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Abstract

The purpose of confidence and prediction intervals is to provide an interval estimation for an

unknown distribution parameter or the future value of a phenomenon. In many applications,

prior knowledge about the distribution parameter is available, but rarely made use of, unless

in a Bayesian framework. This thesis provides exact frequentist confidence intervals of minimal

volume exploiting prior information. The scheme is applied to distribution parameters of the

binomial and the Poisson distribution. The Bayesian approach to obtain intervals on a distri-

bution parameter in form of credibility intervals is considered, with particular emphasis on the

binomial distribution. An application of interval estimation is found in auditing, where two-sided

intervals of Stringer type are meant to contain the mean of a zero-inflated population. In the

context of time series analysis, covariates are supposed to improve the prediction of future val-

ues. Exponential smoothing with covariates as an extension of the popular forecasting method

exponential smoothing is considered in this thesis. A double-seasonality version of it is applied

to forecast hourly electricity load under the use of meteorological covariates. Different kinds of

prediction intervals for exponential smoothing with covariates are formulated.

Zusammenfassung

Konfidenz- und Prognoseintervalle dienen der Intervallschätzung unbekannter Verteilungspara-

meter und künftiger Werte eines Phänomens. In vielen Anwendungen steht Vorinformation

über einen Verteilungsparameter zur Verfügung, doch nur selten wird außerhalb von bayesscher

Statistik davon Gebrauch gemacht. In dieser Dissertation werden exakte frequentistische Konfi-

denzintervalle unter Vorinformation kleinsten Volumens dargelegt. Das Schema wird auf Vertei-

lungsparameter für die Binomial- und die Poissonverteilung angewandt. Der bayessche Ansatz

von Intervallen für Verteilungsparameter wird in Form von Vertrauensintervallen behandelt, mit

Fokus auf die Binomialverteilung. Anwendung findet Intervallschätzung in der Wirtschafts-

prüfung, wo zweiseitige Intervalle vom Stringer-Typ den Mittelwert in Grundgesamtheiten mit

vielen Nullern enthalten sollen. Im Zusammenhang mit Zeitreihenanalyse dienen Kovariaten

der Verbesserung von Vorhersagen zukünftiger Werte. Diese Arbeit beschäftigt sich mit ex-

ponentieller Glättung mit Kovariaten als eine Erweiterung der gängigen Prognosemethode der

exponentiellen Glättung. Eine Version des Modells, welche doppelte Saison berücksichtigt, wird

in der Prognose des stündlichen Elektrizitätsbedarfs unter Zuhilfenahme von meteorologischen

Variablen eingesetzt. Verschiedene Arten von Prognoseintervallen für exponentielle Glättung mit

Kovariaten werden beschrieben.
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1 Introduction

Estimates of quantities and predictions of future values are matters of every-day life.

We encounter them when enquiring about the rate of adverse reactions to medications,

watching the next week’s weather forecast or listening to experts’ opinions on next year’s

economic growth, and we base decisions on them: We decide to take the drug when the

benefits sufficiently outweigh the side-effects, take an umbrella if it is likely to rain or

invest in a stock that is likely to increase in value. In industrial contexts, exploiting good

estimates is just as useful. In an incoming goods inspection, the estimated defective rate

determines the acceptance or rejection of a lot. Demand forecasts support inventory

control.

The numbers we most frequently encounter are point estimates or point forecasts. They

are appealing for obvious reasons: One particular number is easy to communicate and

leaves little room for doubt on how to take action. In reality, however, mere point fore-

casts may lead one to believe that there is a degree of certainty in the estimates which can

rarely be found in practice. A way out are interval estimates, which are commonly called

confidence intervals in the context of estimating distribution parameters and prediction

intervals in connection with forecasting. The term confidence interval was shaped by

Neyman (1934), but the concept goes back both to him and Fisher (1930). According to

Neyman’s (1934) definition, a confidence interval B is an interval in which the unknown

population parameter θ is assumed to be lying. The probability that this statement is

wrong is supposed to be less than 1−γ, that is, γ ∈ (0; 1), the predetermined confidence

level, is intended to be a lower bound for the probability Pθ(θ ∈ B). Interval estimates

are more difficult to communicate because they make one aware of how uncertain the

outcome or statement about a phenomenon can be. Uncertainty is not desirable, but

rarely avoidable, which is why giving in to the illusion of precision of a point estimate

can be fallacious.

Various distinctions have to be made with respect to estimation problems: The target

of the estimation procedure can be an unknown distribution parameter underlying the

investigated phenomenon, in which case there is an estimation problem, or the future

value of a time series, in which case the purpose is prediction. We can take a frequentist’s

1



1 Introduction

approach or a Bayesian approach. Exploiting Bayes’ theorem requires knowledge about

the a priori probabilities related to the target parameter. It had been the common

approach to perform interval estimation before Fisher (1930) proposed an equivalent

following the frequentist repeated sampling principle, which does not rely on prior distri-

butions. Interval estimates can be of exact or approximate type. The common definition

of exact in the context of estimation is that the actual coverage probability Pθ(θ ∈ B)

– the probability that θ is contained in B given θ is the true value of the distribution

parameter – is greater or equal γ for an arbitrary θ from the parameter space Θ, that is,

Pθ(θ ∈ B) ≥ γ holds for all θ. Otherwise, the latter condition holds only approximately.

Usually, the actual coverage probability is intended to be close to the nominal confidence

level, but strict exactness Pθ(θ ∈ B) = γ can only hold in the case of continuous distribu-

tions, as was already pointed out by Fisher (1930). In the case of discrete distributions,

the coverage probability is usually greater than γ for a large range of values from Θ.

Confidence and prediction intervals are regarded the more useful the more precise they

are, where preciseness is usually measured by means of the interval length: Narrower

intervals mean a more accurate estimation than wider intervals because they allow a

more detailed statement on the quantity of interest. Smaller intervals usually involve

larger sample sizes. They are more likely to lead to a decision than larger intervals.

The interval length is therefore an important quality characteristic of a confidence or

prediction interval. Exploiting additional information, if available, can help increase

accuracy and by that lead to more economic estimation procedures.

In this thesis, the focus is on estimation and prediction procedures under prior infor-

mation and covariates with particular emphasis on interval estimation. On the one

hand, confidence intervals for unknown distribution quantities are considered, where

prior knowledge on an unknown distribution parameter is supposed to enhance the es-

timation procedure. On the other hand, covariates are made use of to improve the

prediction of future values of a time series.

Initially, the focus of this thesis lay on the very practical topic of statistical auditing,

which will be addressed in Chapter 5: the precise estimation of the average misstate-

ment in accounting or auditing populations. The necessity for statistical sampling and

evaluation procedures in the auditing field arises from the usually large sizes of the pop-

ulations. Although they are finite, their complete investigation is normally too costly.

The particular feature of this field of application lies in the availability of prior infor-

mation. From previous audits, experiences with organisations from the same industrial

sector or tests of the internal control systems, the auditor is usually not completely ig-
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norant about the misstatement rate in the books. It is natural to attempt to exploit

this knowledge in order to achieve a more precise estimation, which is closely associated

with the sample size. Because it is a main driver of the audit costs, the sample size is

intended to be kept low. The Stringer bound is a commonly used upper bound for the

mean misstatement in audit populations proposed by Stringer (1963) and is supposed

to support audit decisions based on statistical procedures. It has so far been used in its

one-sided version with upper limit, which can lead to the decision of accepting the pop-

ulation in case the bound is not larger than the tolerable misstatement, and otherwise

leads to indifference. To enable that the sampling and evaluation procedure can also

entail a rejection of the population, a two-sided procedure is required. It is not strict

model-based theory that drove the development of the one-sided Stringer bound. Its

conservativeness under reasonable choices of the confidence level has been shown either

asymptotically or in simulation studies. We will prove the conservativeness of the two-

sided interval in several important special cases and support its conservativeness in more

complex situations in a simulation study. Auditing is not the only field of application

of this particular confidence interval. Since it is strong especially in populations that

contain many values of zero – so-called zeroinflated populations – potential other ap-

plications are, for example, estimating accident costs in insurance or measuring entities

where measurement imprecision causes small signals to be cumulated on zero.

Since it processes a well-known statistical procedure, namely that of estimating a prob-

ability, the Stringer bound provides the opportunity to fine-tune the interval estimation

by means of improved two-sided confidence intervals for a binomial proportion. With

the help of prior knowledge imposed on the binomial probability parameter p in the flex-

ible form of a beta distribution, exact confidence intervals can be obtained that are of

minimum weighted volume. This method to compute confidence intervals is an instance

of a theory that generalises an approach by von Collani & Dumitrescu (2001) and von

Collani et al. (2001). To a great extent, they built on the work of Neyman (1937) who

established the duality of confidence regions with prediction regions. The theory as well

as the application to confidence limits for a binomial proportion, including a comparison

to existing confidence limits for a proportion, will be presented in Chapter 2. An efficient

computational algorithm is described and has been implemented in R. The majority of

the chapter was published in the Metrika journal in 2014 (Göb & Lurz 2014).

Although they make use of prior information, the intervals in Chapter 2 are of fre-

quentist type. Less frequentist statistics than Bayesian statistics is however the typical

framework to include prior knowledge. The Bayesian equivalent to confidence intervals

3



1 Introduction

are credibility intervals. They serve as a summary of the posterior distribution and in

the form of highest posterior density (HPD) intervals maximise the posterior density. A

popular credibility interval for the binomial parameter makes use of the beta distribution

as prior distribution, for it is the conjugate prior in the binomial case. Comparing these

intervals to the frequentist confidence intervals exploiting prior knowledge is an obvious

undertaking. Therefore, Chapter 3 is devoted to understand Bayesian HPD intervals

and to compare them with frequentist minimum volume confidence intervals under prior

information. We acknowledge that especially for many Bayesians the mere attempt to

compare these two substantially different approaches is already reprehensible, but en-

couraged by Bayarri & Berger (2004), Fraser (2011) and the matching prior idea, both

approaches are united in their own Chapter 3 and some theoretical findings are taken

from the comparison in the binomial case.

The theory for minimum volume confidence intervals presented in Chapter 2 is of general

type and applicable to more than just binomial confidence limits. Another application

of the theory in the field of estimating a distribution parameter is provided in Chapter 4,

where the theory is used to develop confidence intervals for the parameter of another

discrete distribution, the Poisson distribution. The conjugate prior again serves as the

prior information distribution, hence the gamma distribution is exploited to express

prior knowledge on the mean = variance of the Poisson distribution. The general theory

is basically applicable to the Poisson distribution, but several difficulties arise in the

Poisson case in contrast to the binomial case, mainly due to the unboundedness of the

parameter space of the Poisson parameter.

The second part of the thesis, consisting of Chapters 6 and 7, is concerned with the

problem of predicting time-dependent observations. Time series methodology is applied

to obtain both point estimates as well as prediction intervals for future outcomes of a

series of a time-indexed phenomenon. The popular forecasting method of exponential

smoothing initialised by Brown (1959) and Holt (1957) and extended by Wang (2006)

from the purely history-based – what Chatfield (2001) calls univariate method – to the

multivariate procedure including further explanatory variables, is considered in Chap-

ter 6. Exponential smoothing with covariates (ESCov) with a single source of error

(SSOE) state-space model as the underlying statistical model is formulated for multiple

seasonalities. The methodology is applied in an electricity load study with Italian data

to forecast the hourly electricity consumption with the help of meteorological covariates,

more precisely, temperature. Large parts of the chapter can be found published in the

ASMBI journal (Göb et al. 2013a,b). Chapter 7 is devoted to prediction intervals for
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ESCov. So-called plug-in prediction intervals, which do not take the uncertainty in the

estimation of parameters into account, easily turn out to show undercoverage. We there-

fore formulate a method exploiting linear model theory that is supposed to make up for

this. The theory as well as the simulation study and application on daily electricity load

data has been published in QREI journal (Göb et al. 2014). Further prediction interval

types are considered, among them an empirical interval based on the Camp-Meidell in-

equality that uses findings from a book chapter of Frontiers in Statistical Quality Control

11, see Göb & Lurz (2015).

Structure of the Thesis

The thesis is structured as follows: Minimum volume confidence intervals under prior

information are considered in Chapter 2. The general theory is introduced and applied

to obtain shortest confidence intervals for a probability. Bayesian credibility intervals

for a probability are investigated in Chapter 3. The highest posterior density intervals

from Chapter 3 are being looked at from a frequentist point of view and a connection

between them and the frequentist intervals from Chapter 2 is established. The method

of minimum volume confidence intervals for a distribution parameter from Chapter 2

is transferred to the expectation of a Poisson distribution in Chapter 4. In Chapter 5,

confidence intervals for the mean in zero-inflated populations are examined, with par-

ticular focus on auditing populations. In Chapter 6, the time series method exponential

smoothing with covariates is presented and applied with the purpose of forecasting hourly

electricity load. Chapter 7 is devoted to prediction intervals for exponential smoothing

with covariates.

Proofs

For the sake of readability, proofs are provided in the appendices of each chapter.

Software

The numerical results of Chapters 2 to 7 have been achieved by means of R code that

has been developed by the author of this thesis. It is available, upon request, from her.
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1 Introduction

Notation

Throughout the thesis, uppercase bold letters denote matrices (e. g. M), lowercase bold

letters denote vectors (e. g. x), lowercase letters, not bold, denote scalars (e. g. α). The

symbol > is the symbol for transposition of matrices. E[·] is the expectation, V [·] the

variance and Cov[·] the covariance. I denotes the identity matrix, P the probability

operator and 1 the indicator function.

Statistical Distributions

Beta Distribution A continuous random variable X has the four-parametric beta

distribution Beta(p0, p1, a, b) on the support [p0; p1] if it has the density function

fX(x) =
1

B(a, b)(p1 − p0)

(
x− p0

p1 − p0

)a−1 [
1− x− p0

p1 − p0

]b−1

for x ∈ (p0; p1) (1.1)

and fX(x) = 0 for x ∈ R\(p0; p1). Here, a, b > 0 are shape parameters and

B(s, t) =
Γ(s)Γ(t)

Γ(s+ t)
=

∫ 1

0
ps−1(1− p)t−1 dp = B(t, s) for s, t > 0 (1.2)

is the symmetric beta function and

Γ(z) =

∫ ∞
0

tz−1 exp(−t) dt (1.3)

the Gamma function. See Abramowitz & Stegun (1972, Sections 6.1 & 6.2) for the

formulas for the gamma and beta functions.

The most popular type of beta distribution is the two-parametric beta distribution with

density

fX(x) =
1

B(a, b)
ya−1(1− y)b−1 for x ∈ (0; 1) (1.4)

and fX(x) = 0 for x ∈ R\(0; 1). We denote the two-parametric beta distribution as

Beta(a, b) in this thesis to spare us the lengthy notation Beta(0, 1, a, b). See Johnson

et al. (1994) for a definition and details on the beta distribution.

Binomial Distribution A discrete random variable X has the binomial distribution

Bi(n, p) with sample size n ∈ N and probability parameter p ∈ [0; 1] if it has the

probability mass function

fX(x) = P(X = x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, . . . , n. (1.5)

See Johnson et al. (1992) for a definition of the binomial distribution and further details.
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Chi-square Distribution A continuous random variable X has the chi-square distri-

bution χ2(ν) with ν ∈ N degrees of freedom if it has the density function

fX(x) =
1

2ν/2Γ
(
ν
2

)xν/2−1 exp
(
−x

2

)
for x ≥ 0 (1.6)

and fX(x) = 0 for x < 0.

See Abramowitz & Stegun (1972, 26.4.1) for a definition of the distribution function of

χ2(ν).

F -distribution A continuous random variable X has the F -distribution with ν1, ν2 ∈
N degrees of freedom if it has the density function

fX(x) =
ν

1
2
ν1

1 ν
1
2
ν2

2

B
(

1
2ν1,

1
2ν2

)x 1
2

(ν1−2)(ν2 + ν1x)−
1
2

(ν1+ν2) for x ≥ 0 (1.7)

and fX(x) = 0 for x < 0. See Abramowitz & Stegun (1972, 26.6.1) for a definition of

the density function of the F -distribution.

Gamma Distribution A continuous random variable X has the gamma distribution

Gamma(ϑ, κ), ϑ, κ > 0, on the support (0; +∞) if it has the density function

fX(x) =
xκ−1

ϑκΓ(κ)
exp

(
−x
ϑ

)
for x > 0 (1.8)

and fX(x) = 0 for x ≤ 0. See Bowman & Shenton (1988) for a definition and details on

the gamma distribution.

Normal Distribution A continuous random variable X is normally distributed with

mean µ and variance σ2, i. e. X ∼ N(µ, σ2), if it has the density function

fX(x) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

for x ∈ R. (1.9)

See Abramowitz & Stegun (1972, 26.2.9) for a definition of the density function of the

normal distribution.

Poisson Distribution A discrete random variable X is distributed according to the

Poisson distribution Po(λ), with λ > 0, if it has the probability mass function

fX(x) = P(X = x) =
λx

x!
exp(−λ) for x = 0, 1, . . . (1.10)

See Johnson et al. (1992) for a definition of the Poisson distribution and further details.
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Student’s t-Distribution A continuous random variableX has the central t-distribution

t(ν) with ν degrees of freedom if it has the density function

fX(x) =
1

√
νB
(

1
2 ,

ν
2

) (1 +
x2

ν

)− ν+1
2

dx, (1.11)

where B(s, t) is the beta function as defined in Eq. (1.2). See Abramowitz & Stegun

(1972, 26.7.1) for a definition of the distribution function of the distribution t(ν).

Uniform Distribution A continuous random variable X has the uniform distribution

or equidistribution Unif(u, v) with support [u; v] if it has the density function

fX(x) =
1

v − u
for x ∈ [u; v] (1.12)

and fX(x) = 0 for x ∈ R\[u; v]. The uniform distribution can be obtained as a special

case of the beta distribution by setting a = 1 = b and p0 = u, p1 = v in Eq. (1.1). See

Abramowitz & Stegun (1972, 26.1.34) for a definition of the uniform distribution.
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2 Design and Analysis of Shortest Two-sided

Confidence Intervals for a Probability

under Prior Information

2.1 Introduction

About the same time when Neyman (1934) introduced the general concept of a confidence

interval for a distribution parameter θ, Clopper & Pearson (1934) presented a method

for determining confidence intervals for a probability p. A random variable X that is

distributed according to the binomial distribution Bi(n, p) with p ∈ [0; 1] and sample

size n ∈ N has the probability mass function

fX(x) = P(X = x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, . . . , n, (2.1)

and the distribution function FX(x) or operating characteristic (OC) function Ln,c(p)

FX(x) = P(x ≤ c) =
c∑

x=0

(
n

x

)
px(1−p)n−x = Ln,c(p) for c = 0, 1, . . . , n.

(2.2)

The definition and properties of the binomial distribution can be found in Johnson et al.

(1992).

Let X = x be the number of realised binomial successes in a sample of size n. Let

γ ∈ (0; 1) be a confidence level. The two-sided Clopper & Pearson (1934) confidence

interval for a binomial probability p is given by

B = [pL,CP ; pU,CP ] (2.3)

=

[
zBeta(x,n−x+1)

(
1− γ

2

)
; zBeta(x+1,n−x)

(
1 + γ

2

)]
,

=

 x

x+ (n− x+ 1)zF2(n−x+1),2x

(
1+γ

2

) ;
x+ 1

(x+ 1) + (n− x)zF2(n−x),2(x+1)

(
1−γ

2

)

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where pL,CP is equal to the solution in p of the equation

P (X ≥ x) =

n∑
k=x

(
n

k

)
pk(1− p)n−k =

1− γ
2

and pU,CP is equal to the solution in p of the equation

P (X ≤ x) =

x∑
k=0

(
n

k

)
pk(1− p)n−k =

1− γ
2

,

respectively, see e. g. Agresti & Coull (1998). zBeta(a,b)(α) is the 100α%-quantile of

the two-parametric beta distribution Beta(a, b) on [0; 1] with parameters a, b > 0, and

zFd1,d2 (α) is the 100α%-quantile of the F -distribution with d1, d2 ∈ N degrees of freedom.

The relation between the beta distribution and the F -distribution utilised in Eq. (2.3)

can be established by exploiting their relationships with the regularised incomplete beta

function, see Abramowitz & Stegun (1972, 26.6.2 & 26.5.1).

One-sided versions of a confidence interval of level γ ∈ (0; 1) for a binomial proportion

if x successes out of n are observed are given by

[0; pU,CP ] =
[
0; zBeta(x+1,n−x) (γ)

]
(2.4)

=

[
0;

x+ 1

(x+ 1) + (n− x)zF2(n−x),2(x+1)
(1− γ)

]
(one-sided interval with upper bound),

[pL,CP ; 1] =
[
zBeta(x,n−x+1) (1− γ) ; 1

]
(2.5)

=

[
x

x+ (n− x+ 1)zF2(n−x+1),2x
(γ)

; 1

]
(one-sided interval with lower bound),

where pU,CP , pL,CP are solutions in p of the equations

x∑
k=0

(
n

k

)
pk(1− p)n−k = 1− γ ⇔

n∑
k=x+1

(
n

k

)
pk(1− p)n−k = γ,

and

n∑
k=x

(
n

k

)
pk(1− p)n−k = 1− γ ⇔

x−1∑
k=0

(
n

k

)
pk(1− p)n−k = γ,

respectively, see e. g. Agresti & Coull (1998).

The intervals by Clopper & Pearson (1934) from Eq. (2.3) and those from Eqs. (2.4)–(2.5)

are exact in the sense that a prescribed confidence level γ is preserved, i. e. Pp(p ∈ B) ≥ γ
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for any value p ∈ [0; 1]. However, the two-sided version of it is unnecessarily wide, and

the actual coverage probability Pp(p ∈ B) considerably exceeds the prescribed level γ

for a wide range of values p ∈ [0; 1]. Neyman (1937) established the duality of confidence

regions and acceptance or prediction regions. The criterion of Neyman’s (1937) defini-

tion of shortest confidence intervals is not geometrical volume. Instead, it is required

that for any true parameter value which determines the actual probability measure and

any other value differing from the true value, the probability of covering the non-true

value is a minimum. For discrete distributions, this construction ends up in randomised

confidence intervals. Tables of randomised Neyman-shortest confidence intervals for a bi-

nomial parameter were calculated by Blyth & Hutchinson (1960). However, randomised

procedures are rarely used by practitioners.

Without explicit reference to Neyman’s (1937) work, Sterne (1954) used the relation

between confidence and prediction regions to calculate confidence regions for p which are

throughout smaller in a geometric sense than the Clopper & Pearson (1934) intervals.

Crow (1956) seems to be the first author who explicitly considered the concept of the

total geometric volume of confidence regions, demonstrating that Sterne’s (1954) regions

were the smallest in this sense. Crow (1956) realised that Sterne’s (1954) regions were not

always intervals. By a modification of Sterne’s (1954) method, Crow (1956) obtained

shortest intervals without increasing the total volume of the regions. A survey and

classification of various approaches is provided by Blyth & Still (1983).

Crow’s (1956) approach is refined by von Collani & Dräger (2001) who account for prior

knowledge on p, expressed by a rectangular distribution of p with support [p0; p1] ⊂ [0; 1].

Narrow intervals [p0; p1] express a high degree of prior knowledge and lead to shorter

confidence intervals. This prior information approach is adopted to the estimation of

parameters of parametric families of distributions in general by von Collani & Dumitrescu

(2001) and von Collani et al. (2001).

Volume minimising confidence intervals have not yet become a customary tool of statis-

tical field work, presumably for two reasons: i) Various authors have produced extensive

tables of shortest intervals, e. g. von Collani & Dräger (2001), but efficient numerical rou-

tines for real time computation are not readily available. As a consequence, statistical

software packages like SAS, Statistica, SPSS or Minitab throughout offer only the Clop-

per & Pearson (1934) intervals as exact solutions. ii) The methods suggested hitherto

have not accounted for prior knowledge on p, except von Collani & Dräger’s (2001) recent

approach which may be considered as cumbersome because of the sharp cut-off between

the region [p0; p1] of equally likely p and the complementary region [0; 1] \ [p0; p1] of p

11
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out of consideration. Using prior knowledge is a critical issue in many applications, in

particular in auditing or industrial quality control where small or very small probabilities

nonconforming are a certainty.

The present study presents and analyses a more flexible approach to expressing prior

knowledge on p. The study is organised in the following sections: Section 2.2 explains

the general concept of minimum volume confidence intervals for a distribution parame-

ter and the connection between prediction regions and confidence regions. Section 2.3

introduces a model imposing prior information on the parameter p of the binomial dis-

tribution in terms of a beta distribution. Important properties of functions necessary for

the computation of the prediction and confidence intervals are discussed in Sections 2.4

and 2.5. In Section 2.6, the prediction intervals and confidence intervals for a probabil-

ity p are presented. Section 2.7 compares minimum volume confidence intervals without

prior information with some other approaches to confidence intervals for a probability.

Section 2.8 illustrates the effect of prior information on the confidence intervals. Sec-

tion 2.9 investigates the probability of being indifferent if a decision making process is

based on the two-sided minimum volume confidence intervals under prior information.

Finally, Section 2.10 outlines the algorithm used for an efficient computation of the

prediction and confidence intervals.

2.2 Prediction Regions and Confidence Regions

The subsequent framework for parameter measurement and prediction generalises the

approach of von Collani & Dumitrescu (2001) and von Collani et al. (2001).

Consider two random variables X : Ω → R1, Y : Ω → R2 with ranges R1 ⊂ Rm1 , R2 ⊂
Rm2 . In the empirical interpretation, X is an observable datum and Y is the parameter

of the distribution of X. Two empirical interests may occur: 1) Given the parameter

value Y , determine a prediction region for the event X. 2) Having observed X, provide

a confidence region for the parameter Y .

Let A1, A2 be σ-fields in R1, R2, respectively. Let fX,Y be the joint density of X,Y

with respect to a product measure µ1⊗µ2 on the product field A1⊗A2, and let fX , fY

be the respective marginal densities. For sets B ∈ A1 let

Py(B) = P(B|Y = y) =

∫
B
fX|Y=y(x) dµ1(x) (2.6)

be the conditional probability under Y = y. For sets A ∈ A1 ⊗A2 let Ax = {y|(x, y) ∈
A}, Ay = {x|(x, y) ∈ A} be the projections for fixed x ∈ R1, y ∈ R2, respectively. In the
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model considered by von Collani & Dumitrescu (2001) and von Collani et al. (2001), fY

is the density of an equidistribution on a finite rectangle.

Let 0 < γ < 1. A set A ∈ A1 ⊗A2 is called a level γ measurement and prediction space

for X|Y (level γ MPS for X|Y ) if the projection AX constitutes a confidence interval

for the unknown value of Y , i. e.

γ ≤ Py(y ∈ AX) = Py(X ∈ Ay) for all y ∈ R2. (2.7)

The right-hand equality in Eq. (2.7) shows that for each y ∈ R2, Ay is a level γ prediction

region or level γ acceptance region for X, i. e. γ ≤ Py(X ∈ Ay). Although the model

reflects prior knowledge on the parameter Y via the density fY , the confidence region

characterised by Eq. (2.7) follows the frequentist approach. The inequality Py(y ∈ AX) ≥
γ is stipulated pointwise for each parameter value y. A Bayesian credibility region Bx

rather requires
∫
Bx
fY |X=x(y) dy ≥ γ pointwise for each observation x.

von Collani & Dumitrescu (2001) and von Collani et al. (2001) evaluate the quality of a

level γ MPS A by the weighted volume

V (A) =

∫
R1

∫
Ax

dν(y)fX(x) dµ1(x) =

∫
R2

∫
Ay

fX(x) dµ1(x) dν(y), (2.8)

where ν is the Borel measure, i. e.
∫
Ax

dν(y) = ν(Ax) is the geometric volume of Ax.

Under a prescribed level γ, it is desired to use a minimum volume MPS, i. e. an MPS

A? with V (A?) ≤ V (A) for all level γ MPS A.

As shown by Theorem 2.2, the problem of determining minimum volume level γ MPSs is

closely related to determining level γ prediction regions consisting of largest prediction

likelihood ratios

Qy(x) :=
fX|Y=y(x)

fX(x)
=

fX,Y (x, y)

fX(x)fY (y)
(2.9)

in x for pointwise prescribed y. For y ∈ R2, t ∈ R, define the segments of largest

prediction likelihood ratios

D≥t(y) := {x|Qy(x) ≥ t} , for y ∈ R2 (2.10)

and D=t(y), D≤t(y) analogously. The subsequent proposition considers the coverage

probability of D>t(y) with respect to X as a function of the bound t.

Proposition 2.1 (Coverage Probability of Likelihood Segments). Let y ∈ R2 and let

the function Gy : R → [0; 1] be defined by Gy(t) = Py(X ∈ D>t(y)) = Py(Qy(X) > t).

Then we have:
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Gy is decreasing, right-continuous, with Gy(t
−) = Py(X ∈ D≥t(y)), Gy(t

−) − Gy(t) =

Py(X ∈ D=t(y)) for t ∈ R. Gy is continuous in t iff Py(X ∈ D=t(y)) = 0.

Proposition 2.1 is obvious since 1−Gy(t) = Py(Qy(X) ≤ t) is the distribution function

of Qy(X). The subsequent theorem explains the relation between segments of largest

prediction likelihood ratios and minimum volume MPSs.

Theorem 2.2 (Minimum Volume Level γ MPS). Let 0 < γ < 1, for y ∈ R2 let sy :=

inf{t|Gy(t) ≤ γ}, and for each y ∈ R2 let a set E(y) ⊂ D=sy(y) with Py(X ∈ D>sy(y)∪
E(y)) ≤ γ. Let A? := {(x, y)|y ∈ R2, x ∈ D>sy(y) ∪ E(y)}.

Then we have:

a) Gy(s
−
y ) = Py(X ∈ D≥sy(y)) ≥ γ ≥ Py(X ∈ D>sy(y)) = Gy(sy) for all

y ∈ R2.

b) For any level γ MPS A ∈ A1 ⊗A2 we have V (A?) ≤ V (A).

c) If µ1 is the Lebesgue measure, and if for all y ∈ R2 the set D=sy(y) is a countable

union of intervals with disjoint interior, then A? is a level γ MPS with γ = Py(X ∈
A?y) for all y ∈ R2, and hence by assertion b) a minimum volume MPS.

Proof. See Appendix 2.A, Section 2.A.1. �

von Collani et al. (2001) conjecture that the equation Gy(s) = Py(Qy(X) ≥ s) = γ in s

has always a solution if µ1 is the Lebesgue measure. This conjecture does not hold in

general, as can be demonstrated by counterexamples. However, in most all practically

relevant cases the condition of assertion c) of Theorem 2.2 is fulfiled.

The minimum volume objective is accompanied by intuitive requirements on the struc-

ture of the prediction and confidence regions. A basic requirement is the convexity of

prediction and confidence regions. In the univariate case, the convexity of a region is

equivalent to the region being an interval. The subsequent proposition shows that the in-

terval property and the monotonicity of the interval bounds of prediction and confidence

regions are closely related.

Proposition 2.3 (Interval Property). Let the ranges R1, R2 ⊂ R, let A ∈ A1 ⊗ A2

with Ax 6= ∅ for each x ∈ R1 and with Ay 6= ∅ for each y ∈ R2. We use the following

definitions:

1) For a set B ⊂ R, and a real z ∈ R define z < B iff z < z′ for all z′ ∈ B.

Analogously, define z > B.

2) A has nondecreasing bounds with respect to x if the following holds: For x1, x2 ∈
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2.2 Prediction Regions and Confidence Regions

R1, x1 < x2, all y ∈ R2, we have that y < Ax1 implies y < Ax2, and that y > Ax2

implies y > Ax1.

3) The property of nondecreasing bounds with respect to y is defined analogously to

2) by interchanging the positions of “x” and “y”.

4) A has nonincreasing bounds with respect to x if the following holds: For x1, x2 ∈
R1, x1 < x2, all y ∈ R2, we have that y > Ax1 implies y > Ax2, and that y < Ax2

implies y < Ax1.

5) The property of nonincreasing bounds with respect to y is defined analogously to

4) by interchanging the positions of “x” and “y”.

Then we have:

a) The following two sets of conditions are equivalent:

a.i) For each x ∈ R1, Ax is an interval, and A has the nondecreasing bounds

property with respect to x.

a.ii) For each y ∈ R2, Ay is an interval, and A has the nondecreasing bounds

property with respect to y.

b) The following two sets of conditions are equivalent:

b.i) For each x ∈ R1, Ax is an interval, and A has the nonincreasing bounds

property with respect to x.

b.ii) For each y ∈ R2, Ay is an interval, and A has the nonincreasing bounds

property with respect to y.

c) The following two sets of conditions c.i) and c.ii) are equivalent:

c.i) The sets Ax and Ay fulfil one of the following two conditions:

c.i.1) For each x ∈ R1, Ax is an interval, and for each y ∈ R2, Ay is an

interval.

c.i.2) There is at least one x ∈ R1 such that Ax is not an interval, and at least

one y ∈ R2 such that Ay is not an interval.

c.ii) A has either the nondecreasing bounds property simultaneously with respect to

x and y, or the nonincreasing bounds property simultaneously with respect to

x and y.

Proof. See Appendix 2.A, Section 2.A.2. �

If the intervals Ax or Ay, respectively, are all uniformly open or all uniformly closed,

the above defined nondecreasing and nonincreasing bounds conditions can be replaced
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by the simpler conditions that inf Ax, supAx (inf Ay, supAy) are nondecreasing in x (in

y), or nonincreasing in x (in y), respectively.

2.3 The Beta Prior Model for Inference on a Probability p

We consider an instance of the model established by the preceding section applied to the

probability parameter y = p of a binomial distribution.

1) The univariate random variable Y with values in R2 = [p0; p1] ⊂ [0; 1] repre-

sents a random probability parameter which varies according to a beta distribu-

tion Beta(p0, p1, a, b) with shape parameters a, b > 0 on the support [p0; p1], with

density

fY (y) =
1

B(a, b)(p1 − p0)

(
y − p0

p1 − p0

)a−1 [
1− y − p0

p1 − p0

]b−1

(2.11)

for p0 < y < p1, fY (y) = 0 for y ∈ R \ (p0; p1), where

B(s, t) =
Γ(s)Γ(t)

Γ(s+ t)
=

∫ 1

0
ps−1(1− p)t−1 dp = B(t, s) for s, t > 0 (2.12)

is the symmetric beta function. The measure µ2 is the Lebesgue measure on R2.

2) Given a value Y = y of the probability, the random sum X of n binary occurrences

with values 0 or 1 is conditionally distributed by Bi(n, y). The range of X is

R1 = {0, . . . , n} and µ1 is the counting measure on R1.

The prior information model used by von Collani & Dräger (2001), i. e. equidistribution

of Y on the support [p0; p1], is a special case of the assumptions 1) and 2), in particular

a special case of Eq. (2.11) with a = 1 = b.

From assumptions 1) and 2), the unconditional density fX(x) ofX is fX(x) = wp0,p1,a,b(x)

where

wp0,p1,a,b(x) =(
n
x

)
B(a, b)(p1 − p0)

∫ p1

p0

(
y − p0

p1 − p0

)a−1 [
1− y − p0

p1 − p0

]b−1

yx(1− y)n−x dy
(2.13)

for x ∈ {0, . . . , n}. In the important special case p0 = 0, p1 = 1 we have

w0,1,a,b(x) =
B(x+ a, n− x+ b)

B(a, b)

(
n

x

)
=

B(x+ a, n− x+ b)

xB(x, n− x+ 1)B(a, b)
. (2.14)

The random probability Y has expectation and variance

µY = E[Y ] = p0 +
(p1 − p0)a

a+ b
, σ2

Y = V [Y ] =
(p1 − p0)2ab

(a+ b+ 1)(a+ b)2
. (2.15)
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From the general formula (2.8) we obtain the weighted volume of an MPS A as

V (A) =
n∑
x=0

∫
Ax

dν(y)wp0,p1,a,b(x) =
n∑
x=0

ν(Ax)wp0,p1,a,b(x), (2.16)

where ν is the Lebesgue measure, and Ax is the confidence region for y formed under

the observation x. Considered in the volume context, the values wp0,p1,a,b(x) are called

volume weights.

The beta distribution model has several appealing characteristics, which made it the

preferred distribution for expressing prior information on a probability y = p, particu-

larly in Bayesian statistics: flexibility; sparse parametrisation; the property of being the

conjugate prior for the binomial distribution in the case [p0; p1] = [0; 1]; the potential

to express various density shapes like bathtub, inverted bathtub, strictly decreasing,

strictly increasing or constant (equidistribution). In stochastic modelling of sampling

inference on a probability p under prior information, the most prevalent version of the

beta distribution is the support [p0; p1] = [0; 1], see for instance Hald (1981) in accep-

tance sampling in quality control, Godfrey & Andrews (1982) or Berg (2006) in audit

sampling. The generalised beta distribution with supports differing from [0; 1] is often

used in risk analysis, particularly in project risk analysis, see Kendrick (2009).

In the case of repetitive sampling, the parameters of the prior information distribution

may be estimated from historical data, for instance in audit sampling or quality control,

where data from past inspections may be exploited. However, often appropriate reference

data are not available. In this case, the features of the distribution have to be elicited

from expert opinions in interviews or panels. The process of eliciting distributions from

experts has received considerable interest in the literature, with particular emphasis on

the beta distribution, see Corless (1972), Hogarth (1975), Kadane et al. (1980), Chaloner

& Duncan (1983), O’Hagan (1998), Walls & Quigley (2001), for instance. Software

assisted approaches were considered by Blocher & Robertson (1976) or Garthwaite &

O’Hagan (2000). A customary algorithm for determining the beta parameters has the

following steps: i) Specify the support [p0; p1] of Y . ii) Specify the mean µY . iii) Specify

a quantile pρ, i. e. a value pρ with FY (pρ) = ρ. iv) Solve for the parameters a and b. The

topic of eliciting a beta distribution will be resumed in Section 3.7.

In many applications, very small probabilities p = y are to be expected, in particular

in auditing or quality control, where p = y is a misstatement rate of account entries or

a proportion of nonconforming product units. Empirical studies on audit populations

confirm that high misstatement rates rarely occur, see Johnson et al. (1981) and Ham

et al. (1985). For this case, an appropriate model is a prior density fY decreasing on
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[0; 1] with a large probability mass close to 0. A simple instance of this shape is a beta

distribution Beta(0, 1, 1, b) on the support [p0; p1] = [0; 1] with first shape parameter

a = 1. The parameter b can be determined by specifying either the mean µY or a

quantile pρ.

A reduction of the support [p0; p1] to a proper subset of [0; 1] should be handled with

care. The support reduction leads to a corresponding cut-off in the obtained confidence

intervals so that values outside [p0; p1] are excluded. A misspecified support has a devas-

tating effect on the coverage probability: Values p /∈ [p0; p1] are covered with probability

zero. The effect of a misspecified beta prior on the full unit interval [0; 1] is much less

problematic: The minimum volume objective is failed, but the prescribed confidence

remains unaffected for every p ∈ [0; 1]. An appropriately chosen beta distribution on

[0; 1] may have nearly the same volume reducing effect as a cut-off, without involving

problematic effects on the coverage.

2.4 Prediction Likelihood Maximisation and the Interval

Property of Confidence Regions for a Probability p

Blyth & Still (1983) list desirable properties of confidence regions for a probability p = y.

A basic requirement is that the confidence regions and the corresponding prediction re-

gions should be intervals. Conditions ensuring the interval property have been discussed

above in Proposition 2.3.

On the other hand, if interest is in minimum volume regions, the basic Theorem 2.2

suggests to consider prediction regions which are subsets of the areas D≥s(y) of largest

prediction likelihood ratio, see the defining Eq. (2.10). Under the model of Section 2.3

we obtain from Eq. (2.9) the prediction likelihood ratio

Qp0,p1,a,b,y(x) =

(
n
x

)
yx(1− y)n−x

wp0,p1,a,b(x)
=

yx(1− y)n−x

vp0,p1,a,b(x)
for x ∈ {0, . . . , n} (2.17)

where the relative volume weights are defined by

vp0,p1,a,b(x) =
wp0,p1,a,b(x)(

n
x

) (2.18)

=
1

B(a, b)(p1 − p0)

∫ p1

p0

(
y − p0

p1 − p0

)a−1 [
1− y − p0

p1 − p0

]b−1

yx(1− y)n−x dy

for x ∈ {0, . . . , n}. For technical analysis, the weights wp0,p1,a,b, vp0,p1,a,b and the likeli-

hood ratio Qp0,p1,a,b,y can be considered as functions on the continuous interval [0;n].
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The interest in obtaining prediction intervals and the interest in prediction regions of

largest prediction likelihood ratio are not conflicting on principal. Proposition 2.6 in the

subsequent section shows that the prediction likelihood ratio Qp0,p1,a,b,y(x) as a function

of x is either increasing or decreasing or of inverted bathtub shape. Hence the areas of

largest values of Qp0,p1,a,b,y(x) are always intervals.

2.5 Properties of Weights and Prediction Likelihood Ratios

We investigate the essential quantities of the beta prior model introduced by

Sections 2.3 and 2.4 as functions of the number x of outcomes “1” in a sample of

size n: the volume weights wp0,p1,a,b(x) defined by Eq. (2.13), the relative volume weights

vp0,p1,a,b(x) defined by Eq. (2.18) and the prediction likelihood ratio Qp0,p1,a,b,y(x) defined

by Eq. (2.17). The obtained propositions are helpful for the discussion of the structure

of confidence regions in Section 2.6.

Propositions 2.4 and 2.5 consider the volume weights wp0,p1,a,b(x) introduced by

Eq. (2.13). The weights determine the influence of the confidence region Ax formed

under the observation x onto the total volume V (A) of the MPS, see Eq. (2.16). Propo-

sition 2.4 considers the case of an equidistributed probability parameter Y on an arbi-

trary interval [p0; p1] ⊂ [0; 1]. Proposition 2.5 considers the case of a beta distributed

probability parameter Y on the full unit interval [p0; p1] = [0; 1]. The combined case,

i. e. a beta distribution on a proper subinterval [p0; p1] 6= [0; 1], is omitted. The analysis

of this case implies technical involvements which are not in reasonable proportion to

the importance of the case, see the concluding remarks in Section 2.3. The proofs of

Propositions 2.4 and 2.5 are based on elementary calculation, exploiting the properties

of the beta and gamma function with respect to Eq. (2.14).

Proposition 2.4 (Volume Weights under Equidistribution). Let a = 1 = b, and consider

the weights wp0,p1,a,b(x) = wp0,p1,1,1(x) for x = 0, . . . , n.

a) For x ∈ {0, . . . , n− 1} we have

wp0,p1,1,1(x+ 1) = wp0,p1,1,1(x) (2.19)

+

(
n

x+ 1

)
1

n− x
{
px+1

0 (1− p0)n−x − px+1
1 (1− p1)n−x

}
.

b) In the case p0 = 0, p1 = 1 the weights are constant on {0, . . . , n} with

wp0,p1,1,1(x) = 1
n+1 .

In the case 0 = p0 < p1 < 1 the weights are strictly decreasing on {0, . . . , n}.
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In the case 0 < p0 < p1 = 1 the weights are strictly increasing on {0, . . . , n}.

In the case 0 < p0 < p1 < 1, let

x0 :=
− ln

(
p1

p0

)
− n ln

(
1−p1

1−p0

)
ln
(
p1

p0

)
− ln

(
1−p1

1−p0

) .

Then we have

wp0,p1,1,1(x+ 1)


> wp0,p1,1,1(x) if x < x0,

= wp0,p1,1,1(x) if x = x0,

< wp0,p1,1,1(x) if x > x0.

Proposition 2.5 (Volume Weights under Beta Distribution on Full Support). Let

p0 = 0, p1 = 1, and consider the weights wp0,p1,a,b(x) = w0,1,a,b(x) for x = 0, . . . , n.

a) For x ∈ {0, . . . , n− 1} we have

wp0,p1,a,b(x+ 1)

wp0,p1,a,b(x)
=

(x+ a)(n− x)

(x+ 1)(n− x+ b− 1)
. (2.20)

b) In the case a = 2− b > 1 the weights are strictly increasing on {0, . . . , n}.

In the case a = 2− b < 1 the weights are strictly decreasing on {0, . . . , n}.

In the case a+ b 6= 2, let x0 := n(1−a)+b−1
2−a−b . Then we have in the case a+ b < 2

w0,1,a,b(x+ 1)


> w0,1,a,b(x) if x > x0,

= w0,1,a,b(x) if x = x0,

< w0,1,a,b(x) if x < x0.

In the case a+ b > 2 we have

w0,1,a,b(x+ 1)


> w0,1,a,b(x) if x < x0,

= w0,1,a,b(x) if x = x0,

< w0,1,a,b(x) if x > x0.

Proposition 2.6 considers the relative volume weights vp0,p1,a,b(x) introduced by

Eq. (2.18), which appear as the denominator of the prediction likelihood ratio

Qp0,p1,a,b,y(x), see Eq. (2.17). It is shown that the relative weight as a function of

x ∈ [0;n] is either decreasing, increasing or has a bathtub shape.

Proposition 2.6 (Properties of Relative Volume Weights). Consider the relative volume

weights vp0,p1,a,b(x) defined for x ∈ [0;n] by Eq. (2.18).
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a) Let 0 < p0 < p1 < 1. Then vp0,p1,a,b has on [0;n] the derivatives

v
(m)
p0,p1,a,b

(x) =
1

B(a, b)(p1 − p0)
· (2.21)

∫ p1

p0

(
y − p0

p1 − p0

)a−1(
1− y − p0

p1 − p0

)b−1

ln

(
y

1− y

)m
yx(1− y)n−x dy.

In particular, v′p0,p1,a,b
is strictly increasing on [0;n], and there exists a value 0 ≤

xp0,p1,a,b ≤ n such that vp0,p1,a,b is strictly decreasing on [0;xp0,p1,a,b] and strictly

increasing on [xp0,p1,a,b;n].

b) Let p0 = 0, p1 = 1. Then the first derivative of vp0,p1,a,b = v0,1,a,b on [0;n] is

v′0,1,a,b(x) = B(x+ a, n− x+ b)
[
ψ(x+ a)− ψ(n− x+ b)

]
(2.22)

= v0,1,a,b(x)
[
ψ(x+ a)− ψ(n− x+ b)

]
for x ∈ [0;n],

where ψ is the digamma function, see Abramowitz & Stegun (1972, Chapter 6).

The derivative v′0,1,a,b has at most one change of sign x0,1,a,b from − to + on [0;n],

and v0,1,a,b is strictly decreasing on [0;x0,1,a,b] and strictly increasing on [x0,1,a,b;n].

c) Let 0 < p0 < 1 = p1. Then there is a value xp0,1,a,b ∈ [0;n] such that vp0,1,a,b is

decreasing on [0;xp0,1,a,b] and increasing on [xp0,1,a,b;n].

d) Let p0 = 0 < p1 < 1. Then there is a value x0,p1,a,b ∈ [0;n] such that v0,p1,a,b is

decreasing on [0;x0,p1,a,b] and increasing on [x0,p1,a,b;n].

Proof. See Appendix 2.A, Section 2.A.3. �

Proposition 2.7 considers the prediction likelihood ratio Qp0,p1,a,b,y(x) defined by

Eq. (2.17). It is shown that the prediction likelihood ratio as a function of x ∈ [0;n] is

either decreasing, increasing, or has an inverted bathtub shape.

Proposition 2.7 (Likelihood Ratio). For 0 ≤ p0 < p1 ≤ 1, p ∈ (p0; p1)∩ (0; 1) consider

the likelihood ratios Qp0,p1,a,b,y(x) = yx(1− y)n−x/vp0,p1,a,b(x) defined for x ∈ [0;n], see

Eq. (2.17).

a) For x ∈ [0;n] we have

Q′p0,p1,a,b,y(x) = Qp0,p1,a,b,y(x)

(
ln

(
y

1− y

)
−
v′p0,p1,a,b

(x)

vp0,p1,a,b(x)

)
. (2.23)

b) Let 0 < p0 < p1 < 1 or 0 = p0, 1 = p1. Then the function

[0;n] 3 x 7→
v′p0,p1,a,b

(x)

vp0,p1,a,b(x)

is strictly increasing. Let the quantity xp0,p1,a,b,y ∈ [0;n] be defined as follows:
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b.i) In the case v′p0,p1,a,b
(0)/vp0,p1,a,b(0) ≥ ln

(
y

1−y

)
: xp0,p1,a,b,y = n.

b.ii) In the case v′p0,p1,a,b
(n)/vp0,p1,a,b(n) ≤ ln

(
y

1−y

)
: xp0,p1,a,b,y = 0.

b.iii) In the case v′p0,p1,a,b
(0)/vp0,p1,a,b(0) < ln

(
y

1−y

)
< v′p0,p1,a,b

(n)/vp0,p1,a,b(n):

xp0,p1,a,b,y is the unique change of sign from − to + of Q′p0,p1,a,b,y
on [0;n].

Then Qp0,p1,a,b,y is strictly increasing on [0;xp0,p1,a,b,y] and strictly decreasing on

[xp0,p1,a,b,y;n].

c) Let 0 < p0 < 1 = p1. Then there is a value xp0,1,a,b,y ∈ [0;n] such that Qp0,1,a,b,y is

increasing on [0;xp0,1,a,b,y] and decreasing on [xp0,1,a,b,y;n].

d) Let p0 = 0 < p1 < 1. Then there is a value x0,p1,a,b,y ∈ [0;n] such that Q0,p1,a,b,y is

increasing on [0;x0,p1,a,b,y] and decreasing on [x0,p1,a,b,y;n].

Proof. See Appendix 2.A, Section 2.A.4. �

2.6 Prediction Intervals and Confidence Intervals for a

Probability p

Proposition 2.7 in the preceding section implies that prediction regions of largest pre-

diction likelihood ratio are always intervals. Together with Theorem 2.2, this result

suggests a close affinity between the interval property and volume minimisation. How-

ever, Proposition 2.3 shows that the interval property of the prediction regions alone

does not imply the interval property of confidence regions. Crow (1956) gave five exam-

ples of minimum volume MPSs with prediction intervals consisting of segments of largest

prediction likelihood ratio, but corresponding confidence regions not being intervals.

However, the interval property of prediction and confidence regions is essential for com-

municating the methodology to practitioners. Though shortest intervals are not always

shortest regions, we follow Crow (1956) and stipulate the interval property both for pre-

diction regions and for confidence regions. In particular, we restrict attention to MPSs

with the following characteristics:

P1) The prediction regions are nonempty and of the form

Ay =
{
cL(y), cL(y) + 1, . . . , cU (y)

}
for each y ∈ [p0; p1],

where the prediction limits cL(y), cU (y) are increasing in y ∈ [p0; p1].

P2) The confidence intervals are nonempty closed intervals of the form

Ax = [yL(x); yU (x)] ⊂ [p0; p1] for each x ∈ {0, . . . , n},
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where the confidence limits yL(x), yU (x) are increasing in x ∈ {0, . . . , n}.

Among the MPSs satisfying the properties P1) and P2), we search for an MPS A? of

minimum volume V (A?), see (2.16) for the formula of the volume. The subsequent propo-

sition shows how appropriately prescribed prediction limits or appropriately prescribed

confidence limits can determine the entire MPS with properties P1) and P2).

Proposition 2.8 (Confidence Limits and Prediction Limits). Let A be an MPS with

nonempty projections Ax and Ay for all x ∈ {0, . . . , n} and all y ∈ [p0; p1].

a) Let A satisfy the property P1), and for the projections Ax which contain at least

two points let the lower prediction limit cL : [p0; p1]→ {0, . . . , n} be left-continuous

in supAx and let the upper prediction limit cU : [p0; p1] → {0, . . . , n} be right-

continuous in inf Ax. Then A satisfies the property P2).

b) If A satisfies the property P2), then A satisfies the property P1).

Proof. See Appendix 2.A, Section 2.A.5. �

Section 2.2 establishes the duality between level γ prediction and level γ confidence

regions. For prediction intervals of type P1) and confidence intervals of type P2), the

defining characteristic (2.7) amounts to

γ ≤ Py

(
yL(X) ≤ y ≤ yU (X)

)
= Py

(
cL(y) ≤ X ≤ cU (y)

)
= Ln,cU (y)(y)− Ln,cL(y)−1(y) for each y ∈ [p0; p1], (2.24)

where the binomial OC function Ln,c(y) is defined by Eq. (2.2).

Proposition 2.9 describes the minimum content of any level γ prediction interval of

type P1) and corresponding confidence interval of type P2).

Proposition 2.9 (Minimum Content of Level γ Prediction Interval). Let

0 < γ < 1. For x = 1, . . . , n, let px,γ be the unique solution of the equation Ln,x−1(p)
!

= γ,

and let p0,γ = 0.0. For x = 0, . . . , n − 1, let p̃x,γ be the unique solution of the equation

Ln,x(p)
!

= 1 − γ, and let p̃n,γ = 1.0. Let cL, cU be level γ prediction limits with cor-

responding confidence limits yL, yU as characterised by Eq. (2.24). Then the following

assertions hold:

a) The sequences (px,γ)x∈{0,...,n} and (p̃x,γ)x∈{0,...,n} are strictly increasing.

b) In the case of γ ≥ 0.5 we have px,γ < p̃x,γ for x ∈ {0, . . . , n}.

c) Let x = 0, . . . , n. We have (px,γ ; p̃x,γ) ∩ [p0; p1] ⊂ [yL(x); yU (x)] and cL(y) ≤ x ≤
cU (y) for y ∈ (px,γ ; p̃x,γ) ∩ [p0; p1].
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Proof. See Appendix 2.A, Section 2.A.6. �

Proposition 2.9 turns out to be very helpful for the efficient computation of shortest

confidence intervals. The minimum intervals [px,γ ; p̃x,γ ] ∩ [p0; p1] are contained in any

closed level γ confidence interval Ax, but they are in general too short and not yet of

level γ. They can, however, be used as starting intervals to be extended to the left and

to the right to the proper shortest intervals.

Two more results play a role for the computation of the intervals, see Propositions 2.10

and 2.11. The following describes the monotonicity of the prediction region coverage.

Proposition 2.10 (Monotonicity of Prediction Region Coverage). For 0 ≤ x1 ≤ x2 ≤ n,

y ∈ [0; 1], let ∆n,x1,x2(y) = Ln,x2(y)− Ln,x1−1(y). In the case of x1 > 0 let

px1,x2 :=

[
1 +

(
(n− x2) · . . . · (n− x1)

x1 · . . . · x2

) 1
x2−x1+1

]−1

.

Then we have:

a) In the case of x1 = 0, ∆n,x1,x2 = Ln,x2 is strictly decreasing on [0; 1] if x2 < n,

and constant with ∆n,x1,x2 = Ln,n(y) = 1 if x2 = n.

b) In the case of x1 > 0, ∆n,x1,x2 is strictly increasing on [0; px1,x2 ] and strictly

decreasing on [px1,x2 ; 1].

Proof. See Appendix 2.A, Section 2.A.7. �

Proposition 2.10, assertion b), includes the special case x2 = n, when the prediction

region coverage ∆n,x1,x2 is strictly increasing on [0; 1] if x1 > 0.

The following proposition deals with the comparison of the prediction likelihood ratios

of two prediction points x1 6= x2.

Proposition 2.11 (Comparison of Likelihood Ratios). Consider the likelihood ratios

Qp0,p1,a,b,y(x) = yx(1 − y)n−x/vp0,p1,a,b(x) defined for x ∈ [0;n], see Eq. (2.17). Let

0 ≤ x1 < x2 ≤ n, y ∈ (0; 1). Then we have

Qp0,p1,a,b,y(x1)


< Qp0,p1,a,b,y(x2) if y > qx1,x2 ,

= Qp0,p1,a,b,y(x2) if y = qx1,x2 ,

> Qp0,p1,a,b,y(x2) if y < qx1,x2 ,

(2.25)

where

qx1,x2 :=

[(
vp0,p1,a,b(x1)

vp0,p1,a,b(x2)

) 1
x2−x1

+ 1

]−1

. (2.26)

Proof. See Appendix 2.A, Section 2.A.8. �
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2.7 Numerical Comparison with other Confidence Intervals without Prior Information

2.7 Numerical Comparison with other Confidence Intervals

without Prior Information

In this section, we analyse confidence intervals for a probability p without prior infor-

mation on a numerical basis. The absence of prior information is expressed by the beta

shape parameters a = 1 = b, and the support parameters p0 = 0, p1 = 1. The mini-

mum length intervals conforming to the design principles established by Section 2.6 are

compared with five other confidence intervals for a probability p:

i) Blaker’s (2000) interval is based on inverting a specific two-sided test for p. Agresti

& Min (2001) point out some similarity of Blaker’s construction principle with the

principle behind the classical shortest volume intervals of Sterne (1954) and Crow

(1956).

ii) The interval by Clopper & Pearson (1934), see Eq. (2.3).

iii) The well-known textbook interval with endpoints p̂∓zN(0,1)((1−γ)/2)
√
p̂(1− p̂)/n

around the estimator p̂ = x/n, where zN(0,1)(ρ) is the 100ρ%-quantile of the

standard normal distribution N(0, 1). This interval is often addressed as Wald’s

interval.

iv) Wilson’s (1927) score interval. A detailed analysis of the score interval is provided

by Krishnamoorthy & Peng (2007).

v) The interval suggested by Agresti & Coull (1998).

The intervals of type i) and ii) are exact in the sense of Eq. (2.24), i. e. the prescribed

nominal confidence level γ never exceeds the actual coverage probability. In this sense,

the intervals of type iii), iv), and v) are not exact.

For sample sizes n = 5, . . . , 30 and the nominal confidence level γ = 0.95, Table 2.1

displays the ratios V (Ai)/V (A) of the weighted lengths V (Ai), i = 1, . . . , 5, relative

to the weighted length V (A) of the minimum length interval. See Eq. (2.16) for the

definition of the weighted length. Blaker’s interval comes very close to the minimum

length. The Clopper & Pearson interval exceeds the minimum length by more than 5 %,

even for larger sample size. The non-exact intervals are considerably shorter than the

minimum length interval.

The comparison by weighted length is fallacious with respect to non-exact intervals.

They achieve a lower length by offending against the nominal confidence level. This

effect is visible from Fig. 2.1, where, under the nominal confidence level γ = 0.95, the

actual coverage Pp(p ∈ A) is displayed as a function of p ∈ [0; 1] for sample size n = 10.
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Table 2.1: Ratios V (Ai)/V (A) of weighted volumes V (Ai), i = 1, . . . , 5, relative to the weighted
volume V (A) of the minimum length interval under γ = 0.95.

n Blaker Clopper & Pearson Wald score Agresti & Coull

5 1.00001 1.08095 0.73346 0.88998 0.93756

6 1.00001 1.10377 0.78611 0.91775 0.96686

7 1.00001 1.09158 0.80706 0.91566 0.96413

8 1.00002 1.07251 0.81635 0.90673 0.95391

9 1.00073 1.09336 0.85159 0.93061 0.97744

10 1.00002 1.06829 0.84769 0.91482 0.95906

11 1.00002 1.07576 0.86681 0.92626 0.96946

12 1.00047 1.08752 0.88763 0.94099 0.98345

13 1.00283 1.08582 0.89601 0.94369 0.98498

14 1.00215 1.06098 0.88360 0.92589 0.96517

15 1.00253 1.06501 0.89374 0.93278 0.97133

16 1.00104 1.06775 0.90218 0.93842 0.97612

17 1.00066 1.06756 0.90758 0.94110 0.97803

18 1.00041 1.05638 0.90309 0.93396 0.96970

19 1.00113 1.06095 0.91160 0.94053 0.97566

20 1.00009 1.06164 0.91643 0.94347 0.97793

21 1.00003 1.06811 0.92594 0.95158 0.98543

22 1.00004 1.05698 0.91988 0.94374 0.97658

23 1.00003 1.05394 0.92056 0.94302 0.97509

24 1.00050 1.05944 0.92847 0.94980 0.98142

25 1.00051 1.06301 0.93452 0.95475 0.98591

26 1.00003 1.06381 0.93795 0.95719 0.98776

27 1.00002 1.05390 0.93175 0.94987 0.97960

28 1.00053 1.05277 0.93314 0.95037 0.97952

29 1.00056 1.05174 0.93447 0.95085 0.97950

30 1.00054 1.05390 0.93852 0.95422 0.98240
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2.8 Numerical Analysis of the Effect of Prior Information

Again, the behaviour of the minimum length interval and Blaker’s interval is nearly

indiscernible. The Clopper & Pearson interval is extremely conservative, the nominal

level is exceeded for all p. The minimum length interval and Blaker’s interval exploit the

confidence level in a much more economic way, but still exhibit considerable exceedances

over the bound. Among the non-exact intervals, the Wald interval is not a competitive

choice since the nominal confidence bound is drastically violated. The score interval and

the Agresti & Coull interval behave much better, but still exhibit considerable shortfalls.

Agresti & Coull (1998) argue that their interval provides a good balance between the

two conflicting interests of reducing the average length and maintaining the nominal

confidence level. However, the user has to be aware that the Agresti & Coull interval

suffers from considerable violations of the nominal level particularly for very small and

very large p.

2.8 Numerical Analysis of the Effect of Prior Information

This section analyses the effect of prior information on minimum volume confidence

intervals for a probability p. In the scheme established by Sections 2.3 to 2.6, prior

information is expressed by the distribution Beta(p0, p1, a, b) of the random probability

Y , where a, b > 0 are the beta shape parameters, and where [p0; p1] ⊂ [0; 1] is the support

interval.

For the confidence level of γ = 0.95, Fig. 2.2 provides the relative weighted volume or

relative average length V (A)/V (ACP) of minimum volume prior information intervals

Ax = [yL(x); yU (x)] relative to the Clopper & Pearson (1934) intervals ACP,x, where the

weighted volume is defined by Eq. (2.16). The absence of prior information is expressed

by Y ∼ Beta(0, 1, 1, 1) = Beta(1, 1), i. e. a uniform distribution Unif(0, 1) on the full

support [p0; p1] = [0; 1]. The prior information distributions Y ∼ Beta(0, 0.2, 1, 1) and

Y ∼ Beta(0, 0.1, 1, 1) with a = b = 1 describe uniform distributions Unif(0, 0.2) and

Unif(0, 0.1) on the support intervals [p0; p1] = [0; 0.2] and [p0; p1] = [0; 0.1], respectively.

The distributions Beta(0, 1, 1, b) = Beta(1, b) with p0 = 0, p1 = 1, a = 1, are beta

distributions with strictly decreasing densities on [0; 1]. In these cases, small values of

p come with a high probability. Finally, the bathtub shaped prior Beta(0, 1, 0.5, 0.5) =

Beta(0.5, 0.5), the Jeffreys prior (Jeffreys 1946), is considered where the two extremes

of very small and very large p have high probability.

Corresponding to the results of Table 2.1, Fig. 2.2 shows that the gain in length of

the minimum volume confidence interval without prior information is visible, but not
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Figure 2.1: Actual coverage Pp(p ∈ A) as a function of p ∈ [0; 1] for sample size n = 10 under
the nominal confidence level γ = 0.95.
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Figure 2.2: Average length of minimum volume prior information intervals relative to the av-
erage length of Clopper & Pearson intervals as a function of the sample size n for
confidence level γ = 0.95. Beta(1, 10.32) and Beta(0.06546, 1) have 90 %-quantiles
0.2, Beta(1, 13.43) has 95 %-quantile 0.2, Beta(1, 21.85) and Beta(0.04576, 1) have
90 %-quantiles 0.1, Beta(1, 28.43) has 95 %-quantile 0.1.

striking. However, the length decreases considerably when imposing narrower prior

information on Y . The second part of Fig. 2.2 compares the effect of distributions

Beta(1, b) and Beta(a, 1) on the full support [p0; p1] = [0; 1] with choices of b and a

corresponding to specified quantiles of the beta distribution.

The modification of the quantile level from 90 % to 95 % with an unchanged quantile

point at 0.1 or 0.2, respectively, has little effect on the interval length. However, the

effect of changes in the quantile point from 0.2 down to 0.1 is considerable.

Table 2.2 shows the required minimum sample sizes if an upper limit of 0.1, 0.075 or

0.05 is imposed for the average length. If, for instance, an average length of at most

0.075 is intended and 0.2 can be specified as the 90 %-quantile, the sample size is about

39 % of the sample size required when using the Clopper & Pearson interval. If Y is

assumed to be uniformly distributed between 0 and 0.1, the sample size can be reduced
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Table 2.2: Required minimum sample sizes, γ = 0.95, Y ∼ Beta(p0, p1, a, b).

Average length below

Prior information on p = y 0.1 0.075 0.05

n.a.: Clopper & Pearson 254 445 983

Y ∼ Unif(0, 1) 245 432 964

Y ∼ Beta(0.5, 0.5) 166 290 642

Y ∼ Unif(0, 0.2) 79 163 407

Y ∼ Beta(1, 10.3), i. e. 0.2 = 90 % point 98 174 390

Y ∼ Beta(1, 13.4), i. e. 0.2 = 95 % point 81 142 316

Y ∼ Beta(1, 21.9), i. e. 0.1 = 90 % point 57 96 209

Y ∼ Beta(1, 28.4), i. e. 0.1 = 95 % point 49 79 167

Y ∼ Unif(0, 0.1) 1 50 167

by about 89 %.

We present the coverage probability functions together with the corresponding MPSs

for a selection of prior information for the minimum volume confidence interval. In

Fig. 2.3, the MPS and coverage probability functions are shown under two uniform

prior distributions Beta(0, 1, 1, 1) = Unif(0, 1) and Beta(0.1, 0.7, 1, 1) = Unif(0.1, 0.7),

the Beta(0.5, 0.5) distribution (bathtub shaped), the Beta(0.2, 1) and the Beta(1, 5) dis-

tribution (both monotonously decreasing), and the Beta(7, 3) distribution (left-skewed).

The Beta(0.2, 1) distribution, for example, causes smaller upper bounds for some x ∈
{0, . . . , 10} than the Unif(0, 1) prior information distribution. To nevertheless maintain

the prescribed coverage of at least γ = 0.95, the confidence intervals are extended suffi-

ciently far to the left for some x ∈ {0, . . . , 10}. A similar behaviour is observed for the

Beta(1, 5) distribution. The left-skewed Beta(7, 3) prior information distribution shows

the opposite behaviour. Lower bounds are increased, if possible, and the upper bounds

increased to compensate.

While the coverage probability plots for the symmetric distributions Unif(0, 1) and

Beta(0.5, 0.5) show a symmetric behaviour, the coverage probability plots in the case

of the asymmetric prior information distributions Beta(0.2, 1), Beta(1, 5) and Beta(7, 3)

turn out to be asymmetric. In all cases, however, the minimal coverage probability of

at least γ is ensured.
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Figure 2.3: Level 95 % minimum volume MPS for a binomial proportion p and coverage prob-
ability for a selection of prior information. Sample size n = 10.
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2.9 Indifference Probability

2.9.1 Definition and Monotonicity Characteristics

Two-sided confidence intervals are often used to support a decision making process on

whether a true, unknown distribution parameter exceeds a certain critical threshold,

falls below it or none of both. A confidence interval is usually preferred to another one

if it is more likely to lead to a (correct) decision. The situation when it does not lead to

a decision, is called indifference. We describe indifference in the context of confidence

intervals for a binomial probability.

Let A be an MPS with nonempty projections Ay and AX = [yL(X); yU (X)] ⊂ [p0; p1] ⊂
[0; 1] for all y ∈ [0; 1], X ∈ {0, . . . , n}, where n ∈ N is the sample size. The confidence

limits yL(x) and yU (x) are increasing in x ∈ {0, . . . , n}, compare property P2) in Sec-

tion 2.6. Let γ ∈ (0; 1) be the confidence level and q ∈ [p0; p1] be a critical threshold.

Then a decision maker is indifferent with respect to the threshold q if q ∈ Ax under an

observed x ∈ {0, . . . , n}. The indifference probability Iq(y) as a function of y is given by

Iq(y) = Py (q ∈ AX) = Py(yL(X) ≤ q ≤ yU (X)). (2.27)

From Proposition 2.8 we can infer that the projectionAy is an intervalAy = {cL(y), cL(y)+

1, . . . , cU (y)} with prediction limits cL(y), cU (y) increasing in y ∈ [p0; p1]. In particu-

lar, the set Aq = {x ∈ {0, . . . , n}|yL(x) ≤ q ≤ yU (x)} with q ∈ [p0; p1] is an interval.

Consequently, we have

Iq(y) = Py (cL(q) ≤ X ≤ cU (q)) = Ln,cU (q)(y)− Ln,cL(q)−1(y), (2.28)

compare Eqs. (2.24) and (2.2).

