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1 Introduction

1.1 The Mapping Problem

Since the publication of the famous Riemann mapping theorem, it is known that every
simply connected domain can be conformally mapped onto the unit disk. It was ex-
tended later to also ensure the conformal mapping of any multiply connected domain
onto a conformally equivalent canonical region like a circular domain (Definition 4.1).1

While the existence of such mappings for all finitely connected domains is guaranteed,
the search for the mapping formulas has since remained an open topic.

The Schwarz-Christoffel transformation and its variations represent a class of mappings
onto polygonal domains and other similar domains. A historical summary of the evolu-
tion of the Schwarz-Christoffel mapping can be found in Section 1.2.
The two common features of these mappings are that each of them conformally maps
a canonical domain onto a domain whose boundary contains several vertices and that
the mapping formulas contain at least two kinds of parameters. The issue with these
parameters is that they define the shape of the image domain, but the actual shape can
only be seen by evaluating the mapping. The search for the correct parameters for a
given image domain is known as the “parameter problem”.

The goal of this thesis is to investigate conformal mappings onto circular arc polygon
domains, i.e. domains that are bounded by polygons consisting of circular arcs instead
of line segments. This includes the investigation of the third kind of parameters of these
mappings in the case of simply connected image domains. A new version for conformal
mappings onto multiply connected domains will also be constructed. We will moreover
discuss the necessary concepts of the numerics to give an approach to the parameter
problem. A summary of the results of our thesis can be found in Section 1.3 and an
outline of the different chapters can be found in Section 1.4.

1.2 Historical Overview

The first known reference to conformal mappings from the upper half plane onto polyg-
onal domains (Figure 1) can be found in an article by Elwin Bruno Christoffel published
in the year 1867. Some years later Hermann Amandus Schwarz discovered the same
mappings independently of Christoffel. Referring to both mathematicians, the mapping
onto a polygonal domain is known as the “Schwarz-Christoffel transformation”.
While all domains can be approximated by polygonal domains, the common mapping
formula (Lemma 3.5) has two major drawbacks. First, the mappings are from standard
domains like the upper half plane onto polygonal domains. However, in most scenarios,
the mappings are needed the other way around, i.e. from a polygonal domain onto a

1The corresponding theorems and more canonical regions can, for example, be found in the book of
Conway [Con95, Chapter 15].
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f

Figure 1: Schwarz-Christoffel transformation: The upper half plane is mapped
onto a domain bounded by a polygon.

standard domain.
The second problem is in choosing the correct parameters. The mapping formula con-
tains two kinds of parameters (the preimages of the corners of the polygon and the
interior angle at these corners) and the shape of the image domain depends on these
choices, but the result of an actual mapping can only be attained by evaluating the
mapping. This problem is normally simply referred to as the “parameter problem” in
the context of the Schwarz-Christoffel transformation.
Christoffel and Schwarz also expanded this topic to different forms of the mapping
formula by changing some of the properties of the image domains. This includes map-
pings onto the exterior of a polygon, domains with curved boundary parts and domains
bounded by circular arc polygons (Figure 2). The circular arc polygon domains, e.g.

f

Figure 2: Circular arc polygon domain mapping: The unit disk is mapped
onto a domain bounded by a polygon, where the sides are circular arcs.

domains, where the boundary is a polygon while the straight sides are replaced by cir-
cular arcs, will be the main topic of this thesis.
While they have discovered many mapping formulas, the parameter problem restricted
them to simple examples.

This topic became of interest again in the second half of the twentieth century. With

2



1.2 Historical Overview

the invention of the computer and its improvements, there was a way to handle the
parameter problem. By the start of the next century a lot of articles were published
about the different aspects of the numerics of the Schwarz-Christoffel transformation.
In the late nineties, software packages for most topics regarding the Schwarz-Christoffel
transformation were available.
The numerics of conformal mappings onto circular arc polygon domains was especially
investigated by Bjørstad and Grosse [BG87] and Howell [How90],[How93].
A more detailed view on the history until this point, with many references and an in-
depth discussion of the numerics, can be found in the book [DT02] of Trefethen and
Driscoll.

The major improvement in the 21th century was the discovery of the mapping formula
for mappings onto multiply connected polygonal domains. Conformal mappings onto
doubly connected polygonal domains were already known for quite some time. Komatu
stated a formula in 1945 [Kom45] and Hu later on wrote a software package (DSC-
PACK) to handle it [Hu98]. An alternative approach to the mappings onto doubly
connected domains [DEP01] from DeLillo, Elcrat and Pfaltzgraff led to the mappings
for a connectivity greater than two (Figure 3) [DEP04]. Some years later, Crowdy used

f

Figure 3: Multiply connected Schwarz-Christoffel transformation: The plane
minus some disks is mapped onto an unbounded multiply connected polygonal
domain.

a tool from the area of Kleinian groups, the Schottky-Klein prime function, to state
another version of the mapping formula for multiply connected domains [Cro05]. These
newer activities are also described in [Cas08].

From this point on, the topic evolved similarly to the simply connected case. There
were efforts to construct further mappings with the tools gathered so far (e.g. [CM06]).
On the other hand, the numerics used for the mappings was improved and algorithms
were created to cope with the parameter problem (e.g. [DK11]).
Some formulas for conformal mappings onto multiply connected circular arc polygon do-
mains (Figure 4) were already published by Crowdy [CF07], [CFG11], but an approach
using methods similar to the ones of DeLillo, Elcrat and Pfaltzgraff is still missing.

3
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f

Figure 4: Multiply connected circular arc polygon domain mapping: A circu-
lar domain is mapped onto a bounded multiply connected circular arc polygon
domain.

1.3 Main Results of this Thesis

Our thesis makes some essential contributions to handling the open topics in the context
of the conformal mappings onto circular arc polygon domains.

Conformal mappings onto circular arc polygon domains contain parameters in addition
to the classical parameters of the Schwarz-Christoffel transformation. To contribute
to the parameter problem of conformal mappings from the unit disk onto circular arc
polygon domains, we investigate two special cases of these mappings. In the first case we
can describe the additional parameters if the bounding circular arc polygon is a polygon
with straight sides (Lemma 3.6). In the second case we provide an approximation for
the additional parameters if the circular arc polygon domain satisfies some symmetry
conditions (equation (3.9)). These results allow us to draw conclusions on the connection
between these additional parameters and the classical parameters of the mapping.
We are also able to prove a formula for the change of the additional parameters if
an automorphism of the unit disk is applied before a fixed conformal mapping onto a
circular arc polygon domain is used (equation (3.6)).

For conformal mappings onto multiply connected circular arc polygon domains, we pro-
vide an alternative construction of the mapping formula without using the Schottky-
Klein prime function. In the process of constructing our main result, mappings for
domains of connectivity three or greater (Theorem 4.43), we also provide a formula
for conformal mappings onto doubly connected circular arc polygon domains (Theo-
rem 4.22). The comparison of these mapping formulas with already known mappings
(Sections 4.3 and 4.5) allows us to provide values for some of the parameters of the
mappings onto doubly connected circular arc polygon domains if the image domain is
a polygonal domain (Lemmas 4.27 and 4.28).
The different components of the mapping formula are constructed by using a slightly
modified variant of the Poincaré theta series. This construction includes the design of a

4



1.4 Structure of this Thesis

function to remove unwanted poles (Section 4.4.2) and of different versions of functions
that are analytic on the domain of definition of the mapping functions and satisfy some
special functional equations (Sections 4.4.4 to 4.4.6).
As a result of our investigations, we have found conformal mappings from circular
domains onto conformally equivalent circular arc polygon domains of arbitrary finite
connectivity.

We also provide the necessary concepts to numerically evaluate the conformal mappings
onto multiply connected circular arc polygon domains. As the evaluation of such a map
requires the solution of a differential equation, we provide a possible configuration of
curves inside the preimage domain to solve the equation along them (Algorithm 2) in
addition to a description of the procedure for computing either the formula for the
doubly connected case (Section 5.3) or the case of connectivity three or greater (Section
5.4). We also describe the procedures for solving the parameter problem for multiply
connected circular arc polygon domains (Section 5.5).

1.4 Structure of this Thesis

Our thesis can be split up in four main chapters not including the introduction (Chapter
1) and the conclusion (Chapter 6).

Basic Information

The second chapter is mainly a collection of different information scattered among
different books and articles. The intention is to have all the tools needed for the later
discussion in one common place. Only the quintessences of the different results are
stated. Any further or in depth discussion can therefore be found in the original sources.
We will also present some minor conclusions in this chapter. They are not directly
mentioned in the literature as they are of no common interest, but will simplify the
reasoning in the following chapters of the thesis.
This section consists of the topics

• Möbius Transformations: The Möbius transformations and their main prop-
erties and classification are stated.

• Schwarzian Derivative: Here the main features and some further properties of
the differential operator “Schwarzian derivative” are listed.

• Kleinian Groups: Results regarding groups of Möbius transformations are pre-
sented.

• Schottky Groups: The behavior of Schottky groups, a subtype of the Kleinian
groups, is described. We provide some additional results regarding the behavior
of such groups.

• Poincaré Theta Series: A series covering all transformations of a Kleinian group
is introduced and investigated. We further introduce a generalization of the series.

5



1 Introduction

Simply Connected Circular Arc Polygon Domains

The third chapter covers conformal mappings onto simply connected circular arc polygon
domains. First the mapping formula itself is introduced in different versions. Thereafter,
one kind of parameters contained in the formula receives some in-depth discussion.
This includes the investigation by us for the case where the parameters change by the
application of an automorphisms to the preimage domain.
We further investigate the behavior of these parameters for two classes of image domains.
Each of these classes is identified by special geometric properties. First the mapping
formula is compared with the classical Schwarz-Christoffel transformation, i.e. the image
domains are bounded by polygons. The second domain type is characterized by a
symmetry against rotation around the origin.

Multiply Connected Circular Arc Polygon Domains

In the fourth chapter, we construct the Schwarzian derivative of conformal mappings
onto multiply connected circular arc polygon domains. The construction of the Schwar-
zian derivative is done in three steps:

1. We collect the basic properties of the Schwarzian derivative.

2. We construct the Schwarzian derivative of the conformal mappings onto doubly
connected circular arc polygon domains.

3. The obtained results are extended to a Schwarzian derivative of conformal map-
pings onto circular arc polygon domains with connectivity three or greater.

The section for the mappings onto doubly connected domains and the section for the
mappings onto multiply connected domains are followed by comparisons with already
known Schwarzian derivatives of functions, which can also be seen as mappings onto
circular arc polygon domains.
Each construction step consists of several smaller steps as we have to verify the prop-
erties we found like functional equations, correct principal parts and convergence.

Numerical Approaches to the CAPD Mapping

Different aspects regarding the numerical conformal mappings onto circular arc polygon
domains (CAPDs) are discussed in the fifth chapter. The focus will be on mappings
onto multiply connected domains, since the results can also be used for simply con-
nected domains. However, the multiply connected scenario also includes several addi-
tional problems.
We establish curves in order to evaluate the Schwarzian derivative in a multiply con-
nected domain, discuss possible implementations of the Schwarzian derivative and present
some generated images. We also give a basic approach to the parameter problem for
mappings onto multiply connected circular arc polygon domains.

6



2 Basic Information

Since Möbius transformations will play an important role in the following sections, we
will introduce in advance several terms and facts regarding these mappings.
Many details are taken from the monograph of Ford [For51], as this text is a key refer-
ence regarding Möbius transformations and especially groups of them. An alternative
reference would be the book of Maskit [Mas88].
We will also add some own statements to better illustrate the behavior of the different
entities. We will especially provide some information about the behavior of Schottky
groups (items 2.32 to 2.37) and expand the concept of the Poincaré theta series (Lem-
mas 2.42 and 2.43).
If a lemma is taken from a specific article or book, it is marked accordingly.

For economy in notation, we will from now on call a conformal mapping simply con-
nected if it maps a simply connected domain onto another simply connected domain.
Hence, we will call a conformal mapping multiply connected if it maps a multiply con-
nected domain onto another domain of the same connectivity.

2.1 Möbius Transformations

Definition 2.1
The transformation

T (z) =
az + b

cz + d

where a, b, c, d ∈ C are constants and ad− bc 6= 0, is called a Möbius transformation.
If not stated otherwise, the transformation is normalized by ad − bc = 1. The set of
all Möbius transformations is denoted by M.

Some basic properties of Möbius transformations are:

Lemma 2.2 ([For51, pp. 2, 4, 9, 12])
The following statements are true for Möbius transformations:

• The inverse of a Möbius transformation is a Möbius transformation.

• Any composition of a finite number of Möbius transformations is equivalent to
a single Möbius transformation.

• Each Möbius transformation carries a circle or straight line into a circle or
straight line.

• Any composition of an even number of reflections (against a circle or line) is
equivalent to a Möbius transformation.

The next definition will clarify the term “reflection” used in the lemma above.

7



2 Basic Information

Definition 2.3
A reflection s against a circle with center c and radius r is defined by

s(z) :=
r2

z̄ − c̄ + c.

Möbius transformations have either one or two fixed points. They are divided into four
different classes according to their fixed points.
If a transformation has only one fixed point, it is called a parabolic transformation.
Transformations with two fixed points are called one of elliptic, hyperbolic or loxodromic.
We differentiate between these three cases by the fact whether the fixed points are
attractive, repelling or indifferent. The hyperbolic and the loxodromic transformations
have one attractive and one repelling fixed point, while the elliptic transformations have
two indifferent fixed points.
The class of a transformation can easily be found by the following lemma:

Lemma 2.4 ([For51, p. 23])
The transformation T (z) = az+b

cz+d , where ad− bc = 1, is of the type stated if, and only
if, the following conditions on a+ d hold:

Hyperbolic if a+ d is real and |a+ d| > 2

Elliptic if a+ d is real and |a+ d| < 2

Parabolic if a+ d = ±2

Loxodromic if a+ d is complex.

Since hyperbolic and loxodromic transformations have a similar behavior regarding their
fixed points, some books like [Mas88] define the hyperbolic transformations as a subtype
of the loxodromic transformations. Hence, they refer to both kinds of transformations
by the term loxodromic.

The mapping behavior of a Möbius transformation can partially be described by the so
called isometric circle.

Definition 2.5
The circle

|cz + d| = 1, c 6= 0,

which is the complete locus of points in the neighborhood of which lengths and areas
are unaltered in magnitude by the transformation T (z) = az+b

cz+d normalized by ad−bc =

1, is called the isometric circle of the transformation. The circle has the center u := −d
c

and radius |c|−1.

8



2.2 The Schwarzian Derivative

Lemma 2.6 ([For51, p. 25])
For the isometric circle of a transformation T the following is true:

• Lengths and areas inside the isometric circle are increased in magnitude, and
lengths and areas outside the isometric circle are decreased in magnitude, by
the transformation.

• A transformation carries its isometric circle into the isometric circle of the inverse
transformation.

2.2 The Schwarzian Derivative

The Schwarzian derivative is a differential operator, which is invariant against Möbius
transformations. It is used in many parts of complex analysis. A good overview of its
many applications can be found in [Osg98].
We will list in this section the properties of the Schwarzian derivative necessary for our
discussion. For the following lemmas, we suppose all functions to be sufficiently often
differentiable.

Definition 2.7
The Schwarzian derivative {f, z} of a function f of one complex variable is defined by

{f, z} :=

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

.

The Schwarzian derivative is often simply called the Schwarzian.

For a composition of functions, the Schwarzian has the property:

Lemma 2.8
The Schwarzian derivative of a composition of two functions can be written as

{f ◦ g, z} = {f, g(z)} g′(z)2 + {g, z}.

The main property of the Schwarzian derivative is its invariance against Möbius trans-
formations.

Lemma 2.9
The Schwarzian derivative {T, z} is identically zero if and only if T is a Möbius
transformation T ∈M.

This allows us to state:

9



2 Basic Information

Lemma 2.10
The Schwarzian derivative of a composition of a holomorphic function f and a Möbius
transformation T , is either of the form

{T ◦ f, z} = {f, z} or {f ◦ T, z} = T ′(z)2{f, T (z)}.

Pre-Schwarzian

In the context of the classical Schwarz-Christoffel mapping, the pre-Schwarzian is used.
It is a pre-stage of the Schwarzian derivative with the property of being invariant against
translation, rotation and scaling.

Definition 2.11
The pre-Schwarzian of a function f is defined by the quotient f ′′

f ′ .

The pre-Schwarzian has no special notation in the common literature.

The main property of the pre-Schwarzian can easily be derived by calculation:

Lemma 2.12
The pre-Schwarzian is invariant under translation, rotation and scaling.
For two functions f and g = af + b, where a ∈ C \ {0} and b ∈ C, it is true

f ′′

f ′
=
g′′

g′
.

2.2.1 Solving the Schwarzian Derivative

The Schwarzian derivative is in most cases not solved in the form of a differential equa-
tion of the third order, but as a system of second order differential equations according
to the following lemma.

Lemma 2.13 ([Hil76, Chapter 10])
Let y1 and y2 be two linearly independent solutions of the equation

y′′ +Q(z)y = 0, (2.1)

which are defined and holomorphic in some simply connected domain D in the complex
plane. Then

f(z) =
y1(z)

y2(z)

10



2.2 The Schwarzian Derivative

satisfies the equation

{f, z} = 2Q(z) (2.2)

at all points of D where y2(z) 6= 0. Conversely, if w(z) is a solution of (2.2), holo-
morphic in some neighborhood of a point z0 ∈ D, then one can find two linearly
independent solutions, u(z) and v(z), of (2.1) defined in D so that

f(z) =
u(z)

v(z)
,

and if v(z0) = 1 the solutions u and v are uniquely defined.

It is important to note that this version of solving the Schwarzian demands a simply
connected domain. This is less a necessity of the Schwarzian, but of differential equa-
tions in the complex domain.
The common way of solving differential equations is to start at some point z0 with some
initial values and then solve along different curves. Each curve allows us to extend the
domain by usage of the monodromy theorem [Hen74, Theorem 3.5c]. Hence, we get a
solution for the whole domain by using enough curves and merging the results.
However, this method demands that the results of the different curves match, i.e. ev-
ery solution from z0 to z1 should yield the same value for z1. While this property is
guaranteed for simply connected domains, it is not ensured for domains of greater con-
nectivity. As the curves surround the boundary components in different ways, they can
lead to different solutions at the same end point (Figure 5). For example, if one curve

b

b
b

f1 f2

Figure 5: The image of a cut up domain can contain a gap or overlap. Hence,
two different curves starting in the same point can yield different values for
points on the cut.

surrounds one of the holes of the domain clockwise, it could lead to another branch, as
the curve surrounding the hole counterclockwise.
Hence, it is possible to solve the Schwarzian by the method given above on multiply
connected domains, but it may lead to multivalued results. These multivalued results
indicate that the mapping is not a valid, i.e. well-defined, multiply connected mapping.

11



2 Basic Information

A simple example would be the function f(z) =
√
z + a. The result of the mapping of

the annulus r < |z| < 1 depends on the choice of the shifting parameter a. If a is in
the interior of the smaller bounding circle of the annulus |a| < r, we need to insert a
suitable slit into the domain for a well defined mapping. In this case, we then only have
a simply connected mapping (Figure 6(a)).
If the parameter lies outside of the annulus |a| > 1, the function is a well defined
doubly connected mapping (Figure 6(b)).2 In the case where the parameter is inside

(a) The simply connected image of
the slitted annulus for a= 1

4
.

(b) The doubly connected image of the
annulus for a= 5

4
.

Figure 6: The image of the annulus 1
2 < |z| < 1 for the mapping

√
z + a is

either a simply connected domain for |a| < 1
2 (left image) or a doubly connected

domain (right image), depending on the fact, if it is necessary to cut up the
annulus.

the annulus r < |a| < 1, we have to combine the two versions and insert a suitable slit
from a to the outer boundary of the annulus. The result is a mapping of the slitted
annulus onto a doubly connected domain.
Therefore, the validity of a given Schwarzian in a multiply connected context may not
be clear in advance.

A possible approach to handle this problem would be to cut the domain down to simple
connectivity (Figure 7). The differential equation can then be solved on the now simply
connected domain. To reassemble the domain afterwards, one needs to ensure that the
solutions of both sides of each cut match.3

Let D be a doubly connected domain and DS a simply connected version of D produced
by connecting the boundary components by a slit. If we denote the cut by γ with the
two sides γ+ and γ−, we need to assure for a solution f that f (n)(γ+) = f (n)(γ−),
n = 0, . . . ,∞. However, instead of validating the whole cut, one may only examine one
point and its derivatives.

2The logarithmic slit has to be chosen accordingly.
3The reassembling itself can be justified by e.g. [Hen74, Theorem 5.11a].
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2.2 The Schwarzian Derivative

Figure 7: Any (m+1)-connected domain can be reduced to simple connectiv-
ity by inserting m non-intersecting slits (blue lines) connecting the boundary
components. The resulting domain is not unique.

If we use the Schwarzian derivative as an example, the initial values consist of f(z0),
f ′(z0) and f ′′(z0) at some point z0 ∈ D. We can solve twice from z0 to some point
z1 ∈ γ to get values for z+

1 ∈ γ+ and z−1 ∈ γ− (Figure 8). If we continue the solution
process from both points along γ, we get values for γ+ and γ− respectively. Hence, if
we have for z1

f(z+
1 ) = f(z−1 ), f ′(z+

1 ) = f ′(z−1 ), f ′′(z+
1 ) = f ′′(z−1 ),

the solutions starting in z1 either along γ+ or γ− coincide, as they have the same
initial values. This means that with equal initial values at one point on γ, we have
f (n)(γ+) = f (n)(γ−) for all n ∈ N ∪ {0}. Note that the property f (n)(z+

1 ) = f (n)(z−1 )
can be verified for a fixed n by ∫

δ
f (n+1)(z)dz = 0

for a curve δ ∈ DS from z+
1 to z−1 enclosing one of the boundary components of D.

If we want to solve the Schwarzian derivative on a (m+ 1)-connected domain bounded
by the curves Cj , where j = 0, . . . ,m, we can apply the same procedure but with m
cuts4. Hence, we have to check the 3m complex integrals∫

δj

f (k)(z)dz = 0, j = 1, . . . ,m, k = 1, 2, 3, (2.3)

where each δj encloses only the boundary component Cj .

2.2.2 Further Properties

We state some further properties of the Schwarzian derivative, which will be of great
use in the following chapters.

4The layout of the actual cuts is not important as long as it leads to a valid simply connected domain.
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2 Basic Information

δ

γ+

γ−

(a) An annulus

δ

γ+

γ−

(b) An unbounded doubly connected domain

Figure 8: Two examples for a cut γ, with its sides γ+ and γ−, connecting
the boundary components, and an enclosing curve δ for one of the boundary
components.

Lemma 2.14
Simple poles of a meromorphic function f do not appear in its Schwarzian derivative.

Proof. Since the function f is meromorphic, it can be written in the form

f(z) =
a−1

(z − s) + a0 + a1(z − s) +O((z − s)2)

for each of its simple poles s. Therefore, the quotient in the Schwarzian is of the form

f ′′(z)

f ′(z)
=

−2

(z − s) +

(−2a1

a−1

)
(z − s) +O((z − s)2).

This leads to (
f ′′(z)

f ′(z)

)′
=

2

(z − s)2
+

(−2a1

a−1

)
+O((z − s)1),(

f ′′(z)

f ′(z)

)2

=
4

(z − s)2
+

(
8a1

a−1

)
+O((z − s)1),

and concludes in

{f, z} =

(−2a1

a−1

)
− 1

2

(
8a1

a−1

)
+O((z − s)1).

Therefore, {f, z} is holomorphic at s, what proves the lemma.
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2.2 The Schwarzian Derivative

The statement above is quite intuitive, as the location of a simple pole can easily
be altered by Möbius transformations. A simple pole s of f can be mapped onto a
finite point w by a suitable transformation T ∈ M, where w = T (∞), and so the
function T ◦ f is finite at s. However, the Schwarzian must be equal for both functions
{T ◦ f, z} = {f, z} as it is invariant against such transformations. This means that this
pole can not appear in the Schwarzian derivative.

We also want to state the connection of the Schwarzian derivative of a function with its
mapping behavior, a fact that in most textbooks only occurs as an exercise (e.g. [Ahl73,
p. 21]). A more explicit form can be found in the article [CP01].

Lemma 2.15 ([CP01])
Let z = z(t) be an arclength parametrized curve contained in the domain of the
holomorphic mapping f and let w(t) = f(z(t)) be the image curve. The curvature of
w is given by

κ(s) = |f ′(z)|−1

(
Im

(
z′
f ′′(z)

f ′(z)

)
+ k(t)

)
,

with s denoting the arclength parameter of the image curve.
The change of the image curvature is further given by

dκ

ds
=

1

|f ′(z)|2
(

Im
(
(z′)2{f, z}

)
+
dk

dt

)
.

If z is a circular arc z(t) = re
it
r + c, this simplifies to

dκ

ds
=

1

|f ′(z)|2
(
Im ((z′)2{f, z})

)
. (2.4)

Proof. As implied by the fact that the proof is often an exercise, the lemma can be
shown by a straight forward calculation.
Let z = z(t) be an arclength parametrized curve, so the curvature is given by k(t) =
d
dt arg (z′(t)). The curvature of the image curve w(t) = f(z(t)) is given by

κ(s) =
d

ds
arg (w′(t)) =

1

|f ′(z)|

(
Im

((
f ′′

f ′
(z)

)
z′
)

+ k(t)

)
where s denotes the arclength parameter of the image curve and z should be read as
z(t). Further differentiation yields the relation

dκ

ds
=

1

|f ′(z)|2
(

Im ((z′)2{f, z}) +
dk

dt

)
.
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2 Basic Information

If the curve is a circle z(t) = re
it
r + c, we get z′(t) = ie

it
r , k(t) = 1

r and k′(t) = 0. This
leads to

dκ

ds
=

1

|f ′|2 Im
(
(z′)2{f, z}

)
.

The lemma above can be simplified to:

Lemma 2.16
For a conformal mapping of a circular arc Γ in the form z(t) = re

it
r + c onto a circular

arc f(Γ), the condition

(z − c)2{f, z} ∈ R

holds for all z ∈ Γ.

Proof. If the image curve is a circular arc, its curvature must be constant and therefore
the rate of change of the curvature must be identically zero. As a result, equation (2.4)
from the preceding lemma simplifies to

dκ

ds
=

1

|f ′(z)|2
(
Im ((z′)2{f, z})

)
= 0 ⇒ Im ((z′)2{f, z}) = 0.

Replacing z′(t) = ie
it
r with i

r (z − c) gives

Im ((z − c)2{f, z}) = 0 ⇔ (z − c)2{f, z} ∈ R

There is also a connection between the Schwarzian and the univalence of a function.
The first work on this connection was by Nehari, while it was later on extended in
several directions.

Lemma 2.17 ([Neh48])
In order that the analytic function f is univalent in |z| < 1, it is necessary that

|{f, z}| ≤ 6

(1− |z|2)2

Many generalized versions are now available. An overview can be found in [Osg98].
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2.3 Kleinian Groups

2.3 Kleinian Groups

This section will present basic results regarding groups of Möbius transformations.

Definition 2.18
A finite or infinite set of transformations G ⊂M is said to form a group if,

• the inverse of each transformation of the set is a transformation of the set, i.e.
T ∈ G⇒ T−1 ∈ G
• the succession of any two transformations of the set is a transformation of the

set, i.e. T,U ∈ G⇒ T ◦ U ∈ G.

We want the groups to satisfy the following property:

Definition 2.19
A group G ⊂ M is properly discontinuous at a point z0 ∈ C∞ if there exits a region
S enclosing z0 such that all transformations of the group, other than the identical
transformation, carry z0 outside of S.
A group G ⊂ M who is properly discontinuous at some point z0 ∈ C∞ is called
properly discontinuous.
The set of all points at which G ⊂M is properly discontinuous is denoted by Ω.

We will suppose from now on that every group is properly discontinuous, as it is a
requirement for most statements regarding such groups.

A characteristic feature of each group of Möbius transformations is the fundamental
region.

Definition 2.20
Two configurations (points, curves, etc.) are said to be congruent with respect to a
group if there is a transformation of the group other than the identical transformation,
which carries one configuration into the other.

Definition 2.21
A region, connected or not, no two of whose points are congruent with respect to a
given group, and such that the neighborhood of any point on the boundary contains
points congruent to points in the given region, is called a fundamental region R for
the group.

There are some interesting facts about the isometric circles (Definition 2.5) of all the
transformations of a group.

17



2 Basic Information

Lemma 2.22 ([For51, p. 41])
Let G be a properly discontinuous group of Möbius transformations.
The radii of the isometric circles are bounded and the number of isometric circles with
radii exceeding a given positive quantity is finite.
Let {In} be an infinite sequence of distinct isometric circles I1, I2, . . . of transforma-
tions of the group, with the radii being r1, r2, . . ., then limn→∞ rn = 0.

The properties of the isometric circles lead to the idea of the limit set.

Definition 2.23
A cluster point of the centers of the isometric circles of the transformations of a group
is called a limit point of the group. A point which is not a limit point is called an
ordinary point. The set of limit points of a group is denoted by Λ.

The set of all limit points of a group is often called the limit set of the group.

With the concept of the limit points, we can distinguish the groups of Möbius transfor-
mations.

Definition 2.24 ([For51, p. 66])
A properly discontinuous group is called

Elementary if the group is finite or has only one or two limit points

Fuchsian if all the transformations have a common fixed circle and each transforma-
tion carries the interior of the fixed circle into itself

Kleinian if none of the above matches

The term Kleinian group is often also used for all types of properly discontinuous groups
of Möbius transformations (e.g. in [Mas88, p. 16]). We will also assume the elementary
and Fuchsian groups to be special cases of the Kleinian groups for a easier notation.

The set of all limit points of a group has the following interesting properties:

Lemma 2.25 ([For51, p. 43],[Mas88, p. 96])
For the limit set the following is true:

• The limit set is transformed into itself by any transformation of the group.

• If the limit set contains more than two points, it is a perfect set.

• The limit set of a non-elementary Kleinian group is the closure of the set of
loxodromic and hyperbolic fixed points.
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2.4 Schottky Groups

The introduction of the limit set allows us to partition the Riemann sphere:

Lemma 2.26 ([Mas88, p. 24])
For any group G of Möbius transformations with fundamental region R, C∞ is the
disjoint union of Λ and Ω∗ ⊃ ⋃T∈G T (R).

The set Ω∗ ⊃ Ω is the regular set of G and the difference Ω∗ \ Ω are fixed points of
elliptic elements of G ([Mas88, p. 23, 25]). Hence, Ω∗ = Ω, if G does not contain elliptic
transformations. The difference Ω∗ \⋃T∈G T (R) is the union of the transformations of
∂R \Λ. If the boundary of R does not contain any limit points, we can write Ω∗ as the
union of the transformations of the closure of R

Ω∗ =
⋃
T∈G

T (cl(R)).

Hence, every point on the Riemann sphere is in this case either congruent to a point in
the closure of the fundamental region or a point in the limit set.

2.4 Schottky Groups

The following chapters will often refer to a subtype of the Kleinian groups known as
Schottky groups. Hence, we will present further results regarding these Schottky groups.
We will also give some facts, which are not stated explicitly in the standard books about
Kleinian groups, but will simplify the later discussion. This particularly covers the topic
of the mapping dynamics of the Schottky groups.

Definition 2.27
A Schottky group is defined by 2n disjoint circles, C1, C

′
1, . . . , Cn, C

′
n, which are exter-

nal to one another and bound a domain D ⊂ C∞, and by n elements T1, . . . , Tn ∈M.
Each Tj carries Cj into C ′j in such a way that the exterior of Cj is carried into the
interior of C ′j .
The Schottky group G is generated by T1, . . . , Tn and has D as a fundamental region.

We can even further restrict the group by:

Definition 2.28
Suppose the n pairs of circles C1 and C ′1, C2 and C ′2, etc., bounding the fundamental
region of a Schottky group are symmetric with respect to a common circle C0 and let
sj , j = 0, . . . , n, denote the reflection against the circle Cj . If each of the transforma-
tions Tj carrying Cj into C ′j (and the exterior of Cj into the interior of C ′j) is given
by Tj = s0 ◦ sj , we call the Schottky group symmetric.

The name for this specific type of Schottky group is taken from [Bur91].5
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C1

C2

C3

C ′
2

C ′
3

C ′
1

T1

T2

T3

(a) A Schottky group: The group is generated
by the transformations Tj , which map the cir-
cles Cj onto the circles C′j .

C0

C ′
2

C2

C3

C ′
1

C ′
3

C1

T1

T2

T3

(b) A symmetric Schottky group: The circles
Cj and C′j are symmetric with respect to the
circle C0.

Figure 9: The images show the circles Cj and C ′j of a general and a sym-
metric Schottky group. The white area outside of the gray-filled circles is the
fundamental region for each of the groups.

The Möbius transformations produced by two consecutive reflections as in the definition
above can be written as:

Lemma 2.29
Two consecutive circle reflections

s1(z) =
r2

1

z̄ − c̄1
+ c1, s2(z) =

r2
2

z̄ − c̄2
+ c2,

form the Möbius transformation

(s2 ◦ s1)(z) =
(|c2|2 − r2

2 − c̄1c2)z + (|c1|2c2 − c1|c2|2 + r2
2c1 − r2

1c2)

(c̄2 − c̄1)z + (|c1|2 − r2
1 − c1c̄2)

.

This allows us to state:

Lemma 2.30
The generators of a symmetric Schottky group are hyperbolic.

5Burnside himself refers to Poincaré, but without any exact reference.
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2.4 Schottky Groups

Proof. A Möbius transformation is hyperbolic if the “trace” is real and greater than
2 according to Lemma 2.4. Each of the generators can be written as two successive
reflections. Without loss of generality, we denote them by s1 and s2. The trace of
s2 ◦ s1 is (according to the previous lemma) of the form

a+ d =
(|c2|2 − r2

2 − c̄1c2) + (|c1|2 − r2
1 − c1c̄2)

r1r2
=
|c1 − c2|2 − r2

1 − r2
2

r1r2
∈ R.

The denominator r1r2 is necessary, as we need to ensure ad− bc = 1.
As the circles bounding the fundamental region of the Schottky group are not allowed
to touch, we have

|c1 − c2| > r1 + r2

what leads to

a+ d =
|c1 − c2|2 − r2

1 − r2
2

r1r2
>

(r1 + r2)2 − r2
1 − r2

2

r1r2
= 2.

While the statement above can easily be seen, there is a more general result.

Lemma 2.31 ([Mas88, p. 312])
Let G be a Schottky group, then G consists only of loxodromic and hyperbolic trans-
formations.

As we will use the behavior of Schottky groups in the following chapters, we want to
extend the common results by additional information. We will therefore introduce and
justify some new notations.

Definition 2.32
For a Schottky group G, the extended generating set gen(G) refers to the generating
transformations of G and their inverses, i.e. the transformations T±1

j , where each T±1
j

maps one of the n circles pairs C1, C ′1, . . . , Cn, C ′n into each other:

gen(G) := {T1, . . . , Tn, T
−1
1 , . . . , T−1

n }

To simplify the notation of the following lemmas and proofs, we will use

C+1
j := C ′j , C−1

j := Cj , T+1
j := Tj .

In this way, we are able to state that each

Tαj ∈ gen(G) = {Tαj |Tαj (C−αj ) = Cαj ; j = 1, . . . , n; α ∈ {−1,+1} }
maps the fundamental region into the circle Cαj .
We will also shorten the notation of compositions by TU = T ◦U , since we want to write
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2 Basic Information

the transformations of a Schottky group as a sequence of its (extended) generators. If
in the following a transformation is split up by

U = U1 . . . Um,

it has to be read as

U = U1 . . . Um, where Uj ∈ gen(G), Uj+1 6= U−1
j , j = 1, . . . ,m− 1

if not stated otherwise. This will allow us to restrict our investigations of the mapping
behavior of the group to the mapping behavior of the generating transformations.
One result regarding the position of a point U(z) is:

Lemma 2.33
Let G be a Schottky group and the mapping U = U1 . . . Um be an element of G, where
Uj ∈ gen(G) = {T1, . . . , Tn, T

−1
1 , . . . , T−1

n } and Uj+1 6= U−1
j .

Let further z be a point outside of C−ηi if Um = T ηi , η ∈ {−1, 1}.
Then the point U(z) is inside the circle Cνk if and only if U1 = T νk , ν ∈ {−1, 1}.

Proof. By the definition of the Schottky group, T ηi maps the exterior of C−ηi onto the
interior of Cηi . As a consequence, Um(z) = T ηi (z) is in the interior of Cηi if z is outside
of C−ηi .
Since no consecutive transformations are allowed to be inverse to each other, the “out-
side of” condition is automatically satisfied for the next transformation Um−1. There-
fore Um−1Um(z) lies in Cµl for Um−1 = Tµl .
Actually, Tµl is the only transformation which can move Um(z) into Cµl , as any other
transformation would map Um(z) into its corresponding circle. The only exception
would be T−ηi , since it maps the interior of Cηi onto the exterior of C−ηi and the
interior of Cµl lies in the exterior of C−ηi . However, Um−1 = T−ηi is prohibited by
Uj+1 6= U−1

j .
Successive applications of the remaining transformations yields the result.

Note that the “outside of” condition in the lemma is satisfied if z lies in the fundamental
region. Hence, we can expand the lemma above to the following one.

Lemma 2.34
Let G be a Schottky group and the mapping U be an element of G.
The factorization

U = U1 . . . Um,

where Uj ∈ gen(G) and Uj+1 6= U−1
j , is unique.
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2.4 Schottky Groups

Proof. Let z0 be a point of the fundamental region of G.
Suppose there are two different factorizations U = U1 . . . Um = V1 . . . Vµ. Hence,
W = U−1

m . . . U−1
1 V1 . . . Vµ must be the identity. We rename the transformations of W

to W = W1 . . .Wν after removing inverse pairs of transformations to ensure Wj 6= W−1
j+1

for j = 1, . . . , ν−1. W does not vanish completely in this process, as the factorizations
are different.
The transformation W2 . . .Wν has to map z0 inside a circle Cαk , i.e. outside of the
fundamental region, or it is itself the identity. If W2 . . .Wν is the identity, so must W1

also be the identity id 6∈ gen(G), violating the condition Wj ∈ gen(G).
Therefore W2 . . .Wν maps z0 inside Cαk , which means that according to Lemma 2.33
W2 = Tαk ∈ gen(G). Hence, W1 has to map (W2 . . .Wν)(z0) into the fundamental
region. However, the only transformation with this property would be T−αk , which is
not allowed by the condition Wj 6= W−1

j+1. This leaves us with no possible choice for
W1.

As either way leads to a contradiction, the assumption must be false, which proofs the
lemma.

While we do not want to introduce too many terms of group theory, there is a fact
worth noticing: The uniqueness of the factorization is equivalent to the property that
the Schottky group is free. Because this property is true for all Schottky groups [Mas88,
p. 312], the proof above is actually redundant.
Nonetheless, uniqueness allows us to define a useful size for the transformations of a
Schottky group.

Definition 2.35
Let G be a Schottky group and the mapping U be an element of G.
The length of a transformation U is defined by the number of generating transforma-
tions necessary to compose it

|U | = |U1 . . . Um| = m,

where Uj ∈ gen(G) and Uj+1 6= U−1
j for j = 1, . . . ,m− 1. The length of the identity

is zero, i.e. |id| := 0.

The set gen(G) can be seen as the transformations with length one

gen(G) = { T | T ∈ G; |T | = 1}.

The same property, but with an alternative definition, is called the grade of a transfor-
mation in [Aka64].

We want to continue our investigations by shifting our focus to the limit points of the
group. It is known that the images of the fundamental region cluster around the limit
points, but we are able to better specify this behavior in the context of Schottky groups.
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Lemma 2.36
Let G be a Schottky group and D its fundamental region. Let further l be a fixed point
of T ∈ G, where |T 2| = 2|T |, and GT ⊂ G a set containing transformations U ∈ G,
where |T | < |U |, that does not begin with neither T nor T−1, i.e. |T−1U | > |U | − |T |
and |TU | > |U | − |T |.
The distance |U(z)− l|, where z ∈ D and U(z) 6=∞, has a common lower boundary
for all U ∈ GT .

Proof. The domain T (D) is bounded by the circles T (Cαj ), as they are the mappings of
the boundary of D. The mappings of D, which lie near to T (D) are T (W (D)), where
W ∈ gen(G), as they have one boundary component in common because ofWα

j (C−αj ) =
Cαj . The domain enclosing T (D) is the one with the shortest transformation, i.e.

|TW | < |T |, what implies for T = T1 . . . Tm that W = T−1
m .

Therefore, each of the holes of T (D) contains one of the domains T (W (D)) with the
exception of W = T−1

m . In this manner, we can reach the domains inside the holes of
each T (W (D)), by applying further transformations, and so the convex hull ch(T (D))
of T (D) contains all the domains T (V (D)), where V ∈ G and V1 6= T−1

m , while all
other mappings of D must be outside. Additionally, the condition |T 2| = 2|T | implies
that T1 6= T−1

m , and so Tn+1(D) ⊂ ch(Tn(D)).
If l is the attractive fixed point of T , we have

lim
n→∞

Tn(z) = l, z ∈ D. (2.5)

This means that every neighborhood of l contains points that lie in the interior com-
plement ch(T (T1(D))) of T (D), and so l has also to be in this complement.
If U does not begin with T , U(z) (z ∈ D) lies in a domain outside of the convex hull of
T (D), while l lies inside of it. Therefore, |U(z)− l| > ε has a positive lower boundary.
Repeating the steps above for T−1 and its attractive fixed point (the repelling fixed
point of T ) yields the result.

If we investigate the movement of a limit point l under transformations of the group,
we get:

Lemma 2.37
The points congruent to a fixed point l of a transformation T ∈ G of a non-elementary
Schottky group G with respect to the group G form a proper subset of the limit set.
This subset is given by the fixed points of the transformations UTU−1, where U ∈ G.

Proof. According to Lemma 2.25, l = T (l) is an element of Λ. Hence, each point
congruent to l is also an element of Λ. If l is mapped by V ∈ G, we have

(V TV −1)(V (l)) = (V T )(l) = V (l).
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This means V (l) is a fixed point of V TV −1 ∈ G and {V (l) |T (l) = l, V ∈ G} ⊂ Λ.

If we want to show that {V (l) |T (l) = l, V ∈ G} is a proper subset of Λ, it is enough
to prove that the only transformations in G with coinciding fixed points are the pow-
ers Tn, n ∈ Z \ {0}, of the same transformation T . Hence, there are transformations
whose fixed points we can not reach. Note that two transformations of the group can
not have only one fixed point in common. Maskit [Mas88, I.D.4] stated that if T has
exactly two fixed points and T and U share exactly one fixed point, then TUT−1U−1

is parabolic. However, as TUT−1U−1 ∈ G this would contradict Lemma 2.31.
Suppose T,U ∈ G have the same fixed points, where Tα 6= Xβ 6= Uγ for any combina-
tion α, β, γ ∈ N and any X ∈ G, and |T | = n, |U | = m. Further suppose that they are
normalized so that U1 6= U−1

m , as this allows to conclude that |Uγ | = γ|U |. Otherwise
replace U = V̂ Û V̂ −1 by Û and T by V̂ −1T V̂ . Let l be the common attractive fixed
point and l̂ the common repelling fixed point, or else we have to interchange T and/or
U with their inverses.
Following the proof of Lemma 2.36, l lies in ch(T1(D)) as every neighborhood of l con-
tains infinitely many domains T j(D) that are subsets of ch(T1(D)). However, l is also
in ch(U1(D)) and we can conclude that U1 = T1 as U1, T1 ∈ gen(G). By investigating
the location of l̂, we obtain U−1

m = T−1
n . We can conclude from U1 6= U−1

m that also
T1 6= T−1

n . Hence, we have l ∈ ch(Tα(D)) and l ∈ ch(Uβ(D)) for all α, β ∈ N.
The domains Tm+2(D) and Un+2(D) are inside ch(Tm+1(D)) as they lie in a neigh-
borhood of l and the transformations Tm+2 and Un+2 are of greater length than
Tm+1. Hence, they have the same starting sequence of transformations of gen(G),
and so Tm = Un, where |Tm| = |Un| = nm. The comparison of both forms yields
Tm = (X

n
k )m = (X

m
k )n = Un for |X| = k = gcd(n,m) and X ∈ G. However, this

leads to a contradiction.

