulk and exhibit a power law decay along the edge. In partic-
ular, as a function of temperature, we can observe the thermal cutoff
scale ξT ∝ vFβ, beyond which exponential decay sets in, as well as
the characteristic cross-over scale around ξK ∝ vF/TK from an r−1 to
an r−2 law. This cross-over scale provides a measure of the Kondo
screening cloud. Of significant interest is an explicit calculation of
the temperature dependence of the conductance along the edge. As
pointed out in Ref. [128], the local moment regime, where we observe
no deflection of the edge state, is of special interest since one expects
a decrease of the conductance due to back-scattering spin-flip pro-
cesses off the impurity spin. Clarifying this point would require an
explicit numerical calculation, which has not been attempted so far.
Below the Kondo scale, the deflection of the edge state along the new
boundary of the system – as defined by the topology of the Kondo
cloud – should restore the conductance to its unitarity limit.
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8.8 diagonal impurity green’s function due to time-reversal
symmetry

This section looks somewhat separated from this chapter. This is
owed to its larger generality since we prove here how TRS in an impu-
rity system leads to a spin-diagonal Green’s function. Let us assume
that a Hamiltonian H and the time-reversal operator T commute with
each other. Therefore, since [H, T ] = 0, the operators H and T have a
common basis in which they are diagonal. In the case that T2 = −1

holds (which is the case if the total spin is of the half-integer type) we
have for every state ~e1 = |a〉 an orthogonal state ~e2 = T |a〉. In these
basis states T has the matrix representation

T =

(
0 1

−1 0

)
(8.19)

where 1 denotes the identity matrix acting in the respective sub-sector
of the state. By that notation we have essentially just renamed the
states of the Hilbert space. T is diagonalized by

U =
1√
2

(
1 i1

i1 1

)
(8.20)

with two eigenvectors named |+〉 and |−〉. U also block-diagonalizes
H, and hence the Green’s function matrix is block-diagonal in the
|+〉 and |−〉 basis since propagation with H will not generate matrix
elements between the orthogonal sub-spaces. The diagonal form of
the Green’s function matrix is then

G =

(
G++ 0

0 G−−

)
. (8.21)

Transforming G back to the original basis we have

G = UGU† =
1

2

(
G++ +G−− iG++ − iG−−

−iG++ + iG−− G++ +G−−

)
. (8.22)

To show that the off-diagonals of this matrix vanish in the sub-space
where the impurity lives, we consider the impurity Green’s function
Gd,d in the |+〉 and |−〉 basis. Then, using the time-reversal symmetry

THT−1 = H, (8.23)

we have for τ > 0,

Gs,s
d,d(τ) = Tr

(
e−βHd†s(τ)ds

)

= Tr
(

e−βTHT
−1
d†s(τ)ds

)

= Tr
(
Te−βHT−1e−τHd†se

τHds

)

= Tr
(

e−βHe−τHT−1d†sTeτHT−1dsT
)

.
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Now, using T−1dsT = sd−s (the impurity lacks a momentum quan-
tum number), we have

Gs,s
d,d = s2 Tr

(
e−βHd†−s(τ)d−s

)

= G−s,−s
d,d .

(8.24)

Therefore, we have G+,+
d,d = G−,−

d,d which ensures that the off-diagonals
in Eq. 8.22 vanish. This, in turn, gives the diagonality of an impurity
Green’s function Gd,d just due to time-reversal symmetry.
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth, Computer Programming as an Art [160]

We have applied Monte Carlo techniques to problems involving real-
time dynamics, spin-orbit coupling, and an impurity coupled to a TI,
which entered the simulation in the form of an effective bath. In the
chapter on real-time dynamics we have seen how Monte Carlo meth-
ods can be adapted to study the evolution of a one-dimensional chain
subject to a sudden quench. Already in this simplified setup we have
observed various effects that are specific to the real-time simulation
of isolated lattice systems. We have seen the Lieb-Robinson bound
which gives a limit on the maximum speed of propagation at which
any information can meaningfully travel. This bound is not sharp in
the sense that on the outside of this light-cone-like structure there are
exponentially suppressed corrections to the propagation of informa-
tion. This exponential suppression stems from the fact that we are
simulating a lattice system and it would not be present in the con-
tinuum. The Lieb-Robinson bound is a feature of lattice systems. An-
other property that we have observed is that the system thermalizes
to a state that is not directly given in terms of some part of the orig- "state" in the

sense of a density
matrix.

