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Kurzzusammenfassung

Die Untersuchung von interagierende Multiagent-Modellen ist ein neues mathematis-
ches Forschungsfeld, das sich mit dem Gruppenverhalten von Tieren beziehungsweise
Sozialverhalten von Menschen. Eine interessante Eigenschaft der Multiagentensys-
teme ist kollektives Verhalten. Eine der herausfordernden Themen, die sich mit diesen
dynamischen Modellen befassen, ist in der mathematischen Sicht eine Entwicklung
der Regelungsmechanismen, die die Zeitevolution dieser Systemen beein�ussen kön-
nen.

In der Doktorarbeit fokussieren wir uns hauptsächlich auf die Studie von Proble-
men der Steuerbarkeit, Stabilität und optimalen Regelung für Multiagentensysteme
anhand drei Modellen wie folgt: Das erste ist die Hegselmann- Krause opinion forma-
tion Modell. Die HK-Dynamik beschreibt die Änderung der Meinungen von einzel-
nen Personen aufgrund der Interaktionen mit den Anderen. Die Studie dieses Model
fokussiert auf bestimmte Regelungen, um die Meinungen der Agenten zu betreiben,
damit eine gewünschte Zustimmung erreicht wird. Das zweite Model ist das Hei-
der social balance (HB) Modell. Die HB-Dynamik beschreibt die Evolution von
Beziehungen in einem sozialen Netzwerk. Ein Ziel der Untersuchung dieses Systems
ist die Konstruktion der Regelungsfunktion um die Beziehungen zu steuern, damit
eine Freundschaft erreicht wird. Das dritte Modell ist ein Schar-Modell, das in biol-
ogischen Systemen beobachteten kollektive Bewegung beschreibt. Das Schar-Model
unter Berücksichtigung beinhaltet Selbstantrieb, Friktion, Attraktion Repulsion und
Anpassungsfähigkeiten. Wir untersuchen einen Regler für die Steuerung des Schar-
Systems, um eine gewünschte Trajektorie zu verfolgen. Üblich wie alle dieser Systeme
soll laut unsere Strategie ein Hauptagent, der sich mit alle anderen Mitgliedern des
Systems interagieren, hinzugefügt werden und das Regelungsmechanismus inkludiert
werden.

Unserer Regelung anhand dem Vorgehen mit Führungsverhalten ist unter Verwen-
dung von klassischen theoretischen Regelungsmethode und ein Schema der modell-
prädiktiven Regelung entwickelt. Zur Ausführung der genannten Methode wird für
jedes Modell die Stabilität der korrespondierenden Linearsystem in der Nähe von
Konsensus untersucht. Ferner wird die lokale Regelbarkeit geprüft. Nur in dem
Hegselmann-Krause opinion formation Modell. Der Regler wird so bestimmt, dass die
Meinungen der Agenten gesteuert werden können. Dadurch konvergiert es global zu
eine gewünschten Zustimmung. Die MPC-Vorgehensweise ist eine optimale Regelung
Strategie, die auf numerische Optimierung basiert. Zu Verwendung des MPC-Shema
werden die optimalen Regelungsproblemen für jedes Modell formuliert, wo sich die
objektive Funktionen in Abhängigkeit von den gewünschten objective des Problems
unterscheidet. Die erforderliche Optimalitätsbedingungen erster Ordnung für jedes
Problem sind präsentiert. Auÿerdem für die numerische Prozess, eine Sequenz von
o�enen diskreten Optimalitätssystemen ist nach dem expliziten Runge-Kutta Schema



gelöst. In dem Optimierungsverfahren ist ein nicht linear konjugierter Gradientlöser
umgesetzt. Schlieÿlich sind numerische Experimenten in der Lage, die Eigenschaften
der Multiagent-Modellen zu untersuchen und die Fähigkeiten der gezielten Regel-
strategie zu beweisen. Die Strategie nutzt zu betreiben Multiagentensysteme, um
einen gewünschten Konsensus zu erreichen und eine gegebene Trajektorie zu verfol-
gen.



Abstract

The investigation of interacting multi-agent models is a new �eld of mathematical
research with application to the study of behavior in groups of animals or community
of people. One interesting feature of multi-agent systems is collective behavior. From
the mathematical point of view, one of the challenging issues considering with these
dynamical models is development of control mechanisms that are able to in�uence
the time evolution of these systems.

In this thesis, we focus on the study of controllability, stabilization and optimal con-
trol problems for multi-agent systems considering three models as follows: The �rst
one is the Hegselmann Krause opinion formation (HK) model. The HK dynamics
describes how individuals' opinions are changed by the interaction with others taking
place in a bounded domain of con�dence. The study of this model focuses on de-
termining feedback controls in order to drive the agents' opinions to reach a desired
agreement. The second model is the Heider social balance (HB) model. The HB
dynamics explains the evolution of relationships in a social network. One purpose
of studying this system is the construction of control function in oder to steer the
relationship to reach a friendship state. The third model that we discuss is a �ock-
ing model describing collective motion observed in biological systems. The �ocking
model under consideration includes self-propelling, friction, attraction, repulsion, and
alignment features. We investigate a control for steering the �ocking system to track
a desired trajectory. Common to all these systems is our strategy to add a leader
agent that interacts with all other members of the system and includes the control
mechanism.

Our control through leadership approach is developed using classical theoretical con-
trol methods and a model predictive control (MPC) scheme. To apply the former
method, for each model the stability of the corresponding linearized system near con-
sensus is investigated. Further, local controllability is examined. However, only in the
Hegselmann-Krause opinion formation model, the feedback control is determined in
order to steer agents' opinions to globally converge to a desired agreement. The MPC
approach is an optimal control strategy based on numerical optimization. To apply
the MPC scheme, optimal control problems for each model are formulated where the
objective functions are di�erent depending on the desired objective of the problem.
The �rst-oder necessary optimality conditions for each problem are presented. More-
over for the numerical treatment, a sequence of open-loop discrete optimality systems
is solved by accurate Runge-Kutta schemes, and in the optimization procedure, a
nonlinear conjugate gradient solver is implemented. Finally, numerical experiments
are performed to investigate the properties of the multi-agent models and demon-
strate the ability of the proposed control strategies to drive multi-agent systems to
attain a desired consensus and to track a given trajectory.





Contents

1 Introduction 1

2 Multi-agent models 7

2.1 The Hegselmann-Krause opinion formation model . . . . . . . . . . . 7
2.2 The Heider social balance model . . . . . . . . . . . . . . . . . . . . . 10
2.3 Flocking models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 A self-propelling and friction model . . . . . . . . . . . . . . . 15
2.3.2 The Cucker-Smale model . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 A re�ned �ocking model . . . . . . . . . . . . . . . . . . . . . 23

3 Controllability and stabilization of multi-agent systems 27

3.1 Controllability and stabilization . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 The notions of controllability . . . . . . . . . . . . . . . . . . 30
3.1.2 The notions of stabilization . . . . . . . . . . . . . . . . . . . 31
3.1.3 Linearization and local stability . . . . . . . . . . . . . . . . . 31

3.2 Controllability of the Hegselmann-Krause opinion formation model . . 33
3.2.1 Global stabilization . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Local controllability . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Controllability of the Heider social balance model . . . . . . . . . . . 39
3.3.1 Stability of the Heider social balance model . . . . . . . . . . 39
3.3.2 Local controllability of the Heider social balance model . . . . 43

3.4 Controllability of the re�ned �ocking model . . . . . . . . . . . . . . 46
3.4.1 Stability of the re�ned �ocking system . . . . . . . . . . . . . 50
3.4.2 Local controllability of a re�ned �ocking system . . . . . . . . 54

4 Optimal control of multi-agent systems 57

4.1 Formulation of optimal control problems . . . . . . . . . . . . . . . . 58
4.2 Optimal control of the Hegselmann-Krause opinion formation model . 65
4.3 Optimal control of the Heider social balance model . . . . . . . . . . 68
4.4 Optimal control of a re�ned �ocking model . . . . . . . . . . . . . . . 70

5 Numerical discretization and optimization 75

5.1 A Runge-Kutta discretization scheme . . . . . . . . . . . . . . . . . . 75
5.2 The model predictive control scheme . . . . . . . . . . . . . . . . . . 85

i



6 Numerical experiments 87

6.1 The Hegselmann-Krause opinion formation model . . . . . . . . . . . 87
6.2 The Heider social balance model . . . . . . . . . . . . . . . . . . . . . 98
6.3 A re�ned �ocking model . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Conclusions 115

A Appendix 117

A.1 Initial-value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.2 Results of functional analysis . . . . . . . . . . . . . . . . . . . . . . 118

ii



Chapter 1

Introduction

In recent years mathematical models of multiple interacting agents have been increas-
ingly investigated. These models are inspired by systems observed in biology and life
science, as for instance, collective motion of birds, school of �shes, and motion of
group of animals, as well as of cells that are attracted by a chemical substance. Also
human social behavior is intensively studied by means of multi-agent systems.

From the mathematical point of view, the dynamics of multi-agent systems poses a
wealth of questions concerning stability, synchronization, and phase transition of the
formed structures [37]. On the other hand, research on these systems essentially re-
lies on computer simulation that requires the development of accurate discretization
schemes and their analysis. In addition, in application there is the important issue
of controlling these systems to attain given objectives, for example, a group of birds
moving toward food sources, people making decision to vote a political party, etc. In
many situations, only few individuals are aware of a given task and thus convergence
to consensus of the whole group is relevant. For this propose, observation in nature
and computer simulation suggest that a hierarchical group dynamics is fundamental
for coherent control of multi-agent systems [66]. In particular, this hierarchical lead-
ership concept is discussed in [3, 13, 16, 33, 39, 75, 82, 83], where an external leader
is considered that interacts with all member agents giving rise to aggregation states
and convergence towards consensus.

This thesis contributes to the mathematical investigation of multiple agent systems
focusing on the modeling of a new control mechanism based on hierarchical leader-
ship in the sense that the control function does not apply directly to all agents but
indirectly through the interaction with a controlling leader. In particular, we aim at
studying the stabilization, controllability, and optimal control problems with multi-
agent dynamical systems based on leadership.

The main focus of this work is to investigate control strategies for three representative
multi-agent models outlined as follows:
The �rst model that we consider is the opinion formation model known as the
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Chapter 1

Hegselmann-Krause (HK) model where the evolution of the opinion depends on in-
teractions among the agents taking place in a bounded domain of con�dence; see [51].
We consider the HK model with leadership where the control function is implemented
on the leader dynamics. We develop a feedback control to globally achieve the con-
sensus and then discuss local controllability. Moreover, we investigate an optimal
control problem governed by the HK model with given objectives.

The second multi-agent model that we consider is the Heider social balance (HB)
model describing the dynamics of social balance. The key concept of the social bal-
ance according to the Heider theory is de�ned based on the relation of triads of people
represented as graphs, where each node represents an individual and edge connect-
ing two people represents their social relation. To each edge, a value corresponds
to friendship or hostility: positive values represent a friendly relationship, while, a
negative value corresponds to a con�icting relation. Our purpose is to investigate an
optimal control strategy for the continuous time Heider balance model proposed in
[55]. For the control strategy, an additional `reference' agent enters in the network
with a connection to all people of the network. This agent acts on the network by
modifying the values of the edges that connect to it with the purpose to attain a
desired objective. However, in this case, the control functions represent the values
of the edges connecting to the reference agent, while in the HK model the control is
implemented in the leader agent.

The third multi-agent model that we investigate is a re�ned �ocking model that in-
cludes self-propelling, friction, short-range repulsion, long-range attraction, and align-
ment features. This model draws primary references on [8, 9, 27, 56, 58, 78], that
have been continuously re�ned by numerous researchers by introducing additional
interaction forces to explain di�erent observed behaviors in real multi-agent systems;
see [1, 24, 25, 64]. On the other hand, the presence of a leader in �ocking has been
considered in, e.g., [3, 33, 75]. Based on a re�ned �ocking model, we develop an
optimal control scheme where the control mechanism is implemented on the leader of
the �ock and the control action applies to all agents through the mutual interaction
mechanism. The purpose of constructing the control strategy is to steer the evolution
of �ocking to converge to group pattern or track a desired trajectory.

Summarizing, the main purpose of this thesis is to model and validate a new im-
plementable and e�ective control strategy that accommodates model nonlinearities
and di�erent optimization objectives for multi-agent systems that include most of the
recently proposed interaction mechanisms.

This thesis consists of three main parts. In the �rst part, we discuss the control
strategies in order to steer the system to attain consensus for multi-agent systems
focusing on HK, HB, and �ocking models that can be put in the following general
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Introduction

control a�ne form,

ẋ = f(x) +
nc∑
i=1

gi(x)ui, (1.1)

where x is state of the system. The control variable ui represents an external input
that is able to in�uence the evolution of the state variable. The vector �eld f(x)
describes the free dynamics. The vector �elds g1(x), . . . , gnc(x) are the control vector
�elds. However, in our study the vector �eld gi(x) are constant. Therefore, the system
(1.1) can be simpli�ed by introducing a control matrix, say B. The system (1.1) can
be written as follows

ẋ = f(x) + Bu. (1.2)

Additional issues like stability, controllability are also considered in this part.

In the second part, we consider the formulation of optimal control problems for the
multi-agent systems. A control can be required to achieve a target con�guration and
to follow a desired trajectory. This optimal control problem can be formulated as
follows

min
x,u

J(x,u) :=
1

2
‖x(T )− xdes(T )‖2 +

∫ T

0

l(x)dt+
ν

2
‖u(t)‖2

L2 , (1.3)

subject to ẋ = f(x) + Bu(t), t ∈ [0, T ],

x ∈ H1((0, T );Rnx), u ∈ U = L2((0, T );Rnc).

We consider a tracking functional of the agents' trajectories that includes the cost of
the control function. The �rst tracking term in (1.3) measures the tracking error to
the given con�guration with respect to a desired target position. The second term
of the objective functional, l(x) represents a functional of trajectory. The resulting
optimization problem with a di�erential constraint given by the multi-agent model is
solved using the adjoint method where the solution to the optimal control problem is
characterized by the solution of the optimality system that consists of the multi-agent
model, the related adjoint equations, and an optimality condition.

The third part of this thesis is dedicated to numerical analysis of optimal control prob-
lem. The multi-agent optimality system is discretized with a Runge-Kutta scheme
that is appropriate to compute an accurate gradient required in the implementation
of an e�cient conjugate gradient solution process [47, 50, 49]. We remark that this
solution process solves an open-loop control problem in a �nite time horizon. In or-
der to construct a closed-loop control procedure, we consider a sequence of open-loop
control problems on subsequent time intervals such that the �nal state of the multi-
agent system at the end of one interval represents the initial state for the next interval.

3



Chapter 1

Speci�cally, we implement an instance of the model predictive control (MPC) strat-
egy [44, 62].

This thesis is organized as follows:
In Chapter 2, we provide an overview of multi-agent models that is central to the
study in this thesis. Speci�cally, we illustrate Hegselmann-Krause opinion formation
(HK) model in Section 2.1. We discuss the Heider social balance (HB) model in Sec-
tion 2.2. In Section 2.3, we discuss a new �ocking model that includes self-propelling,
friction, attraction and repulsion, alignment features, and the presence of a leader.
The main focus on this chapter is to present a description of multi-agent models to-
gether with theoretical concepts corresponding to the existence of solutions of these
systems. Moreover, results of numerical simulation of each model are shown to in-
vestigate the behavior of the model and considering di�erent ranges of values of the
parameters that characterize the model.

In Chapter 3, we start with a discussion of essential concepts of controllability and
stabilization for the general system (1.2), which are used in this thesis. In Section 3.2,
we formulate a control problem for the HK model and a feedback control function is
developed for purpose of global stabilization which is the main result of this chapter
as seen in Theorem 7. Further, local controllability is investigated. In Section 3.3, we
discuss local stability of a linearized HB system and then local controllability of the
HB model is examined. In the last section of this chapter, we discuss the stability
of �ocking model. In particular, consensus in collective motions is investigated. This
section is completed by investigating local controllability of our re�ned �ocking model.

In Chapter 4, an optimal control of multi-agent systems is formulated. We discuss
theoretical issues regarding existence of optimal controls and corresponding �rst-
order necessary optimality systems, which are the main results of this chapter. In
particular, the existence of an optimal control is proved in Theorem 8 and the cor-
responding �rst-order necessary optimality system is proved in Theorem 9. Optimal
control problems for HK, HB, and our �ocking models are discussed in Section 4.2,
Section 4.3, and Section 4.4, respectively. Corresponding to di�erent models, dif-
ferent objective functionals are considered. Existence of minimizers and �rst-order
necessary conditions are derived by using the theoretical results proved in Section 4.1.

In Chapter 5, we discuss two main numerical issues. In Section 5.1, a Runge-Kutta
discretization scheme is investigated that guarantees a high-order accuracy of the
numerical solution to the optimality system. In Section 5.2, we discuss a model pre-
dictive control strategy and a nonlinear conjugate gradient optimization procedure.

In Chapter 6, results of numerical experiments are presented to validate the ef-
fectiveness of the leader-based control strategy. In Section 6.1, we start illustrating
the numerical results of the HK system with a leader and global stabilizing feedback
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control. Further, numerical solution obtained from MPC is presented. In Section 6.2,
numerical results of optimal control problems for the HB model are illustrated. In
Section 6.3, we present results of numerical experiments for a re�ned �ocking model.
An appendix with frequently used results is included in this thesis. A section of con-
clusion completes this thesis.

Parts of the results discussed in this thesis can be found in the following publications

1. Al�o Borzì and Suttida Wongkaew. Modeling and control through leadership of a
re�ned �ocking system, Mathematical Models and Methods in Applied Sciences,
25.02, (2015): 255-282.

2. Suttida Wongkaew, Marco Caponigro, and Al�o Borzì. On the control through
leadership of the Hegselmann Krause opinion formation model, Mathematical
Models and Methods in Applied Sciences, 25.03, (2015): 565-585.

3. Suttida Wongkaew, Marco Caponigro, Krzysztof Kuªakowski and Al�o Borzì.
On the control of the Heider balance model, accepted to the European Physical
Journal Special Topics (EPJ-ST).
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Chapter 2

Multi-agent models

In recent years, there has been a growing interest in the understanding and modeling
of multi-agent systems that are observed in biology, ecology, physics, social sciences,
and other occurrences of evolution systems; see, e.g., [10, 71] for reviews, and see
[10, 14, 18, 34, 35, 40, 57, 73, 85] for speci�c examples of multi-agent systems. Fur-
thermore, the investigation on multi-agent models has boosted recent technological
developments in the construction of multi-agent systems as communication networks
and swarming robots [61, 79]. These systems play an important role in the under-
standing of many natural collective phenomena that result from basic agent-to-agent
interaction rules; see [23, 37] and references therein. A study of a set of agents inter-
acting with a continuum can be seen in reference [31].

In this chapter, we introduce representative multi-agent models that are the focus of
this thesis. In Section 2.1, we consider a model of opinion formation. Next, in Section
2.2 a nonlinear dynamic of social balance focused on Heider theory is discussed. For
both models the problem of steering a group of agents to a desired common state by
exploiting a leader is addressed in the next chapter. In Section 2.3, we give an overview
of collective models and formulate a new feature of the �ocking model that includes
self-propelling, friction, attraction, repulsion and alignment features and specially the
presence of a leader.

2.1 The Hegselmann-Krause opinion formation model

The fact that social networks have signi�cant e�ect on people behavior and on their
opinions motives the investigation of the dynamics of using mathematical models; see
[11, 12, 67]. In general, systems describing a great variety of network-structured phe-
nomena stem from agent-based models as seen in [12, 13, 14, 18, 20, 21]. In particular,
one of the most representative classes of agent-based models explaining phenomena
in social sciences is the class of the opinion formation models; see, e.g., [38, 51, 77]
and [2, 11, 39, 59, 60, 82] for further developments.

7



Chapter 2

In this thesis, we focus on the Hegselmann-Krause (HK) model [51] where the evolu-
tion of the opinion depends on interactions among agents taking place in a bounded
domain of con�dence. In this model, the system of N interacting agents whose opin-
ions are located in Rd is given by

ẋof
b (t) =

N∑
j=1
j 6=b

abj(x
of
j (t)− xof

b (t)), for b = 1, ..., N, (2.1)

with given initial positions xof
b (0) ∈ Rd, for b = 1, . . . , N . The state of the system,

representing the agents' opinions is denoted by xof = (xof
1 , ..., x

of
N) ∈ RdN .

In the dynamics (2.1),
∑N

j=1 abj(x
of
b − xof

j ) is the weighted value of con�dence. The
key idea of the HK model is that each agent updates his opinion by averaging the
opinions of his neighborhoods with the following factor

abj = a(‖xof
b (t)− xof

j (t)‖),

given by a function a(ρ) : [0,∞)→ [0, 1] of the distance ρ between the position of his
opinions and representing the interaction rate dependence on the limited con�dence
domain. The function a = a(ρ) is given by the following smooth-cuto� function

a(ρ) = a(ρ; δ, ε) :=


1, 0 ≤ ρ ≤ δ,
ϕ(ρ), δ < ρ < (δ + ε),
0, (δ + ε) ≤ ρ,

(2.2)

where δ is the bounded con�dence distance and the function

ϕ(ρ) : [δ, δ + ε]→ [0, 1], ϕ(δ) = 1, ϕ(δ + ε) = 0, (2.3)

is a decreasing smooth function, and ε > 0 is a parameter of the HK model that
de�nes the width of the region where the cuto� function decays to zero. An example
of smooth-cuto� function is given as follows

Example 1. The smooth-cuto� function for the HK model is given by

a(ρ) = a(ρ; δ, ε) =


1, 0 ≤ ρ ≤ δ,
1
2

+ 1
2

tanh
(

1
ρ−δ + 1

ρ−(δ+ε)

)
, δ < ρ < (δ + ε),

0, (δ + ε) ≤ ρ.

where ρ is the distance between position of agent's opinion and δ is the con�dence
interval.
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Figure 2.1: An example of the smooth-cuto� function with δ = 4 and ε = 2.

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

20

30

40

50

60

time(t)

x
o
f (t

)

The position of agents’ opinions

Figure 2.2: Numerical results with the opinion formation model with 50 interacting
agents; δ = 2.5 and ε = 0.05.
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In Figure (2.2) we plot the time evolution of the HK model for given initial values
xof
b (0), b = 1, . . . , N , and we have δ is con�dent interval. The opinions xof

b (t), b =
1, . . . , N, converge to some limit opinion con�guration, xof∗

b in �nite time, that is, for
each agent b, there exists time tb > 0 such that

xof
b (t) = xof∗

b , ∀t ≥ tb.

In the following, we introduce the control of the HK model where the control mech-
anism is implemented on the dynamics of the leader. The equations are governed by
the following,

ẋof
0 (t) = uof(t), (2.4)

ẋof
b (t) =

N∑
j=1

abj(x
of
j (t)− xof

b (t)) + cb(x
of
0 (t)− xof

b (t)), for b = 1, ..., N,

with given initial positions xof
i (0) ∈ Rd, for i = 0, 1, . . . , N . The state of the system,

representing the agents' and the leader's opinions is xof = (xof
0 , x

of
1 , ..., x

of
N) ∈ (Rd)N+1 .

We denote the leader by the index 0 and with the index b = 1, . . . , N , we denote the
N agents. The control uof(t) is a measurable function and belongs to the following
set,

Uof = {uof ∈ L∞([0, T ];Rd) : ‖uof‖∞ ≤M}.

The �rst term in the dynamics (2.4),
∑N

j=1 abj(x
of
b − xof

j ) comes from the original HK
model de�ned in (2.2). The second term in the dynamics (2.4) models the action
of the leader on the b-th agent. A leader can be de�ned as one agent with a high
level of con�dence and self-esteem, that has the ability to withstand criticism, so that
its dynamics is not in�uenced by the other agents' opinions. The in�uence of the
opinion of the leader on the group opinion in decision making is given by the term
cb(x

of
0 (t)− xof

b (t)). The parameter

cb := γφ(‖xof
b − xof

0 ‖), (2.5)

represents the rate of relationship between the leader and other agents, where φ :
[0,∞) → (0, 1] is a smooth non-increasing positive function such that φ(0) = 1 and
limd→∞ φ(d) = 0, and where the strength of the opinion leader is represented by the
parameter γ > 0. In other words the leader has the ability to in�uence every agent
with a factor that is inversely proportional to its distance from the agent.

2.2 The Heider social balance model

The social balance theory proposed by F. Heider [52, 53] attempts to model how
people develop their relationships with other people and with objects in their envi-
ronment based on a cognitive consistency motive that drives toward psychological
balance. This motive urges to maintain one's values and beliefs over time resulting
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(a) A simple graph with three com-
munities

(b) Community structure in techno-
logical networks

Figure 2.3: Figure(a) and Figure(b) show a social network and community structure
in technological networks, respectively, [42].

in the preference to have a balanced state where the a�ect valence in the system
multiplies out to a positive result. Speci�cally, in the relation of three people, bal-
ance state occurs when all sign multiplication of sentiment relations is positive. In
this way, balance state will occur when there are sentiment relations with signs all
positive or two negatives and one positive. We refer to sentiment relation between
two people as a linking edge to which a positive value is associated in the case of
friendship or otherwise a negative value in the case of hostility.