2.5 Poincaré Theta Series

In the context of Kleinian groups, there is a special type of functions called the Poincaré
theta series. A Poincaré theta series is defined by a sum over all transformations of the
group.

Definition 2.38
Let G be a properly discontinuous group of Möbius transformations and R(z) a ra-
tional function, none of whose poles is at a limit point of the group. The series

θ(z) :=
∑
T∈G

T ′(z)νR(T (z)), ν ∈ N, (2.6)

over all transformations of the group is called the theta series of Poincaré.

The series is also often referred to as the “Poincaré series” to avoid confusion with other
theta series.
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2 Basic Information

The most interesting feature of the theta series is its functional equation:

Lemma 2.39 ([For51, p. 103])
Every Poincaré theta series θ for the group G has the property

θ(T (z)) = T ′(z)−νθ(z)

for every transformation T ∈ G of the group.

Proof. Calculation yields

θ(T (z)) =
∑
U∈G

U ′(T (z))ν R(U(T (z)))

= T ′(z)−ν
∑
V ∈G

V (z)ν R(V (z)) = T ′(z)−νθ(z).

The operations above are allowed as V = U ◦ T is also a transformation of the group
and the order of summation can be changed since we have absolute convergence, as it
can be seen below.

As with most series, convergence is a great issue. The convergence of the theta series
is ensured by the following lemma:

Lemma 2.40 ([For51, p. 105])
If ν ≥ 2 and if the point at infinity is an ordinary point of the group, then the
theta series (2.6) defines a function which is analytic except possibly for poles in any
connected region not containing limit points of the group in its interior.

Proof. While a full proof can be found in [For51], we only want to state the basic idea.
If we stay away from the poles of R, their congruent points and the centers of the
isometric circles, the function R(T (z)) is bounded by

|R(T (z))| < m1.

The derivatives of the transformations on the other hand are decreasing with |c|−2 as
we have

|T ′(z)| =
∣∣∣∣ 1

(cz + d)2

∣∣∣∣ =
∣∣c−2

∣∣ ∣∣∣∣∣
(
z +

d

c

)−2
∣∣∣∣∣ < |c|−2m2.

Note that −d
c tends to one of the limit points, while |c| goes to infinity. Combining
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2.5 Poincaré Theta Series

these information gives∣∣∣∣∣∑
T∈G

T ′(z)νR(T (z))

∣∣∣∣∣ < ∑
T∈G
|c|−2νmν

2m1.

Hence, the theta series converges as stated in the lemma for ν ≥ 2 if∑
T∈G
|c|−4 <∞.

The proof above requires the convergence of the sum
∑ |c|−4. Therefore we also need

the following lemma to ensure the convergence of the Poincaré series.

Lemma 2.41 ([For51, p. 104])
If the point at infinity is an ordinary point of the group G, then the series

∑
T∈G |c|−2n

converges for n ≥ 2, while in the summation the finite number of terms for which c = 0
are omitted.

Note that the values |c|−1 represent the radii of the isometric circles (Definition 2.5),
which are shrinking by Lemma 2.22. Also we expect the finite subset of transformations
with c = 0 to be omitted for every sum

∑
T∈G |c|−k, even if it is not stated explicitly.6

One may wonder, why the limit points of the group are prohibited as possible poles of
R. This is because otherwise R(T (z)) can be unbounded for transformations T with a
great length, i.e. |T | → ∞. We want to specify this behavior by the following lemma
found by us.

Lemma 2.42
Let G be a Kleinian group, ∞ 6∈ Λ, l ∈ Λ, and M a closed subset of C∞ \ Λ.
There is a common constant m > 0 for all T ∈ G with a coefficient c 6= 0, where
T (z) = (az + b)/(cz + d), so that

|c|−2m < |T (z)− l|, z ∈M.

If l is an attractive fixed point of T ∈ G, let GT = {Tn |n ∈ N, cn 6= 0 } ⊂ G
denote the subset containing the powers Tn(z) = (anz + bn)/(cnz + dn) of T and let
M̃ be a closed subset of C∞ \ (Λ ∪ {U−1(∞) |U ∈ GT }). There are two constants
mu > ml > 0, so that

|cn|−2ml < |Tn(z)− l| < |cn|−2mu, z ∈ M̃. (2.7)

6If there are infinitely many transformations with c = 0, then infinity is a limit point of the group. If
G is a Schottky group and infinity an ordinary point, the only transformation with c = 0 is the identity.
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2 Basic Information

Proof. Calculation yields

T (z)− l = T (z)− T (l′) =
z − l′

c2(z + d
c )(l′ + d

c )
=

z − l′
c2(z − u)(l′ − u)

,

where u = −d
c is the center of the isometric circle of T . Since ∞ 6∈ Λ, there is a circle

around infinity containing neither limit points nor centers of isometric circles. Hence,
we have |l′ − u| < ε1 and 0 < ε2 < |z − l′|/|z − u| for all z ∈M , l′ ∈ Λ and T ∈ G. We
therefore find

|T (z)− l| = |c|−2

∣∣∣∣ z − l
(z − u)(l − u)

∣∣∣∣ > |c|−2m.

If l is an attractive fixed point of T , l′ = l. As un = −dn
cn

approaches the repelling
fixed point of T we find |l − un| > ε3 > 0 and since |Tn(z)| < ∞, we also have
|z − un| > ε4 > 0. Hence, we have

ml <

∣∣∣∣ z − l
(z − un)(l − un)

∣∣∣∣ < mu.

The summands R(T (z)) of a Poincaré series can be unbounded for |T | → ∞ according
to equation (2.7) if R contains a pole at a limit point. However, the convergence of the
Poincaré series depends on the fact that R(T (z)) is bounded, and therefore poles at
limit points are excluded in the definition of the Poincaré theta series.
To investigate the case where the rational function R has a pole at a limit point, we
introduce a modified Poincaré theta series by dropping the restriction of Definition 2.38
prohibiting these poles. To show the convergence of this modified series, we found an
adapted version of the convergence Lemma 2.40:

Lemma 2.43
Suppose exactly one of the poles of the rational function R of the (modified) Poincaré
theta series is at a limit point of the group and of order k ∈ N.
If ν−k ≥ 2 and if the point at infinity is an ordinary point of the group, then the theta
series defines a function which is analytic except possibly for poles in any connected
region not containing limit points of the group in its interior.

Proof. The concept of the proof is similar to the preceding version for the classical
Poincaré series [For51, p. 105]. However, this time we need Lemma 2.42 to find an
upper bound for R(T (z))

|R(T (z))| < |T (z)− l|−km1 < |c|2km2.
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2.5 Poincaré Theta Series

The new bound leads to∣∣∣∣∣∑
T∈G

T ′(z)νR(T (z))

∣∣∣∣∣ < ∑
T∈G
|c|−2ν |c|2km3 = m3

∑
T∈G
|c|−2(ν−k).

The sum
∑

T∈G |c|−2(ν−k) converges if ν − k ≥ 2 according to Lemma 2.41.

For Poincaré series with a rational function R containing several poles at limit points,
we have to split up R by partial fraction expansion to generate several Poincaré series.
Then we can apply the lemma to each of them.
In the following, we will not distinguish between the Poincaré theta series and its mod-
ified version. A given series can be classified by investigating the poles of the rational
function R.

In some special cases, a Kleinian group permits the stronger convergence property∑ |c|−2 < ∞.7 In the following, we list some scenarios regarding the convergence of∑ |c|−2.

Lemma 2.44 ([For51, p. 106])
For a Fuchsian group G of the second kind8, for which the point at infinity is an
ordinary point, the sum

∑
T∈G |c|−2 converges.

The lemma above is stated in [For51], where [Bur91] is referred.

Lemma 2.45 ([Sch87])
Let G be a Schottky group, whose fundamental domain is bounded by the 2n circles
C1, C ′1,. . . ,Cn, C ′n.
The sum

∑
T∈G |c|−2 converges if it is possible to separate D into a sequence of triply

connected domains by adding circles C ′′j that are disjoint with each other and the
circles Ck and C ′l .

The original lemma by Schottky stated the convergence of the radii of the circles T (Cj)
and T (C ′j) instead of the convergence of the sum

∑ |c|−2. However, the convergences

of the sum of the radii and of
∑ |c|−2 are equivalent. If we denote with rj,T the radius

of T (Cj), there is the following lemma. (Note that C ′j can be written as T (Cj) for a
suitable T .)

7Burnside stated the conjecture that this is always possible for Schottky groups, but it was later
disproved by Myrberg. See [Aka64] for references.

8A Fuchsian group of the second kind has the property that the limit set is nowhere dense on the
common fixed circle of the transformations.
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2 Basic Information

Figure 10: The fundamental domain of the Schottky group bounded by the 6
gray-filled circles can be separated into a sequence of triply connected domains
by the dashed circles.

Lemma 2.46 ([Aka64])
Let G be a Schottky group, whose fundamental domain is bounded by the 2n circles
C1, C ′1,. . . ,Cn, C ′n. Let further rj,T be the radius of T (Cj), where T ∈ G, and ν ∈ N.

The series
∑
T∈G
|c|−ν converges if and only if

∑
T∈G

n∑
j=1

(rj,T )ν/2 converges.

Hence, the convergence of the sum over the radii is equivalent to the convergence of the
sum

∑ |c|−2.

There is also a connection between the convergence of
∑ |c|−2ν and the Hausdorff

dimension of the limit set of the group. This topic and some additional conditions
for the convergence of

∑ |c|−2 can be found in the works of Akaza e.g. [Aka64].
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3 Simply Connected Circular Arc Polygon Domains

We wish to investigate conformal mappings from the unit disk onto simply connected
circular arc polygon domains (Figure 11). This conformal mappings were first investi-
gated by Schwarz in 1869 [Sch69], but still contain some open questions.

p2

f

b b

bb

p1

p3 p4

f(p1)

f(p3) f(p4)

f(p2) b

b b

b

πα1πα2

D P

Figure 11: The unit disk is conformally mapped onto a simply connected
circular arc polygon domain. The points pj on the boundary of the unit disk
represent the preimages of the vertices of the CAP.

Before we investigate the mappings itself, we define the term “circular arc polygon
domain”.

Definition 3.1
A circular arc polygon (CAP) is a closed curve δ : [0, 1]→ C that is a continuous union
of finitely many circular arcs and line segments. Hence, there is a finite partition
0 = t1 < t2 < . . . < tn+1 = 1, where n ≥ 2 and n ∈ N, of the interval [0, 1] such that
each interval [tk, tk+1] for k = 1, . . . , n is mapped onto a circular arc or line segment.
A circular arc polygon domain (CAPD) is a finitely connected domain whose boundary
components are circular arc polygons.

Not every circular arc polygon is suitable to be a boundary component of a circular
arc polygon domain. Some of them are only able to be a boundary component of a
domain if the domain is a subset of a specific component of their complement (Figure
12). For example, a self-intersecting curve can not be the outer boundary of a connected
domain. The circular arc polygons that can bound a domain are either simple closed
curves, simple arcs9 or a finite union of these types like a simple curve with an attached
arc.
Since we will use the circular arc polygons as boundary components, we suppose for

9The term “arc” refers here to a simple not-closed curve. The curve is no longer simple if it is
reparametrized to be closed.
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3 Simply Connected Circular Arc Polygon Domains

(a) An unbounded CAPD,
which is bounded by a self-
intersecting CAP.

(b) A CAP containing an arc
bounds a bounded CAPD.

(c) A CAP that self-intersects
twice can not be a boundary
component of a CAPD.

Figure 12: Some CAPs can only be an outer boundary component (figure
part (a)) or an inner boundary component (figure part (b)) of a CAPD. Some
CAPs can not be a boundary component of a CAPD at all (figure part (c)).

the following investigations that all circular arc polygons are able to bound a domain
at least in the required component of their complement. Therefore, it depends on the

(a) connectivity one (b) connectivity two (c) connectivity three

Figure 13: CAPDs can have various shapes and different connectivity.

currently examined domain if a CAP is suitable for our discussion.
Hence, an alternative approach for the definition is to define a circular arc polygon
domain as a finitely connected domain bounded by finite unions of circular arcs and to
define the set of all circular arc polygons as the set of the boundary components of all
circular arc polygon domains.

We also suppose the circular arc polygons to be parametrized in a way that the domain
is to the left. Hence, we will interpret a slit to have two sides, as it is (part of) a closed
curve. This allows us to define the vertices of the boundary as the points vk = δ(tk),
k = 1, . . . , n, with the values tk of the partition 0 = t1 < t2 < . . . < tn+1 = 1, as defined
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3.1 The Schwarzian Derivative of the Mappings

in Definition 3.1.10 The interior angle πα at such a vertex is the angle between the two
consecutive circular arcs measured inside the domain.
From this point on, we will no longer explicitly refer to line segments, as they can be
seen as parts of circles that run through infinity.

Note that each conformal mapping onto a circular arc polygon domain can be continu-
ously extended to the boundary, as each boundary component, i.e. circular arc polygon,
is locally connected. [Con95, Theorem 15.3.5]

For now, we will focus on the conformal mappings of the unit disk onto simply connected
circular arc polygon domains. Conformal mappings onto multiply connected circular
arc polygon domains are handled in Chapter 4. Hence, the boundary of a CAPD is at
the moment defined by one CAP, which is the union of n circular arcs. This CAP has
n vertices vk and n interior angles παk.

3.1 The Schwarzian Derivative of the Mappings

We wish to investigate conformal mappings of the unit disk onto simply connected
circular arc polygon domains. The common11 mapping formula for these mappings is
always given in the form of their Schwarzian derivative. We want to justify this fact,
before we continue by actually stating the formula.

A circular arc polygon consists by definition only of circular arcs, and so any conformal
transformation, which maps circles onto circles will map a CAPD onto a CAPD with
the same interior angles at each vertex. The most general transformation doing this is
a Möbius transformation. Hence, for a function f , which conformally maps the unit
disk onto a CAPD, we can get new mappings T ◦ f onto CAPDs by applying a Möbius
transformation T ∈ M. All the images of these functions T ◦ f can be conformally
mapped onto each other by Möbius transformations.
To get a unique form for all these mappings, we need to remove the Möbius transfor-
mations. This can be done by the application of the Schwarzian derivative, since we
have

{T ◦ f, z} = {f, z}.

Therefore only the Schwarzian is given for these mappings, while the actual mappings
T ◦ f can be gathered by solving the Schwarzian. The three complex initial values
of the Schwarzian correspond to the three complex degrees of freedom of the Möbius
transformations.

An alternative approach is to extend such a mapping over a bounding circular arc by the
Schwarz reflection principle. The extension itself is a mapping from the plane minus the
closed unit disk onto a reflected version of the CAPD. If the Schwarz reflection principle

10As we do not demand consecutive circular arcs to be from different circles, one may add “artificial”
vertices by splitting an arc.

11The Schwarzian derivatives of these mappings are equal, except for the values of the parameters.
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3 Simply Connected Circular Arc Polygon Domains

Figure 14: The three circular arc polygon domains shown above can be
mapped onto each other by Möbius transformations.

is applied again but on the extension and for a different arc, we get a mapping of the
unit disk onto a twice reflected version of the CAPD. However, two successive reflections
are equal to a Möbius transformation, and so two extensions lead to a mapping from
the unit disk onto a Möbius transformed version of the CAPD (Figure 15). A common
mapping formula for both image domains can be gathered by applying the Schwarzian
derivative.

P1 P2

P3

Figure 15: The circular arc polygon domain P1 (left dark region) is reflected
against one of its bounding circular arcs onto P2 (middle pale region). The
reflected domain P2 is then also reflected against its boundary onto P3 (right
dark region). The two dark regions P1 and P3 differ only by a Möbius trans-
formation.

The common form of conformal mappings from the upper half plane onto circular arc
polygon domains can be found in most of the standard literature covering the topics
of conformal mappings such as [Neh52, Chapter 5]12 or [Hil62]. We will refer here to
the core literature regarding all information related to (simply connected) Schwarz-
Christoffel-mappings:

12Nehari refers to circular arc polygons as curvilinear polygons.
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3.1 The Schwarzian Derivative of the Mappings

Lemma 3.2 ([DT02, Chapter 4.10])
Let P be a simply connected circular arc polygon domain bounded by a circular arc
polygon with vertices v1,. . . ,vn and interior angles α1π,. . . ,αnπ.
The Schwarzian derivative {f, z} of any conformal mapping f of the upper half plane
onto P has the form

{f, z} =
1

2

n∑
k=1

1− α2
k

(z − pk)2
+

n∑
k=1

γk
(z − pk)

,

where f(pk) = vk for k = 1, . . . , n. The parameters have to satisfy the constraints:

n∑
k=1

γk =
n∑
k=1

(2γkpk + (1− α2
k)) =

n∑
k=1

(γkp
2
k + (1− α2

k)pk) = 0.

Often it is just indicated that the mappings from the unit disk can be acquired by using
{f ◦ T, z} = T ′(z)2{f, T (z)}. In this case, T is the Möbius transformation, which maps
the unit disk onto the upper half plane. A version for mappings from the unit disk onto
CAPDs without use of the upper half plane can be found in an article of Porter:

Lemma 3.3 ([Por05])
Let P be a simply connected circular arc polygon domain bounded by a circular arc
polygon with vertices v1,. . . ,vn and interior angles α1π,. . . ,αnπ.
The Schwarzian derivative {f, z} of any conformal mapping f of the unit disk onto P
has the form

{f, z} =

n∑
k=1

1

pk

(
2pk − z

(z − pk)2
ak +

2irk
(z − pk)

)
,

where f(pk) = vk, ak = 1
2(1− αk)2 and rk ∈ R for k = 1, . . . , n. The parameters have

to satisfy the constraints:

n∑
k=1

rk =
n∑
k=1

pk(ak + 2irk) = 0.

We will present our own version of the conformal mappings from the unit disk onto
CAPDs. The result is equal to the one of Porter, but the proof uses a different method.
The concept of the following proof is similar to the one we will use in the later sections
for multiply connected mappings.
As we will refer very often to the Schwarzian derivative of conformal mappings onto
CAPDs, we introduce a new symbol S(z) := {f, z} for it.
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3 Simply Connected Circular Arc Polygon Domains

Theorem 3.4
Let P be a simply connected circular arc polygon domain bounded by a circular arc
polygon with vertices v1,. . . ,vn and interior angles α1π,. . . ,αnπ.
The Schwarzian derivative S of any conformal mapping f of the unit disk onto P has
the form

S(z) = {f, z} =

n∑
k=1

1

pk

(
2pk − z

(z − pk)2
ak +

iµk
(z − pk)

)
,

where f(pk) = vk, ak = 1
2(1−αk)2 and µk ∈ R for k = 1, . . . , n. The parameters have

to satisfy the constraints:

n∑
k=1

µk =
n∑
k=1

pk(ak + iµk) = 0. (3.1)

Proof. The mapping function f has to behave at each vertex v = f(p) like

f(z) = (z − p)αψ(z),

where απ is the interior angle of the bounding CAP at v. In this equation ψ is an
analytic function different from zero at p and represents the remaining part of f . As
we apply the Schwarzian derivative to this, we obtain

{f, z} =
a

(z − p)2
+

γ

(z − p) +O((z − p)0),

with the abbreviations

a :=
1

2
(1− α2) and γ :=

ψ′(p)

ψ(p)

(1− α2)

α
.

The preimage domain is bounded by ∂D, while the image domain is bounded by arcs
from the circles Ck. According to the Schwarz reflection principle, we can extend the
mapping beyond its boundary by

f(s(z)) = sk(f(z)),

with s(z) = 1
z̄ being the reflection against the unit circle and sk(z) =

r2k
z̄−c̄k + ck being a

reflection against one of the circles Ck in the image domain. Applying the Schwarzian
to this equation yields

{f, z} =
1

z4
{f, 1

z̄
}. (3.2)

The application of the Schwarzian also combines the different extensions to one form
as they only differ by Möbius transformations.
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3.1 The Schwarzian Derivative of the Mappings

The Schwarzian does not contain any poles in D as the initial function f is conformal.
Neither does its extension C∞ \D contain any poles. Hence, the only poles in C∞ can
be at the prevertices pk ∈ ∂D. This allows us to write:

S(z) =
n∑
k=1

(
ak

(z − pk)2
+

γk
(z − pk)

)
+ κ, κ ∈ C.

Putting this result in (3.2) yields with pk = p−1
k

0 =
1

z4
S
(

1

z̄

)
− S(z)

=
n∑
k=1

(
−pk(γkpk + 2ak)− γk

(z − pk)
+
pk(γkpk + 2ak)

z
+
γkpk + ak

z2
+
γk
z3

)
− κ+

κ̄

z4
.

This gives immediately the conditions

n∑
k=1

γk =
n∑
k=1

(γkpk + ak) =
n∑
k=1

pk(γkpk + 2ak) = κ = 0, (3.3)

− pk(γkpk + 2ak)− γk = 0. (3.4)

The second line can be altered to

−γkpk + ak = γkpk + ak ⇐⇒ Re (γkpk + ak) = 0.

Substituting for

iµk := γkpk + ak, µk ∈ R,

ensures equation (3.4) and allows the Schwarzian in the form

S(z) =
n∑
k=1

1

pk

(
2pk − z

(z − pk)2
ak +

iµk
(z − pk)

)
while equation (3.3) changes to

n∑
k=1

µk =

n∑
k=1

pk(ak + iµk) = 0.

3.1.1 The Parameter Problem

All kinds of mappings similar to the Schwarz-Christoffel (SC) mapping are connected to
some kind of parameter problem, i.e. the search for the correct values of the parameters
of the mapping formula, if a specific image domain is given.

37



3 Simply Connected Circular Arc Polygon Domains

In the CAPD case, each vertex of the image domain generates one interior angle, one
prevertex and one parameter γ or µ (depending on the form) in the Schwarzian. While
the significance of the prevertices as preimages of the vertices and the interior angles is
clear, the additional parameters γ/µ do not yet have any geometric interpretation. It
might be reasonable to assume a connection to the curvature of the boundary arcs, as
this is the main difference in comparison to the classical SC mapping. This connection
could for example be something like the change of curvature at the corresponding ver-
tices. The position of the prevertices and the interior angles may also influence these
values.
Research regarding these parameters was done especially by Porter, e.g. in [Por05] and
[PK09]. Both articles cover CAPDs with special geometric properties.
An interesting information about the behavior of γ can be drawn from the work of
Porter. The parameters γ of two prevertices tend to infinity in their absolute values as
the prevertices become closer.
The following work tries to cover some further special cases of CAPDs and to draw
conclusions regarding γ. We will see that the property of a growing γ will also appear
several times.

3.2 Moving the Conformal Center

One possible way to investigate the behavior of the parameters µ of the Schwarzian is
to apply an automorphism of the unit disk and observe how the µ change.
If we apply the automorphism A, before we map D by f onto a CAPD, the composition
f ◦A, must also have a Schwarzian matching the formula stated in Theorem 3.4.
The automorphisms of the unit disk are of the form

A(z) = eiϕ
z − v
1− v̄z , ϕ ∈ [0, 2π[ , v ∈ D.

First, we only apply a rotation of D in the form R(z) = eiϕz = λz. By the properties
of the Schwarzian derivative (Lemma 2.10), we have for any Möbius transformation T

{f ◦ T, z} = T ′(z)2{f, T (z)}.
For a rotation, where pk = R(qk) = λqk, we therefore have

{f ◦R, z} = R′(z)2{f,R(z)} = λ2
n∑
k=1

1

pk

(
2pk − λz

(λz − pk)2
ak +

iµk
(λz − pk)

)

=

n∑
k=1

1

qk

(
2qk − z

(z − qk)2
ak +

iµk
(z − qk)

)
.

(3.5)

This shows that µ is invariant against rotations of D.13 Therefore it is enough to
investigate automorphisms of the form

A(z) =
z − v
1− v̄z , v ∈]0, 1[

13Note that γ is not invariant against such rotations.

38



3.2 Moving the Conformal Center

(Figure 16). Any other automorphism can be generated by applying a rotation R in
the form

R−1 ◦A ◦R.

Retaining the new prevertices qk = A−1(pk) and the new parameters ηk, calculation
yields a formula for the alternation of the parameters. Hence, we have found the con-
nection

ηk =
|v + pk|2µk + 2v Im (pk)a

1− v2

=
(1− v2)µk + 2v Im (qk)a

|qk − v|2
.

(3.6)

It is important to notice that since we apply A before f , we have A(qk) = pk and

Figure 16: The mapping of the unit disk for an automorphism A, where
A(z) = (z − v)/(1− v̄z) and v = 1

2 . The left image contains the prevertices q,
while the right contains the p. Hence, the mapping A−1 is from the right to
the left domain.

therefore actually mapping pk by

A−1(z) =
z + v

1 + v̄z
.

It can be verified by calculation that 1 is the attractive fixed point of A−1, while −1
is the repelling fixed point for v ∈]0, 1[.14 If we therefore place a prevertex p1 in 1 and
another in −1 = p2, we have

|η1| =
∣∣∣∣(v + 1)2

1− v2
µ1

∣∣∣∣ =

∣∣∣∣1 + v

1− v

∣∣∣∣ |µ1| > |µ1|,

|η2| =
∣∣∣∣(v − 1)2

1− v2
µ2

∣∣∣∣ =

∣∣∣∣1− v1 + v

∣∣∣∣ |µ2| < |µ2|
(3.7)
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3 Simply Connected Circular Arc Polygon Domains

(a) The factor 1+v
1−v for v ∈ (0, 1). (b) The factor 1−v

1+v
for v ∈ (0, 1).

Figure 17: The behavior of the factors of equation (3.7) is shown above. The
first factor (left image) rises to infinity while the second one (right image) tends
to zero while v approaches 1.

for µ1 6= 0 and µ2 6= 0. The parameter is rising in absolute value for the attractive fixed
point and shrinking for the repelling one. This effect increases if v gets closer to 1, i.e.
the derivative at the attractive fixed point gets closer to zero.
In the case of only two prevertices, the parameters must both be zero to satisfy the
restricting equations. For a greater number of prevertices, we can at least notice that
the absolute values of the parameters are rising, if they are clustered together by an
automorphism. The more they are clustered, the greater the growth of the parameters.

3.3 Comparison to the Schwarz-Christoffel Transformation

The classical Schwarz-Christoffel transformation is a special case of the conformal map-
pings onto CAPDs. The Schwarz-Christoffel transformation is, in comparison to the
CAPD mapping, easier to handle, as a boundary consisting only of line segments per-
mits less geometric variety. This is shown, for example, in the fact that in this context
it is not necessary to use the Schwarzian derivative. Instead the simpler pre-Schwarzian
f ′′

f ′ is used. For the SC mapping, the pre-Schwarzian is of the form

S(z) =
f ′′(z)

f ′(z)
=

n∑
k=1

αk − 1

z − pk
.

The pk denote again the prevertices, while the αk refer to the interior angles αkπ.
Usually the mapping is stated in the form:

14The transformation A−1 is hyperbolic and has therefore one attractive and one repelling fixed point.
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3.3 Comparison to the Schwarz-Christoffel Transformation

Lemma 3.5 ([DT02])
Let P be the interior of a polygon having vertices v1, . . . , vn and interior angles
α1π, . . . , αnπ in counterclockwise order. Let f be any conformal map from the upper
half-plane onto P . Then

f(z) = A+ C

∫ z n∏
k=1

(ζ − pk)αk−1dζ

for some complex constants A and C, where vk = f(pk) for k = 1, . . . , n.

Here the classical form for the upper half plane is cited, but the version for the unit
disk is equal15 to the stated form and can for example also be found in [DT02].

To compare the SC mapping with the CAPD mapping, we have to calculate the
Schwarzian from the pre-Schwarzian:

S(z) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

=

(
n∑
k=1

αk − 1

z − pk

)′
− 1

2

(
n∑
k=1

αk − 1

z − pk

)2

=
n∑
k=1

ak
(z − pk)2

−
n∑
k=1

 n∑
j=1,j 6=k

(αj − 1)

(pk − pj)

 (αk − 1)

(z − pk)
.

Here ak is again defined as

ak :=
1

2
(1− α2

k).

It is interesting to note that the sum attached to the first order poles is nearly the
pre-Schwarzian evaluated at pk, except for the missing term for pk. Hence, we define

S(z, pk) := S(z)− αk − 1

z − pk
=

n∑
j=1
j 6=k

(αj − 1)

(z − pj)

and rewrite the above to

S(z) =
n∑
k=1

(
ak

(z − pk)2
+
−(αk − 1)S(pk, pk)

(z − pk)

)
.

By comparing this with the CAPD formula, we obtain

γk = −(αk − 1)S(pk, pk),

and with iµk = pkγk + ak we further have

µk = i

(
(αk − 1)pkS(pk, pk)−

1

2
(1− α2

k)

)
.

15Normally the version for the unit disk is reshaped to avoid numerical issues regarding the logarithm.
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3 Simply Connected Circular Arc Polygon Domains

By multiplying pk into S(pk, pk), terms in the form pk
pk−pj arise, which can be transformed

with pk = eiϕk (since the prevertices are on ∂D) to

pk
pk − pj

=
1

1− exp (i(ϕj − ϕk))
=
i

2
cot

ϕj − ϕk
2

+
1

2
.

This allows us to write µ in the form

µk = i

(αk − 1)
∑
j 6=k

(αj − 1)

(
i

2
cot

ϕj − ϕk
2

+
1

2

)
− 1

2
(1− α2

k)


= −(αk − 1)

2

∑
j 6=k

(αj − 1) cot
ϕj − ϕk

2
+
i

2

(αk − 1)
∑
j 6=k

(αj − 1)− (1− α2
k)

 .

The imaginary part in the formula above must be zero, since we know that µk must
be real. This can easily be verified by using the fact that for a polygon, we have∑n

k=1(αk − 1) = −2. Replacing
∑

j 6=k(αj − 1) with −2 − (αk − 1) and a straight
calculation yield the result.
Hence, we have found an explicit formula for µk:

Lemma 3.6
Let P be a CAPD that can be mapped onto a polygonal domain by a Möbius trans-
formation.
The parameters of the Schwarzian derivative of a conformal mapping from the unit
disk onto P are given by

µk = −(αk − 1)

2

∑
j 6=k

(αj − 1) cot
ϕj − ϕk

2
, k = 1, . . . , n.

The ϕk refer to the arguments of the prevertices pk.

The phrasing “can be mapped onto a polygonal domain” is chosen, because the image
domain is only a polygonal domain if it is normalized accordingly. Otherwise it looks
like an ordinary CAPD.16

The restricting equations (3.1) of the CAPD mapping can be verified for the values
given in the lemma above. This is done in the appendix at A.1.

There is one more fact of note: Since the cotangents have a pole at zero, we must
assume an increase in the absolute value of µk, if its neighboring prevertices get close.
This matches the result from the preceding section.

16The CAPD still has the feature that all circles providing arcs of the boundary have one common
intersection point. This point has to be mapped to infinity to get a polygonal domain.
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3.4 Domains Symmetric with Respect to Rotations

3.4 Domains Symmetric with Respect to Rotations

We wish to investigate the conformal mappings from the unit disk onto CAPDs that
are symmetric with respect to rotations. The special structure of the image domains
may allow conclusions on the behavior of the parameters. We suppose that each image
domain is symmetric with respect to a rotation around zero. Therefore we normalize
each mapping f by demanding f(0) = 0.
The symmetry of such a mapping can be expressed in the form

f(ωz) = ωf(z), ω = exp
2iπ

m
, m ∈ N \ {1}.

This property of f leads to the property

ω2S(ωz) = S(z),

of the Schwarzian derivative. The equation above shows that for every prevertex p there
are also prevertices ωjp, where j = 1, . . . ,m − 1. Each of these sets of prevertices has
the same a and µ, as it can be verified by calculation.17

Hence all prevertices are given, if we know the prevertices with their arguments in the
interval [0, 2π

m [. The remaining ones can be gathered by rotating this initial set by ωj .
To keep the problem as simple as possible, we will use only a small number of prevertices
in the initial set.

3.4.1 One Prevertex

If there is only one prevertex independent regarding rotation, then there is only one
possible choice for µ. Since all µ have to be equal, they all must be zero by the
restricting equations (3.1). Therefore all the parameters depend on the choice of the
first prevertex p and the corresponding interior angle. They are given by

pk = ωk−1p, ak = a, µk = 0, k = 1, . . . ,m.

We will normalize the preimage domains by a rotation and set p to 1. This means that
all prevertices of such a mapping are given by pk = ωk−1.
With the prevertices set and no choice regarding µ, the curvature of the boundary arcs,
which have by the symmetry all the same curvature, depends only on the common
interior angle πα in the form a = 1

2(1− α2).
Since the geometry of the image domains is very simple, we can state a formula for the
curvature κ of the boundary arcs. If we normalize each image domain by the property
that the first prevertex p = 1 is mapped onto 1, i.e. f(1) = 1, we have

κm(α) =
sin ((α/2 + 1/m− 1/2)π)

sin (π/m)
. (3.8)

This normalization is necessary, as the curvature depends on the scaling of the image
domain. The curvature also has a sign in this case: A negative curvature means that the

17This can also be seen in equation (3.5).

43



3 Simply Connected Circular Arc Polygon Domains

Figure 18: Curvature vs interior angle: The greatest possible curvature rises
with the number of vertices. The common intersection point at α = 1 is the
mapping onto the unit disk.

boundary arc is bent inwards, while a positive curvature indicates a bulging outwards.
Therefore the unit circle has a curvature of 1.
The only conclusion we can draw so far is that the curvature of the boundary arcs not
only depends on µ, but also on a and the number of prevertices.

3.4.2 Two Prevertices

We again normalize the preimage domains by a rotation. In this case of two prevertices,
we use the rotation to place the initial prevertices symmetric to the real axis at p and
p. The normalization is changed compared to the “one prevertex” case, as it will be
beneficial later in the work.
With this normalization, we have

p = exp (iϕ),

p = exp (−iϕ),

so that the prevertices depend only on one real parameter ϕ. To keep the preimage
domains unique, we allow ϕ only in the interval [0, π

2m ]. In this way, the arc between p
and p is shorter than the one between p and ωp. Any other scenario can be reached by
rotating the preimage domain. For reference, we have a short (p to p) and a long (p to
ωp) edge, and the image domain contains each of these edges m times.
The two different values for the µ must be zero in summation, as demanded by the
restricting equations, so they can only differ in their signs. For simplicity, we further
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3.4 Domains Symmetric with Respect to Rotations

Figure 19: The unit disk is mapped onto a symmetric CAPD with two kinds
of edges. (m = 4)

set a for all vertices to the same value, and so have

pk ∈ {p, ωp, ωp, ω2p, ω2p, . . . , ωm−1p, ωm−1p, p},

µk =

{
µ if k is odd

−µ if k is even
,

ak = a,

k = 1, . . . , 2m.

Note that for µ = 0 and ϕ = π
2m , we return to the “one prevertex” case, as the prevertices

are equally spaced and have the same parameter µ.

Limit Behavior

There is a connection to the “one prevertex” case: If we let ϕ of any mapping go to
zero, the two prevertices p and p will merge in the limit, as do all their rotations ωp and
ωp. The limit domain then has only one prevertex not generated by a rotation with a
power of ω. Since p and p collapse at 1, the image domain in the limit is normalized
according to the preceding section.
We may also demand from the limit process that the curvature of the long image edge κ
is kept constant. This means that the parameters µ have to change, but the convergence
process satisfies the conditions of the Carathéodory convergence theorem regarding the
image domains. Additionally, this means that the edges of the limit domain all have
the same curvature κ of the long edge, as the small edge and its rotations vanish.
The named Carathéodory convergence theorem [Con95, Corollary 4.11] allows us to
conclude that the mapping functions, and therefore their Schwarzian derivatives, also
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3 Simply Connected Circular Arc Polygon Domains

Figure 20: The small arcs of the domain shrink in the limit process, while
the curvature of the long edges is kept constant. The small edges vanish in
the limit case and only vertices remain. (left image ϕ = 0.1π, right image
ϕ = 0.001π)

converge. Hence, regarding the residues at p and p, we have18

p(a+ iµ) + p(a− iµ)→ p̃(ã+ iµ̃),

where the tilde denotes the new values in the limit case. We know that the new prevertex
is 1 and µ̃ must be zero as this was discussed earlier, so we find

a(p+ p) + iµ(p− p)→ ã

⇒ 2a cosϕ− 2µ sinϕ→ ã.

Hence, if we are getting close to the limit, i.e. when ϕ is very small, we can approximate
µ by

µ ≈ 2a cosϕ− ã
2 sinϕ

.

This approximation depends on the shape of the limit domain, as it contains the interior
angle. However, we have in (3.8) already a formula stating a connection between the
curvature and the interior angle of such a limit domain. As we know the curvature κ,
we can isolate the angle and obtain

α̃ = 1 +
2

π
arcsin (κ sin (π/m))− 2

m
.

We substitute α̃ into our approximation to obtain

µapprox = a cotϕ− 1− [1 + (2/π) arcsin (κ sin (π/m))− (2/m)]2

4 sinϕ
. (3.9)

The result is an approximation for the parameter µ for a specific curvature of the long
edge, under the assumption that ϕ is small. The accuracy of the approximation can be
seen in the Figures 21 and 22.

18The actual residues have changed signs and are conjugated.
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3.4 Domains Symmetric with Respect to Rotations

(a) Approximation vs actual values of µ (b) Absolute error

Figure 21: A comparison of the actual values of µ and the approximation for
µ for a changing ϕ. (α = 0, m = 4, κ = 0)

It is important to note that this approximation does not hold for all κ. We assumed a
new vertex in the limit case at 1. However, this requires from the geometry that the
circle providing the long arc is large enough to at least touch the real axis. Or from an
analytic point of view: κ must be in the range of possible values provided by (3.8) i.e.
κ ∈ [− sin (π/m)−1, sin (π/m)−1]. This can also be seen in the approximation formula
itself, as the argument of the arcsin must be between −1 and 1.
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3 Simply Connected Circular Arc Polygon Domains

(a) α = 0, κ = −0.5 (b) α = 0, κ = 0

(c) α = 0, κ = 0.5 (d) α = 0.5, κ = −0.5

(e) α = 0.5, κ = 0 (f) α = 0.5, κ = 0.5

Figure 22: The actual values of µ and the approximations for changing ϕ and
different interior angles α and curvatures κ. (m = 4)
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4 Multiply Connected Circular Arc Polygon Domains

In this chapter, we construct our version of the Schwarzian derivative of the conformal
mappings that map from a circular domain D onto a multiply connected circular arc
polygon domain (MCCAPD) P (Figure 23). Note that the existence of such mappings is

f(p0,1)
b b

bb

b b

b

b
b

f

C0

C1

C2

p0,1p0,2

p0,3 p0,4

D

P

b b

bb

bb

b

b
b

πα0,2 πα0,1

f(p0,2)

f(p0,3) f(p0,4)

Figure 23: The conformal mapping from a circular domain onto a multiply
connected circular arc polygon domain.

ensured by common knowledge about multiply connected conformal mappings [Con95]
if D and P are conformally equivalent. Hence, we assume for the following discussion
that, for each mapping, D and P are conformally equivalent, because otherwise there
would not be any conformal map between them.

Definition 4.1
A circular domain D ⊂ C∞ is a (m+ 1)-connected domain bounded by m+ 1 disjoint
non-degenerated circles Cj , where j = 0, . . . ,m. The domain is called unbounded if all
circles are exterior to each other. It is called bounded if the circles Cj , j = 1, . . . ,m,
are inside of C0.
A multiply connected circular arc polygon domain (MCCAPD) P ⊂ C∞ is a (m+ 1)-
connected domain bounded by m+ 1 disjoint circular arc polygons Pj , j = 0, . . . ,m,
where 0 < m ∈ N. (cf. Definition 3.1)

We suppose for each preimage domain D that the circle C0 is the unit circle ∂D. If
not stated otherwise, we further suppose that either zero (bounded case) or infinity
(unbounded case) are inside the domain (Figure 24).19

We suppose each of the m + 1 circular arc polygons Pj that bound a MCCAPD to
consist of Kj circular arcs. Each of these arcs ζ̃j,k is part of some circle C̃j,k. Here the
index j = 0, . . . ,m refers to the boundary component, while k = 1, . . . ,Kj refers to the

19A common exception is the annulus as canonical domain for doubly connected mappings.
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4 Multiply Connected Circular Arc Polygon Domains

(a) An unbounded circular domain

b 0

(b) A bounded circular domain

Figure 24: The two different kinds of circular domains.

specific circular arc of the component.
We further suppose the domains to be to the left of the boundary and number the
vertices vj,k = f(pj,k) of each boundary component Pj accordingly.

4.1 Properties of the Schwarzian Derivative

The first step of our construction is to extend the domain of definition of such a mapping
f to its maximum, similarly to the proof of Theorem 3.4 for the simply connected
mappings.
We can apply the Schwarz reflection principle to the mapping, since the boundary
consists for D, as for P , only of circular arcs. Hence we may extend D over an arc ζj,k

Figure 25: A CAP domain can be extended by reflecting across a boundary
arc. The extended domain can then be extended again by reflecting across
another arc. We probably lose global univalence in the process.

of the boundary circle Cj and P over ζ̃j,k = f(ζj,k) of the circle C̃j,k. The reflection
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4.1 Properties of the Schwarzian Derivative

in the preimage domain with respect to Cj shall be denoted as sj while the reflections
against C̃j,k shall be referred to by s̃j,k. We obtain, by this extension of the mapping,
the property

f(sj(D)) = s̃j,k(f(D)) = s̃j,k(P ). (4.1)

The index of s and the first index of s̃ have to be equal, while the second index of s̃ can
freely be chosen.20 In this process we may lose global univalence by an overlapping of
the extended image domain, but the mapping is still locally injective (Figure 25).
The extended version of D is almost a circular domain. It is bounded by the circles Cn
and sj(Cn), where n = 0, . . . ,m and n 6= j, but contains the slit Cj \ ζj,k (Figure 26).
This is because only ζj,k is included in the new domain D1, but not the remaining part
of Cj . The extended MCCAPD P1 is also a MCCAPD, but may be self overlapping
with boundary arcs from the circles C̃n,o and s̃j,k(C̃n,o), where (n, o) 6= (j, k). If we

Figure 26: Circular domains can be extended similar to CAP domains. Only
the arcs used for the reflection are included into the new (extended) domains.
(The here shown extensions match the ones of Figure 25.)

denote the reflections against the new boundary components by σ and σ̃, we are able
to apply the reflection principle once more to show

f(σi(sj(D))) = σ̃i,l(s̃j,k(f(D))).

