metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(μ -diisopropylphosphanido- $\kappa^2 P: P$)bis-[hydrido(triisopropylphosphane- κP)platinum(II)]

Nicole Arnold, Holger Braunschweig* and Alexander Damme

Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Correspondence e-mail: h.braunschweig@mail.uni-wuerzburg.de

Received 11 April 2012; accepted 18 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.018; wR factor = 0.038; data-to-parameter ratio = 22.3.

In the centrosymmetric molecular structure of the title compound $[Pt_2(C_6H_{14}P)_2H_2(C_9H_{21}P)_2]$, each Pt^{II} atom is bound on one side to a phosphane ligand $(PiPr_3)$ and a hydrido ligand. On the other side, it is bound to two phosphanide ligands (μ -PiPr₂), which engage a bridging position between the two Pt^{II} atoms, forming a distorted square-planar structure motif. The Pt...Pt distance is 3.6755 (2) Å. A comparable molecular structure was observed for $bis(\mu$ -di-*tert*-butylphosphanido)bis[hydrido(triethylphosphane)platinum(II)] [Itazaki et al. (2004). Organometallics, 23, 1610–1621].

Related literature

For the syntheses of similar phosphido-bridged complexes of platinum(II) with phosphine ligands, see: Itazaki et al. (2004) or with other ligands such as carbonyl, see: Albinati et al. (2008). For Pt-H bond lengths in related structures, see: Chiang et al. (1984); Knobler et al. (1983).

Crystal data

 $[Pt_2(C_6H_{14}P)_2H_2(C_9H_{21}P)_2]$ $V = 1853.57 (11) \text{ Å}^3$ $M_r = 946.94$ Z = 2Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation a = 8.8301 (3) Å $\mu = 7.73 \text{ mm}^$ b = 14.8153 (5) Å T = 100 Kc = 14.1688 (5) Å $0.53 \times 0.13 \times 0.11 \text{ mm}$ $\beta = 90.097 (2)^{\circ}$

Data collection

Bruker X8 APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.360, T_{\max} = 0.745$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.018$	H atoms treated by a mixture of
$wR(F^{-}) = 0.038$	independent and constrained
S = 1.03	refinement
3943 reflections	$\Delta \rho_{\rm max} = 0.72 \ {\rm e} \ {\rm \AA}^{-3}$
177 parameters	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

38282 measured reflections

 $R_{\rm int} = 0.051$

3943 independent reflections

3478 reflections with $I > 2\sigma(I)$

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2010); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Financial support by the DFG is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2036).

References

- Albinati, A., Leoni, P., Marchetti, F., Marchetti, L., Pasquali, M. & Rizzato, S. (2008). Eur. J. Inorg. Chem. pp. 4092-4100.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2010). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison,
- Wisconsin, USA.
- Chiang, M. Y., Bau, R., Minghetti, G., Bandini, A. L., Banditelli, G. & Koetzle, T. F. (1984). Inorg. Chem. 23, 122-124.
- Itazaki, M., Nishihara, Y. & Osakada, K. (2004). Organometallics, 23, 1610-1621.
- Knobler, C. B., Kaesz, H. D., Minghetti, G., Bandini, A. L. & Banditelli, F. B. (1983). Inorg. Chem. 22, 2324-2331.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m808 [doi:10.1107/S1600536812022829]

Bis(μ -diisopropylphosphanido- $\kappa^2 P:P$)bis[hydrido(triisopropylphosphane- κP)platinum(II)]

Nicole Arnold, Holger Braunschweig and Alexander Damme

S1. Comment

 $Bis[\mu-di(iso propyl)phosphino]-di(hydrido)-bis[tri(iso propyl)phosphine]-di(platinum), bridged by the <math>\mu$ -P*i*Pr₂ ligands, displays a slightly distorted square-planar geometry. The two platinum centers show a Pt(1)–Pt(1^{*i*}) distance of 3.6755 (2) Å. The Pt–Pt distance is comparable to that in bis[μ -di(*tert*-butyl)phosphino]-di(hydrido)-bis[tri(ethyl)phosphine]-di(platinum) [Pt₂H₂(μ -P'Bu₂)₂(PEt₃)₂] (3.646 Å).

