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1 Introduction

Over the last decades the relevance of computational chemistry has significantly increased

for the academic1 as well as for the industrial research.2 It is an invaluable tool for the

rationalization of experimental findings and helps to provide insight and understanding.

Applications range from the elucidation of reaction mechanisms and the exploration of

the electronic structure of novel compounds to the interpretation of spectra. However,

apart from rationalizing, corroborating and extending the experimentally obtained data,

computational chemistry can also make predictions and thus guide the experiments in

new and promising directions. For instance, the most suitable candidates of a class of

compounds for a certain application can be selected. Such a prescreening based on in

silico predictions makes it possible to prepare only the most promising molecules, which

is much more efficient than synthesizing all, e.g. via high-throughput screening. Similarly,

it is possible to optimize molecules by choosing suitable substituents and finding the best

substitution patterns. These procedures are most efficient in close collaboration with the

experiment creating an iterative circle.

The scope of computational chemistry and especially of the quantum chemical methods is

broadened by the increasing computer power and more importantly by the introduction

of new methods and the development of more efficient codes. However, it is equally im-

portant to establish the applicability of the developed methods for the different fields of

chemistry, thus providing the basis for an assessment of the possibilities and the quality

of the predictions.

In this thesis the applicability of the toolkit of computational chemistry is investigated

for different fields. The main focus is on the description of systems with an unusual

electronic structure, such as the excitonic states in organic semiconductors, but a boron-

containing bipolaron (Bis(borolyl)thiophene dianion) with low-lying triplet states and the

excited states of pyracene are also examined. The investigation of the latter two systems,

however, also involves questions important for organic semiconductors. Concerning the

semiconductors the focus is laid on organic solar cells based on small organic molecules.

Organic solar cells are of great interest, since their production is cheap and highly flexi-
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1 Introduction

ble and even transparent systems can be created.3,4 With efficiencies of 10-15% being in

principle possible and the current world record cell achieving 12%,5 these devices seem

very promising. However, despite the very encouraging reports on the efficiencies, one

should keep in mind that the test cells are small and the data obtained cannot directly

be transferred to the operating conditions of an actual cell in an application. Further-

more, the durability of the modules is still an issue. In order to create improved cells

and to find new materials or optimize the currently used molecules, a fundamental insight

into the elementary processes is needed. Computational chemistry can provide insight

by separating effects that are experimentally inseparable, creating models and providing

data for a molecule under idealized conditions, thus showing the in principle obtainable

performance of a certain material. Small organic molecules are especially suitable for a

theoretical modeling, since they exhibit definite structure-property relationships. Thus

computational chemistry should be able to help to find the guidelines for a rational design

and to give practical advice via prescreenings. However, in order to be able to do this,

the applicability of the different tools needs to be investigated.

Obviously, this goal is pursued by many groups around the world.i This thesis focuses on

the description of excitonic states, since one of the most important elementary processes

in organic solar cells is the exciton diffusion (see below). However, the description of an

excitonic state in such molecules is far from simple, because possibility of charge-transfer

states makes the application of standard methods like TDDFT troublesome. Addition-

ally, the size of the molecules and the fact that the exciton is not necessarily localized

on one monomer makes the application of accurate methods, like CC2 or CASPT2, often

computationally impossible. Furthermore, the environment can play an important role

and hence needs to be included, which makes the problem even more demanding. In this

work the applicability and the performance of the toolkit of computational chemistry is

investigated with regard to questions related to optoelectronic devices. Whenever possible

ways to improve the performance are suggested.

While the focus is laid on the modeling of excitonic states with the inclusion of the en-

vironment, other points important for the performance in the cell are also addressed.

The aim is to provide guidelines which computational methods are applicable and to add

another piece in the quest for a fundamental understanding of organic optoelectronic de-

vices, which hopefully will prove useful for the design of future cells.

In this field the study mainly covers two classes of compounds, the merocyanines and the

iSee for instance6–15 and references therein.
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1 Introduction

perylene-based dyes, which both are applied in devices.

The other two systems investigated in this thesis also provide challenges for computational

chemistry. The electronic structure of the Bis(borolyl)thiophene dianion is highly inter-

esting due to possible biradical resonance contributors and demands for multi-reference

methods. Bipolarons are currently investigated due to their appearance in conducting

polymers. Because of the strain on the naphthalene core of pyracene due to the bridges

the interplay between ring strain and electronic effects is of special interest. Since the

first two exited states can (depending on the geometry) become energetically quite close,

a theoretical description is challenging.

This thesis is organized as follows: After a very short overview of organic solar cells, the

most important computational methods for the calculation of excited states are reviewed.

Then, different ways to include the environment in the calculations are discussed.

A selection of these methods is then applied to the merocyanines and the perylene-based

dyes. In the chapter on the merocyanines, at first the polarizable continuum methods

for excited states are used to describe a photochemical isomerization observed experi-

mentally. Apart from being photochemically very interesting, this isomerization is also

of the utmost importance for the exciton transport, since it involves a twisted minimum

energy structure in the excited state that offers a possible deactivation channel. In the

second part, the possibility of an assessment of the most suitable molecules for the appli-

cation in organic optoelectronic devices with quantum-chemical methods is discussed. It

is also addressed whether a correlation between calculated HOMO energies and measured

open-circuit voltages can be found. Furthermore, it is investigated how the environment

influences the molecular properties and the question is addressed whether an effective ε

can be used to model the crystal environment via PCM methods. A potential application

of VB/MM-type methods is also briefly covered.

The subsequent chapter investigates the applicability of TDDFT and semi-empirical meth-

ods for the modeling of excitonic states in perylene-based dyes, especially for the descrip-

tion of a potential exciton trapping mechanism based on intermolecular degrees of freedom

in a dimer.16–18 As a test system for the benchmark, the longitudinal shift of two π-stacked

monomers against each other is used. The applicability or the failure of the different func-

tionals and methods for this system is rationalized using a simple approximate character

analysis. It is furthermore shown that the semi-empirical methods already fail to provide

an accurate description of the ground state. Having identified two suitable TDDFT ap-

proaches, two corresponding applications are presented briefly.

In the last part of this chapter, the inclusion of the environment via a QM/MM approach

3
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is discussed. It is shown that the standard force fields fail to reproduce the ground-state

potential energy curve of the longitudinal shift. The failure is attributed to the isotropic

modeling of the closed-shell repulsion between two atomic centers. Hence an improved

force field (OPLS-AAO) that relies on an anisotropic overlap-based description of the

closed-shell repulsion is presented and tested for its performance and generality. A brief

demonstration of the use of the anisotropic repulsion as a correction term for the semi-

empirical methods for the ground state is also given.

Using the novel force field and the results from the benchmark on the TDDFT approach,

a QM/MM calculation of the excited states in a π-stacked tetramer using the inner dimer

as QM-part and an electrostatic embedding scheme is discussed.

The last chapter covers the studies on the theoretical description of Bis(borolyl)thiophene

and pyracene, which are also related to organic semiconductors. For the elucidation of the

electronic structure of the bipolaron the amount of biradical character and the singlet-

triplet gap are of special importance. The calculation of singlet-triplet gaps demands

for high-level methods like CASPT2, especially for biradical systems, but the size of the

compound makes only UDFT methods applicable. Thus, the accuracy of UDFT for the

prediction of the singlet-triplet gap is evaluated against CASPT2 calculations on a sim-

plified model system.

The second study is concerned with the electronic structure of pyracene, especially in its

excited states and focuses on the interplay between steric and electronic effects. A special

focus is laid on the prediction of the vibrational frequencies in the excited state using

CC2 and ADC(2). These two studies are aimed at completing the information gained by

experimentally working groups.

4



2 Organic Photovoltaics

The growing population of the world combined with the economic growth and the rising

wealth in the newly industrialized countries leads to a significant increase in the energy

demands. It is estimated that by 2050, the energy need might be the quadruple of today.19

While the deposits of fossil fuels are limited and their use is one of the main reasons for

pollution, nuclear energy is controversial and there is still neither a satisfactory solution

for the ultimate storage of the nuclear waste nor an estimation of associated costs for

future generations.20 Thus alternatives making use of wind and solar energy are in the

focus of the research and the energy policy of many countries. Several of these technolo-

gies are however still economically uncompetitive, which often leads to a conflict between

market forces and the goals of an environmentally sustainable policy. Furthermore, many

promising technologies look less attractive if one considers the whole eco-balance.

The direct use of solar energy is one of the most appealing ideas, since it is the principle

that nature applies in the photosynthesis and that drives the atmospheric processes. The

constant energy flow from the sun is not only ultimately responsible for the production

of food and fossil fuels, but also for many other energy resources, like flowing water and

wind.20

Although silicon-based solar cells give a good performance and are well established, their

high production costs and the huge amount of energy that is needed in the process lessen

their economical and ecological efficiency. Hence, their application is often only sensible

in regions with a high amount of solar irradiation, which are not necessarily the regions

with a high energy consumption.

Due to the cheap production costs organic solar cells21 should be economically more effi-

cient and thus be profitable even under non-optimal conditions. The interest in the whole

field of organic electronics has steadily increased during the last half century.22 The market

for cheap and flexible devices is huge and many applications apart from organic photo-

voltaic cells have been devised, like organic light-emitting diodes (OLEDs)23 or organic

field-effect transistors (OFETs).24 While several applications relying on OLEDs (e.g. TV

sets) are already on the market,25 only few devices using organic photovoltaic cells are

5



2 Organic Photovoltaics

Figure 2.1: Elementary processes of organic photovoltaics in a typical bulk heterojunc-
tion solar cell. Left: Excitation, Middle: Formation of a localized exciton
and exciton diffusion, Right: Exciton dissociation at the interface and charge
transport

commercially produced. Due to world’s energy needs organic solar cells are nevertheless of

special interest. Contrary to solar cells based on inorganic materials, where the deposition

is energy intensive, organic solar cells can in principle be solution-processed, which is rea-

son for the decreased production costs.20 Furthermore the production of standard organic

materials needs less energy than for instance silicon, which has to be manufactured at

high temperatures using electric-arc furnaces starting from quartz.20 Using the established

structure-property relationships and the immense synthetic toolbox of organic chemistry

makes it in principle possible to rationally design tailored materials. As already metioned

flexible and transparent devices are possible, which would ideally fit to the modern urban

architecture. Not long after the preparation of the first bilayer solar cell was reported

by Tang,26 there has hence been a growing research activityi in this field since the early

1990s.20

Organic solar cells typically consist of two materials, an electron donor and an electron

acceptor, which form the analog of the p-n junctions in silicon-based cells.20 The elemen-

tary processes in an organic solar cell are schematically depicted in Fig. 2.1. While in the

latter the light absorption leads directly to free charge carriers, which move in bands, in

an organic solar cell at first a so-called Frenkel exciton, a localized excitation is created.

This exciton can be localized on one or several monomers. The exciton binding energy is

quite high in organic solar cells and therefore the exciton does not dissociate into charge

carriers by itself. At first it needs to diffuse to the donor-acceptor interface, where charges

iOf course the organic solar cells are also challenged by other developments like dye-sensitized solar
cells (the so-called Grätzel cells),27 thin film techniques based on a-Si, cadmium telluride (CdTe) or
copper indium gallium selenide (CIGS)20 and most recently the preovskite-based cells.28–30

6



2 Organic Photovoltaics

Figure 2.2: Schematic plot of a current-voltage curve in the dark and under illumination.3

For the explanation of the essential parameters, see text.

can be created due to the driving force created by the correct level alignment of donor and

acceptor (see below).3,11,20 The exact mechanism of the exciton dissociation is still actively

discussed, especially the role of “hot” states (see31–33 and references therein). Since the

exciton needs to reach the interface before it decays, the distance to the interface at each

point should be as small as possible, which can be achieved by using a bulk heterojunction

arrangement, where donor and acceptor materials do not simply form two planar films,

but an interpenetrating network.20 Thus the diffusion to the interface is facilitated, but

the morphology needs of course to be carefully controlled, since the created charges must

be able to travel to the electrodes in order to create a current.

All these processes, i.e. exciton formation, diffusion and dissociation as well as charge

transport have to be optimized to arrive at a working cell with a high efficiency.11 For inor-

ganic solar-cells a theoretical maximum efficiency has been derived, the so-called Shockley-

Queisser limit, which depends on properties like the band gap.34 This limit was adapted

to materials with a non-negligible exciton binding energy and is for current state-of-the

art materials around 22%.35ii

The efficiency is typically measured via current-voltage (J-V ) curves.3 One such curve

is shown schematically in Figure 2.2. The short circuit current Jsc is the maximal pho-

tocurrent that can be obtained with the solar cell (when no external resistance is there)

iiOne currently actively discussed topic is to exploit singlet-fission to go beyond the Shockley-Queisser
limit, see36–38 and references therein.

7



2 Organic Photovoltaics

Figure 2.3: Energy level diagram of a solar cell.

and is influenced by the number of absorbed photons (up to a certain level, where sat-

uration occurs), device thickness and charge transport properties.3 Voc is the maximum

voltage obtainable with the solar cell (when the current is zero) and is typically believed

to be dependent on the energetic levels of the frontier orbitals (see Figure 2.3).3 Hence

the higher the gap between the HOMO of the donor and the LUMO of the acceptor,

the higher Voc. However optimizing a solar cell is inherently a multiparameter problem,

since the HOMO-LUMO gap of the donor should of course fit to the solar spectrum and

the offset between the LUMOs of donor and acceptor ∆ELUMO should not be too small,

since it is the driving force for the charge transfer at the interface.39 The overall efficiency

of the solar cell is given by the ratio of the output power an the input power (i.e. the

power of the incident radiation).3 The maximum output power is located in Fig. 2.2 at

the point of the curve, where the product of V and J is maximal, i.e. Vmp and Jmp. The

power conversion efficiency, η can also be expressed in terms of Voc and Jsc, which are

more easily interpreted (and measured) by introducing the fill-factor FF ,3

η =
Pout
Pin

=
VmpJmp
Pin

=
VocJscFF

Pin
. (2.1)

The fill factor is given by

FF =
VmpJmp
VocJsc

, (2.2)

8



2 Organic Photovoltaics

which corresponds to the ratio of the two rectangular surfaces in Fig. 2.2. The fill-factor

is influenced by the balance between the charge carrier recombination and the transport

processes.

The transport of the excitons and the charges is usually assumed to work via a hopping

process.40,41 One of the drawbacks of organic solar cells is that the charge mobility is typ-

ically quite low compared to inorganic solar cells. However, contrary to band transport,

which becomes less efficient with increasing temperature,iii due to scattering processes at

the phonons, the thermally activated hopping becomes more efficient. While the standard

test conditions demand a constant temperature of 25 ◦C, this is far from typical operating

conditions, where much higher temperatures are observed. Thus it is believed that the

test conditions are biased towards inorganic solar cells, since they will perform better than

under operating conditions, while organic solar cells are expected to perform worse.43

Most organic solar cells use a p-conducting material and C60-PCBM as electron conduc-

tor,20 but a significant amount of research is going into the design of stable n-conducting

materials, whose sensitivity towards gases and humidity is more problematic than for p-

conductors.44 Stability and thus also durability is another significant problem for organic

solar cells, since the organic compounds are more prone to degradation than their inor-

ganic counterparts.20

The exciton diffusion length in typical organic solar cells is also quite short (5-10 nm)

and hence only excitons created in a volume element with this distance to the interface

can contribute to the current.3 Apart from the low mobility, the band gap of organic

semiconductors is typically too large compared to the solar spectrum and hence the syn-

thesis of low-band gap materials is heavily investigated.45,46 Some of the disadvantages of

organic solar cells are offset by the strong absorption coefficients, which makes it possible

to produce ultrathin devices, which nevertheless show a considerable light absorption.

The use of thin films together with the bulk-heterojunction arrangement also decrease

the problem of the low exciton diffusion lengths.

The plethora of possible organic compounds and the possibility to fine tune them pro-

vides a huge parameter space for the optimization of organic solar cells, which leads to a

higher flexibility than in inorganic cells. Due to these immense possibilities there is still a

high potential for significantly improving the solar cells. Up to now, a lot of the research

iiiIn regions with intense solar radiation the solar panels can obviously become quite hot, which makes the
reduced efficiency with increasing temperature of silicon-based solar cells problematic. It furthermore
leads to the paradox situation that, for instance, the photovoltaic systems installed in Germany reach
their peak performance in spring instead of July, where the intensity of the solar radiation is actually
higher.42 In order to circumvent this problem, cooling systems can be used.42

9



2 Organic Photovoltaics

for new materials is based on trial and error, which is not very efficient. In order to

devise rules for a rational and efficient design the electronic structure of the materials and

the elementary processes need to be fundamentally understood and structure-property

relationships have to be established and improved.

10



3 Computational Methods for the

Calculation of Excited States

Although TDDFT is currently the workhorse for large- and medium-sized molecules, com-

putational chemistry provides a plethora of methods for the description of excited states.47

At first, the theoretical foundations, i.e. Hartree-Fock (HF) theory and ground-state den-

sity functional theory (DFT) are summarized, since they provide the starting point for

most methods. Some basic concepts for the description and classification of excited states

are also introduced. Afterwards, an overview of the most important methods and their

scope and limitations is given. At first the approaches, which rely directly on variational

theory, are covered and then linear response and propagator methods are described. The

last section gives a very short outline of other methods, which are recent developments

or less common and/or have not been used in the context of this thesis.

3.1 Theoretical Foundations

3.1.1 Hartree-Fock and Density Functional Theory

If the time evolution of the system in question is not of interest (and relativistic effects

like spin-orbit coupling can be neglected) the wave function can be obtained by solving

the time-independent Schrödinger equation

Ĥ |Ψ〉 = E |Ψ〉 , (3.1)

11



3 Computational Methods for the Calculation of Excited States

with the molecular Hamiltonian48

Ĥ = T̂e + T̂n + V̂en + V̂ee + V̂NN

= −
N∑
i=1

1

2
∇2
i −

Nnuc∑
A=1

1

2MA

∇2
A −

N∑
i=1

Nnuc∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

Nnuc∑
A=1

Nnuc∑
B>A

ZAZB
RAB

,
(3.2)

with N being the number of electrons, Nnuc the number of nuclei and ∇ the nabla-

operator. The shorthand rij = |ri − rj| has been used. In electronic structure theory the

Born-Oppenheimer approximation48 is usually applied, which leads to the electronic

Hamiltonian

Ĥ = T̂e + V̂en + V̂ee

= −
N∑
i=1

1

2
∇2
i −

N∑
i=1

Nnuc∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij

=
N∑
i=1

ĥi +
N∑
i<j

ĝij.

(3.3)

The nuclear repulsion energy VNN is just a classical term and is usually added to the

electronic energy after the electronic structure calculation is finished.

The lowest eigenvalue E0 corresponds to the ground-state energy, while the higher eigen-

values Ei with i 6= 0 are the energies of the different excited states. A specific excitation

energy is thus given as the difference ωi = Ei − E0.

Since the high-dimensionality of the molecular wave function combined with the antisym-

metry condition imposed by the Pauli principle48 make an analytical or direct numerical

solution impossible (except for very simple cases) even within the Born-Oppenheimer ap-

proximation, further approximation have to be introduced.

As a first step we assume that the ground-state wave function Ψ can be modeled by a

single Slater determinant Φ0,

Φ0 =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(1) χ2(1) ... χN(1)

χ1(2) χ2(2) ... χN(2)
...

...
. . .

...

χ1(N) χ2(N) ... χN(N)

∣∣∣∣∣∣∣∣∣∣
= |χ1χ2...χN |, (3.4)

with the spin orbitals {χi} (one-electron wave functions), that can be written as a product

of a spatial and a spin part χi(x) = φi(r)σ(ω). In order to find the optimal orbitals
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3 Computational Methods for the Calculation of Excited States

the variational principle is applied.48 This ansatz defines the Hartree-Fock (HF)

method48–51

EHF = minE[Φ0] = min
〈Φ0| Ĥ |Φ0〉
〈Φ0|Φ0〉

, with 〈χi|χj〉 = δij. (3.5)

In Hartree-Fock theory the orbitals are optimized in order to find the minimum of the

energy expectation value, with the restriction that they have to be orthonormal. The

orthonormality of the orbitals ensures that the Slater determinant can also normalized by

a simple constant. The optimization with constraints can be performed by minimizing

the corresponding Lagrangian L with respect to the orbitals by introducing the Lagrange

multipliers λij

δL = δE[Φ0] +
N∑
ij

λij (〈δχi|χj〉 − 〈χi|δχj〉) = 0. (3.6)

The energy expectation value of a Slater determinant E[Φ0] is given as

E[Φ0] =
N∑
i

hii +
N∑
i

N∑
j>i

(Jij −Kij) , (3.7)

with

hii = 〈χi| ĥ(1) |χi〉 (3.8)

ĥ(1) = −1

2
∇(1)2 −

Nnuc∑
A

ZA
|RA − r1|

(3.9)

Jij = 〈χi| Ĵj(1) |χi〉 = 〈χiχj|χiχj〉 =

∫ ∫
χ∗i (1)χi(1)

1

r12

χj(2)χ∗j(2)dx1dx2 (3.10)

Kij = 〈χi| K̂j(1) |χi〉 = 〈χiχj|χjχi〉 =

∫ ∫
χ∗i (1)χ∗j(1)

1

r12

χi(2)χj(2)dx1dx2.(3.11)

Here the Coulomb (Ĵ) and exchange (K̂) operators have been introduced.49 This ansatz

leads after a transformation to canonical orbitals, which yield a diagonal Lagrange mul-

tipliers matrix, to the well known Fock equation48,49

f̂(1)χi(1) = εiχi(1) (3.12)

f̂(1) = ĥ(1) +
N∑
j

(
Ĵj(1) + K̂j(1)

)
= ĥ(1) + VHF (1), (3.13)

13



3 Computational Methods for the Calculation of Excited States

with the Fock operator f̂ . Since the Fock equations are obtained as result of the minimiza-

tion condition, the Fock operator is not directly connected to the total energy, but rather

to the stationarity condition. The Fock equations are effective one particle equations,

but since all orbitals have to be known (because they are included in the Coulomb and

exchange operators) the equations have to be solved iteratively, until a self-consistent

field (SCF) is obtained. Solving the Fock equations is equivalent to finding the optimal

orbitals for a determinantal wave function. Usually, the molecular orbitals (MOs) are

expanded in an atomic orbital basis (typically atom-centered Gaussian functions48),

φi(r) =

Nbas∑
µ=1

ciµϕµ(r), (3.14)

which leads to analytically solvable matrix elements and discretizes the Fock operator.

This is often called the LCAO-approach (linear combination of atomic orbitals). In this

approach, so-called virtual orbitals (i.e., orbitals which are not occupied in the ground-

state configuration) are also obtained. The optimization can also be understood as a

rotation in the orbital space between occupied and virtual orbitals.

Writing the Fock equation in the atomic orbital basis leads to the so-called Roothaan-Hall

equation48

FC = SCE. (3.15)

with F, C, E being the Fock matrix, the matrix of the coefficients, and the overlap matrix.

E is a matrix containing the orbital energies as diagonal elements. In order to solve this

pseudo-eigenvalue equation the basis is orthogonalized by a Löwdin orthogonalization,52

λF = S−1/2FS−1/2 (3.16)

λC = S1/2C (3.17)

λS = 1 (3.18)

with λ specifying the respective quantity in the orthogonalized basis. The remaining

eigenvalue equation,
λFλC =λ CE, (3.19)

can be solved by standard methods.

Due to the determinantal ansatz, the Pauli principle is fulfilled in Hartree-Fock theory

and the pair density of two electrons with the same spin is zero if both electrons are
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3 Computational Methods for the Calculation of Excited States

located at the same point in space. The pair density for two electrons with opposite spin,

however, is constant, i.e., these electrons do not interact, although they are charged parti-

cles. Thus this Coulomb correlation of the electrons is missing completely. This is due

to the fact that each electron only interacts with the mean field generated by the other

electrons (via the Coulomb and exchange operator) and the nuclei. In reality, however,

each electron “feels” the individual presence of all other electrons. The true wave function

is more complex than an antisymmetrized product of one-electron wave functions. Thus

the Hartree-Fock method is said to describe the electrons as non-interacting fermions

moving in some mean field. Due to the SCF procedure, this mean field is optimized to

represent the electron-electron interaction as good as possible, but the one-determinantal

ansatz has its limits. Although the Hartree-Fock method can be considered as a rather

good approximation, since it recovers around 99% of the exact energy, its acccuracy is

insufficient, because the energy of chemical bonds is in the same order of magnitude as

the missing 1%.48 The difference between the exact and the Hartree-Fock energy is called

correlation energy. Some molecules like F2 are even predicted to be unbound by Hartree-

Fock theory.53

The independent-particle picture invoked by a single determinant is thus not sufficient

for an accurate ground-state description and even less for the excited states. However, it is

a useful starting point and provides the conceptual framework for the qualitative descrip-

tion and characterization of excited states.51 A determinant with a so-called non-Aufbau

occupation can be constructed by shifting electrons from occupied to virtual orbitals.

Such a determinant is called an excited determinant (or configuration) and can be used

as a qualitative approximation and pictorial representation of an excited state.

The Lagrange multipliers εi are called orbital energies. According to Koopmans’ the-

orem48,49 the orbital energy of an occupied orbital is an approximation for the energy

necessary to remove an electron from this orbital,

εi = 〈χi| ĥi |χi〉+
Nocc∑
j

〈χiχj||χiχj〉. (3.20)

In fact, it can indeed be shown that the energy difference between a determinant with

M and one with M − 1 electrons is equal to the energy of the orbital k from which the

electron has been removed,48

E[ΦM ]− E[ΦM−1] = εk. (3.21)
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Of course, this ansatz neglects the fact that the orbitals rearrange after ionization (this

is sometimes called frozen-density approximation), but this leads to a favorable error

cancellation with the also neglected differential correlation between the ion and the neutral

molecule. The correlation energy is generally higher for the neutral molecule, since it has

one electron more. The energy of a virtual orbital is given by48

εa = 〈χa| ĥ |χa〉+
Nocc∑
j

〈χaχj||χaχj〉. (3.22)

Since the sum runs over all occupied orbitals, the “virtual” electron “feels” N other elec-

trons. Thus, the energy of a virtual orbital is connected to the N + 1 electron system and

therefore approximates the electron affinity. Hence, the orbital energy difference cannot

be expected to be a good approximation for the excitation energy, which will become

important for the calculation of excited states (see below).

Apart from providing a qualitative picture of excited states, the excited configurations

can also be used to include correlation into the ground-state wave function. The various

so-called post-HF methods48–50 go beyond the HF approximation by adding excited de-

terminants to the wave function. The different classes of methods use different techniques

to select the excited determinants. Configuration interaction uses a (truncated) linear

expansion of the configurations, coupled-cluster theory uses a truncated non-linear ex-

pansion based on an exponential excitation operator and the Møller-Plesset approach

uses perturbation theory to select the configurations.48–50,54

Another ansatz, which includes correlation, is density functional theory (DFT). The

electronic wave function of an N - electron system is 3N -dimensional, while the electron

density is always 3-dimensional, regardless of the system size. Thus, using the electron

density instead of the wave function is very attractive. This is the basic idea of density

functional theory. In the last decades, the importance of density functional theory in

chemistry has significantly increased.53,55 It is now the most commonly applied method

for ground-state calculations and has in part outstripped the post-HF methods, due to

its computational efficiency and robust performance. Although the Hartree-Fock-Slater

(HFS) method56 devised by Slater in 1951 can be regarded as a first local density approx-

imation and is an ancestor of Kohn-Sham DFT (KSDFT) and although Thomas, Fermi,

and Dirac developed early density functionals using the uniform electron gas,53 the birth

year of DFT is considered to be 1964,53 when the Kohn-Hohenberg theorems57,58 were

introduced, which provides the theoretical basis and justification of DFT.53 The first the-
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orem states that the full many-particle ground state is a unique functional of the electron

density, since there is a one-to-one mapping between the electron density of a system and

its external potential, which also determines the molecular Hamiltonian. Thus all prop-

erties are uniquely defined by the density.59 The second theorem states that the energy

functional yields the minimal energy (i.e. the exact ground state energy) if and only if

the exact ground state density is used. The second theorem is an equivalent to the vari-

ational theorem in wave mechanics. Although the Kohn-Hohenberg theorems guarantee

the existence of such a functional, they do not give its actual form.

From wave function theory, it seems evident that the energy functional can be split into

different contributions,48 namely the kinetic energy, the electron-nucleus interaction and

the electron-electron interaction,

E[ρ] = T[ρ] + Ene[ρ] + Eee[ρ]. (3.23)

While the form of the functional for the external potential Ene[ρ] (i.e. the electron-nucleus

interaction) and the Coulomb part (J[ρ]) of the electron-electron interaction (Eee[ρ]) can

be readily derived from the corresponding classical expressions,48 this is not the case for

the kinetic energy T[ρ] and the non-classical (i.e. exchange) part of the electron-electron

interaction.48 Therefore approximations have to be introduced. The first functionals that

relied solely on the density like the Thomas-Fermi model showed poor performance for

molecules, since the approximation in the kinetic energy functional were too severe.48

In fact, the Thomas-Fermi model cannot bind molecules.53 By reintroducing orbitals, the

Kohn-Sham approach is circumventing this problem, since the exact form of the kinetic

energy functional (TSD) is known for a Slater determinant,48

TSD =
N∑
i=1

〈φi| −
1

2
∇2 |φi〉 . (3.24)

The density can easily be generated from the Kohn-Sham orbitals φ(r)

ρ(r) =
N∑
i=1

|φi(r)|2, (3.25)

and thus the Ene[ρ] and J[ρ] can also be calculated. There are, however, two problems:

Firstly, the calculation is performed for a system that is described by a Slater determinant,

i.e. a non-interacting system and not for the real system.
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Since the energy is a unique functional of the density and thus depends solely on the

density, the exact energy can in principle be obtained from any reference system, as long

as its density is identical to the one of the real system. Thus, the use of a non-interacting

Kohn-Sham system is valid, as long as its density is equal to the real density. Of course

the question arises if the density of any real system can be represented by a single Slater

determinant, but this is beyond the scope of this chapter (see59 and references therein for

details).

Assuming that the exact density can be reproduced by the Kohn-Sham system, the second

problem still arises: the exact functional is needed. The difference between the true

kinetic energy and the energy calculated with the determinant together with the difference

between the exact electron-electron interaction and the classical Coulomb interaction

(J[ρ]) forms the so-called exchange-correlation (xc) functional Exc[ρ]59

EKS[ρ] = TSD[ρ] + Ene[ρ] + J[ρ] + Exc[ρ] (3.26)

Exc = (T[ρ]−TSD[ρ]) + (Eee[ρ]− J[ρ]). (3.27)

If the exact exchange-correlation functional was known, the approach could thus in prin-

ciple yield the exact energy.48 Since the exact form of Exc is not known and has to be

approximated, the Kohn-Sham approach just seems to defer the problem at first sight.

However, that is not quite true. In the original orbital-free approaches, the kinetic energy

functional had to approximated, which yields severe errors. In the Kohn-Sham approach,

however, the kinetic energy is calculated accurately for the non-interacting system and

only the correction to the kinetic energy and the exchange have to be approximated,

which is less severe and yields much better results.59

The Kohn-Sham orbitals (and thus the density) are constructed similarly to Hartree-Fock

theory, since the second Kohn-Hohenberg theorem ensures the existence of a variational

principle. In fact the final Kohn-Sham equations take a very similar form to the Fock

equations,59

FKSφi =

(
−1

2
∇2 + VKS

)
φi = εKSi φi (3.28)

with

VKS = Vext + Vc +
δExc

δρ
, (3.29)

with Vext being the external potential (i.e. the electron nuclei interaction) and Vc be-

ing the Coulomb interaction with the electron density. Contrary to Hartree-Fock theory,
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DFT includes correlation via the exchange correlation functional. Thus while the use of

a single determinant is a severe approximation in Hartree-Fock theory, it is different in

Kohn-Sham DFT, because the determinant is only used for building up the density of

a non-interacting reference system that is afterwards corrected.59 The big advantage of

DFT, that the three-dimensional electron density instead of the high-dimensional wave

function is used, is of course partly lifted by the Kohn-Sham approach, since the density

is simply constructed from the occupied orbitals.48 Nevertheless DFT is much less de-

manding than most post-HF methods.

The biggest challenge for the density functional community is to find expressions for the

exchange-correlation functional. Since it is possible to derive functionals for a uniform

electron gas, the simplest approach is to treat the electron density locally as a uniform

electron gas at each point, which yields to the local density approximation (LDA)

and local spin density approximation (LSDA), respectively.48 This can be refined,

by also involving the gradient of the electron density, which forms the class of the gen-

eralized gradient approximations (GGA).48 A typical example is the BLYP func-

tional.60,61 A third level, formed by the so-called meta-GGA functionals, is obtained if

the Laplacian of the electron density or the spin kinetic energy densities are included in

the functional.48,62 The Minnesota functionals developed by Truhlar and coworkers are

one popular example.62 The so-called hybrid or hyper-GGA functionals mix a cer-

tain amount of exact Hartree-Fock exchange into Exc, which often yields an improved

description.48 In principle one might assume that the partitioning

Exc = EHF
x + EKS

c (3.30)

might be ideal, since the exchange is taken from Hartree-Fock (which is exact) and the

correlation must be taken from DFT. However, this is not the case.59 It can be explained

using the exchange-correlation hole.59 The hole function hxc is defined as

hxc(x1, x2) =
ρ2(x1, x2)

ρ(x1)
− ρ(x2), (3.31)

with ρ2(x1, x2) being the pair density. ρ2(x1, x2)dx1dx2 is the probability of finding elec-

tron one between x1 and x1 + dx1 and electron two between x2 and x2 + dx2. If there is

no correlation, the pair density is equivalent to the product of the one-particle densities,

i.e. ρ2(x1, x2) = ρ(x1)ρ(x2) and hxc(x1, x2) = 0. In reality the electrons repel each other.

Hence, hxc(x1, x2) should only be close to zero for |x1 − x2| >> 0 and should become
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negative for x1 ≈ x2. Thus, it is rather localized. The contribution to this hole function

can be split into a correlation and an exchange hole. The exact hole functions have been

calculated for the H2 molecule.59 The exact exchange and correlation hole are delocalized

and by themselves bad approximations for the total hole.59 Combined however, they yield

the correct localized result. The separation of Exc in exchange and correlation is artificial,

anyway, since it just stems form the choice of reference system (i.e. the Slater determi-

nant).59 In contrast to the exact exchange and correlation holes, the holes from LDA and

GGA are local in nature, because they are based solely on the local density or the local

density and its gradient at a particular point, respectively.59 A partitioning in the spirit

of equation 3.30 combines the exact delocalized exchange hole with the approximated

localized correlation hole and thus no cancellation between the holes can occur and the

total exchange-correlation hole has the wrong characteristics.59 Hence, calculating both

contributions based on the local electron gas model is more sensible and provides a better

description. In fact it is discussed that the local exchange holes of the standard function-

als reproduce the effect of exact exchange plus static correlation, while the correlation

functional covers the effect of dynamical correlation.59

In order to make use of the exact exchange in hybrid functionals a more sophisticated

approach using the adiabatic connection formula48,53 is used (see59 for details). The adi-

abatic connection formula provides the prescription for designing Exc, by connecting it

with the exchange-correlation hole.53 The hybrid functionals derived in this approach do

not abandon the DFT exchange completely, but just mix in the exact exchange. For

instance the very popular B3LYP functional48,60,61,63,64 uses the following partitioning

EB3LY P
xc = (1− a)ELSDA

X + aEHF
x + bEB88

x + (1− c)ELSDA
c + cELY P

c . (3.32)

b and c control the contribution of the gradient corrections, while a controls the amount

of Hartree-Fock exchange.59 The parameters have been determined by fitting procedures

to be approximately a ≈ 0.2,b ≈ 0.7 and c ≈ 0.8.48 There is theoretical justification that

an amount around 20% of exact exchange is reasonable, however it is clear, that this

parameter cannot be universal.59,65

Using hybrid functionals often reduces the so-called self-interaction error, since Hartree-

Fock itself is self-interaction free.48 As the name implies, the self-interaction involves an

electron interacting with itself.59 In a one-electron system the exchange and the correla-

tion energy exactly cancel each other in Hartree-Fock theory (J −K = 0), as it should be

the case. This is however not true for DFT. The classical term J[ρ] is not zero for a one-

20



3 Computational Methods for the Calculation of Excited States

electron system, since it contains the interaction of the density with itself.59 This should

be canceled by Exc[ρ], but since the exchange-correlation functional is only approximated,

this is not completely fulfilled. This self-interaction error can sometimes have severe con-

sequences for calculations of bond dissociation energies and transition states.59

Another problem of the current functionals is that the long-range behavior of the

exchange-correlation potential Vxc, which is given by

Vxc =
δExc

δρ
, (3.33)

is not correctly reproduced. The Coulomb potential

VC(r1) =

∫
ρ(r2)

r12

dr2 (3.34)

shows the behavior N
r

for r →∞. Thus, in order to cancel the self-interaction Vxc should

behave like a − 1/r in the limit.59 However, the exchange potential of most functionals

decays exponentially, i.e. too fast and hence the functionals are less attractive than the

correct one. This is also connected to the fact, that the ionization energy I is not equal

to the absolute value of the highest occupied Kohn-Sham orbital energy εmax, as it should

be using the exact functional,59,66

I = −εmax. (3.35)

The incorrect long-range behavior also leads to problems with charge-transfer (CT) states

in TDDFT (see below).

Although only the HOMO energy has a rigorous physical meaning in KSDFT, the other

occupied orbital energies can be used as approximations to the corresponding ionization

energy.67 In fact it works even better than for HF.68

The virtual orbitals “see” N − 1 electrons (instead of N in Hartree-Fock) and thus their

energy is not an approximation to the electron affinity. However, contrary to HF an or-

bital energy difference is a (rough) approximation to the excitation energy.68,69

KSDFT has also problems with dispersion interactions.i The asymptotic induced

dipole-dipole interaction energy should have the London form, i.e. −C6/R
6, but also

the interaction energy of most functionals falls of exponentially.53 Since dispersion inter-

actions are highly important for applications in biology as well as in material sciences,

several approaches to correct this deficiency have been devised, among them the use of

iStrictly speaking, this is only true for non-overlapping densities, i.e. long-range dispersion interactions.
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double-hybrids, which include second-order perturbation theory,53 density-based correc-

tions like the one of Corminboeuf et al.,70 which uses the exchange-hole dipole of Becke

and Johnson,71 or empirical dispersions corrections like the popular DFT-D3 method of

Grimme et al.53,72

The problems with processes like charge transfer and dispersive interactions or long-

range effects are due to the fact that these are inherently non-local effects, which cannot

be treated by the local functionals that depend only on ρ(r) or ∇ρ(r).53 They “only

“see” their direct neighborhood and are completely “unaware” of what is going on farther

away.”59 Hybrids perform a bit better due to the inclusion of non-local exchange, but still

have problems.53

The different levels (LDA, GGA, meta-GGA, hyper-GGA) are often arranged in a hierar-

chy known as Jacob’s ladder.73 The functionals on the fifth rung (above the hybrids) also

use virtual orbitals, for instance by including a Møller-Plesset-type term in the functional

as in the double hybrids.73,74 However, the use of virtual orbitals in KSDFT also sparked

criticism.53

Thus the development of novel functionals is still an active area of research. It should

be noted that most of the common functionals include parameters that have been fit-

ted to empirical data and are thus strictly speaking no ab initio methods. From that

point of view DFT could even be considered as a semi-empirical method.75 Nevertheless,

since there are also parameter-free functionals65 and since the exact functional (if it was

known) would yield the exact energy without the need for any empirical parameters, it is

also justified to classify DFT as ab initio method.53

Nowadays a massive variety of different functionals is available, which can be distinguished

by the form of the xc-functional. This great variety offers great opportunities, but since

one cannot judge the quality of a given functional a priori one needs to be careful to

use the functional that gives the correct description of the system and not the functional

that gives the desired result. Another problem is that contrary to the wave function (ab

initio) methods, DFT offers no way to systematically improve the results.48 Therefore one

has to rely on benchmark calculations in the literature or perform one’s own benchmark

computations using high-level methods or experimental results as reference points for the

system of interest.
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Figure 3.1: On the left-hand side a typical ground-state configuration is given, while sev-
eral excited configurations are depicted on the right-hand side. They are
usually named according to the excitation which generates them from the
ground-state determinant with Aufbau occupation.

3.1.2 Classification of Excited States

As already mentioned above, excited states are usually classified in the framework of the

independent-particle picture.51 Thus qualitatively an excited state is often approximated

by a single configuration, i.e. an excited determinant. This picture is also directly

applied in the ∆-SCF method (see below). Although this can be a fairly good qualitative

approximation for some of the lowest excited states (especially the HOMO→LUMO tran-

sition), usually several configurations are needed for the correct description of an excited

state. If high numerical accuracy is required (i.e. dynamic correlation has to be included),

the number of necessary configurations can be immense.48 However, usually only a few

configurations have a significant contribution and these are generally used to classify the

state. An example is given in Figure 3.1. If for instance the configuration Φ5
4 is dominant

and the contribution of the others is negligible, the state is classified as consisting mainly

of the HOMO→LUMO transition. The concept of several configurations is directly incor-

porated in the framework of configuration interaction, where a state is written as a linear

combination of several determinants (see below).

Aside from its composition an excited state is often called bright or dark. These terms

are connected to the oscillator strength and thus to the question of whether the corre-

sponding transition can be observed experimentally. There is however no clear definition

how low (or high) the oscillator strength should be in order to give rise to a dark (or
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bright) state.

If the dominant configuration can be generated by the excitation of one electron from an

occupied to a virtual orbital the corresponding state is called a singly excited state, if

it is generated by the excitation of two electrons it is designated as a doubly excited

state.

Furthermore one can distinguish between valence and core excited states, as well as

Rydberg states. In a valence excited state the dominant configurations are generated by

a transition of valence electrons into the virtual levels, while electrons of the inner shells

get excited in a core excited state. A Rydberg state is formed if the electrons are excited

into very diffuse orbitals, which are spatially very far away form the nuclei.76 Therefore

the interaction between the electron and the rest of the molecule resembles approximately

the interaction between an electron and a single positive charge (i.e. the hydrogen atom,

hence the name).

Considering the limitations of TDDFT an important distinction is between neutral and

charge-transfer states.77 A charge-transfer state is formed if the excitation leads to a

significant shift of charge, while there is only a negligible shift of charge for a neutral state.

If the state can be sufficiently described by a single configuration, this is also visible in

the contributing orbitals, otherwise the character is less apparent. Visual inspection of

transition and difference densities77 or natural transition orbitals (NTOs)78 is also often

useful. The actual amount of charge-transfer character can also be derived by analyzing

the one-electron transition density matrix.79 Several characteristic indices have also been

devised, which are based on the inner product of the moduli of the contributing orbitals,80

the electron-hole distance81 or the detachment and attachment densities overlap.82

3.2 Variational Methods

∆-SCF as well as configuration interaction theory rely directly on the variational theorem.

That means a set of parameters (i.e. the expansion coefficients of the orbitals and/or

configurations) is optimized until a stationary point of the energy is found. These methods

calculate the absolute energy of the excited state, which means that the excitation energy

is given as the difference to the ground-state energy.

The multi-configurational complete active space self-consistent field method (CASSCF) as

well as multi-reference configuration interaction (MRCI) are also variational methods. The

multi-reference method CASPT2 is (due to its use of perturbation theory) not variational,
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but is nevertheless covered in this chapter because of its close relation to CASSCF and

MRCI.

3.2.1 ∆-SCF

The conceptually most straightforward way to calculate an excited state is to do basi-

cally the same as in ground-state calculations, but using an excited determinant (i.e. a

determinant with non-Aufbau occupation). Usually an unrestricted formalism has to

be applied, i.e. orbitals with α- and β-spin are allowed to have a different spatial form.48

The energy of the excited state is then obtained by variationally optimizing the orbitals -

either using Hartree-Fock theory or KSDFT. This scheme is called ∆-SCF.83–85 Concep-

tually, this means that the optimization should not lead to the minimum (i.e. the ground

state) of the variational space, but to a saddle point. If the excited state has a different

multiplicity or belongs to a different irreducible representation than the ground state, this

is quite straightforward. If this is however not the case, the SCF procedure can collapse

to the ground state (i.e. the minimum).

In a normal SCF procedure the orbitals with the lowest energy eigenvalues are occupied

after each iteration. Even if one imposes the restriction that for instance the lowest N−1

orbitals and the (N + 1)th orbital are occupied, the density can collapse to the ground

state density.85 Since the orbitals are optimized the occupied, “virtual” orbital can be

rotated out of the occupied space and the ground-state occupation is reestablished.85 In

order to prevent this collapse occupation conditions relying on an overlap criterion can be

imposed. In the maximum overlap approach,86,87 those of the new orbitals are occu-

pied that overlap most with the old occupied orbitals, thus making sure that the Aufbau

scheme does not deviate from the ones of the guess.86 Therefore using the orbitals from a

converged ground state calculation as a guess is reasonable.85 It is important to note that

the maximum overlap approach does not impose a restriction to the variational space,

which is exactly the same as in a standard Hartree-Fock/KSDFT calculation. Its only

function is to force the optimization to converge on a saddle point of the desired order

instead of the minimum.

Although the ∆-SCF concept has been introduced early83,84 it is not widely used. One

problem is that the Kohn-Hohenberg theorem is only valid for the ground state,88 there-

fore there is no uniquely defined functional for the excited states.85 The easiest approach

is thus to evaluate the state energy with the ground state functional and the occupied
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∆-SCF orbitals85

Eex = E
[
φ∆-SCF
i

]
. (3.36)

Although this may seem questionable, there is some theoretical justification for this ap-

proach (see section 3.4).85,89,90

One problem of ∆-SCF lies in the fact that a single determinant is generally no eigenfunc-

tion of the S2-operator. This can be corrected by using the spin purification formula.84,85

The main problem of the method is, however, that it is questionable, whether the repre-

sentation of a state by a single configuration is reasonable. Moreover it is uncertain, if

a unique variational theory for excited states exists in DFT.90 The computed states will

furthermore be non-orthogonal, which could lead to problems in the calculation of prop-

erties like transition dipole moments.87,90 Arriving at a converged result for the excited

state can also be quite difficult.89

Nevertheless ∆-SCF gives excitation energies of a similar accuracy as TDDFT for the

HOMO→LUMO transition,85 but it is doubtful whether this is also the case for states

higher in energy,89 because they can be inherently multi-configurational in nature.

Although TDDFT does not suffer from most of the limitations of ∆-SCF, charge-transfer

transition are generally better described by ∆-SCF.90

3.2.2 Configuration Interaction

As the name implies, in configuration interaction (CI), different configurations interact

with each other. The wave function of each state is written as a linear combination of

excited determinants48–50,91

|ΨCI〉 =
∑
n

cnΦn = |Φ0〉+
∑
id

cdi |Φd
i 〉+

∑
i<j,d<e

cdeij |Φde
ij 〉+ ... (3.37)

Using creation (â†i ) and annihilation (âi) operators50,91 the same equation can be written

as

|ΨCI〉 = |0〉+
∑
id

cdi â
†
dâi |0〉+

∑
i<j,d<e

cdeij â
†
eâ
†
dâj âi |0〉+ ... (3.38)

For N electrons and 2n spin orbitals, there are
(

2n
N

)
possible Slater determinants. In a

so-called Full-CI all of them or at least all in the subspace with the correct irreducible

representation and multiplicity are included. Usually the determinants are combined to

configuration state functions (CSFs), which are eigenfunctions of the S2-operator and only
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those CSFs with the desired symmetry and multiplicity are included in the CI treatment.

The Full-CI gives the exact result in the limit of the used basis set.49 The CI equations can

be derived by applying the variational principle with respect to the coefficients. However,

the same result can be obtained by plugging the Full-CI wave function into the Schrödinger

equation and projecting onto an arbitrary state 〈Φm|,∑
n

cn 〈Φm| Ĥ |Φn〉 = E
∑
n

cnSmn. (3.39)

By applying the orthonormality condition Smn = δmn the final matrix equation reads

(H− EI)~c = 0. (3.40)

According to the Slater-Condon rules49 only Hamiltonian matrix elements between

configurations which differ in the excitation degree by less than three can be different

from zero. The Brillouin theorem49 further states that using canonical orbitals (from

a converged Hartree-Fock calculation) the matrix elements between the reference (i.e.

Hartree-Fock) configuration and the single excited determinants are zero,

〈Φ0| Ĥ |Φd
i 〉 = 0. (3.41)

This is due to the fact that these elements are identical to off-diagonal Fock matrix

elements, which are zero in a converged calculation.48 Thus equation 3.41 can also be taken

as a condition for the optimal SCF ground-state solution. Due to the high computational

cost the level of the excitation is usually truncated after singles or doubles, which is called

CIS or CISD, respectively. The doubles add a significant part of the correlation and

improve the description of the ground state significantly.

Another possibility to define the truncation is to use the seniority number, i.e. the number

of singly occupied orbitals in a determinant,92 but this is less common.

Although CIS does not give an improved description of the ground state due to the

Brillouin theorem, it is nevertheless a useful first approximation for the description of

excited states. Following the notation of Dreuw and Head-Gordon77 the CIS matrix

equation can be written as

AX = ωX (3.42)

Aia,jb = (εa − εi) δijδab + (ia||jb) (3.43)

27



3 Computational Methods for the Calculation of Excited States

with i and j signifying occupied and a and b virtual orbitals, respectively. X contains the

eigenvectors (i.e. the coefficients of the linear combination) and ω is a matrix with the

excitation energies as the diagonal elements.77 CIS is rather cost-efficient and can thus be

applied to larger systems. For an atomic orbital basis set of fixed size and a sufficiently

large molecule it scales quadratically with the system size, while an increase of the basis

on a defined molecule leads to an O(n4) scaling behavior.77 It gives reasonable results for

states that are dominated by a single configuration, although it tends to overestimate the

excitation energies severely (0.5-2 eV).47,77 This is on the one hand due to the missing

correlation, which is bigger in excited states, on the other hand due to the leading term

in the energy expression.77 The excitation energy of the CIS is given by77

ωCIS =
∑
ia

(cai )(εa − εi) +
∑
ia,jb

cai c
b
j(ia||jb). (3.44)

The specific state is defined by the coefficients, which are obtained from the eigenvalue

equation. Assuming one configuration is dominant, the leading term is given by the

corresponding orbital difference (as in the independent-particle picture) plus two-electron

integrals, which (partly) take the electron interaction into account. The overestimation

is due to the fact that the leading term contains Hartree-Fock orbitals, which are a

poor approximation for the excitation energy, since their difference is approximately the

difference of the ionization energy (I) and the electron affinity (A) (see above).68 Thus

the Hartree-Fock orbitals are not an especially good basis for the description of excitation

processes and in order to arrive at accurate results a wave function with a higher flexibility

to overcome the deficiency is necessary (e.g., CISD).77

For a charge-transfer state, however, the orbitals are well-suited. Assuming orbital a

is located on molecule A and i on molecules B and the distance is high enough so that

the overlap is approximately zero. The orbital difference approximates the correct limit

Aa−Ii and the remaining two-electron integrals of coulomb type give the correct distance

behavior of 1/R,68

ωCT ≈ Aa − Ii −
1

R
. (3.45)

Thus CIS has no intrinsic problems with charge transfer states47 and gives often quali-

tatively correct results for the potential energy surface of the lowest excited states. Fur-

thermore pure singlet and triplet states can be calculated.

The Thomas-Reiche-Kuhn dipole sum rule, according to which the total number of

electrons is equal to the sum of the transition dipole moments is however not obeyed by
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CIS.77

CIS is also the only truncated CI method, which is size-consistent.77 Using a semi-

empirical parametrization of CIS, like in the INDO/S method93 can yield improved nu-

merical results,47,94 but does not solve the main limitations.

Using a higher excitation level, like CISD is often too expensive for excited states and

is thus rarely used. An interesting alternative is the difference-dedicated CI (DDCI)

proposed by Malrieu and coworkers.95 This approach aims at including only those deter-

minants in the CI treatment that are needed to describe the energy difference between

two states (i.e. the transition energy).

3.2.3 Multi-Configurational and Multi-Reference Methods

Hartree-Fock theory provides the optimal orbitals for a single determinant and thus gives a

qualitatively correct description for systems for which a single determinant is a reasonable

approximation. There are however systems which need more than one configuration for

a qualitatively correct description. The hydrogen molecule at the dissociation limit is

a typical case, where (in a minimal basis) the HF and the doubly excited determinant

contribute equally to the ground state. Using only the HF determinant gives a 50:50

ratio of the weights of the ionic and covalent resonance contributors and thus a wrong

dissociation behavior, since the weight of the ionic structure should drop to zero for r →
∞.48,96 Including the second determinant introduces the freedom to variationally optimize

the ratio of the two structures.96 This is easily shown by expanding the corresponding

VB determinants (ΦHF = |σσ|) and ΦD = |σ∗σ∗| in a minimal basis: σ = s1 + s2 and

σ∗ = s1− s2 and recollecting the terms in Valence Bond determinants (the normalization

constants have been omitted for the sake of clarity):91,96

ΦHF = |σσ| = (|s1s2| − |s1s2|) + (|s1s1|+ |s2s2|) (3.46)

ΦCI = c1ΦHF + c2ΦD = (c1 + c2)(|s1s2| − |s1s2|) + (c1 − c2)(|s1s1|+ |s2s2|) (3.47)

Another well-known example is the rigid rotation of the CH2-groups in ethene against

each other,97 that disrupts the π-system, thus generating a biradical. While CISD pro-

vides an accurate description for the H2 dissociation, which is not surprising, since in this

case it is a Full-CI, the results for the ethene rotation are less satisfying. These are typical

cases with degenerate states that demand a multi-configurational treatment.

The so-called multi-configurational self-consistent field methods (MCSCF)50 pro-
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vide optimal orbitals for multi-configurational systems and offer a qualitatively correct

description for them.

The most commonly used MCSCF approach is the complete active space self-consistent

field method (CASSCF)48,98 developed by Roos and coworkers. In this approach, the

orbital space is divided into three subspaces, formed by the inactive, active and secondary

(virtual) orbitals. The inactive orbitals are always doubly occupied, while the secondary

orbitals are always empty. In the active orbital space (usually the highest occupied and

lowest unoccupied orbitals), however, a Full-CI is performed. No excitations involving

MOs outside of the active space are included. In order to provide the optimal orbitals,

the orbital expansion coefficients are optimized as well as the configuration interaction ex-

pansion coefficients.48 This is generally performed in the super-CI framework,99,100 which

is based on the generalized Brillouin or Brillouin-Levy-Berthier theorem (BLB)101

〈0| Ĥ(Êpq − Êqp) |0〉 = 0, (3.48)

with |0〉 being the variationally optimized MCSCF wave function, i.e. the wave function

with optimal orbitals. The operators Êpq and Êqp are spin-averaged excitation operators

(the generators of the unitary group)100

Êpq =
∑
σ

â†pσâqσ, (3.49)

with the spin σ,100 which generate the single excitations. The indices p and q refer to any

orbital that is part of the complete orbital space.98 Thus similar to the Brillouin theorem

the BLB theorem provides a condition for the orbital rotation for the state described by

|0〉. This condition is applied using the super-CI wave function |SCI〉, which is a sum of

|0〉 and all single excitations relative to |0〉100

|SCI〉 = |0〉+
∑
p<q

xpq(Êpq − Êqp) |0〉 = |0〉+
∑
p<q

xpq |p→ q〉 . (3.50)

The typical steps of an MCSCF procedure involve:99

1. The normal CI secular equations for the MCSCF wave function are solved with guess

orbitals (e.g., from a Hartree-Fock calculation) in order to obtain the CI expansion

coefficients.

2. The Super-CI wave function is constructed and the corresponding secular equation
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is solved in order to obtain xpq.

3. The new orbitals are generated according to

φ(1)
p = φ(0)

p +
∑
p6=q

xpqφ
(0)
q . (3.51)

These steps are repeated until convergence is achieved, which means that no correction

to the orbitals is necessary anymore, i.e. xpq = 0. Thus the inclusion of the singles does

not yield an improved description (i.e. a lower ground-state energy) anymore, from which

it follows that the Hamiltonian matrix elements between |0〉 and |p→ q〉 must be zero.

Hence the BLB theorem is fulfilled.99 In most implementations the orbital update is per-

formed using the natural orbitals48 of |SCI〉 (see102 for details). With ni inactive and na

active orbitals the ni natural orbitals with the highest occupation numbers are used for

the inactive orbitals and the next na are used as active orbitals.98 This is directly possible,

because the CASSCF wave function is invariant to a rotation in the active orbitals.100

The super-CI approach demands the calculation of Hamiltonian matrix elements between

〈0| and the singlet excited states (Êpq − Êqp) |0〉, which is quite expensive. A remedy is

to use approximate expressions, which still yield converged orbitals.98,100

The MOs can be optimized for each state in question, but usually a state-averaged cal-

culation is performed, that means that several roots that belong to a certain irreducible

representation are calculated and a single set of orbitals is obtained that are averaged for

all states in question. This facilitates the convergences and provides orthogonal states,

which are not contaminated by each other as in a single-state approach.47

The CASSCF method provides a qualitatively correct description for ground-state sys-

tems with multi-configurational character as well as for excited-state surfaces and the

corresponding excitation energies and transition moments. Rydberg states often pose a

problem, since the Rydberg orbitals are easily rotated out of the active space, because

their inclusion does not provide a significant contribution to the correlation energy. It is

sometimes difficult to find the correct active space, especially if a reaction path is calcu-

lated, since the space has to be equally suited for all points along the potential energy

surface.47,103 The static correlation, which is for example necessary for the correct dis-

sociation behavior of H2 is obviously covered by the CASSCF wave function, but using

a standard-sized active space, almost no dynamic correlationi is included.105 Therefore

iThere is no strict general definition of static and dynamic correlation. Static correlation is connected
to the correct dissociation behavior and the shape of the potential energy surfaces and can usually be
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excitation energies calculated by CASSCF are far from spectroscopic accuracy.47 Since

the CASSCF wave function is usually qualitatively correct, the orbitals, coefficients and

population numbers can be used to analyze and understand molecules with a complex

electronic structure (like transition metal compounds) and thus to provide insight.91

In order to include dynamic correlation similar schemes as in the post-HF methods can

be applied. In configuration interaction excited configurations are defined relative to the

Hartree-Fock configuration. In systems where several determinants are necessary for a

qualitatively correct description of the state, the excited determinants have to be defined

relative to all important configurations, the so-called reference space. For instance if two

determinants play an important role (e.g., in the case of the dissociation of H2) excited

configurations relative to both determinants have to be added to provide a balanced de-

scription. Otherwise, correlation would be added only to one part of the wave function.

Systems for which this multi-reference treatment provides a significantly improved de-

scription as compared to a standard single-reference approach are called multi-reference

systems. They usually involve close-lying states and (near) degeneracies. Typical cases

are biradicals, homopolar dissociations and many excited states. There is however no

clear definition.106 Excited states are very likely to show multi-reference character, be-

cause they are often rather close in energy. Thus multi-reference treatments are often

needed to provide results of high accuracy.

In multi-reference CI (MRCI)47,48,107 excitations are generated relative to the refer-

ence space, which is formed by the most important configurations for the state in question

using the framework of configuration interaction. Usually the excitations involve singles

and doubles, which is then called MRDCI or MRCISD. Obviously, MRDCI is equivalent

to CISDT if all single excitations relative to the HF determinant are included in the

reference space. However, only a few single excitations are generally needed and often

some double excitations are also important. Thus MRDCI provides a more efficient and

balanced description than a configuration interaction treatment with higher excitation

degree. It is however difficult to find the correct reference space, therefore an accurate

MRCI treatment needs experience. Typically at first, a CASSCF calculation is performed

and the orbitals are used for the MRCI calculation. The most important configurations in

the CASSCF are also a good starting point for selecting the appropriate reference space.

taken care of by including only a few determinants with a significant contribution. These determinants
typically involve excitations from the highest occupied to the lowest unoccupied orbitals. In order
to include dynamic correlation, which is necessary for numerical accuracy, usually a huge amount of
determinants with a small contribution is necessary. However, the transition form one to the other is
gradual.104
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MRCI is one of the most accurate methods for the calculation of excited-state surfaces

and excitation energies, however, it is only applicable to very small molecules and suffers

also from the lack of size-consistency.47 The last problem can partly be solved by apply-

ing the Davidson correction.108 Algorithms that exploit the sparcity of the CI matrix can

speed up the calculations and make computations of larger molecules applicable,109 but

the scope of MRCI is nevertheless limited.