The following corollary is concerned with the monotonicity of the indifference probability

function Iq(y). It is a consequence of Proposition 2.10 with x1 = cL(q) and x2 = cU (q).

Corollary 2.12 (Monotonicity of Indifference Probability). Let A be an MPS with

nonempty projections Ax and Ay for all x ∈ {0, . . . , n} and all y ∈ [p0; p1]. Let q ∈ [p0; p1]

be a critical value with prediction region Aq = {cL(q), . . . , cU (q)} ⊂ {0, . . . , n}. Let Iq(y)

be the indifference probability function for q under A. In the case cL(q) > 0 let

pcL(q),cU (q) :=

[
1 +

(
(n− cU (q)) · . . . · (n− cL(q))

cL(q) · . . . · cU (q)

) 1
cU (q)−cL(q)+1

]−1

.

Then we have:
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a) In the case cL(q) = 0, Iq(y) is strictly decreasing on [p0; p1] if cU (q) < n, and

constant with Iq(y) = 1 if cU (q) = n.

b) In the case cL(q) > 0, Iq(y) is strictly increasing on [p0; pcL(q),cU (q)] and strictly

decreasing on [pcL(q),cU (q); p1].

Corollary 2.12 is concerned with the case that the critical value q ∈ [0; 1] is an element

of the interval [p0; p1]. The cases p0 > q and p1 < q signify that the unknown probability

y = p, which is considered to be in the interval [p0; p1] with probability 1, is below or

above the critical threshold q a priori, which leads to a decision with probability 1 and

hence to an indifference probability of 0.

From Section 2.10 it will become clear that in the case of an MPS for a binomial prob-

ability, there is a partition 0 = π1 < . . . < πs∗ = 1 of [0; 1], such that the prediction

regions Ay = {cL(y), . . . , cU (y)} are constant for y ∈ [πi;πi+1), i = 1, . . . , s∗− 1. In con-

sequence, two critical values c1, c2 ∈ [p0; p1] have equal indifference probability functions

if c1, c2 ∈ [πi;πi+1).

2.9.2 Numerical Analysis of the Indifference Probability

We examine the indifference probability of the minimum volume confidence interval

and the Clopper & Pearson interval for a probability under various prior information

and sample sizes n = 50, 100, 150 for critical thresholds q = 0.05 and q = 0.1 and a

confidence level of γ = 0.95. We consider the following types of prior information distri-

butions: 1) the uniform distribution Beta(0, 1, 1, 1) = Unif(0, 1), 2) the uniform distri-

bution Beta(0, 0.1, 1, 1) = Unif(0, 0.1), 3) the uniform distribution Beta(0, 0.05, 1, 1) =

Unif(0, 0.05), 4) the Beta(1, 10.32) distribution, 5) the Beta(1, 21.85) distribution, 6) the

Beta(1, 44.89) distribution, which has 0.05 as the 90 %-quantile, 7) the Beta(0.06546, 1)

distribution.

The indifference probability in dependence of the true probability parameter p = y cor-

responding to the confidence intervals is illustrated in Fig. 2.4. Among the investigated

prior information types, many show similar behaviour. For example, for n = 100 and

q = 0.1, the indifference probability function is identical for Unif(0, 1), Beta(1, 10.32)

and Beta(0.06546, 1). The Unif(0, 0.05) indifference probability plot is omitted in the

plots corresponding to the critical threshold q = 0.1. That is because the upper bounds

of the intervals obtained under this prior information are by definition below q = 0.1

and hence always lead to a conclusion.

In all plots, the indifference probability at the critical threshold q is at least the prescribed
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confidence level γ. That this is necessarily the case follows from the validity of Eq. (2.7)

when setting y = q in Eq. (2.28).

The indifference probability graphs that increase as late as possible to the maximum ≥ γ
if p approaches the critical threshold q and quickly decrease afterwards are preferable.

In the case n = 50, q = 0.05, all minimum volume confidence intervals are equivalent

and better than the Clopper & Pearson interval with the exception of the one with prior

information Unif(0, 0.05), which does not lead to a decision, irrespective of which is the

true probability parameter p ∈ [0; 1]. In the case n = 100, q = 0.05, the Clopper &

Pearson method and the minimum volume confidence interval using the uniform prior

on [0; 1] increase early when p approaches q, but descend quickly afterwards. All other

priors have preferable indifference probability functions if p < q, but are mostly worse

if p > q. The remaining plots in Fig. 2.4 have to be interpreted in a similar fashion. In

several cases, as n = 50, q = 0.1, the use of prior information positively influences the

indifference probability function for p < 0.1 and the use of meaningful prior information

can be useful if p is considered to be rather close to 0. In other cases, as n = 150, q =

0.05, the indifference probability does not show significant changes in behaviour among

the investigated confidence intervals with the exception of the Unif(0, 0.5) prior. A

difference in behaviour, however, can sometimes be spotted if the true p is larger than

the critical threshold. The descend in indifference probability is slower for Beta(1, b)

prior information distributions with b increasing. For example, Beta(1, 44.89) decreases

slower than Beta(1, 21.85) in all investigated cases apart from n = 50, q = 0.05, in which

case they have equal indifference probability functions.

Considering only the right-skewed prior information distributions Beta(1, 10.32),

Beta(1, 21.85) and Beta(1, 44.89), it seems unnecessary in the investigated examples

to take into account the more extreme priors in terms of skewness like Beta(1, 21.85)

or Beta(1, 44.89), for they show similar behaviour as Beta(1, 10.32) for small true p and

Beta(1, 10.32) shows the preferable faster descend for p > q.

Figure 2.4 also reveals that from the point of view of the indifference probability, it does

not make sense to use the uniform prior information distribution on [0; 0.05] with the

sharp cut-off if q = 0.05 is the critical threshold as well as the prior Unif(0, 0.1) if q = 0.1

is the critical threshold because they lead to an indifference with probability 1 for a wide

range of values p ∈ [0; 1].
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Figure 2.4: Indifference probability of the minimum volume confidence interval in dependence
of the true probability y = p under a selection of prior information for critical
thresholds q = 0.05, 0.1 and sample sizes n = 50, 100, 150. Confidence level γ =
95 %.
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2.10 Computational Algorithm

The minimum volume confidence intervals for a probability under prior information

cannot be obtained by means of an explicit formula. Their computation requires a

numerical algorithm, of which we describe the major steps in Section 2.10.1, and the

detailed steps in Section 2.10.2. The difficulties associated with the computation and the

necessity of applying a specific numerical algorithm as well as further remarks regarding

the implementation can be found in Section 2.10.3.

2.10.1 Main Steps of the Algorithm

The algorithm to compute the minimum volume confidence intervals for a probability

under prior information determines for a given sample size n, confidence level γ ∈ (0; 1)

and prior information on p = y the minimum volume confidence intervals for the un-

known probability p. The confidence intervals are determined by making use of the

relation between confidence intervals [yL(x); yU (x)] ⊂ [0; 1] and prediction intervals

{cL(y), . . . , cU (y)} ⊂ {0, . . . , n}. The objective of the algorithm is to find an appro-

priate partition 0 = π1 < . . . < πs∗ = 1 of [0; 1] of prediction regions Ay that are

constant for y ∈ [πi;πi+1), i = 1, . . . , s∗ − 1.

To obtain the numerical results of Sections 2.7 to 2.9, the algorithm has been imple-

mented by the author of this thesis in the statistical software R.

Algorithm 1 (Computation of Minimum Volume Confidence Intervals).

Step I: For x = 0, . . . , n, determine the minimum intervals A
(0)
x = [px,γ ; p̃x,γ ] ⊂ [0; 1]

according to Proposition 2.9.

Step II: For y ∈ [0; 1], determine the minimum prediction regions A
(0)
y belonging to the

minimum intervals A
(0)
x , x = 0, . . . , n. There is a partition 0 = π1 < . . . < πs = 1

of [0; 1] such that A
(0)
y is invariant for y ∈ [πi;πi+1), i = 1, . . . , s− 1.

Step III: Expand any minimum prediction region A
(0)
y according to the criterion of high-

est prediction likelihood ratio with the help of Propositions 2.10 and 2.11. Stop

the procedure as soon as the resulting prediction regions A
(1)
y fulfil the condition

Py(X ∈ A(1)
y ) ≥ γ for y ∈ [0; 1].

Step IV: Reduce the prediction regions A
(1)
y to the optimal prediction regions A∗y ⊂ A

(1)
y

while ensuring the condition Py(X ∈ A∗y) ≥ γ for y ∈ [0; 1]. If possible, drop

predictions with lowest prediction likelihood ratio first. Again, Propositions 2.10

and 2.11 are used.
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Step V: Determine the minimum volume level γ confidence intervals A∗x = [yL(x)∗; yU (x)∗]

by

yL(x)∗ := min{max{min{y|x ∈ A∗y} ∪ p0} ∪ p1},

yU (x)∗ := max{min{max{y|x ∈ A∗y} ∪ p1} ∪ p0}.

2.10.2 Detailed Description of the Algorithm

In the following we give a more detailed description of the algorithm used for the compu-

tation of the minimum volume confidence intervals for a probability. Let n ∈ {1, 2, 3, . . .},
0 < γ < 1.

Algorithm 2 (Computation of Minimum Volume Confidence Intervals in Detail).

Step I: Minimum confidence intervals By Proposition 2.9 and the well-known relation

Ln,x(p) = Fn−x,x+1(1 − p) between the binomial OC Ln,c(p) and the distribution

function Fn−x,x+1(1− p) of the beta distribution Beta(n− x, x+ 1), determine the

minimum confidence intervals [px,γ ; p̃x,γ ], where

px,γ =

0.0 for x = 0,

1− zBeta(n−x+1,x)(γ) for x = 1, . . . , n, and

p̃x,γ =

1− zBeta(n−x,x+1)(1− γ) for x = 0, . . . , n− 1,

1.0 for x = n.

Here, zBeta(a,b)(α) is the 100α%-quantile of the beta distribution Beta(a, b) on [0; 1].

Step II: Minimum prediction intervals Let H = {px,γ |x = 0, . . . , n}∪{p̃x,γ |x = 0, . . . , n},
|H| =: s, and let 0 = π1 < . . . < πs = 1 be an ordering of the elements of H. For

y ∈ [πi;πi+1), i = 1, . . . , s− 1, let

c
(0)
L (y) := max

{
{x ∈ {1, . . . , n}|p̃x−1,γ ≤ πi} ∪ {0}

}
,

c
(0)
U (y) := max

{
x ∈ {0, . . . , n}|px,γ ≤ πi

}
and obtain A

(0)
y :=

{
c

(0)
L (y), . . . , c

(0)
U (y)

}
. The sets A

(0)
y are invariant for y ∈

[πi;πi+1), i = 1, . . . , s− 1.

Step III: Expansion of the prediction regions

Step III.a) Consider the function ∆n,x1,x2(y) from Proposition 2.10. Let 0 = π1 <

. . . < πs = 1 be an ordering of the elements of H with invariant prediction
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regions A
(0)
y =

{
c

(0)
L (y), . . . , c

(0)
U (y)

}
on [πi;πi+1) ⊂ [0; 1], i = 1, . . . , s − 1.

If the condition ∆
n,c

(0)
L (y),c

(0)
U (y)

(y) ≥ γ is fulfiled for y ∈ [πi;πi+1), define

A
(1)
y :=

{
c

(0)
L (y), . . . , c

(0)
U (y)

}
. Make use of Proposition 2.10.

Step III.b) If the condition ∆
n,c

(0)
L (y),c

(0)
U (y)

(y) ≥ γ is fulfiled for y ∈ [0; 1], i. e.

A
(1)
y found for all y ∈ [0; 1], stop the procedure and go to step IV.

Step III.c) For every i = 1, . . . , s − 1, do the following: If ∆
n,c

(0)
L (y),c

(0)
U (y)

(y) < γ

for at least one y from an interval [πi;πi+1), determine a decomposition

[πi0 ;πi1), . . . , [πim−1 , πim) of [πi;πi+1) with [πi0 ;πi1) ∪ . . . ∪ [πim−1 , πim) =

[πi;πi+1), where [πi0 ;πi1), . . . , [πim−1 , πim) are pairwise disjunct, such that

for all y ∈ [πik−1
;πik) either ∆

n,c
(0)
L (y),c

(0)
U (y)

(y) ≥ γ or ∆
n,c

(0)
L (y),c

(0)
U (y)

(y) ≤
γ is fulfiled: Calculate the maximum point p

c
(0)
L (y),c

(0)
U (y)

of the prediction

region coverage function from Proposition 2.10. If p
c
(0)
L (y),c

(0)
U (y)

≤ γ, de-

fine [πi0 ;πi1) := [πi;πi+1), i. e. m = 1. Otherwise calculate the roots of

∆
n,c

(0)
L (y),c

(0)
U (y)

(y) − γ. According to Proposition 2.10, ∆
n,c

(0)
L (y),c

(0)
U (y)

(y) − γ
has at most two roots r1 < r2. If r1, r2 /∈ [πi;πi+1), define [πi0 ;πi1) =

[πi;πi+1), i. e. m = 1. Otherwise if r1, r2 ∈ [πi;πi+1), define the decompo-

sition [ πi︸︷︷︸
πi0

; r1︸︷︷︸
πi1

) ∪ [ r1︸︷︷︸
πi1

r2︸︷︷︸
πi2

) ∪ [ r2︸︷︷︸
πi2

, πi+1︸︷︷︸
πi3

) = [πi;πi+1), i. e. m = 3. Other-

wise if r1 ∈ [πi;πi+1), r2 /∈ [πi;πi+1) or r2 ∈ [πi;πi+1), r1 /∈ [πi;πi+1), define

[ πi︸︷︷︸
πi0

; r1︸︷︷︸
πi1

) ∪ [πi1 ;πi2) = [πi;πi+1), i. e. m = 2.

Redefine H := H ∪ {πi1 , . . . , πim−1} and s := |H|.

Step III.d) Let 0 = π1 < . . . < πs = 1 be an ordering of the elements of H. If for

an interval [πi;πi+1) the condition ∆
n,c

(0)
L (y),c

(0)
U (y)

(y) ≤ γ is fulfiled, add a pre-

diction point to the prediction region A
(0)
y =

{
c

(0)
L (y), . . . , c

(0)
U (y)

}
. In the case

c
(0)
L (y) = 0, add c

(0)
U (y)+1, i. e. redefine A

(0)
y :=

{
c

(0)
L (y), . . . , c

(0)
U (y) + 1

}
. In

the case c
(0)
U (y) = n, add c

(0)
L (y) − 1, i. e. redefine A

(0)
y :=

{
c

(0)
L (y)− 1, . . . ,

c
(0)
U (y)

}
. In the case 0 < c

(0)
L (y) < c

(0)
U (y) < n apply the principle of the great-

est prediction likelihood ratio Qp0,p1,a,b,y(x), see Eq. (2.17), to the expansion of

prediction regions: If Qp0,p1,a,b,y

(
c

(0)
L (y)− 1

)
≥ Qp0,p1,a,b,y

(
c

(0)
U (y) + 1

)
for

all y ∈ [πi;πi+1), add c
(0)
L (y)−1, i. e. redefine A

(0)
y :=

{
c

(0)
L (y)− 1, . . . , c

(0)
U (y)

}
.

If Qp0,p1,a,b,y

(
c

(0)
L (y)− 1

)
≤ Qp0,p1,a,b,y

(
c

(0)
U (y) + 1

)
for all y ∈ [πi;πi+1),

add c
(0)
U (y)+1, i. e. redefine A

(0)
y :=

{
c

(0)
L (y), . . . , c

(0)
U (y) + 1

}
. Otherwise cal-

culate the section point q
c
(0)
L (y)−1,c

(0)
U +1

of the two prediction likelihood ratio
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functions for c
(0)
L (y)− 1 and c

(0)
U (y) + 1 with Proposition 2.11. If

Qp0,p1,a,b,y

(
c

(0)
L (y)− 1

)
≤ Qp0,p1,a,b,y

(
c

(0)
U (y) + 1

)
for all y ∈

[
πi; qc(0)

L (y)−1,c
(0)
U (y)+1

)
, add c

(0)
U (y) + 1, i. e. redefine A

(0)
y :={

c
(0)
L (y), . . . , c

(0)
U (y) + 1

}
for y ∈

[
πi; qc(0)

L (y)−1,c
(0)
U (y)+1

)
. Else if

Qp0,p1,a,b,y

(
c

(0)
L (y)− 1

)
≥ Qp0,p1,a,b,y

(
c

(0)
U (y) + 1

)
for all y ∈ [πi; qc(0)

L (y)−1,c
(0)
U (y)+1

), add c
(0)
L (y) − 1, i. e. redefine

A
(0)
y :=

{
c

(0)
L (y)− 1, . . . , c

(0)
U (y)

}
for y ∈ [πi; qc(0)

L (y)−1,c
(0)
U (y)+1

). Proceed with[
q
c
(0)
L (y)−1,c

(0)
U (y)+1

;πi+1

)
in a similar fashion.

Redefine H := H ∪
{
q
c
(0)
L (y)−1,c

(0)
U (y)+1

}
and s := |H|.

Return to step III.a).

Step IV: Reduction of the prediction regions

Step IV.a) Let 0 = π1 < . . . < πs = 1 be an ordering of the elements of H. Let

A
(1)
y =

{
c

(1)
L (y), . . . , c

(1)
U (y)

}
be the prediction regions, which are invariant for

y ∈ [πi;πi+1) ⊂ [0; 1], i = 1, . . . , s− 1, and for which ∆
n,c

(1)
L (y),c

(1)
U (y)

(y) ≥ γ is

fulfiled.

If for all y ∈ [πi;πi+1) we have c
(1)
U (y) = 0 or c

(1)
L (y) = n or c

(1)
L (y) = c

(1)
U (y),

no reduction of the prediction region is possible. Set A∗y := A
(1)
y .

Step IV.b) For every i = 1, . . . , s−1, do the following: If ∆
n,c

(1)
L (y)+1,c

(1)
U (y)

(y) > γ

for at least one y from [πi;πi+1), determine a decomposition [πi0 ;πi1), . . . ,

[πim−1 , πim) of [πi;πi+1) with [πi0 ;πi1) ∪ . . . ∪ [πim−1 , πim) = [πi;πi+1), where

[πi0 ;πi1), . . . , [πim−1 , πim) are pairwise disjunct, such that for all y ∈ [πik−1
;πik)

either ∆
n,c

(0)
L (y)+1,c

(0)
U (y)

(y) ≥ γ or ∆
n,c

(0)
L (y)+1,c

(0)
U (y)

(y) ≤ γ is fulfiled: Cal-

culate the maximum point p
c
(0)
L (y)+1,c

(0)
U (y)

of the prediction region coverage

function from Proposition 2.10. If p
c
(0)
L (y)+1,c

(0)
U (y)

≤ γ, define [πi0 ;πi1) :=

[πi;πi+1), i. e. m = 1. Otherwise calculate the roots of ∆
n,c

(0)
L (y)+1,c

(0)
U (y)

(y)−γ.

According to Proposition 2.10, ∆
n,c

(0)
L (y)+1,c

(0)
U (y)

(y)− γ has at most two roots

r1 < r2. If r1, r2 /∈ [πi;πi+1), define [πi0 ;πi1) := [πi;πi+1), i. e. m = 1.

Else if r1, r2 ∈ [πi;πi+1), define the decomposition [ πi︸︷︷︸
πi0

; r1︸︷︷︸
πi1

) ∪ [ r1︸︷︷︸
πi1

r2︸︷︷︸
πi2

) ∪

[ r2︸︷︷︸
πi2

, πi+1︸︷︷︸
πi3

) = [πi;πi+1), i. e. m = 3. Else if r1 ∈ [πi;πi+1), r2 /∈ [πi;πi+1) or
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r2 ∈ [πi;πi+1), r1 /∈ [πi;πi+1), define [ πi︸︷︷︸
πi0

; r1︸︷︷︸
πi1

) ∪ [πi1 ;πi2) = [πi;πi+1), i. e.

m = 2.

Redefine H := H ∪ {πi1 , . . . , πim−1} and s := |H|.

Step IV.c) Repeat step IV.b) applied to ∆
n,c

(1)
L (y),c

(1)
U (y)−1

(y) instead of

∆
n,c

(1)
L (y)+1,c

(1)
U (y)

(y).

Step IV.c) If for all y ∈ [πi;πi+1), i = 1, . . . , s−1, we have ∆
n,c

(1)
L (y)+1,c

(1)
U (y)

(y) ≤

γ and ∆
n,c

(1)
L (y),c

(1)
U (y)−1

(y) ≤ γ, define A∗y := A
(1)
y .

Step IV.d) If the conditions ∆
n,c

(1)
L (y)+1,c

(1)
U (y)

(y) ≤ γ and ∆
n,c

(1)
L (y),c

(1)
U (y)−1

(y) ≤ γ
are fulfiled for every y ∈ [0; 1], i. e. A∗y found for all y ∈ [0; 1], stop the

procedure and go to step V.

Step IV.e) If for all y ∈ [πi;πi+1), i = 1, . . . , s−1, we have ∆
n,c

(1)
L (y)+1,c

(1)
U (y)

(y) ≥

γ and ∆
n,c

(1)
L (y),c

(1)
U (y)−1

(y) ≤ γ, define A
(1)
y :=

{
c

(1)
L (y) + 1, . . . , c

(1)
U (y)

}
.

Step IV.f) If for all y ∈ [πi;πi+1), i = 1, . . . , s−1, we have ∆
n,c

(1)
L (y),c

(1)
U (y)−1

(y) ≥

γ and ∆
n,c

(1)
L (y)+1,c

(1)
U (y)

(y) ≤ γ, define A
(1)
y =

{
c

(1)
L (y), . . . , c

(1)
U (y)− 1

}
.

Step IV.g) If for all y ∈ [πi;πi+1) we have ∆
n,c

(1)
L (y)+1,c

(1)
U (y)

(y) ≥ γ and

∆
n,c

(1)
L (y),c

(1)
U (y)−1

(y) ≥ γ, apply the principle of greatest prediction likelihood

ratio Qp0,p1,a,b,y(x), see Eq. (2.17), to the reduction procedure. If

Qp0,p1,a,b,y(c
(1)
L (y) + 1) ≥ Qp0,p1,a,b,y(c

(1)
U (y)− 1)

for all y ∈ [πi;πi+1), define A
(1)
y :=

{
c

(1)
L (y), . . . , c

(1)
U (y)− 1

}
. If

Qp0,p1,a,b,y(c
(1)
L (y) + 1) ≤ Qp0,p1,a,b,y(c

(1)
U (y)− 1)

for all y ∈ [πi;πi+1), define A
(1)
y :=

{
c

(1)
L (y) + 1, . . . , c

(1)
U (y)

}
.

Otherwise calculate the section point q
c
(1)
L (y),c

(1)
U (y)

of the two prediction likeli-

hood ratio functions for c
(1)
L (y) and c

(1)
U (y) with Proposition 2.11.

Redefine H := H ∪
{
q
c
(1)
L (y),c

(1)
U (y)

}
and s := |H|.

Return to step IV.a).

Step V: Minimum volume confidence intervals

Let 0 = π1 < . . . < πs = 1 be an ordering of the elements of H. Let A∗y =

{c∗L(y), . . . , c∗U (y)} be the optimal prediction regions, which are invariant for y ∈
[πi;πi+1) ⊂ [0; 1], i = 1, . . . , s − 1, and fulfil ∆n,c∗L(y),c∗U (y) ≥ γ. The minimum

volume level γ confidence intervals for a given realisation x ∈ {0, . . . , n} is given
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by the closed interval [yL(x)∗; yU (x)∗], where

yL(x)∗ = min

{
max

{
min

i∈{1,...,s−1}

{
πi

∣∣∣ c∗L(πi) ≤ x ≤ c∗U (πi)
}
∪ p0

}
∪ p1

}
,

yU (x)∗ = max

{
min

{
max

i∈{1,...,s−1}

{
πi+1

∣∣∣ c∗L(πi) ≤ x ≤ c∗U (πi)
}
∪ p1

}
∪ p0

}
.

Mind that the algorithm is finite due to the fact that a prediction region Ay for y ∈ [0; 1]

contains at most n+ 1 prediction points.

2.10.3 Computational Challenges

The necessity of following an algorithm as the one presented in the previous Sections 2.10.1

and 2.10.2 arises from difficulties related to the discreteness of the considered problem.

Against intuition, the regions A
(1)
y ⊂ {0, . . . , n} of largest prediction likelihood ratio

(see step III in Algorithm 1) are not always increasing in p = y ∈ [0; 1]. Despite a

success probability p2 larger than p1, i. e. p2 > p1, it can happen that x2 = maxA
(1)
p2 <

maxA
(1)
p1 = x1.

Consider, for example, the prior information Beta(0.15, 0.5) and the success probabilities

p1 = 0.115 and p2 = 0.15 under the confidence level γ = 0.95 and sample size n = 25.

The set of prediction points of maximal prediction likelihood ratio for p1 = 0.115 ensuring

a coverage probability of at least 95 % at p1 = 0.115 is {1, . . . , 8}. For p2 = 0.15, the

region of largest prediction likelihood ratio is given by {1, . . . , 7}. Consequently, the

upper bounds of the regions of largest prediction likelihood ratio are not increasing in

y = p. In fact, a prediction region of {1, . . . , 7} would not be sufficient for p1 = 0.115:

Consider the two cases X1 ∼ Bi(25, p1) and X2 ∼ Bi(25, p2). We have Pp1(X1 ∈
{1, . . . , 7}) = 0.947 < γ and Pp1(X1 ∈ {1, . . . , 8}) = 0.952 ≥ γ, hence 8 is indispensible

in the prediction region, whereas Pp2(X2 ∈ {1, . . . , 7}) = 0.957 ≥ γ, i. e. 8 is not needed

in the prediction region here.

The example is illustrated by the top part of Fig. 2.5, which shows the upper and lower

bounds of the regions of maximal prediction likelihood ratio. If confidence regions were

constructed from these prediction regions, the confidence region under X = 8 would

result to (0.1138; 0.1176) ∪ (0.1613; 0.5154) and consequently not be an interval. If the

additional condition of increasing prediction bounds in y = p is imposed, the bottom

part of Fig. 2.5 is obtained. The confidence region under X = 8 then changes to the

interval (0.1138; 0.5154), compare Proposition 2.3 for the theoretical justification of this

behaviour.
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Figure 2.5: Bounds of the prediction likelihood ratio maximising prediction regions (top);
bounds of the prediction likelihood ratio maximising prediction regions under ad-
ditional monotonicity condition (bottom). Sample size n = 25; prior information
Beta(0.15, 0.5); confidence level γ = 0.95.
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2.11 Conclusion and Outlook

Due to the a priori lacking monotonicity of the bounds of regions of largest prediction

likelihood ratio, numerical algorithms relying on monotonicity, as e. g. the bisection

(interval halving) method, cannot be applied for the calculation of the minimum volume

confidence intervals.

Consider another possibility of calculating the prediction intervals as follows: Let ∆ =

1/m be a prescribed granularity deviding the interval [0; 1] in m equally sized intervals.

To calculate the prediction regions at the sequence of points 0,∆, 2∆, 3∆, . . . , (m−1)∆, 1

in [0; 1] and to derive the confidence intervals from the resulting (m+ 1)-element set of

prediction regions is not only very inefficient. It furthermore produces results with

an unsatisfying precision. Since with the above m + 1 points only a finite number of

p = y ∈ [0; 1] is taken into account, discontinuities in the prediction regions are in danger

of being missed. In the above example illustrated in Fig. 2.5, if the prediction regions had

been calculated with a granularity of ∆ = 0.01, the prediction region {1, . . . , 7} would

have been obtained for p = 0.11, 0.12, . . . , 0.16. Instead of at around 0.1128 ≈ 0.11, the

lower bound of the confidence interval would have been ≥ 0.16 because it would have

been ignored that for p between 0.1138 and 0.1176 the prediction point 8 is contained in

the prediction region. In consequence, these discontinuities and jumps in the prediction

regions – although seemingly harmless – can significantly alter the result and should

consequently not be missed due to unsatisfactory precision.

Remark 2.13 (Implementation in R). In R, the root of a function, as requested in steps

III.c) and IV.b) of Algorithm 2, can be found with the help of the function uniroot from

the stats-package, which is contained in the standard installation of R (R Core Team

2014). The function searches between two points that are known to have function values

of opposite sign for the point where the function value equals zero.

The calculation of the prediction likelihood ratio Qp0,p1,a,b,y(x), Eq. (2.17), requires nu-

merical integration in the calculation of the relative volume weights from Eq. (2.18). We

have made good experiences with the function distrExIntegrate from the distrEx-

package (Ruckdeschel et al. 2006).

2.11 Conclusion and Outlook

We have suggested a general scheme for minimum volume confidence regions for a dis-

tribution parameter under prior information, and we have applied this scheme to obtain

shortest two-sided confidence intervals for the probability parameter p of a binomial

distribution. Prior information on p has been specified by a beta distribution. The nu-
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merical algorithm developed, which has also been presented in this chapter, manages to

produce the shortest confidence intervals in real time. Appropriate prior information has

a demonstrable effect on the average length and on the sample size required to achieve

a prescribed precision. The intervals are competitive in terms of coverage probability.

They are less conservative than the Clopper & Pearson exact confidence intervals, but

in contrast to several approximative confidence intervals always exact. The indiffer-

ence probability for decisions made on the basis of the minimum volume interval has

been explored and a more favourable behaviour could be observed under stricter prior

information distributions.

Several aspects remain to be studied in more detail: i) The sensitivity of the average

interval length with respect to changes in prior information: The numerical results

presented in Section 2.8 indicate that minor changes have minor effects only, and that

in this sense the method is robust against misspecified prior information. However, this

impression has to be substantiated by more extensive numerical studies. ii) Asymptotics:

Figure 2.2 indicates stability for large n, the underlying asymptotics remain to be studied

analytically. iii) Blaker’s interval seems to be very close to the minimum volume interval

if considered without prior information. Ways of including prior information into Blaker’s

approach remain to be studied.
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2.A Appendix

2.A.1 Proof of Theorem 2.2

The proof of assertion a) of Theorem 2.2 is obvious.

Proof of Assertion b) of Theorem 2.2. Let A be an arbitrary level γ MPS. Let

y ∈ R2 be fixed. We have

Py(X ∈ Ay ∩A?y) + Py(X ∈ Ay \A?y) = Py(X ∈ Ay) ≥ γ

≥ Py(X ∈ A?y) = Py(X ∈ Ay ∩A?y) + Py(X ∈ A?y \Ay),

and hence Py(X ∈ A?y\Ay) ≤ Py(X ∈ Ay\A?y). We have A?y\Ay ⊂ D≥sy(y) and Ay\A?y ⊂
D≤sy(y), thus infx∈A?y\Ay Qy(x) ≥ supx∈Ay\A?y Qy(x). If infx∈A?y\Ay Qy(x) = 0, then sy =

0, hence D>sy(y) = {x|fX|Y=y(x) > 0}, and thus Gy(sy) = Py(X ∈ D>sy(y)) = 1 > γ

contradictory to the assumptions of Theorem 2.2. Hence infx∈A?y\Ay Qy(x) > 0. We

obtain the inequalities

inf
x∈A?y\Ay

Qy(x)

∫
A?y\Ay

fX(x) dµ1(x) ≤
∫
A?y\Ay

Qy(x)fX(x) dµ1(x)

=

∫
A?y\Ay

fX|Y=y(x) dµ1(x) = Py(X ∈ A?y \Ay) ≤ Py(X ∈ Ay \A?y)

=

∫
Ay\A?y

fX|Y=y(x) dµ1(x) =

∫
Ay\A?y

Qy(x)fX(x) dµ1(x)

≤ sup
x∈Ay\A?y

Qy(x)

∫
Ay\A?y

fX(x) dµ1(x)

≤ inf
x∈A?y\Ay

Qy(x)

∫
Ay\A?y

fX(x) dµ1(x).

Hence
∫
A?y\Ay

fX(x) dµ1(x) ≤
∫
Ay\A?y

fX(x) dµ1(x), and thus we have∫
A?y
fX(x) dµ1(x) ≤

∫
Ay
fX(x) dµ1(x).

The latter inequality has been proven for arbitrary y ∈ R2. Hence by formula (2.8) we

obtain V (A?) ≤ V (A). This completes the proof of assertion b) of Theorem 2.2.

Proof of Assertion c) of Theorem 2.2. Consider y ∈ R2 where D=sy(y) =
⋃
I Bi is

a countable union of intervals Bi with disjoint interior. We can assume

Gy(s
−
y ) − Gy(sy) = Py(X ∈ D=sy(y)) > 0. From properties of the Lebesgue-Borel
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integral it follows that for any 0 ≤ αi ≤
∫
Bi
fX dµ1 there is a subinterval Bi,αi ⊂ Bi

with
∫
Bi,αi

fX dµ1 = αi. Let ρ = [γ − Gy(sy)]/[Gy(s
−
y ) − Gy(sy)]. For i ∈ I, let

αi = ρ
∫
Bi
fX dµ1. Let E(y) =

⋃
I Bi,αi . Then

Py(X ∈ E(y)) =
∑
I

∫
Bi,αi

fX dµ1 = ρPy(X ∈ D=sy(y)) = γ −Gy(sy),

hence Py(X ∈ D>sy(y) ∪ E(y)) = Gy(sy) + γ −Gy(sy) = γ.

2.A.2 Proof of Proposition 2.3

We prove assertion a) of Proposition 2.3. The proof of assertion b) is completely analo-

gous.

The sets of conditions a.i) and a.ii) are completely symmetric. Hence it suffices to prove

the implication from a.i) to a.ii). Assume that the conditions of a.i) are valid.

To prove the validity that Ay is an interval, assume y ∈ R2 such that Ay is not an

interval. Then there are x1, x
′, x2 ∈ Ay, x1 < x′ < x2, with x1, x2 ∈ Ay, x′ /∈ Ay. Hence

y /∈ Ax′ , i. e. either y < Ax′ , or y > Ax′ . Consider the former case. By the assumption of

a.i) about the nondecreasing bound property of A with respect to x it follows y < Ax2 ,

hence x2 /∈ Ay, contradictory to the assumptions on x2. The second case y > Ax′ is

treated analogously. It follows that Ay is an interval.

To prove the validity that A has the nondecreasing bounds property with respect to y,

consider y1, y2 ∈ R2, y1 < y2, x ∈ R1 with x < Ay1 . Assume x′ ∈ Ay2 with x ≥ x′. Then

x′ ≤ x < Ay1 . Hence x′ ∈ Ay2 \ Ay1 . Since x /∈ Ay1 we have y1 /∈ Ax. Because of the

stipulated interval property of Ax in a.i), we have either y1 < Ax or y1 > Ax. Assume

y1 > Ax. Then, since A has the nondecreasing bound property with respect to x, also

y1 > Ax′ , hence y2 > Ax′ and therefore x′ /∈ Ay2 , in contradiction to the above result

x′ ∈ Ay2 \ Ay1 . Thus y1 < Ax. From x′ ≤ x < Ay1 we obtain with the nondecreasing

bound property with respect to x for all x′′ ∈ Ay1 that y1 < Ax′′ , hence in particular

x′′ /∈ Ay1 , in contradiction to the assumption x′′ ∈ Ay1 . This final contradiction results

from assuming an x′ ∈ Ay2 with x ≥ x′. Hence x < Ay2 . This proves that the lower Ay

bounds are nondecreasing in y.

The proof that the upper Ay bound is nondecreasing in y proceeds analogously.

This proves the validity of a.ii).

Assertion c) is a summary of assertions a) and b).
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2.A.3 Proof of Proposition 2.6

Proof of Assertion a) of Proposition 2.6. Let 0 < p0 < p1 < 1. We have

dm

dtm
tx(1− t)n−x = ln

(
t

1− t

)m
tx(1− t)n−x for p0 ≤ t ≤ p1.

The function [p0; p1] 3 t 7→ ln(t/(1− t))m is a continuous function on [p0; p1]. Hence

sup
p0≤t≤p1

∣∣∣∣ln( t

1− t

)m
tx(1− t)n−x

∣∣∣∣ ≤ sup
p0≤t≤p1

∣∣∣∣ln( t

1− t

)m∣∣∣∣ < +∞.

Hence, by applying the well-known theorem on differentiation under the integral sign

to Section 2.4, we find that vp0,p1,a,b(x) can be differentiated with respect to x with the

result given by Eq. (2.21). By Eq. (2.21) we have v′′p0,p1,a,b
(x) > 0 on [0;n]. Hence

v′p0,p1,a,b
is strictly increasing on [0;n]. The remainder of assertion a) follows obviously.

Proof of Assertion b) of Proposition 2.6. The first partial derivatives of the

symmetric beta function are given by the equation ∂
∂sB(s, t) = B(s, t)

[
ψ(s)−ψ(s+ t)

]
,

where ψ is the digamma function, see Abramowitz & Stegun (1972, Eqs. 6.2.2 and

6.3.1). With Eqs. (2.14) and (2.18) we obtain the derivative (2.22). Since B(x + a, n −
x + b) > 0, the sign of v′0,1(x) is determined by the sign of ψ(x + 1) − ψ(n − x + 1).

The integral representation of Abramowitz & Stegun (1972, Eq. 6.3.21) shows that ψ

is strictly increasing on (0; +∞), hence [0;n] 3 x 7→ ψ(x + a) − ψ(n − x + b) is strictly

increasing.

Proof of Assertion c) of Proposition 2.6. Let 0 < p0 < 1. For p0 < q ≤ 1,

x ∈ [0;n] let

hp0,q,a,b(x) :=
1

B(a, b)(1− p0)

∫ q

p0

(
y − p0

1− p0

)a−1(
1− y − p0

1− p0

)b−1

yx(1−y)n−x dy.

(2.29)

Evidently, limq↑1 hp0,q,a,b(x) = hp0,1,a,b(x) = vp0,1,a,b(x), x ∈ [0;n]. Analogously to the

proof of a) of Proposition 2.6 we find

h
(m)
p0,q,a,b

(x) =
1

B(a, b)(1− p0)
· (2.30)

∫ q

p0

(
y − p0

1− p0

)a−1(
1− y − p0

1− p0

)b−1

ln

(
y

1− y

)m
yx(1− q)n−x dy
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for m = 0, 1, . . ., and we see that there exists a value 0 ≤ zp0,q,a,b ≤ n such that

h′p0,q,a,b
(x) < 0 for 0 < x < zp0,q,a,b, and h′p0,q,a,b

(x) > 0 for zp0,q,a,b < x < n. From Eq.

(2.30) we obtain for fixed x ∈ [0;n], m = 0, 1, . . .,

d

dq
h

(m)
p0,q,a,b

(x) =
ln
(

q
1−q

)m
B(a, b)(1− p0)

(
q − p0

1− p0

)a−1(
1− q − p0

1− p0

)b−1

qx(1−q)n−x (2.31)

for p0 < q < 1, with the recursion

d

dq
h

(m)
p0,q,a,b

(x) = ln

(
q

1− q

)
d

dq
h

(m−1)
p0,q,a,b

(x) for p0 < q < 1, m ≥ 1. (2.32)

From Eq. (2.31) we find in particular for m = 1, 2, . . .

d

dq
h

(m)
p0,q,a,b

(x) > 0 for x ∈ (0;n), p0 < q < 1, q > 0.5. (2.33)

Let p0 < q1 < q2 < . . . < 1 with limk qk = 1, qk > 0.5. From Eq. (2.33) we see that the

sequence (zp0,qk,a,b)k∈N is decreasing. Since 0 ≤ zp0,qk,a,b ≤ n, (zp0,qk,a,b)k∈N converges

to a value xp0,1,a,b ∈ [0;n]. Let 0 < u < w < xp0,1,a,b. Then 0 < u < w < zp0,qk,a,b

for all k ∈ N, thus hp0,qk,a,b(u) > hp0,qk,a,b(w) for all k ∈ N, and hence by convergence

vp0,1,a,b(u) ≥ vp0,1,a,b(w). Let xp0,1,a,b < u < w < n. Then there is a k0 ∈ N with

zp0,qk,a,b < u < w < n for all k ≥ k0. Thus hp0,qk,a,b(u) < hp0,qk,a,b(w) for all k ≥ k0, and

hence by convergence vp0,1,a,b(u) ≤ vp0,1,a,b(w).

The proof of assertion d) of Proposition 2.6 is completely analogous to the proof of

assertion c).

2.A.4 Proof of Proposition 2.7

Elementary calculus provides the derivative (2.23) in assertion a).

Proof of Assertion b) of Proposition 2.7. Consider assertion b) with the case

0 < p0 < p1 < 1. Let 0 < x < n and let the measure µx on the Borel field in [p0; p1] be

defined by

µx(D) =
1

B(a, b)(p1 − p0)

∫
D

(
t− p0

p1 − p0

)a−1(
1− t− p0

p1 − p0

)b−1

tx(1− t)n−x dt.

For x ∈ (0;n) we obtain from Eq. (2.18) µx([p0; p1]) = vp0,p1,a,b(x). With Eq. (2.21) we

obtain for x ∈ (0;n)

d

dx

v′p0,p1,a,b
(x)

vp0,p1,a,b(x)
=

∫
[p0;p1] ln

(
t

1−t

)2
dµx(t)µx([p0; p1]) −

[∫
[p0;p1] ln

(
t

1−t

)
dµx(t)

]2

vp0,p1,a,b(x)2
.
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The strict Cauchy-Schwarz inequality [
∫
B |g1g2|dµx]2 <

∫
B g

2
1 dµx(t)

∫
B g

2
2 dµx(t) holds

for g1(t) = ln(t/(1− t)), g2(t) = 1, since these functions are not linearly dependent, see

Hewitt & Stromberg (1969). Hence[∫
[p0;p1]

ln

(
t

1− t

)
dµx(t)

]2

≤

[∫
[p0;p1]

|g1(t)g2(t)|dµx(t)

]2

<

∫
[p0;p1]

g1(t)2 dµx(t)

∫
[p0;p1]

g2(t)2 dµx(t)

=

∫
[p0;p1]

ln

(
t

1− t

)2

dµx(t) µx([p0; p1]).

Hence d
dx

v′p0,p1,a,b
(x)

vp0,p1,a,b(x) > 0 on [0;n], and [0;n] 3 x 7→ v′p0,p1,a,b
(x)/vp0,p1,a,b(x) is strictly

increasing. The remainder of assertion b) follows from Eq. (2.23) for the derivative

Q′p0,p1,a,b,y
on [0;n].

Consider assertion b) with the case 0 = p0, 1 = p1. From (2.22) we obtain

v′0,1,a,b(x)

v0,1,a,b(x)
= ψ(x+ a)− ψ(n− x+ b) for x ∈ [0;n].

The proof of assertion b) of Proposition 2.6 demonstrates that [0;n] 3 x 7→ ψ(x+ a)−
ψ(n− x+ b) has at most one change of sign on [0;n] which is from − to +, if existing.

Again, the remainder of assertion b) follows from Eq. (2.23) for the derivative Q′p0,p1,a,b,p

on [0;n].

Proof of Assertion c) of Proposition 2.7. For p0 < q ≤ 1, x ∈ [0;n], con-

sider hp0,q,a,b(x) as defined by Eq. (2.29). Proceding analogously to the proof of asser-

tion b) of Proposition 2.7, we find that d
dx

h′p0,q,a,b
(x)

hp0,q,a,b(x) > 0 on [0;n], and [0;n] 3 x 7→
h′p0,q,a,b

(x)/hp0,q,a,b(x) is strictly increasing for p0 < q < 1. In analogy to the definition

of xp0,q,a,b,y in assertion b), define 0 ≤ zp0,q,a,b,y ≤ n by comparing h′p0,p1,a,b
/hp0,p1,a,b

with ln(y/(1− y)). From Eqs. (2.29) and (2.30) we find

h
(m)
p0,q,a,b

(x) < ln

(
q

1− q

)m
hp0,q,a,b(x) for x ∈ [0;n], p0 < q < 1. (2.34)

With the recursion (2.32) and the inequality (2.34) we obtain for fixed x ∈ [0;n]

d

dq

h′p0,q,a,b
(x)

hp0,q,a,b(x)
=

d

hp0,q,a,b(x)2

(
ln

(
q

1− q

)
hp0,q,a,b(x)− h′p0,q,a,b(x)

)
> 0 (2.35)

for p0 < q < 1, q > 0.5. Let p0 < q1 < q2 < . . . < 1 with limk qk = 1, qk > 0.5. From

Eq. (2.35) we see that the sequence (zp0,qk,a,b,y)k∈N is decreasing. Since 0 ≤ zp0,qk,a,b,y ≤
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n, (zp0,qk,a,b,y)k∈N converges to a value xp0,1,a,b,y ∈ [0;n]. The remainder of the proof

proceeds analogously to the proof of assertion c) of Proposition 2.6.

The proof of assertion d) of Proposition 2.7 is completely analogous to the proof of

assertion c).

2.A.5 Proof of Proposition 2.8

Consider the assumptions of assertion a). By Proposition 2.3, Ax = {y ∈ [p0; p1]|cL(y) ≤
x ≤ cU (y)} is an interval for all x ∈ {0, . . . , n} with endpoints inf Ax, supAx increasing

in x. We have to prove that the endpoints inf Ax, supAx are elements of Ax for x ∈
{0, . . . , n}. Let x ∈ {0, . . . , n}. If Ax is a singleton, then clearly inf Ax, supAx ∈ Ax.

Let Ax have an open interior and let (yl) be a sequence from Ax with y1 > y2 > . . .,

liml yl = inf Ax. Then cL(yl) ≤ x ≤ cU (yl) for all l. Hence by convergence cL(inf Ax) ≤
cL(inf Ax

+) ≤ x ≤ cU (inf Ax
+) = cU (inf Ax), hence inf Ax ∈ Ax, and thus inf Ax =

minAx. The proof of supAx = maxAx ∈ Ax is completely analogous.

Assertion b) is an application of Proposition 2.3.

2.A.6 Proof of Proposition 2.9

The proof makes use of the subsequent proposition on the binomial OC Ln,c(y) defined

by Eq. (2.2), see Uhlmann (1982).

Proposition 2.14 (Binomial OC). Let n ∈ N, c ∈ N0, c ≤ n.

For y ∈ (0; 1) we have L′n,c(y) = −n
(
n−1
c

)
yc(1− y)n−c−1 = −(n− c)

(
n
c

)
yc(1− y)n−c−1.

In case of c < n, Ln,c is strictly decreasing on the interval [0; 1] with Ln,c(0) = 1,

Ln,c(1) = 0. In case of c = n we have Ln,c(y) = Ln,n(y) = 1 for y ∈ [0; 1].

Assertion a) of Proposition 2.9 follows directly from the definition of the quantities px,γ ,

p̃x,γ , and the monotonicity properties of the binomial OC explained by Proposition 2.14.

For the proof of assertion b), let γ ≥ 0.5. Let 0 < x < n. Then

Ln,x(p̃x,γ) = 1− γ ≤ γ = Ln,x−1(px,γ) < Ln,x(px,γ),

hence p̃x,γ > px,γ since Ln,x is strictly decreasing on [0; 1]. In the case of x = 0, we

have by definition px,γ = 0.0 < p̃x,γ , and similarly in the case of x = n by definition

px,γ < 1.0 = p̃x,γ .
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For the proof of assertion c), let x ∈ {0, . . . , n}, y ∈ (px,γ ; p̃x,γ) ∩ [p0; p1]. Assume

x ≤ cL(y)− 1. Then we have x ≤ n− 1 and we find

Ln,cU (y)(y)− Ln,cL(y)−1(y) ≤ 1− Ln,c1(y)−1(y) ≤ 1− Ln,x(y)

< 1− Ln,x(p̃x,γ) = γ

in contradiction to the property (2.24). Now assume x ≥ cU (y)+1. Then we have x ≥ 1

and we find

Ln,cU (y)(y)− Ln,cL(y)−1(y) ≤ Ln,cU (y)(y) ≤ Ln,x−1(y)

< Ln,x−1(px,γ) = γ

in contradiction to the property (2.24). This proves cL(y) ≤ x ≤ cU (y), and hence also

yL(x) ≤ y ≤ yU (x).

2.A.7 Proof of Proposition 2.10

Assertion a) is obvious from Proposition 2.14. For the proof of assertion b), let x1 > 0.

By Proposition 2.14 we have for y ∈ (0; 1)

d

dy
∆n,x1,x2(y) = −n

(
n− 1

x2

)
yx2(1− y)n−x2−1 + n

(
n− 1

x1 − 1

)
yx1−1(1− y)n−x1

= n

(
n− 1

x1 − 1

)
yx2(1− y)n−x2−1

((
1

y
− 1

)x2−x1+1

− (n− x2) . . . (n− x1)

x1 . . . x2

)
.

This proves assertion b).

2.A.8 Proof of Proposition 2.11

We prove Proposition 2.11 about the comparison of two likelihood ratios. We have

Qp0,p1,a,b,y(x1) − Qp0,p1,a,b,y(x2)

=
yx1(1− y)n−x1

vp0,p1,a,b(x1)
− yx2(1− y)n−x2

vp0,p1,a,b(x2)

= yx2(1− y)n−x2

(
yx1(1− y)n−x1

yx2(1− y)n−x2

1

vp0,p1,a,b(x1)
− 1

vp0,p1,a,b(x2)

)
= yx2(1− y)n−x2

(
y−(x2−x1)(1− y)x2−x1

1

vp0,p1,a,b(x1)
− 1

vp0,p1,a,b(x2)

)

= yx2(1− y)n−x2

((
1− y
y

)x2−x1 1

vp0,p1,a,b(x1)
− 1

vp0,p1,a,b(x2)

)
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and hence

Qp0,p1,a,b,y(x1) S Qp0,p1,a,b,y(x2)

⇔ Qp0,p1,a,b,y(x1)−Qp0,p1,a,b,y(x2) S 0

⇔
(

1− y
y

)x2−x1 1

vp0,p1,a,b(x1)
S

1

vp0,p1,a,b(x2)

⇔
(

1

y
− 1

)x2−x1

S
vp0,p1,a,b(x1)

vp0,p1,a,b(x2)

⇔ 1

y
S

(
vp0,p1,a,b(x1)

vp0,p1,a,b(x2)

)1/(x2−x1)

+ 1

⇔ y T

((
vp0,p1,a,b(x1)

vp0,p1,a,b(x2)

)1/(x2−x1)

+ 1

)−1

.

This proves Proposition 2.11.

52



3 Bayesian Credibility Intervals for a

Probability

3.1 Introduction

Bayesian statistics is the classical framework under which prior information is made use

of. Chapter 2, although the approach of interval estimation of a binomial proportion

processes prior information as well, describes frequentist confidence intervals. In the

Bayesian framework, credibility intervals instead of confidence intervals are used for

inference about distribution parameters. That both approaches – although they show

some similarities – are markedly different, becomes obvious in the present chapter.

Bayesian analysis dates back to the work of Thomas Bayes in the 18th century (Bayes

& Price 1763). The basic idea of Bayesian analysis is to make use of prior information

with respect to a certain unknown parameter θ. Prior information is expressed in terms

of a prior distribution of θ with density π(θ), which quantifies the degree of personal

belief in the likelihood of the event of interest (Berger 1985). Given a prior distribution,

the information about the unknown distribution parameter is updated once data has

been observed and is quantified in the posterior distribution.

Credibility regions are a popular way to extract information about the posterior distri-

bution. For the binomial distribution, they are frequently encountered in the literature

as a way to estimate the probability parameter by means of an interval. Not rarely,

they end up being analysed from a frequentist viewpoint in these studies. Brown et al.

(2001) investigate the credibility interval for a binomial probability under the use of

the Jeffreys prior, a non-informative prior. See Section 3.7 for further consideration

of non-informative priors. They argue that in view of the frequentist behaviour of the

Jeffreys interval, it should be considered for practical use. In their study, they do not

consider other priors than the Jeffreys prior, in particular no informative priors. Another

study that examines Bayesian credibility intervals under the frequentist viewpoint was

executed by Agresti & Min (2005). They advocate the use of non-informative priors

like the Jeffreys prior if the coverage properties over the whole parameter space are of
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interest. If the coverage properties are of little concern and the focus is on the average

length of the intervals, they find informative priors advantageous.

The frequentist and the Bayesian approaches of interval estimation of a parameter are

conceptually different. For example, the confidence level γ ∈ (0; 1) and the credibility

level β ∈ (0; 1) have to be interpreted differently. While a frequentist confidence interval

of level γ is constructed such that in the long run the quantity of interest lies between

the confidence limits in approximately γ · 100 % times, the Bayesian interpretation is

that given this particular case with the observed data and chosen prior, the probabil-

ity that the quantity of interest lies in the credibility interval is at least β · 100 %, see

Thatcher (1964). Despite these conceptual differences, many authors deem it worth

comparing both approaches, often under β = γ. Thatcher (1964) argues that there are

relationships between the two solutions produced by the frequentist and Bayesian ap-

proaches. According to Bayarri & Berger (2004), the debate about which of the two is

superior, is far from over and statisticians are encouraged to “readily use both Bayesian

and frequentist ideas” (Bayarri & Berger 2004, p. 58). This openness towards the re-

spective other approach cannot be expected in general. Bayesians might not understand

why their procedures should fulfil certain frequentist requirements and might argue that

their approach is completely valid if one believes in the prior distribution chosen. On

the other hand, frequentists might argue that Bayesian procedures lack some generally

indispensible properties.

Bayarri & Berger (2004) give a definition of the frequentist principle as follows:

“Frequentist principle. In repeated practical use of a statistical pro-

cedure, the long-run average actual accuracy should not be less than (and

ideally should equal) the long-run average reported accuracy.” (Bayarri &

Berger 2004, p. 60)

The frequentist usually observes the pointwise coverage probability function. By ensur-

ing that a certain prescribed coverage probability is met for each possible parameter

value – which means one imagines the same experiment with that arbitrary fixed para-

meter value being carried out a number of times – the certain confidence level is also

ensured if the confidence procedure is repeatedly used in varying circumstances (Bayarri

& Berger 2004). Bayarri & Berger (2004) argue that a practical frequentist would not

put so much emphasis on a couple of single parameter values for which the coverage

probability is unsatisfying if the performance of the confidence procedure in the neigh-

bourhood of those single points is satisfying. Evaluating the performance of an interval
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by taking not only the pointwise coverage into account, but in some way averaging over

either various parameter values or sample sizes, would be a step of a pure frequentist

towards a practical frequentist by using the Bayesian idea on the usefulness of averaging

(Bayarri & Berger 2004).

On the other hand, Bayarri & Berger (2004, pp. 60–62) describe, in which sense frequen-

tist principles are important to everybody and should also be considered by followers of

the Bayesian principle. They reason that, for example, a 90 % credibility interval which

only contains the unknowns about 70 % of the times gives the impression that something

is wrong.

One idea of common ground between both approaches – while acknowledging that this

means somewhat combining two very different viewpoints – is to compare the solutions

obtained by the frequentist and Bayesian approaches by means of probability matching

priors. Probability matching priors are prior distributions used in the Bayesian frame-

work that lead to inferences that are of approximate frequentist validity, see Scricciolo

(1999).

In the definition of Datta & Sweeting (2005)

“A probability matching prior (PMP) is a prior distribution under which

the posterior probabilities of certain regions coincide with their coverage

probabilities, either exactly or approximately.” (Datta & Sweeting 2005, p.

91)

The simplest example, and one of few in which the equality in Datta & Sweeting’s (2005)

definition is exact, is a credibility interval for the expected value µ in the N(µ, 1) distri-

bution under a uniform prior for µ. Instead of exact matching, approximate matching

of posterior probabilities can be demanded, see Datta & Sweeting (2005). Frequentist

validity is mostly rated by means of coverage probabilities. The search for matching

priors is an approach to derive non-informative prior distributions and a way to further

justify the use of well-known priors of that kind, see Scricciolo (1999).

To the pioneers in terms of probability matching priors count Lindley (1958) and Welch

& Peers (1963). Other important references in the context of probability matching priors

are Tibshirani (1989), Datta & Ghosh (1995), Scricciolo (1999), Rousseau (2000), Datta

et al. (2000), Bayarri & Berger (2004) and Datta & Sweeting (2005). Among authors ad-

vocating the use of Bayesian and frequentist ideas at the same time are Marchand et al.

(2008), Fraser et al. (2010), Fraser (2011), Wasserman (2011) and Marchand & Strawder-

man (2013). A review of non-informative priors, of which the probability matching prior
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idea is one way towards identifying such, can be found in Kass & Wasserman (1996).

Scricciolo (1999) distinguish in their review between first- and second-order probability

matching priors, which are, among others, defined by means of quantiles or by matching

the true coverage probability, and priors matching posterior and frequentist distribution

functions.

Matching priors can be a topic both in parametric and predictive inference, depending

on whether confidence or prediction limits are sought after. Acting in the context of

prediction limits is Thatcher (1964), who establishes a connection between the Bayesian

and the frequentist approach by investigating Bayesian priors that lead to the same

prediction limits for a binomial success that could be obtained by the frequentist way.

Different priors for the upper and lower prediction limits are applied. A more recent

reference focusing on matching priors in prediction is Datta et al. (2000).

In this chapter, the probability matching prior idea is picked up in the sense that Bayesian

credibility intervals for inference on a binomial probability are evaluated by means of

the coverage probability, a frequentist measure. The coverage properties on the whole

parameter space [0; 1] are taken into account. Other than finding priors in the Bayesian

setting that would have approximately frequentist validity under β = γ, the level β is

allowed to be larger than γ to ensure the desired properties in terms of the coverage

probability.

The outline of this chapter is as follows: Bayesian credibility intervals in general (Sec-

tion 3.2) and in particular for a binomial proportion (Section 3.4) are briefly reviewed.

Section 3.3 considers the concept of Bayesian measurement and prediction spaces. In

Section 3.5, the probability matching prior idea is taken up by presenting a way to com-

pare frequentist confidence intervals and Bayesian credibility intervals for a probability

under prior information. The findings are applied in Section 3.6. Elicitation of prior

information with particular focus on the binomial case is discussed in Section 3.7.

3.2 Bayesian Credibility Intervals

This section introduces in short some aspects about Bayesian credibility intervals. The

principles of Bayesian statistics are based on Bayes’ famous theorem about the condi-

tional probabilities of events. We provide an instance of the theorem.

Theorem 3.1 (Bayes). Let prior knowledge on the random variable Y be expressed by

the density function fY (y). Let fX|Y=y(x) denote the conditional density of the random
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variable X under Y = y and fX(x) the marginal density of X. Then the posterior

density function of Y if X = x is observed is given by

fY |X=x(y) =
fX|Y=y(x)fY (y)

fX(x)
∝ fX|Y=y(x)fY (y). (3.1)

In Theorem 3.1, ∝ stands for the proportionality between the left-hand side and right-

hand side.

Bayes’ theorem describes the updated knowledge on the parameter Y after the value

X = x has been observed, where the prior belief about Y had been expressed in form

of the prior density fY (y). In Eq. (3.1), the denominator fX(x) is constant under

fixed X = x. Since for this reason the denominator does not change the theorem’s

crucial statement of a proportionality between fY |X=x(y) and fX|Y=y(x)fY (y), it is often

designated the name normalising constant, see e. g. Congdon (2006). The Bayes theorem

is therefore sufficiently explained by the statement that the posterior is proportional to

the product of the prior and the likelihood.

Credibility sets, often also called credible sets, determine intervals in which an unknown

distribution parameter lies with a prescribed probability. In the case of a univariate

distribution parameter and a connected credibility set, they are intervals, and the terms

credibility interval or credible interval are used. Credibility sets can be seen as easily

reportable summaries of the posterior distribution, see Berger (1985, p. 145).

Definition 3.2 (Credibility Interval). Let Y be an unknown parameter with prior density

function fY (y) and fX|Y=y(x) be the conditional density of X given Y = y and let

β ∈ (0; 1). Let X = x be observed. Then Ax is a β · 100% credibility interval for Y if

P(Y ∈ Ax|X = x) = Px(Y ∈ Ax) ≥ β.

Here, the probability P (Y ∈ Ax|X = x) is evaluated using the posterior density

fY |X=x(y) of Y . Two very common forms of credibility intervals in the case of two-sided

intervals are the equal-tail interval and the highest probability density (HPD) interval.

Definition 3.3 (Equal-tail and HPD Credibility Interval). Let X = x and β ∈ (0; 1).

A credibility interval Ax is called an equal-tail β · 100% credibility interval for Y if

Ax =

[
zF

(
1− β

2

)
; zF

(
1 + β

2

)]
,

where zF (α) is the α · 100% quantile of the posterior distribution FY |X=x of Y with

density fY |X=x(y). The interval

Ax = [zF (α1); zF (1− α2)]
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is called a highest posterior density (HPD) interval if 0 < α1, α2 < 1 are chosen such that

P(zF (α1) ≤ Y ≤ zF (1 − α2)|X = x) is minimal with P(zF (α1) ≤ Y ≤ zF (1 − α2)|X =

x) ≥ β, and for any y′ /∈ Ax and y ∈ Ax, we have fY |X=x(y′) ≤ fY |X=x(y).

A credibility interval has to be distinguished from a frequentist confidence interval in

interpretation. A confidence interval describes an interval into which the true, but un-

known parameter falls in approximately γ · 100 % of the cases in repeated sampling,

where γ ∈ (0; 1) is the confidence level. For one execution of the confidence procedure,

the confidence interval either contains the true parameter value or not, hence the in-

terval is either right or wrong. The parameter is regarded as an unknown fixed value.

In contrast, the Bayesian credibility interval contains the true parameter value with ap-

proximately β ·100% certainty, by which it delivers the more intuitive interpretation, see

Congdon (2006, p. 2). The Bayesian interpretation considers the parameter a random

variable.

The Bayesian HPD credibility interval Ax has several appealing properties, see Box &

Tiao (1973, p. 123) or Berger (1985, pp. 140–141):

Remark 3.4 (Properties of the HPD Interval).

(a) The HPD interval Ax for Y under observed X = x and a given probability content

β ∈ (0; 1) has smallest possible volume in the parameter space R2 of Y .

(b) If fY |X=x(y) is nonuniform over every region ⊂ R2, then the HPD interval Ax of

content β is unique. Two points y1 and y2 with fY |X=x(y1) = fY |X=x(y2) are either

simultaneously contained or not contained in a β · 100 % HPD interval Ax. Conversely,

if fY |X=x(y1) 6= fY |X=x(y2), then there exists a β such that y1 ∈ Ax and y2 /∈ Ax or vice

versa.

3.3 Bayesian Measurement and Prediction Spaces

In analogy to frequentist level β measurement and prediction spaces (MPS), we define

Bayesian level β ∈ (0; 1) MPSs.

Definition 3.5 (Bayesian Level β MPS). Let A1,A2 be σ-fields in R1, R2, respectively.

Let fX,Y be the joint density of X,Y with respect to a product measure µ1 ⊗ µ2 on

the product field A1 ⊗ A2, and let fX , fY be the respective marginal densities. For sets

B ∈ A1 let

Py(B) = P(B|Y = y) =

∫
B
fX|Y=y(x) dµ1(x)

58



3.3 Bayesian Measurement and Prediction Spaces

be the conditional probability under Y = y. For sets A ∈ A1⊗A2 let Ax = {y|(x, y) ∈ A},
Ay = {x|(x, y) ∈ A} be the projections for fixed x ∈ R1, y ∈ R2, respectively. Let 0 <

β < 1. A set A ∈ A1⊗A2 is called a Bayesian level β measurement and prediction space

for X|Y (Bayesian level β MPS for X|Y ) if the projection Ax constitutes a credibility

region for the unknown value of Y , i. e.

β ≤ Px(Y ∈ Ax) = P(Y ∈ Ax|X = x) for all x ∈ R1.

The weighted volume V (A) of a Bayesian level β MPS is defined as

V (A) =

∫
R1

∫
Ax

dν(y)fX(x)dµ1(x),

where ν is the Borel measure, i. e.
∫
Ax

dν(y) = ν(Ax) is the geometric volume of the

credibility region Ax.

Bayesian credibility intervals are usually not judged by the frequentist measure of cover-

age probability, but by their posterior probability properties. Yet, as Bayarri & Berger

(2004) pointed out, observing a satisfying number of successes in the sense that the

true parameter value actually lies in the Bayesian interval is also a desirable quality of

a Bayesian credibility interval. For this reason, we formulate the frequentist coverage

probability of a Bayesian MPS.

Remark 3.6. Let A be a Bayesian level β MPS. For fixed y ∈ R2 consider the projection

Ay = {x|(x, y) ∈ A}. Then the frequentist coverage probability of the prediction region

Ay under Y = y is given by

C(y) := Py(X ∈ Ay) = P(X ∈ Ay|Y = y).

The probability Py is calculated using the conditional density function fX|Y=y(x) of X

under Y = y.

Likewise, a frequentist level γ MPS as introduced in Section 2.2 can be evaluated in a

Bayesian manner.

Remark 3.7. Let A be a frequentist level γ MPS. For fixed x ∈ R1 consider the pro-

jection Ax = {y|(x, y) ∈ A}. Then the probability content of the confidence region Ax

under X = x is given by

Px(Y ∈ Ax) = P(Y ∈ Ax|X = x).

The probability Px is calculated using the posterior density function fY |X=x(x) of Y

under X = x.
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3.4 HPD Credibility Intervals for a Probability

We use Bayes’ theorem to determine credibility intervals for the parameter p of a binomial

distribution. We express prior knowledge on p in terms of the so-called conjugate prior

of the binomial distribution: the beta distribution. In general, conjugate priors are

supposed to deliver easily calculable posterior distributions, see Berger (1985, p. 130).

We provide a formal definition of a family of conjugate priors following Lindley (1972):

Definition 3.8 (Conjugate Family). Let F be a family of distributions over R2. Let

fY (y) ∈ F be a prior distribution with y ∈ R2 and let fX|Y=y(x) be the likelihood with

x ∈ R1. Then F is closed under sampling with respect to the distribution with density

fX|Y=y(x) if fY |X=x(y) ∈ F for every x ∈ R1, where fY |X=x(y) is the posterior density

function. The family F is conjugate with respect to fX|Y=y(x).

Berger (1985, p. 142) remarked that natural conjugate priors are usually unimodal and

result in unimodal posterior densities. In that case, the HPD credibility sets are never

disconnected credibility sets, but always intervals. While this prevents the credibility

sets from looking unusual, it also prevents from detecting possibly conflicting informa-

tion obtained by the prior and the data, something which according to Berger (1985,

p. 142) advises caution. In the present case of inference about a binomial proportion, the

beta prior fulfils the requirement to be easily calculable and results in a beta posterior

distribution, as becomes obvious from the following proposition. We only consider beta

priors on the support [0; 1].

Proposition 3.9 (Posterior Density Function for a Probability). Consider the binomial

density fX|Y=y(x) =
(
n
x

)
yx(1− y)n−x of X under the probability Y = y and a Beta(a, b)

distribution as prior distribution for Y . Then the marginal density fX(x) of X is given

by

fX(x) =

(
n
x

)
B(a, b)

∫ 1

0
yx+a−1(1− y)n−x+b−1 dy =: wa,b(x).

The posterior distribution of Y is the beta distribution Beta(x+ a, n− x+ b).

Proof. The assertion about the posterior distribution follows from elementary appli-

cation of Bayes’ theorem, see Appendix 3.A, Section 3.A.1. �

From Proposition 3.9, we can directly infer on credibility intervals for a probability y = p.

Proposition 3.10 (Credibility Interval for a Probability). Consider the binomial den-

sity fX|Y=y(x) =
(
n
x

)
yx(1 − y)n−x of X under the probability Y = y and a Beta(a, b)
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distribution as the prior for Y . Let 0 < β < 1. Then a β · 100% credibility interval Ax

for Y under X = x is given by

Ax =
[
zBeta(x+a,n−x+b)(α1); zBeta(x+a,n−x+b)(1− α2)

]
,

where α1 + α2 = 1− β, α1, α2 ≥ 0.

Proof. From Proposition 3.9 it follows

Px(Y ∈ Ax) = Px
(
zBeta(x+a,n−x+b)(α1) ≤ Y ≤ zBeta(x+a,n−x+b)(1− α2)

)
= Px

(
Y ≤ zBeta(x+a,n−x+b)(1− α2)

)
− Px

(
Y < zBeta(x+a,n−x+b)(α1)

)
= 1− α2 − α1 = β.

�

The equal-tail credibility interval for the parameter y = p of a binomial distribution is

obtained if we set α1 = α2 = 1−γ
2 in Proposition 3.10. The HPD credibility interval for

a probability requires more calculation effort. The following propositions are helpful for

the calculation of the HPD intervals.