In a system of many people, the concept of social balance is related to the balance
of each triad consisting of friendly and hostile edges. The resulting system can be
investigated in the framework of network dynamics by using mathematical modeling
based on agent-based simulation and in the framework of graph theory where nodes
represent individuals and their links represent relationships; see [4, 5, 6, 63, 69] for a
partial list of references on these approaches.

From a mathematical point of view, it is certainly advantageous to consider the con-
tinuous time Heider balance system [55]. In fact, in this case powerful tools for the
investigation of the dynamics of this system can be applied; we refer to [55, 63] for
some fundamental results and to [5, 6, 63, 83] for further development and applica-
tions.
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The Heider social balance (HB) model involving N agents is proposed in [55]. This
model is as follows

ẋhb
ij = c(xhb

ij (t);R)
N∑
k=1
k 6=i,j

xhb
ik x

hb
kj , for i, j = 1, ..., N, and i 6= j, (2.6)

with given initial conditions xhb
ij (t0) = xhb

0,ij, and the indices i, j represent individuals
in the network and xhb

ij ∈ R denotes the relationship between the agents i and j. A
positive value of xhb

ij represents friendship; conversely, a negative value of xhb
ij expresses

hostility. We have

sign(xhb
ij ) :=


1, if i and j are friends,
0, if i and j have no relationship,
−1, if i and j are enemies.

(2.7)

We notice that in the dynamics given by (2.6), xhb
ii = 0 and we assume that each

agent is connected to all agents in the network, that is, the social structure can be
seen as fully connected graph, and xhb

ij = xhb
ji for any i and j.

The function c : R→ R in (2.6) is de�ned as follows

c(xhb
ij ;R) =

1

N − 2

(
1−

(xhb
ij )2

R2

)
, R > 0. (2.8)

A value c(xhb
ij ;R) := cij is added to system for sake of avoiding the di�culty in nu-

merical simulation. Without this term the value xhb
ij would diverge much faster than

others and leads the system to unbounded state.

Notice that in a fully connected network with N nodes, the total number of relations
Nr and triads of relations N4 are given by

Nr =
N(N − 1)

2
, (2.9)

N4 =
N(N − 1)(N − 2)

6
,

respectively. In the following, we present the control of the HB model where the
controlling agent is linked to all agents of the network. The resulting system of
relationship of N interacting agents together with one reference agent is governed by
the following set of di�erential equations

ẋhb
0i (t) = uhb

i (t) (2.10)

ẋhb
ij (t) =

1

N − 2

(
1−

(xhb
ij )2

R2

)
N∑
k=1
k 6=i,j

xhb
ik x

hb
kj + γxhb

0i x
hb
0j , for i, j = 1, ..., N,

12
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Figure 2.4: Balanced and unbalanced state of triads with full and dash lines represent
friend and hostility, respectively, [69]

with given initial relationships xhb
ij (t0) = xhb

ij (0). The index 0 denotes the leader,
and the index i denotes the i-th people in the network. The variables xhb

0i , i =
1, ..., N , denote the relationships between leader and the other people, while the xhb

ij

represent the relationships between people in the community. The function uhb
i (t) ∈

L2([0, T ],R) represents the control and the parameter γ > 0 is added in order to

avoid divergence of states. We notice that the model (2.10) now has Nr =
(N + 1)N

2
equations, whereas Nc = N equations are related to the controlling links. Denote
with Nuc = Nr −Nc.

2.3 Flocking models

Flocking models are well-known multi-agent models describing the collective behavior
of a large aggregation of animals. The motion of the individuals in the group is the
consequence of two natural behaviors. On the one hand, animals desire to stay close
to the group. On the other hand, when they stay too close, they try to keep distance
in order to avoid collision with other individuals. Reynolds observed these behaviors
and developed the collective motion consisting of three fundamental characteristics
of collective motion known as cohesion, separation, and alignment rules.

1. Cohesion: An agent attempts to stay close to others in the group,

2. Separation: Agents avoid collisions with neighbors,

3. Alignment: Each agent attempts to match its velocity with others.

13
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(a) A school of �shes

(b) A �ock of birds

Figure 2.5: Collective motion observed in nature. Figure(a) shows mills in school of
�shes. This picture is form [http://kanso.usc.edu/]. Figure(b) illustrates the �ock of
birds. This picture was taken by Christo�er A Rasmussen on 26 September 2007.

Recently, there has been a surge of interest in mathematical models of �ocking systems
based mainly on these three fundamental forces. These forces become predominant
each on a di�erent region, in other words, there are three fundamental regions of
in�uence as follows:

Regions of in�uences,

1. The repulsion region this region is characterized by the tendency of an agent
of moving apart from another agent within a certain distance in order to avoid
collision.

2. The alignment region the agent tries to identify the possible direction of the
group and matches its velocity with that of other individuals in the group.

3. The attraction region this is the outer region which models the in�uence of
inherent socialization in agents. That is, when an agent feels itself too far apart
from the group, it will try to join the group.

A three-zone model corresponding to these regions of in�uence contains three interac-
tion mechanisms: short-range repulsion, alignment, and long-range attraction. This
model draws primary references on [8, 9, 27, 56, 58, 78], and further continues re�ne-
ment by numerous researchers by introducing additional interaction forces to explain
di�erent observed behaviors from real multi-agent systems in nature; see [1, 25, 24, 64].
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Figure 2.6: Regions of in�uences, Ref. [23]

Next, we present a brief description of a representative �ocking model starting with
self-propelling and friction mechanisms.

2.3.1 A self-propelling and friction model

Consider a group of agents with the following equations of motion

ẋfm
b = vfm

b , (2.11)

v̇fm
b = (α− β‖vfm

b ‖2)vfm
b +Mb, for b = 1, ..., N.

where xfm
b , v

fm
b ∈ Rd represent the position and velocity of b-th agent, for b = 1, ..., N ,

where d is the space dimension. The notations ẋfm
b and v̇fm

b represent the derivatives
of xfm

b and vfm
b with respect to time t. The index b stands for the b-th agent of the

�ocking system.

The term (α − β‖vfm
b ‖2)vfm

b represents self-propelling and friction force. A notation
‖ · ‖ stands for the Euclidean norm. The parameter α > 0 models self-propulsion of
agents, whereas the parameter β > 0 corresponds to the presence of friction given by
Rayleigh's law. In the case that only the term (α − β‖vfm

b ‖2)vfm
b appears as a force

acting to the system, then the motion of the agent develops towards a balance of the
propelling and friction forces such that the asymptotic speed of each agent takes the
value ‖v‖ =

√
α
β
, independently of the orientation.

The forceMb : (Rd)N → Rd represents short-range and long-range interaction between
agents. This force draws primarily on the work [37] and is given as follows

Mb = − 1

N

∑
j 6=b

∇xfmb
U(‖xfm

b − xfm
j ‖), for b = 1, ..., N, (2.12)
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where ∇xU(‖x − y‖) denotes the gradient of U with respect to x. The function
U : Rd × Rd → R represents the following Morse potential

Ubj := U(ρbj) = −Cae
−ρbj
la + Cre

−ρbj
lr , (2.13)

where ρbj = ‖xfm
b − xfm

j ‖ is the Euclidean distance between the b-th agent and the
j-th agent, the coe�cients Ca and Cr de�ne the attractive and repulsive strengths,
respectively, and la, lr are attractive and repulsive length scales, respectively.
The derivative of the Morse potential is evaluated as follows∑

j 6=b

∇xfmb
U(ρbj) =

∑
j 6=b

∇xfmb

(
−Cae

−ρij
la + Cre

−ρbj
lr

)

=
∑
j 6=b

(
xfm
b − xfm

j

ρbj

)
∂

∂ρij

(
−Cae

−ρbj
la + Cre

−ρbj
lr

)

=
∑
j 6=b

(
xfm
b − xfm

j

ρbj

)(
Ca
la
e
−ρbj
la − Cr

lr
e
−ρbj
lr

)
.

In the case of Morse potential, the patterns of aggregation depend on the values of the
coe�cients C = Cr/Ca and l = lr/la. The di�erent behaviors of �ocking observed
in two dimensions are classi�ed by using the concepts of H-stability phase diagram
[37] corresponding to the choice of coe�cients C and l. We have four cases discussed
below.

1. Cr > Ca and lr > la.
In this case, repulsion has greater magnitude than attraction. This means that
repulsive force dominates and leads to the fact that agents are repelled from
others at all distances. As a consequence, a social aggregate would not exist.

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

distance (ρ)

p
o

te
n

ti
a
l 
(U

(ρ
))

Morse Potential

(a) Potential Function

Distance(;)
0 10 20 30 40 50 60 70 80 90 100

F
o

rc
e

0

0.5

1

1.5

2

2.5
Comparison between attractive force and repulsive force

Attractive Force
Repulsive Force

(b) Attractive and repulsive force

Figure 2.7: Figure(a) depicts a Morse potential function with Cr = 50, Ca = 20, lr =
20 and la = 10. Figure(b) shows comparison between attractive and repulsive forces
where dash and full lines represent attractive and repulsive force, respectively.
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Figure 2.8: Motion representing with the choice Cr > Ca and lr > la.

2. Cr < Ca and lr > la
It can be seen that attraction dominates close to the origin, conversely, repulsive
force dominates at large distance. Consequently, agent would either �ee away
from each other or collapse to a point.
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(b) Attractive and repulsive force

Figure 2.9: Figure(a) shows a Morse potential function with Cr = 20, Ca = 50, lr = 20
and la = 10. Figure(b) shows comparison between attractive and repulsive force where
dash and full lines represent attractive and repulsive force, respectively.
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Figure 2.10: Motion representing with the choice Cr < Ca and lr > la.

3. Cr < Ca and lr < la
In this case attraction is always stronger that repulsion. Therefore, agents
always get closer to each other. Thus, we expect that the equilibrium state to
be a tight cluster.
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Figure 2.11: Figure(a) shows a Morse potential function with Cr = 60, Ca = 100, lr =
50 and la = 100. Figure(b) shows comparison between attractive and repulsive force
where dash and full lines represent attractive and repulsive forces, respectively.
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Figure 2.12: Motion representing with the choice Cr < Ca and lr < la.

4. Cr > Ca and lr < la
This case results in short-range repulsion and long-range attraction. It is the
most interesting case since short-range repulsion and long-range attraction are
biologically relevant. Here, the potential has a global minimum and an equilib-
rium spacing (dmin) between two agents exists; therefore, the pattern of aggre-
gation is formed.
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Figure 2.13: Figure(a) shows a Morse potential function with Cr = 10, Ca = 5, lr = 5
and la = 20. Figure(b) shows comparison between attractive and repulsive force
where dash and full lines represent attractive and repulsive forces, respectively.
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Figure 2.14: Motion representing with the choice Cr > Ca and lr < la.

Figure 2.15: Classi�cation of di�erent regions of collective motion of (2.11), [37].

It can be seen in the stability diagram given in Figure 2.15 that regions are divided
into two main parts. On the one hand, H-stable regions corresponding to parameters
C and l where Cld > 1 are placed in region V and VI. In region V, the potential
function has no local minimum at �nite inter-agent distance. It is the case of net
repulsive behavior and cohesive group structure is not observed. In regions VI, we �nd
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the most interesting dynamics since short-range repulsion and long-range attraction
are obtained. On the other hand, H-unstable or catastrophic region is related to
Cld < 1. In this case, when agents stay initially well separated, then they tend to
move rotationally with constant speed ‖v‖ =

α

β
. Further, single or double mills are

observed.

2.3.2 The Cucker-Smale model

The Cucker -Smale model (CS) concerns the orientation of the agents' velocities
[35, 36]. It is the extension of the three-zone model. The key idea of this model
stems from the observation that each agent adjusts its velocity based on a weighted
average of the relative velocities of the other agents in the �ock. The CS system has
the following structure

ẋfm
b = vfm

b ,

v̇fm
b =

1

N

N∑
j=1

K(‖xfm
b − xfm

j ‖)(vfm
j − vfm

b ), for b = 1, ..., N,

where K(y) =
γ

(α2 + y2)σ
is a connectivity function depending on the distance be-

tween agents and parameters γ, α, and σ ≥ 0.

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance (d) 

K
(d

)

Connectivity Function

Figure 2.16: illustrates the connectivity function with parameters γ = 1, α = 1, and
σ = 0.2

With given initial conditions the solution to the Cucker-Smale (CS) model depends on
the parameters γ, α and σ, that is, if σ < 1

2
, then the velocities vfm

b tend asymptotically
to a common limit v∗ as can be seen in the following theorem; see also in references
[19, 20, 35, 36, 45, 46].
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Theorem 1. (Unconditional consensus emergence)[20, 45]
Let (xfm(t), vfm(t)) ∈ C1([0,∞);Rd(2N)) be the solution of the Cucker-Smale system
and for b = 1, ..., N , we de�ne

Xmax(t) = max
b
‖xfm

b (t)− xfm
b (0)‖, X0

max = X(0),

Vmax(t) = max
b
‖vfm

b (t)‖, V 0
max = V (0).

Then one of the following holds,

• if 0 < σ < 1
2
, then

Vmax(t) ≤ V 0
maxe

−K(2λ)t, ∃λ > 0,

• if σ = 1
2
, then

lim
t→∞

Vmax(t) = 0.

Consider the symmetric bilinear form

B(u, v) =
1

2N2

∑
i,j

〈ui − uj, vi − vj〉 =
1

N

N∑
i=1

〈ui, vi〉 − 〈ū, v̄〉,

X(t) = B(x(t), x(t)), V (t) = B(v(t), v(t)).

Theorem 2. (Conditional consensus emergence)[20, 45].
Let (xfm

0 , vfm
0 ) ∈ RdN×RdN be such that X0 = B(xfm

0 , xfm
0 ) and V0 = B(vfm

0 , vfm
0 ) satisfy∫ ∞

√
NX0

a(
√

2Nr)dr >
√
V0.

Then the solution with initial data (xfm
0 , vfm

0 ) tends to consensus.
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Figure 2.17: Results of numerical experiments with the CS model with di�erent choice
of the parameter σ. Figure(a) and Figure(b) show results with σ = 0.2 and σ = 5,
respectively.
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2.3.3 A re�ned �ocking model

In this section, we present a modi�ed �ocking model which is a combination of three
fundamental behaviors of interacting agents, that is self-propelling, friction, short-
range repulsion and long-range attraction, and alignment. Furthermore, an external
leader is included in the system. A re�ned �ocking dynamical system of N interacting
agents with one leader in Rd, where d is the space dimension, is presented as follows

ẋfm
b = vfm

b , (2.14)

v̇fm
b = Sb +Mb + Eb, for b = 1, ..., N,

where xfm
b , v

fm
b ∈ Rd represent the position and velocity of b-th agent, respectively,

for b = 1, ..., N. The indices b denote the b-th agent of the �ocking system. The �rst
term in the dynamics system Si represents self-propelling and friction force presented
as

Sb = (α− β‖vfm
b ‖2)vfm

b , for b = 1, ..., N. (2.15)

The second terms, Mb is related to short-range repulsive and long-range attractive
forces.

Mb = − 1

N

∑
j 6=i

∇xfmb
U(‖xfm

b − xfm
j ‖), for b = 1, ..., N. (2.16)

The force Eb is concerning the orientation of the agent's velocities based on the fact
that a bird moving with su�ciently large velocity v will react only to birds observed
within a conic-shaped observation domain. This force is modi�ed version of the
Cucker-Smale model. Notice that symmetry of the CS force leads to a conservation
of momentum that is not observed in a �ock of birds [1]. The reason is the existence
of a blind zone. To explain this fact, consider the case of two agents such that the
1st agent tries to follow the 2nd agent who is unaware of this fact and thus it does
not respond to the 1st agent. To correct the CS model for this limitation, in [1] a
vision cone is added. That is, an agent at position x moving with velocity v will
react only to agents at position y observed within a conic-shaped domain de�ned by
cos(y − x, v) ∈ (δ2, δ1), where the constants δ1 > δ2 are given. As a consequence, the
CS connectivity function is replaced by the following

K̃(x− y, v) =
γ

(1 + ‖x− y‖2)σ
· g
(

(y − x)

‖y − x‖
· v

‖v‖

)
,

where the vision cuto� function g is given by

g(z) =


0, if z ≤ δ2,
1
2
− 1

2
tanh

(
1

z−δ2 + 1
z−δ1

)
, if δ2 < z < δ1,

1, if z ≥ δ1

z =
〈y − x, v〉
‖y − x‖‖v‖

,
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where 〈·, ·〉 is the scalar product in Euclidean space. The alignment forces are given
by

Eb =
1

N

∑
j 6=b

K̃(xfm
b − xfm

j , v
fm
b )(vfm

j − vfm
b ), for b = 1, ..., N. (2.17)

Figure 2.18: Cone of vision for a bird, Ref. [1]

Next, we present the control of the re�ned �ocking system with the presence of leader
given by

ẋfm
0 (t) = vfm

0 (t), (2.18)

ẋfm
b (t) = vfm

b (t),

v̇fm
0 (t) = S0 +M0 + E0 + ufm(t),

v̇fm
b (t) = Sb +Mb + Eb + Lb, for b = 1, ..., N,

where xfm
i , v

fm
i ∈ Rd represent the position and velocity of i-th agent, respectively,

for i = 0, 1, ..., N . The index 0 refers to the leader and the indices b denote the b-th
agent of the �ocking system. The function ufm : [0, T ] → Rd is control function. In
this case, the control strategy is implemented on the dynamics of velocity of leader
for the purpose of force the �ocking to reach the group pattern or follow the desired
trajectory.

The �rst term in the dynamics system Si represents self-propelling and friction forces
de�ned in (2.15), that is,

Si = (α− β‖vfm
i ‖2)vfm

i , for i = 0, 1, ..., N. (2.19)

The forceMi is related to short-range repulsive and long-range attractive forces as de-
�ned in (2.16). The force Ei corresponds to alignment and its structure was addressed
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in (2.17). Now, our �ocking system is included a leader; hence, we have

Mi = − 1

N + 1

∑
j 6=i

∇xfmi
U(‖xfm

i − xfm
j ‖), (2.20)

Ei =
1

N + 1

∑
j 6=i

K̃(xfm
i − xfm

j , v
fm
i )(vfm

j − vfm
i ), for i = 0, 1, ..., N. (2.21)

Finally, the force Lb in (2.18) models the action of the external leader. For this
purpose, we consider the approach in [7] where the formula of the attraction-repulsion
with the leader is given by

Lb = −γ1∇xfmb
U(‖xfm

b − xfm
0 ‖), for b = 1, ..., N, (2.22)

where the leader diversity with respect to the group is represented by the interaction-
strength parameter γ1 > 0, while a similar Morse potential U with di�erent attractive
and repulsive coe�cients, C0

a , C
0
r , l

0
a, and l

0
r , are used. Because of the di�erent coe�-

cients, we have di�erent attractive and repulsive strengths and length scales between
the leader and the agents in the �ock.
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Controllability and stabilization of

multi-agent systems

In this chapter, we study controllability and stabilization of multi-agent systems. The
purpose of this study is to design control strategies for the group of agents in order to
accomplish collective behaviors in some prescribed sense. In particular, in the multi-
agent dynamical system under consideration the control input is assigned directly to
the leader and for each agent is allowed to receive the in�uence of a controller through
the interaction with a controlling leader.

In the �rst section of this chapter, we give a review of general theories corresponding
to controllability and stabilization for a nonlinear system, that includes the dynamics
of our multi- agent systems. This section is divided into two parts. In the �rst part,
the de�nitions of local and global controllability are introduced and some theoretical
concepts, conditions, and assumptions on the systems to be controllable are discussed.
In the second part, the concept of stability is provided, together with the Lyapunov
method that is a well-known tool to examine the stability of the system. Next, in
Section 3.2, the control of the Hegselmann-Krause opinion formation system and the
consensus problem are discussed. The concept of global and local stabilization are
investigated. Furthermore, some theoretical conditions corresponding to controllabil-
ity are proved. In Section 3.3, the stability of a social balance dynamical system is
investigated considering the linearization of the Heider balance system. Furthermore,
the local controllability is discussed. Finally, in Section 3.4, we introduce the de�ni-
tion of consensus for a �ocking model, and in the subsequent section, we investigate
the stability of �ocking. We close this chapter with studying local controllability of
our re�ned �ocking model.

3.1 Controllability and stabilization

In this section, we are concerned with control problems with a structure that includes
the multi-agent system. The system under consideration is control a�ne presented
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as follows,

ẋ(t) = f(x(t)) +
nc∑
j=1

gj(x(t))uj(t), (3.1)

x(0) = x0,

where x(t) = (x1(t), x2(t), ..., xnx(t))
> ∈ Rnx, is state of the system, which character-

izes the system at time t, t ∈ [0, T ], T > 0 a terminal time. The number of state
variables is denoted by nx and x0 is a given initial condition. A control variable
u : [0, T ] → Rnc, u = (u1, ..., unc)

T , represents an external input that is able to
in�uence the future evolution of the state variable. In the vast majority of control
problems, the controllers are restricted to a certain control region together with a
class of control functions, called an admissible set U. Throughout this chapter, the
control function is speci�ed to be an element of a normed linear space of real-vector
valued function, which is in the class of piecewise continuous functions. The vector
�eld f : Rnx → Rnx describes the free dynamics and is assumed to be smooth. The
vector �elds g1(x), . . . , gnc(x) ∈ Rnx are control vector �elds. In our case, gj(x) are
constant vector �elds. For a sake of convenience, the control vector �elds can be
organized into an nx× nc matrix as follows

B =
(
g1(x) g2(x) . . . gnc(x).

)
(3.2)

As a consequence, the system (3.1) can be equivalently written in the following form

ẋ(t) = f(x(t)) + Bu(t), (3.3)

x(0) = x0.

Remark 1. In our framework of control through leadership, the control function is
implemented on leader. Therefore, without loss of generality, assuming that the state
x1 represents the leader, the matrix B takes the following form,

B =


1
0
...
0


Notations 1. We use the following notations,

• 〈·, ·〉 denotes the Euclidean scalar product in Rd,

• ‖ · ‖ is the Euclidean norm,

• 〈·, ·〉L2 the L2- inner product de�ned by

〈y, z〉L2 :=

∫ T

0

〈y, z〉dt, for every y, z ∈ L2((0, T );Rd),
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• ‖ · ‖L2 the L2-norm de�ned by

‖w‖L2 :=

(∫ T

0

d∑
j=1

‖wj‖2dt

) 1
2

, for every w ∈ L2((0, T );Rd).

Before investigating the controllability of the problem(3.3), we discuss �rst the ex-
istence and uniqueness of the solutions to (3.3) in the sense of Charathéodory; see
Theorem A.1 in Appendix A.1 and the references [76, 81].

Proposition 1. Consider the system (3.3) with x ∈ D ⊂ Rnx and given u ∈
L2((0, T );Rnc). Let D ⊂ Rnx and assume that f : D → Rnx is locally Lipschitz
continuous on D. Then the system (3.3) admits the unique solution for any T > 0
and any initial condition.

Proof. Let u be a given control function. Let us de�ne F : [0, T ]× Rnx → Rnx as

F(t,x) = f(x) + Bu(t). (3.4)

Since u ∈ L2((0, T );Rnc) and f(x) ∈ C1(Rnx;Rnx), then F has the following proper-
ties,

• F(·,x) : [0, T ]→ Rnx is measurable, for each �xed x,

• F(t, ·) : Rnx → Rnx is continuous, for each �xed t.

Let y, z ∈ X, we can see that

‖F(t,y)− F(t, z)‖ = ‖f(y) + Bu(t)− f(z)−Bu(t)‖
≤ ‖f(y)− f(z)‖
≤ c‖y − z‖, c > 0.

Consequently, F is Lipschitz in x. Next, the locally integrable property of F is
examined. For a given x ∈ X, we have that

‖F(t,x)‖ = ‖f(x) + Bu(t)‖
≤ ‖f(x)‖+ ‖B‖‖u(t)‖

≤

(
nx∑
n=1

|fn(x)|2
)1/2

+ ‖B‖‖u(t)‖

≤

(
nx∑
n=1

|fn(x)|2∞

)1/2

+ ‖B‖‖u(t)‖

≤
(
nx ·max

n
|fn(x)|2∞

)1/2

+ ‖B‖‖u(t)‖

≤ α + ‖B‖‖u(t)‖.

Hence, by [76](Theorem 54), the system (3.3) admits a unique solution for any T and
any initial condition.
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Remark 2. We assume that the conditions stated in Proposition 1 hold, then we have

x(T ) = x0 +

∫ T

0

(f(x(s)) + Bu(s))ds,

‖x(T )‖ ≤ ‖x0‖+

∫ T

0

‖f(x(s)) + Bu(s)‖ds

≤ ‖x0‖+

∫ T

0

(α + ‖B‖‖u(s)‖)ds

≤ ‖x0‖+ αT + ‖B‖
∫ T

0

‖u(s)‖ds

≤ c(‖x0‖, α, T ) + β(‖B‖)‖u‖L1(0,T ).