Excited determinants can also be added by the use of perturbation theory, similar to

Møller-Plesset in ground-state calculations. This might be surprising at first sight, since

due to near-degeneracies standard perturbation theory should not be applicable to excited

states. In multi-reference perturbation theory MRPT, the reference wave function

must therefore include all relevant configurations in order to prevent problems with near

degeneracies.

The basis is as in ground-state calculations the Rayleigh-Schrödinger perturbation the-

ory.48,91 The Hamiltonian is divided into the zeroth-order Hamiltonian Ĥ0 with the eigen-

functions {Φi} and energies {Ei} and the perturbation Ĥ ′ which can be scaled by a

parameter λ

Ĥ = Ĥ0 + λĤ ′. (3.52)

The eigenfunction Ψ and energy W of Ĥ are expanded as a Taylor series in powers of λ,

W = λ0W0 + λ1W1 + λ2W2 + ... (3.53)

Ψ = λ0Ψ0 + λ1Ψ1 + λ2Ψ2 + ..., (3.54)

where Ψ0 = Φ0 and W0 = E0 are the zeroth-order wave function and energy (and the

eigenfunction and -energy of Ĥ0) and Ψ1 and W1 the first-order corrections. One of

the most common forms of multi-reference perturbation theory is the CASPT2 method

developed by Roos and coworkers.110,111 The zeroth-order wave function |Ψ0〉 = |0〉 is

a multi-configurational CASSCF wave function for the state in question and spans the

space V0. The first-order wave function is written as a linear combination of the state

functions in the space VSD

Ψ1 =
∑
j

Cj |j〉 , (3.55)

with |j〉 ∈ VSD. VSD contains all configurations that are generated by single and double

excitations of |0〉 and which are not already included in the complete active space. V0 is

not identical to the CAS, since not all configurations within the the active space are a
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part of |0〉. The CAS is spanned by V0 combined with its orthogonal complement (within

the active space)ii Vk.
50,110 In order to arrive at an expression for the coefficients Cj of the

first-order wave function and the second-order energy correction, the Taylor expansions

of Ψ and W are plugged into the Schrödinger equation, which gives48

(Ĥ0+λĤ ′)(λ0Ψ0+λ1Ψ1+λ2Ψ2+...) = (λ0W0+λ1W1+λ2W2+...)(λ0Ψ0+λ1Ψ1+λ2Ψ2+...).

(3.56)

The equation must hold for any value of λ, which is only fulfilled if it holds for each power

of λ separately, leading to the perturbation equations.

λ0 : Ĥ0Ψ0 = W0Ψ0 (3.57)

λ1 : Ĥ0Ψ1 + Ĥ ′Ψ0 = W0Ψ1 +W1Ψ0 (3.58)

· · ·

λn : Ĥ0Ψn + Ĥ ′Ψn−1 =
n∑
i=0

WiΨn−i (3.59)

By multiplying equation 3.59 from the left with Φ0 and integration one obtains an ex-

pression for the nth order energy correction,

Wn = 〈0| Ĥ ′ |Ψn−1〉 . (3.60)

Thus the second-order energy correction can be obtained from the first-order correction

to the wave function. By multiplying |i〉 with i ∈ VSD from the left to equation 3.58 and

integration one obtains

〈i| Ĥ0 |Ψ1〉+ 〈i| Ĥ ′ |0〉 = W0〈i|Ψ1〉+W1〈i|0〉. (3.61)

Plugging the result in the expansion of Ψ1 and rearranging yields∑
j

Cj 〈i| Ĥ0 − E0 |j〉 = −〈i| Ĥ |0〉 . (3.62)

The orthogonality 〈i|0〉 = 0 and the identity 〈i| Ĥ ′ |0〉 = 〈i| Ĥ − Ĥ0 |0〉 = 〈i| Ĥ |0〉 have

been used. The linear set of equations (3.62) are used to obtain the coefficients of the

first-order energy correction.110

iiVk thus contains all configurations that are included in the CAS and are orthogonal to |0〉.
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The zeroth-order Hamiltonian is chosen in a way in order to achieve an efficient imple-

mentation, a rapidly converging perturbation expansion and and an equivalency to the

Møller-Plesset iii zeroth-order Hamiltonian in the limiting case of a single closed-shell

determinant as reference. This is fulfilled using the following definition111

Ĥ0 = P̂0F̂ P̂0 + P̂kF̂ P̂k + P̂SDF̂ P̂SD + P̂TQ..F̂ P̂TQ... (3.63)

The projection operators project onto V0, Vk, VSD and the space spanned by the higher

excitations that have not been included in the other subspaces.111 The form of the one-

particle operator F̂ is also determined by the factiv that it has to be identical to the

Møller-Plesset definition (F =
∑

i fi) in the limiting case of a single determinant111

F̂ =
∑
pq

fpqÊpq, (3.64)

with fpq being the spin-averaged expectation value of the operator Fpqσ and

fpq =
1

2

∑
σ

〈0|Fpqσ |0〉 (3.65)

Fpqσ = âp,σ[Ĥ, â†qσ]− â†pσ[Ĥâqσ]. (3.66)

Since there are three orbital subspaces, the Fock matrix consists of three times three

blocks. One can also give an explicit expression for the fock matrix using the one-particle

density matrix D,110

fpq = hqp +
∑
rs

Drs

[
(pq|rs)− 1

2
(pr|qs)

]
. (3.67)

The CASPT2 procedure starts with a converged CASSCF calculation. Each of the three

blocks of the Fock matrix are then diagonalized and the system of linear equations is

solved and the second order energy correction is calculated (for details see110,111).

Since CASPT2 relies on perturbation theory it is vital that the CASSCF reference in-

cludes all configuration state functions with significant contributions. Otherwise, these

iiiIn Møller-Plesset perturbation theory the zeroth-order Hamiltonian is defined as a sum of Fock oper-
ators,48

Ĥ0 =
∑
i

F̂i.

ivIn multi-reference cases the definition of the Fock operator is not unique.104
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are added in the perturbation treatment, which is not in line with a small perturbation.

These intruder states are often Rydberg states, which lead to small energy denominators

in the perturbation treatment, which consequently “blows up.”104 Therefore the weight

of the reference wave function and configurations with small denominators have to be

inspected carefully.47

If different states of the same symmetry are calculated with standard CASPT2 (single

state CASPT2, SS-CASPT2), they are not orthogonal to each other and therefore slightly

mixed, which is usually of no importance, but can lead to problems at avoided crossings

or states with valence-Rydberg mixing.47 A solution is the use of multistate CASPT2

(MS-CASPT2).112 In MS-CASPT2 the reference space consists of states computed from

a state-averaged CASSCF. An effective Hamiltonian matrix is diagonalized in the refer-

ence space to generate the different MS-CASPT2 states. The diagonal elements corre-

spond to the single-state CASPT2 state energies and the off-diagonal elements introduce

a coupling between the states.

For systems where all potentially participating orbitals can be included in the active

space of the CASSCF, CASPT2 provides very accurate results and is fairly straight-

forward to use. Especially for π-systems with their well-defined active spaces CASPT2

provides a robust performance. There is no bias towards either charge-transfer or neutral

excited states. Therefore it is the standard method for the calculation of the valence

excited states of small- and medium-sized molecules and often provides the theoretical

best estimates,113 but it is nevertheless by no means a black-box method and demands

an experienced user.104

If the systems become larger and one has to carefully choose which orbitals to include,

it is less straightforward to arrive at accurate results and intruder states can become a

massive problem. In systems, where the active space is not clearly defined (e.g., σ-π-

mixing), CASPT2 calculations can become exceedingly tricky. Furthermore, including

more orbitals in the reference space is computationally very demanding. Including more

orbitals than needed to cover the static correlation is undesirbale and leads to a poor

convergence of the CASSCF calculation due to multiple minima.104

CASPT2 is usually slightly less accurate than MRCI, but easier to use and can be applied

to somewhat larger systems.

There are also quite promising approaches and developments in the field of multi-

reference coupled cluster (MRCC) methods,114 but those are still no standard tools

of quantum chemistry.

36



3 Computational Methods for the Calculation of Excited States

3.2.4 Semi-Empirical Methods for Excited States

Contrary to the post-HF methods, which go beyond Hartree-Fock theory and are more ex-

pensive, semi-empirical methods48,115 introduce further approximations in order to speed

up the calculations by reducing the scaling behavior. Formally Hartree-Fock scales with

the fourth power of the basis functions.48 This is due to the number of two-electron in-

tegrals that are needed to build the Fock matrix. Semi-empirical methods neglect some

of these integrals and try to compensate the error by introducing parameters for the re-

maining integrals, which have been fitted to experimental or theoretical reference data.115

The empirical parameters include correlation effects implicitly. Thus ideally the semi-

empirical methods should be faster and more accurate than Hartree-Fock theory.

In the following the atomic basis functions are denoted with µ, ν, λ, σ, their number with

M , and the centers with A,B, . . .. In the basis of atomic orbitals the Fock operator is

thus defined as48

Fµν = hµν +
M∑
λσ

Dλσ(〈µν|λσ〉 − 〈µλ|νσ〉), (3.68)

with Dλσ =
∑occ.MO

j cλjcσj being the density matrix that contains the MO coefficients.

Typically a minimal basis set with Slater-type functions is used and only valence electrons

are treated explicitly. Therefore the modeling of core-core repulsion is quite important

(see below). The semi-empirical model is defined by the used approximations (i.e. which

integrals are neglected) and how the remaining integrals are evaluated/parameterized.

The three standard levels of approximations are complete neglect of differential overlap

(CNDO), intermediate neglect of differential overlap (INDO) and the neglect of differential

diatomic overlap (NDDO).115 In the NDDO approximation, the differential overlap of

basis functions is set to zero if they are on different centers,

µA(1)νB(1) = 0 for A 6= B. (3.69)

Thus it follows48

Sµν = δµνδAB. (3.70)

Furthermore all three-center interactions in the one-electron integrals (one from the op-

erator and two from the basis functions) and all three- and four-center interactions of the

two-electron integrals are neglected,48

〈µAνB|λCσD〉 = δACδBD〈µAνB|λAσB〉. (3.71)
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In the INDO approach further approximations are introduced. It neglects for instance

also all two-center two-electron integrals that are not of the Coulomb type.48 The CNDO

makes use of even sterner approximations. CNDO and INDO only retain monopoles of

the charge distribution in the two-center interactions, while NDDO also includes higher

multipoles.115

Most of the standard semi-empirical methods rely on the modified neglect of differen-

tial overlap (MNDO) model,116 which is based on the NDDO integral approximation.

The one-center one-electron terms are defined as48

hµν = δµνUµ +
∑
B

Vµν,B (3.72)

Uµ = 〈µA| −
1

2
∇2 − VA |µA〉 . (3.73)

The first term corresponds to the kinetic and potential energy of a single electron moving

in the potential of the nucleus A, while the second represents the potential of the other

nuclei, which are partly shielded by the core electrons.116 The two-center-one-electron

terms are written as a product of the overlap and two atomic parameters. These resonance

integrals are most important for covalent bonding,115 as can be inferred from qualitative

MO theory.117

〈µA| ĥ |νB〉 =
1

2
Sµν(βµ + βν) (3.74)

Since the overlap integral Sµν is calculated explicitly, the model is called modified neglect of

differential overlap. Due to the approximations only five types of one-center-two-electron

terms and 22 types of two-center-two-electron terms remain.48 The first are parameterized

using atomic spectroscopy data, while the latter are modeled as interactions between

multipoles.48,115 The semi-empirical methods MNDO, Austin Model 1 (AM1),118 Recife

Model 1 (RM1)119 and the Parametric Method 3 (PM3)120 all rely on the MNDO model .48

They differ in the way the parameters are assigned and in the modeling of the core-core

interaction. Since only valence electrons are treated explicitly the core-core repulsion is

no longer just a simple classical term, because it has to incorporate the effect of the inner

shells. In MNDO and AM1 it takes the form48

V MNDO
nn (A,B) = Z ′AZ

′
B〈sAsA|sBsB〉

(
1 + e−αARAB + e−αBRAB

)
(3.75)

V AM1
nn (A,B) = V MNDO

nn (A,B)

+
Z ′AZ

′
B

RAB

∑
k

(
akAe

−bkA(RAB−ckA)2 + akBe
−bkB(RAB−ckB)2

)
(3.76)
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Figure 3.2: Qualitative energy splitting in the LCAO approach with a) non-orthogonal
atomic orbitals, b) orthogonalized atomic orbitals and c) in the NDDO
approximation.

RM1 is a reparameterization of AM1 and also PM3 uses essentially the same expressions.

While MNDO and AM1 were parameterized more or less “by hand”, automatic optimiza-

tion techniques were used for PM3 and hence larger training sets could be used.48 This

training set has been even further enlarged in the PM6 method.121

The OMx methods by Thiel and cowokers115,122–124 go beyond the MNDO model by

introducing orthogonalization corrections. In Hartree-Fock theory the Roothan-Hall equa-

tions are transformed using a Löwdin orthogonalization,52 which yields

λFλC = λCE (3.77)

in the NDDO approximation the overlap matrix is directly a unit matrix, thus implying

NDDOF ≈ λF (3.78)

Therefore no explicit orthogonalization is performed, which however introduces errors.

If two atomic orbitals are combined to construct two molecular orbitals, the energetic

splitting is unsymmetric due to the overlap117 (see Figure 3.2a). The orthogonalization

removes the overlap, thus leading to a symmetric splitting, but also changes the atomic

orbital basis. The basis functions become delocalized (via orthogonalization tails), more

contracted and higher in energy.123 Therefore the same splitting with respect to the orig-

inal atomic orbitals is obtained, see Figure 3.2b.

In the NDDO approximation, the overlap is neglected and no orthogonalization is per-

formed, thus leading to a symmetric splitting (see Figure 3.2c). Therefore the gap between

bonding and antibonding orbitals is underestimated, which leads to wrong excitation en-

ergies. Also in order to fully recover the Pauli exchange repulsion, the orbitals need to
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be properly orthogonal.123 Hence the closed-shell repulsion (e.g., in the helium dimer),

as well as barriers are insufficiently described in the standard NDDO approaches.115 The

orthogonalization corrections are designed to overcome these deficiencies. They account

for the Pauli exchange repulsion and lead to an improved HOMO-LUMO gap.

The orthogonalization can be performed for the one- (H) and two-electron part (G) sep-

arately:

λF = λH +λ G (3.79)

λH = S−1/2HS−1/2 (3.80)

λG = S−1/2GS−1/2 (3.81)

The orthogonalization corrections for the two-electron part are rather small and thus ne-

glected in the OMX methods.123 For the one-electron terms the corrections are introduced

via the expansion of the transformation matrix S−1/2 115,122,123

S−1/2 = (1 + S′)−1/2 = 1− 1

2
S′ +

3

8
S′2 − ... (3.82)

With S′ containing the off-diagonal elements of the overlap matrix and zero diagonal

matrix elements. This expansion is plugged into equation 3.80 and only terms up to

the second power in S′ are included, which leads to expressions for the orthogonalization

corrections.123 In the OM1 method the corrections are applied to the one-center terms of

the core Hamiltonian.122 Thus this method involves only one- and two-center interactions,

since the corrections only involve a second atom.115 The OM2 approach also contains

three-center interactions, since the corrections are also applied to the two-center part of

the core Hamiltonian (i.e. the resonance integrals), which introduces interactions with a

third atom. The full expression is given by115

λHµν = βµν −
1

2

C∑
ρ

(Sµρβρλ + βµρSρλ) +
1

8

C∑
ρ

SµρSρλ (Hµµ +Hλλ − 2Hρρ) . (3.83)

βµν is the empirical resonance integral, which can be parameterized according to equation

3.74, but this is not in line with an orthogonal atomic orbital basis and other expressions

such as

βµν =
1

2

(
βAµ + βBλ

)√
RABe

−(αAµ+αBλ )R2
AB (3.84)
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have been derived.123 The resonance integral may already contain local orthogonalization

corrections (depending on the parametrization). The other terms in equation 3.83 repre-

sent the three-center corrections. The corrections increase the computational effort, but

since the three-center terms are heavily distance-dependent, cutoffs can be applied, which

leads to the same scaling behavior as standard semi-empirical methods. OM3 neglects

some of the smaller correction terms, which should speed up the calculation without sig-

nificant loss of accuracy.125

The semi-empirical computations are much faster than post-HF or even DFT methods

and can thus be applied to much larger systems. However, they are also less reliable and

show less systematic errors,115 since their accuracy depends on how similar the investi-

gated system is compared to the molecules included in the training set. Thus in order to

arrive at an estimation of the accuracy semi-empirical methods should only be applied

after previous benchmark calculations.

The methods introduced so far are all ground-state methods, since the underlying frame-

work is Hartree-Fock theory. In order to use semi-empirical methods for excited states

a configuration interaction formalism can be applied. INDO/S93 is a parametrization of

the INDO approximation for CIS. CIS has however many disadvantages (see above), most

prominently the lack of correlation in the excited states (although in the case of INDO/S

it can partly be included via the parametrization). In ab initio theory the inclusion of

higher excitations is quite expensive, but due to the integral approximations it is much

cheaper for semi-empirical methods. The GUGA-CI126 of Thiel and co-workers, which

is implemented in the MNDO99 program package,127 allows for an MRCI treatment in

an active orbital space with different semi-empirical methods. These methods are used

in their standard ground-state parametrization. In an ab initio MRCI calculation, the

orbitals are usually first optimized in an MCSCF treatment. Due to the very limited

flexibility of the minimal basis, this is however not necessary when using semi-empirical

methods.126

The leading term in the CI excitation energy is the orbital energy difference (see above).

Thus one should assume that the OMx methods, with their improved orbital energies

should give better results for excited states than MNDO or AM1. This was indeed found

to be true in an extensive benchmark.94 The mean absolute deviation (MAD) of the ver-

tical singlet excitation energies of MNDO and AM1 for 104 tested molecules is 1.35 and

1.19 eV, respectively, while OM1, OM2 and OM3 yield MADs of 0.45, 0.50 and 0.45 eV,

respectively. INDO/S shows a similar accuracy (MAD 0.51 eV), but its results scatter

more strongly than the values of the OMx methods. All semi-empirical methods included

41



3 Computational Methods for the Calculation of Excited States

in the benchmark tend to underestimate the excitation energies.94 Similar to the ground-

state calculations, the applicability of any semi-empirical method for the excited state of

the system of interest should be tested in a previous benchmark.

3.3 Methods Based on Linear Response and Propagators

3.3.1 Linear Response Theory and Propagators

TDHF, TDDF as well as CC2 for excited states belong to the so-called linear response

methods, while ADC(2), SOPPA and many others rely on propagators. Both approaches

are closely related to the so-called Green’s functions. This section aims at briefly reviewing

the theoretical background of propagators, Green’s functions and linear response.

Linear response is well-known from information theory and statistical mechanics.128 If

a system is subjected to a force, linear response theory calculates the output, i.e. the

response, assuming it is linear in the force.51 The response function is closely related to

the concept of Green’s functions.51

The solution of an inhomogeneous differential equation of a linear system, xlinear(t), can

be found by calculating the convolution of the corresponding Green’s function G(t− t′)
and the inhomogeneity F (t).129,130

xlinear(t) =

∫ t

0

G(t− t′)F (t′)dt′ (3.85)

The Green’s function is the solution of the differential equation if the inhomogeneity

is the Dirac delta function.49 Thus the convolution can be viewed as summing up the

effect of several infinitesimal forces to yield the solution of the equation.129 It can also be

considered as the first term of a Volterra series130 (of which the Green’s functions are the

coefficients),131 which is used for nonlinear systems with memory.i For linear systems the

Green’s function approach provides the exact solution. In the case of non-linear systems

using just the first term (the linear response) is an approximation, since higher-order

terms of the Volterra series may become important. Thus in linear response theory, one

assumes

x(t) ≈
∫ t

0

G(t− t′)F (t′)dt′. (3.86)

iContrary to a Taylor series, where the response at the time t can be calculated at this point in time,
it depends on the whole evolution in time in a Volterra series.130
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As an example for the Green’s function approach (taken from49) let Ĥ0 be some Hermitian

differential operator, fulfilling the equation

(E − Ĥ0)a(x) = b(x), (3.87)

with the inhomogeneity b(x). Expanding a(x) and b(x) into the eigenfunctions ψα(x) of

Ĥ0

a(x) =
∑
α

aαψα(x) (3.88)

b(x) =
∑
α

bαψα(x) (3.89)

and keeping in mind that bα =
∫
dx′ψ∗α(x′)b(x′) equation 3.87 can be written as∑

α

aα(E − Ĥ0)ψα(x) =
∑
α

aα(E − E(0)
α )ψα(x) =

∑
α

bαψα(x). (3.90)

Multiplying with ψ∗α from the left and integrating yields

aα(E − E(0)
α ) = bα. (3.91)

Substituting this into the expansion for a(x) gives

a(x) =
∑
α

bα

E − E(0)
α

ψα(x). (3.92)

Inserting the expression for bα one arrives at

a(x) =

∫
dx′

[∑
α

ψα(x)ψ∗α(x′)

E − E(0)
α

]
b(x). (3.93)

The term in brackets defines the Green’s function G0(x, x′, E),

G0(x, x′, E) =
∑
α

ψα(x)ψ∗α(x′)

E − E(0)
α

. (3.94)

It can easily be shown that this is the solution of the equation for b(x) = δ(x − x′).49

This example shows that a Green’s function can also be constructed for the one-particle

Schrödinger equation. However, since the eigenfunctions have to be known, there seems
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to be no benefit. This changes if a perturbation V (x) is added,

Ĥ = Ĥ0 + V (x). (3.95)

In order to find the Green’s function, we can write

(E − Ĥ0 − V (x))G(x, x′, E) = δ(x− x′). (3.96)

This can be rewritten as

(E − Ĥ0)G(x, x′, E) = δ(x− x′) + V (x)G(x, x′, E). (3.97)

This is however similar to equation 3.87 with a(x) = G(x, x′, E) and b(x) = δ(x −
x′) + V (x)G(x, x′, E). Thus we can write the solution via the known Green’s function

G0(x, x′, E)49

G(x, x′, E) =

∫
dx′′G0(x, x′′, E)[δ(x′′ − x′) + V (x′′)G(x′′, x′, E)]. (3.98)

After integrating the term with the delta function one obtains the integral equation49

G(x, x′, E) = G0(x, x′, E) +

∫
dx′′G0(x, x′, E)V (x′′)G(x′′, x′, E). (3.99)

Using a matrix representation, it can be written as

G(E) = G0(E) + G0(E)VG(E). (3.100)

This type of equation is often found in Green’s function theory and provides a recipe for

finding solutions to the perturbed problem.

This example used the single-particle Schrödinger equation. For many-body systems

similar functions can be derived, which are often also called Green’s function due to

their similarity to the classical Green’s functions, although they do not always fulfill the

definition in a strict mathematical sense.132

In the case of Hartree-Fock theory a one-particle many-body Green’s function can be

derived,

G0(x,x′, E) =
∑
i

χi(x)χ∗i (x)

E − εi
, (3.101)
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with the spin orbitals χi(x). This Green’s function has poles at the HF orbital energies.

In order to go beyond Hartree-Fock theory and to obtain accurate single-particle energies

(e.g., electron affinities and ionization energies), Dyson introduced an effective energy-

dependent potential, which leads to an equation similar to 3.100, which is called the

Dyson equation

G(E) = G0(E) + G0(E)Σ(E)G(E), (3.102)

with the so-called self-energy in matrix representation Σ(E).49 G(E) is the exact many-

body Green’s function (MBGF). Of course in order to solve the Dyson equation one

has to introduce approximations. For instance, a perturbation expansion of Σ(E) can be

used.49

Green’s function theory can also be used for time-dependent perturbations. In fact, a very

analogous expression to equation 3.85 arises naturally if the linear response of a quantum

mechanical operator B to a time-dependent perturbation

H ′(t) = AF (t) (3.103)

is calculated with first-order perturbation theory. The derivation follows McWeeny.51 A is

a Hermitian operator determining the shape of the perturbation. The perturbed ground

state Ψ′0 is expanded in the complete set of the time-independent wave functions {Ψn}
(i.e. eigenfunctions of the unperturbed Hamiltonian). Using the interaction picture one

obtains

Ψ′0 = Ψ0 +
∑
n 6=0

cn(t)e−iω0ntΨn, (3.104)

with ω0n = (EnE0)/h̄. First-order perturbation theory yields51

cn(t) =
1

ih̄

∫ t

−∞
〈Ψn|A |Ψ0〉F (t′)eiω0nt′dt′. (3.105)

Thus the first-order wave function is completely determined and hence the expectation

value of B can be calculated. The response of B (defined by the fluctuation δ〈B〉 =

〈B〉 − 〈B〉0) is then found to be51

δ〈B〉 =

∫ t

−∞
K(BA|t− t′)F (t′)dt′. (3.106)
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Thus the linear response of an operator can also be calculated, if the corresponding

response/Green’s function is known. The response functionK(BA|t−t′) is also completely

determined by the first-order time-dependent perturbation treatment51

K(BA|t− t′) =
1

ih̄

∑
n(6=0)

[
〈Ψ0|B |Ψn〉 〈Ψn|A |Ψ0〉 e−iω0n(t−t′)

−〈Ψ0|A |Ψn〉 〈Ψn|B |Ψ0〉 eiω0n(t−t′)
]
.

(3.107)

K(BA|t− t′) can also be regarded as a “time-correlation function”, since it connects

the time dependency of the fluctuation δ〈B〉 at time t with the strength of the perturba-

tion A at an earlier time t′.51

As mentioned above, the perturbation can also be seen as a series of infinitesimal short

perturbative impulses F (t′), which are propagated in time by K(BA|t− t′) and summed

up to produce the effect on 〈B〉. Thus K(BA|t − t′) can also be considered as a prop-

agator.51 The concepts of Green’s functions and propagators are related and sometimes

used interchangeably.

For a single oscillatory perturbation one can easily transform H ′(t) to the frequency do-

main,

H ′(ω) =
1

2

(
Aωe

−iωt + A−ωe
iωt
)
. (3.108)

The two terms are necessary to ensure hermiticity. Using this expression the whole prop-

agator K(BA|t− t′) can be transformed,51

Π(BAω|ω) =

∫ ∞
−∞

θ(τ)K(BAω|τ)eiωτdτ. (3.109)

θ(τ) is the Heaviside step function,

θ(τ) =

0 (τ < 0),

1 (τ > 0).
(3.110)

The propagator in the frequency domain is sometimes called frequency-dependent

polarizability (FDP)51 and can be shown to be51

Π(BAω|ω) = lim
ε→0

1

h̄

∑
n6=0

{
〈Ψ0|B |Ψn〉 〈Ψn|Aω |Ψ0〉

ω + iε− ω0n

− 〈Ψ0|Aω |Ψn〉 〈Ψn|B |Ψ0〉
ω + iε+ ω0n

}
(3.111)
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The FDP has poles if the frequency of the perturbation is in resonance with the system,

i.e. if it is equal to the energy difference between two eigenstates (ω = ω0n). Thus the

concept of a propagator arises naturally from a first-order perturbation treatment.

In the general treatment of propagators, the Heisenberg pictureii is used and the

propagator is defined as

〈〈B(t);A(t′)〉〉 =
1

ih̄
〈Ψ| T̂ [B(t)A(t′)] |Ψ0〉 , (3.112)

with T̂ being the time-ordering operator bringing the operators in chronological order.

Assuming that A and B are number-conserving operators one obtains, after taking the

Fourier transform,

〈〈B;A〉〉ω = lim
ε→0

1

h̄

∑
n 6=0

{
〈Ψ0|B |Ψn〉 〈Ψn|A |Ψ0〉

ω + iε− ω0n

− 〈Ψ0|A |Ψn〉 〈Ψn|B |Ψ0〉
ω − iε+ ω0n

}
, (3.113)

which is almost the same expressioniii as equation 3.111.51 〈〈B;A〉〉ω is called the po-

larization propagator.51,133 The excitation energies are again found at the poles of the

propagator in its “spectral form”. This means that the excitation energies can be ob-

tained without explicit calculation of the excited state, just by considering the response

of the ground state to an oscillating perturbation. For instance, in a CASSCF treatment

the states are calculated explicitly and the transition energies are obtained as the dif-

ferences of the state energies. Using linear response theory the calculation of the actual

excited state is bypassed.51

iiWhile the wave function in the typically used Schrödinger representation is time-dependent, it is
independent of the time in the Heisenberg picture. Since the expectation value of an operator A
must be invariant to this change of representation, it follows that the corresponding operator in the
Heisenberg picture is defined as

AH(t) = exp

(
iĤt

h̄

)
ASexp

(
− iĤt

h̄

)
.

Thus the operators, rather than the wave functions are now time-dependent.
iiiThe propagator in equation 3.113 is called the “causal” propagator, while 3.111 is called the “retarded

propagator”. But these fine distinctions are beyond the scope of this chapter, see51 for details.
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Starting from equation 3.112 and explicitly plugging in A and B in second quantization51

A =
∑
r,r

Arsa
†
ras (3.114)

B =
∑
r,s

Brsa
†
ras, (3.115)

one obtains the expression for the general polarization propagator. A typical matrix

element (Ars = Brs = 1) in the spectral representation is given by51,132

Πrs,r′s′(ω) =
∑
n6=0

〈Ψ0| a†ras |Ψn〉 〈Ψn| a†s′ar′ |Ψ0〉
ω + iε− ω0n

−
∑
n6=0

〈Ψ0| a†sar |Ψn〉 〈Ψn| a†r′as′ |Ψ0〉
ω − iε+ ω0n

.

= Π+
rs,r′s′(ω) + Π−rs,r′s′(ω)

(3.116)

From this equation it is obvious that the transition properties can also be obtained, since

the transition moment of any (single-particle) operator D̂ can be written as

Tn = 〈Ψn| D̂ |Ψ0〉 =
∑
pq

Dpq 〈Ψn| a†paq |Ψ0〉 . (3.117)

Thus they are obtained by analyzing the residuesiv of the propagator.

Apart from determining excitation properties, the Green’s function approach can also

be used to calculate expectation values. For the exact propagator the complete set of

stationary state eigenfunctions has to be known. However, in general approximate ex-

pressions for the propagator are used. In the standard derivation of time-dependent

Hartree-Fock theroy (TDHF, random-phase approximation) the propagator is typically

calculated using time-dependent variation theory, i.e. by finding an approximate solution

to the time-dependent Schrödinger equation with a single oscillating perturbation.51,77

This means that basically the equation of motion for the wave function is solved. Since

the propagator is a well-defined mathematical quantity, it can be assumed that its time

evolution also follows some sort of equation of motion. Indeed, such an equation can be

ivIn complex analysis the so-called Laurent series, which is a generalization of the Taylor series to include
negative powers, is defined as

f(z) =

+∞∑
n=−∞

an(z − z0)n

The coefficient of the term (z − z0)−1 is called the residue of f(z) at the pole z0. For details see134.
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derived and its solution provides a very efficient way to calculate the actual (approximate)

form of a defined propagator. In fact, the TDHF equations can also be derived from this

approach.51

3.3.2 TDDFT and TDHF

As already mentioned the time-dependent Hartree-Fock equations (TDHF) can be derived

in different frameworks. This chapter focuses on the derivation of the time-dependent

DFT (TDDFT) equations, since the TDHF equations are then easily obtained from the

corresponding expression for a hybrid functional. The theoretical foundation of time-

dependent DFT is the Runge-Gross theorem, which states that the one-body time-

dependent density is sufficient to calculate all observable properties of a many-electron

system that evolves from a fixed initial state.135 This is due to a one-to-one mapping of

the time-dependent external potential vext(r, t), which includes the field from the nuclei

and the time-dependent part (e.g., a laser field) and the one-body density ρ(r, t) of such a

system.135 As in ground-state DFT a non-interacting reference system, that is supposed to

reproduce the exact density, i.e. the Kohn-Sham approach, is generally used. Of course,

as in ground-state theory, the question of the non-interacting v-representability arises,

that means the question if the (time-dependent) density of any system can be reproduced

by a Kohn-Sham auxiliary system. This has been proved under certain conditionsv.136

Similar to TDHF, there are also several ways to arrive at the TDDFT equations. One

possible approach is to directly find an expression for the response function within time-

dependent KSDFT and its spectral representation (equation 3.111), respectively. This

ansatz will only shortly be outlined here (for details see135) to introduce the connection

between TDDFT and linear response/Green’s functions theory and the actual derivation

will be based on a density matrix formalism, which also uses the time-dependent Kohn-

Sham equations.77 The latter approach is more common in the computational chemistry

community.

The external potential can be split into a stationary part and a time-dependent pertur-

bation,

vext(r, t) = vext,0(r) + δvext(r, t). (3.118)

vFor details on the KS-existence see135 and references therein.
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It is assumed that the density ρ(r) can be expressed as a Taylor series with respect to

δvext(r, t),

ρ(r, t) = ρ0(r) + ρ1(r, t) + ρ2(r, t) + ... (3.119)

Since linear response only deals with the first-order term, terms of higher-order than ρ1 can

be neglected. In order to calculate the linear response of the density to the time-dependent

perturbation, we need the corresponding response function, which basically means defining

the operators A and B from the previous chapter explicitly in the DFT framework. Since

we are interested in the response of the density, we need the so-called density-density

response function χ(rt, r′t′), that connects the linear response of the density ρ1(r, t) with

the perturbation δvext(r, t).

ρ1(r, t) =

∫ ∞
0

dt′
∫
d3r′χ(rt, r′t′)δvext(r

′, t′) (3.120)

Similar to the derivation of equation 3.111 the spectral representation of the density-

density response function can be obtained using first-order time-dependent perturbation

theory135

χ(rt, r′t′) =
∑
I

{
〈Ψ0| ρ̂(r) |ΨI〉 〈ΨI | ρ̂(r′) |Ψ0〉

ω − ΩI + i0+
− 〈Ψ0| ρ̂(r′) |ΨI〉 〈ΨI | ρ̂(r) |Ψ0〉

ω + ΩI + i0+

}
.

(3.121)

with ρ̂ being the density operator, which can be defined asvi ρ̂(r) =
∑N

i=1 δ(r − ri). The

summation is over all interacting excited states ΨI , with ΩI = EI − E0.135 0+ represents

a small positive number and is thus a shorthand for the limit ε→ 0 used above.

Because the time-dependent Kohn-Sham equations (see below) can in principle generate

the time-dependent density in an exact way, the response of the KS system can be used

to calculate the response of the density

ρ1(r, t) =

∫ ∞
0

dt′
∫
d3r′χKS(rt, r′t′)δvKS(r′, t′). (3.122)

viδ(r − ri) is the Dirac delta function and the summation is over all electron indices. The expectation
value of the density operator with a general determinant wave function Φ = |φ1φ2 . . . φN | is given by

〈Φ| ρ̂(r) |Φ〉 =

N∑
i=1

φi(r)2 = ρ(r).
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That means the exact linear density response can be calculated using the linear response

of a non-interacting reference system that is subjected to a perturbation δvKS.135 In the

spectral representation the KS density-response function is given by (see135 for details),

χKS(r, r′, ω) = lim
η→0+

∑
k,j

(fk − fi)δσkσj
ϕk(r)ϕj(r)ϕj(r

′)ϕk(r
′)

ω − (εj − εk) + iη
. (3.123)

δvKS(r, t) can be written as (see135 for details),

δvKS(r, t) = δvext(r, t) +

∫
d3r′

ρ1(r′, t)

|r− r′|
+

∫
dt′
∫
d3r′fxc[ρo](rt, r

′t′)ρ1(r′, t′), (3.124)

with the time dependent xc kernel fxc which is defined as the functional derivative of the

xc potential,135

fxc[ρ0](rt, r′t′) =
δvxc[ρ](r, t)

δρ(r′, t′)

∣∣∣∣
ρ=ρ0

(3.125)

at the initial ground state density ρ0. The poles of the KS response function (3.123)

are however not the poles of the true response function, χ(rt, r′t′). The latter can be

derived by setting equation 3.120 equal to equation 3.122 and plugging in the expression

for δvKS(r, t) (3.124) one obtains a Dyson-like137 equation.135

χ[ρ0](rt, r′t′) = χKS[ρ0](rt, r′t′)+∫
dt1

∫
d3r1

∫
dt2

∫
d3r2χKS[ρ0](rt, r′t′)[

δ(t− t′)
|r1 − r2|

+ fxc[ρ0](r1t1, r2t2)

]
χ[ρ0](r2t2r

′t′) (3.126)

Equation 3.126 “plays the central role in TDDFT linear response calculations.”135 By tak-

ing the Fourier transform and integrating against δvext a condition for the true excitation

energy can be found that leads to an eigenvalue problem which determines the excitation

spectrum (see135 for details).

Today most electronic structure codes work with the so-called Casida equations, which

are similar to the TDHF equations.51,135 They are equivalent to the eigenvalue equation,

which can be derived from 3.126. Casida obtained them by analyzing the poles and

residues of the frequency-dependent polarizability.135,138 However, as stated above, in this

chapter a different approach based on the density matrix is followed, which is less for-

mal.51,77 The derivation follows closely the review by Dreuw and Head-Gordon.77 In the
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case of TDHF the starting equation is the time-dependent Hartree-Fock equation, which

can be derived by time-dependent variation theory under the assumption that the system

can be described by a single Slater determinant at all times51

F (r, t)ϕi(r, t) = i
∂

∂t
ϕi(r, t). (3.127)

In the case of TDDFT the time-dependent Kohn-Sham equations are used, which

can be derived using the Runge-Gross theorem and the action integral,77

FKS(r, t)φi(r, t) = i
∂

∂t
φi(r, t). (3.128)

The time dependent Kohn-Sham operator contains a time-dependent non-local xc-kernel.

However usually the so-called adiabatic local density approximation (ALDA) is

applied, which uses a time-independent local xc-kernel (i.e. it is assumed that the density

varies only slowly with time). In order to arrive at a matrix representation, single-particle

wave functions (i.e. orbitals) {χi(r)} can be used used as basis

φp(r, t) =

Nbas∑
j

cpj(t)χj(r), (3.129)

leading to

i
∂

∂t
C = FKSC. (3.130)

It is important to note that the basis {χi(r)} consists of molecular orbitals and not

atomic basis functions. The time-dependent coefficients cpj(t) are nothing else than the

occupation numbers and are either zero or one in the time-independent SCF ground state.

From this equation an analogon to the von Neumann equation139 can be derived, using

the density matrix P. The density matrix is connected to the expansion coefficients and

the density ρ(r, t) via77

ρ(r, t) =

Nbas∑
p,q

cp(t)c
∗
q(t)χp(r)χ

∗
q(r) =

Nbas∑
p,q

Ppqχp(r)χ
∗
q(r). (3.131)

Taking the time derivative of the density matrix and multiplying with the imaginary unit

i yields140

i
∂

∂t
P = i

∂

∂t
CC† = iC

(
∂

∂t
C†
)

+ i

(
∂

∂t
C

)
C† (3.132)
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Using equation 3.130 and its hermitian conjugate one obtains

i
∂

∂t
P = −CC†FKS + FKSCC† = FKSP−PFKS. (3.133)

This von Neumann-type equation is the basis for the further derivation. Looking at a

single matrix element the final equation reads77

∑
q

{FpqPqr − PprFqr} = i
∂

∂t
Pqr (3.134)

Let us assume the energy variation of the system is described by the Kohn-Sham (or Fock

operator) F (0). Introducing the time-dependent perturbation AF̃ (t) we obtain

F = F (0) + AF̃ (t). (3.135)

Due to the perturbation the density matrix P will change, which can be described by

adding a term ∆P . Since the Kohn-Sham operator contains all orbitals and hence depends

on the density matrix, it will respond to the change in the density matrix, giving rise to

the term ∆F

P = P (0) + ∆P = P (0) + P (1) (3.136)

F = F (0) + AF̃ (t) + ∆F = F (0) + F (1) (3.137)

with

∆Fpq =
∑
st

∂F 0
pq

∂Pst
∆Pst. (3.138)

If we take only a single oscillatory perturbation into account, the time-dependent pertur-

bation can be written as

AF (t) =
1

2

(
Aωe

−iωt + A−ωe
iωt
)
. (3.139)

As before two terms are necessary in order to define a Hermitian operator. By analogy

the perturbation of the density matrix can be written as77,140

P (1)
pq =

1

2

(
dpqe

−iωt + d∗qpe
iωt
)
. (3.140)
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Plugging the expressions for F and P into equation 3.134 and collecting all terms of first

order yields

Nbas∑
q

[
F (0)
pq P

(1)
qr − P (1)

pq F
(0)
qr + F (1)

pq P
(0)
qr − P (0)

pq F
(1)
qr

]
= i

∂

∂t
P (1)
pr . (3.141)

Inserting the definitions yields on the right-hand side

i
∂

∂t
P (1)
pr = i

1

2

∂

∂t

(
dpre

−iωt + d∗rpe
iωt
)

=
1

2
ωdpre

−iωt − cc.

and

1

2

Nbas∑
q

[
F (0)
pq dqr − dpqF (0)

qr +

(
Apq +

∑
st

∂F
(0)
pq

∂Pst
dst

)
P (0)
qr −

P (0)
pq

(
Aqr +

∑
st

∂F
(0)
qr

∂Pst
dst

)]
e−iωt + cc.

on the left-hand side. Just looking at the terms with e−iωt gives

Nbas∑
q

[
F (0)
pq dqr − dpqF (0)

qr +

(
Apq +

∑
st

∂F
(0)
pq

∂Pst
dst

)
P (0)
qr −

P (0)
pq

(
Aqr +

∑
st

∂F
(0)
qr

∂Pst
dst

)]
= ωdpr.

Using the idempotency of P 51,77 one obtains

PP = P (0)P (0) +P (0)P (1) +P (1)P (0) +P (1)P (1) = P (0) +P (0)P (1) +P (1)P (0) = P. (3.142)

It follows for the first-order change that

P (0)P (1) + P (1)P (0) = P (1). (3.143)

For a single matrix element the equation can be written as

Nbas∑
q

{
P (0)
pq P

(1)
qr + P (1)

pq P
(0)
qr

}
= P (1)

pr . (3.144)
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With this equation we can derive which elements of Ppq and thus dpq (see eq. 3.140) are

non-zero. Since P (0) refers to the time-independent unperturbed SCF ground state, the

following relations hold:

P
(0)
ij = δij (3.145)

P
(0)
ia = P

(0)
ai = P

(0)
ab = 0, (3.146)

with i, j being occupied and a, b being virtual orbitals. Thus for a matrix element of two

occupied orbitals P
(0)
ij it follows

Nbas∑
q

{
P

(0)
iq P

(1)
qj + P

(1)
iq P

(0)
qj

}
= P

(1)
ij (3.147)

Nocc∑
q

{
δiqP

(1)
qj + δqjP

(1)
iq

}
= P

(1)
ij (3.148)

P
(1)
ij + P

(1)
ij = P

(1)
ij (3.149)

This is only fulfilled if P
(0)
ij = 0. Similar for a matrix element between two virtual orbitals

Pab it follows
Nbas∑
q

{
P (0)
aq P

(1)
qb + P (1)

aq P
(0)
qb

}
= P

(1)
ab (3.150)

Nocc∑
q

{
δaqP

(1)
qb + δqbP

(1)
aq

}
= P

(1)
ab (3.151)

P
(1)
ab + P

(1)
ab = P

(1)
ab (3.152)

Thus only matrix elements between the occupied and virtual blocks (dia, dai) can be

non-zero. Furthermore P (0) and F (0) are diagonal. Using the so-called zero-frequency

limit (A = 0), which is equivalent to assuming an infinitesimal perturbation and setting

d = x + y one obtains two coupled equations77

F (0)
aa xai − xaiF

(0)
ii +

∑
bj

{
∂F

(0)
ai

∂Pbj
xbj +

∂F
(0)
ai

∂Pjb
ybj

}
P

(0)
ii = ωxai (3.153)

F
(0)
ii yai − yaiF (0)

aa + P
(0)
ii

∑
bj

{
∂F

(0)
ia

∂Pbj
xbj +

∂F
(0)
ia

∂Pjb
ybj

}
= ωyai. (3.154)
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At this stage a definition for F has to be given, which can be plugged into equations 3.153

and 3.154. Looking at the most general case of a hybrid functional, with the Kohn-Sham

operator

F
(0)
ai =

∫
d3rφa(r)

{
−1

2
∇2 +

M∑
K=1

−ZK
|r −RK |

+

∫
d3r′

ρ(r′)

|r − r′|

−cHF
∫
d3r′

ρ(r, r′)

|r − r′|
+ (1− cHF )

δExc
δρ(r)

}
φi(r), (3.155)

the derivative of F is given by

∂Fai
∂Pbj

=
∂

∂Pbj

∫
d3r

∫
d3r′

φa(r)
∑

p,q Pp,qφp(r
′)φq(r

′)φi(r)

|r − r′|

− cHF
φa(r)

∑
p,q Pp,qφp(r)φq(r

′)φi(r
′)

|r − r′|

− (1− cHF )φa(r)
δExc
δρ(r)

φi(r). (3.156)

Thus the response of the Kohn-Sham operator can be written as77

∂Fai
∂Pbj

= (ia|jb)− cHF (ij|ab) + (1− cHF )(ia|fxc|jb). (3.157)

Equation 3.153 and 3.154 are the so-called Casida equations, which are generally formu-

lated as a matrix equation[
A B

B∗ A∗

][
X

Y

]
= ω

[
1 0

0 −1

][
X

Y

]
(3.158)

Keeping in mind that F
(0)
ii = εi the matrix elements can be written as (again for a hybrid

functional)77

Aia,jb = δijδab(εa − εi) + (ia|jb)− cHF (ij|ab) + (1− cHF )(ia|fxc|jb) (3.159)

Bia,bj = (ia|bj)− cHF (ib|aj) + (1− cHF )(ia|fxc|bj). (3.160)

The Casida equations have the same form for TDHF and TDDF, although the matrix

elements are of course different. Setting cHF to zero yields the elements for pure TDDFT,

while cHF = 1 gives TDHF. Setting the elements of the matrix B to zero yields CIS in

56



3 Computational Methods for the Calculation of Excited States

the case of TDHF and the so-called Tamm-Dankoff approximation (TDA)141 in the

case of TDDFT.

Since the matrix B include de-excitations, TDHF is an extension to CSI. The Y ampli-

tudes which are included via the matrix B, are a measure of the ground-state correlation

that is introduced. The use of a Hartree-Fock wave function is thus only justified if these

elements are small, because otherwise the HF reference is a bad approximation.77 This

fact shows the main problem of TDHF: it can only give a significant improvement over

CIS if Y and B have a relevant size, but in this case its applicability is doubtful. Since the

cost of TDHF is about twice that of CIS it is rarely used in practical calculations.77 The

excitation energies are generally slightly less severely overestimated than with CIS and

TDHF obeys the Thomas-Reiche-Kuhn sum rule, but it is questionable if these benefits

are worthwhile the additional costs. Triplet states are usually poorly described due to the

HF reference, which can even lead to triplet instabilities.77 TDHF has no inherent bias

towards neutral or charge-transfer states (see below) and can thus be used if qualitatively

correct results, e.g. the shape of potential energy surfaces, are required. Its scope for the

prediction of spectra is however limited due to the high quantitative error in the excitation

energies.

TDDFT is nowadays the most popular method for the calculation of excitation energies

and electronic spectra, since it is cost efficient, shows a robust performance, has broad

applicability and leads to excitation energies with a typical error range of 0.1 - 0.5 eV

for valence excited states.77 Thus it is much more accurate than TDHF. Hybrid TDDFT

is slightly more expensive, since the response of the xc-potential has to be computed

(typically numerically).77 Similar to ground-state DFT, the fact that the true exchange-

correlation functional is not known poses significant problems. Again the quality of a

functional is not known a priori and benchmarks have to be performed, due to the “zoo of

functionals”. This has been done extensively in the literature and justifies the existence

of a review article on TDDFT benchmarks.142

The locality and (derived from that) the incorrect long-range behavior of the exchange-

correlation functionals is responsible for the main problem of TDDFT, the charge-

transfer excitations. This can be shown using a four-orbital-four-electron model sys-

tem. Let the orbitals i, j be located at molecule A and a, b at molecule B. Let furthermore

the intermolecular distance be high enough, so that the overlap of orbitals on different

molecules can be neglected. The matrix elements in equations 3.159 and 3.160 then
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simplify to77

Aia,jb = δijδab(εa − εi)− cHF (ij|ab) (3.161)

Bia,bj = 0 (3.162)

The B matrix reduces to a zero matrix and in the A matrix only the orbital difference and

the Coulomb term (ij|ab) (which originates form the response of the non-local Hartree-

Fock exchange integral) remain. The response of the Coulomb integral (i.e. an exchange

integral), as well as the response of the local xc-functional, vanish if the overlap is zero.

In TDHF (similar to CIS, see above) the orbital difference is a good approximation for

the difference of ionization energy and electron affinity and the Coulomb term reproduces

the correct 1
R

distance behavior.

In the case of a pure density functional (cHF = 0) the Coulomb term also vanishes and

contrary to Hartree-Fock theory the orbital energy of the virtual orbital is not connected

to the electron affinity and thus the the charge-transfer energy is badly underestimated.

Furthermore the term is just a constant and thus the correct distance behavior cannot

be reproduced.68,69 Hybrid functionals generally perform somewhat better, but for an

accurate description a very high amount of HF exchange is needed, which decreases the

performance for valence excited states. Since pure TDDFT underestimates the energy of

charge-transfer excitations and pure TDHF tends to overestimate all excitation energies,

a whole range of values can be obtained, depending on the actual amount of HF exchange.

This is not very satisfying, but can be used to calibrate a functional for a certain sys-

tem.143

Since charge-transfer excitations play an important role (e.g., for push-pull systems, ex-

citations in oligomers, charge transfer at interfaces in organic optoelectronic devices, etc)

there has been a massive effort to correct this deficiency of TDDFT. One possibility might

be to go beyond linear response, by including higher-order terms. With these terms even

LDA was shown to give a qualitatively correct descriptionvii of CT states.144 Most ap-

proaches are however based on long-range corrections. The first steps in this direction

were taken by Savin et al.146,147 as well as Gill and coworkers.148,149 Since HF exchange

shows the correct long-range behavior, the idea is to use the DFT exchange functional for

the short-range and the exchange integral for the long-range interaction. This connection

viiZiegler et al. also showed that these higher order terms necessary for DFT are zero in TDHF, thus
explaining, why this problem does not arise here.144 Thus they are also called spurious “self-interaction
terms”.145 For range separated hybrids, these terms do not vanish, but are rather small, which is in-
line with their improved performance.
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is achieved via a separation of the two-electron operator using an Ewald split150

1

r12

=
1− erf(µr12)

r12

+
erf(µr12)

r12

. (3.163)

The parameter µ controls the ratio of short- (first term) and long-range interaction (second

term). This ansatz was successfully applied to GGA functionals by Hirao et al.150,151 In

this approach the percentage of HF exchange is zero for r12 = 0 and 100 for r12 → ∞.

For comparison, in B3LYP it is constant at about 20 %. The splitting was generalized

to hybrid functionals by Handy and coworkers in the CAM-B3LYP (CAM = Coulomb

attenuating method) functional.152 In order to work for a hybrid functional, two additonal

parameters were included in the splitting

1

r12

=
1− [α + β · erf(µr12)]

r12

+
α + β · erf(µr12)

r12

. (3.164)

In CAM-B3LYP the values of the parameters are α = 0.19 and α+ β = 0.65, which leads

to about 19% of HF exchange at r12 = 0 and 65 % at the long-range limit. Other exam-

ples of long-range corrected hybrids are LC-ωPBE153 and ωB97XD.154 These functionals

sufficiently improve the description of charge-transfer and Rydberg statesviii.77,142

It has been argued that the range separation with a fixed parameter is unphysical, since

µ should depend on the density.155 One pragmatic way to go beyond a fixed parameter

is to find the optimal parameter for each system. Since using the exact functional the

ionization energy should be identical to the HOMO energy, the optimal parameter can be

found by minimizing the difference

δIP = |εHOMO − (Egs(µ,N)− Egs(µ,N − 1))| . (3.165)

This “IP-tuning”156 gives an improved description and allows for the definition of the

optimal value of µ in a consistent way,155 but is also quite demanding, because the min-

imization has to be performed prior to the actual calculation. Another problem of the

approach is the loss of size-consistency.157

Double excitations are not included in the linear response of the Kohn-Sham system,

since it requires the interaction with two photons. Thus doubly excited states cannot be

viiiRydberg states are also a problem of TDDFT, which is connected to the local nature of the xc-
functional. Thus it is often seen as being identical to the CT problem. However this is not quite true,
as Rydberg states can be described accurately, if the one-electron energies are reproduced correctly,
since the contributions from the xc-kernel are usually small (see69 for details).
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calculated with standard LR-TDDFT.158

Nevertheless, despite its deficiencies and problems TDDFT is one of the most widely

applicable methods, when calculations of larger systems are needed.

3.3.3 Second-Order Approximate Coupled-Cluster Singles and

Doubles (CC2)

Contrary to CI, where the wave function is a linear expansion of determinants, a non-linear

expansion based on an exponential operator is used in coupled-cluster (CC) theory,48,50,159

ΨCC = eT̂Φ0, (3.166)

with

T̂ = T̂1 + T̂2 + ...T̂N , (3.167)

and

T̂1Φ0 =
∑
i,a

taiΦ
a
i (3.168)

T̂2Φ0 =
∑
i<j

∑
a<b

tabij Φab
ij . (3.169)

The operators T̂i with i > 2 generate the higher excitations accordingly. The coefficients

t are called amplitudes. In order to see the effect of the exponential operator the Taylor

expansion can be used,48

eT̂ = 1 + T̂1 +

(
T̂2 +

1

2
T̂ 2

1

)
+

(
T̂3 + T̂2T̂1 +

1

6
T̂ 3

1

)
+(

T̂4 + T̂3T̂1 +
1

2
T̂ 2

2 +
1

2
T̂2T̂

2
1 +

1

24
T̂ 4

1

)
+ ... (3.170)

Writing the CI wave function in the same formalism yields

ΨCI =
(

1 + T̂
)

Φ0 =
(

1 + T̂1 + T̂2 + T̂3 + ...
)

Φ0. (3.171)

Truncating both wave functions after doubles (CISD, CCSD), i.e. taking only T̂1 and

T̂2 into account, leaves only T̂1 and T̂2 in the CI expansion, while also terms like T̂ 2
1

(disconnected double), T̂ 2
2 (disconnected quadruple) and T̂2T̂1 (disconnected triple) remain
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in the coupled-cluster wave function, due to the non-linear expansion. Thus higher-

order terms are included, despite the truncation. These terms are responsible for the

size-consistency of truncated coupled-cluster methods. While Møller-Plesset perturbation

theory adds excitation types up to a certain order, coupled cluster theory includes defined

types of excitations to infinite order.48

The energy of the coupled-cluster wave function is usually obtained by projecting the

coupled-cluster wave function onto the reference wave function Φ0, since a variational

approach is too demanding.48,50 Due to the Slater-Condon rules and the Brillouin theorem

ony the double excitations can contribute to the CC correlation energy expression.

ECC = 〈Φ0| ĤeT̂ |Φ0〉 = E0+〈Φ0| T̂2+
1

2
T̂ 2

1 |Φ0〉 = E0+
∑
i<j

∑
a<b

(
tabij + tai t

b
j − tbitaj

)
〈Φ0| Ĥ |Φab

ij 〉 .

(3.172)

It is noteworthy that the coefficients of the singles are also included via the disconnected

doubles. All higher excitations do not enter the energy expression, but are involved in

the equation for the amplitudes. It should be noted that T̂ 2
1 as well as T̂2 generate all

doubly excited states. Thus going from CCS to CCSD does not increase the number of

generated determinants, but leads to an improved description of the amplitudes.ix The

equations for the amplitudes can be obtained by projecting onto excited configurations.

It is often convenient to use the similarity transformed Hamiltonian, which is obtained by

multiplying the Schrödinger equation from the left with the de-excitation operator e−T̂ 50

e−T̂ ĤeT̂Φ0 = ECCe
−T̂ eT̂Φ0 = ECCΦ0. (3.173)

The equations can then be written as

〈Φ0| e−T̂ Ĥe−T̂ |Φ0〉 = ECC (3.174)

〈µi| e−T̂ Ĥe−T̂ |Φ0〉 = 0, for i = 1, 2, . . . (3.175)

with 〈µ1| representing the singly excited manifold, 〈µ2| the doubly excited manifold and

so on,

|µi〉 = τ̂µi |Φ0〉 . (3.176)

ixIn fact the singles amplitudes are zero for CCS and thus it does not yield an improved description of
the ground state, if canonical orbitals are used (similar to CIS).48
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The amplitude equations 3.175 form a non-linear system, which has to be solved itera-

tively.50

By itself coupled-cluster is a ground-state method, but it can be used for excited states

via an equation-of-motion (EOM) or linear-response formalism. In this chapter the linear

response of the CC2160 wave function is discussed. CC2 is an approximation to the CCSD

wave function. When dealing with the CCSD often the T̂1-transformed Hamiltonian H̃ is

used,

H̃ = e−T̂1ĤeT̂1 . (3.177)

Thus the amplitude equations reads x

〈µi| e−T̂2H̃eT̂2 |Φ0〉 = 0. (3.178)

Using the BCH (Baker-Campbell-Hausdorff) expansion,50

e−T̂2H̃eT̂2 = H̃ + [H̃, T̂2] +
1

2
[[H̃, T̂2]T̂2] +

1

6
[[[H̃, T̂2]T̂2], T̂2] + ... (3.179)

and plugging the result into 3.178 yields50,160

〈µ1| H̃ + [H̃, T̂2] |Φ0〉 = 0 (3.180)

〈µ2| H̃ + [H̃, T̂2] +
1

2
[[H̃, T̂2]T̂2] |Φ0〉 = 0. (3.181)

The higher-order terms vanish, since the T̂1-transformed Hamiltonian is a one- and two-

electron operator. The Hamiltonian can be written in the spirit of Møller-Plesset theory

as a sum of the Fock operator and the fluctuation potential Û ,

Ĥ = F̂ + Û . (3.182)

Analyzing the CCSD wave function in terms of perturbation theory50 reveals that its

energy is accurate up to third order in the fluctuation potential (while the wave function

is accurate up to first order). The singles amplitudes as well as the doubles amplitudes

are accurate to second order.50 Taking the singles equation from CCSD (second order)

xSince the excitation operators commute there is no problem with the order of the operators, i.e.

eT̂1+T̂2 = eT̂1eT̂2 .
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and including the doubles in the doubles equation just to first order as in MP2 leads to

the CC2 equations.160

Ωµ1 ≡ 〈µ1| H̃ + [H̃, T̂2] |Φ0〉 = 0 (3.183)

Ωµ2 ≡ 〈µ2| [F̂ , T̂2] + H̃] |Φ0〉 = 0 (3.184)

This is equivalent to approximating the connected doubles amplitudes by the correspond-

ing MP2 expression, but with T̂1-transformed integrals,161

taibj =
1

1 + δijδab

˜(ai|bj)
εi − εa + εj − εb

. (3.185)

The CC2 energy is accurate to second order in the fluctuation potential, while the wave

function is still accurate to first order.50 Thus the 2 in CC2 denotes the perturbation

order as in Møller Plesset theory. While CCSD scales as O(n6), CC2 scales as O(n5).160

In the original derivation of CC2 Jørgensen et al. did not aim at developing a new ground-

state method, since they expected CC2 to be of similar quality as MP2. They intended to

develop an approximate coupled-cluster method for which a response function could be

derived, with a structure comparable to the true response function, for the calculation of

excitation energies and transition properties.160 Applying a time-dependent perturbation

Ĥ = Ĥ(0) + V (t) the time-dependent CC2 equations can be derived

〈µ1| H̃ + [H̃, T̂2] |Φ0〉 = i
∂tµ1
∂t

(3.186)

〈µ2| [F̂ + Ṽ , T̂2] + H̃] |Φ0〉 = i
∂tµ2
∂t

. (3.187)

Deriving the response function leads to the Jacobianxi Aµiνj =
∂Ωµi
∂tνj

, from which the

excitation energies can be derived as eigenvalues162

Aµiνj =

(
〈µ1| [H̃, τν1 ] + [[H̃, τν1 ], T̂2] |Φ0〉 〈µ1| [H̃, τν2 ] |Φ0〉

〈µ2| [H̃, τν1 ] |Φ0〉 δµ2ν2εµ2

)
. (3.188)

The doubles-doubles bock simply consists of the orbital energy difference εaibj = εa− εi +
εb − εj. In modern implementations the diagonality of the doubles-doubles block Aµ2ν2 is

used to construct an effective Jacobian for the singles block. This leads to a reduction of

the dimensionality and reduces memory requirements, but makes the eigenvalue problem

xiFor the derivation see160 and references therein.
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non-linear.161

Since the matrix is non-symmetric, the left and right eigenvectors are not identical. Thus

for gradients163 and excitation properties162 both eigenvectors have to be calculated. Thus

a left and a right transition moment exist and the oscillator strength has to be calculated

from the average.162 The non-symmetry of the Jacobian also leads to problems at conical

intersections.164

Similar to MP2 the performance of CC2 can be improved by introducing spin-component

scaling.165–167 In this method the same and opposite spin contributions are scaled by em-

pirical parameters, which is then called SCS-CC2.