inal Hamiltonian, but we had to include those quantities which are
conserved under the action of the time evolution. The CT-INT method
has proven to be a tool that is able to tackle this particular problem.
However, dealing with true time dependent Hamiltonians is still out
of reach since the sign problem grows prohibitively with the size of
the involved matrices. The most pragmatic solution that has been pro-
posed is to truncate the expansion at certain orders while still having
a sign problem that one can deal with. But that is more an ad hoc
type "hack" than a true solution for time dependent quantum Monte
Carlo. Another idea would be to try to exploit the matrix structure of
the Keldysh-Wagner formalism [29], which highlights the redundant
parts of the Kelysh Green’s function and might probably be exploited
to cut down the number of generated diagrams for given simulation
parameters.
In Chapter 7 we turned to a problem that required dealing with a sys-
tem that lacks the SU(2) spin symmetry. We have studied a chain of
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one-dimensional electrons subject to Hubbard electron-electron inter-
action and Rashba spin-orbit interaction. As it turned out, we could
gather a surprising amount of information analytically since a gaugeI admit that I have

done quite some
expensive

simulations to find
and verify this
connection. . .

transform enabled us to connect the system back to the standard
Hubbard model. This rendered it possible to ask questions familiar
from the Hubbard model, and we find, among other things, the fa-
miliar spin-charge separation. The most striking feature of this map-
ping might be that, although the Rashba spin-orbit interaction should
break the SU(2) spin symmetry, we could still map the Hamiltonian
onto that of the standard Hubbard model, which does exhibit this
symmetry. This mapping provides an example of how the sign prob-
lem can be basis dependent. In the original basis the Monte Carlo
simulation shows a sign problem whereas in the new basis, the co-Everything is a

matter of the
perspective.

moving spin basis, we simulate the standard Hubbard Hamiltonian
and therefore we have no sign problem. For the future, it would be
interesting to study this problem on higher dimensional systems. A
first step would be to consider ladder sytems [114] with varying inter
chain coupling to study the dimensional crossover and find out how
the connection to the Hubbard model breaks down. Another venue
would be to pursue long range coupling since we have already seen
in Sec. 7.8 that using the variability in the hopping parameter someAs of now, it is

unclear to which
lattice

Hamiltonians this
would correspond.

higher dimensional Hamiltonians can be studied.
As the last application we have studied a magnetic impurity in a
topological insulator host. The host could be treated as an effective
bath for the impurity, which enabled us to reduce the problem to the
simulation of a single site. This problem is perfectly suited for the
CT-INT algorithm since it can, in contrast to other algorithms, simu-
late problems specified only in terms of an effective action S. We have
found that the impurity keeps all the features known from the Ander-
son model, while the edge state can, depending on the regime of the
impurity, ignore the impurity or circumvent it. While it might seem
plausible that the impurity does not influence the general properties
of the host much, due to a simple energy argument, it is nevertheless
interesting to study the reaction of the TI to the impurity where we see
that, depending on the regime, we can make the edge state change
its definition of what constitutes the boundary and circumvent the
impurity. The impurity on the other hand is essentially unimpressed
from the fact that it is connected to a TI and shows qualitatively the
same features as the basic SIAM. By measuring the spin spin correla-
tions along the edge we have seen that we discover the characteristic
length scales of the Kondo cloud also in our system. In conjunction
with the results of [156, 129, 161] this shows that the Kondo cloud is
a general phenomenon with characteristic features.
These three numerical studies might seem to be topically a bit un-
related, but the fields are growing together. The out-of-equilibrium
physics of impurities is already a well-established field, see e. g. [162,
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163]. A surprising direction is that non-equilibrium properties have
recently been linked to the topology of the involved final and intial
states in Ref. [164]. And, of course these three studies are linked by
the employed method. They form a catalogue of work of quite dif-
ferent physical problems that have mostly been tackled with a single
method, the CT-INT Monte Carlo method. In addition to this hopefully
apparent flexibility, Monte Carlo methods render it possible to sim-
ulate correlated electron systems without introducing any uninten-
tional bias towards a particular physical phenomenon on a computer.
This ensures that the results are – within the statistical error bars – a
correct prediction of the behavior of the physical system under con-
sideration.

So she sat on, with closed eyes,
and half believed herself in Wonderland,

though she knew she had but to open them again,
and all would change to dull reality.

— Lewis Caroll, Alice’s Adventures in Wonderland [165]

Sam was the only member of the party
who had not been over the river before.

He had a strange feeling as the slow gurgling stream slipped by:
his old life lay behind in the mists,

dark adventure lay in front.

— J.R.R. Tolkien, The Lord of the Rings [166]
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Vogon poetry is of course, the third worst in the universe.
The second worst is that of the Azgoths of Kria. During a recitation by their

poet master Grunthos the Flatulent of his poem "Ode to a Small Lump of
Green Putty I Found in My Armpit One Midsummer Morning" four of his

audience died of internal haemorrhaging and the president of the
Mid-Galactic Arts Nobbling Council survived by gnawing one of his own
legs off. Grunthos was reported to have been "disappointed" by the poem’s

reception, and was about to embark on a reading of his 12-book epic entitled
"My Favourite Bathtime Gurgles" when his own major intestine, in a

desperate attempt to save humanity, leapt straight up through his neck and
throttled his brain. The very worst poetry of all perished along with its

creator, Paul Neil Milne Johnstone of Redbridge, in the destruction of the
planet Earth.