Since two subsequent reflections result in a Möbius transformation, we rewrite this to

f(Ti;j(D)) = T̃i,l;j,k(f(D)),

where Ti;j = σi ◦ sj and T̃i,l;j,k = σ̃i,l ◦ s̃j,k. To remove the transformation T̃i,l;j,k, which
depends on the image domain, we apply the Schwarzian derivative to obtain

(T ′i;j(z))
2{f, Ti;j(z)} = {f, z}. (4.2)

We also merge the different extensions in this step. Two different extensions, e.g. s̃j,k(P )
and s̃n,o(P ), can be mapped onto each other by a Möbius transformation

s̃j,k(P ) = (s̃j,k ◦ s̃n,o)(s̃n,o(P )) = Tj,k;n,o(s̃n,o(P )).

20There are several different extensions, depending on the chosen arc ζ̃j,k of the image domain.
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4 Multiply Connected Circular Arc Polygon Domains

Hence, both extensions are equal in the context of the Schwarzian derivative. This is
also true for all subsequent extensions ensuring that the process of extending the domain
does not influence the resulting Schwarzian. Hence we can include all arcs ζ into the
domain, as there is for each arc an extension, which includes the arc into the domain

D1 = D ∪
m⋃
j=0

sj(D) ∪
m⋃
j=0

Kj⋃
k=1

ζj,k.

The only points left are the start and end point of each arc, i.e. the preimages of the
vertices of the bounding CAPs.21 To reach the maximum extension of D, we will
continue with this procedure of applying the reflection principle.
We want to rewrite equation (4.2) in the context of this maximum extension to a
generalised form:

(T ′(z))2{f, T (z)} = {f, z}, T ∈M(D), (4.3)

where M(D) is the set of all Möbius transformations arising in the extension process.
This gives us a functional equation for the Schwarzian derivative of the mapping f ,
which will be of great use later on.

We further investigate the process of extending D in order to define the set M(D). The
domain D can be extended by a reflection sj against Cj in the manner described above.
The new domain sj(D) can again be extended by reflecting against a circle sj(Ci).
However, instead of the reflection against sj(Ci), it is possible to apply the reflection
sj ◦ si for an equivalent mapping.22

Lemma 4.2 ([DEP04])
Let sj denote the reflection against the circle Cj , j ∈ {0, 1}, and s0,1 the reflection
against the circle C0,1 = s0(C1).
A reflection through C1 followed by a reflection through C0 is the same as the reflection
through C0 followed by a reflection through C0,1, i.e. s0,1 ◦ s0 ≡ s0 ◦ s1.

We will prefer the version using the reflections against the boundary circles of D, as it
results in a simpler notation. Hence, we can express any reflection by sj...i = sj ◦ . . .◦si.
Since reflections are self inverse sj ◦ sj = id, the reflection sj...i can not contain any pair
of equal indices not separated by a different index.
We are interested in all the Möbius transformations arising in this context. As noted
earlier (Lemma 2.2), two consecutive reflections yield a Möbius transformation. The set
of all these Möbius transformations can be described by a group, which is generated by

21We will include these points into the domain later on, as they will be poles of the second order of
the meromorphic Schwarzian derivative. This can be seen in the following section.

22The properties regarding such successive reflections are well covered in the article [DEP04] by
DeLillo, Elcrat and Pfaltzgraff, since they used reflections to construct the multiply connected Schwarz-
Christoffel mapping.
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4.1 Properties of the Schwarzian Derivative

(a) The unbounded domain (white) is extended
in the circles by several steps of reflections. The
areas get darker with a rising number of reflec-
tions necessary to reach them.

(b) The limit points, i.e. the boundary, for the
expansion of the domain which is shown in the
left image.

Figure 27: The behavior of the domain if it is extended as described.
The domain is extended 5 times for the left image and 8 times for the limit
points on the right side.

the initial transformations Tji = sj ◦ si, where j, i = 0, . . . ,m and i 6= j. However since
we have for these transformations

Tji ◦ Til = (sj ◦ si) ◦ (si ◦ sl) = sj ◦ sl = Tjl,

the set of generators for the group can be reduced to transformations of the type T0j ,
where j = 1, . . . ,m. This group shall from now on denoted by M(D), the set of all
transformations belonging to the circular domain D. We will furthermore write Tj
instead of T0j for ease of notation.
This group can also be seen as a Schottky group (Definition 2.27). Each transformation
Tj maps the exterior of Cj onto the interior of s0(Cj), while Cj is carried into s0(Cj),
as demanded in the definition of the Schottky group. The fundamental region of this
group is therefore the exterior of the circle pairs Cj and C ′j = s0(Cj) for j = 1, . . . ,m
or the extension of D over C0, i.e. DR = D ∪ C0 ∪ s0(D).
The special construction of the group leads to a somewhat restricted behavior (for
example, no additional rotations are permitted) compared to more generic Schottky
groups. Hence, this group satisfies, by its construction, the requirements of a symmetric
Schottky group (Definition 2.28).
Note that C0 was arbitrary chosen for the construction of the group. An alternative
fundamental region, but with the same group, can be constructed for each boundary
circle Cj .

We now return to the extension of the preimage domain D of the mapping, or rather
the domain of definition of the Schwarzian derivative of f . If we extend D over C0, we
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4 Multiply Connected Circular Arc Polygon Domains

obtain the preimage domain DR = D ∪ C0 ∪ s0(D) for the Schwarzian.23 Any further
extension can then be expressed as either an even number of reflections applied to D
(s1(s0(D)), s0(s1(D)), . . . ) or as an odd number of reflections applied to D (s0(D),
s1(D), . . . ). Every even number of these reflections is a Möbius transformation of M(D),
while every odd number of reflections can be rewritten, with the use of s0 ◦ s0 = id, to
a transformation of s0(D)

si...j(D) = (si...j ◦ s0)(s0(D)) = Ti...j0(s0(D)), Ti...j0 ∈M(D).

The maximum extension of D is therefore given by
⋃
T∈M(D)(T (DR) ∪ ⋃m

j=0 T (Cj)).
Since M(D) is a Kleinian group and DR = D ∪ C0 ∪ s0(D) its fundamental region, we
cover the whole Riemann sphere with the mappings T (DR) except for the limit set Λ
according to Lemma 2.26. Therefore, these limit points represent the boundary of the
maximum extension.
Hence, we define the following terms:

Definition 4.3
Let D be a circular domain bounded by m + 1 disjoint non-degenerated circles Cj ,
j = 0, . . . ,m, which are either all inside or all outside of C0 = ∂D and denote by sj
the reflection through the circle Cj .
We define:

• DR := D ∪ C0 ∪ s0(D), the extension of D by reflection against the boundary
circle C0.

• S(D), the set of all reflections sj against the boundary circles Cj , j = 0, . . . ,m.

• M(D), the symmetric Schottky group of Möbius transformations matching the
fundamental region DR. It is generated by the transformations Tj = s0 ◦ sj ,
where j = 1, . . . ,m.

• Λ, the set of the limit points of M(D).

• DE := C∞ \ Λ, the maximum extension of D by reflections.

We also introduce a special notation for the Schwarzian derivative of the conformal
mappings onto MCCAPDs.

Definition 4.4
The Schwarzian derivative of a conformal mapping f from a circular domain onto a
multiply connected circular arc polygon domain is denoted by S.

We also restate the functional equation (4.3) for ease of reference.

23We noted above that only the Schwarzian allows us to include the whole circle, as the different
extensions over C0 merge. Here, DR contains even the preimages of the vertices of the CAP P0. This
inclusion will be justified later on.
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Lemma 4.5
The Schwarzian derivative S of a conformal mapping from the circular domain D onto
a multiply connected circular arc polygon domain satisfies the functional equation

(T ′(z))2S(T (z)) = S(z), T ∈M(D).

4.1.1 Construction: Transformation

The basic idea for the construction of mappings similar to the Schwarz-Christoffel trans-
formation is that at each vertex in the image domain such a mapping f has to behave
like

f(z) = (z − p)αψ(z). (4.4)

In this equation, p refers to the preimage of the vertex (or prevertex), α to the interior
angle at the vertex and ψ is an analytic function different from zero at p. ψ represents
the remaining part of f . As we apply the Schwarzian derivative, we obtain

{f, z} =
1− α2

2(z − p)2
+
ψ′(p)

ψ(p)

(1− α2)

α

1

(z − p) +O((z − p)0).

To shorten the notation, we define

S(z) := {f, z}, a :=
1

2
(1− α2), γ :=

ψ′(p)

ψ(p)

(1− α2)

α
,

similarly to the simply connected case.
If we now apply the ideas of the preceding discussion, we can state:

Lemma 4.6
Let P be a multiply connected circular arc polygon domain bounded by the circular
arc polygons Pj with the vertices vj,1, . . . , vj,Kj , where j = 0, . . . ,m.
The Schwarzian derivative S of any conformal mapping f from a circular domain D
onto P has at each transformed prevertex T (p), where p ∈ { pj,k | pj,k ∈ Cj ; f(pj,k) =
vj,k; j = 0, . . . ,m; k = 1, . . . ,Kj } and T ∈M(D), the expansion

S(z) =
a

(z − T (p))2
+

(
γ

T ′(p)
− aT ′′(p)

(T ′(p))2

)
1

z − T (p)
+O (1) .

Proof. In the preceding section we derived

T̃ (f(z)) = f(T (z))

for each conformal mapping onto a MCCAPD, where T̃ is a Möbius transformation
depending on the shape of the image domain. Combining this with equation (4.4) for
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the mappings of the Schwarz-Christoffel type gives

T̃ (f(z)) = f(T (z)) = (T (z)− p)αψ(T (z)), T ∈M(D).

Substituting p = T (U(p)) = T (q), where U = T−1, and applying the Schwarzian
derivative leads to

{f ◦ T, z} =
a

(z − q)2
+

(
T ′(q)

ψ′(p)

ψ(p)

(1− α2)

α
+

(1− α2)

2

T ′′(q)

T ′(q)

)
1

z − q +O (1)

=
a

(z − q)2
+

(
T ′(q)γ + a

T ′′(q)

T ′(q)

)
1

z − q +O (1) .

As we can see, there is also a pole at the transformed prevertex q = U(p) and the
residue δ at q can be calculated from the residue γ at p.

δ = T ′(q)γ + a
T ′′(q)

T ′(q)
, T (q) = p.

By applying the fact that T ′(q) = (U ′(p))−1 and its derivative, we find

δ =
γ

U ′(p)
− aU ′′(p)

(U ′(p))2
, U ∈M(D). (4.5)

If we take all the different prevertices pj,k on the different circles Cj and their trans-
formations into account, the Schwarzian has to contain the sum

∑
T∈M(D)

m∑
j=0

Kj∑
k=1

[
aj,k

(z − T (pj,k))2
+

(
γj,k

T ′(pj,k)
− aj,kT

′′(pj,k)

(T ′(pj,k))2

)
1

z − T (pj,k)

]
,

and therefore has the stated principle part at each T (p), T ∈M(D).

Since we will refer to the variables introduced thus far frequently, we restate them in
one common definition.

Definition 4.7
Let f be a conformal mapping from a circular domain D bounded by m + 1 circles
Cj , j = 0, . . . ,m, onto a MCCAPD P . The number of vertices of each boundary
component Pj = f(Cj) shall be denoted by Kj . The interior angle at each vertex vj,k
is παj,k, k = 1, . . . ,Kj , and the preimage of each vertex is pj,k, i.e. f(pj,k) = vj,k.
Therefore we have the following sets:

• {pj,k | pj,k ∈ Cj ; j = 0, . . . ,m; k = 1, . . . ,Kj}, the set of prevertices on the
boundary of D.

• {aj,k | aj,k = 1
2(1− α2

j,k);αj,k ∈ [0, 2]; j = 0, . . . ,m; k = 1, . . . ,Kj}, the set refer-
ring to the interior angles παj,k at the vertices.
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4.1 Properties of the Schwarzian Derivative

• {γj,k | j = 0, . . . ,m; k = 1, . . . ,Kj}, the set of the parameters, which arise in the
Schwarzian derivative as residues at the prevertices.

These sets will be called the “first generation”.
With M(D) according to Definition 4.3, we further have:

• {pT,j,k | pT,j,k = T (pj,k), T ∈M(D)}, the set of transformed prevertices.

• {γT,j,k | γT,j,k =
γj,k

T ′(pj,k) −
aj,kT

′′(pj,k)

(T ′(pj,k))2
, T ∈M(D)}, the set of transformed param-

eters.

In the context of the mapping, we also define the sum symbols

∑
j,k

:=

m∑
j=0

Kj∑
k=1

and
∑
T,j,k

:=
∑

T∈M(D)

m∑
j=0

Kj∑
k=1

.

We denote the set of sets (a, p, γ) generated by transformations of length n − 1 as the
nth generation. Note that each generation after the second has 2m− 1 times as many
prevertices/parameters as the preceding one. This leads to an exponential growth in
succeeding prevertices/parameters.
The parameters can be grouped to sets (a, p, γ)T,j,k, representing the location of a pole
(prevertex p) and the coefficients for the first (parameter γ) and second power (interior
angle as a) at this pole. To shorten the notation, we will skip the indices of these values
if the context allows it, or we will denote them by each other, e.g. γp is the residue at
p, while γT (p) is the residue at T (p).

For easier reference, we introduce a possible candidate K for the Schwarzian derivative
S, which consists of all the principle parts at the prevertices. We also include some
additional (yet unknown) terms AC to ensure the convergence.

Definition 4.8
The candidate function K is defined as

K(z) :=
∑
T,j,k

(
aj,k

(z − pT,j,k)2
+

γT,j,k
z − pT,j,k

+AC(z, T, j, k)

)
.

K will be redefined as we continue investigating features of the Schwarzian derivative
S. For each section, only the last definition of K is valid.
The candidate function is of particular interest, as it not only includes a subset, but all
poles of S in DE .

Lemma 4.9
The Schwarzian derivative S has its only poles in DE at the prevertices and their
transformations.
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Proof. The form of the Schwarzian derivative

S =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

implies that every pole has to be either a pole of f ′′ or a zero of f ′. The poles of f ′′

are also poles of f , but since f is conformal, it has at most one simple pole in D and
this only in the case of a mapping onto an unbounded domain. However, according
to Lemma 2.14, this pole does not appear in the Schwarzian. This is also true for the
boundary excluding the prevertices, as the mapping can be extended. Applying the
extension process, the only poles in DE can be at the prevertices.

Based on the facts gathered so far, we will regard S rather as meromorphic function on
DE than as holomorphic function on DE without the (transformed) prevertices.

Because we already collected all poles of S in DE , the functions AC have to be analytic
in DE . Hence, the AC can only have singularities in Λ. As a consequence, we have
found the basic structure of the Schwarzian.

Lemma 4.10
The Schwarzian derivative S of a MCCAPD mapping is of the form

S(z) =
∑
T,j,k

(
aj,k

(z − pT,j,k)2
+

γT,j,k
z − pT,j,k

+AC(z, T, j, k)

)
+AR(z), (4.6)

where the functions AC and the function AR are analytic in DE = C∞ \ Λ.

Proof. If we combine the Lemmas 4.6 and 4.9, we see that all poles of the Schwarzian
in DE = C∞ \ Λ are given by∑

T,j,k

(
aj,k

(z − pT,j,k)2
+

γT,j,k
z − pT,j,k

)
. (4.7)

Any term we may add would then have to be analytic in DE , i.e. any non-constant
term we add has to have a singularity in Λ.
If we denote the terms necessary for the convergence of the sum (4.7) by AC , we get
the candidate function of Definition 4.8

K(z) =
∑
T,j,k

(
aj,k

(z − pT,j,k)2
+

γT,j,k
z − pT,j,k

+AC(z, T, j, k)

)
.

Since the Schwarzian and the candidate function have the same poles in DE , any
remaining difference AR = S − K must be analytic in DE . We reach the lemma by
writing S = K +AR.
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4.1.2 Construction: Reflection

Instead of investigating every second step in the extension process, i.e. the Möbius
transformations, we may directly examine the reflections of each step. This allows us
to state a functional equation similar to the one of Lemma 4.5.

Lemma 4.11
The Schwarzian derivative S of a conformal mapping from a circular domain D onto
a MCCAPD satisfies for each reflection s ∈ S(D) against a boundary circle of D the
functional equation

S(z) = σ′(z)2S(σ(z)), σ(z) = s(z), s ∈ S(D). (4.8)

Proof. The use of reflections led to equation (4.1)

f(s(z)) = s̃(f(z))⇔ f(z) = s̃(f(s(z))). (4.9)

If we introduce the substitutions

σ̃(z̄) := s̃(z), σ(z) := s(z), g(z) := f(z̄),

we obtain

(s̃ ◦ f ◦ s) = (σ̃ ◦ g ◦ σ).

The advantage of this form is that the new functions are all holomorphic (in com-
parison to anti-holomorphic reflections) and the functions σ̃ and σ are even Möbius
transformations. This allows us to apply the Schwarzian derivative to equation (4.9):

{f, z} = {s̃ ◦ f ◦ s, z} = {σ̃ ◦ g ◦ σ, z} = {g ◦ σ, z} = σ′(z)2{g, σ(z)}.

By substituting from g back to f , we find

S(z) = σ′(z)2S(σ(z)).

Since this is true for each reflection against a boundary circle Cj , the lemma follows.

If we extend the domain by reflections, the domain is only in the first step reflected
against a boundary circle of D. For further extensions, we need to reflect the already
extended domain against the new boundary circles si(Cj). These new circles are reflec-
tions of the initial circles bounding D.
According to Lemma 4.2, we can express any extension by only using reflections against
the boundary circles of D, and it is therefore sufficient to investigate the functional
equation (4.8) for the initial boundary circles Cj .
We also note the connection to the previous discussion, as we can combine any two
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reflections of S(D) to a Möbius transformation of M(D)

s0 ◦ sj = Tj , sj ◦ s0 = T−1
j , si ◦ sj = T−1

i Tj ,

where i 6= j and i, j 6= 0. The functional equation of Lemma 4.5 can therefore be
constructed by applying the functional equation of the lemma above twice.

Continuing the investigation, we obtain the following interesting information about the
parameters γ:

Lemma 4.12
Let C be a boundary circle Cj of D or a transformation T (Cj), where T ∈ M(D), of

a boundary circle with center c and radius r and let s(z) = r2

z̄−c̄ + c be the reflection
against C.
The parameters γp and γq corresponding to the prevertices p and q = s(p) (not
necessary on C) satisfy the equation

γq = −(p̄− c̄)
r2

(γp(p̄− c̄) + 2a) .

If p lies on C, this simplifies to

Re (γp(p− c) + a) = 0. (4.10)

Proof. We already derived the expansion for f in the form

{f, z} =
a

(z − p)2
+

γ

(z − p) +O((z − p)0).

Therefore g, defined as in the previous proof by g(z) := f(z), has the expansion

{g, z} =
a

(z − p̄)2
+

γ̄

(z − p̄) +O((z − p̄)0).

We define q by p = s(q), with s being a reflection against one of the boundary circles
or against a transformation of a boundary circle. Alternatively, we can write p = σ(q),
where σ(z) = s(z). We continue to obtain

{g ◦ σ, z} = σ′(z)2{g, σ(z)}

=
a

(z − q)2
+
σ′′(q)a+ σ′(q)2γ̄

σ′(q)

1

(z − q) +O((z − q)0).

This gives us the equation

γq = σ′(q)γp + a
σ′′(q)

σ′(q)
.
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If we now replace σ′(z) = −r2(z − c)−2 in the formula, it alters to

γq =
−r2

(q − c)2
γp +

−2

(q − c)a = −(p̄− c̄)
r2

(γp(p̄− c̄) + 2a) .

We can attain the second statement of the lemma if we reshape the equation to

γq(q − c) + a = −(γp(p− c) + a).

If p lies on the circle C, which is used for the reflection, we have p = q and therefore

γp(p− c) + a = −(γp(p− c) + a).

Hence γp(p− c) + a must be purely imaginary.

Equation (4.10) allows us to conclude that each γ can be expressed by one real value
similar to the simply connected case in Theorem 3.4. Hence, we want to state our result
and introduce a new real parameter.

Lemma 4.13
Each parameter γj,k of Definition 4.7 is completely defined by one real parameter
µj,k ∈ R in the form

γj,k =
iµj,k − aj,k
pj,k − cj

,

where cj refers to the center of the boundary circle Cj on which pj,k lies.

Proof. The lemma follows directly from Lemma 4.12 by

Re (γ(p− c) + a) = 0 ⇔ iµ = γ(p− c) + a,

where µ ∈ R. Isolating γ yields the result.

4.1.3 Behavior of the Parameters γ

If we want to investigate the convergence of K, it is reasonable to look into the behavior
of the parameters γ.

Lemma 4.14
The parameters γT (p) of S, i.e. the residues at the poles T (p), are unbounded by
increasing length of the transformations.
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Proof. If we use the common notation for Möbius transformations

T (z) =
Az +B

Cz +D
, T ′(z) =

1

(Cz +D)2
, T ′′(z) =

−2C

(Cz +D)3
,

where AD −BC = 1, we can rewrite γT (p) to

γT (p) = (Cp+D)2γp + 2aC(Cp+D)

= C2(p+ D
C )((p+ D

C )γp + 2a)
(4.11)

while “a” refers to the interior angle and is not to be confused with “A” from the
transformation.

Since M(D) is a Schottky group, we can use some of the properties of Kleinian groups.
We know from Lemma 2.22 that the radii of the isometric circles |Cz + D| = 1 are
going to zero for any infinite subset of a group of Möbius transformations, if infinity
is not a limit point of the group. (We supposed that infinity is in DR, and so it can
not be a limit point.) The centers on the other hand are clustering around the limit
points and have therefore an upper boundary.
In other words, the absolute value of C goes to infinity, while −D

C stays bounded. As
γ grows quadratically with C, it will tend to infinity for longer transformations, i.e.
|T | → ∞ ⇒ |γT (p))| → ∞.

An alternative, more geometric proof is also possible. By extending D, we place in-
finitely many transformations of D in the complex plain. Since they have to accumulate
near the limit points of the group, they have to decrease in size. However, a decrease
in size means a derivative smaller then 1, and so as the image shrinks, the derivative
also has to get smaller. Therefore the derivative goes to zero, which means that the
reciprocal value goes to infinity, but this is the factor applied to γp. As above, this is
only true if infinity is not a limit point of the group. It would otherwise be possible
for the transformed domains to actually increase in size.

Let us illustrate this behavior with an example. Suppose D is a doubly connected
unbounded circular domain. In this case, M(D) is generated by only one transformation
T = s0 ◦ s1. We choose C0 = ∂D and therefore have

s0(z) =
1

z
, s1(z) =

r2

z − c1
+ c1

⇒ T (z) =
(r2 − |c1|2)z + c1

−c1z + 1
.

If we normalize the Möbius transformation (AD −BC = 1) and write it in the form of
a matrix, which contains the coefficients, we get

T =
1

r

(
|c1|2 − r2 −c1

c1 −1

)
.
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By choosing some explicit values for the radius and the center of C1, for example r = 1
and c = 3, we can calculate the iterations of T

T =

(
8 −3
3 −1

)
, T 2 =

(
55 −21
21 −8

)
, T 3 =

(
377 −144
144 −55

)
, . . .

We notice that |C| is rising with the length of the transformation (3, 21, 144), while −D
C

stays bounded and converges against the limit point inside of C0 = ∂D (1
3 ≈ 0.33333,

8
21 ≈ 0.38095, 55

144 ≈ 0.38194) (Tables 1 and 2).

Tn n = 1 2 3 4 5 6 7

C 3 21 144 987 6765 46368 317811

−D
C 0.33333 0.38095 0.38194 0.38197 0.38197 0.38197 0.38197

Table 1: The coefficients C tend to infinity, while the quotients −D
C stay

bounded, as the length of the transformations increases.

Tn n = 1 2 3 4 5 6 7 8 9 10

log10(C) 0.48 1.32 2.16 3.00 3.83 4.65 5.52 6.35 7.17 8.00

Table 2: The coefficients C grow nearly exponential.

If we continue with this example, we may also investigate the behavior of
∑

T,j,k γT,j,k.
Suppose there are two prevertices on each circle Cj

p0,1 = c0 + r0, p0,2 = c0 − r0,

p1,1 = c1 + r1, p1,2 = c1 − r1,

where cj ∈ R is the center and rj the radius of Cj , j = 0, 1.24 By the geometry of the
image domain, the values aj,1, aj,2 for each circle Cj must be equal. We even choose all
a to be equal:

a0,1 = a0,2 = a1,1 = a1,2 = a.

We will further denote the transformation T , by

T =

(
A B
C D

)
, U = T−1 =

(
D −B
−C A

)
.

24The circle C0 was already normalized to ∂D.
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Figure 28: The example domain for c1 = 3 and r1 = 1.

The sum over the γ of the second generation (with applied T and U) is∑
j,k

γT,j,k +
∑
j,k

γU,j,k =
∑
j,k

((Cpj,k +D)2γj,k + 2C(Cpj,k +D)a)

+
∑
j,k

((−Cpj,k +A)2γj,k − 2C(−Cpj,k +A)a)

=
∑
j,k

(C2(pj,k − uT )2γj,k + 2C2(pj,k − uT )a)

+
∑
j,k

(C2(pj,k − uU )2γj,k + 2C2(pj,k − uU )a),

where uT = −D
C and uU = A

C are the centers of the isometric circles of the transforma-
tions. Since the circles are symmetric to the line with constant real part 1

2(c0 + c1), the
centers of the isometric circles are also symmetric. This leads to

p0,2 − uT = −(p1,1 − uU ), p0,1 − uT = −(p1,2 − uU ),

p1,1 − uT = −(p0,2 − uU ), p1,2 − uT = −(p0,1 − uU ).

Hence, the factors of a drop out of the sum, which gives us∑
j,k

γT,j,k +
∑
j,k

γU,j,k =
∑
j,k

C2(pj,k − uT )2γj,k +
∑
j,k

C2(pj,k − uU )2γj,k.

Since C = c1 and pj,k − u are real, the coefficients of the γ are all positive as they are
taken to the second power. This is also true for successive applications of T and U .
Therefore, the sum over γ for each generation grows, i.e.∑

j,k

γT,j,k <
∑
j,k

γV,j,k for |T | < |V |,

and so the sum
∑

T,j,k γT,j,k over all generations tends to infinity, if there are no further
requirements for γ.
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4.1.4 Idea Regarding the Convergence

Based on the behavior of γ, it is reasonable to assume that AC(z, T, j, k) 6= 0 to ensure
the convergence of K. Referring to Mittag-Leffler’s theorem we can expand one of the
principal parts of (4.6) around a point l in terms of (z − l)−1 to obtain

a

(z − p)2
+

γ

(z − p) =
γ

(z − l) +
a+ γ(p− l)

(z − l)2
+

2a(p− l) + γ(p− l)2

(z − l)3
+O((z − l)−4).

Since AC can only have poles in Λ, we match each transformation of the circular domain
T (D) with a limit point lT inside the convex hull of T (D). This allows us to state our
first approach to the convergence of K.

Lemma 4.15
Let D be a circular domain, infinity an ordinary point of M(D) lying in DR and Λ
the limit set of M(D). Further let

ε =
1

4
max
l1,l2∈Λ

{|l1 − l2|}.

The candidate function K in the form

K(z) =
∑
j,k

(
aj,k

(z − pj,k)2
+

γj,k
z − pj,k

)

+
∑′

T,j,k

(
aj,k

(z − pT,j,k)2
+

γT,j,k
z − pT,j,k

− γT,j,k
(z − lT )

− aj,k + γT,j,k(pT,j,k − lT )

(z − lT )2
− 2aj,k(pT,j,k − lT ) + γT,j,k(pT,j,k − lT )2

(z − lT )3

)
,

converges locally uniformly on D, where lT ∈ Λ and |T−1(lT )− T−1(∞)| > ε.

The symbol
∑′

indicates the sum without the identity.

We will not rely on this lemma later on, therefore the proof is not stated here, but can
be found in the appendix at A.2.
The lemma is none the less quite interesting. The discussion so far allows the conver-
gence only for a similar construction with poles in the limit points. However, the version
above is not actually suitable; while it provides the convergence, it is not compatible
with the functional equation (Lemma 4.5) of the Schwarzian. If the functional equation
is applied to K, the coefficients and the poles do not match any longer. We will therefore
search for an invariant expression regarding the functional equation.
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4.1.5 Note about the Boundary Values

We are investigating conformal mappings onto MCCAPDs. This means that the bound-
aries of the image domains consist of circular arcs, while the preimages are bounded by
circles.
According to Lemma 2.16, a mapping f from a circular arc z(t) = reit+c onto a circular
arc leads to the property

(z − c)2{f, z} ∈ R

for the Schwarzian. Hence in the context of the MCCAPD mapping, we should have

(z − cj)2S(z) ∈ R, z ∈ Cj , j = 0, . . . ,m, (4.12)

where cj indicates the center of Cj . The only exceptions would be the prevertices, as
they are poles of the Schwarzian.

Lemma 4.11 requires the Schwarzian to satisfy the functional equation

S(z) = σ′(z)2S(σ(z)) (4.13)

for every reflection s ∈ S(D) against one of the boundary circles.
Suppose z = reiϕ + c to be on a boundary circle C of D, and s to be the reflection
against this circle C. We have s(z) = z and σ is defined by σ(z) = s(z). If a candidate
function K satisfies the functional equation (4.13), we can reshape the equation to

K(z) = (σ′(z))2K(σ(z)) =

(
r

z − c

)4

K(z) = (e−iϕ)2(eiϕ)2K(z)

⇒ (eiϕ)2K(z) = (eiϕ)2K(z).

If we substitute again, but this time with eiϕ = z−c
r , and multiply both sides with r2,

we get

(z − c)2K(z) = (z − c)2K(z), z ∈ Cj \ {pj,k|k = 1 . . .Kj}, j = 0, . . . ,m.

This means that (z − c)2K(z) is real, i.e. the candidate function also satisfies equation
(4.12).
Hence, any candidate function that satisfies the functional equation (4.13) also satisfies
equation (4.12). It is therefore not necessary to verify if the boundary is actually mapped
onto circular arcs.

66



4.2 Mappings onto Doubly Connected Domains

4.2 Mappings onto Doubly Connected Domains

In most cases the limit set Λ of M(D) contains an infinite number of points (Lemma
2.25). The only exceptions are the groups generated for doubly connected domains D
with only two limit points. Since the analytic parts of S depend on Λ, we investigate
this simplified case first.
While we were supposing for the common case that either zero or infinity should be in
D, we switch here to annuli of the form A = { z | r < |z| < 1}. Not only are the annuli
the most common canonical region for doubly connected mappings, but also the groups
M(A) will be quite simple.
It is sufficient to investigate the mappings from the annuli. If needed, we can change each
preimage domain by applying a Möbius transformation. For a given circular domain
D, we only have to find the transformation H ∈ M which maps D onto a conformally
equivalent annulus A = H(D) (Figure 29). The new Schwarzian {f ◦H, z} is then given
by H ′(z)2{f,H(z)} = H ′(z)2S(H(z)) if f refers to the conformal mapping from this
annulus onto the MCCAPD (or DCCAPD for doubly connected circular arc polygon
domain) f(A) = f(H(D)).

H f

f ◦H

Figure 29: A change of the preimage domain of a mapping f can be estab-
lished by applying a Möbius transformation H in the form f ◦H.

We will restate the results from above, but modify them for annuli. The reflections
against the boundaries are s0(z) = 1

z and s1(z) = r2

z . The only generating transforma-
tion for M(A) is therefore the scaling T (z) = r2z, so M(A) = { r2nz |n ∈ Z }. Hence,
the maximum extension of A is AE := C \ {0}, as the limit points of M(A) are 0 and
∞. By inserting these values and combining our Lemmas 4.5, 4.10 and 4.11 we get:

Lemma 4.16
The Schwarzian derivative of a conformal mapping from the annulus A = { z | r <
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|z| < 1} onto a DCCAPD is of the form

S(z) =

∞∑
n=−∞

∑
j,k

(
aj,k

(z − r2npj,k)2
+
γj,k
r2n

1

z − r2npj,k
+AC(z, n, j, k)

)
+AR(z),

where the functions AC and AR are analytic in AE = C \ {0}. Further, S satisfies the
functional equations

S(z) = r4S(r2z),

S(z) = z−4S(z−1).

We also rewrite K and Lemma 4.15. The only limit points are 0 and ∞, while the frac-
tions for lT =∞ vanish. Hence, we have found the following convergence statement:

Lemma 4.17
The candidate function K for the annulus A = { z | r < |z| < 1} of the form

K(z) =
∞∑

n=−∞

∑
j,k

(
aj,k

(z − r2npj,k)2
+
γj,k
r2n

1

z − r2npj,k
+AC(z, n, j, k)

)
converges uniformly on closed sets M ⊂ AE not containing prevertices r2npj,k, where

AC(z, n, j, k) =

{
− γj,k
r2nz
− aj,k+γj,kpj,k

z2
for n > 0

0 for n ≤ 0
.

Proof. Let M ⊂ AE,p := C \ ({0} ∪ {r2npj,k}) be a closed subset of AE,p and z ∈ M .
Based on the piecewise definition of AC , we split up the sum.

If n is negative we have for r < 1 and m = −n

lim
m→∞

r−2m =∞ ⇒ lim
m→∞

|z − r−2mpj,k| =∞

and so our formula becomes

lim
m→∞

(
aj,k

(z − r−2mpj,k)2
+

γj,k
r−2m

1

(z − r−2mpj,k)

)
= 0,

since each of the denominators grow with r−4m while the numerators are fixed.
A more exact formulation gives us

max
z,m,j,k

∣∣∣∣aj,k + (r2mz − pj,k)γj,k
(r2mz − pj,k)2

∣∣∣∣ = λ1

as the terms |r2mz − pj,k| > ε > 0 have a lower boundary for all z ∈ M and tend to
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|pj,k| for rising m. Therefore, we have∣∣∣∣ aj,k
(z − r−2mpj,k)2

+
r2mγj,k

(z − r−2mpj,k)

∣∣∣∣ = r4m

∣∣∣∣aj,k + (r2mz − pj,k)γj,k
(r2mz − pj,k)2

∣∣∣∣ ≤ r4mλ1

and this concludes for the sum over the negative values of n∣∣∣∣∣∣
−1∑

n=−∞

∑
j,k

[
aj,k

(z − r2npj,k)2
+
γj,k
r2n

1

(z − r2npj,k)

]∣∣∣∣∣∣
≤

−1∑
n=−∞

∑
j,k

∣∣∣∣ aj,k
(z − r2npj,k)2

+
γj,k
r2n

1

(z − r2npj,k)

∣∣∣∣
≤
∞∑
m=1

r4m
∑
j,k

∣∣∣∣aj,k + (r2mz − pj,k)γj,k
(r2mz − pj,k)2

∣∣∣∣
≤ 2 max

j
{Kj}λ1

∞∑
m=1

r4m <∞.

The first half is therefore converging locally uniformly on AE,p.

The case of a positive n is less simple. The main problem is that
γj,k
r2n

goes to infinity
for growing n, while the sums

1∑
j=0

Kj∑
k=1

(
aj,k

(z − r2npj,k)2
+
γj,k
r2n

1

(z − r2npj,k)
− γj,k
r2nz

− aj,k + γj,kpj,k
z2

)
must go to zero. If we investigate one of these summands, we see

aj,k
(z − r2npj,k)2

+
γj,k
r2n

1

(z − r2npj,k)
− γj,k
r2nz

− aj,k + γj,kpj,k
z2

= r2npj,k

(
aj,k

2z − r2npj,k
(z − r2npj,k)2z2

+
γj,kpj,k

(z − r2npj,k)z2

)
.

Because r2n goes to zero, the factor |z−r2np| in the denominator has a lower boundary
and tends to |z| for growing n. Since the numerators are also bounded, there must be
an upper boundary for the whole expression

max
z,n,j,k

∣∣∣∣pj,k (aj,k 2z − r2npj,k
(z − r2npj,k)2z2

+
γj,kpj,k

(z − r2npj,k)z2

)∣∣∣∣ = λ2.

Application of this results in∣∣∣∣∣∣
∞∑
n=1

∑
j,k

[
aj,k

(z − r2npj,k)2
+
γj,k
r2n

1

(z − r2npj,k)
+AC(z, n, j, k)

]∣∣∣∣∣∣
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≤
∞∑
n=1

∑
j,k

∣∣∣∣ aj,k
(z − r2npj,k)2

+
γj,k
r2n

1

(z − r2npj,k)
+AC(z, n, j, k)

∣∣∣∣
≤
∞∑
n=1

r2n
∑
j,k

∣∣∣∣pj,k (aj,k 2z − pj,kr2n

(z − r2npj,k)2z2
+

γj,kpj,k
(z − r2npj,k)z2

)∣∣∣∣
≤ 2 max

j
{Kj}λ2

∞∑
n=1

r2n <∞.

This shows the locally uniformly convergence of K on AE,p.

4.2.1 Construction of the Schwarzian Derivative

We have a candidate function in Lemma 4.17, which has the same poles in AE = C\{0}
as S. The next step would be to ensure the functional equations of Lemma 4.16, but we
will need one more result before we continue. We have found the following connection
between the parameters of the Schwarzian derivative:

Lemma 4.18
The parameters a, p and γ of the Schwarzian derivative of a conformal mapping from
an annulus A onto a DCCAPD satisfy the equation

1∑
j=0

Kj∑
k=1

(pj,kγj,k + aj,k) = 0, (4.14)

where every term (pj,kγj,k + aj,k) is purely imaginary.

Proof. If we integrate along the circles δ(t) = ρ exp (it), where 1 < ρ < r−1, and
ζ(t) = r2δ(t), the annulus A lies between both curves (Figure 30). This is possible, as
we extended S over both boundaries. Based on the residue theorem, the difference of
the two integrals can be expressed as the sum over the enclosed residues∫

δ
zS(z)dz −

∫
ζ
zS(z)dz = 2πi

∑
j,k

(pj,kγj,k + aj,k), (4.15)

since

z

(
a

(z − p)2
+

γ

(z − p)

)
=

ap

(z − p)2
+
a+ γp

(z − p) + γ.
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However, by using the functional equation we obtain∫
ζ
zS(z)dz =

∫ 2π

0
r2δ(t)S(r2δ(t))r2δ̇(t)dt =

∫ 2π

0
δ(t)S(δ(t))δ̇(t)dt =

∫
δ
zS(z)dz,

and therefore have∫
δ
zS(z)dz −

∫
ζ
zS(z)dz =

∫
δ
zS(z)dz −

∫
δ
zS(z)dz = 0. (4.16)

Combining the equations (4.15) and (4.16) gives us∑
j,k

(pj,kγj,k + aj,k) = 0.

The statement that each (pj,kγj,k + aj,k) is purely imaginary follows from Lemma
4.12.

ζ

δ
D

Figure 30: The curves used in the proof of Lemma 4.18 enclose the annulus
r < |z| < 1. The parametrization δ describes a circle with center zero and a
radius greater than 1 and ζ describes a circle whose center is also zero but with
a radius smaller than r

To ensure that each term pj,kγj,k + aj,k is purely imaginary, we will use the parameter
µj,k (Lemma 4.13) with

iµj,k = pj,kγj,k + aj,k

instead of γj,k. The restricting equation (4.14) therefore simplifies to

1∑
j=0

Kj∑
k=1

µj,k = 0.

We will also substitute γ in K of Lemma 4.17 and apply the restricting equation to
further simplify the result.
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Lemma 4.19
The candidate function K for the annulus A = { z | r < |z| < 1} of the form

K(z) =

∞∑
n=−∞

∑
j,k

(
aj,k

(z − r2npj,k)2
+

iµj,k − aj,k
r2npj,k(z − r2npj,k)

− iµj,k − aj,k
r2npj,kz

)
,

where
∑

j,k µj,k = 0, converges uniformly on closed sets M ⊂ AE not containing

prevertices r2npj,k.

Proof. According to Lemma 4.17, we know that

K1(z) =

∞∑
n=−∞

∑
j,k

(
aj,k

(z − r2npj,k)2
+

iµj,k − aj,k
r2npj,k(z − r2npj,k)

+A1(z, n, j, k)

)
,

converges locally uniformly on AE,p := C \ ({0} ∪ {r2npj,k}), where

A1(z, n, j, k) =

{
− iµj,k−aj,k

r2npj,kz
− iµj,k

z2
for n > 0

0 for n ≤ 0
.

The function K1 will now be modified to match the shape shown in the lemma.
For easier handling, we define

τ1 := −
∑
j,k

iµj,k − aj,k
pj,k

, τ2 := −
∑
j,k

iµj,k,

and rewrite K1 by reordering the finite sums to

K2(z) :=
∞∑

n=−∞

∑
j,k

(
aj,k

(z − r2npj,k)2
+

iµj,k − aj,k
r2npj,k(z − r2npj,k)

)
+A2(z, n, j, k)

 ,

where

A2(z, n, j, k) :=

{
τ1
r2nz

+ τ2
z2

for n > 0

0 for n ≤ 0
.

K2 is converging, as its only difference from K1 is a reordering in the finite part of the
sum. We know that τ2 is zero because of Lemma 4.18, and so we may neglect it in the
future.
For negative n, we have

0∑
n=−∞

−τ1

r2nz
=

τ1

(r2 − 1)z
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due to the identity

0∑
n=−∞

1

r2n
=

∞∑
n=0

(r2)n =
−1

r2 − 1
.

This allows us to define

K3(z) := K2(z) +
τ1

(r2 − 1)z

=

∞∑
n=−∞

∑
j,k

(
aj,k

(z − r2npj,k)2
+

iµj,k − aj,k
r2npj,k(z − r2npj,k)

− iµj,k − aj,k
r2npj,kz

)
.

K3 is converging on AE,p as K2 is doing so. Reordering the finite part again leads to
the form of the lemma.

With the convergence ensured, we will introduce a form of K, which satisfies the func-
tional equations.

Lemma 4.20
The candidate function K of the form

K(z) =
∞∑

n=−∞

∑
j,k

(
aj,k

(z − r2npj,k)2
+

iµj,k − aj,k
z(z − r2npj,k)

)
+
ibi
z2
,

where
∑

j,k µj,k = 0 and

bi = −1

2

K1∑
k=1

µ1,k ∈ R,

satisfies the equations

K(z) = r4K(r2z),

K(z) = z−4K(z−1).

Proof. First we show K(z) = z−4K(z−1). For ease of calculation, we define

τ(z, n, j, k) :=
aj,k

(z − pn,j,k)2
+

iµj,k − aj,k
z(z − pn,j,k)

,

where pn,j,k = r2npj,k, to calculate

z−4τ(z−1, n, j, k) =
aj,k

(z − q)2
+
iµj,k − aj,k
z(z − q) −

iµj,k
z2
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where q = pn,j,k
−1. Depending on the circle Cj on which the initial pj,k lies, we have

pn,j,k
−1 =

{
p−n,j,k for j = 0

p−n−1,j,k for j = 1
.

Using this fact, we can reshape the expression above to

z−4τ(z̄−1, n, j, k) =

{
τ(z,−n, j, k)− iµj,k

z2
for j = 0

τ(z,−n− 1, j, k)− iµj,k
z2

for j = 1
. (4.17)

The candidate function K(z) = limN→∞KN (z) is the limit of

KN (z) =
N∑

n=−N

∑
j,k

(
aj,k

(z − r2npj,k)2
+

iµj,k − aj,k
z(z − r2npj,k)

)
+
ibi
z2

=
N∑

n=−N

∑
j,k

τ(z, n, j, k) +
ibi
z2
.