A benchmark for the vertical excitation energies yielded a mean absolute error of 0.32 eV

for CC2113 and a study of 0-0-transitions showed a mean absolute error of 0.07 eV for

CC2 and 0.05 for SCS-CC2.168 The largest molecule in the latter study had 78 atoms.

(SCS-)CC2 can treat charge-transfer and neutral excited states on an equal level, but fails

if the contribution from the doubles excitations is significant, since the doubles-doubles

block is just given by the orbital energy difference, which is a heavy approximation. It can

also loose accuracy if the excited state is clearly multiconfigurational.47 In cases, where

the ground state is multiconfigurational, the errors become even larger.47

It is also possible to derive response functions for higher-order methods, like CCSD and

CC3,160 but they become increasingly expensive and multi-reference methods can become

competitive.

SCS-CC2 can be applied to medium-sized and also larger molecules for which it often fea-

tures the best ratio between accuracy and cost. For small systems high-level methods can

(and probably should) be used and for large systems, especially if geometry optimizations,

properties or solvent effects (see below) are of interest, TDDFT has to be applied.

3.3.4 Algebraic Diagrammatic Construction to Second Order

(ADC(2))

Although being derived in a very different framework the algebraic diagrammatic con-

struction to second order, ADC(2),169,170 is similar to CC2. Instead of using the linear

response of a coupled cluster wave function, the idea behind ADC(2) is the perturba-

tive expansion of the transition function, which is related to the polarization propagator

Πpq,rs(ω) (equation 3.116). The derivation presented in this chapter follows references169

and132 closely.

Since the terms Π+(ω) and Π−(ω) of the polarization propagator contain the same in-
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formation usually only the first term is considered. The corresponding matrix equation

is given as169

Π+(ω) = x†(ω1−Ω)−1x, (3.189)

with Ωnn = En − E0 being a diagonal matrix containing the excitation energies and

xn,rs = 〈Ψn| a†ras |Ψ0〉. ε in the general expression for the polarization propagator (equa-

tion 3.116) is usually set to zero, whenever unessential.170 As already mentioned the

excitation energies can be obtained as poles of the propagator and the transition mo-

ments from the residues at the corresponding poles. The transition function T (ω) is given

as132

T (ω) = D†Π+(ω)D, (3.190)

with D containing the matrix elements Drs of a transition operator (usually the dipole

operator). Using equation 3.189 the transition function can also be written as

T (ω) = T†(ω1−Ω)−1T, (3.191)

with Tn = 〈Ψn| D̂ |Ψ0〉 =
∑

rsDrs 〈Ψn| a†ras |Ψ0〉. The transition function has the same

poles as the polarization propagator and the transition moments can be obtained directly

from its residues.

Taking the same partitioning of the Hamiltonian as in Møller-Plesset perturbation theory

(see equation 3.182) the perturbation series can be written as

T (ω) =
∞∑
n=0

T (n)(ω) =
∞∑
n=0

D†Π+(n)(ω)D (3.192)

The expansion can be expressed using a diagrammatic approach, i.e. by constructing the

corresponding Feynman or Goldstone diagrams,xii respectively and translating them to

the corresponding algebraic expressions. The complete derivation is beyond the scope of

this chapter (see170 for details), but the most important steps are outlined.

In order to arrive at the working equations, the following assumptions are made:170

1. The polarization propagator can be written as

T (ω) = F†Γ(ω)F with Γ(ω) = [ω1− (K + C)]−1. (3.193)

xiiThe idea to use a diagrammatic representation of the perturbation expansion was developed by Feyn-
man for quantum electrodynamics. It was later adapted to quantum chemistry, which led to Hugen-
holtz and Goldstone diagrams. These diagrams can be constructed from simple graphical rules and
then be translated to the corresponding algebraic expression.49
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F is the vector of the so-called modified transition moments and K+C is a Hermitian

matrix independent of ω.

2. F, Γ(ω), K and C are defined in terms of singly, doubly, ... excited configurations

with respect to the unperturbed HF ground state. Especially K is the diagonal

matrix of the zeroth-order excitation energies (i.e. orbital energy differences),

Kjk,jk = εj − εk (3.194)

Kijkl,ijkl = εj + εj − εk − εl. (3.195)

3. C and F can also be expanded in a perturbation series,

F =
∞∑
n=0

F(n) (3.196)

C =
∞∑
n=1

C(n). (3.197)

4. The expressions for F(n) and C(n) can be determined by demanding that Tn(ω),

which is obtained by plugging the expansions for F and C into equation 3.193, is

identical up to nth order with the perturbation expansion of T (ω) (equation 3.192).

This order n is the order of the ADC treatment (i.e. ADC(n)).

For the justification of these assumptions, see.170 Equation 3.193 can be obtained from

equation 3.191 by replacing T and Ω with the transformed properties F = YT and

K + C = YΩY†.

It is obvious that the poles of Γ(ω) are identical to the poles of T (ω). They can be

obtained by solving the eigenvalue equation of the ADC matrix132,169

(K + C)Y = YΩ. (3.198)

The eigenvalues Ωnn thus contain the excitation energies. The eigenvectors are used to

derive the transition properties, via T = Y†F.

The elements of the ADC matrix K + C are constructed as outlined in point four.170 The

configurational space of ADC(2) consists of particle-hole (p-h) excitations (i.e. singles)

and 2p-2h excitations (i.e. doubles). The singles block of the ADC(2) matrix is given by
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terms up to second order,

(K + C)jk,j′k′ = (εj − εk)δjj′δkk′ − 〈jk′| |j′k〉+ C
(2)
jk,j′k′ . (3.199)

The term C
(2)
jk,j′k′ consists of three distinct contributions (see170). The p-h/2p-2h coupling

block is given by a first-order contribution of C,

Cjk,i′j′k′l′ = δji′ 〈k′l′| |kj′〉 − δjj′ 〈k′l′| |ki′〉 − δkk′ 〈jl′| |ij′〉+ δkl′ 〈jk′| |i′j′〉 . (3.200)

and the 2p-2h block is simply given by the diagonal matrix of the zeroth-order excitation

energies, i.e. the orbital energy difference.

The modified transition moments of zeroth and first order are given by

F
(0)
jk = Djk (3.201)

F
(1)
jk =

∑
rs

〈js| |rk〉
εa − εj + εb + εi

Drs, (3.202)

while F (2) contains 13 contributions (see170).

Since the ADC(2) approach is based on the expansion of the polarization propagator and

not on the response of a ground state, there is no unique definition of total energies.

Furthermore (as in linear-response methods) the excited state is not calculated explic-

itly. Therefore properties and gradients cannot be computed directly. This problem was

solved using the intermediate-state representation,171 an alternative derivation of

the ADC(2) equation starting from a defined correlated ground-state wave function |Ψ0〉.
A set of orthogonal basis functions is constructed, by acting with excitation operators

on |Ψ0〉 and subsequent orthogonalization. With these “intermediate states” a CI matrix

using the shifted Hamiltonian Ĥ −E0 can be constructed. Taking n-th order MP theory

for |Ψ0〉 and E0 yields the ADC(n) equations.132

The ADC(2) matrix is very similar to the CC2 Jacobian. The structure (i.e. the type of

blocks) is the same and from first inspection one can also see that the doubles-doubles

block is completely identical. In fact ADC(2) can be seen as an approximation to CC2,

where the cluster amplitudes of the ground state singles have been neglected.168 Further-

more the ADC(2) has the advantage of relying on a Hermitian matrix. This leads to a

better description of conical intersections and to an improved performance for proper-

ties and gradients, since contrary to CC2 left and right moments are identical and hence

only one has to be computed.164 A benchmark168 of 0-0 excitation energies showed that
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ADC(2) gives slightly larger errors than CC2, but its performance and its scope are oth-

erwise comparable.

The ADC(2) scheme presented above is sometimes called ADC(2)-s, since it is of strict

second order. It is possible to include the first order 2p-2h term, C
(1)
ijkl,i′j′k′l′ , into the

doubles-doubles block, which comes from the expansion of the transition function up to

third order (ADC(3)). This defines the extended ADC(2) method, ADC(2)-x, which gives

an improved description for excited states with significant contributions from double ex-

citations.172 However, since the inclusion of a single term from third order does not give a

balanced description, the overall accuracy is reduced in ADC(2)-x. Using a Davidson al-

gorithm,48 the scaling of ADC(2)-s is O(M5), like CC2, and ADC(2)-x scales like O(M6).

Of course also other orders of the perturbation expansion are possible. ADC(1) yields

CIS excitation energies and first-order moments. ADC(3) has been implemented recently

and is like ADC(2)-x an O(M6) method, while showing a very promising performance.173

3.4 Other Methods and recent Developments

In this section several other methods and newer developments are covered briefly.

The SAC-CI method174 (symmetry adapted cluster) is based on a cluster expansion

of the wave function ΨSAC
g , which is different from the coupled-cluster expansion, since

it is symmetrized. Similar to coupled-cluster theory some terms are neglected in actual

calculations. Excited state functions are defined in a CI form,by acting with an excitation

operator on ΨSAC
g and projecting out the ground state. The state is then expressed in CI

form.174

Another method based on the cluster expansion is equation-of-motion coupled-

cluster (EOM-CC).175,176 The EOM approach does not directly involve neither propa-

gators, nor linear response theory. Instead, generalized excitation operators are defined

and attempted to be determined.51

The operator R̂(f) generates an excited state |f〉 from the ground state |0〉. |f〉 and |0〉
are eigenfunctions of a general (not necessarily Hermitian) operator Ĥ,176

R̂(f) |0〉 = |f〉 . (3.203)
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It should be noted that R̂ is not a simple Fock space excitation operator since it creates

the exact eigenfunction |f〉 from the ground state. The operator can be defined by a

projection

R̂(f) ≡ |f〉 〈0| . (3.204)

Let the commutator [Ĥ, R̂(f)] act on an arbitrary reference state |0̃〉. If the reference has

a non-zero overlap with the exact ground state it follows176

[Ĥ, R̂(f)] |0̃〉 = ω0f R̂(f) |0̃〉 . (3.205)

Thus the exact excitation energy can in principle be obtained without explicitly calcu-

lating the exact initial and final states if the corresponding operator is known.176 By

defining a general de-excitation operator L̂(f) and multiplying with L̂(f) |0̃〉 from the left

one obtains

ω0f =
〈0̃| L̂(f)[Ĥ, R̂(f)] |0̃〉
〈0̃| L̂(f)R̂(f) |0̃〉

. (3.206)

This EOM functional is quite general and the starting point for the derivation of different

methods.i Of course for any practical method the general excitation operators have to

be replaced by less general operators (R̃(f),L̃(f)) that are defined with respect to an

approximate reference state, rather than the exact eigenstate,

R̃(f) ≡ |f〉 〈0̃| . (3.207)

Furthermore they are expanded into a set of operators:

R̃(f) =
∑
k

rfkρk. (3.208)

Using the first variation of the functional (equation 3.206) with respect to R̃ and L̃, the

following equations can be derived176

(Ĥ− E0)R = RΩ, (3.209)

L(Ĥ− E0) = ΩL, (3.210)

with E0 = 〈0̃| Ĥ |0̃〉. R and L contain the expansion coefficients of the excitation opera-

iFor instance the correct choice of the excitation manifold (singles) and reference state (single determi-
nant) yields the TDHF equations.
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tors and Ω contains the transition energies.

In order to solve this secular problem the Hamiltonian, the operators and the reference

have to be defined. In EOM-CC Ĥ is the similarity transformed Hamiltonian Ĥ = e−THeT

and the reference |0̃〉 is a single Slater determinant. Consequently, R̃(f) and L̃(f) are also

defined with respect to the reference and hence their basis are the standard Fock space

excitation and de-excitation operators. Typically the cluster operator T is truncated at

the same level as R̃ and L̃.176

Excitation energies are usually computed at the EOM-CCSD level (EOM-EE-CCSD),

which scales similar to CISD as O(n6). The accuracy is typically between 0.1 and 0.3

eV.176 EOM-EE-CCSD can deal with excited states with near-degeneracies, but fails when

the ground state acquires multi-referenceii character.47,176 The operators R̃ and L̃ need

not be electron-conserving, which is interesting for applications to ionized or electron at-

tached states (EOM-IP/EA).176

The second-order polarization propagator approach (SOPPA)177 is also based

on a consistent second-order perturbation expansion of the polarization propagator, sim-

ilar to ADC(2). Due to the different approach (superoperator)iii the working equations

are quite different. Nevertheless, the results seem to be similar to ADC(2).169

The so-called GW-method178 relies on many-body Green’s function theory. It is based

on the Dyson equation (3.102), typically using KSDFT. The self-energy is approximated

as depending on the product of a Green’s function (G) and a screened Coulomb interac-

tion (W).178,179 The GW method corrects the deficiencies of the single-particle energies

(and thus the band gaps) for the artifacts of typical xc-functionals.178The Bethe-Salpeter

equation can be used to include effects that are not covered by the effective interaction

W.178 GW is well-known in solid-state physics and has recently been applied to the calcu-

lation of single molecules. Using GW+BSE in conjunction with TDDFT has also resulted

in significantly improved excitation energies.178

In recent years the density matrix renormalization group (DMRG) algorithm,

iiThe EOM spin-flip method, which uses a high spin reference, is an interesting alternative for biradicals
and other multi-reference systems.176

iiiThe Hamiltonian superoperator generates the commutator if it acts on an arbitrary operator51

ĤB = [H,B].
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which was originally introduced in solid-state physics, has become increasingly important

in quantum chemistry.180–182 The main problem of CI-type approaches is the factorial

scaling. The full-CI (FCI) wave function for the state A with N electrons is given by

Ψ
(N)
A = Φ

(N)
A,FCI =

∞∑
I

C
(A)
I Φ

(A)
I (φI1 , φI2 , · · · , φIN ) (3.211)

The number of configuration state functions Φ
(A)
I and thus the size of the Hilbert space

scales factorially with the size of the orbital space.181 Since the vector of the CI coeffi-

cients is sparse, only a subspace is important for an accurate description. Of course one

cannot know in advance which determinants are important and which can be neglected.

This is only known after the CI matrix has been diagonalized. Therefore, all possible con-

figurations have to be included somehow, but, if one wants to avoid the factorial scaling,

without explicitly representing them. The idea behind the DMRG algorithm is to select

the important configurations iteratively and include them implicitly, instead of simply

truncating the sum after a certain excitation level, as in a CIS or CISD (see above).

The DMRG state can be written as a linear combination of N-electron basis functions

Ω
(N)
K , which are themselves wave functions of CI-type (for instance describing some sub-

spaces),182

Ψ
(N)
A = Φ

(N)
A,DMRG =

M ′∑
K

B
(A)
K Ω

(N)
K ({Φ(N)

I }), (3.212)

with

Ω
(N)
K =

∑
L

D
(K)
L Φ

(N)
L . (3.213)

If the basis functions Ω
(N)
K were known, the coefficients B

(A)
K and thus the DMRG state

could be obtained by diagonalizing the Hamiltonian. However, calculating the CI-type

basis functions the normal way (i.e. construction in terms of Slater determinants and

subsequent diagonalization to obtain the coefficients D
(K)
L ) gives a CI method and the

scaling would still be factorial. In fact, if one uses a full-CI for Ω
(N)
K , then M ′ = 1 and

the DMRG wave function is of course identical to FCI. Thus the expansion coefficients

D
(K)
L have to be constructed without knowing the configurations explicitly.182 The DMRG

algorithm achieves this by using an adaptive many-body basis.183

In this iterative approach the spin orbital space is at first partitioned into blocks. At the

beginning there is an active system block (AS), two additional spin orbitals forming the

blocks BL and BR and a complementary block (CS), sometimes called the environment
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Figure 3.3: DMRG scheme: At first, the spin-orbital space (often called sites183) is divided
into four subspaces (the “blocks”), AS, BL, BR and CS, for which the Slater
states are constructed explicitly. Then, the combined blocks are formed and
the decimation is used to reduce the dimensionality. In the next blocking
steps the active system is enlarged stepwise and the complementary system is
diminished accordingly

(see Figure 3.3).180,183

It can be shown that the operators describing the combined block AS ′ = ASBL can be

constructed from the matrix representation of the operators of the subblocks and the

quantum number of the states and hence no knowledge of their actual composition (i.e.

the expansion in Slater determinants) is necessary.183 This is exploited in the DMRG

algorithm.

At first the active system is chosen to be small and hence its composition (all contributing

Slater determinants) and the corresponding operators can be calculated explicitly. The

same is true for the blocks BL and BR. The composition of CS has to be guessed in some

way.181 This means that in the first step, all spaces are constructed as Slater states, i.e.

the expansion is given explicitly, as in a CI. Thus it is possible to calculate the matrix

representations of all operators of interest for all subspaces.

Then the “blocking” takes place, which means the spaces are enlarged: AS ′ = ASBL and

CS ′ = CSBR (see Figure 3.3). As stated above, using the matrix representations of the

operators of the subblocks one can construct the Hamiltonian of the new blocks. The

whole wave function is given as a tensor product of the wave functions for the active and

the complementary system iv

Ψ
(N)
A = Φ

(N)
A,DMRG =

∑
IJ

W
(A)
IJ [Ω

(N ′)
AS′,I ⊗ Ω

(N ′′)
CS′,J ]. (3.214)

ivIt should be noted that the information which spin orbitals are occupied and which are unoccupied
was not used in the definition of the blocks. Hence all states with different particle numbers have to
be taken into account. If the active system contains i spin orbitals 2i states are thus needed, since
each orbital can be empty or occupied. The boundary condition is N ′ +N ′′ = N .182
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The Hamiltonian is then diagonalized and the coefficients WIJ can be calculated. These

are used to construct the reduced density matrix of the system block by tracing out the

environment basis states,180

ρ
(AS)
IK =

∑
J

WIJWKJ . (3.215)

The crucial step is the so-called “decimation”. The m eigenstates of the reduced density

matrix with the highest eigenvaluesv can be used as the new basis.182 The Hamiltonian

and the second quantization operators (or their matrix representation, respectively) are

transformed to this basis. The Hamiltonian and all other operators are hence “renor-

malized” in this step. This terminates the first iteration step. The block AS ′ is now no

longer represented by its Slater states, but the corresponding operators are known in the

renormalized basis.

In the next step, the active system is enlarged by another orbital and the size of the

environment is reduced accordingly. Since the matrix representation of the operators of

the previous active system AS ′ is known from the renormalization and the operators of

the single orbital can be constructed explicitly, the Hamiltonian of the new active system

can be computed. The dimension of the active system has thus been enlarged from m to

2m. However in the following decimation step, again only m eigenvectors are used and

thus the size of dimension is retained.182

This iterative process consisting of blocking and decimation is repeated until the active

space contains all orbitals and none remain in the complementary system. This termi-

nates the first sweep.181,182 Since the guess for the complementary system introduces an

error, the algorithm is then run again with reversed orbital ordering, i.e. the orbital added

in the last step is now the starting point. Thus the previously constructed active space

is now used as complementary system. Repeating these macroiterations gives the final

DMRG result.182

As all observables can be constructed from the renormalized matrix representation of the

creation and annihilation operators, explicit knowledge of the structure in terms of Slater

determinants is not needed. The iterative construction of an adaptive many-body basis

without explicit calculation of the expansion in Slater determinants leads to a polynomial

scaling.183

A very recent development is the constricted variational DFT (CV-DFT) method90,145

vFor details on why the eigenstates with the highest eigenvalues of the reduced density matrix provide
a good basis, see182,184 and references therein.
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3 Computational Methods for the Calculation of Excited States

by Ziegler and coworkers. The appealing feature of this theory is that two seemingly dif-

ferent methods, TDDFT and ∆-SCF, can be derived from it. While ∆-SCF optimizes

the MOs of a determinant with non-Aufbau occupation, TDDFT uses the response of

the ground-state density due to a time-dependent perturbation. Yet both can be seen as

special cases of SCF-CV(N)-DFT.145

At first the second-order method, CV(2)-DFT is described briefly. The starting point is a

Slater determinant. Each occupied orbital is then allowed to vary by mixing in a fraction

of each virtual orbital. This can be written as145

φ′i = φi +
vir∑
a

Uaiφa −
1

2

occ∑
j

vir∑
a

UaiUajφj. (3.216)

The new orbitals are orthonormal to second order in U . The density matrix of the

determinant is given by

ρ′(1, 1′) = ρ(0)(1, 1′) + ∆ρ′(1, 1′), (3.217)

where ∆ρ′(1, 1′) contains all terms up to second order in U .145 Using this density, the

Kohn-Sham energy functional gives

EKS[ρ′] = EKS[ρ(0)] + U̇ †(AKS +BKS)U̇ , (3.218)

with U̇ being a column vector containing the elements Uai and (AKS +BKS) is the ground

state Hessian with the elements145

AKSai,bj = δabδij(ε
0
a − ε0i ) +KKS

ai,bj; BKS
ai,bj = KKS

ai,jb. (3.219)

The excitation energy can simply be calculated as the difference

EKS[∆ρ′] = EKS[ρ′]− EKS[ρ0]. (3.220)

However an optimization without constraints would lead to EKS[∆ρ′] = 0.145 Thus it is

demanded that the excitation involves an excitation of an electron from the occupied space

∆ρocc = −
∑

ija UaiU
∗
ajφi(1

′)φ∗j(1) to the virtual space ∆ρvir = −
∑

iab UaiU
∗
biφa(1

′)φ∗b(1),

which is done using the Lagrangian145

L = EKS[ρ′] + λ

(
1−

∑
ai

UaiU
∗
ai

)
. (3.221)
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Demanding that L is stationary to any real variation in U leads to the eigenvalue equa-

tion145

(AKS +BKS)U̇ (I) = λ(I)U̇
(I). (3.222)

Using the Tamm-Dancoff approximation this expression is identical to the adiabatic

TDDFT-TDA expression.145

As mentioned above Ziegler et al. showed that the linear response approach is responsible

for the incorrect description of charge-transfer states in TDDFT, rather than the quality

of the functional itself.144 The higher-order terms, which go beyond linear response, can

be incorporated, by taking CV-DFT beyond second order (CV(n)-DFT). In order to ar-

rive at an expression accurate to all orders, a general unitary transformation matrix Y is

used, which can be written as145

Y = eU = I + U +
U2

2
+ · · · (3.223)

A set of occupied orbitals orthonormal to any order of U is given by145

φ′i =
occ∑
j

Yjiφj +
vir∑
a

Yaiφa. (3.224)

Similar to the second-order density an all-order density can be derived and using the same

restriction as before, a corresponding expression for the excitation energy is obtained.145

This energy can be calculated to all orders in Uai, with U̇ being optimized according to

equation 3.222 (i.e. second order). Alternatively U̇ can be optimized self-consistently for

all orders, which is called SCF-CV(n)-DFT.145

∆-SCF can be derived as a special case from the latter. Contrary to TDDFT ∆-SCF

incorporates the higher-order self-interaction terms.145 The practical applicability and

scope of CV-DFT are not yet well established.145 As a theoretical framework, however, it

seems to be quite powerful. The variational approach to excited states is well accepted

in HF theory, but not in DFT.145 The link between the variational approach and the (via

the Runge-Gross theorem) theoretically well-founded TDDFT is thus very interesting.

The spectroscopically oriented CI (SORCI)185 proposed by Neese relies on concepts

from MRCI and MRPT, as well as the difference-dedicated CI (DDCI). At first a CASSCF

or RASSCF is performed, which is used to select the dominant configurations for the refer-

ence space S. This reference space is rediagonalized to give the zeroth-order wave function.
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Then an MRPT2 calculation is performed using this wave function. The second-order en-

ergy is computed from the CSFs in the so-called first-order interacting space (FOIS) R.

The SORCI uses concepts from DDCI to select the relevant configurations. The MRPT2

energy expression is then used to partition R into a strongly (R′) and a weakly interacting

subspace (R′′), according to the contributions of the CSFs to the energy.186

The strongly interacting configurations together with the reference space are used as the

ineracting space for an MRCI. That means that in the next step the Hamiltonian matrix

is diagonalized in the space R′+S. The contribution from the weakly interacting configu-

rations is obtained with a second MRPT2 step. In the last step the approximate average

natural orbitals (AANO) are calculated from the averaged reduced density matrices of

the computed states. With these AANOs the complete procedure is repeated (second

iteration) to obtain the final energies

For reasons of efficiency the first iteration, which generates the AANOs, uses the DDCI2

space (R=DDCI2), which grows only quadratically with molecular size. In the second

computation the larger space DDCI3 is used (R=DDCI3). The SORCI furthermore uses

the Davidson correction and the RI approximation.185
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4 Environmental Effects on Ground and

Excited States

The investigation of intermolecular interactions has become increasingly important in

the last decades, or as Mark Ratner put it, “chemistry of the 20th century was about

intramolecular interactions; chemistry of the 21st century will be about intermolecular

interactions.”53 They are responsible for the folding of proteins and consequently de-

termine the shape of binding pockets, they keep the strains of the DNA together and

are also important for polymers, the interface- and bulk structure of organic semicon-

ductors and other applications in biology and material sciences. The interaction with a

solvent can stabilize or destabilize ground and excited states and is responsible for solva-

tochromism. Furthermore some reactions (typically involving ions) are only exergonic in

solution. Hence the modeling of intermolecular interactions with computational methods

has become of increasing importance.187

In many cases the problem can be reduced to the inclusion of environmental effects on

some system of interest (so-called “focused models”188). If for instance an optical spec-

trum for a solvated chromophore is of interest, it is not efficient (and unnecessary) to

calculate the excited states of the whole system (i.e. chromophore + solvent molecules).

Instead the computation of the chromophore with incorporation of environmental effects

is desirable. The same is true for crystal defects188 (see Figure 4.1) or the calculation

of monomers and small oligomers in a crystal environment, e.g. for the computation of

transport properties. A focused model can even be formulated for the active center of an

enzyme.

The Hamiltonian of a focused model consists of the focused part ĤF , the remainder (the

environment) ĤR and the interaction between the two parts,188

ĤFR(rF , rR) = ĤF (rF ) + ĤR(rR) + Ĥ int(rF , rR), (4.1)
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Figure 4.1: Sketch of a solvated single molecule (plotted with VMD189) and a shifted
dimer in an organic crystal as examples of a focused model.

with rF and rR representing the degrees of freedom of the respective parts. Apart from

the obvious electrostatic and van der Waals interactions, also dative bonds (coordination),

H-bonds, or even covalent bonds can contribute to the interaction between the two parts.

While covalent bonds are for instance typically encountered in the modeling of proteins,

so-called explicit solvation effects (like coordination) can be essential for the stabilization

of solvated molecules.

Regarding crystal and protein environments it is often important to give an atomistic

description of the surrounding molecules, atoms and residues. For instance the exact po-

sitions of the atomic charges are well defined and thus may be important for a realistic

modeling. This atomistic picture is recovered by the so-called quantum mechanical/

molecular mechanical hybrid methods (QM/MM).

For solvation effects an atomistic modeling is often less important. On the one hand,

depending on the investigated process, the effect of solvation is a dynamical quantity and

thus the positions of the surrounding molecules are not fixed and an average is needed.

Experimentally measured effects like solvatochromic shifts result on the other hand from

a macroscopic amount of molecules, which all experience a different environment at each

point in time. Thus in both cases an atomistic modeling would demand a sampling of dif-

ferent solvent configurations. A very elegant approach to include the (electrostatic) effect

of the solvent on the solute without an atomistic resolution is provided by continuum

solvation methods.
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Figure 4.2: Schematic depiction of a continuum solvation model

4.1 Continuum Solvation Models

Since most experimental work is performed in solution it is important to find a way to

include solvation effects into the quantum chemical calculations. Continuum solvation

models are rather straightforward to use and are hence nowadays often applied in the

calculation of molecules in solution as a black box method. The introduction provided in

this chapter follows the reviews188,190 by Tomasi and Persicio and by Tomasi, Mennucci

and Cammi closely.

4.1.1 Ground State

In continuum solvation models48,188,190 the solute is placed into a defined void cavity,

surrounded by a continuous polarizable medium that mimics the solvent (see Figure 4.2).

The solution is assumed to be dilute (i.e. each solute molecule is only surrounded by

solvent molecules) and the solvent is usually taken to be isotropic. The Hamiltonian is

formulated as an effective Hamiltonian, since the explicit description of the solvent is not

important, only the interaction,

ĤFR
eff = ĤF + V̂ int(Ψ). (4.2)

In the standard models the interaction is restricted to the electrostatics. The charge

distribution of the solute polarizes the medium and the generated charges interact with

the solute. Since V̂ int thus depends on the (charge) density and hence on the wave

function, the Hamiltonian is non-linear. As in classical electrostatics the polarizationi of

iThe polarization or poarization vector is defined as the average dipole moment per unit volume.
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the medium can be written as (neglecting non-linear effects and using Gaussian units)188

~P = χ(1) ~E =
ε− 1

4π
~E (4.3)

The only parameter distinguishing different solvents is the permittivity (dielectric con-

stant) ε. The polarization of the environment in turn affects the solute, which interacts

with the generated charges. Thus an iterative approach seems obvious, which is applied

in the so-called self-consistent reaction field models (SCRF).

The cavity is defined differently, depending on the actual model. It should exclude the sol-

vent, but still contain most of the solute charge distribution and reproduce the molecular

form.188 Probably the most accurate description is obtained with isodensity surfaces.188

However, usually a set of interlocked atomic spheres is used to define the cavity.ii Different

ways to define the radii of the spheres, which are typically in the range of the van der

Waals values, have been devised (e.g. UFF or Bondi).188

In order to compute the polarization ~P the electric field is needed, which can be computed

from the gradient of the total electrostatic potential V (~r).188

~P (~r) = −ε− 1

4π
∇~V (~r) (4.4)

The total potential consists of the potential VM generated by the molecular charge dis-

tribution ρm and the reaction potential VR generated by the polarization of the medium

(environment),188

V (~r) = VM(~r) + VR(~r). (4.5)

Using VM alone is not sufficient, since the charges induced in the medium also polarize

each other. Since one needs the polarization to determine VR an iterative procedure

is used. In the first iteration one can set VR(~r) = 0 in equation 4.5 and only use VM

(which can be extracted from a quantum mechanical calculation) to compute ~P (~r). The

polarization can then be used to calculate a first guess for VR(~r). Solving this classical

electrostatic problem involves the Poisson equation, which links the reaction potential

with the (induced) charge distribution in the medium. The different continuum solvation

models can be distinguished by the approximations used in this process (see below).

After the solution of the classical problem, the final environmental charges have to be

iiA spherical solvent molecule (probe) can be used to define the solvent excluded surface (SES) and the
solvent accessible surface (SAS). The center of such a spherical molecule rolling on the cavity surface
generates the SAS and the point of contact with the cavity generates the SES.188
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included in the quantum mechanical Hamiltonian.188 Since an accurate computation of

VM is only possible with the correct environment charges, again an iterative solution is

necessary, which is the SCRF approach mentioned above.

For the solution of the electrostatic problem, several methods have been devised, like the

multipole expansion (MPE) methods based on the works of Kirkwood and Onsager, the

generalized Born (GB) approaches and the apparent surface charge (ASC) methods.

In this chapter only the latter will be presented, see188 and references therein for the others.

In the ASC methods the reaction potential is calculated from a charge distribution σ(s)

on the cavity surface Γ. This means the charges induced in the medium by the molecular

charge distribution (which are the source of the reaction potential) are projected onto the

cavity surface188

VR = Vσ(~r) =

∫
Γ

σ(~s)

|~r − ~s|
d2s (4.6)

This ansatz is in principle exact. The integral is usually discretized by approximating

Γ in terms of finite elements (so-called tesserae). This ansatz can be combined with

the boundary element method (BEM). The charge distribution is then reduced to an

environment point charge qk at each tessera,

Vσ(~r) ≈
∑
k

qk
|~r − ~sk|

. (4.7)

As stated above the environment charges affect each other and hence the value of each qk

depends on all other surface charges.188

The oldest ASC method is the polarizable continuum model (PCM),191 which is

now also often called dielectric PCM (D-PCM), since other PCM methods have been

devised like C-PCM and IEFPCM. All members of the PCM family allow in principle for

an unlimited number of solutes and cavities that interact through the dielectric. It is also

possible to describe processes like dissociation, where the system starts with one cavity

and ends up with two. The different cavities divide the system into different regions. For

one cavities there are just two regions: inside and outside the cavity. The polarization of

the region i can be calculated from the gradient of the total potential,

~Pi(~r) = −εi − 1

4π
∇~V (~r) = −εi − 1

4π
∇(~VM(~r) + ~Vσ(~r)) (4.8)
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with εi being the dielectric constant at the region i. The ASC distribution σ12 at the

boundary of two regions can be calculated from the polarization via

σ12 = −(~P1 − ~P2) · ~n12, (4.9)

with ~n12 being the unit vector at the boundary pointing from region 1 to region 2, i.e.

from inside the cavity (ε1 = 1, ~P1 = 0) to the outside (ε2 = ε, ~P2 = ~P ). Using equations

4.8 and 4.9 and the boundary conditions, the basic PCM equation can be derived,188

σ(s) =
ε− 1

4πε

∂

∂~n
(VM + Vσ)in. (4.10)

~n denotes the unit vector normal to the cavity surface and the suffix in reflects that the

gradient on the internal part of the surface is used.

Equation 4.10 can be used to compute σ(s) and equations 4.6 or 4.7, respectively can be

used to calculate the reaction potential corresponding to σ(s), which can again plugged

into equation 4.10. Thus using these equations an iterative solution of the problem is

possible.

In the conductor-like screening model (COSMO)192 devised by Klamt and Schüürmann

the dielectric constant is set to infinity, ε = ∞, which corresponds to a conductor. One

consequence is that the total potential V (~r) cancels out on the cavity surface, and σ(s) is

now determined by the local value of the electrostatic potential instead of its gradient as

above.188 The so obtained unscreened charge density σ∗ is then scaled to the finite value

of ε,

σ(s) = f(ε)σ∗(s), (4.11)

with

f(ε) =
ε− 1

ε+ k
. (4.12)

In the original publication192 the value of k was set to 0.5, which is used in the TUR-

BOMOLE program package.193 The C-PCM method194 is the implementation of the

conductor-like screening model in the PCM framework as used in the Gaussian pro-

gram package.195 Using a statistical mechanics treatment COSMO can be extended to

COSMO-RS, which is of special importance for quantum chemical calculations in the

chemical industry.2

The integral equation formalism PCM (IEFPCM)196 by Cancés and Mennucci is

the default PCM formalism of the Gaussian program package. The potentials in 4.5 are
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reformulated in terms of Green’s functions of the corresponding operators and the integral

equations are solved. Similar to COSMO this approach also avoids the dependency on

the gradient of the potential.188 It can be shown that COSMO, as well as D-PCM can be

derived from the IEFPCM equations.188

Apart form the electrostatic problem, the quantum mechanical problem needs to be

solved, i.e. the Schrödinger equation for the effective Hamiltonian

Ĥeff |Ψ〉 = E |Ψ〉 (4.13)

with

Ĥeff = Ĥ0
M + V̂ int(Ψ). (4.14)

The Fock-operator in the atomic orbital basis can be written as

Fµν = hµν +Gµν + 〈µ| V̂ int |ν〉 (4.15)

The exact form of V̂ int of course depends on the method applied to the electrostatic prob-

lem, in the case of the ASC approach the interaction is formulated in terms of the point

charges on the cavity.190 The interaction with a point charge is given by a simple one-

electron integral. Thus the description of solvent effects is reduced to a set of one-electron

operators.197

The PCM calculation is solved in an iterative process. The most straightforward algo-

rithm is organized as follows:188 At first one starts with an approximate molecular charge

distribution ρ0
m, which can be taken from a quantum chemical calculation of the solute

in vacuum. With this fixed distribution the electrostatic problem is solved iteratively. In

the first iteration the charge distribution is used to compute a first set of apparent point

charges {q0,0
k } using equation 4.10 or the corresponding C-PCM/IEFPCM expression by

setting Vσ equal zero. The mutual polarization of the surface charges is hence not yet

included in this set. This is corrected in the next iterations. The reaction potential VR

can be calculated using equation 4.6 (or 4.7 respectively) and {q0,0
k }. With this potential

a new set of charges {q0,1
k } can be calculated and so on, until convergence is achieved.

The final self-polarized surface charges {q0,f
k } are then used for another QM calculation,

which yields a new QM charge density ρ1
m. With this density a new set of mutual polar-

ized surface charges {q1,f
k } can be calculated.

The whole process is continued until self-consistency. Different and more involved algo-

rithms are typically used in modern implementations, but the principle is the same.188,190
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The method can be similarly formulated for DFT and post-HF methods like MP2. Gra-

dients are also available.188

The PCM ansatz replaces the linear Schrödinger equation by two non-linear effective

equations (one for the soluteiii and one for the solvent) and both have to be solved self-

consistently.198 Continuum solvation models are well-suited for the description of reactions

in solution and provide good results for the solvation effect on reaction barriers and ther-

modynamics, as long as explicit solvation effects can be neglected. Of course in actual

calculations many intricacies regarding the size of the cavity or the outlying charges can

cause problems. Nevertheless the methods usually give a robust performance for ground-

state calculations.

4.1.2 Excited States

The investigation of photochemical reactions has become an important field in physical

chemistry. This is partly due to the vast advance in laser technology and spectroscopy.

The ultra fast spectroscopy makes it possible to study the dynamics of excited states

(typically via pump-probe techniques), which evolve on pico-second timescales. Further-

more there has been some progress in quantum control of chemical reactions. Also in

organic and inorganic chemistry, there has been an increased interest in preparative pho-

tochemical reactions. In the growing field of organic optoelectronics, the characterization

of novel compounds via standard UV/vis absorption and fluorescence experiments is of

vital importance, too. Most of these investigations are carried out in solution rather than

in the gas phase. A computational model that neglects the effect of the solvent is bound to

lack the accuracy to rationalize and reproduce the experimental results, let alone predict

them. But contrary to ground-state calculations, where the solvent is usually adapted

perfectly to the molecule (via its surface charges), things are more complex, when a tran-

sition between states is involved.

In an absorption process the light interacts with the solute and excites it to a higher-lying

eigen state. It is usually assumed that this proceeds on a significantly faster timescale

than the reorientation of the solvent molecules, which thus stay in an orientation optimal

for the ground state. The electronic polarization of the solvent molecules, however, can

change instantaneously and thus has to be adapted in the model. After the excitation

the molecular geometry relaxes to the minimum energy structure of the excited state. In

iiiOf course the effective equation is not really solved for the environment, but only for its effect on the
system using a classical expression for its polarization.
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the case of fluorescence it is generally assumed that the solvent had enough time to relax

and is thus completely adapted to the excited state.

Therefore is is important to distinguish between equilibrium and non-equilibrium condi-

tions.188,199 In the first case the solvent is completely adapted to the excited-state density,

which is usually the choice for modeling fluorescence. In the latter case only the fast (i.e.

electronic polarization), but not the slow degrees of freedom (i.e. reorientation of the

solvent molecules) are adapted to the excited state.

The time-dependent polarization can be written as188

~P (t) =

∫ t

−∞
dt′G(t− t′) ~E(t′). (4.16)

After Fourier transformation, the frequency dependent form is obtained,

~P (ω) =
ε(ω)− 1

4π
~E(ω), (4.17)

with the frequency-dependent complex dielectric constant

ε(ω) = ε′(ω) + iε′′(ω). (4.18)

The actual frequency dependence is usually not of interest, but only if the orientational

polarization (i.e. the polarization due to the reorientation of the molecule) should be

adapted or not, thus a partitioning of the polarization into two components,

~P ≈ ~Pslow + ~Pfast, (4.19)

seems reasonable. There are different ways of implementing this splitting, but the details

are beyond the scope of this chapter (see188). Typically it involves the characterization

of each solvent by two permittivities, the static one ε and the permittivity at optical

frequencies ε∞. The latter corresponds to the dielectric constant at a frequency, where

the orientational polarization can no longer adapt to the changes in the field.188

To include solvation effects to excited states based on a PCM, several theoretical frame-

works exist. The conceptionally most straightforward approach is the state-specific sol-

vation (SS-PCM),200 where the solvent reaction-field is iterated until it is self-consistent

with the excited-state density. This was typically used in conjunction with CI or MCSCF

wave functions.188

For non-equilibrium conditions a splitting in the spirit of equation 4.19 is performed, with
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iterative adaption of ~Pfast. The drawback is that each state has to be calculated sepa-

rately, i.e. a calculation of several excited states in a single run is not possible.

In TDDFT, where the wave function of the excited state is not computed explicitly, the

state-specific method is difficult to apply. However, it is possible to arrive at a state-

specific model using a series of iterative TDDFT calculations,200 in which the solvent is

adapted to the excited-state density. During these iterations, however, the solvent is also

changed for the ground state, since TDDFT relies on its response. After having reached

convergence, the effect of the ground-state solvation is subtracted via correction terms.

The distinction between equilibrium and non-equilibrium is included in the definition of

the PCM operator in the time-dependent Kohn-Sham equations (via the choice of the

permittivity) and thus in the iterative treatment, but the correction terms also take a

different form.200 Apart from the high cost due to the iterative scheme, the SS-scheme for

TDDFT has the disadvantage that it is sometimes unstable.

The iterative scheme can be circumvented by using linear-response solvation (LR-

PCM).197,201 Additionally to the solvent interaction, a time-dependent interaction term

is included in the Hamiltonian,

Ĥeff (t) = Ĥ0
M + V̂int + Ŵ (t). (4.20)

Following a similar approach as in the derivation of TDHF and TDDFT leads to the

working equations (see197 for details). One advantage of LR-PCM is that several roots

can be computed in a single run.

The formal and practical differences between the LR- and the SS-approach have been

studied thoroughly.198,202 As one might imagine, the self-consistent adaption of the fast

degrees of freedom to the excited state is explicitly taken into account by state-specific

solvation, while this is not the case in the LR-approach, where the two contributions

are taken into account in a single response. The latter includes, however, a dynamical

correction to the excited-state energy missing in the standard SS-approach.198 The sol-

vent contribution to the excitation energy in an SS calculation depends primarily on the

difference in dipole moment between ground and excited state, while it depends on the

transition dipole moment in the LR approach. Thus for dark states the solvent effect on

the excitation energy will be negligible using an LR-PCM, which is not necessarily correct,

since ground- and excited-state dipole moments may nevertheless differ significantly.

It is also possible to go beyond the LR-PCM approach using the corrected linear re-

sponse approach (cLR) by Mennucci et al.,199 which recovers a state-specific picture
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from a response function using TDDFT. It takes the relaxation of the excited-state re-

sponse into account using a perturbative approach. In a standard LR approach the

excitation energy ω0
K , which is computed with a solvent shell that is frozen to the ground-

state conditions, is obtained. In order to arrive at a state-specific picture from an LR

approach, the relaxation part of the density matrix ∆P is needed, which takes the orbital

relaxation effects into account. With ∆P a corresponding set of surface charges ∆q can

be calculated. The interaction between the solvent and these “new” surface charges can

be evaluated in order to correct ω0
K to first order. The matrix ∆P can be computed via

the analytic energy gradient. The cLR approach gives results similar to the SS-ansatz,

but the computational effort is significantly diminished (in fact it is not much higher than

a standard LR-approach), it is also more stable and several states can be computed in a

single run.199

4.2 Hybrid QM/MM methods

If the atomistic nature of the surrounding is of importance, hybrid quantum mechanical/

molecular mechanical methods (QM/MM) can be used to include environmental effects.

Their popularity has increased steadily since the 1990s. They are well established for

applications on biomolecules, but more recently they have also been used for questions

regarding material sciences and other fields. The nobel price in chemistry 2013 has been

awarded to Martin Karplus, Michael Levitt, and Arieh Warshel, “for the development

of multiscale models for complex chemical systems.”203 The seminal publication204 of

Warhsel and Levitt in 1976 introduced the QM/MM method, but the widespread accep-

tance only arose after the work of Field, Bash and Karplus starting with their publi-

cation205 from 1990.206 Nowadays, there exist several excellent reviews on the QM/MM

methodology (see for instance206–210 and references therein).

The QM/MM method is a multiscale method. The main idea is to couple a classical

description for the environment (O) using molecular mechanics (MM) with a quantum

mechanical description for the system of interest (I).i The partitioning is shown in Figure

4.3. The ingenuity lies in the fact that the advantages of both approaches are combined.

QM methods are able to describe chemical reactions and excited states, which is not pos-

sible with molecular mechanics, but they cannot be applied to larger systems. Those in

turn can be treated using the cheap MM methods. However, many applications (for in-

iHence QM/MM is also a focused model.
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Figure 4.3: QM/MM partitioning using a crystal defect (shifted dimer) as an example.
The whole system is designated (S), the MM part (O) and the QM part (I).

stance enzyme reactions or the description of excitonic states in organic crystals) demand

both - the modeling of large systems and a QM treatment. This problem is solved by the

QM/MM partitioning. There are different ways to write the energy expression for the

total system (S). In the so-called subtractive scheme206 the energy is written asii

Esub
QM/MM(S) = EMM(S) + EQM(I)− EMM(I). (4.21)

The whole system is calculated on the MM level, while the QM region has to be calculated

on the QM as well as the MM level. This simple scheme has the advantage that no special

interface needs to be implemented. Any standalone QM and MM codes can be used. It

is also the basis of the ONIOM methods.211 The disadvantage is that on this simple level

the QM region is not influenced by the environment.206 Although the subtractive scheme

can be improved by introducing the electrostatic interaction,206 most current QM/MM

codes rely on an additive scheme.

In the additive scheme the energy is written as,206

Eadd
QM/MM = EMM(O) + EQM(I) + EQM/MM(I,O). (4.22)

Thus an explicit coupling term is introduced, which describes the interaction between the

QM and the MM region. This interaction term takes different forms depending on the

so-called embedding scheme. Before the embedding schemes and details to the QM/MM-

boundaries are described, a brief introduction to molecular mechanics is given.

iiFor the moment it is assumed that the QM/MM-boundary does not cut through any covalent bonds
(see below).
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Figure 4.4: Molecular mechanical modeling of a molecule.

4.2.1 Molecular Mechanics

The fact that one distinguishes between different configurations and even conformations in

chemistry shows that the atomic nuclei do not feature very significant quantum aspects.48

This is exploited in molecular mechanics,48,212 where a molecule is described using a

classical ball and spring model. The parameters are derived from quantum chemical

calculations or fitted to reproduce a set of reference data as accurately as possible.48 The

different types of interactions are depicted in Figure 4.4. The energy expressioniii can be

split into different contributions,48

EMM = Estretch + Ebend + Etors + Eel + Evdw + Ecross + · · · (4.23)

with Estretch referring to the bond stretching, Ebend to the angle bending, Etors to the

torsions, Eel the electrostatic interactions, Evdw to the van der Waals interactions and

Ecross to the cross terms that couple the different contributions.48 Which terms are used

and their mathematical form defines the particular force field.

The bond stretching potential can for instance be modeled using a harmonic approx-

imation by also including higher terms or via a Morse potential. The van der Waals

interactions are often described using the Lennard-Jones formula, but several other po-

tentials exist.48

As an example the energy expression of the OPLS (optimized potentials for liquid simu-

iiiFor sp2-hybridized atoms an additional out-of-plane bending energy term Eoop can be added. Often
an “improper” torsion angle is used to account for the energy necessary to remove the planarity.

89



4 Environmental Effects on Ground and Excited States

lations) all-atoms force field (OPLS-AA)213,214 is given as

Estretch =
∑
bond

Kr(r− req)2 (4.24)

Ebend =
∑
angles

Kφ(φ− φeq)2 (4.25)

Etorsion =
∑
i

{
V i

1

2
[1 + cos(φi + fi1)] +

V i
2

2
[1− cos(2φi + fi2)] (4.26)

+
V i

3

2
[1 + cos(3φi + fi3)]

}
Eab =

on a∑
i

on b∑
j

[
qiqje

2

rij
+ 4εij

(
σ12
ij

r12
ij

−
σ6
ij

r6
ij

)]
fij (4.27)

with f1, f2, f3 being phase angles, and Eab containing all non-bonded interactions (i.e.

Coulomb + Lennard-Jones). The non-bonded interactions are active between different

molecules and the same expression applied to intramolecular non-bonded interactions

when the atoms are separated by three or more bonds. fij = 1 except for intramolecular

1,4-interactions, where it is 0.5. The choice of the parameters (Kr, req, Kφ, φeq, V
i
j , qi, εij, σij)

is of course crucial for the accuracy of the force field.

For the modeling of environmental effects the intermolecular terms are of special im-

portance. Using perturbation theory (see below) the molecular interaction energy is

often divided into four categories:215,216 electrostatic, induction, dispersion and exchange-

repulsion energy. The electrostatic interaction in OPLS-AA is based on atomic point

charges. Other force fields rely on bond dipoles or include higher-order multipoles.48

The inclusion of higher multipoles systematically improves the long-range electrostatic

contribution.215 The short-range electrostatic effects, i.e. charge penetration, can also be

included using correction terms.217

Usually the atomic charges are fixed and not influenced by the environment, but it is pos-

sible to add polarization terms and thus to include induction. AMOEBA218 is a typical

example for a polarizable force field.

It is difficult to include the exchange-repulsion properly, since it is a short-range effect219

that is purely quantum mechanical and arises due the overlap between the wave functions

of the monomers (see below).215

Molecular mechanics computations are very cheap and hence applicable to very large

systems. However, it can sometimes be tedious to find the correct parameters and the
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accuracy is never known in advance. Similar to semi-empirical methods, a force field can

be astonishingly accurate, if the molecule in question is close to the set for which the force

field was parameterized, but it is likely that it will fail completely if the system of interest

has a very different electronic structure. Typically, the parameters are assigned to func-

tional groups and are hence transferable. This is in line with the chemists understanding

that the properties of functional groups are the same in different molecules. This has the

benefit that the force field is rather general. However, it is often necessary to refine the

parameters for a special molecule. There is also the completely different philosophy of

generating a unique force field for each type of molecule. One example is the quantum

mechanically derived force field (QMDFF)220 by Grimme.

Chemical reactions cannot be described within the standard force-field model and also

molecules with a complex electronic structure will usually be treated poorly. Molecular

mechanics is, however, well-suited for the investigations of the conformational space of

“standard” organic molecules and their potential surfaces.

Typically, a force field is designed to describe a certain class of compounds. For instance

for proteins and nucleic acids and carbohydrates very good force fields have been devised,

since most force-field development has been performed for biological systems.2 It is more

difficult to find reasonable parameters and accurate force fields for systems from material

sciences. There are also universal force-fields, which can be applied to molecules con-

taining any atom of the periodic table, but of course they usually provide less accurate

results. An additional benefit is that any barrier height, reaction enthalpy or interaction

energy can be decomposed into the different contributions, which gives some insight not

so easily obtained with ab initio methods.212

4.2.2 Atomic Charges in Molecular Mechanics

Several force fields like OPLS-AA or AMBER rely on atom-centered point charges.48

Atomic charges are no observables and hence the question arises how they can be ob-

tained. One way to determine the value for the charges is to simply use the general fitting

procedure for the force field, which means treating them as parameters, just as Kr or Kφ.

In this approach several effects are folded into the charges implicitly, for instance the effect

of higher order multipoles or the compensation of the deficiency of the other terms. How

physical these charges are depends on the focus of the fitting procedure. If intramolecular

reference data like bond lengths and angles are used, it is likely that they are unphysical in

the sense that they do not reproduce the electrostatic field of the molecule208 and provide
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a poor approximation for the intermolecular electrostatic interaction. In OLPS, however,

the charges are fitted to reproduce the properties of organic liquids214 (i.e. inherently

intermolecular properties are used), and hence the OPLS charges should be much better

suited to describe the intermolecular electrostatic interaction.

Other force fields like AMBER fit the charges to reproduce the molecular electrostatic

potential, which is calculated using DFT or ab initio methods.48 The electrostatic po-

tential (ESP) φesp of the molecule at the point r, which is given by

φesp(r) =
Nnuc∑
a

Za
|Ra − r|

−
∫

Ψ2(r′)

|r′ − r|
dr′. (4.28)

This means the charges are chosen in a way that they reproduce the ESP at a certain

distance of the molecule by minimizing an error function,48

ErrF (Q)

Npoints∑
r

=

(
φesp(r)−

Natoms∑
a

Qa(Ra)

|Ra − r|

)2

. (4.29)

In order to arrive at the correct charges, the electrostatic potential is sampled for sev-

eral points r. One way to perform the sampling is the Merz-Kollman scheme.221,222 In

this approach, the points lie on the solvent-excluded surface (Connolly surface).222 In the

original publication Singh and Kollman used four SES surfaces for the sampling with the

radii being equal 1.4, 1.6, 1.8, and 2.0 times the van der Waals radius.222

Charges obtained from the ESP fit have the advantage that they reproduce an (in prin-

ciple) observable physical quantity, i.e. the electrostatic potential. Since it depends on

the electron density, which is typically decently reproduced even by low-level methods, it

is rather insensitive to the level of the calculation.48 Charges obtained form an ESP fit

are, however, dependent on the number of sampling points and the conformation of the

molecule, which is a drawback. Nevertheless other well-known methods for the extraction

of atomic charges from quantum chemical calculations (e.g. Mulliken, AIM, Hirshfeld,

NBO) are rarely used for the generation for force-field charges.

Mulliken charges are obtained from the Mulliken population analysis, which is based

on a partitioning of the electron density in terms of the basis functions. The number of

electrons can be obtained by integrating and summing over all MOs φi, with the occupa-

tion number ni,

Nelec =
Nocc∑
i

ni

∫
φ2
i dr. (4.30)
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Expanding the MOs in basis functions yields48

Nelec =

Mbasis∑
αβ

(
Nocc∑
i

nicαicβi

)∫
χαχβdr =

Mbasis∑
αβ

DαβSαβ. (4.31)

With this equation the number of electrons can be partitioned onto the different atomic

centers. The density in the atomic orbital α is calculated from the diagonal element

DααSαα and one half of the off-diagonal elements 1
2
DαβSαβ + 1

2
DβαSβα = DαβSαβ, thus it

follows for the density at atom A

ρA =

Mbasis∑
α∈A

Mbasis∑
β

DαβSαβ. (4.32)

With this atomic electron density atomic charges can be easily defined. Although con-

ceptionally simple and computationally cheap, the Mulliken population analysis suffers

from several problems. The most severe one is that a basis function centered on A with

a small exponent describes electrons far from the atom A but is nevertheless counted to

be belonging to A. This also leads to a high dependence on the basis set size. Typically

the results obtained with a small rather contracted basis sets are more reliable.

Instead of partitioning the Hilbert space, the atoms in molecules method (AIM),

partitions the density by analyzing its topology and defining atomic basins. However the

corresponding charges do not reproduce the molecular electrostatic potential sufficiently

and are thus not useful for MM charges.48

Hirshfeld charges are obtained by defining a promolecular electron density ρpro, which

is built up from atomic electron densities ρati
48,223

ρpro(r) =
∑
i

ρati (r). (4.33)

wi(r) is a sharing function defined as the portion of the atomic density ρati in the pro-

molecular density at the point r,

wi(r) =
ρati (r)

ρpro(r)
. (4.34)
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The actual molecular density ρmol is partitioned according to the weighting factors wi,

i.e. the density at the bound atom i (ρb.a.i ) is given by

ρb.a.i (r) = wi(r)ρmol(r). (4.35)

The atomic densities are typically defined as the spherically averaged ground-state densi-

ties of the neutral atoms. Using the deformation densities, δρi = ρb.a.i − ρati , atomic dipole

moments can also be obtained.223

Charges can also be obtained from natural atomic orbitals (NAOs) using the natural

population analysis (NPA).224 The so-called natural orbitals are the eigenvectors of the

first-order density matrix,iv

ρ1(r1, r
′
1) = Nelec

∫
Ψ∗(r′1, r2, . . . , rNelec)Ψ

∗(r1, r2, .., rNelec)dr2 . . . drNelec , (4.36)

with the corresponding occupation numbers as eigenvalues.48 If one arranges the density

matrix into blocks, in a way that all orbitals centered on atom A form one block and all

centered on atom B another block and so on, the natural atomic orbitals can be obtained

by diagonalizing each block separately. However, these orbitals are non-orthogonal and a

subsequent orthogonalization is performed. By summing all contributions from the NAOs

at a certain center an atomic charge can be defined.

Force fields that rely on multipoles like AMOEBA often use the distributed multipole

analysis (DMA) by Stone.225 The electrostatic potential that arises due to the overlap

of two atomic basis function can be reproduced by a multipole expansion around a point

between the two nuclei.48 The location of the point depends on the shape of the basis

functions. In the DMA, the moments are calculated directly from the density matrix

and the basis functions and no fitting procedure is necessary. One advantage of this

method is that the multipole expansion is in principle finite, with the highest order of the

multipoles being determined by the angular momenta of the basis functions. For practical

calculations, not all M2
basis multipole points are used, which destroys the finiteness of the

expansion (see48 for details). Moreover the method is quite basis set dependent.48

ivAs noted by McWeeny,51 the name “matrix” is unfortunate, since ρ1(r1, r
′
1) is better described as a

density function. The name stems form the fact that ρ1(r1, r
′
1) can be seen as derived from a matrix

element ρrs by replacing the discrete indices with continuous variables.
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4.2.3 Overlap-Based Description of the Repulsion

The repulsion between molecules is typically modeled via the 1
r12ij

-term of the Lennard-

Jones formula or the exponential Born-Mayer potential (Ae−Brij).48,219 Both approaches

use isotropic atom-atom potentials and are hence based on the assumption that the

molecules interact like a superposition of spherical charge distributions. Hence the model

neglects the often non-spherical distribution of the valence electrons.226 Although it has

been shown that this is a often a valid approximation,227 the anisotropy may become

important of the exchange-repulsion term, since this is a short-range effect. Consequently

there are cases, where the assumption of spherical distribution is no longer valid.219 There

are several possibilities to include the anisotropy.