Vogon poetry is mild by comparison.

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy [167]

a.1 maxent

a.1.1 The Analytic Continuation Problem

The Monte Carlo methods outlined in Chapter 5 are able to simulate
data given in terms of τ or directly on the Matsubara frequencies
iωn. To have spectra that are comparable with experiments we need
to transform this data to real frequencies. The relation between a τ
resolved fermionic Green’s function G(τ) and its corresponding spec-
tral function A(ω) is given by

G(τ) =

∫
dω

e−ωτ

1+ e−βω
A(ω)

=

∫
dωK(ω, τ)A(ω)

(A.1)

where we have identified the fermionic kernel K(ω, τ). The spectral
function A(ω) is the quantity that we are interested in. It is a posi-
tive definite function and fulfills a sum rule. Therefore, its values can
be interpreted as propabilities. The analytic continuation is formally
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simply the inversion of this integral equation. In practice it is not as
easy as this. The inversion of a discretized version of (A.1),

gi =
∑
j

Ki,jAj

=
(
K~A
)
i

,
(A.2)

is ill-conditioned since the discretized kernel Ki,j of K(ω, τ) will have
a set of singular values containing singular values that are exponen-
tially large and exponentially small, which results in an extremely
large condition number. And if that is not enough, the generated
Monte Carlo data contains statistical noise on top of the measure-
ments. Due to this an exact inversion is not possible, and a suitable
form of regularization has to be employed. The general idea of reg-
ularization is that, instead of solving the linear system (A.2) exactly,
we look for a minimization of a suitable norm of the residual

r = |K~A− ~g| (A.3)

under an equally suitable side constraint α−1Ω. The regularization
introduces a new free parameter α−1, the regularization parameter,
which controls the weight given to a minimization of the side con-
straint relative to the minimization of the residual. The common meth-
ods for ill-posed problems are the Tikhonov-regularization, truncated
singular value decompositions, iterative methods like the conjugateIn the CG method

the iteration
number k is the

regularization
parameter since

the side constraint
is that at each

iteration the
solution must be

from the
corresponding

Krylov subspace.

gradient (CG) method, and the maximum entropy method [168, 169].
The method of choice in the solid state community is the maximum
entropy method [170] since it selects the solution that is most likely
in the Bayesian sense given the a priori knowledge of the problem at
hand. The residual that is minimized is given by the goodness-of-fit
functional

χ2[A] =

β∫
0

dτ

σ(τ)2

∣∣∣∣
∫
dωK(τ,ω)A(ω) − Ḡ(τ)

∣∣∣∣ (A.4)

where Ḡ(τ) denotes the noisy measurement of G(τ), and σ(τ) denotes
the measurement error of G(τ). The regularization term is given by
an entropy-like term,

α−1Ω = α−1

∫
dωA(ω) ln

(
A(ω)

D(ω)

)
, (A.5)

whereD(ω) is the so-called default model. The intent is that inD(ω)It would still be
interesting to

apply the ideas of
compressed

sensing to the
problem of analytic

continuation. See
Ref. [171].

any features that are known in advance of the true spectral function
can be encoded. In the case that one lacks this information a flat
default model is usually chosen. The maximum entropy idea now
yields an ansatz for the propability of a single spectral function A.
This ansatz is P[A] ∝ e−Q[A] with

Q[A] = χ2[A] −α−1Ω (A.6)
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where the usual approach taken by the maximum entropy method is
then to minimize the quantityQ[A] by a suitable numerical minimiza-
tion scheme. We use the stochastic maximum entropy method due to
Anders W. Sandvik [172] implemented in the spirit of the later publi-
cation of Kevin S. D. Beach [173] who showed that the classical maxi-
mum entropy method is contained as the mean-field solution within
the stochastic maximum entropy method. The stochastic maximum
entropy method is often favoured since it is able to better reproduce
sharp features of the underlying spectra. At a basic level, the idea is
to associate with (A.4) a Hamiltonian depending on a classical field
and a partition function at a fixed artificial inverse temperature α.
The partition function is evaluated for various temperatures until a
phase transition in the associated specific heat is found. The point of
the phase transition defines the energy up to which to average over
the respective field configurations.

a.1.2 Various Popular Kernels

Here we record various popular kernels used in Eq. A.1 for perform-
ing the inversion. The Fermi function in the original K(ω, τ) is notori-
ous to underflow. To that end we rewrite it as

