Aus der Kinderklinik und Poliklinik der Universität Würzburg Direktor: Prof. Dr. med. C. P. Speer

T-Zell Homöostase und Plastizität in Juveniler Idiopathischer Arthritis

Inaugural - Dissertation

zur Erlangung der Doktorwürde der Medizinischen Fakultät der Julius-Maximilians-Universität Würzburg

vorgelegt von

Klara Nela Sustal

aus Fulda

Würzburg, April 2015

Referentin: Prof. Dr. M. Prelog

Korreferent: Prof. Dr. H.-P. Tony

Dekan: Prof. Dr. M. Frosch

Tag der mündlichen Prüfung: 09.12.2015

Die Promovendin ist Ärztin

Meinen Eltern

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich diese Dissertation "T-Zell Homöostase und Plastizität in Juveniler Idiopathischer Arthritis" eigenständig und ohne fremde Hilfe verfasst, keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt und die den verwendeten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form bereits in einem anderen Prüfungsverfahren vorgelegen wurde.

München, den 01.05.2015

Inhaltsverzeichnis

1. Einleitung

1.1.	Das erworbene Immunsystem	1
	1.1.1. T-Zell Differenzierung	1
	1.1.2. T-Zell Subpopulationen	2
	1.1.3. T-Helferzellen	5
	1.1.4. T-Zell Plastizität	8
	1.1.5. Th17-Zellen	10
1.2.	Juvenile idiopathische Arthritis	12
	1.2.1. Subtypen der JIA	12
	1.2.2. Ätiopathogenese der JIA	14
	1.2.3. Remissionskriterien und Krankheitsaktivitäts-Score	16
	1.2.4. Therapieregime der JIA	16
1.3.	Zielsetzung und Fragestellung	18
2. Mate	erial und Methoden	19
2.1.	Material	19
	2.1.1. Geräte	19
	2.1.2. Verbrauchsmaterialien	20
	2.1.3. Puffer und Medien	20
	2.1.4. Gebrauchsfertige Lösungen	21
	2.1.5. Gebrauchsfertige Kits	21
	2.1.6. Antikörper	21
2.2.	Methoden	23
	2.2.1. Probanden	23
	2.2.1.1. JIA-Probanden	23

1

	2.2.1.2. Kontrollprobanden	24
	2.2.2. Lymphozytenisolierung mittels Dichtegradientenzentrifugation	24
	2.2.3. Zellzählung mit Neubauer-Zählkammer	25
	2.2.4. Kryokonservierung	25
	2.2.5. Durchflusszytometrie	26
	2.2.6. Extrazelluläre Fluoreszenzfärbung	27
	2.2.7. Intrazelluläre Fluoreszenzfärbung	28
	2.2.8. CCR6 Zellkultur und Stimulationsexperimente	31
	2.2.8.1. Magnetic Activated Cell Sorting (MACS)	31
	2.2.8.2. In vitro Kultur der CCR6+ Zellen	34
	2.2.8.3. Prä- und Post-Stimulus Analyse	35
	2.2.9. Statistische Auswertung	36
3. Erge	ebnisse	37
3.1.	Unterschiede im T-Zell Pool zwischen JIA Patienten und HD	37
	3.1.1. Charakterisierung der untersuchten Patienten- und Kontrollgruppe	37
	3.1.2. Proportionale Zusammensetzung der Lymphozyten in JIA und HD	40
	3.1.3. Zytokinproduktion der T-Helferzellen in JIA und HD	42
	3.1.4. Expression von Chemokinrezeptoren und RORyt in JIA und HD	46
	3.1.5. Zusammenfassung der Unterschiede zwischen JIA und HD	47
3.2.	JIA Patienten mit unterschiedlicher Krankheitsaktivität	48
	3.2.1. Charakterisierung der Patientenkohorte nach Krankheitsaktivität	48
	3.2.2. Proportionale Zusammensetzung der T-Helferzellen nach	
	Krankheitsaktivität	48
	3.2.3. Zytokinproduktion der T-Helferzellen nach Krankheitsaktivität	49
	3.2.4. Expression von Chemokinrezeptoren und RORyt nach	
	Krankheitsaktivität	50
3.3.	Longitudinalanalyse	53

	3.3.1. Charakterisierung der Patienten im Longitudinalverlauf	53
	3.3.2. Proportionale Zusammensetzung der T-Helferzellen im Verlauf	54
	3.3.3. Zytokinproduktion der T-Helferzellen im Verlauf	55
	3.3.4. Expression von Chemokinrezeptoren und RORyt im Verlauf	56
	3.3.5. Zusammenfassung der Krankheitsaktivitätsbedingten Unterschiede	57
3.4.	CCR6-Kultur und Stimulationsversuche	58
	3.4.1. Etablieren der Kulturbedingungen	58
	3.4.1.1. Spezifische Zytokinstimulation	58
	3.4.1.2. Patientenauswahl für Zellkultur	60
	3.4.2. Charakterisierung der CCR6+ Population vor Stimulation	60
	3.4.3. Stimuluseffekte	63
	3.4.3.1. Stimulus abhängige Polarisation	63
	3.4.3.2. Stimulus abhängige Proliferation	67
	3.4.4. CCR6+ Zellen in JIA und HD	68
	3.4.4.1. Unstimulierte CCR6+ Zellen	68
	3.4.4.2. Polarisierte CCR6+ Zellen	69
4. Disk	ussion	75
4.1.	Unterschiede der T-Helferzellen in JIA Patienten und HD	75
	4.1.1. Interpretation der veränderten CD4+ T-Helferzell-Homöostase	75
	4.1.1.1. Einfluss der immunsuppressiven Therapie	75
	4.1.1.2. Bedeutung von Chemokinrezeptoren bei JIA	77
4.2.	JIA Patienten mit unterschiedlicher Krankheitsaktivität	78
	4.2.1. Interpretation der RORyt Prädominanz	78
4.3.	JIA Patienten im longitudinalen Verlauf	79
	4.3.1. Interpretation der gesteigerten IL-17 Produktion	79
4.4.	Stimulationsversuche	82
	4.4.1. CCR6+ Zellen	82

4.4.2. Polarisierungstendenz von JIA Patienten und HD	82
4.4.2.1. Unstimulierte CCR6+ Zellen	83
4.4.2.2. Polarisierte CCR6+ Zellen	84
4.5. Technische Limitationen	86
4.5.1. Heterogenität der JIA-Gruppe	86
4.5.2. Methoden abhängige Limitation	86
4.5.2.1. Analyse der Transkriptionsfaktoren mittels Durchflusszyte	meter 86
4.5.2.2. Definition der Subpopulationen	87
4.5.2.3. MACS-Separation	87
4.6. Ausblick	89
5. Zusammenfassung	90
6. Literaturverzeichnis	92
7. Anhang	I
7.1. Eigenleistung	I
7.2. Danksagung	I
7.3. Lebenslauf	II
8. Appendix	Ш

Tabellenverzeichnis

Tabelle 1: Charakterisierende Eigenschaften der T-Helferzellen im Überblick	7
Tabelle 2: ILAR Klassifikation der JIA	13
Tabelle 3: Zytometer-Färbepanel für Phänotypisierung	28
Tabelle 4: Stimuli zur Differenzierung der CCR6-Kultur	34
Tabelle 5: Verwendete Stimulus-Konzentration	34
Tabelle 6: Zytometer-Färbepanel für CCR6-Experimente	35
Tabelle 7: Charakterisierende Eigenschaften der JIA-Gesamtpatientenkohorte	38
Tabelle 8: Demografische Eigenschaften der Probanden	39
Tabelle 9: Proportionale Verteilung der Lymphozyten bei JIA und HD	40
Tabelle 10: Proportionale Verteilung der CD4+ T-Helferzellen bei JIA und HD	40
Tabelle 11: Zytokinproduktion der CD4+T-Helferzellen von HD und JIA	43
Tabelle 12: Expression von Chemokinrezeptoren und RORyt in JIA und HD	46
Tabelle 13: Proportionale Verteilung der CD4+T-Helferzellen nach Krankheitsaktivität	48
Tabelle 14: Zytokinproduktion in CD4+T-Helferzellen nach Krankheitsaktivität	49
Tabelle 15: Expression von Chemokinrezeptoren und RORyt nach Krankheitsaktivität	50
Tabelle 16: JIA Patienten im longitudinalen Verlauf	53
Tabelle 17: Proportionale Verteilung der CD4+T-Helferzellen im longitudinalen Verlauf	54
Tabelle 18: Zytokinproduktion der CD4+T-Helferzellen im longitudinalen Verlauf	56
Tabelle 19: Expression von Chemokinrezeptoren und RORyt im longitudinalen Verlauf	57
Tabelle 20: Stimulationsversuche mit naiven Zellen und zugehörige Kulturbedingungen	58
Tabelle 21: Klinische Daten der JIA Patienten der Zellkulturexperimente.	60
Tabelle 22: Phänotyp der unstimulierten CCR6+ und CCR6- Zellen in Gesunden	60
Tabelle 23: Effekte der Zytokinstimulation auf CCR6+ Zellen in HD	66
Tabelle 24: Phänotyp und Zytokinprofil von unstimulierten CCR6+ Zellen in JIA und HD	68
Tabelle 25: Effekte der Zytokinstimulation auf CCR6+ Zellen in JIA und HD	73

Abbildungsverzeichnis

Abbildung 1: Phänotyp definierende Marker und funktionale Attribuierung	4
Abbildung 2: Spezifische Effektorfunktion von T-Helferzellen	6
Abbildung 3: Intrazelluläre Signalpfade der Differenzierung naiver T-Helferzellen	8
Abbildung 4: Polarisierung durch Zytokine und Plastizität des Phänotyps	10
Abbildung 5: Effekte von IL-17 in der Arthritis-Pathogenes	15
Abbildung 6: Falcon-Tube vor und nach Zentrifugation	24
Abbildung 7: Schematische Darstellung der Funktionsweise der Durchflusszytometrie	26
Abbildung 8: PBMC Populationen im Durchflusszytometer	27
Abbildung 9: Zytometer Gating Schema: Subpopulationen	30
Abbildung 10: Zytometer Gating Schema: Zytokinmessung	30
Abbildung 11: Vorgehensweise der CCR6+ Selektion.	31
Abbildung 12: Schematische Darstellung der MACS-Methode	.32
Abbildung 13: Proportionale Unterschiede der CD4+T-Zellsubpopulationen in JIA und HD.	.41
Abbildung 14: Unterschiede in der Expression von CD31 und CD27 in JIA und HD	.46
Abbildung 15: Zytokinproduktion in Th17, Th1, Th2 und Tregs in JIA und HD	44
Abbildung 16: IL-17 in CD4+ T-Helferzellen	.45
Abbildung 17: INFγ in CD4+ T-Helferzellen	.45
Abbildung 18: IL-4 in CD4+ T-Helferzellen.	.45
Abbildung 19: Unterschiede zwischen JIA und HD in der RORyt Expression	47
Abbildung 20: CCR6 Expression und Krankheitsaktivität	.51
Abbildung 21: RORyt Expression und Krankheitsaktivität.	52
Abbildung 22: IL-17 Produktion in Tregs bei unterschiedlicher Krankheitsaktivität	.55
Abbildung 23: CCR6 Expression im longitudinalen Verlauf	57
Abbildung 24: Stimulus-Konzentrationsreihe und Effekt auf IL-17 Produktion in CCR6+	.59
Abbildung 25: Stimulus-Konzentrationsreihe und Effekt auf INFy Produktion in CCR6+	59
Abbildung 26: IL-17 Produktion in CCR6- und CCR6+.	61
Abbildung 27: Phänotyp und Zytokinprofil von unstimulierten CCR6+ und CCR6- Zellen	. 60
Abbildung 28: Stimuluseffekte auf IL-17 Produktion.	64
Abbildung 29: Stimuluseffekte auf INFy Produktion.	.65
Abbildung 30: Stimuluseffekte auf Zytokinproduktion in Tregs	.65
Abbildung 31: Stimuluseffekte auf Ki67 Expression	67
Abbildung 32: Vergleich von Phänotyp und Zytokinprofil von CCR6+ in JIA und HD	.69
Abbildung 33: Gesteigerte IL-17 und reduzierte INFy Produktion der JIA Patienten	.70
Abbildung 34: Regulatorische T-Zellen und deren modifizierte Funktionalität	71
Abbildung 35: INFy und IL-17 Produktion unter Th1-Stim in HD und JIA.	74
Abbildung 36: IL-17 und IL-10 Produktion in CCR6+Tregs unter Treg-Stim in HD und JIA.	.71

Abkürzungsverzeichnis

μΙ	Mikroliter
7-AAD	7-Amino-actinomycin D
Abb	Abbildung
APC	Antigen präsentierende Zelle
APC	Allophycocyanin (Fluorochrom)
BSG	Blutsenkungsgeschwindigkeit
bzw.	Beziehungsweise
CCR	Chemokinrezeptor
CD	engl. cluster of differentiation
CIA	engl. collagen induced arthritis
CMV	Cytomegalie Virus
CRP	C-reaktives Protein
CXCL	Chemokinligand
CXCR	Chemokinrezeptor
CY	Cyanin (Fluorochrom)
DNS	Desoxyribonukleinsäure
ED	Erstdiagnose
ELI Spot Assav	engl. enzyme linked immuno spot assav
ELISA	engl. enzyme linked immunosorbent assav
FACS	engl. fluorescence activated cell sorting
FCS	fetales Kälber Serum
FITC	Fluorescein Isothiocyanat (Fluorochrom)
FoxP3	engl. forkhead box P3
FSC	engl. forward scatter
G-CSF	engl. granulocyte-colony stimulating factor
HD	engl. healthy donor
HEV	Hochendotheliale Venulen
ICAM-1	engl. intercellular adhesion molecule 1
laG	
	Interleukin
	International League Against Rheumatism
INEV	Interferon-v
inos	induzierbare NO-Synthase
	luvenile idionathische Arthritis
Kan	Kanitel
KG	Körpergewicht
KOE	Körpergewicht
MACS	end magnetic activated cell sorting
MHC	engl major histocompatibility complex
min	Minuten
ml	Milliliter
MMP	Matrixmetalloproteinase
	Methotrevat
N	and number - Anzahl
	Natriumchlorid
NEVD	and nuclear factor 'kappa light chain aphanaar' of activated P calls
	Nonogramm
ng	nanoyidilili

NK Zellen	Natürliche Killerzellen
NSAR	Nichtsteroidale Antirheumatika
PBMC	engl. peripheral blood mononuclear cells
PCR	Polymerasekettenreaktion
PE	R-Phycoerythrin (Fluorochrom)
PECAM	engl. platelet endothelial cell adhesion molecule
PerCP	Peridinin Chlorophyll Protein (Fluorochrom)
PGE	Prostaglandin
PMA	Phorbol-12-myristat-13-acetat
RA	Rheumatoide Arthritis
RF	Rheumafaktor
RORyt	engl. retinoic acid orphan receptor gamma t
rpm	engl. revolutions per minute = Umdrehungen pro Minute
RT	Raumtemperatur
SD	engl. standard deviation
SSC	engl. side scatter
STAT	engl. signal transducer and activator of transcriptions
Stim	Stimulus
T-bet	engl. T-box transcription factor
Tbl	Tabelle
Tcm	engl. central T memory Cell
TCR	T-Zell-Rezeptor
Tem	engl. effector T memory Cell
TEMRA	terminal differenzierte T Zellen
TGF	engl. transforming growth factor
Th	T-Helferzelle
ΤΝFα	Tumornekrosefaktor α
Treg	regulatorische T-Zellen
U	Umdrehung pro Minute
U	Units
VAS	Visuelle Analogskala
VS	versus
VZV	Varizella-Zoster-Virus
z.B.	zum Beispiel

1. Einleitung

1.1. Das erworbene Immunsystem

Der Begriff Immunität leitet sich von dem lateinischen Wort immunis (= frei, rein) ab und beschreibt die "Unempfindlichkeit des Organismus für Infektion mit pathogenen Mikroorganismen (...) bzw. Schutz vor der Wirkung (toxischer) Stoffwechselprodukte" [1]. Zur physischen Unversehrtheit komplexer mehrzelliger Organismen wie dem Menschen ist es erforderlich, funktionierende Schutzmechanismen gegenüber fremden Zellen zu entwickeln.

Vom Immunsystem werden zwei zentrale Aufgaben gefordert: das Unterscheiden zwischen Körpereigenem und Körperfremden, sowie das Schützen von ersterem und das Bekämpfen von letzterem. Bei fehlregulierter Toleranz oder überschießender Immunreaktion können Krankheiten entstehen, die sich autoaggressiv gegen den eigenen Organismus richten.

Das Immunsystem des Menschen hat zwei Hauptkomponenten. Es besteht aus dem angeborenen Immunsystem, das schnell aber unspezifisch auf erkannte pathogene Signaturen reagiert und vornehmlich aus phagozytierenden Zellen und löslichen Effektormolekülen besteht. Das adaptive Immunsystem zeichnet sich hingegen durch hohe Spezifität und ein immunologisches Gedächtnis aus [2]. Charakterisierendes Element sind die Lymphozyten, zu denen auch die in dieser Arbeit behandelten T-Zellen gehören. Als humorale Faktoren des adaptiven Immunsystems sind spezifische Antikörper bekannt.

1.1.1. T-Zell Differenzierung

Die im Knochenmark produzierten und im Thymus gereiften T-Zellen zirkulieren durch die periphere Blutbahn. Sie sind gering amöboid beweglich und tragen Zelladhäsionsmoleküle und Chemokinrezeptoren. Im lymphatischen Gewebe werden sie von Chemokinen (u.a. CCL19) angelockt und dringen über die Wände der hochendothelialen Venolen (HEV) in die T-Zell-Zonen der Lymphknoten ein. Von funktioneller Bedeutung ist hierfür der Chemokinrezeptor 7 (CCR7), der CCL19 bindet. L-Selektin (CD62L) bewirkt die Zelladhäsion am Endothel der HEV. Im Zusammenspiel mit weiteren Integrinen ermöglicht dies die Leukodiapedese [3].

In der parakortikalen Zone des Lymphknotens treffen die T-Zellen auf Antigenpräsentierende Zellen (APC).

Nicht aktivierte, naive T-Zellen zirkulieren permanent zwischen lymphatischen Geweben und peripherem Blut [4, 5]. Dabei detektieren sie mit hoher Effizienz die Antigenpräsentation der APC. Erkennt eine T-Zelle ihr T-Zell-Rezeptor (TCR) Epitop auf dem MHC-Molekül einer APC, wird sie aktiviert, differenziert und übernimmt spezifische Abwehrfunktionen.

Dieser als Priming bezeichnete Vorgang ist weitaus komplizierter und erfordert insgesamt das Vorhandensein dreier spezifischer Signale [6]. Die gereifte APC präsentiert nicht nur die antigene Struktur (Signal eins) – sie exprimiert außerdem kostimulierende Moleküle (Signal zwei) und sezerniert ein spezifisches Zytokinmilieu (Signal drei) [7].

Die antigenspezifische T-Zell-Rezeptor-Interaktion (Signal eins) führt zur Aktivierung zahlreicher intrazellulärer Signalkaskaden. Für die klonale Expansion und das Überleben der aktivierten T-Zelle ist die Wechselwirkung von CD28 (Signal zwei) mit B7 Molekülen der APC elementar. Die CD28-Kostimulation induziert über vermehrte Interleukin (IL)-2 Synthese und das Exprimieren von IL-2-Rezeptor (CD25) autokrines Wachstum und Proliferation. Ohne CD28 Stimulation kann die T-Zelle nicht in die G1 Phase eintreten und wird anerg [6]. Vermittelt über Toll-ähnliche Rezeptoren oder andere spezifische Erkennungsmechanismen, lenkt die APC mit der Sekretion definierter Zytokine (Signal drei) die Richtung der weiteren T-Zell Differenzierung (siehe 1.1.2.).

1.1.2. T-Zell Subpopulationen

Die T-Zell Differenzierung ist verbunden mit der Ausbildung unterschiedlicher Funktionseinheiten in Form von T-Zell Subpopulationen.

Naive T-Zellen nehmen den größten Anteil der Subpopulationen ein. Sie exprimieren CD45RA, sowie CCR7, das ins lymphatische Gewebe navigiert, und das Kostimulationsmolekül CD28. CD31, ein Glykoprotein das zur Zelladhäsion dient, exprimieren naive T-Zellen, die erst kürzlich den Thymus verlassen haben. Diese im Englischen als recent thymic emigrants bezeichneten CD31+Zellen

stellen die Thymusreserve dar, d.h. dessen Fähigkeit neue naive T-Lymphozyten auszubilden [8]. CD27 ist ähnlich wie CD28 ein kostimulierender Rezeptor, der nach TCR Aktivierung auf der Oberfläche von naiven T-Zellen hochexprimiert wird. Im Zuge der Zelldifferenzierung wird die CD27-Expression herunterreguliert [9].

Naive Zellen differenzieren nach Aktivierung zu kurzlebigen, hochaktiven Zytokin produzierenden T-Effektorzellen. Um zielgerichtet zum inflammatorischen Fokus zu gelangen, exprimieren sie Chemokin- und Homingrezeptoren.

T-Gedächtniszellen sichern die dauerhafte Immunität. Sie können sowohl direkt aus naiven Zellen, als auch aus Effektorzellen hervorgehen [6].

T-Gedächtniszellen haben nur eine geringe unmittelbare Effektorfunktion aber hohes proliferatives Potential bei erneutem Antigenkontakt. Ihre Langlebigkeit erfordert permanente Stimulation durch Selbst-Peptid MHC Interaktionen sowie IL-7 und IL-15 [6].

Man unterteilt T-Gedächtniszellen in zentrale T-Gedächtniszellen (T central memory cells/Tcm) und Effektor T-Gedächtniszellen (T effector memory cells/Tem) [10]. Die CCR7 exprimierenden Tcm rezirkulieren zum lymphatischen Gewebe. Sie reagieren sehr empfindlich auf T-Zell-Rezeptor-Aktivierung und interagieren über CD40L-Expression effizient mit B-Zellen. Ihre Zytokinproduktion erfolgt nach Antigenkontakt erst spät [6].

CCR7 negative Tem können nach erneuter Antigenexposition schneller proliferieren und Effektoreigenschaften erlangen. Sie haben eine niedrige Aktivierungsschwelle und produzieren große Mengen an Zytokinen. Durch den Verlust von CD62L und CCR7 zirkulieren sie vermehrt in der Körperperipherie und exprimieren Endothelspezifische Homingrezeptoren (VLA-4, LFA-1) [6], [11].

Die Kenntnisse um die spezifische Oberflächenexpression von differenzierten T-Zellen sind Gegenstand der aktuellen Forschung. Ziel ist es, die phänotypischen Eigenschaften mit den zelltypischen Funktionen zu verbinden, um letztlich die T-Zell Subpopulationen exakt beschreiben zu können. In Abbildung 1 sind die im Folgenden genannten Diskriminationsmarker graphisch dargestellt.

3

Etablierte Marker sind die Isoformen von CD45. Die membranständige Tyrosinphosphatase ist an der Signaltransduktion der Zellaktivierung beteiligt. Naive Zellen exprimieren CD45RA in hochmolekularer Form. Antigenerfahrene Zellen exprimieren die kleinere Splicing-Variante CD45RO, die mit dem TCR-Komplex assoziiert vorliegt und eine effizientere Signalübertragung ermöglicht [12, 13].

CCR7 ist ein Chemokinrezeptor u.a. für CCL19 und vermittelt das Homing ins lymphatische Gewebe. T-Zellen mit Effektorfunktion regulieren die CCR7-Expression herunter [10]. CD28 ist für naive Zellen elementarer Kostimulator (Signal zwei). Antigenerfahrene Zellen können unabhängig von kostimulatorischen Wechselwirkungen proliferieren [14].

Abbildung 1: Phänotyp definierende Marker und funktionale Attribuierung (modifiziert nach [15]). Im vorliegenden Schaubild sind Oberflächenmarker und Zytokinproduktion im zeitlichen Verlauf der T-Zell Differenzierung dargestellt.

Naive T-Zellen exprimieren CD45RA, sowie CCR7, das ins lymphatische Gewebe navigiert, und das Kostimulationsmolekül CD28. Mit zunehmender Antigenerfahrung verändert sich die Oberflächenexpression dieser Moleküle. Zentrale T-Gedächtniszellen exprimieren CD45RO. Effektor T-Gedächtniszellen reduzieren die CCR7-Expression und zirkulieren vermehrt in der Peripherie. Differenzierte T-Effektorzellen sind aktive Zytokinproduzenten. Das kostimulierende CD28 ist bei ihnen herunterreguliert. Hochentwickelte T-Effektorzellen reexprimieren die CD45 Isoform RA (T effector memory RA, TEMRA).

Mit zunehmender Antigenerfahrung verkürzt sich auf Grund der zellulären Replikation die Telomerlänge (schwarzer Balken), verändert sich die Oberflächenexpression (mittlere Reihe) und Zytokinproduktion (unterste Reihe).

1.1.3. T-Helferzellen

CD4 positive T-Helferzellen (Th) halten eine dirigierende Funktion der Immunantwort inne [2]. Sie verstärken das angeborene Immunsystem spezifisch und rekrutieren die benötigten Zellen zum Ort der Entzündung. CD4+ T-Helferzellen verfügen über ein variables Repertoire an Effektoraktivitäten. Sie werden nur von MHC II Molekülen von professionellen APC aktiviert, nicht aber wie CD8 positive zytotoxische Zellen von MHC I Molekülen. Der APC kommt eine entscheidende Bedeutung in der Differenzierung zum spezifischen T-Helfer-Subtyp bei. Das Zytokinmilieu (Signal drei), welches die APC Pathogen abhängig sezerniert, determiniert die Entwicklung zu Th1-, Th2- oder Th17-Zellen [6].

Die Differenzierung zum spezifischen Effektorsubtyp hat grundlegende Auswirkung auf die Immunantwort.

Die Differenzierung zu Th1 und Th2 ist am besten untersucht [16]. Th1-Zellen produzieren vor allem die Zytokine INFγ und TNFα und wirken bei der Bekämpfung von intrazellulären Pathogenen und Viren. Sie vermitteln zusammen mit zytotoxischen T-Zellen die zelluläre Immunität, aktivieren Makrophagen und leiten B-Zellen zur Produktion von Antikörpern an. Pathologisch sind sie bei vielen T-Zell-mediierten Autoimmunerkrankungen und inflammatorischen Erkrankungen beteiligt.

Th2 Zellen unterstützen die B-Zell-Proliferation und steuern die Immunantwort gegen parasitäre Erreger, wie z. B. Helminthen. Weiterhin haben sie Einfluss auf den Antikörper Klassenwechsel zu IgA und IgE. Ihr charakterisierendes Zytokin ist IL-4. Th2-Zellen sind bei Krankheiten allergischer Genese und bestimmten autoinflammatorischen Erkrankungen pathologisch beteiligt.

Th17-Zellen sind neben Th1 und Th2 eine in jüngster Zeit beschriebene Untergruppe der T-Helfer Zellreihe. Sie sind durch die Produktion des Zytokins IL-17 charakterisiert und an der Abwehr von extrazellulären Erregern und Pilzen beteiligt [17]. Th17-Zellen sind in der frühen Phase der Infektion für die Mobilisierung von Neutrophilen wichtig [18]. Pathologisch sind Th17 Zellen bei vielen Autoimmunphänomenen und inflammatorischen Erkrankungen beteiligt.

Zu den T-Helferzellen gehören auch die regulatorischen T-Zellen (Treg). Sie sind durch die Produktion von IL-10 charakterisiert und haben supprimierende Eigenschaften, die eine überschießende Immunantwort unterdrücken können [19]. Man unterscheidet im Thymus gereifte natürliche Tregs von peripheren naiven T-Zellen, die induziert durch IL-2 und TGFβ immunsuppressive Eigenschaften erlangen und als induzierte Tregs bezeichnet werden [20].

Abbildung 2 zeigt das komplexe Zusammenspiel der verschiedenen T-Helferzellen mit Zellen des angeborenen Immunsystems sowie B-Zellen. Tabelle 1 zeigt die Eigenschaften der T-Helferzellen im Überblick.

Abbildung 2: Spezifische Effektorfunktion von T-Helferzellen (modifiziert nach [21]). Die Abbildung veranschaulicht die spezifischen T-Zell Interaktionen mit Zellen des angeborenen sowie des erworbenen Immunsystems. Es zeigt, wie Th1 Zellen über Makrophagenaktivierung die zelluläre Immunantwort vermitteln. Th2 Zellen mobilisieren Mastzellen, Eosinophile und Basophile zur Abwehr von Würmern, und Th17 Zellen rekrutieren Neutrophile. Alle T-Helferzellen haben zudem Einfluss auf B-Zellen, die die humorale Immunantwort vermitteln.

	Leitzytokin	Stimulation durch	Transkriptions- faktor	Interaktion mit	Abwehr von
Th1	INFγ TNFα	IL-12 INEv	T-bet	Makrophagen B-Zellen	Intrazellulären Erregern
		ii vi y		D Zenen	Viren, Protozoen
Th2	IL-4	IL-4	Gata3	B-Zellen	Extrazellulären
	IL-5			Eosinophilen	Erregern,
	IL-13			Mastzellen	Parasiten
Th17	IL-17	IL-6	RORyt	Neutrophilen	Extrazellulären
	IL-23	IL-23		-	Erregern,
		TGFβ			Pilzen
Treg	IL-10	TGFβ	FoxP3	T-Zellen, APC	Überschießender
	TGFβ	IL-2			Inflammation und
					Regulation von
					Immunantworten

Tabelle 1: Charakterisierende Eigenschaften der T-Helferzellen im Überblick.

Das Signal zur Differenzierung der T-Zelle erfolgt durch das Zusammenspiel von TCR-Aktivierung, Kostimulation und Zytokinrezeptorbindung, die vom angeborenen Immunsystem vermittelt werden. Als spezifische Reaktion auf das Pathogen exprimiert die gereifte APC vermehrt B7-Moleküle (Gegenstück zu CD28 auf naiven T-Zellen) und determiniert mit dem sezernierten Zytokinmilieu den Effektortyp der gereiften T-Helferzelle [6].

Die spezifische Zytokinrezeptorbindung führt zur Aktivierung von intrazellulären Janus-Kinasen, die durch Phosphorylierung signal transducer and activator of transcriptions (STATs) aktivieren. Diese STATs translozieren zum Zellkern, wo sie wiederum spezifische Transkriptionsfaktoren aktivieren [22]. Die Transkriptionsfaktoren binden im Zellkern an cis-regulatorische Elemente (Promoter, Enhancer, Silencer). Auf diese Weise wird das nachfolgende Transkriptionsprogramm reguliert und die Zelleigenschaften wie Phänotyp und Zytokinprofil definiert [23].

Die Zellpfade für die Differenzierung zu Th1, Th2, Th17 und Treg sind zum größten Teil bekannt. Abbildung 3 veranschaulicht die im Folgenden beschriebenen Signalwege.

Th1-Zellen differenzieren sich durch IL-12 und INFy über STAT1 Aktivierung und der Expression des Transkriptionsfaktors T-bet [24]. Die Th2-Signale IL-4 und IL-5 führen Aktivierung Hochregulation zur von STAT6 und des Transkriptionsfaktors Gata3 [25]. Die Differenzierung zu Th17-Zellen wird durch IL-6 und TGFβ mittels STAT3 Aktivierung und der Expression von retinoic acid orphan receptor gamma t (RORyt) angetrieben [26]. Tregs benötigen TGFβ zur Aktivierung von STAT5 und der Expression des Transkriptionsfaktors forkhead box P3 (FoxP3) [27].

Abbildung 3: Intrazelluläre Signalpfade der Differenzierung naiver T-Helferzellen. Die Abbildung veranschaulicht die intrazelluläre Signaltransduktion nach T-Zell Aktivierung. Die T-Helferzelle (im Kreis oben) differenziert als Reaktion auf das sie umgebende Zytokinmilieu (Pfeile) mit spezifischer STAT-Aktivierung (Kreismitte) sowie Transkriptionsfaktor-Expression (im Kreis unten).

1.1.4. T-Zell Plastizität

Naive T-Helferzellen (Th0) differenzieren sich in Folge von TCR-Interaktion und dem Einfluss von Signal 2 und 3 wie unter 1.1.1. beschrieben in die Subtypen Th1, Th2, Th17 und Treg. Anfangs ging man davon aus, dass diese Differenzierung zu einem stabilen Phänotyp und Zytokinprofil führe [28]. Die Zytokinproduktion von INFγ und IL-4, wie auch die Expression der Transkritptionsfaktoren T-bet und Gata3 sind negativ rückgekoppelt [29], so dass sich Th1 und Th2 Zelldifferenzierung gegenseitig kontrollieren. Auch die Tregund Th17-Differenzierungspfade blockieren sich. Die FoxP3 und RORyt-Expression ist gegensätzlich aktiv [30]. Diese kontrollierenden Zusammenhänge ließen vermuten, dass sich T-Helferzellen unidirektional ausdifferenzieren.

In vitro und in murinen Experimenten konnte jedoch gezeigt werden, dass T-Helferzellen unter spezifischen Voraussetzungen durchaus plastisch sind und ihre phänotypischen Eigenschaften erweitern oder verändern können [31]. Th17-Zellen stellen sich besonders instabil dar [32]. Sie können mit Zytokinstimulation zu Th1 (INFγ-Produktion) [33] oder Th2 (IL-4 Produktion) [34] polarisiert werden. Zwischen Th1 und Th17 fand man Phänotypen, die sowohl INFγ als auch IL-17 produzieren [35]. Auch IL-17 produzierende Tregs und IL-10 produzierende Th17-Zellen sind bekannt [30]. Prinzipiell sind Phänotypwechsel zwischen allen T-Helferzell-Typen denkbar. Ob diese Multifunktionalität für den Organismus von Vorteil oder Nachteil ist, wird aktuell untersucht. Die Mechanismen, die zur T-Zell Plastizität führen, sind vielfältig. Eine große Rolle wird dem Zytokinmilieu beigemessen, dem die Zellen ausgesetzt sind. Weiterhin diskutiert man, ob Zellen in relativ frühen Differenzierungszuständen flexibler sind als ausreifte T-Zellen [36]. Entscheidend beeinflusst auch die Transkriptionsfaktor-Aktivität die Differenzierung der einzelnen T-Zelle. Dabei ist unklar, ob es um die quantitative Expression des Transkiptionsfaktors geht oder auch dessen epigenetischer Methylierungszustand die Transkription beeinflusst [37].

In jüngster Zeit fand man heraus, dass Methylierung von spezifischen Histonen Effekte auf die Gentranskription hat [38]. In Th1-Zellen war der INFy-Lokus permissiv methyliert, bei Th2 Zellen, der IL-4-Lokus und bei Th17 der IL-17-Lokus. Die entsprechenden antagonistischen Genloki waren suppressiv methyliert. Weiterhin ist bekannt, dass die T-Helfer-Subtypen grundsätzlich über Transkriptionsfaktoren alle verfügen, jedoch mit unterschiedlichem Aktivierungsstatus [38]. Eine epigenetische Veränderung der Transkriptionsfaktoren könnte somit zur beschriebenen Plastizität führen.

Ein Gleichgewicht zwischen den einzelnen T-Helfer-Subtypen ist von enormer Bedeutung, weiß man heute, dass ein Überwiegen von Th2 zum atopischen Syndrom, zu Allergien und Asthma [39], ein Th1-Übergewicht zu organspezifischen Autoimmunerkrankungen wie Typ-1-Diabetes mellitus [40], Psoriasis [41] oder Multiple Sklerose [42] disponiert. Abbildung 4 zeigt exemplarisch wie Infektionen mit Viren oder Helminthen sowie das spezifische Zytokinmilieu (APC) die Polarisation der Effektorzelle begünstigen.

9

Abbildung 4: Polarisierung durch Zytokine und Plastizität des Phänotyps (modifiziert nach [43]). Das Schaubild zeigt die potentielle Polarisation der Effektorzelle auf Grund von äußeren Reizen (rote Blitze). Die Pfeile (hellblau) stellen die möglichen Phänotypveränderungen dar. Abhängig vom eingedrungenen Pathogen verändert sich das Zytokinmileu. Als Folge verändern differenzierte Zellen ihren Phänotyp.

1.1.5. Th17-Zellen

Im Folgenden soll auf die phänotypischen Eigenschaften der Th17-Zellreihe näher eingegangen werden:

Der Transkriptionsfaktor RORyt ist Hauptregulator der Th17-Zellen [44]. Wichtig für die Differenzierung von naiven Zellen zu Th17 sind spezifische Zytokinstimuli (IL-1, IL-6, IL-21, IL-23 und TGF β) [45], wobei IL-6 eine Schlüsselrolle zukommt. Neben den Rezeptoren für Zytokine finden sich auf der Oberfläche von Th17-Zellen auch Chemokinrezeptoren. Vor allem der CCR6-Rezeptor wird hochexprimiert [46] und gilt als Marker für Th17-Zellen. IL-17 induziert die

Produktion von CCL20, dem Ligand von CCR6 [47]. Auf diesem Weg werden weitere Th17-Zellen, die CCR6 exprimieren, autokrin angelockt [47].