For the expression z−4KN (z−1) of the functional equation we have, by using equation
(4.17),

z−4KN (z−1) =
N∑

n=−N

∑
j,k

z−4τ(z−1, n, j, k)− ibi
z2

=
N∑

n=−N

(
K0∑
k=1

τ(z,−n, 0, k) +

K1∑
k=1

τ(z,−n− 1, 1, k)

)
− ibi
z2

=
N∑

n=−N

K0∑
k=1

τ(z, n, 0, k) +
N−1∑

n=−N−1

K1∑
k=1

τ(z, n, 1, k)− ibi
z2
.

The terms iµj,kz
−2 vanish in the sum according to Lemma 4.18, since we have an equal

amount of sums
∑

k iµj,kz
−2 for j = 0 as for j = 1.

If we compare KN (z) with z−4KN (z−1), we can cancel out the expressions τ with equal
parameters. Hence, the difference can be written as

KN (z)− z−4KN (z−1) =

K1∑
k=1

τ(z,N, 1, k) +
ibi
z2
−
(
K1∑
k=1

τ(z,−N − 1, 1, k)− ibi
z2

)

=

K1∑
k=1

(
a1,k

(z − r2Np1,k)2
+

iµ1,k − a1,k

z(z − r2Np1,k)

)

−
K1∑
k=1

(
a1,k

(z − r−2N−2p1,k)2
+

iµ1,k − a1,k

z(z − r−2N−2p1,k)

)
+

2ibi
z2

.
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If we now apply the limit for N to infinity, we obtain

lim
N→∞

(
KN (z)− z−4KN (z−1)

)
=

K1∑
k=1

(
a1,k

z2
+
iµ1,k − a1,k

z2

)
+

2ibi
z2

.

Hence, the functional equation K(z) = z−4K(z−1) holds only if we have

bi = −1

2

K1∑
k=1

µ1,k.

Note that bi is real, as every µ1,k is real.

For the other functional equation K(z) = r4K(r2z), we define

τ(z, n) :=
∑
j,k

(
aj,k

(z − pn,j,k)2
+

iµj,k − aj,k
z(z − pn,j,k)

)
and therefore have by calculation

r4τ(r2z, n) = τ(z, n− 1).

This time the difference of the two sides of the functional equation takes the form

KN (z)− r4KN (r2z) =

(
τ(z,N) +

ibi
z2

)
−
(
τ(z,−N − 1) +

ibi
z2

)
= τ(z,N)− τ(z,−N − 1)

and in the limit case

lim
N→∞

(
KN (z)− r4KN (r2z)

)
=
∑
j,k

(
aj,k
z2

+
iµj,k − aj,k

z2

)
= 0

according to Lemma 4.18. This proves the second equation.

With the functional equations satisfied, we are able to state the remaining difference
between K and S.

Lemma 4.21
The Schwarzian derivative of a conformal mapping of the annulus A onto a DCCAPD
is of the form

S(z) = K(z) +
br
z2
,

where K as in Lemma 4.20 and br ∈ R.
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Proof. The difference T (z) := S(z)−K(z) is holomorphic in AE , as S and K have the
same poles in DE , and further satisfies the equations

T (z) =r4T (r2z), (4.18)

T (z) =
1

z4
T
(

1

z

)
, (4.19)

as S and K satisfy them. Since T can only have poles at zero and infinity, it must be
of the form

T (z) =

∞∑
n=−∞

dnz
n,

but equation (4.18) reduces this to

T (z) =
br
z2
,

where br = d−2, while equation (4.19) provides br ∈ R.

We restate the last result to explicitly show our version of the Schwarzian derivative for
conformal mappings onto doubly connected CAPDs.

Theorem 4.22
Let P be a doubly connected circular arc polygon domain bounded by the circular
arc polygons Pj , j = 0, 1, with the vertices vj,k, k = 1, . . . ,Kj , and the interior angles
αj,kπ. Further, let A = { z | r < |z| < 1} be the annulus conformally equivalent to P .
The Schwarzian derivative S of any conformal mapping f of A onto P has the form

S(z) =

∞∑
n=−∞

∑
j,k

(
aj,k

(z − r2npj,k)2
+

iµj,k − aj,k
z(z − r2npj,k)

)
+

b

z2
.

The parameters of the formula are the prevertices pj,k ∈ {pj,k | pj,k ∈ Cj , f(pj,k) =
vj,k}, the interior angles παj,k in the form aj,k = 1

2(1−α2
j,k), the additional parameters

µj,k ∈ R and b, where

K0∑
k=1

µ0,k +

K1∑
k=1

µ1,k = 0, (4.20)

Im (b) =
1

2

K0∑
k=1

µ0,k. (4.21)
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4.2.2 Mappings from Generic Doubly Connected Circular Domains

Until now, we have only investigated mappings for the case where the preimage domain
is an annulus. To get the shape of S for a more generic doubly connected circular
domain D, we apply a Möbius transformation H, where H(D) = A, to the known
Schwarzian {f, z} for the annulus A to calculate {f ◦H, z}, where f ◦H is a conformal
mapping from a non-annulus circular domain onto a DCCAPD. The Schottky group

H f

f ◦H

Figure 31: A change of the preimage domain of a mapping f can be estab-
lished by applying a Möbius transformation H in the form f ◦H.

M(D) still has only two limit points l1 and l2, as it is generated by one transformation
T = s0 ◦ s1, i.e. gen(M(D)) = {T, T−1}. Hence, the modified version of our version of
the Schwarzian is of the form:25

Theorem 4.23
Let P be a doubly connected circular arc polygon domain bounded by the circular
arc polygons Pj , j = 0, 1, with the vertices vj,k, k = 1, . . . ,Kj , and the interior angles
αj,kπ. Further, let D be a doubly connected circular domain conformally equivalent
to P and bounded by the circles Cj with the centers cj . The reflections against the
circles Cj are denoted by sj ∈ S(D).
The Schwarzian derivative S of any conformal mapping f of D onto P has the form

S(z) =
∞∑

n=−∞

∑
j,k

(
aj,k

(z − pn,j,k)2
+

γn,j,k
(z − pn,j,k)

+
(pn,j,k − l2)γn,j,k + aj,k

(l2 − l1)(z − l1)
+

(pn,j,k − l1)γn,j,k + aj,k
(l1 − l2)(z − l2)

)
+

b(l1 − l2)2

(z − l1)2(z − l2)2
.

25We use γ instead of µ, to keep the formulas as short as possible.
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4 Multiply Connected Circular Arc Polygon Domains

The parameters of the formula are the prevertices pn,j,k ∈ {Tn(pj,k) | pj,k ∈ Cj , T =
s0 ◦ s1, f(pj,k) = vj,k}, the interior angles παj,k in the form aj,k = 1

2(1−α2
j,k) and the

additional parameters γn,j,k and b, where∑
j,k

(
(pj,k − l1)(pj,k − l2)γj,k + (2pj,k − l1 − l2)aj,k

)
= 0, (4.22)

Im (b) =
1

2

K0∑
k=1

(pj,k − l1)(pj,k − l2)γj,k + (2pj,k − l1 − l2)aj,k
(l1 − l2)

,

γj,k(pj,k − cj) + aj,k ∈ iR.

The limit points of M(D) are denoted by l1 and l2, where l1 lies inside C1.

Proof. To get the shape of S for a generic circular domain D, we apply a Möbius
transformation to the Schwarzian for the annulus. Since the Schwarzian derivative
provides us with

{f ◦H, z} = H ′(z)2{f,H(z)}

if H is a Möbius transformation, it is sufficient to calculate the right side of the equa-
tion. We define the bounded domain D by H(D) = A, where H(z) = (Az+B)/(Cz+
D), AD − BC = 1, H(C0) = ∂D, and H(C1) ⊂ D. The new preimage domain has a
changed set of parameters. The new prevertices q are given by q = H−1(p). The new
parameters δ are given by δ = (Cq+D)−2γ−2aC(Cq+D)−1 if we use equation (4.5).
The generating transformation T = s0 ◦s1 for M(D) is H−1 ◦G◦H, where G(z) = r2z,
while the new limit points are given by the preimages of zero and infinity, i.e.

H(l1) = H
(
−B
A

)
= 0, H(l2) = H

(
−D
C

)
=∞,

where l1 is inside both circles and we therefore have l1 ∈ ch(C1) ⊂ ch(C0).
By using these expressions, we obtain the relation

H ′(z)2
∑
j,k

(
a

(H(z)− p)2
+

γ

(H(z)− p) −
γ

H(z)

)

=
∑
j,k

(
a

(z − q)2
+

δ

(z − q) +
δ(q − l2) + a

(l2 − l1)(z − l1)
+

δ(q − l1) + a

(l1 − l2)(z − l2)

)
.

(4.23)

Equation (4.23) contains the sum over j and k because we already used the property∑
j,k

(γp+ a) =
∑
j,k

((q − l1)(q − l2)δ + (2q − l1 − l2)a) = 0.
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4.2 Mappings onto Doubly Connected Domains

Actually, the relation for the restricting equation is

γp+ a =
(q − l1)(q − l2)δ + (2q − l1 − l2)a

l1 − l2
,

but the difference (l1 − l2) is constant and can therefore be removed from the sum.
The remaining analytic part b

z2
can be transformed to

H ′(z)2 b

H(z)2
=

b(l1 − l2)2

(z − l1)2(z − l2)2
.

Having transformed every part of S and the restricting equation, the lemma is proven
for bounded domains.
An unbounded domain DU can be reached by using an inversion U(z) = r2

0/(z−c0)+c0

with respect to C0 in the form (H ◦U)(DU ) = H(D) = A. However, the only difference
to the result above for bounded domains is the fact that C1 is outside of C0 and we
therefore have l1 ∈ ch(C1), l2 ∈ ch(C0), and ch(C0) ∩ ch(C1) = ∅.

An easy way to check the plausibility of the above equation is to let l2 approach infinity

S(z) =
∑
n,j,k

(
aj,k

(z − pn,j,k)2
+

γn,j,k
(z − pn,j,k)

+
−γn,j,k
(z − l1)

)
+

b

(z − l1)2
.

If additionally l1 is replaced by zero, the expression simplifies to the form for the annulus,
where the limit points are zero and infinity.

Remark

One may wish to prove the restricting equation∑
j,k

(p− l1)(p− l2)γ + (2p− l1 − l2)a

(l1 − l2)
= 0 (4.24)

directly in D. The integration method used for Lemma 4.18 needs to be modified to
establish this. The function

h(z) :=
(z − l1)(z − l2)

(l1 − l2)

has the interesting properties

T ′(z)−1h(T (z)) = h(z),

σ′(z)−1h(s(z)) = h(z)
(4.25)

regarding transformations of M(D) and reflections against the boundary components of
D. As a consequence, the integral ∫

δ
h(z)S(z)dz
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4 Multiply Connected Circular Arc Polygon Domains

is invariant against applications of these transformations/reflections to the integration
curve δ,26 and so it takes the place of the integral∫

δ
zS(z)dz

in the proof of Lemma 4.18. It is interesting to note that the function g(z) = z satisfies
the equations (4.25) for the transformations belonging to an annulus.
Applying the proof of Lemma 4.18 yields the wanted result. This can also be seen by
the fact that the restricting equation can be written as∑

j,k

(h(p)γ + h′(p)a) = 0

by using h. Furthermore, every term h(p)γ + h′(p)a is invariant with respect to the
transformations of M(D).

4.2.3 Validity of the Mappings

We noted in the discussion following Lemma 2.13 that it is in general not possible to
say in advance if the solution of a Schwarzian derivative is a valid multiply connected
mapping. We further observed that one way to check this would be to verify∫

δ
f (k)(z)dz = 0, k = 1, 2, 3, (4.26)

for curves enclosing exactly one of the boundary components.
For a doubly connected mapping, it is sufficient to integrate around one of the holes in
the domain.27 For the annulus r < |z| < 1, we can, for example, set δ to

δ(t) =
r + 1

2
eit

and test the three integrals (4.26) along this curve.
The downside is that we first need to solve for f before we can verify the mapping. This
leads to the requirement of numerical methods for finding a valid map onto a DCCAPD.

It is reasonable in this context to count the number of free parameters on both sides of
such a mapping.
On the image side, a DCCAPD can be defined by its vertices and the curvature28 of
the arcs. Let us denote the number of the vertices by K := K0 + K1. This gives 3K
real degrees of freedom from which we must subtract 6 degrees for an applicable Möbius
transformation, so we have 3K − 6 degrees of freedom on the image side.

26The integral may still change its sign, if the transformation/reflection applied to the curve changes
its direction.

27There is only one hole for bounded doubly connected domains, but two holes for unbounded domains.
28Here we will need the curvature with a sign to distinguish arcs bounded inwards and arcs bounded

outwards.
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4.2 Mappings onto Doubly Connected Domains

For the preimage, the Schwarzian contains 3K real parameters p, a, µ, while the bound-
ary circles are defined by 6 real values (centers and radii). We further have one real
parameter br = Re (b) for the analytic remainder. On the other hand, we have to sub-
tract again 6 degrees of freedom for the applicable Möbius transformation. Further we
have the restricting equation (−1) and the three integral conditions (−6). Hence we
have

3K parameters p, a, µ

+ 6 centers and radii of C0 and C1

+ 1 Re (b)

− 6 Möbius transformation

− 1 restricting equation (4.14)

− 6 integral equations (4.26)

= 3K − 6

degrees of freedom on the preimage side.
Therefore both sides have the same number of degrees of freedom, but we can choose
3K values for the mapping as the integral equations can only be satisfied by changing
the remaining values. There are therefore parameter sets (p, a, γ, Re (b), D) which do
not lead to a valid doubly connected mapping.

There is also an interesting fact regarding the analytic remainder br/z
2. Note that br

for the analytic remainder is real. The imaginary part bi is a result of satisfying the
functional equations of S. If we calculate the Schwarzian of the function g(z) = zα, we
have

{g, z} =
1− α2

2

1

z2
.

Therefore the solution of the Schwarzian derivative of br/z
2 is T ◦ g for a Möbius

transformation T and a suitable choice of α. However the function zα is for α 6= ±1 not
a valid doubly connected mapping of any annulus. It is mapping an annulus onto an
annulus with a gap or an overlapping at the negative real axis depending on the choice
of α. The remainder can therefore be seen as a way to compensate a gap contained in
the solution of the Schwarzian by adjusting the parameter br correctly.
In the case of a generic circular domain, the solution for the analytic remainder is of
the form (

z − l1
z − l2

)α
.

It has a similar effect as br/z
2, but the slit/gap is drawn between the two limit points of

M(D). The slit for the annuli can therefore be seen as a connection between the origin
and infinity.
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4 Multiply Connected Circular Arc Polygon Domains

4.2.4 Univalence of the Mappings

If a conformal mapping onto a DCCAPD exists for a given set of parameters, it may
still not be univalent. However, there are results for the Schwarzian derivative especially
concerning such univalence properties. Best known is the result of Nehari (stated as
Lemma 2.17), which demands

|{f, z}| ≤ 6

(1− |z|2)2
, |z| < 1.

as a necessary condition for a mapping from the unit disk. This condition was expanded
in several directions since its publishing. A good overview of the development can be
found in [Osg98]. For our needs, the most suitable version is one of Gehring [Geh77].

Lemma 4.24 ([Geh77])
If f is analytic and univalent in D, then

|{f, z}| ≤ 6 dist(z, ∂D)−2

in D. The constant 6 is the best possible.

If we define

d(z) := min {(|z| − r), (1− |z|)}
for the annulus A = { z | r < |z| < 1}, the requirement of the lemma changes to

|S(z)| ≤ 6 d(z)−2, z ∈ A.

As this inequality has to be true for all z, it stays true if we integrate inside the annulus
along a curve δ. ∫

δ
|S(z)||dz| ≤

∫
δ

6 d(z)−2|dz|, δ ⊂ A.

While
∫
δ |S(z)||dz| is hard to calculate, there is a lower boundary∣∣∣∣∫

δ
S(z)dz

∣∣∣∣ ≤ ∫
δ
|S(z)||dz|,

which is easier to handle.
If δ(t) = ρeit is a circle in A enclosing C1, we have∫

δ
S(z)dz = 2πi

(
0∑
−∞

∑
k

γn,0,k +

−1∑
−∞

∑
k

γn,1,k

)

= 2πi

(
0∑
−∞

r−2n
∑
k

γ0,k +

−1∑
−∞

r−2n
∑
k

γ1,k

)

= −2πi

(
1

1− r2

∑
k

γ0,k +
1

r−2 − 1

∑
k

γ1,k

)
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and ∫
δ

6 d(z)−2|dz| = 2πρ 6 d(ρ)−2.

Setting the radius for δ to ρ = r+1
2 to get the largest possible distance to the boundary,

we find ∣∣∣∣∑k γ0,k

1− r2
+

∑
k γ1,k

r−2 − 1

∣∣∣∣ ≤ 6

(
1 + r

2

)(
2

1− r

)2

= 12
1 + r

(1− r)2
. (4.27)

This gives us a necessary, but not sufficient, condition for univalence, which depends
on γ and r. The disadvantage of this inequality is that it is inaccurate. While the
initial inequality is accurate in the sense of the best possible constant, the two following
estimations are not precise.
If the same inequality is applied to the reflected annulus 1 < |z| < r−1, we get an altered
form ∣∣∣∣∣∣

∑
j,k

γj,k

∣∣∣∣∣∣ ≤ 12
(1 + r)(r−1 − r)

(1− r)2
.
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4 Multiply Connected Circular Arc Polygon Domains

4.3 Known Mappings onto Doubly Connected Domains

4.3.1 Mapping Formula of Crowdy and Fokas

There is already a form for the Schwarzian in the doubly connected case, which is
provided by Crowdy and Fokas [CF07].

Lemma 4.25 ([CF07])
Let f(z) be the conformal mapping of the annulus r < |z| < 1 onto a doubly connected
circular polygon domain. Let {παj,k | j = 0, 1; k = 1, . . . ,Kj} be the interior angles
at the prevertices {pj,k | j = 0, 1; k = 1, . . . ,Kj}, respectively. Then T (z) = z2S(z) is
given by

T (z) =
1∑
j=0

Kj∑
k=1

[(
α2
j,k − 1

2

)
L
( z

pj,k

)
+ iγj,kK

( z

pj,k

)]
+ c,

where {γj,k | j = 0, 1; k = 1, . . . ,Kj} are real constants satisfying the conditions

K0∑
k=1

γ0,k +

K1∑
k=1

γ1,k = 0, (4.28)

while c is a complex constant satisfying

c− c = −i
K1∑
k=1

γ1,k. (4.29)

The functions L and K in the expression above are constructed by using the Schottky-
Klein prime function

P (z) := (1− z)
∞∏
n=1

(1− r2kz)(1− r2kz−1)

for the annulus r < |z| < 1. They are defined as

K(z) :=
zP ′(z)

P (z)
,

L(z) := zK ′(z).

To get a version that is easier to compare to our results, we evaluate them to

K(z) =
0∑

n=−∞

(
r2n

z − r2n
+ 1

)
+
∞∑
n=1

(
r2n

z − r2n

)

L(z) =

∞∑
n=−∞

( −(r2n)2

(z − r2n)2
+
−r2n

z − r2n

)
.
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We obtain for each prevertex, by using α2−1
2 = −a,

−aL
(z
p

)
+ iγK

(z
p

)
=

∞∑
n=−∞

(
a(r2np)2

(z − r2np)2
+

ar2np

z − r2np

)

+

0∑
n=−∞

(
iγr2np

z − r2np
+ iγ

)
+

∞∑
n=1

iγr2np

z − r2np
.

Since γ drops out of the sum over the index k according to equation (4.28), we have

T (z) =
1∑
j=0

Kj∑
k=1

∞∑
n=−∞

(
aj,k(r

2npj,k)
2

(z − r2npj,k)2
+
r2npj,k(iγj,k + aj,k)

z − r2npj,k

)
+ c (4.30)

In comparison, our form of Theorem 4.22 can be reshaped to

z2S(z) = z2
∞∑

n=−∞

∑
j,k

[
aj,k

(z − r2npj,k)2
+

iµj,k − aj,k
z(z − r2npj,k)

]
+ b

=

∞∑
n=−∞

∑
j,k

[
aj,k(r

2npj,k)
2

(z − r2npj,k)2
+
r2npj,k(iµj,k + aj,k)

(z − r2npj,k)

]
+ b (4.31)

by using the property
∑

j,k iµj,k = 0 provided by equation (4.20).
The formulas (4.30) and (4.31) are equal, beside some minor differences regarding the
notation. Their γ equals our µ and their c equals our b. Also the additional equations
(4.28) and (4.20) and the equations (4.29) and (4.21) are equal.

4.3.2 Schwarz-Christoffel Mapping of the Annulus

A polygonal domain is a special case of a circular arc polygon domain. It is therefore
reasonable to compare the doubly connected SC mapping with the DCCAPD map-
ping.29

Conformal mappings from annuli onto doubly connected regions bounded by two poly-
gons were already constructed by Komatu in 1945 [Kom45], but we will use the approach
of DeLillo, Elcrat and Pfaltzgraff [DEP01]. They stated the pre-Schwarzian of the map-
pings in the form:30

Lemma 4.26 ([DEP01])
Let P be a bounded doubly connected polygonal domain bounded by the polygons
Pj , j = 0, 1, with the vertices vj,k, k = 1, . . . ,Kj , and the turning angles βj,kπ.
Any conformal mapping f from the annulus A = {z | r < |z| < 1} onto P has a

29This was already done for simply connected domains in Section 3.3.
30It is not the final form found in the paper, but the one that is most suitable for our needs.
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pre-Schwarzian of the form

S(z) =
f ′′(z)

f ′(z)
=

∞∑
n=−∞

1∑
j=0

Kj∑
k=1

βj,k
z − r2npj,k

,

where {βj,k = αj,k−1 |αj,k ∈ [0, 2]; j = 0, 1; k = 1, . . . ,Kj} are the turning angles and
{pj,k | j = 0, 1; k = 1, . . . ,Kj ; |p0,k| = 1; |p1,k| = r; f(pj,k) = vj,k} are the prevertices.

To derive the Schwarzian derivative from the pre-Schwarzian S, we define

S(z) := lim
N→∞

SN (z) = lim
N→∞

N∑
n=−N

∑
j,k

βj,k
z − r2npj,k

and

SN (z, r2npj,k) :=

{
SN (z)− βj,k

z−r2npj,k
for −N ≤ n ≤ N

SN (z) otherwise
.

We will denote the derived Schwarzian by T to distinguish it from our version S provided
by Theorem 4.22. Hence, the solutions of T will have the property that the image
domain can be mapped onto a polygonal domain by a Möbius transformation. To
obtain T , we begin with

T (z) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

= (S(z))′ − 1

2
(S(z))2

= lim
N→∞

(
(SN (z))′ − 1

2
(SN (z))2

)
.

If we denote the finite version of T by TN , we have at each pole

TN (z) = (SN (z))′ − 1

2
(SN (z))2 =

(
SN (z, p) +

β

z − p

)′
− 1

2

(
SN (z, p) +

β

z − p

)2

=
−β

(z − p)2
− 1

2

β2

(z − p)2
− β

z − pSN (z, p) + (SN (z, p))′ − 1

2
(SN (z, p))2

=
a

(z − p)2
− βSN (p, p)

(z − p) +O((z − p)0),

where a = 1
2(1 − α2) refers to the interior angle as in the preceding discussion. Since

S is only composed of poles at the prevertices, the Schwarzian has to have a similar
structure, and so we have found

TN (z) =
N∑

n=−N

∑
j,k

(
aj,k

(z − r2npj,k)2
+
−βj,kSN (r2npj,k, r

2npj,k)

(z − r2npj,k)

)
. (4.32)
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If we compare TN with a finite version SN of the Schwarzian from Theorem 4.2231

SN (z) =

N∑
n=−N

∑
j,k

(
aj,k

(z − r2npj,k)2
+

γn,j,k
(z − r2npj,k)

− γn,j,k
z

)
+

b

z2
, (4.33)

we notice that they differ in two major aspects. The residues γ at the prevertices are
depending in the SC form TN on the limit process and the poles at zero (γz and b

z2
) are

missing.
We have nonetheless found a formula for the parameters γ if we are mapping onto a
DCCAPD that can be mapped onto a polygonal domain.

Lemma 4.27
Let P be a doubly connected circular arc polygon domain that can be mapped onto
a bounded polygonal domain by a Möbius transformation.
The parameters γ of the Schwarzian derivative of a conformal mapping of an annulus
A onto P are given by

γn,j,k = −βj,kS(r2npj,k, r
2npj,k), n ∈ Z, j = 0, 1, k = 1, . . . ,Kj ,

where S(z, pn,j,k) denotes the pre-Schwarzian S of the SC mapping (Lemma 4.26) of
A onto P without the pole at pn,j,k.

Proof. Comparing the residues of the equations (4.32) and (4.33) and letting N go to
infinity yields the result

γn,j,k = lim
N→∞

−βj,kSN (r2npj,k, r
2npj,k).

The missing parts of equation (4.32) (γz and b
z2

) have to arise from the difference of
βSN (p, p) and γ in the limit process. This is because

lim
N→∞

(
−βj,kSN (r2npj,k, r

2npj,k)− γn,j,k
)

tends only for a fixed n to zero. However, the residues of the last summands in equation
(4.32), i.e. where n = N , contain always a significant difference to their corresponding
γ, no matter how large N grows. We will compute the parameter b to visualize this
behavior.
For the following lemma, we define the notation

SM,N (z) :=
N∑

n=M

∑
j,k

βj,k
z − r2npj,k

.

31We use γ instead of µ for easier comparison.
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Lemma 4.28
Let P be a doubly connected circular arc polygon domain that can be mapped onto
a bounded polygonal domain by a Möbius transformation.
The parameter b of the Schwarzian derivative of a conformal mapping of the annulus
A = { z | r < |z| < 1 } onto P is given by

b =
∞∑
n=0

∑
j,k

pj,kβj,kS1+n,∞(pj,k)

=
∞∑
n=0

∑
j,k

pj,kβj,k

∞∑
m=1+n

1∑
i=0

Ki∑
l=1

βi,l
pj,k − r2mpi,l

.

Proof. With the definition of SM,N , we can split up S into

S(z) = S−∞,−N−1(z) + SN (z) + SN+1,∞(z).

If we apply this notation also to S(z, p), we have

SN (p, p) = S(p, p)− (S−∞,−N−1(p) + SN+1,∞(p))

for r2N+1 ≤ |p| ≤ r−2N . The residue in equation (4.32) can therefore be replaced by

−βSN (p, p) = γ + β(S−∞,−N−1(p) + SN+1,∞(p)).

For further reference, we denote the difference to γ by

EN (p) := β [S−∞,−N−1(p) + SN+1,∞(p)] .

To actually determine b, we note that the difference TN (z) − SN (z) tends to zero for
growing N and all z ∈ AE = C \ {0},

lim
N→∞

TN (z)− SN (z) = 0, z ∈ AE .

Hence, we can state the modified difference

TN (z)−
(
SN (z)− b

z2

)
=

N∑
n=−N

∑
j,k

(−βj,kSN (r2npj,k, r
2npj,k)

(z − r2npj,k)
− γn,j,k

(z − r2npj,k)
+
γn,j,k
z

)

=

N∑
n=−N

∑
j,k

(
EN (r2npj,k)

(z − r2npj,k)
+
γn,j,k
z

)
N→∞−→ b

z2
,

(4.34)
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which converges32 to b
z2

.

Now, we want to integrate along a circle with center at the origin that is given by the
curve δ(t) = Re2πit, where R = 1 + r

2 .33 We then have

lim
N→∞

∫
δ
z

(
TN (z)− SN (z) +

b

z2

)
dz = 2πib. (4.35)

If we combine the equations (4.34) and (4.35), we obtain

b = lim
N→∞

1

2πi

∫
δ
z

 N∑
n=−N

∑
j,k

(
EN (r2npj,k)

(z − r2npj,k)
+
γn,j,k
z

) dz

= lim
N→∞

N∑
n=0

∑
j,k

r2npj,kEN (r2npj,k).

We know by the convergence of SN that

lim
N→∞

SN+1,∞(p) = 0, lim
N→∞

S−∞,−N−1(p) = 0,

for any fixed p. The pre-Schwarzian S has, like S, a functional equation, namely

S(r2z) = r−2S(z),

which changes for a finite sum to

SM,N (r2z) = r−2SM−1,N−1(z),

where all terms are “shifted to the left”. For the last generation r2Npj,k of the prever-
tices, we therefore have

SN+1,∞(r2Npj,k) = r−2NS1,∞(pj,k),

where S1,∞(pj,k) only depends on pj,k and r−2N goes to infinity for growing N .
By applying this functional equation to the result from above for b we find

b = lim
N→∞

N∑
n=0

∑
j,k

r2npj,k
[
βj,k

(
S−∞,−N−1(r2npj,k) + SN+1,∞(r2npj,k)

)]
= lim

N→∞

N∑
n=0

∑
j,k

pj,kβj,k (S−∞,−2N−1+n(pj,k) + S1+n,∞(pj,k)) .

Since the terms S−∞,−2N−1+n(pj,k) vanish for N approaching infinity, we have proven
the lemma.
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It is interesting to note that the b provided by the lemma already has the correct real
and imaginary part.

While the equation for b holds for all SC mappings, it is not valid for the generic
DCCAPD case. The sum of the turning angles

∑
k βj,k =

∑
k(αj,k − 1) is for a polygon

either 2 or −2 (depending on whether it is an outer or inner boundary component). As
this feature is used for demonstrating the convergence of S, the formula for b does not
have to yield a value if the interior angles are changed. Therefore, a generalization does
not seem possible with this approach.

Example

The simplest double connected polygonal domain has only two vertices on the inner
boundary (slit) and three on the outer boundary. To keep the domain as symmetric as
possible, we choose four vertices on the outer boundary and have

p0,k ∈ {1, i,−1,−i}, p1,k ∈ {r,−r},

β0,k = β0 = −1

2
, β1,k = β1 = 1.

(4.36)

Some quick calculation yields that for r = 1
2 we have

b = 0.047427 . . .

This example shows that Re (b) is actually non-zero. While neither in the simply con-
nected case nor in the pre-Schwarzian of multiply connected SC mappings any additional
analytic terms arise, it is inevitable for the Schwarzian derivative of a mapping onto a
MCCAPD.
Also for this special example, we can conclude that since b is real, we have∑

k

(γ0,kp0,k + a0,k) =
∑
k

(γ1,kp1,k + a1,k) = 0.

As a matter of fact, most of the examples with symmetric domains have provided a real
value for b. More values for a variation in r can be seen in Figure 32.

Unbounded SC Mappings

There is also a form of the pre-Schwarzian of conformal mappings that map an annulus
onto an unbounded polygonal domain.

32The convergence is ensured by the fact that (SN (z))′ − 1
2
(SN (z))2 converges by [DEP01] and the

remaining sum converges by Lemma 4.19.
33The radius is taken large enough to include the annulus r < |z| < 1, which is only for easier writing

of the sum. Otherwise we would have to distinguish between the prevertices of the initial annulus which
lie on the unit circle and those on the inner circle. This is possible as we have already extended the
mapping to C \ {0}.
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(a) The values of b for r ∈ ]0, 1[. (b) The values of log10(b) for r ∈ ]0, 1[ to
better visualize the growth of b.

Figure 32: The magnitude of b grows very fast for r approaching 1. The
values of b are calculated for the prevertices and angles given by (4.36).

Lemma 4.29 ([DEP04])
Let P be an unbounded doubly connected polygonal domain.
Any conformal mapping f of the annulus A = {z | r < |z| < 1} onto P has a pre-
Schwarzian of the form

S(z) =
f ′′(z)

f ′(z)
=

∞∑
n=−∞

1∑
j=0

 Kj∑
k=1

(
βj,k

z − r2npj,k

)
+

−2

z − r2nuj

 ,

where {βj,k = αj,k−1|j = 0, 1; k = 1, . . . ,Kj} are the turning angles, {pj,k|j = 0, 1; k =
1, . . . ,Kj ; |p0,k| = 1; |p1,k| = r} are the prevertices and {uj |u0 = 1

d
;u1 = d; d ∈ A} are

the preimages of infinity. The position of d can be chosen arbitrary in A.

Since the image domain is unbounded, the pre-Schwarzian contains some additional
terms referring to the preimage of infinity and its reflections/transformations. The
choice of these preimages depends on the desired image domains,34 but can be declared
arbitrary (in the form of the parameter d) for the following discussion.
An interesting point is that the terms for infinity are actually required to establish
convergence. While in the bounded case the sums of the turning angles are −2 and
+2 (and therefore cancel each other out), they are +2 for both boundary parts in the
unbounded case. Hence the terms for infinity with the coefficients −2 are the correct
counterpart to ensure convergence.
A similar calculation as in the bounded case yields an adjusted version of our last result
regarding b.

34In the paper of DeLillo, Elcrat and Pfaltzgraff, the preimage domains are unbounded. They therefore
normalize the mappings with f(∞) =∞, but we use bounded preimage domains and have at the moment
no need for a normalization.
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Lemma 4.30
Let P be a doubly connected circular arc polygon domain that can be mapped onto
an unbounded polygonal domain by a Möbius transformation.
The parameter b of the Schwarzian derivative of a conformal mapping from the annulus
A onto P is given by

b =
∞∑
n=0

1∑
j=0

 Kj∑
k=1

(pj,kβj,kS1+n,∞(pj,k))− 2ujS1+n,∞(uj)

 .

In this case, S refers to the pre-Schwarzian of the unbounded mapping, which includes
the terms for infinity.

Validity of the SC Mapping

We observed in Section 4.2.3 that not every set of parameters for the DCCAPD mapping
yields a valid doubly connected mapping. We will repeat the parameter count on the
preimage and image domains for the SC mapping to get an equivalent statement for
this subset of the mappings onto DCCAPDs.

The solving process for the SC mapping is a mere integration in comparison to the
differential equation of the CAPD mapping. However, this integration can also be seen
as the solving of a differential equation of the first order. We can therefore state an
integration condition similar to (2.3) for the Schwarzian derivative, but for a first order
equation it is enough to check the first derivative, i.e.∫

δ
f ′(z)dz = 0, (4.37)

where δ is a curve in the preimage annulus enclosing the smaller boundary circle.

If we now count the degrees of freedom of the image and the preimage of such a mapping,
we obtain the following:
The image polygons are defined by their vertices. If we denote the sum of all vertices
by K, this gives 2K real degrees of freedom. Further, we have to subtract 4 degrees, as
the domain can be rotated, scaled and translated. Hence there are 2K − 4 degrees of
freedom in the image domain.
On the other hand, we need 6 real values to define the circles of the preimage domain35

and K for the prevertices. The angles provide only K − 2 degrees, as the sums of
the turning angles must be ±2 depending on the boundary component. Subtracting
6 degrees for the application of a Möbius transformation and 2 for the integration

35We could also count only one degree of freedom for the inner radius of the annulus instead of the
6 degrees for a generic domain. However, in this case, we only need to subtract one degree for the
normalization by a rotation instead of a Möbius transformation. Either way yields the same result, i.e.
6− 6 = 1− 1 = 0.
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condition leads to a sum of 2K − 4 real degrees of freedom on the preimage domain.

K prevertices p

+K − 2 turning angles β

+ 6 centers and radii of C0 and C1

− 6 Möbius transformation

− 2 integral equation (4.37)

= 2K − 4

Both sides have 2K − 4 degrees of freedom, but this implies, as for the DCCAPD
mapping, that there must be sets of prevertices and angles without a proper image
domain. The argument is the same as in Section 4.2.3: We can choose 2K−2 parameters
in comparison to the 2K−4 degrees of freedom, so there must be sets with image domains
breaking the integration condition.
Such an unsatisfied condition appears in the numerical evaluation in the form of images
of closed curves without matching start and end points, indicating that the boundary
has gaps or overlap and intersect itself.
An example for an alternative approach to the validity of the mappings can be found in
Hu’s DSCPACK [Hu98], an algorithm for the calculation of doubly connected mappings
from annuli onto doubly connected polygonal domains. Each mapping has to satisfy the
condition that the two images of the first prevertex on the inner boundary, one gathered
directly and one by solving around the hole, have to coincide. This is the same concept
as the integration condition, but solved via an alternative method.

We visualize this problem by two different parameter sets for the annulus 0.2 < |z| < 1.
The first set has equal spaced prevertices, where

arg(p0) = (0.25, 0.75, 1.25, 1.75)π, α0 = (0.5, 0.5, 0.5, 0.5),

arg(p1) = (0, 0.5, 1, 1.5)π, α1 = (1.5, 1.5, 1.5, 1.5),
(4.38)

while the prevertices of the second set are closer together

arg(p0) = (0.1, 0.5, 0.8, 1.1)π, α0 = (0.5, 0.5, 0.5, 0.5),

arg(p1) = (0.8, 1, 1.3, 1.7)π, α1 = (1.5, 1.5, 1.5, 1.5).
(4.39)

The results can be seen in Figure 33. The images are generated the same way as the
examples in Section 5.3.3, while the solving of the Schwarzian is replaced with the in-
tegration of the derivative of the Schwarz-Christoffel transformation. A full description
of the process can be found in Chapter 5.
The first parameter set (4.38) yields a well shaped polygonal domain, while the sec-
ond set (4.39) produces a rather distorted imaged domain. The image domain for the
second set is self overlapping and therefore the start and end points of each boundary
component do not match. Based on the image domain, the set (4.39) does not belong
to a valid doubly connected SC transformation.
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(a) The well shaped result for the pa-
rameter set (4.38).

(b) The distorted “boundary” for the pa-
rameter set (4.39).

Figure 33: The image domains for the Schwarz-Christoffel transformation of
the annulus 0.2 < |z| < 1 with the parameter sets (4.38) and (4.39) are shown.

4.3.3 Nehari’s Mapping onto a Slit Domain

In the monograph [Neh52, p. 293-295] they show a mapping from the annulus r < |z| < 1
onto the unit disk minus a symmetric slit on the real axis. The mapping is given by
one of Jacobi’s elliptic functions

f(z) =
√
k sn

(
2iK

π
log

z

r
+K, r4

)
,

where k depends on r and K on the elliptic function.
To compare this to our results, we derive the pre-Schwarzian of f(z) (as shown in
Appendix A.3) and find

SN (z) =
2N+1∑

n=−(2N+1)

2∑
k=1

1

z − r2npk
+

N+1∑
n=−N

2∑
k=1

−2

z − r4nuk
, (4.40)

where p1 = r, p2 = −r, u1 = ir−1, u2 = −ir−1, and S(z) = limN→∞ SN (z).
To understand the pre-Schwarzian, we examine the behavior of the mapping. The inner
circle of the annulus is mapped onto a slit in the image domain, so the pre-Schwarzian
has to contain two prevertices p1 and p2, representing the ends of the slit, as is common
for this kind of mapping.
While the prevertices p1 = r and p2 = −r are mapped onto real points v1 = f(r)
and v2 = f(−r), the points ir and −ir are mapped onto zero by the symmetry of the
domain. If we extend the preimage and image domain by a reflection against ∂D36, we
cover the whole image plane except the real intervals ]−∞, v−1

2 ], [v2, v1] and [v−1
1 ,∞[.

Zero is reflected onto infinity in this process, so the reflections of ir and −ir through

36The unit circle is a boundary component of the image and the preimage domain.

94



4.3 Known Mappings onto Doubly Connected Domains

Figure 34: The function given by Nehari conformally maps an annulus onto
the unit disk minus a slit on the real axis.

the unit circle are mapped onto infinity and we have f(ir−1) = f(−ir−1) = ∞. These
poles can therefore be seen at the uk in the pre-Schwarzian.
An interesting side effect of these poles is that they ensure convergence of the expression
above, as can be seen by comparison with the convergence proof of the SC mapping
(e.g. [DEP04]). For our investigation, it is enough to know that it was derived from a
valid mapping function.

To calculate the Schwarzian derivative from the pre-Schwarzian, we notice that the pre-
Schwarzian (4.40) is similar to that of the Schwarz-Christoffel mapping. Hence, it is
reasonable to apply similar methods.
We denote the alternative Schwarzian again by T . If we write S(z) = S(z, p) + 1

z−p , we
obtain

T (z) = (S(z))′ − 1

2
(S(z))2 =

(
S(z, p) +

1

z − p

)′
− 1

2

(
S(z, p) +

1

z − p

)2

=
−1

(z − p)2
− 1

2

1

(z − p)2
− S(z, p)

1

z − p + S′(z, p)− 1

2
(S(z, p))2

=
−3

2

(z − p)2
− S(p, p)

z − p + analytic,

since S(z, p) is analytic at p. We apply the same method for the poles at u and find
a similar result except that the quadratic terms vanish. The resulting Schwarzian is of
the form

TN (z) =

2N+1∑
n=−(2N+1)

2∑
k=1

(
−3

2

(z − r2npk)2
− SN (r2npk, r

2npk)

z − r2npk

)

+

N+1∑
n=−N

2∑
k=1

2SN (r4nuk, r
4nuk)

z − r4nuk
,

where T (z) = limN→∞ TN (z). For economy in notation, we introduce VN (p) := SN (p, p),
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so we may write

TN (z) =

2N+1∑
n=−(2N+1)

2∑
k=1

(
−3

2

(z − r2npk)2
− VN (r2npk)

z − r2npk

)
+

N+1∑
n=−N

2∑
k=1

2VN (r4nuk)

z − r4nuk
.

According to Lemma 2.14, the Schwarzian is not allowed to contain the simple poles
of the mapping functions, i.e. the preimages of infinity. Therefore, the poles at r4nuk
have to disappear. This means that the VN (r4nuk) have to go to zero as N approaches
infinity. However, as in the case of the SC mapping, this is only true for fixed n. The last
summand in SN , i.e. VN (r4(N+1)uk), has an argument dependent on N and therefore
does not shrink. This leads to an error term as in the preceding section for the SC
mapping.
There is also an error for −VN (r2npk) compared to γn,j,k. The difference of −VN (r2npk)
and γn,j,k is found following a similar argument to that employed in the case of the SC
mapping.

To investigate this behavior, we evaluate VN for different arguments and values of N .
The behavior of VN (r4(N+1)u1) can be seen in the Tables 3 and 4.

iVN (r4nu1) N = 0 1 2 3 4

n = 1 1.1 · 100 4.6 · 10−3 1.8 · 10−5 7.1 · 10−8 2.8 · 10−10

n = 2 – 1.8 · 101 7.4 · 10−2 2.9 · 10−4 1.1 · 10−6

n = 3 – – 2.9 · 102 1.2 · 100 4.7 · 10−3

n = 4 – – – 4.6 · 103 1.9 · 101

n = 5 – – – – 7.4 · 104

Table 3: Evaluations of VN (r4nu1) = VN (r4nir−1) for r = 0.5. The results
were multiplied by i to provide positive real values.

log10 |VN (r4nu1)| N = 0 1 2 3 4 5 6

n = 1 0 −2 −5 −7 −10 −12 −14
n = 2 – 1 −1 −4 −6 −8 −11
n = 3 – – 2 0 −2 −5 −7
n = 4 – – – 4 1 −1 −4
n = 5 – – – – 5 2 0
n = 6 – – – – – 6 4
n = 7 – – – – – – 7

Table 4: Evaluations of VN (r4nu1) = VN (r4nir−1) for r = 0.5. The table
shows the logarithm to base 10 of the results rounded to integer values.