The bond angles $P(13)-Pt(1)-P(13^i)$ [77.47 (3)°] and $Pt(1)-P(13)-Pt(1^i)$ [102.53 (3)°] are slightly out of range of the structural parameters of the complexes without Pt–Pt bonding from Itazaki *et al.* (2004) [P–Pt–P 74.6–77.2° and Pt–P–Pt 102.8–105.4°]. This could be due to the less sterical hindrance of the *iso*-propyl groups by contrast with the *tert*-butyl groups in the reference substance [Pt₂H₂(μ -P'Bu₂)₂(PEt₃)₂].

Chiang *et al.* (1984) reported the bond length of a terminal Pt–H bond determined by neutron diffraction method. They found for the Pt–H bond on a five coordinate platinum centre a bond length of 1.610 (2) Å in the compound $[Pt_2H_3(Ph_2PCH_2CH_2PPh_2)_2]^+[BPh_4]^-$. In the title compound $[Pt_2H_2(\mu-PiPr_2)_2(PiPr_3)_2]$ [1.57 (3) Å] the bonding disctance of Pt–H is 2.5% shorter than in the neutron experiment of Chiang *et al.*, due to the smaller coordination number of four in the former species.

The group of Knobler *et al.* (1983) also determined the Pt–H bond length by X-Ray diffraction in $[Pt_2H_3(Ph_2PCH_2CH_2PPh_2)_2]^+[BPh_4]^-$ to be 1.527 Å, however without further refinement.

The bonding dictances Pt–P in *trans*-position to the hydrido ligand are with 2.3773 (7) Å longer than the bonding distances in *trans*-position to the phosphine ligand 2.3343 (7) Å.

S2. Experimental

Bis(tri-*iso*-propylphosphine)platinum (50.0 mg, 0.09 mmol) dissolved in 1 ml benzene was added to a solution of dichloro(2,3,5,6-tetramethylphenyl)borane (29.5 mg, 0.09 mmol) in 1 ml benzene. The solvent was removed under reduced pressure and the obtained dark brown residue was disolved in hexanes. The title compound was obtained as a off-white solid. Colourless crystals suitable for X-ray analysis were grown from a hexanes solution at 238 K.

S3. Refinement

The H atoms were placed at idealized positions and treatet as riding atoms: C-H = 0.98 Å (CH₃), 1.00 Å (aliphatic Hatoms). $U_{iso}(H)$ values were fixed at 1.5 times (for primary H atoms) and 1.2 times (tertiary H atoms) U_{eq} of the attached C atoms.

Figure 1

The molecular structure of the title compound showing the atom numbering scheme and displacement ellipsoides for the non-H atoms at the 50% probability level. Hydrogen atoms are omitted for clarity.

Bis(μ -diisopropylphosphanido- $\kappa^2 P:P$)bis[hydrido(triisopropylphosphane- κP)platinum(II)]

Crystal data

 $[Pt_2(C_6H_{14}P)_2H_2(C_9H_{21}P)_2]$ $M_r = 946.94$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.8301 (3) Å*b* = 14.8153 (5) Å c = 14.1688(5) Å $\beta = 90.097 (2)^{\circ}$ $V = 1853.57 (11) \text{ Å}^3$ Z = 2

Data collection

Bruker X8 APEXII	38282 measured reflec
diffractometer	3943 independent refle
Radiation source: rotating anode	3478 reflections with I
Multi-layer mirror monochromator	$R_{\rm int} = 0.051$
Detector resolution: 8.333 pixels mm ⁻¹	$\theta_{\rm max} = 26.8^\circ, \ \theta_{\rm min} = 2.0^\circ$
φ and ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -18 \rightarrow 18$
(SADABS; Bruker, 2008)	$l = -17 \rightarrow 17$
$T_{\min} = 0.360, \ T_{\max} = 0.745$	