CD161, ein Glykoprotein, das man vor allem auch auf zirkulierenden Natürlichen Killerzellen findet, wird ebenso als Marker für Th17-Zellen diskutiert [48]. Es soll instabile Th17-Zellen beschreiben mit proinflammatorischen Eigenschaften [49]. Die physiologische Rolle von Th17-Zellen wird in der Bekämpfung von extrazellulären Bakterien und Pilzen gesehen [50], [51].

Einer der Haupteffekte von IL-17 ist die Neutrophilen Rekrutierung. Fibroblasten, Epithel- und Endothelzellen werden durch IL-17 zur vermehrten Produktion von Granulozyten-Kolonie stimulierenden Faktor (G-CSF) sowie IL-6 und IL-8 angeregt, wodurch in hohem Maß Neutrophile gebildet, aktiviert und rekrutiert werden [52], [53]. Neben der Mobilisierung von Neutrophilen ist IL-17 auf vielfältige Weise proinflammatorisch aktiv. Es induziert in Fibroblasten die Bildung von Entzündungsmediatoren wie Prostaglandin E2 [53] und Komplement C3 sowie von Adhäsionsmolekülen (ICAM-1) [54] und Matrixmetalloproteinasen [55]. In Chondrozyten wird die Cyclooxygenase und die induzierbaren NO-Synthase aktiviert [56].

Th17-Zellen schreibt man wegen dieser proinflammatorischen Potenz eine entscheidende Rolle in chronischen Autoimmunprozessen zu [57]. Ihre immunopathologische Bedeutung in entzündlichen Gelenk-, Haut- und Darmerkrankungen steht im Fokus aktueller Studien. Einige für diese Arbeit relevante Erkenntnisse zum Einfluss der Th17-Zellen auf die JIA werden unter 1.2.3. diskutiert.

1.2. Juvenile idiopathische Arthritis

Die Juvenile idiopathische Arthritis (JIA) ist die häufigste Autoimmunerkrankung im Kindesalter und ein Überbegriff für eine heterogene Gruppe von Subtypen mit destruierender Entzündung im Bewegungsapparat.

Diagnosekriterien sind eine mindestens sechs-wöchige Beschwerdedauer und der Krankheitsbeginn vor dem 16. Lebensjahr [58]. Andere Ursachen, wie eine Gelenkinfektion oder reaktive Arthritis, müssen ausgeschlossen werden.

Laut klinisch-gesicherten Daten und Populationsstudien liegt die Prävalenz der JIA bei 20-30 / 100 000 Kinder und die Inzidenz bei 500-1000 Neuerkrankungen pro Jahr [59], [60].

1.2.1. Subtypen der JIA

Die International League of Associations for Rheumatology (ILAR) unterscheidet sieben JIA-Subtypen mit unterschiedlichem Verlauf, Prognose und klinischer Manifestation [58].

Die Ätiologie der Subtypen ist heterogen. So geht man bei der systemischen Form der JIA (M. Still) von einer autoinflammatorischen Pathogenese aus [61] und einer Assoziation zum Makrophagenaktivierungssyndrom [62]. Andererseits gehören die Subtypen Psoriasis-JIA und Enthesitis-assoziierte-JIA zum Formenkreis der HLA-B27 assoziierten Spondylarthritiden. Diese unterscheiden sich vom häufigsten Subtyp, der frühkindlichen Oligoarthritis [63], [64].

Internationale epidemiologische Studien wurde zur Subtypenverteilung der JIA unternommen [65]. Die oligoarthritische JIA kommt am häufigsten vor, während die Polyarthritis, die Psoriasis- und Enthesitis-assoziierte JIA, sowie die systemische Form geringere Anteile der Verteilung einnehmen. Das weibliche Geschlecht ist häufiger von der Oligoarthritis betroffen und weist einen früheren Krankheitsbeginn auf. Bei der Enthesitis-assoziierten JIA ist häufiger das männliche Geschlecht betroffen bei insgesamt späterem Krankheitsbeginn. In sind die Einund Ausschlusskriterien Tabelle 2 sowie die JIA-Subtypenhäufigkeiten im Detail aufgeführt.

	Definition		
Subtypen	Demition	schluss-	keiten
		kriterien	
Systemische Arthritis (Still- Syndrom)	Arthritis mit oder ohne vorhergehendes Fieber von mind. 2 Wochen Dauer und begleitet von mind. einem der folgenden Kriterien: • wechselnde rötliche Exantheme • generalisierte Lymphknotenschwellungen • Hepatomegalie und/oder Splenomegalie	a, b, c, d	14-17%
	Serositis		
<u>Oligoarthritis</u>	 Arthritis, die 1–4 Gelenke während der ersten 6 Krankheitsmonate betrifft. Subklassifikationen: <u>persistierende</u> Oligoarthritis: nicht mehr als 4 Gelenke während des Krankheitsverlaufs betroffen <u>erweiterte</u> Oligoarthritis: mehr als 4 Gelenke nach den ersten 6 Monaten des Krankheitsverlaufs betroffen 	a, b, c, d, e	27-56%
Seronegative	Arthritis, bei der während der ersten 6 Krankheitsmonate	a, b, c,	11-28%
Polyarthritis	5 oder mehr Gelenke betroffen sind (Rheumafaktor negativ)	d, e	
<u>Seropositive</u> <u>Polyarthritis</u>	 Arthritis, bei der während der ersten 6 Krankheitsmonate 5 oder mehr Gelenke betroffen sind; 2 oder mehr Tests für Rheumafaktor im Abstand von mindestens 3 Monaten während der ersten 6 Krankheitsmonate sind positiv 	a, b, c, e	2-7%
<u>Psoriasis-</u> <u>Arthritis</u>	 Arthritis und Psoriasis oder Arthritis und mind. 2 der folgenden Kriterien: Daktylitis Nagelauffälligkeiten (Lochfraß, Tüpfelung, Onycholyse) Psoriasis bei einem Verwandten 1. Grades 	b, c, d, e	2-11%
<u>Enthesitis-</u> <u>assoziierte</u> <u>Arthritis</u>	 Arthritis und Enthesitis oder Arthritis oder Enthesitis mit mind. 2 der folgenden Kriterien: sakroiliakaler Gelenksschmerz oder entzündlicher lumbosakraler Schmerz HLA-B27 positiv Beginn der Arthritis bei einem Jungen über 6 Jahre Akute (symptomatische) anteriore Uveitis Ankylosierende Spondylitis, Enthesitis-assoziierte Arthritis, Sakroiliitis bei entzündlicher Darmerkrankung, Reiter-Syndrom oder akute anteriore Uveitis bei einem Verwandten 1. Grades 	a, d, e	3-11%
<u>Nicht-</u> <u>klassifizier-</u> <u>bare</u> <u>Arthritis</u>	Arthritis, die nicht eindeutig in die aufgeführten Kategorien einzuordnen ist		11-21%
Ausschlusskr a. Ärztlich gesi einem Verwan b. HLA-B27-po	iterien cherte Psoriasis oder Psoriasis in der Patientenanamnese o dten 1. Grades sitiv, männlich und älter als 6 Jahre	oder bei	

Tabelle 2: ILAR Klassifikation der JIA: Second Revision, Edmonton 2011 (modifiziert nach [58]).

b. HLA-B27-positiv, männlich und älter als 6 Jahre c. Ankylosierende Spondylitis, Enthesitis-assoziierte Arthritis, Sakroiliitis bei chronisch-entzündlicher Darmerkrankung, Reiter-Syndrom oder akute anteriore Uveitis, aktuell oder anamnestisch, bei einem Verwandten 1. Grades d. IgM-Rheumafaktor wiederholt nachweisbar im Abstand von zumindest 3 Monaten e. Systemische JIA

1.2.2. Ätiopathogenese der JIA

Die Ursache der JIA ist bisher nicht bekannt. Es wird jedoch ein multifaktorielles Geschehen auf Basis einer genetischen Disposition diskutiert [66]. Histopathologisch stellt sich die Gelenkentzündung durch ein Zellinfiltrat von B-Zellen, Makrophagen, Dendritischen Zellen und prädominierend T-Lymphozyten dar [67]. Einige Arbeiten haben gezeigt, dass darunter Th1 Zellen vorherrschend seien [68]. Die neuesten Erkenntnisse zeigen aber, dass die Autoaggression am ehesten durch ein Zusammenspiel von verschiedenen proentzündlichen Prozessen entsteht und stellen Th17-Zellen in den Mittelpunkt [47, 69, 70].

In der Vergangenheit wurden Kollagen-induzierte Arthritis (engl. CIA) Mausmodell-Experimente mit IL-12 durchgeführt und die dadurch induzierte Arthritis, den IL-12 produzierenden Th1 Zellen zugeschrieben. Seitdem die Struktur von IL-12 mit den beiden Untereinheiten p40 und p35 bekannt ist [71], wird der arthritogene Effekt nur noch p40 zugeordnet. Heute weiß man, dass p40 zusammen mit p19 IL-23 bilden und dieses für die Pathogenese der Arthritis entscheidend ist. IL-23 ist ein autokriner Verstärker der Th17-Antwort und führt zur Proliferation und Stabilisierung von Th17-Zellen. CIA-Mausmodell-Experimente zeigten, dass p19-, sowie IL-17A-Knockout-Mäuse nur sehr milde Arthritis-Verläufe entwickeln konnten [72], [73]. Diese Ergebnisse sprechen für eine Th17 abhängige Pathogenese. Auch in vivo konnten erhöhte synoviale IL-17 Konzentrationen bei Patienten mit rheumatoider Arthritis nachgewiesen werden [70]. IL-17 hat direkten Einfluss auf Synoviozyten, Chrondrozyten und Osteoblasten (siehe Abbildung 5). Diese bewirken den Proteoglykan- und Kollagenabbau im Zusammen mit Gelenk [74]. einer vermehrten Osteoklastenaktivierung [75] und der Bildung von lytischen Enzymen und Matrixmetalloproteasen [55] kommt es zu Knorpelerosion und irreversibler Knochendestruktion (siehe Abbildung 5).

14

Abbildung 5: Effekte von IL-17 in der Arthritis-Pathogenese (modifiziert nach [76]). Die Abbildung zeigt die Effekte von IL-17 auf Osteoblasten, Chrondrozyten und Synoviozten, die in der Summe zu Gelenkdestruktion und Gewebeschaden führen.

Th17-Zellen exprimieren in hohem Maß den Chemokinrezeptor 6 (CCR6) [47]. In entzündeter Synovia wird wiederum der CCR6-Ligand CCL20 vermehrt exprimiert [77], was weitere Th17-Zellen chemotaktisch zum Entzündungsort führt.

CCR6-Expression ist durch RORyt induzierbar. Vektor-transduziertes RORyt-Genmaterial führte in T Zellen zur vermehrten CCR6-Expression [47].

In der JIA ist eine gesteigerte IL-17 Produktion der synovialen Th17-Zellen bereits beschrieben [78]. Die Autoren berichteten von linearer Abhängigkeit von schweren Krankheitsverläufen und hohen IL-17 Konzentrationen. Weiterhin zeigte sich, dass die IL-17 produzierenden Zellen im Gelenk CCR6 exprimieren [47].

1.2.3. Remissionskriterien und Krankheitsaktivitäts-Score

Um die aktuelle Krankheitsaktivität und das Erreichen des Therapieziels zu bewerten, mussten standardisierte Messinstrumente sowie Zustandsdefinitionen etabliert werden. Die Kriterien für inaktive Erkrankung und Remission nach Wallace [79] finden in der internationalen Praxis Verwendung. Inaktiv darf ein Verlauf bezeichnet werden, nach

- Ausschluss von Arthritis und Morgensteifigkeit
- Ausschluss von Fieber, Exanthem, Serositis, Splenomegalie, generalisierter Lymphadenopathie, Uveitis
- nicht pathologisch erhöhter Blutsenkungsgeschwindigkeit/C-reaktives Protein (BSG/CRP)
- bestmöglicher Globalbewertung durch den Arzt

Remission ist definiert als inaktive Erkrankung ohne Medikation über einen Zeitraum von zwölf Monaten. Remission unter Medikation muss die Inaktivitätskriterien über einen Zeitraum von sechs Monaten erfüllen.

Um die klinische Krankheitsaktivität zu quantifizieren, hat sich der JADAS (Juvenile Arthritis Disease Activity Score) als valide erwiesen [80]. Der Score berechnet sich als Summe seiner vier Komponenten, die sich wie folgt zusammensetzten:

- Globalbewertung der Krankheitsaktivität durch den Arzt (VAS)
- Globalbewertung des Wohlbefindens durch den Patienten/die Eltern (VAS)
- BSG
- Anzahl der Gelenke mit aktiver Arthritis

1.2.4. Therapieregime der JIA

Die Therapie der JIA erzielt in einem multimodalen Ansatz aus medikamentöser Therapie, spezifischer Physio- und Ergotherapie sowie evtl. psychosozialer Mitbetreuung die höchsten Erfolgsraten. Die Koordination der Therapie sollte von einem erfahrenen Kinderrheumatologen übernommen werden.

In der medikamentösen Therapie der JIA kommen in Abhängigkeit vom Krankheitsverlauf nichtsteroidale Antirheumatika (NSAR), Basistherapeutika, Glukokortikoide und seit einigen Jahren auch Biologika zum Einsatz. Ein

frühzeitiger Therapiebeginn hat prognostische Relevanz. Das leitliniengerechte Therapieregime ist für jeden Subtyp unterschiedlich [81].

Bei der ersten Stufe der Behandlung der JIA kommen zunächst NSAR zum Einsatz (für Kinder zugelassen: Ibuprofen, Diclofenac, Naproxen und Indometacin). Die Cyclooxygenase hemmenden NSAR vermindern die Synthese von wichtigen Mediatoren (Prostaglandine, Thromboxane) der Entzündungsreaktion.

Bei andauernd aktiver Oligoarthritis, Polyarthritis, destruktiven Veränderungen und schwerer Uveitis wird die Therapie um Basistherapeutika erweitert. Goldstandard ist hier Methotrexat. Der Folsäureantagonist Methotrexat (MTX) wirkt antiproliferativ auf Lymphozyten und reduziert zudem Adenosinrezeptor abhängig die Zytokinsynthese [82, 83]. Alternativ werden Azathioprin, Sufasalazin (v.a. bei Enthesitis-assoziierte Arthritis), (Hydroxy-)Chloroquin (v.a. bei Oligoarthritis) eingesetzt. Die Basistherapeutika haben eine bekannte Wirklatenz.

Zur Überbrückung, aber auch im akuten Schub, werden häufig Glukokortikoide verwendet. Glukokortikoide binden an intrazelluläre Rezeptoren, wie NF-kB, und beeinflussen im Zellkern der Leukozyten die Synthese zahlreicher Proteine, die den Entzündungsprozess unterhalten [84]. Die hochdosierte systemische Therapie wird meist als kurzzeitige Stoßtherapie durchgeführt. Bevorzugt sollten Glukokortikoide lokal als intraartikuläre Injektion zum Einsatz kommen.

Seit einigen Jahren werden therapeutisch auch vermehrt Biologika eingesetzt. Sie sind indiziert bei unzureichender Wirksamkeit von NSAR, intraartikulärer Steroidapplikation und fehlendem Ansprechen/Unverträglichkeit auf MTX [81].

TNFα-Blocker wirken über eine verminderte biologische Aktivität des potenten Entzündungsmediators Tumornekrosefaktor α, dessen Rezeptor nahezu alle Körperzellen konstitutiv exprimieren. Damit wird die Entzündungskaskade mit Ausschüttung von Akute-Phase-Proteinen und Hormonen sowie der Aktivierung von NF-κB an einem sehr frühen Punkt unterbrochen [85].

Bei der Oligo- und Polyarthritis kommen v.a. TNF α -Blocker (Etanercept, Adalimumab) [86, 87] und in schweren Fällen Kostimulationsantagonisten (Abatacept) [88] zum Einsatz, während sich bei der systemischen Form IL-1 β -Rezeptor- (Anakinra) [89], IL-1 β - (Canakinumab) und IL-6-Rezeptor- (Tocilizumab) [90] Antagonisten als wirksam erwiesen haben.

1.3. Zielsetzung und Fragestellung

Th17-Zellen scheinen in der Pathogenese der Juvenilen idiopathischen Arthritis (JIA) bei der Entstehung und Perpetuation der Inflammation eine bedeutende Rolle zu spielen [78]. Th17-Zellen erwiesen sich allerdings als sehr plastische Population, die durch verschiedene Zytokinstimuli in funktionell unterschiedliche T-Helferzellen polarisiert werden kann [32, 33]. Obwohl die Rolle der Th17-Zellen in der JIA mittlerweile unumstritten ist, fehlt bisher eine genauere Untersuchung der Proportionen von Th17-Zellen im peripheren Blut von JIA Patienten und eine Charakterisierung dieser Zellen nach JIA Klassifikationstyp, Krankheitsaktivität und Therapieregime.

Aus diesem Grund wurden für die vorliegende Arbeit folgende Ziele formuliert:

- Phänotypische Charakterisierung der T-Zell-Subpopulationen (nach Oberflächenmarkern, Transkriptionsfaktoren und intrazellulärer Zytokinproduktion) mit Analyse von Unterschieden zwischen JIA Patienten und gesunden Kontrollprobanden.
- Analyse der Proportionen der peripheren T-Zell-Subpopulationen in JIA bei Remission und bei aktiver Krankheit.

Die Polarisierbarkeit von verschiedenen T-Zell-Subpopulationen ist ein vieldiskutiertes Phänomen, in dessen Mittelpunkt die Frage nach dem Einfluss des umgebenden Zytokinmilieus steht [43]. Es zeigte sich, dass T-Helferzellen in JIA Patienten bei Krankheitsaktivität vermehrt CCR6 exprimieren, den Transkriptionsfaktor RORyt hochregulieren und IL-17 produzieren. Warum diese Population proliferiert und welche Rolle dabei regulatorische T-Zellen spielen, ist unklar. Aus diesem Grund wurde als Weiterführung der Querschnittsanalyse ein experimenteller Teil mit folgendem Ziel angeschlossen:

- Charakterisierung von CCR6+ Th17-Zellen in JIA Patienten mit akuter Krankheitsaktivität und Vergleich mit gesunden Kontrollprobanden.
- Etablierung eines Protokolls zur Polarisierung von CCR6+ T-Zellen in Richtung Th1, Th17 und Treg Phänotyp.

Von Interesse ist dabei, durch welchen Stimulus und in welchem Ausmaß die möglicherweise instabilen Th-Subtypen einen pathologischen Differenzierungsweg einschlagen.

2. Material und Methoden

Im Folgenden finden sich eine Auflistung der verwendeten Materialien mit Herstellerangaben, sowie eine ausführliche Beschreibung der angewandten experimentellen Methoden und der statistischen Tests.

2.1. Material

2.1.1. Geräte

	Handelsname	Hersteller	Lot. Nr.
Mikroskop	Phase Contrast LWD o52	Nikon, Tokio, Japan	132485
Inkubator	Nuaire IR Autoflow, CO2 Water Jacketed Incubator	Varolab, Gießen, Deutschland	995022
Sterilbank	Gelaire BSBS 6A	Flow Laboratories GmbH, Meckenheim, Deutschland	11031
Zentrifuge	Universal 32R	Hettich Zentrifugen, Tuttlingen, D	1610
	Rotanta/K	Hettich Zentrifugen, Tuttlingen, D	
	Rotixa/P	Hettich Zentrifugen, Tuttlingen, D	
Waage		Denver Instrument, Bohemia, USA	3001428
Kühlschrank	Comfort -20C°	Liebherr, Bulle, CH	
	Hera Freeze -80°	Thermo Fisher, Langenselbold, D	1013508
Flowzytometer	FACS Canto II	BD Biosciences, Franklin Lakes, NJ, USA	
	FACS Calibur	BD Biosciences, Franklin Lakes, NJ, USA	
	FACS Round-Bottom Tubes 5ml	BD Biosciences, Franklin Lakes NJ, USA	352008
Pipetten	Research plus 10ul	Eppendorf, Hamburg, Deutschland	492499Z
	Research plus 100ul	Eppendorf, Hamburg, Deutschland	493057Z
	Research plus 200ul	Eppendorf, Hamburg, Deutschland	379067Z
	Research plus 1000ul	Eppendorf, Hamburg, Deutschland	494528Z
	Easypet	Eppendorf, Hamburg, Deutschland	3033181
Vortexer	RetschMixer	A.Hartenstein, Würzburg, Deutschland	
	Neubauer-Zählkammer	A.Hartenstein, Würzburg, Deutschla	ind
MACS	QuadroMACS™ Separator	Miltenyi Biotec GmbH, Bergisch Gladbach, Deutschland	130-090-976
	MACS Separation Columns 25 LS	Miltenyi Biotec GmbH, Bergisch Gladbach, Deutschland	130-042-401
	MiniMACS™ Separator	Miltenyi Biotec GmbH, Bergisch Gladbach, Deutschland	130-042-102
	MACS Separation Columns 25 MS	Miltenyi Biotec GmbH, Bergisch Gladbach, Deutschland	130-042-201

2.1.2. Verbrauchsmaterialien

	Handelsname	Hersteller	Lot. Nr.
Petrischalen	Cellstar, Tissue Culture Dishes, PS, 60x15mm	Greiner Bio-one, Frickenhausen, Deutschland	628160
	Cellstar, Tissue Culture Dishes, PS, 94x16mm	Greiner Bio-one, Frickenhausen, Deutschland	
	Cellstar, 96 Well Cell Culture Plate	Greiner Bio-one, Frickenhausen, Deutschland	
Falcon Tubes	Cellstar, 15ml	Greiner Bio-one, Frickenhausen, Deutschland	188271
	Cellstar, 50ml	Greiner Bio-one, Frickenhausen, Deutschland	227261
Eppendorf Tubes	SafeSeal 1,5ml	Sarstedt, Nümbrecht, Deutschland	72.706
	SafeSeal 2ml	Sarstedt, Nümbrecht, Deutschland	72.695.500
Glaspipette	Cellstar, 10ml	Greiner Bio-one, Frickenhausen, Deutschland	607 180
Spitzen	Biosphere Filter tips 100ul	Sarstedt, Nümbrecht, Deutschland	70.760.212
	Biosphere Filter tips 1000ul	Sarstedt, Nümbrecht, Deutschland	70.760.211
	Biosphere Filter tips 10ul	Sarstedt, Nümbrecht, Deutschland	70.760.210
Filter	Cell-Strainer 5ml Round-Bottom Tube	BD Biosciences, Franklin Lakes, NJ, USA	352235
Cryo Tubes	Cryo.s™, PP	Greiner Bio-one, Frickenhausen, Deutschland	
Frosty Box	Cryo Freezing Container	Nalgene, Rochester, USA	51000001

2.1.3. Puffer und Medien

	Handelsname	Hersteller	Lot. Nr.
Pufferlösungen	Phosphate buffered saline (PBS)	Sigma-Aldrich, St. Louis, USA	P-9144
	Ethylendiamintetraessigsäure (EDTA)	Sigma-Aldrich, St. Louis, USA	E-5134
	Dimethylsulfoxid (DMSO) Bovines Serum Albumin (BSA)	Sigma-Aldrich, St. Louis, USA Sigma-Aldrich, St. Louis, USA	D8418-50ML A2058-1G
Nährmedium	RPMI 1640	Sigma-Aldrich, St. Louis, USA	R8758
	TB-1 ClonalExpress (Serum free, with Pen-Strep)	BioConcept Ltd. Amimed, Allschwil, CH	1-28F03-I
	Glutamin	Biochrom AG, Berlin, Deutschland	0763K
	Penicillin Streptomycin	Biochrom AG, Berlin, Deutschland	A 2213
	FCS (Fetales Kälber Serum)	GIBCO, Life Technologies, Carlsbad, USA	10270-106
FicoL	FicoLite-H (Human)	Linaris, Dossenheim, Deutschland	151122P
	Aqua ad iniectabilia	B. Braun, Melsungen Deutschland	114558061
	Isotonische Kochsalzlösung	Fresenius Kabi, Bad Homburg, Deutschland	14FA1014
Stimuli	Phorbol 12-myristate 13-acetate (PMA) in DMSO+RPMI	Sigma-Aldrich, St. Louis, USA	P81391-1MG
	lonomycin	Sigma-Aldrich, St. Louis, USA	l9657-1MG
	Brefeldin A (in Ethanol)	Sigma-Aldrich, St. Louis, USA	B6542-5MG

2.1.4. Gebrauchsfertige Lösungen

Nährmedium	RPMI + 1% PenStrep + 10% FCS
Erythrozyten-Lysis-Puffer	8,26g Ammoniumchlorid + 1g Kaliumbicarbonat + 0,037g EDTA in 1l Aqua dest.
Einfriermedium	RPMI + 20% FCS + 10% DMSO
PBS	1 Tablette für 500ml Volumen (aufgelöst in Aqua dest.)
FACS-Puffer	0,5% BSA + 0,01% Natriumazid in PBS
MACS-Puffer	0,5% BSA + 2mM EDTA in PBS

2.1.5. Gebrauchsfertige Kits

	Handelsname	Hersteller	Lot. Nr.
Fixationspuffer	Cytofix	Biolegend, San Diego, USA	420801
Permeabilisierungs- puffer	Cytoperm	Biolegend, San Diego, USA	421002
MACS	CD4+ T Cell Isolation Kit (human)	Miltenyi Biotec , Bergisch Gladbach, Deutschland	130096533
	Anti-PE Microbeads	Miltenyi Biotec , Bergisch Gladbach, Deutschland	130048801
Zellviabilität	Annexin V Binding Buffer	Biolegend, San Diego, USA	422201
	7AAD Viability Staining Solution	Biolegend, San Diego, USA	420404

2.1.6. Antikörper

Antikörper	Farbe	Hersteller	Lot.	Cat.	Klon
		BioLegend, San			
CD 3	FITC	Diego, USA	B140045	300306	HIT3a
		BioLegend, San			
CD 4	APC	Diego, USA	B136214	317416	OKT4
		BioLegend, San			
CD 4	PE	Diego, USA	B142769	317410	OKT4
		BioLegend, San			
CD 4	Brilliant Violet 421	Diego, USA	B149795	300532	RPA-T4
		BD Biosciences,			
CD 8	PerCP	Franklin Lakes, USA	12928	345774	SK1
		BioLegend, San			
CD 8	PE	Diego, USA	B140247	344706	SK1
		BioLegend, San			
CD 19	APC	Diego, USA	B141887	302212	HIB19
		BD Biosciences,			
CD 25	FITC	Franklin Lakes, USA	7798	345796	2A3
		eBiosciences, FFM,			
CD 27	FITC	Deutschland	E13316-101	11-0279-42	O323
		BD Biosciences,			
CD 28	HorizonV450	Franklin Lakes, USA	17615	561377	CD28.2
		BioLegend, San			
CD 31	PE	Diego, USA	B137345	303106	WM59
		BD Biosciences,			
CD 45 RA	FITC	Franklin Lakes, USA	10095	555488	HI100

CD 45 ROPEFranklin Lakes, USA90248555493UCHLBioLegend, SanDiego, USAB114906304222UCHLCD 45 ROPerCP Cy5.5Diego, USAB114906304222UCHLCD 56AlexaFluor700Diego, USAB1143230318306HCD5CD 62LPEDiego, USAB133139304806DREG-5CD 127HorizonV450Franklin Lakes, USA16343560823HIL-7R-M2BD Biosciences,BD Biosciences,CD 161APCFranklin Lakes, USA81335550968DX1CCR 5 (CD 195)APC Cy7Franklin Lakes, USA885775577552D7/CCRCCR 6 (CD196)PerCP Cy5.5Franklin Lakes, USA259756046711A			BD Biosciences,			
CD 45 ROPerCP Cy5.5BioLegend, San Diego, USAB114906304222UCHLBioLegend, SanBioLegend, SanBioLegend, SanB1143230318306HCD5CD 56AlexaFluor700Diego, USAB1143230318306HCD5CD 62LPEDiego, USAB133139304806DREG-5CD 127HorizonV450Franklin Lakes, USA16343560823HIL-7R-M2BD Biosciences, CD 161APCFranklin Lakes, USA81335550968DX1BD Biosciences, Franklin Lakes, USAB1335550968DX1CR 5 (CD 195)APC Cy7Franklin Lakes, USA885775577552D7/CCRCR 6 (CD196)PerCP Cy5.5Franklin Lakes, USA259756046711A	CD 45 RO	PE	Franklin Lakes, USA	90248	555493	UCHL1
CD 45 ROPerCP Cy5.5Diego, USAB114906304222UCHLBioLegend, SanBioLegend, SanB1143230318306HCD5CD 56AlexaFluor700Diego, USAB1143230318306HCD5CD 62LPEDiego, USAB133139304806DREG-5CD 127HorizonV450Franklin Lakes, USA16343560823HIL-7R-M2BD Biosciences,BD Biosciences,BD Biosciences,Diego, USA81335550968DX1CD 161APCFranklin Lakes, USA81335550968DX1DX1BD Biosciences,BD Biosciences,BD Biosciences,CCR 5 (CD 195)APC Cy7Franklin Lakes, USA885775577552D7/CCRCCR 6 (CD196)PerCP Cy5.5Franklin Lakes, USA259756046711A			BioLegend, San			
CD 56AlexaFluor700BioLegend, San Diego, USAB1143230318306HCD5CD 62LPEDiego, USAB133139304806DREG-5CD 127HorizonV450Franklin Lakes, USA16343560823HIL-7R-M2BD Biosciences, Franklin Lakes, USAB133135550968DX1CD 161APCFranklin Lakes, USA81335550968DX1CR 5 (CD 195)APC Cy7Franklin Lakes, USA885775577552D7/CCRBD Biosciences, Franklin Lakes, USABD Biosciences, Franklin Lakes, USA75577552D7/CCRCCR 6 (CD196)PerCP Cy5.5Franklin Lakes, USA259756046711A	CD 45 RO	PerCP Cy5.5	Diego, USA	B114906	304222	UCHL1
CD 56AlexaFluor700Diego, USAB1143230318306HCD5CD 62LPEDiego, USAB133139304806DREG-5CD 127HorizonV450Franklin Lakes, USA16343560823HIL-7R-M2BD Biosciences, Franklin Lakes, USABD Biosciences, Franklin Lakes, USA16343550968DX1CD 161APCFranklin Lakes, USA81335550968DX1CR 5 (CD 195)APC Cy7Franklin Lakes, USA885775577552D7/CCRCCR 6 (CD196)PerCP Cy5.5Franklin Lakes, USA259756046711A			BioLegend, San			
CD 62LPEBioLegend, San Diego, USAB133139304806DREG-5CD 127HorizonV450Franklin Lakes, USA16343560823HIL-7R-M2CD 161APCFranklin Lakes, USA81335550968DX1BD Biosciences, Franklin Lakes, USABD Biosciences, Franklin Lakes, USA81335550968DX1CCR 5 (CD 195)APC Cy7Franklin Lakes, USA885775577552D7/CCRCCR 6 (CD196)PerCP Cy5.5Franklin Lakes, USA259756046711A	CD 56	AlexaFluor700	Diego, USA	B1143230	318306	HCD56
CD 62L PE Diego, USA B133139 304806 DREG-5 CD 127 HorizonV450 Franklin Lakes, USA 16343 560823 HIL-7R-M2 CD 161 APC Franklin Lakes, USA 81335 550968 DX1 BD Biosciences, BD Biosciences, Franklin Lakes, USA 81335 550968 DX1 CCR 5 (CD 195) APC Cy7 Franklin Lakes, USA 88577 557755 2D7/CCR BD Biosciences, BD Biosciences, Franklin Lakes, USA 88577 557755 2D7/CCR CCR 6 (CD196) PerCP Cy5.5 Franklin Lakes, USA 2597 560467 11A			BioLegend, San			
CD 127HorizonV450BD Biosciences, Franklin Lakes, USA16343560823HIL-7R-M2CD 161APCFranklin Lakes, USA81335550968DX1BD Biosciences, Franklin Lakes, USABD Biosciences, Franklin Lakes, USA81335550968DX1CCR 5 (CD 195)APC Cy7Franklin Lakes, USA885775577552D7/CCRCCR 6 (CD196)PerCP Cy5.5Franklin Lakes, USA259756046711A	CD 62L	PE	Diego, USA	B133139	304806	DREG-56
CD 127HorizonV450Franklin Lakes, USA16343560823HIL-7R-M2BD Biosciences, Franklin Lakes, USABD Biosciences, 81335550968DX1BD Biosciences, Franklin Lakes, USA81335550968DX1CCR 5 (CD 195)APC Cy7Franklin Lakes, USA885775577552D7/CCRCCR 6 (CD196)PerCP Cy5.5Franklin Lakes, USA259756046711A			BD Biosciences			
CD 161 APC Franklin Lakes, USA 81335 550968 DX1 BD Biosciences, BD Biosciences, BD Biosciences, BD Biosciences, S50968 DX1 CCR 5 (CD 195) APC Cy7 Franklin Lakes, USA 88577 557755 2D7/CCR BD Biosciences, BD Biosciences, S60467 11A CCR 6 (CD196) PerCP Cy5.5 Franklin Lakes, USA 2597 560467 11A	CD 127	HorizonV450	Franklin Lakes USA	16343	560823	HII -7R-M21
CD 161 APC Franklin Lakes, USA 81335 550968 DX1 BD Biosciences, BD Biosciences, BD Biosciences, CCR 5 (CD 195) APC Cy7 Franklin Lakes, USA 88577 557755 2D7/CCR BD Biosciences, BD Biosciences, BD Biosciences, 11A CCR 6 (CD196) PerCP Cy5.5 Franklin Lakes, USA 2597 560467 11A			BD Biosciences	10010	000020	
CCR 5 (CD 195)APC Cy7Franklin Lakes, USA885775577552D7/CCRCCR 6 (CD196)PerCP Cy5.5Franklin Lakes, USA259756046711A	CD 161	APC	Franklin Lakes USA	81335	550968	רצח
CCR 5 (CD 195) APC Cy7 Franklin Lakes, USA 88577 557755 2D7/CCR BD Biosciences, BD Biosciences, 560467 11A		74 0	BD Biosciences	01000	000000	B/(12
CCR 6 (CD196) PerCP Cy5.5 Franklin Lakes, USA 00017	CCR 5 (CD 195)		Franklin Lakes LISA	88577	557755	2D7/CCR5
CCR 6 (CD196)PerCP Cy5.5Franklin Lakes, USA259756046711A			RD Rioscioncos	00077	557755	201/00103
CCR (CD130) FEICE Cy3.3 Franklin Lakes, USA 2337 300407 FIA			Eranklin Lakes LISA	2507	560467	1100
PD Bioggiopage			PD Bioggiongoo	2001	500407	1173
CCP 6 (CD106) DE Erapklin Lakas USA 15914 550562 11A		DE	Eranklin Lakos USA	15914	550562	1100
			RD Riosciences	10014	009002	TIA9
DD DIUSCIENCES, CCR 7 (CD 107) Alexa Fluer 700 Frenklin Leksa USA 22052 561112 15050		Alove Fluer 700	BD Biosciences,	22652	EC1140	150502
CCR 7 (CD 197) Alexa FIUOI 700 FIAITKIIII Lakes, USA 32032 301143 13050	CCR / (CD 19/)	Alexa Fluor 700	PD Disasianasa	32032	501143	150503
BD Biosciences,			BD Biosciences,	01.10	500000	400/00000
CACR 3 (CD183) PerCP Cy5.5 Franklin Lakes, USA 2140 560832 1C6/CACR	CXCR 3 (CD183)	PerCP Cy5.5	Franklin Lakes, USA	2140	560832	106/0X0R3
			BD Biosciences,	57704		110B9.1A-
ICR α/β FITC Franklin Lakes, USA 57784 555547 3	ΤCR α/β	FIIC	Franklin Lakes, USA	57784	555547	31
			BD Biosciences,	000 (0		
ICR y/o FITC Franklin Lakes, USA 88349 347903 11F.	TCR y/o	FIIC	Franklin Lakes, USA	88349	347903	11F2
eBiosciences, FFM,		1.50	eBiosciences, FFM,			
RORyt APC Deutschland E10458-413 17-6988-82 AFKJS-	RORyt	APC	Deutschland	E10458-413	17-6988-82	AFKJS-9
eBiosciences, FFM,			eBiosciences, FFM,			501100
FoxP3 PerCP Cy5.5 Deutschland E14134-101 45-4776-42 PCH10	FoxP3	PerCP Cy5.5	Deutschland	E14134-101	45-4776-42	PCH101
Miltenyi Biotec,			Miltenyi Biotec,			
Bergisch Gladbach,			Bergisch Gladbach,			
IFN-y FITC Deutschland 5030228020 120000863 4S.B	IFN-y	FITC	Deutschland	5030228020	120000863	4S.B3
BD Biosciences,			BD Biosciences,			
IL-1β PE Franklin Lakes, USA 24514 340516 AS1	ΙL-1β	PE	Franklin Lakes, USA	24514	340516	AS10
BioLegend, San			BioLegend, San			
L-4 APC Diego, USA B135014 500714 8D4-	IL-4	APC	Diego, USA	B135014	500714	8D4-8
BD Biosciences,			BD Biosciences,			
IL-6 PE Franklin Lakes, USA 82588 559331 MQ2-6A	IL-6	PE	Franklin Lakes, USA	82588	559331	MQ2-6A3
BD Biosciences,			BD Biosciences,			
IL-9 PE Franklin Lakes, USA 64922 560807 MH9A	IL-9	PE	Franklin Lakes, USA	64922	560807	MH9A3
BD Biosciences,			BD Biosciences,			
IL-10 APC Franklin Lakes, USA 87108 554707 JES3-19F	IL-10	APC	Franklin Lakes, USA	87108	554707	JES3-19F1
BioLegend, San			BioLegend, San			
IL-17A Alexa Fluor 700 Diego, USA B132984 512318 BL16	IL-17A	Alexa Fluor 700	Diego, USA	B132984	512318	BL168
BioLegend, San			BioLegend, San			
TNF-α FITC Diego, USA B133534 502906 MAb1	ΤΝΕ-α	FITC	Diego, USA	B133534	<u>50290</u> 6	MAb11
BD Biosciences,			BD Biosciences,			
Ki67 FITC Franklin Lakes, USA 88789 51-36524X B5	Ki67	FITC	Franklin Lakes, USA	88789	51- <u>3</u> 6524X	B56
BioLegend, San			BioLegend, San			
7AAD APC Diego, USA B149025 420404	7AAD	APC	Diego, USA	B149025	420404	
BioLegend, San		1	BioLegend, San			
AnnexinV FITC Diego, USA B149371 640906	1		la. Juai	5440074		1

2.2. Methoden

2.2.1. Probanden

Die Studie wurde von der Ethik-Kommission (Ethikvotum Nr. 239/10) bei der Medizinischen Universität Würzburg genehmigt. Alle Patienten und Kontrollpersonen bzw. bei Minderjährigkeit deren Sorgeberechtigte, wurden in einem ausführlichen ärztlichen Gespräch und schriftlich mittels eines Patienteninformationsblattes über die Inhalte der Studie aufgeklärt und unterzeichneten die Einverständniserklärung. Die Studie wurde nach den Kriterien der Deklaration von Helskinki 2013 [91], den Prinzipien der Good Clinical Practice und der Good Laboratory Practice durchgeführt.