Proposition 3.11 (Monotonicity of the Beta Density). For the density function of the

beta distribution Beta(a, b) with shape parameters a, b > 0, that is defined by f(x) =
1

B(a,b)x
a−1(1 − x)b−1 for x ∈ (0; 1) and f(x) = 0, otherwise, the following assertions

hold:

(a) f(x) is strictly increasing on (0; 1) if b ≤ 1 < a or b < 1 = a.

(b) f(x) is constant on [0; 1] if a = b = 1.

(c) f(x) is strictly decreasing if a ≤ 1 < b or a < 1 = b.

(d) In the case b > 1, a > 1, f(x) is strictly increasing on (0;x∗) and strictly decreasing

on (x∗; 1), where x∗ := a−1
a+b−2 .

(e) In the case a < 1, b < 1, f(x) is strictly decreasing on (0;x∗) and strictly increasing

on (x∗; 1), where x∗ := a−1
a+b−2 .

Proof. See Appendix 3.A, Section 3.A.2. �

A direct consequence of Proposition 3.11 is the following corollary, which is helpful for

the calculation of HPD credibility intervals for a probability.

Corollary 3.12 (Monotonicity of the Posterior Density). Let the random variable Y

that denotes the binomial proportion have a beta prior distribution, i. e. Y ∼ Beta(a, b),

a, b > 0. Let fX|Y=y(x) =
(
n
x

)
yx(1 − y)n−x be the likelihood function with n ∈ N, x =

{0, 1, . . . , n}. Then the following assertions hold:
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(a) fY |X=x(y) is strictly increasing on (0; 1) if

(i) n− x+ b ≤ 1 < a+ x,

(ii) n− x+ b < 1 = a+ x.

Then necessarily b ≤ 1 and x = n.

(b) fY |X=x(y) is strictly decreasing on (0; 1) if

(i) a+ x ≤ 1 < n− x+ b

(ii) a+ x < 1 = n− x+ b

Then necessarily a ≤ 1 and x = 0.

(c) In the case n−x+ b > 1, a+x > 1, fY |X=x(y) is strictly increasing on (0; y∗) and

strictly decreasing on (y∗; 1), where y∗ := a+x−1
n+a+b−2 .

(d) The case that fY |X=x(y) is strictly decreasing on a interval (0; y∗) and strictly

increasing on (y∗; 1) with y∗ ∈ (0; 1) cannot occur.

(e) The case that fY |X=x(y) is constant cannot occur.

Proof. See Appendix 3.A, Section 3.A.3. �

The preceding corollary allows to infer on HPD credibility intervals for a binomial pro-

portion. We explicitly describe them in Corollary 3.13.

Corollary 3.13 (HPD Credibility Interval for a Binomial Probability). Let 0 < β < 1

and fY (y) = 1
B(a,b)y

a−1(1− y)b−1 be the prior density of the binomial probability Y . Let

fX|Y=y(x) =
(
n
x

)
yx(1 − y)n−x be the likelihood function with n ∈ N, x = {0, 1, . . . , n},

and fY |X=x(y) be the posterior density of Y under X = x. The level β HPD credibility

interval Ax for Y under X = x is

(a) Ax = [lx;ux] = [zBeta(a+n,b)(1− β); 1] if

(i) n− x+ b ≤ 1 < a+ x or

(ii) n− x+ b < 1 = a+ x,

(b) Ax = [lx;ux] = [0; zBeta(a,n+b)(β)] if

(i) a+ x ≤ 1 < n− x+ b or

(ii) a+ x < 1 = n− x+ b,

(c) Ax = [lx;ux] = [zBeta(x+a,n−x+b)(α1); zBeta(x+a,n−x+b)(1 − α2)] if n − x + b >

1 and a + x > 1, where α1, α2 are chosen such that α1 + α2 = 1 − β and

fY |X=x(zBeta(x+a,n−x+b)(α1)) = fY |X=x(zBeta(x+a,n−x+b)(1 − α2)). The maximum

point y∗ of the posterior density function is y∗ = a+x−1
n+a+b−2 with y∗ ∈ Ax.
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Proof. See Appendix 3.A, Section 3.A.4. �

Figure 3.1 shows instances of beta prior distributions and their corresponding level 95 %

HPD credibility intervals and coverage probability graphs for a binomial proportion

p = y if the sample size is n = 30. The investigated prior distributions are the uniform

distribution Beta(1, 1), the bathtub shaped distribution Beta(0.5, 0.5), the right-skewed

distribution Beta(0.2, 1) and the left-skewed distribution Beta(7, 3). The HPD credibility

intervals under X = x ∈ {0, . . . , 30} vary in length depending on the prior. For example,

the HPD credibility intervals for small x are comparably wide under the prior Beta(7, 3).

This distribution represents the belief that low values of x are unlikely to occur. The

coverage probability graphs take very different shapes depending on the prior. A common

feature of all analysed priors is the fact that the coverage probability often lies below the

specified credibility level, in this case 0.95. In the case of the Beta(0.5, 0.5) prior – which

deems probabilities close to 0 and 1 more likely than midpoints – the coverage probability

is especially high for values of p near the boundaries. In contrast, the coverage probability

of the right-skewed prior Beta(0.2, 1) falls below 0.95 for a wide range of small values of

p and has satisfactory coverage probabilities for large values of p. The left-skewed prior

Beta(7, 3), which takes its mode for p = 0.75, especially fails for small values of p and

for p close to 1, while showing fairly good coverage properties between approximately

0.5 and 0.9.

Figure 3.2 shows posterior distributions for p if X = x ∈ {0, . . . , 7} binomial successes are

observed in a sample of size n = 7 under different forms of beta priors. The bounds of the

corresponding level 80 % credibility intervals are displayed by dashed vertical lines. In the

case of the priors Beta(1, 1), Beta(0.5, 0.5) and Beta(0.2, 1), i. e. both shape parameters

a and b of the beta prior Beta(a, b) are ≤ 1, the posterior distributions are decreasing for

x = 0 and increasing for x = n, a behaviour following from Corollary 3.12. The modes

of the posterior density functions are increasing in x, a characteristic which can be easily

seen by taking the derivative in x of the maximum function gn,a,b(x) := a+x−1
n+a+b−2 . Under

the prior Beta(7, 3), the posterior distributions are each of inverted bathtub shape with

a maximum within the interval (0; 1) for each x ∈ {0, 1, . . . , n}. Consequently, there are

p ∈ [0; 1] which are contained in none of the corresponding HPD credibility intervals

[lx;ux]. The frequentist coverage probability at these p results to 0 (compare Fig. 3.1),

a property that will be resumed in Theorem 3.16.
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prior density credibility intervals/MPS coverage probability
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Figure 3.1: Level 95 % HPD credibility intervals for a binomial proportion p and coverage prob-
ability for a selection of beta prior distributions. Sample size n = 30.
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3 Bayesian Credibility Intervals for a Probability

3.5 Relation between the Probability Content of Bayesian

HPD Intervals and the Coverage Probability

Using Definition 3.5 and Proposition 3.10, we can describe the volume of a Bayesian

MPS for a binomial probability p.

Remark 3.14. The volume of a level β Bayesian MPS with credibility intervals

Ax =
[
zBeta(x+a,n−x+b)(α1); zBeta(x+a,n−x+b)(1− α2)

]
for the parameter p of a bino-

mial distribution Bi(n, p) is given by

V (A) =
n∑
x=0

ν(Ax)wa,b(x),

where ν(Ax) = ux− lx is the length of the credibility interval Ax = [lx;ux] obtained from

Corollary 3.13, and the weights wa,b(x) are given by Proposition 3.9.

If the objective is to find a minimum volume Bayesian MPS for a probability p, the

weighted volume V (A) from Remark 3.14 has to be minimised. Since the weights wa,b(x)

from Proposition 3.9 are constants under a given x and fixed prior distribution Beta(a, b),

minimising V (A) results to minimising the lengths ν(Ax) of the Bayesian credibility

intervals for x ∈ {0, 1, . . . , n}. This is equivalent to finding the HPD credibility intervals

Ax for x ∈ {0, 1, . . . , n}, cf. Box & Tiao (1973).

From Fig. 3.1 it has become obvious that the coverage probability of Bayesian HPD

credibility intervals can drop substantially to values far below a certain threshold and

therefore can turn out to be unsatisfactory from a frequentist point of view. To get

a better idea about the coverage properties of both types of intervals, we analyse the

relationship between the confidence level γ of a frequentist confidence interval and the

credibility β of a Bayesian HPD credibility interval for a binomial proportion.

The statement of the subsequent proposition about the monotonicity of the quantiles of

the posterior distribution will be needed for the proof of Theorem 3.16.

Proposition 3.15 (Quantiles of the Posterior Distribution). Let a, b > 0, n ∈ N, x ∈
{0, 1, . . . , n}, 0 < γ < 1. Then the γ · 100% quantiles zBeta(a+x,n−x+b)(γ) of the beta

distribution Beta(a+ x, n− x+ b) are increasing in x.

Proof. See Appendix 3.A, Section 3.A.5. �

The following theorem describes conditions for the Beta(a, b) prior distribution, under

which the Bayesian HPD credibility intervals for a binomial proportion have a minimum
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3.5 Relation between the Probability Content of Bayesian HPD Intervals and the Coverage

Probability

coverage probability given the probability content β of the credibility intervals is chosen

appropriately.

Theorem 3.16. Let {Ax|x ∈ {0, 1, . . . , n}, n ∈ N} denote the set of level β ∈ (0; 1) credi-

bility intervals for a binomial proportion Y ∈ [0; 1] under the prior fY (y) = 1
B(a,b)y

a−1(1−
y)b−1, a, b > 0 and let fX|Y=y(x) =

(
n
x

)
yx(1− y)n−x be the likelihood function. Let A =

{(x, y)|y ∈ Ax, x = {0, 1, . . . , n}} be the Bayesian level β MPS and Ay = {x|(x, y) ∈ A}
be the projection on R1 = {0, 1, . . . , n} for fixed y ∈ [0; 1]. Let C(y) = Py(X ∈ Ay), y ∈
[0; 1], denote the frequentist coverage probability function. Then for any given 0 < γ < 1,

the following two assertions are equivalent:

i) There exists a credibility level 0 < β < 1 such that for the projection Ay of the

corresponding level β HPD intervals we have C(y) ≥ γ for all y ∈ [0; 1].

ii) The shape parameters a and b of the beta prior Beta(a, b) fulfil the conditions

a ≤ 1, b ≤ 1.

Proof. See Appendix 3.A, Section 3.A.6. �

Theorem 3.16 proves the existence of a credibility level β under the described conditions.

The credibility level β derived in the proof is not necessarily the lowest possible level

fulfiling the condition described in the theorem. In fact, it will in most cases be far

from it. For a comparison of the Bayesian HPD credibility intervals with the frequentist

confidence intervals for a binomial probability a fair approach would be to take the

smallest level β such that the frequentist coverage is greater or equal to a prescribed

confidence level γ for all y ∈ [0; 1].

It follows from Theorem 3.16 that if a minimum coverage level on the whole interval [0; 1]

is intended, a comparison of the two interval types for the probability Y only makes sense

if the prior distribution Beta(a, b) with a, b ≤ 1 is considered. This requirement includes

priors of very different shape. The uniform prior Beta(1, 1) as well as the bathtub shaped

prior Beta(0.5, 0.5) fulfil the requirement. By appropriate choices of a and b, a variety

of other forms and skewnesses can be modelled, e. g. a distribution with decreasing

density function such as Beta(0.02, 1), increasing density function such as Beta(1, 0.3),

symmetric and unsymmetric bathtub shapes such as Beta(0.3, 0.3) or Beta(0.8, 0.5).

The following proposition allows the description of an algorithm for finding the minimum

probability content 0 < β < 1 such that under the premises of Theorem 3.16, the

frequentist coverage probability of the credibility intervals is at least a certain prescribed

level 0 < γ < 1.
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Proposition 3.17 (Monotonicity of the Coverage Probability in β). The coverage prob-

ability C(y) of a Bayesian level β MPS A, where the projection AX constitutes a level

β HPD credibility interval for the binomial probability Y , is an increasing function in β

with C(y)
β→1

↗ 1.

Proof. See Appendix 3.A, Section 3.A.7. �

3.6 Numerical Comparison of Bayesian and Frequentist MPS

We empirically compare the frequentist confidence interval for a proportion under prior

information from Chapter 2 with the Bayesian HPD credibility interval from the pre-

ceding sections in the spirit of Theorem 3.16. In our analysis we consider several beta

distributions with right-skewed density functions Beta(a, 1) with a < 1, as well as the

uniform prior Beta(1, 1) and the Jeffreys prior Beta(0.5, 0.5). The investigated distri-

butions all fulfil the crucial requirement of Theorem 3.16 that both shape parameters

a, b > 0 of the beta prior distribution Beta(a, b) are smaller than or equal to 1. We

compare the frequentist confidence interval under prior information Beta(a, b) with the

HPD intervals under the prior Beta(a, b) both in terms of their coverage probabilities as

well as the volumes of the corresponding MPSs.

The following simple calculation shows that a confidence interval of level γ and a Bayesian

HPD credibility interval of level β = γ cannot simply be compared without further

consideration. Let n = 50 and consider the prior distribution Beta(0.02, 1) for the

binomial probability Y . Let the number of observed binomial successes X in a sample

of size n = 50 be 0. (In the application of Chapter 5 this is not unusual.) In this case,

the frequentist level 80 % confidence interval for p = y results to (0.00000; 0.03205),

whereas the level 80 % HPD interval for Y under X = 0 results to (0.00000; 0.00001).

The latter is thus extremely narrow and its usability in practice has to be questioned.

In contrast, the level 99.83 % credibility interval under X = 0 is (0.00000; 0.03175)

and is hence considerably broader. For x = 1, we obtain the level 80 % confidence

interval (0.00445; 0.06099) and the credibility interval (0.00000; 0.03225) under the level

80 % and the interval (0.00000; 0.12063) under the level 99.83 %. This example shows

that a confidence level γ of a frequentist confidence interval and a credibility level β

of a Bayesian HPD interval are completely different input parameters for two different

estimation procedures for a probability.

To better investigate the relation between the confidence level γ and the credibility
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3.6 Numerical Comparison of Bayesian and Frequentist MPS

level β, we consider the Bayesian level β MPS under different levels β. Figure 3.3

shows the coverage probabilities of the HPD credibility intervals under the uniform prior

Beta(1, 1) (left-hand side) and the right-skewed prior Beta(0.02, 1) (right-hand side) for

three different values of β each. The plots in the first row show the frequentist coverage

probabilities of the HPD intervals of level β = 0.9 (under sample size n = 10) and β = 0.8

(under sample size n = 50), respectively. In both cases, probabilities y = p ∈ [0; 1] exist

for which the coverage probability falls below the credibility levels β = 0.9 and β = 0.8,

respectively. In the case of the uniform prior, the coverage probability is close to or

exceeds 0.9 for values of p close to 0 or 1 and mostly falls below the level for values of

p in the middle of the unit interval. In the case of the right-skewed prior, the coverage

probability clearly fails to meet the level 0.8 for small values of p. The extremely narrow

level 80 % credibility interval (0.00000; 0.00001) under X = 0 might be one of the reasons

for this unsatisfying behaviour of the HPD interval for small p.

According to Theorem 3.16, it is possible to find for both prior distributions Beta(1, 1)

and Beta(0.02, 1) credibility levels β such that the pointwise coverage probability does

not drop below a certain prescribed level γ. The second row of Fig. 3.3 shows the

coverage probabilities for credibility levels which only just do not fulfil pointwise coverage

probability of at least γ, whereas in the third row the credibility levels are the minimum

credibility levels such that the coverage probabilities exceed the levels γ = 0.9 and

γ = 0.8, respectively. While in the presented case of the right-skewed Beta(0.02, 1)

prior the level γ = 0.8 can be achieved exactly for β = 0.99830 and p = 0.03174, the

obtained minimum coverage probability for the Beta(1, 1) prior undergoes a jump when

slightly changing the credibility level β from 0.96456 to 0.96457. While in the first case,

the minimum coverage probability of 0.899554 for p = 0.39138 and p = 0.60862 still lies

below γ = 0.9, it jumps to 0.92452 for p = 0.29965 and p = 0.70035 if the credibility level

is risen to 0.96457. This behaviour demonstrates once more the discontinuities that are

present in the context of interval estimation of the parameter p due to the discreteness of

the binomial distribution, even under common priors like the uniform prior Beta(1, 1).

The values 0.96457 (bottom left) and 0.99830 (bottom right) in Fig. 3.3 are consequently

values for the credibility β such that a prescribed coverage probability of at least 90 %

or 80 %, respectively, is achieved pointwise in [0; 1]. A more extensive overview over

the minimally necessary credibility levels β such that the HPD credibility intervals have

a coverage probability exceeding a certain prescribed level γ is provided in Table 3.1

for prior distributions Beta(1, 1), Beta(0.5, 0.5) and right-skewed priors Beta(a, 1) with

a ∈ {0.5, 0.1, 0.05, 0.02}. The credibility level β which is necessary to achieve pointwise
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3 Bayesian Credibility Intervals for a Probability

coverage of at least γ exceeds the value γ considerably in a majority of the presented

cases. For example, to obtain a minimum pointwise coverage probability of at least

γ = 0.8, a level β = 0.91525 HPD interval is required under the uniform prior and

sample size n = 10. There is a tendency of lower minimum β values for increasing sample

size, but this is not a general rule. For n = 150 in the case of a uniform prior only the

credibility level 0.84985 is needed to ensure a coverage of 0.8 in contrast to 0.91525 for

n = 10, 0.86967 for n = 50 or 0.85256 for n = 100. For example, the minimum β level of

0.99779 is necessary for β = 0.99, n = 100 under the prior Beta(0.5, 0.5), and the even

larger value 0.99783 for n = 150. In general, it has to be mentioned that the differences

in the credibility levels for the different priors or sample sizes are often a matter of the

4th or 5th decimal place in β, a precision that is irrelevant in practice. Nevertheless, to

demonstrate that also for levels of γ very close to 1, as e. g. γ = 0.99, the minimum level

β required to ensure pointwise coverage of the HPD intervals of at least γ is smaller than

1, we report the results of Table 3.1 up to the 5th digit behind the decimal separator.

In Table 3.1, we also record the volumes of the minimum volume frequentist MPS of

level γ and the volumes of the HPD credibility intervals of level β ensuring a frequentist

pointwise coverage probability of at least γ. The volume of the frequentist MPS is

throughout smaller than the volume of the Bayesian MPS. This is not surprising because

the frequentist interval is constructed in such a way that the coverage criterion is fulfiled

pointwise and the volume is minimal. For the uniform prior Beta(1, 1), the volume

of the Bayesian MPS for the presented sample sizes is between 0.7 % (for n = 10,

γ = 0.99) and 11.6 % (for n = 10, γ = 0.8) higher, which is harmless in comparison to

the Beta(0.5, 0.5) prior, where the volume increases are between 6.0 % (n = 10, γ = 0.99)

and 34.8 % (n = 150, γ = 0.8). The volume increase is even worse for the right-skewed

priors Beta(a, 1) with a close to 0. While for certain constellations of sample size n

and minimum coverage level γ the volume of the Bayesian MPS can be small, e. g. in

the case of the prior Beta(0.02, 1) for n = 10, γ = 0.95 it is only 4.4 % larger than the

frequentist MPS, it can almost double for different parameter combinations, as from a

frequentist volume of 0.010 to a Bayesian volume of 0.019 in the case n = 100, γ = 0.8.

Consequently, constellations of sample size n and level γ can be found such that there

is little difference in the volume of the frequentist and the Bayesian MPS, but there

also occur cases where the Bayesian MPS shows clearly broader intervals if a certain

pointwise coverage probability is demanded.

The problem in the presented investigation of the coverage properties of the Bayesian

level β MPS under different levels β is that often the requirement of pointwise exceedance
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Figure 3.3: Coverage probabilities of the HPD credibility intervals for two different priors and
sample sizes under various credibility levels β. In the first two rows, the coverage
probabilities do not always exceed a level γ, while in the third row they do.

of a certain prescribed coverage probability fails only for a few single points of p. How-

ever, the property that the coverage probability function behaves in a discontinuous way

and meets the actual prescribed level exactly only for a finite number of points between

[0; 1] and clearly exceeds it for the majority of points, is just as well a characteristic of

the frequentist minimum volume confidence interval for a binomial proportion, see e. g.

Fig. 2.3.

Since it is somewhat difficult to imagine what a certain magnitude of the weighted

volume actually means, we explore the length of the confidence and credibility intervals

exemplarily under X = x with x = 0, 1, 2. These are values of X that should be

considered rather likely if right-skewed prior distributions Beta(a, 1) with a < 1 are
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3 Bayesian Credibility Intervals for a Probability

Table 3.1: Minimum credibility level β such that the level β HPD credibility interval has co-
verage probability ≥ γ with corresponding volume of the level β Bayesian MPS (left
in brackets) and the volume of the minimum volume frequentist level γ MPS (right
in brackets).

γ n = 10 n = 50 n = 100 n = 150

Beta(1, 1)

0.8 0.91525 (0.375; 0.336) 0.86967 (0.163; 0.149) 0.85256 (0.112; 0.104) 0.84985 (0.091; 0.085)
0.9 0.96457 (0.451; 0.417) 0.93643 (0.199; 0.188) 0.93082 (0.140; 0.133) 0.92891 (0.114; 0.108)
0.95 0.98453 (0.512; 0.476) 0.96894 (0.231; 0.221) 0.96976 (0.167; 0.157) 0.96859 (0.136; 0.128)
0.99 0.99531 (0.584; 0.580) 0.99437 (0.294; 0.286) 0.99432 (0.212; 0.204) 0.99395 (0.173; 0.167)

Beta(0.5, 0.5)

0.8 0.93544 (0.331; 0.295) 0.93749 (0.162; 0.124) 0.93341 (0.114; 0.086) 0.93205 (0.093; 0.069)
0.9 0.97432 (0.404; 0.368) 0.97156 (0.191; 0.156) 0.97205 (0.137; 0.109) 0.97225 (0.113; 0.088)
0.95 0.98950 (0.464; 0.427) 0.98665 (0.216; 0.185) 0.98683 (0.155; 0.129) 0.98691 (0.128; 0.105)
0.99 0.99813 (0.562; 0.530) 0.99784 (0.270; 0.241) 0.99779 (0.192; 0.169) 0.99783 (0.158; 0.137)

Beta(0.5, 1)

0.8 0.94162 (0.350; 0.299) 0.93741 (0.169; 0.128) 0.93339 (0.120; 0.089) 0.93204 (0.098; 0.072)
0.9 0.97679 (0.421; 0.373) 0.97234 (0.200; 0.162) 0.97244 (0.144; 0.114) 0.97241 (0.118; 0.092)
0.95 0.99028 (0.478; 0.432) 0.98710 (0.227; 0.192) 0.98706 (0.163; 0.135) 0.98706 (0.134; 0.109)
0.99 0.99855 (0.581; 0.539) 0.99785 (0.280; 0.250) 0.99785 (0.201; 0.176) 0.99786 (0.165; 0.143)

Beta(0.1, 1)

0.8 0.99153 (0.245; 0.200) 0.99060 (0.100; 0.066) 0.99050 (0.069; 0.042) 0.99046 (0.056; 0.033)
0.9 0.99684 (0.302; 0.260) 0.99635 (0.118; 0.085) 0.99629 (0.080; 0.055) 0.99627 (0.064; 0.043)
0.95 0.99875 (0.353; 0.315) 0.99850 (0.135; 0.104) 0.99847 (0.091; 0.066) 0.99846 (0.072; 0.051)
0.99 0.99984 (0.457; 0.426) 0.99979 (0.171; 0.143) 0.99979 (0.113; 0.090) 0.99978 (0.089; 0.070)

Beta(0.05, 1)

0.8 0.99602 (0.206; 0.176) 0.99557 (0.057; 0.034) 0.99551 (0.040; 0.022) 0.99550 (0.032; 0.017)
0.9 0.99853 (0.262; 0.235) 0.99831 (0.066; 0.044) 0.99828 (0.046; 0.028) 0.99827 (0.037; 0.022)
0.95 0.99943 (0.315; 0.290) 0.99932 (0.074; 0.053) 0.99930 (0.051; 0.034) 0.99930 (0.041; 0.027)
0.99 0.99993 (0.422; 0.400) 0.99991 (0.092; 0.073) 0.99991 (0.062; 0.047) 0.99990 (0.049; 0.036)

Beta(0.02, 1)

0.8 0.99846 (0.175; 0.160) 0.99830 (0.027; 0.015) 0.99828 (0.019; 0.010) 0.99827 (0.015; 0.008)
0.9 0.99944 (0.232; 0.218) 0.99936 (0.031; 0.020) 0.99935 (0.021; 0.013) 0.99934 (0.017; 0.010)
0.95 0.99978 (0.284; 0.272) 0.99974 (0.035; 0.024) 0.99974 (0.024; 0.015) 0.99974 (0.019; 0.012)
0.99 0.99998 (0.409; 0.382) 0.99997 (0.044; 0.033) 0.99997 (0.029; 0.021) 0.99997 (0.023; 0.016)
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imposed for the binomial probability. In Fig. 3.4, the lengths of the minimum volume

level γ confidence intervals as functions of the first shape parameter a of the prior

distribution Beta(a, 1) under X = 0, 1, 2 are compared with the lengths of the level β

credibility intervals. β has been chosen such that the Bayesian intervals have pointwise

coverage of at least γ on [0; 1]. From Fig. 3.4 we can see that the level β as a function of

the first shape parameter a is rather smooth. Under X = 0, the lengths of the minimum

volume confidence intervals and the HPD interval are almost indiscernible. For X = 1, 2,

the HPD interval is throughout wider than the minimum volume confidence interval for

the investigated range of values for a. In general, the lengths of the intervals grow with

x = 0, 1, 2. Apart from the intuitively plausible fact that under the higher sample size

n = 50 the intervals are considerably shorter than under n = 10, it can be observed

that the general relative behaviour of minimum volume confidence intervals and HPD

intervals towards each other in the case n = 50 are very similar to the case n = 10.

3.7 Eliciting Prior Information

Precedingly we have described ways to construct frequentist confidence intervals (Chap-

ter 2) and Bayesian (HPD) credibility intervals (Section 3.4) for a binomial proportion.

Both approaches require the definition of a distribution that expresses prior information

for p. The process of selecting an appropriate prior distribution is called elicitation.

Elicitation means the acquisition of expert knowledge about the parameter of interest

that is then translated to a statistical distribution that reflects the prior belief. See

Kadane & Wolfson (1998) and Jenkinson (2005) for reviews on the topic.

Appropriately eliciting a prior distribution is frequently considered as one of the diffi-

culties of Bayesian analysis. Berger (1985, p. 82) remarks that the determination of

a prior distribution is naturally dependent on the ability of people. Since they often

overestimate their prior knowledge, untrained elicitors can do quite poorly. To avoid

misspecification or because information on the parameter of interest is lacking, non-

informative prior distributions are frequently used. These distributions carry little to no

information about the parameter in contrast to informative priors. The first therefore

appear in the context of objective determination of priors, whereas the latter usually

are outcomes of a subjective choice of prior distributions. To the most common non-

informative priors belongs the uniform prior, which assigns equal probability mass to

every point from the parameter space. For unbounded parameter spaces, this frequently

produces so-called improper priors who’s density integrated over the parameter space
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Figure 3.4: Length ux − lx of the confidence/credibility interval [lx;ux], i. e. under X = x with
x = 0, 1, 2, as a function of the first shape parameter a of the beta prior Beta(a, 1).
The credibility level β is chosen such that a pointwise coverage probability of ≥ γ
is ensured; γ ∈ {0.8, 0.95, 0.99}.
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integrates to infinity. Less this behaviour than the drawback that the uniform prior is

not invariant under transformation led Jeffreys (1946) to work on priors that fulfil this

invariance requirement and produce a prior that is defined by the root of the Fisher

information matrix. However, non-informative priors involve not only these two kinds of

priors. Often, many of them exist, which is one issue that raises criticism with respect

to their use, see Berger (1985).

Since, according to Berger (1985, p. 90), many Bayesians believe only in proper priors,

real elicitation of prior distributions does not so much mean selecting a non-informative,

but an informative prior. Berger (1985) describes various general ways of how to elicit

an informative prior distribution. We revise the most important ones.

In the histogram approach, the parameter space is devided into a number of intervals

and the probabilities that the parameter of interest falls into these intervals are seeked

for. A smooth density function is then matched to the resulting histogram.

The relative likelihood approach is, beneath the histogram approach, the one that is

favoured by Berger (1985). Here, the likelihoods of several points are obtained by com-

paring them relatively to each other, for example, one point could be considered twice

as likely as some other point. A smooth density function is then determined from the

likelihood of a couple of points (Berger 1985, pp. 77–78).

A way to elicit a prior distribution that is often considered problematic by Berger (1985)

is the determination via the density function. It involves prescribing a certain functional

form of the prior density function, e. g. a beta distribution Beta(a, b) with parameters

a, b > 0, and choosing the distribution parameters appropriately. The parameters are

determined by means of an estimation of moments or quantiles. Berger’s (1985) criticism

is that the tails of the distribution, although they might be carrying little probability

mass, can have a lot of effect on the moments. He therefore finds the moment approach

suspect, but somewhat reasonable for bounded parameter spaces, and considers the way

through estimating quantiles as more attractive (Berger 1985, p. 79).

The quantile technique can also be applied to the cumulative distribution function,

where a smooth distribution function is searched for that matches several pre-specified

quantiles as good as possible. This approach is referred to by Berger (1985, pp. 81–82)

as the determination via the cumulative distribution function approach.

With respect to the choice of a prior distribution for a binomial parameter p, we con-

sider in Chapter 2 and Section 3.4 only beta priors. We are therefore in the situation

of eliciting a distribution for a univariate parameter on a bounded parameter space.
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In Chapter 2 we express prior information on a probability p in terms of the four-

parametric beta distribution Beta(p0, p1, a, b) on a subset [p0; p1] of the unit interval,

while in Section 3.4 we concentrate on the most important special case of a beta dis-

tribution Beta(0, 1, a, b) = Beta(a, b) on the support [0; 1]. To restrict attention to the

interval [p0; p1] only is reasonable if probabilities from [0; 1]\[p0; p1] can be excluded with

certainty. The disadvantage of the clear cut-off at the boundaries of [p0; p1] has been

warned against in Section 2.3 already. Setting [p0; p1] = [0; 1] would at least provide

against the risk of a complete misspecification of the prior information by allowing posi-

tive probabilities on the interval (0; 1). After the choice of the support of the beta prior

distribution, the shape parameters a, b > 0 need to be decided upon. In the following,

we focus on the beta distribution Beta(a, b) and the elicitation of its two parameters a

and b defined on the whole unit interval [0; 1].

Several non-informative priors exist for the binomial parameter, see Berger (1985, p. 89)

or Geisser (1984). To those that are instances of beta distributions belong the uniform

prior Unif(0, 1) and the Jeffreys prior Beta(0.5, 0.5).

To elicit an informative beta distribution as a prior for the binomial parameter p, the

following interpretation taken from Kerman (2011) can be helpful. It regards the pos-

terior distribution Beta(x + a, n − x + b) under x observed binomial successes as an

encouragement of the frequent interpretation of the parameters a and b of the beta prior

Beta(a, b) as the prior number of successes and failures: While believing prior to drawing

the sample that about a successes and b failures are most likely to be observed from a

total of a+ b instances, the observed number of successes x in the actual sample of size

n updates this prior belief to a + x successes with n − x + b failures out of a total of

a+ b+ n instances.

Ignoring the popular interpretation of the parameters a and b, we describe ways how to

elicit a beta prior distribution for the binomial parameter p as instances of elicitation via

the density function. In the first step, after having decided on the support, the shape

of the beta density function needs to be determined. The density function of the beta

distribution can be constant – in this case it equals the uniform distribution –, strictly

increasing, strictly decreasing, bathtub shaped, or reverse bathtub shaped. Which shape

the beta distribution takes in association with the parameter set (a, b) can be taken from

Proposition 3.11.

The following Proposition 3.18 describes how to choose the parameters a, b of a beta dis-

tribution Beta(a, b) by means of specifying a quantile and deciding on the monotonicity

of the density function.
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Figure 3.5: Two beta distributions with strictly decreasing density functions on [0; 1] with 0.2
as the 90 % quantiles.

Proposition 3.18. Let pρ ∈ (0; 1), ρ ∈ (0; 1). If

(i) a = 1, b = ln(1−ρ)
ln(1−pρ) , or

(ii) b = 1, a = ln(ρ)
ln(pρ) ,

then pρ ∈ (0; 1) is the ρ · 100 %-quantile of the beta distribution Beta(a, b).

If pρ = ρ, the beta distribution is the uniform distribution on [0; 1]. If 0 < pρ < ρ < 1,

the beta distribution is strictly decreasing. If 0 < ρ < pρ < 1, the beta distribution is

strictly increasing.

Proof. See Appendix 3.A, Section 3.A.8. �

We provide an instance of the elicitation approach described in Proposition 3.18.

Example 3.19 (Specifying a Quantile). Assume, the prior distribution is expected to be

strictly decreasing on [0; 1]. The probability that the unknown parameter p is at most 0.2

is estimated to 90 %, which leaves the probability that p exceeds 0.2 at 10 %. By setting

either a = 1 (see (i) in Proposition 3.18) or b = 1 (see (ii) in Proposition 3.18), we

obtain the beta distributions Beta(1, 10.32) and Beta(0.06546, 1), respectively, as possible

prior distributions.

Example 3.19 is illustrated by Fig. 3.5, where both elicited beta densities are displayed.

Besides specifying a quantile and deciding on a monotonously increasing/decreasing or

constant density function, we can take one of the following two elicitation approaches.

(a) Specify two quantiles ρ1 < ρ2 ∈ (0; 1) with corresponding probabilities pρ1 < pρ2 ,

i. e. ρ1 = zBeta(a,b)(pρ1) and ρ2 = zBeta(a,b)(pρ2).

(b) Specify a quantile ρ ∈ (0; 1) with corresponding probability pρ, i. e. ρ = zBeta(a,b)(pρ),

and the mean a
a+b of the beta distribution Beta(a, b).

In both cases, we do not need to assume monotonicity properties for they will become

clear from the assumptions on the quantiles/the mean. The parameters a, b of the
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Figure 3.6: Beta distribution with 70 % quantile 0.2 and 90 % quantile 0.3 (left-hand side) and
beta distribution with 70 % quantile 0.1 and mean 0.25 (right-hand side).

resulting beta prior distribution can be solved for numerically. We provide examples for

both approaches.

Example 3.20 (Specifying two Quantiles). Assume, the probability that the unknown

parameter p is smaller or equal to 0.2 is estimated to 70 % and the probability that p

is smaller or equal to 0.3 is estimated to 90 %. The beta distribution fulfiling these

conditions is given by Beta(1.983, 10.37).

The unimodal beta prior distribution obtained from Example 3.20 is depicted in the

left-hand side of Fig. 3.6.

Example 3.21 (Specifying one Quantile and the Mean). Assume, the probability that

the unknown parameter p is smaller or equal to 0.1 is estimated to 70 % and 0.25 is

estimated to be the mean of the beta distribution. The beta distribution fulfiling these

conditions is given by Beta(0.03348, 0.1004).

The prior distribution arising from the assumptions in Example 3.21 has an asymmetrical

bathtub shape. The distribution is illustrated in the right-hand side of Fig. 3.6.

3.8 Conclusion and Outlook

We have reviewed Bayesian credibility regions and derived HPD credibility intervals for

a binomial probability p. The Bayesian approach is the natural approach to make use

of prior information, which is why we have conducted a comparison with the confidence

intervals for a binomial probability presented in Chapter 2, which also make use of prior

information, but are of frequentist type. Both approaches apply the conjugate prior of

the binomial – the beta distribution – as prior information distribution on the unknown

parameter p.

The concept of measurement and prediction spaces (MPSs) presented in Chapter 2 that

simultaneously looks at confidence and prediction regions, can be formulated for the
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Bayesian approach as well. Consequently, the credibility intervals can be evaluated by

means of their coverage probability. The Bayesian credibility intervals do not in general

fulfil the common frequentist requirement that under repeated sampling the parameter

of interest is covered about a prescribed number of times by the intervals (Repeated

Sampling Principle). In this sense, the Bayesian intervals frequently do not feature

exactness: Under a given level β ∈ (0; 1), the Bayesian credibility intervals for a binomial

proportion show a coverage probability below β for many y = p from [0; 1]. However, the

graphs of the coverage probability function can take very different shapes under different

prior distributions. We have demonstrated that for prior distributions Beta(a, b) with

parameters 0 < a, b ≤ 1, a level β ∈ (0; 1) can be found such that the credibility

intervals are exact with respect to a prescribed minimum coverage level γ ∈ (0; 1). A

comparison of the weighted volume of the Bayesian MPS with the frequentist minimum

volume MPS under the same prior information have revealed that the latter exhibit in

general smaller weighted volumes. This finding is not surprising since the frequentist

intervals are constructed in such a way that their weighted volumes under a given prior

information distribution are minimal.

We are aware that Bayesian credibility intervals are usually not judged by the concept

of coverage probability, which is a frequentist measure of evaluating confidence intervals.

Bayesian statistics follows the likelihood principle. In this sense, the comparison we

presented is not completely fair and the credibility level β and the confidence level

γ are not the same either. Scricciolo (1999), for example, raises the concern in the

context of matching priors that designing priors such that final answers satisfy frequentist

properties come with the risk of putting emphasis mainly on frequentist requirements

and by that are in danger of violating the likelihood principle of the Bayesian approach.

The findings from Theorem 3.16 are certainly in danger of falling victim to this criticism.

However, there is also the other point of view that these two conceptually different

approaches – Bayesian and frequentist – “. . . should not be yielding fundamentally dif-

ferent answers in practice” (Berger et al. 1997): Something would be seriously wrong if

a Bayesian credibility interval of level 90 % contained the true parameter in only 70 % of

the cases (Bayarri & Berger 2004). On the other hand, Bayarri & Berger (2004) refer

to Neyman (1977) when they point out that the motivation of the frequentist principle

means the repeated application on different real problems and not on one problem with

a fixed unknown parameter. This refers to the concept of the Bayesian approach that

in contrast to the frequentist one does not treat the true parameter as an unknown

constant, but as a random variable.

79



3 Bayesian Credibility Intervals for a Probability

As to which of the two approaches to trust, we doubt a definite answer can ever be

given. With respect to the Bayesian approach, an object of criticism is the fact that it

requires the choice of a prior distribution and therefore can appear arbitrary (Scricciolo

1999). Particular difficulty arises in the Bayesian approach when prior information is

not available or vague (Thatcher 1964). Here, the frequentist approach presented in

Chapter 2 has the advantage that a misspecification of the prior distribution does not

totally lead to catastrophic results: A minimal coverage is ensured under any prior

information. The weighing induced by the prior can at most lead to intervals that are

wider for certain x than they had been if the prior information had been chosen more

aptly.

There are obvious disadvantages of the frequentist exact confidence interval approach.

While the Bayesian credibility intervals can be easily calculated based on a closed for-

mula, closed formulas do not exist for the frequentist minimum volume confidence in-

tervals. Their calculation requires the effort of a numerical algorithm. Furthermore, a

lot of emphasis is put on single points to ensure that a sufficient coverage is provided at

any point in the parameter space [0; 1]. We can see from the numerical results in Sec-

tion 3.6 that if it were not for a small number of isolated points, a credibility level β that

leads to credibility intervals fulfiling the coverage criterion could more easily be found.

This is certainly a particular property of the discreteness of the binomial distribution,

which probably also encouraged Thatcher (1964) to say: “From the mathematical point

of view, predictions about binomial samples are not the easiest of cases to consider”

(Thatcher 1964, p. 192).

Taking it from there, one suggestion for further research would be to loosen this restric-

tion of pointwise coverage and allow for a “smooth” coverage probability function in the

comparison. Currently, the performance in this respect is judged by the behaviour of the

function C(y) at the point of the infimum infy∈R2 C(y). A less conservative approach

would be to act in the spirit of Woodroofe (1986) and Wang (2009) and consider an

average coverage probability. This involves averaging the coverage probability over the

whole parameter space R2 of Y or a subset thereof, for example in an environment of the

parameter of interest. Comparisons between the Bayesian and the frequentist coverage

probability would then have to be based on the average coverage probability, which, ac-

cording to Woodroofe (1986), may better assess frequentist properties than the strictly

pointwise evaluated measure.

The empirical results from Section 3.6 have been calculated numerically. It should be

explored how by identifying the points of minimum coverage probability, the minimum
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probability level β ensuring a pointwise coverage probability of ≥ γ can be determined

analytically.

Regardless of the question concerning the coverage, it would be of interest what the

difference in information content of both approaches would be and how exactly prior

information impacts credibility and confidence intervals.
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3.A Appendix

3.A.1 Proof of Proposition 3.9

The prior distribution of Y – the beta distribution Beta(a, b) with parameters a, b > 0

from Eq. (2.11) – has the density function fY (y) = 1
B(a,b)y

a−1(1− y)b−1.

By fX|Y=y(x)fY (y) = fX(x) with fX|Y=y(x) =
(
n
x

)
yx(1− y)n−x we obtain the marginal

density fX(x) as

fX(x) =

(
n
x

)
B(a, b)

∫ 1

0
yx+a−1(1− y)n−x+b−1 dy.

Using Theorem 3.1, we obtain the posterior density

fY |X=x(y) =

1
B(a,b)y

a−1(1− y)b−1
(
n
x

)
yx(1− y)n−x

(nx)
B(a,b)

∫ 1
0 z

x+a−1(1− z)n−x+b−1 dz

=
1∫ 1

0 z
x+a−1(1− z)n−x+b−1 dz

ya+x−1(1− y)n−x+b−1

=
1

B(x+ a, n− x+ b)
ya+x−1(1− y)n−x+b−1,

i. e. the density of the beta distribution Beta(x+ a, n− x+ b).

3.A.2 Proof of Proposition 3.11

Consider x ∈ (0; 1). We derive the monotonicity properties of the beta density function.

The derivative of f(x) with respect to x is

f ′(x) =
1

B(a, b)
xa−2(1− x)b−2︸ ︷︷ ︸

>0

(
(a− 1)(1− x)− (b− 1)x

)
.

Hence, to investigate the monotonicity properties of f(x), we analyse the sign of (a −
1)(1− x)− (b− 1)x. In the case b ≤ 1, a > 1 we have

(a− 1)(1− x)− (b− 1)x = a− 1− ax+ x− b︸︷︷︸
≤1

x+ x

≥ a− 1− ax+ x− x+ x

= (a− 1)− (a− 1)x = (a− 1)︸ ︷︷ ︸
>0

(1− x)︸ ︷︷ ︸
>0

> 0.
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In the case b < 1, a = 1 we have

(a− 1)(1− x)− (b− 1)x = a− 1− ax+ x− bx+ x

= 1− 1− x+ x− bx+ x

= −bx+ x = (1− b)︸ ︷︷ ︸
>0

x︸︷︷︸
>0

> 0.

Consequently, f(x) is strictly increasing on (0; 1) and assertion (a) follows.

In the case a = b = 1, we have (a − 1)(1 − x) − (b − 1)x = 0 and hence f ′(x) ≡ 0 on

(0; 1). Therefore f(x) is constant on (0; 1). Assertion (b) follows.

In the case a < 1 < b we have

(a− 1)(1− x)− (b− 1)x = a− 1− ax+ x− bx+ x

< a− 1− ax+ x− x+ x

= (a− 1)︸ ︷︷ ︸
<0

(1− x)︸ ︷︷ ︸
>0

< 0,

i. e. f(x) is strictly decreasing. In the case a = 1, b > 1 we have

(a− 1)(1− x)− (b− 1)x = − (b− 1)︸ ︷︷ ︸
>0

x︸︷︷︸
>0

< 0.

In the case a < 1, b = 1 we have

(a− 1)(1− x)− (b− 1)x = (a− 1)︸ ︷︷ ︸
<0

(1− x)︸ ︷︷ ︸
>0

< 0.

This proves assertion (c).

In the case b > 1, a > 1 we have

(a− 1)(1− x)− (b− 1)x S 0

⇔ (a− 1)(1− x) S (b− 1)x

⇔ 1− x
x

S
b− 1

a− 1

⇔ 1

x
S

b− 1

a− 1
+ 1

⇔ x T
a− 1

b+ a− 2


<

a− 1

1 + a− 2
= 1,

> 0.

Hence f(x) is strictly increasing for x < x∗ and strictly decreasing for x > x∗, where

x∗ = a−1
a+b−2 . Assertion (d) follows.
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In the case a < 1, b < 1 we have

(a− 1)(1− x)− (b− 1)x S 0

⇔ (a− 1)(1− x) S (b− 1)x

a−1<0⇔ 1− x
x

T
b− 1

a− 1

⇔ 1

x
T

b− 1

a− 1
+ 1

⇔ x S
1

b− 1

a− 1︸ ︷︷ ︸
>0

+1

< 1,

> 0.

Assertion (e) follows.

3.A.3 Proof of Corollary 3.12

The assertions of Corollary 3.12 follow directly from Proposition 3.9 about the form

of the posterior density fY |X=x(y) under a beta prior and Proposition 3.11 about the

monotonicity of the beta density function. To have fY |X=x(y) strictly decreasing on a

interval (0;x∗) and strictly increasing on (x∗; 1) requires according to Proposition 3.11

a︸︷︷︸
>0

+ x︸︷︷︸
∈N0

< 1⇒ x = 0 and n− x+ b = n+ b < 1, a contradiction to n ≥ 1 and b > 0.

This proves assertion (d).

Assume, fY |X=x(y) is constant on [0; 1]. Then from Proposition 3.9 together with asser-

tion (b) from Proposition 3.11 it follows that n−x+ b = a+x = 1. With the right-hand

side of the equality and a > 0 follows x = 0. With the left-hand side of the equality

follows n− x+ b = n︸︷︷︸
∈N

+b
!

= 1, and therefore b = 0, a contradiction to the definition of

the shape parameter b. This proves assertion (e).

3.A.4 Proof of Corollary 3.13

The assertions (a) and (b) follow directly from Corollary 3.12. In assertion (c), y∗ ∈
Ax follows from fY |X=x(y∗) ≥ fY |X=x(y) for every y ∈ [0; 1]. The existence of a

value fY |X=x(zBeta(x+a,n−x+b)(α1)) = fY |X=x(zBeta(x+a,n−x+b)(1 − α2)) ∈ (0; y∗) with

P(zBeta(x+a,n−x+b)(α1) ≤ Y ≤ zBeta(x+a,n−x+b)(1 − α2)) = β ∈ (0; 1) follows from the

continuity of the density of the posterior distribution Beta(x+ a, n−x+ b) on [0; 1] and

fY |X=x(0) = fY |X=x(1) = 0.
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3.A.5 Proof of Proposition 3.15

We prove the monotonicity property of the quantiles of the beta distribution Beta(a +

x, n − x + b). For an arbitrary x ∈ {0, 1, . . . , n} let z = zBeta(a+x,n−x+b)(γ) ∈ (0; 1) be

the γ · 100% quantile of the beta distribution Beta(a + x, n − x + b). Then we have by

definition of a quantile

γ =
1

B(a+ x, n− x+ b)

∫ z

0
ya+x−1(1−y)n−x+b−1 dy = Iz(a+x, n−x+ b),

where

Iz(v, w) =
1

B(v, w)

∫ z

0
tv−1(1− t)w−1 dt, 0 ≤ z ≤ 1

is the incomplete beta function, see Abramowitz & Stegun (1972, Formula 26.5.1). From

Abramowitz & Stegun (1972, Formula 26.5.15) we obtain the recurrence relation

Iz(v, w) =
Γ(v + w)

Γ(v + 1)Γ(w)
zv(1− z)w−1 + Iz(v + 1, w − 1).

Consequently, we obtain with v = a+ x,w = n− x+ b

γ = Iz(a+ x, n− x+ b)

=
Γ(a+ n+ b)

Γ(a+ x+ 1)Γ(n− x+ b)︸ ︷︷ ︸
>0

za+x︸︷︷︸
>0

(1− z)n−x+b−1︸ ︷︷ ︸
>0

+Iz(a+ x+ 1, n− x+ b− 1)

⇔ γ =
1

B(a+ x, n− x+ b)

∫ z

0
ya+x−1(1− y)n−x+b−1 dy

>
1

B(a+ x+ 1, n− x+ b− 1)

∫ z

0
ya+x(1− y)n−x+b−2 dy.

Therefore necessarily zBeta(a+(x+1),n−(x+1)+b)(γ) > zBeta(a+x,n−x+b)(γ) = z and the as-

sertion follows.

3.A.6 Proof of Theorem 3.16

1. a ≤ 1, b ≤ 1 is a necessary condition. Let b > 1 and 0 < β < 1 be arbitrary.

The level β HPD credibility intervals Ax are intervals of the form Ax = [lx;ux]. Let

umax := max{ux|x ∈ {0, 1, . . . , n}} and xmax := max{x|ux = umax}.

From Corollary 3.12 (a) we obtain n−xmax+ b ≥ b > 1, and hence the posterior density

function fY |X=xmax(y) is not strictly increasing on [0; 1]. Consequently, fY |X=xmax(y) is

either strictly decreasing on [0; 1] or of inverted bathtub shape, i. e. strictly increasing on
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(
0; a+xmax−1

n+a+b−2

)
and strictly decreasing on

(
a+xmax−1
n+a+b−2 ; 1

)
, see Corollary 3.12. The corre-

sponding HPD credibility interval is the interval Axmax := [lxmax ;uxmax ]. Hereby uxmax <

1, since in the case uxmax = 1 we would have fY |X=x(uxmax) = 0 = fY |X=x(lxmax) and

[lxmax ;uxmax ] = [0; 1], which would mean β = 1, a contradiction to the assumption.

Hence uxmax < 1 and fY |X=xmax(lxmax) > 0, fY |X=xmax(uxmax) > 0. Let 1 > p > uxmax

(e. g. p = uxmax+1
2 ). Then due to the definition of an HPD credibility interval we have

fY |X=xmax(p) < min
{
fY |X=xmax(lxmax), fY |X=xmax(uxmax)

}
and p /∈ [lxmax ;uxmax ] and

since uxmax is the maximum of all upper bounds ux, we also find p /∈ [lx;ux] for all

x ∈ {0, 1, . . . , n}. Consequently, Ap = {x|(x, p) ∈ A} = ∅ and C(p) = 0. Hence, for

every 0 < β < 1 we find a p ∈ [0; 1] such that C(p) = 0. Therefore we have the necessary

condition b ≤ 1.

In the same manner we prove a ≤ 1:

Let a > 1 and 0 < β < 1 be arbitrary. The level β HPD credibility intervals Ax

are intervals with Ax = [lx;ux]. Let lmin := min{lx|x ∈ {0, 1, . . . , n}} and xmin :=

max{x|lx = lmin}.

From Corollary 3.12 (a) we obtain a + x ≥ a > 1, and hence the posterior density

function fY |X=xmin(y) is not strictly decreasing on [0; 1]. Consequently, fY |X=xmin(y) is

either strictly increasing on [0; 1] or of inverted bathtub shape, i. e. strictly increasing

on
(

0; a+xmin−1
n+a+b−2

)
and strictly decreasing on

(
a+xmin−1
n+a+b−2 ; 1

)
, see Corollary 3.12. The

corresponding HPD credibility interval is the interval [lxmin ;uxmin ]. Hereby lxmin > 0,

since in the case lxmin = 0 we would have fY |X=x(lxmin) = 0 = uxmin and [lxmax ;uxmax ] =

[0; 1], which would mean β = 1, a contradiction to the assumption. Hence lxmin >

0 and fY |X=xmin(lxmin) > 0, fY |X=xmin(uxmin) > 0. Let 0 < p < lxmin (e. g. p =
lxmin

2 ). Then due to the definition of a credibility interval we have fY |X=xmin(p) <

min{fY |X=xmin(lxmin), fY |X=xmin(uxmin)} and p /∈ [lxmin ;uxmin ] and since lxmin is the

minimum of all lower bounds lx, we also find p /∈ [lx;ux] for all x ∈ {0, 1, . . . , n}.
Consequently, Ap = {x|(x, p) ∈ A} = ∅ and C(p) = 0. Hence, for every 0 < β < 1 we

find a p ∈ [0; 1] such that C(p) = 0. Therefore we have the necessary condition a ≤ 1.

2. a ≤ 1, b ≤ 1 is a sufficient condition. Let a ≤ 1, b ≤ 1. Then we know from

Corollary 3.12 that under X = 0 the posterior density function fY |X=0(y) is strictly

decreasing on [0; 1], since a ≤ 1 < n︸︷︷︸
≥1

+b = n − x + b. Similarly, the posterior density

function fY |X=n(y) is strictly increasing on [0; 1] for X = n, since the condition n−x+b ≤
1 < a+ x = a︸︷︷︸

>0

+ n︸︷︷︸
≥1

is fulfiled.
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Define q1 ∈ [0; 1] such that
(
n
0

)
q0

1(1− q1)n = (1− q1)n = γ ⇔ q1 = 1− γ1/n ∈ (0; 1).

Then due to the monotonicity of the function (1 − y)n in y on [0; 1], we have C(y) =

Py(X ∈ Ay) ≥ Py(0 ∈ Ay) ≥ γ for y ∈ [0; q1].

Define q2 ∈ [0; 1] such that
(
n
n

)
qn2 (1 − q2)0 = qn2 = γ ⇔ q2 = γ1/n ∈ (0; 1). Then

due to the monotonicity of the function yn in y on [0; 1], we have C(y) = Py(X ∈ Ay) ≥
Py(n ∈ Ay) ≥ γ for y ∈ [q2; 1].

Define 0 < β < 1 such that z2 := zBeta(a+n,b)(1 − β) < min{q1, q2} and

z1 := zBeta(a,n+b)(β) > max{q1, q2}. We show that β is an appropriate level fulfiling

the assertion from the theorem.

Since [0; z2] ⊂ [0; q1] and C(y) ≥ γ for y ∈ [0; q1], we have C(y) ≥ γ for y ∈ [0; z2].

Furthermore, since [z1; 1] ⊂ [q2; 1] and C(y) ≥ γ for y ∈ [q2; 1], we have C(y) ≥ γ for

y ∈ [z1; 1].

For y ∈ (z2; z1), due to the definition of β, we have 0 ∈ Ay and n ∈ Ay. If n = 1,

C(y) = 1 for y ∈ (z2; z1) and the assertion follows. We show that for n ≥ 2 under level

β we have also {1, 2, . . . , n− 1} ∈ Ay for y ∈ (z2; z1).

Let [lx;ux] denote the level β credibility region if X = x, x ∈ {0, 1, . . . , n}. Then by the

definition of β we have l0 = 0, u0 = z1 and ln = z2, un = 1. For every x ∈ {1, . . . , n− 1}
we have ∫ 1

ln

fY |X=x(y) dy
Prop. 3.15

<

∫ 1

ln

fY |X=n(y) dy = β,

and therefore necessarily lx < ln. Furthermore,∫ u0

0
fY |X=x(y) dy

Prop. 3.15
<

∫ u0

0
fY |X=0(y) dy = β,

and therefore necessarily ux > u0 for every x ∈ {1, . . . , n − 1}. So, for every x ∈
{1, . . . , n − 1}, the interval (z2; z1) is contained in the credibility region [lx;ux], i. e.

(z2; z1) ⊂ [lx;ux]. Consequently, for every y ∈ (z2; z1) and x ∈ {1, . . . , n − 1} we

have x ∈ Ay. Together with 0 ∈ Ay and n ∈ Ay it follows C(y) = Py(X ∈ Ay) =

Py (X ∈ {0, 1, . . . , n}) = 1 > γ for y ∈ (z2; z1).

Consequently, C(y) ≥ γ for every y ∈ [0; 1] and β is an appropriate credibility level

fulfiling the assertion.

This completes the proof of Theorem 3.16.
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3.A.7 Proof of Proposition 3.17

Let A
(β)
x = [l

(β)
x ;u

(β)
x ] denote the level β HPD interval for Y under X = x. Let β1, β2 ∈

(0; 1) be arbitrarily chosen with β2 > β1. For each x ∈ {0, 1, . . . , n}, we have A
(β1)
x ⊂

A
(β2)
x due to the properties of the HPD interval. Since the density functions of the

posterior distribution fY |X=x(y) for the binomial probability under a beta prior are

never constant on any non-empty subinterval of [0; 1], we have A
(β1)
x ( A

(β2)
x if β1 � β2.

Let A(β) = {(x, y)|y ∈ A(β)
x , x = {0, 1, . . . , n}}. For the projection A

(β)
y = {x|(x, y) ∈

A(β)} we have A
(β1)
y ⊂ A

(β2)
y for β1 < β2. Therefore, we can conclude for the coverage

probability function C(y)(β) = P(X ∈ A(β)
y ):

C(y)(β1) = P(X ∈ A(β1)
y ) ≤ P(X ∈ A(β2)

y ) = C(y)(β2),

and C(y)(β) is increasing in β.

The limiting characteristic C(y)β
β→1

↗ 1 follows from l
(β)
x ↘ 0 and u

(β)
x ↗ 1 for β → 1.

3.A.8 Proof of Proposition 3.18

Let X be a random variable distributed according to the beta distribution Beta(a, b).

(i) Let a = 1. Then

ρ = P(X ≤ pρ)

⇔ ρ =
Γ(1 + b)

Γ(1)Γ(b)

∫ pρ

0
y1−1(1− y)b−1 dy

⇔ ρ =
bΓ(b)

1 · Γ(b)

∫ pρ

0
y0(1− y)b−1 dy

⇔ ρ = b

∫ pρ

0
(1− y)b−1 dy = b

[
−1

b
(1− y)b

]pρ
0

⇔ ρ = −
(

(1− pρ)b − (1− 0)b
)

b>0⇔ (1− pρ)b = 1− ρ

⇔ b ln(1− pρ) = ln(1− ρ)

⇔ b =
ln(1− ρ)

ln(1− pρ)
.
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(ii) Let b = 1. Then

ρ = P(X ≤ pρ)

⇔ ρ =
Γ(a+ 1)

Γ(a)Γ(1)

∫ pρ

0
ya−1(1− y)1−1 dy

⇔ ρ =
aΓ(a)

Γ(a) · 1

∫ pρ

0
ya−1 dy

⇔ ρ = a

∫ pρ

0
ya−1 dy = a

[
1

a
ya
]pρ

0

⇔ ρ = paρ − 0a

a>0⇔ ln(ρ) = a ln(pρ)

⇔ a =
ln(ρ)

ln(pρ)
.

If pρ = ρ we obtain with both (i) and (ii) a = 1, b = 1, and hence the beta distribution

Beta(1, 1), i. e. the uniform distribution on [0; 1]. If 0 < pρ < ρ < 1, we obtain with (i)

and 1 − ρ < 1 − pρ < 1 that a = 1, b =
ln(

<1−pρ︷ ︸︸ ︷
1− ρ)

ln(1− pρ)
> 1 and with (ii) b = 1, a =

ln(ρ)

ln(pρ)
< 1. In both cases, Beta(a, b) is strictly decreasing according to Proposition 3.11.

If 0 < ρ < pρ < 1, we obtain with (i) and 1 − pρ < 1 − ρ < 1 that a = 1, b =

ln(

>1−pρ︷ ︸︸ ︷
1− ρ)

ln(1− pρ)
< 1 and with (ii) b = 1, a =

ln(ρ)

ln(pρ)
> 1. In both cases, Beta(a, b) is

strictly increasing according to Proposition 3.11.
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4 Minimum Volume Confidence Intervals for

the Poisson Parameter under Prior

Information

4.1 Introduction

The Poisson distribution is a discrete distribution taking all positive integers as well as

zero as possible outcomes. A random variable X that is distributed according to the

Poisson distribution Po(λ) with λ > 0, has the probability mass function

fX(x) = P(X = x) =
λx

x!
exp(−λ) for x = 0, 1, . . . (4.1)

and the distribution function FX(c) or operating characteristic (OC) function Lc(λ) with

FX(c) = P(X ≤ c) =
c∑

x=0

λx

x!
exp(−λ) = Lc(λ), for c = 0, 1, . . . (4.2)

See Johnson et al. (1992) for a definition and properties of the Poisson distribution.

The Poisson distribution is often used for modelling the occurrences of rare events by

means of assuming an average of λ occurrences in a period of time. Since the Poisson

distribution is the limiting distribution of the binomial distribution if n → ∞, p →
0, np→ λ, it is frequently used as an approximation of binomial probabilities, especially

for large n and small p, see Eqs. (2.1) and (2.2) for the definition of the parameters of

the binomial distribution. An important characteristic of a Poisson distributed random

variable X is that its variance V [X] and its expected value E[X] take the same value λ

(Johnson et al. 1992), i. e. equidispersion holds. Lewis (2004) describes case scenarios

where the Poisson distribution is appropriate to model loss data. Several more examples

where the Poisson distribution is frequently used as a model are given by Sahai &

Khurshid (1993): Applications of the Poisson model are e. g. the number of radioactive

counts per time unit, the number of birth defects or the number of victims suffering from

specific diseases.
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Lewis (2004) gives a rule of thumb to decide which of the three most important discrete

distributions binomial, Poisson and negative binomial should be chosen given a certain

application. According to this rule, the binomial distribution might be appropriate

if the variance of the analysed phenomenon is lower than the arithmetic mean (i. e.

underdispersion holds), the Poisson distribution is to be applied if the variance equals the

arithmetic mean (i. e. equidispersion holds) and the negative binomial distribution might

be a good choice if the variance clearly exceeds the arithmetic mean (i. e. overdispersion

holds).

Confidence limits for the parameter λ of a Poisson distribution have been in practice

since the 1930s. Przyborowski & Wileński (1935) provided upper confidence limits for λ

for outcomes x of up to 50 for selected confidence levels. Garwood (1936) seems to have

been the first to calculate lower confidence limits, too.

When considering two-sided confidence intervals, authors at the early stages of Poisson

confidence intervals, as Garwood (1936) and Ricker (1937), focused on central intervals.

These are intervals with equal tail probabilities, i. e. the probability of exceeding the

upper or falling below the lower limit are both bounded by (1 − γ)/2 for a confidence

level γ ∈ (0; 1). We review the simple equal-tail interval B considered by Garwood

(1936), see also Johnson et al. (1992), Sahai & Khurshid (1993) or Casella & Berger

(2001). The interval fulfils the exactness criterion of a pointwise minimum coverage

probability of at least γ, i. e. Pλ(λ ∈ B) ≥ γ for arbitrary λ ∈ (0; +∞). Its calculation

requires quantiles of the chi-square distribution.

Let X ∼ Po(λ) and X = x be the observed value of X. An exact equal-tail confidence

interval of level γ ∈ (0; 1) for the parameter λ is given by

(λL; λU ) =

(
1

2
zχ2

2x

(
1− γ

2

)
;

1

2
zχ2

2(x+1)

(
1 + γ

2

))
, (4.3)

where λL is the solution in λ of the equation

P(X ≥ x) =

x−1∑
k=0

λk

k!
exp(−λ) =

1 + γ

2

and λU is the solution in λ of the equation

P(X ≤ x) =
x∑
k=0

λk

k!
exp(−λ) =

1− γ
2

,

respectively. zχ2
k
(α) is the α·100 %-quantile of the chi-square distribution χ2(k).
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One-sided versions of a confidence interval of level γ ∈ (0; 1) for the parameter of a

Poisson distribution under X = x are given by

(0; λU ) =

(
0;

1

2
zχ2

2(x+1)
(γ)

)
(4.4)

(one-sided interval with upper bound), (4.5)

(λL; +∞) =

(
1

2
zχ2

2x
(1− γ) ; +∞

)
(4.6)

(one-sided interval with lower bound), (4.7)

where λU , λL are solutions in λ of the equations

x∑
k=0

λk

k!
exp(−λ) = 1− γ, (4.8)

x−1∑
k=0

λk

k!
exp(−λ) = γ, (4.9)

respectively. The exploited relation between the Poisson distribution and the chi-square

distribution is derived e. g. by Johnson et al. (1992).

In analogy to Crow (1956), who first considered the total geometric volume of confidence

regions for a binomial proportion, Crow & Gardner (1959) refrain from central intervals

and focus on confidence intervals for a Poisson parameter λ that are optimal in a geo-

metrical sense. They exploit the connection between acceptance regions as subsets of N0

and confidence regions from (0; +∞). In their paper, Crow & Gardner (1959) describe

the construction of these intervals and provide tables of confidence limits under common

confidence levels.

Crow & Gardner’s (1959) confidence intervals lack the appealing characteristic of strictly

increasing lower and upper confidence bounds. The intervals of Casella & Robert (1988)

fulfil this property, but Kabaila & Byrne (2001) make aware of the disadvantages of

Casella & Robert’s (1988) intervals: The algorithm to compute the intervals is compli-

cated and relies on normal approximation if the number x of occurrences is large. To

overcome these disadvantages, Kabaila & Byrne (2001) provide a simpler algorithm for

computing confidence intervals for the Poisson parameter that are as short as possible

while ensuring the exactness criterion and strictly increasing bounds.

The above described intervals of Garwood (1936), Casella & Robert (1988) and Crow

& Gardner (1959) are all exact in the sense that their coverage probability functions

equal or exceed a prescribed confidence level γ ∈ (0; 1) pointwise for each λ ∈ (0; +∞).

However, due to the fact that the Poisson distribution is a discrete distribution, equality
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rarely holds. For most λ ∈ (0; +∞), the actual coverage probability exceeds γ. Intervals,

which are not constructed to fulfil this criterion are intervals based on normal approx-

imation. Sahai & Khurshid (1993) give a continuity corrected normal approximation

confidence interval (λL; λU ) of level γ ∈ (0; 1) for λ with bounds

λL = x− 1

2
+

1

2
z2 − z

√
x− 1

2
+

1

4
z2, (4.10)

λU = x+
1

2
+

1

2
z2 + z

√
x+

1

2
+

1

4
z2, (4.11)

that can be used unless the value of λ is small. Here, z = zN(0,1) ((1 + γ)/2) is the

(1 + γ)/2·100 %-quantile of the standard normal distribution. Sahai & Khurshid (1993)

argue that for large values of x the continuity correction may be omitted. This results

in the approximative interval

x

(
1 +

1

2x
z2

(
1∓

√
1 +

4x

z2

))
=

(
x+

1

2
z2 ∓ z

√
x+

1

4
z2

)
,

where again z = zN(0,1) ((1 + γ)/2) is the (1+γ)/2·100 %-quantile of the standard normal

distribution. This interval can also be found in Johnson et al. (1992), where they argue

that it can be used if the parameter λ is expected to be fairly large, which in their view

would be larger than 15.

Another approximation referred to by Sahai & Khurshid (1993) to be used for very large

values of x – which they quantify as larger than 100 – is obtained by the interval

x∓ z
√
x. (4.12)

Here, z = zN(0,1) ((1 + γ)/2) is the (1 + γ)/2·100 %-quantile of the standard normal

distribution.

An improved approximate confidence interval appearing in Sahai & Khurshid (1993) is

based on an approximation given by Molenaar (1970): Let X ∼ Po(λ) and X = x be

the observed value of X and γ ∈ (0; 1) the confidence level. An approximate confidence

interval for λ is given by

x+
(
2z2 + 1

)
/6∓

(
1

2
+

√
z2

(
x∓ 1

2
+
z2 + 2

18

))
, (4.13)

where z = zN(0,1) ((1− γ)/2) is the (1 − γ)/2 · 100 %-quantile of the standard normal

distribution.

Several other confidence intervals for the parameter of a Poisson distribution based on

normal approximation to the chi-square distribution or using square root transformations

are reviewed by Sahai & Khurshid (1993).
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Sahai & Khurshid (1993) draw the attention to the fact that all their presented deriva-

tions of confidence intervals can be applied not only to the parameter λ, but also to nλ

in case the sum X =
∑n

i=1Xi of Poisson distributed random variables Xi ∼ Po(λ) is of

interest. Confidence limits for nλ would have to be divided by n to obtain confidence

limits for λ. The difference between both cases is the (time) unit in which the number

of successes are counted: If a confidence interval for nλ is of interest, the number of

occurrences in n times the time unit is considered and λ is the average of occurrences

per time unit.