F(000) = 936 $D_{\rm x} = 1.697 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 8162 reflections $\theta = 2.7 - 26.7^{\circ}$ $\mu = 7.73 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.53 \times 0.13 \times 0.11 \text{ mm}$

tions ections $> 2\sigma(I)$ 0

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.018$	Hydrogen site location: inferred from
$wR(F^2) = 0.038$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
3943 reflections	and constrained refinement
177 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0141P)^2 + 0.9947P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.009$
direct methods	$\Delta ho_{ m max} = 0.72 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was immersed in a film of perfluoropolyether oil, mounted on a polyimide microloop (MicroMounts of MiTeGen) and transferred to stream of cold nitrogen (Oxford Cryostream 700).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pt1	0.068246 (11)	1.032840 (7)	0.882448 (6)	0.00916 (4)
P3	0.15611 (8)	0.99092 (5)	0.73662 (5)	0.01104 (15)
C4	0.0188 (3)	1.01911 (19)	0.64139 (19)	0.0155 (6)
H4	0.0570	0.9925	0.5811	0.019*
C5	-0.1344 (3)	0.9764 (2)	0.6632 (2)	0.0230 (7)
H5A	-0.1717	0.9993	0.7238	0.034*
H5B	-0.1233	0.9107	0.6667	0.034*
H5C	-0.2067	0.9918	0.6132	0.034*
C6	0.0005 (3)	1.1205 (2)	0.6271 (2)	0.0218 (7)
H6A	-0.0818	1.1318	0.5822	0.033*
H6B	0.0951	1.1457	0.6023	0.033*
H6C	-0.0234	1.1491	0.6876	0.033*
C7	0.3257 (3)	1.05748 (19)	0.70284 (18)	0.0141 (6)
H7	0.2888	1.1209	0.6953	0.017*
C8	0.3981 (3)	1.0330 (2)	0.60752 (19)	0.0195 (7)
H8A	0.4768	1.0773	0.5921	0.029*
H8B	0.3202	1.0334	0.5581	0.029*
H8C	0.4434	0.9727	0.6116	0.029*
С9	0.4449 (3)	1.0616 (2)	0.7817 (2)	0.0199 (7)
H9A	0.4974	1.0034	0.7859	0.030*
H9B	0.3951	1.0747	0.8419	0.030*
H9C	0.5184	1.1093	0.7675	0.030*