2.2.1.1. JIA-Probanden

Die untersuchte JIA-Patientengruppe (N=84) wurde in der Kinder-Rheumatologischen Sprechstunde der Kinderklinik und Poliklinik des Universitätsklinikums Würzburg rekrutiert. Voraussetzung für den Einschluss in die Studie war das Erfüllen der International League of Associations for Rheumatology (ILAR) Kriterien zur Diagnose der JIA [58] und das Alter zwischen 2 und 18 Jahren. Zusätzlich zur Blutentnahme wurden im Rahmen der Sprechstunde die aktuelle Anamnese und die Krankengeschichte aus den Krankenakten erhoben, eine klinische-internistische Untersuchung und ein kompletter Gelenksstatus durchgeführt und das Blut auf Entzündungswerte (BSG, CRP), Blutbild mit Differenzierung) und Organparameter (Leber- und Nierenfunktionswerte) kontrolliert, so dass angelehnt an den JADAS [80] und validierte Remissionskriterien nach Walllace [79] eine klinische Stadieneinteilung der Krankheitsaktivität erfolgen konnte.

Ausschlusskriterien waren Malignome, Immundefekte, klinisch relevante Infektionen in den letzten acht Wochen, die eine Vorstellung beim Arzt notwendig machten, genetisch determinierte Syndrome (z. B. Trisomie 21), Blutprodukte in den letzten drei Monaten (z. B. Thrombozyten- oder Erythrozytenkonzentrate, Immunglobuline) oder Impfungen in den letzten vier Wochen.

23

2.2.1.2. Kontrollprobanden

Die Kontrollprobanden setzten sich aus immunologisch gesunden, altersgleichen Patienten der Abteilung für Kinderchirurgie der Klinik und Poliklinik für Allgemein- und Viszeralchirurgie, Gefäß- und Kinderchirurgie der Universitätsklinik Würzburg zusammen. Es ist bekannt, dass das Alter einen entscheidenden Einfluss auf die T-Zell Differenzierung hat [92]. Deshalb wurde auf eine altersgleiche Verteilung von Kontroll- und JIA-Gruppe geachtet.

2.2.2. Lymphozytenisolierung mittels Dichtegradientenzentrifugation

Das Saccharose-Epichlorhydrin-Copolymer Ficoll dient als Trennmedium für die sich in heparinisiertem Blut befindlichen peripheren mononukleären Zellen (PBMC). Nach dem Prinzip der diskontinuierlichen Dichtegradientenzentrifugation werden alle gelösten Makromoleküle im Suspensionsgemisch Sedimentationsgeschwindigkeit Einfluss anhand ihrer unter dem der Zentrifugalkraft aufgetrennt. Bei Raumtemperatur sammeln sich schwere Partikel wie Erythrozyten unterhalb der Trennschicht, wohingegen Lymphozyten mit ähnlicher Dichte wie die Ficoll-Lösung sich direkt oberhalb dieser in Form eines sichtbaren Lymphozytenrings befinden. In einem Gemisch darüber verbleiben Blutplasma und Thrombozyten [93]. Abbildung 6 soll die Wirkungsweise der Dichtegradientenzentrifugation veranschaulichen.

Unter sterilen Bedingungen wurde das Probandenblut 1:1 mit 0.9% NaCl verdünnt und vorsichtig zu je 20ml auf jeweils 10ml vorgelegtes Ficoll in einem 50ml Falcon Tube geschichtet. Im Anschluss wurde die Zellsuspension bei 1500U für 25 Minuten zentrifugiert. Der auf dem Ficoll-Gradient schwimmende, weiße Lymphozytenring wurde geerntet und in ein neues Falcon Tube überführt und nochmals mit 0.9% NaCl gewaschen, so dass keine für Lymphozyten toxischen Ficoll-Rückstände verblieben. Das nach der Zentrifugation sichtbare Zellpellet wurde mit 5ml Erythrozyten-Lysis-Puffer resuspendiert, um etwaige Kontamination mit Erythrozyten zu umgehen. Nach 5 Minuten Inkubationszeit und erneutem Zentrifugieren wurden die Zellen in RPMI-Nährmedium aufgenommen und für die Zellzählung vorbereitet.

2.2.3. Zellzählung mit Neubauer-Zählkammer

Diese Methode dient der lichtmikrospischen Bestimmung der Lymphozyten-Ausbeute. 10µl der Zellsuspension wurden mit 90µl Trypanblau gemischt, einem sauren Farbstoff, der nur avitale Zellen färbt und zum Vitalitätsnachweis dient. Von dieser Verdünnung wurden wiederum 10µl in die Zählkammer pipettiert und die Anzahl der lebenden Zellen bestimmt.

2.2.4. Kryokonservierung

Um mit den Lymphozyten zu einem späteren Zeitpunkt weiterarbeiten zu können, wurden je 5x10⁶ Zellen in 1ml Einfriermedium (70% RPMI, 20% FCS, 10% DMSO) resuspendiert und in Kryotubes bei -80°C eingefroren. Nach drei Tagen erfolgte das Überführen in flüssigen Stickstoff als endgültiger Aufbewahrungsort. Für den Einfrier- und Auftauvorgang gilt zu beachten, dass möglichst schnell und auf Eis gearbeitet werden sollte, da das zytotoxische DMSO die spätere Zellaktivität beeinflusst [95]. Nach dem Auftauen wurden die Lymphozyten daher stets nach einem standarisiertem Protokoll in Nährmedium überführt und über Nacht im Inkubator (37,0 °C; 5,1 CO₂) belassen, damit sie ihre Zellintegrität wiedererlangen können und so möglichst unverfälschte Zytokin- und Oberflächeneigenschaften messbar werden.

2.2.5. Durchflusszytometrie

Mit der Methode der Durchflusszytometrie werden Zellen anhand ihres Volumens, ihrer Granularität sowie Fluoreszenzmarkierung beschrieben [96, 97]. Das Prinzip beruht auf der Detektion von Photonenemission. Zwei Laser-Dioden messen die Hauptmerkmale einer Zelle. Zum einen bestimmt das Vorwärtsstreulicht (FSC = Forward Scatter) das Volumen der einzelnen Zelle anhand der Beugung/Diffraktion des Lichts. Ergänzt wird diese Information durch das Seitwärtsstreulicht (SSC = Side Scatter), dass im rechten Winkel die Brechung/Refraktion des Lichts misst, abhängig von Oberflächenbeschaffenheit und Binnenstruktur der Zelle.

Außerdem ist es möglich, im Durchflusszytometer die Emission von mit fluoreszierenden Antikörpern gefärbten Zellen zu messen. Dabei werden die Elektronen des Fluoreszenzfarbstoffes durch den Laserstrahl angeregt und auf ein höheres Energieniveau gehoben. Beim Zurückkehren auf ihr Ursprungsniveau geben die Elektronen Energie in Form von Photonen ab, die von den Photodetektoren quantifiziert wird und sich proportional zu der gebunden Antikörpermenge verhält. Abbildung 8 soll das Verständnis der Funktionsweise eines Durchflusszytometers unterstützen.

Abbildung 7: Schematische Darstellung der Funktionsweise der Durchflusszytometrie (modifiziert nach [98]). Die gelösten Zellen werden in einen laminaren Probenstrom vom Laser anhand ihrer Diffraktion und Refraktion sowie ihrer Fluoreszenz optisch detektiert.

Die Methode ermöglicht in kürzester Zeit (1000 Zellen pro Sekunde) Zellpopulationen zu typisieren und außerdem durch sequentielles Gating einzelne Teilpopulationen genauer zu beschreiben.

Allein durch die Charakteristika in FSC und SSC können ungefärbte PBMC in kleinere Lymphozyten mit glatter Oberfläche, große Granulozyten mit rauer Oberfläche und diffuser Binnenstruktur (Vesikel), sowie den dazwischenliegenden Monozyten unterschieden werden.

In Abbildung 8 ist exemplarisch die Ansicht von PBMCs in FSC und SSC dargestellt und diese nach den soeben erläuterten Diskriminationskriterien (Größe und Binnenstruktur) farblich abgegrenzt.

Abbildung 8: PBMC Populationen im Durchflusszytometer.

2.2.6. Extrazelluläre Fluoreszenzfärbung

Die in Stickstoff konservierten Zellen wurden im Wasserbad aufgetaut und zügig in 10ml vorgewärmten Nährmedium überführt und zweimal gewaschen (1500U/5min). Im Anschluss wurden die Zellen gezählt und in 5ml Nährmedium in einer Petrischale über Nacht bei 37°C und 5% CO₂ zur Regeneration belassen. Die Färbeprozedur im unmittelbaren Anschluss an das Auftauen würde falsch niedrige Zytokinproduktion mit sich bringen [99].

Für die Extrazellulärfärbung mit monoklonalen Antikörpern gegen Oberflächenepitope wurde nach folgendem Prozedere vorgegangen. In einem Mastermix wurden die 18 Zielfärbungen (siehe Färbepanel: Tabelle 2) in 50µl FACS-Puffer und je 1µl Antikörper-Flourochrom-Konjugat angesetzt und kühl zwischengelagert. Die Zellen wurden auf 5ml FACS Round Button Tubes aufgeteilt und mit jeweils 1ml FACS-Puffer gewaschen (1500U/5min). Im Anschluss wurden die Zellpellets nach abgebildetem Schema in 50 µl Mastermix resuspendiert und für 20min bei RT in Dunkelheit inkubiert.

APC	APC- Cy7	PerCP	PerCP- Cy 5.5	PE	FITC	Horizon V450	Alexa Fluor 700	
IC		-		IC	IC	-	-	
CD4		CD8		CD45RO	INFγ	CD28	CCR7	
CD4		CD8		CD45RO	TNFα	CD28	CCR7	
CD4		CD8		IL-9	CD45RA	CD28	CCR7	1 _
CD4		CD8		IL-6	CD45RA	CD28	CCR7	fi
CD4		CD8		IL-1β	CD45RA	CD28	CCR7	aze
IL-4		CD8		CD4	CD45RA	CD28	CCR7	un
IL-10		CD8		CD4	CD45RA	CD28	CCR7	g
CD4			CCR6	CD45RO	CD27	CD28	IL-17	
CD161			CCR6	CD4	CD45RA	CD28	IL-17	
IL-10			FoxP3	CD4	CD25	CD127	IL-17	
RORyt			CCR6	CD4	CD45RA	CD28	IL-17	
CD19		CD8		CD4	CD3		CD56	m
CD4		CD8		CD31	TCRα/β			f: Xtr
CD4		CD8		CD31	TCRγ/δ			ärb
CD4			CXCR3	CD8	CD45RA	CD28	CCR7	un ell
CD4	CCR5		CCR6	CD8	CD45RA			g
CD4			CCR6	CD62L	CD45RA	CD28	CCR7	- T-

Tabelle 3: Zytometer-Färbepanel für Phänotypisierung.

Es folgte das Waschen mit 1ml PBS (1500U/5min) und anschließendes Resuspendieren in 350µl FACS-Puffer.

2.2.7. Intrazelluläre Fluoreszenzfärbung

Die ersten 11 Tubes im Färbepanel wurden nicht nur an der Oberfläche, sondern auch intrazellulär gefärbt, um Transkriptionsfaktoren wie FoxP3/RORyt und die Zytokinproduktion (INF γ , TNF α , IL-1 β , IL-4, IL-6, IL-9, IL-10 und IL-17) proportional messen zu können (in Tabelle 3 grau hinterlegt).

Um in den T-Zellen eine vergleichbare Immunantwort zu simulieren und Zytokinproduktion und Zelldifferenzierung zu induzieren, wird vorausgesetzt, dass jede Probe mit exakt dem gleichen Stimulus versetzt wird.

Als starke unspezifische T-Zell-Stimulatoren wurde PMA (Phorbol-12-myristat-13-acetat) und Ionomycin verwendet. PMA aktiviert die zelleigene Proteinkinase C, der wiederum vielfältige Zell-Aktivierungs-Signalwege folgen, wie z.B. die gesteigerte Bindungsaffinität des Transkriptionsfaktors NFκB. Ionomycin ist ein Ionophor, dass die Zellmembran durchgängiger für Caliciumionen macht und in der Folge Calcium/Calmodulin-abhängige Signalwege aktiviert und synergistisch zu PMA als Proteinkinase C Aktivator wirkt [100].

ELISA oder ELISpot Assays messen die gesamte Zytokinproduktion im Kulturüberstand. Um die spezifische Produktion einzelner Zellpopulationen zu bestimmen, bietet sich die Durchflusszytometrie an. Es werden nicht die bereits sezernierten, sondern die noch intrazellulär befindlichen, neu produzierten Zytokine quantifiziert. Voraussetzung für den intrazellulären Färbeprozess ist allerdings, dass die Zellen diese Zytokine kurz vor der Messung nicht mehr sezernieren. Brefeldin A, ein Inhibitor des retrograden Transports vom Golgi-Apparat zum Endoplasmatischen Retikulum, führt zur Akkumulation der produzierten Zytokine und ist somit wirksamer Hemmstoff der Sekretion.

Um die intrazellulär verbleibenden Zytokine und Transkriptionsfaktoren anzufärben, wurde die Membran der Zellen mit Formaldehyd stabilisiert (Fixations-Puffer) und mit Saponin perforiert (Permeabilierungs-Puffer).

Die Zellen wurden nach dem Auftauen und nach Übernacht-Inkubation (s. Extrazellulärfärbung) mit folgenden Stimuli-Konzentrationen versetzt und für 4h im Inkubator belassen:

0,03µg/ml	PMA
1µg/ml	lonomycin
10µg/ml	Brefeldin A

Im Anschluss wurden die Zellen wieder auf FACS Round Button Tubes aufgeteilt und extrazellulär gefärbt wie oben beschrieben. Auf die Inkubation mit den Oberflächenantikörpern folgte das Waschen mit 1ml PBS (1500U/5min), um die Zelloberfläche vom im FACS-Puffer enthaltenem BSA zu befreien und für den Fixationspuffer angreifbar zu machen. Darauf folgte die Stabilisierung der Zellmembran mit 250 µl Fixationspuffer (20min Inkubation bei RT). In einem Mastermix wurden je 1 µl intrazelluläres Antikörper-Flourochrom-Konjugat und 50 µl Permeabilisierungspuffer vorpipettiert.

Vereinfachter Ablauf der Färbeprozedur: Extrazellulärfärbung \rightarrow Membranfixation \rightarrow Membranperforation \rightarrow Intrazellulärfärbung Die fixierten Zellen wurde mit 1ml Permeabilisierungspuffer gewaschen (1500U/5min) und mit dem vorbereiteten Mastermix nach abgebildetem Schema resuspendiert und für 20min bei RT in Dunkelheit inkubiert. Nach der Inkubation folgte ein weiterer Waschgang mit 1ml Permeabilisierungspuffer (1500U/5min). Für die nun folgende durchflusszytometrische Analyse wurden die Zellen wieder in 350µl FACS-Puffer resuspendiert. Die durchflusszytometrische Messung erfolgte direkt im Anschluss.

Für die Auswertung mit der BD Software FACS DIVA wurden definierte und konstante Gates gewählt.

Abbildung 9: Zytometer Gating Schema: Subpopulationen.

Abbildung 10: Zytometer Gating Schema: Zytokinmessung.

2.2.8. CCR6 Zellkultur und Stimulationsexperimente

2.2.8.1. Magnetic Activated Cell Sorting (MACS)

Um die Stimulations-Zellkultur-Versuche durchführen zu können, mussten die CCR6+ Zellen aus den Probanden-Lymphozyten depletiert werden. Die magnetische Zellseparation ist eine schonende Methode, mit der mit hoher Reinheit Zellpopulationen aufgetrennt werden können. Zur Durchführung werden ein Magnet und Microbeads. spezifische Antikörper gekoppelte Nanomagnetpartikel, benötigt. Die Zelloberflächenproteine binden in der Inkubationszeit spezifisch an die Antikörper und können im nächsten Schritt über ein magnetisches Säulentrennverfahren in zwei Fraktionen getrennt werden. Die Zellen, die keine Antikörper gebunden haben, fließen über die Säulen hinweg und können aufgefangen werden (Negativ-Selektion \rightarrow ohne gebundene Antikörper). Die zweite Fraktion wird durch die Antikörper gekoppelten magnetischen Beads in der Säule gehalten und erst durch Entfernen vom Magneten eluierbar (Positiv-Selektion \rightarrow mit gebundenem Antikörper).

Da es kein gebrauchsfertiges Kit für CCR6+ Zellen gibt, knüpften wir zwei MACS Isolationen aneinander, wie es in Abbildung 11 veranschaulicht wird.

Im ersten Schritt wurden die CD4 positiven T-Zellen mit spezifischen Antikörpern gegen CD4 negative (CD8 positive T-Zellen, Monozyten, Neutrophile, Eosinophile, dendritischen Zellen, NK Zellen, Granulozyten, γ/δ -T-Zellen und Erythrozyten) selektioniert. Hierfür benutzen wir ein gebrauchsfertiges CD4-Isolation Kit (Miltenyi Biotec, siehe 2.1.4, Gebrauchsfertige Lösungen).

Diese Zellfraktion wurde mit Anti-PE/Anti-CCR6-Flourochrom-Konjugat gefärbt. Im zweiten Schritt wurden die Zellen mit PE-spezifischen Microbeads inkubiert. Im anschließenden Säulenverfahren fanden sich folglich in der negativen Fraktion die CCR6 negativen Zellen und im Eluat die CCR6 positiven Zellen (mit gebundenen Anti-PE-Microbeads). Den genauen Ablauf der einzelnen Schritte zeigt exemplarisch Abbildung 12.

Abbildung 12: Schematische Darstellung der MACS-Methode. In der Abbildung sind schematisch die drei Schritte der CCR6 Separation dargestellt: auf eine Depletion (negative Selektion) der CD4+ (1) folgt die Depletion der CCR6- Zellen (2) sowie danach das Eluat (positive Selektion) der CCR6+ Zellen (3)

Durchführung: Die Zellen wurden wie o. g. aufgetaut, gezählt und über Nacht im Inkubator belassen. Vor der Microbead-Färbung wurden die Zellen durch einen 35µm Nylon-Mesh-Filter pipettiert, um eine Kontamination mit toten Zellaggregaten möglichst zu vermeiden. Darauf folgte das Waschen mit 1ml MACS-Puffer (1500U/5min) und anschließendes Resuspendieren des Pellets mit je 40 µl MACS-Puffer und 10µl CD4-Isolation-Biotin-Antikörper-Cocktail pro 10⁶ Zellen. Die Zell-Antikörper-Mischung wurde mit dem Vortexer geschüttelt und für 5 min bei 4°C inkubiert. Die gesamte MACS-Prozedur wurde auf Eis durchgeführt. Die nun Antikörpergebunden Zellen wurden mit den spezifischen Microbeads versetzt (20µl Beads und zusätzlich 30µl MACS Puffer zur Verdünnung für je 10⁶ Zellen), mit dem Vortexer geschüttelt und für 10 min bei 4°C inkubiert. Das Volumen der Suspension wurde im Anschluss mit MACS-Puffer auf 500µl, dem LS-Säulen-Arbeitsvolumen, adjustiert. LS-Säulen eignen sich bis zu einer maximalen Zellzahl von 10⁸ Zellen und funktionieren mit dem QuadroMACS-Magenten®.

Die LS-Säulen wurden in den Magneten gesetzt und vor Verwendung mit MACS-Puffer gespült (3ml MACS-Puffer). Die Zellsuspension wurde nun vollständig auf die LS-Säulenmitte aufgetragen und nach Abwarten des passiven Durchfließens drei Mal mit jeweils 3ml MACS-Puffer gespült. Im Sammelröhrchen befand sich nun die CD4 positive Fraktion.

Die Zellen wurden gezählt und für die CCR6-Selektion mit MACS-Puffer gewaschen (1500U/5min). Es folgte das Resuspendieren des Pellets mit 100µl MACS-Puffer und 5µl Anti-CCR6-PE zum Markieren der CCR6 exprimierenden Zellen. Die Zell-Antikörper-Suspension inkubierte für 30 min bei 4°C. Im Anschluss folgte das zweimalige Waschen mit MACS-Puffer (1500U/5min) um etwaige Antikörperrückstände zu minimieren. Das Zellpellet wurde nun mit 30µl Anti-PE-Microbeads und 80µl MACS-Puffer zu Verdünnung resuspendiert, mit dem Vortexer geschüttelt und für 15 min zur Inkubation bei 4°C gelassen und darauffolgend zweimal mit MACS-Puffer gewaschen (1500U/5min) und schließlich in 500µl MACS-Puffer resuspendiert.

Der Separationsvorgang folgte mit MS-Säulen und dem Mini-MACS Magneten, da bei einer Ausgangszahl von ca. 40x10⁶ PBMC je Proband bis zu diesem Trennschritt eine Ausbeute von nicht mehr als 10x10⁶ Zellen möglich war und die MS-Säulen dafür geeigneter sind. Die MS-Säule wurde in den Magneten gesetzt und einmalig mit 500µl MACS-Puffer gespült. Gleich im Anschluss wurde die Zellsuspension auf die Säulenmitte aufgetragen und nach Abwarten des passiven Durchlaufens mindestens drei Mal mit 500µl MACS-Puffer gespült.

Im Sammelröhrchen fanden sich die CCR6 negativen Zellen, die kein PE-Antikörper-Microbead gebunden haben. Die Säule wurde vorsichtig aus dem Magneten entfernt und mit einem Volumen von 1ml MACS-Puffer mit Hilfe eines Druckstöpsels durchspült. Im Eluat verblieb nun die CCR6 positive Fraktion mit den vom Magneten gelösten PE-Microbeads. Die frisch separierten Zellen wurden gezählt und in Nährmedium überführt. Eine 50µl Probe wurde mit je 1µl Anti-CD4 und Anti-CCR6-PE für die Reinheit-Messung versetzt und für 20 min bei RT inkubiert. Im Anschluss wurde die Probe mit 1ml FACS-Puffer gewaschen und mit 200µl FACS-Puffer resuspendiert. Die Reinheit wurde direkt im Anschluss im Durchflusszytometer bestimmt. Im Mittel wurde eine Reinheit von 63,19% erreicht.

33

2.2.8.2. In vitro Kultur der CCR6+ Zellen

Die nach CCR6-Expression selektionierten Zellen wurden zu je 10⁵ Zellen je Well in 96-Well-Platten pipettiert und für fünf Tage kultiviert. Wir benutzten TB-1 Clonal Express Lymphocyte Medium, dass T-Zell unterstützend Albumin, Transferrin, Fettsäuren, Vitamine und HEPES Puffer enthält und eine minimierte Zugabe von FCS (5%) ermöglicht.

Da T-Zellen zur Differenzierung die Präsenz von Kostimulatoren wie CD3 und CD28 benötigen [101], [102], fügten wir der Kultur lösliche Antikörper gegen CD3 und CD28 in einer Konzentration von 1µg/ml bei, mit dem Ziel die kostimulierenden Rezeptoren der Zellen zu aktivieren und den Einfluss der additiven Zytokinstimuli überhaupt zu ermöglichen.

Die Stimulationszeit etablierten wir abhängig von der maximalen Zytokinproduktion bei gleichzeitig höchster Anzahl lebender Zellen nach getesteten Endpunkten von drei, fünf, sieben und elf Tagen. Nach 5 Tagen Kultur war sowohl die Zytokinproduktion maximal als auch die Anzahl der überlebenden Zellen akzeptabel (im Mittel 92,8% lebende Zellen pro Kulturansatz).

Aus den Vorversuchen ergab sich die Wahl der Kultur-Stimuli wie in Tabelle 4 gezeigt: als Th17-Stimulus (Th17-Stim) wählten wir die Kombination IL-6+IL-1 β +IL-23, als Th1-Stimulus (Th1-Stim) diente IL12+IL2 und als Treg-Stimulus (Treg-Stim) TGF β +IL2. Tabelle 5 zeigt die verwendeten Stimulus-Konzentrationen.

Tabelle 4: Stimuli zur Differenzierun	g der CCR6-Kultur.
---------------------------------------	--------------------

bollo 4. otilitali zai pilloronziorang dor o'orto rtaltari						
Differenzierungsweg						
Kontrolle						
→ Th17-Stim						
→ Th1-Stim						
→ Treg-Stim						
	Differenzierungsweg Kontrolle → Th17-Stim → Th1-Stim → Treg-Stim					

Tabelle 5: Verwendete Stimulus-Konzentration.	Tabelle 5:	Verwendete	Stimulus-Konzentration.
---	------------	------------	-------------------------

Stimulus	Zielkonzentration
IL-1β	10 ng/ml
IL-2	100 Units/ml
IL-6	20 ng/ml
IL-12	20 ng/ml
IL-23	10 ng/ml
TGFβ	50 ng/ml

2.2.8.3. Prä- und Post-Stimulus Analyse

Die durchflusszytometrische Analyse sollte in erster Linie die phänotypischen Charakteristika der Th1, Th17 und Treg Subpopulationen untersuchen und die unterschiedliche Polarisierung als Reaktion auf die Stimuli abbilden. Das gewählte Färbe-Panel ist in Tabelle 6 dargestellt.

Die Expression von CD161, die mit einem proinflammatorischen, instabilen Th17-Phänotyp assoziiert ist [49], sollte ebenfalls analysiert werden.

Wir integrierten den Proliferationsmarker Ki67 in das Färbepanel, der nur von teilungsaktiven Zellen exprimiert wird. Ki67 kann immunhistochemisch während der Mitosephase an der Chromosomenoberfläche und während der Interphase im Nukleolus lokalisiert werden, nicht aber bei ruhenden Zellen [103, 104]. Auch durchflusszytometrisch kann Ki67 detektiert werden. Die Ki67-Expression sollte quantifizieren, welcher Stimulus die Zellen am stärksten zum Wachstum anregt. Weiterhin war von Interesse, wie sich die Kulturbedingungen auf die Zellviabilität auswirken. Dafür diente zum einen 7-Amino-Actinomycin D (7-AAD), einem Interkalator doppelsträngiger Nukleinsäuren und einem Marker für bereits tote Zellen durchlässigen Membranen, sowie mit Annexin-V. das mit Phosphatidylserin interagiert, welches auf Zellen mit beginnender Apoptose exprimiert wird. Auf diese Weise wurde die Apoptoserate der Zellkulturen kontrolliert.

Färbe-Intention	PE	APC	PerCp Cy	FITC	Horizon	Alexa
Th17 / Th1	CCR6	RORyt	-	INFγ	CD4	IL-17
Treg	CCR6	IL-10	FoxP3	CD25	CD127	IL-17
Proliferation	CCR6	CD161	CD45RO	Ki67	-	CCR7
Apoptose	-	7AAD	-	AnnexinV	-	-

Tabelle 6: Z	vtometer-Färber	panel für CC	R6-Experimente.
	y connocor i ando		

Die Polarisierung der CCR6+ Zellen sollte in Richtung Th17 (IL-17 Produktion) und Th1 (INFγ Produktion) untersucht werden. Ebenso interessierte uns das Vorkommen von Tregs (CD127-CD25+FoxP3+) in CCR6+ und deren Zytokinproduktion (IL-17, IL-10). Weiterhin untersuchten wir die Differenzierung (CD45RO, CCR7), die CD161-Expression und Proliferation (Ki67).

Die Zellen wurden zum einen direkt nach der Zellseparation analysiert und zum zweiten Mal nach fünf Tagen Zellkultur.

Die Durchführung der Extra- und Intrazellulärfärbung erfolgte wie unter Kapitel 2.2.6 beschrieben. Ebenso wurden die Zellen für die Zytokinanalyse mit PMA

(0,03µg/ml), Ionomycin (1µg/ml) und Brefeldin A (10µg/ml) versetzt und für 4h im Inkubator belassen, um eine Basisstimulation zu gewährleisten (siehe 2.2.7.). Für die Apoptose-Färbung wurden die sonst unbehandelten Zellen mit FACS-Puffer gewaschen (1500U/5min) und anschließend in 100µl AnnexinV-Binding-Buffer (Konzentration: 1 Millionen Zellen auf 100 µl) resuspendiert. Der Zellsuspension wurden 5µl AnnexinV-FITC und 7µl 7-AAD hinzugefügt und für 15 min bei RT inkubiert. Als letzter Schritt vor der durchflusszytometrischen Analyse folgte ohne weiteren Waschschritt die Zugabe von 400µl Annexin-Binding-Buffer.

Die Flowzytometer Messungen erfolgten mit FACS Canto II (BD Biosciences, Franklin Lakes, NJ, USA) und wurden mit der BD FACSDiva Software ausgewertet.

2.2.9. Statistische Auswertung

Die statistische Auswertung erfolgte mit der Analyse-Software IBM SPSS Statistics, Version 20 (Chicago, IL, USA). Die Grafiken wurden mit GraphPad Prism, Version 5 (San Diego, CA, USA), erstellt.

<u>Deskriptive Statistik</u>: Kreuztabellen dienten zur Darstellung von Zusammenhängen zwischen nominalen und ordinalen Variablen und zum Vergleich der Häufigkeitsverteilung (Chi-Quadrat-Test nach Pearson).

<u>Analytische Statistik</u>: Bei überwiegend nichtparametrisch verteilten Daten (Shapiro-Wilk Test) eignete sich der Rangsummentest nach Mann-Whitney-U zur Prüfung von signifikanten Unterschieden in der Zytokinproduktion und der phänotypischen Oberflächenexpression bei nicht verbundenen Variablen. Für verbundene Variablen wurde der bei nicht-parametrischer Verteilung der Wilcoxon-Rank Test, bei parametrischer Verteilung der Student t Test für verbundene Variablen eingesetzt. Auf Grund des explorativen Charakters der Studie wurde auf multiples Testen verzichtet und nur Zweigruppenvergleiche durchgeführt. Korrelationen wurden auf Grund der teilweise niedrigen Fallzahlen in den einzelnen Gruppen nicht berechnet.

Werte für p < 0,05 wurden als signifikant definiert.

3. Ergebnisse

Die Ergebnisse untergliedern sich in zwei Teile mit unterschiedlichem Schwerpunkt.

In Kapitel 3.1. werden die Resultate der Phänotypisierung der JIA-Gesamtkohorte beschrieben. Mit dem Einfluss der Krankheitsaktivität befassen sich Kapitel 3.2 und 3.3.

Im zweiten Teil, Kapitel 3.4., werden die Ergebnisse der Stimulationsversuche von CCR6+ Zellen und deren gezielte Polarisierung präsentiert.

3.1. Unterschiede im T-Zell Pool zwischen JIA Patienten und HD

3.1.1. Charakterisierung der untersuchten Patienten- und Kontrollgruppe

In Tabelle 7 werden die charakterisierenden Eigenschaften der JIA-Gesamtpatientenkohorte aufgeführt. Die analysierte Studienpopulation setzte sich aus 84 Patienten mit durchschnittlichem Alter von 13,1 Jahren zusammen. Der Zeitpunkt der Erstdiagnose (ED) war bei 69 der Patienten bekannt. Die durchschnittliche Krankheitsdauer betrug 7,7 Jahre.

Zum Messzeitpunkt zeigten 18 Patienten Krankheitsaktivität, während sich die Mehrheit in klinischer Remission befand. 83,3% der Patienten nahmen zum Untersuchungszeitpunkt regelmäßig Medikamente ein. Nur 16,7% hatten keine feste Medikation. Die Anzahl der Patienten mit Entzündungsparametern über dem Normwert (CRP=0,5 mg/dl, BSG=10mm/h) unterschied sich in der Häufigkeit zwischen JIA Patienten in Remission und mit Krankheitsaktivität. Die JIA-Subtypen zeigten sich typisch verteilt mit einer großen Anzahl von Oligoarthritiden (56,7%).

	Gesamt (N=84)					Remission (N=66)				Krankheitsaktivität (N=18)								
	Mean	± SI) Med	lian ,	Min ·	- Max	Mean ±	SD	Median	, Min	- Max	Mean	±	SD M	edian ,	Min ·	Max	p-Wert
Alter bei Messung	13,1	± 4,	3 1	14,3 ,	2,4 ·	- 21,3	13,2 ±	4,2	13,4	, 2,4	- 21,3	13,0	±	4,6	14,7 ,	3,7 ·	17,4	0,885
Alter bei ED	5,6	± 4,	1	4,6 ,	0,3 ·	- 15,1	6,1 ±	4,1	5,0	0,3	- 15,1	3,9	±	3,7	2,6 ,	0,7 ·	14,8	0,056
Krankheitsdauer	7,7	± 5,	1	7,1,	0,0 ·	- 17,1	7,3 ±	5,0	6,2	, 0,1	- 17,1	8,8	±	5,3	9,7,	0,0 ·	16,2	0,275
Geschlecht	N		%				N	%	, D			Ν		%				0,501
weiblich	60	7	1,4				46	69,7	7			14		77,8				
männlich	24	2	8,6				20	30,3	3			4		22,2				
Subtyp	N		%				N	%	, D			Ν		%				0,264
M. Still	4		4,8				4	6,1				0		0,0				0,285
RF+ Polyarthritis	0		0,0				0	0,0)			0		0,0				1,000
RF- Polyarthritis	14	1	6,7				10	15,2	2			4		22,2				0,476
Oligoarthritis	46	5	6,7				38	57,6	6			8		44,4				0,518
Enthesitis assoziierte Arthritis	8		9,5				5	7,6	5			3		16,7				0,244
Psoriasis Arthritis	7		8,3				4	6,1				3		16,7				0,149
nicht klassifizierte JIA	5		6,0				5	7,6	6			0		0,0				0,357
Entzündungsparameter	N		%				N	%	, D			Ν		%				
CRP ≤ 0,5mg/dl	64	7	6,2				56	88,9)			8		53,3				0,001
CRP > 0,5mg/dl	14	1	6,7				7	11 ,1				7		46,7				
BSG ≤ 10mm/h	47	5	6,0				42	73,7	7			5		38,5				0,015
BSG > 10mm/h	23	2	7,4				15	26,3	3			8		61,5				
Medikation	N		%				N	%	,)			N		%				0,615
Ohne Medikation	14	1	6,7				11	16,7	7			3		16,7				1,000
NSAR	30	3	5,7				21	31,8	3			9		50,0				0,365
MTX	12	1	4,3				11	16,7	7			1		5,6				0,093
NSAR + MTX	11	1	3,1				9	13,6	6			2		11,1				0,357
NSAR + Glukokortikoide	2		2,4				2	3,0)			0		0,0				0,455
NSAR + MTX + Glukokortikoide	11	1	3,1				8	12,1				3		16,7				0,425
Biologika, davon																		0,285
- Adalimumab	2		2,4				2	3,1				0		0,0				
- Etanercept	2		2,4				2	3,1				0		0,0				

Tabelle 7: Charakterisierende Eigenschaften der JIA-Gesamtpatientenkohorte.