Furthermore −VN (r2npk) should tend to γn,k. The values for different n and N can
be seen in Table 5. The values with the greatest n (for a fixed N) always significantly
differ from the actual value of γ, as the relative error remains nearly constant. This
fact is shown in Table 6.
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−VN (r2np1) N = 0 1 2 3 4 ∞
n = 0 3.0000 3.0000 3.0000 3.0000 3.0000 3
n = 1 13.254 12.005 12.000 12.000 12.000 12
n = 2 – 48.299 48.001 48.000 48.000 48
n = 3 – 212.14 192.07 192.00 192.00 192
n = 4 – – 772.78 768.02 768.00 768
n = 5 – – 3394.2 3073.2 3072.0 3072
n = 6 – – – 12365 12288 12288
n = 7 – – – 54307 49171 49152

Table 5: Evaluations of −VN (r2np1) = −VN (r2nr) for r = 0.5. The actual
value of γn,1 is shown in the last column.

log10(EN (r2np1)) N = 0 1 2 3 4 5

n = 1 −∞ −∞ −∞ −∞ −∞ −∞
n = 2 −1 −4 −6 −9 −∞ −∞
n = 3 – −3 −5 −7 −10 −∞
n = 4 – −1 −4 −6 −9 −∞
n = 5 – – −3 −5 −7 −10
n = 6 – – −1 −4 −6 −9
n = 7 – – – −3 −5 −7
n = 8 – – – −1 −4 −6
n = 9 – – – – −3 −5
n = 10 – – – – −1 −4

Table 6: The table shows the logarithm of the relative error EN (r2np1) =
|VN (r2np1)+γn,1|/|VN (r2np1)−γn,1| between −VN (r2np1) and γn,1 for r = 0.5.
The results were rounded to integer values. The “−∞” represent an error
smaller than the numerical precision.

At this point, we halt our investigation. We see that the mapping of Nehari behaves
very similar to the Schwarz-Christoffel mapping for the annulus. As previously, some
of the terms of the mapping formula onto a DCCAPD only arise in the limit process,
and can therefore not directly be seen.
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4.4 Mappings onto Domains of Connectivity Three or Greater

We now investigate mappings onto domains with connectivity three or greater. The
main change in the geometry is that the limit set Λ is now a perfect set. Hence, there
are uncountable many limit points instead of only two. Therefore we can not directly
apply the results of Section 4.2, but we may use the basic shape of the Schwarzian.
The Schwarzian for the annulus is according to Theorem 4.22 of the form

S(z) =
∞∑

n=−∞

∑
j,k

(
aj,k

(z − pn,j,k)2
+

γn,j,k
(z − pn,j,k)

− γn,j,k
z

)
+
ibi
z2

+
br
z2

if we use γ instead of µ and pn,j,k = r2npj,k. As the index n represents the transformation
applied to p, we may instead use T , i.e. pT,j,k = T (pj,k). If we denote the poles referring
to the prevertices by

R(z, T ) :=
∑
j,k

(
aj,k

(z − pT,j,k)2
+

γT,j,k
(z − pT,j,k)

)
, (4.41)

we can divide the Schwarzian into

S(z) =
∑

T∈M(D)

(∑
j,k

[
aj,k

(z − pT,j,k)2
+

γT,j,k
(z − pT,j,k)

]
︸ ︷︷ ︸

R(z,T )

+
∑
j,k

[
−γT,j,k

z

]
︸ ︷︷ ︸
AC(z,T )

)
+

ibi
z2︸︷︷︸
AF (z)

+
br
z2︸︷︷︸
AR(z)

with the principle part and three different analytic components.
The resulting four components can be interpreted as

• R(z, T ): the poles at the prevertices

• AC(z, T ): the functions necessary to ensure the convergence

• AF (z): the function to ensure the functional equation

• AR(z): a possible analytic remainder.

Hence, from a more distance point of view, the Schwarzian is of the form

S(z) =
∑

T∈M(D)

[R(z, T ) +AC(z, T )] +AF (z) +AR(z) (4.42)

with suitably chosen components, where the functions AC , AF and AR can only have
poles in Λ.
The target will be to look for suitable functions if the image domain is of a connectivity
greater than two. The choices for the doubly connected case are no longer valid if the
limit set becomes perfect.
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For completeness, we also state the functions for the generic doubly connected case of
Theorem 4.23. They are given by

AC(z, T ) =
∑
j,k

(
(pT,j,k − l2)γT,j,k + aj,k

(l2 − l1)(z − l1)
+

(pT,j,k − l1)γT,j,k + aj,k
(l1 − l2)(z − l2)

)
,

AF (z) =
bi(l1 − l2)2

(z − l1)2(z − l2)2
,

AR(z) =
br(l1 − l2)2

(z − l1)2(z − l2)2
.

(4.43)

4.4.1 Construction Revisited: Poincaré Theta Series

There is an alternative approach for constructing the Schwarzian derivative. The func-
tional equation

T ′(z)2S(T (z)) = S(z)

is the same as in the case of the Poincaré theta series (Section 2.5). Utilizing this
concept, we can analyze the sum ∑

T∈M(D)

T ′(z)2R(T (z)), (4.44)

where R contains the poles of the first generation, i.e. R(z) = R(z, id) for R(z, T ) as
defined in equation (4.41).
For the following discussion, we define the abbreviations

Rj,k(z) :=
aj,k

(z − pj,k)2
+

γj,k
(z − pj,k)

=: R(z, pj,k),

Rj(z) :=
∑
k

Rj,k(z),

R(z) :=
∑
j

Rj(z),

to further decompose R(z). We write R(z, p) instead of R(z, pj,k) if the actual position
of the prevertex is not important.

If we transform one of the summands of R by T ′(z)2R(T (z), p), we find

T ′(z)2

(
a

(T (z)− p)2
+

γ

(T (z)− p)

)
=

a

(z − q)2
+

δ

(z − q) −
δ

(z − u)
− (q − u)δ + a

(z − u)2
− (q − u)((q − u)δ + 2a)

(z − u)3
,

(4.45)

where q is the transformed prevertex, δ the transformed parameter γ and u the center
of the isometric circle of the transformation, T (u) =∞. Hence the sum (4.44) contains
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poles at the centers of the isometric circles, which are not allowed by the basic idea of
the mappings (Lemma 4.9).
By comparing the form of equation (4.45) with Lemma 4.15, we note that both formulas
are very similar. This is reasonable, as the Poincarè series automatically provides the
convergence. The only difference is in the choice of the poles.

To compensate for the poles in DE , we introduce an additional term AC∑
T∈M(D)

T ′(z)2 [R(T (z)) +AC(T (z))] .

The sum (or theta series) already satisfies the functional equation with respect to the
transformations (Lemma 4.5), but might not satisfy the one with respect to the reflec-
tions (Lemma 4.11). We add a correction term AF to rectify this problem

K(z) =
∑

T∈M(D)

T ′(z)2 [R(T (z)) +AC(T (z))] +AF (z).

The remaining difference AR = S −K between K and S can only be a function analytic
in DE and has to itself satisfy the functional equations. The Schwarzian S is therefore
of the form

S(z) =
∑

T∈M(D)

T ′(z)2 [R(T (z)) +AC(T (z))] +AF (z) +AR(z). (4.46)

This notation differs little from equation (4.42), where the differences are the form of
the sum and the interpretation of AC .
In the first case (4.42), we sum the poles at the prevertices and add AC to ensure the
convergence. In the second case (4.46), the convergence is already guaranteed and we
only need AC to eliminate the additional poles arising in the construction process.

If we compare this to the doubly connected case of Theorem 4.23, we may set

AC(z) :=
∑
j,k

(
(pj,k − l2)γj,k + aj,k

(l2 − l1)(z − l1)
+

(pj,k − l1)γj,k + aj,k
(l1 − l2)(z − l2)

+
(pj,k − l1)(pj,k − l2)γj,k + (2pj,k − l1 − l2)aj,k

2(l2 − l1)(z − l1)2

+
(pj,k − l1)(pj,k − l2)γj,k + (2pj,k − l1 − l2)aj,k

2(l1 − l2)(z − l2)2

) (4.47)

which is equivalent to AC(z, id), as it is shown in equation (4.43). To actually see that
(4.47) is equal to

AC(z, id) :=
∑
j,k

(
(pj,k − l2)γj,k + aj,k

(l2 − l1)(z − l1)
+

(pj,k − l1)γj,k + aj,k
(l1 − l2)(z − l2)

)
, (4.48)

we need the restricting equation (4.22). If we apply (4.22) to (4.47), the poles of the
second order vanish.
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4.4 Mappings onto Domains of Connectivity Three or Greater

The advantage of notation (4.47) in comparison to (4.48) is that it allows the direct
calculation of

T ′(z)2AC(T (z)) = AC(z, T ) +
∑
j,k

(
δj,k

(z − u)
+

(qj,k − u)δj,k + aj,k
(z − u)2

+
(qj,k − u)((qj,k − u)δj,k + 2aj,k)

(z − u)3

)
which gives us with (4.45)

T ′(z)2 [R(T (z)) +AC(T (z))] = R(z, T ) +AC(z, T ).

Hence the forms (4.42) and (4.46) are equivalent for the doubly connected case.

In the following discussion, we will prefer the formulation that employs the Poincaré
theta series as it allows us to neglect the consideration of convergence. The goal of the
following sections will therefore be to construct the common Schwarzian derivative of
the mappings as a Poincaré series by finding suitable components AC , AF and AR.

4.4.2 Correction Terms for the Poincaré Theta Series

We stated that S is of the form

S(z) =
∑

T∈M(D)

T ′(z)2 [R(T (z)) +AC(T (z))] +AF (z) +AR(z),

where R is already known. We wish to find a function AC that eliminates the poles
resulting due to the construction in the form of a Poincaré series. Further, we need to
find AF to ensure the functional equations.

Compensating for the Poles in DE: AC
We require from AC that

T ′(z) [R(T (z)) +AC(T (z))]

does not have a pole at u, where T (u) = ∞, or any other point in DE . Since the
functions A are not allowed to have poles in DE , AC consists of terms with poles in Λ.
However, poles in Λ influence the convergence of the Poincaré series as seen in Lemma
2.43. It is therefore reasonable to choose only first order poles and demand the property∑ |C|−2 <∞ of the Schottky group M(D).

The poles we wish to eliminate are the ones of T ′(z)2R(T (z), p) in u

T ′(z)2R(T (z), p) = −(q − u)((q − u)δ + 2a)

(z − u)3
− (q − u)δ + a

(z − u)2
− δ

(z − u)
+O(1).
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4 Multiply Connected Circular Arc Polygon Domains

In comparison, we have for a pole of order one with weight w in a limit point l

T ′(z)2 w

T (z)− l =
C−2w

(l′ − u)2(z − l′) −
C−2w

(z − u)3
− C−2w

(l′ − u)(z − u)2
− C−2w

(l′ − u)2(z − u)
,

where l = T (l′) and T (z) = (Az + B)/(Cz + D). The point l′ is also a limit point,
because any transformation of the group maps the limit set onto itself.
We will set up a system of equations to solve for the weights w, where to compensate
for the third order pole, we will need at least three different weights. We will use four
terms, to also establish the functional equation regarding the reflections.
The analytic function AC will be constructed using the following steps:

1. Search for a function AC,j,k that is analytic in DE in order to compensate the
pole arising in Rj,k by the application of any transformation T .

2. Construct a function AC,j of the AC,j,k for all prevertices on one circle Cj repre-
sented by Rj .

3. Combine the preceding results to produce one AC that matches R.

Lemma 4.31
Let L = {l1, l2, l3, l4} ⊂ Λ, the parameters p, a, γ as in R(z, p), p 6= c ∈ DE , and
define

λ1(i) := (li − c), λ2(i) := (li − c)
4∑

n=1
n6=i

(ln − c), λ3(i) :=

4∏
n=1
n6=i

(ln − c),

λ4(i) :=
4∏

n=1
n 6=i

(ln − li), λ2 :=
3∑

n=1

4∑
i=n+1

(li − c)(ln − c),

τ1 := γ, τ2 := (p− c)γ + a, τ3 := (p− c)((p− c)γ + 2a).

The function

AC(z, p, c, L) :=
4∑
i=1

λ1(i)τ3 + (λ22 − λ2(i))τ2 − λ3(i)τ1

λ4(i)(z − li)

has the property that for each T ∈M(D), where T (u) =∞,

T ′(z)2(R(T (z), p) +AC(T (z), p, c, L)) = O((z − u)0),

i.e. the expression does not have a pole at u.

We use λ(i) instead of the more accurate λ(i, c, L) for economy of notation.
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Proof. The application of T changes the residue of R(z, p), as the location of the
pole changes to q = T−1(p). Ensuring a calculation dependent only on the the pre-
transformation values, we introduce v that T (∞) = v, and write

T ′(z)2R(T (z), p)

= − C−2γ

(z − u)3
+

(p− v)γ + a

(z − u)2
− C2(p− v)((p− v)γ + 2a)

(z − u)
+O((z − u)0),

T ′(z)2 w

T (z)− l =
−C−2w

(z − u)3
+

(l − v)w

(z − u)2
+
−C2(l − v)2w

(z − u)
+O((z − u)0),

where T (z) = (Az + B)/(Cz + D). Our object will be to find four suitable weights
w for four different limit points l1, l2, l3, l4 ∈ Λ to compensate the poles at u of
T ′(z)2R(T (z), p).
If we set up the four equations, we get the system(

−C2(l1−v)2 −C2(l2−v)2 −C2(l3−v)2 −C2(l4−v)2

l1−v l2−v l3−v l4−v
−C−2 −C−2 −C−2 −C−2

)(
w1
w2
w3
w4

)
=

(
C2(p−v)((p−v)γ+2a)
−((p−v)γ+a)

C−2γ

)
with the solution

w1

w2

w3

w4

 =


−(l2−l4)(l3−l4)t

(l3−l1)(l2−l1) −
(p−l2)(p−l3)γ+(2p−l2−l3)

(l3−l1)(l2−l1)
−(l1−l4)(l3−l4)t

(l1−l2)(l3−l2) −
(p−l1)(p−l3)γ+(2p−l1−l3)

(l1−l2)(l3−l2)
−(l1−l4)(l2−l4)t

(l1−l3)(l2−l3) −
(p−l1)(p−l2)γ+(2p−l1−l2)

(l1−l3)(l2−l3)

t


where t denotes the remaining complex degree of freedom introduced by the under-
determined system.
As the choice for t is rather complicated, we choose the abbreviations

λ1(i) := (li − c), λ2(i) := (li − c)
4∑

n=1
n6=i

(ln − c), λ3(i) :=
4∏

n=1
n6=i

(ln − c),

λ4(i) :=
4∏

n=1
n 6=i

(ln − li), λ2 :=
3∑

n=1

4∑
i=n+1

(li − c)(ln − c),

τ1 := γ, τ2 := (p− c)γ + a, τ3 := (p− c)((p− c)γ + 2a),

and set t to

t =
λ1(4)τ3 + (λ22 − λ2(4))τ2 − λ3(4)τ1

λ4(4)
.
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As a result, we have
w1

w2

w3

w4

 =


[λ1(1)τ3 + (λ22 − λ2(1))τ2 − λ3(1)τ1]λ4(1)−1

[λ1(2)τ3 + (λ22 − λ2(2))τ2 − λ3(2)τ1]λ4(2)−1

[λ1(3)τ3 + (λ22 − λ2(3))τ2 − λ3(3)τ1]λ4(3)−1

[λ1(4)τ3 + (λ22 − λ2(4))τ2 − λ3(4)τ1]λ4(4)−1

 .

If we form the fractions of the weights and poles, we obtain

AC(z, p, c, L) =
4∑
i=1

λ1(i)τ3 + (λ22 − λ2(i))τ2 − λ3(i)τ1

λ4(i)(z − li)
.

The advantage of this choice for AC(z, p, c, L) is that it also satisfies the functional
equation regarding the reflection against a boundary circle, if the parameters are set
accordingly.

Lemma 4.32
Let sj ∈ S(D) be the reflection against the circle Cj , with center cj and radius rj .
Suppose

p ∈ Cj , γ(p− cj) + a ∈ iR,
Lj = {l1, l2, l3, l4} ⊂ Λ, l1 = sj(l2), l3 = sj(l4),

sj(z) =
r2
j

z̄ − c̄j
+ cj = σj(z), σ′j(z) =

−r2
j

(z − cj)2
.

The function

T (z) = R(z, p) +AC(z, p, cj , Lj),

where AC as in Lemma 4.31, has the property

σ′j(z)
2T (sj(z)) = T (z).

Proof. It can be shown by a direct (and very lengthy) calculation that

σ′j(z)
2T (sj(z))− T (z) = 0.

It is essential adjust T (sj(z)) to match T (z) by using the substitutions

p = sj(p), γ = −r−2(p− cj)((p− cj)γ + 2a),

l1 = sj(l2), l2 = sj(l1), l3 = sj(l4), l4 = sj(l3).
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To handle this rather complicated correction term, we collect the above in a definition.

Definition 4.33
The values pj,k, aj,k and γj,k are defined according to Definition 4.7.
Let sj ∈ S(D) be the reflection against the circle Cj with center cj and radius rj .
Further, let Lj = {lj,i | lj,1 = sj(lj,2), lj,3 = sj(lj,4), i = 1, 2, 3, 4} ⊂ Λ be a set of limit
points pairwise symmetric to Cj .
The rational functions R are defined by

Rj,k(z) :=
aj,k

(z − pj,k)2
+

γj,k
(z − pj,k)

, Rj(z) :=
∑
k

Rj,k(z), R(z) :=
∑
j

Rj(z).

The function AC;j,k is defined by

AC;j,k(z) :=
4∑
i=1

λ1(j, i)τ3(j, k) + (λ2(j)
2 − λ2(j, i))τ2(j, k)− λ3(j, i)τ1(j, k)

λ4(j, i)(z − lj,i)
,

where

λ1(j, i) := (lj,i − cj), λ2(j, i) := (lj,i − cj)
4∑

n=1
n6=i

(lj,n − cj),

λ3(j, i) :=

4∏
n=1
n6=i

(lj,n − cj), λ4(j, i) :=

4∏
n=1
n6=i

(lj,n − lj,i),

λ2(j) :=
3∑

n=1

4∑
i=n+1

(lj,i − cj)(lj,n − cj),

and

τ1(j, k) := γj,k, τ2(j, k) := (pj,k − cj)γj,k + aj,k,

τ3(j, k) := (pj,k − cj)((pj,k − cj)γj,k + 2aj,k).

Further versions of AC are defined by

AC;j(z) :=
∑
k

AC;j,k(z) and AC(z) :=
∑
j,k

AC;j,k(z).

We will need to refer very often to the property
∑

T∈G |CT |−2 < ∞ of the sum of the
coefficients CT of the Möbius transformations T (z) = (AT z + BT )/(CT z + DT ) of a
group G. To shorten the notation, we will skip the index of the sum and write “G
satisfies

∑ |C|−2 <∞”.

We have by now an analytic function for one prevertex, which will be modified to cover
all the prevertices of one boundary circle.
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Lemma 4.34
Suppose the Schottky group M(D) satisfies

∑ |C|−2 < ∞. Let further Rj and AC;j

be as in Definition 4.33, then

K(z) =
∑

T∈M(D)

T ′(z)2 (Rj(T (z)) +AC;j(T (z)))

satisfies the functional equations

T ′(z)2K(T (z)) = K(z), T ∈M(D),

σ′(z)2K(s(z)) = K(z), s ∈ S(D), σ(z) = s(z).

Proof. The terms AC;j(z) contain a finite number of first order poles at some limit
points. The convergence of K is ensured by the fact that we demanded

∑ |C|−2 <∞
and Lemma 2.43, i.e. K is a (modified) Poincaré theta series. As a Poincaré series, K
satisfies the functional equation

T ′(z)2K(T (z)) = K(z), T ∈M(D).

We state some auxiliary calculations before we continue the proof with respect to the
second functional equation. Every succession of an even number of reflections is a
Möbius transformation. Hence

V = s1 ◦ T ◦ s2

is a Möbius transformation, as T also consists of an even number of reflections. To
derive V , we may rewrite it in the form

V = s1 ◦ T ◦ s2 = ρ1 ◦ U ◦ σ2,

where ρ1(z) = s1(z), U(z) = T (z), σ2(z) = s2(z), to obtain a sequence of holomorphic
functions. Differentiation yields

V ′(z) = ρ′1(U(σ2(z)))U ′(σ2(z))σ′2(z)

= σ′1(T (s2(z)))T ′(s2(z))σ′2(z)
(4.49)

by using ρ1(z) = σ1(z) = s1(z).
Returning to the initial problem, we know from Lemma 4.32 that

σ′j(z)
2T (sj(z)) = T (z), (4.50)

where

T (z) = Rj(z) +AC;j(z) =
∑
k

(Rj,k(z) +AC;j,k(z))

106



4.4 Mappings onto Domains of Connectivity Three or Greater

for the reflection against the circle Cj . We can therefore calculate for every term
T ′(z)2T (T (z)) in K,

σ′k(z)
2T ′(sk(z))2T (T (sk(z)))

(4.50)
= σ′k(z)

2T ′(sk(z))2σ′j [T (sk(z))]2T [sj(T (sk(z)))]

=
(
σ′j [T (sk(z))]T ′(sk(z))σ

′
k(z)

)2
T [(sj ◦ T ◦ sk︸ ︷︷ ︸

V

)(z)]

(4.49)
= V ′(z)2T (V (z))

by using (4.49) and (4.50) as indicated. This gives for K

σ′k(z)
2K(sk(z)) =

∑
T

σ′k(z)
2T ′(sk(z))2T (T (sk(z)))

=
∑
V

V ′(z)2T (V (z)) = K(z).

It is important to note that every V is not only a Möbius transformation, but based
on its construction also in M(D). Hence, the sums over V and T are equal except for
some shifting. As the Poincaré series converges absolutely, a shifting of the terms does
not change the result.

The last step of our construction is to further extend the correction term to cover all
prevertices.

Lemma 4.35
Suppose the Schottky group M(D) satisfies

∑ |C|−2 <∞. Let R and AC be defined
according to Definition 4.33. The function

K(z) =
∑

T∈M(D)

T ′(z)2 (R(T (z)) +AC(T (z)))

satisfies the functional equations

T ′(z)2K(T (z)) = K(z), T ∈M(D),

σ′(z)2K(s(z)) = K(z), s ∈ S(D), σ(z) = s(z).

Proof. If we split K into m+ 1 functions

Kj(z) =
∑

T∈M(D)

T ′(z)2 (Rj(T (z)) +AC;j(T (z))) ,

we can apply Lemma 4.34 to each Kj . Combining them again into K proves the
lemma.
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The function K is already very close to the Schwarzian derivative S, since it has the
same poles in DE as S and is analytic otherwise. Additionally, it already satisfies the
functional equations for the transformations of the group M(D) and the reflections of
S(D).

Establishing the Functional Equations: AF
We have noted for the doubly connected case that there is a component AF necessary
to establish the functional equations. However, according to Lemma 4.35, the case of
a greater connectivity does not need such a correction term. This discrepancy can be
understood by considering the size of the limit sets.
We need at least four different first order poles at limit points for the construction of AC
as shown above, but M(D) provides only two limit points if D is a doubly connected
domain. We therefore need to also use second order poles in the construction of a
function AC to get four different weights. This can be seen in equation (4.47), as it
contains the mentioned first and second order poles.
According to the convergence discussion so far, this would require

∑ |C|0 < ∞ for
M(D), which is only possible for finite groups. Hence, not even the doubly connected
domains can satisfy this requirement.
The Schwarzian is nonetheless converging as the second order poles cancel out in the
sum over j and k by the restricting equation (4.14). This means that we no longer can
assume absolute convergence as the order of the summands becomes crucial. Without
the absolute convergence, the reordering of the poles as it was used in the proof of
Lemma 4.35 is not applicable. As a consequence, we need a function AF to ensure that
the functional equations are satisfied.

Summary

Lemma 4.35 provides us with a function, which has the same poles in DE as S and is
analytic otherwise. Hence, we can state our version of the Schwarzian derivative for a
CAPD mapping of connectivity three or greater.

Theorem 4.36
Let P be a multiply connected circular arc polygon domain of connectivity three or
greater, bounded by the circular arc polygons Pj , where j = 0, . . . ,m and m ≥ 2,
with the vertices vj,k, k = 1, . . . ,Kj , and the interior angles αj,kπ. Further, let D be a
(m+ 1)-connected circular domain conformally equivalent to P , where M(D) satisfies∑ |C|−2 <∞.
The Schwarzian derivative S of any conformal mapping f of D onto P has the form

S(z) =
∑

T∈M(D)

T ′(z)2 [R(T (z)) +AC(T (z))] +AR(z),

where R and AC are as in Definition 4.33 and AR is a function that is analytic in DE
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and satisfies the equations

T ′(z)2AR(T (z)) = AR(z),

σ′(z)2AR(s(z)) = AR(z),

for all transformations T ∈M(D) and all reflections s ∈ S(D), where σ(z) = s(z).

Proof. The function K from Lemma 4.35 has the same poles as S in DE and also
satisfies the same functional equations. The difference

AR(z) = S(z)−K(z)

must therefore be analytic in DE and also has to satisfy the functional equations.
Hence S is of the form

S(z) =
∑

T∈M(D)

T ′(z)2 [R(T (z)) +AC(T (z))] +AR(z).

Note that AC is not unique; for example, we did not even specify the limit points used
for the construction. However, based on common knowledge about multiply connected
conformal mappings, the combination of AC and AR has to be unique.

As the construction of S is rather complicated, we outline the steps needed:

1. Define a circular domain D by defining the boundary circles.

2. Define values for p, a and γ to form R as in Definition 4.33.

3. Find for each boundary circle Cj two pairs of limit points symmetric to it.

4. Construct for each prevertex a function AC;j,k as in Definition 4.33, using the
limit points of the last step and sum the AC;j,k to get AC .

5. Generate the transformations of M(D) and calculate the Poincaré theta series.

6. Add a suitable analytic function AR.

The only information missing is a way to construct the function AR of the last step.
This issue will be discussed in the following sections.

Each AC;j,k can be written as a Laurent series converging outside every circle with
center pj,k, that enclose all prevertices pT,j,k and all limit points:

AC;j,k(z) = − aj,k
(z − pj,k)2

− γj,k
(z − pj,k)

+O((z − p)−3).

Comparing this with Lemma 4.15 shows that AC can also be seen as a term to ensure
the convergence of the series.
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4.4.3 Analytic Remainder

We need a function AR that completes the Schwarzian derivative, and we require this
function AR to be analytic in DE and to satisfy the functional equation

σ′j(z)
2AR(sj(z)) =

(
rj

z − cj

)4

AR(sj(z)) = AR(z) (4.51)

for each boundary circle Cj of D. Here, rj and cj denote again the radius and the center
of the circle Cj , while sj is the reflection against it.37

The functional equation can be transformed to

(z − cj)2AR(z) ∈ R, z ∈ Cj ,

or equivalently

Im[(z − cj)2AR(z)] = 0, z ∈ Cj , (4.52)

as already discussed in Section 4.1.5. An alternative approach would therefore be to
find a function analytic in D and continuous on the boundary ∂D with the boundary
conditions (4.52). This resembles the Riemann-Hilbert boundary value problem.

Definition 4.37
Let D be a (multiply) connected domain D ⊂ C∞ and the functions λ and d Hölder
continuous on the boundary ∂D of D.
The search for a function φ, analytic in D and continuous in D = D ∪ ∂D, which
satisfies the boundary conditions

Re[λ(z)φ(z)] = d(z), z ∈ ∂D,

is called the Riemann-Hilbert problem.
When d ≡ 0, the problem

Re[λ(z)φ(z)] = 0, z ∈ ∂D,

is called the homogeneous Riemann-Hilbert problem.

If we define the functions

φ(z) := iAR(z), z ∈ D ∪ ∂D,

λ(z) :=


(z − c0)−2 for z ∈ C0

(z − c1)−2 for z ∈ C1

. . . . . .

(z − cm)−2 for z ∈ Cm

,

37The functional equation regarding the transformations follows by applying the equation for the
reflections twice.
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the search for AR is equivalent to the search for solutions of the homogeneous Riemann-
Hilbert problem

Re[λ(z)φ(z)] = 0, z ∈ ∂D.

While this approach allows us to solve for AR by the methods of boundary value prob-
lems, we are more interested in the basic structure of the solutions.
Any real linear combination of two solutions φ1 and φ2 is also itself a solution of the
problem

Re[λ(z)φ1(z)] = Re[λ(z)φ2(z)] = 0

⇒ Re[λ(z)(b1φ1(z) + b2φ2(z))] = 0, b1, b2 ∈ R.

The number L of linearly independent solutions of the Riemann-Hilbert problem is
investigated in several publications (e.g. [Gak66], [Vek62], [Nas09]) and can be calculated
via the following lemma.

Definition 4.38
The index χ of the Riemann-Hilbert problem

Re[λ(z)φ(z)] = d(z), z ∈ ∂D,

is defined by

χ := wind∂D λ(z) =
1

2π

∫
∂D

d arg λ(z).

Lemma 4.39 ([Gak66, p. 347],[Vek62])
Let D be a (m+ 1)-connected domain.
If the index of the homogeneous Riemann-Hilbert problem χ > m−1, then the number
L of linearly independent solutions of the problem is given by

L = 2χ− (m− 1).

This allows us to state for our case:

Lemma 4.40
Let D be a (m + 1)-connected bounded circular domain, where m > 1, bounded by
the m+ 1 circles Cj with centers cj .
The homogeneous Riemann-Hilbert problem

Re[λ(z)φ(z)] = 0, z ∈ ∂D,
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where

λ(z) =


(z − c0)−2 for z ∈ C0

(z − c1)−2 for z ∈ C1

. . . . . .

(z − cm)−2 for z ∈ Cm

,

has L = 3m− 3 linearly independent solutions.

Proof. To apply Lemma 4.39, we must first calculate the index of the problem. Since
we wish the domain to be to the left of the boundary, the circles Cj , where j = 1, . . . ,m,
have to be orientated clockwise and C0 has to be orientated counterclockwise. We have
for each boundary component

χj =

{
−2 for j = 0

+2 for j = 1, . . . ,m

and therefore for the index

χ =

m∑
j=0

χj = 2m− 2.

Since we have χ = 2m− 2 > m− 1 for m > 1, we can use Lemma 4.39 and obtain

L = 2χ− (m− 1) = 3m− 3.

Note that the statement above is not valid for doubly connected domains (m = 1). If
the domain is an annulus, the index is χ = 0 for the problem, and the condition of
Lemma 4.39 χ > m − 1 is violated. However, we have already found the only linearly
independent solution z−2 for the annulus in Lemma 4.21.

The solutions for an unbounded domain can be reached by extending the solutions for
a suitable bounded domain across the outer boundary component C0.
Alternatively the same number of linearly independent solutions for unbounded domains
can be gathered by calculating the index χu = 2m + 2 and applying Lemma 4.39.
However, the result of the lemma has to be reduced in this case. The functional equation
evaluated at cj implies a fourth order zero at infinity. This reduces the number of linearly
independent solutions by eight, corresponding to the eight real restrictions implied by
the zero. Hence, we find

Lu = 2χu − (m− 1)− 8 = 3m− 3.
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4.4 Mappings onto Domains of Connectivity Three or Greater

Lemma 4.41
Let the functions Bi, where i = 1, . . . , 3m − 3, be linearly independent and analytic
in DE . Let each of them also satisfy the functional equation (4.51).
The analytic function AR of Theorem 4.36 is completely defined by the analytic func-
tions Bi and the real values bi ∈ R, i = 1, . . . , 3m− 3, in the form

AR(z) =
3m−3∑
i=1

biBi(z).

Proof. According to Lemma 4.40, the 3m− 3 functions Bi form a basis for all analytic
functions in D that satisfy the boundary condition

Re[λ(z)φ(z)] = 0, z ∈ ∂D.

Hence, any function satisfying this boundary condition can be constructed by a linear
combination of the functions Bi with 3m− 3 real weights bi. Extending the functions
across the boundary of D gives the functions analytic in DE .

We may interpret the whole search for the Schwarzian S as a Riemann-Hilbert problem.
This was for example done in [Mit12b] for the SC mapping.
In this way, we can see the Poincarè series

∑
T ′(z)2(R(T (z))+AC(T (z))) containing the

poles as the solution of the inhomogeneous problem, while we may add a homogeneous
solution, i.e. AR, to the result as it is possible for any boundary value problem.

We retain bi as notation for further work, as these values completely define AR for a
given basis. The functions Bi only depend on the domain D.

Definition 4.42
The function

AR(z) = AR(z, b) = AR(z, b,B) =
3m−3∑
i=1

biBi(z)

is defined by the two vectors

B = B(D) = (B1,B2, . . . ,B3m−3),

b = (b1, b2, . . . , b3m−3) ∈ R3m−3,

where B describes a basis for the analytic functions on DE satisfying the functional
equation (4.51).

With this description of AR, we are able to refine our result of Theorem 4.36, and state
one of our main results:
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4 Multiply Connected Circular Arc Polygon Domains

Theorem 4.43
Let P be a multiply connected circular arc polygon domain of connectivity three or
greater, bounded by the circular arc polygons Pj , where j = 0, . . . ,m and m ≥ 2,
with the vertices vj,k, k = 1, . . . ,Kj , and the interior angles αj,kπ. Further, let D be a
(m+ 1)-connected circular domain conformally equivalent to P , where M(D) satisfies∑ |C|−2 <∞.
The Schwarzian derivative S of any conformal mapping f of D onto P has the form

S(z) =
∑

T∈M(D)

T ′(z)2 [R(T (z)) +AC(T (z))] +AR(z, b),

where R and AC are as in Definition 4.33 and AR is as in Definition 4.42.

Degrees of Freedom of the Schwarzian Derivative

We counted in Section 4.2.3 the degrees of freedom of doubly connected mappings onto
CAPDs. The theorem above allows us to also count the degrees for a mapping onto a
MCCAPD of a connectivity greater than two.
Let K :=

∑
jKj again indicate the total number of vertices on the boundary of the

MCCAPD.

We first describe a MCCAPD for the image domain. Each circular arc polygon bounding
the domain can be characterized by its vertices together with the curvature of its edges.
We therefore get 3K real parameters for the whole domain. Since we can normalize the
domain by the application of a Möbius transformation, we subtract 6 real parameters,
resulting in 3K − 6 parameters for the image domain.

On the preimage side, we have K real parameters for the prevertices, as they can be
identified by their arguments in relation to the center of their circles. For these circles
we need additional 3(m+ 1) = 3m+ 3 real parameters for the centers and radii. There
are also K interior angles and K parameters γ. The parameters γ can be described by
real values according to Lemma 4.12. Further, we have 3m− 3 real parameters b to set
for the analytic remainder.
We have to subtract six real degrees of freedom for the normalization we apply via
a Möbius transformation. We must also ensure a valid mapping, by demanding the
integrals

∫
δ
f (k)(z)dz, k = 1, 2, 3,

to be zero for curves δ enclosing only one of the circles Cj , where j = 1, . . . ,m. This
gives an additional 6m degrees to subtract.
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Summing these values results in

3K the parameters p, a, γ

+ 3m+ 3 the centers and radii

+ 3m− 3 the parameters b of the analytic remainder

− 6 normalization by a Möbius transformation

− 6m integral equations for validity

= 3K − 6.

Hence both sides have the same number of degrees of freedom.

This allows the same conclusion as in Section 4.2.3 for the doubly connected mappings:
Not every set of parameters has to yield a valid mapping onto a MCCAPD.

4.4.4 Analytic Remainder Construction I: Laurent Series

While we know that there are 3m−3 basis functions for AR, we need to construct them.
We will use the notation A instead of Bi or AR, as they have the same properties. We
will further suppose that D is an unbounded circular domain.

We know from the functional equation

T ′(z)2A(T (z)) = A(z)

thatA has a zero of the fourth order at infinity. This follows by evaluating the functional
equation for u, where T (u) = ∞, and the fact that by definition A(u) must be finite,
as u is not a limit point. As a result, the integrals∫

Γ
zkA(z)dz = 0, k = 0, 1, 2, (4.53)

must be zero, if Γ is a curve close enough to infinity. In other words: Γ has to enclose
all of the boundary circles Cj of D.
To utilize this result, we write A as a sum of Laurent series38 expanded around the
centers cj of the circles Cj bounding D

A(z) =

m∑
j=0

∞∑
n=1

d(n, j)

(z − cj)n
. (4.54)

This notation is defined outside of every circle Cj , and is therefore valid everywhere in
D. An alternate version would be an expansion around just one of the centers cj

A(z) =

∞∑
n=−∞

d(n, j)

(z − cj)n
, (4.55)

38The sum of the series has no constant coefficient, as A has a zero at infinity.
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defining A in an annulus surrounding Cj . In this form, we can apply the functional
equation

A(z) = σ′j(z)
2A(sj(z))

to obtain
∞∑

n=−∞

d(n, j)

(z − cj)n
=

∞∑
n=−∞

r−2n+4
j d(n, j)

(z − cj)−n+4
=

∞∑
n=−∞

r2n−4
j d(−n+ 4, j)

(z − cj)n
.

We now have

d(n, j) = r2n−4
j d(−n+ 4, j), (4.56)

which gives for the first three coefficients

d(1, j) = r−2
j d(3, j), d(2, j) = d(2, j), d(3, j) = r2

j d(1, j).

Since d(2, j) is real and d(3, j) can be calculated from d(1, j), we can represent these
three coefficients by only three real values.
We also have, by calculating the integrals (4.53) for equation (4.54),

m∑
j=0

d(1, j) = 0,

m∑
j=0

[cjd(1, j) + d(2, j)] = 0,

m∑
j=0

[
c2
jd(1, j) + 2cjd(2, j) + d(3, j)

]
= 0.

(4.57)

With 3 real parameters per circle and 6 restricting real equations, all of the first three
coefficients of all expansions in (4.54) are defined by 3(m + 1) − 6 = 3m − 3 real
values. This matches exactly the number of linearly independent functions according
to Lemma 4.40. The solutions of the system (4.57) therefore correspond to the basis
functions Bi, since linear combinations of the Bi result in linear combinations of the
coefficients d(n, j).
This yields a way to verify the linear independence of the functions. If the vectors

(Re d(1, 0), Im d(1, 0), d(2, 0),Re d(1, 1), Im d(1, 1), . . . , Im d(1,m), d(2,m))

are linearly independent, so are the functions.

We may now calculate the remaining coefficients from those already known, allowing us
to directly generate a basis.
Suppose we know the expansions for every circle but one, say Ck, in (4.54). We would
be able to calculate the regular part with the coefficients d(−l, k), where l ≥ 0, in (4.55)
by using

∞∑
l=0

d(−l, k)(z − ck)l =
∑
j 6=k

∞∑
n=1

d(n, j)

(z − cj)n
.
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Differentiation and evaluation at ck yields the formula

d(−l, k) =
∑
j 6=k

∞∑
n=1

(−1)l
(
l + n− 1

l

)
c(k, j)−(l+n)d(n, j),

for all l ∈ N ∪ {0}. Here c(k, j) := ck − cj denotes the difference between two of the
centers. We further shorten the notation by writing

w(l, n) := (−1)l
(
l + n− 1

l

)
for the weight of d(n, j).
Using (4.56) we can replace d(−l, k) and find

r−2l−4
k d(l + 4, k) =

∑
j 6=k

∞∑
n=1

w(l, n)

c(k, j)(l+n)
d(n, j). (4.58)

Returning to the task of determining the unknown coefficients, we define

λ(l, k) :=
∑
j 6=k

3∑
n=1

w(l, n)

c(k, j)(l+n)
d(n, j),

which allows us to reshape equation (4.58) to∑
j 6=k

∞∑
n=4

w(l, n)

c(k, j)(l+n)
d(n, j)− r−2l−4

k d(l + 4, k) = −λ(l, k), (4.59)

where l = 0, . . . ,∞ and k = 0, . . . ,m.
The remaining coefficients may be calculated from this system of equations. The down-
side of this approach is the fact that the system has an infinite dimension, demanding
methods such as the Banach fixed-point theorem, which itself demands some conver-
gence conditions.39 Some alternative constructions are therefore presented in the fol-
lowing.
This system can nonetheless be of great use from the numerical point of view. In the
numerics, it is enough to calculate a finite number of coefficients for an approximation,
which can be achieved by reducing the system to a suitable amount of variables and
solving it by common numerical methods.

Bounded Domains

The concept above holds only for unbounded domains. For bounded domains equation
(4.54) changes to

A(z) =

∞∑
n=0

d(−n, 0)(z − cj)n +

m∑
j=1

∞∑
n=1

d(n, j)

(z − cj)n
,

39Results from the Riemann-Hilbert problems allow statements regarding the convergence of succes-
sive approximations, but we will not further follow this approach.
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as we need a Taylor series without negative powers for the bounding circle C0.
A possible approach is to calculate a function A for the unbounded domain s0(D) and
then calculate the version for the bounded domain D by using the functional equation
σ′0(z)2A(s0(z)) = A(z).

Let us denote the boundary circles s0(Cj) of s0(D) by C ′j with center c′j and the coeffi-
cients for the corresponding expansion by d′(n, j).
Suppose the expansion for the circles C ′j to be known. We want to apply the functional
equation to it. The centers c′j are mapped onto the points s0(c′j) = c̃j in this process.
These points lie inside the circles Cj . The expansion around the c̃j with the coefficients
d̃(n, j) can be calculated from the expansion around the c′j by

d̃(1, j) = −d′(1, j) r2
0

(c0 − c̃j)2
+ d′(2, j)

2

(c0 − c̃j)
− d′(3, j) 1

r2
0

d̃(2, j) = d′(2, j)− d′(3, j)(c0 − c̃j)
r2

0

d̃(3, j) = −d′(3, j)(c0 − c̃j)2

r2
0

d̃(l, j) =
∞∑
n=0

(−1)l d′(l + n, j)

(
l − 4 + n

l − 4

)
(c0 − c̃j)2l−4+n

r2l−4+2n
0

for l ≥ 4,

where j = 1, . . . ,m. Since c̃j = s0(c′j) 6= cj , we shift the expansion point to cj . We
calculate the correct coefficients d by

d(l, j) =
l∑

n=1

(
l − 1

n− 1

)
d̃(n, j)(c̃j − cj)l−n

where l = 1, . . . ,∞ and j = 1, . . . ,m. This gives us the desired values for the circles
Cj , where j = 1, . . . ,m.
The expansion for C0 can be calculated by using the expansions around the c′j in the
form

∞∑
l=0

d(−l, 0)(z − c0)l =
m∑
j=1

∞∑
n=1

d′(n, j)

(z − c′j)n
.

The individual coefficients can again be computed by differentiation and evaluation at
z = c0.

Doubly Connected Domains

A problem with the system of equations (4.57) and the doubly connected case is that
3m−3 is zero for m = 1. However, as shown earlier, there exists one linearly independent
analytic function.
This behavior can be justified by the fact that the 6 real equations are not linearly
independent for m = 1. There are actually only 5 real equations for doubly connected
domains. This leaves one degree of freedom for the one known basis function.
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4.4.5 Analytic Remainder Construction II: First Order Poles

One way to construct the functions Bi would be to use the same method as we have
used previously by constructing AC .
The first step would be to construct a function T , where T and σ′(z)2T (s(z)) are
without any poles in DE . This can be established by using a linear system of equations
as in the proof of Lemma 4.31. It should further be invariant against at least one
reflection sj in the form of the functional equation.

Lemma 4.44
Let {l1, l2, l3, l4} ⊂ Λ, l1 = s(l2), l3 = s(l4), s ∈ S(D), and σ(z) = s(z).
The function

T (z) =
−(l1 − l2)(l3 − l4)

(z − l1)(z − l2)(z − l3)(z − l4)

satisfies the functional equation

σ′(z)2T (s(z)) = T (z).