In molecule-molecule potentials, where each molecule is treated as a unit, it was suggested

by Corner to use a variant of the Lennard-Jones potential228 with parameters dependent

on the orientation.219 Berne and Perchukas introduced a Gaussian overlap model, which

models the angle dependence by considering the overlap of two ellipsoidal Gaussian charge

distributions.229

Using atom-atom potentials, which are more suitable for larger molecules, a similar ap-

proach is in principle possible. The most straightforward way is again to choose the

parameters of the potential to be dependent on the orientation Ω. For instance using the

Born-Mayer potential: A → A(Ω). This can be achieved by expanding A(Ω) in a series

of spherical harmonic functions of the angular coordinates, but it leads to rather slowly

converging series.219 Price and Stone developed a more general approach,230,231 where the

repulsion between molecules A and B is written as

UAB
rep =

∑
a∈A

∑
b∈B

UAB
rep

= K
∑
a∈A

∑
b∈B

e[−αab(Ωab)(Rab−ρab(Ωab))],
(4.37)

with αab being the hardness parameter for the interaction and ρab determines the shape.219

K is just a convenient energy unit. αab and ρab are expanded in terms of the S̄ func-

tions,219,230

ρab(Ω) =
∑

lalbjkakb

ρkakblalbj
S̄kakblalbj

, (4.38)

αab(Ω) =
∑

lalbjkakb

αkakblalbj
S̄kakblalbj

. (4.39)
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The S̄ functions arise naturally if the Hamiltonian for the Coulomb interaction Ĥ ′ is

expanded in terms of spherical harmonics.219 Assuming molecules A and B are located

at positions A and B, with R = B−A and the atoms a and b are located at the points

A + a and B + b, the interaction can be written as219

Ĥ ′ =
1

4πε0

∑
a∈A

∑
b∈B

eaeb
|R + b− a|

=
1

4πε0

∑
l1l2

∑
k1k2

(
l1 + l2
l1

)
Q̂A
l1k1

Q̂B
l2k2

S̄k1k2l1l2l1+l2
R−l1−l2−1.

(4.40)

Q̂ are the multipole operators (formulated in terms of spherical harmonics), R−l1−l2−1

describes the distance dependence and S̄k1k2l1l2l1+l2
the orientation dependence.219 S̄ consists

of a linear combination of products of Wigner functions with a spherical harmonic.219

These functions are well-suited as basis functions for the expansion of the intermolecular

interaction energy.230 Thus the expansion of αab and ρab converges rapidly.

This ansatz has the disadvantage that the parameters α and ρ have to be defined, which

can be done by fitting to data from ab initio calculations. These are, however, quite

expensive since they have to be performed for different orientations. Hence methods that

require less computational effort are desirable.219 One of these is the overlap method.215,219

The principle connection between the repulsion energy and the overlap has been inves-

tigated by several groups.232–234 A simple approach is to use qualitative valence bond

theory. The repulsion energy between two two-electron closed-shell systemsv is given by96

∆E(A : : B) = − 4βS

(1− S2)
, (4.41)

with S being the overlap integral between the two fragment orbitals (i.e. the atomic

orbitals of A and B). Since the reduced resonance integral is also approximately pro-

portional to S for larger internuclear distances235 the repulsion energy can be written

as

Erep ∝
S2

(1− S2)
(4.42)

Expanding the term in a power series and only keeping the first term (which also implies

large internuclear distances) one obtains,232

Erep ≈ const · S2. (4.43)

vOf course an analogous expression can also be derived by qualitative MO theory.96,235
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Since we are dealing with intermolecular interactions, the assumption of large internu-

clear distances is justified. Of course, for bigger systems the problem is more involved,

nevertheless it can be assumed that the proportionality to the squared overlap is still a

sensible approximation.

Thus several groups used the squared molecular orbital overlap, defined as

S2 =
A∑
i

B∑
j

〈ψi|ψj〉2, (4.44)

to model the exchange-repulsion,215,236,237 with ψi and ψj being the molecular orbitals

on the isolated monomers i and j. Sometimes the expression is weighted with the corre-

sponding orbital energies215

S2
en =

A∑
i

B∑
j

− εiεj
εi + εj

〈ψi|ψj〉2. (4.45)

Thinking in terms of a perturbative treatment as it is for instance used in the Salem-

Klopman equation,117 where each MO on fragment A interacts with all the others on

fragment B, this ansatz makes intuitively sense. The weighting factor takes care of the

fact that orbitals which are equal in energy have a higher interaction. Sometimes a

distance-dependent term is introduced, e.g.236

Erep ≈ K
S2

R
. (4.46)

The quite elaborate exchange-repulsion model234 used in the EFP method (see below)

also relies on the orbital overlap.215

Another ansatz is based on the density overlap introduced by Lee et al.238

Erep ≈ constSnρ , (4.47)

with

Sρ =

∫
ρA(r)ρB(r)d3r. (4.48)

They plotted empirical repulsive potentials against the density overlap for several rare gas

dimers. It was found that the linear relationship is excellently reproduced and that the

value of n should be close to 1.219,238 The density overlap ansatz can also be motivated

by empirical findings of Kita et al.239 It was refined to be applicable to bigger systems by
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several groups.215,219,226 Wheatley and Price used an expansion in Gaussian functions to

model the monomer densities (distributed overlap model) and devised a model potential

for the overlap using the S̄ functions,226 while Gavezzotti developed a numerical integra-

tion technique to calculate the density overlap.240 Ryde et al. expanded the monomer

densities in Slater-type functions and approximated the resulting integrals via exponential

functions.215

Since the charge-penetration term can also be approximated by the density overlap, it is

possible to incorporate charge-penetration as well as exchange-repulsion into one term.219

This can for instance be achieved by fitting the term to the difference of the ab initio

energy and the other contributions.241

Obviously the orbital-based overlap ansatz is physically more grounded than the density-

based overlap approach, however, this does not mean that it necessarily performs worse.215

4.2.4 QM/MM Interfaces

In order to define the QM/MM interface the boundary between the two regions as well as

the embedding scheme has to be defined. If the boundary cuts through covalent bonds,

one has to take care of the dangling bonds. One way is to introduce so-called link atoms

to saturate the bonds. Other approaches rely on localized orbitals, for instance using

the local self-consistent field algorithm or generalized hybrid orbitals.208 In the case of

organic crystals which are in the focus of this thesis, only intermolecular interactions are

operate between the QM and the MM part and thus this problem does not occur. For

more details on the boundary, see208 and references therein.

There are three levels of embedding schemes that define the QM/MM coupling term:

mechanical, electrostatic and polarizable.208 The van der Waals interactions between the

parts is usually always taken into account by summing over all atoms in the QM and MM

region using the corresponding force-field expression. With the Lennard-Jones potential

one obtains

Evdw,QM/MM =
i∈I∑
i

j∈O∑
j

4εij

(
σ12
ij

r12
ij

−
σ6
ij

r6
ij

)
(4.49)

This of course means that van der Waals parameters have to be defined for the QM region.

The embedding schemes are distinguished by their treatment of the electrostatic inter-

actions. At the simplest level, the mechanical embedding, these interactions are only
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treated on the MM level,

V mech.emb.
el,QM/MM =

Natoms∑
i

Matoms∑
j

qiqj
Rij

with i ∈ I and j ∈ O. (4.50)

Th sum runs over all atomic charges in the QM and the MM part. In order to compute the

electrostatic interaction, MM charges qi have to be defined for the QM region.208 This can

sometimes lead to problems when a chemical reaction, during which the charges change,

is investigated (e.g. a simple nucleophilic substitution). One has to keep in mind that

if the QM system was easily describable by MM methods a QM/MM approach, would

not have been necessary in the first place. Another disadvantage is that the QM part

is completely uninfluenced by the environment and hence the electronic structure is the

same as in the gas phase. This means that the QM system must be sufficiently large

that its charge distribution is converged with respect to the boundary.208 One way to

circumvent this problem is to use more than two layers as in an ONIOM approach. The

third buffer layer is typically a low-level QM method (e.g. semi-empirical MO theory).208

The electrostatic embedding includes the charges of the environment into the QM

Hamiltonian,206

Hel.emb.
el,QM/MM =

Nel∑
i

Matoms∑
j

qj
|ri −Rj|

+
Nnuc∑
a

Matoms∑
j

qjQa

|Ra −Rj|
with i, a ∈ I and j ∈ O. (4.51)

The first term describes the interaction between the electrons in the QM region with the

MM charges and translates to a simple one-electron matrix element in HF theory/DFT.

The first sum thus runs over the electrons in I and the second over the atomic charges

in O. The second term covers the interaction between the nuclei with the charge Qa in I

and the MM charges in O.

With this approach, the QM part “feels” the environment and thus the electronic struc-

ture (and hence excitation energies and other properties) can adapt to it. The use of

MM charges for the QM Hamiltonian is, however, not always justified, since the charges

do not necessarily reproduce the electrostatic potential of the environment (see above).

At the boundary, especially when link atoms are used, overpolarization can occur, since

MM charges may be very close to the boundary. There are several approaches to circum-

vent this problem. For instance one can delocalize the charges onto the surrounding MM

atoms.208

The biggest disadvantage of the electrostatic embedding lies in the fact that the envi-
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Figure 4.5: In an electrostatic embedding (a) the environment polarizes the QM part, but
not vice versa. In a polarized embedding (b) a mutual polarization is possible.

ronment polarizes the QM part, but there is no polarization of MM part due to the QM

charge distribution (see Figure 4.5a). If the charges in the QM part change (e.g. due to

a reaction or excitations), this should polarize the environment. This is included using

a polarized embedding, where QM and MM parts polarize each other mutually (see

Figure 4.5 b). This demands an iterative approach and a polarizable force field.208 Obvi-

ously polarizable embedding is rather expensive and necessitates accurate parameters for

the polarization of the MM region. Astonishingly a polarized embedding was used in the

very first publication by Warshel and Levitt.204

The quality of a QM/MM approach can not be judged directly, since it depends on a

multitude of factors, like the size of the QM part, the applied force field, the used QM

method, the embedding scheme and ultimately the system in question. There are sev-

eral studies, which investigate these effects and calibrate the method for a certain system

(see242–245 and references therein). The quality for intermolecular interactions, which is

especially important for organic crystals, has been benchmarked by Waller and cowork-

ers.246 They came to the conclusion, that the choice of force field has the biggest effect,

with CHARMM and AMBER outperforming UFF and Dreiding.

QM/MM methods are difficult to perform and demand extensive calibrations,208 which

combined with the uncertain accuracy diminish the predictive power of the method.

Furthermore, the development of improved DFT codes and the increase in computing

performance makes the pure QM calculation possible for systems with increasing size.2

Nevertheless QM/MM is one of the most powerful approaches for the description of large

system that need a quantum mechanical treatment.
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4.2.5 Valence Bond Theory in a QM/MM Framework: EVB and

VB/MM

There are several methods that use valence bond (VB) theory96 in a QM/MM framework,

for example the MCMM method247 by Truhlar et al. and the MM-VB method248 by Robb

and coworkers. This chapter focuses on the empirical valence bond (EVB) method249,250

introduced in 1980 by Warshel and coworkers and the VB/MM theory251 by Shurki et al.

which couples ab initio VB calculations with the EVB methodology.

The EVB method exploits the fact that the VB resonance structures have a clear phys-

ical meaning, are easily interpreted and hence parameterized. Also the interaction with

the environment is much easier defined. As mentioned above, the mechanical embedding

of the QM part is sometimes difficult, since there is no uniquely defined way of generating

the charges. In VB theory the wave function is written as a linear combination of neu-

tral and ionic structures. Since these structures represent limiting cases, the interaction

with the environment can be defined straightforward. An ionic structure has well defined

charges and a neutral structure experiences approximately no electrostatic interactions.

Since the EVB is an empirical method, i.e. no ab initio VB calculation is performed, the

VB Hamiltonian matrix is parameterized using expressions from molecular mechanics.

The EVB method can then be calibrated to reproduce experimental results, thus experi-

mental data is directly incorporated into the Hamiltonian.250

An ionic cleavage reaction

may serve as a simple example, taken from the original publication.249 Three resonance

structures (one neutral, two ionic) are needed for a complete description of this system.

However, for such a reaction X is typically more electronegative than Y and hence ψ3 can

be neglected. In the gas phase the secular matrix can be written as249

∣∣∣∣∣ Hg
11 − Eg Hg

12 − EgS12

Hg
21 − EgS21 Hg

22 − Eg

∣∣∣∣∣ = 0 (4.52)

For the parametrization the overlap is neglected and the matrix element Hg
11 is modeled

as a Morse-type potential using experimental data for the parameters (see249 for details).
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The matrix element for the ionic resonance structure is written as

Hg
22 = ∆(2) − e2

r
+ V

(2)
nb , (4.53)

with ∆(2) being the gas-phase formation energy for the ionic resonance structure from the

neutral atoms at infinite separation, which can be calculated from the ionization energy

and the electron affinity of the neutral atoms (∆(2) = IY −EAX) and V
(2)
nb represents the

non-bonded interactions and is adjusted so that the minimum of − e2

r
+ V

(2)
nb is equal to

the sum of the ionic radii. If the overlap is neglected, the off-diagonal elements can be

calculated from the diagonal elements and the total energy. The latter is modeled as a

Morse potential that reproduces the exact dissociation energy.249

Thus all matrix elements are expressed using molecular mechanics terms.

The solution Hamiltonian is assumed to be identical to the gas-phase Hamiltonian, except

for the energy of the ionic structure, which is stabilized by the solvent interaction

Hs
22 = Hg

22 +G
(2)
sol. (4.54)

The solvent stabilization can be either calculated, e.g. via an embedding, which is straight-

forward because the charges are clearly defined, or fitted so that the total energy repro-

duces experimental data, i.e. the dissociation energy. This calibration procedure ensures

that the asymptotic limit of the potential energy surface is correctly described.250 The

potential energy surface can then be calculated by solving the secular equation for differ-

ent intermolecular distances.

The VB/MM method251 developed by Shurki and coworkers is based on a mechan-

ical embedding of the individual VB structures, which are calculated using ab initio VB

theory. Although the interaction with the environment is still calculated classically, it

nevertheless influences the wave function, because the interaction is included in the VB

Hamiltonian matrix. Similar to the EVB method it is exploited that the embedding of

the interpretable ionic and covalent structures is straightforward.

At first a gas-phase VB calculation of the QM part is performed, which gives the Hamil-
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tonian H0 and the overlap matrix S,vi

H0 =

(
H0

11 H0
12

H0
21 H0

22

)
(4.55)

S =

(
S11 S12

S21 S22

)
. (4.56)

Then the interaction between the two structures and the environment is calculated via

molecular mechanics using individual parameters. The interaction terms H int
11 and H int

22

can easily be added to the diagonal terms of the gas-phase VB Hamiltonian elements. In

the VB/MM framework it is assumed that the overlap matrix and the reduced resonance

integral β,

β12 = H12 −
1

2
(H11 +H22)Sij (4.57)

are invariant of the environment. At the crossing point of the energy surfaces of the

diabatic states, the off-diagonal Hamiltonian matrix elements can thus be calculated as

H12 = H0
12 +

1

2

(
H int

11 +H int
22

)
S12. (4.58)

In the general case they are approximated as

H12 = H0
12 +

(
ω1H

int
11 + ω2H

int
22

)
S12 (4.59)

Thus the VB/MM Hamiltonian matrix can b written as:

H =

(
H0

11 +H int
11 H0

12 + (ω1H
int
11 + ω2H

int
22 )S12

H0
21 + (ω1H

int
11 + ω2H

int)S21 H0
22 +H int

22

)
(4.60)

As in standard VB calculations, the Hamiltonian matrix can then be transformed accord-

ing to

H trans = S−
1
2HS−

1
2 , (4.61)

with subsequent calculation of the eigenvalues and eigenvectors of H trans. From the eigen-

vectors the weights of the two structures can be calculated (after back transformation)

viFor simplicity two VB structures are assumed in the following, but the method can be extended to any
number of VB structures.
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using the Chirgwin-Coulson formula.

ω1 = c2
1 + c1c2S12 (4.62)

ω2 = c2
2 + c2c1S21 (4.63)

Since the weights are already needed to build up the VB/MM Hamiltonian matrix, an

iterative approach has to be chosen. The final energy is calculated from the eigenvalue of

the VB Hamiltonian plus the energy of the environment.

4.2.6 Other Developments

The effective fragment potential method (EFP)252 by Gordon and coworkers was

originally designed to describe solvation effects and was later generalized. In the EFP

method, the total Hamiltonian is written as a sum of the Hamiltonian for the QM part

and an interaction term V . This is not unsimilar to the continuum solvation methods,

but contrary to those EFP is a discrete method. The interaction term includes the

environment (e.g., solvent molecules) as effective fragments. The interaction includes

Coulomb, induction and repulsion terms, which enter the Hamiltonian as one-electron

terms. The interaction of an electron with the coordinate s of the QM part with the µth

solvent molecule is given by

Vel(µ, s) =
K∑
k=1

V Elec
k (µ, s) +

L∑
l=1

V Pol
l (µ, s) +

M∑
m=1

V Rep
m (µ, s) (4.64)

Similar terms are used for the interaction with the nuclei and in between the fragments.

The potentials for Coulomb and induction are obtained from ab initio computations of

a single solvent molecule. The repulsion, which is inherently an intermolecular property,

is more difficult to obtain and needs to be generated from first principles or fitted to ab

initio data.252 For water (EFP1) the Coulomb interaction is modeled using the DMA, a

distributed multipolar polarizability expansion is used for the induction and the repul-

sion potential is modeled with atom-centered Gaussian functions. The exponents of the

Gaussians are optimized in a fitting procedure. In the generalized approach (EFP2), the

handling of the repulsion is more involved and relies on the orbital overlap. The exchange

repulsion is obtained by subtracting the Coulomb energy as well as the monomer energies
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from the Heitler-London energy expression,252

Eexch =
〈ψAψB| AĤAB |ψAψB〉
〈ψAψB|AψAψB〉

− 〈ψAψA|VAB |ψBψB〉 − EA − EB, (4.65)

where ψA and ψB are the monomer wave functions and ĤAB = ĤA + ĤB + VAB is

the supermolecular Hamiltonian. The antisymmetrizer A can be expanded in terms of

permutation operators,

A = 1− P1 + P2 − . . . , (4.66)

which permute 1,2,.. electrons. Truncation after P1 leads to an approximate expression

for the exchange repulsion that is proportional to the square of the intermolecular overlap.

The EFP method goes beyond QM/MM in the sense that the environment is included

using quantum mechanical terms and not classical mechanics. Due to these benefits the

interest in fragment methods has increased in the recent years.253,254

The X-Pol potential255 by Gao and coworkers is also based on fragments. The wave

function is written as a Hartree product of fragment wave functions, which are taken to

be Slater determinants and are optimized in an SCF procedure. The van der Waals inter-

action between the molecules is modeled via a Lennard-Jones potential. The Hamiltonian

of the system is written as

Ĥ =
N∑
I

Ĥ0
I +

1

2

N∑
I

N∑
J 6=I

ĤIJ (4.67)

Ĥ0
I is the Hamiltonian of the isolated molecule I and ĤIJ denotes the interaction between

two fragments. ĤIJ contains the van der Waals term and the interaction of the electrons

and nuclei of molecule I with the electrostatic potential of molecule J . In order to

speed up the calculation, two further approximations are applied, a multipole expansion

and NDDO.255 After an initial guess the SCF procedure is performed for all fragments

separately. Then the mutual polarization can be computed and with these interaction

terms the fragment SCF procedure is performed anew. This double-SCF procedure is

iterated until convergence. X-Pol is completely linear scaling and can either be used as an

electronic structure theory for macromolecules or as a quantum force field for large-scale

simulations.
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4.3 Analyzing Intermolecular Interactions with Symmetry

Adapted Perturbation Theory (SAPT)

Symmetry adapted perturbation theory (SAPT) can be used to calculate the intermolec-

ular interaction energy very accurately and provides insight by decomposing the energy

into different contributions.256,257 The basic idea is to use perturbation theory to in-

clude the intermolecular interaction by writing the Hamiltonian of a molecular dimer AB

as

Ĥ = ĤA + ĤB + ζV̂ = Ĥ0 + ζV̂ , (4.68)

with ĤA and ĤB being the monomer Hamiltonians and V̂ the perturbation collecting

the Coulomb interaction terms. ζ is a parameter determining the strength of the per-

turbation. Since it can be assumed that the intermolecular interaction is weak compared

to the intramolecular interactions, i.e. it does not change the electronic structure of the

monomers significantly, the perturbative ansatz is valid. The Schrödinger equation is

given by

ĤΦAB(ζ) = EAB(ζ)ΦAB(ζ). (4.69)

The wave function as well as the energy are expanded in a perturbative series. There are

different approaches to solve this problem.219,256 Jeziorski et al. used Rayleigh-Schrödinger

theory and expanded the perturbation wave function into products of eigenfunctions of

the monomer Hamiltonians.258 When the perturbation is zero (ζ = 0), the dimer energy is

simply the sum of the eigenenergies of the monomer Hamiltonians, EAB(0) = EA +EB ≡
E

(0)
AB. The corresponding wave function can be written as a product ΦAB(0) = ΦAΦB ≡

Φ
(0)
AB. E

(0)
AB and Φ

(0)
AB are the zeroth-order energy and wave function. However, this ansatz

does not fulfill the antisymmetry required. Using the correct ansatzAΦ0 leads to problems

with the perturbation theory, since the antisymmerized wave function is no eigenfunction

of Ĥ0.256 Thus Jeziorski et al. enforced the antisymmetry condition only in the final

energy expression, which is called weak symmetry forcing approach.258

If a Hartree-Fock wave function is used for the monomers, the intramolecular correlation is

missing. This can either be corrected by introducing a second perturbation, which includes

correlation (the so-called double perturbtaion theory approach), or by using DFT.258

Simply replacing the HF orbitals and orbital energies by their Kohn-Sham counterparts

leads to the SAPT(KS) method,259 which is not very accurate.258 A more involved theory,

that relies on the coupled-perturbed Kohn-Sham and time-dependent DFT equations led

to the DFT-SAPT method.258 The latter method is of similar accuracy as CCSD(T),159
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but scales formally only as N6 instead of N7.258 Using density fitting and other techniques,

the scaling behavior could be reduced to N5. The latter is implemented in the MOLPRO

program package.258,260

The total interaction energy computed with SAPT can then be written as a sum of the

different contributions that arise naturally from the perturbation treatment,

Eint = E
(1)
el + E

(1)
exch + E

(2)
ind + E

(2)
exch−ind + E

(2)
disp + E

(2)
exch−disp + · · · (4.70)

with E
(1)
el being the electrostatic, E

(1)
el the exchange, E

(2)
ind the induction, E

(2)
exch−ind the

exchange-induction and E
(2)
exch−disp the exchange-dispersion contribution.

SAPT can be used to provide high-level reference data for intermolecular interactions.

Furthermore, due to the decomposition into different contributions, it provides insight

into the nature of the interaction. It is also possible to parameterize the different terms

of a force-field energy expression to reproduce the corresponding SAPT terms. Following

this approach a physically-motivated intermolecular force field can be derived. If all terms

produce the correct energy by themselves, the calculation gives “the right answer for the

right reason,” and the force field does not rely on an error compensation between the

different terms.217,261

4.4 Excursion: π-π interactions

Non-covalent interactions involving π-systems, especially aromatic rings, have triggered

a lot of interest in the recent years. On the one hand, this is due to the fact that π-π,

as well as anion-π, cation-π and X-H-π interactions are important for many chemical

and biochemical phenomena, as well as for material sciences.262 The π-π interactions are

especially important for optoelectronic devices using small organic molecules. On the

other hand a lot of research is focused on these interactions, since their nature is still not

completely understood.262 In fact, it is not even completely resolved whether special π-π

stacking interactions exist or not.263,264 This excursion provides a short overview of the

most important results and viewpoints in the literature.

The original model devised by Hunter and Sanders265 in 1990 treats every atom as a local

quadrupole that is formed by the positively charged nucleus and two negative charges

above and below the molecular plane that arise due to the π-electrons. According to

this model, the interaction of the quadrupoles on the different molecules determines the

preferential geometry of the molecules and the effect of the substituent on it. The van
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der Waals interactions have the biggest contribution to the overall binding energy but

“cannot be the force which controls the experimentally observed geometry of interaction.

If they were, [..] a cofacial arrangement with no offset would be observed.”265

The Polar/π model by Cozzi and Siegel266 uses a similar ansatz based on the molecular

quadrupole moment.

These models have proven to be quite useful for the rationalization and prediction of

experimentally encountered stacking modes. However, they have several deficiencies and

there are cases where they fail.262 With high-level computational methods like CCSD(T)

or SAPT becoming applicable to systems of a relevant size, several groups, especially

Sherrill and coworkers,267 started to investigate the binding situation in a theoretically

profound way.262 It was found that the prototypical sandwich and parallel displaced con-

figurations of the benzene dimer are bound primarily by dispersion interactions and that

the decrease in exchange-repulsion is responsible for the higher stability of the displaced

isomer.

Several studies on the substituent effects contradicted some of the predictions of the

Hunter-Sanders model (see268 and references therein). Wheeler and Houk proposed269

that the substituent effects do not act through a change in the π-electron density, but

almost solely via direct interactions between the substiuent and the proximate vertex

of the other molecule.262,268 Thus the Hunter-Sanders model is currently challenged and

probably needs revision or should be refined.264

In systems like the benzene dimer the term “aromatic interaction” is often used, although

it was found that aromatic delocalization is actually hindering the π-π interaction and

is hence a misnomer.262 Martinez and Iverson made a strong case that the terms “π-

π-stacking” and “π-π-interaction” are also misnomers.264 They argue that they imply a

preferred face-to-face arrangement, while T-shaped isomers are often encountered and

furthermore insinuate a favorable interaction between the π-clouds that should favor a

face-centered parallel stacking. According to them the Hunter-Sanders model provides

a qualitatively correctly starting point, since it predicts the T-shaped of offset-stacked

arrangements usually encountered correctly. Moreover, it also correctly predicts a face-

centered configuration for dimers formed from electron-rich and electron-poor aromates.

These complexes should be referred to as “donor-acceptor complexes.”

The fact that π-stacked dimers are predominantly held together by dispersion forces raises

indeed the question whether there is any difference to the interactions between saturated

systems, i.e. if “special non-covalent π-π stacking interactions really exist.”263 This ques-

tion is the topic of a communication by Grimme.263 He notes that cyclohexane and benzene
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are both liquids at room temperature and hence similar forces should be active between

the molecules. In fact, the parallel-displaced benzene dimer has a smaller binding energy

than the pentane dimer (which has the same number of electrons). On the other hand

the interactions between large polycyclic aromatic compounds seem to be different than

between alkanes. Grimme studied several acenes and their hydrogenated analogues with

ab initio and DFT methods. He comes to several conclusions: The interactions between

the aromatic molecules are stronger than between the alkanes for systems with more than

10-15 carbon atoms. This π-stacking effect (PSE) is due to more favorable dispersion

interactions, while the electrostatic interactions would favor saturated interactions. The

π-system also has an indirect effect, since it allows a closer contact of the monomers, be-

cause the Pauli repulsion wall is softer. The parallel displacement found in the sandwich

π-stacks is due to electrostatic effects, but also the Pauli-repulsion is decreased by the

displacement. Hence he concludes that there are indeed special nonlocal electron corre-

lations between the π electrons that are responsible for the PSE. However the term ”π-π

interactions” should be used with care, since there is little evidence of a special stabiliza-

tion for systems with less than 10 carbon atoms. The term ”π-π stacking” is best used

as a geometrical descriptor of the interaction mode in unsaturated hydrocarbons.

This exemplary summary of the literature on the topic shows that the true nature of

π-π interactions remains the topic of an open discussion. It seems to be clear that the

importance of these special π-π interactions has been overestimated in the past and that

they are more complex than the Hunter-Sanders model assumes. However, with regard to

the work of Grimme it seems exaggerated to banish the term “π-π stacking interaction”

completely.
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Merocyanine (MC) dyesi consist of a donor and an acceptor moiety, linked by a methine

or polymethine bridge and are therefore donor-bridge-acceptor-type compounds. Due to

this push-pull pattern most of their properties can be understood in terms of two major

resonance structures, namely a neutral and a zwitterionic one (see Figure 5.1a).

Merocyanines feature tunable optical properties and typically show intense absorption

bands. Furthermore the synthetic possibilities lead to a high structural diversity.273,274

These properties make the MCs highly interesting as organic semiconducting materials.

The HOMO levels of the MCs are also relatively low, which should enable high open-

circuit voltages in organic solar cells.275 However, it is generally assumed that dipolar

molecules are inapt for these applications, due to the large energetic disorder generated in

the amorphous solid state which hinders charge transport.276 Nevertheless, despite their

high dipole moments merocyanines have been proven to be suitable candidates for the

use as organic semiconducting materials in devices like photovoltaic cells by the groups

of Würthner and Meerholz, with power conversion efficiencies reaching up to 6%.277 This

is attributed to the fact that merocyanine dyes self-assemble into strongly bound dimer

aggegates, which leads to a cancellation of the dipole moment and thus to a small ener-

getic disorder.273,275 Furthermore the strong intermolecular forces between the monomers

should be rather favorable for a significant electronic coupling and thus for an efficient

exciton and charge transport. Due to their dipolarity MC crystals can be expected to

have a high dielectric constant. This favors the dissociation of the exciton in free charges

at the interface.278 For further details on the advantages and disadvantages of zwitteri-

ons in organic-based materials, see278 and references therein. In recent years, MCs have

successfully been used in organic photovoltaic cells3,273,275,277 and organic thin-film tran-

sistors279,280 and are also well-known for their interesting non-linear optical properties.281

The spectral properties of the MCs can be discussed in terms of a simple “two-state

iParts of this chapter, especially of the section Photoinduced Isomerization of 6-nitro BIPS as well as
the sections A Valence Bond Approach to the Cyanine Limit: Does a Correlation between the Cyanine
Limit and the Exciton Reorganization Energy Exist? and Charge and Exciton Reorganization Energy
and Exciton diffusion length have already been published in references270,271 and272.

110



5 Merocyanine dyes

Figure 5.1: a) The two major resonance structures describing a merocyanine. Here, an
MC with a C4-bridge is depicted, the VB structures can, however, analogously
be formulated for different bridge lengths. b) Composition of the ground
and excited state in a two-state model with the contributing state functions
having very different (left) and equal energies (right). Reproduced with kind
permission from AIP Publishing.

model” using valence bond theory (see Figure 5.1b).281–283 Neglecting the overlap between

the two major resonance structures describing donor-bridge-acceptor molecules (see Fig-

ure 5.1 b)), the normalized wave functions of the ground and excited state can be written

as

|Ψg〉 = c |Φ1〉 ±
√

1− c2 |Φ2〉 , (5.1)

|Ψex〉 = d |Φ1〉 ±
√

1− d2 |Φ2〉 . (5.2)

Using the orthogonality condition and again neglecting the overlap one obtains

〈Ψg|Ψex〉 = cd±
√

1− c2
√

1− d2 = 0, (5.3)

which gives

c2d2 = (1− c2)(1− d2)⇔ d = ±
√

1− c2. (5.4)

Thus one can reduce the degrees of freedom to one parameter c

|Ψg〉 = c |Φ1〉+
√

1− c2 |Φ2〉 , (5.5)

|Ψex〉 =
√

1− c2 |Φ1〉 − c |Φ2〉 . (5.6)
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Within the model, the weight of structure one is then simply given by c2, while the weight

of structure two is given by 1 − c2. Of course, if the overlap was taken into account the

equations would be less simple, but for a qualitative argumentation the approximations

should be valid. From equations 5.5 and 5.6 one can see that if the ground state consists

predominantly of one resonance structure, the excited state will consist mainly of the

other. This can also be rationalized using a valence bond mixing diagram (i.e. perturba-

tion theory)96 as in Figure 5.1b. If one structure is significantly lower in energy than the

other, the ground state will be dominated by the lower energy structure. Since the ionic

structure is stabilized in polar environments, the weights will be highly dependent on the

environment polarity. This makes the MCs ideal candidates for studying the effect of the

environment on the optoelectronic properties of organic semiconductors.

In the case of merocyanines, the ground state is typically (but not always) dominated

by the neutral structure and hence the zwitterionic resonance contributor is the major

structure in the excited state. In this case the excitation can be expected to feature a sig-

nificant amount of charge-transfer character. Since the bond length alternation patternii

is different in the ground and excited state, a considerable amount of geometric reor-

ganization will be induced by the excitation. Hence large vibrational progressions (i.e.

broad bands) and high reorganization energies can be expected. A very polar environment

should stabilize the predominantly ionic excited state much more than the ground state,

leading hence to a large bathochromic solvatochromism.iii

If, however, both resonance structures are equal in energy, the ground and excited state

will both consist of a 50:50 mixture of |Φ1〉 and |Φ2〉. This is called the “cyanine

limit,”283 since it is the case for symmetric cyanines. Consequently a molecule in the

cyanine limit can be identified by having spectroscopic properties comparable to the cya-

nines. The character of the ground and excited state should be similar, and hence the

excitation will be rather neutral in character, and its solvent dependence can be expected

to be small. The geometric changes should also be small and hence the band rather sharp.

Since the VB structures have the same energy, the excitation energy is dominated by the

iiThe bond length alternation is typically defined as the difference between the average lengths of the
carbon-carbon single and double bonds.284 In this thesis the bond length alternation pattern refers
to the pattern of alternating single and double bonds, which is opposite in the neutral and the ionic
resonance structures.

iiiWhen discussing solvatochromic shifts, one should keep in mind that the polar environment on the
one hand stabilizes the ground and excited state for a fixed geometry to a different extent, but on
the other hand also leads to a change of the geometry, especially the BLA. Thus both effects must be
taken into account. Furthermore, the weights will be influenced indirectly by the change in geometry
as well as directly due the effect of the polarity of the environment on the Hamiltonian.
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resonance of the two structures and should hence typically be smaller than in the case of

structures with strongly differing eigenenergies.

Going from the cyanine limit to the case, where the ionic resonance structure is domi-

nating the ground state, the excitation energy and the band width should again increase.

Furthermore a hypsochromic solvatochromism should be observed.

Würthner et al. investigated three merocyanines with different heteroatoms and sub-

stituents in solvents with different polarities.285 They obtained c2-values ranging from

0.3 to 0.58 (For details on how to estimate c2-values from experimental data, see below).

The first merocyanine had a predominantly neutral polyene-like structure (c2 ≈ 0.3). In-

creasing the solvent polarity led to a red-shift of the absorption and to sharper bands.

This is in line with the two-state model, since the increasing polarity should shift the

molecule in the direction of the cyanine limit. Of course the red shift by itself could in

principle be explained solely by the stabilization of the excited state, due to the increasing

reaction-field strength of the solvent, but the change in band shape is a strong indication

for the change of character of the wave function.281 The other two merocyanines used in

the study were closer to the cyanine limit and showed with increasing solvent polarity

a bathochromic shift that inverted to a hypsochromic shift for very polar solvents. The

most bathochromically shifted spectra always showed cyanine-type band shapes. This in-

dicates that the cyanine limit was reached and subsequently crossed.285 Thus all findings

were in accord with the model.

It is interesting to note that by changing the polarity of the environment, the qualitative

character of the wave function changes. This high sensitivity is rather unusual and chal-

lenging for a computational modeling.

As stated above the c2-values can be estimated from experimental data. This is also

done with a two-state model (see283 and references therein), which is, however, based on a

molecular orbital picture. In this approach, the molecule is simply modeled by two atomic

basis functions ϕ1 and ϕ2 separated by the distance l, see Figure 5.2. In order to derive

a formula for c2, at first the dependence of the transition dipole moment µag and the

difference between ground- and excited-state dipole moment ∆µ on c2 is calculated using

the zero-differential overlap (ZDO) approximation and the two basis functions. Due to the

ZDO approximation, the atomic orbital overlap is neglected and hence the two molecular
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Figure 5.2: Two-state model for the calculation of the dependence of µag and ∆µ on c2.

orbitals resulting from the two basis functions can be written as283

φ1 =
√

1− c̃2ϕ1 + c̃ϕ2, (5.7)

φ2 = c̃ϕ1 −
√

1− c̃2ϕ2. (5.8)

With these MOs the ground and singly excited state can be written in terms of configu-

rations,

Ψ1 = |φ1φ̄1| (5.9)

Ψ2 = |φ1φ̄2|+ |φ2φ̄1|. (5.10)

It should be noted that despite the apparent similarity to the equations 5.5 and 5.6 the

ansatz is quite different. c̃ is an LCAO-parameter describing the polarization of the bond-

ing and antibonding MOs and is hence not identical to the coefficient of the VB structure

c.

The expansion of the ground-state wave function Ψ1 in VB determinants gives the follow-

ing structures:iv

This is qualitatively the same as in ethene or donor-acceptor systems like aminoborane. It

is obvious that they are not the same as the ones in Figure 5.1. This is due to the fact that

just two basis functions are used, while at least four would be needed for a modeling of a

donor-bridge-acceptor system with a C2 bridge, that allows a transformation to the VB

structures of the type in Figure 5.1. The MO model neglects the additional basis functions,

which would describe the bridge. Hence the bridge is assumed to be of minor importance

and is just modeled by the distance l. Thus structure I could be seen as an approximation

ivThe formal charges have been omitted, since they depend on the actual system. In the case of ethene
structure III features no charge separation, while it is structure I for donor-acceptor systems.
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Figure 5.3: Dependence of the weights of the structures on the value of c2,obtained by
expanding Ψ1 = |φ1φ̄1|. For the calculation the overlap between the structures
has been neglected.

for the neutral resonance contributor, while structure II is representing the ionic one. The

charge separation in the ionic resonance structure is somewhat overestimated, because

two electrons are moved from the donor to the acceptor. In the structure in Figure 5.1

the donor is only deficient of one electron, while the acceptor gains one, the remaining

electrons are rearranged in the bridge. With increasing c̃2 the weight of structure I

decreases and the one of structure II increases quadratically (see Figure 5.3). The weight

of structure III is zero at both limits and reaches a maximum at c̃2 = 0.5.

Using the expressions for Ψ1 and Ψ2 and the model (Figure 5.2), expressions for µag and

∆µ can be derived, by calculating the corresponding matrix elements (see283 for details),

µag =
√

2elc̃
√

1− c̃2, (5.11)

∆µ = el(1− 2c̃2). (5.12)

Thus the model predicts that the transition moment is at its maximum at c̃2 = 0.5, i.e.

the cyanine limit. This is not surprising, since with ∆µ being zero not much electron

rearrangement can take placev and hence the charge transfer character can be expected

to be zero at the cyanine limit. At c̃2 = 0.5 neither of the two MOs of the model are

vStrictly speaking a symmetric electron rearrangement would be possible as in the case of the PBI
dimers (see below), however, due to the unsymmetric nature of the MCs this is not very likely here.
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polarized. By rearranging the equations, one can obtain an expression for c̃2,285

c̃2 =
1

2

[
1−∆µ(4µ2

ag + ∆µ2)−1/2
]
. (5.13)

Thus the value of c̃2 can be calculated from quantities obtainable by UV/Vis and elec-

trooptical measurements. In a similar fashion the behavior of the polarizability and the

hyperpolarizability can be analyzed (see283 for details). The model predicts that the po-

larizability is maximal at the cyanine limit while the first hyperpolarizability goes through

zero at c̃2 = 0.5. Marder et al.284 plotted calculated hyperpolarizabilities against the bond

length alternation, which should be connected to c̃2 and indeed found the predicted be-

havior. For a recent study on the BLA and non-linear optical properties of π-conjugated

systems, see.286

The MO-based two-center two-state model relies on heavy approximations, but neverthe-

less, it proved to be quite useful for the NLO community. The c̃2-values measured by

Würthner et al.285 reported above also fit nicely to the spectroscopic properties of the

corresponding MCs, which supports the validity of the model.

The valence bond picture on the other hand is qualitatively correct, since the major ap-

proximation is the modeling of the molecule with only two resonance structures, which

has a solid theoretical justification if one uses block-localized determinants287,288 for the

individual structures. Ab initio valence bond theory thus provides a methodology of cal-

culating the weights. As stated above the MO-based two-state model cannot be directly

translated to the VB model of the MCs, since the three structures obtained for two centers

and two electrons are different from the ones needed for a donor-bridge-acceptor system.

Moreover the identification of structure I with the neutral and structure II with the ionic

resonance contributor relies on heavy approximations. This, however, does not mean that

no relation between c2 and c̃2 can be expected. Assuming the two-center model is a valid

approximation of the frontier molecular orbitals, one can argue that the higher c̃2 the

more polarized is the the two-center model MO and thus the HOMO of the real system.

Since the weight of the ionic structure should increase with increasing polarization, one

should find a qualitative agreement between c̃2 and c2. A quantitative agreement between

calculated and measured weights can, however, not be expected due to the involved ap-

proximations.

In the quest for optimal MCs for the use in organic semiconductors, guidelines for a

rational design would be highly desirable due to the immense synthetic possibilities. It is
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usually assumed that MCs close to the cyanine limit should exhibit excellent properties

due to the low reorganization energy. However, this has never been evaluated critically.

Furthermore, the cyanine limit needs to be reached in the crystal or thin-film environment,

but the c̃2-values are measured in solution. Since it is unclear how much the different en-

vironments shift the weights, it is not possible to extrapolate from solution data to the

behavior in the crystal. Another parameter typically used is the HOMO energy, since

it is assumed that the lower the HOMO energy the higher Voc. HOMO energies can be

measured using cyclovoltammetryvi, but here also the question arises if a measurement

in solution is suitable. Furthermore, since it can be assumed that the influence of the

packing will be significant on the performance of the MCs in the device, the significance

of purley molecular properties is uncertain.

The second section of this chapter deals with possible approaches to assess the suit-

ability of a certain merocyanine for organic solar cells with quantum chemical methods.

A special emphasis is laid on the influence of the packing and the environment. The

usefulness of the HOMO energy, the BLA and their dependence on the environment is

discussed, as well as possibilities to obtain information of the effect of the crystal environ-

ment. Furthermore the question of how to calculate c2-values, its environment dependence

and its importance are briefly addressed. While in the experiment typically macroscopic

properties are measured, which are affected by many parameters, the individual effects

can be studied separately with computational methods. Several people have been involved

in this project. Hence only an overview of the results will be given in this thesis, while

more details can be found in the Bachelor thesis of Andreas Heimbeck,289 the Diploma

thesis of Anca Boariu290 and especially the Master thesis of Charlotte Brückner.140

Some MCs can interconvert into the spiropyran form. This is currently extensively stud-

ied due to its potential applications in optical switches, photonic crystals, and other fields

of material sciences and biology (see for instance291–294 and references therein). The first

section of this chapter focuses on the less understood photoinduced interconversion

of two isomers of the MC form of 6-nitro BIPS,vii which has been studied extensively with

viStrictly speaking the HOMO energy cannot be measured, since is a theoretical construct. What can be
measured is the ionization potential (e.g., via photoelectron spectroscopy) or the oxidation potential
(via cyclovoltammetry). Using Koopmans’ theorem these quantities are, however, related to the
HOMO energy. It should be noted that the connection between the ionization/HOMO energy and
Voc is also based on heavy approximations.

vii6-nitro-1’,3’,3’-trimethylspiro[2H -1-benzopyran-2,2’-indoline]
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Figure 5.4: Photochemical interconversion between the TTC and TTT isomer. The de-
picted ionic structure only represents the multitude of possible zwitterionic
structures. Reproduced with kind permission from AIP Publishing.

femtosecond transient absorption spectroscopy by Tobias Brixner and his group.271,295

The results shown there have been obtained in close collaboration with Dr. Stefan Rützel

as well as Prof. Patrick Nürnberger and Prof. Tobias Brixner. A fundamental under-

standing of the photochemistry of the MCs is of vital importance in order to assess their

behavior in organic solar cells. Furthermore the computations were aimed at rationalizing

and understanding the experimental results. In the course of this project a benchmark

of theoretical methods has been carried out, which is also relevant for the computational

characterization of the MCs.

5.1 Photoinduced Isomerization of 6-nitro BIPS

Irradiating the trans-trans-cis (TTC) isomer of 6-nitro BIPS leads to an interconversion

to the trans-trans-trans (TTT) isomer. The photoinduced isomerization is depicted in

Figure 5.4. The ground state of 6-nitro BIPS is best represented by the zwitterionic

Lewis structure in polar environments (see below). According to the experimental re-

sults, the TTC isomer predominates in acetonitrile, while excitation in the visible range

of the spectrum leads to an increase of the TTT isomer due to an ultrafast excited-state

photoisomerization TTC → TTT within 200 fs.295 The reverse reaction TTT → TTC

is not observed. Signal oscillations in the transients at 170 and 360 cm−1 have been at-

tributed to coherent vibrational wave-packet dynamics on the excited-state surface.271,295

Although the spectroscopic studies provide an immense body of data, it is not sufficient

for an interpretation and rationalization of the results. It was not clear why the reverse

reaction (i.e. irradiation of TTT, with subsequent isomerization to TTC) does not occur

nor which modes are responsible for the observed oscillations. Since the isomerization
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involves a rotation around bond 3 in Fig. 5.4 one might assume that the minimum of the

excited state is a twisted species and that fluorescence to the ground state occurs from

this configuration. However, this is not in line with the experimentally observed small

Stokes shift. Hence the shape of the potential energy surface on which the isomerization

occurs could not be extracted from the experimental data.

Previous computations of the isomerization of the MC form were either focused on the

ground state296,297 or used simplified model systems.298 Quantum-chemical calculations of

the potential-energy surfaces (PES) and the vibrational modes of 6-nitro BIPS in ground

and excited state are, however, needed to interpret the spectroscopic results. The the-

oretical description of the ground- and excited-state PES for the reaction coordinate is,

however, challenging. The above mentioned susceptibility of the MCs to environmental

effects as well as the possible occurrence of charge-transfer effects are quite demanding for

the modeling. Acetonitrile is rather polar (ε=35.68)195 and hence will have a significant

influence. Furthermore, the dependence on the environment as well as the amount of

charge-transfer character can be expected to vary strongly along the reaction coordinate,

thus demanding on the one hand highly accurate methods, which describe neutral and

charge-transfer states equally well, and on the other hand a sophisticated treatment of

the solvent effects.

In the ground state, the neutral structure is likely to be important in the minimum ge-

ometry, but is becoming highly unstable if one ring is rotated, due to the fact that the

π-system is disrupted. Therefore the weights will change significantly during the isomer-

ization which hence influences the character of the excitation, the solvent dependence, and

the other geometric degrees of freedom. This challenging entanglement of geometry and

electronic character makes the MCs a very interesting model system for the investigation

of environmental effects.

In this section the results from high-level ab initio and density functional calculations in

the S0 and S1 state are presented. The PES was calculated along the reaction coordi-

nate, which can be approximated by the rotation around bond 3 in Fig. 5.4, in order

to elucidate the mechanism of the photoinduced isomerization. Additionally, frequency

calculations in the S1 state were used to identify the modes responsible for the oscillations

in the experimental transients. Due to the complexity an extensive benchmark has been

performed in order to find an accurate theoretical description of the excited states and

the solvent effects.

At first a summary of the computational methods is given and the results of some pre-

liminary computations are presented. Then the benchmark calculations concerning the
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Figure 5.5: The dihedral angles restricted in the relaxed scan are marked in blue. Repro-
duced with kind permission from AIP Publishing.

excited state and the solvent effects are examined. In the third section the results are

discussed and interpreted.

5.1.1 Computational Methods and Preliminary Calculations

In order to calculate the PES along the reaction coordinate, relaxed scans in the ground

and excited state were performed by changing the angle θ of the rotation around bond 3

(see Fig. 5.4) step by step while all other degrees of freedom were optimized. For these

calculations, the Gaussian09 program package195 was used. The method for the treatment

of the environmental effects will always be noted in the discussion below. If nothing is

stated, the calculations were performed in the gas phase.

If only the angle θ (see Figure 5.5) is restricted in the relaxed scan, several atoms pyrami-

dalize in the vicinity of the transition-state geometry. This has the consequence that the

dihedral angle (which defines the reaction coordinate in the scan) and the angle between

the two planes defined by the ring systems differ significantly, thus making the interpre-

tation of the PES difficult. To ensure a direct interpretability of the rotational (dihedral)

angle, the dihedral angles in the vicinity of the rotational were kept fixed (see Figure 5.5).

However, this reduces the degrees of freedom and may limit the validity of the approach.

Hence it was checked that these additional constraints do not change the shape of the

surface significantly by means of additional calculations without these restrictions (see

Figure 5.6).

Preliminary ground-state optimizations were performed with Møller-Plesset Perturba-

tion Theory (MP2)54 using the resolution of the identity approximation299–301 as well

as with the B3LYP functional60,61,63,64 in connection with the cc-pVTZ basis sets.302

The conductor-like screening model192 as implemented in TURBOMOLE193 was used to

include the effect of the environment. With these calculations the bond-length alterna-
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Figure 5.6: Comparison of the relaxed scan (B3LYP/cc-pVDZ with IEFPCM) with and
without additional constrained dihedral angles (see Figure 5.5). Reproduced
with kind permission from AIP Publishing.

Table 5.1: Bond length alternation pattern for TTC in Å (see Fig. 5.5 for the definition
of the bond numbers)

bond MP2/cc-pVTZ B3LYP/cc-pVTZ B3LYP/cc-pVDZ
(COSMO) (COSMO) (IEFPCM, relaxed scan)

1 1.410 1.405 1.406
2 1.373 1.374 1.387
3 1.422 1.420 1.418

tion pattern could be obtained and the applicability of density functional methods was

checked. In principle the ground state can be expected to be sufficiently well described by

the B3LYP functional. However, since the bond length alternation pattern is highly im-

portant for the correct description of the barrier of the isomerization and DFT is known

to have difficulties with conjugated π-systems303 the additional MP2 calculations have

been performed. For comparison also B3LYP/cc-pVDZ calculations with IEFPCM196

have been performed using Gaussian09. The bond lengths of the bridge as predicted by

the different methods are given in Table 5.1.

Since the agreement between the methods is quite satisfactory, the B3LYP functional

in combination with the cc-pVDZ basis sets was chosen for the scan in the ground state.

All methods predict a bond length alternation in line with the assumption of a slightly

dominating ionic resonance structure.

For calculations of single points and excitation energies as well as numerical frequencies

and the corresponding geometry optimization, the long-range corrected CAM-B3LYP

functional152 was applied using time-dependent density functional theory. The appli-

cability of TDDFT was tested by benchmarking several potentially suitable functionals
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against SCS-ADC(2) and experimental results295 (see below). Unless stated otherwise all

DFT calculations were performed with the Gaussian09 program package, while TURBO-

MOLE was used for SCS-ADC(2)169 and TDHF computations.

For the ground- and excited state scan, a polarizable continuum model using the inte-

gral evaluation formalism (IEFPCM) was used to account for solvent effects. Vertical

excitation energies were computed with non-equilibrium state-specific solvation200 (SS-

PCM). Several other approaches to include the solvent effects on the excited state have

been tested, among them linear response solvation (LR-PCM)201 as well as the corrected

linear response solvation (cLR-PCM) by Mennucci et al.199 The combination of the CAM-

B3LYP functional with LR and SS solvation was also applied by Weigel et al. for a similar

system.304

In order to investigate the possible influences of solvent reorganization, the relaxed scan

in the excited state was performed using equilibrium linear response solvation (LR-PCM).

State-specific solvation could not be used since analytic excited-state gradients are not

available for this method.305 However, it was shown recently that performing geometry

optimizations in the excited state using the B3LYP functional in conjunction with linear

response solvation combined with single-point calculations using CAM-B3LYP and equi-

librium state-specific solvation yields a favorable error cancellation.305 Hence the excited

state-optimizations were also performed with B3LYP.

In order to reproduce fluorescence conditions, the ground state was calculated in the

excited-state geometry with the solvation shell of the excited state as well as with an

optimized solvent.

For the frequency calculations, the transition-state geometry obtained from the relaxed

scan was optimized for the S1 state in the gas phase. Unless stated otherwise, all calcu-

lations used the cc-pVDZ basis sets.302

5.1.2 Benchmark Calculations

The challenging properties of the system demand extensive benchmark calculations. SCS-

ADC(2) is able to describe the changing amount of CT and neutral character of the first

excited state accurately, but cannot be combined with a reasonable treatment of the

environment for a system of this size due to its computational cost. TDDFT is the

obvious choice for larger systems, but the correct functional has to be found. Due to the

expected amount of charge-transfer character CAM-B3LYP might be appropriate, but
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this has to be checked. Since it is well-known that the excited states of cyanines are

difficult to compute accurately,306 it is likely that the MCs pose similar problems. Hence

as a first step different functionals are benchmarked against the results from SCS-ADC(2)

in the gas phase and the experimental data. It is assumed that a functional that describes

the system in the gas phase correctly will also make the right predictions concerning the

solvent effects in acetonitrile. The different methods to include the solvent are investigated

in a second step.

At first the energies and the oscillator strengths of the lowest bright excited state of TTC

and TTT were computed with various methods (see Figure 5.7), since the experimental

results suggest that the isomerization involves the S1. The gas-phase SCS-ADC(2) results

show an excellent agreement with the experiment values, although the latter have been

obtained in solution (acetonitrile). This can either be attributed to error cancellation or

to a very small solvent effect. Using the two-state model, the second assumption implies

that the system is rather close to the cyanine limit. Indeed including the effect of the

solvent on the excitation via LR-PCM changes the excitation energy by only 0.07 eV for

TTC and 0.03 eV for TTT.

While HFB307 and BLYP60,61 show the closest absolute numerical agreement with the

experiment for the vertical excitation energies of TTC and TTT, the difference between

the two isomers is not well reproduced (Fig. 5.7). B3LYP, CAM-B3LYP and ωB97XD

overestimate the excitation energies, but the relative energies as well as the oscillator

strengths are well described. This overestimation is well-known for cyanine dyes.306 It is

also evident from the results that the cc-pVDZ basis is sufficiently converged. It should

be noted that in order to gain insight into the photochemical isomerization, the relative

energies and oscillator strengths of the two isomers are of significantly higher importance

than the absolute values. As can be expected TDHF significantly overestimates the

excitation energies.

In order to see if all methods predict the correct ordering of the lowest excited states, the

first two excited states of TTT computed with different DFT functionals and TDHF are

depicted in Figure 5.8. CAM-B3LYP predicts, in agreement with SCS-ADC(2), the S1 to

be the bright state, while it is the second excited state with the pure DFT functionals.

Using B3LYP the two states are almost degenerate. TDHF also shows the correct ordering,

but, as pointed out above, overestimates the excitation energy significantly. By inspecting

the leading configurations, the bright state can be identified as a π-π∗ excitation, while

the dark state is dominated by an n-π∗ excitation originating from the lone pair on

the phenolate oxygen and thus exhibits charge-transfer (CT) character. This explains the
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Figure 5.7: Computed vertical excitation energies and oscillator strengths (gas phase) of
the lowest bright excited state for TTC and TTT with different methods
(DZ ≡ cc-pVDZ, TZ ≡ cc-pVTZ). Reproduced with kind permission from AIP
Publishing.
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Figure 5.8: Computed vertical excitation energies and oscillator strengths (gas phase) for
the first two excited states of TTT with different methods (TZ ≡ cc-pVTZ)
and the experimental excitation energy of the bright state. Reproduced with
kind permission from AIP Publishing.
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Figure 5.9: Computed vertical excitation energies and oscillator strengths for the first
two excited states of TTT using functionals with different amount of exact
exchange. Results for the standard B3LYP functional are also given for com-
parison (DZ ≡ cc-pVDZ), as well as the experimental excitation energy of the
bright state. Reproduced with kind permission from AIP Publishing.

wrong ordering observed with the pure functionals, since they underestimate the excitation

energy of CT states, as explained above. As can be expected, the underestimation is less

pronounced for the hybrid functional B3LYP and even less so for the long-range corrected

functionals.

The inclusion of exact exchange yields the correct order of the states, but also increases

the excitation energy of the bright state. This is demonstrated in Figure 5.9 by increasing

the amount of Hartree Fock exchange via a one-parameter functional

AEHF
X + (1− A)

(
ESlater
X + ∆Enon−local

X

)
+ ∆Elocal

C + ∆Enon−local
C (5.14)

using the Becke exchange307 and the LYP61 correlation functionals similar to the approach

of Renz et al.308 The functional with A % of exact exchange is called BLYPA. The lower

the amount of HF exchange, the better the numerical agreement of the bright state with

the experiment. However a significant amount of exact exchange is needed for the cor-

rect ordering of the states. Of all functionals included in the investigation, CAM-B3LYP

gives the best compromise between the quantitative agreement and the correct ordering
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Figure 5.10: Computed vertical excitation energies (a) and oscillator strengths (b) of the
first bright state for several points of the reaction coordinate with different
methods. Geometries are obtained form the relaxed scan in the ground state
(B3LYP/cc-pVDZ with IEFPCM). Reproduced with kind permission from
AIP Publishing.

of the states. The fact that pure functionals provide the best numerical agreement for the

absolute excitation energies is probably due to an extensive error compensation.

Using only the vertical excitation energies in the benchmark is not sufficient. The fact

that a functional provides a good description at this point of the potential energy surface

does not imply that this is also true for the rest of the surface. The minimal requirement

for the investigation of a photochemical reaction would be that absorption and fluores-

cence are reproduced correctly. Since in this case the wave packet dynamic along the

reaction coordinate θ is of interest, the benchmark was extended to a number of points

along this coordinate. Therefore, vertical excitation energies and oscillator strengths were

computed with different functionals at several points obtained from the relaxed scan in

the ground state and compared to SCS-ADC(2). The results are depicted in Figure 5.10.

Contrary to CAM-B3LYP, the pure functionals without long-range corrections predict a

qualitatively wrong behavior of the excitation energy around the twisted geometry. The

lowest excitation energy is obtained at 90◦ instead of 80◦. Although CAM-B3LYP over-
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estimates the excitation energy at the ground-state geometry more strongly than at the

twisted geometry, it gives a qualitatively correct description of the shape of the potential

energy curve. The cc-pVDZ basis is sufficiently converged at all points along the surface.

In view of these results, the CAM-B3LYP functional was used for all further computa-

tions, although LC-BLYP also provides a good description and might also be considered

for the description of merocyanine dyes.

Previous benchmark calculations309 for related cyanine dyes came to the conclusion that

the one-parameter HFB functional yields the best numerical agreement with the experi-

ment. The investigation was focused on the vertical excitation energy of the bright state.

Indeed this finding can be confirmed. However, if one takes the qualitative agreement for

the complete energy profile and the position of the dark state into account, the CAM-

B3LYP functional yields more reliable results.

The influence of the solvation on the vertical excitation energies was negligible. How-

ever, this fact should not lead to the conclusion that solvent effects are unimportant for

the isomerization. The two-state model suggests that the solvent effect may be varying

along the reaction coordinate θ, hence a reliable estimation of its influence on the shapes

of the PESs of ground and excited state is crucial. This turned out to be very challenging

because different approaches give very different predictions. In Figure 5.11 the results

using linear response (LR-PCM),201 state-specific solvation200 in two variants and the

corrected linear response (cLR-PCM) approach199 are depicted.

As explained above, in the case of state-specific solvation in conjunction with TDDFT, a

series of iterative TDDFT calculations is performed, where the solvent is adapted to the

excited-state density. In this process the solvent is, however, also changed for the ground

state. After having reached convergence, the effect of the ground-state solvation is sub-

tracted via correction terms. In this study the excitation energies from the last TDDFT

iteration (uc-SS-PCM), which are uncorrected for the effects on the ground state, as well

as the final corrected ones (c-SS-PCM) are used (see below).

Figure 5.11a shows the situation for vertical absorption (ground-state structure, non-

equilibrium conditions, i.e. adaption of the electronic polarization of the solvent), while

Fig. 5.11b depicts the fluorescence conditions (excited state geometries, equilibrium con-

ditions, i.e. full relaxation of the solvent). In order to illustrate the magnitude of the

solvent effects, Fig. 5.11a also contains the gas phase curves. For both absorption and

fluorescence conditions (5.11a, b), the solvent effects are almost negligible for the planar

structures (θ = 0,±180◦), but very pronounced for the twisted geometries (θ ≈ 90◦),
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Figure 5.11: PES of S0 and S1 using (a) vertical conditions , i.e. ground-state geometries
and non-equilibirum solvation and (b) fluorescence conditions, i.e. excited-
state geometries and equilibrium solvation with different solvation methods.
The ground state in (b) was calculated with the solvation shell of the excited
state. Reproduced with kind permission from AIP Publishing.

where the rings are almost orthogonal. This is caused by the change of the weights of the

two resonance structures, along the reaction coordinate. In the minimum ground-state

geometry, both resonance structures are of similar importance (i.e. the MC is close to the

cyanine limit), as can be deduced from the bond-length alternation pattern. Since the

same is true for the S1 state, only a minor change in character will occur upon excitation

and thus only an insignificant solvatochromic shift is expected. At the transition state,

however, the ground state is more or less purely zwitterionic, since the π-system is dis-

rupted due to the orthogonality of the rings. Thus according to the two-state model, the

excited state is approximately purely neutral.