Aufgeführt werden die statistischen Charakteristika der JIA Patientenkohorte bei Probenentnahme mit Darstellung des Alters (in Jahre, Monate), der Krankheitsdauer sowie des Alters bei Erstdiagnose (ED). Alle Werte werden als Mittelwert (Mean) ± Standardabweichung (SD) und als Median mit minimalem Wert (Min) und maximalem Wert (Max) angegeben. Weiter sind das Geschlecht, der JIA Subtyp (Systemische JIA (M. Still), Rheumafaktor positive (RF+) oder negative (RF-) Polyarthritis, Oligoarthritis, Enthesitis assoziierte Arthritis, Psoriasis Arthritis), die Entzündungsparameter (CRP, BSG) und die aktuellen Medikation (nichtsteroidale Antirheumatika (NSAR); Methotrexat (MTX), Glukokortikoide, Biologika) aufgeführt. Die Anzahl (N) und die Häufigkeit sind in % der Gruppe angegeben. Die Unterschiede der Häufigkeiten wurden außer beim Alter (Student t-Test) mit dem Chi² Test nach Pearson bestimmt.

Bei dem Vergleich von JIA Patienten und gesunden Kontrollprobanden (HD) wurden 58 Patienten in die statistische Auswertung aufgenommen. Grund für die Reduktion der ursprünglich eingeschlossenen Probanden war die Notwendigkeit der randomisierten Zuteilung zu den Gruppen bis eine statistische Altersgleichheit erreicht wurde. Die Randomisierung wurde mittels Zufallsziehung bis zum Erreichen der Altersgleichheit durchgeführt. Die demographischen Daten zeigt ausführlich Tabelle 8.

Die analysierte Studienpopulation setzte sich aus 58 Patienten mit durchschnittlichem Alter von 11,2 Jahren zusammen. Die Kontrollgruppe (N=40) war im Durchschnitt 9,9 Jahre alt. Im Mittelwertvergleich des Alters bestand kein statistischer Unterschied. Die JIA-Studienpopulation war mehrheitlich weiblich, während die Kontrollgruppe mehr männliche Probanden aufwies.

	JIA	(N=58)	HD	p-Wert	
	Mean ± SD	Median, Min-Max	Mean ± SD	Median, Min-Max	(t-Test)
Alter bei Messung	11,3 ± 3,8	12,3 , 2,4 - 17,4	9,9 ± 4,1	9,0 , 1,0 - 20,0	0,094
Alter bei ED	4,8 ± 3,3	4,5 , 0,3 - 13,0			
Krankheitsdauer	$6,5 \pm 4,5$	5,3 , 0 - 15,7			
Geschlecht	Ν	Häufigkeit in %	Ν	Häufigkeit in %	(Chi²)
weiblich	39	39,8	14	14,3	0.002
männlich	19	19,4	26	26,5	0,002

 Tabelle 8: Demografische Eigenschaften der Probanden.

Die Tabelle zeigt die Verteilung von Alter und Geschlecht in JIA Patienten und HD. Das Alter, die Krankheitsdauer und das Alter bei Erstdiagnose (ED) sind in Jahre, Monate angegeben. Alle Werte werden als Mittelwert (Mean) ± Standardabweichung (SD) und als Median mit minimalem Wert (Min) und maximalem Wert (Max) angegeben. Die Anzahl (N) und die Häufigkeit sind in % der Gruppe angegeben.

3.1.2. Proportionale Zusammensetzung der Lymphozyten in JIA und HD

In der proportionalen Zusammensetzung der Lymphozyten von JIA-Patienten und Kontrollprobanden (HD) finden sich folgende Unterschiede, die im Detail in Tabelle 9 aufgeführt sind. So setzen sich die die Lymphozyten von JIA Patienten im Verhältnis aus signifikant mehr B-Zellen zusammen bei leicht verminderter Proportion von CD8+T-Zellen. Der proportionale Anteil an CD4+T-Zellen, NKund NK-T-Zellen unterscheidet sich nicht signifikant.

		HD		JIA	
	Mean ± SD	Median, Min - Max	Mean ± SD	Median, Min - Max	p-Wert
Lymphozyten	45,6 ± 22,3	37,9 , 12,3 - 80,9	38,2 ± 21,1	35,0 , 1,4 - 77,0	0,109
B-Zellen CD19+CD3-	16,3 ± 6,3	14,8, 8,2 - 41,1	21,0 ± 10,1	18,6, 0,0 - 48,2	0,007
T-Zellen CD8+CD3+	24,1 ± 6,0	23,6 , 14,8 - 37,8	21,5 ± 5,8	21,9 , 10,0 - 33,8	0,086
T-Zellen CD4+CD3+	41,5 ± 9,8	41,1,19,8 - 60,0	41,3 ± 10,6	40,5 , 13,5 - 59,1	0,896
NK-Zellen CD56+CD3-	$9,4 \pm 5,6$	10,0,1,0-22,9	9,2 ± 6,7	7,2,1,4 - 28,3	0,683
NK-T-Zellen CD56+CD3+	1,6 ± 1,5	1,3,0,1-8,7	1,4 ± 1,3	1,0, 0,0 - 6,7	0,177

Tabelle 9: Proportionale Verteilung der Lymphozyten bei JIA und HD.

Alle Werte werden als Mittelwert (Mean) ± Standardabweichung (SD) und als Median mit minimalem Wert (Min) und maximalem Wert (Max) angegeben.

Betrachtet man die Zusammensetzung der CD4+ T-Helferzellen genauer, finden sich ausgeprägte Unterschiede zwischen Gesunden und Kranken.

JIA Patienten haben proportional signifikant mehr naive T-Zellen. Die T-Gedächtniszellen, die T-Effektorzellen und die TEMRA dagegen sind signifikant vermindert. Die Tregs sind ebenfalls signifikant vermindert. Die konkreten Zahlen zeigt Tabelle 10. Graphisch sind die Ergebnisse der T-Helferzell-Verteilung im Streudiagramm in Abbildung 13 dargestellt.

		HD		JIA	
	Mean ± SD	Median, Min - Max	Mean ± SD	Median, Min - Max	p-Wert
Naive CD45RA+CD28+	62,0 ± 11,3	62,9 , 36,3 - 84,0	70,6 ± 11,2	2 72,3 , 49,2 - 96,0	0,001
Gedächtnis CD45RA-CD28+	33,8 ± 11,4	33,3 , 12,3 - 59,9	27,5 ± 10,3	3 26,1 , 3,0 - 48,1	0,012
Effektor CD45RA-CD28-	$1,7 \pm 2,0$	1,2, 0,2 - 11,9	$0,9 \pm 0,9$	0,7,0,1-5,7	0,006
TEMRA CD45RA+CD28-	2,2 ± 1,2	1,9,0,3-4,4	1,5 ± 1,0	1,4 , 0,3 - 4,8	0,006
Tregs CD25+CD127-FoxP3+	4,1 ± 1,8	3,6,1,8-9,2	2,9 ± 1,1	2,8 , 1,1 - 6,2	0,001

Tabelle 10: Proportionale Verteilung der CD4+ T-Helferzellen bei JIA und HD.

Abbildung 13: Proportionale Unterschiede der CD4+T-Zell-Subpopulationen in JIA und HD. Darstellung der T-Zell Proportionen im Streudiagramm: JIA Patienten (Punkte) weisen anteilig signifikant mehr naive T-Zellen auf als die Kontrollprobanden (HD; Dreiecke), während alle anderen Subpopulationen (T-Gedächtniszellen, T-Effektorzellen, TEMRA, Tregs) signifikant vermindert sind.

3.1.3. Zytokinproduktion der T-Helferzellen in JIA und HD

Abgesehen von den Unterschieden der Proportionen unterscheiden sich die T-Helferzellen von JIA und HD auch in der Zytokinproduktion auf. Alle Zahlenwerte zeigt zusammengefasst Tabelle 11.

Die Zytokinproduktion der T-Helferzellen ist signifikant reduziert. Im Vergleich zu den Kontrollprobanden produzieren die CD4+ Zellen der JIA Patienten signifikant weniger Th1-Zytokine wie INF γ , IL-1 β und IL-6 sowie das typische Th2-Zytokin IL-4. Auch IL-17 wird signifikant geringer produziert (vgl. Tabelle 11). Abbildung 15 veranschaulicht die Daten im Streudiagramm. Weiterhin zeigen die Abbildungen 16, 17 und 18 exemplarisch die Zytokinproduktion von IL-17, INF γ sowie IL-4 in JIA und HD im Durchflusszytometer.

Der Trend der verminderten Zytokinproduktion findet sich auch innerhalb der einzelnen Subpopulationen wieder (vgl. Tabelle 11).

<u>Naive Zellen</u>: Diese weisen bei JIA Patienten eine signifikant verminderte Produktion von IL-6 und IL-1 β auf. IL-17 wird jedoch signifikant höher produziert. **<u>T-Gedächtniszellen</u>**: Die Zytokinproduktion in der Subpopulation der T-Gedächtniszellen ist konstant niedriger als bei den Kontrollprobanden. Signifikante Unterschiede zeigen sich bei den Tem in der INF γ , TNF α und der IL-4 Produktion. Auch die Tcm produzieren signifikant weniger INF γ , TNF α und IL-4. IL-17 wird ebenfalls signifikant geringer produziert.

<u>T-Effektorzellen</u>: Der Trend der reduzierten Zytokinproduktion lässt sich auch bei den T-Effektorzellen beobachten. Signifikant geringer ist die TNFα Produktion.

<u>TEMRA</u>: In der Zytokinproduktion zeigen sich keine signifikanten Unterschiede zu den Kontrollprobanden, wenn sich auch hier der Trend der verminderten Zytokinproduktion beobachten lässt.

<u>**Treg</u>**: Die regulatorischen T-Zellen sind in JIA Patienten zwar quantitativ reduziert, produzieren aber signifikant mehr IL-10 als die Tregs der HD.</u>

		HD			JIA	
	Mean ± SD	Median,	Min - Max	Mean ± SD	Median, Min - Max	p-Wert
CD4+ gesamt:						
INFγ	6,7 ± 4,2	6,0,	1,6 - 15,8	4,8 ± 2,8	4,3 , 0,1 - 13,0	0,028
ΤΝFα	28,6 ± 16,7	26,2,	3,6 - 63,0	26,6 ± 14,9	28,8, 0,0-67,9	0,544
IL-6	$0,2 \pm 0,1$	0,1,	0,0 - 0,4	0,1 ± 0,1	0,1, 0,0-0,2	0,001
IL-1β	$0,4 \pm 0,2$	0,3,	0,1 - 0,8	0,2 ± 0,1	0,2, 0,1-0,8	0,000
IL-17	$0,6 \pm 0,3$	0,6,	0,1 - 1,4	$0,5 \pm 0,4$	0,4 , 0,0 - 1,8	0,041
IL-4	$1,4 \pm 0,9$	1,3,	0,0 - 4,1	$0,8 \pm 0,6$	0,7, 0,0-2,9	0,001
Zytokinproduktion Naive:						
INFγ	$0,9 \pm 0,7$	0,6,	0,1 - 3,8	$0,8 \pm 0,6$	0,6, 0,0-2,8	0,704
ΤΝFα	14,4 ± 11,5	11,6,	1,1 - 46,4	18,2 ± 12,4	18,3 , 0,0 - 61,0	0,128
IL-6	$0,2 \pm 0,1$	0,2,	0,1 - 0,3	0,1 ± 0,1	0,1, 0,0-0,2	0,000
IL-1β	$0,4 \pm 0,2$	0,3,	0,2 - 0,9	$0,2 \pm 0,2$	0,2, 0,1-0,8	0,001
IL-17	$0,2 \pm 0,2$	0,1,	0,0 - 0,9	$0,3 \pm 0,3$	0,2, 0,0-1,4	0,043
IL-4	$0,2 \pm 0,2$	0,2,	0,0 - 0,7	$0,3 \pm 0,7$	0,1, 0,0-3,7	0,562
Zytokinproduktion Tcm:						
INFγ	$3,2 \pm 2,4$	2,5,	0,6 - 10,1	1,9 ± 1,4	1,5,0,0-6,1	0,006
ΤΝϜα	10,8 ± 6,8	9,6,	0,6 - 26,4	6,9 ± 5,0	6,1, 0,0-22,4	0,002
IL-6	$0,0 \pm 0,1$	0,0,	0,0 - 0,2	0.0 ± 0.0	0,0, 0,0-0,1	0,037
IL-1β	0.1 ± 0.1	0,1,	0,0 - 0,2	0.0 ± 0.1	0.0, 0.0-0.2	0,007
IL-4	0.6 ± 0.4	0,5,	0,0 - 2,1	0.4 ± 0.4	0.3, 0,0 - 2,3	0,003
Zytokinproduktion Tem:				, ,		,
INFV	11.4 ± 6.6	9,7,	2,6 - 27,5	7.5 ± 4.9	6,7, 0,0 - 22,2	0,004
ΤΝϜα	30,7 ± 15,9	29,3 ,	2,5 - 68,3	$20,7 \pm 13,1$	19,2, 0,0 - 49,6	0,002
IL-6	0.0 ± 0.1	0,0	0,0 - 0,6	0.0 ± 0.0	0.0, 0.0-0.2	0,110
IL-1β	0.1 ± 0.1	0,1,	0,0 - 0,5	0.1 ± 0.1	0.0, 0.0-0.2	0,188
IL-17	1.4 ± 0.7	1.2 .	0.2 - 3.6	1.0 ± 0.8	0.8. 0.0 - 3.8	0.008
IL-4	4.2 ± 3.2	3.1 .	0.0 - 14.5	2.5 ± 2.0	1.9. 0.1 - 9.9	0.003
Zvtokinproduktion Effektor:	.,,_	-,-,	-,,-	_,,_	.,., .,,.	-,
INFV	9.8 ± 12.9	6.0.	0.0 - 52.7	6.6 ± 8.9	3.5 . 0.0 - 35.1	0.078
ΤΝΕα	11.6 ± 10.6	9.8.	0.4 - 51.9	8.1 ± 10.1	4.2. 0.0 - 50.0	0.007
IL-6	0.2 ± 0.6	0.0.	0.0 - 2.1	0.0 ± 0.0	0.0 . 0.0 - 0.0	0.063
μ1β	0.0 + 0.1	0.0	0.0 - 0.3	0.1 ± 0.3	0.0.0.0.0-1.9	0.698
-17	0.6 ± 0.9	0.3	0.0 - 3.3	2.4 + 12.6	0.0 . 0.0 - 92.1	0.343
-4	15 + 17	1 0	00-65	1.3 + 1.6	10 00-81	0.581
Zytokinproduktion TEMRA:	1,0 ± 1,7	1,0 ,	0,0 0,0	1,0 ± 1,0	1,0, 0,0 0,1	0,001
	6.4 + 8.0	3.6	0.0 - 31.8	5.0 + 6.7	2.5. 0.0 - 28.9	0.207
ΤΝΕα	77 + 65	6,2	0.0 - 28.6	80 + 80	62 00-451	0.973
III -6	0.0 ± 0.1	0, <u>-</u> ,	0.0 - 0.3	$0,0 \pm 0,0$	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0.681
μ1β	0,0 = 0,1	0.0	0.0 - 0.4	0.2 ± 0.3	0,0,0,0,0,0,0,0,0	0.082
-17	0.3 ± 0.7	0,0,	0.0 - 3.5	24 ± 120	0,0,0,0,0,0,1,1	0.225
	$0,0 \pm 0,7$ 01+02	0,1,	0.0 - 0.8	0.4 + 1.7	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0.079
Zytokinproduktion Treas	0,1 ± 0,2	0,0,	0,0 0,0	0, i ± 1,/	0,0, 0,0 12,0	0,019
III -10 in Treas	0.5 ± 0.4	0.3	00-22	12+15	06 00-59	0.016
II -17 in Treas	$0,0 \pm 0,4$ 10 ± 1/	0,3,	0.0 - 8.2	$1,2 \pm 1,3$	0,	0,688
i⊑-17 III 116yə	1,0 ± 1,4	0, 7,	0,0-0,2	1,1 ± 1,3	0,7, 0,0-0,0	0,000

Die Tabelle zeigt die intrazelluläre Zytokinproduktion in Prozent innerhalb der CD4+Subpopulationen. Gemessen wurde in CD45RA+CCR7+CD28+ naiven Zellen, in CD45RA-CCR7+CD28+ zentralen T-Gedächtniszellen (Tcm), in CD45RA-CCR7-CD28+ Effektor T-Gedächtniszellen (Tem), in CD45RA-CCR7-CD28- Effektorzellen und in CD45RA+CCR7-CD28- TEMRA.

Grau hinterlegt sind signifikante Unterschiede zwischen JIA Patienten und gesunden Kontrollprobanden (HD). Alle Werte werden als Mittelwert (Mean) ± Standardabweichung (SD) und als Median mit minimalem Wert (Min) und maximalem Wert (Max) angegeben.

. . .

нσ

н́р

JIA

....

....

JİA

Treg-Zytokine

5-

0-

℅ 1.0-

0.5

0.0

Abbildung 15: IL-17 in CD4+. Repräsentative Darstellung der intrazellulären IL-17 Produktion in CD4+ T-Zellen bei einem Beispiel-Patient mit JIA und einer gesunden Kontrollperson (HD)

Abbildung 16: INFγ in CD4+. Repräsentative Darstellung der intrazellulären INFγ Produktion in CD4+ T-Zellen bei einem Beispiel-Patienten mit JIA und einer gesunden Kontrollperson (HD)

Abbildung 17: IL-4 in CD4+. Repräsentative Darstellung der intrazellulären IL-4 Produktion in CD4+ T-Zellen bei einem Beispiel-Patienten mit JIA und einer gesunden Kontrollperson (HD)

3.1.4. Expression von Chemokinrezeptoren und RORyt in JIA und HD

Die Expression von CCR6, CCR5 und CXCR3 ist in JIA Patienten im Vergleich zu HD vermindert (vgl. Tabelle 12). CCR5 wird signifikant niedriger exprimiert.

		HD			JIA	
	Mean ± SD	Median,	Min - Max	Mean ± SD	Median, Min - Max	p-Wert
CCR6 in CD4	3,8 ± 2,4	3,2,	0,5 - 9,6	3,8 ± 4,8	2,6, 0,6-24,9	0,184
CCR5 in CD4	3,5 ± 1,9	3,1,	0,5 - 7,0	3,8 ± 7,7	1,9,0,4 - 54,1	0,008
CXCR3 in Tem	16,0 ± 12,2	14,4 ,	0,4 - 51,4	13,6 ± 10,0	12,3 , 0,4 - 42,1	0,487
CD27 in CD4	93,9 ± 3,9	93,9,	84 - 99,5	94,2 ± 11	96,8,16-99,6	0,003
CD31 in CD4	52,8 ± 10,3	51,2,	28 - 74,1	59,9 ± 14	61,2, 11 - 81,1	0,001
CD161 in CD4	4,5 ± 4,8	3,2,	0,8 - 33,2	4,3 ± 2,2	4,55 , 0,4 - 9,6	0,109
RORyt in Naive	77,9 ± 14,9	79,7,	29,4 - 99,1	87,8 ± 10,9	90,7 , 56,4 -99,4	0,000
RORyt in Gedächtnis	83,5 ± 13,1	83,7,	36,0 - 99,6	90,1 ± 11,9	93,7 , 35,8 -99,4	0,003
RORyt in Effektor	71,0 ± 17,6	72,7,	18,8 - 100,0	82,7 ± 14,3	86,4 , 41,3 -100,0	0,001
RORyt in TEMRA	66,0 ± 16,4	65,6,	20,0 - 97,7	77,8 ± 13,8	78,2 , 37,9 -98,3	0,000

Tabelle 12: Expression von Oberflächen- und Chemokinrezeptoren sowie RORyt in JIA und HD.

Alle Werte werden als Mittelwert (Mean) ± Standardabweichung (SD) und als Median mit minimalem Wert (Min) und maximalem Wert (Max) angegeben.

JIA Patienten und HD unterscheiden sich signifikant in der Expression von CD31 und CD27. Beide Rezeptoren werden von den CD4+ T-Helferzellen der JIA Patienten höher exprimiert als in HD.

Die CD161-Expression unterscheidet sich nicht in CD4+ T-Helferzellen. Naive CD4+T-Zellen in JIA Patienten exprimieren CD161 jedoch signifikant höher als HD (Zahlenwerte im Appendix aufgeführt, Seite ii).

Über alle Subpopulationen hinweg fällt die signifikante Überexpression des intrazellulären Transkriptionsfaktors RORyt auf (vgl. Tabelle 12 und Abb. 19).

Abbildung 19: Unterschiede zwischen JIA und HD in der RORyt-Expression. Die Abbildung zeigt die signifikant höhere RORyt-Expression in % in CD4+Subpopulationen der JIA Patienten.

3.1.5. Zusammenfassung der Unterschiede zwischen JIA und HD

Im direkten Vergleich mit altersgleichen gesunden Kontrollprobanden fällt eine signifikante Verschiebung in den proportionalen Anteilen der CD4+ T-Zell Subpopulationen auf. Die naiven Zellen sind in JIA Patienten signifikant vermehrt, während die differenzierten Zellen deutlich vermindert sind. Auch die signifikant vermehrte Expression von CD27 und CD31 beschreibt den großen Anteil der undifferenzierten, frisch produzierten, naiven Zellen.

Die Zytokinproduktion ist in der Gesamtheit stark reduziert. Th1-Zytokine (INFγ, TNFα), Th2-Zytokine (IL-4) und Th17-Zytokine (IL-17, IL-1β, IL-6) werden in JIA Patienten signifikant geringer produziert. Die regulatorischen T-Zellen, die

zahlenmäßig signifikant vermindert sind, produzieren verstärkt das antiinflammatorische IL-10. Der Transkriptionsfaktor der Th17 Zellen, RORyt, wird signifikant höher exprimiert.

3.2. JIA Patienten mit unterschiedlicher Krankheitsaktivität

Im Folgenden wird der Einfluss der Krankheitsaktivität auf den T-Helferzell Phänotyp im Querschnitt der JIA Gesamtpatientenkohorte untersucht.

3.2.1. Charakterisierung der Patientenkohorte nach Krankheitsaktivität

Tabelle 7 in Kapitel 3.1.1 zeigt die ausführliche deskriptive Statistik der Gesamtpatientenkohorte unterteilt in Patienten mit klinischer Krankheitsaktivität bzw. in Remission. Die Remissionskriterien nach Wallace wurden berücksichtigt [79]. Innerhalb der Krankheitsaktivitätsgruppen bestand Altersgleichheit.

3.2.2. Proportionale Zusammensetzung der T-Helferzellen nach

Krankheitsaktivität

In der proportionalen Zusammensetzung der T-Helferzellen unterscheiden sich Patienten mit Krankheitsaktivität nicht signifikant von Patienten in Remission (vgl. Tabelle 13).

	F	Remission	Kran		
	Mean ± SD	Median, Min - Max	Mean ± SD	Median, Min - Max	p-Wert
T-Helferzellen CD3+CD4+	51,4 ± 11,9	53,2 , 11,1 - 71,4	55,4 ± 5,9	56,1 , 44,8 -65,4	0,257
Naive CD45RA+CD28+	67,7 ± 12,8	70,7 , 35,4 - 96,0	73,2 ± 10,7	73,8 , 52,0 -95,3	0,131
Gedächtnis CD45RA-CD28+	29,8 ± 12,6	27,4 , 3,0-61,4	26,2 ± 9,2	24,4 , 13,7 -44,1	0,283
Effektor CD45RA-CD28-	$1,0 \pm 0,9$	0,7 , 0,1 - 5,7	$0,8 \pm 0,5$	0,6, 0,1-1,9	0,675
TEMRA CD45RA+CD28-	1,5 ± 1,2	1,3, 0,2-5,8	1,1 ± 0,6	1,1, 0,4-2,2	0,410
Tregs CD25+CD127-FoxP3+	3,0 ± 1,3	2,7 , 0,8-7,4	$2,7 \pm 0,9$	2,8, 1,1-4,8	0,531

Tabelle 13: Proportionale Verteilung der CD4+ T-Helferzellen nach Krankheitsaktivität.

Alle Werte werden als Mittelwert (Mean) ± Standardabweichung (SD) und als Median mit minimalem Wert (Min) und maximalem Wert (Max) angegeben.

3.2.3. Zytokinproduktion der T-Helferzellen nach Krankheitsaktivität

Die Zytokinproduktion der T-Helferzellen von Patienten mit Krankheitsaktivität unterscheidet sich nicht signifikant von Patienten in Remission (vgl. Tabelle 14).

	Remission		Krankheitsaktivität				
CD4+ gesamt:	Mean ± SD	Median,	Min - Max	Mean ± SD	Median,	Min - Max	p-Wert
INFγ	5,3 ± 3,2	4,7,	0,1 - 16,5	$4,0 \pm 3,2$	3,5,	0,0 - 10,8	0,081
ΤΝFα	29,9 ± 15,7	30,3 ,	0,0 - 67,9	25,1 ± 14,9	27,1,	0,0 - 50,9	0,237
IL-6	0,1 ± 0,1	0,1,	0,0 - 0,2	$0,1 \pm 0,1$	0,1,	0,0 - 0,2	0,820
IL-1β	$0,2 \pm 0,1$	0,2,	0,0 - 0,3	$0,3 \pm 0,2$	0,2,	0,1 - 0,8	0,254
IL-17	$0,8 \pm 0,6$	0,7,	0,0 - 2,9	$0,7 \pm 0,5$	0,7,	0,1 - 2,3	0,835
IL-4	$0,5 \pm 0,4$	0,4	0,0 - 1,8	$0,4 \pm 0,3$	0,4	0,0 - 1,3	0,374
Zytokinproduktion Naive:							
INFγ	$0,9 \pm 0,7$	0,7,	0,0 - 3,5	$0,7 \pm 0,7$	0,5,	0,0 - 2,8	0,206
ΤΝFα	20,3 ± 12,7	20,2,	0,0 - 61,0	17,2 ± 12,3	18,9 ,	0,0 - 42,3	0,311
IL-6	0,1 ± 0,1	0,1,	0,0 - 0,2	$0,1 \pm 0,1$	0,1,	0,0 - 0,2	0,827
IL-1β	$0,2 \pm 0,1$	0,2,	0,0 - 0,8	$0,2 \pm 0,2$	0,1,	0,1 - 0,7	0,856
IL-17	$0,0 \pm 0,0$	0,0,	0,0 - 0,1	$0,0 \pm 0,0$	0,0,	0,0 - 0,1	0,114
IL-4	$0,3 \pm 0,6$	0,1,	0,0 - 3,7	$0,3 \pm 0,7$	0,1,	0,0 - 3,0	0,719
Zytokinproduktion Tcm:							
INFγ	2,2 ± 1,6	1,8,	0,0 - 7,6	1,9 ± 1,8	1,4,	0,0 - 6,1	0,168
ΤΝFα	8,2 ± 6,1	7,7,	0,0 - 34,0	$6,6 \pm 4,9$	5,8,	0,0 - 17,6	0,326
IL-6	$0,0 \pm 0,0$	0,0,	0,0 - 0,1	$0,0 \pm 0,0$	0,0,	0,0 - 0,0	0,580
IL-1β	$0,0 \pm 0,1$	0,0,	0,0 - 0,2	$0,1 \pm 0,1$	0,0,	0,0 - 0,4	0,625
IL-4	$0,4 \pm 0,4$	0,3,	0,0 - 2,3	0,6 ± 1,2	0,3,	0,0 - 5,2	0,869
Zytokinproduktion Tem:							
INFγ	$7,8 \pm 5,0$	6,8,	0,0 - 22,2	6,1 ± 4,8	4,6,	0,0 - 14,6	0,164
ΤΝFα	21,8 ± 14,0	20,0,	0,0 - 58,4	19,1 ± 12,8	18,4 ,	0,2 - 45,4	0,459
IL-6	$0,0 \pm 0,0$	0,0,	0,0 - 0,2	$0,0 \pm 0,0$	0,0,	0,0 - 0,0	0,429
IL-1β	$0,1 \pm 0,1$	0,0,	0,0 - 0,2	$0,1 \pm 0,1$	0,1,	0,0 - 0,4	0,200
IL-17	0,1 ± 0,2	0,0,	0,0 - 1,0	$0,2 \pm 0,5$	0,0,	0,0 - 2,0	0,464
IL-4	2,3 ± 1,9	1,7,	0,1 - 9,9	$2,6 \pm 1,7$	2,5 ,	0,1 - 6,2	0,345
Zytokinproduktion Effektor:							
INFγ	6,1 ± 8,3	3,5,	0,0 - 35,1	$7,0 \pm 7,3$	5,3,	0,0 - 23,1	0,582
ΤΝFα	8,1 ± 9,7	4,6,	0,0 - 50,0	9,5 ± 10,4	4,6,	0,0 - 32,5	0,794
IL-6	$0,0 \pm 0,0$	0,0,	0,0 - 0,0	$0,0 \pm 0,0$	0,0,	0,0 - 0,0	1,000
IL-1β	0,1 ± 0,3	0,0,	0,0 - 1,0	$0,2 \pm 0,6$	0,0,	0,0 - 1,9	0,721
IL-17	$0,0 \pm 0,0$	0,0,	0,0 - 0,0	$0,1 \pm 0,4$	0,0,	0,0 - 1,6	0,604
IL-4	1,3 ± 1,5	1,0,	0,0 8,1	1,6 ± 1,8	1,3 ,	0,0 5,9	0,598
Zytokinproduktion TEMRA:							
INFγ	$4,8 \pm 6,5$	2,0,	0,0 - 28,9	$3,5 \pm 3,3$	2,6,	0,0 - 11,2	0,996
ΤΝFα	8,4 ± 8,0	6,4,	0,0 - 45,1	$6,9 \pm 4,9$	6,1,	0,0 - 17,3	0,651
IL-6	$0,0 \pm 0,0$	0,0,	0,0 - 0,0	$0,0 \pm 0,1$	0,0,	0,0 - 0,2	0,070
IL-1β	0,1 ± 0,2	0,0,	0,0 - 0,9	$0,2 \pm 0,5$	0,0,	0,0 - 1,4	0,806
IL-17	$0,3 \pm 0,7$	0,0,	0,0 - 4,3	$0,2 \pm 0,4$	0,0,	0,0 - 1,5	0,321
IL-4	0,4 ± 1,6	0,0,	0,0 - 12,5	0,1 ± 0,2	0,0,	0,0 - 1,0	0,042
Zytokinproduktion Tregs:							
IL-10 in Tregs	1,1 ± 1,4	0,6,	0,0 - 5,7	1,2 ± 1,4	0,7,	0,2 - 5,9	0,315
IL-17 in Tregs	1,0 ± 1,2	0,7,	0,0 - 6,8	0,9 ± 1,6	0,4,	0,0 - 6,5	0,104

Tabelle 14: Zytokinproduktion in CD4+ T-Helferzellen nach Krankheitsaktivität.

Die Tabelle zeigt die intrazelluläre Zytokinproduktion in Prozent innerhalb der CD4+Subpopulationen. Gemessen wurde in CD45RA+CCR7+CD28+ naiven Zellen, in CD45RA-CCR7+CD28+ zentralen T-Gedächtniszellen (Tcm), in CD45RA-CCR7-CD28+ Effektor T-Gedächtniszellen (Tem), in CD45RA-CCR7-CD28- Effektorzellen und in CD45RA+CCR7-CD28-TEMRA. Grau hinterlegt sind signifikante Unterschiede zwischen JIA Patienten in Remission und JIA Patienten mit Krankheitsaktivität. Alle Werte werden als Mittelwert (Mean) ± Standardabweichung (SD) und als Median mit minimalem Wert (Min) und maximalem Wert (Max) angegeben.

3.2.4. Expression von Chemokinrezeptoren und RORyt nach Krankheitsaktivität

Die Chemokinrezeptorexpression von CCR5 und CXCR3 unterscheidet sich nicht signifikant in Patienten mit Krankheitsaktivität und Patienten in Remission. Patienten mit klinischer Krankheitsaktivität zeigen den Trend zu einer höheren CCR6-Expression als Patienten in Remission, wobei der Unterschied allerdings statistisch nicht signifikant ist (vgl. Tabelle 15). Abbildung 20 zeigt die CCR6-Expression in CD4+ bei Krankheitsaktivität, in Remission und HD.

	F	Remission	Kran		
	Mean ± SD	Median, Min - Max	Mean ± SD	Median, Min - Max	p-Wert
CCR6 in CD4	4,5 ± 3,0	3,8 , 0,5 - 14,4	5,7 ± 3,2	5,6,0,4 - 11,5	0,194
CCR5 in CD4	3,8 ± 7,5	1,8, 0,4 - 54,1	3,6 ± 5,3	2,2 , 0,6 - 22,9	0,845
CXCR3 in Tem	13,0 ± 9,8	11,1, 0,4 - 42,1	13,3 ± 9,3	11,4, 1,6 - 30,8	0,896
RORyt in Naive	85,2 ± 13,3	89,3 , 43,3 - 99,7	92,5 ± 3,9	92,2 , 83,9 -99,4	0,066
RORyt in Gedächtnis	88,1 ± 13,2	92,7 , 35,8- 99,8	95,2 ± 2,8	94,3 , 89,2 -99,4	0,037
RORyt in Effektor	79,0 ± 15,5	80,8 , 31,2 - 100,0	89,4 ± 7,9	90,9 , 68,5 - 100,0	0,004
RORyt in TEMRA	74,4 ± 15,3	76,4 , 24,4 - 97,7	82,8 ± 9,8	83,3 , 61,3 -98,3	0,031

Tabelle 15: Expression von Chemokinrezeptoren und RORyt nach Krankheitsaktivität.

Alle Werte werden als Mittelwert (Mean) ± Standardabweichung (SD) und als Median mit minimalem Wert (Min) und maximalem Wert (Max) angegeben.

Abbildung 20: CCR6-Expression und Krankheitsaktivität. Dargestellt ist die CCR6-Expression in Prozent bei Krankheitsaktivität (Punkte), bei Remission (Vierecke), sowie bei gesunden Kontrollprobanden (HD = Dreiecke).

In der Analyse der Transkriptionsfaktoren finden sich signifikante Unterschiede in der RORyt-Expression zwischen Patienten mit klinischer Krankheitsaktivität bzw. in Remission.

Patienten mit Krankheitsaktivität exprimieren signifikant mehr RORyt als Patienten in klinischer Remission (vgl. Tabelle 15). In den CD4 Subpopulationen zeigen sich die deutlichsten Unterschiede bei den T-Effektorzellen.

Vergleicht man weiterhin die RORyt-Expression der JIA Patienten zusätzlich zu den Kontrollprobanden, so fällt abermals eine signifikant höhere Expression seitens der JIA Patienten auf. In Abbildung 21 ist die RORyt-Expression im Streudiagramm dargestellt.

3.3. Longitudinalanalyse

Bei einigen Patienten konnte mehrfach Probenmaterial in den verschiedenen Krankheitsstadien gewonnen werden. Die T-Zellen von Patienten (N=7), die sich mit unterschiedlicher klinischer Krankheitsaktivität präsentierten, wurden flowzytometrisch untersucht. Ziel war es innerhalb desselben Patienten, Krankheitsaktivitätsbedingte Unterschiede in der Zusammensetzung der T-Zellsubpopulationen, im Zytokinprofil sowie der Oberflächenrezeptor- und Transkriptionsfaktorexpression zu analysieren.

3.3.1. Charakterisierung der Patienten im Longitudinalverlauf

Die Stadieneinteilung erfolgte nach den validierten Kriterien für Remission und aktive Erkrankung nach Wallace [79]. Das Stadium der klinisch aktiven Arthritis sollte auch im JADAS-Score (> 3) abbildbar sein. Um eine Beeinflussung durch die Medikation zu vermeiden, sollte diese zu beiden Messzeitpunkten möglichst gering variieren (vgl. Tbl. 16).

