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Abstract: P-glycoprotein (P-gp) is an ATP (adenosine triphosphate)-binding cassette transporter 

that causes multidrug resistance of various chemotherapeutic substances by active efflux from 

mammalian cells. P-gp plays a pivotal role in limiting drug absorption and distribution in dif-

ferent organs, including the intestines and brain. Thus, the prediction of P-gp–drug interactions 

is of vital importance in assessing drug pharmacokinetic and pharmacodynamic properties. To 

find the strongest P-gp blockers, we performed an in silico structure-based screening of P-gp 

inhibitor library (1,300 molecules) by the gradient optimization method, using polynomial 

empirical scoring (POLSCORE) functions. We report a strong correlation (r2=0.80, F=16.27, 

n=6, P,0.0157) of inhibition constants (Ki
exp

 or pKi
exp

; experimental Ki or negative decimal 

logarithm of Ki
exp

) converted from experimental IC
50

 (half maximal inhibitory concentration) 

values with POLSCORE-predicted constants (Ki
POLSCORE

 or pKi
POLSCORE

), using a linear regres-

sion fitting technique. The hydrophobic interactions between P-gp and selected drug substances 

were detected as the main forces responsible for the inhibition effect. The results showed that 

this scoring technique might be useful in the virtual screening and filtering of databases of 

drug-like compounds at the early stage of drug development processes.

Keywords: ATP-binding cassette transporter, P-gp inhibitors, multidrug resistance, molecular 

docking, POLSCORE

Introduction
P-glycoprotein (P-gp) is a member of the ATP (adenosine triphosphate)-binding 

 cassette multidrug transporter superfamily. It mediates the removal of xenobiotic 

agents from living cells by a P-gp-mediated efflux mechanism, a major cause of mul-

tidrug resistance (MDR).1,2 P-gp plays an important role in limiting drug absorption 

and distribution in different organs, including the intestines and the brain (blood–

brain barrier), where it is extensively distributed and expressed.3,4 P-gp is a 170 kDa 

transmembrane protein, which includes cytosolic nucleotide-binding domain together 

with N-terminal and C-terminal halves. Each half in turn is comprised of membrane 

spanning and transmembrane domains.5

P-gp inhibitors are mainly weakly amphiphilic or hydrophobic substances such as 

chemotherapeutics, steroid hormones, different antibiotics, and anti-HIV (anti-human 

immunodeficiency virus) protease inhibitors.6–8 Since P-gp can affect the pharma-

cokinetics and pharmacodynamics of its substrates, increasing attempts were being 

made to search for potential P-gp inhibitors at the early stage of drug discovery and 

development processes.9

A number of in vitro assays for P-gp-oriented drug screening, such as cell-based 

transwell transport, radioactivity-labeled ligand binding, and drug permeability, 
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have been largely utilized to identify the potential P-gp 

inhibitor  candidates10 and assess P-gp–drug interactions.11 

However, due to their expense and time, the in vitro methods 

are not entirely suitable for the screening of large databases of 

drug-like chemical compounds. Primarily, these methods are 

usually used at the later stages of drug development  processes, 

after the thorough structure-based virtual screening of 

extensive databases of bioactive, drug-like, small molecules. 

Therefore, in silico screening, based on different algorithms 

implemented for molecular docking, to predict P-gp inhibitors 

has paved the road to a rational drug design and screening 

process.12–14 On the other hand, to harness the discovery of 

the strongest P-gp blockers, high-resolution, crystallographic 

molecular structures of P-gp would improve a molecular 

docking precision for in silico prediction models.

Although a variety of molecular docking models for 

P-gp inhibitors have been successfully used for prediction 

of receptor–ligand interactions,14–16 there is no general scor-

ing function regarding the filtration and selection of the best 

hits. The empirical scoring functions, such as those used in 

AutoDock17 (Scripps Research Institute, San Diego, CA, 

USA), AutoDock Vina18 (Scripps Research Institute), and 

others are most widely applied to estimate the Gibbs free 

energy of binding (∆G).19–21 They are based on the counting 

of the number of hydrophobic and hydrophilic contacts and 

H-bonds between the P-gp receptor and its ligand.22 There-

fore, to find the strongest P-gp blockers, we performed in 

silico structure-based screening of a P-gp inhibitor database 

via gradient optimization method, using the appropriate scor-

ing techniques of AutoDock Vina and polynomial empirical 

scoring (POLSCORE) functions to calculate binding affini-

ties and to correlate them to the experimentally determined 

half maximal inhibitory concentration (IC
50

) values.