For the absorption at the twisted geometry (Fig. 5.11a) a destabilization of the excited

state in comparison to the gas phase can be expected, because the solvent is mainly

adapted to the ionic ground state and only the fast degrees of freedom of the solvent

are adapted to the neutral excited state. For the fluorescence situation (Fig. 5.11b), the

opposite should be true.
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Indeed, for the absorption situation (non-equilibrium solvation), all methods predict a

destabilization of the excited state. However, they strongly differ in the predicted magni-

tude of the effects. The LR-PCM solvation scheme predicts a slight barrier in the S1 for

twisted geometries. But based on a recent paper by Pedone305 and the work of Mennucci

et al.,199 it can be assumed to overestimate the destabilization of the solvent.

The standard SS-PCM approach (c-SS-PCM, green curve) predicts an even larger effect

for this situation. Both approaches, especially the c-SS-PCM, contradict the experimental

results, because such high barriers are not in line with the fast photoisomerization. The

failure of the standard SS-approach seems to result from the correction terms added af-

ter the iterative TDDFT treatment,200 because if they are neglected (uc-SS-PCM), only

a moderate destabilization is predicted. Since only the dynamic part of the solvent is

adapted, the effect on the ground state should be small and hence also the correction. At

the planar geometry this is indeed true, with the size of the correction being around 0.1

eV. At the twisted geometry, however, the corrections are around 1 eV, which is unphys-

ically large. In fact, it is known that the SS-PCM approach in conjunction with TDDFT

can sometimes be unstable.310 The corrected LR-PCM (cLR-PCM) approach by Men-

nucci et al. predicts a slightly larger destabilization of the S1 state for twisted geometries,

but nearly coincides with uc-SS-PCM for planar geometries. It is important to note that

despite existing differences, the cLR-PCM and uc-SS-PCM agree in all important aspects.

Both predict small barriers for the isomerization along the reaction coordinate at about

θ = ±50◦and± 130◦ and shallow minima on the S1 surface for twisted geometries. They

furthermore compute that the minima of the S1 and the maxima of the ground state are

slightly displaced. The cLR-approach was recently also successfully applied for the solvent

effects on the excited states of cyanine dyes.311 Keeping in mind that the correction terms

should be small, it is not surprising that the uc-SS-PCM gives results of similar accuracy

as cLR-PCM.

As discussed above, the vertical excitation energy is overestimated by the CAM-B3LYP

functional calculations, but the energy difference between the two isomers is reproduced

accurately. Including the solvation does not change this picture. For instance, the uc-SS-

PCM calculation yields (experimental values are given in parentheses): TTC 2.81 (2.23)

eV, TTT 2.67 (2.10) eV.270,295

In the case of fluorescence conditions (Fig. 5.11b), uc-SS-PCM, c-SS-PCM, and cLR-

PCM agree in some aspects, but they also show differences. However, the uc-SS-PCM

and cLR-PCM are in accord for all main aspects. Both predict that the S1 PES possesses

no barriers around θ = 0◦. Both also concur that the shape of the PES around θ = ±180◦
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differs slightly from its behavior around θ = ±0◦. In contrast, the standard c-SS-PCM

approach predicts that θ = ±180◦ as well as θ = 0◦ represent shallow minima with respect

to the reaction coordinate. It is interesting to note that the difference between uc-SS-PCM

and c-SS-PCM is much smaller than in the non-equilibrium case, despite the fact that

the assumption of small correction terms is now less accurate. In the equilibrium case

the total solvent contribution is adapted, which should have a larger effect on the ground

state and hence the correction terms. Thus one might rather assume a larger difference

instead of a smaller one. This also confirms that the huge values of the correction terms

in the non-equilibrium case are unphysical and are probably caused by an instability of

the method. The problem seems to be absent for equilibrium conditions.

The methods uc-SS-PCM, c-SS-PCM, and cLR all predict that the S1 surface possesses

deep minima for twisted geometries. The LR approach, however, predicts a completely

different shape and hence seems to be inappropriate. The failure of the LR-PCM ap-

proach can be explained with the low oscillator strength at the twisted geometries (see

below), since (as stated above) the solvent contribution to the excited state depends on

the transition dipole moment in the LR approach.198 This can lead to an artificial lack of

stabilization for dark states.

Similar to the absorption, the fluorescence energy is also overestimated, but the small

Stokes shift is well reproduced on the cLR- as well as the uc-SS-PCM level (experimental

values again in parentheses): TTC 2.56 (2.01) eV, TTT 2.44 (1.96) eV. For the calculation

of the fluorescence energy, the difference of the energy of the points with θ = 0,±180◦ of

the uc-SS-PCM excited-state curve in Fig. 5.11b and the corresponding ground state has

been used.

5.1.3 Results and Discussion

The potential energy surfaces in Fig. 5.11a and b, which use the geometries from the

relaxed scan in S0 and S1, respectively, represent two extreme cases - the absorption and

fluorescence conditions. These surfaces can be used to understand the photochemical and

-physical behavior of the system.

The corresponding oscillator strengths, which are given in Figure 5.12, provide a good

starting point. It can be inferred that fluorescence is only efficient from either the vicinity

of 0◦ or 180◦, but not from the minima of the excited state above the transition states

of the S0, since the oscillator strength is zero at these points. The transition dipole mo-

ment vanishes due to the corresponding orbitals localizing on the orthogonal rings, thus
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Figure 5.12: Oscillator strength for absorption and fluorescence conditions. Reproduced
with kind permission from AIP Publishing.

reaching a non-emissive twisted intramolecular charge-transfer (TICT) state.305 Since the

PES of the ground and excited state are rather close in energy at the transition state, a

non-radiative decay into S0 might be possible (see Fig. 5.11a and b). However, a signifi-

cant amount of radiationless decay would not be in line with the experimental results.295

Thus a wave packet starting at the Franck-Condon region of TTC can either fluoresce to

the ground state directly, or isomerize to TTT and fluoresce there.

The reason why this reaction is possible, but not the inverse reaction is connected to the

barriers along the reaction path. The energy of the Franck-Condon region of TTC is also

slightly higher than the one of TTT, which is in favor for the observed direction, but

probably not sufficient for an explanation. Thus one needs to inspect the shape of the

potential energy surface. The two extreme cases shown in Figure 5.11 constitute two cuts

through the multidimensional surface on which the wave-packet dynamic occurs. This

allows the development of a two-dimensional model in which all relaxation effects on the

S1 state (intramolecular, solvent relaxation) are combined into one effective mode, which

is orthogonal to the reaction coordinate θ. One way to define and quantify this mode is

the root mean square deviation for each rotational angle between the relaxed geometries

of ground and excited state. Assuming a harmonic behavior of this effective mode, it is

possible to analytically connect the curves for absorption and fluorescence conditions in

Fig. 5.11 via parabolas, thus generating a two-dimensional PES (see Figure 5.13). For

the PES in the ground state, ground-state solvation was applied for both cuts. The inter-

secting plane in Fig. 5.13 represents the situation before and directly after the excitation

of TTC.

The time evolution of the system after photoexcitation can be understood using this

model. Comparing the two surfaces in Figure 5.13 again shows that uc-SS-PCM and
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Figure 5.13: PES of S0 and S1, using a harmonic approximation for the effective mode
orthogonal to the reaction coordinate. The intersecting plane at RMSD =
0 Å represents the points with optimized ground-state geometries, the red
cross marks the Franck-Condon region of TTC and the arrows indicate the
presumed wave-packet dynamic schematically. The blue cross and the blue
arrows indicate the dynamic after excitation of TTT. The PES is plotted
with the uc-SS-PCM results (left) and cLR-PCM (right). Reproduced with
kind permission from AIP Publishing.

133



5 Merocyanine dyes

cLR-PCM give very similar results. Both surfaces allow the same interpretation of the

dynamic in the excited state: After vertical excitation of TTC (red cross), the wave packet

is initially accelerated perpendicular to the reaction coordinate θ, due to the small barrier

in the direction of θ. During this motion, the wave packet obtains an increasing momen-

tum in the direction of TTT, since the barrier vanishes and a gradient in this direction

emerges. In order to reach the TTT-region the wave packet has to cross a “valley” in the

PES. However, due to the vanishing transition dipole moment the system cannot decay

radiatively to the ground state in this valley. Taking further into account that the mea-

sured time scale of 200 fs is too fast for an efficient energy dissipation, the wave packet

can easily reach the TTT configuration in the S1. Since no barrier has to be surmounted

along this path, it is in line with the observed time scale.

After vertical excitation of TTT (blue cross), the wave packet is also accelerated perpen-

dicular to the reaction coordinate, but the situation is different, since no gradient towards

TTC exists. Hence, the wave packet is predicted to oscillate several times along the effec-

tive mode (blue arrows). Due to the high oscillator strength along the path of the blue

arrows, fluorescence to the ground state of TTT is likely. Therefore the photoreaction

will only occur to a minor extent.

Thus the shape of the PES explains the direction of the reaction. The fact that fluores-

cence can only occur in the region of θ = 0,±180◦ also explains the small Stokes shift,

since the energetic difference between the Franck-Condon region and the relaxed excited

state geometry is rather small for these regions.

Although no fluorescence can occur from the valley in the S1, as stated above, one might

argue that a radiationless decay should be possible. Indeed the potential energy surfaces

of ground and excited state become energetically very close (see Figure 5.11) and due

to the depth of the valley, the wave packet should be vibrationally hot. Thus using our

data there is no evidence against an efficient radiationless decay to the ground state that

corroborates the experimental finding.i However, the displacement between the minima of

the excited state and the maxima of the ground state (see Figure 5.10) suggests that the

wave packet would end up in TTT anyway. Hence, if a trajectory anyhow moves towards

TTC and crosses to the ground-state surface, it will not change the yield of TTT.

Using the surface calculated with the standard SS-PCM approach (c-SS-PCM), the ex-

perimentally observed photoreaction (TTC→ TTT) cannot be explained. The significant

barrier in the S1 can be expected to hinder the reaction. Thus no reaction TTC → TTT

iOf course in order to actually estimate the efficiency of the raditionless decay a calculation of the
coupling matrix elements is necessary.
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Figure 5.14: PES of S0 and S1, using a harmonic approximation for the effective mode or-
thogonal to the reaction coordinate. The intersecting plane at RMSD = 0 Å
represents the points with optimized ground-state geometries, the red cross
marks the Franck-Condon region of TTC and the arrows indicate the pre-
sumed wave-packet dynamics schematically. The blue cross and the blue
arrows indicate the dynamics after excitation of TTT. The PES is plotted
with the c-SS-PCM results. Reproduced with kind permission from AIP Pub-
lishing.

reaction is predicted.

The transients observed in the experiments show significant oscillations, which result

from two low frequency modes. These stem from the oscillations of the wave packet on

the multidimensional surface. A calculation of the normal modes in the twisted excited-

state geometry revealed several modes in the experimentally observed wavenumber region.

Thus a criterion, which of these are likely to become excited, is needed. The trajectory

from TTC to TTT runs through the minimum of the S1 surface, where the π-system is

disrupted. This leads to a significant change of the electronic structure of the system and

hence also a lot of geometric changes orthogonal to the reaction coordinate are induced.

These geometric changes between the Franck-Condon region and the twisted excited-state

minimum were analyzed by Stefan Rützel. He found that the corresponding vibrations

should mainly possess torsional character (as had been expected), but will also contain a

considerable amount of C–C stretching. These contributions arise because the disruption

of the π-system leads to a significant elongation of the C–C bond at the twisted geom-

etry (θ = 90◦) for the ground and excited state. Hence the bond stretching should be

dominated by the C–C stretch of bond 3 in Fig 5.4 around which the isomerization is
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observed.

The experimentally observed frequencies in addition to this geometric criterion can be

used to identify the most probable vibrations. Assuming that the more the C–C-stretching

contributes to a certain mode, the more likely this mode gets excited in the course of the

isomerization, Stefan Rützel could identify two calculated modes, that also fit to the ex-

perimental values nicely.270 The first one has a wavenumber of 185 cm−1 (experiment:

170 cm−1) and also involves a strong tilting of the benzene ring. Therefore, it is rea-

sonable that it is involved in the isomerization reaction. The second mode at 360 cm−1

almost coincides with the calculated normal mode at 362 cm−1.

It is interesting to note that the present model is similar to the one devised for the 11-cis

isomer of the retinal protonated Schiff base (PSB11) system.312 The corresponding reac-

tion path computations also indicate that the main isomerization reaction is overlayed by

a skeletal stretching motion. Similar to the model presented here, this motion is induced

by the relaxation of the system from the Franck-Condon region. In the case of retinal,

however, a conical intersection is predicted. Figure 5.11 might suggest the presence of a

conical intersection (CI) around θ = 90◦, but the molecular orbitals and the coefficients

of the leading configurations show no indication for it. This is in contrast to a recent

theoretical study of a related system.313 The absence of a conical intersection is, however,

in line with the experimentally observed time scale for the relaxation to the ground state.

Of course, one has to keep in mind that conical intersections at other geometries cannot

be excluded. Furthermore, the applicability of TDDFT for conical intersections is ques-

tionable.47 Thus, the exclusion of a CI is mainly based on the experimental findings and

can only be corroborated by the TDDFT computations.

It should be noted that the shape of the S1 PES, on which the model is based, is rather

flat. Considering the complexity of the system (variation of electronic character, strong

solvent effects) in combination with the accuracy of the methods which can be employed,

definitive and conclusive statements based solely on the computed values are of course

difficult. However, in conjunction with the experimental results, the computed surfaces

provide a reasonably accurate model, which suffciently explains and rationalizes the ex-

perimental findings.
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5.1.4 Conclusions

The photochemical isomerization of the trans-trans-cis (TTC) to the trans-trans-trans

(TTT) isomer of the merocyanine form of 6-nitro BIPS was studied with long-range

corrected time-dependent density functional theory in conjunction with polarizable con-

tinuum models. Benchmark calculations using SCS-ADC(2) showed the applicability of

the CAM-B3LYP functional. The study also contains a careful analysis of solvent effects

predicted by different approaches. The results of the benchmark are also valuable for the

computational characterization of the optoelectronic properties of the merocyanines in

general (see next section). The theoretical results combined with the experimental find-

ings allow a conclusive interpretation of the photochemical interconversion. The direction

of the reaction can be explained using the topology of the calculated PESs, which show

slight differences between the S1 region of TTC and that of TTT. After excitation of TTC

or TTT, the wave packet is accelerated perpendicular to the reaction coordinate. In the

first case, however, it may partially propagate towards the other isomer, where it decays

to the ground state, thus forming TTT. After excitation of TTT however, fluorescence

without any isomerization is likely, thus reducing the probability of the photoreaction

TTT → TTC. The acceleration perpendicular to the reaction coordinate explains the

oscillations observed in the pump–probe transients. These coherent oscillations in the

experimental data were assigned to the corresponding computed excited-state harmonic

modes of the merocyanine. Fluorescence can occur along the cuts with θ = 0◦ and ±180◦.

The experimentally observed small Stokes shift is also corroborated by the shape of the

potential energy surface.

5.2 Quantum Chemical Assessment of Merocyanines

This project was conducted in collaboration with the groups of Prof. Frank Würthner

(Würzburg) and Prof. Klaus Meerholz (Cologne) and funded within the DFG priority

program SPP1355 (“Elementary Processes of Organic Solar Cells”). The groups of Meer-

holz and Würthner have been working on the design of merocyanines for organic solar

cells and transistors for several years.273,274 Although they achieved very impressive re-

sults,277,280 which clearly demonstrate that MCs are suitable for these applications despite

their high dipolarity, a clear guideline for a rational design for the optimal merocyanine

still has to be found. While some merocyanines show an excellent performance, others

seem to fail completely.
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The goal of this project was on the one hand to critically evaluate the experimentally ap-

plied concepts, especially the cyanine limit, with computational methods. On the other

hand it was aimed at a quantum chemical characterization of different merocyanines and

a comparison of the computed parameters with the experimental data measured on the

molecular level (like e.g. c̃2-values) as well as in the device. An emphasis of the computa-

tions was laid on the effects of the environment and aggregation. With this approach the

connection between molecular (HOMO energy, VB weights, reorganization energies,...),

supramolecular (couplings, diffusion constants,...) and the device properties (PCE, Voc,...)

for the MCs should be established. Especially the effect of the crystal environment as

compared to solution is of great importance. The advantage of a theoretical modeling

is that the individual effects can be separated, which is often difficult to do experimen-

tally. Furthermore, with computational methods the corresponding values are typically

computed for ideal conditions. This is a drawback if one aims at a realistic modeling of a

device, but it is advantageous if one is interested in the maximum performance that can

principally be obtained with a certain molecule. Having identified the most important

properties of an ideally suited MC, structure property relationships should be established

in order to arrive at a protocol for the design of optimal MCs.

In this section an outline of the results obtained during the work on this project is pre-

sented. It includes my own calculations, but also shortly summarizes some of the results

from the Bachelor thesis of Andreas Heimbeck,289 the Diploma thesis of Anca Boariu290

and especially the Master thesis of Charlotte Brückner.140

The first subsection summarizes the computational benchmarks, which were performed

to ensure that the applied methodology is correct. Then the influence of the environment

on the BLA and the HOMO energy is presented. The investigated MCs and their desig-

nation can be found in Figure 5.15. The choice of systems was guided by the availability

of experimental data, especially X-ray structures.

5.2.1 Benchmark of Computational Methods

An extensive benchmark for the calculation of the excited states of 6-nitro BIPS and the

environmental effects on them has been presented above. Another benchmark focusing

on the bond length alternation of the ground state of three simple donor-bridge-acceptor

model systems,
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Figure 5.15: Merocyanines included in this study. The donor is given in blue, while the
acceptor is depicted in red.

I NH2

BH2

II NH2

BH2

III NH2

BH2

was performed using CCSD(T)/cc-pVTZ159,314,315 as reference for system I, CCSD/cc-

pVTZ for I and II and MP2/aug-cc-pVDZ for system III and included the functionals

BLYP, BHLYP and B3LYP as implemented in Gaussian. The results led to the conclusion

that the method dependence is not very pronounced and that B3LYP gives robust results.

A benchmark against SCS-CC2 and SCS-MP2 using MD353 performed by Charlotte

Brückner, which included BYLP, BHLYP, B3LYP, PBE and PBE0, also showed that

B3LYP and BLYP give the most accurate results compared to the reference methods.140

Therefore most of the calculations use the B3LYP functional.
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5.2.2 Environmental Effects on the Merocyanines

Due to the high sensitivity of the MCs to the environment pure gas-phase calculations

are not very meaningful if a prediction of the properties in the device is intended. Thus

at first the effect of the environment has to be investigated. The influence on the excited

states has already been reported above. This section deals with the environmental influ-

ence on the BLA and the HOMO energy. The latter is important, since it is supposed

to be connected to the open-circuit voltage. A change in weights between the neutral

and ionic resonance structure should also change the BLA, because the two resonance

structures have a different bonding pattern and thus the BLA can be taken as a rough

approximation for the c2-values. Since the bond lengths in the crystal are available via

X-ray spectroscopy crystallography and the bond lengths in solution can be calculated,

an estimation of the effect on the crystal can be made. This also allows a discussion of the

possibility to model the crystal environment with a PCM using an effective ε. In order

to establish the connection to the measurements, a comparison between the BLA and the

c̃2-values is provided.

Bond Length Alternation (BLA)

In order to investigate the effect of the environment polarity on the BLA, the bond lengths

of the bridge between donor and acceptor have been calculated for solvents with different

ε. Anca Boariu performed computations on the B3LYP/cc-pVDZ level of theory with

PCM for several MCs in the gas phase as well as in cyclohexane, 1-bromooctane and

dichloromethane using Gaussian09.290 The results showed that, as expected, the neutral

character was decreasing with increasing ε. Furthermore, the higher the polarity, the

higher the (qualitative) agreement with the X-ray values. However, even with the quite

polar dichloromethane (ε = 8.93) the bond lengths were not converged.

Thus calculations using an environment with larger values of ε were performed. In order

to go to the limit of ε = ∞ COSMO calculations using TURBOMOLE (B3LYP-D3/cc-

pVDZ) have been performed together with Andreas Heimbeck. Using the COSMO ap-

proach an infinite epsilon (i.e. a conductive medium) can be used. In Figure 5.16, the

bond lengths for the three bonds of the bridge for all MCs depicted in Figure 5.15 are

plotted against ε,i with ε = 1 beeing the gas-phase calculation. Bond number 1 is always

iSince the interaction free energy of a spherical ion inside a dielectric is proportional to (ε−1)
ε , which

is used in the Generalized-Born models,188 one might argue that a plot of the bond lengths against
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the one closest to the donor. For HB239 and EL086 only two bond lengths could be used,

while the bridge has three bonds in the other systems. The graphs in Figure 5.16 also

contain the values taken from X-ray for comparison. Judging from the bond length al-

ternation pattern, all MCs included in this study (except HB330, which is predominantly

neutral even in the crystal) change from predominantly neutral to ionic at a certain value

of ε. This is in line with the observations of Wurthner et al.285 Hence for all MCs except

for HB330, the bond length alternation pattern is predicted qualitatively wrong in the

gas phase calculations as compared to the crystal, but correct if one introduces a PCM

with a certain magnitude of ε. As can be expected HB194 and MD376 as well as HB331

and MD353 show a very similar behavior. It should be noted that the bond lengths are

too large in many cases, which is at least partly connected to the size of the basis sets.

Calculations using the cc-pVTZ basis sets can be found in the Bachelor thesis of Andreas

Heimbeck.289 However, the results are rather similar and as a proof of principle the cal-

culations presented here are definitely sufficiently accurate.

Usually it is assumed that there is no sense in using higher values of ε then eight to ten,

since the observables converge fast with increasing permittivity. This is not true for the

BLA of MCs, where changes still happen at values above ε = 10. Using values above

ε = 40, however, give reasonably converged results.

Defining a single BLA-parameter by taking the difference of the average bond length of

the outer bonds and the inner one (or the difference between the two bonds lengths of the

bridge in the case of HB239 and EL086) makes the comparison between the calculation

and the crystal simpler (see Fig. 5.17). It is interesting to note that the value of ε at

which the crossing from predominantly neutral to ionic occurs is (at least on this level

of approximation) similar for all MCs except for HB330. Fig. 5.17 also shows that by

introducing a polar environment a qualitative agreement with the crystal can be achieved.

An exact numerical agreement cannot be expected. This is on the one hand due to the

error of the methods and on the other hand due to the fact that the crystal environment

can only approximately be modeled by a polarizable continuum. The charge distribution

of the solute induces a corresponding charge distribution in the continuum, which leads to

an anisotropic environment, which optimally stabilizes the solute. In the crystal, however,

the surrounding charge distribution is largely defined by the neighboring molecules and

(ε−1)
ε might also be sensible. This is indeed true, however, it is not expected to bring any additional

information that is not provided by a plot against ε.
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Figure 5.16: Dependence of the bond lengths of the bridge on the environment polarity
(B3LYP-D3/cc-pVDZ COSMO). Bond 1 is always the one closest to the
donor. The dashed lines represent the bond lengths in the crystal as obtained
by X-ray spectroscopy. For HB194 there are two distinct monomers in the
unit cell and hence two X-ray values are depicted. X-ray data was provided
by the group of Frank Würthner.
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Figure 5.17: Dependence of the BLA (defined as the difference of the average bond length
of the outer bonds and the inner one BLA = BL1+BL3

2
− BL2, with BL1,

BL2 and BL3 being th bond lengths of the bridge in Fig. 5.15 starting
at the donor.) on the polarity of the environment (B3LYP-D3/cc-pVDZ
COSMO). For comparison the BLA of the crystal is also given. For HB194
there are two distinct monomers in the unit cell and hence two X-ray values
are depicted.

can only partially be influenced by the polarization due to the solute charges.ii Further-

more contrary to the PCM, where all points of the continuum are equally polarizable,

the polarizability of the crystal environment is anisotropic.iii Computations on a dimer

could provide the effect of the nearest neighbor in the crystal, which makes sense for

the MCs, since they tend to form dimer structures in the crystal. These calculations

have also been performed by Andreas Heimbeck, but turned out to be computationally

very demanding.289 Retaining the monomer as a model system and still introducing the

atomistic nature of the surrounding charge distribution is for instance possible using a

QM/MM approach with an electrostatic or even better a polarizable embedding. The lat-

ter also takes polarization effects into account. QM/MM calculations, however, demand

iiHowever since the molecules in the crystal usually adopt a stacking mode, which leads to the most
favorable interaction between the molecules and since the interaction is dominated by electrostatics,
the approximation of an optimal surrounding charge distribution has some justification.

iiiIt should be noted that even if the environment could be neglected and the computational method
were exact (e.g. by using the exact functional and an infinite basis), one would not obtain a perfect
agreement, since measurement and computation provide different physical quantities. While the
geometry optimization yields the position of the nuclei as defined by the minimum of the potential
energy surface without zero-point vibration, one measures the average of the center of electron density
of the atoms with X-ray diffraction, since the X-rays are scattered by the electrons and not the
nuclei.212
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Figure 5.18: The three merocyanines used in reference.285

a sensible choice of parameters and a careful calibration and are hence not suited for a

quick prescreening of possible MCs. A first approximation for the environment of the

crystal would be to use a PCM with an effective ε, i.e. the complex effect of the crystal

environment is folded into one parameter. As a criterion for the correct value of ε the

BLA can be used. While for most of the MCs ε = ∞ provides the best agreement with

the crystal, this not the case for all systems. A value between 10 and 20 should be used

for MD376, while for HB194 it depends on which monomer of the unit cell is used. A

value above 8 provides at least qualitative correct description for all systems. Hence any

calculation that is aimed at making a statement about the device should use ε > 8.

The computed BLA as well as the measured c̃2 are taken as a measure of the weights of

the two dominating resonance structures but both rely on heavy approximations. Thus

the question arises whether the two quantities provide the same picture. In order to re-

solve this question, the three merocyanines that were investigated in different solvents by

Würthner et al.285 (see Figure 5.18), and for which c̃2-values are consequently available

were computed on the B3LYP/cc-pVDZ level of theory using COSMO by Andreas He-

imbeck.289 In order make the comparison to the experimental values clearer, a c2-value

derived from the BLA iv was defined as the difference between the two bond lengths of

the bridge plus 0.5,

c2(BLA) = BL2 −BL1 + 0.5, (5.15)

thus yielding c2(BLA) = 0.5 for equal bond lengths (i.e. the cyanine limit). In Fig. 5.19

the c̃2-values obtained from spectroscopy (see reference285) are plotted against the ones

defined by the BLA. Taking into account the level of the introduced approximations, the

correlation is surprisingly good. Thus the results indicate that the computed BLA can be

ivUsing this definition a difference of 0.5 Å between the bond lengths is needed to reach the limits of
c2 = 0 and c2 = 1, which is arbitrary. However, since the focus is on the correlation between the two
types of c2-values this poses no problem.
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Figure 5.19: Plot of c̃2-values obtained from spectroscopy (taken from reference285) against
the ones calculated from the BLA. The linear regression is given in red.

used as a rough estimate of the c̃2-value.

For the measurements, solvents in a polarity range from methylcyclohexane (ε = 2.06) to

dichloromethane (ε = 8.93) were used. The range of solvents is limited by the solubility of

the MCs. However, it is evident from Figures 5.16 and 5.17 that the crystal has a different

influence than a continuum approach with a corresponding ε value in this polarity range.

Since the difference in the BLA between typical solvents and the crystal is different for

different MCs no universal rule for the extrapolation from solution data can be given.

However, as a rough guideline, the following hypothesis can be proposed:

• The c2 is typically larger in the crystal than in solution and hence MCs that are

below the cyanine limit in solution should be designed in order to arrive at the

cyanine limit in the crystal.

• For any merocyanine a calibration of the BLA from calculations to the measured

c̃2-values should be approximately possible.

• If X-ray data is available the change in BLA between solution and crystal should

provide an estimation for the c̃2-value in the crystal.

Of course more data is needed in order to challenge these hypotheses and to corroborate

(or falsify) them. However, although lots of MCs have been designed, only for very few

reliable X-ray data is published or is available from the Würthner group. Using the BLA

as a measure for the weight of the different resonance structures is a crude approximation,

however, due to its simplicity it might be quite suitable as design criterion, since it is not

worthwhile to perform very complex calculations or measurements as preselection tools.
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Figure 5.20: Dependence of the HOMO energy on the polarity of the environment
(B3LYP-D3/cc-pVDZ COSMO).

Obviously the usefulness of this approach depends on whether the cyanine limit is a

valuable criterion for the design (see below).

HOMO Energy

In the classical textbook explanation, the open-circuit voltage is directly connected to

the difference between the energy of the HOMO of the donor and the LUMO of the ac-

ceptor.3,21 However, the term “HOMO of the donor” is usually not specified explicitly.

Should one use the HOMO of the molecule in the gas phase, or does one need to include

the environment? Is a monomer sufficient, or is the computation of the HOMO of the

crystal or a part of it necessary? Since the transition of the electron from the donor to

the acceptor occurs at the interface one might also argue that the HOMO of a molecule at

the interface, which experiences the electric field created by the interface dipoles,9 might

be the correct choice. These issues raise the question of the influence of aggregation and

environment polarity on the HOMO energy.

The computations of the HOMO energy of several MCs as well as MC dimers taken from

the crystal structure using different solvents were carried out by Anca Boariu for polari-

ties up to ε = 8.93.290 Similar to the effect of the environment on the BLA, the HOMO

energy was not yet converged at this polarity. The HOMO energies from the calculations

presented above (B3LYP/cc-pVDZ COSMO) are depicted in Fig. 5.20. It should be noted

that for the calculations of the HOMO energies the effect of the environment on the geom-

etry as well as on the electronic structure was included, since the values were taken from

the output of the geometry optimizations. Except for HB239 and HB330 the total effect

of the environment is rather small. Furthermore, although the HOMO energies of several
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Figure 5.21: Dependence of the HOMO energy on the polarity of the environment
(B3LYP-D3/cc-pVDZ COSMO) separated into contributions from the en-
vironmental effect on the geometry and the electronic structure. The first
term in the brackets specifies the ε used in geometry optimizations (or the
crystal structure, respectively), while the second one depicts the one used
in the electronic structure calculation. Thus (1,inf) means that the geome-
try from a gas-phase calculation was used for a single-point calculation with
ε =∞.

MCs are in the same range, the environment does not change the relative magnitude of

the HOMO energies. Thus any conclusion on the relative size of the open-circuit voltage

is unchanged by the environment.

Since the environment changes the geometry, especially the BLA, significantly, it is sur-

prising that the effect on the HOMO energy is negligible for most of the MCs. In order to

separate the effects on the geometry and the electronic structure, single-point calculations

in the gas phase and with ε =∞ were performed using the structures obtained from opti-

mizations in the gas phase and with ε =∞. Moreover, since the calculations concerning

the BLA showed that the geometries in the crystal are still different from the ones ob-

tained even in highly polar isotropic environments, the crystal structures were also used.

The results using the cc-pVDZ basis sets are summarized in Fig. 5.21. The first term in

the brackets specifies the ε used in the geometry optimization (or the crystal structure,

c), while the second one depicts the one used in the electronic structure calculation. For

HB239 and HB330 the dominating contribution on the HOMO energy seems to stem from

the direct effect on the electronic structure, while the indirect environmental effect via

the change in the polarity in the geometry optimization seems to be negligible. Although

the BLA of HB239 changes from neutral to ionic, which is not the case for HB330, both

show a very similar behavior. Using the geometry from the crystal structure leads to a
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Figure 5.22: Dependence of the HOMO energy on the polarity of the environment
(B3LYP-D3/cc-pVTZ COSMO) separated into contributions from the en-
vironmental effect on the geometry and the electronic structure. The first
term in the brackets specifies the ε used in geometry optimizations (or the
crystal structure, respectively), while the second one depicts the one used
in the electronic structure calculation. Thus (1,inf) means that the geome-
try from a gas-phase calculation was used for a single-point calculation with
ε =∞.

more significant change.

For the other MCs the effect of the geometry and the direct influence seem to be rather

small and to be more canceling than enhancing each other. Going from the gas-phase to

the crystal structure changes the order of the energies of HB194 and MD353 in a gas-

phase calculation, but has only a small effect, when the environment is introduced in the

electronic structure calculation. Again HB194 and MD376 as well as HB331 and MD353

show a very similar behavior.

Of course one might object that a basis set of double-zeta quality is insufficient to arrive

at proper HOMO energies. However, additional calculations using the cc-pVTZ basis

sets showed no significant change (see Figure 5.22). Hence all further calculations were

performed with the smaller cc-pVDZ basis sets.

In conclusion it can be said that the effect of the environment polarity on the HOMO

energy is rather small and seems to be unconnected to the change of the wave function

from predominantly neutral to ionic.

A bigger effect can be expected from the aggregation, this means going beyond the

monomer to a supramolecular ansatz. Anca Boariu included dimers taken form the X-ray

in her studies of the HOMO energy (see290 for details). Since the MCs tend to dimerize
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Figure 5.23: Dependence of the HOMO energy on the number of monomers in a π-stack
taken from the crystal structure (B3LYP/cc-pVDZ). The dashed lines rep-
resent calculations using COSMO with ε = 50.

a dimer is an obvious and sensible choice. However, since VOC is measured in the device

it cannot be excluded that the other neighbors also play an important part. Thinking in

terms of FMO theory every additional monomer should lead to a splitting of the energy

levels. Since the splitting is proprotional to the overlap, it should be most significant

along a π-stack, since the overlap of the π-systems is bigger in the direction normal to

the molecular plane.

Thus in order to investigate the effect of the aggregation π-stacks with up to six monomers

were cut from the X-ray structures and used for calculations of the HOMO energy. Ob-

viously the definition of the stack is not necessarily unambiguous, but since this sections

aims at a proof of principle this poses no problems. The calculations were performed

in the gas phase as well as with ε = 50, in order to see if the PCM leads to a faster

convergence with the stack size. The PCM calculations were only performed for stacks

with up to five monomers for computational reasons. The results are displayed in Figure

5.23

With the dimer MOs being constructed from the ones of the monomers, one might assume

that the HOMO energy of the dimer should be higher than of the monomer. However,

the monomer MOs, which are used for the linear combination, are not the ones from an

isolated monomer, but from the monomer in the presence of its neighbor. Due to the

dipolar nature of the MCs and the formation of centrosymmetric dimers the energy levels

of the monomer can be expected to be significantly lowered as compared to the gas phase,
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due to the favorable electrostatic interaction. The lowering of the energy levels and the

splitting are opposed effects and hence can even cancel each other. The net effect of the

dimerization depends on the relative magnitude of both effects and hence on the size of

the dipole moment and the MO overlap. This explains why the dimerization leads to an

energy lowering for some MCs, while it raises the energy for others. Looking at Figure

5.23 it is obvious that there is no general trend for different MCs. The behavior is quite

different, which is partly due to the different stacking forms. This different behavior leads

to a change in the order of the HOMO energy. Furthermore there seems to be no clear

convergence, even when a polarizable continuum is applied.

Thus to conclude the influence of the environment polarity on the HOMO energy is smaller

than one might expect and does not necessarily affect the order of the MCs. Using the

crystal structure instead of structures taken from gas-phase or COSMO calculations has

a larger effect. Stacking in the crystal has also a significant influence, since it can inter-

changes the order of the HOMO energies of the MCs. However, no clear guideline can be

presented, which stack-size might be sufficient.

5.2.3 Does a Correlation between EHOMO and VOC Exist?

The results of the previous section already suggest that a correlation between EHOMO

and VOC might not be present, since the term “HOMO energy” is not really defined in a

device. A further complication lies in the fact that there is no uniquely defined VOC for a

single MC, since it depends on the device morphology and process conditions. In collab-

oration with Anca Boariu experimental data received from the group of Klaus Meerholz

was used to look for correlations with the calculated data. Some of the plots can be found

in the diploma thesis of Anca Boariu.290

Before the results are discussed the question has to be addressed, whether the HOMO

energy is the right quantity or if the ionization energy should be used. In exact KSDFT

these two quantities are identical, while this is not the case for any approximate func-

tionals. The HOMO energy is just an approximation for the latter. Furthermore it is not

clear a priori, whether this approximation is also valid if COSMO is applied. Hence the

adiabatic and vertical ionization energies have been computed (B3LYP/cc-pVDZ) in the

gas phase and with ε =∞ using COSMO. The results are depicted in Figure 5.24. They

show that the HOMO energy is a valid approximation for the ionization energy in the gas

phase as well as with COSMO, at least if qualitative results are wanted.

While looking for correlations between EHOMO and VOC , it became apparent rather
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Figure 5.24: Correlation between the HOMO energy and the vertical and adiabatic ion-
ization energy (B3LYP/cc-pVDZ) in the gas phase (a) and with ε =∞ using
COSMO (b).
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Table 5.2: R2-value of the correlation of experimental open-circuit voltages with computed
HOMO energies.

Method R2

(1,1) 0.85
(1,inf) 0.59
(inf,1) 0.71
(inf,inf) 0.70
(c,1) 0.68
(c,inf) 0.87

quickly that when optimized bulk heterojunction cells are used, which are typically char-

acterized in experimental groups, no correlation can be expected. The effects due to the

different morphology and the different conditions (e.g. solvents) are much bigger and

hence would mask any potential correlation with the HOMO energy. Consequently, the

group of Klaus Meerholz produced unoptimized (i.e. using identical process conditions)

planar-heterojunction bilayer cells for five MCs. Using these data a nice correlation could

be obtained, if one allows for one outlier. Since the correlation is then, however, only

based on four data points, it is not statistically significant. Furthermore the group of

Klaus Meerholz noticed that degradation processes might have lead to inaccurate mea-

surements and produced encapsulated cells for four MCs. Using the open circuit voltage of

these four MCs (EL086, HB331, MD353, MD376) a rough correlation can be found if the

HOMO energies from the calculations in Fig. 5.21 are used. The R2-values are depicted

in table 5.2. The results show that there is some correlation, which is rather dependent

on the environment, despite the small effect of the environment on the HOMO energy.

By including the environment just in the electronic structure calculation the correlation

coefficient changes from 0.85 to 0.59, which means that the correlation vanishes. This

shows how fragile the correlation is. Furthermore due to the statistically insignificant

amount of data points even the best correlation using the crystal structure and an infinite

ε should not be overinterpreted.

As shown in the previous section, a supramolecular approach using higher oligomers might

lead to different results. However, due to the unsystematic behavior of the HOMO energy

on increasing the number of monomers, there is no condition to decide how to go beyond

the monomer to a supramolecular approach. Due to this problems of choosing the correct

zeroth-order system, one can consider to use the X-ray data and perform a calculation

using periodic boundary conditions on the whole crystal. Thus the energy of the HOCO
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(highest occupied crystal orbital) can be computed. Test calculations using Gaussian and

the HSEH1PBE functional316 have been performed. However, due to the size of the unit

cells, converged calculations could only be obtained for few of the MCs, which makes the

quest for a correlation with the open-circuit voltage impossible. Since the device is not

infinite and has a clear interface, it is questionable, anyway, if the HOCO of an ideal

infinite crystal has any meaning.

The results show that the connection between the HOMO energy and the open-circuit volt-

age is not as simple as it is suggested by the commonly used simplified scheme. Further-

more, using optimized bulk heterojunction cells the effect is completely masked. Whether

a correlation is present for unoptimized bilayer cells cannot be concluded, due to in-

sufficient experimental data. Since the cells must be produced under exactly the same

conditions, one cannot simply collect data from the literature. This sensitivity of the

correlation to different factors, like the process conditions or the weak influence of the en-

vironment polarity, furthermore indicates that the importance of the HOMO energy as a

parameter for the suitability of an MC for organic solar cells might be overestimated. Al-

though the rough correlation observed indeed suggests that a deeper lying HOMO should

lead to a larger Voc, only significant differences can be considered to be important. Small

difference in the HOMO energy should hence not be overinterpreted. Therefore it does

not seem sensible to put too much effort in optimizing the HOMO energy of a found

target structure, since other effects are expected to be dominant.

This is in line with recent findings of Andrienko and coworkers,317 which show that one

needs to include the effect of the interface in the calculations in order to obtain optical

gaps, which are meaningful. In fact the computed ionization energy at the interface is

highly dependent on the interface geometry. Therefore simple measurements or calcula-

tions on the monomer can only give a rough starting point, since the device and interface

morphology will change the ionization energy and hence the gap and the resulting open-

circuit voltage significantly.

5.2.4 A Valence Bond Approach to the Cyanine Limit: Does a

Correlation between the Cyanine Limit and the Exciton

Reorganization Energy Exist?

Since the closeness of an MC to the cyanine limit and hence the measured c̃2-value is one

of the most important parameters for the design of new merocyanines it is of vital impor-

tance to prove if the assumed connection between the cyanine limit and the reorganization
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energy really exists. Although the concept has been used for quite some time and seems to

be successful, it has never been proven or been challenged theoretically. Furthermore the

questions, which structural motives bring an MC close to the cyanine limit and the effect

of the crystal environment, have never been elucidated computationally. Merocyanines,

which are structurally rather similar can perform significantly different in the solar cell.

The ideal method for this question is valence bond theory, which provides an accurate

and theoretically well-grounded way of providing the weights, contrary to the BLA, which

can only be considered as a rough estimation. First test calculations were performed in

collaboration with Benôıt Braida, which showed that an MC that is close to the cyanine

limit in the gas phase can even already overshoot it when just the geometry from the

crystal is used for the calculations.

The effect of the environment on the VB weights and the connection between the weights

and the reorganization energy is thoroughly addressed in the master thesis of Charlotte

Brückner140 and a recent publication.272 The weights were computed using valence bond

theory (VBSCF) using block localized determinants. The definition of blocks allows to

fold all possible ionic and neutral resonance structures into one determinant each.v Thus

the VB wave functions mimics the model depicted in Figure 5.1a. Using an experimentally

well-studied push-pull system based on a dithiophene unit, Charlotte Brückner showed

that the applied valence bond methodology gives an excellent agreement with the mea-

sured c̃2-values, although both approaches use a different ansatz (see above).

By computing the exciton reorganization energy and the weights in solvents of different

polarity for systems that change from neutral to ionic in the range of the used solvents,

Charlotte Brückner was indeed able to find the assumed correlation. The reorganiza-

tion energy goes through a minimum, which is located roughly at the cyanine limit.

Furthermore this shows that the solvent effect on the reorganization energy is definitely

non-negligible. These results are the first clear indication that the main assumption on

which the design of new MCs is based is valid.

The correlation is, however, only observable if the same system in different environments

is used. Comparing different model systems or different MCs the effect is masked since the

reorganization energy obviously depends on several factors (like the size of the system,

its flexibility,...). Hence it is clear that one cannot expect a correlation using different

systems.

These results confirm that the weights of the resonance structures are an important pa-

vOf course the choice of blocks is not unambiguous and hence extensive tests on small model systems
for which full VB calculations are possible have been performed (see140).
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rameter with respect to minimizing the exciton reorganization energyvi and should hence

be considered when designing new MCs. Since different MCs show, however, different

reorganization energies the importance of the c̃2-value should also not be overestimated.

Two MCs with a similar c2-value can show quite different performances.140

By decomposing the different MCs into substructures, Charlotte Brückner also was able

to show, which structural and environmental factors bring an MC close to the cyanine

limit. This confirmed that most of the applied design strategies indeed produce MCs that

can get to the cyanine limit.140

Sometimes it is also assumed that the charge reorganization energy is minimal at the

cyanine limit although the two-state model does not give a theoretical foundation for this

assumption. Indeed the results of Charlotte Brückner show that the correlation between

the cyanine limit and the charge reorganization energy is less simple.140

Having established the connection between the cyanine limit and the exciton reorganiza-

tion energy, the next question to address is the importance of the exciton reorganization

energy for an organic solar cell. This is discussed in the next section.

5.2.5 Charge and Exciton Reorganization Energy and Exciton

diffusion length

Considering a Marcus hopping approach for charges and excitons, the reorganization en-

ergies are important factors for the transport properties in an optoelectronic device, since

they appear in the exponent of the Marcus equation.40,41 Assuming charges and excitons

are localized on a monomer, these quantities can easily be calculated. Andreas Heimbeck

performed such calculations for several MCs on the (TD)B3LYP/cc-pVTZ level of theory

in the gas phase as well as in solution.289 These reorganization energies can be considered

as a starting point for the classification of the transport properties of the MCs. For the

results and further details see.289

Apart from the reorganization energies the crystal structure plays an important role for

the transport, which enters the Marcus equation via the electronic couplings. Using a

master-equation approach implemented by Vera Stehr40,41 and the X-ray data, Charlotte

Brückner calculated the exciton diffusion constants for several MCs.140 These results show

that the crystal structure has an important influence, since assuming an identical reorgani-

zation energy for all MCs, the diffusion constants still vary significantly. She furthermore

showed that while the (for the hole-conducting merocyanines important) cationic reorga-

viIt is of course also of importance for an appropriate absortion behavior (see above).
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nization energy varies only little between different MCs, the exciton reorganization energy

shows a higher variety. In fact the variation for the charge reorganization is in the error

range of the DFT methods.140 This indicates that the exciton reorganization energy might

be a more important parameter for the optimization of the transport properties than the

charge reorganization energy. Nevertheless, using the computed diffusion constants leads

to a different prediction of the performance of the MCs than is found experimentally.

This might be due to the fact that most optoelectronic devices are constructed as thin

films and it is not known if the crystal structure is a sensible approximation for the device

morphology.

The experiences from the photoinduced isomerization of 6-nitro-BIPS indicate that the

twist in the excited state might open the possibility for energy dissipation, thus increasing

the reorganization energy dramatically. Of course the question arises if a complete twist

is possible in the thin film, but also a partly twisted structure could have a massive effect.

Although this isomerization is well-known in the spectroscopy community its role for ex-

citon reorganization has so far been overlooked in the literature on optoelectronic devices.

This issue is also addressed in the master thesis of Charlotte Brückner.140 Although all

studied MCs show a minimum at the twisted geometry, only for some exists a significant

gradient in the Frank-Condon region (see140 for details).

5.2.6 Excursion: Is a VB/MM approach possible?

The block-localized VB calculations including environmental effects were performed by

Charlotte Brückner using a PCM approach. While this is ideally suited for calculations

in solution and using an effective ε, one can also arrive at reasonable results for the crys-

tal, it would be interesting to include the effect of the atomistic structure of the crystal

environment. A VB/MM approach can easily be implemented, since it is based on a me-

chanical embedding of the structures. Therefore the interaction of the two structures has

to be calculated classically and included in the Hamiltonian matrix as described above.

Since the weights are included in the matrix an iterative approach has to be chosen.

This is a well established ansatz, however, in block-localized determinants the charges are

not clearly defined as in a standard VB calculation. In this section, an approach for a

VB/MM calculations based on a block-localized VBSCF approach is suggested as a proof

of principle.

As a test system for the VB/MM approach, MD376 was chosen. As a first step the re-

sults of a gas-phase VBSCF calculation are needed, which was performed by Charlotte
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Figure 5.25: Definition of the blocks used in the gas-phase calculation by Charlotte Brück-
ner140

Brückner on the VBSCF/6-31G level of theory without alkyl substituents using the blocks

depicted below with a total of 14 active electrons (see Figure 5.25). The calculation was

performed with Xiamen Valence Bond program XMVB.318 The obtained weights are 0.68

and 0.32. Using matlab, a script performing the VB/MM calculation based on the gas-

phase Hamiltonian matrix elements (taken from the XMVB output) was written.

If one wants to perform a VB/MM calculation based on the VB wave function depicted

above the question arises on how to define the charges of the ionic and the neutral struc-

ture. In a fully localized VB calculation each atom in each resonance structure is either

neutral or carries a defined charge and hence a parameterization is easy. However, due to

the block-localized wave function, the charges are delocalized in each block. Therefore the

ionic and the neutral structure were cut into two parts (donor and acceptor, respectively),

see Figure 5.26, and the charges are calculated for the parts on the B3LYP/cc-pVDZ level

of theory with the Merz-Singh-Kollman ESP fitting-scheme221,222 as implemented in Gaus-

sian.

Using this scheme, the only undefined part is the bridge. Simply using the standard

charges for alkenes taken from a force field like OPLS-AA214 (±0.115 e) brings two prob-

lems: a remaining net charge and a symmetrically charged bridge. Several schemes to

redistribute the charges have been tested and the effect seems to be small. For a proof-

of-principle calculation, these technical details are too specialized, anyway. Hence, the

charges of the MM-part are simply defined by performing an ESP charge fit on the com-

plete unconstrained monomer. Another problem arises due to the fact that the Hamil-

tonian matrix contains only the energy of the active electrons and thus only those “feel”

the charges. This should however be a reasonable approximation.

At first the effect of a π-stack is investigated. Taking such a stack from the X-ray structure

(see Figure 5.27) reveals that the distance between monomers stacked in an antiparallel
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Figure 5.26: Scheme for the structures used to calculate the MM charges for the resonance
structures of MD376 (right-hand side: neutral, left-hand side: ionic)

fashion is 3.38 Å, while the distance is slightly higher between these dimers (3.50 Å). The

distance was calculated as the distance of the donor-N-atom from the plane formed by

the 5-ring using the Hesse normal form.

The interaction energy between the QM structures and the MM-part is simply calculated

as

Eint =

QM∑
i

MM∑
j

qQM(i)qMM(j)

rij
(5.16)

The results of the VB calculations in the gas phase and with PCM (performed by Charlotte

Brückner) as well as the test VB/MM computations are depicted in the table below. The

numbers of the monomers in the π-stack refer to Figure 5.27 with M1 being the monomer

at the bottom (red) and M6 the one at the top (purple). Two larger cuts from the crystal

structure are defined in Figure 5.28. The results of the calculations are depcited in Table

5.3. The effect of the crystal is only moderate and similar to the one of the PCM with

cyclohexane. Due to the high dipolar nature or the MCs one might have expected a larger

effect.

The results show, however, that a VB/MM approach based on a block-localized wave

function is in principle possible and gives at least not unreasonable results, if a charge

fitting scheme for defined substructures is used. This approach would bring the benefit of

including the molecular structure of the environment into the VB calculations. However,

if the applied approximations are valid and hence the results are reasonably accurate one

needs further benchmark calculations and an optimization of the methodology. This is,
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Figure 5.27: π-stack of six monomers in the crystal structure of MD376 using Mercury
3.3

Table 5.3: Results of the VB/MM calculation with different MM-parts compared to the
gas-phase and VBPCM calculations. The numbers of the monomers refer to
Figure 5.27 with M1 being the one at the bottom (red) and M6 the one at the
top (purple). The two MM environments designated crystal 1 and crystal 2 are
depicted in Figure 5.28.

Gas phase Cyclohexane π-stack crystal 1 crystal 2
QM monomer monomer M3 M3 monomer monomer
MM - - M4 M1,2,4,5,6 20 monomers 141 monomers
w1 67.7 63.0 64.4 64.8 61.9 64.3
w2 32.3 37.0 35.6 35.3 38.1 35.7
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Figure 5.28: Definition of the MM part (blue) for the cuts form the crystal designated
crystal 1 and crystal 2 (plotted with VMD).

however, beyond the scope of this work.

5.2.7 Conclusion

The results of this project confirmed the expectation that no single parameter provides

an estimation for the performance of an MC in the device. Neither the HOMO energy

of a monomer, nor the computed exciton diffusion constants or the closeness to the cya-

nine limit can serve as the sole basis for the prediction. This does, however, not mean

that these quantities are useless, but that the question of the performance is inherently a

complex multiparameter problem, which cannot be reduced to a single parameter. Fur-

thermore the device morphology seems to be most crucial, since it influences the transport

properties significantly. For instance, it is mainly governed by the morphology, whether

a twist is possible, or whether the MC is even already slightly twisted in the crystal.

Especially the interface seems to be important, which is emphasized by the findings of

Andrienko and coworkers.317 Thus, the currently observable focus of the research on the

interface (see for instance319 and references therein) seems to be reasonable.

While the molecular properties like the HOMO energy and the reorganization energy and

the cyanine limit surely provide a starting point for the design, other factor also need

to be taken into account. It is tempting to search for a single easily tunable molecular

parameter, which determines the performance, but this seems to be wishful thinking.
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Nevertheless, although not all goals of this ambitious project could be met, it lead to

some important conclusions, which might provide useful guidelines for the future design

of MCs. The most important results and conclusions are summarized below:

• The environmental effects on the geometry (especially the BLA) and the electronic

structure of the MCs have been elucidated.

• Using a PCM and a standard DFT approach one can obtain a BLA that agrees

qualitatively with the X-ray BLA.

• Comparing the BLA from calculations in solution with the crystal structure provides

a rough estimation for the effect of the crystal environment.

• The importance of the molecular HOMO energy should not be overestimated.

• An MC that is close to the cyanine limit in solution might overshoot in the crystal.

• The cyanine limit can be reached in MCs if certain design strategies are followed.

• The cyanine limit is connected to the exciton reorganization energy.

• The device morphology seems to have a significant influence, which can be more

important than purely molecular properties.

• The exciton reorganization energy seems to be more crucial than the charge reor-

ganization energy due to different magnitudes.

• A possible twist in the excited state should be considered as a possible energy

dissipation channel, which hinders the exciton transport.

• The optimization of the MCs for organic solar cells is a multiparameter problem.
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Perylene-based dyes and especially PBIi-based colorants have been thoroughly investi-

gated in industrial as well as academic research (see320,321 and references therein). They

have been used as versatile high-performance pigments for automotive paint, for the col-

oration of synthetic fibers321 and feature excellent properties like intense colors, a high

photo- and thermostability as well as chemical inertness.320,321 Moreover, the intermolec-

ular interactions make self-assembly into supramolecular structures possible.320

Perylene-based dyes are also extensively studied for the application in organic optoelec-

tronic devices, since they are among the best n-type semiconducting materials aside from

fullerene-based materials like PCBM and C70-PCBM.3,320 Among these applications are

sensors,322 transistors323 and organic photovoltaic cells.321,324 In fact the first bilayer or-

ganic solar cell reported by Tang used copper phthalocyanine together with perylene

diamidine.26

Although peri -donor-functionalized perylene monoimides are catching up with the other

sensitizer materials in dye-sensitized solar cells, the performance of PBI and its derivatives

in flat and bulk heterojunctions is generally dissatisfactory and stays behind what one

would expect of materials with such promising features.321

The low efficiencies are attributed to small exciton diffusion lengths, which are supposed

to be due to exciton self-trapping in intermolecular states.321,325,326 In a bulk heterojunc-

tion solar cell, the exciton diffusion lengths should ideally be equal or longer than the

distance to the closest boundary at each point, in order to achieve a significant quantum

yields. The self-trapping is related to the intrinsic properties of the dye molecules in the

crystal and their intermolecular arrangement,18,326 in contrast to the typically encountered

trapping effects at grain boundaries and other defects. If the exciton reaches a trap state,

it is immobilized and will eventually decay to the ground state. Hence it cannot reach

the interface and does not produce charge carriers that contribute to the photocurrent.

The first section of this chapter reviews recent investigations concerning the exction trap-

ping in perylene-based dyes based on intermolecular degrees of freedom, using a dimer

iPerylene bisimide
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as a zeroth-order model system. In this approach, the effect of the environment was ei-

ther neglected or included via mechanical embedding plus an estimation of the effect of

the π-stack on the electronic splitting. Although some of the experimental results could

be nicely explained using this model, it is obvious that a more realistic modeling of the

exciton in the crystal necessitates a more profound inclusion of the environment. The

effect of the π-stack on the excitonic state and it delocalization can be easily investigated

by going to larger systems. This is, however, not possible with expensive methods like

SCS-CC2 and hence the second section of this chapter deals with the performance of

cheaper methods, especially TDDFT and semi-empirical methods, for the calculation of

the excited states and their application to the trapping mechanism.

If a reasonable zeroth-order model system can be found, using the QM/MM methodol-

ogy might be a productive approach. However, for this methodology to yield accurate

results, a correct method for the QM part as well as a force field that reproduces the

most important physical features of the intermolecular interactions are needed. Hence

the third section of this chapter deals with the design of an appropriate force field and its

application in a QM/MM framework.

6.1 Exciton Trapping in Perylene-Based Dyes

A possible exciton trapping mechanism in PBI aggregates based on intermolecular degrees

of freedom was first reported by Fink et al.18 They were able to model the absorption

and emission spectra of PBI aggregates in solution using a dimer model system consisting

of two π-stacked monomers. Assuming the molecular dimers are only coupled by dipole-

dipole interactions in the excited state and including an intermolecular vibrational coor-

dinate, namely the rotation of the monomers against each other, the absorption spectrum

could successfully be interpreted in framework of time-dependent quantum mechanics.327

Using a DFT-D approach the authors computed that in the minimum energy conforma-

tion in the ground state the monomers are rotated about φ=30◦ against each other (see

Figure 6.1). TDHF computations predicted that photoabsorption of this H-type aggregate

leads preferentially to the bright second excited state (S2), 1B1. In this model the authors

discussed that after the excitation the wave packet can reach a conical intersection at

φ=60◦, where the population is transferred to the lower lying 1B2 state (S1), which has

a low oscillator strength. Relaxation leads to the minimum of this state at φ=0◦, where

fluorescence is dipole-forbidden. This explains the longer fluorescence lifetime of the ag-
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Figure 6.1: Minimum energy ground-state structure of the PBI dimer

gregates compared to the monomer.18 The excitation is thus trapped and the excitation

energy transfer (EET) can not occur efficiently anymore. The use of a dimer model sys-

tem is in line with experimental results that indicate that although the exciton might be

rather delocalized directly after the excitation, it quickly localizes on these subunits.325

The role of charge-transfer states in exciton trapping processes is currently discussed in

the literature (see for instance328 and329 and references therein). Since CT states possess

a small transition dipole moment, the exciton can be trapped in such states. Assuming

a dimer or oligomer as the relevant subunit, intermolecular CT states will definitely be

present. However, the question arises if they are low enough in energy to be populated.

Using again the dimer model system Liu et al.329 computed the PES of the four lowest

excited states using SCS-CC2 for the rotation of the monomers against each other. Their

results show that the CT character of the states changes during the rotation. Neverthe-

less, the states with high CT character are always above the neutral states and hence no

involvement of these states is predicted.i Furthermore, the high-level SCS-CC2 potential

energy surfaces also indicate that a trapping based on an intermolecular rotation might

be possible and thus confirm the TDHF results of Fink et al. Moreover, Liu et al. showed

that even the long-range corrected CAM-B3LYP functional fails for this model system,

although it reproduces the shape of the PES quite accurately. The character of two states

is, however, interchanged compared to SCS-CC2. While the 11B1 is bright and the 21B1

iOf course one might argue that gas-phase calculations are inapt to judge the role of CT states, since
their energy typically depends heavily on the environment polarity. However, the CT states are
symmetric (see section 6.2.1) and hence the effect of the environment can be expected to be small.
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is dark in the SCS-CC2 calculation for small angles, the opposite is predicted by CAM-

B3LYP. TDHF on the other hand gives a qualitatively correct description, but as usually

it overestimates the excitation energies.

Although Fink et al. could nicely explain the experimental results using their model, it

is not clear whether it can be applied to the crystal, since the rotation to φ=60◦ might

be hindered sterically, depending on the distance between the stacks and the size of the

substituents. Furthermore, experimental results show that the initially populated excited

state of PBI aggregates in solution decays with a time constant of 215 fs.17 This fast

decay is not in line with a significant intermolecular rotation of the monomers against

each other due to the rather large moment of inertia and is hence more indicative of a

smaller geometric change. Using the lowest-energy conformation (Fig. 6.1) Schubert et

al.17 investigated the reaction coordinate for the distortion of the monomers from the

neutral geometry to the geometry of an unsymmetrical charge-separated state (M+M−).