Patient	Alter	Krankheitsaktivität	Medikation zum Zeitpunkt der Blutentnahme
P1	10,7	Arthritis	lbuprofen 30 mg/kg KG
	10,8	Remission unter Medikation	lbuprofen 30 mg/kg KG
P2	8,3	Arthritis	Keine
	8,9	Restaktivität	MTX 15 mg/m ² KOF/Woche
P3	17,8	Arthritis	lbuprofen 40 mg/kg KG
	18,0	Remission unter Medikation	lbuprofen 40 mg/kg KG, Prednisolon 0,4 mg/kg KG
P4	17,3	Arthritis	MTX 10 mg/m ² KOF/Woche, Naproxen 10 mg/kg KG
	17,8	Remission unter Medikation	MTX 10 mg/m ² KOF/Woche, Naproxen 10 mg/kg KG
P5	16,4	Arthritis	Ibuprofen 20 mg/kg, intraartikuläre Steroidapplikation
	16,5	Remission unter Medikation	lbuprofen 20 mg/kg KG
P6	14,5	Restaktivität	lbuprofen 30 mg/kg KG
	14,7	Remission unter Medikation	Ibuprofen 30 mg/kg KG
P7	15,7	Restaktivität	MTX 10 mg/m ² KOF/Woche, Ibuprofen 40 mg/kg KG
	15,8	Remission unter Medikation	MTX 10 mg/m ² KOF/Woche, Ibuprofen 40 mg/kg KG

Tabelle 16: JIA Patienten im longitudinalen Verlauf.

Die Tabelle zeigt das Alter der Patienten (P1-P7) in Jahren sowie die aktuelle Medikation bei Probenentnahme. Die Medikamentendosierung bezieht sich auf die Einnahme pro Tag und wird standardisiert in Milligramm (mg) pro Kilogramm Körpergewicht (kg KG) angegeben bzw. bei MTX pro Woche und in Milligramm pro m² Körperoberfläche (KOF).

3.3.2. Proportionale Zusammensetzung der T-Helferzellen im Verlauf

Die proportionale Zusammensetzung der T-Helferzellen unterscheidet sich im Verlauf im Stadium des akuten Krankheitsschubs signifikant vom Stadium der Remission (vgl. Tabelle 17).

Tabelle 17. Proportionale Vertenang del OD41 Printenetzenen in longitualitaten Vertaul.								
		Remission	Kra					
	Mean ± SD	Median, Min - Max	Mean ± SD	Median, Min - Max	p-Wert			
T-Helferzellen CD3+CD4+	36,8 ± 9,3	38,2 , 18,0 - 45,0	38,7 ± 8,3	37,6 , 30,0 - 50,0	0,686			
Naive CD45RA+CD28+	62,6 ± 6,7	63,8 , 50,5 - 71,6	57,6 ± 4,3	56,4 , 50,2 -62,9	0,018			
Gedächtnis CD45RA-CD28+	34,9 ± 6,8	32,2 , 26,6 - 47,6	$40,0 \pm 4,5$	40,7 , 34,5 - 47,9	0,018			
Effektor CD45RA-CD28-	1,0 ± 0,9	0,6 , 0,1 - 2,9	$1,2 \pm 0,1$	1,1,1,1-1,4	0,236			
TEMRA CD45RA+CD28-	1,6 ± 1,6	0,7 , 0,5 - 4,8	$1,1 \pm 0,5$	1,0,0,5-1,9	0,932			
Tregs CD25+CD127-FoxP3+	$3,9 \pm 2,4$	3,1 , 0,8-7,4	3,9 ± 1,2	4,1 , 2,3 -5,7	0,932			

Tabelle 17: Proportionale Verteilung der CD4+ T-Helferzellen im longitudinalen Verlauf.

Alle Werte werden als Mittelwert (Mean) ± Standardabweichung (SD) und als Median mit minimalem Wert (Min) und maximalem Wert (Max) angegeben.

Im Krankheitsschub nehmen die CD45RA-T-Gedächtniszellen signifikant höhere Proportionen der CD4+ T-Helferzellen ein als im Stadium der Remission.

In Remission finden sich anteilig signifikant mehr naive T-Zellen (vgl. Tbl. 17). Die Proportionen von Effektorzellen, TEMRA und Tregs verändern sich nicht signifikant. Abbildung 22 veranschaulicht die veränderten Anteile der T-Helferzellen im klinischen Verlauf.

Abbildung 22 CD4+T-Helfer-Propotionen im longitudinalen Verlauf. Die Abbildung zeigt die Anteile der naiven T-Zellen und der T-Gedächtniszellen in Prozent an allen CD4+ T-Helferzellen an zwei Messzeitpunkten mit unterschiedlicher klinischer Präsentation.

3.3.3. Zytokinproduktion der T-Helferzellen im Verlauf

Die Zytokinproduktion der Th1- und Th2-Zellen unterscheidet sich nicht signifikant im longitudinalen Krankheitsverlauf (vgl. Tabelle 18).

Dennoch fällt auf, dass die Th1 Zytokine INFγ und TNFα im Krankheitsschub im Vergleich zum Stadium der Remission konstant vermehrt produziert werden.

IL-4 (Th2 Zytokin) wird im Krankheitsschub konstant vermindert produziert.

Die Produktion von IL-10 veränderte sich im Krankheitsverlauf nicht.

Eine signifikante Veränderung konnte in der IL-17 Produktion beobachtet werden. Im akuten Krankheitsschub wird IL-17 signifikant mehr produziert als in Remission (p<0,001; vgl. Tbl. 18). Die IL-17 produzierenden Zellen sind phänotypisch Tregs (CD4+CD127-CD25+FoxP3+). Abbildung 23 zeigt die IL-17 Produktion im zeitlichen Verlauf bei unterschiedlicher Krankheitsaktivität.

Abbildung 23: IL-17 Produktion in Tregs im longitudinalen Verlauf. Die Abbildung zeigt die IL-17 Produktion der Tregs in Prozent an zwei unterschiedlichen Messzeitpunkten. Bei klinischer Krankheitsaktivität produzieren Tregs signifikant mehr IL-17 als im Stadium der Remission.

	Remission		Krar			
CD4+ gesamt:	Mean ± SD	Median,	Min - Max	Mean ± SD	Median, Min - Max	p-Wert
INFγ	3,6 ± 1,1	3,4,	2,0-5,2	7,0 ± 3,2	6,9 , 1,7 -11,6	0,345
ΤΝFα	24,5 ± 11,4	29,8,	2,5 - 35,1	34,6 ± 11,1	30,5 , 27,8 -56,8	0,173
IL-4	$0,9 \pm 0,4$	0,8,	0,4 - 1,8	0,6 ± 0,2	0,6, 0,3-0,9	0,172
IL-10	$0,2 \pm 0,1$	0,1,	0,1 - 0,3	$0,2 \pm 0,1$	0,2, 0,0-0,3	0,564
IL-17	$0,4 \pm 0,2$	0,4,	0,1 - 0,7	$0,6 \pm 0,5$	0,5, 0,3-1,5	0,686
Zytokinproduktion Naive:						
INFγ	$0,4 \pm 0,2$	0,3,	0,2-0,9	0,8 ± 1,0	0,5, 0,2-3,1	0,385
ΤΝFα	$14,2 \pm 9,0$	17,4,	0,6 - 25,7	22,7 ± 9,9	19,7 , 12,0 -42,7	0,060
IL-17	$0,2 \pm 0,2$	0,2,	0,0-0,6	$0,2 \pm 0,1$	0,3, 0,1-0,4	1,000
IL-4	$0,2 \pm 0,3$	0,1,	0,1 - 0,8	0,1 ± 0,1	0,1, 0,0-0,2	0,231
Zytokinproduktion Tcm:						
INFγ	2,2 ± 1,3	1,8,	0,7 - 4,6	2,9 ± 1,3	3,3, 0,6-4,3	0,470
ΤΝFα	8,1 ± 5,1	7,4,	0,8-14,9	9,8 ± 2,9	10,1,4,1-13,6	0,525
IL-4	$0,4 \pm 0,3$	0,3,	0,1 - 0,9	0,3 ± 0,1	0,3, 0,1-0,5	0,364
Zytokinproduktion Tem:						
INFγ	6,1 ± 2,2	6,9,	2,7 - 8,9	9,2 ± 3,6	11,0 , 4,1 -13,1	0,142
ΤΝFα	18,3 ± 11,9	21,4 ,	2,5 - 32,5	28,2 ± 5,6	26,8 , 22,1 -37,5	0,086
IL-17	$1,0 \pm 0,8$	0,6,	0,4 - 2,6	1,3 ± 0,9	1,0, 0,4-3,1	0,516
IL-4	2,1 ± 1,2	2,1,	0,7 - 3,8	1,8 ± 0,7	2,0, 0,7-2,7	0,416
Zytokinproduktion Effektor:						
INFγ	7,6 ± 12,1	3,3,	0,8-34,8	$8,7 \pm 6,4$	12,7,1,6-15,3	0,860
ΤΝFα	$6,7 \pm 6,8$	5,0,	0,3-20,2	$9,4 \pm 5,0$	8,4, 2,8-16,9	0,509
IL-17	$0,3 \pm 0,7$	0,0,	0,0-1,9	$0,3 \pm 0,4$	0,0, 0,0-1,0	0,795
IL-4	0,8 ± 1,0	0,3,	0,0 2,2	$0,7 \pm 0,7$	0,6, 0,0 2,0	0,832
Zytokinproduktion TEMRA:						
INFγ	1,9 ± 2,0	1,2,	0,4 - 5,7	8,5 ± 13,5	1,9, 0,6-38,3	0,274
ΤΝFα	4,7 ± 3,5	4,2,	0,0-10,1	12,5 ± 16,5	5,5 , 1,7 -48,0	0,273
IL-17	1,0 ± 1,1	1,1 ,	0,0-3,0	0,1 ± 0,3	0,0, 0,0-0,8	0,120
IL-4	0,1 ± 0,2	0,0,	0,0-0,4	0,0 ± 0,1	0,0, 0,0-0,3	0,535
Zytokinproduktion Tregs:						
IL10 in Tregs	$0,6 \pm 0,8$	0,3,	0,0-2,6	$0,6 \pm 0,5$	0,7, 0,0-1,4	0,674
IL17 in Tregs	$0,5 \pm 0,4$	0,6,	0,0-1,3	$1,3 \pm 0,4$	1,3, 0,8-2,0	0,001

Tabelle 18: Zytokinproduktion der CD4+ T-Helferzellen im longitudinalen Verlauf.

Die Tabelle zeigt Mittelwert (Mean) ± Standardabweichung (SD), Median und die Spannweite (Minimum – Maximum) der prozentualen Zytokinproduktion von JIA Patienten im longitudinalen Verlauf. Bei akuter Krankheitsaktivität produzieren Tregs signifikant mehr IL-17 als bei Remission (p=0,001; grau hinterlegt). Gemessen wurde in CD45RA+CCR7+CD28+ naiven Zellen, in CD45RA-CCR7+CD28+ zentralen T-Gedächtniszellen (Tcm), in CD45RA-CCR7-CD28+ Effektor T-Gedächtniszellen (Tem), in CD45RA-CCR7-CD28- EffektorZ-CD28- Ef

3.3.4. Expression von Chemokinrezeptoren und RORyt im Verlauf

Die Expression von CCR5, CXCR3 und RORyt unterscheidet sich nicht signifikant im longitudinalen Verlauf (vgl. Tabelle 19). Die CCR6-Expression ist bei Krankheitsaktivität hochreguliert, verfehlt jedoch knapp das Signifikanzniveau. Abbildung 24 zeigt die CCR6-Expression im Verlauf.

Abbildung 24: CCR6-Expression im longitudinalen Verlauf. Die Abbildung zeigt die CCR6-Expression in Prozent in CD4+ T-Helferzellen an zwei unterschiedlichen Messzeitpunkten.

			<u></u>		
		Remission	Kra		
	Mean ± SD	Median, Min - Max	Mean ± SD	Median, Min - Max	p-Wert
CCR6 in CD4	1,6 ± 0,5	1,6,0,6-2,1	$3,4 \pm 2,0$	3,2 , 1,2 - 7,1	0,053
CCR5 in CD4	2,3 ± 1,2	2,3,1,0-3,7	4,2 ± 4,5	2,1,1,7-10,9	0,844
CXCR3 in Tem	12,5 ± 7,8	10,4 , 5,7 - 23,7	7,7 ± 3,7	6,8 , 4,6 - 12,5	0,237
RORyt in Naive	93,5 ± 5,0	93,8 , 84,4 - 99,5	84,5 ± 15,1	91,1 , 56,4 - 96,5	0,900
RORyt in Gedächtnis	95,7 ± 3,9	96,5 , 87,8 - 100,0	88,6 ± 12,0	94,0 , 66,2 - 97,4	0,770
RORyt in Effektor	88,1 ± 8,4	88,2 , 76,0 - 98,8	78,9 ± 15,0	86,5 , 51,8 - 89,6	0,703
RORyt in TEMRA	85,1 ± 10,1	82,7 , 71,1 - 100,0	73,5 ± 19,5	76,4 , 38,1 - 91,8	0,380

Tabelle 19: Expression von Chemokinrezeptoren und RORyt im longitudinalen Verlauf.

3.3.5. Zusammenfassung der Krankheitsaktivitätsbedingten Unterschiede

Der Phänotyp und das Zytokinprofil der T-Helferzellen der JIA Gesamtkohorte wurden mit dem Unterscheidungskriterium der klinischen Krankheitsaktivität transversal (Kapitel 3.2.) wie auch longitudinal (Kapitel 3.3.) analysiert.

Es zeigte sich, dass RORyt bei Krankheitsaktivität signifikant mehr exprimiert wurde (vgl. Abb. 21). Im longitudinalen Verlauf setzten sich die CD4+T-Helferzellen im Krankheitsschub aus signifikant mehr differenzierten Zellen zusammen als in Remission, wo mehr naive T-Zellen anteilig waren. Weiterhin produzierten die regulatorische T-Zellen bei Krankheitsaktivität signifikant mehr IL-17 (vgl. Abb. 23). Die Expression von CCR6 schien ebenfalls bei Krankheitsaktivität zuzunehmen (vgl. Abb. 20 und Abb. 24).

3.4. CCR6-Kultur und Stimulationsversuche

3.4.1. Etablieren der Kulturbedingungen

3.4.1.1. Spezifische Zytokinstimulation

Beginnend Literaturrecherche Vielzahl mit einer wurde eine von Die CCR6+ Zellen Stimuluskonzentrationen getestet. sollten dem Polarisationsdruck dreier verschiedener Differenzierungswege (Th17, Th1, Treg) exponiert werden. Ziel war es das in vivo Zytokinmilieu zu imitieren und aleichzeitia erzeugen. einen in vitro Effekt zu Dabei dienten Stimulationsexperimente mit naiven T-Zellen zur Orientierung (vgl. Tabelle 20).

Studie		Kultur-	IL-1β	IL-6	IL-12	IL-23	TGFβ	IL-2
		dauer	-				-	
Veldhoen	[105]	?	10 ng/ml	20 ng/ml	5 ng/ml	10 ng/ml	10 ng/ml	
Wilson	[45]	5-6 d	50 ng/ml	30 ng/ml	5 ng/ml	50 ng/ml		100U
Rovedatti	[106]	2 d	10 ng/ml	20 ng/ml	5 ng/ml	10 ng/ml	10; 1; 0,1ng/ml	
Prochazkova	[107]	4 d	10 ng/ml	10 ng/ml	20 ng/ml		3 ng/ml	
Zhou	[108]	4 d		20 ng/ml		10 ng/ml	5 ng/ml	
Lee	[109]	5 d	10 ng/ml			25 ng/ml	25 - 500 pg/ml	25U
Valmori	[110]	?		50 ng/ml		100 ng/ml	10 ng/ml	
Mittelwert			18 ng/ml	25 ng/ml	8,8 ng/ml	34,2 ng/ml	7,0 ng/ml	62,5U

Tabelle 20: Stimulationsversuche mit naiven Zellen und zugehörige Kulturbedingungen.

Die Tabelle zeigt die Kulturdauer in Tagen (d) sowie die Stimuluskonzentration in Nanogramm pro Milliliter (ng/ml) bzw. in Units (U) von Stimulationsversuchen zur Plastizität in der Literatur.

Die Stimulus-Konzentrationen etablierte wir zuerst in Einzelkonzentrationsreihen (vgl. Abbildung 25 und 26). Dabei zeigte sich, dass bereits die niedrigste getestete Konzentration bei TGF β , IL-1 β , IL-23, IL-22 und IL-6 die Zytokinproduktion hocheffizient stimuliert. Bei IL-12 schien es einen proportionalen Effekt zur Stimuluskonzentration zu geben, weshalb eine mittelhohe Endkonzentration gewählt wurde. IL-22 erwies sowohl auf die Zellproliferation als auch auf die Zytokinproduktion als inhibitorisch wirksam. Wir entschieden uns deshalb, IL-22 nicht zu verwenden. IL-2 wirkt sich stark förderlich auf Proliferation und T-Zell-Differenzierung aus [111]. Deshalb wurde IL-2 zu den Einzelstimuli IL-12 und TGF β kombiniert, um einen noch intensiveren Polarisationsdruck jeweils in Richtung Th1 bzw. Treg Differenzierung auszuüben. Die Stimulus-Kombination von IL-6 + IL-1 β + IL-23 erachteten wir als am interessantesten, um den Th17-Differenzierungsweg zu analysieren.

Abbildung 25: Stimulus-Konzentrationsreihe und Effekt auf IL-17 Produktion in CCR6+.

Abbildung 26: Stimulus-Konzentrationsreihe und Effekt auf INFy Produktion in CCR6+.

3.4.1.2. Patientenauswahl für Zellkultur

Die hier dargestellten Ergebnisse beziehen sich auf ausgewählte JIA Patienten (N=6), sowie Kontrollprobanden (N=5).

Auswahlkriterium für die JIA Patienten war eine klinisch aktive Arthritis zum Zeitpunkt der Blutabnahme (JADAS-Score > 3). Eine Übersicht zeigt Tabelle 21.

Patient	Alter	JIA Subtyp	BSG	Medikation bei Blutentnahme
P01	3	Oligoarthritis	nicht gemessen	Naproxen 10 mg/kg KG
P02	15	Psoriasis-Arthritis	nicht gemessen	lbuprofen 20 mg/kg KG Naproxen 10 mg/kg KG
P03	14	Enthesitis assoziierte Arthritis	19 mm/h	Azulfidine 50 mg/kg KG
P04	17	nicht klassifiziert	23 mm/h	MTX 10 mg/m² KOF
P05	15	nicht klassifiziert	16 mm/h	lbuprofen 18 mg/kg KG
P06	2	Oligoarthritis	32 mm/h	lbuprofen 20 mg/kg KG MTX 7,5 mg/m² KOF,
P07	10	Oligoarthritis	8 mm/h	lbuprofen 10 mg/kg KG

 Tabelle 21: Klinische Daten der JIA Patienten der Zellkulturexperimente.

Die Tabelle zeigt das Alter der Patienten (P01-P07) in Jahren, den JIA Subtyp, die Blutsenkungsgeschwindigkeit (BSG) sowie die aktuelle Medikation bei Probenentnahme. Die Medikamentendosierung bezieht sich auf die Einnahme pro Tag und wird standardisiert in Milligramm (mg) pro Kilogramm Körpergewicht (kg KG) bzw. in Milligramm pro m² Körperoberfläche (KOF) angegeben.

3.4.2. Charakterisierung der CCR6+ Population vor Stimulation

Es folgt eine Phänotypische Beschreibung der CD4+CCR6+ Zellen der Kontrollkohorte im Vergleich zu den CD4+CCR6- Zellen. Tabelle 22 zeigt die Zahlenwerte im Detail.

	CCR6 +		CCR6-			
	Mean ± SD	Median, Min - Max	Mean ± SD	Median,	Min - Max	p-Wert
Phänotyp						
CD45RO+	83,7 ± 10,3	86,5 , 70,1 - 97,4	14,7 ± 6,9	13,1 ,	7,0 - 25,9	0,010
Tem CCR7-CD45RO+	32,5 ± 9,0	33,9 , 23,2 - 43,1	5,5 ± 1,9	6,1,	3,3 - 7,2	0,010
Tcm CCR7+CD45RO+	49,1 ± 18,8	43,4 , 31,0 - 74,2	9,3 ± 5,8	8,7,	3,7 - 18,8	0,010
Tregs FoxP3+CD25+CD127-	8,9 ± 11,0	4,7 , 1,6 - 28,3	3,7 ± 2,2	3,1,	1,7 - 7,3	0,600
CD161+	44,6 ± 9,5	45,8 , 33,3 - 55,2	4,8 ± 1,8	4,7,	2,1 - 6,7	0,010
<u>Zytokine</u>						
IL-17+	4,9 ± 2,9	5,5 , 1,3 - 8,5	0,1 ± 0,0	0,1,	0,0 - 0,1	0,010
INFγ+	6,7 ± 4,0	8,9 , 1,9 - 10,4	2,9 ± 1,8	2,9,	1,3 - 5,8	0,140
IL-10+	2,0 ± 3,0	1,0 , 0,0 - 7,3	$0,0 \pm 0,1$	0,0,	0,0 - 0,1	0,050
IL-10+ in CCR6+Tregs	$0,2 \pm 0,4$	0,0 , 0,0 - 0,8	$0,0 \pm 0,1$	0,0,	0,0 - 0,2	0,880
IL-17+ in CCR6+Tregs	1,6 ± 1,8	1,6 , 0,0 - 4,3	0,1 ± 0,1	0,1,	0,0 - 0,2	0,330
Proliferation						
Ki67+	0,8 ± 0,5	0,7 , 0,2 - 1,4	$0,5 \pm 0,2$	0,5,	0,3 - 0,9	0,530

Tabelle 22: Phänotyp der unstimulierten CCR6+ und CCR6- Zellen im CD4+ Gate in Gesunden.
Die Tabelle zeigt die Phänotypischen Marker (CD45RO, CCR7, CD161), die Zytokinproduktion (IL-17, INFγ, IL-10) sowie die Ki67 Expression in Prozent von CCR6+ und CCR6- Zellen. Die Zahlenwerte werden in Mittelwert (Mean) ± Standardabweichung (SD) sowie Median mit minimalem (Min) und maximalen (Max) Wert gezeigt. Signifikante p-Werte (p<0,05) sind grau hinterlegt.

Phänotypisch exprimieren 87,4% der CCR6+ den Th17-Transkriptionsfaktor RORyt. Die Mehrheit der CCR6+ exprimieren CD45RO (vgl. Tabelle 24). Dabei können 49,1% zu den CD45RO+CCR7+ Tcm und 32,5% zu den CD45RO+CCR7- Tem gezählt werden. Damit unterscheiden sie sich signifikant von den CCR6- Zellen, die CD45RO in nur 14,7% exprimieren.

CD161 wird von den CCR6+ Zellen hochexprimiert und unterscheidet sich signifikant von den CCR6- Zellen.

Auch in der Zytokinproduktion finden sich signifikante Unterschiede zwischen CCR6+ und CCR6- Zellen (vgl. Tabelle 22). IL-17 wird von den CCR6+ Zellen ausgeprägt und signifikant mehr gebildet CCR6- Zellen produzieren hingegen kaum IL-17.

Die IL-17 Produktion repräsentativer CCR6+ bzw. CCR6- Zellen zeigt Abb. 27.

Abbildung 27: IL-17 Produktion in CCR6- und CCR6+.

Auch INFγ wird von den CCR6+ Zellen gebildet. Die Produktion unterscheidet sich allerdings nicht signifikant von den CCR6-.

Unter den CCR6+ Zellen finden sich auch CD4+CD25+CD127-FoxP3+ Tregs. Auffällig war, dass diese kaum IL-10, sondern IL-17 produzieren (vgl. Tabelle 22, Abb. 28).

In der Zusammenschau lässt sich festhalten, dass die CCR6+ Zellen hochaktiv Zytokinproduzierende Zellen sind.

CCR6+ Zellen produzieren ausgeprägt IL-17. Sie sind fast vollständig RORyt positiv. Weiterhin handelt es sich in der Mehrheit um differenzierte Zellen, die CD45RO exprimieren. Der CD161-Rezeptor wird stark exprimiert. CCR6+ Zellen sind in geringer Zahl FoxP3+CD25+CD127- Tregs.

Die phänotypischen Unterschiede zwischen CCR6+ und CCR6- zeigt Abbildung 28 in der Übersicht.

Abbildung 28: Phänotyp und Zytokinprofil von unstimulierten CCR6+ und CCR6- Zellen. Phänotypisch (Bild links) exprimieren die CCR6+ Zellen mehrheitlich CD45RO. Auch CD161 wird signifikant mehr exprimiert. Im Zytokinprofil (Bild rechts) unterscheiden sich CCR6+ signifikant in der IL-17 Produktion. CCR6+ Zellen produzieren auch INFγ sowie IL-10. Der Stern (*) kennzeichnet signifikante Unterschiede (p<0,001).

3.4.3. Stimuluseffekte

3.4.3.1. Stimulus abhängige Polarisation

Die CCR6+ Zellkulturzellen, zeigen Stimulus spezifische Zytokinprofile und Rezeptorexpressionsmuster. Im Folgenden werden die Effekte der einzelnen Stimuli auf CCR6+ Zellen in gesunden Kontrollprobanden analysiert. In Kapitel 3.4.4. folgt dann der Vergleich zu JIA Patienten.

Kontrolle: In diesem Kulturansatz wurden keine Zytokine hinzugefügt. Als Basisstimulanzien dienten, wie auch in den anderen Kulturen, CD3 und CD28.

Th17-Stim (IL-6 + IL-1β + IL-23):

Die Zytokinkombination von Th17-Stim soll die, für CCR6+ Zellen typische, IL-17 Produktion maximal fördern. Die Ergebnisse bestätigen eine deutliche Produktionssteigerung von IL-17 (vgl. Abb. 29 und Tbl. 23). Auch RORyt wird im Vergleich zur Kontrollkultur hochreguliert. Damit wird die IL-17 Produktion unter Th17-Stim in CCR6+ Zellen am stärksten gesteigert.

Weiterhin zeigt sich, dass der Oberflächenrezeptor CD161 vor allem bei Th17-Stim hochexprimiert wird (vgl. Tbl. 23). Auch die INFγ Produktion steigt unter Th17-Stim – nicht aber so viel wie unter Th1 Stim (vgl. Abb. 30). Weiterhin findet sich eine Zunahme der Expression von FoxP3 und Treg spezifischen Oberflächenmarkern. Eine vermehrte IL-10 Produktionen wird nicht in Tregs beobachtet (vgl. Abb. 31).

Abbildung 29: Stimuluseffekte auf IL-17 Produktion. Die Abbildung zeigt die Stimulus abhängige IL-17 Produktion der CCR6+Zellen in Prozent. Die Kontrolle zeigt die Stimulation mit CD28 und CD3 ohne Zytokinstimulus. Unter Th17 Stim ist die IL-17 Produktion maximal gesteigert.

Th1-Stim (IL-12 + IL-2):

Ziel von Th1-Stim war es, die Zellen in Richtung Th1-Phänotyp zu polarisieren. Die INFγ Produktion wird unter Th1-Stim maximal gesteigert (vgl. Abb. 30 und Tbl. 23). Gleichzeitig ist die IL-17 Produktion verglichen mit den anderen Stimuli am niedrigsten. Stimuliert wird auch die Expression von FoxP3 und Treg spezifischen Oberflächenmarkern. Die CCR6+Tregs produzieren allerdings weniger IL-10 als die CCR6+Tregs unter Treg-Stim. Weiterhin werden unter Th1-Stim die stärksten Proliferationsraten gemessen (Kapitel 3.4.3.2).

Abbildung 30: Stimuluseffekte auf INFy Produktion. Die Abbildung zeigt die Stimulus abhängige INFy Produktion der CCR6+Zellen in Prozent. Die Kontrolle zeigt die Stimulation mit CD28 und CD3 ohne Zytokinstimulus. Unter Th1 Stim ist die INFy Produktion maximal gesteigert.

Treg-Stim (TGF β + IL-2):

Die Zytokinkombination von Treg-Stim sollte die Differenzierung der proliferierenden Zellen in Richtung der regulatorischen T-Zellen lenken. Zahlenmäßig nehmen die Tregs (CD127-CD25+FoxP3+) jedoch bei Th1-Stim und Th17-Stim zu. Dennoch verfünffacht sich der Anteil der Tregs unter Treg-Stim (vgl. Tabelle 23). Die Tregs unter Treg-Stim produzieren am meisten IL-10 (vgl. Abb. 31). Weiterhin stimuliert Treg-Stim auch die IL-17 Produktion und zwar fast so ausgeprägt wie der Th17-Stim (vgl. Abb. 31).

Abbildung 31: Stimuluseffekte auf Zytokinproduktion in Tregs. Die Abbildungen zeigen die Stimulus abhängige Expression von Treg-Oberflächenmarkern (CD127-CD25+) und FoxP3+ in CCR6+ Zellen, sowie die Zytokinproduktion in Prozent dieser Zellen.

Tabelle 23 zeigt eine Übersicht der wichtigsten gemessenen Zytokine (IL-17, INFγ, IL-10), des Oberflächenmarkers CD161 und Tregs in CCR6+.

		(CCR6+	
	Kulturansatz	Mean ± SD	Median, Min - Max	p-Wert
IL-17	Kontrolle	2,1 ± 1,4	2,2 , 0,0 - 3,9	
	Th17 Stim	13,2 ± 7,2	14,6 , 3,1 - 21,3	0,001
	Th1 Stim	9,5 ± 5,5	8,1,2,7-17,2	0,000
	Treg Stim	11,9 ± 7,3	12,0 , 1,9 - 21,9	0,007
IFNy	Kontrolle	1,9 ± 1,2	2,2 , 0,6 - 3,0	
	Th17 Stim	14,4 ± 3,6	15,0,8,7-18,4	0,000
	Th1 Stim	28,1 ± 14,3	24,4 , 13,0 - 48,1	0,001
	Treg Stim	9,2 ± 4,2	10,0 , 3,1 - 13,9	0,007
Tregs in CCR6+	Kontrolle	9,1 ± 6,7	11,0,1,8-16,3	
CD25+CD127-	Th17 Stim	53,6 ± 9,5	49,5 , 44,3 - 67,6	0,458
FoxP3+	Th1 Stim	67,6 ± 14,6	62,4 , 52,3 - 84,4	0,001
	Treg Stim	46,9 ± 26,3	35,7 , 20,3 - 88,4	0,000
IL-10 in Tregs	Kontrolle	0,1 ± 0,2	0,0 , 0,0 - 0,5	
	Th17 Stim	$0,3 \pm 0,7$	0,0 , 0,0 - 1,5	0,044
	Th1 Stim	$2,5 \pm 0,4$	2,5 , 1,9 - 2,9	0,399
	Treg Stim	$6,6 \pm 4,7$	8,6 , 1,0 - 12,0	0,014
IL-17 in Tregs	Kontrolle	10,1 ± 7,0	12,3 , 0,0 - 16,7	
	Th17 Stim	21,7 ± 14,9	16,2 , 3,3 - 40,8	0,890
	Th1 Stim	14,3 ± 10,0	11,7,4,7-28,0	0,730
	Treg Stim	19,9 ± 12,3	20,2 , 1,3 - 34,0	0,048
CD161	Kontrolle	41,7 ± 7,0	42,9 , 32,8 - 50,7	
	Th17 Stim	58,9 ± 10,6	57,9 , 43,3 - 69,1	0,026
	Th1 Stim	37,9 ± 14,7	36,7 , 19,0 - 53,9	0,293
	Treg Stim	$39,5 \pm 9,9$	37,7 , 28,6 - 54,9	0,796
Ki67	Kontrolle	9,1 ± 6,1	10,4 , 0,6 - 16,6	
	Th17 Stim	49,2 ± 22,9	46,1 , 15,0 - 72,9	0,000
	Th1 Stim	59,0 ± 30,4	60,9 , 14,1 - 86,7	0,000
	Treg Stim	34,7 ± 30,3	23,8 , 6,9 - 83,3	0,001

Tabelle 23: Effekte der Zv	vtokinstimulation auf	CCR6+ Zellen in HD.
	, continuation aan	

Dargestellt wird die Stimulus abhängige Zytokinproduktion, die Expression von Treg-Markern (CD25+CD127-FoxP3+), von CD161 sowie die Ki67-Expression in Prozent in CCR6+ Zellen.

Die Kulturansätze bestehen aus Kontrolle (CD3+CD28), Th17 Stim (IL1+IL-6+IL-23+CD3+CD28), Th1 Stim (IL-12+IL2+CD3+CD28) und Treg Stim (TGF+IL-2+CD3+CD28).

Alle Werte werden als Mittelwert (Mean) ± Standardabweichung (SD) und als Median mit minimalem Wert (Min) und maximalem Wert (Max) angegeben.

Der p-Wert beschreibt den Unterschied im Median (Mann-Whitney-U) im Vergleich zur Kontrolle.

Zusammenfassend lässt sich festhalten, dass die CCR6+ Zellen ein erhebliches und sehr breites Differenzierungspotential haben.

IL-17 wird unter Th17-Stim am stärksten mehrproduziert. Die INFγ-Produktion steigert sich ausgeprägt unter Th1-Stim. Gleichzeitig ist die IL-17 Produktion unter Th1-Stim vermindert. Die CCR6+Tregs produzieren am meisten IL-10 unter Treg-Stim.

3.4.3.2. Stimulus abhängige Proliferation

Durchflusszytometrisch wurden anhand der Ki67-Expression die proliferativen Eigenschaften der Zellkulturen untersucht. Dabei konnten wir zeigen, dass bereits unstimulierte CCR6+ Zellen (Prä-Stim) mehr proliferieren als unstimulierte CCR6- Zellen (Kapitel 3.4.2. Abbildung 28).

Die spezifischen Zytokinstimuli erzeugen signifikant höhere Proliferationsraten als die Stimulation mit CD28 und CD3 (Kontrolle) allein. Besonders Th1-Stim führt zu ausgeprägter Ki67-Expression. Aber auch Th17-Stim und Treg-Stim bewirken eine starke Steigerung der Ki67-Expression (vgl. Abb. 32 und Tbl. 23).

Abbildung 32: Stimuluseffekte auf Ki67 Expression. Das Balkendiagramm zeigt die prozentuale Ki67 Expression in HD vor (Prä-Stim) und nach 5-tägiger Zellkultur ohne (Kontrolle=CD3+CD28) und mit spezifischem Stimulus. Die Zytokinstimuli (Th17-, Th1- und Treg-Stim) führen zu einer gesteigerten Proliferation.

3.4.4. CCR6+ Zellen in JIA und HD

3.4.4.1. Unstimulierte CCR6+ Zellen

Vergleicht man den unstimulierten Phänotyp der CCR6+ Zellen von klinisch aktiven JIA Patienten und Kontrollprobanden (HD) zeigen sich folgende Unterschiede:

Phänotypisch fallen bei JIA Patienten vor allem die Herabregulation von CCR7 sowie die stark ausgeprägte Expression von CD161 auf (vgl. Tbl. 24).

Noch deutlicher variiert die Zytokinproduktion. IL-17 wird von den JIA Patienten vermehrt produziert. Die INFγ Produktion ist signifikant vermindert (vgl. Tbl. 24). Die phänotypischen Unterschiede zwischen JIA und HD sind in Abbildung 33 im Balkendiagramm gezeigt. Tabelle 24 zeigt die Zahlenwerte abhängig vom Stimulus.

		JIA		HD	
	Mean ± SD	Median, Min - Max	Mean ± SD	Median, Min - Max	p-Wert
Phänotyp					
CD45RO+	84,7 ± 8,8	88,0 , 71,7 - 95,0	83,7 ± 10,3	86,5 , 70,1 - 97,4	0,583
Tem CCR7-CD45RO+	45,0 ± 16,7	41,8 , 22,6 - 70,3	$32,5 \pm 9,0$	33,9 , 23,2 - 43,1	0,273
Tcm CCR7+CD45RO+	39,8 ± 11,1	42,7 , 18,8 - 49,1	49,1 ± 18,8	43,4 , 31,0 - 74,2	0,715
Tregs FoxP3+CD25+CD127-	4,1 ± 2,0	4,4 , 1,6 - 6,8	8,9 ± 11,0	4,7 , 1,6 - 28,3	0,647
CD161+	54,0 ± 21,1	59,6 , 14,9 - 71,1	44,6 ± 9,5	45,8 , 33,3 - 55,2	0,201
<u>Zytokine</u>					
IL-17+	6,1 ± 3,0	5,4 , 2,4 - 10,2	$4,9 \pm 2,9$	5,5 , 1,3 - 8,5	0,714
INFγ+	1,6 ± 1,2	1,2 , 0,5 - 3,7	$6,7 \pm 4,0$	8,9, 1,9-10,4	0,028
IL-10+	1,7 ± 0,9	1,6 , 0,6 - 3,0	$2,0 \pm 3,0$	1,0 , 0,0 - 7,3	0,522
IL-10+ in CCR6+Tregs	$0,4 \pm 0,6$	0,0 , 0,0 - 1,2	$0,2 \pm 0,4$	0,0 , 0,0 - 0,8	0,486
IL-17+ in CCR6+Tregs	2,7 ± 3,9	0,9 , 0,0 - 9,8	1,6 ± 1,8	1,6 , 0,0 - 4,3	0,852
Proliferation					
Ki67+	1,8 ± 2,0	0,8 , 0,3 - 5,2	$0,8 \pm 0,5$	0,7 , 0,2 - 1,4	0,582

Tabelle 24: Phänotyp und Zytokinprofil von unstimulierten CCR6+ Zellen in JIA und HD.