Computational methods
The electron diffraction of murine P-gp as a holo-

 structure (3G60) at 3.8 Å resolution with a cyclic-tris-(R)-

 valineselenazole (QZ59-RRR) ligand5 was retrieved from 

the Protein Data Bank as a PDB file. The P-gp molecule 

was processed for the ligand extraction and subjected to 

the initial molecular dynamics refinement by using the 

FG-MD (Fragment-Guided Molecular Dynamics) server.23 

The VADAR (Volume, Area, and Dihedral Angle Reporter) 

server24 was implemented for stereochemical validation of 

the P-gp molecule to investigate the φ–ψ dihedral angles in 

a Ramachandran plot. Altogether, observed statistics showed 

that 70% and 23% of all residues were in core and allowed 

regions before, 82% and 12% after the molecular dynamics 

refinement. The expected values for the comparison were 

90% and 7%, respectively, for the same regions obtained 

elsewhere, from the literature.25,26

The P-gp inhibitor database included 1,300 molecules, 

which were assembled by the ADME (absorption, distribu-

tion, metabolism, and excretion) research team from the 

Functional Nano and Soft Materials Laboratory (FUNSOM, 

Suzhou, People’s Republic of China) and distributed 

through the scientific community for virtual screening and 

analysis.27

Prior to the virtual screening procedure, PyRx software 

(Scripps Research Institute)28 was used to optimize the data-

set. Gasteiger charges were added, and polar hydrogen atoms 

were assigned. The rotatable bonds were set up, and SDFs 

(structure-data files) were converted into PDBQT (Protein 

Data Bank, Partial Charge [Q], and Atom Type [T]) format.

The QZ59-RRR-associated binding site was recon-

structed as a visual representation of the solvent-excluded 

molecular surface, known as the Connolly surface,29,30 by 

MOE 2009.10 (Chemical Computing Group, Montreal, 

Canada) modeling software. The solid molecular surface 

was generated with 1.4 Å of probe sphere radius and within 

4.5 Å from the ligand atoms (Figure 1).

Rigid-flexible molecular docking was applied to the cen-

ter of the QZ59-RRR-associated binding cavity with the Aut-

oDock Vina docking engine,18 adopted for a structure-based 

virtual screening via the iDOCK (Department of Computer 

Science and Engineering, Chinese University of Hong Kong, 

Hong Kong) modification,31 using the following Cartesian 

coordinates: x =19.11 Å, y =52.37 Å, and z =−0.30 Å. The 

docking grid with a dimension size of 30 Å ×30 Å ×30 Å 

was used in the study. The  AutoDock Vina output results 

Figure 1 QZ59-rrr-associated binding pocket in the crystalline structure of murine 
P-glycoprotein. The shown molecular surface is color-coded as follows: h-bonding 
areas are white; and hydrophobic and mild polar areas are colored in green and red, 
respectively. hydrogen atoms are omitted for clarity.
Abbreviation: QZ59-rrr, cyclic-tris-(r)-valineselenazole. 
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represented the docking scores as ∆G values. They were 

further converted to the predicted inhibition constants (Ki
pred

). 

The Ki
pred

 values for analyzed docking poses were calculated 

from the ∆G parameters as follows:

 ∆G RT lnKipred= ( ),  [1]

 Ki epred

G

RT=
∆

,  [2]

where R (gas constant) is 1.98 cal*(mol*K)−1, and T (room 

temperature) is 298.15 Kelvin.

The ∆G
1
–∆G

3
 binding affinity predictions were made 

for a human homology model, a mouse 3G60 model, and a 

mouse 3G61 model of P-gp using the same docking method 

and support vector machine algorithm integrated into the 

Althotas virtual laboratory webserver (Virtua Drug Ltd, 

Budapest, Hungary). The affinities were further converted in 

a similar fashion to their corresponding inhibition constants 

(Ki
1
[pKi

1
]–Ki

3
[pKi

3
]).