3.1.1 The notions of controllability

In this section, the concepts of controllability for the system (3.3) are brie�y provided;
see e.g. [32, 54, 68, 76]. Given x̂ ∈ X ⊆ Rnx, the general idea of controllability is
that it is possible to �nd the set of points which can be reached from x̂ in �nite
time by a suitable choice of the input function u. Before we arrive the de�nition
of controllability, let us give a notation of the control and the trajectory or state
corresponding to a control.

De�nition 1. Let a control u : [0, T ] → U be a measurable function. A unique
solution x(t, 0,x0,u) of (3.3) at time t ≥ 0, is called a response of the system, or
the state of the system, corresponding to the control u and to the initial condition
x(0) = x0.

De�nition 2. The nonlinear system (3.3) is called controllable if for any two points
y, z ∈ X there exists a �nite time T and an admissible control function u : [0, T ]→ U
such that x(T, 0,y,u) = z.

De�nition 3. A point (x∗,u∗) is called an equilibrium point of the control system
(3.3), if

f(x∗) + Bu∗ = 0.

De�nition 4. Let (x∗,u∗) be an equilibrium point of the system (3.3). The linearized
control system at (x∗,u∗) of the control system (3.3) is the following linear control
system

ẋ = Ax + Bu, (3.5)

where A denotes the Jacobian matrix of f(x) with respect to x at x∗, A = ∇xf(x
∗).

The next goal is to determine conditions for controllability in terms of the matrices
A,B. For this, we de�ne the Kalman controllability matrix,

K(A,B) =
[
B AB A2B · · · Anx−1B

]
∈ Rnx×(nx·nc). (3.6)
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Theorem 3. The linearized system (3.5) is controllable, if one of the following holds,

1. K(A,B) has full rank.

2. [λInx −A,B] has full rank, for each eigenvalue λ of A.

Theorem 4. If the linearized control system (3.5) is controllable, then the system
(3.3) is locally controllable.

From the linearized system (3.5), one can easily check whether the linearized system
is controllable or not by using Kalman rank condition. We remark that if the Kalman
rank condition is not ful�lled, then it cannot be inferred any controllability property
of system (3.3).

3.1.2 The notions of stabilization

In this section, we discuss the problem of designing nonlinear controls of feedback type
in order to construct a closed-loop system having the desired behavior. Corresponding
to this design objective, the tasks of control systems can be divided into two categories:
stabilization and tracking problems.

• Stabilization
In this problem, the control is designed so that the state of the closed-loop
system will be stabilized around an equilibrium point. The control is called a
stabilizer.

• Tracking problem

the design objective is to construct a control so that the system output tracks
a given desired trajectory.

In this thesis, both control problems for the multi-agent systems are studied. In the
following, we provide some key concepts concerning stability that are main tools for
investigating the stability properties of the multi-agent systems; see in [32, 54, 68, 76].

3.1.3 Linearization and local stability

Consider the system (3.3) without control.

ẋ = f(x), (3.7)

x(0) = x0,� t ∈ [0, T ],

where f : D ⊂ Rnx → Rnx is a locally Lipschitz continuous on D. Let x∗ be an
equilibrium point of the system (3.7), that is, f(x∗) = 0 . Our aim is studying the
behavior of the dynamics in a neighborhood of an equilibrium point x∗.
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De�nition 5. The equilibrium point x∗ of (3.7) is

• locally stable, if for any neighborhood B0(x∗) , there exists a neighborhood
B1(x∗) such that

x0 ∈ B1(x∗) ⇒ the solution of (3.7) x(t;x0) ∈ B0(x∗), ∀t ≥ 0.

• locally asymptotically stable, if x∗ is locally stable and there exists a neigh-
borhood B2(x∗) such that all solution x(t;x0) of (3.7) with x0 ∈ B2(x∗) con-
verges to x∗ as t→∞.

The above de�nition is provided in order to characterize the local behavior of the
systems, in the sequel, we give a description of the Lyapunov's linearization method,
which is the classical tool to check whether an equilibrium point x∗ is locally stable
or not. Assuming that f(x) is continuously di�erentiable, the system (3.7) can be
written as follows

ẋ = Ax, (3.8)

with A = ∇xf(x
∗). The following results state the relationship between the stability

of the linear system (3.8) and that of the original nonlinear system.

Theorem 5. ( Lyapunov's linearization method )

• If all eigenvalue of A are strictly in the left-half complex plane, then for non-
linear system the equilibrium point is asymptotically stable, that is,

Re(λk(A)) < 0, ∀k ⇒ x∗ is locally asymptotically stable.

• If the linearized system is unstable, that is, at least one eigenvalue of A is
strictly in the right-half complex plane, then the equilibrium point is unstable
for nonlinear system.

∃k, Re(λk(A)) > 0 ⇒ x∗ is unstable.

Theorem 6. (Lyapunov theorem for local stability)
Let x∗ ∈ Br ⊂ Rnx be an equilibrium point of (3.7). Assume that V : Br → R is
continuously di�erentiable function, and has the following properties

1. V (x∗) = 0.

2. V (x) > 0, for all x ∈ D , x 6= x∗.

3. ∇xV · f(x) ≤ 0 along all trajectories of the system in Br.

Then the equilibrium point x∗ is locally stable. If ∇xV · f(x) < 0 in Br , then x∗ is
asymptotically stable.
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3.2 Controllability of the Hegselmann-Krause opin-

ion formation model

In this section, we investigate the controllability property of the HK system (2.4)
where the control input is included in the system and acts only on the leader. The
HK model with control through leadership is given by

ẋof
0 (t) = uof(t), (3.9)

ẋof
b (t) =

N∑
j=1

abj(x
of
j (t)− xof

b (t)) + cb(x
of
0 (t)− xof

b (t)), for b = 1, ..., N,

with given initial positions xof
i (0) ∈ Rd for i = 0, 1, . . . , N .

From the above system (3.9), it can be written in general form as follows

ẋof(t) = fof(xof) + Bofuof(t), xof(t0) = xof
0 , (3.10)

where xof = (xof
0 , x

of
1 , ..., x

of
N) ∈ Rd(N+1), uof ∈ Uof , fof : Rd(N+1) → Rd(N+1),

fof(xof) :=


0d,1∑N

j=1 a1j(x
of
j − xof

1 ) + c1(xof
0 − xof

1 )∑N
j=1 a2j(x

of
j − xof

2 ) + c2(xof
0 − xof

2 )
...∑N

j=1 aNj(x
of
j − xof

N) + cN(xof
0 − xof

N)

 , Bof =


Id
0d,d
0d,d
...

0d,d

 , (3.11)

where Im denote m×m identity matrix and 0m,n stands for m× n zero matrix.

Consider the smooth function ϕ de�ned in (2.3 ). It can be seen that ϕ ∈ C1(D̄; [0, 1]);
as a consequence, abj de�ned in (2.2) is locally Lipschitz continuous, for b, j =
1, ..., N . Moreover, the function cb is also locally Lipschitz continuous, because of
φ ∈ C∞([0,∞); (0, 1). It is concluded that the function fof de�ned in (3.11) is lo-
cally Lipschitz continuous and by Proposition 1, the system (3.11) admits the unique
solution for any T > 0 and any initial conditions.

3.2.1 Global stabilization

The uncontrolled dynamics of system (2.4) is governed by local interactions and
asymptotically leads to the formation of clusters. Although, from the mathemati-
cal point of view, clusters are a stable con�guration for the system, we focus on the
possibility to steer, using the leader's action on the group, all agents to the same
unique opinion, that is, to consensus.
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De�nition 6 (Consensus).
We call consensus a con�guration in which the states of all agents are equal, that is,

xof∗ = (xof
0 , x

of
1 , ..., x

of
N) ∈ Rd(N+1) such that xof

0 = xof
1 = · · · = xof

N . (3.12)

We say that a solution xof of system (2.4) tends to consensus if there exists a con-
sensus con�guration xof∗ ∈ Rd(N+1) such that limt→+∞ xof(t) = xof∗.

Being consensus an equilibrium for system (2.4), the problem of steering asymptoti-
cally the system to consensus is, in fact, a stabilization problem.

Theorem 7. For every initial condition xof(0) ∈ Rd(N+1) and every M > 0 there
exists a control t 7→ uof(t) ∈ Rd satisfying ‖uof‖ ≤M such that the associated solution
xof(t) with initial data xof(0) tends to consensus.

Proof. For every t let n̄ = n̄(t) be the smallest index in {1, . . . , N} such that

‖xof
n̄ (t)− xof

0 (t)‖ ≥ ‖xof
b (t)− xof

0 (t)‖, for every b = 1, . . . , N.

Let

α(t) =
1

2
min

{
φ(‖xof

n̄ (t)− xof
0 (t)‖)

N − φ(‖xof
n̄ (t)− xof

0 (t)‖)
,

2M

γ
∑

b ‖xof
b (t)− xof

0 (t)‖

}
.

Note that α(t) > 0 for every t ≥ 0. Consider the control law

uof(t) = α(t)γ
N∑
b=1

φ(‖xof
b (t)− xof

0 (t)‖)(xof
b (t)− xof

0 (t)). (3.13)

The control u is admissible since

‖uof‖ ≤ αγ
N∑
b=1

φ(‖xof
b − xof

0 ‖)‖xof
b − xof

0 ‖ ≤ αγ
N∑
b=1

‖xof
b (t)− xof

0 (t)‖ ≤M.

Consider t ≥ 0 and assume, for simplicity of notation, that n̄ = 1,

cb = γφ(‖xof
b (t)− xof

0 (t)‖), and abj = a(‖xof
b (t)− xof

j (t)‖).
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Then we have
1

2

d

dt
‖xof

1 − xof
0 ‖2 = 〈ẋof

1 − ẋof
0 , x

of
1 − xof

0 〉

= 〈ẋof
1 , x

of
1 − xof

0 〉 − 〈ẋof
0 , x

of
1 − xof

0 〉

=
N∑
j=2

a1j〈xof
j − xof

1 , x
of
1 − xof

0 〉 − c1‖xof
1 − xof

0 ‖2

− α
N∑
j=2

cj〈xof
j − xof

0 , x
of
1 − xof

0 〉 − αc1‖xof
1 − xof

0 ‖2

=
N∑
j=2

a1j〈xof
j − xof

0 , x
of
1 − xof

0 〉 −
N∑
j=2

a1j‖xof
1 − xof

0 ‖2 − c1‖xof
1 − xof

0 ‖2

− α
N∑
j=2

cj〈xof
j − xof

0 , x
of
1 − xof

0 〉 − αc1‖xof
1 − xof

0 ‖2

≤
N∑
j=2

|a1j − αcj|‖xof
j − xof

0 ‖‖xof
1 − xof

0 ‖ −

(
N∑
j=2

a1j + (1 + α)c1

)
‖xof

1 − xof
0 ‖2

≤

(
N∑
j=2

(|a1j − αcj| − a1j)− (1 + α)c1

)
‖xof

1 − xof
0 ‖2.

Now if j is such that a1j − αcj ≥ 0 then |a1j − αcj| − a1j = −αcj < 0. Hence

N∑
j=2

(|a1j − αcj| − a1j)− (1 + α)c1 ≤
N∑
j=2

(αcj − 2a1j)− (1 + α)c1

≤ Nα− (1 + α)c1

= (N − c1)α− c1

≤ −c1

2
.

In particular maxb ‖xof
b (t)− xof

0 (t)‖ is decreasing for every t. Therefore, we have

φ(max
b
‖xof

b (t)− xof
0 (t)‖) ≥ φ(max

b
‖xof

i (0)− xof
0 (0)‖),

and denoting by I0 = maxb ‖xof
b (0)− xof

0 (0)‖ we have that

max
b
‖xof

b (t)− xof
0 (t)‖2 ≤ exp

(
−tγφ(I0)

2

)
I0,

which gives that

‖xof
b (t)− xof

0 (t)‖ → 0, as t→∞, for every b = 1, . . . , N,

in other words the system tends to consensus.

We discuss global stabilization of the HK model by using design tools of feedback
control law based on an L∞ approach; see Ref. [65] Section 2.
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3.2.2 Local controllability

In this section, we discuss a local controllability strategy for the HK model. No
information can be deduced on the local controllability around consensus from the
linearized systems since, as the following example shows, it is not controllable.

Example 2. Consider the linearization of system (3.9) around the consensus xof∗.
The linearized system for the variable x̃of = xof − xof∗ is given by

˙̃x
of

= Aof x̃of + Bofuof , (3.14)

where Aof is a block matrix and B is a block vector as follows

Aof =


0d,d 0d,d · · · 0d,d
c1Id −(

∑
j 6=1 a1j + c1)Id · · · a1NId

...
...

. . .
...

cNId aN1Id · · · −(
∑

j 6=N aNj + cN)Id

 , Bof =


Id
0d,d
...

0d,d

 ,

where 0d,d is the d× d null matrix and Id is the identity.
Consider the simple case N + 1 = 3 and d = 1. In this case the eigenvalues of Aof

are given by

λ1 = 0,

λ2 = −1− d1

2
− d2

2
−
√

(d1 − d2)2 + 4

2
,

λ3 = −1− d1

2
− d2

2
+

√
(d1 − d2)2 + 4

2
,

where d1 = γφ(‖xof
1 −xof

0 ‖2) and d2 = γφ(‖xof
2 −xof

0 ‖2). The corresponding eigenvectors
are

w1 =

1
1
1

 , w2 =


0

d2

2
− d1

2
−
√

(d1 − d2)2 + 4

2
1

 ,

and

w3 =


0

d2

2
− d1

2
+

√
(d1 − d2)2 + 4

2
1

 .

In particular, by classical controllability results, such as the Hautus Lemma (see, for
instance, Ref. [76] Lemma 3.3.7) system (3.21) is not controllable since wT2 B

of = 0
(and wT3 B

of = 0).

Following this example, it is possible to prove that if φ is constant on an interval
[0, δ], then system (3.9) is not locally controllable. Indeed in this case, system (3.9) is
linear whenever ‖xof −xof∗‖ < δ for some consensus xof∗ and does not verify the rank
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condition, necessary for controllability. For more general situation the local control-
lability depends on the communication rate φ between the leader and the agents and,
a priori, we cannot infer the local controllability of the system. However the system
veri�es a very interesting local controllability property, that is the local controllability
to consensus. As the following lemma states, if the agents are su�ciently close to each
other they are attracted by the leader. The proof relies on the Lyapunov stability of
the leader's state xof

0 .

Lemma 1. Let u(t) = 0 for every t ≥ 0. If ‖xof
i (0) − xof

0 ‖ ≤ δ/N for every i =
1, . . . , N then

lim
t→∞

xof
i (t) = xof

0 , for every i = 1, . . . , N.

Proof. Let T ≥ 0 be the maximal time such that
∑

i ‖xof
i (t)− xof

0 ‖2 ≤ δ on t ∈ [0, T ],
with the convention that T = +∞ if

∑
i ‖xof

i (t)− xof
0 ‖2 ≤ δ for every t ≥ 0. Then for

every t ∈ [0, T ] the interaction coe�cients between agents are

aij = a(‖xof
i − xof

j ‖) = 1, for every i, j = 1, . . . , N.

For simplicity we set ci = γφ(‖xof
i (t) − xof

0 (t)‖) and we drop the dependence on t.
Hence

d

dt

1

2N

N∑
i=1

‖xof
i − xof

0 ‖2 =
1

N

N∑
i=1

〈ẋof
i , x

of
i − xof

0 〉

=
1

N

∑
i

∑
j

〈xof
j − xof

i , x
of
i − xof

0 〉 −
1

N

∑
i

ci‖xof
i − xof

0 ‖2

=
1

N

∑
i

∑
j

〈xof
j − xof

0 , x
of
i − xof

0 〉 −
∑
i

‖xof
i − xof

0 ‖2

− 1

N

∑
i

ci‖xof
i − xof

0 ‖2

≤ 1

N

∑
i

‖xof
i − xof

0 ‖
∑
j

‖xof
j − xof

0 ‖ −
∑
i

(1 + ci/N)‖xof
i − xof

0 ‖2

≤
∑
i

‖xof
i − xof

0 ‖2 −
∑
i

(1 + ci/N)‖xof
i − xof

0 ‖2

= −
∑
i

ci/N‖xof
i − xof

0 ‖2

≤ −γφ(δ/2)
1

N

∑
i

‖xof
i − xof

0 ‖2. (3.15)

In particular the function V (t) = 1
2N

∑N
i=1 ‖xof

i −xof
0 ‖2 is a Lyapunov function for the

system. Moreover for every t ≥ 0∑
i

‖xof
i (t)− xof

0 ‖ ≤
∑
i

‖xof
i (0)− xof

0 ‖ ≤ δ.

37



Chapter 3

In particular the estimate (3.15) is valid for every t ≥ 0 and

V (t) ≤ exp (−2γφ(δ/2)t)V (0),

which gives that xof
i (t)→ xof

0 as t→ +∞ for every i = 1, . . . , N .

As a consequence of this lemma and of Theorem 7, we have the following result of
global stabilization and partial controllability.

Corollary 1. For every initial condition xof(0) and for every consensus xof∗ there
exists a control u such that the associated solution xof(t) of (2.4) with initial condition
xof(0) tends to xof∗.

Proof. Thanks to Theorem 7 there exist a consensus con�guration x̄of = (x̄of , . . . , x̄of)
and a control u steering the solution xof(t) of (2.4) with initial condition xof(0) to
x̄of . Let t1 > 0 be a su�ciently large time such that

‖xof
i (t1)− xof

0 (t1)‖ ≤ δ

2N
, for every i = 1, . . . , N.

In particular,

‖xof
i (t1)− x̄of

i ‖ ≤
δ

2N
, for every i = 0, . . . , N.

Now consider the desired consensus con�guration xof∗ = (xof∗, . . . , xof∗) and a �nite
sequence of points z0 = x̄of , z1, . . . , z`, z`+1 = xof∗ such that

‖zk − zk+1‖ ≤
δ

2N
for every k = 0, . . . , `.

Now, we apply iteratively Lemma 1 in order to construct a control steering the solu-
tion to every consensus con�guration associated with the sequence z0, z1, . . . , z`, z`+1.
Assume, for k ∈ {0, . . . , `}, that there exists τ > 0 such that

‖xof
i (τ)− zk(τ)‖ ≤ δ

2N
, for every i = 0, . . . , N.

Then consider the control

u(t) =

M
zk+1 − xof

0 (t)

‖zk+1 − xof
0 (t)‖

, if zk+1 6= xof
0

0, if zk+1 = xof
0 .

Hence
1

2

d

dt
‖xof

0 (t)− zk+1‖2 = 〈u, xof
0 (t)− zk+1〉 = −M‖xof

0 (t)− zk+1‖,

in particular xof
0 reaches zk+1 in �nite time, say τk. Now ‖xof

i (τ + τk)− zk+1‖ ≤ δ/N
for every i = 1, . . . , N . Indeed for every t ∈ [τ, τ + τk] let i = i(t) be such that
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‖xof
i (t)− zk+1‖2 is maximal, then we have

d

dt
‖xof

i (t)− zk+1‖2 = 〈ẋof
i (t), xof

i (t)− zk+1〉

=
∑
j

〈xof
j (t)− xof

i (t), xof
i (t)− zk+1〉

=
∑
j

〈xof
j (t)− zk+1, x

of
i (t)− zk+1〉 −N‖xof

i (t)− zk+1‖2

≤
∑
j

‖xof
j (t)− zk+1‖‖xof

i (t)− zk+1‖ −N‖xof
i (t)− zk+1‖2,

which is smaller than or equal to 0 for the maximality of the index i. Therefore

max
j
‖xof

j (t)− zk+1‖ ≤ max
j
‖xof

j (0)− zk+1‖ ≤
δ

N
,

or every t ∈ [τ, τ + τk]. Then set the control u(t) = 0 for t > τ + τk and by Lemma 1
we have that

lim
t→∞

xof
i (t) = zk+1, for every i = 1, . . . , N.

The statement follows by induction on k = 0, . . . , `.

3.3 Controllability of the Heider social balance model

Consider the following Heider social balance model

ẋhb
ij (t) =

1

N − 2

(
1−

(xhb
ij (t))2

R2

)
N∑
k=1
k 6=i,j

xhb
ik (t)xhb

kj (t), t ∈ [0, T ], (3.16)

for i, j = 1, ..., N , where xhb = (xhb
12 , x

hb
13 , . . . , x

hb
1N , x

hb
21 , . . . , x

hb
(N−1)N) ∈ RNr is the

state of relationship of individual in the network. N and Nr represent the number of
agents and the relation of people de�ned in (2.9). The parameter R is a given positive
constant. Next, we discuss the stability of (3.16).

3.3.1 Stability of the Heider social balance model

In this section, we discuss stability of (3.16). In accordance to the Heider theory, the
stable state of the HB model is de�ned as the balance in the triad of relation 4ijk

between individuals i, j and k, and this balance is determined by the product of the
values of the corresponding edges as follows

De�nition 7. The triad 4ijk of relationship between agents i, j and k is balanced if
xhb
ij x

hb
jkx

hb
ki > 0, that is,

sign(xhb
ij x

hb
jkx

hb
ki ) = 1, (3.17)

for any i, j, k = 1, ..., N and i, j, k are not equal, otherwise the triad is imbalanced .
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Concerning the evolution of the HB model towards a balanced state, we have the
following result.

Proposition 2. If xhb
ij (0) ≥ −R, i, j = 1, . . . , N , then there exits T > 0 such that all

triads become balanced, that is, the product of links on triads 4ijk is positive

xhb
ij (T )xhb

jk (T )xhb
ki (T ) > 0 for i, j, k = 1, ..., N, and i 6= j 6= k.

Proof. consider

d

dt

 N∑
i,j,k=1
i 6=j 6=k

xhb
ij x

hb
jkx

hb
ki


=

N∑
i,j,k=1
i 6=j 6=k

(
ẋhb
ij x

hb
jkx

hb
ki + xhb

ij ẋ
hb
jkx

hb
ki + xhb

ij x
hb
jk ẋ

hb
ki

)

=
N∑
i=1

N∑
j=1
j 6=i

ẋhb
ij

 N∑
k=1
k 6=i,j

xhb
jkx

hb
ki

+
N∑
j=1

N∑
k=1
k 6=j

ẋhb
jk

 N∑
i=1
i 6=k

xhb
ji x

hb
ik

+
N∑
i=1

N∑
k=1
k 6=i

ẋhb
ki

 N∑
j=1
j 6=k

xhb
kjx

hb
ji



=

(
1

N − 2

) N∑
i=1

N∑
j=1
j 6=i

(
1−

(xhb
ij )2

R2

) N∑
k=1
k 6=i,j

xhb
ik x

hb
kj


2

+
N∑
j=1

N∑
k=1
j 6=j

(
1−

(xhb
jk )2

R2

) N∑
i=1
i 6=j,k

xhb
ji x

hb
ik


2


+

(
1

N − 2

) N∑
i=1

N∑
k=1
k 6=i

(
1− (xhb

ik )2

R2

) N∑
j=1
j 6=i,k

xhb
ij x

hb
jk


2 .

We have the following cases,

Case I : |xhb
ij | < R, for i, j = 1, ..., N and i 6= j.

In this case
d

dt

(
xhb
ij x

hb
jkx

hb
ki

)
> 0, this implies that the product of links in

each triads is increasing until ∃T > 0 such that xhb
ij = R and it yields

d

dt

(
xhb
ij x

hb
jkx

hb
ki

)
= 0.

Case II : xhb
ij > R, for i, j = 1, ..., N and i 6= j.

It is seen that
d

dt

(
xhb
ij x

hb
jkx

hb
ki

)
< 0, this implies that the product of links in each

triads is decreasing until ∃T > 0 such that
d

dt

(
xhb
ij x

hb
jkx

hb
ki

)
= 0, that is xhb

ij = R.

Case III : xhb
ij < −R, for i, j = 1, ..., N and i 6= j.

In this case
d

dt

(
xhb
ij x

hb
jkx

hb
ki

)
< 0, this implies that the product of links in
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each triads is decreasing, this means that the value of xhb
ij is decreasing and

limt→∞ x
hb
ij (t) = −∞.

The following Proposition establishes the asymptotic behavior of a balanced HB
model.

Proposition 3. If the HB model (3.16) is balanced, then

lim
t→∞

xhb
ij (t) = R or lim

t→∞
xhb
ij (t) = −R, (3.18)

for i, j = 1, ..., N and i 6= j.

Proof. Consider

V (xhb) =
1

2

N−1∑
i=1

N∑
j=i+1

((xhb
ij )2 −R2)2.

dV (xhb)

dt
=

N−1∑
i=1

N∑
j=i+1

1

2

d

dt
((xhb

ij )2 −R2)2

=
N−1∑
i=1

N∑
j=i+1

((xhb
ij )2 −R2)

(
2xhb

ij ẋ
hb
ij

)

=
N−1∑
i=1

N∑
j=i+1

((xhb
ij )2 −R2)

2xhb
ij

(
1

N − 2

)(
1−

(xhb
ij )2

R2

)
N∑
k=1
k 6=i,j

xhb
ik x

hb
kj


= − 2

N − 2

N−1∑
i=1

N∑
j=i+1

((xhb
ij )2 −R2)2

R2

N∑
k=1
k 6=i,j

xhb
ij x

hb
ik x

hb
kj

 .