K(ω, τ) =
e−ωτ

1+ e−βω
=

eω(
β
2−τ)

2 cosh
(
βω
2

) . (A.7)

Since τ and β are quantities of similar magnitude, this expression
is well defined as long as the result is representable in the chosen
data type. The difficulty of evaluating cosh(x) for large arguments is Of course there is

still the potential
that cosh

(
βω
2

)

overflows at about
βω
2 > 700.

now delegated to a specialized library of the underlying computer
environment.
If we assume that the spectral function is symmetric, we can enforce
this property in the inversion with the help of the following kernel:

Ksym(ω, τ) =
1

2
(K(ω, τ) +K(−ω, τ))

=
cosh

(
ω
(
β
2 − τ

))

2 cosh
(
βω
2

) .
(A.8)

We can also use the maximum entropy method to extract the spectral
function from data given on the Matsubara frequencies iωn. We find
that the following relation holds

G(iωn) =

∫
dω

A(ω)

−iωn −ω

=

∫
dωKM(iωn,ω)A(ω).

(A.9)

Of course, for a measurement in Matsubara frequencies one has to
judge for oneself when enough frequencies were taken into account
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and the tail of G(iωn) is indistinguishable from the asymptotic 1
iωn

decay.

a.1.3 Bosonic Quantities

This subsection is
based on some

loose notes [174]
on my table

originally from
Fakher Assaad.

Particle-hole quantities like the charge charge or spin spin correlation
functions need a different treatment since they are bosonic. The con-
nection between the structure factor χ ′′(q,ω) and the corresponding
τ-resolved spin spin correlation function is

〈S(q, τ)S(−q, τ)〉 = 1

π

∫
dω

e−τω

1− e−βω
χ ′′(q,ω). (A.10)

We identify the kernel

K(ω, τ) =
e−τω

1− e−βω
(A.11)

and we might set out to use the stochastic MaxEnt method to invert
this equation. It does not quite work out like that since MaxEnt has
the condition that the searched functional fulfills a sum rule. To cir-
cumvent that we consider instead the quantity coth

(
βω
2

)
χ ′′(q,ω),

which has indeed a sum rule:∫
dω coth

(
βω

2

)
χ ′′(q,ω) = 2π 〈S(q, τ = 0)S(−q, 0)〉 . (A.12)

This can be easily shown by using the Lehmann representation for χ ′′

χ ′′(q,ω) =
π

Z

∑
n,m

e−βEn |〈n|S(q)|m〉|2 δ(ω+En−Em)(1− e−βω).

The right hand side of (A.12) is just the first data point of the τ-
resolved quantity that one obtains from the Monte Carlo simulation.
Therefore, we will invert the equation

〈S(q, τ)S(−q, 0)〉 =
∫
dω

π

e−τω

1− e−βω
tanh

(
βω

2

)

︸ ︷︷ ︸
KB(τ,ω)

A(ω)︷ ︸︸ ︷
coth

(
βω

2

)
χ ′′(q,ω)

(A.13)

for A(ω). The bosonic kernel can be simplified to

KB(ω, τ) =
e−ωτ

1+ e−βω
= K(ω, τ),

showing that it is equal to the plain unsymmetric kernel for fermions
K(ω, τ) defined in (A.7). The ω range can be restricted since A(ω) is
a symmetric function due to the fact that χ ′′(q,ω) = −χ ′′(q,−ω). We
only need to read in the data from τ ∈ [0,β/2] since

〈S(q, τ)S(−q, 0)〉 = 〈S(q,β− τ)S(−q, 0)〉 .
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a.1.4 Self-Energy

The maximum entropy method can be used for an analytic contin-
uation of the self-energy. In this subsection we will detail the pro- Parts of this

section can be
found in [4, 31]
and the basic idea
in [148].

cess for a scalar self energy Σ. From Dyson’s equation we know that
the Green’s function G(iωn) measured on the Matsubara frequencies
iωn fulfills

G(iωn) = G
0(iωn) +G

0(iωn)Σ(iωn)G(iωn) (A.14)

and solving for Σ(iωn) yields the scalar equation

Σ(iωn) =
(
G0
)−1

(iωn) −G
−1(iωn). (A.15)

Since the full Green’s function G(iωn) can be calculated in the Monte
Carlo simulation to arbitrary precision and G0(iωn) is known from
the input to the Monte Carlo simulation, this equation can be used to
numerically determine Σ(iωn). In order to analytically continue Σ(z)
to the real axis, we have to study its asymptotic behavior for large
frequencies. Starting from the asymptotic series for G0(iωn), See the other

appendix
Sec. A.2.2 for
definitions of
asymptotic series.