The docked conformations were ranked using the 

POLSCORE algorithm based on 25 POLSCORE functions 

to evaluate binding affinity from the P-gp–ligand complexes 

by calculated pKi values (pKi
POLSCORE

). The thorough scoring 

calibration has been previously performed to use geometric 

parameters, calculated from the atomic coordinates, to evaluate 

the experimental pKd (pKi) values as closely as possible to a 

training set composed of hundreds of co-crystallized protein–

ligand complexes. The weights obtained from this training set 

were used to build appropriate POLSCORE functions.32

The IC
50

-to-Ki converter was used to compute Ki values 

from experimentally determined IC
50

 values for inhibitors of 

proteins and enzymes that obey classic Michaelis-Menten 

kinetics of protein–ligand interactions.33 The IC
50

 values were 

obtained from the study of Keogh and Kunta as determined 

when investigating the inhibition of human P-gp transport 

of 30 nM [3H]-digoxin.34 The values were converted into 

the experimental inhibition constant values (Ki
exp

 or pKi
exp

) 

according to the protein–inhibitor interaction equation for 

competitive species:35

 Ki
IC

L

K

P

K

exp
50

50

d

0

d

=
+ +1

,  [3]

where P
0
 is free protein at 0% inhibition (positive control), 

L
50

 is free ligand at 50% inhibition, IC
50

 is free inhibitor 

at 50% inhibition, and K
d
 is the dissociation constant. The 

default parameters for protein concentration (P =0.03 µM) 

and dissociation constant (K
d
 =0.0179 µM) were used. The 

ligand concentration (L =2.0 µM) was specified according 

to the GF120918 compound’s ability to achieve the entire 

P-gp inhibition.34

Molecular graphics and visualization were performed with 

the LigPlot+ program (EMBL-EBI, Wellcome Trust Genome 

Campus, Hinxton, UK) in order to build two-dimensional 

interaction diagrams from three-dimensional coordinates.36 

Statistical analyses were performed using a linear regression 

analysis, followed by graphic representation using GraphPad 

Prism v.4 (GraphPad Software, San Diego, CA, USA).

Results and discussion
Our search for a strong inhibitor focused on an inhibitor 

that allows for better intestinal drug absorption and blood–

brain barrier transfer after inhibition. We wanted to improve 

inhibitor selection by extensive in silico prescreening. For 

this, we considered the P-gp inhibitor dataset, including 

1,300 molecules, among which 796 molecules (61.2%) were 

P-gp inhibitors, and 504 molecules (38.8%) were P-gp non-

inhibitors (Supplementary material 1). The experimental data 

were retrieved and compiled from 104 pieces of published 

literature to increase the molecular diversity of the database. 

Data from Ramu and Ramu37,38 (347 molecules) and  Bakken 

and Jurs39 (609 molecules) were important sources of the P-gp 

inhibitor dataset. The experimental ratio for MDR reversal 

agents was used as a determining parameter of whether a 

compound is an inhibitor.27 Since the holo-P-gp structure does 

not bind ligands, an inward-facing apo-P-gp conformation 

was chosen as a reliable drug-binding model. This conforma-

tion represents an initial stage of the transport cycle that is 

competent for inhibitor binding.5 Therefore, we screened the 

P-gp inhibitor database against the binding site associated with 

the removed QZ59-RRR ligand of murine P-gp protein by 

calculating the Gibbs free energy of binding. A standard rigid-

flexible AutoDock Vina technique produced two main results: 

a particular conformational sampling as a docking pose of the 

ligand molecule within the binding site, and an affinity (∆G) 

describing the receptor–ligand interaction strength. All dock-

ing poses were ranked according to their ∆G values, which 

ranged from −13.904 to −1.682 kcal*mol−1 (Supplementary 

material 2). To detect the false-positive docking results, 

we selected the top-ranked 120 compounds with minimal 

∆G values, ranging from −13.904 to −10.002 kcal*mol−1. 

Of these, 106 (88.3%) were P-gp inhibitors, with a mean 

value of −10.62 kcal*mol−1 and a standard deviation of 0.57 

kcal*mol−1, and 14 molecules (11.7%) were P-gp non-inhib-

itors, with a mean value of −10.74 kcal*mol−1 and a standard 

deviation of 0.96 kcal*mol−1 (Figure 2A). To detect the false-

negative docking results, we selected the bottom-ranked 

www.dovepress.com
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150 compounds with maximal ∆G values from −6.998 to 

−1.682 kcal*mol−1. Of these, 40 (26.7%) were P-gp inhibi-

tors, with a mean value of −6.58 kcal*mol−1 and a standard 

deviation of 0.37 kcal*mol−1, and 110 molecules (73.3%) were 

P-gp non-inhibitors, with a mean value of −6.28 kcal*mol−1 

and a standard deviation of 0.77 kcal*mol−1 (Figure 2B). 