Since (3.16) is balanced, every triads 4ijk is balanced, that is,

xhb
ij x

hb
ik x

hb
kj > 0, for i, j, k = 1, ..., N, and i 6= j 6= k.

It yields
dV (xhb)

dt
< 0.

As a result of Proposition 2 and Proposition 3, if the relationship value of an edge
starts with a value greater than or equal to −R, then the HB model reaches a bal-
anced state where the trajectories of relationships may divide into two groups, one of
them asymptotically reach the value R and the other the opposite value −R.

41



Chapter 3

Next, we study the dynamics of (3.16) in the neighborhood of the equilibrium points
xhb∗

1 = R̄ and xhb∗
2 = −R̄, where R̄ = (R, ..., R) ∈ RNr . For this purpose, it is

convenient to represent the HB model in the following form

ẋhb(t) = fhb(xhb), (3.19)

xhb(0) = xhb
0 , t ∈ [0, T ],

where xhb = (xhb
12 , x

hb
13 , . . . , x

hb
1N , x

hb
23 , . . . , x

hb
(N−1)N) ∈ RNr and fhb(xhb) is the dynamics

of the system.

The linearized HB model can be written as follows

ẋhb = Ahb
n xhb,

where Ahb
1 and Ahb

2 denote the Jacobian matrix of fhb with respect to xhb at xhb∗
1 and

xhb∗
2 , respectively. They are given by

Ahb
n =



∂fhb
12

∂xhb
12

(xhb∗)
∂fhb

12

∂xhb
13

(xhb∗) · · · ∂fhb
12

∂xhb
(N−1)N

(xhb∗)

∂fhb
13

∂xhb
12

(xhb∗)
∂fhb

13

∂xhb
13

(xhb∗) · · · ∂fhb
13

∂xhb
(N−1)N

(xhb∗)

... · · · · · · ...
∂fhb

(N−1)N

∂xhb
12

(xhb∗)
∂fhb

(N−1)N

∂xhb
13

(xhb∗) · · ·
∂fhb

(N−1)N

∂xhb
(N−1)N

(xhb∗)


.

Ahb
1 = ∇xhbfhb(xhb∗

1 ) =


−2R 0 · · · 0

0 −2R · · · 0
... · · · · · · ...
0 0 · · · −2R

 .

Ahb
2 = ∇xhbfhb(xhb∗

2 ) =


2R 0 · · · 0
0 2R · · · 0
... · · · · · · ...
0 0 · · · 2R

 .

Notice that with Ahb
1 , all eigenvalues of the linearized system are strictly less than

zero and therefore the equilibrium point xhb∗
1 = R̄ is asymptotically stable while the

equilibrium point xhb∗
2 = −R̄ is unstable since all eigenvalues of linearized system

about xhb∗
2 = −R̄ are strictly greater than zero.

To give experimental evidence of the theoretical results discussed above, in the Fig-
ures 3.1(a) and 3.1(b) we show numerical results of the Heider balance model with
two di�erent initial con�gurations. We chose R = 5. In Figure 3.1(a), at initial time
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initial time �nal time
total triads(N4) 1140 1140
balanced triads(N4b) 532 1140
unbalanced triads (N4ub) 608 0

Table 3.1: The number of triads of relationship between people in group for Figure
3.1(a)

initial time �nal time
total triads(N4) 1140 1140
balanced triads(N4b) 0 1140
unbalanced triads (N4ub) 1140 0

Table 3.2: The number of triads of relationship between people in group for Figure
3.1(b)

t0 = 0 the values of the relationships are distributed between (−5, 5), while in Figure
3.1(b) all people in the network start with hostility. Additional details of the results
of these experiments are given in Table 3.1 and Table 3.2, respectively.
We can see from the Figures 3.1(a) and 3.1(b) that people adjust their relationship so
that the social group is balanced at �nal time. Moreover, as predicted by Proposition
2, when the HB model reaches the balance, the �nal states of relation are divided
into two groups, one of them arrives to R, the other meets -R.
Next, we investigate numerically the stability properties of the HB model. Figure
3.2(a) shows that xhb∗

1 = R is asymptotically stable since the trajectories starting in
a neighborhood of R asymptotically reach this point. Conversely, in Figure 3.2(b),
taking a starting value close to the equilibrium point xhb∗

2 = −R, we obtain trajecto-
ries that diverge from −R.

3.3.2 Local controllability of the Heider social balance model

In this section, we discuss a local controllability strategy for the HB system. As
addressed in (2.10), we recall that the control of the HB system is governed by the
following set of di�erential equations

ẋhb
0i (t) = uhb

i (t), (3.20)

ẋhb
ij (t) =

1

N − 2

(
1−

(xhb
ij )2

R2

)
N∑
k=1
k 6=i,j

xhb
ik x

hb
kj + γxhb

0i x
hb
0j , for i, j = 1, ..., N,

with given initial relationships xhb
ij (t0) = xhb

ij (0). The number of relations , the number
of controls and the number of uncontrols are given by

Nr =
(N + 1)N

2
, Nc = N, Nuc = Nr −Nc.
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Figure 3.1: Simulation with N = 20 agents. The status of relation of individuals in
�gure(a) are started with friendship and hostility. Figure (b) show the relation of all
agents begin with hostility.
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Figure 3.2: Simulation with N = 20 agents. Figure(a) show solution . Figure (b)
show the relation of all agents begin with hostility.
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Next, we consider the linearization of this system around the equilibrium points
xhb∗

1 = R and xhb∗
2 = −R. The linearized system for the variable x̃hb = xhb − xhb∗ is

given by

˙̃x
hb

= Ãhbx̃hb + Bhbuhb, (3.21)

where Ãhb is a block matrix and Bhb is a block vector as follows

Ãhb =

(
0Nc,Nc 0Nc,Nuc
Lhb Dhb

)
, Bhb =

(
INc

0Nuc,Nuc

)
, (3.22)

where Lhb ∈ RNuc×Nc and Dhb ∈ RNuc×Nuc are presented as follows

Lhb = γ



xhb∗ xhb∗ 0 · · · 0
xhb∗ 0 xhb∗ · · · 0
...

...
... . . . ...

xhb∗ 0 0 · · · xhb∗

0 xhb∗ xhb∗ · · · 0
...

...
... . . . ...

0 0 0 xhb∗ xhb∗


Nuc,Nc

,

Dhb =


−2xhb∗ 0 · · · 0

0 −2xhb∗ · · · 0
...

... . . . 0
0 0 0 −2xhb∗


Nuc,Nuc

.

We can see that rank of the Kalmann matrix K(A,B)

K(Ãhb,Bhb) =
[
Bhb ÃhbBhb (Ãhb)2Bhb ... (Ãhb)Nr−1Bhb

]
(3.23)

=

[(
INc

0Nuc,Nc

) (
0Nc,Nc
Lhb

) (
0Nc,Nc
LhbDhb

)
...

(
0Nc,Nc

Lhb(Dhb)Nr−2

)]
.

is equal to 2Nc, that is, it has full rank if Nuc = Nc, otherwise not. If the Kalman
rank condition is ful�lled then the model (3.20) is locally controllable, otherwise one
cannot infer any controllability property for this model. An example for a locally
controllable system is given in the case of three agents and one leader such that
Nr = 6, Nc = 3, and Nuc = 3.

3.4 Controllability of the re�ned �ocking model

In this section, we investigate stability and local controllability of the re�ned �ocking
model with leadership presented in (2.18). Recall this system given by

ẋfm
0 = vfm

0 , (3.24)

ẋfm
b = vfm

b ,

v̇fm
0 = S0 +M0 + E0 + ufm(t),

v̇fm
b = Sb +Mb + Eb + Lb, for b = 1, ..., N.
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It can be written in the general form,

ẋfm = f fm(xfm) + Bfmufm(t), (3.25)

where the vector xfm := (xfm, vfm)> = (xfm
0 , xfm

1 , . . . , xfm
N , v

fm
0 , vfm

1 , . . . , vfm
N )> ∈ R2d(N+1)

is the state variable. The vector-value function f fm : R2d(N+1) → R2d(N+1) and the
constant matrix Bfm are given as follows

f fm(xfm) =



vfm
0

vfm
1
...
vfm
N

S0 +M0 + E0

S1 +M1 + E1 + L0
1

...
SN +MN + EN + L0

N


, Bfm =



0d,d
0d,d
...

0d,d
Id
0d,d
...

0d,d


. (3.26)

We write f fm(xfm) in the simple form,

f fm(xfm) =

(
fx
fv

)
, (3.27)

where the function fx ∈ Rd(N+1) and fv ∈ Rd(N+1) represent the dynamics of �ocking
corresponding to the position and velocity, respectively. They are given by

fx :=


v0

v1
...
vN

 , fv :=


S0 +M0 + E0

S0 +M1 + E1 + L1
...

SN +MN + EN + LN

 . (3.28)

The existence and uniqueness of the solution of the re�ned �ocking system require
Lipschitz continuity of the function f fm, which is a combination of several functions,
namely, Si,Mi, Ei and Li, for i = 0, 1, ..., N . In the following Propositions we discuss
Lipschitz continuity of Si, Mi, Ei, and Lb, for i = 0, 1, ..., N and b = 1, ..., N .

Let us de�ne

Dx = {y ∈ Rd : ε ≤ ‖x− y‖ ≤ c, y 6= x, and ε, c > 0} ⊂ Rd,

Dv = {v ∈ Rd : ‖v‖ ≤ c1, c1 > 0} ⊂ Rd.

Proposition 4. The function s̃ : Dv → Rd given by

s̃(w) := (α− β‖w‖2)w, α, β > 0,

is locally Lipschitz on Dv
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Proof. Since s̃ is a product of two locally Lipschitz continuous function de�ned on
Dv, namely,

s1(w) = α− β‖w‖2 and s2(w) = w.

Therefore s̃ is locally Lipschitz continuous on D. Moreover, its derivative

d

dw
s̃(w) = (α− β‖w‖2)Id − 2βww> (3.29)

is also continuous. It follows that s̃ is continuously di�erentiable, s̃ ∈ C1(Dv,Rd).

Proposition 5. Let the function m : Dx ×Dx → Rd is de�ned as

m(x, y) :=

(
Ca
la
e−
‖x−y‖
la − Cr

lr
e−
‖x−y‖
lr

)
x− y
‖x− y‖

, Ca, Cr, la, lr > 0, x 6= y.

Then m is locally Lipschitz on Dx ×Dx.

Proof. For a sake of simpli�cation, we write m(x, y) as the production of m1 and m2

given by

m1(x, y) =
Ca
la
e−
‖x−y‖
la − Cr

lr
e−
‖x−y‖
lr , and m2(x, y) =

x− y
‖x− y‖

, x 6= y.

It can be seen that m1 has the following properties

• m1 is continuous on Dx ×Dx,

• ‖m1(x, y)‖ ≤ |Ca
la
|+ |Cr

lr
|,

• the derivative of m1 with respect to x and y is continuous,

∂m1

∂x
=

(x− y)>

‖x− y‖

(
Cr
l2r
e−
‖x−y‖
lr − Ca

l2a
e−
‖x−y‖
la

)
= −∂m1

∂y
,

‖∂m1

∂x
‖ ≤ |Ca

l2a
|+ |Cr

l2r
|.

In addition, m2 is continuous on Dx ×Dx. We notice that

∂m2

∂x
=

1

‖x− y‖
Id −

(x− y)(x− y)>

‖x− y‖2
,

∂m2

∂y
= −∂m2

∂x
.

Hence m is locally Lipschitz continuous on Dx ×Dx.
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Proposition 6. Let the functions ω : Dx × Dx → R, ~ : Dx × Dx × Dv → R, and
g : R→ R are de�ned as follows,

ω(x, y) =
γ

(1 + ‖x− y‖2)σ
, (3.30)

r = ~(x, y, v) =
〈y − x, v〉
‖y − x‖‖v‖

, x 6= y, v 6= 0,

g(r) =


1, if r ≥ δ1,
1
2
− 1

2
tanh

(
1

r−δ2 + 1
r−δ1

)
, if δ2 < r < δ1,

0, if r ≤ δ2.

Let D ⊆ (Dx)
2 × (Dv)

2. The function $ : D → Rd is de�ned as

$(x, y, v, z) := ω(x, y) · g(r) · (z − v). (3.31)

Then $ is locally Lipschitz continuous on D.

Proof. It can be seen that $ has the following properties

• $ is continuous on D, due to continuity of ω on Dx ×Dx and g on R,

• ‖$(x, y, v, z)‖ ≤ (1 + ‖x‖+‖y‖+‖v‖+‖z‖), since ‖ω(x, y)‖ ≤ γ, |g(r)| ≤ 1,
and |r| ≤ 1.

The derivative of $(x, v) with respect to x, y, v, and z are given as the following,

∂$

∂x
=

(
∂ω(x, y)

∂x
g(r) + ω(x, y)

∂g(r)

∂r

∂r

∂x

)
(v − z),

∂$

∂y
=

(
∂ω(x, y)

∂y
g(r) + ω(x, y)

∂g(r)

∂r

∂r

∂y

)
(v − z),

∂$

∂v
=

(
ω(x, y)

∂g(r)

∂r

∂r

∂v

)
(v − w)− ω(x, y)g(r)Id,d,

∂$

∂z
= ω(x, y)g(r)Id,d,

where

∂ω(x, y)

∂x
=

2σ(x− y)>

(1 + ‖x− y‖2
2)σ+1

, and
∂ω(x, y)

∂y
= −∂ω(x, y)

∂x
,

d

dr
g(r) =

{
−1

2

(
tanh2

(
1

r−δ2 + 1
r−δ1

)
− 1
)(

1
(r−δ1)2

+ 1
(r−δ2)2

)
, if δ2 < r < δ1,

0, else

∂r

∂x
=

〈y − x, v〉
‖y − x‖3‖v‖

(y − x)> − v>

‖y − x‖‖v‖
, and

∂r

∂y
= −∂r

∂x
,

∂r

∂v
= − 〈y − x, v〉

‖y − x‖2‖v‖3
v> +

(y − x)>

‖y − x‖‖v‖
.
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We see that $ is Locally Lipschitz on D following from the fact that $,
∂$

∂x
,
∂$

∂y
,
∂$

∂v
,

and
∂$

∂z
are all continuous on D.

Remark 3. Let x = (x1, x2, . . . , xd) ∈ Rd ,

xx> =


x2

1 x1x2 . . . x1xd−1 x1xd
x1x2 x2

2 . . . x2xd−1 x2xd
...

...
. . .

...
...

xdx1 xdx2 . . . xdxd−1 x2
d

 .

It can be seen that ‖xx>‖ = ‖x‖2, since

‖xx>‖2 = tr
(
(xx>)>(xx>)

)
= tr

(
(x>x)(xx>)

)
= tr

(
〈x, x〉(xx>)

)
= 〈x, x〉tr

(
xx>

)
= 〈x, x〉〈x, x〉
= ‖x‖4.

⇒ ‖xx>‖ = ‖x‖2,

where tr(A) =
√
A>A, for matrix A ∈ Rn×m.

3.4.1 Stability of the re�ned �ocking system

Consider the re�ned �ocking system including a leader and without control, as follows

ẋfm = f fm(xfm), (3.32)

with given initial conditions. Let (xfm(t),vfm(t))> ∈ C1([0,∞);R2d(N+1)) be a solu-
tion of the re�ned �ocking system (3.32). The next step is to introduce notation for
discussing stability of �ocking states.

Notations 2. For every xfm(t),vfm(t) ∈ Rd(N+1), we de�ne the quantities

• The mean position and the mean velocity are denoted by

x̄fm(t) =
1

N + 1

N∑
i=0

xfm
i (t), v̄fm(t) =

1

N + 1

N∑
i=0

vfm
i (t), (3.33)

respectively, for i = 0, 1, ..., N .

• The dispersion is denoted by

Γ(xfm) =
1

2(N + 1)2

N∑
i,j=0

‖xfm
i (t)− xfm

j (t)‖2. (3.34)
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• The disagreement is de�ned as

Λ(vfm) =
1

2(N + 1)2

N∑
i,j=0

‖vfm
i (t)− vfm

j (t)‖2. (3.35)

Our aim is to investigate collective behavior of our �ocking model under the in�uence
of leadership. A control design objective is concerned with the stabilization problem,
that is, to �nd control functions that drive all states to the consensus state. From
mathematical point of view, consensus is de�ned as follows

De�nition 8. ( Consensus point ) [20]
Let Ve be a set de�ned as follows

Ve = {w = (w0, w1, . . . , wN) ∈ Rd(N+1)| w0 = w1 = . . . = wN ∈ Rd}. (3.36)

A steady con�guration of the system (3.32) (xfm,vfm) ∈ (Rd)N+1 × Ve is called a
consensus point in the sense that the dynamics originating from (x̃, ṽ) is simply
given by rigid translation xfm(t) = x̃ + tv̄fm.

De�nition 9. ( Consensus )[20]
We say that a solution (xfm(t),vfm(t)) of the system (3.32) tends to consensus e mean
the consensus parameters vector tends to the mean v̄fm, that is, if

lim
t→∞
‖vfm

i (t)− v̄fm‖ = 0, for i = 0, ..., N. (3.37)

Remark 4. The following de�nitions of consensus are equivalent:

1. limt→∞ v
fm
i (t) = v̄fm for every i = 0, 1, ..., N ,

2. limt→∞ Λ(vfm(t)) = 0.

A consensus state in our sense is known as a �ocking state having the following
properties,

1. Cohesion
Cohesion is the situation that agents stay on the bounded domain. In our case,
we observe that �ock con�guration corresponding to annulus with a radius given
by the minimum of the Morse potential, that is,

∇xU(‖xfm
i − xfm

j ‖) = 0 and ∇xU
0(‖xfm

0 − xfm
b ‖) = 0, (3.38)

for all i, j = 0, 1, . . . , N and b = 1, . . . , N , that is, in the situation that(
xfm
i − xfm

j

‖xfm
i − xfm

j ‖

)Ca
la
e
−
‖xfm

i − xfm
j ‖

la − Cr
lr
e
−
‖xfm

i − xfm
j ‖

lr

 = 0,

(
xfm

0 − xfm
b

‖xfm
b − xfm

0 ‖

)C0
a

l0a
e
−
‖xfm

0 − xfm
b ‖

l0a − C0
r

l0r
e
−
‖xfm

0 − xfm
b ‖

l0r

 = 0,
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for all i, j = 0, 1, . . . , N . Since we assume that no collision occurs, xfm
i 6= xfm

j .
As a consequence, we obtain thatCa

la
e
−
‖xfm

i − xfm
j ‖

la − Cr
lr
e
−
‖xfm

i − xfm
j ‖

lr

 = 0, (3.39)

C0
a

l0a
e
−
‖xfm

0 − xfm
b ‖

l0a − C0
r

l0r
e
−
‖xfm

0 − xfm
b ‖

l0r

 = 0.

When the swarm reaches the �ocking state, the approximated distance between
agents is obtained as follows

lim
t→∞

(
1

2(N + 1)2

N∑
i,j=0

N∑
i,j=0

‖xfm
i (t)− xfm

j (t)‖

)
= ln

(
Cr
lr

la
Ca

)
· lalr

(la − lr)
,

lim
t→∞

(
1

N

N∑
i,j=0

N∑
b=1

‖xfm
0 (t)− xfm

b (t)‖

)
= ln

(
C0
r

l0r

l0a
C0
a

)
· l0al

0
r

(l0a − l0r)
, (3.40)

with given parameters Ca, Cr, C0
a , C

0
r , la, lr, l

0
a, l

0
r > 0.

2. Alignment

Alignment is the process such that each agent tries to match its velocity to that
of other agents in the group. In a �ocking state all agents move with the same
velocity given by

vfm
0 = vfm

1 = . . . = vfm
N . (3.41)

In order to explain stability of the �ocking model, it is convenient to de�ne the
following quantities,

qij(t) :=
γ

(1 + ‖xfm
i (t)− xfm

j (t)‖2)σ
S

(
〈xfm

j − xfm
i , v

fm
i 〉

‖xfm
j (t)− xfm

i (t)‖‖vfm
i ‖

)
, (3.42)

cij(t) :=
1

‖xfm
i (t)− xfm

j (t)‖

Ca
la
e
−
‖xfm

i − xfm
j ‖

la − Cr
lr
e
−
‖xfm

i − xfm
j ‖

lr

 ,

c0
b(t) :=

γ1

‖xfm
0 (t)− xfm

b (t)‖

C0
a

l0a
e
−
‖xfm

0 − xfm
b ‖

l0a − C0
r

l0r
e
−
‖xfm

0 − xfm
b ‖

l0r

 ,

for i, j = 0, . . . , N , b = 1, . . . , N .

Proposition 7. Let Vmax(t) = maxi‖vfm
i (t)‖ and assume that Vmax(0) ≥

√
α
β
. If the

swarm reaches the cohesive state, then the velocity of the swarm stays bounded by
Vmax(0).
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Proof. Since t 7→ ‖vi(t)‖2 are C1 functions, we can for each t �nd a time interval [a, b]
which contains t and an index n̄ such that Vmax(τ) = ‖vfm

n̄ ‖ for all τ ∈ [a, b]. Since
dynamics of leader agent and followers has di�erent features; �rstly, we assume that

Vmax(t) = ‖vfm
0 (t)‖, and ‖vfm

0 (t)‖ ≥
√
α

β
.

Then by Cauchy's inequality,

〈vfm
b , v

fm
0 〉 ≤ ‖vfm

b ‖‖vfm
0 ‖ ≤ ‖vfm

0 ‖2, for b = 1, ..., N. (3.43)

Consider

1

2

d

dt
V 2

max(t) =
1

2

d

dt
‖vfm

0 (t)‖2

= 〈v̇fm
0 , vfm

0 〉

= 〈(α− β‖vfm
0 ‖2)vfm

0 , vfm
0 〉+

1

N + 1

〈∑
j 6=0

c0j(t)(x
fm
0 − xfm

j ), vfm
0

〉

+
1

N + 1

〈∑
j 6=0

q0j(t)(v
fm
j − vfm

0 ), vfm
0

〉
.

Due to ‖vfm
0 ‖2 ≥ α

β
, it yields 〈(α − β‖vfm

0 ‖2)vfm
0 , vfm

0 〉 = α‖vfm
0 ‖2 − β‖vfm

0 ‖4 < 0.

Moreover, q0j(t) ≥ 0, for j = 1, 2, . . . , N and from (3.43), we get

1

N + 1

〈∑
j 6=0

q0j(t)(v
fm
j − vfm

0 ), vfm
0

〉
≤ 0.

Since when swarms reaches the cohesive state, we have that c0j = 0, for j = 1, . . . , N .
Then

1

2

d

dt
V 2

max(t) ≤ 0. (3.44)

If Vmax(t) = ‖vfm
b (t)‖, for some k ∈ {1, 2, . . . , N}, we get the same result as above

because c0
b(t) = 0, that is,

1

2

d

dt
V 2

max(t) = 〈(α− β‖vfm
k ‖2)vfm

k , v
fm
k 〉 −

1

N + 1

〈∑
j 6=0

ckj(t)(x
fm
k − xfm

j ), vfm
k

〉

+
1

N + 1

〈∑
j 6=0

qkj(t)(v
fm
j − vfm

k ), vfm
k

〉
−
〈
c0
b(t)(x

fm
b − xfm

0 ), vfm
k

〉
≤ 0.