G0(iωn) =

∞∑
k=1

a0k
(iωn)k

, (A.16)

we obtain through inversion:

Σ(iωn) =
(
a2 − a

0
2

)
+

1

iωn

a22 −
(
a02
)2

+ a1a3 − a1a
0
3

a1

+O

(
1

(iωn)2

)
.

(A.17)

This result can be obtained by truncating equation A.16 at different
orders, and one indeed finds out that higher terms of the Green’s
function’s asymptotic series do not contribute to the first two terms Note that the

leading constant of
the Green’s
function is
generated by the
canonical
anticommutation
relation of c† and
c and is therefore
a1 = a01 = 1.

of the self-energy.
In order to employ the stochastic maximum entropy method for Σ(z)
directly, we introduce a slightly different quantity as already shown
in reference [148]:

Σ ′(z) =

[
Σ(z) −

(
a2 − a

0
2

)]
a1

a22 −
(
a02
)2

+ a1a3 − a1a
0
3

. (A.18)

This quantity has exactly the same analytic properties as the series
(A.16) of the Green’s function itself, namely that its asymptotic series
starts with 1

iωn
, the corresponding spectral function has a sum rule∫

dωAΣ ′(ω) = π, and that it does not have a constant term. In princi-
ple, these properties could be corrected for in the maximum entropy
procedure but the quantities a2 and a3 can only be obtained up to a
statistical errorbar, making the correct inclusion of these errors a very
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cumbersome process. Performing the transformation A.18 is therefore
a very straightforward procedure, as the thoroughly bootstrapped co-
variance matrix of Σ ′ will contain all uncertainties stemming from the
CT-INT calculation.

The calculation of the constants in the asymptotic series of the self-
energy is a straightforward calculation of moments of the spectral
function A(ω). For this, remember that the αth moment of the spec-
tral function can be obtained by the expression

∞∫
−∞

dωωαA(ω) = (−1)α〈
[[
c†,H

]
−,α

, c
]

+

〉 (A.19)

with the recursive definition

[A,B]−,α =
[
[A,B]−,α−1 ,B

]
−

(A.20)

and

[A,B]−,1 = [A,B]− . (A.21)
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a.2 asymptotics and the mellin transform

a.2.1 Some Landau Symbols

A wonderfully useful notation for asymptotic analysis is the "Big Oh"
and "little oh" notation [175, 176].

Definition. Let z and z0 be points in a region R of the complex plane. If
there exists a constant C independent of z so that

∣∣∣ f(z)g(z)

∣∣∣ 6 C for all z in R,
then we say f(z) is "Big Oh" of g(z) and write

f(z) ∈ O (g(z)) as z→ z0 in R. (A.22)

Using this notation we can express that some function f can be
bounded by another, usually simpler, function g, thereby enabling us
to "forget" certain, for the analysis unimportant, parts. Another, often
sharper, statement can be expressed with its little brother o.

Definition. If in R we have that f(z)g(z) → 0 as z→ z0, then we write

f(z) ∈ o (g(z)) (A.23)

and say that f(z) is "little oh" of g(z).

With the help of this notation we can express that the growth of f
is nothing compared to the growth of g. It is a very common abuse
of the notation to use the "=" symbol instead of the set notation "∈"
while using O and o. The last ingredient is the notion of asymptotic
equality that we will define in terms of o.

Definition. We call two functions f and g asymptotically equivalent if

f(z) − g(z) ∈ o(g) and write f ∼ g. (A.24)

For well-behaved, complex-valued functions this is equal to f(z)
g(z) →

1 if z→ z0.

a.2.2 Basic Definitions of Asymptotic Series

Definition. A sequence of so-called gauge functions {φn(x)}, n = 1, 2, . . .
is said to form an asymptotic sequence as x→ x0 if, for all n,

φn+1(x) = o (φn(x)) ,

as x→ x0.
A classic choice is
φn(x) = x

−n as
x→∞.Definition. If {φn(x)} is an asymptotic sequence of functions as x → x0,

we say that

∞∑
n=1

anφn(x)
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where the an are arbitrary constants is an asymptotic expansion (or ap-
proximation) of f(x) as x→ x0 if for each N ∈N

f(x) =

N−1∑
n=1

anφn(x) +O (φN(x)) ,

as x → x0, i.e. the error is asymptotically smaller than the last term in the
expansion.

We will denote an asymptotic expansion of a function f(x) by

f(x) ∼

∞∑
n=1

anφn(x).