These results indicated that in almost 90% of top-ranked 

compounds, virtual screening worked better at predicting the 

P-gp inhibitory potencies than separating non-inhibitors for 

bottom-ranked molecules  (substances with high ∆G values), 

which might be P-gp substrates with a propensity to attach to 

the P-gp binding cavity. In addition, the area under the receiver 

operating characteristic curve (AUC) was also examined since 

the true positive and the true negative are known in this study.40 

The result showed a good performance for the  AutoDock Vina 

docking run, with an AUC value of 0.62 and a standard error 

of 0.048 (P,0.032); while a random selection performance 

presented with a 0.5 AUC value (Figure 3).

The P-gp inhibitor D559 and polypeptide antibiotic 

actinomycin D were associated with the best binding modes, 

which represent the minimal ∆G  values: −13.904 and −13.126 

kcal*mol−1 (−9.1 kcal*mol−1 for QZ59-RRR) because of the 

strong binding affinity and intermolecular forces between 

P-gp receptor and its inhibitor. The D559 compound was 

evaluated as a P-gp inhibitor in the database via experimental 

data mining, while actinomycin D was not.27 However, actino-

mycin D was previously determined as a P-gp substrate, and 

its P-gp-mediated efflux was substantially inhibited in MDR 

cells by the mono clonal antibody (UIC2 clone) against the 

extracellular epitope of P-gp.41 Moreover, this polypeptide 

antibiotic might also bind at high capacity to the P-gp mol-

ecule due to its enhanced active efflux mechanism observed 

with adriamycin as part of a functioning MDR for these 

different classes of drugs.42

In the next step, the docked conformations were further 

separated using POLSCORE to evaluate a ligand bind-

ing affinity from P-gp–ligand complexes by calculating 

the  pKi
POLSCORE

 values for selected P-gp inhibitors (n=6). 

The experimental inhibitory potencies (IC
50

 or pIC
50

) of the 

inhibitors GF120918, itraconazole, ketoconazole, astemizole, 

quinidine, and verapamil were transformed into inhibition con-

stants (Ki
exp

 or pKi
exp

) for further comparison with predicted 

pKi
POLSCORE

 (Table 1) and other predicted pKi values, such as 

pKi
pred

, pKi
1
, pKi

2
, and pKi

3
 (Tables 2 and 3), calculated from  

appropriate ∆G parameters. However, the Ki
exp

 calculation 
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Figure 2 P-gp inhibitor/non-inhibitor clustering of chemical compounds based on the minimal and maximal ∆G values to detect false-positive (A) and false-negative 
(B) results.
Note: Mean value is shown as a bold line.
Abbreviations: ∆g, gibbs free energy of binding; P-gp, P-glycoprotein.
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derived from Equation 3 has taken into consideration that 

the range of inhibitor potencies resolved in fluorescence 

polarization-based binding assay is limited by the affinity of 

the fluorescent ligand. In other words, as the Kd value of the 

fluorescent ligand decreases, the range of resolvable inhibi-

tor potency increases. Therefore, it is not feasible with this 

method to correctly determine Ki values for inhibitors with 

binding affinities higher than the fluorescent ligand because 

of the assay constraint.43

Using a linear regression fitting technique, a strong 

correlation was observed for our predicted values and 

experimental results: r2=0.89, F=32.67, P,0.0046 for 

pKi
pred

; r2=0.80, F=16.27, P,0.0157 for pKi
POLSCORE

; r2=0.79, 

F=14.99, P,0.0175 for pKi
2
 (mouse 3G60 model); and 

r2=0.76, F=12.54, P,0.0240 for pKi
3
 (mouse 3G61 model) 

(Figure 4A–E). However, the true pKi
POLSCORE

 values lie 

within predictive range closer to the pKi
exp

 determinants, 

at least for some of the compounds, such as GF120918 

(9.09 and 9.0), itraconazole (7.92 and 8.10), and astemizole 

(8.09 and 7.96).