They could show that along this reaction coordinate the wave packet can be transferred to

the lowest excited state, which is a neutral excited (Frenkel) state within approximately

200 fs. The process involves a doorway CT state. After the wave packet has reached the

S1 state it can relax with a longer timescale to the minimum of this state by rotating to

φ=0◦.

Apart from the twisted conformation, the PBIs are (depending on the substitution pat-

tern) also found in other packing modes, where the monomers are not rotated against

each other but shifted longitudinally or transversely. The correlation between molecu-

lar conformation, the crystal packing and the color of 18 different PBI molecules has

been thoroughly investigated experimentally by Klebe and coworkers.330 Zhao et al.331

showed that the different packing modes can be reproduced by DFT-D computations on

PBI dimers. They were also able to reproduce the trends in the excitation energies with

TDHF calculations on these dimers. This is also a strong indication that a dimer is a

sensible zeroth-order system. The computations were performed for unsubstituted PBI

dimer structures. The effect of the other monomers in the π-stack on the excited states

of the dimer was included by assuming that the interaction between the excited states

decays according to the dipole-dipole rule. Then a series expansion of the absorption

energy can be used, which leads to the inclusion of Apéry’s constant (see331 for details).

Comparing experimentally measured exciton diffusion lengths of several perylene-based

dyes Settels and coworkers326 noted that DIPii has a significantly longer exciton diffu-

iidiindeno perylene
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sion length than PTCDAiii or PTCBIiv. Hence they assumed that the proposed exciton

trapping mechanism might be active in the other perylene-based dyes, but not in DIP. In

order to investigate whether the absence of the trapping mechanism can be explained us-

ing molecular properties, the authors compared the electronic structure of PBI, PTCDA,

perylene and DIP. However, a computation of the PES of the lowest excited states for the

rotation of the monomers against each other as well as for a longitudinal displacement

using SCS-CC2 showed that the shape of the potential energy surfaces and the character

of the excited states are virtually identical and seem to be dominated by the perylene

core. Both intermolecular motions lead to an intersection for all systems. Therefore the

difference in the exciton diffusion lengths cannot be explained by the electronic structure

of the systems on a molecular level.

This lead to the conclusion that the crystal structure might play an important role. Set-

tels et al.332 investigated possible trapping mechanisms in α-PTCDA (exciton diffusion

length LD = 22nm) and DIP (LD = 100nm) again using the dimer as zeroth-order

model system. Using a Marcus hopping approach41 and the X-ray structures, the exci-

ton diffusion lengths of DIP can be reproduced nicely, but the length for α-PTCDA is

almost one order of magnitude too large. Since the calculated exciton diffusion lengths

do not include any trapping effects, these results are another indication that a trapping

mechanism might be active in α-PTCDA but not in DIP.332 Since α-PTCDA crystallizes

in parallel displaced structures, a trapping mechanism different from the one described

above has to be active. Steric effects do not allow all possible conformations. Settels et al.

identified a conical intersection (CI) that can be reached by a transversal and longitudinal

shift of the monomers against each other. The crystal environment was included via a

QM/MM approach using the AMOEBA force field and a mechanical embedding, while

the electronic effect of the stack was included similar to the approach described above

using Apéry’s constant.

The results show that while the crystal environment of α-PTCDA allows a movement of

the wave packet to the CI, this is not the case in DIP, where a huge barrier has to be sur-

mounted. This explains nicely why no intrinsic exciton trapping mechanism is observed

in DIP.

These studies summarized above indicate that the intermoelcular degrees of freedom might

be quite important for the modeling of organic optoelectronic devices, since they can lead

to trap states. This is especially important since most studies in the literature are based

iiiperlyene tetracarboxylic acid dianhydride
ivperylene tetracarboxylic bisbenzimidazole
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on monomers or model Hamiltonians that neglect these degrees of freedom. From a more

technical view point, they also show that TDHF gives way to high excitation energies,

while TDDFT and even CAM-B3LYP fail and hence the authors had to rely on the ex-

pensive SCS-CC2 method. The next section investigates the possibility of using cheaper

methods.

6.2 Computing the Excited States of Dimers

Due to the complex mixture of charge-transfer and neutral excited states, Settels and Liu

used SCS-CC2 computations. However, for the investigation of larger aggregates, which

would be of interest in order to evaluate the effect of the π-stack and to investigate the

delocalization of the excitonic state, this method is too expensive. Cheaper methods that

also give an accurate description would be highly desirable. Hence benchmark calculations

have been performed using the dimer model system. From the work of Liu et al.329 it is

known that it is not sufficient just to look at the potential energy curves, but also the

character of the excitation needs to be inspected carefully. The first part of this section

deals with the possible types of excitations in a homo dimer and describes one way to

define the character of the states, since this approach is used in the benchmark. Then the

applicability of TDDFT is discussed and potential applications are shown. The last part

of this section deals with the performance of semi-empirical methods.

6.2.1 The Character of the Excitation

In order to understand the character of the lowest singly excited states in π-stacked dimer

systems, one can use either localized or delocalized MOs. As a simple model system for

the derivation of the important equations, the ethylene dimer in D2h symmetry will be

used here. The results can, however, be generalized to all π-stacks of two planar identi-

cal molecules, if the monomers are approximated as a two-level system.i A very similar

approach was reported by Shirai et al.333

The localized and the delocalized orbital picture for the ethylene dimer is depicted in Fig-

ure 6.2. Constructing the delocalized orbitals from the monomer orbitals and neglecting

iFor ethylene this means including all π-MOs and the approach is hence accurate, at least within a
minimal basis set. For larger molecules the other MOs can obviously also be involved. However,
the lowest excited states are typically dominated by the contributions from the minimal [2,2]-space.
Hence this approximation should be valid for a qualitative discussion for the lowest excited states of
most systems.
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Figure 6.2: Delocalized (left-hand side) and localized (right-hand side) MOs of the ethene
dimer. LA, LB, HA and HB are the localized HOMOs and LUMOs of the
monomers A and B, and are pairwise equal in energy. The delocalized MOs
L+, L−, H+ and H− can be constructed as a linear combination of the monomer
MOs and have all different energies.
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the overlap elements of the type 〈HA|HB〉 in the normalization, the connection between

the two pictures can easily be established.ii The delocalized frontier dimer MOs are the

plus and minus linear combinations of the monomer HOMO and LUMO,

H− =
1√
2

(HA −HB), (6.1)

H+ =
1√
2

(HA +HB), (6.2)

L− =
1√
2

(LA − LB), (6.3)

L+ =
1√
2

(LA + LB). (6.4)

A standard quantum chemical calculation of the dimer uses the delocalized MOs.iii Hence

the excitations are also classified in terms of the configurations involving the delocalized

dimer MOs L+, L−, H+ and H−. Naming the configurations after the sign of the linear

combination of the MOs involved in the respective excitation (i.e. the MOs of which

the population is changed due to the excitation) gives: Φ++, Φ−−, Φ+− and Φ−+. The

corresponding excitations are depicted in Figure 6.3. Using the symmetry of the MOs,

one can easily derive that Φ++, Φ−− belong to the B3u representation, while Φ+− and

Φ−+ belong to B2g. From the four configurations four excited-state wave functions can

be constructed, two with B3u and two with B2g symmetry,

ΨB2g,1 = c1Φ+− + c2Φ−+, (6.5)

ΨB2g,2 = c̃1Φ+− − c̃2Φ−+, (6.6)

ΨB3u,1 = c3Φ++ + c4Φ−−, (6.7)

ΨB3u,2 = c̃3Φ++ − c̃4Φ−−. (6.8)

Thus the CI matrix of the system consists of two separate 2x2-blocks. Using the normal-

ization and the orthogonality conditions 〈Ψb2g,1|Ψb2g,2〉 = 0 and 〈Ψb3u,1|Ψb3u,2〉 one can

iiSimilar to the derivation of the two-state model in the chapter 5 neglecting the overlap is an approx-
imation. However, for a qualitative discussion, the assumption of zero overlap is justified, since the
typical distances for the dimer calculations presented below is 3.3 Å.

iiiApplying localization techniques localized MOs can be obtained (see for instance48), however these are
not completely identical to the monomers MOs, since the transformation is typically performed with
the constraint that the set of MOs should be orthogonal, which is obviously not the case for monomer
MOs. However a localization should qualitatively give the same conclusions as the approach presented
here.
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Figure 6.3: The four important configurations in the π-stacked ethylene dimer.

reduce the coefficient space to one coefficient per block,

ΨB2g,1 = cΦ+− +
√

1− c2Φ−+, (6.9)

ΨB2g,2 =
√

1− c2Φ+− − cΦ−+, (6.10)

ΨB3u,1 = dΦ++

√
1− d2Φ−−, (6.11)

ΨB3u,2 =
√

1− d2Φ++ − dΦ−−. (6.12)

Although defining the character of an excited states in terms of the coefficient of these

configurations is possible, it is not very descriptive. However using the localized picture

on the other hand the interpretation is straightforward. The four excited states that can

be constructed using the localized orbitals are depicted in Figure 6.4. A local excitation

of one monomer leads to a neutral excited state. Since each of the monomers can be

excited, a linear combination of two configuration state functions has to be used, which

can pictorially be represented as M∗M±MM∗. If an electron is excited from one monomer

to the other, charge-transfer states are generated, which again have to be written as a

linear combination: M+M− ±M−M+.

Neglecting the overlap, the NE and CT wave functions can be written as,

ΨNE,± =
1√
2

(ΦNE,A ± ΦNE,B) , (6.13)

ΨCT,± =
1√
2

(ΦCT,1 ± ΦCT,2) . (6.14)
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Figure 6.4: Upper panel: possible excitations in the localized picture. The neutral excited
(NE) states are depicted on the left-hand side, while the charge-transfer (CT)
states are shown on the right-hand side. Lower panel: ground state.

For homodimers the contribution of the two configurations has to be equal in both cases,

due to symmetry.

For an interpretation of the results of quantum chemical calculations of the excited states,

which typically give the state or excitation energies and the coefficients c, a transforma-

tion from the delocalized to the localized picture is thus needed, which means expressing

ΨB2g and ΨB3u in terms of ΨNE,± and ΨCT,±.

In order to establish the connection, one can use the transformation of the orbitals (equa-

tions 6.1-6.4). At first the localized configuration state functions are written in terms of

the corresponding orbitals. In order to arrive at a proper spin eigenfunction, each has to

be constructed from two determinants,

ΦNE,A =
1√
2

[
|HBHBHALA| − |HBHBHALA|

]
=

1√
2

[φ1 − φ2], (6.15)

ΦNE,B =
1√
2

[
|HAHAHBLB| − |HAHAHBLB|

]
=

1√
2

[φ3 − φ4], (6.16)

ΦCT,1 =
1√
2

[
|HAHAHBLA| − |HAHAHBLA|

]
=

1√
2

[φ5 − φ6], (6.17)

ΦCT,2 =
1√
2

[
|HBHBHALB| − |HBHBHALB|

]
=

1√
2

[φ7 − φ8]. (6.18)
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The same can be done for the delocalized configuration state functions,

Φ++ =
1√
2

[
|H−H−H+L+| − |H−H−H+L+|

]
=

1√
2

[χ1 − χ2], (6.19)

Φ−− =
1√
2

[
|H+H+H−L−| − |H+H+H−L−|

]
=

1√
2

[χ3 − χ4], (6.20)

Φ+− =
1√
2

[
|H−H−H+L−| − |H−H−H+L−|

]
=

1√
2

[χ5 − χ6], (6.21)

Φ−+ =
1√
2

[
|H+H+H−L+| − |H+H+H−L+|

]
=

1√
2

[χ7 − χ8]. (6.22)

By plugging into equations 6.19-6.22 the definition of the delocalized MOs (equations

6.1-6.4), the connection between the determinants χi and φi can be established,

χ1 =
1

2
[φ1 + φ3 + φ5 + φ7] , (6.23)

χ2 =
1

2
[φ2 + φ4 + φ6 + φ8] , (6.24)

χ3 =
1

2
[φ1 + φ3 − φ5 − φ7] , (6.25)

χ4 =
1

2
[φ2 + φ4 − φ6 − φ8] , (6.26)

χ5 =
1

2
[φ1 − φ3 + φ5 − φ7] , (6.27)

χ6 =
1

2
[φ2 − φ4 + φ6 − φ8] , (6.28)

χ7 =
1

2
[φ1 − φ3 − φ5 + φ7] , (6.29)

χ8 =
1

2
[φ2 − φ4 − φ6 + φ8] . (6.30)

Using these relations, the delocalized configuration state function can be written in terms

of the localized ones,

Φ++ =
1

2
[ΦNE,A + ΦNE,B + ΦCT,1 + ΦCT,2] , (6.31)

Φ−− =
1

2
[ΦNE,A + ΦNE,B − ΦCT,1 − ΦCT,2] , (6.32)

Φ+− =
1

2
[ΦNE,A − ΦNE,B + ΦCT,1 − ΦCT,2] , (6.33)

Φ++ =
1

2
[ΦNE,A − ΦNE,B − ΦCT,1 + ΦCT,2] . (6.34)
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Finally with these relations it is possible to express the delocalized excited state wave

functions in terms of the localized interpretable wave functions,

ΨB2g,1 = c1Φ+− + c2Φ−+

=
c1 + c2√

2
ΨNE,− +

c1 − c2√
2

ΨCT,− (6.35)

=
c+
√

1− c2

√
2

ΨNE,− +
c−
√

1− c2

√
2

ΨCT,− (6.36)

ΨB2g,2 = c̃1Φ+− − c̃2Φ−+,

=
c̃1 − c̃2√

2
ΨNE,− +

c̃1 + c̃2√
2

ΨCT,− (6.37)

=

√
1− c2 − c√

2
ΨNE,− +

√
1− c2 + c√

2
ΨCT,− (6.38)

ΨB3u,1 = c3Φ++ + c4Φ−−,

=
c3 + c4√

2
ΨNE,+ +

c3 − c4√
2

ΨCT,+ (6.39)

=
d+
√

1− d2

√
2

ΨNE,+ +
d−
√

1− d2

√
2

ΨCT,+ (6.40)

ΨB3u,2 = c̃3Φ++ − c̃4Φ−−,

=
c̃3 − c̃4√

2
ΨNE,+ +

c̃3 + c̃4√
2

ΨCT,+ (6.41)

=

√
1− d2 − d√

2
ΦNE,+ +

√
1− d2 + d√

2
ΨCT,+. (6.42)

The results are in line with the ones obtained by Shirai et al.333 Using these equations

and the coefficients from the output of a quantum chemical calculation, it is possible to

compute the character of the excitation in terms of neutral or charge-transfer excited

states. The weight of the CT or NE character is then simply defined as the square of the

coefficients, e.g. (c3−c4)2

2
.

It can easily be seen from the equations that a 1:1 mixing of the delocalized configurations

implies a pure state in terms of the CT or NE character.iv Furthermore since both

irreducible representations form a 2x2-block, the higher the CT character in one state,

the lower it is in the other. This is shown in Figure 6.5 for the states of B3u symmetry.

The sum of the CT-weights in both states always has to be unity. For systems with more

π-electrons than ethene, this is of course only approximately true, since higher states

ivThis is similar to the expansion of the minimal CI wave function of the H2 molecule in neutral and
ionic resonance structures (see for instance96).
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Figure 6.5: Amount of charge-transfer character in the states with B3u symmetry as a
function of the coefficent of the delocalized configurations d2.

of the same irreducible representation will participate. For a qualitative discussion the

results obtained here should however be valid.

Of course it is also possible to work the other way round and to write the localized wave

functions in terms of their delocalized counterparts. This can be exploited to express

the energy expectation values of the pure CT and NE states in terms of the energy of

the delocalized excited state wave functions. This can be considered as diabatization.v

Subtracting equation 6.41 multiplied by (c3+c4) from equation 6.39 multiplied by (c̃3− c̃4)

and rearranging gives

ΨCT,+ =
c̃3 − c̃4

K
ΨB3u,1 −

c3 + c4

K
ΨB3u,2, (6.44)

with

K =
1√
2

[(c3 − c4)(c̃3 − c̃4)− (c3 + c4)(c̃3 + c̃4)] . (6.45)

vA strictly diabatic basis Φi should fulfill the condition that the nonadiabatic coupling elements are
zero, 〈

Φi

∣∣∣ ∂
∂R

Φj

〉
= 0. (6.43)

However, it can be shown that this is only possible in rare cases, like diatomic states of the same sym-
metry, because the necessary so-called curl condition is typically not satisfied for Born-Oppenheimer
states of real molecules (see334,335 for details). Hence one has to look for a basis that approximately
fulfills this condition. Often a basis is used that keeps the “character” of a state as constant as possible
along a certain coordinate. One example for this are for instance individual VB structures.96 Using
this definition the CT and NE states can also qualify as diabatic.
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An analogous expression can be obtained for ΨNE,+. Calculating the energy expectation

value yields,

ECT,+ = 〈ΨCT,+|H |ΨCT,+〉 =
(c̃3 − c̃4)2

K2
EB3u,1 +

(c3 + c4)2

K2
EB3u,2, (6.46)

ENE,+ = 〈ΨNE,+|H |ΨNE,+〉 =
(c̃3 + c̃4)2

K2
EB3u,1 +

(c3 − c4)2

K2
EB3u,2. (6.47)

Due to the applied approximations one cannot expect to obtain diabatic energies of high

accuracy from these equations, but they should suffice to reproduce the qualitative be-

havior of the states and their relative ordering.

The approach presented in this section can hence be used to interpret quantum chemical

computations in terms of CT and NE character. Furthermore approximate diabatic states

can be constructed.

6.2.2 TDDFT

In order to be able to compute bigger systems than dimers, TDDFT is one obvious choice.

Another advantage of TDDFT is that a geometry optimization in the excited state of the

dimer should be feasible. This is not possible with SCS-CC2, because the gradients

are computationally very demanding. Furthermore any standard optimization without

constraints leads to deformed monomers. This deformation maximizes the interaction

between the monomers, but lowers the applicability of the model to the crystal, where

the monomers are restricted by the stack and can therefore not deform. Thus Settels and

Liu had to compute potential energy surfaces for all degrees of freedoms they anticipated

to be important. An optimization that only involves the degrees of freedom between

the monomers and keeps the monomer geometries fixed would directly yield the relaxed

excited state geometry and hence reveal the important degrees of freedom. Such an op-

timization is possible with Gaussian using dummy atoms and TDDFT and a Z-matrix

approach. Hence there are several reasons, why a sufficiently accurate functional is highly

desirable.

Keeping in mind that Liu et al.329 showed that even CAM-B3LYP fails for the dimer

model system it does not seem to be too promising to find applicable functionals. How-

ever, the authors attributed the failure to the fact that the diabatic CT and NE states

are very close in energy and hence small changes in the excitation energies predicted by

the functionals can have dramatic effects. Therefore a functional that leads to slightly

different diabatic energies might yield the correct results.
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Figure 6.6: Definition of the longitudinal displacement.

An obvious candidate is ωB97XD,154 a widely used long-range corrected hybrid functional.

Test calculations on the PBI dimer, built up from monomers with the geometry taken

from the work of Settels and Liu (BLYP-D/TZV(P)), showed that ωB97XD/cc-pVDZ also

gives the wrong character of the Bu states, since the oscillator strengths are incorrect. The

2Bu state is predicted to be brighter than the 1 Bu state in the eclipsed geometry. The

same was observed by Liu et al.329 for CAM-B3LYP. However, a recent study by Casanova

on the excited states of the perylene dimer336 relied on the ωB97XD/6-31+G(d)337 level

of theory. The resulting potential energy surfaces look reasonable compared to the SCS-

CC2 results. Nevertheless, similar to PBI the character could be incorrect. Since Settels

showed that the excited states of several perylene-based dyes behave quite similar,326 this

is not unlikely. Hence the applicability of ωB97XD was checked carefully.

Since perylene is the smallest of the perylene-based dyes it is a reasonable starting point

for a thorough investigation of the performance of TDDFT. The longitudinal displace-

ment was chosen as a coordinate for the potential energy surfaces (see Figure 6.6), with a

distance between the molecular planes of 3.3 Å, similar to Settels et al.326 The monomer

was optimized on the ωB97XD/cc-pVTZ level of theory. Settels and Liu used SCS-CC2 as

a benchmark method, which was also used here together with SCS-ADC(2) in conjunction

with the cc-pVDZ basis sets.vi ADC(2) has the advantage that the computation of the

oscillator strengths is significantly faster (see section 3.3.4). The ground-state surface was

computed on the ωB97XD/6-31+G(d) level of theoryvii, while the excitation energies of

the respective method were added to these values to generate the excited-state potential

energy surfaces. In the dimer system several low-lying states exist. For this investigation,

the two Bu and Ag states that arise from the splitting of the monomer frontier MOs (see

viAll DFT calculations were performed with Gaussian, while TURBOMOLE was used for SCS-ADC(2)
and SCS-CC2.

viiThe basis was chosen in order to be comparable to the results of Casanova336.
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section 6.2.1) were chosen, since they are the states expected to contribute to the exciton

trapping.viii The results of the ab initio reference methods SCS-CC27cc-pVDZ and SCS-

ADC(2)/cc-pVDZ are depicted in Figure 6.7.

Apart from the potential energy surfaces and the oscillator strengths also the character

in terms of the delocalized determinants (square of the coefficients) and the amount of

charge-transfer character is given. The latter was computed using the equations derived

in section 6.2.1.ix Whether the plus or the minus linear combination of the monomer

frontier MOs is lower in energy depends on the relative displacement of the monomers

and hence their order changes along the chosen coordinate. Therefore, the MOs have to

be inspected visually in order to decide which of the coefficients are the correct ones.x

Before the results are discussed it should be noted that the ricc2 module of TURBO-

MOLE only prints coefficients above a certain threshold. Whenever a coefficient became

smaller than the threshold, it was set to zero in the character calculation, which leads

to discontinuities in the curves. For instance the fact that the CT character of the two

Ag states is almost completely identical for the first 0.75 Å can be attributed to some

coefficients being smaller than the threshold. The same is true for the hump in the 1

Bu character curve. The dashed line, which is more realistic, was computed using the

additivity of the weights in the two Bu curves.

From Figure 6.7 it is evident that SCS-CC2 and SCS-ADC(2) yield almost identical re-

sults. The potential energy surfaces and the character of the states are in agreement

to the computations of Settels et al.,16,326 which used an approach based on a Löwdin

localization proposed by Liu338 for obtaining the character. Moreover the behavior of

the character of the bright states is in line with the behavior of the oscillator strengths.

viiiIt should be noted that depending on the system and the method these states are not the four lowest
excited states along the complete surface. Bg and Au states are sometimes among the lowest four
states, however, they have been omitted for the sake of clarity.

ixIt should be noted that the equations have been derived for the coefficients of a CI. Although these are
not identical to the coefficients taken from a linear-response method like TDDFT or CC2 a qualitative
agreement is usually observed.

xWhen applying the equations of section 6.2.1 another problem arises: The signs of the coefficients of the
CI-type expansion are not unambiguous and can hence also be different for different points of the PES,
which leads to unphysical fluctuations in the curves. In order to circumvent this problem the absolute

values were used, e.g. ωCT = (|c3|−|c4|)2
2 . Of course this has the disadvantage that it can artificially

prevent the character of two states from interchanging. Therefore a careful inspection is needed
whenever the character of two states becomes identical, or the transition moments or other properties
indicate a crossing of the character curves. Using absolute values also introduces an ambiguity in the
choice of the sign between the coefficients, which determines which state is which. For the Bu states
the oscillator strength clearly defines which state has a dominating CT and which a dominating NE
character and for the Ag states the results of Settels and Liu were used as reference.
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Figure 6.7: Ab initio results for the longitudinal shift in the perylene dimer. Upper panel:
SCS-ADC(2)/cc-pVDZ, lower panel: SCS-CC2/cc-pVDZ. Ground state sur-
face: ωB97XD/6-31+G(d), monomer geometry: ωB97XD/cc-pVTZ
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These results show that either method, SCS-CC2 or SCS-ADC(2), can can be used as a

reference.

The TDDFT calculations were performed with the ωB97XD functional and for compari-

son also with CAM-B3LYP. In order to be able to compare the computations to the ones

of Casanova, the 6-31+G(d) basis sets337 were used. The results are depicted in Figure

6.8.

The potential energy curves as well as the character of the DFT methods xi are in agree-

ment with the ab initio results. Qualitatively CAM-B3LYP shows minor deviations in the

oscillator strength. While 1 Bu is always predicted to be brighter than 2 Bu by ωB97XD

and the ab initio methods, there is a small region where CAM-B3LYP predicts it to be

the other way round. The character of the two states is also more similar in CAM-B3LYP.

The PES of the TDDFT methods are shifted to lower energies compared to the ab initio

methods. However, for ωB97XD this shift is roughly constant and around 0.2 eV, while

it is slightly bigger and less constant for CAM-B3LYP (see Figure 6.9). However, the

differences are within the margin of accuracy that can be expected for TDDFT and hence

both methods can be considered to be reasonably accurate.

These results are not in line with the results reported above for PBI, where CAM-B3LYP

as well as ωB97XD failed. This is surprising, since the excited states of the perylene and

PBI dimer were shown to be very similar.326 Therefore the same procedure was repeated

for PBI. However, since PBI is larger only SCS-ADC(2) was used as reference to reduce

the computational costs. The SCS-ADC(2) resultsxii for the PBI dimer are depicted in

Figure 6.10. By comparing with the results in Figure 6.7 it is evident that the excited

states and their character are indeed very similar to perylene.

The TDDFT results are shown in Figure 6.11. The oscillator strengths of the two bright

xiTDDFT also contains de-excitations, which influence the norm. The general excitation/de-excitation
operator for TDHF/TDDFT can be written in a basis of one-particle/one-hole excitation and de-
excitation operators,68

Ô† =
∑
i,a

a†iXia +
∑
i,a

i†aYia. (6.48)

Hence the norm is defined as
〈Ô†|Ô†〉 = ~X† ~X − ~Y †~Y , (6.49)

However, since these de-excitations are typically very small, they have been neglected in the analysis
of the character.

xiiThe discontinuities in the graphs describing the CT character are again due to the threshold for the
printing of the coefficients. If the magnitude of the coefficient was below the threshold for only a
single shift distance, the neighboring points were used to extrapolate its value.
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Figure 6.8: TDDFT results for the longitudinal shift in the perylene dimer. Upper panel:
ωB97XD/6-31+G(d), lower panel: CAM-B3LYP/6-31G(d). Ground state
surface: ωB97XD/6-31+G(d), monomer geometry: ωB97XD/cc-pVTZ
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Figure 6.9: Energy difference to SCS-ADC(2)/cc-pVDZ for the perylene dimer. Continu-
ous lines: ωB97XD/6-31+G(d), dashed lines: CAM-B3LYP/6-31+G(d)

Figure 6.10: SCS-ADC(2)/cc-pVDZ results for the longitudinal shift in the PBI
dimer. Ground state surface: ωB97XD/6-31+G(d), monomer geometry:
ωB97XD/cc-pVTZ
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Figure 6.11: TDDFT results for the longitudinal shift in the PBI dimer. Upper panel:
ωB97XD/6-31+G(d), lower panel: CAM-B3LYP/6-31G(d). Ground state
surface: ωB97XD/6-31+G(d). Monomer geometry: ωB97XD/cc-pVTZ. The
dashed lines in the plots for the character in the lower panel have been
obtained using the transition dipole moments (see text).
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states are predicted to be less different by ωB97XD than by SCS-ADC(2), but apart from

that the functional again yields correct results. The CAM-B3LYP results, however, now

show the incorrect behavior already observed by Liu et al. At smaller shift distances the

2 Bu state is predicted to be brighter than the 1 Bu state. This order interchanges for

distances larger than 2.5 Å, where the predictions are qualitatively correct. This is in line

with a strong CT character in the 1 Bu state at 0 Å that decreases along the reaction

coordinate and an inverse behavior for the 2 Bu state.xiii Assuming that the transition

moment for the diabatic CT state is zero, the character can also be derived from the

transition dipole moments of the two adiabtatic states µ1 and µ2.329 The amount of CT

character obtained using this schemexiv is plotted as dashed lines for CAM-B3LYP (Fig.

6.11). These curves support the crossing obtained from the character analysis based on

the coefficients.

In order to understand why the character of the two Bu states is predicted to be different

by two functionals, which typically yield results of similar accuracy, the energies of the

diabatic CT and NE states, from which the two Bu states can be constructed, were cal-

culated using the formulas derived in section 6.2.1.xv The energy of the diabats is plotted

next to the potential energy curves in Figure 6.12. It has to be stressed that due to the

approximations, the diabats can only be expected to be qualitatively correct. Since the

formulas involve the total energy, the total energies of the adiabatic states, i.e. the energy

of the ground state energy curve (wB97XD/6-31+G(d)) plus the excitation energy com-

puted on the respective level were used. Thus the calculation involves results from the

ground and excited state calculation and hence in the case of CAM-B3LYP from different

methods, which introduces further errors.

xiiiPlotting the curves without the absolute values suggested a crossing of the Bu states between 1.75 and
2 Å. Hence the sign between the absolute values of the coefficients was changed at 2 Å. Due to the
uncertainty in the sign of the coefficients, the behavior of the two dark Ag states could in principle
also be the other way round, however, there is no indication to assume that their behavior is the
inverse of the previous calculations.

xivThe CT character of the 2 Bu state is given by329

µ2
2

µ2
2 + µ2

1

, (6.50)

while the character of the 1 Bu stat is simply calculated as

1− µ2
2

µ2
2 + µ2

1

. (6.51)

xvSimilar to the computation of the character the absolute values of the coefficients were used. The sign
was chosen to be consistent with the calculation of the character.
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Figure 6.12: Diabatic energies of the CT and NE states forming the two Bu states and
the adiabatic PES.

From Figure 6.12 it is obvious that the diabats are indeed rather close in energy, especially

at the eclipsed geometry. Furthermore the CT curve is predicted to be slightly lower in

energy than the NE curve for small shifts by CAM-B3LYP, contrary to ωB97XD. For 0 Å

ωB97XD predicts the diabats to have the same energy within the accuracy of the meth-

ods, while the CT state is 0.10 eV below the NE state in CAM-B3LYP. Hence the mixing

of the two states will give adiabatic states with an inverted character by CAM-B3LYP

compared to ωB97XD.

Since the energetic splitting due to the mixing of the diabatic states is apparently rather

small and the states are very close in energy this wrong ordering has only a limited in-

fluence on the energy of the adiabatic states. For larger shift distances the diabats are

sufficiently separated and thus this problem does not arise. Close to the eclipsed geom-

etry, however, small changes can indeed have a dramatic effect on the character and the

oscillator strengths.

Hence the relative order of the diabats explains why the two functionals predict very dif-

ferent results. The relative energy of the NE and CT diabatic states on the other hand can

be expected to be highly dependent on the amount of HF exchange. In the short-range

limit both functionals contain around 20 % HF exchange, however, in the long-range limit

the amount of HF reaches a limit at around 65 % in CAM-B3LYP, while it becomes 100

% in ωB97XD (see below). Due to the significant distance of 3.3Å between the monomers

this difference in the amount of long-range HF exchange might be responsible for the

different prediction of the order of the states of the functionals.

The fact that ωB97XD failed in the test calculations, but gives a correct description

184



6 Perylene-based dyes

Figure 6.13: SCS-ADC(2)/cc-pVDZ results for the longitudinal shift in the PBI dimer.
Ground state surface: ωB97XD/6-31+G(d) Monomer geometry: taken from
Settels et al.

here is rather surprising. This can either be attributed to the different basis sets applied

or the different monomer geometries. Since cc-pVDZ and 6-31G+(d) are both polarized

split-valence basis sets of double-zeta quality it is unlikely that significantly different re-

sults are obtained when the basis is changed. This was also confirmed by corresponding

calculations. Hence the geometry of the monomer seems to be crucial. In order to verify

this the computations were repeated using the monomer geometry of Settels et al.,326

which was originally computed on the BLYP-D/TZV(P)339,340 level of theory.

The SCS-ADC(2) results using this geometry (see Figure 6.13) are quite similar to the

ones with the ωB97XD/cc-pVTZ geometry. The ground state PES is scarcely changed,

but the excitation energies are lowered roughly constantly by around 0.2 eV. Inspecting

the two geometries shows that the one used by Settels et al. has longer bond lengths and

seems to be connected qualitatively to the ωB97XD/cc-pVTZ geometry by a breathing

motion.

As a reference, an SCS-MP2/cc-pVTZ optimization was performed. In Figure 6.14 the

distortion of the two other geometries relative to the SCS-MP2/cc-pVTZ geometry is

depicted in an exaggerated form to visualize the effect, while table 6.1 provides the SCS-

MP2/cc-pVTZ single-point energies for geometries optimized on different levels of theory.
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Figure 6.14: The reference SCS-MP2/cc-pVTZ geometry is shown in black, while the
ωB97XD/cc-pVTZ (blue) geometry and the one of Settels et al. (red) are
plotted in an exaggerated form, i.e. the distortion relative to the reference is
scaled with a factor of 10.

Table 6.1: Energetic differences of structures optimized on different levels of theory.

Geometry E(SCS-MP2/cc-pVTZ) [kcal/mol]
SCS-MP2/cc-pVTZ 0.0
SCS-MP2/cc-pVDZ 3.00
ωB97XD/cc-pVDZ 0.53
ωB97XD/cc-pVTZ 1.46

Settels et al. 2.95

The single-point energies show that the geometry of Settels et al. as well as the ωB97XD

geometry are energetically not very close to the one predicted by SCS-MP2. Furthermore

Figure 6.14 shows that while one is more extended than the reference the other is more

contracted, which means that the difference between them is even larger than suggested

by the single-point energies, which are relative to the reference. Assuming that the struc-

ture predicted by SCS-MP2/cc-pVTZ is closest to the truth, the geometry obtained by

ωB97XD and the one taken from Settels et al. are ideal test cases, since they deviate in

two different direction from the reference and present thus two extreme cases.

The results of the TDDFT calculations are given in Figure 6.15. Both functionals pre-

dict the excitation energies to be lower in energy for the geometry of Settels et. al. by

around 0.2 eV, in line with SCS-ADC(2) results. CAM-B3LYP again predicts the wrong

character of the Bu states for small shift distances. A computation of the diabats reveals
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Figure 6.15: TDDFT results for the longitudinal shift in the PBI dimer. Upper panel:
ωB97XD/6-31+G(d), lower panel: CAM-B3LYP/6-31G(d). Ground state
surface: ωB97XD/6-31+G(d), monomer geometry: taken from Settels et al.
The dashed lines in the plots for the character in the upper panel have been
obtained using the transition dipole moments.
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that at 0 Å the CT state is now 0.15 below the NE state. The same trend is observable

for ωB97XD. While both diabats were equal in energy using the ωB97XD geometry, the

CT state is now slightly lower in energy than the NE state by 0.05 eV. Thus ωB97XD

now also predicts a wrong character of the states at small shift distances. The change

of geometry seems to stabilize the CT state slightly more than the NE state, which has

a significant effect for ωB97XD, due to the two states being extremely close in energy.

This sensitivity of ωB97XD using this system explains why it sometimes gives correct and

sometimes incorrect results.

To summarize the results obtained so far, both functionals work well for the perylene

dimer, but CAM-B3LYP fails for the PBI dimer, while the reliability of ωB97XD depends

on the geometry.

In order to obtain a reliable functional for this system (i.e. a functional that reproduces

the SCS-ADC(2) results) one should make sure that the diabatic CT state is energetically

above the NE state. As already mentioned the relative energy of the two states should

depend critically on the amount of exact HF exchange. Hence an applicable functional

should have a slightly higher amount of HF exchange than the functionals used above.

While it might be possible for a standard hybrid functional to increase the amount of

exact exchange until the correct order of the states is obtained, this not the best way,

since it will not necessarily lead to physically very grounded results. Furthermore simply

increasing the HF exchange will eventually lead to an overestimation of the excitation

energy, as it is observed for TDHF.329

In order to describe CT and NE states on a similar, theoretically more founded level a

long-range corrected functional should be used. However, these functionals do not use a

fixed amount of HF exchange and thus the question arises what a higher amount of HF

exchange means in this context. Therefore before the results of calculations with other

possible functionals are reported, a short excursion on the HF exchange in long-range

corrected functionals is given.

Excursion: The amount of HF exchange in different long-range corrected

functionals

In the simplest case of a pure density functional, the exchange of the long-range corrected

functional is written as a sum of the long-range exchange from HF and the short-range

exchange from DFT. The latter is often denoted as DFA (density functional approxima-
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tion),150,151,341

EHF
x = ELR−HF

x (µ) + Ex(µ)SR−DFA, (6.52)

with µ (which is often also denoted as ω) being the range separation parameter of the

Ewald split. The long-range contribution is simply given by

ELR−HF
x = −1

2

∑
σ

occ∑
ij

∫ ∫
φ∗iσ(r1)φ∗jσ(r1)

erf(µr12)

r12

φiσ(r2)φjσ(r2)dr1dr2, (6.53)

with φiσ being the occupied spin orbitals with spin σ. The short-range DFA part is scaled

accordingly. Hence this approximation leads to zero HF exchange at short distances and

100 % at the limit r12 → ∞. The value of µ defines the steepness of the transition.

LC-BLYP as implemented in Gaussian uses µ = 0.47 bohr−1, although µ = 0.33 bohr−1 is

also often used.342,343 LC-ωPBE153 uses PBE exchange and a range-separation parameter

of µ = 0.4 bohr−1 344

As in standard DFT it is beneficial to also include some HF exchange in the short-range

limit. Hence Chai and Head-Grodon proposed to add a short-range HF term to the

exchange functional,341

EHF
x = ELR−HF

x (µ) + cxE
SR−HF
x (µ) + Ex(µ)SR−DFA. (6.54)

ESR−HF
x is simply defined by

ESR−HF
x = −1

2

∑
σ

occ∑
ij

∫ ∫
φ∗iσ(r1)φ∗jσ(r1)

erfc(µr12)

r12

φiσ(r2)φjσ(r2)dr1dr2. (6.55)

For ωB97X341 the parameters are µ = 0.3 bohr−1 and cx = 0.17, while they are µ =

0.2 bohr−1 and cx = 0.22 for ωB97XD.154 It is important to note that ωB97XD is not just

ωB97X plus an added empirical dispersion, but a reparameterized version order to yield

optimal results with dispersion. With these functionals the amount of exact exchange is

non-zero for r12 = 0 and rises to 100% at r12 =∞.

The exchange correlation potential of a hybrid functional a decays asymptotically as

−a/r, with a being the fraction of exact exchange, while the exact behavior would be

−1/r, which is recovered by all of the range-separated hybrids that use 100 % HF ex-

change in the long-range limit.341

The Coulomb-attenuating method (CAM-B3LYP) uses, apart from the range-separation

parameter µ, two additional parameters and is also bound at the long-range limit (see

189



6 Perylene-based dyes

Figure 6.16: Schematic plot of the amount of exact exchange against r12 for different
functionals.

section 3.3.2). For r12 =∞ the amount of exact exchange reaches 65 %.

The behavior of the amount of exact exchange for different range-separated functionals

is given schematically in Figure 6.16. The graphs were obtained by plotting the error

function with the corresponding parameters.xvi

From Fig. 6.16 it is clear that CAM-B3LYP should always contain less HF-exchange

than ωB97XD. Hence it makes sense that it is more prone to underestimate the energy

of the CT state. While ωB97X contains slightly less exact exchange than ωB97XD at

short distances, the amount of HF exchange becomes significantly larger in the medium-

and long-range region. Since the dispersion is of no relevance for the calculation of the

excitation energy it might be a promising approach to add ωB97X excitation energies

to the ωB97XD ground state curve. The results using the more problematic monomer

geometry of Settels et al. are depicted in Fig. 6.17. Contrary to ωB97XD the character of

the two states is now predicted correctly. This is due to the fact that the CT state is now

0.25 eV above the NE state at 0 Å. The functionals LC-BLYP and LC-ωPBE also predict

the correct character and give qualitatively correct results. The CT state is computed to

xviIn order to sketch the behavior of ωB97X and ωB97XD simply the weighted sum of the two range-
separation functions is plotted, i.e.

cxerfc(µr12) + erf(µr12). (6.56)
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Figure 6.17: ωB97X/6-31+G(d) results for the longitudinal shift in the PBI dimer.
Ground state surface: ωB97XD/6-31+G(d), monomer geometry: taken from
Settels et al.

be 0.47 and 0.37 eV above the NE state.

In order to compare the accuracy of the methods, the energetic difference of the state

energies with respect to SCS-ADC(2) are plotted in Fig. 6.18 (left-hand side).

As can be expected the functionals with a high amount of HF exchange like LC-ωPBE

and LC-BYLP significantly overestimate the excitation energy, while ωB97XD and CAM-

B3LYP underestimate it. ωB97X also slightly overestimates the excitation energy, but

gives overall a nice agreement. Hence to add ωB97X excitation energies to the ωB97XD

ground-state curve seems to be a sensible protocol, which should enable the calculation

of bigger systems, e.g. tetramers (see below).

Another possibility is to make ωB97XD more robust by tuning the range-separation pa-

rameter ω. This was done in collaboration with Charlotte Brückner. Typically the pa-

rameters are tuned until the HOMO energy or the HOMO-LUMO gap reproduces an

observable correctly, like the ionization or excitation energy. This is physically grounded,

since the HOMO energy should be equal to the ionization energy in exact KSDFT. Here

we used a more pragmatic approach and varied ω for the PBI dimer in the eclipsed con-

figuration using the monomer geometry of Settels et al. until the agreement with the

SCS-ADC(2) excitation energies (and oscillator strength) was optimal. The best result
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Figure 6.18: Energy difference to SCS-ADC(2)/cc-pVDZ. Left-hand side: various func-
tionals, right-hand side: ωB97XD25/6-31+G(d) (ω = 0.25)

was obtained with ω = 0.25 bohr−1. The corresponding method was called ωB97XD25.

The difference in energy to SCS-ADC(2) along the potential energy surface is depicted in

Fig. 6.18 (right-hand side). The agreement is excellent and the character is also repro-

duced correctly (see Figure 6.19). The CT state is predicted to be 0.15 eV above the NE

state at 0 Å.

The result of the tuning process is illustrated in Fig. 6.20, where the difference to the SCS-

ADC(2) results for the excitation energies and the oscillator strengths is plotted against

ω. The oscillator strengths seem to be more or less converged above ω = 0.24 bohr−1,

while the excitation energies rise continuously, which is quite is to be expected due to

the increasing amount of HF exchange at intermediate distances. The slope of the curves

agrees nicely with the amount of CT character computed for 0 Å, with the states with

a larger CT character increasing more steeply than the ones, which are predominantly

neutral.

Of course for results of high accuracy (e.g. for thermochemistry) all DFT parameters

should be balanced and hence be reoptimized if one parameter is changed. This is one

disadvantage of this approach. However, since the range separation parameter is changed

only moderately (from ω = 0.2 bohr−1 to ω = 0.25 bohr−1) the description can be ex-

pected to be still sufficiently balanced to give reasonable results.

The mean error and the root mean square deviation of all investigated functionals with

respect to SCS-ADC(2) are given in Table 6.2 for each state for the whole PES. The

values again show that ωB97XD underestimates the excitation energies, but less than
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Figure 6.19: ωB97X25/6-31+G(d) results for the longitudinal shift in the PBI dimer.
Ground state surface: ωB97XD/6-31+G(d), monomer geometry: taken from
Settels et al.

Figure 6.20: Energy difference of the excitation energies of ωB97XD(ω) and SCS-
ADC(2)/cc-pVDZ (left-hand side) and the difference of the corresponding
oscillator strengths (right-hand side) plotted against ω (shift distance 0 Å).
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Table 6.2: The mean error (ME) and the root mean square deviation (RMSD) of different
functionals with respect to SCS-ADC(2) (in eV) for the whole PES using the
monomer geometry of Settels et al.

functional 1 Ag 1 Bu 2 Bu 2 Ag

ωB97XD ME -0.12 -0.11 -0.11 -0.15
RMSD 0.12 0.11 0.12 0.15

CAM-B3LYP ME -0.19 -0.20 -0.23 -0.28
RMSD 0.19 0.20 0.23 0.28

ωB97X ME 0.04 0.07 0.21 0.19
RMSD 0.04 0.07 0.22 0.19

LC-BLYP ME 0.16 0.20 0.51 0.50
RMSD 0.17 0.21 0.52 0.50

LC-ωPBE ME 0.15 0.18 0.40 0.38
RMSD 0.15 0.19 0.40 0.39

ωB97XD25 ME -0.01 0.01 0.09 0.06
RMSD 0.03 0.02 0.10 0.07

CAM-B3LYP, while LC-ωPBE overestimates the excitation energies, which is even more

the case for LC-BLYP. ωB97X is only slightly overestimating. The excitation energies

predicted by ωB97XD25 are very close to the reference. The RMSD of this method is

greatest for the 2 Bu with 0.1 eV. All methods give a larger error for the 2 Bu and 2 Ag

states than the 1 Ag and 1 Bu states.

It should be noted that the relative energy of the CT and the NE state will also depend

on the intermolecular distance between the monomers. Hence it is likely that also for the

functionals with a higher amount of HF exchange, there will be a certain distance where

the NE and CT are so close that slight differences can change the character of the sates

completely. However, for these functionals this can be expected to occur for distances

between the π planes significantly smaller than 3.3 Å, which are usually not observed.

In this section it was demonstrated that it is in principle possible to describe the ex-

cited states of perylene and PBI dimers with TDDFT. However, care must be taken since

due to the closeness of the CT and NE state minor changes can have a dramatic effect.

For instance, when the excited states of standard molecules are computed, it is usually

observed that the method applied for the geometry optimization is of minor importance.

This is not the case for the dimers.
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Figure 6.21: Definition of the longitudinal displacement in the perylene tetramer.

Applications using TDDFT

It was shown that ωB97X as well as ωB97XD25 give a very good description of the dimer

system. Also LC-BLYP and LC-ωPBE give a qualitatively correct description, but over-

estimate the excitation energies. The failure of CAM-B3LYP observed by Settels and Liu

was confirmed and could be rationalized by the amount of HF exchange. The fact that

TDDFT can be used opens new possibilities for the description of these systems. In the

last part two applications of TDDFT, which are not possible with SCS-CC2, are discussed

as a proof of principle, using the results of the previous benchmark of DFT functionals.

The first one extends the system from a dimer to a tetramer. Since all perylene-based

dyes show similar potential energy surfaces perylene itself was chosen due to computa-

tional reasons. Following the approach described above, the ground state surface was

calculated with ωB97XD while the excitation energies were computed using ωB97X both

in conjunction with the 6-31G+(d) basis sets. For the potential energy surface of the

longitudinal shift, the two inner monomers were shifted against each other, while the two

outer monomers were kept fixed (see Fig. 6.21).

This models the situation of a dimer in a perfectly eclipsed π-stack that becomes dis-

torted, e.g. due to an excitation. Obviously this model is artificial since an eclipsed stack

is typically not observed. However, using this model one can most easily evaluate the

effect of the next neighbors in the stack and check whether an exciton trap state is still

present, or whether it is just an artifact of the dimer model. Furthermore the calcula-

tions can give hints if the exciton is localized on the dimer or delocalized over the whole
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Figure 6.22: ωB97X/6-31+G(d) results for the longitudinal shift in the Perylene tetramer
(left-hand side). Ground state surface: ωB97XD/6-31+G(d). For compari-
son the results for the dimer are given on the same level of theory (right-hand
side)

tetramer.xvii The two Ag states and the three Bu states lowest in energy were chosen for

this investigation.

The results are depicted in Fig. 6.22. For comparison the PES of the dimer are also

given (right-hand side). Assuming the (artificial) eclipsed stack as a starting point (shift

distance r = 0 Å), the trapping process in the dimer could work as follows: An excitation

will lead to the bright 1 Bu state, from which it can reach the crossing with the 1 Ag

state, where a part of the population can switch to the lower lying state (probably after

a few back and forth vibrations). Moving on the 1 Ag surface to its minimum at 0 Å

the exciton is trapped, since the state is dark and the Stokes shift is significant (1.1 eV),

which makes an efficient excitation energy transfer impossible.

Starting from the ground state minimum at around 1.5 Å the wave packet will be trans-

ferred to the excited state in the region of crossing right away, where it is likely that a

significant part of the population crosses directly to the trap state. Now the Stokes shift

is obviously less pronounced, but still significant.

xviiObviously a calculation, which neglects the rest of the environment as well as vibrations and defects
can be expected to overestimate the delocalization of the exciton compared to the real system in the
crystal.
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Obviously the tetramer is more complex since more states arise. Furthermore already the

ground state PES is quite different. At 0 Å the MOs are more or less localized on the inner

and outer dimer and hence transitions can be classified according to this scheme. Hence

this is a good (even though artificial) starting point to discuss the photochemistry of the

system. The transition that contributes most strongly to the 1 Ag and the 3 Bu state

at this conformation (c2= 86% and 38%, respectively) is localized on the inner dimer.

Thus these states can directly be compared to the ones of the dimer, while the other

states contain transitions within the outer two monomers or between the inner and outer

dimer. An excitation of the system at 0 Å will lead to the bright 3 Bu state and hence

be mainly localized on the inner dimer. The excitation energy is predicted to be only

0.06 eV larger than in the dimer. The wave packet then experiences a gradient towards

larger shift distances. Along this coordinate the MOs become more delocalized and the

classification of the states is less obvious. The 3 Bu and the 2 Bu are rather close in energy

and become very similar in character, which makes a population transfer to the 2 Bu state

likely, presumably via an avoided crossing. The part of the population that stays in the

3 Bu state will have a rather long fluorescence life time, since the oscillator strength of

this state decreases along the shift coordinate. The other part of the population moves to

the minimum of the 2 Bu states at around 3 Å. Here it can either fluoresce to the ground

state, since the 2 Bu has aquired a significant oscillator strength along the coordinate,

which leads to a Stokes shift of 0.39 eV, or switch to the lowest Bu state. At distance

between 2 and 3.5 Å the MOs are again rather localized and from the coefficients it can

be inferred that the 2 Bu is dominated by transitions between the inner and outer dimer

in this regions. Since the states are very close in energy and similar in character, the tran-

sition to the 1 Bu surface is quite likely. Here the wave packet can move to the minimum

at around 2-2.5 Å. The fluorescence will occur with a rather long life time, due to the low

oscillator stength. Around its minimum the 1 Bu state it is dominated by a transition in

the inner dimer (75%) and hence the dimer fluorescence should be observed. The Stokes

shift is predicted to be 0.60 eV. This state can also be considered to be a trap state,

however, contrary to the dimer model this time the trap state is of Bu symmetry. In the

dimer the 1 Ag state at 0 Å was the lowest excited state, while the minimum of the 1 Bu

state is predicted to be lower than the one of the 1Ag state in the tetramer. Although the

excitation energy of the 1 Ag state is significantly lower in the tetramer than the dimer

(1.89 vs. 2.39 eV) this is overcompensated by the rise of ground state PES (1.26 vs. 0.44

eV compared to the dimer). Hence the minimum of the 1 Ag is shifted to 1.5 Å and is

now higher in energy than the one of the 1 Bu state. However, since this depends crucially
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on size of the dispersion it should be interpreted with care. Furthermore one has to keep

in mind that the model system is artificial and does not represent an actual part of the

crystal structure. Assuming the wave packet reaches the 1 Ag state in the tetramer it is

less likely to move to 0 Å (as in the dimer), where a very long living fluorescence with

a Stokes shift of 1.68 eV would be observed, but rather moves towards the crossing with

the 1 Bu state.

Starting at the minimum of the ground state surface means starting from a significantly

more shifted structure than in the dimer (3 Å vs. 1.5 Å). Here the excitation will domi-

nantly lead to the 2 Bu state and the exciton will be delocalized over all four monomers.

Since the wave packet is close to the crossing point a part will switch to the 1 Bu surface

and be trapped at its minimum, where again a long-lived dimer fluorescence will be ob-

served.

Thus also using the tetramer a trapping mechanism can be proposed. However, it is more

complex than the one active in the dimer and there are also differences in the nature of

the trap state.

The eclipsed tetramer system used here can serve as a proof of principle. In order to make

a statement about an actual material one should start from actual stacks taken from the

X-ray structure. Since PBI is well-studied in this respect it might be more suitable than

perylene, although the computational cost will be much higher.

The second application uses a Z-matrix approach. As already mentioned above a direct

geometry optimization is a much more elegant tool to explore the excited state surface

and to find the relevant degrees of freedom than to conduct scans along all plausible

coordinates and thus to construct several PES explicitly. In order to separate external

and internal degrees of freedom the monomer geometry was built up relative to a cross

of five dummy atoms in the middle of the central PBI ring. The monomer was optimized

with the constriction that the dummy atoms are fixed and that the optimization yields

D2h symmetry on the ωB97XD/cc-pVTZ level of theory. The existence of a minimum

within these constraints was confirmed with a frequency calculations. The dimer was

constructed using the monomer with the dummy atoms in a way that all intermolecular

degrees of freedom are defined between the dummy atoms on the different monomers (see

Fig. 6.23). Using the Z-matrix of this dimer, the 6 intermolecular degrees of freedom can

easily be separated from the internal degrees of freedom.

As a test the ground state of the dimer was optimized on the ωB97XD/cc-pVDZ level

of theory with all internal degrees of freedoms kept fixed. The optimization yielded a
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Figure 6.23: Dimer for the Z-Matrix approach. The dummy atoms are depicted in red.

conformation in which the monomers are rotated 29◦ against each other. Using a shifted

starting structure another stationary point was found, where the monomers are longitudi-

nally and transversally shifted against each other. This is in line with the results of Fink

et al.18,331

For the optimization of the excited states, the use of ωB97XD seems unadvisable due to

its insufficient robustness for this system. However, keeping the results presented above

in mind there are two possibilities: either ωB97XD25 or ωB97X could be used. Since

the latter lacks dispersion an empirical correction has to be included. Gaussian09 offers

the possibility to add Grimme’s D3 dispersion correction, however, due to the existence

of the ωB97XD functional no parameters for ωB97X are defined. Since the coefficients

of similar functionals should also be similar, using the factors defined for LC-ωPBE (sr:

1.0, sr,6: 1.355, s8: 1.297) should give a reasonable approximation. This method will be

called ωB97X+D.

However, because both methods use altered parameters, it should be checked whether

the description of the intermolecular interaction is still balanced. While an optimization

in the ground state starting from the eclipsed conformation yields the rotated structure,

when ωB97XD and ωB97X+D are used, the optimization with ωB97XD25 ends up in the

shifted conformation. However, commencing from appropriate starting structures both

ωB97X+D/cc-pVDZ and ωB97XD25/cc-pVDZ predict a rotated and a shifted stationary

point, with the rotated structure being 1.5 kcal/mol lower in energy. ωB97XD/cc-pVDZ

predicts the rotated structure to be 2.1 kcal/mol lower in energy. This indicates that both

methods are still well balanced, despite the modified parameters.
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Figure 6.24: Ground and excited state for the eclipsed geometry and the optimized S1 and
S2 state (the level for the optimization is given in brackets). Ground state:
ωB97XD/6-31+G(d), excited states: ωB97XD25/6-31+G(d)

Due to the high computational cost the excited states were preoptimized with the 6-31G

basis and the obtained structure subsequently reoptimized with the 6-31G* sets. Using

ωB97X+D starting from the eclipsed geometry leads to a stationary point, where the

monomers are shifted about roughly 2.5 Å against each other in line with the computed

potential energy surfaces presented above (see for instance 6.10). In the S1 state no con-

vergence could be achieved.xviii

With ωB97XD25 the optimization in the S1 led to a longitudinally twisted and slightly

rotated structure, indicating that more than one single coordinate could be important.

With this method the optimization in the S2 starting from the eclipsed conformation did

not converge directly. However using an already shifted starting structure also leads to

the shifted stationary point.

Single points of the ground and excited states of the optimized structures were computed

with ωB97XD/6-31+G(d) for the ground state and ωB97XD25/6-31+G(d) for the excited

states and compared to the eclipsed conformation (see Fig. 6.24).

Obviously the inverse procedure would also be possible, i.e. to keep the intermolecular

degrees of freedom fixed and to optimize the internal ones. This might also be interesting

keeping in mind that Schubert and Settels proposed a distortion towards a zwitterionic

(M+M−) structure. However, due to the high amount of degrees of freedom this is com-

xviiiThe optimization leads to a shifted and rotated geometry, where it oscillates between two structures.
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putationally more demanding.

6.2.3 Semi-Empirical Methods

Electronic structure calculations of large systems often rely on semi-empirical methods.

For the calculation of excited states especially the OMx methods by Thiel and cowork-

ers (see section 3.2.4) have been proven to be quite successful. With these methods the

excited states of systems containing dozens of perylene-based monomers can easily be

calculated. However, usually the performance of these methods is evaluated for single

molecules and hence it is uncertain whether they yield satisfactory results for excited

states that arise primarily from the intermolecular interaction such as Förster transfer345

etc. Therefore the performance of the semi-empirical methods was investigated carefully

for the dimer model system of PBI.xixA significant part of the results presented in this

section were obtained by Veronika Krämer in the framework of her Bachelor thesis.347

In her thesis she first evaluated the performance for the monomer. The lowest excited

states of PBI are reproduced with reasonable accuracy by the OMx methods as compared

to ADC(2)/cc-pVTZ, when a [12,12] active spacexx is used.347 The difference between the

three individual methods is rather small.

The results of OM1 and OM3 calculations on the dimer can be found elsewhere,347 here

the results of an OM2 CISDT calculation with a large [16,16]-active space are exemplarily

discussed (see Figure 6.25). Keeping in mind the approximations involved in the methods,

OM2 can be expected to yield the best results. In the upper panel the ωB97XD/cc-pVTZ

geometry was used for the monomer, while the geometry taken from Settels et al. was used

in the lower panel. It is important to note that only the excitation energies and properties

were taken from the GUGA CI calculation, while the results of the ωB97XD/6-31+G(d)

calculation (with the corresponding monomer geometry) were used for the ground-state

surface.

The excitation energies are in the correct order of magnitude, but otherwise the devia-

tions to SCS-ADC(2) are large. Similar to ωB97XD the character of the Bu states for

smaller shift distances is seriously dependent on the monomer geometry. While the 1 Bu

state is correctly predicted to be the brighter state using the ωB97XD/cc-pVTZ geometry,

this is not the case for small shift distances with the geometry taken from Settels et al.

However, contrary to ωB97XD the shape of the potential energy surfaces is qualitatively

xixSome of the results concerning the ground state have already been published in reference.346
xxThe active space used in the GUGA CI treatment was enlarged stepwise until a reasonable convergence

was achieved.
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Figure 6.25: OM2[16,16] CISDT results for the longitudinal shift in the PBI dimer. Upper
panel: ωB97XD/cc-pVTZ monomer geometry, lower panel: monomer geom-
etry taken from Settels et al. Ground state surface: ωB97XD/6-31+G(d).
For accurate results, see Fig. 6.10
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wrong, regardless of the monomer geometry (see Fig.6.10 for comparison).

The most striking difference is that the crossing between the 1 Bu and the 1 Ag state

is missing and hence no trapping is predicted. Apart from the fact that the excitation

energies are quite far from the reference (Mean error: 1 Ag 0.75 eV, 1 Bu 0.81 eV, 2 Bu

0.48 eV, 2 Ag 0.43 eV) the shape of the potential energy surfaces is different and lacks

features. The splitting between the states is also incorrect, which is of significant impor-

tance for optoelectronic applications. The importance roots in the fact that the rate for

the excitation energy transfer is proportional to the square of the coupling constant J

according to Fermi’s golden rule.348,349 Very often a supermolecular approach is used to

compute the coupling constant, which is then given as one half of the splitting between the

two lowest excited states that arise from the dimerization (see350 and references therein

for details).