Die Tabelle zeigt die Phänotypischen Marker (CD45RO, CCR7, CD161), die Zytokinproduktion (IL-17, INF γ , IL-10) sowie die Proliferation (Ki67) in Prozent von CCR6+ Zellen in JIA Patienten und gesunden Kontrollprobanden (HD). Die Zahlenwerte werden in Mittelwert (Mean) ± Standardabweichung (SD) sowie Median mit minimalem (Min) und maximalen (Max) Wert gezeigt. Signifikante p-Werte (p<0,05) sind grau hinterlegt.

Auch in der Zytokinproduktion (Diagramm rechts) unterscheiden sich JIA und HD. Dargestellt wird die prozentuale IL-17, INFy und IL-10 Produktion in CCR6+ und Tregs in CCR6+.

3.4.4.2. Polarisierte CCR6+ Zellen

Die unter 3.4.4.1. beschriebenen isolierten CCR6+Zellen von klinisch aktiven JIA Patienten und altersgleichen Kontrollprobanden (HD) wurden mit spezifischen Zytokinstimuli kultiviert. Ziel war es die CCR6+ Zellen in Richtung Th17, Th1 und Treg zu polarisieren und dabei potentielle Unterschiede zwischen JIA Patienten und HD zu analysieren.

Es lassen sich deutliche Trends im Polarisierungsverhalten beobachten, die im Folgenden dargestellt werden. Tabelle 25 liefert die statistischen Zahlenwerte im Überblick.

Die CCR6+ Zellen der JIA Patienten reagieren im Vergleich zu den HD auf alle Stimuli mit einer vermehrten IL-17 Produktion. Eine ausgeprägte Steigerung der IL-17 Produktion erfolgt auf den Th17-Stimulus hin. (vgl. Abb. 34).

Die CCR6+ Zellen der HD reagieren auf alle Stimuli im Vergleich mit niedrigerer IL-17 Produktion.

Bei der Polarisierung in Richtung Th1 verhält es sich gegenteilig. Die CCR6+ Zellen der JIA Patienten produzieren geringer INFγ als die CCR6+ Zellen der HD. Bezeichnend wird dieser Unterschied beim Th1-Stim, auf den die T-Zellen der HD mit ausgeprägter INFγ Produktion reagieren (vgl. Abb. 34).

Abbildung 34: Gesteigerte IL-17 und reduzierte INFγ Produktion der JIA Patienten. Die Balkendiagramme zeigen die Unterschiede der Stimuluswirkung (Kontrolle = CD3+CD28; Th17 Stim, Th1 Stim, Treg Stim) auf die CCR6+ Zellen der JIA Patienten und Kontrollprobanden (HD). Dargestellt ist die prozentuale IL-17 (oben) sowie INFγ Produktion (unten) in CCR6+ Zellen. IL-17 wird bei JIA Patienten ausgeprägt mehrproduziert, während die INFγ Produktion JIA Patienten vor allem unter Th1-Stim vermindert ist.

Sowohl die CCR6+ Zellen der JIA als auch der HD werden durch die Stimuli angeregt, FoxP3 und Treg-spezifische Oberflächenmarker (CD25) zu exprimieren. Hinsichtlich ihrer Zytokinproduktion scheinen sich diese Tregs aber zu unterscheiden. Die für Tregs charakteristische IL-10 Produktion ist bei den HD ausgeprägt.

Die CCR6+ Zellen der JIA bilden nur gering IL-10 (vgl. Abbildung 35). Auch die IL-17 Produktion der Tregs wurde gemessen. Hier zeigt sich deutlich, dass die Treg Proportionen der JIA Patienten, die IL-17 bilden, größer sind als die IL-17 produzierenden Tregs der HD. Die IL-17 Produktion wird vor allem durch Th17-Stim und Treg-Stim gesteigert.

Abbildung 35: Regulatorische T-Zellen und deren modifizierte Funktionalität. Die Balkendiagramme zeigen die Unterschiede der Stimuluswirkung (Kontrolle = CD3+CD28; Th17 Stim, Th1 Stim, Treg Stim) auf die CCR6+ Zellen der JIA Patienten und Kontrollprobanden (HD). Dargestellt ist der prozentuale Treg-Anteil sowie die IL-17 (links) und IL-10 Produktion (rechts) in CCR6+ Zellen. Die Tregs der JIA Patienten produzieren Stimulus abhängig vermehrt IL-17, während die HD mit mehr IL-10 produzieren.

In der statistischen Prüfung der CCR6+ Zellen von JIA Patienten und HD finden sich keine signifikanten Unterschiede im Reaktionsverhalten auf die Stimuli.

Zusammenfassend lässt sich dennoch festhalten, dass die CCR6+ Zellen der JIA Patienten ein abweichendes Reaktionsverhalten auf die Stimuli aufweisen. Im Vergleich zu den CCR6+ Zellen der HD bilden sie vermehrt IL-17. Weiterhin wird IFNy geringer produziert als bei den HD.

Diese Verhaltensweisen werden umso deutlicher, wenn die Kulturbedingungen eine gewisse Differenzierungsrichtung vorgeben (Th17-Stim: verstärkte IL-17 Produktion; Th1-Stim: niedrigere IFNy Produktion). Die regulatorischen Zellen der JIA reagieren auf Treg spezifische Stimulation nicht im Ausmaß der HD mit IL-10 Produktion, sondern mit der Bildung von IL-17.

Tabelle 25 beinhaltet die genauen Zahlenwerte im Überblick. Die Abbildungen 36 zeigt exemplarisch die IL-17 und IFNy Produktion von CCR6+ in JIA und HD. Abbildung 37 stellt die Unterschiede der IL-10 und IL-17 Produktion in CCR6+Tregs dar.

	2	JIA (N=7)			I		
	Kulturansatz	Mean ± SD	Median,	Min - Max	Mean ± SD	Median, Min - Max	p-Wert
IL-17	Kontrolle	3,2 ± 3,3	4,2,	0,0 - 8,2	2,1 ± 1,4	2,2 , 0,0 - 3,9	0,508
	Th17 Stim	21,5 ± 9,9	25,8,	0,0 - 28,7	13,2 ± 7,2	14,6 , 3,1 - 21,3	0,088
	Th1 Stim	13,0 ± 8,8	10,2,	5,3 - 32,3	9,5 ± 5,5	8,1 , 2,7 - 17,2	0,570
	Treg Stim	16,9 ± 15,1	16,9,	2,4 - 46,2	11,9 ± 7,3	12,0 , 1,9 - 21,9	0,570
IFNy	Kontrolle	4,2 ± 7,0	1,6,	0,5 - 20,0	1,9 ± 1,2	2,2 , 0,6 - 3,0	0,871
	Th17 Stim	19,3 ± 23,5	10,7,	4,0 - 71,4	$14,4 \pm 3,6$	15,0,8,7-18,4	0,371
	Th1 Stim	18,7 ± 9,9	14,8,	9,2 - 35,1	28,1 ± 14,3	24,4 , 13,0 - 48,1	0,167
	Treg Stim	9,5 ± 2,1	9,0,	6,8 - 12,0	9,2 ± 4,2	10,0 , 3,1 - 13,9	0,871
Tregs in CCR6+	Kontrolle	20,9 ± 16,9	14,8,	1,7 - 45,7	9,1 ± 6,7	11,0,1,8-16,3	0,372
CD25+CD127-	Th17 Stim	53,1 ± 11,8	54,7,	35,5 - 74,4	53,6 ± 9,5	49,5 , 44,3 - 67,6	0,935
FoxP3+	Th1 Stim	49,8 ± 14,8	41,3 ,	37,6 - 75,3	67,6 ± 14,6	62,4 , 52,3 - 84,4	0,062
	Treg Stim	39,2 ± 23,1	42,2,	10,1 - 73,5	46,9 ± 26,3	35,7 , 20,3 - 88,4	0,685
IL-10 in Tregs	Kontrolle	0,3 ± 0,4	0,0,	0,0 - 0,9	0,1 ± 0,2	0,0 , 0,0 - 0,5	0,383
	Th17 Stim	$0,0 \pm 0,0$	0,0,	0,0 - 0,0	$0,3 \pm 0,7$	0,0 , 0,0 - 1,5	0,237
	Th1 Stim	3,3 ± 3,8	0,9,	0,0 - 9,0	$2,5 \pm 0,4$	2,5 , 1,9 - 2,9	0,685
	Treg Stim	4,6 ± 3,5	3,2,	0,0 - 10,5	6,6 ± 4,7	8,6 , 1,0 - 12,0	0,465
IL-17 in Tregs	Kontrolle	17,9 ± 17,9	14,8,	0,0 - 50,0	10,1 ± 7,0	12,3 , 0,0 - 16,7	0,626
	Th17 Stim	30,1 ± 13,0	31,1 ,	3,4 - 40,9	21,7 ± 14,9	16,2 , 3,3 - 40,8	0,372
	Th1 Stim	17,1 ± 10,1	14,6,	4,7 - 36,9	14,3 ± 10,0	11,7 , 4,7 - 28,0	0,745
	Treg Stim	26,4 ± 16,9	25,4 ,	2,9 - 56,7	19,9 ± 12,3	20,2 , 1,3 - 34,0	0,570
CD161	Kontrolle	52,8 ± 20,8	55,1,	22,5 - 77,3	41,7 ± 7,0	42,9 , 32,8 - 50,7	0,223
	Th17 Stim	62,7 ± 22,5	60,8,	26,0 - 91,3	58,9 ± 10,6	57,9 , 43,3 - 69,1	0,570
	Th1 Stim	48,5 ± 16,3	56,0,	18,8 - 61,4	37,9 ± 14,7	36,7 , 19,0 - 53,9	0,167
	Treg Stim	38,1 ± 12,5	43,5,	12,1 - 48,2	39,5 ± 9,9	37,7 , 28,6 - 54,9	0,685
Ki67	Kontrolle	19,8 ± 14,1	18,0,	4,2 - 42,6	9,1 ± 6,1	10,4 , 0,6 - 16,6	0,223
	Th17 Stim	47,1 ± 13,4	47,4 ,	25,0 - 65,8	49,2 ± 22,9	46,1 , 15,0 - 72,9	0,685
	Th1 Stim	48,7 ± 18,1	54,5 ,	27,2 - 70,4	59,0 ± 30,4	60,9 , 14,1 - 86,7	0,569
	Treg Stim	30,8 ± 19,9	33,3 ,	5,3 - 64,9	34,7 ± 30,3	23,8 , 6,9 - 83,3	0,935

Dargestellt wird die Stimulus abhängige Zytokinproduktion, die Expression von Treg-Markern (CD25+CD127-FoxP3+), von CD161 sowie die Ki67-Expression in Prozent in CCR6+ Zellen von JIA Patienten und Kontrollprobanden (HD).

Die Kulturansätze bestehen aus Kontrolle (CD3+CD28), Th17 Stim (IL1+IL-6+IL-23+CD3+CD28), Th1 Stim (IL-12+IL2+CD3+CD28) und Treg Stim (TGF+IL-2+CD3+CD28).

Alle Werte werden als Mittelwert (Mean) ± Standardabweichung (SD) und als Median mit minimalem Wert (Min) und maximalem Wert (Max) angegeben.

Der p-Wert beschreibt den Medianvergleich innerhalb des jeweiligen Stimulus in JIA und HD.

Abbildung 36: INFγ und IL-17 Produktion unter Th1-Stim in HD und JIA. Repräsentative Darstellung der intrazellulären IL-17 und INFγ Produktion in CD4+CCR6+Zellen bei einem Beispiel-Patienten mit JIA und einer gesunden Kontrollperson (HD).

Abbildung 37: IL-17 und IL-10 Produktion in CCR6+Tregs unter Treg-Stim in HD und JIA. Repräsentative Darstellung der intrazellulären IL-17 und IL-10 Produktion in CD4+CCR6+ regulatorischen T-Zellen (Tregs) bei einem Beispiel-Patienten mit JIA und einer gesunden Kontrollperson (HD).

4. Diskussion

4.1. Unterschiede der T-Helferzellen in JIA Patienten und HD

In einem ersten Schritt analysierten wir den CD4+ T-Helferzell-Phänotyp aus peripheren Blutproben von Patienten sowie Kontrollprobanden. Es zeigte sich, dass sich die Lymphozytensubpopulationen signifikant in ihrer Zusammensetzung und der Zytokinproduktion unterschieden.

Die JIA T-Helferzellen wiesen hohe Proportionen an naiven Zellen auf, während die differenzierten T-Gedächtnis- und T-Effektorzellen, TEMRA und regulatorische Zellen in ihrer Anzahl signifikant vermindert waren.

Weiterhin beobachteten wir eine signifikant niedrigere Zytokinproduktion der CD4+ T-Helferzellen von JIA Patienten im Vergleich zu den HD. Die typischen Th1-, Th2- und Th17-Zytokine wurden signifikant geringer produziert.

4.1.1. Interpretation der veränderten CD4+ T-Helferzell-Homöostase

4.1.1.1. Einfluss der immunsuppressiven Therapie

Gleich zu Anfang sollte die Überlegung nach dem Einfluss von Medikation und der klinischen Präsentation stehen.

Die Mehrheit der JIA Patienten (78,57%) befand sich zum Untersuchungszeitpunkt in klinischer Remission. Um den Zustand der inaktiven Krankheit zu erreichen war in 83,3% der Fälle eine immunsuppressive Medikation erforderlich. Dabei ist eine Modulation der T-Zell-Funktion erwünschter Effekt.

Immunsuppressiva vermindern die Synthese von Entzündungsmediatoren, wirken antiproliferativ auf Lymphozyten und reduzieren zudem die Zytokinsynthese [82].

Die immunsuppressive Therapie soll auch Einfluss auf pathologisch veränderte CD4+T-Helfer-Subpopulationen haben. Lina et al. beschreiben in Patienten mit Rheumatoider Arthritis (RA) eine Th17 dominierte Th17/Treg Ratio, die unter Therapie mit MTX und Etanercept zugunsten einer Treg Dominanz umkehrbar

war [112]. Herman et al. beobachteten eine Zunahme der Th2 Antwort unter Therapie, bei zuvor Th1 dominiertem Zytokinprofil in Patienten mit RA [113].

Auch die T-Zell-Differenzierung wird durch die Therapie beeinflusst. Eine erhöhte Proliferation von naiven T-Zellen in JIA Patienten in Remission unter Medikation konnten Almanzar et al. beobachten [114]. Mit der Analyse von T-cell receptor excision circles zeigte sich die Rekonstitution der Thymusfunktion unter Immunsuppression mit kompensatorisch erhöhtem Umsatz von peripheren naiven T-Zellen.

Im direkten Vergleich der JIA Patienten mit immunsuppressiver Medikation und Patienten ohne Medikation konnten auch wir zeigen, dass die T-Zell-Subpopulationen sich in beiden Gruppen signifikant unterscheiden (Zahlenwerte im Appendix aufgeführt, Seite iv). Die Patienten mit immunsuppressiver Medikation wiesen im Vergleich zu Patienten ohne Medikation signifikant geringere Proportionen an differenzierten Zellen (Gedächtniszellen) auf sowie signifikant höhere Proportionen an naiven Zellen.

In der longitudinalen Untersuchung des Krankheitsverlaufs konnten wir bei JIA Patienten in Remission signifikant höhere naive T-Zell Proportionen als bei Krankheitsaktivität beobachten.

Die vermehrte Anzahl an naiven Zellen in JIA Patienten könnte also durchaus auf die immunsuppressive Therapie zurückzuführen sein sowie der damit verbundenen klinischen Remission mit Rekonstitution der Thymusfunktion.

Auch auf die Zytokinproduktion der T-Zellen hat die immunsuppressive Therapie weitreichenden Einfluss. Kortikosteroide bewirken über die Inhibition von NFkB eine Verminderung der Zytokinproduktion [84]. MTX wirkt antiproliferativ auf T-Zellen [115] und reduziert Adenosinrezeptor abhängig die Zytokinproduktion [83]. In unserer Untersuchung konnten wir bei der Zytokinproduktion von Patienten mit immunsuppressiver Medikation bzw. Patienten ohne Medikation (Zahlenwerte im Appendix, Seite iv) jedoch kaum signifikante Unterschiede beobachten. Bei genauerer Betrachtung der Zahlenwerte zeigt sich allerdings eindeutig eine konstant reduzierte Zytokinproduktion bei Patienten unter Immunsuppression. Ähnliches gilt für die Zytokinproduktion im longitudinalen Krankheitsverlauf. Wir konnten den Trend der verminderten Zytokinproduktion im Stadium der Remission beobachten, jedoch keinen signifikanten Unterschied beschreiben. Dennoch sollte der supprimierende Einfluss der Medikation nicht als alleinige Ursache der abweichenden T-Helferzell Proportionen sowie deren verminderter Zytokinproduktion gewertet werden.

4.1.1.2. Bedeutung von Chemokinrezeptoren bei JIA

Ein weiterer Interpretationsansatz der verminderten Anzahl von proinflammatorisch differenzierten Zellen im peripheren Blut von JIA Patienten ist die potentielle Migration der Entzündungszellen zum Inflammationsort. Eine chemotaktisch gezielte Gelenkinvasion von Effektorzellen wäre denkbar.

Die Arbeitsgruppe um Nistala, die mit dieser Fragestellung T-Zellen sowohl im peripheren Blut als auch in der Synovialflüssigkeit untersuchte, beobachtete proportional vermehrte Th17-Zellen im Gelenk bei verminderter Anzahl von Th17-Zellen in der Peripherie [78]. Die synovialen Th17-Zellen exprimierten CCR6 und zeigten ein CCL20 abhängiges Migrationsverhalten. CCL20 wird im entzündeten Gelenk von RA Patienten von synovialen Fibroblasten und mononukleären Zellen der Synovia verstärkt produziert [116]. Die vermehrte CCL20 Produktion ist durch IL-17, IL-1 und TNFα induzierbar [117].

In unserer Untersuchung zeigten sich keine Unterschiede in der CCR6-Expression zwischen JIA Patienten und Kontrollprobanden. Im longitudinalen Verlauf wurde die CCR6-Expression bei Krankheitsaktivität jedoch hochreguliert. Dies könnte für eine, wie oben beschriebene, CCR6 abhängige chemotaktische Migration der Entzündungszellen während des akuten Krankheitsschubs sprechen. Über die Chemokinkonzentrationen sowie die Verteilung CCR6+ Zellen im Gelenk der untersuchten JIA Patienten können wir keine Aussage treffen, da von uns keine Synovialflüssigkeit untersucht wurde.

Auch Th1-Zellen wurden vermehrt im entzündeten Gelenk von JIA Patienten vorgefunden, die über eine verstärkte Expression von CCR5 und CXCR3 rekrutiert wurden [68].

In unserer Untersuchung zeigten sich in der Chemokinrezeptorexpression von CCR5 und CXCR3 weder zwischen JIA Patienten und Kontrollprobanden noch

im Krankheitsverlauf signifikante Unterschiede. Eine Migration von Th1-Zellen, die diese Chemokinrezeptoren exprimieren, scheint daher nicht wahrscheinlich. In der Summe sprechen die Ergebnisse in der Literatur sowie die von uns gezeigte hochregulierte Expression von Chemokinrezeptoren (CCR6) im Krankheitsschub für eine chemotaktisch gesteuerte Gelenkinvasion von proinflammatorisch differenzierten Zellen.

4.2. JIA Patienten mit unterschiedlicher Krankheitsaktivität

Nach Unterteilung der JIA Patientenkohorte in Patienten mit Krankheitsaktivität und Patienten in Remission, manifestierte sich eine signifikante RORyt Expressionssteigerung bei den Patienten mit klinischer Krankheitsaktivität.

4.2.1. Interpretation der RORyt Prädominanz

Schon im Vergleich mit den Kontrollprobanden zeigten JIA Patienten eine signifikant gesteigerte RORyt-Expression. RORyt könnte die Polarisierung der T-Helferzellen in Richtung Th17 favorisieren [44].

Weil gerade JIA Patienten mit akuter Krankheitsaktivität RORyt hoch exprimierten, drängt sich die Überlegung auf, ob Krankheitsaktivität und RORyt-Expression korrelieren.

Der Zusammenhang von RORyt-Expression und Arthritis wurde bereits im Tiermodel untersucht. Mit selektiven, synthetischen Inhibitoren des Transkiptionsfaktors RORyt konnten Kumar et al. im collagen-induced arthritis (CIA) Mausmodell einen Zusammenhang von RORyt und Entzündung zeigen [118]. Auch Chang et al. beschreiben, dass die Inaktivierung von RORyt im CIA-Modell zu klinischer Besserung der Arthritis führe [119]. Ähnlich beobachteten Kondo et al. [120] in transgenen Mäusen mit inhibiertem RORyt eine klinische Besserung der Arthritis und gleichzeitig die Hochregulation von FoxP3.

Maggi et al. konnten zeigen, dass naive CD4+T-Zellen beginnen, IL-17 zu produzieren, welche vorher durch einen lentiviralen Vektor mit RORyt transduziert wurden. Die anschließende Inhibition von RORyt führte wiederum zur Abnahme der IL-17 Produktion [48].

Ist der Transkriptionsfaktor RORyt einmal aktiviert, moduliert er das Transkriptionsprogramm und führt zur Produktion von IL-17 sowie zur Expression von CD161, IL-23-Rezeptor und IL-1-Rezeptor [48].

In der Arbeit von Olivito et al. [121] wurde die Expression von RORyt und FOXp3 in mononukleären Zellen der Synovia von JIA Patienten PCR-technisch untersucht. Dabei zeigte sich, wie in unserer Untersuchung in peripheren Lymphozyten, RORyt vorherrschend.

Letztlich bleibt unklar, welche Faktoren zur RORyt-Expressionssteigerung führen. Der Transkriptionsfaktor RORyt wird prinzipiell durch ein prädominierendes Zytokinmilieu von IL-1β, IL-6, IL-23 und TGFβ während des T-Zell Primings aktiviert [45].

In einem Multiplex Immunoassay haben de Jager et al. die Zytokinkonzentrationen in der Synovia von 34 JIA Patienten untersucht [122]. Dabei konnte gezeigt werden, dass freies synoviales IL-6 im Krankheitsschub signifikant höher vorliegt als bei Remission.

In unserer Untersuchung konnten wir allerdings keine gesteigerte intrazelluläre Produktion von IL-6 oder IL-1β im Krankheitsschub messen. Die Zytokinproduktion von Antigen präsentierenden Zellen wurde nicht untersucht.

4.3. JIA Patienten im longitudinalen Verlauf

Bei einigen Patienten gelang es, den klinischen Verlauf in unterschiedlichen Krankheitsstadien zu untersuchen. Im Longitudinalverlauf zeigte sich ein Zusammenhang von IL-17 Produktion und akuter Krankheitsaktivität.

4.3.1. Interpretation der gesteigerten IL-17 Produktion

Alle untersuchten Patienten zeigten eine signifikant gesteigerte IL-17 Produktion während des Krankheitsschubs und wesentlich niedrigere IL-17 Konzentrationen in Remission. Die IL-17 produzierenden Zellen waren phänotypisch Tregs (CD4+CD25+CD127-FoxP3+). Wir konnten auch innerhalb der Stimulationsexperimente beobachteten, dass Tregs von JIA Patienten IL-17 produzieren. Vor allem auf die Th17-spezifische Stimulation hin produzierten die CCR6+Tregs der JIA Patienten vermehrt IL-17. Woher diese regulatorischen T-Zellen mit IL-17 Produktion stammen, ist unklar. Voo et al. beschreiben FoxP3+ regulatorische T-Zellen, die stimuliert durch IL-1β, IL-2, IL-21 und IL-23 beginnen, IL-17 zu produzieren und RORyt koexprimieren [123]. Auch Xu et al. beschreiben eine durch IL-6 induzierbare IL-17 Produktion in FoxP3+ regulatorischen T-Zellen [124].

Wedderburn et al. haben IL-17-produzierende Tregs in der Synovia von JIA Patienten identifiziert [49]. Es wurde beobachtet, dass der Schweregrad des Krankheitsverlaufs mit dem Anteil an IL-17 produzierenden Tregs im Gelenk korrelierte. In der Studie von Wedderburn konnte eine vermehrte RORyt-Expression der Tregs gezeigt und außerdem CD161 als Marker für diese IL-17 produzierenden Tregs definiert werden [49].

Die CD161-Expression wurde auch in unserer Untersuchung analysiert. Wir konnten insgesamt eine höhere CD161-Expression in CD4+ T-Helferzellen bei JIA Patienten im Vergleich zu HD feststellen. Bemerkenswert war die signifikant höhere CD161-Expression der naiven CD4+T-Zellen in JIA Patienten (Zahlenwerte im Appendix aufgeführt, Seite ii). Die IL-17 Produktion der CD161+CD4+Zellen war hingegen nicht vermehrt. Es ist anzumerken, dass die CD161-Expression von CD4+Tregs nicht von uns untersucht wurde. Wir können insofern Aussagen für CD4+ T-Helferzellen treffen, nicht jedoch für CD4+Tregs im Speziellen.

Neue Untersuchungen zeigen, dass alle CD4+ T-Helferzellsubpopulationen und auch CD8+ zytotoxische T-Zellen bei Aktivierung FoxP3 transient exprimieren können [125, 126]. Daher muss hinterfragt werden, ob es sich bei den FoxP3+ Zellen unserer Untersuchung tatsächlich um regulatorische Zellen handelt. Pillai et al. beobachteten, dass die Zellen mit transienter FoxP3-Expression auch ähnliche Eigenschaften wie Tregs (IL-10 Produktion und reduzierte INFγ Produktion) aufweisen [117].

Die IL-17 produzierenden Tregs in JIA Patienten, konnten Wedderburn et al. im FoxP3-Genlokus als demethyliert, d.h. funktionell, beschreiben [49]. Demethylierte Regionen in FoxP3-Gen markieren Tregs mit einem stabilen regulatorischem Phänotyp [127].

80

Eine vermehrte Produktion antiinflammatorischer Zytokine würde jedoch im Kontrast zu den von uns beobachteten proinflammatorischen FoxP3+Tregs stehen. Vielmehr stellt sich die Frage, ob die Tregs der JIA Patienten bei akuter Krankheitsaktivität fehldifferenzieren.

Die gesteigerte IL-17 Produktion, die sich in unserer Längsschnittanalyse zeigte, könnte Ausdruck einer vermehrten pathologischen Polarisation in Richtung eines proinflammatorischen T-Zell Phänotyps sein.

4.4. Stimulationsversuche

4.4.1. CCR6+ Zellen

Ein Zusammenhang von erhöhter CCR6-Expression, hohen CCR6-Liganden-Serumspiegeln (CCL20) und Arthritis ist bekannt [47]. Weiterhin wird CCR6 als Suszeptibilitätsgen für Arthritis diskutiert, dass in genomweiten Assoziationsstudien betroffen war [128].

Übereinstimmend konnten wir in unserer Untersuchung einen Zusammenhang von CCR6-Expression und Krankheitsaktivität beobachten. CCR6 war sowohl in der Querschnittstudie, als auch im longitudinalen Verlauf, bei akuter Krankheitsaktivität höher exprimiert als bei Remission.

Unsere Ergebnisse der Phänotypisierung von CCR6+ Zellen unterstreichen deren hohe inflammatotorische Aktivität und bestätigen den Zusammenhang von IL-17 Produktion und CCR6-Expression, der schon mehrfach in der Literatur beschrieben wurde [46, 47, 78].

Es fanden sich auch FoxP3+Tregs unter den CCR6+ Zellen, die sowohl IL-10 als auch IL-17 produzierten. In der Mehrzahl konnten wir die CCR6+ Zellen allerdings als RORyt+ beschreiben. Auffällig war die hohe CD161-Expression der CCR6+ Zellen, wobei die Koexpression von CD161 und CCR6 bekannt ist [49].

4.4.2. Polarisierungstendenz von JIA Patienten und HD

Für die Stimulationsexperimente mit CCR6+ Zellen wählten wir JIA Patienten, die sich zum Zeitpunkt der Probenentnahme im klinischen Schub befanden, da hier die größte Empfänglichkeit für proinflammatorische Signale zu erwarten war. Bei dieser Patientengruppe konnten wir in der Longitudinalanalyse eine stärkere proinflammatorische Aktivität (IL-17 Produktion) sowie die Hochregulation von CCR6 beobachten.

Im Folgenden sollen die Unterschiede zwischen unstimulierten und stimulierten CCR6+ Zellen in JIA Patienten und HD diskutiert werden.

4.4.2.1. Unstimulierte CCR6+ Zellen

Der Phänotyp der CCR6+ Zellen von JIA Patienten und gesunden Kontrollprobanden (HD) unterschied sich nicht signifikant.

Dennoch fiel auf, dass die CCR6+ Zellen der JIA Patienten in unseren Experimenten CD161 höher exprimierten als die CCR6+ Zellen der HD. CD161 wird mit einem T-Zell-Subtyp mit stark proinflammatorischen Eigenschaften und IL-17 Produktion assoziiert [129]. CD161+ Zellen werden als Vorläufer für differenzierte Th17-Zellen diskutiert [130]. Cosmi et al. polarisierten naive T-Zellen aus Nabelschnurblut unter Th17-Bedingungen und konnten zeigen, dass ausschließlich die CD161+ Fraktion IL-17 produzierte [130]. In der Untersuchung mononukleärer Zellen der Synovia von JIA Patienten konnten Wedderburn et al. zeigen, dass CD161+ Tregs die vorherrschenden IL-17 Produzenten waren [49]. Diese Zellen exprimierten in über 90% auch CCR6 [49].

Die isolierten, noch unstimulierten, CCR6+ Zellen von JIA Patienten produzierten in unserer Untersuchung mehr IL-17, als die CCR6+ der HD, wobei jedoch kein signifikanter Unterschied bestand. Eine vermehrte IL-17 Produktion von JIA Patienten beobachteten Nistala et al. in mononukleären Zellen der Synovia [78].

Signifikante Unterschiede beobachteten wir in der INFγ Produktion der CCR6+ Zellen von JIA und HD. Die unstimulierten CCR6+ Zellen der JIA Patienten produzierten signifikant weniger INFγ als die CCR6+ Zellen der HD. Somit könnte man auf eine insuffiziente Th1-Funktion in JIA Patienten schließen. Im Vergleich mit den HD wird die sehr geringe INFγ Produktion bei JIA Patienten besonders deutlich.

In der Zusammenschau mit der höheren IL-17 Produktion könnte man den CCR6 Phänotyp der JIA Patienten folglich als Th17 polarisiert bei signifikant reduzierter Th1-Antwort beschreiben.

Im CIA Arthritismodell konnten Murphy et al. zeigen, dass Th17-Zellen für die Perpetuation der Entzündung verantwortlich und Th1-Zellen sogar protektiv sind [72]. Eine verminderte Th1-Antwort, führt auch in anderen Autoimmunerkrankung wie z.B. der Uveitis, zu einer pathologischen prädominierenden Th17-Differenzierung [131]. Kondo et al. untersuchten in transgenen Mäusen den Einfluss der Transkriptionsfaktoren von Th1 (T-bet) bzw. Th17 (RORyt) auf den

83

klinischen Verlauf der CIA. Sie konnten zeigen, dass eine T-bet Überexpression zu klinisch unterdrückter CIA führt [132] und folgerten daraus, dass T-bet eine protektive Wirkung habe. Unsere Ergebnisse wiesen darauf hin, dass bei JIA Patienten eine potente Th1-Antwort fehlt.

Ob die von uns beobachtete verminderte Th1-Antwort in JIA Patienten Folge oder Ursache einer Th17-Dominanz ist oder nur eine relative Verschiebung darstellt, bleibt unklar.

4.4.2.2. Polarisierte CCR6+ Zellen

Die CCR6+ Zellen von JIA Patienten und HD zeigten unter spezifischer Zytokinstimulation noch deutlicher erkennbare Polarisierungstendenzen als ohne Stimulation.

Die CCR6+ Zellen der JIA Patienten reagierten auf Th1-, Th17- und Tregspezifische Stimuli mit intrazellulärer IL-17 Mehrproduktion.

Eine ausgeprägte Steigerung der IL-17 Produktion erfolgte auf den Th17-Stimulus hin bestehend aus IL-1 β , IL-6 und IL-23. Die IL-17 Produktion war hier maximal gesteigert. Es scheint, als ob die T-Zellen der JIA Patienten sich besser in Richtung Th17 differenzieren können. Die CCR6+ Zellen der HD reagierten auf alle Stimuli im Vergleich mit niedrigerer IL-17 Produktion.

Wie in der Arbeit von Prochazkova et al. [107] beschrieben, konnten auch wir die CCR6+ Zellen mit dem Th1 spezifischen Stimulus in Richtung Th1 polarisieren. Die Kombination von IL-12 und IL-2 führte zur Steigerung der INFγ Produktion bei gleichzeitig geringerer IL-17 Produktion.

In der Ausprägung der Th1 Polarisierung unterschieden sich JIA Patienten und HD. Die CCR6+ Zellen der JIA Patienten zeigten auf Th1-Stim eine deutlich geringere INFγ Produktion als die CCR6+ Zellen der HD. Wie schon unter Kap. 4.4.2.1. diskutiert, lässt sich vermuten, dass die T-Zellen der JIA Patienten eine prädominierende Th17-Differenzierung aufweisen.

Es ist an dieser Stelle zu erwähnen, dass sich alle JIA Patienten der CCR6-Experimente im klinischen Schub befanden. Wir konnten in der Querschnittsstudie zeigen, dass RORyt im akuten Krankheitsschub signifikant höher exprimiert wurde, was möglicherweise ursächlich zur Th17-Prädominanz beiträgt. Betrachtet man die Zytokinproduktion der CCR6+Tregs auf die Stimuli, so lässt sich ein weiterer interessanter Unterschied beobachten.

Die CCR6+Tregs der HD produzieren auf den Treg-spezifischen Stimulus hin vermehrt IL-10. Dass TGFβ und IL-2 die antiinflammatorische IL-10 Produktion auch in TH17 Zellen stimulieren, ist bekannt [133] und wird als gegenregulativ wirksamer Mechanismus bei einer überschießenden Immunantwort gewertet.

Die CCR6+Tregs der JIA Patienten produzierten im Vergleich allerdings deutlich weniger IL-10 als die Tregs der HD. Die CCR6+Tregs der JIA Patienten reagierten, besonders auf den Treg-Stim hin, sogar mit vermehrter IL-17 Produktion. IL-2 und TGF β gelten in der Literatur als stabilisierende Elemente des regulatorischen T-Zell Phänotyps [134]. Eine vermehrte proinflammatorische Zytokinproduktion in Tregs wurde für TGF β nur in Kombination mit IL-6 beschrieben [18]. Die IL-17 Produktion in Tregs von JIA Patienten in Reaktion auf IL-2 und TGF β , weicht somit aus noch nicht verstandener Ursache vom bekannten Polarisierungsmechanismus ab.

Betrachtet man die Ergebnisse der Stimulationsversuche im Ganzen, lässt die rege IL-17 Produktion in Reaktion auf die Zytokinstimuli erneut vermuten, dass JIA Patienten eine prädominierende Th17-Differenzierung aufweisen. Die CCR6+ Zellen der JIA Patienten reagieren Th17-restriktiv auf die Stimuli. Sie lassen sich im Gegensatz zu den CCR6+ Zellen der HD Patienten nur gering in Richtung Th1 (INFγ Produktion) oder Treg (IL-10 Produktion) polarisieren.

4.5. Technische Limitationen

4.5.1. Heterogenität der JIA-Gruppe

Die JIA Patienten stellen eine äußerst heterogene Probandengruppe dar.

Die Aussagen, die hier über die JIA Patientengruppe als Einheit getroffen werden, müssten daher auf ihr Zutreffen auf jeden einzelnen JIA Subtyp hin untersucht werden.

Weiterhin muss man Patienten mit und ohne dauerhafte immunsuppressive Therapie unterscheiden. Es ist zu beachten, dass Patienten im akuten Schub intensiver medikamentös therapiert werden als Patienten in langjähriger Remission [81]. Krankheitsaktivität und Medikationswirkung sind hier also schwer zu trennen.

4.5.2. Methoden abhängige Limitation

4.5.2.1. Analyse der Transkriptionsfaktoren mittels Durchflusszytometer

Die Antikörper-vermittelte Fluoreszenzfärbung vermag auch intrazelluläre Genprodukte, wie die von uns untersuchten Transkriptionsfaktoren RORyt und FoxP3, sichtbar zu machen.