On the other hand, the pKi
1
 value, predicted for the 

human homology P-gp model, was shown to correlate poorly 

with experimental inhibition constants (r2=0.51, F=4.17, 

P,0.1107) (Figure 4C). This low correlation might be 

explained primarily by the use of the human P-gp homology 

model as a receptor molecule with a substantial difference 

in the complex geometry of the binding cavity from the 

mouse structure. Regardless of a high amount of amino acid 

 conservation between the human and murine P-gp structures, 

the deviations were established with 13% of sequence identity 

within the P-gp binding cavity.14 Interestingly, pKi
2
 showed 

better correlating strength than pKi
3
 because of the better 

3G60 model optimization used in structure-based virtual 

screening.

The binding modes for the selected P-gp inhibitors are 

shown in Figure 5 as two-dimensional schematic diagrams 

as they revealed very clear ligand occupancies within the 

P-gp binding pocket. As all of the inhibitors occupy the 

binding site well, the majority of the contacts between the 

P-gp binding site and selected substances are nonpolar, mak-

ing use of the hydrophobic protein residues in the binding 

pocket. Aller et al5 mentioned the fact that certain amino 

acid residues contact cyclic hexapeptide inhibitors, but the 

functional role of these residues in binding to each inhibi-

tor is different. As expected, all analyzed ligands utilized 

different binding modes with different amino acid residues 

involved due to structural and conformational mismatches. 

The active site associated with the QZ59-RRR ligand is 

composed of amino acid residues, such as Met88, Phe332, 

Ile338, Phe338, Gln721, Tyr949, Phe724, Phe974, Val978, 

Tyr303, Phe728, Ser975, and Leu335. As most of the amino 

acid residues in the P-gp active site are hydrophobic, they 

are, therefore, involved in strong hydrophobic interactions 

with the co-crystallized QZ59-RRR ligand.

To find the similarities in binding modes for selected P-gp 

inhibitors and the QZ59-RRR ligand, we tried to find com-

mon amino acid residues involved in hydrophobic interac-

tions. Taken together, we found that quinidine and verapamil 

interact with the P-gp protein in a similar fashion, indicating 

protein residues that are in common to those associated with 

the cyclic hexapeptide inhibitor used as a reference molecule 

(Figure 5E and F). These ligands may occupy very similar 

and overlapping binding regions, while the rest of the ligands 

bind to different regions within the QZ59-RRR-associated 

binding site.

Table 1 Predicted (pKiPOlsCOre) parameters for P-gp selected 
inhibitors calculated from POlsCOre functions

Compound Rank pKiPOLSCORE HC VdW DE

gF120918 8 9.09 1261.77 −976.08 12.5
itraconazole 224 7.92 1179.65 −1046.45 17.5
Ketoconazole 150 8.59 1193.98 −872.73 10.0
Astemizole 96 8.09 1050.91 −789.02 8.0
Quinidine 516 7.49 965.38 −640.29 9.5
Verapamil 1104 7.42 940.09 −747.46 11.5

Abbreviations: De, deformation effect; hC, hydrophobic contact; P-gp, 
P-glycoprotein; pKi, negative decimal logarithm of inhibition constant; POlsCOre, 
polynomial empirical scoring; VdW, Van der Waals forces (energy).

Table 2 experimental (pKiexp) and predicted (pKipred) parameters for selected P-gp inhibitors calculated from iC50 and ∆G values

Compound IC50 (μM) pIC50 Kiexp (μM) pKiexp ∆G (kcal*mol-1) pKipred

gF120918 0.18±0.06 6.74 0.001 9.0 −11.8 8.68
itraconazole 0.95±0.28 6.02 0.008 8.09 −9.6 7.06
Ketoconazole 1.34±0.28 5.87 0.012 7.92 −9.8 7.21
Astemizole 2.27±0.54 5.64 0.02 7.69 −10.1 7.34
Quinidine 9.40±2.98 5.03 0.083 7.08 −8.7 6.40
Verapamil 8.07±3.53 5.09 0.071 7.15 −8.03 5.91

Note: iC50 values presented as mean ± standard deviation.
Abbreviations: ∆G, Gibbs free energy of binding; Kiexp, experimental inhibition constant; iC50, half maximal inhibitory concentration; piC50, negative decimal logarithm of half 
maximal inhibitory concentration; P-gp, P-glycoprotein; pKi, negative decimal logarithm of inhibition constant; pred, predicted.
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Figure 4 relationship between experimental (pKiexp) and predicted pKi values using linear regression analysis to measure correlation strength for examined chemical 
compounds. The predicted values were calculated from the iDOCK runs (Department of Computer science and engineering, Chinese University of hong Kong, hong 
Kong) (pKipred) and POlsCOre (pKiPOlsCOre) (A and B). The Althotas virtual laboratory webserver (Virtua Drug ltd, Budapest, hungary) was used to estimate the inhibition 
constants (pKi1–pKi3) applying the human homology and mouse P-gp models, respectively (C–E).
Abbreviations: pKi, negative decimal logarithm of inhibition constant; pred, predicted; POlsCOre, polynomial empirical scoring; P-gp, P-glycoprotein.