Note that every plain Taylor series is an asymptotic expansion around
the expansion point with gauge functions φn(x) = xn. Every power
series is an asymptotic expansion, but its not the other way around.
Power series are faithful representations of the function p(t) they
describe and are expected to converge. An asymptotic expansion isMany of the more

useful asymptotic
series are
divergent.

more general in the sense that it is not expected to converge to the
function p(t) but merely is a notational tool to denote and measure
the growth behavior of p(t) in the vicinity of a certain point.

a.2.3 Mellin Transforms

For the proofs to
this section see

[177, 175].
A very useful integral transform related to the two-sided Laplace
transform is the Mellin transform of a function f. It is defined by

The relation can be
established by the

substitution
t = e−τ. M [f; s] =

∞∫
0

dtts−1f(t). (A.25)

It can be established that the Mellin transform is absolutely conver-
gent and a holomorphic function of s in the strip α < Re(s) < β

where

α = inf{α∗|f = O(t−α
∗
), as t→ 0+}

β = sup{β∗|f = O(t−β
∗
), as t→∞}.

(A.26)

From (A.26) we can conclude that the Mellin transform is absolutely
convergent in a vertical strip (the so-called strip of analyticity) whose
boundaries are determined by the asymptotic behavior of f in the
limits t→ 0+ and t→∞.
The inversion formula for the Mellin-transform is

f(t) =
1

2πi

c+i∞∫
c−i∞

dst−sM [f; s] (A.27)

with an arbitrary c with α < c < β.
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a.2.4 The analytic Continuation of the Mellin Transform and asymptotic
Expansions

We assume that f(t) has the following asymptotic expansion, for t→∞: The case of
t→ 0+ is similar
and detailed in
[175].f(t) ∼ e−dt

ν
∞∑
m=0

N(m)∑
n=0

cm,n(log(t))nt−rm (A.28)

with ν > 0, finite numbers N(m), and additionally we assume that
the numbers are sorted with respect to their real part Re(rm). This ex-
pansion allows for a pretty big class of behaviors since we allow for
oscillatory, logarithmic, and power law like behavior. Let us warm up
with the case of d having a positive real part, Re(d) > 0. Then the
asymptotic behavior of f(t) is dominated by the decay of the expo-
nential and we can bound f(t) by

|f(t)| = O
(
e−dt

ν

t−Re(r0)(log(t)N(0))
)

(A.29)

as t → ∞ and therefore the right end of the strip is β = ∞. Hence,
the strip extends all the way to infinity. Let us consider the case of
d = 0 next. It is convenient to define

sk(t) =


0 0 6 t < 1∑
m=0

Re(rm)<k

N(m)∑
n=0

cm,n(log(t))nt−rm 1 6 t <∞.
(A.30)

Note that it contains precisely the part of the asymptotic expansion
of f(t) up to k. With the help of sk we can define the remainder up to
order k,

fk(t) = f(t) − sk(t). (A.31)

We see that since f(t) is holomorphic in the strip α < s < r0, we
have with a similar reasoning that fk(t) is holomorph in the strip
α < Re(s) < k. For t > 1, sk(t) contains only a finite number of terms
and that as t → ∞, fk(t) = O

(
t−rj(log(t)N(j))

)
where j is the least

integer such that Re(rj) > k. Using the integral

∞∫
1

dtts−1t−rm log(t)n =
n!(−1)n+1

(s− rm)n+1
(A.32)

we find for the Mellin transform of f:

M [f, s] =M [fk, s] +M [sk, s]

=M [fk, s] +
∑
m=0

Re(rm)<k

N(m)∑
n=0

cm,n
n!(−1)n+1

(s− rm)n+1
. (A.33)
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We see that the Mellin transform is now given by the sum of M [fk, s],
which is a holomorphic function in the strip α < Re(s) < k, and the
Mellin-transform of sk, which is a meromorphic function in the strip
with poles of order n located at rm. Therefore, we have the analytic
continuation of M [f, s] as a meromorphic function at worst up to an
arbitrary k. The case of purely imaginary d is detailed in [175].

From the inversion formula for the Mellin transform (A.27) we have
the identity

f(t) =

c+i∞∫
c−i∞

dst−sM [f, s] (A.34)

with c from the strip of analyticity of M [f, s]. Now let us suppose
that M [f, s] can be continued to the right up to say Re(s) = L as a
meromorphic function at worst. Then we can displace the contour to
the right to get

f(t) ∼
∑

c<Re(s)<R

res
(
t−sM [f, s]

)

︸ ︷︷ ︸
A

(t) +

R(t)︷ ︸︸ ︷
L+i∞∫
L−i∞

dst−sM [f, s] . (A.35)

The necessary conditions and proofs on f can be found in [175]. We
see that the process of using the meromorphic structure of M [f, s]
has enabled us to derive a decomposition of f into an asymptotic
expansion A(t) and a remainder term R(t), which can be shown to
decay at least like t−L.