Bei beiden Antikörpern (gleicher Hersteller (eBiosciences, Frankfurt a. M., Deutschland)) stellten wir eine sehr hohe prozentuale Anfärberate fest. Dabei drängt sich die Vermutung auf, dass die Antikörper unspezifisch an das Genprodukt (RORyt, FoxP3) binden. Das genaue Epitop ist laut Hersteller nicht bekannt.

In der Literatur findet man Arbeiten mit ähnlich hoher RORyt-ki-, wie wir sie beobachtet haben [135, 136]. Genauso findet man allerdings auch Arbeiten, in welchen RORyt von wesentlich geringeren T-Zell Proportionen exprimiert wird [137, 138].

Wie sich letztlich der Aktivierungszustand der Transkriptionsfaktoren darstellt, kann am ehesten in epigenetischen Untersuchungen beurteilt werden, die den Methylierungsgrad und somit die Ablesbarkeit des Genabschnitts untersuchen. Dass die Unterschiede, die wir zwischen gesunden Kontrollprobanden, JIA Patienten in Remission und JIA Patienten im Krankheitsschub feststellen konnten, ein rein technischer Effekt sein sollen, scheint jedoch unwahrscheinlich.

4.5.2.2. Definition der Subpopulationen

Die Identifikation und Definition von T-Zellsubpopulationen durch Markerproteine ist vieldiskutierter Gegenstand der aktuellen Forschung. Allerdings steht der dringende Bedarf an konstanten Identifikationsmerkmalen im Widerspruch zu der sich fortschreitend demonstrierenden Flexibilität und Plastizität der T-Zellen.

Für die Definition der regulatorische T-Zellen ist FoxP3 von großer Bedeutung [139]. Dennoch wurde bekannt, dass FoxP3, im Gegensatz zu Beobachtungen in murinen Modellen, nicht ausschließlich von regulatorischen T-Zellen exprimiert wird. Auch aktivierte CD4+ T-Helferzellen und CD8+ zytotoxische Zellen können, induziert durch IL-2 und TGFβ, FoxP3 transient exprimieren [125, 126].

Weiterhin unterscheidet man natürliche Tregs, die im Thymus gereift sind und sich mit IL-6 zu Th17 Zellen polarisieren lassen, von induzierten Tregs, die peripher induziert wurden und einen stabileren Phänotyp aufweisen [20].

Wir definierten CD4+CD25+CD127-FoxP3+Zellen als Tregs. Trotz zusätzlicher Marker wie CD127 und CD25 können wir nicht sicher ausschließen, dass die FoxP3+Zellen in unserer Untersuchung nicht auch andere aktivierte CD4+T-Zellen sind. Dieser Aspekt wäre vor allem bei den IL-17 produzierenden Tregs zu bedenken. Eine Unterscheidung in natürliche oder induzierte Tregs wurde nicht vorgenommen.

4.5.2.3. MACS-Separation

Die nicht vollständige Reinheit, die wir bei der MACS-Separation erzielen konnten, ist ein klarer Kritikpunkt. Eine klare Trennung nach Oberflächenrezeptoren, die so gering exprimiert werden wie CCR6, ist technisch limitiert [140]. Eventuell könnten verbleibende CCR6- Zellen in der Kultur das Ergebnis beeinflusst haben.

Weiterhin handelte es sich bei der CCR6 Separation, um eine MACS Positivselektion. Bei dieser Variante der Zellbehandlung kann es zu vorzeitiger

ungewollter Zellaktivierung kommen [141]. Auch verbleiben an den Zellen der späteren Kultur die Magnetbeads, welche ungewisse Interaktionen verursachen oder samt CCR6-Rezeptor internalisiert werden können [140].

Bedauerlicher Weise konnte bei den CCR6-Stimulationsexperimenten kein statistisch signifikanter Unterschied zwischen JIA und HD gezeigt werden. Dies lässt sich am ehesten auf die geringe Anzahl der untersuchten Probanden zurückführen.

4.6. Ausblick

Durchflusszytometer-Analysen untersuchen Antikörper-spezifisch die äußeren Zellmarker, sowie fertig produzierte Zytokine im Innern der Zelle - und somit reale Zelleigenschaften. Eine Bestätigung unserer Ergebnisse z.B. mittels Polymerase-Kettenreaktion oder Westernblot wäre wünschenswert. Von besonderem Interesse wäre außerdem die Untersuchung der epigenetischen Regulation, also z. B. der Methylierungszustand der DNA-Abschnitten und somit deren Aktivität [127]. Insbesondere die Transkriptionsfaktoren (RORyt, FoxP3) und die Genabschnitte für die Expression der Leitzytokine (IL-17, INFy) unserer Untersuchungen sollten in Hinblick auf ihre epigenetische Regulation untersucht werden. Gerade bei Arbeiten, die sich mit Plastizität beschäftigen, scheint zum aktuellen Zeitpunkt die Epigenetik, die interessanteste Fragestellung.

Die FoxP3+Tregs, die wir als IL-17 Produzenten ausmachen konnten, sollten in Suppressionsanalysen auf ihr evtl. verbleibendes regulatorisches Potential hin untersucht werden.

Letztlich findet die Inflammation bei der JIA im Gelenk statt, so dass es nahe liegt, eine durchflusszytometrische Analyse der mononukleären synovialen T-Zellen anzuschließen. Die Untersuchungen der Synovia sowie der Zytokine des peripheren Blutes würden Aufschluss über das umgebende Zytokinmilieu geben und somit die prädominierenden Zytokinstimuli aufzeigen.

Die in der Einleitung erwähnten Antigen präsentierenden Zellen (APC) spielen für das umgebende Zytokinmilieu eine maßgebliche Rolle. Es wäre interessant, APC aus dem Gelenk der JIA Patienten zu isolieren und auf ihre Zytokinproduktion hin zu untersuchen.

Die Stimulationsexperimente führten wir mit Kontrollprobanden und JIA Patienten im akuten Krankheitsschub durch. Der Vergleich der Polarisierungstendenz von JIA Patienten in klinischer Remission würde die Studie komplettieren.

Dem Transkriptionsfaktor RORyt scheint laut unseren Ergebnissen eine entscheidende Rolle in der Th17 Polarisierung zuzukommen. Besonders interessant wäre in vitro die Antikörper-vermittelte selektive Inhibition von RORyt in T-Helferzellen von JIA Patienten zu untersuchen, da sie von therapeutischen Nutzen sein könnte.

89

5. Zusammenfassung

Die Juvenile idiopathische Arthritis ist ein chronisch entzündliches Krankheitsbild des Kindesalters mit ungeklärter Ursache. Eine ätiopathogenetische Beteiligung des Immunsystems und im speziellen der T-Zellen ist wahrscheinlich.

Die vorliegende durchflusszytometrische Untersuchung umfasst die Daten von 84 JIA Patienten und 40 altersgleichen Kontrollprobanden und vergleicht die Ergebnisse im transversalen sowie longitudinalen Studiendesign.

Die Phänotypisierung der Lymphozyten zeigte im Vergleich zu gesunden Kontrollprobanden eine abweichende Verteilung der T-Zellsubpopulationen. Die CD4 positiven T-Helferzellen der JIA Patienten setzen sich aus einer Anzahl proportional verminderter differenzierter Zellen und vermehrter naiver Zellen zusammen. Im Zytokinprofil wurde eine reduzierte Th1- sowie Th2-Antwort beobachtet. In allen T-Zell-Subpopulationen der JIA Patienten fand sich RORyt, der Transkiptionsfaktor der Th17-Differenzierung, hochreguliert. Im klinischen Schub der Arthritis zeigte sich eine signifikant erhöhte RORyt-Expression sowie eine vermehrte IL-17 Produktion. Die IL-17 produzierenden Zellen zeigten u.a. einen regulatorischen Phänotyp.

Bei den Stimulationsversuchen von CCR6+ Zellen, die wir als IL-17 produzierende Zellen definieren konnten, wurde eine ausgeprägte Plastizität beobachtet. Mit spezifischen Zytokinstimuli wurden die IL-17 produzierenden Zellen vermehrt zu Th17, Th1 oder regulatorischen T-Zellen polarisiert. Die Polarisierbarkeit unterschied sich zwischen JIA Patienten und Kontrollprobanden. Die CCR6+ Zellen der JIA Patienten zeigten im Vergleich zu den Kontrollprobanden ausgeprägte Polarisierungstendenzen zum Th17-Phänotyp und ließen sich nur gering in Th1 oder Treg konvertieren.

Die Ergebnisse unserer Untersuchung lassen auf eine Dominanz im Th17-Differenzierungsweg schließen. Der Transkriptionsfaktor RORyt scheint vor allem im akuten Krankheitsschub zu prädominieren und die Th17-Differenzierung zu steuern. Eine Gegenregulation von Th1- und Th2-Zellen fehlt.

Zusammenfassend ergeben sich Hinweise darauf, dass Th17-Zellen eine bedeutende Rolle in der Pathogenese der Juvenilen idiopathischen Arthritis spielen. In wieweit man IL-17, den CCR6-Rezeptor oder den Transkriptionsfaktor

90

RORyt als Angriffsziel von krankheitsmodifizierenden Therapeutika nutzen kann, muss in weiteren Studien untersucht werden. Ebenso gilt es herauszufinden, ob die forcierte Polarisierung in Richtung regulatorische T-Zellen oder gegenregulatorisch aktive Th1 und Th2 Zellen eine Therapiestrategie darstellt.

<u>Summary</u>

Juvenile idiopathic arthritis (JIA) is a chronic systemic inflammatory disease in childhood with unknown etiology. Previous studies have demonstrated an important role for CD4+ T helper cells. The aim of the present study was to investigate the T cell phenotype and cytokine profile in children with JIA with focus on disease activity.

T cells from peripheral blood mononuclear cells of 84 children with JIA and 40 age-matched healthy donors (HD) were analyzed by flowcytometry.

T cells from JIA patients were less differentiated with higher numbers of naïve T cells compared to HD. Cytokine profile analysis revealed a reduced intracellular Th1- and Th2- specific cytokine production. Significantly higher levels of RORyt expression, the most important transcription factor of Th17 cells, were found during acute disease flare. Moreover, IL-17 production was significantly higher in patients with active disease compared to patients in remission.

Furthermore, stimulation experiments with CCR6+CD4+ T cells, which we could identify as IL-17 producing cells, revealed distinct plasticity. Polarization of isolated CCR6+ cells into Th17, Th1 or regulatory T cells, respectively, was achieved using specific cytokines. Interestingly, the potential to polarize differed in JIA patients and healthy donors. T cells from JIA patients showed a more stable Th17 phenotype and restricted switching to Th1 or Treg.

These results suggest a predominant Th17 phenotype of T cells in JIA patients. During disease flares, RORyt seems to be an important factor leading to Th17 polarization. An opposing modulation of Th1, Th2 or Treg was not found. In conclusion, a Th17 phenotype dominates during disease flares in JIA and underlines the role of inflammatory T cells in the etiopathogenesis of JIA. IL-17, CCR6 and RORyt, Th17-specific factors, may be interesting targets for novel therapeutic approaches in JIA.

6. Literaturverzeichnis

- 1. Pschyrembel Klinisches Wörterbuch. 2014, De Gruyter.
- 2. Martin M., R.K., Immunologie. Vol. 1. 2009: UTB
- 3. Mackay, C.R., *Homing of naive, memory and effector lymphocytes.* Curr Opin Immunol, 1993. **5**(3): p. 423-7.
- 4. von Andrian, U.H. and T.R. Mempel, *Homing and cellular traffic in lymph nodes.* Nat Rev Immunol, 2003. **3**(11): p. 867-78.
- 5. Mora, J.R. and U.H. von Andrian, *T-cell homing specificity and plasticity: new concepts and future challenges.* Trends Immunol, 2006. **27**(5): p. 235-43.
- 6. Murpy K., T.P., Walport M., Janeway Immunologie. Vol. 7. 2009. 1093.
- 7. Moser, M. and K.M. Murphy, *Dendritic cell regulation of TH1-TH2 development*. Nat Immunol, 2000. **1**(3): p. 199-205.
- 8. Kohler, S. and A. Thiel, *Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets.* Blood, 2009. **113**(4): p. 769-74.
- 9. Hintzen, R.Q., et al., *Regulation of CD27 expression on subsets of mature T-lymphocytes.* J Immunol, 1993. **151**(5): p. 2426-35.
- 10. Sallusto, F., et al., *Two subsets of memory T lymphocytes with distinct homing potentials and effector functions.* Nature, 1999. **401**(6754): p. 708-12.
- 11. Sallusto, F., et al., Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur J Immunol, 1999. **29**(6): p. 2037-45.
- 12. Clement, L.T., *Isoforms of the CD45 common leukocyte antigen family: markers for human T-cell differentiation.* J Clin Immunol, 1992. **12**(1): p. 1-10.
- 13. Michie, C.A., et al., *Lifespan of human lymphocyte subsets defined by CD45 isoforms.* Nature, 1992. **360**(6401): p. 264-5.
- 14. Dubey, C., M. Croft, and S.L. Swain, *Naive and effector CD4 T cells differ in their requirements for T cell receptor versus costimulatory signals.* J Immunol, 1996. **157**(8): p. 3280-9.
- 15. Appay, V., et al., *Phenotype and function of human T lymphocyte subsets: consensus and issues.* Cytometry A, 2008. **73**(11): p. 975-83.
- 16. Mosmann, T.R. and R.L. Coffman, *TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties.* Annu Rev Immunol, 1989. **7**: p. 145-73.
- 17. Harrington, L.E., et al., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 2005. 6(11): p. 1123-32.
- 18. Bettelli, E., et al., *Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells.* Nature, 2006. **441**(7090): p. 235-8.
- 19. Sakaguchi, S., *Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self.* Nat Immunol, 2005. **6**(4): p. 345-52.
- Horwitz, D.A., S.G. Zheng, and J.D. Gray, Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol, 2008.
 29(9): p. 429-35.
- 21. Medzhitov, R., *Recognition of microorganisms and activation of the immune response.* Nature, 2007. **449**(7164): p. 819-26.
- 22. Kanno, Y., et al., *Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity.* Annu Rev Immunol, 2012. **30**: p. 707-31.
- 23. Coomes, S.M., V.S. Pelly, and M.S. Wilson, *Plasticity within the alphabeta(+)CD4(+) T-cell lineage: when, how and what for?* Open Biol, 2013. **3**(1): p. 120157.
- 24. Djuretic, I.M., et al., *Transcription factors T-bet and Runx3 cooperate to activate lfng and silence II4 in T helper type 1 cells.* Nat Immunol, 2007. **8**(2): p. 145-53.
- 25. Nakamura, Y., et al., *Gene expression of the GATA-3 transcription factor is increased in atopic asthma.* J Allergy Clin Immunol, 1999. **103**(2 Pt 1): p. 215-22.
- 26. Yang, X.O., et al., *T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma.* Immunity, 2008. **28**(1): p. 29-39.
- 27. Burchill, M.A., et al., *IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells.* J Immunol, 2007. **178**(1): p. 280-90.

- 28. Murphy, E., et al., *Reversibility of T helper 1 and 2 populations is lost after long-term stimulation.* J Exp Med, 1996. **183**(3): p. 901-13.
- 29. Kanhere, A., et al., *T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements.* Nat Commun, 2012. **3**: p. 1268.
- 30. Zhou, L., et al., *TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function.* Nature, 2008. **453**(7192): p. 236-40.
- 31. Hirahara, K., et al., *Helper T-cell differentiation and plasticity: insights from epigenetics.* Immunology, 2011. **134**(3): p. 235-45.
- 32. Mathur, A.N., et al., *T-bet is a critical determinant in the instability of the IL-17-secreting T-helper phenotype.* Blood, 2006. **108**(5): p. 1595-601.
- 33. Lee, Y.K., et al., *Late developmental plasticity in the T helper 17 lineage.* Immunity, 2009. **30**(1): p. 92-107.
- 34. Panzer, M., et al., *Rapid in vivo conversion of effector T cells into Th2 cells during helminth infection.* J Immunol, 2012. **188**(2): p. 615-23.
- 35. Acosta-Rodriguez, E.V., et al., *Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells*. Nat Immunol, 2007. **8**(6): p. 639-46.
- 36. Lexberg, M.H., et al., *Th memory for interleukin-17 expression is stable in vivo.* Eur J Immunol, 2008. **38**(10): p. 2654-64.
- 37. Ansel, K.M., D.U. Lee, and A. Rao, *An epigenetic view of helper T cell differentiation.* Nat Immunol, 2003. **4**(7): p. 616-23.
- 38. Wei, G., et al., *Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells.* Immunity, 2009. **30**(1): p. 155-67.
- 39. Del Prete, G., *Human Th1 and Th2 lymphocytes: their role in the pathophysiology of atopy.* Allergy, 1992. **47**(5): p. 450-5.
- 40. Sarvetnick, N., et al., Loss of pancreatic islet tolerance induced by beta-cell expression of interferon-gamma. Nature, 1990. **346**(6287): p. 844-7.
- 41. Ghoreschi, K., C. Weigert, and M. Rocken, *Immunopathogenesis and role of T cells in psoriasis.* Clin Dermatol, 2007. **25**(6): p. 574-80.
- 42. Lassmann, H. and R.M. Ransohoff, *The CD4-Th1 model for multiple sclerosis: a critical [correction of crucial] re-appraisal.* Trends Immunol, 2004. **25**(3): p. 132-7.
- 43. Murphy, K.M. and B. Stockinger, *Effector T cell plasticity: flexibility in the face of changing circumstances.* Nat Immunol, 2010. **11**(8): p. 674-80.
- 44. Ivanov, II, et al., *The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells.* Cell, 2006. **126**(6): p. 1121-33.
- 45. Wilson, N.J., et al., *Development, cytokine profile and function of human interleukin 17producing helper T cells.* Nat Immunol, 2007. **8**(9): p. 950-7.
- 46. Singh, S.P., et al., *Human T cells that are able to produce IL-17 express the chemokine receptor CCR6.* J Immunol, 2008. **180**(1): p. 214-21.
- 47. Hirota, K., et al., *Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model.* J Exp Med, 2007. **204**(12): p. 2803-12.
- 48. Maggi, L., et al., *CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC.* Eur J Immunol, 2010. **40**(8): p. 2174-81.
- 49. Pesenacker, A.M., et al., *CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines.* Blood, 2013. **121**(14): p. 2647-58.
- 50. Huang, W., et al., *Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice.* J Infect Dis, 2004. **190**(3): p. 624-31.
- 51. Happel, K.I., et al., *Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae.* J Exp Med, 2005. **202**(6): p. 761-9.
- 52. Laan, M., et al., *Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways.* J Immunol, 1999. **162**(4): p. 2347-52.
- 53. Fossiez, F., et al., *T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines.* J Exp Med, 1996. **183**(6): p. 2593-603.
- 54. Albanesi, C., A. Cavani, and G. Girolomoni, *IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol, 1999.* **162**(1): p. 494-502.
- 55. Chabaud, M., et al., *Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis.* Cytokine, 2000. **12**(7): p. 1092-9.

- 56. Attur, M.G., et al., *Interleukin-17 up-regulation of nitric oxide production in human osteoarthritis cartilage.* Arthritis Rheum, 1997. **40**(6): p. 1050-3.
- 57. Yang, J., et al., *Targeting Th17 cells in autoimmune diseases.* Trends Pharmacol Sci, 2014. **35**(10): p. 493-500.
- 58. Petty, R.E., et al., International League of Associations for Rheumatology classification of
- nile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol, 2004. **31**(2): p. 390-2. 59. von Koskull, S., et al., *Incidence and prevalence of juvenile arthritis in an urban population of*
 - southern Germany: a prospective study. Ann Rheum Dis, 2001. **60**(10): p. 940-5.
- 60. Manners, P.J. and C. Bower, *Worldwide prevalence of juvenile arthritis why does it vary so much?* J Rheumatol, 2002. **29**(7): p. 1520-30.
- 61. Mirkinson, L.J. and I.M. Katona, *Systemic onset juvenile idiopathic arthritis: update on pathogenesis and treatment.* Expert Rev Clin Immunol, 2007. **3**(3): p. 313-21.
- 62. Correll, C.K. and B.A. Binstadt, *Advances in the pathogenesis and treatment of systemic juvenile idiopathic arthritis.* Pediatr Res. **75**(1-2): p. 176-83.
- 63. Kruithof, E., et al., *Distinct synovial immunopathologic characteristics of juvenile-onset spondylarthritis and other forms of juvenile idiopathic arthritis.* Arthritis Rheum, 2006. **54**(8): p. 2594-604.
- 64. Hinks, A., et al., Subtype specific genetic associations for juvenile idiopathic arthritis: ERAP1 with the enthesitis related arthritis subtype and IL23R with juvenile psoriatic arthritis. Arthritis Res Ther. **13**(1): p. R12.
- 65. Oen, K.G. and M. Cheang, *Epidemiology of chronic arthritis in childhood.* Semin Arthritis Rheum, 1996. **26**(3): p. 575-91.
- 66. Prakken, B., S. Albani, and A. Martini, *Juvenile idiopathic arthritis.* Lancet, 2011. **377**(9783): p. 2138-49.
- 67. Grom, A.A. and R. Hirsch, *T-cell and T-cell receptor abnormalities in the immunopathogenesis of juvenile rheumatoid arthritis.* Curr Opin Rheumatol, 2000. **12**(5): p. 420-4.
- 68. Wedderburn, L.R., et al., Selective recruitment of polarized T cells expressing CCR5 and CXCR3 to the inflamed joints of children with juvenile idiopathic arthritis. Arthritis Rheum, 2000. **43**(4): p. 765-74.
- 69. Lubberts, E., *IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis?* Cytokine, 2008. **41**(2): p. 84-91.
- 70. Chabaud, M., et al., *Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium.* Arthritis Rheum, 1999. **42**(5): p. 963-70.
- 71. Oppmann, B., et al., Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 2000. **13**(5): p. 715-25.
- 72. Murphy, C.A., et al., *Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation.* J Exp Med, 2003. **198**(12): p. 1951-7.
- 73. Nakae, S., et al., Suppression of immune induction of collagen-induced arthritis in IL-17deficient mice. J Immunol, 2003. **171**(11): p. 6173-7.
- 74. Koshy, P.J., et al., Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines. Ann Rheum Dis, 2002. **61**(8): p. 704-13.
- 75. Kotake, S., et al., *IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis.* J Clin Invest, 1999. **103**(9): p. 1345-52.
- 76. Alber, G., Kamradt, T., *Regulation of Protective and Pathogenic Th17 Responses.* Current Immunology Reviews, 2007. Vol. 3, No. 1 (3): p. 3-16
- 77. Lisignoli, G., et al., CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: Increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. J Cell Physiol, 2007. **210**(3): p. 798-806.
- 78. Nistala, K., et al., Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum, 2008. **58**(3): p. 875-87.
- 79. Wallace, C.A., et al., *Preliminary criteria for clinical remission for select categories of juvenile idiopathic arthritis.* J Rheumatol, 2004. **31**(11): p. 2290-4.
- 80. Consolaro, A., et al., *Development and validation of a composite disease activity score for juvenile idiopathic arthritis.* Arthritis Rheum, 2009. **61**(5): p. 658-66.
- 81. Niehues, T., *Aktualisierte, interdisziplinäre S2-Therapieleitlinie der Juvenilen Idiopathischen Arthritis*, AWMF, Editor. 2011, Konsensusgruppe Therapie der JIA.

- 82. Mutschler, E., *Mutschler Arzneimittelwirkungen: Lehrbuch der Pharmakologie und Toxikologie.* 2008: Wissenschaftliche Verlagsgesellschaft Stuttgart 1243
- 83. Chan, E.S. and B.N. Cronstein, *Molecular action of methotrexate in inflammatory diseases.* Arthritis Res, 2002. **4**(4): p. 266-73.
- 84. Scheinman, R.I., et al., *Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids.* Science, 1995. **270**(5234): p. 283-6.
- 85. Tracey, D., et al., *Tumor necrosis factor antagonist mechanisms of action: a comprehensive review.* Pharmacol Ther, 2008. **117**(2): p. 244-79.
- 86. Lovell, D.J., et al., *Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group.* N Engl J Med, 2000. **342**(11): p. 763-9.
- 87. Lovell, D.J., et al., *Adalimumab with or without methotrexate in juvenile rheumatoid arthritis.* N Engl J Med, 2008. **359**(8): p. 810-20.
- 88. Ruperto, N., et al., *Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial.* Lancet, 2008. **372**(9636): p. 383-91.
- 89. Lequerre, T., et al., Interleukin-1 receptor antagonist (anakinra) treatment in patients with systemic-onset juvenile idiopathic arthritis or adult onset Still disease: preliminary experience in France. Ann Rheum Dis, 2008. **67**(3): p. 302-8.
- 90. Yokota, S., et al., *Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial.* Lancet, 2008. **371**(9617): p. 998-1006.
- 91. World Medical Association, I., Declaration of Helsinki. 2013.
- 92. Prelog, M., *Aging of the immune system: a risk factor for autoimmunity?* Autoimmun Rev, 2006. **5**(2): p. 136-9.
- 93. Boyum, A., Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl, 1968. **97**: p. 77-89.
- 94. Lin, Z., et al., *In vivo antigen-driven plasmablast enrichment in combination with antigenspecific cell sorting to facilitate the isolation of rare monoclonal antibodies from human B cells.* Nat Protoc, 2014. **9**(7): p. 1563-77.
- 95. Radke, L., et al., Induced cytokine response of human PMBC-cultures: correlation of gene expression and secretion profiling and the effect of cryopreservation. Cell Immunol, 2012.
 272(2): p. 144-53.
- 96. Fulwyler, M.J., *Electronic separation of biological cells by volume.* Science, 1965. **150**(3698): p. 910-1.
- 97. Horan, P.K. and L.L. Wheeless, Jr., *Quantitative single cell analysis and sorting.* Science, 1977. **198**(4313): p. 149-57.
- 98. research, E.a., *Im Trinkwasser lebt viel mehr als bisher angenommen.* http://www.eawag.ch/medien/bulletin/20130124/prinzip_flowzyto2_d.gif?hires.
- 99. Jeurink, P.V., et al., *T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: kinetics of cell viability, cellular subsets, proliferation, and cytokine production.* Cryobiology, 2008. **57**(2): p. 91-103.
- 100. Chatila, T., *Mechanisms of T cell activation by the calcium ionophore ionomycin.* The Journal of Immunology, 1989. **143**(4): p. 1283-1289
- 101. Linsley, P.S. and J.A. Ledbetter, *The role of the CD28 receptor during T cell responses to antigen.* Annu Rev Immunol, 1993. **11**: p. 191-212.
- 102. Garbrecht, F.C., C. Russo, and M.E. Weksler, *Long-term growth of human T cell lines and clones on anti-CD3 antibody-treated tissue culture plates.* J Immunol Methods, 1988. **107**(1): p. 137-42.
- 103. Scholzen, T. and J. Gerdes, *The Ki-67 protein: from the known and the unknown.* J Cell Physiol, 2000. **182**(3): p. 311-22.
- 104. Gerdes, J., et al., *Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67.* J Immunol, 1984. **133**(4): p. 1710-5.
- 105. Veldhoen, M., et al., *TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.* Immunity, 2006. **24**(2): p. 179-89.
- 106. Rovedatti, L., et al., *Differential regulation of interleukin 17 and interferon gamma production in inflammatory bowel disease*. Gut, 2009. **58**(12): p. 1629-36.
- 107. Prochazkova, J., K. Pokorna, and V. Holan, *IL-12 inhibits the TGF-beta-dependent T cell developmental programs and skews the TGF-beta-induced differentiation into a Th1-like direction.* Immunobiology, 2012. **217**(1): p. 74-82.

- 108. Zhou, L., et al., *IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways.* Nat Immunol, 2007. **8**(9): p. 967-74.
- 109. Lee, J.H., et al., Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J Immunol, 2011.
 187(4): p. 1778-87.
- 110. Valmori, D., et al., *Human RORgammat+ TH17 cells preferentially differentiate from naive FOXP3+Treg in the presence of lineage-specific polarizing factors.* Proc Natl Acad Sci U S A, 2010. **107**(45): p. 19402-7.
- 111. Cantrell, D.A. and K.A. Smith, *The interleukin-2 T-cell system: a new cell growth model.* Science, 1984. **224**(4655): p. 1312-6.
- 112. Lina, C., et al., *Combined treatment of etanercept and MTX reverses Th1/Th2, Th17/Treg imbalance in patients with rheumatoid arthritis.* J Clin Immunol, 2011. **31**(4): p. 596-605.
- 113. Herman, S., et al., *Methotrexate selectively modulates TH1/TH2 balance in active rheumatoid arthritis patients.* Clin Exp Rheumatol, 2008. **26**(2): p. 317-23.
- 114. Almanzar, G., et al., Increased replication of CD4+ naive T cells and changes in T cell homeostasis in a case of acute exacerbation of juvenile idiopathic arthritis: a case comparison study. J Med Case Rep, 2013. **7**: p. 135.
- 115. Genestier, L., et al., *Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells.* J Clin Invest, 1998. **102**(2): p. 322-8.
- 116. Matsui, T., et al., Selective recruitment of CCR6-expressing cells by increased production of MIP-3 alpha in rheumatoid arthritis. Clin Exp Immunol, 2001. **125**(1): p. 155-61.
- 117. Chabaud, M., G. Page, and P. Miossec, Enhancing effect of IL-1, IL-17, and TNF-alpha on macrophage inflammatory protein-3alpha production in rheumatoid arthritis: regulation by soluble receptors and Th2 cytokines. J Immunol, 2001. **167**(10): p. 6015-20.
- 118. Kumar, N., et al., *Identification of SR2211: a potent synthetic RORgamma-selective modulator.* ACS Chem Biol, 2012. **7**(4): p. 672-7.
- 119. Chang, M.R., et al., *Pharmacologic repression of retinoic acid receptor-related orphan nuclear receptor gamma is therapeutic in the collagen-induced arthritis experimental model.* Arthritis Rheumatol, 2014. **66**(3): p. 579-88.
- 120. Kondo, Y., Tahara, Masahiro, Iizuka, Mana, Tsuboi, Hiroto, Takahashi, Satoru, Matsumoto, Isao, Sumida, Takayuki et al CCR6Foxp3 Regulatory T Cells Regulate the Development of Collagen Induced Arthritis in T Cell Specific RORt Transgenic Mice. Arthritis & Rheumatism 2012, 2012. **64**.
- 121. Olivito, B., et al., *Th17 transcription factor RORC2 is inversely correlated with FOXP3 expression in the joints of children with juvenile idiopathic arthritis.* J Rheumatol, 2009. **36**(9): p. 2017-24.
- 122. de Jager, W., et al., *Blood and synovial fluid cytokine signatures in patients with juvenile idiopathic arthritis: a cross-sectional study.* Ann Rheum Dis, 2007. **66**(5): p. 589-98.
- 123. Voo, K.S., et al., *Identification of IL-17-producing FOXP3+ regulatory T cells in humans.* Proc Natl Acad Sci U S A, 2009. **106**(12): p. 4793-8.
- 124. Xu, L., et al., Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol, 2007.
 178(11): p. 6725-9.
- 125. Wang, J., et al., *Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells.* Eur J Immunol, 2007. **37**(1): p. 129-38.
- 126. Pillai, V., et al., *Transient regulatory T-cells: a state attained by all activated human T-cells.* Clin Immunol, 2007. **123**(1): p. 18-29.
- 127. Wilson, C.B., E. Rowell, and M. Sekimata, *Epigenetic control of T-helper-cell differentiation*. Nat Rev Immunol, 2009. **9**(2): p. 91-105.
- 128. Kochi, Y., et al., A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat Genet, 2010. **42**(6): p. 515-9.
- 129. Fergusson, J.R., V.M. Fleming, and P. Klenerman, *CD161-expressing human T cells.* Front Immunol, 2011. **2**: p. 36.
- 130. Cosmi, L., et al., *Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor.* J Exp Med, 2008. **205**(8): p. 1903-16.
- 131. Amadi-Obi, A., et al., *TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1.* Nat Med, 2007. **13**(6): p. 711-8.
- 132. Kondo, Y., et al., Overexpression of *T*-bet gene regulates murine autoimmune arthritis. Arthritis Rheum, 2012. **64**(1): p. 162-72.
- 133. McGeachy, M.J., et al., *TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology.* Nat Immunol, 2007. **8**(12): p. 1390-7.
- 134. Horwitz, D.A., et al., *Critical role of IL-2 and TGF-beta in generation, function and stabilization of Foxp3+CD4+ Treg.* Eur J Immunol, 2008. **38**(4): p. 912-5.
- 135. Yang, X.P., et al., Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol, 2011. **12**(3): p. 247-54.
- 136. Schmitt, N., et al., *The cytokine TGF-beta co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells.* Nat Immunol, 2014. **15**(9): p. 856-65.
- 137. Schmutz, S., et al., *Cutting edge: IL-7 regulates the peripheral pool of adult ROR gamma+ lymphoid tissue inducer cells.* J Immunol, 2009. **183**(4): p. 2217-21.
- Li, L., J. Kim, and V.A. Boussiotis, *IL-1beta-mediated signals preferentially drive conversion of regulatory T cells but not conventional T cells into IL-17-producing cells*. J Immunol, 2010. 185(7): p. 4148-53.
- 139. Fontenot, J.D. and A.Y. Rudensky, A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol, 2005. **6**(4): p. 331-7.
- 140. Miltenyi, S., et al., *High gradient magnetic cell separation with MACS.* Cytometry, 1990. **11**(2): p. 231-8.
- Yan, H., et al., Magnetic cell sorting and flow cytometry sorting methods for the isolation and function analysis of mouse CD4+ CD25+ Treg cells. J Zhejiang Univ Sci B, 2009. 10(12): p. 928-32.

7. Anhang

7.1. Eigenleistung

Mitarbeit bei der Rekrutierung der JIA-Patienten und Kontrollprobanden. Anfertigung der Ficoll-Lymphozytenisolierung. Phänotypisierung von Lymphozyten von JIA-Patienten und Kontrollprobanden. Etablierung der Zellkultur Stimulationsversuche. sowie der Durchführung der Stimulationsversuche bei fünf gesunden Erwachsenen, fünf gesunden Kontrollprobanden und fünf JIA kranken Kindern. Statistische Auswertung. Diskussion der Daten.

7.2. Danksagung

Mein Dank gilt Frau Prof. Dr. Martina Prelog, die mir an ihrem eigenen Beispiel Faszination und Freude an der Wissenschaft vermittelt hat. Ihre unermüdlichen Hinweise und Korrekturen haben meine Dissertation inhaltlich und formal enorm bereichert. Besonders bedanken möchte ich mich für ihre große Unterstützung bei jeglicher Art von Bewerbung mit beispiellosen Empfehlungsschreiben. Für den EULAR Vortrag fühlte ich mich durch ihre gute Vorbereitung bestens gerüstet. Weiter danke ich Giovanni Almanzar für die Einführung ins Labor und die anregenden Diskussionen. Für die familiäre Stimmung und die unzähligen Hilfestellungen bei der Laborarbeit möchte ich mich bei den MTAs des Rheumalabors bedanken. Insbesondere MTA Kerstin Höfner gilt mein Dank für ihre Unterstützung bei den CCR6-Stimulationsversuchen. Ich danke Raimund Trippen, Mirjam Ebert und Stefan Wellner, deren Unterstützung beim Probensammeln sehr wertvoll war.

Ich möchte mich besonders bei den Patientinnen und Patienten und deren Eltern bedanken, die bereit waren, an der Studie teilzunehmen.

Für das außerordentliche Verständnis und den unermüdlichen Zuspruch bedanke ich mich bei Jochen, meiner Familie und meinen Freunden.