C10	0 1983 (3)	0 86919 (18)	0 71777 (19)	0 0156 (6)
H10	0.1209	0.8361	0.7558	0.019*
C11	0.3510 (3)	0.8423(2)	0.7605 (2)	0.0212 (7)
HIIA	0.3587	0.7763	0.7627	0.032*
H11B	0.3591	0.8667	0.8246	0.032*
H11C	0.4331	0.8666	0.7215	0.032*
C12	0.1825 (4)	0.8318 (2)	0.6177 (2)	0.0235 (7)
H12A	0.2552	0.8620	0.5761	0.035*
H12B	0.0794	0.8427	0.5946	0.035*
H12C	0.2028	0.7668	0.6181	0.035*
P13	0.00800 (7)	0.90365 (5)	0.97455 (5)	0.01004 (14)
C14	-0.1496 (3)	0.82851 (18)	0.93640 (18)	0.0141 (6)
H14	-0.1686	0.7858	0.9897	0.017*
C15	-0.2950(3)	0.8827 (2)	0.9230 (2)	0.0220 (7)
H15A	-0.2809	0.9267	0.8721	0.033*
H15B	-0.3194	0.9145	0.9817	0.033*
H15C	-0.3782	0.8418	0.9066	0.033*
C16	-0.1193 (3)	0.7706 (2)	0.8494 (2)	0.0197 (7)
H16A	-0.2015	0.7268	0.8415	0.030*
H16B	-0.0231	0.7385	0.8573	0.030*
H16C	-0.1139	0.8094	0.7934	0.030*
C17	0.1654 (3)	0.82156 (18)	0.99243 (18)	0.0129 (6)
H17	0.1924	0.7960	0.9293	0.015*
C18	0.1266 (3)	0.7430 (2)	1.0573 (2)	0.0222 (7)
H18A	0.2147	0.7032	1.0633	0.033*
H18B	0.0414	0.7090	1.0307	0.033*
H18C	0.0987	0.7662	1.1197	0.033*
C19	0.3042 (3)	0.8713 (2)	1.0303 (2)	0.0216 (7)
H19A	0.2810	0.8971	1.0923	0.032*
H19B	0.3318	0.9199	0.9866	0.032*
H19C	0.3890	0.8290	1.0362	0.032*
H2	0.099 (3)	1.131 (2)	0.845 (2)	0.040 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.01140 (6)	0.00952 (6)	0.00656 (6)	0.00047 (4)	0.00126 (4)	-0.00011 (4)
P3	0.0133 (4)	0.0122 (4)	0.0076 (3)	0.0013 (3)	0.0004 (3)	-0.0003 (3)
C4	0.0205 (16)	0.0180 (16)	0.0081 (13)	0.0010 (12)	-0.0003 (11)	-0.0021 (11)
C5	0.0195 (17)	0.0312 (19)	0.0182 (15)	-0.0033 (14)	-0.0068 (13)	-0.0003 (13)
C6	0.0242 (17)	0.0225 (18)	0.0187 (15)	0.0058 (14)	-0.0075 (12)	0.0020 (13)
C7	0.0161 (15)	0.0142 (15)	0.0118 (14)	-0.0016 (12)	0.0010 (11)	0.0002 (11)
C8	0.0206 (16)	0.0240 (18)	0.0140 (15)	-0.0027 (13)	0.0056 (12)	0.0024 (12)
C9	0.0155 (16)	0.0264 (17)	0.0179 (15)	-0.0036 (13)	-0.0011 (12)	0.0028 (13)
C10	0.0203 (16)	0.0105 (14)	0.0160 (14)	0.0000 (12)	0.0059 (12)	-0.0014 (12)
C11	0.0253 (17)	0.0175 (17)	0.0208 (16)	0.0049 (13)	0.0050 (13)	0.0028 (13)
C12	0.0338 (19)	0.0163 (16)	0.0204 (16)	0.0022 (14)	0.0037 (13)	-0.0076 (13)
P13	0.0118 (4)	0.0099 (3)	0.0085 (3)	0.0007 (3)	0.0010 (3)	-0.0005 (3)

supporting information

C14	0.0178 (15)	0.0125 (15)	0.0121 (14)	-0.0047 (12)	0.0017 (11)	-0.0003 (11)
C15	0.0154 (16)	0.0255 (18)	0.0250 (16)	-0.0012 (13)	-0.0018 (12)	-0.0051 (14)
C16	0.0186 (16)	0.0195 (17)	0.0209 (15)	-0.0076 (13)	0.0024 (12)	-0.0062 (13)
C17	0.0150 (15)	0.0111 (15)	0.0125 (13)	0.0039 (11)	0.0023 (11)	-0.0006 (11)
C18	0.0283 (18)	0.0182 (17)	0.0201 (16)	0.0104 (14)	0.0030 (13)	0.0050 (13)
C19	0.0155 (16)	0.0229 (17)	0.0265 (17)	0.0036 (13)	-0.0028 (12)	-0.0021 (14)

Geometric parameters (Å, °)