It can be concluded that when the swarm reaches the �ocking state, its velocity is
bounded.
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From Proposition 7, we claim that when the group of agent reaches the �ocking state,
we have

lim
t→∞
‖vfm

i (t)‖ =

√
α

β
. (3.45)

3.4.2 Local controllability of a re�ned �ocking system

The linearization of the �ocking system (3.24) at consensus xfm∗ = (xfm∗, vfm∗) can
be written as follows

ẋfm = Afmxfm + Bfmu, (3.46)

where Afm denote the Jacobian matrix of f fm with respect to xfm at consensus pre-
sented as

Afm := ∇f fm(xfm∗) =

(
∇xfx ∇vfx
∇xfv ∇vfv

)
(xfm∗), (3.47)

with ∇xfx, ∇xfx, ∇xfv, and ∇vfv given by

∇xfx = 0d(N+1),d(N+1), (3.48)

∇vfx = Id(N+1),

∇xfv = ∇xM +∇xE +∇xL,

∇vfv = ∇vS +∇vE,

where

∇xM = [∂Mij] , ∂Mij :=

(
∂Mi

∂xfm
j

)
; ∇xE = [∂Ex

ij], ∂Ex
ij :=

(
∂Ei
∂xfm

j

)
;

∇vE = [∂Ev
ij], ∂Ev

ij :=

(
∂Ei
∂vfm

j

)
; ∇xL = [∂Lij], ∂Lij :=

(
∂Li
∂xfm

j

)
;

∇vS = [∂Sij], ∂Sij :=

(
∂Si
∂vfm

j

)
,

with(
∂Mi

∂xfm
i

)
=

1

N + 1

N∑
j 6=i

[
(xfm

i − xfm
j )(xfm

i − xfm
j )>

‖(xfm
i − xfm

j )‖2

][
Ca

(la)2
e−
‖xfmi −x

fm
j ‖

la − Cr
(lr)2

e−
‖xfmi −x

fm
j ‖

lr

]

− 1

N + 1

N∑
j 6=i

[
Ca
la
e−
‖xfmi −x

fm
j ‖

la − Cr
lr
e−
‖xfmi −x

fm
j ‖

lr

][‖xfm
i − xfm

j ‖2Id − (xfm
i − xfm

j )(xfm
i − xfm

j )>

‖xfm
i − xfm

j ‖3

]
,(

∂Mi

∂xfm
j

)
= − 1

N + 1

[
(xfm

i − xfm
j )(xfm

i − xfm
j )>

‖(xfm
i − xfm

j )‖2

] [
Ca
l2a
e−
‖xfmi −x

fm
j ‖

la − Cr
l2r
e−
‖xfmi −x

fm
j ‖

lr

]

+
1

N + 1

[
Ca
la
e−
‖xfmi −x

fm
j ‖

la − Cr
lr
e−
‖xfmi −x

fm
j ‖

lr

][‖xfm
i − xfm

j ‖2Id − (xfm
i − xfm

j )(xfm
i − xfm

j )>

‖xfm
i − xfm

j ‖3

]
,
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(
∂Li
∂xfm

i

)
= γ1

[
(xfm

i − xfm
0 )(xfm

i − xfm
0 )>

‖(xfm
i − xfm

0 )‖2

][
C0
a

(l0a)
2
e
− ‖x

fm
i −x

fm
0 ‖

l0a − C0
r

(l0r)
2
e
− ‖x

fm
i −x

fm
0 ‖

l0r

]

− γ1

[
C0
a

l0a
e
− ‖x

fm
i −x

fm
0 ‖

l0a − C0
r

l0r
e
− ‖x

fm
i −x

fm
0 ‖

l0r

][
‖xfm

i − xfm
0 ‖2Id − (xfm

i − xfm
0 )(xfm

i − xfm
0 )>

‖xfm
i − xfm

0 ‖3

]
,

(
∂Li
∂xfm

0

)
= −γ1

[
(xfm

i − xfm
0 )(xfm

i − xfm
0 )>

‖(xfm
i − xfm

0 )‖2

][
C0
a

(l0a)
2
e
− ‖x

fm
i −x

fm
0 ‖

l0a − C0
r

(l0r)
2
e
− ‖x

fm
i −x

fm
0 ‖

l0r

]

+γ1

[
C0
a

l0a
e
− ‖x

fm
i −x

fm
0 ‖

l0a − C0
r

l0r
e
− ‖x

fm
i −x

fm
0 ‖

l0r

][
‖xfm

i − xfm
0 ‖2Id − (xfm

i − xfm
0 )(xfm

i − xfm
0 )>

‖xfm
i − xfm

0 ‖3

]
,(

∂Li
∂xfm

j

)
= 0,

(
∂Ei
∂xfm

i

)
=

1

N + 1

N∑
j 6=i

[
(vfm
j − vfm

i )

(
∂ω(‖xfm

i − xfm
j ‖)

∂xfm
i

)
g(r)

]

+
1

N + 1

N∑
j 6=i

[
(vfm
j − vfm

i )

(
ω(‖xfm

i − xfm
j ‖)

∂g(r)

∂g

∂r

∂xfm
i

)]
,(

∂Ei
∂xfm

j

)
=

1

N + 1

[
(vfm
j − vfm

i )

(
∂ω(‖xfm

i − xfm
j ‖)

∂xfm
j

)
g(r)

]

+
1

N + 1

[
(vfm
j − vfm

i )

(
ω(‖xfm

i − xfm
j ‖)

∂g(r)

∂r

∂r

∂xfm
j

)]
,

(
∂Ei
∂vfm

i

)
=

1

N + 1

N∑
j 6=i

[
(vfm
j − vfm

i )ω(‖xfm
i − xfm

j ‖)
∂g(r)

∂r

∂r

∂vfm
i

]
,(

∂Ei
∂vfm

j

)
=

1

N + 1
ω(‖xfm

i − xfm
j ‖)g(r)Id,(

∂Si
∂vfm

i

)
= −2βvfm

i (vfm
i )> + (α− β‖vfm

i ‖2)Id,(
∂Si
∂vfm

j

)
= 0.

Remark 5. The quantities
∂ω(‖xfm

i − xfm
j ‖)

∂xfm
i

,
∂g(r)

dr
,

∂r

∂xfm
i

,
∂r

∂vfm
i

can be calculated

by following Proposition 6.
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At consensus xfm∗, the following constraints hold(
Ca
la
e−
‖xfm∗i −xfm∗j ‖

la − Cr
lr
e−
‖xfm∗i −xfm∗j ‖2

lr

)
= 0,

(
C0
a

l0a
e
− ‖x

fm∗
0 −xfm∗b ‖2

l0a − C0
r

l0r
e
− ‖x

fm∗
0 −xfm∗b ‖

l0r

)
= 0,

and vfm∗
0 = vfm∗

1 = . . . = vfm∗
N .

As a consequence, we have that(
∂Mi

∂xfm
i

)
(xfm∗) =

1

N + 1

N∑
j 6=i

[
(xfm∗

i − xfm∗
j )(xfm∗

i − xfm∗
j )>

‖(xfm∗
i − xfm∗

j )‖2

] [
Ca

(la)2
e−
‖xfm∗i −xfmj ‖

la − Cr
(lr)2

e−
‖xfm∗i −xfm∗j ‖

lr

]
,(

∂Mi

∂xfm
j

)
(xfm∗) = − 1

N + 1

[
(xfm∗

i − xfm
j )(xfm∗

i − xfm∗
j )>

‖(xfm∗
i − xfm∗

j )‖2

] [
Ca
l2a
e−
‖xfm∗i −xfm∗j ‖

la − Cr
l2r
e−
‖xfm∗i −xfm∗j ‖

lr

]
,

(
∂Li
∂xfm

i

)
(xfm∗) = γ1

[
(xfm∗

i − xfm∗
0 )(xfm∗

i − xfm∗
0 )>

‖(xfm∗
i − xfm∗

0 )‖2

][
C0
a

(l0a)
2
e
− ‖x

fm∗
i −xfm∗0 ‖

l0a − C0
r

(l0r)
2
e
− ‖x

fm∗
i −xfm∗0 ‖

l0r

]
,

(
∂Li
∂xfm

0

)
(xfm∗) = −γ1

[
(xfm∗

i − xfm∗
0 )(xfm∗

i − xfm∗
0 )>

‖(xfm∗
i − xfm∗

0 )‖2

][
C0
a

(l0a)
2
e
− ‖x

fm∗
i −xfm∗0 ‖

l0a − C0
r

(l0r)
2
e
− ‖x

fm∗
i −xfm∗0 ‖

l0r

]
,(

∂Li
∂xfm

j

)
(xfm∗) = 0,

(
∂Ei
∂xfm

i

)
(xfm∗) = 0,

(
∂Ei
∂xfm

j

)
(xfm∗) = 0,(

∂Ei
∂vfm

i

)
(xfm∗) =

1

N + 1

∑
j 6=i

(
ω(‖xfm∗

i − xfm∗
j ‖)g(r)Id

)
,(

∂Ei
∂vfm

j

)
(xfm∗) =

1

N + 1
ω(‖xfm∗

i − xfm∗
j ‖)g(r)Id,(

∂Si
∂vfm

i

)
(xfm∗) = −2βvfm∗

i (vfm∗
i )> + (α− β‖vfm∗

i ‖2)Id,(
∂Si
∂vfm

j

)
(xfm∗) = 0.

We observe that the linearized system (3.46) is controllable if the following Kalman
operator

K(Afm,Bfm) =
[
Bfm AfmBfm (Afm)2Bfm . . . (Afm)(2d(N+1)−1)Bfm

]
(3.49)

has full rank.
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Optimal control of multi-agent

systems

In the previous chapter, we discussed the properties of controllability for constructing
a control in order to steer the multi-agent systems to reach a desired state. In this
chapter, we formulate optimal control problems governed by multi-agent systems.
Our aim is to determine the leader-based open-loop control that drives a multi-agent
system to attain a given objective. However, we use our open-loop control framework
to construct an e�ective closed-loop control strategy using the model predictive con-
trol scheme. To formulate our optimal control problems, the following components
are considered,

• A cost functional or the performance criteria,

• A multi-agent dynamical system,

• A control mechanism based on leadership.

This chapter is organized as follows: In Section 4.1, we start by describing a general
optimal control problem with the multi-agent system. The existence of our optimal
control is discussed and an optimality criteria is addressed. We discuss a set of
conditions that optimal control the satis�es. In Section 4.2, our optimal control
problem for the HK opinion formation model is formulated and analyzed. The HB
social balance model and our re�ned �ocking model is discussed in Section 4.3 and in
Section 4.4, respectively.
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4.1 Formulation of optimal control problems

We consider a class of optimal control problems for multi-agent systems. A general
formulation is given by

min
x,u

J(x,u) :=
1

2
‖x(T )− xdes(T )‖2

2 +

∫ T

0

l(x)dt+
ν

2
‖u(t)‖2

L2 , (4.1)

subject to ẋ = f(x) + Bu(t), t ∈ [0, T ] (4.2)

x ∈ X, u ∈ U = L2((0, T );Rnc),

where the variable x is the state of the system and belonging to in the following set

X := {x ∈ H1((0, T );Rnx) : x(0) = x0},

where x0 ∈ Rnx is a given initial state. The control function u : [0, T ] → Rnc

belongs to the admissible set U := L2((0, T );Rnc). The function f : Rnx → Rnx in
the dynamics of the system is assumed to be a smooth vector-valued function, f ∈
C1(Rnx;Rnx) and B ∈ Rnx×nc is a constant matrix. The function J : Rnx ×Rnc → R
is called the objective function. The function xdes : [0, T ] → Rnx in the objective
function is a given desired trajectory. The function l : Rnx → R is real-valued
function and we assume that l is continuous and continuously di�erentiable, bounded
from below and convex, l ∈ C1(Rnx;R). In particular, l may corresponds to a tracking
problem. In this case, the cost functional is designed in order to steer the state x(t)
as close as possible to a desired xdes(t). We have

l(x;xdes) =
N∑
i=0

‖xi(t)− xdes(t)‖2.

By Proposition 1, the solution x of the dynamical system (4.2) is uniquely determined
by u ∈ U. In the following, our aim is to prove that the mapping u 7→ x(u) is
sequentially weakly semi-continuous. Notice that a similar result can be found in
[28, 29].

Proposition 8. Let (um)∞m=1 be a sequence of controls such that

um ⇀ ũ in L2((0, T );Rnc).

Then the corresponding solution to (4.2) has the following property

xm := x(um) satis�es xm → x̃ = x(ũ) in C([0, T ];Rnx). (4.3)

Proof. Consider a sequence of controls um = (um1 , . . . , u
m
nc) ∈ L2((0, T );Rnc) such that

umj ⇀ ũj in L2((0, T );R).
Let (xm)∞m=1 be a sequence in H1((0, T );Rnx) de�ned as xm := x(um).
By Proposition 1, we know that xm is bounded together with the re�exive property of
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H1((0, T );Rnx), hence by using Banach-Eberlein-�mulian Theorem A.4 (see Appendix
A.2), we can extract a weakly convergent subsequence that

xml ⇀ x̃ in H1((0, T );Rnx) as l→∞.

We know that the embedding H1(0, T )→ C[0, T ] is compact; consequently,

xml → x̃ in C([0, T ];Rnx).

Next, we shall prove that x̃ is the solution to ũ, i.e, x̃ = x(ũ). Consider the dynamical
system corresponding to (xml ,uml).
By multiplying from the right-hand side with a test function v ∈ H1((0, T );Rnx), we
have

〈 ẋml − f(xml)−Buml ,v 〉L2 = 0. (4.4)

Since xml → x̃ in C([0, T ];Rnx) and f ∈ C∞([0, T ];Rnx), it yields f(xml)→ f(x̃).
Furthermore, we know that uml ⇀ ũ; consequently,

〈 ẋml − f(xml)−Buml ,v 〉L2 →
〈

˙̃x− f(x̃)−Bũ,v
〉
L2
, (4.5)

for all v ∈ H1((0, T );Rnx). Since the above limit is true for all subsequences, and the
limit x(ũ) is unique, we have that x(um)→ x̃ = x(ũ) in C([0, T ];Rnx).

By Proposition 1, the state x is uniquely determined by the initial condition and the
controls, the mapping u 7→ x = x(u) is well-de�ned; therefore, the structure of the
considered optimal control problem allows to consider the state as a function of the
control, that is, x = x(u). For this reason, it is possible to introduce the so-called
reduced cost functional, given by the following

min
u∈U

Jr(u), (4.6)

where Jr(u) := J(x(u),u). Our aim is to �nd a control ũ ∈ U that results in a state
x that minimizes the objective function J .

J(x(ũ), ũ) 6 J(x(u),u), ∀u ∈ U.

In this reduced problem only the control u appears as an unknown. In the following,
we discuss the existence of solution to the optimal control problem (4.6). Furthermore,
for such problem, we present assumptions such that at least one optimal solution
exists.

De�nition 10. A vector ũ ∈ U is called an optimal control for problem (4.6), if
Jr(ũ) ≤ Jr(u) for all u ∈ U, then x̃ = x(ũ) is called the optimal state associated with
ũ.
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In general, an optimal control problem considered in �nite-dimension has at least
one solution if the cost functional is continuous and the admissible set is nonempty,
bounded and closed. In fact, the continuity of the cost function implies that the reduce
cost is also continuous. Moreover, as a bounded and closed set in �nite-dimensional
space, the admissible set is compact. By the Weierstrass theorem, which says that
every continuous function attains its minimum on a compact set, the cost functional
attains its minimum in the set of admissible controls. Consequently, an optimal con-
trol exists.

However, in our case U is a set of an in�nite-dimensional space, therefore closeness and
boundedness do not guarantee compactness. In this case the proof of the existence
of the solution becomes more involved. In fact, possible conditions concerning J
and U, which ensure the existence of optimal solution of problem (4.6), are that the
admissible set is weakly sequentially compact and the functional J is weakly lower
semi-continuous. The proof of weakly sequential semi-continuity only make use of
the fact that the objective functional J is continuous and convex. The following
Proposition state the properties of J .

Proposition 9. Let x ∈ X and u ∈ U. The function l : Rnx → R is continuously
di�erentiable and convex. Then the objective function

J(x,u) =
1

2
‖x(T )− xdes(T )‖2

2 +

∫ T

0

l(x(t))dt+
ν

2
‖u(t)‖2

L2 (4.7)

is continuous, convex and weakly coercive on u

Proof. Let X be normed vector space and a ∈ X. We know that the functional

fa : X → R, x 7→ ‖x− a‖,

is continuous and convex; see Appendix A.2. In addition, the function l : Rnx → R in
our case is also de�ned as the distance functional. This implies that the cost functional
J is continuous and convex. Due to continuity and convexity of J , it implies that J is
weakly sequentially semi-continuous from below. Moreover, it can be seen that when
‖u‖L2 →∞, implies lim J(x,u) =∞, that is, J is weakly coercive on u.

The following Theorem shows that there exists an optimal control solution to (4.6).
The re�exivity of the Banach space plays an important role for proving it.

Theorem 8. Assume that ν > 0 and U = L2((0, T );Rnc), then the minimization
problem (4.2) admits a solution.

Proof. From Proposition 1, (x,u) 7→ J(x,u) is weakly lower semi-continuous. Ac-
cording to coercivity of J , by Proposition A.1, we have that the minimizing sequence
(um)∞m=1 in L

2((0, T );Rnc) is bounded. By Banach-Eberlein-�mulian theorem, we can
extract a weak convergent subsequence uml ⇀ ũ in L2((0, T );Rnc).
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By Proposition 8, we have that xml(t) → x̃(t), t ∈ [0, T ]. With these properties, we
obtain (x̃, ũ) of the minimization problem as follows

lim
l→∞

inf J(xml ,uml) = lim
l→∞

1

2
‖xml(T )− xdes(T )‖2 + lim

l→∞

∫ T

0

l(xml)dt+ lim
l→∞

inf
ν

2
‖uml‖2

L2

≥ 1

2
‖x̃(T )− xdes(T )‖2 +

∫ T

0

l(x̃)dt+
ν

2
‖ũ(t)‖2

L2

= J(x̃, ũ).

Now, we consider the operator

c(·, ·) : X× U→ P, c(x,u) := ẋ− f(x)−Bu,

Dc(·, ·) : X× U→ P, Dc(x,u) := ˙δx−∇xf(x)δx−Bδu,
(4.8)

where P = L2((0, T );Rnx).

In the following Proposition, the concept of the Fréchet derivative of c is investigated
in oder to ensure that the di�erentiable mapping c is continuous and then we are able
to deduce necessary optimality conditions from these derivatives.

Proposition 10. The operator c is Fréchet di�erentiable and invertible for �xed u.

Proof. We start proving Fréchet di�erentiability of (x,u) 7→ c(x,u).

Consider c(x,u) = ẋ− f(x)−Bu, and Dc(δx, δu) := ˙δx−∇xf(x)δx−Bδu.

c(x + δx,u + δu)− c(x,u)−Dc(δx, δu)

=
d

dt
(x + δx)− f(x + δx)−B(u + δu)− d

dt
x + f(x) + Bu− d

dt
δx +∇xf(x)δx + Bδu

=
d

dt
x +

d

dt
δx− f(x + δx)−Bu−Bδu− d

dt
x + f(x) + Bu− d

dt
δx +∇xf(x)δx+ Bδu

= f(x)− f(x + δx) +∇xf(x)δx.

Consider
d

dt
f(x + tδx) = ∇f(x + tδx). Therefore we have

f(x + δx)− f(x) =

∫ 1

0

∇xf(x + hδx)δx dh, and ∇xf(x)δx =

∫ 1

0

∇xf(x)δx dh.

As a consequence, we get the following

f(x + δx)− f(x)−∇xf(x)δx =

∫ 1

0

(∇xf(x + hδx)δx−∇xf(x)δx) dh
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Since x, δx ∈ H1((0, T );Rnx) and H1((0, T )) ↪→ C((0, T )), then

sup
t∈(0,T )

‖x(t)‖ <∞ and sup
t∈(0,T )

‖δx(t)‖ <∞

In addition, f ∈ C1(Rnx;Rnx)⇒ ∇xf ∈ C(Rnx;Rnx).

Let K = ‖x‖L∞(0,T ) and ε > 0. Due to uniform continuity of ∇xf , we have

∃δ > 0 : ‖∇xf(y + δy)−∇xf(y)‖ < ε,

∀y ∈ {z ∈ H1((0, T );Rnx) : ‖z‖L∞(0,T ) < 2K},
and ∀δy ∈ {z ∈ H1((0, T );Rnx) : ‖z‖L∞(0,T ) < δ}.

Therefore, if we choose ‖δx‖L∞(0,T ) < δ, then∫ T

0

‖f(x + δx)− f(x)−∇xf(x)δx‖2dt ≤
∫ T

0

∫ 1

0

‖∇xf(x + hδx)−∇xf(x)‖2‖δx‖2 dhdt

≤ ‖δx‖2
L∞(0,T )

∫ T

0

∫ 1

0

‖∇xf(x + hδx)−∇xf(x)‖2 dhdt

≤ Tε2δ2. (4.9)

Hence, from (4.9) we get that

lim
‖δx‖X→0

‖f(x)− f(x + δx) +∇xf(x)δx‖
‖δx‖

→ 0.

This means that (x,u) 7→ c(x,u) is Fréchet derivative of c and Dc(x,u) is the Fréchet
derivative of c.
To prove that c is invertible for �xed u, we recall that Proposition 1 proves the
existence of a solution and the same holds for c(x,u) = b, b ∈ P. Hence c is invertible.
Using the same argument, we obtain that Dc(x,u) is invertible for �xed x, u, and
δu, hence surjective.

Using the operator de�ned in (4.8), problem (4.2) can be equivalently written in the
following compact form

min
u∈U

Jr(u) = J(x(u),u) (4.10)

where x(u) is the soultion to c(x,u) = 0. A solution to (4.10) is characterized in
the terms of �rst-order necessary optimality conditions, ∇uJr(u) = 0. By Proposi-
tion 10 the linearized constraint is surjective, then there exists a Lagrange multiplier
p ∈ P∗ = L2((0, T );Rnx), where P∗ denotes the dual space of P.
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Proposition 11. Consider the system

−ṗ = −(∇xl(x))> + (∇xf(x))>p, p(T ) = −(x(T )− xdes(T )) (4.11)

with x,p ∈ H1((0, T );Rnx). Let D ⊂ Rnx and assume that f : D → Rnx is locally
Lipschitz continuous on D. Moreover, the function l : Rnx → R is continuous and
continuously di�erentiable, bounded from below and convex. Then the system (4.11)
admits the unique solution for any T > 0 and any initial condition.

Proof. Given x ∈ H1((0, T );Rnx). Let us de�ne fp : [0, T ]× Rnx → Rnx as

fp(t,p) = −(∇xl(x))> + (∇xf(x))>p (4.12)

Since x ∈ H1((0, T );Rnx), l ∈ C1(Rnx;R), and f ∈ C1(Rnx;Rnx), fp has the following
properties,

• fp(·,p) : [0, T ]→ Rnx is measurable, for each �xed p.

• fp(t, ·) : Rnx → Rnx is continuous, for each �xed t.

Let p1,p2 ∈ D, we can see that

‖fp(t,p1)− fp(t,p2)‖ = ‖(∇xf(x))>‖‖p1 − p2‖
≤ L‖p1 − p2‖, L > 0.

Consequently, fp is Lipschitz in p. Next, the locally integrable property of fp is
examined. For given p ∈ D we have that

‖fp(t,p)‖ = ‖−(∇xl(x))> + (∇xf(x))>p‖
≤ ‖(∇xl(x))>‖+ ‖(∇xf(x))>‖‖p‖

=

(
nx∑
i=1

|∂l(x)

∂xi
|2
)1/2

+

(
nx∑
i=1

nx∑
j=1

|∂fi(x)

∂xj
|2
)1/2

‖p‖

≤

(
nx∑
i=1

|∂l(x)

∂xi
|2∞

)1/2

+

(
nx∑
i=1

nx∑
j=1

|∂fi(x)

∂xj
|2∞

)1/2

‖p‖

≤
(
nx ·max

i
|∂l(x)

∂xi
|2∞
)1/2

+

(
(nx)2 ·max

i

{
max
j
|∂fi(x)

∂xj
|2∞
})1/2

‖p‖

≤ α + β‖p‖, α, β > 0

Hence, by [76](Theorem 54), the system (4.11) admits a unique solution for any T
and any initial conditions.

Proposition 12. The gradient of the reduced system (4.10) is given by

∇uJr(u) = νu−B>p, (4.13)

where p ∈ H1((0, T );Rnx) is the unique solution to the following problem

−ṗ = −(∇xl(x))> + (∇xf(x))>p, p(T ) = −(x(T )− xdes(T )). (4.14)
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Proof. Let p be the unique solution of (4.14). From the Proposition 11, we have
p ∈ H1((0, T );Rnx). Consider the cost functional (x,u) 7→ J(x,u) and δx satisfying
the linearized constraint (4.8) allow to compute ∇uJr(u) as follows

〈∇uJr(u), δx〉L2 =

〈
∂J(x,u)

∂x
, δx

〉
L2

+

〈
∂J(x,u)

∂u
, δu

〉
L2

= 〈x(T )− xdes(T ), δx(T )〉+ 〈(∇xl(x))>, δx〉L2 + 〈νu, δu〉L2

= 〈−p(T ), δx(T )〉+ 〈(∇xl(x))>, δx〉L2 + 〈νu, δu〉L2 (4.15)

By means of the integration -by-parts rule, we have

〈−p(T ), δx(T )〉 = 〈p(0), δx(0)〉+ 〈−ṗ, δx〉L2 − 〈p, ˙δx〉L2

= 〈−ṗ, δx〉L2 − 〈p, ˙δx〉L2

= 〈−(∇xl(x))> + (∇xf(x))>p, δx〉L2 − 〈p,∇xf(x)δx + Bδu〉L2

= 〈−(∇xl(x))> + (∇xf(x))>p, δx〉L2 − 〈(∇xf(x))>p, δx〉L2 − 〈B>p, δu〉L2

= 〈−(∇xl(x))>, δx〉L2 − 〈B>p, δu〉L2 (4.16)

Substituting (4.16) into (4.15), we get

〈∇uJr(u), δx〉L2 = 〈νu, δu〉L2 − 〈B>p, δu〉L2

Therefore, we obtain that ∇uJr(u) = νu−B>p.

A way to obtain the �rst-order optimality system is to consider the Lagrange function
L de�ned as follows

L(x,u,p) = J(x,u) + 〈ẋ− f(x)−Bu,p〉L2 (4.17)

=
1

2
‖x(T )− xdes(T )‖2 +

∫ T

0

l(x)dt+
ν

2
‖u(t)‖2

L2

+ 〈ẋ− f(x)−Bu,p〉L2 .