a.2.5 Parseval Formula for Mellin Transforms

A beautiful result in the context of Mellin transforms is the Parseval
Formula

∞∫
0

f(t)h(t)dt =

c+i∞∫
c−i∞

dsM [h; s]M [f; 1− s] (A.36)

with a c that has to be chosen from the common strip of analytic-
ity of f and h. Note that the left hand side of (A.36) encompasses a
huge class of integral transforms and gives an equivalent represen-
tation in terms of an inverse Mellin transform. To make progress on
the right hand side of (A.36) we have a couple of choices. First, we
could evaluate the inverse Mellin transform and derive a result for
the integral. Second, we can use the representation in terms of an
inverse Mellin transform to derive the asymptotic behavior with the
ideas outlined in Sec. A.2.4. Or, as a last option, we can try to iden-
tify the result with a suitable, so-called G-function as we outline now.
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Then equation (A.36) provides a beautiful connection to the theory of
hypergeometric functions. Given the definition of Meijer’s G function
in terms of an inverse Mellin transform See [59] for a

listing of the
properties of G as
well as for
reduction tables.

Gm,n
p,q

(
a1 ,...,an ,an+1 ,...,ap

b1 ,...,bm ,bm+1 ,...,bq

∣∣∣∣∣ t
)

=

γ+i∞∫
γ−i∞

ds

2πi
t−sgm,n

p,q (~a,~b, s) (A.37)

with

gm,n
p,q (~a,~b, s) =

m∏
k=1

Γ(s+ bk)
n∏
k=1

Γ(1− ak − s)

p∏
k=n+1

Γ(s+ ak)
q∏

k=m+1

Γ(1− bk − s)

, (A.38)

m 6 q, n 6 p, and γ is chosen such that all poles of Γ(bi + s), i =
1, . . . ,m are to the left, and all the poles of Γ(1 − ai − s) are to the
right of the integration path from γ− i∞ to γ+ i∞. Since Gm,n

p,q is by
definition given in terms of an inverse Mellin transform, its Mellin
transform is just g(s), the ratio of gamma functions on the right hand
side of (A.37). This peculiar structure, a ratio of gamma functions,
might seem a bit restrictive, but this is enough to encode almost all
special functions in terms of a suitable G. For reference we note the Notable exceptions

are Γ(x), ζ(x), and
the Fermi
function.

relation between Meijer’s G function and the generalized hypergeo-
metric function pFq,

pFq

(
a1 ... ap

b1 ... bq

; z
)

=

q∏
k=1

Γ(bk)

q∏
k=1

Γ(ak)

G
1,p
p,q+1

(
1−a1 ,...,1−ap

0,1−b1 ,...,1−bq

∣∣∣∣∣− z
)

. (A.39)

Read in reverse, this provides one way to reduce a G function to a
hypergeometric one. Now let us proceed to apply Parseval’s formula,
(A.36), to G. We find∞∫

0

dxGm,n
p,q (~a,~b,αx)Gm

′,n ′
p ′,q ′ (~a

′,~b ′,α ′x)

=
1

2πiα ′

c+i∞∫
c−i∞

ds
( α
α ′

)−s
gm,n
p,q (~a,~b, s)gm

′,n ′
p ′,q ′ (~a

′,~b ′, 1− s)

=
1

α ′
Gm+n ′,n+m ′
p+q ′,qp ′

(
a1 ,...,an ,−~b ′ ,an+1 ,...,ap

b1 ,...,bm ,−~a ′ ,bm+1 ,...,bq

∣∣∣∣∣
α

α ′

)
.

(A.40)

Since the Mellin transform of a G-function is a ratio of Gamma func-
tions, the Parseval formula reproduces another G function on its right
hand side. This means that the convolution of two G-functions always This property is

shared with a
slightly more
general object, the
Fox H-function.

gives a third G. Many of the amazing integrals listed in tables or pro-
duced by computer algebra systems are direct consequences of (A.40).
Note how it reduces the problem of definite integration into a simple
table look-up routine.
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a.3 fermion coherent states

In this section we list some properties and used notations of fermionic
coherent state integrals. For other properties and rigorous proofs see
[24]. The unity for the j-th time slice is

1j =

∫ ∏
α

dφj,αdφj,αe
−φj,αφj,α |φj,α〉〈φj,α|

=

∫
d~φjd~φje

−~φj~φj |~φj〉〈~φj|

=

∫
djdje−jj|j〉〈j|

(A.41)

with φj,α being a Grassmann number. The last line is something of a
shorthand notation. There is also an expression for the trace operation
in coherent states:

TrA =

∫ ∏
α

dφj,αdφj,αe
−φj,αφj,α〈−φj,α|A|φj,α〉

=

∫
d~φjd~φje

−~φj~φj〈−~φj|A|~φj〉

=

∫
djdje−jj〈−j|A|j〉.