The lacking features of the PES and the fact that the splitting is quite small at smaller

shift distances leads to the assumption that the interaction between the molecules is

underestimated by the semi-empirical method. This can either be attributed to the ne-

glect (or approximation) of terms in the semi-empirical Hamiltonian or to the fact that

a minimal basis set is used, which is inherently not well suited for the description of

intermolecular interactions, or both effects might play a role. It is plausible that due to

the very contracted basis functions the molecules do not “feel” the presence of each other

correctly, since all interaction terms involving orbital overlap will be close to zero.

In order to investigate the reasons behind the failure of OM2 the energetic splitting be-

tween the 1 Ag and the 1 Bu state (i.e. twice the coupling constant J) has been computed

with different methods and for different distances between the monomer planes. If the

too small overlap is the root of the problem, then diminishing the distance between the

monomers should overcome this deficiency, make the features appear and lead to an im-

proved splitting. If on the other hand only the neglect of terms is responsible no significant

change is expected. Another possibility to gain insight is to copute the excited states with

TDDFT and a minimal basis, which should also lead to diminished features if the basis

set size is of significant importance. Furthermore, assuming that the intermolecular over-

lap is the root of the problem implies that for large distances (where the overlap can be

neglected) OM2 should agree with the high-level methods.

The results of the corresponding calculations can be found in Fig. 6.26. First of all it is

evident that for the standard distance between the molecular planes of 3.3 Å the coupling

constant predicted by OM2 indeed significantly lacks features, which are present when us-

ing SCS-ADC(2)/cc-pVDZ or ωB97XD/6-31+G(d). However, the features appear when
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Figure 6.26: The energetic splitting between the 1 Ag and the 1 Bu state (2J) computed
with different methods and for different distances between the molecular
planes (monomer geometry: ωB97XD/cc-pVTZ).

the distance between the monomer planes in the OM2 calculation is diminished. At 2.7 Å

the crossing between the 1 Ag and 1Bu state is also predicted by OM2, which is apparent

form the slightly negative values of the splitting in Figure 6.26. Hence the assumption

that the overlap is involved is corroborated. Comparing the curves at 3.3 Å, it seems that

OM2 only predicts some part of the coupling constant correctly, but lacks a term that is

oscillating along the coordinate.

Using ωB97XD with a minimal STO-3G351 basisxxi the coupling is underestimated at the

eclipsed conformation and the features are significantly reduced. However, less than with

OM2, which shows that the basis set size is not solely responsible for the failure of OM2.

Going to a larger intermolecular separation OM2 gives results, which are very well in

accord with the SCS-ADC(2) results. This is again indicative that a wrong description of

the orbital overlap is involved, since at r = 5 Å the overlap should be negligible.

In order to understand and rationalize these findings one needs to inspect which terms

are responsible for the splitting between the states. Since the two lowest excited states

belong to different irreducible representations the matrix elements are less easily derived

in the delocalized picture using the CI approach than in the localized diabatic picture.

The latter picture also has the advantage of being directly related to the transport in-

tegrals. Assuming the states to be completely neutralxxii the splitting will depend on

xxiThis procedure was not possible with SCS-ADC(2) since no corresponding auxiliary basis, which is
needed for the ricc2 module, is implemented in TURBOMOLE.

xxiiSince these two states have the least CT character along the whole PES this approximation seems
justified.
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the matrix element 〈ΦNE,A| Ĥ − ENE,A |ΦNE,B〉. However, keeping in mind that ΦNE,A

describes a local excitation on the monomer A, while ΦNE,B describes an excitation on

monomer B (see Fig. 6.4) this integral is also the electronic transfer matrix element. Us-

ing again the simple four electron/four orbital model from section 6.2.1 and a few further

approximations the coupling constant can be written as (see350 for details)

J ≈ 2(HALA|HBLB)− (LALB|HBHA) = JF − JD. (6.57)

The first term can be seen as the Coulomb interaction between two transition densities

and represents the so-called Förster transfer, while the second term depends on the orbital

overlap and is connected to the so-called Dexter transfer.350

Scholes, Harcourt and Ghiggino also included the CT determinants and derived the follow-

ing formula for the electronic transfer element TRP between two identical molecules352–354

TRP ≈ 2(HALA|HBLB) + 2βHAHBβLALB/A (6.58)

with A beeing the energy difference between the local NE and CT states (i.e. M+M−

and M∗M) and βHAHB and βLALB are the reduced resonance integrals,

βHAHB = hHAHB − SHAHBhHAHA , (6.59)

βLALB = hLALB − SLALBhLALA . (6.60)

Again the matrix element contains the Förster integral and an orbital overlap dependent

part 2βHAHBβLALB/A.

The reduced resonance integrals β are dependent on the two-center one-electron integrals,

which are not neglected in the MNDO-based methods, but due to the approximations the

evaluation involves the explicit calculation of the overlap matrix elements (see section

3.2.4). Due to the rather contracted basis it is likey that these terms will be highly

underestimated. Because of the anisotropy of the p-functions of the interacting π-MOs

it is not unlikely that these overlap-dependent terms are responsible for the oscillations

along the shift coordinate (see below), while the Förster-type term can be expected to

decrease steadily with increasing shift distances, since it can be approximated as dipole-

diplole interaction.350 Thus the underestimation of the overlap-dependent terms explains

why the OM2 curve lacks features. The fact that the one-electron two-center hamiltonian

elements are computed directly in DFT and not approximated by terms involving the
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Figure 6.27: The distance dependence of the interaction between two point dipoles
((const/R3

AB) plotted for the longitudinal shift for two different distances
between the molecular planes. For comparison the splitting predicted by
OM2 is also given. The constant was chosen so that the interaction energy
reproduces the OM2 value at the eclipsed geometry.

overlap explicitly might also explain, why the basis set size is less problematic for DFT.

While it is logical to assume that the OMx methods will have problems with the overlap-

based terms, there is no inherent reason why the Förster-type integral should be com-

puted with a significant error. Thus in the long-range limit, where the overlap-depending,

Dexter-type terms vanish and only the Förster-type term survives, it can be assumed that

OM2 will give a reasonable description, which is in line with the results presented above.

In Fig. 6.27 the distance dependence of the interaction between two point dipoles (1/R3
AB),

which are shifted against each other is fitted to the splitting predicted by OM2 using a sin-

gle parameter. At 5.0 Å the splitting predicted by OM2 can be almost perfectly modeled

by assuming a dipole-dipole interaction. This is not too surprising at an intermolecular

distance of this size. However at 3.3 Å OM2 shows only some minor features, which are

not present in the dipole-dipole interaction, but apart from that, the agreement is excel-

lent. This is also in line with an underestimation of the overlap-dependent parts.

Hence all the results presented so far can be rationalized by assuming that a too contracted

basis set leads to an underestimation of the intermolecular overlap. This is especially se-

vere, since these overlap terms are explicitly calculated and used to approximate the

two-center one-electron integrals in MNDO-based methods.

In section 4.2.3 it was shown that the repulsion between two closed-shell molecules is

also dependent on two-center one-electron integrals (the reduced resonance integrals) and
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Figure 6.28: Ground state potential energy surface for the longitudinal shift in the PBI
dimer (monomer geometry: ωB97XD/cc-pVTZ) computed with different
methods (upper panel) and different basis sets (lower panel). For the de-
scription of the specialized basis sets see text.

hence also on the orbital overlap. Thus if the orbital overlap is small this should also have

an influence on the repulsion and therefore on the ground state potential energy surface.

Indeed comparing the ground state surface predicted by OM2D and ωB97XD/6-31+G(d)

(see Fig. 6.28, upper panel) it is evident that OM2D underestimates the repulsion at

the eclipsed conformation and lacks features similar to the coupling in the excited state.

Using a minimal basis (STO-3G) also ωB97XD underestimates the repulsion and the

features significantly, albeit less than OM2D. As already seen above, this indicates that

the basis set effect plays an important part, but also that the approximation involved

in the calculation of the matrix elements, especially the use of overlap integrals has an

impact.xxiii On the one hand due to the approximations, the overlap is directly involved

in the corresponding matrix elements and on the other hand the one-electron two-center

xxiiiFor p-type functions it is not very straightforward to compare STO and GTO basis functions, due
to the rather complex normalization process and the fact that the former are usually given in polar
coordinates, while the latter are typically implemented in Cartesian coordinates. Writing both in
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integrals involve parameters, which are typically not fitted to reproduce intermolecular

interactions and hence this failure is not completely surprising.

In order to investigate which basis functions are most important for the accurate shape of

the PES several different basis sets have been constructed (see Fig. 6.28, lower panel) and

used with BLYP-D3 as implemented in TURBOMOLE. As can be seen this pure DFT

functional predicts a similar ground state PES as ωB97XD, when a sufficiently large basis

set is used.

In the STO-3G(p,d) basis set a single Gaussian polarization function was added for H (p)

and C,N,O (d) to the STO-3G function. The exponent was taken from the cc-pVDZ basis.

Obviously the polarization function has only a minor effect. Hence instead an additional

single p-function was added for C,N,O and an s-function for H, and the resulting basis

set was named STO-3G+1p(C,N,O)+1s(H). The coefficients were taken from the uncon-

tracted functions of the cc-pVDZ basis sets. The inclusion of this single basis function

on each atom has a significant effect and produces a qualitatively correct result for the

polar coordinates and just looking at the radial part one obtains50

RSTOζ,l =
(2ζ)3/2√
(2l + 2)!

(2ζr)l exp(−ζr) (6.61)

RSTO−3Gα,c,l = N

3∑
i=1

ci
2α

(3/4)
i

π1/4

√
2l

(2l + 1)!!
(
√

2αir)
l exp(−αir2). (6.62)

The normalization constant can most simply be obtained by numerically integrating∫ ∞
0

(RSTO−3Gα,c,l )2r2dr (6.63)

using gnu octave.355 Taking the values for a 2p-basis functions on carbon used in the STO-3G351

basis and the Slater-type functions of OM2 (1.420)127 the following graph was obtained.

From the Figure it is evident that the basis used in OM2 is similar to the STO-3G basis set. The
probability density is even a bit higher in the long range region.
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ground-state PES. A further improvement is obtained if all the s-functions are taken from

the STO-3G basis, while all p-functions for C,N and O are taken from the cc-pVDZ basis

sets (STO-3G(s)+cc-pVDZ(p)).

Hence adding an additional p-type function to the minimal basis improves the descrip-

tion significantly and it can hence be assumed that adding an additional function to the

semi-empirical methods with subsequent reparameterization might also lead to improved

results. However, this procedure is very time-demanding and therefore it is questionable

if the benefit makes it worthwhile.

Of course one could also argue that the monomer charge distribution, the core-core re-

pulsion, or the dispersive part are incorrectly described by the semi-empirical methods,

which leads to the observed lack of features in the ground-state PES. However, Veronika

Kramer computed Mulliken charges of the monomers and calculated the PES with differ-

ent dispersion corrections and methods with different core-core repulsions and found that

neither of these is responsible for the problems with the ground state.347 The underesti-

mation of the overlap is the only assumption that is in line with all observed results. In

the next section it will consequently be shown that the shape of the ground state PES

can be modeled by using an overlap-based repulsion.

The results presented in this section show that the semi-empirical methods investigated

here are inapt for the description of the excited states and even the ground state potential

energy surface of perylene-based dimers, at least as long as their intermolecular distance

is in a range, where the orbital overlap still plays a role. Since this is to a significant

extent due to the small basis it can be assumed that the other semi-empirical methods

will have the same problem. Veronika Krämer investigated the performance of several

other methods and indeed found a similar failure.347

6.3 Designing a Force Field for Perylene-Based Dyes:

OPLS-AAO

For the modeling of excitonic states in organic semiconductors consisting of small prganic

molecules, QM/MM methods are a promising approach. A small part of the system can

be calculated with a high-level method (e.g. ab inito or DFT methods), while the en-

vironment is treated on the MM level. Since the systems under consideration consist of
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separate molecules, the boundary can be easily defined without cutting through covalent

bonds, thus making no link-atom scheme necessary, which simplifies the approach.

While the results presented above indicate that a dimer should be a sensible starting point

for the QM system and show furthermore that an appropriate TDDFT approach can be

found, the MM-system still has to be defined. Since the molecular morphology of the films

in organic solar cells is difficult to predict theoretically and to determine experimentally,

a common assumption is that the system has a microcrystalline structure, where each

domain can be modeled by the crystal structure. Whether this assumption is justified

or not, the ideal crystal structure is a sensible starting point, anyway. In a second step,

disorder can easily be generated, for instance by using a molecular-dynamics approach.

However, a force field is needed that describes the intermolecular interaction accurately.

Especially for the intermolecular motions involved in the trapping mechanism the inter-

action of the π-densities is crucial. In this section, it is shown that standard force fields

do not perform well in this respect and an ansatz for an anisotropic repulsion energy is

presented that gives significantly improved results.

6.3.1 The Failure of Standard Force Fields

In order to be able to easily adjust the different terms in the force field, the non-bonded

interaction between two monomersi was implemented using an octave script.355 The non-

bonded interaction terms of OPLS-AA213,214 consist of the Coulomb interaction between

point charges and the Lennard-Jones potential, which are both easy to implement and to

parameterize. Therefore, this energy expression is a convenient choice. Moreover, param-

eters for substituted organic aromatic systems are already defined.214 Since it is designed

to model the behavior of organic liquids and was shown to yield good results,356,357 OPLS-

AA can be assumed to describe the intermolecular interactions reasonably well, despite

the simple functional form.

Therefore the energy expression

Eab =
i∈a∑
i

j∈b∑
j

[
qiqje

2

rij
+ 4εij

(
σ12
ij

r12
ij

−
σ6
ij

r6
ij

)]
, (6.64)

iSince only the intermolecular interactions are of interest, implementing just the terms describing the
non-bonded interactions suffices.
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was implemented, with qi being the atomic charges and σij and εij being the parameters

of the Lennard-Jones potential.ii Using the parameters defined for OPLS-AA, the inter-

action energy can easily be calculated along the longitudinal shift (see Figure 6.29). For

comparison the shift was also calculated with AMOEBA using TINKER358 by Maxim

Tafipolsky. OPLS-AA predicts the minimum to be located at a too large shift distance

and lacks features similar to OM2-D. Furthermore, the repulsion at the eclipsed geometry

seems to be significantly underestimated. AMOEBA predicts the position of the mini-

mum roughly correctly, but similar to OPLS-AA, the underestimated repulsion and the

lack of features is irrefutable.

In order to understand the failure of OPLS-AA, one can analyze the different contribu-

tions,

Eab = Eq + Erep + Edisp =
i∈a∑
i

j∈b∑
j

qiqje
2

rij
+

i∈a∑
i

j∈b∑
j

4εij
σ12
ij

r12
ij

− 4εij

i∈a∑
i

j∈b∑
j

σ6
ij

r6
ij

, (6.65)

along the PES, which are depicted in Figure 6.30.iii Eq is the electrostatic interaction,

which is modeled as the Coulomb interaction of atomic point charges, Ed is the dispersive

and Erep the repulsive part of the van der Waals energy Evdw. Thus, Erep can be be

iiTechnical details of the implementation: The standard combination rules were applied, e.g. σij =√
σiiσjj . In order to be able to easily check the choice of the atom type, a subroutine was written

that plots the atoms and their positions along with the atom type and saves it as a PNG file. For
convenient in- and output, own file types were defined and corresponding subroutines were written.
The coordinates plus the atom type are defined in a .ct file, while the parameters (atomic charges and
Lennard-Jones parameters) are stored in a .prm file. Functions handling the output of the potential
energy surfaces and .xyz files were also written. The main script performing the OPLS-AA calculation
reads in the coordinates of the monomer and generates a dimer with the desired displacement of the
monomers. It then calls subroutines for the different energy contributions or the complete OPLS-AA
energy, respectively. The loop over different shift distances (e.g. the longitudinal displacement) was
also directly implemented into the script. Since the main function expects the input structure to lie
in the xy-plane, a preconditioning function was designed that beforehand aligns the monomer. The
latter is defined by two vectors (see Figure).

At first, the function aligns the vector defined by the two nitrogen atoms along the x-axis, with the
origin being exactly in the middle between the two atoms. Then, a second orthogonal vector is
defined by searching the four atoms closest to the origin, choosing two of them and adding their
position vectors. The resulting vector is projected onto the zy-plane and rotated to the x-axis.

iiiIn this Figure, as well as in the following graphs, the range for the shift was enlarged to 8 Å.
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Figure 6.29: Ground-state potential energy surface of the longitudinal shift in the PBI
dimer computed with OPLS-AA,AMOEBA as well as ωB97XD/cc-pVTZ

Figure 6.30: Different energy contributions along the longitudinal shift. With Eq being
the Coulomb, Ed the dispersive and Erep the repulsive part of the van der
Waals energy Evdw. The minimal value of all energy contributions has been
set to zero. It should be noted that the shift distance was enlarged to 8 Å.
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identified with the closed-shell repulsion, which is also sometimes called Pauli-repulsion.238

As can be expected for systems with a moderate polarity, the van der Waals energy is

already a reasonable approximation for the total energy. Both curves show roughly the

same behavior. The Coulomb energy mainly leads to an increase close to the eclipsed

conformation, since the charge repulsion is maximal here. Along the shift the Coulomb

interaction deceases, but rises again for distances above 7 Å, since the two polar bisimide

groups become spatially close again. It seems rather unlikely that the missing features are

caused by an error in the coulomb interaction, especially since AMOEBA with its more

involved handling of the electrostatic interaction also lacks features. However, at least the

underestimation of the repulsion close to the eclipsed conformation could be corrected by

increasing the charge repulsion. Therefore, the quality of the corresponding parameters

(i.e. the atomic charges) has to be checked.

Among the two components of the van der Waals energy, the repulsion is much more

likely to be responsible for the lacking features of the potential energy curve than the

dispersion. The dispersion energy curve is rather continuously increasing as one might

expect and since an almost identical approach is used in the DFT-D methodology, where

the problem does not arise,iv it can be assumed that the dispersive part is not responsible

for the failure of the force field.v Furthermore, the repulsive part of the van der Waals

interaction can also be used to correct the underestimation of the repulsion. Therefore,

the repulsive interaction also needs to be inspected carefully.

The Electrostatic Interaction

In order to investigate the quality of the OPLS-AA charge parameters, atomic charges

have been calculated with different schemes (Mulliken, NBO, Hirshfeld and ESP) using

BLYP, B3LYP and different basis sets as implemented in Gaussian09. Instead of compar-

ing the charges itself, the Coulomb energy along the shift computed with different charges

was compared.

The energy computed with Mulliken charges was not surprisingly found to be extremely

basis set dependent. The STO-3G, cc-pVDZ and cc-pVTZ basis sets yield completely dif-

ferent results and hence a judgment of the quality of the OPLS-AA charges is not possible

ivThe accuracy of the DFT-D approach for the ground state can be confirmed by comparing the potential
energy surfaces to the results of calculation with SCS-MP2, see326

vPlotting the dispersion correction from a BLYP-D3/cc-pVTZ computation performed with TURBO-
MOLE for the longitudinal shift reveals that it has a smaller slope than the dispersion energy of
OPLS-AA, but the same shape. Plotting the two dispersion energies against each other and perform-
ing a linear regression analysis gives a correlation coefficient of R2 = 0.99.
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Figure 6.31: Coulomb energy along the longitudinal displacement calculated with different
sets of atomic charges. TZ ≡ cc-pVTZ, MK ≡ Merz-Kollman scheme

with this approach. Since this was expected, the Mulliken charges were only computed for

the sake of completeness. Using NBO, Hirshfeld or ESPvi charges, there is a significant

change when going form STO-3G to cc-pVZD, but the difference between cc-pVDZ and

cc-pVTZ is rather small. Some exemplary results are presented in Fig. 6.31. The results

obtained with Hirshfeld as well as with ESP agree well with the ones obtained using the

OPLS-AA charges. The implementation of the ESP scheme in Gaussian allows to enter

alternative radii and hence it was checked if changing the radii of all elements to the

distance between the monomers (r = 3.3 Å) gives a significant improvement. However,

although the curve shows slightly more features, the effect of the radius seems (at least

in this range) to be of minor importance. With the NBO charges the magnitude of the

Coulomb interaction is higher than with the other charges. The NBO results also show

that the choice functional, which is used for the calculation, is not crucial.

Since ESP charges actually reproduce the electrostatic potential, which is the important

physical quantity for the charge-charge interaction between the monomers, they can be

assumed to provide the best results. Following this assumption the OPLS-AA charges are

also quite accurate. Nevertheless, it was tested whether using a different charge scheme

gives improved results. In Fig. 6.32 the total energy along the shift is plotted using

OPLS-AA, NBO and ESP charges and compared to the DFT results. Using the ESP

charges with the altered radii changes the total energy only negligibly compared to the

viFor the calculation of the ESP charges the Merz-Kollman scheme was used, but it was checked that
the charge fitting method of Hu, Lu, and Yang359 does not yield significantly different results.
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Figure 6.32: Total energy along the longitudinal displacement calculated with different
atomic charges. TZ ≡ cc-pVTZ, MK ≡ Merz-Kollman scheme

standard OPLS-AA charges. As can be expected, the NBO charges lead to a stronger

repulsion at the eclipsed conformation, but otherwise do not improve the shape of the

curve. Moreover, the global minimum (along this coordinate) is now predicted to be

around 6 Å, which is definitely incorrect.

Thus, one can conclude that the OPLS-AA charges seem to be well-suited and that the

electrostatic interaction is not the main reason for the failure of the force field. This is

corroborated by the fact that even AMOEBA, which relies on multipoles and includes

polarization, gives incorrect results.vii

The Closed-Shell Repulsion

In section 4.2.3, it was shown that the repulsion between two closed-shell molecules is con-

nected to the molecular overlap or overlap between the densities, respectively. In section

6.2.3, it was derived that the underestimation of overlap-dependent terms is responsible

for the missing features in the ground-state curve predicted by the semi-empirical meth-

ods. In the case of the longitudinal motion of two PBI monomers against each other,

the closed-shell repulsion arises due to the interaction of two π-densities (see Fig. 6.33).

In the spirit of molecular mechanics, this repulsive interaction can be decomposed into

contributions from atom pairs. The interaction between the atomic centers, however, can

viiAlthough the PES computed with AMOEBA shows a lack of features and underestimates the repulsion
close to the eclipsed geometry, it provides a better description in the region from 1Å to 3.5 Å, which
indicates that the higher-order multipoles and/or the polarization are nevertheless also important.

215



6 Perylene-based dyes

Figure 6.33: Schematic representation of the interaction of the two π-densities at different
points of the PES.

be expected to be inherently anisotropic due to the shape of the p-orbitals. However,

since the repulsion is modeled via an 1
rij

12
-term in the Lennard-Jones potential in OPLS-

AA, which assumes a completely isotropic interaction between each pair of atoms, it is

not surprising that the description is erroneous. Hence, an anisotropic modeling of the

repulsion would be needed for an accurate description. However, whether this assumption

is grounded has to be verified.

The energy of a DFT-D calculation is naturally partitioned into the part of the electronic

structure calculation and the empirical dispersion correction. The latter is basically the

same as in molecular mechanics. Thus, in the spirit of the partitioning of a force field,

the pure DFT contains the electrostatic plus the closed-shell repulsion. Comparing the

sum of the electrostatic energy and the repulsion energy of the force field with the pure

DFT energy should be instructive. This approach definitively rules out any contributions

from the dispersive part. Since the electrostatic interaction was already cleared from the

suspicion of being responsible for the failure, any significant differences can be attributed

to an error in the closed-shell repulsion.viii

In order to check if the problem really lies in the functional form of the repulsion term

(e.g. the isotropy) and not just in a simple underestimation, a fit can be performed,

where the repulsion energy is fitted linearly to the difference of the DFT energy and the

electrostatic interaction,

EDiff = EDFT − Eq (6.66)

EDiff ≈ p1Erep + p2. (6.67)

viiiObviously, small differences will occur due to the fact that modeling the electrostatic interaction via
point charges is an approximation.
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Figure 6.34: Comparison of the pure DFT energy along the shift with the sum of electro-
static and repulsion energy with and without fit.

p1 and p2 are the fit parameters. With this fit the repulsion is simply scaled.ix The results

of a BLYP/cc-pVTZ calculation performed with Gaussian09 are depicted in Figure 6.34.x

It is evident that the sum of electrostatic and repulsion energy is indeed approximately

comparable to the DFT energy, but lacks features. As can be expected, the fit shifts the

curve, so that it is closer to the DFT energy, however, the features are obviously still

missing and hence the curve looks similar to a moving average of the DFT curve.

This again indicates that the way the repulsion is modeled is physically incorrect. Of

course, it is possible that with a different set of parameters, a better agreement could

be obtained. However, several test calculations were performed, which did not yield any

significant improvement. Thus the assumption that the functional form of the repulsive

term is incorrect is quite likely. However, the hypothesis that an anisotropic repulsion

(albeit physically more grounded) leads to a better performance has to be tested and

critically challenged.

6.3.2 An Anisotropic Repulsion

An anisotropic repulsion can of course be generated in several different ways of varying

complexity. In order to test the assumption at first, a simple proof of principle approach

ixThe DFT energy values were shifted so that the minimal value of the PES is zero prior to the fit. The
fit was performed using the fit function implemented in gnu octave.

xIn the Figures presented in this and the following sections, the minimum of each PES has been set to
zero, unless stated otherwise.
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Figure 6.35: Effect of the anisotropy parameter: the interaction sphere becomes an
ellipsoid

can be used. The Lennard-Jones repulsion is isotropic since all atoms j around a certain

atom i, which are on the surface of a sphere with the radius rij, give the same energy

contribution. There is thus no angular dependence. In order to distort the “interaction

sphere” into an ellipsoidal shape and hence to introduce an angular dependence, one can

simply introduce a parameter λ,

rij =
√

(xi − xj)2 + (yi − yj)2 + λ(zi − zj)2, (6.68)

which results in a simple anisotropic repulsion model. The effect of the anisotropy pa-

rameter is schematically depicted in Figure 6.35. Here, the z-component is scaled by the

parameter in order to mimic the anisotropy of the pz-functions.

In order to evaluate the performance of the ansatz, the same approach as above was used,

i.e. a linear fit of the repulsion energy to the difference between the DFT and the elec-

trostatic energy for all points of the PES. The value of λ was varied in a loop in steps

of 0.05 until the RMSD between the DFT and the force field potential energy curve was

minimal. Of course, by introducing an anisotropic repulsion, one should reconsider the

choice of parameters ({σ},{ε}) because the OPLS-AA parameters were optimized for an

isotropic repulsion. Since finding the correct parameter set involves an optimization with

several degrees of freedom, which is at this proof of principle stage not worth the effort,

the parameters used for the repulsion were simply set to ε = 1 and σ = 3 for all atoms.

Thus, one can differentiate the effects due to the anisotropy and due to the different pa-

rameters.
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Figure 6.36: Comparison of the pure DFT energy with the sum of electrostatic and re-
pulsion energy using an isotropic (Erep) as well as an anisotropic repulsion
(Erep,λ). For Erep(fit,p) and Erep,λ(fit,p) the “p” indicates that different pa-
rameters were used (ε = 1 and σ = 3 for all atoms)

The complete equation for the interaction energy can then be be written as

Eab = Eq + Erep(λ) + Edisp

= Eq + p1Ẽrep(λ) + p2 + Edisp

=
i∈a∑
i

j∈b∑
j

qiqje
2

rij
+ p1

i∈a∑
i

j∈b∑
j

4ε̃ij
σ̃12
ij

r12
ij,λ

+ p2 − 4εij

i∈a∑
i

j∈b∑
j

σ6
ij

r6
ij

(6.69)

At first, only the sum Eq +Erep(λ) is compared to the DFT energy, as in the last section.

The results are depicted in Fig. 6.36. For comparison, also the fitted curve with the

isotropic repulsion from Fig. 6.34 is given. With the standard values for ε and σ the

optimal value for the anisotropy parameter is λ = 0.65 (Erep,λ(fit)). Introducing the

anisotropy reduces the RMSD of the force field compared to the DFT curve from 1.43

kcal/mol to 0.96 kcal/mol. One can also see that some of the features appear. There are

only some minor deviations in the range from 1 to 3 Å. This can be resolved by changing

the parameters to ε = 1 and σ = 3 for all atoms (Erep,λ(fit, p)). The optimal value of the

anisotropy is λ = 0.55, the RMSD is 0.42 kcal/mol and the agreement is now excellent. In

order to understand the effect of the changed parameters, the isotropic repulsion is also

plotted using ε = 1 and σ = 3 (Erep(fit, p)). As one can see, the curve is flatter in the

range from 1 to 3 Å, which diminishes the deviation. It seems that the anisotropy covers

219



6 Perylene-based dyes

Figure 6.37: Erep+Eq with anisotropic repulsion without a (repulsion) contribution from
the hydrogen atoms.

all main effects of the repulsion energy and does not need very different parameters for

the different atoms.

The results demonstrate nicely that introducing the anisotropy clearly leads to an im-

proved description. The features in the PES appear naturally by switching on the

anisotropy. Hence it can be assumed that in order to obtain a physically grounded de-

scription of the intermolecular interactions, an anisotropic repulsion is needed, at least

for intermolecular distances where the overlap is non-negligible.

However, at the current point, the implementation has one unphysical aspect. For the

computation of the interaction energy a subroutine distancematrix is called, which calcu-

lates the distance between two atoms on different monomers with the coordinate vectors

~v1 and ~v2. Since the anisotropy parameter is introduced in this subroutine, all intermolec-

ular interactions are made anisotropic, even those between hydrogen atoms. Especially

if the parameters ε = 1 and σ = 3 are used for all atoms, the hydrogen atoms have a

significant effect, which makes not much sense, if one assumes that the repulsion stems

from the interaction of the π-densities.

In order to eliminate the repulsion contributions of the hydrogen atoms one can simply

choose ε = 0 for all hydrogen atoms. The results are depicted in Figure 6.37. Using

standard parameters for ε and σ the PES is quite similar to the one with hydrogen con-

tributions (RMSD = 0.97 kcal/mol). If the modified parameters (ε = 1 and σ = 3) are

used the curve is slightly worse (RMSD=0.58 kcal/mol) than the one with H contribution.
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Figure 6.38: Erep+Eq+Ed with anisotropic repulsion with (Erep,λ=0.55(fit),
Erep,λ=0.65(fit, p)) and without (Erep,λ=0.65(fit, p,H)) a contribution
from the hydrogen atoms. The letter “p” indicates that different parameters
were used in the computation of the repulsion (ε = 1 and σ = 3 for all
atoms).

Hence one plausible assumption is that the anisotropic repulsion on the hydrogen atoms

compensates the neglect of other effects, e.g. higher electrostatic moments. Since the

repulsion contribution from the hydrogen atoms leads to better results, the pragmatic

approach is chosen and it is kept in the implementation unless noted otherwise.

In order to complete the approach and to obtain the total energy, the dispersion in-

teraction has to be added. The repulsion energy can then be fitted to the difference

EDFTD−Eq−Ed. For the calculation of the dispersion contribution, the standard OPLS-

AA parameters were used.xi ωB97XD/cc-pVTZ was chosen as reference method. The

results are depicted in Fig. 6.38 Using the anisotropic repulsion with standard parame-

ters for the repulsion leads to a shifted minimum, but otherwise gives a quite satisfactory

result (RMSD = 1.0 kcal/mol). Using the altered parameters (ε = 1 and σ = 3) gives

an accurate description (RMSD = 0.58 kcal/mol). Neglecting the hydrogen atoms in the

repulsion treatment again slightly worsens the results (RMSD = 0.71 kcal/mol).xii

xiThat means that even if the parameters are altered in the repulsion term, the standard ones are still
used in the dispersion term (see eq. 6.69).

xiiOf course, it is also possible to use the standard isotropic Lennard-Jones repulsion for the interaction
between the hydrogen atoms (i.e. λ = 0), which seems physically more grounded. However, then
the question remains how to treat the interaction between the hydrogen atoms and the second-row
elements. Test calculations revealed that keeping the anisotropy for the latter interactions, but using
the isotropic repulsion for the interactions between the hydrogens also gives quite accurate results.
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Figure 6.39: Using an s-type primitive Gaussian overlap in two dimensions as a basis for
an anisotropic repulsion.

To summarize the results obtained in this section so far, one can clearly state that intro-

ducing the anisotropy in the repulsion significantly improves the description. Even the

proof-of-principle model with a simple anisotropy parameter can accurately reproduce the

DFT curve.

Using a simple anisotropy parameter is a very simple ansatz. A more subtle approach

is to use an overlap-based model. Obviously p-type functions seem to be most suitable

for the problem and a corresponding ansatz is giving in the next section. Since the

implementation of the overlap integrals of p-type functions is much more demanding than

for s-type functions, at first a test implementation using s-type primitive Gaussians is

presented to see if an overlap approach gives an improved result. Using the formula for

the integral derived in reference49 the ansatz for the repulsion can be written as,xiii

Erep ∝
∑
i,j

〈si|sj〉 =
∑
i,j

N
π

βi + βj

3/2

e
−

βiβj
βi+βj

r2ij . (6.70)

Since Gaussian functions are spherically symmetric, the question arises how this ansatz
can be used to introduce anisotropy. This can be achieved by projecting the problem into
two dimensions, see Fig. 6.39. If only the x- and y-coordinate are used in the subroutine
that calculates the distance matrix, the overlap is calculated in two dimensions. At 0
Å, all corresponding pairs of Gaussians are hence on top of each other and the overlap
is maximal.xiv For small displacements, the overlap between these corresponding pairs
decreases similar to the overlap between the two two-dimensional Gaussians, which are
sketched on the right-hand side of Fig. 6.39. This has the consequence that the interaction
between any atom pair is significantly stronger if they are on top each other than if they

However, since the ansatz with a simple anisotropy parameter is only meant to serve as a proof of
principle, this approach was not further pursued.

xiiiThe justification for such an ansatz is given in the next section, here it is justed tested as a proof of
principle.

xivSince there are 40 pairs of corresponding Gaussians, whose overlap integrals are all one, the total
overlap is 40 plus the contribution from all other pairs.

222



6 Perylene-based dyes

are displaced, more than this would be the case for an isotropic repulsion. Hence this
ansatz also introduces anisotropy.
The implementation of the subroutine in octave is simply given as:xv

f unc t i on [ S]= S Overlap (n , coord , Beta , d)

#n : number o f atoms in one monomer ( read from xyz )

#coord : matrix o f the coo rd ina t e s o f the dimer

#Beta : exponent o f the Gaussians

S=0;

f o r i =1:n

f o r j =1:n

v1=coord ( i , 1 : 3 ) ;

v2=coord ( j+n , 1 : 3 ) ;

r i j=d i s tancematr ix xy ( v1 , v2 ) / 0 . 5 2 9 ;

#norma l i s a t i on

N=(4∗Beta ( i )∗Beta ( j )/ p i ( ) ˆ 2 ) ˆ ( 3 / 4 ) ;

Int ( i , j )=( p i ( ) / ( Beta ( i )+Beta ( j ) ) ) ˆ ( 3 / 2 )

∗eˆ(−Beta ( i )∗Beta ( j )/ ( Beta ( i )+Beta ( j ) )∗ ( r i j ) ˆ 2 ) ;

#sum up and mult ip ly with con t ra c t i on c o e f f i c e n t s :

S=S+d( i )∗d( j )∗ Int ( i , j )∗N;

endfor ;

endfor ;

end ;

For this ansatz the contraction coefficients can be used to switch off the contribution of

certain atoms. The subroutine distancematrix xy computes the distance in the xy-plane

(i.e. by neglecting the z-coordinate).

The repulsion energy is again fitted to the difference with the DFT energyy. The total

xvThe implementation follows the description in reference49 and the subroutine was already used in the
well-tested “Hercules program”, a code developed in collaboration with Johannes Becker for teach-
ing purposes. Hercules computes the energy and several important matrix elements and properties
using HF, VBSCF, MP2 and CISD for the H2 molecule with a minimal STO-3G basis for different
intermolecular distances.
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Figure 6.40: Erep+Eq+Ed using an anisotropic repulsion based on the overlap of s-type
Gaussian functions in two dimensions, with (Erep,β=0.5(fit)) and without
(Erep,β=0.45(fit,H)) a contribution from the hydrogen atoms.

energy can then be written as

Eab = Eq + p1Ẽrep(β) + p2 + Edisp

=
i∈a∑
i

j∈b∑
j

qiqje
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ij
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, (6.71)

with

Sij(β) = 〈si(β)|sj(β)〉. (6.72)

The results are depicted in Fig. 6.40. Similar to the anisotropy parameter λ, β is also

varied until the RMSD is minimal. The obtained results are comparable to the ones

with the anisotropy parameter. With the s-overlap, an RMSD value of 0.49 kcal/mol is

obtained. Excluding the contribution from the hydrogen atoms decreases the accuracy

to RMSD = 0.69 kcal/mol. As already stated above, the inclusion of the anisotropy on

the hydrogen atoms might compensate the lack of higher multipole moments. Another

possibility is that it partly compensates that all atoms have the same parameter β. Since

the ground-state surfaces of different perylene-based dyes are quite similar, it can be

assumed that the perylene core is very important and hence that its contribution might

be higher than the one of the bisimide. This is furthermore corroborated by the fact that

the HOMO is also mainly localized on the perylene unit. Therefore, introducing different
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parameters for different atom types might lead to a further improvement.

The results presented in this section demonstrate that using an overlap-based ansatz of

the repulsion energy can give correct results. Even the simple overlap of s-type Gaussian

functions in two dimensions leads to a significant improvement of the PES and introduces

the features missing in standard force-field calculations. Hence a more formal derivation

and justification of this overlap-based approach is given in the next section and the ansatz

is extended to p-type functions, which should provide a more realistic model for the π-

densities.

6.3.3 A Density-Based Overlap Approach Using Primitive Gaussian

p-type Functions

In section 4.2.3 different approaches to calculate the intermolecular repulsion using overlap-

dependent terms were discussed. On the one hand there are orbital-overlap approaches,

where the overlap integrals of the MOs on the different monomers are used. On the other

hand, there are methods based on the density overlap. If all MOs and their overlap in-

tegrals have to be calculated, much of the cost-effectiveness of force fields is lost. Using

the density overlap fewer integrals have to be evaluated, but a converged SCF calculation

is still needed. Hence, the approach used in this work is to use a simple approximation

for the density overlap integral, which can be parameterized in the spirit of a force field,

similar to Söderhjelm et al.215

Since the π-density can eventually be broken down to contributions of p-type Gaussian

functions in any standard quantum-chemical calculation,xvi the most straightforward ap-

proach is to write the monomer density directly as a linear combination of atom-centered

p-type Gaussian functions ρA =
∑A

i pi.
xvii The density overlap can then be decomposed

into a sum of overlap integrals over primitive Gaussians,

Sρ =

∫
ρA(r)ρB(r)d3r =

∫ ( A∑
i

pi(r)

)(
B∑
j

pj(r)

)
d(r) =

A∑
i

B∑
j

〈pi|pj〉. (6.73)

Due to the shape of the p-type functions this ansatz introduces an anisotropy to the atom-

atom interaction. The implementation follows two scripts of Valeev and coworkers,360,361

xviPolarization functions are neglected, since a simple and efficient approach is needed.
xviiAs already mentioned, this is similar to the ansatz followed by Söderhjelm et al.,215 who expanded the

density using Slater functions and approximated the resulting integrals with an exponential function
(see section 4.2.3).

225



6 Perylene-based dyes

which cover the computation of the overlap integrals of primitive Cartesian Gaussian

functions with an arbitrary orbital angular momentum. A basis function is given as

φ = xlymzne−αr
2

. (6.74)

The normalization constant is given by

N =

[(
2

π

)3/4
2(l+m+n)α(2l+2m+2n+3)/4√

(2l − 1)!!(2m− 1)!!(2n− 1)!!

]
. (6.75)

If one p-function is localized on atom A and the other on atom B, then the overlap integral

is given as∫
φ1(α1,A, l1,m1, n1)φ2(α2,B, l2,m2, n2)dr = N1N2e

−α1α2(AB)2/γIxIyIz, (6.76)

with γ = α1 + α2. The Gaussian function in equation 6.76 covers the radial dependence,

while the angular dependence is covered by the contribution for the different spatial

coordinates, which are given by

Ix =

(l1+l2)/2∑
i=0

f2i(l1, l2,PAx,PBx)
(2i− 1)!!

(2γ)i

(
π

γ

)1/2

, (6.77)

with

P =
α1A + α2B

γ
(6.78)

and

fk(l1, l2,PAx,PBx) =

min(l1,k)∑
i=max(0,k−l2)

(PA)l1−ix

(
l1
i

)
(PB)l2−k+i

x

(
l2

k − i

)
. (6.79)

The implementation is given as follows:

f unc t i on [ S]=P Overlap ( no , coord , a lpha )

#no : number o f data po in t s ( read from xyz )

#coord : matrix o f the coo rd ina t e s

# alpha : exponent o f the Gaussians

#Debug value :
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#two c e n t r e s coord =[0 0 0 ; 0 0 0 . 7 4 ] , alpha =1.1 , <pz | pz>=−0.392647

S=0;

S12=0;

bohr =0.529177;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#angular moments

l (1)=0;

l (2)=0;

m(1)=0;

m(2)=0;

n (1)=1;

n (2)=1; #−−> n=0,1 s , pz o r b i t a l

alpha (1)= alpha ;

alpha (2)= alpha ;

gamma=alpha (1)+ alpha ( 2 ) ;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Bui ld ing Normal izat ion cons tant s

f o r p=1:2

N(p)=(2/ p i ( ) ) ˆ ( 3 . 0 / 4 . 0 ) ∗ 2 ˆ ( l (p)+m(p)+n(p ) )

∗ alpha (p )ˆ ( (2∗ l (p)+2∗m(p)+2∗n(p)+3)/4)/ s q r t ( sequence (2∗ l (p)−1)

∗ sequence (2∗m(p)−1)∗ sequence (2∗n(p)−1)) ;

end

f o r i =1:no

f o r j =1:no

A=coord ( i , 1 : 3 ) / bohr ;

B=coord ( j+no , 1 : 3 ) / bohr ;

RAB=norm(A−B) ;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#D e f i n i t i o n o f a u x i l i a r y q u a n t i t i e s

P=(alpha (1)∗A+alpha (2)∗B)/gamma;

PA=P−A;

PB=P−B;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Bui ld ing o f the x , y , z−i n t e g r a l s
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Ix =0;

f o r p=0:( l (1)+ l (2 ) )/2

Ix=Ix+func (2∗p , l , (PA( 1 ) ) , (PB( 1 ) ) )∗ sequence (2∗p−1)/(2∗gamma)ˆp

∗( p i /gamma) ˆ 0 . 5 ;

endfor ;

Iy =0;

f o r p=0:(m(1)+m(2) )/2

Iy=Iy+func (2∗p ,m, (PA( 2 ) ) , (PB( 2 ) ) )∗ sequence (2∗p−1)/(2∗gamma)ˆp

∗( p i /gamma) ˆ 0 . 5 ;

endfor ;

I z =0;

f o r p=0:(n(1)+n (2 ) )/2

I z=Iz+func (2∗p , n , (PA( 3 ) ) , (PB( 3 ) ) )∗ sequence (2∗p−1)/(2∗gamma)ˆp

∗( p i /gamma) ˆ 0 . 5 ;

endfor

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Calcu l a t i on o f the ac tua l over lap i n t e g r a l

S12=N(1)∗N(2)∗ exp(−alpha (1)∗ alpha (2)∗RABˆ2/gamma)∗ Ix ∗ Iy ∗ I z ;

S=S+S12 ;

endfor ;

endfor ;

end ;

The two subroutines that compute the sequences are given by

#==================================================#

# Function that computes the sequence #

# f k=sum {max(0 , k−l 2 )}ˆ{min( l1 , k )}PA {x}ˆ{ l 1−i}#
# \binom{ l 1 }{ i }PB {X}ˆ{ l 2−k+i }\binom{ l 2 }{k−i } #

#==================================================#

func t i on f=func (k , ang ,PA,PB)

s t a r t=max(0 , k−ang ( 2 ) ) ;

l i m i t=min ( ang ( 1 ) , k ) ;
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f =0;

f o r i=s t a r t : l i m i t

f=f+PAˆ( ang(1)− i )∗ nchoosek ( ang ( 1 ) , i )∗PBˆ( ang(2)−k+i )

∗nchoosek ( ang ( 2 ) , k−i ) ;

endfor ;

end ;

#==================================================#

# Function that computes the sequence #

# (2 l −1 ) ! !=1∗3∗5 . . . ( 2 l −1) #

#==================================================#

func t i on product=sequence ( x )

product =1;

n=1;

whi l e n <= x

product=product∗n ;

n=n+2;

endwhi le ;

end ;

The implementation was first tested for s-functions against the s-overlap subroutine. Fur-

thermore, as a debug-value, the overlap between two p-functions separated by a distance

of 0.74 Å with an exponent of α = 1.1 was calculated with Gaussian09.

Obviously, script languages like octave do not yield very fast programs, since they are not

compiled. The function was hence subsequently optimized for efficiency (P overlap fast),

for instance by precomputing the results of the subroutine sequence before the double loop

over the atoms and by restricting the generality to p-functions. Nevertheless, computing

the overlap of a PBI dimer takes around 3.1 s on a 3 GHz processor. Computing the whole

PES (33 data points) takes around 105 s. For the purpose of this work, this performance

is sufficient, however, for a broader application an implementation using a language like

C++ or Fortran should be used.
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Figure 6.41: Erep+Eq+Ed using an anisotropic repulsion based on the overlap of p-type
Gaussian functions, with (Erep,β=0.51(fit)) and without (Erep,β=0.46(fit,H))
a contribution from the hydrogen atoms.

Fitting the repulsion energy again to the DFT PES gives the results presented in Fig.

6.41. β is taken as a parameter, similar to the approaches presented above and was first

screened in steps of 0.05 and then in a second sweep in steps 0.01. The optimal value

for β was found to be 0.51, which gives an RSMD of 0.46 kcal/mol. Deleting the basis

functions on the hydrogen atoms leads to a worse result (RMSD=0.67 kcal/mol). The

results are astonishingly similar to the s-overlap approach. This can be explained by the

fact that the distance dependence of the 〈s|s〉 overlap integral in two dimensions and the

〈p|p〉 overlap integral both have a Gaussian distance term and hence basically the same

distance dependence for the longitudinal shift. The significant difference in the prefactor

is covered by the fit. Thus one might argue that the s-overlap, with its much easier im-

plementation is the better choice. However, although it is not clear whether it is possible

to find parameters of a certain generality using the p-overlap approach, it is very likely

that very different parameters are needed for different intermolecular distances with the

s-overlap approach. Hence the p-overlap approach seems to be more promising.

Although the agreement between the DFT and the fitted force-field curve is excellent, the

significant contribution of the H-atoms is not completely satisfactory. The density overlap

contains the complete density and hence also contributions from the σ-system and there-

fore also from the hydrogen atoms. However, p-functions are not the appropriate basis

functions for the hydrogen atoms and hence it was tested whether it leads to an improved

description if p-functions are only used for the second row elements, while s-functions are
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Figure 6.42: Left-hand side: Optimization of two different exponential parameters for
s- and p-type Gaussian functions. Right-hand side: Erep+Eq+Ed using an
anisotropic repulsion based on the overlap of p-type Gaussian functions on
second-row elements and s-type functions on all hydrogen atoms with iden-
tical and different parameters.

used for the hydrogen atoms. This is easily possible, since the function P overlap can in

principle handle any type of orbital. It is also easily possible to implement a computation

of the percentage of 〈s|s〉, 〈s|p〉 and 〈p|p〉-overlap. In order to ensure positive 〈s|p〉-overlap

a phase factor had to be introduced.xviii However, using the same β-value for H-atoms and

second row atoms, this approach did not yield results of a significantly higher accuracy

than without hydrogen atoms (RSMD = 0.63 kcal/mol, see Figure 6.42). Hence, two

separate parameters were introduced and optimized separately. The optimization in the

two-dimensional parameter space yielded βp = 0.61 and βs = 0.42. With these parameters

an excellent agreement (RMSD = 0.46 kcal/mol) could be obtained. For higher values

for βs the contribution of the hydrogen atoms decreases and becomes eventually close to

zero. Thus above a certain value the magnitude of βs has no effect anymore (see Fig.

6.42, left-hand side).

The percentage of 〈s|s〉, 〈s|p〉 and 〈p|p〉-overlap at 0 Å is given as 26%, 18% and 56%.

Using this overlap scheme is more physical than using p-functions also on the hydrogen

atoms, but it is still questionable if such a high contribution of the hydrogen atoms is

reasonable or if it is an artefact.xix

xviiiOtherwise positive and negative contributions of the 〈s|p〉-overlap cancel each other.
xixIn principle one might argue that as long as the ansatz works it does not matter if the amount of

s-contribution allows any physical interpretation. However, arriving at an accurate description, which
is general and uses transferable parameters, is obviously more likely using a physically grounded
description.
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Table 6.3: Exponential parameters and RMSD values for shifts with different distances
between the intermolecular planes (in Å) using different methods.

Method 3.0 3.3 3.6
p(C,N,O) β 0.47 0.46 0.45

RMSD 1.54 0.67 0.32
p(C,N,O,H) β 0.52 0.51 0.50

RMSD 0.87 0.46 0.25
s(C,N,O)s(H) βs 0.41 0.42 0.43

βp 0.61 0.61 0.62
RMSD 0.89 0.46 0.26

6.3.4 Generality of the Density-Based Overlap Approach

The results presented so far show that it is possible to derive a force field that accurately

describes the intermolecular interactions between PBI monomers along the longitudinal

shift. However, it is doubtful whether the parameters are general. Since this work is

aimed at the modeling of excitonic states in perylene-based dyes with a focus on certain

intermolecular degrees of freedom, which are important for a potential exciton trapping,

it is sufficient if accurate parameters can be found for each system/degree of freedom.

However, for broader applications, a certain generality and transferability of the param-

eters would be desirable. Therefore, this is also briefly investigated here. A complete

survey of the generality against test sets is, however, beyond the scope of this work. Fur-

thermore, for a general force field, different parameters for different atom types should be

introduced. Optimizing this parameter space for a larger set of molecules is not feasible

with the current implementation.

As a simple test, the shift is calculated for three different distances between the molecular

planes: 3.0, 3.3 and 3.6 Å. The calculation is performed with p-functions on all atoms,

p(C,N,O,H), p-functions only on the second row elements, p(C,N,O), as well as with p-

functions on second row elements and s-functions on the hydrogen atoms, p(C,N,O)s(H).

The results for the exponential parameter β are given in Table 6.3. As one can see, the

value of β does not change dramatically and hence seems to be fairly transferable for

different shift distances. However, the fit parameters are much more problematic, see

Table 6.4. The fit parameters, especially the important scaling factor,xx seems to depend
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Table 6.4: Fit parameters shifts with different distances between the intermolecular planes
(in Å) using different methods.

Method 3.0 3.3 3.6
p(C,N,O) p1 -378.6 -518.8 -832.8

p2 7.8 23.0 24.3
p(C,N,O,H) p1 -548.3 -889.8 -1718.497

p2 12.8 25.1 25.175
p(C,N,O)s(H) p1 1832.5 4366.1 15029.4

p2 15.7 27.0 26.7

crucially on the interplane distance.xxi One way to remedy this might be to introduce a

distance dependence into the scaling factor. In fact, there are approaches, where the den-

sity overlap is scaled by an exponential term.215 This distance dependence could either be

introduced for the complete system (i.e. p1 → p1(r)), with r being the distance between

the monomer centers) or for the interaction between each atom pair.

Since the density is calculated with just one Gaussian function on each atom with the

same parameters for all atom types, it is possible that the distance dependence of the

density is not accurately reproduced. A distance dependent scaling factor might be able

to compensate for this. Furthermore, the approach can only be a sensible approximation

for large distances215 and hence might fail for 3.0 Å.

In order to visualize the effect of the different parameters, the results of calculations with

distances of 3.0 Å and 3.6 Å, but using the parameters optimized for 3.3 Å, are shown in

Figure 6.43. For 3.0 Å, the repulsion is dramatically overestimated at small shift distances,

but the features of the PES are roughly correct, albeit also overestimated. For OPLS-AA,

the opposite is true. Since the curve without a repulsion contribution of the hydrogens

shows the least severe overestimation, especially the contributions of the hydrogen atoms

seem to be problematic. Using a shift distance of 3.6 Å, the repulsion is underestimated

for smaller and overestimated for larger shift distances, but not dramatically. The fea-

tures are slightly underestimated. The PES predicted by OPLS-AA is overall closer to

the DFT curve (and hence has a smaller RMSD), but lacks the features. Furthermore, the

curves with the overlap approach predict the correct minimum, contrary to OPLS-AA.

Hence, the parameters for 3.3 Å seem to be at least transferable to larger distances. The

xxThe additive parameter is not important, since it only shifts the whole PES, which is shifted, anyway,
when the minimum of the different energy contributions is set to zero.

xxiThe different sign in the ansatz using s-functions on the hydrogen atoms is due to the phase factors,
which were introduced to ensure positive 〈s|p〉-overlap .
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Figure 6.43: PES of the longitudinal shift with 3.0 and 3.6 Å distance between the inter-
molecular planes using the parameters obtained for 3.3 Å.

failure at the smaller interplane distance is not so problematic, since these distances will

typically not be encountered.

However, if a general force field is desired it should be investigated, whether an additional

distance dependence needs to be introduced or/and whether the description of the density

should be improved, e.g. by introducing different parameters.

Another possibility is to introduce a factor c that adds a certain percentage of isotropic

Lennard-Jones repulsion,

E = Eq + Ed + c · Erep LJ + Erep. (6.80)

Erep is then fitted to the difference of the DFT energy and the sum of Eq, Ed and ·Erep LJ .

With this approach, the overlap-based repulsion could also be applied as a correction to

any force field using a Lennard-Jones potential. Several test calculations with different

scaling factors were performed, but no benefit was observed. For medium values (e.g.

c = 0.5) the results are qualitatively identical and for higher values the PES becomes

closer to the OLS-AA curve. One might also consider to use a distance-dependent mixing

coefficient c→ c(r) in the spirit of the range-separated functionals, but this is beyond the

scope of this work.

Another question is the transferability of the problem to different systems, especially

other perylene-based dyes like perylene or PTCDA. Exemplary results are given in Fig.

6.44. The approach clearly also works for these compounds. For PTCDA, the exponential
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Figure 6.44: PES of the longitudinal shift for perylene (left-hand side) and PTCDA (right-
hand side) with different methods. Eq(ESP ) refers to the interaction between
atomic point charges taken from an ESP fit (ωB97XD/cc-pVTZ)

parameter is 0.45 without a repulsion contribution from the hydrogen atoms, while it is

0.48 with p-functions at the hydrogen atoms, which is rather close to the results for PBI.xxii

For perylene, however, the parameter is 0.65 with and 0.67 without a contribution of the

hydrogen atoms. This shows that for a generalizable force field, different β-values for dif-

ferent atom types have to be defined. In the case of PTCDA, DFT predicts two minima,

which are almost equal in energy, while the force field predicts the second minimum to be

significantly lower in energy. This might be due to an incorrect charge-charge interaction,

since the choice for the parameters on the anhydride group is ambiguous. Consequently,

another computation was performed with charges taken from an ESP fit (ωB97XD/cc-

pVTZ) performed with Gaussian09. The optimal exponential parameter is now β = 0.51.

From Fig. 6.44, it is evident that with the optimized charges, the first minimum is lower

(in agreement with DFT) and that the energetic difference between the minima is reduced.

The results presented in this section show that although the overlap approach works in

principle also for different distances and different systems, the parameters are not directly

transferable. However, due to the simplicity of the ansatz (all atoms are identical in their

repulsion contribution), it could not be expected that the resulting force field is very

general. With this approach the properties of the whole system are folded into one sin-

xxiiDue to a lack of parameters for an anhydride group, the parameters for the imide group were used,
except for the bridging oxygen atoms. Here, the sum of the charges of the nitrogen and the hydrogen
atom of the imide group and the Lennard-Jones parameters of an ester oxygen were used.
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gle parameter, which makes the parameter only suitable for this system. Using different

β-parameters for different atom types as in any standard force field might significantly

improve the transferability of this approach. This is, however, beyond the scope of this

work.

As stated above, the force field in its current state is sufficient for the modeling of the

longitudinal displacement in perylene-based dyes, if the parameters are defined for the

model system in question. Since it is based on OPLS-AA and uses an overlap approach,

the force field will be called OPLS-AAO in the following. Of course, the different fla-

vors (p-type, s-type, or no basis function on the hydrogen atoms) have to be specified

additionally.

6.3.5 Excursion: Using a Simplified MO-Based Overlap Approach?

Apart from the density-based ansatz, often the MO-overlap is used for the modeling of the

repulsion (see section 4.2.3). As mentioned above, a computation of the monomer MOs

and the subsequent calculation of all overlap integrals is quite demanding. Although

the MOs have to be calculated only once, the overlap integrals have to be computed for

each point of the PES. Because MM calculations should be fast and efficient, it is hence

questionable if this ansatz is worth pursuing if one considers the limitations for potential

applications. However, despite this limitation, from a more fundamental point of view,

it is interesting to see whether the approach brings any benefits. Hence, a simplified test

implementation was devised.

In order to save time in the computation as well as for the implementation, several ap-

proximations were introduced. At first, only the π-MOs were used. Furthermore, they

were modeled by a single p-type Gaussian function on each second-row atom, using the

same exponential parameter for all atoms, which was again optimized to fit to yield the

best agreement with the DFT curve. The relative phase and the coefficients were taken

from a HF/STO-3G calculation performed with Gaussian09. The different MOs were

added separately to investigate whether all MOs are needed or if some of the higher lying

orbitals suffice, which would obviously reduce the computational cost significantly. The

repulsion energy is thus expressed as

Erep = p1

A∑
i

B∑
j

〈ψi|ψj〉2 + p2, (6.81)
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with ψi and ψj being the occupied MOs on monomers A and B, which are expanded in

the basis of the primitive Gaussian functions pi,

ψi =
N∑
ν

cνipνi. (6.82)

Thus it follows,

Erep = p1

A∑
i

B∑
j

[
N∑
ν

N∑
µ

cνicµj〈pνi|pµj〉

]2

+ p2. (6.83)

From this equation, it is obvious that this ansatz is significantly more expensive than the
density-overlap approach, since the double sum over all used MOs has to be evaluated.
The implementation is given as

f o r i =1:mi # sum over MOs

f o r j=i : mi # sum over MOs

# Ca l cu l a t i on o f the over lap i n t e r g a l between

# the MOs with c o e f f i c i e n t s i and j

# The c o e f f i c i e n t s are s to r ed in the matrix d

ER( i , j )=P Overlap fast d MO (n , coordn , Beta , d( i , 1 : n ) , d ( j , 1 : n ) ) ;

# Output o f i n v i d u a l over lap

f p r i n t f ( f id1 , ” <%i |%i> = %8.4e” , i , j ,ER( i , j ) ) ;

f f l u s h ( f i d 1 ) ;

ER( i , j )=ER( i , j ) ˆ 2 ;

ER( j , i )=ER( i , j ) ;

endfor

endfor

# summing up the d i f f e r e n t c o n t r i b u t i o n s

Erep ( s h i f t c o u n t )=0;

f o r i =1:mi

f o r j =1:mi

Erep ( s h i f t c o u n t )=Erep ( s h i f t c o u n t )+ER( i , j ) ;

endfor

endfor
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Figure 6.45: Erep+Eq+Ed using an anisotropic repulsion based on the overlap of the
molecular orbitals with β = 0.5 and different numbers of MOs. “1MO”
means that just the HOMO is included, while “2MO” means that the HOMO
and the HOMO-1 is used and so on.

Calculations with one up to 16 π-MOs were performed. In order to see the dependence

of repulsion energy on the number of used MOs, the PESs with one to 16 MOs and

an intermediate value for the exponential parameter (β = 0.5) are at first plotted in

Figure 6.45. From the Figure, it is evident that already just with the HOMO the shape

of the curve is similar to the DFT PES. However, the repulsion is overestimated for

small as well as for high shift distances. The latter could be rooted in the fact that the

overlap does not decrease as fast as the density overlap due to the nodal structure of the

MOs. With the intermediate value of β, using more MOs does not change the picture

significantly. One possible remedy would be to use only the first few MOs and to introduce

an additional distance-dependent damping factor (see215). Some test calculations were

performed, however, since the results were not very satisfactory, this ansatz was not

further pursued.