Proof. The statement of the lemma can be gathered directly by calculation.
Each of the terms (li − lj) can be replaced by the expression

(li − lj) =

( −r2(s(li)− s(lj))
(s(li)− c)(s(lj)− c)

)
,

where s(z) = r2/(z − c) + c. We then have

σ′(z)2T (s(z)) =
r4

(z − c)4

( −(l1 − l2)(l3 − l4)

(s(z)− l1)(s(z)− l2)(s(z)− l3)(s(z)− l4)

)
=

−(s(l1)− s(l2))(s(l3)− s(l4))

(z − s(l1))(z − s(l2))(z − s(l3))(z − s(l4))
= T (z)

We now construct a Poincaré theta series with the function T , which satisfies all our
requirements for an analytic remainder of the Schwarzian derivative S. Hence, we state
an explicit formula to describe the basis functions Bi.

Lemma 4.45
Let {l1, l2, l3, l4} ⊂ Λ, l1 = sj(l2), l3 = sj(l4), and sj ∈ S(D) the reflection against the
boundary circle Cj . Let further M(D) satisfy the property

∑ |C|−2 <∞.
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The function

A(z) =
∑

T∈M(D)

T ′(z)2T (T (z)),

where

T (z) =
−(l1 − l2)(l3 − l4)

(z − l1)(z − l2)(z − l3)(z − l4)
,

satisfies the functional equations

T ′(z)2A(T (z)) = A(z), T ∈M(D),

σ′(z)2A(s(z)) = A(z), s ∈ S(D), σ(z) = s(z),

and is analytic in DE .

Proof. We have according to Lemma 4.44

σ′j(z)
2T (sj(z)) = T (z). (4.60)

Since T contains simple poles at several limit points, we require according to Lemma
2.43 the convergence condition

∑ |C|−2 <∞ to construct the Poincaré series

A(z) =
∑

T∈M(D)

T ′(z)2T (T (z))

that satisfies the functional equation

T ′(z)2A(T (z)) = A(z), T ∈M(D).

The equation

σ′(z)2A(s(z)) = A(z), s ∈ S(D), σ(z) = s(z),

can be shown by applying the proof of Lemma 4.34 by using (4.60).

4.4.6 Analytic Remainder Construction III: Second Order Poles

Based on Lemma 4.23, we have in the doubly connected case the analytic remainder

A(z) =
b(l1 − l2)2

(z − l1)2(z − l2)2
, b ∈ R,

where l1 and l2 are the fixed points of the generator T of M(D). Since all functions in
M(D) are of the form Tn, n ∈ Z, these two fixed points are actually all the fixed points
of all transformations.
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To apply this concept to domains of a connectivity greater then two, we have to mod-
ify it. Let D in the following be a (m + 1)-connected circular domain (m > 1) and
M(D) the corresponding Schottky group. The set M(D) is generated by more than one
transformation. Hence, we need to further specify the fixed points and write

A(z, T ) :=
(lT,1 − lT,2)2

(z − lT,1)2(z − lT,2)2
,

where lT,1 and lT,2 are the fixed points of T .40

Lemma 4.46
Let T ∈M(D) \ {id} and lT,1 and lT,2 be the fixed points of T . The function

A(z, T ) =
(lT,1 − lT,2)2

(z − lT,1)2(z − lT,2)2

has the properties

A(z, Tn) = A(z, T ), n ∈ Z \ {0},
σ′(z)2A(s(z), T ) = A(z, s ◦ T ◦ s), s ∈ S(D), σ(z) = s(z), (4.61)

U ′(z)2A(U(z), T ) = A(z, U−1TU), U ∈M(D).

Proof. The first equation A(z, Tn) = A(z, T ), where n ∈ Z \ {0}, follows directly from
the definition of A(z, T ), as each Tn has the same fixed points as T .
The second equation can be gathered by calculating

σ′(z)2A(s(z), T ) =
(s(lT,1)− s(lT,2))2

(z − s(lT,1))2(z − s(lT,2))2
.

Each point s(lT ) has the property

(s ◦ T ◦ s)(s(lT )) = (s ◦ T )(lT ) = s(lT )

and is therefore a fixed point of the Möbius transformation s ◦ T ◦ s.
A similar calculation for U ′(z)2A(U(z), T ) yields the third equation.

To reduce the number of different notations A(z, Tn) for the same function A(z, T ), we
demand that the denoting transformation T can not be written as the nth power of
another transformation U , where n > 1, i.e. T 6= Un for all U ∈ M(D) and n > 1. We
still have A(z, T ) = A(z, T−1).

The lemma above contains the Möbius transformation s ◦ T ◦ s, which needs some
interpretation. We begin with a definition and introduce a new operator.

40Note that we have A(z, T ) = T (z) for lT,1 = l1, lT,2 = l2, l1 = l4, where T is from Lemma 4.45.
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Definition 4.47
For a Schottky group M(D), the operator ∗ for a Möbius transformation U = U1 . . . Un
of the group, where Uj ∈ gen(M(D)), j = 1, . . . , n, inverses each (extended) generator
Uj used to compose U , i.e.

U∗ = (U1 . . . Un)∗ = U−1
1 . . . U−1

n .

It has the properties

(U∗)∗ = U and (UV )∗ = U∗V ∗.

The definition above is only reasonable for a Schottky group and a specific set of gener-
ators, since the factorization would not otherwise be unique. As these requirements are
satisfied by our construction of M(D), we suppose them to be satisfied for the following
statements.

Lemma 4.48
For any transformation U ∈M(D) and reflection sj ∈ S(D) against a boundary circle
Cj of D, the following is true

s0Us0 = U∗

and for j 6= 0

sjUsj = T−1
j U∗Tj ,

where Tj = s0 ◦ sj ∈ gen(M(D)).

Proof. We denote the members of gen(M(D)) by T±1
j . According to the definition of

M(D), the (extended) generators are of the form

Tj = s0 ◦ sj , T−1
j = sj ◦ s0.

We simplify the notation by using only the indices of the reflections

Tj = (0j), T−1
j = (j0).

Suppose we have a transformation U = U1U2 . . . Un, where each Uk is a generator. We
can replace U1 by T±1

i , U2 by T±1
j and so on. The application of s0 yields

s0Us0 =


s0TiTj . . . = 0(0i)(0j) . . . = (i0)(j0) . . . = T−1

i T−1
j . . .

s0TiT
−1
j . . . = 0(0i)(j0) . . . = (i0)(0j) . . . = T−1

i Tj . . .

s0T
−1
i Tj . . . = 0(i0)(0j) . . . = (0i)(j0) . . . = TiT

−1
j . . .

s0T
−1
i T−1

j . . . = 0(i0)(j0) . . . = (0i)(0j) . . . = TiTj . . .
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The s0 to the left of U changes the grouping of the reflections. It either cancels out the
reflection s0 of Ti, changing it to T−1

i , or adds the reflection to change T−1
i to Ti. This

modification of the first transformations leads to a “spare reflection” s0 grouped to
the next transformation or borrows a reflection from the following transformation. In
either case, the process continues in the same way with all following transformations.
Since we also append s0 to U , the total number of reflections is still even and they can
all be grouped to Möbius transformations.
It may be necessary to insert the identity id = s0 ◦ s0 in the form of two successive
reflections against C0 to get pairs (0j) and (j0) as seen for s0TiT

−1
j . . . above.

The same identity is used if we apply sj , where j 6= 0. We insert a pair s0 ◦ s0 between
sj and U at both ends and proceed as above.

sjUsj = sjs0s0Us0s0sj = (j0)0U0(0j) = T−1
j U∗Tj .

It is important to note that the “piecewise” inversion of a transformation in the form of
the ∗ operator is not equal to the inversion of the transformation itself (save for some
special symmetries, e.g. (TUT )−1 = T−1U−1T−1).

We can now rewrite the functional equation (4.61) for A(z, T ) as

σ′j(z)
2A(sj(z), T ) = A(z, T−1

j T ∗Tj).

The next step in the construction of an analytic function A would be to build a Poincaré
series with A(z, T ), but this is not possible as A(z, T ) contains second order poles at
limit points. Second order poles would demand the unsatisfiable property

∑ |C|0 <∞
of the group M(D).
This “not-convergence” property can easily be seen by summing over the subset {Tn |n ∈
Z } ⊂M(D)

∞∑
n=−∞

[(Tn)′(z)]2A(Tn(z), T ) =
∞∑

n=−∞
A(z, T ) = A(z, T )

∞∑
n=−∞

1 =∞

by using the properties from Lemma 4.46. The sum tends to infinity, as we count the
same term infinite times. To avoid this problem, we must ensure for the sum over the
transformations V that V ′(z)2A(V (z), T ) 6= A(z, T ).

Definition 4.49
Two transformations U, V ∈M(D) are equivalent with respect to T,W ∈M(D)

U T∼WV

if

U ′(z)2A(U(z), T ) = V ′(z)2A(V (z),W ), z ∈ D.
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Two sets of transformations M1,M2 ⊂M(D) are called equivalent, if for each V ∈M1

there is exactly one equivalent U ∈ M2 and for each U ∈ M2 there is exactly one
equivalent V ∈M1.

We write ∼T instead of T∼T and we write ∼ instead of ∼T if the transformation is
known by the context.

We need a suitable subset M(D,T ) ⊂M(D) to avoid the problem of counting the same
term multiple times, as occurred for Tn above. M(D,T ) should have the property that
each pair of transformations U, V ∈ M(D,T ), where U 6= V , is not equivalent U 6∼ V
with respect to A(z, T ). Hence, we have to exclude powers of T and transformations
U = T±1V starting with T±1.
We also do not want transformations T that can be written as either T = V −1WV or
T = Wn, n > 1, to denote a set M(D,T ). In such a case, we will use M(D,W ) instead.
Refining this idea leads to the following definition.

Definition 4.50
The subset M(D)◦ ⊂ M(D) contains all transformations T ∈ M(D) that, for all
U ∈M(D) and all n > 1, satisfy the properties T 6= Un and |U−1TU | ≥ |T |.
The subset M(D,T ) ⊂ M(D), where T = T1 . . . Tm ∈ M(D)◦, Tk ∈ gen(M(D)) for
k = 1, . . . ,m, is defined by

M(D,T ) := {V |V = V1 . . . Vn, Vj ∈ gen(M(D)), V1 6= T−1
m , V1 . . . Vm 6= T} ∪ {id}.

For a transformation T ∈ gen(M(D)), this simplifies to

M(D,T ) := {V |V = V1 . . . Vn, Vj ∈ gen(M(D)), V1 6∈ {T, T−1}} ∪ {id}.

The definition for M(D,T ) is more complicated if T is not a generator. The reason can
be shown by an example.
Suppose M(D) is generated by T and U , then M(D) contains for example W = TUT . If
we apply a transformation V in the manner as above, we have V −1WV = V −1TUTV .
If we choose V = W and apply the transformations of W = TUT one after another, we
obtain

(TUT )−1TUT (TUT ) = (UT )−1UTT (UT ) = (T )−1TTU(T ) = TUT

or in a simplified notation

TUT
T−→ UTT

U−→ TTU
T−→ TUT.

If we apply the transformations of W−1 instead, we have

TUT
T−1

−→ TTU
U−1

−→ UTT
T−1

−→ TUT.

By applying successively the transformation W or the transformation W−1, the results
are rotating through a subset of the transformations with the same length as W .41

41The rotations of W could also be denoted as circular shifts of the generators used to compose W .
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The order differs, but the resulting transformations are the same for W and W−1. We
therefore have to successively apply either W1 . . .Wm−1 or (W2 . . .Wm)−1, but not both,
otherwise we would include some transformations multiple times. It is further not valid
to apply W or its inverse completely, since the result would again be W , as W ∼W id.
The restriction to one of the two paths can be accomplished by V1 6= W−1

m (or V1 6= W1).
To prohibit the application of W itself (or W−1), we may demand V1 . . . Vm 6= W (or
V1 . . . Vm 6= W−1). This leads to

M(D,W ) = {V |V = V1 . . . Vn, Vj ∈ gen(M(D)), V1 6= W−1
m , V1 . . . Vm 6= W} ∪ {id}

or equivalently

M(D,W ) = {V |V = V1 . . . Vn, Vj ∈ gen(M(D)), V1 6= W1, V1 . . . Vm 6= W−1} ∪ {id}.

Lemma 4.51
No two transformations U, V ∈M(D,T ), where U 6= V and T ∈M(D)◦, are equivalent
U 6∼T V .

Proof. For two equivalent transformations U ∼ V , we would have (V U−1)T (UV −1) =
T , where V U−1 6= id. Since T can not be written as T = Wn, there is no rotation of T
that equals T itself. This can be seen by investigating the proof of Lemma 2.37. Hence,
we must have (V U−1) = Tm, where m ∈ Z, which is not possible by the restrictions
for the elements of M(D,T ).

To easier denote the behavior of rotating the transformations, we introduce some new
notations.

Definition 4.52
Let T = T1 . . . Tn ∈ M(D) and Tj ∈ gen(M(D)), where j = 1, . . . , n. The set of
rotations is defined by

rot+(T ) := {(T1 . . . Tn), (T2 . . . TnT1), . . . , (TnT1 . . . Tn−1)},
rot−(T ) := {U−1 | U ∈ rot+(T )},

rot(T ) := rot+(T ) ∪ rot−(T ).

We want to combine the results so far and state the following properties of the set
M(D,T ).

Lemma 4.53
For a set M(D,T ), T ∈M(D)◦ the following is true

• M(D,T ) T∼T−1 M(D,T−1)

• V ∈M(D,T )⇒ V ∗ ∈M(D,T ∗)
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• M(D,T ) T∼T ∗ M(D,T ∗) if T ∗ ∈ rot(T )

• M(D,T ) T 6∼T ∗ M(D,T ∗) if T ∗ 6∈ rot(T )

Proof. The first property follows directly from A(z, T ) = A(z, T−1), as shown in
Lemma 4.46.
The second property can be gathered by the definitions of ∗ and M(D,T ).
The third and fourth property follow from the fact that M(D,T ) (by its construction)
covers all rotations of T . If T ∗ is a rotation of T , i.e. T ∗ = U−1TU , where U ∈M(D,T ),
the sets must be equivalent. This also holds if T ∗ is the inverse of a rotation according
to the first property.
If T ∗ is not a rotation, we have T ∗ 6= U−1TU for every U ∈ M(D,T ). Hence the
identity in M(D,T ∗) has no equivalent element in M(D,T ), so the sets can not be
equivalent.

With this preparation, we can now prove the convergence of the following sum:

Lemma 4.54
Let D be a circular domain, ∞ ∈ DR, and T ∈M(D)◦. The sum∑

V ∈M(D,T )

V ′(z)2A(V (z), T ) (4.62)

converges locally uniformly on DE and is analytic in DE .

Proof. We know from Lemmas 2.25 and 2.31 that every fixed point is a limit point.
We further know from Lemma 4.46 that

V ′(z)2A(V (z), T ) = A(z, V −1TV ) =
(l1 − l2)2

(z − l1)2(z − l2)2
,

where lj = V −1(lT,j), j = 1, 2, are the fixed points of V −1TV and lT,j , j = 1, 2,
are the fixed points of T . Hence, the sum (4.62) has no poles in DE , because every
transformation V (l), V ∈M(D), of a limit point is again a limit point. This also means
that for a closed subset M ⊂ DE and z ∈ M , the denominators of all A(z, V −1TV )
have a common lower boundary λ > 0. On the other hand, the numerator can be
written as

(l1 − l2)2 =
(
V −1(lT,1)− V −1(lT,2)

)2
=

(
lT,1 − lT,2

C2(lT,1 − u)(lT,2 − u)

)2

where V −1(z) = (Az + B)/(Cz + D) and u = −D
C = V (∞), except for V = id. The

differences |lT,j − V (∞)| have a lower boundary µ > 0 according to Lemma 2.36 and
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the definition of M(D,T ). If we combine these results, we can state for every term

|A(z, V −1TV )| ≤
∣∣∣∣(lT,1 − lT,2)2

C4µ2λ

∣∣∣∣ = |C|−4ν

and for the sum, excluding the term for V = id,∣∣∣∣∣∣
∑

V ∈M(D,T )

V ′(z)2A(V (z), T )

∣∣∣∣∣∣ ≤
∑

V ∈M(D,T )

|A(z, V −1TV )| ≤ ν
∑

V ∈M(D,T )

|C|−4 <∞.

With convergence ensured, we now prepare for showing the functional equations.

Lemma 4.55
For transformations T ∈M(D)◦ and V ∈ gen(M(D)), we have

{UV |U ∈M(D,T ) } ∼M(D,T ),

i.e. appending a transformation V to the transformations of M(D,T ) yields a set
equivalent to M(D,T ).

Proof. The transformations U ∈ M(D,T ) are, in comparison with the ones in M(D),
restricted by choices of the transformations in gen(M(D)) used in their construction,
where we must have

U1 6= T−1
m and U1 . . . Um 6= T.

There are two ways that the combination UV can break these conditions. The ap-
pending of T−1

m to the identity yields UV = T−1
m , while the appending of Tm to

T1 . . . Tm−1 yields T . If we append neither of these two transformation but V ∈
gen(M(D)) \ {T−1

m , Tm}, we get an equivalent set, as the transformations ending with
V −1 and the ones not ending with V −1 merely exchange places.
We take a closer look at the critical transformations, i.e. the ones that can break
the conditions of M(D,T ). Listing the transformations of the group M(D,T ) for the
appending of T−1

m or Tm gives

U W ∼ UT−1
m W ∼ UTm

id T1 . . . Tm−1 Tm
Tm id T 2

m

T1 . . . Tm−1 T1 . . . Tm−1T
−1
m id

U1 . . . Un U1 . . . UnT
−1
m or U1 . . . Un−1 U1 . . . UnTm or U1 . . . Un−1
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In the context of equivalent functions, we only have a rotation in the set if we apply
either T−1

m or Tm. The sets M(D,T ) and {UV |U ∈M(D,T ) } are therefore equivalent
for all V ∈ gen(M(D)).

One problem remains: The application of a reflection leads to the ∗ operator, but
according to Lemma 4.53, we may leave the set M(D,T ) in the process. To deal with
this issue, we define the analytic functions AT in the following way, and hence determine
another way to describe the analytic functions that can be used to construct the basis
functions Bi.

Definition 4.56
Let T ∈M(D)◦. The function AT is defined by

AT (z) :=
∑

V ∈M(D,T )

V ′(z)2A(V (z), T ) +
∑

V ∈M(D,T ∗)

V ′(z)2A(V (z), T ∗)

if T ∗ 6∈ rot(T ), or

AT (z) :=
∑

V ∈M(D,T )

V ′(z)2A(V (z), T )

if T ∗ ∈ rot(T ).

With all preparation complete, we may now show that the functions of the definition
above satisfy our requirements for the analytic remainder functions.
Note that the following lemma does not require the Schottky group M(D) to satisfy the
property

∑ |C|−2 <∞.

Lemma 4.57
The function AT of Definition 4.56, where T ∈ M(D)◦, is analytic everywhere in
DE = C∞ \ Λ and satisfies the equations

σ′(z)2AT (s(z)) = AT (z), σ(z) = s(z), s ∈ S(D),

U ′(z)2AT (U(z)) = AT (z), U ∈M(D).

Proof. The function AT is analytic in DE , as only poles in Λ were used in its construc-
tion. We therefore have three properties to prove: the convergence, the functional
equation related to transformations and the functional equation related to reflections.

convergence
The convergence is already covered in Lemma 4.54. It may have to be applied twice:
once for the sum over M(D,T ) and once for the sum over M(D,T ∗).
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transformation
If we apply a transformation U to AT , we have for every term V ′(z)2A(V (z), T ) in the
sum over M(D,T )

U ′(z)2V ′(U(z))2A(V (U(z)), T ) = W ′(z)2A(W (z), T ),

where W = V U . However, according to Lemma 4.55, the set containing all trans-
formations W is equivalent to M(D,T ), so the sum is unchanged as the reordering is
permitted by the absolute convergence of the sum.
The same can be repeated for the sum over M(D,T ∗).

reflection
In the case of reflections, we have for each term in the sum over M(D,T )

σ′j(z)
2A(sj(z), V −1TV ) = A(z, sjV

−1TV sj) = A(z,W−1T ∗W ),

where W = V ∗Uj and Uj = s0 ◦ sj ∈ gen(M(D)). This time, W is in the set M(D,T ∗).
If T ∗ ∈ rot(T ), we have M(D,T ∗) ∼M(D,T ), so the sum does not change.
If T ∗ 6∈ rot(T ), we have two sums (the one over M(D,T ) and the one over M(D,T ∗))
by the definition of AT . These two sums interchange as (T ∗)∗ = T , so the sum of the
sums does not change.
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4 Multiply Connected Circular Arc Polygon Domains

4.5 Known Mappings onto Domains of Connectivity Three or Greater

There are not many known non-trivial conformal mappings for multiply connected do-
mains, especially for connectivity three or greater.
The Schwarz-Christoffel transformation for multiply connected domains is probably the
most well known class of mappings. Two major forms of these mappings exist. The
first was stated by DeLillo, Elcrat and Pfaltzgraff [DEP04] and was constructed similar
to our mappings onto MCCAPDs. The second was established by Crowdy [Cro05] and
uses the so called Schottky-Klein prime function, which was later on also utilized to
construct further mappings [CM06].
The problem with these two forms is that they are not easy to use for a comparison.
We have already seen in Section 4.3.2 that the terms not directly associated with the
prevertices arise in the limit process. With the increased size of the limit set Λ, extract-
ing useful information becomes extremely difficult.
We can still compare the conditions necessary for the convergence in both cases. Since
we can derive a suitable Schwarzian from a SC mapping, the Schwarzian, at least for
some mappings, must converge under the same conditions as the pre-Schwarzian in the
SC scenario.
Beforehand, we must introduce the mappings itself.

Before we continue with the SC mapping, we note that there is also a form for the
MCCAPD mapping from Crowdy, Fokas and Green [CFG11], but the article contains
no comparable form of the mappings.

4.5.1 Schwarz-Christoffel Mapping of Multiply Connected Domains

Definition 4.58 ([DEP04])
For a circular domain bounded by the m + 1 circles Cj with centers cj and radii rj ,
the separation modulus ∆ is defined by

∆ := max
i,j,i6=j

µsepij ,

where

µsepij :=
ri + rj
|ci − cj |

, i, j = 0, . . . ,m; i 6= j.

Lemma 4.59 ([DEP04])
Let P be an unbounded (m+ 1)-connected polygonal region, ∞ ∈ P and D a confor-
mally equivalent circular domain. Further, suppose D satisfies the separation property
∆ < m−1/4 for m > 1. Then D is mapped conformally onto P by a function of the
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form Af(z) +B where

f(z) =

∫ z m∏
j=0

Kj∏
k=1

 ∞∏
i=0,ν∈σi(j)

(
ζ − pj,k,ν
ζ − uj,ν

)βj,k dζ. (4.63)

The separation parameter ∆ is given explicitly in terms of the radii and centers of the
circular boundary components of D.

The mapping formula is gained in the article by showing that the function S of the
following definition is the pre-Schwarzian S = f ′′

f ′ of the mappings.

Definition 4.60 ([DEP04])
The function S(z) is defined by the following limit

S(z) = lim
N→∞

SN (z),

where

SN (z) =

N∑
i=0

m∑
j=0

∑
ν∈σi(j)

Kj∑
k=1

βj,k(pj,k,ν − uj,ν)

(z − pj,k,ν)(z − uj,ν)

The index ν in the sum and the product above refers to a sequence of reflections against
the boundary circles of D.
We have already noted that the basic structure regarding the poles in the plain can be
gathered either by reflections or by transformations. In the article [DEP04] reflections
were used for the construction, so the prevertices above would be read as

pj,k,ν = sν(pj,k) = (sν1 ◦ sν2 ◦ . . . ◦ sνi)(pj,k),
where sν refers to a reflection generated by successive application of reflections in S(D)
against the boundary circles of D. The sequence of these reflections is defined by ν.
The set σi(j) is defined as all valid42 reflection sequences of length i not ending with the
index j, i.e. the first applied reflection is not sj . This condition is necessary to avoid the
sum containing one prevertex several times, as we have sj(pj,k) = pj,k. The notation
can therefore be compared to the pT,j,k = T (pj,k) used in our construction. Essentially
we have

lim
N→∞

N∑
j=0

∑
ν∈σj(i)

≈
∑

T∈M(D)

The main reason that we can not directly rewrite the pre-Schwarzian of the SC mapping
in a form that uses transformations is the appearance of poles at the reflections of infinity

42Valid means that no successive indices are equal, as sj ◦ sj = id, which would reduce the length of
the sequence.
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uj,ν = sν(uj) = sν(sj(∞)). They do not show up in the Schwarzian derivative, but in
the pre-Schwarzian with residue −2. This behavior can be seen in the proof of Lemma
2.14.
In the form of DeLillo, Elcrat and Pfaltzgraff the poles at the prevertices on each
(reflected) circle and the reflections of infinity are grouped together. This is not easy
to denote with transformations. We have, beside the sheer ordering of the poles, the
problem that each pole at u is either given by T (∞) or by T (s0(∞)), where s0 is the
reflection against the circle C0. We will investigate the sum to illustrate this problem.
In the first step the prevertices on the circle Cj are grouped with the reflection of infinity
against Cj , i.e. cj = uj = sj(∞). Let us, for example, observe the prevertices p0,k on
C0 and c0. In the next step they are reflected by, for example, s1 to s1(p0,k) and s1(c0).
Bringing them to our notation gives

s1(p0,k) = s1(s0(p0,k)) = T−1
1 (p0,k),

s1(c0) = s1(s0(∞)) = T−1
1 (∞),

by using the identity p0,k = s0(p0,k). If we further apply s2, we get in the same manner

s2(s1(p0,k)) = (s2 ◦ s0 ◦ s0 ◦ s1)(p0,k) = (T−1
2 ◦ T1)(p0,k),

s2(s1(c0)) = (s2 ◦ s0 ◦ s0 ◦ s1)(c0) = (T−1
2 ◦ T1)(c0),

by using s0 ◦ s0 = id.
Proceeding with this construction shows that we have to group any T (pj,k) either with
T (∞) or with T (cj), depending on whether the first applied reflection in T is sj or not.
We still might try to write the pre-Schwarzian, including some reordering, in the form

S(z) =
∑
j,k

(
βj,k

z − pj,k

)
+

−2

z − s0(∞)

+
∑

T∈M(D)\{id}

∑
j,k

(
βj,k

z − pT,j,k

)
+

−2

z − T (s0(∞))
+

−2

z − T (∞)

 .
The downside of this formulation is the possible loss of convergence of the sum by the
reordering of the terms.

4.5.2 Convergence of the Schwarz-Christoffel Transformation

The importance of the ordering of the poles becomes obvious, when we consider if

S(z) =
∞∑
i=0

m∑
j=0

∑
ν∈σi(j)

Kj∑
k=1

βj,k(pj,k,ν − uj,ν)

(z − pj,k,ν)(z − uj,ν)

is converging for z ∈ D. Within this special ordering, the sum contains the expression
pj,k,ν − uj,ν . We know already that by either reflection or transformation, the images
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of the boundary circles are shrinking with the number of reflections/transformations
applied, but each uj,ν is inside a circle Cj,ν on which the reflected prevertices pj,k,ν
lie. Hence |pj,k,ν − uj,ν | is smaller than twice the radius rj,ν of the reflected circle
Cj,ν = sν(Cj) and therefore goes to zero.
The remaining open issues are whether the difference is going quickly enough to zero
and how this depends on the geometry of D.
To provide the necessary context for the following discussion, we sketch the convergence
proof of [DEP04].

Lemma 4.61 ([DEP04])
For a (m + 1)-connected circular domain D, where m ≥ 1, satisfying the separation
condition

∆ < m−1/4,

the function S converges uniformly on closed sets G ⊂ D.

Proof. First we note that there is an upper boundary for

max

∣∣∣∣ βj,k
(z − pj,k,ν)(z − uj,ν)

∣∣∣∣ ≤ δ,
as both factors in the denominator are bounded: The prevertices pj,k,ν and the uj,ν are
all inside or on the boundary circles Cj . There is therefore a positive distance between
each of them and any z ∈ G ⊂ D.
We will further need the property

m∑
j=0

∑
ν∈σn(j)

r2
j,ν ≤ ∆4n

m∑
j=0

r2
j

taken from [DEP04], where [Hen86] is referred. rj,ν indicates the radius of the circle
sν(Cj), rj the radius of the circle Cj and σn(j) all sequences of reflections of length n
with the first reflection not being sj .
If we now define Ai(z) as the summands of SN by

|SN (z)| =
∣∣∣∣∣
N∑
i=0

Ai(z)

∣∣∣∣∣ ≤
N∑
i=0

|Ai(z)|,

we can write with Kmax := maxj{Kj}, |pj,k,ν − uj,ν | ≤ 2rj,ν and the Cauchy-Schwarz
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inequality

|Ai(z)| =

∣∣∣∣∣∣
m∑
j=0

∑
ν∈σi(j)

Kj∑
k=1

βj,k(pj,k,ν − uj,ν)

(z − pj,k,ν)(z − uj,ν)

∣∣∣∣∣∣
≤

m∑
j=0

∑
ν∈σi(j)

Kj∑
k=1

|βj,k||pj,k,ν − uj,ν |
|(z − pj,k,ν)(z − uj,ν)|

≤
m∑
j=0

∑
ν∈σi(j)

Kj∑
k=1

2 δ rj,ν ≤ 2δKmax

m∑
j=0

∑
ν∈σi(j)

rj,ν

≤ 2δKmax

 m∑
j=0

∑
ν∈σi(j)

r2
j,ν

1/2 m∑
j=0

∑
ν∈σi(j)

1

1/2

≤ 2δKmax

 m∑
j=0

∑
ν∈σi(j)

r2
j,ν

1/2

√
m+ 1mi/2

≤ 2δKmax∆2i

 m∑
j=0

r2
j

1/2

√
m+ 1mi/2

≤ δ̃∆2imi/2 = δ̃
(
∆2√m

)i
,

where δ̃ contains the constant terms, i.e. δ̃ = 2δKmax

(∑m
j=0 r

2
j

)1/2√
m+ 1. Therefore

we have for SN

|SN (z)| ≤
N∑
i=0

|Ai(z)| ≤
N∑
i=0

δ̃
(
∆2√m

)i
.

Hence, SN converges if ∆2√m < 1.

The critical point in the proof is whether the sum
∞∑
i=0

m∑
j=0

∑
ν∈σi(j)

rj,ν

over the radii of all the (reflected) circles converges. To ensure the convergence, the
separation condition and the Cauchy-Schwarz inequality are needed.
By replacing the reflections with transformations, we can rewrite the sum as

∞∑
T∈M(D)

m∑
j=0

rj,T

covering the same radii as in the version above. A similar sum already appeared in
Lemma 2.46. This allows us to state our own convergence criteria.
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Lemma 4.62
Let D be a (m+ 1)-connected circular domain, where m ≥ 1 and M(D) satisfies the
condition

∑ |C|−2 <∞.
The pre-Schwarzian S converges uniformly on closed sets G ⊂ D.

Proof. The difference between

∞∑
i=0

m∑
j=0

∑
ν∈σi(j)

rj,ν =

∞∑
T∈M(D)

m∑
j=0

rj,T

and the sum from Lemma 2.46 ∑
T∈M(D)

m∑
j=1

rj,T

is that the sum in the lemma covers only the transformations of the circles with index
j = 1, . . . ,m as the circle C0 does not appear as a boundary circle of the fundamental
region, since C0 was used in the construction of M(D).
However each of the circles T (C0) (T 6= id) is inside of at least one other circle U(Cj),
where j = 1, . . . ,m, and T,U ∈M(D). We choose the U(Cj) with the smallest radius
still enclosing T (C0) and have

r0,T < rj,U .

To also include the r0,T in the sum, we count the corresponding rj,U twice. Or we may
count every radius twice, which yields

∞∑
T∈M(D)

m∑
j=0

rj,T < 2
∑

T∈M(D)

m∑
j=1

rj,T + r0.

The right side of the inequality converges for
∑ |C|−2 <∞ according to Lemma 2.46.

The statement of the lemma follows if this result is used in the proof of Lemma 4.61.

The condition
∑ |C|−2 < ∞ matches our requirement for the MCCAPD mapping, so

both mapping formulas essentially have the same requirement regarding the conver-
gence.
This allows us to use all the results regarding

∑ |C|−2 <∞ for establishing the conver-
gence of the pre-Schwarzian of the SC mapping.

Lemma 4.63
For a triply connected circular domain D the pre-Schwarzian S converges uniformly
on close sets G ⊂ D.

135



4 Multiply Connected Circular Arc Polygon Domains

Proof. Construct M(D). The circle C0 separates the fundamental region DR into triply
connected regions as demanded in Lemma 2.45. Therefore we have

∑ |C|−2 <∞.

This means on the other hand that the separation condition stated above would also
allow us to assume the convergence for the MCCAPD mapping.

Note

An alternative approach would be to note that the distance pj,k,ν − uj,ν shrinks with
|C|−2. The sum over Ai therefore converges if

∑ |C|−2 converges. The result itself can
easily be shown by a simple calculation, but a clear notation would not be easy, as uj,ν
can be T (∞) or T (cj), leading us to investigate separate cases.

4.5.3 Recent Results Regarding the Convergence of the SC Mapping

Until now, we have used the convergence condition
∑ |C|−2 < ∞, while for the SC

mapping the condition ∆ < m−1/4 was used. We already noticed that both conditions
are equivalent for the SC mapping, but the question remains whether these conditions
are necessary at all.

The requirement
∑ |C|−2 < ∞ originates from the convergence of the Poincaré theta

series, which is shown by demonstrating its absolute convergence. Mityushev stated in
his article [Mit98] that by replacing the absolute locally uniform convergence by locally
uniform convergence, we can alter the condition ν ≥ 2 in Lemma 2.40 to ν ≥ 1 for
symmetric Schottky groups. However, the convergence for ν ≥ 1 is equivalent to the
condition

∑ |C|−2 <∞.43 An application of this result to our discussion may allow to
discard the convergence conditions stated so far.

Meanwhile Mityushev also directly applied the methods of boundary value problems to
the topic of (multiply connected) conformal mappings [Mit12a], [Mit12b]. The article
[Mit12b] is especially of interest, as it shows the convergence of the Schwarz-Christoffel
transformation for multiply connected domains without any convergence restrictions.
He constructed a version of the SC mapping by solving a Riemann-Hilbert problem
(Definition 4.37), where in his construction no restrictions regarding the convergence
arise.

43See also the discussion at the end of Section 2.5.
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5 Numerical Approaches to the CAPD Mapping

There are several points worth noticing in the numerical evaluation of conformal map-
pings onto CAPDs. Since we only know the Schwarzian derivative of the mappings, any
evaluation includes the solving of a third order differential equation.
An important aspect of the numerical solving process is a suitable choice of the curves
for the calculation. To investigate the mapping behavior, a full grid may be useful.
If we are only interested in the shape of the boundary, we only need to “touch” each
boundary arc once, which requires significantly less calculation effort. We show our
approach for handling this problem in Section 5.2.

Before we can solve the Schwarzian, we first have to calculate it. The term “calculate”
refers to the fact that if we start with a preimage domain D and a complete set of
prevertices, interior angles and parameters, we still need the extension of the domain.
Hence, we have to calculate the transformations of M(D) to set up the Poincaré series.
We present our algorithms for this issue in Section 5.4.

The last step in the solving process would be the determination of the analytic remainder
for a given mapping. As we are missing an explicit calculation routine, this will lead to
some iterative solving methods to find the most suitable parameters to ensure a valid
mapping, where possible.

We will focus on multiply connected mappings, but most of the results can also be used
for the simply connected case. Since the structure for doubly connected domains and
the ones with connectivity three or greater differ significantly, we will cover the two
cases separately.

5.1 Solving the Schwarzian Derivative

The solving process for the Schwarzian derivative does not differ for simply and mul-
tiply connected domains. The result may not be valid for multiply connected domains
as discussed in the note which follows Lemma 2.13, but this does not influence the
computation.

Since the Schwarzian derivative is a differential operator, we have to solve a differential
equation of the third order, however we know already by Lemma 2.13 that we can al-
ternatively solve two differential equations of the second order instead.
The details of setting up the system of differential equations can be found in the Ap-
pendix B.1.

5.2 Choosing Suitable Paths for an Evaluation

The common way to evaluate a mapping that is given in the form of a differential
equation at a specific point z1 is to start at a point z0 with initial values for f(z0) and
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5 Numerical Approaches to the CAPD Mapping

its derivatives and solve along some curve ζ, where ζ(0) = z0 and ζ(1) = z1.
The curve should satisfy the property that it lies completely in the preimage domain
D. This is complicated by the fact that in our case D contains several holes that should
be avoided. While the Schwarzian is defined in C∞ \ Λ, we are moving from the image
domain f(D) to a reflection of it by crossing its boundary. If we return into D across a

Figure 35: If the solving process leaves D, it may end in a transformed version
of the image domain.

pre-arc different to the one we crossed in leaving, we are actually moving into a Möbius
transformed version of f(D) (Figure 35). The safest way is to remain solely in D.
It is also reasonable to stay away from the prevertices for computational reasons. As
each prevertex is a pole of the second order, it is sensible to assume some numerical
difficulties, if the curve approaches them too close.

We will now present our algorithm for choosing suitable paths.44 It was used to generate
the images of the numerical evaluations of the mappings shown in the Sections 5.3.3
and 5.4.4.

5.2.1 Reaching the Boundary Components

We are not only interested in some specific points, but in the shape of the image domain.
We will therefore start with a concept to evaluate the boundary.
We know that the boundary consists of circular arcs. Each of these arcs is part of a
circle C̃j,k. If we know all these circles, we can calculate the boundary of the domain.45

To find the circle corresponding to an arc, we need a path from z0 to a boundary point
z1, which is mapped onto this arc. If we reach the boundary, we get f(z1), f ′(z1) and

44We use the term “path” in addition to “curve” to indicate that we are actually interested in
orientated curves, because we have to start each curve in z0.

45For the actual calculation, we may need some additional information, like the interior angles and
the orientation of the curves. However, all these values are either known beforehand or gathered in the
process of the calculation.
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5.2 Choosing Suitable Paths for an Evaluation

f ′′(z1) as a result of solving the differential equation. f(z1) gives a point that is part
of the circle in question; f ′(z1) gives the orientation of the curve and the direction
in which the center of the circle can be found; finally f ′′(z1) provides us with the
curvature/the radius of the circle. Hence the boundary is known if we have the solution
of the differential equation at one point of each boundary arc. The actual computation
of the boundary using these points on the boundary can be found in the Appendix B.2.

In the following, we will present one possible way to select the paths. This method was
used to generate the images of the mapping behavior, which are shown in the following
sections.
We will for now suppose that each line segment from z0 to the center of a boundary
circle Cj is not intersected by another boundary circle than Cj itself.
The idea is to get close to each of the boundary circles and then solve (with some
distance) around them. Whenever we need a point from the boundary, we solve from
the “orbit” to this specific point.

We have to specify the points we want to reach. Since we need to keep some distance
from the prevertices, a suitable choice would be the midpoints of the pre-arcs:

ϕ2,j,k :=
1

2
(arg(pj,k − cj) + arg(pj,k+1 − cj)) ,

z2,j,k := rj exp(iϕ2,j,k) + cj .

We also need to know how far we can stay away from the circles, so we compute the
minimum distance between the circles and divide it by three4647

d :=
1

3
min
j,i,j 6=i

{|cj − ci| − rj − ri} .

Now we solve from the starting point z0 in the direction of cj to a point z1,j,0 that has
the distance d from Cj :

ϕ1,j,0 := arg(z0 − cj),
z1,j,0 := (rj + d) exp(iϕ1,j,0) + cj .

Beginning in z1,j,0, we solve along the circle (rj + d) exp(it) + cj and stop at the points

z1,j,k := (rj + d) exp(iϕ2,j,k) + cj

with the same arguments ϕ2,j,k with respect to the center cj as the points z2,j,k. From
each of these points z1,j,k, we solve along a line segment to the corresponding point
z2,j,k.
Combining this leads to the first version of our algorithm:

46The factor 1
3

was chosen arbitrary. Any factor smaller than one half is reasonable.
47The formula for d has to be modified for the circle C0 of bounded domains.
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5 Numerical Approaches to the CAPD Mapping

Algorithm 1:

1: for all circles Cj do
2: solve from z0 to z1,j,0

3: for all prevertices pj,k on Cj do
4: solve from z1,j,k−1 to z1,j,k along the circle (rj + d) exp(it) + cj
5: solve from z1,j,k to z2,j,k

6: calculate the circle for the image of the arc between pj,k and pj,k+1

7: end for
8: end for

There are some facts to note regarding the algorithm:

• Depending on the location of z0, it may be necessary to solve away from Cj to
reach z1,j,0

• If D is a bounded domain, there is one outer circle C0. We have to replace the
radius (r0 + d) by (r0 − d) for z1,0,0 = (r0 − d) exp(iϕ1,0,0) + c0. The argument
ϕ1,0,0 can be set to any value as long as we ensure that the line segment between
z0 and z1,0,0 is not intersected by any boundary circle.

• It is probably not the best option to solve directly from z1,j,0 to z1,j,1. In most
cases, there will be a z1,j,k, which lies (argument-wise) closer to z1,j,0 than z1,j,1.
Changing the order may reduce the calculation time.

b

b

q

q

q
b

pj,1

pj,3

b

b

b
b

b

b
z1,j,1

z1,j,2

z2,j,3

Cj

pj,2

z2,j,1

z2,j,2

z1,j,0

z0

z1,j,3

(a) Starting in z0, the algorithm solves around
Cj and touches each pre-arc once.

(b) All boundary circles are covered in the solv-
ing process.

Figure 36: A close up figure showing the behavior of the algorithm and a
figure of the whole domain. The domain is colored white, while the areas
outside of the domain are colored gray.

We supposed above that the line segment between z0 and Cj lies completely in D or,
in other words, is not intersected by another boundary circle. If this condition is not
satisfied, the algorithm has to be altered.

140



5.2 Choosing Suitable Paths for an Evaluation

If the connection between z0 and C1 is, for example, intersected by C2, we will say that
C1 is in the shadow of C2. (Imagine z0 as a light source.)

b

Figure 37: Some circles may be in the “shadow” of other circles and are
therefore not reachable by a line segment starting in z0.

First we reorder the circles with respect to their distance to z0, i.e.

|cj − z0| − rj ≤ |cj+1 − z0| − rj+1.

We then assess whether each circle Cj is in the shadow of one of the other circles Ck,
for k < j. If it is not in the shadow of another circle, we can proceed as above (i.e.
line segment from z0, etc.). Otherwise, the circle will be connected to the closest circle
Cl, where l < j. If a circle Cj is connected to a circle Cl, we will not solve from z0 to
Cj , but from Cl to Cj . Therefore, we need a point z0,l,j on the orbit of Cl that will be
connected to an alternative z1,j,0 in the orbit of Cj :

ϕ1,j,0 := arg(cl − cj),
z0,l,j := (rl + d) exp(iϕ1,j,0 + iπ) + cl,

z1,j,0 := (rj + d) exp(iϕ1,j,0) + cj .