Using the Lagrange function L, by Theorem 2.13 in [15] we �nd that necessary con-
ditions for optimality are equivalent to

∇xL(x,u,p) = 0, (4.18)

∇pL(x,u,p) = 0,

∇uL(x,u,p) = 0,

where the notations ∇xL, ∇uL, and ∇pL represent the derivative of L with respect
to x, u, and p, respectively.

Theorem 9. Assume that the pair (x,u) ∈ X × U is a minimizer for the problem
(4.1). Then there exists a unique Lagrange multiplier p ∈ H1((0, T );Rnx) such that
the triple (x,u,p) solves the following system,

ẋ = f(x) + Bu, x(0) = x0, (4.19)

−ṗ = −(∇xl(x))> + (∇xf(x))>p, p(T ) = −(x(T )− xdes(T )),

νu−B>p = 0.

The system(4.19) is called the �rst- order optimality system for Problem(4.1).
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Proof. By applying Proposition 11 and 12.

4.2 Optimal control of the Hegselmann-Krause opin-

ion formation model

In this section, we study how to enforce consensus in the �best� possible way. First,
the formulation of optimal control problems with the HK model and the presence
of a leader are formulated and the corresponding optimality systems are obtained.
From now on, we set the problem in a more general framework in which we allow
the communication rate of the leader with the followers to be zero. To this purpose,
we introduce two functions: c1

i and c
2
i . In the �rst case, c1

i : R → [0, 1] represents a
cut-o� smooth function of the bounded con�dence δ0 as follows

c1
i (r) = c1

i (r; δ0, ε0) =


1, 0 ≤ r ≤ δ0,
ϕ̃(ri0), δ0 < r < (δ0 + ε0),
0, (δ0 + ε0) ≤ r,

(4.20)

for a smooth decreasing function ϕ̃(r) between (δ0, δ0 + ε0]. We then denote by
c2
i (r) = φ(r) the function of the distance between the leader and the followers as in
the previous sections, i.e. a non-increasing positive function such that φ(0) = 1 and
limr→∞ φ(r) = 0.

Our optimal control problem is stated as follows

min
xof ,uof

Jof(xof , uof) :=
µ

2
‖xof

0 (T )− xof
des(T )‖2 +

1

2N2

∫ T

0

N∑
i,j=1

‖xof
i (t)− xof

j (t)‖2dt

+
1

2

∫ T

0

N∑
i=1

‖xof
0 (t)− xof

i (t)‖2dt+
ν

2

∫ T

0

‖uof(t)‖2dt, (4.21)

subject to ẋof
0 (t) = uof(t),

ẋof
i (t) =

∑
j 6=0,i

aij(x
of
j − xof

i ) + cñi (xof
0 − xof

i ), for i = 1, ..., N,

with given initial conditions and for ñ = 1, 2. The positive parameters µ and ν in the
cost function are weight constants. Notice that, the second and third term in the cost
functional corresponds to consensus problem. In addition, the tracking functional at
�nal time requires the leader to approach a desired target opinion xof

des. This term has
also the property to stabilize the MPC scheme [44]. The last term in the functional
represents the cost of the control. The problem stated in (4.21) can be written in the
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general form presented in (4.2) as follows

min
xof ,uof

Jof(xof , uof) =
µ

2
‖xof

0 (T )− xof
des(T )‖2 +

∫ T

0

lof(xof)dt+
ν

2

∫ T

0

‖u(t)‖2dt,

s.t ẋof(t) = fof(xof) + Bofuof(t), (4.22)

xof ∈ Xof , uof ∈ Uof = L2((0, T );Rd),

where the vector xof = (xof
0 , x

of
1 , ..., x

of
N) is the state of the system and belongs to

Xof = {xof ∈ H1((0, T );Rd(N+1)) : xof(0) = xof
0 }. (4.23)

The function uof : [0, T ]→ Rd is the control function. The functional lof : Rd(N+1) →
R is de�ned as

lof(xof) :=
1

2N2

N∑
i,j=1

‖xof
i (t)− xof

j (t)‖2 +
1

2

N∑
i=1

‖xof
0 (t)− xof

i (t)‖2. (4.24)

The vector-valued function fof : Rd(N+1) → Rd(N+1) in the �rst term of the dynamics
of the system and the constant matrix Bof ∈ Rd(N+1)×d are given by

fof =


0∑

j 6=0,1 a1j(x
of
j − xof

1 ) + cñ1 (xof
0 − xof

1 )∑
j 6=0,2 a2j(x

of
j − xof

2 ) + cñ2 (xof
0 − xof

2 )
...∑

j 6=0,N aNj(x
of
j − xof

N) + cñN(xof
0 − xof

N)

 , Bof =


Id
0d,d
0d,d
...

0d,d

 . (4.25)

Remark 6.

1. The gradient of the functional lof is given by

∇xl
of =

(
∂lof

∂xof
0

∂lof

∂xof
1

. . .
∂lof

∂xof
N

)>
, (4.26)

where its components are given by the following

∂lof

∂xof
0

=
N∑
i=1

(xof
0 − xof

i ),

∂lof

∂xof
i

=
2

N2

∑
j 6=i

(xof
i − xof

j )− (xof
0 − xof

i ).

2. The jacobian matrix fof is presented as follows

∇xf
of =



∂f of
0

∂xof
0

∂f of
0

∂xof
1

. . .
∂f of

0

∂xof
N

∂f of
1

∂xof
0

∂f of
1

∂xof
1

. . .
∂f of

1

∂xof
N

...
...

. . .
...

∂f of
N

∂xof
0

∂f of
N

∂xof
1

. . .
∂f of

N

∂xof
N


, (4.27)
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where its components are as follows

∂f of
0

∂xof
i

= 0, (4.28)

∂f of
b

∂xof
0

= cñi (‖xof
i − xof

0 ‖) +
∂cñi
∂xof

0

(xof
0 − xof

i ),

∂f of
b

∂xof
b

= −
N∑
j=1

abj(‖xof
b − xof

j ‖)(xof
j − xof

b ) +
∂abj
∂xof

b

(xof
j − xof

b )− cñb (‖xof
b − xof

0 ‖)

+
∂cñb
∂xof

b

(xof
0 − xof

b ),

∂f of
b

∂xof
j

= abj(‖xof
b − xof

j ‖) +
∂abj
∂xof

j

(xof
j − xof

b ), for i = 0, ..., N, b = 1, ..., N.
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We assume that the pair (xof , uof) ∈ Xof ×Uof is a minimizer for the problem (4.21).
By Theorem 9, there exists a unique Lagrange multiplier pof ∈ H1((0, T );Rd(N+1))
such that the triple (xof , uof ,pof) solves the following system,

ẋof = fof(xof) + Bofuof , xof(0) = xof
0 ,

−ṗof = −(∇xl
of(xof))> + (∇xf

of(xof))>pof , pof(T ) = −(xof(T )− xof
des(T )),

νuof − (Bof)>pof = 0,
(4.29)

where ∇xl
of is de�ned in (4.26) and ∇xf

of(xof) is given in (4.27) and �nal condition
for adjoint equation is given by

xof(T )− xof
des(T ) = (xof

0 (T )− xof
des(T ),0d,1,0d,1, ...,0d,1)>. (4.30)

The system (4.29) is called the �rst- order optimality system for Problem(4.22).

4.3 Optimal control of the Heider social balance model

In this section, we formulate an optimal control problem of the Heider balance model
with the presence of a leader. We have

min
xhb,uhb

Jhb(xhb,uhb) =
1

2

N∑
i,j=1

(xhb
ij (T )− xhb

des)
2 +

ν

2
‖uhb(t)‖2

L2 , (4.31)

subject to the di�erential constraint given by

ẋhb
0i (t) = uhb

i (t), (4.32)

ẋhb
ij (t) =

1

N − 2

(
1−

(xhb
ij )2

R2

)
N∑
k=0

xhb
ik x

hb
kj + γxhb

i0 x
hb
j0 , for i, j = 1, ..., N,

with given initial conditions. This optimal control problem requires to �nd a vector
of controls uhb

i : (0, T ) → R, i = 1, . . . , N , such that the HB model evolves from the
given initial condition to a �nal state xhb

ij (T ) that is as close as possible to the given
friendship state xhb

des ∈ R while minimizing the cost of the control given by the second
term of the cost functional Jhb, where ν > 0 represents the weight of the cost of the
control. The problem stated in (4.31) and (4.32) can be written in the general form
presented in (4.2) as the following,

min
xhb,uhb

Jhb(xhb,uhb) =
1

2

N∑
i,j=0

(xhb
ij (T )− xhb

des)
2 +

ν

2
‖uhb(t)‖2

L2 , (4.33)

subject to ẋhb(t) = fhb(xhb) + Bhbuhb(t),

where the state variable xhb = (xhb
01 , x

hb
02 , ..., x

hb
(N−1)N) has the dimension

Nr =
N(N + 1)

2
,
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Nr denoted the number of relationship in the social group. The state xhb belongs to

Xhb = {xhb ∈ H1((0, T );RNr) : xhb(0) = xhb
0 },

with xhb
0 a given initial condition. The function uhb = (uhb

1 , u
hb
2 , . . . , u

hb
N ) ∈ RN ,

uhb
i : [0, T ] → R, is the control function. Notice that in the HB model the number

of controllers is equal to the number of links connecting the leader to individuals.
The vector-valued function fhb : RNr → RNr in the �rst term of the dynamics of the
system and the constant matrix Bhb ∈ RNr×N are given by

fhb(xhb) =
1

N − 2



0N,1(
1− (xhb12 )2

R2

)∑N
k=1 x

hb
1kx

hb
k2 + γxhb

01x
hb
02(

1− (xhb13 )2

R2

)∑N
k=1 x

hb
1kx

hb
k3 + γxhb

01x
hb
03

...(
1−

(xhb
(N−1)N

)2

R2

)∑N
k=1 x

hb
(N−1)kx

hb
kN + γxhb

0(N−1)x
hb
0N


,

Bhb =

(
IN,N
0Nuc,N

)
,

where Nuc is the number of the uncontrolled variables, in our case Nuc = Nr −N .

Remark 7. The Jacobian matrix ∇xf
hb is as follows

∇xf
hb =



∂f of
01

∂xhb
01

. . .
∂f of

01

∂xhb
0N

∂f of
01

∂xhb
12

. . .
∂f of

01

∂xhb
1N

. . .
∂f of

01

∂xhb
(N−1)N

... . . .
...

... . . .
... . . .

...
∂f of

0N

∂xhb
01

. . .
∂f of

0N

∂xhb
0N

∂f of
0N

∂xhb
12

. . .
∂f of

0N

∂xhb
1N

. . .
∂f of

0N

∂xhb
(N−1)N

∂f of
12

∂xhb
01

. . .
∂f of

12

∂xhb
0N

∂f of
12

∂xhb
12

. . .
∂f of

12

∂xhb
1N

. . .
∂f of

12

∂xhb
(N−1)N

... . . .
...

... . . .
... . . .

...
∂f of

(N−1)N

∂xhb
01

. . .
∂f of

(N−1)N

∂xhb
0N

∂f of
(N−1)N

∂xhb
12

. . .
∂f of

(N−1)N

∂xhb
1N

. . .
∂f of

(N−1)N

∂xhb
(N−1)N



,
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where its elements are given by

∂f of
0b

∂xhb
ij

= 0, for i = 0, 1, ..., N, (4.34)

∂f of
bj

∂xhb
0b

= γxhb
0j ,

∂f of
bj

∂xhb
0j

= γxhb
0b ,

∂f of
bj

∂xhb
bj

= −
2xhb

bj

(N − 2)R2

(
N∑

k 6=0,b,j

xhb
bkx

hb
kj

)
,

∂f of
bj

∂xhb
bk

=
xhb
kj

N − 2

(
1−

(xhb
bj )2

R2

)
,

∂f of
bj

∂xhb
kj

=
xhb
bk

N − 2

(
1−

(xhb
bj )2

R2

)
, for b, j, k = 1, 2, . . . , N, and k 6= b 6= j.

Let us assume that the pair (xhb,uhb) ∈ Xhb × L2((0, T );RN) is a minimizer for the
problem (4.33). Then there exists a unique Lagrange multiplier phb ∈ H1((0, T );RNr)
such that the triple (xhb,uhb,phb) solves the following system,

ẋhb = fhb + Bhbuhb, xhb(0) = xhb
0 ,

−ṗhb = ∇xf
hb(xhb))>phb, phb(T ) = −(xhb(T )− xhbdes(T )),

νuhb − (Bhb)>phb = 0,
(4.35)

where ∇xf
hb(xhb) is de�ned as in Remark. 7 and the �nal condition for the adjoint

equation is given by

xhb(T )− xhb
des(T ) =



xhb
01(T )− xhb

des

xhb
02(T )− xhb

des
...

xhb
12(T )− xhb

des
...

xhb
(N−1)N(T )− xhb

des


, (4.36)

The system (4.35) is called the �rst- order optimality system for (4.33).

4.4 Optimal control of a re�ned �ocking model

In this section, we consider our �ocking model in the presence of an external leader
that is subject to a control function that aims at driving the leader and the group
to reach a target position or to follow a desired trajectory, xfm

des. In the following,
we discuss these two optimal control problems for our re�ned �ocking model with
leadership. For the case where the objective is a target position at a �nal time, we
have
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Problem P1. Reach a target position at �nal time T .

min
xfm,ufm

J fm
1 (xfm, ufm) =

1

2
‖xfm

0 (T )− xfm
des(T )‖2 +

µ

2

N∑
b=1

∫ T

0

‖xfm
0 (t)− xfm

b (t)‖4 dt

+
ν

2
‖ufm(t)‖2

L2 , (4.37)

subject to ẋfm
0 (t) = vfm

0 (t),

ẋfm
b (t) = vfm

b (t), (4.38)

v̇fm
0 (t) = S0 +M0 + E0 + ufm(t),

v̇fm
b (t) = Sb +Mb + Eb + Lb, for b = 1, ..., N,

with given initial conditions for the positions and velocities of the agents of the
�ock.

Problem P2. Follow a desired trajectory.

min
xfm,ufm

J fm
2 (xfm, ufm) =

1

2
‖xfm

0 (T )− xfm
des(T )‖2 +

µ

2

N∑
b=1

∫ T

0

‖xfm
0 (t)− xfm

b (t)‖4dt,

+
η

2

∫ tf

t0

‖xfm
0 (t)− xfm

des(t)‖2dt+
ν

2
‖ufm(t)‖2

L2 (4.39)

subject to ẋfm
0 (t) = vfm

0 (t),

ẋfm
b (t) = vfm

b (t), (4.40)

v̇fm
0 (t) = S0 +M0 + E0 + ufm(t),

v̇fm
b (t) = Sb +Mb + Eb + Lb, for b = 1, ..., N,

with given initial conditions for the positions and velocities of the agents of the
�ock.

In the problems P1 and P2, xfm = (xfm
0 , . . . , xfm

N , v
fm
0 , . . . , vfm

N ) ∈ R2d(N+1) represents
state variables and belongs to the following set

Xfm = {xfm ∈ H1((0, T );R2d(N+1)) : xfm(0) = xfm
0 }. (4.41)

The control function ufm(t) ∈ L2((0, T );Rd) represent the control force. The param-
eters µ, ν, and η in the cost functions are positive constants. Notice that in both
problems, the second term in the functionals has the purpose to minimize the distance
between the leader and the other agents in �ock. The power four of this distance re-
sults from numerical experience. The last term in the functionals represents the cost
of the control. In problem P2, the tracking functional implements the additional ob-
jective of minimizing the distance between the trajectory of the leader and a desired
path.
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We reformulate our optimal control such that it is in the form (4.1) and (4.2). Cor-
responding to problem P1, we obtain the following system

Problem P1. Reach a target position at �nal time T

min
xfm,ufm

J fm
1 (xfm, ufm) =

1

2
‖xfm

0 (T )− xfm
des(T )‖2 +

∫ T

0

lfm1 (xfm)dt+
ν

2
‖ufm‖2

L2 ,

subject to ẋfm = f fm(xfm) + Bfmufm (4.42)

where the function lfm1 : R2d(N+1) → R is de�ned as

lfm1 (xfm) =
µ

2

N∑
b=1

‖xfm
0 (t)− xfm

b (t)‖4. (4.43)

Problem P2. Follow a desired trajectory

min
xfm,ufm

J fm
2 (xfm, ufm) =

1

2
‖xfm

0 (T )− xfm
des(T )‖2 +

∫ T

0

lfm2 (xfm)dt+
ν

2
‖ufm(t)‖2

L2

subject to ẋfm = f fm(xfm) + Bfmufm (4.44)

with given initial conditions. The function lfm2 : R2d(N+1) → R is given by

lfm2 (xfm) =
µ

2

N∑
b=1

‖xfm
0 (t)− xfm

b (t)‖4 +
η

2
‖xfm

0 (t)− xfm
des(t)‖2. (4.45)

Both problems P1 and P2 can be written in compact form as follows

min J fm
ñ (xfm, ufm) =

1

2
‖xfm

0 (T )− xfm
des(T )‖2 +

∫ T

0

lfmñ (xfm)dt+
ν

2
‖ufm‖2

L2 ,

subject to ẋfm = f fm(xfm) + Bfmufm(t), (4.46)

where ñ = 1, 2 denotes the problem. In both problem, the function f fm : R2d(N+1) →
R2d(N+1) and the constant matrix Bfm are given by

f fm(xfm) =



vfm
0

vfm
1
...
vfm
N

S0 +M0 + A0

S1 +M1 + A1 + L1
...

SN +MN + AN + LN


, Bfm =



0d,d
0d,d
...

0d,d
Id
0d,d
...

0d,d


. (4.47)
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Remark 8.

1. The gradient of lfm1 (xfm) with respect to xfm is given by

∇xl
fm
1 (xfm) =

(
∂lfm1
∂xfm

0

∂lfm1
∂xfm

1

. . .
∂lfm1
∂xfm

N

∂lfm1
∂vfm

0

. . .
∂lfm1
∂vfm

N

)>
, (4.48)

where its elements are given by

∂lfm1
∂xfm

0

= 2µ
N∑
b=1

‖(xfm
0 − xfm

b )‖2, (4.49)

∂lfm1
∂xfm

b

= −2µ(xfm
0 − xfm

b )‖‖2,

∂lfm1
∂vfm

i

= 0, for i = 0, ..., N.

2. The gradient of lfm2 (xfm) with respect to xfm is given by

∇xl
fm
2 (xfm) =

(
∂lfm2
∂xfm

0

∂lfm2
∂xfm

1

. . .
∂lfm2
∂xfm

N

∂lfm2
∂vfm

0

. . .
∂lfm2
∂vfm

N

)>
, (4.50)

where its elements are given by

∂lfm2
∂xfm

0

= 2µ
N∑
b=1

‖(xfm
0 − xfm

b )‖2 + η(xfm
0 − xfm

des), (4.51)

∂lfm2
∂xfm

b

= −2µ‖(xfm
0 − xfm

b )‖2,

∂lfm2
∂vfm

i

= 0, for i = 0, ..., N.

We assume that the pair (xfm,ufm) ∈ Xfm×L2((0, T );Rd) are minimizer for the prob-
lem (4.46). Then there exists a unique Lagrange multiplier pfm ∈ H1((0, T );R2d(N+1))
such that the triple (xfm, ufm,pfm) solves the following system,

ẋfm = f fm(xfm) + Bfmufm, xfm(0) = xfm
0 ,

−ṗfm = −(∇xl
fm
ñ (xfm))> + (∇xf

fm(xfm))>pfm, pfm(T ) = −(xfm(T )− xfm
des(T )),

νufm − (Bfm)>pfm = 0,

where ∇xl
fm
ñ (xfm) are de�ned in (4.48) and (4.50). The Jacobian matrix of function

f fm with respect to xfm, ∇f fm(xfm), is de�ned in (3.47) and �nal condition for adjoint
equation is given by

xfm(T )− xfm
des(T ) = (xfm

0 (T )− xfm
des(T ),0d,d,0d,d, ...,0d,d)

>. (4.52)

This system is called the �rst- order optimality system for Problem (4.46).
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Numerical discretization and

optimization

In this chapter, we address two important issues for implementing our control strate-
gies: The �rst one is an accurate discretization scheme for the forward multi-agent
models and for the optimality systems. The second is a numerical optimization proce-
dure that allows to construct a feedback control mechanism by exploiting the solution
of the open-loop optimal control problems discussed in the previous chapter.

5.1 A Runge-Kutta discretization scheme

In this section, we discuss the Runge-Kutta (RK) discretization scheme proposed in
[47, 49]. We extend this numerical framework to the case of multi-agent systems and
a leadership-based control. One of the motivation for focusing on this scheme [47, 49]
is the ability of this method to provide high-order RK schemes for the optimality
system equations that are particularly suitable for implementing numerical optimiza-
tion schemes. Speci�cally, the scheme in [47, 49] guarantees very accurate gradients
that are essential for a successful optimization procedure. For ease of illustration of
approximation scheme, we discuss the following optimal control problem

min
xrk,urk

J rk(xrk, urk) = φ(xrk(T ))

subject to ẋrk(t) = f rk(xrk(t), urk(t)), t ∈ [0, T ] (5.1)

xrk(t0) = xrk
0 ,

where xrk(t) ∈ H1((0, T );Rnx) and urk(t) ∈ Rnc are called the state and control
variables, respectively. We choose urk ∈ Urk = L2((0, T );Rnc). The function φ :
Rnx → R represents the objective and the dynamics of the model given by f rk :
Rnx × Rnc → Rnx. We assume that, for a given urk, the dynamical model in (5.1)
admits a unique solution xrk = xrk(urk) and the map urk 7→ xrk(urk) is di�erentiable.
Therefore, the problem (5.1) can be written in the following equivalent reduced form.

min
urk∈Urk

J rk
r (urk), (5.2)
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where J rk
r (urk) := J rk(xrk(urk), urk). Our aim is to �nd a control ũrk such that for all

admissible controls urk, we have

J rk(xrk(ũrk), ũrk) 6 J rk(xrk(urk), urk).

Suppose that there exists an open set Ω ⊂ Rnx × Rnc such that the neighborhood of
(x̃rk, ũrk) with radius ε > 0, Bε(x̃

rk, ũrk) ⊂ Ω for every t ∈ [0, T ]. Moreover, the �rst
partial derivatives of f rk with respect to xrk and urk are Lipschitz continuous in Ω
and the �rst partial derivatives of J rk with respect to xrk are Lipschitz continuous in
Bε(x̃

rk(T )).
Under these assumptions, there exists an associated Lagrange multiplier p̃rk ∈ H1((0, T );Rnx)
for which the following �rst-order optimality conditions are satis�ed at (x̃rk, p̃rk, ũrk)
as follows

∇rk
p L(x̃rk, p̃rk, ũrk) = 0,

∇xL(x̃rk, p̃rk, ũrk) = 0,

∇uL(x̃rk, p̃rk, ũrk) = 0,

where L is the Lagrange function L : Rnx × Rnx × Rnc → R given by

L(xrk, prk, urk) = J rk(xrk, urk) + 〈ẋrk − f rk(xrk, urk), prk〉L2 ,

= φ(xrk(T )) + 〈ẋrk − f rk(xrk, urk), prk〉L2 .

By calculation of the derivation of Lagrange function we obtain the optimality system
as presented as following,

ẋrk(t) = f rk(xrk(t), urk(t)), xrk(0) = xrk
0 ,

ṗrk(t) = −(∇xf
rk(xrk))>prk, prk(T ) = −(∇xφ(xrk(T )))>,

−(∇uf
rk)>prk = 0, t ∈ [0, T ].

(5.3)

We call the �rst equation of (5.3) the state equation, the second equation is the adjoint
equation with the terminal condition prk(T ) = ∇xφ(xrk(T )). The third condition is
referred to as the optimality condition equation.

An essential aspect in the numerical solution of optimal control problems is the dis-
cretization of the reduced gradient. In order to derive an adequate discrete reduced
gradient, we consider the so-called �rst-discretize-then optimize strategy, that is, one
follows the following procedures. First, one discretize the optimal control problem,
that means to discretize the cost functional and the di�erential constraints . Second,
one constructs the corresponding discrete Lagrangian function. Third, one derives
the �rst-order discrete optimality system.
We consider the discretization of the optimality system (5.3) by a RK scheme on a
uniform time mesh and the following time-step size

h =
T

n
,
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where n is the total number of discrete time intervals in (0, T ) and the value of xrk(t)
at the discrete time tk is denoted with

xrk
k = xrk(tk), tk = kh for k = 0, . . . , n.

We consider a s-stage Runge-Kutta discretization scheme that is de�ned by setting the
values of the coe�cients aij and bi, 1 ≤ i, j ≤ s, such that they satisfy the conditions
given in Table 5.1. In the same table on the left-hand column, the order of accuracy
resulting from the given conditions on the coe�cients is given.

Table 5.1: Order of accuracy Runge-Kutta discretization for di�erent choices of the
discrete parameters.