All of the so far presented confidence intervals do not take prior information into ac-

count. The natural environment in which prior information plays a role is the Bayesian

framework. Here, regions in which the parameter of interest lies with a high probability,

so-called credibility intervals, contain information about the posterior distribution, see

Chapter 3 for an introduction. The confidence intervals which we present in the present

chapter are not of Bayesian type – although we briefly consider the Bayesian approach

for reasons of comparison –, but of frequentist’s. That is, we present confidence intervals

which under repeated sampling contain the parameter of the Poisson distribution in at

least γ · 100 % of the cases, where γ ∈ (0; 1). Prior information is used by means of

stipulating a gamma distribution on the unknown parameter λ. Methods to calculate

frequentist confidence intervals for the Poisson parameter under the use of prior infor-

mation, as introduced in Chapter 2 for the binomial distribution, do not seem to be

available up to this point.

The remainder of the chapter is structured as follows: Section 4.2 presents the model for

the parameter λ of a Poisson distribution using a gamma distribution to express prior

information on λ. Sections 4.3 and 4.4 deal with important properties of the functions

related to the computation of the confidence intervals. The confidence intervals them-

selves are presented in Section 4.5. Bayesian credibility intervals for a Poisson parameter

are briefly considered in Section 4.6. The minimum volume confidence intervals are com-

pared with existing confidence intervals for the Poisson parameter in Section 4.7 and the

effect of prior information on the minimum volume confidence intervals is investigated

in Section 4.8.
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4.2 The Gamma Prior Model for Inference on the Poisson

Parameter

In Section 2.2 of Chapter 2 we established the general theory of minimum volume confi-

dence intervals for a distribution parameter and applied it subsequently to the binomial

probability parameter p. In this section, another instance of the model is derived in the

form of confidence intervals for the parameter y = λ of a Poisson distribution. Prior in-

formation on λ is employed by means of a gamma distribution. We impose the following

two assumptions on the model:

1) The univariate random variable Y with values in R2 = (0; +∞) represents a ran-

dom parameter which varies according to the gamma distribution Gamma(κ, ϑ)

on the support (0; +∞). The parameter κ > 0 is a shape parameter, and ϑ > 0 is

a scale parameter. The distribution Gamma(κ, ϑ) has the density function

fϑ,κ(y) =


yκ−1

ϑκΓ(κ) exp
(−y
ϑ

)
for y > 0,

0, elsewhere.
(4.14)

Here, the measure µ2 introduced in Section 2.2 is the Lebesgue measure on R2.

The function Γ(z) =
∫ +∞

0 tz−1 exp(−t) dt denotes the gamma function, see e. g.

Abramowitz & Stegun (1972, Section 6.1).

The gamma distribution as defined in Eq. (4.14) has support (0; +∞). There is

a generalisation of the gamma distribution that includes a threshold parameter

τ ∈ R, such that the gamma distribution has support (τ ; +∞), see e. g. Bowman

& Shenton (1988). In the following we consider only the most important case of a

gamma distribution with threshold τ = 0.

2) Given a value Y = y, the random count X of occurrences within a given time

interval is conditionally distributed by Po(y). The range of X is R1 = {0, 1, 2, . . .}.
The measure µ1 introduced in Section 2.2 is the counting measure on R1.

From assumptions 1) and 2) we obtain the unconditional density fX(x) of X or the

volume weights wϑ,κ(x) as

fX(x) = wϑ,κ(x) =
1

Γ(x+ 1)Γ(κ)ϑκ

∫ +∞

0
yx+κ−1 exp

(
−y − y

ϑ

)
dy

=
1

x!Γ(κ)ϑκ

∫ +∞

0
yx+κ−1 exp

(
−y − y

ϑ

)
dy (4.15)

for x ∈ {0, 1, 2, . . .}. The random variable Y has expectation and variance

µY = E[Y ] = κϑ, σ2
Y = V [Y ] = κϑ2, (4.16)

96



4.3 Prediction Likelihood Maximisation and the Interval Property of Confidence Regions

for the Poisson Parameter

see e. g. Johnson et al. (1994).

From the general formula (2.8) we obtain the weighted volume of a measurement and

prediction space (MPS) A as

V (A) =
+∞∑
x=0

∫
Ax

dν(y)wϑ,κ(x) =
+∞∑
x=0

ν(Ax)wϑ,κ(x), (4.17)

where ν is the Borel measure, and Ax is the confidence region for y formed under the

observation x. For the definition of an MPS, see Section 2.2. Mind that, in contrast to

the binomial case, the total weighted volume of an MPS in the Poisson case is the result

of an infinite sum.

The gamma distribution is an important example of a distribution with bounded support

to the left and is therefore often used for modelling life lengths. It is a favourable model

as a prior distribution for the Poisson parameter λ arising from Bayes theory: The

gamma distribution is the conjugate prior for the Poisson distribution, see e. g. George

et al. (1993). Although we do not pursue the Bayesian approach here, we make use of the

favourable relation between the Poisson and the gamma distribution for our frequentist

confidence intervals.

According to Jenkinson (2005), little information exists about eliciting the Poisson pa-

rameter with a gamma prior. In the Bayesian approach, non-informative gamma prior

distributions in the Poisson model are not necessarily flat or uniform priors, in con-

trast to the binomial-beta model. They are distributions that rely primarily on the

likelihood while creating the posterior distribution in a Bayesian approach, see Kerman

(2011). An instance of a diffuse or non-informative gamma prior is obtained by setting

the parameters κ = 1 and ϑ very large in Eq. (4.14). The density then becomes

fϑ,κ(y) =


1
ϑ exp

(−y
ϑ

)
for y > 0,

0, elsewhere

and hence it is the density of an exponential distribution, see Ross (2003).

4.3 Prediction Likelihood Maximisation and the Interval

Property of Confidence Regions for the Poisson Parameter

We study confidence regions for the parameter of a Poisson distribution that are of

minimum volume. According to Theorem 2.2, this requires taking into consideration

prediction regions which are subsets of the areas D≥s(y) of largest prediction likelihood
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4 Minimum Volume Confidence Intervals for the Poisson Parameter under Prior Information

ratio, see Eq. (2.10). Under the model from Section 4.2 we obtain with Eq. (2.9) the

prediction likelihood ratio

Qϑ,κ,y(x) =
yx

x! exp(−y)

wϑ,κ(x)
=

yx exp(−y)

vϑ,κ(x)

=
yx exp(−y)Γ(κ)ϑκ∫ +∞

0 tx+κ−1 exp
(
−t− t

ϑ

)
dt
, (4.18)

where the relative volume weights are defined by

vϑ,κ(x) = x! · wϑ,κ(x) =
1

Γ(κ)ϑκ

∫ +∞

0
yx+κ−1 exp

(
−y − y

ϑ

)
dy. (4.19)

Proposition 4.2 in the subsequent section shows that the prediction likelihood ratio

Qϑ,κ,λ(x) as a function of x is either decreasing or of inverted bathtub shape. Hence

the areas of largest values of Qϑ,κ,λ(x) are always intervals. Conditions under which the

confidence regions for λ are intervals can be taken from Proposition 2.3.

4.4 Properties of Weights and Prediction Likelihood Ratios

We investigate the essential quantities of the gamma prior model introduced by Sec-

tions 4.2 and 4.3 as functions of the number x of occurrences under a Poisson distri-

bution. Proposition 4.1 considers the volume weights wϑ,κ(x) presented in Section 4.2.

The weights wϑ,κ(x) determine the influence of the confidence region Ax formed under

the total volume V (A) of the MPS, see Eq. (4.17).

Proposition 4.1 (Properties of Volume Weights). Consider the weights wϑ,κ(x), x ∈
N0, ϑ, κ > 0, defined by Eq. (4.15).

a) The explicit formula

wϑ,κ(x) =
ϑxΓ(κ+ x)

(ϑ+ 1)κ+xΓ(x+ 1)Γ(κ)
=


ϑx(κ+x−1)·...·κ
(ϑ+1)κ+xΓ(x+1)

, if x ≥ 1,

1
(1+ϑ)κ if x = 0,

and the recursive formula

wϑ,κ(x+ 1) =
ϑ(κ+ x)

(ϑ+ 1)(x+ 1)
· wϑ,κ(x)

hold.
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4.4 Properties of Weights and Prediction Likelihood Ratios

b) Let x0 := ϑ(κ− 1)− 1. Then we have

wϑ,κ(x+ 1)


> wϑ,κ(x) if x < x0,

= wϑ,κ(x) if x = x0,

< wϑ,κ(x) if x > x0.

Consequently, the following monotonicity properties hold:

wϑ,κ is



strictly decreasing for x = {0, 1, . . .} if κ ≤ 1,

strictly decreasing for x = {0, 1, . . .} if κ > 1 and ϑ < 1
κ−1 ,

strictly increasing for x = {0, . . . , x0} and strictly decreasing for x = {x0 + 1,

x0 + 2, . . .} with wϑ,κ(x0) = wϑ,κ(x0 + 1) if κ > 1 and ϑ ≥ 1
κ−1 and x0 ∈ N0,

strictly increasing for x = {0, . . . , dx0e} and strictly decreasing for x = {dx0e ,
dx0e+ 1, . . .} if κ > 1 and ϑ ≥ 1

κ−1 and x0 /∈ N0.

Proof. See Appendix 4.A, Section 4.A.1. �

Proposition 4.2 gives an alternative presentation of the prediction likelihood ratio and

investigates its monotonicity properties.

Proposition 4.2 (Likelihood Ratio). For ϑ, κ > 0, x ∈ N0, λ > 0, consider the likelihood

ratios Qϑ,κ,λ(x) = λx exp(−λ)Γ(κ)ϑκ∫ +∞
0 yx+κ−1 exp(−y− yϑ)dy

defined for x ∈ {0, 1, 2, . . .}, see Eq. (4.18).

a) Then the explicit formula

Qϑ,κ,λ(x) =
λx exp(−λ)(ϑ+ 1)κ+xΓ(κ)

ϑxΓ(κ+ x)
(4.20)

and the recursive formula

Qϑ,κ,λ(x+ 1) =
λ(ϑ+ 1)

(κ+ x)ϑ
·Qϑ,κ,λ(x) (4.21)

hold.

b) Let x̃ := λϑ+1
ϑ − κ. Then we have

Qϑ,κ,λ(x+ 1)


> Qϑ,κ,λ(x) if x < x̃,

= Qϑ,κ,λ(x) if x = x̃,

< Qϑ,κ,λ(x) if x > x̃.
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4 Minimum Volume Confidence Intervals for the Poisson Parameter under Prior Information

Consequently, the following monotonicity properties hold:

Qϑ,κ,λ is



strictly decreasing for x = {0, 1, . . .} if x̃ < 0,

strictly increasing for x = {0, . . . , x̃} and strictly decreasing for x = {x̃+ 1,

x̃+ 2, . . .} with Qϑ,κ,λ(x̃) = Qϑ,κ,λ(x̃+ 1) if x̃ ∈ N0,

strictly increasing for x = {0, . . . , dx̃e} and strictly decreasing for x = {dx̃e ,
dx̃e+ 1, . . .} if x̃ /∈ N0.

c) We have Qϑ,κ,λ(0) = exp(−λ)(ϑ+ 1)κ > 0 and lim
x→∞

Qϑ,κ,λ(x) = 0.

d) Consider Qϑ,κ,λ(x) as a function of λ ∈ (0; +∞) for fixed x ∈ N0. Then Qϑ,κ,λ(x)

is strictly increasing on (0;x] and strictly decreasing on [x; +∞).

Proof. See Appendix 4.A, Section 4.A.2. �

4.5 Prediction Intervals and Confidence Intervals for the

Poisson Parameter

As in the case of confidence intervals for a binomial proportion, see Section 2.6, prediction

regions of largest prediction likelihood ratio in the case of the Poisson distribution are

always intervals, as follows from Proposition 4.2 in the preceding section. However,

from Proposition 2.3 it is known that the interval property of confidence regions is not

implied by the interval property of the prediction region alone. Since we would like to

have both prediction regions and confidence regions to be intervals for reasons of better

interpretability, we restrict attention to MPSs with the following characteristics:

Q1) The prediction regions are nonempty and of the form

Ay =
{
cL(y), cL(y) + 1, . . . , cU (y)

}
for each y ∈ (0; +∞),

where the prediction limits cL(y), cU (y) are increasing in y ∈ (0; +∞).

Q2) The confidence intervals are nonempty open intervals of the form

Ax = (λL(x);λU (x)) ⊂ (0; +∞) for each x ∈ {0, 1, 2, . . .},

where the confidence limits λL(x), λU (x) are increasing in x ∈ {0, 1, 2, . . .}.

From Q2) it follows in particular that Ax cannot be a singleton.

Among the MPSs satisfying the properties Q1) and Q2), we search for an MPS A? of

minimum volume V (A?), see Eq. (4.17) for the formula of the volume.
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4.5 Prediction Intervals and Confidence Intervals for the Poisson Parameter

The subsequent proposition shows how appropriately prescribed prediction limits or

appropriately prescribed confidence limits can determine the entire MPS with proper-

ties Q1) and Q2).

Proposition 4.3 (Confidence Limits and Prediction Limits). Let A be an MPS with

nonempty projections Ax and Ay for all x ∈ {0, 1, 2, . . .} and all y ∈ (0; +∞).

a) Let A satisfy the property Q1), and for the projections Ax let the lower prediction

limit cL : (0; +∞) → {0, 1, 2, . . .} be right-continuous in supAx and let the upper

prediction limit cU : (0; +∞) → {0, 1, 2, . . .} be left-continuous in inf Ax. Then A

satisfies the property Q2).

b) If A satisfies the property Q2), then A satisfies the property Q1).

Proof. See Appendix 4.A, Section 4.A.3. �

For the definition of the projections Ax and Ay in Proposition 4.3 we refer to Section 2.2.

Section 2.2 establishes the duality between level γ prediction and level γ confidence

regions. For prediction intervals of type Q1) and confidence intervals of type Q2), the

defining characteristic (2.7) amounts to

γ ≤ Py

(
λL(X) < y < λU (X)

)
= Py

(
cL(y) ≤ X ≤ cU (y)

)
= LcU (y)(y)− LcL(y)−1(y) for each y ∈ (0; +∞), (4.22)

where the Poisson operating characteristic (OC) function Lc(y) is defined in Eq. (4.2).

The following proposition describes the minimum content of a level γ prediction interval

of type Q1) and corresponding confidence interval of type Q2).

Proposition 4.4 (Minimum Content of Level γ Prediction Interval). Let 0 < γ < 1

and Lx(λ) be the Poisson OC function. For x = 1, 2, . . ., let λx,γ be the unique solution

of the equation Lx−1(λ)
!

= γ, and let λ0,γ = 0. For x = 0, 1, 2, . . ., let λ̃x,γ be the unique

solution of the equation Lx(λ)
!

= 1 − γ. Let cL, cU be level γ prediction limits with

corresponding confidence limits λL, λU as characterised by (4.22). Then the following

assertions hold:

a) The sequences (λx,γ)x∈N0 and (λ̃x,γ)x∈N0 are strictly increasing.

b) In the case of γ ≥ 0.5 we have λx,γ < λ̃x,γ for x ∈ {0, 1, 2, . . .}.

c) For x ∈ {0, 1, 2, . . .} and y ∈ (λx,γ ; λ̃x,γ) we have cL(y) ≤ x ≤ cU (y).

Proof. See Appendix 4.A, Section 4.A.4. �

101



4 Minimum Volume Confidence Intervals for the Poisson Parameter under Prior Information

For the efficient computation of shortest Poisson confidence intervals, Proposition 4.4

turns out to be very useful. The minimum intervals (λx,γ ; λ̃x,γ) are contained in any

level γ confidence interval Ax, but they are in general too narrow and not yet of level

γ. However, they can be used as starting intervals to be extended to both sides to the

proper shortest intervals (λL(x);λU (x)).

For the computation of the intervals, several other results play a role, see Propositions 4.5

and 4.6. Proposition 4.5 describes the monotonicity of the prediction region coverage.

The result goes back to Crow & Gardner (1959). The proof is obtained by elementary

differential calculus.

Proposition 4.5 (Monotonicity of Prediction Region Coverage). For 0 ≤ x1 < x2,

λ > 0, let ∆x1,x2(y) = Lx2(y)−Lx1−1(y), where Lx(y) is the OC function from Eq. (4.2).

In the case x1 > 0 let

ρx1,x2 := (x1 · . . . · x2)
1

x2−x1+1 .

Then we have:

a) In the case x1 = 0, ∆x1,x2 = Lx2 is strictly decreasing on (0; +∞).

b) In the case x1 > 0, ∆x1,x2 is strictly increasing on (0; ρx1,x2 ] and strictly decreasing

on [ρx1,x2 ; +∞).

Proof. See Appendix 4.A, Section 4.A.5. �

The following proposition deals with the comparison of the prediction likelihood ratios

of two prediction points x1 6= x2.

Proposition 4.6 (Comparison of Two Likelihood Ratios). Consider the likelihood ratios

Qϑ,κ,y(x) defined for x ∈ {0, 1, 2, . . .}, see (4.18). Let 0 ≤ x1 < x2, y ∈ (0; +∞). Let

λx1,x2 :=
ϑ

ϑ+ 1

(
(κ+ x1) · . . . · (κ+ x2 − 1)

) 1
x2−x1 .

Then we have

Qϑ,κ,y(x1)


> Qϑ,κ,y(x2) if y < λx1,x2 ,

= Qϑ,κ,y(x2) if y = λx1,x2 ,

< Qϑ,κ,y(x2) if y > λx1,x2 .

(4.23)

Proof. See Appendix 4.A, Section 4.A.6. �

In the case of the binomial distribution, the calculation of the prediction regions requires

to compute and compare a limited number of n + 1 values of the binomial prediction
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4.5 Prediction Intervals and Confidence Intervals for the Poisson Parameter

likelihood ratio Qp0,p1,a,b,y(x) due to the limited support {0, 1, . . . , n} of the binomial

distribution, see Chapter 2. The Poisson distribution, in contrast, has the unlimited

support {0, 1, 2, . . .} and a priori requires to take into account an unlimited number of x

with their respective prediction likelihood ratios. The following proposition shows that

for a given y, values of x above a certain threshold can be neglected.

Proposition 4.7. Let Gy(t) := Py (Qϑ,κ,y(X) > t), where Qϑ,κ,y(x) is the prediction

likelihood ratio from Eq. (4.18). Let 0 < γ < 1, and sy be chosen such that sy =

inf{t|Gy(t) ≤ γ}. Let D≥t(y) :=
{
x|Qϑ,κ,y(x) ≥ t

}
for y ∈ (0; +∞).

Then there exists a c ∈ N such that D≥sy ⊂ {0, 1, . . . , c}.

Proof. See Appendix 4.A, Section 4.A.7. �

The general definition and properties of the function Gy(t) can be found in Propo-

sition 2.1. The segments of largest prediction likelihood ratio D≥t(y) are defined in

Eq. (2.10).

The proof of Proposition 4.7 suggests to choose c ∈ N such that

i) Qϑ,κ,λ(c) < Qϑ,κ,λ(0) and simultaneously

ii) FX(c) > γ.

Any N 3 x > c also fulfils the requirements and c is not necessarily the smallest number

doing so. With Proposition 4.2 it can be shown that condition i) is equivalent to the

condition (
1

λ

ϑ

ϑ+ 1

)c Γ(κ+ c)

Γ(κ)
> 1.

It follows from Proposition 4.7 that it is sufficient to calculate and compare the prediction

likelihood ratios Qϑ,κ,λ(x) for x = 0, 1, . . . , c in the calculation of the prediction regions

for the Poisson distribution under a fixed λ ∈ (0; +∞).

Proposition 4.7 is important in constructing prediction regions for a given λ ∈ (0; +∞).

The problem that is reversed to the one addressed in Proposition 4.7 of finding confidence

regions for a given x is not covered by Proposition 4.7. Given an x, confidence intervals

for λ are bounded by the infimum and supremum in λ ∈ (0; +∞) such that x ∈ Aλ.

However, due to the unlimitedness of the parameter space R2 = (0; +∞) of y = λ, the

problem is not as easily solved as in the case of the binomial distribution where both

x and y are bounded from below and above. The question to be asked and answered

to solve the problem for the Poisson distribution is to find for a given x ∈ {0, 1, . . .}
a λ1 ∈ (0; +∞) such that for all y ≥ λ1 the condition x /∈ D≥sy(y) holds. Although
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4 Minimum Volume Confidence Intervals for the Poisson Parameter under Prior Information

we eventually would like to restrict attention to prediction regions that are increasing

in λ = y in their lower and upper limits, monotonicity cannot be expected a priori for

the bounds of D≥sy(y). This makes the problem a non-trivial one. If monotonicity was

present, a threshold λ1 would be given by the infimum in y such that x < minD≥sy(y).

The reason for this unfavourable behaviour is the discreteness of the Poisson distribution.

When following the procedure of constructing a confidence interval for a Poisson para-

meter λ as presented in the preceding sections, the result has to be interpreted as follows:

Let x be the number of observed successes in the time interval T . Then the confidence

interval Ax = (λL(x);λU (x)) provides a confidence interval for the number of successes

in time interval T . In particular, only one time unit T is investigated, i. e. the sample

size is 1. However, the result can be interpreted differently if looking at a different time

unit: Let T = nt be n times a time unit of length t. Let the parameter λ of interest

be the mean in time unit t. Then Ax =: Ax,1 = (λL(x);λU (x)) provides a confidence

interval for the total number nλ of successes in time T = nt. A confidence interval

for the parameter λ is then given by Ax,n = (λL(x)/n;λU (x)/n) and the sample size is

n. The justification for this relation is the fact that the sum of n independent Poisson

distributed random variables Xi ∼ Po(λ) is distributed according to
∑n

i=1Xi ∼ Po(nλ),

see e. g. Sahai & Khurshid (1993), Johnson et al. (1992) and references therein.

Mind that since the construction of the minimum volume confidence intervals for a

Poisson mean λ in time unit t is done by considering the mean number of successes

nλ in a time interval T = nt, the corresponding prediction regions consequently reflect

the possible number of successes in time T . Confidence intervals for nλ are derived by

exploiting the relation between prediction and confidence regions for nλ. Confidence

intervals for λ are calculated subsequently. Prediction regions for λ = y/n are not

directly considered. The coverage probability under λ has to be derived from the coverage

probability under nλ.

We illustrate the use and interpretation of the prediction and confidence intervals by

means of examples in Section 4.8.

4.6 Bayesian Credibility Intervals for the Poisson Parameter

We briefly cover the Bayesian approach of interval estimation of a Poisson parameter to

emphasise the difference between the frequentist approach of confidence intervals under

prior information and the Bayesian approach yielding credibility intervals. An introduc-

tion into credibility intervals, in particular highest posterior density (HPD) intervals, is
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provided by Chapter 3 with applications to a binomial probability. Credibility intervals

for the Poisson parameter can be obtained by applying Bayes’ theorem, see Theorem 3.1,

to the Poisson distribution. Using a gamma prior, which is the conjugate prior for the

Poisson distribution, we obtain HPD credibility intervals with the help of the posterior

distribution. The result of the following proposition can be taken from George et al.

(1993) with different parametrisations of the Poisson and gamma distributions.

Proposition 4.8 (Posterior Distribution in the Poisson-gamma Model). Consider the

Poisson density fX|Y=y = yx

x! exp(−y) of X under Y = y and a Gamma(κ, ϑ) distribution

as the prior for Y , where the gamma distribution is parametrised as in Eq. (4.14). The

posterior distribution of Y is the gamma distribution Gamma(κ+ x, ϑ
ϑ+1).

Proof. The assertion follows by elementary application of Bayes’ theorem, see Ap-

pendix 4.A, Section 4.A.8. �

From Proposition 4.8 we obtain for κ = 1 and ϑ→∞ the limit of the posterior density

as

lim
ϑ→∞

1(
ϑ
ϑ+1Γ(κ+ x)

)yκ+x−1 exp

(
− y

ϑ
ϑ+1

)
=

1

Γ(1 + x)
yx exp(−y) =

1

x!
yx exp(−y).

It is the limiting posterior density in the case of the non-informative gamma prior

Gamma(1, ϑ) for ϑ→∞, see also Ross (2003) and the last paragraph of Section 4.2.

The subsequent proposition explains the monotonicity properties of the gamma distri-

bution.

Proposition 4.9 (Monotonicity of the Gamma Distribution). The density function

fϑ,κ(x) of the gamma distribution as defined in Eq. (4.14) has the following monotonicity

properties:

(a) fϑ,κ(x) is strictly decreasing on (0; +∞) if κ ≤ 1.

(b) fϑ,κ(x) is strictly increasing on (0;x∗) and strictly decreasing on (x∗; +∞) if κ > 1,

where x∗ = ϑ(κ− 1).

Proof. See Appendix 4.A, Section 4.A.9. �

With Proposition 4.9, we can derive monotonicity properties of the posterior distribution

in the Poisson-gamma model from Proposition 4.8.

Corollary 4.10 (Monotonicity of the Posterior Density). Let 0 < β < 1 and fY (y) =

fϑ,κ(y) = yκ−1

ϑκΓ(κ) exp
(−y
ϑ

)
the prior density of the Poisson parameter λ > 0. Let
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fX|Y=y(x) = yx

x! exp(−y) be the likelihood function, where x = 0, 1, . . . Then the fol-

lowing assertions hold:

(a) fY |X=x(y) is strictly decreasing on (0; +∞) if κ ≤ 1 and x = 0.

(b) fY |X=x(y) is strictly increasing on (0; y∗) and strictly decreasing on (y∗; +∞) if

κ > 1 or x ≥ 1, where y∗ := ϑ
ϑ+1(κ+ x− 1).

Corollary 4.10 allows the derivation of HPD intervals for the parameter λ of a Poisson

distribution. They are explicitly stated in the following corollary.

Corollary 4.11 (HPD Credibility Interval for a Poisson Parameter). Let 0 < β < 1

and Gamma(κ, ϑ), as defined in Eq. (4.14), be the prior distribution for the Poisson

parameter y = λ. Let fX|Y=y(x) = yx

x! exp(−y) be the likelihood function and fY |X=x(y)

the posterior density of Y under X = x. The level β HPD credibility interval Ax for Y

under X = x is given by

(a) Ax = (lx;ux) =
(

0; zGamma(κ+x, ϑ
ϑ+1)(β)

)
if κ ≤ 1 and x = 0,

(b) Ax =
(
zGamma(κ+x, ϑ

ϑ+1)(α1), zGamma(κ+x, ϑ
ϑ+1)(α2)

)
, where

fY |X=x

(
zGamma(κ+x, ϑ

ϑ+1)(α1)
)

= fY |X=x

(
zGamma(κ+x, ϑ

ϑ+1)(1− α2)
)

with

α1 + α2 = 1 − β if κ > 1 or x ≥ 1. The maximum point y∗ of the posterior

density function is y∗ = ϑ
ϑ+1(κ+ x− 1) with y∗ ∈ Ax.

Proof. See Appendix 4.A, Section 4.A.10. �

Figure 4.1 shows posterior distributions for λ under X = x ∈ {0, 1, . . . , 7} for four differ-

ent gamma priors Gamma(κ, ϑ) and sample size n = 1. The bounds of the corresponding

level 80 % credibility intervals are displayed by dashed vertical lines. In the case of the

priors Gamma(1, 1) and Gamma(1, 0.2), where the shape parameter κ is equal to 1, the

posterior distributions under x = 0 are strictly decreasing. For x > 0 and κ > 1, all pos-

terior gamma density functions are unimodal with mode y∗ > 0, cf. Corollary 4.10. In

those cases, as e. g. for all x under the priors Gamma(2, 1) and Gamma(15, 1), there are

λ > 0 such that λ /∈ (lx;ux) for all x ∈ {0, 1, 2, . . .}. The frequentist coverage probability

at these λ results to 0, i. e. Pλ(λ ∈ (lX ;uX)) = 0.

Theorem 3.16 states under which conditions on the beta prior distribution, the HPD

interval for the binomial proportion has a frequentist coverage of at least a prescribed

level γ ∈ (0; 1). With respect to the equivalent statement in the Poisson case, κ ≤ 1 is

a necessary condition because it is required that there is at least one possible outcome

x ∈ {0, 1, 2, . . .} which leads to a decreasing posterior density. Besides of at least one

decreasing posterior density function, the proof of Theorem 3.16 relies on the fact that
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under certain conditions the posterior density is increasing. Consequently, the idea of

the proof of Theorem 3.16 will not work in the Poisson-gamma case: From Corollary 4.10

we know that the posterior density is either decreasing or unimodal and therefore never

increasing on the whole parameter space (0; +∞). Whether a similar assertion as in

Theorem 3.16 can be derived for the Poisson-gamma case remains to be investigated.

Based on the current findings, we conjecture that the Poisson credibility intervals can

exceed a prescribed frequentist coverage probability at most asymptotically.
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4.7 Comparison with other Confidence Intervals for the

Poisson Parameter

In this section, we compare various types of confidence intervals for the parameter of a

Poisson distribution in terms of their coverage probabilities. We investigate the following

six confidence interval approaches:

i) the minimum volume confidence interval proposed in the previous sections under

the exemplary prior information Gamma(2, 1),

ii) the classical exact confidence interval based on quantiles of the chi-square distri-

bution from Eq. (4.3),

iii) a simple normal approximation based confidence interval as in Eq. (4.13),

iv) the continuity corrected confidence interval by Sahai & Khurshid (1993) as in Eqs.

(4.10)–(4.11),

v) the improved approximate confidence interval by Molenaar (1970) as in Eq. (4.13),

vi) the HPD credibility interval from Section 4.6 under the prior Gamma(2, 1).

The coverage probability functions of the five confidence interval approaches are dis-

played in Fig. 4.2 for a nominal confidence/credibility level of 95 % and sample size 1.

The simple normal approximation based interval clearly violates the nominal confidence

level in actual coverage probability for small λ and shows satisfying coverage probability

close to the nominal level from approximately λ = 15 on. The improved approximate

confidence interval by Molenaar (1970) is very similar to the classical exact confidence

interval unless λ is very close to 0. In fact, the coverage probabilities of the interval

by Molenaar (1970) as well as the continuity corrected interval by Sahai & Khurshid

(1993) exceed the nominal confidence level nearly everywhere in the investigated area.

The exception are values of λ very close to 0. The interval by Sahai & Khurshid (1993)

seems to be slightly less conservative than the exact interval for λ smaller than 4. The

Bayesian HPD interval with prior Gamma(2, 1) shows a coverage probability of 0 for

λ very close to 0 and is over-conservative for λ up to 3. The coverage probability de-

creases drastically for increasing λ and drops to nearly 0 for λ ≥ 20. The pattern of the

minimum volume confidence interval under prior information is different from the other

displayed patterns. Since the interval is an exact interval, the actual coverage probability

exceeds the nominal confidence level for all λ in the displayed area. Other than the five

other coverage probability functions, the coverage probability of the minimum volume

confidence interval reaches exactly 0.95, the nominal confidence level, many times. It
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4 Minimum Volume Confidence Intervals for the Poisson Parameter under Prior Information

therefore seems at least in these points and for λ < 4 less conservative than the other

intervals.

4.8 Numerical Analysis of the Minimum Volume Confidence

Intervals

In this section, we investigate the shortest confidence intervals for the parameter of a

Poisson distribution on a numerical basis.

Figure 4.3 shows the lower ends (prediction points 0, 1, . . . , 15) of the measurement and

prediction spaces (MPSs) of the minimum volume confidence intervals for a Poisson

parameter as well as the corresponding coverage probability functions. A variety of

prior information distributions is considered. The sample size is n = 1 and the confi-

dence level γ = 0.95. Prior information is generally expressed by means of a gamma

distribution, whose density function can only take right-skewed shapes. The investi-

gated prior distributions are the gamma distributions Gamma(1, 1) and Gamma(1, 0.2)

with strictly decreasing density functions as well as several gamma distributions with

unimodal densities. The coverage probability functions all look very similar in the in-

vestigated parameter space of λ. In terms of the MPS, a slightly differing behaviour is

visible for different prior information distributions. They therefore produce confidence

intervals of different lengths depending on which of the λ and x get more weight by the

prior information.

Since we currently cannot empirically compare the total volume of the MPS from

Eq. (4.17) due to the unboundedness of the prediction space {0, 1, 2, . . .}, we have a

look at the widths of the confidence intervals if the number of successes is between 0 and

15. In Fig. 4.4, the lengths of the minimum volume confidence intervals obtained under

three different prior distributions are compared with the lengths of the classical exact

confidence interval for a sample size of 1 and a confidence level of γ = 0.95. The prior

distributions Gamma(1, 1) and Gamma(2, 1) lead to confidence intervals which are nar-

rower than the classical exact confidence interval for x = 0, 1, . . . , 9. They are decreasing

or with a mode at λ = 1, respectively, and therefore put considerable weight to values of

λ close to 0. Only from x = 10 onwards they start losing their advantages in length. The

prior information Gamma(7, 0.5), while hardly being inferior to the priors Gamma(1, 1)

and Gamma(2, 1) for x = 0, 1, . . . , 6, partly delivers even tighter confidence bounds for

x = 7, . . . , 11 than the other two. For x = 13, 14, 15, the classical exact confidence
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minimum volume Gamma(2, 1) exact

0 5 10 15 20

0.
95

1.
00

λ
0 5 10 15 20

0.
95

1.
00

λ
simple normal approximation Sahai & Khurshid (1993)

0 5 10 15 20

0.
70

0.
80

0.
90

1.
00

λ
0 5 10 15 20

0.
95

1.
00

λ
Molenaar (1970) HPD Gamma(2, 1)

0 5 10 15 20

0.
95

1.
00

λ
0 5 10 15 20

0.
0

0.
5

1.
0

λ

Figure 4.2: Coverage probability of several Poisson confidence intervals as a function of λ for
sample size 1 under the nominal confidence level 95 %.
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Figure 4.3: Level 95 % minimum volume confidence intervals for a Poisson parameter λ and
coverage probability for a selection of gamma prior distributions. Sample size n = 1.
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Figure 4.4: Lengths of the minimum volume confidence interval for a Poisson parameter λ for a
selection of gamma prior distributions in comparison to the classical exact Poisson
confidence interval. Sample size n = 1. Confidence level 95 %.

Table 4.1: Minimum volume confidence intervals for a Poisson parameter under prior informa-
tion distribution Gamma(2, 1) for sample sizes n = 1, 5 and confidence level γ = 0.95.∑n

i=1 xi
n = 1 n = 5

λ̂ λL λU λ̂ λL λU

0 0 0.000 3.002 0.0 0.000 0.600
1 1 0.051 4.744 0.2 0.010 0.949
2 2 0.355 6.296 0.4 0.071 1.259
3 3 0.818 7.754 0.6 0.164 1.551
4 4 1.366 9.154 0.8 0.273 1.831
5 5 1.970 10.513 1.0 0.394 2.103
6 6 2.613 11.842 1.2 0.523 2.368
7 7 3.002 13.148 1.4 0.600 2.630
8 8 3.002 14.435 1.6 0.600 2.887
9 9 3.002 15.705 1.8 0.600 3.141
10 10 3.002 16.962 2.0 0.600 3.392

interval provides smallest lengths in comparison to the investigated minimum volume

intervals under prior information.

All empirical results above hold in the case of a sample size of 1, i. e. the number of

occurrences X in only one time interval of length T is considered with X ∼ Po(λ).

Simultaneously, this can be interpreted as X =
∑n

i=1Xi occurrences in n time intervals

with Xi ∼ Po(λ/n), where Xi is the number of occurrences in time interval i of length

t = T/n. Minimum volume confidence intervals for λ/n if the sample size is n > 1 can

be obtained from the intervals under sample size 1 by deviding their lower and upper

bounds by n. We provide an example to illustrate the relationship in Table 4.1.

Table 4.1 provides lower and upper bounds of the minimum volume confidence intervals
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n = 1 n = 5
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Figure 4.5: Coverage probability of the minimum volume confidence interval for a Poisson pa-
rameter under prior information distribution Gamma(2, 1) for sample sizes n = 1, 5
and confidence level γ = 0.95.

(λL;λU ) for the Poisson parameter λ under prior information distribution Gamma(2, 1)

and sample sizes n = 1, 5. The estimates λ̂ are estimates for λ in one time interval

of length t, where the number of successes
∑n

i=1 xi have been observed in time interval

T = nt. The lower and upper bounds λL, λU under sample size n = 5 have been obtained

by deviding the corresponding lower and upper bounds under sample size n = 1 by 5.

The left-hand side of Fig. 4.5 shows the coverage probability under sample size n = 1.

The right-hand side under sample size n = 5 shows exactly the same picture, the only

difference is the axis scale: The parameter of interest on the right-hand side is the mean

λ of the Poisson distribution in a time interval whose length is one fifth of the length

of the time interval on the left-hand side. The calculation of the coverage probability

function exploits the relation between the confidence intervals and the prediction points,

where the prediction points for sample size n = 5 reflect predictions for the number of

occurrences
∑5

i=1Xi in all five time intervals.

Figure 4.6 shows the coverage probability function for the shortest confidence interval for

a Poisson parameter under the prior information distribution Gamma(2, 1) for sample

size 1 and confidence level γ = 0.95 if the values x ∈ {0, 1, . . . , 60} are taken into account

for the construction of the prediction intervals. The coverage probability exceeds the

prescribed nominal confidence level of 95 % for λ ∈ (0; 31). It only rarely drops below

95 % in the interval [31; 45) and many times so for λ > 45. That the coverage probability

drops below the prescribed threshold is due to the fact that only prediction points

{0, 1, . . . , 60} have been taken into account here. The problem could be overcome by

considering sufficiently many prediction points larger than 60. Proposition 4.7 explains

which prediction points are worth considering under a fixed λ = y, but not which λ
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Figure 4.6: Coverage probability of the minimum volume confidence interval for a Poisson pa-
rameter λ if for the prediction regions x ∈ {0, 1, . . . , 60} are taken into account.
Prior information for λ: Gamma(2, 1). Sample size n = 1. Confidence level 95 %.

should be covered in this respect. At this stage it is unclear which λ ∈ (0; +∞) are worth

considering under a given prediction point x. Mind that this difficulty of the Poisson

confidence interval is not an issue in the context of the minimum volume confidence

interval for a binomial probability as presented in Chapter 2 because the prediction

space is bounded from above by 1.

To currently overcome that we have not yet completely solved the problem of a threshold

in λ from when on to stop considering values above, the empirical results in this chapter

have been obtained by taking small to considerable large values for x into account and

stopping to consider prediction points when the area of interest in λ shows sufficient

coverage. In case the described problem cannot be solved analytically, a numerical

algorithm can be thought of accordingly.

4.9 Conclusion and Outlook

We have applied the theory of minimum volume confidence intervals under prior in-

formation that have been suggested in Section 2.2 to the expectation λ of a Poisson

distribution. Prior information has been used by imposing a gamma prior distribution

on λ. The approach is a frequentist approach and the outcomes are exact intervals,

i. e. a prescribed coverage probability of at least γ is maintained for all λ ∈ (0; +∞).

The purpose of the prior distribution is to differently weigh the confidence intervals for

the different possible numbers of occurrences x = {0, 1, 2, . . .}. The theory necessary to

construct these intervals for the Poisson parameter has been developed and presented
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nearly completely in this chapter. It has become obvious that many results are obtained

more easily than in the case of the binomial distribution. Several difficulties that arise

in the context of the Poisson distribution trace back to the unboundedness of the pa-

rameter region (0; +∞) and the prediction region {0, 1, 2, . . .}, which is not an issue in

the binomial case. What remains to be investigated is the problem stated subsequent to

Proposition 4.7: For a given x, find a threshold λ1 ∈ (0; +∞) such that the point x is

not contained in the region D≥sy(y) of greatest prediction likelihood ratio filling up the

level γ for any y ≥ λ1.

A field for further investigation is the comparison between confidence intervals for the

binomial distribution and confidence intervals for the Poisson distribution from the point

of view that the Poisson distribution is the limiting distribution of the binomial distri-

bution if n → ∞, p → 0, np → λ. It is expected from this analysis that insight can be

gained into the limiting characteristics of the minimum volume confidence intervals for

a binomial probability from Chapter 2.

A more detailed comparison with Bayesian credibility intervals should be performed,

among it the investigation of an equivalent to Theorem 3.16 that tries to map the

coverage probabilities of frequentist and Bayesian confidence intervals for the Poisson

parameter under certain conditions on the prior distribution.

Possibilities of how to practically and appropriately elicit the parameters of the gamma

prior information distribution need to be investigated.

With the Poisson distribution, we have applied the general theory of minimum volume

confidence intervals under prior information to a discrete distribution for which expec-

tation and variance coincide. The theory has been developed for and applied to the

binomial distribution, see Chapter 2, for which underdispersion holds. As a third im-

portant instance of a discrete distribution, this time showing overdispersion, we consider

the negative binomial distribution to be worth investigating.
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4.A Appendix

4.A.1 Proof of Proposition 4.1

We prove the properties of the volume weights.

For the proof of a) let κ1 := κ+ x ≥ κ > 0, ϑ1 := ϑ
ϑ+1

ϑ>0
> 0. Then we have

wϑ,κ(x)
(4.15)

=
1

Γ(x+ 1)Γ(κ)ϑκ

∫ +∞

0
yx+κ−1 exp

(
−y − y

ϑ

)
dy

=
ϑκ1

1 Γ(κ1)

Γ(x+ 1)Γ(κ)ϑκ
1

ϑκ1
1 Γ(κ1)

∫ +∞

0
yκ1−1 exp

(
− y

ϑ1

)
dy︸ ︷︷ ︸

=1

=
ϑκ1

1 Γ(κ1)

Γ(x+ 1)Γ(κ)ϑκ
=

(
ϑ
ϑ+1

)κ+x
Γ(κ+ x)

Γ(x+ 1)Γ(κ)ϑκ

=
ϑxΓ(κ+ x)

(ϑ+ 1)κ+xΓ(x+ 1)Γ(κ)
=


ϑx(κ+x−1)·...·κ
(ϑ+1)κ+xΓ(x+1)

if x ≥ 1,

1
(1+ϑ)κ if x = 0.

wϑ,κ(x+ 1) =
ϑx+1Γ(κ+ x+ 1)

(ϑ+ 1)κ+x+1Γ(x+ 2)Γ(κ)

=
ϑ(κ+ x)

(ϑ+ 1)(x+ 1)
· ϑxΓ(κ+ x)

(ϑ+ 1)κ+xΓ(x+ 1)Γ(κ)︸ ︷︷ ︸
=wϑ,κ(x)

.

For the proof of b) we have

wϑ,κ(x+ 1) T wϑ,κ(x)

⇔ ϑ(κ+ x)

(ϑ+ 1)(x+ 1)
T 1

(ϑ+1)(x+1)>0⇔ ϑ(κ+ x) T (ϑ+ 1)(x+ 1)

⇔ ϑκ+ ϑx T ϑx+ x+ ϑ+ 1

⇔ ϑκ− ϑ− 1 T x

⇔ ϑ(κ− 1)− 1︸ ︷︷ ︸
=x0

T x.

If κ ≤ 1, we have x0 = ϑ (κ− 1)︸ ︷︷ ︸
<0

−1 ≤ −1 < 0 since ϑ > 0 and hence wϑ,κ is strictly

decreasing in x = {0, 1, . . .}.

Let κ > 1 and ϑ < 1
κ−1 . Then x0 = ϑ(κ − 1) − 1 < 0 and wϑ,κ is strictly decreasing in

x = {0, 1, . . .}.
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Let κ > 1 and ϑ ≥ 1
κ−1 . Then wϑ,κ(x) is strictly increasing for x ∈ {0, . . . , x0} and

strictly decreasing for x ∈ {x0 + 1, x0 + 2, . . .} with wϑ,κ(x0) = wϑ,κ(x0 + 1) if x0 =

ϑ(κ − 1) − 1 ∈ N0. If x0 = ϑ(κ − 1) − 1 /∈ N0, then wϑ,κ(x) is strictly increasing for

x ∈ {0, . . . , dx0e} and strictly decreasing for x ∈ {dx0e, dx0 + 1e, . . .}.

4.A.2 Proof of Proposition 4.2

We prove the assertions about the prediction likelihood ratio Qϑ,κ,λ.

We derive the explicit formula (4.20) and recursive formula (4.21) for the prediction

likelihood ratio.

Qϑ,κ,λ(x) =
λx exp(−λ)Γ(κ)ϑκ∫ +∞

0 yx+κ−1 exp
(
−y − y

ϑ

)
dy

=
λx exp(−λ)

Γ(x+ 1) · 1
Γ(x+1)Γ(κ)ϑκ

∫ +∞
0 yx+κ−1 exp

(
−y − y

ϑ

)
dy

=
λx exp(−λ)

Γ(x+ 1)wϑ,κ(x)

Prop. 4.1
=

λx exp(−λ)(ϑ+ 1)κ+xΓ(x+ 1)Γ(κ)

Γ(x+ 1)ϑxΓ(κ+ x)

=
λx exp(−λ)(ϑ+ 1)κ+xΓ(κ)

ϑxΓ(κ+ x)
.

Qϑ,κ,λ(x+ 1) =
λx+1 exp(−λ)(ϑ+ 1)κ+x+1Γ(κ)

ϑx+1Γ(κ+ x+ 1)

=
λ(ϑ+ 1)

(κ+ x)ϑ

λx exp(−λ)(ϑ+ 1)κ+xΓ(κ)

ϑxΓ(κ+ x)︸ ︷︷ ︸
=Qϑ,κ,λ(x)

=
λ(ϑ+ 1)

(κ+ x)ϑ
·Qϑ,κ,λ(x).

This proves assertion a).

For assertion b), we obtain from a) with Qϑ,κ,λ > 0 that the sign of Qϑ,κ,λ(x + 1) −
Qϑ,κ,λ(x) is the sign of λ(ϑ+1)

(κ+x)ϑ − 1. We have

λ(ϑ+ 1)

(κ+ x)ϑ
− 1 T 0

κ+x>0⇔ λ(ϑ+ 1)

ϑ
T κ+ x

⇔ λ(ϑ+ 1)

ϑ
− κ T x.

The assertion follows.
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Assertion c) is easily seen by Qϑ,κ,λ(0) = λ0 exp(−λ)(ϑ+1)κΓ(κ)
ϑ0Γ(κ+0)

= exp(−λ)(ϑ + 1)κ
ϑ>0
> 0

and

lim
x→∞

Qϑ,κ,λ(x) = lim
x→∞

λx exp(−λ)(ϑ+ 1)κ+xΓ(κ)

ϑxΓ(κ+ x)

= exp(−λ)Γ(κ)(ϑ+ 1)κ lim
x→∞

(
λ(ϑ+ 1)

ϑ

)x
· 1

Γ(κ+ x)︸ ︷︷ ︸
=0

= 0.

For the proof of d) consider the derivation d
dλ
Qϑ,κ,λ(x):

d

dλ
Qϑ,κ,λ(x) =

d

dλ
λx exp(−λ)

(ϑ+ 1)κ+xΓ(κ)

ϑκΓ(κ+ x)

=
(ϑ+ 1)κ+xΓ(κ)

ϑκΓ(κ+ x)

(
xλx−1 exp(−λ)− λx exp(−λ)

)
=

(ϑ+ 1)κ+xΓ(κ)

ϑκΓ(κ+ x)︸ ︷︷ ︸
>0

λx−1︸︷︷︸
>0

exp(−λ)︸ ︷︷ ︸
>0

(x− λ) .

Then

d

dλ
Qϑ,κ,λ(x) > 0 ⇔ λ < x,

d

dλ
Qϑ,κ,λ(x) = 0 ⇔ λ = x,

d

dλ
Qϑ,κ,λ(x) < 0 ⇔ λ > x.

Hence Qϑ,κ,λ(x) as a function of λ is strictly increasing on (0;x] and strictly decreasing

on [x; +∞).

4.A.3 Proof of Proposition 4.3

Consider prediction regions with characteristics Q1). By Proposition 2.3, Ax = {y ∈
(0; +∞)|cL(y) ≤ x ≤ cU (y)} is an interval for all x ∈ {0, 1, . . .} with endpoints inf Ax,

supAx increasing in x. We have to prove that the endpoints inf Ax, supAx are not

elements of Ax for x ∈ {0, 1, . . .}. Let x ∈ {0, 1, . . .}. Let (yl) be a sequence in Ax with

y1 > y2 > . . ., liml yl = inf Ax. Then cL(yl) ≤ x ≤ cU (yl) for all l. Since cU is left-

continuous in inf Ax, but not continuous in inf Ax, cU is not right-continuous in inf Ax.

Consequently, we have liml cU (yl) 6= cU (liml yl) = cU (inf Ax). In particular, since cU is

increasing in y ∈ (0; +∞), we have inf cU (yl) = liml cU (yl) > cU (inf Ax). Consequently,

x > cU (inf Ax) and inf Ax /∈ Ax. The proof of supAx /∈ Ax follows analogously.

Assertion b) is an application of Proposition 2.3.
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4.A.4 Proof of Proposition 4.4

To prove Proposition 4.4, we need the following proposition on the Poisson OC Lc(λ):

Proposition 4.12 (Poisson OC). Let c ∈ N0 and Lc(λ) the OC function of the Poisson

distribution from Eq. (4.2). For λ > 0 we have

d

dλ
Lc(λ) = −λ

c

c!
exp(−λ).

Then Lc(λ) is strictly decreasing on (0; +∞) with lim
λ→0

Lc(λ) = 1, lim
λ→+∞

Lc(λ) = 0.

Proof. For the derivative of Lc(λ) =
c∑

x=0

λx

x!
e−λ = exp(−λ) +

c∑
x=1

λx

x!
e−λ we have

d

dλ
Lc(λ) =− exp(−λ) +

c∑
x=1

{
x

x!
λx−1 exp(−λ)− λx

x!
exp(−λ)

}

=− exp(−λ) +
c∑

x=1

{
λx−1

(x− 1)!
exp(−λ)− λx

x!
exp(−λ)

}

=− exp(−λ) +
c−1∑
x=0

λx

x!
exp(−λ)−

c∑
x=1

λx

x!
exp(−λ)

=− exp(−λ) +
λ0

0!
exp(−λ) +

c−1∑
x=1

λx

x!
exp(−λ)−

c−1∑
x=1

λx

x!
exp(−λ)− λc

c!
exp(−λ)

=− λc

c!︸︷︷︸
>0

exp(−λ)︸ ︷︷ ︸
>0

< 0.

Hence Lc(λ) is strictly decreasing on (0; +∞). We have

lim
λ→0

Lc(λ) = lim
λ→0

c∑
x=0

λx

x!
e−λ = lim

λ→0

λ0

0!
exp(−λ) +

c∑
x=1

1

x!
lim
λ→0

λx

eλ︸ ︷︷ ︸
=0

= lim
λ→0

λ0︸ ︷︷ ︸
=1

· lim
λ→0

exp(−λ)︸ ︷︷ ︸
=1

= 1,

lim
λ→+∞

Lc(λ) = lim
λ→+∞

c∑
x=0

λx

x!
e−λ =

c∑
x=0

1

x!
lim

λ→+∞

λx

eλ︸ ︷︷ ︸
=0

= 0.

�

We can now prove Proposition 4.4:

Assertion a) of Proposition 4.4 follows directly from the definition of λx,γ and λ̃x,γ , and

monotonicity properties of the Poisson OC function from Proposition 4.12.
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For the proof of assertion b), let γ ≥ 0.5, x > 0. Then

Lx(λ̃x,γ) = 1− γ
γ≥0.5
≤ γ = Lx−1(λx,γ) < Lx(λx,γ),

hence λ̃x,γ > λx,γ since Lx is strictly decreasing on (0; +∞), see Proposition 4.12. In

the case x = 0, we have by definition λx,γ = 0 < λ̃x,γ .

For the proof of assertion c), let x ∈ N0, y ∈ (λx,γ ; λ̃x,γ). Then Lx(λ̃x,γ) < Lx(y) <

Lx(λx,γ). Assume x ≤ cL(y)− 1. Then Lx(y) ≤ LcL(y)−1(y) and

LcU (y)(y)− LcL(y)−1(y) ≤ 1− LcL(y)−1(y) ≤ 1− Lx(y) < 1− Lx(λ̃x,γ)︸ ︷︷ ︸
=1−γ

= γ,

in contradiction to property (4.22). Now assume x ≥ cU (y) + 1. Then cU (y) ≤ x − 1

and LcU (y)(y) ≤ Lx−1(y) and

LcU (y)(y)− LcL(y)−1(y) ≤ LcU (y)(y) ≤ Lx−1(y) < Lx−1(λx,γ) = γ,

in contradiction to property (4.22). This proves cL(y) ≤ x ≤ cU (y).

4.A.5 Proof of Proposition 4.5

We derive the monotonicity properties of the prediction region coverage function.

Assertion a) is obvious from Proposition 4.12.

For assertion b), let x1 > 0. By Proposition 4.12 we have for y > 0

d

dy
∆x1,x2(y) =

d

dy
Lx2(y)− d

dy
Lx1−1(y) =

yx1−1

(x1 − 1)!
exp(−y)− yx2

x2!
exp(−y)

= exp(−y)︸ ︷︷ ︸
>0

(
yx1−1

(x1 − 1)!
− yx2

x2!

)
.

Hence

0 S
d

dy
∆x1,x2(y)

⇔ yx2

x2!
S

yx1−1

(x1 − 1)!

⇔ yx2

yx1−1
S

x2!

(x1 − 1)!

⇔ yx2−x1+1 S x1 · . . . · x2

⇔ y S (x1 · . . . · x2)
1

x2−x1+1 .

This proves Proposition 4.5.
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4.A.6 Proof of Proposition 4.6

We prove the properties about the comparison of two likelihood ratios.

With Proposition 4.2 we get

Qϑ,κ,y(x1)

Qϑ,κ,y(x2)
=

yx1 exp(−y)(ϑ+1)κ+x1Γ(κ)
ϑx1Γ(κ+x1)

yx2 exp(−y)(ϑ+1)κ+x2Γ(κ)
ϑx2Γ(κ+x2)

=
yx1ϑx2(ϑ+ 1)κ+x1Γ(κ+ x2)

yx2ϑx1(ϑ+ 1)κ+x2Γ(κ+ x1)

= yx1−x2

(
ϑ

ϑ+ 1

)x2−x1 (
(κ+ x1) · . . . · (κ+ x2 − 1)

)
,

and hence

Qϑ,κ,y(x1) S Qϑ,κ,y(x2)

⇔
Qϑ,κ,y(x1)

Qϑ,κ,y(x2)
S 1

⇔ y−(x2−x1)

(
ϑ

ϑ+ 1

)x2−x1 (
(κ+ x1) · . . . · (κ+ x2 − 1)

)
S 1

⇔
(

ϑ

ϑ+ 1

)x2−x1 (
(κ+ x1) · . . . · (κ+ x2 − 1)

)
S yx2−x1

⇔

((
ϑ

ϑ+ 1

)x2−x1 (
(κ+ x1) · . . . · (κ+ x2 − 1)

)) 1
(x2−x1)

S y

⇔ ϑ

ϑ+ 1

(
(κ+ x1) · . . . · (κ+ x2 − 1)

) 1
(x2−x1)

S y.

4.A.7 Proof of Proposition 4.7

Let FX(c) denote the distribution function of the Poisson distribution from Eq. (4.2).

From Proposition 4.2, assertion b), we know that the likelihood ratio Qϑ,κ,y(x) as a

function of x is decreasing or of inverted bathtub shape. From Proposition 4.2, assertion

c), we know Qϑ,κ,y(0) > 0 and limx→∞Qϑ,κ,y(x) = 0. Consequently, there exists an

x1 ∈ {1, 2, . . .} such that Qϑ,κ,y(0) > Qϑ,κ,y(x1). Let x2 be a natural number with

x2 ≥ x1 and Py (X ∈ {0, 1, . . . , x2}) = FX(x2) > γ. The existence of such an x2 is clear

since FX(x) is a distribution function and hence increasing in x with limx→∞ FX(x) =

1 > γ. Furthermore, x2 is not unique and any x > x2 also fulfils the requirements. Let

s̃y := Qϑ,κ,y(x2). Then D≥s̃y = {0, 1, . . . , x2}.

We prove s̃y ≤ sy by contradiction:

Assume s̃y > sy. From the definition of sy we have

sy = inf{t|Gy(t) ≤ γ} = inf{t|Py(Qϑ,κ,y(X) > t) ≤ γ}.
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From Proposition 2.1 we know that Gy(t) = Py(Qϑ,κ,y(X) > t) is decreasing in t.

Therefore, we have for s̃y necessarily Gy(s̃y) = Py(Qϑ,κ,y(X) > s̃y) ≤ Py(Qϑ,κ,y(X) ≥
s̃y) = Py(X ∈ D≥s̃y) = Py(X ∈ {0, 1, . . . , x2}) ≤ γ, a contraction against the choice of

x2. This proves s̃y ≤ sy. From Qϑ,κ,y(x) ≥ sy ≥ s̃y then follows Qϑ,κ,y(x) ≥ s̃y for an

x ∈ N0 and therefore {x|Qϑ,κ,y(x) ≥ sy} ⊂ {x|Qϑ,κ,y(x) ≥ s̃y}. Hence we can conclude

D≥sy ⊂ D≥s̃y = {0, 1, . . . , x2}, which proves the assertion of the proposition. By letting

c := x2, we obtain a natural number fulfiling the condition of Proposition 4.7.

4.A.8 Proof of Proposition 4.8

The prior density of Y is given by fY (y) =
yκ−1

ϑκΓ(κ)
exp

(
−y
ϑ

)
. Hence by Theorem 3.1

we have

fY |X=x(y) ∝ fY (y)fX|Y=y(x) =
yκ−1

ϑκΓ(κ)
exp

(
−y
ϑ

) yx
x!

exp(−y)

∝ yκ+x−1 exp

(
−y
(
ϑ+ 1

ϑ

))
,

i. e. the posterior density fY |X=x(y) is proportional to the density of the gamma distri-

bution Gamma
(
κ+ x, ϑ

ϑ+1

)
and therefore results to

fY |X=x(y) =
1(

ϑ
ϑ+1Γ(κ+ x)

)yκ+x−1 exp

(
− y

ϑ
ϑ+1

)
.

4.A.9 Proof of Proposition 4.9

We derive monotonicity properties of the density function of the gamma distribution.

Let κ = 1. The derivative of

fϑ,1(x) =


1
ϑ exp

(−x
ϑ

)
for x ≥ 0,

0, elsewhere,

for x > 0 is
d

dx
fϑ,1(x) =

1

ϑ
exp

(
−x
ϑ

)(
− 1

ϑ

)
< 0, hence fϑ,κ(x) is strictly decreasing.

Let κ 6= 1. The derivative of

fϑ,κ(x) =


xκ−1

ϑκΓ(κ) exp
(−x
ϑ

)
for x ≥ 0,

0, elsewhere,
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for x > 0 is

d

dx
fϑ,κ(x) =

1

ϑκΓ(κ)

(
(κ− 1)xκ−2 exp

(
−x
ϑ

)
+ xκ−1 exp

(
−x
ϑ

)(
− 1

ϑ

))
=

1

ϑκΓ(κ)︸ ︷︷ ︸
>0

xκ−2︸︷︷︸
x>0
> 0

exp
(
−x
ϑ

)
︸ ︷︷ ︸

>0

(
(κ− 1)− x

ϑ

)
.

Therefore, the sign of d
dx
fϑ,κ(x) is the sign of (κ − 1) − x

ϑ . We have (κ − 1) − x
ϑ < 0 if

κ < 1. For κ > 1 we have

d

dx
fϑ,κ(x)


> 0 if 0 < x < ϑ(κ− 1),

= 0 if x = ϑ(κ− 1),

< 0 if x > ϑ(κ− 1),

and the assertion follows.

4.A.10 Proof of Corollary 4.11

Assertion (a) follows directly from Corollary 4.10. In assertion (b), y∗ ∈ Ax follows from

fY |X=x(y∗) ≥ fY |X=x(y) for every y ∈ (0; +∞). The existence of a value

fY |X=x

(
zGamma(κ+x, ϑ

ϑ+1)(α1)
)

= fY |X=x

(
zGamma(κ+x, ϑ

ϑ+1)(1− α2)
)
∈ (0; y∗)

with

P
(
zGamma(κ+x, ϑ

ϑ+1)(α1) ≤ Y ≤ zGamma(κ+x, ϑ
ϑ+1)(1− α2)

)
= β ∈ (0; 1)

follows from the continuity of the density of the posterior distribution Gamma
(
κ+ x, ϑ

ϑ+1

)
on (0; +∞) and fY |X=x(0) = 0 = lim

y→∞
fY |X=x(y).
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5.1 Introduction

Auditing is concerned with the independent verification of the fairness of financial state-

ments, which summarise and report a company’s economic activities, see CPSMR (1988).

According to the American Accounting Association (as cited in Gillet (2000)), auditing

can be defined as “a systematic process of objectively obtaining and evaluating evidence

regarding assertions about economic actions and events to ascertain the degree of cor-

respondence between those assertions and established criteria and communicating the

results to interested users”. An audit procedure involves a variety of audit tests. Among

them are the compliance test, which investigates whether the accounting procedure is

in accordance with prescribed procedures for internal control. In a substantive test of

details, the total monetary error in the balance is of interest, see CPSMR (1988).

The conformance of monetary book values U kept in lists and databases on items like

accounts, articles in an inventory or transactions is compared with the corresponding

de facto values or audit values W of the items in reality. The degree of misstatement

of U on W can be measured by the tainting ratio Y = (U −W )/U , i. e. the deviation

of the book value U from the de facto value W relative to the stipulated book value.

Misstatements occur when the amount stated in the balance is not identical to the

amount in reality. In many contexts, misstatements tend to be overstatements where

0 ≤W < U . Misstatement by overstatement is the dominant error mode particularly in

asset accounts, accounts receivable and revenue accounts, see the empirical studies by

Ramage et al. (1979), Johnson et al. (1981), Ham et al. (1985) and Icerman & Hillison

(1990). Under the overstatement error mode – which is what the statistical methodology

presented in this chapter focuses on –, the tainting ratio ranges from 0 to 1, where Y = 0

represents a correct statement, and Y = 1 represents the case that a de facto value W = 0

is erroneously stated by a positive account entry U > 0.

In regular accounting practice, most account entries are correct, and small deviations

are more frequent than large deviations. Hence the regular distribution of the tainting

ratio has three properties: i) highly right-skewed, ii) zero inflation, i. e. large probability
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point mass at 0, iii) probability density function decreasing on [0; 1]. This pattern is

often addressed as “reverse J-shaped”, see e. g. Neter et al. (1985).

CPSMR (1988) stress the necessity of acquiring reliable audit information at low cost.

Statistical sampling can contribute to this requirement by examining only a sample of

audit evidence instead of the whole population. In consequence, there is a need for

inferential procedures that judge an audit population on the basis of a sample. Stringer

(1963) and many subsequent authors warned against using methods based on normal

distribution approximations for the statistical inference on tainting distributions. In

particular, because of the large probability mass at Y = 0, confidence intervals for the

mean as known from survey sampling are evidently questionable in the analysis of tain-

ting distributions. Various authors, for example Kaplan (1973), Teitlebaum & Robinson

(1975) and Neter & Loebbecke (1977), have demonstrated that normal confidence limits

cannot guarantee the prescribed confidence level when sampling from tainting distri-

butions. Not rarely, only few or no errors are observed and a reliable estimation of a

variance is impossible.

The basic heuristic idea of a specific upper confidence bound µU for the population mean

µ in sampling inference on audit populations was launched by Stringer (1963). The

formal development of the bound nowadays associated with Stringer’s name (Stringer

bound) is mainly due to studies of Meikle (1972), Anderson & Teitlebaum (1973) and

Goodfellow et al. (1974). The Stringer bound µY was intended as a robust alternative,

conservative in the sense that a prescribed nominal confidence level γ is exceeded by the

actual confidence level P(µ ≤ µY ). Stringer’s (1963) approach was motivated by finan-

cial auditing. However, the problem of analysing populations with zero inflation arises in

other contexts, too. Examples are accident costs in insurance, contamination and earth-

quake measurement. In addition, zero inflation can be a consequence of measurement

imprecision where small signals are cumulated on zero.

Not strict model-based theory, but intuitive heuristic reasoning drove the initiation of

the Stringer bound. It was several decades after Stringer’s (1963) paper that Bickel

(1992) presented a motivation for the Stringer bound. The intuitive basis in a multi-

nomial error model is nicely described by Pap & van Zuijlen (1996). Many authors

have investigated the actual confidence level of the Stringer confidence bound, both by

simulation and analytical studies. Throughout, simulation studies have corroborated

the conservatism of the Stringer bound, see Burdick & Reneau (1978), Reneau (1978),

Leitch et al. (1982), Plante et al. (1985) and Tsui et al. (1985). Bickel (1992) initiated

the study of the asymptotic behaviour of the bound for large sample size n. Pap & van
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Zuijlen (1995) provided finite sampling results for uniformly distributed taintings, and

a finite sampling example for the anticonservatism in the case of 0 < γ < 0.5. Pap &

van Zuijlen (1996) showed that the bound is asymptotically conservative for confidence

level 0.5 ≤ γ < 1, and suggested a modified bound that has asymptotically the nominal

confidence level. Further asymptotic results and modifications of the bound so as to

remove the anticonservatism in the case of 0 < γ < 0.5 were developed by de Jager et al.

(1997). Godfrey & Neter’s (1984) idea was to use a Bayesian approach to exploit prior

knowledge. Fienberg et al. (1977) and Neter et al. (1978) introduced the multinomial

bound which essentially recurs to the heuristic basis underlying the Stringer bound, see

Pap & van Zuijlen (1996).

A small total amount of misstatements is usually tolerated in an audit. A misstatement

beyond a tolerance level is called a material misstatement. IAASB (2013) define ma-

teriality with respect to financial misstatements as follows: “Misstatements, including

omissions, are considered to be material if they, individually or in the aggregate, could

reasonably be expected to influence the economic decisions of users taken on the basis

of the financial statements” (IAASB 2013, ISA 320). In view of financial, adminis-

trative, and legal consequences, the auditor’s primary interest is to restrict the type 1

risk of incorrectly not detecting an excessive mean tainting in the accounts. This risk

of incorrect acceptance of an account is what is frequently referred to as beta risk and

is related to audit effectiveness (Guy et al. 2002). This interest has lead research to

focus on upper confidence bounds for the mean tainting. However, the type 2 risk of

incorrectly assuming an excessive mean tainting also has considerable impact on the

auditor and the auditee. This risk, frequently referred to as alpha risk, is concerned

with audit efficiency (Guy et al. 2002). In particular, the supposition of misstatements

will increase subsequent audit efforts, to the disadvantage of both the auditor and the

auditee. A lower confidence bound enables the rejection of the population if too many

misstatements are detected in the sample. Accordingly, the Commission on Physical

Sciences, Mathematics, and Applications (CPSMR 1988) considered lower confidence

bounds as “an area of considerable importance where research is needed”. In spite of

this encouraging suggestion, lower confidence limits have not received much attention.

A lower Stringer bound can simply be obtained by applying the Stringer method to the

observations 1− Y , but these intervals use to be wide. Plante et al. (1984) developed a

lower bound by the multinomial method. Tsui et al. (1985) take a Bayesian approach by

assuming a Dirichlet prior for the multinomial probability parameters that can be used

to construct either an upper or a lower bound. The simulation study by Matsumura et al.
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(1991) showed that for both methods the actual confidence level of the lower bounds is

reasonably close to the prespecified nominal level.

The study in the present chapter combines two objectives: 1) Find tight two-sided

confidence intervals of Stringer type. 2) Establish a simple way of using prior information

on the target population. This is achieved by using the shortest binomial confidence

intervals introduced in Chapter 2. In this scheme, prior information is specified by

postulating a beta distribution Beta(p0, p1, a, b) with shape parameters a, b > 0 on the

support [p0; p1] ⊂ [0; 1] on the target probability p to be estimated. The case p0 = 0,

p1 = 1, a = b = 1 represents the absence of prior information. By an appropriate choice

of p0, p1, a, b, a high degree of prior knowledge can be expressed.

In our case, the target probability on which prior knowledge is applied is p = P(Y > 0),

in the auditing context the probability of an overstatement of the book value U over the

de facto value W . From past audits and from the ongoing audit process, the auditor

acquires considerable insight into a company’s conduct, particularly by auditing the

internal control system. Often, this information is sufficient to specify at least some

upper bound p1 for the overstatement rate p or a value that p is most likely not to

exceed. In general, empirical studies show that extremely high misstatement rates close

to 1 occur rarely, see Johnson et al. (1981) and Ham et al. (1985). Reliable prior

knowledge on p = P(Y > 0), particularly on upper bounds or some quantile, will mostly

also be available in the analysis of other zero inflation phenomena like accident costs,

contamination or earthquake measurements.

The subsequent sections are organised as follows: Section 5.2 reviews several sampling

techniques that play a role in auditing. Section 5.3 describes some characteristics of audit

populations that determine the sampling and evaluation method. The upper Stringer

bound for the mean tainting as proposed by Stringer (1963) is reviewed in Section 5.4.