Expanding our algorithm according to this concept gives:

Algorithm 2:

1: order the circles Cj according to their distance to z0

2: for all circles Cj do
3: if Cj is in the shadow of another circle then
4: search the closest circle Cl, where l < j
5: solve from z1,l,0 to z0,l,j (circular arc)
6: solve from z0,l,j to z1,j,0 (line segment)
7: else
8: solve from z0 to z1,j,0 (line segment)
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9: end if
10: for all prevertices pj,k on Cj do
11: solve from z1,j,k−1 to z1,j,k along the circle (rj + d) exp(it) + cj
12: solve from z1,j,k to z2,j,k

13: calculate the circle for the image of the arc between pj,k and pj,k+1

14: end for
15: end for

The notes of the preceding algorithm also hold here. This includes the remark about
bounded domains, while this time C0 can also be covered by shadows of other circles.
Note that it may be useful to calculate the connections of the circles before calculating
the arcs. The calculation of the z0,l,j can then be included in the calculation of the
z1,l,k. This will save some calculation time.

b

Figure 38: The shadow circles are connected according to the suggested al-
gorithm.

While the algorithm holds for all circular domains, it can be simplified for special
preimage domains.
If the circular domain is an annulus, we can place the points z1,0,k and z1,1,k on the
same circle. A reasonable choice for this circle would be 1+r

2 exp(it) (Figure 39(a)).
It further simplifies for simply connected domains. Since the unit disk is a convex
domain, we can reach all z2,0,k directly by line segments starting in z0 (Figure 39(b)).

5.2.2 Reaching a Single Point

If we intend to reach only a single point, we can simplify the algorithm constructed for
the boundary. If we want to solve from z0 to a point z2, the line segment connecting
the points is probably intersected by some boundary circles Cj . To avoid these circles,
we use a similar concept to the one above.
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(a) If a circular domain is an annulus,
one common orbit is enough to reach all
boundary arcs.
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(b) Every boundary point of the unit disk
can be reached by a line segment starting
in the origin.

Figure 39: The algorithm can be simplified for special circular domains.

We again use the orbit of each circle by extending its radius by a suitable constant d,
so the path has to avoid the circles

Coj : |z − cj | = rj + d.

Hence, we calculate the intersection points of the line segment between z0 and z2 and
the circles Coj . We get two points z1,j,1 and z1,j,2 for each intersected circle. If the
line segment only touches the circle, the resulting touching point can be discarded. We
therefore get 2n intersection points if n circles are intersected. We further sort the
points by the distance to z0

|z1,ν − z0| < |z1,ν+1 − z0|, ν = 1, . . . , 2n ,

where each pair z1,ν , z1,ν+1, for an odd-numbered ν, belongs to the same circle.
All that remains is to connect the points to reach z2. We have line segments between the
pairs (z0, z1,1), (z1,2n, z2) and every combination (z1,ν , z1,ν+1) with an even-numbered
ν. The pairs of points on the same orbit Coj can be connected by a circular arc that is
part of the corresponding orbit. It is reasonable to choose the shorter one of the two
possible arcs.

Algorithm 3:

1: calculate the line segment L between z0 and z2

2: for all orbit Coj do
3: if Coj and L intersect then
4: calculate the intersection points
5: save them together with the corresponding orbits
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(a) Replacing parts of the line segment
connecting z0 and z2 with arcs of the in-
tersected orbits yields a suitable path.
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z2

(b) If a point lies inside an orbit, we
may approach that point by solving
into the orbit instead of reducing the
size of the orbit.

Figure 40: To solve from z0 to a point z2, we may need to avoid the boundary
circles by surrounding them.

6: end if
7: end for
8: sort the intersection points and orbits according to their distance to z0

9: solve from z0 to z1,1 along a line segment
10: for all z1,ν do
11: if ν is odd then
12: solve from z1,ν to z1,ν+1 along the shorter arc of Coj(ν) connecting them
13: else
14: solve from z1,ν to z1,ν+1 along the line segment connecting them
15: end if
16: end for
17: solve from z1,2n to z2 along a line segment

This solving method is only reasonable for single points. If more points are needed, one
may want to further analyze the situation. If, for example, all points of the set M are
on a line segment, it is more efficient to start the solving process only for one point
z2 ∈ M in z0. All the remaining points can then easily be reached from z2 instead of
starting again in z0.
Hence, there is in most cases a more efficient way to evaluate special structures, where
the calculation of the boundary may be seen as an example.

5.3 Mappings onto Doubly Connected Domains

We now discuss the case of doubly connected domains before we continue with mappings
of domains of a greater connectivity. The calculation of the Schwarzian derivative is
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easier to handle in the case of connectivity two, based on the linear structure of the
underlying Schottky group.
The goal of this section is the “forward mapping” of a doubly connected domain: By
choosing D, p, a and µ, we calculate the image domain f(D).
The formula for the mapping of an annulus is much easier then the one for generic doubly
connected domains. Nonetheless, one might want to use an unbounded preimage domain
to map onto an unbounded image domain for computational reasons. An annulus would
contain in this case the preimage of infinity, which can lead to numerical issues. We
will therefore try to cover both cases in our discussion.

We will suppose the preimage domains to be normalized, and so assume C0 to be the unit
circle for bounded and unbounded domains. Hence, three degrees of freedom remain
for further normalization. We want the bounded domains to be annuli and normalize
the second circle accordingly. Each annulus is then defined by r < |z| < 1.
For unbounded domains, we can normalize the center of the circle C1 to be on the
positive real axis c1 ∈ R+ and set the radius to one. The conformal module of the
domain is therefore only depending on the real value of the center c1.
The remaining degree of freedom for both domain types can be used to set the argument
of one of the prevertices.

To calculate an image domain, we have to perform several steps:

1. Choose a preimage domain D
Since we have chosen a specific normalization, this means we have to select an
inner radius r for an annulus or a center c1 ∈ R+ for the unbounded case.

2. Choose the prevertices p, interior angles πα and parameters µ
The values a can be calculated based on the angles πα, and the γ for the un-
bounded case can be calculated from the µ. The best way to define the prevertices
is by their arguments with respect to the center of their circles.

3. Test for the restricting equation
If the equation is not satisfied, we have to modify one of the sets. If we want to
keep p and a, we have to modify µ. We either change one value of µ or project
the µ into a subspace of Rn (with n according to the number of parameters) such
that the restricting equation is satisfied.
We also calculate bi for the analytic remainder at this point.

4. Calculate the Schwarzian
To evaluate the Schwarzian, we need to extend the domain as discussed or, for a
numerical point of view, we must calculate the terms of the sum. This calculation
is necessary for the unbounded case, but might be skipped for an annulus, as the
formula in that case only depends on the factor r2n.

5. Search for the best parameter br
The analytic remainder of the Schwarzian is defined by the geometry of D and
the parameter br. For the final mapping, we need to find the best possible value.
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6. Evaluate the mapping
After all values have been found, we can evaluate the mapping and, for example,
calculate a specific point, the boundary, or a grid. A method for reaching the
specific components were already presented in Section 5.2.

We now consider steps 4 and 5 in more detail.

5.3.1 Calculating the Schwarzian Derivative

The Schwarzian derivative for the bounded and for the unbounded case is given in the
form of an infinite sum. For the numerical evaluation, we truncate it to a finite version.
Suppose for the following that the preimage domain is known and the parameters p, a
and µ are given and satisfy the restricting equation.

Annulus

The Schwarzian derivative for the mapping onto an annulus in given in Theorem 4.22,
but we have to use the finite form

SN (z) =

N∑
n=−N

∑
j,k

(
aj,k

(z − r2npj,k)2
+

iµj,k − aj,k
z(z − r2npj,k)

)
+
br + ibi
z2

.

Unbounded Domain

The form for an unbounded preimage domain is more complicated, and takes the form

SN (z) =
N∑

n=−N

∑
j,k

(
aj,k

(z − pn,j,k)2
+

γn,j,k
(z − pn,j,k)

+
(pn,j,k − l2)γn,j,k + aj,k

(l2 − l1)(z − l1)
+

(pn,j,k − l1)γn,j,k + aj,k
(l1 − l2)(z − l2)

)
+

(br + ibi)(l1 − l2)2

(z − l1)2(z − l2)2
.

First we complete our set of parameters. We calculate the γ according to Lemma 4.13
by using

γj,k =
iµj,k − aj,k
pj,k − cj

.

We then calculate48 the generating transformation T = s0◦s1. Any other transformation
of M(D) = {Tn | n ∈ Z} can directly be calculated with T . The transformation T is
also needed to calculate the limit points l1, l2 as they are the fixed points of T , and so
we look for the solutions of the equation z = T (z).

48A formula is given in Lemma 2.29, but it lacks the normalization AD −BC = 1.
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We must now decide if we want to calculate the values beyond the first generation by
using reflections or transformations. We can calculate the prevertices pn,j,k by reflecting
them successively against the boundary circles. The corresponding values for γ follow
from Lemma 4.12 by

γs(p) = −(p̄− c̄)
r2

(γp(p̄− c̄) + 2a) ,

where c and r are the center and radius of the circle used for the reflection s(z) = r2

z−c+c.
Alternatively, we can transform the prevertices by applying U = Tn and calculate γ,
according to Lemma 4.6, by

γU(p) =
γp

U ′(p)
− aU ′′(p)

(U ′(p))2
.

We prefer transformations for the computation, as they are easier to perform. Therefore,
our suggestion for an algorithm handling the task of calculating the values is of the
form:

Algorithm 4:

1: set the maximum depth N
2: load the domain D and the sets p, a, µ
3: modify µ to satisfy the restricting equation
4: compute T and the set γ
5: save the values p, a, γ in values[0][0]
6: for d ∈ {−1, 1} do
7: define U := T d and V := U
8: for n from 1 to N do
9: for all tuples (p, a, γ) in values[0][0] do

10: calculate q = U(p) and δ = γU(p)

11: store the combination (q, δ, a) in values[d][n]
12: end for
13: set U := U ◦ V
14: end for
15: end for

Here “values” is a suitable structure to store all the information.

5.3.2 Analytic Remainder

Recall the interpretation of the analytic remainder. The main geometry of the domain
is already determined by the Schwarzian derivative before the analytic remainder is
added. We have set the correct interior angles by our choice of a and the functional
equations guarantee that the boundary consists of circular arcs. We have yet to ensure
that the Schwarzian leads to a valid mapping.
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We cannot guarantee that every closed curve is mapped onto a closed curve. Consider
as an example the mapping of the annulus r < |z| < 1 by the function g(z) = zx,
where x ∈ R. The closed curve δ(t) = ρ exp (2πit), where r < ρ < 1 and t ∈ [0, 1], is
only mapped onto a closed simple curve for x ∈ {1,−1}. Otherwise, we have g(δ(0)) 6=
g(δ(1)), or the curve revolve about the origin (e.g. x = 2). Hence g describes only for
x ∈ {1,−1} a valid doubly connected mapping.
In Section 2.2, after Lemma 2.13, we concluded that we can verify a mapping by using
the integrals (2.3), i.e. ∫

δ
f (k)(z)dz = 0, k = 1, 2, 3.

The integrals ensure that f (k)(a+) = f (k)(a−) for each k ∈ N0 if we solve along a closed
curve surrounding a hole of D, where a is the coinciding start (a+) and end point (a−)
of such a curve. The same property can be tested by solving the Schwarzian along
closed curves and directly comparing the results to the initial values.

For an annulus, we can solve either clockwise or counterclockwise around C1 starting
at some point a ∈ R+ ∪ A. Afterwards, we test if f (k)(a+) = f (k)(a−).
For any non-annulus domain, we can choose any closed curve δ surrounding C1 and test
if f (k)(δ(0)) = f (k)(δ(1)).
We define by S(z, br) the Schwarzian not only depending on z but also on br. We
therefore denote the solution of this Schwarzian derivative by f(z, br). Hence, we look
for the zeros of the functions

g0(br) = g0(br, δ) := |f(δ(0), br)− f(δ(1), br)|,
g1(br) = g1(br, δ) := |f ′(δ(0), br)− f ′(δ(1), br)|,
g2(br) = g2(br, δ) := |f ′′(δ(0), br)− f ′′(δ(1), br)|,

where br ∈ R and δ ⊂ D is a suitable curve. The interior of δ should contain one
boundary component, i.e. it should surround C1.
If the mapping f(z, br,0) is valid, gk(br,0, δ) must be zero for all δ ⊂ D and k = 0, 1, 2.
This is only a necessary and not a sufficient condition for any specific δ. It is possible
for f(δ, br,0) to revolve about C1 twice and still have gk(br,0) = 0.
We can nonetheless use this idea for a way to search for a suitable br. We can find a
candidate by

Algorithm 5:

1: calculate S(z, b)
2: set ρ := 1

2(1 + r1) (annulus) or ρ := 1
2c1 (unbounded domain)

3: define δ(t) := ρ exp(2πit) + c1

4: define gk(b)
5: search a common zero of all gk(b) and save it as br,0

As stated, Algorithm 5 does not have to yield a correct result, but works quite well in
many cases. The algorithm does not even have to yield a result at all in the form of a
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zero since, according to Section 4.2.3, there might be no suitable br for a specific set of
D, p, a and µ.

While not further investigated, the information on differential equations outlined in the
Appendix A.4 could lead to some useful results that could be used to restrict the choices
for the parameters in the context of valid mappings.

5.3.3 Examples

We created two different algorithms for the visualization of the mappings, so we must
discuss their behavior to allow a proper interpretation.
The first algorithm solves the Schwarzian along the paths described in Section 5.2 and
plots the results. The Schwarzian is also solved along the boundary of the domain, as
soon as a boundary arc is reached. To avoid numerical issues, the solving process main-
tains a distance from the prevertices, resulting in visible gaps in the image domains.
An example is shown in Figure 41.

(a) Preimage: The path surrounds
the inner circle and touches each pre-
arc of the boundary.

(b) Image: The images of the path
and of the boundary.

Figure 41: The first algorithm shows the path used for reaching the boundary
(blue) and the actual behavior at the boundary (black). The boundary has gaps
at the vertices, as the algorithm avoids to touch the prevertices.

We solve along the boundary to visualize the exact behavior of such a mapping. This
allows us to determine the existence of any gaps or overlaps in the image domain. It
also allows to verify if the boundary consists of circular arcs.
The second algorithm also uses the paths of Section 5.2, but only to solve for a point on
each boundary component. Then, the boundary circles for the image domain are calcu-
lated with these points. These circles allow the algorithm to calculate the boundary and
the vertices. Also a grid is added to further visualize the behavior of the investigated
mapping. An example of the result of the second algorithm is shown in Figure 42.
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(a) Preimage: The concentric mesh is
colored according to the argument of
the grid points.

(b) Image: The boundary is closed
and shows the vertices, as they are
calculated by the algorithm. The
color of the grid corresponds to the
argument of its preimage points.

Figure 42: The second algorithm calculates the boundary and the vertices
with information of the circles C̃j,k that provide the boundary arcs. The interior
of the domain is filled with a mesh.

The grid also contains a safety gap towards the boundary to avoid touching the prever-
tices. The gaps only become visible if an image domain is elongated as shown in Figure
43.

Figure 43: The great distortion of elongated regions shows that the grid
calculation does not touch the prevertices or the boundary.

We visualize the influence of the different parameters by an example mapping. We set
r = 0.3 and

p0,1 = 1, p0,2 = −1, α0,1 = α0,2 = 0.5,

p1,1 = 0.3 exp (iπ/4) , p1,2 = −0.3 exp (iπ/4) , α1,1 = α1,2 = 1.6 .
(5.1)
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A suitable set for µ is given by49

µ0,1 = 0.1404 . . . , µ0,2 = 0.1401 . . . ,

µ1,1 = −0.1407 . . . , µ1,2 = −0.1397 . . . ,

bi = −0.1402 . . . , br = 0.0372 . . . .

(5.2)

The resulting image domain can be seen in Figure 44 for the initial values f(0.65) = 0,

Figure 44: The image domain for the prevertices (5.1) and the parameters
(5.2). The dashed green circles C̃j,k indicate the theoretical boundary, while
the black line shows the actual result.

f ′(0.65) = 1 and f ′′(0.65) = 1.5.
We modified the plotting algorithm in this case by adding the calculated circles C̃j,k of
the image domain. As in the second algorithm, we compute these circles at the points
where the (blue) path touches the boundary. We see in Figure 44 that the solution
gathered for the boundary (black line) overlaps with the result for the (green dashed)
circles. Hence, the circles only become visible if we approach the vertices.
We have done this to show the distortion that appears for insufficient parameters. If
we, for example, choose parameters not satisfying the restricting equation (4.20), the
solution at the boundary and the calculated circles do not have to match. The result
for the values

µ0,1 = 0.02, µ0,2 = 0.02,

µ1,1 = −0.1, µ1,2 = 0.1,
(5.3)

which do not satisfy the equation, can be seen in Figure 45.
If we break this condition, the functional equations of the Schwarzian are no longer
satisfied. As we discussed in Section 4.1.5, the functional equation is connected to the
fact that the boundary consists of circular arcs. While the domain shown in Figure 45
is self overlapping, the fact that the boundary curves are not circular arcs is crucial.
This can be seen by comparing the black boundary with the green dashed circles.

49The values were optimized by numerical routines.
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Figure 45: The parameters µ of equation (5.3) do not satisfy the restricting
equation. As a result, the green dashed and the black solid lines do not match.
The curvature of the actual boundary (black) even changes for each arc.

A similar effect occurs if we set the imaginary part bi of b to a value not satisfying
equation (4.21). For Figure 46 we used again the µ given by (5.2), but changed bi to
zero.
The curvature of the boundary arcs changes in this case, as the mapping does not sat-
isfy the functional equations. In this example, the lower of the two outer boundary arcs

Figure 46: The boundary curvature changes for the image domain for the
parameters (5.2) and bi = 0. The curvature of the lower outer boundary arc
changes in sign.

even changes the sign of the curvature and therefore gives us a good visualization of the
“not a circular arc” property.
The Schwarzian still satisfies the functional equations, if the real part br of b is incorrect.
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We define the values shown in (5.2), but set br to zero. The result is displayed in Figure
47.
The results for the boundary and the calculated circles match this time. With the func-

Figure 47: The image domain is self overlapping for the parameters (5.2) and
br = 0. This can be seen at the right vertex where the two boundary arcs cross.

tional equations satisfied, the boundary consists only of circular arcs. As we discussed
in Section 4.2.3, a invalid choice for br lead to an invalid mapping. The image therefore
shows an overlapping domain, as the boundary arcs intersect. This is best seen at the
right vertex of the outer boundary component.

(a) Preimage (b) Image

Figure 48: A full grid plot of the domain shown in Figure 44

The next example will illustrate the influence of the parameters µ on the boundary of
the domain. We set r = 0.2 and choose in the form of vectors

p0 = ( exp(0.25 i π), exp(0.75 i π), exp(1.25 i π), exp(1.75 i π) ),

α0 = ( 0.5, 0.5, 0.5, 0.5 ), µ0 = λ( 1,−1, 1,−1 ),

p1 = ( 0.2,−0.2 ), α1 = ( 1.5, 1.5 ), µ1 = ( 0, 0 ).

(5.4)
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(a) λ = 0 (b) λ = 0.1 (c) λ = 0.2

(d) λ = 0.3 (e) λ = 0.4 (f) λ = 0.5

Figure 49: The image domain for the parameters (5.4) changes with the
choice for λ. The ratio of the curvatures of the outer boundary arcs changes
with an increasing value for λ.

If we modify the weight λ ∈ R of the parameters µ0,k of the outer boundary component,
the image domain changes. This is shown in Figure 49, where λ is altered from 0 to 0.5
by steps of 0.1.
The image domain is symmetric, as the prevertices and the values for the µ also contain
a symmetry. Hence, we have two different curvatures for the outer boundary arcs.50

If we now change λ, we notice that the ratio between the two curvatures changes if
λ grows. This behavior is similar to the simply connected case. As a matter of fact,
the inner boundary component is nearly unchanged as we alter the outer boundary. A
reason for this might be that we keep the values for µ1,1 and µ1,2 unchanged. Note that
we are only able to keep these values unchanged as the choice of λ does not influence
the restricting equation.

We have not shown any pictures of unbounded doubly connected domains, as the al-
gorithmic behavior is similar to that seen in unbounded domains of connectivity three

50The symmetry of the domain requires a suitable normalization.
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or greater and the influence of the parameters is similar to that seen for the annuli.
Corresponding images for unbounded domains can be found in the following section.

5.4 Mappings onto Domains of Connectivity Three or Greater

The forward map for a MCCAPD mapping of connectivity three or greater is con-
structed using a similar procedure to that used in the case of an doubly connected
CAPD mapping. The major difference is that we have to calculate a basis for the
analytic remainder before we can find a suitable set of parameters b. Moreover, the
calculation of the Schwarzian derivative becomes significantly more difficult. On the
other hand, we will not have to verify any restricting equations.
As for the doubly connected mappings, we suppose the domain D and the parameters
p, a and µ to be given and calculate the image domain f(D).
We do not specify a special normalization for the circular domains, as it would have less
impact here as in the doubly connected case. We still suppose that 0 ∈ D for bounded
domains or ∞ ∈ D for unbounded domains. In this way, we avoid limit points in the
neighborhood of infinity. It may still be advantageous to set C0 to be the unit circle.

The process of constructing a evaluable mapping consists of the following steps:

1. Choose a preimage domain D
Select the centers and radii of the boundary circles Cj of D.

2. Choose the prevertices p, interior angles πα and parameters µ
The values a can be calculated based on the α and the prevertices p are defined by
their argument with respect to the center of the corresponding boundary circle.
The γ are calculated from the µ to ensure (p− c)γ + a ∈ iR.

3. Calculate the Schwarzian
To (pre)calculate the Schwarzian we either calculate all the transformations of
M(D) or the poles and weights of the poles of the Schwarzian. This calculation
also includes AC .

4. Calculate a basis for the analytic remainder
We compute 3m− 3 analytic basis functions for the domain D.

5. Search for the best parameter set b
We look for a set of parameters b, such that the analytic remainder leads to a
valid multiply connected mapping.

6. Evaluate the mapping
After all values are set, we evaluate the mapping and, for example, calculate a
specific point, the boundary, or a grid. The calculation of the boundary may be
accomplished by the algorithm provided in Section 5.2.
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5.4.1 Calculating the Schwarzian Derivative

According to Theorem 4.36, the Schwarzian derivative of a conformal mapping onto a
domain of connectivity three or greater is of the form

S(z) =
∑

T∈M(D)

T ′(z)2 [R(T (z)) +AC(T (z))] +AR(z).

We omit AR(z) for now and focus on the Poincarè series contained in the Schwarzian
derivative. To evaluate it, we need the initial rational function

F(z) := R(z) +AC(z)

and the transformations T of the group M(D).

We begin with the calculation of F . It contains the poles of the first generation and
their corresponding terms, and is therefore of the form

F(z) =
∑
j,k

(
aj,k

(z − pj,k)2
+

γj,k
(z − pj,k)

)
+
∑
j,k

4∑
i=1

wj,k,i
(z − lj,i)

. (5.5)

The wj,k,i represent the weights at the limit points used for AC . The actual values of
these weights can be found in Definition 4.33, but they do not matter for the following
discussion. It is enough to know that each set {wj,k,i | i = 1, . . . , 4 } corresponding to
a prevertex pj,k can be calculated with the limit points Lj = { lj,i | lj,1 = sj(lj,2), lj,3 =
sj(lj,4), i = 1, . . . , 4 }, the center cj of the corresponding circle Cj and the values be-
longing to the prevertex (pj,k, aj,k, γj,k). We can sum the weights over the index k to
wj,i =

∑
k wj,k,i as the poles lj,i do not depend on k.

As we supposed D and all pj,k, αj,k and µj,k to be known, we can calculate aj,k by

aj,k = 1
2(1−α2

j,k) and γj,k by γj,k =
iµj,k−aj,k
pj,k−cj . We still need to calculate the limit points

lj,i and weights wj,i. Each set

Lj = { lj,i | lj,1 = sj(lj,2), lj,3 = sj(lj,4), i = 1, . . . , 4 }
contains limit points symmetric to Cj , as sj indicates the reflection against Cj . One
method of calculating suitable limit points lj,i is to compute the fixed points of sj ◦ sν
and sj ◦ sη, where ν, η = 0, . . . ,m, ν 6= j, η 6= j, and ν 6= η.
Let l1 be a fixed point of sj ◦ sν . We therefore have

(sj ◦ sν)(l1) = l1 ⇔ sj(l1) = sν(l1)

and define l2 = sj(l1) = sν(l1). The point l2 is also a fixed point as we have

(sj ◦ sν)(l2) = (sj ◦ sν)(sν(l1)) = sj(l1) = l2

and l1 and l2 are symmetric with respect to Cj . According to Lemma 2.25, both fixed
points are also limit points.
With the lj,i known, we may also calculate the weights wj,i. Hence we state the following
algorithm to calculate the poles and coefficients of F .
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Algorithm 6:

1: set the values D, pj,k, αj,k and µj,k
2: calculate the aj,k and γj,k
3: set the reflections sj
4: compute L0 as fixed points of s0 ◦ s1 and s0 ◦ s2

5: compute L1 as fixed points of s1 ◦ s0 and s1 ◦ s2

6: calculate the w0,i and w1,i for i = 1, . . . , 4
7: for j from 2 to m do
8: compute Lj as fixed points of sj ◦ s0 and sj ◦ s1

9: calculate the wj,i for i = 1, . . . , 4
10: end for

Calculating the Poincaré series

With F set, we calculate the Poincaré series∑
T∈M(D)

T ′(z)2F(T (z)).

First, we truncate the Poincaré series to make it calculable. A natural way to do this
is to restrict the length of the transformations. We will therefore use

M(D,N) := { T | T ∈M(D), |T | ≤ N} (5.6)

instead of M(D) for the numerics.
There are two principal ways to compute the series. While both versions are mathe-
matically equal, they have different computational errors.

The first method is to sum over the terms T ′(z)2F(T (z)) as it is suggested by the
definition of the series. To set up the sum, we have to calculate all T in M(D,N):

Algorithm 7:

1: set the maximum transformation depth N
2: calculate the generating transformations of M(D) and their inverses
3: save them in T [1]
4: for n from 2 to N do
5: for all transformations U in T [n− 1] do
6: for all transformations V in T [1] do
7: if V is not inverse to the last applied transformation of U then
8: calculate U ◦ V
9: save the result in T [n][new number]

10: end if
11: end for
12: end for
13: end for
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The results are stored in a structure T in the form T [length][number]. The value
“length” refers to the length |T | of the transformation T . The formulation “V is not
inverse to the last transformation of U” is necessary because the length of a transfor-
mation is reduced if we apply the inverse of the last applied generating transformation.
With the set M(D,N), we are able to calculate the Poincarè series using the terms
T ′(z)2F(T (z)). Note that we need to include the term F(z) in the sum, as the set
M(D,N) constructed above does not contain the identity.

The second method is to pre-calculate the FT = T ′(z)2F(T (z)) in the form

FT (z) =
∑
j,k

(
aj,k

(z − qj,k)2
+

δj,k
(z − qj,k)

)
+
∑
j

4∑
i=1

w̃j,i

(z − l̃j,i)
by transforming F (given by equation (5.5)), where

pj,k = T (qj,k), δj,k = T ′(qj,k)γj,k +
aj,kT

′′(qj,k)

T ′(qj,k)
,

lj,i = T (l̃j,i), w̃j,i = T ′(l̃j,i)wj,i.

Since this calculation can not only be applied to the first generation, we may want to
calculate FT◦U = U ′(z)2FT (U(z)) in the same way, but starting with FT instead of F .
This allows us to calculate each FT directly by successive applications of the generators
of M(D) without calculating M(D,N) in advance. Hence, we can alter our current
approach to:

Algorithm 8:

1: set the maximum transformation depth N
2: calculate the generating transformations of M(D) and their inverses
3: save them in T
4: store the parameters of F (i.e. pj,k, aj,k, γj,k, lj,i, wj,i) in values[0][1]
5: for n from 1 to N do
6: for all rational functions FT in values[n− 1] do
7: for all transformations U in T do
8: if U is not inverse to the last applied transformation of FT then
9: transform the poles p and l with U

10: calculate the corresponding weights γ and w
11: save the results in values[n][new number]
12: end if
13: end for
14: end for
15: end for

Numerical Stability

Both versions of the Poincarè series, either the one using T ′(z)2F(T (z)) or the one with
FT (z), contain some numerical problems.
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To set up the correct context for the following discussion, we have to remember that
the coefficients of the Möbius transformations T (z) = (Az + B)/(Cz + D) grow very
fast with an increasing length, while the quotients −D

C stay bounded. This becomes
crucial as the coefficients appear in several positions of our formula. The derivatives
T ′(z)2 shrink with |C|−4, while the parameters γ grow with |C|2.
For visualization, we show the magnitude of the weight C2 of γ in the form of iterations
Tn of a transformation T in Table 7. Here T is the successive reflection against the unit
circle ∂D and a circle C1 with center c and radius r. We can see that the coefficients of

log10(|C|2) n = 1 2 3 4 5 6 7 8 9 10

c = 3, r = 1 0.96 2.64 4.32 6.00 7.66 9.30 11.0 12.7 14.3 16.0
c = 5, r = 1 1.40 4.12 6.86 9.56 12.3 15.0 17.7 20.4 23.2 26.0
c = 5, r = 2 0.80 2.80 4.78 6.78 8.78 10.8 12.8 14.8 16.7 18.8
c = 7, r = 1 1.70 5.04 8.40 11.7 15.0 18.4 21.8 25.2 28.4 31.8

Table 7: The table shows the growth of the factor C2, where C is the corre-
sponding coefficient of a transformation Tn. The transformation T maps ∂D
onto the circle C1 with center c and radius r.

Tn grow like O(exp(n)), which leads to problems in the numerics.
The common data type for numerics is the double precision floating point number. This
type has about 16 significant decimal digits. We must assume that the last digit contains
some form of rounding error. As a consequence, if we multiply any value x by a number
in the size of 1016, the result contains a rounding error equal in size to the original x.
In our case, we would see this in calculating γ. Depending on the geometry of D, even
a small number of transformations lead to a formula, which contains parameters with
rounding errors greater than the absolute value of the parameters of the first generation.

The idea behind the convergence of the Poincaré series
∑
T ′(z)νR(T (z)) is that the

derivatives T ′ in the form T ′(z)ν are tending to zero for z ∈ D and |T | → ∞, while the
rational functions R(T (z)) stay bounded. In our case, the rational functions F(T (z))
are not bounded, but the T ′(z)2 are shrinking quickly enough to ensure the convergence.
From a numerical point of view, this means that we are multiplying numbers of very
different magnitudes.
There is another difficulty in the denominator T (z) − l in AC(T (z)). The subtraction
of equal sized numbers lead to the numerical problem of a loss of significance [DR08,
Chapter 2.2]. Hence the result becomes very inaccurate if T (z) tends to l.

On the other hand, the denominators of FT (z) have a lower boundary for all z ∈ D.
This is a consequence of the combination of the shrinking T ′(z)2 and growing F(T (z)).
The result is an overall shrinking expression FT (z). The shrinking relies on the fact
that the different parts of FT (z) cancel each other out. The usage of FT (z) is therefore
also vulnerable to a loss of significance. This becomes especially critical, as the weights
of the different terms (e.g. γT,j,k) grow with the length of the transformations. The
numerical errors for longer transformations can therefore be greater than the correct
values for shorter transformations, leaving only corrupt results.
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Both versions incur numerical problems if we include lengthy transformations, i.e. the
N in M(D,N) of equation (5.6) gets too large. However, we need a large N to obtain
accurate results by the convergence of the sum. One of the main targets for the numer-
ical evaluation is therefore to find an equilibrium between the accuracy provided by the
limit process and the errors that grow with the length of the transformations.

Calculation Speed

We state some notes regarding the calculation speed of the evaluation. Many numerical
software packages use multi-dimensional arrays as standard data type (e.g. MatLab,
Octave, . . . ). They handle them very quickly in comparison with more complicated
data types like structures. This fact can especially be used at two different points in
the calculation process.

If we prepare or set up the sum for the Schwarzian as in the Algorithms 7 and 8, we
obtain some rather expensive51 structures. Since the Schwarzian has to be evaluated
very often, it is reasonable to restructure the data to a form which can be evaluated
more quickly. Since the order of the terms is not important for a finite sum, we may
create a single vector or matrix for each parameter type. Using vectors and matrices
instead of loops results in a significant quicker calculation.
This vectorization can for example be done by the following algorithm if we want to
convert the results of Algorithm 8.

Algorithm 9:

1: for n from 0 to N do
2: for all sets S in values[n] do
3: for all combinations belonging to one prevertex of S do
4: save the current prevertex as new element of the vector p
5: save also a and γ as new elements of corresponding vectors
6: save the limit points (for AC) as a new row in the matrix l
7: save the weights for the limit points as a new row in the matrix w
8: end for
9: end for

10: end for

If we use the concept of transformations (based on Algorithm 7), we can use a ma-
trix containing the coefficients of each transformation in a row, thus evaluating the
Schwarzian without loops.

The use of matrices is also useful in the calculation of the Möbius transformations. If
we write the coefficients of the Möbius transformations in the form of a matrix, i.e.

T =

(
A B
C D

)
,

51Expensive in the context of calculation time.
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we can calculate the composition of two transformations U ◦ T by a simple matrix
multiplication.52

5.4.2 Basis Functions for the Analytic Remainder

The analytic remainder AR of the Schwarzian derivative can be expressed as a real
linear combination of 3m − 3 basis functions according to Lemma 4.41. We therefore
need 3m− 3 linearly independent functions Bi with the correct properties and suitable
weights bi.

First we calculate 3m− 3 basis functions. We already presented three different ways to
construct suitable functions in the Sections 4.4.4, 4.4.5 and 4.4.6, but we must ensure
that we are only constructing linearly independent functions or we have to reduce the
resulting set of functions to only contain linearly independent elements.

The versions of Lemma 4.45 (Section 4.4.5) and of Definition 4.56 (Section 4.4.6) for such
functions Bi are very similar from a numerical point of view. Both versions resemble a
Poincaré theta series, but the second covers only a subset of the transformations of the
group.
Hence, both of them can be pre-calculated in the manner described in the previous
section. The only difference is that we only need the mentioned subset M(D,T,N) of
the transformations M(D) for the second option. We alter our algorithm for M(D,N)
to compute only the required subset.

Algorithm 10:

1: set T and the maximum transformation depth N
2: calculate the generating transformations of M(D) and their inverses
3: save them in G
4: copy G to V [0] except for the one transformation equal to T−1

m

5: for n from 1 to N do
6: for all transformations U in V [n− 1] do
7: for all transformations W in G do
8: if W is not inverse to the last transformation of U then
9: if U ◦W is not T then

10: calculate U ◦W
11: save the result in V [n][new number]
12: end if
13: end if
14: end for
15: end for
16: end for

52This fact can be proven by calculation.
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We are also able to calculate the basis functions by using only the poles and weights
as discussed in the previous section for FT . This may be done by a modification of
Algorithm 8.
After calculating several functions Bi by different initial limit points or transformations,
we need to verify if they are linearly independent. This can be done by using the infor-
mation of Section 4.4.4 that the first three coefficients of all Laurent series of equation
(4.54) together completely define the function. Hence, calculating these coefficients rep-
resented by three real values and testing the vectors of the R3m+3 for linear dependence
is sufficient.53

Alternatively, we can directly construct the functions in the form

Bi(z) =
m∑
j=0

N∑
n=1

di(n, j)

(z − cj)n

of equation (4.54), but with a finite number of coefficients di(n, j). We already stated in
Section 4.4.4 that the coefficients can be computed by constructing a system of equations
based on a finite version of formula (4.59)

∑
j 6=k

N∑
n=4

ω(l, n)c(k, j)−(l+n)di(n, j)− r−2l−4
k di(l + 4, k) = −λi(l, k), (5.7)

where

ω(l, n) = (−1)l
(
l + n− 1

l

)
, c(k, j) = ck − cj ,

λi(l, k) =
∑
j 6=k

3∑
n=1

ω(l, n)c(k, j)−(l+n)di(n, j).

Hence, we set up the system

Wd = λ, (5.8)

where W is a matrix containing the weights for the di(n, j), d is a vector constructed
of the di(n, j) and λ is a vector consisting of the λi(l, k). The matrix and the vectors
cover all combinations of l = 0, . . . , N − 4 and k = 0, . . . ,m. Solving this system for d
yields the coefficients to calculate an approximation of Bi.
The first three coefficients di(n, j) for each circle, which are needed to calculate the
λi(l, k), can be acquired by solving the system of linear equations (4.57). Actually, a
basis for the kernel of the linear system gives us a set of initial values to calculate 3m−3
linearly independent functions Bi. Hence, we have found the following algorithm:

53This method is only valid for unbounded domains. The initial domain may need to be transformed
accordingly.
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Algorithm 11:

1: set the number of coefficients N
2: set up the system of equations (4.57)
3: calculate a basis B for the null space of the system
4: generate the matrix W based on (5.7)
5: for all elements in B do
6: calculate the λ(l, k) and generate the vector λ
7: solve the system Wd = λ for d
8: save the solution
9: end for

This method also leads to some numerical issues.54 Since the absolute value of the ω(l, n)
rise very fast for large l, the system (5.8) loses stability for large N , or equivalently the
condition number of W rises with N . Again, the best N is not necessary a large one.

While the construction above is designed for unbounded circular domains, basis func-
tions for bounded domains can be calculated by the procedure stated at the end of
Section 4.4.4.

1. Extend the circular domain D over the outer boundary circle C0.

2. Calculate the basis functions for the unbounded extension s0(D).

3. Transform the solutions to be defined on D.

5.4.3 Validity of the Mappings

We discussed at the end of Section 4.4.3 that not all combinations of parameters of the
Schwarzian yield a valid mapping. To verify if the result of a mapping is valid, we may
apply the same method as for the doubly connected domains. The main difference is
that we have to investigate m curves instead of only one.
Let δj(t), where t ∈ [0, 1], be the parametrization of a circle in D enclosing only the
boundary circle Cj . To verify the conditions (2.3), we solve from δj(0) to δj(1) and
compare the results to the initial values. For a valid mapping, the values for δj(0) and
δj(1) must be equal. Hence, we investigate the values

gj,l := f (l)(δj(0))− f (l)(δj(1)), j = 1, . . . ,m, l = 0, 1, 2.

If all of them are zero, we have a necessary (but not sufficient) condition for validity.

As for the doubly connected case, we can use this idea to find an analytic remain-
der, which matches the mapping function as much as possible with respect to a valid

54The problems of the Poincaré series, which apply to the first two methods, where already covered
in the previous section.
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mapping. Since the analytic remainder is defined by

AR(z) =

3m−3∑
i=1

biBi(z),

we have to find suitable weights bi ∈ R for the linear combination, if the Bi are given.
As the gj,l depend on b = (b1, . . . , b3m−3), we can establish an error function

E(b) :=

m∑
j=1

3∑
l=1

|gj,l(b)|.

Now we must find a zero of E by numerical methods to obtain a suitable choice for b.

5.4.4 Examples

The algorithms for the plotting of a CAPD mapping of connectivity three or greater are
similar to the ones of the doubly connected case. The greatest difference is the usage

(a) Preimage: The blue paths to reach the
boundary are chosen according to Section 5.2.
The black boundary is then calculated.

(b) Image: The blue image of the paths and the
black image of the boundary are shown.

Figure 50: The first algorithm reaches out from a starting point to touch
each boundary arc. At each of these arcs, the behavior at the boundary is
calculated. Here a triple connected unbounded domain is shown.

of the Schwarzian for MCCAPD mappings instead of the one for the mappings onto
DCCAPDs.
The algorithm generating the grid is further modified. Since there is no obvious choice
for a grid, we place a small grid around each boundary circle to visualize the mapping
behavior, and also change the coloring. Each boundary component is now painted in
a different color to distinguish them, and each grid uses the color of its corresponding
boundary component (Figure 51).
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Figure 51: The second algorithm plots the boundary, the vertices and a grid
around each boundary component. Each boundary component is painted in
a different color for ease of matching with its preimage. The corresponding
grid has the same color as the boundary. Here the triply connected domain of
Figure 50 is shown once again.

While there is no restricting equation for the MCCAPD mappings, we still have the
problem of overlapping image domains. The results are similar to the doubly connected
mappings, so we refer to the images presented in Section 5.3.3 for visualization.
However, this problem becomes of greater interest, as the search for valid parameter sets
is more difficult than in the case of doubly connected domains, and any search algorithm
will take longer as the number of parameters increases. This is the main reason why
most of the images show boundary components containing some kind of symmetry.
These domains are easier to handle with respect to their parameters (Figures 53 to 56).

We noted in the doubly connected case that the behavior of the image domains with
respect to the prevertices p and the parameters µ is similar to the simply connected
case. This holds also for an even greater connectivity.
Hence, we want to set up an example similar to (5.4) of the doubly connected case. We
define the parameters for the outer boundary C0 by

c0 = 0, r0 = 1, arg(p0 − c0) = ( 0.25, 0.75, 1.25, 1.75 )π,

α0 = ( 0.5, 0.5, 0.5, 0.5 ), µ0 = λ( 1,−1, 1,−1 ).
(5.9)

Again, the values of µ depend on an additional parameter λ ∈ R. The parameters for
the inner two boundary components are defined by

c1 = 0.5, r1 = 0.1, c2 = −0.5, r2 = 0.1,

arg(p1 − c1) = ( 0, 1 )π, arg(p2 − c2) = ( 0, 1 )π,

α1 = ( 1.5, 1.5 ), α2 = ( 1.5, 1.5 ),

µ1 = ( 0, 0 ), µ2 = ( 0, 0 ).

(5.10)

By changing λ, we obtain image domains very similar to the ones for the doubly con-
nected mappings. The results can be seen in Figure 52.
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(a) λ = 0 (b) λ = 0.02 (c) λ = 0.04

(d) λ = 0.06 (e) λ = 0.08 (f) λ = 0.1

Figure 52: The image domain for the parameters given by (5.9) and (5.10)
changes with the choice for λ. The difference in curvature of two successive
outer boundary arcs increases with an increasing value for λ.

If we compare Figure 52 with Figure 49 of the doubly connected mappings, we notice
one more fact: The ratio of the curvature is changing faster in the images of the triply
connected domains, while the values for λ increase slower. The λ for double connectivity
ranges from 0 to 0.5, while the λ for the triply connected case ranges from 0 to 0.1.
While the basic behavior in both cases is equal, the actual results still depend on the
shape of D.

One point to remember while investigating the image domain of any kind of CAPD
mapping is this: The visual impression of a result depends significantly on the initial
values. We adjusted these values for the produced images to keep the basic properties
of the results constant. For example, we kept the curvature of the arcs of the outer
boundary pairwise equal for the images regarding the changing parameters in Figure
52.
The fact that a CAP looks very different for different initial values/Möbius transforma-
tions was already shown in Figure 14.
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Figure 53: The image of the boundary for a domain of connectivity five.

(a) Preimage (b) Image

Figure 54: The domain of connectivity five (Figure 53), where the vertices
and surrounding grids are shown.
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(a) Preimage (b) Image

Figure 55: The first algorithm for a bounded triply connected domain.

(a) Preimage (b) Image

Figure 56: The second algorithm for the bounded triply connected domain
of Figure 55.
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5.5 Approach to the Parameter Problem

5.5 Approach to the Parameter Problem

To map onto a specific image domain, we must find the correct parameters for the
Schwarzian derivative. This is known as the “parameter problem” in the context of the
Schwarz-Christoffel transformation.
The best known approaches to this topic for simply connected circular arc polygon
domains are from Bjørstad and Grosse ([BG87]) and from Howell ([How90], [How93]).
We now extend their concepts to handle conformal mappings onto multiply connected
domains.