Order Conditions (ci =
∑s

j=1 aij, dj =
∑s

i=1 biaij)
1

∑
bi = 1

2
∑
di = 1

2

3
∑
cidi = 1

6
,

∑
bic

2
i = 1

3
,

∑
d2
i /bi = 1

3

4
∑
bic

3
i = 1

4
,

∑
biciaijcj = 1

8
,

∑
d2
i c

2
i = 1

12
,
∑
diaijcj = 1

24
,∑

cid
2
i /bi = 1

12
,
∑
d3
i /b

2
i = 1

4
,
∑
biciaijdj/bj = 5

24
,
∑
diaijdj/bj = 1

8

Corresponding to the RK discretization setting, the optimal control problem (5.3)
with s-stage RK scheme becomes the following

min
xrk,urk

J rk(xrk
k , u

rk
k ) = φ(xrk

n ) (5.4)

subject to xrk
k+1 = xrk

k + h

s∑
i=1

bif(yrk
i , u

rk
ki), xrk(0) = xrk

0 ,

yrk
i = xrk

k + h
s∑
j=1

aijf
rk(yrk

j , u
rk
kj),

for 1 ≤ i, j ≤ s, and 0 ≤ k ≤ n− 1.
where the vector yj and ukj are intermediate state and control variables on the interval
[tk, tk+1]. Notice that uk ∈ Rnc·s represents the s-stages of the RK discrete control
vector at time step k. We have

urk
k = (urk

k1, u
rk
k2, . . . , u

rk
ks) ∈ Rnc·s.

Moreover, we consider the discrete L2((0, T );Rnx) -scalar-product as follows

〈x, y〉h := h
n−1∑
k=0

〈xk, yk〉. (5.5)
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For xrk
k near x(tk) and ukj near u(tk), for j = 1, . . . , s, by smoothness and the im-

plicit theorem, when h is small enough, the intermediate variables yi are uniquely
determined; see [47], [17][Thm.303A].

Theorem 10. State Uniqueness property

There exist positive constants h1 and ε1 such that for h ≤ h1 and (xrk, urk
j ) ∈ Bε1(x̃

rk, ũrk)
for some t ∈ [0, T ], for j = 1, . . . , s. Then

yrk
i = xrk + h

s∑
j=1

aijf
rk(yrk

j , u
rk
j ), 1 ≤ i ≤ s, (5.6)

has a unique solution yrk
i ∈ Bε(x̃

rk, ũrk), for i = 1, . . . , s. If yrk(xrk, urk) denotes
the solution of (5.6) corresponding to given (x, u) ∈ Rnx × Rs·nc, then yrk(xrk, urk) is
continuously di�erentiable in x and u.

Next, consider the discrete Lagrange function corresponding to (5.4). We have

Lh(xrk, yrk, urk, prk, ψrk) = φ(xrk
n ) +

〈
xrk
k+1 − xrk

k

h
−

s∑
i=0

bif
rk(yrk

ki , u
rk
ki), p

rk
k+1

〉
L2

+

〈
yrk
ki − xrk

k

h
−

s∑
j=1

aijf
rk(yrk

kj, u
rk
kj), ψ

rk
ki

〉
L2

= φ(xrk
n ) + h

n−1∑
k=0

〈
xrk
k+1 − xrk

k

h
−

s∑
i=1

bif
rk(yrk

ki , u
rk
ki), p

rk
k+1

〉

+ h
n−1∑
k=0

s∑
i=1

bi

〈
yrk
ki − xrk

k

h
−

s∑
j=1

aijf
rk(yrk

kj, u
rk
kj), ψ

rk
ki

〉
,

where prk
k ∈ Rnx, for 0 ≤ k ≤ n− 1. We compute the gradient of the objective func-

tional J rk with respect to the discrete control. The adjoint equation corresponding
to the optimality condition results as follows

prk
k = prk

k+1 +
s∑
i=1

biψ
rk
ki , prk

n = −∇xφ(xrk
n ),

where

ψrk
ki = (∇xf

rk(yrk
ki , u

rk
ki))

>

(
pk+1 +

s∑
j=1

bjaij
bi

ψrk
kj

)
.

for 1 ≤ i, j ≤ s, 0 ≤ k ≤ n− 1.
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Summarizing, the discrete optimality system corresponding to (5.1) is given by

xrk
k+1 = xrk

k + h
∑s

i=1 bif
rk(yrk

ki , u
rk
ki), xrk(t0) = xrk

0 ,

yrk
ki = xrk

k + h
∑n

j=1 aijf
rk(yrk

kj, u
rk
kj),

prk
k = prk

k+1 +
∑s

i=1 biψ
rk
ki , prk

n = −∇xφ(xrk
n ),

ψrk
ki = (∇xf

rk(yrk
ki , u

rk
ki))

>
(
prk
k+1 +

∑s
j=1

bjaij
bi
ψrk
kj

)
.

(5.7)

From this system, the following gradient results

∇ukiJ
rk(urk) = −(∇urkf

rk(yrk
ki , u

rk
ki))

>

(
prk
k+1 +

s∑
j=1

bjaij
bi

ψrk
kj

)
, (5.8)

for ñ = 1, 2, 1 ≤ i, j ≤ s, and 0 ≤ k ≤ n− 1.

The well-posedness of the optimal control problem (5.4) and the estimation of error
in the discrete approximation can be investigated by the following Theorem. This
result can be found in [47].

Theorem 11. If the smoothness and coercivity properties hold, bi > 0 for each i, the
Runge -Kutta scheme is of order κ for the optimal control, and U = Rnc, then for all
su�ciently small h, there exists a strict local minimizer (xh, uh) of the discrete optimal
control problem (5.4) and an associated adjoint variable ph satisfying the optimality
system such that

max
0≤k≤n

‖(xrk
k )h − x̃rk(tk)‖2 + ‖(prk

k )h − p̃rk(tk)‖2 + ‖(urk
k )h − ũrk(tk)‖2 (5.9)

≤ chκ−1

(
h+ τ

(
dκ−1

dtκ−1
ũ;h

))
,

where u(xhk, ψ
h
k ) is a local minimizer corresponding to x = xk and p = pk.

For convenience in application of Runge-Kutta schemes to our optimal control prob-
lem, we reformulate our optimal control problem (4.1) into the form (5.1) by intro-
ducing an additional state variable x̂, with the additional di�erential equation

˙̂x(t) = l(x) +
ν

2
‖u‖2

2, x̂(0) = 0. (5.10)

Therefore the new state variables can be written as

X := (x, x̂)> = (x1, . . . , xnx, x̂)>,

and the dynamics of transformed system is given by

F(x,u) =

(
f(x) + Bu(t)

l(x) +
ν

2
‖u‖2

)
∈ Rnx+1. (5.11)
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As a consequence, the optimal control problem (4.1) is equivalently transformed into

min J(X,u) = φ(X(T )) (5.12)

subject to Ẋ(t) = F(X,u), t ∈ [0, T ],

X ∈ X, u ∈ U. (5.13)

We also denote
φ(X(T )) =

1

2
‖x(T )− xdes(T )‖2 + x̂(T ).

In the following, we discuss this setting in detail for our multi-agent models.

1. The Hegselmann-Krause opinion formation model

The cost functional is given by

Jof(xof ,uof) =
µ

2
‖xof

0 (T )− xof
des(T )‖2

2 +
1

2N2

∫ T

0

N∑
i,j=1

‖xof
i (t)− xof

j (t)‖2dt

+
1

2

∫ T

0

N∑
i=1

‖xof
0 (t)− xof

i (t)‖2
2dt+

ν

2

∫ T

0

‖uof(t)‖2dt

Corresponding to this cost function, we introduce the variable x̂ and the follow-
ing setting,

˙̂xof =
1

2N2

N∑
i,j=1

‖xof
i (t)− xof

j (t)‖2 +
1

2

N∑
i=1

‖xof
0 (t)− xof

i (t)‖2 +
ν

2
‖uof(t)‖2

x̂of(0) = 0. (5.14)

Therefore our optimal control problem governed by HK system can be written
in compact form as follows

min
Xof ,uof

Jof(Xof , uof) =
µ

2
‖xof

0 (T )− xof
des(T )‖2 + x̂of(T ) (5.15)

subject to ẋof = fof(xof) + Bofuof(t)

˙̂xof =
1

2N2

N∑
i,j=1

‖xof
i (t)− xof

j (t)‖2 +
1

2

N∑
i=1

‖xof
0 (t)− xof

i (t)‖2

+
ν

2
‖uof(t)‖2,

where Xof = (xof , x̂of)> = (xof
0 , x

of
1 , . . . , x

of
N , x̂

of) ∈ Rd(N+1)+1 are new state
variable. In compact form, the optimal control problem with the HK model is
equivalently transformed into
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min Jof(Xof , uof) = φof(Xof(T )) (5.16)

subject to Ẋof(t) = Fof(Xof , uof), t ∈ [0, T ]

Xof ∈ Xof , uof ∈ Uof ,

where
φof(Xof(T )) =

1

2
‖xof(T )− xof

des(T )‖2 + x̂of(T ).

2. The Heider social balance model

the cost functional is given by

Jhb(xhb,uhb) =
1

2

N∑
i,j=1

(xhb
ij (T )− xhb

des(T ))2 +
ν

2
‖uhb(t)‖2

L2

We introduce the following problem,

˙̂xhb =
ν

2
‖uhb(t)‖2

x̂hb(0) = 0.

Thus we get the transformed system

min
Xhb,uhb

Jhb(Xhb,uhb) =
µ

2
‖xhb

0 (T )− xhb
des(T )‖2 + x̂hb(T ) (5.17)

subject to ẋhb = fhb(xhb) + Bhbuhb(t)

˙̂xhb =
ν

2
‖uhb(t)‖,

where Xhb = (xhb
01 , x

hb
02 , . . . , x

hb
(N−1)N , x̂

hb) ∈ RNr+1.

On compact form, our HK optimal control problem is equivalently transformed
into

min Jhb(Xhb,uhb) = φhb(Xhb(T )) (5.18)

subject to Ẋhb(t) = F hb(Xhb,uhb), t ∈ [0, T ]

Xhb ∈ Xhb, uof ∈ Uhb,

where

φhb(Xhb(T )) =
1

2

N∑
i,j=1

(xhb
ij (T )− xhb

des(T ))2 + x̂hb(T ).
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3. The re�ned �ocking system

We reformulate our optimal control such that it is in the form (5.1). Corre-
sponding to problem P1, the cost function is given by

J fm
1 (xfm, ufm) =

1

2
‖xfm

0 (T )−xfm
des(T )‖2+

µ

2

N∑
b=1

∫ T

0

‖xfm
0 (t)−xfm

b (t)‖4 dt+
ν

2
‖ufm‖2

L2 .

We introduce the following equation

˙̂xfm
1 (t) =

µ

2

N∑
b=1

‖xfm
0 (t)− xfm

b (t)‖4 +
ν

2
‖ufm(t)‖2.

x̂fm
1 (0) = 0.

In the case of problem P2, the cost functional is as follows

J fm
2 (xfm,ufm) =

1

2
‖xfm

0 (T )− xfm
des(T )‖2 +

µ

2

N∑
b=1

∫ T

0

‖xfm
0 (t)− xfm

b (t)‖4dt

+
η

2

∫ T

t0

‖xfm
0 (t)− xfm

des(t)‖2
2dt+

ν

2
‖ufm(t)‖2

L2

We de�ne the following problem

˙̂xfm
2 (t) =

µ

2

N∑
b=1

‖xfm
0 (t)− xfm

b (t)‖4 +
η

2
‖xfm

0 (t)− xfm
des(t)‖2 +

ν

2
‖ufm(t)‖2.

x̂fm
2 (0) = 0.

Therefore our optimal control problems P1 and P2 are transformed into the
following Pt1 and Pt2 problems.

Problem Pt1. Reach a target position at �nal time T

min J fm
1 (X fm

1 , ufm) =
1

2
‖xfm

0 (T )− xfm
des(T )‖2 + x̂fm

1 (T ) (5.19)

subject to ẋfm
0 = vfm

0

ẋfm
b = vfm

b

v̇fm
0 = S0 +M0 + E0 + ufm

v̇fm
b = Sb + Eb + Lb

˙̂xfm
1 =

µ

2

N∑
b=1

‖xfm
0 (t)− xfm

b (t)‖4 +
ν

2
‖ufm(t)‖2.
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Problem Pt2. Follow a desired trajectory

min J fm
2 (X fm

2 , ufm) =
1

2
‖xfm

0 (T )− xfm
des(T )‖2 + x̂fm

2 (T ) (5.20)

subject to ẋfm
0 = vfm

0

ẋfm = vfm
b

v̇fm
0 = S0 +M0 + E0 + ufm

v̇fm
b = Sb +Mb + Eb + Lb

˙̂xfm
2 =

µ

2

N∑
b=1

‖xfm
0 (t)− xfm

b (t)‖4 +
η

2
‖xfm

0 (t)− xfm
des(t)‖2

+
ν

2
‖ufm(t)‖2.

with given initial conditions.

Both problems Pt1 and Pt2 can be formulated in compact form as follows

min J fm
ñ (X fm

ñ , ufm) =
1

2
‖xfm

0 (T )− xfm
des(T )‖2 + x̂fm

ñ (T )

subject to Ẋ fm
ñ = Ffm

ñ (X fm
ñ , ufm). (5.21)

where ñ = 1, 2 denotes the problem, and the state variable
X fm
ñ = (xfm

0 , xfm
1 , ..., xfm

N , v
fm
0 , vfm

1 , ..., vfm
N , x̂

fm
ñ )T and Ffm

ñ (X fm
ñ ,ufm) denote the

state and the dynamics of the transformed �ocking systems. We also denote

φfm(X fm
ñ ) =

1

2
‖xfm

0 (T )− xfm
des(T )‖2 + x̂fm

ñ (T ).

Next, we present results of numerical experiments to validate the accuracy of reduced
gradient (5.8), corresponding to the RK approximation to the optimal control problem
(5.21). We consider a time interval and a one dimensional problem with one leader
and 3 agents. Therefore, the number of state and control variables are nx = 9 and
nc = 1, respectively. The initial positions and velocity of the individuals are chosen
randomly in (0, 1) whereas the initial position of the leader is x0 = 2. The target
position for problem Pt1 is xdes = 15, while the desired trajectory for problem Pt2 is
xdes = cos(t). The parameter values corresponding to our �ocking model are given in
Table 5.2.
The motivation for choosing the RK scheme is the high accuracy of the resulting
optimization gradient. We validate this property by comparing the optimization
gradient resulting from the RK optimality system applied to a given direction with the
corresponding numerical directional derivative approximated by centered di�erences.
In this experiment, the control function and the direction δu are chosen randomly
in the interval (0, 1). Results for this experiment are reported in Table 5.3. We see
in Table 5.3 that the error in the computation of the gradient is of order O(α2).
However, we remark that the good accuracy observed in this experiment requires
su�ciently small time-step sizes. This fact also motivates the use of the MPC control
strategy discussed in the following section, since we can choose small time windows
in combination with moderate values of n to guarantee accurate gradients.
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Parameters
initial time t0 0
�nal time T 10.0
time step size h 0.05
cost function µ 0.5

η 0.5
ν 0.001

self-propelling force α 0.07
β 0.05

Morse Potential Cr 0.2
Ca 0.5
lr 0.5
la 1

Attractive force by leader C0
r 0.002

C0
a 0.5
l0r 0.5
l0a 1
γ1 10

Attractive force γ 1
σ 0.5
δ1 cos(1.047)
δ2 cos(1.57)

Table 5.2: Parameters values the re�ned �ocking model and for the objectives.

α

(
J fm(u+ αδu)− J fm(u− αδu)

2α

)
(∇uJ

fm, δu)L2 Error

1 -7.210251e+000 -7.540379e+000 3.301283e-001
0.1 -8.017659e+000 -8.020856e+000 3.196608e-003
0.01 -8.083906e+000 -8.083939e+000 3.283014e-005
0.001 -7.293766e+000 -7.293766e+000 2.546723e-007
0.0001 -7.313259e+000 -7.313259e+000 2.641321e-009

Table 5.3: Values of the directional derivative of the objective with di�erent time
mesh sizes and corresponding values of the optimization gradient applied to the same
direction. The last column reports the values of their norm di�erences.
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5.2 The model predictive control scheme

In this section, we discuss a model predictive control (MPC) scheme, see e.g. [44, 62],
that implements a closed-loop control strategy for the multi-agent model to track a
given sequence of desired positions in time.

Model predictive control is an optimal control strategy based on numerical optimiza-
tion for the feedback control that can be applied to stabilization and tracking prob-
lems. The general idea of model predictive control is that future control inputs and
future state are predicted using the system model and optimized at regular intervals
with respect to a performance index. Specially, let (0, T ) be the time interval where
the evolution of the multi-agent system is considered. We assume time windows of
size ∆t = T/M with M a positive integer. Let tk = k∆t, k = 0, 1, . . . ,M . Fur-
thermore, at time t0, we have given initial conditions denoted with x(0) = x0. Our
MPC strategy for tracking problems starts at time t0 and solves the open-loop control
problem de�ned in the interval (0, t1). Then, with the response x1 resulting at t = t1,
we have the initial condition for the subsequent optimization problem de�ned in the
interval (t1, t2). This procedure is repeated by receding the time horizon until the last
time window is reached. We implement a MPC scheme where the time horizon used
to evaluate the control coincides with the time horizon where the control is used. We
notice that the closed-loop system with the MPC scheme is nominally asymptotically
stable [70]. We remark that our control system belongs to the class of MPC schemes
discussed in Ch. 6 and 7 of [44]; see in particular Section 7.2.
The MPC procedure is summarized in the following algorithm.

Algorithm 1 : Model predictive control (MPC)
Set k = 0, X0;
1. Assign the initial condition, X(tk) = Xk and the target xdes(tk+1);
2. In (tk, tk+1), solve (5.12), thus obtain the optimal pair (X, u);
3. If tk+1 < T , set k := k + 1, Xk = X(tk), go to 1.
End.

Next, we discuss the second step of Algorithm 1, that consists in solving the opti-
mal control problem (5.12). Notice that the solution of the state equation in (5.12)
gives the mapping u→ X(u), that allows to transform the constrained optimization
problem in an unconstrained one as follows

min
u∈Uad

Jr(u) := J(x(u), u). (5.22)

We solve these problems implementing a nonlinear conjugate gradient strategy. The
evaluation of the corresponding gradient is given in (5.8): For a given u, we solve �rst
the forward �ocking equation and then the adjoint �ocking equation. This procedure
is implemented with the RK scheme and is summarized in the following
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Algorithm 2: Evaluation of the gradient
1. Solve the discrete multi-agent model in the optimality system (5.7)

with the given initial conditions;
2. Solve the discrete adjoint multi-agent equation in 5.7

with the computed terminal condition;
3. Compute the gradient ∇uĴ(u) using (5.8);
End

We solve the optimization problem (5.12) by computing the gradient using Algorithm
2 and implementing it in a nonlinear conjugate gradient (NCG) scheme; see, e.g.,
[43, 74]. The NCG scheme is as follows.

Algorithm 1 : Nonlinear Conjugate Gradient

Input initial approx. u0, d0 = −∇Ĵ(u0),
g0 = −d0 index k = 0, maximum kmax, tolerance tol.

While (k < kmax and ‖gk‖R` > tol ) do
1. Apply a linesearch to determine steplength αk > 0 along
2. dk satisfying (5.23);
3. Set uk+1 = uk + αk dk;
4. Compute gk+1 = ∇Ĵ(uk+1) using Algorithm 2;
5. Compute βk given by (5.24);
6. Let dk+1 = −gk+1 + βHZk dk;
7. Set k = k + 1;
End while

In this NCG scheme αk > 0 is a step-length obtained with a linesearch algorithm [84],
that satis�es the following Armijo condition of su�cient decrease

Ĵ(uk + αk dk) ≤ Ĵ(uk) + δ αk (∇Ĵ(uk), dk), (5.23)

where 0 < δ < 1/2; see [84]. Notice that we use the inner product of the U space.
The parameter βk resembles the one appearing in the well-known linear CG scheme.
There are many di�erent formula for βk which result in di�erent performance depend-
ing on the nonlinear optimization problem. We use the formulation due to Hager and
Zhang [48], as follows

βk = βHZk :=
(σk, gk+1)

(dk, yk)
, σk = yk − 2dk

(yk, yk)

(yk, dk)
, (5.24)

where yk = gk+1 − gk. Our choice is motivated by our numerical experience. In
fact, the Hager-Zhang NCG formula results to be the most e�cient among the known
formulas [84] .
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Numerical experiments

In this chapter, we present results of numerical experiments with our multi-agent
models. These results demonstrate the control performance of our leader-based con-
trol strategies.

6.1 The Hegselmann-Krause opinion formation model

In this section, we present numerical simulations with system (2.4) in the one di-
mensional case d = 1. First, we consider the uncontrolled HK model where the
control uof = 0. This model is solved using the explicit fourth-order Runge-Kutta
method illustrated in previous section. In our experiments, the connectivity functions
aij = a(‖xof

i − xof
j ‖) are given by

a(r) = a(r; δ, ε) =


1, 0 ≤ r ≤ δ,
1
2

+ 1
2

tanh
(

1
r−δ + 1

r−(δ+ε)

)
, δ < r < (δ + ε).

0, (δ + ε) ≤ r.

The connectivity coe�cient accounting for the relationship between the leader and
the other agents is chosen as follows

c1
i (r) = c1

i (r; δ0, ε0) =


1, 0 ≤ r ≤ δ0,
1
2

+ 1
2

tanh
(

1
r−δ0 + 1

r−(δ0+ε0)

)
, δ0 < r < (δ0 + ε0),

0, (δ0 + ε0) ≤ r,

where r is the distance from the leader and δ0 is the bounded con�dence. Alterna-
tively, we take

c2
i (ri0) = e−

|xofi −x
of
0 |

2

lx ,

where lx = 20 is a parameter that scales the region of attraction. The comparison of
the connectivity function is shown in Figure 6.1.
Figure 6.2 shows numerical results with the HK model and an uncontrolled exter-
nal leader. The initial positions of the agent's opinion are distributed randomly in
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Table 6.1: Parameters for the HK model with leadership.

connectivity function (aij) δ 2.5
ε 0.05

connectivity function (c1
i ) δ0 5

ε0 0.05
connectivity function (c2

i ) la 20
strength of leader power γ 10

[−20, 20] while the leader's initial opinion is xof
0 (0) = 30. For these initial conditions

xof(0) = (xof
0 (0), xof

1 (0), ..., xof
N(0)), N = 19, and bounded con�dence δ = 2.5, δ0 = 5,

it can be seen that the opinions xof
i (t), for i = 0, ..., N , converge to an opinion xof∗.

Moreover, due to the limitation of con�dence, clusters of agents' opinions are formed.
That is, agent groups are formed with di�erent opinions, xof∗

i 6= xof∗
j when i and j are

not in the same group, while in the other case, xof∗
i = xof∗

j whenever i and j are in
the same cluster.

Next, we investigate the HK model with a leader subject to the global stabilizing
feedback control given by Theorem 7. We allow the connectivity function with the
leader φ to be zero in the bounded con�dence case (that is with connectivity functions
ci1). We consider two test cases, corresponding to two di�erent initial conditions. In
the bounded con�dence case, for some initial con�guration, this feedback fails to be
a global stabilizer (see Figure 6.4(a)). For all tests, the parameters related to the
model are set up as stated in Table 6.1.
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Case I The initial conditions are taken as above, that is, a group of 20 agents in-
cluding the leader are examined where the opinion leader is at xfm

0 (0) = 30, while the
other opinions are chosen randomly in [-20,20]. In the Figures 6.3(a), we report the
results with the HK system with c1

i , and in Figure 6.3(b), we report results obtained
with c2

i , when the control with di�erent functions c1
i and c

2
i is applied. We see that by

applying the input control to the HK system, the leader forces the agent's opinions
to achieve consensus.

Case II The initial position of the leader opinion is placed at the center of the group
of agents, while the opinions of the other agents are randomly distributed in a neigh-
borhood of the leader's position where the distance between the leader opinion and
the next nearest agent opinion is greater than the length of bounded con�dence δ0.
With this set of initial conditions, we get the results as shown in Figure6.4, where
Figure 6.4(a) and 6.4(b) show the solution of the HK system with the c1

i function and
Figure 6.5(a) and 6.5(b) show results using c2

i . As we see in Figure 6.4(a), because
the value of c1

i is initially zero, the feedback control u is equal to zero. Therefore the
leader has no in�uence on the other agents and fails in steering the agent to consen-
sus. On the other hand, with the c2

i function consensus is obtained.

To complete this section, we present results of numerical experiments obtained with
the optimal control problem (5.16) in the time interval [0, 10]. First, we consider two
series of experiments; in the �rst one, we consider the consensus problem and the
second one, we focus on the tracking problem, In both tests, we solve the optimal
control problem (5.16) with N + 1 = 10. The parameters related to the model are
given as shown in Table 6.1. In addition, the parameters in the objective function
are given by µ = 1, ν = 0.001. The initial opinions of the agents are randomly chosen
in [-5,10] and the opinion of the leader is at x0(t0) = 20. Furthermore, the target is
xdes = cos([0, 10]). To apply the MPC strategy to the �rst and the second series of
experiments, the time horizon is divided into subintervals of size ∆t = 0.25. From
Figure 6.6 and Figure 6.7 we see that the resulting optimal control is able to steer
the system to achieve the objective.