7.3. Lebenslauf

PERSÖNLICHE DATEN	geboren am: 17. September 1987
SCHULBESUCH	Marienschule Fulda, Gymnasium
1998 - 2007	Juni 2007: Abitur
STUDIUM	Julius-Maximilians-Universität Würzburg und TU München
2008 – 2014	Studium der Humanmedizin
März 2010	1. Staatsexamen
WS 2011/2012	Forschungssemester
November 2014	2. Staatsexamen
WEITERBILDUNG	
seit April 2015	Assistenzärztin mit Weiterbildung zum Facharzt Dermatologie am Klinikum rechts der Isar, TU München
	Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein
PROMOTION	Prof. Dr. Martina Prelog, Universitätskinderklinik Würzburg
KONGRESSTEILNAHME	EULAR (European League Against Rheumatism) Juni 2012, Berlin Vortrag: "CCR6-positive T-cells in children with JIA"
STIPENDIUM	Promotionsstipendium der Medizinischen Fakultät Würzburg

APPENDIX

Übersicht Messwerte Phänotypisierung und Zyotkinprofil von JIA und HD

			JI	Α			HD						
	N	Mean	SD	Median	Min	Max	Ν	Mean	SD	Median	Min	Max	p-Wert
Chronologisches Alter in Jahren, Monaten	58	11,3	3,8	12,3	2,4	17,4	40	9,9	4,1	9,0	1,0	20,0	0,084
Lymphozyten	53	38,2	21,1	35,0	1,4	77,0	38	45,6	22,3	37,9	12,3	80,9	0,109
CD19+CD3- B-Zellen	52	21,0	10,1	18,6	0,0	48,2	38	16,3	6,3	14,8	8,2	41,1	0,007
CD8+CD3+ T-Zellen	53	21,5	5,8	21,9	10,0	33,8	38	24,1	6,0	23,6	14,8	37,8	0,086
CD4+CD3+ T-Zellen	50	41,3	10,6	40,5	13,5	59,1	38	41,5	9,8	41,1	19,8	60,0	0,896
CD56+CD3- NK-Zellen	48	9,1	6,7	7,2	1,4	28,3	38	9,4	5,5	10,0	1,0	22,9	0,683
CD56+CD3+ NK-1-2010	48	1,4	1,3	1,0	0,0	6,7	38	1,6	1,5	1,3	0,1	8,7	0,177
Zytokinprodutkion CD4:													
IFNv in CD4	58	4.8	2.8	4.3	0.1	13.0	38	6.7	4.2	6.0	1.6	15.8	0.028
TNFa in CD4	58	26,6	14,9	28,8	0,0	67,9	38	28,6	16,7	26,2	3,6	63,0	0,544
IL-9 in CD4	34	0,2	0,2	0,1	0,0	0,7	20	0,2	0,1	0,2	0,0	0,3	0,274
IL-6 in CD4	34	0,1	0,1	0,1	0,0	0,2	20	0,2	0,1	0,1	0,0	0,4	0,001
IL-1ß in CD4	31	0,2	0,1	0,2	0,1	0,8	16	0,4	0,2	0,3	0,1	0,8	0,000
IL-4 in CD4	58	0,8	0,6	0,7	0,0	2,9	38	1,3	0,9	1,3	0,0	4,1	0,001
IL-10 in CD4	58	0,2	0,1	0,2	0,0	0,6	38	0,3	0,2	0,2	0,0	1,1	0,206
IL-17 in CD4	58	0,5	0,4	0,4	0,0	1,8	36	0,6	0,3	0,6	0,1	1,4	0,041
Zytokinprodutkion CD8:		10.0	-		0.0			10.2		10.1			0.01-
	58	13,8	7,9	11,4	0,2	34,8	38	19,0	11,6	16,1	4,4	60,0	0,013
	58 24	11,3	7,9	9,3	0,1	36,4	38	15,5	0.4	12,6	1,7	51,3	0,054
	34	0,3	0,4	0,2	0,0	1,8	20	0,2	0,1	0,2	0,1	0,6	0,875
II -16 in CD8	32	0,2	0,2	0,1	0,0	1,2	16	0,3	0,2	0,2	0,1	1.0	0,011
II -4 in CD8	58	0,5	0,2	0,2	0,0	7.0	38	0,5	0,2	0,3	0,2	1,0	0,000
IL-10 in CD8	58	0,4	0,5	0,2	0.0	0.8	38	0.2	0,2	0,2	0.0	0.8	0.920
		.,_	.,.	.,.	.,-	-,-		- ,=	.,=	.,.	.,•	2,2	.,0
CD27+ in CD4+	58	94,2	11,0	96,8	15,6	99,6	38	93,3	4,0	93,9	83,8	99,5	0,003
CD161+ in CD4	58	4,5	4,8	3,2	0,8	33,2	22	4,3	2,2	4,6	0,4	9,6	0,109
TCRo/h in CD4	52	09.7	1 2	00.2	02.0	00.0	40	09.5	17	00.0	80.0	00.9	0.204
TCPa/d+ in CD4+	50	90,7	1,3	99,2	93,0	99,9	40 30	90,5	0.1	99,0	09,9	99,0	0,294
CD31 + in CD4 +	52	59.6	14.2	61.2	10.5	81.1	40	52.8	10.3	51.2	27.7	74 1	0.001
TCRa/b+ in CD8+	52	95.2	3.0	95.6	88.1	99.5	40	93.6	5.0	94.6	70.0	99.0	0,001
CD31+ in CD8+	50	89,2	5,7	90,5	75,6	98,0	40	81,3	9,0	83,2	52,9	93,5	0,000
Chemokinrezeptoren Pheno CD4													
CCR6 in CD4 Pheno	51	3,8	4,8	2,6	0,6	24,9	37	3,8	2,4	3,2	0,5	9,6	0,184
CD4+CD45RA+CCR6+	51	0,5	0,7	0,4	0,0	4,0	38	0,3	0,2	0,2	0,0	1,3	0,004
CD4+CD45RA-CCR6+	51	3,4	4,9	2,1	0,2	25,4	38	3,6	2,5	3,1	0,0	9,1	0,126
CCR5 in CD4 Pheno	51	3,8	7,7	1,9	0,4	54,1	37	3,5	1,8	3,1	0,5	7,0	0,008
CD4+CD45RA+CCR5+	51	1,4	4,3	0,6	0,1	29,7	37	0,6	0,5	0,6	0,2	3,0	0,552
CD4+CD45RA-CCR5+	51	2,8	4,4	1,6	0,2	26,8	38	3,4	2,2	3,0	0,2	9,8	0,003
	52	17	1 4	0.6	0.1	25.6	39	0.6	1.0	0.4	0.1	6.2	0.004
CD4+CCR7-CD28+CD45RA+CXCR3+ (INalVe)	52	13.6	4,4	12.3	0,1	25,6 42 1	38	16.0	12.2	0,4 14 4	0,1	0,2 51.4	0,001
CD4+CCR7+CD28+CD45RA-CXCR3+ (Tem)	52	4,0	3,7	3.2	0,2	24,1	38	4,6	3,1	4,1	0,3	13.5	0,141
CD4+CCR7-CD28-CD45RA-CXCR3+ (Effector)	52	7,4	13,6	3,0	0,0	71,4	38	10,6	16,0	2,5	0,0	56,7	0,366
CD4+CCR7-CD28-CD45RA+CXCR3+ (Temra)	52	2,8	4,8	1,3	0,0	23,1	38	4,0	9,6	0,5	0,0	48,9	0,720
Chemokinrezeptoren Pheno CD8													
CCR6 in CD8 Pheno	51	3,0	3,6	2,1	0,3	20,3	38	3,1	2,2	2,9	0,3	10,8	0,104
CD8+CD45RA+CCR6+	51	4,0	9,3	1,8	0,2	65,2	38	2,3	2,6	1,6	0,3	14,8	0,301
CD8+CD45RA-CCR6+	51	5,6	4,3	4,6	0,0	18,1	38	8,1	4,6	8,0	0,2	16,5	0,008
CD8+CCR6+CCR5+	51	1,9	2,5	1,3	0,1	12,6	38	2,3	2,1	1,5	0,1	8,9	0,200
CCR5 in CD8 Pheno	51	9,0	10,6	6,4	1,2	70,8	38	9,5	4,8	9,1	2,0	21,8	0,055
CD8+CD45RA+CCR5+	58	1,3	1,9	1,0	0,0	14,0	38	1,2	0,7	1,1	0,2	3,1	0,380
	50	07.0	44.0	00.0	4.0	70.0	07	00.0	40.0	00.0	40.0	05.0	0.000
	52	37,2	14,6	36,3	1,8	/3,2	37	33,9	12,8	32,8	10,9	65,0	0,306
CD8+CCR7-CD28+CD45RA-CXCR3+ (Tcm)	52	2,2	17.8	27.3	0,0	71 4	37	34.5	19.9	2,0	1.6	5,8 76.0	0,421 0.093
CD8+CCR7-CD28-CD45RA-CXCR3+ (Effector)	52	25,1	14,4	23,5	0,0	57,1	37	26,0	16,1	22,5	0,3	60,6	0,987
CD8+CCR7-CD28-CD45RA+CXCR3+ (Temra)	52	33,3	19,4	31,1	3,2	79,1	37	29,0	20,1	23,1	3,8	83,0	0,266
							-						_
Iregs (CD25+CD127-FoxP3+)	58	4,1	8,9	2,9	1,1	70,4	34	4,1	1,8	3,6	1,8	9,2	0,002
CD4+CD127+CD25+	53	49,∠ 11.2	24,0 17.8	5.0	2,1	91,0	24	03,0	5.7	04,7	20,5	26.7	0,004
CD4+CD127-CD25+	53	33.4	22.6	34.7	0,7	03,0	24	9,0 30.7	14.3	9,5 30,4	2,7	20,7 53.7	0,023
CD4+CD127-CD25+	53	43	22,0	4 1	0,2	14 5	24	5.8	22	53	2.8	11 1	0.040
IL-10 in Treas	55	1.2	1.5	0.6	0,0	5 9	33	0.4	0.4	0.3	2,0	22	0.016
IL-10+IL17 in Tregs	51	0.1	0.2	0.0	0.0	0.7	33	0.0	0.1	0.0	0.0	0.7	0,028
IL-17 in Tregs	55	1,1	1,5	0,7	0,0	6,8	34	1,0	1,4	0,7	0,0	8,2	0,688
۲													

Naive CD45PO, CCP7, CD29.	N	Moon	SD N	Andian	Min	Max	N	Moon	SD /	Madian	Min	Max	n-Wert
Zytokinprodutkion CD4+	IN	weat	30 1	MEUIdII	WITT	IVICIA	IN	Mean	30 1	weulan	WIIII	wax	PHOL
IFNy	58	0,8	0,6	0,6	0,0	2,8	38	0,9	0,7	0,6	0,1	3,8	0,704
INFa IL-9	58 34	18,2 0,1	12,4 0.1	18,3 0.1	0,0 0,0	61,0 0.5	38 20	14,4 0.1	11,4 0.1	11,6 0,1	1,1 0.0	46,4 0.3	0,128
IL-6	34	0,1	0,1	0,1	0,0	0,2	20	0,2	0,1	0,2	0,1	0,3	0,000
IL-1ß	32 58	0,2	0,2	0,2	0,1	0,8 3.7	16 38	0,4	0,2	0,3	0,2	0,9	0,001
IL-10	58	0,0	0,1	0,0	0,0	0,3	38	0,1	0,2	0,2	0,0	0,8	0,046
IL-17	53	0,3	0,3	0,2	0,0	1,4	38	0,2	0,2	0,1	0,0	0,9	0,043
IFNy	58	2,8	1,6	2,5	0,2	8,4	38	3,7	2,2	3,0	1,0	10,8	0,029
TNFa	58	3,1	2,9	2,4	0,0	13,7	38	3,4	2,7	2,7	0,3	12,3	0,420
IL-9 IL-6	34	0,4 0,2	0,3 0,3	0,2 0,1	0,0 0,0	1,2 1,9	20 20	0,3 0,3	0,2 0,2	0,3 0,3	0,0 0,1	0,7 0,9	0,799
IL-1ß	32	0,3	0,2	0,3	0,0	1,0	16	0,6	0,3	0,5	0,2	1,2	0,000
IL-4 IL-10	58 58	0,7 0,1	1,8 0.1	0,4 0.1	0,0 0.0	12,3 0.5	38 38	0,4 0,2	0,3 0,2	0,3 0,1	0,0 0.0	1,8 1,1	0,835 0,275
		- /											
CD161+ in Naive CCR6+ in CD161+ in Naive	58 58	2,8 44,7	12,2 18.0	0,5 42.4	0,2 6.2	90,9 90,9	22 22	1,1 57.4	1,0 16,9	0,8 62.0	0,4 15.4	4,6 83.0	0,011
IL17+ in CD161+ in Naive	58	6,6	5,4	5,0	0,0	21,4	22	6,8	4,9	5,5	0,0	17,2	0,627
CCR6+ in Naive	58	22	4 1	12	0.4	26.8	22	20	10	18	07	49	0.008
CD161+ in CCR6+ in Naive	58	24,0	14,4	21,9	4,9	98,0	22	28,1	10,7	27,6	15,0	65,9	0,026
IL17+ in CCR6+ in Naive	58	3,7	3,2	3,4	0,0	14,3	22	3,5	2,4	3,2	0,0	9,7	0,888
RORyt+ in Naive	53	86,2	16,1	90,6	0,8	99,4	38	75,9	18,9	79,6	4,0	99,1	0,000
CCR6+ in RORyt+ in Naive	53	3,0	7,0	1,2	0,4	40,9	38	2,3	1,3	2,3	0,3	5,1	0,005
RORyt+IL17+ in Naive	53	0,1	0,6	0,1	0,0	4,5	38	0,1	0,2	0,1	0,0	0,9	0,152
RORyt+CCR6+ in Naive	53	0,3	0,6	0,2	0,0	4,0	38	0,4	0,3	0,4	0,0	1,2	0,003
CD4+CD45RA+CD28+ (Naive in Pheno)	53	72,7	11,3	74,4	36,2	94,6	38	66,6	11,9	65,3	44,9	85,9	0,020
CD4+CD45RA+CD28+ CD62L+CCR7+	53 53	56,7 22.7	26,4	62,4	0,0	98,7 80.4	38	54,6	30,4	56,0	3,1	91,9 20.7	0,926
CD4+CD45RA+CD26+ CD62L-CCR7+	55	22,1	19,7	17,1	0,9	09,4	20	13,3	11,2	0,9	1,0	39,7	0,010
Memory CD45R0+CCR7+CD28+	53	28.8	1/ 1	26.5	3.0	97.8	38	33.8	11 /	33.3	12.3	50.0	0 020
Zytokinprodutkion Tcm:	- 33	20,0	14,1	20,5	3,0	57,0	50	55,0	11,4	55,5	12,3	59,9	0,020
Tcm CD4+CD45RA-CD28+CCR7+	53	50,6	15,2	51,0	25,7	88,8	28	45,9	14,1	43,7	14,2	75,6	0,277
TNFa	58	6,9	1,4 5,0	1,5 6,1	0,0	22,4	38 38	3,2 10,8	2,4 6,8	2,5 9,6	0,6 0,6	26,4	0,008
IL-9	34	0,0	0,1	0,0	0,0	0,4	20	0,0	0,0	0,0	0,0	0,1	0,111
IL-6 IL-1ß	34 32	0,0 0,0	0,0 0,1	0,0 0,0	0,0 0,0	0,1 0,2	20 16	0,0 0,1	0,1 0.1	0,0 0,1	0,0 0,0	0,2 0,2	0,037
IL-4	58	0,4	0,4	0,3	0,0	2,3	38	0,6	0,4	0,5	0,0	2,1	0,003
IL-10 Zvtokinprodutkion Tem:	58	0,1	0,1	0,0	0,0	0,3	38	0,1	0,1	0,1	0,0	0,4	0,094
Tem CD4+CD45RA-CD28+CCR7-	53	49,4	15,2	49,0	11,2	74,3	38	48,4	16,6	49,9	14,2	85,7	0,664
IFNy TNFa	58 58	7,5 20.7	4,9 13.1	6,7 19.2	0,0	22,2 49.6	38 38	11,4 30.7	6,6 15 9	9,7 29 3	2,6 2.5	27,5 68 3	0,004
IL-9	34	0,1	0,2	0,0	0,0	0,7	20	0,1	0,1	0,0	0,0	0,2	0,540
IL-6	34	0,0	0,0	0,0	0,0	0,2	20 16	0,0	0,1	0,0	0,0	0,6 0.5	0,110
IL-4	58	2,5	2,0	1,9	0,0	9,9	38	4,2	3,2	3,1	0,0	0,5 14,5	0,003
IL-10	58	0,3 1.0	0,3	0,2	0,0	1,7	38	0,4	0,4	0,3	0,1	2,4	0,102
	52	1,0	0,7	0,0	0,0	3,0	50	1,4	0,7	2,1	0,2	3,0	0,000
CD161+ in Memory	58 58	11,2 20.6	12,9	8,0 20.3	1,5	96,7 47.3	22 22	10,1 17.6	6,0 11.0	9,5 12 9	0,2	23,1 45.8	0,470
IL17+ in CD161+ in Memory	58	5,0	3,1	4,2	0,0	16,9	22	6,7	2,8	6,6	2,2	12,9	0,015
CCR6+ in Memory	59	6.4	5.0	5.4	10	27.0	22	FO	2.0	10	10	10 7	0 157
CD161+ in CCR6+ in Memory	58	0,4 34,8	15,1	32,3	12,4	37,2 98,5	22	29,6	13,4	29,8	1,9	49,7	0,457
IL17+ in CCR6+ in Memory	58	7,0	4,5	6,8	0,0	29,4	22	9,1	4,3	8,3	3,4	19,4	0,056
RORyt+ in Memory	53	90,1	11,9	93,7	35,8	99,4	38	81,5	17,9	83,5	7,3	99,6	0,002
CCR6+ in RORyt+ in Memory	53	7,6	7,7	5,7	1,4	41,4	38	5,8	2,9	5,8	1,5	12,8	0,791
RORy+CCR6+ in CD4+CD45RA-CD28+	53	0,5	0,7	0,8	0,0	6,6 4,4	37	0,3	0,7	0,2	0,3	3,3 1,5	0,007
RORyt+IL17+ in CD4+CD45RA-CD28+	53	1,0	0,8	0,8	0,0	3,9	38	1,3	0,7	1,1	0,2	3,6	0,089
CD4+CD45RA-CD28+ (Memory in Pheno)	53	24,3	10,2	23,2	3,8	60,3	38	30,8	11,4	33,2	10,4	51,0	0,006
CD4+CD45RA-CD28+ CD62L+CCR7+	53	28,9	18,7	25,3	0,0	82,1	38	34,3	16,4	34,4	4,6	73,8	0,102
CD4+CD45KA-CD28+ CD62L-CCK/+	53	21,7	15,6	17,9	4,4	88,8	28	13,7	6,6	12,4	3,8	28,9	0,044
Tcm CD8+CCR7+CD28+CD45RO+													
	58	1,3	1,6	0,9	0,1	10,3	38	2,2	2,6	1,2	0,3	11,9	0,085
INFA IL-9	58 34	1,1 0,0	1,2 0,0	0,7	0,0 0,0	7,6 0,1	38 20	1,8 0,0	2,1 0,0	1,1 0,0	0,2 0,0	11,2 0,1	0,013
IL-6	34	0,0	0,0	0,0	0,0	0,1	20	0,0	0,0	0,0	0,0	0,2	0,928
IL-115 IL-4	32 58	0,0 0.1	0,0 0.2	0,0 0.0	0,0 0.0	0,1 1.4	16 38	0,0 0.1	0,0 0.1	0,0 0.0	0,0 0.0	0,1 0,3	0,211 0,280
IL-10	58	0,0	0,0	0,0	0,0	0,1	38	0,0	0,0	0,0	0,0	0,1	0,748
Tem CD8+CCR7-CD28+CD45RO+	58	11.2	Q 1	9.2	0.0	37.0	38	18.8	13.3	15.5	22	64.6	0.002
TNFa	58	9,6	9,5	5,6	0,0	47,1	38	16,3	9,9	14,9	1,3	44,2	0,002
IL-9	34	0,1	0,1	0,0	0,0	0,7	20	0,1	0,1	0,0	0,0	0,4	0,444
IL-1ß	32	0,0	0,0	0,0	0,0	0,1	16	0,1	0,2	0,0	0,0	0,7	0,040
IL-4	58	0,7	1,7	0,2	0,0	12,5	38	0,4	0,5	0,3	0,0	3,2	0,399
IL-10	58	0,1	0,2	0,0	0,0	0,8	රර්	0,1	0,1	0,1	0,0	0,4	0,902
					11								

	JIA					HD							
Effector CD45RO+CCR7-CD28-	N	Mean	SD	Median	Min	Max	N	Mean	SD	Median	Min	Max	p-Wert
CD4+CD45RA-CD28-	53	2,7	12,8	0,7	0,1	93,7	38	1,7	2,0	1,2	0,2	11,9	0,011
Zytokinprodutkion CD4+													
IFNy	58	6,6	8,9	3,5	0,0	35,1	38	9,8	12,9	6,0	0,0	52,7	0,078
	58 34	8,1	10,1	4,2	0,0	50,0 0 3	38 20	11,6	10,6	9,8	0,4	51,9	0,007
IL-9	34	0,0	0,1	0,0	0,0	0,0	20	0,0	0,1	0,0	0,0	2,1	0.063
IL-1ß	32	0,1	0,3	0,0	0,0	1,9	16	0,0	0,1	0,0	0,0	0,3	0,698
IL-4	58	1,3	1,6	1,0	0,0	8,1	38	1,5	1,7	1,0	0,0	6,5	0,581
L-10	58	0,1	0,4	0,0	0,0	1,7	38	0,2	0,4	0,0	0,0	1,5	0,246
UL-17	53	2,4	12,6	0,0	0,0	92,1	38	0,6	0,9	0,3	0,0	3,3	0,343
IFNv	58	10.7	9.5	8.7	0.0	38.1	38	12.1	12.5	8.2	0.6	57.5	0.934
TNFa	58	6,2	6,7	3,1	0,0	27,5	38	6,7	5,9	5,3	0,3	24,4	0,310
IL-9	34	0,0	0,1	0,0	0,0	0,4	20	0,0	0,0	0,0	0,0	0,0	0,176
IL-6	34	0,0	0,0	0,0	0,0	0,0	20	0,0	0,0	0,0	0,0	0,2	0,192
IL-115 II -4	32 58	0,1	0,2	0,0	0,0	1,1	16 38	0,1	0,1	0,0	0,0	0,5	0,510
L-10	58	0,4	0,2	0,0	0,0	1,0	38	0,2	0,2	0,0	0,0	0,5	0,335
						,		,		,	,	,	
CD161+ in Effector	58	8,7	10,1	7,1	0,0	64,3	22	6,0	3,7	5,8	1,2	17,2	0,253
CCR6+ in CD161+ in Effector	58	10,2	13,6	0,0	0,0	50,0	22	18,5	23,0	10,8	0,0	100,0	0,057
IL17+ In CD161+ In Effector	54	2,6	7,5	0,0	0,0	40,0	22	7,1	10,5	0,0	0,0	33,3	0,004
CCR6+ in Effector	58	3,9	5,3	2,3	0,0	28,6	22	3,2	2,5	3,0	0,0	11,4	0,528
CD161+ in CCR6+ in Effector	47	28,5	31,9	25,0	0,0	100,0	21	29,6	30,7	18,2	0,0	100,0	0,739
IL17+ in CCR6+ in Effector	47	4,9	12,7	0,0	0,0	50,0	21	9,7	13,3	0,0	0,0	33,3	0,028
DODute in Effector	50	00.7	44.0	00.4	44.0	100.0	20	CO O	20.0	74 5	2.4	100.0	0.004
CCR6+ in BORyt+ in Effector	53	82,7 4.8	14,3	86,4 2.8	41,3	100,0	38 38	69,2 3.0	20,6	71,5 3.1	2,4	100,0	0,001
IL17+ in RORyt+ in Effector	53	4,0 0,5	1,2	0,0	0,0	5,9	38	1,4	5,0	0,0	0,0	31,0	0,026
RORy+CCR6+ in CD4+CD45RA-CD28-	53	0,3	1,2	0,0	0,0	6,3	38	0,0	0,1	0,0	0,0	0,6	0,718
RORy+IL17+ in CD4+CD45RA-CD28-	53	0,8	1,5	0,0	0,0	7,3	38	0,5	0,8	0,0	0,0	3,3	0,801
CD4: CD45DA CD20. (Effectes in Phone)	50	0.0	10	0.4	0.4	7.0	20	0.0		0.5	0.4	6.4	0.000
CD4+CD45RA-CD28- (Effector in Prieno) CD4+CD45RA-CD28- CD62I +CCR7-	53	0,9 9.8	1,2 11.0	0,4	0,1	7,2 52,2	38 38	0,9 14 7	1,1	0,5 13.1	0,1	6,4 35.3	0,698
CD4+CD45RA-CD28- CD62L-CCR7-	53	56,1	18,1	57,1	12,5	86,9	38	61,4	13,3	61,6	36,4	91,2	0,221
	•									÷			
TEMRA CD45RO-CCR7-CD28-													
CD4+CD45RA+CD28-	53	3,1	11,8	1,4	0,3	87,2	38	2,5	2,5	2,0	0,3	15,9	0,006
Zytokinprodutkion CD4+	58	5.0	67	2.5	0.0	28.0	38	6.4	8.0	3.6	0.0	31.8	0 207
TNFa	58	3,0 8.0	8.0	6.2	0,0	20,3 45.1	38	7.7	6.5	6.2	0,0	28.6	0,207
IL-9	34	0,1	0,4	0,0	0,0	2,3	20	0,0	0,1	0,0	0,0	0,4	0,594
IL-6	34	0,0	0,0	0,0	0,0	0,2	20	0,0	0,1	0,0	0,0	0,3	0,681
IL-1ß	32	0,2	0,3	0,0	0,0	1,4	16	0,0	0,1	0,0	0,0	0,4	0,082
IL-4	58	0,4	1,7	0,0	0,0	12,5	38 38	0,1	0,2	0,0	0,0	0,8 1 1	0,079
L17	53	2.4	11.9	0,0	0,0	87.2	38	0,0	0,2	0,0	0,0	3.5	0,300
Zytokinprodutkion CD8+:		,	,-	- / -	-,-	- ,		- / -	- ,	-,	- / -	- / -	-, -
IFNy	58	43,4	16,3	41,8	0,0	76,5	38	46,1	15,3	47,3	11,7	78,9	0,436
TNFa	58	31,9	18,0	32,3	0,0	79,0	38	33,9	18,4	35,5	4,9	72,3	0,678
IL-9	34	0,1	0,2	0,0	0,0	0,7	20	0,1	0,2	0,0	0,0	0,7	0,044
L-1ß	32	0,0	0,1	0,0	0,0	0,4	16	0,0	0,1	0,0	0,0	1,0	0,013
IL-4	58	0,4	1,9	0,0	0,0	14,3	38	0,1	0,1	0,0	0,0	0,6	0,494
IL-10	58	0,1	0,1	0,0	0,0	0,7	38	0,0	0,1	0,0	0,0	0,5	0,251
CD464 . in TEMDA	50	4.0	0.4	0.4	0.0	50.0	00	4.0		4.0	0.5	05.0	0.004
CCR6+ in CD161+ in TEMRA	58 47	4,0 49,3	8,1 35.7	2,1 50.0	0,0	52,8 100.0	22	4,0 51.8	5,5 26.0	1,8 50.0	0,5	25,0 100.0	0,991
IL17+ in CD161+ in TEMRA	58	5,2	16,5	0,0	0,0	100,0	22	9,6	14,3	0,0	0,0	50,0	0,015
CCR6+ in TEMRA	58	11,8	10,1	8,1	1,0	40,0	22	12,3	10,9	5,6	1,6	36,2	0,872
CD161+ in CCR6+ in TEMRA	58	19,2	19,3	16,7	0,0	80,0	22	19,5	21,4	14,9	0,0	100,0	0,974
	58	۷,۷	6,0	0,0	0,0	25,0	22	7,4	10,6	5,4	0,0	40,0	0,000
RORyt+ in TEMRA	53	76,5	16,6	77,4	9,3	98,3	38	64,4	18,7	65,0	8,4	97,7	0,000
CCR6+ in RORyt+ in TEMRA	53	11,2	10,5	8,2	0,0	50,0	38	12,6	12,7	8,6	0,0	52,4	0,609
IL17+ in RORyt+ in TEMRA	53	0,3	0,9	0,0	0,0	4,5	38	2,0	10,6	0,0	0,0	65,7	0,340
RORy+CCR6+ in CD4+CD45RA+CD28-	53	2,2	3,1	1,3	0,0	14,0	38	2,8	3,5	1,5	0,0	13,6	0,186
CD4+CD45RA+CD28- (TEMRA in Phone)	53	1,0	2,1	0,0	0,0	12,8	38 38	0,2	0,7	0,0	0,0	3,5	0,066
CD4+CD45RA+CD28- CD62L+CCR7-	53	6.9	2,0	5.6	0,4	40.0	38	11.3	2,5	8.3	0,3	38.9	0,009
CD4+CD45RA+CD28- CD62L-CCR7-	53	35,6	16,0	35,6	4,7	74,4	38	36,6	18,9	34,6	1,2	77,5	0,939

JIA Patienten	keine	Medikation	Me		
	Mean ± SD	Median, Min - Max	Mean ± SD	Median, Min - Max	p-Wert
Naive CD45RA+CD28+	65,2 ± 11,0	64,3 , 42,6 - 81,4	73,3 ± 12,4	76,7 , 34,8 - 94,6	0,019
Gedächtnis CD45RA-CD28+	$31,0 \pm 9,4$	31,6 , 17,4 - 52,5	23,8 ± 11,5	21,0 , 3,8 - 60,3	0,013
Effektor CD45RA-CD28-	1,3 ± 1,2	0,8 , 0,3 - 3,5	0,8 ± 1,1	0,5 , 0,1 - 7,2	0,077
TEMRA CD45RA+CD28-	$2,5 \pm 2,0$	1,8 , 0,8 - 7,3	2,1 ± 1,9	1,5 , 0,3 - 11,2	0,407
Tregs CD25+CD127-FoxP3+	$2,8 \pm 0,7$	2,9 , 1,7 - 3,9	3,9 ± 8,2	2,7 , 0,8 - 70,4	0,862

CD4+ gesamt:	50.00	4.0.4.0.40.0	4.00.0	4.0 0.0 40.5	0.400
	$5,6 \pm 3,2$	4,9, 1,0 - 13,0	$4,9 \pm 3,3$	4,2, 0,0 - 16,5	0,439
ΙΝΕα	$31,3 \pm 15,1$	31,6 , 5,4 - 58,3	28,4 ± 15,7	29,7, 0,0 - 67,9	0,610
IL-6	$0,1 \pm 0,1$	0,1, 0,0 - 0,2	$0,1 \pm 0,1$	0,1, 0,0 - 0,2	0,249
μ1β	$0,4 \pm 0,3$	0,3, 0,1-0,8	$0,2 \pm 0,1$	0,2, 0,0 - 0,4	0,022
IL-17	$0,6 \pm 0,4$	0,4 , 0,2 - 1,4	$0,5 \pm 0,4$	0,4 , 0,0 - 1,8	0,214
IL-4	$0,9 \pm 0,7$	0,6 , 0,2 - 2,8	$0,8 \pm 0,5$	0,7 , 0,0 - 2,9	0,833
Zytokinproduktion Naive:					
INFY	$0,8 \pm 0,6$	0,8, 0,0 - 2,3	$0,8 \pm 0,7$	0,6, 0,0 - 3,5	0,652
	$19,3 \pm 10,7$	19,7, 0,2 - 34,9	$19,7 \pm 13,0$	19,7, 0,0 - 61,0	0,919
IL-6	$0,1 \pm 0,1$	0,1, 0,0-0,2	$0,1 \pm 0,0$	0,1, 0,0 - 0,1	0,267
μ1β	$0,4 \pm 0,3$	0,3, 0,1-0,8	$0,2 \pm 0,1$	0,1, 0,0 - 0,4	0,058
IL-17	$0,0 \pm 0,0$	0,0, 0,0 - 0,0	$0,0 \pm 0,0$	0,0, 0,0 - 0,1	0,010
	$0,3 \pm 1,0$	0,1 , 0,0 - 3,7	$0,3 \pm 0,6$	0,1 , 0,0 - 3,4	0,133
Zytokinproduktion Icm:	0.0.4.5		04 47	47 00 70	0.005
INFγ	$2,6 \pm 1,5$	2,9, 0,6 - 4,9	$2,1 \pm 1,7$	1,7, 0,0 - 7,6	0,225
ΙΝΕα	$10,4 \pm 5,9$	9,0 , 3,1 - 20,0	$7,3 \pm 5,8$	7,0, 0,0 - 34,0	0,055
IL-6	$0,0 \pm 0,0$	0,0 , 0,0 - 0,0	$0,0 \pm 0,0$	0,0 , 0,0 - 0,1	0,702
IL-1β	$0,1 \pm 0,1$	0,1, 0,0 - 0,1	$0,1 \pm 0,1$	0,0 , 0,0 - 0,4	0,728
	$0,4 \pm 0,2$	0,3 , 0,1 - 0,9	$0,4 \pm 0,7$	0,3 , 0,0 - 5,2	0,285
Zytokinproduktion Tem:					
INFγ	8,6 ± 5,6	7,3, 1,6 - 18,5	$7,2 \pm 4,8$	6,4, 0,0 - 22,2	0,407
ΙΝΕα	$26,9 \pm 13,6$	22,3 , 11,2 - 49,6	20,1 ± 13,5	19,5 , 0,0 - 58,4	0,113
IL-6	$0,0 \pm 0,0$	0,0 , 0,0 - 0,0	$0,0 \pm 0,0$	0,0 , 0,0 - 0,2	0,584
IL-1β	$0,1 \pm 0,1$	0,1 , 0,0 - 0,2	$0,1 \pm 0,1$	0,0 , 0,0 - 0,4	0,706
IL-17	$0,1 \pm 0,2$	0,1 , 0,0 - 0,4	$0,1 \pm 0,3$	0,0 , 0,0 - 2,0	0,966
IL-4	$2,2 \pm 1,3$	1,8 , 0,6 - 4,3	$2,3 \pm 2,0$	1,9 , 0,1 - 9,9	0,824
Zytokinproduktion Effektor:			/		
INFγ	$11,5 \pm 13,6$	5,1, 5,1-35,1	$5,3 \pm 6,1$	3,7, 0,0 - 33,5	0,349
INFα	$13,7 \pm 14,3$	8,0 , 8,0 - 50,0	7,4 ± 8,4	4,6 , 0,0 - 37,3	0,105
IL-6	$0,0 \pm 0,0$	0,0 , 0,0 - 0,0	$0,0 \pm 0,0$	0,0, 0,0 - 0,0	1,000
IL-1β	$0,2 \pm 0,4$	0,0 , 0,0 - 1,0	$0,1 \pm 0,4$	0,0, 0,0 - 1,9	0,756
IL-17	$0,0 \pm 0,0$	0,0 , 0,0 - 0,0	$0,0 \pm 0,2$	0,0, 0,0 - 1,6	0,558
	$1,3 \pm 1,0$	1,1 , 1,1 - 3,3	$1,4 \pm 1,7$	1,0 , 0,0 - 8,1	0,541
	0.0.47	4.5 0.0 45.0	47 00		0.405
	$3,9 \pm 4,7$	1,5 , 0,0 - 15,2	$4,7 \pm 6,2$	2,4 , 0,0 - 28,9	0,435
	$7,1 \pm 5,5$	4,7, 0,0 - 16,4	8,3 ± 7,8	6,2, 0,0 - 45,1	0,670
IL-6	$0,0 \pm 0,0$	0,0 , 0,0 - 0,0	$0,0 \pm 0,0$	0,0, 0,0 - 0,2	0,702
IL-1β	$0,4 \pm 0,6$	0,0 , 0,0 - 1,4	$0,1 \pm 0,2$	0,0, 0,0-0,9	0,364
	$0,3 \pm 0,7$	0,0 , 0,0 - 2,4	$0,2 \pm 0,7$	0,0, 0,0 - 4,3	0,902
	$1,1 \pm 3,3$	0,0 , 0,0 - 12,5	$0,2 \pm 0,4$	0,0, 0,0 - 1,7	0,591
Zytokinproduktion Tregs:	0.0.4.0	07 00 00	40.45	00 00 50	0 75 4
IL-10 in Tregs	$0,9 \pm 1,0$	0,7, 0,0 - 3,6	$1,2 \pm 1,5$	0,6, 0,0 - 5,9	0,754
IL-17 IN Tregs	$0,7 \pm 0,7$	0,6 , 0,0 - 2,6	$1,0 \pm 1,3$	0,7 , 0,0 - 6,8	0,602
CCR6 in CD4	3,2 ± 3,5	1,2 , 0,4 - 7,9	4,9 ± 3,0	4,5 , 0,5 - 14,4	0,190
CCR5 in CD4	4,8 ± 4,5	2,8 , 1,1 - 14,1	$3,6 \pm 7,5$	1,8 , 0,4 - 54,1	0,067
CXCR3 in Tem	$7,4 \pm 8,5$	4,8 , 0,4 - 27,3	$14,2 \pm 9,5$	13,8 , 0,4 - 42,1	0,017
RORyt in Naive	84,0 ± 17,1	, 89,8 , 43,3 - 98.4	86,0 ± 15,4	, 90,7 , 0.8 - 99.7	0,598
RORyt in Gedächtnis	86,8 ± 15,4	92,3 , 51,2 - 98.5	90,1 ± 11,4	93,7 , 35,8 - 99.8	0,347
RORyt in Effektor	74,7 ± 17.7	78,5, 31.2 - 97.1	82,5 ± 14.0	85,7 , 41.3 - 100.0	0,089
RORyt in TEMRA	70,8 ± 18,8	72,9 , 24,4 - 93,3	76,3 ± 15,9	78,8 , 9,3 - 98,3	0,273