Table 3 Predicted (pKi1–pKi3) parameters for selected P-gp inhibitors calculated from ∆G1–∆G3 values

Compound ∆G1 (kcal*mol-1) pKi1 ∆G2 (kcal*mol-1) pKi2 ∆G3 (kcal*mol-1) pKi3
gF120918 −11.1 8.17 −10.9 8.02 −10.6 7.79
itraconazole −11.5 8.46 −9.2 6.77 −10.0 7.36
Ketoconazole −10.5 7.72 −8.9 6.55 −8.7 6.4
Astemizole −11.5 8.46 −9.7 7.14 −9.3 6.84
Quinidine −9.1 6.69 −8.1 5.96 −8.2 6.03
Verapamil −9.2 6.77 −7.0 5.15 −6.8 5.0

Abbreviations: ∆G, Gibbs free energy of binding; Ki, inhibition constant; P-gp, P-glycoprotein; pKi, negative decimal logarithm of inhibition constant.
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Interestingly, both important Phe724 and Val978 residues 

are present in the interaction. It has been previously shown 

that these residues in mice and Phe728/Val982 in humans 

are playing pivotal roles in P-gp protection from MTS 

(methanethiosulfonate) labeling by verapamil, indicating 

their importance for drug binding.44,45

Additionally, due to the hydrophobic effect, the number 

of aromatic rings in selected molecules might also play a role 

in establishing the π–π stacking interactions between them 

and aromatic residues of P-gp. In this regard, the GF120918 

compound is composed of a maximal number of aromatic 

rings (four) to be driven by a significant contribution from 

stacking interactions between its rings and the aromatic 

bases of Phe299, 310, 766, and 833, and Tyr303 and 306 

residues. The other molecules include three aromatic rings 

for itraconazole and astemizole, two rings for ketoconazole 

and verapamil, and one ring for quinidine. Hence, it can be 

concluded that the presence of aromatic rings involved in the 

π–π stacking interactions is also important for the binding 

activity of the inhibitors.

Figure 5 receptor–ligand interaction diagrams for six binding sites of the same protein (murine 3g60 P-glycoprotein) each with a different ligand molecule bond. The ligands 
are: (A) gF120918, (B) itraconazole, (C) ketoconazole, (D) astemizole, (E) quinidine, and (F) verapamil. The spoked arcs represent protein residues making nonbonded 
(hydrophobic) contacts with the ligand. The contacted ligand atoms are shown with spokes radiating back. The red ellipses in each plot indicate protein residues that are in 
common to those associated with the QZ59-rrr ligand.
Abbreviation: QZ59-rrr, cyclic-tris-(r)-valineselenazole. 
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Conclusion
In this current study, we report an extensive in silico structure-

based screening of 1,300 different P-gp inhibitors by the gradi-

ent optimization method, using POLSCORE functions. On the 

basis of the large amount of data on  versatile P-gp inhibitors, 

the filtering and ranking of chemical compounds was per-

formed and examined systematically. The use of AutoDock 

Vina, together with POLSCORE, to estimate the pKi values 

for P-gp–inhibitor complexes was concomitant with experi-

mentally determined affinities (IC
50

 or pIC
50

) for GF120918, 

itraconazole, ketoconazole, astemizole, quinidine, and vera-

pamil compounds. A strong correlation (r2=0.80, F=16.27, 

n=6, P,0.0157) was observed for inhibition constants (Ki
exp

 

or pKi
exp

) calculated from experimental IC
50

 values and 

POLSCORE-predicted constants (Ki
POLSCORE

 or pKi
POLSCORE

)  

using a linear regression fitting technique. The hydrophobic 

forces involved in the interaction between the P-gp protein and 

analyzed molecules largely contributed to the inhibition effect. 

To our knowledge, this is the first attempt to filter and examine 

a large P-gp inhibitor database by gradient optimization dock-

ing algorithm combined with POLSCORE functions.
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