Next, we consider the tracking problem of the system (5.16) in the time interval [0, 10].
The corresponding parameters in objective functional and the target xdes are chosen
as same as the previous experiments. To apply MPC, time horizon is again divided
into subintervals with the same time window size, ∆t = 0.25. Our MPC strategy
for this experiment starts at the time t0 = 0 and solves the open-loop of the control
problem de�ned in (0, t1) with ∆t = 0.25. In general cases, the response x1 resulting
at t = t1 is chosen to be the initial condition for the subsequent optimization problem
de�ned in the next interval (t1, t2). However, in this experiment, the response x̃1

resulting at t̃1 = t1
2
is chosen as the initial condition for the next time interval with

the same window size, i.e., (t̃1, t̃1 + ∆t). This procedure is repeated by receding the
time horizon until the last time window is reached. Comparison with results in Figure
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Table 6.2: Comparison of total running time

The number of time window (n) ∆t total running time (s)
20 0.5 2,066.50
40 0.25 312.13
80 0.125 204.14

6.7, it is seen that the evolution of leader's opinion in Figure 6.8 has no jump at �nal
time of each time window.

Finally, we verify the ability of leader to track the desired trajectory. In these series
of experiments, we consider the tracking problem with the di�erent sizes of time
window ∆t. In the Figures 6.9, we compare the distance between leader's opinion
and the desired trajectory corresponding to di�erent values of ∆t where the results
with line-circle , line-square, and line- diamond are related to ∆t = 0.5, ∆t = 0.25
and ∆t = 0.125, respectively. It is seen that the smaller sizes of time window, the
closer the desired trajectory can be obtained. Moreover, by comparison of total time
running shown in Table 6.2, it can be seen that length of time window has impact on
the total running time. The smaller length of ∆t, the smaller total running time is
spent. One of reasons for these consequences is that the optimal control problem is
solved accurately with small time window.

90



Numerical experiments

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Opinion position

time (t)

x
(t

)

 

 

Leader

other agents

(a) t=50 with c1
i

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Opinion position

time (t)

x
(t

)

 

 

Leader

other agents

(b) t=50 with c2
i

Figure 6.2: Free evolution of the system (uncontrolled case). Simulation with N+1 =
20 agents. The initial position values are chosen randomly in [−20, 20] and leader
opinion is at x0(0) = 30. Figure (a) shows with c1

i . Figure (b) result is with c
2
i . The

evolution of the opinion is denoted by a line and the dashed line represent the opinion
of the leader.
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Figure 6.3: Stabilizing control. Simulation with N + 1 = 20 agents. The initial
position values are chosen randomly in [−20, 20] and leader opinion is at xfm

0 (0) = 30.
Figure(a) show results with c1

i , results (b) with c2
i . The opinion evolution of each

agent is denoted by a continuous line and the dashed line presents the opinion of the
leader.
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Figure 6.4: Stabilizing control. Simulation with N + 1 = 20 agents. The leader's
initial opinion is at center of group, other initial positions are randomly distributed
on both sides of leader's position. Figure (a) and (b) show the results with c1

i . The
opinion evolution of each agent is denoted by a continuous line and the dashed line
presents the opinion leader.
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Figure 6.5: Stabilizing control. Simulation with N + 1 = 20 agents. The leader's
initial opinion is at center of group, other initial positions are randomly distributed
on both sides of leader's position. Figure (a) and (b) show the results with c2

i . The
opinion evolution of each agent is denoted by a continuous line and the dashed line
presents the opinion leader.
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Figure 6.6: Optimal control. Simulation with N + 1 = 10 agents. Figures (a) and (b)
represent the optimal results of the HK with leadership for µ = 0. The objective is
to force all agents to reach the consensus xof∗. The opinion evolution of each agent is
denoted by a continuous line and the dashed line represents the opinion of the leader.
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Figure 6.7: Optimal control. Simulation with N + 1 = 10 agents. In �gures (a) and
(b) the optimal results of HK with leadership for µ = 1. The objective is to force all
agents to reach the desired position xof

des = cos([0, 10]). The opinion evolution of each
agent is denoted by a continuous line and the dashed line represents the opinion of
the leader.
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Figure 6.8: shows the results of optimal control by means of MPC.
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Figure 6.9: shows comparison of the distance between leader's opinion and desired
trajectory where line-circle, line-square, and line-diamond are the results correspond-
ing to n = 20, n = 40, and n = 80, respectively.
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6.2 The Heider social balance model

The purpose of this section is to present results of numerical experiments with our
HB optimal control problem. We chose the time horizon T = 2. The objective is to
�nd the optimal control in order to drive the HB system to reach a friendship state
where xhb

ij = R for all i, j = 0, ..., N, i 6= j. We consider two series of experiments; in
the �rst one, the initial conditions xhb

ij (0) ∈ (−5, 5). In the second one, the state of
relations starts with hostility that is characterized by values in a neighborhood of the
unstable equilibrium point xhb∗ = −R̄. In both cases, we solve the optimal control
problem (5.18) with N = 9 people and one leader, with R = 5. In the objective
functional we take ν = 0.001. Furthermore, the target is xhb

des = R. To apply the
MPC strategy, the time horizon is divided into subintervals of size ∆t = 0.25.

Case I The initial state of relationships of the agents in our network is randomly
chosen with friendly and hostility values. With this set of initial conditions, we get
the results shown in Figure 6.10, where Figure 6.10(a) shows the solution of the HB
model with zero control u0i = 0, for i = 1, ..., N , and in Figure 6.10(b) the controllers
are activated into the HB system. As we see in Figure 6.10(a), the HB model evolves
towards the equilibrium states as it is expected because the value of the controls u0i

is equal to zero. Therefore the leader has no in�uence on the other agents and fails
in steering the agents to a friendship state. On the other hand, as we see in Figure
6.10(b), as soon as the control is active friendship is obtained.
Case II In this case, the initial state of relationships of the agents in our network
are randomly placed in a neighborhood of the unstable hostility equilibrium point
xhb∗ = −R. With this set of initial conditions, we get the results as shown in Figure
6.11. Speci�cally, in Figure 6.11(a) we see that the solution of the HB model without
active control is unstable. On the other hand, whenever the leader is actively con-
trolling the system, the HB model successfully reaches the desired friendship state;
see Figure 6.11(b).

We remark that results of further numerical experiments show that our control strat-
egy is ine�ective in driving the HB model to hostility.
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Figure 6.10: Simulation with N + 1 = 10 agents. The status of relation of individuals
in �gure (a) are started randomly with friendship and hostility xhb

ij ∈ (−5, 5). Figure
(a) shows the results where no controller is included the system while in Figure
(b) controllers are included in the HB system. The dot-lines represent state of the
relationship of leader and normal people, otherwise are of normal people.
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Figure 6.11: Simulation with N + 1 = 10 agents. The status of relation of individuals
in �gure (a) are started with hostility xhb

ij ∈ (−6, 3). Figure (a) shows the results
where no controller is included the system while in Figure (b) controllers are included
in the HB system. The dot-lines represent state of the relationship of leader and
normal people, otherwise are of normal people.
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6.3 A re�ned �ocking model

In this section, we discuss results of numerical simulation with our re�ned �ocking
model.These numerical experiments are organized into two parts. In the �rst part, we
discuss the numerical tests regarding the investigation of the stability of the �ocking
system. In the second part numerical experiments with the optimal control governed
by the �ocking model is discussed.

For our experiments, the parameters are chosen based on biological concerns C >

1, l < 1 and in the catastrophic region Cld < 1, d = 2. Corresponding to our experi-
ments, the values of the parameters of the �ocking model are given in Table 6.3.

Table 6.3: Parameters values for the re�ned �ocking model.

Parameters
self-propelling force α 0.07

β 0.05
Morse Potential Cr 50

Ca 20
lr 2
la 100

Attractive force by leader C0
r 25

C0
a 10
l0r 1
l0a 50
γ1 10

Attractive force γ 1
σ 0.5
δ1 cos(1.047)
δ2 cos(1.57)

Next we discuss stability of the re�ned �ocking model with leadership. The Figures
6.12, 6.13, and 6.16 show numerical results of the re�ned �ocking model with external
leader and two di�erent initial con�gurations. In Figure 6.12, two �ocks of agents

are distributed uniformly on circle con�gurations with initial velocities v =
√

α
β

x⊥

‖x‖
,

while a leader is situated outside the groups as shown in Figure 6.12(a). In the Figures
6.12(b), 6.12(c) and 6.12(d) results of simulation are reported where the leader is not
included in the swarming system. After t = 100, it can be seen that the �ock develops
into a chaotic con�guration (Figure 6.12(b)) before it starts self-organizing in a single
mill that is observed after t = 800 (Figure 6.12(c)). Figure 6.12(d) demonstrates
the result of �ocking that is a combination of alignment and Morse potential. It can
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be seen that agents form the pattern con�guration and move in the same direction.
However, when the leader is present in the system, we can see that the agents react
to the presence of the leader adjusting the orientation of the velocity in order to align
with the leader and follow it after some time as shown in Figure 6.13. Similar results
with leader are shown in Figures 6.16, where the coe�cients C, l are chosen in a H-
stable region (C > 1, l > 1) but C0, l0 are set in catastrophic region C0 > 1, l0 < 1.
To discuss this case, we consider 62 agents with leadership starting with an initial
con�guration that forms as a uniformly circle and each individual moves initially with
random velocities, see Figure 6.16. For this case, the coe�cients corresponding to the
Morse potential are given as follows

Cr = 20 Ca = 50 lr = 2 la = 10
C0
r = 25 C0

a = 10 l0r = 1 l0a = 50.

After t = 20, the group of agents breaks down and tries to move towards the leader
as shown in Figure 6.16(b) and 6.16(c). After some time, the group organizes itself
to follow and adjust its alignment in the direction of the leader; see Figure 6.16(d).

To examine the asymptotic behavior of the re�ned �ocking system, we calculate the
dispersion Γ(xfm(t)) and disagreement Λ(t) as discussed in [22].

Γ(t) =
1

2(N + 1)2

N+1∑
i,j

‖xfm
i (t)− xfm

j (t)‖, (6.1)

Λ(t) =
1

2(N + 1)2

N+1∑
i,j

‖vfm
i (t)− vfm

j (t)‖

where (xfm(t), vfm(t)) represent the solution of the system (2.14) with the given initial
conditions. Furthermore, it is reasonable to expect that asymptotically this solution
becomes a minimizer of the Morse potential U , U0 and the zeros of (α − β‖vfm

i ‖2).
That is when the swarm reaches the asymptotic state, the distance between followers
and leader tends to the value

lim
t→∞

1

N

N∑
b=1

‖xfm
b − xfm

0 ‖ = ln

(
C0
r

l0r

l0a
C0
a

)
l0al

0
r

(l0a − l0r)
and lim

t→∞
‖vfm

i ‖ =

√
α

β

It can be seen from Figure 6.14 and 6.15 that when t → ∞, the value of Γ(t) is be-
coming constant and the value Λ(t) tends to zero, that is, the group attains a stable
con�guration where each individual in the group moves with the same velocity, and
the relative distance remains constant.
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Figure 6.12: Simulation with N+1 = 76 agents. The initial con�guration of swarming is displayed
in Figure (a). Figure (b) and (c) show the position and the velocities of the agents at time t = 100
and t = 800 where the leader is not included in the dynamical system. Figure (d) shows results for
the swarming system after t= 200 where Morse potential and alignment force are included in the
model. The position of each individual is denoted by a circle and the shaded circle represents the
leader.
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Figure 6.13: shows results for the swarming system after t= 200 when the leader is
presented. The initial con�guration of swarming is displayed in Figure 6.12(a).
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Figure 6.14: Figure (a) and (b) show the dispersion Γ(t) and disagreement Λ(t) for
the system including leadership in time interval [0, 200] where the initial con�guration
of swarming is displayed in Figure 6.12(a).
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Figure 6.16: The numerical simulation of the dynamical system of N +1 = 62 agents.
The initial velocity values are chosen randomly and the initial position of individuals
are distributed into circle region as shown in Figure (a). Figure (b)-(d) show the
position and velocities of the agents from time t = 0 to t = 100. The position of each
individual is denoted by a circle and the shaded circle represents the leader.
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Figure 6.17: Figure (a) and (b) show the value dispersion Γ(t) and disagreement
Λ(t) for the system including leadership in time interval [0, 100] where the initial
con�guration of swarming is displayed in Figure 6.16(a).
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Figure 6.18: Figure (a) and Figure (b) illustrate the results of the system including
leadership in time interval [0, 100] where the initial con�guration of swarming is dis-
played in Figure 6.16(a). Figure (a) shows the distance between leader and follower
compared with the value ln
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In the �nal part of this section, we discuss results of numerical tests with our con-
trol scheme. In the �rst experiment, we investigate problem (5.12) in one dimension
considering a system with one leader and 9 agents, as already discussed in part in
Section 5.1. The number of state and control variables are nx = 21 and nc = 1, re-
spectively. The initial positions and velocity of the individuals are chosen randomly
in (0, 1) whereas the initial position of the leader is xfm

0 = 10. The desired trajectory
for problem Pt2 is xfm

des = cos(t). The parameter values corresponding to our �ocking
model are given in Table 5.2. In this test, we consider a time horizon with T = 20
and time windows of size ∆t = 0.5 and ∆t = 0.25.

In Figure 6.19 we compare results obtained with di�erent time windows. On the
left-hand side, ∆t = 0.50 is chosen whereas the results shown on the right-hand side
of Figure 6.19 are obtained with ∆t = 0.25. We can see that the smaller the length
of the time window, the closer the objective can be obtained. These results are con-
�rmed also when solving problem Pt2; see Figure 6.20. We remark that in all cases,
the e�ectiveness of our control strategy is demonstrated.

Next, we discuss experiments in two space dimensions in the time horizon T = 10.
In this case, the re�ned �ocking model is composed of 10 agents including the leader
and we choose the following parameters' values

Ca = 2 Cr = 5 la = 0.2 lr = 2
C0
a = 1 C0

r = 0.5 l0a = 0.2 l0r = 10 .

In this case, we use the MPC scheme with 20 time windows and the number of time-
discretization points is n = 100 in each window. The desired trajectory is a circle
xfm
des = [cos(t), sin(t)] on the plane. At the initial time, the leader is outside of the

�ock while the other agents in the �ock stay together within a small region. The
leader and the agents are initialized with random velocities. In Figure 6.21, we depict
the controlled evolution of the �ocking model to follow the desired circular trajectory.
We see that the leader is able to follow the desired circular trajectory and to lead the
�ock along this path.

The dispersion Γ(t) and the disagreement Λ(t) de�ned in (6.2) are presented in Figure
(6.22). As a consequence of the optimization process, it can be concluded that after
a transient time, the value of Γ(t) is almost constant and the value of Λ(t) tends to
zero. Therefore each individual in the group moves with the same velocity and stays
close together following the leader.
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(c) t = [0,10]
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(d) t = [0,10]
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(e) t = [0,15]
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(f) t = [0,15]
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(g) t = [0,20]
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Figure 6.19: The �gures show the trajectories of N + 1 = 10 individuals in the
interval [0, 20] for problem Pt1 by using di�erent sizes of the MPC time windows.
The �gures in the left-hand side show the trajectories where the length of each time
window is [tk−1, tk] = 0.50, while the �gures in the right-hand side show the solution
for time length [tk−1, tk] = 0.25. The same time-step size n = 500 is used in each
window. The dotted line, dotted with shaded circle line, and straight line display the
state trajectory of leader, desired target and other agents in the �ock, respectively.
The shaded circle presents the desired position for optimization problem in each time
length.
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Figure 6.20: The �gures show results for the problem Pt2 of tracking a desired trajec-
tory by using di�erent sizes of the time windows. The dash-dotted line, dotted-dotted
line and straight line display the state trajectory of leader, desired path and other
agents in �ocking, respectively. The �gures in the left-hand side show the state tra-
jectories computed with [tk−1, tk] = 0.50, while the �gures in the right-hand side show
the solution for time length [tk−1, tk] = 0.25. The same time-step size n = 500 is used
in each window.
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(g) at t=0 and at t=10
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Figure 6.21: Two-dimensional case: snapshots of 10 agents and the leader tracking
a desired circular path. The position of each individual is denoted by a circle and
the shaded circle represents the leader. The velocity is represented by a vector at the
agent position. The Figures (a)-(f) illustrate the position at di�erent times along the
evolution. The last �gure shows the path followed by the leader together with the
desired path.
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Figure 6.22: Figure (a) and (b) show the evolution of the values Γ(t) and Λ(t) of
the solution (xfm(t),vfm(t)) to the re�ned �ocking system with leadership; the time
interval is [0, 10]. The initial con�guration is displayed in Figure 6.21(a).
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Chapter 7

Conclusions

In this thesis, we studied controllability of representative multi-agent models with
the presence of a leader focusing on the Hegselmann- Krause opinion formation (HK)
model, on the Heider social balance (HB) model and on our re�ned �ocking model. For
these three models di�erent control strategies were investigated. On the one hand,
the stabilizing control function was explicitly determined by application of control
theoretical tools. On the other hand, optimal controls were obtained using a model
predictive control (MPC) strategy. This control strategy requires the solution of a
sequence of open-loop optimality systems. The corresponding discretized optimiza-
tion problems were solved with an accurate Runge-Kutta method that guaranteed
accurate gradients of the reduced objectives. These gradients were implemented in
a nonlinear conjugate gradient solution procedure. In all cases, the control function
was implemented in the leader dynamics.

For the HK model, the analysis of the stabilization in the case of bounded con�-
dence and leader was provided. In addition, local controllabilty near consensus was
investigated. One of the novelties of this study is that we have explored the possi-
bility to control the evolution of agent's opinion to reach agreement. In particular, a
global stabilization was achieved by feedback control implemented on the dynamics
of leader's opinion. Further, a tracking problem was discussed via optimal control
problems and feedback control was obtained by using MPC.

Second, we have studied the continuous time Heider balance model. This model de-
scribes the evolution of relationship in a social network. It was shown that in the
absences of controls, this model evolves towards equilibrium states of friendship and
hostility. In correspondence to these states the local stability of the linearized system
was discussed. Furthermore, an optimal strategy, based on leadership, that steers the
relationships in the network to friendship state was investigated. The corresponding
optimization problems were solved with an appropriated Runge-Kutta method that
guaranteed accurate gradients of the objectives. These gradients were implemented
in a nonlinear conjugate gradient solution procedure and MPC.
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Finally, we presented a new �ocking model including self-propelling, friction, attrac-
tion and repulsion, and alignment features. The presence of a leader in the system
has been exploited in oder to develop a control strategy for our �ocking model to
accomplish desired objectives. In this model, we investigated the pattern formation
or consensus of �ocking. In correspondence to this state, the local controllability of
linearized system was discussed. Further, optimal control problems governed by a
re�ned �ocking systems were considered.

Results of numerical experiments with these three models demonstrated the ability
of the proposed control through leadership strategy to steer the multi-agent systems
convergence to consensus.
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Appendix

In this chapter, we provide some essential concepts and precise mathematical results
related to real functional analysis that are used in this thesis. Our main references
for the �rst section are [54, 76, 81] and [18, 30, 26, 41, 72, 80] for the second section.

A.1 Initial-value problems

In this section, we present the general results on nonlinear dynamical systems char-
acterized by di�erential equations of the form

ẋ = f(t, x) (A.1)

Theorem A.1. Assume that f : [0, T ] × X → Rn is a vector function, where X is
open subset of Rn and f has the following properties

• f(·, x) : [0, T ]→ Rn is measurable for each �xed x.

• f(t, ·) : Rn → Rn is continuous for each �xed t.

Moreover, the following two conditions also hold:

1. f is locally Lipschitz on x; that is, there are for each x0 ∈ X a real number
ρ > 0 and a locally integrable function α : [0, T ] → R+ such that Bρ(x

0) is
contained in X and

‖f(t, x)− f(t, y)‖2 ≤ α(t)‖x− y‖2 (A.2)

for each t ∈ [0, T ] and x, y ∈ Bρ(x
0)

f is locally integrable on t; that is, for each �xed x0 there is a locally integrable function
β : [0, T ]→ R+ such that

‖f(t, x0)‖ ≤ β(t) (A.3)

for almost all t.
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Then, for each pair (t, x0) ∈ [0, T ]×X there is some nonempty subinterval J ⊆ [0, T ]
open relative to [0, T ] and there exists a solution x(t) of (A.1) on J , with the following
property: If ξ : J̃ → X is any other solution of (A.1) where J̃ ⊆ [0, T ], then necessarily

J̃ ⊆ J and x = ξ on J̃ . (A.4)

The solution x is called the maximal solution of the initial-value problem in the
interval [0, T ].

A.2 Results of functional analysis

De�nition A.1. Let X be a normed vector space and let X∗ denote its dual. A
sequence {xn}∞n=1 of elements xn ∈ X is said to converge weakly in X if there exists
x ∈ X such that

for each x∗ ∈ X∗, x∗(xn)→ x∗(x) as n→∞

and such an x is called the weak limit of the sequence {xn}∞n=1. Weak convergence is
usually denoted by xn ⇀ x

Theorem A.2. Let X and Y be normed vector spaces over the same �eld K. It holds:

• let A ∈ L(X, Y ), then

xn ⇀ x in X implies Axn ⇀ Ax in Y ;

• let B ∈ L(X × Y,K), then

xn ⇀ x in X and yn → y in Y implies B(xn, yn)→ B(x, y) in K

Theorem A.3. (Banach-Saks-Mazur)
Let X be a real normed vector space. Let C be a nonempty, convex, and closed subset
of X, and let {xk}∞k=1 be a sequence of points xk ∈ C that weakly converges to x ∈ X
as k →∞. Then the weak limit x belongs to C

Theorem A.4. (Banach-Eberlein- Šmulian).

1. Any bounded sequence in a re�exive Banach space contains a weakly convergent
subsequence.

2. A Banach space in which every bounded sequence contains a weakly convergent
subsequence is re�exive.

Theorem A.5. Let X be a re�exive Banach space. Let C be a nonempty, convex,
closed and bounded subset of X. Then C is weakly sequentially compact, that is every
sequence contains a subsequence that weakly converges to some x ∈ C.
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Theorem A.6. The following Banach spaces are re�exive

1. Any �nite-dimensional normed vector space

2. Any Hilbert space

3. Any closed subspace of re�exive Banach space

4. The dual space of any re�exive Banace space

5. The space lp, 1 < p < ∞, and the Lebesgue spaces Lp(Ω), 1 < p < ∞, with Ω
any subset of Rn.

De�nition A.2. Let X be a normed vector space and let X∗ denote its dual. A
function J : X → R ∪ {∞} is said sequentially lower semicontinuous if

lim
k→∞

xk = x in X implies J(x) = lim
k→∞

inf J(xk).

Furthermore, let U ⊂ X be nonempty, then J : U → R ∪ {∞} is said sequentially
weakly lower semicontinuous if

xk ∈ U ⇀ x ∈ U as k →∞ implies J(x) = lim
k→∞

inf J(xk).

Theorem A.7. Let X be a normed space. Then a convex and continuous function
J : X → R ∪ {∞} is sequentially weakly lower semicontinuous on X

We are now going to provide some results that are used to guarantee the boundedness
property of the sequence by the application of coercivity.

Proposition A.1. Let U be a nonempty unbounded subset of a re�exive Banach
space. Let ψ : U → R ∪ {∞} be a functional that is sequentially weakly lower semi-
continuous and coercive on U . Let (um)∞m=1 be an minimizing sequence of the func-
tional ψ, that is, a sequence (uk)∞k=1 that satis�es

um ∈ U and lim
m→∞

ψ(um) = inf
ũ∈U

ψ(ũ). (A.5)

Then the sequence (um)∞m=1 is bounded.

Proof. Let (um)∞m=1 be a minimizing sequence for the functional ψ, that is,

um ∈ U and lim
m→∞

ψ(um) = inf
ũ∈U

ψ(ũ). (A.6)

Suppose that (um)∞m=1 is unbounded, then there exists a subsequence (uml)∞l=1 of the
sequence (um)∞m=1 such that ‖uml‖ → ∞. Thanks to coercivity of ψ,

ψ(uml)→∞ as ml →∞

That is a contradiction.
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Proposition A.2. Let X be normed vector space and a ∈ X. The functional

fa : X → R, x 7→ ‖x− a‖,

is continuous and convex

Proof.

• Continuity
Let (xn)n∈N be a sequence in X such that limn→∞ xn = x ∈ X. Then we get,

‖xn − a‖ − ‖x− a‖ ≤ ‖(xn − a)− (x− a)‖ = ‖xn − x‖
lim
n→∞
‖xn − a‖ − ‖x− a‖ ≤ lim

n→∞
‖xn − x‖ → 0

It yields , limn→∞‖xn − a‖ = ‖x− a‖.

• Convexity
For each x, y ∈ X and λ ∈ [0, 1], consider

fa(λx+ (1− λ)y) = ‖λx+ (1− λ)y − a‖
= ‖λx− λa+ (1− λ)y + λa− a‖
= ‖λ(x− a) + (1− λ)(y − a)‖
≤ λ‖x− a‖+ (1− λ)‖y − a‖

That is, fa is convex.
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