In Section 5.5, Stringer’s method is extended to the two-sided case. A way is proposed

how to make the interval more precise by the use of prior information on the error

probability p. Section 5.6 evaluates the performance of the two-sided Stringer bound by

means of a simulation study. An indication how under- and overstatement errors could

be simultaneously dealt with is provided in Section 5.7.

5.2 Sampling Techniques in Auditing

The necessity to consider sampling in auditing arises from the fact that audit popu-

lations are frequently very large and the inspection of the whole lot is unfeasible or
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extremely costly. Consequently, it is common practice to select only a sample for in-

spection. Statistical as well as non-statistical sampling concepts can be encountered.

In non-statistical sampling, the probabilities of selecting items from the population are

uncontrolled. Judgmental selection (also purposive selection), where the auditor selects

specific items from a population that are deemed close to the population average (Guy

et al. 2002), is an instance of non-statistical sampling. Haphazard selection or block

selection, as the selection of adjacent or similar items or subsequent items in a time

period, are non-statistical sampling techniques as well. This contrasts with statistical

sampling, where all items have a positive, controlled probability of being in the sample.

Instances of statistical sampling are simple random sampling, where all items have iden-

tical probabilities of being in the sample (Cochran 1963), structured random sampling,

where the probabilities might be non-identical, stratified random sampling, systematic

sampling with random start (e. g. every 10th item) or probability proportional to size

(PPS) sampling.

The nature of audit sampling is thought of differently among the different auditing stan-

dards. According to AICPA (1981), “Audit sampling is the application of an audit

procedure to less than 100 percent of the items within an account balance or class of

transactions for the purpose of evaluating some characteristic of the balance or class.” In

particular, judgmental sampling can be considered audit sampling according to AICPA

(1981). IAASB (2013, ISA 500) refrain from considering judgmental sampling as audit

sampling: “While selective examination of specific items from a class of transactions

or account balance will often be an efficient means of obtaining audit evidence, it does

not constitute audit sampling. The results of audit procedures applied to items selected

in this way cannot be projected to the entire population; accordingly, selective exam-

ination of specific items does not provide audit evidence concerning the remainder of

the population” (IAASB 2013, ISA 500, A55). Their definition of audit sampling in-

volves the additional requirement of the sampling units to have a chance of selection, a

requirement which is violated by judgmental sampling: “Audit sampling (sampling) –

The application of audit procedures to less than 100 % of items within a population of

audit relevance such that all sampling units have a chance of selection in order to pro-

vide the auditor with a reasonable basis on which to draw conclusions about the entire

population” (IAASB 2013, ISA 530).

The advantages of statistical sampling are obvious. Not only does it allow an objec-

tive statement about the population by means of mathematical calculations, but it also

enables a quantification of the reliability on the sample as well as precise sample size
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calculations that avoid under- or overauditing, see Guy et al. (2002). Guy et al. (2002)

explain that the mathematical evaluation, besides the random selection of sample items,

is an integral part of statistical sampling. After the publication of the first literature on

statistical sampling by the American Institute of Certified Public Accountants (AICPA)

in 1962 (as cited in Guy et al. 2002), it had not been widely accepted for a long time

because some practitioners believed statistical sampling would interfer with their profes-

sional judgment. However, Guy et al. (2002) stress that statistical sampling in auditing

“sharpens the professional judgment of auditors and enhances understanding of the audit

process”. Statistical sampling became gradually more accepted in auditing procedures

from about 1981 on, when in AICPA (1981) the section about statistical sampling moved

to a more prominent place in the standard, see Guy et al. (2002).

Apart from the technique to select items from an audit population, sampling techniques

can be distinguished by the nature of the target variable. The aim is to detect poten-

tial misstatements in a population. The items under investigation can be judged either

by being misstated or not, or by their degree of misstatement. This determines the

classification of sampling techniques into attribute sampling and variable sampling. The

sampling technique monetary unit sampling has been developed for the specific auditing

requirements. It is mostly applied in combination with an evaluation technique com-

bining attribute sampling with variable sampling ideas, which coins the name combined

attribute and variable sampling. Both terms are many times not distinguished because

they often appear together. However, in theory, monetary unit sampling could be eval-

uated by means of other evaluation techniques, e. g. together with variable sampling.

We deem it helpful to devote each of the two schemes their own section (Sections 5.2.3

and 5.2.4) to help avoid the confusion of both terms.

5.2.1 Attribute Sampling

Attribute sampling reports about sampled items only whether or not they share a certain

characteristic or attribute. The purpose of this sampling technique is usually to estimate

the proportion or percentage of items carrying these attributes. In Cochran (1963),

this sampling technique can be found under the name sampling for proportions and

percentages. If a certain item carries the characteristic of interest, it is commonly coded

by 1, whereas an item not carrying the characteristic is coded by 0. In the auditing

context, attribute sampling with its respective evaluation technique is primarily used

in tests of controls, which are concerned with assessing the quality of internal control

procedures. It finds application, for example, when the auditor is interested in estimating
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the frequency of inventory items which are not properly priced (as in inventory tests) or

invoice quantities not conforming with shipping data (as in sales tests), see Guy et al.

(2002).

Evaluation of samples by means of attribute sampling can be conducted, for instance,

by means of confidence intervals for a proportion. If the population is of finite size, the

hypergeometric distribution is the theoretically correct model for most applications, as

in the example of auditing populations. However, the binomial or Poisson distribution

are frequently used instead due to simpler calculations and tables, resulting in conser-

vative approximations, see Gillet (2000). Using the binomial distribution as a model,

it is assumed that irrespective of the number of items already drawn from a finite pop-

ulation, the probability of drawing an item having the characteristic of interest in n

trials is constantly p. This assumption is justified if the population is large in relation

to the sample, see Cochran (1963). The theoretical justification of using the binomial or

Poisson distribution arises from the limiting characteristic of the binomial distribution

approximating the hypergeometric if the population is large, and the Poisson approx-

imating the binomial distribution, both limitations holding under certain parameter

limiting characteristics.

Ways in which attribute sampling plans are applied in auditing are described in Guy

et al. (2002).

5.2.2 Variable Sampling

In variable sampling, less the fact whether an item carries a certain feature or not is

important, but rather its magnitude. It is applicable if the interest is on the mean or

some other function of the sample values, see Loebbecke & Neter (1975). Variable sam-

pling is useful for accounting applications rather than auditing applications (Guy et al.

2002), a typical field of application being substantive tests of details. Evaluation tech-

niques following variable sampling are usually a point estimate and confidence interval

for the total audit population value, see Reneau (1978). In this context, the feature

of interest could be the total monetary value or the amount of misstatement of an ac-

count balance. Guy et al. (2002) describe several techniques (unstratified mean-per-unit,

stratified mean-per-unit, difference estimation, ratio estimation) how to apply variable

sampling to accounting estimation. The evaluation techniques frequently use normal

distribution quantiles and hence vitally rely on the applicability of the central limit the-

orem. However, this is often not appropriate in auditing. The problem is the typical
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skewness in accounting populations, which have a large number of correctly stated items

and a small number of misstated items, see Kaplan (1973), Neter & Loebbecke (1977),

Johnson et al. (1981) and the brief review in Section 5.3 for a characterisation of audit

populations. In the case that no errors are found in the sample, Stringer (1963) hints

to the problem that this leads to an estimated standard error of zero in a ratio estima-

tion procedure when in fact the estimate is not perfect. According to Kaplan (1973), a

strong dependency between the estimated mean and the standard deviation lead to too

narrow confidence intervals. Variable sampling and the associated evaluation techniques

in auditing can be used when the population is not too heavily skewed and shows fre-

quent misstatements of rather small magnitude in both directions. In other words, both

under- and overstatement errors are present. These characteristics apply, for example,

to inventory populations.

5.2.3 Monetary Unit Sampling

Monetary unit sampling (MUS) is a special case of probability proportional to size sam-

pling (PPS), the latter dating back to Hansen & Hurwitz (1943). In PPS, units are

selected from the population with probabilities proportional to their sizes. Sampling is

done with replacement to have the advantage of simpler formulas for the variances of

the estimates. If the sample size is small in comparison to the population size, this is

similar to sampling without replacement, see Cochran (1963). In accounting with the

particular nature of the involved populations, MUS can be particularly effective and is

recommended, for example, by Teitlebaum & Robinson (1975).

In MUS, a variant of PPS is applied with the size of each item being identical to the

monetary value of the item. The idea to sample for individual dollars had already been

suggested by Deming (1960). Among the first to apply the technique, which was fre-

quently known under the name dollar unit sampling (DUS), in auditing were Stringer

(1963) and Teitlebaum (1973). Later, the technique was often more generally called

monetary unit sampling. Instead of the number of items or accounts in the population,

the number of individual monetary units is considered. Consequently, instead of popu-

lation items having certain monetary values, individual monetary units are sampled. By

that, monetary units corresponding to items having a larger monetary value are more

likely to be in the sample than monetary units associated with units of smaller amount.

In accounting it is of interest to check for possible errors in the book values. If a monetary

unit is sampled and a misstatement detected in the item to which the monetary unit
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belongs, the misstatement is assigned in equal parts to each of the monetary units

building the item. For example, if the sampled monetary unit belongs to an item of

the book value 100, which has de facto value 90 only and is hence overstated, each of

the 100 monetary units of the item is 10 % overstated and has a de facto value of 0.90.

Two or more monetary units from the same item can be part of the sample, all having

equal tainting values, which would be 0.1 in the example. MUS employs the highest

degree of stratification by book amount possible, such that advantages of stratification

are exploited without really using stratification, see Neter et al. (1978). Sampling by

stratification is in more detail described in Cochran (1963).

With respect to the question how to actually sample the individual monetary units, var-

ious solutions are available, among them simple random sampling, systematic sampling

or cell-selection, see Teitlebaum (1973), Anderson & Teitlebaum (1973) or Leslie et al.

(1979). However, with the availability of computers these days, suitable solutions for

sampling monetary units can easily be implemented.

In the context of auditing, there are authors who under the term MUS or PPS understand

the sampling technique described above in combination with the technique to evaluate

the sample, as e. g. Guy et al. (2002). The evaluation technique is mostly a combination

of attribute and variable sampling, delivering an upper bound for the total monetary

misstatement in the accounting population. The reason for the confusion is that these

combined attribute and variable sampling plans mostly make use of MUS to create the

sample. However, this is not a necessity (although it proved to be advantageous in the

auditing context due to Anderson & Teitlebaum 1973), which is why we treat what Guy

et al. (2002) understands by PPS in the subsequent section.

5.2.4 Combined Attribute and Variable Sampling

Combined attribute and variable sampling (CAV) has emerged in statistical auditing

through the endeavours to overcome deficiencies in both attribute and variable sampling

plans (CPSMR 1988). CAV is more precisely described as an evaluation technique

of a sample making use of both attribute and variable sampling evaluation techniques.

In auditing, they are commonly applied in overstatements contexts, delivering an upper

bound for the monetary amount of misstatement in the population, see Guy et al. (2002).

The result of a CAV approach is usually a point estimate and confidence interval for

the quantity under investigation. A simulation study comparing five different CAV

approaches was conducted by Reneau (1978).
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The most famous type of a CAV technique is the Stringer bound, proposed by Stringer

(1963). It is commonly applied by making use of MUS as the corresponding sampling

technique (Anderson & Teitlebaum 1973). We present the Stringer bound in more detail

in Section 5.4.

5.3 Audit Populations

Neter & Loebbecke (1975, 1977) were the first to conduct an empirical investigation

about the error characteristics and statistical procedures to evaluate them based on

the errors discovered in four audits. Several other empirical studies revealed the error

characteristics in audit population: While Neter & Loebbecke (1975), Ramage et al.

(1979) and Johnson et al. (1981) examined inventory and accounts receivable populations

only, Ham et al. (1985) additionally had access to accounts payable, purchases and sales.

The studies of Johnson et al. (1981), Ramage et al. (1979) and Ham et al. (1985) com-

monly found accounts receivable errors to be mostly overstatement errors while inventory

populations are rather balanced in terms of overstatement and understatement errors.

Accounts payable and purchases mostly come with understatement errors and sales with

overstatement errors, as was found out by Ham et al. (1985). The findings of Icerman

& Hillison (1990) are in accordance with this. Accounts receivable populations can have

understatement in errors as well (Johnson et al. 1981; Ham et al. 1985). However,

since they occur rather rarely, Johnson et al. (1981, p. 288) suggest that it might be use-

ful to focus on the distribution of overstatement taintings when dealing with accounts

receivable.

Regarding the error amount distributions, both Johnson et al. (1981) and Ham et al.

(1985) found that the mean error detected for accounts receivable is larger, and in

particular positive, than the mean error in inventory audits, which can turn out to be

negative. Accounts payable and purchases have more negative error means, whereas

sales have slightly more positive error means, see Ham et al. (1985). In terms of error

rates, however, Johnson et al. (1981) found the error rates for inventory to be in tendency

higher than those for accounts receivable with median errors rates of 0.154 (inventories)

and 0.024 (accounts receivable), respectively.

The distributions of the different accounting classes clearly differ. Apart from possibly

inventories, accounting error populations are not normally distributed (Ham et al. 1985;

Icerman & Hillison 1990). Johnson et al. (1981) and Ham et al. (1985) both found the

error distributions to be often heavily skewed. Accounts receivable show rather positive
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skewness, while accounts payable and inventories are frequently negatively skewed.

In many auditing procedures, not the absolute auditing error is considered, but the tain-

ting Yi, the relative deviation of the de facto value from the book value of an item i.

Procedures making use of the tainting cannot deal with book values of 0 or less. These

items, which do not occur very frequently, are often subject to separate auditing, see

Johnson et al. (1981, p. 286). Just as well as they detected a balance between overstate-

ment and understatement in the error amounts of inventory audits, Johnson et al. (1981)

found negative and positive taintings with approximate equal relative frequency. While

for inventory audits, the error tainting fell below -100 % in 2–5 % of the cases, it never

did in the case of accounts receivable. For both types of account classes, the maximum

taintings observed were not more than 125 %, whereby a considerable percentage of es-

pecially accounts receivable items have a tainting of 100 %, causing a discontinuity at

that point. Regarding the location of the tainting distributions, inventory audits show a

smaller mean tainting than receivable audits. This finding was supported by Ham et al.

(1985). The shape of the taintings is of skewed kind. Inventory audits mostly show

negative skewness, which sometimes even occurs in accounts receivable audits (Johnson

et al. 1981).

5.4 The Stringer Bound

The Stringer bound, which was proposed by Stringer (1963), is an instance of a CAV

technique (see Section 5.2.4) for an audit population in which overstatement is expected.

The bound constitutes a nonparametric upper bound for the mean tainting Y in an audit

population. Due to the assumption of overstatement and that bookvalues and de-facto-

values are non-negative, the tainting is a quantity between 0 and 1. The taintings

Y1, . . . , Yn of n sampled items are assumed to be realisations of an independent and

identically distributed random variable Y . Since it relies on the definition of a tainting,

the Stringer bound is applicable only to populations with book values Ui > 0. For

a population in which bookvalues of 0 occur, the Stringer bound can be applied only

to those items with bookvalue Ui > 0. Items with bookvalues of 0 are subject to a

total inspection. An overview over the quantities related to the notation of the Stringer

bound is given in Table 5.1. The sampling procedure to use with the Stringer bound

was suggested to be DUS by Anderson & Teitlebaum (1973).

We present the upper Stringer bound for the mean of a population that consists of items

with taintings between 0 and 1 with probability 1.
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Table 5.1: Notation of important quantities

quantity description

µ average misstatement in the population

N number of items in the population

U1, . . . , UN book values

W1, . . . ,WN de facto values

Yi = Ui−Wi
Ui

tainting of item i

n sample size

0 ≤ Y(1,n) ≤ . . . ≤ Y(n,n) ≤ 1 ordered Yi in the sample

γ ∈ (0; 1) confidence level

Definition 5.1 (Stringer Bound). Let Y1, . . . , Yn be an i.i.d. sample of variables with

P(0 ≤ Y ≤ 1) = 1. Let 0 ≤ Y(1,n) ≤ . . . ≤ Y(n,n) be the corresponding ordered sample

and Y(n+1,n) = 1. Let 0 < γ < 1 be the confidence level. For k = −1, . . . , n + 1 let

0 ≤ pU (k) ≤ 1 be the upper confidence limit for the success probability p in a series of

Bernoulli trials of size n if k successes are observed, where pU (−1) = 0, pU (n+ 1) = 1.

The one-sided upper Stringer bound for E[Y ] = µY is defined by

µST := pU (0) +

n∑
x=1

(
pU (x)− pU (x− 1)

)
Y(n−x+1,n).

In Bickel (1992), pU (x) is defined to be the unique solution in p of the equation

n∑
k=x+1

(
n

k

)
pk(1− p)n−k = γ,

which corresponds to the upper bound of the one-sided exact confidence interval for a

binomial probability from Eq. (2.4). According to Neter et al. (1978), pU (x) was almost

always calculated by approximation through limits of the Poisson distribution when it

came to applying the Stringer bound as an estimate of the upper mean tainting in an

accounting population, i. e. Eq. (4.8) was used as an approximation for Eq. (2.4). The

use of Poisson limits was introduced by Goodfellow et al. (1974). Their use is most

certainly due to an easier handling of Poisson confidence limits in tables in comparison

to binomial limits. With the possibilities to calculate confidence limits in real time, this

argument now no longer holds. Nevertheless, the approach by the Poisson distribution

is still advocated many times, as, for example, in Guy et al. (2002), where the method

can be found hidden under the name PPS sampling plan. Regarding the confusion of

this term as a sampling or evaluation method, compare Section 5.2.
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The theoretical analysis of the Stringer bound is difficult for it combines attribute and

variables principles (Neter et al. 1978). A theoretical derivation of the Stringer bound

as an upper confidence bound is missing. Its popularity in accountancy is justified rather

by having found it to be reliable in practice and conservative in a number of simulation

studies. Several important arguments speak for its use: 1) The bound is greater than

zero even if no misstatements are found in the sample. 2) The bound is independent of

the sample drawn from the population if the population is free of errors.

However, there are limitations with respect to the application of the Stringer bound.

It is mainly applicable when overstatement is expected in the population. Due to the

use of DUS/MUS as the sampling technique applied with the Stringer bound, it is not

recommended in tests for understatement, see Guy et al. (2002). Furthermore, the

Stringer bound cannot deal with negative values, which sometimes occur in accounting

populations. Therefore, they need to be removed from the population before the Stringer

bound can be applied (Guy et al. 2002).

5.5 Two-sided Stringer Bounds

The previous Section 5.4 has established the concept of an upper confidence bound

of Stringer type that is frequently used in the auditing context when overstatement is

present. The decisions that can be made based on an upper bound for the mean tainting

are either to accept the population if the bound is below the maximally acceptable

misstatement rate or to be undecided. The latter case usually encourages the auditor

to take another sample and continue the auditing process, which effects the efficiency

of the audit. The rejection of an audit population is statistically impossible by means

of an upper bound only. To have a basis for rejection and an idea about the minimum

mean error that is most likely present in the accounting population together with the

possibility to accept the population, requires a lower bound as well as an upper bound.

In this section we present a two-sided version of the one-sided Stringer interval presented

in Section 5.4. To achieve tight bounds, we make use of prior information to obtain a

two-sided confidence interval of the probability of erroneous items p that is used in the

formula of the Stringer confidence interval.
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5.5.1 Definition

We formulate a two-sided version of the Stringer confidence interval.

Definition 5.2 (Two-sided Stringer Bounds). Let Y1, . . . , Yn be an i.i.d. sample of vari-

ables with P(0 ≤ Y ≤ 1) = 1. Let 0 ≤ Y(1,n) ≤ . . . ≤ Y(n,n) be the corresponding ordered

sample and Y(n+1,n) = 1. Let 0 < γ < 1 be the confidence level. For k = −1, . . . , n + 1

let 0 ≤ pL(k) < pU (k) ≤ 1 be the two-sided level γ confidence limits for a success

probability p in a series of Bernoulli trials of size n if k successes are observed, where

pL(−1) = 0 = pU (−1), pL(n + 1) = 1 = pU (n + 1). Then the two-sided confidence

interval of Stringer type for E[Y ] = µY is defined by [µY,L;µY,U ], where

µY,L = pL(0) +
n∑
x=1

(
pL(x)− pL(x− 1)

)
Y(n−x+1,n),

µY,U = pU (0) +

n∑
x=1

(
pU (x)− pU (x− 1)

)
Y(n−x+1,n).

The formal definitions do not require an interpretation of the probability p both in

the two-sided as well as in the one-sided version of the Stringer interval. In the one-

sided version of the Stringer bound from Section 5.4, if the values pU (x) are supposed

to be exact confidence bounds for a probability constructed by means of the binomial

distribution, the Stringer bound under the use of the limits from Eq. (2.4) are the tightest

possible. In the two-sided version, in contrast, inserting the Clopper & Pearson bounds

pL(x), pU (x) from Eq. (2.3) does not necessarily result in the shortest possible set of

confidence intervals. The Clopper & Pearson confidence interval is constructed to be an

equal-tail confidence interval, i. e. it restricts both the lower and upper tail probability by

(1−γ)/2 if γ ∈ (0; 1) is the confidence level. Varying the tail probabilities appropriately

results in two-sided confidence intervals for a probability that might be narrower in a

certain sense, but are still exact. Chapter 2 presents a method to construct alternative

two-sided intervals for a binomial probability that allow for prior information, where

the intervals are still exact and of minimum weighted total volume. The weights are

determined by the prior information, which is present in the form of a beta distribution

Beta(p0, p1, a, b) with shape parameters a, b > 0 on the support [p0; p1], where 0 ≤ p0 <

p1 ≤ 1. In the following, we consider the two-sided Stringer bounds under a variety

of prior information, including the case p0 = 0, p1 = a = b = 1, that constitutes the

case of no prior information on the probability p. If an interpretation was intended,

an obvious interpretation would be to consider p to be the probability of detecting an

erroneous item in the population. Prior information in that case expresses the expected
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error proportion.

Our interest is to use the two-sided Stringer bounds for inference on the mean of a

zero-inflated variable Y concentrated on [0; 1] in the model

Y = ZX, Z,X, independent, Z ∼ Bi(1, p), P(0 ≤ X ≤ 1) = 1. (5.1)

In the audit context, this model signifies that the probability of a misstated item is

p. Given a misstatement exists, its tainting distribution ranges between 0 and 1 with

probability 1. The situation of a random variable Ỹ concentrated on the compact interval

[s, t] can be reduced to the model (5.1) by considering Y =
(
Ỹ − s

)
/(t− s).

For a tainting variable Y = (U −W )/U in auditing, the model (5.1) follows from the

error model

W = (1− Z)U + ZQ, Z independent from Q/U,

Z ∼ Bi(1, p), P(0 ≤ Q ≤ U) = 1,

i. e. the book value U overstates the de facto value W by the amount U − Q with

probability p. Then we have Y = Z(U − Q)/U = ZX with X = 1 − Q/U in the

terminology of model (5.1). Q is the random variable representing the de facto value W

of an audited item.

The problem is whether the two-sided Stringer bounds are conservative and provide

a two-sided level γ confidence interval for µY , i. e. whether P (µY,L ≤ µY ≤ µY,U ) ≥ γ

holds.

5.5.2 Finite Sample Results

In the one-sided case, it can be shown that the Stringer bound is conservative if Y

has a two-point distribution (de Jager et al. 1997). The same general result cannot

be obtained for the two-sided bounds from Definition 5.2. However, the subsequent

Proposition 5.3 shows that the required additional assumptions are not very restrictive.

In particular, in the important special case of a prior distribution Beta(p0, p1, a, b) on p

on the support [p0; p1] = [0; 1], which includes the case p0 = 0, p1 = a = b = 1 of no prior

information, the two-sided bounds are conservative if Y has a two-point distribution.

Proposition 5.3 (Conservativeness for Two-point Distributions). Let A be a measure-

ment and prediction space (MPS) for the binomial probability y with projections Ax and

Ay for x ∈ {0, . . . , n} and y ∈ [p0; p1] ⊂ [0; 1], where Ax = [pL(x); pU (x)] is an exact

confidence interval for y of level γ ∈ (0; 1), see Chapter 2. Let µY,L, µY,U be the lower
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and upper bounds of the two-sided Stringer interval built under the use of the exact bi-

nomial confidence limits. Let 0 ≤ s < t ≤ 1, q ∈ [p0; p1], and let P(Y = s) = 1 − q,
P(Y = t) = q. In the case of (1− p1)s = p0(1− t), we have P (µY,L ≤ µY ≤ µY,U ) ≥ γ.

In particular, the latter inequality holds in each of the subsequent cases: i) s = 0, t = 1,

ii) s = 0, p0 = 0, iii) p0 = 0, p1 = 1, iv) p1 = 1, t = 1.

Proof. See Appendix 5.A, Section 5.A.1. �

For the definition of an MPS see Section 2.2. An important special case of Proposition 5.3

is given for Y concentrated on the two points s = 0 and t = 1 with P(Y = 0) = 1 − q,
P(Y = 1) = q. If K = {1, . . . , n | Yi = 1} for Y1, . . . , Yn, then

µY,L = pL(0) +

K∑
x=1

(pL(x)− pL(x− 1)) = pL(K)

µY,L = pU (0) +

K∑
x=1

(pU (x)− pU (x− 1)) = pU (K)

by evaluating the telescoping sum, and [µY,L;µY,U ] coincides with the exact confidence

interval [pL(K); pU (K)] for a binomial probability q, for which conservativeness holds by

definition.

5.5.3 The Two-sided Stringer Bound in Different Scenarios

We investigate the two-sided Stringer bounds [µY,L;µY,U ] under different definitions of a

confidence interval [pL(x); pU (x)] for a binomial probability p. Especially, we would like

to exploit that in the case of an audit, prior information on the misstatement probability

is frequently available and investigate the performance of the two-sided Stringer bounds

under the use of shortest confidence intervals for a binomial probability under prior

information from Chapter 2. In particular, we look at two important special cases: the

case that only taintings of zero are observed and the case that exactly one misstatement

is detected with the maximum possible tainting of 1.

5.5.3.1 The Case of Zero Non-zero Values

In the case of the two-sided Clopper & Pearson interval for the error probability p, the

two-sided Stringer bound if only values of 0 are observed is

[µY,L;µY,U ] = [pL(0); pU (0)] . (5.2)
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The conservativeness of Eq. (5.2) in the case of using an exact confidence interval for a

probability is obvious from Proposition 5.3. In the case of using the confidence interval

by Clopper & Pearson (1934), the interval becomes

[µY,L;µY,U ] =

[
0; zBeta(1,n)

(
1 + γ

2

)]
,

where zBeta(1,n) ((1 + γ)/2) is the (1 + γ)/2 · 100 %-quantile of the beta distribution

Beta(1, n). A plot of the upper bound zBeta(1,n) ((1 + γ)/2) under the Clopper & Pearson

interval as a function of the sample size n is shown on the left-hand side of Fig. 5.1, where

γ = 0.9. Since the lower bound of the two-sided Stringer interval in this case amounts

to 0, the upper bound is equal to the length of the interval. The bound is decreasing,

approaches 0 as the sample size n decreases, drops quickly for n approaching 20 and is

already quite close to 0 for a sample size of more than n = 100. In the case of using

the shortest exact confidence interval for the error probability p, the lower bound of the

two-sided Stringer interval takes the value 0 as well. The right-hand side of Fig. 5.1

shows the difference between the upper bound of the two-sided Stringer interval under

the use of the Clopper & Pearson interval for p and the shortest confidence interval for

p for various prior information if 0 misstatements are observed. In the case of a uniform

prior Unif(0, 1), the upper bound, which for 0 errors equals the length of the two-sided

Stringer interval, is close to the one emanating from the Stringer interval under the

use of the Clopper & Pearson bounds. While it is the closest to the Clopper & Pearson

bound from all investigated prior information types, it is smaller for sample sizes 1, . . . , 6

and 8, . . . , 17 and more conservative otherwise. All other prior information distributions

displayed in the right-hand side of Fig. 5.1 deliver smaller upper Stringer bounds than

the Clopper & Pearson bound. The gain is considerable for small sample sizes and less so

for larger n. A huge gain in length can be obtained by considering the prior information

Unif(0, 0.1) and even more Unif(0, 0.05), the latter being the best performing of the

considered prior information for sample sizes up to about n = 40.

Other heavily right-skewed beta prior information distributions Beta(a, 1) with a =

0.04576, 0.03517, 0.02693 are not shown in the plot, for they are hardly distinguishable

from the curve produced by Beta(0.06546, 1).

5.5.3.2 Minimum Sample Sizes if only Values of Zero are Expected

Guidelines for audit sampling often give recommendations about the required minimum

sample size based on the assumption of observing no misstatements in the sample. Ta-

ble 5.2 shows the minimum sample sizes n in dependence of the magnitude of the tolerable
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Figure 5.1: Upper bound of two-sided Stringer interval of level γ = 0.9 under 0 successes (left-
hand side) and difference between the upper Clopper & Pearson bound and the
upper two-sided confidence limit under prior information (right-hand side).

misstatement if two-sided Stringer bounds of level 90 % are used for inference. The given

sample sizes are calculated such that the upper bound µU,Y of the two-sided Stringer

interval does not exceed the tolerable misstatement. In this case, the investigated audit

population would be accepted if 0 errors are detected in the sample. As soon as at least

one error is found, the population cannot be accepted based on the given sample. The

levels for the tolerable misstatement listed in Table 5.2 are 0.1, 0.05, 0.03, 0.02. For ex-

ample, the minimum sample size that would yield an upper bound below 3 % under the

use of the Clopper & Pearson interval for p is 99. For the minimum volume confidence in-

terval with prior Unif(0, 1), the sample sizes required are one higher than for the Clopper

& Pearson interval for all of the investigated tolerable misstatement levels. Evidently, the

confidence interval applying Unif(0, 1), though producing the minimum volume by weigh-

ing over all possible number of successes x = 0, 1, . . . , n, does not produce mimimum

length of the confidence interval if x = 0 for most sample sizes. The required sample sizes

are considerably smaller if certain other confidence intervals for p with prior information

are used. The uniform prior on [0; 0.05] means a misspecification in prior information

if the true misstatement is higher than 0.05, which is why the minimum sample sizes

of 1 for the misstatements 0.05 and 0.1 should be handled with care. For a tolerable

misstatement of 0.03 though, the minimum volume confidence interval under the uni-

form prior [0; 0.05] yields a considerably low minimum sample size of n = 76. The prior

distributions Beta(1, 10.32) and Beta(0.06546, 1) both reflect beta distributions with 0.2

as the 90 %-quantile, the distributions Beta(1, 21.85) and Beta(0.04576, 1) beta distribu-

tions with 90 %-quantile 0.1, the distributions Beta(1, 44.89) and Beta(0.03517, 1) beta

distributions with 90 %-quantile 0.05, the distributions Beta(1, 114) and Beta(0.02693, 1)

beta distributions with 90 %-quantile 0.02, where all have a density which is decreas-

ing on [0; 1]. Hence, beta distributions of the form Beta(1, b) with high b as well as of
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Table 5.2: Minimum sample sizes of the two-sided Stringer interval under a variety of prior in-
formation in the minimum volume confidence interval for a probability for confidence
level γ = 0.9.

prior information on p
tolerable misstatement
0.1 0.05 0.03 0.02

none (Clopper & Pearson two-sided) 29 59 99 149
Unif(0, 1) 30 60 100 150
Unif(0, 0.1) 1 47 98 150
Unif(0, 0.05) 1 1 76 134
Beta(1, 10.32) 23 51 90 140
Beta(1, 21.85) 22 45 77 129
Beta(1, 44.89) 22 45 77 120
Beta(1, 114) 22 45 76 114
Beta(0.06546, 1) 22 46 77 116
Beta(0.04576, 1) 22 46 77 115
Beta(0.03517, 1) 22 46 77 116
Beta(0.02693, 1) 22 46 77 116
none (Clopper & Pearson one-sided) 22 45 76 114

the form Beta(a, 1) with low a represent extreme prior distributions in terms of skew-

ness. Yet, between the priors Beta(0.06546, 1), Beta(0.04576, 1), Beta(0.03517, 1), and

Beta(0.02693, 1), there is hardly a difference in terms of the minimum sample size. That

for a tolerable misstatement of 0.02 the prior distribution Beta(0.04576, 1) yields a min-

imum sample size of 115, which is one smaller than for the more extreme distributions

Beta(0.03517, 1) and Beta(0.02693, 1), must be one more consequence of the discreteness

of the problem. The smallest minimum sample sizes among the observed scenarios are

obtained under the Beta(1, 114) distribution. This setting represents a prior distribu-

tion which is so extremely right-skewed that the resulting upper bound of the two-sided

confidence interval is close to the one-sided upper Clopper & Pearson bound, which is

the smallest exact upper bound for a binomial probability. The latter is reported for

reasons of comparison in Table 5.2 and we can see that it produces the same minimum

sample sizes as the Beta(1, 114) prior distribution.

5.5.3.3 The Case of one Non-zero Observation

We investigate another important special case, when exactly one observation > 0 is

observed in the sample. In this case, the two-sided Stringer interval becomes

[µY,L;µY,U ] = [pL(0) + (pL(1)− pL(0))Y(n,n); pU (0) + (pU (1)− pU (0))Y(n,n)] (5.3)
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5 Confidence Intervals in Audit Populations

and we can see that the upper and lower bounds are dependent on the value Y(n,n) > 0

of the one observation which is greater than zero in the sample. From Eq. (5.3) we

can easily see that the upper bound µY,U and lower bound µY,L are monotonous in the

value Y(n,n). For a conservative assessment, we consider for Y(n,n) the most extreme

value, which is 1, since Y(n,n) is assumed to be a random variable ranging between 0

and 1 with probability 1, see the assumption in Definition 5.2. The Stringer interval

coincides with the confidence interval [pL(1); pU (1)] for a binomial probability if one

success is observed, i. e. the same interval which an evaluation method for attribute

sampling would have yielded. The conservativeness of (5.3) is obvious from the fact

that the interval is equal to an exact confidence interval for a probability as well as from

Proposition 5.3.

In the case that the two-sided Clopper & Pearson (1934) confidence interval for the

probability p = P(Y > 0) is used, we obtain the interval

[pL(1); pU (1)] =

[
zBeta(1,n)

(
1− γ

2

)
; zBeta(2,n−1)

(
1 + γ

2

)]
,

see Eq. (2.3).

A comparison between the lower (left-hand side of the figure) and upper bounds (right-

hand side of the figure) of the two-sided level 90 % confidence intervals under the use

of the Clopper & Pearson interval and several minimum volume confidence intervals for

p is shown in Fig. 5.2. The lower bounds of the intervals using the other investigated

prior information distributions (among them Unif(0, 0.1), Unif(0, 0.05), Beta(1, 10.32),

Beta(0.06546, 1)) are omitted from the plot, for they are equal to the lower bound under

the prior information Unif(0, 1). The upper bounds of the Clopper & Pearson confidence

interval and the one using the uniform prior on [0; 1] are hardly distinguishable. The

right-skewed distributions Beta(1, 10.32), and Beta(0.06546, 1) achieve visibly smaller

upper bounds than the uniform prior on [0; 1]. The bounds under the distributions

Unif(0, 0.1) and Unif(0, 0.05) are hardly distinguishable from the right-skewed priors

from a sample size of about 37 on and 74 on, respectively. However, they clearly display

the cut-offs at 0.1 and 0.05 for small sample sizes.

In contrast to the one-sided intervals, two-sided intervals provide the chance of a rejection

of the population. If by using the minimum volume confidence intervals for a probability

in the two-sided Stringer bounds one tainting equal to 1 would have been discovered and

otherwise zero values in a sample of size n ≤ 5, the population would have been rejected

if the tolerable misstatement were ≤ 0.02. In contrast, the two-sided Stringer interval

under the use of the Clopper & Pearson confidence interval for p would have left the
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Lower bounds of the Stringer interval: Upper bounds of the Stringer interval:
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Figure 5.2: Lower and upper bound of two-sided Stringer interval of level γ = 0.9 if one obser-
vation of value 1 is discovered and values of 0 otherwise.

decision maker indifferent already from a sample size of n = 3 onwards.

5.5.3.4 Minimum Sample Sizes if one Non-zero Observation is Expected

We investigate the required sample sizes that are minimally necessary such that the

auditor has the chance of accepting the population even if one observation > 0 is ob-

served. This is possible when the upper bound of the two-sided Stringer bound does not

exceed the tolerable misstatement. As in Section 5.5.3.3, we assume the worst case of

a value of 1 for the non-zero observation. The results of the analysis are summarised

in Table 5.3 for a variety of prior information distributions under a confidence level of

γ = 0.9. Naturally, the required minimum sample sizes if one observation greater than 0

is observed are larger than in the case of observing only zeros. The upper bound under

the same sample size n is pU (1)− pU (0) > 0 larger if one value of 1 is detected and only

values of 0 otherwise. Thus it is more difficult to achieve that the upper bound does not

exceed a prescribed threshold. For example, if the tolerable misstatement is given as 5 %

and if it should still be possible to find one non-zero observation of a magnitude up to

1, the sample should have at least a size of 91 if no prior information on p is employed,

whereas it can drop to 77 under the use of some highly right-skewed prior information

distributions. 77 is the sample size that the one-sided exact confidence interval for p

would also demand to be able to lead to an acceptance of the population, which is the

best possible case, given an exact confidence interval for p is used.

While for the tolerable misstatements 0.1 and 0.05, the Stringer bound under the use of

the minimum volume confidence interval for p with prior information Unif(0, 1) delivers

slightly smaller sample sizes (45 and 91, respectively) than under the use of the two-sided
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5 Confidence Intervals in Audit Populations

Table 5.3: Minimum sample sizes of the two-sided Stringer interval under a variety of prior in-
formation in the minimum volume confidence interval for a probability for confidence
level γ = 0.9 if one observation of 1 is observed in the sample and 0 otherwise.

prior information on p
tolerable misstatement
0.1 0.05 0.03 0.02

none (Clopper & Pearson two-sided) 46 93 157 236
Unif(0, 1) 45 91 165 248
Unif(0, 0.1) 1 83 165 248
Unif(0, 0.05) 1 1 131 219
Beta(1, 10.32) 40 83 142 218
Beta(1, 21.85) 38 78 142 216
Beta(1, 44.89) 38 77 131 204
Beta(1, 114) 38 77 129 194
Beta(0.06546, 1) 40 78 131 198
Beta(0.04576, 1) 39 78 131 198
Beta(0.03517, 1) 39 78 131 198
Beta(0.02693, 1) 39 78 131 198
none (Clopper & Pearson one-sided) 38 77 129 194

Clopper & Pearson confidence interval (46 and 93, respectively), the Clopper & Pearson

confidence intervals gets slightly advantageous for tolerable misstatements of 0.03 and

0.02.

5.6 Simulation Study

We conduct a simulation study to investigate the performance of the two-sided Stringer

interval for inference on the mean of a zero-inflated variable Y on [0; 1] in the model (5.1).

With the variable X between 0 and 1 with probability 0 and Z being either 0 or 1, Y

also takes values between 0 and 1 with probability 1, i. e. P(0 ≤ Y ≤ 1) = 1.

For X, we use the beta distribution Beta(a, b) on the support [0; 1] as a model. By

choosing the shape parameters of the beta distribution as a = 0.5 and b = 2, we obtain

a decreasing and right-skewed beta distribution, see Proposition 3.11. This choice is

supposed to model the positive skewness of non-zero taintings in an audit population.

With the beta distribution Beta(a, b) having expected value a/(a+ b), we obtain

E[X] = E[Y |Y > 0] =
a

a+ b
=

0.5

0.5 + 2
= 0.2

as the conditional mean of Y , given Y > 0. With the independence of Z and X in

model (5.1) we obtain the expected value of Y as

E[Y ] = E[Z]E[X] = p
a

a+ b
. (5.4)
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We investigate the Stringer bound under Z ∼ Bi(1, p) in model (5.1), where p is chosen

to be 5 % and 10 %. In the first case, Y takes the value 0 with probability 95 %, and

a value > 0 with probability 5 % and its expected value is 0.05 · 0.2 = 0.01 by formula

(5.4). In the second case, Y has mean 0.1 · 0.2 = 0.02.

Figure 5.3 displays the average length of the two-sided level 90 % Stringer interval using

the minimum volume confidence interval for a probability relative to the average length

of the Stringer interval using the Clopper & Pearson confidence interval for a probability

as a function of the sample size n. Sample sizes between 5 and 150 in intervals of 5 are

considered. 10 000 simulation runs per sample size n were executed. The simulation

was performed in R. We consider model (5.1) with p = 0.05, 0.1 in Z ∼ Bi(1, p) and

Y |Y > 0 ∼ Beta(0.5, 2). Under the prior information Unif(0, 1), the Stringer interval is

slightly wider than the Stringer interval using the Clopper & Pearson bounds for several

sample sizes, but mostly comparable. The largest decrease in terms of length can be

achieved when using the uniform prior on [0; 0.05] for p. However, with p being 0.05 in

average by definition, the analysis of this prior distribution is of little practical use. The

uniform prior on [0; 0.1] also produces rather narrow Stringer bounds for sample sizes

up to about 40. The prior information Beta(1, 10.32) generates Stringer bounds that are

in average between 20 % and 9 % smaller than the Stringer bound under the Clopper &

Pearson interval, and Beta(1, 21.85) brings an improvement between 21 % and 13 %. The

distributions Beta(1, 44.89) and Beta(0.06546, 1) show enhancements between 20 % and

18 % (Beta(1, 44.89)) and 20 % and 16 % (Beta(0.06546, 1)) for the investigated sample

sizes.

We examine the coverage probability of the two-sided Stringer interval in model (5.1)

with Y |Y > 0 ∼ Beta(0.5, 2) and Z ∼ Bi(1, p). The actual coverage probability under

a nominal confidence level of γ = 0.9 for p = 0.05, 0.1 is shown in Fig. 5.4 under various

prior information on p. In all investigated cases, the two-sided Stringer interval is very

conservative, producing coverage probabilities larger than 96 % for a nominal confidence

level of 90 %. In the case p = 0.05, the most conservative Stringer interval for sample

sizes up to about 120 is obtained by making use of the Clopper & Pearson confidence

interval for a probability. The Stringer bounds applying the minimum volume confidence

interval for a probability show similar behaviour in terms of coverage probability for

sample sizes n up to about 60. For larger sample sizes, they drift apart with prior

distributions Unif(0, 1) and Unif(0, 0.1) showing the least conservative behaviour and

the coverage probability of the Beta(0.06546, 1) prior even exceeding the one under

the Clopper & Pearson interval for sample sizes larger than about 120. In the case
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Figure 5.3: Average length of the Stringer interval using the minimum volume confidence in-
terval for a probability relative to the average length of the Stringer interval using
the Clopper & Pearson (C & P) confidence interval for a probability as a function
of the sample size n for confidence level γ = 0.9. The stipulated model is (5.1) with
p = 0.05, 0.1 in Z ∼ Bi(1, p) and Y |Y > 0 ∼ Beta(0.5, 2).
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of p = 0.1, drifting apart starts earlier at sample sizes around 30. Again, the prior

Unif(0, 1) produces the least conservative results, whereas Unif(0, 0.05) and the priors

Beta(1, 44.89) and Beta(0.06546, 1) are extremely conservative for larger sample sizes

with coverage probabilities frequently larger than 99 %.

Figure 5.5 shows a plot of the actual coverage probability of the two-sided Stringer

interval for samples of sizes n = 50 and n = 100 as a function of the error proportion

p in model (5.1) with Z ∼ Bi(1, p) and Y |Y > 0 ∼ Beta(0.5, 2) for different prior

information. The Clopper & Pearson confidence interval in the Stringer bound as well

as the uniform prior on [0; 1] and the right-skewed priors all show coverage probabilities

of more than 0.96 for a prescribed nominal level of 0.9 and are hence overly conservative.

The coverage probability of Unif(0, 0.1) and Unif(0, 0.05) drops below 0.9 for p larger

than about 0.35 and 0.22, respectively, for sample size n = 50. For n = 100, their

coverage probability drops below 0.9 for p larger than about 0.3 and 0.18, respectively.

However, both prior distributions express prior believes of p not exceeding 0.1 and 0.05,

respectively, which is why larger values than these are not deemed likely anyway. It has

to be remarked, though, that even for p falling outside the range of [0; 0.1] or [0; 0.05], the

Stringer bound remains conservative for a while. The general behaviour of the coverage

probability of the two-sided Stringer bound under the investigated prior information

distributions is not remarkedly different between the sample sizes n = 50 and n = 100.

It can be concluded that the two-sided Stringer bound is conservative in all analysed

cases unless the assumption of p ∼ Unif(0, u), 0 < u < 1, is far from being valid.

We investigate the probabilities for the different decisions that can be based on the

Stringer confidence intervals. Indifference occurs when the confidence interval contains

the tolerable misstatement; acceptance when the upper bound of the confidence in-

terval does not exceed the tolerable misstatement; rejection when the lower bound of

the confidence interval is larger than the tolerable misstatement. Figure 5.6 illustrates

the indifference (first row), acceptance (second row) and rejection probabilities (third

row) of the Stringer interval for the tolerable misstatements 0.05 and 0.1 for confidence

level γ = 0.9 and sample size n = 100 as a function of the true misstatement proba-

bility p = P(Y > 0). The underlying error model follows (5.1) with Z ∼ Bi(1, p) and

Y |Y > 0 ∼ Beta(0.5, 2). We consider the two-sided Stringer interval under the two-sided

Clopper & Pearson interval as well as under the minimum volume confidence interval for

a probability with prior information Unif(0, 1), Unif(0, 0.1), Unif(0, 0.05), Beta(1, 10.32),

Beta(1, 21.85), Beta(1, 44.89), Beta(0.06546, 1) as well as the one-sided Stringer interval

using the one-sided exact confidence interval for a probability from Eq. (2.4). The indif-
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Figure 5.4: Coverage probability of two-sided Stringer interval using the minimum volume con-
fidence interval for a probability and the Clopper & Pearson interval as a function of
the sample size n for confidence level γ = 0.9 under model (5.1) with Z ∼ Bi(1, p)
and Y |Y > 0 ∼ Beta(0.5, 2).
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Figure 5.5: Coverage probability of Stringer interval using the minimum volume confidence
interval for a probability and the Clopper & Pearson (C & P) interval as a function
of the error proportion p for confidence level γ = 0.9 under model (5.1) with p =
0.05, 0.1 in Z ∼ Bi(1, p) and Y |Y > 0 ∼ Beta(0.5, 2).
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Figure 5.6: Decision probabilities of Stringer interval using the minimum volume confidence
interval for a probability and the Clopper & Pearson (C & P) interval as a function
of the error proportion p for confidence level γ = 0.9 and sample size n = 100
under model (5.1) with Z ∼ Bi(1, p) and Y |Y > 0 ∼ Beta(0.5, 2) for tolerable
misstatements 0.05 and 0.1.
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ference probability reaches its maximum, which is ≥ 0.9, at the misstatement probability

under which the average misstatement is the tolerable misstatement. Since they increase

early when approaching their maximum value in p, the two-sided Clopper & Pearson

and the minimum volume confidence interval under the uniform prior Unif(0, 1) show

a worse behaviour in terms of indifference probability than all other Stringer intervals.

These show lower indifference probabilities for values of p smaller than 0.05 and 0.01,

respectively, and are close to the one-sided Stringer interval using the one-sided exact

confidence interval for a probability. Under the investigated prior information distri-

butions, the two-sided Stringer interval under Unif(0, 1) and the two-sided Clopper &

Pearson interval are, however, advantageous for larger misstatement rates. The most

unfavourable behaviour in terms of indifference probability for larger p is shown by the

prior information distributions Unif(0, 0.1) and Beta(1, 44.89) for a tolerable misstate-

ment of 0.05 and Beta(1, 44.89) and Beta(1, 21.85) for a tolerable misstatement of 0.1.

The one-sided Stringer interval clearly always leaves the decision maker indifferent if the

true misstatement rate exceeds a certain threshold.

In terms of acceptance probability, the two-sided Stringer interval under the uniform

prior information on [0; 1] as well as under the two-sided Clopper & Pearson interval

show the least favourable behaviour. The prior information distributions Unif(0, 0.5)

and Unif(0, 0.1) lead to an acceptance of the population for tolerable misstatements of

0.05 and 0.1, respectively, per definitionem. All other Stringer interval types processing

more meaningful prior information distributions come with acceptance probabilities that

are very close to the one of the one-sided Stringer interval. From about p = 0.3 on in

the case of the tolerable misstatement 0.05, and p = 0.6 on in the case of the tolerable

misstatement 0.1, the acceptance probabilities are virtually 0.

The rejection probabilities start being larger than 0 for misstatement rates p of about 0.2

in the case of the tolerable misstatement 0.05 and about 0.5 in the case of the tolerable

misstatement 0.1. To the confidence intervals for a probability that lead to a Stringer

interval with the largest rejection probabilities belong the two-sided Clopper & Pearson

interval and the minimum volume confidence interval under prior information Unif(0, 1),

Beta(0.06546, 1) and – at least for a tolerable misstatement of 0.05 – also Beta(1, 10.32).

The Stringer intervals under the prior information Beta(1, 21.85), Beta(1, 44.89) and in

the case of a tolerable misstatement of 0.05 also Unif(0, 1), more rarely lead to the rejec-

tion of the population. The one-sided Stringer interval with an upper bound naturally

never leads to a rejection of the population.

While most other Stringer interval types that come with advantages in one of the de-
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cision types have disadvantages in another, the Stringer interval under the minimum

volume confidence interval with prior information Beta(0.06546, 1) shows a good overall

performance.

5.7 Dealing with both Under- and Overstatement

The previous sections dealt with an overstatement model only, that is, the book value

was assumed to be larger than or equal to the de facto value. In this section, we

formulate an approach that could be useful when the purpose is to simultaneously treat

both overstatement and understatement errors.

Let W ≥ 0 denote the de facto value and U > 0 the book value. Let W = Q · U ,

i. e. Q = W/U = 1 − (U − W )/U . Since W ≥ 0 and U > 0, it follows Q ≥ 0. We

frequently encounter an equality of book and de facto values, which is why Q is one-

inflated, i. e. takes a considerable amount of values of 1. The case Q < 1 reflects the

case of overstatement errors. The case Q > 1 reflects understatement errors and is not

covered by the model (5.1) that was investigated in the previous sections.

The expected value of Q is given by

µQ = E[Q] = E[Q · 1Q>1] + 1 · P(Q = 1) + E[Q · 1Q<1]

= E[Q|Q > 1] · P(Q > 1) + P(Q = 1) + E[Q|Q < 1] · P(Q < 1).

Under the assumption that Q and U are independent we have µW = µQ · µU . The total

sum of de facto values then results to

N∑
i=1

Wi = NµW = µQ ·NµU = µQ ·
N∑
i=1

Ui.

The implications of the approach will not be investigated further here. More steps are

necessary to fully decide on the usefulness of the approach, among them the formulation

of an error model as well as the understanding to which extent the approach relies on

monetary unit sampling.

5.8 Conclusion and Outlook

We have proposed a two-sided confidence interval of Stringer type based on the one-

sided bound introduced by Stringer (1963) that is supposed to work especially well in

zero-inflated populations. In contrast to the one-sided bound, the two-sided confidence
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interval allows the rejection of a population at the cost of being able to accept less

often. The two-sided Stringer confidence interval inherits some important features from

its one-sided version: i) Even if only values of zero are observed, the upper bound µU

is always greater than zero. ii) If applied to an audit population, the same lower and

upper confidence bounds are delivered if no errors are found in the sample, irrespective

of the sample book values.

As an instance of a combined attribute and variable sampling (CAV) bound, the two-

sided Stringer interval combines features of both attribute and variable sampling, where

the attribute sampling part is reflected by the confidence limits for a proportion that are

used in the formula for the bounds. We have made use of the exact minimum volume

confidence interval for a probability under prior information, where prior information

is imposed on the misstatement probability p. Misstatements in the audit context are

frequently measured in terms of the tainting Y = (U−W )/U of an item, which is defined

as the relative deviation of the de facto value W from the book value U . The model

we have proposed assumes the tainting to range between 0 and 1, where the value 0 is

taken by Y with a usually high probability 1−p (zero-inflation) and values greater than

0 with probability p. Only the overstatement case is covered by the model, which means

that the de facto value is assumed to be not larger than the book value.

The approach of applying the minimum volume confidence intervals for a probability

delivers markedly narrower Stringer bounds than the Clopper & Pearson confidence

interval for a probability inserted in the Stringer bounds under many realistic prior

information choices. The minimum sample size required to lead to an acceptance of the

population can be reduced not rarely more than 20 % in comparison to the two-sided

Stringer interval obtained by means of the Clopper & Pearson bounds.

In some important special cases in which the distribution of Y is concentrated on two

points, we have theoretically proven in Proposition 5.3 that the two-sided Stringer con-

fidence interval is conservative. A solid theoretical framework supporting the two-sided

Stringer bound and its conservativeness in arbitrary circumstances, however, is missing.

A simulation study has been conducted that indicates high conservativeness of the two-

sided interval. This means, the nominal confidence level is mostly by far exceeded by

the actual coverage probability unless the prior information is clearly misspecified. The

conditional distribution of Y |Y > 0 in the simulation study has been chosen to follow

a right-skewed beta distribution. This is considered a plausible model for an auditing

population, which has frequently heavily skewed tainting distributions.

The two-sided Stringer bounds under certain right-skewed prior distributions on the

155



5 Confidence Intervals in Audit Populations

misstatement probability reaches properties that come very close to the best one-sided

Stringer confidence interval. The heavily right-skewed prior information distribution

Beta(0.06546, 1) shows particulary satisfying indifference and acceptance probabilities,

but in contrast to the one-sided interval has the advantage that it can lead to a rejection

of the population.

The proposed two-sided Stringer interval cannot only be applied to auditing popula-

tions. Situations where the random variable of interest ranges between 0 and 1 and the

value 0 is taken with a comparably large probability are potential applications of the

two-sided Stringer interval, as accident costs in insurance or earthquake measurements.

The performance of the two-sided Stringer bounds in real data applications would be

interesting to explore.

Several things remain to be studied with respect to the two-sided Stringer confidence

interval. Instead of binomial limits, the one-sided Stringer bound is often applied using

Poisson limits in Definition 5.1, see, for example, Guy et al. (2002) or Goodfellow et al.

(1974). The two-sided Stringer confidence interval should be investigated under the use

of two-sided Poisson confidence intervals as a potential alternative to the binomial based

Stringer bounds. Prior information can be exploited in a similar way as in the case of

the binomial distribution by means of the minimum volume confidence intervals for a

Poisson parameter under prior information as described in Chapter 4. In addition, the

Poisson distribution based Stringer interval might reveal important characteristics about

the asymptotic behaviour of the Stringer bounds under the use of the binomial limits.

Loebbecke & Neter (1975) mention that CAV bounds might be most appropriate, among

other arguments, when there is the danger of outliers in the population, by which they

mean “a major and isolated aberration from the rest of the data set” (Loebbecke &

Neter 1975, p. 40). The robustness and conservativeness of two-sided Stringer bounds

should be explored in the case of outliers.

In many cases, the Stringer bound will not deliver a decision in the first place, which

is the case when the tolerable error rate falls between the lower and upper confidence

limit. This will create the necessity of drawing another sample to increase the chance of

achieving a decision in the second round. Prior knowledge obtained in the first step of

the procedure could be exploited when evaluating the second part of the sample. The

characteristics of this multi-stage procedure as well as the potentials that arise from an

appropriate exploitation of knowledge about the first sample part need to be explored.

The one-sided as well as the here proposed two-sided Stringer interval was developed
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5.8 Conclusion and Outlook

particularly for the case of overstatement errors in auditing, as appears frequently in ac-

counts receivable populations. It is not applicable when also understatement is present.

Section 5.7 sketches a way how over- and understatement errors could be treated simul-

taneously. The idea should be pursued.
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5.A Appendix

5.A.1 Proof of Proposition 5.3

Let K = {1 ≤ i ≤ n | Yi = t}. Then K has the binomial distribution Bi(n, q). We have

Y(1,n) = . . . = Y(n−K,n) = s, Y(n−K+1,n) = . . . = Y(n,n) = t. Hence

µY,L = pL(0) +

K∑
j=1

(
pL(j)− pL(j − 1)

)
t+

n∑
j=K+1

(
pL(j)− pL(j − 1)

)
s

= pL(0) + t(pL(K)− pL(0)) + s(pL(n)− pL(K))

= pL(0)(1− t) + pL(K)(t− s) + pL(n)s

= p0(1− t) + pL(K)(t− s) + pL(n)s

and analogously

µY,U = pU (0) +

K∑
j=1

(
pU (j)− pU (j − 1)

)
t+

n∑
j=K+1

(
pU (j)− pU (j − 1)

)
s

= pU (0) + t(pU (K)− pU (0)) + s(pU (n)− pU (K))

= pU (0)(1− t) + pU (K)(t− s) + pU (n)s

= pU (0)(1− t) + pU (K)(t− s) + p1s.

We have µY = E[Y ] = (1 − q)s + qt = s + (t − s)q. Since p0 ≤ pL(x) ≤ pU (x) ≤ p1 for

all x ∈ {0, . . . , n}, we obtain

P (µY,L ≤ µY ≤ µY,U )

= P
(
p0(1− t) + pL(K)(t− s) + pL(n)s ≤ s+ (t− s)q

≤ pU (0)(1− t) + pU (K)(t− s) + p1s
)

≥ P
(
p0(1− t) + pL(K)(t− s) + p1s ≤ s+ (t− s)q

≤ p0(1− t) + pU (K)(t− s) + p1s
)

= P

(
pL(K) ≤ (1− p1)s− p0(1− t)

t− s
+ q ≤ pU (K)

)
.

In the case (1− p1)s = p0(1− t), the nominator in the above term results to 0, and we

obtain the inequality

P (µY,L ≤ µY ≤ µY,U ) ≥ P (pL(K) ≤ q ≤ pU (K)) .

The assertion of the proposition follows since P (pL(K) ≤ q ≤ pU (K)) ≥ γ by definition

of the exact level γ confidence limits pL(K) and pU (K) for the parameter q of the

binomial distribution Bi(n, q).
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6 Exponential Smoothing with Covariates

with Application in Electricity Load

Forecasting

6.1 Introduction

Exponential smoothing (ES) traces back to the work of Robert G. Brown, who de-

veloped the basics of the method in the 1950s for purposes of inventory management

(Brown 1959, 1963). Methods for smoothing of trends and seasonal data were inde-

pendently developed by Charles C. Holt, see Holt (1957). With Winters (1960) testing

Holt’s method with empirical data, the methods gained publicity as the Holt-Winters

forecasting system, see Gardner (2006). This work provided the scheme for further ex-

tensions, in particular, the damped additive trend considered by Gardner & McKenzie

(1985), the multiplicative or exponential trend introduced by Pegels (1969) and extended

to a damped version by Taylor (2003a). Gardner (1985, 2006) provides a detailed survey

of the historical evolution and the various facets of ES.

ES was often considered rather as a heuristic forecasting technique without a precise

model foundation guaranteeing optimality. However, relatively early several authors

presented model foundations for ES, in particular by regression or ARIMA models.

In this regard, the linear ES versions all have an equivalent ARIMA model, see e. g.

Gardner & McKenzie (1988) and Yar & Chatfield (1990). The essential step towards

a solid model framework was achieved with the single source of error (SSOE) state-

space scheme presented by Ord et al. (1997). In particular, the state-space formulation

allows to demonstrate the optimality of the classical ES predictors by deriving them as

conditional expectations in the SSOE model.

Hyndman et al. (2002) elaborated the SSOE approach to a broad taxonomy of ES

methods. These include cross combinations of additive/exponential (damped) trend,

additive/multiplicative seasonality and additive/multiplicative error. Extensions of this

scheme are due to Taylor (2003a), who added a damped version of the multiplicative
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6 Exponential Smoothing with Covariates with Application in Electricity Load Forecasting

trend, and Taylor (2003b, 2010), who involved a second and third seasonal component

and applied the model to half-hourly electricity load data.

An appealing characteristic of an ES method is its simplicity; the structure can be

formulated in a transparent and interpretable way. This characteristic becomes partially

lost when considering the single source of error (SSOE) formulation for ES instead,

as presented in the subsequent section, but the advantages of having a model surely

overweigh this minor disadvantage.

The formulation of ES methods including covariates is relatively new. Wang (2006)

coined exponential smoothing with covariates (ESCov) by introducing into the obser-

vation equation of the SSOE model an additive term depending linearly on exogenous

variables. An innovation state-space models with exogenous variables (practically ESCov

with a slightly different treatment of the damping parameter) was applied by Athana-

sopoulos & Hyndman (2008). In ARIMA methods, the inclusion of covariates dates

back longer than for ES. The ARIMAX model, where the X stands for the availability

of exogenous variables in the model, was initiated by Box & Tiao (1975).

In the following sections, we extent the model of Wang (2006) to multiple seasonalities

and apply it to forecast hourly electricity load. The study is structured as follows: The

general SSOE model for ESCov is presented in Section 6.2. Section 6.3 provides specific

versions of the ESCov SSOE model. The empirical fitting of ESCov SSOE models

and respective empirical forecasting techniques are explained in Sections 6.4 and 6.6.

Maximum likelihood estimation is dealt with in Section 6.5. Section 6.7 explains how to

model the covariate influence if is expected to be non-constant over time. Section 6.8 is

concerned with the topic of renormalising the seasonal component. Section 6.9 applies

the fitting and forecasting techniques provided in Sections 6.4 and 6.6 to hourly electricity

consumption data of the customers of an energy vendor in some provinces of Emilia-

Romagna, an Italian region. We provide some insights into the implementation of the

ESCov model in R and associated numerical difficulties in Section 6.10.

6.2 State-space Models for Exponential Smoothing with

Covariates

In this section we revise the SSOE state-space model that was found to be the statis-

tical model underpinning ESCov by Wang (2006). The SSOE model for ESCov is an

extension of the SSOE model for ES introduced by Ord et al. (1997). The addition of a
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6.2 State-space Models for Exponential Smoothing with Covariates

linear covariate term by Wang (2006) is supposed to enhance the purely history-based

forecasting method. ESCov therefore can in short be described as a combination of mul-

tiple linear regression with ES where both components are treated simultaneously. The

results of the present and the subsequent sections contain the ES framework without

covariates as a special case. Consequently, all results apply in the absence of covariates

by setting the covariate parameter β = 0.

The essential characteristic of the SSOE model is that it assumes only one source of

error. In comparison to the multiple source of error model, Hyndman et al. (2002) finds

the SSOE model for ES advantageous because it allows that the error-correction form

of the classical ES smoothing equations finds itself in the state transition equations.

Furthermore, both linear and nonlinear cases can be expressed.

Definition 6.1 (SSOE State-space Model for ESCov, Wang (2006)). Let Yt, Yt−1, Yt−2,

. . . be an observed real-valued time series and xt,xt−1,xt−2, . . . ∈ Rk a series of k-valued

covariate vectors. The SSOE state-space model for ESCov is defined by an observation

equation

Yt = fα(ut−1) + β>xt + ξt (6.1)

and a state transition equation

ut = gα(ut−1) + wα(ut−1)ξt, (6.2)

where ut−1 ∈ Rp is a state vector, α ∈ Rq a parameter vector, fα : Rp → R is a

continuously differentiable function and gα, wα : Rp → Rp are continuously differentiable

functions. The error or residual ξt acts as a noise with E[ξt] = 0 in the observation and

in the state transition equation.

The state vector ut−1 substantially influences Yt via the function fα(ut−1) and the

subsequent state ut via the state transition function gα(ut−1). The covariate vector

xt = (xt1, . . . , xtk)
> substantially influences Yt via the linear term β>xt. In an empirical

context, Yt and xt are observable. All other quantities are unobservable or unknown and

have to be estimated from observations Yt.

The SSOE model requires no assumptions on the residuals beyond the basic assumption

E[ξt] = 0, in particular no assumptions on independence or stationarity. Frequently, ξt

is described as a function

ξt = kα(ut−1)εt (6.3)
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of εt with E[εt] = 0 and V [εt] = σ2. Then the type of residual is determined by the

function kα(ut−1). In this study, we consider three types of residuals (ξt):

Additive (homoscedastic) residuals: Let kα ≡ 1 in Eq. (6.3). The residuals (ξt) are

independent and homoscedastic with E[ξt] = 0, V [ξt] = σ2 = V [εt].

Multiplicative (heteroscedastic) residuals: The residuals (ξt) are independent and he-

teroscedastic. They are obtained by a transformation of the baseline residuals εt

with kα(ut−1) = fα(ut−1), and hence ξt = fα(ut−1)εt. The observation equation

becomes

Yt = fα(ut−1)(1 + εt) + β>xt (6.4)

with E[1 + εt] = 1.

Autoregressive residuals of order 1: The residuals (ξt) are dependent and subject to

an AR(1) process, that is, they fulfil

ξt = λξt−1 + εt, where − 1 ≤ λ < 1. (6.5)

Hereby, (εt) are independent and satisfy E[εt] = 0 and V [εt] = σ2
ε .

Ord et al. (1997) give an example where the function kα is a transformation of the

function fα in the form kα(ut−1) = fα(ut−1)γ . The parameter γ ∈ [0; 1] determines

the magnitude of the heteroscedasticity. The additive residuals are a special case of this

formula with γ = 0. Multiplicative residuals are obtained by setting γ = 1. Choosing

γ ∈ (0; 1) covers the area inbetween, which we do not consider in this study.

An essential virtue of SSOE models is to provide a basis for the derivation of the min-

imum mean square error (MMSE) h-step-ahead forecasts Yt+h|t, i. e. the conditional

expectations

Yt+h|t = E[Yt+h|Ht] (6.6)

under the process history Ht = {(ξs)s≤t, (us)s≤t} up to time t. The derivation of the

expressions for the conditional expectation E[Yt+h|Ht] in Eqs. (6.11), (6.13) and (6.18)

rests on the assumption that the residuals (ξs) are the only random drivers of the process,

and that there is a causal relationship between the state vectors and the residuals; that

means, each ut can be expressed as a function ut = ut(t, ξt, ξt−1, . . .) of the errors up

to time t. This property holds under mild regularity conditions for the linear SSOE

model introduced in Definition 6.2, see the discussion by Ord et al. (1997). Although

unproven for the nonlinear case, the high plausibility of the assumption warrants its use

for inference on the conditional expectation.
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6.3 SSOE Models for ESCov under Multiple Seasonality

It is then obvious that the one-step-ahead MMSE forecast for the SSOE model from

Definition 6.1 under independent residuals is

Yt+1|t = E[Yt+1|Ht] = fα(ut) + β>xt+1, (6.7)

and that Yt+1 − Yt+1|t = ξt+1. Therefore, the residual ξt+1 is the forecast error of the

one-step-ahead MMSE forecast made at time t. MMSE forecasts Yt+h|t = E[Yt+h|Ht]
for specific model classes are provided in Sections 6.3.1 and 6.3.2.

6.3 SSOE Models for ESCov under Multiple Seasonality

Taylor (2003b) considers ES with additive (linear) trend and double multiplicative sea-

sonality and Taylor (2010) with triple seasonality. We generalise this approach in the

following respects: admitting covariates, accounting for a damped trend, analogising for

additive seasonality and considering an arbitrary number of seasonalities. The result-

ing schemes are expressed as special cases of the SSOE model for ESCov described in

Section 6.2. The models NT-NS, AT-NS, ADT-NS, NT-AS, AT-AS and ADT-AS from

Table 6.1 can be expressed in form of a linear SSOE state-space model for ESCov, see

Section 6.3.1. The models NT-MS, AT-MS and ADT-MS from Table 6.2 are instances of

a partially linear SSOE state-space model for ESCov, see Section 6.3.2. The exponential

trend models from Table 6.3 neither fit into the scheme described in Section 6.3.1 nor

into the one from Section 6.3.2, and are therefore not considered any further here.