(A.42)

a.4 resampling methods for error analysis

In this section of the appendix we will give a short discussion of the
jackknife and the bootstrap method. We have used these resampling
methods to gain estimates about statistical measures of the gener-
ated Monte Carlo data from our simulations and we will present the
required ideas and formulas. Both methods have in common that in-
stead of some parametric assumption about the distribution we esti-
mate the variability of a statistic from the variability of that statistic of
suitably chosen subsamples. Resampling methods become especially
useful if some non-linear function of the input data is required. If we
expect a sign problem, the calculation of the average of an observable
from

〈O〉 = 〈Os〉〈s〉
is already of that kind.

a.4.1 The Jackknife Method

We define the i’th jackknife sample xJi as

xJi =
1

N− 1

∑
j6=i

xj, (A.43)
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so that xJi is the average of all samples except xi. In a similar manner
we define a jackknife sample after an evaluation of the function f

fJi = f(x
J
i). (A.44)

An unbiased jackknife estimate for this value is given by the average
of the fJi , i.e.

f̄J =
1

N

N∑
i=1

fJi (A.45)

with an uncertainty

eJ =
√
N− 1σfJ (A.46)

where

σ2fJ =
(
f̄J
)2

−
(
f̄J
)2

. (A.47)

Further details and proofs can be found in [178, 179]. For a target
audience of
physicists ref.
[178] is
particularly well
and concisely
written.

a.4.2 The Bootstrap Technique

The bootstrap is a very powerful resampling method to obtain unbi-
ased estimates for averages. But, whereas the Jackknife assembles its
samples by deterministically leaving one sample out, the bootstrap
creates new bootstrap samples by drawing them with replacement at
random from the available samples. This effectively removes any as- Right! We have

another Monte
Carlo simulation
with the Monte
Carlo generated
data. . .

sumption about the distibution of our samples from the error analysis.
The data set is assumed to be a suitable estimate of the distribution.
Denoting by εi the number of times the sample xi appears in a Monte

Carlo generated data set with the constraint that
N∑
i=1

εi = N we can

define the bootstrap samples xBα

xBα =
1

N

N∑
i=1

εαi xi. (A.48)

α runs from 1 to an arbitrary number of bootstrap samples Nboot.
Using these samples we can again evalute functions on these samples The canonical

value is Nboot =
200.

and define

fBα = f(xBα). (A.49)

The final bootstrap estimate for the average value is

f̄B =
1

Nboot

Nboot∑
α=1

fBα (A.50)
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with an uncertainty eB given by

eB =

√
N

N− 1
σfB (A.51)

where

σ2fB =
(
f̄B
)2

−
(
f̄B
)2

. (A.52)

Further details, proofs and particular applications can be found in
[178, 18]. The non-deterministic nature of the bootstrap means that
repeated calculations of the same statistic give different results, as-
suming the used random number generator is initialized with a dif-
ferent seed every time. Often the bootstrap as well as the jackknife
give similar results. An example for a statistical quantity that cannot
be handled by the jackknife is the calculation of the errors on the
median of a dataset [178]. Note also that the bootstrap as outlined
here destroys the correlation structure of the Monte Carlo time series.
Therefore, it is advisable for the jackknife as well as for the bootstrap
to create suitably uncorrelated bins by averaging.

a.4.3 Complex Arithmetic - Error Ellipses

This subsection
could also be titled

principal
component

analysis in the 2D
case.

When dealing with complex data

z = a+ ib, (A.53)

the specification of an error on the real part σa as well as on the imag-
inary part σb is not the full story. Doing so we would have assumed
that a and b are independent quantities. The "Right Thing" to do is
to give the full covariance matrix Σz of z,

Σz =

(
σa,a σa,b

σa,b σb,b

)
. (A.54)

The correlation induced by the off-diagonal σa,b has to be disentan-
gled first using an eigen-decomposition of Σz. Since Σz is a symmet-
ric matrix, the existence of two orthogonal eigenvectors is guaranteed.
The resulting eigenvalues

σ1 =
1

2

(
σa,a + σb,b −

√
4σ2a,b + (σa,a − σb,b)2

)

σ2 =
1

2

(
σa,a + σb,b +

√
4σ2a,b + (σa,a − σb,b)2

) (A.55)

are the errors in a coordinate system given by the eigenvectors of Σz.
In the two-dimensional setting of the complex plane we can easily
interpret this transformation. The distribution of samples generated
from a bivariate normal distribution centered at 〈z〉 with a correlation
structure encoded by Σz can be visualized as an ellipsoid centered at
〈z〉, as in Fig. 39, with semi-axis given by the eigenvalues.
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Figure 39: An example of a gaussian distribution where the standard devia-
tions derived from the distributions measured along the cartesian
axis fail to capture the true distribution. The gaussian distribu-
tion on the top shows the distribution of the x-values, the rotated
distribution on the right shows the distribution of the y-values.
The center shows the true ellipsoid-like distribution. The color is
proportional to the number of samples in that region.
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