As a next step, the value of β was varied in steps of 0.1 from 0.1 to 1.0. While the

fitting procedure in the case of the density overlap yielded a clear optimal value for β,

the optimal value is not so clearly defined here, depending on the number of MOs. Up to

three MOs, there is no clear minimum and the RMSD is always well above 10 kcal/mol.

Using four MOs, the optimal value is found at the lower boundary of the chosen interval,

β = 0.1 with an RSMD of 4.73 kcal/mol. From five to nine MOs, β = 0.1 remains the

optimal value, but the RMSD is again larger (above 6 kcal/mol). Using 10 to 13 MOs, the
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Figure 6.46: Erep+Eq+Ed using an anisotropic repulsion based on the overlap of the
molecular orbitals with optimized β.

optimal value is still the same but the RMSD is smaller (2.59, 1.46 , 1.72, 1.57 kcal/mol).

Using 14 to 16 MOs, the optimal value is β = 0.2 with also rather small RMSD values

(1.82, 1.26, 1.08 kcal/mol).

Only the calculations with 10 or more MOs as well as the one with four MOs yielded

reasonably small RMSD values. The PESs using 4, 10 and 16 MOs are plotted in Fig.

6.46. The agreement with four and even ten MOs is rather poor. With 16 MOs, the PES

can be described quite accurately, similar to the density-overlap approach. However, since

even 10 MOs are not sufficient for a satisfactory description, this ansatz is much more

expensive than the density-overlap approach.xxiii

6.3.6 The Density-Based Repulsion as Correction for OM2-D

Since the ground-state PES of OM2-D underestimates the repulsion at small shift dis-

tances as well as the features similar to OPLS-AA, it is conceivable that the overlap-based

repulsion could also be used as a correction for the semi-empirical method. This is also

physically grounded, since it was derived that the lack of features is due to an underes-

timation of the overlap-dependent terms (see section 6.2.3 and equation 4.43) and hence

adding an overlap-dependent correction makes sense. Fitting the repulsion to the differ-

ence of the DFT-D and OM2-D energy produces the results given in Figure 6.47. Adding

xxiiiSome additional test calculations with an energy-weighted overlap model (see section 4.2.3) were per-
formed. However, since the results were not significantly different, this ansatz was not further pursued.
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Figure 6.47: PES for the longitudinal shift in the PBI dimer computed with OM2-D with
and without an overlap-based correction

the overlap-based repulsion to the OM2-D energy clearly leads to an improvement in the

description.xxiv The optimal value for β is 0.77 and the RSMD value is 0.5 kcal/mol.

This corroborates the theory that the underestimation of the intermolecular overlap is

responsible for the failure of OM2-D for the ground-state PES and shows that using an

additive correction term is possible.

6.3.7 Using OPLS-AAO in a QM/MM Framework

In the previous sections, a force field based on OPLS-AA with a density-based overlap
ansatz for the closed-shell repulsion term was introduced, which is called OPLS-AAO. In
this section, the force field is applied to a tetramer, in order to test its applicability and
to demonstrate its possible use in a QM/MM framework. The tetramer test system was
chosen identical to the perylene tetramer used in section 6.2.2 (Figure 6.21). The only
difference is that here PBI is used. As reference the ground-state surface was calculated
on the ωB97XD/cc-pVDZ level of theory as implemented in Gaussian09.
At first, a pure MM description is tested. In order to use the subroutine presented above,
which calculates the interaction energy of a dimer, the total interaction is calculated
as a sum of dimer contributions. With this ansatz it is easy to implement that the
overlap-based repulsion is used between next neighbors, while the standard Lennard-
Jones repulsion is applied for the other interactions. The parameters p1 and β were taken

xxivFor the sake of clarity only the version with p-type Gaussian functions on all atoms was used, however,
the other approaches are of course applicable, too.
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from the dimer calculation. In this case OPLS-AAO with p(C,N,O,H) was usedxxv and
hence p1 = −889.8 and β = 0.51 were used, see Tables 6.3 and 6.4. Since p2 is just an
additive contribution to the total energy that is unimportant (the minimum of the whole
PES is set to zero, anyway) the constant was omitted. The details of the implementation,
especially the double loop over the monomers and the generation of the six distinct dimers,
is given below:

Etot =0;

Etot O=0;

#Double sum over a l l monomers

f o r i =1:NofM

f o r j =( i +1):NofM

#Bulding pa i r coo rd inate matr i ce s

co o r d pa i r =[ coord ( ( i −1)∗n+1: i ∗n , 1 : 3 ) ; coord ( ( j −1)∗n+1: j ∗n , 1 : 3 ) ] ;

#Ca l l i ng energy subrout ine s :

[ Eq , Erep LJ , Ed]=EOPLS components (n , coord pa i r , ep s i l on , sigma , q ) ;

#Def ine Repuls ion energy

i f ( abs ( i−j )==1)

Erep ( i , j )=p (1)∗ P Over lap fa s t (n , coord pa i r , Beta ) ;

e l s e

Erep ( i , j )=Erep LJ ;

e n d i f ;

#Summing up the d i f f e r e n t c o n t r i b u t i o n s

E( i , j )=Eq+Erep LJ+Ed ;

EO( i , j )=Eq+Ed+Erep ( i , j ) ;

#Summing up the c o n t r i b u t i o n o f the dimers

Etot=Etot+E( i , j ) ; #OPLS−AA

Etot O=Etot O+EO( i , j ) ; #OPLS−AA O

endfor ;

endfor ;

Since the interactions is calculated as dimer contributions, one can easily analyze the total

energy in terms of these contributions. There are 6 dimers: 1-1, 1-3, 1-4, 2-3, 2-4 and

3-4. Obviously the interaction energies of 1-2, 2-3 and 3-4 (next neighbors) are identical

xxvFor the sake of clarity again only this version of OPLS-AAO was used, however, the other approaches
are of course applicable, too.
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Figure 6.48: Force-Field calculation of the longitudinal shift in the tetramer with OPLS-
AA and OPLS-AAO (p[C,N,O,H]). The PES predicted on the ωB97XD/cc-
pVDZ level of theory is given as reference.

and the same is true for 1-3 and 2-4 (next but one). At 0 Å the contribution of the

1,3-interaction is about 12% and the 1,4-interaction about 1% of the 1,2-interaction for

OPLS-AAO. Hence, if larger molecular cluster are to be calculated, one might consider

using a cut-off at a certain distance. The PES predicted by the force-field calculation is

shown in Figure 6.48. Similar to the case in the dimer, OPLS-AA lacks features, while

OPLS-AAO gives an excellent agreement. This is entirely due to the next-neighbor inter-

action, since all other interactions are identical for both methods. Since the energy can

be decomposed into dimer contributions, it is not surprising that the quality of the results

is similar to the dimer case.

Although the force field alone already provides a good description of the system, it is

of interest to test its applicability in a QM/MM framework. For the modeling of exci-

tonic states a quantum mechanical method has to be applied. The force field can only

be used for the surrounding environment. As a model system the tetramer is used, with

the inner dimer being the QM system and the outer dimer being the MM system. An

electrostatic embedding is chosen. The charges of the outer dimer are included in the QM

Hamiltonian.xxvi This is schematically depicted in Figure 6.49. Since the carbon atoms

xxviThinking in terms of an application to excited states a mechanical embedding is not suitable, since in
this scheme the excited states are not influenced by the environment. A polarized embedding would
obviously be best, but is not possible using the OPLS-AA-based force field.

242



6 Perylene-based dyes

Figure 6.49: The tetramer (left-hand side) and its representation in the QM Hamiltonian
(right-hand side). The position of the charges is represented by the dots and
their magnitude and sign is represented by the color.

of the type “naphthalene fusion C” have zero atomic charges, they do not contribute to

the Hamiltonian and are thus omitted in Figure 6.49.

For the QM calculation, the ωB97XD/cc-pVDZ level of theory with external charge dis-

tribution362 was chosen as implemented in Gaussian09. The energy of the MM system is

simply given by the 1,4-interaction as implemented above and is identical for OPLS-AA

and OPLS-AAO. The QM/MM interface contains the 2-4, 1-3, 1-2 and 3-4 dimer. The

latter two are responsible for the difference between OPLS-AA and OPLS-AAO, since in

the overlap-based repulsion is only active between next neighbors. The energy contribu-

tion of the interface only consists of Erep and Ed, since the complete charge interaction

is included in the QM part. The results of the QM/MM calculation with OPLS-AA and

OPLS-AAO as well as the pure QM calculation in the gas phase and with external charges

are given in Figure 6.50.

The charge distribution of the outer dimer is stabilizing the inner dimer for larger shift

distances, but destabilizing for small shift distances. This can be rationalized by the fact

that identical charges are lying right on top of each other at the beginning of the PES. The

relative energy of the minima is also changed by the charges, with the second minimum

being the global one with the external charge distribution.

The QM/MM PES using OPLS-AA is not too far from the reference, but basically has the

same shape as the QM curve, which is not surprising, since it was shown that OPLS-AA

does not add any features. Therefore the shape of the curve is not correct. OPLS-AAO,

on the other hand, provides an accurate description within the QM/MM framework.

This QM/MM approach can easily be extended to the excited states simply by perform-
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Figure 6.50: QM/MM calculation of the longitudinal shift in the tetramer using
ωB97XD/cc-pVDZ OPLS-AA and OPLS-AAO (p[C,N,O,H]). The PES of
the pure QM calculation in the gas phase (g) and with external charges (q)
is also plotted. The PES predicted on the ωB97XD/cc-pVDZ level of theory
is given as reference. For the definition of QM and MM-part and the shift,
see 6.49.

ing an excited-state calculation of the QM system including the charge distribution of

the MM part and adding the excitation energies on the ground-state QM/MM potential

energy surface. Following the recipe devised in section 6.2.2 the excitation energies are

calculated with the ωB97X functional in conjunction with the cc-pVDZ basis sets.xxvii

The result of the QM/MM description of the excited states are depicted in Fig. 6.51 The

effect of the point charges on the excitation energies seems to be very small (only a few

meV) and hence the differences to a pure QM calculation stem mainly from the effect on

the ground-state surface, which consequently shifts all PES. The main features, like the

absorption and emission wave lengths and especially the possible exciton trapping mech-

anism, are hence similar to the dimer calculations presented above. However, similar to

the case of the perylene tetramer, the minimum of the 1 Ag state is shifted to larger shift

distances, which changes the preferred geometry in the trap state.

The results presented on the simple tetramer model system show that using a QM/MM

approach with OPLS-AAO for the description of excitonic states in perylene-based dyes

is possible. Furthermore, it is evident that the inclusion of the environment is important,

since it changes the shape of the PES. For a thorough description of the exciton trapping

xxviiThe 6-31+G(d) basis sets could not be used due to convergence problems.
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Figure 6.51: QM/MM results for the longitudinal shift in the PBI dimer. Ground-
state surface: ωB97XD/cc-pVDZ + OLPS-AAo with electrostatic embed-
ding. The excited state surfaces were generated by adding excitation ener-
gies (ωB97X/cc-pVDZ + MM charges) to the ground state surface. Monomer
geometry: taken from Settels et al.326
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mechanism, QM/MM calculations should be performed for all relevant intermolecular

degrees of freedom. The results obtained for the model system indicate that for the cal-

culation of the excitation energies, a gas-phase calculation might be reasonably accurate,

however, this needs further testing.

6.3.8 Outlook

In order to improve the quality and especially the generality of the OPLS-AAO force

field, different parameters for different atom types should be defined in the future. Since

this needs an optimization within a rather large parameter space, the implementation of

the force filed should be ported to a programming language such as C++ or Fortran.

One might also consider using Slater-type functions instead of Gaussian functions, since

a single Slater function should be a better-suited basis function than a single Gaussian

function. Furthermore, instead of the rather simple model for the electrostatic interactions

relying on point charges, a more involved treatment could be used in conjunction with

the anisotropic repulsion. For instance, using AMOEBA instead of OPLS-AA as the

underlying force field might be interesting.

At the moment, gradients are also missing, which need to be included to make several

important applications possible. For instance for a relaxed scan in an QM/MM framework,

an optimization of the environment is crucial. In the current implementation, where only

the intermolecular interactions are included, standard atomic gradients cannot be used

directly.xxviii This is only possible if the intramolecular interactions are also taken into

account. Since the latter can be expected to be less important for some of the applications,

using a rigid body optimization might be of interest. Using the anisotropy parameter,

the implementation of a gradient is straightforward, while the gradient of the p-overlap is

more involved.

One of the current limitations is given by the fixed coordinate frame of the p-functions. If

pz-orbitals are used, the ansatz only works if the molecules are located parallel to the xy-

plane. Hence, if any molecule is rotated out of the xy-plane, the results of the calculation

will be meaningless. One possible remedy would be to rotate the p-orbitals together with

the molecule, this is, however, not trivial.

Currently, OPLS-AAO was designed to include the effects of a π-stack. A movement like

the longitudinal displacement in a real system involves of course also interactions between

xxviiiWithout intramolecular interactions the molecule is obviously not stable. An implementation that
projects the atomic gradients of OPLS-AA onto the intermolecular distance was tested and yielded
quite nice results. However, this ansatz neglects the important rotational degrees of freedom.
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Figure 6.52: Fitting the repulsive part of OPLS-AAO (p[C,N,O,H]) to the exchange-
repulsion obtained from a SAPT calculation for the longitudinal shift in the
NDI dimer.

the stacks. Since it can be assumed that the anisotropic repulsion is less important for

these interactions, the standard isotropic repulsion should be applicable. Therefore, the

implementation needs to be extended to differentiate between interactions within the stack

and between stacks.

Following the ansatz of a physically-motivated intermolecular force field from symmetry-

adapted perturbation theory (FF-SAPT)217,261 pursued by Maxim Tafipolsky, it is also

possible to fit the anisotropic repulsion to the exchange-repulsion term from a SAPT

computation. The results of a test calculation on the NDIxxix dimer can be found in Figure

6.52.xxx Keeping in mind that only the repulsion energy was fitted to the SAPT curve,

while all other terms are taken from the standard OPLS-AA force field, the agreement

between DFT and OPLS-AAO-SAPT is quite good. Using a more involved model for the

charge interaction and also parameterizing it using the corresponding SAPT term should

significantly improve the result. Hence this ansatz seems quite promising.

The force field in its current state can be used to compute the excitonic states in stacks

of perylene-based dimers in a QM/MM framework. In order to test if the Apéry constant

should be included to account for the orbital interaction with the other monomers one

could perform QM/MM calculations on the perylene tetramer and compare the results

with the TDDFT calculations presented above.

xxixnaphthalene diimide
xxxThe SAPT calculation was performed by Maxim Tafipolsky.
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6.4 Summary and Conclusion

In this chapter, the description of excitonic states in perylene-based dyes was discussed

with a special focus on a possible exciton-trapping mechanism involving the intermolecu-

lar motion between two monomers. In this work, the longitudinal shift in the dimer was

taken as coordinate for the investigation. At first it was shown how the character of an

excited state in the dimer can be defined in terms of charge-transfer and neutral excita-

tions. A simple approximative way to extract the character of the states and the energy

of the diabats (pure CT and NE states) from a standard quantum-chemical calculation

was derived.

While SCS-CC2 and SCS-ADC(2) should provide an accurate description, cheaper meth-

ods are needed to extend the investigation of the trapping mechanism to larger aggregates,

as well as for excited states optimization, which are useful to explore the important de-

grees of freedom for the wave packet dynamic. SCS-ADC(2) and SCS-CC2 were used as

reference to evaluate the performance of cheaper methods.

At first, the performance of TDDFT was investigated by benchmarking several function-

als. It was shown that for perylene ωB97XD as well as CAM-B3LYP give good results.

In the case of PBI, CAM-B3LYP fails and gives a qualitatively incorrect description of

the character of the excited states of Bu symmetry for a major part of the PES, although

the shape of the excited state surfaces is roughly correct. This is in agreement with

the observations of Liu and Settels. The performance of ωB97XD depends crucially on

the monomer geometry. Following an assumption of Settels and Liu, it could be shown

that the diabats are so close in energy in the case of ωB97XD that small effects like the

monomer geometry can have a significant influence. In order to arrive at a more rea-

sonable energetic distance between the diabatic states, long-range corrected functionals

with a higher amount of exact exchange were used (ωB97X, LC-BLYP, LC-ωPBE). While

LC-BLYP and LC-ωPBE give qualitatively correct results but tend to overestimate the

excitation energies, ωB97X was shown to give quite accurate excitation energies. For the

calculation of excited-state potential energy surfaces, it was recommended to compute

the ground-state surface with ωB97XD and to add excitation energies computed with

ωB97X. This approach was then applied to the perylene tetramer. Differences to the

dimer calculations and their implication on potential trapping mechanisms are discussed.

In order to be able to perform excited state optimizations, dispersion is needed. Thus,

the range separation parameter of ωB97XD was optimized for the excited states of the

dimer system, which yielded the tuned functional ωB97XD25. The latter provides results
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of high accuracy. With this functional the excited states of the PBI dimer were optimized

using only the intermolecular degrees of freedom.

It was shown that although semi-empirical methods, like the OMx methods, are very

efficient and hence interesting for the computation of the excited states of larger aggre-

gates, they do not give an accurate description of the excited states of the dimer. The

potential energy curves of the ground and excited states lack features. The same is true

for the dependence of the coupling constant on the shift coordinate. This behavior was

attributed to an underestimation of the overlap-dependent terms due to the contracted

basis sets. This is corroborated by the fact that decreasing the distance between the

molecular planes makes the features appear. For larger distances, where the overlap-

dependent terms are close to zero anyway, the prediction of the coupling of OM2 are

almost in line with SCS-ADC(2) results. It could be shown that DFT with a minimal

basis also predicts a ground-state curve with a lack of features, although this lack is not

as severe as in the OMx methods. This could be explained by the fact that the overlap

is explicitly used in the computation of two-center one-electron integrals in MNDO-based

methods. Adding single basis functions in the DFT calculation, it could be shown that

an additional p-function would improve the results significantly.

For a description of perylene-based dyes in a QM/MM framework, an appropriate

force field is needed. It was shown that neither OPLS-AA nor AMOEBA give a satis-

factory description of the ground-state surface for the longitudinal shift. Similar to the

semi-empirical methods, the important features are completely missing. This failure was

attributed to the isotropic form of the atom-atom interaction in the repulsion term. It

was shown that neither the charge-charge, nor the dispersion interaction are responsible

for this, at least not to a significant extent.

In order to investigate possible ways to include anisotropy, the non-bonded interactions of

OLPS-AA were implemented in an octave script. It was shown that already by introduc-

ing a simple anisotropy parameter the features arise naturally. By fitting the repulsion

contribution to the difference of the other energy components and the DFT energy, a

very accurate description of the ground-state surface is possible. It was demonstrated

that this is also true for an s-type Gaussian overlap model in two dimensions. Using

a density-based overlap and decomposing the density into p-type Gaussian functions on

each atom led to the design of the OPLS-AAO force field. The implementation involves

the calculation of the overlap integral between p-functions on different centers. This force
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field yields best results if p-functions are also added to hydrogen atoms, but neglecting the

contribution of the hydrogen atoms also gives satisfactory results. Using s-type functions

on the hydrogen atoms is also possible and yields accurate results. OPLS-AAO provides

a very accurate description for the system and the intermolecular motion for which it was

parameterized, which indicates that the description is physically correct, but the parame-

ters do not seem to be very general. Changing the distance between the molecular planes

or the perylene-based dye leads to a significant change especially in the multiplicative fit

parameter. It was discussed that this could be due to the fact that currently the same

exponential parameter for all atoms is used. The properties of the whole system are folded

into this parameter, making it only suitable for this system. Introducing different param-

eters for different atom types in the future should significantly increase the generality.

In a short excursion, it was shown that a simplified MO-based overlap approach can also

be used, which is, however, much more demanding computationally and hence less effi-

cient.

It was further demonstrated that the density-based repulsion can be used as a correction

for OM2-D.

In the last section, OPLS-AAO was used to describe the longitudinal shift of the inner

dimer in a PBI tetramer. The anisotropic repulsion was applied for next neighbors, while

the standard isotropic repulsion was used for all other interactions. The fit parameters

were taken from the previous dimer calculation. It was shown that OPLS-AAO when fit-

ted to the dimer also gives a very good description of the tetramer. In order to be able to

model the excited states of this system, a QM/MM approach relying on an electrostatic

embedding was used, with the inner dimer being the QM system. It was shown that

using OPLS-AAO a very good description of the ground-state surface can be obtained in

the QM/MM framework. By adding the excitation energies obtained for the QM system

with ωB97X to the ground-state surface (following the recipe devised in section 6.2.2) a

QMM/MM description of the excited states could be obtained and the differences to pure

dimer calculations were discussed.
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And now for something

completely different.

(Monty Python)

Besides the merocyanines and the perylene-based dyes two other π-conjugated compounds

with an interesting electronic structure were investigated and the applicability of the

methods of computational chemistry was evaluated in collaboration with experimentally

working groups. These projects were focused on gaining insight into the electronic struc-

ture of these compounds, which can ultimately also help to gain a better understanding

of the suitability of different compounds for optoelectronic applications. A fundamental

knowledge of the electronic structure enables one to make a prediction on the efficiency

of the compounds in at least some of the elementary processes of organic electronics.

7.1 The Electronic Structure of a Bis(borolyl)thiophene

and the Corresponding Dianion

The results presented in this section have been obtained in close collaboration with Chris-

tan Hörl and Zarah Falk and have partially been published in reference.363

Bis(triarylamine)thiophene compounds are known to form so-called positive bipolarons,

which are basically delocalized dications. A doubly charged system can either exhibit two

separated polarons with two corresponding geometric distortions or one bipolaron with

a single geometric distortion.364,365 These bipolarons are believed to play an important

role in conducting polymers and there has been consequently an increasing interest in

these compounds (see363,366 and references therein). However, not much is known about

negative bipolarons.363
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Figure 7.1: Preparation of a 2,5-Bis(borolyl)thiophen dianion from its neutral precursor.

Aiming at the preparation of such a negative bipolaron, a 2,5-Bis(borolyl)thiophen dian-

ion [1]2− was obtained via reduction of the neutral precursor with decamethylcobaltocene

([CoCp∗2]) in the research group of Holger Braunschweig (see Fig. 7.1). Similar to the

positive bipolarons the dianion can be represented by several resonance structures. Es-

pecially the closed-shell quinoidal (I) and the open-shell biradical (III) structure are of

interest, since they present the two extreme cases.366 The closed-shell structure can be

expected to be dominating if the two rings “communicate”, i.e., if the coupling between

the borole rings across the thiophene ring is significant.366 If on the other hand the cou-

pling is small, the biradical structure dominates and the question about the multiplicity

arises, since III can either be an open-shell singlet or a triplet biradical. Hence it is of

interest whether the system’s ground state is of singlet multiplicity and if this is the case,

whether the amount of biradical character is of importance.

Indeed, EPR measurements showed a signal and hence suggested a triplet ground state.

However the X-ray data (see363) is more in line with a quinoidal structure. In order to

understand the nature of the ground state and to rationalize the experimental findings

quantum chemical calculations were performed. At first, the phenyl rings were substituted

by hydrogen atoms ([1′]2−) and all calculations were first performed on this model system.

Apart from kinetically stabilizing the system, the phenyl rings surely also influence the

electronic structure of the molecule and hence the results obtained for the model system

may not compare to the experiment directly. However we could use them to evaluate

the methodology and to get some fundamental insight into the electronic structure of the

parent compound.

At first the quality of the singlet-triplet gap predicted by B3LYP was benchmarked on
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Table 7.1: Singlet-triplet gap of [1′]2− predicted by CASPT2

Active Space [2,2] [10,10] [10,10] [10,10] [12,12]
Basis cc-pVDZ cc-pVDZ aug-cc-pVDZ cc-pVTZ cc-pVDZ

vertical gap [eV] 0.65 0.62 0.59 0.61 0.56

the model system against CASPT2 results using different active spaces and basis sets

(see Table 7.1). The CASSCF/CASPT2 calculations were performed using a Cholesky367

decomposition scheme and the neutral SCF orbitals as starting guess for the CASSCF

treatment with MOLCAS 7.4.368–370 The vertical gap of [1′]2− is predicted to be around

0.6 eV. Using this value it could be shown that UB3LYP underestimates the gap by

around 0.2 eV (see363 for details). This is sufficiently accurate to assume that a compu-

tation of the gap in [1]2− with UB3LYP makes sense.i The vertical gap is predicted to be

0.26 eV by UB3LYP. Assuming the error of the DFT approach is similar for the model

system and the substituted system, the ground state is definitely predicted to be singlet

(vertical gap 0.4 - 0.5 eV). The adiabtic singlet-triplet gap of [1]2− is predicted to be

around 0.1 eV, which is not large, but not so small that a significant thermal population

of the triplet state is likely. This is especially true if one assumes that the adiabatic gap is

also underestimated. Hence the triplet state cannot be responsible for the observed EPR

signal.

Due to the presence of sulfur some amount of spin-orbit couplingii should occur and

hence the ground-state wave function might have significant triplet contributions.iii The

admixture of the triplet state could in principle be responsible for the experimentally

observed EPR signal. In order to estimate the amount of triple contribution the following

eigenvalue equation can be solved,(
Es V

V ET

)(
c1

c2

)
= E

(
c1

c2

)
, (7.2)

iThe calculations on the substituted system [1]2− were performed by Zarah Falk.
iiThe Hamiltonian for the spin-orbit coupling is given by

Ĥso =
∑
i

ζi(r)li · si. (7.1)

With the coupling constant ζ being highly dependent on the atomic number, ζ(r) ∝ Z4, spin-orbit
coupling is only expected for heavier elements (see371 for details).

iiiSince the quantum chemical calculations used in this work are all non-relativistic, they do not incorpo-
rate these effects. Using a relativistic pseudopotential is of course possible but would only take care
of scalar relativistic effects.48
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with ES and ET being the energy of the singlet and the triplet state and V being the

spin-orbit coupling element. An estimation for the latter was obtained using data for

thiophene taken from the literature.372 The coupling element between the singlet ground

state of thiophene and the triplet state with the most similar occupationiv to the one of

the triplet state of [1′]2− was used. The estimation revealed that the triplet contribution

will be well below 0.05 % and is hence too small to explain the EPR signal (see363 for

details).

Using Ockham’s razor373 the most plausible explanation should be used and that is that

the EPR signal is caused by a remaining contamination of the monoanion. This could

indeed be confirmed experimentally, since preparing the dianion via comproportionation

led to a product without any EPR signal.

Having resolved the question of the multiplicity the electronic structures of the bipolaron

and of its precursor were further investigated. Since the coupling and hence the delocal-

ization between the rings is of interest for these systems, the barrier for the rotation of one

borole ring was calculated with a relaxed scan for the neutral precursor, the dianion in its

singlet and triplet state and the monoanion on the UB3LYP/6-311++G** level of theory

with Gaussian09 using the model system (see Fig. 7.2). A high barrier indicates a high

contribution of the quinoidal structure, while a lower barrier is expected if the biradical

structure has a significant weight. Using the model system without the substituents has

(apart from the reduced computational cost) the advantage that one obtains the pure

effect of the electronic structure without the influence of steric effects. All states are

predicted to be planar with a significant barrier for the rotation. The barrier of the neu-

tral precursor is lower than the one of the singlet dianion. For the latter the amount of

spin contamination increases along the PES (at least before the annihilation of the first

spin-contaminant), which indicates that the open-shell biradical character increases upon

twisting. The monanion has the highest and the triplet dianion the lowest barrier.

These results can be explained by inspecting the MO-scheme (Fig. 7.3) and taking the

charge repulsion into account. Going from the neutral precursor to the singlet dianion,

the MO π7 is filled, which is bonding between the thiophene ring and borole rings. This

overcompensates the increased charge repulsion, which would favor a rotation of the rings

and hence the barrier is increased. This indicates that the quinoidal resonance structure

has a significant weight. If the biradical resonance contributor had a high weight the bar-

rier should be more similar to the one of the triplet state. The monoanion has a reduced

ivThis means the coefficients of the singly occupied MOs of [1′]2− on the thiophene ring are most similar
to the ones in thiophene itself.
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Figure 7.2: Profile for the rotation of one borole ring out of the plane for different states
of [1′] (UB3LYP/6-311++G**)

Figure 7.3: MO-Scheme of [1′]/[1′]2− (BLYP/6-31G). On the left-hand side (I) both borole
rings are rotated out of the thiophene plane, while on the right-hand side (III)
only one ring is rotated. The MOs are plotted with molden.374
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repulsion but also a reduced bonding between the ring systems compared to the dianion.

It is difficult to predict a priori which effect will be dominating, but the calculations show

that the barrier is even higher than for the singlet dianion. The triplet dianion has the

lowest barrier, since it has the same charge repulsion as the singlet state, but thinking

in terms of VB theory it cannot benefit from covalent bonding between the rings in the

presumably dominating biradical structure III in Fig. 7.1. In the MO picture, this can

also be rationalized, since π8 is populated, which does not exhibit any bonding between

the thiophene and the borole rings.

These results indicate that a significant amount of delocalization is present in the singlet

ground state of [1′]2−, which shows that the system is mainly closed-shell in nature, with

only a modest open-shell singlet biradical contribution. Only a VB calculation could

provide a clearly defined weight of the biradical structure. However, apart from the

singlet-triplet gap, the population numbers of a minimal CASSCF calculation and the

weight of the doubly excited determinant can also give a very good indication. For a pure

biradical structure the population numbers of HOMO and LUMO should both be one and

the weights of the doubly excited determinant and the ground state determinant should

be equal (i.e. 50:50). A minimal [2,2]-CASSCF calculation gave population numbers of

the HOMO (1.65) and the LUMO (0.35) and a weight of the doubly excited configuration

of 18% and hence confirms a moderate biradical character of [1′]2−. This is also in line

with the magnitude of the singlet-triplet gap.

The substituted system will have a larger biradical weight, which is indicated by the

smaller singlet-triplet gap, but it can still be expected to be mainly closed-shell in char-

acter. [1]2− is slightly twisted, which is probably due to the interaction with the larger

substitutents. Since the rotational profile of the model system [1′]2− is very flat for small

angles a small twist is easily possible. The barrier to planarity of [1]2− is predicted to be

quite small (around 0.5 kcal/mol, see363 for details).

It might be surprising that the neutral precursor is also planar, since one might expect a

free rotation around the axis between the rings. However, the MO π5 shows some bonding

between the rings. On the VB level this can be explained using a resonance structure of

the type given in Fig. 7.4.

In order to explain the UV/VIS spectra CAM-B3LYP/6-31G** computations were bench-

marked against SCS-ADC(2) with the cc-pVDZ and the aug-cc-pVDZ basis sets in the

gas phase for the model system of the precursor and the dianion. Since the agreement

was quite satisfactory (see363 for details), the DFT approach was also applied to [1] and

[1]2− using the IEFPCM approach. In line with the experiment one strongly absorbing
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Figure 7.4: Resonance structure explaining the barrier for the rotation in the neutral
precursor.

band is predicted for both systems, which is significantly red-shifted in the dianion (395

vs. 800 nm).363 The neutral precursor additionally features a weakly absorbing band at

566 nm. The latter is predicted by the computations to consist of two close-lying excited

states formed by the two configurations arising from the excitation from the almost de-

generate HOMO and HOMO-1 to the LUMO. The first excitation has a higher oscillator

strength (π6b → π7, λ = 620 nm, f = 0.007) than the second (π6a → π7, λ = 617 nm,

f = 0.001). Both have minor contributions from the excitation π6a → π8 and π6b → π8,

respectively. The strongly absorbing band of the neutral precursor is dominated by the

excitation π5 → π7 in the model system. With the substituents the assignment of the

MOs is less clear (λ = 383 nm, f = 1.45).

The band of the dianion could be clearly assigned to the HOMO→LUMO transition

(π7 → π8, λ = 1142 nm, f = 1.31). It is red-shifted compared to the experiment, which

might be due to more involved solvent effects or the interaction with the counter ions.

In this project it could be shown that the Bis(borolyl)thiophene has a singlet ground

state with a moderate biradical contribution. On the basis of the results of the quantum

chemical computations the correct multiplicity of the ground state of the bipolaron could

be predicted and consequently additional experiments were prompted. Furthermore the

electronic structure of the bipolaron could be elucidated and the experimental spectra

interpreted. Calculations on the parent compound made it possible to obtain information

of the electronic structure itself without steric effects, which is not possible experimentally.

7.2 The Electronic Structure of Pyracene

The results presented in this section have been obtained in close collaboration with the

group of Ingo Fischer and have partially been published in reference.375

Polycyclic aromatic hydrocarbons (PAHs) are among the most fundamental represen-

tatives of the large class of organic semiconducting materials. To understand their op-
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Figure 7.5: The structure of pyracene. Some important bond lengths and one dihedral
angle are marked.

toelectronic properties, their electronic structure and the interplay between the effects

of the σ- and the π-system on the geometry (see below) is hence of vital importance, in

order to gain a fundamental understanding. PAHs are investigated due to their applica-

tion in thin films,376 but also due to the fact that they can be considered as the smallest

building blocks of graphene nano-flakes and ribbons377 and their properties are therefore

important for the rising field of graphene-based optoelectronics.378

Pyracene (see Figure 7.5) is an especially interesting case since the five-membered rings in-

duce a considerable strain upon the naphthalene core, which leads to distortions, affecting

the π-system. The question whether the π-electrons prefer a highly symmetric environ-

ment or are themselves distortive was answered by Shaik and Hiberty, who showed that

the σ-system of benzene prefers the D6h geometry, while the π-system is distortive.379 In

pyracene this interplay is further complicated by the induced strain, which makes it a

very interesting model compound. Furthermore apart from the distortion in the π-plane

a distortion out of the plane has to be discussed in pyracene, which is definitely not pre-

ferred by the aromatic system.

Upon electronic excitation mainly the π-system will be weakened and the interesting ques-

tion arises, whether this leads to a different balance between the strain and the electronic

effects of the π-system and hence to a change in geometry.i

The investigation of this balance was the aim of this project. Pyracene was prepared in

the group of Anke Krüger and IR, Raman and REMPI spectra were measured in the group

of Ingo Fischer. The measurements were aimed at elucidating the electronic structure of

pyracene in the ground and excited state, especially the interplay between ring strain and

aromaticity. The computations were performed to complement the data obtained from

the experiment, to help in the assignment of the bands in the spectra and to explain and

iThe question of geometric change upon excitation is of course also of vital importance for exciton
transport properties, namely the reorganization energy.
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Table 7.2: Vertical excitation energies (eV) and oscillator strength at the ground-state
equilibrium geometry

State Evert SCS-CC2 Evert SCS-ADC(2) fSCS−CC2 fSCS−ADC(2)

S1
1B3u 4.16 4.17 0.01 0.02

S2
1B1u 4.60 4.59 0.12 0.14

S3
1Au 5.03 5.09 0.00 0.00

rationalize the experimental results.

At first, some preliminary studies to evaluate the methodology using ADC(2) and CASPT2

were performed on naphthalene, where a significant amount of data from the literature

exists.113,380 These studies were also important to be aware of similarities and differences

of pyracene and naphthalene. Then the ground and several excited states of pyracene

were computed. The ground state geometry was optimized using spin-component scaled

Møller-Plesset perturbation theory54 in combination with a polarized valence triple zeta

basis (SCS-MP2/cc-pVTZ) as implemented in TURBOMOLE using the resolution of the

identity approximation.299,300 Frequency calculations on the same level were performed

to ensure the existence of a minimum and to make an assignment of the peaks in the

experimental ground state IR spectrum possible.

Geometry optimizations in the excited state were performed on the SCS-CC2 level of

theory. Single points were calculated on the SCS-CC2 and SCS-ADC(2) level of theory.

Absolute state energies were obtained by adding the excitation energies to the correspond-

ing SCS-MP2 ground-state energies. For the geometry optimizations in the excited state

the aug-cc-pVDZ basis sets were used. Since the states are very close in energy additional

single-point calculations using the aug-cc-pVTZ basis sets were performed. The vibra-

tional frequency calculations in the excited states163,164 were performed with the cc-pVDZ

basis sets using reoptimized geometries due to the computational cost of the numerical

evaluation of second derivatives.

The computations predict in line with the results from vibrational spectroscopy (IR and

RAMAN) the ground state to be D2h symmetric, which is not self-evident due to the

considerable ring strain.

The vertical excitation energies are given in table 7.2. The agreement between SCS-CC2

and SCS-ADC(2) is excellent. Both methods predict the first excited state to be almost

dark, while the second excited state is bright. This is similar to the situation in naphtha-

lene.380

The S1 consists of a linear combination of the HOMO → LUMO+1 and the HOMO-1 →
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Figure 7.6: Transition densities for the transition S0 → S1 (left-hand side) and S0 → S2

(right-hand side), SCS-CC2/cc-pVDZ, plotted with VMD

Figure 7.7: Optimized geometries in the S2. Left-hand side: C2h, right-hand side: D2

LUMO transition, while the S2 is dominated by the HOMO → LUMO transition. The

corresponding transition densities are plotted in Fig 7.6.

The geometry optimizations in the excited state were partly quite dependent on the start-

ing structure. Starting from the D2h-symmetric ground-state minimum energy structure,

the optimization in the S1 led to a stationary point, which is also of D2h symmetry. The

frequency analysis confirmed that it is indeed a minimum. Following the same proce-

dure in the S2, however, yielded a D2h-symmetric stationary point with two imaginary

frequencies. Using distorted starting structures yielded two minima of C2h and two of

D2 symmetry. One of each is depicted in Fig. 7.7. In these distorted structures the

C2-bridges are slightly twisted out of planarity. Hence the potential energy surface of the

S2 is of quadruple-well form. The four minima can interconvert via the D2h-symmetric

transition state.

The adiabatic excitation energies are given in Table 7.3. The agreement between SCS-CC2

and SCS-ADC(2) is again excellentii and the difference with respect to the experimental

iiIt should be stressed that the optimization was performed with SCS-CC2 in both cases and only the
single-point calculation were performed with different methods.
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Table 7.3: Adiabatic excitation energies (eV) including zero-point correction.

State Eadia SCS-CC2 Eadia SCS-ADC(2) Exp.
S1

1B3u 3.97 3.98 3.819
S2

1B1u (D2) 4.28 4.25
S2

1B1u (C2h) 4.26 4.23

Table 7.4: Bond lengths (in Å) and dihedral angles (in ◦)of pyracene for different states.
For the definition, see Fig. 7.5

parameter S0 S1 D2h S2 D2h S2 D2 S2 C2h

1 1.438 1.463 1.410 1.410 1.411
2 1.386 1.435 1.457 1.457 1.455
3 1.524 1.530 1.527 1.527 1.526
4 1.579 1.590 1.592 1.590 1.587
5 1.400 1.403 1.403 1.404 1.404
6 1.380 1.438 1.406 1.406 1.405

Dihedral 180 180 180 177 176

value is also within the typical error margin for adiabatic excitation energies.381 The ener-

getic difference, as well as the barrier for the inversioniii between the two pairs of minima

is very small. Since the energy differences are well below the accuracy of the method it

can only be stated that the potential energy surface is quite flat in the S2 and the molecule

is thus floppy with respect to the distortion of the bridges out of planarity.

Some geometrical parameters (bond lengths and the dihedral angle, for the definition see

Fig. 7.5) are given in Table 7.4. Apart from the dihedral angle there is no clear trend

observable. Computing the PES of the S1 for the same distortions as in the S2 shows that

the potential energy surface is also quite flat in the S1 (see375 for details). The energies

of the states with the different minimum energy geometries are depicted in Fig. 7.8. At

the minimum energy structure of the S2 state the energetic difference between the excited

states is quite small, which was demanding for the computations because the calculations

frequently converged on the wrong root. Furthermore, this makes a vibronic coupling

between the states likely, which also influences the spectra.

The results of the computations suggest the following interpretation: In the ground state

the aromaticity is stronger than the ring strain and hence the ring stays planar. In the

S1 the aromaticity of the π-system is weakened, but not enough to change the balance.

In the S2, however, the balance is changed, which leads to a slight distortion. The bond

iiiThe barrier for the distorted D2 minima is about 20cm−1, while the C2h-symmetric minima are more
or less isoenergetic with the transition state.
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Figure 7.8: Energy of the ground and the first two excited states using the minimum-
energy geometries of the different states (SCS-ADC(2)/aug-cc-pVDZ)

lengths, however, are not significantly distorted, which might be due to the fact that the

σ-system, which is not notably affected by the excitation also plays an important role for

the existence or non-existence of the bond length alternation in aromatic systems.

The computed frequencies of the S1 state could be used in the assignment of the exper-

imentally derived bands. The agreement between theory and experiment is quite good

(see375 for details).

In the experimental set-up of the REMPI the ions were detected in a time-of-flight mass

spectrometer. Since the pyracene dimer appeared quite prominently the question of the

shape of the dimer arose. The dimers are especially interesting due to potential excimer

formation.375 For an estimation of the lowest energy structure of the dimers six poten-

tial conformations were optimized on the B3LYP-D3/cc-pVDZ level of theory using the

Gaussian program package. The dimer structures and their relative energies are given in

Fig. 7.9. The lowest energy structure is the crossed one and hence it is most likely the

one observed experimentally.

In this project the computations elucidated the PES of the S1 and S2 state of pyracene

and were hence able to provide the basis for an estimation of the balance between aro-

maticity and ring strain. The computed frequencies furthermore helped in assigning the

bands and interpreting the experimental spectra. The most likely conformations of the

pyracene dimer could also be predicted.
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Figure 7.9: Optimized structures of pyracene dimers and their relative energies (in
kJ/mol).
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8 Summary

The scope of computational chemistry can be broadened by developing new methods and

more efficient algorithms. However, the evaluation of the applicability of the methods

for the different fields of chemistry is equally important. In this thesis systems with an

unusual and complex electronic structure, such as excitonic states in organic semiconduc-

tors, a boron-containing bipolaron and the excited states of pyracene were studied and the

applicability of the toolkit of computational chemistry was investigated. Concerning the

organic semiconductors the focus was laid on organic solar cells, which are one of the most

promising technologies with regard to satisfying the world’s need for cheap and environ-

mentally sustainable energy. This is due to the low production and material costs and the

possibility of using flexible and transparent devices. However, their efficiency does still

not live up to the expectations. Especially the exciton diffusion lengths seem to be signif-

icantly too short. In order to arrive at improved modules, a fundamental understanding

of the elementary processes occurring in the cell on the molecular and supramolecular

level is needed. Computational chemistry can provide insight by separating the different

effects and providing models for predictions and prescreenings. In this thesis, the focus

was laid on the description of excitonic states in merocyanines and perylene-based dyes

taking the influence of the environment into account.

At first, the photochemical isomerization between two configurations of 6-nitro BIPS

observed experimentally was studied by first benchmarking several functionals against

SCS-ADC(2) in the gas phase and subsequently calculating the excited-state potential

energy surface. The geometries obtained from a relaxed scan in the ground state as well

as from a scan in the excited state were used. The environment was included using dif-

ferent polarizable continuum models. It was shown that the choice of the model and

especially the question of the state specificity of the approach is of vital importance. Us-

ing the results of the calculations, a two-dimensional potential energy surface could be

constructed that could be used to explain the experimental findings. Furthermore, the

importance of the excited-state isomerization as a potential deactivation channel in the
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exciton transport was pointed out.

Then the assessment of the suitability of different merocyanines for optoelectronic ap-

plications with quantum-chemical methods was discussed. At first, the effect of the envi-

ronment on the geometry, especially on the bond length alternation pattern, was investi-

gated. It was shown that the environment changes the character of the ground-state wave

function of several merocyanines qualitatively, which means that the results of gas-phase

calculations are meaningless - at least when a comparison with solution or device data

is desired. It was demonstrated that using a polarizable continuum model with an effec-

tive ε, a qualitative agreement between the calculated geometry and the geometry in the

crystal structure can be obtained. Therefore, by comparing the bond length alternation

in solution and in the crystal, a rough estimate of the effect of the crystal environment

can be made.

It was further shown that the connection between the HOMO energy and the open-circuit

voltage is not as simple as it is often implied in the literature. It was discussed that it is not

clear whether the HOMO of a single molecule or a π-stack containing several monomers

should be used and if the environmental charges of the bulk phase or the interface should

be included. Investigating the dependence of the HOMO energy on the stack size yielded

no definitive trend. Furthermore, it was discussed that the effect due the optimization

of the modules (solvent, bulk heterojunction) during the production masks any potential

correlation between the HOMO energy and measured open-circuit values. Therefore, a

trend can only be expected for unoptimized bilayer cells. It was concluded that ultimately,

the importance of the HOMO energy should not be overestimated.

The correlation between the exciton reorganization energy and the so-called cyanine limit,

which is predicted by a simple two-state model, was also discussed. By referring to the

results of VB calculations, it was discussed that the correlation indeed exists and is non-

negligible, although the effect is not as strong as one might have expected. In this context,

a potential application of a VB/MM approach was covered briefly. The importance of the

molecular reorganization energy and the device morphology was also discussed.

It was concluded that the optimization of merocyanines for organic optoelectronic devices

is inherently a multiparameter problem and one cannot expect to find one particular pa-

rameter, which solely controls the efficiency.

The perylene-based dyes were studied with a focus on the description of a potential

trapping mechanism involving an intermolecular motion in a dimer. The aim was to find
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methods which can be applied to larger model systems than a dimer and take the ef-

fect of the environment into account. As a test coordinate the longitudinal shift of two

monomers against each other was used. At first, it was demonstrated how the charac-

ter of an excited state in a dimer can be defined and how it can be extracted from a

standard quantum-chemical calculation. Then several functionals were benchmarked and

their applicability or failure was rationalized using the character analysis. Two recipes

could be proposed, which were applied to a constraint optimization (only intermolecular

degrees of freedom) in the excited states of the PBI dimer and to the description of the

potential energy surfaces of ground and excited states along a longitudinal displacement

in the perylene tetramer, respectively.

It was further demonstrated that the semi-empirical OMx methods fail to give an accu-

rate description of the excited-state potential energy surfaces as well as the ground-state

surface along the test coordinate. This failure could be attributed to an underestimation

of overlap-dependent terms. Consequently, it could be shown that the methods are ap-

plicable to large intermolecular distances, where the overlap is negligible. The results of

DFT calculations with differently composed basis sets suggested that adding an additional

single p-function for each atom should significantly improve the performance.

QM/MM methods are ideally suited to take the effect of the environment on a a dimer

model system into account. However, it was shown that standard force fields also give

an incorrect description of the interaction between the monomers along the intermolecu-

lar coordinate. This failure was attributed to the isotropic atom-atom interaction in the

repulsion term of the Lennard-Jones potential. This was corroborated using two simple

proof-of-principle anisotropy models. Therefore, a novel force field called OPLS-AAO was

presented that is based on OPLS-AA, but uses an anisotropic model for the repulsion.

The model involves the overlap integral between the molecular densities, which are mod-

eled as a sum of atom-centered p-type Gaussian functions. It was shown that using this

force field an excellent agreement with the DFT results can be obtained when the correct

parameters are used. These parameters, however, are not very generalizable, which was

attributed to the simplicity of the model in its current state (using the same exponential

parameter for all atoms). As a short excursion, the applicability of an MO-based overlap

model was discussed.

It was demonstrated that the repulsion term based on the density overlap can be used to

correct the failure of the OMx methods for the ground states. This is in accord with the

assumption that an underestimation of the overlap terms is responsible for the failure.

It was shown that OPLS-AAO also gives an excellent description of the longitudinal shift

266



8 Summary

in a PBI tetramer. Using the tetramer as a test system and applying the recipe obtained

in the TDDFT benchmark for the QM-part and OPLS-AAO for the MM-part in conjunc-

tion with an electrostatic embedding scheme, a QM/MM description of the excited states

of the PBI dimer including the effect of the environment could be obtained.

In the last chapter the theoretical description of the Bis(borolyl)thiophene dianion and

the excited states of pyracene were discussed. The electronic structure of the Bis(borolyl)thiophene

dianion - a negative bipolaron - was elucidated using DFT and CASPT2 methods. Fur-

thermore, an estimation of the extent of triplet admixture to the ground state due to

spin-orbit coupling was given.

In the second project the S1 and S2 states of pyracene were computed using SCS-CC2

and SCS-ADC(2) and an estimation for the balance between aromaticity and ring strain

was given. This also involved computing the vibrational frequencies in the excited states.

In both studies the results of the computations were able to rationalize and complete

experimental results.
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Die Anwendungsmöglichkeiten der Methoden der theoretischen Chemie können erwei-

tert werden, indem neue Methoden und effizientere Algorithmen entwickelt werden. Es

ist jedoch ebenso wichtig die Anwendbarkeit der Methoden für die verschiedenen Felder

der Chemie zu evaluieren. In dieser Arbeit wurden Systeme mit einer komplexen und

ungewöhnlichen Struktur, wie exzitonische Zustände in organischen Halbleitern, ein bor-

basiertes Bipolaron und die angeregten Zustände von Pyracen untersucht und die Anwend-

barkeit der verschiedenen Methoden evaluiert. Im Bezug auf die organischen Halbleiter

wurde der Fokus auf organische Solarzellen gelegt, welche zu den vielversprechendsten

Technologien gehören, um dem weltweiten Bedarf an billiger und ökologisch nachhaltiger

Energie zu begegnen. Dies liegt an den niedrigen Produktionskosten und der Möglichkeit

flexible und transparente Module zu verwenden. Ihre Wirkungsgrade werden den Er-

wartungen jedoch noch nicht gerecht. Vor allem die Exzitonendiffusionslängen scheinen

deutlich zu gering zu sein. Um verbesserte Module zu erhalten ist ein fundamentales

Verständnis der Elementarprozesse in der Zelle auf molekularem und supramolekularem

Level vonnöten. Die theoretische Chemie kann dabei helfen dies zu erreichen, indem sie die

verschiedenen Effekte separiert und Modelle für Vorhersagen und zur Vorauswahl geeig-

neter Verbindungen bereitstellt. In dieser Arbeit wurde der Fokus auf die Beschreibung

von exzitonischen Zuständen in Merocyaninen und perylenbasierten Farbstoffen unter

Berücksichtigung von Umgebungseinflüssen gelegt.

Zunächst wurde die experimentell beobachtete photochemische Isomerisierung zwischen

zwei Konfigurationen von 6-nitro BIPS untersucht, indem zuerst die Anwendbarkeit ver-

schiedener Funktionale im Vergleich zu SCS-ADC(2) in der Gasphase überprüft wur-

de und anschließend die Potentialfläche des angeregten Zustands berechnet wurde. Es

wurden sowohl die Geometrien aus einem relaxed scan im Grundzustand als auch von

einem scan im angeregten Zustand verwendet. Umgebungseffekte wurden unter Verwen-

dung verschiedener Kontinuumsansätze (polarizable continuum models) berücksichtigt. Es

konnte gezeigt werden, dass die Wahl des Ansatzes und vor allem die Frage nach der Zu-
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standsspezifizität des Kontinuumsansätze sehr entscheidend ist. Mit den Ergebnissen der

Berechnungen konnte eine zweidimensionale Potenzialfläche konstruiert werden, mittels

welcher die experimentellen Beobachtungen erklärt werden konnten. Außerdem wurde auf

die Bedeutung der Isomerisierung im angeregten Zustand als einem potenziellen Deakti-

vierungskanal für den Exzitonentransport hingewiesen.

Anschließend wurde die Möglichkeit einer Bewertung der Eignung verschiedener Me-

rocyanine für optoelektonische Fragestellungen mit quantenchemischen Methoden disku-

tiert. Zunächst wurde der Einfluss der Umgebung auf die Geometrie und insbesondere

auf die Bindungslängenalternanz untersucht. Es wurde gezeigt, dass die Umgebung die

Wellenfunktion mehrerer Merocyanine qualitativ verändert, was bedeutet, dass Berech-

nungen in der Gasphase keinen Sinn machen - zumindest nicht, wenn die Ergebnisse

mit Daten, die in Lösung oder in der Zelle erhalten wurden, verglichen werden sollen.

Es konnte gezeigt werden, dass unter Verwendung eines Kontinuumsansatzes mit einer

effektiven Dielektrizitätskonstante ε eine qualitative Übereinstimmung zwischen der be-

rechneten Geometrie und der Geometrie in der Kristallstruktur erzielt werden kann. Dies

ermöglicht es, durch einen Vergleich der Bindungslängenalternanz in Lösung und im Kris-

tall eine grobe Abschätzung für den Einfluss der Kristallumgebung zu erhalten.

Es wurde außerdem dargelegt, dass der Zusammenhang zwischen der Energie des HOMOs

und der Leerlaufspannung nicht so eindeutig ist, wie es oft in der Literatur suggeriert wird.

Es stellte sich die Frage, ob die HOMO-Energie eines einzelnen Moleküls oder eines Stapels

bestehend aus mehreren Monomeren verwendet werden sollte und ob der Umgebungsef-

fekt der Ladungen der Bulkphase oder der Grenzfläche berücksichtigt werden sollte. Die

Untersuchung der Abhängigkeit der HOMO-Energie von der Anzahl der Monomere er-

gab keinen klaren Trend. Die Tatsache, dass die Optimierung des Moduls während des

Produktionsprozesses (Solvent, Bulk-Hereojunction-Konzept) eine potenzielle Korrelation

zwischen der HOMO-Energie und der Leerlaufspannung maskiert, wurde ebenfalls disku-

tiert. Deshalb kann eine Korrelation nur für nicht optimierte Zweischichtzellen erwartet

werden. Es wurde der Schluss gezogen, dass die Bedeutung der HOMO-Energie letztend-

lich nicht überbewertet werden sollte.

Der Zusammenhang zwischen der Exzitonenreorganisationsenergie und dem sogenannten

Cyaninlimit, welcher von einem einfachen Zwei-Zustands-Model vorhergesagt wird wurde

diskutiert. Unter Verweis auf die Ergebnisse von VB-Berechnungen konnte diskutiert wer-

den, dass der Zusammenhang in der Tat existiert und nicht vernachlässigbar, aber auch

nicht so groß ist, wie man vermutet haben könnte. In diesem Kontext wurde die potenzielle
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Anwendbarkeit eines VB/MM-Ansatzes kurz besprochen. Die Bedeutung der molekula-

ren Reorganisationsenergie und der Morphologie der Zelle wurden ebenfalls diskutiert. Es

wurde das Fazit gezogen, dass die Optimierung der Merocyanine für die Anwendung in

organischen Halbleitern inhärent ein Multiparameterproblem ist und man nicht erwarten

kann, einen einzelnen Parameter zu finden, der allein die Effizienz kontrolliert.

Die perylenbasierten Farbstoffe wurden mit dem Fokus auf der Beschreibung eines po-

tenziellen Exzitoneneinfangmechanismus, untersucht, welcher auf der intermolekularen

Bewegung in einem Dimer basiert. Das Ziel war es Methoden zu finden, die auf größere

Systeme anwendbar sind und den Umgebungseinfluss berücksichtigen können. Als Testko-

ordinate wurde die longitudinale Verschiebung der Monomere gegeneinander verwendet.

Zunächst wurde gezeigt, wie der Charakter eines angeregten Zustandes in einem Dimer

definiert werden kann und wie ein Maß für den Charakter ausgehend von einer normalen

quantenchemischen Berechnung erhalten werden kann. Anschließend wurden verschiedene

Funktionale evaluiert und ihre Anwendbarkeit beziehungsweise ihr Versagen mittels der

Charakteranalyse rationalisiert. Zwei Ansätze konnten vorgeschlagen werden, welche auf

eine Optimierung in den angeregten Zustände des Dimers mit Nebenbedingung (nur in-

termolekulare Freiheitsgrade) beziehungsweise auf eine Beschreibung der Potenzialflächen

des Grundzustandes und der angeregten Zustände für die longitudinale Verschiebung in

einem Perylentetramer angewendet wurden.

Es wurde außerdem gezeigt, dass die semiempirischen OMx Methoden keine akkurate

Beschreibung der Potenzialflächen der angeregten Zustände sowie des Grundzustandes

für die Testkoordinate liefern. Dies konnte mit der Unterschätzung der intermolekularen

Überlappterme begründet werden. Folglich war es möglich zu zeigen, dass die Methoden

für intermolekulare Abstände, bei denen der Überlapp vernachlässigbar ist, anwendbar

sind. Die Ergebnisse von DFT-Rechnungen mit unterschiedlich zusammengesetzten Ba-

sissätzen ließen ferner den Schluss zu, dass das Hinzufügen einer einzelnen p-Funktion an

jedem Atom eine deutliche Verbesserung bringen sollte.

QM/MM-Methoden sind ideal geeignet, um den Einfluss der Umgebung auf ein Dimer-

Modellsystem zu berücksichtigen. Es wurde jedoch gezeigt, dass gängige Kraftfelder eben-

falls eine inkorrekte Beschreibung der Wechselwirkung zwischen den Monomeren ent-

lang der intermolekularen Koordinate liefern. Dies wurde mit der isotropen Beschreibung

der Atom-Atom-Wechselwirkung im Repulsionsterm des Lennard-Jones-Potenzials be-

gründet. Diese Annahme wurde durch die Anwendung zweier Proof-of-Principle-Ansätze

untermauert. Folglich wurde ein neues Kraftfeld, genannt OPLS-AAO, eingeführt, wel-
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ches auf OPLS-AA basiert, aber eine anisotrope Modellierung der Repulsion verwendet.

Diese anisotrope Repulsion basiert auf dem Überlappintegral der molekularen Elektro-

nendichten, welche als Summe aus atomzentrierten p-artigen Gaußfunktionen modelliert

wird. Es wurde gezeigt, dass mit diesem Kraftfeld eine hervorragende Übereinstimmung

mit den DFT-Ergebnissen erhalten werden kann, wenn die richtigen Parameter verwendet

werden. Diese Parameter sind jedoch nicht sehr generalisierbar, was mit der Einfachheit

des Models zu seinem momentanen Stand begründet wurde (Verwendung desselben Pa-

rameters im Exponenten bei allen Atomen). Als kurzer Exkurs wurde die Anwendbarkeit

eines MO-basierten Überlappmodells diskutiert.

Es konnte nachgewiesen werden, dass der Repulsionsterm, der auf der Dichteüberlappung

basiert, auch als Korrekturterm für die Anwendbarkeit der OMx-Methoden bezüglich des

Grundzustandes verwendet werden kann. Dies deckt sich mit der Annahme, dass eine

Unterschätzung von Überlapptermen für das Versagen der semiempirischen Methoden

verantwortlich ist.

Es wurde gezeigt, dass OPLS-AAO die Potenzialfläche für die longitudinale Verschie-

bung in einem PBI Tetramer exzellent beschriebt. Unter Verwendung des Tetramers als

Testsytem und unter Anwendung eines der vorgeschlagenen TDDFT-Ansätze für den

QM-Teil und OPLS-AAO für den MM-Teil in Verbindung mit einem electrostatic embed-

ding-Ansatz konnte eine QM/MM-Beschreibung der angeregten Zustände des PBI Dimers

unter Berücksichtigung des Umgebungseinfluss erhalten werden.

Im letzten Kapitel wurde die theoretische Beschreibung des Bis(borolyl)thiophendianions

und von Pyracen diskutiert. Die elektronische Struktur des Bis(borolyl)thiophendianions

wurde beschrieben unter Verwendung von DFT- und CASPT2-Methoden. Außerdem wur-

de eine Abschätzung des Ausmaßes der Triplettbeimischung zum Grundzustand durch die

Spin-Bahn-Kopplung gegeben.

Im zweiten Projekt wurden der S1- und S2- Zustand des Pyracens unter Verwendung von

SCS-CC2 und SCS-ADC(2) berechnet und eine Abschätzung des Verhältnisses von Aro-

matizität und Ringspannung gegeben. Dies beinhaltete auch die Berechnung der Schwin-

gungsfrequenzen im angeregten Zustand.

In beiden Studien konnten die Ergebnisse der Berechnungen die experimentellen Daten

vervollständigen und rationalisieren.
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