6.3.1 The Linear SSOE Model

The models NT-NS, AT-NS, ADT-NS, NT-AS, AT-AS and ADT-AS in Table 6.1 are

all instances of the general formulation of a linear SSOE state-space model for ESCov

presented in the subsequent definition. In the trend-free models NT, the state vector

ut contains only the level µt in the case of NS. In the case of AS or MS, it additionally

contains for each seasonal component i = 1, . . . ,m with seasonal lag di the relevant

seasonal parameters ei,t, . . . , ei,t−di+1. The parameter vector α consists only of the level

smoothing coefficient α1 for NS and additionally of the m seasonal smoothing coefficients

α1,3, . . . , αm,3 for AS or MS. In the linear trend models AT, the state vector contains

additionally the trend increment ∆t, and the parameter vector α contains additionally

the smoothing coefficient α2 of the trend increment. The damped trend models ADT

have the same state vector as the undamped models AT, the parameter vector α contains
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Table 6.1: Linear SSOE models for exponential smoothing with covariates

model observation equation, forecast state transition equations

NT-NS
Yt = µt−1 + β>xt + ξt

Yt+h|t = µt + β>xt+h

µt = µt−1 + α1ξt

AT-NS
Yt = µt−1 + ∆t−1 + β>xt + ξt

Yt+h|t = µt + h∆t + β>xt+h

µt = µt−1 + ∆t−1 + α1ξt

∆t = ∆t−1 + α1α2ξt

ADT-NS
Yt = µt−1 + φ∆t−1 + β>xt + ξt

Yt+h|t = µt +
∑h
j=1 φ

j∆t + β>xt+h

µt = µt−1 + φ∆t−1 + α1ξt

∆t = φ∆t−1 + α1α2ξt

NT-AS
Yt = µt−1 +

∑m
i=1 ei,t−di + β>xt + ξt

Yt+h|t = µt +
∑m
i=1 ei,t+h−d h

di
edi + β>xt+h

µt = µt−1 + α1ξt

ei,t = ei,t−di + (1 − α1)αi,3ξt

AT-AS

Yt = µt−1 + ∆t−1 +
∑m
i=1 ei,t−di

+β>xt + ξt

Yt+h|t = µt + h∆t +
∑m
i=1 ei,t+h−d h

di
edi

+β>xt+h

µt = µt−1 + ∆t−1 + α1ξt

∆t = ∆t−1 + α1α2ξt

ei,t = ei,t−di + (1 − α1)αi,3ξt

ADT-AS

Yt = µt−1 + φ∆t−1 +
∑m
i=1 ei,t−di

+β>xt + ξt

Yt+h|t = µt +
∑h
j=1 φ

j∆t +
∑m
i=1 ei,t+h−d h

di
edi

+β>xt+h

µt = µt−1 + φ∆t−1 + α1ξt

∆t = φ∆t−1 + α1α2ξt

ei,t = ei,t−di + (1 − α1)αi,3ξt
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Table 6.2: Partially linear SSOE models for exponential smoothing with covariates

model observation equation, forecast state transition equations

NT-MS

Yt = µt−1

∏m
i=1 ei,t−di + β>xt + ξt

Yt+h|t = µt
∏m
i=1 ei,t+h−d h

di
edi + β>xt+h

µt = µt−1 + α1ξt∏m
i=1 ei,t−di

ei,t = ei,t−di +
(1−α1)αi,3ξt
µt−1+φ∆t−1

AT-MS

Yt = (µt−1 + ∆t−1)
∏m
i=1 ei,t−di

+β>xt + ξt

Yt+h|t = (µt + h∆t)
∏m
i=1 ei,t+h−d h

di
edi

+β>xt+h

µt = µt−1 + ∆t−1 + α1ξt∏m
i=1 ei,t−di

∆t = ∆t−1 + α1α2ξt∏m
i=1 ei,t−di

ei,t = ei,t−di +
(1−α1)αi,3ξt
µt−1+φ∆t−1

ADT-MS

Yt = (µt−1 + φ∆t−1)
∏m
i=1 ei,t−di

+β>xt + ξt

Yt+h|t = (µt +
∑h
j=1 φ

j∆t)
∏m
i=1 ei,t+h−d h

di
edi

+β>xt+h

µt = µt−1 + φ∆t−1 + α1ξt∏m
i=1 ei,t−di

∆t = φ∆t−1 + α1α2ξt∏m
i=1 ei,t−di

ei,t = ei,t−di +
(1−α1)αi,3ξt
µt−1+φ∆t−1

additionally the damping coefficient 0 < φ ≤ 1. Setting the damping parameter φ = 1

in the damped models ADT leads to the undamped versions AT.

Definition 6.2 (Linear SSOE State-space Model for ESCov). Let Yt, Yt−1, Yt−2, . . .

be an observed real-valued time series and xt,xt−1,xt−2, . . . ∈ Rk a series of covariate

vectors. The linear SSOE state-space model for ESCov is defined by an observation

equation

Yt = δ>αut−1 + β>xt + ξt (6.8)

and a state transition equation

ut = Gαut−1 +wαξt. (6.9)

Here, ut ∈ Rp is a state vector, α ∈ Rq a parameter vector, δα a vector from Rp, Gα a

p×p transition matrix and wα a continuously differentiable function with wα : Rp → Rp.
(ξt) is a series of errors with E[ξt] = 0.

In the case of the linear SSOE model for ESCov, the heteroscedastic residual series (ξt) =

(fα(ut−1)εt) satisfies ξt = δ>αut−1εt with conditional variance V [ξt|Ht−1] = σ2
ξt|Ht−1

=(
δ>αut−1

)2
σ2
ε .

The MMSE h-step-ahead forecast in the case of independent errors is provided in the

subsequent proposition.
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Table 6.3: Exponential trend models for exponential smoothing with covariates

model observation equation, forecast state transition equations

ET-NS
Yt = µt−1∆t−1 + β>xt + ξt

Yt+h|t = µt∆
h
t + β>xt+h

µt = µt−1∆t−1 + α1ξt

∆t = ∆t−1 + α1α2ξt/µt−1

EDT-NS
Yt = µt−1∆φ

t−1 + β>xt + ξt

Yt+h|t = µt∆
∑h
j=1 φ

j

t + β>xt+h

µt = µt−1∆φ
t−1 + α1ξt

∆t = ∆φ
t−1 + α1α2ξt/µt−1

ET-AS

Yt = µt−1∆t−1 +
∑m
i=1 ei,t−di

+β>xt + ξt

Yt+h|t = µt∆
h
t +

∑m
i=1 ei,t+h−d h

di
edi

+β>xt+h

µt = µt−1∆t−1 + α1ξt

∆t = ∆t−1 + α1α2ξt/µt−1

ei,t = ei,t−di + (1 − α1)αi,3ξt

EDT-AS

Yt = µt−1∆φ
t−1 +

∑m
i=1 ei,t−di

+β>xt + ξt

Yt+h|t = µt∆
∑h
j=1 φ

j

t +
∑m
i=1 ei,t+h−d h

di
edi

+β>xt+h

µt = µt−1∆φ
t−1 + α1ξt

∆t = ∆φ
t−1 + α1α2ξt/µt−1

ei,t = ei,t−di + (1 − α1)αi,3ξt

ET-MS

Yt = (µt−1∆t−1)
∏m
i=1 ei,t−di

+β>xt + ξt

Yt+h|t = (µt∆
h
t )
∏m
i=1 ei,t+h−d h

di
edi

+β>xt+h

µt = µt−1∆t−1 + α1ξt∏m
i=1 ei,t−di

∆t = ∆t−1 + α1α2ξt
µt−1

∏m
i=1 ei,t−di

ei,t = ei,t−di +
(1−α1)αi,3ξt
µt−1∆t−1

EDT-MS

Yt = µt−1∆φ
t−1

∏m
i=1 ei,t−di

+β>xt + ξt

Yt+h|t = µt∆
∑h
j=1 φ

j

t

∏m
i=1 ei,t+h−d h

di
edi

+β>xt+h

µt = µt−1∆φ
t−1 + α1ξt∏m

i=1 ei,t−di

∆t = ∆φ
t−1 + α1α2ξt

µt−1
∏m
i=1 ei,t−di

ei,t = ei,t−di +
(1−α1)αi,3ξt

µt−1∆
φ
t−1
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Proposition 6.3 (MMSE Forecast for Linear SSOE under Independent Residuals).

Consider the linear SSOE model for ESCov from Definition 6.2 with independent errors

(ξt). For each t and each k > 0 let

E[ξt+k|Ht] = E[ξt+k|(ξs)s≤t] = E[ξt+k] = 0. (6.10)

Let h > 0. The MMSE h-step-ahead forecast is given by

Yt+h|t = E[Yt+h|Ht] = δ>αGh−1
α ut + β>xt+h (6.11)

and the conditional forecasting variance is given by

σ2
Yt+h|Ht = V [Yt+h|Ht] =

h−2∑
`=0

(
δ>αG`

αwα

)2
σ2
ξt+h−`−1

+ σ2
ξt+h

. (6.12)

Proof. See Appendix 6.A, Section 6.A.1. �

From Proposition 6.3 we can see that the forecast under the SSOE model for ESCov

relies on the availability of the covariate vector xt+h at the future time point t + h.

Under the covariate-free model, knowledge about future values of certain components

is naturally not a requirement. Proposition 6.3 furthermore shows that the model with

additive and multiplicative residuals have the same point forecast Yt+h|t = E[Yt+h|Ht].
The models differ only in the conditional forecasting variance (6.12).

The particular components ut−1, δα, Gα and wα for a certain ESCov model from

Table 6.1 can be taken from Table 6.4. Hereby, the di × di-matrix Ei and the vector

ei,t−di,t−1 are defined by

Ei :=

(
0>di−1 1

Idi−1 0di−1

)
, ei,t−di,t−1 :=


ei,t−1

...

ei,t−di

 ,

where Idi−1 is the (di−1)× (di−1) identity matrix and 0di−1 a vector of zeros of length

di − 1. By choosing the parameters according to Table 6.4, the models NT-NS, AT-NS,

ADT-NS, NT-AS, AT-AS and ADT-AS can be denoted as instances of the scheme from

Definition 6.2.

Another instance of a linear SSOE model for ESCov is the model which considers the

residual series (ξt) to be subject to a causal AR(1) process, i. e. Eq. (6.5) holds. The

MMSE h-step-ahead forecast in the case of AR(1) errors is provided in the subsequent

proposition.
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Table 6.4: Components of linear SSOE models for ESCov

model ut−1 δα Gα wα

NT-NS
(
µt−1

) (
1
) (

1
) (

α1

)

AT-NS

(
µt−1

∆t−1

) (
1

1

) (
1 1

0 1

) (
α1

α1α2

)

ADT-NS

(
µt−1

∆t−1

) (
1

φ

) (
1 φ

0 φ

) (
α1

α1α2

)

NT-AS



µt−1

e1,t−d1,t−1

e2,t−d2,t−1

...

em,t−dm,t−1





1

0d1−1

1

0d2−1

1

...

0dm−1

1





1 0>d1 0>d2 ... 0>dm

0d1 E1 0d1×d2 ... 0d1×dm

0d2 0d1×d2 E2 ... 0d2×dm
...

...
. . .

. . .
...

0dm 0dm×d1 0dm×d2 ... Em





α1

(1 − α1)α1,3

0d1−1

(1 − α1)α2,3

0d2−1

...

(1 − α1)αm,3

0dm−1



AT-AS



µt−1

∆t−1

e1,t−d1,t−1

e2,t−d2,t−1

...

em,t−dm,t−1





1

1

0d1−1

1

0d2−1

1

...

0dm−1

1





1 1 0>d1 0>d2 ... 0>dm

0 1 0>d1 0>d2 ... 0>dm

0d1 0d1 E1 0d1×d2 ... 0d1×dm

0d2 0d2 0d1×d2 E2 ... 0d2×dm
...

...
...

. . .
. . .

...

0dm 0dm 0dm×d1 0dm×d2 ... Em





α1

α1α2

(1 − α1)α1,3

0d1−1

(1 − α1)α2,3

0d2−1

...

(1 − α1)αm,3

0dm−1



ADT-AS



µt−1

∆t−1

e1,t−d1,t−1

e2,t−d2,t−1

...

em,t−dm,t−1





1

φ

0d1−1

1

0d2−1

1

...

0dm−1

1





1 φ 0>d1 0>d2 ... 0>dm

0 φ 0>d1 0>d2 ... 0>dm

0d1 0d1 E1 0d1×d2 ... 0d1×dm

0d2 0d2 0d1×d2 E2 ... 0d2×dm
...

...
...

. . .
. . .

...

0dm 0dm 0dm×d1 0dm×d2 ... Em





α1

α1α2

(1 − α1)α1,3

0d1−1

(1 − α1)α2,3

0d2−1

...

(1 − α1)αm,3

0dm−1


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Proposition 6.4 (MMSE Forecast for Linear SSOE under AR(1) Residuals). Consider

the linear SSOE model for ESCov from Definition 6.2 under AR(1) errors, i. e. Eq. (6.5)

holds. For each t and each k > 0 let E[ξt+k|Ht] = E[ξt+k|(ξs)s≤t]. Let h > 0. The MMSE

h-step-ahead forecast is given by

Yt+h|t = E[Yt+h|Ht] =

(
λh + δ>α

h−2∑
`=0

G`
αwαλ

h−`−1

)
ξt + δ>αGh−1

α ut +β>xt+h

(6.13)

and the conditional forecasting variance is given by

σ2
Yt+h|Ht = V [Yt+h|Ht] (6.14)

= σ2
ε

(
2
h−2∑
`=0

δ>αG`
αwαλ

`+1 1− λ2(h−`−1)

1− λ2
+

h−2∑
`=0

(
δ>αG`

αwα

)2 1− λ2(h−`−1)

1− λ2
+

1− λ2h

1− λ2

)
.

Proof. See Appendix 6.A, Section 6.A.2. �

6.3.2 The Partially Linear SSOE Model

The partially linear SSOE state-space model for ESCov covers the exponential smoothing

models NT-MS, AT-MS, ADT-MS with (multiple) multiplicative seasonality as provided

in Table 6.2. The observation equation and state transition equation are linear in the

level µt−1 and the trend increment ∆t−1, but nonlinear in the multiplicative seasonality.

The quantities ut,ne and ut,e in the subsequent definition of the partially linear SSOE

state-space model for ESCov are built as follows: The component ut,ne is of the form

ut,ne = (µt) for the model NT without trend and of the form ut,ne = (µt,∆t)
> for the

models AT or ADT with trend. ut,e contains the relevant seasonal components at time t.

Definition 6.5 (Partially Linear SSOE State-space Model for ESCov). Let Yt, Yt−1,

Yt−2, . . . be an observed real-valued time series and xt,xt−1,xt−2, . . . ∈ Rk a series of

covariate vectors. Let ut = (ut,ne,ut,e)
> be a decomposition of the state vector ut into

a nonseasonal part ut,ne and a seasonal part ut,e.

Let 1 ≤ h ≤ d1, . . . , dm.

The general form of the observation equation for the partially linear SSOE model for

ESCov is

Yt = δ>α,neut−1,ne

m∏
i=1

ei,t−di︸ ︷︷ ︸
fα(ut−1)

+β>xt + ξt. (6.15)
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Table 6.5: Components of partially linear SSOE models for ESCov

model ut−1,ne ut−1,e δα,ne Gα,ne wα,ne

NT-MS
(
µt−1

) 
e1,t−d1,t−1

...

em,t−dm,t−1


(

1
) (

1
) (

α1

)

AT-MS

(
µt−1

∆t−1

) (
1

1

) (
1 1

0 1

) (
α1

α1α2

)

ADT-MS

(
µt−1

∆t−1

) (
1

φ

) (
1 φ

0 φ

) (
α1

α1α2

)

The state transition equation is split into the part for ut,ne given by

ut,ne = Gα,neut−1,ne +wα,ne
ξt∏m

i=1 ei,t−di
, (6.16)

and into the part for ut,e given by the m recursions

ei,t−di+1,t =


ei,t−di + (1− α1)αi,3

ξt
δ>α,ne,ut−1,ne

ei,t−1

...

ei,t−di+1

 , i = 1, . . . ,m. (6.17)

For the models NT-MS, AT-MS, ADT-MS from Table 6.2, the vectors ut,ne,ut,e, δα,ne,

wα,ne and the matrix Gα,ne can be read from Table 6.5.

The MMSE h-step-ahead forecast for the partially linear SSOE for ESCov is provided

in the subsequent proposition.

Proposition 6.6 (MMSE Forecast for Partially Linear SSOE under Independent Resid-

uals).

Consider the partially linear SSOE model for ESCov from Definition 6.5. Let 0 < h ≤
d1, . . . , dm be the forecasting horizon below the m seasonal lags. For each t and each

k > 0 let E[ξt+k|Ht] = E[ξt+k|(ξs)s≤t] = 0. The MMSE h-step-ahead forecast is given

by

Yt+h|t = E[Yt+h|Ht] = δ>α,neG
h−1
α,neut,ne

m∏
i=1

ei,t+h−di + β>xt+h. (6.18)

Let (ξt) be independent errors. The conditional forecasting variance for forecasting hori-

zon 0 < h ≤ d1, . . . , dm is given by

σ2
Yt+h|Ht = V [Yt+h|Ht] =

h−2∑
`=0

(
δ>α,neG

`
α,newα,ne

)2
σ2
ξt+h−`−1

∏m
i=1 e

2
i,t+h−di∏m

i=1 e
2
i,t+h−di−`−1

+σ2
ξt+h

.
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(6.19)

Proof. See Appendix 6.A, Section 6.A.3. �

The equations for the MMSE h-step-ahead forecast and its variance in Proposition 6.6

obviously only hold for the case h ≤ min{d1, . . . , dm}. For h ≥ di + 1, the formula

would use seasonal coefficients ei,s with s > t. A sensible approximation of the MMSE

h-step-ahead forecast E[Yt+h|Ht] for cases h ≥ di + 1 is provided by using

δ>α,neG
h−1
α,neut,ne

m∏
i=1

e
i,t+h−

⌈
h
di

⌉
di

+ β>xt+h (6.20)

in the right-hand side of Eq. (6.18). Equation (6.20) leads to the forecasts provided by

Table 6.2. Analogously, use

h−2∑
`=0

(
δ>α,neG

`
α,newα,ne

)2
σ2
ξt+h−`−1

∏m
i=1 e

2

i,t+h−
⌈
h
di

⌉
di∏m

i=1 e
2

i,t+h−
⌈
h
di

⌉
di−`−1

+ σ2
ξt+h

in the right-hand side of Eq. (6.19) to approximate σ2
Yt+h|Ht in cases h ≥ di + 1.

In the case of the partially linear SSOE model for ESCov, the heteroscedastic residual

series (ξt) = (fα(ut−1)εt) satisfies ξt = δ>α,neut−1,ne
∏m
i=1 ei,t−diεt, where (εs) is consi-

dered as homoscedastic. For the conditional variance we have V [ξt|Ht−1] = σ2
ξt|Ht−1

=(
δ>α,neut−1,ne

∏m
i=1 ei,t−di

)2
σ2
ε .

The MMSE forecast as well as its variance in the case of AR(1) residuals for the partially

linear SSOE for ESCov still has to be explored.

6.4 Empirical Fitting of ESCov SSOE Models

Consider a time series (Yt) that is assumed to follow an ESCov SSOE model defined by an

observation equation and a state transition equation as in Definition 6.1, both specified

in Tables 6.1 to 6.3. Let Y1, . . . , YT be T successive observations from the series. The

estimation of the model parameters proceeds in the following four steps (i)–(iv):

(i) Iterative estimation of state vectors and residuals under known transition function

components gα, wα, known observation function fα and known parameter vector

θ = (α>,β>)>: (i.1) Provide a starting value u0 for the state vector. (i.2) Estimate

the residual ξ1 from the forecast error by ξ̂1 = Y1 − fα(u0)− β>x1, and estimate

the state vector u1 from û1 = gα(u0) +wα(u0)ξ̂1. (i.3) Continue the pattern (i.2)

to estimate successively ξ1, . . . , ξT and u1, . . . ,uT as functions of u0.
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6 Exponential Smoothing with Covariates with Application in Electricity Load Forecasting

(ii) Estimation of the parameter vector θ = (α>,β>)> under known structure of the

transition function components gα, wα and known structure of the observation

function fα: Estimate α and β by minimising an appropriate objective function.

If h-step-ahead forecasts are intended, appropriate fit measures are the empirical

mean square error MSEh(θ) = 1
T−h+1

∑T−h
t=0 (Yt+h−Yt+h|t)2 or the empirical mean

absolute percentage error MAPEh(θ) = 1
T−h+1

∑T−h
t=0

|Yt+h−Yt+h|t|
|Yt+h| of the h-step-

ahead forecast, where Yt+h|t = Yt+h|t(θ) is the forecast defined in Tables 6.1 to 6.3.

The forecast depends on the parameter vector θ and the associated states estimated

by step (i).

(iii) Model specification, i. e. an empirical selection of a specific transition function gα,

wα and of the observation function fα from a class of alternatives: Among the

model alternatives from Tables 6.1 to 6.3, which are cross combinations of a trend

type (no trend NT, additive trend AT, additive damped trend ADT, exponential

trend ET, exponential damped trend EDT) with a seasonality type (no season-

ality NS, additive seasonality AS, multiplicative seasonality MS), select the one

which minimises an objective function, e. g. the MSE, the negative likelihood or

the Akaike information criterion (AIC, see Section 6.5) of the h-step-ahead forecast.

In this context, there should be also taken into account arguments like whether

there is seasonality, whether the seasonality amplitude increases with an increas-

ing level of the series (multiplicative seasonality might be more appropriate than

additive) or is rather independent of the level and suchlike.

(iv) The final estimates ξ̂1, . . . , ξ̂T are obtained by repeating step (i) with the estimate

θ̂ as input. The residual variance σ2
ξ is estimated by the empirical variance

σ̂2
ξ,ES = σ̂2

ξ =
1

T − 1

T∑
s=1

(ξ̂s − ξ̄)2, (6.21)

where ξ̄ = 1
T

∑T
s=1 ξs. Based on an estimate θ̂, point predictions YT+h|T of future

instances YT+h are obtained by replacing θ with the estimate θ̂ in the equation for

YT+h|T from Tables 6.1 to 6.3. The forecast error variance σ2
T+h|T is estimated by

inserting θ̂ for θ and σ̂2
ξ for σ2

ξ in formulas (6.12), (6.14) and (6.19).

If 1-, . . . ,M -steps-ahead forecasts are intended, the above scheme allows to find a sepa-

rate parameter set for each forecast step h, h = 1, . . . ,M . A different approach would

be to decide on one forecast step, for example h = 1, and produce forecasts 1, . . . ,M -

steps-ahead with the parameter set obtained under this fixed forecast step.
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6.5 The Likelihood under the ESCov SSOE Model

With their formulation of the SSOE model, Ord et al. (1997) laid the foundations for

maximum likelihood estimation for ES methods. Wang (2006) extended it to ESCov.

We revise the computation of the likelihood under ESCov following Ord et al. (1997)

and Wang (2006), where the focus is on the one-step-ahead forecast.

Let Y1, . . . , YT be T successive observations from the series. The observations Yt, t =

1, 2, . . . , T , emerge, depending on the chosen model, from certain recursion formulas

using the previous states ut, t = T − 1, T − 2, . . . The states themselves are unknowns

as functions of the unknown parameter vector θ = (α>,β>)> (directly of α by means

of the state transition equations and indirectly of β by means of the errors ξt therein)

and the initial state vector u0. The initial state vector u0 summarises the behaviour

of the time series previous to time point 1, the time point of the first observation Y1.

With the history previous to time point 1 being unknown, the initial state vector u0 is

an unknown as well.

Let εt ∼ iid(0, σ2
ε) and consider Eq. (6.3). Let

Yt = fα(Y1, . . . , Yt−1,u0,θ) + β>xt + kα(Y1, . . . , Yt−1,u0,θ)εt

be the observation equation (6.1) which represents Yt as a function of the observations

Y1, . . . , Yt−1, the initial states u0, and the parameter vector θ, where fα and kα are

time-dependent functions. Then we have

E[Yt|Ht−1] = fα(Y1, . . . , Yt−1,u0,θ) + β>xt, (6.22)√
V [Yt|Ht−1] = kα(Y1, . . . , Yt−1,u0,θ)σε. (6.23)

Let f(·) denote a density function. Using the rule P(A ∩ B) = P(A|B)P(B), the joint

probability of Y1, . . . , Yn is given by

f(Y1, . . . , YT | x1, . . . ,xT ,u0,θ, σ
2
ε) =

T∏
t=1

f(Yt | Y1, . . . , Yt−1,x1, . . . ,xt−1,u0,θ, σ
2
ε).

Assuming that the εt are normally distributed, seeking the maximum likelihood estimates

θ,u0 for the smoothing parameter vector and initial state vector requires with Ord et al.

(1997) the maximisation of the conditional likelihood

L(θ,u0 | Y1, . . . , YT ) =
1

(2πs2)T/2
1∣∣∣∏T

t=1 kα(Y1, . . . , Yt−1,u0,θ)
∣∣∣ · exp

(
−1

2
T

)
,
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where s2 = 1
T

∑T
t=1 ε

2
t .

Consequently, the log-likelihood is given by

lnL(θ,u0 | Y1, . . . , YT ) = −T
2

ln(2πs2)−

(
T∑
t=1

ln (kα(Y1, . . . , Yt−1,u0,θ))

)
− 1

2
T.

In the case of homoscedastic errors ξt = εt, we have kα(Y1, . . . , Yt−1,u0,θ) ≡ 1, and the

conditional likelihood is

L(θ,u0 | Y1, . . . , YT ) =
1

(2πs2)T/2
· exp

(
−1

2
T

)
and the log-likelihood

lnL(θ,u0 | Y1, . . . , YT ) = −T
2

ln(2πs2)− 1

2
T.

In the case of multiplicative errors ξt, we have kα(Y1, . . . , Yt−1,u0,θ) = fα(ut−1) =

δ>αut−1 in the case of a linear SSOE for ESCov, and kα(Y1, . . . , Yt−1,u0,θ) = fα(ut−1)

= δ>α,neut−1,ne
∏m
i=1 ei,t−di in the case of a partially linear SSOE for ESCov.

A complete maximum likelihood estimation would require to estimate both the vector

θ of the smoothing and covariate parameters and the initial state vector u0. As Ord

et al. (1997) mention, the corresponding computational load can be huge. In the case

of the ADT-AS model with one seasonality of length 12, for example, one would have

to estimate a 4-dimensional parameter vector α = (α1, α2, α1,3, φ)>, a k-dimensional

covariate vector β as well as an initial state vector u0 = (µ0,∆0, e1,0, e1,−1, . . . , e1,−d1+1)>

of dimension 1+1+12 (where, possibly, the 12th seasonal component can be chosen by a

rule of the kind that the 12 components are supposed to add up to 0). Consequently, the

amount of unknown parameters to be estimated by the maximum likelihood methods is

considerably large. To reduce computational loads in such cases, Ord et al. (1997) suggest

to estimate the initial state vector u0 independently of α and treat u0 as a constant in

the estimation. For ESCov, this would require to choose u0 not only independently of

α, but also of β. Rules how to do so appropriately without interfering too much with

the estimation of θ = (α>,β>)> still need to be explored.

The above formulas provide the likelihood for the case of the one-step-ahead forecast

only. Optimising the h-step-ahead forecast with h > 1 requires the derivation of formulas

that take into account the covariance structure of (Yt). One would have to replace Eqs.

(6.22) and (6.23) by E[Yt|Ht−h] and
√
V [Yt|Ht−h], respectively, i. e. by the expectation

and standard deviation of the h-step-ahead forecast Yt given the history until time t−h,

and follow along the lines of this section while doing appropriate adaptations. For the
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linear SSOE for ESCov, the formulas for E[Yt|Ht−h] and V [Yt|Ht−h] can be taken from

Eqs. (6.11)–(6.12) in the case of independent errors, and from Eqs. (6.13)–(6.14) in the

case of AR(1) errors. For the partially linear SSOE for ESCov, the respective formulas

can be found in Eqs. (6.18)–(6.19).

Popular measures of fit based on the likelihood are the AIC, AICc and BIC:

The Akaike information criterion (AIC) dates back to Akaike (1974) and is defined by

AIC := 2k − 2 lnL, (6.24)

where k denotes the number of estimated parameters and lnL the log-likelihood.

The corrected Akaike information criterion AICc proposed by Sugiura (1978) is a mea-

sure that is recommended as a variant of the AIC in particular for small samples. It is

defined by

AICc := 2k
T

T − k − 1
− 2 lnL. (6.25)

Here, k denotes the number of estimated parameters, lnL the log-likelihood and T the

sample size.

A third popular likelihood-based measure is the Bayesian information criterion (BIC)

by Schwarz (1978). It is defined by

BIC := k lnT − 2 lnL, (6.26)

where k denotes the number of estimated parameters, lnL the log-likelihood and T the

sample size.

AIC, AICc and BIC play important roles when it comes to identifying and selecting

predictive models, see e. g. Stone (1977), Shmueli (2010) and Diebold (2012). As reverse

monotonous transformations of the likelihood, small values of AIC, AICc and BIC are

deemed advantageous to larger values in contrast to the likelihood, which is intended to

be maximised.

6.6 Empirical Forecasting under ESCov SSOE Models

Assume that the model type, the model parameters α, β, the residuals ξ1, . . . , ξT , and

the state vectors u1, . . . ,uT have been estimated from a time series segment Y1, . . . , YT .

Consider further observations YT+1, . . . , Yt. Under the determined model with fixed

parameters α, β, the estimation of state vectors and residuals can be continued with uT

175



6 Exponential Smoothing with Covariates with Application in Electricity Load Forecasting

as a starting value as in the step (i) of Section 6.4 to obtain uT+1, . . . ,ut. Based on ut,

h-step-ahead MMSE forecasts Yt+h|t are made with the formulas provided by Tables 6.1

to 6.3.

For the estimation of the forecasting variance σ2
Yt+h|Ht we have to distinguish between

nonseasonal or additive seasonal and multiplicative seasonal models. For the models

NT-NS, AT-NS, ADT-NS, NT-AS, AT-AS, ADT-AS, σ2
Yt+h|Ht is estimated by applying

the formula for the conditional variance from Proposition 6.3 for independent residu-

als and from Proposition 6.4 for AR(1) residuals with the explanatory Table 6.4. For

the multiplicative seasonal models NT-MS, AT-MS, ADT-MS, σ2
Yt+h|Ht is estimated by

applying the formula for the conditional variance from Proposition 6.6 with the ex-

planatory Table 6.5. Apart from the model parameters α, β, the formulas require esti-

mates of the residual variances σ2
ξt+1

, . . . , σ2
ξt+h

. The estimation of the residual variances

σ2
ξt+1

, . . . , σ2
ξt+h

requires further assumptions on the residual process (ξs), as expressed

by the subsequent models of the type additive residual, multiplicative residual and AR(1)

residual.

Additive residual model: The residuals (ξs) are independent and variance stationary

with constant variance σ2
ξs

= σ2
ξ . Then σ2

ξ is estimated from all historical residuals

ξ̂1, . . . , ξ̂t by the empirical variance σ̂2
ξ = 1

t−1

∑
(ξ̂s − ξ)2. The additive residual

model is appropriate when the residual in the observation equation (6.1) can be

considered independent of the states and covariates.

Multiplicative residual model: The residuals (ξs) are linear transformations

ξs = fα(us−1)εs of independent and variance stationary variables (εs) with con-

stant variance σ2
εs = σ2

ε . Then εs is estimated by ε̂s = ξ̂s/fα̂(ûs−1). The variance

σ2
ε is estimated from ε̂1, . . . , ε̂t by the empirical variance σ̂2

ε = 1
t−1

∑
(ε̂s− ε)2. The

time dependent variances σ2
ξt+1

, . . . , σ2
ξt+h

are estimated by

σ̂2
ξt+`

= fα(ut+`−1)2 · σ̂2
ε , ` = 1, . . . , h. (6.27)

Estimates for the quantities fα(ut), . . . , fα(ut+h−1) are provided by

f̂α(ut+`−1) = Yt+`|t − β>xt+`, ` = 1, . . . , h. (6.28)

The multiplicative residual model is appropriate when the residual in the observa-

tion equation (6.1) is multiplicative in the sense of Eq. (6.4), see Section 6.3.

AR(1) residual model: The residuals (ξs) are an AR(1) process satisfying ξs = λξs−1 +

εs with independent and variance stationary errors (εs) with σ2
εs = σ2

ε . Then εs

is estimated by ε̂s = ξ̂s − λ̂ξ̂s−1. The variance σ2
ε is estimated from ε̂1, . . . , ε̂t by
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the empirical variance σ̂2
ε = 1

t−1

∑
(ε̂s− ε)2. The variance σ2

ξ of the AR(1) process

variables ξs is estimated by σ̂2
ξ = σ̂2

ε/(1− λ2).

The AR(1) residual model is appropriate when the residual in the observation

equation Eq. (6.1) is an AR(1) process, i. e. ξt = λξt−1 + εt holds.

Prediction intervals for ESCov are in more detail considered in Chapter 7. In the em-

pirical electricity demand forecasting study of Section 6.9, we use the method called

“plug-in” by Ord et al. (1997):

Let the forecast error be normally distributed with mean Yt+h|t and with variance equal

to the estimate of σ2
Yt+h|Ht . Let zN(0,1) be the one-sided upper (1+γ)/2·100 % quantile of

the standard normal distribution with γ ∈ (0; 1). Then a symmetric prediction interval

of level γ around the point forecast is given by

(
Yt+h|t − zN(0,1)σYt+h|Ht ; Yt+h|t + zN(0,1)σYt+h|Ht

)
. (6.29)

As remarked by Ord et al. (1997), the plug-in method is a widely used but less-than-ideal

method. Chapter 7 considers alternatives to the plug-in method.

6.7 Non-constant Covariate Coefficients

Assume, for now, that k = 1 in the Definition 6.1 of the SSOE state-space model for

ESCov, that is, the covariate vector xt ∈ R is of dimension 1 and there are T observations

x1, x2, . . . , xT available. Let x := (x1, x2, . . . , xT )>. The scheme from Definition 6.1

makes the assumption that the influence of the covariate on the dependent variable Yt is

constantly β over time, i. e. for time point t we have Yt = fα(ut−1) + βxt + ξt. Imagine,

this is not the case and consider the following two scenarios:

(i) The covariate parameter is dependent on the magnitude of the covariate, i. e. we

have

β =



β1 if xt ≤ c1,

β2 if c1 < xt ≤ c2,

. . .

βl if cl−1 < xt,

where c1, c2, . . . , cl−1 ∈ R.
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(ii) The covariate parameter varies in dependence of the period in time, i. e. we have

β =



β1 if t ≤ t1,

β2 if t1 < t ≤ t2,

. . .

βl if tl−1 < t,

where t1, t2, . . . , tl−1 ∈ N.

Then we can fit these models into the framework of the SSOE state-space model for

ESCov of the form (6.1)–(6.2) by an appropriate definition of the covariate vector xt:

(i) Let

(
1xt≤c1x 1c1<xt≤c2x · · · 1cl−1<xtx

)
=:


x>1

x>2
...

x>T

 ∈ RT×l =: X (6.30)

and the covariate vector β = (β1, β2, . . . , βl)
> ∈ Rl. Then scenario (i) can be

covered by choosing Yt = fα(ut−1) + β>xt + ξt as the observation equation in

Definition 6.1, where xt is the t-th row of the matrix X defined in (6.30).

(ii) Let

(
1t≤t1x 1t1<t≤t2x · · · 1tl−1<tx

)
=:


x>1

x>2
...

x>T

 ∈ RT×l =: X (6.31)

and the covariate vector β = (β1, β2, . . . , βl)
> ∈ Rl. Then scenario (ii) can be

covered by choosing Yt = fα(ut−1) + β>xt + ξt as the observation equation in

Definition 6.1, where xt is the t-th row of the matrix X defined in (6.31).

In both scenarios, the one-dimensional model is transferred into an l-dimensional model.

This means, in particular, that we have to deal with l covariate coefficients β1, . . . , βl

instead of only one covariate coefficient β.

Example 6.7 (Example for Scenario (i)). If a certain ambient temperature threshold in

an environment or region is exceeded, air conditioning will be more frequently used and

the temperature will drive the electricity consumption more heavily than in the case of
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lower temperatures. In this case it might be reasonable to deal with two separate covariate

parameters β1, β2, where β1 indicates the temperature influence below the threshold and

β2 the temperature influence greater or equal to the threshold.

Example 6.8 (Example for Scenario (ii)). During times of a heavy crisis, the influence

of a leading indicator on sales during normal economic periods is overridden by an

exaggerated reaction of the sales in dependence of the leading indicator. It might be

reasonable to work with separate covariate parameters β1, β2, where β1 is the indicator

coefficient during normal periods and β2 the indicator coefficient during crises times.

The presented scheme can be easily extended to the case of more than one covariate.

6.8 Renormalisation of Seasonal Patterns

In this section, let us consider a seasonal ESCov model. Commonly, the initial values

for the seasonal pattern are normalised such that they have a mean of 0 in the case of

additive seasonality and a mean of 1 in the case of multiplicative seasonality, respectively.

However, in the course of successive smoothing by means of the state transition equation

(6.2), the normalisation gets lost. This is due to the fact that only one seasonal factor is

updated at each point in time, see Archibald & Koehler (2003). In fact, Hyndman et al.

(2008, Chapter 8) showed that the series of means of the seasonal patterns behaves like

a random walk.

The loss of a normalised seasonal pattern is disadvantageous with respect to the appeal-

ing characteristic of exponential smoothing to deliver a decomposition of a time series

into its components level, season, noise and potentially trend and covariate component.

As long as the average of one seasonal component is close to 0 (for additive seasonality)

or 1 (for multiplicative seasonality), this might not be a problem. However, if the average

of a seasonal component is far away from the desired value 0 or 1, respectively, difficulties

might occur in interpreting this seasonal component. There are several examples of real

data sets, in which this has been found to be the case, as in Makridakis et al. (1982).

For the additive seasonality models, Lawton (1998) observed a bias both in the level and

the seasonal components. The errors in estimating level and season were found to be

counter-balancing and hence without impact on the forecasts. Therefore, when adjusting

both components appropriately at each point in time, we can achieve a normalised

seasonal component while maintaining the point forecasts, which is what is recommended

by Lawton (1998). The proposal for the renormalisation of the seasonal pattern in the
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case of additive seasonality, which we revise in this section, goes back to Roberts (1982)

and McKenzie (1986). Roberts (1982), McKenzie (1986), Lawton (1998) and Archibald

& Koehler (2003) considered ES without covariates. Nevertheless, the fact that their

correction is applied to the state transition equations, which are structurally the same

for both ES and ESCov, allows to apply their renormalisation equation also to ESCov.

In this section, we consider the ESCov models NT-AS, AT-AS, ADT-AS, NT-MS, AT-

MS, ADT-MS with no trend or a linear trend and either additive or multiplicative

seasonality.

6.8.1 Renormalisation for Additive Seasonality

The renormalisation scheme described by Roberts (1982) and revised by Archibald &

Koehler (2003) can be applied to ES methods without covariates with one additive

seasonality and no trend or linear trend, i. e. NT-AS, AT-AS, ADT-AS. The scheme can

be extended to multiple seasonality and ESCov. In this section, we present the equations

for renormalisation under ESCov only for the model ADT-AS, which includes the models

NT-AS and AT-AS as special cases by setting α2 = 0,∆0 = 0 and φ = 1, respectively.

We follow the notation by Archibald & Koehler (2003) and Roberts (1982), which we

find convenient to describe the normalisation scheme, and adapt their idea proposed

for a single seasonality to multiple seasonalities. For the notation, consider at each

time point t the present e
(di)
i,t and the previous di − 1 smoothed seasonal components

e
(di−1)
i,t , e

(di−2)
i,t , . . . , e

(1)
i,t , where di is the length of season i, i = 1, . . . ,m. Here, e

(s)
i,t with

s = 1, . . . , di serves as a prediction of the season factor for the future time points t +

s, t+ s+di, t+ s+ 2di, t+ s+ 3di, . . . made at time t. In the standard smoothing scheme

without renormalisation of the season factors and di ≥ 2, the factors e
(s)
i,t and e

(s+1)
i,t−1

are identical. However, under renormalisation, the prediction for the season factor for

time point t + s is updated at each point in time t and therefore usually changes with

t. Consequently, we need to differentiate the smoothed season values depending on the

point of time t the prediction is made.

The following definition rephrases the usual smoothing equations for model ADT-AS

from Table 6.1 in the new notation:

Definition 6.9. Let e
(s)
i,t denote the value of the smoothed component of season i corre-

sponding to time point t+ s made at time t. The forecast and state transition equations
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for model ADT-AS with multiple additive seasonality from Table 6.1 can be written as

Yt+h|t = µt +

h∑
j=1

φj∆t +

m∑
i=1

e
(h)
i,t + β>xt+h,

µt = µt−1 + φ∆t−1 + α1ξt,

∆t = φ∆t−1 + α1α2ξt,

e
(di)
i,t = e

(1)
i,t−1 + (1− α1)αi,3ξt,

i=1,. . . ,m,
e

(s)
i,t = e

(s+1)
i,t−1 , s = 1, . . . , di − 1.

Similar to the renormalisation scheme for additive seasonality proposed by Roberts

(1982) and McKenzie (1986), we denote the renormalised smoothed components by

µ̃t, ∆̃t and ẽ
(s)
i,t , s = 1, . . . , di, i = 1, . . . ,m, and the corresponding residual by ξ̃t. To

achieve the renormalisation, a time-dependent term rt is subtracted from the seasonal

component, which in return is added to the level and trend component:

Definition 6.10. The forecast and state transition equations in the renormalised scheme

for model ADT-AS with multiple additive seasonality are given by

Ỹt+h|t = µ̃t +
h∑
j=1

φj∆̃t +
m∑
i=1

ẽ
(h)
i,t + β>xt+h,

ri,t = (1− α1)αi,3ξ̃t/di,

µ̃t = µ̃t−1 + φ∆̃t−1 + α1ξ̃t +

m∑
i=1

ri,t,

∆̃t = φ∆̃t−1 + α1α2ξ̃t,

ẽ
(di)
i,t = ẽ

(1)
i,t−1 + (1− α1)αi,3ξ̃t − ri,t,

i=1,. . . ,m,
ẽ

(s)
i,t = ẽ

(s+1)
i,t−1 − ri,t, s = 1, . . . , di − 1.

Mind that the above formulation holds for additive or multiplicative errors ξ̃t. In the

additive case, we have ξ̃t = ε̃t, in the multiplicative case ξ̃t = fα(ũt−1)ε̃t.

The following proposition shows that the seasonal patterns under the above renormali-

sation scheme have indeed the desired property of an average, or – equivalently – a sum

of 0.

Proposition 6.11 (Renormalisation under Additive Seasonality). Let the initial season

factors under the ESCov model ADT-AS add up to 0, i. e.

di∑
k=1

ẽ
(k)
i,0 = 0 for i = 1, . . . ,m.

Let Ri,t :=
1

di

di∑
k=1

e
(k)
i,t be the cumulative renormalisation correction factor. Then, under

the renormalisation equations from Definition 6.10, the following assertions hold:
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(a) The season factors of season i add up to 0 at any point in time t = 0, 1, 2 . . ., i. e.
di∑
k=1

ẽ
(k)
i,t = 0.

(b) The correction factor can be calculated iteratively by Ri,t = Ri,t−1 + ri,t.

(c) The renormalisation can be achieved at any point in time by

µ̃t = µt +

m∑
i=1

Ri,t,

∆̃t = ∆t,

ẽ
(k)
i,t = e

(k)
i,t −Ri,t, k = 1, . . . , di.

(d) The predictions are the same under the renormalised and the classical scheme, i. e.

Ỹt+h|t = Yt+h|t for t ≥ 0, h ≥ 1.

Proof. The proof for renormalisation in ES with a single additive seasonality goes

back to Archibald & Koehler (2003). See Appendix 6.A, Section 6.A.4 for the proof

with multiple additive seasonalities in ESCov. �

In particular, it follows from Proposition 6.11 (d) that the one-step-ahead forecast errors

ξt of the classical and the renormalised scheme coincide, that is, we have ξt = ξ̃t.

By replacing ut, ei,t and wα in Table 6.4 by the subsequently (Eqs. (6.32) and (6.33))

defined quantities ũt, ẽi,t and w̃α, the smoothing scheme for renormalisation in the case

of additive seasonality (see Definition 6.10) can be identified as an instance of a linear

SSOE state-space model (see Definition 6.2):

ẽi,t =



ẽ
(di)
i,t

ẽ
(di−1)
i,t

...

ẽ
(2)
i,t

ẽ
(1)
i,t


=



ẽ
(1)
i,t−1 + (1− α1)αi,3ξ̃t

ẽ
(di)
i,t−1
...

ẽ
(3)
i,t−1

ẽ
(2)
i,t−1


∈ Rdi , (6.32)
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ũt−1 =



µ̃t−1

∆̃t−1

ẽ1,t−1

ẽ2,t−1

...

ẽm,t−1


, w̃α =



α1 +
m∑
i=1

(1− α1)αi,3
di

α1α2

(1− α1)α1,3 ·
(

1− 1
d1

)
− (1−α1)α1,3

d1

...

− (1−α1)α1,3

d1

 d1 − 1

(1− α1)α2,3 ·
(

1− 1
d2

)
− (1−α1)α2,3

d2

...

− (1−α1)α2,3

d2

 d2 − 1

...

(1− α1)αm,3 ·
(

1− 1
dm

)
− (1−α1)αm,3

dm
...

− (1−α1)αm,3
dm

 dm − 1



. (6.33)

Under the above renormalisation scheme, one seasonal pattern of length di averages 0

at any given time point t. However, when repeating the renormalisation at every time

point anew, the series of the seasonal component “resulting in the very end” is the series

ẽ
(di)
i,1 , ẽ

(di)
i,2 , . . . , ẽ

(di)
i,T for observed Y1, Y2, . . . , YT . It does not necessarily fulfil

1

di

t+di∑
j=t+1

ẽ
(di)
i,j = 0, t = 0, . . . , T − di

in the case of additive seasonality or

1

di

t+di∑
j=t+1

ẽ
(di)
i,j = 1, t = 0, . . . , T − di

in the case of multiplicative seasonality. If that were the case, the seasonal component

ẽ
(di)
i,t+di

would be equal to ẽ
(di)
i,t for all t = 0, 1, . . . , T − di, which clearly does not hold in

general.

6.8.2 Renormalisation for Multiplicative Seasonality

The following renormalisation scheme adapted to multiple multiplicative seasonality and

damped linear trend in the ESCov model was formulated by Archibald & Koehler (2003)
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for a single multiplicative seasonality and an undamped linear trend model for ES. We

rephrase the usual state transition equations for the damped trend and multiplicative

seasonality ESCov model ADT-MS from Table 6.2 with the notation by Archibald &

Koehler (2003). We present the equations for renormalisation under ESCov only for

the model ADT-MS, which includes the models NT-MS and AT-MS as special cases by

setting α2 = 0,∆0 = 0 and φ = 1, respectively.

Definition 6.12. Let e
(s)
i,t denote the value of the smoothed seasonal component of season

i corresponding to time point t + s made at time t. The forecast and state transition

equations for model ADT-MS with multiple multiplicative season and damped linear trend

can be written as

Yt+h|t =

µt +

h∑
j=1

φj∆t

 m∏
i=1

e
(h)
i,t + β>xt+h,

µt = µt−1 + φ∆t−1 +
α1ξt∏m
i=1 e

(1)
i,t−1

,

∆t = φ∆t−1 +
α1α2ξt∏m
i=1 e

(1)
i,t−1

,

e
(di)
i,t = e

(1)
i,t−1 +

(1− α1)αi,3ξt
(µt−1 + φ∆t−1)

,
i=1,. . . ,m,

e
(s)
i,t = e

(s+1)
i,t−1 , s = 1, . . . , di − 1.

As in the renormalisation scheme for multiplicative seasonality proposed by Archibald &

Koehler (2003), we denote the renormalised smoothed components by µ̃t, ∆̃t, ẽ
(s)
i,t and ξ̃t.

To achieve the renormalisation, the seasonal component i is devided by a time-dependent

term ri,t, which in return is multiplied to both the level and trend component:

Definition 6.13. The forecast and state transition equations in the renormalised scheme

for model ADT-MS with multiple multiplicative season are given by

Ỹt+h|t =

µ̃t +
h∑
j=1

φj∆̃t

 m∏
i=1

ẽ
(h)
i,t + β>xt+h,

ri,t = 1 + (1− α1)αi,3
ξ̃t

di(µ̃t−1+φ∆̃t−1)
,

µ̃t =

(
µ̃t−1 + φ∆̃t−1 +

α1ξ̃t∏m
i=1 ẽ

(1)
i,t−1

)
m∏
i=1

ri,t,

∆̃t =

(
φ∆̃t−1 +

α1α2ξ̃t∏m
i=1 ẽ

(1)
i,t−1

)
m∏
i=1

ri,t,
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ẽ
(di)
i,t =

(
ẽ

(1)
i,t−1 +

(1− α1)αi,3ξ̃t

(µ̃t−1 + φ∆̃t−1)

)
/ri,t,

i=1,. . . ,m,

ẽ
(s)
i,t = ẽ

(s+1)
i,t−1 /ri,t, s = 1, . . . , di − 1.

Proposition 6.14 summarises several important results with respect to the renormalisa-

tion of the multiplicative seasonality ESCov model.

Proposition 6.14 (Renormalisation under Multiplicative Seasonality). Let the initial

season factors under the ESCov model ADT-MS have sum di, i. e.,

di∑
k=1

ẽ
(k)
i,0 = di for

i = 1, . . . ,m. Let Ri,t :=
1

di

di∑
k=1

e
(k)
i,t be the cumulative renormalisation correction factor.

Then, under the renormalisation equations from Definition 6.13, the following assertions

hold:

(a) The season factors of season i have sum di at any point in time t = 0, 1, 2 . . ., i. e.
di∑
k=1

ẽ
(k)
i,t = di.

(b) In the case of m = 1, the correction factor can be calculated iteratively by

R1,t = R1,t−1r1,t.

(c) In the case of m = 1, the renormalisation can be achieved at any point in time by

µ̃t = µtR1,t

∆̃t = ∆tR1,t

ẽ
(k)
1,t = e

(k)
1,t /R1,t, k = 1, . . . , di.

(d) In the case of m = 1, the predictions are the same under the renormalised and the

classical scheme, i. e. Ỹt+h|t = Yt+h|t for t ≥ 0, h ≥ 1.

Proof. The proof for renormalisation in ES with a single multiplicative seasonality

goes back to Archibald & Koehler (2003). See Appendix 6.A, Section 6.A.5 for the proof

with multiple multiplicative seasonalities in ESCov. �

Under the correction for the multiple multiplicative seasonal model ADT-MS as proposed

in Definition 6.13, assertions (b)–(d) cannot easily be extended to the multiple season-

ality case. In particular, if the number of seasonalities m is ≥ 2, the predictions under

the renormalised scheme are not equal to the predictions under the classical scheme.

As stated by Archibald & Koehler (2003), the point forecast and hence also the residuals

are the same for both the renormalised and standard method. Nevertheless, in order

to avoid potentially inadequate interpretation of the components, Archibald & Koehler
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(2003) recommend 1) to renormalise the components in every time period, and 2) to

examine only normalised components. Due to its efficiency, Gardner (2006) also favours

renormalisation, especially in the case of multiplicative seasonality.

6.9 Application in Electricity Load Forecasting in Italy

6.9.1 Introduction to the Load Forecasting Study

The topic of forecasting electricity load is attracting rapidly increasing interest of busi-

ness management, politics and social discourse. The interest is driven by two factors:

the deregulation of the electricity market and the reorganisation of electricity produc-

tion. Starting with the privatisation of the electricity sector in Chile in the 1980s, many

developed countries have deregulated and liberalised their originally monopolistic elec-

tricity markets in the 1990s and 2000s, particularly in the European Union and in North

America. Concerns on the safety of nuclear power production and the climate change

have initiated a move towards decentralised power production from wind, bio or solar

energy.

Different spheres of interest require different forecasting horizons and different resolutions

(half-hourly, hourly, daily, weekly or annual) of the forecasting target. In that sense,

electricity load forecasting is sometimes classified into short-term, medium-term and

long-term forecasts, see e. g. Weron (2006) or Fan & Hyndman (2012). Political decision

makers are particularly interested in long-term forecasts on the macro level, e. g. a ten

year projection of national electricity demand. Power distributors are interested in short-

term (e. g. a few hours or a few days ahead) and medium-term forecasts (e. g. a few weeks

or months ahead), often with spatially highly resolved prediction targets.

Energy companies use electricity load forecasting for the scheduling of their power sys-

tems. The need for reliable load forecasts arises from a) the lack of (cheap) storing

capacities and the fact that an overflow in electricity can be discharged only at addi-

tional costs, see Cho et al. (2013), and b) that an undersupply with electricity requires

last-minute acquisition of electricity at very expensive prices. Cho et al. (2013) point

out that already a small improvement in the load forecasting can cause a considerable

reduction in costs.

In an increasingly decentralised power production environment it is important to get the

appropriate amount of electricity to the right place in the right time. By deregulation and

liberalisation, electricity has become a trading commodity. Energy exchanges like the
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EEX (European Energy Exchange) in Leipzig (Germany) or the Italian Power Exchange

(IPEX) provide markets for trading of long-term futures and short-term spot markets for

intra-day and one-day-ahead trading. The IPEX (now operated by the GME) took off

on 31 March 2004 and its spot market comprises the day-ahead-market and the intra-day

market of hourly energy blocks: The former opens nine days before the day of delivery

and closes the day before, whereas the latter opens the day before and closes at 11:45

a.m. on the day of delivery. Therefore, energy vendors participating in this market need

short-term forecasts from one hour ahead up to ten days ahead of the energy requested

by their customers. In this work we consider the vendor’s point of view.

The demand from industry has been stimulating the research on load forecasting method-

ology. Basically, two approaches can be distinguished: i) methodology from the area of

informatics and machine learning, e. g. classification techniques like SVM (support vec-

tor machines), neural networks, expert systems; ii) statistical methodology, mainly from

statistical time series analysis. A considerable amount of literature has been appearing

from both classes, see Weron (2006) for a concise review. The essential methodological

challenge for either approach is the ability to relate electricity load to exogenous factors

or covariates, like meteorological variables (temperature, humidity, cloud shading), cal-

endar and time data (time of year, month, weekday, hour), electricity prices or customer

clusters.

Statistical approaches have been concentrating both on calendar and time, which can be

modelled by seasonal components. The preferred modelling approaches are regression,

the Box-Jenkins methodology like AR, ARMA or ARIMA models and seasonal deriva-

tives thereof, like SARIMA, and state-space models. Short-term predictions receive more

attention than long-term forecasts. Weron (2006) provides a survey of statistical studies

until 2006. Some later references in the short-term prediction area without meteorolog-

ical covariates are Diego J. Pedregal (2010) using state-space modelling, Chakhchoukh

et al. (2009, 2011) and Soares & Medeiros (2008) applying SARIMA.

In the field of electricity load forecasting, ES has played an important role especially

through various studies of Taylor, see Taylor (2003b, 2010), Taylor et al. (2006) and

Taylor & McSharry (2007). An earlier reference of ES applied in the context of short-

term load forecasting is Park et al. (1991), where the method is combined with an

autoregressive model and a recursive least squares method.

Calendar and time variables are the main influencing factors, especially for a short-term

horizon, which call for methods including seasonal or periodic terms. In this context,

electricity load forecasting – depending on the nature of the data – often requires to
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deal with multiple seasonalities: Electricity demand can be subject to an annual sea-

sonality as well as a weekly seasonality. Half-hourly or hourly data additionally involve

an intra-day seasonality. For short-term forecasts, intra-day and intra-week seasonality

are predominant. To deal with multiple overlaying seasonalities, different approaches

are presented in the literature. The intra-day seasonality, which is present when dealing

with hourly or half-hourly data, is often considered complicated to model. Consequently,

many authors choose to estimate 24 or 48 separate models for each hour or half-hour

of the day, as for example Fan & Hyndman (2012), Dordonnat et al. (2012), Hinman

& Hickey (2009), Soares & Medeiros (2005) or Ramanathan et al. (1997). Empirical

studies like Taylor (2003b, 2010) show that treating multiple seasonalities simultane-

ously are competitive approaches. Taylor (2003b) applied double seasonal exponential

smoothing as well as double seasonal ARIMA. Taylor (2010) accounted also for annual

seasonality by triple seasonal methods. As further calendar-related factors, special days

and (public) holidays often have an influence on the electricity demand and have to be

taken into account.

Studies that have highlighted within the statistical approach the importance of meteoro-

logical covariates for short-term forecasting, besides calendar variables, are, for example,

Papalexopoulos & Hesterberg (1990), Ramanathan et al. (1997), Dordonnat et al. (2008)

and Hinman & Hickey (2009). In particular, Hinman & Hickey (2009) review the lit-

erature in this area and extract the information that temperature affects the load in a

nonlinear way, a fact also noted by Dordonnat et al. (2008). More recent contributions,

such as Fan & Hyndman (2012) and Ba et al. (2012), add semi-parametric additive

models to the picture. In the past, the poor precision of meteorological forecasts may

have discouraged statisticians from studying electricity load models under meteorolog-

ical covariates on a broad scale. However, meteorologists have markedly increased the

accuracy of their forecasts, particularly for a short-term and mid-term perspective, in

the last twenty years. Bunn (1982) considers meteorological data as substantial for mid-

term and long-term forecasting, but as dispensable for a short-term horizon, essentially

because of two arguments: i) Difficulties in guaranteeing the regular input of weather

variables are potential threats for the stability of the forecasting procedure. ii) Adaptive

forecasting procedures without covariates may be able to induce by themselves the ef-

fect of weather changes, so that the inclusion of covariates provides no extra prediction

accuracy. However, argument i) has lost its impact in view of modern data transmission

technology which guarantees the rapid and reliable transport of large amounts of data.

Argument ii) may have been true 30 years ago, but it has lost its plausibility in view
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of the impressive progress meteorology has made. In particular, the high variability

of weather conditions in Western Europe rather suggests that precise weather forecasts

may improve upon load forecasting also in the short-term context.

In general, temperature forecasts provided by meteorological institutes have become re-

markably exact. The remaining uncertainty will not affect the accuracy of load forecasts

substantially. Khotanzad (2007) study the effect of three temperature forecasts on the

economic benefits of 24-hours-ahead load forecasts: (i) the persistence forecast, i. e. use

today’s temperature as a forecast for tomorrow’s temperature; (ii) a forecast obtained

from a National Weather Service (NWS) computer model; and (iii) the perfect fore-

cast, that is, use tomorrow’s exact temperature. Clearly, the perfect forecast can only

be evaluated retrospectively. Khotanzad (2007) conclude that “about 70 % of the total

potential benefits of a perfect forecast versus a persistence forecast have already been

realized by using the current NWS forecast”. There is a huge gain in using a scientifi-

cally sound temperature forecast instead of a näıve one, but a relatively small difference

between using the meteorologist forecast and the hypothetical perfect forecast.

The subsequent study has the objectives to explore the use of meteorological covariates

in short-term load forecasting and to gain empirical experience with the novel time series

analysis technique of ESCov introduced in Sections 6.2 and 6.3. In Section 6.9.2, the

fitting and forecasting techniques provided by Sections 6.4 and 6.6 are applied to hourly

electricity consumption data of the customers of an energy vendor in some provinces of

Emilia Romagna, an Italian region. Unlike Dordonnat et al. (2008), Hinman & Hickey

(2009) and Fan & Hyndman (2012), who consider a very large number of customers (the

national hourly load of France, about 3.8 million customers in Northern Illinois and the

whole Victoria, Australia, respectively), we deal with a much smaller aggregate of 103

customers overall. In consequence, an unusual behaviour of a few customers may have

a significant effect on the aggregate. Section 6.9.3 applies the theory of renormalising

seasonality patterns from Section 6.8 to the electricity load data. The consequences of

the load forecasting study for the development of a forecasting system are pointed out

in Section 6.9.4.

6.9.2 Model Estimation for Electricity Demand Time Series

We apply the ESCov SSOE models introduced in Section 6.3 to a dataset representing

the total amount of electricity sold by a single energy vendor in Italy. The dataset

consists of 103 single series of hourly electricity demand, each of which comes from a
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certain point of delivery (PoD). A PoD is defined as any point where there is a power

meter measuring the electricity load of one or more customers. The data set starts

in 1 January 2005 and ends in 30 January 2007 and thus covers a total of 760 days

and 18240 hourly observations. The customers are consistently either large consumers

or small businesses, but no private households, since the latter were allowed to access

the free energy market in Italy not earlier than 1 July 2007. In the course of time,

the vendor gradually acquired new or lost customers, which leaves many of the series

incomplete, especially in the beginning of the time period at hand. The PoDs in the

dataset mainly come from Emilia Romagna, only four are located in the region Piedmont,

both in Northern Italy. To be able to buy the appropriate amount of electricity from the

energy market at a certain point of time, the vendor needs forecasts of the electricity

demand of the customers to avoid both an overflow and a shortage on electricity. The

vendor is interested in the total demand of his portfolio, which determines the amount

of electricity to be bought from the energy market, rather than the individual PoD’s

electricity demand.

Available covariates for predicting the electricity load are

i) calendar variables indicating bank holidays, regional holidays, bridge days and

special holiday seasons (indicator variables) and

ii) the realised meteorological variables temperature (TMP), humidity (HMDTY),

cloud cover (CLD), wind speed (WND) (all on an hourly basis).

The meteorological data is available for Emilia Romagna only on the spatial resolution

of provinces, whereas there is no meteorological data available for Piedmont. Hence we

discard the analysis of the four PoDs in Piedmont and stick to the remaining 99 PoDs in

Emilia Romagna, as we would like to investigate, among other things, the value added

by an inclusion of weather information. Since an analysis and aggregation of the 99

individual, partly very irregular, PoD series is expected to come with a high variance,

we aggregate these 99 PoDs to obtain a more stable load series, especially in view of the

vendor’s objective of a prediction on an aggregated level. Weather information is not

perfectly complete. Missing hourly observations are replaced by interpolation between

the respective hourly observations of adjacent days. The PoDs to be investigated are

situated in the following provinces of Emilia Romagna, for all of which meteorological

data is basically available: Bologna (BO, 24 PoDs), Forl̀ı-Cesena (FC, 15 PoDs), Ferrara

(FE, 11 PoDs), Modena (MO, 14 PoDs), Ravenna (RA, 12 PoDs), Reggio Emilia (RE, 3

PoDs) and Rimini (RN, 20 PoDs). To obtain weather information for the whole region

Emilia Romagna, we take the average of the weather variables of the seven provinces,
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so as to forecast the total electricity load in Emilia Romagna of the vendor. A plot of

the total hourly electricity demand is provided in Fig. 6.1.
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Figure 6.1: Hourly electricity demand (in kWh) from 1 January 2005 to 30 January 2007.

The meteorological variables humidity, cloud cover and wind speed do not show any

visible influence on the electricity consumption. Therefore we only consider the temper-

ature as a meteorological covariate to forecast the electricity load. For the estimation

we use the actually realised meteorological data, which we assume to be well predictable

by weather forecasts. Actual weather forecasts for the analysed time period were not

available, which is why we have to concentrate on the analysis using the true values.

Figure 6.2, which shows the hourly temperature (in ◦C) plotted against the hourly

deseasonalised electricity demand, reveals the nonlinear relationship between the two

variables. A U-shaped relationship between the electricity demand and the temperature,

sometimes observed in some European countries (see e. g. Dordonnat et al. (2008)) where

electrical heating causes an increase in the electricity load when colder temperatures

occur, is not true for the Italian data at hand. In our case, the relationship between the

temperature and the electricity load can be well described as piecewise linear with a cut in

the regression line at a temperature around 15◦C, similar to the study of Dordonnat et al.

(2008). In Dordonnat et al.’s (2008) study, however, a strong decrease in electricity load

is observed for temperatures increasing up to 15◦C, and a slight increase for temperatures

above 15◦C, whereas our data show a behaviour of approximately the opposite way: A

clear increase in the electricity load, mainly tracing back to the widespread use of air

conditioning in Italy during the summer, is visible as soon as a threshold of approximately

15◦C in the temperature is exceeded, whereas it is approximately constant below that

threshold. The relationship between the temperature and the electricity demand is

known to be of nonlinear nature, which was observed, for example, by Fan & Hyndman
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(2012) analysing the Australian National Electricity Market. The chosen threshold of

15◦C appears to be reasonable in the light of the data, also considering that there

are no domestic customers, who would perhaps switch on air conditioning at higher

temperatures. Some customers are hospitals, so we can assume that there are cooling

appliances other than air conditioning that start operating more often at warm air

temperatures.
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Figure 6.2: Hourly temperature (in ◦C) plotted against the hourly deseasonalised electricity
demand (in kWh) from 1 January 2005 to 30 January 2007.

Because only two years of data are available, estimating the effect of days and periods

with unusual behaviour is not possible. Periods showing a behaviour which is remarkably

different from “normal” weeks are the holiday period in August as well as the two

weeks around Christmas and New Year. To avoid a deteriorating influence of these

untypical periods on estimation quality, the respective weeks were deleted from the

sample period. Furthermore, special days, like bank holidays and bridge days, destroy

the weekly seasonality pattern in the data and are left out for the estimation of the

parameters by deleting the whole week in which they occur. The same is done for the

week around 25 November 2005, when a national strike took place. Not deleted are

the weeks in which a regional holiday in one of the seven provinces occurred. Since a

regional holiday occurred in only one province at a time and since the modelled electricity

consumption involves the total of all seven provinces, the effect of a regional holiday is

minor, also in view of similar disturbances caused by immigration and emigration of

customers, which are also present in the data. By this approach of handling bank

holidays, the relations between successive days or hours, respectively, are lost. However,
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the eventual drawbacks from this method are negligible compared to the effect that an

inclusion of the exceptional weeks would have on the estimation of the parameters. If we

had a longer series of data, special days could be included in the model by introducing

appropriate dummy variables. For some holidays, this can go as far as having a term

for every hour in that day, as seen in Dordonnat et al. (2008).

For the hourly electricity data displayed in Fig. 6.1, we consider a daily as well as a weekly

seasonality under the ESCov model from Tables 6.1 and 6.2. The model is estimated in

the subsequent section.

6.9.2.1 Model Estimation

We apply the ESCov model with the temperature covariate to the dataset of hourly

electricity load data. To be able to evaluate the performance of the ESCov model under

the use of the covariate temperature, we choose July 2006 for a post-sample evaluation

of our model. This is a period in which a change in the temperature has an influence

on the electricity load and which is not disturbed by holidays. Therefore the parameter

estimation period terminates by 30 June 2006. Since the customer portfolio of the energy

vendor undergoes considerable structural changes in the first seven months of 2005,

which are mainly caused by acquiring new customers, we choose September 2005 as the

beginning of the estimation period. This ten months period includes several months

in which the temperature has a noticeable effect on the electricity load, so that we are

able to estimate its influence. Having omitted the special weeks containing holidays as

well as the Christmas period from the dataset, we end up with a period of 233 days and

233·24 = 5592 hours for the estimation of the parameters. A plot of the now comparably

regular series from 1 September 2005 to 25 July 2006 is provided in Fig. 6.3.

The relationship between temperature and load of the reduced data set is unchanged,

and if we plotted the load against the temperature it would appear very similar to

Fig. 6.2.

Using an idea of Dordonnat et al. (2008), the piecewise linear relationship between the

temperature and the electricity consumption visible in the plot is transferred to a linear

relationship by imposing the transformation

x̃t :=

{
0 if xt ≤ 15,

xt − 15 if xt > 15,

on the covariate, where 15◦C is the threshold below which the electricity consumption

is deemed unaffected by the temperature.
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Figure 6.3: Hourly electricity demand (in kWh) from 1 September 2005 to 25 July 2006 with
special weeks removed.

The considered vendor’s customer portfolio is relatively small. So immigration and

emigration of customers cause considerable changes in the electricity load series. Never-

theless, we apply the method of ESCov to these volatile series as they happen in reality,

and exploit the ability of exponential smoothing to adapt quickly to changes in the

behaviour of a time series.

We evaluate the precision of the forecasts with the help of the mean absolute percentage

error (MAPE) and the mean square error (MSE) defined as follows:

Definition 6.15 (Accuracy Measures). Let YT+1|T+1−h, . . . , YT+N |T+N−h be the h-step-

ahead forecasts of the electricity load for time points T+1, . . . , T+N and YT+1, . . ., YT+N

the true observations. The mean absolute percentage error (MAPE) of the forecast is

defined as

MAPE :=
1

N

N∑
i=1

∣∣∣∣YT+i − YT+i|T+i−h

YT+i

∣∣∣∣ · 100 %.

The mean square error (MSE) is defined as

MSE :=
1

N

N∑
i=1

(
YT+i − YT+i|T+i−h

)2
and the root mean square error (RMSE) is defined as RMSE :=

√
MSE.