Pt1—P3	2.2940 (7)	C11—H11A	0.9800
Pt1—P13 ⁱ	2.3343 (7)	C11—H11B	0.9800
Pt1—P13	2.3773 (7)	C11—H11C	0.9800
Pt1—H2	1.57 (3)	C12—H12A	0.9800
Р3—С7	1.857 (3)	C12—H12B	0.9800
P3—C4	1.860 (3)	C12—H12C	0.9800
P3—C10	1.861 (3)	P13—C14	1.862 (3)
C4—C6	1.524 (4)	P13—C17	1.864 (3)
C4—C5	1.526 (4)	P13—Pt1 ⁱ	2.3343 (7)
C4—H4	1.0000	C14—C16	1.526 (4)
С5—Н5А	0.9800	C14—C15	1.526 (4)
C5—H5B	0.9800	C14—H14	1.0000
С5—Н5С	0.9800	C15—H15A	0.9800
С6—Н6А	0.9800	C15—H15B	0.9800
C6—H6B	0.9800	C15—H15C	0.9800
C6—H6C	0.9800	C16—H16A	0.9800
C7—C9	1.534 (4)	C16—H16B	0.9800
C7—C8	1.538 (4)	C16—H16C	0.9800
С7—Н7	1.0000	C17—C18	1.523 (4)
C8—H8A	0.9800	C17—C19	1.527 (4)
C8—H8B	0.9800	C17—H17	1.0000
C8—H8C	0.9800	C18—H18A	0.9800
С9—Н9А	0.9800	C18—H18B	0.9800
С9—Н9В	0.9800	C18—H18C	0.9800
С9—Н9С	0.9800	C19—H19A	0.9800
C10—C12	1.529 (4)	C19—H19B	0.9800
C10-C11	1.530 (4)	C19—H19C	0.9800
C10—H10	1.0000		
P3—Pt1—P13 ⁱ	171.67 (3)	C10-C11-H11A	109.5
P3—Pt1—P13	110.66 (2)	C10-C11-H11B	109.5
P13 ⁱ —Pt1—P13	77.47 (3)	H11A—C11—H11B	109.5
P3—Pt1—H2	83.5 (12)	C10-C11-H11C	109.5
P13 ⁱ —Pt1—H2	88.4 (12)	H11A—C11—H11C	109.5
P13—Pt1—H2	165.8 (12)	H11B—C11—H11C	109.5
C7—P3—C4	102.65 (13)	C10-C12-H12A	109.5
C7—P3—C10	108.41 (13)	C10—C12—H12B	109.5
C4—P3—C10	104.12 (13)	H12A—C12—H12B	109.5
C7—P3—Pt1	111.26 (9)	C10—C12—H12C	109.5

C4—P3—Pt1	111.81 (9)	H12A—C12—H12C	109.5
C10—P3—Pt1	117.37 (9)	H12B—C12—H12C	109.5
C6—C4—C5	110.0 (2)	C14—P13—C17	101.90 (12)
C6—C4—P3	112.7 (2)	C14—P13—Pt1 ⁱ	106.05 (9)
C5-C4-P3	109 69 (19)	$C17 - P13 - Pt1^{i}$	111 17 (9)
C6-C4-H4	108.1	C14 - P13 - Pt1	119 34 (9)
$C_5 - C_4 - H_4$	108.1	C17 - P13 - Pt1	115.63 (9)
P3H4	108.1	$Pt1^{i}$ _P13_Pt1	102.53(3)
C4-C5-H5A	100.1	C_{16} C_{14} C_{15}	102.33(3)
C4—C5—H5B	109.5	$C_{16} - C_{14} - C_{13}$	116.1(2)
H5A C5 H5B	109.5	$C_{15} C_{14} P_{13}$	110.01(19)
CA = C5 = H5C	109.5	$C_{15} = C_{14} = 113$	106.6
	109.5	$C_{10} - C_{14} - H_{14}$	100.0
H5P C5 H5C	109.5	C13 - C14 - H14	100.0
$\begin{array}{cccc} \text{IISD} & \text{C} \text{IISC} \\ \text{C} \text{A} & \text{C} \text{C} \text{A} & \text{H} \text{C} \text{A} \\ \end{array}$	109.5	113 - C14 - 1114	100.0
C4 - C0 - H0A	109.5	С14—С15—НІЗА	109.5
	109.5		109.5
HbA - Cb - HbB	109.5	HISA—CIS—HISB	109.5
C4 - C6 - H6C	109.5	C14—C15—H15C	109.5
H6A—C6—H6C	109.5	HI5A—CI5—HI5C	109.5
H6B—C6—H6C	109.5	HI5B—CI5—HI5C	109.5
C9—C7—C8	111.3 (2)	С14—С16—Н16А	109.5
C9—C7—P3	112.72 (19)	C14—C16—H16B	109.5
C8—C7—P3	115.95 (19)	H16A—C16—H16B	109.5
С9—С7—Н7	105.3	C14—C16—H16C	109.5
С8—С7—Н7	105.3	H16A—C16—H16C	109.5
Р3—С7—Н7	105.3	H16B—C16—H16C	109.5
С7—С8—Н8А	109.5	C18—C17—C19	109.8 (2)
С7—С8—Н8В	109.5	C18—C17—P13	114.37 (19)
H8A—C8—H8B	109.5	C19—C17—P13	109.31 (19)
С7—С8—Н8С	109.5	C18—C17—H17	107.7
H8A—C8—H8C	109.5	С19—С17—Н17	107.7
H8B—C8—H8C	109.5	P13—C17—H17	107.7
С7—С9—Н9А	109.5	C17—C18—H18A	109.5
С7—С9—Н9В	109.5	C17—C18—H18B	109.5
H9A—C9—H9B	109.5	H18A—C18—H18B	109.5
С7—С9—Н9С	109.5	C17—C18—H18C	109.5
Н9А—С9—Н9С	109.5	H18A—C18—H18C	109.5
Н9В—С9—Н9С	109.5	H18B—C18—H18C	109.5
C12—C10—C11	110.6 (2)	С17—С19—Н19А	109.5
C12—C10—P3	117.8 (2)	С17—С19—Н19В	109.5
C11—C10—P3	111.9 (2)	H19A—C19—H19B	109.5
C12—C10—H10	105.1	C17—C19—H19C	109.5
C11—C10—H10	105.1	H19A—C19—H19C	109.5
P3—C10—H10	105.1	H19B-C19-H19C	109 5
P13 ⁱ —Pt1—P3—C7	314(2)	C7—P3—C10—C11	48 1 (2)
P13—Pt1—P3—C7	-135 55 (10)	C4 - P3 - C10 - C11	156 87 (19)
$P13^{i}$ _Pt1_P3_C4	-82 7 (2)	Pt1_P3_C10_C11	-790(2)
1 1 J 1 J VT			1210 (4)