5.5.1 Numerical Solving the Parameter Problem

The Schwarzian derivative for MCCAPD mappings contains four groups of parameters:
the prevertices p, the interior angles απ in the form of a, the parameters µ and the
linear combination for AR given by b. We also need a conformally equivalent preimage
domain, and so we need the boundary circles of a suitable circular domain D in form
of their centers c and radii r.
If we denote the number of all prevertices of all circles by K :=

∑
jKj , we need 3K

real values to describe the parameters p, a and µ. For a (m+ 1)-connected domain D,
it takes 3(m+ 1) real values to determine the boundary circles and there are 3(m− 1)
linearly independent analytic functions Bi to construct AR. Since the target MCCAPD
P is known, we already know the interior angles and therefore the values a. We also have
to take a normalizing Möbius transformation for the preimage domain D into account.
We therefore have to find real values in the quantities

3K parameters p, a, µ

−K known interior angles

+ 2(m+ 1) centers c

+ (m+ 1) radii r

+ 3(m− 1) parameter b

− 6 normalization by Möbius transformation

= 2K + 6m− 6.

We combine these values to one parameter vector −→x . Note that not all −→x are valid, as
for example not every combination of centers and radii yields a circular domain.

We now need a way to describe the image domain of a MCCAPD mapping to be able
to compare it with other MCCAPDs. Any CAP domain can be characterized by its
vertices and the curvature of its arcs. If we denote the number of all vertices as above
by K, the domain is given by 3K real values. By supposing the interior angles to be
fixed, this reduces to 2K real values.55 Since we can apply a Möbius transformation to
the mapping, we can normalize each CAPD by six degrees of freedom. This leaves us

55See the next section for further discussion about the geometry of CAPDs.
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with 2K − 6 real values to identify a CAPD. As we are dealing with a MCCAPD that
is generated by a mapping, we need to verify the validity of the image domain by the
three integral equations (2.3) for m of the m + 1 boundary components. This gives a
further 6m real values to take into account.

2K vertices

+K curvatures

−K known interior angles

− 6 normalization by Möbius transformation

+ 6m integral equations

= 2K + 6m− 6

Overall, this results in 2K + 6m − 6 values to describe a CAPD, so we can compare
two CAPDs P1 and P2 by 2K + 6m− 6 values, i.e. define an operator d measuring the
distance d(P1, P2) ∈ R2K+6m−6.

Since both sides have the same numbers of degrees of freedom we can apply methods
similar to those of the parameter problem for the SC mapping. Hence, if we are looking
for a domain P0, we will need a function E : R2K+6m−6 → R2K+6m−6 taking −→x as
an input and returning the distance between the CAP domains P (−→x ) and P0, where
P (−→x ) denotes the image domain for the parameter vector −→x . With this function, we
only need to find a zero of E(−→x ) := d(P (−→x ), P0) by numerical optimization routines
like quasi-Newton methods to get the correct parameters.
The function E should contain the following steps

Algorithm 12:

1: pre-calculate the Schwarzian for the parameter vector −→x
2: calculate a basis for the analytic remainder and set AR
3: compute the boundary of the image domain
4: normalize the domain
5: compare the current image domain with the target domain P0

6: return the difference as a vector of R2K+6m−6

Any search algorithm will vary the values in −→x to find the zero of E, but this method
presents two problems. The first is that the order of the prevertices on each circle is
not allowed to change. As this problem also occurs for the Schwarz-Christoffel trans-
formation, there is already a solution to this problem, as given by a clever substitution
for the arguments of the prevertices found in [DT02].
More critical is the second issue that the basis for the analytic remainder changes if
we change the preimage domain, so the coefficients bi can not be applied to the same
functions Bi as in the previous step.
A possible solution to this problem would be to remove the search for b from E and do
it in a subroutine in each step of E, where the conditions for a good b can for example
be the validity of the mapping as we discussed above.
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Algorithm 13:

1: pre-calculate the Schwarzian for the parameter vector −→x
2: calculate a basis for the analytic remainder
3: search for the best choice of b
4: use the calculated value of b for the following steps
5: compute the boundary of the image domain
6: normalize the domain
7: compare the current image domain with the target domain P0

8: return the difference as a vector

The downside of Algorithm 13 is that the problem is no longer quadratic, forcing us to
use other numerical solvers.

5.5.2 Geometry of Circular Arc Polygon Domains

Degrees of Freedom of a CAP

To compare the image CAPD of a mapping and the wanted CAPD P0, we need a way
to describe the bounding circular arc polygons.

A CAP is completely defined if we know all the vertices and the curvatures of all the
edges. This gives 3K degrees of freedom for a CAP with K vertices/edges. For the
parameter problem, the interior angles of the CAP are set, as we are looking for a
specific CAPD. Subtracting these K degrees of freedom means we have to identify the
CAP by the 2K remaining degrees.
The vertices alone are not suitable to identify the CAP. This can be seen by an example
from [BG87] shown in Figure 57. Suppose the vertices of a rectangle to be given. If one

Figure 57: Both domains have the same position of the vertices and the same
interior angles but differ in their shape. [BG87]

side is bend inwards, we can keep the interior angles by alternately bending the other
sides either outwards or inwards. Therefore, the same vertices and interior angles allow
us to construct several different CAPs. We could for example handle this problem by
replacing the 2 real degrees of freedom of one vertex by the values of two curvatures.
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Hence, one way to construct a CAP by 2K real values would be the following:
Each circular arc represents five degrees of freedom: three for the circle and two for
the starting and end point. We can therefore fix the first edge by setting the vertices
v1, v2 and the curvature κ1 of the edge. For the second edge, we already have three
information: the vertex v2 and the interior angle between the first and the second
edge. The remaining two points of information can be established by the vertex v3.
We can continue in this manner through the vertices until vK−1. Up to this point we
used 5 + 2(K − 3) = 2K − 1 real information for the construction, leaving one degree
of freedom open for the last two edges. We can use this remaining degree to set the
curvature κK−1 of the second to last edge. In this way, we obtain the circle C̃K−1 for
this edge, where the starting point is already given by vK−1. Since the CAP is a closed
curve, we can also use the first circle C̃1 and v1 for the calculation of the last edge.
With C̃1, C̃K−1, v1 and the angles between the circles, we are able to calculate C̃K .56

The last vertex vK can afterwards be computed as the intersection point of the circles
C̃K−1 and C̃K .57

A problem with this and many other approaches is that it is only valid for CAPs that
are simple curves. If at least one arc is larger than 2π in argument, the construction
is no longer valid. While such arcs are not used for our construction of circular arc
polygons, they might still appear in the numerics. This topic is further discussed in
[How90].

Normalization of MCCAPD Mappings

As the preimage and the image domain of a MCCAPD mapping can be transformed by
Möbius transformations, we need some normalization for these domains.
For the preimage domain, a circular domain, we can use three of the six real degrees
of freedom provided by a Möbius transformation to set C0 to the unit circle ∂D. The
remaining three can be used to set further circle properties, prevertices or a combination
of both. A suggestion would be to set the first prevertex on C0 to 1 and the center of
C1 to a specific value like 10 or 1/2 depending whether D is unbounded or bounded.
These normalized values have then to be excluded from the parameter vector −→x .
The image domain can be normalized by setting either the vertices or the curvatures
to the values we wish. One easy method is to set three vertices to the required values.
This allows to directly calculate the Möbius transformation for the normalization by the
cross-ratio of the points. Afterwards we apply the transformation to the image domain
to move all other vertices accordingly.

56By interpreting the interior angles as inversive distances between the circles, one can easily set up
a system of equations.

57The calculation of the last vertex may becomes difficult for specific configurations of curvatures and
angles [How90], but this problem can be handled by changing the curvatures by using other prevertices
for the normalization.
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Measuring the Difference between Circular Arc Polygon Domains

With the discussion so far, we have supposed two MCCAPDs P and P̃ to be equal if
they satisfy for all boundary CAPs the equations

vj,k − ṽj,k = 0, j = 0, . . . ,m, k = 1, . . . ,Kj − 1,

κj,k − κ̃j,k = 0, j = 0, . . . ,m, k = 1,Kj − 1,

where we exclude three vertices for the normalization. If P (−→x ) is generated by a
MCCAPD mapping f(z,−→x ) with the parameter vector −→x , we also have to verify the
validity of the mapping with regard to∫

δj

f (l)(z,−→x )dz = 0, j = 1, . . . ,m, l = 1, 2, 3.

We already suggested in Section 5.4.3 that we may verify

gj,l(
−→x ) = f (l)(δj(0),−→x )− f (l)(δj(1),−→x ) = 0, j = 1, . . . ,m, l = 0, 1, 2,

instead as this version demands less calculation time. Hence, we have found the formulas

vj,k(
−→x )− ṽj,k = 0, 2K − 2(m+ 1)− 6 real equations,

κj,k(
−→x )− κ̃j,k = 0, 2(m+ 1) real equations,

Re (gj,l(
−→x )) = 0, 3m real equations,

Im (gj,l(
−→x )) = 0, 3m real equations,

where K =
∑

jKj , resulting in 2K + 6m− 6 real equations.
This gives a system of equations as needed for Algorithm 12.

With this system of equations, we have found a way to measure the difference between
two CAPDs P and P̃ , i.e. we have a function d(P, P̃ ). We are also able to compute
the boundary of a MCCAPD P (−→x ) defined by the parameters −→x . Hence, for a given
target MCCAPD P0, the function E(−→x ) = d(P (−→x ), P0) : R2K+6m−6 → R2K+6m−6 is
given. This allows us to perform the solving of the parameter problem as the search for
the zero −→x0 of the function E.

At this point, we may apply a lot of the knowledge already gathered for the Schwarz-
Christoffel parameter problem [DT02]. This includes transformations of the parameters
to forms which are more suitable for numerical solvers and variations in the equation
system such as replacing the vertices by lengths and curvatures.

5.6 Current State of the Schwarz-Christoffel Transformation

The most influential articles about the numerical computation of multiply connected
Schwarz-Christoffel maps are written by DeLillo, Elcrat, Kropf and Pfaltzgraff. After
stating the initial formula for the mappings in [DEP04], they evolve the numeric for the
computation by improving the evaluation of the mappings and introducing approaches
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to the parameter problem ([DDEP06], [DK10]). The results were published later in
[DK11].

The even more recent article [DEKP13] introduces an interesting approach to the eval-
uation of the mapping function. The mapping formula (4.63)

f(z) =

∫ z m∏
j=0

Kj∏
k=1

 ∞∏
i=0,ν∈σi(j)

(
ζ − pj,k,ν
ζ − uj,ν

)βj,k dζ
is rewritten to

f(z) =

∫ z m∏
j=0

Kj∏
k=1

[fj,k(ζ)]βj,k dζ,

where

fj,k(z) =
∞∏

i=0,ν∈σi(j)

(
z − pj,k,ν
z − uj,ν

)
.

Since fj,k is defined by an infinite product, it yields most of the numerical problems.
Therefore it is approximated by a method using Laurent series to avoid the reflections
necessary for the original fj,k. This approach may also be useful for the MCCAPD
mapping.
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6 Conclusion

Considering all our results, there are three different but to some degree similar versions
for the Schwarzian derivative of conformal mappings onto CAPDs, depending on the
connectivity of the domains. All three versions depend on the parameters p, a and µ and
the geometry of the preimage domain. In addition, there are restricting equations for
the parameters p, a and µ and the mapping formula contains an analytic remainder that
has to be correctly chosen. Note that the number of restricting equations is reduced and
the number of parameters for the analytic remainder grows if the connectivity becomes
greater.

simply connected Theorem 3.4 (page 36)
3 restricting equations, 0 parameters for the analytic remainder

doubly connected Theorem 4.22 (page 76) and Theorem 4.23 (page 77)
1 restricting equation, 1 parameter for the analytic remainder

multiply connected Theorem 4.36 (page 108)
0 restricting equations, 3m− 3 parameters for the analytic remainder

With these results, we are able to find for each simply or multiply connected CAPD P a
conformal mapping from a circular domain58 onto P ,59 but the search for the mapping
becomes more difficult if the connectivity of P grows. The common problem for all of
these versions is the choice and interpretation of the parameters. This becomes even
more crucial as not every parameter set yields a valid mapping in the case of multiply
connected domains.

For the individual parts of this thesis, we have the following results and open topics:

6.1 Simply Connected CAP Domains

We discussed the properties of conformal mappings onto simply connected CAP domains
and investigated the behavior of the parameters µ for some special CAP domains. We
noticed that |µ| rises as the prevertices cluster together (Section 3.2) and that there is
a connection between the curvatures of the arcs and the values of the µ (Section 3.4).
We even provide an explicit formula for the µ if the image domain can be mapped onto
a polygonal domain by a Möbius transformation. This result is gathered by comparison
with the classical Schwarz-Christoffel transformation (Section 3.3).

If we combine our three results, we see that the µ depend on the distances between
the prevertices, the interior angles πα and the curvatures of the boundary arcs. The
best way to see this connection to the prevertices and angles is Lemma 3.6, where the
curvature is zero for all boundary arcs if a suitable normalization is applied. The formula

58The unit disk is a special case of a circular domain.
59There is still a restriction regarding the convergence for domains of connectivity four or greater.
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presented in the lemma allows us to directly investigate this connection. Otherwise,
equation (3.9) also contains the curvature, but the equation is only an approximation
for the µ. Hence, it allows us only to make some estimations.

While we showed a connection of the parameters µ with the prevertices, the interior
angles and the curvature of the boundary arcs of the image domain, the main problem
of an accurate description of the µ remains. The usage of curvatures for the description
of the µ always depends on the normalization of the actual image domain, so it would be
useful to replace the curvatures by a value that does not depend on the normalization.
It would even be better to replace the µ by parameters that are independent of the
other parameters of the mapping.
Even with an interpretation of the µ, the classical Schwarz-Christoffel parameter prob-
lem would remain, and so any improvements in this direction would also be appreciated.

6.2 Multiply Connected CAP Domains

We collected properties of the Schwarzian derivative of conformal mappings onto multi-
ply connected CAP domains by extending the domain of definition of such mappings to
its maximum (Section 4.1) and used these properties afterwards for the construction of
the Schwarzian. We established a Schwarzian derivative for conformal mappings onto
doubly connected CAP domains (Section 4.2) and one for mappings onto CAP domains
with connectivity three or greater (Section 4.4).
While the form for connectivity two is fixed, the form for connectivity three or greater
can be modified by the choice of AC and the basis for AR. We found a choice for AC
that satisfies the requirements of the mappings, and we also presented three versions
for the basis functions Bi of AR.
These results were then compared to existing mappings onto CAPDs and to map-
pings onto domains that can be interpreted as special cases of CAPDs, for example the
Schwarz-Christoffel transformation (Section 4.3 and Section 4.5).

In summary, we found formulas to conformally map onto multiply connected circular
arc polygon domains and verified them by comparison to existing formulas that cover
similar mappings. We are therefore able to conformally map onto every CAPD (of finite
connectivity) as long as we find the correct parameters.
A comparison of our proofs of the multiply connected mappings and our proof of The-
orem 3.4 for simply connected mappings allows us to see that all cases of mappings
onto CAPDs are constructed in a similar way by extending the domain of definition.
However, the different preimage domains lead to different results including the analytic
remainder and different numbers of restricting equations.

We note for further work that the conformal mappings onto MCCAPDs can be improved
by simplifying AC and AR. Our choice for AC is rather complicated, and there might
be a better choice or at least a simplification. We presented several version to find a
basis for AR, but there is still room for improvement. It would be useful to find a set
of basis functions of greater computational simplicity. This includes the problem of
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ensuring the linear independence of the constructed functions.
As the (normalized) conformal mappings onto CAPDs are unique, there must also be
a connection between the choice of AC and the parameters b of AR. A combination of
both terms would perhaps lead to a simpler form of the Schwarzian.
It would also be advantageous to remove the convergence requirement for the mapping
by using current results regarding Poincaré theta series.

The mappings onto multiply connected CAP domains pose the problem of choosing
suitable parameters to obtain a valid mapping. We are at the moment restricted to
testing this property by evaluating each mapping and checking the image domain for
overlapping parts and gaps. Hence, some conditions for the parameters to ensure a
valid mapping without testing the result would be beneficial. The main goal should
nonetheless be a full description of the subspace of valid parameters. Based on the
Carathéodory convergence theorem, this subspace is at least connected and open.

Even for a valid set of parameters, we have a lack of information regarding the pa-
rameters µ for multiply connected image domains. Some of the numerical generated
images lead us to expect a similar behavior as for simply connected domains, but this
conjecture needs verification.

6.3 Numeric for CAPD Mappings

We presented the necessary background and methods for the numerical evaluation of
conformal mappings onto multiply connected CAP domains and an approach for nu-
merically solving the parameter problem:

• Calculation of the Schwarzian derivative

• Paths in order to solve the Schwarzian along them

• Calculation of the boundary and the vertices

• A system of equations to approach the parameter problem

We are therefore able to handle the common numerical tasks regarding conformal map-
pings: We can find the correct parameters for a specific circular arc polygon domain
and we are able to evaluate the resulting mapping everywhere in its domain of definition
and determine its boundary.

However, many of the individual procedures still need testing and improvements to
obtain a robust algorithm for the calculation of the mapping.
This especially includes the parameter problem. As for similar problems, the robustness
of the algorithm depends heavily on the quality of the used system of equations. Hence,
one may try to use as many techniques as possible from the better investigated Schwarz-
Christoffel transformation and modify them for the needs of CAP boundaries.
There are also ideas like approximating parts of the formula by Laurent series expansions
[DEKP13] (Section 5.6) that may be applied to improve the mappings.
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A Additional Notes

A.1 Restricting Equations for the CAPD Mapping onto Polygonal
Domains

The parameters µ of the conformal mappings of the unit disk onto CAPDs have to
satisfy the equations (3.1)

n∑
k=1

µk =
n∑
k=1

pk(ak + iµk) = 0

of Theorem 3.4. We wish to verify these equations for the parameters

µk = −(αk − 1)

2

∑
j 6=k

(αj − 1) cot
ϕj − ϕk

2
, k = 1, . . . , n,

of Lemma 3.6 that were calculated for CAPD mappings onto polygonal domains. To
shorten the notation, we introduce

λ(j, k) := (αj − 1)(αk − 1).

For the first equation

n∑
k=1

µk = 0

we have

n∑
k=1

µk = −1

2

n∑
k=1

∑
j 6=k

λ(j, k) cot
ϕj − ϕk

2

= −1

2

n−1∑
k=1

n∑
j=k+1

(
λ(j, k) cot

ϕj − ϕk
2

+ λ(k, j) cot
ϕk − ϕj

2

)
= 0

by reordering the sum, the fact that λ is symmetric (λ(j, k) = λ(k, j)), and that cotan-
gent is an odd function (cot(−x) = − cot(x)).

The second equation can be split up into two, considering the real and the imaginary
part.

n∑
k=1

pk(ak + iµk) =

n∑
k=1

(cos (ϕk) + i sin (ϕk))(ak + iµk)

=

n∑
k=1

[(ak cos (ϕk)− µk sin (ϕk)) + i (ak sin (ϕk) + µk cos (ϕk))]

= τr + iτi
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A.2 Proof of the Convergence Lemma 4.15

If we continue with the real part τr of the equation, we find

τr =
n∑
k=1

ak cos (ϕk)− sin (ϕk)

−1

2

∑
j 6=k

(
λ(k, j) cot

ϕj − ϕk
2

)
=

n∑
k=1

ak cos (ϕk) +
1

2

n∑
k=1

∑
j 6=k

λ(k, j) sin (ϕk) cot
ϕj − ϕk

2

=

n∑
k=1

ak cos (ϕk) +
1

2

n−1∑
k=1

n∑
j=k+1

λ(k, j) cot
ϕj − ϕk

2
(sin (ϕk)− sin (ϕj)) .

By using the identity

cot
ϕ1 − ϕ2

2
(sin (ϕ2)− sin (ϕ1)) = − cos (ϕ1)− cos (ϕ2)

and reestablishing the original order, we have

τr =
n∑
k=1

ak cos (ϕk)−
1

2

n−1∑
k=1

n∑
j=k+1

λ(k, j) (cos (ϕj) + cos (ϕk))

=

n∑
k=1

ak cos (ϕk)−
1

2

n∑
k=1

(αk − 1) cos (ϕk)
∑
j 6=k

(αj − 1).

Since polygons satisfy the geometric property
∑n

k=1(αk−1) = −2, we have the equation∑
j 6=k(αj − 1) = −2 − (αk − 1) at our disposal. Hence, we can further transform the

real part τr to

τr =
n∑
k=1

ak cos (ϕk)−
1

2

n∑
k=1

(αk − 1) cos (ϕk)(−2− (αk − 1))

=
n∑
k=1

ak cos (ϕk)−
1

2

n∑
k=1

(1− α2
k) cos (ϕk)

=
n∑
k=1

ak cos (ϕk)−
n∑
k=1

ak cos (ϕk) = 0,

since ak is defined by ak = 1
2(1− α2

k).
The same techniques can be used to simplify the imaginary part τi to zero, which
demonstrates the second restricting equation.

A.2 Proof of the Convergence Lemma 4.15

We will state the proof of Lemma 4.15 that was omitted in Section 4.1.4.
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Lemma A.1
Let D be a circular domain, infinity an ordinary point of M(D) lying in DR and Λ
the limit set of M(D). Further let

ε =
1

4
max
l1,l2∈Λ

{|l1 − l2|}.

The candidate function K in the form

K(z) =
∑
j,k

(
aj,k

(z − pj,k)2
+

γj,k
z − pj,k

)

+
∑′

T,j,k

(
aj,k

(z − pT,j,k)2
+

γT,j,k
z − pT,j,k

− γT,j,k
(z − lT )

− aj,k + γT,j,k(pT,j,k − lT )

(z − lT )2
− 2aj,k(pT,j,k − lT ) + γT,j,k(pT,j,k − lT )2

(z − lT )3

)
,

converges locally uniformly on D, where lT ∈ Λ and |T−1(lT )− T−1(∞)| > ε.

The symbol
∑′

indicates the sum without the identity.

Proof. We will start with a discussion of the behavior of the group M(D). Since infinity
is an ordinary point, the limit set is bounded and all the images of the circles Cj are
of finite length, i.e. the set of transformed prevertices is also bounded. All images of
infinity lie either in a circle Cj or T (Cj), where j = 1, . . . ,m, and so the points T (∞)
are also bounded.
To show the convergence, we need to investigate the sum∑′

T,j,k

(
aj,k

(z − pT,j,k)2
+

γT,j,k
z − pT,j,k

− γT,j,k
(z − lT )

− aj,k + γT,j,k(pT,j,k − lT )

(z − lT )2
− 2aj,k(pT,j,k − lT ) + γT,j,k(pT,j,k − lT )2

(z − lT )3

)
.

If we split up the terms and sort them with respect to a and γ, we see that

a

(z − p)2
− a

(z − l)2
− 2a(p− l)

(z − l)3
=
a(p− l)2(2(z − p) + (z − l))

(z − p)2(z − l)3
(A.1)

γ

(z − p) −
γ

(z − l) −
γ(p− l)
(z − l)2

− γ(p− l)2

(z − l)3
=

γ(p− l)3

(z − p)(z − l)3
. (A.2)

(The indices were skipped to shorten the notation.) To investigate the behavior of these
two fractions, we start with their numerators. We are able to rewrite the difference

180



A.2 Proof of the Convergence Lemma 4.15

pT,j,k − lT to

pT,j,k − lT = T (pj,k)− T (τT ) =
1

C2

pj,k − τT
(pj,k + D

C )(τT + D
C )

(A.3)

if we use pT,j,k = T (pj,k), τT := T−1(lT ) and T (z) = Az+B
Cz+D . We further shorten our

notation by uT = −D
C = T−1(∞).

The pj,k, τT and uT are bounded due to the behavior of M(D). The differences pj,k−τT
and pj,k − uT have a lower and an upper boundary, since the pj,k lie on the circles Cj ,
while each τT and uT lie inside of a circle Cj or T (Cj) with a positive distance to the
corresponding circle Cj or T (Cj). The difference τT −uT has also a lower boundary, as
demanded by |τT −uT | = |T−1(lT )−T−1(∞)| > ε. Hence, there is an upper boundary

δ = max
T,j,k

{∣∣∣∣ pj,k − τT
(pj,k − uT )(τT − uT )

∣∣∣∣}
for the quotient of equation (A.3). We therefore have for the absolute value of the
difference pT,j,k − lT

|pT,j,k − lT | ≤ |C|−2δ.

For z from a closed subset M ⊂ D, we can repeat the argument to find a boundary
for the remaining components of equation (A.1)∣∣∣∣2(z − pT,j,k) + (z − lT )

(z − pT,j,k)2(z − lT )3

∣∣∣∣ ≤ µ1

for all indices T , j, k and z ∈M .
Applying this together with K :=

∑m
j=0Kj and maxj,k {|aj,k|} ≤ 3

2 to the sum over
the expression (A.1) shows∣∣∣∣∣∣

∑′

T,j,k

aj,k(pT,j,k − lT )2(2(z − pT,j,k) + (z − lT ))

(z − pT,j,k)2(z − lT )3

∣∣∣∣∣∣
≤
∑′

T,j,k

|aj,k||pT,j,k − lT |2
∣∣∣∣2(z − pT,j,k) + (z − lT )

(z − pT,j,k)2(z − lT )3

∣∣∣∣
≤ 3

2
µ1

∑′

T,j,k

|pT,j,k − lT |2

≤ 3

2
µ1

∑′

T

|C|−4δ2
∑
j

Kj


≤ 3

2
µ1δ

2K
∑′

T

|C|−4 = λ1

∑′

T

|C|−4.
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We have to be more careful for the second part, since the γT,j,k increase with the length
of T in their absolute value. The correlation between γT,j,k and γj,k (first generation
γ) is, according to (4.11),

γT,j,k = (Cpj,k +D)2γj,k + 2aj,kC(Cpj,k +D)

= C2(pj,k − uT ) [(pj,k − uT )γj,k + 2aj,k] .

Since all factors excluding the C2 are bounded, we can introduce a new positive con-
stant µ2, where ∣∣∣∣ γT,j,k

(z − pT,j,k)(z − lT )3

∣∣∣∣ ≤ |C|2µ2.

Therefore we can write∣∣∣∣∣∣
∑′

T,j,k

γT,j,k(pT,j,k − lT )3

(z − pT,j,k)(z − lT )3

∣∣∣∣∣∣ ≤
∑′

T,j,k

|pT,j,k − lT |3
∣∣∣∣ γT,j,k
(z − pT,j,k)(z − lT )3

∣∣∣∣
≤
∑′

T,j,k

(
|C|−6δ3 |C|2µ2

)
≤ δ3µ2K

∑′

T

|C|−4 = λ2

∑′

T

|C|−4.

If we combine the results, we see∑′

T,j,k

∣∣∣∣ aj,k
(z − pT,j,k)2

+
γT,j,k

z − pT,j,k
− γT,j,k

(z − lT )

− aj,k + γT,j,k(pT,j,k − lT )

(z − lT )2
− 2aj,k(pT,j,k − lT ) + γT,j,k(pT,j,k − lT )2

(z − lT )3

∣∣∣∣
≤(λ1 + λ2)

∑′

T

|C|−4,

where the sum
∑′

T
|C|−4 converges according to Lemma 2.41.

If we also introduce an upper bound λ3 for the absolute value of the first generation,
we have

|K(z)| ≤ λ3 + (λ1 + λ2)
∑′

T

|C|−4 <∞.

Thus we have proven the locally uniformly convergence of K in D.

The geometric interpretation of the condition |T−1(lT )− T−1(∞)| > ε is that we have
to ensure that each lT lies in the convex hull of the domain T (DR). This property is
necessary, as we require the distance |pT,j,k − lT | to shrink with the same speed as the
diameter of the domains T (DR).
Note that the proof would actually allow the statement “K converges uniformly on
closed subsets of C∞ neither containing limit points nor prevertices”.
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A.3 Calculation of the Pre-Schwarzian of Nehari’s Slit Mapping

We wish to calculate the pre-Schwarzian of the function

f(z) =
√
k sn

(
2iK

π
log

z

r
+K, r4

)
that conformally maps the annulus r < |z| < 1 onto the unit disk minus a symmetric
slit on the real axis. Since the following discussion is based on [Neh52, p. 293-295], we
need to state some basic properties of the functions sn, cn and dn. The functions cn
and dn have the product expansions

cn(z, q) =
4
√
q(1− k2)√

k
ζ

∞∏
n=0

(1 + q2nζ−2)
∞∏
n=1

(1 + q2nζ2)

∞∏
n=0

(1− q2n+1ζ−2)
∞∏
n=0

(1− q2n+1ζ2)

,

dn(z, q) =
4
√

1− k2

∞∏
n=0

(1 + q2n+1ζ−2)
∞∏
n=0

(1 + q2n+1ζ2)

∞∏
n=0

(1− q2n+1ζ−2)
∞∏
n=0

(1− q2n+1ζ2)

,

where ζ = e
πiz
2K . We do not need an expansion for sn as it has the property

d

dz
sn(z) = cn(z) dn(z). (A.4)

Hence, the derivative of f is of the form

f ′(z) =
2irK

√
k

πz
cn

(
2iK

π
log

z

r
+K, r4

)
dn

(
2iK

π
log

z

r
+K, r4

)
if we use equation (A.4). For ζ = i rz and q = r4, we can use the product forms

cn

(
2iK

π
log

z

r
+K, r4

)
=
ir 4
√
r4(1− k2)√
k z

∞∏
n=0

(1− (r4)2n( zr )2)
∞∏
n=1

(1− (r4)2n( rz )2)

∞∏
n=0

(1 + (r4)2n+1( zr )2)
∞∏
n=0

(1 + (r4)2n+1( rz )2)

,

dn

(
2iK

π
log

z

r
+K, r4

)
=

4
√

1− k2

∞∏
n=0

(1− (r4)2n+1( zr )2)
∞∏
n=0

(1− (r4)2n+1( rz )2)

∞∏
n=0

(1 + (r4)2n+1( zr )2)
∞∏
n=0

(1 + (r4)2n+1( rz )2)

.

For further investigations, we will use a finite form, and so define

f ′ = lim
N→∞

f ′N ,
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where f ′N contains only finite products up to N . If we take logarithm of f ′N , we obtain

log f ′N (z) = log

(
−2r3K

√
1− k2

π

)
− 2 log (z)

+
N∑
n=0

log (1− (r4)2n( zr )2) +
N∑
n=1

log (1− (r4)2n( rz )2)

+
N∑
n=0

log (1− (r4)2n+1( zr )2) +

N∑
n=0

log (1− (r4)2n+1( rz )2)

− 2

N∑
n=0

log (1 + (r4)2n+1( zr )2)− 2

N∑
n=0

log (1 + (r4)2n+1( rz )2).

We can rewrite the terms 1− (r4)2n( zr )2 = (1− (r2)2n z
r )(1 + (r2)2n z

r ) and differentiate
log f ′N (z) to find

d

dz
log f ′N (z) =

−2

z
+

2N+1∑
n=0

(
1

z − (r2)−nr
+

1

z + (r2)−nr

)

+
2N+1∑
n=1

(
1

z − (r2)nr
+

1

z + (r2)nr
+
−2

z

)

+
N∑
n=0

( −2

z − (r2)−2nir−1
+

−2

z + (r2)−2nir−1

)

+
N∑
n=0

( −2

z − (r2)2(n+1)ir−1
+

−2

z + (r2)2(n+1)ir−1
+

4

z

)
.

We have 2(N + 1) terms −2
z (one in the beginning and 2N + 1 in the sum) and N + 1

terms 4
z , which thus cancel out. Therefore we can write

d

dz
log f ′N (z) =

2N+1∑
n=−(2N+1)

(
1

z − (r2)nr
+

1

z + (r2)nr

)

+
N+1∑
n=−N

( −2

z − (r2)2nir−1
+

−2

z + (r2)2nir−1

)
.

If we introduce the poles pk and uk, we can write the pre-Schwarzian as

SN (z) =
2N+1∑

n=−(2N+1)

2∑
k=1

1

z − r2npk
+

N+1∑
n=−N

2∑
k=1

−2

z − r4nuk
,

where p1 = r, p2 = −r, u1 = ir−1, u2 = −ir−1, and S(z) = limN→∞ SN (z).
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A.4 Validity of the Mappings by Methods of Differential Equations

If the Schwarzian Derivative is known, one may calculate a corresponding mapping
function by solving the differential equation

y′′ +
1

2
Sy = 0 (A.5)

for two linearly independent solutions. Therefore, it is reasonable to investigate the
solutions of the equation to get information about the behavior of the mapping itself.
One feature of interest for multiply connected domains is whether the function describes
a valid multiply connected mapping.
An example of a statement gathered from differential equations is the univalence criteria
of Nehari [Neh48]

|{f, z}| ≤ 6

(1− |z|2)2
, |z| < 1,

which was proven by using the Sturm comparison theorem.

Suppose we wish to solve the Schwarzian along a closed curve δ ⊂ D. As the curve is
closed, it can be seen as a periodic function δ(t) = δ(t+ 2π).
Since a closed curve is mapped onto a closed curve, we require f(δ(0)) = f(δ(2π)) for
the mapping to be valid. Since the solution of the Schwarzian is given in the form of a
ratio, we have

f(z) =
y1(z)

y2(z)

for two independent solutions yj of (A.5). If we now define

vj(t) := yj(δ(t)), j = 1, 2 ,

we can rewrite the problem to

f(δ(0)) = f(δ(2π)) ⇔ vj(0) = σ(2π)vj(2π),

where we have added a possible factor σ that vanishes in forming the quotient.
The transformed equation (A.5) for v is60

v′′ − δ̈

δ̇
v′ + (δ̇)2 1

2
Sv = 0. (A.6)

Since the coefficients are 2π periodic, we can apply several techniques for solving ordi-
nary differential equations. Based on the Floquet theory (e.g. [Tes12]), we notice that
σ must be constant. Since every solution of (A.6) must have the same σ, both Floquet
multipliers must be equal. Based on the structure of the equation, they must equal 1.

We can further transform ([MW66, p. 51]) this equation with

w(t) := exp

(
−1

2
ln (δ̇(t)) +

1

2
ln (δ̇(0))

)
v(t)

60See the next section for a derivation of the formula.
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into the form of Hill’s equation

w′′ + T w = 0,

where

T =
1

2

d

dt

(
δ̈

δ̇

)
− 1

4

(
δ̈

δ̇

)2

+
δ̇2

2
S(δ).

In this form, the problem of two independent (anti-)periodic solutions is known as the
coexistence problem [MW66, ch. 7].
The disadvantage is that there is a lack of statements on equations with generic coeffi-
cient functions, while there are some well analyzed special cases. Additionally, most of
the statements demand real coefficient functions.

Even if every solution for every curve is periodic, this does not exclude the cases, where
some points are surrounded multiple times by the image curve of δ or where the image
curve is not simple.
If we choose the initial value of v1 to be zero, f has zeros at δ(0) and δ(2π). To cover
at least some of the cases stated above, there should not be any more additional zeros
on δ. Equivalently v1 can not have any zeros for t ∈ (0, 2π). This leads to the concept
of Sturm-Liouville equations [Zet05], where the boundary values are fixed and, as one
aspect, the number of the zeros of the solutions is investigated.

186



B Basic Calculations for the Evaluation of the Schwarzian
Derivative

B.1 System of Differential Equations

We stated already in Lemma 2.13 that the Schwarzian Derivative {f, z} = S(z) can be
solved by solving the differential equation

y′′ +
1

2
Sy = 0

for two independent solutions y1, y2. The actual mapping function is then given by the
quotient f = y1/y2. Note that the initial values of the differential equations correspond
to the degrees of freedom provided by the Möbius transformations.

In most cases, it is sufficient to calculate the solution only along a curve γ, for example,
if we are only interested in some special points. If we use numerics, we are in any case
restricted to solving along a curve.
We now state the transformation of the differential equation for the sake of completeness.
With y(γ(t)) = v(t) we have:

y = v, y′ = (γ̇)−1v′, y′′ = (γ̇)−2

(
v′′ − γ̈

γ̇
v′
)
.

This gives

v′′ − γ̈

γ̇
v′ + (γ̇)2 1

2
Sv = 0.

We have for the two common curves, a concentric circle and a straight line:

circle γ(t) = reit : v′′ − iv′ − r2e2it 1

2
Sv = 0

line γ(t) = teiϕ : v′′ + e2iϕ 1

2
Sv = 0

A note regarding the numerics: It reasonable to solve for both solutions v1 and v2 in one
system of differential equations instead of two. Combining them reduces the number of
evaluations of the Schwarzian resulting in a significantly reduced calculation time.

B.1.1 Initial Values

The initial values of f , y1, and y2 are connected by

f(z0) =
y1(z0)

y2(z0)
, f ′(z0) =

y′1(z0)y2(z0)− y1(z0)y′2(z0)

y2(z0)2
,

f ′′(z0) = 2y′2(z0)
y1(z0)y′2(z0)− y′1(z0)y2(z0)

y2(z0)3
.

(B.1)
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Normalizing this by setting y2(z0) = 1, we reach

f(z0) = y1(z0), f ′(z0) = y′1(z0)− y1(z0)y′2(z0),

f ′′(z0) = 2y′2(z0)
(
y1(z0)y′2(z0)− y′1(z0)

)
.

Solving the equations for y gives

y1(z0) = f(z0), y2(z0) = 1,

y′1(z0) =
2f ′(z0)2 − f(z0)f ′′(z0)

2f ′(z0)
, y′2(z0) = − f

′′(z0)

2f ′(z0)
.

Hence, if we have initial values for f , we can calculate the initial values for y1 and y2

by the equations above. To switch to the differential equation for the curve γ, we have
to compute the initial values for vj(t) = yj(γ(t)), where γ(0) = z0, by

vj(0) = yj(z0), v′j(0) = γ̇(0)y′j(z0).

After solving the differential equation for v1(1) and v2(1), we can use the equations
(B.1) to calculate the values f(z1), f ′(z1) and f ′′(z1), where z1 = γ(1).

We may wish to change the image domain by applying a Möbius transformation. This
can be done after the solving process or beforehand by modifying the initial values.
As we will change the initial values in any case, we begin with the simple set

f(z0) = 0, f ′(z0) = 1, f ′′(z0) = 0,

and obtain for y

y1(z0) = 0, y′1(z0) = 1, y2(z0) = 1, y′2(z0) = 0.

If we apply the transformation T (z) = (az + b)/(cz + d) to find g = T ◦ f we have

g(z0) =
b

d
, g′(z0) =

1

d2
, g′′(z0) =

−2c

d3

and so we set for the transformed function g = u1/u2 the initial values to

u1(z0) = b, u′1(z0) = a, u2(z0) = d, u′2(z0) = c.

Hence, if we want to change the mapping by a Möbius transformation, we can apply
the coefficients directly to the initial values of the differential equation.

B.2 Boundary Calculation

B.2.1 Calculate the Circles Providing the Boundary

To calculate the boundary of an CAP domain, we must calculate the circles providing
the boundary arcs. Each pre-arc ζj,k ⊂ Cj is mapped onto a circular arc f(ζj,k) = δj,k ⊂
C̃j,k. If we solve from some point z0 to a boundary point z1, we get f(z1), f ′(z1) and
f ′′(z1) as a result of the differential equation. The goal is to calculate C̃j,k from these
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q

q

q

q

ζj,1

pj,1

pj,2

pj,3

pj,4

Cj

q

q
q

q
f(pj,2)

f(pj,4)

f(pj,3)

f(pj,1)

δj,1
C̃j,4

C̃j,1

C̃j,3
C̃j,2

Figure 58: Each boundary circle Cj is mapped onto a circular arc polygon
domain. The pre-arcs ζj,k are mapped onto the circular arcs δj,k. Each δj,k is
part of a circle C̃j,k. In the special case shown above, the circles C̃j,2 and C̃j,4
are equal.

three values.
For the preimage arc, we have

ζ(t) = reit/r + c, ζ̇(t) = ieit/r, ζ̈(t) = −1

r
eit/r

and for the image arc

δ(t) = f(ζ(t)), δ̇(t) = f ′(ζ(t))ζ̇(t), δ̈(t) = f ′′(ζ(t))ζ̇(t)2 + f ′(ζ(t))ζ̈(t).

For a specific point z1, we set t = arg (z1 − c) to calculate the above quantities.61 We
can then calculate the curvature κ and the normal vector −→n of the image curve by

κ = |f ′|−1 Im(δ̈/δ̇), −→n = i sign(κ) (δ̇/|δ̇|),
which allows us to calculate

r̃ = |κ|−1, c̃ = f +−→n r̃,

the radius and center of the circle C̃.

B.2.2 Calculation of the Vertices

We wish to calculate the vertices of the image domain by using the circles C̃j,k. With
these vertices, we then also know the arcs of the circles C̃j,k that form the boundary of
the domain.
The previous step of the calculation does not only provide us with the circles C̃j,k but
also with the direction that the boundary takes on them, i.e. clockwise or counterclock-
wise. Combining these information together with the interior angles of the domain
allows us to calculate the vertices.

61We can skip the parameter, since t is fixed in the following notation.
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Figure 59: The same set of circles can be used to construct different bound-
aries for circular arc polygon domains.

Let us look at two of the circles C̃j,k e.g. C̃0,1 and C̃0,2. The two circles will intersect
at two points and we must choose the correct one as the vertex. This problem becomes
trivial if the circles only touch each other at one point.

Let us denote the curvature of C̃0,1 and C̃0,2 by κ1 and κ2 and the interior angle by απ.
Suppose the center of C̃0,1 is at 1 and the center of C̃0,2 is at −1. We have one vertex
v1 with a positive imaginary part and one vertex v2 with a negative imaginary part.
There are eight different scenarios, as we have two directions for each circle and two
vertices to choose from. Listing these cases shows that for each pair of directions we can

b

b

v1

v2

(a) For the vertex v1, the interior angle is
smaller than π.

b

b

v1

v2

(b) For the vertex v2, the interior angle is
greater than π.

Figure 60: The curvature for C̃0,1 (right circle) is positive (counterclockwise)
and the curvature for C̃0,2 (left circle) is negative (clockwise). For an interior
angle smaller than π, we have to choose the upper vertex v1. For an interior
angle greater than π, we have to choose the lower vertex v2.

distinguish the intersection points by the interior angle. One point produces an interior
angle smaller than π (α < 1), while the other produces an angle larger than π (α > 1).
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B.2 Boundary Calculation

The results can be found in Table 8(a), and a simplified version is shown in Table 8(b).
With the circles C̃j,k, the curvature of the boundary arcs and the vertices we have
completely defined the boundary.

sign(κ1) sign(κ2) α vertex

+1 +1 > 1 v1

+1 +1 < 1 v2

+1 −1 > 1 v2

+1 −1 < 1 v1

−1 +1 > 1 v2

−1 +1 < 1 v1

−1 −1 > 1 v1

−1 −1 < 1 v2

(a) The vertex can be chosen by the signs
of the curvatures and the interior angle

sign(κ1κ2) α vertex

+1 > 1 v1

+1 < 1 v2

−1 > 1 v2

−1 < 1 v1

(b) The table to the left can be
simplified by investigating only the
product of the signs.

Table 8: We may choose the correct vertex by the signs of the curvatures of
the arcs and the interior angle.

Note that this approach does not cover the case where two consecutive circular arcs are
provided by the same circle. This occurs at the end point of a slit (α = 2) or if we
artificially split up a boundary arc in several parts (α = 1). If this happens, we must
approximate the vertices by numerical means.
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