In the specification of the ESCov model, two overlaying seasonalities have to be taken

into account: a within-week seasonality of length d1 = 24·7 = 168 hours and a within-day

seasonality of length d2 = 24 hours. We have to acknowledge that a yearly seasonality

is also present, but we had to give up on modelling the intra-year seasonality altogether
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due to the lack of an appropriately long series of data. To specify the appropriate type

of trend and seasonality, we compare the MSE of the models described in Tables 6.1

and 6.2 for a forecast step of h = 24, i. e. one day. We discard the exponential trend

model from Table 6.3 because the observation series seems to be rather constant in level

than of exponential growth. A model with additive seasonality (AS) turns out to be

more appropriate than a model with multiplicative seasonality (MS). The trend type

ADT is the broadest class of the trend models listed in Table 6.1 since it allows both

a damped (for φ < 1) and a non-damped trend (for φ = 1). Therefore we deem model

ADT-AS the most appropriate one for the data.

We apply model ADT-AS with double additive seasonality and possibly damped linear

trend to the hourly electricity demand with and without using the hourly temperature

as covariate. We estimate the smoothing and covariate parameters minimising the MSE

of the one-hour-ahead through 24-hours-ahead forecasts, i. e. h = 1, . . . , 24, the 72-

hours-ahead forecasts, i. e. h = 72, which is a 3-days-ahead forecast, and the 168-hours-

ahead forecasts, i. e. one-week-ahead forecast, and the 240-hours-ahead forecasts, i. e.

ten days ahead. The optimisation is done in R using the function optim under the

method "L-BFGS-B". This is a limited-memory modification of the BFGS quasi-Newton

algorithm, which allows box constraints, see the stats-package in R (R Core Team

2014). The starting values u0 for the level, trend increment and seasonal factors are for

both the ESCov method as well as the ES method chosen as follows: The initial trend

increment ∆0 is chosen as the mean of the observations in the second season (observations

169–336) minus the mean of the observations in the first season (observations 1–168)

divided by 7 ·24 ·φ. The initial level µ0 is chosen as the mean of the first 168 observations

minus ∆0 · 84. The initial within-day season factors e1,1,0, . . . , e1,24,0 are estimated as

the seasonal factors from a seasonal adjustment procedure of type Census I applied to

the first 48 observations. The initial within-week season factors e2,1,0, . . . , e2,168,0 are

estimated as the seasonal factors from a seasonal adjustment procedure of type Census

I applied to the first 336 observations.

The estimated parameters, the MSE and the MAPE appear in Tables 6.6 and 6.7. For

comparison we also report a näıve forecast, which we obtained by using the corresponding

hour of the week, i. e. 168 hours, before (to compare with the results for h = 1, 24, 72, 168)

or two weeks, i. e. 336 hours, before (to compare with the results for h = 240).

An important finding from the results is that varying lead times come with different sets

of optimal parameters. In the case of the very short-term one-hour-ahead forecast, the

smoothing parameter for the level is the rather high α1 = 0.609, which corresponds to a
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quick adaption of the forecast to level changes. This property gets less important for in-

creasing lead times, where the level parameter is at its minimum. The trend parameter,

which is almost always at its minimum, suggests that a trend component is not impor-

tant for forecasts up to 10 days ahead. Consequently, the trend and therefore also the

dampening of the trend seem to be of little added value. These findings apply to both

ESCov and ES. In the presence of covariates, we find that the temperature coefficient is

comparably low for lead time one-hour-ahead and increases with increasing lead time.

Consequently, the improvement in the fit obtained by including the temperature as a

covariate is negligible for one-hour-ahead forecasts. This is plausible since the weather

does not change considerably from one hour to the next. Yet, the temperature coeffi-

cient increases with increasing lead time and leads to improvements in the fit of ESCov

in comparison to ES. The increasing importance of the temperature covariate for bigger

lead times in the ESCov model is compensated by a larger parameter for the intra-day

seasonality in the case of ES. This demonstrates the ability of ES to adapt quickly to

changes in the behaviour of a time series.

Figure 6.4 shows autocorrelation plots of the one-step-ahead forecast errors ξ1, . . . , ξT

up to lag 96 obtained for model ADT-AS for lead times h = 1 and h = 24. For

h = 1, a pattern of autocorrelations alternating in sign is visible. In particular, the

first-order autocorrelation of about 0.21 suggests to account for the autocorrelation of

the errors in the model. For lead time h = 24, the autocorrelations are considerable and

constantly decrease up to lag 72 while temporarily changing sign from lag 48 onwards. In

general, while optimising the h-step forecasts with h > 1, autocorrelation does not decay

as quickly as desired under a model assuming independent residuals. To address this

problem, we fit the model ADT-AS under an inclusion of an AR(1) process on the errors,

see Section 6.3.1. The estimated smoothing parameters, the covariate coefficient and the

autoregressive parameter λ ∈ [0; 1] for lead time h = 1 can be taken from Table 6.8. For

lead times h = 24, 72, 168, 240, the autocorrelation parameter λ was estimated to 0 and

hence brought no improvement, which is why we dispense with a report of the estimation

results. The SSOE model under AR(1) errors has not been investigated empirically for

other lead times.

The inclusion of an autoregressive process of order 1 on the errors for lead time h = 1

brings an improvement in the result of the fit and leads to smoothing parameters differing

from those in Tables 6.6 and 6.7. Without the AR(1) process on the errors, higher

parameters for the level as well as the two seasonalities seem to compensate for the

autocorrelation in the errors. A similar result was observed by Taylor (2003b), who
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Table 6.6: Estimated parameters of model with additive, potentially damped trend and additive
season (ADT-AS) for exponential smoothing (ES) and exponential smoothing with
covariates (ESCov) for lead times 1, . . . , 14 estimated by the hourly data for seven
provinces in Emilia-Romagna aggregated. Covariate: average hourly temperature of
the seven provinces of Emilia-Romagna. α1 = parameter for level, α2 = parameter
for trend increment, φ = trend damping parameter, α1,3 = within-week seasonality,
α2,3 = within-day seasonality, β = temperature coefficient.

h model α1 α2 φ α1,3 α2,3 β
In-sample In-sample

MSE (kWh2) MAPE (%)

1 ESCov 0.609 0.001 0.663 0.257 0.300 48.4 6.38 · 105 1.42
1 ES 0.609 0.001 0.634 0.258 0.304 – 6.40 · 105 1.43

2 ESCov 0.391 0.001 0.708 0.194 0.173 45.0 9.88 · 105 1.80
2 ES 0.394 0.001 0.691 0.197 0.181 – 9.91 · 105 1.81

3 ESCov 0.276 0.001 0.729 0.168 0.154 59.0 1.21 · 106 2.03
3 ES 0.284 0.001 0.708 0.172 0.160 – 1.22 · 106 2.03

4 ESCov 0.166 0.001 0.762 0.150 0.121 78.1 1.39 · 106 2.17
4 ES 0.175 0.001 0.727 0.152 0.130 – 1.40 · 106 2.18

5 ESCov 0.098 0.001 0.812 0.157 0.098 94.6 1.50 · 105 2.23
5 ES 0.104 0.001 0.759 0.154 0.107 – 1.52 · 106 2.25

6 ESCov 0.074 0.001 0.835 0.167 0.090 103.7 1.57 · 105 2.28
6 ES 0.077 0.001 0.769 0.163 0.098 – 1.60 · 106 2.30

7 ESCov 0.063 0.001 0.849 0.168 0.087 109.0 1.64 · 105 2.33
7 ES 0.065 0.001 0.771 0.165 0.095 – 1.66 · 106 2.35

8 ESCov 0.056 0.001 0.861 0.165 0.085 112.6 1.69 · 105 2.37
8 ES 0.057 0.001 0.780 0.163 0.093 – 1.72 · 106 2.39

9 ESCov 0.051 0.001 0.866 0.161 0.084 116.1 1.73 · 105 2.40
9 ES 0.052 0.001 0.784 0.159 0.092 – 1.76 · 106 2.42

10 ESCov 0.048 0.001 0.868 0.158 0.083 120.4 1.76 · 106 2.43
10 ES 0.049 0.001 0.768 0.156 0.091 – 1.79 · 106 2.45

11 ESCov 0.045 0.001 0.871 0.154 0.082 123.9 1.79 · 106 2.45
11 ES 0.046 0.001 0.765 0.154 0.090 – 1.83 · 106 2.47

12 ESCov 0.042 0.001 0.873 0.151 0.081 127.4 1.82 · 106 2.47
12 ES 0.044 0.001 0.761 0.151 0.090 – 1.85 · 106 2.49

13 ESCov 0.040 0.001 0.875 0.148 0.081 130.4 1.84 · 106 2.49
13 ES 0.042 0.001 0.768 0.149 0.089 – 1.88 · 106 2.51

14 ESCov 0.037 0.001 0.877 0.145 0.082 134.2 1.87 · 106 2.50
14 ES 0.039 0.001 0.762 0.146 0.090 – 1.90 · 106 2.53
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Table 6.7: Estimated parameters of model with additive, potentially damped trend and additive
season (ADT-AS) for exponential smoothing (ES) and exponential smoothing with
covariates (ESCov) for lead times 15, . . . , 24, 72, 168, 240 estimated by the hourly
data for seven provinces in Emilia-Romagna aggregated. Covariate: average hourly
temperature of the seven provinces of Emilia-Romagna. α1 = parameter for level,
α2 = parameter for trend increment, φ = trend damping parameter, α1,3 = within-
week seasonality, α2,3 = within-day seasonality, β = temperature coefficient.

h model α1 α2 φ α1,3 α2,3 β
In-sample In-sample

MSE (kWh2) MAPE (%)

15 ESCov 0.034 0.001 0.879 0.140 0.083 139.1 1.89 · 106 2.52
15 ES 0.037 0.001 0.740 0.143 0.091 – 1.93 · 106 2.55

16 ESCov 0.030 0.001 0.884 0.136 0.087 143.2 1.91 · 106 2.53
16 ES 0.035 0.001 0.742 0.140 0.093 – 1.95 · 106 2.56

17 ESCov 0.025 0.001 0.896 0.131 0.094 165.4 1.92 · 106 2.55
17 ES 0.032 0.001 0.710 0.136 0.098 – 1.97 · 106 2.57

18 ESCov 0.021 0.001 0.904 0.128 0.104 154.8 1.94 · 106 2.55
18 ES 0.028 0.001 0.708 0.132 0.106 – 1.99 · 106 2.58

19 ESCov 0.017 0.001 0.919 0.125 0.120 158.0 1.95 · 106 2.55
19 ES 0.024 0.001 0.750 0.127 0.121 – 2.00 · 106 2.59

20 ESCov 0.010 0.124 0.779 0.122 0.142 158.2 1.97 · 106 2.55
20 ES 0.019 0.001 0.819 0.123 0.143 – 2.02 · 106 2.59

21 ESCov 0.007 0.092 0.830 0.121 0.178 165.4 1.98 · 106 2.55
21 ES 0.015 0.001 0.828 0.120 0.175 – 2.03 · 106 2.59

22 ESCov 0.004 0.145 0.804 0.119 0.219 168.5 1.98 · 106 2.55
22 ES 0.010 0.001 0.858 0.117 0.223 – 2.04 · 106 2.60

23 ESCov 0.001 0.001 0.997 0.119 0.269 175.3 1.97 · 106 2.54
23 ES 0.004 0.042 0.825 0.114 0.277 – 2.05 · 106 2.60

24 ESCov 0.001 0.001 0.997 0.120 0.271 186.2 1.97 · 106 2.54
24 ES 0.001 0.001 0.998 0.113 0.315 – 2.04 · 106 2.60

72 ESCov 0.001 0.001 0.997 0.118 0.284 168.2 1.97 · 106 2.55
72 ES 0.001 0.001 0.886 0.111 0.348 – 2.06 · 106 2.61

168 ESCov 0.002 0.164 0.733 0.117 0.332 219.5 2.00 · 106 2.56
168 ES 0.001 0.001 0.998 0.108 0.365 – 2.07 · 106 2.62
168 näıve forecast – – – – – – 3.97 · 106 3.48

240 ESCov 0.001 0.001 0.998 0.126 0.291 231.3 2.00 · 106 2.57
240 ES 0.001 0.001 0.998 0.114 0.349 – 2.09 · 106 2.64
336 näıve forecast – – – – – – 5.35 · 106 3.96
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Figure 6.4: Autocorrelation plots of the one-step-ahead forecast errors under the ESCov model
ADT-AS for lead times h = 1 without (top left) and with (bottom left) autocor-
relation adjustment on the errors and h = 24 (top right) without autocorrelation
adjustment. Dashed: confidence intervals of level 95 %.

applied ES with double multiplicative seasonality to half-hourly electricity data from

England and Wales. The improvement on the first order autocorrelation of the errors gets

visible in Fig. 6.4. The results show that it is worthwhile considering an autocorrelated

residual model to improve upon the goodness of fit and forecast accuracy.

The autocorrelation in the residuals will not be eliminated by using the raw temperature

data without a threshold. A preliminary simulation study showed that autocorrelation

in the residuals is also visible in the covariate-free method, i. e. in the classical Holt-

Winters method. Autocorrelation can be found in the residuals as soon as the model

accounts for seasonality. Our supposition is that this is caused by an alternation of

underestimation and overestimation in the model and is rather a characteristic of the

seasonal ES model than of the data. As a consequence we can still see a seasonality in

the ACF of the residuals.
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Table 6.8: Parameters of model ADT-AS for ES and ESCov estimated by the hourly data
for seven provinces in Emilia-Romagna aggregated including an AR(1) term on the
errors. Covariate: average hourly temperature of the seven provinces of Emilia-
Romagna. α1 = parameter for level, α2 = parameter for trend increment, φ = trend
damping parameter, α1,3 = within-week seasonality, α2,3 = within-day seasonality,
β = temperature coefficient. MSE in kWh2, MAPE in %.

h model α1 α2 φ α1,3 α2,3 β λ MSE MAPE

1 ESCov 0.483 0.001 0.736 0.199 0.192 55.5 0.213 6.06 · 105 1.37
1 ES 0.486 0.001 0.710 0.201 0.198 – 0.210 6.08 · 105 1.37

6.9.2.2 Post-sample Analysis

We use the period 1 July 2006 to 25 July 2006 before the summer holiday period, in which

many companies shut down their activities, for a post-sample evaluation. We report the

MAPE, the MSE and the RMSE of the forecast as measures of forecast accuracy. See

Definition 6.15 for the formulas of these measures. Here we have T = 5592, which

corresponds to hour 23 on 30 June 2006, and N = 25 · 24 = 600, i. e. the h-step-ahead

forecasts for 600 hours are compared with the actual observations. The performance of

the forecast is analysed for h = 1 hour, h = 24 hours (= 1 day), h = 72 hours (= 3

days), h = 168 hours (= 1 week) and h = 240 (= 10 days) ahead under the estimated

parameters reported in Section 6.9.2.1. The hourly average temperature in the seven

provinces in Emilia-Romagna, which we use as a covariate in the prediction, is based on

the actually observed average hourly temperature values.

Table 6.9 lists the results of the post-sample analysis in the period 1 July 2006 to 25

July 2006. By the näıve forecast, an MAPE of 4.22 (lead times up to h = 168) or 3.61

(lead times up to h = 336) is achieved.

The post-sample forecast MAPEs for ESCov beat those of ES for all investigated lead

times. While for one-hour-ahead forecasts the improvement in MAPE is only 1.5 %, it

increases to almost 11 % for the 24-hours-ahead forecast and 15 % for one-week-ahead

forecasts. This finding is in accordance with intuition: For forecasts from one hour to

the next, the temperature does not play an important role in the forecast, but gains

importance as a covariate for forecasts several days ahead. ESCov achieves a forecasting

performance of more than 30 % better than the näıve forecast for several lead times in

the post-sample period. The best result for the one-hour-ahead forecast is obtained by

the ESCov model considering AR(1) residuals.

We analyse the performance of the prediction intervals obtained by the plug-in method

described in Eq. (6.29) in the post-sample period 1 July 2006 to 25 July 2006. The
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Table 6.9: Forecast accuracy of the one-hour-, 24-hours-, 72-hours-, 168-hours- and 240-hours-
ahead forecasts in the post-sample period 1 July 2006 to 25 July 2006. MAPE in
%, MSE in kWh2, RMSE in kWh. The näıve forecast is the observed value of the
same hour on the previous week (i. e. 168 hours before) or of two weeks before (i. e.
336 hours before), respectively.

h model MAPE MSE RMSE

1 ESCov 1.34 6.4 · 105 800
1 ESCov with AR(1) residuals 1.32 6.2 · 105 787
1 ES 1.36 6.5 · 105 804
1 ES with AR(1) residuals 1.33 6.2 · 105 789

24 ESCov 2.70 2.7 · 106 1647
24 ES 3.02 3.2 · 106 1781

72 ESCov 3.41 3.9 · 106 1981
72 ES 4.04 5.1 · 106 2254

168 ESCov 2.91 3.3 · 106 1819
168 ES 3.41 4.5 · 106 2120
168 näıve forecast 4.22 6.8 · 106 2610

240 ESCov 2.63 2.9 · 106 1702
240 ES 3.00 3.4 · 106 1833
336 näıve forecast 3.61 4.3 · 106 2082

parameter estimates for the SSOE model ADT-AS applied to the hourly electricity

demand are the ones reported in Section 6.9.2.1, both for the case with and without

the average hourly temperature as covariate. A plot of the 24-hours-ahead forecasts

in the period 1 July 2006 to 25 July 2006 with level γ = 95 % prediction intervals as

well as the actual observations is provided in Fig. 6.5. During the analysed period, the

actual observations mostly lie in the calculated prediction intervals for both models. The

prediction intervals for ESCov fail in 10.2 %, those for ES in 11.3 % of the cases.
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Figure 6.5: 24-hours-ahead load forecasts and actuals in the post-sample period 1 July 2006
to 25 July 2006 with level 95 % prediction intervals. Solid red line: 24-hours-ahead
forecast, dashed black line: actual values, grey area: prediction intervals.
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To visualise the coverage properties, we provide a plot of the differences between the

actual loads and the load forecasts in Figure 6.6 both for ESCov and ES. The undercov-

erage is likely due to both the plug-in method and to the violation of the independence

assumption of residuals.
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Figure 6.6: Difference between actuals and 24-hours-ahead load forecasts in the post-sample
period 1 July 2006 to 25 July 2006 with level 95 % prediction intervals.

6.9.3 Renormalisation of Electricity Load Seasonalities

We investigate the effect of the renormalisation of the seasonal pattern as presented

in Section 6.8 in the context of the electricity study. Since we used double additive

seasonality for the model estimation of hourly electricity load data in Section 6.9.2, the

renormalisation equations as presented in Definition 6.10 are applied and the results

from Proposition 6.11 hold. The intra-day seasonality of length 24 and the intra-week

seasonality of length 168 are both treated simultaneously.

We consider the model ADT-AS with the parameters optimised according to the one-

hour-ahead forecast. Figure 6.7 displays the weekly deseasonalised (by applying a moving

average of length 168) seasonality pattern for the classical scheme without renormali-

sation and the scheme after renormalisation. While the season pattern under the non-
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renormalised scheme is below zero in average most of the time and rises to above zero

in the end of the estimation period, the season pattern under the renormalised scheme

stays clearly more stable around zero.

From Proposition 6.11 we know that for the case of additive seasonality the predictions

are the same under the classical and the renormalised scheme. Furthermore, with the

observation series ranging between about 20000 and 70000 and the seasonal component

drift being small in absolute value (between about −10 and +5), the seasonal pattern

of the renormalised model without applying a moving average of 168 cannot visibly be

distinguished from the seasonal pattern under the classical scheme. Consequently, for

the data at hand, even if one is concerned with the correct interpretation of the separate

components, the renormalisation seems dispensable.
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Figure 6.7: Deseasonalised weekly season pattern under the classical scheme and the renor-
malised scheme

6.9.4 Conclusion of the Load Forecasting Study

Our empirical study demonstrates the potential of exponential smoothing with covariates

(ESCov) as a load forecasting methodology. The electricity forecasts turned out to be

more precise under the use of meteorological variables, in particular temperature, than

without. The gain in forecast accuracy was higher for prediction horizons in the range

of one-day-ahead and more than for very short-term predictions of one-hour-ahead. The

latter shows the strength of ordinary ES, which manages to adapt quickly to level changes

if rather small time intervals are contemplated. Prediction intervals based on the SSOE
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model were applied by simply plugging in the estimated parameters into the equation for

the prediction intervals constructed under the assumption of asymptotic normality. We

found the intervals slightly too narrow in our analysis, which is consistent to Ord et al.’s

(1997) observations. This shows the need for prediction intervals for ESCov which are

robust against violations of the assumption. The temperature values were assumed to be

known for the predictions. Considering the accuracy of temperature forecasts nowadays,

this is justifiable.

The forecasting results for the analysed dataset were in general worse than the load

forecasting results from other studies. This fact is mainly due to the small number of

customers forming the portfolio of the energy vendor. Immigration and emigration of

customers as well as an unusual behaviour of one bigger customer in a comparably small

dataset can lead to considerable disturbances in the load series, which affect the forecast

performance. Furthermore, the shortness of the series does not allow to properly estimate

the influence of special days and special periods. Hence holiday periods were deleted in

the sample, and the empirical analysis of Section 6.9.2 makes no use of public holidays

and holiday periods as calendar covariates. This shows that considerable further efforts

are required to integrate ESCov into an intelligent and automatic load forecasting system.

Basically, the ESCov model allows the inclusion of such variables in form of covariates,

and it is to be expected that this treatment will improve upon prediction accuracy for

periods in which such days occur. However, to account for the effect of public holidays,

the sample period has to be long enough so that the respective effect can be satisfactorily

estimated.

6.10 Implementation and Numerical Issues

The ESCov method was implemented by the author of this thesis in the statistical

computing environment R (R Core Team 2014). Several difficulties encountered during

the implementation are reported in this section.

6.10.1 Parameter Optimisation

As described in Section 6.4, the smoothing and covariate parameters can be estimated

by minimising a certain objective function, such as the mean square error (MSE) or

mean absolute percentage error (MAPE) of the h-step-ahead forecasts, h ∈ {1, 2, . . .}.
In our study, we optimised with respect to the MSE, which we found to be more stable
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than optimising with respect to the MAPE. This is in accordance to common practice

in optimisation problems, e. g. least squares fitting in regression.

The parameter optimisation was done using the function optim, which is contained in the

stats-package coming with the default R installation. It allows the optimisation method

"L-BFGS-B", in which lower and upper limits for the parameters can be specified. This is

advantageous because the smoothing parameters α1, α2, φ, αi,3, i = 1, . . . ,m, take values

between 0 and 1. Apart from the parameter bounds, starting values are requested for

the parameters to initialise the search for the optimum.

The method "L-BFGS-B" follows a suggestion for solving large nonlinear optimisation

problems with simple bounds by Byrd et al. (1995). Byrd et al. (1995) describe it as

nearly as efficient as an unconstrained limited memory algorithm while being able to

handle bounds on the parameters.

In our study, we have found the method "L-BFGS-B" quite useful and nearly always

applicable. However, in certain situations it failed and did not find the optimal parame-

ters. The failure could be identified by trying a different set of parameters, which turned

out to show better results in terms of the MSE. The parameter sets resulting from the

optimisation were consequently found to be sensitive with respect to the choice of the

starting values for the optimisation. Hence, the optimisation result did not necessarily

come with the minimum MSE. A possible explanation might be that the objective func-

tion is too complex and probably contains several local minima that the optimisation

method is running into, which are not all global minima. This is clearly not desirable

and hence a way is needed to overcome this problem.

We saw a possible solution in the implementation of a global optimisation method.

The optim function in R offers the method "SANN", a variant of simulated annealing

to be found in Bélisle (1992). Simulated annealing is described by Bélisle (1992) as

a Monte Carlo technique for solving optimisation problems. When the optimisation

method "L-BFGS-B" failed or proved to be too sensitive with respect to the starting

values, the method "SANN" usually came close to the optimum. However, it took consid-

erably longer than the "L-BFGS-B" method. We might not have used the most appro-

priate optimisation control parameters, such as number of iterations or the convergence

tolerance, but used only some relatively simple and few settings. So there might still be

potential for improvement here.

More promising seems to be the optimisation method "GenSA", which does not come

with the standard installation of R, but as an additional package named "GenSA". The
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optimisation function comes with the same name as the package itself, which was written

by Xiang et al. (2013). The generalised simulated annealing method implemented in the

"GenSA" package follows an algorithm introduced by Tsallis & Stariolo (1996). It is

described by Xiang et al. (2013) as a method that searches for a global minimum when

dealing with a very complex nonlinear objective function with a very large number of

optima. Our experiences with the "GenSA" optimisation are very good. We found it

to be considerably more efficient than the "SANN" method and mostly reliable in the

results. Therefore we prefer "GenSA" over "SANN". The optimisation control parameters

possibly leave also room for improvement, certainly depending on the data at hand.

In terms of computation time, both simulated annealing methods (naturally) took longer

to compute the optimal parameters than the gradient method "L-BFGS-B". This encour-

aged us to look for a way to use the advantages of both methods to achieve good results:

the precision from "GenSA" and the computation time from "L-BFGS-B". Hence, in our

implementation of ESCov, we implemented a combination of the simulated annealing

method with the gradient method. By applying the simulated annealing method in the

first step, we hope to reach an area in the optimisation space where the objective func-

tion is more or less convex, such that the gradient method applied in the second step

would find the optimum more easily and especially faster. With this approach, there is

still the risk that the simulated annealing method applied in the beginning would not

be applied sufficiently long to arrive at a region with the desired convexity properties or

at a region which does not contain the global, but only a local optimum. However, the

computation time that can be gained by this approach might make up for the loss in

precision with respect to the objective function if the set of parameters found does not

come with considerably worse results than the optimal one.

Nevertheless, we would like express a warning to not force the optimisation method to

find the optimum by all means. When the optimisation fails, it should be taken as a

warning that something might be wrong, such as a possible redundance of at least one

smoothing or covariate parameter. As a combination of exponential smoothing with

regression, ESCov adopts some of the characteristics that can be experienced in a re-

gression context. Although finding the optimal smoothing and covariate parameters is

not subject to an explicit formula including an inversion of the design matrix (something

that would fail in the presence of collinearities in its columns), ESCov can encounter

difficulties finding the optimal set of parameters if there are strong dependencies be-

tween the covariates. Likewise, the smoothing parameters associated with the states, in

particular trend and season, can cause problems. If there is no trend in the data or the

206



6.10 Implementation and Numerical Issues

trend is explained by the covariates, the smoothing parameter α2 is possibly superfluous.

By nevertheless exposing α2 to the optimisation routine might cause the parameter to

not find its place in the parameter space. Similar holds for the seasonal component. We

recommend to invest some effort into deliberate model selection, such that there is a

smaller risk of a redundance of model parameters and implied optimisation problems.

6.10.2 Notation and Computation Time

The R code to compute ESCov has been developed with progress in theory and hence

underwent a lot of changes in the course of time. One of the first approaches was to

implement the procedure following the state transition formulas in Tables 6.1 to 6.3. A

discrimination between the different models and hence a lot of if clauses were necessary

to comply with the different models. The division of the models into the classes “linear

SSOE”, “partially linear SSOE” and “exponential trend models” and the introduction

of the corresponding matrix notation using the components of Tables 6.4 and 6.5 allowed

a more efficient and transparent way of programming. The computation time decreased

considerably to at least half, possibly a third of the former computation time. Whether

the gain in computation time is rightfully assigned to the matrix notation or just a gain

in programming experience of the author of the code, is certainly difficult to distinguish.

However, if not for the computation time, we advertise the matrix notation for reasons

of transparency as well as an easier treatment of the starting values of the states. The

latter goes well with the matrix notation and is less susceptible to programming errors.

One of the reasons for the popularity of ES is the comparably simple structure of the

model. In former times, it had its attractiveness from the fact that for given smoothing

parameters the current smoothed value could be calculated by a simple linear combi-

nation of the current observed value and the preceding smoothed value of level, trend

increment or season. Hence, not more than the smoothed values of one season plus the

smoothed values of level and trend increment have to be saved. However, this applies

for given smoothing parameters only. In the early days of ES, rules of thumb were ap-

plied to choose an appropriate smoothing constant α1 for the level. For example, Brown

(1956) presents a table with values for α1 in dependence of the total weight the n last

periods carry when α1 is chosen in a certain way. Nowadays, the demand for tables to

choose appropriate values for the smoothing parameters from is low. Computers allow to

apply numerical procedures to achieve smoothing parameters which are optimal in some

sense. In our study, we chose the parameters such that the MSE of the h-step-ahead

forecast was optimal. To achieve this, the optimisation procedure requires to compute
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the series of smoothed values from the first till the last observation for a number of sets

of smoothing parameters. This repeatedly executed smoothing, in which the current

smoothed value is dependent on the previously smoothed value, requires to programme

for loops. They contribute most to the computation time, but cannot be avoided due

to the definition of the method.

6.10.3 Initial States Values

In the empirical study of Section 6.9 we chose the initial level, trend increment and

seasons fixed according to Census I based rules that were recommended for ES. In

particular, we did not estimate the starting values for the states together with the

smoothing and covariate parameters for fearing this would make it a too complex venture,

see the remarks in Section 6.5. More recent numerical experiences have revealed that

ESCov is far more sensitive with respect to the choice of initial state values than initially

thought. The assumption that an inappropriate choice of starting values would smooth

out after several rounds of smoothing mostly turned out to be true, but frequently

resulted in a different set of smoothing and covariate parameters than under a different

set of initial state values. We conjecture that the choice of the initial state values carries

more importance for ESCov than for ES. In a first attempt, we estimated the initial level

and initial trend increment simultaneously with the smoothing and covariate parameters

while choosing the initial seasonal component with a Census I type procedure in advance.

This approach worked considerably well. We are skeptical about also estimating the

initial season simultaneously with the smoothing and covariate parameters. Especially

in the case of the electricity data with hourly data and seasonalities of lengths 168

and 24, a large number of parameters would have to be estimated. Since we have

already encountered problems in the optimisation of just the smoothing and covariate

parameters, this is not unlikely to be doomed to failure and probably would come with

a disproportionate computation time.

6.11 Conclusion and Outlook

We have considered the statistical time series method of exponential smoothing with

covariates (ESCov) that has been found to be underpinned by a single source of error

(SSOE) state-space model by Wang (2006) and extended the methodology to account for

multiple seasonalities. The MMSE forecast and forecast variance under the linear and

partially linear SSOE for ESCov have been presented. These schemes cover the most
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popular exponential smoothing (ES) variants. One of the attractive features of ES is the

interpretability of its components. It can get partially lost with successive smoothing

in the seasonal components, unless they are renormalised. We have adopted the renor-

malisation scheme of Roberts (1982), McKenzie (1986) and Archibald & Koehler (2003)

and applied it to multiple seasonality models. Forecasts under ESCov rely on future

covariate values. This naturally limits forecast horizons according to the availability of

the covariate values.

The theoretical results of ESCov have been applied in an electricity load forecasting

study. Covariates have been used in form of meteorological variables, in particular tem-

perature. ESCov has demonstrated to perform well as a load forecasting methodology.

We have carried out the optimisation of smoothing and covariate parameters in the

ESCov model separately per forecast step. Considering the different parameter esti-

mates, the approach appears to be viable. However, autocorrelation can be induced in

the residuals, which can conflict with the assumptions on the residuals determining the

forecast variance. This drawback of autocorrelated residuals as revealed by the study

has been discovered by other authors, e. g. Chatfield (1978) and Taylor (2003b), for ES

before. Also the inclusion of meteorological covariates could not make up for this in

the present study. By accounting for autoregressive residuals of order 1, the prediction

performance could be improved to a certain extent. This shows the potential of ESCov

of including also higher order autocorrelation models for the residuals. Considering the

involved formulas for the forecast and the forecast variance already in the case of p = 1,

it is to be expected that the respective formulas become rather intractable unless the

correlation structure is very simple. It therefore has to be postponed to future studies.

We have presented the MMSE forecast and variance for the linear, potentially damped,

trend models and both additive and multiplicative as well as no seasonality. Formulas

for the model-based forecast variance under an exponential trend ESCov model still have

to be derived.

The state-space formulation of the ESCov model allows the derivation of the likelihood

under certain assumptions. We have reviewed the approach by Ord et al. (1997) and

Wang (2006) that holds for a forecast step of 1 in Section 6.5. The respective formula

for the likelihood under larger forecast steps needs to be explicitely formulated. From

there, likelihood-based measures as the AIC or BIC can be derived, which we find useful

for model selection.

The part assigned to the covariate in the presented ESCov models consists of an additive

term in the observation equation (6.15). Further methodological development of ESCov
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should also refine the multiplicative seasonal model by considering an alternative type of

covariate influence. In the observation equation of the partially linear model considered

in Section 6.3.2 and exemplified in Table 6.2, the seasonal coefficients have no effect on

the covariate term β>x, which represents a mere additive shift in level. However, the

seasonal coefficients might also act on the total level by (δ>α,neut−1,ne+β
>x)

∏m
i=1 ei,t−di .

This observation equation is a case of a markedly different model where the covariates

would have to be considered as states.

So far, we have applied simple rules to obtain initial values for the states (level, trend

and seasons) in ESCov similar to ES without covariates. First tests have shown that

methods proposed for ES show drawbacks when applied to ESCov, for there is a stronger

interaction between the state components with the covariates than initially assumed.

Refined methods to estimate the initial states in the presence of covariates have to be

researched properly.
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6.A Appendix

6.A.1 Proof of Proposition 6.3

To prove Proposition 6.3, we make use of the following proposition.

Proposition 6.16 (Recurrence Relation for Linear SSOEs). Consider the linear SSOE

from Definition 6.2, and let h > 0. Then we have

ut+h =
h−1∑
l=0

Gl
αwαξt+h−l + Gh

αut, (6.34)

Yt+h = δ>α

(
h−2∑
l=0

Gl
αwαξt+h−l−1 + Gh−1

α ut

)
+ β>xt+h + ξt+h. (6.35)

Proof. To prove Proposition 6.16, we use induction by h. For h = 1, the right-hand

side of (6.34) amounts to wαξt+1 + Gαut, which equals ut+h = ut+1 by (6.9).

Let (6.34) be proven for h > 0. Then we have for h+ 1 by Eq. (6.9)

ut+h+1 = Gαut+h +wαξt+h+1

= Gα

(
h−1∑
l=0

Gl
αwαξt+h−l + Gh

αut

)
+wαξt+h+1

=

h−1∑
l=0

Gl+1
α wαξt+h−l + Gh+1

α ut + G0
αwαξt+h+1

=
h∑

m=1

Gm
αwαξt+h+1−m + G0

αwαξt+h+1 + Gh+1
α ut

=

h∑
m=0

Gm
αwαξt+h+1−m + Gh+1

α ut.

Equation (6.35) is a direct consequence of (6.34) and (6.8). �

We proceed to the proof of Proposition 6.3.

From the properties of the conditional expectation we have E[umt |Ht] = umt for all

m ∈ N. By Proposition 6.16, ut+h depends on the process history Ht up to time t

only through ut, and on ξt+1, . . . , ξt+h. Because of the independence assumption on the

errors, the assumption (6.10) and E[ut|Ht] = ut, we obtain

E[ut+h|Ht] = E
[ h−1∑
l=0

Gl
αwαξt+h−l + Gh

αut

∣∣∣Ht]
= E

[ h−1∑
l=0

Gl
αwαξt+h−l

]
+ E[Gh

αut|Ht] = Gh
αut. (6.36)
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With (6.36) and (6.35) we obtain Eq. (6.11).

We obtain from the recurrence relation (6.35) and under the assumptions of Proposi-

tion 6.3

V [Yt+h|Ht] = V

[
δ>α

(
h−2∑
l=0

Gl
αwαξt+h−l−1 + Gh−1

α ut

)
+ β>xt+h + ξt+h

∣∣∣Ht]

= V
[
δ>α

h−2∑
l=0

Gl
αwαξt+h−l−1

]
+ V

[
δ>αGh−1

α ut|Ht
]

+ V [ξt+h]

=
h−2∑
l=0

(
δ>αGl

αwα

)2
σ2
ξt+h−l−1

+ σ2
ξt+h

.

6.A.2 Proof of Proposition 6.4

To prove Proposition 6.4, we make use of the following proposition:

Proposition 6.17 (Recurrence Relation for Linear SSOEs with AR(1) Errors). Con-

sider the linear SSOE from Definition 6.2 under AR(1) errors, i. e. Eq. (6.5) holds with

independent errors (εt) that satisfy E[εt] = 0 and V [εt] = σ2
ε . For each t and each k > 0

let E[ξt+k|Ht] = E[ξt+k|(ξs)s≤t].

For k > 0 we have

ξt+k = λkξt +
k−1∑
i=0

λiεt+k−i, (6.37)

and for 0 < k ≤ m

ξt+mξt+k = λk+mξ2
t + ξt

λm k−1∑
i=0

λiεt+k−i + λk
m−1∑
j=0

λjεt+m−j


+

∑
0≤i≤k−l

0≤j≤m−1

λi+jεt+k−iεt+m−j , (6.38)

E[ξt+k|Ht] = λkξt, E[ξt+kξt+m|Ht] = λk+mξ2
t + λm−k

1− λ2k

1− λ2
σ2
ε , (6.39)

Cov[ξt+k, ξt+m|Ht] = λm−k
1− λ2k

1− λ2
σ2
ε , V [ξt+k|Ht] =

1− λ2k

1− λ2
σ2
ε . (6.40)
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For h > 0 we have

Yt+h = δ>α

(
h−2∑
`=0

G`
αwα

(
λh−`−1ξt +

h−`−2∑
i=0

λiεt+h−`−1−i

)
+ Gh−1

α ut

)

+ β>xt+h + λhξt +
h−1∑
j=0

λjεt+h−j , (6.41)

E[ut+h|Ht] =
h−1∑
`=0

G`
αwαλ

h−`ξt + Gh
αut. (6.42)

Proof. For k = 1, (6.37) expresses the recurrence ξt+1 = λξt + εt+1. Let (6.37) hold

for a k > 0. Then for k + 1 by the recurrence ξt+k+1 = λξt+k + εt+k+1

ξt+k+1 = λξt+k + εt+k+1 = λ

(
λkξt +

k−1∑
i=0

λiεt+k−i

)
+ εt+k+1

= λk+1ξt +
k−1∑
i=0

λi+1εt+k+1−(i+1) + εt+k+1 = λk+1ξt +
k∑
j=1

λjεt+k+1−j + εt+k+1

= λk+1ξt +
k∑
j=0

λjεt+k+1−j .

Equation (6.38) and the first part of Eq. (6.39) follow directly from (6.37). Consider the

second part of Eq. (6.39). We have k− i = m−j ⇐⇒ j− i = m−k ⇐⇒ j = m−k+ i,

hence E[εt+k−iεt+m−j ] = σ2
ε if j − i = m− k and otherwise E[εt+k−iεt+m−j ] = 0. Thus

from (6.38)

E[ξt+kξt+m|Ht]

= E
[
λk+mξ2

t + ξt

λm k−1∑
i=0

λiεt+k−i + λk
m−1∑
j=0

λjεt+m−j


+

∑
0≤i≤k−1
0≤j≤m−1

λi+jεt+k−iεt+m−j

]

= λk+mξ2
t + σ2

ε

k−1∑
i=0

λi+m−k+i = λk+mξ2
t + λm−kσ2

ε

k−1∑
i=0

λ2i

= λk+mξ2
t + λm−kσ2

ε

1− λ2k

1− λ2
.

Equation (6.40) follows from (6.39).

Equation (6.41) follows by inserting (6.37) into (6.35).
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By (6.34) and (6.39) we obtain

E[ut+h|Ht]
(6.34)

= E
[ h−1∑
`=0

G`
αwαξt+h−` + Gh

αut|Ht
]

= E
[ h−1∑
`=0

G`
αwαξt+h−`|Ht

]
+ E

[
Gh
αut|Ht

]
(6.39)

=
h−1∑
`=0

G`
αwαλ

h−`ξt + Gh
αut,

i. e. Eq. (6.42). �

We can now prove Proposition 6.4.

It follows with (6.42)

E[Yt+h|Ht] = δ>α

(
h−2∑
`=0

G`
αwαλ

h−`−1ξt + Gh−1
α ut

)
+ β>xt+h + λhξt,

i. e. Eq. (6.13).

Now, we prove (6.14). We have

Cov
[
δ>α

h−2∑
`=0

G`
αwα

h−`−2∑
i=0

λiεt+h−`−1−i,

h−1∑
j=0

λjεt+h−j

]

=

h−2∑
`=0

h−`−1∑
i=0

h−1∑
j=0

δ>αG`
αwαλ

i+jCov[εt+h−`−1−i, εt+h−j ].

We have h− `− 1− i = h− j ⇐⇒ i = j − `− 1. Therefore

Cov[εt+h−`−1−i, εt+h−j ] = V [εt+h−j ] = σ2
ε

if i = j − `− 1 and Cov[εt+h−`−1−i, εt+h−j ] = 0 otherwise. Hence

Cov
[
δ>α

h−2∑
`=0

G`
αwα

h−`−2∑
i=0

λiεt+h−`−1−i,
h−1∑
j=0

λjεt+h−j

]

=
h−2∑
`=0

h−1∑
j=`+1

δ>αG`
αwαλ

2j−`−1σ2
ε =

h−2∑
`=0

δ>αG`
αwαλ

`+1σ2
ε

h−1∑
j=`+1

(λ2)j−`−1

= σ2
ε

h−2∑
`=0

δ>αG`
αwαλ

`+1
h−`−2∑
k=0

(λ2)k = σ2
ε

h−2∑
`=0

δ>αG`
αwαλ

`+1 1− λ2(h−`−1)

1− λ2
.
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Similarly, we have

V
[
δ>α

h−2∑
`=0

G`
αwα

h−`−2∑
i=0

λiεt+h−`−1−i

]
=

h−2∑
`=0

(
δ>αG`

αwα

)2
σ2
ε

h−`−2∑
i=0

(
λ2
)i

= σ2
ε

h−2∑
`=0

(
δ>αG`

αwα

)2 1− λ2(h−`−1)

1− λ2

and V
[ h−1∑
j=0

λjεt+h−j

]
= σ2

ε

h−1∑
j=0

(
λ2
)j

= σ2
ε

1− λ2h

1− λ2
.

Collecting the latter three results and observing that in the conditional distribution

under Ht the quantities ut, β
>xt+h and ξt are constants, we obtain from (6.41) that

V [Yt+h|Ht] = V
[
δ>α

h−2∑
`=0

G`
αwα

h−`−2∑
i=0

λiεt+h−`−1−i +
h−1∑
j=0

λjεt+h−j

]

= σ2
ε

(
2
h−2∑
`=0

δ>αG`
αwαλ

`+1 1− λ2(h−`−1)

1− λ2
+
h−2∑
`=0

(
δ>αG`

αwα

)2 1− λ2(h−`−1)

1− λ2

+
1− λ2h

1− λ2

)
,

i. e. formula (6.14).

6.A.3 Proof of Proposition 6.6

To prove Proposition 6.6, we make use of the following proposition.

Proposition 6.18 (Recurrence Relation for Partially Linear SSOEs). Consider the par-

tially linear SSOE from Definition 6.5, and let h > 0. Then we have

ut+h,ne =

h−1∑
`=0

G`
α,newα,ne

ξt+h−`∏m
i=1 ei,t−di+h−`

+ Gh
α,neut,ne, (6.43)

Yt+h = δ>α,ne

(
h−2∑
`=0

G`
α,newα,ne

ξt+h−`−1∏m
i=1 ei,t−di+h−`−1

+ Gh−1
α,neut,ne

)
m∏
i=1

ei,t+h−di

+ β>xt+h + ξt+h. (6.44)

Proof. To prove (6.43), we use induction by h. For h = 1, the right-hand side of (6.43)

amounts to wα,neξt+1/
∏m
i=1 ei,t−di+1 + Gα,neut,ne, which equals ut+h,ne = ut+1,ne by

Eq. (6.16).

Let (6.43) be proven for h > 0. Then we have for h+ 1 by Eq. (6.16)
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ut+h+1,ne = Gα,neut+h,ne +wα,ne
ξt+h+1∏m

i=1 ei,t−di+h+1

= Gα,ne

(
h−1∑
`=0

G`
α,newα,ne

ξt+h−`∏m
i=1 ei,t−di+h−`

+ Gh
α,neut,ne

)

+ wα,ne
ξt+h+1∏m

i=1 ei,t−di+h+1

=
h−1∑
`=0

G`+1
α,newα,ne

ξt+h−`∏m
i=1 ei,t−di+h−`

+ Gh+1
α,neut,ne

+ G0
α,newα,ne

ξt+h+1∏m
i=1 ei,t−di+h+1

=
h∑
k=1

Gk
α,newα,ne

ξt+h+1−k∏m
i=1 ei,t−di+h+1−k

+ G0
α,newα,ne

ξt+h+1∏m
i=1 ei,t−di+h+1

+ Gh+1
α,neut,ne

=

(h+1)−1∑
k=0

Gk
α,newα,ne

ξt+h+1−k∏m
i=1 ei,t−di+h+1−k

+ Gh+1
α,neut,ne.

Equation (6.44) is a direct consequence of the observation equation (6.15) and Eq. (6.43).

�

We now proceed to the proof of Proposition 6.6.

From the properties of conditional expectation we have E[umt |Ht] = umt for all m ∈ N.

By Proposition 6.18, ut+h depends on the process history Ht up to time t only through

ut, and on ξt+1, . . . , ξt+h. Because of the independence assumption on the errors, the

assumption ut = u(t, ξt, ξt−1, ...), see Section 6.3, and E[ut|Ht] = ut, we obtain

E[ut+h,ne|Ht] = E

[
h−1∑
`=0

G`
α,newα,ne

ξt+h−`∏m
i=1 ei,t−di+h−`

+ Gh
α,neut,ne

∣∣∣Ht]

= E

[
h−1∑
`=0

G`
α,newα,ne

ξt+h−`∏m
i=1 ei,t−di+h−`

∣∣∣Ht]+ E
[
Gh
α,neut,ne|Ht

]
= Gh

α,neut,ne.

With Eqs. (6.36) and (6.44) we obtain Eq. (6.18).

Hence we obtain from the recurrence relation (6.44) and under the assumptions from
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the proposition

V [Yt+h|Ht] = V
[
δ>α,ne

(
h−2∑
`=0

G`
α,newα,ne

ξt+h−`−1∏m
i=1 ei,t−di+h−`−1

+ Gh−1
α,neut,ne

)
m∏
i=1

ei,t+h−di

+ β>xt+h + ξt+h

]
= V

[
δ>α,ne

h−2∑
`=0

G`
α,newα,ne

ξt+h−`−1∏m
i=1 ei,t−di+h−`−1

m∏
i=1

ei,t+h−di

]
+ V

[
δ>α,neG

h−1
α,neut,ne

m∏
i=1

ei,t+h−di |Ht
]

+ V [ξt+h]

=
h−2∑
`=0

(
δ>α,neG

`
α,newα,ne

)2
( ∏m

i=1 ei,t+h−di∏m
i=1 ei,t−di+h−`−1

)2

σ2
ξt+h−`−1

+ σ2
ξt+h

,

i. e. Eq. (6.19).

�

6.A.4 Proof of Proposition 6.11

(a) We prove the assertion by induction in t. By assumption we have
∑di

k=1 ẽ
(k)
i,0 = 0 for

i = 1, . . . ,m, and hence the assertion is valid for s = 0. The assumption is valid for

s = 1 because
di∑
k=1

ẽ
(k)
i,1 =

di−1∑
k=1

ẽ
(k)
i,1 + ẽ

(di)
i,1 =

di−1∑
k=1

(
ẽ

(k+1)
i,0 − ri,1

)
+ ẽ

(1)
i,0 + (1− α1)αi,3ξ̃1 − ri,1

=

di∑
k=1

ẽ
(k)
i,0 − (di − 1)ri,1 − ri,1 + (1− α1)αi,3ξ̃1︸ ︷︷ ︸

diri,1

=

di∑
k=1

ẽ
(k)
i,0︸ ︷︷ ︸

=0 by assumption

−diri,1 + diri,1︸ ︷︷ ︸
=0

= 0.

We assume that the assertion is true for s = 2, . . . , t, i. e.
∑di

k=1 ẽ
(k)
i,s = 0. Then for time

point s = t+ 1 and season i = 1, . . . ,m:

di∑
k=1

ẽ
(k)
i,t+1 = ẽ

(di)
i,t+1 +

di−1∑
k=1

ẽ
(k)
i,t+1

= ẽ
(1)
i,t + (1− α1)αi,3ξ̃t+1 − ri,t+1 +

di−1∑
k=1

(
ẽ

(k+1)
i,t − ri,t+1

)

= ẽ
(1)
i,t + (1− α1)αi,3ξ̃t+1 − ri,t+1 − (di − 1)ri,t+1 +

di−1∑
k=1

ẽ
(k+1)
i,t
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= ẽ
(1)
i,t +

di−1∑
k=1

ẽ
(k+1)
i,t + (1− α1)αi,3ξ̃t+1 − diri,t+1

=

di∑
k=1

ẽ
(k)
i,t︸ ︷︷ ︸

=0

+ (1− α1)αi,3ξ̃t+1 − di(1− α1)αi,3ξ̃t+1 ·
1

di︸ ︷︷ ︸
=0

= 0.

Consequently, the assertion is also true for s = t+ 1 and the proof of (a) is complete.

For the proof of (b) we use induction in t. By definition we have Ri,0 = 1
di

∑di
k=1 e

(k)
i,0 = 0

for i = 1, . . . ,m. Hence, the assumption is valid for s = 0. For Ri,1 we have

Ri,1 =
1

di

di∑
k=1

e
(k)
i,1 =

1

di

(
di−1∑
k=1

e
(k+1)
i,0 + e

(1)
i,0 + (1− α1)αi,3ξ1

)

=
1

di

di∑
k=1

e
(k)
i,0︸ ︷︷ ︸

=Ri,0

+
1

di
(1− α1)αi,3ξ1︸ ︷︷ ︸

=ri,1

,

and the assumption is valid for time point s = 1. In particular, since 1
di

∑di
k=1 e

(k)
i,0 = 0

by definition, we have Ri,0 = 0 and Ri,1 = ri,1.

By µ̃0 = µ0, ∆̃0 = ∆0, and ẽ
(k)
i,0 = e

(k)
i,0 for k = 1, . . . , di, we obtain Ỹ1|0 = Y1|0, and

consequently ξ̃1 = Y1 − Ỹ1|0 = Y1 − Y1|0 = ξ1. Using these relations and Ri,1 = ri,1,

assumption (c) is valid for time point s = 1 because

µ̃1 = µ̃0 + φ∆̃0 + α1ξ̃1 +

m∑
i=1

ri,1 = µ0 + φ∆0 + α1ξ1 +

m∑
i=1

Ri,1 = µ1 +

m∑
i=1

Ri,1,

∆̃1 = φ∆̃0 + α1α2ξ̃1 = φ∆0 + α1α2ξ1 = ∆1,

ẽ
(di)
i,1 = ẽ

(1)
i,0 + (1− α1)αi,3ξ̃1 − ri,1 = e

(1)
i,0 + (1− α1)αi,3ξ1 − ri,1

= e
(di)
i,1 − ri,1 = e

(di)
i,1 −Ri,1,

ẽ
(k)
i,1 = ẽ

(k+1)
i,0 − ri,1 = e

(k+1)
i,0 −Ri,1.

Furthermore,

Ỹh|0 = µ̃0 +

h∑
j=1

φj∆̃0 +

m∑
i=1

ẽ
(h)
i,0 + β>xh

= µ0 +

h∑
j=1

φj∆0 +

m∑
i=1

e
(h)
i,0 + β>xh = Yh|0,

and assumption (d) is valid for time point 0.
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Assume that (b)–(d) are valid for time points s = 1, . . . , t. Then we have

Ỹt+1|t = µ̃t + φ∆̃t +

m∑
i=1

ẽ
(1)
i,t + β>xt+1

= µt +
m∑
i=1

Ri,t + φ∆t +
m∑
i=1

e
(1)
i,t −

m∑
i=1

Ri,t + β>xt+1

= µt + φ∆t +
m∑
i=1

e
(1)
i,t + β>xt+1 = Yt+1|t

and hence ξ̃t+1 = Ỹt+1|t−Yt+1 = Yt+1|t−Yt+1 = ξt+1. Then for time point s = t+ 1 and

i = 1, . . . ,m we have

Ri,t+1 =
1

di

di∑
k=1

e
(k)
i,t+1

=
1

di

(
di−1∑
k=1

e
(k+1)
i,t + e

(1)
i,t + (1− α1)αi,3ξt+1

)
ξ̃t+1=ξt+1

=
1

di

(
di∑
k=2

e
(k)
i,t + e

(1)
i,t + (1− α1)αi,3ξ̃t+1

)

=
1

di

di∑
k=1

e
(k)
i,t︸ ︷︷ ︸

=Ri,t

+
1

di
(1− α1)αi,3ξ̃t+1︸ ︷︷ ︸

=ri,t+1

and (b) is valid for time point s = t+ 1. This proves (b).

Under the assumption that (c) is valid for time points s = 1, . . . , t, we have for i =

1, . . . ,m

µ̃t+1 = µ̃t + φ∆̃t + α1ξ̃t+1 +
m∑
i=1

ri,t+1

ξ̃t+1=ξt+1
= µt +

m∑
i=1

Ri,t + φ∆t + α1ξt+1 +
m∑
i=1

ri,t+1

(b)
= µt + φ∆t + α1ξt+1︸ ︷︷ ︸

µt+1

+
m∑
i=1

Ri,t+1.

∆̃t+1 = φ∆̃t + α1α2ξ̃t+1
ξ̃t+1=ξt+1

= φ∆t + α1α2ξt+1 = ∆t+1.
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ẽ
(di)
i,t+1 = ẽ

(1)
i,t + (1− α1)αi,3ξ̃t+1 − ri,t+1

= e
(1)
i,t −Ri,t + (1− α1)αi,3ξ̃t+1 − ri,t+1

ξ̃t+1=ξt+1
= e

(1)
i,t + (1− α1)αi,3ξt+1 − (Ri,t + ri,t+1)︸ ︷︷ ︸

=Ri,t+1

= e
(di)
i,t+1 −Ri,t+1,

ẽ
(k)
i,t+1 = ẽ

(k+1)
i,t − ri,t+1 = e

(k)
i,t −Ri,t − ri,t+1 = e

(k)
i,t −Ri,t+1.

This completes the proof of (c).

The proof of assertion (d) uses (c):

Ỹt+h|t = µ̃t +

h∑
j=1

φj∆̃t +

m∑
i=1

ẽ
(h)
i,t + β>xt+h

= µt +

m∑
i=1

Ri,t +

h∑
j=1

φj∆t +

m∑
i=1

(
e

(h)
i,t −Ri,t

)
+ β>xt+h

= µt +

m∑
i=1

Ri,t +

h∑
j=1

φj∆t +

m∑
i=1

e
(h)
i,t −

m∑
i=1

Ri,t + β>xt+h = Yt+h|t.

The proof of Proposition 6.11 is complete.

6.A.5 Proof of Proposition 6.14

(a) We prove the assertion by induction in t. By assumption we have
∑di

k=1 ẽ
(k)
i,0 = di

for i = 1, . . . ,m, and hence the assertion is valid for s = 0. The assumption is valid for

s = 1 because

di∑
k=1

ẽ
(k)
i,1 =

di−1∑
k=1

ẽ
(k)
i,1 + ẽ

(di)
i,1

=

di−1∑
k=1

ẽ
(k+1)
i,0

/
ri,1 +

ẽ(1)
i,0 +

(1− α1)αi,3ξ̃1(
µ̃0 + φ∆̃0

)
/ri,t

=

di∑
k=2

ẽ
(k)
i,0

/
ri,1 +

ẽ
(1)
i,0

ri,t
+
ri,t(1− α1)αi,3ξ̃1(

µ̃0 + φ∆̃0

)

=


di∑
k=1

ẽ
(k)
i,0︸ ︷︷ ︸

=di

+
(1− α1)αi,3ξ̃1(
µ̃0 + φ∆̃0

)

/
ri,t =

(
di +

(1−α1)αi,3ξ̃1

µ̃0+φ∆̃0

)
1 +

(1−α1)αi,3ξ̃1

di(µ̃0+φ∆̃0)

= di.

We assume that the assertion is true for s = 2, . . . , t, i. e.
∑di

k=1 ẽ
(k)
i,s = di. Then for time
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point s = t+ 1 and season i = 1, . . . ,m:

di∑
k=1

ẽ
(k)
i,t+1 = ẽ

(di)
i,t+1 +

di−1∑
k=1

ẽ
(k)
i,t+1

=

(
ẽ

(1)
i,t +

(1− α1)αi,3ξ̃t+1

µ̃t−1 + φ∆̃t−1

)/
ri,t+1 +

di−1∑
k=1

(
ẽ

(k+1)
i,t

/
ri,t+1

)

=

(
ẽ

(1)
i,t +

(1− α1)αi,3ξ̃t+1

µ̃t−1 + φ∆̃t−1

+

di∑
k=2

ẽ
(k)
i,t

)/
ri,t+1

=

(
di∑
k=1

ẽ
(k)
i,t +

(1− α1)αi,3ξ̃t+1

µ̃t−1 + φ∆̃t−1

)/
ri,t+1

=
di +

(1−α1)αi,3ξ̃t+1

µ̃t−1+φ∆̃t−1

1 +
(1−α1)αi,3ξ̃t+1

di(µ̃t−1+φ∆̃t−1)

= di.

Consequently, the assertion is also true for s = t+ 1 and the proof of (a) is complete.

For the proof of (b) we use induction in t. By definition we have R1,0 = 1
d1

∑d1
k=1 e

(k)
1,0 = 1.

For R1,1 we have

R1,1 =
1

d1

d1∑
k=1

e
(k)
1,1 =

1

d1

(
d1−1∑
k=1

e
(k+1)
1,0 + e

(1)
1,0 +

(1− α1)α1,3ξ1

µ0 + φ∆0

)

=
1

d1

d1∑
k=1

e
(k)
1,0︸ ︷︷ ︸

=1

+
1

d1

(1− α1)α1,3ξ1

µ0 + φ∆0
= r1,0 = R1,0r1,1,

and the assumption is valid for time point s = 1. In particular, since 1
d1

∑d1
k=1 e

(k)
1,0 = 1

by definition, we have R1,0 = 1 and R1,1 = r1,1.

By µ̃0 = µ0, ∆̃0 = ∆0, and ẽ
(k)
1,0 = e

(k)
1,0 for k = 1, . . . , d1, we obtain Ỹ1|0 = Y1|0, and

consequently ξ̃1 = Y1 − Ỹ1|0 = Y1 − Y1|0 = ξ1. Using these relations and R1,1 = r1,1,

assumption (c) is valid for time point s = 1 because

µ̃1 =

(
µ̃0 + φ∆̃0 +

α1ξ̃1

ẽ
(1)
0

)
r1,1 =

(
µ0 + φ∆0 +

α1ξ1

e
(1)
1,0

)
R1,1 = µ1R1,1,

∆̃1 =

(
φ∆̃0 +

α1α2ξ̃1

α̃
(1)
0

)
r1,1 =

(
φ∆0 +

α1α2ξ1

e
(1)
1,0

)
R1,1 = ∆1R1,1,

ẽ
(d1)
1,1 =

(
ẽ

(1)
1,0 +

(1− α1)α1,3ξ̃1

µ̃0 + φ∆̃0

)/
r1,1 =

(
e

(1)
1,0 +

(1− α1)α1,3ξ1

µ0 + φ∆0

)/
R1,1 = e

(d1)
1,1 /R1,1,

ẽ
(k)
1,1 = ẽ

(k+1)
1,0 /r1,1 = e

(k+1)
1,0 /R1,1.
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Furthermore,

Ỹ1+h|1 =

µ̃1 +
h∑
j=1

φj∆̃1

 ẽ
(h)
1,1 + β>x1+h

=

µ1R1,1 +
h∑
j=1

φj∆1R1,1

 e
(h)
1,1/R1,1 + β>x1+h

=

µ1 +
h∑
j=1

φj∆1

 e
(h)
1,1 + β>x1+h = Y1+h|1,

and assumption (d) is valid for time point s = 0.

Assume that (b)–(d) are valid for time points s = 1, . . . , t. Then we have

Ỹt+1|t =
(
µ̃t + φ∆̃t

)
ẽ

(1)
1,t + β>xt+1 =

(
µtR1,t + φ∆t

m∏
i=1

Ri,t

)
e

(1)
1,t /R1,t + β>xt+1

= (µt + φ∆t) e
(1)
1,t + β>xt+1 = Yt+1|t

and hence ξ̃t+1 = Ỹt+1|t − Yt+1 = Yt+1|t − Yt+1 = ξt+1.

Then for time point s = t+ 1 and i = 1, . . . ,m we have

R1,t+1 =
1

d1

d1∑
k=1

e
(k)
1,t+1 =

1

d1

(
d1−1∑
k=1

e
(k+1)
1,t + e

(1)
1,t +

(1− α1)α1,3ξt+1

µt + φ∆t

)
ξ̃t+1=ξt+1,(b)

=
1

d1

(
d1∑
k=2

e
(k)
1,t + e

(1)
1,t +

(1− α1)α1,3ξ̃t+1

µ̃t/R1,t + φ∆̃t/R1,t

)

=
1

d1

d1∑
k=1

e
(k)
1,t︸ ︷︷ ︸

=R1,t

+R1,t
(1− α1)α1,3ξ̃t+1

d1(µt + φ∆t)
= R1,tr1,t+1.

Therefore, (b) is valid for time point s = t+ 1. This proves (b).
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Under the assumption that (c) is valid for time points s = 1, . . . , t, we have for m = 1

µ̃t+1 =

(
µ̃t + φ∆̃t +

α1ξ̃t+1

ẽ
(1)
1,t

)
r1,t+1

ξ̃t+1=ξt+1
=

(
µtR1,t + φ∆tR1,t +

α1ξt+1

e
(1)
1,t /R1,t

)
r1,t+1

(b)
=

(
µt + φ∆t +

α1ξt+1

e
(1)
1,t

)
R1,tr1,t+1 = µt+1R1,t+1.

∆̃t+1 =

(
φ∆̃t +

α1α2ξ̃t+1

ẽ
(1)
1,t

)
r1,t+1

ξ̃t+1=ξt+1
=

(
φ∆tR1,t +

α1α2ξt+1

e
(1)
1,t /R1,t

)
r1,t+1

= ∆t+1R1,tr1,t+1 = ∆t+1R1,t+1.

ẽ
(d1)
1,t+1 =

(
ẽ

(1)
1,t +

(1− α1)α1,3ξ̃t+1

µ̃t + φ∆̃t

)/
r1,t+1

=

(
e

(1)
1,t /R1,t +

(1− α1)α1,3ξ̃t+1

µtR1,t + φµtR1,t

)/
r1,t+1

ξ̃t+1=ξt+1
=

(
e

(1)
1,t +

(1− α1)α1,3ξt+1

µt + φ∆t

)/
(R1,tr1,t+1) = e

(d1)
1,t+1/R1,t+1,

ẽ
(k)
1,t+1 = ẽ

(k+1)
1,t /r1,t+1 = e

(k)
1,t /(R1,tr1,t+1) = e

(k)
1,t /R1,t+1.

This completes the proof of (c).

The proof of assertion (d) uses (c):

Ỹt+h|t =

µ̃t +

h∑
j=1

φj∆̃t

 ẽ
(h)
1,t + β>xt+h

=

µtR1,t +

h∑
j=1

φj∆tR1,t

 e
(h)
1,t /R1,t + β>xt+h

=

µt +
h∑
j=1

φj∆t

 e
(h)
1,t + β>xt+h = Yt+h|t.

This completes the proof of Proposition 6.14.
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7 Prediction Intervals for Exponential

Smoothing with Covariates

7.1 Introduction

The core interest of statistical time series analysis is forecasting a future value YT+h of a

time-indexed phenomenon, based on the observed process history HT = (YT , YT−1, . . .)

up to time T . The forecast may be a point forecast YT+h|T , or an interval forecast BT+h|T

under a prescribed confidence level γ such that P(YT+h ∈ BT+h|T ) ≥ γ.

The theory, software implementation and industrial practice of time series has strongly

been concentrating on point forecasts. A large variety of time series models and related

point forecasting algorithms have been suggested in the literature. Three approaches

have had particular influence in industry: i) The autoregressive moving average (ARMA)

and autoregressive integrated moving average (ARIMA) forecasting methodology intro-

duced by Box & Jenkins (1970). The method is based on a precisely stated model which

allows to derive optimum point forecasts. It has become a standard both in applied

sciences and in industry, and has been implemented in numerous software solutions for

forecasting purposes. ii) The FORSYS scheme by Lewandowski (1979, 1982) is less

known in applied sciences, but very popular in various industrial branches, mainly due

to its embedding in the forecasting systems for demand planning and logistics offered by

the Marketing Systems company founded by R. Lewandowski. FORSYS has a clearly

stated forecasting algorithm, but lacks an underlying time series model. iii) Exponential

smoothing (ES) dates back to the work of Brown (1959) and Holt (1957) in the 1950s

for purposes of inventory management, see Section 6.1 for the evolution of ES.

The issue of prediction intervals has been receiving considerably less attention than

point forecasts. For long, prediction intervals had few significance in statistical software

packages. Some, like Statistica, still do not support prediction intervals at all. In others,

like SPSS, prediction intervals are supported by add-on modules. Poorness in prediction

intervals continues to be a weak point of forecasting software, see the review by Küsters

et al. (2006). Among popular textbooks, some neglect prediction intervals completely,
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e. g. Brockwell & Davis (1996). Others, like Box et al. (1994), invest few effort into

the subject, in comparison with the efforts made to build models and derive optimum

point forecasts. However, the low priority given to prediction intervals in statistical

methodology seems to be contrary to the interest of forecasting practitioners, see, for

instance, the empirical survey conducted by Collopy & Armstrong (1992).

In the theory of statistical time series analysis, the by far most popular approach to

prediction intervals is what Ord et al. (1997) call the plug-in method (PIM ). Consider

a parametric time series model indexed by a parameter vector θ. The model provides a

parametric unbiased h-step-ahead forecast function YT+h|T = PT,h,HT (θ), where YT+h|T

is the forecast for time T + h made at time T , and HT is the observable time series

up to time T . The distribution Fθ,T+h|T of the forecast error DT+h|T = YT+h − YT+h|T

is studied in dependence of θ. This is done, in particular, for the forecasting variance

σ2
T+h|T (θ). An estimator θ̂ for the parameter θ is obtained by fitting the model to

available observations Y1, . . . , YT in the sense of minimising a fit criterion like the mean

square error (MSE) or the mean absolute percentage error (MAPE). Then a prediction

interval can be obtained by evaluating the estimated distribution F
θ̂,T+h|T of the forecast

error DT+h|T . The most popular approach is to start with a suitable normal distribution

assumption in the base model, which leads to a normally distributed forecast error

DT+h|T . Then the PIM prediction interval BT+h|T of nominal confidence level γ is

BT+h|T =
(
YT+h|T − zσT+h|T (θ̂); YT+h|T + zσT+h|T (θ̂)

)
,

where z = zN(0,1) ((1 + γ)/2) is the (1 + γ)/2 · 100 % quantile of the normal distribu-

tion N(0, 1). Section 7.4 considers the prediction interval of that type for exponential

smoothing with covariates (ESCov) models.

It is crucial that the actual confidence level does not fall below the nominal confidence

level γ, i. e. that P(YT+h ∈ BT+h|T ) ≥ γ holds. In a simulation study based on tourist

arrival time series, Kim et al. (2011) obtained relatively good actual confidence levels

for PIM prediction intervals at a nominal 95 % level, but good coverages here are not

the rule. Customary prediction intervals of the PIM type frequently offend against

the coverage requirement, i. e. the actual confidence level is smaller than the nominal

confidence level γ. The intervals use to be too narrow, suggesting a precision of inference

which is actually not feasible at the stipulated level of confidence. This phenomenon was

demonstrated by Makridakis et al. (1987) in a broad empirical study on the time series

used in the 1982 M -competition (Makridakis et al. 1982). Chatfield (2001) lists 4

potential reasons:
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1) wrongly identified model,

2) true model changing over time,

3) nonnormal error distribution,

4) insufficient account for the error in estimates of model parameters.

The reasons 1), 2) and 3) are of general nature and affect any method for calculating

prediction intervals. The reason 4) is the specific problem of the PIM approach.