P13—Pt1—P3—C4	110.32 (10)	P3—Pt1—P13—C14	-65.19 (10)
P13 ⁱ —Pt1—P3—C10	157.11 (18)	P13 ⁱ —Pt1—P13—C14	116.73 (10)
P13—Pt1—P3—C10	-9.88 (11)	P3—Pt1—P13—C17	56.96 (10)
C7—P3—C4—C6	-51.8 (2)	P13 ⁱ —Pt1—P13—C17	-121.13 (10)
C10—P3—C4—C6	-164.7 (2)	P3—Pt1—P13—Pt1 ⁱ	178.09 (2)
Pt1—P3—C4—C6	67.6 (2)	$P13^{i}$ — $Pt1$ — $P13$ — $Pt1^{i}$	0.0
C7—P3—C4—C5	-174.7 (2)	C17—P13—C14—C16	-57.0 (2)
C10—P3—C4—C5	72.3 (2)	Pt1 ⁱ —P13—C14—C16	-173.41 (19)
Pt1—P3—C4—C5	-55.3 (2)	Pt1—P13—C14—C16	71.7 (2)
C4—P3—C7—C9	167.9 (2)	C17—P13—C14—C15	176.81 (19)
C10—P3—C7—C9	-82.4 (2)	Pt1 ⁱ —P13—C14—C15	60.41 (19)
Pt1—P3—C7—C9	48.1 (2)	Pt1—P13—C14—C15	-54.5 (2)
C4—P3—C7—C8	-62.2 (2)	C14—P13—C17—C18	-53.1 (2)
C10—P3—C7—C8	47.5 (2)	Pt1 ⁱ —P13—C17—C18	59.6 (2)
Pt1—P3—C7—C8	178.02 (18)	Pt1—P13—C17—C18	175.91 (17)
C7—P3—C10—C12	-81.7 (2)	C14—P13—C17—C19	-176.60 (19)
C4—P3—C10—C12	27.1 (3)	Pt1 ⁱ —P13—C17—C19	-63.98 (19)
Pt1-P3-C10-C12	151.27 (19)	Pt1—P13—C17—C19	52.4 (2)

Symmetry code: (i) -x, -y+2, -z+2.