Several remedies against excessive narrowness of prediction intervals have been sug-

gested, see Chatfield’s (2001) review. To overcome problems 1)–3), methods to obtain

prediction intervals can be used that either do not rely on a model or can do without

normality of the errors. Empirical prediction intervals do not exploit model properties

and should be rather robust against 1) and 2). Nonnormal error distributions can be

dealt with by nonparametric quantile estimates, for instance. Popular alternative pre-

diction intervals are based on simulation or bootstrapping, particularly when calculation

time is not an issue or the calculation is fast.

With respect to problem 4), basically two approaches may be taken to account for the

effect of the error in parameter estimates on the estimation of the forecast error dis-

tribution: i) Reduce model dependence by infiltrating parameter-free elements into the

analysis of the forecast error distribution. Gardner’s (1988) empirical prediction inter-

val based on the Chebychev inequality, which we revise in Section 7.2.3, is an instance.

ii) Evaluate the effect of parameter estimation error on the estimation of the forecast

error distribution. Unfortunately, the nonlinear nature of time series models prevents

against obtaining useful results in a straightforward manner. One way out is to resort to

simulation methods. Another option is to transform the nonlinear problem into a linear

scheme that can be dealt with by the techniques of regression analysis. This approach

has been considered by Ord et al. (1997) in the context of ES.

This chapter collects a variety of prediction intervals applicable to ESCov of the types

empirical, bootstrap, model-based and based on linear expansion. The latter applies a

modified version of the approach of Ord et al. (1997) to ESCov. For time series analysis

under covariates, the problem with PIM is particularly serious, since the coefficients

of the external variables increase the number of parameters to be estimated, see the

remarks in Section 7.5.3. Attention is restricted to the linear ESCov single source of

error (SSOE) state-space model with one additive seasonality from Section 6.3.1 with

independent and homoscedastic residuals ξs with constant variance V [ξs] = σ2
ξ . With

some more technical efforts, the results can be adapted to autocorrelated residuals and
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also to the case of multiplicative residuals analogously to the approach by Hyndman

et al. (2002) under ES without covariates.

The study is organised as follows: Empirical prediction intervals are considered in Sec-

tion 7.2. A bootstrap prediction interval is presented in Section 7.3. Section 7.4 deals

with model-based prediction intervals exploiting the SSOE model for ESCov. Section 7.5

is concerned with prediction intervals derived by means of linear model theory and their

application: Section 7.5.1 develops the linear expansion of the ESCov model. The statis-

tical analysis of the linearised model follows in Section 7.5.2 and approximate prediction

intervals based on the linearised model are developed in Section 7.5.3. Section 7.6 in-

vestigates the actual coverage probability of the intervals suggested by Section 7.5.3 in

a simulation study based on time series of electricity load data from the Italian mar-

ket. To illustrate the consequences for empirical forecasting, the approximate prediction

intervals are applied to the prediction of electricity consumption in Section 7.7.

7.2 Empirical Prediction Intervals

Empirical prediction intervals do not make assumptions about the true underlying model

and are basically always applicable. Chatfield (1993) suggested to consider empirical

methods when model assumptions are in doubt or theoretical formulas not available. For

a long time, they played an important role for ES methods when a model to derive the-

oretical prediction intervals was not yet available. For example, Chatfield & Yar (1991)

constructed prediction intervals for the Holt-Winters smoothing method (linear trend,

additive and multiplicative season) by stipulating that the smoothing algorithm leads to

independent residuals. Instead of assuming the validity of a model (as in Section 7.4),

empirical prediction intervals use the properties of the observed error distribution, see

Chatfield (1993). All the prediction intervals presented in this section have in common

that they rely on the assumption of at least i.i.d. forecast errors. The validity of this

assumption cannot be expected to hold in general. E. g. in the case of the multiplicative

Holt-Winters method, Chatfield & Yar (1991) found the errors to be dependent on the

states, which would violate the assumption.

7.2.1 Prediction Intervals based on Empirical Quantiles

An easy way to construct prediction intervals is based on empirical quantiles of the

forecast errors. They do not make assumptions about the underlying model and do not
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assume a certain error distribution.

Definition 7.1. Let Yh|0, Yh+1|1, . . . , YT |T−h be predictions h-steps-ahead and Yh, Yh+1,

. . ., YT the observed values. Let Zh = Yh − Yh|0, Zh+1 = Yh+1 − Yh+1|1, . . . , ZT =

YT − YT |T−h be the empirical h-step-ahead forecast errors and YT+h|T be the h-step-

ahead prediction. Then an empirical prediction interval of level γ · 100 %, 0 < γ < 1, for

YT+h is given by

BT+h|T :=

(
YT+h|T + z

(
1− γ

2

)
; YT+h|T + z

(
1 + γ

2

))
,

where z(α) is the empirical α·100 %-quantile of the empirical h-step-ahead forecast errors

Zh, Zh+1, . . . , ZT .

In the application of the above prediction interval, one needs to use an appropriate

quantile estimation procedure to obtain the empirical quantiles. Common estimators

of γ · 100 %-quantiles, as e. g. the bTγcth observation of the ordered sample Z(1,T ) ≤
Z(2,T ) ≤ . . . ≤ Z(T,T ), where bTγc is the greatest integer smaller than Tγ, frequently

underestimate the true quantiles. Small sample sizes are particularly problematic, see,

for example, the simulation results for a variety of distributions in Göb & Lurz (2015).

Prediction intervals obtained in this way are therefore in danger of being too narrow.

Unless the empirical error distribution is (nearly) symmetric, the prediction intervals are

in general not symmetric.

7.2.2 Normal Approximation based Prediction Intervals

A simple symmetric prediction interval can be obtained by subtracting and adding a

quantile of the normal distribution times the standard deviation of the empirical h-step-

ahead forecast errors around the point forecast. The interval is an empirical interval

because it is based on the empirical forecast errors and it is of parametric type because

it assumes at least approximately normally distributed errors.

Definition 7.2. Let Yh|0, Yh+1|1, . . . , YT |T−h be predictions h-steps-ahead and Yh, Yh+1,

. . ., YT the observed values. Let Zh = Yh − Yh|0, Zh+1 = Yh+1 − Yh+1|1, . . . , ZT =

YT − YT |T−h be the empirical h-step-ahead forecast errors. Let the h-step-ahead point

prediction be YT+h|T and let σ̂2
Z be the empirical variance of the errors Zh, Zh+1, . . . , ZT ,

i. e. σ̂2
Z = 1

T−h
∑T

i=h(Zi − Z̄)2. Then an approximative prediction interval of level γ ·
100 %, 0 < γ < 1, for YT+h based on the normal distribution, is given by

BT+h|T :=

(
YT+h|T + zN(0,1)

(
1− γ

2

)
σ̂Z ; YT+h|T + zN(0,1)

(
1 + γ

2

)
σ̂Z

)
,
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7 Prediction Intervals for Exponential Smoothing with Covariates

where zN(0,1) (α) is the α · 100 %-quantile of the standard normal distribution N(0, 1).

In case the distribution of the h-step-ahead forecast errors is actually a normal distri-

bution, the prediction intervals obtained in this way are certainly a good choice. If,

however, the error distribution is nonnormal, the prediction intervals might not have

the desired performance. In a study by Gardner (1988), who applied the above interval

to 111 time series from the M -competition by Makridakis et al. (1982), the interval

underperformed in terms of coverage probability. Approximative normality of the errors

might often be justifiable, but many times it will be violated (especially for small sample

sizes). In this case, the applicability of the prediction interval has to be doubted.

The normal distribution is the most commonly used distribution to deliver the coeffi-

cient in the prediction interval. However, other distributions can optionally serve as

models for the error distribution. Williams & Goodman (1971), for example, have found

the gamma distribution to fit the forecast errors of their data well. If an appropri-

ate error distribution is identified, prediction intervals can be constructed by replacing

zN(0,1) ((1− γ)/2) , zN(0,1) ((1 + γ)/2) in Definition 7.2 by the corresponding distribution

quantiles.

7.2.3 Prediction Intervals based on Chebychev’s Inequality

The prediction intervals presented in this section follow Gardner (1988), who considers

it dangerous to assume an arbitrary error distribution and therefore suggests a nonpara-

metric prediction interval that is rather robust. It is of the same structure as the intervals

from the previous section with the difference that it does not use a coefficient based on

the normal distribution, but a coefficient based on Chebyshev’s (1867) inequality.

The advantage of the Chebychev inequality are its weak assumptions about the underly-

ing distribution. According to Chebychev’s inequality, a random variable Y with finite

mean µ and finite variance σ2, regardless of the distribution of Y , fulfils

P

(∣∣∣∣Y − µσ

∣∣∣∣ ≥ ε) ≤ 1/ε2.

Based on this inequality, prediction intervals can be obtained.

Definition 7.3. Let Yh|0, Yh+1|1, . . . , YT |T−h be predictions h-steps-ahead and Yh, Yh+1, . . . ,

YT be the observed values. Let Zh = Yh − Yh|0, Zh+1 = Yh+1 − Yh+1|1, . . . , ZT =

YT−YT |T−h be the empirical h-step-ahead forecast errors. Let the h-step-ahead point pre-

diction be YT+h|T and have variance σ2
Z . A prediction interval for YT+h of level γ ·100 %
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based on the Chebychev inequality is given by

BT+h|T :=
(
YT+h|T −

√
1

1− γ
σZ ; YT+h|T +

√
1

1− γ
σZ

)
.

The variance σ2
Z can be estimated by the empirical variance σ̂2

Z of the errors Zh, Zh+1,

. . . , ZT , i. e. σ̂2
Z = 1

T−h
∑T

i=h(Zi − Z̄)2.

While in his study of a sample of 111 series taken from Makridakis et al. (1982), Gardner

(1988) found the coverage probability of the normal distribution based intervals clearly

too low, the Chebychev-based prediction intervals came close to their nominal confidence

level. The rather broad Chebychev intervals better accounted for larger post-sample

forecast errors and instability in the trend. However, Gardner (1988) indicated that the

characteristics might depend on the frequency of the data (monthly, quarterly, yearly,

. . . ) as well as the sample size.

Gardner (1988) described a way how to find the h-step-ahead forecast errors and fore-

casting variance by fitting a model optimised according to the one-step-ahead forecast

and hence not finding separate parameter sets for each lead time. Two simple extensions

of Gardner’s (1988) approach can be made: 1) Fit the model separately for each lead

time and use the empirical variance of the h-step-ahead predictions for the calculation of

the prediction intervals. 2) Use estimates for the prediction variances σ2
Yt+h|Ht based on

the respective SSOE model for ESCov from Propositions 6.3, 6.4 and 6.6 as estimates for

σ2
Z . The result is not model-free, but does at least not assume a particular parametric

error distribution.

The difference in prediction interval width between a coefficient based on normal distri-

bution and Chebychev’s inequality is demonstrated when looking at an example given

by Yar & Chatfield (1990): For a prescribed confidence level γ = 0.95, the coefficient√
1/(1− γ) in the Chebychev-based prediction interval takes the value 4.47, while the

(1 + γ)/2-quantile zN(0,1) of the normal distribution (see Section 7.2.2) takes the value

1.96. Consequently, the Chebychev-based prediction interval is more than double the size

of the normal distribution based interval under a given prediction variance. Therefore,

if actually certain distributions, like the normal distribution, can be found to adequately

model the error distribution, the Chebychev-based prediction interval is very likely too

conservative and therefore hardly of use in industrial or scientific practice.

As discussed by Gardner (1988), the Chebychev coefficients have the advantage that

they better capture the usually larger post-sample errors in comparison to the smaller in-

sample errors, on which the prediction intervals are based. Furthermore, the Chebychev-

based prediction intervals have a better chance to deal with change points in the series.
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7 Prediction Intervals for Exponential Smoothing with Covariates

However, for serious change points Chatfield (1993) argued that they might still not

be wide enough and therefore preferred normal-distribution-based coefficients under the

premise that the series remains rather stable and shows a behaviour in the future that

is similar to the one in the past.

7.2.4 Prediction Intervals based on the Camp-Meidell Inequality

The inequality by Camp (1922) and Meidell (1922) is a generalisation of Chebychev’s

inequality relying on only few additional distribution assumptions. Göb & Lurz (2015)

generalise and invert the inequality for the distribution function such as to obtain a

coefficient that serves as a bound for a quantile. The essential characteristic of the

bound is that it uses the roots of central moments of even order. A version of the

Camp-Meidell inequality applied to quantiles is given in the following proposition.

Proposition 7.4. Let X be a random variable symmetric around its mean µX , with

distribution function FX and finite central moments mX,s := E[(X − µX)s], s ∈ N. Let

zX(ρ) be the ρ ·100 %-quantile fulfiling FX(zX(ρ)) = ρ and let r ∈ N. Then the following

inequality holds:

zX(ρ) ≤ zr,X(ρ) :=


µX + (2ρ− 1)m

1/(2r)
X,2r (2r + 1)1/(2r) if ρ ≤ 4r+1

4r+2 ,

µX +
(
mX,2r
2(1−ρ)

)1/(2r)
2r

2r+1 if ρ > 4r+1
4r+2 .

Proof. See Göb & Lurz (2015). �

The above version of the Camp-Meidell inequality is valid for a symmetric random vari-

able. A version for the more general class of mean-modal random variables is provided

by Göb & Lurz (2015).

The Camp-Meidell inequality has been used so far mostly for r = 1, in which case it is

often too inexact. Göb & Lurz (2015) find the approximation for most quantile orders to

be superior under r = 2. Choosing r = 2 involves estimating roots of central moments

up to order 4. The quantile approximation under r ≥ 3 is better for some quantile

orders under several common symmetric distributions, but does not necessarily bring

sufficient improvement such as to justify the higher effort required to estimate roots of

central moments of order 6 and higher. Hence, to use r = 2 is a good compromise.

Quite frequently, central moment estimators and the roots thereof as used in practice

are biased estimators. Göb & Lurz (2015) formulate how to obtain roots of central

moments that are unbiased at least under a baseline distribution: The root m
1/(2r)
X,2r is
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hereby replaced by the corrected estimator Rn,X,2r := cn,2r

(
1
n

∑n
i=1

(
Xi − X̄

)2r)1/(2r)
,

where cn,2r is a correction factor causing Rn,X,2r to be an unbiased estimator under the

normal distribution. Inserting Rn,X,2r into the equation in Proposition 7.4 results in the

empirical quantile bound

ẑr,X(ρ) =


X̄ + (2ρ− 1)Rn,X,2r(2r + 1)1/(2r) if ρ ≤ 4r+1

4r+2 ,

X̄ +
Rn,X,2r

(2(1−ρ))1/(2r)
2r

2r+1 if ρ > 4r+1
4r+2 ,

(7.1)

where X̄ = 1
n

∑n
i=1Xi.

The empirical Camp-Meidell bound (7.1) for a quantile turns out to be in fact a bound

for the true quantile of common symmetric distributions most of the times, even for

small sample sizes. It shows good coverage properties while not being overconservative.

We can use it to construct nonparametric prediction intervals in the following way:

Definition 7.5. Let Yh|0, Yh+1|1, . . . , YT |T−h be predictions h-steps-ahead and Yh, Yh+1,

. . ., YT be the observed values. Let Zh = Yh − Yh|0, Zh+1 = Yh+1 − Yh+1|1, . . . , ZT =

YT − YT |T−h be the empirical h-step-ahead forecast errors. Let the distribution of the

errors be symmetric around their mean E[Z] estimated by Z̄ = 1
T−h+1

∑T
i=h Zi, and

have finite central moments. A nonparametric prediction interval of level γ · 100 %,

0 < γ < 1, based on the Camp-Meidell inequality for YT+h is given by

BT+h|T :=
(

2Z̄ − ẑr,Z
(

1 + γ

2

)
; ẑr,Z

(
1 + γ

2

))
.

The prediction interval based on the Camp-Meidell inequality does not assume a certain

distribution of the errors, but only that the error distribution is symmetric. As the

prediction interval based on Chebychev’s inequality it is nonparametric, but likely to

be of more practical use than the Chebychev-based interval because the Camp-Meidell

inequality is expected to deliver narrower bounds than the Chebychev inequality.

7.3 Bootstrap Prediction Intervals

Bootstrapping is a popular distribution-free approach of constructing prediction inter-

vals. The approach is still dependent on the model, but does not assume a certain

distribution of the forecast errors, as e. g. the normal distribution. Instead, the error

distribution is derived numerically by resampling or simulating forecast errors. Apart

from requiring fewer assumptions, bootstrapping methods have the advantage of being

always applicable, see Chatfield (1993).
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Let Y1, . . . , YT be successive observations of a time series. Hyndman et al.’s (2002)

approach to obtain bootstrap prediction intervals of level γ ∈ (0; 1) is to simulate 5000

future sample paths for {YT+1, . . . , YT+M} and take the empirical (1− γ)/2 · 100 %- and

(1+γ)/2 ·100 %-quantiles of the simulated values at each forecasting step. They consider

a parametric and an ordinary bootstrap approach:

a) For the parametric bootstrapping, future errors are sampled by assuming normally

distributed errors.

b) For the ordinary bootstrapping, the errors are resampled from the empirical distri-

bution of the fitted errors.

Obviously, approach a) does not prepare against violations of the normality assumption,

which is often seen as the important advantage of bootstrapping in contrast to parametric

methods, while approach b) does.

The steps of approach b) are described e. g. by Fan & Hyndman (2012):

1. Fit the model based on the historical data Y1, . . . , YT . From this model, T in-

sample forecast errors Zh, Zh+1, . . . , ZT are obtained and a point forecast YT+h|T

is derived.

2. Resample N times T errors from the set Zh, Zh+1, . . . , ZT and from that create N

artificial samples by inserting the errors into the fitted model from step 1.

3. Re-estimate N models with the N artificial samples from step 2.

4. Insert the original data Y1, . . . , YT into the N models from step 3 and from them

obtain N simulated forecasts 1, 2, . . . ,M -steps-ahead.

5. Resample another set of errors and insert them into the original model from step 1

to obtain simulated actuals.

6. For each forecasting horizon h ∈ {1, . . . ,M}, calculate N differences between the

simulated actuals from step 5 and the simulated forecasts from step 4. These are

the N simulated forecast errors that for each forecasting horizon h serve to build

the empirical forecast distribution.

Prediction intervals of level γ · 100 % for the h-step-ahead forecast, h = 1, . . . ,M , can

be obtained by taking the empirical (1− γ)/2 · 100 %- and (1 + γ)/2 · 100 %-quantiles of

the empirical h-step-ahead forecast distribution of size N .

A bootstrap approach of type a) can be obtained by sampling h-step-ahead forecast errors

from the normal distribution N(0, σ2) instead of from the empirical errors Zh, . . . , ZT

in steps 2 and 5. Hereby, σ2 needs to be replaced by an estimate of the h-step-ahead
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forecast variance.

Due to the potential heavy computational load associated with the bootstrapping ap-

proach, Fan & Hyndman (2012) also formulate an alternative bootstrapping approach

specifically modified for their forecasting application, which we do not revise here.

7.4 Model-based Prediction Intervals of Plug-in Type

Before the foundation of ES methods on SSOE state-space models by Ord et al. (1997),

theoretical prediction intervals for ES relied on the fact that some ES methods were

optimal for certain ARIMA models, for which the theory was sufficiently evolved. The

ES methods for which this applies are those with linear trend and additive seasonality.

With the theory for these ES methods being available through the equivalent optimal

ARIMA model, prediction intervals could be developed, as was done by Yar & Chatfield

(1990). For the case of multiplicative seasonality, there does not exist an ARIMA model

for which the ES method is optimal. It is due to the nonlinearity of the multiplicative

seasonality method that forecasts cannot be represented as a linear combination of past

values, see Chatfield & Yar (1991). Prediction intervals for the multiplicative seasonality

case were therefore either of empirical type or based on approximations.

The situation changed when Ord et al. (1997) underpinned ES methods by the SSOE

state-space model. The availability of a model allowed the derivation of theoretical

prediction intervals for ES. In Hyndman et al. (2005), a broad survey of analytical

expressions for the variance based on state-space models can be found. With Wang

(2006) formulating the SSOE model for ESCov, the foundations for theoretical prediction

intervals were laid for the covariate-processing method as well. The prediction intervals

are of PIM type, i. e. the parameter estimates are inserted into the formulas for the

theoretical prediction distribution and therefore treated as fixed, while uncertainty in

the estimation of the parameters is not taken into account, see the remarks in the

introduction of this chapter.

We consider prediction intervals which are based on the MMSE forecast and forecasting

variance for the h-step-ahead observation YT+h under the SSOE model for ESCov. Since

the interval relies on the distribution of the forecast, it is an instance of a parametric pre-

diction interval. The computation of the prediction interval is performed conditional on

the fitted SSOE model for ESCov, the availability of which is assumed in the subsequent

definition.
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7 Prediction Intervals for Exponential Smoothing with Covariates

Definition 7.6. Let Y1, Y2, . . ., YT be the observed time series values. Consider the

MMSE h-step-ahead forecast YT+h|T and the forecasting variance σ2
YT+h|HT , given the

process history HT up to time T . Let 0 < γ < 1 be the confidence level. Then an

(approximative) two-sided prediction interval for YT+h of level γ · 100 % is given by

BT+h|T :=
(
YT+h|T−zN(0,1)

(
1 + γ

2

)
σYT+h|HT ; YT+h|T +zN(0,1)

(
1 + γ

2

)
σYT+h|HT

)
,

where zN(0,1) (α) is the α · 100 %-quantile of the standard normal distribution N(0, 1).

The MMSE h-step-ahead forecast and its variance can be read from Proposition 6.3 for

the linear SSOE for ESCov under independent residuals, Proposition 6.4 for the linear

SSOE for ESCov under AR(1) residuals and Proposition 6.6 for the partially linear SSOE

for ESCov. The prediction interval defined in Definition 7.6 relies on the assumption

that the h-step-ahead prediction YT+h|T has either a normal distribution with mean

YT+h and variance σ2
YT+h|HT , or that YT+h|T is approximately normally distributed with

mean YT+h and variance σ2
YT+h|HT .

Quantiles of the normal distribution are commonly used. Since the normal distribution

is frequently too optimistic in real data applications, there is the risk that the above

method delivers prediction intervals that are too small. Other parametric distribution

quantiles z instead of zN(0,1)((1 + γ)/2) are conceivable depending on the distribution

of YT+h|T , as suggested e. g. by Chatfield (2001). The (1 + γ)/2 · 100 %-quantile of

the Laplace distribution, for example, would yield a prediction interval which is also

symmetric around the mean and would yield broader prediction intervals for γ close to

1 due to the fatter tails of the Laplace distribution.

The MMSE h-step-ahead forecast and its variance are functions of the smoothing pa-

rameters α through the components Gα, δα, wα or Gα,ne, δα,ne, wα,ne, respectively,

as well as the covariate parameter β and autoregressive parameter λ. Consequently,

the prediction intervals rely on the knowledge of these parameters. The parameters are

usually unknown in practice, which is why one would insert their estimated values α̂, β̂

and λ̂ instead. Using this approach, the uncertainty in the estimation of the parame-

ters is not taken into account, also the uncertainty in the estimation of the initial state

values is not. The prediction intervals might tend to be too narrow due to this reason.

Chatfield (1993), however, deems the effect of the parameter uncertainty as having less

effect on the overall uncertainty than that due to model specification and the effect of

outliers and errors. For this reason, inserting the parameter estimates into the forecast

equation seems justifiable in most cases, unless the number of estimated parameters is

high in comparison to the length of the series.
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For predictions under ESCov, perfect knowledge about the future covariate value xT+h

is assumed. Hence, xT+h is treated as fixed. In reality, the future value often is a

prediction itself that is associated with uncertainty or is only approximately known for

some reason. Since xT+h is not considered random in the ESCov model, its uncertainty

is also not taken into account in the calculation of the prediction intervals.

7.5 Prediction Intervals based on Linear Expansion of the

ESCov Model

We exploit linear model theory similarly as Ord et al. (1997) to derive prediction intervals

for ESCov based on linearisation that account for uncertainty in the parameter estimates.

We apply the approach to the ESCov model ADT-AS of linear damped trend and one

additive seasonality, which is an instance of the linear SSOE model for ESCov from

Section 6.3.1 with m = 1. A variety of specific model instances are obtained as reductions

or special cases of the model ADT-AS, namely:

i) NT-NS: no trend, no season;

ii) AT-NS: additive trend, no season;

iii) ADT-NS: additive damped trend, no season;

iv) NT-AS: no trend, additive season;

v) AT-AS: additive trend, additive season;

vi) ADT-AS: additive damped trend, additive season.

The undamped trend AT is obtained by setting φ = 1 in the formulas for the damped

trend model. Models NT without trend and NS without season are obtained by omitting

the respective components of the state and parameter vectors. We focus on the case of

homoscedastic residuals (ξs) with constant variance V [ξs] = σ2
ξ . See Sections 6.4 and 6.6

for an empirical fitting and forecasting under SSOE models for ESCov.

In the course of this and the subsequent sections, we use a notation for the smoothing

parameters in ESCov that differs from the one in Chapter 6 and the previous sections of

Chapter 7. Instead of α1 (smoothing parameter for the level), α2 (smoothing parameter

for the trend increment) and α1,3 = α3 (smoothing parameter for a single additive

season), we use α̃1, α̃2 and α̃3, where the matching equations are provided in Table 7.1.

The parameter vector for the smoothing parameters is subsequently denoted as α̃ =

(α̃1, α̃2, α̃3, φ)>.
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Table 7.1: Smoothing parameters in linear ESCov model

Parameter
Notation up to Notation in Sections
Section 7.4 7.5–7.7

Smoothing parameter for level α1 α̃1 = α1

Smoothing parameter for trend increment α2 α̃2 = α1α2

Smoothing parameter for additive season α1,3 = α3 α̃3 = (1 − α1)α3

7.5.1 Linear Expansion of the ESCov Model

Let Y = (Y1, . . . , YT , . . . , YT+h)> be a segment of a time series (Yt) subject to a linear

ESCov SSOE model as described in Section 6.3.1. In the respective empirical context,

let Y1, . . . , YT be the observed past observations, and let YT+1, . . . , YT+h be instances at

future times T+1, . . . , T+h. By the observation equation and state transition equations

for ADT-AS in Table 6.1 for a single seasonality, each Ys can be expressed as a function

of the parameter vector θ = (α̃>,β>)>, the residuals ξt = Yt − Yt|t−1, t = 1, . . . , s, and

the initial state vector u0. Thus, conditioned on u0, we can write

Y = H(θ, ξ) =
(
Hs(θ, ξ)

)
1≤s≤T+h

, (7.2)

where ξ = (ξ1, . . . , ξT+h)> is the vector of residuals. For the model ADT-AS with one

additive season of length d, we obtain the nonlinear functions

Hs(θ, ξ) =

s−1∑
m=1

(
α̃1 + α̃2

s−m∑
i=1

φi + α̃31{d(1+b s−m−1
d
c)}(s−m)

)
ξm

+ µ0 + ∆0

s∑
i=1

φi +
d−1∑
i=0

e−i1{d(1+b s−1
d
c)−s}(i) + β>xs + ξs. (7.3)

The derivation of (7.3) is provided in Appendix 7.A, Section 7.A.1.

We intend to use methods from linear model theory to account for the effect of parameter

and residual estimation on forecasts. Hence we follow Ord et al. (1997) and develop a

linear expansion of H(θ, ξ) around (θ̂, ξ̂), where the entries ξ̂1, . . . , ξ̂T are the estimates

obtained from the observations Y1, . . . , YT , and where the future values are forecasted

as ξ̂T+1 = . . . = ξ̂T+h = 0. Let k′ be the dimension of θ, and let N := T + h. Let the
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N × k′ matrix M be defined by

M :=
∂

∂ θ
H(θ, ξ)|

θ=θ̂
ξ=ξ̂

=(
s−1∑
m=1

ξ̂m,

s−1∑
m=1

s−m∑
i=1

φ̂iξ̂m,

s−1∑
m=1

1{d(1+b s−m−1
d
c)}(s−m)ξ̂m,

̂̃α2

s−1∑
m=1

ξ̂m

s−m∑
i=1

iφ̂i−1 + ∆0

s∑
m=1

mφ̂m−1, xs

)
1≤s≤T+h

.

(7.4)

The derivation of ∂
∂ θH(θ, ξ)|

θ=θ̂
ξ=ξ̂

for the ESCov model ADT-AS can be found in Ap-

pendix 7.A, Section 7.A.1.

Let the N ×N matrix L be defined by

L :=
∂

∂ ξ
H(θ, ξ)|

θ=θ̂
ξ=ξ̂

, (7.5)

where for 1 ≤ m ≤ s− 1

∂

∂ ξm
Hs(θ, ξ) = α̃1 + α̃2

s−m∑
i=1

φi + α̃31{d(1+b s−m−1
d
c)}(s−m), (7.6)

∂
∂ ξs

Hs(θ, ξ) = 1, ∂
∂ ξm

Hs(θ, ξ) = 0 for m ≥ s + 1. By a first order Taylor expansion we

obtain the approximation

Y ≈ H(θ̂, ξ̂) + M(θ − θ̂) + L(ξ − ξ̂) = H(θ̂, ξ̂)−Mθ̂ − Lξ̂ + Mθ + Lξ︸ ︷︷ ︸
=: Z

. (7.7)

Let Yp := (Y1, . . . , YT )> = Hp(θ, ξ), ξp := (ξ1, . . . , ξT )>, Zp := (Z1, . . . , ZT )> be the

vectors corresponding to the observed past, and let Yf := (YT+1, . . . , YT+h)> = Hf(θ, ξ),

ξf := (ξT+1, . . . , ξT+h)>, Zf := (ZT+1, . . . , ZT+h)> be the vectors corresponding to the

unobserved future. We decompose the matrices L, M by

L =


Lpp︸︷︷︸
T×T

O︸︷︷︸
T×h

Lfp︸︷︷︸
h×T

Lff︸︷︷︸
h×h

 , M =


Mp︸︷︷︸
T×k′

Mf︸︷︷︸
h×k′

 (7.8)

where L, Lpp, Lff are invertible as lower triangular matrices with 1 on the main diagonal,

see Eqs. (7.5)–(7.6). Then

Zp = Mpθ + Lppξp, (7.9)

Zf = Mfθ + Lfpξp + Lffξf, (7.10)

Yf ≈ Hf(θ̂, ξ̂)−Mfθ̂ − Lfpξ̂p − Lffξ̂f +Zf. (7.11)
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7 Prediction Intervals for Exponential Smoothing with Covariates

7.5.2 Statistical Analysis of the Linear Expansion of the ESCov Model

On grounds of the approximation (7.11), the prediction of the future time series segment

Yf amounts to predicting Zf. The Eqs. (7.9) and (7.10) are linear regression equations

with autocorrelated residual vectors Lppξp and Lfpξp+Lffξf, respectively, for an unknown

parameter vector θ. Hence linear model theory can be used for inference on Zf. Ord

et al. (1997) undertake a Bayesian analysis. We use a frequentist approach, which

provides additional insight into the problem. See the Appendix 7.A, Section 7.A.2, for

a derivation of the subsequently presented results.

Considering Eq. (7.9), we obtain from linear model theory (Christensen 1996) the quan-

tity

σ̂2
ξ,LM =

1

T − r
(L−1

ppZp)>[I−Σ]L−1
ppZp (7.12)

as an unbiased estimator of the residual variance σ2
ξ (see Section 6.4), where r is the

rank of Mp, and where

Σ = L−1
pp Mp

(
(L−1

pp Mp)>(L−1
pp Mp)

)−1
(L−1

pp Mp)> . (7.13)

The vector P ?(Zp) of best linear unbiased predictors for the entries of the future vector

Zf is

P ?(Zp) =

(
(Mf − LfpL−1

pp Mp)
(

(L−1
pp Mp)>(L−1

pp Mp)
)−1

M>
p (L>pp)−1 + Lfp

)
L−1

ppZp.

(7.14)

If the residuals ξ1, . . . , ξT+h have the normal distribution N(0, σ2
ξ ), then the limits of a

level γ prediction interval for ZT+k, k = 1, . . . , h, are

P ?(Zp)k ∓ z · σ̂ξ,LM ·
√
ukk, (7.15)

where z = zt(T−r)((1+γ)/2) is the ((1+γ)/2)·100 % quantile of the central t-distribution

t(T − r), and where ukk is the k-th diagonal entry of the h× h matrix

U := LffL>ff + (Mf − LfpL−1
pp Mp)

(
(L−1

pp Mp)>(L−1
pp Mp)

)−1
(Mf − LfpL−1

pp Mp)>.

(7.16)

By Bayesian heuristics, Ord et al. (1997) achieve an interval similar to (7.15) of the type

point forecast∓ z · σ̂ξ ·
√
ukk, with the essential difference that z = zN(0,1)((1 + γ)/2) is

the (1 + γ)/2 · 100 % quantile of the normal distribution N(0, 1). At the same variance

estimation σ̂ξ, the interval (7.15) is always broader than the interval suggested by Ord

et al. (1997), where the difference is particularly noticeable for a small number T of

observations.
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7.5 Prediction Intervals based on Linear Expansion of the ESCov Model

7.5.3 Approximate Prediction Intervals

If the ESCov model defined by the observation and state transition equations for ADT-

AS from Table 6.1 is warranted, the k-step-ahead point forecast should be the MMSE

predictor YT+k|T as defined in Table 6.1 with m = 1 for one seasonality. The results

obtained from the linearisation in Section 7.5.1 are used to account for the dispersion

of the forecast around YT+k. By Section 7.5.1, the dispersion of a forecast for YT+k is

approximately the dispersion of a forecast for ZT+k based on the linear model (7.9) and

(7.10). Hence, to obtain an approximate level γ prediction interval for YT+k, we replace

in the prediction interval (7.15) the point forecast P ?(Zp)k by the point forecast YT+k|T .

The general scheme for the prediction interval limits is YT+k|T ∓ cσ̂, where σ̂2 is an esti-

mate of the one-step-ahead forecasting variance. We have two choices for the estimator

σ̂2: 1) the estimator σ̂2
ξ,ES, see formula (6.21) in Section 6.4; 2) the estimator σ̂2

ξ,LM, see

formula (7.12). In the PIM intervals, the coefficient c is chosen as the (1 + γ)/2 · 100 %

quantile c = zN(0,1)((1+γ)/2) of the normal distribution N(0, 1), see Definition 7.6. The

analysis of Section 7.5.2 leading to formula (7.15) establishes the coefficient c = z · ukk
where ukk is the k-th diagonal entry of the h×h matrix U defined by (7.16), and where

z = zt(T−r)((1+γ)/2) is the (1+γ)/2·100 % quantile of the central t-distribution t(T−r).
Ord et al. (1997) also use the coefficient c = z · ukk but with z = zN(0,1)((1 + γ)/2).

To obtain sufficient evidence about the best choice, we will subsequently consider the

intervals I1, I2, I3, I4 resulting from the four combinations of the two coefficients with

the two available variance estimators:

I1) t-distribution interval with standard deviation estimated by the linearisa-

tion estimator σ̂ξ,LM: Limits YT+k|T ± zσ̂ξ,LM
√
ukk, z is the (1 +γ)/2 ·100 %-quantile

of the t-distribution t(T − r), see formula (7.15) with P ?(Zp)k replaced by YT+k|T .

I2) Normal distribution interval with standard deviation estimated by the

SSOE plug-in estimator σ̂ξ,ES: Limits YT+k|T ± zσ̂ξ,ES, z is the (1 + γ)/2 · 100 %-

quantile of the normal distribution N(0, 1), see Definition 7.6.

I3) t-distribution interval with standard deviation estimated by the SSOE

plug-in estimator σ̂ξ,ES: Limits YT+k|T ± zσ̂ξ,ES
√
ukk, z is the (1 + γ)/2 · 100 %-

quantile of the t-distribution t(T − r), see Eq. (7.15) with P ?(Zp)k replaced by YT+k|T .

I4) Normal distribution interval with standard deviation estimated by the

linearisation estimator σ̂ξ,LM: Limits YT+k|T ± zσ̂ξ,LM, z is the (1 + γ)/2 · 100 %-

quantile of the normal distribution N(0, 1), see Definition 7.6.
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7 Prediction Intervals for Exponential Smoothing with Covariates

To understand the inadequacy of the customary plug-in approach I2 for ESCov, consider

the case that the vector α̃ of smoothing parameters is known. It remains to estimate the

covariate coefficient β. Consider to approach this estimation problem by MSE minimi-

sation as considered in Section 6.4. By Eqs. (7.2) and (7.3), the resulting estimator β̂ is

a generalised least squares estimator under a linear model with correlated residuals. In

this case, the ES variance estimator σ̂2
ξ,ES essentially coincides with the linear model vari-

ance estimator σ̂2
ξ,LM, see Eq. (7.12), and the exact prediction interval under normally

distributed residuals is (7.15). In (7.15), however, different from the näıve scheme from

Definition 7.6, the estimator σ̂ξ in form of σ̂2
ξ,LM has an additional coefficient

√
ukk > 1.

Hence the interval designed by Definition 7.6 is definitely too narrow.

7.6 Simulation Study based on Electricity Load Data

We investigate the actual coverage probability of intervals of nominal confidence level

γ of the types I1, I2, I3, I4 suggested by Section 7.5.3 in a simulation study based on

electricity load data. The subsequent section describes the underlying data and the

design of the simulation studies. The results are discussed in Section 7.6.2.

7.6.1 Italian Electricity Load Data

The simulation study is conducted on the basis of two datasets of daily electricity loads

in Italy over nine weeks, i. e. 63 days. The first dataset, subsequently addressed as

electricity data type E1, covers the daily loads of a consumer from 9 May 2005 to 10

July 2005. The second dataset, electricity data type E2, covers the daily loads of a

consumer from 1 September 2005 to 2 November 2005. Each considered period contains

one public holiday on a weekday, the 2nd of June and the 1st of September, respectively,

on which the electricity consumption is unusually low compared to usual weekdays. To

avoid disturbance of the parameter estimation by these unusual days, we replace these

days’ electricity loads by the averages of the values of the two adjacent days.

In both cases, the regional average temperature in ◦C on day t is chosen as the covariate

xt. To simplify the evaluation of the prediction intervals for the considered forecasting

period over the days 57 to 63, the temperatures x57, . . . , x63 are assumed to be known

precisely at the forecasting time t = 56. For load forecasting in field practice, the

uncertainty in temperature forecasts has to be taken into account. However, temperature

forecasts have become remarkably exact so that the remaining uncertainty will not affect
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7.6 Simulation Study based on Electricity Load Data

the accuracy of prediction intervals substantially. Teisberg et al. (2005) demonstrate that

the accuracy of load forecasts based on meteorological forecasts is only marginally inferior

to the accuracy of load forecasts based on the exact knowledge of weather characteristics.

Both datasets are analysed by ESCov. The first eight weeks are used to estimate the

smoothing and covariate parameters as well as the initial values for the states and the

variance of the one-step-ahead forecast errors. On the basis of these parameters, the

simulation is initialised. This results in a sample size of n = 56. The covariates in

form of the average daily temperatures on the remaining seven days are needed for the

prediction of the electricity load of one to seven days ahead.

We apply the ESCov model ADT-AS, i. e. the model with damped linear trend and

additive seasonality. The values of the parameters α̃, β minimising the MSE of the

k-days-ahead forecast, the starting values µ0, ∆0, e−d+1, . . . , e0 for the level, trend

increment and season and the variance σ2
ξ of the one-step-ahead forecast errors that

are used to initialise the simulation are provided in Tables 7.3 and 7.4. For each of

the two datasets, we consider the prediction lead times k = 1, 2, . . . , 7 days. Given

a set (α̃, β, µ0,∆0, e−d+1, . . . , e0, σ
2
ξ ) of simulation parameters, we obtain a time series

Y1, . . . , YT , YT+1, . . . , YT+h, T = 56, by first simulating the vector (ξ1, ξ2, . . . , ξT , ξT+1, . . . ,

ξT+h)> of independent residuals, and then inserting them into Eq. (7.3). We consider

two distributions for the residuals ξi, both with mean 0 and with variance σ2
ξ found from

the ESCov estimation, see Tables 7.3 and 7.4: i) normal distribution, and ii) Laplace

distribution as an alternative with much more weight on the tails than the normal distri-

bution. For the simulated series Y1, . . . , YT , we reestimate the parameters of the ESCov

model ADT-AS. On the grounds of the estimated model we calculate the prediction

intervals I1, I2, I3 and I4 for a nominal confidence level of γ = 0.95 and evaluate the

empirical coverage by observing whether the true value YT+k is contained in the pre-

diction interval. For each setting, we carry out 5000 simulation runs. In total, we have

2× 7× 2 settings with 5000 simulation runs each. A summary of the simulation design

is provided in Table 7.2.
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7 Prediction Intervals for Exponential Smoothing with Covariates

Table 7.2: Simulation design

Factor Levels

datasets electricity data type E1, electricity data type E2
prediction lead times k 1, 2, . . . , 7
distribution of the errors ξi normal distribution, Laplace distribution
confidence level γ 0.95
simulation runs 5000
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7 Prediction Intervals for Exponential Smoothing with Covariates

7.6.2 Results of the Simulation Study

The results of the simulation study described in Section 7.6.1 are provided for electricity

data type E1 in Table 7.5 for normally distributed residuals and in Table 7.6 for Laplace

distributed residuals. The results for the electricity data E2 can be found in Tables 7.7

and 7.8, respectively. The tables provide the estimator p̂ of the coverage probability

from 5000 independent observations and the two-sided Clopper & Pearson confidence

limits at the level 0.99 for the true coverage probability p. The comparison of confidence

limits shows whether differences between the four methods are significant at the level

0.01 = 1−0.99. In general, the estimated coverage probabilities decrease with increasing

prediction lead time.

We review the results for the four methods in detail: I1): The estimated coverage

probabilities meet the nominal confidence level or tend to be only slightly too narrow

for small prediction lead times k, but underperform for increasing k. I2): The plug-

in method, which ignores the uncertainty in the parameter estimation, is considerably

worse than I1 and underestimates the nominal confidence level for all prediction lead

times. I3): This interval outperforms all others in terms of the coverage probability.

Apart from a few exceptions for k = 2, the improvement is significant at the level 0.01.

I4): These intervals show the worst performance for the conducted simulation study

and produce prediction intervals which are clearly too narrow.

Overall, the best results are obtained by method I3. The nominal confidence level of

γ = 0.95 is met well for small prediction lead times k and only slightly underestimated

for bigger lead times. Interval I4 is not competitive and shows a very bad performance.

For the plug-in interval I2, the hypothesis is confirmed that these intervals tend to be

too narrow. Apparently, method I3 is astonishingly robust against deviations from the

normality assumption used in Section 7.5.2 for the derivation of the linear model results.
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Table 7.5: Estimates p̂ of coverage probabilities and two-sided Clopper & Pearson confidence
limits at the level 0.99 from 5000 simulation runs, electricity data type E1, normally
distributed residuals.

I1 I2 I3 I4

k pL p̂ pU pL p̂ pU pL p̂ pU pL p̂ pU

1 0.9419 0.9504 0.9580 0.9174 0.9274 0.9366 0.9357 0.9446 0.9527 0.9242 0.9338 0.9426
2 0.9306 0.9398 0.9481 0.9037 0.9144 0.9243 0.9445 0.9528 0.9602 0.8793 0.8912 0.9023
3 0.9210 0.9308 0.9398 0.9020 0.9128 0.9228 0.9475 0.9556 0.9628 0.8508 0.8638 0.8761
4 0.8940 0.9052 0.9156 0.8835 0.8952 0.9061 0.9301 0.9394 0.9478 0.8064 0.8208 0.8346
5 0.8633 0.8758 0.8876 0.8631 0.8756 0.8874 0.9189 0.9288 0.9379 0.7483 0.7642 0.7796
6 0.8253 0.8392 0.8524 0.8307 0.8444 0.8574 0.8896 0.9010 0.9116 0.6948 0.7116 0.7280
7 0.9372 0.9460 0.9540 0.9227 0.9324 0.9413 0.9436 0.9520 0.9595 0.9138 0.9240 0.9334

Table 7.6: Estimates p̂ of coverage probabilities and two-sided Clopper & Pearson confidence
limits at the level 0.99 from 5000 simulation runs, electricity data type E1, Laplace
distributed residuals.

I1 I2 I3 I4

k pL p̂ pU pL p̂ pU pL p̂ pU pL p̂ pU

1 0.9229 0.9326 0.9415 0.9034 0.9142 0.9242 0.9191 0.9290 0.9381 0.9094 0.9198 0.9294
2 0.9165 0.9266 0.9358 0.8990 0.9100 0.9202 0.9306 0.9398 0.9482 0.8754 0.8874 0.8987
3 0.9094 0.9198 0.9294 0.8929 0.9042 0.9147 0.9368 0.9456 0.9536 0.8556 0.8684 0.8805
4 0.8835 0.8952 0.9061 0.8758 0.8878 0.8991 0.9254 0.9350 0.9437 0.8101 0.8244 0.8381
5 0.8687 0.8810 0.8926 0.8668 0.8792 0.8909 0.9172 0.9272 0.9364 0.7684 0.7838 0.7987
6 0.8266 0.8404 0.8536 0.8338 0.8474 0.8603 0.8911 0.9024 0.9130 0.7008 0.7176 0.7339
7 0.9189 0.9288 0.9379 0.9098 0.9202 0.9298 0.9237 0.9334 0.9422 0.8984 0.9094 0.9196

7.7 Application of Prediction Intervals in Forecasting

We apply the prediction intervals of types I1, I2, I3, I4 introduced in Section 7.5.3 to the

two electricity load time series E1 and E2, which provided the basis for the simulation

study considered in Section 7.6. It is interesting to compare forecasts retrospectively

with the realised values. To this end, we take the 7 last days of the available data as the

forecasting period, i. e. 4 July to 10 July 2005 for E1 and 27 October to 2 November 2005

for E2. The model ADT-AS was fitted to the remaining data, i. e. 9 May to 3 July 2005

for E1 and 1 September to 26 October 2005 for E2.

Figures 7.1 and 7.2 show the prediction intervals at the nominal level 95 % together with

the observed daily electricity demand values (white line). The widths of the prediction

intervals for the seven forecasts are displayed by Figs. 7.3 and 7.4. As to be expected, the
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Table 7.7: Estimates p̂ of coverage probabilities and two-sided Clopper & Pearson confidence
limits at the level 0.99 from 5000 simulation runs, electricity data type E2, normally
distributed residuals.

I1 I2 I3 I4

k pL p̂ pU pL p̂ pU pL p̂ pU pL p̂ pU

1 0.9233 0.9330 0.9418 0.8938 0.9050 0.9154 0.9178 0.9278 0.9370 0.8990 0.9100 0.9202
2 0.9032 0.9140 0.9240 0.8695 0.8818 0.8933 0.9254 0.9350 0.9437 0.8253 0.8392 0.8524
3 0.8887 0.9002 0.9109 0.8579 0.8706 0.8826 0.9214 0.9312 0.9402 0.7864 0.8014 0.8158
4 0.9276 0.9370 0.9456 0.9039 0.9146 0.9245 0.9357 0.9446 0.9527 0.8938 0.9050 0.9154
5 0.9216 0.9314 0.9403 0.8967 0.9078 0.9181 0.9329 0.9420 0.9502 0.8837 0.8954 0.9063
6 0.8326 0.8462 0.8592 0.8132 0.8274 0.8410 0.8791 0.8910 0.9021 0.7131 0.7296 0.7457
7 0.7304 0.7466 0.7624 0.7520 0.7678 0.7831 0.8291 0.8428 0.8559 0.5799 0.5980 0.6159

Table 7.8: Estimates p̂ of coverage probabilities and two-sided Clopper & Pearson confidence
limits at the level 0.99 from 5000 simulation runs, electricity data type E2, Laplace
distributed residuals.

I1 I2 I3 I4

k pL p̂ pU pL p̂ pU pL p̂ pU pL p̂ pU

1 0.9091 0.9196 0.9293 0.8856 0.8972 0.9080 0.9066 0.9172 0.9270 0.8894 0.9008 0.9115
2 0.9045 0.9152 0.9251 0.8804 0.8922 0.9033 0.9278 0.9372 0.9458 0.8496 0.8626 0.8749
3 0.8913 0.9026 0.9132 0.8575 0.8702 0.8822 0.9293 0.9386 0.9471 0.7926 0.8074 0.8216
4 0.9178 0.9278 0.9370 0.8978 0.9088 0.9190 0.9244 0.9340 0.9428 0.8898 0.9012 0.9118
5 0.9223 0.9320 0.9409 0.9045 0.9152 0.9251 0.9318 0.9410 0.9493 0.8948 0.9060 0.9164
6 0.8417 0.8550 0.8676 0.8235 0.8374 0.8507 0.8881 0.8996 0.9103 0.7400 0.7560 0.7715
7 0.7245 0.7408 0.7567 0.7477 0.7636 0.7790 0.8256 0.8394 0.8526 0.5676 0.5858 0.6038
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Figure 7.1: 7-day-forecast for electricity data E1

ascending order of widths essentially replicates the ascending order of actual coverage

probabilities found by the simulation study, in the succession I4, I2, I1, I3. The widths of

I1, I2, I3 are clearly associated. At moderate forecasting lead times 1 ≤ k ≤ 4, the width

of the best interval I3 does not differ too much from the widths of the worse intervals.

At larger forecasting lead times, the width of the best interval I3 can be considerably

higher than the widths of worse intervals. Not surprisingly, the improved actual coverage

probability can sometimes entail a considerable loss in forecasting precision. In Fig. 7.2,

for example, the standard deviation σ̂ξ,ES at lead time 7 is almost three times higher

than σ̂ξ,LM. Interval I1 compensates this by the factor
√
ukk in Eq. (7.15) being close

to 3. Combining σ̂ξ,ES and
√
ukk in the interval I3 leads to an inflation of its length.

However, in particular for large forecasting lead times, the simulation study shows that

the apparent precision of classical plug-in intervals like I2 is a fallacious illusion, bought

with a drastic loss of intended forecasting reliability.

7.8 Conclusion and Outlook

We have presented in this chapter a number of prediction intervals applicable to expo-

nential smoothing with covariates (ESCov): Prediction intervals exploiting the empirical

error distribution have been considered in the form of prediction intervals based on em-

pirical quantiles, normal quantiles and on two statistical inequalities – the Chebychev

and Camp-Meidell inequalities. Apart from the one using normal distribution quan-

tiles, they are all of non-parametric type. A bootstrap approach as well as a prediction

interval of plug-in type (PIM) based on the ESCov SSOE model has been presented.

The bootstrap prediction interval takes uncertainty in the estimation of parameters into
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Figure 7.2: 7-day-forecast for electricity data E2
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Figure 7.3: Widths of prediction intervals for the 7-day-forecast for electricity data E1
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Figure 7.4: Widths of prediction intervals for the 7-day-forecast for electricity data E2
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7.8 Conclusion and Outlook

account. It is not of analytical nature and therefore involves extensive calculations. The

PIM type prediction interval on the other hand is easy to calculate, but does not provide

for parameter estimation uncertainty. A prediction interval that seems to overcome both

remedies is the prediction interval based on linear expansion of the ESCov model. The

idea has been adopted from Ord et al. (1997), who exploited linear model theory to de-

rive prediction intervals for exponential smoothing without covariates, and modified to

be applicable for ESCov. An empirical comparison of model-based prediction intervals

based on the PIM method and on the linearisation method and combinations thereof

has been performed in form of a simulation study and applied to daily electricity load

data from an Italian energy vendor.

The results of the simulation study confirm the reservations about plug-in prediction

intervals. Different from the findings of Kim et al. (2011) for exponential smoothing

without covariates, the plug-in method performs rather bad under exponential smooth-

ing with covariates. The plug-in method’s lack of accounting for the uncertainty in

estimating the covariate coefficients is the most likely reason for this behaviour. In con-

trast, the intervals derived from a linearisation of the underlying ESCov model perform

very well. The simulation study revealed the best results in terms of the coverage prob-

ability for the t-distribution interval I3 with the standard deviation estimated by the

SSOE plug-in estimator σ̂ξ,ES. For smaller lead times, the actual coverage probability

is close to the nominal confidence level. For larger lead times, the loss in coverage is

significantly less than for the other three prediction intervals considered.

From the point of view of empirical practice, the linearisation intervals have clear advan-

tages over competing methods like simulation or resampling. The linearisation method

is easily implemented and operates very economically in computation time. Taking the

findings of Section 7.7 into consideration, we recommend to calculate both the intervals

I3 as well as I1 for the practice and in general to trust interval I3. In case of an un-

favourable constellation of the involved factors and a very broad prediction interval I3,

which considerably lacks forecasting information, we recommend to use interval I1.

The results are promising, but still limited in empirical and in theoretical respects. In an

empirical respect, more simulation studies are necessary to corroborate the superiority

of the linearisation method and to investigate its behaviour. In a theoretical respect,

we have considered a model with additive trend, additive season and additive residual.

Future studies should consider the respective multiplicative model versions. It will also

be necessary to get more analytical insight into the linearisation intervals. This problem

may tentatively be approached by first considering simpler model instances, e. g. a mere
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local level model without trend and seasonality.

Several other prediction intervals presented in this chapter have not been investigated

empirically. Further simulation studies should include them, too. In particular, the

empirical prediction interval that exploits the Camp-Meidell inequality and relies on the

estimation of central moments is a rather new idea. Experience in the application of the

interval on real data is therefore still missing. Under heteroscedastic errors, the method

is probably inadequate, but we expect it to be a competitive nonparametric alternative

in applications, particularly when model-based methods are not applicable or normality

assumptions do not hold. Empirical studies need to underpin the conjecture.
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7.A Appendix

7.A Appendix

7.A.1 Derivation of the Components of the Linear Model Expansion of

ESCov Model ADT-AS from Section 7.5.1

We derive the components Ys = Hs(θ, ξ), M and L for the ESCov model ADT-AS. The

parameter vector is θ> = (α̃1, α̃2, α̃3, φ,β
>).

Letting t = 0 and h = s in the observation recursion (6.35) provides the recursion

Ys = δ>α̃

(
s−2∑
`=0

G`
α̃wα̃ξs−`−1 + Gs−1

α̃ u0

)
+ β>xs + ξs

= δ>α̃

(
s−1∑
`=1

G`−1
α̃ wα̃ξs−` + Gs−1

α̃ u0

)
+ β>xs + ξs

= δ>α̃

(
s−1∑
`=2

G`−1
α̃ wα̃ξs−` +wα̃ξs−1 + Gs−1

α̃ u0

)
+ β>xs + ξs

= δ>α̃

(
s−2∑
`=1

G`
α̃wα̃ξs−`−1 +wα̃ξs−1 + Gs−1

α̃ u0

)
+ β>xs + ξs

= δ>α̃

(
s−2∑
m=1

Gs−m−1
α̃ wα̃ξm +wα̃ξs−1 + Gs−1

α̃ u0

)
+ β>xs + ξs, (7.17)

where G0
α̃ = I. From (7.17) we obtain for s ≥ 1

∂

∂ξm
Ys =


δ>α̃Gs−m−1

α̃ wα̃ for 1 ≤ m ≤ s− 1,

1 for m = s,

0 for m ≥ s+ 1.

(7.18)

From Table 6.4 we obtain the subsequent results on δ>α̃G`
α̃, G`

α̃wα̃, δ>α̃G`
α̃wα̃ and δ>α̃wα̃.

δ>α̃G`
α̃ = (1, φ,0d−1, 1)G`

α̃ = (1,
`+1∑
i=1

φi,v>` ),

where

v` = (v`,j)i≤j≤d with v`,j =

1 if j = d(1 + b `dc)− `,

0, otherwise,

G`
α̃wα̃ =


α̃1 + α̃2

∑`
i=1 φ

i

α̃2φ

α̃3q`

 ,
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where

q` = (q`,j)1≤j≤d with q`,j =

1 if j = `− b `dcd+ 1,

0 otherwise,

Gs−1
α̃ u0 = Gs−1

α̃



µ0

∆0

e0

...

e−d+1


= µ0 + ∆0

s∑
i=1

φi +
d−1∑
i=0

e−i1{d(1+b s−1
d
c)−s}(i),

where the indicator function provides 1{d(1+b s−1
d
c)−s}(i) = 1 if i = d(1 + b s−1

d c)− s, and

otherwise 1{d(1+b s−1
d
c)−s}(i) = 0. For ` = 1, 2, . . . we have

δ>α̃G`
α̃wα̃ = (1, φ,0d−1, 1)G`

α̃


α̃1

α̃2

α̃3

0d−1

 = α̃1 +α̃2

`+1∑
i=1

φi+α̃31{d(1+b `
d
c)−s}(`), (7.19)

where the indicator function provides 1{d(1+b `
d
c)−1}(`) = 1 if ` = d(1 + b `dc) − 1, and

otherwise 1{d(1+b `
d
c)−1}(`) = 0. Finally

δ>α̃wα̃ = (1, φ,0d−1, 1)


α̃1

α̃2

α̃3

0d−1

 = α̃1 + α̃2φ.

The latter result can also be obtained by letting ` = 0 in (7.19). Hence from (7.17)

Ys = Hs(θ, ξ) =
s−1∑
m=1

(
α̃1 + α̃2

s−m∑
i=1

φi + α̃31{d(1+b s−m−1
d
c)}(s−m)

)
ξm

+ µ0 + ∆0

s∑
i=1

φi +
d−1∑
i=0

e−i1{d(1+b s−1
d
c)−s}(i) + β>xs + ξs,

i. e. Eq. (7.3). Furthermore,
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∂

∂ξm
Ys =


α̃1 + α̃2

s−m∑
i=1

φi + α̃31{d(1+b s−m−1
d
c)}(s−m) for 1 ≤ m ≤ s− 1,

1 for m = s,

0 for m ≥ s+ 1.

We find by taking derivatives in the succession ∂
∂α̃1

Ys,
∂
∂α̃2

Ys,
∂
∂α̃3

Ys,
∂
∂φYs,

∂
∂βi
Ys

∂

∂ θ
H(θ, ξ)|

θ=θ̂
ξ=ξ̂

=

(
s−1∑
m=1

ξ̂m,

s−1∑
m=1

s−m∑
i=1

φ̂iξ̂m,

s−1∑
m=1

1{d(1+b s−m−1
d
c)}(s−m)ξ̂m,

̂̃α2

s−1∑
m=1

ξ̂m

s−m∑
i=1

iφ̂i−1 + ∆0

s∑
m=1

mφ̂m−1, xs

)
1≤s≤T+h

,

i. e. Eq. (7.4), where the sums
∑1−1

m=1 are defined as 0.

We find L = (l>s )1≤s≤T+h, where the vectors ls ∈ RT+h are defined by l>1 := (1, 0, . . . , 0)

and

l>s := (˜̂α1 + (s− 1)˜̂α2, ˜̂α1 + (s− 2)˜̂α2, . . . , ˜̂α1 + ˜̂α2, 1, 0, . . . , 0)

for 2 ≤ s ≤ T + h.

7.A.2 Derivation of the Linear Model Results of Section 7.5.2

Let Wpp := Cov[Zp]. Then

Wpp = Cov[Zp] = Cov[εp] = Cov[Lppξp] = σ2
ξLppL>pp. (7.20)

From (7.9) and (7.10) we obtain

Cov[Zp,Zf] = Cov[Lppξp,Lfpξp] = σ2
ξLppL>fp. (7.21)

Let

D := W−1
pp Cov[Zp,Zf] = (L>pp)−1L−1

pp LppL>fp = (L>pp)−1L>fp. (7.22)

We use linear model theory results from Christensen (1996) to derive the results of

Section 7.5.2. The formula (7.12) for the unbiased variance estimate is obtained from
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Christensen (1996, p. 31). From Christensen (1996, Theorem 12.2.3) it follows that the

vector P ?(Zp) of best linear unbiased predictors for the components of Zf has the form

P ?(Zp) =
[
(Mf −D>Mp)

(
M>

p W−1
pp Mp)

)−1
M>

p W−1
pp + D>

]
Zp

=
[
(Mf − LfpL−1

pp Mp)
(

(L−1
pp Mp)>(L−1

pp Mp)
)−1

M>
p (L>pp)−1L−1

pp + LfpL−1
pp

]
Zp.

This proves Eq. (7.14).

Let the residuals ξ1, ..., ξT+h have the normal distribution N(0, σ2
ξ ). To justify the pre-

diction interval (7.15), we consider the distribution of the ratios

ZT+k − P ?(Zp)k
σ̂ξ,LM

√
ukk

for k = 1, ..., h. (7.23)

From Eqs. (7.9), (7.10), (7.13) and (7.14) we obtain

Zf−P ?(Zp) = Mfθ+Lffξf+LfpΣξp−Mf

(
(L−1

pp Mp)>(L−1
pp Mp)

)−1
M>

p (L>pp)−1ξp.

(7.24)

From (7.13) it is easy to see that Σ2 = Σ and hence[
LfpΣ−Mf

(
(L−1

pp Mp)>(L−1
pp Mp)

)−1
M>

p (L>pp)−1
]
[I−Σ] = O.

From the latter result, Eq. (7.24), the independence of ξp, ξf and Σ> = Σ we get

Cov[Zf − P ?(Zp), [I−Σ]L−1
ppZp]

=
[
LfpΣ−Mf

(
(L−1

pp Mp)>(L−1
pp Mp)

)−1
M>

p (L>pp)−1
]
Cov[ξp][I−Σ]

= O.

Because of the normality assumption on the residuals ξ1, ..., ξT+h, the latter result

demonstrates the independence of Zf − P ?(Zp) and [I − Σ]L−1
ppZp. With Eq. (7.12)

we obtain the independence of Zf − P ?(Zp) and σ̂2
ξ,LM. Letting

K := LfpΣ−Mf

(
(L−1

pp Mp)>(L−1
pp Mp)

)−1
M>

p (L>pp)−1,

matrix algebra shows that

KK> = (Mf − LfpL−1
pp Mp)

(
(L−1

pp Mp)>(L−1
pp Mp)

)−1
(Mf − LfpL−1

pp Mp)>.

Hence with definition (7.16) and (7.24) we see that Zf−P ?(Zp) has a normal distribution

with zero mean and with

Cov[Zf − P ?(Zp)] = σξU.
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Christensen (1996, p. 31) states that (T − r)σ̂2
ξ,LM/σ

2
ξ has the central χ2-distribution

χ2(T −r). Because of the independence of numerator and denominator, we can conclude

that the ratios
ZT+k − P ?(Zp)k
σ̂ξ,LM

√
ukk

have the central t-distribution t(T − r).
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8 Summary and Outlook

This thesis has dealt with confidence intervals and prediction under prior information

and covariates. In the first part, the general theory of minimum volume confidence

intervals for distribution parameters has been presented. The crucial idea behind the

approach is to exploit the duality between confidence regions and prediction regions.

By determining prediction regions containing points of maximum prediction likelihood

ratio, confidence regions can be found such that the whole measurement and prediction

space is of minimum weighted volume. Prior knowledge on the parameter Y of interest

can be expressed by stipulating an appropriate distribution on Y . The theory has been

applied to the probability parameter p of a binomial distribution and the expectation

λ of a Poisson distribution. Prior knowledge has been expressed by means of a beta

distribution Beta(p0, p1, a, b) with shape parameters a, b > 0 on the support [p0; p1] in

the case of the binomial probability p and a gamma distribution Gamma(κ, ϑ) with

shape and scale parameters κ, ϑ > 0 for the Poisson expectation λ. The resulting two-

sided confidence intervals are of frequentist type and in that sense always exact, i. e. the

pointwise coverage is at least a prespecified confidence level γ. In contrast to existing

exact confidence intervals like those by Clopper & Pearson (1934), they assign different

weights to the confidence intervals in dependence on the outcomes x = 0, 1, . . ., and the

intervals are seeked to be shorter in weighted average.

With the binomial distribution and the Poisson distribution, two discrete distributions

have been investigated for which underdispersion and equidispersion, respectively, hold.

The theory of minimum volume confidence intervals under prior information should be

applied to other distributions as well, including the negative binomial distribution as an

instance of a distribution showing overdispersion.

Bayesian credibility intervals with special focus on binomial intervals have been examined

and compared with the two-sided frequentist confidence intervals of minimum weighted

volume. Although both approaches make use of prior information in the form of the

conjugate distribution for the binomial – the beta distribution –, the approaches are

markedly different. While the frequentist intervals are concerned with maximising the

prediction likelihood ratio and the confidence intervals are derived from the prediction
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regions, the Bayesian highest posterior density (HPD) intervals maximise the density

of the posterior distribution. The HPD credibility intervals do not fulfil the typical

frequentist criterion of exactness with respect to a pointwise coverage of at least the

stipulated credibility level β. Their coverage probability functions look very different

from the frequentist ones. It could be shown, however, that under the restriction that

both shape parameters of the beta prior distribution on [0; 1] are at most 1, a β can be

found such that the pointwise coverage of the corresponding level β HPD interval is at

least a prescribed level γ. The equivalent statement for the Poisson credibility intervals

is still pending and will not be able to be achieved by means of the proof idea in the

binomial case because it does not come with the comfort of having a prediction space

of finite cardinality. Further work in context with shortest Poisson confidence limits

involves their investigation from the point of view of limiting properties of the binomial

interval.

The minimum volume confidence intervals for a probability have been used in a two-

sided confidence interval of Stringer type, which is a procedure to estimate the mean in

zero-inflated populations. Originally, it was proposed by Stringer (1963) in its one-sided

version to be applied in audit sampling while making use of exact one-sided binomial

confidence bounds. In the two-sided version presented in this thesis, the use of the

shortest confidence intervals causes the Stringer interval to lead to a considerable reduc-

tion in length under certain prior information distributions. Statistical audit procedures

based on this interval would require a minimum sample size of sometimes more than

20 % lower in contrast to intervals without prior information. Under more extreme prior

information, the two-sided Stringer interval holds indifference and acceptance properties

close to the one-sided version; yet the two-sided version has the clear advantage of being

able to lead to the rejection of the population.

The presented two-sided Stringer interval is applicable under the assumption that the

random tainting Y = (U −W )/U ranges between 0 and 1 with probability 1 and the

de facto value W is smaller or equal to the book value U in an auditing population.

This assumption of overstatement is valid for certain types of audit populations. Fur-

ther work has to be done to develop a confidence interval for the mean in zero-inflated

populations that is applicable in the presence of both over- and understatement errors.

Poisson confidence intervals instead of binomial confidence intervals should be used in

the two-sided Stringer interval to possibly find out about limiting characteristics of the

binomial version. Further simulation and empirical studies should support the interval’s

conservativeness and applicability.
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Prediction under covariates has been considered in the context of time series analysis

in the second part of this thesis. Exponential smoothing with covariates (ESCov) as a

forecasting method that combines the history-based method of exponential smoothing

with an additive covariate term, is supposed to improve the univariate prediction by

additional exogenous information. The single source of error (SSOE) state-space model

underlying ESCov has been formulated for multiple seasonalities. The minimum mean

square error prediction and its variance have been presented in a linear and a partially

linear SSOE version, covering the most popular methods of linear, potentially damped

trend and additive or multiplicative seasonality models. The scheme by Roberts (1982),

McKenzie (1986) and Archibald & Koehler (2003) to renormalise seasonal components in

exponential smoothing such that they remain well interpretable has been transferred to

the multiple seasonality case for ESCov. In a study of forecasting the hourly electricity

load in Northern Italy, the double seasonality ESCov model has been applied with the

temperature as covariate. ESCov has shown good performance as a load forecasting

methodology. The influence of the covariate has been found to be more pronounced for

larger forecasting horizons than for very short-term forecasting horizons of only a few

hours ahead.

Various types of prediction intervals for ESCov have been described in the last chapter

of this thesis. The frequently encountered behaviour of plug-in prediction intervals being

too narrow could be supported in a simulation study. A prediction interval for the linear

ESCov model has been formulated that exploits the theory of linear models to account

also for the uncertainty in the estimation of the parameters.

The interaction between the states and the covariates in ESCov has not yet been fully

investigated. In particular, the choice of the initial state values seems to have influence on

the estimation of the smoothing and covariate parameters, which needs to be examined.

Further theoretical work needs to be done by modifying the SSOE model for ESCov to

account for higher-order autoregressive residuals. Only the case of AR(1) errors has so

far been considered. Alternative models need to be investigated where the covariates

are treated as states in the SSOE model. Further research should also include a more

detailed comparison of ESCov with ARIMAX methods. With respect to prediction

intervals for ESCov, further work should include linear model based prediction intervals

for the multiplicative SSOE versions. Broader empirical and simulation studies should

be performed to investigate the performance of the presented prediction intervals for

ESCov.
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Marchand, É., & Strawderman, W. E. (2013). On Bayesian credible sets, restricted

parameter spaces and frequentist coverage. Electronic Journal of Statistics, 7 , 1419–

1431.
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